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PREFACE 

Mathematica by Example is intended to bridge the gap which has existed between the very 
elementary handbooks available on Mathematica and those reference books written for the more 
advanced Mathematica users. This book is an extension of a manuscript which was developed to 
quickly introduce enough Mathematica commands to a group of students at Georgia Southern 
University that they could apply Mathematica towards the solution of nonlinear ordinary 
differential equations. In addition to these most basic commands, these students were exposed to 
the vast uses of lists in Mathematica, Having worked through this material, these students were 
successfully able to take advantage of the capabilities of Mathematica in solving problems of 
interest to our class. 

Mathematica by Example is an appropriate reference book for readers of all levels of 
Mathematica experience. It introduces the very basic commands and includes examples of 
applications of these commands. It also includes commands useful in more advanced areas such as 
ordinary and partial differential equations. In all cases, however, examples follow the introduction 
of new commands. Of particular note are the sections covering Mathematica Packages (Chapters 
7, 8, and 9), because the commands covered in these chapters are absent from most Mathematica 
reference books. The material covered in this book applies to all versions of Mathematica as well 
with special notes concerning those commands available only in Version 2.0. Other differences in 
the various versions of Mathematica are also noted. 

Of course, appreciation must be expressed to those who assisted in this project. We would 
like to thank our department head Arthur Sparks for his encouragement and moral support and for 
being the instigator of the Computer Calculus Project which initiated the idea of writing a book like 
Mathematica by Example. We would also like to thank Prof. William F. Ames for suggesting 
that we publish our work and for helping us contact the appropriate people at Academic Press. We 
would lüce to express appreciation to our editor, Charles B. Glaser, and our production manager, 
Simone Payment, for providing a pleasant environment in which to work. We would also like to 
thank our colleagues for taking the time to review our manuscript as it was being prepared for 
publication. We appreciated their helpful comments. Finally, we would like to thank those close 
to us for enduring with us the pressures of meeting a deadline and for graciously accepting our 
demanding work schedules. We certainly could not have completed this task without your care 
and understanding. 

M.L.Abell 

J. P. Braselton 



Chapter 1 
Getting Started 

a Mathematica, first released in 1988 by Wolfram Research, Inc., is a system for doing mathematics on a computer. 
It combines symbolic manipulation, numerical mathematics, outstanding graphics, and a sophisticated 
programming language. Because of its versatility, Mathematica has established itself as the computer algebra 
system of choice for many computer users. Overall, Mathematica is the most powerful and most widely used 
program of this type. Among the over 100,000 users of Mathematica, 28% are engineers, 21% are computer 
scientists, 20% are physical scientists, 12% are mathematical scientists, and 12% are business, social, and life 
scientists. Two-thirds of the users are in industry and government with a small (8%) but growing number of 
student usrs. However, due to its special nature and sophistication, beginning users need to be aware of the 
special syntax required to make Mathematica perform in the way intended. 

a The purpose of this text is to serve as a guide to beginning users of Mathematica and users who do not intend to 
take advantage of the more specialized applications of Mathematica. The reader will find that calculations and 
sequences of calculations most frequently used by beginning users are discussed in detail along with many typical 
examples. We hope that Mathematica bv Example will serve as a valuable tool to the beginning user of 
Mathematica. 

I A Note Regarding Different Versions of Mathematica 
For the most part, Mathematica by Example was created with Version 1.2 of Mathematica. With the release of 
Version 2.0 of Mathematica, several commands from earlier versions of Mathematica have been made obsolete. In 
addition, Version 2.0 incorporates many features not available in Version 1.2. Mathematica by Example adopts the 
following conventions: 

Sections that discuss features of Version 1.2 will begin with symbols like H D i 
unless otherwise noted, these commands are supported under Version 2.0. 

Sections that discuss the features of Version 2.0 mil begin with symbols like Φ ® O · 
These sections are NOT pertinent to Version 1.2. 
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Chapter 1 Getting Started 

1.1 Macintosh Basics 
Since Mathematica bv Example was created using Macintosh computers, we will quickly review several of the 
fundamental Macintosh operations common to all application programs for the Macintosh, in particular to 
Mathematica, However, this book is not meant to be an introduction to the Macintosh and the beginning user 
completely unfamiliar with the Macintosh operating system should familiarize himself with the Macintosh by 
completing the Macintosh Tour and consulting the Macintosh Reference. The material that appears in 
Mathematica bv Example should be useful to anyone who uses Mathematica in a windows environment. 
Non-Macintosh users may either want to quickly read Chapter 1 or proceed directly to Chapter 2, provided they 
are familiar with their computer. 

After the Mathematica program has been properly installed, a user can access Mathematica by first clicking twice on 
the hard disk icon located in the upper right hand comer of the computer screen. The following window will appear: 

é File Edit Uiew Special Open your hard disk by clicking twice on the icon 

HardDisk 
3 items 52/770K in disk 25,967K available 

\Q\ 

□ 
System Folder B I B H I I R f M l other Stuff 

The Mathematica program (provided the program 
has been installed correctly) is contained in 
the Mathematica f file. To open the Mathematica/ 
file, click twice on the icon, 

Tola 

HardDisk 

Trash 
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Chapter 1 Getting Started 

The Mathematica f folder can be opened by clicking twice on its icon. After opening the Mathematica f folder, start 
Mathematica by double clicking on the icon labeled Mathematica. These steps are illustrated below: 

é File Edit Uieui Special 

HardDisk 
3 items 52/779K in disk 25/958K available 

i 
System Folder Mathematica f Other Stuff 

Click twice on the Mathematica icon to start 
Mathematica 

HardDisk 

Mathematica f 
8 items 52/779Kindisk 25/958K available 

Math A MathB MathC 

S3 
Mathematica Prefs Mathematica Help 

Packages Samples 

The Samples folder 
contains samples 
of various features 
of Mathematica 

The Packages folder contains 
programs necessary to implement 
some of Mathematical more 
sophisticated features. Several 
of them will be discussed later. 
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Chapter 1 Getting Started 

After double-clicking on the Mathematica icon, an empty Mathematica document appears; the Mathematica session 
can be initiated by typing anything. When you begin typing, Mathematica automatically creates an input cell for 
you. If an input cell contains a Mathematica command, the command is evaluated by pressing ENTER or 
Shift-Return. 

In general, the ENTER key and RETURN key are not the same. The ENTER key is used to evaluate Mathematica 
commands; the RETURN key gives a new line. 

é File Edit Cell Graph Find fiction Style Window 

Untitled-1 
Begin Typing 

| · I · | 

When you click twice on the Mathematica icon, 
l k>] Mathematica opens and the screen is replaced 

by an eπφty Mathematica document. When you 
begin typing, an "input celT is created 

ΙΦΙ lillilillliJilJl« 

V M W O W O W W« 

A Mathematica document is 

a Notebook. 

h OW4WMMMOWOWOW40WMWOIC 

*i 

called 

i A 

In order to create a ne v input cell 
move the cursor belov the original cell so 
that the cursor is horizontal. When the cursor 
is horizontal, click the mouse once: 

The cursor is horizontal 
whenever it is 
between two ceUs: 

When the cursor is horizontal and the 
mouse is clicked once, a black line 
appears across the document window: 
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Chapter 1 Getting Started 

A horizontal black line appears after clicking the horizontal cursor once. Additional typing causes Mathematica to 
replace this line with a new input cell containing the most recently typed information. 

é File Edit Cell Graph Find Rction Style Window 

Untitled-1 
Begin Typing 

m 
Sam 

| · I · | · I ZEE 

m 
>—< 

To create a new "input cell", move the citrsor below 
the existing cell, click once. Notice that a 
horizontal black line appears. 
When you begin typing, Mathematica replaces 
the black line with a cell to hold your text. 

5 



Chapter 1 Getting Started 

11.2 Introduction to the Basic Types of Cells, Cursor Shapes, and Evaluating 
Commands 
In the following example, 2+3 is a Mathematica command. The input cell containing 2+3 can be evaluated by 
pressing ENTER after the command has been typed. 

Do NOT type Ίη(Ι)' and ~0*α(1)" 
numbers the calculations for you. 

Mathematica automatically 

A é File / d i t Cell Graph Find fiction Style Window 

Untitled-1 
y t h i n g -IL£H created by Mathematica. All new cells are 

±ri assumed to be INPUT cells. INPUT cells c 

I 

Title 

Section 

Text Cell 

Ka 

When you start typing, a "celT is automatically 

are 
cells that contain a mathematical command 
Mathematica can evaluate. 
To create a new cell, move the cursor behw an 
existing cell, click once and a horizontal black 
line appears. When you start typing, a new cell 
is created-replacing the block Une. 
Cells that have brackets that look like ] 
are INPUT (or ACTIVE) ceUs. 
Cells that have brackets that look like 1 
are INACTIVE CELLS. 

Inactive cells are cells that cannot be evaluated by Mathematica. Inactive cells include output cells, graphics cells, 
and text cells. Output cells are cells that contain the results of calculations performed by Mathematica; graphics 
cells are cells that contain two- or three-dimensional graphics produced by Mathematica; and text cells are cells that 
contain explanations or other written material that cannot be evaluated by Mathematica. 

To verify that you are able to evaluate input cells correctly, carefully type and ENTER each of the following 
commands: 
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Chapter 1 Getting Started 

Notice that every Mathematica command begins with capital letters and the argument is enclosed by square brackets 

Do NOT type In() or OutQ; Mathematica automatically keeps 
track of the sequence of performed calculation* for you. 

Cell Graph Find fiction Style Window 

Untitled-1 

[ P i , 8 0 ] 

OutflZj* 
3.141592653589793238462643383\ 

279502884197169399375105820\ 

974944592307816406286209 

E z p a n d [ ( x ~ 2 - 2 x + y - y ~ 2 ) A 3 ] 

Outf!3j= 
3 4 5 6 

- 8 x + 12 x - 6 x + x + 

2 3 
12 x y - 12 x y + 

4 2 2 2 
3 x y - 6 x y - 9 x y + 

3 2 4 2 3 
12 x y - 3 x y + y + 

3 2 3 4 
12 x y - 6 x y - 3 y -

4 2 4 5 6 
6 x y + 3 x y + 3 y - y 

Be sure to type each command EXACTLY as it 
appears. Pay close attention to square brackets 
and capital letters. 
To execute a Mathematica command, press 
ENTER. To obtain anew line within an 
existing cell, press RETURN. 

H [ P i , 8 0 ] 
Computes the value of ti to 80 digits of accuracy. 

£ z p a n d [ ( x ~ 2 - 2 x + y - y ~ 2 ) ~ 3 ] 

Computes the product (x2-2x + y - y 2 J . 

' ' ..I 'HK3I i£i£iil· m 
The arrow "->" in the following example is obtained by typing the minus key "-" followed by the greater than key 
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Chapter 1 Getting Started 

é File Edit Cell Graph Find Rction Style Window 

Untitled-1 
lnf!4j:= 

P l o t 3 D [ S i n [ x ] C o s [ y ] , 
{ x . - P i . P i K { y . - P i . P i } ] 

Outf!4j= 
-Sur f a c eGraphi c s -

tablel=Table[BesselJ[x.n]. 
{n.1.6}]; 

table2=Table[GrayLevel[j/10] 

Plot[Release[tablel]. 
{ x . 0 . 8 } . P l o t S t y l e - > 
t a b l e 2 ] 

Outf!5j= 
-Graphics-

S ■ S Ŵ V A W^ ^ ^ ^ ^Ŵ̂ Ŵ .WΛ Λ Λ Λ Λ Λ ΛM ίΛ Λ Λ̂ EE a 

Be sure to type each command EXACTLY as it 
appears. In particular, pay close attention to 
capital letters, square brackets, and braces. 
To obtain a ne v line vithin a cell, press 
RETURN; to evaluate aMathematicacommand, 
or input, press ENTER. 
P l o t 3 D [ S i n [ x ] C o s [ y l . 

{ x . - P i . P i K i y . - P i . P i } ] 
grcpL· the function 
f(x,y) = Sin (x) Cos (y) on the interval 
[-ti,ti]x[-ti,ti]. 

B e s s e l J [ x , n ] denotes the Bessel 
function of the first kind, 

J»(x)sI: jT0j!r(l + j + n) (!) 
where 

Γ(χ) = P t*" 1 e~* dt is the Gamma function 
Jo 

tablel=Table[Bes3elJ[x,n]φ 

{n.i,6}]; 
table2=Table[GrayLevel[j/10] 

ÎZU0.5H; 
Plot[Release[tablel1, 

{x.0.8}.PlotStyle-> 
table2] 

creates andgrcphs, in different shades of grey, 
a table of Bessel functions of the first kind 
This example shows that several Mathematica 
commands can be combined into a single input 
cell and executed 

ta 
a 

Remember: To execute a command, 
press ENTER; To obtain a new line, 
press RETURN. 
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Chapter 1 Getting Started 

Often when using a notebook, users need to convert active cells to inactive cells. This may be accomplished as 
follows: 

a To convert Active Cells to Imtfm CeHs; 

1) Use the mouse to click on the cell bracket of the cell to be modified. The cell bracket will become highlighted. 

2) Go to Style and select Cell Style. 

3) Use the mouse and cursor to choose the desired cell style. 

Notice how the cells from the first example have been modified; the Title Cell is highlighted. 

é File Edit Cell Graph Find Rction Style Window 

Untitled-1 

Type Anything Active Cell 

tnftj." 
m 

Input CeU 

Output CeU 

Title 
S e c t i o n Section CeU 

Text Cell Text CeU 

2+3 

OutftJ* 
5 

Title CeU 

] 

^ ^ ^ ■ ^ « ^ ^ « « ■ ^Λ Λ Λ Α Α Λ ^ Λ ^^ Λ Λ Α Α Μ Λ < Λ Λ Λ Λ Μ Λ" ή · > Ί η ι Ί ϊ πΙ f 1 · : · ^ · · - ; · : · ; · : · ; - : · : · : · : · : · : · : · : · : · : · :* * I 

Ώ\ 
a 

This cell was changed to a Tide CeU; 

This cell was changed to a Section, CeU; and 

This cell was changed to a Text CeU 
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Chapter 1 Getting Started 

As the cursor is moved within a Mathematica notebook, the cursor changes shape. The shape depends on whether 
(a) the cursor is within an active or inactive cell or (b) the cursor is between two cells. 

Cursor Shapes: 

When you click within a text ceU, 
the cursor is vertical You can then type within the text ceil 

When you are between two cells, the cursor is 
horizontal 

S» 

When you click between two cells, a horizontal black line 
appears: 

] 

When you are within a graphics cell, a buckeye I 
appears. You cannot write inside a grcpfues cell ■ 

RlWWUWttUIUWiMWMWIIUtfBIMaMBPW^^ 
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Chapter 1 Getting Started 

11.3 Introduction to the Mathematica Menu 

After Mathematica has started, the Mathematica Menu appears at the top of the screen. The purpose of this section is 
to introduce the most frequently used operations from the Menu. The Menu will be described in more detail in 
Chapter 10. 

• The Menu discussed here is as it appears in Version 1.2. The Version 2.0 Menu is somewhat different from the 
Version 1.2 Menu. For a discussion of the Version 2.0 Menu, see Chapter 10. 

The Mathematica Menu, é File Edit Cell Graph Find Rction Style Window 

Click here to save changes 
and close the notebook 

The thermometer displays -
the amount of RAM used; E 
when the thermometer is 
ßiU, Qtät and restart 
Mathematica 

Begin Typing 
Untitled-t 

Click here to resize the notbook ]p£J 

To scroll within the, 
drag these boxes. 

;, use the cursor and mouse to 

TousetheMenu, use the mouse to move the cursor to either File, Edit, Cell, Graph, Find, Action, Style, or 
Window. We briefly describe several of the features available under File, Edit, Style, and LUindow. 

Use the mouse to move the cursor to FILE in 
order to create a ne v Mathematica notebook, 
Open an existing Mathematica notebook, Save 
changes to a notebook, Print a notebook, or 
Quit Mathematica. 

File 

Marks where page breaks will occur 

NeilJ Creates a new Mathematica Notebook 
_ i 
Open. . . Opens an existing Mathematica Notebook 
S a ϋ Θ Saves (but does not close) the open Mathematica Notebook 

Saue Rs... 

Show Page Breaks 
Show Keywords 

P a y e S e t u p . . . Use to specify type of printer and paper used 

Print ing Opt ions . . . Use to modify margins and page numbering 

P rÎ Π t . . . Prints the open Mathematica Notebook 

Print S e l e c t i o n . . . Prints highlighted cells 

Quit Saves changes to Mathematica Notebooks then cuits Mathematica 

11 



Chapter 1 Getting Started 

To take advantage of the standard Macintosh 
editing commands (Cut, Copy, Paste) select 
EDIT. One can also divide a cell into two cells 
or merge two (or more) cells of the same type into| 
a single cell. The various Mathematica settings 
will he discussed later. 

Edit 
Undo /. C a n ! t U η d o 
Cut 
Copy 
Paste 
Clear 
Paste and Discard 
Conuert Clipboard 

Nesting 
DiUlde Cell Divides asi 

Highlights all cells 

te cell into two cells 

M e r g e Cel ls Merges highlighted cells of the same type 

Set tinqs &ft a si*Sie eeU 

-Contains various startup and display settings fir Mathematica 

To modify highlighted text or cells, use the mouse 
to move the cursor to STYLE. Fonts, faces, sizes, 
color and cell style can he modified. 

Style 
Font &se & change highlighted textto diffsrentfints 

F a c e Convert highlighted textto italics, bold, or underline 

S i z e Change size of highlighted text 

Color Change color of highlighted text 

Format 
Cell S t y l e Change cell style of highlighted cells 

Uniform Style 
Default Styles 
ΠΙΙ Default Styles I 

WINDOW lists all open notehooks, 
several options for viewing several 
open notehooks simultaneously, and 
contains lists of the various Mathematica 
defaults and styles which will he discussed 
in detail later. 

Window 
Stack Windows 
Tile Windows Wide 
Ι!Ι?..ΜΠί.5.!ΐ?.*.Τ5.!.! 
Network Window 
Defaults 
Styles 
Clipboard 
(Open Files) 

Various ways of viewing several open 
notebooks simultaneously. 

Mathematica displays a Ustofthe open notebooks 

12 



Chapter 1 Getting Started 

B Preview: 

In order for the Mathematica user to take full advantage of the capabilities of this software, an understanding of its 
syntax is imperative. The goal of Mathematica bv Example is to introduce the reader to the Mathematica commands 
and sequences of commands most frequently used by beginning users. Although all of the rules of Mathematica 
syntax are far too numerous to list here, knowledge of the following five rules equips the beginner with the necessary 
tools to start using the Mathematica program with little trouble. 

B Remember these Five Basic Rules of Mathematica Syntax 

■ 1. The ARGUMENTS of functions are given in square brackets. 

M 2. The NAMES of built-in functions have their first letters 
capitalized. 

■ 3. Multiplication is represented by a space. 

■ 4. Powers are denoted by a Λ. 

■ 5. If you get no response or an incorrect response, you have entered or 
executed the command incorrectly. 

13 



Chapter 2 
Mathematical Operations on 

Numbers, Expressions and Functions 
in Mathematica 

i Chapter 2 introduces the essential commands of Mathematica. Basic operations on numbers, expressions, and 
functions are introduced and discussed. 

i Commands introduced and discussed in this chapter from Version 1.2 are: 

Operations: 

Constants: 
E 
I 
Pi 

Built-in Functions: 
S [nimber] 
nunber / / Ï 
ï[nuaber , d i g i t s ] 
Abs[nuaber] 
Sqrt[nuaber] 
Exp[niuber] 
Sin [nimber] 
Cos [nimber] 
Tan[nuaber] 
ArcCos[nuaber] 
Arc Sin[nuaber] 
&rcTan[nniber ] 
Log[b] 
Log[a,b] 
tfod[a,b] 
P r i s e [ n ] 

Operations on Equations: 
Solve 
IHoots 
FindRoot 

Operations on Expressions and Functions: 
S impl i fy[express ion] 
Factor[express ion] 
Expand[expression] 

tEodulus->p 
Togetber[expression] 
Apart[expression] 
l'user at or [ f r a c t i o n ] 
Denominator[fraction] 
Cancel[express ion] 
Clear[ funct ions] 
Compose[funetionl, f u n c t i o n ^ . 
ï e s t [ f u n c t i o n , n # x ] 

, * ] 

Evaluation: 
express ion / . variable->nuaber 
Out[n] 
* 
Θ 

Graphics: 
P l o t [ f [ x ] , { x # a , b > , o p t i o n s ] or P l o t [ { f [ x ] , g [ x ] , . 

Options: 
P lo tS ty l e 
DisplayFunction 
ÀspectRatio 
Fraaed 
Ticks 
AxesLabel 
PlotLabel 
GrayLevel[nuaber] 
RGBColor [ nunber Π).nuaber(2),nuaber(3)] 
PlotRange->{a,b > 
&xes->{a#b} 

Show[graphics,options] 

}, {x,a,b},options] 
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Chapter 2 Mathematical Operations 

■ Commands introduced and discussed in this chapter from Version 2.0 are: 

Operations on Expressions and Functions: 
Composition[Innctionl ,±nnct ion2, . . . , func t ions ] [ z ] 
CoBplezEzpand[expression] 
PolynoaialHod[poly,p] 
Graphics: 
G r a p n i c s Ä r r a y [ { { g r a p h l . 1 , g r a p h l . 2 , . . . , g r a p h l . n } , 

{ g r a p n 2 . 1 , . . . , g r a p h 2 . n } 
{graphn.1 , . . . graphn.n>}] 

Sectanale [ { za in ,ya in} , {»&z ,y*az } , g r a p h i c s ] 
Options: 

Background 
GxidLines 
Fraae 
DexanltFont 
PlotLabel-> FontFor· 

a Application: Locating intersection points of graphs of functions 
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Chapter 2 Mathematical Operations 

12.1 Numerical Calculations and Built-in Functions 
i Numerical Calculations and Built-in Constants 

The basic arithmetic operations (addition, subtraction, multiplication, and division) are performed in the natural way 
with Mathematica. Whenever possible, Mathematica gives an exact answer and reduces fractions: 

"a plus b" is entered as a+b; 
"a minus b" is entered as a-b; 
"a times b" is entered as either a*b or a b (note the space between a and b); and 
"a divided by b" is entered as a/b. Executing the command a/b results in a reduced fraction. 

Do NOT type mIn~ and "Out". Mathematica automatically 
numbers the calculations JOT you. 

Cell Graph Find fiction Style Window 

ID! Untitled-1 

121+?42 

0utf!4j> 
663 

toftS/:* 
3231-9876 

ûutf!5j= 
-6645 

inf!6f:= 
-23*76 

Outf!$J= 
-1748 

22361 832748 387281 

uutfi?J= 
7211589719761868 

467/31 

Outftsj* 

467 

31 

y 

-fî m 

] 
*M 

' ■ " ' ■ 'ïpMilitiliiiild 

■ 

Mathematica computes basic operations on numbers 
in the usual way. 

Mathematica assumes all cells are INPUT 
cells. INPUT cells are cells that contain a 
command that Mathematica can execute. To 
execute a command, press ENTER, or 
eguivalently, Shift-RETURN. In general, the 
RETURN key gives you a new line; the ENTER 
key evaluates a Mathematica command. 

]1 ijjjjjjl The symbol * denotes multiplication However, a space 
[jijijil between two expressions also denotes multiplication 

^IM^OUTPUTcelL· are not ACTIVE celL·. They 
[||f/r cannot be evaluated since they do not contain 
[lit/ a command Mathematica can evaluate. 

Mathematica will usually give exact answers. 

The symbol / denotes division Instead of yielding a 
decimal approximation, Mathematica gives the exact 
fraction as output. 
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Chapter 2 Mathematical Operations 

a , "a raised to the bth power", is entered as a A b. 

Va = a ^ can be evaluated as either a A ( l / 2 ) or Sqrt [a]; \/a = a can be evaluated by 

a A ( l / 3 ) . 

é File Edit Cell Graph Find Action Style Window 

I I O Z Z Z J B RoutineCalculation ZZZ 

A / / / -
( - 5 ) A 1 2 1 

\outfU* 
-3761581922631320025499956919\ 

111186169019729781670680Q6Y 

88280054600909352302551269\ 

53125 

\lnfZj:* 
( - 5 ) A ( i / 9 ) 

\Outf2j* 
1/9 

(-5) 

la i 
When Mathematical computes (~5) 
it gives an enact number. 

121 

The \ indicates that the output continues 
onto the next line. 

However, when Matkematica comptes 

5P5-Î-5)"9 

the result is an irrational number. 

17 

file:///outfU*
file:///lnfZj:*
file:///Outf2j*


Chapter 2 Mathematical Operations 

Notice that Mathematica gives an exact answer whenever possible. For a variety of reasons, however, numerical 
approximations of results are either more meaningful or more desirable. The command used to obtain a numerical 
approximation of the number a, is N [a] or equivalently 
a / / N. The command to obtain a numerical approximation of a to n digits of precision is N [a, n] . 

The exact values computed in the previous window are approximated numerically below: 

inf3j:= 
N [ ( - 5 ) ~ ( i / 9 ) ] 

Outf3j= 
-1 .19581 

inf4j:= 
H [ ( - 5 ) A i 2 i ] 

Outf4j= 
84 

-3.76158 10 
inf43j:= 

S q r t [ 2 3 3 ] 

Outf43j= 
Sqrt [233] 

inf44j:= 
S q r t [ 2 3 3 ] / / M 

Outf44j= 
15.2643 

]J 

ΚΊΊΥήΊΊΪιΙϊϊιϊιϊιϊιΊνιϊιϊιΙΪ ' ^ " ' I P l 

To numerically approximate an expression, 
use the command N[ e x p r e s s i o n ] 
or e x p r e s s i o n / / H 

N [ ( - 5 ) A i 2 1 ] converts (~5) 
to scientific notation, 

To obtain a numerical cpproximation of 

J233 = (233)1/2 

ENTER S q r t [ 2 3 3 ] / / M OR 

M [ S q r t [ 2 3 3 ] ] . 

Note that Sqr t [numl ier ] 
produces'the same output as 

( n u m b e r ) ~ ( i / 2 ) . 
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Chapter 2 Mathematical Operations 

Mathematica has built-in definitions of many commonly used constants. In particular, 

e is denoted by E; π is denoted by Pi; and i = is denoted by I. 

é File Edit Cell Graph Find Rction Style Window 

RoutineCalculation 

N[E,50] 

Outf5j= 
2.718281828459045235360287471\ 

3526624977572470937 

lnfôj:= 
N [ P i . 2 5 ] 

Outf6/= 
3.141592653589793238462643 

S q r t [ - 9 ] 

0vtf25j= 
3 I 

inf2?J:= 
( 1 - I K 4 

Out[27j= 
-4 

( 3 + I ) / ( 4 - I ) 

Outf28j= 
11 7 1 

17 17 

0 

JJZTJ^ m 

E denotes the constant e. 

N[ E, 5 0 ] yields a fifty digit approximation of e. 

Pi denotes the constant ti. 

H[ P i , 2 5 ] calculates a twenty-five digit 
approximation of ti· 

The symbol I denotes 

7 ^ common confutes (l-i) 

3+i 
This writes the complex, number -r^r 

in standard form, 

19 
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■ Built-in Functions 

Mathematica recognizes numerous built-in functions. These include the exponential function, Exp [x] ; the 
absolute value function, Abs [x] ; the trigonometric functions S in [ x ] , Cos [ x ] , Tan [ x ] , Sec [ x ] , 
Csc [ x ] , and Cot [x] ; and the inverse trigonometric functions ArcCos [ x ] , Arc S i n [ x ] , 
ArcTan [ x ] , ArcSec [ x ] , ArcCsc [ x ] , and ArcCot [ x ] . Notice that each of these functions is 
capitalized and uses square brackets, 
(Note that the inverse trigonometric functions include two capital letters!) If both of these requirements are not met, 
then Mathematica will not recognize the built-in function and undesirable results will be obtained. 

D The Absolute Value, Exponential and Logarithmic Functions 

Calculations involving the functions Abs [ x ] , Exp [ x ] , and Log [x] appear in the following windows. 
Notice that in order to obtain a numerical value of Exp [x ] , a numerical approximation must be requested by 
either the command N [Exp [x] ] or Exp [x] / /N. Otherwise, the exact value is given which, in many 
cases, is not as useful as the numerical approximation. 

é File Edit Cell Graph Find Action Style UJindotu 

To compute -F- = e ENTEReither Exp[ -5J 

or equivalence E A ( - 5 ) . 

E x p [ - 5 ] / / H nmnerkaUy cpproyämates tke 

irrational number —=; = &; the identical result 

would be produced by the commands 

N [ E x p [ - 5 ] ] OR H [ E ~ ( - 5 ) J . 

À l i s [ - 5 ] computes \"5[ 

À b s [ 1 4 ] computes |l4|. 

20 

RoutineCalculation 

| inf?J:= TlKH 
Exp[-5] 

\Outf7j= 
-5 

E 

\/n/S/:* 
E x p [ - 5 ] / / M 

\Outf8j= 
0.00673795 

À b s [ - 5 ] 

\Outf2j= 
5 

Àb3[14 ] 

14 



Chapter 2 Mathematical Operations 

In addition to real numbers, the function Abs [x] can be used to find the absolute value of the complex number 
a+bl , where Abs[a+bl ] = Sqrt [a A 2+b A 2] . 

A b s [ 3 - 4 I ] computes |3~4i|. lAfl/J/--
À h 3 [ 3 - 4 I ] 

\putf5j= 
5 

W7/:-
Àbs[ (3+2 I ) / ( 2 -9 I ) ] 

\Outf7j= 
Sqrt[13J 

Sqrt[85] 

II 
il 
II 
^ 

-IJ 

| J U B B i M '"ï '"* '"'"""'"ϊ Ί Ϊ Ι Ο 1 lilililiülHilillüüÜÜÜliliüÜÜülil C 
M 
m 

À b s [ ( 3 + 2 1 ) / ( 2 - 9 1 ) 1 computes 
3+2i 
2-9i 

Log [x] computes the natural logarithm of x which is usually denoted as either 
Ln(x) or Loge(x): 

computes Ln(e) = l. 

=D LogsandE»ponents L 

\tnfs/:* 11 
Log[E] J 

\Outf8j= 1 

1 JJ 
\ifif9j:= "11 

Log[EA3] J 

\Outf9j= 1 

3 JJ 
\lnf!Oj:= 11 

Exp[Log[P iH J 

\Outf!Oj= 1 

Pi JJ 

M 
H 
LJ 

Log[E~3] 

computes Lnie } = 3Ln(e) = 3. 

E x p [ L o g [ P i H 

computes e W = n. 
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Log[a,b] computes Logb(a) = 

/ * / / / / = 
Log[3 ,9 ] 

OutfttJ= 
2 

titfl2j:= 
Log[2 ,10] 

Outf!2j= 
Log[10] 

Ln(a) 
Ln(b)' 

Log[2] 

N[Log[2 ,10 ] ,10 ] 

0utf!3j= 
3.321928095 

I I · i · I · i · i SEC 

]J 

S 
a 

Log[3 ,9 ] 
computes Log 3(9) = 2. 

Log[2 ,10] 

compiles Log 2 (10) = 
Ln(10) 
Ln(2) ' 

N [ L o g [ 2 , 1 0 ] , 1 0 ] 
computes the numerical value of 

Ln(10) Log 2 (10) = Ln(2) 
to ten decimal places. 
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D Trigonometric Functions 

Examples of typical operations involving the trigonometric functions Sin [ x ] , Cos [ x ] , and Tan [x] are 
given below. (Although not illustrated in the following examples, the functions Sec [ x ] , Csc [ x ] , and 
Cot [x] are used similarly.) Notice that Mathematica yields the exact value for trigonometric functions of some 
angles, while a numerical approximation must be requested for others. 

i O M BoutineCalculation ZZZZJI 
\tnftl" T 

C o s [ P i / 4 ] J 
\OutftJ= 1 

Sqrt[2] 

2 J 

S i n [ P i / 3 ] J 
\Outf2j= 1 

Sqrt[3] 

2 J-
\inf3j:= T 

Tan[3 PÎ/4J J 
\outf3j= 1 

- 1 J . 
\i*f4ï:* T 

C o 3 [ P i / i 2 ] J 

\Outf4j= 1 
Pi 

Cos[ —J 
12 J 

si 1 1 # . 1 . · · m Λ 

Mathematica gives enuxct values of 
the standard trigonometric fonctions. If the 
value is not weä known, it is necessary 
to request a numerical cpproxzmation. 

! Notice that every built-in Mathematica j 
I function begins with a capital letter j 
! and the argument is enclosed in 1 
I square brackets. j 

ΓίΐΊ 
Since the numerical value of Cos — 

[12J 
is not weUrknown, a numerical 
cpproKimation must be requested, 

Even though Mathematica s built-in functions cannot compute exact values of 

23 
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Chapter 2 Mathematical Operations 

Cosi— and Sin , numerical approximations can be obtained by entering 

N[Cos [ P i / 1 2 ] ] or S i n [ - 9 P 1 / 8 ] / / N . 

\ift[5j:= 
N [ C o s [ P i / 1 2 ] ] 

\Outf5j= 
0.965926 

\tnfôj:= 
S i n [ - 9 P i / 8 ) 

\outfôJ= 
-9 P i 

Sin[ ] 
8 

\lnf7j:= 
S i n [ - 9 P i / 8 ] / / If 

\outf?J= 
0.382683 

1 
ill 
ill 
11 Pi 

1 

I Similarly, to obtain a numerical value 

I* *ft] 
I a numerical cpproydmation must 
be requested 

Π Inverse Trigonometric Functions 

Commands involving the inverse trigonometric functions are similar to those demonstrated in the earlier section on 
trigonometric functions. Again, note the two capital letters m each of me inverse trigonometric functions. The 
(built-in) inverse trigonometric functions are: 
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(i) ArcCos[x]; (ii) ArcCoth[x]; (iii) ArcSec[x]; (iv) ArcSinh[x]; 
(v) ArcCosh[x]; (vi) ArcCsc[x]; (vii) ArcSech[x]; (viii) ArcTan[x]; 
(ix) ArcCot[x]; (x) ArcCsch[x]; (xi) ArcSin[x]; and (xii) ArcTanh[x] . 

RoutineCalculation 

ArcCos[l/2] 

Outf2j= 
Pi 

A r c S i n [ - l J 

Outf3j= 
- P i 

Inf4j:= 
À r c T a n [ l ] 

Outf4j= 
P i 

K> Notice those the inverse trigonometric 
I functions care built-in Mathematical 
\functions. Whenpossible, exact 
values are given 

In most instances, a numerical approximation must be requested: 

\inf5j:= 
A r c S i n [ i / 3 ] / / M 

\0utf5j= 
0.339837 

N[ArcCos[2 /3 ] ] 

\Outf6j= 
0.841069 

\inf?J:= 
ÀrcTan[100] / / M 

\outf?/= 
1.5608 

II 
il 
11 
]J 
]} 
il 

| j | j j | j j j | ^ ^ 1 njljljliijljljljljliljljljljllis C\ 
Kfflmïiniïii^^ 

ni 

ill] 

M 
m 

\ Since À r c S i n [ l / 3 ] 
is not well known, a numerical approximation 
is obtained 

Notice that N[ÀrcCos[ 2 / 3 ] ] 
gives the same numerical approximation 
to & r c C o s [ 2 / 3 ] 
as A r c C o s [ 2 / 3 ] / / H if it were 
evaluated 

25 

file:///functions


Chapter 2 Mathematical Operations 

12.2 Expressions and Functions 

i Basic Algebraic Operations on Expressions 

Mathematica performs standard algebraic operations on mathematical expressions. For example, the command 
F a c t o r [ e x p r e s s i o n ] factors e x p r e s s i o n ; Expand [ e x p r e s s i o n ] multiplies e x p r e s s i o n ; 
Together [ e x p r e s s i o n ] writes e x p r e s s i o n as a single fraction. 

OperationsonEnpressions 

F a c t o r [ 1 2 x ~ 2 + 2 7 x Υ-84γ Α 21 

\S\ Factor[12x
A2+27 x y-84y~2J 

factors the polynomial 12x2+27xy-Ô4y2. 

Dont forget the space between the x and the y. Outf27j= 
3 (4 x - 7 y ) (x + 4 y ) 

lnf28j:= 
E x p a n d [ ( x + y ) A 2 ( 3 x - y ) A 3 ] 

Ouif28j= 
5 4 3 2 

27 x + 27 x y - 18 x y -

2 3 4 5 
10 x y + 7 x y - y 

tfif2?J:= 
Together[2/xA2 - xA2/2] 

Outf29j= 
4 

4 - x 

2 
2 x 

TJ 
Remember: Multiplication 
of two expressions is denoted 
by a space. Hence, xy 
is an expression xy while 

ix y denotes x multiplied by y. 

E x p a n d [ ( x + y ) ~ 2 ( 3 x - y ) ~ 3 ] 

computes the product 

i 2 / 0 „ „ „ x 3 (x+y)*(3x-y)J 

T o g e t h e r ! ; 2 / x ~ 2 - x A 2 / 2 ] 

T. · 2 x 2 

writes the expression _ - _ 
r2 2 as a single fraction 

X" 

In general, a space is not needed between a number and a symbol to denote multiplication. That is, 3dog means "3 
times variable dog"; Mathematica interprets 3 dog the same way. However, when denoting multiplication of two 
variables, either include a space or *: cat dog means "variable cat times variable dog", cat*dog means 
the same thing but catdog is interpreted as a variable catdog. 
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The command Apart [ express ion] computes the partial fraction decomposition of express ion; 
Cancel [ expres s ion] factors the numerator and denominator of e x p r e s s i o n then reduces 
e x p r e s s i o n to lowest terms. 

Inf30j:= 
À p a r t [ i / ( ( x - 3 ) ( x - i ) ) ] 

Outf3Öj= 
1 1 

2 ( - 3 + x) 2 ( - 1 + x) 

/fi/3//.= 
C a n c e l [ ( x ~ 2 - l ) / ( x A 2 - 2 x + i ) ] 

Outf3!j= 
1 + x 

-1 + x 

| · I · I EE M m a 

À p a r t [ l / ( ( x - 3 ) ( x - l ) ) ] 
performs the partial fraction decomposition 

on the expression -t—-r-t—-r. 
^ (X-3XX-D 

C a n c e l [ ( x ~ 2 - l ) / ( x A 2 - 2 x + l ) J 

simplifies the fraction 
, 2 . 1 

x*-2x+l 
by factoring and reducing to lowest terms. 

i Naming and Evaluating Expressions 

In Mathematica, mathematical objects can be named. Naming objects is convenient: we can avoid typing the same 
mathematical expression repeatedly and named expressions can be referenced throughout a notebook. 
Since every built-in Mathematica function begins with a capital letter, we will adopt the convention that every 
mathematical object we name will begin with a lower-case letter. Consequently, we will be certain to avoid any 
possible ambiguity with a built-in Mathematica object. An expression is named by using a single equals sign (=). 

Expressions can be evaluated easily. To evaluate an expression we introduce the command / . . The command /. 
means "replace by". For example, the command xA2 / . x-> 3 means evaluate the expression 

x when x = 3. 

The following example illustrates how to name an expression. In addition, Mathematica has several built-in 
functions for manipulating fractions: 

1) Numerator [ f r a c t i o n ] yields the numerator of a fraction; and 

2) Denominator [ f r a c t i o n ] yields the denominator of a fraction. 
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The naming of expressions makes the numerator and denominator easier to use in the following examples: 

NamingE»pressions 
91- T 
: r a c t i o n = ( x ~ 3 + 2 x A 2 - x - 2 ) / ( x ~ 3 + x A 2 - 4 x - 4 ) J 

inft9j:= 
£ 

Outf!9j= 
2 3 

-2 - x + 2 x + x 

2 3 
-4 - 4 x + x + x 

tnf20j:= 
n u m = N u m e r a t o r [ f r a c t i o n ] 

0utf20j= 
2 3 

- 2 - X + 2 X + x 

tof2U:-
Factor[num] 

Out[2!j= 
( -1 + x) (1 + x) (2 + x) 

inf22j:= 
n u i / . x - > 2 

Out[22j= 
12 

in{23j;= 
d e n = D e n o m i n a t o r [ f r a c t i o n ] 

Ovtf23j= 
2 3 

- 4 - 4 X + X + x 

inf24j:= 
F a c t o r [ d e n ] 

Outf24j= 
(-2 + x) (1 + x) (2 + x) 

inf25j:= 
d e n / . x - > 3 

Outf25j= 
20 

K> 

]J 
II 

I tftTffî ï ï ïrnïiTiw^ 
ww~ww~w~^MnnnnnnftTI^>r"^ \ ': : ; : ; :ΐ:Π:·: ·;:: ·: ·::: ·: ·:;::::: ·: ·:;: ·; ·::::;:::;:::; ·;:; ·:: 

m 
a 

The expression 
x 3 + 2 x 2 - x - 2 

x 3 + x 2 - 4 x - 4 

is named f r a c t i o n . 

Numerator [ f ract ion]juétâs 

the numerator of f r a c t i o n a -
t e numerator is named num. 

F a c t o r [ n u m ] factors num. 

num / . x - > 2 evaluates num 
wkenxrZ 

Denominator[fraction] 
yields the denominator of 

f r a c t i o n ; the denominator is 
named d e n . 

F a c t o r [ d e n ] factors d e n . 

d e n / . x - > 3 evaluates d e n 
when x=- 3. 
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Mathematica can also evaluate and perform standard algebraic operations on named expressions: 

liD NamingE«pressions 
in/26/:= 

C a n e e l [ f r a c t i o n ] 

\ Out/26/= 
-1 + x 

-2 + x 

ln/27/:= 

f r a c t i o n / . x->4 

\ Out/27/= 
3 

2 

ln/28/:= 
f r a c t i o n / . x ->-3 

\ Out/28/= 
4 

5 

ln/29/:= 
A p a r t [ f r a c t i o n ] 

\ Out/29/= 
1 

1 + 
-2 + x 

BttûMttttttûfittâMUtfttfittettfittttfifififfieettefi^̂  

^^^ail 

I ^ 1 |Η·:ί:!| 

1 "Λ Pi=i=i=| 

1 Ί llHilH 

I 
Ά 1 il&h 

^ M 
iiiaiiiiiicte 

C a n c e l [ f r a c t i o n ] 
factors the numerator and 
denominator of f r a c t i o n 
then simplifiez. 

f r a c t i o n / . x->4 
evaluates f r a c t i o n 
wkenx=4. 

f r a c t i o n / . x ->-3 
evaluates f r a c t i o n 
whenY=-3. 

Apart[fraction] 
perfoms the partial fraction 
decomposition on 

f r a c t i o n . 

Every Mathematica objea can be named; even graphics and functions can be named with Mathematica. 
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■ Defining and Evaluating Functions 

It is important to remember that functions, expressions, and graphics can be named anything that is not the name of 
a built-in Mathematica function or command. Since every built-in Mathematica function begins with a capital 
letter, every user-defined function or expression in this text will be defined using lower case letters. This way, the 
possibility of conflicting with a built-in Mathematica command or function is completely eliminated. Also, since 
definitions of functions are frequently modified, we introduce the command Clear. Clear [express ion] 
clears all definitions of expression. Consequently, we are certain to avoid any ambiguity when we create a 
new definition of a function. When you first define a function, you must always enclose the argument in square 
brackets and place an underline after the argument on the left-hand side of the equals sign in the definition of the 
function. 

D Example: 

Use Mathematica to define f(x) = x2, g(x) = Vx, and h(x) = x + Sin(x). 

DefiningFunctions 

inf!Oj:= 
C l e a r [ f , g , h ] 
f [ x _ ] = x ~ 2 

outftoj= 
2 

x 

inf!!j:= 
g [ * _ ] = S q r t [ x ] 

Sqrt[x] 

tni!2j:= 
h [ x _ ] : = x + S i n [ x l 

lnf!3j:= 

h 
h/ : h[x_] := x + Sin[x] 

rö 
C l e a r [ £ , g , h ] chars allprior definitions of 
f g, and h Consequently, we are sure to avoid any 

ambiguity iff, g, and h have been usedpreviousfy in 
the notebook 

f [ x _ ] = x A 2 defines f(x) to be the function f(x) = x 

Notice the underline (") on the left-hand side 
of the definition off(x) does NOT appear on the 
right-hand side. The underline MUST be 
included on the left-hand side of the equals 
sign and NOT included on the right-hand side. 

g [ x _ ] = S q r t [ x ] defines tfydto be the function 
g(x) = Vx. 
h [ x _ l : = x + S i n [ x ] defines h(x) to be the function 
h(x) = x+Sin(x). 
Notice that the -= prevents Mathematica from 
showing the definition ofh(x) after it is entered; 
nevertheless, the command ?li 
shows the definition o/ft(x) 

ßSkÄSfe&waw^^ 

Don't forget to include the underline (~_~) on 
the left-hand side of the equals sign in the 
definition of a function. Remember to 
ALWAYS include arguments of functions in 
square brackets. 

f$£#®iiS&#®#&tö 
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When you evaluate a function, type functionname [point] ENTER. Notice that functions can be 
evaluated for any real number (in the function's domain): 

D Example: 

Using the definitions of f, g, and h from above, compute f(2), g(4) and h(n/2). 

If [ 2 ] evaluates the fonction/at x*Z 

g [ 4 ] evaluates the function g at κ=4. 

lnf!4j:= 
f [ 2 ] 

\OutfMj= 
4 

ynfiPl-' 
g [ 4 ] 

\Outft9j= 
2 

inf20j:= 
h [ P i / 2 ] 

\0utf20j= 
P i 

1 + — 
2 

"1~1 

JJ 
"1"1 

J J 
I T 

•q 1 

-1-1 

Bûttfittttttttflûflûttfittûâûfittefiefifietttttt̂  

is s 

il 
| l i [ P i / 2 ] evaluates the function k at X = -
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Moreover, Mathematica can symbolically evaluate and manipulate functions. 

D Example: 

2 
Several examples follow which involve the function f(x) = x defined above 

inf23j:= 
f [ a - b A 2 ] 

Outf23j= 
2 2 

(a - b ) 

inf24j:= 
E x p a n d [ f [ a - b ~ 2 ] ] 

Outf24j= 
2 2 4 

a - 2 a b + b 
inf34j:= 

( f [ x + h ] - f [ x ] ) / h 

Out[34j= 
2 2 

-x + (h + x) 

/n/35/:= 
S i m p l i £ y [ 

( f [ x + b ] - f [ x ] ) / b ] 

Oui[35j= 
h + 2 x ]J 

W"Ί" r ' ""''"ϊ I I O 1 |!l|lll!li!jlfl!i!l!!!!!!!l!lll!l!| CJ P i 
■ v v A w / u w A w j w w A w w w w ai ^ * — j : ,t ; , i i , i , : , : , : , : , : , : , : , : , : , :· 1 ^ ' '—'■ 

m 

E 

f [ a - b A 2 ] evaluates f [*-*?). 

E x p a n d [ £ [ a - b A 2 U computes f(a-t> ). 
and then expands the resisting product 

( f [ x + h ] - f [ x ] ) / b computes the quotient 
f(x + h)-f(x) 

Notice that RETURN gives a new line; 
while ENTER (or SHIFT-RETURN) evaluates 
an input cell 

On the other hand, S i m p l i f y [ ( f [ x + h ] - f [ x j ) / b ] 
, . .... f(x + h)-f(x) 

computes and simplifies . 

Many different types of functions can be defined using Mathematica. An example of a function f of two variables is 
illustrated below. 

32 



Chapter 2 Mathematical Operations 

Additional ways of defining functions will be discussed in later parts of this text. 

D Example: 

Define f(x,y) = 1-Sin(x2 +y2). Compute f(l,2), f Î 2 V ^ , - V i \ f(0,a), and f ( a 2 - b 2 , b 2 - a 2 ) . 

ι Π ^ s DefiningFunctions WËÈM 

£ [ x _ , y _ ] = l - S i n [ x A 2 + y A 2 J 

\Outf!9j= 
2 2 

1 - Sin[x + y ] 

\inf23j:= 
f [ i . 2 ] 

\Outf23j= 
1 - Sin[5] 

inf24j:= 
£[2 S q r t [ P i ] . 3 / 2 S q r t [ P i ] ] 

\Outf24j= 
Sqrt [2] 

1 
2 

Inf25j:= 
f [ 0 , a ] 

\Outf25j= 

\ 1 - Sin[a ] 

^ H l l 

11 

1 
ill 1 
1 
1 I |:|:|:|1 

| f [ x _ , y _ ] = l - S i n [ x A 2 + y A 2 1 
defines the function 

of two variables f (x,y) = 1 —Sinfx + y 1. 

£ [ 1 , 2 ] computes f(1,2). 

| f [ 2 S q r t [ P i l , 3 / 2 S q r t [ P i ] ] 

| computes f 2 4Û- vrt . 

£ [ 0 , a ] computes f(0,a). 

Evaluating f ( a 2 - b 2 , b 2 - a 2 ) is done the same way as in the previous examples: 

tnf26j:= 
f [ a A 2 - b ~ 2 , b A 2 - a A 2 ] 

Outf26j= 
2 2 2 2 2 2 

1 - S i n [ ( a - b ) + (-a + b > ] 

f [ a A 2 - b ~ 2 , b A 2 - a ~ 2 ] computes 

f(a2-bV-a2). 
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Vector-valued functions, such as g below, can also be defined: 

D Example: 

Define the vector-valued function g(x) = {x2 , l -x2}; compute g(l) and g(Sin(b)). 

\tnf27j:= 
g [ x _ ] = { x * 2 . i 

\Oi/tte7j= 
2 2 

{x , 1 - x } 

\iaf2Sj:* 
g [ i ] 

\otitf28/= 
{1 . 0} 

H i i i i i i i i ^ ^ 

-i-2> J 

JJ 
]] 
T | 

g [ x _ l = { x A 2 , l - x ~ 2 } definesthe 

vector function g(x) = {x2,1 - x2 }. 

g [ 1] computes g(l> - {l2,l-l2}· 

In any case, don't forget to include the underline "__' after eackl 
variable on the left hand side of the definition of the function. 
\Do not use the underline in any other case. j 

g(Sin(b)) is computed the same way: 

g[ S in[b] ] computes 
g(ßmQ>)) = (süi2(b),l - Sin2fl>)}. 

34 

inf30j:= 
g [ S i n [ b ] ] 

\0utf30j= 
2 

{Sin[b] , 1 -
2 

- Sin[b] } 

Jl 
•Ά 

J-

file:///iaf2Sj:*


Chapter 2 Mathematical Operations 

D Example: 

Define the vector-valued function of two variables h(x,y) = |Cos(x2-y2), Sin(y2-x2)J. 

inf3U:= 
h[x_ ,y_ ]={Cos [x~2-y~21 , 
S in [y~2-x~2] } 

Outf3tJ= 
2 2 2 2 

{Cos[x - y ] , S in[ -x + y ]} 

inf32j:= 
h [ i . 2 1 

Outf32j= 
{Cos[ -3 ] , S in [3 ] } 

fnf33j:= 
h [ P i , - P i J 

Outf33j= 
U . 0} 

inf34/:= 
h [ - P i , P i ] 

Outf34j= 
{1, 0} 

!n[36j:= 
h [ C o s [ a ~ 2 K C o s [ i - a A 2 ] ] 

Outf36j= 
2 2 2 2 

{Cos[Cos[a ] - Cos[ l - a ] | , 

2 2 2 2 
Sin[-Cos[a ] + Cos[ l - a ] ]} 

s 

h[x_,y_]={Co3[x~2-y~2], 
Sin[y~2-x~2]} 

defines the function 

h(x,y) = {cos(x2 - y2),Sin(y2 - x2)}. 

Notice that h is a function of two variables that 
has a range consisting of orderedpabrs. We will 
see that many types of functions coon be defined 
with Matkernatica 

h [ l , 2 ] , h [ P i . - P i ] , h [ - P i . P i l ,and 
h [ C o s [ a ~ 2 ] . C o s [ i - a ~ 2 J ] 
calculate 
h(l,2), Ιι(τι,-τι), )ι(-τι,τι), and 

hi Cos fa2 V Cosil - a21V respectively. 

i Additional Ways to Evaluate Functions and Expressions 

Not only can a function f [x] be evaluated by computing f [a] where a is either a real number in the domain of f 
or an expression, functions and expressions can be evaluated using the command / . . In general, to evaluate the 
function f[x] when x is replaced by expression, the following two commands are equivalent and yield the 
same output: 

1) £ [express ion] replaces each variable in £ by e x p r e s s i o n ; and 

2) f [ x ] / . x-> expres s ion replaces each variable x in f [x] by e x p r e s s i o n . 
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D Example: 

l i D E B I I DefiningFunctions mu 

C l e a r [ £ , g ] 
£ [ x _ , y _ ] : = x ~ 2 + y A 2 
g [ x _ . y _ ] : = { S i n [ x A 2 - y A 2 ] , 

C o s [ y A 2 - x ~ 2 ] } 

f [ i . 2 ] 

\0utf46j* 
5 

lnf47j:= 
g [ i . 2 ] 

{ S i n [ - 3 ] , Cos[3]} 

inf4Sj:= 
f [ x . y ] / - x - > i / - y - > 2 

\out[4Sj= 
5 

inf49j:= 
g [ x , y ] / . x - > l / . y - > 2 

\outf49j= 
{ S i n [ - 3 ] , Cos[3]} 

Before defining new functions f and g, first clear all 
{prior definitions. 
\Then define 

f <x,y) = x2 + y2; g(x,y) = {sin(x2 - y2),Cos(y2 - x2)} 

£ [ 1 , 2 ] computes f (1,2). 

g [ i , 21 computes g(l,2). 

| f [ x * y ] / - x - > l / - y - > 2 computes f(x,y), 
replaces >c by 2, and then replaces ybyZ 

\ Notice that the result is IDCACTlYtke same as £ [ 1 , 2 ] 

g[x.y] /- x->i / . y->2computesg(x,y), 
| replaces xby 2, and then replaces ybyZ 

^Notice that the result is EXACTLFthe same as g [ 1 . 2 ] . 
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Chapter 2 Mathematical Operations 

There are several other methods available for evaluating functions. However, depending on the situation, one 
method may prove to be more appropriate than others. Some of these methods are discussed here in order to make 
the reader aware of alternate approaches to function evaluation. In the example which follows, a function f is 
defined which maps a list of two elements, {a, b} , to the real number, a Modulo b using the built-in function 
Mod. If a and b are real numbers, Mod [a, b] returns a modulo b. The typical approach to evaluating f at 
{a, b} is to directly substitute {a, b} into f with f [ {a, b} ] . However, two another approaches which yield 
the same result are f Θ {a, b} and {a, b} / / f. These are demonstrated below with { 5 , 3 } . 

I D ^ Z I Z Z : ^ ^ ^ UsingOutput I ^ P 1 § | 

\ l n f ! ! O j : = Ï E | 
Clear [ f ] H 
f[{a_.b_}]:=Hod[a,b] J | | 

\i(ifUU:= 11 | | 
f [ { a . b } ] J 1 

\outmu= Ή | | 
Mod[a, b] JJ I I 

inf! !2J:= 3 θ Μ 
£[{5,3>] \ ^ V 1 W 

Outf! !2J= ^ ^ ^ ^ X ^ l P 
2 ^ ^ ^ yS J J ;i|l|ij 

\lnfU3j:= ^ * > * ^ yS 11 ΓΠ 
f @ { 5 , 3 } - ^ ^ yS J p i 

\Outftt3j= yS 1 | | 
2 sS J J liiiiiil 

\tnf!t4j:= yS 11 ||| 

{5.3} a t ' J II 
\ Outf//4/= 1 I I 

2 J J II] 

ttod[a.b] 
returns a Mod b. 

*A1l three of these commands 
compute j({5,3})= 2 
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i Retrieving Unnamed Output 

Although naming Mathematica objects is convenient, occasionally, one may want to use previous results in 
subsequent calculations even though these objects were not necessarily named. Fortunately, Mathematica provides 
two convenient ways to refer to previously generated output. First, the symbol % refers to the most recent output; 
%% refers to the second most recent output; %%% refers to the third most recent output and, in general %%%...% 
(k-times) refers to the kth most recent output. Second, Out [n] , where n is a positive integer, refers to the nth 
output. 
Several examples are given below which illustrate these ideas. First, functions f, g, and h are defined. Then, 
these functions are evaluated using several different methods. The commands f [%] and f [Out [30] ] given 
below yield the same output since both evaluate the function f at x = .077. 

UsingOutput 
tnf25j:= 

C l e a r [ f , g , c , h ] 
f [ x_ ] :=x~2 
g [ x _ ] : = H [ S q r t [ x ] . 2 ] 
h [ x _ l : = N [ S i n [ x ] + 2 C o s [ x ] . 2 ] ; 

K> 

computes g(Z) g [ 2 ] 

Outf29j= 
1.4 

tnf30j:= 
H[2] 

0ut[30j= 
0.077 

inf3U:= 

f [ X ] 

Outf3!j= 
0.00592958 

inf32j:= 
f [Out [30 ] ] 

Outf32f= 
0.00592958 

computes k(Z) 

computes f(.077) 

computes f(.077) 

After clearing all prior definitions of 
f g,c, and k, define 
f(x) = x2, g(x) to be the numerical value 
of Vx to two decimal places, and ft(x) 
to be the numerical value of 
Sin(yC)+2Cos(7C) to two decimalplaces. 

X refers to the previous output; 

XX refers to the second most recent 
output; XXX refers to the third most 
recent output; and, in general, 
XXX... X (k-times) refers to the 
kth most recent output. 
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These methods of retrieving output are useful as input is altered. For example, a new variable c is defined below in 
terms of a and b. The function f can then be evaluated at c in several ways which are demonstrated below. 
g[%] computes g at the previous output, Out [ [35] ] . Hence, g [%%%%] computes g at the fourth previous 
output, Out [ [32] ] . In the last example below, h is evaluated at the second previous output, Out [ [35] ] . 

inf33j:= 
c=a+b 

Outf33j= 
a + b 

in[34j:= 

f [ % ] 

0utf34j= 
2 

(a + b ) 

tnf35j:= 
f[Out[33]] 

0utf35j= 
2 

(a + b ) 

tnf36j:= 
g[XXXX] 

0utf36j= 
0.077 

Inf37j:= 
h [ X X ] 

Out[37j= 

cornpvzes f(a+b) 

MMRH»! 

Since we have defined c=a+b, the same 
result would have been obtained if we 
entered either f [ c l 
or f [ O u t [ 3 3 J ] . 

computes g(.0059Z958); the same result could have been 
obtained by entering g [ Out [ 32 ] ] 

TJ 
computes hua + b) J 

2 2 
2. Cos[(a + b) ] + S i n [ ( a + b) ] 

! | · I · | 
S a 

In this case, the same result could have 
been obtained by entering either 
h[(a+b)~2] or 
h[ Out [ 3 5 U . 

■ Composition of Functions 

Mathematica can easily perform the calculation f[g[x]]. However, when composing several different functions or 
repeatedly composing a fonction with itself, two additional commands are provided: 

1) Compose[fl , ±2, £3, . . . , ί η , χ ] computes the composition 

flof2<> f3° . . .ofn(x) where fl, f2, f3, ..., and fn are functions and x is an expression. 

o In Version 2.0, the function Compose is replaced by the function Composi t ion. In Version 2.0, 
Compos i t ion [ f l , f 2 , . . . , fn ] [x] computes the composition 

flof2<> f3° . . .°fn(x) where fl, f2, f3, ..., and fn are functions and x is an expression. 
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Chapter 2 Mathematical Operations 

2) Nest [ f , x, n] computes the composition 

f o f o f o . . . o f (χ) 

(f composed with itself n times) 

where f is a function, n is a positive integer, and x is an expression. 

D Example: 

In the following example f(x) = x and h(x) = x + Sin(x). 

ID ! DefiningFunctions 
!nfôj:= 

£ [ h [ £ [ x ] ] ] 

Outfo/= 
2 2 2 

(x + Sin[x ] ) 

tnf?J:= 
Compose[ f , h , £ , x ] 

Outf?J= 
2 2 2 

(x + Sin[x ] ) 

in[8j:= 

£ [ £ [ f [ £ [ x ] ] ] ] 

Outf8j= 
16 

x 

ln[9j:= 
N e s t [ f , x , 4 ] 

Outf9j= 
16 

x 

ΙΞ1 
m 

Xtttttjtttttatiüttatttimti IIIZI^^WMUÊÊÊ^ 
m 
a 

I [ h[ f [ x ] ] ] computes f (h(f (x))). 

C o m p o s e [ £ , h , £ , x ] 

also computes i(h(f(x))Y 

£ [ £ [ £ [ £ [ x ] ] ] ] computes f (f (f (f (x)))) 

The same result could have been obtained by 

evaluating Compose[ £ , f, £ , £ , x ] . 

However, for repeated compositions of the same function 
the command Nest can be used 

N e s t [ f , x , 4 ] also computes fmf(f(x)))l . 
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o In Version 2.0 Mathematica displays output for EACH command as it is generated unless a semi-colon is 
included at the end of the command. Hence, in the following example, output is displayed for all except the last 
command: 

O Example: 

Let f(x) = Log X ^ / 9 ) g(x) = Sin(3x)-Cos(4x), h(x) = x2 and k(x) = h(g(x)). Compute 
\X l / ~ / 

and simplify k, compute Exp[f(x)] = ef(x), and write ef ( x + i y ) = Exp[f(x+iy)] in terms of 
its real and imaginary parts, assuming x and y are real. 

Uersion2RlgSimplification 
lit[4j:= 

C l e a r [ f , g , h , k ] 
f [ x _ ] = L o g [ ( 2 x + l ) / ( x - i / 2 ) ] 
g[x_]=Sin['3 x ] -Cos [4 x] 
h [x_]=x A 2; 

Outf2j= 

Logt^-fAJLj 
"Φ + x 

Outf3j= 
-Cos[4 x] + S in [3 x] 

-xiKiti 
In Version Z0, output for each command 
is displayed unless a semi-colon is placed 
ex the end of the command Hence, in this 
case the definitions off and g are shown, 

. the definition of his suppressed 

]J 
o In Version 2.0, the command Compose has been replaced by the command Composition. Even though 

entering the command Compose[f, g, x] yields f [g [x] ] , Mathematica issues a warning that 
Compose is an obsolete function, replaced by Composi t ion . 
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o Also notice that the option Tr ig->True has been added to the command Expand. The effect of the option 
Trig->True is to eliminate powers of Sines and Cosines in trigonometric expressions: 

inf!9/:= 
k[x_l=Compose[l i ,g ,x] 
Compose::obsfn: 

Compose is an obsolete function, 
superseded by Composition. 

Outf!9/= 

(-Cos[4 x] + Sin[3 x])2 

inf20j:= 
Ezpand[k[z]] 

0utf20j= 

Cos[4 x ] 2 - 2 Cos[4 x] S in [3 x] + 

S in[3 x ] 2 

inf2!/:= 
Ezpand[k[x],Trig->True] 

Outf2!j= 
, Cos[6 x] Cos[8 x] «· r i 1 ^ + ^ - + Sm[x ] -

Sin[7 x] 

L 
Even though the command Compose j 
is considered obsolete in 
Version ZO, h(g(x)) is computed 
correctly. 

i 
J l 

Expands the terms o/Afx) 
too* 

WMWJJJ 

Expands the terms ofkfa) and eliminates 
powers of trigonometric functions. 
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o Version 2.0 also includes the new command CoxnplexExpand. If e x p r e s s i o n is a Mathematica 
expression in terms of x+I y, the command ComplexExpand [ e x p r e s s i o n ] rewrites 
express ion in terms of its real and imaginary components, assuming that x and y are both real. 

In order to compute h(g(x)) in Version 2.0, enter Composition [h, g ] [x] : 

inf5j:= 
Composit±on[h,g][x] 

Outf5/= 

L 
Performs the same computation as 
C o m p o s e ! h , g , x ] in.Version 1.Z 

(-Cos[4 x] + Sin[3 x ] ) 

infôj:= 
f r a c t i o n = C o m p o 3 i t i o n [ E x p , £ ] [ x ] 

OutfoJ* 
1 + 2 x 

"Φ + x 

tnfS/:-
fraction /. x->x+I y // Simplify 

Outf8j= 
l + 2 x + 2 I y 

- ( ^ ) + x + I y 

tnfp/:* 
Comp1exExpand[ 

f r a c t i o n / . x -> x+I y ] 

Outf9j= 

vvêfu^tu^ntënrtttfimMfafitéfMitHKiinanût, 

Computes ef tx ) 

and names the result f r a c t i o n . 

replaces each xi/i f r a c t i o n 
byx + I y and simplifies the result. 

I ( 
2 (-(g) + x) y 

Abs[ - ( |> + x + I y ] 2 

(1 + 2 x) y 

i b s [ - ( | > u * l y ] 2 

(-<|> ♦ x) (1 + 2 x) 

Ï 2 + 

A b s [ - ( i ) + x + I y]£ 

2 y 2 

A b s [ - ( | ) + x ♦ I y ] 2 

W ^ W t f l W I W I M W 

kJ^jflwiWiMMMMMMMMMMWWWIIMIIWIWWiWWIIIIIIIIO» 

Assuming x and y are real, 
C omp1e xE xpand 

, , . l + 2x + 2Iy 
ŝ used to rewrite - 1 / 2 + x + I y 

(above) 

in terms of its real and imaginary components. 

) + 

3100% ▼ 1101 illllilllllllliillllllllii Ol 
m 
a 
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■ 2.3 Mod Math 
The command Mod [a, b] reduces the number a modulo b. If p is a polynomial, the command Mod [p, b] 
reduces the coefficients of p modulo b. 

D Example: 

In the following example; the factors of x + x +x + x+l modulo 5 are found and 
verified. A function modexpand [poly, p] which expands and factors the polynomial poly modulo p is 
then defined for later use. 

1 D _ ^ _ _ ^ ^ Uersion1.2ModMath = 
\lnf27j:= 

Factor[xA4+x~3+xA2+x+l*Hodulu3->51 
\Ouite7j» 

4 
(4 + X) 

mul t=Expand[(4+x)A4] 

\outf28j* 
2 3 4 

256 + 256 x + 96 x + 16 x + x 

Hod[mul t ,5 ] 

\outf29j-
2 3 4 

1 + x + x + x + x 
\tnf30j:= 

modexpand[p__,m_] ' = 
B l o c k [ { p o l y } 0 
po ly=Expand[p ] ; 
Hod[poly,m] 
1 

^sail 
11 
■^ 

]| 

]| 

-1 

0 
\ factors x4+x3+x2 + x + l 
] modulo 5. 

expands (x + 4) 
and names the result mult . 

Hod[mult.5] 
I reduces each coefficient of 

Milt modulo 5. 

iodexpand[p,m] 
\ first expands the expression 
| p and then reduces each 
\ coefficient modulo m. 
Notice that the variable 
p o l y isdefbnedtobe 
a local variable to the 

' function mod e xpand. 
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Chapter 2 Mathematical Operations 

D Example: 

It is well known that if F is a field of characteristic p, p a prime number, 

_m m nm 

and a, be F, then (a+b)F =a F + tr . Illustrate this fact when m = l for the first 
five prime numbers. 

We proceed by using the user-defined command modexpand from above and the built -in command Prima. 
Prime [ i ] returns the ith prime number. 

The command Table is discussed in more detail in Chapters 4 and 5. 

inf3U:= 
Table[ 

modezpand[(x+a)APrime[i] 
{ i , 1 . 5 ) 1 / / TableForm 

Outf3!j//TabîeForm= 
2 2 

a + x 

3 3 
a + x 

5 5 
a + x 

7 7 
a + x 

11 11 
a + x 

- i -

r P r i m e [ i ] ] . 

·=κ 

J-

u 

liljijll 

lgj 
M 

elands (x + a)p 

j and reduces modulo p 
\for the first five prime 
1 numbers. 
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• In Version 2.0, Mod [a, b] reduces the number a modulo b. Notice that unlike prior versions of Mathematical 
a must be a number. To reduce the coefficients of a polynomial p modulo b, use the command 
P o l y n o m i a l M o d [ p , b ] : 

O Example: 

Inf78j:= 
F a c t o r [ x ~ 1 0 + x A 5 + 2 , H o d u l i i 3 - > 5 ] 

Outf73j= 
2 5 

(2 + x + x ) 

if*f77j:= 
p o l y = E i p a n d [ ( x ~ 2 + x + l ) ~ 5 ] 

Outf77/= 
2 3 

1 + 5 x + 15 x + 30 x + 

4 5 6 
45 x + 51 x + 45 x + 

7 8 9 10 
30 x + 15 x + 5 x + x 

inf8Öj:= 
H o d [ 1 3 . 5 ] 

OutfSOj* 
3 

lnf8!j:= 
H o d [ p o l y * 5 ] 

Outf8U= 
2 3 

Mod[l + 5 x + 15 x + 30 x + 

4 5 6 
45 x + 51 x + 45 x + 

7 8 9 10 
30 x + 15 x + 5 x + x , 

5J 

11 
•̂  1 

JJ 

11 
η 

11 
il 
11 
■=> 

[lUiiy 

Γτπη 
| factors x10 + x5 + 2 
modulo 5. 

and names the result p o l y . 

H o d [ 1 3 , 5 ] 
compiles 13 modulo 5. 

Unlike Version 1.2, 
ttod[poly,5] 
does not reduce the polynomial 
p o l y modulo 5. 
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However, coefficients of a polynomial p can be reduced modulo n with the command 
P o l y n o m i a l M o d [ p , n ] : 

Inf8&:= 
P o l y n o m ± a l H o d [ p o l y * 5 ] 

Outf82j= 
5 10 

1 + x + x 

P o l y n o m i a l H o d [ p o l y , 5 1 
reduces p o l y 
modulo 5. 

Hence, the previous definition of modexpand must be altered to include PolynomialMod In Version 2.0. This 
command is then illustrated by creating a table similar to that in the previous example for the prime numbers 13,17, 
19,23, and 29. Note that this table also includes the prime number as well as the reduced polynomial. 

inf87j:= 
modexpand[p_,»_]:= 

PolynomialHod[Expand[p],mj 

Inf89j:= 
m o d e x p a n d [ ( x ~ 2 + x + i ) ~ l i , i i l 

Outf89j= 
11 22 

1 + x + x 
lfïfPOj:= 

T a b l e [ 
{ P r i m e [ i ] , 
m o d e x p a n d [ ( x A 2 + x + b ) A P r i m e [ i j , P r i m e [ i ] ] } , 
{ i , 6 . 1 0 } ] / / TableForm 

Outf90jsYTab?eForm= 
13 13 26 

13 b + x + x 

17 17 34 
17 b + x + x 

19 19 38 
19 b + x + x 

23 23 46 
23 b + x + x 

29 29 58 
29 b + x + x 

[Ti 00% ▼ HO I lijiiliiiilljlll^ 
m 
a 
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B2.4 Graphing Functions and Expressions 

One of the best features of Mathematica is its graphics capabilities. In this section, we discuss methods of grapbing 
functions and several of the options available to help graph functions. The command used to plot real-valued 
functions of a single variable is P l o t . The form of the command to graph the function f [x] on the domain [ajb] 
is P l o t [f [ x ] , {x, a, b} ] . To plot the graph of f [x] in various shades of gray or colors, the command is 
P l o t [ f [ x ] , {x, a , b } , P l o t S t y l e - > G r a y L e v e l [ w ] ] where w is a number between 0 and 1. 
P l o t S t y l e - > G r a y L e v e l [ 0 ] represents black; P l o t S t y l e - > G r a y L e v e l [ l ] represents a white 
graph. 

If a color monitor is being used, the command is 
P l o t [ f [ x ] , { x , a , b } , P l o t S t y l e - > R G B C o l o r [ r , g , b ] ] where r , g, and b are numbers 
between 0 and 1. RGBColor [ 1 , 0 , 0 ] represents red, RGBColor [ 0 , 1 , 0 ] represents green, and 
RGBColor[0, 0 , 1 ] represents blue. 
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D Example: 

Use Mathematica to define and graph f(x) = Sin(x) on the interval [-2π,2π] and g(x) = e x 

on the interval [-1,1]. 

GraphingFunctions 

Clear[f ,g] 
f[x_J:=Sin[x] 

tnf9j:= 

Outf9j= 
-Graphics-

InftOj:* 
g[x_]=Exp[-x~2] 
Plot[g[x].{x.-l,i}] 

Outf!Oj= 
-Graphics 

| · I · I 35Γ 

Notice that whenever we define fonctions, 
we first clear any existing prior definitions 
of them to avoid any possible chance of 
ambiguity later. 

« ■ M t a f c * * * * ** ■M a 

P l o t [ f [ x K { x , - 2 P i . 2 P i } ] grcpks 
the fonction f(x) = Sin(x) on the interval 
[-2n,2n]. 

In tkL· cesse, g(x) = e" is both defined and 
grcphed in a single command 

I * * * * 
Notice that Mathematica has 
placed the axes so that the 
intersection point of the two 
axes is the point (0,1). 
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Graphs of functions, like expressions, can be named. This is particularly useful when one needs to refer to the 
graph of particular functions repeatedly or to display several graphs on the same axes. 

In this example, define 
f(x)=|Sin(x)| and g(x)=-Cos (x). 

p l o t f isagrcpkoff(x,)onthe 

interval [~rc,n]. 

Mt6j:= 
C l e a r [ f , g ] 
f [ x _ ] = J J j s [ S i n [ x ] ] 
g [ x _ ] = - C o s [ x ] ; 

\inf!7j:= 
p l o t f = P l o t [ f [ x K { x . - P i , P i } ] 

/~\ 1" 

/ \ 0 · 8 " 

/ \6' 

/ °V" 
/ °A 

- 3 - 2 - 1 1 2 3 

\outf!7j= 
-Graph ic s -

Inft8j:= 
p l o t g = P l o t [ g [ x ] , { x , » P i , P i ) , 
P l o t S t y l e - > G r a y L e v e l [ . 3 ] ] 

1-

0.5-

, i V i 

- 3 -2 \ - l 

V 0 · 5 ' 

/ " ' 

i 

t 

1 / 2 3 

/ 

\Outfi8j= 
-Graph ic s -

ÏH 

J |:'·:·:·Ι 

1 T 1 Ι:Φ:·Ι 

y 

i l l ΊΊ P 

J 1 ΐΠΐΠΜ 

_J 

j p l o t g isagrcpkofg(x)onthe 
interval Γ^ , Ϊ Ι ] . 

I The option 
P l o t S t y l e - > G r a y L e v e l [ . 3 ] 
specifies that the color of the graph of 
g(x) be a shade of gray. 

50 



Chapter 2 Mathematical Operations 

The command used to display several graphs on the same axes is Show. To show two graphs named graphl 
and graph2, the command entered is Show [ g r a p h l , g r a p h 2 ] . This command is shown below using 
p l o t f and p l o t g from above: 

tnf!9j:= 
Shovtplotf * p l o t g ] 

H 

Outf!9j= 
-Graphics- ]J K£ 

Tke command S h o w ! p l o t f , p l o t g ] 
shows p l o t f and p l o t g 
simukaneoi/sly. 

More generally, the commands P l o t and Show have many options. To implement the various options, the form 
of the command P l o t is P l o t [f [ x ] , {x, a, b } , o p t i o n s ] ; the form of the command Show is 
Show [ g r a p h s , o p t i o n s ] . The option D i s p l a y F u n c t i o n - > I d e n t i t y prevents the graph from 
being shown; the option D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n causes the display of a graph 
which previously was suppressed. For example, one can create several graphs without displaying any of them, and 
then display all of them simultaneously: 
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D Example: 

1 1 2 
Let f(x) = e"x , g(x) = e"x + l = f(x)+l, and h(x) = e~(x~1} = f(x-l). 
Graph f, g, and h on the intervals [-1,1], [-1,1], and [-2,1], respectively. Show the graphs of all three functions 
simultaneously. 

infSôJ:* 
C l e a r [ f , g , h ] 
f [ x _ ] = E x p [ - x ~ 2 ] 
g [ x _ ] = f [ x ] * i 
h [ x _ ] = f [ x + i ] ; 

p l o t e x p = P l o t [ £ [ x ] , { x , - l , l > . 
D i s p l a y F u n c t i o n - > I d e n t i t y ] 

Outf37j= 
-Graph i c s -

S h o v [ p l o t e x p . 
D i sp l a y F u n c t i on-> ^^V^Y^^^^^BJL 

RS We begin by clearing any prior definitions 
off g, and h and then define 

f(x) = e~x , g(x) = f(x) + l = e"x +1, and 

h(x) = f(x + l) = e" ■tx+ir 

p l o t e x p is a graph of ffa) on the interval 

[-1,1]. Tk& option 

D i s p l a y F u n c t i o n - > I d e n t i t y 

causes no display of p l o t e x p . 

However, p l o t e x p can be viewed 

by entering this command 

In general, the graphic* option 

D i sp l a y F u n c t i o n - > Id e n t i t y allows 

one to create graphic* but not view them 
until necessary. 

I one 
1 1MMTJ 

//t/s?/-

s h i f t u p = P l o t [ g [ x K { x . - i , i K 
P l o t s t y l e - > G r a y L e Y e l [ . 2 ] , 
D i s p l a y F u n c t i o n - > I d e n t i t y ] 

s h i f t i e f t = P l o t [ h [ x ] , { x , - 2 . 1 } , 
P l o t S t y l e - > G r a y L e v e l [ . 4 ] . 
D i s p l a y F u n c t i o n - > I d e n t i t y ] 

s h i f t u p isagrcpkofgfa); the option 

D i s p l a y F u n c t i o n - > I d e n t i t y 

prevents the graph from being shown 

s h i f t i e f t is agraph ofh(K); the option 
D i s p l a y F u n c t i o n - > I d e n t i t y 

prevents the graph from being shown 

Even though s h i f t up and s h i f t i e f t are not shown, they may be viewed along with p lo texp , using the 
Show command together with the option D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n . 
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Note that no graphs would be displayed if the DisplayFunction->$DisplayFunction option were 
omitted from the following Show command: 

lnf40j:= 
Shov[plotexp,shittup,shiftieft, 
D i splayFunc t i on->$D i splayFunc t i on 

-2 - 1 . 5 - 1 - 0 . 5 

IM 

0 . 5 1 
K£ 

However this command shows the graphs 
offfa) (bigrcyhvelfOJX g(x) 
(ingraytevel[.2]),andh(x)(ingr<ylevel[.4/) 

Note: 77telabebf(x\g(K),and 
k(x) were added later. 

The Plot command can also be used to Plot several functions simultaneously. To display the graphs of the 
functions f [x] , g [x] , and h [x] on the domain [a,b] on the same axes, enter commands of the form 
Plot [{f [x] ,g [x] , h [ x ] } , {x, a ,b} ,opt ions] . This command can be generalized to include more 
than three functions. 

IDI GraphingFunctions IH1 
//f/4/J-

P l o t [ { f [ x K g [ x K h [ x ] K { x . - 2 . i > . 
P l o t S t y l e - > { 
GrayLevel [0] ,GrayLevel [ . 2 ] , 
GrayLevel [ .4]}J 

K*)y 

- 2 - 1 . 5 

Outf4tJ= 
-Graphics-

KS Here we plotffo), g(x), and k(x) on the 

interval [-"2,1]. 
Notice that the color of the grcpk of 
j(x) is GrayLevel[ 0 ] ; 

the color of the grcph ofgfo) is 

GrayLevel[ . 2] ; and 

and the color of the grcph ofkfa) is 

G r a y L e v e l [ . 4 ] } ] . 

Always check to make sure that you have nested parentheses, 
square brackets, and curly brackets correctly; capitalized the 

j first letter of every built-in Mathematica function; and included 
TTT^ the argument of every function in SQUARE BRACKETS. 
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■ Other Available Options 

Additional P l o t options include: 

1) Aspec tRa t io ->number 
This makes the ratio of the length of the x-axis to the y-axis number. The default value is 1/GoldenRatio. 
GoldenRatio is a built-in Mathematica constant (like E and Pi) 

1 + V5 
with value (approximately L61803). 

2) Framed->True 
This draws a frame around the graph; the default value is Fa l se -no frame is drawn. 

o In Version 2.0, the option Framed is replaced by the option Frame, Hence, if you are using Version 2.0, 
including Frame->True instructs Mathematica to place a frame around the graph. 

3) Ticks->NoneorTicks->{{x-axis ticks}, {y-axis ticks}} 
This specifies that either no tick marks be placed on either axis QE tick marks be placed on the x-axis at x -ax i s 
t i c k s and on the y-axis at y - a x i s t i c k s . 

4) AxesLabel->{"x-axis label","y-axis label"} 
This labels the x-axis x - a x i s l a b e l and the y-axis y - a x i s l a b e l . For example, the command 
P l o t [ f [ x ] , {x ,xmin ,xmax ,AxesLabe l ->{ " j a n e " , "mary"}] graphs the function f [x] on 
the interval [xmin, xmax] ; and labels the x-axis j ane and the y-axis mary. The default for the option is that 
no labels are shown. 

5) P l o t L a b e l - > { " n a m e " } 
This centers name above the graph. The default for the option is that the graph is not labeled. 

6) Axes->{x-coordinate,y-coordinate} 
This option specifies that the x-axis and y-axis intersect at the point {xcoo rd ina t e , y c o o r d i n a t e ) . 

o In Version 2.0, Axes has been redefined. The option Axes->False specifies that the graph is to be drawn 
without axes; the option A x e s O r i g i n - > { x - c o o r d i n a t e , y - c o o r d i n a t e } places the axes so 
they intersect at the point { x - c o o r d i n a t e , y - c o o r d i n a t e } . 

7) P l o t R a n g e - > { y - m i n i m u m n / y - m a x i m u m } 
specifies the range displayed on the final graph to be the interval [y-minimum, y-maximum] ; 
P l o t Range->A11 attempts to show the entire graph. 
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D Example: 

These graphing options are illustrated below: 

GraphingFunctlonsOptions 
InfZOL« 

f[x_]=Sin[6 x]+2 Cos[2 x] 
p l o t l = P l o t [ f [ x K { x # - P i , P i } ] 

0utf20j= 
-Graphics-

p lo t2=Plo t [ f [x ] , {x . -P i .P i> , 
Asp e c tRa t i o->1.Framed->True] 

Outf2!]= 
-Graphics- ]J 

MMflaMMflaaflfla^ l̂wiMii*iÉÎÉi*ÎÉ:i S i:i:i:i:i:i:i:i:i:i:i:i:i:ï;i:i:i:i:i1 I 

To illustrate the various features of the Plot 
we define f (x) - Sin(6x) + 2Cos(2x) 

atàgr<phf(x) on the interval [-ti,tij. 

Notice that the resulting graph is named p l o t l ; 
This will allow us to use the graph later. 

p l o t 2 is also a graph off(x) on the interval 
[-ti,ti]. Adding the option 
ÀspectRatio->l 
specifies that the ratio of the length of the x-axis 
to the length of the y-axis L· 1; the option 
F ramed ->Tr ue encloses the graphics cell 
in a box (or frame) 
In Version 2*0, the option Framed 
has been replaced by the option 
Frame. 
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p l o t 3 isagrcpkofffry The option 

Ticks->Hone specifies that no tick marks 
are placed on either the x-axis ory-axis; the 

ÄxesLabel-> option **-"***"**'**■■■ r { " z - a z i s " , " y - a z i s " } 

specif Us that the x-axis is marked z - a z i s 

and the y-cods is marked y - a z i s . 

IDI 

When working with the Plot command, 
be sure to begin with a CAPITAL 
letter and enclose the entire command 
in square brackets. 

For p l o t 4 the option 

T i c k s - > { { - P i , 0 , P i } , { - 2 , 0 , 2 } } 
specif Us that tick marks be placed at 

χ « - π and x = ti onthe x-axis and 

y = -2 and y = 2 on the y-axL·; the option 

PlotLabel-> 
■£[z l=Sin[6 z ]*2 Cos[2 z ]■ 

spcifUs that the top of the graph is marked 

f[x]=Sin[6 x]+2 Cos[2 x] . 

GraphingFunctionsOptions ïôfl 
p l o t 3 = P l o t [ f [ z l , { z , - P i , P i } , 
Ticks->None, 
ÀxesLabel-> 
{ ■ z - a z i s " , " y - a z i s " } ] 

y-axis 

x-axis 

Outf23j= 
-Graphics-

p l o t 4 = P l o t [ f [ z l , { z , - P i , P i } , 
T i c k s - > { { - P i , 0 , P i } , { - 2 , 0 , 2 } } , 
PlotLabel-> 
■f [z ]=S in [6 z]+2 Cos[2 x]m\ 

f[x]=Sin[6 x]+2 Cos[2 x] 

2) 

Outf25j= 
-Graphics- ]J 

ΐνιΊΊΪιΊϊιΥιϊ^^^ UK MW^ 
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• Graphing Features and Options of Version 2.0 

Version 2.0 of Mathematica offers several plotting options which are not available or differ from those in Version 
1.2. In the first example below, the fact that a semi-colon must follow a command in Version 2.0 in order that it be 
suppressed is illustrated. (In Version 1.2, only the output of the last command in a single input cell is given even if 
semi-colons are not used.) After defining the function f, the graph of f is plotted and called p lo t f . Since a 
semi-colon follows the definition of f, the formula for f is not given in the output. Also shown below is the 
GridLines option in the P l o t command. Notice in f e a t u r e l , GridLines->Automat ic causes 
horizontal and vertical gridlines to be shown on the graph. 

GraphingOptions m. 
MS/:» 

C l e a r [ £ ] 
f[x_]=Exp[-(x-2K2 
plotf=Plot[Exp[-(x-

{x.0,4}] 

(Sin[Pi x]K2]; 
2)A2 (Sin[Pi x])' 2] 

Notice that with Version 2.0, a 
semi-colon must be placed at the 
end of each command in order 
to suppress the resulting output. 
In this case, after defining 

f(x)Äe-(x-2)2Si*2(*x)^ 

we grcphflx) on [0,4] and name 
the resulting graph p l o t f . 

ΙβαΜβΜρθΒΙΝΗΜηββΜΜΒΜΜΙβΝΒΝΗΜΒΜί 

Outf3j= 
-Graph i c s -

tnf4l:' 
f eaturel=Shov[ plotf, GridLines->Automa tie] 

0.6-H f-\ r \ f 

0.4+4 J—| 1—+ j-

0.24—I—f 1 \r—j-

The option 
G r ± d L i n e s - > 

À u t o m a t i c 
instructs Mathematica 
to display vertical and 
horizontal gridlines. 

Outf4j= 
-Graphics-
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The GridLines option can be altered slightly. The following examples illustrate how one type of gridline is 
requested. In f e a t u r e 2 , Gr idLines ->{None , Au tomat i c} specifies that only horizontal gridlines be 
displayed while in f e a t u r e 3 , G r i d L i n e s - > { {1 , 2 , 3} ,None} gives vertical gridlines at x = 1, 2, and 
3. Also in f e a t u r e 3 , T icks ->{Automat ic ,None} causes tick marks to be placed on the x-axis but 
none on the y-axis. Finally in f e a t u r e 3 , the x and y axes are labeled with the option 
A x e s L a b e l - > { " x - a x i s " , " y - a x i s " } . 

/Λ/5/·-
feature2=Shov[plotf, 

GridLines->{None,Automatic}] 
The option 
G r i d L i n e s - > { H o n e , 

A u t o m a t i c } 
specifies that Mathematica 
display horizontal but not 

Outf5j= 
-Graph i c s -

tnfo/:» 
f e a t u r e 3 = S h o v [ p l o t f , 

G r i d L i n e s - > { { 1 , 2 , 3 } , N o n e } , 
T i c k s - > { A u t o m a t i c , N o n e } , 
A x e s L a b e l - > { " x - a x i s " , " y - a x i s " } ] 

y-axis 

~·~—~~~~~~*~->~~—~·~—^Λ**Α· 

The option 
Gr i d L i n e s - > { { 1 , 2 , 3 } , 

None} 
specifies that Matkematica display 
vertical bvz not horizontal grid&nes; 
The option 
Ticks->{Automatic,None} 
specifies that tick marL· be placed 
on the x-axis but not on the y-axis; and 
The option 
AxesLabel->{"x-axis"„ 

" y - a x i s " } 
specifies that the x-axis and y-axis 
be labeled as in thepictwe. 

OutfôJ= 
-Graphics - ]J 

Several other P l o t options are shown in the examples below. In f e a t u r e 4 , AxesOr ig in->{xO, yO} 
is illustrated. This causes the major axes to be drawn in such a way that they meet at the point {xO, yO}. Another 
option is Frame which is demonstrated in both examples. Frame->True encloses the graph in a frame. 

o In Version 2.0, AxesOr ig in replaces Axes from Version 1.2 and Frame replaces Framed. 
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Note the tick marks which accompany the frame in f eature4. In f eature5, however, the 
FrameTicks->None option prohibits the marking of ticks on the frame. Also notice the P lotLabel 
option which appears in each P l o t command. In f eature4, the label is given in quotation marks. This causes 
the function within the quotations to be printed exactly as it appears in the PlotLabel option. Since the label 
does not appear in quotations in features , the label is given in mathematical notation. 

f eature4=Shov[plotf ,Ticks->Hone, 
Àxes0rigin->{2,0}, 
PlotLabel->-f[x]=Exp[-(x-2)A2(Sin[x]^2)]e. 
Frame->Truel 

Exp[-(x-2)A2(Sin[x]A2)] 

IM«« 

Outf7j= 
- G r a p h i c s -

tnfS/:' 
f e a t u r e 5 = S h o v [ p l o t f , T i c k s - > N o n e , 

A x e s O r i g i n - > { 2 , 0 >„ 
P l o t L a b e l - > E x p [ - ( x - 2 ) A 2 ( S i n [ x J 
F r a m e - > T r u e , F r a m e T i c k 3 - > N o n e , 
T i c k s - > { N o n e , A u t o m a t i c } ] 

2 2 
- ( ( -2 + x) Sin[x] ) 

M 
The option 
Ä x e s O r i g i n - > 

{ 2 , 0 } 
instructs Mathematica 
to display the cues so 
that they intersect cat 
the point (2,0); 
The option 
Frame->True 
instructs Mathematica 
to place a frame 
around the resulting 
graph; 
The option 
P l o t L a b e l 
is used to label the 
graph 

mmMMfMMMMMWMMMMWWIfMaeiMfWWIfifl 

2 ) ] , 

In this case, since 1 
E x p [ - ( x - 2 ) ~ 2 ( S i n [ x l A 2 ) J | 
is not contained in quotation marks 
(as in the previous example), 
the resuk is displayed in traditional 
mathematical notation « 

Outf8/= 
-Graph i c s -
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• Displaying Several Graphs with Version 2.0 

The plots given in f e a t u r e l , f e a t u r e 2 , f e a t u r e 3 , and fea ture4 are viewed below in a single 
graphics cell with the Graph icsAr ray option. 
G r a p h i c s A r r a y [ { f e a t u r e l , f e a t u r e 2 } , { f e a t u r e 3 , f e a t u r e 4 } } ] produces an array of 
graphics objects called f e a t u r e s which is viewed in pairs with Show [ f e a t u r e s ] , where 
f e a t u r e s = G r a p h i c s A r r a y [ { { f e a t u r e l , f e a t u r e 2 } , { f e a t u r e 3 , f e a t u r e 4 } } ] . In 
general, GraphicsArray can be used to visualize any m x n array of graphics objects. 

GraphingOptions EH 
KS 

tn[50j:= 
£ eature3=Graphic3Àrray[ 

{{f eaturei,f eature2} , 
{feature3,feature4)} 
1: 

Sho v [ £ ea t u r e s ] 

Jl 
The command G r a p h i c s A r r a y 
can be used to display a matrix or 
vector ofgrcpkics objects. 

U^\ 

y-axis 

urn 
±[x]=Exp[-(x-2)/ v2(Sin[x]A2 

If 

1 2 3 4 

OutfSOj« 
-Graphi c s Ar ray-

0 1 2 3 4 

]J 
Xiiittiittmiiimiimiiiimmi 31 oo% ▼ I KP I iWiiiiiliJillllilllil^fg m 
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The command Rectangle [ {xO, y 0 } , {x l , y 1} ] creates the graphics primitive for a filled rectangle with 
sides along the lines x = xO, y = yO, x = x l , and y = y l . Hence, other Mathematica commands must be used 
to visualize the rectangles represented by R e c t a n g l e [ {xO, y 0 } , { x l , y l } ] . Visualization is 
accomplished with Show and Graph ics aS illustrated below. 

GraphingOptions 

Shov[Graphics[{ 
Rectangle[{0.0}.{l.i)]. 
Rectangle[(1,1).{1.5.1.5)1. 
Rectangle[{0.1.1).{.4.1.5)]. 
Rectangle[{.5.1.1).{.9.1.5)]. 
Rectangle[{1.1.0).{1.4..5)1. 
Rectangle[{1.1..55).{1.4..9)1) 
11 

M 

Outf72j= 
-Graphics - ]J 

*,-W"WAWI"""^V P|10Q%^1)QI 3 

Notice how the command 
R e c t a n g l e 
con be used to create and 
display several rectangles. 

corresponds to 
R e c t a n g l e [ { 1 , 1 } , 

{ 1 . 5 . 1 . 5 ) 1 
corresponds to 
R e c t a n g l e [ { 1 . 1 . . 5 5 ) . 

{ 1 4 . . 5 ) 1 . 
Corresponds to 

R e c t a n g l e [ { 1 . 1 . 0 ) . 
{ 1 4 . . 5 ) 1 . 

M 
a 
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Rectangle [ {xO, yO}, { x l , y l } ] can be used in conjunction with other graphics cells to produce 
graphics of a particular size. The command Show [Rectangle [{xO,yO}, { x l , y l } f p l o t ] ] 
displays p l o t within the rectangle determined with Rectangle [ {xO, yO}, { x l , y l } ] . This is 
illustrated below with rectangles from the previous example as well as earlier plots. 

GraphingOptions 
lnf?4j:= 

Shov[Grapliic3[ { 
S e c t a n g l e [ { 0 , 0 } . { 1 , 1 } Λ e a t u r e 5 J m 
R e c t a n g l e [ { 1 , 1 } . { 1 . 5 . 1 . S K p l o t f 1 . 
R e c t a n g l e [ { 0 , i . l K { . 4 , 1 . 5 K f e a t u r e l ] : 
R e c t a n g l e [ { . 5 , l . l } , { . 9 , 1 . 5 } , £ e a t u r e 2 ] , 
K e c t a n g l e [ { 1 . 1 , 0 ) , { 1 . 4 , . 5 } , f e a t u r e 3 ] . 
R e c t a n g l e [ { 1 . 1 , . 5 5 } . { 1 . 4 , . 9 } , f e a t u r e 4 ] } 
] ] 

Graphics cells can be shown 
in rectangles of varying 
dimensions and then combined 
into a single graphics cell and 
displayed 

0.& 

u. 4q 
u. Δ· 

R 
/ 

1/ u 

ζε 3? H \ / 
\ \ \J 1 

.y. -4X/-XA 
0.4 
0.2fV/ J 

2 2 
-(C-2 + x) Sin[x] ) 

f [x ]=Exp [-(x-2) *2( Sin[x ] *2) ] 

ra 
0 1 2 3 4 

y-axis 

imL 
1 2 3 4 

ax i s 

Outf74j= 
-Graphics-

ii^^^^^^^Ê̂ mmmmmmî±mmiljÊ̂ im̂ ^^^l̂ ^^ 

Ώ1 
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O Labeling Graphs in Version 2.0 
In addition to the above features, graphs created with Version 2.0 can be labeled in a variety of ways. For 
example, in the following example the options Defaul tFont->{ "font" , s i z e } and 
P l o t L a b e l - > F o n t F o r m [ " l a b e l " , { " f o n t " , s i z e } ] , where f o n t and s i z e is a font 
available on your computer and l a b e l is the desired graphics label, are used to create several trigonometric 
graphs. 

The numbering of the tick marks of p l o t s i n are in size 12 Times font; the graph is labeled in size 14 Times 
font: 

SomeTrigGraphs 
infâôj-

plotsin=Plot[Sin[xK{x,-Pi/2,Pi/2}, 
DefaultFont->{"Times■,12 >, 
PlotLabel-> 

FontForm["Sin(x)".{"Times"m14} ] 
] 

icon Version Z 0, gropL· and ewes 
be labeled in a variety of fonts and 
sizes, depending upon the fonts you 
have installed on your system 

-1.5 

ÛutfSÔJ= 
-Graph i c s - ]J 

Similarly, the axes can also be labeled in different fonts and sizes using the option 
A x e s L a b e l - > { 

F o n t F o r m f ' x - a x i s l a b e l " , { " f o n t " , s i z e } ] , 
F o n t F o r m [ " y - a x i s l a b e l " , { " f o n t " , s i z e } ] 

} 
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In the following example; the function ArcSin(x) = Sin *(x) is graphed on the interval [-1,11 The 

axes are labeled "x-axis" and "y-axis" in size 12 Times font. The graph is labeled "ArcSin (x)" in size 12 Venice 
font since the Def aultFont is chosen to be size 12 Venice font: 

lnf87f:= 
plotinvsin=Plot[ÀrcSin[x],{x,-i,i}, 

PlotStyle->GrayLevel[. 3], 
DefaultFont->{"Venice",12}. 
PlotLabel->"ArcSin(x)", 
ÀxesLabel-> 

{FontForm["x-axis",{"Times",12}1, 
FontForm["y-axis"φ {"Times".12}1}1 

y-axis 

x-axis 

1.5 
1 

0.5 

-l HI:*0' · 5 

/ - i 
-1.5 

0.5 1 

Outf87j= 
-Graphics- ]J 
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Naturally, many different options can be combined together. In the following window, the previous two graphs 
are displayed. The option Ticks ->None specifies that no tick marks are to be drawn on either axis; the graph 
is labeled "Sin(x) and ArcSin(x)" in size 14 London font: 

both3=Sliov[plot3in*plotinv3in,Ä3pectKatio->l, 
Tick3->Hone, 
PlotLabel-> 

FontForm["Sin(x) and ÀrcSin(x)' 
{■London-,14}] 

] 

&\u(x) attfr %νφιπ(χ) 

A 

Outf88j= 
-Graphics-
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In the next example we graph Cos(x) and ArcCos(x). The option D i s p l a y F u n c t i o n - > I d e n t i t y is 
used so the graphs are not immediately displayed. Instead, these three graphs are shown simultaneously with the 
three previous graphs, p l o t s i n , p l o t i n v s i n , and boths , as a graphics array: 

inf96j:= 
p l o t c o 3 = P l o t [ C o s [ i ] , { χ , Ο , Ρ ί } , 

DefaultFont->{"Venice■,12}. 
PlotLabel->"Cos(x)", 
DisplayFunction->Identity!; 

plotinvco3=Plot[ÀrcCos[x],{x,-i,i}, 
DefaultFont->{"Einstein",10), 
PlotLabel->"ÀrcCos(x)", 
Plotstyle->GrayLevel[.3], 
DisplayFunction->Identity]; 

bothc=Shov[plotcos,plotin,?rcos,ÀspectRatio->i, 
Ticks->Hone, 
PlotLabel->FontForm["Cos(x) and ArcCos(x)1 

{"Athens-,12}] 
1: 

Shov[GraphicsÀrray[ { 
{plotsin,plotinvsin,boths}, 
{plotcos,plotinvcos,bothc}}]] 

AU six graphs are then displayed as a graphies array, illustrating the various options we have used: 

Shov[GraphicsÀrray[ { 
{plotsin,plotinvsin,boths}, 
{plotcos,plotinvcos,bothc}}]] 

y-axis 
Arc8itv(x) 

0.5 1 1.5 

Cos(x) 

0.5 i 1.5 -0 .5 | 
- 1 

Outf96j= 
-Gr aph i c sAr r ay -

5 3 

8>\n(x) atrtr %νφίτι(χ) 

'•î| 
o.s 

-Hhi 

y 

-x-axis 
0.5 1 

ArcCos(x) 

^ 2.5 

i / S K 
0.5 

-1 -0.5 0.5 1 

CGS(I) and flrcCos(x) 

p> 
JX 
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Chapter 2 Mathematical Operations 

i Piecewise Defined Functions 

Piecewise defined functions may also be defined and graphed with Mathematica. In the following example, h(x) is 
defined in three "pieces". Notice that / ; designates the definition of h(x) for different domain values. 

D Example: 

Use Mathematica to graph h(x) on the interval [-3,3] if h(x) = 

Not that <= represents a less than or equal to symbol. 

6+2x for x £ - 2 
x2 for - 2 < x <> 2. 

l l - 3 x for x > 2 

PieceuiiseDefinedFunction 

Clear[h] 
h[x_J:=x~2 / ; - 2 < x <=2 
h [ x _ J : = i l - 3 x / ; x > 2 
b[*_]:=6+2x / ; x <=-2 

/ * / / / / ■-

P l o t [ h [ x ] . { x , - 3 , 3 } , À s p e c t R a t i 

5 

ES 

io->i] J 

D 
BMI 

((((tt(it((t(((it(t((tt<i{(itt\ 
G Z Z J 'ZIK? ί JiiH!!l!!!lilî!li!ll!lllli!îîÎI!iH C i 

4A^r cfearij^ aäprior definitions of 
k, define 

f 6 + 2x for x < - 2 
h(x) = | x 2 for - 2 < x < 2. 

[ 11-3x for x > 2 
Piecewise-definedfunctions care 
graphed the same way as 
other functions. 

67 



Chapter 2 Mathematical Operations 

Functions can be defined recursively. For example, if the function f [x] is defined on the interval [ajb], then f 
can be defined for x > b with f [x_] : =f [x- (b-a) ] 
of this type are useful in the study of Fourier series. 

/ ; x>b. Two examples are given below. Functions 

O Example: 

(A) If - 1 < x < 1, let f(x) = 

f(x) = f(x-2). 

If x > 1, define f(x) recursively by 
1 for 0 < x < 1; 

-1 for - 1 < x < 0* 
Use Mathematica to define f and graph f on the interval [0,6]. 

1 
(B) If - 1 < x < 3, let h(x) = | 2

X f 0 r _ 1 - x - 2 ; . If x > 3, define h(x) recursively by 
[ 1 for 2 < x < 3 

h(x) = h(x-4). Use Mathematica to define h and graph h on the interval [0,12]. 
o Version 2.0 was used in the following solution to illustrate the Version 2.0 graphics option 

Background->GrayLevel [ n ] , where n is between 0 and 1. If using Version 2.0, the functions are 
defined the exact same way; however, the option Background->Gr ay Leve l [n] is not available in 
Version 1.2: 

inf84j:= 
Clear [£ ] 
f [ x _ ] :=i / ; 0<=x<=i 
f [ x _ ] : = - l / ; - i<=x<0 
f[*_J : = f [ x - 2 ] / ; x > 

inf8ôj:= 

After clearing aü prior definitions off, fis defined L 
f 1 for 0 < x < 1 il 

* f M - - I t o r - l i x < f f 
Then fljCyffy-Z) for κ> 1 defines f recursively for 
x greater than one. 

graphf=Plot[f [x], {χ,Ο,6},DisplayFunction->Identity] ; 
graphftwo=Plot[f[x],{x.0,6}, 

Background->GrayLevel[. 2], 
PlotStyle->{{Thickness!- Oi ],GrayLevel[i]}} 
DisplayFunction->Identity]; 

tnf90j:= 
Clear[h] 
h[x_]:=i/2x /; -i<=x<=2 
h[x_]:=i /; 2<=x<=3 
h[x_]:=h[x-4] /; 3<x 

inf92j:= 
graphh=Plot[{h[x],i/2 h[x-i]},{x,0,i2>, 

PlotStyle->{GrayLevel[0],GrayLevel[.3]}, 
DisplayFunction->Identity]; 

graphhtvo=Plot[{h[x],i/2 h[x-i]}, {x,0,i2}, 
Background->GrayLevel[0], 
PlotStyle->{{GrayLevel[i]>,{GrayLevel[.8]}}, 

DisplayFunction->Identity]; 

graphf 
graphftwo 
are different 
graphs off 
illustrating 
Plot options 
available in 
Version Z0. 
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Chapter 2 Mathematical Operations 

In Version 2.0, arrays of graphics cells can be visualized with the command GraphicsArray. Since 
graphf, graphftwo, g r a p h h , and g raphh two are graphics cells, 
{{graphf, g r a p h f t w o } , {graphh , g raphh two}} is an array of graphics cells. All four can be 
viewed in a single graphics cell using the command GraphicsArray: 

inf93j:= 
Shov[ GraphicsÀrray[ { {graphf , graphf two } . 

{graphh,graphhtwo}}]] 

1 

0.5 

0.5 

-1 

: j f ; r : < \ I 1 

1 
0.Θ 
0.6 
0.4 
0.2 

0 .2 
0 .4 

j Γ 
I 

i ' 

1 / 
f / 
Y 2 Y / p"& 

\ / / 
v / . J../ 

k' io Ψ 
Outf93j= 

-Graphi c sAr ray-
, , ϊ · ΪΠ'ΐ ΐοο% ▼ Ι Ρ Π 

M 
■ ^ ■ ■ ^ ^ . ■ . ^ ■ ■ ■ ^ ■ ■ ^ . ■ • ■ • ■ • ■ • ■ • ■ • ■ . ■ . ^ , .Λ Λ Λ Λ Λ Λ Λ^ a 
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Chapter 2 Mathematical Operations 

Sometimes it is useful to have Mathematica remember functional values it computes. For example, this is 
particularly useful when defining functions recursively as in the previous examples. In general, to define a function 
f to remember the values it computes enter the definition in the form 
f [ x _ ] : = f [ x ] ^ m a t h e m a t i c a l expression. 

D Example: 

Use Mathematica to define k(x) = Exp[-<x-2)2|CosU(x-2))|]. For 0 < x < 4, define g(x) = k(x) 

and for x > 4, define g recursively by g(x) = g(x-4> Graph g on the interval [0,16]. 

In the following example, notice that k is defined so that Mathematica remembers the values of k(x) it computes. 
Since g is defined recursively in terms of k, evaluation of g for values of x greater than four proceeds quickly since 
the corresponding k-values have already been computed and remembered: 

Mathematica will remember the values ofkfa) it computes. 

inf33j:= 
C l e a r 
k [ x _ ] : = k [ x ] = N [ E x p [ - ( x - 2 K 2 À b s [ C o s [ P i ( x - 2 ) ] ] ] ] 

tnf39j:= 
g [ * _ l : = k [ x ] / : 0<=x<=4 
g [ x _ ] : = g [ * - 4 ] / ; 4<x 
g r a p h g = P l o t [ g [ x ] , { x , 0 , 1 6 } ] 

0.8 

0.6 

0.4 

0.2 

Since Afx) is defined 
so that Mathematica 
remembers the values 
ofkfc) it computes, 
evaluation ofg(x) 
will be much faster 
since g is defined 
recursively in terms 
ofk 

7.5 10 12.5 15 

ûrt/39/* 
-Graph ic s -

Time : 68.43 seconds 11 00% ▼ ||Q | ΒΜ^^ θ | 
]J K3 

a 
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Chapter 2 Mathematical Operations 

12.5 Exact and Approximate Solutions of Equations 
i Exact Solutions of Equations 

Mathematica can solve many equations exactly. For example, Mathematica can find exact solutions to systems of 
equations and exact solutions to polynomial equations of degree four or less. Since a single equals sign (=) is 
used to name objects in Mathematica, equations in Mathematica are of the form 
l e f t - h a n d s i d e = r i g h t - h a n d s i d e . The "double-equals" sign (==) between the left hand side 
and right hand side specifies that the object is an equation. For example, to represent the equation 3x+7=4 in 
Mathematica, type 3x+7==4. The command So lve [ l h s — r h s , x] solves the equation lhs=rhs for x. 
If the only unknown in the equation lhs=rhs is x and Mathematica does not need to use inverse functions to 
solve for x, then the command So lve [ lhs—rhs ] solves the equation lhs=rhs for x. Hence, to solve the 
equation 3x+7=4, both the command Solve[3x+7==4] and So lve[3x+7==4,x] produce the same 
result. 

Notice that the representation of equations in Mathematica involves replacing the traditional single equals sign 
by a double equals sign: 

D Example: 

Use Mathematica to find exact solutions of the equations 3x+7 = 4, x 2 - l 
x - 1 

= 0, and 

x3 + x2 + x + l = 0. 

SoluingEquations 

A / / / -
S o l v e [ 3 x + 7 = = 4 ] 

OutfiJ= 
{{x -> - i } } 

KS 
The command S o l v e [ 3x+7==4 ] 
solves the linear equation 3x + 7 = A 
for*. 

-1 + Sqrt [ -3] 
{{x -> 0 } , {x -> ■ >-

-1 - Sqrt [ -3 ] 
{ x -> } } 

2 

Don't forget the 'double-equals 
when you *obre equations! 

w%\*iff}i%f%^»i%li 

S o l v e [ ( x A 2 - l ) / ( x - i ) = = 0 ] J 
Outf2j= 1 

{ {x -> -1 } } J 

S o l v e [ x ~ 3 + x ~ 2 + x ~ i = = 0 1 J 

Outf3j= 

S o l v e [ ( x A 2 - l ) / ( x - i ) = = 0 1 
solves the rational equation 
x 2 - l 

x-1 

S o l v e [ x A 3 + x A 2 + x A l = = 0 1 solves 
the cubic equation x 3 + x 2 + x + l = fj 
exactly. In general, Mathematica will find 
the exact roots of any polynomial equation 
with degree four or less. 
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Chapter 2 Mathematical Operations 

As stated above, the exception to the above rule is when using the command Solve to find solutions of equations 
where inverse functions must be used: 

D Example: 

Solve Sin2(x)- 2Sin (x) - 3 = 0. 
When the command Solve [Sin [x] A 2 -2S in [x] -3==0] is entered, Mathematica solves the equation 
for S in [ x ] . However, when the command So lve [S in [x] A 2 - 2 S i n [ x ] - 3 = = 0 , x ] is entered, 
Mathematica attempts to solve the equation for x. In this case, Mathematica succeeds in finding one solution: 

OtherEquations 

S o l v e [ S i n [ x ] ~ 2 - 2 S i n [ x ] - 3 = = 0 ] 

Outf5j= 
{{Sin[x] -> - 1 } , {Sin[x] -> 3}} 

iniôj:= 
S o l v e [ S i n [ x ] A 2 - 2 S i n [ x ] - 3 = = 0 \ x ] | 

S o l v e : : i f u n : 
Warning: inverse functions are 
being used by Solve, so some 
solutions may not be found. 

OutfôJ* 
-Pi 

{{x -> — } , {x -> ÀrcSin[3]}} 
2 

IHI 
^ 

. . . . . . . . . . .„„„„„„„„„„„„„„ ||l|||||||||S|5|E|i|S|||S|||l|||l|||||||l|||||||||||l|||||||||l|| CÎ>| 

Even though the only variable in 
the equation 

Sin2(x)-2Sin(x)-3 = 0 
isx, 
Mathematica will use inverse functions 
to solve 
Sin2(x)-2Sin(x)-3 = 0 
only if % is included in, the S o l v e 
com/nancL 
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So lve [ { l h s l = r h s l , I h s 2 = = r h s 2 } , {x, y} ] solves a system of two equations for x and y. 
Solve [ { l h s l = = r h s l , Ih s2==rhs2} ] attempts to solve the system of equations for all unknowns. In 
general, Solve can find the solutions to a system of linear equations. In fact, if the systems to be solved are 
inconsistent or dependent, Mathematica 's output will tell you so. 

D Example: 

Use Mathematica to solve each of the systems of equations: (i) 
i3x-y = 4 

U+y=2 ; and 

(iii) 
2x-3y + 4z=2 
3x-2y + z = 0 . 

x + y - z = l 

lrtf4j:= 
S o l v e [ { 3 x - y = = 4 , x + y = = 2 } . { x . y } ] 

Outf4j= 
3 1 

{{x -> - , y -> - } } 
2 2 

S o l v e [ { 3 x - y = = 4 . x + y = = 2 } , { x , y } J 
solves the system in two unknowns 

- y = 4 
forxandy. 

An equation is always represented by the 
form expression!-^expressiojtZ. Fou mast 
remember to include the "double-equals' between 
the left-hand side and the right-hand side of 
an equation. 

IftfSj:* 
S o l v e [ { 2 x - 3 y + 4 z = = 2 , 
3 x - 2 y + z = = 0 . x + y - z = = l } Φ { x . y . z } I 

Outf8j= 
7 9 3 

{{x -> —, y -> - , z -> -}} 
10 5 2 

S o l v e [ { 2 x - 3 y + 4 z = = 2 , 
3 x - 2 y + z = = 0 , x + y - z — 1 } , { x , y . z ) 1 
solves the system of three equations 

"2x-3y + 4z = 2 
3x-2y + z = 0 forx,y,andz. 

X + y - z = l 

Although Mathematica can find the exact solution to every polynomial equation of degree four or less, exact 
solutions to some equations that Mathematica can solve may not be meaningful. In those cases, Mathematica can 
provide approximations of the exact solutions using either the N [ e x p r e s s i o n ] or the e x p r e s s i o n / / N 
command: 

Remember that Mathematica denotes ■ΪΛ by I. 
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D Example: 

Approximate the values of x that satisfy the equation (i) x -2x = l - x ; and (ii) 1-x =x . 

SoluingEquations 

• i · | 3EE 

ÏH1 
\Q\ 

M * à é * M é é é * é é M 

K> sa 

H[ S o l v e [ x ~ 4 - 2 x ~ 2 = = l - x ] ] solves 

the equation X 4 - 2 x 2 = l - X 

and tkenprovides cpproximations of the roots 

S o l v e [ l - x ~ 2 = = x ~ 3 . x l / / N solves 
2 3 the equation 1-X =X^ 

and thenprovides approximations of the roots 

In general, the command* 
H [ o p e r a t i o n ] and 
o p e r a t i o n / / N 
yield the same output. 

74 

H[Solve[x~4-2x~2==l -x] ] 

\(tatf22j-
{{x -> 1.34509), {x -> -1 .71064} , 

{x -> 0.182777 + 0.633397 I}, 

{x -> 0.182777 - 0.633397 I}} 

lnf23j:= 
S o l v e [ i - x A 2 = = x A 3 , x ] / / M 

Outf23j= 

{{x -> 0 .754878) , 

{x -> -0.877439 + 0.744862 I ) , 

{x -> -0.877439 - 0.744862 I } ) 



Chapter 2 Mathematical Operations 

Mathematica can also solve equations involving more than one variable for one of the other variables in terms of 
other unknowns. 

l D Z Z Z Z _ SoluingEquations ^M 

Inf9j:= 
Solve[Y*==Pi r A 2 / h , l i ] 

\Outf9j» 
2 

Pi r 
{ { h -> } } 

V 

/ft//Oj:= 
Solve[a~2+b~2==c~2,al 

\outfioj= 
2 2 

{{a -> Sqr t [ -b + c ] } , 

2 2 
{a -> -Sq r t [ -b + c ] } } 

fwimïmiifflïffîï̂  ^^l—i^ÎÉi i - i - i i i i i - i ' i i ' i i ' i i i i i 

^ ^ H i | 

]1 
■q 

J 

11 
•q 

-l-

liiiiË 

Ή u 

M 
>N 

For example, here Mathematica solves 

theegmtion ν = ΊΓ /or* 

O, ira iAis case, Mathematica solves the 

2 2 2 equation a +b =C fora 
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■ Numerical Approximation of Solutions of Equations 

When solving an equation is either impractical or impossible, Mathematica provides two functions to approximate 
roots of equations: FindRoot and NRoots. NRoots numerically approximates the roots of any polynomial 
equation. FindRoot attempts to approximate a root to an equation provided that a "reasonable" guess of the root 
is given. FindRoot [ l h s = = r h s , {x, f i r s t g u e s s } ] searches for a numerical solution to the equation 
lhs==rhs, starting with x=f i r s t g u e s s . ( f i r s t g u e s s can be obtained by using the P l o t 
command.) Thus, FindRoot works on functions other than polynomials. Moreover, to locate more than one 
root, FindRoot must be used several times. NRoots is easier to use when trying to approximate the roots of a 
polynomial. 

D Example: 

Approximate the solutions of x +x -4x +2x - 3 x - 7 = 0. 

SoluingEquations 

NBoots[ 
Σ Λ 5 + Σ Α 4 - 4 Σ Λ 3 + 2 Σ Α 2 - 3 Σ - 7 = = 0 , Σ ] 

Outft5j= 
x == -2 .74463 | | x == -0.880858 | | 

x == 0.41452 - 1.19996 I || 

x == 0.41452 + 1.19996 I || 

The symbol I I means "Or. ' x == 1 .79645 

to//?/:* 
FindRoot[ 
Σ Α 5 + Σ ~ 4 - 4 Σ ~ 3 + 2 Σ Α 2 - 3 Σ - 7 = = 0 , { Σ , i . 8 } ] 

0utf!9j= 
{x -> 1 . 7 9 6 4 5 } 

1.8 is ow "first 
guess. 

™*n*w»*t<»w»w»»s& ]J 

To obtain cpproximcstions of aü 
solutions to the equation 
x 5 + x 4 - 4 x 3 + 2 x 2 - 3 x - 7 = 0 
use H S o o t s . 

F indRoot may also be usedto 
approximate each root of the equation 

x 5 +x 4 -4x 3 +2x 2 -3x-7 = 0. 
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D Example: 

In order to approximate the roots of the equation Cos(x)-x=0, FindRoot must be used since Cos(x)-x=0 is not a 
polynomial equation. 

To approximate the positive solutions to 

the equation Cos(x)-X = 0 , first 

define and graph f(x) = Cos(x)-X. 
Notice that f (x) is zero near 0.7. 

Then Enter 

FindRoot[£[xl==0,{x..7>] 
to approximate the root near 0.7. 

f [ x J = C o s [ i l - x 
P l o t [ f [ x K { x . 0 . i > ] 

1 
0.8 
0.6 
0.4 
0.2 

-0.2· 
- 0 . 4 

0.'2 0.'4 O.'ô ÎN8 i 

\ovtft7f* 
-Graphics-

F i n d R o o t [ f [ x ] = = 0 , { x , . 7 } ] 

\Outfi8j» 
{x -> 0.739085} 

ΜΜΜ0 

In general, F indS o o t 

will yield a single approximation 

to a solution of an equation 

provided that a "good" first 

approximation has been given; 

NRoots will give approximations 

of all roots of a polynomial 

equation 
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Chapter 2 Mathematical Operations 

• Approximating Solutions of Equation in Version 2.0 

In addition to the commands FindRoot and NRoots, Version 2.0 contains the command NSolve which can 
also be used to approximate roots of some equations. 

O Example: 

If h(x) = x 3 -8x 2 + 19x-12 and k(x) = - x 2 - x — , use Mathematica Version 20 to compute 
2 8 

approximations of the solution of h(x) = k(x) using (i) NRoots; and (ii) NSolve . 

inf20j:= 
C l e a r [ h , k ] 
h[ Σ _ ] = Σ ~ 3 - 8 Σ ~ 2 + 1 9 Σ - 1 2 
) Ε [ Σ _ ] = 1 / 2 Σ Α 2 - Σ - 1 / 8 
valsl=NBoots[]lI>J==k[>] , Σ ] 

Outft8j= 

iK> 

Outf!9j= 

0utf20j= 
x « 0.904363 | | 
x == 2.66088 || x == 4.93476 

inf2U:= 
v a l s 2 = N S o l v e [ h | > ] = = k [ > ] ^ ] 

Outf2U= 
{{x -> 0.904363}, 
{x -> 2.66088), 
{x -> 4.93476}) 

ΐΠΖ^0ΐ00%^Ι10Ο ■t..ŵ ^...-.w..^...·...^·..^«, a & 

In Version Z0f the command N S o l v e 
may also be used to numerically compute 
solutions to polynomial equations. 

Notice that the difference between the 
result of using the command HKoots 
and N S o l v e 
is the form of the final output. These 
differences will be discussed in detail 
in Chapter 9. 

Even though three commands are 
entered simultaneously, Version 2.0 
generates output for each command 
as it is evaluated 
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i Application: Intersection Points of Graphs of Functions 
i ( A ) 

3 2 * 2 *■ 

Locate the points where the graphs of h(x) = x -8x +19x-12 and k(x) = - x - x — intersect. 
Z o 

Notice that the x-coordinates of the intersection points satisfy the equation h(x)=k(x). Consequently, to locate the 
intersection points, it is sufficient to solve the equation h(x)=k(x). Although this step is not necessary to solve the 
problem, we first graph h and k and notice that h and k intersect three times. 

IntersectionPoints 

Clear[h,k] 
h[ x_]=x~3-8x~2+19x-12 
k[x_]=i /2x~2-x- l /8 
P l o t [ { h [ x ] . k [ x ] } , { x , 0 , 7 } , 

PlotStyle->{GrayLevel[0],GrayLevel[.3]}] 

We begin by clearing all prior 
definitions ofk and k, defining 
h(x) = x3 - 8x2 + 19x -12 and 

k(x) ■ -x 2 - x - - , andgrcphing 
2 8 

h and k on the interval [0,7]. 
eft?* 

The first function gropked, k,isin black 
(corresponding to GrayLevel[ 01 ) 
and the second function grcphed, k,tsin 
gray (corresponding to GrayLevel[ . 31 ) 

■WWMIUWUIIIIWIWWUIWMIMIWIWIŴ 

Outf5j= 
-Graphics- ]J 

Since h(x)=k(x) is a polynomial equation of degree three, Mathematica can compute exact values of all three roots. 
However, the roots are complicated so we approximate the solutions. Moreover, since h(x)=k(x) is a polynomial 
equation we use the command NRoots [h [x] ==k [x] , x] : 

o Notice that in Version 2.0, NSolve [h [x] ==k [x] , x] produces the same result. 
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In the following example, the exact solutions of the equation h(x)=k(x) are computed with the command 
Solve [h [x] ==k [x] ] . Notice that the resulting solution is expressed as a Usl. Lists are discussed in detail 
in Chapters 4 and 5. Nevertheless, the results of the command Solve [ lhs==rhs] attempts to solve the 
equation lhs=rhs for all variables that appear in the equation. The solutions, if any, are displayed as a list. In 
general, the command Solve [ l h s==rhs ] [ [ 1 ] ] yields the first element of the list of solutions, 
Solve [ lhs==rhs] [ [2] ] yields the second element of the list of solutions, and 
Solve [ lhs==rhs] [ [ j ] ] yields the jth element of the list of solutions. 

tnfo/:* 
H K o o t s [ h [ x ] = = k [ x ] , x ] 

OutfôJ= 
x — 0.904363 || x == 2.66088 || x == 4.93476 

S o l v e [ h [ x ] = = k [ x ] ] 

Outf7j= 
17 49 

{{x -> « + + 
6 151 Sqr t [ -16585] 1/3 

3 6 ( + ) 
432 48 Sqr t [3 ] 

151 Sqr t [ -16585] 1/3 
( + ) }, 
432 48 Sqrt [3J 

17 
ÎiJI^ÎAÎÎ,"-ÎÎÎofeÎotffTrtr,-ai...,, 

J Q nSiiiiiftn 

| l ' i m 

Computes numerical approximations 
of absolutions to the polynomial 
equation Ä(X)=Ä(X) 
Be sure to use "double-equals" 
signs when working with equations. 

The command So^elh[T]==lclT] J 
computes the exact solutions of the 
polynomial equation k(x)=k(xy The 
command 
S o l v e [ h [ x ] = = k [ x ] ] [ [ l ] ] 
yields the enact value of the first solution; 
the command 
S o l v e [ h [ x ] = = k [ x ] ] [ [ 2 ] ] 
yields the exact value of the second solution; 
and the command 
S o l v e [ h [ x ] = = k [ x ] ] [ [ 3 1 ] 

yields the exact value of the third solution 
Since the degree of the polynomial equation 
h(x)=k(x) is 3, there are at most three distinct 
solutions. 

*rr 
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KB) 

Locate the points where the graphs of f(x) = e ^x/4^ Cos — 1 and g(x) = Sin(x3/2j+—intersect. 

Notice that the x-coordinates of the intersection points satisfy the equation f(x)=g(x). Consequently, to locate the 
intersection points, it is sufficient to solve the equation f(x)=g(x). Since this problem does not involve 
polynomials, we must first graph f and g and notice that they intersect twice. 

To locate the intersection points, 
first clear any prior definitions 
offandg, define fandg, and 
grcpk: 

[Don't forget to place the 
underline on the left-hand 
side of the equals sign and 
enclose the arguments 
of all functions in square 
{brackets. 

In order to cpproximate the 
intersectionpoints, we will 
use F i n d S o o t 
to cpproKimate solutions to 
the equathnftyC^gfay 

C l e a r [ f , g ] 
f [ x _ ] = E x p [ - ( x / 4 ) A 2 ] C o s [ ( i / P i ) l 
g [ x _ l = S i n [ x A ( 3 / 2 ) 1 + 5 / 4 
P l o t [ { f [ x ] , g [ x ] K { x , 0 , 5 K 
P l o t S t y l e - > { R G B C o l o r [ 1 . 0 , 0 ] , R G B C o l o r [ 0 , 0 , 1 ] } ] 

\ The color of the graph of 
\ g(*) would be blue; 

The color of the 
graph off(x) would 
be red 

Intersectionpoints of the graphs off and g 
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Mathematica cannot solve f(x)=g(x) exactly. Since f(x)=g(x) is NOT a polynomial equation, the command 
NRoots cannot be used to numerically approximate the roots. However, we can use the command FindRoot 
to approximate each root provided we have a "good" initial approximation of the root. To obtain a "good" initial 
approximation of each root: 

1) Move the cursor within the graphics cell and click once. Notice that a box appears around the graph: 
2) Press and hold down the Open-Apple key; as you move the cursor within the graphics cell, notice that the 
thermometer at the bottom of the screen has changed to ordered pairs approximating the location of the cursor 
within the graphics cell: 

Application 

Clear[£,g] 
f[x_]=Exp[-(x/4)~2] Cos[(x/Pi)] 
g[x_]=Sin[xA(3/2)]+5/4 
P l o t [ { f [ x ] . g [ x ] K { x . 0 , 5 > , 
P lo tSty le ->{RGBColor [ i , 0 ,0 ] ,RGBColor [0 ,0 .1 ] } l 

As the cursor moves within the graphic* 
cell, an approximation of the location of 
the cursor is given at the bottom oj 
the screen. 

0utf!8j= 
-Graphics-

{2.56, 0.46} El mmm m 
When the cixrsor is near the intersection point, we see that the κ-coordinate of the point is cpproximatefy 
Z56. Herxe,wewiümeZ56asowmizixdopproy^^ command 
An cpproKimation of the second intersection point L· similarly obtained 
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We then use FindRoot twice to compute an approximation of each solution: 

lnf25j:= 
FindRoot[£[x]==g[x],{x,2.59}] 

0uif25j= 
{x -> 2 . 5 4 1 0 5 } 

lnf26j:= 
£[2.54105] // H 

0utf2ôj= 
0.461103 

FindRoot[£ [ x ] = = g [ x ] , { x , 2 . 9 8 } ] 

0utf27j= 
{x -> 2.9746} 

lnf28j:= 
£ [ 2 . 9 7 4 6 ] / / H 

0utf28j= 
0.336066 

FindRoot[ f [x ]==g[ x ] . { x , 2 . 59} ] computes an 
approximation of the solution to the equation f(x)^g(x) 
near the value Z59. 

<É»wa*««fW«»fwi>É»wKWi»»jt 

* i A n * M w t f i v m w w *« 

FindRoot[£[x]==g[x]„ { x . 2 . 98}] computes an 
approximation of the solution to the equation f(x)=g(K) 
near the value 2 98. 

Ί 

We conclude that one intersection point is approximately 
(Z54105,.46113) and the other intersectionpoint is 
approximately (Z9746,.336066) 

" Ί ΊΚ3Ι 23 
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Chapter 3 
Calculus 

H Chapter 3 introduces Mathematical built-in calculus commands. The examples used to illustrate the various 
commands are similar to examples routinely done in first-year calculus courses. 

a Commands introduced and discussed in this chapter from Version 1.2 are: 

The command Chop[smallnumber] produces zero when |smallnumber|< 10" 

Multi-Variable Calculus 
D [ f [ x , y ] , x ] 

D [ f [ x , y ] , { x , n } ] 

D [ i [ x , y ] , x , y ] 
B e r l T a t l T e [ n , ■ ] [ f l [ x , y l 
I n t e g r a t e [ ± [ x , y ] , { x , a , b } , { y # c , d } } 
■ I n t e g r a t e [ ± [ x , y ] , { x , a , b } , { y , c , d } ] 

Series Calculus 
S e r i e s [ f [ x ] , { x , a , n } ] 

In tegrate [express ion , { x , a , b } ] ï o r e a l [ S e r i e s [ £ [ x ] , { x , a , n } ] J 
i n t e g r a t e [ e x p r e s s i o n , { x , a , b } ] LogicalExpand[ser ies l==series2] 

Graphics 
C o n t o n r F l o t [ f [ x , y ] , { x , a , b } , { y , c , d } ] 
P l o t 3 D [ f [ x , y ] , { x , a , b } , { y , c , d } , o p t i o n s ] 

Potions 
PlotPoints-> n 
Shading-> False 
Boxed-> False 
PlotLabel->"text" 
&xesLabel->{~x-axis text","y-axis text-,"z-axis text"} 
Ticks->Vone 
Ticks->{{x-axis tick aarks},{y-axis tick narks},{z-axis tick Marks}} 
Axes->Bone 
BoxRatios->{a,b,c} 
Hesb->False 
DisplayFunction->Identity 

Other commands include: 

Limits 
Liait[expression , x-> a] 

Differential Calculus 
* ' [ * ] 
±"■1*1 
f [ x ] 
D [ f [ x ] , x l 
D [ ± [ x ] , { x , n } ] 
Dt [ equation ,x ] 

Integral Calculus 
In tegra te [expres s ion ,x ] 

84 



Chapter 3 Calculus 

B Commands and options discussed in this chapter from Version 2.0 include: 

Graphics 
IaplicitPlot[equation,{z#zain,x»ax},{y,yein,yeax}] 
Version 2.0 Graphics Potions Include: 
C ont our Smo o thing 

C ont our Shad ing 

Contours 
Other Potions: 
D i r e c t i o n - > ±1} L i m i t 

Show 
l· C o n t o u r P l o t Λ 

Graphxc sAr r a y 
P l o t 3 D 

H Applications in this chapter include: 

DDiff^nti^lÇalçulqs 
Locating Horizontal Tangent Lines 
Graphing Functions and Tangent Lines 
Maxima and Minima 

D Integral Calculus 
Area between Curves 
Volumes of Solids of Revolution 
Arc Length 

a Series 
Approximating the Remainder 
Computing Series Solutions to Differential Equations 

D Multi-Variable Calculus 
Classifying Critical Points 
Tangent Planes 
Volume 
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H 3.1 Computing Limits 

One of the first topics discussed in calculus is that of limits. Mathematica uses the command 
Limit [ e x p r e s s i o n , x->a] to find the limit of e x p r e s s i o n as x approaches the value a, where a can 
be a finite number, positive infinity ( Inf in i ty) , or negative infinity ( - I n f i n i t y ) . The "->" is obtained by 
typing a minus sign "-" followed by a greater that sign ">". 

D Example: 

TT w , - ,.χ T. 3x2 + 4x-15 ,..x T . Sin(x) ..... _. 50-17x2 

Use Mathematica to compute (1) Lim * ; (u) Lim ; (in) Lim *·; 
F x->-3l3x2 + 32x-21 x->0 x x->~200x+3x2 

3 -x 2 
and (iv) Lim -— . 

x_>oo4-1000x 

Limits 
MS]: 

Li: T 
i m i t [ ( 3 x A 2 + 4 x - i 5 ) / ( i 3 x A 2 + 3 2 x - 2 i ) , x - > - 3 ] J 

Outf5j= 
7 

23 

InfôJ:-
L i m i t [ S i n [ x ] i x , x - > 0 ] 

Outf6j= 
1 

KS 

]J 
fnf?/:* 

Limit[(50-i7xA2)/(200x+3xA2),x->Infinity] 

Outf7]= 
17 

- ( ~ > 
3 

infSj-
L i m i t [ ( 3 - x ~ 2 ) / ( 4 - i 0 0 0 x ) . x - > I n f i n i t y ] 

OutfSj* 
I n f i n i t y ]J 

n WÉÈÈÈÊiÈÈÊÈËÈÊÊImL^^^L·^lL·L·ïL·iïiL·L·ïL·iiL·i!àiiiïïiiL·iï& 

M 

computes 
3x2+4x-15 

Lim — s . 
x->-3l3x2+32x-21 

computes Lim 
Sin(x) 

x-»0 x 

50-17X2 

computes Lim s·. 
x-+~200x + 3x2 

3-χ2 
computes Lim . 

* x->~4-1000x 
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The Limit command can also be used along with Simpl i fy to assist in determining the derivative of a function 
by using the definition of the derivative. This is illustrated in the following example. (This example also shows that 
an expression can be assigned any name, as long as that name is not a built-in Mathematica function or constant. 
Remember: Since every built-in Mathematica object begins with a capital letter, we have adopted the convention that 
all user-defined objects will be named using lower-case letters.) 

D Example: 

Let g(x) = x3-x2 + x+L Use Mathematica to compute and simplify (i) - — ; 
h 

and (ii) Lim 
h->0 

g(x+h)-g(x) 

Limits 

C l e a r [ g ] 
g [ x _ l = x A 3 - x A 2 + x + i 

Outf!7j= 
2 3 

1 + x - x + x 

d o g = S i m p l i f y [ ( g [ x + h ] - g [ x ] ) / h ] 

Outf!9j= 
2 2 

1 - h + h - 2 x + 3 h x + 3 x 

in[ZOj:= 
L i m i t [ d o g , h - > 0 ] 

0utf20j= 
2 

1 - 2 x + 3 x 

K> 

dog is the simplified 
. g(x + h)-g(x) expression _ y *x y 

L i m i t [ d o g *h->01 
φ τ . g(x + li)-g(x) 

computes Lim . 
1L-»0 h 
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Chapter 3 Calculus 

The next example illustrates how several Mathematica commands can be combined in a single statement to obtain the 
desired result. 

D Example: 

Let f(x) = -7*+Vx. Use Mathematica to compute and simplify (i) ; 
Vx n 

. ,.., . . f(x + h)-f(x) 
and (u) Lim . 

h->0 h 
Remember that Mathematica denotes Vx by Sqrt [x]. Hence, f is defined by 
f [x_]=l /Sqrt[x]+Sqrt[x] . Entering f [x_]=xA (-1/2) +xA (1/2) would yield the same result. 

\inf9j:= 
Clear [£ ] 
f [ x _ ] = i / S q r t [ x ] + S q r t [ x] 

\Outf9j= 
1 

+ Sqrt[x] 
Sqrt[x] 

q u o t i e n t = T o g e t h e r [ ( f [ x + h ] - f [ i ] ) / h ] 

\outf!!j= 
3/2 

(Sqrt[x] + h Sqrt[x] + x 

Sqrt[h + x] - x Sqrt[h + x]) / 

(h Sqrt[x] Sqrt[h + x]) 

Limi t [quot i en t„h->0] 

\Outf!3j= 
-1 Sqrt[x] 

2 Sqrt[x] 2 

1 x 

ijp 

] II 

I quot i en t is the expression 
f(x + h)-f(x) 

Limit[ quo tient, h->0] 
f(x + h)-f(x) 

cakulates Lim . 
fc->o h 
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Note that the square brackets must be properly nested in order to correctly perform the combined operations. Also 
note that Simplify can be used to express the result in a more reasonable form: 

inft4j:= 
Siaplify[Limit[ quotient, h->0] ] 

Ovtft4j= 
- 1 + x 

3/2 
2 x 

Notice that several Mathematica commands 
can be combined. Be sure that square brackets 
are nested appropriately. 

y TW 

yields a simplified version 
τ . f(x + h)-f(x) 

of Lim . 

Sometimes Version 1.2 yields surprising results. For example, if f is an unknown function, 
Limit [ f [ x ] , x - > a ] yields f [ a ] . 

In other cases, the command Limit returns results that do not make sense: 

g|~1 ë Uersion1.2Limits m 

tnf!4/:= 
C l e a r [ f ] 
?£ 

f 

\fnft5l* 
L i » i t [ f [ x ] , x - > a ] 

\Oiitft5/= 
f [ a ] 

L i m i t [ À b 3 [ i ] / x . i - > 0 ] 

\OutftôJ= 
\ Abs' [0] 

ί — ■ ■■:■■;■■ MICH i i i i i i i 

^■ail 
-i-i tâj 

A 
]]!!! 
ill 
1 1 wm \ 

Version LZ evaiuates the 
limit even when it encounters 
an unknown function 

and in some cases yields 
I results that dont make 
I sense. 

89 

file:///fnft5l*


Chapter 3 Calculus 

• Computing Limits with Version 2.0 

In Version 2.0, the command Limit does not evaluate when it encounters an unknown function unless the option 
Analy t i c ->True is included. 

Uersion2.0Limits 

] 
JA 

C l e a r [ £ ] 
?f 

Global*f 

L i m i t [ f [ x ] . x - > a J 

Outf2U= 
L i m i t [ f [ x ] , x -> a] 

fnf22]:= 
Limit[*[*].x->a.Analyt ic->True] J 

Öutf22j= 1 
f[a] J. 

Irtf23j:= T 
P l o t [ A b 3 [ x ] / x , { x , - i , i } ] J 

ik> Since C l e a r [ £ ] 
removes aüprior 
definitions off, 
f [ x j isan 
undefined Junction, 

§** 

InVersion Z0, L i m i t 
does NOT evaluate when it encounters 
an unknown function unless the option 
A n a l y t i c - > T r u e 
is included 

1 

0.5 

-1 - 0 . 5 

- 0 . 5 

■ 1 

0.5 1 

Outf23j= 
-Graphics-

In any case, L i m i t 
is unable to evaluate 
many well-known 
limits. 
For example, even 
tftough 

M J Lim ~ ewes not exist, 
x-»o x 

M _, M 
Lim_ —= -1 and Lim — = 1. 

x-*0~ x x->0+ x 
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In addition, in some cases, the options D i r e c t i o n - > l or D i r e c t i o n - > - l may help in computing limits. 
The command L imit [ f [x] , x - > a , D i r e c t i o n - > - l ] computes 

Lim f [ x ] ; the command Limit[f [ x ] , x - > a, D i r e c t i o n - > 1] computes Lim f [ x ] . 
x-»a+ x-»a~ 

i!lf24/:= 
L i m i t [ À b s [ i ] / x . x - > 0 ] 

Outf24j= 

L i m i t [èÈ£u[i, x .> 0 ] 

L i m i t [ A b s [ x ] / x , x - > 0 , D i r e c t i o n 

Outf25j= 

L i m i t [èM2Li, x _> 0 , 

Direction -> -1] 

Limit[Àbs[x]/x,x->0,Direction 

Outf26/= 

■>-, I 

- > . J 
Limit[—2L£1^ x -> o. Direction -> 1] 

i,i,ii^i'iiimmiu[TiTjHaiH 
m 

Mczkematica c<m neitker 
compute 

M Lim — = 1 
x->0+ x 

nor c<m Matkematica compute 

M Lim — = -l . 
x-»0~* x 

However, Version 20 does correctly compute Lim - and Lim - . 
x-»0+ x x->0~x 

OneSidedLimits 

L i m i t [ i / x , x - > 0 , D i r e c t i o n 

Outf!3j= 
In f in i ty 

fnf!4j:= 
L i m i t [ i / x , x - > 0 , D i r e c t i o n 

Outf!4j= 
- In f i n i t y 

'v, i' ,n'1100%^||OIZlli 

- > - , I 
1 

i o n - > i ] J 

u 

\Q\ 

a 

computes Lim - . 
x-+0+x 

computes Lim —. 
x-»0~ x 
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£3 3.2 Differential Calculus 
■ Calculating Derivatives of Functions and Expressions 

If we are given a differentiable function f(x), Mathematica can compute the derivative of f(x) in at least two ways once 
f(x) has been properly defined using Mathematica : 

1) The command f* [x] computes the derivative of f [x] with respect to x. 

2) The command D [f [ x ] , x] computes the derivative of f [x] with respect to x. 

3) The command D [£ [ x ] , {x, n} ] computes the nth derivative of f [x] with respect to x. 

4) The command D [express ion , v a r i a b l e ] computes the derivative of e x p r e s s i o n with respect to 
var iab le . 

Other ways Mathematica can compute derivatives of functions and expressions are discussed in Section 3.6. 
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D Example: 

For example; in order to compute the derivative of (7x-3) (5-4x2) , we may either directly 

compute the derivative of (7x-3) (5-4x2) or we may define h(x)= (7x-3)3(5-4x2J and compute 

h'(x). 

Deriuatiue 

D [ ( 7 x - 3 ) A 3 ( 5 - 4 x A 2 ) A 2 , x ] 

Outf!j= 
3 

-16 x (-3 + 7 x) 

(5 
2 

4 x ) + 

2 2 2 
21 (-3 + 7 x) (5 - 4 x ) 

Clear[h] 
h [ x _ ] = ( 7 x - 3 ) A 3 ( 5 - 4 x A 2 ) A 2 ; 

Outf3j= 
3 

-16 x (-3 + 7 x) 

2 
(5 - 4 x ) + 

2 2 2 
21 (-3 + 7 x) (5 - 4 x ) 

IMMIsi 

K> 

flititJiiiàiàiâMàJitiiiâiÉMài 

D [ ( 7 x - 3 ) A 3 ( 5 - 4 x A 2 ) A 2 , x ] 
computes the derivative (with respect 
to x.) of the expression 

(7x-3)3(s-4x2) . 

A semi-colon placed at the end oj 
a command suppresses the output. 
Remember that RETURN gives a new 
line; ENTER evaluates Matkematica 
input. 

C l e a r [ h ] 
b[x__] = ( 7 x - 3 ) A 3 ( 5 - 4 x A 2 ) A 2 ; 
first clears all previous definitions of h 
and then defines 

h(x) = (7x-3)3(5-4x2) . 

h" [ x ] computes the derivative of h 

S 
a 
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Notice that both h f [x] and D [h [ x ] , x] produce the same result, 

Deriuatiue 

KS 
inf4j:= 

D [ h [ x l , x l 

Outf4j= 
3 

-16 x ( -3 + 7 x) 

2 
(5 - 4 x ) + 

2 2 2 
21 ( -3 + 7 x) (5 - 4 x ) 

Factor[ha[x]] 

0titf5j= 
2 2 

(-3 + 7 x) (-5 + 4 x ) 

2 
(-105 - 48 x + 196 x ) 

info]-
F a c t o r [ D [ ( 7 x - 3 ) A 3 ( 5 - 4 x ~ 2 ) A 2 , 

Outf6j= 
2 2 

(-3 + 7 x) (-5 + 4 x ) 

2 
(-105 - 48 x + 196 x ) 

..J 

I ' · ' I 
m 
a 

D[ h[ x J , x ] also computes the 
derivative ofh(x) with respect to x. 

Remember that Mathematica 
commands can be nested; be 
sure that square-brackets are 
nested correctly. 

F a c t o r C h " [ x ] J 
first computes then factors the derivative 

The exact same result is obtained by 
executing the comm/md 
F a c t o r [ D [ ( 7 x - 3 ) ~ 3 ( 5 - 4 x ) A 2 ] . x ] ] 
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i Graphing Functions and Derivatives 

Moreover, since f · [x] is a function of x, ff [x] can be graphed. The following example shows how to compute 
the derivative of a function and then plot the original function and its derivative simultaneously : 

D Example: 

Let f(x) = xSin2(x). Compute f and graph both f and f on the same axes. 

Deriuatiues 

Clear [£ ] 
f [x_ ]=x ( S i n [ x ] ) - 2 

Outf7j= 
2 

x Sin[x] 

infSj-
f ' [ x ] 

OutfSj* 
2 

2 x Cos[x] S in[x] + Sin[x] 

inf9l:= 
D [ f [ x ] , x ] 

Ovtf9j* 
2 

2 x Cos[x) S in[x] + Sin[x] 

P l o t [ { f [ z ] . f ' [ x ] K { z . - P ± . P i K 
Plotstyle->{GrayLevel[0] ,GrayLevel[ . 3J }] 

K> 

Outf!Oj= 
-Graph i c s - ]J 

First clear prior definitions of 
f In this example, define 

;~2, ffàtobe f(x) = xSiiT(x). 

f ' [ x ] computes 

f(x) = -^f(x) = Dx(f(x)). 
dx 

D [ f [ x ] , x ] also 
computes 

f'(x) = ^-f(x) = Dx(f(x)). 
dx 

Use P l o t 
to gropkf(x) (in black) and 
f(x) (in grey) on the same 
OX&S. 
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■ Computing Higher Order Derivatives 

The command D [ f [ x ] , { x , n > ] computes the nth derivative of f [x] with respect to x: 

f(n)(x) = ^ . 
dx11 

Using the same definition of f as above, the following calculations compute the second, third, and fourth derivatives 
off: 

s e c o n d = D [ f [ x ] . { x , 2 } ] 

Outf2j= 
2 

2 x Cos[x] + 4 Cos[x] Sin[x] -

2 
2 x Sin[x] 

inf3j:= 
t h i r d = D [ f [ x ] , { x , 3 > ] 

Outf3j= 
2 

6 Cos[x] - 8 x Cos[x] Sin[x] -

2 
6 Sin[x] 

in[4j:= 
f o u r t h = D [ f [ x ] , { x , 4 } ] 

Out[4j= 
2 

-8 x Cos[xl - 32 Cos[x] Sin[x] + 

2 
8 x Sin[x] 

These higher order derivatives can be graphed together. Recall that any expression in Mathematica can be assigned 
a name. The names p l o t second, p l o t t h i r d , and p l o t fourth are given to the graphs of the second, 
third, and fourth derivatives of the function f(x), respectively. By naming these graphs individually, the Show 
command can be used to plot the three graphs at one time. Notice the relationship of the behavior of the graphs of 
these three derivatives. 

Remember, is the derivative of f^(x), so f®\x) > 0 when f^2\x) is increasing and 

f( \x) < 0 when f( \x) is decreasing. 

AISQ f (4)(x) is the second derivative of é2\x), so f (4)(x) > 0 when f (2)(x) is concave up and 

f( \x) < 0 when f( \x) is concave down . 

s e c o n d = D [ f [ x j , { x . 2 } ] 

d2 

computes f"(x) = —rf(x) 
ax* 

andnamesit s e c o n d . 

t h i r d = D [ f [ x ] , { x , 3 > ] 

fP ) , 
d 3 

computes V J(x) = —~f(x) 
ax6 

andnamesa t h i r d . 

fourth=D[f[x],{x,4}] 

Ml d4 

computes r J(x) = —jf(x) 
dx 

andwxm&sit f o u r t h , 
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Notice how GrayLevel is used to distinguish between the three curves; the option 
D i s p l a y F u n c t i o n - > I d e n t i t y suppresses the resulting graph; and the option 
Disp layFunct ion->$Disp layFunct ion is used in the Show command to display the graphs which 
were suppressed initially with the option D i s p l a y F u n c t i o n - > l d e n t i t y : 

lnf2!j:= 
p l o t s e c o n d = P l o t [ s e c o n d , { x , - P i , P i } , 
P lotSty le ->GrayLeve l [ . 2 ] , 
D i splayFunct i on->Id ent i t y ] 

Outf2U= 
-Graphics-

inf22j:= 
plotthird=Plot[third,{x,-Pi,Pi } , 
Plotstyle->GrayLevel[.4], 
D i splayFunc t i on->Id ent i ty] 

Outf22j= 
-Graphics-

M23J:» 
plotfourth=Plot[f our th,{x,-Pi, Pi }, 
PlotStyle->GrayLevel[. 6], 
D i splayFunc t i on->Id enti ty] 

0utf23j* 
-Graphics-

inf25j:= 
Shov[plotsecond,plotthird,plotfourth, 
D i sp layFunc t i on-> $D i sp layFunc t i on ] 

]J 

204 

■ \ . . 

-10 

-204 

//*><*> 

Outf25j= 
-Graphics-

]\ 

}\ 
;i'''l''Ί "'Ί"'ϊ"Ί"'ί·!·!·$Μ!:«|'^0|WÎ M 

titiiitltUtiàJiàiiilM* ^iàitMàiàiàiâiÉitiàJitiéiàiàl* la 
R2 
Q 

plo t second is thegrcph 
of second 
on the interval [~ti,ti]; 
the graph is not displayed 

p l o t t h i r d 
of t h i r d 
on the interval [-τι,ιι]; 
the grcph is not displayed 

p l o t f o u r t h 
of f our th 
on the interval [~rc,ti] · 
the graph is not displayed 

To display ail three graphs 
simubtaneousbf, use the 
Shov command 
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i Locating Critical Points and Inflection Points 

Since derivatives of functions are expressions, algebraic procedures can be performed on them. Hence, in addition to 
finding the roots of a function, g(x), Mathematica can also be used to locate the critical points and inflection points of 
g(x). 
In order to observe the location of these points, the P lo t command is used to graph g(x), g'(x), and g"(x) 
simultaneously. 

D Example: 

Let g(x) = 2x3-9x2 + 12x. Graph g, g, and g' on the interval [-1,4J. 
all critical points and inflection points. 

Locate 

! □ — = ^ ^ ^ ^ ^ Deriuatiues ZZÏZZl__ 
Ι / Λ / 7 / -

C l e a r [ g ] 
g [ x _ ] = 2 x A 3 - 9 x ~ 2 + 1 2 x 

\Outf7j= 
2 3 

12 x - 9 x + 2 x 

\t*fS/:* 
g ' [ x ] 

\outfej* 
2 

12 - 18 x + 6 x 

\in[9j:= 

g " [ x ] 

\Outf9j= 
-18 + 12 x 

tnf!Oj:= 
P l o t [ { g [ x ] , g ' [ x ] , g " [ x ] K { x , - i , 4 ) , 
P l o t S t y l e - > { G r a y L e v e l [ 0 ] , G r a y L e v e l [ 
G r a y L e v e l [ 0 ] } ] 

'so 
lV 
1CT 

5 
1 | 

7? 
/-if 

^S^Z~~7_s 
Ύ/^Ζ 3 4 

/ 
\outftQj= 

-Graph ic s -

^BBll 
η-

η 

- l -

J 
■η 

ί 
η 

"I"1 

3 1 , 

J 

1 

H 
M 

I First clear any prior definitions 
lofg; then define the function gfc) 
|g(x) = 2x3-9x2+12x. 

g ' [ i ] computes g'(x) = —g(x). 
dx 

Notice the same result would have 
been obtained by the command 
D [ g [ x ] , x ] . 

g ' ' [ Σ ] computes 

g"(x) = —rg(x). The same 
dxJ 

result would have been obtained 
| by the command 

D [ g [ x ] , { x , 2 } ] . 
\We use the Blot commandto 

display the grcphs ofgfa) (in 
black), g'(x) (in gray), andg"(x) 
(in black) on the same axes. 
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Solving each of the equations g(x)=0, g'(x)=0, and g"(x)=0 locates the roots of g, the x-coordinates of the critical 
points of g, and the x-coordinates of the inflection points of g. Since g is a polynomial with degree less than five, 
these three equations can be solved with the Solve command by entering Solve [g [x] = 0 ] , 
Solve [g ' [x] ==0] and So lve [g ' ' [x] ==0]. Be sure to include the double-equals sign between the 
left- and right-hand sides of equations when using the Solve command: 

F a c t o r [ g ' [ x ] l 
factors g'(x) F a c t o r [ g a [ z ] ] 

\Outf!2j= 
6 (-2 + x) ( -1 + x) 

tof/S/ = 
S o l v e [ g [ x ] = = 0 ] 

\outff3f* 
9 + Sq r t [ -15 ] 

{{x -> 0 } , {x -> }, 
4 

9 - S q r t [ - 1 5 ] 
/ γ -Ts. \ \ 
\X -> JJ 

4 

S o l v e [ g ' [ x ] = = 0 ] \Outf?4j* 
{{x -> 2 } , {x -> 1}} 

S o l v e [ g ' ' [ x ] = = 0 ] 

\öutfl5j= 
3 

{{x -> ->} 
1 2 

^jjjjjjjjjjjgjAjMjgjgjjjgggjjjjjjjjjjjjjgjjj*«^ 

Jl 
il 
]| 

f 
]J 
]| 

iÜiiiiiiiiiiiiiiiiiiiiiii^mm 

mm 

M 
M 

S o l v e [ g [ x ] = = 0 ] 
solves the equation g(x)=0. 

S o l v e [ g e [ x ] = = 0 ] 
solves the equation g'(x)=0. 

S o l v e [ g ' " [ x ] = = 0 ] 
solves the equation g"(x)=0. 

We conclude that the critical points of g are (l,g(l)) and (2,g(2)); the inflection point is (3/2, g(3/2)). 

A similar type of problem which can be solved using Mathematica is as follows : 

D Example: 

Locate the values of x for which the line tangent to the graph 

p(x) = - x 6 - 2 x 5 x4 + 60x3-150x2-180x-25 is horizontal. 
2 2 
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Notice that the function p(x) is a polynomial of degree 6, so p'(x) is a polynomial of degree 5. Therefore, when 
determining the values of x such that p'(x) = 0, the command NRoots must be used instead of Solve. (Recall 
that Solve finds exact solutions of polynomial equations of degree four or less.) Some of the roots of p'(x) are 
complex numbers. These values are ignored since we are only concerned with real numbers. 

Deriuatiues 

p[x_]=xA6 /2-2xA5-25 xA4/2+60xA3-
150xA2-i80x-25 

-,k> 

Outf42j= 

-25 

eeWMWWHWWWWWWHWUWnnftftAXiAAXinhJ 

2 3 
180 x - 150 x + 60 x 

25 x 

2 

'5 X 
2 x + — 

2 

First define ρ(κ) 

Notice thatp(x) is defined using two 
lines and Mathematica accepts the 
definition. In general, Mathematica 
will "read" each line until the command 
makes sense. Consequently, since the first 
line does not define a function (because of the 
minus sign at the end), Mathematica reads 
the second line and the command makes sense. 

WtHMWiWKf»«;^»« 

tnf45j:= 
P l o t [ { p [ x ] , p ' [ x ] > , { x , - 6 , 6 } , 
P l o t S t y l e - > { G r a y L e v e l [ 0 ] , G r a y L e v e l [ . 3 ] } ] 

fP'OO 

t 

* « 
2500 

-5000f 

-7500 

- lOOOOf 

Outf45j= 
-Graph ic s -

!nf46j:= 
N P o o t s [ p ' [ x ] = = 0 , x ] 

Outf46j= 
x == -4.44315 | | x == -0.459096 | | 

]J 

x == 1.55293 - 1.82277 I 

x == 1.55293 + 1.82277 I 

x == 5.12971 

II 

Graphpty) (in black) and 
p '(x) (in gray) on the same 
axes. 

Since ρ(κ) is a polynomial, 
ρ'(κ) is a polynomial Hence, 
to approyatnate the sokaions 
to the equation p'(x)=0f use 
the command 
N I ? o o t 3 [ p a [ x ] = = 0 , x ] . 

The values of x for which the line 
tangent to the graph off at the point 
(xj(*r)) is horizontal are {approximately) 
-4.44315, -.459096, and 5.1297L 

1SStSSβL·mmJÊËÊmËÊÊL·iiiii!ilililL·L·iiiàiL·L·iiL·Ά 

K> 
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Even though p ' ' [x] is a polynomial of degree 4, the inflection points are found using the command NRoots. 
(These points can also be determined with the Solve command.) 

o If you are using Version 2.0, NSolve can also be used to approximate the solutions of the polynomial equation 
pM(x)=0 by entering NSolve [p ' * [x] ==0, x ] . 

Deriuatiues 

inf47j:= 
M K o o t s [ p a ' [ x l = = 0 , x ] 

Outf47j= 

x == -3 .25388 | | 

x == 0.969666 - 0.776932 I || 

x == 0.969666 + 0.776932 I || 

x == 3.98122 

inf50/:= 
F a c t o r [ p ' ' ' [ x ] ] 

Outf5Öj= 
60 (-3 + x) ( -1 + x) (2 + x) 

ggfp:|gj 

\ù\ Since p"(x) is also a 
polynomial, the command 

N R o o t s [ p " ' [ x ] = = 0 , x ] 
solves the equationρ"(κ)=0. 

When using Matkematica to solve equations, 
don't forget to include the "double-equals' 
sign between the left-hand side and the 
right-hand side of the equation. 

F a c t o r [ p e ' ' [ x ] l 
factors p'"(x), 

-M 
Up to this point in our example problems, we have only considered polynomial functions. This next example involves 
a function which is not a polynomial. Hence, the FindRoot command, which depends on an initial guess, must 
be employed. 
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D Example: 

Let w(x) = 2Sin2(2x) + - x C o s 2 ( - on (Ο,π). Locate the values of x for which 

the line tangent to the graph of w at the point (w,w(x)) is horizontal. 

Deriuatiues 

C l e a r [ v ] 
w [ x _ J = 2 ( S i n [ 2 x ] ) ~ 2 + 5 / 2 x ( C o s [ x / 2 ] ) ~ 2 

OutfU= 
x 2 

5 x C o s [ - ] 
2 2 

+ 2 Sin[2 x] 
2 

K> 

P l o t [ v [ x ] Tangent lines are 
horizontal at these 
three points. 

Outf5j= 
-Graph ics -

tnfôj:-
PlotCv'CxKix^O^iJ, 
PlotStyle->GrayLevel[.3]] 

6 | /^\ ] Use these x-values as initial 

}\ 

approximations in FindRoot. 

Out[6j= 
-Graph ic s -

mw j f—^îT-î;!;!'!;!;!'!'!·!·!«;·!'!'!·!'!;!:?'!·!·!·!·!·!·!»!'!·!·!»!·!·!'!';·!·!·! J y I 

First clear prior definitions ofw 
and define w. 

Ka 

After defining w, graph w 
on the interval [ο,τι]. Notice 
thai w has three points for 
which the tangent line is 
tvorizortZaL 

The x-coordinates of the points 
on the graph of w for which the 
tangent Une is horizontal are 
the values of x for which 
w'(x) is zero. Since the equation 
w (x) is neither an equation 
Mathematica can sohe exactly 
nor apolynomial, to approximate 
the sobjtions to the equation 
w'(x)=Of we will vise 

F i n d R o o t . 
In order to use F i n d R o o t 
we must have initial approximations 
of the solutions to w'(x)=0. We obtain 
initial approximations by grcphing 
w'(x) 
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After using the graph of w'(x) to find the initial guesses, the x-values such that w'(x) = 0 can be approximated 
using FindRoot. These three calculations are given below using initial guesses x=.863, x=1.63, x=2.25, the 
values where w'(x) appears to cross the x-axis. 

Deriuatiues 
inf7/:= 

F i n d f i o o t [ v a [ x ] = = 0 , { x , . 8 6 3 } ] 

Outf?J= 
{x -> 0.864194} 

F i n d R o o t [ v ' [ x ] = = 0 * { x , l . 6 3 } ] 

OutfS/= 
{x -> 1.62391} 

F i n d R o o t [ w , [ x ] = = 0 , { x . 2 2 5 } J 

Outf9j= 
{x -> 2.24489} 

\\ ■ i · i 

K> 

B W L J - I M |ΐ ; ΐ : ΐ ; ΐ ; : ΐ ; ΐ ΐ : ΐΨιΨιΨΙΨι:ιΦι·|:Ϊ:ΐ:ι;ί:!:;:Ϊ:Ι:ί:ι:Ι:ι:Ι:ι:Ι:ι;ι:ι1 M * -H 

m 

In this case, we take ow "initialguesses' 

bi F i n d R o o t 

to be .863,1.63, andZ25. 
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■ Application: Graphing Functions and Tangent Lines 

An equation of the line with slope m that passes through the point (a,b) is given by the relationship y-b=m(x-a). To 
write a function that describes the line with slope m that passes through the point note that y-b=m(x-a) is equivalent 
to the statement y=m(x-a)+b. 

The following example illustrates how the tangent line to the graph of a function can be determined and plotted 
simultaneously with the function. 

D Example: 

Let h(x) = Sin(6x) + 2Cos(2x). Graph h, the line tangent to the graph of h when 
π 2π 

x = —, and the line tangent to the graph of h when x = — on the interval [Ο,π]. 

Deriuatiues 

C l e a r [ h , y i , y 2 ] 
h [ x _ ] = S i n [ 6 x ] + 2 C o s [ 2 x ] 

Outf7j= 
2 Cos[2 x] + Sin[6 x] 

tnfS/:* 

Outf8j= 
6 Cos[6 x] - 4 Sin[2 x] 

M9J:-
h ' [ P i / 3 ] 

Outf9l= 
6 - 2 Sqr t [3 ] 

h [ P i / 3 ] 

OutfitJ= 
-1 

h ' [ 2 P Î / 3 ] 

Outf!2j= 
6 + 2 Sq r t [3 ] 

h [ 2 P i / 3 ] 

Outf!3j= 
- 1 

ΊΚ> 

]j 

Begin by clearing aäprior 
definitions ofhf yl, andyZ 
Ttt&n define 
h(x) = Sin(6x) + 2Cos(2x). 

h" [ x ] calculates A'(x) 

G) h' [ P i / 3 ] computes^1 

which is the slope of the line 
tangent to the graph of h at the 

h [ P i / 3 ] computes h — I 

(τ) h , [ 2 P i / 3 ] calculates Ji1 

which is the slope of the line 
tatigent to the groph of h at the 

. (2n (2n\\ 

h [ 2 P i / 3 J cakulates hi (T) 
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Consequently, a linear funaion tangent to the graph of h at the point 

I—,—11 is given by y 1 ( x ) = ( 6 - 2 ^ ) [ x — - j - 1 and a linear function tangent to the graph of 

h at the point — , - 1 is given by y2(x) = (6+2^3) x - ~ l-L 

These are defined with Mathematica as follows: 

y l [ x _ ] = ( 6 - 2 S q r t [ 3 ] ) ( x - P i / 3 ) + - l 

Outf!5j= 
- P i 

- 1 + (6 - 2 S q r t [ 3 ] ) ( — + x) 
3 

lnf!6j:= 
Y 2 [ x _ ] = h 1 [ 2 P i / 3 ] ( x - 2 P i / 3 ) + l l [ 2 P i / 3 ] 

OutfiôJ= 
-2 P i 

- 1 + (6 + 2 S q r t [ 3 ] ) ( + x) 
3 

| · I · | 

I 

muj ji Γ™^ΤΤ^Γ:!:ΐ;!:!;!;!:!:!:!:!:!;!;!:!;!»!:!·!;!:!;!;!;!:!:!:!:!:!:!:!;!:!:!:!;!:!:!;!:!:!;!:!:!:!| Λ I 
m 
a 

The graph o/ Y* [ x 1 is a line 
tangent to the grcph of h at 

the point KMi)} 
The graph ojY2[xl isaline 
tangent to the graph of h at the 

. (2n (2n)) 
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The two lines y l [x] and y2 [x] are plotted with the function h [x] with the single command below. Note 
that the option Aspec tRa t io -> 1 is used in the P l o t command. If this option is not used with this 
particular function, then the graph is difficult to read (and the lineas do not appear tangent to the curve). 

Deriuatiues 

P l o t [ { h [ x ] , y i [ x K y 2 [ x ] } . { x , 0 , P i > , 
A s p e c t K a t i o - > l ] 

y2(x) 

TrS Use P l o t to display the graphs 

of h [ x ] # y l [ i ] . l 2 [ x ] 
sbnukaneously. 

If the option 

AspectSat±o->l 
had not been included, the 
graph of h would have been 
difficult to see. 

Outf!8/= 
-Graph ic s -

When using P l o t to display 
the graphs of several functions 
on the same axes, don't 
forget to include the functions 

in "curly brackets" ( { } ) 
and include the entire P l o t 

1 in square brackets. 

I w •JJNVJJVJ^JJJJNS!̂ 
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■ Application: Maxima and Minima 

Mathematica can be used to solve maximization/minimization problems. An example of this type of problem is as 
follows : 

D Example: 

A farmer has 100 feet of fencing to construct five dog kennels by first constructing a fence around a rectangular 
region, and then dividing that region into five smaller regions by placing four fences parallel to one of the sides. 
What dimensions will maximize the total area? 

First, let y denote the length across the top and bottom of the reaangular region and let x denote the vertical length. 
Then, since 100 feet of fencing are used, a relationship between x and y is given by the equation: 2y + 6x = 100. 
Solving this equation for y, we obtain y = 50 - 3x 
which is shown in the diagram below: 

100-6X 
=50-3x 

X X I X I X I X 

100-6x 
=50-3x 

107 

X 

2 

2 



Chapter 3 Calculus 

Since the area of a rectangle is A = x y, the function to be maximized is defined by entering 
area [x_]»x (50-3x) . The value of x which maximizes the area is found by finding the critical value and 
observing"the graph of area [x ] . 

Maxima/Minima 

area[x_ l=x (50-3x) 

OvtfU= 
(50 - 3 x) x 

tnfïj:« 
a r e a ' [ x ] 

OutfZj* 
50 - 6 x 

S o l v e [ a r e a ' [ x ] = = 0 ] 

0utf3j= 
25 

{{x -> - > > 
3 

P l o t [ a r e a [ x ] , { x , 4 , 1 2 } ] 

8 10 12 

OutfSj* 
-Graphics-

^gtffiffi^/gfff/g^ml̂ JÊÊIItJ^^j^^ 

m 
a 

Definz area as a function ofx 

Compute the derivative. 

Find tlve values of x for which the 
derivative is zero. 

Verify that the value of x for which 
the derivative is zero results bet 
maximum area 
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The next problem is slightly different. 

D Example: 

A farmer wants to construct five dog kennels of total area 500 square feet by first constructing a fence around a 
rectangular region, and then dividing that region into five smaller regions by placing four fences parallel to one of 
the sides. What dimensions will minimize the fencing used? 

In this case, the total amount of fencing needed to construct the kennels is to be minimized using the constraint that 
the total area is 500 square feet. (In the first problem, we maximized area using a constraint on the perimeter.) 
Again, let y = length across the top and bottom of the rectangular region. Using the fact that area = 500, 
wehavexy = 500 or y = 500/x: 

500 
x 

X X I X I X I X 

500 

The perimeter of the rectangular region equals 2 x+2 y. Substituting for y, we define the function perimeter 
by entering per imeter [x_] =6x+2 (500/x) which is to be minimized. The steps involved in solving 
this problem are shown below. (Note that only positive values of x are considered since x represents length.) 
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ID Mamma/Minima m ^ s n 
ynfpf:-

p e r i m e t e r [ x _ J = 6 x + 2 5 0 0 / x 

\Outf9j= 
1000 

+ 6 x 
X 

lnf!Oj:= 
p e r i m e t e r ' [ x ] 

\outfioj* 
1000 

6 
2 

X 

/ * / / / / -
v a l u e s = S o l v e [ p e r i m e t e r ' [ x ] = = 0 ] 

\öutf!!j= 

{{x -> K 
Sqrt[3] 

-10 Sqrt[5] 
{x -> }} 

Sqrt[3] 

inf!2j:= 
v a l u e s / / H 

\Outft2j= 
{{x -> 12 .9099} , {x -> -12.9099}} 

inft5j:= 
P l o t [ p e r i m e t e r [ x ] , { x , 5 , 2 0 } ] 

180 

175 

170 

165 

160 

\ 

\ 

\ / 
\ / v ^y 

8 10 12 14 16 18 20 

\outf!5j= 
-Graphics-

Sail 
\ 
"Ά 

JJ 

J 
■^ 

J. 

I 
■ =» 

I 
1 
I 

1 
11Ι1ΙΜί11ίΖΖΓΕ'ΙΚ3| Ιΐ!!Ϊι11ιΪΙ1ΙΙ!ΙΙΪΙΙΙΙΙΙΙΙΙΙ|1ΙΚ 

F4 

piijlj] 

I I 

63 
M 

Define perimeter as a function o/x> 

Compute the derivative. 

Find the values of κ for which the 
derivative is zero. 
Notice that the solution to the 
problem must be positive. 

A numerical approximation of 
the solution is 1Z9099. 

Verify that perimeter is a minimum 

when x = — ^ - s 12.9099. 
V3 
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Our final example illustrates Mathematical ability to symbolically manipulate algebraic expressions. 

D Example: 

Let f(x)=mx+b and (xO,yO) be any point. Find the value of x for which the distance from (xO,yO) to (x,f(x)) is a 
minimum. 

P(xO,?0) f(x)=mx+b The distance from the point (xO ,y0) 
to (x,f(x)) is given by the distance 
formula; 
d = ^(xO-x)2+(yO-f(x))2 

In order to determine the value of x which minimizes the distance between (xö,yO) and (x, f(x)), a function which 
determines this distance must first be defined. This is accomplished by defining the function d i s tance by 
entering d i s t a n c e [ {a_ , b _ } , {c_ , d_} ] which gives the distance between any two points (a,b) and 
(c,d). Then the particular distance function for this problem is obtained by substituting the appropriate points 
(xO,yO) and (x,f(x)) into d i s tance . The value of x that minimizes this function is obtained in the usual manner. 
(Notice how naming the distance function express ion simplifies the solution of the problem.) 
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Mamma/Minima IE! 

Clear[distance,f] 
distance[ {a_„b_K (c_,d_}l= 
Sqrt[(a-c)A2+(b-d)~2] 

Outf58j* 
2 2 

S q r t [ ( a - c) + (b - d) ] 

f [ x _ ] = n x+b 

Outf39f* 

\Q\ 
distance[{a,b},{c,d}] 
is a function that computes the 
distance between two points (a,b) 

Ijjjjjj 1 and (c,d) 
ΙΤϊΤΪΤιΤΓΤιΤιΤιΤιΤιΤιΤιΤιΤιΤιΤιΤιΤιΤΛΊηηίΕ«! 

A non-vertical line can always be 
written in the form f(x)=mx+b where 
m i s the slope and the point (0,b) is the 
y-intercept. 

b + m x 
To denote ~m times x' a space must be 
included between m and x. 

e x p r e s s i o n = d i s t a n c e [ { x O , y O 

Outf40j= 
2 

S q r t [ ( - x + xO) + 

2 
( - (b + m x) + yO) ] 

e q u a t i o n « D [ e x p r e s s i o n , x J 

Out/4ff« 
(-2 (-X + xO) -

2 m ( - (b + m x) + yO)) / 

(2 S q r t [ ( - x + xO) + 

<-<b + m x) + yO) ] ) 

tnf42j:= 
S o l v e [ e q u a t i o n = = 0 , x ] 

Üutf42j= 
b m - xO - m yO 

{ { χ _> . ( ) } } 

2 
1 + m 

} , { x , £ [ x ] } ] J 

f [ x ] is the line m x+b. 

e x p r e s s i o n is the distance 
between the points (xtfj>0) and 

Since e x p r e s s i o n contains several 
unknowns, the ~x~ must be included to 
indicate that the differentiation is to 
be calculated with respect to x. 

e qua t i on is the derivative 
Ü] of e x p r e s s i o n with 

respect to κ 

WitititifiTiTiriTiTiTiTiTiTiTiTiTffÎTiTWTÏIÏtïlW 

Since e q u a t i o n has more than one 
variable, the "x" must be included to 
indicate that the desired solution is 
forx. 

— m «*(4ft4J*»K««**KttK*;*e44*WNf 

S1QI |wwwwpppwwwww<a a 

S o l v e [ e q u a t i o n = = 0 , x ] 
Ijjjjjjj finds the values ofx (with respect 

to b, rnt YÛ, and yO) for which 
e q u a t i o n is zero. 

K2 
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i Application 

As was previously stated, Mathematica can define many different types of functions. The following example is a 
function plotderiv which is a function that depends on a function and an interval. When given a function, f(x), 
and an interval, {a,b}, p lotderiv simultaneously plots f(x) with GrayLevel [0] and f(x) with 
GrayLevel [. 3 ] . (Remember, GrayLevel [0] indicates the darker curve.) Note that the labels f, f, f, 
and g' on the plots below were added later. 

Deriuatiues 
!nft5j:= 

p l o t d e r i v i f ^ {a_ ,b_} l : = 
P l o t [ { £ [ x ] , f [ x ] } . { x . a , b } . 
P l o t S t y l e - > 
{GrayLevel[0] ,GrayLevel[ . 3 ] } ] 

KS 

Outf!8j= 
-Graphics-

p l o tder i v [ g , { - 1 , 1 } J g 

0.8f 
\ 0.6f 

\ 0.4 
\.2 

-0y 

0utf!9j= 
-Graphics-

-0.2f 

-0.4f 

0.5 

Kä 

p l o t d e r i v is defined to be a 
function that graphs a given function 
f and its derivative fonan interval 
Ml 

To illustrate the function 
we use two elementary examples 
f(x) = x2 and g(x)=x3. 

p l o t d e r i v [ f . { - i # l ) l 
dkplays the graph off and f on 
the interval [-1,1] 

plotderiv[g,{-l.i}] 
displays the grcph of g and g' on 
the interval [-1,1]. 
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H 3.3 Implicit Differentiation 
■ Computing Derivatives of Implicit Functions 

If equation is an equation with variables x and y, Mathematica computes the implicit derivative of 
equat ion with the command Dt [equat ion, x] where equat ion is differentiated with respect to the 
variable x. 

The expression Dt [y, x] encountered when using implicit differentiation represents the derivative of y with 
respect to x, dy/dx . (Hence, Dt [x, y] represents dx/dy.) 

The built-in command Dt is versatile. Although here Dt is used to perform implicit differentiation, 

, , . d ( exp re s s ion ) 
Dt [express ion , v a r i a b l e ] computes the total derivative: —̂  -; and 

dvariable 

Dt[ exprès s i on] computes the total differential d(expression). 

The following examples demonstrate the use of the implicit differentiation command, Dt [equation, x] and 
show how this command can be used with Solve to obtain the desired derivative in a single command. 
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D Example: 

Find - ^ for: (A) x3 + y 3 = l ; (B) Cos(x2-y2) = yCos(x); and (C) 3y4 + 4x-x2Sin(y)-4 = 0. 
dx ' 

ImplicitDifferentiation 

D t [ y , x ] represents dy 
dx D t [ x A 3 + y A 3 = = l , x ] 

Outf4tJ= 
2 2 

3 x + 3 y Dt [y , x] == 0 

iiif42j:= 
S o l v e [ D t [ x ~ 3 + y ~ 3 = = l , x ] „ D t [ y . x ] ] 

Outf4&= 
2 

x 
{{Dt[y, x] -> - < - ) } } 

inf45j:= 
S o l v e [ D t [ C o s [ x A 2 - y A 2 ] = = y C o s [ x ] , x ] , D t [ y , x ] ] 

i m 
S o l v e [ D t [ x A 3 + y A 3 = = l , x ] . D t [ y . x ] l 

dy „ 3 3 
coYnpiites — for x + y =1. 

fffitftyOOIOOOIOOCIOOOIOOOIOIIIOOIIIIIIIIIIIOIIOOOIBOOIOIOIOOIIOOOl 

0utf43j= 
{{Dt[y, x] -> 

2 2 
y S in[x] - 2 x Sin[x - y ] 

2 2 
-Cos[x] + 2 y Sin[x - y ] 

computes 

— for Cos(x2-y2) = yCos(x). 
dx 

} 
tn/44/:* 

S o l v e [ D t [ 3 y A 4 + 4 x - x A 2 S i n [ y ] - 4 = = 0 , x ] , D t [ y , x ] ] 

Outf44/* 
{{Dt[y, x] -> 

4 - 2 x S in[y] 
. ( ) } ) 

3 2 
12 y - x Cos[y] 

■n-Kbl l l l l i l l l l 

computes 

— for 3y4+4x-x2Sin(y)-4 = 0. 

m $m 
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I Other Methods to Compute Derivatives of Implicit Functions 

The same results as above can be obtained if y is declared to be a function of x. Hence instead of entering 

the equation x3 + y3 = l as x A 3 + y A 3 = 1 , enter it as xA3 + y[x] A3 = 1 . 
y is a 
function 
of x. 

Otherlmplicit 

InfttJ:* 
D[x~3*y[x]~3=«l .x ] 

Outfit/* 
2 2 

3 x + 3 y[xl y' [x) — 0 
tnft2j:* 

S o l v e [ D [ x ~ 3 + Y [ x ] ~ 3 « = l . x ] . y B [ x ] ] 

OutftZ/* 
2 

x 
U Y ' [ X ) -> - ( ) } } 

2 
Y[x) 

tnftS/:* 
Solve[ 

D[ Cost x~2-y[ x 1A21 ==*y[ x ] C o s [ z ] # x ] 

Qutft3j= 
{ { y ' [ x ] -> 

2 2 
-2 x Sin[x - y[x] ] + Sin[x] y[x] 

2 2 
-Cos[xl + 2 Sin[x - y [ x ] ] y [ x ] 

}} 

. T , L ^ V | · ί||Λ|| 

\δ\ 

■U 

D [ x A 3 + y [ x ] A 3 = = i . x ] 
compiles the derivative of 
th& equation 

x 3 +(y«) 3 = i 
with respect to x> We assume 
y is a function ofκ 

solves the equation resulting from the 
command 
D[x A 3+y[x]~3==l ,x ] 

>:t>M-:-»·».»*·:*»} 

solves the equation resultvngfrom the 
command 
D[C03[x A 2-y[x] A 2]== 

y [ i ] C o 3 [ i ] . i ] 

ßä 
a 
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• Graphing Implicit Functions with Version 2.0 

The Version 2.0 package i m p l i c i t P l o t .m contains the command I z n p l i c i t P l o t which can be used to 
graph some equations; I m p l i c i t P l o t .m is not included in earlier versions of Mathematica. 
I m p l i c i t P l o t is discussed in more detail in Chapter 9. 

The most basic form of the syntax for the command I m p l i c i t P l o t is 
I m p l i c i t P l o t [ equat ion , {x, xmin, xmax} ] . The set of y-values displayed can also be specified by 
entering the command in the form 
I m p l c i t P l o t [ e q u a t i o n , {x , xmin, xmax} , {y , ymin, ymax} ] . Be sure to always include the 
double-equals sign between the right- and left-hand side of equations. 

O Example: 

Use I m p l i c i t P l o t to graph the equation x3 + y3 = 1. 

Uersion2.0lmplicitFunctions 

«ImplicitPlot. m 

fnf?/:-
i p o n e = I m p l i c i t P l o t [ x ~ 3 + y ~ 3 — i < 

( x . - 2 . 2 ) 1 

The package I m p l i c i t P l o t . m 
is contained in the folder G r a p h i c s 
and contains tfce command 
I m p l i c i t P l o t . 

-2 -1 

2 

1 

-1 

-2 

Ί 

3 2 

Outf7j= 
-Graphics -

(ΜΒΜΒΜΜΜΜΝΜΜΜΜΜΜΜΜΜΜ 

^ImplicitPlot 
I can be used to grcpk 
j equations of two variables 
j that can be solved in terms 
1 ofeithervariable. 
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The command i x n p l i c i t P l o t works best with equations that are (easily) solvable. Notice that 

I m p l i c i t P l o t cannot be used to graph the equation Cos(x2-y2) = yCos(x): 

M8J:* 
ip tvo=Impl ic i tP lo t [Cos[x A 2-y A 2]==Y C o s [ i ] 

{ x . - P i . P i } ] 

Solve: :ifun: 
Warning: Inverse functions are being used 
by Solve, so some solutions may not be 
found. 

Solve: :ifun: 
Warning: Inverse functions are being used 
by Solve, so some solutions may not be 
found. 

Solve : :tdep: 
The equations appear to involve 

transcendental functions of the 
variables in an essentially 
non-algebraic way. 

ReplaceAll::reps: 
{Solve[l. y + « 1 » == 0, y]} 
is neither a list of replacement rules 
nor a valid dispatch table, and so 
cannot be used for replacing. 

Solve: :ifun: 
Warning: Inverse functions are being used 
by Solve, so some solutions may not be 
found. 

General : : stop : 
Further output of Solve::ifun 
will be suppressed during this 

3|ιοο%^||Φ| pli la 

Since Mathematical 
is unable to solve 
the equation 

Cosfx2-y2) = yCos(x) 

for either* or y t 
the command 
I m p l i c i t P l o t 
cannot be used to 
generate a graph 
of this equation, 

Instead a different approach is used taking advantage of the built-in function ContourPlot . The contour graphs 
shown here were created with the ContourPlo t command as it is in Version 2.0. The Version 2.0 
ContourP lo t command is substantially different from earlier versions of Con tourP lo t which are 
discussed later. 
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To use ContourtPlot to graph the equation Cos(x2-y2] = yCos(x), we begin by noticing 

that graphing the equation Cos(x2-y2) = yCos(x) is equivalent to 

defining f(x,y) = Cos(x - y J-yCos(x) and graphing f(x,y) = 0. 

ContourPlot [ f [ x , y ] , { x , xmin, xmax}, {y, ymin,ymax} ] graphs a set of level curves of the 
function f [x, y] on the rectangle [xmin,max] x [ymin,ymax]: 

Uersion2.0lmplicitFunctions 

C l e a r [ f ] 
f [ x _ , y _ ] = C o s [ x ~ 2 - y ~ 2 ] - y Cos[x] 

OutfZf* 

- ( y Cos[x]) + Cos[x2 - y2] 

cpone=ContourPlot[ £ [ x , yJ , 
{ x , - P i , P i } . { y , - 3 / 2 P i , 3 / 2 P i } ] 

22 
After charing all prior definition off 
define ffcy) to be 

x2-y2)-yCos(x). 

4 

2 

0 

- 2 

-4 

iÜ)̂ 4iKy loon«»! ! ! 

*jinr^ofilHlilitll(Nllii 

5ΪΠΧ::χ;:χ;;χΠΐοοΜ Mx::x::x::xyifx^ra 
SKliiililiüxOS^K 
CT»!!?i!!üü3)QgH 
α&χκχηχΙί&ΟαΐΜ 
$H:x::x::x::xV9xv«$ 

H S^mcbÜDöcx: J 

BHH 

The command C o n t o u r P l o t 
can be used to grcph the 
level curves of ffry} In this 
case, C o n t o u r P l o t 
graphs the level cwves offfyy) 
on the rectangle 
[-τι,π]* [-3/2 π, 3/2 n]/ 

ttttMK-K-K««««« 

- 3 - 2 - 1 0 1 2 3 
Outf3j= 

-C ont ourGr aph i c s -
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Chapter 3 Calculus 

ContourFlot has many available options. For example, Mathematica can apply a smoothing algorithm to each 
contour which results in a smoother graph with the option ContourSmoothing->Automatic ; the option 
ContourShading->False specifies that Mathematica not shade the resulting graph: 

Inf4j:* 
cptwo=ContourPlot[f[x,y]m 

{x.-Pi.Pi},{y,-3/2Pi,3/2Pi}. 
Contourshading->FaIse„ 
ContourSmoothing->Automatic] 

-2K 

- 3 - 2 - 1 0 1 2 3 

U(/t/4/* 
-C ont ourGraphi c s -

iÎÏÏÎTiffll.. 

I In this cesse, the option 
' ContourShading->False 
I instructs Mathematica to 
j not shade the final graph; 
| the option 
|ContourSmoothing-> 

Automatic 
\ instructs Mathematica 
! to epply a smoothing 
| algorithm to each contour. 
17?i£ result is a graph 
\ somewhat smoother than 
i the previous. 

i\ 
In addition, the actual contour values or the number of contours to be graphed can be specified. The option 
Contours->n specifies that Mathematica draw n evenly-spaced level curves (the default value is 10). The 
option Contours ->{va i l , v a l 2 , . . . , va in} specifies that Mathematica graph level curves 
corresponding to v a i l , va l2 , . . . , v a i n . 
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Chapter 3 Calculus 

Since the graph of f(x,y) = 0 corresponds to a level curve of f(x,y) for the value 0, 
the desired graph is obtained as follows: 

infSj-
cp t hre e=Cont ourP1o t [ 

{ x , - 2 P i , 2 P i } . { y , - 3 P i , 3 P i ) . 
Cont ours-> { 0 } m 
P l o t P o i n t s - > 3 0 , 
C ont our Shad ing->Fa1s e 4 

eililiiisjlio 

The optionC on tour s ->{0} 
specifies that Matkematica attempt 
to grcph the contour corresponding to 
the equation ffc^^U. 

illâflâlllMWIIMlIMMMMMMMMMMMMMBWflB 
BheuevMBvtxww 

C ont our Smo o thing -> Au t oma tic] 

- 6 - 4 - 2 0 2 4 6 

Outf5j= 
-C ont ourGraphi c s -

Th& option 
P l o t P o i n t s - > 3 0 
specifies that Mathernatica 
use 30 sample points (the 
default is 15 sample points) 
vuwGramemmfgjn 
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In the same manner as above; the graph of the equation 3y4 + 4x-x2Sin(y)-4 = 0 corresponds 

to a contour graph of 3y + 4x-x%in(y)-4 for the contour with value 0. 

|/n the same manner as 
labove, Matkematka is 
hmable to solve the equation 
| 3 y 4 + 4 x - x 2 S i n ( y ) - 4 « 0 
I in terms o/x so the command 
§ImplicitPlot 
1 cannot be used to graph be. 
I Nevertheless, a reasonable 
Igrcph is obtained using 
gContourPlot 
I with the option 
§ C o n t o u r s - > { 0 } . 

Λ / / / " 
cpfour=ContourPlot[3yA4+4x-xA2Sin[yJ-4, 

{x.-20.20},{y.-i0,10>, 
Contours->{0 >, 
PlotPoints->30, 
C ont our Shad ing->Fa1s e, 
ContourSmoothing->Automatic] 

-10L 
-20 -10 0 

OutftJ= 
-C ont ourGraphi c s -

10 20 

wyMffwwwiwwiwwiwwiwwmw 
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Chapter 3 Calculus 

H 3.4 Integral Calculus 
■ Computing Definite and Indefinite Integrals 

D In order to compute definite integrals, Version 1.2 (or earlier) of Mathematica must load the package 
I n t e g r a l T a b l e s .m. The package I n t e g r a l T a b l e s .m is contained in the folder StartUp which is 
contained in the folder Packages in the Mathematica f folder. The easiest way to load the package 
Integra lTables .m is to Enter the command 
« I n t e g r a l T a b l e s .m. If you are using Version 2.0, this procedure is not applicable since Version 2.0 
automatically loads the package In tegra lTab le s .m. 

o Version 2.0 automatically loads the package IntegralTables .m; hence, the above procedure is not 
pertinent to Version 2.0 users. 

D Note Regarding Frequent Computations of Definite Integrals 

This note is only applicable if you are NOT using Version 2.0. 

If you are going to be computing definite integrals frequently you will want to have Mathematica automatically load 
up In tegra lTables . m when the Mathematica kernel is started. To do this, proceed as follows. 

1) Go to Edit and select Settings; 

2) Select Startup; 

3) 

Click inside the box beside 
Integration Rules. Boues with 
xs in them indicate which 
packages are automatically 
boded when the kernel is 
started 

Click in this box ■ 

Startup Settings 

Stack size (number of KBytes) 

Current: 256 Requested: 

fit startup load these packages: 
E3 Messages (msg.m) §8M 
13 Function information (info.m) 96F 
[x] Integration rules (IntegralTables.m) 8§l 
□ Elliptic functions (Elliptic.m) 96E 
□ Series functions (Series.m) 96S 

□ Automatically start local kernel 96R 

[[ OK ]] [ Apply ] [Defaults] [ Help ] fcâncëï] 

Each of the following examples illustrate typical commands used to compute indefinite integrals. 

The Mathematica command to compute [ f(x)dx is I n t e g r a t e [f [x],x]. 

The command I n t e g r a t e [ e x p r e s s i o n , v a r i a b l e ] instructs Mathematica to integrate 
e x p r e s s i o n with respect to v a r i a b l e . 
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Chapter 3 Calculus 

D Example: 

Use Mathematica to compute[x2(l-x3J dx, JexCos(x)dx, J—— dx, 

and JSin(2x)Cos2(x)dx. 

Integration 
tnftl-

« I n t e g r a l T a b l e s . m 

OutfU= 
In tegra tor ' 

infôj-
In tegra te [x~2 ( i - x A 3 ) A 4 , x ] 

OutfôJ= 
3 5 

- d - x ) 

15 

Integrate [Exp[x] C o s [ x ] , x] 

Outf?J= 
X X 

E Cos[x] E Sin[x] 

2 2 

KS 
Be sure to load In tegra lTables .m 

before attempting to compute 

definite or indefinite integrate. 

Integrate[xA2 (l-x~3)~4,x] 
computes the indefinite integral 

In tegra te [Exp[x ] C o s [ i ] , x] 
computes tfve indefinite integral 
JexCos(x)dx. 
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.Ln(x) 

x 
natural logarithm function Ln(x): 

f Ln(x) To compute J—3—dx, remember that the Mathematica function Log [x] denotes the 

UnfSj:» 
I n t e g r a t e [ L o g [ x J / x A 3 , x ] 

\OutfSj* 
- 1 Log[x] 

2 2 
4 x 2 x 

ynfpf:* 
I n t e g r a t e [ S i n [ 2 x l ( C o s [ x ] ) A 2 i 

\Outf9j= 
-Cos[2 x] Cos[4 x] 

4 16 

}} 
"=1 

Jl 
■η 

M m 

I n t e g r a t e [ L o g [ x ] / x ~ 3 , x ] 
computes the indefinite integral 
r Ln(x) 
J x 3 -dx. 

I n t e g r a t e [ S i n [ 2 x j ( C o s [ x ] ) A 2 , 3 
compiles the indefinite integral 

Jsin(2x)Cos2(x)dx. 

Mathematica computes the definite integral I f(x)dx with the command Integrate [£[x],{x,a,b}]. 
•a 

In general, the command 
Integrate[expression,{variable,lower limit,upper limit}] 
integrates e x p r e s s i o n with respect to v a r i a b l e and evaluates from lower l i m i t to upper 
l i m i t . 
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D Example: 

Use Mathematica to compute J*Sin(x)dx, J ^ 4 - x 2 dx, J x3e4xdx, and J^e2xSin2(2x)dx 

Integration 

{ χ , Ο , Ρ Ι } ] J 

1 
e [ S q r t [ 4 - x ~ 2 ] , { x . 0 , 2 > ] J 

1 
[ E x p [ 4 x ] x ~ 3 , { x , i , 2 } ] J 

I n t e g r a t e [ S i n [ x ] 

Outf2j= 
2 

I n t é g r â t 

Outf4j= 
P i 

I n t e g r a t e 

Outf5/= 
4 8 

- 1 7 E 181 E 

128 128 

infoj-
I n t e g r a t e [ E x p [ 2 x ] ( S i n [ 2 x ] ) A 2 , 
{ x , - P i , 2 P i } ] 

OutfôJ= 
4 P i 

- 1 E 

2 P i 5 
5 E 

Kfl Integrate);Sin[x], {χ,Ο,ΡΙ}] 
computes the definite integral 

It 
Jo

nSin(x)dx. 

Integrate[Sqrt[4-xA2],{x,0,2} ] 
computes the definite integral 

JoV^7dx. 

Integrate[Exp[4x] xA3,{x,i,2}] 
computes the definite integral 

r 2 x V x d x . 

I n t e g r a t e [ E x p [ 2 x ] ( S i n [ 2 z ] ) Λ 2 , 
{ x , - P i , 2 P i ) ] 
computes tke definite integral 

f e2xSin2(2x)dx. 
J—IT 

When the command I n t e g r a t e [f [ x ] , {x, xmin, xmax} ] is entered, Mathematica computes an 
anti-derivative F of f and computes F [xmax] -F [xmin]. Nevertheless, Mathematica does not apply the 
Fundamental Theorem of Calculus since Mathematica does not verify that f is continuous on the interval 
[xmin, xmax]. In cases when f is not continuous on [xmin, xmax], errors often occur: 

G 

ti>f3j:= 
Integrate[l/x. 

Outf3j= 
Log[ - l ] 

{ x . - i , i > ] 

m 

Mathematica compiles 
I n t e g r a t e [ i / x , { x , - 1 , 1 } ] 
even though the Fundamental Theorem of 
Calculus does not apply to the integral 
A 1 

J rdx· 
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■ Numerically Computing Definite Integrals 

Mathematica can also numerically integrate definite integrals of the form 

fupperlimit 
e x p r e s s i o n d v a r i a b l e with the command 

«Uowerlimit F 

N I n t e g r a t e [ e x p r e s s i o n , { v a r i a b l e , l o w e r l i m i t , u p p e r l i m i t } ] . N I n t e g r a t e is 
a built-in command and is NOT contained in the package in tegra lTab les .m. Consequently, Version 1.2 
users should be aware that it is not necessary to load the package Integra lTables .m to use the command 
N I n t e g r a t e . 

The command NIntegrate is useful when an anti-derivative of express ion cannot be (easily) found and 
e x p r e s s i o n is fairly smooth on the interval [lower l i m i t , upper l i m i t ] Also, in those cases in 
which an anti-derivative can be determined, the value of the definite integral can usually be computed more quickly 
by an approximation with NIntegrate rather than I n t e g r a t e . 

o In Version 2.0, the package GaussianQuadrature.m contained in the Numerical Math folder can 
also be used to numerically compute integrals. The package GaussianQuadrature.m is discussed in 
Chapter 9. 

In tegra te [f [ x ] , {x, a ,b} ] applies the Fundamental Theorem of Calculus, if applicable: it finds an 
anti-derivative of f [x] , evaluates the anti-derivative at the upper limit of integration, and subtracts the value of the 
anti-derivative evaluated at the lower limit of integration. As noted above, if f is not continuous on [ajb], error 
often occurs. 
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.1/3 

D Examples: 

(A) Approximate J e~x Cos(x Jdx; and 

(B) Compute both exact and approximate values of J e3xCos(4x)dx. 

Integration 

I n t e g r a t e [ E x p [ - x A 2 ] C o s [ x ~ 3 ] . 
{ x , 0 . P i ~ ( i / 3 ) } ] 

3 
Cos[x ] 1/3 

I n t e g r a t e [ , {x, 0, P i }] 
2 

x 
E 

H I n t e g r a t e [ E x p [ - x A 2 ] C o s [ x A 3 ] . 
{ x , 0 , P i ~ ( l / 3 ) } ] 

OutfS]= 
0.701566 

Integrate[Exp[3x]Cos[4x], 
{x,0,Pi/8>l 

Outf9j= 
(3 P i ) / 8 

3 4 E 
- ( " ) + 

25 25 

\o\ 

Time: 2.40 secondslOI MIIISIISIIIB Ci 
E3 
a 

Mathemotica cannot evaluate the definite 
integral 

f V c o s p j d x . 

However, Mathematica can approximate the 
integrate using the command M I n t e g r a t e . 

It takes Mathematica Z4 seconds to 
compute the exact value of the definite 
integral 
Γ3Τ/8 
ς VxCos(4x)dX. 

Integration 

inf!Oj:= 
N I n t e g r a t e [ E x p [ 3 x ] C o s [ 4 x ] 
{ x , 0 , P i / 8 } ] 

OutftOj= 
0.39971 

0 

Time: 1.05 secondslQI l i i i l i l i lM I I I I l i l l l l l i iON 
0 

However, the definite integral can 
be approximated in onty 1.03 seconds. 
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• Definite Integration with Version 2.0 

The point to be made concerning integration in Version 2.0 is that IntegralTables .m does not have be 
loaded before evaluating definite integrals. Several examples are given below. In each case, the same results are 
obtained with Version 1.2: 

Uersion2lntegrals 

Mathematica cannot 
computte 

if¥' Sin (x)dx. 

/ * / / / -
I n t e g r a t e [ S q r t [ 1 - 1 / 3 ( S i n [ x ] ) A 2 J , x ] 

Outf!j= 
2 

Sin[x] 
In teg ra te [Sqr t [ l - ] , x] 

Integrate [Cos [ 2x] / (x~2+l ) , { x, - Inf i n i t y , Inf i n i t y } ] 

Pi 

Integrate[Exp[I x]/x,{x„-Inf inity,Inf inity}1 

I Pi 

I n t e g r a t e ! 1 / (3+2 C o s [ x ] ) , { x , Q , P i } ] j computes the 
value of 

Pi 1 \ 
n d X 

\Ö\ 

compiles the 
principal value 
of the integral 
c~ Cos(2x) 

~7 d x · 
J — x 2 + 1 

Sqrt[5] 3 + 2Cos(x) 

computes the 
principal value 
of the integral 

a ix 
— d x . 

-oo X 

I n t é g r â t e[ 1 / (3+2 Cos[x J ) A 2 , { x , 0 , P i } 1 § computes the value of |jj 
rJ* 1 

Jo (3 + 2Cos(x)x2 
3 Pi 

3/2 
5 

l n t e g r a t e [ l / x , { x , 0 , l } ] 

In f in i ty 
Int egrate [ l / x , { x , - i , l } J | The principal 

- I Pi 

I ΐ 00% ▼ 1 to nwwWWJJJi iWWWIi da 
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■ Application: Area Between Curves 

A type of problem which incorporates the commands In tegrate and N integrate is that of finding the area 
between curves. These problems also use several other Mathematica commands 
(Plot , NRoots, FindRoot, ...) which were introduced earlier in the text. 

D Example: 

Let p(x) = — x 5 -3x 4 + l lx3-18x2 + 12x+l and q(x) = -4x3 + 28x2 - 56x + 32 

Approximate the area of the region bounded by the graphs of p and q. 

Mathematica is quite helpful in problems of this type. We can observe the region whose area we are seeking using 
the P lot command, and we can locate the points of intersection with one of the commands used in solving 
equations (NRoots, FindRoot, Solve, orNSolve (Version 2.0 only)) These steps are carried out below: 

1DI Rrea 

« I n t e g r a l T a b l e s . m 

JMWuWWMWMMMMWÎMMMMMMMMMMMMMMBtMWMMW 

Clear[p,q] 
p[x_]=3xA5 /10-3xA4+iixA3-i8xA2+i2x+i 
q[x_]=-4x~3+28x~2-56x+32 
P l o t [ { p [ x ] , q [ x ] K { x , - i , 5 ) , 
P l o t S t y l e - > { G r a y L e v e l [ 0 ] , G r a y L e v e l [ . 3 ] > ] 

Be sure the package I n t e g r a l T a b l e s . m 
has been loaded before computing definite integrate. 

wuwuuwmwtwwmram 

MMMMMMMMttXflM«WMWWW«WM^Tir.Î^MWMMWMMWB«WflBÎWWÎW 

The x-coordinates of the intersection points 
are the solutions to the polynomial equation 

°l 

OutftJ* 
-Graph i c s -

H K o o t s [ p [ x ] = = q [ x ] , x ] 

Outf&= 

x == 0.772058 | | 

x == 1.5355 - 3.57094 I || 

x — 1.5355 + 3.57094 I || 

x — 2.29182 || x == 3.86513 

Mathematica is unable to exactly solve the polynomial \ 
\ equation p(x)=q(x) Therefore, use the command 
N S o o t s [ p [ x ] = = q [ x ] , x j 
to approximate the solutions to the equation, 

MSLnaJLMMiiiiiiiiiiittiiiiaiiiaiittii^^ 

EH 
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Chapter 3 Calculus 

Using the roots to the equation p(x) = q(x) found above, the graph clearly shows that 
p(x) > q(x) between x=0.772058 and x=2.29182 ; and 
q(x) > p(x) between x=2.29182 and x=3.86513. 
Hence, an approximation of the area bounded by p(x) and q(x) given by the integral 

r229182, r3.86513 

Î
Z.ZV18Z . rJ.ÖODl.i. v 

(p(x)-q(x)Jdx+J (q(x)-p(x)Jdx is computed with either of the following commands 

. / /2UJO »2*291 o2 
Rrea 

inf3/:= 
Integrate[(p[x]-q[x J),{x,.772058,2.29182}]+ 
Integrate[(q[x]-p[x}),{x,2.29182,3.86513}] 

Outf3j= 
12.1951 

inf4j:= 
NIntegrate[(p[xl-q[x]),{x,.772058,2.29182}]+ 
NIntegrate[(q[x]-p[x]),{x,2.29182,3.86513}] 

Outf4j= 
12.1951 

y IDEE 
Next, consider a problem which involves functions which are not polynomials. 

]J 

s a 

In this cesse, both 

I n t e g r a t e 

and 

H i n t e g r a t e 

yield the same 
approximations 
of the area bounded 
by the graphs. 
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Chapter 3 Calculus 

D Example: 

Let f(x) = e"(x"2) C o s ^ x ] and g(x) = 4Cos(x-2) on the interval [0,4]. 

Approximate the area of the region bounded by the graphs of f and g. Since these functions are not polynomials, 
FindRoot must be used to determine the points of intersection. Recall that FindRoot depends on an initial 
guess of the root. Therefore, the first step towards solving this problem is to graph the functions f and g. Then 
the cursor is used to locate the initial guesses. (This topic was discussed earlier in the text.) 

C l e a r [ f , g j 
f [ x _ ] = E x p [ - ( x - 2 ) A 2 Cos[Pi x ] ] 
g[*_]=4 Cos[x-21 
P l o t [ { f [ x l , g [ x ] } , { x , Q . 4 K 
P l o t S t y l e - > { G r a y L e v e l [ 0 ] , G r a y L e v e l [ . 3 ] } ] 

Notice that several commands can 
be included in an input cell In 
thL· case, f and g are both defined 
and graphed in one step. 

F4i 

3 

?. 

Fi-

ll· 
■_ 

A ··' 
/ ^ 

r y \ 

/ / 
/ t 

/ i 

1 {2.95,2.41}" 

■u^ 

'' N A 
'^l· \ A \ / ^ \ 

2 3 

■ 
151 

■ 

■ 

\ 4 

JÉ 

Once the initial guesses have been determined with the cursor, FindRoot is used to approximate the solutions to 
the equation f(x) = g(x), and the area is approximated with N l n t e g r a t e . 

ID! Area 

M7J:= 
F i n d K o o t [ f [ x ] = = g [ x ] , { x , 1 . 0 6 } ] 

Outf7j= 
{x -> 1.06258} 

tnf8j:= 
F i n d R o o t [ f [ x ] = = g [ x ] , { x , 2 . 9 3 > ] 

Outf8j= 
{x -> 2.93742} 

fnf9j:= 
Hint egrate[g[x]-f[x],{x, 1.06258, 2. 93742}]! 

Outf9j= 
4.17413 

JLL KS 
Use F indRoot to compute 

approximations of the upper 

and lower limits of integration 

^ , ? y e ^ ^ J l 06258 fe<X)-f0O)dx 

yields an approximation of the 
area Since this integral is too 
complicated for Mathematica to 
compute exactly, use 
Nlntegrate 
to compute an approximation 
of the area. 

u m 

ΒββΜβΜβΜ^^^^ΗΗϋ^ΐΐΐΐίΐΪΐίΐΐΐϊΐΐΐίΐί^ 
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Chapter 3 Calculus 

■ Application; Arc Length 

D Example: 

Approximate the arc length of the graph of f(x) = Sin^Sin(x-2) J on the interval [4,5]. 

Recall the formula for the length of the smooth curve g(x) from the point (a,g(a)) to (b,g(b)) 

is given by: Length = J -̂ 1 + (g(x) ) dx. 

The resulting definite integrals used for determining arc length are usually difficult to compute since they involve a 
radical. Since the built-in command N i n t e g r a t e [f [ x ] , {x, a , b} ] numerically approximates integrals, 
Mathematica is very helpful with approximating solutions to these types of problems! 

1D1 RrcLength 

C l e a r [ f ] 
f [ x _ ] = S i n [ P i S i n [ ( x - 2 ) ~ 2 ] 1 
P l o t [ f [ x ] , { x , 4 . 5 > ] 

OutfitJ= 
-Graph i c s -

!nf!2j:= 

fix] 

Outf!2j= 
2 

2 P i (-2 + x) Cos [ ( -2 + x) ] 

k> 

il 
1 

First define andgrcpkf. 

t ' [ x ] computes f '(x) 

The length of the graph of a smooth function 
fonan interval [ajb] is given by 

lÄä? 
Cos[Pi S i n [ ( - 2 + x) ]] 

inf!3j:= 
H I n t e g r a t e [ S q r t [ l + ( f ' [ x ] ) A 2 ] , { x , 4 , 5 } ] 

Outf!3j= 
5.88736 

É è * * * * é É * a 
m 
a 

The are length is given by J, γ1+(ί"(χ) 

approximates the definite integral 
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Chapter 3 Calculus 

■ Application: Volumes of Solids of Revolution 

D Example: 

Find the volume of the solid generated by revolving the region bounded by the graphs of 

g(x) = x%in (x), x = 0, x = π, and y = 0 about the y - axis. 

Before solving the problem, we remark that solids generated by revolving the graph of a function about the x- or 
y-axis can be visualized with Mathematica. The commands used to generate the following graphics are discussed 
in the Appendix. 

Side viev of the solid generated by revolving the region 
bounded by the graphs of 
g(x) = x Sin(x), x = 0, x = Tt, and y = 0 about the y - axis. 

Top viev of the solid generated by revolving the region 
bounded by the graphs of 
g(x) = x Sin(x), x = 0, X = TL, and y = 0 about the y - axis. 
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Chapter 3 Calculus 

The method of cylindrical shells is used to compute the volume of this solid. 

Mil" 
«IntegralTables. m 
Clear[g] 
g [ x _ ] = x A 2 S i n [ x ] 
P l o t [ g [ x ] , { x , 0 , P i > ] 

Be sure the package I n t e g r a l T a b l e s . M 
has been loaded before attempting 
to compute definite intégrais. 

Outf!l= 
-Graph ic s -

inf2l= 
I n t e g r a t e [ 2 P i x g [ x ] , { χ , Ο , Ρ χ } 1 

Outf2l= 
2 4 

-12 Pi + 2 Pi 

ΖΠΜ. 

}\ 
J 

m 

First define and graph g 

The volume of the solid generated by 
revolving the region bounded by the 
graph ofg, x^O, κ=π, andy=0 about 
the y -axis is given by the definite integral 

J?2 a x g(x) dx = 2τι J"x ■'sin (x)dx. 

[g! calculates J*2iixg(x)dx = 2TiJ*x3Sin(x)c 

Consequently, the volume of the solid is 

2α4-12τι2. 
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D Example: 

Use Mathematica to approximate the volume of the solid generated by revolving the region bounded by the graphs 
of 

m(x) = e"(x"3) Cost4(x-3)i, χ = ι, χ = 5, and y = 0 about the x-axis 

The solid generated by revolving the region bounded by 
the graphs of 

m(x) = e-'x-3)2cos[4tx-3)1, x - 1 , i - 5 # and y = 0 
about the x-axis can be visualized using Mathematica 

The disk method is used to determine the volume of this spool-shaped solid. 

SolidsofReuolution 

tnfJ/:* 
C l e a r [ m ] 
m [ x _ ] = E x p [ - ( x - 3 ) ~ 2 C o s [ 4 ( x - 3 ) ] ] 
P l o t [ m [ x ] , { x , i , 5 > ] 

2 3 4 5 

Outf3j= 
-Graph ic s -

H I n t e g r a t e [ P i ( m [ x ] ) ~ 2 , { x , i , 5 } ] 

Outf4j= 
16.0762 

Ml 
K> 

First define and graph m 

The volume of the solid generated by 
revolving the graph ofm, x^ltx^5, and 
y=0 about the x-axis is given by 

j;5n(m(x))2clx = „ t f e-<*-3>2Cos[4(x-3)] f d x 

P HEE ÎÂ±Â±Â±ÂÎÂÎj^«âÂ^±Â±Â±^£^Â^^^fl^^ÎÂ^Â^Î^^^^^JLM^2MjM^S=^J 

Ώ\ 

-ί 5ô-2(x-3)2Cos[4(x-3)l ax. 
Since Mathematica cannot compute an 
exact value of this integral, the command 

|i|] N I n t e g r a t e is used to approximate 
its value. 

computes an approximation of the 

'5 ,.__,__*2, definite integral J ti(m(x)) d x . 

Therefore the volume of the solid is 
approximately Î6.076Z 
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H 3.5 Series 

■ Computing Power Series 

Recall that a power series expansion of a function f(x) about the point x=a is given by the following expression: 

ί Ο Ο = Σ (x""a) · Mathematica computes the power series expansion of a function f(x) about 
k=0 k ! 

the point x = a up to ordern with the command: S e r i e s [f ( x ) , {x, a , n } ] . 

Several familiar power series are computed below using this command. 

D Example: 

Compute the first few terms of the power series expansion of f(x) about the point x=a for 

(A) f(x) = ex, a = 0; (B) f(x) = Sin(x), a = 7i; (C) f(x) = Cos(x), a = 0; and 
(D) f(x) = Log(xX a = L 
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Chapter 3 Calculus 

1D1 Series 

S e r i e s [ E x p [ x ] , { x , 0 , 5 } ] 

OutfiJ* 
2 3 4 5 

X X X X ( 

1 + x + — + — + — + + 0[x] 
2 6 24 120 

S e r i e s [ S i n [ x ] * { x , P : U 3 } ] 

Outf2j= 
3 

( -P i + x) 
- ( - P i + x) + + 

6 

4 
0 [ - P i + x] 

inf3j:= 
S e r i e s [ C o s [ x ] , { x , 0 . 4 } ] 

Outf3j= 
2 4 

x x 5 
1 + — + 0[x] 

2 24 
lnf4j:= 

S e r i e s [ L o g [ x K { x . l , 3 ) ] 

Outf4j= 
2 : 

( -1 + x) ( -1 + x) 
( -1 + x) + 

2 3 

4 
0 [ - l + x] 

Eg 
S e r i e s [ E x p [ x ] , { x , 0 , 5 } ] 
computes the power series expansion 

of ex about the point xs=Q up to 

order x . 

S e r i e s [ S i n [ x ] , { x , P i , 3 } ] 
computes the power series expansion 
ofSinfa) about the point xmupto 

order (x-rt) . 

S e r i e s [ C o s [ x ] . { x , 0 , 4 } ] 
computes the power series expansion 
ofCos(x,) about the point x^Oupto 

Ijljl order x . 
ϋϋώΑΜβΜΜΜηΜΜΜΜηΜΜΜΜΜΜΜΜηηβ 

Remember that L o g [ x ] denote* 
the natural logarithm function Ln(x). 

Series[Log[x],{x,l,3}] 
compute the power series expansion 
ofLnfa) about the point x^lupto 

order (x~l)3. 
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Mathematica can also compute the general formula for the power series expansion of a function y(x) : 

ittfSJ:* 
S e r i e s [ y [ x ] , { x , 0 , 3 } ] 

Uutf5j= 

y' "[0] x 
y[0] ♦ y ' [ 0 ] x + 

(3) 3 
y [0] x 4 

+ o [x] 
6 

M6J:= 
S e r i e s [ y [ x ] , { x , a , 3 } ] 

OutfôJ= 
y[a ] + y ' [ a ] (-a + x) + 

y ' [ a ] ( -a + x) 

2 

(3) 3 
y [ a ] (-a + x) 4 

+ o [ - a + x] 
6 

y ΞΞΕΠ 

S e r i e s [ y [ x ] , { x , 0 , 3 } ] 
calculates the power series eypankion 
fory(x) about the point n=0to order 

Series[y[x],{x,a,3}] 
calculates the power series expansion 
foryfa) about the point x^ato order 

(x-a)3. 

la 
Mathematica can truncate (remove the remainder term) of the power series S e r i e s [ £ [ x ] , { x , a , n } ] with 
the command Normal [ S e r i e s [ f [ x ] , { x , a , n } ] ] . Hence, with the Normal command, a polynomial 
is obtained. This polynomial serves as an approximation to the function f(x). These ideas are illustrated below : 
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D Example: 

Let f(x)=Sin(x) Cos(x). Compute the first 8 terms of the power series for f(x) about x=0. Use the command 
Normal to remove the remainder term from the series. Call the resulting polynomial function g(x). Compare the 
graphs of f(x) and g(x) on the interval [-π/2,π/2]. Graph the function lf(x)-g(x)l on the interval [-π/2,π/2]. 

Series 

jHuwiuwtAumivmR 

f[x_]=Sin[x] Cos[x] 

Outf4j= 
Cos[x] Sin[x] 

S e r i e s [ f [ x ] . { x . 0 , 8 } ] 

OutfSj* 
3 5 7 

2 x 2 x 4 x 9 
x + _ + o [x ] 

3 15 315 

g[x_J=NorMal[Series[f[x],{x,0,8}]] 

OutfoJ* 
3 5 7 

2 x 2 x 4 x 

3 15 315 
inf8j:= 

P l o t [ { f [ x J , g [ x ] K { x , - P i / 2 , P i / 2 } , 
PlotStyle->{GrayLevel[0],GrayLevel[. 3] } 

E a Define f(x)=Si^x)Cos(K). 

S e r i e s [ f [ x l , { x , 0 , 8 } ] 
computes the power series for 
ffyfcSinfc) COS(K) about κ=0 

up to order χ' 8 

The command 
Nor»a l [Ser ie s [ f [x ] , {x ,0 ,8} ] ] 
removes the remainder term from the power 
series. The resulting polynomial is a function 

0.4 | 

0.2l / 

-Ä5 -1 -o". 5 A 
\ -0/2 

\ / 0 . 4 

.•* v 

\ 

A 
0.5 1 1.6 

Outf8j= 
-Graphics- i 

Notice that the graphs off and g 
on the interval [-Έ/Ζ,Έ/Ζ] are 
almost the same. 
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ln/tO/:= 
P l o t [ A b s [ f [ x l - g [ x U , { x , - P i / 2 , P i / 2 > . 
PlotKange->Àll ] 

0.035 
0.03 

0.025 
0.02 

0.015t 
0 .01 

0.005 

- 1 . 5 - 1 - 0 . 5 
Outf!Oj= 

-Graphics -

0 .5 1 1.5 

To see that/and g core almost the 
same on [-τί/Ζ,τϋΖ], graph 

|f(x)-g(x)| on the same interval 

The effect of the option 
P 1 o t S a n g e->À11 
is to guarantee that the 
entire grcpk is shown, 

i Application: Approximating the Remainder 

Let f have (at least) n+1 derivatives in an interval containing a. If x is any number in the interval, then 

f(x) = f(a) + — ^ ( x - a ) + — ^ ( x - a ) 2 + . . . + 
1! 1! (n-1)! 

(x-a)1 n-i , f(n)(a) 
n! 

(x-a) n + 

Taylor Polynomial of degree n for f(x ) at a 

> + !)! 
Taylor Remainder of Taylor Polynomial of degree n for f(x) at a 

where z is between a and x. 

D Example: 

As in the above, let f(x)=Sin(x) Cos(x). Compute the Taylor Remainder of the Taylor Polynomial of degree 8,9 
and 10 for x=0. 

We proceed by defining a function that symbolically computes the Taylor remainder of degree n for f [x] at 0: 

SeriesRemainder 
in/29/:= 

f [ x _ ] = S i n [ x ] Cos[z] 

Out/29/» 
Cos[x] Sin[x] 

ln/30/:= 
remainder[n_]:= 

(D[f[x],{x,n+i}]/.x->z) xA(n+i)/ 
(n+i)! 

KS 

remainder!; n] 
is a function that gives the 
Taylor Remainder off(K) at 
Ofor each n(zis between 0 
and*.} 
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Then, remainder [ 8 ] , remainder [ 9 ] , and r e m a i n d e r [10] are the desired remainders: 

r e m a i n d e r [ 8 ] 

Ovtf34j= 
9 2 2 

x (256 Cos[z] - 256 S in[z ] ) 

362880 

r e m a i n d e r [ 9 ] 

outfssy* 
10 

-4 x Cos[z] S in [z ] 

14175 

/fi/J6y= 
remainder[10] 

outfsôy* 
11 2 2 

x (-1024 Cos[z) + 1024 S in[z ] ) 

39916800 

r e m a i n d e r [ 8 ] 
calculates the remainder 
forn^8. 

remainder[9] 
calculates the remainder 
forn=9. 

r e m a i n d e r [ 1 0 ] 
cakulates the remainder 
for n* 10. 

Compute the Taylor Remainder of the Taylor Polynomial of degree 11 for x=0. What is an upper bound for the 
remainder on the interval [-π/2,τζ/2]? 

First compute the Taylor remainder of the Taylor polynomial of degree 11 for x=0 using the function 
remainder defined above: 

r e m a i n d e r [ l l ] 
calculates the remainder 

I for n^ 11. 

//tf3?y;= 
remainder[il] 

\outf3?y* 
12 

4 x Cos[z] Sin[z] 

467775 

I 
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To obtain an upper bound of the remainder on the interval [-π/2,π/2], notice that for 

x€ l-7c/2>7c/2j, |x|£— and for all values of z, |Cos(z)Sin(z)| <L Thus, an upper bound on 

remainder [11] is obtained by replacing x by π/2 and Cos[z]Sin[z] by 1: 

I 

lnf39j:= 
r e m a i n d e r [ l l ] / . x - > P i / 2 / . 

C o s [ z ] S i n [ z ] - > 1 

Outf39j= 
12 

P i 

479001600 

H [ r e m a i n d e r [ i i ] / . i - > P i / 2 / . 
C o s [ z ] S i n [ z ] - > 1 ] 

0utf40j= 
0.00192957 

i iiUU!i!i!i!iäüiimiiia!A^mA 

m 
a 

evaluates r e m a i n d e r [ 1 1 ] 
by replacing x by n/2 and 
Cos(z)Sin(z)by 1. 
The result is an exact 
number. 
A numerical approximation 
is obtained with the 
subsequent calculation 

■ Application! Series Solutions to Differential Equations 

D Example: 

Find a function y(x) that satisfies the ordinary differential equation y"-4y'-5y=0 and the initial conditions y(0)=l 
and y'(0)=5. 

Remark: In Chapter 5, the command DSolve will be used to solve the differential equation γ"~4γ-5γ=0 
subject to the initial conditions y(0)=l and y'(0)=5. 

Since the point x = 0 is an ordinary point of the differential equation, the solution y(x) is assumed to be the power 

, , r y B ( 0 ) k series y(x)= 2*~ ~ 
k=o k! 
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The power series is then substituted into the differential equation in order to determine the coefficients. 

Rpplicationsof Series 

s e r = S e r i e s [ y [ x ] , { z , 0 , 5 } ] / . 
y [ 0 1 - > i / . Y " [ 0 ] - > 5 

Outf7j= 
2 (3 ) 3 

y' ' [ 0 ] x y [0 ] x 
1 + 5 x + + + 

2 6 

(4) 4 (5) 5 
7 [0] x y [0] x 6 

+ + o[x] 
24 120 

MS/:-
e q u a t i o n = D [ s e r , { x , 2 } ] - 4 D [ s e r # z ] -

5 s e r = = 0 

Outf8j= 
(-25 + y ' ' [ 0 ] ) + 

K> 

(3) 

( 
(3) 

2 y [0] + 

(-25 - 4 y ' ' [ 0 ] + y [ 0 ] ) x + 

-5 y " [ 0 ] 

2 

(4) 
y [0 ] 2 

) x + 
2 

(3) (4) 
-5 y [0] 2 y [0] 

6 3 

(5 ) 
y [0 ] 3 4 

) χ + 0[X] = = 0 
6 

s e r = S e r i e s [ y [ x ] . { z , 0 , 5 ) l / . 
γ [ 0 ] - > 1 / . y " [ 0 ] - > 5 

is the power series for y(x) at 0 with 
y(0) replaced by 1 andy(0) replaced by 
5. 

D [ s e r , { z , 2 } ] computes the second 
derivative of s e r with respect to x* 

D [ s e r , z ] computes the derivative 

of ser with respect to κ 

Consequently, e q u a t i o n is the 
original differential equation with 
y(x) replaced by s e r . 

If two series £ a n X n and 
*=0 

Σ b n x satisfy the property 
n=0 ^ 

j that Σ*ηΧΠ - ft>nXn, **«* 
n=0 n=0 

an = bnforaUiL 

This may be rephrased as: "If 
i two power series are equal, 

then coefficients^ of corresponding 
terms are equal ~ 
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Mathematica equates the coefficients of like powers of x on each side of the equation with the command 
LogicalExpand[equation]. 

1 inea r e qua t i ons= 
LogicalEzpand[ equation] 

Oi/tfPj* 
-25 + y' ' [ 0 ] — 0 8,8c 

(3 ) 
-25 - 4 y ' ' [ 0 ] + y [0 ] — 0 &Sc 

- 5 Y " [ 0 ] (3) 
2 y [0 ] + 

2 

(4) 
Y [0] 

== o δ,δ. 

(3) (4) 
-5 γ [0 ] 2 y [0 ] 

(5) 
Y [0] 

— 0 

LogicalEzpand[equation] 
equates the corresponding coefficients 

in e q u a t i o n ; the resulting system 

of equations is named 

l inear equations. 

145 



Chapter 3 Calculus 

The above system of equations is then solved using Solve in order to determine the values of the higher order 
derivatives of y evaluated at x = 0. Once these values are determined, they are substituted back into the power 
series to obtain an approximate solution to the differential equation. 

v a l u e s = S o l v e [ l i n e a r e q u a t i o n s ] 

Outf!Oj= 
(3) 

{ { y " [ 0 ] -> 25, y [0] -> 125, 

(4) (5) 
y [0] -> 625, y [0] -> 3125} 

} 

in[!tj:= 
ser / . v a l u e s [ [ l ] ] 

outfitJ= 
2 3 

25 x 125 x 
1 + 5 x + + + 

2 6 

4 5 
625 x 625 x 6 

+ + o[x] 
24 24 

| | ' i · | EE *ÉWaÉUiliiiiifc*diiiiifc****ali m 

S o l v e [ l i n e a r e q u a t i o n s ] 
solves the system of equations 
linearequations. 
The solution set is named v a l u e s . 

ser /. values[[l]] 

replaces the unknowns of s e r 

by the obtained solutions v a l u e s . 

In this case, be sure to type 
v a l u e s [ [ l ] ] 
exactly, v a l u e s 
is a list and list operations 
will be dœcussed in detail 
in Chapters 4 and 5. 
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B3.6 Multi-Variable Calculus 
■ Elementary Three-Dimensional Graphics 

As was mentioned in Chapter 1, functions of more than one variable can be defined with Mathematica. Of 
particular interest are functions of two variables. The command which plots the graph of the function f(x,y) 

over the rectangular domain R where R: xmin<x< xmax, ymin^ y < y max 

is: Plot3D [f [x, y ] , {x, xmin, xmax} , {y, ymin, ymax} ] . Since the graphs of functions of two 
variables are surfaces in three dimensions, the Mathematica command, Plot3D, must be introduced. 

Mathematica can also plot the level curves of the function f(x,y). (Recall : Level curves are curves in the 
xy-plane which satisfy the equation f(x,y)= constant.) Level curves are plotted with the command 
C o n t o u r P l o t [ f [x , y ] , { x , xmin, xmax} , {y , ymin, ymax} ] . 

These commands are demonstrated below using Version 1.2: 

o Many options are available with the Version 2.0 command ContourPlot that are not available in earlier 
editions of Mathematica and are discussed last. 

D Example: 

/ 1 2\lß 
Let h(x,y) = (x + y J . Graph h on the rectangle [-1,1] x [-2,2]. 
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PartialDeriuatiues 

Clear[h] 
h [ x _ . y _ ] = ( x A 2 + y A 2 ) A ( l / 3 ) 
P l o t 3 D [ l i [ x , y ] . { x , - i , i K { y , - 2 , 2 } ] 

0 

P l o t 3 D [ h [ x . y ] . { x , - i , i } , { y . - 2 . 2 } ] 

graphs h(x,y) = ( x 2 + y 2 l ontkedomain 

x-values between -1 and 1 

y-values between-2 and 2 
WVVWMWUMQnASyt 

0utf22j= 
-Sur f a c eGraphi c s -

C o n t o u r P l o t [ l i [ x . y l , { x , - i , l } 
{ y , - 2 , 2 } ] 

«meet 

C o n t o u r P l o t [ l i [ x , y ] , { x , - l , l } , 
<y - -2 ,2>] 
graphs level curves ofhfy.y) an the domain 
[-i,l]x[-Z,Z]. 

-1-0. 75).-SO. 250 0. 250. 5D. 75 1 

I 

Outf33j= 
-C ont ourGr aphi c s -

USD ££££££££ 

Ka 
a 

There are many options which can be included in the Plot3D command. The following examples illustrate the 
Shading and P l o t P o i n t s options. 
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Shading->False causes Mathematica to NOT shade squares in the graph. 

PlotPoints ->n causes Mathematica to evaluate the function at nA2 points when plotting the graph. These 
nA2 points are called sample points. In the command, 
P l o t 3 D [f [x , y ] , { x , x m i n , xmax}, {y, ymin, ymax}, P l o t P o i n t s - > n ] , the sample points 
are obtained by dividing each interval [xmin, xmax] and [ymin, ymax] into n subintervals. Hence, a 
larger value of n yields a smoother graph. 

Notice the difference in the shading in the following graph of g(x,y) as opposed to the graph of h(x,y) above. The 
graph of g(x,y) is smoother than that of h(x,y) since the default (the value assumed when not otherwise stated) on 
P l o t P o i n t s is 15. Thus, the Plot3D command which plotted f(x,y) earlier automatically used 225 sample 
points. 

D Example: 

PartialDeriuatiues 
inf!4j:= 

C l e a r [ g ] 
g [x_ .Y_l=x S i n [ y ] 
P l o t 3 D [ g [ x . y ] . { x . - i . i } . 
{ y . - P i . P i } , P l o t P o i n t s - > 2 5 , 
Shad ing->Fa1s e ] 

Ûutf?4/= 
-Sur f a c eGraphi c s -

k> 
After clearing aäprior definitions ofg, 
define g(*)=xSin(yy 

P l o t 3 D [ g [ x . y K { x , - i . i K 
{y, - P i , P i } , P l o t P o i n t s - > 2 5 , 
Shad ing->Fa1s e ] 
graphs gfay) on the domain [- Î, 1] x [-ΊΙ,ΊΙ]. 
The option 
P l o t P o i n t s - > 2 5 
makes the makes the graph cppear 
smoother than before; the option 
Shad i n g - > F a 1 s e 
causes Mathematica to NOT shade each 
square. 
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Cont ourPIo t [ g [ x , y ] , { x , - 1 , i K 
{ y . - P i , P i } ] 

-1-0.750.50.25 0 0.250.50.75 1 

Outf!5/= 
-C ont ourGraphi c s - S 

ContourPlot[g[ x , y ] m { x , - 1 , 1 } , 
{ y , - P i , P i } ] 
grqpks several level curves for gfryj on the 
domain [-1,1] x [-n,v]. 

• ContourPlot and Version 2.0 

The ContourPlot command is much improved in Version 2.0. Evidence of this is observed in the contour 
plot of the function g [x, y] defined below. The three-dimensional plot of this function is given in p lo t3d . 
Recall that contour levels represent intersections of planes of the form g [x, y ] = constant with the surface shown 
in p l o t 3d. c p l contains the contour plot of g which is obtained without any of the Con tou rP lo t 
options. This plot differs greatly from that obtained in Version 1.2 in that shading is included in all contour plots 
unless otherwise specified. 
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ÏDÏ ContourOptions 

Clear[g] 
g[x^y-]=Exp[-(x-2+y-2) /8] ( (Cos[x]) -2+(Sin[y] 

Cos[x]2 -i- S in[y] 2 

) A 2)J 

Ε ( χ 2 + y 2 > / 8 

plot3d=Plot3D[g[x,y] . 
{x.-5.5).{y.-Pi.Pi>, 
Shading->False,PlotPoints->30] 

To illustrate some of the features 
of the command 
ContourPlot 
we first define 

g(x,y)! Cos2(x) + Sin2(y) 
/x2+y2W 

andgrcphgfay) on the 
rectangle [-5,5] κ [-ΊΙ,ΊΙ]. 

-Sur £ a c eGraphi c s -

cpl=ContourPlot[g[x,y],{x,-5,5},{y,-Pi.Pi}] 

-4 -2 0 

-C ont ourGraphi c s-

wyyyMwwwmMM 

3 
Creates a contour graph 
0/sfoy) on zh& rectangle 
[-5,5]* fa it]. 

]J 
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As mentioned above, all contour plots are shaded unless the Con tourShad ing->Fa l se option is 
employed. This option is illustrated below along with Contours->k which instructs Mathematica to use k 
contour levels. (This replaces the ContourLevels option in Version 1.2.) In cp2, 25 contour levels are 
used and shading is suppressed. In the previous contour plot, the default value of 10 contour levels was used. 

cp2 

3Î 

= C o n t o u r P l o t [ g [ x , y ] φ { x , - 5 , 5 } , { y , - P i , P i } 
Contours->25,ContourSnading->False] 

WIBMOTIM 

The option 
Contours ->25 
specifies that Mathematica 
grcph 25 contours (the 
default number is 10); 
The option 
C ont our Shad i ng 

->Fa l se 
specifies that the resulting 
grcpk not be shaded 

- 2 

-4 -2 o 
-C ont ourGraphi c s - i 

In the previous examples, Mathematica has selected the contour levels. However, these values can be chosen by 
the user with the C o n t o u r - > v a l u e l i s t option. This is demonstrated below with the table c o n t v a l s . 
After this table is created, Con tou r s ->con tva l s forces Mathematica to use the contour levels given in 
c o n t v a l s . Another option is shown below as well. The contour plot in cp3 is redone in cp4 with the 
addition of the Contour Smoothing- >Automatic option. This causes the contour levels in cp3 to 
appear smoother in cp4. 
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contvals=Table[i,{i, 25,1.5,1.25/10}] 

0.875. 1. , 1.125, {0.25. 0.375, 0.5, 0.625, 0.75 
1.25, 1.375, 1.5} 

cp3=ContourPlot[g[ x,y],{x,-5,5},{y,-Pi,Pi), 
Contour 3->c ont vu Is,ContourShading->False] 

-C ont our Gr aphi c s -
c p 4 = C o n t o u r P l o t [ g [ x , y ] , { x , - 5 , 5 } , { y , - P i , P i ) , 

Contour3->contva1s ,ContourShading->Fa1se , 
C ont our Smoo th ing->Äutonat ic ] 

-4 -2 0 

-C ont our Gr aphi c s -

aOMMMMMMMMtitMl 

\The option 
Contours-> 

c o n t v a l s 
instructs Mathematica 
to draw contours for 
the numbers in the 
list c o n t v a l s . 

1} 

The option 
Contour Smoothing | 

->Àutonat ic 
instructs Mathematica 
to attempt to make 
each contour smooth 
(compare with the 
previous example} 

| · I · | I I 
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i Partial Differentiation 

Partial derivatives can be calculated with Mathematica using the command 

D [ f [ x , y ] , v a r i a b l e ] 
where f [x, y] is differentiated with respect to var iab le . 

Second order derivatives can be found using D [f [x, y ] , v a r i a b l e l , v a r i a b l e 2 ] 
where f [ x ,y ] is differentiated first with respect to v a r i a b l e 2 and then with respect to v a r i a b l e l . 

D Example: 

/ 2 2\1/3 dri 3h Let h(x,y) = (x +y I (as above) Calculate —, — λ ' dx dy 
a2h 

dy' dydx 
and 

PartialDeriuatiues la i 
lnf23j:= 

Outf23j= 
2 x 

2 2 2/3 

3 (x + y ) 

lnf24j:= 
D [ h [ x , y K y ] 

Outf24j= 
2 y 

2 2 2/3 
3 (x + y ) 

inf25j:= 
D [ H [ x . y ] . y . x ] 

Outf25j= 
-8 x y 

2 2 5/3 
9 (x + y ) 

\θ\ 

^IJOUPP Ά 
m 
a 

D [ h [ x , y ] , x ] 

i i 8 h 

cakuuates — . 
3X 

D [ H [ x . y ] . y ] 

ah 
ay 

, , ah 
cakiuates — . 

D [ h [ x , y K y , x ] 

a2h calculates 
ay ax 

Higher order derivatives with respect to the same variable can be determined with the command 

D [f [x, y ] , { v a r i a b l e , n} ] . This command computes the nth partial derivative of f with respect to 
v a r i a b l e . 

For example, D [ f [ x , y ] , { x , n } ] computes 
dxn' 
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D Example: 

\l/3 / 2 2\1/J 9 h 3 h 
Let h(x,y) = (x +y I (as above) Calculate—« and —~. 

Part ialDeriuat iues 

inf29j:= 
D [ h [ x , y K { x , 2 } ] 

0utf29j= 
2 

-8 x 

2 2 5/3 
9 (x + y ) 

/n/JÛj-
T o g e t h e r [ D [ h [ x , y ] , { x , 2 } ] ] 

0utf30/= 
2 2 

-2 x + 6 y 

κ> 

2 2 2/3 
3 (X + y ) 

D [ h [ x , y ] , { x . 2 } ] 

computes 
d2h 

3X1 2 ' 

Toge t l i e r [ D[ &[ x , y ] , { x , 2 } ] ] 

32h 
confutes 

fraction. 

and combines into a single. 
3Χώ 

2 2 5/3 
9 (x + y ) 

inf3U:= 
T o g e t l i e r [ D [ l i [ x , y ] , { y . 2 } ] ] 

Ûutf3lJ= 
2 2 

6 x - 2 y 

2 2 5/3 
9 (x + y ) 

Se sure to use square brackets correctly when 
several Matkematica commands are combined. 

"IT 

] 

m 
s 

T o g e t h e r [ D [ h [ x , y ] . { y , 2 > ] ] 

computes —5- and combines into a 
ay2 

single fraction, 

1 Other Methods of Computing Derivatives 

The command Der iva t ive can also be used to compute derivatives of functions. For example, if f [x] is a 
function of a single variable, the command D e r i v a t i v e [1] [f ] [a] computes the derivative of f with 
respect to x and evaluates the result by replacing x by a; the command D e r i v a t i v e [n] [f ] [a] computes 
the nth derivative of f with respect to x and evaluates the result by replacing x by a. 

Similarly, if f [x, y ] is a function of two variables, the command D e r i v a t i v e [1 , 0] [f ] [a, b] 
computes the partial derivative of f with respect to x and evaluates the result by replacing x by a and y by b; the 
command D e r i v a t i v e [ 0 , 1 ] [f ] [a ,b] computes the partial derivative of f with respect to y and 
evaluates the result by replacing x by a and y by b; and the command D e r i v a t i v e [n,m] [f ] [a ,b ] 
computes the nth partial derivative of f with respect to x and then the mth partial derivative of f with respect to y 
and evaluates the result by replacing x by a and y by b. 
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D Example: 

9 1 0 3g 3g 3 g 3 g 3 g Use the command Der ivat ive to compute r 2 , r 2 · , . .f , —?·, —?·, and 
3x 3y 3x3y 3xz 3y 

-Α-ίΞ l) if 

g(x,y) = e '* +y ^(Cos2(x) + Sin2(y)). 

After defining g, we illustrate that D e r i v a t i v e [ 1 , 0] [g] [x, y] and D [g [x, y ] , x] both produce the 
same result. 

PartialDeriuatiues 
inf59j:= 

C l e a r [ g ] 
g [ x _ . y _ ] = E x p [ - ( x A 2 + y A 2 ) / 8 ] * 

( C o s [ x ] A 2 + S i n [ y ] A 2 ) 

Out[59j= 

C o s [ x ] 2 + S i n [ y ] 2 

Ε ( χ 2 + y 2 > /8 

infoöj-
g x = D e r i v a t i v e [ 1 , 0 ] [ g ] [ x , y ] 

OutfôOj= 
-2 Co3[x] Sin[x] 

E ( x 2 + y 2 ) / 8 

x (Cos [x ] 2 + S i n [ y ] 2 ) 

4 E ( x 2 + y 2 ) / 8 

D [ g [ z . 7 l . z ] 
Outf6!/= 

-2 Cos[x] Sin[x] 

E ( x 2 + y 2 ) / 8 

x (Co3[x] 2 + S i n [ y ] 2 ) 

4 E (x2 + y 2 ) / 8 

After clearing aüprior 
definitions ofg, 
define 

g(x,y) = e V ' (cos2(x) + Sin2(y>). 
Since g is defined on two lines, be 
sure to include the * to denote 
multiplication. 

VWniiiDiiioiiioiiioiiioiiieiiniiieiiioiiioiiioiiioiiiflii JQ 
Both D e r i v a t i v e [ 1 , 0 ] [ g ] [ x , y ] 
and D [ g [ x , y l *x] produce 
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Similarly D e r i v a t i v e [ 1 , 1 ] [g] [x , y] and D e r i v a t i v e [g , x , y] produce the same result: 

tnf62j:= 
g x y = D e r i v a t i v e [ 1 , i ] [ g J [ x , y ] 

Outf62/= 
y Cos[x] S in[x] x Cos[y] S in[y] 

2 2, Jft , 2 2S
 + 

2 E (x + y )/8 2 E (x + y ) / 8 

x y (Co3[x] 2 + S i n [ y ] 2 ) 

16 Ε < χ 2 + y 2 ) / 8 

lnf63j:= 
D [ g [ x , y ] , x . y ] 

Outf63j= 
y Cos[x] S in[x] x Cos[y] Sin[y] 

2 E (x 2 + y 2 ) / 8 2 E 
(x 2 + y 2 ) / 8 

x y ( C o s [ x ] 2 + S i n [ y ] 2 ) 

16 E ( x 2 + y 2 ) / 8 

Similarly, both 
D e r i v a t i v e r i , 1 1 r g ] [ x . y ] | 
and D[<J[x*Yl **-Yl compute 

A. 
8xây' 
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lnfô4j:= 
D e r i v a t i v e [ 2 , Q ] [ g ] [ x , y ] 

Outf64j= 
2 

-2 Cos[x] x Cos[x] Sin[x] 

E ( x 2 + y 2 > /8 E ( x 2 + y 2 ) / 8 

IDIlAlllDfrftVfftlll 

D e r i v a t i v e [ 2 , 0 ] [ g ] [ x , y ] 

à2g 
computes —5-; the same result would 

8xJ 

be obtained with the command 
D [ g [ x . y ] , { x . 2 > l 

2 Sin[x] 

Γ(χ2 + y 2 ) / 8 

2 2 
CQS[X] + Sin[y] 

4 E 
( x 2 + y 2 ) / 8 

x2 (Cos [x ] 2 + S i n [ y ] 2 ) 

16 Ε ( χ 2 + y 2 ) / 8 

tnf65/:= 
D e r i v a t i v e [ 0 . 2 ] [ g ] [ x . y ] 

Outfô5j= 
,2 

2 Cos[y] 

M2 ♦ y 2 ) / 8 

2 S i n [ y ] 2 

v(x
2 + y 2 ) / 8 

y Cos[y] 5 in[y] 

Ε ( χ 2 + y 2 ) / 8 

CQ3[x]2 + S i n [ y ] 2 

4 E ( x 2 + y 2 ) / 8 

y 2 (CQ3[x]2 + S i n [ y ] 2 ) 

16 E 
(x 2 + y 2 ) / 8 

mffo 

D e r i v a t i v e [ 0 , 2 ] [ g ] [ x , y ] 

computes —^; the same resuk would 

be obtained with the command 

mv.w 1 

158 



Chapter 3 Calculus 

tnfôô]:= 
v a l u e = D e r i v a t i v e [ i m2][g][Pi/3,Pi/61 

OutfôôJ= 
Sqr t [3 ] 7 P i 

8 E ( 5 P i 2 ) / 2 8 8 9 6 E ( 5 P i 2 ) / 2 8 8 

P i 2 

128 Sq r t [3 ] E 

P i 3 

(5 Pi2)/288 

13824 E<5 P i 2>/ 2 8 8 

inf67j:= 
T o g e t h e r [ v a l u e ] 

Outf67j= 

64 3 7 / 2 - 1008 P i + 4 3 5 / 2 P i 2 - P i 3 

13824 E (5 P i 2 ) / 2 8 8 

H[ v a l u e ] 

Outf68j= 
0.0250284 

[H3ioo% -^|[^Γ 

computes 5-
8x3y2 

and then evaluates by replacing 
xby π/3andy by π/tf. The resulting 
number is named v a l u e . 

r Writes v a l u e 
as a single fraction. 

ive 
ppi 

gives a numerical 
opproTÜmatiönof v a l u e . 

__K> 

rag 
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■ Application: Classifying Critical Points 

Recall the définition of a critical point : 

■ Let f(x,y) be a real-valued function with continuous second-order partial derivatives. A critical point of f is a 

point (XQ, yo) in the interior of the domain of f for which fx(xo, yo) = 0 and fy(xo, yo) = 0 . 

D Remark: The following notation is used: 

fx(x»y) = T"(x 'y)' ^hy) = jrfoy\fafoy) = jrjr(x*y)> ^ x t a y ^ T T ^ y ) » and fyy(x,y) = —j(x,y) 

Critical points are classified using the following test: 

(Second-Derivative Test for Extrema) Let 

(xo>yo) fxy(xo>yo) 
icy (*0>yo) fyy(xO>yo) 

(a) If D > 0 andfxx(xo,yo) > 0, then f has a relative 
minimum at (xo*yo)î 
(b) If D > 0 andfxx(x0,yo) < 0, then f has a relative 
maximum at (xo»yo)i 
(c) If D < 0, then f has a saddle point at (xo»yo)i and 
(d) If D = 0, no conclusion can be drawn and (xo>yo) i s 

called a degenerate critical point. 

D(f;(xo,y0)) = = (*xx (x0* y0))(fyy (x0> Υθ>) " (fxy (x0> Yo)) · 
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D Example: 

Locate and classify all critical points of the function f(x,y) = -120x3-30x4+18x5 +5x6+30xy2. 

In order to find the critical points of f(x,y), the derivatives fx(x,y) and fy(x,y) 

are calculated and set equal to zero. These steps are shown below. Notice how the derivatives are given names to 
make using them later in the problem easier. 

CriticalPoints 

Clear[£] 
f[*_.y__]= 
-120xA3-30x~4+18xA5+5x~6+30x yA2 

«B; 
Begin, by clearing aä prior definitions off and 
defining 

f(x,y) = -120x3 -30x4 +18x5 +5x6 +30xy2. 

OutftJ* 

-120 x 
4 5 6 

30 x + 18 x + 5 x + 

I'ljijgjiU"1 

Remember to include the space between x 
and yAZ to denote multiplication. 

30 x y 

inf£j:= 
d £ x = D [ £ [ x , y ] , x l 

Outf2j= 
2 3 4 5 

-360 x - 120 x + 90 x + 30 x + 

30 y 

d f y = D [ f [ x . y ] , y ] 

Outf3j= 
60 x y 

in[4j:= 
S o l v e [ { d f x = = 0 , d f y = = 0 } . { x . y } ] 

Outf4j= 
{{x -> - 2 , y -> 0 } , 

{x -> - 3 , y -> 0 ) . 

{x -> 2, y -> 0 } , 

{x -> 0, y -> 0 } , 

{x -> 0, y -> 0}} 

III 

d £ x = D [ £ [ x , y l , x l 
ài 

computes — 

andnamesit d f x. 

d £ y = D [ £ [ x . y l , y ] 
df 

computes — 

and names it dtγ. 

solves the system of equations 
8f(x,y) 

■ = 0 
ax 

ay 
for Kandy; the solutions are 
the critical points. 

l l jyB H B Bj | a B H|2££££j£2£2£2£»2^^ 

Ka 
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The second derivatives A A A — y , —*■, and —-r- are computed below. Recall that if 

9f 9f A 
θχ ' dy ' 3x3y ' dydx 

θχζ 3y 

A 
are continuous on an open set, then 

# f ^ f 
3x3y 3ydx 

for each point in the set. Therefore, since f(x,y) is a polynomial and, thus, continuous for all values of x and y, 
only three second order derivatives need to be calculated. 

CriticalPoints 

infSj-
d f x x = D [ f [ x , y K { x , 2 > ] 

0utf5f= 
2 3 4 

-720 x - 360 x + 360 x + 150 x 

info/:' 
d f y y ^ D [ f [ x . y ] , { y , 2 > ] 

OutfôJ= 
60 x 

tnf?/:-
d f x y ^ D [ f [ x , y ] . x , y ] 

Outf?J= 
60 y 

0 

daAmaemmmmaamemmm 

d f x x = D [ f [ x , y ] , { x , 2 > ] 

computes d *. 
ax2 

| and names ti d f x x . 

ΙΜΒΙΙΙΟΙΙΙΒΙΙΗΙΙΙ^ΙΙΙΙφ'Ο'φ'^ΡΐΜΙΟΙΙΙΟΙΙΙΰΙΙΙΟΙΙΙΟΙΙΙΟΙΙΙΙΙΙΙΙ 

dfyy=D[£[x.y].{y.2}] 

computes 32f 

ay 
and names iz d f y y . 
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The second-order derivative -*— is evaluated at the critical points for later use in the 

second derivative test: 

CriticalPoints 

dfzz / . z-> -2 

Outf3j= 
-480 

lnf4j:= 
dfzz / . z-> -3 

Outf4j= 
1350 

infôj:= 
dfzz / . z-> 2 

OutfôJ= 
2400 

M5/:= 
dfzz / . z-> 0 

Outf5j= 
0 

TKS 

" ' ' 'Wl E3 
m 
a 

dfzz / . z-> 
evaluates d fzz 

dfzz / . z-> 
ÔVO&WflteS d f Z Z 

dfzz / . z-> 
evaluates d fzz 

dfzz / . z-> 
evaluates d fzz 
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d2f a2f 
The discriminant TT-(x<).yo)^7-(xO>yo)-

d x d y 
fil 
[dxdy 

(*o»yo) 

is defined as a function so that its value at the critical points can be computed easily. 

CriticalPoints 

InfSj-
discr iminante a_ ,b_ 
dfxx d fyy - (d fxy ) A 2 

inf9j:= 
discriminante 2,0] 

Ût/tf9/= 
288000 

lnf!Oj:= 
discriminante-2,0] 

outftoj* 
57600 

A / / / / ' « 
discr iminante - 3 , 0 ] , 

Outf!U= j 
-243000 | 

discriminante 0,0] 

0utft2j= 
0 

] : = 
/ . x->a / . y->b 

;x& 
computes 
dfxx d f y y - ( d f x y ) ~ 2 
and then replaces xbya andy by b. 

computes 
dfxx d fyy - (d fxy )~2 
and replaces xby2 andy by 0. 

computes 
dfxx d fyy - (d fxy )~2 
and replaces x. by -2 and y by 0. 

computes 
dfxx d fyy - (d fxy )~2 
and replaces x by -3 andy by 0. 

computes 
dfxx d fyy- (d fxy)~2 
and replaces xbyO andy by 0. 

u ΖΕΓ tW^TRTRFFPRH^^ 

*++^^^**Λ++^^*Λ 

-M Sa 
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Chapter 3 Calculus 

The Plot3D command is used to verify that the critical points have been classified correctly by plotting f(x,y) 
around each critical point. 

These graphs also illustrate some of the P l o t 3D options. 

Plot3D[f[x,y],{x,-3.1,-2.9), 
Shad ing->Fa1s e,Ti ck s->Hone, 
PlotPoints->25, 
Boxed->False] 

{ y , - . i , . l ) , 

(-3,0) is an inflection point. 

P l o t 3 D [ f [ x , Y l , { x , - . l , . l ) , { y , - . i , . l ) 
B o x e d - > F a l s e , P l o t P o i n t s - > 2 5 , 
P l o t L a b e l - > " D e g e n e r a t e " , 
H e s h - > F a l s e , B o x R a t i o s - > { 1 , 1 , 1 ) ] 

Degenerate 
0.1 

0.05' 
0 Λ,.., 

-O.O&föxJiiiii. 
• J* .•.•.•.vvvvx::x:âu< 

(0,0) is a degenerate 
critical point. 

The option S h a d l n g - > F a l s e 
specifies that the polygons NOT be 
shaded; the option T l c k s - > H o n e 
specifies that no tick marks be 
placed on any axis; the option 
Boxed->False 
specifies that a box, is NOT placed 
around the graph. 

The option 
P l o t L a b e l - > " D e g e n e r a t e " 
labels the graph "Degenerate"; the 
option n e s h - > F a l s e 
hues the edges ofeachpofygon (but 
eachpofygon is shaded; the option 
B o x S a t l o s - > { l , l , l ) 
specifies that the ratio of the lengths 
of the bounding 3-dimensional 
box ratios are 1:1:1 

0 .1 
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Plot3D[f[x,y],{x,1.9,2.1), 
{y,-.1,.1),Shading->False, 
Tlcks->None,Ax e sLab e1-> 
{"x-axis","y-axis","z-axis"), 
PlotPoints->25,Boxed->False] 

(2,(7) is a minimum 

1 
The option 
AxesLabel-> 

{ " x - a x i s " , " y - a x i s " , " z - a x i s " ) | 

specifies that the x-axis be marked 
"x-axis ", the y-axis marked "y-axis ", and 
the z-axis marked "z-axis". 

z-axis 

y-axis 
x-axis 

P l o t 3 D [ f [ x , y ] , { x , - 2 . i , - i . 9 ) , { y , - . i , . i ) . 
P l o t P o i n t s - > 2 5 , PlotLabel->"Haximum", 
Àxes->Hone, B o x S a t i o s - > { l . 5 , 1 , 1 . 5 ) , 
Shadlug->Fa1s e ] 

Haximum 

The option 

Axes->Hone. 

specifies that axes are NOT 
included in the graph 
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■ Application: Tangent Planes 

Let z=f(x,y). Then a function that describes the plane tangent to the graph of z=f(x,y) 

at the point (xo,yo*zo = f(xo»yo)) i s Si v e n b v 

tanplan^Xoyo)(x,y) = fx(x0,y0) (x-x0) + fy(x0,y0) (y -y 0 ) + zo. 

D Example: 

Find a function that describes the plane that is tangent to the graph of f(x,y) = -6xye 
at the point (.5,0). 

2 2 

Mathematica can be used to plot the graph of f(x,y). Using some of the options available to Plot3D, this graph 
can be plotted in a manner which will aide in visualizing the tangent plane to the graph at (.5,0). 

Use Pht3D to graph f(xy) on 
the domain 
[-3/Zf.3/2]x[-3/Z,3/2l The 
option 
T i c k s - > { { . 5 } , { 0 > , { > 
places a tick mark on the 
χ-ακζε at.5, on the y-axis at 
0, and no tick marks on the 
z-axis. The option 
Boxed->False 
prevents the grcpkfrom being 
enclosed by a box. The option 
P l o t P o i n t s - > 3 0 
makes Mathematica sample 
30x-vahies and 30 y-valu&s. 

i n = = = = i ^ ^ ^ ^ Multiple3DPIot m 
P l o t 3 D [ f [ x , y ] , { x . - i . 5 , i . 5 } , { y , 
T icks ->U.5> . {0> , { )K 
Boxed->False. PlotPoints->30] 

\^Éf 
i>^y 

\0utf5]= 
-SurfaceGraphics-

I M H M M lIlllllllllllllIllllllllilllilliHililililiIiiilili 

ail 
- 1 . 5 , 1 . 5 } , 11 |KH 

i l 
iiiiiiiiiiliy 

167 



Chapter 3 Calculus 

MathematicacQii he used to visualize both the graph of 
f(x,y) and the graph of the plane tangent to the graph 
of f(x ,y) vhen x=.5 and y=0. 

Tangentplane 

JfcjO 

Multiple3DPIot l a i 

C l e a r [ £ ] 
f [ x _ . Y _ ] = - 6 x y E x p [ - x - 2 - y ~ 2 ] 

Outfif* 

K> Begirt by clearing prior definitions off and 
define 

f(x,y) = -6xye~ x " y . 

iDon't forget to include the space between x 
land y to denote multiplication. 

2 2 
-x - y 

-6 E x y 

[ f [ x , y l . x ] / · x - > - B / . y - > 0 J 

]J 
W- T 
»I«[x-Tl.Tl / · x->.6 / . y->0 J 

» [ 

Oatf3j= 
0 

/ff/4/. 

Ouif4j= 
-2 .3364 

I 'J'.'..'....'.'.'.'." '...ΊΚ?Ι ■H m 
a 

D [ f [ x , y ] . x l / . x - > . 5 / . y - > 0 

complues — cota ffte» evacuates — 
ax ax 

when x=.5 and y=0. 

D [ f [ x - y ] - y ] f- x - > 5 / . y - > o 

computes — and then evaluates — 
3y 3y 

when x*.5 andy-O. 

Hence, the tangent plane is defined by the function z = 0 ( x - .5 ) - 2.3364 (y-O)or , z = - 2.3364 y 
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o f and z can each be graphed with the command Plot3D. However, prior to the release of Version 2.0, two 
3-dimension graphics objects created with Plot3D could not be shown simultaneously. However, Version 
2.0 permits two (or more) objects created with the command Plot3D to be shown simultaneously with the 
command Show. In the following example, f is graphed on the rectangle [-3,3] x [-2,2], the resulting graph is 
not displayed and named p lo t f . Similarly, z is graphed on the rectangle [-2,2] x [-1,1], the resulting graph 
is not displayed and named p lo tz . The graphs are shown together (but not actually displayed) with the 
command b o t h = S h o w [ p l o t f , p l o t z , B o x R a t i o s - > { l , 1 , 1 } ] . 

Uersion2.0Graphics3D 

f [ * _ . Y _ l = - 6 x y Ε χ ρ [ - χ - 2 - γ ~ 2 ] 
z [ x _ , y _ ] = - 2 . 3 3 6 4 y ; 

Kfl 
I defines 2 2 
|f(X/y) = -6xye"x ~y and z<x,y) » -2.3364y. 

3ESE 
p l o t f = P l o t 3 D [ f [ x , y ] „ { x , - 3 , 3 } , { y , - 2 , 2 K Yplott corresponds to th& 

P l o t P o i n t s - > 2 5 m 

D i s p l a y F u n c t i o n - > I d e n t i t y ] ; 

p l o t z = P l o t 3 D [ z [ x , y ] , { x , - 2 , 2 } , { y , - i . i } , 
S h a d i n g - > F a 1 s e , T i ck s - > N o n e , 
D i s p l a y F u n c t i o n - > I d e n t i t y ] ; 

graph off. 

p l o t z corresponds to the 
grcphofz. 

b o t h = S h o v [ p l o t f , p l o t z , B o x R a t i o s - > { J U 1 , 1 } ] b o t h consists of 
both p l o t f and 
p l o t z . 

Since p lo t f , p l o t z , and both are graphics objects, they may be shown in a single graphics cell with the 
command GraphicsArray: 

lnf24j:= 
Shov[Graph!csÀrray[ {plotf,plotz,both}] ] 

Outf24j= 
-Gr aph i c s Ar r a y -

IIIioo% ▼IIP□!«»«»&«!» 

m 
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■ Application: Lagrange Multipliers 

Certain types of optimization problems can be solved using the method of Lagrange multipliers. This method is 
based on the following theorem : 

D Lagrange's Theorem: 

Let f and g have continuous partial derivatives and f have an extremum at a point 

(x0>vo)on t h e smooth constraint curve g(x,y) = c. If gx(xo»yo) * 0 and gy(xo>vo) * 0, 

then there is a real number λ such that fx(xo»yo) = λβχ(χθ>νθ)» fy(xO'vo) = kgy(xo»yo); m^ 

g(*o»yo) = o. 
D Example: 

Find the maximum and minimum values of f(x,y) = 4y2 -4xy + x2 subject to the constraint 

x2 + y 2 = l . 
The commands used to create the following graphics are discussed in the Appendix. 

Mathematica can be used to visualize the graph of 
z=f(x,y) for (x,y) that satisfy the equation g(x,y)=0 

These points correspond. 
to maxima 

These points correspond 
to minima 
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The first order derivatives (with respect to x and y) of f and g are computed in order that Lagrange's Theorem can 
be applied. (The lambda in Lagrange's Theorem is represented in the calculations below as 11.) 

LagrangeMults 

inf!2!j:= 
Clear[f,g„dfx,dfy,dgx,dgy] 
f[x_,y_]=4 yA2-4 x y+xA2 
g[x_,y_]=x~2+y~2-i; 

JE 
Since objects wiü be named f, g, dfx,, dfy, dgx,, and dgy, 
begin by clearing allprior definitions then define 

f(x,y) = 4y2-4xy+x2 and g(x,y) = x2+y2-l. 

d f X—DT £Γ x ▼! x l y""*""""""*"*"' 
d £ y ^ D [ £ [ x . y ] , y ] 
d g x = D [ g [ x . y ] , x ] 
d g y ^ D [ g [ x , y ] , y ] 

A semi-colon placed at the end of a command 
prevents the output from being shown. 

eql=d£x==l l dgx 

Outf!23j= 
2 x - 4 y == 2 11 x 

inf!24j:= 
eq2=d£y==ll dgy 

Outf!24j= 
-4 x + 8 y == 2 11 y 

inf!25j:= 
eq3=g[x,y]==0 

0utf!25j= 
2 2 

-1 + x + y = = 0 

We use 11 to represent the lambda from\ 
Lagrange's Theorem 

ZEE 
feé^ri^é**éé*éééMriri*Ué*É M 

e q l represents the 
equation 
af(x,y) = A_ag(x,y) 

3X 3X 

eq2 represents the 
equation 

af(x,y)=A_ag(x,y) 
ay ay 

eq3 represents the 
equation g(x,y) = 0. 
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The values of x, y, and lambda which satisfy the system of three equations in Lagrange's Theorem are determined 
using Solve. The solutions of this system are ordered triples (x, y, lambda). The values of x and y in each 
ordered triple represent the point at which f may have a maximum or minimum value. 

LagrangeMults 

S o l v e [ { e q l , e q 2 , e q 3 K { x . Y , l l } ] / / N 

0utft26j= 
{{11 -> 0 . , y -> 0.447214, 

x -> 0. 894427} , 

{11 -> 0 . , y -> -0 .447214, 

x -> -0 .894427} , 

{11 -> 5 . , y -> -0 .894427, 

x -> 0.447214}, 

{11 -> 5 . , y -> 0.894427, 

x -> -0.447214}} 

111 l·^ 
solves the system of equations for 
K,yand& The values o/x and y that 
result in the maximum and minimum 
values off subject to the constraint 
will occur at these points. mi 
Note: In this case, Mathematica 
produces enact values for %, y, and 
il However, since they are cumbersome 
to manipulate, we work with numerical 
cpproximations instead 

jjQjjMMj^^J^^JjjJjJjjjJjî^jJjV^^ 
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Thus, the maximum and minimum values of f are found by substituting these points back into the function f(x,y) 
and comparing the resulting values of f. 

LagrangeMults 

lnf!27j:= 
f[*.Yl /- *->-447214 /. y->-.894427 

Outf!27j= 
5. 

Inf!28j:= 
£[x,yl /. *->-.447214 /. y->.894427 

0utf!Z8j= 
5. 

tnf!29j:= 
f [ * . Y l / - y->-447214 / . x->.894427 

Outft29/= 
-12 

1. 10 

!nf!30/:= 
f[x.Yl /- y->--447214 /. x->-.894427 

0utf!50j= 
-12 

1. 10 

Jl Jtsssd 
cakufotesffoy) when x=.447224 and 
y=-.8944Z7 

calculates 
y=.89442, ? 

y*-.447214and 

JJT 
calculates fixy) when x».89442? 
andy*.447214. 

Jl I M * 

calculates fÇny) when ■»'-.894427 and 
y=-.4472l4. 

uor lillillliiiiili CH 
EH 
a 

Consequently, the maximum value is 5 and the minimum value is 0. Notice that 
—12 

L 10 is assumed to be zero 
In fact, the command Chop [f [x, y] / . y - > - . 447214 / . x - > - . 894427] yields zero. 
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D Example: 

2 3 2 2 Find the maximum and minimum values of k(x,y) = x +4y subject to the constraint x +2y =L 

Matkematica can be used to visualizi 
graph of k on the ellipse 

2 2 
x + 2 y =1 . Corresponds to 

mmmwrnvalue 

Corresponds to 
maximum, value 

The ellipse x2 + 2y2 = l 

0.5 

This problem is solved much like the previous example. Notice how the first derivatives are calculated and the 
system of equations stated in Lagrange's Theorem are established in a single command. The numerical 
approximation of the solutions of this system are then found. 
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■Di LagrangeMults 

iiif2j:= 
C l e a r [ k , l i ] 
k [ x _ , y _ l = x A 2 + 4 y A 3 
li[ x _ , y _ l = x A 2 + 2 y ~ 2 - l ; 

to\ 

γ] 
y ] 

χ ] 
y ] 
χ ] 
y ] 

Since the goal is to find the maximum 
and minimum values ofkfcy) subject 

to the constraint x 2 + 2 y 2 = l 
begin by defining k(x,y) = x 2 + 4 y 5 

and h(x,y) = x 2 + 2 y 2 - l . 

dkx=D[k[x 
dky=D[k[x 
dhx=D[l i [x 
dhy=D[h[x 
e q l = d k x = = l l dhx 
e q 2 = d k y = = l l dliy 
e q 3 = h [ x . y l = = 0 ; 

inf4j:= 
S o l v e [ { e q l , e q 2 , e q 3 } 

Ouif4j= 

{{11 

Notice that several commands can 
be evaluated if they are combined 
into a single input cell 
The semi-colon prevents the output 
from being shown. 

{ x . y . l l } ] / / M J 

-> 1 . , y -> 0.333333, 

x -> 0 .881917}, 

{11 -> 1 . , y -> 0.333333, 

x -> -0 .881917} , 

{11 -> 1. , y -> 0. , χ -> 1. }, 

{11 -> 1. , y -> 0. , x -> - 1 . }, 

{11 -> 2.12132, y -> 0.707107, 

x -> 0 . } , {11 -> -2 .12132, 

y -> -0 .707107, x -> 0 . } } 

1 ax ax 
eq2 represents fcfoy) - ^Μχ ,γ ) . 

ay ay ' 
and eq3 represents h(x,y) = 0. 

S o l v e solves eql, eqZ,andeq3 
forx,y,andll Even though 
Mathematica finds the exact roots, 
we use numerical approximations 
for convenience. 

The values ofx andy that maximize 
and minimize k must occur at these 

\points. To determine which values 
maximize k and which values 
minimize k, evaluate k(xy)for 
each set of values. 
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The points which satisfy the system are substituted into k(x,y) to obtain the maximum and minimum values of the 
function by comparing the values obtained. 

\/»/s/.-
k[ . 88197. . 333333] complues 

LtfS/. K88197J33333). 

0.926019 

\tof6L~ 
k[ 1-. 88197 . . 333333] computes 

Η·.88197,.333333) 
\Outf6jw ^ ' 

0.926019 

L/7/-
k [ l , 0 ] computes k(l,0) 

\out/7/~ 
1 

\fafS/:* 
k [ - 1 . 0 1 computes k(-1,0) 

\0utf8j* 
1 

ynffl-m 
k [ 0 , . 7 0 7 1 0 1 ] computes k(0,.707101) 

\Outf9j* 
1.41418 

yrffo/.·* 
k[ 0 . - . 707101 ] computes k(0,-. 707101). 

\OutftOj~ 
-1.41418 

^ ^ I g ^ ^ ^ ^ ^ ^ ^ l ^ ^ ^ ^ 

- l - i 

-|-| 

- l - i 

ηη 

ηη 

- i n 

JJ ■s 

T!j!j!?l 

y 

[S 
M 

Thus, the maximum, value is 
cpproydmatefy 1.41418. 

The minimum, value is 
approximately -1.41418. 

i Multiple Integrals 

tMathematica can compute multiple integrals. The command which computes the double integral 

is: 
xmax ymax 

J Jf(x,y)dydx i 
xmln ymin 
I n t e g r a t e [ f [ x , y ] , { x , x m i n , x m a x } , { y , y m i n , y m a x } ] 

Multiple integrals arc numerically computed with the command 
N X n t e g r a t e [ f [ x , y ] , {x, xmin , xmax} , {y, ymin , ymax} ] . 

The first variable given (in this case, x), corresponds to the outermost integral and integration with respect to this 
variable is done last. Also, the inner limits of integration (in this case, ymin and ymax) can be functions of the 
outermost variable. Limits on the outermost integral must always be constants. 
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Chapter 3 Calculus 

o When using Version 1.2, be sure to load the package Integra lTables .m; if using Version 2.0, loading 
IntegralTables .m is not necessary since Mathematica automatically loads the package. 

Several examples are shown below : 

a Example: 

Multiplelntegrals 

« I n t e g r a l T a b l e s . m 

Outf&= 
In tegra tor ' 

inf!5j:= 
I n t e g r a t e [ x y A 2 . { y . 1 . 2 } , 
{ x . l - y . S q r t [ y ] } ] 

OutftSj* 
163 

120 
inf!6j:= 

I n t e g r a t e [ y S i n [ x ] - x S i n [ y ] , 
{ x . 0 , P i / 6 ) , { y , 0 , P i / 2 } ] 

Outf!6j= 
2 2 

Pi Sqrt[3] Pi 

»K 
[ Be sure the package I n t e g r a l T a b l e s . 
j has been loaded before attempting to 
| compute definite integrab. 

JO. 
I n t e g r a t e [ z y A 2 . { y . i . 2 } , 
{ x . i - y . S q r t [ y ] > ] 

calculates 

j a 
I n t e g r a t e [ y S i n [ x ] - x S i n [ y J , 
{ x , 0 , P i / 6 } , { y , 0 , P i / 2 } ] 

calculates Γ* F (ySin(x)-xSin(y))dydx. 

9 16 

inft8j:= 
In tegrate [Exp[x ] Sin[ y ] , 
{ y . P i / 6 . P i / 4 } . { x , 0 , C o s [ y ] } ] 

Outf!8j= 
Sqrt[2] Sqrt[3] Sqrt[2]/2 

JQ 
In tegrate [Exp[x ] S i n [ y ] , 
{ y , P i / 6 , P i / 4 } , { x , 0 . C o 3 [ y l ) l 

cakidates P ^ L exSin(y)dxdy. 

Sqrt[3]/2 

[ΡΡΡ(ΠρΡ<ΠΙΠΙΙ(ΠϊΠΜ1ΠΜ1ΙΜΜΤΙίΠ> 

ZEE 5Pal 
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Chapter 3 Calculus 

In cases in which the double integral cannot be computed exactly, the command 

N I n t e g r a t e [ f [ x , y ] , { x , x m i n , x m a x } , { y , y m i n , y m a x } ] 

can be used to calculate a numerical approximation of the integral 

rxmaxj-ymax 
JxminJymin 

Sample: 

Approximate the value of the double integral J J Sin(exy)dydx. 

Multiplelntegrals 
lnf23j:= 

I n t e g r a t e [ S i n [ E i p [ x y ] ] , { z , 0 , 1 } , | Mathematica cannot exactly compute 

Outf23j= 
- P i 

( I n f i n i t y ) ( + 

IB§| 

the double intégral \Q J 0 S in (e x y )dydx . 

— E x p I n t e g r a l E [ l , - I ] + 
2 

E x p I n t e g r a l E [ l , I ] ) + 

I n t e g r a t e [ -

ix , 0. 1}] 

S i n I n t e g r a l [ E ] 

x 

N I n t e g r a t e [ S i n [ E z p [ z y ] 1 . { ζ , Ο , Ι } , 
{ y . O . i } ! 

Outf24j= 
0.917402 

Ü ΖΠΕΣ1 

N I n t e g r a t e [ S i n [ E z p [ z γ]]φ { ζ , Ο , Ι } . 
ί Υ . 0 , 1 } ] 
approximates the double integral 
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Chapter 3 Calculus 

However, Nintegrate does not always produce the quickest result. The following example illustrates what 
happens when an integral which can be computed exactly is attempted using Nintegrate . 

2 x 2 
Recall that the Error function erf(x) = - ï=f e~w dw is given by Erf [x]. 

•JK J® 

Multiplelntegrals 

infZôJ:* 
▼alue= I n t e g r a t e [ C o s [ x A 2 - y ~ 2 ] , { x , 0 , S q r t [ P i ] } , 
{ y , 0 , S q r t [ P i ] > ] 

(Pi Er f [Sqr t [ - I ] Sqrt[Pi]] 

Er f [Sqr t [ I ] Sqr t [P i ] ] ) / 

(4 Sqr t [ - I ] Sqr t [ I ] ) 

Time: 25.90 seconclQI 1 ~ " 

Matkematica computes 

jfjfcos^-y^as 
bit 25.9 seconds. 

ΊΤ 

M 
sa 
a 

N[ v a l u e ] 

Outf27]= 
1.24012 

N[ va l u e ] computes a numerical cpproximation 

of value. 

The command N i n t e g r a t e [Cos [ x A 2 - y A 2 ] , {x, 0, S q r t [ P i ] } , {y, 0, S q r t [ P i ] }] does not 
produce an output for an approximation of the integral after ten minutes of computing on a Macintosh Hex. 
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■ Application: Volume 

D Example: 

Find the volume of the region between the graphs of 

q(x,y) = Cos(x2 + y2)e~x and w(x,y) = 3 - x 2 - y 2 on the domain 

The region can be viewed using Mathematical Plot3D command. 

q(x,y) = Cos(x2 + y2)e' 

Graph of q and v on the 
domain [-1,1] x 1-1,1]. 

■1 -0.5 0 0 

'v(x,y) = 3 - x 2 - y 2 

q(x,y) = Cos(x2 + y2)e" 
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The above graphs show that the region is bounded above by w(x,y) and below by q(x,y). Hence, the volume is 
determined as follows : 

Uolumes 
lftf4j;= 

«Integral/Tables, m 
Clear[q,v] 
q[x_,y_l=Exp[-xA21 Cos[yA2+xA2J 
w[x_,y_]=3-x~2-y~2; 

l!tf5j:= 
volume=Integrate[ w[ x , y ] -q[ x„ y ] , 

Be sure to open the package I n t e g r a l T a b l e s . m 
before attempting to compute definite integrals. 

m m M M M M M M M M M M W a M M I M n i MM 

InfôJ:* 
N[ volume] 

OutfôJ* 
7.02707 

A semi-colon placed at the hi 
end of a command prevents I * * 
the output from being displayed! 

guuwuwwuuuuuwwucememmup 

S3»i m 

volume is the desired volume. 
Mathematicaproduces an exact value 
which is difficult to interpret hence 
a numerical cpproximcaion is 
obtained via 
H[ volume] 

D Example: 

2 2 Find the volume of the solid bounded by the graphs of f(x,y) = l - x - y and g(x,y) = 2-x - y . 
The graph is used to determine that the region is bounded above by the paraboloid and below by the plane. 

- 2 / _ _ 
f(x,y) = l - x - y 

The goal is to find the volume of the 
region bounded by the graphs offfxj) 
andg(xjl 

g(x,y)=2-x2-y2 
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This problem is more difficult than the first example since the limits of integration must be determined. However, 
using Solve to find the values of x and y such that f(x,y) = g(x,y), these limits are found easily. First, the 
equation f(x,y) = g(x,y) is solved for y ( in terms of x ). To facilitate the use of these y-values, they are given the 
names y l and y2. 

Uolumes 
to//7/:= 

«IntegralTables. m 
Clear[f,g] 

g [ x _ . y _ ] = 2 - x ~ 2 - y A 2 ; 

S o l v e [ f [ x . y ] = = g [ x , y ] , y ] 

0utfl8j= 

{ {y -> 

1 + Sqr t [ l - 4 (-1 - x + x )] 

\Be sure the package I n t e g r a l T a b l e s . m 
has been loaded before attempting to 
compute definite integraL·. 

i 

-} 

, {y -> 

1 - Sqr t [ l - 4 (-1 - x + x )] 

2 

infZOj:* 
y l = ( l + S q r t [ l - 4 ( - l - x + x A 2 ) ] ) / 2 

0utf20j= 
2 

1 + Sqr t [ l - 4 (-1 - x + x )] 

!nf2tj:= 
y 2 = ( l - S q r t [ l - 4 ( - i - x + x A 2 ) ] ) / 2 

outfzu* 
2 

1 - Sqr t [ l - 4 (-1 - x + x )] 

-}> 

n 

To locate the points (xj) where 
Axy^Sfaj) we s o ^ e tte equation 

To save typing, name 
y i = ( i + S q r t [ l - 4 ( - l - x + x A 2 ) 1 ) / 2 j 
and 
y 2 = ( l - S q r t [ l - 4 ( - i - x + x ~ 2 ) ] ) / 2 | 

U i é É é é * * * é 
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Chapter 3 Calculus 

Next, the limits on the x-coordinate are determined : 

Uolumes 

//if/9/-
S o l T e [ l - 4 ( - l - x + x ~ 2 ) = = 0 , x l 

Outf!9j= 
4 + 4 Sq r t [6 ] 

{ { x .> K 

8 

4 - 4 S q r t [ 6 ] 
( x _> } ) 

8 

KS 

i g g l l ^ l g g ^ ^ i ^ ^ ^ ^ ^ i J i ^ ^ i ^ ^ ^ i ^ ^ ^ ^ ^ ^ J 

S o l v e [ i - 4 ( - l - x + x A 2 ) = = 0 , x ] 
solves the equation 

1-4Î-1-X+X2) = 0. 

4+4-^6 The values 

and 
4-4^6 

Ô 

Ô 

are the upper and lower limits of 
integration. 
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Finally after the limits of integration have been determined, the volume is found : 

Uolumes 

v o l u m e » I n t é g r â t e [ g [ z , y 1 - f [ z , y J„ 
{ z . ( 4 - 4 S q r t [ 6 ] ) / 8 . ( 4 + 4 S q r t [ 6 ] ) / 8 } . 
{ y . y 2 , y l ) l 

OutfW* 
4 - 4 Sq r t [6 ] 

-1 + 

-9 ArcSin[« 
S q r t [ 6 ] 

4 + 4 Sq r t [6 ] 
-1 + 

9 ArcSin[· 
4 

Sq r t [6 ] 

8 
inf23J:= 

N[ v o l u m e ] 

Outf23l= 
3.53429 

ZEDM 
il 
m 

computes 

(4+4^)/8 yl 
J J(g(x,y)-f(x,y))dydx 

(4-4VÊV8 y2 

and names the resuk vo lume. 

H[ vo lume ] yields a mmerKal 

cpproximationof vo lume. 
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Chapter 3 Calculus 

■ Series in More than One Variable 

In the same manner as In tegrate , N i n t e g r a t e , and D generalize to functions of more than one variable, the 
command Ser i e s also computes power series of funtions of more than one variable. 

The command S e r i e s [ f [ x , y ] , { χ , χ θ , η } , {y,yO,m}] computes a power series expansion of f [x, y] 
about yO up to order m and then computes a power series expansion about xO up to order n. 

The result of using the Ser i e s command always includes a remainder term and hence cannot be treated as a 
function. In order to remove the remainder term, use the command Normal. 

D Example: 

Define f(x,y) = Cos(x-KSin(y)). (i) Generate the first two terms of the powers series for f about 
y = l; (ii) generate the first two terms of the power series of f 
about y = l and then generate the first three terms of the power series about x = 0; and 
(iii) generate the first three terms of the power series of f about x = 0 and then generate 
the first two terms of the power series about y = l. 
After removing the remainder term, graph and compare the results. 
We begin by defining f and then computing the first two terms of the power series for f about y=l : 

ΙΠ Ξ== SeriesinTuioUariables f ^ B H 
\/n/Jj:= 

f [ x _ , y _ l = C o 3 [ x - P i S i n [ y ] ] 

\Outf5j= 
Cos[x - P i S in[y] ] 

\lnf7j:= 
s e r y = S e r i e s [ f [ χ , γ ΐ , { γ , 1 , 2 } ] 

\(Mf?J' 
Cos[x - P i S i n [ i ] ] + P i Cos [ l ] Sin[x - P i S i n [ l ] ] 

2 2 
- ( P i Cos [ l ] Cos[x - P i S i n [ l ] ] ) 

/ _ 
\ 

2 
P i S i n [ l ] S in[x - P i S i n [ l ] ] 2 

\ / _ 1 j . τ τ \ J. Λ Γ . 
j ^_^ + y ; + vi 

2 

( - 1 + y ) ♦ 

3 
- i + y ] 

sEQil 

m 1 
1 
"st I | : : j : j : | 

JJIl 
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SeriesinTwoUariables lail 
tofU:-

f [ x _ , y _ l = C o s [ x - P i S i n [ y - i l ] [ Defines f(x,y) - Cos(x -tiSin(y)). 

OutfU» 
Cos[x + P i S i n [ l - y] ] }\ 

W 
jjjjjj 

s e r o n e = S e r i e s [ f [ x , y l . { x , 0 , 3 } , { r , l , 2 } ] 

P i 2 ( -1 + y ) 2
 ΛΓ Α . 3 

1 - *—x *-*— + 0 [ - l + y] + 

(Pi ( -1 + y) + 0 [ - l + y ] 3 ) x + 

, , l x P i 2 ( -1 + y ) 2
 ΛΓ Α Λ3Χ 2 ΛΓ , 3 

( - ( g ) + Hj — + O C " 1 + Y] ) x + 0 [x l 

generates the power 
series offwizkrespect 
toythenx. 

s e r x y ^ N o r n a l [ s e r o n e ] 

Outf3j= 
2 

MMMHOMMM 

removes the remainder terms from s e r o n e 
the resuk is <m expression in x ami y wfticA c<m be grcphed 

mm 

X" - P i 2 P i 2 Y 2 2 
i - f- + P i x ( -1 + y) + ( - | ± - + ^ ^ - ) ( -1 ♦ y ) * 
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The command e e r y x « S e r i e s [ f [ x , y ] , { y , l , 2 } , {x,0,3}] / /Normal computes the series with 
respect to x then y and removes the remainder terms. 

Rîsra 

Mil 
m 3eryx«Ser ies [ f [x ,y ] , {y , i , 2 } , {x ,0 ,3} ] / /Hormal 

Orif4/' 

4 ,1 P i 2 (-1 + y ) 2
v 8 / _ 1 _ 

1 + X <24 48 * > + X <4Ô32Ô 
Pi2 (-1 + y ) 2 

80640 
..2 

> ♦ 

2 
6 , , 1 v Pi2 (-1 + y ) 2 2 , ,lx Pi" (-1 + y ) \ 

X <-<72δ> + 1440 > + X <"<2> + 4 > + 

Pi x (-1 + y) -
Pi x3 (-1 + y) Pi x6 (-1 + y) 

120 

Pi x7 (-1 + y) Pi2 (-1 + y ) 2 

5040 " 2 
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Chapter 3 Calculus 

We create the graphs with Version 2.0 to take advantage of Version 2.0's improved graphics features. In particular, 
we graph f [x, y ] , serxy, and seryx with Plot3D and then show all three simultaneously with the Show 
command. Finally, all four graphics objects are displayed in a single cell with the command GraphicsArray. 

inf9j:= 
plotf=Plot3D[f[x,y],{x,0,2Pi},{y,0,2Pi}, 

PlotPoints->25,Boxed->False, 
Ticks->{{0,Pi,2Pi},Hone,{-1,0,1}}, 
D i splayFunct i on->Id en1i ty, 
Shading->False]; 

plotxy=Plot3D[serxy,{x,0,2Pi},{y,0,2Pi}, 
PlotPoints->25,Boxed->False, 
D i splayFunc t i on->Id ent i ty, 
Ticks->{Hone,{0,Pi,2Pi},{-1,0,1}}, 
Shading->False]; 

plotyx=Plot3D[seryx,{x,0,2Pi},{y,0,2Pi}, 
PlotPoints->25,Boxed->False, 
Ticks->{{0,Pi,2Pi},{0,Pi,2Pi},Hone}, 
D i splayFunc t i on->Id ent i ty, 
Sbading->False]; 

a l l t l i r e e = S h o v [ p l o t x y , p l o t y x , p l o t f ] ; 

Shov[Graph ic sArray [ { {p lo t f ,p lo txy} , 
{ p l o t y x , a l l t h r e e } } ] ] 
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The result of the final Show command is displayed below: 

2 Pi 

2 Pi 

Outf9j= 
-Graphi c sAr ray-

. ^ ! ! ! ! ^ ' ^ ? ^ ΠΓΐΐι Ι Ά Jisn 

2 Pi 

r2 Pi 

m 
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Chapter 4 
Introduction to Lists and Tables 

i Chapter 4 introduces elementary operations on lists and tables. Chapter 4 is a prerequisite for Chapter 5 
which discusses nested lists and tables in detail. The examples used to illustrate the various commands in this 
chapter are taken from calculus, business, and engineering applications. 

i Commands introduced and discussed in this chapter from Version 1.2 are: 

Operations on Tables and Lists: 
T a b l e [ f u n c t i o n [ i n d e x ] , { i n d e x , s t a r t , f i n i s h , s t e p ] 
TableFora[table] 
tab le / / TableFor» 
Ha trixFor■ [ tab le ] Other Operations: 
tab le / / HatrixFore D o [ s t a t e m e n t [ i ] , { i , i s t a r t , i s t o p , i s t e p } ] 
P r i s e [ p o s i t i T e i n t e g e r ] Print[InpntFor■[express ion]] 
t a b l e [ [ p o s i t i T e i n t e g e r ] ] HeraiteH[n,x] 
Short[expression] LagnerreL[ n , x ] 
L e n g t h [ l i s t ] Pins 
L a s t [ l i s t ] Tiaes 
F i r s t [ l i s t ] Randoa[type,{ain,aax} ] 
Apply [ funct iona l i s t ] 
Hap[funct ional i s t ] 
Re lease [ tab le ] 
F i t [ d a t a , { l i n e a r l y i n d e p e n d e n t f u n c t i o n s o f T a r i a b l e ) v a r i a b l e ] 
S n a [ f [ j ] , { j , j s t a r t , j s t o p , j s t e p > ] 
/ / 
/Θ 
Graphics Operations on Lists: 
L i s t P l o t [ l i s t , o p t i o n s ] 
P a r a a e t r i c P l o t [ { x [ t ] , y [ t j } , { t , t a i n , t a a x } , o p t i o n s ] 

Options: 
PlotJoined-> True 
Ticks->ïone 
AspectRatio-> positivennaber 
PlotRange-> all 

i Commands introduced and discussed in this chapter from Version 2.0 include: 

SymbolicSum[rationalfunction, {k, kmin, kxoax) ] 
AccountingForm [number] 
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■ Applications in this chapter include: 

a Business: 
Creating Business Tables: 

Interest, Annuities, and Amortization 

D Calculus: 
Calculating and Graphing Lists of Functions 
Graphing Equations 
Tangent Lines and Animations 

D Engineering: 
Curve Fitting 
Introduction to Fourier Series: 

Calculating Fourier Series 
The Heat Equation 
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B4.1 Defining Lists 

A list is a Mathematica object of the form 
{element [1], element [2], , element [n-1], element [n] } where 
element [ i ] is called the ith element of the list. Elements of a list are separated by commas. Notice that lists are 
always enclosed in "curly" brackets {} and each element of a list may be (almost any) Mathematica object; even 
other lists. Since lists are Mathematica objects, they can be named. For easy reference, we will usually name lists. 

Lists may be defined in a variety of ways. Lists may be completely typed in or they may be created by the Table 
command. For a function f with domain non-negative integers and a positive integer n, the command 
Table [f [ i ] , { i , 0 , n } ] creates the list 
{ f [ 0 ] , £ [ 1 ] , . . . , £ [ n - l ] , f [ n ] } . 

D Example: 

=□ = Lists 
Inf27j:= 

l i s t l = { i , 3 / 2 , 2 . 5 / 2 , 3 , 7 / 2 , 4 } 

Out[27j= 
3 5 7 

(1 , - , 2, - , 3, - , 4} 
2 2 2 

tn[28j:= 
l i s t 2 = T a b l e [ i A 2 + J U { i , l , 5 } ] 

Outf28j= 
{2, 5, 10, 17, 26} 

inf29j:= 
l i s t 3 = T a b l e [ { i , i A 3 - i ) . { i , 1 , 5 } ] 

0utf29j= 

Bl 

]| 

]1 
il 
]| 

{{1, 0 } , {2, 6 } , {3, 24}, {4, 60}, {5, 120}} JJ 

ΐη l i s t l 
is the list consisting of the 
numbers 1,3/2,2,5/2,3, 
7/2and4. 

T a b l e [ i ~ 2 + l . { i , 1 . 5 > l 
creates a list consisting of the 

values of i 2 + l fori^l, 2,3, 
4,and5. 
I i s t 2 
is the list of numbers 

12,5,10,17,26. 
I i s t 3 
is the list of ordered pairs 
consisting of 

\{lt0},{2,6}f{3,24}t{4,60l 
and {5,120}. 
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Mathematica will display a list, like other output, on successive lines which may sometimes be difficult to read or 
interpret. The commands TableForm and MatrixForm are used to display lists in traditional row/column 
form. In the following example, l i s t 4 is the list of ordered triples { i , Sqrt [ i ] / / N, S in [ i ] } for 
i = l , 2 , 3, 4, 5. Notice that each ordered triple is a list. This will be discussed in more detail in Chapter 
5. 

D Example: 

litf30j:= 
l i s t 4 = f f e b l e [ { i . S q r t [ i ] / / H . S i n [ i ] / / H } , 

0utf30j= 
{{1, 1 . , 0 .841471}, {2, 1.41421, 0 .909297) , 

{3, 1.73205, 0 .14112) , 

{4 , 2 . , - 0 . 7 5 6 8 0 2 ) , 

{5, 2 .23607, -0.958924}} 

/ * / J / / · * 
TableForm[list4] 

Outf3tJ//T*bteFûrm= 
1 1. 

^ ^ Λ « ^ ^ .Α ν. ν Α· ^ · . ν ^ « « Λ Λ », 

1.41421 

1.73205 

2. 

2.23607 

0.841471 

0.909297 

0.14112 

-0.756802 

-0.958924 

list4 
is the list of ordered triples 
consisting of{2,l,.841}, 
{ZtL4l4,.909}. 
(3J.73ZJ4ÎI 
{4,Zr.756},and 
l5,Z236r.958}. 

T a b l e F o r m [ l i s t 4 ] 
represents l i s t 4 
in tabular (or matrix) form 

The same result could have 
been obtained with 

H a t r i x F o r m [ l i s t 4 ] . 
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As indicated above, elements of lists can be numbers, ordered pairs, functions, and even other lists. For example, 
Mathematica has built-in definitions of many commonly used special functions. Consequently, lists of special 
functions can be quickly created. 

D Example: 

The Hermite polynomials , Hn(x), satisfy the differential equation y"-2 xy'+2ny = 0. 

The built-in command HermiteH[ n,x] yields the Hermite polynomial Hn(x). 

Create a table of the first five Hermite polynomials and name the resulting list hermitetable . 

ListsofFunction 

hermite tab le=Table [HermiteH[n ,x ] . {n ,1 .5 )1 

OutfoJ* 
2 3 

{2 x, -2 + 4 x , -12 x + 8 x , 

2 4 3 5 
12 - 48 x + 16 x , 120 x - 160 x + 32 x } 

A / 7 / -
TableForm[hermitetable] 

Outf7j/STabIeFûrm= 

wmmvol 

creates a table of polynomials 
HermiteH[l,x] 
HermiteH[5 ,x] . 
The resulting list is named 
h e r m i t e t a b l e . 

ja 
displays hermi te tab le 
as a column. 

2 x 

-2 + 4 x 

-12 x + 8 x 

12 - 48 x + 16 x 

3 5 
120 x - 160 x + 32 x 
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In fact, lists can be evaluated at certain numbers so that lists of numbers are created: 

hermitetable / . x->i 
0utf/8j= 

{2 , 2, - 4 , - 2 0 , -8 } 

tnf/9j:= 
values=Table[ 

M[bermitetable /.x~>j J 
{j,0,2,2/10}]; 

TableForm[values] 

Out ft 9j/STâbteForm= 
- 2 . 

calculâtes the value of 
by replacing x by 1. 

}\ 
«BWBBiHIUWIUWtfatfWWWWWiWWIWWUlMIUWW 

computes a table ofcpproximations of the value 
o/hermi te table 
by replacing* by j for j=0, 2/10,4/10,..., 18/10,Z 
The resulting list of numbers is named 

0. 

0.4 

0.8 

1.2 

1.6 

2. 

2.4 

2.8 

3.2 

3.6 

4. 

-1.84 

-1.36 

-0.56 

0.56 

2. 

3.76 

5.84 

8.24 

10.96 

14. 

0. 

-2.336 

-4.288 

-5.472 

-5.504 

-4. 

-0.576 

5.152 

13.568 

25.056 

40. 

12. 0. 

10.1056 22.7302 

4.7296 38.0877 

-3.2064 39.9283 

-12.1664 24.5658 

The semi-colon at the end 
of the command suppresses 
the resulting output. Instead 
va lue s is displayed 
in a tabidarform 

-20. -8. 

-23.9424 -52.8538 

-20.6144 -98.9363 

-6.0224 

24.4416 

76. 

-127.816 

-112.458 

-16. 

luvvut»""'"""""""""»"""""»»"""»» 
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Moreover, operations, such as differentiation, can be performed lists: 

infZSj:* 
D[berm±tetable ,x] / / TableFon 

Outf25jsYTabteF#rm= 

2 

8 x 

2 
-12 + 24 x 

-96 x + 64 x 

2 4 
120 - 480 x + 160 x 

M*JLlJ&&&tft 
computes the derivative (with respect to x) 
of each element of be rmi t e t a b l e 
and expresses the resutt in a tabular form 
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S 4.2 Operations on Lists 
■ Extracting Elements of Lists 

Individual elements of lists are obtained using double-square brackets. For example if t a b l e is a list, then 
t a b l e [ [2] ] is the second element of the list t a b l e . The jth element of t a b l e is t a b l e [ [ j ] ] . 

O Example: 

The Mathematica function Prime can be used to calculate prime numbers. Prime [1] yields 2; Prime[2] 
yields 3; and, in general, Prime [k] yields the kth prime number. 

Make a table of the first fifteen prime numbers. What is the third prime number? the thirteenth prime number? 

EHtractingLists 

M2J;= 
p r i m e l i s t = T a b l e [ P r i m e [ j ] , { j , i , 1 5 } ] 

Out[2j= 
{2, 3 , 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 

41, 43, 47} 

in[3/;= 
p r i m e l i s t [ [ 3 ] ] 

Oui[3j= 
5 

primelist[[13]] 

0utf4j= 
41 

Double-Square Brackets 
"[[]}" are ALWAYS 
used to extract elements 
of lists. 

\o\ 

......................... 
a 

p r i m e l i s t 
isaüst of the first 25 
prime numbers. 

p r i m e l i s t [ [ 3 ] ] 
gives the third element 
of 
primelist. 

primelist[[13] ] 
gives the thirteenth element 
of 
p r i m e l i s t . 

i Graphing Lists and Lists of Functions 

If l i s t = { a [ l ] , a [ 2 ] , . . . , a [n]} is a list of numbers, L i s t P l o t [ l i s t ] plots the points 
{l,a[lj}, {2,a[2]}, {3,a[3]J,..., [n,a[n]}. In general, the command L i s t P l o t has the same options as the 
command P lo t . 

Sometimes it is desirable to suppress the output of lists; particularly when long lists are used. In general, a 
semi-colon " ; " placed at the end of a command suppresses the resulting output. 
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D Example: 

The following example demonstrates how L i s t P l o t [ l i s t ] is used to plot the points {1 , f [ 1 ] } , 
{ 2 , f [2] } , { 3 , f [3] } , . . . , { 1 0 0 0 , f [ 1000] } where f [ x ] = S i n [ x ] / / N . 

Let f(x)=Sin (x). First, make a table of the values Sin (1), Sin (2),..., Sin (10); then make a table of the values 
Sin(i) for i=l, 2 , . . . , 1000. Graph the points (i,Sin(i)) for i=l , . . . , 1000. 

OperationsOnLists 

C l e a r [ f 1 
f [ * _ ] : = S i n [ x ] / / H 

tnf£f:~ 
t a b l e i = T a b l e [ f [ x ] , { x , l , 1 0 } ] 

{0.841471, 0.909297, 0.14112, 

-0 .756802, -0 .958924, -0 .279415, 

0.656987, 0.989358, 0.412118, 

-0.544021} 

t a b l e 2 = T a b l e [ S i n [ x ] , { x . 1 , 1 0 0 0 } ] ; 

inf4l:* 
LlstPlot[table2] 

iK> 

1 

t a b l e l = T a b l e [ f [ x ] . { x . 1 . 1 0 } 1 
is a list consisting of the values offfâfor 
7*1,2,3,..., 10. 

A semi-colon placed at the end of 
a command prevent* the output 
from being shown. 

o.5tv'; 
Λ.'.ν.·.ν:.'ίν 

I ··.··: 200*:; # û Vrö'Q ;·.8ϋ0- ÎLUO 0 
-0.5ΐ%\'τ·7ν'Λ\ν::;·::/^//,\'·!:;':::; 

-It-

EC a 

t a b l e 2 is a list consisting of the 
values ofßföfor y* 1,2,..., 1000. 
Since this list consists of 1000 elements, 
we choose to not display the list. 
ListPlot[table2] 
plots the points {xJSin[xJ}for 
7* 1,2,3,...,1000. 

Both tables of numbers and tables of functions can be graphed. In the following example, we graph the elements of 
h e r m i t e t a b l e (created above) on the interval [-3,3]. 
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D Example: 

Use Mathematica to graph the first five Hermite polynomials on the interval [-3,3]. 

Notice that within the P l o t command, hermi te tab le is enclosed by the command Release . 

Re lease [ h e r m i t e t a b l e ] allows the elements of h e r m i t e t a b l e to be evaluated for the values of x 
on [-3,3] instead of recreating the table for each value of x. 

o Version 1.2 (or earlier) users must always enclose the table to be graphed by Release. In Version 2.0, the 
command Release has been replaced by the command Evaluate. Hence, when graphing tables of 
functions with Version 2.0, be sure to enclose the table by Evaluate. 

g r a y s = T a b l e [ G r a y L e v e l [ j / 1 0 ] , { j , l , 5 } J 

0utf8j= 
1 1 3 

{GrayLevel[ — ] , GrayLevel[ - ] , GrayLevel[ — ] , 
10 5 10 

2 1 
GrayLevel[-], GrayLevel[ -]} 

5 2 

iiiiHif&WJ 

g r a y s is a table ofvarhus 
graylevels that wUl be used 
to grcpk the table of functions 
h e r m i t e t a b l e . 

Plot[Kelease[bermitetable]„{x,-3,3K 
PlotStyle->grays] 

\ / \ 100 

1 \ 50 

3'" -Î2r*'^ V' 

/ -So 
* : 

/ \ -100 
t : 

: / : t 

V % 3 

JJL 
Each element of b e rmi t e t a b 1 e 
is grcpked on the interval[-3,3] 
according to the xraylevel specified 
by the list g r a y s . 

7ΤΒΜΓ' 

When using versions prior to Version 2.0, 
be sure to enclose the name of the list 
by R e l e a s e . 
When using Version 2.0, be sure to enclose 
the name of the list by E v a l u a t e . 

Outf!t/= 
-Graphics- ]J 

y ΖΠΖΖΜ 
In the previous examples, the domain of the functions has been the set of natural numbers. This does not have to be 
the case, however. TÏie command 
Table[f[x] , {x,xmin, xmax, xstep}] 
creates a list by evaluating £ at values of x from x = xmin to x = xmax using a stepsize of xs tep . If n is a 
positive integer, the command Table [f [ x ] , {x, xmin, xmax, (xmax-xmin) / n } ] creates the list, 
containing the n+1 elements: 
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{ , . Ί Γ xmax-xminl Γ 0 xxnax - xmin ] _r .1 

f[xmxnj, f xminf Lf xmin + 2 , ... , f[xmax]>. 
When dealing with a long Mathematica object expression, another useful Mathematica command is 
Short [ e x p r e s s i o n ] . This command produces an abbreviated, one-line output of e x p r e s s i o n . If 
l i s t is a table, the command Short [ l i s t ] produces a one-line output of l i s t . If n is a positive integer 
greater than one, Short [ l i s t , n] produces an abbreviated n-line output of l i s t . This abbreviated list 
includes an element of the form « n » which indicates the number of elements of l i s t that are omitted in the 
abbreviated output. 

■ Evaluation of Lists by Functions 

Another helpful command is Map [f, l i s t ] . 
This command creates a list consisting of elements obtained by evaluating f for each element of l i s t , provided 
that each member of l i s t is an element of the domain of f. 

*Nçtiçt; 
To avoid errors, be sure to check that each element of l i s t is in the domain of f prior to executing the 
command Map [f, l i s t ] . 

If l i s t is a table of n numbers and each element of l i s t is in the domain of f, recall that l i s t [ [ i ] ] 
denotes the ith element of l i s t . The command Map [f , l i s t ] produces the same list as the command 
T a b l e [ f [ l i s t [ [ ! ] ] ] , { i , l , n } ] . Using Map in conjunction with L i s t P l o t yields an 
alternative approach to graphing functions. 
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D Example: 

Let g(x) = Cos(x)-2Sin(x). First create a table of the values from π to 5π in steps 
4π 

of — . Name the list t a b l e 3. This is the same as creating the table of values 

44π An 
π, ~ r r , ... , π + η- , 5π 

40 40 
Evaluate g for each element in tab le3 . 

= {rc+j 4π 
40 

: j = 0, 1, 2, ... ,4oJ. 

OperationsOnLists 

C l e a r [ g ] 
g [ x _ ] : = C o s [ x ] - 2 S i n [ i ] 

tnfu/:* 
t a b l e 3 = T a b l e [ 

tof?J:* 
S h o r t [ t a b l e 3 ] 

Outf?JsVShort= 
11 P i 

{Pi , , « 3 8 » , 5 P i} 
10 

t a b l e 4 = H a p [ g , t a b l e 3 ] ; 

M9J:* 
Short[table4J 

Ovtf9jsVStort= 
{-1, « 3 9 » , -1} 

inf!Oj:= 
ListPlot[table4] 

rCn Begin by clearing prior definitions of 
| | § | g and defining gfcCy Cfas(x)-2Sïn(x) 

j . { j . P i . 5 P i , 4 P i / 4 0 } ] ; J 

Remember that a 
semi-colon placed 
at the end of a 
command prevents 
the output from 
being shown. 

}\ 

2 

1 

-1 

-2 

10 - 20· 30 - 40 

Outf!Oj= 
-Graphics-

jjjjjjj t a b l e 3 consists of the values 

K+râ£-fornrltZt3f...t40. 
40 

Sbort[table3] 
prints a portion of t a b l e 3 
that consists of one Une. In this case 
it has yielded the first few elements 
and the last few elements. 

ft lap[g, t a b l e 3 ] creates a table 
of the values g(table3ffiJJ)for 
i= I,2,3,..., 40. The table is named 
t a b l e 4 , 
Sbo r t [ t a b 1 e 4 ] prints a portion 
of t a b l e 4 
that conskts of one line. 

ListPlot[table4] 
graphs the points (i,table4[[i]])for 
if 1,2,3,....40. 

2EI 
H> 

201 



Chapter 4 Introduction to Lists and Tables 

In general, L i s t P l o t and P l o t share many of the same options. However, since the L i s t P l o t command 
graphs a set of points, and is NOT connected, a connected graph is obtained by using the P lo t Joined option: 

OperationsOnLists 

L i s t P l o t [ t a b l e d P l o t J o i n e d - > T r u e ] 

OutfitJ= 
-Graph ic s - ]J 

m 

ZUM wm 

plots the points (i,tabk4[[iJJ)for 
i= 1,2,3,... ,40 and then connects 
the points with line segments. 

Naturally, lists of functions can be evaluated in the same manner as above: 

D Example: 

The Laguerre polynomials are defined recursively by the relationship LQ(X) = 1 and 

e *d n (x n e - x ) 
LnW = - For each n, L^x) satisfies the differential equation xy"+(l-x)y'+ny = 0. 

n! dx11 

Ln(x) is computed with the built-in function LaguerreL [n,x]. 

For n = l,2,3,4, use Mathematica to verify that L^x) satisfies xy"+(l-x)y'+ny = 0. 

First a table of the first four Laguerre polynomials is created and then a function f is defined as follows: 

For a given ordered pair {n, p o l y } , f [ {n, po ly} ] returns an ordered quadruple given by 
{ x D [ p o l y , { x , 2 } ] , 

< l - x ) D [ p o l y / x ] , 
n*poly,D[poly, 
{x,2}]+(1-x)D[poly,x]n poly 

}. 
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Remember that D [poly, {x, n} ] computes the nth derivative of p o l y with respect to x. 

ListsofFunction 
tnf32j:* 

l a g t a b l e = T a b l e [ { n , L a g u e r r e L [ n , x ] } , { n , l , 4 } ] 

0utf32j* 
2 

2 - 4 x + x 
{{1. 1 - x } , {2, }, 

2 

JÖH 
l a g t a b l e 
is a list of ordered poors. 
The first element of each 
orderedpair is aposizive 
integer i, the second element 
of each orderedpair is the ith 
Lqguerre polynomial 

mm 
2 3 

6 - 18 x + 9 x - x 
{3, } , I corresponds to l a g t a b l e [ [ 3 g 

corresponds to l a g t a b l e [ [ 4 J ] I 
IOIfllOIOIOIOIO»IOIfllOHIfllDIOIDIfllllOIIIIIOHIDIDIIIIIIIOIIIIIIICIOIIIOIDIUOI|IUiHlilUI<r 

24 - 96 x + 72 x - 16 x + x 
{ 4 , }} 

24 

lnf33j:= 
f [ { n _ , p o l y _ } ] : = 

{x D [ p o l y * ( x f f 2 } ] # ( l - z ) D [ p o l y # x ] # n p o l y . 
S impl i fy[ 

x D [ p o l y , { x , 2 } ] + ( i - x ) D [ p o l y . x ] + n p o l y ] } 

yiiiiujljljiyi* 

For a given ordered 
pair{npoly}f 
f({npofy}J returns 
an ordered 
quadruple. 

Map [f, l a g t a b l e ] evaluates f for each element of l a g t able . The same result would have been 
obtained with the command Table [f [ l a g t a b l e [ [ i ] ] , { i , 1 , 4 } ] . 
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Note that the fourth component in each ordered quadruple below is zero. Hence, each member of l ag tab le is 
a solution. 

Inf34j:= 
H a p [ f , l a g t a b l e ] 

Outf34j= 
(1 - x) (-4 + 2 x) 2 

{{0, - ( 1 - x ) , 1 - x, 0 } , {x, , 2 - 4 x + x , 0}, 
2 

2 2 3 
(18 - 6 x) x (1 - x) (-18 + 18 x - 3 x ) 6 - 18 x + 9 x - x 

{■ 0}-

2 2 3 
x (144 - 96 x + 12 x ) (1 - x) (-96 + 144 x - 48 x + 4 x ) 

{-
24 

2 3 4 
24 - 96 x + 72 x - 16 x + x 

24 

-, 0}} 

52 liftMttttmmmtmmttmftmtwmmmmMtmM χ Fl̂ T̂!?■!^!^!^!■!^!^!^!^!^!^!^!^^^!^^!^!■!^!^!^!^!^^^!^!^^!^!■!^!■!^!^!^!^!^!^!^!■!^!■!^!^!^!^!^!^!^^!^!^!^!^!^!^!^!^!^!^!^^!^!^!^!^^!^!^!^!^l·!■!^!^!^!^!■!^!^!■!!l K t _ 

Other List Operations 

A specific operation can be applied to the elements of a list through the command 
Apply [operat ion , l i s t ] . Of course, in order to use this command, the given o p e r a t i o n must be 
defined for the elements of l i s t . 

For example, if numbers is a list of real numbers, then the command Apply [Plus , numbers] adds 
together all the elements of numbers. 

Some other Mathematica commands used with lists are: 
Length [ l i s t ] , which gives the number of elements in l i s t ; 
F i r s t [ l i s t ] , which gives the first element of l i s t ; and 
Last [ l i s t ] , which gives the last member of l i s t . 

Several examples of these commands are shown below. 

Also notice that the definition of a vector - valued function f : 9Î -> SRn 

which maps the real numbers to n-space can be made using a list. This is done below in the following manner : 

f f x . l ^ j f ^ x ^ f 2(x), f 3 (x ) , · · · , f n(x) } where fk(x) :SR->9Î f o r l < k < n . 
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D Example: 

Define ^ - ΐ ί τ ^ : J » 3 6 ~ Γ 7 ο ) [· C r e a t e a t a b l e o f Λ β n u m b e r s *02» 202,..., 502, 

2 
and 60 . Evaluate f for each number in the table Name the resulting table l i s t 2. 

I D ^ ^ ^ ^ ^ e OperationsOnLists ^^^^^ÊS 
\tnf32j:= T 

C l e a r [ l i s t , l i s t 2 , I i s t 3 , g , £ ] 
l i s t = T a b l e [ j ~ 2 . { : j \ 1 0 , 6 0 , 1 0 } ] J 

{100. 400. 900. 1600. 2500. 3600} J_ 

\ln[33j:= Y 
À p p l y [ T i m e s , l i s t ] J 

\0uif33j= 1 
518400000000000000 J_ 

\lnf34j:= Y 
f [ x _ ] = { ( x / i 0 0 ) ~ 2 , ( 3 6 - ( x / 1 0 0 ) ) A 2 } 
l i s t 2 = H a p [ f . l i s t ] J 

\0utf54j* 1 
{{1. 1225}. {16. 1024}. {81. 729}. 

{256. 400}. {625. 121}. {1296. 0}} J_ 

\/û/35j:= ] " 
L e n g t h [ l i s t 2 ] J 

\uutf35/= 1 
6 

\tof3ôj:= Y 
F i r s t [ l i s t 2 ] J 

\out[3oJ= Λ 
{1. 1225} J_ 

M37J:= Y 
L a s t [ l i s t 2 ] J 

{1296. 0} J_ 

inf38j:= Y 
À p p l y [ P l u s , l i s t 2 ] J 

{2275. 3499} J_ 

K*""^*^«"««"·»»"«^^ ^ ■ Ι:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:':·;·:·:·:·:·:·;·:·:·:·:·:·;·:·:·:·:·:·;·;·;·;·:·ΐ » 

ü 
"H 
pli 

M 
M 

l i s t is the list of numbers 

102 = 100, 2 0 2 = 400, 3 0 2 = 900 

4 0 2 = 1600, 5 0 2 = 2500, and 

6 0 2 = 3 6 0 0 . 

I A p p l y [ T i m e s . l i s t ] 
tfïuityuôs the éléments of 
l i s t together. 

I Hap[ f, l i s t ] computes 
£ [ l i s t [ [ i ] ] ] 

\for'v=ltZt3t4t5tand6. 
The resulting list is named 
l i s t 2 . 

L e n g t h [ l i s t 2 ] 
gives the number of 
elements in 
l i s t 2 . 

First[list2] 
gives the first element of 
l i s t 2 . 

Last[list2] 
I gives the last element of 

l i s t 2 . 

À p p l y [ P l u s , l i s t 2 ] 
computes the sum of the first 
coordinates and second coordinates 
of 
l i s t 2 . 
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In the following example; Map is used with the function g:SK ->9î defined via g(x,y) = Vx + y · 

D Example: 

Evaluate g for each element of l i s t 2 ; call the resulting table l i s t 3 . Add up the elements of l i e t 3 ; multiply 
together the elements of l i s t 3 . 

As has been the case with other examples, a numerical approximation of each member of the list is obtained using 
//N. Otherwise, exact values are given. 

Inf39j:= Tj 

l i s t 3 = H a p [ g , l i s t 2 ] J 

\Outf39j= Λ 
{Sqrt[ 1500626], 16 S q r t [ 4 0 9 7 ] , 81 S q r t [ 8 2 ] , 

I 16 Sqrt[881], Sqrt[ 405266], 1296} JJ 

M a p [ g , l i s t 2 ] 
computes 
g [ l i s t 2 [ [ i ] ] 
for 1*1,2,3,4,5,6. 
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We use the Apply command to compute the desired sum and product. Mathematica gives exact results unless 
otherwise requested: 

A p p l y [ P l u s . l i s t 3 ] 

Outf4U/= 

1296 + 81 Sqrt[82] + 16 Sqrt[881] + 

16 Sqrt[4097] + Sqrt[405266] + 

Sqrt[ 1500626] 

A p p l y [ P l u s , l i s t 3 ] / / M 

Outf4!j= 
5390.12 

tof42j:* 
A p p l y [ T i m e s . l i s t 3 ] 

Outf42j= 
26873856 Sqrt[82] Sqrt[881] Sqrt[4097] 

Sqrt[405266] Sqrt[1500626] 

inf43j:= 
Apply[Times,list3J // H 

Out[43j= 
17 

3.60549 10 
kj|iyilij||lülll[j|^^^^^~i~~~r~~~ir~~«'--~i-~~i vMKXi I ffofa 

m 

Apply[Plus , l i s t3] 
computes the exact sum of 
the elements of 
l i s t 3 . 

Apply[Plus.list3J // H 
computes an approximation 
of the sum of the elements of 
l i s t 3 . 

Apply[Times.list3] 
computes the exact product of 
the elements of 
l i s t 3 . 

Apply[Times,list3] / / 1 
computes an approximation of 
the product of the elements of 
l i s t 3 . 

■ Alternative Way to Evaluate Lists by Functions 

D Example: 

A table consisting of ten random real numbers on the interval {0, 5} is found with 
Table [Random [Real, {0, 5 } ] , {10}] and is called t l . A function g [x]=Mod[x, 1] is then 
defined; hence, g is merely x Modulo 1. In the same manner as above, the command Map [g, t l ] evaluates g 
at each element in t l . However, the same result is obtained with t l / / g and g/@tl as illustrated below: 

B Note that since the command Random is used, if you enter the following sequence of calculations, t l will 
differ each time. 
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[§□ UsingOutput I H i 

\inf!!5j:= "11 
t l = T a b l e [ R a n d o m [ R e a l , { 0 , 5 } ] , { 1 0 } ] J 

\ Outfit 5J= 1 
{0 .769002, 2.85436, 4 .88951 , 1.6913, 

4 .0376, 0.23177, 3.79822, 2.88585, 

1.25087, 3.53513} JJ 

\inf!!ôj:= Ί 
g [ x _ ] : = M o d [ x , l ] J 

\/fif//7j:= 11 
H a p [ g , t i ] J 

\Outf!!7j= 1 
{0 .769002, 0.854362, 0 .889511, 

0.691299, 0.0375963, 0.23177, 

0.798223, 0.885855, 0.250874, 

0.535125} J j 

\in[!t8j:= T 

t l / / g J 
\Outf!!8j= Λ 

{0 .769002, 0.854362, 0 .889511, 

0.691299, 0.0375963, 0.23177, 

0.798223, 0.885855, 0.250874, 

0.535125} J^ 

\inf!!9j:= T 

g /Θ t l J 
\Outft!9j= 1 

{0 .769002, 0.854362, 0 .889511, 

0.691299, 0.0375963, 0.23177, 

0.798223, 0.885855, 0.250874, 

1 0.535125} J^ 

B™*™™™™*^^ ' IM:·:·:!;::::·:·:::·::;·:·:·:·:::·:·:;:!::;·::::::::::;;:!:::: ^ 

m 
13 

I I 

üliij 

ρπ| 

M 
m 

t l is a table of ten "random" 
real numbers between 0 and 5. 

Defines g(x) to be x Modulo 1. 

Uap[g,t l ] 
computes 
g [ t i [ [ i ] ] ] 
for ir 1,2,.. .JO. 

t l / / g and 
g /@ t l produce the 
same results as 
Map[g,t l ] . 
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D Example: 

The sum of the squares of the first 100 positive integers is computed by several different methods below. First, 
table t 2 of the squares of the first 100 positive integers is created. The commands 
Sum[ i A 2 , { i , 1 , 1 0 0 } ] , Apply [ P l u s , t 2 ] , and Plus@@t2 all achieve the correct sum of 
338350. 

UsingOutput 
KS 

t 2 = T * b l e [ i ~ 2 . { 1 . 1 . 1 0 0 } ] 
S u m [ i A 2 . { 1 . 1 . 1 0 0 } ] 

338350 

Àpply[Plus.t2] 

0ütf!2tJ= 
338350 

Plus e@ 

Outf?22j= 
338350 

t 2 

rhïïïfflYiYnïimÎWiÎ ZUKPI i J i i l l l l M m 
a 

t 2 is the table {2,4t 9,..., 20000}. 
S u m [ i A 2 . { i . 1 . 1 0 0 } ] computes 
100 
]^i2 =1 + 4 + 9+...+10000. 
i=l 

Apply[ P l u s . 12 ] adds together 
tte elements of t 2 . 

P l u s θ β t2 produces the exact 
same result. 
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B 4 . 3 Applications 

■ Application: Interest, Annuities, and Amortization 

The use of lists and tables are quite useful in economic applications which deal with interest rates, annuities, and 
amortization. Mathematica is, therefore, of great use in these types of problems through its ability to show the 
results of problems in tabular form. Also, if a change is made in the problem, Mathematica can easily recompute the 
results. 

A common problem in economics is the determination of the amount of interest earned from an investment. 
Consider the following: If P dollars are invested for t years at an annual interest rate of r% compounded m times per 

( o m t 

year, the compound amount A(t) at time t is given by: A(t) = P 1 +— 
V m ; 

A specific example is shown below where the amount of money accrued at time t represents the sum of the original 
investment and the amount of interest earned on that investment at time t. 
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□ Example: 

Suppose $12,500 is invested at an annual rate of 7% compounded daily. How much money has accumulated at the 
end of each five year period for t = 5,10,15,20,25,30? 

Interest 
inft?J:= 

Clear[ac , in teres t ] 
ac[t_]=12500 (i+.07/365)^(365 t ) 
in teres t [ t_J=ac [ t ] -12500; 

Tfeb le [ { t ,ac [ t l ) , 
{ t , 0 ,30 ,5 )1 / / TableForm 

T^H 

Outf!Sj//T*ùIeFûrm= 
0 12500 

10 

15 

20 

25 

30 

17737.7 

25170.2 

35717. 

50683.2 

71920.5 

102057. 

The total value of the investment 
is given for t-0,5,10,15, 
20,25, and 30 (years) 

a c [ t ] 
gives the total value 
of the investment at 
the end oft years. 
i n t e r e s t [ t ] 
yields the total 
amount of interest 
earned at the end of 
t years. 

HWftWHWmMOWiMIHmMMMWMIMUMMMOIII 

T a b l e [ { t , a c [ t l ) , 
{t ,0,30,5)1//TableForm 
produces the table of ordered pairs 
(t,ac[t]}fort=0,5,... ,30and 
then presents the final output in 
TableForm 

Table[{t,ac[t],interest[t]} 
{t,0,30,5)1 // TableForm 

Outf!9j/STâb!eFarm= 
0 12500 0 

5 

10 

15 

20 

25 

30 

17737.7 5237.75 

25170.2 12670.2 

35717. 23217. 

50683.2 38183.2 

71920.5 59420.5 

102057. 89556.6 

Tim 

The total value of the investment is given in the 
first column and the total amount of the interest 
earned is given in the second column for t=0, 
5,10,15,20,25, and 30. 

ΜΟΜΜΜΜΜΚΑΒΜΜ 

Table[{t,ac[t],±nterest[t]}, 
{t,0,30,5}] // TableForm 
produces the table of ordered triples 
{t,ac[t],interest[t]} fort=0,5,... ,30and 
then presents the final output in TableForm 

££2££££-J£££?£!£**i£ iiiiiiiiiiinaai 
sa 

MOO0W 
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The problem can be redefined for arbitrary values of t , P, r , and n as follows : 

Interest 

lnfZO]:= 
Clear[ac,interest,results] 
ac[t_,P_.r_,n_l=P (l+r/n)~(n t) 
interest[t_,P_,r_ ,n_l=ac[t,P,r,n]-P; 

InfZIJ:* 
results[{tO_,t l_,m_KP_.r_,n_] :=Table[ 

{ t , a c [ t , P , r , n ] , inter est [ t ,P , r,n] >, 
{ t , t O , t l , n } ] / / TableForm 

f • I · | £|B2r^aBBj22£££j£££2£j£^^ 
m 
a 

Notice that the previous 
functions can be 
generalized for arbitrary 
t, P, r, and n. 

Notice that the user-
definedfimction 
resu l t s 
combines several user-
defined functions. 

Hence, any problem of this type can be worked using the functions defined above. 

D Example: 

For example, suppose $10,000 is invested at an interest rate of 12% compounded daily. Create a table consisting 
of the total value of the investment and the interest earned at the end of 0,5,10,15,20, and 25 years. 

In this case, we use the function r e s u l t s defined above. Here, t 0=0 , t l=25 , m=5, P=10000, 
r=.12, and n=365: 
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Notice that if the conditions are changed to t0=0, tl=30,m=10,P=15000, r=.15, andn=365, the 
desired table can be quickly calculated: 

Interest IHÎ 

r e s u l t 3 [ { 0 , 2 5 . 5 } . i 0 0 0 0 . . 1 2 , 3 6 5 ] 

Outf22jS/Tâo!*Fûrm= 
10000 0 0 

5 

10 

15 

20 

25 

■TJTIIÏIWITII 

\ù] 
gives the total value and total interest of 
an investment of $10,000 invested ax 12% 

| annually compounded daily for 0,5,10, 
15,20, and 25 years. 
IIHIHMtHHHIIH>IMHIHHMMinMM|IIUIiH) 

18219.4 8219.39 

33194.6 23194.6 

60478.6 50478.6 

110188. 100188. 

200756. 190756. 

M23J:* 
results); {0, 30. 10}. 15000,. 15, 365] 

Outf23j//Tsö?eForm= 

0 

10 

20 

15000 

67204.6 

301097. 

0 

52204.6 

286097. 

J2 
gives the total value and total interest 
of an investment of $15,000 invested at 
15%annualfycompoimdeddaifyfor0,10, 

30 
6 6 

1.34901 10 1.33401 10 

sjiiyiiiiiEiiiii^MniK'8 ■ ·""""■"s ■""ι"^υικΪ31 
ΐΊΊΊΐΊΊΊΊΊΊίΊ-ιΊΊΊιιΓιΊΊιινιΥιΊιΙΙΊΙΙ-ιΊΊΙΊΊΙΙΊ-ι-ιΙΊΊΊ-ιΊΊΙΊιΊΊΊΐ  ̂ L 

sa 
aa 

The problem of calculating the interest earned on an investment is altered if the interest is compounded continuously. 
The formula used in this case is as follows : 
If P dollars are invested for t years at an annual interest rate of r% compounded continuously, the compound amount 

A(t) at time t is given by: A(t) = Pe 
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D Example: (Future Value) 

Consider the following : 

If R dollars are deposited at the end of each period for n periods in an annuity hat earns interest at a rate 

" ( i+j ) n - i1 
of j per period, the future value of the annuity is given by: Sfuture = R 

J 

A function which calculates the future value of the annuity and several examples using this function are given 
below : 

Interest 

f u t u r e [ r _ , j _ , n _ ] = r < ( ( i + j ) A n - l ) / j ) 

Outf7j= 
n 

( - 1 + ( 1 + j ) > r 

VQ\ 

future[250,.07/12,5 12] 

Out{8j= 

17898.2 
inf?/:= 

\ 
Notice that this table consists 
of ordered pairs; they are enclosed 

Öutf9j//TaMeForm= 
1867.49 1 

5 

9 

13 

17 

21 

25 

11021.5 

23614.4 

T a b l e [ { t , f u t u r e [ 1 5 0 , . 0 8 / 1 2 , 1 2 t]}Jm^a 
{ t , 1 , 2 5 , 4 } ] / / TableForm 

f u t u r e [ r , j , n ] 

,(i+f-i 
computes r | -—L. 

f u t u r e [ 2 5 0 , . 0 7 / 1 2 , 5 12] 
computes the future value of the 
annuity where $250 is deposited 
at the end of each month for 60 
months at a rate of 7/12 %per 
month 

table of the future values of the 
annuity where $150 is deposited at the 
end of each month for 121 months at a 
rate of 8/12 %per month for 
t-1,5,9,13,... ,21,25. 
The result is expressed bn TableForm 

In thL· table, the first column 
corresponds to time (in, years) 
and the second column corresponds 
to the future value of the annuity. 

40938.1 

64769.6 

97553.8 

142654. 

Γι r?i p 
D Example: (Annuity Due) 

Another type of annuity is as follows : 

If R dollars are deposited at the beginning of each period for n periods in an annuity with interest that earns 
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interest at a rate of j per period, the annuity due is given by: Sdue = R (î+jr1-! 
J 

-R. 

Again, the function to determine the amount due is defined below with accompanying examples. 

Interest 
tnfô2/:= 

d u e [ r _ , j _ . n _ ] = r ( ( ( l + J K ( n + l ) - i 
>/3>-r 

OutfôZj* 
1 + n 

( -1 + (1 + j ) ) r 

j 

d u e [ 5 Q 0 , . 1 2 / 1 2 , 3 1 2 ] 

Outfo3j= 
21753.8 

Table[{100 k,due[100 k,.09/12,10 12] 
},{k.l,10}] // TableForm 

Outfô4j//TâbteForm= 

K> 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

19496.6 

38993.1 

58489.7 

77986.3 

97482.8 

116979. 

136476. 

155973. 

175469. 

194966. 

d u e [ r . j . n ] 

Vif*1-! 
computes 

-r . 

d u e [ 5 0 0 , . 1 2 / 1 2 . 3 1 2 ] 
calculates the annuity due of 
$500 deposited at the beginning 
of each month at an annual rate 
of 12% compounded monthly 
for three years. 

calculates the annuity due of $100k 
deposited at the beginning of each month 
at an annual rate of 9% compounded 
monthly for 10 years for k= 1,2,3,..., 10. 
The result is expressed in TableForm 

Notice that the first column corresponds 
to the amount deposited each month at 
an annual rate of 9% compounded 
monthly and the second column corresponds 
to the y able of the annuity. 

?Mffffyyi0l»IO>0HM>MO*0IOICI0«0IOH 

lYmfflflfflmwim^^ ΠΥΐΥΐΊΊΊΥιΊ-ιΊΥιΥιΙ ΊΙ ^ I l· - ι Γ ι ι Γ ι ι :Ϊ :ί ι T i V i i i i T i V r i · i l l T i i i Γ ι Υ ι ι Ι ^ I *—Jl 

Ka 
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□ Example: 

The following table compares the annuity due on a $100 k monthly investment at an annual rate of 8% 
compounded monthly for t= 5,10,15,20; and k = 1,2,3,4,5. This type of table can prove to quite useful in the 
analysis of investments. (Note that the values of k and t were later added to the table.) 

This yields a two-dimensional 
table that gives the annuity 
due of $100 k deposited 
monthly at an annual rate 
of 8% compounded monthly 

\for t years where A» 1, Z, 3, 
4, and 5; t=5,10,15, and 20. 

| For example, the annuity due 
of $300 deposited monthly at 
an annual rate of 8% compounds 

I monthly for 15 years is 
$104,504. 

ΙΠ ^ ^ ^ ^ Interest ^ ^ ^ ^ ^ ^ ^ S 
tnfoSj." 

T a b l e [ d u e [ 1 0 0 Jc.. 0 8 / 1 2 . 
{ k , 1 . 5 > . { t . 5 , 2 0 . 5 ) l / / 

Out[65jsVT4l>teForm= 

Γ£7 
\k=2\ 

U=5 

* ~ * 

U=5i 

7396.67 18416.6 34834.5 

14793.3 36833.1 69669. 

22190. 55249.7 104504. 

29586.7 73666.3 139338. 

36983.4 92082.8 174173. 
[t=5 t=10 t=15 

η-

t 1 2 1 . 
TableForm J 

59294.7 

118589. 

177884. 

237179. 

296474. J_ 

t-20i 

ail 
W 

Γ Ί 

H 
K^*'^*^""»™»™***»***»'«»»****^^* *̂ 1 Ι·:·:·:·:·:··ΐ·ΐ:·:·:·:·:ΐ:·:·:':·:·:·:·:·:::::':·:·:·:·:·:·:·:·:·:·:·:·:·:·:':·:·:·:·:Ι r 1 *—*l 

D Example: (Present Value) 

Yet another type of problem deals with determining the amount of money which must be invested in order to insure 
a particular return on the investment over a certain period of time. This is given with the following : 

The present value P of an annuity of n payments of R dollars each at the end of consecutive interest periods with 

" i - ( i + j p " 
interest compounded at a rate of interest j per period is given by: P = R| 
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This problem is illustrated below : 

Interest 

lnfôôj:= 
présente r_*j_.n_]=r ( ( l - ( l + j ) A ( - n ) 
) /J ) 

-n 
(1 - ( i + j ) ) r 

"IKS 

infô?J:= 
p r é s e n t e 4 5 0 0 0 , . 0 7 5 . 4 0 ] 

ûutf6?J* 
566748. 

info8j:= 
Table[{20000+5000k,présente20000+ 
5000 k,.08,35]},{k,0,5} 
] // TableForm 

Outfo8jSSTao?eForm= 
20000 233091. 

p r é s e n t e r , j , n ] computes 

j 

présente 45000 , . 075 ,40] 
yields the amount of money that 
would have to be invested at 
7112 % compounded annually 
to provide an ordinär/ annuity 
income of $45,000 per year for 
40 years. 

SUUWWWWWOUWUWtMWWWtM 

25000 

30000 

35000 

40000 

45000 

291364. 

349637. 

407910. 

466183. 

524456. 

r 

creates a table of the amount of money that 
would have to be invested at 8% compounded 
annually to provide an ordinary annuity 
income of $20,000 + 5000 kper year 
for 35 years and expresses the resuk in 

mi Ατ̂ ΙΐτΠτιτιττΓιττΓιΤϊΓιηΓιτΐΓΐτττ m rm m\ m M 

Notice that the first column corresponds to the 
lannuity income and the second column corresponds 
Ito the present value of the annuity. 
P ™ ■■■■ ■ m r'V'Îl'ri'L " """" 

D Example: (Deferred Annuities) 

Deferred annuities can also be considered : 
The present value of a deferred annuity of R dollars per period for n periods deferred for k periods with interest 

V( i+j ) - ( n + k ) i - ( i+j r k " 
rate j per period is given by: Pdcf=R 

J J 
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The function which computes the present value of a deferred annuity is given below where 
r = the amount of the deferred annuity, 
n= the number of years in which in annuity is received, 
k = the number of years in which the lump sum investment is made, and 
j = the interest rate. 

Interest 
A / / / -

d e f [ r _ , n _ , k _ , j _ ] = r ( ( l - ( l + j r ( -
(n+k)) 
) / j - ( i - ( l + 3 ) * ( - k ) ) / j ) 

OutftJ= 
-<k + n) 

1 -
(- ( — 

(1 + j ) 

3 
--> r 

1 - (1 + j ) 

3 

d e f [ 3 5 0 0 0 , 3 5 , 3 0 , . 1 5 ] 

Outf21= 
3497.58 

inf3j:= 
T a b l e [ { k , 6 5 - k , d e f [ 3 0 0 0 0 , 4 0 , 6 5 - k , . 0 8 5 ] > , 
{ k , 2 5 , 6 5 , 1 0 } ] / / TableForm 

Outf3jsVTâbteForm= 
25 40 12988.8 

ES 

35 

45 

55 

65 

30 

20 

10 

0 

29367.4 

66399.2 

150127. 

339436. 

Current age 

EE Ka 
ΦΤα 

def [ r , n , k , ; j ] computes 

l-(l+j)-(n+k) l-ft+f* 
J J 

d e £ [ 3 5 0 0 0 , 3 5 , 3 0 , . 1 5 ] 
computes the lump sum that 
would have to be invested for 
30 years at a rate of 15% 
compounded annually to provide 
an ordinary annuity income of 
$35,000 per year for 35 years. 

creates a table of the lump sums 
that would have to be invested 
at a rate of S1/2% compounded 
annually to provide an ordinary 
annuity income of $30,000 
per year for 40 years. 

Present value of the annuity 

Number of years from retirement 

D Example: (Amortization) 

A loan is amortized if both the principal and interest are paid by a sequence of equal periodic payments. A loan 
of P dollars at interest rate j per period may be amortized in n equal periodic payments of R dollars made at the end 

of each period, where R = Pj 
i - ( i+ j ) -
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The function, amort [p, j , n ] , defined below determines the monthly payment needed to amortize a loan of p 
dollars with an interest rate of j % compounded monthly over n months. A second function, 
t o t i n t p a i d [p, j , n ] , calculates the total amount of interest paid to amortize a loan of p dollars with an 
interest rate of j % compounded monthly over n months. 

Interest Hi 

amort[p_, j _ , n _ ] = 
(P J ) / ( l - d + 3 ) A ( - n ) ) 

Outf32j= 
3 P 

-n 
1 - ( i + j ) 

/n[33j:= 
to t i n t pa id [ p_ , j_„ n_] = 

n a m o r t [ p , j , n ] - p 

Outf33j= 
j n p 

-n 
Remember that a space 
between two numbers 
denotes multiplication, 1 - (1 + j ) 

ln[34j:= 
a m o r t [ 7 5 0 0 0 , . 0 9 5 / 1 2 , 2 0 12 ] 

Outf34j= 
699.098 

tnf35j:= 
Table[{3,amort[80000,j/12,20 12] } 
{j,.08,.105,.005}] // TableForm 

Öutf35j//TabteFürm= 

\5\ a m o r t [ p , j , n ] computes 

j 

i-(ü+j) Λ - η 

t o t i n t p a i d [ p , j , n ] 
computes 

np 
j 

1-M" -n -p. 

calculates the monthly payment necessary to amortize a 
baa of $75,000 with interest of 9 1/2% compounded 

I montfdy over 20 years. 

0.08 

0.085 

0.09 

0.095 

0 .1 

0.105 

669.152 

694.259 

719.781 

745.705 

772.017 

798.704 

The first column corresponds to the j 
annual interest rate and the second 
column corresponds to the monthly 

ipayment. 

calculates the monthly payment necessary to 
amortize a loan of $80,000 with interest 
of 8,81/2,9,91/2,10, and 10 l/2percent 
compounded monthly over aper'wd of 
twenty years. 

™ 

'**4+M*K+ro+M-;+>K**«* 

ϊιϊιϊιΥΐΊΊ ι'ιιιΊΊιι ί ι ϊ ι ϊ ι ϊ ι ι ιΊ rtYïïWfflWIÎWfflï 
J W W W S™ r t" W f t W W U W·^^ * 1:::::::::·:::::::::::·:::::|::::::#::·:::·:::;^^ *"K|TZJ| 
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D Example: 

The first calculation below determines the total amount paid on a loan of $75,000 at a rate of 9.5% compounded 
monthly over twenty years while the second shows how much of this amount was paid towards the interest. 

Interest 

/nf36j:= 
240 amort[75000, 

Outf36j= 
167784. 

JO. 
K> 

0 9 5 / 1 2 . 2 4 0 1 calculates the total amount paid to amortize 
a ban of $75,000 at a rate of 91/2% compounded 
monthly over a period of twenty years. 

Ή 
tnf37j:= 

t o t i n t p a i d [ 7 5 0 0 0 , . 0 9 5 / 1 2 . 

Outf37j= 
92783.6 

JUUUWWUUNUWUWUuUQuI 

240 ] I calculates the total interest paid to amortize 
a loan of $75,000 at a rate of 91/2% compounded 
monthly over a period of twenty years. 

WWVVMdWWWWMMMMMWWMMWWMMWMMMMMMflfMft 

ί . ^ « Λ , .Λ Λ. Λ. . M, ^ΛΛΛΛ^ΛΛ» 
' l ' 

Bfittttufitt 

m 
a 
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In many cases, the amount paid towards the principle of the loan and the total amount which remains to be paid 
after a certain payment need to be computed. This is easily accomplished with the functions unpaidbalance 
and curprinpaid defined below using the function amort [p, j , n] that was previously defined: 

Remark: Mathematica does not retain definitions of functions from previous Mathematica sessions. This means 
that in order to use a function definition from a previous Mathematica session, the definition must be re-entered. 

Interest IH1 

j , n ] , j , n - * ] 

inf38j:= 
u n p a i d b a l a n c e [ p j _ , n _ , m _ ] = 

p r e s e n t [ a m o r t [ p . 

0utf38j= 
- ( -m + n) 

( ! - ( ! + D) ) 

.„Mi.Urft, 
u n p a ± d b a l a n c e [ p , j , n , m ] computes 
the unpaid balance of a loan of$p amortized at 
a rate ofj% compounded at eackpaymentfor 
a total of npayments immediately after the 
mthpayment. 

-n 
1 - (1 + j ) 

inf39j:= 
c u r p r i n p a i d [ p _ , j _ , n__, »__] = 

p - u n p a i d b a l a n c e [ p , j , n , m ] 

Ovtf39j= 
-(-m + n) 

(1 - (1 + j ) ) P 

-n 
1 - ( i + j ) 

tnf40j:= 
unpaidbalance[60000,.08/12,120,60] 

0utf40j= 
35902.1 

inf4!j:= 
curprinpaid[60000,.08/12,120,60] 

Outf4!j= 
24097.9 

c u r p r i n p a i d [ p , j , n , m ] 
computes the principal paid immediately 
after the mthpayment. 

UUUVWWUWUUHUWWWWWVVWHUWHUyVVqa0WWmM0MmMMMMeMnMWMMWMWt 

]J 
i w i Y w m Y m ^ I l;:^i;r;;S:S:S:S:S:S:;:S:i:S:S:;;;:;:i:;:S:i:i:;:S:;:i:;:S:i:i:S:i: 

K> 

The unpaid balance of a 
$60,000 loan with interest at 
a rate of 8% compounded 
monthly scheduled to be 
amortized over aperiod of 
ten years (120payments) 
immediately after the 60th 
payment is $35,90110. 

Consequently, the total 
principalpcad immediately 
after the 60thpayment is 
$60,00fr$35,901. !0=$24,097.i 
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Mathematica can also be used to determine the total amount of interest paid on a loan using the following function : 

Interest 

fnfo/:* 
cur i n t p a i d [ p _ , j _ , n__, m_ ] = 

m amort[p,j,n]-curprinpaid[p,j,n,m] 

OutfôJ« 
-(-ια + n) 

(1 - (1 + j ) ) p j m p 

-n -n 
1 - (1 + j ) 1 - (1 + j ) 

lnl7j:= 

JJ^ 
cur i n t p a i d [ p , j , n , m] 
computes the interest paid on 
a loan of$p amortized at a rate 
ofj per period over n periods 
immediately after the mth 

vment. 

cur i n t p a i d [ 6 0 0 0 0 , . 0 8 / 1 2 , 1 2 0 , 6 0 ] I calculates the interest paid on a loan of 
I $60,000 with an interest rate of 8% 

Out[7J= I compounded monthly amortized over a 
19580.1 I period of ten years (120 months) immediately 

after the 60thpayment. 
m ' i ' i ' i · i ' i 

KïtfnyiïiwiYi-iYnïiïi-iïri-ri 

fr>:tt*<«fr»frK<C+C4C+frK+{+e4C+&KyvttV^^ 

Tables can be created which show a breakdown of the payments made on a loan (i.e., how much of the total 
amount paid is allotted to the principle and how much to the interest.) An example is given below : 

Interest 
lnf8j:= 

a m o r t [ 4 5 0 0 0 , . 0 7 / 1 2 . 1 5 1 2 ] 

Outf8j= 
404.473 

in[?J:= 

Don't forget that a 
space between two 
numbers denotes 
multiplication. 

^M 
Icakulates the monthly payment necessary to amortize 
I a ban of $45,000 with interest rate 7% compounded 
\rnonthiy over a period of 15 years (15 IZ= 180 months} 

Table[{t,curprinpaid[45000,. 07/12,15 12,12 t] 
curintpaid[45000,.07/12,15 12,12 t]}, 
{t,0,15,3}] // TableForm 

Uutf9jsVTabteForm= 
0. 0 

3 

6 

9 

12 

15 

Column 1 represents number of 
0. years, column 2 represents 

principle paid, and column 3 
5668. 99 8892. 03 represents interest paid 

12658.4 16463.6 

21275.9 22407.2 

31900.6 26343.5 

45000 27805.1 

TTa/s, at the end of twelve years, 
$31,900.60 of the principle has 
been paid; $26,343.50 in interest 
fios beenpaid 

üüüüüüüü|üüüü|ÜUUUr.JUÜUÜ|ÜÜUUUÜÜUUÜlüüUUÜU|üüü.|. . . .î  ES 

This table shows the 
interest paid and 
principle paid at the 
end of 0,3,6, 9,12 
and 15 years. 
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Since curintpaid [p, j , n, y] computes the interest paid on a loan of $p amortized at a rate of j per 
period over n periods immediately after the yth payment, and curintpaid[p, j , n, y-12] computes the 
interest paid on a loan of $p amortized at a rate of j per period over n periods immediately after the (y-12)th 
payment, 
curintpaid[p, j , n, y] - c u r i n t p a i d [ p , j , n, y-12] yields the amount of interest paid on a 
loan of $p amortized at a rate of j per period over n periods between the (y-12)th and yth payment. 
Consequently, the interest paid and the amount of principle paid over a year can also be computed : 

wot Interest 

annualintpaid[p_,;j_,n_,y_l:= 
curintpaid[p,j,n,y]-curintpaid[p,j,n,y-121 ; 

annualprlnpald[p_,j_,n_,y_J : = 
curprinpaid[p,j,n#y]-curprinpa±d[p,j,n,y-12]; 

Table[{t,annualintpaid[45000,. 07/12,15 12, 12 t], 
annualprlnpald[45000,.07/12,15 12, 12t]},{t,1,5,1>] 

// TableForm 
Outi! !///Tab!eForm= 

1 3094.26 1759.41 

2967.08 1886.6 

2830.69 2022.98 

2684.45 2169.22 

2527.64 2326.03 

Column 1 represents the number of years 
the ban has been held; cohrrun 2 represents 
the interest paid on the ban during the 
year; and cohmn 3 represents the arnouunt 
of the principle that has been paid 

_a..r...... i... i.... |UuuU|Ujuuruuujj|^Jup|jj I pj j j l j j j i j i j j j j j j j j j j i 

" ' ■ Λ̂ ί™Α Λ"Α Λ Μ Λ Λ^ί^ " "Λ"Λ Λ Μ"Λ Λ Λ Λ" " " "" *' " ' I · · . · - · . · . · . · . · . · . · . · .' a 
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• Additional Output Features of Version 2.0 

D Example: 

Suppose an investor begins investing at a rate of d dollars per year at an annual rate of j % . Each year the investor 
increases the amount invested by i%. How much has the investor accumulated after m years? 

The following table illustrates the amount invested each year and the value of the annual investment after m years: 

Year 

0 

1 

2 

3 

4 

5 

k 

1 m 

Rate of Increase 

i% 

i% 

i% 

i% 

i% 

Wo 

i% 

Annual Interest 

j % 

)% 

} % 

j * 

j % 

j % 

j % 

j % 

Annual Investment 

d 
(l + i%)d 

(l+i%)2d 

(l+i%)3d 

(l+i%)4d 

(l + i%)5d 

(l+i%)kd 

(l+i%)md 

Value after m Years 1 

(l + j%)md 

(1+ i%)(l + j%)m _ 1d 

(l+i%)2(l + j%)m~2d| 

(l+i%)3(l + j%)m~3d | 

( l+ i%) 4 a + j % ) i I h 4 d | 

(l+i%)5(l + j%)m"5d 

(l+i%)k(l + j % ) m " k d | 

( l+ i%) m d 

It follows that the total value of the amount invested for the first k years after m years is given by: 

[Year 

0 

1 

2 

3 

4 

S 

k 

1 m 

Total Investment 

(l + j%)md 

(l + j%)md+(l+i%)(l + j%)m~1d 

(n-j^o^d+a+i^ojo+j^o^d+a+i^o^a+j^o)"1" -2d 
3 

£( i+ i%) n ( i+ j%) m ~ n d 
n=0 

4 
X(l+ i%) n ( l + j%) m " n d 
n=0 

5 
£ ( l + i % ) n ( l + j%) m " n d 
n=0 

k 
X(l+i%)n(H-j%)m _ nd 
n=0 

m 
X(l+ i%) n ( l + j%)m~nd 
n=0 1 

o The package SyinbolicSiam.m, contained in the folder Algebra, can be used to find a closed form 

of the sums £ ( l + i ) n ( l + j)m"n d and £ ( 1 + i)n(l + j)m"n d 
n=0 n=0 
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SymbolicSum.m is included with Version 2.0 but not prior versions of Mathematica: 

FinancialPlanning 

« S y m b o l i c S u m . m 

Inf47j:= 
c l o s e d o n e = S y m l ) o l i c S u m [ ( i + i ) A n ( l + j ) A ( n - n ) d , 

{ n , 0 , k } l 

Outf47j= 

d ( i ♦ : ) m ( 1 

i + 3 " i + 3 
(1 + i ) , 

(1 + j ) k < - i + j ) ' 

lnf48j:= 
Factor[Together[closedone]] 

Outf48j= 

(d ( i + j ) ~ k + m ( d + i ) k
 + i (i + i ) k 

(1 + j ) k - j (1 + j ) k ) ) / ( i - j ) 

U M A Ü AJ 

Finds a chsedformfof\ 
the sum 

and names the resuk 
c l o s e d o n e . 

Writes c l o s e d o n e 
as a single fraction and then 
factors the numerator. 

1™~~'~^ι~~^^^~'~>*'^ι~~'*~~~~^~***ΡΡΓφ~* 

In the exact same manner a closed form was found and simplified for ]j£(l+i)n(l + j)m n d, 
n=0 

SymbolicSum is used to find a closed form for ^ ( 1 + i)n(l + j)m n d. 
n=0 

In this case, however, the final result is displayed in a print cell in input form with the command 
P r i n t [ I n p u t F o r m [ % ] ] . 

™ * * » » * * ~ , " * M i» » » » " « » » , K i :' ; i' Mt 

iitfSOj;* 
c l o s e d t v o = S y m l ) o l i c S u m [ ( i + i ) A n ( i + j ) A ( n - n ) d , 

{ n , Q , m } ] 

OutfSOj* 
Λ + m 

c l o s e d two is the 
cbsedform of the sum 

i(i+i)a(i+i)a-ftd 
n=0 

d ( i + j ) m ( - Λ - * - i (1 * i ) 
1 + 3 - 1 + 3 . . . .m , . .x 

( 1 + 3 ) ( - 1 + 3 ) 
) 

inf5!j:= 
F a c t o r [ T o g e t l i e r [ c l o s e d t v o ] 1 

Outf5U= 

writes c l o s e d two 
as a single fraction then factors. J 

d ( - ( 1 + i ) m - i (1 + i ) m + (1 + j ) m + j (1 + 3)m) 
- l + 3 

tnf54j:= 
P r i n t [ I n p u t F o r m [ X ] ] 

« M M n t w w 

prints the previous output 
in input form 

( d * ( - ( l + i)"m - i * ( l + i)"m + (1 + j)^m + j * ( l + 3 Γ * > ) ' 1 
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The above results are used to define the functions investment [ { d , i , j } , {k,m}] and 
investmenttot [ {d, i , j } , m ] . In the second case, notice that print cells can be edited like any other 
input or text cell. Consequently, we use Macintosh editing features to copy and paste the above result when we 
define the the function inves tment to t . 

I n v e s t m e n t e { d , i , j } , { k , * } ] = 
( d * ( l + j ) ~ ( - k + m ) * ( ( i + i ) A k 
( i + j ) A k - j * ( i + j ) - k ) ) / ( i -

Outf4!j= 

(d (1 + j ) " k + m ( ( 1 + i ) k
 + i (1 + i ) k 

(1 + j ) k - j (1 + j ) k ) ) / ( i - j ) 

inf72j:= 
i n v e s t m e n t t o t [ { d , i ,j },m ]= 

( d * ( - ( i + i ) A m - i * ( i + i ) A m + 
( 1 + j )~m + j * ( i + j ) ~ * ) ) / ( 

Outf72j= 

d ( - ( 1 + i ) m - i (1 ♦ i ) m + (1 + j ) m + j 
- i + j 

+ i 
D) 

-

- i 

( 1 

* ( 1 + i ) A k - Γ Ί 

Ή 1 Γ·!$Ι| 

J J Ijliljll 
"in lljljljl 

+ 3> J 1 liilill 
1 1 Ë|i|:|:| 

* j)m> 1 
J J Ijjijijl 
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Finally, i nves tmen t and i n v e s t m e n t t o t are used to illustrate various financial scenarios. In the first 
example, investment is used to compute the value after twenty-five years of investing $6500 the first year 
and then increasing the amount invested 5% per year is shown for 5,10,15,20, and 25 years assuming a 15% 
rate of interest on the amount invested. Version 2.0 contains the built-in function AccountingForm which 
can be used to convert numbers expressed in exponential notation to ordinary notation. In the second example, 
i n v e s t m e n t t o t is used to compute the value after twenty-five years of investing $6500 the first year and 
then increasing the amount invested 5% per year is shown assuming various rates of interest. The results are 
displayed in Account ingForm: 

{t. Investmente{6500,.05,.15}.{t,25}]}. 
{t,5,25,5}] // TableForm 

Outfô4j//TâbteForm= 

5 

10 

15 

20 

25 

1. 

1. 

1. 

2. 

2. 

03506 

55608 

88668 

09646 

22957 

10 

10 

10 

10 

10 

T7ie command A c c o u n t i n g Form 
can be used to convert numbers expressed in 
exponential notation to ordinary digit form. 

TableForm[AccountingForm! r e s u l t s ] ] 

Outfô5jsYTâMeFûrm= 
5 1035065. 
10 1556078. 
15 1886680. 
20 2096460. 
25 2229573. 

!nf82j:= 
scenes=Table[{i,investmenttot[{6500,.Q5,i},25]} 

{i,.08,.20..02}]; 
AccountingForm[TableForm[scenes]] 

Outf82j//AccountincForm= 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

08 
1 
12 
14 
16 
18 
2 

832147. 
1087126. 
1437837. 
1921899. 
2591636. 
3519665. 
4806524. 

This table illustrates the total value of investing 
$6500 the first year and then increasing the amount 
invested by 5% per year for 25 years for various 
rates of interest. 

m ttttttttttttmmtttuttttitttitttttttttttmttm ,££££££££; a 
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i Application: Graphing Parametric Equations with L i s t P l o t and Parametr icP lo t 

If l i s t = { { x [ l ] , y [ l ] } , { x [ 2 ] , y [ 2 ] } , . . . , {x [ n ] , y [n ]}} is a list of ordered pairs, 
L i s t P l o t [ l i s t ] graphs the set of ordered pairs in l i s t . The commands L i s t P l o t and P l o t share 
the same options. 
The following example demonstrates how L i s t P l o t is used to create a parametric plot. In this case, both 
coordinates depend on the variable t. A list is produced by evaluating the function f at values of t running from 

t = 0 to ΐ = 3π using increments of . 
6 150 

The ordered pairs obtained are then plotted using L i s t P l o t . 

llD m OperationsOnLists Ξ Ϊ Ι 

\lnf!7j:= TEE 
C l e a r [ f , l i s t ] LJ 
f [ t _ J : = { C o s [ t ] / ( S q r t [ t ] + i ) , t A ( i / 3 ) S in [2 t ]> | J | 
l i s t = T a b l e [ f [ t ] , { t , ü \ 3 P i , 3 P i / i 5 0 } ] ; J |jjj 

\inf!8j:= ] ] | | | 
L i s t P l o t [ l i s t . P lotJoined->True, | | | 
Asp e c tRa t i o -> i . Ti ck s ->Kone ] J Ijjijijl 

I Λ iH 
/-s / \ I The, commands L i s t P l o t 1 

I \ \ l \ l e w i P l o t share many oj j 

\W\ 
\outfl8j= Ή | | 

-Graphics- JJIlll 

Notice that several 
commands are 
combined into a 
single input cell 
The semi-colon is 
placed at the end 
to prevent 
Matkematica from 
deploying l i s t 
which consists oj 
150 ordered pairs. 
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Two-dimensional parametric functions can also be graphed with the built-in function ParametricPlot, 

D Example: 

The unit circle is given by the parametric equation {Cos (t), Sin (t)}, 0 £ t £ 2π . To graph 
the unit circle, proceed as follows: 

I D I ParametricPlot 

c i r c l e [ t _ ] : = { C o s [ t ] . S i n [ t 1 } 
P a r a m e t r i c P l o t [ c i r c l e [ t ] , { t , 0 , 2 P i } , 

À s p e c t R a t i o - > i ] 

KS 

grepks the parametric function 
c i r c l e [ t ] = { C o s [ t l . S i n [ t l } i 

forO < X < 2τι. 
Notice that the buik-in, command 
P a r a m e t r i c P l o t 
has the same options as the built-in 
command P l o t . 

\Tke option Asp e c t R a t i o - > i 
instructs Matkematica to make the 
ratio of the lengths of the x-axis to 
to the y-axis one. 

Outf!4]= 
-Graph ic s -

inf!5j:= 
P a r a m e t r i c P l o t [ { S q r t [ t ] C o s [ t ] , t S i n [ t ] } , 

{ t . 0 , 4 P i } , P l o t R a n g e - > À l l ] 

Jl 
graphs the paramétra function 

{JtCos(t),tSJn(t)J 

/orO < X < An. 

The option P l o t R a n g e - > A l l 
mstiiKts Matkematica to display 
the entire groph 

sxu^wewoRiXRi^K^ni^K^nnti^K^ns^wnisn^p^j 

Outf!5j= 
-Graphics -
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We can obtain essentially the same result with P a r a m e t r i c P l o t as we obtained above with L i s t P l o t : 

f [ t _ ] : = { C o s [ t l / ( S q r t [ t l + l K t ~ ( i / 3 ) S i n [ 2 t ] } 
P a r a m e t r i c P l o t [ £ [ t ] . { t , 0 , 3 P i } ] 

VuekuS&tiSnim 

grcpks the parametric function 
J(t)forO < t < 3tL 

Outf!7j= 
-Graphics- ]J 

■ Application; 

Given a function f, the following example illustrates how to create a table of the first, second, third,..., and nth 
derivatives (provided they all exist) of f and then graph the resulting table. 

D Example: 

Compute and graph the first three derivatives of f(x) = xex. 

Mathematica can produce a table of these derivatives rather easily. This is accomplished through several 
commands. After defining f, a list of f and its first three derivatives in simplified form is obtained with the 
command 
T a b l e [ S i m p l i f y [ D [ f [ x ] , { x , n } ] ] , { n , 0 , 3 } ] . 
This list is then placed in the form of a table using the command 
TableForm[ l i s t ] . 
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Lists can be useful in plotting the graphs of functions. Instead of entering the GrayLevel for each function in a 
multiple plot, these GrayLevel assignments can be made with a list. This approach to plotting several 
functions is shown below : 

inf37j:= τΤΞ 
C l e a r [ f , l i s t i , l i s t 2 ] LJ 
f [x_ ]=x Exp[x] I I 
l i s t l = T a b l e [ S i m p l i f y [ D [ f [ x ] , { x , n } ] l , { n , 0 , 3 } ] jjjjjj 
TableForm[ l i s t l ] u ,,. l"i|l|l|j| 

Λ j r ^ - , r . .̂  x, r Un tkL· case, several l i i jj i l 
h7j"TâbIeFùrm= \Matkematica commands | | 

x i | lore used simultaneously. jijjjjl 
E x l l i s t i [ [ i j 1 is f(x). | ÎBe sure square brackets areijjjjjl 

" " j^gsfe^correctly! | j j j j j | 
I Y 2EBDBBBDBDBnBDD^^BSnil&IIIIIBB^BBnni&BnnnBEIIIIXCE I I Ε*!·!·!Ι 

E (1 + x) | l i 3 t l [ [ 2 ] ] is f(1)(x).| I l 

E (2 + x) | l i 3 t l [ [ 3 ] ] is f(2)(x).j I I 

E (3 + x ) fc i 3 t * [^ J J | | 
\lnf42j:= 11 | | 

l i s t2=Table[GrayLe^el[ i ] , { i , 0 , . 7 5 , . 7 5 / 4 } ] J |jjj 

\outf42j= Ή | | 
{GrayLevelfQ], GrayLevel[0.1875],

 II 

GrayLevel[0.375],
 |jjj|| 

GrayLevel[0. 5625],
 Ejjjjjjl 

GrayLevel[0.75]}
 J J | | | 

*^»**>^^·*^^-·^****™">*^'™»*»»**ΑΛ^ I 1::;:::!:·:;::::::::;;:::::;:::::::::::::;::::::;!::::;·::::·:;:!::;·:·:·::::::;::::·^ "K I L—1| 

Notice that the following result could have been accomplished with the command 
Plot[{f[x], f ' [x], f■ ' [x], f' ' ' [x]}, {x,-l,l},PlotStyle->{GrayLevel[0], 
GrayLevel[.1875],GrayLevel[.375],GrayLevel[.5625}]. 

However, since the use of lists simplifies the commands needed, this alternate approach is used. In order to make 
use of l i s t l and l i s t 2 given above, the Re l ea se command must be used. The command 
Release [arcrûment] causes argument to be evaluated immediately. 

Hence, the command 
Plot[Release[listl],{x,-1,1}]] 
given below causes Mathematica to first produce the list of functions in l i s t l and then evaluate the functions in 
the list at the values of x between - 1 and 1 in order to plot the functions. Otherwise, a new list would be created 
for each value of x. Re lease is used similarly with the list of GrayLevel values. 
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o In Version 2.0, Release has been replaced by the command Evaluate. Consequently, when using 
Version 2.0, be sure to use Evaluate instead of Release . 

A list of functions can be created and plotted in a single command. The second example below shows how the 
lines 
y=mx (where m varies from m = -4 to m = 2 in increments of 6/5) are plotted using the same GrayLevel list 
used in the first example. 

QperationsOnLists 

P l o t [ R e l e a s e [ l i s t l ] , { x , - i , l } 
P l o t S t y l e - > R e l e a s e [ l i s t 2 J ] 

KS Here we graph f(x) and 
its first three 
derivatives. 

list! [[4]] in shade Uxt2[[4n\ 

y last 1 [[3J] in skade Ust2[[3]] 
ψ^χ1[εζ]} ^ skad& fertipjji 

list 1 [[1]] i» *hade UstZ[[l]j\ 

Outf45j= \ When graphing lists of functions, the command 

Graphics 

!nf46j:= 
R e l e a s e must be used. 

P l o t [ R e l e a s e [ T a b l e [ m x , { m , - 4 , 2 , 6 / 5 } ] ] 
{ x , - l , l } , P l o t S t y l e - > R e l e a s e [ l i 3 t 2 ] ] 

m=Z 

Outf46j= 
-Graphics-

m=-

[||| Here we graph several 
lines passing through 
the origin, for various 
slopes. 

[JO I WWWWEBWi 
K3 
a 

i Application: Graphing Equations 

Often when working problems, the ability to extract a particular element from a list is quite useful. The following 

example considers the equation 4x2 + 9y2 = 81. 

Solving this equation for y yields the two solutions y = ± V8l·^ 4xz 
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Using Mathematica, these y-values appear in the form of a list. Notice below how each element of a list can be 
extracted for later use. Since many results are rather complicated, this technique can save a great deal of time used 
on typing and limit careless mistakes. 

D Example: 

2 2 
Graph the equation 4x +9y =81 . 
Begin by defining e q u a t i o n to be the equation 4xA2+9yA2==81. Be sure to include the double equals 
sign so that Mathematißa interprets equa t ion as a mathematical equation. 

Notice that the elements of the list ycoords are lists. Notice that if 
t a b l e = { l i s t 1 , l i s t 2 , . . . , l i s t n } , where l i s t l , ... , l i s t n are lists, t a b l e [ [ 1 ] ] yields 
the first element of t a b l e which is l i s t l ; t a b l e [ [ 3 , 2 ] ] yields the second element of the third element 
of t a b l e . In general, t a b l e [ [ i , j ] ] yields the jth element of the ith element of t a b l e . Lists of lists, or 
equivalently, nested lists will be discussed in further detail in Chapter 4. 

EHtractingElementsof Lists 

tnftl-
equation^ 4 x~2+ 9yA2==8i 

Outf!j= 
2 2 

4 x + 9 y = = 8 1 

Don't forget to include the 
I double-equals between the 
left- and right-hand side to 
designate equations. 

y c o o r d s = S o l v e [ e q u a t i o n , y ] 

Outf2j= 
2 

S q r t [ 8 1 - 4 x ] 
{ { y _> K 

3 

- S q r t [ 8 1 - 4 x ] 
{ y _> } } 

3 

ycoords[[l]] 

Outf3j= 

Remember that double-square 
brackets ~[[ ]]" are used to 
extract elements of lists. 

KS 

S q r t [ 8 1 - 4 x ] 
{ y -> } 

3 

e q u a t i o n 
is the name of the 
equation 

4 x 2 + 9 y 2 * ô l . 

S o l v e [ e q u a t i o n , y j 
solves e q u a t i o n 
fory. The resulting list 
is named 
y c o o r d s . 

ycoords[[i]] 
is the first element of the 
list y c o o r d s ; 
it is a list which contains 
one element. 
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The first (and only) element of ycoords [ [ 1] ] is found below with ycoords [ [ 1 , 1 ] ] . This expression 
is made up of two parts: the part in front of the arrow and the part following the arrow. Therefore, to obtain the 
desired formula (the second part), ycoords [ [ 1 , 1 , 2 ] ] is used: 

M4J:= 
ycoords[[l,l]] 

Out[4j= 

Sqr t [81 - 4 x 
y -> 

3 

infSj:* 
ycoords[[l,l,2]] 

Outf5j= 
2 

Sqr t [81 - 4 x ] 

VlïliÎÎflWiïnïiïiïiWimWnïWiimï>YW 
· ' ' i 'ÉKpl 

mïïiïiWiïiïiYiIWil N ί 
S 

y c o o r d s [ [ l , l ] ] 

is the single element of the 
& ; y c o o r d s [ [ l ] ] ; 
it is a list which contains 
two elements. 

ycoords[[l,l,2]] 

is the second element of 
theUst y c o o r d s [ [ i , l ] ] 
notice that it is a function 
o/x and hence can be 
grcphed 
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After extracting the appropriate elements from the list, tehy can be used below in other commands to determine 
where the curve intersects the x-axis and then plot the curve. 

EHtractingElementsof Lists 

info/:» 
X T O l u e s = S o l v e [ y c o o r d 3 [ [ l , l , 2 ] ]==0,x] 

Outf6/= 
9 9 

{ { x -> - } , {x -> - < - ) } } 
2 2 

lnf7/:-
P l o t [ { y c o o r d 3 [ [ l , l , 2 ] l , y c o o r d s [ [ 2 , l , 2 ] ] } 
{ x , - 9 / 2 , 9 / 2 } , P l o t R a n g e - > { - 9 / 2 , 9 / 2 } 
ÀspectRatio->ll 

■3>fe 

solves the equation VôT 1 
4x^ 

■ 0. 

Notice that if* < -9/2 orx> 9/2, 

VÔ1-4X2 is not real Hence, the 

domainof y c o o r d s [ [ 1 , 1 , 2 ] ] 

(and y c o o r d s [ [ 2 , l , 2 ] ] ) j s 
[-9/2,9/2]. 

Graph ycoo rds [ [ 1 , 1 , 2] ] 
and y c o o r d s [ [ 2 , 2 , 2 ] ] 
on the domain [-9/2,9/2]. The option 
P l o t R a n g e - > { - 9 / 2 , 9 / 2 } 
specifies that the range ofy-vaktes 
shown is [-9/2,9/2]; the option 
ÀspectRatio->l 
specifies that the ratio of the lengths of 
the x-axis to y-axis is one. 

Outf7/= 
-Graphics-

tMmwAWUL^^UIAwliilBiWHi SI 

1 E3 a 
The equation 4 x 2 + 9 y 2 = 8 1 is equivalent to the parametric equation j-Cos(t) , 3Sin(t)L 0 < ΐ < 2 π . 

Consequently, the same result could have been obtained with the command 
P a r a m e t r i c P l o t [ { 9 / 2 C o s [ t ] , 3 S i n [ t ] } , { t , 0 , 2 P i } ] . 

o Moreover, Version 2.0 includes the package I m p l i c i t P l o t . m which contains the command 
I m p l i c i t P l o t . The command I m p l i c i t P l o t can be used to graph the previous example as well as 
the next example. For additional information on I m p l i c i t P l o t , see Chapter 8. Unfortunately, 
I m p l i c i t P l o t is not available in versions of Mathematica released prior to Version 2.0. 

The following example deals with a slightly more complicated curve : 
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a Example: 

Graph the curve y 2 - x 4 + 2x 6 -x 8 = 0. 

EKtractingElementsof Lists 

e q u a t i o n 2 = y A 2 - x ~ 4 + 2 x ~ 6 - x ~ 8 = = Q 

OutfSj* 
4 6 8 2 

-X + 2 X - X + y == 0 

y v a l u e s = S o l v e [ e q u a t i o n 2 , y ] 

OrifP/» 
2 2 4 

{{y -> x Sqrt [ l - 2 x + x ) } , 

2 2 4 
{y -> -<x Sqrt [ l - 2 x + x ] ) } } 

tnftOj:* 
yvalues[[2]] 

OutfWj* 
2 2 4 

{y -> - ( x Sqrt [ l - 2 x + x ] ) } 
infUj:* 

y v a l u e s C I ^ i ] 

Outfit/* 
2 2 4 

y -> - ( x Sqrt [ l - 2 x + x ]) 

lnf!2j:= 
y v a l u e s [ [ 2 , 1 , 2 1 J 

OutftZj* 
2 2 4 

- (x Sqrt [ l - 2 x + x ] ) 

lnf!3j;= 

■^■^■Τ.>.^^.».^.^..Τ.^.Τ.^.^.^.^..Τ.^.Τ.Τ.Τ.Τ.Τ.·Τ.·Τ.·Τ.·Τ.·Τ.·Γ.·Τ.Τ.·Γ.·Τ. 

Be sure to use two 
equals signs to denote 
equations. 

Toseettuxt l - 2 x 2 + x 4 

F a c t o r [ JL-2xA2+xA4 ] 1 is aperfect square, factor it. 

Qutft3j= 
2 2 

(-1 + x) (1 + x) 

)SίύUiitfSiiiiύiiitiiiύίL·mmmmΛmmιL·+iïiΛiώ£àiéi^ 

& 

a 

Define the equation 

y 2 - x 4 + 2 x 6 - x 8 = 0 
tobe e q u a t i o n s 

S o l v e [ e q u a t i o n 2 , y ] 
solves the equation 
e q u a t i o n 2 fory; the 
list of solutions is named 
y v a l u e s . 

yvalues[[2]1 
is the second element of 
the list y v a l u e s ; 
it is a list with one element. 

yvalues[[2,ll1 
is the element of the list 
y v a l u e s [ [ 2 ] 1 ; 
it is a list with two 
elements. 

y v a l u e 3 [ [ 2 , l , 2 ] 1 
is the second element of 
the list 
y y a l u e s [ [ 2 , l l 1 ; 
it is a function ofx* 
y v a l u e s [ [ 2 , l , 2 1 1 
has domain all real numbers 
since 
l - 2 x 2 + x 4 

is a perfect square. 
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The curve is then easily plotted using the elements of the yvalues list obtained above. Notice that this curve 
passes through the x-axis at x = -1 and x = 1 as expected from the results of the previous command: 
F a c t o r [ l - 2 x A 2 + x A 4 ] . 

EHtractingElementsofLists 

Plot [ {yva lues [ [1 ,1 ,211 ,yva lues [ [2 ,1 ,211) , 
{x , - l . 5 ,1 .5 } ,Aspec tSat lo -> l ] 

1.5 

Outf?4j= 
-Graphics-

is 
il 

m 

m 

EH 

Graphing 
y r a l u e s [ [ l , l , 2 ] l 
and 
y v a l u e s [ [ 2 , l , 2 ] ] 
simultaneously is 
equivalent to graphing 
the equation 

y2-x4+2x6-x8«0. 

V " ' i ΊΙΟΙ l l I l l l l l l j l l i lM IKE 
i Application: Tangent Lines and Animations 

3 9 2 23 15 
The following example illustrates how the tangent line to the graph of f(x) = x —-x + — x—— 

at many values of x on the interval [0,3] can be determined and plotted through the use of lists. Provided f is 

diffeientiable when x=a, the line tangent to the graph of f at x=a is given by y-f(x)=f (x)(x-a). 

Hence, this line line can be defined as a function of x and a with 

tanline [ x _ , a _ ] := f ' [a] ( x - a ) + f [a] 

237 



Chapter 4 Introduction to Lists and Tables 

The function tangraph [a] defined below plots the tangent line to f at 
x = a for values of x between 0 and 3. In plotting these lines, a list of values of a is needed. This list is created in 
t a b l e below : 

DperationsOnLists 
in[50j:= 

C l e a r [ f , t a b l e , t a n l i n e , t a n g r a p h ] 
f [ x _ ] = x A 3 - 9 / 2 x A 2 + 2 3 / 4 x - 1 5 / 8 ; 
p l o t f = P l o t [ f [ x ] , { x , 0 , 3 } , 
P l o t R a n g e - > { - 1 . 5 , 1 . 5 } ] 

0uif50j= 
-Graph ics -

t a n l i n e [ a _ , x _ ] : = 
£ ' [ a ] ( x - a ) + f [ a ] 

inf53j:= 

\o\ 

Mathematica cannot make 
sense of the function 
tangrapb[a] 
unies* a is a specified 
number. Consequently, the 
symbol ":= " must be used 
in the definition instead of * 

t a n g r a p l i [ a _ ] : = 
P l o t [ { t a n l i n e [ a , x ] , f [ x ] } , { x , 0 , 3 } , 
P l o t R a n g e - > { - 1 . 5 , 1 . 5 } , 
Plotstyle->{GrayLevel[.3J,GrayLevel[0]>] 

tnfS4f:* 
t a b l e = T a b l e [ j , { j , 0 , 3 , 3 / 2 0 } ] 

Outf54j= 
3 3 9 3 3 9 21 6 

{ 0 , 
20 10 20 5 4 10 20 5 

27 3 33 9 39 21 9 12 51 

20 2 20 5 20 10 4 5 20 

27 57 

10 20 
3} 

ιβββββίββββα^—^^ώώώώϊώίώίώίώ 

M 

Since we wiM name objects 
f table, tontine, and tangraph, 
clear aä prior definitions first. 
Then define 

2 4 o 
and graph f(x) on the interval 
[0,3]. The option 
P l o t R a n g e - > { - l . 5 , 1 . 5 } 
specifies that the range displayed 
consists of the y-values between 
-1.5 and 1.5. 

For a given value of a, the 
\function t a n l i n e [ a , x ] 
is the Une tangent to the graph 
off at the point (af(a)y 

For a given value of a, the 
function t a n g r a p h [ a ] 
graphs t a n l i n e [ a , x ] 
(ingray)and f[x](inblack) 
on the interval [0,3]. The y-values 
displayed are between -1.5 
and 1.5. 

t a b l e is a list of the values 

|0+n j - for nrO, 1,2,. ..,30. 
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Once the list of a values is established in t a b l e , Map [tangraph, t a b l e ] 
evaluates tangraph at each value of a in t a b l e . Hence, a list of the graphs of the lines tangent to the graph 
of f when x = a is produced. Only the first graph in this list is shown below. The others are hidden but can be seen 
by double-clicking on the outer ("half-arrow") cell containing the first graph. These graphs can also be viewed 
using Mathematical animation capabilities. 

OperationsOnLists 

t a b l e = T f e b l e [ j . { j , 0 , 3 . 3 / 2 0 } ] 

inf5j:= 
Hap[tangraph, table] 

OJ 

ïrûH 
Notice that the arrow 
and box, indicate the 
cells are grouped and 
closed To open a 
group of cells, move the 
cursor to either the 
box, or the arrow and 
click twice. 

Hap[tangraph, table ] 
computes 
t a n g r a p b [ t a b l e [ [ i ] ] 
foreacki=l,Z,... ,21. 

ΠΏ. 

I B B ' ' V T r 

β " " ™ " " " " " " * " ' " ^ ̂ ^ * — ' ■ ·■ ■•■••■■■■•■•'^•••■•■■■•■•■■■•■•••■•■•■■■•■•■■••■■■••••■■•••■••••■■■■•■■■•■•■•■■■- · ■ · ■· ' * » 

Notice that the resulting 
group ofgrcpkics cells 
are closed 
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D Animation : 

Through using animation, many graphs can be seen in succession. Hence, the graphs can be compared quite 
easily. The first step towards animation is to click once on the outer cell which encloses all of the graphs. This 
selects all of the graphs contained in the list. Next, select Rnimate Se lec ted Graphics found under the 
Graph heading in the Menu at the top of the screen. Animation can be halted by clicking once anywhere on the 
screen. Some of the animation options are demonstrated below : 

<B<g)£BiCO IlSEËOIQDI^ 

ι animation in tyns animation m reverse. 

Runs animation cyclically 

Runs animation, forward 

Pauses animation 

casais] El [̂ Ie3]»j 
I 

|(S©gi|QDI(S®IOI [£^££££·££££££££ 

Slows animation 
I 

(Quickens animation 
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i Application: Approximating Lists with Functions 

Another interesting application of lists is that of curve-fitting. The command 
Fit [data, functionset , variables] fits a list of data points found in data using the functions in 
functionset by the method of least-squares. The functions in functionset are functions of the 
variables listed in variables. 

An example is shown below which gives a quadratic fit to the data points in da ta l i s t . 

ListsandFunctions 
tnf46j:= 

datalist={i.14479. 1.5767. 
2.68572.2.5199. 3.58019. 3.84176. 
4.09957. 5.09166. 5.98085. 
6.49449. 6.12113); 

!nf47j:= 
pl=Li3tPlot[datali3t] 

6f 

4 
3f 

TKfl 

4 6 8 10 
Outf47j= 

-Graphics-
tn[48/:= 

Clear[y] 
y [ x _ ] = F i t [ d a t a l i 3 t . { i . x . x ~ 2 } . x ] 

Outf48/= 

0.508266 + 0.608688 x - 0.00519281 x 

^fflfflfflfflfflfflffllWfflfflfflWWï fflimwmifflwiJlj^^ 

d a t a l i s t is the list of values 
{I. 14479,1.5767,268572^5199, 
3.58019,3.84176,4.09957, 
5.09166,5.98085,6.49449, 
6.12113}. 

p i graphs the poms 
{i,datalist[[iJJ}for i» 1,2, 
3,. ,,10,11. 

F i t [ d a t a l i s t . { i ,x#xA2KxJ 
attempts to find a linear combination 
of 
1, x, and x 2 

which approximates the list of numbers 
d a t a l i s t 
as closely as possible. 
The resultingfunction is named y. 
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The approximating function obtained above via the least-squares method can be plotted along with the data points. 
This is demonstrated below. Notice that many of the data points are not very close to the approximating function. 
Hence, a better approximation is obtained below using a polynomial of higher degree (4). 

ListsandFunctions 

inf49j:= 
p 2 = P l o t [ y [ x ] , { x , - l , l l > , 
D i sp l ayFunc t i on-> Id en t i t y ] 

Outf49j= 
-Graphics-

inf50j:= 

The option 
D i s p l a y F u n c t i o n - > I d e n t i t y 
prevents Mathematica from showing 
the graph. 

S h o w [ p i , p 2 , D l s p l a y F u n c t i o n - > 
$D i s p l a y F u n c t i on] 

2 4 6 8 10 
0utf50j= 

-Graph ic s -

inf5ij:= 
Clear [yJ 
y [ x _ ] = F i t [ d a t a l i s t . 
{ 1 , Σ , Σ ~ 2 , Σ Α 3 , Σ Λ 4 Κ Σ ] 

Outf5!j= 
2 

-0.54133 + 2.02744 x - 0.532282 x + 

3 4 
0.0709201 x - 0.00310985 x 

itt^ÊÊίÊίiÊIUitttaL·ÊmmJmmmL·ΐLiύiàύùiiiΛ^iiiàLLàύi^^ a 

p 2 - P l o t [ 7 [ z ] . { z ~ - l . l l K 
D i s p l a y F u n c t i o n - > I d e n t i t y ] 
graphs y on the interval [-2,11] and 
names the resulting graph pZ 

Shov[pl,p2* 
DisplayFuncti on-> 

$D i sp layFunc t i on ] 
shows the graphs of pi andpZ 
simultaneously. Hence, we can see 
how weU the fit cpproximates the 
(iota 

C l e a r [ y ] 
y [ Σ _ ] = F i t [ d a t a l i s t , 
{ 1 , Σ . Σ Α 2 , Σ Λ 3 . Σ Α 4 } . Σ ] 
attempts to find a linear combination 
of 

1, x, x 2 , x 5 , and x 4 

to approximate 
d a t a l i s t 
as well as possible. 
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To check its accuracy, this second approximation is simultaneously with the data points. 

ListsandFunctions 

lnf52j:= 
p 3 = P l o t [ y [ x K { x , - l . l i K 
D i sp layFunc t i o n - > Id e n t i t y ] 

0utf52j= 
-Graph ic s -

inf53j:= 
Sho w[pi„p3,DisplayFunc t i on-> 
$D i splayFunc t i on] 

Ovtf53j= 
-Graph i c s -

^ « ^ ^ ^ ^ » ^ « « ^ « M V « ^^ 

K> 

]J 
m 
a 

As before, we can see how well 
the fit approyamazes the data 

In tfus case, the fourth degree 
fit is a much better approximation 
of the data than the second degree 

243 



Chapter 4 Introduction to Lists and Tables 

Next, consider a list of data points made up of ordered pairs. These points are plotted below with ListPlot, 
and fitted with a polynomial of degree 3 using Fit. (Note that, in this case, since the data is given as ordered 
pairs, LietPlot plots the points as they are given in datal ist . ) 

ListsandFunctions 

datalist={{.5, -8.4074), 
{1. 76.8141).{1.5. 88.6214).{2. 
{2.5, 88.3714). {3 
(3.5. 35.978). {4. 
{4.5. 12.2676). {5 
{5.5. 30.0686). (6 

96.127). 
49.797). 

2.1036). 
40.4741). 
158.8401}}; 

IMMIMMIMMJ 

d a t a l l s t consists of 
twelve orderedpairs. 
The semi-colon is placed at 
the end of the list to prevent 
Matkematicafrom displaying 

inf3j:* 
p o i n t g r a p h = L i s t P l o t [ d a t a l i s t ] 

150 
125[ 
lOOf 

75 
50l· 
25f 

0utf3J* 
-Graphics-

tnfS/:* 
Clear[f] 
f [x_J«Fit tdatal i s t . { i .x .x~2.x ' w 3} 

OuifSJ* 
2 

-111.279 + 266.294 x - 102.486 X + 

3 
10.8809 x 

F i t [ d a t a l i s t . { i . x . x ~ 2 . x ~ 3 } . x l 
finds a linear combination of 

xlf 1, x, x2, and x3 

to cpproTÜmate d a t a l i s t . 
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The list of data and the approximating curve f(x) are plotted together to check the accuracy. Then, a polynomial of 
degree 4 is used to fit the points. 

ListsandFunctions 

f g r a p h = P l o t [ f [ x ] , { x . 0 , 7 } . 
D i s p l a y F u n c t i o n - > I d e n t i t y ] ; 
Sho v[ f g r aph , p o i n t g r aph 0 D i sp layFunc t i o n - ^ 
$D i splayFunc t i on] 

3S 
To compare the grepks of the fit 
and data, display the grepks on 
tte same axes. 

mtmmmmmmtmmmam 

OutfoJ= 
-Graphics-

inf9/:~ 
Clear[f1 
f [ x _ ] = F i t [ d a t a l i s t , { i , x . x A 2 , x ~ 3 . x M K x ] 

Outf9j* 
2 

-113.629 + 271.639 x - 105.855 x + 

j] 
finds a linear combination of 

I, x, x2, x5, and x4 

to approydrruxte the data as wellas] 
possible. 

11.6645 x 0.0602769 x 
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In this case, the fit resulting from F i t [ d a t a l i s t , {1 , χ, x A 2 , x A 3 , x A 4 } , x ] does not appear to be 
much more accurate than the fit resulting from F i t [ d a t a l i s t , {1 , x , x A 2 , x A 3 } , x ] : 

lnftOj:= 
f g r a p b = P l o t [ f [ x ] , { x , 0 , 7 K 
DisplayFunction->Identity]; 
Sho v[£ g raph.p o intg raph.D i splayFunc t i on-> 
$D i splayFunc t i on] 

Similarly, to compare the data and fit, 
graph arid display on the same axes. 

Remember that the graphic* option 
D i s p l a y F u n c t i o n - > I d e n t i t y 
suppresses the output of graphics; the 
graphies option 
D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n 
shows graphics. 

Outftoj= 
-Graphics-

ImfflfflBmffltmfflfflfflfflf EBM a 
Again, consider a set of data points composed of ordered pairs. These points are listed and plotted below using 
L i s t P l o t . In addition to curve-fitting with polynomials, Mathematica can also fit the data with trigonometric 

functions of the form Q + C2 cosx + C3 sin x + C4 cos2x + C5 sin 2x +· · · 
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The approximating function, called g, using the first three terms of the above expression is determined below: 

infSOf:* 
datapairs={{.25.-.70499}. {.5.-.08331}. 

{.75..46172}. {1...51234}.{1.25.-.91532} 
{1.5.-.04229}.{1.75..21506}, {2...81278} 
{2.25..72455}}; 

iiolili'lolfloi 

In this example, 
d a t a p a 1 r s 
is a list of ordered pairs. 

Inf5!j:= 
d a t a p l o t = L i s t P l o t [ d a t a p a i r s . T i c k s - > l ï o i i e ] 

Remember that the command 
L i s t P l o t 
has many of same options as 
the command 
P l o t . 
Here we name the 
graph of da t a p a i r s 
d a t a p l o t 
and show the graph without 
tick marks on either axis. 

0utf5!/= 
-Graph ic s -

inf52j:* 
C l e a r [ g ] 
g [ x _ l = F i t [ d a t a p a i r s . { l . S i n [ x ] , C o s [ i ] } . x ] 

Out[52j= 
0.458644 - 0.642252 Cos[x] - 0.244861 Sin[x] 

JI 
computes a linear combination of 
1, Sin(x), and Cos(x) to approximate 
d a t a p a i r s 

| as well as possible. 

The trigonometric function g and the data are then plotted on the same graph. Afterwards, another approximation is 

calculated using a function of the form 

Q + C2Cosx + C3Sinx + C4Cos2x + C5Sin2x + C6Cos3x + C7Sin3x. 
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this function is later plotted together with the set of data points and proves to be a much better fit. 

t*rs&" J i l l 
graphg=Plot[g[x].{x,0,2.25},DisplayFunction-> 
Identity] 
Shov[da tap1o t.graphg, D i splayFunc t i on 
->$DisplayFunct i on] 

Compare the fit g and the 
data by showing their grcpks 
on the same aKes. 

fhiii|iiyi|ijijij| 

0utf53j* 
-Graphics-

MS4J:= 
Clear [g ] 
g [ x _ l = F i t [ d a t a p a i r s , { l , S i n [ x ] # C o s [ x ] „ 
S in [2 x ] , C o s [ 2 x ] , S i n [ 3 x ] , C o s [ 3 x ] } # x ] 

OütfS4j= 

109.244 - 46.7349 Cos[x) -

72.2217 Cos[2 x] + 13.7625 Cos[3 x] -

167.415 Sin[x] + 42.4829 Sin[2 x] + 

j] 
cakulates a linear combination of 
I Sin(K\ Cos(x), SvrtÇùC), COS(2K), 
Sin(3K), and COS(3K) to cpproximate 
the data as well as possible. 
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In this case, the fit, g, resulting from 
Fit[datapairs,{1,Sin[x],Cos[x],Sin[2x],Cos[2x],Sin[3x],Cos[3x]},x] is 
much better than the fit resulting from F i t [ d a t a p a i r s , {1 , S i n [ x ] ,Cos [x ]} , x ] : 

infSSj:* 
g r a p h g = P l o t [ g [ x ] , {x ,Q,2 . 2 5 K D i s p l a y F u n c t i o n - > 
I d e n t i t y ] 
Sho v[da tap1o t,graphg,D i splayFunc t i on 
->$DisplayFunctionl 

—[Pi 
lowinViiftVwi 

Notice that this fit g is 
a much better approximation 
of the data than the previous 

Outf55j= 
-Graphics-

Mathematica supplies several packages which can be used to fit data using different techniques. For additional 
information regarding the different packages, see Chapter 7. 

Application: Introduction to Fourier Series 

Many problems in applied mathematics are solved through the use of Fourier series. Mathematica assists in the 
computation of these series in several ways. First, recall the definition : 

The Fourier series of a periodic function f(x) with period 2L is the trigonometric series 

*0+ Σ | a n C o s f « ^ J + b n S i n f - ^ J i , where a0 =—J_Lf(x)dx, an = — J j W C o s M ^ J d x , 

1 fL (ηπχΛ 
and b n = - J _ L f ( x ) S i n ^ - ^ J d x . 

The kth term of the Fourier series 

a o + 2 . a n C o s r 
n=lL V ί x} (ηπχλ\ fkïïx . 

+ bnSin| —:—|| is akCos + bkSin L ; " { L 

The kth partial $um ftf thy Fpuriçr $çriç$ 

~\[ „ Jnnx 
L 

ΓηπχΥΙ 

\ — 

,r 

'"IT 

a l l Jl A 1 11 7t A I I <r- i | . 

an
 C o s ^ " Y ~ J + bnSin^17Jl iS a0 + 1>\ a" C 0 \ " ~ L ~ J + bnSÜ1 |J 

^ηπχ 

T~ 
JmiÜ r)\ 

It is a well-known theorem that if f(x) is a periodic function with period 2L and f (x) is continuous on [-L,L] except 
at most finitely many points, then at each point x the Fourier series corresponding to f converges and 
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ao + Σ ^ „ C o s ^ — J + bnSm ^ — j j - 1 f . 

oo 

In fact, if the series ^ ( | a n | + |bn|) converges, then the Fourier series 
n=l 

a0+ J j anCos + bnSin ι converges uniformly on %. 

Mathematica simplifies the process of determining the coefficients as well as assists in verifying the convergence of 
the series. Additional applications discussing Fourier Series will be discussed in Chapter 5. Consider the 
following example. 

o Version 2.0 includes the package F o u r i e r T r a n s f orm.m in the C a l c u l u s folder. 
FourierTransf orm.m contains several commands which can be used to compute exact or approximate 
Fourier series of some functions. The package FourierTransf orm.m is discussed in more detail in 
Chapter 7. 
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0 Example: 

f 1 if 0 < x < 1 
Let f(x) = i Λ ^ Λ and let g be the periodic extension of f of period Z 

[-x if - 1 < x < 0 r 

Notice how the piecewise-defined function f is entered. The functions f and g are then plotted. The graph of g is 
named graphg for later use. 

FourierSeries 
inf34j:= 

C l e a r [ f , g ] 
f [ x _ ] : = 1 / ; 0 <= x <= i 
f [ x _ ] : = - x / ; - 1 <= x < 0 

Begin by charing ail prior definitions 
off and g and defining f 

-|1 
Be careful to remember the ^ 

'■."/;" when defining 
piecewise-defined functions. 

■■^■^■^■^■^■^■^■^■^■^■^■■>.̂ .τ.τ.̂ .̂ .·>.̂ .·>.τ.τ.̂ .̂ .̂ .̂ .̂ .τ.τ.<>.».»-».̂ ».·>.·».γ 

S Graph f on tti& interval f-1, If 
KtlinMHHMMMIItMltMIMIIHIIIItlllMHMMIHIHnillHIMIHIIHIH 

Outf35j= 
-Graphics-

g [ x _ ] 
g [ * _ ] 
g [ x _ l 

= f [ x ] / ; - 1 <= x <= i 
= f [ x - 2 ] / ; i < x <= 3 
= f [ x - 4 J / ; 3 < x <= 5 

g r a p h g = P l o t [ g [ x ] . { x . - 1 . 5 } ] 

Since g is the periodic extension 
off we define g in terms of 
f Notice thtâ we have only defined 
g on the interval [-1,5]. 
Graphing g on [-1,5] verifies 
that it is the periodic extension 
off 

Ovtf36j= 
-Graphics- ]J 

ΗΑβίίΜβ(ΜίβίΑββΰΗ&]^^ΗΛι^ΜΗΗΐ*ΐ*ΐΕΪΕίΐϋϊ*ίίΕΪ*ΐ^̂  
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The Fourier series coefficients are computed with the integral formulae given earlier. Executing the command 
L = l 
a [ 0 ] = l / (2L) N I n t e g r a t e [f [ x ] , {x, -L ,L} ] defines L to be 1 and a [ 0 ] to be an 
approximation of 

1 fL 
the integral — I f(x)dx. Executing the command 

2LJ~i-
a[nJ:=l/L NIntegrate [f [x] Cos[n Pi x/L] , {x, -L, L} ] 
b[n_]:=l/L NIntegrate[f[x] Sin[n Pi x/L],{x,-L,L}] 

defines a [n] to be an approximation of the integral 

1 fL (ηπχλ 1 fL ίηπχΛ 
— I f(x)Cos dx and b[n] to be an approximation of the integral —J f(x)Sini ——Jdx. 

FourierSeries 
in[38j:= \ ' "" 

C l e a r Γ a b i s LI B ̂ οτ Ζ^ exampte* ^ ^ 
„ Λ

 L * * ' I assigned the value 1. 
L=l 
a [ O J = l / ( 2 L ) N I n t e g r a t e [ f [ x ] , { x , - L , L } ] 

0utf38j= 
0.750409 

To opproximate the Fourier series for 
f we need to compute arj 
and various values of a n

 a n ^ k n . 
-^uUfcfcfcl 

a n and b n 

will be cpproTÙmated using 
NIntegrate. M5J:~ 

a [ n _ ] : = i / L N I n t e g r a t e [ f [ x ] C o s [ n P i x / L ] . { x , - L , L } ] 
b [ n _ ] : = i / L H I n t e g r a t e [ £ [ x ] S i n [ n P i x / L ] , { x , - L , L ) ] 

1·|ΊϊιΥιϊιϊιΊΊΊιιιιΊιιιήϊήΐΜΐ^ιΐΜΪιΥ<ΪΙΪιΥήϊήϊιϊήϊΥι iiliM a 
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A table containing the coefficients a [ i ] a n d b [ i ] f o r i » 1, 2, 3 , . . . , 10 is created. Notice 
how the elements of the table are extracted using double brackets with coef f s , the name of the table : 

■DI FourierSeries iai 
/ft/6/:= 

coeffs=Table[ 

TableForm[coeffs] 

Outf7j//TâbteFûrm= 
-0.201825 0.318309 

0.000817324 0.159153 

-0.0216985 0.1061 

0.000817313 0.0795733 

-0.00728839 0.0636567 

0.000817295 0.0530454 

-0.00331828 0.0454655 

0.00081727 0.0397803 

-0.0016845 0.0353583 

0.000817237 0.0318205 

/nf9/:* 
coeffs[[l]] 

Outf9/= 

c o e f f s 
is the table ofordererdpabrt\ 
{a[i]tb[i]}for±ltZt...t9,lO. 

T a b l e F o r m [ c o e f f s ] 
egresses coeffs in a column 
Notice that the first column 
corresponds to a[ij; the second 
column corresponds to b[i]. 

Notice that the command T a b l e F o r m [ c o e f f s j 
I produces the same result as the command 

; o e f f s / / TableForm. 

Be sure to use double-square brackets to 
extract elements oftabtes and lists! 

ΐτ.ΤιΤιΤ>ΤιΤ*ΤιΤ*ΤιΤ»ΤιΤ.Τ<Τ>Τ»Τ«Τι^ 

»JLL*ä&] 
yields the first element of c o e f f s 
which is an ordered pair; a list with two elements. 

{-0.201825, 0.318309} 

/rtflO/:= 
c o e f f s [ [ 2 , i ] ] 

OutflO/= 
0.000817324 

/ni///:* 
coeffs[[3,2]] 

Outf!!/= 
0.1061 

JL1 
yields the first member of the second element 
of c o e f f s. 

j i 
yields the second member of the third 
element of c o e f f s. 

ΓΙΓΡ'ΙΦ I liiiiilijjlllllijlijlJlJiliJij fla 
The command Sum [ £ [ i ] , { i , 1, n} ] computes the sum 
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f [ l ] + f[2] + ... + f [ n - l ] + f[n]= £ f [ i ] . 
i = l 

Once the coefficients are calculated, the kth partial sum of the Fourier series is obtained with Sum. 

The kth term of the series is: 
f s [ k _ , x _ ] := c o e f f s [ [ k , 1 ] ] Cos[k P i x] + c o e f f s [ [ k , 2 ] ] S in [k P i x] 

where k = l ,2, · · · , a k = c o e f f s [[k,l]] , and b k = c o e f f s [[k,2]]. 

Therefore, the nth partial sum (the sum of the first n terms) of the Fourier series is obtained by summing the 
f s [k, x] over k from k = 1 to k = n and adding to this summation the coefficient a [0] : 

n 
nth partial sum = a[0]+ fs[ l ,x] + ... + fs[n - l , x ] + fs[n,x] = a[0]+ ]Tfs[k,x]. 

k=l 

This is defined below with the function f o u r i e r [n, x ] . Several examples of this function are then given. 
Note that the largest value of n which can be used is n = 10 since the coefficients for the Fourier series have not 
been calculated for larger values of n. 

§D FourierSeries = 
in[44j:= 

f s [ k , x 1 : - c o e f f s [ [ k , i ] ] Cos [k P i x 
c o e f f s [ [ k , 2 ] ] S i n [ k P i x ] 

inf45j:= 
f o u r i e r [ n _ , x _ J : = a [ 0 ] + S u m [ f s [ k , x ] , { k 

\inf46j:= 
f o u r i e r [ 2 , x ] 

\outf46j= 

Notice that f o u r i e r [ n , x ] 
makes sense only for 

0.750409 - 0.201825 Cos[Pi x] + 

0.000817324 Cos[2 P i x] + 

0.318309 S in [P i x] + 0.159153 Sin[2 P i 

inf47j:= 
£ o u r i e r [ 3 , x ] 

\Outf47j= 
0.750409 - 0.201825 Cos[Pi x] + 

0.000817324 Cos[2 P i x] -

0.0216985 Cos[3 P i x] + 

0.318309 S in [P i x] + 

0.159153 Sin[2 P i x] + 0.1061 Sin[3 P i 
B H U H H U H HLf&äiAftffA&Pfift Ï I I I l ^ i / i 1 1-;·Γϊ;·ι-;-;-;»;ϊ;*;·;·;-;ϊΓ*;ϊ;*;ϊ;-ΐϊ;·;ϊ;2;ϊ;·;·;ΐ;ϊΓϊΐ2;ΐ;ϊ;";·;ϊ;ϊιϊϊ 
κ ̂ H B M B S M ^ ^ I äfxjJ 1 Γ·::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
* ^***^..»»*^****»***™*^»**^,*^*»**,^ N - ι |::;:;::!;!::::::::;;::::::::::::::::t:::::::::::::::t;;:::::;;:::::;:::::: 

Bi| 
η 

, + 

J 

1 
- i - n } ] 

1 T 
| J 

χΐ 1 
T J 
"=1 

χ] J. 
1111111 c 

p3 

is 
M 

£ s [ k . x ] 
is the term 
a^Cos (k Ti x)+b^Sin (k τι x). 

f o u r i e r [ n , x ] 
computes 

n 
a0 + X f s [ k . x ] . 

k=l 

| f o u r i e r [ 2 , x ] 
j is the function 

2 
| a 0 + 2 f s [ k . x ] . 

k=l 

f o u r i e r [ 3 , x ] 
j is the function 

3 
| a 0 + 2 f s [ k , x ] . 

k=l 
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To see how the Fourier series approximates the function, the function g is plotted together with the graph of the 
Fourier series with n = 2. This does not appear to be a very good approximation. (The resulting graph is named 
g rapheme. ) 

FourierSeries 
Irtf48j:= 

g r a p h o n e = P l o t [ f o u r i e r [ 2 , x ] , { x , - i , 5 } , 
P l o t s t y l e - > G r a y L e v e l [ . 2 ] , 
D i s p l a y F u n c t i o n - > I d e n t i t y ] 
Sho v[g raphone,g r aphg ,D i splayFunc t i on 
->$D i splayFunc t i on] 

0utf48j= 
-Graphics-

ffl 

' · i ' 
ÏIWIIYÎIÏIÏIÏIÏ^^^^ I 

graphone 
is the grepk of 
f o u r i e r [ 2 , x ] 
on the interval [-1J5], 
Notice that the Plot and 
Show command are 
combined into a single 
input cell to show 
graphg and 
graphone 
simultaneously. 

The use of more terms in the Fourier series yields a more accurate approximation of g. Graphs are shown for 
n = 5 and n = 9. These are named g raphf i v e and g r a p h n i n e , respectively. 

g r a p h f i v e = P l o t [ f o u r i e r [ 5 , x ] , { χ , - 1 , 5 } , 
P l o t S t y l e - > G r a y L e v e l [ . 4 ] . 
D i s p l a y F u n c t i o n - > I d e n t i t y ] 
Sho v [g r a p h f i v e , g raphg,D i splayFunc t i on 
-> $D i splayFunc t i on] 

In the same manner, we can compare 
f o u r i e r [ 5 , x ] , 
f our ie r [9 ,x j , an<i 
g. 

graphnine=Plot[fourier[9,x]„{x,-i,5} «. 
PlotStyle->GrayLevel[.6]. 
D i splayFunc t i on->Id ent i ty] 
Shov[graphnine,graphg,DisplayFunction 
->$DisplayFunction] 

\ 1 

V 8 
Û. 6 
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θΛ 
1 
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1 *l 
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D Example: (One-Dimensional Heat Equation) 

A typical problem in applied mathematics which involves the use of Fourier series is that of the one-dimensional 
heat equation. This initial-value problem which describes the temperature in a uniform rod with insulated surface is 
given by: 

/iX . d u 3u _ 
(1) k - T = —, 0 < x < a, t > 0; 

(2) u(0,t) = T0; t > 0; 

(3) u(M) = Ta; t > 0; and 
(4) u(x,0) = f(xX 0 < x < a. 

The solution to the problem is well-known: 

u(x,t) = T0 + ^ T a ^ T ° U X b n S i n ( X n x ) e ^ n 2 k t , where λ η = — and bn = - Q f ( x ) - v ( x ) ] S i n i ^ d > 
» ^5 , n=i a a v a >/ 

V(X) 

and is obtained through separation of variables techniques The coefficient r̂  in the solution u(x,t) 

is the Fourier series coefficient bn of the function f(x)-v(x), where v(x) is the 

steady-state temperature. 

Consider the heat equation with initial temperature distribution f(x) = - (x-1) Cos(n x). 

The steady-state temperature for this problem is v(x) = l - x , and the eigenvalue, 

* . . u ηπ λη, is given by — . 
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The function f is defined and plotted below. Also, the steady-state temperature, v(x), and the eigenvalue are 
defined. Finally, NIntegrate is used to define a function which will be used to calculate the coefficients of 
the solution. 

FourierSeries 
lnf!Oj:= 

f [ x _ l : = - ( x - i ) C o s [ P i x j 
P l o t [ f [ x ] , { x . 0 , 4 } ] 

-Graph i c s -

inf24j:* 
▼ [ x _ ] : = i - x 
l a m b d a [ n _ ] : = n P i / 2 
b [ n _ J : = M I n t e g r a t e [ ( f [ x ] - ▼ [ ! ] ) 

S i n [ n P i x / 2 ] , { x , 0 , 4 } ] 

1 

First define and 
graph f to visualize the 
initial temperature 
distribution, 

In this example, 
v(x)= 1-x, 

ΑΛ = — , and 

k = J 0 V ( x ) " V ( x ) ) S n i ^ j d x 

We use numerical integration to 
save time in calculations 

2 °° 
Let Sm = bmSin(Xmx)e m kt. Then the desired solution u(x,t) is given by u(x,t) = v(x)+ X s n 

m=l 

Let u(x,t,n) = v(x)+ £ s m . 
m=l 

Notice that u(x,t,n) = u(x,t ,n-l) + Sn. Consequently approximations of the solution to the heat 

equation are obtained recursively. The solution is first defined forn = l, u [x, t , 1 ] . 

Subsequent partial sums, u [x, t , n ] , are obtained by adding the nth term of the series, 

Sn =bnSin(AT1x)e"Xn kt to u [ x , t , n - l ] . 

inf25j:= 
u [ x _ . t _ , i l : = v [ x l + b [ i ] S i n [ l a m b d a [ 1 ] x 

] E x p [ - l a B b d a [ l ] ~ 2 1 / 4 t ] 
u [ x _ , t _ , n _ l : = u [ x , t , n - l ] + b [ n ] S i n [ 

l a m b d a [ n ] x ] E x p [ - l a a b d a [ n ] ~ 2 1 / 4 t ] 

• I · | EE i * * M r i i i * É * é * é * M A é é A d * M é * * * * * * * é é É r i A E3 a 

Notice it(K,t,n) is obtained 
via adding the nth term to 
u(x,t,n-l) Hence, we take 
advantage of Mathematical 
ability to compute 
recursively. 
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By defining the solution in this manner a table can be created which includes the partial sums of the solution : 

FourierSeries 
tnftPj:» ]]]<>) 

T a b l e [ u [ x , t . n ] , { n , l , 3 > ] / / T a b l e F o r 

Out ft 9j//TâùteForm= 
Pi x 

3.39531 Sin[ ] 

creates a table of the functions it(K,t,l), 
vi(x,t,2)andiJi(x,t,3y The result is 
expressed in a column. 

This term is u(x,t,l) 

(Pi t ) / 1 6 
E 

P i x 
3.39531 Sin[ ] 

2 0.95493 Sin[Pi x] 
This term is u(x,t,Z) 

1 - x 

(Pi t ) / 1 6 

P i x 
3.39531 Sin[ ] 

2 

(Pi t ) / 1 6 

(Pi t ) / 4 

This term is u(x,t,3) 

3 Pi x 
0.679061 Sin[ ] 

0.95493 S in [P i x] 2 

2 2 
(Pi t ) / 4 (9 P i t ) / 1 6 

E E 

lïiyiïiïiïiïiïiïiïi-iïi· ^ ^ ^ v ^ ^ v ^ s - a l N ^ ί 

The syntax of the Mathematica command Do is similar to the syntax of the command Table. The command 
Do [ s t a t e m e n t [ i ] , { i , i s t a r t , i s t o p , i s t e p } ] instructs Mathematica to execute 
s t a t e m e n t [ i ] for values of i beginning with i s t a r t and continuing through i s t o p in increments of 
i s t e p t . 
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The solution with n = 8 is plotted below for t = 0 to t = 6 using a step-size in t of 6/20. Remember that 
u [x, t , n] is determined with a Table command. Therefore, Re lease must be used in the Do command 
below so that Mathematica first computes the solution u and then evaluates u at the particular values of x. 
Otherwise, u is recalculated for each value of x. 

FourierSeries 

D o [ P l o t [ R e l e a s e [ u [ x . t . 8 ] ] , { x . 0 . 4 } 
P l o t R a n g e - > { - 4 . 2 } J . { t . 0 , 6 . 6 / 2 0 } ] 

2 T 

1 

- 1 | 

Ά 
-3f 

-4' 

hU&tt KS 
Graphs ut(x,t,8) on the interval [0,4] for 
t=0, 6/20,..., 6. The command 
R e l e a s e MUST be included 
Since several commands are 
nested together, be particularly 
careful to be sure that commas, 
square brackets, and curly 
brackets are used correctly. 
The optionPlotRange->{-4„ 2} 
specifies that the range displayed 
consist of the interval [-4,2]. 

259 



Chapter 4 Introduction to Lists and Tables 

The plots of the solution obtained above can be animated : 

FourierSeries iEOil 
iw^jj.-

D o [ P l o t [ R e l e a s e [ u [ x , t , 8 ] ] , { x , 0 , 4 } , 
P l o t R a n g e - > { - 4 , 2 } ] , { t . 0 , 6 . 6 / 2 0 } ] 

|(B@S)IQDI(S)(S)IO[ 

K> 

& 
ola 

FourierSeries HI 
Ύ77Γ2-υτ= 

D o [ P l o t [ R e l e a s e [ u [ x , t , 8 ] ] , { x , 0 , 4 } , 
P l o t R a n g e - > { - 4 , 2 } ] , { t , 0 , 6 , 6 / 2 0 } ] 

IO@g»|QDI@lSHO [ 
I ' Runs animation cyclically 

Runs animation m reverse 

K> 

K> 
q a 

To animate graphics: 
1) Select the group of graphics 
cells to be animated by using the 
mouse to move the arrow to the 
outermost cell brackets and 
clicking once. The group of cells 
will become highlighted. 

Z) Either go to Graphics 
and select Animate Selected 
Graphics 
OR press the Open-Apple and 
y-key simultaneously. 

These four diagrams are four of the 
twenty graphics cell generated by 
the Do command 
Notice that animations cm be 
modified while they are inprogress 
by using clicking the six buttons that 
appear at the bottom of the screen 
while an animation is running. 

Runs animation forward 

I 
lEK^gilQDIOdK3 

-3 

-41 
Quickens animation 

I 

!©(gQlQDI(MCTQ 1 
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Chapter 5 
Introduction to Nested Lists: 

Matrices and Vectors 
i Chapter 5 discusses operations on matrices and vectors, including vector calculus and systems of equations. 
Several linear programming examples are discussed. 

I Commands introduced and discussed in this chapter from Version 1.2 include: 

Operations on Matrices 
■atrixa+aatrixb 
■atriza.aatrixb 
Det[Matrix] 
Eigenralnes[latriz] 
EigenYectors [latriz ] 
IdentityHatrix[positiYeinteger] 
Inverse[aatrix] 
Transpose[aatrix] 
LinearSolve[natrix,Tector] 
UatrixPover[Matrix,positiTeinteger] 
HatrixFora [aatrix ] 

Operations to Create Lists and Tables 
Table[expression,{positiTeinteger}] 
Array[variable,positiTeinteger] 

Vector Calculus 
< <TectorAnalysis.m 
&rad [scalar!* ield, coordinates yste· ] 
Laplacian[scalarfield,coordinatesystee] 
DÎT[Tectorfield,coordinatesystea] 
Cnrl[vectoriield,coordinatesystea] 
SetCoordinates[Systea] 

Linear Programming 
Cons trainedtlin[ function, {inequalities} ,{Tariables} ] 
ConstrainedHax[function,{inequalities}9{variables}] 
LinearPrograeeing[Tectore.■atrixa,Tectorb] 

Other Commands 
TrigExpand[expression] 
BesselJ[alpha,x] 
Print[expression] 

Saving and Appending Output for Future Mathematica Sessions 
>>filename 
>>>x.ilenaae 

Commands introduced and discussed in this chapter from Version 2.0 include: 

Expand[Trig->True] 

I Applications in this chapter include linear programming, vector calculus, and saving results for future Mathematica 
sessions. 

261 



Chapter 5 Nested Lists: Matrices and Vectors 

15.1 Nested Lists: Introduction to Matrices, Vectors and Matrix Operations 
i Defining Matrices and Vectors 

Matrix algebra can be performed with Mathematica. Before introducing the operations involved in matrix algebra, 
the method by which a matrix is entered must first be discussed. In Mathematica, a matrix is simply a list of lists 
where each list represents a row of the matrix. Therefore, the m x n matrix 

["»1,1 al,2 al,3 - al,n"J 
a2,i a2,2 a2t3 - a2?n 

j \ = l a i j ] = a3,i a3>2 a33 ··· a3>n is entered in the following manner: 

! i i i : ! 

Lam,l am,2 am,3 "* am,nJ 

A = Ual,l» al,2> al,3'·' ·» a l ,n)> ( a 2 ,b a2,2> a2,3»·"» a 2 ,n)>·"> (am,l» am,2» am,3>··'' am,n})· 

Ta[l,l] a[l,2]l 
For example; to use Mathematica to define m to be the matrix ι L execute 

La[2,l] aR2]J 
the command m = { { a [ l , l ] f a [ l , 2 ] } / { a [ 2 / l ] / a [ 2 / 2 ] } } . 

Another way to create a matrix is to use the command Array. The command m=Array [a , { 2 , 2 } ] produces 
the same result as above. 

The following examples illustrate the definition of a 3 x 3 matrix. 
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D Example: 

m a t r i x a = T a b l e [ a [ i , j ] , { i , 1 , 3 } , { j , 1 , 3 } ] and m a t r i x a p r i m e = A r r a y [ a , { 3 , 3 } ] 
produce the same result. 

CreatingMatrices 
inflj:-

Clear [ a, b, ma trixa, matrixaprime, ma trixb] 

m a t r i x a = T a b l e [ a [ i , j ] , { i , l , 3 } , { j , l , 3 } ] 

OutfZj* 
{ { a [ l , 1 ] , a [ l , 2 ] , a [ i . 3 ] } , 

\ù\ 

«r J.T.I.rtfoltH 

Begin by clearing aüprior 
definitions of objects to be 
used in this example. 

{a[2, 1]. a[2, 2], a[2, 3]}, 

{a[3, 1], a[3, 2], a[3, 3]}} 

inf3j:= 
HatrixForm[matrixa] 

Ovtf3///f,tetrixfûrm= 
a [ l , 1] a [ l , 2] a [ l , 3] 

a [ 2 , 1] a [ 2 , 2] a [ 2 , 3) 

a [3 , 1] a [3 , 2] a [3 , 3] 
inf4j:= 

m a t r i x a p r i m e = À r r a y [ a , { 3 , 3 } ] 

Outf4j= 
{ { a [ l , 1 ] , a [ l , 2 ] , a [ l , 3 ] } , 

{a[2, 1 ] , a [ 2 , 2 ] , a [ 2 , 3 ] } , 

{a [3 , 1 ] , a [ 3 , 2 ] , a [ 3 , 3]}} 

Inf5j:* 
H a t r i x F o r m [ m a t r i x a p r i m e ] 

OutfSj/Zt'latnxForm* 

a [ l , 1] a [ l , 2] a [ l # 3] 

a [ 2 , 1] a [ 2 , 2] a [ 2 , 3] 

a [ 3 , 1] a [ 3 , 2] a [ 3 . 3] 

defines m a t r i x a 
to be the matrix 
a[l,l] a[l,2] a[l,3l 

a[2,l] a[2,2] a[2,3l 

a[3,U a[3,2] a[3,3l 

B H a t r i x F o r m [ m a t r i x a ] 
displays m a t r i x a 
in traditional matrbc form, The 

| command m a t r i x a [ [ 2 , 3 ] ] 
yields a [ 2 , 3 ] . 

"Ι'ΨΗ'ί'ί1 

defines m a t r i x a p r i m e 
to be the matrix, 

a[l,l] all, 2] a[l,3l' 

a[2,l] a[2,2] a[2,3l 

a[3,U aß. 2] a[3,3l 

¥sr 

*■■!■ 

S H a t r i x F o r m [ m a t r i x a p r i m e ] 
tois^toys m a t r i x a p r i m e 
S itt traditional matrix form 

1 
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In addition, non-square matrices may also be defined using Mathematica. For example, 

rttfU] b[l,2] b[l,3] b[l,4]] 
to define m a t r i x b to be the matrix I r„ „ t r„ Λ, , ΓΛ ^ , ΓΛ . J , enter either 

[b[2,l] b[2,2] b[2,3] b[2,4]J 
m a t r i x b = T a b l e [ b [ i , j ] , { i , 1 , 2 } , { j , 1 , 4 } ] or m a t r i x b = A r r a y [ b , { 2 , 4 } ] . 

!nlôj:= 
m a t r i x b = A r r a y [ b , { 2 , 4 } ] 

OutfôJ= 
{{b[ l , 1 ] , b [ l , 2 ] , b [ l , 3 ] , b [ l , 4]} 

ooi&b&o 

:,4]J 

Àrray[b . {2 .4>] 
yields the 2x4matrix, 
"b[Ul HU2] b[l.Z] b[l, 
hl2A] b[2,2] b[2,3l b[2/ 
77œ same result would have been 

{b[2 1] b[2 2] b[2 3] b[2 4 ]}} B obtained using th& command 
T a b l e [ b [ i o ] , { i , l , 2 } , { j , i . 4 } ] 

inf?J:= 
Matr±xForm[matr ixb] 

Outf7j//t1atnxForm= 
b [ l , 1] b [ l , 2) b [ l , 3] b [ l , 4] 

b [ 2 , 1] b [ 2 , 2] b [ 2 , 3] b [ 2 , 4] 

Ί 
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D Example: 
Use Mathematica to create the matrix mat r ixc , 

c[l,l] c[l,2] c[l,3] c[l,4]' 
c[2,l] c[2,2] c[2,3] c[2,4] 
c[3,l] c[3,2] c[3,3] c[3,4] 

L where c(i,j) is the numerical value of Cos ( j 2 - i 2 JS in i i 2 - j 2 l 

taf/7/:-
Clear[c,matrixc] 
c [ i _ . j _ ] = N [ C o s [ j A 2 - i ~ 2 ] S i n [ i ~ 2 - j A 2 ] ] 

Oütft?J= 
2 2 2 2 

C o s [ - l . i + j ] S i n [ i - 1. j ] 

m a t r i x c = À r r a y [ c . { 3 . 4 } J 

Outf!8j= 
{{0. , 0.139708, 0.143952, 0.494016}, 

{-0.139708, 0 . , 0 .272011, 0.452789}, 

After clearing aäprior 
definitions ofc and matrix^, 
define c(ij) to be the numerical 
value of 

c(iJ) = Cos(j2- i 2 )s in(i2- j 2 ) . 

. » H J I I I I . ' l l t . A . ^ l f c . m J I M M I M »« 

{-0.143952, -0 .272011 , 0 . , -0.495304}} 

tfffiP/:» 
H a t r i x F o r m [ m a t r i x c ] 

Out ft PpYf-tetrixForm* 
0. 0.139708 0.143952 0.494016 

-0.139708 0. 0.272011 0.452789 

-0.143952 -0 .272011 0. -0.495304 

A r r a y [ c , { 3 , 4 } ] 
computes the 3x4matrix 
c[l,l] c[l,2] c[l,3l c[l,4] 
c[2,l] c[2,2] c[2,3l c[2,4] 
c[3,U c[3,2] c[3.3l c[3,4] 

and names the result 
m a t r i x c . 

*MMMmMmmmmml' * " S I V I |::::;ΐ::::::;·;::·:·:·;ίΙΠΙ:·:·:ΐ:;:»:;:;:·:·Μ:·:^ Η^Ί 

M 
a 

265 



Chapter 5 Nested Lists: Matrices and Vectors 

A matrix is a nested list. For the 2 x 2 matrix m = { { a [ l , l ] , a [ l , 2 ] } , { a [ 2 , l ] , a [ 2 , 2 ] } } defined 
earlier, m[ [1] ] yields the first element of matrix m which is the list { a l l , 1] , a [ l , 2 ] } ; m[ [ 2 , 1 ] } 
yields the first element of the second element of matrix m which is a [ 2 , 1 ] . In general, if mat rixm is an m x n 
matrix, matrixm[ [ i , j ] ] yields the unique element in the ith row and jth column. 

Once a matrix has been entered, it can be placed in the usual form (with rows and columns) using the command 
MatrixForm [A]. 

In Mathematica, a vector is a list of numbers. For example, to use Mathematica 

to define the row vector v e c t o r v to be [v[l], v[2], v[3]], 

enter v e c t o r v = { v [ l ] , v [ 2 ] , v [ 3 ] } . 

Γν[ΐ]1 
Similarly, to define the column vector vectorv to be I v[2] I, 

Lv[3]J 
enter v e c t o r v = { v [ l ] , v [ 2 ] , v [ 3 ] } . Thus, Mathematica does not distinguish between row and column 
vectors. Nevertheless, Mathematica performs computations with vectors and matrices correctly. 

■ Extracting Elements of Matrices: 

Once matrixa has been defined via either 

m a t r i x a = 
{ { a [ l , l ] , . . . , a [ l , n ] } , { a [ 2 , l ] , . . . / a [ 2 , n ] } , . . . , { a [ m , 1 ] , . . . a [ m , n ] } } 

or matrixa=Array [a, {m, n} ] , the unique element of matrixa in the ith row and jth column is 
obtained with matr ixa [ [ i , j ] ] . 
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D Example: 

Γ 10 -6 -9] 
In the previous examples mb was defined to be the matrix I 6 - 5 - 7 I 

L—10 9 12j 

n b [ [ i , j ] ] yields the (unique) number in the ith row and jth column of mb. The determinant of mb can be 
calculated with Det [mb]. Observe how various components of mb (rows,elements) can be extracted and how 
mb is placed in Matr ixForm. 

i D [ [ 3 ] ] 
I yields the third element of mb ; 
this is the same as the third 
row of the matrix. 

lnf!28j:= 
M b [ [ 3 ] ] 

\outf!28j= 
{-10, 9, 12} 1 

inf!29j:= 
■ b [ [ l , 3 ] ] 

\ Remember that elements of 
lists are extracted using 

\ double square brackets. 

\outf!29j= 
- Q 

inf!30j:= 
HatrixForm[mb] 

Outff3Ûj//f'ÎôtrixFûrm= 
10 -6 -9 

6 - 5 - 7 

-10 9 12 

inf!3!j:= 
Det[mh] 

\outft3iJ= 
6 

Jl 

]1 τ 

-]-i 

]1 
]J 

XiiititiiiiiüiiiittiitiiiiiXiiiiiitttUiiititii^^ 

M 
M 

m b [ [ l , 3 ] ] 
I yields the third element of the 
first element of mb ; 
notice that this is the number 
in the first row and third 

I column of the matrix. 
Hatr i iForm[Mb] 
displays mb 
in traditional matrix form 
The same result would be 
obtained by entering either 
mb / / Hatr ixForm 
or 
TableForm[mh] . 

Det [mb] 
computes the determinant 
of mb. 

1 Basic Computations with Matrices and Vectors: 

Mathematica performs all of the usual operations on matrices. Matrix addition (A+B), scalar multiplication (kA), 
matrix multiplication (A.B), and combinations of these operations are all possible. In addition, the transpose of a 
matrix A is found with the built-in command Transpose [A]. 

If A and B are n x n matrices satisfying AB = BA = I. Then B is the inverse of A and B is denoted by 

A-1. Then AA"1 = A_1A = I. 

The inverse of a matrix A, provided it exists, is found with the built-in command I n v e r s e [A]. 

Recall that if A = [aij] then the transpose of A is denoted A1 where A1 = [ajtj ] . 
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Equivalently, the transpose of A is obtained by interchanging the rows and columns of A. 

D Example: 

Γ3 -4 5 l Γ10 -6 - 9 l 

Use Mathematica to define matrix ma to be I 8 0 -3 I and matrix mb to be I 6 -5 -71 
[_5 2 l j L-!0 9 12j 

Compute (i) ma+mb; (ii) mb-4ma; (iii) the inverse of ma .mb; and (iv) the transpose of (ma-2mb) .mb. 

As described above, we enter ma and mb as nested lists where each element corresponds to a row of the matrix: 

MatricesandUectors 
inftt4j:= 

m a = { { 3 , - 4 . 5 } . { 8 , 0 , - 3 } , { 5 . 2 , 1 } } 

Outf!!4j= 
{{3. - 4 , 5 } , {8, 0, - 3 ) , {5, 2, 1}} 

J Î 1 
The nested list i a can be interpreted 
as a matrix 

mb is defined similarly: 

inf?27j:= 
C l e a r [ m b ] 
m b = { { 1 0 , - 6 , - 9 } , { 6 , - 5 , - 7 } , { - 1 0 , 9 , 1 2 } } 

Outf!27j= 
{{10, - 6 , - 9 } , {6. - 5 , - 7 } , {-10, 9, 12} . 3. 

K> 
Define mb 
to be the nested list 

This is interpreted as the matrix, 

'10 - 6 - 9 | 
6 - 5 - 7 

- 1 0 9 12 

Matrices can be expressed in traditional matrix form using either the command MatrixForm or TableForm. 
The operations are performed and the resulting matrix is expressed in traditional matrix form: 

tnf!38j:= 
ma+mb / / T a b l e F o r m 

Outf t38jsVT*ùteFûrm= 
13 -10 -4 

14 

-5 

-10 

11 13 

inf!39j:= 
mb-4 ma // TableForm 

Outf!39L 
-2 

-26 

-30 

%VTâbteForm= 
10 

-5 

1 

-29 

5 

8 

ma+mb // TableForm 
adds matrix ma to matrix mb 
and expresses the result in 
tradizionalform 
The same result would have 
been obtained using the command 
ma+mb // HatrixForm. 

mb-4 ma // TableFon 
subtracts four times matrix 
ma from mb and expresses 
the result in traditionalform 
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Inverse[ma.mb] / / TableForm 

Out ft 42U/TaMeForm= 
59 53 167 

-< ) 

mmmiäcnamm 

first computes tL· product 
of matrix ma and mb and then 
find the inverse. 

,UWUMttWWlWittWWWUWiWI|^UUl 

380 190 

223 92 
·<—> - ( - ) 
570 95 

49 

114 

18 

19 

380 

979 

570 

187 
-( > 
114 

lnft43j:= 
Transpose[ (ma-2 mb).mb] // TableForm 

Outft 43j/STâbîeForm= 
-352 -90 384 

■ΛύΟΛύ , T . T. T. » V J . T! » > « / ^ . . . . . . . . . » ^ 

first subtracts Z times matrix mb 
from matrix ma, then multiplies 
the result by matrix mb candfinalty 
computes the transpose. 

269 73 -277 

373 98 -389 

m{((((((((((((if(iï\ ̂  L· 

H> 

All of the basic operations on matrices can be performed with Mathematica. These include the determinant, 
Det [A], as shown earlier, as well as the computation of the eigenvalues and corresponding eigenvectors of the 
matrix. 

Recall that a nonzero vector x is an eigenvector for the square matrix A means there exists 

a scalar λ such that Ax = λχ. λ is called an eigenvalue (or characteristic value) for A. 

The command E igenva lues [m] gives a list of the eigenvalues of the square matrix m. 

The command E i g e n v e c t o r s [m] gives a list of the eigenvectors of the square matrix m. 
Several examples are shown below. (Notice that by naming the matrix ma, the matrix operations involving ma are 
easier to perform.) 
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D Example: 

Γ3 -4 5 l 
Use Mathematica to compute (i) the determinant of I 8 0 -3 1; 

h 2 i j 
(ii) numerical approximations of the eigenvalues; and 
(iii) numerical approximations of the eigenvectors 

Γ3 -4 5 1 
In the previous example; Mathematica was used to define ma to be I 8 0 -3 L 

b 2 ij 

infl!5j:= 
HatrixForm[ma] 

Ouifl tSj/Sr-totrixFurm* 
3 - 4 5 

JÛ 
displays ma in traditional matrix format. 

8 -3 

5 2 1 

in[U6j:= 
Det[ma] 

Outf!!6j= 
190 

inf !!?]:= 
▼al3=Eigenvalue3[ma] 
Short[val3] 

Outfit?)V&hon}= 
4 4 

{- + « 2 » , « 1 » , - + « 2 » } 
3 3 

tnf!!8j:= 
▼als / / M 

Outf!!8j= 
{6 .27524, 

-1.13762 

-1.13762 + 5.38363 I , 

, v ^ v . v . v . W. v . v ^ v ^ W. W. Ww . s v . v . W. i 

5.38363 1} 

m m fâ 
a 

Det[ma] 
computes the determinant 
of ma. 

▼a1s=Eigenvalues[ma] 
computes the exact eigenvalues 
o/ma. 
Short[Yal3] 
displays aportionoftke 
list v a i s 
on no more than one line. 

▼als / / M 
computes numerical 
approximations of the 
exact values of the 
eigenvalues. 

Sometimes the matrix in which each element is numerically approximated is more useful than the matrix in its 
original form. This is obtained below for the matrix ma with N [ma]. Mathematica can also be used to compute 
the eigenvectors of the matrix with E i g e n v e c t o r s [ma] . 
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Notice that this command results in a list of eigenvectors as was the case with eigenvalues. Hence, individual 
eigenvectors can be extracted from the list of eigenvectors, vec tor , using v e c t o r [ [ i ] ] which gives the ith 
member of the list of eigenvectors. A similar command yields individual eigenvalues. (This method of extracting 
elements of lists was discussed earlier in Chapter 4.) Once obtained from the list of eigenvectors, certain 
operations can be performed with the extracted eigenvector. For example, the ith eigenvector can be multiplied by 
the matrix, ma . This is accomplished with the command 
m a . v e c t o r [ [ i ] ] . 
The above command can be used with N [ v a i s [ [ j ] ] ] v e c t o r [ [ i ] ] 
to verify that the numerical approximation of the eigenvalue v a i s [ [ j ] ] corresponds to the eigenvector 
v e c t o r [ [ i ] ] . If this pair corresponds, then 
ma.vector [ [ i ] ]= N [ v a l s [ [ j ] ] ] v e c t o r [ [ i ] ] according to the definition given above (i.e., 
Αχ=λχ). 

Notice that the lists of eigenvalues and eigenvalues are not given in corresponding order. That is to say, the ith 
eigenvalue in the list of eigenvalues does not necessarily correspond with the ith eigenvector in the list of 
eigenvectors. 
Examples of these operations are demonstrated below : 
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D Example: 

Γ3 -4 5 l 
Compute numerical approximations of the eigenvectors of ma = I 8 0 -3 I 

b 2 ij 

MatricesandUectors 

ΥΠΤιΤΓΓιΤΙΓι'ΪΠΊ'ΙΙΤιΤΤΓιΤΙ 

▼ e c t o r s = E i g e n v e c t o r s [ N [ m a ] ] 

Outft!9j= 

{ { -0 .69216 . -0 .481495, -0 .838594} , 

{0.000471861 + 0.767318 I, 

1.51846 - 0.105255 I, 

0.388183 - 0.71867 I}, 

{0.000471861 - 0.767318 I, 

1.51846 + 0.105255 I, 

0.388183 + 0.71867 I}} 

iftft20j:= 
▼ e c t o r s [ [ ± ] ] S gives the first element of the ί 

WIIIOIM8IMeiMiHIOIIIflllliMHMIOIIIOIIIOIIIOIII8HieiMOII>illl6IMOimil 

0utf!20j= 
{ -0 .69216, -0 .481495, -0.838594} 

lnf!2tj:= 
m a . v e c t o r s [ [ l J ] 

Outf!2!j= 
{-4.34347, -3 .0215 , -5.26238} 

tof/22/:= 
N [ v a l s [ [ l ] J J v e c t o r s [ [ l ] ] § performs the computation 

Outf!22j= 
{-4.34347, -3 .0215 , -5.26238} 

E i g e n v e c t o r s [ N [ m a ] ] 
computes a numerical 
cpproximationofthe 

f^\ eigenvectors of ma. 
TTie resulting list is named 
v e c t o r s . 

Remember that element* of lists 
are obtained via double square 
brackets "[[]]' 

verify that vectors[[l]J is the 
eigenvector corresponding to the 
eigenvalue vakfflj], it is 
jiecessary to verify that 
ma vectors[[l]]= vak[fl]J vectors[[l]J. 

v e c t o r s . 

ma.vectors[[l]] 
performs the computation 

3 
δ 
5 

-4 5 ] 
0 -3 
2 1 J 

Γ-.692] 
-461 

L-Ô39J 

Recall that the n x n identity matrix is the matrix I = [bitj] where b, j = 

The command i d e n t i t y M a t r i x f n ] yields the n x n identity matrix . 

1 if i = j 
0 if i * j " 
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D Example: 

Compute the inverse, ma *, of the matrix ma = 
3 - 4 5 
8 0 - 3 
5 2 1 

and verify that ma 1ma = 
Γ1 ° 
0 1 

[o o 

o" 
0 
1 

The inverse of the matrix ma is found with the command I n v e r s e [ma] and is named mai for easier use. 
The matrix ma is then multiplied by its inverse mai and placed in Tablef orm to verify that the identity matrix 
is obtained. 

MatricesandUectors 
tnf!23j:= 

m a i = l n v e r s e [ m a j 

0utf!23j= 
3 7 6 23 11 49 

{ { - - , - , - } , {-< — ) , - < - - ) . - « > , 

95 95 95 190 95 190 

8 13 16 

95 95 95 

inf!24j:= 
mai.ma / / TableForm 

Outf!24jS/mteForm= 
1 0 0 

0 1 0 

0 0 1 
; i I i | 

ϊιϊιϊιΊϊιΊΊΊΪιϊΐϊιΊΊΊΪ^ 

K> 

a 

Inverse[ma] 
computes the inverse 
of the matrix. ■*; 
the inverse matrix is 
named mai . 

mai.ma / / TableForm 
multiplies matrix mai 
by matrix ma 
and expresses the result as 
a table. Notice the same 
οιαρυζ would have been obtained 
by the command 
max.ma / / U a t r i z F o r m . 
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D Example: 

Define m a t r i x b to be the matrix 

-2 3 4 0 ' 
- 2 0 1 3 
- 1 4 - 6 5 
4 8 11 -4 

Compute (i) Det 

-2 3 4 
-2 0 1 
- 1 4 - 6 
4 8 11 

0" 
3 
5 

-4 

(ü) 

-2 3 4 
-2 0 1 
-1 4 -6 

0 
3 
5 

4 8 11 -4 

(iii) 

-2 3 
-2 0 
-1 4 

4 
1 

-6 

0 
3 
5 

4 8 11 -4 

and (iv) 

-2 3 4 0 
- 2 0 1 3 
- 1 4 - 6 5 
4 8 11 -4 

MatricesandUectors 

m a t r i x b = { { - 2 . 3 . 4 . 0 K { - 2 . 0 . i . 3 } . { - i . 4 . - 6 . 5 } 
{ 4 , 8 , 1 1 . - 4 } } 

Outf3j= 
{{-2, 3 . 4, 0 } , {-2, 0, 1, 3 } , 

{-1, 4, - 6 , 5 } , {4, 8, 11 , -4}} 

to/4/:* 
Det [matr i ib ] 

Outf4j= 
-855 

tnf9/:* 
matrixb.matrixb // HatrixForm 

»AtiiinViViVtT» 

defines m a t r i x b tobe 
the 4κ 4 matrix 
-2 3 4 o' 

- 2 0 1 3 
- 1 4 - 6 5 
4 8 11 -4 

i i i i i i i idmymaiiÎ i i i i——— 

Outf9j//tkthxForm~ 
-6 

15 

20 

-51 

10 

22 

13 

24 

-29 

19 

91 

-86 

29 

-7 

-38 

95 

JX 

Det[matrixb] 
computes the determinant 
of m a t r i x b . 

computes the product of m a t r i x b 
muitipUedby m a t r i x b . This is 
the same as computing 

2 3 4 Ο Ί 2 

- 2 0 1 3 
1 4 - 6 5 

8 11 -4 
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Special attention must be given to the notation which must be used in taking the product of a matrix with itself. 
The following example illustrates how Mathematica interprets the expression (matrixb) A 3 . Usually, the 
matrix product 
m a t r i x b m a t r i x b m a t r i x b is represented as ( m a t r i x b ) A3 . 
However, the command (matr ixb) A3 cubes each element of the matrix m a t r i x b . 

\tnft4j:= 
s a t r i z b . m a t r i x b 

Outft4j//TtatnxForm= 
137 98 479 

-121 65 -109 

-309 120 -871 

520 263 1381 

( m a t r i x b ) A 3 / / 

Out ft ?J//MathxForm= 
-8 27 64 

-8 0 1 

-1 64 -216 

1 64 512 1331 

. m a t r i x b / / 

-231 

189 

646 

-738 

Hatr ixForm 

0 

27 ' 

125 

-64 

■ 

Hatr ixForm 
[-2 3 4 0" 

computes -2 0 1 3 
-1 4 - 6 5 

|_4 8 11 -4. 

T] 

and expresses the result in 1 
traditional matrix form j 

„,„„,„„,,,.., M1I11I1 , , ,TP 
I Notice that a different result is obtained f 
when the command f 
( m a t r i x b ) ~ 3 1 
is executed. The command ( m a t r i x b ) A 3 I 
cubes each element of m a t r i x b . 1 

The built-in command MatrixPower may be used to compute products of matrices: 

Mat r ixPower [ma t r ix , n] computes m a t r i x · m a t r i x · ... · m a t r i x . 

However, to illustrate Mathematical recursive abilities, we define a function matrixpower that performs the 
same calculations as the built-in function MatrixPower. 
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We define the function mat r ixpower by first defining the matrix with m a t r i x p o w e r [ a _ , 1] and then 
the matrix product m a t r i x p o w e r [ a _ , n_] := a . m a t r i x p o w e r [ a , n - 1 ] . 

Hence, Mathematica computes the desired power of the matrix. 

MatricesandUectors 

matrixpcnrer[a_,l] :=a 
matr ixpover [a_ ,n_ ] :=a .matr ixpower [a ,n - l l 

J.'lllillljJII'lll'JII'lll'IUMIilllillliTTTiBTiTTTilllÉXg^ _ 

matrxxpover [a ,n ]=a .matr ixpover [a ,n - l ] 

Using Mathematica's recursion 
abiiuy,for a given matrix a, define 
matr ixpower[a , l ]=a 
and define, for n a positive integer, 

Then, matr ixpover[a ,n] 
computes a. a a. 

n times 
ΝΤΤΓιΤΠΓιΤΙΤι'ηΤιΤΓΓι'ηΤιΤΪΤί'ΐηΊΙΙ 

lnf28j:= 
matrixpover[matrixb,3] 

OutfZSj* 

{{137. 98, 479, -231} , 

{-121, 65, -109, 189}, 

{-309, 120, - 8 7 1 , 646) , 

{520, 263, 1381, -738}} 

inf29j:= 
matrixpover[matrixb,4] // HatrixForm 

0utf29j//MatnxFûrm= 

ia tr ixpover[matr±xb,3] compiles 

- 2 3 4 0 
- 2 0 1 3 
- 1 4 - 6 5 
4 8 11 -4 

-1873 479 

977 713 

3833 757 

-5899 1180 

-4769 

2314 

11216 

3613 

-1106 

-6579 

S S K 

computes 

1 - 2 3 4 0 η 4 

-2 0 1 3 
- 1 4 - 6 5 

[.4 8 11 -4. 
and expresses the result in macrixform 

-14061 10646 
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15.2 Linear Systems of Equations 

i Calculating Solutions of Linear Systems of Equations 

To solve the system of linear equations Ax=b, where A is the coefficient matrix, b is a known vector and x is the 

unknown vector, we proceed in the usual manner: If A"1 exists, then A~1Ax = A"1b so 

x = A"1^ 
Mathematica offers several commands for solving systems of linear equations, however, which do not depend on 
the computation of the inverse of A. These commands are discussed in the following examples. 

D Example: 

Solve the system of three equations 
x - 2 y + z = -4 
3x + 2 y - z = 8 for x, y, and z. 

-x+3y + 5z = 0 

In order to solve an n x n system of equations (n equations and n unknown variables), the command 
S o l v e [ { e q n l , e q n 2 , . . . , e q n n } , ( v a r l , v a r 2 , . . . , v a r n } ] 
is used. In other words, the equations as well as the variables are entered as lists. If one wishes to solve for all 
variables that appear in a system, the command Solve [ { e q n l , e q n 2 , . . .eqnn}] attempts to solve 
eqnl, eqn2,..., eqnn for all variables that appear in them. The system given above with 3 equations and 3 
unknowns is solved below. (Remember that a double equals sign must be used in each equation.) The time 
required to perform the calculation is also displayed. The steps necessary to have the time displayed are given later 
in this section. 

In this case, entering either S o l v e [ {x -2y+z==-4 , 3x+2y==8, -x+3y+5z==0}] or 
S o l v e [ { x - 2 y + z , 3x+2y, - x + 3 y + 5 z } = = { - 4 , 8 , 0 } ] yield the same result. 

Remark: Be sure to include the double equals signs between the left- and right-hand sides of 
each equation. 

MatricesandUectors 
tnf3j:= 

Solve[{x-2y+z==-4 ,3x+2y-z==8, 
- x + 3 y + 5 z = = 0 } . { x , y , z } ] 

Outf3/= 
{{x -> 1 , y -> 2 , z -> - 1 } } 

KS 

Time: 0.78 secondsK^T 
E2 
a 

Solve[{x-2y+z==-4 ,3x+2y-z==8, 
- x + 3 y + 5 z = = 0 ) , { x . y . z ) l 
solves the system of equations 

x-2y+z=-4 
3 x + 2 y - z = ô in-78seconds. 

-χ+3γ+5ζ=ο 

In tkk case, Mathematica (üsplays the time it 
takes to perform the calculation 
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Another way to solve systems of equations is based on the matrix form of the system of equations, Ax=b. The 
matrix of coefficients in the previous example is entered as matrixa along with the veaor of right-hand side 
values v e c t o r b . After defining the vector of variables, vectorx, the system Ax=b is solved explicitly with 
the command S o l v e [ m a t r i x a . v e c t o r b = = v e c t o r b , v e c t o r x ] . 
Compare the computation times for each calculation. 

UectorSolue 
TiKS 

Define matr ixa , 
v e c t o r b , 
v e c t o r x . 

1 
■H 

inf!5f:= 
M a t r i x a = { { i , - 2 , i } , { 3 , 2 , - i } , { - i , 3 , 5 } } ; 
v e c t o r b = { - 4 . 8 , 0 } ; 
v e c t o r x = { x l , y l . z i } 

OutfiSj* 
{x l , y l , z l ) 

lnf!6j:= 
Solve[matr ixa . vectorx==vectorb , v e c t o r x ] f solves the matrix,equation 
e , I for vector*, in. 82 seconds. 

{ { x l -> 1 , y l -> 2, z l -> 

Time: 0.82 secondslQl i i i S I i l i i 

■1}} 

■lolal 
D Example: 

[ 2 x - 4 y + z = - 1 

Next, the system I 3x + y - 2z = 3 is solved in a similar manner. Notice that exact values are 

[ -5x + y - 2z = 4 

given with Solve. This system takes longer to solve than the first example. 

MatricesandUectors MÊnL 

inf!?J:= 
Solve [ {2x-4y+z==- l ,3x+y-2z==3 , 
- 5 x + y - 2 z = = 4 } , { x , y , z } ] 

Outft9j= 
1 15 51 

{{x -> -< - ) , y -> -<—), z -> - (—))} 
8 56 28 

So lve [ {2x-4y+z==- l ,3x+y-2z==3 , 
- 5 x + y - 2 z = = 4 } , { x , y , z } 1 
solves the system of equations 
[2x-4y+z = - l 
| 3x+y-2z = 3 forx,y,<mdzin 
[ -5x+y-2z=4 
1.10 seconds. 

1 
M 

Time: 1.10 secondsKPI H i i i i i i i l l i i H I l l l l i l l l j i l £ > Ι α 
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As before, consider the alternate approach to solving this system using matrices and vectors. 

MatricesandUectors 
BOULBUI 

infZOj:* 
M a t r i x a = { { 2 , - 4 , 1 } , { 3 , 1 , - 2 } , 
{ - 5 , 1 , - 2 } } ; 
▼ e c t o r b = { - i , 3 , 4 } 

OutfZOj* 

{-1, 3 . 4} 
Be sure to nest brackets 
appropriately. 

! m a t r i x a = { { 2 , - 4 , 1 } , { 3 , 1 , - 2 } , 
{ - 5 , 1 , - 2 } } ; 

j v e c t o r b = { - l , 3 , 4 } 
defines m a t r l x a tobe 
and v e c t o r b tobe 

2 -4 1 
3 1 -2 
-5 1 -2 

Time: 0.32 secondsK T̂ _ _ „ 
Notice that executing the command takes .32 seconds. 

The command 
LinearSolve[A,b] 
calculates the solution x of the system Ax=b. 
Comparing the computation times for each, L inearSo lve performs the task more quickly (.57 sees.) than 
does Solve . If the time needed to enter the matrix A and vector b (.32 sees.) is considered, however, the total 
time (.89 sees.) for this calculation was slightly larger than the original(.78 sees.). 

MatricesandUectors 

inf2tj:= 
LinearSolve[matrixa,vectorb] 

Outf2U= 
1 15 51 

{ - ( - ) . - < ~ > . - ( - ) } 
8 56 28 

solves the (matrix) equations 
m a t r i z a x= v e c t o r b 
forx. 
The same result L· obtained by executing the 
commcend 
I n v e r s e [ m a t r i x a ] . v e c t o r b 

Time: 0.57 secondsl<?T a 
In this case, the calculation takes only .57 seconds. 
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D To Display Time After Each Evaluations: 

In the above examples, the time to perform each calculation is displayed instead of the usual thermometer indicating 
memory used. To display the time clock after each evaluation, proceed as follows: 

1) Use the Mouse to move the cursor to Edit and select Settings; then select fiction; 
2) The fiction Settings window will appear; 
3) Click the box Display clock timing after each eualuation;and 

A) Click the GD button. 

Action Settings in Version 1.2; the Action Settings in Version ZO 
care the some. 

fiction Settings 
[X] New output replaces old 3€R 
£x] Output cells are grouped with input 3êG 
□ Multiple output cells are grouped together 3êM 
□ After eualuation, input cells are locked S€L 
□ Beep when an eualuation is finished 3êB 
E3 Display clock timing after each eualuation 3ST 

Break D to fit window §etU □ at page width §€Q 

El Break at character widths. 3ëK 

Generate unformatted te»ts for these results: 
O A" &fl O None &N <·) No graphics or Short 98S 

S Place Print output as it is generated §§P 
D Place each Print line in a separate cell 8§D 

On opening a Notebook, load initialization cells: 

Q Always 961 (5) Neuer §§U O Ask each time 3§E 

[[ OK ]][ Apply ) [Defaults] [~Help ] ( Cancel ] 

When using the Solve command, the equations may be entered in several different ways as the following example 
shows. For example, if equat ions is a list of equations and v a r i a b l e s is a list of variables, then 
Mathematica attempts to solve equat ions in terms of v a r i a b l e s when the command 
Solve [ equat ions , v a r i a b l e s ] is entered; Mathematica attempts to solve equat ions in terms of all 
variables that appear in equat ions when So lve [ equat ions ] is entered: 
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D Example: 

ί 4xj + 5x2 - 5x3 - 8x4 - 2x5 = 5 
7xi + 2x2 - IOX3 - X4 - 6x5 = - 4 

Solve the system of equations ^6x1+2x2 + 10x3-10x4 + 7x5 = - 7 for xlf x2, X3, X4, andx5. 
I -8xj - x2 - 4x3 + 3x5 = 5 
[ 8x! - 7x2 - 3x3 + 10x4 + 5x5 = 7 

S o l Y e [ { 4 x [ l l + 5 x [ 2 ] - 5 x [ 3 ] - 8 x [ 4 J - 2 x [ 5 ] , 
7 x [ i ] + 2 x [ 2 ] - i O x [ 3 ] - x [ 4 ] - 6 x [ 5 ] , 
6 x [ l ] + 2 x [ 2 ] + 1 0 x [ 3 ] - i 0 x [ 4 ] + 7 x [ 5 ] , 
- 8 x [ i ] - x [ 2 J - 4 x [ 3 ] + 3 x [ 5 ] . 
8 x [ i ] - 7 x [ 2 ] - 3 x [ 3 ] + i 0 x [ 4 ] + 5 x [ 5 ] } = = 

{5 , - 4 , - 7 . 5 , 7} ] 

Outf22j= 
1245 113174 

{{x[ l ] -> , x[2] -> , 
6626 9939 

7457 
x [ 3 j -> - ( ) , x [ 4 ] 

9939 

49327 
x[5] -> }} 

9939 

38523 

6626 

Time: 1.90 secondsj^I 

After defining ma t r i xa to be the matrix 

«awa A&yjL 
solves the system of 
equations 

4χχ + 5x2 - 5x3 - 8x4 - 2x5 « 5 
7χχ + 2x2 - IOX3 - X4 - 6x5 - - 4 

6xx + 2x2 + IOX3 - IOX4 + 7x5 - - 7 
- 8 x ! - x 2 - 4 x 3 + 3 x 5 = 5 

8XJ[ - 7x2 - 3x3 + IOX4 + 5x5 - 7 
for xj , x2, x3, X4, <mdx$. 

0 ta 
a 

4 
7 
6 

-8 
8 

5 
2 
2 

-1 
-7 

-5 
-10 
10 
-4 
-3 

-8 
-1 
-10 

0 
10 

-2 
-6 
7 
3 
5 

and t 2 to be vector 

5 

-4 

-7 

5 

7 
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LinearSolve is used to solve the same system much faster: 

m a t r i x a = { { 4 , 5 , - 5 , - 8 , - 2 } , { 7 , 2 , - i 0 , - i , - 6 } , 
{ 6 . 2 , 1 0 , - 1 0 , 7 } . { - 8 . - 1 , - 4 , 0 , 3 } , 
{ 8 , - 7 , - 3 , 1 0 , 5 } } 

t 2 = { 5 , - 4 , - 7 , 5 , 7 } 
z a r r a y = À r r a y [ x , { 5 } ] ; 

L i n e a r S o l v e [ m a t r i x a , t 2 ] 

Outf24j= 
1245 113174 7457 38523 49327 
{- . , - ( — — ) . , } 
6626 9939 9939 6626 9939 

Time: 0.88 secondsIOU 
Ώ\ 
α 

i Application: Characteristic and Minimal Polynomials 

The characteristic polynomial of the n x n matrix A is the polynomial 

pA(x) = Det[xIn -A], where In is the nxn identity matrix 

It is well-known that the eigenvalues of A are the roots of the characteristic polynomial of A. 

The trace of an n x n matrix A = [ajj] is alfl + a^2 + — + an,n = Sak,k-
k=l 

If A is a matrix with non-zero determinant and characteristic polynomial 

ΡΑ(χ) = χ η + 0 η -1 χ η ~ 1 + °η -2 χ η ~ 2 + ··· + 0 1 χ + 00» t n e n Det[A] = (-l)nC0 
n 

and Trace [A] = a u +... + an>n = £ ak>k = -c n _ , . 
k=l 

Let PA(X) be the characteristic polynomial of A and let 

ΡΑ(χ) = (Ρι(χ))η ΐ(Ρ2(χ))η2·· · · •(Pm(x))nm be the factorization of pA(x). 
The minimal polynomial q(\) of A is the monic polynomial of least degree satisfying q(A)=0. It is 
well-known 

that p1(x)p2(x)i >pm(x) divides q(x); hence, PA(A) = 0. 
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D Example: 

Γθ 6 3l 
Find the trace; characteristic polynomial, and minimal polynomial of the matrix I -2 -8 -21 

Lo o -2J 
The process begins by entering the matrix, matrixa, and then the associated matrix, assoca, where 
assocaa=x Ident i tyMatrix[4]-matrixa. 

The characteristic polynomial is then determined using 
D e t [ a s s o c a ] . 

MatrmOperations 
ttifSOj:* 

Clear [x ,matr ixa ] 
m a t r i x a = { { 0 , 6 . 3 K { - 2 . - 8 , - 2 K { 0 , 0 , - 2 } } 

OutfSOj* 
{{0, 6, 3 } , {-2, - 8 , - 2 ) , {0, 0, -2}} 

/fi/8/J:= 
assoca=x I d e n t i t y H a t r i x [ 3 ] - m a t r i x a 

0utf8!j= 
{ { x , - 6 , - 3 } , { 2 , 8 + x , 2 } , { 0 , 0, 2 + x } } 

M82J:* HI 
MatrixForm[assoca] 

Outf82pYt1*trixForm= 
-6 

8 + x 2 

Begin by clearing prior 
definitions of x and matrixa; 
then define m a t r i x a 
to be the matrix 

0 6 3" 

-2 -8 -21 

0 0 -2J 

I d e n t i t y H a t r i x [ 3] 
is the three-by-tkree identity 

[1 0 ol 
matrix 0 1 o| 

o o i l 
a s s o c a is the three-by-tkree matrix 

X 

ri 0 0" 

0 1 0 

L° ° *. 
-

0 6 3 

-2 -8 -2 

0 0 2 + X 

lfif83j:= 
D e t [ a s s o c a ] 

Outf83j= 
2 3 

24 + 28 x + 10 x + x 

Jl 
computes the determinant of the three-by-tkree matrix 
assoca . 

jflymillliMltlHOII 

The characteristic polynomial is then easily factored using F a c t o r [Det [ a s soca ] ] . 

This yields (2 + x)2(6 + x). 

Since the minimal polynomial divides the characteristic polynomial, the minimal polynomial must either be 

(2 + xr (6 + x) or (2 + x) (6 + x). 
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Now, in order to determine which is the minimal polynomial, the definition given earlier must be employed. Since 
this definition involves substituting matrixa into these two polynomials to see which gives the zero matrix (the 
matrix of all zeros), determining the powers of matrixa is necessary. Therefore, the function 
matrixpower discussed earlier is redefined and used to square and cube matrixa. For easier use, the 3x3 
identity matrix is named ident , the square of matrixa is called matrix s , and the cube of matrixa is 
called matr ixc . 

Note that the same result can be accomplished using the built-in function MatrixPower. 

MatriHOperations 

lnf84j:= 
F a c t o r [ D e t [ a s s o c a ] ] 

Outf84j= 
2 

(2 + x) (6 + x) 

lnf85j:= 

TIE 
M M M M M M 

j i M M N M M W M « 

Factors D e t [ a s s o c a ] ] which is the polynomial 

x 3 + 1 0 x 2 + 2 6 x + 2 4 . 
The minimal polynomial o/ ma t r i xa divides the 
characteristic polynomial; moreover, we can conclude 
that the minimal polynomial is either 

(2+x)(6+x) or (2+x)2(6+x). 
matrixpover[a_,l]:=a 
matrixpover[a__, n_] : =a. matrixpover[a, n ^ 

ΜΜΒ0Μ0ΟΜΜΜΜ0ΜΜΜηΜΜΜηΝΜΜΜΜΜ0ί inf86j:= 
i d e n t = I d e n t i t y H a t r i x [ 3 ] 

Outf86j= 
{{1 , 0, 0 } . {0, 1, 0 ) , {0, 0, 1}} 

inf87j:= 
m a t r i x a s = m a t r i x p o v e r [ m a t r i x a , 2 ] 

Outf87j= 
{{ -12 , -48 , - 1 8 } , {16, 52, 14} , {0, 0, 4}} 

inf88j:= 
m a t r i x a c = m a t r i x p o v e r [ m a t r i x a , 3 ] 

Outf88j= 
{ {96 , 312, 96} , { -104, -320 , - 8 4 } , 

{0 , 0, - 8 } } 

Name the 3-by-3 identity matrix i d e n t . 

Γ 

computes 

0 6 3 ] 2 

-2 -8 -2 
0 0 -2j 

and names the result m a t r i x a s . 

i3 

computes 

0 6 3 
-2 -8 -2 

m 0 0 -2J 

and names the result m a t r i x a c . 

JjflflflQjjjjgjjjjjj^J^^^Jjjjjjjgj^ 

iE2 
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Substitution of matrixa into the possible minimal polynomial (2+x)(6+x) is done as follows: 
(2 ident + matrixa) . (6 ident + matrixa) 
Notice that since matrixa is a matrix as opposed to a scalar, then each constant in the polynomial must be 
converted to a matrix by multiplying by the identity matrix. Otherwise, the command would not be defined. 
Substitution into the other polynomial is done in a similar manner. 
Since substitution into the second polynomial yields the zero matrix, the minimal polynomial is 

(2 + x)2(6 + x) or x3+10x2+28x + 24 . 

MatrixOperations 

infe?J:= 
( 2 i d e n t + m a t r i x a ) . ( 6 ident+ma 

0utf69j= 
{ { 0 , 0, 6 ) , { 0 , 0, - 2 } , { 0 , 0, 0 } } 

inf90j:= 
24 i d e n t 

tr ixa) J 

1 
+28 matrixa+iümatrixas+matrixacJ 

U 

K> 

Outf?Oj= 
{ { 0 , 0, 0 } , { 0 , 0, 0 } , { 0 , 0, 0 } } 

Since 

0 0 6 

0 0 -21 

0 0 0 . 

is not the zero matrix, 
(2+x)(b+x)isnotthe 
minimal polynomial/or 
m a t r i x a . 
Since this is the zero 
matrix, 
(2+x)2(6+x)is*ftô 
minimal polynomial 
for m a t r i x a . 

The properties of the minimal polynomial can now be verified. Notice that the order of this polynomial is three. 
Since the general formula for the minimal polynomial of order three is 

q(x) = x3+C2X +CJX + CQ we have in this case, c0 = 24, ^ = 2 8 , and c2 = 10. 

Hence, the trace of A can be computed with following formula: 

TracelA] = a1?1 + a2)2 + ^33 = X a k k = -C3.1 = -c 2 = -10 
k=l 

as well as the determinant: DetlAj = (—l) c0 = -24. 

These results agree with the calculations shown below using Mathematica : 

MatriHOperations 

S u m [ m a t r i x a [ [ i , i ] ] , { i , i , 3 } ] 

-10 

in[3j:= 
Det[matrixa] 

Outf3j= 
-24 

ZM » ■" " 

computes the sum ]Tmatr ix [ [ i , i ] ] 
i=l 

which is the sum of the elements on the 
diagonal of ma t r i x a , or eguivalentfy, the 
trace of m a t r i x a . 

zrxnâ n=:::::::::::::;:::::::;::: 
computes the determinant of 
m a t r i x a . 

1 

LPiii'iii'iym 

JJ Lr 

BYfflYmwwmwtfiriiii'OTi'ii'w 

ta 
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D Example: 

Γ2 
13 
lo 
L-2 

-3 
7 
1 
3 

1 
-5 
9 
4 

21 
2l 

-5l · 
3j 

Find the trace; characteristic polynomial, and minimal polynomial of the matrix 

This problem is solved in a manner similar to that of the previous example. First, the matrix is entered and named 
ma t r ixc . Then, the associated matrix assocc is defined. Note that in this case the 4x4 identity must be 
used. The characteristic polynomial is then found with Det[ as socc] and called char for later use. From 
c h a r , the numerical approximation of the roots of the characteristic polynomial ( the eigenvalues) of matrixc 
can be determined with NRoots [char==0, x] . In this case, the characteristic polynomial is irreducible. 

MoreMatrices 

m a t r i x c = { { 2 . - 3 . 1 . 2 } . { 3 . 7 . - 5 . 2 } . 
{ 0 . 1 . 9 . - 5 } . { - 2 . 3 . 4 . 3 } } 

Outf!5j= 
{{2, - 3 , 1, 2 } . {3, 7, - 5 , 2 } , 

{0, 1, 9, - 5 } , {-2, 3 , 4, 3}} 

a s s o c c = x I d e n t i t y H a t ] 

Outf!6j= 
{{-2 + x, 3 , - 1 , - 2 } , {-3, -7 + x, 5, - 2 } , 

K> 

; r i x [ 4 J - m a t r i x c J 

{0, - 1 . -9 + x, 5 } , {2, - 3 , - 4 , -3 + x}} 

inf!7j:= 
c h a r = D e t [ a s s o c c ] 

Outf!7j= 
2 3 4 

1665 - 848 x + 181 x - 21 x + x 

N B o o t s [ c h a r = = 0 . x ] 

Outf!8j= 

x == 3.59859 - 5.14335 I | | 

x == 3.59859 + 5.14335 I | | 

x == 4.58305 | | x == 9.21977 

Define m a t r i x c 
to be the matrix 

2 - 3 1 2' 
3 7 - 5 2 
0 1 9 - 5 
-2 3 4 3. 

Then define a s s o c c to be the 
mOtTiX 

\ 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

o" 
0 

0 

1. 

-3 1 2 
7 - 5 2 
1 9 -5 

-2 3 4 

The characteristic polynomial of 
m a t r i x c is the determinant of 
a s s o c c . 

Although Matkematica can 
compute the enact roots of the 
characteristic polynomial, it is 
much faster to obtain numerical 
cpproyamations of them 
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A numerical approximation of the eigenvalues can also be found with E i g e n v a l u e s [N [matrixc] ] . 
This is demonstrated below. 
The method by which assocc is raised to a power is slightly different in this example. Instead of making use of 
the user-defined function matrixpower seen in the example above, we choose to take advantage of the built-in 
Mathematica function MatrixPower [mat r ix , n] . (Note the capital letters.) This function determines the 
matrix obtained when m a t r i x is raised to the power n as did matr ixpower . The matrices obtained by 
using MatrixPower to raise m a t r i x c to the powers 2, 3, and 4 are necessary in determining the minimal 
polynomial. These are calculated and named ma t r ix2 , m a t r i x 3 , and m a t r i x 4 , respectively. (Note 
that only the output of the last command in the second input cell is displayed.) To see that the characteristic 
polynomial is the minimal polynomial, m a t r i x c is substituted into the characteristic polynomial, char, to 
yield the zero matrix. 

MoreMatrices 
!nf!9j:= 

Eigenvalues[N[matrixc]] 

Outf!9j= 
{3.59859 + 5.14335 I , 3.59859 - 5.14335 I 

4.58305, 9.21977} 

i d e n t 4 = I d e n t i t y n a t r i x [ 4 ] 
m a t r i x 2 = r l a t r i x P o w e r [ m a t r i x c . 2 ] 
m a t r i x 3 = H a t r i x P o w e r [ m a t r i x c , 3 ] 
m a t r i x 4 = n a t r i x P o v e r [ m a t r i x c , 4 ] 
H a t r i x F o r m [ m a t r i x 4 ] 

OvttéO/sV/iitrixFûrm* 
64 -646 2947 -2974 

-212 3192 -4330 5611 

692 -2483 1711 -2688 

1341 1331 -1337 324 

infZU:* 
1665 ident4-848 iatriic+ 
181 matrix2-
21 matrix3+matrix4 

computes numerical cpproximations of the eigenvalues 
of m a t r i x c . 

i d e n t 4 is 

I matrix4 is | 

I [*2 -3 1 2 l 4 1 

1 3 7 -5 2 I 

0 1 9 -5 I 

I L-2 3 4 3 J I 
L " ! — "■" Ύ$ 

Outf2tJ= 
{ {0 . 0. 0, 0} , {0. 0, 0, 0} , {0, 0, 0, 0}. 

{0, 0. 0, 0}} 

• ' i EL m 
m 
a 

*1 0 0 θ" 

0 1 0 0 

0 0 1 0 

.0 0 0 1. 

matrix2 is 

2 

3 

0 

-2 

-3 

7 

1 

3 

1 

-5 

9 

4 

i2 

m a t r i x 3 is 

2 - 3 1 2 

-5 

9 

4 

2 

-5 

3J 

U We evaluate the characteristic 
polynomial when x is the matrix 
m a t r i x c 
Since the characteristic polynomial 
is breàujùble, the characteristic 
polynomial is the minimal 
polynomial 

The order of the minimal polynomial is 4. Therefore; since c0 = 1665, q = - 8 4 8 , C2 = 181, 
and C3 = 21, we have Trace|A| = -C4-1 = -C3 = -21. 
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i Application: Maxima and Minima Using Linear Programming 

We call the linear programming problem of the form: 

Minimize Z = q X\ + c2 x2 + ··· +cn xn> subject to the restrictions 

inequalities 

function 
ai,iXi+alt2X2 + ... + a l i n x n > bx 

a2,l*l+a2>2X2 + ... + a2 f nxn> ^ 
, and X! > 0, x2 > 0,... , x n £ 0 

lam, i x i+ am,2x2 + - + am > nxn> bm 

the standard form of the linear programming problem. 

The Mathematica command 
ConstrainedMin [function, { i n e q u a l i t i e s } , {var iables} ] solves the standard form of 
the linear programming problem. 
Similarly, the Mathematica command 
ConstrainedMax [function, { i n e q u a l i t i e s } , {var iab le s } ] solves the linear 
programming problem 

Maximize Z = Cj \\ + c2 x2 + ... +cn xn, subject to the restrictions 
function 

fai,iXi+alt2x2 + ... + a1>nxn> bx 

a2,iXi+a2)2x2 + ... + a 2 ) n x n > b2 inequalities 

D Example: 

, and X! > 0, x2 > 0,. . . ,xn > 0. 

[am,iXi+am>2x2 + ... + a m t n x n > bm 

Maximize z(xj,x2,X3) = 4xj-3x2 +2x3 subject to the constraints 
3x!-5x2 + 2x3 < 60, 
x 1 -x 2 + 2x3 < 10, 
xi + x2~x3 - 20, and Xj,X2,X3 all non-negative 

In order to solve a linear programming problem with Mathematica , the variables {x l , x2, x3} and objective 
function 2 [x l , x2, x3] must first be defined. In an effort to limit the amount of typing required to complete 
the problem, the set of inequalities is assigned the name ineqs while the set of variables is called vars . 
Notice that the symbol "<=", obtained by typing the "<" key and then the "=" key, represents "less than or equal 
to" and is used in ineqs . Hence, the maximization problem is solved with the command 
C o n s t r a i n e d M a x [ z [ x l , x 2 , x 3 ] , i n e q s , v a r s ] . 
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The solution gives the maximum value of z subject the given constraints as well as the values of x l , x2, and,x3 
which maximize z . These steps are shown below : 

MoreMatrices 

Clear[xl„x2„x3,z,ineqs,,?'ar3] 
Yars={xl,x2,x3} 
z[xl_,x2_,x3_]=4x1-3x2+2x3 

Outf44j= 
4 x l - 3 x2 + 2 x3 

Ιηί45ΐ:= 
ineqs={3xl-5x2+x3 <= 60, 
xl-x2+2x3 <=10,xl+x2-x3<=2Q}; 

inf46j:= 
ConstrainedHax[z[xl,x2,x3]«. 
ineqs^varsl 

Outf46j= 
{45, {xl -> 15, x2 -> 5, x3 -> 0}} 

KS 

]J 

sa 

First clear all prior definitions of 
variables to be used in the problem. 
Then define the function z to 
be maximized 

To avoid repeatedly typing the 
same tking, we name the 
constraints i n e q s . 

Finally, use the Mathemostica 
function C o n s t r a inedHa x 
to see that the maximum value 
is 45 when x i - 25, x2*5, and 
x3=0. 

Minimization problems are solved in a similar manner. Consider the following : 
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D Example: 

Minimize z(x1,X2,X3) = 4X!-3x2+ 2x3 subject to the constraints 
3x!-5x2 + 2x3 £ 60, 
X!-X2 + 2x3 £ 10, 
xi + x 2~ x 3 - 20, and X!,x2,X3 all non-negative 

After clearing all previously used names of functions and variable values, the variables, objective function, and set 
of constraints for this problem are defined and entered as they were in the first example. By using 
C o n s t r a i n e d M i n [ z [ x l , x 2 , x 3 ] , i n e q s , v a r s ] 
the minimum value of the objective function is obtained as well as the variable values which give this minimum. 

We proceed exactly as 
before except that the 

\ final step uses the command 
C cms t rainedUin . 

\Ên^=^^gîgggB MoreMatrices ^^^^^ÊÈÈÊÈi 

\inf48j:= 11 
C l e a r [ x ± , x 2 , x 3 , z , i n e q s , v a r s ] 
v a r s = { x i , x 2 , x 3 } 
Z[xi_,x2__,x3_]=4xl-3x2+2x3 J 

\out[48j= Λ 
4 x l - 3 x2 + 2 x3 JJ 

lnf49j:= 1 
ineqs={3xi -5x2+x3 <= 60 , 
x l -x2+2x3 < = i 0 , x i + x 2 - x 3 < = 2 0 } ; J 

infSOj:* "11 
C o n s t r a i n e d H i n [ z [ x l , x 2 , x 3 ] , 
ineqs ,vars ] J 

\outf50j= Λ 
{-90, {xl -> 0, x2 -> 50, x3 -> 30}} JJ 

^^^^*^^^*^^»»»^*^*****^^^^^* 1 hl!::;:!:!:::·:::::::::::·:·:;:·:::::::::::·:·::* ^ 

m 
Eq 

I I 
I:·:*:·] 

M 
>ra 

Hence, we conclude that the 
mmbrrwri value is -90 which 
occutrs whenxl=0, xZ^SO, 
andx3=30. 

1 The Dual Problem 

Given the standard form linear programming problem 

Minimize Z = ̂ Cj Xj subject to the constraints ]Tajj Xj > b\ for i = 1, 2, ... , m 
j=i j=i 

and Xj > 0 for j = l, 2, ... , n, the dual problem is 

m m 
Maximize Y = ^ b i y, subject to the constraints ^ a ^ y i < Cj for j = l, 2, ... , n 

i = l i = l 

and yj > 0 for i = l, 2, ... , m. 

Similarly, for the problem 
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Maximize Z = ̂ Cj Xj subject to the constraints ^ a ^ Xj < bj for i = 1, 2, ... , m 
j=i j=i 

and Xj > 0 for j = l, 2, ... , n, the dual problem is 

m m 
Minimize Y =]Tbj y\ subject to the constraints ^ a j j y j > Cj for j = l, 2, ... , n 

i=l i=l 

and yj > 0 for i = l, 2, ... , m. 

D Example: 

Maximize Z=6xj+ 8x2 subject to the constraints 5xj + 2x2 < 20, Xj + 2x2 < 10, Χχ £0, 
and X2 ^ 0. 
State the dual problem and find its solution. 
First, the original (primal) problem is solved. The objective function for this problem is represented by zx while 
that of the dual is given by zy. The set of variables {x [ 1 ] , x [2 ]} of the primal are called va l sx . 
Similarly, those of the dual { y [ l ] , y [ 2 ] } are assigned the name va l sy . Finally, the set a of inequalities for 
the primal and dual are i n e q s x and ineqsy, respectively. Using the command 
ConstrainedMax[zx,ineqsx, {x[1], x [2]}] , 
the maximum value ofzx is found to be 45. 

LinearProgramming 

C l e a r [ z x , z y , x , y , v a l s x , v a l s y , i n e q s x , i n e q s y ] 
\o\ 

Notice that "<= ~ means "less 
than or equal to. ' 

z x = 6 x [ i j + 8 x [ 2 ] ; 
i n e q s x = { 5 x [ i ] + 2 x [ 2 ] < = 2 0 , x [ 1 ] + 2 x [ 2 ] < = i 0 } 

Outf53j= Λ 
{5 x [ l ] + 2 x[2] <= 20, x [ l ] + 2 x[2] <= 10} J 

inf54j:= T 
C o n s t r a i n e d H a x [ z x , i n e q s x , { x [ l ] , x [ 2 ] } ] J 

Oatf54/= 
5 15 

{45, {x[ l ] -> - , x[2] -> —}} 

We begin by clearing all 
prior definitions of the 
objects we wül use in this 
example 

We name the functions 
we wish to maximize 
zx and we name the 
constraints i n e q s . 

The maximum value 
is 45 which occuars 
when x[l] is 5/2 and 
when x[2J L· 15/4. 

Since in this problem, we have Cj = 6 , c2 = 8 , bj = 20 , and b2 = 10, the dual problem is 

Minimize Z=20y!+ 10y2 subject to the constraints 5yj + y2 ^ 6, 2yj + 2y2 ^ 8, yj £0, 
and y2 ^ 0. 
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The dual is solved in a similar fashion by defining the objective function zy and the collection of inequalities 
ineqsy. The minimum value obtained by zy subject to the constraints ineqsy is 45 which agrees with the 
result of the primal and is found with 
C o n s t r a i n e d M i n [ z y , i n e q s y , { y [ 1 ] , y [ 2 ] } ] . 

[ ID 1 L 'n eg£,P,r^ 
B Notice that ">= ~ means ~gre 

in[55j:= I ̂ fl<ai or equal to. " 
zy^20y[i]+10y[2] R 

ineqsy*={5y[l]+y[2] >=6,2y[1]+2y[2] >=8} 

\Outf55j= 
{5 y[l] + y[2] >= 6, 2 y[l] + 2 y[2] >= 8} 

Constrainedriin[ zy, ineqsy, {y[l] ,y[2] }] 

\0utf56j= 
1 7 

{45, { y [ i l -> - , y [2 ] -> - } } 
2 2 

Of course, linear programming models can involve numerous variables. Consider the following : 
Given the standard form linear programming problem 

Minimize Z = C\ Xj +C2 X2 + ··· +cn xn, subject to the restrictions 
ai,iXi+a1)2x2 + ... + a1>nxn> \ 

a2,ixi+a2,2X2 + - + a2 f nxn> b2 

Vlxl+V2x2 + - + a m , n x n ^ b m > and X! > 0, X2 > 0, . . . , Xn > 0 

ΓΧι1 T b J 
let x = I : I, b = l : { c = [cj,..., cn], and A denote the m x n matrix A = [ajjj. 

lAiJ LO 
Then the standard form of the linear programming problem is equivalent to find the vector x that maximizes the 
number Z= c.x subject to the restrictions A.x > b and x > 0. The dual problem of Maximize the number 
Z=c.x subject to the restrictions A.x >. b and x >. 0 i§. Minimize the number Y=y.b subject to the 
restrictions y.A <_ c and y >_0. 

The Mathematica command LinearProgramming [c , A, b] finds the vector x which minimizes the quantity 
Z=c.x subject to the restrictions A.x > b and x > 0. This command does not yield the minimum value of Z as did 
Cons t ra inedMin and ConstrainedMax. This value must be determined from the resulting vector. 

-| AQ\ 

To solve the dualprobiem, 
we proceed the tame way 
except we use the command 
C cms t r a inedHin. 

Notice that the minimum 
value of the dual is the same 
as the maximum value of 
the original! 
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D Example: 

Maximize Z=5x! -7x2+ 7x3+ 5x4 +6x5 subject to the constraints 
2x1 + 3x2 + 3x3 + 2x4 + 2x5 < 10, 
6x! + 5x2 + 4x3 + X4 + 4x5 < 30, 
-3xj -2x2-3x3-X4 < - 5 , 
- χ 1 - χ 2 - Χ 4 ^ -10, and χ , > 0 for 1 = 1,2,3,4,5. 

2 
6 

-3 
-1 
0 

3 
5 

-2 
-1 
0 

3 
4 

-3 
0 
0 

2 
1 

-4 
-1 
0 

2 
4 
0 
0 
0 

Clearly, Mathematical ability to perform matrix algebra will be advantageous in the completion of this type of 
problem. First, the vectors c and b are entered. 

Remark: Notice that Mathematica does NOT make a distinction between row and column vectors; it "interprets" 
the vector correctly and consequently performs the calculation correctly 

For this problem, x = 

xi 
*2 

*3 

x4 

_x5. 

. b = 

"10" 
30 
-5 
-10 

0 _ 
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The matrix A is entered and named matrixa . 
A helpful function which can be used in this problem is zerovec » Table [ 0, {5 ) ] 
which creates a list of five zeros. This can be used instead of typing a vector made up of 5 zeros and is used in 
defining matrixa below. In general, the command Table [ e x p r e s s i o n , {n} ] produces a list of n 
copies of e x p r e s s i o n . 

LinearProgramming 
to/04/-

Clear[matrixa,z,y,c,b] 
c = { 5 , - 7 , 7 , 5 , 6 ) 
b = { 1 0 , 3 0 , - 5 , - 1 0 , 0 ) 

Out/04/* 
{10, 30, - 5 , -10 , 0} 

to/05/:* 

IB1I 
MMMUMMMI 

Begin by clearing aäprior 
definitions of objects that 
will be used in this example. 
Thendefine c, b 

m a t r i x a . 
|"¥'l!!!!!!i 

m a t r i x a = { { 2 , 3 , 3 , 2 , 2 } , { 6 , 5 , 4 , i , 4 } , 
{ - 3 , - 2 , - 3 , - 4 , 0 ) , { - 1 , - 1 , 0 , - 1 , 0 } , { 0 , 0 , 0 , 0 , 0 } } 

Out/05/* 
{{2, 3, 3, 2 

{ - 3 , -2 

2 } , {6, 5, 4, 1, 4 } , 

3, - 4 , 0 } , {-1, - 1 , 0, -1 

0, 0}} The command 
T a b l e [ 0 , { 5 } ] 
creates a list of five 
zeros. 

{0 , 0, 0 

to/06/:' 
z e r o v e c = T a b l e [ 0 , { 5 } 1 

Out/00/* 
{0, 0, 0, 0, 0} 

to/0?/:* 
{ { 2 , 3 , 3 , 2 , 2 } , { 6 , 5 , 4 , 1 , 4 } , 
{ - 3 , - 2 , - 3 , - 4 , 0 } , { - 1 , - 1 , 0 , - 1 , 0 } , z e r o v e c } 

Out/07/^ 
{{2, 3 , 3, 2, 2 } , {6, 5, 4, 1, 4 } , 

{ - 3 , - 2 , - 3 , - 4 , 0} , 

{0 , 0, 0, 0, 0}} 

{-1. - 1 , 0, 

Hence, instead of typing 
{ 0 , 0 , 0 , 0 , 0 } 

when defining 
m a t r i x a 
one could have typed 
z e r o v e c . 
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Another useful Mathematica command is Array [x, n] which creates the list of n elements 
{x [ 1 ] , x [ 2 ] , . . . , x [ n ] } . This command is used below to define the list of variables xvec . 
Similarly, the command Table [x [ i ] , { i , 1, n} ] yields the same list These variables must be defined 
before attempting to solve this linear programming problem. 

xvec=Àrray[x φ5 J 

OutfSSj* 
{ x [ l j , x [ 2 ] , x [ 3 J . x [ 4 ] , x [5]} 

lnf89j:= 
T a b l e [ x [ i J . { i . l . 5 > ] 

Outf89j= 
{ x [ l ] , x [ 2 ] , x[3] 

iiAVfràHn 

Notice that the command 
Array[x,5] 
yields the same as the command 
Tabléex[i] ,{ i ,1 ,5}] . 

TP~ 

| | · I · I IM 
x[4] x [ 5 ] } 

iiiiîisiiiiiî £i£££j£££££>Q j£i£j£j£2ii£-j^£J a 

We will see that using 
indexed variables can 
save us considerable 
typing. 

After entering the objective function coefficients with the vector c , the matrix of coefficients from the inequalities 
with matrixa , and the right-hand side values found in b ; the problem is solved with 
LinearProgramming [c, matrixa, b] . 
The solution is called xvec . Hence, the maximum value of the objective function is obtained by evaluating the 
objective function at the variable values which yields a maximum. Since these values are found in xvec , the 
maximum is determined with the product of the vector c and the vector xvec . (Recall that this product is entered 
as c . xvec . ) This value is found to be 35/4 . 

LinearProgramming 

M90J:* 
xvec=LinearProgramming[c,matrixa.b] 

Outf90j= 
5 35 

{ 0 , - , 0 , 0, — } 

JWiftVftii 

solves the linear programming 

8 

c. xvec 

Outf9U= 
35 

fäWftlll 

Thus, the maximum value ofz subject to 
the given constraints occurs when 
K[1]=0, K[2]=5/2, %[3]=0t x[4]=0, and 
%[5]=35t8. 

iJiftnfiwft i 

c. xvec 
compiles the maximum value 
which is 35/4. 

State the dual problem. What is its solution? 

Since the dual of the problem is Minimize the number Y=y.b subject to the restrictions y.A < c and y > 0, we use 
Mathematica to calculate y.b and y.A: 

Remark: Notice that Mathematica does NOT make a distinction between row and column vectors; it interprets the 
vector correctly and consequently performs the calculation properly. 
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A list of the dual variables { y [ l ] , y [2] , y [ 3 ] , y [ 4 ] , y [ 5 ] } is created with Array [y, 5] . This list 
includes 5 elements since there are five constraints in the original problem. The objective function of the dual 
problem is, therefore, found with yvec .b, and the left-hand sides of the set of inequalities are given with 
y v e c . m a t r i x a . 

Inf92j;= 
y v e c=Àr r a y [ y . 5 ] 

0utf92j= 
( Y [ l ] , Y[2 ] , y [ 3 ) , y [ 4 ] , y [5 ]} 

tnf93j:= 

iniftiilifflfifoni 

y v e c is the list 

y"|'y:V;V;Vj 

We wUl interpret this as the function we wish 
to minimize. 

5 y[3] - 10 y[4] 

y v e c . b 

Outf93j= 
10 y [ l ] + 30 y[2] 

inf94j:= 
y v e c . m a t r i x a 

Outf94j= 

{2 y [ l ] + 6 y[2] - 3 y[3] - y [ 4 ] , 

3 y [ l ] + 5 y [2] - 2 y[3] - y[4] 

3 y [ l ] + 4 y[2] - 3 y [ 3 ] , 

2 y [ l ] + y[2] - 4 y[3] - y [ 4 ] , 

2 y [ l ] + 4 y [ 2 ] } 

We can interpret these 
results to help us state 
the dualproblem 

I Remember that the solution 
(minimum value) of the dual 
is the same as the solution 
(moKimum value) of the 
ori^fi^roblem 

We will interpret this as our 
constraints. 

ELm 

1 .',;.;, .'rn'Fi m m 
a 

Hence, we may state the dual problem as follows: 

Minimize Y =10yj + 30y2-5y3~10y4 subject to the constraints 
2yi + 6 y 2 - 3 y 3 - y 4 <, 5, 
3y1 + 5 y 2 - 2 y 3 - y 4 < - 7 , 
3y 1 + 4y 2 _3y 3 £ 7, 

2yi + y 2 - 4 y 3 - y 4 < 5, 
2yi + 4y2 ^ 6, and yj £ 0 for i = 1, 2, 3, and 4. 
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i Application: A Transportation Problem 

A certain company has two factories, F 1 and F 2, each producing two products, Product 1 and Product 2, that are 
to be shipped to three distribution centers, Dist 2, Dist 2, and Dist 3. 

The following table illustrates the cost associated with shipping each product from the factory to the distribution 
center, the minimum number of each product each distribution center needs, and the maximum output of each 
factory. 

Dist 1 /Product 1 
Dist 1 /Product 2 
Dist 2/Product 1 
Dist 2/Product 2 
Dist 3/Product 1 

.„■P^li^.!..?.^!?., 
Maximum Output 

Fl / P I 
$0.75 

$1.00 

$0.90 

1000 

F 1 / P 2 

$0.50 

$0.75 

$080 

400 

F 2 / P 1 
$0.80 

$0.90 

$0.85 

800 

F 2 / P 2 1 

$0.40 1 

$1.20 I 

JOJ^I 
9 0 0 1 

Ijj Minimum 

H 50° 
H 400 

H 300 
§§ 500 
H 700 
Ü 300 I 

How much of each product should be shipped from each plant to each distribution center to minimize the total 
shipping costs? 

Let Xj denote the number of units of Product 1 shipped from F1 to Dist 1; 

X2 denote the number of units of Product 2 shipped from F l to Dist 1; 

X3 denote the number of units of Product 1 shipped from F1 to Dist 2; 

x4 denote the number of units of Product 2 shipped from Fl to Dist 2; 

X5 denote the number of units of Product 1 shipped from F l to Dist 3; and 

xg denote the number of units of Product 2 shipped from F1 to Dist 3. 

Let X7 denote the number of units of Product 1 shipped from F 2 to Dist 1; 

xg denote the number of units of Product 2 shipped from F 2 to Dist 1; 

X9 denote the number of units of Product 1 shipped from F 2 to Dist 2; 

XJO denote the number of units of Product 2 shipped from F 2 to Dist 2; 

χχΐ denote the number of units of Product 1 shipped from F 2 to Dist 3; and 

Xj2 denote the number of units of Product 2 shipped from F 2 to Dist 3. 

Then it is necessary to minimize the number: 

Z=.75x!+.5x2 +X3+.75x4+.9x5+.8x6+.8x7+.4x8+.9x9 + 1.2XJ0+.85XH+.95XJ2 

subject to the constraints 

X ! + x 3 + x 5 < 1000; x 2 + X 4 + X 6 ^ 400; χ7 + χ 9 + χ π < 800; 

x8 + x10 + x 1 2 < 900; X ! + x 7 > 500; x3 + x 9 > 300; x 5 + x n > 700; 

x2 + x 8 > 400; x 4 + x 1 0 > 500; x6 + x 1 2 > 300; and x{ > 0 for i = l,... ,12. 
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In order to solve this linear programming problem, the objective function which computes the total cost, the 12 
variables, and set of inequalities must be entered. The coefficients of the objective function are given in the veaor 
c. Using the command Array [x, 12 ] illustrated in the previous example to define the list of 12 variables 
{ x [ l ] , x [ 2 ] , . . . , x [ 1 2 ] }, the the objective function is given by the product z = x v e c . c where xvec 
is the name assigned to the list of variables. 

I D LinearProgramming ^ ^ l t p l 

\infW:~ l]|gj 
C l e a r [ x v a c , z , c o n s t r a i n t 3 , Y a r 3 , c ] [ijijii 
c = { . 7 5 , . 5 , 1 , . 7 5 , . 9 , . 8 , . 8 . . 4 , . 9 , 1 . 2 , . 8 5 , . 9 5 } J F l 

J0utf26j= 1 ■ 
{0.75, 0.5, 1 , 0.75, 0.9, 0.8, 0.8, 0.4, | | 

0.9, 1.2, 0.85, 0.95} JJ | | 

\inf27j:= 11 | | j 
iYe c=Àr r a y [ x , 12 ] J |(){||( 

\out[27j= 1 11 
{ x [ l ] , x [ 2 ] , x [ 3 ] , x [ 4 ] , x [ 5 ] , x [ 6 ] , x [ 7 ] , j 

x [ 8 ] , x [ 9 ] , x [10 ] , x [ l l ] , x [12]} JJ | j | | 

\inf?8j:= in III 
z= iYec. c J [jjjjjj 

\Outf28j= 1 I I 
0.75 x [ l ] + 0.5 x[21 + x[31 + 0.75 x[4] + | | | 

0.9 x[5] + 0.8 x[6] + 0 . 8 x[7] + | | 

0.4 x[8] + 0.9 x[9] + 1 . 2 x[10] + | | | 

0.85 x [ l l ] + 0.95 x[12] JJ || j 

In order to define z, 
\fvrst define the table 
c so that the ith element 
of eis the coefficient 
o/Xi. 

|Àrray[x ,12] 
I creates the list of 
twelve elements 

\xfl],...,x[12];we 
| will interpret %[i] 
asX\. 

Notice that 
x v e c . c 

produces the desired 
quantity, z, we wish to 
minimize. Hence, in 
defining z we have 
avoided considerable 
typing by using the 
command 
Array. 
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The set of constraints are then entered and named c o n s t r a i n t s for easier use. Therefore, the minimum cost 
and the value of each variable which yields this minimum cost are found with the command 
C o n s t r a i n e d M i n [ z , c o n s t r a i n t s , x v e c ] . 

Inf29j:* 
c o n s t r a i n t s = { x [ 1 ] + x [ 3 ] + x [ 5 ] <=1000, 
x [ 2 J + x [ 4 ] + x [ 6 J < = 4 0 0 , x [ 7 ] + x [ 9 ] + x [ i i J <=800 
x [ 8 ] + x [ i 0 ] + x [ i 2 ] < = 9 0 0 , x [ i ] + x [ 7 ] > = 5 0 0 , 
x [ 3 ] + x [ 9 ] > = 3 0 0 , x [ 5 ] + x [ l i l > = 7 0 0 , 
x [ 2 ] + x [ 8 1 > = 4 0 0 . x [ 4 ] + x [ 1 0 ] > = 5 0 0 , 
x [ 6 J + x [ 1 2 ] > = 3 0 0 } ; 

fn{30j:= 
ConstrainedHin[z, 

Then type the constraints 
and name the resulting 
list c o n s t r a i n t s . 

Remember that a semi-colon placed at 
the end of a command suppresses the output. 

constraints,xvec1 

0utf30j= 
{2115, {x[ l ] -> 500, x [ 2 ] -> 0, x [ 3 ] -> 0, 

Π Η HIMMMH IMMMII iiiiiiiiii Hwimwwwwwwwwmwwwwwi 

Finally, use Matkematka to find the 
values of x v e c to minimize z 
subject to the constraints 
c o n s t r a i n t s . 

x[4] -> 400, x[5] -> 200, x[6] -> 0, 

x[7] -> 0, x[8] -> 400, x[9] -> 300, 

x[10] -> 100, x [ l l ] -> 500, x[12] -> 300}} 

„^η^,,γΛΓ** I ν:*:Μ:ν:·ι·:·:·:·:::>:π:·:·:·Μ 
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The elements of the list which results from the command ConstrainedMin [z , c o n s t r a i n t s , xvec] 
can be extracted if this list is assigned a name. Therefore, the name va lues is given to this list. Notice that 
values is a list made up of two elements, the minimum value of the cost function, 2115, and the list of the 
variable values {x[ l ] ->500 ,x[2] ->0 , . . . } Hence, the minimum cost is obtained with the command 
values [ [1] ] and the list of variable values which yield the minimum cost is extracted with v a l u e s [ [2] ] . 

LinearProgramming 

v a l u e s = C o n s t r a i n e d n i n [ z , c o n s t r a i n t s , x v e c ] 

outfit]* 
{2115, {x[ l ] -> 500, x[2] -> 0, x[3] -> 0, 

x[4] -> 400, x[5] -> 200, x[6] -> 0, 

x[7] -> 0, x[8] -> 400, x[9] -> 300, 

x[10] -> 100, x [ l l ] -> 500, x[12] -> 300}} 

ίηίίΖ/:* 
values[[l]] 

outfifl* 
2115 

values[[2]] 

Outf!3j= 
{x[ l ] -> 500, x[2] -> 0, x[3] -> 0, 

x[4] -> 400, x[5] -> 200, x[6] -> 0, 

x[7] -> 0, x[8] -> 400, x[9] -> 300, 

x[10] -> 100, x [ l l ] -> 500, x[12] -> 300} 

If we name the solutions, 
we cm use the values 
later. 
Notice that v a l u e s 
is a list with two 
elements. 

v a l u e s [ [ l ] ] 
is the first element 
of the list v a l u e s . 

v a l u e s [ [ 2 ] ] 
is the second element 
of the list v a l u e s ; 
it is a list of twelve 
lists. 

Using these extraction techniques, the number of units produced by each factory can be computed. Since 

X! denotes the number of units of Product 1 shipped from Fl to Dist 1;; 
X3 denotes the number of units of Product 1 shipped from Fl to Dist 2; 
and x5 denotes the number of units of Product 1 shipped from Fl to Dist 3, 
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then the total number of units of Product 1 produced by Factory 1 is given by x [ 1 ] +x [ 3 ] + x [ 51. The 
command 
x[ll+x[3]+x[5] /. values[[2]] 
evaluates this sum at the values of x[l], x[3], and x[5] given in the list v a l u e s [ [2] ] . Similarly, the number 
of units of each product that each factory produces can be calculated. These results are shown below : 

x[l]+x[3]+x[5] /. values[[2]] 

Outf!4j= 
700 

tnftSJ:» 
x [ 2 J + x [ 4 1 + x [ 6 ] / . v a l u e s [ [ 2 ] ] 

OutftSj* 
400 

x[71+x[9]+x[ll] /. values[[2]] 

800 

tnf!7j:= 
x [ 8 ] + x [ 1 0 1 + x [ 1 2 ] / . v a l u e s [ [ 2 ] ] 

Outf!7j= 
800 

lnf!8j:= 
x[ll+x[7]/. values[[2]] 

0uif!8j= 
500 

nil, 
replaces x[ÎJ by 500, x[3] by 
by0andx[5]by2O0. 

JJ l u l l 

Hence, factory I 
\ produces 700 units 

of product 2. 

replaces x[Z] by 0, x{4] by 400, 
and K[6] by 0. 

Jl 

Factory 1 produces 
400 unies of 

\product Z 

replaces %[?] by 0, %[9] by 300, 
andx[lljby500. 

replaces x/S/ by 400,x[10] by 2 Ζ ? < 

Factory Z 
produces 800 
units of product I 

produces 800 
units of product Z 
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Also, the number of units of Products 1 and 2 received by each distribution center can be computed. The command 
x [ 3 ] + x [ 9 ] / . v a l u e s [ [ 2 ] ] 
gives the total amount of Product 1 received at Dist 1 since 
x[3]= amount of Product 1 received by Dist 2 from Fl and 
x[9]= amount of Product 1 received by Dist 2 from F2. 
Notice that this amount is the minimum number of units (300) of Product 1 requested by Dist 1. The amount of 
Products 1 and 2 received at each distribution center are calculated in a similar manner and illustrated below : 

LinearProgramming 

inf!9j:= 
x [ 3 ] + x [ 9 ] / . v a l u e s C ^ ] ! i r e ^ 

Outft?j= 
300 

tnfZOj:= 
x [ 5 ] + x [ i l j / . ▼ a l u e s [ [ 2 ] J 

OutfZOj= 
700 

ittfZU:* 
x [ 2 ] + x [ 8 ] / . v a l u e s [ [ 2 ] ] | replaces xfZ]by 0<mdxf8Jby 400.\ 

Outf2!j= 
400 

inf&J:* 
x [ 4 ] + x [ 1 0 ] / . TOlues[[2]] \replacesx[4]'by400andx[10J'by 100. 

Outf22j= 
500 

trtf23]:= 
x [ 6 ] + x [ i 2 ] / . v a l u e s ! [ 2 ] ] \ replaces x[6]by 0<mdxfiZJby 300.\ 

Out[23j= 
300 

IYIIWIIYIVIÏIIÏIVIÏIÏIII 

ΓΤΓΙ receives exactly tne 
^\^rnbfumwrt number of 

Each distribution center 
receives exactly the 

eackproduct it requests. 
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15.3 Vector Calculus 
i Review of Definitions and Notation 

The terminology and notation used in Mathematica bv Example is standard. Nevertheless, we review basic 
definitions briefly. 

A scalar field is a function with domain a set of ordered-triples and range a subset of the real numbers: 

f:U-»V is a scalar field means U ς 9l3 and V c 91. 

The gradient of the scalar field f is defined to be the vector 

3f. 3f, 
3x 3y 

A vector field f is a vector-valued function: 

UL *i 9f /3f 3f 3f\ / v , ι . ι , 
V* £ β - 1 + ̂  + ^β^37·&/β(ς·^ν· W h e r e i-ftftO). J = (0,1,0), and k=<0,0,l). 

f:V-> U, U ς % and V ç % is a vector field means that f can be written in 

the form f(x,y,z) = f1(x,y>z)i + f2(x,y,z)j+f3(xfy,z)k=(f1(x,yfz)lf2(x,y,zXf3(xfy,z)) 
for each (x,y,z) in the domain of f. 

A conservative vector field f is a vector field that is the gradient of a scalar field: 

fis a conservative vector field means there is a scalar field g satisfying 

f = V2g. In this case, g is usually called a potential function for f. 

The divergence of the vector field f is defined to be the scalar 

div f = div f(x,y,z) = div(f1(x,y,z),f2(x,y,z),f3(x,y,z)) 

= 3^(χ,ν,ζ) | 3f2(x,y,z) j 3f3(x,y,z) 
dx dy dz 

= V*f. 

The laplacian of the scalar field f is defined to be div(grad f) 

32f 32f 32f 
3x2 + 9y2 + 9z2 laplacian (f) = V2f = Af = — + — j + —j = fxx + fyy + fzz. 

For three-dimensional vector analysis, the package VectorAnalysis .m contains the commands Grad, 
Div, Curl , and L a p l a c i a n . 

Be sure to load the package VectorAnalys i s .m prior to using these functions. 
V e c t o r A n a l y s i s .m is contained in the folder Ca lcu lus . 

Because Mathematica recognizes Cartesian (x,y,z), Cylindrical (r,phi,z), and Spherical (r,theta,phi) coordinates, and 
because the operations discussed in this section differ in the various coordinate systems, the desired coordinate 
system must be indicated. This is accomplished with 
S e t C o o r d i n a t e s [System] where 
System is usually one of Cartes ian , C y l i n d r i c a l , or S p h e r i c a l . 

However, the available coordinate systems are: 
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C a r t e s i a n , C y l i n d r i c a l , S p h e r i c a l , Parabol ic , Parabol icCyl inder , 
P r o l a t e E l l i p s o i d a l , E l l i p t i c C y l i n d e r , O b l a t e E l l i p s o i d a l , T o r o i d a l , 
E l l i p t i c , a n d Bipolar. 

The examples illustrated below are done in cartesian coordinates. 
After the function f [x, y, z] has been defined, the gradient is found with : 
G r a d [ f [ x , y , z ] ] . 
Since this is a function of (x,y,z), it is denoted g rad ien t f [x, y, z] for later use. 
The laplacian of f is determined using 
L a p l a c i a n [ f [ x , y , z ] ] , 
and the divergence is found with 
D i v [ g r a d i e n t [ f [ x , y , z ] ] ] . 
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D Example: 

Let f(x,y,z) = Cos(xyz). Compute Vf, V2f, and Div(Vf). 
Note: When defining f, be sure to include the space between the variables. 
Notice tha. Laplacian [f [x, y, z] ] yields the same result as Div[gradient [x, y, z] ] . 

m ThreeDUectors 
lnf4!/:= 

«YectorAnalysis. m 
SetCoordinates[Cartesian]; 

inf42j;= 
Clear[fJ 
f[x_,y_,z_]=Cos[x y z]; 

lnf43j:= 
grad ient f [ x_,γ__„ z_] =Grad[ f [ x „ y „ z ] ] 

Outf43j= [ 
{-(y z Sin[x y z ] ) , -(x z Sin[x y z ] ) , 

-(x y Sin[x y z])} 
!nf44j:= 

L a p l a c i a n [ f [ x , y , z 1 ] 

0utf44j= 
2 2 2 2 

The built-in functions Grad, Div . 
Cur1Φand Lapla c i a n 
are contained in the package 
YectorAnalys is .m 
bé sure to load it prior to using the 

\functions for three-dimensional 
vector^an^sis. 

SetCoordinates[Cartesian] 
specifies that our calculations will 
be using Cartesian coordinates. 

computes gred f (x, y,z) = Vf (x, y , ζ ) Γ 

nwuwMiw 

computes Laplacian f(x,y,z) = \Pi(x,y,z) 
= Div (Grad f ). 

•(x y Cos[x y z]) - x z Cos[x y z] 

2 2 
y z Cos[x y z] 

toi45f:* 

0utf45j> 

JQ 
Div[grad ient f [ x . y . z ] ] Icomputes the divergence of graûlentt [ x „ y , z ] : 

I Div (Grad f) = V2f. 
2 2 2 1 

■(x y Cos[x y z ] ) - x z Cos[x y z] 

2 2 
y z Cos[x y z] 

my 

m 
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If S is the graph of f(x,y) and g(x,y,x)=z - f(x,y), then the gradient 

Vg(x,y,z) is a normal vector to the graph of g(x,y,z) = 0. 

At the point (x,y,z) a unit normal vector n can be obtained via: 

1 Vg(x,y,z) _ -fx(x,y)i-fy(x,y)j + k 

| |Vg(x ,y ,z) | |^ [ f x ( x y ) ] 2 + [ f y ( X ) y ) ]2 + 1 ^ [ f x ( X i y ) ] 2 + [ f y ( X i y ) j 

The curl of the vector field f is defined to be the vector field 

curl f = curl f (x,y,z) =curl(f1(x,y,z),f2(x,y,z),f3(x,y,z)} 

3y dz ) \dz dx) ydx 3y 

+ 1 
,(-fx(x,y),-fy(x,y),l). 

V« 
i j k 

i. il A 
dx 9y dz 
ri h h 

Π Example: 

Let f(x, y, z) = xy i + x z yj - e k = j xy, x z y,-e2 z \. Compute 

^"={(|κ·)-έ(-24^'-)-ΙτΗ2ι))(έ("^)^(4 
Divf = — (xy) +—(xz2y) +—(-e2 z); Laplacian(Divf) = V2(Divf); 

dx dyv ' dzv ' 

Grad(Laplacian (Div f)) = Grad(v2 (Div f)); and 

Laplacian(Grad(Laplacian(Divf))) = V2(Grad(Laplacian(Divf))). 

The first step towards solving this problem is to enter the unit vectors in Cartesian coordinates ±={1 ,0 ,0} , 
j= { 0 , 1 , 0 } , and k= {0, 0 ,1} . The vector-valued function f [x, y, z ] can then be defined using these 
three unit vectors as follows: 
£ Ι χ - Ύ - Ό = χ y i + x z A 2 y j -Exp[2z] k (remembering to place appropriate spaces between 
variables for multiplication). 
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Notice that the coordinate system has not been set in this problem. However, the correct system can be indicated in 
each command. For example, the curl of f in Cartesian coordinates is determined with 
Curl [f [x, y, x ] , C a r t e s i a n ] . The curl could similarly be obtained in the other systems by replacing 
Cartes ian with C y l i n d r i c a l , Spherical , or one of the other available coordinate systems, in the 
command above. 

ThreeDUectors 

\Be sure the package 
V e c t o r A n a l y s i s . M 
has been loaded prior to 
\usinx the built-in command 
C u r l , G r a d , D i T , and 
Lap l a c l a n . 

one 

«YectorÄnalysis. m 

C l e a r [ i , i , l c ] 
i = { 1 . 0 , 0 } 
j = { 0 . 1 , 0 > 
k = { 0 , 0 . 1 } 

Outf27j-
{0, 0, 1} 

inf28j:= 
C l e a r [ f ] 
f [x_,y_,z_]=x y i+x z~2 y j-Exp[2z]k 

Ôutf28j= 
2 2 z 

{x y , x y z , -E } 

inf29j:» 
cur I f [ x _ . y _ «, z _ ] = 

a s 

After defining H^0fi}J^{0Jt0}f 

and k= {0,0,1}, defining f by the 
command 
f [x_,y_,z_]=x y i+x zA2 y j-Exp[2z]k 
produces the same result as defining f by the command 
f [ x _ . y _ , z _ ] = {x y , x z A 2 y , - E x p [ 2 z ] } 

Don't forget to include the space between the 
variables to denote multiplication. 

C u r 1 [ £ [ x . y . z ] . C a r t e s i a n ] 

Outf29j= 

{-2 x y z, 0, -x + y z } 

«3A 

C u r l [ £ [ x , y . z ] , C a r t e s i a n ] 
computes the cwl of the (vector-
vahïed)fùnctiorif 

As was the case with computing the curl of f, the divergence of f can be calculated in Cartesian coordinates with 
Div[ f [x, y, z ] , Car te s ian] ] . Again, since the divergence is a function of (x,y,z), it is named 
divf [x, y , z ] for later use. Hence, the Laplacian of the divergence of f is computed with 
Laplac ian [ d i v f [x , y , z ] , C a r t e s i a n ] ] . This function is called l a d i v [ x , y , z ] so that 
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Grad(Laplacian(Divf)) = Grad(v2 (Divf)) 

can be found with 6 r a d [ l a d i v £ [x, y , z ] , C a r t e s i a n ] ] . The resulting function is then named 

gr ad [ x , y , z ] so that Laplacian (Grad(Laplacian (Div f ))) = V2 (Grad(Laplacian (Div f ))) 

can be computed with L a p l a c i a n [grad[x , y , z ] , C a r t e s i a n ] . 

ThreeDUectors 

C a r t e s i a n 
indicates that 
we are working in 
cylindrical coordinates. 

InfSiJ:« 
d i v f [ x _ , y _ , z _ ] = 

D i ^ [ f [ χ , γ , ζ ] . C a r t e s i a n ] 

Outf5!j= 
2 2 2 

- 2 E + y + x z 

lnf33]:= 
l a d i v f [ x_„ y_„ z _ ] = 

Laplacian[ divf [ x „ y „ z ] „ Cartesian] 

ûi/t/JS/' 
2 z 

-8 E + 2 x 

g r a d [ x _ , y z _ ] = 
G r a d [ l a d i v f [ x , y , z ] , C a r t e s i a n ] 

Outf35j= 
2 z 

{2. 0, -16 E } 

lnf37j:= 1 
Laplacian[grad[x,y,z]«Cartesian] J 

Outf57j= 
2 z 

{0, 0, -64 E } 

| · I · | IM * * * * * * * * « * * * * * « * * * * * Α * * J l 

D i v [ f [ x , y , z ] , C a r t e s i a n ] 
compute* the divergence of the 
(vector-vahied) function f 
The resulting real-valued function 
of 'x, y, and z is defined to be 
d i v f [ x , y , z ] . 

computes the Loplacian, of the 
real-valuedfunction d i v f . 
The resuming function is defined 
tobe l a d i i r f [ x , y . z ] . 

computes the gradient of the 
real-valuedfùkction l a d i v . 
The resitting (vector-valued) 

\ function is defined to be 
g r a d [ x , y , z ] . 

computes the Lcplacian of the 
(vector-valued) function 
g r a d . 
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D Example: 

Let w(x,y) = CosÎ4x2+9y2J. Let η( χ ν) denote a unit vector normal to the graph of 

w at the point (x,y,w(x,y)). Find a formula for n. 
In order to visualize the unit normal vector at points (x,y,w(x,y)) to the surface w(x,y), this function is plotted 
using several of the options available with P lo t 3D. These options are discussed below : 

ThreeDUectors 

Clear[v] 
w[x_,Y_]=Cos[4xA2+9y~2]; 

lnf73j:= 
Plot3D[v[x,Y],{x,-l,iK{Y,-i,lK 
Boxed->False. Àxes->Àutomatic, 
PlotPoints->35,Shading->False] 

K> After clearing aüprior 
definitions ofw, define 

v(x,y) = Cos(4x2 + 9y2). 

Use the PbtSD command to 
graph w. 

Outf73]= 
-Sur f a c eGraphi c s-

Remember that the form of the Plot3D 
command is 
P l o t 3 D [ f [ x , y ] , { x # x m i n . x m a x K 
{ Y , y n i n # y m a x } , o p t i o n s ] . 

The option 
B o x e d - > F a l s e 

prevents a box from being drawn around 
the graph; the option 
A x e s - > À u t o m a t i c 
specifies that Mathematica is to choose 
"reasonable' axes; the option 
P l o t P o i n t s - > 3 5 
specifies that 35 values are to be 
sampled from the x-axis and 35 values 
are to be sampled from the y-axis; and 
the option 
Shad i n g ->Fa 1 s e 
specifies that the resulting graph is not 
to be shaded. 

The equation z = w(x,y) is written as z - w(x,y) = 0. The left-hand side of this equation is a function of x, y, and z 
and is defined as wz [x_, y_, z _ ] = z - w [ x , y ] . 
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Since the partial derivative of wz with respect to z is -1, the gradient of wz is a function of x and y only. Hence, 
the gradient of wz is named gw[x_, y_] and is computed with Grad [wz [x, y , z ] , C a r t e s i a n ] . 
The length of the gradient of wz which is necessary in determining the unit normal vector is the square root of the 
dot product of the gradient of wz with itself. This product is computed with gw [x, y] .gw [x, y] . 

ThreeDUectors 

t>HiiM;ill8M>iHI8>MilHi<H:»l6»l8Mlilll6Mli>l>8IIIDI>IOIMi>nA<li< 

w 
Define v z [ x , y , z ] 
to be the real-valued function o/x, yt and 
^ v z [ x , y , z ] = z - w [ x , y ] . 

tlH8tHCIM8HISIM8MISm;tlHIM8Hi:MI8ll 

vz[x_,y_,z_j=z-v[x,y] 
Outf75j= 

2 2 
z - Cos[4 x + 9 y ] 

g v [ x__,y_J =Grad[ ΨΖ[ x , y , z ]„ C a r t e s i a n ] 

Outf78j= I computes the gradUnt of the function 
2 2 1 v z [ x , y . z ] : 

{8 x Sin[4 x + 9 y ) , I-wx(x,y)i-wv(x,y)j+k = f-wx(x,y)/-wv(x,y),l] 
Notice that the resulting vector-valued function 

2 2 S is a function of x and y, but NOT z. Hence, we 
18 y Sin[4 x + 9 y ] , 1 }1 name the result g w [ x , y ] 

lnf7?J:= 
g » [ x , y ] . g w [ x , y ] 

Out[79j= 
2 2 2 2 

1 + 64 x Sin[4 x + 9 y ] + 

2 2 2 2 
324 y Sin[4 x + 9 y ] 

computes tft& dot product 
g v [ x , y ] . g v [ x , y ] . 

2 2 
(wx(x,y)) +(wy(x,y)) +1. 
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Therefore, the unit normal vector is the gradient of g, gw [x, y ] , divided by the the square root of 
gw [x, y] . gw [x, y ] as shown below. This is also a function of the variables x and y since the unit normal 
vector differs from point to point on the surface. Hence, this vector is assigned the name normalw [x_, y_] 
so that the unit vector at any point (x,y,w(x,y)) can be easily determined by evaluating normalw [x_, y_] at 
any point (x,y). 

ThreeDUectors 

normalv[ x_,y__] =gv[ x . y ] / 
Sqrt[gw[ x , y ] . gv[ x , y ] ] 

OvtfSOj* 
2 2 

{(8 x Sin[4 x + 9 y ]) / 

ja 
κ 

yields a wtiz normal vector for w: 
-wx(x,y)i-wy(x,y)j+k 

[̂(wx(x,y)) +(wy(x,y)) +1 

2 2 2 2 
Sqrt[l + 64 x Sin[4 x + 9 y ] + 

2 2 2 2 
324 y Sin[4 x + 9 y ] ], 

2 2 
(18 y Sin[4 x + 9 y ]) / 

2 2 2 2 
Sqrt[l + 64 x Sin[4 x + 9 y ] + 

2 2 2 2 
324 y Sin[4 x + 9 y ] ], 

2 2 2 2 
1 / S q r t [ l + 64 x Sin[ 4 x + 9 y ] + 

2 2 2 2 
324 y S in[4 x + 9 y ] ]} 

& 
9ua 

We can use 
Matkematica to 
visualize v(x,y) along| 
with several normal 
unit vectors. 
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■ Application; Green's Theorem 

Green's Theorem; Let C be a piecewise smooth simple closed curve and let R be the region consisting of C and 
its interior. If f and g are functions that are continuous and have continuous first partial derivatives throughout an 

open region D containing R, then j_(m(x,y)dx+n(x,y)dy) = j j - — — dA. 

D Example: 

Use Green's Theorem to evaluate j [x + e^y Jdx + (2y + Cos(x))dy where 
C 

2 2 
C is the boundary of the region enclosed by the parabolas y = x and x = y . 
To calculate the limits of integration, 
we use Matkematica to graph the 

functions x and Vx. 

This is the graph of the 
2 

function x . 

This is the graph of the 

function 

Notice that the two functions intersect at tlve 
points (0,0) and (1,1). 

Plotnx^.SqrtCxn.ix^O.l.l). 
PlotStyle->{GrayLevel[0]. 
GrayLevel[.3]}, 
ÀspectRatio->l] 

0 . 2 0 . 4 0 . 6 0 . 8 1 

In this example, 

m(x,y) = x + e^y and n(x,y) = 2y + Cos(x). Therefore, applying Green's Theorem, 

j i x + e^yjdx + (2y + Cos(x))dy = Jm(x,y)dx + n(x,y)dy 
C C 

ççfdn dmV. rl r /x f3n 3m Y . 

■iJlär""^JdA"U4är-^rh 

Therefore we will use Mathematica to define m(x,y), n(x,y), and to 

compute — ^!Ξ H f1 Γ^*ί^η ^ m l 
3x' 3y •and Ü 'χ2 [dx dy 

dy dx. 
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First, the functions m(x,y) and n(x,y) are defined. Recall that in computing partial derivatives, the variable of 
differentiation must be given. Therefore, the partial of n [x, y] with respect to x is given by D [n [x, y ] , x ] . 
This derivative is then named nx for later use. Similarly, the partial derivative of m[x, y] with respect to y is 
found with D [m [x, y ] , y] and named my. 

GreensTheorem 

« I n t e g r a l T a b l e s . m 

Outf8j= 
Integrator" 

/Λ/Ρ/:» 
Clear[m,n] 
m[x_,y_]=x+Exp[Sqrt[Y]] 
n[ x_, y_J=2y+Cos[ x 1 ; 

lnftOj:= 
n x = D [ n [ x , y ] , x] 

Ouif!Oj= 
-Sin[x] 

my=D[m[x,y],y] 

Outf!U= 
Sqrt[y] 

E 

2 Sqrt[y] 

■Π^Λ^α 

Be sure to load the package 
Integra lTables .m 
before attempting to compute 
any definite integrals with 
Mathematica. 

After clearing aäprior 
definitions of m and n, 
define m and n> 

» [ n [ x , y ] , x ] 
an 

computes 
ax' 

D [ » [ X , Y K Y ] 
„ am 

computes — 
ay' 
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Mathematica computes the exact value of the double integral. To obtain a more meaningful value, we approximate 
the value of the double integral using the N command. In general, the command N [ % ] produces a numerical 
approximation of the previous output. 

I n t e g r a t e [ n x - m y , { χ , Ο , Ι } , { y , x A 2 , S q r t [ 

Outf!4j= 

-27 + 9 E + 2 Cos [ l ] -

S q r t [ P i ] E r f [ S q r t [ - I ] J 

4 S q r t [ - I ] 
S q r t [ P i ] E r f [ S q r t [ I ] ] 

+ 2 S i n [ l ] 
4 S q r t [ I ] 

lnf!5j;= 
H[X] 

OutflSj« 
-0.676441 

x ] > ] J 

ffîWiïiYiïl ^ Mm Ά 
Ka 
a 

computes the double integral 

JJ 
0X2 

( - S i n « ) -
l e v y i 

dydx. 

K[%] 
produces a numerical 
cpproximation, of the 
previous output; hence, 
-.67644! is a numerical 
cpproximation of the double 
integral 

■ Application: The Divergence Theorem 

The Divergence Theorem: Let Q be any domain with the property that each straight line through any interior 
point of the domain cuts the boundary in exactly two points, and such that the boundary S is a piecewise-smooth, 
closed, oriented surface with unit outer normal n. If f is a vector field that has continuous partial derivatives on Q, 
then 

JJf*ndS = JJJdivf dV = JJJv*fdV. 
S Q Q 

JJf»ndS is called the outward flux of the vector field f across the surface S. 
s 
If S is a portion of the level curve g(x,y,z)=c for some g, then a unit normal vector n may be taken to be either 

Vg Vg 
n = T——r or η = -τ—-~r. 

NI IN 
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i Recall the following formulas for the evaluation of surface integrals: 

Let S be the graph of z=f(x,y) (y=h(x,z) or x=k(y,z)) and let 

Rxy (Rxz or Ryz) be the projection of S on the xy (xz or yz)-plane. Then, 

JJg(x, y, f(x, y ) ) ^ ( x , y ) ) 2 + (fy(x,y))2 + l dA 

"*xy 

JJg(x.y,z)dSH JJg(x,h(x,zXz)^(hx(x,z))2 + (hz(x,z))2 + ldA. 
S I Rxz 

JJg(k(y, z\ y, z) J(ky (y, z)f + (kz(y, z))2 + 1 dA I 

[Ryz 

D Example: 

Use the Divergence Theorem to compute the outward flux of the field 

vf (x,y,z) = jxy + x yz,yz + x y z, xz + xyz21 = (xy + x2yz)i + ( yz + x y2z)j + (xz + xyz2)k 

through the surface of the cube cut from the first octant by the planes x=2, y=2, and z=2. 

(0,0,2) 
By the Divergence Theorem, 

JJvf»ndA= JJJVvfdV. 
Cul»e Swfsuce Cubelidterior 

Notice that vithout the Divergence Theorem, 

calculating JJvf.ndA vould requis six 
Cub« Surface 

separate integrals. Hovever, with the Divergence 

TTieorem, calculating the flux can be 

accomplished tiy integrating the divergence. 

(2,0,2) 

(2,0,0) 

(0,2,2) 

(0,2,0) 

(2,2,0) 
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After loading the i n t e g r a l T a b l e s .m and V e c t o r A n a l y s i s .m packages, the vector field v f is 
defined as a list of three elements, the x, y, and z components. Since the volume integral is that of a cube, the 
logical choice for a coordinate system is cartesian coordinates. Hence the divergence of vf is calculated with 
Div[vf [ x , y , z ] , Cartes ian] . Since the divergence is a function of (x,y,z), it is defined as the 
function d i w f for later use in the volume integral. Therefore, the outward flux of the field vf through the 
surface of the cube is found to be 72 with 
I n t e g r a t e [ d i w f [ x , y , z ] , {χ, 0 , 2 } , {y, 0 , 2 } , {z , 0 , 2 } ] . 

DiuergenceTheotem 

infU:* 
«IntegralTables. m 
«YectorÀnalysis. m 

i Be sure to load the packages 
1 I n t e g r a l T a b l e s . m and Y e c t o r À n a l y s i s . 
Ibefore attempting to compute definite integrals 
\of divergence of tkree-dunensional vector fields. 

arograPCJ»MCPWqCWWMCPWBMJMWiMWl>UMIUMIWlW 

inf2j:* 
vf [x__,y__, z__] = {x y +χΛ2 z y,y z + x yA2 z,x z+x y zA2 } 

Outf2j= 
2 2 2 

{ x y + x y z , y z + x y z, x z + x y z } 

inf3j:« 

First define the function 
▼f to be the three-dimensional 
vector field 

d i w f [ x__,y_, z _ J = D i v [ v f [ x , y , z ] „ C a r t e s i a n ] 

Outf3j= 
x + y + z + 6 x y z 

fnf4j:= 
I n t e g r a t e [ d i w f [ x , y , z ] , { x , 0 , 2 > , { y , 0 , 2 } , { z , 0 , 2 } ] 

Outf4j= 

Use the command 
to compute the divergence 
of vf ; name the resulting 
function (ofx, y, and z) d i w f . 

72 

K-.-.W.^W.w..W....AW lïiïiWnYiYiïiWnïiWi-mwm-ifll ^ h 

computes the triple 
integral 
222 

!ili!i!l!ili!iliii JJJd iw f [ x ,y , z ] d zd yd X . 
::::::::::::t:::" ooo 
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Application: Stake's Theorem 

Stokes's Theorem: Let S be an oriented surface with finite surface area, unit normal n, and boundary C. Let F 
be a continuous vector-field defined on S such that the component functions of F have continuous partial derivatives 

at each non-boundary points of S. Then, ÎF»dr= ("J(Curl ψ)·η dS. 
C 's 

In other words, the surface integral of the normal component of the curl of F taken over S equals the line integral of 

the tangential component of the field taken over C: j F»Tds = JTcurlF»ndS. 

In particular, if F = Mi+Nj+ Pk ={M,N,P}, then 

|(M(x,y,z)dx+N(x,y,z)dy + P(x,y,z)dz) = JJ(Curl F)*n dS. 
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D Example: 
Verify Stoke's Theorem for the vector field 

vf(x,y,z) = (y 2 -z ) i + (z2+xjj + (x2-yjk = | y 2 - z , z 2 + x , x 2 - y l and S the paraboloid 

z = f(x,y) = 4 - ( x 2 + y 2 ) , z > 0. 

Since we must show 

Jvf*dr = JJ(Curl vf)*n dS, we must compute Curl vf, n, JJ(Curl νί) ·η dS, r, dr, and fvf*dr. 
C S S C 

First define the vector-field and the surface as vf and f, respectively. Compute the curl of v f and name it 
c u r l v f [x, y , z ] then compute a normal vector and name it normal [x, y , z ] : 

StokesTheorem 
Be sure the packages I n t e g r a l T a b l e s . m 
and V e c t o r Â n a l y s i s . m 
have been loaded prior to using the 
commands I n t e g r a t e , Grad, and C u r l . 

ftVbwloiGioioioieioioiotoii 

«IntegralTables. m 
«YectorÀnalysis. m 

Clear [ vf, £, li, normal, un, g, curlvf, η ] 
vf [ x_,y_, z_]={y~2-z, z~2+x, xA2-y) 
f[x_,y_]=4-(x~2+y~2), 

curlvf [ x_,y_, z__] =Curl[ vf [ x, y, z ], Cartesian] 

Outf3j= 
{■1 - 2 z, -1 ■ 2 x, 1 - 2 y) 

2 2 
-4 + x + y + z 

n o r n a l [ x _ , y _ , z_ ]=Grad[ l i [ x , y , z ] , C a r t e s i a n ] 

Outf5/= 
{2 x, 2 y. 1} 

m 

Begin by clearing dl prior definitions of 
objects to be named in this example. 
Then define v f and f . 

\ Don't forget to 
specify that the 
curl and gradient 
are to be computed 
using Cartesian 
coordinates. 

}\ 

ja 

c u r l v f [ x , y , z ] 
is the curl of the vector 

{function 

Define h[ x , y , z ] ; 
we will use h to 
compute a unit normal 
vector. 

Define normal [ x , y , z ] 
to be the gradient of 
h 
WWMIMI»yOM»ra|MpMI»WWWWWMMWWWWIMBWWIMIOMOI 

1 

A unit normal vector n is given by n = 
Vh normal [x, y ,z ] 

||Vh|| (normal [x,y,z]||* 

Since normal [x, y , z ] is a list (of three elements), normal [ x , y , z ] [ [ i ] ] yields the ith element of the 
list normal [x , y , z ] . Therefore, 
llnormal [x, y , z ] II is given by the command 
Sqrt [ Sum [ (normal [x, y , z ] [ [ i ] ] ) A 2 , { i , 1 , 3} ] ] . An alternative approach is to recall that 

for a vector v, ||ν|| = ^ ν · ν . Consequently, the command Sqrt [normal[x ,y ,z ] .normal[x ,y ,z ] ] 
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yields the same result. 

In order to easily use the surface integral evaluation formula, define g [x, y , z ] to be the dot product of 
c u r l v f [x , y , z ] and un [x , y , z ] . 

StokesTheorem 
tufa/:* 

un[ x y _ , z _ l = n o r n a l [ x , y , z ] / 
S q r t [ S u m [ ( n o r » a l [ x , y , z l [ [ i l l ) A 2 , { i , l , 3 } l l 

2 x 
{■ 

S q r t [ S u m [ ( n o r m a l [ x , y , z l [ [ i l l ) A 2 , { i , 1 , 3 } 1 
M M 

2 2 
S q r t [ l + 4 x + 4 y ] 

2 y 

2 2 
S q r t [ l + 4 x + 4 y ] 

} 
2 2 

S q r t [ l + 4 x + 4 y ] 

tnf?/:* 
g [ x _ . y z _ l = T o g e t h e r [ c u r l v f 

Outf?f= 
l - 2 x - 4 y - 4 x y - 4 x z 

2 2 
S q r t [ l + 4 x + 4 y ] 

Therefore, un[ x , y , z 1 
is a uttii vector normal to the graph ofg(ycJy,z)=0 ax 
the point (xy,z) and hence a unit vector normal to 
thegruphofffry} 

[ x , y , z ] . u n [ x , y , z l l j 

g [ x , y , z l 
is the dot product of c u r l v f and u n . 
The command T o g e t h e r 
expresses the result as a single fraction 

■ " ■ " ■ " ■ " » ' ■ ' ■ ■ » « M ' » « — ' — ' » — « « » « « — « — — ^ ^ p y w 

Here ve visualize f(x,y) 
vith several normal unit 
vectors. 
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By the surface integral evaluation formula, 

curlvf . 

JJ(Curivf)· n dS =JJg(x, y, z)dS = JJg(x, y, f (x, y))^(fx(x,y))2 + (fy(x,y))2 + l dA, where 
S un S R 

R is the projection of f(x,y) on the xy-plane Hence, in this example; R is the region 
2 2 

bounded by the graph of the circle x + y = 4. Thus, 
V4-X2 

i r Z V ^ - X i 

JJg(x,y,f(x(y))y(fx(x,y))2+(fy(x,y)) + l d A = J J g(x,y,f(x,y))^(fx(x,y))2 + (fy(x,y)) +ldydx. 

-u 4-xz 

g(x,y,f(x,y)W(fx(x,y)) +(fy(x,y)) +1, replace each x by r Cos(t) and each y by r Sin (t). 

StokesTheorem 

infSj:-
f u n c t i o n = g [ x , y , f [ x , y ] ] S q r t [ ( D [ f [ x , y ] . x ] ) A 2 

+ ( D [ f [ x , y ] , y ] K 2 + l ] 

Outf8j= 
2 2 

l - 2 x - 4 y - 4 x y - 4 x ( 4 - x - y ) 

tnl9j:= ^JQ 
I n t e g r a t e [ f u n c t i o n , { x , - 2 , 2 } , { y , - S q r t [ 4 - χ Λ 2 ] J 

S q r t [ 4 - x A 2 ] } ] 

Outf9j= 
4 Pi 8 the prior definition is erased. 

2ΞΕ 
To evaluate the surface 
integral, we use the surface 
integral evaluation formulas. 

Hence, the value of the 
surface integral is 4n 

WPfrrogPy4*»*toW>WIUMWlW«MIWM»WWtf»M'WIWW 

w—■■■ρ·«·ι r ΓΙ 

\Notice that when we redefine f u n c t i o n 9 

■■»■■ ■ ' I l ' l f l ' l1 

inflOj:* 
f u n c t i o n = g [ x , y , f [ x , y ] ] S q r t [ ( D [ f [ x , y ] . x ] ) A 2 

+ ( D [ f [ x , y ] , y ] ) ~ 2 + i ] / . x -> r C o s [ t ] / . 
y - > r S i n [ t ] 

outftoj= 
1 - 2 r Cos [ t ] - 4 r S i n [ t ] -

4 r Cos [ t ] S i n [ t ] -

2 2 2 2 
4 r Cos [ t ] (4 - r Cos [ t ] - r S i n [ t ] ) 

To use polar coordinates, 
replace each x in f u n c t i o n 
by r Cos (t) and eacky in 
f u n c t i o n 
by rSin(ty 
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The command TrigExpand [ e x p r e s s i o n ] applies basic trigonometric identities to attempt to simplify 
exp re s s ion . Finally, to evaluate the integral in polar coordinates, the limits of integration must be changed 
and dx dy must be replaced by r dt dr. Hence, the same value is obtained by the integral: 

22π 
J J(l-18rCos(t) + 4r3Cos(t)-4rSin(t)-2r2Sin(2t))rdtdr. 

simplified version of function 

o Version 2.0 does not include the command TrigExpand. The same results as 
TrigExpand [ e x p r e s s i o n ] are obtained with Expand [ e x p r e s s i o n , T r i g - > T r u e ] . 

StokesTheorem 

polar£unct±on=Trig£xpand[function] 

uutfuj= 
3 

; s 
Use the command Tr igExpand 
to sbnpUjy the trigonometric expression 
f u n c t i o n and name the resulting 
expression p o l a r f u n c t i o n . 

1 - 18 r Cos[tJ + 4 r Cos [ t ] - 4 r S i n [ t ] 

2 
2 r Sin[2 t ] 

inft?J:= 

Outf!2j= 
4 Pi 

' » ■ Ι ι . Α ι Ι * * * Λ ιι IJJXIUĴ 

I n t e g r a t e [ p o l a r f u n c t i o n τ. { r , 0 , 2} „ Ycornpi&es the double integral 
{ t , 0 , 2 P i } ] 22* 

i f f p o l a r f u n c t i o n d t d r . 
6 0 0 

We are able to evaluate the line integral directly by noticing that the boundary of 

z = f(x,y) = 4 - i x 2 +y2), z > 0 is the circle x 2 + y 2 = 4 which has parametrization 

x = 2Cos(s), y = 2Sin(s), and z = 0, for 0 < s < 2π. 

inf!3j:= 
pvf=Yf [ Σ , γ , Ζ ] / . X-> 2 C 0 3 [ 3 ] / . 

y - > 2 S i n [ s ] / . z - > 0 

0utf!3j= 
2 2 

{4 S in [ s ] . 2 C o s [ s ] , 4 Cos[s] - 2 S i n [ s ] } 

tnf!4j:= 
r [ s _ ] = { 2 C o s [ 3 ] , 2 S i n [ 3 ] , 0 } 

0utf!4f= 
{ 2 C 0 3 [ s ] # 2 S i n [ s ] , 0} 

^'ll i i l i l 

Then replace each x in vf 
by Z Cos(s), each y in v f 
by ZSin (s), and each ΣΪΖΙΎΙ 
byO. 

To evahxxte the line integral 
directly, notice that a parametrization 
of CL· given by 
r(s)={2 Cos(s),2Svn(s)t0}t where 
0 < s < Zn 

I' ' · 
ΊΪΓιΐΊΐϊιϊιϊΓ^^̂  

^MtaM^ÉafeM 
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U StokesTheorem cn= 

inf!Sj:= 
r ' [ s ] 

\0utf!5j= 1 
{-2 S i n [ s ] , 2 C o s [ s ] , 0} 

tnf!6j:= 
p v f . r ' C s ] 

\Outf!6j= 
2 3 

4 Cos[s] - 8 Sin[3] 

\tnft?/:* 
I n t e g r a t e [ p v f . r ' [ s ] , { s , C 

\Outf!7j= 
4 Pi 

ΐ Β Β υ Ε Ϊ ^ ^ ϋ ' " Ί ϊ ' ϊ Ι Ο Ι IIIlHHHîîlHMHliHIilHî 

! r ' [ 3 ] 
computes tte derivative of 
r with respect to s. 1 il i -1 

L NH K H MH M H MH HH HH H N NH N M NH N N MH MH MH MH ^ Ί 1 

JJ 
]|-»|]|0»IOIOIO»l9MtMfi«tNMOI»3ICIOIOI]iaiCIOIDI]IOIOIOIOIOIOI]IOIOIDIOIOIOI^lÎZ 

p v £ . r ' [ 3 ] 1 
1 computes tfte dot product of pvf i 
and r ' [ s ] . 1 

JJ 
l , 2 P i > ] 

"p 

J&& 
computes the value of the line integral 

JJ 
j> 

lljjIM 
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M 5.4 Saving Results for Future Mathematica Sessions 

Beginning users of Mathematica quickly notice that in order to use results from a previous Mathematica session, they 
must first be re-calculated. The purpose of this example is to illustrate how results can be saved for future use. 

■ Application: Constructing a Table of Zeros of Bessel Functions 

In this example, we will create a table of the first six zeros of the Bessel functions of the first kind, 

J0(x), Ji(x), J2OO» J3OO» J4OO» and J5M then save the resulting table of numbers 

in a file. Consequently, for future calculations involving zeros of Bessel functions, we need only use the table of 
numbers we have already created instead of re-computing the zeros. This will thus save not only substantial time but 
also substantial memory. 

The built-in Mathematica command Besse lJ [alpha ,x] represents Ja ipha (x)» and» hence 

will be used in the construction of this table of zeros. This command as well as Bessel functions are discussed in 
more detail in Chapter 6. 

We begin by looking at a graph of Besse lJ [0, x] on the interval [0,25] and observing the first six zeros. We 
create a list of six numbers corresponding to initial guesses of the first six zeros and then use FindRoot to 
approximate the first six zeros. 
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The list guess [ 0 ] , a list of initial guesses of the first six zeros of B e s s e l J [ 0, x] is used with FindRoot 
to approximate these zeros. Since this list is used in conjunction with Table, an approximation of the first zero is 
obtained with gues s [0] [ [ 1] ] , an approximation of the second zero is obtained with guess [0] [ [2] ] , and 
so forth. This produces a list of approximations of the first six zeros of B e s s e l J [0 ,x ] called b z [ 0 ] . 

ΪΓ InputOutput 

& 
A ? / / / -

Plot[BesselJ[0. x ] , { x , 0 , 2 5 } ] grcphs Jo M 
on the interval \ 
[0,25]. 

We use the graph of Jo 00 
I I to obtain rough approximations 
""" of its first six zeros. We will 

use these approximations 
in the command 
FindRoot 
to locate more accurate 
approximations of the first 
six zeros of JQ(X). 

OutftJ« 
-Graphics-

inf2j:= 
g u e s s [ 0 ] = { 2 . 1 4 , 5 . 5 9 , 8 . 7 2 , 1 1 . 8 , 1 5 , 1 8 . 2} 

tnf3j:= 
Clear[bz] 
bz [0 ]=Table [F indRoot [Bes3e lJ [0 ,x ]==0 , 

{ x , g u e s 3 [ 0 ] [ [ i ] ] } ] , { 1 , 1 , 6 } ] 
computes a table of six numbers corresponding 

g u e s s [ 0 ] 
L· a list of six numbers 
corresponding to those we will 
use as initial cpproximations 
of the zeros of Jo (x) 
in the command 
FindRoot. 

&^vJuWUWUWWWWWWWWWWtMMMMMM0UWmM0MMMMraMMM 

to approximations of the first six zeros of 
J o « . 

R W. v A w. s . A W. y . ^ % Ŵ ^ m 
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{{x -> 2.40483}, {x -> 5.52008}, 

{x -> 8.65373}, {x -> 11.7915}, 

{x -> 14.9309}, {x -> 18.0711}} 
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We then proceed to B e s s e l J [ l , x] : 

pn I InputOutput ==[ 

\inf4/:* 11 
P l o t [ B e s 3 e l J [ l . x ] . { x , 0 . 2 5 } ] J 

O.61 

0 .4 

0 .2 

-0 .2 · 
\5 / 10 / l 5 \ i ' 0 \£5 

\outf4j= 1 
-Graphics- JJ 

\lnf5j:~ 1 
g u e 3 3 [ l l = { 3 . 9 5 , 6 . 7 4 , 1 0 , 1 3 . 2 , 1 6 . 6 , 1 9 . 6 } ; J 

\tnf6/:* 11 
b z [ l ] = T a b l e [ F i n d R o o t [ B e s s e l J [ l , x ] = = 0 , 

{ x , g u e s 3 [ i ] [ [ i ] ] } ] . { i , 1 . 6 } ] J 

\ouifoJ= 1 
{{x -> 3 .83171} , {x -> 7 .01559} , 

{x -> 10 .1735} , {x -> 1 3 . 3 2 3 7 } , 

{x -> 16.4706}, {x -> 19.6159}} JJ 

m 
p 
ψΜ 

W 

M m 

I In the same manner as above, 
we use the grcph of Ji(x) 
to obtain our initial guesses 
of its first six zeros. 

g u e s s [ l ] 
is a list of six numbers 
corresponding to our initial 

[guesses of the first six zeros 
\of Ji(x). 

b z [ i ] 
is a list ofcpproxzmations of 
the first six zeros of Ji(x). 
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We repeat the procedure for B e s s e l J [ 2 , x] , B e s s e l J [ 3 , x] , B e s s e l J [ 4 / x ] and B e s s e l J [ 5 , x ] : 

InputOutput 

P l o t [ B e s s e l J [ 2 , x ] , { x , 0 , 2 5 } ] 
■H 

KS 
graphs J2(x) 
on the vnzerval[0t25]. As before, we use the 
resulting graph to obtain initial cpproximations 
of the zeros for later use in with the command 
F i n d R o o t . 

. 7 , 1 5 , 1 8 . 1 , 2 1 . 1 } ; J 

Outf7j= 
-Graph i c s -

irtf8j:= 
g u e s s [ 2 ] = { 5 . 2 6 , 8 . 5 5 , 1 1 . 

fn[9l:= 
b z [ 2 ] = T a b l e [ F i n d R o o t [ B e s s e l J [ 2 , x ] = = 0 , 

{ x , g u e s 3 [ 2 ] [ [ i ] ] } ] , { 1 , 1 , 6 } ] 

Outf9j= 

{{x -> 5 .13562}, {x -> 8.41724}, 

{x -> 11 .6198}, {x -> 14 .796} , 

{x -> 17 .9598} , {x -> 21.117}} 

< I > 
ΪΓιϊΓιϊιΐΐϊί^^^ 

b z [ 2 ] 
L· a list of six numbers 
corresponding to the first 
six zeros of J2OO. 
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The first six zeros of B e s s e l J [ 3 , x] are found below: 

Ι Π 1 InputOutput ^ ^ ^ ^ 

\tn[tOj:= T 
P l o t [ B e 3 s e l J [ 3 , x ] , { x , 0 , 2 5 } ] J 

0.4 
0.3 
0.2 
0.1 

- 0 . 1 
- 0 . 2 

Λ 1 
/ \ 
/ \ A A 

I \ I \ f\ p 
5 1 10 W â0 / 25 

\ / v 
-0 .3* v 1 

\Outf!Oj= 1 
-Graphics- J_ 

A ? / / / / -
g u e s s [ 3 ] = { 6 . 4 1 , 9 . 7 , 1 3 , 1 6 . 3 , 1 9 . 4 , 2 2 . 7 ) ; 

\inf!2j:= T 
b z [ 3 ] = T a b l e [ F i n d K o o t [ B e 3 3 e l J [ 3 , x ] = = 0 , 

{ x , g u e 3 3 [ 3 ] [ [ i ] ] } ] , { i , l , 6 } ] J 

\0utf!2j= 1 
{{x -> 6.38016}, {x -> 9.76102}, 

{x -> 13.0152}, {x -> 16.2235}, 

{x -> 19 .4094) , {x -> 22.5827}} J_ 

Ü "W 

w 

III 
ill 

-H H 
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Similarly, the zeros of BesselJ [4, x] are found. 

1Π I InputOutput s ^ E E E B ^ P I E 

A/ /J / · * 11 
P l o t [ B e 3 s e l J [ 4 , x ] , { x , 0 , 2 5 } ] J 

0.4· 
0.3· 
0.2· 
0.1· 

-0 .1 
-0.2 

Λ Λ Α / 1 
5 \ io L· 1 2<i h.% 

\outf!3j= 1 
-Graphics- JJ 

As//7/·« 1 
gue33[4] = { 7 . 5 7 , 1 1 , 1 4 . 5 , 1 7 . 6 ,20 . 9, 24} ; J 

\inft8j:= 11 
bz [41=Tab le [F indRoot [Bes3e lJ [4 ,x ]==0 , 

{ x , g u e s s [ 4 ] [ [ ! ] ] } ] , { 1 , 1 , 6 } ] J 

\Outf!8j= 1 
{{x -> 7 .58834} , {x -> 11 .0647} , 

{x -> 14 .3725} , {x -> 17 .616} , 

{x -> 20 .8269} , {x -> 24.019}} JJ 

H 
H 

W 

M 
ia| 
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Finally, a list of the first six zeros o f B e s s e l J [ 5 , x ] is determined. 

InputOutput 
K> 

inf!9j:= 
P l o t [ B e s 3 e l J [ 5 , x ] , { x , 0 , 3 0 } ] 

Outft9j= 
-Graph ics -

guess[5]={8.88,12.2,15.6,19.1,22.3,25.5 

b z [ 5 ] = T a b l e [ F i n d R o o t [ B e s s e l J [ 5 , i ] = = 0 , 
{ x , g u e s 3 [ 5 ] [ [ i ] ] } ] , { i , l , 6 } l 

OutfZIJ* 
{{x -> 8.77148}, {x -> 12.3386}, 

{x -> 15.7002}, {x -> 18.9801}, 

{x -> 22.2178}, {x -> 25.4303}} 

».-] 

« · i 

An alternative approach would have been to compile a list of initial guesses for the first six zeros by looking at the 
graphs of B e s s e l J [ 0 , x ] , B e s s e l J [ 1 , x ] , B e s s e l J [ 2 , x ] , B e s s e l J [ 3 , x ] , B e s s e l J [ 4 , x ] 
and B e s s e l J [5 , x] and then to use FindRoot. In order to apply this alternate approach, a table of initial 
guesses must be compiled. This is done in s t a r t s below using the previously defined lists guess [n] for n 
= 0 , 1 , 2 , 3 , 4 , 5 . Then, a list of the first six zeros of the Bessel functions of the first kind 

J0(x), JjCx), J2(x), J3(x), J4(x), and J5(x) 
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are computed in b e s s e l z e r o s . Notice that b e s s e l z e r o s is a list of lists, so the nth zero of the Bessel 
function B e s s e l J [m, x] is extracted with b e s s e l z e r o s [ [m+1, n , 1, 2] ] . 

InputOutput 

tnft9j:= 
s t a r t s = T a b l e [ g u e s 3 [ j ] , ( 3 , 0 , 5 ) ] 

Outf!9j= 
{{2.14, 5 .59 , 8 .72, 1 1 . 8 , 15, 

1 8 . 2 } , {3 .95 , 6 .74 , 10, 13 .2 , 

16 .6 , 1 9 . 6 } , 

{5.26, 8 .55 , 1 1 . 7 , 15, 1 8 . 1 , 

2 1 . 1 } , {6 .41 , 9 . 7 , 13, 1 6 . 3 , 

19 .4 , 2 2 . 7 } , 

{7.57, 1 1 , 1 4 . 5 , 17 .6 , 20 .9 , 

24} , {8 .88 , 12 .2 , 15 .6 , 1 9 . 1 , 

2 2 . 3 , 2 5 . 5 } } 

M20J:= 
bes3elzero3=Table[FindRoot[Be33elJ[j„x]==0, 

(x. startsC [ j+1, i]]) ],CJ,0,5>, {i.1.6}] 
Short[besselzeros,5] 

UutfZOjsVStiort* 
{{{x -> 2 .40483}, {x -> 5.52008}, 

{x -> 8.65373}, {x -> 11.7915}, 

{x -> 14 .9309}, {x -> 18.0711}}\ 

« 5 » } 
|.V.Y-...|...Y...|...Y.^^m|yj^»j|; M 

ja 
m 

is a table consisting of 
(guess[0] ,guess[l] guess[5] }. 
Notice ûità s t a r t s 
isalisto/Usts. In fact, 
s t a r t s [ [ m , n ] ] 
corresponds to the initial guess of the 
nth zero of the Bessel function 
JmW-

■«f■»-<»»-»-»-~^»J-»-^-J^-'*«**' 

computes a table of 
<xpproximations of the izh 
zero of the Besselfunction 
Jj(x). using the command 
FindRoot 
forj=0J,2,3A<wi5;irrl, 
2t3t4,5tand6. 
The resulting list L· named 
besselzeros 
and an abbreviated form 
(consisting of no more than 
five lines) is displayed 

The first list in b e s s e l z e r o s is the list of zeros of B e s s e l J [0 , x ] . Hence, b e s s e l z e r o s [ [1] ] 
gives this list. Since the indices are shifted, b e s s e l z e r o s [ [ j+1] ]=bz [ j ] where bz [ j ] is the list of the 
first six zeros of B e s s e l J [ j , x] found earlier. We verify that the results obtained by the alternative approach are 
the same as those found by the previous approach. 

The notation commonly used to denote the nth zero of the Bessel function Jm(x) is an 
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Hence, the function a lpha [m, n] is defined below in terms of the values in bz [n] for later use. 

InputOutput 

inf2U:= 
b e s s e l z e r o s [ [ 1 ] ] = = b z [ 0 ] 

Outf2!j= 
True 

irtf22j:= 
besselzero3[[3]]==bz[2J 

0utf22j= 
True 

inf23j:= 
besselzeros[[5]]==bz[4J 

Outf23j= 
True 

tnf24j:= 
b e 3 s e l z e r o s [ [ 5 , 3 , l , 2 ] ] 

Outf24j= 
14.3725 

Inf25j:= 
a l p h a [ m _ , n _ ] : = b z [ i ] [ [ n # l 

l·^ 
UUWWUWWWWVWWUWWWWWUWWWWWWWVWWWWWWWUWWVMMmUMMMMAMMMM 

To verify the same reside L· produced, we 
verify that 
b e s s e l z e r o s [ [ k ] ] and 
b z [ k - l j are the same for k= 1,2,... ,6. 

Λ » ^ Λ Μ Λ Μ Λ Μ Λ » Μ λ Η ^ » Μ Κ Α Μ ^ 

J2 liiiiiifliioiieecnew 

The same result would be obtained by entering 
b z [ 4 ] [ [ 3 , i , 2 ] ] 

\This can be interpreted as the third zero of the 
Bessel function J^(x). 

. 2 ] ] 

IjjjjjiU"1 

iiAiliilliinon 

defines a l p b a [ m, n ] 
to be the nth number of the list b z [ m ] . 

| Based on ourpreceeding work, m must be between 
0 and 5; n must be between 1 and 6. 

The table ze ros is a table of the first six zeros of the first six Bessel functions. 

The command T a b l e [ a l p h a [m, n ] , {m, 0 , 5 } , {n, 1, 6} ] » b e s s e l z e r o s first computes the table 
of numbers Tab le [ a lpha [m, n ] , {m, 0, 5 } , {n, 1, 6} ] and then writes the results to the file 
b e s s e l z e r o s . 

It is important to notice that if the file b e s s e l z e r o s does not exist, it is created; if it does exist, it is written over. 
To append the results of a command to an existing file, the form of the command is command>»output 
f i l e . 
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The function alphaalt [m, n] can then easily find the nth zero of BesselJ [m, x] from the list 
besselzeros. These zeros do not have to be recomputed with this approach and are located in the table 
zerosalt. The fact that identical values are contained in zeros and zerosalt is verified. 

InputOutput 

z e r o s = T a b l e [ a l p h a [ m . n ] . { m , 0 , 5 > , { n , 1 , 6 ) 1 
TableForm[zeros] 

Outf2ôJsVTâbleForm= 
2.40483 5.52008 8.65373 11.7915 

14.9309 18.0711 

3.83171 7.01559 10.1735 13.3237 

16.4706 19.6159 

5.13562 8.41724 11.6198 14.796 

17.9598 21.117 

6.38016 9.76102 13.0152 16.2235 

19.4094 22.5827 

7.58834 11.0647 14.3725 17.616 

20.8269 24.019 

8.77148 12.3386 15.7002 18.9801 

22.2178 25.4303 

M27/:-
Table[alpha[m,n]„{»,0,5},{n,1,6}] » besselzeros 

M28/:= 
alphaalt[m_,n_]:=besselzeros[[m+l,n,1.2]] 

lnf29j:= 
zerosait=Table[alphaalt[ 

inf3Üj:= 

JÖE2 
creates a table z e r o s 
and expresses the result in 
Table Form 

creates the same table 
as above and writes 
the output to the file 
b e s s e l z e r o s . 

: m . n ] . { m , 0 . 5 ) . { n , l , 6 } ] ; J 

zerosalt==zeros 

0utf30j= 
True 

The same resides would ftccve been obtained using j 
the table b e s s e l z e r o s . j 

]J 
"■.".'".'■: l ie i mÊÊËmmme&ai κ3 
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The file b e s s e l z e r o s is a nested list of numbers; it does not rely on previous calculations. 

The fiie b e s s e l z e r o s 
is in the folder Mathematical 

I D ^ ^ ^ = g besselzeros Bi| 

{{2.404825557624828635. 5.520078082173197342, 81] 
11.79153159732223503. 14.93091770603674345. 
{3.83170525143123663. 7.01558655548211243. 10 
13.3236919362232029. 16.47063000385284817. 1 
{5.135621887451435987. 8.417243947281169003. 
14.79595114197812931. 17.95981943405801651. 
{6.380161895464166835. 9.761023129207743131. 
16.22346615704028987. 19.40941267380204939. 
{7.588342434475555476. 11.06470948793955275. 
17.61596604980382726. 20.82693295541904514. 
{8.771483762897060509. 12.33860419738229831. 
18.98013385271306593. 22.21779989413968912. J 

H 

H 
L—M^^lMliillSI l ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B K E 

In this case, we modify be s se l zeros by converting the initialization cell to an ordinary input cell (by selecting 
Input Cell from Cell Style under the S t y I e heading on the Mathematica Menu), naming the table zb j and 
defining bzero [m, n ] . For future use, we need only open the file b e s s e l z e r o s , enter its input cells, and the 

function bzero [m, n] will give the nth zero of the mth Bessel function, Jm(x). 

The calculation of the zeros of the Bessel functions are important in many problems in applied mathematics, so the 
procedures described here can be quite useful. Notice how these values are easily obtained using bzero [m, n] . 
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In order to use the values located in zb j , the input cell containing zb j and the input cell containing the definition of 
bzero must first be entered. 

besselzeros 
lnf32j;= 

zbj={{2.404825557624828635, 5. 
11.79153159732223503, 14.9: 
{3.83170525143123663, 7.015! 
13.3236919362232029, 16.471 
{5.135621887451435987, 8.41" 
14.79595114197812931, 17.9! 
{6.380161895464166835, 9.76: 
16.22346615704028987, 19.41 
{7.588342434475555476, 11.0\ 
17.61596604980382726, 20.8: 
{8.771483762897060509, 12.3: 
18.98013385271306593, 22.2: 
25.43034115340598979}}; 

inf33j:= 
bzero[m_,n_]:=zbj[[m+i,nj] 

inf34j:= 
bzero[0 , l ] 

Outf34j= 
2.404825557624828635 

inf35j:= 
bzero[ l ,2 ] 

0utf35]= 
7.01558655548211243 

KS 
We modify the file b e s s e l z e r o s 
by naming the table zb j . 

ThefunctionhzeTo[m„ii\ 
gives an cpproximation of the rah zero 

is an cpproximation oftfve second zero of J^x). 

Ingen&ral, bzero[m,n] makes sense 
\as long as m is between 0 and b; n is between 1 and 6. j 

333 



Chapter 5 Nested Lists: Matrices and Vectors 

I An Alternative Method 

In the previous example, we saw how to create a table of numbers and save them in a separate file for future use. The 
command Table [{Cos [ j ] , S i n [ i ] } , { i , l , 3 } , { j , l , 3} ] » o u t p u t file creates a table of order 
pairs {Cos [ j ] , Sin [ i ] } for i=l,2,3 and j=l,2,3, creates (or erases) output file and places the table in 
outputf"i!e. Notice that in the first example below that the results are given in an output cell which cannot be 
accessed. Hence, if the output is to be saved for later use another approach may be more desirable. The second 
example illustrates such an approach. Print is used within the Table command so that the results are given in a 
print cell which can be accessed with the cursor. This gives the user a second method by which to save a file for futun 
use. 

UsingOutput 
tnf35j:= 

T a b l e [ { C o s [ j ] , S i n [ i ] } , { i . i , 3 } , { j , l , 3 } ] 

Outf35j= 
{{{Cos[l], Sin[l]}, {Cos[2], Sin[l]}, 

Θ 
{Cos[3], Sin[l]}}, 

{{Cos[l], Sin[2]}, {Cos[2], Sin[2]>, 

<Cos[3], Sin[2]}}, 

{{Cos[l], Sin[3]}, {Cos[2], Sin[3]}, 

{Cos[3], Sin[3]}}} 

M36J:= 
T a b l e [ P r i n t [ { C o s [ j ] . S i n [ j ] } K { 1 , 1 , 3 } 

C M - 3 ) ] 

{Cos [ l ] , S i n [ l ] } 
{Cos[2], S in [2]} 
{Cos[3], S in [3 ] ) | 
{Cos [ l ] , S i n [ l ] } 
{Cos[2], S in [2]} I 
{Cos[3], S in [3]} 
{Cos [ l ] , S i n [ l ] } 
{Cos[2], S in [2 ]} 
{Cos[3], S in [3]} 

ÛutfSÔJ* 
{{Null, Null, Null}, {Null, Null, Null}, 

{Null, Null, Null}} 

□ 

ΙΊΊΪΜΊΜΪΜΊΊ I ITI ! ΓΜΪΙΪΓΜΊΊ tmmum 

In general, output cells 
cannot be modified 
Notice that the cursor is 
a "bullseye" when it is 
within an output cell, 
indicating that one 
cannot type witkin the 
output cell 

On the other hand, the 
same results can be 
obtained using the Print 
command Notice that a 
Print cell can be modified 
by typing witkin it and/or 
converting it to an input 
cell 
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Chapter 6 
Applications Related to Ordinary and Partial Differential Equations 

■ Mathematica can perform calculations necessary when computing solutions of various differential equations and, in 
some cases, can be used to find the exact solution of certain differential equations using the built-in command 
DSolve. In addition, Version 2.0 contains the built-in command NDSolve which can be used to obtain 
numerical solutions of other differential equations. The purpose of Chapter 6 is to illustrate various computations 
Mathematica can perform when solving differential equations. 

■ Commands introduced and discussed in this chapter from Version 1.2 include: 

Differential Equations: Special Functions: 
DSolTe[diJfJEerentialeqnation, function, Tariable] BesselJ[alpha,x] 
D SolYe[{di£±erentialeqnations},{inactions},Tariable] BesselT[alpha,x] 
DSolve[{de,initialcond}«... 1 
DSolTe[{des,initialconds},...] 
Programming Trigonometric Operations: 
Block[{ loca lTar iables} ,procedure] TrigExpandIexpression ] 
Algebraic Operations: ConplexToTrig[expression] 
Tariahles[expression] 
Exponent[polynomial,variable] 
Coefficient[poly,Ttr,i] 
Other Operations: 
Flatten[list] 
Print[expression] 
Bt[function] 

■ Commands introduced and discussed in this chapter from Version 2.0 include: 

IDSolYe 
InterpolatingFnnction 
ETalnate 

Commands from previous chapters are frequently used. 

a Applications discussed in this chapter include the Falling Bodies Problem, Spring Problems, Classification of 
Equilibrium Points, and the Wave Equation. 
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16.1 Linear Equations 

dy The general solution of the linear equation -— + P(x)y = f(x), where P and f are continuous on the 
dx 

interval I is y = e" i P ( x ) d xf e
f P ( x ) d xf(x)dx+c1e^P ( x ) d x . 

Mathematica can solve equations of this type with DSolve. However, since solutions of first-order linear equations 
obviously depend on the computation of an integral, if you are using Version 1.2, in tegra lTables .m must 
be loaded before trying to solve any differential equations. 

o If you are using Version 2.0, I n t e g r a l T a b l e s . m is automatically loaded at startup. 

After this is done, the linear equation given above is solved with the command DSolve [y ' [x] + P [x] y [x] 
«== f [ x ] , y [ x ] , x] where the functions P(x) and f(x) are usually directly entered in the DSolve command. 
Notice that the command consists of three parts : the differential equation; the dependent variable (or solution), 
y [x] ; and the independent variable, x. Also notice that the dependent variable must be entered as y [x] each time 
it appears in the differential equation. Otherwise, DSolve will yield a meaningless result. Several examples are 
given below to illustrate the use of DSolve. 

D Example: 

2 dy 3 
Solve the first order linear differential equation (1 + x ) — + xy = - (x + x). 

dx 
The solution, called so l , is easily found below with 
D S o l v e [ ( l + x A 2 ) y ' [ x ] + x y [ x ] = = - ( x A 3 + x ) , y [ x ] , x ] . 
Notice that the output for this command is a list of one element (obtained with s o l [ [1] ] ), 

i l - ( l + x 2 ) 3 / 2 C[l ] 
3ELog[l+x2]/2 ELog[l+x2]/2 ' * 

This is also a list of one element (obtained with s o l [ [ 1 , 1 ] ] ), 

. . ^ l - ( l + x 2 ) 3 / 2 , C[l ] 
y [ x ] - > - 3ELog[l+x2]/2 ELog[l+x2]/2 

which is composed of two parts, y [x] and the expression following the arrow. Of course, the second part of this 
element is the portion of interest since it gives the formula of the solution. Therefore, in order to extract this 
formula, the command s o l [ [ 1 , 1 , 2 ] ] is used. ( s o l [ [ 1 , 1 , 1 ] ] yields y [x] .) 
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Note: In most instances, the ability to extract the formula for the solution will be of great importance. In order to 
analyze solutions to most differential equations, obtaining the formula of the solution is necessary. One altemative is 
to define the solution as a function once it has been found with DSolve. However, many solutions are rather 
complicated, so typing is cumbersome and mistakes are likely. Hence, the logical choice for obtaining the formula is 
by extracting it from the output list At first, the technique of extracting solutions may seem difficult to understand, 
but it should become clearer after several examples. 

\̂  

LinearEquations 
/ y ? / / / -

« I n t e g r a l T a b l e s . m 

OtifU* 
Integrator' 

so l=DSolve [ ( l+x~2)y"[x ]+x y [x ]==- (x A 3+x) t 

(MÎ67J* 
{{y[xl -> 

2 3 /2 
1 - (1 + x ) 

Log[l + x ] /2 
3 E 

C[ l ] 
■}} 

Log[l + x ] / 2 
E 

s o l [ [ l , 1 , 2 1 ] 

Outfô8j= 
2 3/2 

1 - (1 + x ) C[ l ] 

2 2 
Log[l + x 1/2 Log[l + x ] /2 

3 E E 

Be sure that the package 
In tegra lTables .m 
has been loaded prior to 
using D S o l v e 
to soive first order linear 

equations. 

solves the equation 

(l + X2)y'+xy = -(x3+x) 

\fory(x). The result of 
executing the command 
is a list which we name 
s o l . 

Î*iiiiiiiiiirirtÎMiMÎiiiiiiMiMi***âh**toMk* 

3 θ 1 [ [ 1 . 1 , 2 ] ] 
extracts the solution 
frorathe.list s o l . 
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Solutions for various values of the constant C [ 1 ] can be graphed. First, the graphs for C [ 1 ] = -4, -2,0, and 2 are 
requested in a single input cell using different GrayLevel assignments. Each plot is assigned a name so that the 
Show command can be used in the same cell to plot these four graphs simultaneously. Since all of the commands 
are in the same cell, only the output from the last command is shown. 

LinearEquations 
to/09/:* 

p n 4 = P l o t [ s o l [ [ i , i , 2 ] ] / . C [ i J - > - 4 , { x , - 2 , 2 } , 
P l o t S t y l e - > G r a y L e v e l [ . 1 ] , 
D i sp layFunct ion ->Ident i ty ] 

p n 2 = P l o t [ s o l [ [ i , i , 2 ] ] / . C [ i ] - > - 2 , { x , - 2 . 2 } 
P l o t S t y l e - > G r a y L e v e l [ . 2 ] . 
D i splayFunc t i o n - > I d e n t i t y ] 

p O = P l o t [ s o l [ [ i . i . 2 ] ] / . C [ l ] - > G , { x , - 2 , 2 } . 
P l o t S t y l e - > G r a y L e v e l [ . 3 ] m 
D i splayFunc t i on->Id ent i t y ] 

p 2 = P l o t [ s o l [ [ l . l , 2 ] ] / . C [ l ] - > 2 , { x . - 2 . 2 } . 
P lo tSty le ->GrayLeve l [ . 4 ] , 
D i splayFunc t i on->Id ent i t y ] 

Shov[pn4,pn2,pO,p2,AspectRat io->l , 
D i splayFunc t i on-> $D i splayFunc t i on] 

Out/09/= 
-Graphics-

\mMMMMM M 

We may grcpk the solution 
for various values o/C[lJ. 

\Q\ 
a 

?orresponds to p 2 . 

^Corresponds to pO. 

Corresponds to p n 2 . 

vorresponds to p n 4 . 

Mathematica 's DSolve command can also be used to solve initial value problems. The command is altered slightly 
to include the initial condition. 
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D Example: 

Solve: x ^ + (x + 2)y = 2 e ~ \ y(l) = 0 . 
dx 

The differential equation can be solved with DSolve as in the previous example. However, this gives the general 
solution to the problem which represents a family of solutions. The solution to the initial value problem the one 
solution which passes through the point (1,0). 

LinearEquations 

fo/77/ = 
C l e a r [ s o l ] 
so l=DSolve[x y" [x ]+(x+2)y[x]==2Exp[ -x ] 

Outf77j= 

{ { y [ x ] -> 

-x 1 - x - 2 Log[x] 
E + E C [ l ] } } 

//t/7&/ = 
3 θ 1 [ [ 1 , 1 , 2 ] ] 

Outf78/= 
-x 1 - x - 2 Log[x] 

E + E C[ l ] 

taf79/:~ 
Slmpllf y [ s o l [ [ 1 , 1 , 2 ] ] ] 

Outf79j= 
2 

x + E C[ l ] 

x 2 
E x 

ML 

solves the equation 
xy'+(x + 2)y = 2e~x 

a o l [ [ 1 . 1 . 2 ] ] 
gives an explicit 
form of the solution, 

Hence, the general 
solution to the equation 
xy'+(x + 2)y = 2e~x 

is 
x2+ce 

y00 = —5—3-, c any real number. 
x^ex 

tb e fligoevo^v.v.Vjt 

]J 
H a 

To find the solution to the initial value problem with DSolve, the initial condition must be entered in the DSolve 
command. This is accomplished in the following way: 
DSolve [{x y' [x] + (x+2) y [x] ==2Exp [ -x] , y [1] ==0 } , y [x] , x]. 
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Notice that the initial condition is placed in "curly" brackets, { }, along with the differential equation. Otherwise, 
the command is unchanged. Also note that a double equals sign is used in the initial condition. 
The solution is found below and named so l . The formula for y[x] is then extracted and simplified in a single 
command. The expression which results is called s imsol for use in the P l o t command which follows. 

LinearEquations 

tnfZf:-
Clear[sol] 
s o l = D S o l v e [ { i y 1 [ x ] + ( x + 2 ) y [ x ] = = 2 E x p [ - x ] 

y [ l ] = = 0 > , y [ x ] , x ] 

Out[2l= 
~x -x - 2 Log[x] 

{{y[x] -> E - E }} 

s i m s o l = S i m p l i f y [ s o l [ [ 1 , 1 , 2 ] ] ] 

Out[3j= 
2 

-1 + x 

x 2 
E x 

^ solves the initial value problem 
xy'+(x + 2)y » 2e~x, y(l) = 0. 

S i m p l i f y [ s o l [ [ 1 , 1 . 2 ] ] ] 
extracts and simplifies the 
solution of 
xy'+(x + 2)y = 2e~x, y(l) = 0. 
We conclude that the solution of 
xy'+(x + 2)y « 2e"x, y(l) = 0. 

is y(x) = 
x 2 - l 
x2ex* 

rn 
M4J:= 

Plot[simsol,{x,-5,2},PlotKange ->{-20,20}]J 

Outf4j= 
-Graphics-

SHMUIiig 

For convenience, we name the 
solution s i m s o l . 

Finally, we graph the solution 
on the interval [-5,2]. Notice 
that the solution is undefined 
whenx^O. The option 
P l o t R a n g e - > { - 2 0 , 2 0 } 
specifies that the y-values 
displayed are between -20 
and20. 
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i Application: The Falling Body Problems 

A useful application of first-order differential equations is solving problems encountered in mechanics. One such 
problem is as follows: 
A body falls through the air towards the earth. In such a circumstance, the body is subjected to a certain amount of 
air resistance (which in some cases is proportional to the body's velocity). The objective is to determine the velocity 
and the distance fallen at time t seconds. 
Mathematica can be quite useful in solving problems of this type. To illustrate how these falling body problems are 
solved, consider the following problem. 

An object weighing 32 pounds is released from rest 50 feet above the surface of a calm lake. The air resistance (in 
pounds) is given by 2v, where v is the velocity (in feet/sec). After the object passes beneath the surface, the water 
resistance (in pounds) is given by 6v. Further, the object is then buoyed up by a buoyancy force of 8 pounds. Find 
the velocity of the object 2 seconds after it passes beneath the surface of the lake. 

This problem is made up of two parts. First, the forces acting on the object before it reaches the surface of the lake 
must be considered. Then, the set of forces which act upon the object beneath the lake's surface must be determined 
in order to solve the problem. Using Newton's second law, the initial value problem which determines the object's 

dv 
velocity above the surface is: — = 32-2v , v(0) = 0. 

dt 
DSolve can be used to solve this initial value problem. This is done below. The velocity is then extracted from 
the resulting expression with d e q l [ [ 1 , 1 , 2 ] ] and named v e i l . 

vtfvuwuuuwwvuwuvb^wvuuwuuvwuwuwuuuuuuweewwwuHeMewHWtev 

I Be sure that the package I n t e g r a l T a b l e s . : 
Fal l innRnil ipJ^5 been loaded before using the command 

D S o l v e , unless using Version Z.O. 

infïj:* 
« I n t e g r a l T a b l e s . m 
d e q i = D S o l v e [ { ν ' [ t ] = = 3 2 - 2 v [ t ] 

v [ 0 ] = = 0 K v [ t ] , t ] 

Outf2j= 

Uv[ t ] 

2 t 
- 1 6 + 16 E 

2 t 
E 

!nf3j:= 
v e l l = d e q l [ [ i , l , 2 J ] 

Outf3j= 
2 t 

- 1 6 + 16 E 

2 t 

i rriïiïiffîi-ιΤιΊϊΓιΥί^^ 

m gfal 

Solves the initial value problem 
v'=32-2v, 7(0) = 0. 

Since the solution to the initial value 
problern v '=32-2v, v(0) = 0. 
is expressed as a list, the solution is 
extracted with the command 
d e q l [ [ i , l , 2 ] ] 
andnamed v e i l . 
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Before determining the velocity beneath the lake's surface, the object's velocity at the point of impact must be 
found. Therefore, the time at which the object hits the surface of the lake must be calculated by integrating the 
velocity v(t) to obtain the object's position function x(t) using the initial position x(0) = 0. (Recall that x'(t) = v(t)) 
This calculation is carried out below. Note that the position function is extracted and assigned the name 
p o s i t i o n l . 

FallingBodies 

lnf4j:= 
d e q 2 = D S o l v e [ { χ ' [ t ] = = v e l l , x [ 0 ] = = 0 } , x [ t ] , t ] 

0utf4j= 
{{x[t ] -> 

8 -2 t 
_8 + 8 Log[E ]}} 

2 t 
E 

tnf5/:* 
p o s i t i o n l = d e q 2 [ [ l , l , 2 ] ] 

Outf5j= 
8 -2 t 

-8 + 8 Log[E ] 
2 t 

E 

K> 

ICJiKPL a Ka 
a 

solves the initial value problem 

x'=-
16e2'-16 

Ι2Γ 

T e l l 

-, χ(θ) = ο. 

Since d e q 2 
is a äst, execute the command 
d e q 2 [ [ i . i . 2 ] ] 
to obtain an explicit form of 
the solution. 
The result is named 
p o s i t i o n l . 
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Then, the value of t when x(t) = 50 is computed (i.e., the time when the object hits the lake's surface). This is 
accomplished by making use of FindRoot. Since FindRoot depends on an initial guess of the solution to the 
equation, p o s i t i o n l is graphed in order to obtain an approximate value of t when x(t) = 50. The position 
appears to equal 50 near t = 4. Hence, FindRoot is used to determine the root of the equation x(t) = 50 with the 
initial-guess t=4. Therefore, the velocity at the point of impact is found by substituting the value obtained with 
FindRoot, t = 3.62464, into the velocity function of the object above the surface, v e i l . This is accomplished 
with v e i l / . t - > 3 . 624 64 , and the resulting expression is named i n i t v e l 2 . 

FallingBodies i a i 
infoj:» 

Plot[positionl,{t,0,20>] 

5 10 15 20 

OutfôJ= 
-Graph i c s -

FindRoot[positioni==50,{t, 

Outf7j= 
{ t -> 3 . 6 2 4 6 4 } 

initvel2=veli/.t->3.62464 

OutfSj= 
15.9886 

4 } ] 

KS 

friiiiTffli ΠΜ 

P l o t [ p o s i t i o n l , { t , 0 . 2 0 ) 1 
graphs p o s i t i o n l onthe interval [0,20], 

Notice that p o s i t i o n l = -8 + 8e +16t 
attains the value 50 on the interval [0,4]. 

F i n d R o o t [ p o s i t i o n i = = 5 0 , { t , 4 > ] 
approximates the value oft for which 
p o s i t i o n l has value 50. 

initvel2=veli/.t->3.62464 
computes the value of Yell 
when t equals 3.62464 and names the 
resvit i n i t v e l 2 . 

Now that the velocity of the object at its point of impact is known, the initial value problem to determine the velocity 

dv 
beneath the lakes surface is: — = 24-6v , v(0) = 15.9886. 

dt 
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can be solved. This problem is solved below with DSolve . (Note that i n i t v e l 2 is used in the initial 
condition instead of entering the numerical value.) Once solved, the exact value of the velocity at t=2 seconds is 
calculated by extracting the velocity formula from deq3 and evaluating it at t=2 with 
deq3 [ [ 1 , 1 , 2 ] ] / . t - > 2 . The numerical approximation of the velocity (4.00007 seconds) is then computed. 

FallingBodies 

d e q 3 = D S o l v e [ { ▼ ' [ t ] = = 2 4 - 6 v [ t ] , 
v [ 0 ] = = i n i t v e l 2 > . v [ t ] . t ] 

Outf?f= 
6 t 

15.9886 -4 + 4 E 
{ { Y [ t ] -> + }} 

6 t 6 t 
E E 

inf!Oj:= 
d e q 3 [ [ l , l , 2 ] ] / . t - > 2 

OutftOj= 
12 

15.9886 -4 + 4 E 

12 
E 

infill:* 
N[X] 

outftu= 
4.00007 

12 

ΐΤΓιϊιΊΊΊΊΊΪ^^^^^ 

K> 

]J 
Ά 

m 
a 

solves the initial value problem 
v '=24-6v, v(0) = i n i t v e l 2 = 15.9886. 

d e q 3 [ [ l . l , 2 ] ] / . t - > 2 

οοηφutes the exact value of 

deg3[ [ l , l , 2 ] ] = 11.9886e"*6* + 4 

when t equals Z 

N[%] 
computes a numerical approximation 
of tL· previous output. 
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16.2 Exact Differential Equations 
Certain types of nonlinear ordinary differential equations such as exact differential equations can be solved with the 
aid of Mathematica . The differential equation M(x,y) dx + N(x,y) = 0 is called an exact differential equation in 

3F(x,y) 3F(x,y) 
a domain D if there exists a function F such that — ~ — = M(x,y) and —r-^— = N(x,y) 

dx By 

for all (x,y) in D. In order to determine if an equation is exact, the following well-known theorem can be used: 
Let M and N have continuous first partial derivatives at all points (x,y) in a domain D. 

If —r =—r-^— for all (x,y) in D, then the differential equation M(x,y)dx + N(x,y)dy = 0 is exact 
dy dx 

Hence, if the differential equation is exact the total differential of F, 
dF(x,y) = M(x,y) dx + N(x,y)dy = 0. 
Therefore, the solution of the exact equation is F(x,y) = Constant. The method by which F(x,y) is determined is 
illustrated with the following example. 
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D Example: 

2/3 
Solve the initial value problem 

l + 8 x y 
x2/3yi/3 • dx + 

2x4/3y 2/3 _ Yl/3 

,4/3 dy = 0, y(l) = 8. 

First, we must verify that this differential equation is exact. This is done by entering the functions M(x,y) and 
N(x,y). (To avoid confusion with any built-in Mathematica function or constant, small letters are used in these 
definitions.) Next, the partial derivative of M(x,y) with respect to y, D [m[x, y ] , y ] , must be calculated so that 
it can be compared with the partial derivative of N(x,y) with respect to x, D [n [x, y ] , x ] . These derivatives are 
conveniently named my and nx . 

EnactDiffEqn 

» [ x _ . y _ ] = ( l + 8 x y - ( 2 / 3 ) ) / ( x - ( 2 / 3 ) y A ( l / 3 ) ) 
η [ χ _ , γ _ ] = ( 2 χ Λ ( 4 / 3 ) Υ ~ ( 2 / 3 ) - x ~ ( i / 3 ) ) / ( y ~ ( 4 / 3 ) ) ; 

ln[8j:= 
my=D[m[x,yJ,y] 

Outf8j= 
2/3 1/3 

- ( 1 + 8 x y ) 16 x 

2/3 4/3 
3 x y 

2/3 
3 Y 

in[9j:= 
nx=D[n[x ,y ] , x] 

OutfÇj= 
1/3 2/3 

-1 8 x y 

We first define m and 
ft Remernber that a 
semi-colon placed cet the 
end of a Mathematica 
command suppresses the 
output. 
my*=D[m[x,y] ,y] 

8m 
computes — 

ay 
and names the result 

2/3 
3 x 

4/3 

: l ' < ' I 

n x = D [ n [ x , y l , x l 
3n 

and names the result 
n x . 
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At this point my and nx do not appear to be equal. However, once simplified, equality is verified when the result 
of the test equality myl == nx l (note the double equals sign) is True. (The simplified derivatives are assigned 
the names myl and nxl). 

I D == EnactPiffEgn = 

m y i = S i m p l i f y [ m y l 

\Outf!Oj= 
2/3 

- 1 + 8 x y 

2/3 4 /3 
3 x y 

/ / ? / / / / -
n x l = S i m p l i f y [ n x J 

\Outf!U= 
2/3 

- 1 + 8 x y 

2/3 4 /3 
3 x y 

\lnf!2j:= 
myl==nxi 

\outft2j= 
True 

Ι β ϊ Ι Ι β ΐ Η β 

^ ^ Ξ Ι | 

]| 

]| 

Jl 
]J 

ΙΙΜΙΚ 

"H 

W 

M >N 

myl=Simpli£y[my] 
simplifies my. 

nxl=Simplify[nx] 
simplifies n x . 

myl==nxl 
tests to see if myl and 
my s care the same. If they were not the 
same, Fake would be returned instead of 
True. 
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Now that the equation is known to be exact, the process of finding the function F(x,y) can begin. Since by 
definition, 

9F(x,y) r 
— = M(x,y), wehave F(x,y)= M(x,y)dx + g(y). 

dx J 

where g(y) is an arbitrary function of y. In order to determine g(y), differentiate the above equation with respect to y 

and, make use of the fact that ' y =N(x,y). Then, ^ = — ÎM(x,y)3x + gf(y) = N(x,y). 
dy dy dy J 

Therefore; gf(y) = N(x,y)-— jM(x,y)3x so g(y) = J N(x,y)- —M(x,y)3x dy. 

These steps are carried out with Mathemadca in the following manner. 
First, integrate M(x,y) with respect to x. The resulting expression is called f. Of course, Mathemadca does not 
indicate the presence of the arbitrary function of y, g(y). However, the possibility that a nonconstant function g(y) 
exists must be investigated. This is accomplished by differentiating f with respect to y, naming it f y, and 
comparing f y to N(x,y). Since the difference of N(x,y) and f y is g'(y), their difference is computed below and 
named gprime . When simplified, gprime is found to be zero. Therefore, g(y) is a constant function, so the 
solution of this exact differential equation is f = C. The constant C is found by evaluating f at the point (1,8). This 
is done with the command: f / . x - > l / ,y->8 
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27 l x ^ 27 
This shows that C = —. Therefore; the solution to the initial value problem is: 1/3 + 6 x ^ y1^ *? — 

« I n t e g r a l T a b l e s . m 
f = I n t e g r a t e [ m [ x , y ] , x ] 

Outf2j= 
1/3 

3 x 4/3 1/3 
+ 6 x y 

1/3 
y 

infSj:* 

fy=D[£.y] 

ûi/t/SA 
1/3 4/3 

x 2 x 
- < - ) + 

4 /3 2/3 
y y 

gprime=n[ x . y ] - f y 

Out[4j= 
1/3 1/3 4 /3 2/3 

x -x + 2 x y 

4/3 4 /3 
y y 

inf5j:= 
Simpli fy[gprime] 

OutfSj* 
0 

tnf6j:= 
£/ . x - > l / . y->8 \ calculâtes the value of t 

A .,_ l wkenx^I andy=8. 

27 

2 

Don't forget to load the package I n t e g r a l T a b l e s . 
before attempting to compute indefinite 
integrals. 

4/3 
2 x 

2/3 

»0M«»»MM4Mt»f»mj 

□ 

]J 

iiffflnriM I 1:?:::ΐ::::ΨΐΨίΨΐΨιί:ΙΨ;Ψ;Ψίτ;Φ;ΨιΨ;ΨίΨΐΨ;:;Φί:ι:;:;Ψΐ:ΐ:ι:ΙΨ;Ψι ̂ Ί *-π 

S 

f=Integrate[m[ x,y]#x] 

cojT^wies fm(x,y)dx and names 

the result f. 

£y^D[f .y l 
df computes 
8y 

and names the result f y . 

calculating 
gprime»n[ x*y] - f y 
and 
Simpl i fy[gprime] 

df 
shows n(x,y) = — . 

3y 

af 
Since n(x,y) - —, 

dy 

we conclude that fis the 
desired function 
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Mathematica can now be used to check that the function f is correct. 
Dt [f ] computes the total differential of f. This is computed below and called t o t a l f . The symbols Dt [x] 
and Dt [y ] in the output represent dx and dy, respectively. Hence, the command 
Together [ C o e f f i c i e n t [ t o t a l f , Dt [x] ] ] gives the coefficient of dx and writes it as a single 
fraction. A similar command is used to obtain the coefficient of dy. Since the differential equation is exact, the 
coefficients of dx and dy should be the functions 

1 + 8 x y2/3 

M(x,y) = — 2 / 3 i/3 and N(x,y) = 
2 x 4 /3 y 2 /3 , x l /3 

„4/3 

from the differential equation. The results below verify the solution. 

EKactDiffEqn 
inf!5j:= 

t o t a l £ = D t [ f ] 

Outf!5j= 
Dt[x] 1/3 1/3* 

+ 8 x y !Dt[x 

x y 

totalf=Dt[£] 
computes the total 
differential of total 
names the result 
t o t a l f . 

1/3 
x Dt[y] 

4/3 

inf!6j:= 
Together[Coe£ficient[totalf,Dt[x]] 

Outf!6j= 
2/3 

1 + 8 x y 

2/3 1/3 
x y 

inf!7j:= 
Together[Coefficient[totalf,Dt[y]]] 

1/3 4/3 2/3 
-x + 2 x y 

4/3 

i^ojTpures the coefficient of Dt [ x 1 
1 i « s i o t a 1 f and egresses the 
1 resiufotsa single fraction. 

computes the coefficient of D t [ y ] 
vn t o t a l f and expresses the 
resvk as a single fraction, 

)t6SËÊSImLÊ^—^^mL·iiàύiL·L·iiL·iiïL·àïiL·éίl·L·ïiàiïi^^ 

J\Ö\ 

a 
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D Example: 

To illustrate that the arbitrary function g(y) may not be constant, consider the following problem: 

3-y ■dx + L ^ d y = 0 , y(-l) = 2 
x xy 

Begin by clearing all previously used expression names. Then, the same steps are followed as were used in the 
previous example. The functions M(x,y) and N(x,y) are entered and the equation found to be exact by verifying that 

3M(x,y) 3N(x,y) 
dy 3x 

Note that the partial derivative of N(x,y) with respect to x must be simplified to see that it is identical to the partial of 
M(x,y) with respect to y. 

Don't forget to include the space between 
/ x and y to denote multiplication. 

I To verify that the differential equation EKactDiffEqn 

infZl:-
C l e a r [ m, n , my, n x , f # gprime, 
m [ x _ . y _ ] : = < 3 - y ) / ( x ~ 2 ) 
n [ x _ , y _ ] : = ( y A 2 - 2 x ) / ( x ' y ~ 2 ) 
my*=D[m[x,yKy] 
n x = T o g e t h e r [ D[ n[ x , y ] , x 1 ] 
my==nx 

Outf2j= 
True 

KS 3 - y y 2 - 2 x 
—5—dx + 5—dy = 0 is exact, we 

*r xy* 
\fbrst clear all prior definitions ofm, n, my, 
nx, fand gprime. We then define m and 
n, compute — and — , and finally check 

3y 8x 
to see if they are equal 

Notice how the commands are combined into a single 
input celL The output is the result of the last command 

my==nx and indicates that — = — . Hence the differential 
i equation is exact. ^ x 

«MrawMMWMrawMnMMMraBMMramMrawmrawMmMemfl WmMMnMmMMOMMMMMmMC 
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Next, the function F(x,y) is determined as in the previous example. Note that in this problem, the simplified form 
of gprime is nonconstant. 

ExactDiffEqn 

f = I n t e g r a t e [ m [ x , y ] , x ] 

Outf!5j= 
3 - y 

- ( ) 
x 

lnftôj:= 
f Y = D [ f . y ] 

OutftôJ* 
1 

inf!7j:= 
g p r i m e = n [ x , y ] - f y 

Outf!?J= 
2 

1 -2 x + y 
- ( - ) + 

x 2 
x y 

KS 

I a m 
a 

f = I n t e g r a t e [ m [ x , y ] , x ] 

cakulates jm(x,y)dx 
andnames theresutk f . 

f y = D [ f . y ] 

calculates — - —(fm(x,y)dx) 
3y ay w / 

and names the resuk f y . 

gpr ime=n[ x , y ] - f y 

cakulates n [ x , y ] - £ y 
and names the resize g p r i m e . 
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Therefore, gprime must be integrated with respect to y to find the formula for g(y), and the solution of the exact 
equation, so lu t ion , is the sum of the functions f and g(y). Finally, to solve the initial value problem, 
s o l u t i o n is evaluated at the point (-1,2) with the command s o l u t i o n / . x - > - l / .y ->2 to 

3 -y 2 
obtain a value of 2. Hence the solution is + — = 2 

ExactDiffEqn 

tnf!8j:= 
simplegprime=Simplify[gprime] 

Outf!8j= 
-2 

2 
y 

g=Integrate[simplegprime, y ] 

Outf!9j= 
2 

y 

tnfZOj:= 
solution=f+g 

OutfZOj= 
3 - y 2 

- ( > + -
x y 

InfZU:* 
s o l u t i o n / . x - > - ± / . y - > 2 

Outf2U= 
2 

K> 

ti^^^iéi^êiài* 

calculates the value of 
solution where x=-l and \ 

wsmmm 

simplifies g p r i m e . 

calculates f - jdy 

and names the result 

We claim that the general solution 
to the differential equation is 
\f+g=C, where C is a constant. 

In particular, the solution that 
satisfies the initial condition 
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As was illustrated in the previous example, the solution can be verified by calculating the total differential, 
t o t a l s o l , o f s o l u t i o n with Dt [ s o l u t i o n ] . Again, collecting the coefficients of Dt [x] and Dt [y] 
in t o t a l s o l and comparing these results to the functions M(x,y) and N(x,y) from the differential equation 
shows that the solution is correct. 

| D = = E»actDiffEqn E U H 

tnf22j:= 
t o t a l s o l = D t [ s o l u t i o n ] 

\Outf22j= 
(3 - y ) D t [ x ] D t [ y ] 2 D t [ y ] 

2 x 2 
x y 

\tnf23j:= 
T o g e t h e r [ C o e £ f i c i e n t [ t o t a l s o l 

\ Out/25/= 
3 - y 

2 
X 

lnf24j:= 
T o g e t h e r [ C o e f £ i c i e n t [ t o t a l s o l 

\Out[24j= 
2 

-2 x + y 

2 
x y 

Ι Β Η Η Ε Η ^ liiiiiiiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiliiiiii 
*>**»™>*»^"»*>»»»>^>*^"**----~»»»**»J* ^ 1 1 · : » : · : · : · : · : · : · : · : · : · : · : · : · : : : : : : : : : · : : : : : : : : : : : : :: 

P1i| 

11 
J 
"=1 

J J 
~1"1 

- D t [ x ] ] ] J 
"̂  

J J 

11 
- D t [ y ] ] ] J 

η 

-IJ 

jlljijilllllljijijllili^ 

p 

P 

IS M 

I t o t a l s o l = D t [ s o l u t i o n ] 
computes the total derivative of 
s o l u t i o n . 

computes the coefficient of D t [ z ] 
in t o t a l s o l 
and expresses the result as 

\ a single fraction* 

computes the coefficient of D t [ y ] 
Uft t o t a l s o l 
and expresses the result as 

\ a single fraction» 
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El 6.3 Undetermined Coefficients 

D Example: 

Use the method of undetermined coefficients to solve the differential equation yn-2y'+ y=Sin(x). 
Recall that the method of undetermined coefficients is used to solve nonhomogeneous linear ordinary differential 
equations. The general solution to the nonhomogeneous equation 

any (n) + an_!y ( n _ 1 )+· · · + ajy' +a0y = g(x) is y(x) = yh(x)+yp(x), where yh(x) is the solution 

to the corresponding homogeneous equation any *n' + a ^ y ^n~ ' + ··· + ajy' + any = 0, and 
yp(x) is a particular solution to the nonhomogeneous equation. 

The following solution is constructed with Version 1.2. Notice that Version 1.2 is unable to solve the differential 
equation yM-2y'+y=Sin(x) with the built-in command DSolve. 

□ Because DSolve does not solve most nonhomogeneous equations (as illustrated below) the problem must be 
divided into two parts. First, the homogeneous equation must be solved, and then a particular solution to the 
nonhomogeneous equation must be found. 
Since DSolve can be used to solve homogeneous linear ordinary differential equations with constant 

coefficients of degree four or less, the homogeneous solution, y^(x\ is found with 

DSolve [y ' ' [x] - 2 y ' [x] +y [x] ==0, y [ x ] , x] and called s o i l for later use. Also, the 
nonhomogeneous function, g(x) = sinx, is assigned the name exp. 

UndeterminedCoeffs 
inf20j:= 

D S o l v e [ y ' ' [ x ] - 2 y ' [ x ] + y [ x ] = = S i n [ x ] 

DSolve::NotYet: 
Built-in procedures cannot solve 
this differential equation. 

yiri^pi*iwwfwwwTWWff*fif**ff*ŵ Mi^i^ 

0utf20j= 
DSolve[y[x] 2 y " [ x ] + y " [ x ] == 

S i n [ x ] , y [ x ] , x] 

toteij:* 
3 0 1 1 = D S o l Y e [ y ' ' [ x ] - 2 y · [ x ] + y [ x ] = = 0 

Outf2U= 
x x 

{{y [x ] -> E C [ l ] + E x C [ 2 ] } } 

inf22j:= 
e x p = S i n [ x ] 

0utf22]= 
Sin[x] 

17te Matfternatica command D S o l v e 
is unable to solve the (non-linear) 
differential equation 
yM-2y'+y = Sin(x). 

IHI)I|>|U>MIIIIMIIIIIIIIIIII 

However, to use the method of 
undetermined coefficients, we 
must solve tlve (linear) differential 
equation 
y"-2y'+y = 0 
The Matkematica command D S o l v e 
is used to solve this equation 
and its solution is 
y(x) = c1ex+c2xex 
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The annihilator form of the method of undetermined coefficients will be used to find a particular solution of the 

n <*ny nonhomogeneous problem. Recall that the n - th order derivative of a function y is D y=——. 
dx" 

Thus, the linear n-th order ordinary differential equation with constant coefficients 

an y ^ + an_j y ^1-1' +··· + aj y' + a0 y = g(x) can be expressed in operator notation 

anDn y + a^D11"1 y + ··· + ajDy + a0y = g(x) or ( anDn + an^D11"1 + ··· + &ΧΌ+ a0) y = g(x> 

The expression ( anDn + a^D11""1 +··· + ajD+ a0) is called an n - th order differential operator. 

The differential operator ( anDn + a^jD11"1 + ··· + ajD+ a0) is said to annihilate a function f (which 

possesses at least n derivatives) if ( anDn + an_iDn~ +··· + &ιΌ+ a0) f(x) = 0. 

In order to solve the nonhomogeneous equation, recall the following : 

(i) The differential operator Dn annihilates each of the functions 1, x, x ,..., xn~ . 

(ii) The differential operator ( D - a ) n annihilates each of the functions ea x , xe^.xV**,..., x^e***. 

(iii) The differential operator [D2 - 2ccD + (a2 + ß2)j annihilates each of the functions 

eax cosßx, xeax cosßx, x2eax cosßx ,..., xn_1eax cosßx, eax sinßx, xeax sinßx, x2eax sinßx,..., x ^ e 0 * sinßx. 

Let P(D) denote the differential operator (anDn + an_iDn_1 + ··· + a ^ * a0). 

Then the nonhomogeneous linear n-th order ordinary differential equation with constant coefficients equation can be 
expressed as P(D) y = g(x). When g(x) consists of either 

(a) a constant k, 
(b) a polynomial in x, 

(c) an exponential function ea x , 
(d) sinßx, cosßx 

or finite sums and products of these functions, another differential operator which annihilates g(x) can be 
determined. 

Suppose that the differential operator Pj (D) annihilates g(x). Then applying Pj (D) to the nonhomogeneous 
equation yields ?{(D) P(D) y = ?l (D) g(x) = 0. The form of the particular solution is found by solving 
the homogeneous equation Pj (D) P(D) y = 0. 

The function ann [q, f ] which verifies that the annihilating operator, q (a polynomial in d ), annihilates the 
function f is defined below with a Block. This is accomplished by transforming the polynomial q into its 
equivalent differential form and applying it to the function f . 

Block [ {var l , v a r 2 , . . . } , procedure ] allows the variables to be treated locally in the procedure 
without affecting their value outside. Hence, each time the procedure is executed, the original value of each of the 
variables in the list {varl , var2 , . . . } is saved and restored at the end of the procedure. The commands used 
in the definition of ann [q, f ] are explained below. Expand [q] expands all products and powers in q. This 
is useful when the annihilator is a product of differential operators. 
This expanded form of q is called p locally. 
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o In Version 2.0, the command Block has been replaced by the command Module. 

Variables [p] gives a list of all of the variables in p. This command is used to obtain the variable, d, used in 
the annihilating operator. 

Exponent [p, var [ [1] ] ] yields the maximum power for which v a r [ [1] ] appears in p. 
In this case, var [ [1] ] represents the variable d. Hence, this command determines the highest power of d in p 
and names it exp. (Since exp is contained in the Block, it should not be confused with the name of the 
nonhomogeneous function, g(x) = sinx, which was named exp outside of the Block.) Knowing the highest 
power of d enables the differential form of the operator to be determined by, first, finding the coefficients. 

c [ i ] : = C o e f f i c i e n t [ p , v a r [ [1] ] , i ] gives the coefficient of v a r [ [1] ] A i in p . In other words, 
it finds the coefficient of each term in p. (c [ 1 ] is the coefficient of d, c [2 ] is the coefficient of dA2, etc.) 
Since c [0] is the the constant in p, it can be obtained by evaluating p when the variable d=0. 

The final command, Sum[c [ i ] D[f, { x , i } ] , { i , 0, exp} ] , applies the annihilator to the function by 
substituting f into the differential form of the operator. 
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In this example, the nonhomogeneous term in the equation is the function g(x) = sinx which falls under category (iii) 
given above. Therefore, the annihilator is dA2+l (since a = 0, ß = 1, and n = 1). This is verified with 
ann [d*2+l ,exp] where g(x) = sinx was given the name exp. 

The variables va r , e z p , c , va X, and p 
are heal to the function ann[ q, f ] . 

Inf23j:= 
ann[q__,f_] : = 

B l o c k [ { v a r , e x p , c , v a l , p ) , 

p = E z p a n d [ q ] ; 

var=Yariables[p]; 

exp=Exponent[p,var[[1]]]; 

c [ 0 ] = p / . 7 a r [ [ i ] ] -> 0; 

c [ i _ ] : = C o e £ f i c i e n t [ p , v a r [ [ 1 ] ] , i ] ; 

v a l = S u m [ c [ i ] D [ £ . { x . i } ] . { i , 0 , e x p } ] 

] 

inl24j:= 
a n n [ d " 2 + l , e x p ] 

Outf24]= 
0 

JQ 

Notice that the entire 
definition of 
a n n [ q , £ ] 
is contained within 
B l o c k [ - . . 1 . 

con-ïpvtes (D2 + l)sin(x) = 0. 
The same result would be obtamed by executing the command 
D [ S i n [ x ] , { x , 2 } ] + S i n [ x ] . 

U U U U K 

After the annihilator has been verified, the procedure to determine the particular solution to the nonhomogeneous 
differential equation may begin. The first step is to represent both the annihilator and the left-hand side of the 
differential equation in differential operator form. The annihilator is, therefore, represented as yA2+l, and the 
differential equation as yA2-2y+y. (The variable y is being used instead of d.) Now, applying the annihilator to 
the differential equation is equivalent to taking the product of these two differential operators. This is done with 
Expand[ (yA2+l) (yA2-2y+l) ] . Hence, a fourth-order differential operator is obtained. This operator 
must then be used to return to the form of a differential equation, (i.e., the fourth-order differential operator obtained 
must be applied to y.) The function p o l y t o d i f f defined in the Block below accomplishes this task by 
making the 

making the conversion from (anDn + a^D 1 1 - 1 + ··· + ajD + a0)y = 0 to the differential equation 

an y (n) + an-i y (n~1} + . ~ + a i y ' + aoy = a 
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It uses the same commands which appeared in ann [q, f ] above to yield a fourth-order differential equation. 
This equation is solved with DSolve with the result named so l2 . 

/ 
Corresponds to the armikilator of Sin (κ); 

E x p a n d [ ( y A 2 + i ) ( y A 2 - 2 y + i ) ] 

Outf25j= 
2 3 4 

1 - 2 y + 2 y - 2 y + y 

tnf26j:= 
p o l y t o d i f f [ p o l y _ J : = 

B l o c k [ { p , v a r , e x p , c } 

U n d e t e r m i nß^Corresponds to the (linear) differential equation 
y"-2y'+y = 0. 

IjjjjjjU 

SiiiSift u Hence, the auxiliary equation to be solved is 

y(4) - 2y<3) + 2y(2) - 2y'+y = 0 

The function p o l y t o d i f f [ p o l y ] 
converts polynomials to differential 
equations. 

p=Expand[poly]; 

▼ar=Yariables[p]; 

e x p = E x p o n e n t [ p , , ? r a r [ [ l ] ] ] ; 

c [ 0 ] = p / . v a r [ [ i ] ] -> 0; 

c [ i _ ] : = C o e £ f i c i e n t [ p , v a r [ [ i ] ] , i ] ; 

S u m [ c [ i ] D [ y [ x ] . { x , i } ] , { i , 0 , e x p > ] = = 0 

] 
fn[27j:= 

p o l y t o d i f f [ ( y ~ 2 + i ) ( y A 2 - 2 y + i ) ] 

Öütf27j= 
y[x] - 2 y ' [ x ] + 2 y " [ x ] -

(3) (4) 
2 y [ x ] + y [ x ] == 0 

fnf28j:= 
sol2=DSolve[polytodiff[(yA2+i)(y~2-2y+i)] 

γ [ χ ] . χ ] 

outfzej* 
{ { y [ x ] -> 

X X 

E C[3] + E x C[4] + 

C[2] Cos[-x] + C[ l ] S in [ -x )}} 

taÄ'"i'"',"'""i'l|OT 

nAiArtvtiti 

converts tluepolynomial ( y ~ 2 + l ) ( y A 2 - 2 y + l ) 
to the differential equation 

y(4) - 2y(3) + 2y(2) - 2y'+y = 0. 
RlHtmCH>CmCtHC<HCIMCHI8HICmCMKIH0IH6M»iH 

JÜ 
solves the differential 
equation 

yW - 2y(3) + 2y(2) - 2y'+y - 0. 

E3 
a 359 



Chapter 6 Ordinary and Partial Differential Equations 

Since s o l 2 is a list, the formula for y[x] must be extracted. This is done with s o l 2 [ [ 1 , 1 , 2 ] ] . Obviously, 
this formula can be simplified with trigonometric identities. The command, 
TrigExpand [ so l2 [ [ 1 , 1 , 2 ] ] ] , does this. Recalling that the general solution to the homogeneous 
equation obtained earlier in the example, s o i l , was 

given by y[x] = C[l] Ex + C[2] x Ex, the form of the particular solution must be the remaining 

terms in the simplified version of so l2 [ [ 1 , 1 , 2 ] ] given below. Therefore, the particular solution is defined as 

yp(x) = Cj Cosx + C2 Sinx. 

o In Version 2.0, TrigExpand is obsolete. The command Expand [ e x p r e s s i o n , Trig->True] in 
Version 2.0 performs the same calculation as TrigExpand [express ion] in Version 1.2. 

Note that the constants are arbitrary, so the negative sign associated with C[l] in s o l 2 [ [ 1 , 1 , 2 ] ] as well as 
the order of these constants can be ignored. The objective is to solve for the arbitrary constants found in the 
particular solution. Hence, the name of these constants and the signs associated with them is not a concern. In 
order to find the values of these two constants, the particular function is defined below as the function yp. 

UndeterminedCoeffs 
s o l 2 is a list Remember to 
use double square brackets to obtain 

i elements of lists. 

inf30j:= 
s o l 2 [ [ J U J U 2 ] ] 

0utf30j= 
x x 

E C[3] + E x C[4] + 

C[2] Cos[-x] + C[ l ] S in [ -x ] 

in[3!j:= 
T r i g E x p a n d [ s o l 2 [ [ l , l , 2 ] ] ]|The command TrigExpand 

performs basic trigonometric identities 

x x 
E C[3] + E x C[4] 

on an expression in an attempt to si >n an expre: 
ÎTVTiTaTèriTê'TÉTtTATâTaTÉ'TÀT 

C[l ] Sin[x] 
must exist 

C[2] Cos[x ] 

inf3?J:= 
Y P [ * _ ] = c [ i ] C o s [ x ] + c [ 2 ] S i n [ x ] 

Out[32j= 
Cos[x] c [ l ] + Sin[x] c[2] 

Since y(x) = d ex + ĉ  xex is amènerai solution of 
the differential equation y"-2y'+y = 0 ; a particular 
solution of the form yp (x) = cj Sin (x) + C2 Cos (x) 

The particular solution of a nonhomogeneous equation satisfies the nonhomogeneous equation. Hence, yp must 

satisfy y " - 2 y + y =Sin(x). yp is substituted into this equation below, and the expression which 
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results is named eqn so that it can be easily simplified with Simpl i fy [eqn] . This simplified equation reveals 
that c [ 1 ] =1/2 and c [ 2 ] = 0 by equating the coefficients of Cos[x] and Sin[x] on each side of the equation. 
Evaluating the function yp for these values of c [ 1 ] and c [ 2 ] yields the particular solution. 

inf33j:= 
e q p = y p ' " [ x ] - 2 y p ' [ x ] + y p [ x ] = = S i n [ x ] 

Oütf33j= 
-2 ( - ( S i n [ x ] c [ l ] ) + 

Cos[x] c [ 2 ] ) == Sin[x] 

in[34j:= 
S i m p l i £ y [ e q p ] 

0utf34j= 
2 Sin[x] c [ l ] - 2 Cos[xl c[2] == 

Sin[x] 

I Sbice yp (x) = cj Sin (x) + c2 Cos (x) 
I must satkfy tfve differential equation 
I y"-2y'+y = Sin (x), we substitute 
I y by yp in the equation; for convenience, 
| we name the result e q p . 

i S i m p l i f y [ e q p ] 
I simplifies eqp . 
I Equating coefficients, we see that 
I c[l] must be 1/2 and cfZ] must be 0. 

inf30j:= 
C l e a r [ y p ] 
Y P [ x _ ] = c [ i ] C o s [ x ] + c [ 2 ] S i n [ x ] / . 

/ . c [ 2 J -> 0 

0ut[36j= 
Cos[x] 

I After clearing yp 
c [ l ] - > l / 2 Iwe redefine yp tobe 

| c [ l ] C o 3 [ x ] + c [ 2 ] S i n [ x ] 
I wizh c[l] replaced by 1/2 
I and c[2] replaced by 0. 
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The general solution to the nonhomogeneous equation is the sum of the general solution to the homogeneous 
equation and the particular solution to the nonhomogeneous equation. This solution is defined below with y. To 
check that the solution is correct, it is substituted into the left-hand side of the differential equation and simplified to 
verify the results. 

ID ^^^m UndeterminedCoeffs ^^^^^^^m 
tnf37!= H 

31 
k> 

y[ x _ ] = s o l l [ [ 1 , 1 , 2 ] ] + y p [ x ] s/ferae, every sobjtionof y"-2y'+y = Sin(x) 

Ouif37j= L oftteform y(x) = q ex + c2 xex + -Cos(x). 
x x Cos[x] | _̂ ,ϋυΐΑΑΛΑΛΑΛ^^ TTTTTJ; j 

E C[ l ] + E x C[2] + * *"""""* " W --»---«|-| 
2 JJ 

\in[40j:= ΊΊ 
v e r i f y = y ' " [ x ] - 2 y " [ x] +y[ x] To verify, we compte J 

and simplify. , 

X X 
2 E C[ l ] + 2 E C[2] + 

X 

2 E x C[2] -

X X 
2 (E C[ l ] + E C[2] + 

x Sin[x] 
E x C[2] ) 

2 J 
\tnl4!j:= T 

S i m p l i f y [ v e r i f y ] J 

\out[4U= 1 
Sin[x] J_ 

|·:!:·: 

IS 
aâ 

o The command DSolve has been dramatically improved in Version 2.0. In fact, Version 2.0 computes the exact 
solution of y"-2y'+y=Sin (x). In general, when attempting to solve a differential equation, try DSolve first; if 
DSolve does not produce a solution, try other methods. 

Uersion2.QDifferentialEquations IHll 
tnf4j:= 

D S o l v e [ y " [ x ] - 2 y [ x ] + y [ x ] = = S i n [ x ] , y [ x ] , x ] 

0ut[4j= 
x x Cos[x] 

{{y[x] -> E C[1J + E x C[2] + }} 

Version ZO can calculate 
the enact solution of the 
differential equation 
y''-2y'+y=Sin(Ky 

362 



Chapter 6 Ordinary and Partial Differential Equations 

6.4 Linear n-th Order Differential Equations with Constant Coefficients 

dny dn~\ dy 
A differential equation of the form an—^■ + an_1—:rrr + " , + a i — + a0y = 0, where each aj 

dx dx dx 
is a real number, is called 
a linear n-th order homogeneous differential equation. 

The characteristic equation of the linear n-th order homogeneous differential equation 

dny dn_1y dy Λ . n n_} an—n- + an_1-—rr + --- + a1 — + a0y = 0 is anm + an_! m +... + a i m+ a0 = 0. 
dx dx dx 

Recall that this characteristic equation is found by assuming that the solutions of the differential equation are of the 

form y(x) = emx, and the solution is found by substituting this solution into the differential equation 

and solving for m. Hence, the roots of the characteristic equation are values of m which yield solutions to the 
differential equation. Mathematica is somewhat limited in its ability to solve linear n-th order homogeneous 
differential equations with constant coefficients directly with DSolve since DSolve only works for equations of 
this type of degree four or less. However, these equations can still be solved with Mathematica by considering the 
characteristic equation. 
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D Example: 

Mathematical inability to solve the fifth-order equation 

dx5 dx4 dx3 dx2 dx 
with DSolve is demonstrated below by first defining the left-hand side of the equation with Ihseqn , and then 
using D S o l v e [ I h s e q n — 0 , y [ x ] , x ] . Recall that the n-th derivative of y [ x ] is given with 
D [y [ x ] , {x, n} ] . Also, since y is a function of x, y [ x ] must be used in defining the left-hand side of the 
differential equation. 
When DSolve fails to solve the equation, the characteristic equation is defined as chareqn so that an alternate 
method of solution can be employed. 

NthOrderLinear 
A?/ /* / · -

C l e a r [ y , c h a r e q n ] 
l h 3 e q n = D [ y [ x ] . { x , 5 } ] - 3 D [ y [ x ] , { x . 4 } ] - 5 D [ y [ x ] , { x , 3 } ] + 

1 5 D [ y [ x ] , { x , 2 } ] + 4 D [ y [ x ] , x l - 1 2 y [ x ] ; 

D S o l v e [ e q n = = 0 , y [ x ] , x ] 

DSolve::HighDegree: 
D i f f e r e n t i a l equa t ion of order 

h ighe r than four encountered. 

Outf!9j= 
DSolve[(-12 y[x] + 4 y ' [ x ] + 

(3) 
15 y' ' [ x ] - 5 y [x] -

(4 ) (5 ) 
3 y [x ] + y [x ] == 0) == 

|As usual we begin by clearing aä 
variables to be used in the problem, 
Then we define I h s e q n 
to be the left hand side of the 
differential equation 

§i5y d4y d3y d2y dy 

fix5 dx4 dx3 dx2 dx 
Unfortunately, the command 
is unable to solve 

d5y d S d3y d2y dy 
" 3 Λν* ΑνΖ Hv* d x dx dx"1 dx° dx6 

aa However, in this case the characteristic 
equation is 

0, y [ x ] , x] 

chareqn=n A 5-3n A 4-5n A 3+15n~2+4m-12==0 

m 5 - 3 m 4 - 5 m 3 + 15m2+4m-12 = 0. 
oooooBoooooooocwooooooooooooqou^^iwMnuannoooBoaoB 

Since the characteristic equation is of degree five, the roots can be found exactly with S o l v e [ chareqn , m] . 

Since five distinct roots result, the functions e 2 x , e x , e x , e 2 x , e 3 x are five linearly independent 
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solutions to the fifth-order differential equation. Therefore, the general solution to the differential equation is the 
linear combination of these five functions. The general solution is defined below as y [x] . It is then substituted 
into the left-hand side of the differential equation. Since this expression is lengthy, a shorted version is requested 
with Short [lhseqn , 3 ] . This expression is simplified to show that y satisfies the homogeneous differential 
equation. 

fnf2!j:= 
Solve[chareqn,m] 

Out[2U= 
{{m -> - 1 } , {m -> - 2 } , {m -> 3 } , 

oiîîliXfàftVfi ifàftWÀLl 

{m -> 2 } , {m -> 1}} 

inf22j:= 
Y [ x _ ] = c [ i ] E x p [ - 2 x ] + c [ 2 ] E x p [ - x ] + c [ 3 ] E x p [ x J + 

c [ 4 ] E x p [ 2 x l + c [ 5 J E x p [ 3 x ] ; 

inf23j:= 
S h o r t [ l h s e q n , 3 ] 

Outf23/sVSttort= 
-32 c [ l j 

In this case, Matkematica is 
able to exactly solve the 
characteristic equation In 
any case, Matkematica is 
ALWAYS able to approximate 
the roots of the characteristic 
equation with the command 
NKoots . 

" n i i n i i i —— 

+ « 8 » -
2 x 

Remember that a 
semi-colon placed 
at the end of a 
command suppresses j 
the resulting output. 

\Afier defining γ [ χ ] to be the 
solution, we evaluate and simplify 
l h s e q p i 

to verify it is the general solution 
of the differential equation 

16 c [ l ] 
3 ( + « 3 » + 

2 x 
E 

3 x 
81 E c [ 5 ] ) 

inf24j:= 
S i m p l i f y [ X ] 

Outf24j= 
0 

365 

file:///Afier


Chapter 6 Ordinary and Partial Differential Equations 

If a set of initial conditions accompany the differential equation, then the constants in the general solution must be 
found so that the solution satisfies the differential equation and the initial conditions. Consider the following set of 
initial conditions: 
y(0) = 0, y'(0) = l,yM(0) = 0, y'"(0) = 3, y'"'(0) = 0. 
These initial conditions are entered as the list i n i t i a l c o n d s below. Next, a table consisting of the constants 
c [ l ] , c [ 2 ] , c [ 3 ] , c [ 4 ] , a n d c [ 5 ] is created with Table [ c [ i ] , { i , l , 5}] and named t a b l e . Then 
the command Solve [ i n i t i a l c o n d s , t a b l e ] calculates the constants. The result is named v a l u e s so 
that the solution of the initial value problem can be easily obtained by evaluating y for the values of the constants 
extracted from the list v a l u e s . This is done with y [x] / . v a l u e s [ [1] ] . 

ΙΠ m initialconds Π5 

i n i t i a l c o n d 3 = { y [ 0 ] = = 0 , y ' [ 0 ] = = i , y ' ' [ 0 ] = = 0 , ] 
Υ " · [ 0 ] = = 3 , γ " " [ 0 ] = = 0 } ; J 

t a b l e = T a b l e [ c [ i ] , { i , i , 5 } ] ; ] 

v a l u e s = S o l v e [ i n i t i a l c o n d s , t a b l e ] ]~| 
1 1 .1.1 

Pn 

J&&» 
{{c[ l ] -> - ( - ) , c[2] -> - ( - ) , ISince y is defined above, i n i t i a l c o n d s I 

lis a Ust of 5 equations with variables j 
1 ± lc[l], c[2], c[3], c[4], and c[5]. 

c[3] -> - , c[4] -> - , c[5] -> 0} IConsequentiy, S o l v e [ i n i t i a l c o n d s , t a b l e ] ! 
6 6 fsoives tfue system of five equations j 

I i n i t i a l c o n d s for c[l], c[2], c[3], c[4], j 

îand c[5]. In this case, the same result j 
Ylx] / . v a l u e 3 [ [ l ] ] Lould be obtained with 

x 2 x | s o l v e [ i n i t i a l c o n d s ] . J 
- 1 1 E E -«-«»™«— 

2 x x 6 6 
6 E 6 E JJ p 

JQ 
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Consider another set of conditions : 
y(0) = 0, y'(0) = l,y"(0) = 0, y"'(0) = 3, y""(0) = 0. 
After clearing all previously used definitions, the problem is solved in a similar manner as the previous example. 
The new set of conditions are defined in a list, and the exact values of the constants are found in va lues as they 
were above. However, the exact values are not as meaningful as the numerical approximation to each constant. 
Therefore, a numerical approximation, named nva lues , is obtained with N [ v a l u e s ] . The solution y [x] 
can then be evaluated at nva lues [ [1] ] to yield the solution to this problem. 

initialconds 
Clear[initialconds,values] 
initialcond3={y[-i]==i,y'[0]==0,y'"[i]==-i, 

Y' "[2]==0,y [3]==2>; 

( v a l u e s = S o l v e [ i n i t i a l c o n d s , t a b l e ] 
nvalue s=H[value s ] 

{ { c [ l . ] -> 0.999377, 

c [ 2 . ] -> - 2 . 3 0 5 8 , 

c [ 3 . ] -> -0 .319355, 

c [ 4 . ] -> 0.00622826, 

c [ 5 . ] -> -0 .0000483172}} 

0 

| j I I I I I I I I I j I I 
U M U d ^ h é ^ ^ h f a * * ^ ^ ^ > M ^ ^ b M i ^ ^ M d M ^ ^ * ^ f a * i ^ t a M * d b a M a^ 
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To obtain the solution, the function y [x] is evaluated at the elements of nvalues with 
y [ x ] / . n v a l u e s [ [ 1 ] ] . 

§D NthOrderLinear l H 
▼a lue s 
{ { c [ l ] -> 

6 5 6 
( ( 2 E ( ( ( ( ( - ( 2 E ) + 7 E ) -

7 8 9 
2 E - 18 E + 2 6 E ) \ 

10 11 
- 4 E - 16 E -

12 13 
18 E + 54 E ) -

14 15 
39 E - 30 E + 

16 17 
108 E ) - 126 E + 

18 
108 E ) ) / 

5 
( ( ( ( ( ( ( ( ( ( ( - ( 3 2 E ) + 

Ml 
I In tfas case, Matkematica calculates j 
I tltz exact values ofc[i], c[Z], c[3J, ! 
1 c[4]t and c[5]. 1 
| However, numerical opproximcstions j 
I of the exact values are probably ! 
I more useful I 

π Ρ τ ^ 
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16.5 The Cauchy-Euler Equation 

dny A differential equation of the form anxn—r + a ^ x 
dx11 

n i an"ly dy 

^ r r + ,', + aiXdx" + a ° y = g(X) 

is called a Cauchv-Euler equation. 

Equations of this type are solved by assuming solutions of the form y = xm, 

substituting this solution into the differential equation, and solving for m. 

D Example: 

Solve the Cauchy-Euler equation x y"-4xyf+6y = 0. 
Problems of this type can be solved nicely with Mathematica as shown below. For convenience, the left-hand side 
of the equation is defined and named exp . After defining the solution y [x] as x 'X re-entering exp causes this 
form of the solution (x^) to be substituted into the left-hand side of the equation. This results in an expression 
involving terms which can be simplified with Simplify [exp]. This simplified expression is called exp2. 

CauchyEulerEquation 

Clear[y,exp,exp2,exp3] 
exp=x~2 y " [ x ] - 4 x y'[x]+6y[x] 

Outft/= 
2 

6 y[x] - 4 x y ' [x ] + x y' ' [x ] 

y[x_]=x~m 

0utf2j= 
m 

x 

tnf3j:= 
exp 

Outf3j= 
m m m 

6 x - 4 m x + (-1 + m) m x 

exp2=Si»plify[exp] 

Outf4j= 
m 

(-3 + m) (-2 + m) x 

2ΖΖΙΈΙ 

In order to solve the Cauchy-Euler 
differencial equation 

xV'-^xy'-tey - 0, 
we avoid typing by first defining 
exp=x~2 y " [ x ] - 4 x y'[x]+6y[xl 

JJ tall To solve the equation, assume the 
solution y has the form y = xm ; 
define 
y[x]=x-m. 

Notice that y, y't andy" are replaced 
by the correct values for 
y = xm 

Simpli£y[exp] 
simplifies exp ;at this point 
we can see that the values of m 
that satisfy exp=0 
are m^3andm^Z. 

Division of exp2 by xAm yields the expression exp3 which depends only on m. Therefore, equating exp3 to 
0 and solving for m, yields the solution of the differential equation. Since these roots of are m = 3 and m = 2, the 
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functions x and x are both solutions Because these functions are linearly independent, 
3 2 

the general solution to the differential equation is y = qx + C2X . 
This general solution is defined as y [x] below. As was seen earlier, entering exp results in the substitution of 
y [x] into the left-hand side of the equation. Simplification reveals that y [x] is, in fact, the solution since a value 
of zero results. 

CauchyEuier Equation IH1I 
inl5j:= 

exp3=Simplify[exp2/xAm] 

OutfSj* 
( - 3 + m) ( - 2 + m) 

tofo/:« 
Solve[exp3==0] 

Outf6J= 
{{m -> 3 ) , {m -> 2}} 

inf?J:= 
Clear[y] 
Y[*_ ]=c[ i ] xA3+c[2] xA2 

Outf?J= 
3 2 

x c [ l ] + x c[2] 

fnf8j:= 
exp 

0ut[8j= 
2 

x (6 x c [ l ] + 2 c [2 ] ) -

2 
4 x (3 x c [ l ] + 2 x c [ 2 ] ) + 

3 2 
6 (x c [ l ] + x c [ 2 ] ) 

inf?J:= 
Simplify[exp] 

Outf9j= 
0 

w 

]J 

]J 
m<iM(iiimiiiiiii(i\'iiiiiiiitiii 

\QL 

a 

Nevertheless, after dividing by xn 

we are able to solve the equation 
via the command 

Solve[exp3==01. 

We conclude that the general solution 
of the differential equation 

x2y''-4xy,+6y = 0 is 

y = c1x2+c2x3. 
To check, we redefine γ 
and compute and simplify 
e x p . 
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o Even though Version 1.2 is unable to solve the Cauchy-Euler equation with the command DSolve, Version 2.0 
can solve Cauchy-Euler equations: 

DSolve[ 

Outf5j= 

x-2 y " [ x ] - 4 x y ' [ x ] + 6 y [x ]==0 ,y [ x] , x ] J 

{{y[x] -> x <C[1] + x C[21)}} 

•IIIIII!llioo% ▼IK?Mi 
ES 
a 
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16.6 Variation of Parameters 
Let yj and y2 be a fundamental set of solutions on the interval I of the differential equation 

yM+P(x)y'+Q(x)y = 0, where P and Q are continuous on the interval I. 

The Wronskian W of yi and y2 is W = det 
Lyr Viï 

Let ut = - [ d*> u2 = f dx, and yp = u^j + u2y2. Then the general solution of the 

differential equation yM+P(x)y'+Q(x)y = f(x) is y = yc+ypwhere y c =c 1 y 1 +c 2 y 2 is the 

general solution of the differential equation y"+P(x)y'+Q(x)y = 0. 

Because the method of variation of parameters depends on integration, Mathematica can be of great service in 
solving second-order linear nonhomogeneous ordinary differential equations by this method. Consider the following 
problem: 

D Example: 

4 6 1 
Solve yM — yf + -ry=—7 by the method of variation of parameters 

x xz x4 

DSolve does not solve this equation, as shown below, since it is nonhomogeneous and involves variable 
coefficients. Once again, the problem must be solved in two parts. The homogeneous equation must be solved and 
a particular solution must be determined through variation of parameters. 

4 6 7 9 
The homogeneous equation is y" — y' + - y y = 0. Multiplication by x yields x y " - 4 x y'+ 6 y = 0. 

x xz 
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This equation is the same as that solved the previous section on Cauchy-Euler equations. Hence, the solution to the 
homogeneous equation (the complimentary solution) has been found to be 

2 3 
yc(x) = c i x + C2X · This function is defined below as yc. 

Uariationof Parameters 

Clear[ x,y, yc „ wronskian, v, yi„ y2, £ , yp, ul, u2 ] 

lnf92j:= 
DSolve [y" ' [ x J - 4 / x y" [ x ] + 6 / x A 2 y [ x]== \Notice tfuzt Matkematica is unable 

i / i A 4 . y [ i | . i | 
DSolve: :NotYet: 

Built-in procedures cannot solve 
this differential equation. 

0utf92j= 
6 y [ x ] 4 y ' [ x ] 

DSolve[ + 
2 x 

x 

-4 
y ' ' [ x ] == x , y [ x ] , x] 

fnf93j:= 
y c [ x _ ] = c [ l ] x A 2 + c [ 2 ] x A 3 

Outf93j= 
2 3 

x c [ l ] + x c[2] 

\to solve tft& differential equation ! 
L i I 
§x"y,,-4xy,+6y = — I 

| x 1 
| with the D S o l v e 1 
| command j 

By the previous example, 1 
2 3 

yc(x) = c1x +C2X is a solution to\ 
x2y"-4xy'+6y = 0 
and h&we to 

x x2 

The next step in the solution process is to find a particular solution to the nonhomogeneous problem. In order to do 
this by the method of variation of parameters, the Wronskian of the two solutions to the homogeneous equation must 
be determined. The Wronskian for two arbitrary functions h and k is defined below as a function wronskian 
of two variables, h and k. Since the solutions to the homogeneous equation are defined as y l and y2, the 
Wronskian is computed given by wronskian [ y l , y2 ] . The Wronskian is a function of the independent 
variable x and is defined as w [ x ] . 
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Before attempting to evaluate the integrals involved in the formulas given earlier, Version 1.2 users must load the 
package i n t e g r a l T a b l e s .m as illustrated below. 

r 
inf94j:= 

f [ x _ ] = l / x A 4 
y i [ x _ ] = x ~ 2 
y 2 [ x _ J = x A 3 

Outf94j= 
3 

x 

to/95/:= 
v r o n s k i a n [ b _ , k__] =De t [ 

Outf95]= 
>(k[x] h ' [ x ] ) + h[x] k ' [ x ] 

Inf96j:= 
ψ[ x_] =¥r o n s k i a n [ y l , y 2 ] 

Outf9ôJ= 
4 

x 

Inf97j:= 
« I n t e g r a l T a b l e s . m 

Outf97j= 
Integrator' 

For this problem, f(x)= - ^ yi(x) = x2 and y2to = x 
x* 

J û 
3 

Tl 

{ { ϋ [ χ ] . Κ [ χ ] > , { 1 ι · [ χ 1 . Κ · [ χ ] } } ΐ ] 

1 
n 

computes 

Wionskiaii(y1(x)/y2(x))= Det 

irtlft'ftnifliMiiiieiiiflinou 

■ΜΜβΜΜΜΜβΜΟΒΜΒΜ 

yi(x) y2W 
yi'(x) y2'Wj = x 

Be sure to load the package I n t e g r a l T a b l e s . m 
before attempting to compute definite integrate. 

6 IÎfittBÎ(âlHHj^lHiiÎiiUîii*iÉiÉitÎÉiiiÉÎÉÎ^ 

Kfl 

In order to find a particular solution of the form yp = UJVJ + u2y2, the functions U! and u2 

must be calculated with the following integrals \ΐχ = - f 2 dx and u2 = [ dx. 

The functions Uj and u2 are determined below with Integrate . The general solution to the 
nonhomogeneous problem is then defined as the sum of the complimentary solution found earlier, 
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yc[x] , and the particular solution, yp[x] = ul[x] yl[x]+ u2[x] y2[x]. The general solution is 
defined as y[x] . 

Uariat ionof Parameters 

lnf98j:= 
ul[x_]=Integrate[(-y2[x] f [ x ] ) / w [ x ] , x ] 

Outf98/= 
1 

4 
4 x 

inf99j:= 
u2[x_J=Integrate[(yl[x] £ [ x ] ) / ψ [ x ] . x] 

Outf99j= 
- 1 

5 x 

infWOj:= 
yp[x_]=ui[x] yi[x]+u2[x] y2[x] 

Outf!OOj= 
1 

2 
20 x 

tnf!OU:= 

Y[x_l=yc[x]+yp[xl 
OutftOU= 

1 2 3 
+ x c [ l ] + x c[2] 

2 
20 x 

K> 
computes 

ui(x) = - j 
y2(x)fWdx = . i 

_ W 4χ< f 

S complues I 

l*M-jaig;--BM 

1 yp(x) = u1(x)y1(x)+y2u2(x) = — 2 1 

Connies . 

y(x) = y«(x)+yj(x) = q x 2 + c 2 x 3 + — τ 
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The general solution is verified by substitution into the left-hand side of the differential equation. If correct, the 

resulting expression is equivalent to x"4. After simplification, the desired result is obtained: 

UariationofParameters 

lnf!04j:= 
γ Β , [ Σ ] - 4 / χ y " [ x l + 6 / x A 2 y [ x ] 

Outff04j= 
3 

+ 2 c [ l ] + 6 x c[2] -
4 

10 x 

-nzr 

Jl 
To verify that y [ x ] 
is the solution, we compute 
mdsimpüfy 
y B i [ x ] - 4 / x y B [ x ] + 6 / x A 2 y [ x l 

Kjjijiaioioio Ü 

- 1 2 
4 ( + 2 x c [ l ] + 3 x c [ 2 ] ) 

3 
10 x 

1 2 3 
6 ( + x c [ 1 ] + x c [ 2 ] ) 

2 
20 x 

S i m p l i f y [ % ] 

0utf!05j= 
-4 

x 

X refers to the previous output. 
Consequently, S i m p l i £ y [ X ] 
simplifies the previous, or most 
recent, output. 

Vittttiä^—^^m^L·iiiiiiîÜι£iîiïύ^^ 

£2 
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16.7 Capabilities of DSolve 
Although the command DSolve is quite useful in Version 1.2, DSolve is unable to solve many standard 
differential equations: 

Uersionl .2NotSoluable 
ln[3j:= 

D S o l v e [ 
x A 2 γ ' § [ Σ ] + χ γ · [ χ ] + ( χ Α 2 - η Λ 2 ) y [ x ] = = 0 , y [ x ] , x 
1 

DSolve: :NotYet: 
B u i l t - i n p rocedures cannot so lve t h i s d i f f e r e n t i a l 

equa t ion . 

Outf3j= 
2 2 2 

DSolve[(.-n + x ) y [x] + x y ' [ x ] + x y ' ' [ x ] = = 0 , 

y [ x ] , x] 
inf4j:= 

D S o l v e [ 
( l - x ~ 2 ) y " [ x ] - 2 x y ' [ U + 

( n ~ 2 + n - m A 2 / ( l - x A 2 ) ) y [ x ] = = 0 , y [ x ] , x 
] 

DSolve: :NotYet: 
Built-in procedures cannot solve this differential 
equation. 

Outf4j= 
2 

2 m 
DSolve[ (n + n - ) y[x] - 2 x y ' [ x ] + 

2 
1 - x 

JÖE3 
The command 
D S o l v e 
in Version 1.2 is unable, j 
to solve either 
Bessel's equation 

or Legendre's equation. 
JKamo&aptfWm&mpiwvwfäHfäm»/iNnNHfäWiiiA 

(1 - x ) y " [ x ] == 0, y [ x ] , x] 
m 

sa 
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D Example: 

o In Version 2.0, the command DSolve has been improved. In fact, exact solutions can be computed for Bessel's 
equation, Legendre's equation, and Airy's equation: 

Uersion2.0MoreDifferentialEquat 

infU:= 
D S o l v e [ x A 2 y ' ' [ x j + x y " [ x ] + ( x A 2 - n A 2 ) y [ x ] = = 0 , y [ x ] . x 

] 

Outf!j= 
| Version 2 0 computes the enact solution 
| of the differential equation 

{{y[x] -> BesselY[Sqrt[n ] , x] C[ l ] + | x^'+xy'+fx2 -n 2 )y = 0. 

Besse lJ [Sqrt [n ] , x] C[2]}} 

in[9j:= 
n = 2 ; 
m=4; 
l £ = D S o l v e [ 

< i - x ~ 2 ) y " [ x ] - 2 x y ' [ x ] + 
( n ~ 2 + n - * A 2 / ( i - x ~ 2 ) ) y [ x ] = = 0 , y [ x ] . x 

] 

Outf9j= 

{ { y [ x ] -> ( x C[ l ] 
/ - χ3/2 ίΛ , 3 / 2 
(-1 + x) (1 + χ) 

o yoiûiatp.y.V.W« w 

Α β Μ Μ Ι Μ Μ Β Μ η α ΐ Η Μ Η Μ Ι « 

In this example, we define 
n=Zandm^4. Remember 
that in order to suppress 
the output from a command, 
a semi-colon must be placed 
atthe end of'it. 
Version Z0 computes the 
exact solution of 

( ΐ - χ 2 ) / ' - 2 χ ^ + «2 m 

n "" 2 

i A 3 x 
( x ( . + 3 x - x + - C [ 1 ] 

1 - 3 C[ l ] + C [ l ] 3 -

1-x' 
y = 0 

C [ l ] ' ) C[2] ) / 

E ( 3 (Log[- l + x] + Log[i + x]))/2) f 

Sqrt[ -1 + x 2 ] } } 
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ci={-JU2,-3,4}; 
c2={0,i,-2,3}; 
grays=Table[GrayLevel[j/30],{j,0,15}J; 

graphs=Table[If[[1.1.2]] 
/. C[l]->cl[[j]] /. 

{jM,4},{k,1.4} 
1 // Flatten; 

Short[graphs,2] 

Oi/tf73//s$/tort= 
Y 

{ - ( — 

C [ 2 ] - > c 2 [ [ k ] ] 

3/2 ( -1 + x) (1 + x) 
4_x 

( -1 + x) (1 + x) 

- ) , « 1 4 » , 
S q r t [ - 1 + x ] 

+ « 1 » 

} 
S q r t [ - 1 + x ] 

tnf74/:= 
P l o t [ E v a l u a t e [ g r a p h s ] . { x , l . 1 , 6 } , 

P l o t R a n g e - > { - 4 0 , 4 0 } , P l o t S t y l e - > g r a y s ] 
40nn\ \ \ 

i \ 1 '. i 

< * > * & ■ 

as*** ' 

***-*= 
[ t l i f f iW w M M M U M M W UM M W uji H *V ** f'i?''** " u i i i i y y y y u y y y u u yi 

-10 

Outf?4j= 
-Graph i c s -

a i r y = D S o l v e [ y ' ' [ x ] - x y [ x ] = = 0 . y [ x ] „ x ] 

Outf?6/= 
{{y[x] -> AiryBi[x] C[l] + AiryAi[x] C[2]}} 

g r a p h s is a 
tobte of solutions 
ofLegendre's equation 
with C[l] and C[2] 
replaced by the values 
of c l and c 2 
The command F l a t t e n 
must be used remove 
brackets from the 
nested list resulting 
from the table 
command g r a p h s 
is a list of expressions 
in terms of x» ; 

In Version Z0, the 
command E v a l u a t e 
replaces the command 
R e l e a s e 
Be sure to use it when 
grcphing Usts of functions. 

computes the general solution 
of the differential equation 
y"-xy=0. 
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16.8 Systems of Linear Differential Equations 

The general form of the first-order linear system of n dimensions is x = A(t)x where 

A(t) = [ay(t)] is an n x n matrix with each a^j a function of t and x(t) is a column vector 

of the n dependent variables The general form of the first-order linear system may 

be written as: 

a i , i (0 alf2(t) 
a2, i(0 a2,2(0 

ai,n(t) 

a2,n(t) 

| a n l ( t ) a n 2 ( t ) — a n n ( t ) 

Γχιΐ 
lx2 l 

I : l· 

i Application: Spring Problems 

An application of second-order linear differential equations with constant coefficients is the differential equation 
of the vibrations of a mass on a spring. The problem to be solved is as follows : 

A coil spring is suspended from a point on a rigid support such as a ceiling or beam. A mass is then attached to 
the spring and allowed to come to rest in an equilibrium position. The system is then set into motion in one of two 
manners: (1) the mass is pulled below (or pushed above) its equilibrium and released with a zero or nonzero initial 
velocity at t=0, or (2) the mass is forced out of its equilibrium position by giving it a nonzero (downward or 
upward) initial velocity at t=0. The problem is to determine the motion of the mass on the spring which results. 

By making use of Newton's second law and Hooke's Law, and by determining the forces acting 

d2x dx 
upon the mass, the differential equation for this problem is found to be m— j + a— + kx = F(t). 

dt' dt 

where m = the mass attached to the spring, a = the damping constant, 
k = the spring constant determined with Hooke's Law, and 
F(t) = the function which describes any external force acting on the 
spring. 

D Compare the Effects of Damping 

An interesting problem to consider is that of investigating the effect that different values of the damping constant, a, 
have on the resulting motion of the mass on the spring. Consider the following problem : 

A 3-kilogram mass is attached to a spring having spring constant, k = 12. Determine the equation of the motion 
which results if the motion starts at x(0) = 3 with zero initial velocity if the damping constant is (i) a = 6 and 
(ii) a = 12. Plot the solutions obtained. 

The differential equation with initial conditions for (i) is 3x" + 6x' + 12x = 0, x(0) = 3, x*(0)=0. 
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This initial value problem is solved below using DSolve . The solution is called s o l for later use. Notice that 
s o l is a list of one element which is a list made up of two parts. Therefore, s o l [ [ 1 , 1 , 2 ] ] is used to extract 
the solution from s o l . The name eq l is given to this expression for convenience when plotting. 

Springflpplication 

s o l = D S o l v e [ { 3 x " ' [ t ] + 6 χ ' [ t ] + 1 2 x [ t ] = = 0 , 
x [ 0 ] = = 3 , x ' [ 0 ] = = 0 } , x [ t ] , t ] 

Outf?J= 
U * [ t ] -> 

( ( 3 + S q r t [ - 3 ] ) 

Remember that RETURN 
gives a new line. Don't 

"I [HJ forget to include the double 
equals sign to denote 
the equations. 

s o l is the solution to the differential 
equation 
3x"(t) + 6x'(t) + 12x(t) = 0 subject to the initial conditions 
x(0) = 3 and x'(0) = 0. 

(<-2 - 2 S q r t [ - 3 ] ) t ) / 2 
E ) \ 

/ 2 + ( ( 3 - S q r t [ - 3 ] ) 

( ( - 2 + 2 S q r t [ - 3 ] ) t ) / 2 
E ) \ 

/ 2}} 

e q l = s o l [ [ l , l , 2 ] ] 

outfej= 
( ( 3 + S q r t [ - 3 ] > 

« m m 

ΜηΜΜΜΜΜΗηΜΗΜΜβΜηΜΜΜΜΜΜΜΜΗ 

Since s o l ] 
isalist, s o l [ [ l , l , 2 ] ] 
gives the solution ess an expression We name 
the solution e q l 
so we can refer to it later when it is graphed 

( ( - 2 - 2 S q r t [ - 3 ] ) t ) / 2 
E ) / 2\ 

+ ( ( 3 - S q r t [ - 3 ] ) 

( ( - 2 + 2 S q r t [ - 3 ] ) t ) / 2 
E ) / 2 

II ΓΠ "11 * * ^ ' h:i:i:i:-:i:-:i:i;i:i:i;-:i;-:i:l;lHi-;-;i:i;i;!;i:·:·;^ W\ T=JI 
m 
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The differential equation for (ii) is similar to that of (i) with the exception that the damping constant, a = 12. Hence 
the coefficient of x' is 12 in this case instead of 6. The initial conditions are the same as those used in the 
calculations for (i). After the solution of (ii) is obtained in an identical manner as (i), the solutions to (i) and (ii) are 
plotted simultaneously. Note that the graph of the solution with a = 6 is the darker of the two curves since it has a 
GrayLevel [0] as compared to GrayLevel [0 .3] for the problem with a = 12. The graph illustrates that 
the spring approaches its equilibrium more quickly when the damping constant is increased. 

inf!4j:= 
sol2=DSolve[ 

{3 z " [ t ] + 1 2 x ' [ t ] + 1 2 x [ t ] = = 0 , 
x [ 0 ] = = 3 , x ' [ 0 ] = = 0 } , x [ t ] , t ] 

Oi/tf/4/= 
3 6 t 

{{x[ t ] -> + }} 
2 t 2 t 

£ £ 

!nf!5j:= 
e q 2 = 3 0 l 2 [ [ l , l , 2 ] ] 

0utf!5l= 
3 6 t 

2 t 2 t 
E E 

inf!6j:= 
p l o t 2 = P l o t [ { e q l , e q 2 ) , { t , 0 , 5 > , 

PlotRange->{-1,3},PlotStyle-
{GrayLevel[0],GrayLevel[.31}] 

w^mmmmametÊmmpmmmmmÊmmmmmmm^ 

solves the differential equation 
3x"(t) + 12x'(t) + 12x(t) = 0 subject 
to the initial conditions x(0) = 3 
and x'(0) = 0. 
The solution (wkick is a list) is 
named s o l 2 . 

Tf 
imÀiiliftfififi 

We extract the solution from s o l 2 
using the command s o l 2 [ [ 1 , 1 , 2 ] ] 

name it e q 2 . 

Ï Finally, we cangrcph the different solutions 
and compare them j 

OutftôJ= 
-Graphics-

a 
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D Compare Different Initial Velocities 

The effect that a change in initial velocity has on the subsequent motion is yet another problem of interest. 
Again, consider the problem stated above for the damping problem with a = 6. In this case, however, consider the 
problem in which the damping and initial position, x(0)= 3, remain unchanged while the initial velocity is varied. 
First, determine the motion when the initial velocity is x'(0) = 2 and then again when x'(0) = -2. Plot the solutions 
to compare the effects that a change in initial velocity has on the motion of the mass on the spring. 

The method of solution is similar to that of the previous problem. The initial value problem which must be 
solved when x'(0) = 2 is as follows : 

3xM + 6 x ' + 1 2 x = 0 , x(0) = 3, x'(0) = 2. 

This problem is solved below with DSolve , and the resulting expression is named s o l n l for later use. As in 
the previous example, the equation of the solution is extracted from s o l n l with s o l n l [ [ 1 , 1 , 2 ] ] . This 
equation is assigned the name e q l . 

Springflpplication 

inf37j:= 
s o l n l = D S o l v e [ 

{ 3 x 1 § [ t ] + 6 x ' [ t l + 1 2 x [ t ] = = 0 , 
x [ 0 ] = = 3 , i ' [ 0 1 = = 2 } / i [ t ] / t ] 

Ûutf37j= 

<{x[t] -> 

( (9 + 5 S q r t [ - 3 J ) 

( ( - 2 - 2 S q r t [ - 3 ] ) t ) / 2 

E ) \ 

/ 6 + ( (9 - 5 S q r t [ - 3 ] ) 

( ( - 2 + 2 S q r t [ - 3 ] ) t ) / 2 
E ) \ 

/ 6 } } 

eqni=solni[[i,i,2]] 

Outf38j= 
( (9 + 5 S q r t [ - 3 ] ) 

( ( - 2 - 2 S q r t [ - 3 ] ) t ) / 2 
E ) / 6\ 

+ ( (9 - 5 S q r t [ - 3 ] ) 

( ( - 2 + 2 S q r t [ - 3 ] ) t ) / 2 
E ) / 6 

\o\ 

solves the differencial équation 
3χ· " (t) + 6x' (t) +12x(t) = 0 subject 
to the initial conditions x(0) = 3 
and x'(0) = 2. 
The resulting äst is named s o l n l . 

77te solution is extraetedftom the list s o l n l 
with the command s o l n l [ [ 1 , 1 , 2 ] ] 

I and named e q n l . 

g asr „KM 
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The solution to the initial value problem in which x'(0) = -2 is found in a similar manner. The value of the initial 
velocity is simply changed and the same commands executed. 

Springflpplication 

inf!?J:= 
s o l n 2 = D S o l v e [ { 3 x ' ' [ t ] + 6 x ' [ t ] + 1 2 x [ t ] = = Q , 

x [ 0 ] = = 3 , x ' [ 0 ] = = - 2 } , x [ t ] , t ] 

0utf!2j= 
{{x[t] -> 

( (9 + S q r t [ - 3 ] ) 

( ( - 2 - 2 S q r t [ - 3 ] ) t ) / 2 
) \ 

/ 6 + ( ( 9 - S q r t [ - 3 ] ) 

( ( - 2 + 2 S q r t [ - 3 ] ) t ) / 2 
E ) \ 

/ 6 } } 

K> 

tnf!3j:= 
'jr**Jz*jr**J?#j?*j'i'jrj'*Tjrjvr*JF*J?J?sTj'*rAr**rjw*+ ΪΑΑΧΛ.Τ 

3 o l 2 is the solution to 
the differential equation 
3x,,(t) + 6x'(t) + 12x(t) = 0 
subject to the initial 

conditions x(0) = 3 
and x'(0) = -2. 

LtAAAsuuuwuwu 

e q n 2 = s o l n 2 [ [ 1 , 1 , 2 ] ] 1 gives the solution as an expression which I 
I can be gro£>hea I 

0utf!3j= 
( (9 + S q r t [ - 3 ] ) 

**♦:♦>:+:♦:♦:♦:■··:♦:+:♦:■»·:♦:■ 

( ( - 2 - 2 S q r t [ - 3 ] ) t ) / 2 
E ) / 6\ 

+ ( (9 - S q r t [ - 3 ] ) 

( ( - 2 + 2 S q r t [ - 3 ] ) t ) / 2 
E ) / 6 

\% ' · i a m 
a 
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When both problems have been solved, the solutions can be compared by observing their graphs. These 
solutions are shown below with the solution to the problem in which x'(0) = 0 (which was solved in (i) in the 
previous example). Note how a positive initial velocity (x'(0) = 2) affects the motion as compared to an initial 
velocity in the negative direction. (Recall, eq l is the solution to the problem with zero initial velocity. It is the 
darkest of the three curves below.) Note also that the change in initial velocity eventually has little effect on the 
motion of the mass, (i.e., the three curves appear to overlap for larger values oft.) 

Springflpplication 
!nf!4j:= 

plot2=Plot[{eql,eqnl,eqn2},{t,0,6}, 
PlotRange->{-1,4}, 
PlotStyle->{GrayLevel[0], 

GrayLevel[.3].GrayLevel[.5]}J 

ÏRemembeT ; 

KS Finally, the three 
solutions core graphed 
simuitaneuousty. 

that RETURN yields a new line. 
ÎThe option P l o t R a n g e - > { - l , 4 } 
tspecifies that the range shown be the 
linterval [-1,4]-

]\ 
^^•"•""w.-alN"' I Ι;:;·;·;·;;::·^Μ:·:::::::::::;::ΐ·::::::::::=::::·:·::::=::::· 

m Pia 
i Application: Classification of Equilibrium Points 

The equilibrium points of the general first-order system 

• · 
x = X(x,y), y = Y(x,y) are the points where X(x,y) = 0 and Y(x,y) = 0. If the system 
• · 
x = X(x,y), y = Y(x,y) has an equilibrium point (χο»Υο) t n e 

linear approximation to the system in the neighborhood of the equilibrium point is defined as the system 

ax, , ax, , ay, , 3Υ. . 
x = ax+by, y = cx+dy, where a = —-(x0,yo). t) = —(x0,y0J, c = —(x0,y0j , and d = —(x0,y0j . 

ax oy dx dy 

The eigenvalues of the system x = ax + by, y = ex + dy are the 
Ta b | 

eigenvalues of the matrix . If the eigenvalues of the 
|_c dj 

system are complex, the phase diagram in a neighborhood of the equilibrium point is an unstable spiral. If the 
eigenvalues are real, distinct, and have the same sign, the equilibrium point is a node; if the eigenvalues are real, 
distinct, and have opposite signs, the equilibrium point is a saddle. If the eigenvalues are the same, no conclusion 
can be drawn. 
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D Example: 

Classify the equilibrium points of the system x = -x -5y , y = x+3y. 

First, the critical points of the system must be located. This is accomplished by solving the linear system 

-x - 5 y = 0 

x + 3 y = 0 

for x and y using Solve [-x-5y==0, x+3y==0}, {x, y} ] . Once the critical point (0,0) is found, it can 
be 

Γ-1 - 5 1 
classified by investigating the eigenvalues of the matrix of coefficients . 

Recall that a matrix is represented as a list with Mathematica where each element of the list is a row of the matrix. 
Hence, the matrix of coefficients, m a t r i x x y , is { { - 1 , - 5 } , { 1 , 3 } } . The eigenvalues are easily 
determined with E igenva lues [matr ixxy] . The eigenvalues are complex conjugates with positive real 
part. Therefore, (0,0) is classified as an unstable spiral. 

To locate the equilibrium points, we 

P=^ solve the system \ ' ~ . lx+3y=o 

|
 Thus the equilibrium point is (0,0} 

Ttte eigenvalues of the system 

x = -x-5y 

Π Equil ibriumPoints WÈÊ== 

\tnfU:= 
S o l v e [ { - x - 5 y = = 0 , x + 3 y = = 0 } , { * . Y > ] 

\Outl!j= 
{{x -> 0, y -> 0}} 

\in[2j:= 
m a t r i x x y = { { - 1 , - 5 } , { 1 , 3 } } 

\üutf2j= 
{{ -1 , - 5 ) , {1, 3}} 

M3J:= 
E i g e n v a l u e s ! ; m a t r i x x y ] 

\Outf3j= 
{1 + I , 1 - 1} 

™*"***»***»****>"*****™~»*>»>*>*»*»»*»»"**™ «̂ 1 1·:·:·:·;·:·;·:·:·:·:·:·:·:·:·:·:·:·:·:·:.:!:·:·:·:·:·:·:·:··.· 

sai l 
~jM 

J ΓΠΠ1 

JJ In 
~1~1 hi-i-i! 

JJ m 
~l~l l-iijiij 

JJH 
miki 

are the eigenvalues 

y=x+3y 
of the matrix 

-i -51 
1 3J 

Thus, we first define m a t r i x x y 
and then we use the command 
E i g e n v a l u e s ! ; m a t r i x x y ] 
to compute the eigenvalues. 

Notice that we may solve the system using the command DSolve: 
Each equation is entered separately. Remember that since x and y both depend on the variable t, they must be 
defined as functions of t in the two equations using square brackets. For convenience, the equations are assigned 
the names, e q l and eq2, respectively. Hence, the command 
D S o l v e [ { e q l , e q 2 } , { x [ t ] , y [ t ] } , t ] 
solves the system for x [ t ] and y [ t ] . The resulting expression is named complexsol for later use. By 
entering the command Shor t [complexsol , 4] in the same input cell, only a portion of the solution (four 
lines) is displayed on the screen. 
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In order to simplify this solution which involves complex numbers, some of the Mathematica commands found in 
the package Trigonometry . m must be used. This package is located in the Algebra folder under 
Packages and must be located by the user when loading. 

Linearization 
inf72j:= 

C l e a r [ e q l , e q 2 , c o m p l e x s o l , s o l ] 
e q i = x ' [ t ] = = - x [ t ] - 5 y [ t ] 

«κκκΙΒ66ο<ΗΗΜ 

Outf72j= 
x ' [ t ] == - x [ t ] - 5 y [ t ] 

inf73j:= 
e q 2 = y ' [ t ] = = x [ t ] + 3 y [ t ] 

Outf73j= 
y ' [ t ] == x [ t ] + 3 y [ t ] 

lnf?4j:= 

In order to solve the linear system, we 
first define the differential equations. 

ΜΜΜΜΜΜροοοοοοοοαοοοοοοοβοοα 

äJüifl „nananannamniE 
m d 

Be sure to include the "double-equals" sign 
between the left- and right-hand side of each 
equation. 

t"Y'|!!!!!!U' 

Ο00000€Μ&Μ4 

lUse the command D S o l v e 
\to solve the linear system 

Notice that e q l and eq2 
c o m p l e x s o l = D S o l v e [ { e q l , e q 2 } , { x [ t ] , y [ t ] } # t iare to be solved for τ[ t ] 
S h o r t [ c o m p l e x s o l , 4 ] \artd y [ t ] intermsoft 

Outf74jyVShort= 
{ { x [ t ] -> 

1 
( ( - - I ) E 

2 

(1 - I ) t 

1 (1 + I ) t 
(- + I ) E ) C[ l ] + 
2 

« 2 » , y [ t ] -> « 1 » } } 

inf75j:= 
«Trigonometry, m 

Ttve solution is very long and 
expressed in exponential 
notation The command 
S h o r t [ c o m p l e x s o l , 4 ] 
displays an abbreviated form 
of c o m p l e x s o l 
on approximately 4 lines. 

To see that the sobtfion to the differential 
equation is a real-valued function, we load 
tfte package T r i g o n o m e t r y , m 
so ttiat we may use several commands to 
simpüfy trigonometric and exponential 

I expressions. 

ίθ The command ComplexToTrig [complexsol ] uses Euler's formula e = cos0 + isin9 

to eliminate complex exponents from the solution. Again, a shortened form of the result is requested with 
Short [ s o l u t i o n , 5 ] . The solution is simplified further with 
Simpl i fy [ s o l u t i o n ] . This yields a real-valued solution. Recall that if the complex function 

rfi(t)+ igi(t)l 
I f ( . ( . I is a solution of a linear system of first - order differential equations; 

Tfi(t)l Γ&(01 
the real part ι f ( * ι and the imaginary part are linearly independent solutions of the 
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Γχΐ Tfi(t)l Tgi(t)l 
system. Therefore; the general solution is = C[l] ι f ( . ι + C[2J ι , . ι 

Thus, S impl i fy [ s o l u t i o n ] collects the real and imaginary parts of s o l u t i o n and expresses the 
general solution in the appropriate manner. 

jmS3&nXMkb&UVuM*»WWMäWäNUIMHAUBWDWBtB 

in[76j:= l £ßer loading the package 
s o l u t i o n = C o m p l e x T o T r i g [ c o m p l e x 3 o l ] jj T r i g o n o m e t r y . 
S h o r t [ s o l u t i o n , 5 ] 

Outf?ÔJ//Short= 
U x [ t ] -> 

I t 
C[2] ( - E 

2 

we use tfte command 
ComplexToTrig 

to convent the exponential form 
\ of the sobjtion to the trigonometric 
I form of the solution. 

i s o l u t i o n 

(Cos[ t ] + - I S i n [ t ] ) + 

- I t 
— E (Cos[ t ] + I S i n [ t ] ) ) \ 
2 

+ C[ l ] « 1 » , y [ t ] -> « 1 » } 

is still long so the command 
S h o r t [ s o l u t i o n , 5 ] 
is used to sfiow an abbreviated form of 
s o l u t i o n 
on approximately five lines. 

) 
!nf?7j:= 

S i m p l i f y [ s o l u t i o n ] 

Outf77j= 
{{x[t ] -> 

t 
E (C[ l ] Cos[ t ] -

2 C[ l ] S i n [ t ] + C[2] S i n [ t ] ) 

, y [ t j -> 

t 
E (C[2] Cos[ t ] -

5 C[ l ] S i n [ t ] + 

2 C[2] S i n [ t ] ) } } 

&**\+**W***W#A»\+-AWA&\+WAWnMW^ 

| Use the command S i m p l i f y 
to simplify tfte trigonometric form 
of the solution The result is expressed 

1 bi tenirns of real numbers. 

HP 
ΚϊίιϊιΊϊιϊΓιΤι 

ïAtit(ififi(f{if(iiÎim{Îf\ 

ΟΖ3ΦΙ 
ϊιϊιϊιιϊιϊιϊΙΥιΊίΙ Μ U 

a Ka a 
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Various values of C[l ] and C[2] may be 
substituted into the solution and then 
graphed to verify that the equilibrium point 
is an unstable spiral. 

Graphs of various solutions 
of the Unear system 

D Example: 

Locate and classify the equilibrium points of the (non-linear) system )x = 2 x - y 3 

[y = 2-3xy 
First, Solve is used to find the equilibrium points of the system by setting each equation equal to zero and solving 
for x and y. Remember, equilibrium points are real solutions to the system, so complex values are disregarded. 
Since the solution set of this system was named eqpts, the two real points (the first and third elements in eqpts 
) can be extracted from the list with eqpts [ [ 1 ] ] and e q p t s [ [ 3 ] . After locating the 

two equilibrium points, the nonlinear system x = X(x,y), y = Y(x,y) must be linearized 

pX(x,y) aX(x,y)] 

about these points using the Jacobian matrix 

|_ 3x 3y 
The easiest way to obtain this matrix is to assign names to the functions X(x,y) and 

3x dy 
3Y(x,y) 3Y(x,y) 

Y(x,y). In this problem, X(x,y) = 2 x - y 3 and Y(x,y) = 2-3xy so the assignment of 
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the names x t and y t to these functions, respectively, allows for the Jacobian to be determined with 
{ { D [ x t , x ] , D [ x t , y ] } , { D [ y t , x ] , D [ y t , y ] } . 
This matrix is named m a t r i x for later use and displayed in MatrixForm to verify that the desired matrix 
has been obtained. 

EquilibriumPoints 

inf45j:= 
e q p t s = S o l v e [ { 2 x - y A 3 = = 0 , 2 - 3 x y = = 0 } , { x , y } 

] / / H 

Outf45j= 
{{x -> 0.620403, y -> 1.07457}, 

{x -> -0.620403 I , 

y -> 1.07457 I } , 

{x -> -0 .620403, y 

{x -> 0.620403 I , 

y -> -1.07457 I}} 

in[46j:= 
xt=2x - y A 3 
y t = 2 - 3 x y ; 

in[47j:= 

-> -1 .07457}, 

To locate the equilibrium points, 
we solve the system of equations 

2 x - y 3 = Q 
[2-3xy = 0 
77te resulting list is named 
e q p t s 

Notice that the REAL solutions 
1 to ttt& system of equations 

correspond to 
e q p t s [ [ i ] ] and 
e q p t s [ [ 3 ] ] . 

To classify each equzäbrium point, we linearize 
the system at eachpoint. 

Don't forget the space between the x and y 
to denote multiplication. 

OOOOOOOOOWKKKMOOOOOOOOOOOOOOOOOOOOOOeO 

m a t r i x = { { D [ x t , x K D [ x t , y ] K { D [ y t , x K D [ y t , y ] } } 
H a t r i x F o r m [ m a t r i x ] 

ûut/47j//^Îâtn'xfûrm= 
2 

2 -3 y 

nmcKP 

-3 y -3 x 
\ l ' ' ' I] 

ΐΊϊιϊι^ήϊιΊΊΊΪιϊιϊήϊιΊ^^ ET L 

m a t r i x 
is tïve matrix 

axv ; ayv i 

±(yt) ±(yt) axv y ayv \ 
mmmmmwmmvmmi 

m 
a 
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In order to linearize the nonlinear system about each equilibrium point, ma t r i x must be evaluated at each point. 
Then, the eigenvalues for each system can be found with Eigenvalues to classify these equilibrium points. 
The matrix of coefficients for the linearized system about the first equilibrium point is easily found with 
m a t r i x / . e q p t s [ [ 1 ] ] . 
These values are real and have opposite signs. Hence, this point is a saddle. 
The linearized system about the second equilibrium point is found similarly. The eigenvalues for this system are 
complex with positive real part. Therefore, the second equilibrium point is classified as an unstable node. 

EquilibriumPoints IHI 
inf48j:= 

matrixi=matrix / . e q p t s [ [ l ] ] 
Ha tr ixForm[matr ix i ] 

Ûutf4S///f,tetrixFûrm= 
2 - 3 . 4 6 4 1 

-3 .22371 -1 .86121 

Inf49j:= 
E i g e n v a l u e s [ m a t r i x l ] 

Outf49j= 
{3 .92873, -3 .78994} 

matrix3=matrix /. eqpts[[3]] 
HatrixForm[matrix3] 

Outf50j//MathxForm= 
2 - 3 . 4 6 4 1 

3.22371 1.86121 

inf5tj:= 
Eigenvalues!; ma t r i x 3 ] 

OutfSU* 
{1.9306 + 3.34102 I, 

1.9306 - 3.34102 1} 

JIl 
evaluates m a t r i x 
for■ x-. 620403 <mdy= 107457 
and names the resuitbig 
matrix m a t r i x i . 
HatrixForm[matrixi] 
expresses m a t r i x i 
in traditional matrix form 

0 0 * 3 J a r f o £ o Î oQ 

I Eigenvalues!; matrixi] 
leottî^wtes the eigenvalues of 
Imatrix i . 

ΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟβφΜΟ 

n 
evabjates m a t r i x 
forx=-.620403andy=-l.07457 
arid names tf-te resulting 
matrix matrix3. 
HatrixForm[matrix3] 
expresses m a t r i x 3 
bn traditional matrix form 

iWlïlTlïlïlYlTlï^^^^ ιΥιΤιΊΥιΙΙ M V 
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B6.9 Series Solutions to Ordinary Differential Equations 
As was demonstrated in Chapter 3, Mathematica is very useful in the computation of power series solutions to 
ordinary differential equations. 

Recall that if x = XQ is an ordinary point of a differential equation, then a power series 
oo 

solution of the form ^ c n ( x - x 0 ) n is assured 
n=0 

Hence, the solution is obtained by finding the coefficient of each term in the series. Several examples are given below 
which illustrate how Mathematica is used to determine these values. 

When using Mathematical Ser ies command, the solution is assumed to have the form 

oo (n)/ \ 
y = I)qXo!(x_Xo)n 

n=0 n ! 

D Example: 

Use power series to compute an approximation of the solution to the initial value problem 

(x3 + l)yM+3Sin(x)y'= 0, y(0) = 1 and y'(0) = 2. 

Mathematica is not able to solve this differential equation with DSolve, so an alternate approach must be taken. 
The problem is solved below using power series. When solving problems of this type by hand, the first step is to 
compute the appropriate derivatives of the assumed power series solution and substitute the solution and its 
derivatives into the differential equation. Then, the coefficients are determined by collecting like powers of x. This 
usually involves changing the indices in one or more terms in the equation. To better understand the method of 
solution given here, a brief reminder of Mathematica 's Ser ies command is given: 
S e r i e s [f [ χ ] , {χ, xO, n} ] computes the Taylor series expansion of the function f about the point x=x0 of 
order at most n. For example, 
Ser ie s [ y [ x ] , { x , 0 , 5 } ] yields the first 5 terms of the Taylor series expansion about x = 0 : 

y [0] + y [0] x + y " [Q1 χ 2
 +

 y(3> [ 0 ] χ 3 + y W [0] * ' +
 y ( 5 ) [0] χ 5 + 0 [x] * 

2 6 24 120 
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Therefore, the command 
S e r i e s ! ( x A 3 + l ) y · ' [ x ] + 3 S i n [ x ] y ' [ x ] , { x , 0 , 5 } ] 
accomplishes many steps at once. It computes the series expansions of y [x] and Sin [x] , performs the 
necessary multiplication, and collects like terms to compute the series expansion which results from substitution into 
the left-hand side of the differential equation. This series is called serapprox. 

SeriesSolutions 

tofioj:* 
D S o l \ r e [ ( x A 3 * i ) y ' ' [ x ] + 3 S i n [ x ] y ' [ x ] = = 0 , y [ x ] . x ] 

Matkematica is imable to solve the 
differential equation 

(x3+l)yM+3Sin(x)y'=0 

My· 

DSolve::NotYet: 
Built-in procedures cannot solve 
this differential equation. 

Outf!6j= 
DSolve[3 Sin[x] y ' [ x ] + 

(1 + x ) y " [ x ] == 0, y [ x ] , x] 

s e r a p p r o x = S e r i e s [ ( x A 3 + i ) y " ' [ x ] + 3 S i n [ x ] y ' [ x ] . { x , 0 , 5 } ] 

Outf!7j= 
(3) 

Y " [ 0 ] + (6 + y [ 0 ] ) x + 

(4) 
y [0] 2 

(3 y' ' [ 0 ] + ) x + 
2 

(3) 
1 Y [0] 

(Υ ' ' [0 ] + 3 ( - ( - ) + ) + 
3 2 

cakidates the 
Taylor series about 
x=0for 

(x3+l)y"+3Sin(x)y'«0. 

j y | i · | · i · | · i 
ï i ï i ïnï f f l ï f f lw^^ 

Κββ^φΐββΜΜΜΜΜΜΜβΜΙ 

Kä 
a 
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The next step in the solution process is to equate the coefficients of se rapprox to the corresponding coefficients 
of the series on the right-hand side of the equation by matching like powers of x. In this case, each coefficient on 
the right is 0 . This is done below with LogicalExpand. The resulting expression is named equat ions 
since each term is, in fact an equation. 

SeriesSolutions 
inf!8j:= 

e q r u a t i o n s = L o g i c a l E i p a n d [ s e r a p p r o x = = 0 ] | equates the coefficients of 
the power series s e r a p p r o x 

Outff$J= 
(3) 

y · ' [ 0 ] == 0 8<8c 6 + y [ 0 ] == 0 

(4) 
Y [0] 

3 y " [ 0 ] + == Oj&Scj 
2 

andttie power series 0 . 
The resulting system of equations 
is named e q u a t i o n s . 

?κ·κ·κ·κ*·κ+.·+*κ·κ. 

(3) 
i y [) 

y " [ 0 ] + 3 ( - ( - ) + - /- / ) + 

3 2 

(5) 
y [ 0 ] 

== οΐε,ε, 

6 

(3) 
y [ 0 ] + 3 

(4) (6) 
- y " [ 0 ] y [ 0 ] y [ 0 ] 

( + J + N 

6 6 24 

Represents ike logical connective 'and". 

ΪΜΜ,Μ^^ΜΜ^,Λ^^^,^^^ΆΙ ^ ι '■·····::·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·::::;:::·:·:·:·:·:·:■:■:■:·:·:·:.:.:.:■:·:.·.:.:.:.:.:.:.:.:.:.:.:.:.:. :■:.;·:.:·:.:.;.:.:.:.:.:.:.:::;::;::Ι ~V I T—1| 

The initial conditions are entered so that equa t ions can be solved for the unknown quantities. 
When e q u a t i o n s is solved for 

y M [0] ,y ( 3 ) [0] ,y ( 4 ) [0L. . . , 

the solution is determined by substituting these values into the assumed solution 

^ v (n) Γ01 
n=o n ! 
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Notice that y ( ' [0] is the last element in the list va lues . Hence, the solution can be approximated 
with the series expansion of at most order 7. va lue s [[1]] extracts the appropriate list from va lues . 
Therefore; the approximate solution, a series of order 7, is found with 
S e r i e s [y[x],{x, 0,7}]/ .values [[1]]. 

The expression which results from this command cannot be considered a function since it contains a remainder term. 
Hence, the remainder term is eliminated with Normal [ S e r i e s [ y [ x ] , { x , 0 , 7 } / . v a l u e s [ [1] ] . 
This function is called yapprox. 

SeriesSolutions 

inf!9j:= 
y [ 0 ] = i 
y ' [ 0 ] = 2 
va lues=Solve[ equat ions ] 

Outf!9j= 
(3) 

ί ί Υ " [ 0 ] -> 0. y [0] -> - 6 , 

| In ord^r to solve the above system of 
I equations 07td compute an approximation 
I of the sobjxion, we first define y(0)= 1 and 
\y'(0)=Z The command S o l v e [ e q u a t i o n s ] 
\ solves the system of equations for the unknowns. 
\Ttte resulting list is named v a l u e s . 

(4) (5) 
Y [0] -> 0, y [0] -> 60, 

(6) 
y [0] -> 144, 

(7) 
y [0] -1086}} 

5 6 7 I 
3 x x 181 x I 

x + — + — _ + 1 

2 5 840 ^ — - f ^ ^ 

[o[x] } "^ 

S e r i e s [ y [ x ] , { x , 0 , 7 } ] / . v a l u e s [ [ i ] ] I computes the first seven terms of 
I the Taybr series for y(x) about κ=0 

0utf20j= | ωιύ tft&n substitutes the values 
from the list v a l u e s . 
Notice tf-vxt the result cannot be 
treated as a function since the 
remainder term is included 

1 + 2 x 

inf2tj:= 
yapprox[x__]=Normal[Series[y[x] , { x , 0 , 7 } ] / . v a l u e s [ [ i ] ] ] 

Outf2U= 

1 + 2 x 

5 6 
x x 

2 5 

181 x 

840 

Ttte remainder term is removed with the 
command Normal; 
the resulting function is named 
yapprox[x ] . 

JJg] 
. ^ * " » ^ * » " ^ ^ " « " ^ * ™ ^ ^ « ' " » ^ ^ * |::··:·:ί:;ΐτ:·:::::·:::::::::·:::::::·:::::·:::;& ' y j I Q J j 
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The approximate solution can then be graphed. 

Although DSolve cannot be used to find an explicit solution of (x + l)y"+3Sin (x)y- 0, 

Version 2.0 users can use the built-in command DSolve to compute a numerical solution. For example, the 
command s o l = N D S o l v e [ { x A 3 + l ) y ■ ' [ x ] + 3 S i n [ x ] y ' [ x ] = = 0 , y [ 0 ] = = 1 , y ' [ 0 ] = = 2 > , 

y [ x ] , { x , - 3 , 3 } ] 

computes a numerical solution of (x +ljy"+3Sin (x)y'= 0 satisfying y(0) = l and y'(0) =2 on 
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the interval [-3,3]· The resulting interpolating function is named s o l and is then graphed on the interval [-3,3] 
with the command P l o t [y[x] / . s o l , {x, - 3 , 3 } ] . 

PC Uersion2.0DifferentialEquations 
in/6/:* 

3 o l = H D S o l v e [ { ( x A 3 + i ) y ' ' [ x J + 3 S i n [ x ] y " [ x ] = = 0 , 
y [ 0 ] = = i . y ' [ 0 ] = = 2 } , y [ x ] , { x , - 3 , 3 } ] 

Out/6/* 
{{y[xl -> InterpolatingFunction[{-3., 3.}, <>][xl 

in/?/:* 
P l o t [ y [ x ] / . s o l , { x . - 3 , 3 } ] 

» . 1 

KS 

Out/?/* 
-Graphics-

m Ka 
a 

Problems which involve arbitrary initial conditions can also be considered. With the help of Mathematica, 
approximate solutions can be found in terms of these conditions and plotted for various values. The following 
example illustrates this idea by using the procedures found in the previous problem. 

D Example: 

Use power series to compute approximations of the solution to the initial value problems 

2 x 

yM-4x y'-4y = xe , y(0) = i and y'(0) =j, i and j both integers, - 2 < i < 2, 
-2 < j < 2. 
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Again, this problem cannot be solved with DSolve. Hence, another method of solution must be used. Clearly, x 
= 0 is an ordinary point of this differential equation, so a power series solution can be assumed. The fifth-order 
power series expansions of the left and right-hand sides of the equation are computed with 
S e r i e s [ y ' ■ [ x ] - 4 x A 2 y ' [ x ] - 4 y [ x ] , { x , 0 , 5 } ] and S e r i e s [ x E x p [ x ] , { x , 0 , 5 } ] , 
respectively. These expressions are named s e r l and ser2, so the command 
Log ica lExpand[ser l—ser2 ] equates the coefficients of like powers of x from s e r l and s er2 . 
This gives a sequence of equations which is called equations. 

SeriesSolutions 

Clear[serl,ser2,y] 
D S o l v e [ y " [ x ] - 4 x A 2 y1 [ x ] - 4 y [ x ]==x Exp[ x ] , y [ x ] . x ] 

m 

DSolve::NotYet: 
Built-in procedures cannot solve 
this differential equation. 

OutfU* 

Mathematica is unable to solve the 
differential equation 

y"-4x y'-4y = xex. 

DSolve[-4 y[x] - 4 x y ' [x) + 

y' ' [ x ] == E x, y [ x ] , x] 

M2J:= 
3 e r l = S e r i e s [ y ' ' [ x ] - 4 x~2 y ' [ x ] - 4 y [ x ] 
s e r 2 = S e r i e s [ x E x p [ x ] . { x , 0 , 5 } ] 
e q u a t l o n s = L o g l c a l E x p a n d [ s e r l = = 3 e r 2 ] 

u, 
{ x . 0 , 5 } ] 

0utf2j= 
-4 y[0] + y " [ 0 ] = = 0 8cSc 

(3) 
y [ 0 ] == o && 

s e r l is the first five terms 
of the Taylor series for 
y"-4x2y'-Ay about x^O. 
s e r 2 is the first five terms 
of the Taylor series for 

xex about Y^O. 

- 1 - 4 y ' [ 0 1 + 

- 1 - 4 y ' [ 0 ] - 2 y " [ 0 ] + 

(4) 
Y [01 

| L o g i c a l E x p a n d [ s e r l = = s e r 2 ] 
| equtâes coefficients of the two power series 

s e r l and s e r 2 . 

n'«™™™™"'»""""'""»'"'»"'""""" ····■■·■····»< ^ ' 1 : : : : : · : · : · : : : · : : :·:·:·:■:·:·: 

Ka 
a 
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The following function, called s o l u t i o n s , is defined with a Block and solves equat ions to determine 
the coefficients of the power series solution using the initial conditions y [ 0 ] = i and y · [0] = j . It also computes 
the approximate solution of order five by eliminating the remainder term. A table of functions, condit ions , is 
then created for several values of i and j using s o l u t i o n s [ i , j ] . 

o In Version 2.0, the command Block has been replaced by the command Module. 

solutions[i,j] 
L· a. function, tfvatfirst solves the system of equations 
e q u a t i o n s fortttz unknowns when y(0)=i and 

y (^ΧΛ Λ ^ 0 ^ computes a series cpproximation of 
y(x) using the obtained values. The remainder is 
removed and tfce result is a function ofx* 

Inf4j:= 
solutions[i_, j_] : = 

Block[{y,values}, 
y[0]=i; 
y[0]=j; 
values=Solve[equations]; 
Normal[Series[y[i],{x,0,5}] 
] 

I c ond i t i ons is a table of,functions of: 
in!5J:= I por çacfo ι c^jf the corresponding element 

conditions=Table[ solutions[ i , j ] J of conditions 
{ i , -2,2},{j , -2,2}J; I is an approximation of the solution of the 

| differential equation 

/. values[[i]J] 

satisfying y(0)=iandy'(0)=j. 
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Since condi t ions is a list of lists, the Mathematica command F l a t t e n can be used to obtain a list of 
functions which is needed to complete the problem. A simple example is given to illustrate this command. Hence, 
F l a t t e n [ c o n d i t i o n s ] yields a list of functions called s o l u t i o n l i s t . (Only a portion of this list is 
shown below.) 

Inf6j:= 
F l a t t e n [ { { i , 2 } , { 3 , 4 } , { 5 , 6 } } ] 

OutfôJ= 
{1, 2, 3, 4, 5, 6} 

inf?J:= 
s o l u t i o n l i s t = F l a t t e n [ c o n d i t i o n s ] 

Out[7j= 
3 4 

2 7 x 23 x 
{-2 - 2 x - 4 x 

To convert c ond i t i o n s from a nested 
list of .functions to a list of .functions, we 
use ifie command F l a t t e n . 
Notice that 
F l a t t e n [ { { i , 2 K { 3 , 4 } , { 5 , 6 } > ] 
produces the list 
{1,2,3,4,5,6}. 

217 x 

120 

4 
19 x 

12 

-2 - x 

5 
67 x 

40 

6 12 

3 
2 x 

4 x 
2 

converts the list of lists of functions c o n d i t i o n s 
to a üsf of functions by removing curly 
brackets. 
The resulting list of functions is named 
s o l u t i o n l i s t . 

-2 
2 x 

4 x + — 
6 

5 x 37 x 

4 24 

3 4 
2 5 x 11 x 

-2 + x - 4 x + 
6 12 

toJUtuaEmmuum Utttfti«^^^>""a£*£i£i£i£i£^ 

Kä 
a 
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In order to plot these functions, a GrayLevel table is useful. So that a GrayLevel can be assigned to each 
function in the list, the length of s o l u t i o n l i s t must be known. Once this length is found to be 25, a table of 
25 GrayLevel assignments is created and called g r a y l i s t . Hence, the list of approximate solutions can be 
plotted and identified by referring to the GrayLevel of each curve. 

o In Version 2.0, the command Release has been replaced by the command Evaluate. 

SeriesSolutions 

inf8j:= 
L e n g t h [ s o l u t i o n l i s t ] 

OutfSf* 
25 

inf9j:= 
graylist=Table[ 

inf!Oj:= GrayLevel[i/36] # {i. 

Plot[Kelease[solutionlist],{i 
PlotStyle->graylist] 

jmroud» 

Length[solutionlist] 
gives the number of elements in 
the list 
s o l u t i o n l i s t . 

T.T.T.r.T.t.T.T.r.r.t.T.r.t.T: T .T .TJ.Wj 

0,2 

, - i 

4 } ] ; 

5 . 1 . 5 ) 

Outf!Oj= 
-Graphics-

:|TJTIT.TITITITITITITITITITIT; 

gives the table 
{GrayLevel[0], 
GrayLevel[i/36] 
GrayLevel[24/36]} 
ami names the result g r a y l i s t . 
Remember that a semi-colon 

j placed at the end of a command 
I suppresses the output. 

Finally, we plot ttte table of functions 
solutionlist 
in sïtades of gray according to g r a y l i s t 
Be sure to remember to include the 
command 
R e l e a s e when graphing tables 
of functions. 

ΤϊιΥίΥήνΐΊΤιΊΤιϊ^^^^ 
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16.10 Series Solutions to Partial Differential Equations 

i Application: Two-Dimensional Wave Equation in a Circular Region 

2 / 2 2\ The Bessel equation is the differential equation x y"+xy'+(x - a )y = 0. 

If a is a positive integer, the Bessel Function Ja(x) of the first kind of order a is defined 
\2n+a 

b y t h e s e r i e s J ^ ^ I - ^ L ^ ) 

(i) -p (x-»Vx)) = - x - % + , ( x ) ; and (ii) γ - ( χ % ( χ ) ) = χμ)μ_ι(χ)· 

n ^ n ! ( n + a ) ! U , 

The Bessel Functions of the first kind have the following properties: 

| - ( χ - % ( χ ) ) = - χ - % + 1 ( χ ) ; and (ii) ^-, 

The Bessel Function Ya(x) of the second kind of order a is defined 

by the integral Ya(x) = Ja(x)f - . 
x(J«(x)) 

2 / 2 2\ It is well-known that the general solution of Bessel's equation, x y"+xy'+(x - a Jy = 0, 

is given by ya(x) = Q Ja(x)+C2Ya(x). 
The Mathematica function for the Bessel Function of the first kind of order alpha as a function of x is given by 
the command Bes se lJ [alpha, x] ; the Mathematica function for the Bessel Function of the second kind of 
order alpha as a function of x is given by Besse lY [alpha, x ] . 
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D Example: 

Graph J Q M , J2W» J4OO» Jo(x) ^ d Js(x) o n l n e interval [0,15]. 
This is accomplished below by creating a table of the 5 Bessel functions in t a b l e b as well as a table of 
GrayLevel assignments in t a b l é e . 

o If using Version 2.0, use E v a l u a t e instead of R e l e a s e . 

BesselExample 
in[7/:= 

C l e a r [ t a b l e b , t a b l é e ] 
t a b l e c = T a b l e [ G r a y L e v e l [ i / 1 0 ] . { i , 0 , 5 } ] 
t a b l e b = T a b l e [ B e s s e l J [ a l p b a , x ] . { a l p b a , 0 , 8 , 2 } ] 

Outf7j= 
{BesselJ[0, x], BesselJ[2, x], 

BesselJ[4, x], BesselJ[6, x], 

BesselJ[8, x]} 

in[8j:= 

K> 

Don't forget to include the Re lease 
when graphing tables of functions 

t a b l é e 
is the table consisting of 
the elements 
{GrayeLevel[0]m 
G r a y L e v e l [ i / 1 0 1 . 

GrayLevel[5/10}. 

IB0WtM0WWWWMmMMMMWMMMMMI0lfMMM 

P l o t [ R e l e a s e [ t a b l e b ] . { x , 0 , 1 5 } , \gropks the tabk ofBessel functions of'the 
P l o t S t y l e - > t a b l é e ] 

\ first kind, J0(x), J2(x), J4W, hW> and J8(x), 

on the interval [0,15]. 
Notice ttvat ttt& graph of 
B e s s e l [ j , x ] isshaded 
G r a y L e v e l [ j / 1 0 ] . 

» A V A M A M i 

^^^^Î^f) 

OutfSj= 
-Graphics-

E ^ WN W W W. V . W Ŵ ^ U S W WV L W W. V W WV W ^ HE 

AdWWWWWWWmMMMMMMMMMMMMMMMW 

In solving numerous problems in applied mathematics, polar or cylindrical coordinate systems are often convenient 
to use. For example, the wave equation in a circuhir membrane lends itself quite naturally to the use of polar 
coordinates. The two-dimensional wave equation in a circular region which is radiiilly symmetric ( no dependence on 
Θ ) with boundary and initial conditions is easily expressed in polar coordinates as follows : 
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(i) y - c 2 (d
2u 1 du 

■ + —: 0 < r < R , 0<t ; 
l,3r2 ' r 3r 

(ii) u ( R , t ) = 0 0<t ; 

(iii) | u ( 0 , t ) | bounded, 0<t ; 

(iv) u ( r , 0 ) = f(r) 0 < r < R ; and 
3u , 

(v) — (r,0) = g(r) 0 < r < R . 
dt 

Using the method of separation of variables with u(r,t) = F(r) W(t) leads to the two ordinary differential equations : 

32G o Λ 32W 
—7Γ + λ ϋ = 0 where A = ck; and —ττ 
dt2 3r2 

ldW 
r dr 

32W ldW 2 , constant of separation. —«- + + k W = 0is Bessel's equation of order zero and, 

3rz r dr 
thus, has solutions of the form W(r) = CiJ0(k r) + C2Yo(k r) where J0(k r) and Y0(k r) 

are Bessel functions of order zero of the first and second kind, respectively: 
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In order to determine the constants Q and C2 in 
necessary: 

W(r), the following graphs are 

BesselExample 

plotblO=Plot[Bes3elJ[0, r],{r,0. 20 >i J i i 

Outf2j= 
-Graphics-

tef3j:= 
plo tb20=Plo t [Be3se lY[0 , r ] , { r , 0 , 

P lo tSty le ->GrayLeve l [ . 2 ] ] 

BesselJ : : branch: 
BesselY[0, 0. ] 

has a branch point a t 0. . 

BesselJ: :branch: 
BesselY[0. , 0. ] 

has a branch point a t 0. . 

Plot::notnum: 
BesselY[0, r] 

does not evaluate to a real 
number a t r=0.. 

0.51 /\ 

-J 

graphs the Bessel fonction of the 

| first kind, JQ(X), 

on tfte interval [0f2O]. 
The graph is named 
plotb iO. 

graphs tfte Bessel function of the second 

kind, YQW , in gray. Notice that 

since Yn(0) is not defined, Mathernatica 
produces cppropriate error messages. 
Nevertheless, the displayed graph is 
correct. 
Trie graph is named p l o t b 2 0 . 

lwyx'fti'iti,'i/uirt>iUM>inw»ntiWiUHl· 

0.25 

- 0 . 2 5 
- 0 . 5 

-0.75Ü 
- 1 

Outf3j= 
-Graphics-

1 \5 / l 6 v . / 15 V'20 

]J 
aWWMWWMI .J_ f 

ιΊΊΊΊΪιϊιϊιΊΊΊΐΙ ^ L· W 
K> 
Q 

Notice the error messages which accompany the second plot. These, of course, are due to the fact that the Bessel 
function of the second kind is unbounded near r = 0. 
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These two functions can be plotted simultaneously (Note that the interval for the variable r is chosen to avoid r = 0. 
The darker function is the Bessel function of the first kind. ) : 

BesselExample 

0 
Sliov[ p l o t b ! 0 , p l o t b 2 0 ] 

/%9XiMh 

0utf4j= 
-Graphics-

=J31l5r 
K> 

era 

Shov[plotbl0,plotb20] 
shows botkgrcpL· sbrmkaneously. 

By using the graphs above, the coefficient of the Bessel function of the second kind must be zero in 

the equation W(r) = CiJ0(k r) + C2Yo(k r). Otherwise; the solution is unbounded at the 

origin which contradicts the boundary condition. Applying the 

other boundary condition, u(R,t) = 0, leads to the equation J0(kR) = 0. Hence, 

km = where a m = m zero of Jo(kr) and m = 1, 2, 3, 
R 

These zeros of the 
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Bessel function can be located using Mathematica as opposed to simply looking them up in a table. Hopefully, some 
of the artificial nature of these values is alleviated by using this approach to the problem. In order to find the zeros 
of the Bessel function of the first kind, the Mathematica command 
FindRoot [ e q u a t i o n , { v a r i a b l e , f i r s t g u e s s } ] is used. F i n d R o o t depends on an initial 
guess to the root of the equation. This initial guess is obtained from the graph p lo tb lO . 

BesselEHample 

Shov[plotblO] 

OutfôJ= 
-Graphics-

W 

I » ' i 
dLJ—^M1- v r I ΙΤΓΓΓΓΓΙΤΙΊ r 1 53 

Shov[plotblO] 
redisplays the graph of the Bessel function 
of tfte first kind of order zero on the 
interval [0,20]. 

Using the plot shown above, the Bessel function of the first kind appears to have its first four roots near r = 2.5, 
5.5,8.5, and 11.5. Therefore, the following command numerically determines approximations of the first four 
roots by using the command FindRoot with the initial guesses s t a r t . Note that start obtains values on the 
interval 2.5 to 11.5 using a stepsize of 3 units. Hence, the four initial guesses are the same as thos given earlier, 
2.5,5.5, 8.5, and 11.5. (Notice the double equals sign which must always be used with an equation) : 

BesselE»ample IH1 

table=Table[FindRoot[Be3selJ[0,r]==0,{r,start)] 
{start,2.5,11.5,3)1 
TableForm[table] 

Outf!2j//TaMeForm= 
r -> 2.40482 

r -> 5.52008 

r -> 8.65373 

r -> 11.7915 

K> 

numerically opprorämates the first four zeros 
oftfte Bessel function of tfve first kind of order zero. 
Ttte resuk is expressed in TableFonm 

a 
These values will be used to determine the coefficients in the solution. 
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32G 
The solution to —~- + 7?G = 0 is clearly Gm(t) = Amcos(Xmt) + BmSinCXmt). 

3 r 
Thus, the functions um(r , t ) = Wm(t)Gm(t) = (AmcosXmt + Bm s ^ m t ) Jo(kmr) ^ solutions 

of (i) satisfying the boundary conditions (ii)-(iii). To obtain a solution which also satisfies the initial conditions 

oo oo 

(iv)-(v), the series u(r,t)= Xu m (r , t )= £ ( A m c c ^ m t + ^ sinÀmt) Jo(kmr) 
m=l m=l 

must be considered. In applying the initial condition (iv), the equation 

oo 

u(r,0) = Σ Am Jo(kmr) =f(r) is obtained Using the orthogonality properties of the Bessel 
m=l 

functions; the coefficients Am and Bm 

oo 

in u(r,t)= X(AmcosXmt + Bj^ 8ΐηλΙγ1ί) jQ(kmr) are found with the integral formula 
m=l 

2 fR (am λ 
Am = o 0 L rf(r)Joi r dr. The coefficientBm is found with a similar formula: 

m RV(a m ) Jo Λ R ; m 

2 fR (am λ 
Bm= ~ r f ( r )J 0 r dr. In most cases, these two formulas are difficult 

c a m R V ( o c m ) J0 U J 

to evaluate For a limited number of functions, integration by parts using —[r Jv(r) | = r Jv(r) 

is possible. However, even when possible, this calculation is quite tedious and lengthy. Fortunately, Mathematica 
can ease the difficulty of the computation of the coefficients through the use of Nlntegrate. 

For example, consider equations (i)-(v) with R = 1, c = 2, initial position function 
2 

f(r) = l - r and initial velocity function g(r) = 0. Clearly, Bm = 0 for all m and 

2 fl 2 < ^ 
Am =—- J r ( l - r )Jo(amrJdr. This particular integral can be evaluated exactly with 

h (am) 
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integration by parts, but the determination of the approximate values of the coefficients will be demonstrated. The 
following examples illustrate how the zeros of the Bessel function are extracted from the table. Similar commands 
will be included in the calculations which follow: 

BesselE»ample 

P r i n t [ t a b l e [ [ i , 1 , 2 J]] 
Pr int [ table [ [4 ,1 ,211] 

2.40482 
11.7915 ]J 

KS 

. . . I 1ΦΙ ' IlÉÉlttlÉlliM 
Ka 

Print[table[[1,1,2]]] 
Printf table[[4,1,21]] 
prints the value of t a b l e t [ 1 , 1 , 2 ] ] 
andtkenprintstke value of t a b l e [ [ 4 , i , 2 ] ] 

This means that the value of 
04 is cpproximately Z4048Z and the value of 
«,4 is cpproTÙmatefy 11.7915. 

To approximate the first coefficient with N i n t e g r a t e , the following command is entered : 

BesselExample 

inf2U:» 
a[i]=(2/(BesselJ[i,table[[i,i,2]]])~2)* 

NIntegrate[r (i-r~2) 
BesselJ[0,table[[l,l,2]] r],{r,0,l}] 

1 .10802 

jra 
computes m cpproxvmation of I 

j j r(l-r2)J0(cxir)dr 
Ji2<*l> 

4 andnames the result all]. 

\Be particularly careful that bracket* and parentheses are 
" correctly. 
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The other coefficients are easily determined as well : 

BesselEHample 
inf22j:= 

a [ 2 ] = ( 2 / ( B e 3 3 e l J [ i , t a b l e [ [ 2 , l , 2 ] ] ] ) A 2 ) * 
NIntegrate[ r ( l - r A 2 ) 
B e 3 s e l J [ 0 , t a b l e [ [ 2 , l , 2 ] ] r ] , { r , 0 , l } ] 

Out[22j= 
-0.139778 

in[23j:= 
a[31=(2/(Be33elJ[i,table[[3,i,2]]])A2)* 

HIntegrate[ r (l-rA2) 
Be3selJ[0,table[[3,l,2]] r],{r,0,i>] 

Outf23j= 
0.0454765 

inf24j:= 
a[4]=(2/(Be33elJ[i,table[[4,l,2]]])~2)* 

NIntegrate[ r (l-rA2) 
Bes3elJ[0,table[[4,l,2]] r],{r,0,l}J 

Outf24j= 
-0.0209908 

Jl2(oc2) Jo 

•4 and names the result a [ 2 1 . 

computes an epproximestion of 

computes an epproximation of 

JjJ r ( l - r 2 ) J 0 ( a 2 r ) d r 

JjJ r ( l - r 2 ) J 0 ( a 3 r ) d r 
Jj!2(a3) Jo 

and names the result a [ 3 ] . 

computes an approximation of 

2 
JjJ r ( l - r 2 ) J 0 ( a 4 r ) d r 

ciawiîwaTiôsîfteresuif a [ 4 ] 

p * ™ ™ ™ « " " " ' ^ ^^ 

JJEy 
a 
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Hence, the first four terms of the solution are found with the function r [ r , t , j ] defined below. This function is 
then used to compute the approximate solution by adding the first terms of the series. (Note that in this case only the 
first four coefficients have been calculated. Therefore, if more terms are desired, similar steps may be followed to 
compute more zeros of B e s s e U [ 0 , x] and more series coefficients.) 

BesselEnample 
in[25j:= 

u j [ r _ , t _ , : j _ ] : = 
a [ j ] * B e s s e l J [ 0 , t a b l e [ [ j , 1 , 2] ] r ] * 
Cos[2 t a b l e [ [ j , l , 2 ] ] t ] 

M26J:= 
u j [ r , t , 4 ] 

0utf26j= 
-0.0209908 BesselJ[0, 11.7915 r] 

Cos[23.5831 t ] 

inl?7j:= 
Clear[uapprox] 
u a p p r o i [ r _ , t _ ] = S u m [ u j [ r , t , j j , { j , i , 4 } ] 

Outf2?J= 
1.10802 BesselJ[0, 2.40482 r] 

Cos[4.80965 t] -

0.139778 BesselJ[0, 5.52008 r] 

Cos[ 11.0402 t] + 

0.0454765 BesselJ[0, 8.65373 r] 

Cos[17.3075 t] -

0.0209908 BesselJ[0. 11.7915 r] 

Cos[23.5831 t ] 

K> 

. - ^ W W A V . V W A W A W J i A W . W J A I W W W A W . M J g 7 .. 

o 
K> 
a 

u j [ r , t , j ] 
(Jorj= 1,2,3f 4) corresponds to 
<m cpproximation of 

a[j]J0fttjr)Cosf2(XjtY 

uapprox[r, t ] is Xuj[r,t,jJ. 
j=i 

TJVJS, uappr ox 
is cc/i cpproximatzoYi of the 
actual solution w(r/) 

Solutions of this form are hard to visualize. In an attempt to bring true meaning to the "circular drumhead" problem, 
Mathematica can be used to actually see the drumhead either from a side view in two-dimensions or a full view in 
three. 
Plotting in two-dimensions is simple. The question which needs to be answered is : " What shape does the 
drumhead assume at a particular time t ?" This can be answered using several different methods. The easiest 
approach involves plotting the solution individually for various values of t. However, this involves much more time 
than a second method which takes advantage of a Do loop. Once plotted, these graphs can be animated to see the 
actual movement of the drumhead. The following command plots the solution for values of t between 0 and 1 using 
increments of 0.1. ( Notice that r assumes values from r = -1 to r = 1. This seems to contradict the idea that r 
represents a nonnegative distance from the origin. However, u(r,t) is symmetric about the y-axis. ) 
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Several of these graphs are shown below. These graphs can then be animated. 

BesselEHample 

lnf30j:= 
D o [ P l o t [ u a p p r o x [ r , t ] , { r , - l , l } , 

P l o t R a n g e - > { - i . 5 , i } ] . { t , 0 . i , . i } ] 

IT 

-1 -0.5 
-0.5 

-1 
-1.5 

lO@@lQDI(M)(SI0 □ I I I 

I 
K> 

The resisting grqphs can be animated 

Be sure that square brackets and 
\parentkeses are nested correctif. 

BesselE»ample 

lnf30j:= 
D o [ P l o t [ u a p p r o x [ r , t ] . { r , - i , l } , 

P l o t R a n g e - > { - i . 5 , l } ] , { t , 0 , J L . l } ] 

1 

0.5 

K> 

-0.5| 

- l | 

-1.5* m 
BesselEHample 

tnf30j:= 
D o [ P l o t [ u a p p r o x [ r , t ] φ { r , - i , i } , 

P l o t R a n g e - > { - i . 5 , i } ] , { t , 0 . 1 . . i } ] 

1 

0.5 

-0.5 
-0.5 

-1 

-1.5 

0.5 

K> 
a 
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Several of the three-dimensional plots are shown below. These plots were obtained using the 
solidrev. The command so l idrev is discussed in the Appendix. 

Thisis'thegrcphof uapprox[r*0] Thisisthegrcphof u a p p r o x [ r , . 2 ] 
on the imiz circle :Sl - ^ ^ ^ on the imit circter/T^*^—^^^ 

Chapter 6 Ordinary and Partial Differential Equations 

Thisisthegrcphof uapprox[r , . 4J 
on the unit ^ ^ ' / j C ^ S f e * ^ 

This is thegrcpkof uapprox[r ,1 ] 
on the unit circle: sfiZzzzy*^ 

413 



Chapter 6 Ordinary and Partial Differential Equations 

Θ6.11 Numerical Solutions of Differential Equations 

Version 2.0 of Mathematica contains the command NDSolve which numerically solves ordinary differential 
equations with initial conditions. This command is particularly useful when working with nonlinear equations which 
DSolve is unable to solve. As was the case with DSolve, NDSolve can be used with single equations as 
well as systems. (Note that enough initial conditions must accompimy the differential equation to completely solve the 
problem in order for NDSolve to be successful.) 

• Application: The Damped Pendulum Equation 

In order to illustrate NDSolve, consider the nonlinear pendulum equation , x" + .25 x' + sin(x) = 0 with initial 
conditions x(0) =1, x'(0) = 0. The differential equation is defined below as equa t ion . (Note the square 
brackets which must be used with the dependent variable x [ t ] in the definition.) 
The syntax for NDSolve (to solve a second order initial value problem with dependent variable x [ t ] as is the 
case here) is as follows : 
N D S o l v e [ { e q n , x [ t 0 ] = = c 0 , x ' [ t 0 ] = = c l } , x [ t ] , { t , t 0 , t l } ] . 
This finds a numerical solution to eqn which is valid over the interval {to, t l } and satisfies the given initial 
conditions. Since the results are numerical, they are given in terms of the list 
{x[t] - > I n t e r p o l a t i n g F u n c t i o n [ { t O , t l } , <>] { [ t ] } }. The pendulum equation given earlier is 
solved and plotted below. The list which results from NDSolve is called s o i l while the graph is assigned the 
name p l o t l . (Note the manner in which the P l o t command involving the interpolating function is stated.) 

NDSolue 

e q u a t i o n = x ' ' [ t ] + . 2 5 x ' [ t ] + S i n [ x [ t ] ] = = 0 
S i n [ x [ t ] ] + 0.25 x ' [ t ] + x ' ' [ t ] == 0 
s o l i = N D S o l v e [ { e q u a t i o n , x [ 0 ] = = i , χ ' [ 0 ] = = 0 } , x [ t ] 

{ t , 0 , 1 5 } ] 

{{x[t] -> InterpolatingFunction[{0. , 15.} , <>][t]}} 
p l o t l = P l o t [ x [ t ] / . s o l i , { t , 0 , 1 5 } ] 

-Graphics-

τ ΐ3 
]J 

ν.·.·.ν.ν.·.ν.ν^ν.νΛν. TTIXP lioo% ▼ \\Q\ 

computes a numerical 
approximation of the 
solution to the 
differential equation 
x"+. 25x+Sin (x)= 0 
satisfying x(0)=· I and 
x'(0>0. 
The result is ey^pressed 
as a Ust consisting of 
an interpolating function 

3J m 
aa 

Next, consider the same equation defined in equa t ion with the initial conditions x(0) = 3, x'(0) = 0. This 
initial value problem is solved and plotted in the same manner as the previous example. These results are named 
s o l 6 and p l o t 6, respectively. 
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ID! NDSolue 
iMMMMMMW« 

s o l 6 = H D S o l v e [ { e q u a t i o n , x [ 0 ] = = 3 , x " [ 0 ] = = 0 } , x [ t ] 
{ t , 0 , 1 5 } ] 

{{x[ t ] -> I n t e r p o l a t i n g F u n c t i o n [ {0. , 1 5 . } . 
p l o t 6 = P l o t [ x [ t ] / . s o l 6 , { t , ü \ 1 5 } ] 

< > ] [ t ] > ) 

3 

2 

1 

1 

2 4 1 L 6 A 

./ \ ^ 
ί i o \Ζ^Λ{ 

In the same manner 
as above, 
NDSolve 
L· used to compute 
an opproxlmation 
of the differential 
equation with the 
conditions that 
x(py=3and%X0y=0. 
The domain of the 
interpolating function 
is [0,151 

-Graphics - 3J K> 

Similarly, the initial value problem with x(0) = 4 and x'(0) = 0 is solved and plotted below in s o l7 and p lot7 . 
Note the effect that the nonlinear term in equa t ion has on the behavior of the solution. The solutions to this 
equation differ considerably from solutions to the second-order linear differential equations with constant 
coefficients discussed earlier in Mathematica By Example. 

NDSolue 

s o l 7 = H D S o l v e [ { e q u a t i o n , x [ 0 ] = = 4 , χ ' [ 0 ] = = 0 } , x [ t ] 
{ t , 0 , 1 5 } ] 

{{x[t ] -> I n t e r p o l a t i n g F u n c t i o n [ { 0 . , 1 5 . } , < > ] [ t ] } } 
p l o t 7 = P l o t [ x [ t ] / . s o l 7 , { t , 0 , 1 5 } ] 

7 . 5 
7 

6 . 5 
6 

5 . 5 
5 

4 . 5 

2 4 

-Graph i c s -

8 10 12 14 

]J 
! ■ ! ■ i ' ' ' i 
ïiïiïnïmWWWnïi-nïifflïfiïiWÏ 

1100% ▼ItOÏ |p|a 
m 

Solutions to the pendulum equation for varying initial conditions are computed with NDSolve. The plots for eight 
other solutions are given in p l o t 5 , p l o t 6, ..., p l o t 13, and p l o t 14. These solutions are viewed 
simultaneously with Show. First, the graphs are shown in a single graphics cell in groups of four in multone, 
multtwo, m u l t t h r e e , and mul t four . In the final command, however, all fourteen graphs are shown 
simultaneously. 
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ÏDI pendulumgraph 

multone=Shov[ploti,plot2,plot3,plot4, 
DisplayFunction->Identity]; 

multtwo=Show[plot5,plot6,plot7,plot8, 
DisplayFunction->Identity]; 

multthree=Show[plot9,plotiO,plotii,ploti2, 
DisplayFunction->Identity]; 

multfour=Show[ploti,plot2,ploti3,ploti4, 
plotiB,DisplayFunction->Identity]; 

Show[Graphic sÀrray[{{multone,mul11wo}, 
|{multthree,multfour}}]] 

-Graphi c sÀr r a y-

Shov[multone,multtvo,multthree,multfour„ 
D i splayFunc t i on-> $D i splayFunc t i on] 

-Graphics-

Infact, continuing in the 
same manner as above, 
approximations of solutions 
corresponding to a variety of 
initial conditions can be 
computed In this case, the 
resulting graphs were named 
p l o t i , plot2 
plotl3,<zft£ p lo t l4 . 
Several of the graphs are 
shown simultaneously in 
a graphics array. 

]J11 
Finalfy, aB. fourteen 
approximations are 

I sttown 

3J 

i m · i · i · i 
B-..-.WAv.v.v.v,vww^v-w.w.v.w.ŵ .w... 

2iioo%^llOI t 5151 
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®6.12 Numerical Solutions of Systems of Differential Equations 

• Application: Van der Pol's Equation 

As indicated earlier NDSolve can be used to solve systems of ordinary differential equations. Of course, there is 
a slight difference in the syntax from the previous case. For a first-order system of two equations with dependent 
variables x [t ] and y [t ] , the correct command is as follows: 
N D S o l v e [ { e q l , e q 2 , x [ t 0 ] = = c 0 , y [ t O ] = = c l } , { x [ t ] , y [ t ] } , { t , t O , t l } ] . Again, the 
results are given as an interpolating function and are only valid over the interval { to , t l } . Solving a system of 
differential equations with NDSolve is illustrated below with Van der Pol's equation, x" + e ( χΛ2 -1) χ' + x = 0, 
x(0) = cO, x'(0) = cl. This second-order equation can be transformed into a system of first-order equations with the 
substitution, x'= y. Hence, the following first-order system is obtained : x' = y , y' = e (1 - χΛ2) y - x, x(0) = cO, 
y(0) = cl. 

In the steps which follow, the parameter "e" is assumed to equal 1 (e=l), and the equations are named eq l and 
eq2,respectively. (Note the square brackets which must accompany the dependent variables, x [ t ] andy[t].) 
Van der Pol's equation with initial conditions x(0) = .25, y(0) = 0 is solved in s o l below. In this case, the solution 
is made up of the ordered pair {x [t ] , y [ t ] }. Hence, ParametricPlot is used to graph the numerical 
solutions in p l o t o n e . 
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Next, the same equation is solved using the initial conditions x(0) 
same manner as above and is plotted in p lo t two . 

: o, y(0) = -.2. This solution is determined in the 

NDSolue 

e = l ; 
e q i = x ' [ 
e q 2 = y ' [ 

sol=NDS 

plotone 

t ] = = y [ t ] ; 
t ] = = e ( i - x [ t ] A 2 ) y [ t ] - x [ t ] ; 
o l v e [ { e q i . e q 2 , x [ 0 ] = = . 2 5 . y [ 0 ] = = 0 } 
t ] , y [ t ] K { t . 0 . 1 0 } ] 
= P a r a m e t r i c P l o t [ E v a l u a t e [ 

{ x [ t ] , y [ t i ) / . s o i ] , { t , 0 , 1 0 } ] 

-2 -1 
-1 ^^L^^*1 

-Graphics-

K> 

Computes a numerical 
approximation of the solution 
of the system of differential 
equations 

x'=y, y ' = ( l - x 2 ) y - x 
x(0) = 25, y(0) = 0 ' 

0 < t < 10. 
The resulting solution is gropked 
using P a r a m e t r i c P l o t 

I andnamed p l o t o n e . 

-Graph ics -
s o l = N D S o l v e [ { e q i . e q 2 , x [ 0 ] = = 0 . y [ 0 ] = = - . 2 } 

i x [ t ] , y [ t ] } , { t , 0 , 1 3 } ] ; 
p l o t t v o = P a r a m e t r i c P l o t [ E v a l u a t e [ 

{ x [ t ] , y [ t ] } / . s o l ] , { t . 0 . 1 3 } ] 

E J U J I | I | I | 
3100% ▼IICI 

In tf& enact same manner as 
above, NDSolve 
is used to compute a numerical 
approximation of the solution 
of the system of differential 
equations 

x'=y, y '=f i -x ) y - x 
x(0) = 0, y(0) = -2 ' 

|0 < t < 13. 
The resulting solution is gropked 
usbig P a r a m e t r i c P l o t 
andnamed p l o t t v o 
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p l o t t h r e e and p l o t f our are given below. These correspond to solutions to Van der Pol's equation with 
initial conditions x(0) = -.15, y(0) = 0 and x(0) = 0, y(0) = .1, respectively. 

sol=NDSolve[{eqi,eq2,x[0]==-.15,y[0]==0}, 
{x[t],y[t]},{t,0,13}]; 

plotthree=ParametricPlot[Evaluate[ 
{x[tl.y[t]> /. sol],{t,0,13}] 

In the same manner as above, two 
outer epproximations are computed 
and graphed. 

s o l = N D S o l v e [ { e q l , e q 2 , x [ 0 ] = = 0 , y [ 0 ] = = . i ) , 
{ x [ t ] , y [ t ] } , { t , 0 , i 3 } ] ; 

p lo t four=Parametr icPlot [Evaluate [ 
{ x [ t ] , y [ t ] > / . s o l ] , { t , 0 . 1 3 } ] 

-Graphics-
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The four approximate solutions to Van der Pol's equation computed to this point with NDSolve are displayed in a 
single cell below using GraphicsArray within the Show command. This is named setone. The graphs 
are also shown simultaneously in p a r t o n e by using the Show command without GraphicsArray. 

se tone=Shov[ Graphic sArray[ { {plot one, plot two } 
{plotthree,plotfour}}]] 

-GraphicsArray-
par tone=Shov[ plot one, plot two, 

plotthree,plotfour] 

-Graphics-

(■jJ-jirMrM-M.JU 

I We can use tfte command 
Graphi c sAr ray 
to sftow ail four graphics in 
a single grapfäcs ceil 

l?<V.%Xi 

[ We can use the command Show 
Ï to show aU four graphics cells 
I simultaneously. 

ΜΜΣΣΣΙΣΣΣΙ3\οο% ▼ΙΚΜ 
fiiïiïiïiïmïiïiïm^^ I I ̂  L 

&Ï 

çm 
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By choosing other initial conditions, several solutions to Van der Pol's equation are computed in the same manner 
as before. The graphs of these approximate solutions are named c y c l e l , c y c l e 2 , c y c l e 3 , and cyc l e4 . 
They are first shown below in the single graphics cell, called s e t two, and are then displayed simultaneously in 
parttwo. In the final command, the eight approximate solutions to Van der Pol's equation which have been 
computed with NDSolve are displayed simultaneously in part three . 

functiongraphs 

3ettvo=Shov[GraphicsÀrray[ { {cyclel, cycle2} 
{cycle3,cycle4)>]] 

-Graphi c sAr r a y -
pa r t t v o = S l i o v [ c y c l e l , c y c l e 2 , 

c y c l e 3 , c y c l e 4 ] 

-Graph ic s -
par t t h r e e = S h o v [ par t o n e , p a r t two] 

In the same manner as above 
we use NDSolve 
to compute numerical approximations 
of solutions to Van der Pol's equation 
We name the grapL· c y c l e l , 
c y c l e 2 , c y c l e 3 * and 
c y c l e 4 . 

KxttKr+x-xx-XjXJ+T.·? 

iJJI 
| Finally, we stow all eight 
jjj graphs simultaneously. 
&··Λ·:Λ· · :Λ· ·Α·Α^ 

-Graphics - ]J 
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Chapter 7 
Introduction to Mathematica Packages 

Many useful commands and functions which are not automatically performed by Mathematica can be found in 
Packages. The following window is obtained by opening the Packages folder as shown below. There are 
thirteen folders located in Packages in Version 1.2 (fourteen folders are located in Version 2.0 Packages); 
each folder contains several packages. The contents of each folder can be seen by double-clicking on the appropriate 
icon. 

é File Edit Diem Special 

Packages 
15 items 52 /796K in disk 25,941K available 

sysinit.m init.m 

RS 
/=±-

StartUp DiscreteMath 

Algebra Calculus Data Analysis Linear Algebra 

^ 

Examples Geometry Graphics Utilities 

Miscellaneous Numer icalMath 

SE 
NumberTheory 

Mathematica Math A MathB 

(ZZD 
HardDisk 

25,941K available 

MathC Samples 

3 
Mathematica Prefs Mathematica Help 

Chapters 7,8, and 9 contain discussions of some Mathematica packages. Chapter 7 discusses elementary 
packages from the A l g e b r a , L i n e a r Algebra , C a l c u l u s , and D i s c r e t e Math folders; Chapter 
8 discusses some of the packages contained in the Graphics folder; and Chapter 9 discusses some of the more 
specialized packages contained in the Numerical Math and Data A n a l y s i s folders. 
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A Note Regarding Packages: 

When directly opening a package, notice that the functions defined within the package are listed along with their 
definitions. Consequently, users can usually determine the purpose of a package by reading the beginning statements 
and experimenting. 

17.1 Algebra 

Algebra 
4 items 55.239K in disk 23.498K available 

I3pi IS 
CountRoots.m GosperSum.m 

ISP 18 
Re Im .m Trigonometry .m 

m 

el 
Ka 

3a 

The package 
T r i g o n o m e t r y , m 
has been used throughout 
Mathematica bv Example. 
Hence, here we discuss the 
\packages Reim, m 
and GosperSum. m 
Note that the package 
GosperSum.m 
is NOT included in Version ZO. 
Instead, it is replaced by the 
(considerably) expanded 
package SymbolicSum. m 

i GosperSum.m 

o The GosperSum. m package is not included with Version 2.0; instead it is superseded by the package 
Symbol icSum.m. 

n 
The symbolic summation of some series of the form £ a k , which are useful in many areas of mathematics can be 

k=l 

determined with the use of the GosperSum .m package 
These calculations are not possible without this package. The built-in Mathematica command Sum can be used 
for finite sums as illustrated in the first example below. However, this command cannot find a closed form of the 
summation in the second example. Therefore, the GosperSum.m package must be loaded. 

Although Mathematica is able to compute 
5 
^ i with the command 
i=l 

S u m [ ± " 3 , { i . l , 5 } ] » 

Mathematica L· unable to compute a closed 

\ form for ^ i , n any integer. 
i=l 

= n GosperSumEHample 1 

V//-
S u m [ i A 3 , { i , l , 5 } ] 

\Outf!j= 
225 

\fnf2j:= 
S u m [ i ~ 2 , { i , i , n > ] 

\uutl2j= 
2 

Sum[i , { i , 1 , n } ] 

tjliUlsmmiim6Ŝ̂  

^mm\ 

}} 
}\ 
}} 
η 

■E 

FJ 
L-J 

@ 

la 
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D Example: 

The command which can be used to determine a closed form expression of some sums of the form 

kmax 
£ a [ k ] is GosperSum[ a[k],{k,kmin ,kmax }]. After the packageGosperSum .m 

k=kmin 

is loaded, a table is constructed below which consists of the summation formula for each of the series 

]£k* for i = 2,4,6, and 8. Since Print is used in the Table command the results 
k=l 

appear in a print cell and can be accessed for later use. Although quite useful in many cases, GosperSum 
cannot compute the closed form summation for many series as illustrated in the second example. 

GosperSumEHample 

«GosperSum. m 

lnf!7j:= 
T a b l e [ P r i n t [ G o s p e r S u m [ k A i , { k , l , n } ] ] , { i . 2 , 8 , 2 } l 

r ^ 

n ( l + 3 n + 2 n ) 

6 
2 3 4 

n ( -1 + 10 n + 15 n + 6 n ) 

30 
2 4 

closed form for ^ i 2 , n any integer. 
i=l 

closed form for ]^i , n any integer. 
i=l 

1 

5 6 
n (1 - 7 n + 21 n + 2 1 n + 6 n ) 

42 
2 4 

closed form for £ i 6 , n any integer. 
i=l 

6 7 8 
n ( -3 + 20 n - 42 n + 60 n + 45 n + 10 n ) 

90 
Outf!7j= 

{Null, Null, Null, Null} 

inf2U:= 
GosperSum[Sin[k] , {k , l ,n} ] 

Outf2!j= 
Sum[Sin[k], {k, 1, n , 1}] 

closedformfor ]Ti , n any integer. 
i=l 

J l 
Even Go s p e r Sum n 
cannotfind a closed form for ]Tsin(k), n any integer. 

k=i 

WÊÊtÈÊÊÊIÎÊÊÊia^mmmlÊm^UuumiiiLiiiUiàiiU^iii^^ 
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• SymbolicSum.m 

o In Version 2.0 the package S y m b o l i c S u m . m replaces the package GosperSum.m from previous 
versions of Mathematica. In general, Mathematical standard built-in commands cannot compute symbolic sums 

of the form 2*if(k) when nj and n 2 are not specific numbers. 
k=ni 

The command Symbol icSum[ f [ k ] , { k , n l , n 2 } ] attempts to write the symbolic sum 
n2 
] £ f [k] in a closed form when f [k] is a rational function. 

k=nl 
O Example: 

k k i 
Find closed forms for (i) Σ ( η + 2 ) ( η - 3 ) and (ii) ] £ . For (ii), evaluate when k = 100. 

n=l n=ln + 3 

Uersion2.QSymbolicSum 

«SymbolicSum. m 

Sy»l)olicSum[(n+2)(n-3),{n.l,k}] 

computes a closedformfor 

m 
outftej* 

k ( - 1 9 + k ) 
3 

X(n + 2)(n-3). 
n=l 

tnf2tj:= 
3 u m = S y m l > o l i c S u m [ 1 / ( n + 3 ) , { n , l , k } 1 

Outf2!j= 
- 1 1 + 6 E u l e r Gamma _ _ - _Λ λ . . - + PolyGamma[0, 4 + k ] 

b 

inf22j:= 
sum / . k - > 1 0 0 

Outf22j= 
1513497672673382743451892618928750372177\ 

18429 / 
2901204254058795599770580857416215575\ 
6055616 - EulerGamma + 

-11 + 6 EulerGamma 

In Version Z0, the package 
S y m b o l i c S u m . m 
replaces the package 
GosperSum.m 
and the command 
G o s p e r S u m 
is replaced by the command 
S y m b o l i c S u m . 

computes a closedformfor 
k 1 

n + 3 

100 
computes Σ ~ — 

a=l n + 3 

by replacing k by 100 in 
sum. 
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100 χ 

Since ^ is not a symbolic sum, the commands Sum and NSum can be used to 
n=l n + 3 

100 j 
calculate Y : 

Inf23j:= 
N[EulerGa: 

Outf23j= 
0.577216 

Inf24j:= 
sum / . k - > 1 0 0 / / N 

Outf24j= 
3.38346 

inf25j:= 
Sum[1/(n+3),{n, 1,100}] 

Outf25j= 
981610226095936883493952795069110849982\ 

83133 / 
2901204254058795599770580857416215575\ 
6055616 

lnf26j:= 
N[Sum[1/(n+3)m {n,1,100}]] 

QutfZoJ* 
3.38346 

!g^!^100%H10[ 

E u l erGamma is 
Evlzr's constant with 
cpproximate value 0.577. 

s u n / . k - > 1 0 0 / / N 
computes a numerical 
cpproTÜmation of 

ψ 1 
*=l* + 3* 
Although the command 
cannot be used to compute 
symbolic sums, it computes 
the enact value of 
100 i 

Σ-. 
n=l n + 3 

-^..—««—.^Sjiy 
The same results would be obtained a=l 
with the command 
MSun[ 1 / (n+3 ) . { n , 1 . 1 0 0 } ] 

lii!ffl 
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i Reim.m 

The built-in Mathematica functions Re [ z ] and Im [ z ] compute the real and imaginary parts of the complex 
number z. However, these commands are not helpful when working with complex-valued functions as shown 
below. Since determining the real and imaginary parts of functions is important in many problems such as the 
solution of differential equations, a technique to find the quantities is necessary. 

RlgebraEHamples 

tnftl-
R e [ E x p [ z ] ] 

OutfU= 
z 

Re[E ] 

S e [ S i n [ z ] ] 

Outf2j= 
Re[Sin[z ] ] 

I m [ C o s [ z ] ] 

Outf3j= 
Im[Cos[z] ] 

y | · I · | M 

ja 

]J m 
a 

Mathematica is imable to compute symbolic 
\forifns of 

Re (e2 ), Re (Sin (z)), and Im (Cos (z)). 

The package Reim.m is loaded so that many of the identities from complex analysis can be used. Hence, 
simplification can be accomplished in the following way: 

ez = ex+iy = exeiy = ex(cosy + i siny). 
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Therefore, the real and imaginary parts are determined where x=Re [ z ] and y=lm [ z ] below. Similar 
calculations yield Re [S in [z] ] and Im [Cos [z] ] . 

fllgebraEHamples 

inf4J:= 
« K e i m , m 

R e [ E x p [ z ] ] 

Ouif5j= 
Re[z] 

E Cos[Im[z]l 

infold 
R e [ S i n [ z ] ] 

OutfôJ= 
-Im[z] Im[z] 

((E + E ) 

S i n [ R e [ z ] ] ) / 2 

tn[7j:= 
I m [ C o 3 [ z ] ] 

Outf7j= 
-Im[z] Im[z] 

- ( ( - E + E > 

S i n [ R e [ z ] ] ) / 2 

IE» 
E3 

WtBttttÊtÈ&ÊÈÊÊÈËËÉÊtËB^mmmJmÊmaiiJiiiÊÏiÊiiiiïititiiiÊÏilitiiiÊmmÊÊj 

m 
a 

Thepackage Reim, m 
contains familiar identities from complex 
analysis. 

After boding the package Reim, m 
Mathematica is able to compute 

Re(ez) = eRe(z)Cos(lm(z)), 

Re(Sin(z)) = 
(e-MW+e^W)sin(Re(z)) 

Im (Cos (z)) ■ 

other such formulas. 

(e-mt(z)_eMW)Sin(Re(z)J 

2 ' 
and 
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D Example: 

These techniques are useful in determining the solutions to differential equations with complex eigenvalues. Considei 
the second order linear equation with constant coefficients, y"+y'+y=0. Problems of this form arise when modeling 
spring problems. In this case, a spring of mass, m, and spring constant, k , is displaced in a medium with damping 
coefficient, a, where m = k = a. The solution of the equation is known to be 

y(x) = e _ A-x/2 qCos 'V3x^ + c2Sin rji-w Unfortunately, since this equation has complex 

eigenvalues, DSolve yields a solution involving complex terms. The Trigonometry . m package is useful in 
the application of DeMoivre's formula. Yet, the results obtained with the command ComplexToTrig are less 
than desirable. Hence, an alternate approach is demonstrated. 

RlgebraEHamples 
inf8l:= J 

l i 3 t = D S o l v e [ y ' ' [ x ] + y " [ x ] + y [ x ] = = 0 , y [ x ] . x ] 

Out/8j= 

UY[x] -> 

( ( - 1 - S q r t [ - 3 ] ) x ) / 2 
E C[ l ] + 

( ( - 1 + S q r t [ - 3 ] ) x ) / 2 
E C[2]}} 

ln/9f:= 
«Trigonometry, m 

fn/!4/:= 
expression=list[[l,l,2]] 

Out/t4j= 
( ( - 1 - S q r t [ - 3 ] ) x ) / 2 

E C [ l ] + 

( ( - 1 + S q r t [ - 3 ] ) x ) / 2 
E C[2] 

in/!5j:= 
ComplexToTrig[expression] 

Out/?5j= 
- x / 2 - ( S q r t [ - 3 ] x ) / 2 

E C[ l ] + 

- x / 2 + ( S q r t [ - 3 ] x ) / 2 
E C[2] 

sobes the differential equation 
y"+y'+y-0fwy· Mathematical 
expresses the solution as a list 
containing imaginary numbers. 
For convenience, the äst is named 
l i s t . 

The package Tr i g onome t r y . m 
contains the command ComplexToTrig 
which applies DeMoivre's formulas 
to expressions. 

j 
e x p r e s s i o n = l i 3 t [ [ 1 , 1 , 2 ] ] 
extracts the solution from the nested 
list. 

>*elo«3WJi>«>&el«4 

In this case, 
C o m p l e x T o T r i g [ e x p r e s s i o n ] 
does not produce the desired 
simplification. 

The real part of the solution, rexpress ion , is obtained with Re [ e x p r e s s i o n ] . Note that in the calculation 
of r e x p r e s s i o n , the variable x is considered a complex number. 
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inft6j:= 
rexpression=Re[expression] 

OutftoJ= 
(Sq r t [3 ] Im[x] - R e [ x ] ) / 2 

I computes the real part of 
n iDioieiflM|;|0|;u 

expression. 

-Im[x] - Sq r t [3 ] Re[x] 
Cos[ ] Re[C[ l ] ] + 

2 

( - ( S q r t [ 3 ] Im[x]) - R e [ x ] ) / 2 

-Im[x] + Sqr t [3 ] Re[x] 
Cos[ ] Re[C[ 2] ] 

2 

HUM 
Then, the imaginary part of e x p r e s s i o n is found with Im [ e x p r e s s i o n ] and called i e x p r e s s i o n . 

RlgebraEnamples 

iexpression=In[ expression] Icornpwtes the imaginary part of e x p r e s s i o n . I 
liiete>oieieioioipioioiowio*otoi8ioioi[i^o|etfl|yoioioiflioioioioioioioiiiflioioieioieieioieieieioioioioioioioiGioionioioioioiB 

Outf!7j= 
(Sq r t [3 ] Im[x] - R e [ x ] ) / 2 

-Im[x] - Sq r t [3 ] Re[x] 
Cos[ ] Im[C[l ] ] + 

2 

( - ( S q r t [ 3 ] Im[x]) - R e [ x ] ) / 2 

-Im[x] + Sqr t [3 ] Re[x] 
Cos[ ] Im[C[2]] + 

2 

(Sqr t f3 ] Imfx] - R e [ x ] ) / 2 
E Re [C t l ] ] 

-Im[x] - Sq r t [3 ] Re[x] 
Sin[ ] + 

2 

( - ( S q r t [ 3 ] Im[x]) - R e [ x ] ) / 2 
_E D f l r r r O I i 
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The expressions which result from the commands Re and Im can be further simplified by establishing several 
rules. This is done below with ru le . Since x is a real number, r u l e replaces lm[x] with 0 and Re [x] 
with x. Also, the constants C [1] and C [2] are real, so they should have zero imaginary parts. This is done in 
r u l e with Im[C [1 ] ] - > 0 , Im[C [2] ] ->0 , Re [C [1] ] ->C [ 1 ] , and Re [C [2] ] ->C [ 2 ] . 
Therefore, the command r e x p r e s s i o n / . r u l e applies r u l e to r e x p r e s s i o n . TÏie result is called 
s o l o n e . 

RlgebraEHamples 
inf!8j:= 

r u l e = { I m [ x ] - > 0 , K e [ x ] - > x , I m [ C [ l ] ] - > 0 , 
K e [ C [ i ] l - > C [ l ] . I m [ C [ 2 ] ] - > 0 , 
Re[C[2]]->C[2]> 

Outf!8j= 
{Im[x] -> 0, Re[x] -> x, Im[C[l]J -> 0, 

Re[C[ l ] ] -> C [ i ] # Im[C[2]] -> 0, 

Re[C[2]J -> C [2 ] } 

inf!9j:= 

15 

JQ 
s o l o n e = r e x p r e s s i o n / . r u l e VoppUes rule 

I to e x p r e s s i o n 

&£#&& 

Outf!9j> 

C [ l ] Cos[ 
-<Sqrt[3] x) 

1 

m m 

x /2 

C[2] Cos[-
Sqrt[3] x 

x /2 

35Γ 
tiÊititSt!titStiti 

m 
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Next, so lone is simplified and factored with TrigReduce [ s o l o n e ] . The resulting expression involves 
the constant, C [ 1 ] +C [ 2 ] which can be replaced with a single constant C [ 0 ] . This is done with 
%/. (C[1]+C[2])->C[0]. This gives the real part of the solution to the differential equation and is named 
solutionone. 

BlgebraEHamples 
inf20j:= 

TrigKeduce[solone] // Factor 

0utf20j= 
Sqr t [3 ] x 

<C[i] + C[2]> Cos[ ] 
2 

x /2 

in[2fj:= 
so lut±onone=% / . ( C [ i ] + C [ 2 ] ) - > C [ 0 ] 

0utf2!j= 
Sqr t [3 ] x 

C[0] Cos[ ] 
2 

x /2 

MOMMMMMOMMI 

applies basic trigonometric identities 
end factors s o l o n e . 

WOMMml 

replaces C[l]+C[2} by C[0] in the 
preceeding cakidazion 
The result is named s o l u t i o n o n e . 

*rç 

wem 
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A similar approach leads to the imaginary part of the solution. First, soltwo is obtained by applying rule to 
iexpression. Then, soltwo is simplified and factored. This yields an expression involving the constant, 
C [ 1 ] -c [ 2 ]. This constant is replaced with the imaginary constant, I C [ 1 ], in order to obtain the desired 
results. The expression which results after substitution of this constant is called solutiontwo. Notice that 
so lu t iontwo involves I, 

\tnf30j:= T T 0 
3 o l t v o = l e z p r e s s i o n / . r u l e J [||j 

\öutf30j= 1 I I 
-<Sqrt[3] x) Sqrt[3] x ΐ | | 

C[l] Sin[ ] C[2] Sin[ ] j | j 2 2 I I M 
x/2 x/2 II 

E E JJ 111 
\ini3!j:= 11 1 1 

TrigReduce[ so l two] / / Factor J [jjjjjjl 
\0utf3!j= Ή i l 

Sqrt[3] x ll!| 
<C[i] -C[2J> Sin[ ] 1 

2 Wi 
x/2 M 

E J J | | 
\inf32j- ]] II 

3olutiontwo=X / . ( C [ l l - C [ 2 ] ) ->I C [ l ] J | | 

\Outf32j= Ifjj 
Sqrt[3] x | i 

- I C[l] Sin[ ] 11 
2 H 

m 
M̂fiieiiÉaeeÉùaaiifiieÉMefleiieaiÉaieflÉiiefifl̂ ^ 
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The general solution to the differential equation, so lut ion , is therefore obtained with the linear combination of 
s o l u t i o n o n e and e o l u t i o n t w o , so lut ionone+X e o l u t i o n t w o . The s o l u t i o n is then 
verified by the substitution of s o l u t i o n into the original differential equation. 

fllgebraEHamples 
tnf33j:= 

s o l u t i o n = s o l u t i o n o n e * I s o l u t i o n two 

0utf33j= 
Sqr t [3 ] x Sq r t [3 ] x 

C[0] Cos[ ] C [ l ] Sin[ ] 
2 2 

+ 

x/2 x/2 
E E 

Inf34j:= 
D[solution,{ x, 2 } ] +D[solution,z]+solution 

Outf34j= 
0 

IB1 

the solution to the differential 
equation y "+y '+y- 0 is 
solution=solutionone+ 

I so lut ion two. 

-Q 
verifies that s o l u t i o n 
is the solution to the differential 
equation 
y"+y'+y=0. 
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■ 7.2 Linear Algebra 

e Cholesky.m 

o Cholesky . m is contained within the Linear Algebra folder in Version 2.0; Cholesky . m is not 
available with Version 1.2. 

The complex conjugate transpose of an m x n matrix A is the n x m matrix 

A' obtained from A by taking the complex conjugate of each element of A and 

transposing the result. 

An m x n matrix A is Hermitian means A = A'. An n x n Hermitian matrix A is 

positive definite means the eigenvalues of A are positive. This is equivalent to saying 

(Αχ,χ) = Αχ·χ is positive for every nonzero vector x. 

The concept of positive definite matrices is of importance in many areas such as physics and geometry. An n x n 
matrix is symmetric if A is equal to its transpose. 

The Cholesky.m package contains the command CholeskyDecomposi t ion[a] which yields a 
matrixu suchthat 

u T u = a where u T = the transpose of u. 

In order to determine this decomposition, however, a must be a symmetric, positive definite (and, hence, real) 
matrix. Therefore, the command CholeskyDecomposition [a] can serve as a test to determine if the 
matrix a is positive definite. 
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O Example: 

This command is illustrated below with the 2x2 matrix, {{2 ,1} ,{1 ,2}} . The matrix which results is called 
u so that the property stated above can be verified with a==Transpose [u] .u. Since a value of True is 
obtained, the result is correct. 

ChQlesk^Decomp 
ifif25j:= 

« C h o l e s k y . m 

tfif2?J:= 
a = { { 2 , l > , { 1 . 2 } } 
Hatr±xForm[a] 

0utf27j//f'tetrixFûrm= 
2 1 

1 2 
in[28j:= 
u=CholeskyDeconposit ion[ a ] 

Outf28j= 
1 

{ { S q r t [ 2 ] , }, 
Sq r t [2 ] 

{0, S q r t [ - ] ) } 
2 

fnf29j:= 
Transpose!; u ] 

Outf29j= 
{ { S q r t [ 2 ] , 0 } , 

Thepackage C h o l e s k y . m 
is contained in the folder L i n e a r A lg eb r a . 

' ijisuiy 
ieieioicioieioieieiiioioionioioieiiioieioieie»ieioioiflilili6iiwicieioimioioio 

\ Defines a to be the matrixl 
land then expresses a L1 2J 

I 

In this case, the command 
E i g e n v a l u e s [ a ] 
yields 3 and L 

Computes the Cholesky decomposition of a 

~* U*~' and ruvnes tke r** u. tobe 

Compute the transpose of u . 

{ . S q r t [ - ] > ) 
Sq r t [2 ] 2 

tof30j:» 
a==Transpo s e [ u ] . u 

0utf30j= 
True 

.XL 
Tests the equality of a 
and T r a n s p o s é e u ] . u 

"YC|S|:|;!y° 
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As mentioned above, the CholeskyDecomposition command only applies to symmetric, positive definite 
matrices. However, the command does not check for these properties before trying to perform the decomposition. 
This is demonstrated in the two examples below. In the following example, a non-symmetric matrix is considered. 
The resulting matrix is incorrect since a F a l s e response to a==Transpose [u] .u is given: 

inf33j:= 
Clear[a,u] ; 
a={{2,l>.{0,2>> 
Hatr±xFor»[a] 

OvtfSS/sY/iatnxFûrm* 
2 1 

J l 
Clears aüprior definition of a and u , 
then defines a [2 1] 
to be the matrix, L A 

and expresses the resuk in matrix form 

inf34j:= 
u=Chole3kyDecompo3ition[a] 

Uutf34j= 
1 

{ { S q r t [ 2 ] , }, 
S q r t [ 2 ] 

{0, Sqr t [ - ]>> 
2 

inf35j:= 
a = = T r a n s p o s e [ u ] . u 

Out[35j= 
F a l s e 

JJ 
Computes the Choiesky decomposition of 

•J2 I/V2I 
tobe 

0 ^372 
and names the resuk u. 

In this case, a 
and T r a n s p o s e [ u ] . u 
are not the same. 
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In the next case, the matrix is not positive definite, so several error messages result: 

lnf38j:= 
Clear[a,u] ; 
a-{(i.-l.-iK{-1.1,1}.{-1.1.1}}; 
HatrixForm[a] 

Outf38jA%T!dthxForm= 
1 - 1 - 1 

lnf39j:= 
u = C h o l e s k y D e c ( m p o 3 l t i o n [ a ] 

Power: : i n fy : 
1 

Infinite expression -
0 

encountered. 

Infinity: :indet: 
Indeterminate expression 
0 Complexlnfinity 
encountered. 

Outf39j= 

{{1. -1. -IK 

{0, 0, I n d e t e r m i n a t e ) , 

rΊϊ'ΓΜ,11'111 QQ% ▼ I I Q Q m ES 
a 

In this cesse, the Cholesky 
decomposition cannot be 
computed 
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The matrix which results from the decomposition may contain imaginary numbers. This is shown below with the 
matrix a. However, the resulting matrix is verified since Transpose [ r ] . r=*=a. 

inf42j:= 
C l e a r [ a ] ; 
a - H 2 . - l . - l K f - l . l . - l ) . f - l . - l , 2 > > 
HatrixForm[a] 

Outf42///MatrixFûrm= 
2 - 1 - 1 

- 1 

- 1 

1 

- 1 

- 1 

2 
lnf45j:= 
r=CholeskyDecompo3ition[a] 

Outf43j= 
1 

{ { S q r t [ 2 ] , - ( ) , 

■ (■ 

S q r t [ 2 ] 

S q r t [ 2 ] 

1 
{0 , ■ )-

S q r t [ 2 ] S q r t [ 2 ] 

{0. 0, I S q r t [ 3 ] } } 

ln[44j:= 
a = = T r a n s p o s e [ r ] . r 

0utf44j= 
True 

n 

After defining a 
to be the matrix 

2 -1 -1 
-1 1 -1 
-1 -1 2 

computes the Chol&sky 
decomposition of a 
tobe 

V2 -I/V2 -I/V2 

0 1/V2 -3/V2 

0 0 iV3 

and names the result r. 

J l 
Tests the equality of T r a n s p o s e [ r ] . r 
<xnd a . 

|i!i;i!u 
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O Application: Quadratic Equations 

An application of positive definite matrices is the analysis of quadratic equations. 

For any symmetric matrix A, the product f = xT Ax is a pure quadratic form : 

xTAx = [x1,x2,...,xn] 

an a12 

a21 a22 

.anl an2 

ai„l 

a2„ 

annJ 

[xil 
U2I 

L X n . 
= a n xf +a12xix2 +

a2ix2xi + 

=ΣΣ aij x i x j · 
i=lj=l 

If the matrix A is positive definite, then f > 0 for all values of x. Consider the following quadratic equation: 

2x2 - 2xy + 2y2 - 2xz + 2yz + 2z2 = -1. 

We attempt to determine if this equation has any real roots by considering the matrix A. If the symmetric matrix 

Γ2 -1 -11 
A = -1 2 1 

[ - 1 1 2 

which results when this equation is represented as xT Ax is positive definite, then xT Ax > 0 for all x. 

Hence, xT Ax * -1 for any values of x. 
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The matrix A is defined below as a. Note that this matrix yields the appropriate quadratic form as shown with 
Expand [Transpose [vec ] . a . v e c ] where v e c = { x , y , z } . The matrix A is then shown to be 
positive definite by using CholeskyDecomposi t ion. Therefore, this equation has no real solutions. 

Clear[a]; 
a-{{2,-1.-1},{-1.2.1},{-1.1.2}}; 
▼ec={x.y.z}; 

inf48j:= 
Expand[Transpose[vec].a.vec] 

Outf48j= 
2 2 

2 x - 2 x y + 2 y 2 x z + 

2 y z + 2 z 
lnf49j:= 

r=CholeskyDeconposition[a] 

Outf49j= 
1 

{ { S q r t [ 2 ] , -< ) , 

- ( ■ 

S q r t [ 2 ] 

S q r t [ 2 ] 

3 1 
{0, S q r t [ - J , 

2 S q r t [ 6 ] 
}-

{0 . 0. -}} 
Sqr t [31 

lnfSOj:= 
a = = T r a n s p o s e [ r ] . r 

OvtfSOj* 
True 

1 Ί Ι " " ' ' ' ' 'Ί Ι00% ▼ Î IOLJI I I I I 
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I CrossProduct.m 

Neither Version 1.2 nor Version 2.0 contain a built-in command for computing the cross product of two 
three-dimensional vectors. In order to compute cross products of vectors, Version 1.2 users must load the package 
Cross .m in the Linear Algebra folder to use the command Cross [ v e c l , v e c 2 ] which computes 
the cross product of vectors v e c l and vec2; Version 2.0 users must use the package CrossProduct .m in 
the Linear Algebra folder to use CrossProduct [ v e c l , vec2 ] . Of course, the vector which 
results from the cross product is orthogonal to each of the original vectors. This is verified below as is the property 
that the cross product of two parallel vectors is the zero vector. 

D Example: 

CrossProduct 

MU:-
« C r o s s , m 

C r o s s [ { 2 . 1 , 2 } , { 3 , - 1 , - 3 } ] 

Outf2j= 
{-1, 12, -5} 

tnf3j:= 
{ 2 , 1 , 2 } . { - 1 , 1 2 , - 5 } 

Outf3j= 
0 

in[4j:= 
C r o s s [ { 2 , 1 , 2 } , { 4 , 2 , 4 } ] 

0utf4j= 
{0 , 0, 0} 

If using Version Z0, the package 
C r o s s P r o d u c t . m 
contains the command 
C r o s s P r o d u c t . 

i ) k" 
2 1 2 
3 1 -3 

computes Det 

i-{1,0,0}, J-{0,1,0}, and k = {0,0,1}. 

, where 

verifies {2,1, 2} and {-1,12,-5} are perpendicular. 

verifies that {2,1,2} and {4,2,4} are parallel 

D Example: 

One application of the cross product is in computing the area of a triangle the vertices of which are the points P, Q, 
and R. This area is given by the formula 

Area = -|PQxPR| 

Mathematica does not contain a built-in function to calculate the length of vectors. Hence, the function 
length [ v] which yields this value is defined as the square root of the dot product of v with itself. This 
function is illustrated with the vector { 1 , 2 , -1} to show that the exact value results. There is no restriction on 
the dimension of vectors to be used with l ength as seen below with { 1 , 3 , - 2 , 4 , 0 , 8 } . 
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The area of the triangle is computed by, first, defining the points p, q, and r; and then determining the vectors pq 
and pr. The numerical approximation of the area is easily found with 
N [ . 5 l e n g t h [ C r o s s [ p q , p r ] ] ] . 

lengt l i [T_] :«=Sqrt[v. ▼] 
l e n g t h { 1 , 2 . - 1 } ] 

OvtfSj* 
Sqrt[6] 

inf6J:= 
lengt l i [ { 1 , 3 , - 2 , 4 , 0 , 8 } ] 

OutfôJ* 
Sqrt[94] 

!nf?J:* 
p = { 4 , - 3 , l > 
<F={6,-4,7> 
r = { i , 2 , 2 > 
pq=q-p 
pr*r-q; 

area=H[.5 l e n g t h [ C r o s s [ p q , p r ] 

OutfSj* 
18.775 

]J 

. . Γ 
1 

length[Y] computes -jvv 

Defines p = H-3,l}, q = {6,-4,7}, 
r = {1,2,2}, pq = q - p , and 
pr = r - q . 
Then the area of the triangle with 
vertices p, q, r is given by 

^||ΡΦ«Ι4 
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This triangle is shown below: 

Sho v [ G r a p h ! c s 3D[ 
P o l y g o n [ { { 4 , - 3 , i } , { 6 , - 4 , 7 } , { i , 2 , 2 } } l 

] ] 

The triangle with vertices p, q, 
and r can be visualized using 

the Show, Graph! cs3D, and 

P o l y g o n commands. 

Outf32j= 
-Graphics3D-

Another similar application of the cross product is in finding the distance from a line containing the points P and Q 
to a point R not on the line. This distance is known to be 

d = FLr|PQxPR|. 

A function which computes this distance is defined as d i s tance below and is illustrated by finding the distance 
from the point (2,1,-2) to the line through the points (3,-4,1) and (-1,2,5). Since d i s t a n c e is defined in 
terms of the points P, Q, and R, this distance is found by simply entering the appropriate points. 

The variables 
p q , p r , cTossandû 
are local to the user-defined 

\ function d i s t a n c e . 

d i s t a n c e [ p _ , q_, r_ ] : = 
B l o c k [ { p q , p r , c r o s s , d } , 

p q = q - p ; 
p r = r - p ; 
c r o 3 3 = C r o s 3 [ p q , p r ] ; 
d = H [ l e n g t h [ c r o s s ] / l e n g t h [ p q ] ] 

1 

\inf!Oj:= 11 
d i s t a n c é e { 2 , 1 , - 2 > , { 3 , - 4 , 1 } , { - 1 , 2 , 5 } ] J 

\OutfiOj= Λ 
7.36012 JJ 

U 

computes the distance from the 
point (2,1,-2) to the line passing 
through the points (3,-4,1) and 

(-iz,sy 
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A useful feature of the Cross [ v l , v2 ] command is that when numerical vectors are not given, Mathematica 
gives the formula used to compute the cross product. This can be used as a tool in finding vectors with certain 
properties. For example, the function cp [p, q, r ] defined below computes the cross product of the vectors pq 
and pr. The arbitrary points { p i , p 2 , p 3 } , { q l , q2 , q3} , and { r l , r 2 , r3 > are used below to show 
that the cross product formula is obtained. Then, this formula is used to determine the value(s) of p3 such that the 
triangle formed by the points { 1 , - 1 , p 3 } , { 1 , 2 , 0 } , and { - 3 , 5 , - 1 } has area a. (Hence, the cross 
product has magnitude 2a.) This is accomplished by substituting the known points into cp and solving for p3. 

\infUj-
C l e a r [ p , q , r ] ; 
c p [ p _ , i L . r _ i :=Cro33[q-p,r-pl 
▼ e c = c p [ { l , - i , p 3 K { l , 2 , 0 K { - 3 , 5 , - i } ] 

OutfttJ= 
{-3 + 3 p3, 4 p3, 12} 

l = l e n g t h [ v e c ] 

2 2 
Sqrt[144 + 16 p3 + (-3 + 3 p3) ] 

3 0 1 = S i m p l i f y [ S o l v e [ l = = 2 a . p 3 ] ] 

\outf!4j= 
2 

18 + Sqrt[-14976 + 400 a ] 
{{p3 -> >, 

50 

2 
18 - Sqrt[-14976 + 400 a ] 

{ p 3 _> } } 

50 

1 
I 

I 
Π 

J„ 
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The following calculations reveal two possibilities for p3. However, these roots are imaginary if a < 6.11882 
(Negative values of a are disregarded.) Therefore, only values of a greater than 12.2376 can be considered. An 
example is worked and verified for a=7. 

Ilnf!5j:= Til j 
Solve[-14976+400aA2==0,a]//H J 1 

\Outft5j= Ή I 
{{a -> 6.11882}, {a -> -6.11882}} JJ j 

lnf!6j:= 111·! 
sol=Solve[l==14.p3]//H Jll 1 

\outf!6j= Ή ! 
{{p3 -> -1 . } , {p3 -> 1.72}} JJ h I 

\lnf!7j:= 11 f . I 
p = s o l [ [ l , l , 2 ] ] J I 

\üt/t//7/= 1 I 

"le J J Γ 1 
\/*//&/:= 11 I 

t e s t = c p [ { l , - l , p } , { 1 , 2 , 0 } , { - 3 , 5 , - 1 } ] J I 

{-6., -4., 12.} J J I I 
\ln[t9j:= 1 1 M 

lengt l i [ t e s t ] / / N J l l J 

\Outf!9j= Ή j 
14. 
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• MatrixManipulation.m 

o Version 2.0 contains the package N a t r i x M a n i p u l a t i o n . m which contains several commands useful 
for manipulating matrices. M a t r i x M a n i p u l a t i o n . m is not contained with Version 1.2. The command 
AppendColumns [ m l , m2, m3, . . . ] yields a new matrix composed of the submatrices m l , m2, . . . , 
by joining the columns of m l , m2 , . . . while AppendRowe [ m l , m2, . . . ] performs a similar 
operation by joining the rows of the matrices. In each command, the submatrices must have the same number of 
columns or rows, respectively. Several examples of these commands are given below and viewed in 
Matr ixForm to better understand the results. After defining the 2x2 matrices a and b , the command 
AppendColumne [ a , b ] appends the columns of b to the columns of a, and AppendRowe [ a , b ] 
adds the rows of b to those of a. 

O Example: 

MatrixManipulation 
lnf9j:= 

«HatrixHanipulation. m 

lnf!2j:= 
a={{i.2K{3,4>>; 
b»{{5,6}.{7,8}}; 
AppendColumns[a,b]//HatrixForn 

Ovtftgf/JMÈtrixFûrm* 
1 2 

tolorffc 

Γ* 2 1 
Defines a = 

<xnd 

App end sColu»n3[a,b]//MatrixForm 
"1 2 

produces 
3 4 
5 6 
7 8 

7 8 

AppendSows[a,b]//HatrixForm 

Outft5j//ttotrixFûrm= 
1 2 5 6 

8 

ABMBM 

App end sK o¥3[a# b] / /Ha t r i xF o r i 

1 2 5 6] 
3 4 7 8| 

produces 
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The matrix c is then defined to illustrate that more than two matrices can be used as arguments as well as the fact 
that correct dimensions must be used. The command AppendColumns [a, c ] is not evaluated since c has 
more columns than a. 

c={{11,12,13},{14,15,16}}; 
Appendfiovs[a,b,c]//HatrixForm 

Outft5jsVNathxFûrm= 
1 2 5 6 

3 4 7 8 

ifïf!ôj:= 
ÀppendColumns[ a , 

Outf!6j= 
AppendColumns[{{1, 

11 

14 

c ] 

2 } , 

12 

15 

{3, 4Γ 

13 

16 

L 

Jl 
Γΐΐ 12 131 

Defines c = J \_\A 15 16J 

App end sR o v s [ a , b, c] / /Ha t r i xF o r m 

Γΐ 2 5 6 11 12 131 
produces ; 
^ [3 A 7 8 14 15 16J 
AppendsColumn3[a,c] produces 

nothing since a and c do not 

have the same number of 

columns. 

{{11, 12, 13} , {14, 15, 16}}] 

«■MflMi 

O Application: Computing the Adjacency Matrix of a Graph 

An application of these commands is the manipulation of the adjacency matrix of a graph. Recall that two vertices 
of a graph are said to be adjacent if there is at least one edge joining them. Consider the graph G with no loops 
and n vertices labeled 1, 2,..., n. The adjacency matrix of G is the n x n matrix in which the entry in row i 
and column j is the number of edges joining the vertices i and j . For example, suppose that a graph has the 

adjacency matrix A = 

"0 1 0 1" 
1 0 1 2 
0 1 0 1 
1 2 1 0 

This matrix is represented as ad j below. Then, suppose that two more vertices are added to the graph with vertex 
5 adjacent to vertices 2 and 3; and vertex 6 adjacent to vertices 1 and 4. Instead of defining a new adjacency matrix 
for the revised graph (which can be quite cumbersome in many cases), these additions can be made with 
AppendColumns and AppendRows. 
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This is done below in a d d t o c o l s and addtorows. The rows added in a d d t o c o l s represent the edges 
from vertices 5 and 6 to vertices 1,2,3, and 4 while the columns added in addtorows give these same edges 
from the original set of vertices to vertices 5 and 6. 

inffßj- ΊΊ pH 
a d j = { { 0 . 1 , 0 , 1 } , { 1 , 0 . 1 , 2 } , { 0 , 1 , 0 , 1 } , { 1 , 2 , 1 , 0 } } ; | | 
addtocol3=AppendColUÄns[adj, { { 0 , 1 , 1 , 0 } , { 1 , 0 , 0 , 1 } } ] J | j | 

outftsj* ] I I 
{{0 , 1, 0, 1 } , {1 , 0. 1, 2 } , {0, 1, 0, 1 } , {1 , 2, 1, 0 } , F j 

{o. i , i# o}. {i, o, o. i}} JJ | | 
inf20j:= ] ] I l 

add tor o ws=ÀppendfiOYS[add t oco1s , M 
{ { 0 , 1 } , { 1 , 0 } , { 1 , 0 } , { 0 , 1 } , { 0 , 1 } , { 1 , 0 } } ] ; | | 

addtorovs/ZHatrlxForm J M 

Ovtfêûpyt'tetrixFûrm= 1 |!{|j||| 

0 1 0 1 0 1 I I 

1 0 1 2 1 0 | | | 

o i o i i o II 

1 2 1 0 0 1 pli 

o i i o o i II 

î o o i i o JJ If 
An interesting fact concerning an adjacency matrix M is that the (i j ) th-element of the kth power of M represents the 
number of walks of length k from vertex i to vertex j . A walk of length k in a graph is a succession of k edges. 
This is important in problems in which the number of ways to travel between two locations must be determined. 
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Using the matrix given in addtorows, the number of walks of length 2 between every vertex pair is determined 
from twowalke. For example, there are 4 walks of length 2 from vertex 4 to vertex 5 as seen with 
twowalke [ [ 4 , 5 ] ] . The number of walks of length 3 are found in threewalke . 

M/2//-
t v o v a l k s = a d d t o r o v s . a d d t o r o v s 

Outf2!j= 

{{3, 2, 2, 3 , 2, 1 } . {2, 7, 3, 2, 1, 4 } , 

{2, 3 , 3 , 2, 1, 2 } , {3, 2, 2. 7, 4, 1 } , 

{2. 1, 1, 4, 3 . 0 } , {1 , 4. 2. 1, 0. 3}} 
lnf22j:= 

t v o v a l k s [ [ 4 , 5 ] ] 
Outf22/= 

4 

M23J:* 

As the power increases, the built-in command MatrixPower [ m a t r i x , k] is useful. This is used below to 
find the number of walks of length 10. 

Inf24j:= 
t e n v a l k s = n a t r i x P o v e r [ a d j , 1 0 ] 

Outf24j= 
{{17408, 28160, 17408, 28160}, 

{28160, 46080, 28160, 45056}, 

{17408, 28160, 17408, 28160}, 

{28160, 45056, 28160, 46080}} 

]1 
■^ 

J. 

l i 

pi 
PHII 

III 111 
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t h r e e va Ik 3 = t v o va l k s . add t o r o v s 

Outf23j= 
{{6. 13, 7, 10. 5, 8 } . 

{13, 10, 10, 23, 14, 5 } , 

{7, 10, 6, 13, 8, 5 } , 

{10, 23, 13, 10, 5, 14} , 

{5, 14, 8, 5, 2, 9 ) , {8, 5, 5, 14, 9, 2}} 
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Mat r ixMan ipu la t ion .m also contains several well-known matrices such as the Hilbert matrix. The 

Hilbert matrix H is given by H = 

1 ^ ± 1 2 3 
1 1 1 
2 3 4 
1 1 1 
7 4 5 

The n x n Hilbert matrix is found with Hi lbertMatr ix [n] and is illustrated with Hi lbertMatr ix [3] 
below. This matrix is named hm3 and its inverse is called hm3inv. This is verified with hm3. hm3inv which 
yields the 3 x 3 identity matrix. Next, the 10 x 10 Hilbert matrix, hmlO, is computed so that the system of equations 
Ax = b can be solved where A = hmlO a n d b s { i , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) . 

tftf34j:= 
h m 3 = H i l b e r t H a t r i x [ 3 ] 

Outf34j= 
1 1 1 1 1 1 1 1 

{{1, - , - } , {-, - , - } , {-, - , -}} 
2 3 2 3 4 3 4 5 

lnf35j:= 
h m 3 i n v ^ I n v e r s e [ hm3 ] 

Outf35j= 

wmétHHiêmmmÊmmmi» 

Produces 

M M M M 

1 1/2 1/3^ 
11/2 1/3 1/4 
[ l /3 1/4 1/5 

and names the result hm3 

MlnLitiiiiilllMMMMMMMMMMMMM« 

{{9, - 3 6 , 30 ) , {-36, 192, -180} , {30, -180, 180}} 

InfSôJ:» 
hm3.hm3inv 

OutfSOJ* 
{{1, 0, 0 } , {0, 1, 0 } , {0, 0, 1}} 

inf38]:= 
hmlO=H±lbertHatrix[10]; 
Short[bml0,3] 

Outf3S//sS/iort= 
1 1 1 1 1 1 1 1 

{{1, -, -, -, -, -, -, -, -
2 3 4 5 6 7 8 9 

Compiles the inverse 

of hm3 and names the 

^resiût hm3inv. 

JJL 
Computes the 10 x 10 Hilbert matrix and 
displays the matrix, in an abbreviated three-
line form consisting of the first and last rows. 

}, « 8 » , 
10 

1 1 1 1 1 1 1 1 1 1 

10 11 12 13 14 15 16 17 18 19 

tnf40j:= 
b = { l . 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ; 
L i n e a r S o l v e [ hmlO , b ] 

Qutf40j= 
{100, -4950, 79200, -600600, 2522520, -6306300, 

9609600, -8751600, 4375800, -923780} 
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This system is also solved with b l = { . 7 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } to illustrate that this system is sensitive 
to small changes. 

b = { i , 0 , 0 , 0 , 0 , 0 , 0 . 0 , 0 . 0 } ; 
L i n e a r S o l v e [ h m l O , b ] 

Outl40j= 
{100, -4950, 79200, -600600, 2522520, -6306300, 

9609600, -8751600, 4375800, -923780} 

b l = { . 7 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ; 
L inea rSo lve [hmlO ,bi ] 

Outf42j= 
6 

{75 . , - 3712 .5 , 59400. , -450450. , 1.89189 10 , 

6 6 6 
-4.72972 10 , 7.2072 10 , -6 .5637 10 , 

6 
3.28185 10 , -692835.} 

The sensitivity of the system Ax=b can be measured with the condition number of A. This number is defined 
in several ways, one of which is based on the 1-norm of A: 

For a nonsingular m x m matrix A, the condition number of A is denoted c( A) and is defined 

by C(A) = | |A | | |A- 1 | where ||A|| = Maxj X|ay|l for j = 1,2,..., m. 

Ifc(A) is small, then A is said to be well-conditioned; A is ill-conditioned otherwise. 
The function norm [mat r ix ] is defined below to compute the 1-norm of m a t r i x . This definition is given 
in terms of a general m x n matrix. Note that this definition involves the built-in Mathematica command 
Dimensions [mat r ix ] which gives the dimensions of an mxn matrix in the form {m, n} as demonstrated 
below with D imens ions [hm3]. 
The 1-norm is calculated for hm3 and hm3inv using the function norm. The condition number of m a t r i x is 
then defined as the product of the norm of m a t r i x and the norm of its inverse. This function is called cnum 
and is illustrated with hm3 to reveal a very large number. This is expected based on the results from the previous 
problem in which small changes in the original system involving hm3 led to large changes in the solution. 
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lnf43j:= 
D imens i cms [ hm3 ] 

Outf43j= 
{3 , 3} 

lnf44j:= 
norm[ m a t r i x . ] : = 

Hodu le [ { dim« row, c o l , sums , max } , 
d i m = D i m e n s i o n s [ m a t r i x ] ; 
r o v = d i m [ [ l ] ] ; 
c o l = d i m [ [ 2 ] ] ; 
s u m s = T a b l e [ S u m [ A b s [ m a t r i x [ [ i , j ] ] ] , 

{ i , i , r o w } ] , { j . i , c o l } ] 
max=Hax[3ums] 

1 

norm[hm3] 

Outf45j= 
11 

6 

tftf46j:= 
norm[hm3inv] 

Otit/46/* 
408 

lnf47j:= 
cnum[matrix_] := N[norm[matrix] 

nori[Inverse[matrix]]] 

]J 
The variables 
d i m , row, c o l , 
sums , and max 
are declared to be local 
to the user defined 
function norm. 

]J 

inf48j:= 
cnum[ hm3 ] 

Outf48j= 
748. 

ιιιΙιΛοίιϋίΙ 

Produces tke condition number 
ofamatrix» Intfüscase,tke 
condition number of the 3 κ3 
Hubert matrix, is computed to 
be 748. 

ψφψΜΑΜΗ*ΜΗ/ΛΗΤΜ/ΒΙ 

Mathematica has a built-in command which can be used in determining the condition number. 
SingularValues [m] retums the list {uf w, v} where w is a list of non-zero singular values. The condition 
number is the ratio of the largest singular value of the matrix to the smallest one. The other information in the output 
of S ingularValues [m] can be used to represent the matrix m as 
Transpose [u] .DiagonalMatrix[w] .v. This is known as the singular value decomposition of m. 

Hence, the condition number can be found by determining the ratio of the values in the list w. This is shown below 
with matrix a. The definition of condition number used in the built-in function differs from the one stated earlier 
since the value obtained with SingularValues and that found with cnum[a] differ. At any rate, each 
method yields a very large condition number. Hence, a is ill-conditioned, so numerical methods used to solve 
systems involving a are unreliable. 
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Unfortunately, the built-in command does not work with all matrices. An error message is given with 
SingularValues [hm3]. Therefore, the earlier procedure for calculating the condition number may prove 
to be more useful. 

InfSOL* 
a = { { 3 4 . 9 , 2 3 . 6 } , { 2 2 . 9 . 1 5 . 6 } } ; 
3= S i n g u l a r Y a l u e s [ a ] 

0ut/50/= 
{ { { -0 .835497 . -0 .549495} . { -0 .549495. 0 .835497}} . 

{50.4255. 0.0793249}. 

{{-0.827801. -0.561022}. {-0.561022. 0.827801}}} 

in/51/-
3 [ [ 2 ] J 

Out/5//* 
{50.4255. 0.0793249} 

/n/52/:* 
c d n = H a x [ s [ [ 2 ] ] ] / H i n [ s [ [ 2 ] ] ] 

Out/52/* 
635.683 

tn/53/:= 
c n u i [ a ] 

Out/53/* 
845.325 

/n/54/:* 
s ing=S ingularValues[hm3] 

SingularValues: :svdf: 
SingularValues has received a matrix with 
infinite precision. 

SingularValues: :svdf: 
SingularValues has received a matrix with 
infinite precision. 

Out/54/* 
1 1 1 1 1 1 1 1 

S i n g u l a r V a l u e s [ { { i . - , - } . {-. - . - } . {-. - . -}}] 
2 3 2 3 4 3 4 5 

'.''.'! 'Ί."'"!.' '"'"»' 1 ΐ 0 0 % ▼ I IQ HI."/ > : . · I Cl 
lä 
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• Orthogonalization.m 

Version 2.0's Orthogonal izat ion .m package contains useful commands for working with vector spaces. 
The main command in this package is GramSchmidt [ v e c l i s t , o p t i o n s ] which produces an 
orthonormal basis for the vectors in v e c l i s t . Recall that two properties of an orthonormal basis are that the 
inner product of any two basis vectors is 0, and the norm of each basis vector is 1. In the first example below, a 
basis for the list of vectors in v e c s is found with GramSchmidt [ v e c s ] . 

O Example: 

Orthogonalization 
lnf2j:= 
«Orthogonalization. m 

lnf!Oj:= 
v e c 3 = { { 1 , 1 , I ) , { - 1 , 0 , - i } , { - 1 . 2 , 3 } } ; 

ba s i s=Gr amS chmid t [ v e c s ] 

OutfitJ* 
1 1 1 

U . , > , 
Sqrt[3] Sqrt[3] Sqrt[3] 

1 2 
{-( ) . Sqrt [ -J , 

Sqrt[6] 3 

< - < ■ ) , 0, 

■ ( 

Sqrt[6] 

->> 

■)}-

Sqrt[2] Sqrt[2] 

After loading the package 
O r t h o g o n a l i z a t i o n . m . 
I v e c s is defined to be the (nested) j 
Jos? ! 
{ { i . i . i } . { - 1 . 0 . - 1 } . { - 1 . 2 . 3 } } 
! which corresponds to the three vectors 

L and 

ba s i s=GranSchmid t [ v e c s ] 
computes three orthonormed 
vectors and names the resulting list 
of vectors b a s i s . 
Since b a s i s isaäst, b a s i s [ [ l ] ] 
corresponds to the first element of 
b a s i s , b a s i s [ [ 2 ] ] 
corresponds to the second element 
of b a s i s , and b a s i s [ [ 3 ] ] 
corresponds to the third element of 
b a s i s . _ 
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Some of the previously mentioned properties are verified using the orthonormal basis found in bas i s . 

basis[[l]] 
basis[[2]] 
bas±s[[l]] 
basis[[l]] 

basis[[2]] 
bas±s[[3]] 
basis[[3]] 
basis[[l]] 

basis[[2]].basis[[2]] 
basis[[3]].basis[[3]] 

Outf!2j= 
0 

Outff3j= 
0 

Ouif!4j= 
0 

Outft5j= 
1 

ÛtttfÎ6j= 
1 

Ûutf/7J= 
1 

To verify that b a s i s 
is a set of ortkonormal 
vectors, each dot product 
is computed Notice that 
each result is displayed 
since semi-colons are 
not included at the end 
of each command 

O APPlltation; Distance 

One application of the determination of an orthonormal set of basis vectors is in the calculation of the distance of a 
point x from a subspace W. If u is an orthonormal basis for W, then the distance from x to S is defined as the 
magnitude of the component of x which is orthogonal to each vector in W. This vector is found by projecting x 
onto W using the basis vectors in u. More formally, the distance is given by the formula : 

||x -pro j w x | where projwx is the projection of x onto W. 

In the example which follows, the distance of the point x = (4,1,-7) to the subspace W which consists of all 
vectors of the form (a,b,b) is found. Every vector in W can be written as the linear combination of the vectors 
{ 1 , 0 , 0 } and { 0 , 1 , 1 } . Hence, the orthogonal basis for W is found in o n b a s i s below using { 1 , 0 , 0 } 
and { 0 , 1 , 1 } . 
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The elements of onbas is are extracted in the usual manner as illustrated with onbas is [ [1] ] . The vector 
x is defined and the projection of x onto W is determined in pro j . The orthogonal component is given in 
diff , and finally, the length of this vector is found in the standard way by using the dot product. 

{ { 1 . 0 , 0 } , { 0 . 1 , 1 } } ] J 

· }} 

corresponds to the first element 
oftheUst o n b a s i s . 

lnf!8/:= 
onba s 1 s=Gr amS chmid t [ 

Outf!8j= 
1 

{{1, 0. 0 } , {0. 
Sq r t [2 ] Sq r t [2 ] 

o n b a s l s [ [ l ] ] 

Outf!9j= 
{1, 0. 0} 

x = { 4 , i , - 7 } ; 
p r o j = P r o j e c t i o n [ x , o n b a s l s [ [ 1 ] ] ] + 

P r o j e c t i o n [ x , o n b a s i s [ [ 2 ] ] ] 

Outf2!j= 
{4, - 3 , -3} 

d i f f = x - p r o j 

Outf22j= 
{Q, 4, -4} 

M23J:-
distance=Sqrt[diff.diff] 

Outf23j= 
5/2 

2 

o n b a s i s 
is a set of orthonormal 
vectors constmctedfrom 
the linearly independent 
set of vectors 
l l Γθΐ 

<xnd 

p r o j is definedto be the 
vector 

ltj2 

The length of a vector 
v is given by 
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The above calculations to determine the distance from a point to a subspace can be generalized in the function 
dis tance below. The arguments of distance are the point v and a list of basis vectors, vecs , for W. The 
function performs all of the necessary calculations to find the desired distance. To verify that d i s tance does 
yield the correct output, it is demonstrated with the same problem as before and gives the same result. First, all 
previously used definitions are cleared. 

Inf24j:= 
C l e a r [ v , p r o j ^ o n b a s i s , v e c s , x , d i f f , d i s t a n c e ] 

inf25j:= 
d i s t a n c e [ ▼ _ 

inf26j:= 
d i s t a n c e [ { 4 

Outf2ôJ= 
5/2 

2 

] | 
iW 

# v e c s _ l :=Module[ { d , o n b a s i 3 , p r o j , d i f f } , |||jjj| 
onba s i s=GramS chmid t [ Eva l u a t e [ v e c s J ] ; Ijjjjjj 
p r o j = S u m [ P r o j e c t i o n [ v , o n b a s i s [ [ i ] ] ] , IjjjjJ! 

{ i , i „ L e n g t l i [ o n l ) a 3 i s ] } ] ; [jjjjjj 
d i f £ = v - p r o j ; [Ijljl j 
d=Sqr t [ d i f £ . d i f £ ] jjijjj 
] 1 liiiiiil 

. 1 . - 7 } . { { 1 . 0 . 0 } . { 0 . 1 . 1 } } ] i 
"Λ 1 X&A 

One of the options available to GramSchmidt is that of Inne rProduc t . In the earlier examples the dot 
product (the default value of InnerProduc t ) was used as the the inner product. However, with this option, 
other vector spaces such as function spaces can be considered. 

The inner product of two continuous functions f and g is given by 

(f,g) = Jbw(x)f(x)g(x)dx «»a 
where f, g e C [a,b] and w(x) is a nonnegative weight function on (a,b). 
The InnerProduc t option must be given in terms of a pure function. In order to do this, the syntax 
(option->(function&) must be used. Hence, the inner product with w(x) = 1 is defined with 
I n n e r P r o d u c t - > ( I n t e g r a t e [#1 #2, {x, - 1 , 1 } ] &) where #1 and #2 represent the first and 
second variables of the inner product, respectively. 
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The first command below yields the orthonormal basis from {1, x, x A 2 , x A 3 , x A 4} , the basis for the space of 
fourth-order polynomials. Another GramSchmidt option is Normalized->False . When this is used, the 
basis vectors which result are orthogonal but not of length 1. The first command is repeated with this command and 
called l egendreS . 

M&» 
G r a m S c h m i d t [ { 1 . x . x A 2 . x A 3 , x A 4 > . 

I n n e r P r o d u c t - > ( I n t e g r a t e [ # 1 # 2 , { x , - i . i } ] & ) ] 

ûutfgf* 
1 3 5 1 2 

{ , S q r t [ - ] x, 3 S q r t [ - ] ( - ( - ) + x ) , 
Sq r t [2 ] 2 8 3 

1 2 
6 ( - ( - ) + x ) 

1 4 3 
105 <-<-) + x ) 

7 - 3 x 3 5 7 
5 S q r t [ - ] ( + x ) , } 

8 5 7/2 
2 

MS/:» 
l e g e n d r e 5 = G r a m S c h m i d t [ { 1 , x , x A 2 , x ~ 3 , x A 4 } . 

I n n e r P r o d u c t - > ( I n t e g r a t e [ * 1 # 2 , { χ , - 1 , 1 } 1 & ) , 
N o r m a l i z e d - > F a l s e ] 

1 2 
6 ( - ( - ) + x ) 

1 2 - 3 x 3 1 4 3 
{1, x, - ( - ) + x , + x , - ( - ) + x } 

3 5 5 7 
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On the other hand, when the option Normalized->True is used, the basis vectors which result are orthogonal 
with length 1. In the following example, several integrals are computed to verify that the resulting basis vectors are 
orthogonal and have length 1: 

g s = G r a m S c h m i d t [ { i , x , x A 2 , x ~ 3 , x A 4 } . 
I n n e r P r o d u c t - > ( I n t e g r a t e [ t i # 2 , { x , - 1 , 1 } ] & ) « 
No r i a 1 i z e d - > T r u e ] 

Outf2j= 

i^Yy Sqrt[|] x, 3 Sqrt[|] (-(|) + x 2 ) , 

6 < - ( | ) + x 2 ) 

, ς , r ? i , " 3 x \ 1 0 B ( - ( 5 > + * - 7 > 5 S q r t [ | ] < — + x ) , - ^ > 

g 3 [ [ i ] ] 

Ouif3j= 
1 

Sqr t [2J 

fni4J:= s 
I n t e g r a t e [ g s [ [ l ] ] g s [ [ 2 ] ] , { x , - l , l } J i confutes 

fjiiff^if— Hni:iiiiiiieiiioiMoiiieiii 

0 _ _ _ _ _ 

S q r t [ I n t e g r a t e [ g s [ [ i j ] A 2 , { x , - i , 1} ] ] Icomputes J T M - T F I dx. 
Outf5j= »*'» 

1 

lniöj:= \ 1 1 RV 3 ^ 
I n t e g r a t e [ g s [ [ l ] ] g s [ [ 4 ] ] , { x , - 1 , i } ] fcon^utes J ^ - ^ S J H x 3 - - x j d x 

0 

0 

EÏ3R I 

S q r t [ I n t e g r a t e [ g s [ [ 4 ] ] A 2 , { x , - 1 , 1 } ] \ψοπφνΖ<& 

Ovtf7j= 
1 

WPÜ dx. 

ill 
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The polynomials which result are normalized in l p o l y so that each member equals 1 at x=l. This yields a list of 
the first five Legendre polynomials and is accomplished by dividing each entry in legendre5 with its value at 
x=l. In this case, the Legendre polynomials were the result of an example illustrating the InnerProduct option 
with GramSchmidt. Nevertheless, Mathematica contains the built-in command LegendreP [n, x] which 
gives these polynomial. 

tof4j:* T 
lpo ly=Table[S impl i f y[ l e g e n d r e 5 [ [ i ] ] / 

( l e g e n d r e 5 [ [ i ] ] / . x - > l ) K { i , i , 5 } ] J 

Outf4j= Λ 
2 2 2 4 

- 1 + 3 x x (-3 + 5 x ) 3 - 30 x + 35 x 
\ J - / X/ * , / 

2 2 8 J 
lnftOj:= ] 

Table [LegendreP[n ,x ] , {n ,0 ,4>] / /TableForm J 

OutftOU/TaöieForm= Λ 
1 

X 

2 
- 1 + 3 x 

2 

3 
-3 x + 5 x 

2 

2 4 
3 - 30 x + 35 x 

1 8 ->-

| · Ι Π Ι · | 

L J 

ujiuJ 
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A useful purpose for obtaining an orthogonal set of basis vectors is in approximating functions with polynomials. If 
a function f(x) is to be approximated with a polynomial of degree n, then the closest polynomial is computed by 
projecting f(x) onto each of the first n (or n+1) basis members of the space of n-th order polynomials. Hence, 
approximation can be conducted by using a basis made up of the Legendre polynomials created earlier. In order to 
illustrate this technique, the command P r o j e c t i o n [ v e c l , vec2 , o p t i o n s ] which also appears in 
Orthogonal izat ion .m must be discussed. This command projects v e c l onto vec2 and can employ the 
same option of InnerProduct as was shown earlier with GramSchmidt. The function pro j is defined 
below to project a vector (the function) v onto the basis vectors in b a s i s using the appropriate inner product for 
function spaces. This function is then demonstrated by projecting Exp [x] onto the orthogonal basis obtained 
earlier in lpoly . Hence, this calculation results in the approximation of Exp [x] using the first 5 Legendre 
polynomials. The approximating polynomial is then simplified and expressed with numerical coefficients in app. 
Both functions are plotted simultaneously to show the closeness of the approximation, and then the difference is 
plotted to better illustrate the accuracy of the approximation with Legendre polynomials. 

inf64j:= 
C l e a r [ v , b a s i s ] ; 
proj[Y_,basis__] : - S u m [ P r o j e c t i o n [ v , b a s i s [ [ 

InnerProduct-> 
( I n t e g r a t e ! # 1 # 2 # { x . -

{ i , 1 , L e n g t b [ b a s i s ] } ] 
inf65j:= 

p r o j [ E x p [ x ] . l p o l y ] 

Outf65j= 
1 -7 2 

- ( - ) + E 5 (— + E) (-1 + 3 x ) 
E 3 x E 

2 E 4 

37 2 
7 ( 5 E) x (-3 + 5 x ) 

E 

4 

-266 2 4 
9 ( + 36 E) (3 - 30 x + 35 x ) 

E 

16 

i l l . 

TpHl 

i , i> i&)] . | | ! ! l 

1 
"Λ 1 H-i&l 

|;|:j:j] 
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The approximating polynomial is then simplified and expressed with numerical coefficients in app. 

lnfôôj:= 
a p p = S i m p l ± f y [ H [ p r o j [ E x p [ x ] , l p o l y ] ] ] 

OutfôôJ* 
2 3 

1.00003 + 0.997955 x + 0.499352 x + 0.176139 x + 

4 
0.0435974 x 

1 
a 1 l:::::|| 

Both functions are plotted simultaneously to show the closeness of the approximation, and then the difference is 
plotted to better illustrate the accuracy of the approximation with Legendre polynomials. 

Inf67j:= 
P l o t [ { a p p , E x p [ x ] } , { x , - i , l } ] 

-1 - 0 . 5 0.5 

Outf67j= 
-Graphics-

inf68j:= 
Plo t [app-Exp[x ] , {x . - i , l } ] 

0.001 

Outf68j= 
-Graphics-

ΓΓΤ7τι1οο%^|ΐθΓΊ| 

ιιοιΛοιΙιΛοΐΙίίίλοι 

The graphs of app 
and Exp[x] 
are virtually identical 

MBMJU M M W N W M M 

In fact, the difference 
between Στρ[τ\ 
and app 
is reasonably small 

}\ E2 
a 
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• Tridiagonal.m 

Version 2.0's T r i d i a g o n a l . m package offers the command T r i d i a g o n a l S o l v e [a, b , c , r ] to 
solve the system of equations Ax=r where A is a tridiagonal matrix with diagonal b, upper diagonal c, and lower 
diagonal a. Matrices of this type arise in many areas of applied mathematics and can be rather large in dimensions. 
Therefore, this command may be more useful than other commands available for solving systems of linear 
equations. In the first example below, the following system is solved: 

O Example: 

'2 -1 0 ] 

-1 2 -1 

0 -1 2 j 

ΓΧι 

I 2 

W 

2 

~ 4 

"11 

0 

|_-ij 
Notice that the solution of the system is given as the list {xl, x2, x3}. 

TridiagonalSolue 

«Tridiagonal. m 

a = { - i , - i } ; 
b = { 2 , 2 . 2 } ; 
c = { - l , - i > ; 
r = { H [ P i A 2 J / 4 , 0 , - H [ P i ~ 2 ] / 4 ) ; 
Tr id iagonalSo lve [ a, b , c , r ] 

Ovt/7/= 
{1.2337, 0 . , -1 .2337} 

KS 

We interpret the resua to m&<m: 

2 -1 θ ' 
-1 2 -1 
0 - 1 2 

ΙΓ 12337" 
0 

[-1.2337 

2 
rr 

[ l l 
0 

_ - l J 
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D Example: 

As previously indicated, tridiagonal systems are common in many fields. One example of this is the numerical 
solution to differential equations. Consider the boundary value problem 

- ^ 4 = f(x), 0<x<l 
dx 
u(0) = 0 , u(l) = 0. 

(This is the problem which describes the steady-state case of the heat equation with fixed end temperatures of zero 
degrees and heat source f(x).) In order to solve this problem numerically, it must be changed from a continuous 
problem to a discrete one. This is accomplished first by providing a finite amount of information about f at the 
equally spaced points x = h, x = 2h,..., x = nh. An approximate solution is computed at these values of x. At the 
endpoints, x = 0 and x = 1 = (n+l)h, the solution must be zero from the boundary conditions. Hence, the 
approximate solutions at the endpoints are known to be 

u0 = 0 and un+1 = 0. 

The derivatives in the differential equation are replaced by the difference quotients 

du _ u(x + h ) - u ( x - h ) 
d x " 2h 

and 

d2u _ u(x + h) - 2u(x) + u(x - h) 
dx2 " h2 

Hence, at a typical mesh point x = jh, the differential equation is replaced by the discrete analog 

-u j + 1 +2Uj -u H =h 2 f ( jh ) . 

There are n equations of the form, one for each value of j = 1,..., n. (Note that h = l/(n+l)). Therefore, a 
numerical solution to this differential equation is obtained by solving the tridiagonal system which results from the 
discrete problem. The function so in which sets up and solves the system for any value of n and any function f 
is defined below. The output is given as a list of ordered pairs in which the first coordinate represents the 
meshpoint while the second coordinate gives the approximate solution at the corresponding meshpoint. In the 
example which follows, the boundary-value problem 

ϊ- = 4π28ΐη(2πχ), 0 < χ < 1 
dx 
u(0) = 0, u(l) = 0. 

is solved. Of course, the exact solution to this problem is known to be u(x) = sin 2πχ. Hence, the approximate 
solutions found with this finite-difference method can be compared to the true solution. 
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The solution is approximated, first, for n = 6. The points given by s o i n are then plotted with L i s t P l o t and 
shown simultaneously with the graph of the exact solution. 

loinwnniiiinoiou 
in[9j:= 

Clear[a,b,c,r] 
soln[f_,n_]:= 

Hodule[{h,a,b,c,r,vec,table}t 
b=i/(n+l); 
a=Table[-l,{i,i,n-l>]; 
b=Table[2,{i,l,n}]; 
c=Table[-l,{i,l,n-l}]; 
r=Table[ hA2 H[£[i b]].{i,l,n>]//M; 
▼ec=TridiagonalSolve[a,b,c,r]//H; 
table=Table[{i b,vec[[i]]},{i,l,n}] 

] 

\ For the function soin. b 
a , b , c , r , v e c and t a b l e 
are defined to be local 
variables. 

f [x_ ]=4 Pi~2 S in[2 Pi x] 

outftoj= 
2 

4 P i Sin[2 P i x] 
A?/ / / / · -

s o l n [ f , 6 ] 

Outfit/= 
l 2 : 

{{ - , 0.836508}, {-, 1.04311}, {■ 

nAS« 

For this example, define f (x) = An Sin(2tix). 

0.464227}, { - , - 0 .464227} , 
7 

{-, -1 .04311} , {-, 
7 7 

-0.836508}} 
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The points given by s o i n are then plotted with L i s t P l o t and shown simultaneously with the graph of the 
exact solution. 

approx=ListPlot[soln[f,6], 
PlotStyle->GrayLevel[0], 
DisplayFunction-> Id entity] ; 

plot=Plot[Sin[2 Pi x],{x,0,i}, 
DisplayFunction-> Id entity] ; 

Shov[approx,plot,DisplayFunction->$DisplayFunction] 

0.5 

-0.5 

Outf26j= 
-Graphics- ]J 
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Similar steps are followed below with n = 20 and n = 50 to demonstrate the improved approximation as n 
increases. 

inf33j:= 
s o l = s o l n [ f , 2 0 ] ; 
S h o r t [ s o l , 2 ] 

Outf33JAbhört* 
1 2 1 

{ { — , 0 .296964} , { — , 0 .567541} , { - , 0 .78769} , « 1 5 » , 
21 21 7 

19 20 
{ — , -0 .567541 } , { — , -0 .296964} } 
21 21 

lnf36j:= 
approx=ListPlot[sol, 

PlotStyle->GrayLevel[0], 
DisplayFunction->Identity]; 

plot=Plot[Sin[2 Pi x],{x,0,i>, 
DisplayFunction->Identity]; 

Shov[approz,plot,DisplayFunction->$DisplayFunction] 

0.5 

-0.5 

Outf36j= 
-Graphics -
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The calculations for n=50 are given below. Note the improvement of the approximation which results: 

3ol=soln[f,50]; 
Short[sol,2] 

Ovt/3SM*5tort= 
1 2 1 

{{ —, 0 .123044}, { —, 0.244222}, { —, 0.361699}, « 4 5 » , 
51 51 17 

49 50 
{ —, -0.244222}, { —, -0.123044}} 
51 51 

fof47j:= 
approx=ListPlot[sol, 

PlotStyle->GrayLevel[0], 
DisplayFunction->Identity]; 

plot=Plot[Sin[2 Pi x],{x,0,i}, 
DisplayFunction->Identity]; 

Shov[approx,plot,DisplayFunction->$DisplayFunction] 

0 .5 h 

- 0 . 5 

Outf47j= 
-Graphics-

ri: mil ■in oo% -HPI ili« 
m 
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• 7.3 Version 2.0 Calculus 
The packages contained in the Version 2.0 Calculus folder appear as follows: 

ID ^^m 
6 items 

i<3fcfc 

FourierTransform .m 

Vector Analysis.m 

loi 

ü i Calculus S B 
57,332K in disk 

.«dfcb 

LaplaceTransform .rn 

D 
Common 

21 

^ ^ 
1 Sta&2± 1 

Pade.m 

Master.m 

^^^ai 
,405K available | 

ÇA 

ö\ 
ΙΦΙΒ3Ι 

The packages Four 1er Trans form, m and LaplaceTransform.m are discussed here; 
V e c t o r A n a l y s i s . m was discussed in Chapter 5. 

470 



Chapter 7 Introduction to Packages 

• LaplaceTransform.m 

Commands which can be used to compute Laplace transforms and inverse Laplace transforms are located in the 
LaplaceTransform.m package. The command I n v e r s e L a p l a c e T r a n e f o r m [ f [ s ] , s , t ] 
computes the inverse Laplace transform of f [s] and the result is a function of t while 
LaplaceTranef orm[g [ t ] , t , s ] yields the Laplace transform of g [ t ] as a function of a. Several 
examples are given below. 

O Example: 

IDÎ LaplaceExample 
lnf!58j:= 

I n v e r s e L a p l a c e T r a n s f o r m [ 1 / s , s , t ] 

Outff58j= 
1 

inl!59j:= 
L a p l a c e T r a n s f o r m [ t A 4 Exp[a t ] , t * s ] 

Outf!59j= 
24 

Jl \Q\ 

computes the 
inverse Laplace 
transform of 
1 

J*UM"M""|plip]ff*;*;' 

The package 
L a p l a c e T r a n s f o r i . i 
contains definitions of 
elementary Laplace transforms 
and their inverses. 

completes the Laplace transform of 

t4eAl, a constant. 

(-a + s ) 

inf!ÔOj:= 
L a p l a c e T r a n s f o r m [ l / a S i n [ a A 2 t ] , t , s ] 

OutftôOj* 
a 

4 2 
a + s 

fnf/6f/:= 
I n v e r s e L a p l a c e T r a n s f o r m [ 1 / ( s A 2 + 5 ) ~ 2 , s , t ] 

Outftô!j= 
S i n [ S q r t [ 5 ] t ] 

t ( -Cos [Sqr t [5 ] t ] + ) 
Sq r t [5 ] t 

10 

JII 
computes the Laplace transform of 

-Sinfa tV a =a constant 

H 
competes the inverse Laplace 
transform of 

1 

( , * + 5 ) 2 

471 

5 



Chapter 7 Introduction to Packages 

Of course, an application of Laplace transforms is the solution of differential equations. In order to use these 
techniques, however, several important properties of Laplace transforms must be recalled. Two of these are 
investigated below with Mathematica and will be used later. Note how the derivative of the Laplace transform is 
represented in the second problem. 

inf!62j:= 
C l e a r [ z ] 
L a p l a c e T r a n s f o r m [ x ' ' [ t ] , t , s ] 

Out[!62j= 
2 

s Lap laceTrans fo rm[x[ t ] , t , s] - s x[0] 

x ' [ 0 ] 

Înftô3j:= 
L a p l a c e T r a n s f orm[t x ' [ t ] , t , s ] 

Outf!ô3j= 
- ( L a p l a c e T r a n s f o r m [ x [ t ] , t , s] + 

computes the Laplace transform of%"(fy 

JJ 
computes the, Laplace transform oft x'(r) 

■WHwgflHmuww 

( 0 , 0 , 1 ) 
LaplaceTransform [ x [ t ] , t , s] 

is equivalent to 
to the derivative of the Laplace 
transform ofx(t): 

—LaplaceTYansfoim (x(t)). 
w*«w*w«yyyy*«*w»*ww 
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O Application: Solutions of Ordinary Differential Equations 

Consider the following second-order system of ordinary differential equations with initial conditions: 

x" +10 x - 4 y = 0, x(0) = 0, x'(0) = 3/2 
- 4 x + y" + 4 y = 0, y(0) = 0, y'(0) = - 3 / 2 

Laplace transforms can be used to solve this system. After clearing all definitions, the Laplace transform of the first 
equation is found and called l eq l . Similarly, the Laplace transform of the second equation is found and called 
l e q 2 . 

I inf!32/:= 
Clear[x.y,t,leql,leq2J 
1e ql=Lapla c eTransf o ri[ 

x 1 e [ t ] + 1 0 x [ t l - 4 y [ t ] = = 0 , t , s 
] 

\Outf!32j= 
10 Lap l aceTrans fo rm[x [ t ] , t , s] + 

2 
s Lap l aceTrans fo rm[x [ t ] , t , s] -

4 Lap laceTrans fo rm[y[ t J , t , s] -

s x[0] - x ' [ 0 ] == 0 
inf!33j:= 

1e q2=Lapla c eTrans f o r i [ 
- 4 x [ t ] + y " , [ t ] + 4 y [ t ] = = 0 , t , s 

] 

\Outf!33j= 
-4 Lap l aceTrans fo rm[x [ t ] , t , s] + 

4 Lap l aceTrans fo rm[y [ t ] , t , s] + 

2 
s Lap l aceTrans fo rm[y [ t ] , t , s] -

s y [0] - y ' [ 0 ] == 0 

The usual convention when working with Laplace transforms is to use the capital letter X when referring to the 
Laplace transform of x. Hence, in the above calculations, Lap laceTrans fo rm[x [ t ] , t , s ] is replaced 
with capx and LaplaceTransform[y [ t ] , t , s ] is replaced with capy. Also the initial values 
x [0 ]=0 , χ ' [ 0 ]=3 /2 , y [0]=0, and y ' [ 0 ] = - 3 / 2 can be substituted into the previous calculations. 

In order to solve the system of differential 
equations 
x"(t) + 10x(t)-4y(t) = 0 w e 

-4x(t) + yM(t) + 4y(t) = 0 
computing the Lcplace transform of each 
equation We name the Lcplace transform 
of the equation JC"+ 10x,-4y=0 l e q l 
and name the Laplace transform of the 
equation-4x,+y"+4y=0 l e q 2 . 

473 



Chapter 7 Introduction to Packages 

These substitutions are made after defining the list of replacements, called rule , below. Then, l e q l / . ru le 
and l e q 2 / . r u l e make all of the replacements given in ru le , ( l e q l / . r u l e is an equation involving 
capx while l e q 2 / . r u l e involves capy). Hence, the two equations which result are solved for capx and 
capy, respectively, in the Solve command. The result is named s o l u t i o n . 

inf!34j:= I We must solve l e q l 
r u l e = { L a p l a c e T r a n s f orm[ x[ t ] , t , s ] - > c a p x , j and leq2 for 

x [ 0 1 - > 0 , x ' [ 0 ] - > 3 / 2 , I L a p l a c e T r a n s f o n [ ι 
ν Γ 0 1 - > 0 ν ' Γ 0 1 - > - 3 / 2 I x [ t ] , t , s ] and 
YLuj :>u,y LUI » *'*. I L a p l a c e T r a n s f o r n [ 
L a p l a c e T r a n s f o r n [ y [ t ] , t , s ] - > c a p y } ; y [ t ] , t , s ] wtffcite 

tnf!35j:= I conditions that x(0> 0, x'(0> 3/2, 
s o l u t i o n = S o l v e [ b C ö > ^ andy'(0£-3/Z 

{leql / . r u l e , l e q 2 / . r u l e } , g Hence, for convenience, define ι 
{ cap x , capy } ] I r u l e to substutute the appropriate 

1 v 
U(/(J / -J-Jj — " T 

{{capx -> 

2 
-24 3 (8 + 2 s ) 

+ \ 
2 4 2 4 

96 + 56 s + 4 s 96 + 56 s + 4 s 

, capy -> 

2 
24 3 (20 + 2 s ) 

2 4 2 4 
96 + 56 s + 4 s 96 + 56 s + 4 s 

} 1 

^ ^ L ^ ^ ^ ^ ^ ^ J f ^ ^ ^ f ^ m m n m J 1 

|j|jî s o l u t i o n » S o l v e [ { 
l e q l / . r u l e , 
l e q 2 / . r u l e } , 
{ c a p x , c a p y } ] 

first replaces the expressions 
L a p l a c eTrans f o r i [ 

x [ t ] , t , s ] , 
L a p l a c eTrans £ o rm[ 

y [ t ] , t , s ] , x [ 0 ] , 
k ' [ 0 ] , y [ 0 ] , and Y ' [ 0 ] 
\by c a p x , c a p y , 0 , 3 / 2 
Q , Û 3 W Î - 3 / 2 , thensohtesthe 

{resulting system for capx 
and c a p y . 
The resulting list is named 
s o l u t i o n . 
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Note that s o l u t i o n is a list. Therefore, the formulas for capx and capy must be extracted. This is 
accomplished with s o l u t i o n [ [ 1 , 1 , 2 ] ] and s o l u t i o n [ [ 1 , 2 , 2 ] ] , respectively. This is shown 
below: 

lnf!36j: 
so 

JJL 1 V · — U Inftillililifl K W W W M » 

l u t i o n [ [ 1 , 1 , 2 ] ] I corresponds to the Laplace transform ofx(t). 1 

0utf!36j= 

-24 3 (8 + 2 s ) 

2 4 2 4 
96 + 56 s + 4 s 96 + 56 s + 4 s 

inf!37j:= 
s o l u t l o n [ [ l , 2 , 2 ] ] 

Outf!37j= 

24 

JJL 
corresponds to the Laplace transform ofy(t). 

3 (20 + 2 s ) 

2 4 2 4 
96 + 56 s + 4 s 96 + 56 s + 4 s 
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The solution (x [ t ] , y [ t ] ) is now obtained through the inverse Laplace transform of the formulas of the 
Laplace transform of x, capx, and that of y, capy. These are determined below with the 
InverseLaplaceTransform command. Finally, the solution is graphed with Parametr icP lo t for 
values of t from t = 0 to t = 2 P i . 

loooloonoliiSiiini 

computes the inverse Laplace 
transform of s o l u t i o n [ [ 1 , 1 ,211 
and names the resulting funtion (of 

\t) x [ t ] . 

Jl 

inf!38j:= 
x[t_]=Inver s eLapla c eTrans f o rm[ 

solution[[l,i,2]],s,t] 

Outf!38j= 
-3 S i n [ S q r t [ 2 ] t ] 9 Sin[2 Sqr t [3 ] t ] 

10 Sqr t [2 ] 10 Sqr t [3 ] 

inf!39j:= 
Y[t_]=ΙΏΎΒΓ s eLapla c eTrans f o ri[ 

solution[[i,2,2]],s,t] 

Outf!39j= 
-3 S i n [ S q r t [ 2 ] t ] 9 Sin[2 Sqr t [3 ] t ] 

5 Sqr t [2 ] 20 Sqr t [3 ] 
inf!4U:= _...,.. 

graphsMt),y(t)}for0 < t < 2n..| 
w o m o y n i i i m n w oi 01 ι 0101111* 

computes the inverse Laplace transform 
of s o l u t i o n [ [ 1 , 2 , 2 ] ] 
and names the resulting function (oft) 
y [ t ] . 

9Ώ5 

HC0QN0SM 

Outf!4U= 
-Graph ics -
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• FourierTransform.m 

The FourierTransform.m package contains two commands useful for the computation of Fourier series. 
The first of these is F o u r i e r T r i g S e r i e s [f [ x ] , {x, -L, L} , n] which computes the first n terms (the 
nth partial sum) of the Fourier series of the periodic extension of f [x] on the interval {-L,L}. This series is 
given by the formula 

Σ°° ( ηπχ , . ηπχ 

a n c o s — + bnsin—-
where 

a o = i t f ( x ) d x 

1 fL r/ \ η π χ Λ 1 ^ 
a n = r . f(x)cos—-dx ,n = l,2,... 

L L L 
b n = - J _ L f (x ) s in—dx ,n = l,2,... . 

Since these integrals are rather complicated in most cases, the FourierTrigSer ies command is quite 
useful. This package also includes the command NFourierTrigSeries which gives the Fourier series in 
terms of numerically approximated Fourier series coefficients. These two commands are illustrated below. 

D Example: 

First, the fourth partial sum of the Fourier series for the periodic extension of f [x] = x is computed with 
Four ierTr igSer ie s and named s erexac t . Next, the same is given numerically for the function 
f [x] = Abe [ x ] . This result is called serapprox. 

infSj:= 
s e r e x a c t = F o u r i e r T r i g S e r i e s [ x , { x , - P i , P i } , 4 ] 

Outf8j= 
2 Sin[3 x] Sin[4 x] 

2 Sin[x] - Sin[2 x] + 
3 2 

oiAoiliflJiiiiil 
s e r e x a c t is the fourth 
partial sum of the Fourier 
series for the periodic 
extension off(x)=x on the 
interval f-τι,τι}. 

TT 

3 e r a p p r o x = N F o u r i e r T r i g S e r i e s [ A h 3 [ x ] , { x , - P i , P i } , 4 ] 

ûittf/û/* 
4.9348 4.00001 Cos[x] 

Pi Pi 

0.00000659848 Cos[2 x] 

Pi 

0.00000659835 Cos[4 x] 

Pi 

0.444451 Cos[3 x] 

P i 

s e r a p p r o x is an 
approximation of the 

\iOurthpartial sum of 
the Fourier series for 
the periodic extension 
ofj{x)=fxfonthe 
interval [-τι,τι]. 

All 

0. 
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The graphs of f [x] = x and f [x] = Abs [x] along with the fourth partial sums of the corresponding Fourier 
series, s erexact and serapprox, can be displayed in the same graphics cell. This is accomplished in the 
single command below. Recall that the P l o t option D i s p l a y F u n c t i o n - > l d e n t i t y causes the graph 
to be suppressed initially. Then, the command 
S h o w [ G r a p h i c s A r r a y [ { { p l o t x , p l o t s e r e x a c t } , { p l o t a b s x , p l o t s e r a p p r o x } } ] ] 
displays all four graphs in one cell. Also, because of the grouping within GraphicsArray, the plots are 
displayed in the appropriate order. The Fourier series approximation of each function can easily be viewed in this 
manner. 

FourierEKample 

inf!6j:= 
p l o t x = P l o t [ x , { x , - P i , P i } , 

DisplayFunction->Identity]; 
plotserexact=Plot[serexact,{x,-Pi,5Pi>, 

DisplayFunction->Identity]; 
plotabsx=Plot[Abs[x],{x,-Pi,Pi), 

DisplayFunction->Identity]; 
plotserapprox=Plot[serapprox,{x,-Pi,5Pi>, 

DisplayFunction->Identity]; 
Sbow[GraphicsArray[{{plotx,plotserexact}, 

{plotabsx,plotserapprox}}]] 

»aa. KS 

- 3 - 2 - 1 1 2 3 

Outf!6/= 
-Graphi c sÀr r a y -

-2.52.557.3D2.55 

IBB Π|ιοο%^ΙΙΦΙ 

Here we graph eackßtnction 
and its cpproyùmation and 
then show ail four graphs 
in a single grcphics cell using 
the coïnmand 
Graphi c sÀr r a y . 

iiiii^ 
sä 
a 
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D Example: 

The Fourier series of piecewise-defined functions can also be computed. This is illustrated with the function 
f [x] below. After making the correct definition of this function, a table called approxs which consists of the 
second, sixth, and tenth partial sums of the Fourier series for the periodic extension of f is constructed with 
NFourierSeries . (A shortened output for approxs is given below.) Since approxs is a list of three 
elements, the second partial sum is given by approxs [ [1] ] , the sixth by approxs [ [2] ] , and the tenth 
by approxs[ [3] ] . 

FourierEKamples 

inf!9j:= 
Clear [£ ] 
£ [ x _ ] : = i / ; 0 <=x <=1 
£ [ x _ ] : = - x / ; - 1 <= x < 0 

After clearing all prior definitions of 
f we define 

1 if 0 < x < 1 
f(x) = -x if -1 < x < 0' 

inf20j:= 
approxs=Table[ 

HFourierTrigSeries[£[x],{x,-l,l>,n], 
fn.2.10,4)l; 

fnf30j:= 
Short[approxs,8] 

Outf30jsVShort= 
{0.750409 - 0.201825 Cos[Pi x] + 

0.000817324 Cos[2 Pi x] + 

0.318309 Sin[Pi x] + 0.159153 Sin[2 Pi x] 

0.750409 + «12», 

0.750409 - 0.201825 Cos[Pi x] + 

0.000817324 Cos[2 Pi x] + «16» + 

0.0353583 Sin[9 Pi x] + 

0.0318205 Sin[10 Pi x]} 

computes a table of approximations 
of the second, sixth, and tenth 
partial sums of the Fourier series 
for/. 
The resulting table is named 
approxs. 

#WOWWWteWMIWJU>5PMIOIOie»IOIDieiOIOIOIllllOIOIOIOI»IQIOI 

UtMiiiiiia 

Short[approxs,8] 
prints an abbreviated form 
of approxs 
on no more than eight lines. 
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The accuracy of the approximation of f[x] by the partial sums of the Fourier series can be seen by plotting 
approxs [ [1] ] , approxs [ [2] ] , and approxs [ [3] ] . The graphs below clearly show that the 
approximation becomes more accurate (the corresponding curves move closer to the function f ) as more terms of 
the Fourier series are used. 

As////·-
graphone=Plot[approxs[[i]],{x,0,4K 

DisplayFunction->Identity]; 
graphtwo=Plot[approxs[[2]],{x,0,4}, 

DisplayFunction->Identity]; 
graphthree=Plot[approxs[[3]],{x,0,4>, 

DisplayFunction->Identity]; 
Shov[Graphic3Array[{grapheme,graphtwo,graphthree}]J 

OutfttJ= 
-Gr aphi c sÀr r a y-

o These three graphs can also be plotted simultaneously in the single command below. Note that 
Evaluate [approxs] must be used in the P l o t command just as Re l ease was used in Version 1.2. 
The three are given in varying GrayLevel with the tenth partial sum represented by the darkest curve. 

inf?J:* 
P l o t [ E v a l u a t e [ a p p r o x s ] , { x , 0 , 4 } , P l o t S t y l e - > 

{ G r a y L e v e l [ . 6 ] , G r a y L e v e l [ . 3 ] , 
G r a y L e v e l [ 0 ] } ] 

Outf7j= 
-Graphics-

In this case, Mathematica first computes 
the table a p p r o x s 
and then graphs the functions in different 
shades of gray. 

MMM 

It is VERY important to include 
the command E v a l u a t e 
In Version 2.0, the command 
E v a l u a t e replaces the command 
R e l e a s e from Version 1.2. 
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17.4 Discrete Math 

DiscreteMath 
5 items 50/765K in disk 27/972K available 

K> 

ClebschGordan .m CombinatorialSimplification .m Tree.m 

CombinatorialFunctions .m Permutations.m 

m. 

The DiscreteMath 
\folder is contained in 
the folder Packages. 

i CombinatorialFunctions.m 

In addition to the built-in Mathematica functions Binomial [m, n] and 
Mul t inomia l [ n l , n2 , n3 , . . . , nm], the package C o m b i n a t o r i a l F u n c t i o n s .m, included 
with both Version 1.2 and Version 2.0, provides commands which deal with subfactonals, Catalan and Fibonacci 
numbers as well as the Hoftstadter functions. We first discuss the built-in functions. 

Binomial [n, m ] gives the binomial coefficient i"l- n! 
[mj m!(n-m)! 

objects from a collection of n objects, without consideration to order.) 

( The number of ways to choose 

M u l t i n o m i a l t n ! , n 2 , . . . , n 1 ] gives the multinomial coefficient 
N! 

ni !n 2 ! -n m ! 
, where 

^ n j = N. Hence, the multinomial coefficient gives the number of ways to partition N distinct 
i=l 

objects into m sets, each having size n̂  . 
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Several examples of these functions are given below prior to loading the package : 

1DI CombinatorialFunctions IH1 

B l n o m l a l [ 3 , 3 ] 

Outf!j= 
1 

B l n o m l a l [ 3 , 2 ] 

Outf2j= 
3 

B l n o m l a l [ 1 0 , 5 ] 

Outf3j= 
252 

in[4j:= 
Hultinomial[2,4,7] 

Outf4j= 
25740 

fn[5j:= 
H u l t i n o m i a l [ 3 , 2 , 9 , 1 5 , 4 3 ] 

Out[5j= 
177993982379513913738178749696000 

U 

I 'W Ha m 

B i n o m i a l [ 3 , 3 ] computes 
3) 3! _ 

" 3 Î " ' 

B i n o m i a l [ 3 , 2 ] confutes 

P I - — . 
(2J (3-2)!2! 

B ± n o m ± a l [ 1 0 , 5 ] computes 
10! 

v 5 , (10-5)!5! 

Hul t i n o m i a l [ 2 , 4 , 7 ] computes 
(2 + 4 + 7)! 

2!4!7! 

H u l t i n o m i a l [ 3 , 2 , 9 , 1 5 , 4 3 ] 

(3 + 2 + 9 + 15 + 43)! 
computes 3!2!9!15!43! 

Typical problems which involve determining the binomial and multinomial coefficients are as follows : 
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D Example: 

In how many ways can an unordered 5-card poker hand be selected from a deck of 52 cards ? 

3Qlutipn : 

The answer is 
5) 

and is easily computed by entering Binomial [52,5] . 

D Example: 

How many strings can be formed from the letters in Mathematica ? 

Solution : The solution is determined using the multinomial coefficient. In the word Mathematica, the letter A 
appears 3 times while the letters M and T each appear twice. All others appear only once and there are 11 total 
letters. Therefore, the correct value is found with M u l t i n o m i a l [ 3 , 2 , 2 , 1 , 1 , 1 , 1 ] . (The l's must not 
be omitted because the command uses them to determine the numerator in the calculation.) 

Answers to both examples are computed below: 

B i n o m i a l [ 5 2 , 5 ] cakidates 
52! 

ï D ^ = CombinatorialFunctions 

info/:' 
B i n o m i a l [ 5 2 , 5 ] 

\Outf6f= 
2598960 

\l*f7j:* 
n u l t i n o m i a l [ 3 , 2 , 2 , i , l , i , 

\outf?J= 
1663200 

É w i i i i ^ ^ I iiiigiiiiiiiiiiiiiiiiiiiiiii 

^ = H i 

11 
ill 

, 1 
1 

M lineal 

f 5 2 l -
(52-5)!5! 

| H u l t i n o m i a l [ 3 , 2 , 2 . 1 , l . l , l ] 
(3 + 2 + 2 + 1 + 1 + 1 + 1)! 

calculates ■ 
3!2!2! 
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D Example: 

A useful combinatorial function which can be used only after loading CoxnbinatorialFunctions .m, is 
Subf a c t o r i a l [n] . This gives the number of permutations of n objects which leave no object fixed and is 
determined using the formula n ! Sum[ (-1) A k / k ! , {Jc, 0 , n } ] . 
After loading CoxnbinatorialFunctions .m, several examples are given. Subf a c t o r i a l [4] is 
also found using the formula 4 ! Sum[ (-1) A k/k 9, {k ,0 ,4} ] to verify that the same value results from 
each command. 

ID! CombinatorialFunctions 

inf8j:= 
« C o m b i n a t o r i a l F u n c t i o n s . m 

tn[9j:= 
S u b f a c t o r i a l [ 2 ] 

Ouif9j= 
1 

inf!Oj:= 
S u b f a c t o r i a l [ 4 ] 

Outf!Oj= 
9 

InftU:* 
4! S u m [ ( - i ) A k / k ! , { k , û \ 4 } ] 

Outf!U= 
9 

!nf!2j:= 
S u b f a c t o r i a l [ 1 0 ] 

Outf!&= 
1334961 

0 

| I I I DEL 
m 

oial 

The definition of Subf a c t o r i a l 
is contained in the package 
C o m b i n a t o r i a l F u n c t i o n s . l 

S u b f a c t o r i a l [ 2 ] computes 

£(-Dk 

2! 2-
k=0 

k! 

S u b f a c t o r i a l [ 4 ] computes 

kfo kl 

4 ! S u m [ ( - i ) A k / k ! , { k , 0 , 4 > ] 
also computes 
Subfactorial[4J. 

S u b f a c t o r i a l [ 1 0 ] computes 

^ M ) k 

10! Σ it-
k=0 Κ ! 

Another function found in CoxnbinatorialFunctions ,m determines the Catalan numbers. These 
numbers are found with the formula Binoxnial [2n, n] / (n+1) and are named after the Belgian 
mathematician Eugene-Charles Catalan (1814-1894) who discovered an elementary derivation of the formula. The 
problem which led to this discovery was that of determining the number of ways to divide a convex (n+2)-sided 
polygon, n greater than or equal to 1, into triangles by drawing (n-1) lines through the comers that do not intersect 
in the interior of the polygon. This number is found with CatalanNuxriber [n] which gives the nth Catalan 
number. 
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D Example: 

For example, there are five ways to divide a convex pentagon (n=3) into triangles by drawing two nonintersecting 
lined through the corners. This is given with CatalanNumber [3] . A table of Catalan numbers can also be 
created as illustrated below. 

ConibiT^gJj]jJ^ajyyjygj^ 

computes v3, 

ions 

inf!3j:= 
CatalanHumber[3] 

Outf!3j= 
5 

inf!4j:= 
Table[CatalanNumber[i],{i,1,5}]//TableForm 

Outff 4j//TâbleForm= 
1 

2 

5 

14 

42 

KS 

computes Θ 
i + Γ 

\jor i* lt 2t 3,4,5 <ma 
| expresses the result in 
\ TableForm 

r | · I · 35Γ a 
Another useful sequence is that of the Fibonacci numbers named for the Italian merchant and mathematician, 
Leonardo Fibonacci (1170-1250). These numbers are encountered in many areas as well and first arose in a puzzle 
about rabbits. One interesting fact about this sequence involves the ratio of successive terms. The limiting value of 
this ratio is: 

1 + ^5 V5-1 
GoldenRatio - 1 = 1 = « 0.61803. 
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D Example: 

This is demonstrated below. First, a table of the first 16 Fibonacci numbers is created with Table and 
Fibonacci [n] which yields the nth Fibonacci number. This is called t a b l e 1. Then, a table of the ratios of 
successive Fibonacci numbers is computed using t a b l e l to illustrate that the limit is the Golden Mean-1. A 
numerical approximation of the Golden Mean is also computed for comparison. Note that the first Fibonaaci number 
is found with index, n = 0. Thus, the nth Fibonacci number is found with F ibonacci [ n - 1 ] . 

CombinatorialFunctions IHI, 
F i b o n a c c i [ O ] and F i b o n a c c i [ 1 ] 
are both defined to be zero. The nth Fibonacci number 
is obtained by adding together the (n- I)st and (n-2)nd 
Fibonacci numbers. 

inf!8j:= 
F i b o n a c c i [ 0 ] 

Outf!8j= 
1 

inf!9j:= 
t a b l e f i b = T a b l e [ F i b o n a c c i [ i ] , { i , 0 , 1 5 } ] 

Outf!9j= 
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 

) Ν Ν Η Μ Μ Μ · Μ ΜΙ 

IlUlWlMMMWIlWWWIJttMIUWMM^ 

computes a table of the first 
sixteen Fibonacci numbers. 
The resulting table is named 
t a b l e f i b . 

377, 610, 987} 

in[20j:= 
r a t i o = T a b l e [ t a b l e f i b [ [ i ] ] / t a b l e f i b [ [ i + 1 ] ] 

{ i , 1 . 1 5 } ] / / M 

0utf20j= 
{ 1 . , 0 . 5 , 0.666667, 0 .6 , 0 .625, 0.615385, 0.619048 

JL 
computes the ratio of successive 
Fibonacci numbers. 

0.617647, 0.618182, 0.617978, 0.618056, 0.618026, 

0.618037, 0.618033, 0.618034} 

■ ■ ■ ■ ■«■! mm 
élt^itititit^it^it^ 

0 
a 

D Example: 

It should be noted that calculation of Fibonacci [n] for n > 10 is quite slow. Hence, an alternate approach is 
suggested. A table of the first 250 Fibonacci numbers can easily be found as follows (a shortened table of five lines i; 
requested to save space). 

Mathematica is designed to allow it to "remember" computed function values. In general, functions defined in the 
form 
f [x_J :=f [x] -function definition will retain all values computed for later use. 
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The calculation of the first 250 Fibonacci numbers required approximately 1200 seconds in computation time with 
Fibonacci [n] , but the output was practically instantaneous when using the commands below. 

CombinatorialFunctions 

tnf23j:= 
£ i b [ 0 ] = l 
f i b [ i ] = i 

~S&L 
£ i b [ n _ J : = £ i b [ n ] = 
tells Matkematica to remember 
the values of £ i b [ n ] 

£ i b [ n _ ] : = f i b [ n l = £ i b [ n - i ] + £ i b [ n - 2 ] i ^ £ £ £ £ i f f i | s 

t a b l e = T a b l e [ £ i b [ i ] , { i , 0 . 2 5 0 } ] 
S h o r t [ t a b l e , 5 ] 

Outf23j//Short» 

{1, 1, 2, 3 , 5, « 2 4 2 » , 3 0 1 6 1 « 4 3 » 0 5 0 1 , 

4880197746793002076754294951020699004973\ 

287771475874, 7896325826131730509282738\ 

943634332893686268675876375} 
Time: 12.77 seconcffiT 

LÉÎ*ÎÎâiÎÉÎiiÎiiâÉÎÉÎÉÎ«iÉiÉitÎUÎ«Î^^ 

m 
a 

MIIMUff 

A table containing the values f i b [ 5 0 ] , f i b [100] , f i b [ 1 5 0 ] , and f i b [ 2 0 0 ] is given below. 

Since f i b [50 ] , f i b [100] , f i b [150] , and f i b [200] were computed above, we note that recalling 
them is nearly instantaneous. Using the function F ibonacc i [n] to compute F ibonacc i [50] , 
F i b o n a c c i [ 1 0 0 ] , F i b o n a c c i [ 1 5 0 ] , and F i b o n a c c i [200] takes considerable time. 

CombinatorialFunctions 

inf25j:= 
T a b l e [ f i b [ 5 0 n ] , { n , l , 4 } ] / / TableForm 

Outf25j//TâtîeForm= 
12586269025 

354224848179261915075 

9969216677189303386214405760200 

280571172992510140037611932413038677189525 

Since Matkematica has already 
computed £ i b [ 5 0 ] , £ i b [ 100 ] . 
£ i b [ 1 5 0 ] , e r a ? £ i b [ 2 0 0 ] , 
representing them is almost immediate. 

Note that for Mathematica to compute 
F i b o n a c c i ^ 2 0 0 ] 
takes considerable time. 

T i me: 0 . 4 2 secondsKP I Blllllllllllllllll||||lll||||j||||||lll|||||||l||||||||§ C i 

l | E | E W W M W M M ) U M ) U i « W W ) W W W W W W I W^ 

E3 
a 
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D Application: 

Some interesting facts concerning Fibonacci numbers can now be investigated. 
p 

Consider the sequence {Tn}~=1 where Tn = ——, Fnbeing the nth Fibonacci number. 

Theorem: If Tn is prime, then n is either prime or a power of 5. 

(Another interesting fact about this sequence is that all numbers end in 1.) By computing the following table with 
the sequence of Fibonacci numbers in f i b [n] found above, these properties can be investigated. 

CombinatorialFunctions 

i ] ) , { i , l , 2 5 > ] J 
tnf!3j:= 

r a t i o = T a b l e [ f i b [ 5 i ] / ( 5 f i b [ : 

Outf!3j= 
{1, 11, 61, 451, 3001, 20801, 141961, 974611, 

6675901, 45768251, 313671601, 2150012161, 

14736206161, 101003973851, 692290189501, 

4745031073651, 32522917584361, 

222915417520961, 1527884938291801, 

10472279325329251, 71778069881360701, 

491974211042344811, 3372041404278257761, 

23112315627117696001, 158414167964045700001} 

0 

Time: 0.85 secondslQI I I M w\ 

Since we have already 
computed t i b [ i ] 
\for ir*0f..., 250, the ratios 
are quickly computed 
Every number bit the table 
r a t i o isprime. 

The Hofstadter function. Hof, is recursively defined by 
(i) Hof(l)=Hof(2)=l; and 
(ii) Hof(n)=Hof[n-Hof(n-1 ))+Hof(n-Hof(n-2)) 

Mathematical definition of the Hofstadter function is contained in the package 
C o m b i n a t o r i a l F u n c t i o n s .m and is denoted by H o f s t a d t e r [ n ] . 
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D Example: 

A table of the first thirty values of the Hof stadter function is given below : 

= Π = = = ^ = CombinatorialFunctions 

\lnf4j:= 
« C o m b i n a t o r i a l F u n c t i o n s . m 

\inf5j:= 
t a b l e 2 = T a b l e [ H o f s t a d t e r [ i ] , { i , 

\0utf5j= 
{ 1 , 1 , 2 , 3, 3, 4, 5, 5, 6, 6, 6, 

8, 8, 10, 9, 10, 1 1 , 1 1 , 12, 12, 

12, 16, 14, 14, 16, 16, 16, 16} 

ΗβΜΜΕίβββββίββίΙβίβίββΜΜβΜΜΜβΙΙίίβΜΜίΜίβΜβΜ̂  

B
 

mm
 

lH Jiii 
nil 

.1,30}] J j | 
"Λ 1 tij:j:jl 

8- ill 
i2, 11 

rM 

Joj 
^■^■^•^•^■^^•^j^^^jj 

t a b l e 2 is a tobte of 
Hof(i)forirlZt...t30. 
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i CombinatorialSimplification.m 

The package Combinator ia lS impl i f i ca t ion .m includes several rules which can be used to simplify 
certain expressions which Mathematica does not automatically simplify. For specific integers m and n, n ! 

computes the factorial of n; Binomial [m,n] computes m m! 
n) (m-n)!n! 

Unfortunately, if m and n are not specific integers, Mathematica does not automatically simplify the following 
expressions involving factorials and binomial coefficients: 

=D=== CombinatorialSimplification = 

\//>///■= 

( n + i ) ! / n ! 

\OutftJ= 
( 1 + n>! 

n! 
\lnf2j:= 

B i n o m i a l [ n . k + l ] / B i n o m i a l [ n , k ] 

\tMfZi-
Binomial[n, 1 + k] 

Binomial[n, k] 

ί — — ■■■■ ..Kil mmÈmmÈim 

^ H i | 

11 
*=! 

11 
■q 

-l-

IE 

13 
u 

liiiiiij 

M 
M 

ΐτ7 (η + 1)! 
IFor an integer n, = n + l. 

n! 
Nevertheless, Mathematica does 
not complete the simpäfication, 
B inomia 1 [ m, n ] produces the 

binomial coefficient 

ml 
(m-n)!n!' 
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D Example: 

Fortunately, these expressions can be simplified with after loading the package 
C o m b i n a t o r i a l S i m p l i f i c a t i o n . m. since C o m b i n a t o r i a l S i m p l i f i c a t i o n . m 
redefines the built-in combinatorial functions so that Mathematica symbolically reduces combinatorial functions: 

ΐ Π Β Β Ι CombinatorialSimplification ^ Ξ Η = | 

inftï/:* 
«CombinatorialSimpl i f icat ion. m 

inft3j:= Y 

(n+l)!/n! J 
\uutf!3j= 1 

1 + n J_ 

inf!4j:= Y 
( 2 n + l ) ! / ( 2 n ) ! J 

\outf!4j= 1 
1 + 2 n J_ 

inf!5j:= Y 
(2n+5)!/(2n)! J 

\outf?5j= 1 
(1 + 2 n) (2 + 2 n) (3 + 2 n) 

(4 + 2 n) (5 + 2 n) J_ 

Π 

Pi 
U 

After loading the package 
Combinator ia lS impl i f i ca t ion . 
the Mathematica assîmes that n 
is an integer and correctly simplifies 
the expressions 

(n + 1)! (2n + l)! 
n! ' (2n)! ' 

and 
(2x1 + 5)! 

(2xi)! 
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Binomial [n,m] is also redefined for the quotients Binomial [n, k] / B i n o m i a l [n, k -1 ] : 

tnf2tj:= 
B 
a- T 
inomial[ n, 3 ] /Binomial[ n, 2 ] J 

Outf2!]= 
-2 + n 

infZZj: 
Bino: mia l [n ,k+1] /B inomia l [n ,k ] J 

Outf22j= 
-k + n 

1 + k 

in[23j:= 
Bino: mia l [n ,k ] /B inomia l [n ,k+1] J 

Outf23j= 
1 + k 

-k + n 

Binomial[4„k+1]/Binomial[4,k] J 

Outf24j= 
4 - k 

1 + k 

SimUariy, Matkematiea assumes that h 
is an integer and simplifies 

M l ' l f l ίΑ1 
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( (Binomial [n, k+1]/Binomial [n, k] ) A2) / 
( (Binomial [n, k+1] / B i n o m i a l [n, k] ) Ap denotes the expression 

((n Yf 
'U + i. 

TnT 

(f n ^ 
k + 1; 

—. Mathematica is unable to simplify this expression until after the package 

V 

has been loaded: 

CombinatorialSimplification 

Inf3j:= 
((Binomial[n.k+1]/Binomial[n,k])A2)/ 
((Binomial[n, k+1]/Binomial[n,k])"p) 

Outf3j= 
-2 + p 2 - p 

Binomial[n, k] Binomial[n, 1 + k] 

lnf4j:= 
«CombinatorialSimplification. m 

infSj:-
((Binomial[n,k+1]/Binomial[n,k])A2)/ 
((Binomial[n,k+1]/Binomial[n,k])Ap) 

Ûitt/Sj» 
- 2 + p 2 - p 

(1 + k ) <-k + n ) 

0 PZJZZJHftT 

KS 

R3 
a 

Upon closing the Combinat o r i a l S i m p l i f i c a t i o n . m package, all new definitions are cleared. 
Hence, any built-in function which was redefined is unaltered by the changes made in the package. 
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Permutations.m 

A permutation of n distinct elements xt ,x2 ,..., xn is an ordering of the n elements. 

Permuta t ions .m gives several commands in addition to the built-in commands which are helpful in working 
with permutations. Mathematica already includes the function Pe rmuta t ion [ l i s t ] which gives all 
possible permutations of the list of n elements l i s t . This package includes PermutâtionQ [ l i s t ] which 
gives a value of True if l i s t is a possible permutation of n distinct elements and Fa l se otherwise. Therefore, 
if any of the n elements is omitted or repeated in l i s t , a value of Fa l se is given. Several examples that 
illustrate these ideas are given below. These calculations can be made after loading the package : 

Ι Π = = = ^ ^ Permutations M EPl| 
fnfSj:= T 

perm=Permutat lons[{1 ,2 ,3}] J 

\Outf8j= 1 
{{1 , 2, 3 } , {1 , 3, 2). 

{2, 1, 3 } , {2, 3 , 1 } , 

{3, 1, 2), {3, 2, 1}} _L 

tnf9j:= 
« P e r i u t a t i cms. m 

\inf!Oj:= Y 
Permutat ionQ[{1 ,3 ,2} ] J 

\Outf!Oj= 1 
True J_ 

/ / ? / / / / - 1" 
Permutat ionQ[{3 ,2 ,1} ] J 

\outf!U= 1 
True J_ 

\inf!2j:= Y 
Permutat ionQ[{3 ,2 ,2} ] J 

\outf!Zj= 1 
False J_ 

tnf!3j:= Y 
Permutat ionQ[{3 ,4 ,2} ] J 

\Outft3j= 1 
False J 

ÇjjjjfljjjjjgflggggjjjjgjjgggggQjQgjjjjggjjgjjjjjjgj^̂  

"H 
Eiiiiiy 

w 

ÎH SI 

Iperm is a list consisting of au 

{permutations of {1,2,3}. 

I Permutat ionQ[{1 ,3 ,2} ] 
is True since{ 1,3,2} is apermutation 

I of {1,2,3}. 

|PermutatlonQ[{3,2,1}] 
is True since {3,2,1} is a permutation 
of{l,2,3}. 

I PermutationQ[{3,2,2}] 
is False since {3,2,2} is not a 

I permutation of {1,2,3}. 

I PermutationQ[{3,4,2}] 
is False since {3,4,2} is not a 

{permutation of {1,2,3,4}. 
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The package also includes the command RandoinPermutation [n] which yields one possible permutation 
of the n elements in the list { 1 , 2 , 3 , . . . n } . This permutation is selected at random. Notice in the example 
which follows that two different permutations are given with RandoinPermutation [15] . Two other 
commands found in the package are ToCycles [ p e r m u t a t i o n ] which gives p e r m u t a t i o n as a list of 
cyclic permutations and FromCycles [ c y c l e s ] which returns p e r m u t a t i o n to its original form. 

Notice in the example which follows that two different permutations are given with 
R a n d o m P e r m u t a t i o n [ 1 5 ] . 

Permutations 
inf30j:= 

r a n d oml=fiand omP e n u t a t i on[ 15 ] 

0utf30j= 
{13, 12, 8, 10, 2, 1 1 , 14, 1, 6, 

15, 5, 3 , 9, 7, 4} 

lfif3!j:= 
rand om2=fiandomP e rmutat i on[15] 

Outf3!j= 
{7, 12, 15, 11, 1, 14, 4, 5, 3, 

9, 6, 2, 10, 8, 13} 

!nf32j:= 
e y e 1 e l = T o C y c 1 e s [ r a n d o m l ] 

Outf32j= 
{{13, 9, 6, 1 1 , 5, 2, 12, 3 , 8, 

1 } , {10, 15, 4 } , {14, 7}} 

r a n d o m l 
is a random permutation of 
ilA3ê4JSfiê?fifi,10,nê12>13914JS}. 

r andom2 
is a randompermutation of 
{ltZt3t4,5ß,7ß,9tlOtUtl2tl3tl4tl5l 

T o C y c l e s [ r a n d o m l ] 
writes r a n d oml 
as a product of disjoint cycles. 

495 



Chapter 7 Introduction to Packages 

inf33j:= 
o r i g i n a l l = F r o m C y c l e s [ c y c l e l ] 

Outf33j= 
{13, 12, 8, 10, 2, 11, 14, 1, 6, 

15, 5, 3, 9, 7, 4} 

inf34j:= 
c y c l e 2 = T o C y c l e s [ r a n d o m 2 ] 

Outf34j= 
{{7, 4, 11, 6, 14, 8, 5, 1 } , 

{12, 2 } , {15, 13, 10, 9, 3}} 

tfif35j:= 
o r i g i n a l 2 = F r o m C y c l e s [ c y c l e 2 ] 

Outf35j= 
{7, 12, 15, 11, 1, 14, 4, 5, 3, 

9, 6, 2, 10, 8, 13} 

inf36j:= 
random2=RandomPermutation[7] 

Ouif36j= 
{3, 4, 5, 1, 2, 7, 6} 

Hoi )ÊetmtmitmÊm&m 
Ö 

F r o m C y c l e s [ c y c l e l ] 
writes c y c l e l 
as a permutation 

T o C y c l e s [ r a n d o m 2 ] 
writes the permutation random2 
as a product of disjoint cycles. 

F r o m C y c l e s [ c y c l e 2 ] 
writes c y c l e 2 
as apermutation 

random2 
is a random permutation of 

Permutations 
M 

tnf37j:= 
c y c l e 2 = T o C y c l e s [ r a n d o m 2 ] 

Outf37j= 
{{3, 5, 2, 4, 1 } , {7, 6}} 

inf38j:= 
o r i g i n a l 2 = F r o m C y c l e s [ c y c l e 2 ] 

Outf38j= 
{3, 4, 5, 1, 2, 7, 6} 

ΜΗΜΜΜΗΜΜΙβΙΜΜΜίΗΐΜΜΜϋΜΐΜίΕώίΐΕΪΕίΕΜ 

m 
a 

ToCyc1e s [ random2] 
ivr^es random2 
as a product of disjoint cycles. 

F r o m C y c l e s [ c y c l e 2 ] 
writes c y c l e 2 
as apermutation 

496 



Chapter 8 
Some Graphics Packages 

i Chapter 8 introduces several of the graphics packages available with Mathematica. Differences between Version 
1.2 and Version 2.0 are discussed where appropriate. 

I Graphics 

Opening the Version 1.2 Graphics folder yields the following window. Each package shown below contains one 
or more Mathematica commands or functions which cannot be used without loading the appropriate package. 

Graphics 
8 items 50,751 Kin disk 27,986K available 

Graphics. ParametricPlot3D Poly hedra .m 

0 

Shapes.m 

ThreeScript.m circleplot 

Ά 
sa 
a 

The Graphics folder is 
contained in, the folder 
Packages. 
This section descr&es 
some vises of several 
of the available 
packages. 

18.1 Graphics.m 

Loading Graphics. m enables the user to take advantage of several commands which will improve the graphing 
capabilities previously available. The first command discussed below, PolarPlot , allows for the graphing of 

functions given in polar coordinates (r,0). This command should be entered in the following manner: 
P o l a r P l o t [ f u n c t i o n [var] , {var , v a r l , v a r 2 } , o p t i o n s ] where var represents the angular 
coordinate Θ and var varies from var l to var2. This command produces the graph of the function 
r = f u n c t i o n [ v a r ] . 
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D Example: 

In the first example below, the graph of r = 1-2 sin0 is given. It is followed by the graph of r = 1+2 cos9 which is 
plotted with the GrayLevel option. Notice that the graphs are named polarone and polartwo, 
respectively, for later use. 

MoreGraphics 
A ï / / / -

« G r a p h i c s , m 

Inf2j:= 
p o l a r o n e = P o l a r P l o t [ l - 2 S i n [ t h e t a ] , { t h e t a . 0 , 2 P i } ] 

u 
creates a polar graph of 

~\the fonction 
l-2Sin(8), 0 < Θ < 2ti. 
The resulting grcpk is 
named 
polarone. 

-Graphics-

polartvo=PolarPlot[l+2Cos[theta],{theta,0,2Pi}t 

PlotStyle->GrayLevel[.3]] 

1.5 
1. 

} 

o.i 

-o.s 
1 

-1 

-1.5 

.s 
\ 

/ \ 1 
V0.5 A 1.5 2 2 .5 i 

^■■■■"' i 

\ 

creates a polar graph of 
the function 
l + 2Cos(8), 0 < Θ < 2ti. 
The resulting grcph is 
named 
p o l a r t w o . 

♦wyyflMioioioioioioioioHion 

Outf3j= 
-Graphics- ]J 

mtEEEEEEEEEEEEWE^^mAEEmmLiauiaaaaiEailiieiaaaii^^ 
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Since the two previous graphs were assigned names, they can easily be recalled and graphed together with 
Show[polarone,polartwo] . 

MoreGraphics 

Show[ polar one,polartwo] 

Outf4j= 
-Graphics-

u 

«MMMMOl 
KS 
«ΜΝΜΗΜΜΜβΚ 

The two größte polarone 
and polartwo 
care displayed simukaneoiisly with 
the coYYWiond 
Shov[polarone,polartwo] 

ΙΒΜΜΜΟΙβΑΜίΜ&ΜηϋΜΗΜΪΐίΕίώϊώϊ^^ 

499 



Chapter 8 Some Graphics Packages 

D Example: 

The following command produces the "spiral-shaped" graph of Log [1+r] . Note that r represents the angular 
coordinate. 

Another useful command in Graphics .m is Po larLi s tP lo t . This enables the user to be able to plot a list 
of points given in polar coordinates. This command is stated in the following manner: 
P o l a r L i s t P l o t [ l i s t , o p t i o n s ] where l i s t a list of points. A convenient way to enter l i s t is in 
the form of a table. 
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D Example: 

In the example which follows, a table of values of sin(2t) is created where t varies from 0 to 2π, using increments of 
27Ç/90. In this case, the variable t represents the angular coordinate. The graph is given below and named 
l i s t p l o t o n e . 

MoreGraphics 

p o l a r l i s t - T a b l e [ S i n [ 2 t ] „ 
{ t , 0 , 2 P i , 2 P i / 9 0 } ] ; 

inf36j:= 
listplotone=PolarListPlot[polarlist, 

Ticks->None] 

Outf36j= 
-Graphics-

jpolarlist 
fis a table of values of 
ISin (Z t)for t=0t Zn/90f 4nt90t 

,ZPL 
oioicuiPWV.W'ûi 

listplotone 
is a polar plot of the values 
o / p o l a r l i s t . 

lonffliiem oiiioiHOiiioiiiouvMV IBIMOM^MjIM * 

η Μ Μ Μ Μ Μ Μ Μ Η Η Μ Μ Μ Μ Ν β Μ Μ η η Μ η Μ ^^ 

The o/tfiora T i c k s ->None 
specifies that no tick marks 
be drawn on the axes. 
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Next, the graph of the list of values of 3/2 cos(3t) is produced. In the Po larLi s tP lo t command, the 
P l o t Joined->True option is used, so the points are connected. This plot is called l i s t p l o t t w o . 
Notice the overlap in the graph; the three-petal rose is produced for t between 0 and π. Hence, the curve is retraced 
for t between π and 2π. 

inf37j:= 
polarlisttwo=Table[3/2 Cos[3t], 

{t,0,2Pi,2Pi/90}]; 
listplottwo=PolarListPlot[polarlisttwo. 

P1o tJ o ined->True] 

Outf37j= 
-Graphics-

DEE 

jiiJLJjiiliiuiLiii 
polarlistvo 

is a list of the numbers 
3/2Cos(3t)fort=0f2n/90, 
4π/90,δπ/90,...,2π 
listplottwo 
is apolargrcpkoftke values 
of p o l a r l i s t t v o 
The option p l o t J o i n e d ->T rue 
specifies that the resulting 
points be connected by line 
segments. 

titit^^^^^^ié^itiéit^ititié^iuti^^^éitiàiàiÉiàiÉiÉiàiàiàiÉiài* a 
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The previous plots can be displayed simultaneously with Show. 

MoreGraphics 

inf38j:= 
Shov[Ixstplotone,listplottvo,Ticks->Àutornatic] I 

\ù\ 

Outf38j= 
-Graphics-

mnNettMBetewmeatMXÎX) Μ Μ Μ Μ Μ Μ 0 Μ η Μ Μ Μ Μ η Μ Μ Μ 0 Μ Μ Η Η β η Η Μ Μ 0 η Μ Μ Μ Μ Μ ηΜ 

The two graphs l i s t p l o t o n e I 
and l i s t p l o t t v o ί 
are shown simultaneously with the Show 
command The option T i ck s ->Àut oma t i c 
allows Mathematical "choose"suitable 
tick marks. 

tit^titititititUtitititititititilititi 

M 
SI 
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Bar graphs can be drawn using Graphics .m with BarChar t [ l i s t ] . For each number in l i s t , 
Mathematica draws a rectangle of that height. These reaangles are drawn in order from left to right. The position 
of the element is given beneath each rectangle. These numbers are quite small in the following graph, but resizing 
the graph, which will be described next, is possible. 

D Example: 

m MoreGraphics 
inf2j:= 

£ i n a l a v e r a g e 3 = { 9 8 , 6 3 , 8 6 , 7 1 , 5 8 , 7 7 . 
5 4 , 7 8 , 8 1 , 6 6 , 6 7 , 8 2 , 8 8 , 7 0 , 6 1 , 7 3 , 5 3 . 
4 3 , 1 0 1 , 7 3 , 5 2 , 6 4 , 1 0 5 , 7 2 , 6 5 ) ; 

inf3j:= 
BarCliart[ f i n a l a v e r a g e s ] 

lOOl 

Λ ο**Δ^£.ης*Ά «M i*iA*;*T4Haü*'?'*aE 

Outf3j= 
-Graphics-

******************* 
! £ I n a l a v e r a g e s 

1 
BarChart[£Inalaverages] 
creates a bar chart for the table of 
numbers £ Ina l e v e r a g e s . 

iiuiiijiiueiiieiiioiiioiiioiiioiiioiiioiiidT 
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Resizing is accomplished by clicking once anywhere inside the graphics cell. This encloses the graph in a box as 
shown below. If the cursor is moved to the lower right-hand corner and dragged, the graph can be enlarged to the 
desired size. Notice below that the numbers beneath the graph are now readable. 

BarChart[finalaverages] 

b.00 

80 

60 

40 

20 

M ' 1 9 Έ 4 Κ £ 7 3 Q 1 f i l l 1K1 ^1 41 ςΐ A1 71 fil Q?H?1 ? ? ? ^ 4 9 R J 

Outf5j= 
-Graph i c s -

For best printing resi/lts, 
the groph can be resized 
by (1) Moving the cursor 
within the graphics cell 
and clicking once and 
(2) Dragging the corners 
wail the desired sizi 
is reached 
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Before producing BarChart [ l i s t ] , the elements of l i s t can first be sorted. Sort [ l i s t ] sorts the 
elements of l i s t from smallest to largest. In the following example, the grades found in f ina laverages 
are sorted and named sor t . A shortened 2-line output of s o r t is given with Short [ s o r t , 2] ,and the bar 
graph corresponding to the sorted list is produced with BarChar t [ s o r t ] . The options of BarChart are 
listed below along with the default values. To use an option with BarChart simply enter the command as 
B a r C h a r t [ l i s t , o p t i o n s ] . 

tn[4j:= 
s o r t = S o r t [ £ i n a l a v e r a g e s ] 
P r i n t [ S h o r t [ s o r t , 2 ] ] 
BarChart[sort] 

The command s o r t = S o r t [ f i n a l a v e r a g e s ] j 
puts the list f i n a l a v e r a g e s 
in standard form* P r i n t [ Short [ s o r t , 2] ] 
prints an abbreviated form of s o r t . 

i 
{43, 52, 53, 54, 58, 61, 63, 64, 65, 66, 67, 70, 

« 7 » , 82, 86, 88, 98, 101, 105} 

100 Finally, BarChart [ s o r t ] 
^produces a bar chart corresponding to 
the list of numbers s o r t . 
Notice that f i n a l a v e r a g e s 
and s o r t 
consist of the same numbers; just 
in a different order. 

A ̂ ί ΐκΛ'Τοαι Ϊ Μ i>RA*;*T4waü* 9^ac 

Outf4j= 
-Graph ic s -

tofSj:* 
Options[BarChart] 

Outf5j= 

{BarStyle -> GrayLevel[0.6], BarEdges -> True, 

BarEdgeStyle -> 

{GrayLevel[0], Thickness[ 0.002]}, 

BarSpacing -> 0.2, BarOrientation -> Vertical} 

"j'Ttv-yw 

Options[BarChart] 
displays the options and 
default settings of the command 
BarChart . 

jjfgggg£g|gfgfflg^|aî ^Haj££££££.££j|;£^££££^^ 

ES 
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Pie charts are also possible with Mathematica by making use of the PieChart [ l i s t ] command found in 
Graphics .m. This can be done in two ways. In the first example below, a pie chart is created from the list of 
numbers, p e r c e n t s . PieChart [percent s ] produces a pie chart in which each segment of the pie 
represents a number in percent s . The segments are numbered to correspond to the position in percent s . 
Notice that the sum of the numbers in percent s is 1. However, a pie chart can be created which depicts both a 
quantity and a description. The list d e s c r i p t i o n is given below. Note that each element of d e s c r i p t i o n 
contains a number and a description. These represent portions of a governmental budget. 

D Example: 

MoreGraphics 

percents={0.203,0.165,0.192, 
0.176,0.095,0.169}; 

lnf?J:-
description^ 
{{.203,defense},{.165,transportation}, 
{.192,services},{.176,education}, 
{.095,debt},{.169,other}} 

Outf7j= 

{{0.203, defense}, {0.165, transportation}, 

{0.192, services}, {0.176, education}, 

{0.095, debt}, {0.169, other}} 

PieChart[percents] 

p e r c e n t s 
is a table of six, numbers. I 

^Τ ' 
Jl 

description 
is a table of six pairs. For each 

\pair, the first is a number, the 
second is a description of the 
number. MVMfMMMnMMMMMMMMMWMWM 

PieChart [percent s ] 
creates apie chart corresponding to 
thetabte p e r c e n t s . 

Outf8j= 
-Graphics-

3^Γ 
]J 

507 

file:///pair


Chapter 8 Some Graphics Packages 

Hence, a labeled pie chart is given with PieChart [ d e s c r i p t i o n ] . This chart demonstrates the percentage 
of the budget that is allotted to each area. 

MoreGraphics 

M9J:-
P i e C h a r t [ d e s c r i p t i o n ] 

In the same manner as above, 
P i e C h a r t [ d e s c r i p t i o n ] 
creates a labeled pie chart according to 
the table d e s c r i p t i o n . 

KS 

Outf9j= 
-Graph ic s -

|MMtfgLMaJ^^JâÎ£ÎiÎiiâiiÎîiiÎiï£ï£iUitt 

m 
a 
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■ 8.2 Polyhedra.m 

Pictures of polyhedra can be produced with Polyhedra .m. Many geometrical properties of polyhedra are 
stored in this package, so some pictures can be obtained by specifying a desired polyhedra with 
Show [Polyhedron [Shape] ] . Since stored polyhedra include the icosahedron, dodecahedron, 
octahedron, cube, and tetrahedron. Shape is one of the following: Icosahedron, Dodecahedron, 
Octahedron, Cube, or Tetrahedron . If unspecified, the center is taken to be (0,0,0). A cube centered 
at the origin in produced in the first example below. 

Several polyhedra can be shown simultaneously and, thus, complicated three-dimensional objects can be 
constructed. However, another command which involves more options must first be introduced. 
Three-dimensional graphics objects are created but not displayed with 
Graphics3D [Po lyhedron [ {χθ , yO, ζ θ } , s c a l e ] ] where Po lyhedron is the desired 
polyhedron from the list of stored polyhedra: Icosahedron, Dodecahedron, Octahedron, Cube, 
and Tetrahedron. {x0 , yO, zO} represents the center, and s c a l e adjusts the size. The default value of 
s c a l e is 1, so s c a l e >1 produces a larger polyhedron and s c a l e <1, a smaller one. The second command 
below creates and stores (as f igure 1) the graphics of a dodecahedron centered at the origin using 
s c a l e = 1/2. Since Show is not used, the picture is not shown. 

\inf!!j:= 1 H>1 
« P o l y h e d r a . m I contains definitions of the potyhedra icosahedron, dodecahedron, I 

s octahedron, cube, and tetrahedron j 

Sho v [ P o l y h e d r o n [ C u b e ] ] Tshows^ jjjjjjl 
I &ΜΜΜβΟΜΟΜΜΜΜΜΜΜ·0«β*ΜΜΜΜ«ΜΜ«ΟΜβΜΟΜ*ΜΜ«^ ̂ Ι ΐ Η · : ·1 

\Outf!2j= Ή | | | 
-Graph i c s 3D - J J jijjjjl 

in[!3j:= ~|~| | | | | 
f i g u r e l=Graph± c s 3D [ p««*«™«^^ 

D ode called ron[ { 0 , 0 , 0 } , 1 / 2 ] ] | « dodecahedron with center (0,0,0) j 
I and scale 112. j 

Outf!3j= * TWM 
-Graphi c s 3D- J J H 
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D Example: 

Next, the graphics of an octahedron centered at {Cos [ P i / 3 ] , S in [ P i / 3 ] , 0} and s c a l e = 1/3 is 
created and stored as f i gure2 . Also, a tetrahedron with center {Cos [ 2 P i / 3 ] , S i n [ 2 P i / 3 ] , 1 /3} and 
s c a l e = 1/4 is stored as f igure3. Since the graphics of each polyhedra was named, they can be shown 
simultaneously with S h o w [ f i g u r e l , f i g u r e 2 , f i g u r e 3 ] . 

ThreeDGraphics 
tnf!4j:= 

1igure 2=Graphic s 3D[ 
O c t a h e d r o n { C o s [ P i / 3 ] , S i n [ P i / 3 ] , 0 } . i / 3 ] ] 

f i g u r e 3=Graphic s 3D[ 
T e t r a i l e d r o n [ { C o s [ 2 P i / 3 ] , S i n [ 2 P i / 3 ] , 

1 / 3 } , 1 / 4 ] ] 

Outf!4j= 
-Graphics3D-

inf/5j:= 
Shov[f igurel,£ igure2,£ igure3] 

ίΗΪΙ 

shows ail three polyhedral 
simultaneously. \ 

f i g u r e 2 is an octahedron 
with center 
(Cos (π/3)£'υη (π/3)β) and 
scale i/3; 
f i g u r e 3 is a tetrahedron 
with center 
(Cos (Ζπ/3)£υι (Zn/3)J/3) 
and scale 1/4. 

ΤΓ 
Jl 

Outff5j= 
-Graphics3D-

i EEC m 
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Another command available in Polyhedra.m is S t e l l a t e [Polyhedron [Shape] , r a t i o ] where 
Shape is again one of the following: I cosahedron, Dodecahedron, Octahedron, Cube, or 
Tetrahedron. This takes the symbolic representation of the polyhedron and represents it as a stellated 
polyhedron. (Each face is replaced by a stellate.) A function a [ i ] is defined below as 
S t e l l a t e [Polyhedron [Dodecadron] , i ] . This function is then used in a Do loop to produce the 
graphics of stellated dodecahedra for values of i from i = . 25 to i=2 using increments of . 25. The first graph 
with i = . 2 5 is shown below. 

ThreeDGraphics 

inf9j:= 
a[i_]:=Stellate[Polyhedron[Dodecahedron] 

tnf!Oj:= 
D o [ S h o v [ a [ i ] ] , { i , . 2 5 , 2 . . 2 5 } ] shows a [ i ] 

for ±.25,.5,.75,....Z 
MiciiioiiioMiemoHioiiieiiidf 

« ] 
i 

K> 

\titUaitititititUtiiitiaitU 

S3 a 
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Notice how the pictures change with r a t i o . If r a t i o <1, the object is concave. If r a t i o >1, the object is 
convex. Shown below are three pictures. In the first, r a t i o = . 25 <1 , so the object produced is concave. In 
the third, r a t i o = 2 >1, so a convex object is given. Both can be compared to the middle picture which is simply 
a dodecahedron ( rat io =1). The graphics obtained with this Do loop can be animated to observe the changes 
which take place as r a t i o changes. 

ThreeDGraphics HI 
ss*suÊL· 

P3 

The resulting graphics cells c<m be 
oriirYiciïeàL 

Notice that i smaller than one produces a 
concave object. 

i : ThreeDGraphics 
'L " " * * ■ L**L -»-I I * I ■*-* - " * » T " „ - m * f J 

that i greater than one produces a 
β convex object. _ 

l(E)(lDOIGDIGg)£)fol ljlllilllllllllllilllllllç>l 

Rttg 
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■ 8.3 Shapes.m 

Shapes .m contains commands which produce the graphics of many shapes commonly used in mathematics. As 
with the all graphics objects, different shapes may be combined and shown simultaneuously to create more 
complicated objects. 

D Example: 

Illustrated first below is Moebius S t r i p [ o u t e r r a d i u s , i n n e r r a d i u s , n] where i n n e r r a d i u s 
and o u t e r r a d i u s are the inner and outer radii, respectively, and the Moebius strip is approximated using 2n 
polygons. (MoebiusSt r ip actually produces a list of polygons which are displayed with Show.) In the 
example below, the graphics are produced for a Moebius Strip with inner radius 2 and outer radius 4. The graph 
uses 60 polygons and is called msone. The list of polygons created with Moeb iusS t r ip is visualized with 
S h o w [ m s o n e ] . 

Ξ Π ^^= ThreeDGraphics ϋ = = 

Înf22j:= 
M3one=HoebiusS t r i p [ 4 , 2 , 3 0 ] 

\Outf22j= 
-Graphics3D-

\in[23j:= 
Shov[ msone] 

!«» 

0808?ίΗ5ηΓ / 

\Outf23j= 
-Graphics3D-

buttttf l ttttttttttUMtttttttttttt^^ 

^ Ξ ί Ι 

Jl 
]J 
I 

1 
ilE 

μ\ 

Pi 
pnn 

M m 

is one 
I is a Gropkics3D object consisting of 60 
xpolygons. When visualized, these polygons 
I approximate a Moebius Strip wizk inner 
radius 2 and outer radius 4. 
Shov[ msone] 

jhproc&tfes a visualization of msone. 

513 



Chapter 8 Some Graphics Packages 

D Example: 

Another shape which can be approximated in this package is that of a torus. This is accomplished with 
Torus [ o u t e r r a d i u s , i n n e r r a d i u s , m, n] where m times n polygons are used to approximate the 
shape of the torus. A torus of inner radius .5 and outer radius 1 is approximated with 300 polygons and called 
torusone. The approximation is then shown with S h o w [ t o r u s o n e ] . 

ThreeDGraphics 

torusone=Torus[l,.5,20,15] 

Outf!4j= 
-Graphics3D-

inf!5j:= 
Shov[torusone] 

KS 

0utf!5j= 
-Graphics3D-

oi^r ]J 
ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ^ι 

torusone 
is a Grcphics3D object consisting of 
20 5c 15= 300polygons which cpproximate 
a torus with inner radius .5 and outer 
radius one when visualized 

Shov[ torusone] 
produces a visualization of 
torusone. 
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D Example: 

The command Sphere [r , m, n] produces an approximation of a sphere of radius = r using m times n 
polygons. The approximation of a sphere of radius 1 is obtained below using 225 polygons. 

ThreeDGraphics 

fn[6j:= TK 
flllllllMIIHIIiniHlllillllllllllinilllPBggi 

s p h e r e o n e = S p h e r e [ 1 , 1 5 , 1 5 ] 

-Graphic s 3D- JJ 

fffg f J. "~ ΧΜ0ΜΗβΜΜΗβΜ0β0Β0ΗΒ0ΗΜ0Μ0Μ0βΜ06ΜΜΜ0βΜ0ΒΜΜΑ0ΗνΙ 

K> 
s p h e r e one is a list of polygons which when 
visualized cppro^imcxtes a sphere of radius one. 

S h o v [ s p h e r e o n e ] produces a visualization of s p h e r e o n e . 

Outf7j= 
-Graphics3D- ]J 

Several other commands are available for visualizing the lists of polygons produced by the commands found in 
Shapes .m. The command WireFrame [ p o l y g o n l i s t ] replaces each polygon in p o l y g o n l i s t by 
closed lines, so the shape resembles that of a wire frame when visualized. 

515 



Chapter 8 Some Graphics Packages 

D Example: 

In the example below, a list of 144 polygons to approximate a sphere of radius 2 is obtained with 
Sphere [ 2 , 1 2 , 1 2 ] . This list is called spheretwo. WireFrame is then applied to this list of polygons, 
and the list of closed lines wiretwo which results is visualized with Show [wi re two , Boxed->False ] . 
(The Show option, Boxed->False, causes no box to be drawn around the sphere.) 

s p h e r e t v o = S p h e r e [ 2 , 1 2 , 1 2 ] 

OutftôJ* 
-Graphics3D-

inf!7j:= 
wiret¥o=¥1r eF rame[sphe re t vo] 

Outf!7j= 
-Graphics3D-

inf!8j:= 
Shov[vlretvo,Boxed->False] 

MWMMM&jlo« 

s p h e r e two is a list of polygons which 
when visualized cpproximates a sphere of 
radius two. 

["γψΜν.νυ1 

replaces each polygon of s p h e r e t w o 
'closed lines. 

produces a visualization of v i r e t v o : 
the option B o x e d - > F a l s e 
specifies that sphere not be enclosed 
by a box. 

S WMi ^ι ^"^fPT·!·!·!·!'!·!'!·!·!·!·!·?·!'!·!·!·!;!:!·!·!·!·!·!·!·!·!·!·!·!·!·!·!·!·!·!·!·!·! _ κ | 
hä 

Shapes can be viewed simultaneously using the commands previously discussed. 
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D Example: 

The following example shows how the approximations of the sphere of radius 1, sphereone, and the wire 
frame form of the sphere of radius 2,wiretwo, are shown together. 

ThreeDGraphics 

inf!9j:= 
Shov[sphereone,wiretwo,Boxed->False ,1 

Krl 

Outf!9j= 
-Graphics3D-

y EI m 
a 

Show is an option for Grcpkics3D 
objects. 

shows both s p h e r e o n e 
■mi w i r e two 
simultaneously. 

Below, the graphs of two Moebius strips are shown simultaneously by first computing the lists of approximating 
polygons in xosone and mstwo. Show is then used to visualize these objects. Two other useful commands in 
Shapes .m are illustrated in the second example. 

RotateShape [ shape , x r o t a t e , y r o t a t e , z r o t a t e ] causes s h a p e to be rotated x r o t a t e 
units about the x-axis, y r o t a t e units about the y-axis, and z r o t a t e units about the z-axis. 

In the example below, msone is rotated π/2 units about the y-axis. 

The other command introduced is T r a n s l a t e S h a p e [ shape , {xO, yO, zO} ] which translates shape 
xO units along the x-axis, yO units along the y-axis, and zO units along the z-axis. 
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D Example: 

The Moebius strip obtained through rotation in msone is then translated 2 units along the x-axis and called 
mstwo. The two are then shown simultaneously with mstwo being the Moebius strip to the right of msone. 

MoreShapes 

« S h a p e s , m 

inf32j:= 
msone=HoebiusStrip[1,1/3,30] 
istvo=noeblusStrip[2,1/3,30] 
Shov[mhone,mbtwo] 

FÛH 

Out[32j= 
-Graphics3D-

inf33j:= 
m s t h r e e = K o t a t e S h a p e [ m s o n e , 0 , P i / 2 , 0 ] 
m s f o u r = T r a n s l a t e S h a p e [ m s t h r e e , { 2 , 0 , 0 } ] 
S h o v [ m s t h r e e , m s f o u r ] 

Outf33j= 
-Graphics3D- ]J 

ira 

msone and mstwo 
are Moebius strips centered 
around the z-axis. 
Notice that Show is an option 
for Grcphics3D objects. 

ms t h r e e is msone 
rotated n/2 radians about 
the y-axis. 
msf our is ms t h r e e 
translated 2 units along 
the x-axis. 
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The Moebius strip mstwo given previously is then rotated π/2 radians about both the x- and z-axes. This is named 
msfive. Then, msf ive is translated (-2) units along the y-axis to obtain mssix. msf ive and mss ix are 
then visualized below with Show where mssix is the Moebius strip to the rear of msfive. Several 
Graphics 3D objects can be viewed simultaneously as shown below. 

MoreShapes 
lfif34j:= 

msf i v e = B o t a t e Strap e [ m s t v o , P i / 2 , 0 , P i / 2 ] 
m s s i x = T r a n s l a t e S h a p e [ msf i v e , { 0 , - 2 , 0 } ] 
Shov[ m s s i x , msf i v e ] 

Outf34j= 
-Graphics3D-

inf35j:= 
S h o v [ m s t v o , msf o u r , m s s i x ] 

FÖH 
Similarly, m s f i v e 
is ms t vo rotated π/2 radians 
about the K-OOUS and the ZOKIS. 
m s s i x is m s f i v e 
translated -2 imixs along the 
y-axis. 

Since Show is an option for 
Grapkics3D, several Grcpkics3D 
objects may be displayed 
simuitan&ously. 

displays ms t w o , ms f o u r , and 
m s s i x simultaneously. 

Ouif35l= 
-Graphics3D- ]J 

y w mum 
Yet another shape that can be graphed in Shapes.m is Hel ix [r , h, m, n] which approximates a helix with 
half height h and m turns using m * n (where n =20r) polygons. 
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D Example: 

Shown below is a helix of half height 3 with 5 turns. The list of polygons which approximate the helix is found in 
h e l i x t w o . Hence, Show [ h e l i x t w o ] displays the helix. 

ThreeDGraphics 

h e l i x t w o = H e l i x [ 2 , 3 , 5 , 4 0 ] 

Ouif2j= 
-Graphics3D-

Inf4j:= 
Show[helixtwo] 

Outf4j= 
-Graphics3D-

]J 

RS 

EEE 

h e l i x t w o is a list of 40x5=200 polygons. 
When the polygons are visualized, the resist 
approximates a helix with 5 turns and half-height 3. 

Show[ helixtwo ] 
produces a visualization of h e l i x t w o . 
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A Do loop which shows the rotation of helixtwo n*Pi/2 radians (where n varies from n = 0 to n = 12) about 
the z-axis is defined below. This loop produces 13 graphics cells which can be animated to view the rotation of the 
helix about the z-axis. Several of these cells are shown below. 

ThreeDGraphics ThreeDGraphics 
K> 

Do[Show[RotateShape[ 
helixtwo,0,0,n Pi/6]] 

{n,0,12}] 

Do[ Show[RotateShape[ 
helixtwo,0,0,n Pi/6]] 

{n,0,i2}] 

For each value ofn, 
Show[RotateShape[ 
h e l i x t w o , 0 , 0 , n P i / 6 ] ] 
rotates he l i x two 
ΪΙΊΙ/6 radians about the z-axJs 
and visualizes the resulting 
solid The thirteen graphics 
cells can be animated 

lQg)@IQDKgXaiO [ZliiMi 
0 

fe@Spp|(SSg3|<i I Ρ Μ Μ ^ Ι Ι θ Η 
EH 

FM 
ThreeDGraphics ThreeDGraphics 

ES 
Do[Show[RotateShape[ 

helixtwo,0,0,n Pi/6]] 
{n,0,12}] 

iQSOIQDKgXSK' □ i i l i 

Do[Show[RotateShape[ 
helixtwo,0,0,n Pi/6]], 

{n,0,12}] 

EH 
B@@IQDI(gXSIOr" IWWWHMiPla a 
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D Example: 

In the following example, we define a function s u r f a c e [n] which simultaneously graphs the tori obtained with 
t o r u s j [ 1 , 1 / 2 , {0, 9 /5 ( j - 1 ) , 0} ] for j =1 to j =n. The result allows us to visualize a surface of 
genus n. 

The command t o r u s j , given in the first line below, is defined in terms of Torus and may seem redundant. 
However, defining it in this manner enables Mathematica to remember the previous torus as it proceeds through the 
loop contained within the Block. Hence, t o r u s j [ j - 1 ] does not have to be recomputed in order to find 
t o r u s j [ j ] . After the loop is completed for j =n, the table of tori found in s is displayed with Show. The 
surface obtained with n =4 is shown below. 

o In Version 2.0, Block, although still recognized, has been replaced by the command Module. 

Itorusj[a_,b_,c_,d_]:=torusj[a,b,c,d]=Torus[a, b, c, d ] 
surface[n_]:=Block[{torus,s >, 

torus[j_]:=TranslateSbape[torusj[1,1/2,12,15], 
{0,9/5 (j-l),0>], 

s=Table[torus[j],{j,l,n}]; 
Sbov[s,YiewPoint->{-4.000, 4.000, 4.000}, 
Boxed->False]; 

1 

surface[4] i ^ I 
I to visuaüze a surface of germs n. i 
I In this case, we are able to I 
I visualize a surface of genus 4. g 
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■ 8.4 ParametricPlot3D.m 

Parametric? l o t 3D .m provides the capabilities to produce three-dimensional graphs of functions which 
depend on two parameters. These equations exist in many different forms. The example below illustrates how the 
surface of revolution generated by a function of one variable revolved about the y-axis can be generated with 
ParametricPlot3D. The command is entered in the following way: 
P a r a m e t r i c P l o t 3 D [ { x [ u , v ] , y [ u , v ] , z [ u , v ] } , { u , u O , u l } , { ν , ν θ , ν ΐ } , o p t i o n s ] 
where x, y, and z are defined in terms of the parameters u and v. The limits on the parameters are {uO, u l } and 
{ ν θ , ν ΐ } . 

oln Version 2.0, P a r a m e t r i c P l o t 3 D [ { x [ t ] , y [ t ] , z [ t ] } , { t , tO, t l } , o p t i o n s ] where 
x, y, and z are defined in terms of the parameter t graphs the vector-valued function {x [t ] ,y [t ] , z [ t ] } 
for t o < t < t l . 

In addition to the command ParametricPlot3D, Versions 1.2 and 2.0 of the package 
ParametricPlot3D .m contain the command 
S p h e r i c a l P l o t [ r [ t h e t a , p h i ] , 

{ t h e t a , the taO, t h e t a l } , { p h i , p h i O , p h i l } , o p t i o n s ] which is used to create a graph of 
r [ t h e t a , p i ] using spherical coordinates; and 

o the Version 2.0 edition of ParametricPlot3D .m contains the command 
C y l i n d r i c a l P l o t [ z [ r , t h e t a ] , { ζ , ζ θ , ζ ΐ ) , { t h e t a , t h e t a O , t h e t a l } , o p t i o n s ] 
which is used to graph z [r, t h e t a ] using cylindrical coordinates. 

Since the surface of revolution generated by revolving y = f (x) = — ^ — - about the y - axis 
x^+1 

is radially symmetric (z does not depend on the angular coordinate), the surface is visualized by representing x and 
y in polar coordinates and replacing x in the function Cos [2 P i x] / (χ+l) with u to form the equation for 
z in terms of the parameters. 

inf!8j:= 
ParaaetricPlot3D[{u Cos[v],u Sin[v],Cos[Pi u]/(uA3+i)>, 
{u,0,Pi},{v,0,2Pi},Shading->False,BoxKatios->{1,1,1/2}] 

In this case, the resvk corresponds to a solid 
of revolution 

Outf!8j= 
-Graphics3D-

LEO m 
0 ^^itit^Êt^iéÊèitiàitliitiàiâiàiàiàiàiÉiàiÉiàiàiàiàiàiiiéi 
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In order to change the perspective from which hree-dimensional graphics are viewed, the 3D Die W Point 
Selector which is shown below can be used. The window seen below is obtained by selecting Prepare 
Input under fiction in the Mathematica Menu. The sub-menu found under Prepare Input contains this 3D 
UiewPoint Selector. The numbers in the three boxes on the right represent the coordinates of the viewpoint. 
The x and y coordinates are changed by dragging the boxes beneath the graphics window. Similarly, the z 
coordinate is increased and decreased by dragging the box which is along the right side of the graphics window. 
Once a desirable viewpoint is located, it can be pasted into the ParametricPlot3D command by clicking the 
Paste button. 

3D UiewPoint Selector Differenz viewing orientations may 
e obtained by using the Mouse and 

cursor to drag these bones. 

Note that if Spherical 
coordinates may be 
displayed instead of 
Cartesian coordinates. 

In the next example, all three components {x, y, z} depend on two parameters, r and t . Again, the x and y 
coordinates are defined as functions of the polar coordinates, r and t , where t represents the angular coordinate. 
The third coordinate is defined as the function f [ r , t ] . The graph of this function of two parameters is plotted for 
values of r from r=0 to r=2 using increments of 2 /25 and for t=0 to t=2Pi with 2P1/25 increments. 
Several options are illustrated in this command. The graph is not enclosed in a box, the axes are given 
automatically, the ratios of the x,y, and z coordinates are 1-1-1, and the viewpoint is selected to be the point 
{ 0 . 3 9 0 , - 4 . 0 0 0 , 3 . 3 6 0 } . 

Another command included in the Version 1.2 edition of ParametericPlot3D.m is SpaceCurve which 
allows curves that depend on one variable to be plotted in three dimensions. This command is entered as 
SpaceCurve [ { x , y , z } , { t , tO , t l } , o p t i o n s ] where the coordinates x, y, and z depend on the 
parameter t and t varies from t= t0 to t = t l . The options for SpaceCurve are the same as those for 
P a r a m e t e r ± c P l o t 3 D . 

In the second example below, a spiral shaped curve is plotted. All three coordinates increase as t increases, so the 
points along the curve move away from the origin. The spiraling is due to the sine and cosine terms in the x and y 
coordinates. 

o In Version 2.0, the command SpaceCurve has been replaced by the command ParametricPlot3D. 
If using Version 2.0, Parametr icPlot3D [ { x [ t ] , y [ t ] , z [ t ] }, { t , tO, t l } ] yields the same 
result as the command SpaceCurve [ { x [ t ] , y [ t ] , z [ t ] } , { t , 1 0 , 1 1 } ] from earlier versions. 
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ÏD1 ParametricPlots 

lnf2/:= 
Clear[ f . x . y ] 
£ [ r _ . t _ l = S i n [ ( r - 2 ) t] 
x [ r _ . t _ ] = r C o s [ t ] 
y [ r _ . t _ ] = r S i n [ t ] 
P a r a m e t r i c P l o t 3 D [ { x [ r . t ] . y [ r . t ] . £ [ r , t ] } , 

{ r . 0 . 2 . 2 / 2 5 ) . { t . 0 . 2 P i . 2 P Î / 2 5 } .Boxed->False 
A x e £ ^ ^ . 1} 
Y i e w P o i n t - > { 0 . 3 9 0 . - 4 . 0 0 0 . 3 . 3 6 0 > Once the desired orientation has 

been reached using the 3DViewPoint 
[Selector, it can be inserted into 
document by clicking Paste. 

WWffltffltWWWI 

The command P a r a m e t r i c P l o t 3 D 
allows one to grcphpoints that depend on 
two parameters. 
The command SpaceCurve 
allows one to graph points that depend on 
one parameter. 

0utf2j= 
-Graphics3D-

SpaceCurve[{Sqrt[ t ] C o s [ t ] . S q r t [ t ] S i n [ t ] . t A ( i / 3 ) > ; 
{ t . 0 . i O P i . l O P i / 1 5 0 > . 
Boxed->Fa l se ,BoxKat ios ->{ l , 1 ,1 }J 

-Graphics3D- ] . 
™" " ^ ■ ^ ■ ' ■ ' ■ ' • ' ■ ' ■t · ■ ' ■ * ■ ' ■ ' · ' ■ ' ■ ' · ' ■ * ■ ' ■ ' ■ ' ■ ' ■ ' · ' ■ '■ 

ΛΛΛΛΛΛΛΛΛΛ 
i i t é é M é * 

ER 
a 
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D Example: 

The following example shows how functions which have been previously defined can be graphed with 
SpaceCurve. A function v [ t ] is defined in terms of the parameter t . Then, a function norm [ t ] is given. 
This function is simply the square root of the sum of the squares of the components of v [ t ] . Since v is a list, 
Length [v] represents the number of components of v which in this case is 3. 

In this case, defining norm[vJ :=Sqrt [v. v] produces the same result. 

Finally, a function w [ t ] is defined as v [ t ] / n o r m [ t ] . 
The graph of v is plotted with SpaceCurve and called scone. Notice that Release [ v [ t ] ] must be 
entered in this command in order for the components of v [t ] to be evaluated at the various values of t . The curve 
is plotted for t=0 to t=2Pi using small increment sizes of2Pi /300. 

o If using Version 2.0, use ParametricPlot3D instead of SpaceCurve; use Eva luate instead of 
Release. 

ParametricPlots 
inf!6j:= 

Clear[v ,norm,v] 
▼[t_J : = { C o s [ t l # S i n [ t ] , S i n [ 6 t ] } 
i i orm[▼_]:=Sqrt [Sum[(▼[[ i ] ] ) A 2 , { i , l ,Length[vJ} ] ] 
v[ t_]=v[ 11 / η ο η [ γ [ t ] ] ; 

toft 7/:* 
scone=SpaceCurve[Release!v[t]],{t,0,2Pi,2Pi/300}, 
Boxed->False,Àxes->Àutomatic,BoxKati03->{1,1,1}] 

tQ\ 

Outf!7j= 
-Graphics3D- ]J 

526 



Chapter 8 Some Graphics Packages 

The graph of w [ t ] is then plotted with a similar command. Again, Release [w [t ] ] must be used in order to 
plot this function of one parameter. 

o If using Version 2.0, be sure to use Evaluate instead of Re lease . 

3ctvo=SpaceCurve[Selease[v[t] J m {t,0,2Pi,2Pi/400>, 
Boxed->False,Àxe3->Automatic,BoxRatio3->{l,1,1}] 

0.5 

Outf!Sj= 
-Graphics3D-

jJSO 
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® Version 2.0 Graphics 
The following window shows the contents of the Graphics folder in Version 2.0 of Mathematica. Notice that several 
new packages are included. In this section, we discuss ImplicitPlot.m, 

Graphics 
19 items 55,251 Kin disk 23,486K available 

0 
Animation.m ArgColors.m Colors.m ComplexMap.m FilledPlot.m 

Graphics.m Graphics3D.m ImplicitPlot.m Legend.m Master.mMultipleListPlot.m 

ParametricPlot3D.PlotField.m PlotField3D.m Polyhedra.m Shapes.m Spline .m 

S ? LSI 
SurfaceOfRe Yoluti ThreeScript .m 

m 
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• 8.5 ImpIicitPlot.m 

Plotting an implicit equation was demonstrated earlier using the commands available in Version 1.2. This involved a 
rather lengthy procedure in which the equation was graphed in pieces. Fortunately, this task is not required in 
Version 2.0 which contains the Graphics package I m p l i c i t P l o t .m . This package includes the 
command I m p l i c i t P l o t [ e q u a t i o n , {x, xmin, xmax} ] which graphs the implicit equation, 
e q u a t i o n , from x = xmin to x = xmax. The set of y-values displayed may be specified by entering the 
command I m p l i c i t P l o t [ e q u a t i o n , { x , x m i n , x m a x } , { y , y m i n , y m a x } ] . 

O Example: 

After loading I m p l i c i t P l o t .m, this command is demonstrated with the same equation that was plotted earlier 
with Version 1.2 in Chapter 4 on page 237: 

Implicit EH amp je 
toftl-

«ImplicitPlot. m 

inf3j:= 
equation=yA2-xA4+2x 

The package I m p I i c i t P l o t . m 
contains the definition of the command 
I m p l i c i t P l o t . 

0WWWK4WMWW4W«« V"i'W . 
ιΛιοΙιΛίιΙοΙι 

6 - x A 8 = = 0 ; 
g r a p h o n e = I m p l i c i t P l o t [ e q u a t i o n , { i . - i . 5 , 1 . 5}] 

1.5 

Outf3j= 
-Graphics -

first defines e q u a t i o n 
equation to be the 
equation 

y - x +2x - x =0 
tkengrcpks e q u a t i o n 

for K-values between 
-1.5 and 1.5. 
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O Example: 

Implicit equations can be plotted simultaneously, as with the command Plot , with 
ImplicitPlot[{eql,eq2,...,eqn},{x,xmin,xmax}] and 
ImplicitPlot [ {eql,eq2, . . . , eqn} , {x, xmin, xmax} , {ymin, y max} ]. This is shown 
below. Recall that a double equals sign must be used with each equation. 

inf,'*!'->-

I m p l i c i t P l o t [ { x A 2 + y A 2 = = i , 
{ x , - 1 . 5 , i . 5 } ] 

1 ■ " 1 

\ 2 

-1.5-W.5 

/ " 2 

■ ■ 

O.W 1.5 

■ ■ 

Outf4J= 
-Graph ic s -

1 — M M — r ^ ' i i Q Q 7o ▼ | |Q 1 111 III 

4x A 2 - T * 2 = = l } i grcpks the equations x + γ = 1 I 
4 x 2 - y 2 = l 

| forK-valu&sbetween-1.5and 1.5. ] 

1 W 
lllllilllllllllllllllllllllllllllllllilllllllllilllllllllllllll gCH15ti 

D Example: 

Conic sections can also be plotted with I m p l i c i t P l o t . A table of conic equations of the form 
conic=a xA2+b yA2==l is produced below. 

The values of a are found in a l i s t = { - 2 , - 1 , 1 , 2 } while those for b are i n b l i s t = { 1 , 2 } . The eight 
equations found in con icequat ions result when c o n i c is evaluated at the values in a l i s t and b u s t . 
Note that con icequat ions is a list of pairs of elements. 
Hence, the conic equations can be extracted from this list with c o n i c e q u a t i o n s [ [ i , j ] ] , where 
i=l,2,3,4 and j=l,2. 
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A function which yields the graphics of each equation is defined as 
graph [ i , j ] = I m p l i c i t P l o t [ con icequat ions [ [ i , j ] ] , {x, 

D i s p l a y F u n c t i o n - > I d e n t i t y ] . 
The option D i s p l a y F u n c t i o n - > I d e n t i t y causes the plot to be suppressed 
for each equation in c o n i c e q u a t i o n s is produced with 
g r a p h i c s = T a b l e [ g r a p h [ i , j ] , { i , l , 4 } , { j , l , 2 } ] . 

2 , 2 ) , 

Then, the table of graphics 

ImplicitEnample 
inf9j:= 

Clear[conic] 
conic=a xA2+b yA2==l; 
alist={-2,-1.1,2}; 
blist={1.2); 
conicequations=Table[conic /. 

a->alist[[i]] /. b~>blist[[j]] 
{i,i,4},{i,i,2)] 

conicequations 
is a tobte of equations obtained 
by substituting values from the 
list {-2,-1 J,Z} for a and values from 
the äst {1,2} for bin the general 
equation 

ax2 + b y 2 = l . 
G e n e r a l : : s p e l l l : 

Possible spelling error: new symbol name 
"blist" is similar to existing symbol 
"alist". 

Outf9j= 

Version 2 issues warnings 
if you define objects to have 
names similar to existing 
objects. 

{{-2 x 2 + y 2 == 1, 

{-x + y = = 1 , 
/ 2 2 
{x + y == 1, 

-2 
2 

-x 
2 

x + 

x 2 + 2 y 2 == 1 } , 

+ 2 y 2 == 1 } , 

{2 x 2 + y 2 == 1, 2 x 

2 y" == 1 } , 
2
 + 2 y 2 == 1}} 

A?/ / / / · -
g r a p b [ i _ , j _ ] : = I n p l i c i t P l o t [ 

c o n i c e q u a t i o n s [ [ i . j ] ] , 
{ x , - 2 , 2 } , D i s p l a y F u n c t i o n - > I d e n t i t y ] 

g r a p b i c s = T a b l e [ g r a p b [ i , j ] . { i , i , 4 > , { j , i , 

General::spelll: 
Possible spelling error: new symbol name 
"graphics" is similar to existing symbol 
"Graphics". 

OutfilJ* 
{{-Graphics-, 
{-Graphics-
{-Graphics-
{-Graphics-

2)1 

-Graphics-}, 
-Graphics-}, 
-Graphics-}, 
-Graphics-}} 

g r a p h [ i , j ] 
tkejtk member of the ith 
member of the Ust 
con icequat ions . 
The resulting grcpkics 
object is suppressed with the 
option 
D i splayFunc t i on-> 

Identity. 
graph ic s isatdbte 
of the graphics objects 
g r a p h [ i , j ] for 
b= 1,2,3,4 and j= lt2 

f.y.y.'Vtf 
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The graphics contained in g r a p h i c s can be visualized with Show [GraphicsArray [graph ic s ] ] . 
GraphicsArray [graphics ] sets up similar rectangular areas to display each graph in graphics . 

ImplicitEKample 

S h o w [ G r a p h i c s A r r a y [ g r a p h i c s ] ] 

Outf!2j= 
-Graphic sÀr ray-

\mm 

-nia 
The resulting eight graphics ceUs 
COn be visualized in, an array of graphics 
ceUs usmg the command 
Shov[GraphicsArray[graphics]] 

AttttttfttttttttAttOtt^^ 

Notice that it is easy to identify eachgrcph: 

- 2 x 2 + 2 y 2 = l 

- x 2 + 2 y 2 = l 

x 2 + 2 y 2 = l 

2 x 2 + 2 y 2 = l 
ratttttttttifttttttt^^ 

a i oo% ▼ i κ> i Jiiiiiiiiiiiii JIM 
^ é * ^ M * sa 
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• 8.6 PlotField.m 

The package P l o t F i e l d . m contains the commands P l o t V e c t o r F i e l d and P l o t G r a d i e n t F i e l d 
which are useful in many areas of physics and engineering. 
P l o t V e c t o r F i e l d [ v e c t o r [x , y] , { x , x m i n , x m a x } , {y, ymin, ymax) ] graphs the vector 
field given by the vector-valued function, vec tor [x, y ] . This is illustrated below with the vector field 
f [ x , y ] . 

O Example: 

ÏDI PlotfieldtEKample 

«PlotField.m 

iftf!Oj:= 
f [ x _ , y _ J = { x / S q r t [ x A 2 + y ~ 2 + i l , 

- y / S q r t [ x A 2 + y A 2 + l ] > ; 
▼ f o n e = P l o t Y e c t o r F i e l d [ f [ x , y ] 

{ y , - 2 , 2 > ] 

Tkepackage P l o t F i e l d . m 
contains the commands P l o t V e c t o r F i e l d 
and P l o t G r a d i e n t F i e l d . 

{ x . - 2 , 2 } 
jUOtltCIUOIHOIIIOIHC 

////I/ 
////il 
ss//iI 

V / 
'S / 

\ \ 
\ \ 
\ \ 
\ \ 

WWW 

\ V 

' * ^ * ^ ^ • 

Λ \ \ 

W N W \ \ 

OutflOj= 
- G r a p h i c s -

t ff. 
ttf/SSS 
t t t//SS 

After defining the vector field 

x -y 
f(x,y) = 

f PlotYectorField[f[x,y], 
{x,-2,2>,{y,-2,2}] 

graphs the vector field f on the 
square [-2,2] x [-2,2]. 

X&VtäBXtHWMiXltoUAdW**lHfUAm 
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The command P l o t G r a d i e n t F i e l d [ f u n c t i o n [ x , y ] , { x , x m i n , x m a x } , { y , y m i n , y m a x } ] 
graphs the gradient field of the function, funct ion [x, y ] . This is done by first computing the gradient of 
function [x, y] (which yields a vector field) and then plotting the gradient. This is shown below with the 
function w[x, y]=Cos [ 4 x A 2 + 8 y A 2 ] . 

O Example: 

Ι Π ^ ^ = 5 5 5 Ξ Ξ Ξ Ξ PlotfieldtExample ^^^^^^m 

inf6j:= T 
»[x -Y ]=Cos[4i*2+9yA21; 
P l o t G r a d i e n t r i e l d [ > [ x , y ] , { x , - l . l } . 

{y.-1.1)1 J 

\ \ \ i . , ( , . r / / / ] 

s , * \ H i i f f*r *f 

: : ; n H H H Î Î: \ 
* / . r 1 1 . \ * 

OutfôJ= I 
-Graphies- J_ 

^■■■■■tMiUi»'! 100% ▼ jKP | l i l l l l l l l i l l l l l l l i l l l ζ 

n 
R 

M 
32a 

After defining 

v(x,y) = Cos(4x2+9y2), 
PlotGradientField[ 

{y,-i,l>] 

confutes ?fte gradient ofw 
and then graphs the resulting 
vector field on the rectangle 
[-1,1]* [-1,1]. 
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• 8.7 PlotField3D.m 

Vector fields can be plotted in three dimensions as well. The commands needed to plot these fields are found in the 
Plo tF ie ld3D.m package. The syntax for the P l o t G r a d i e n t F i e l d 3 D and 
PlotVectorField3D commands are similar to those used in the two-dimensional case in the previous 
section with the additional z-component. 

O Example: 

PlotGradientF±eld3D is shown below with the three dimensional function, Cos [x y z ] . 

Plotfield3DtExample 

A s / / / -
« P l o t F i e l d 3 D . m 

The commands P lotGradientFie ld3D 1 
and P lotYectorFie ld3D 
are contained in the package P l o t F i e l d 3 D . : 

"^j»v;;;;;;y 

pgf=PlotGradientF±eld3D[ 
C o s [ i y z ] , { x , - P i , P i } , 
{ y , - P i , P i } , { z , - P i , P i > ] 

first computes the gradient of Cos fay z) 
and tkengrcphs the resulting vector field 
for x-vaiues between -π and n, y-vabu&s 
between -π and π, and z-vabu&s between 
-IT and ΊΙ 

Don't forget to include the space between 
the x, y, and z to denote the product of 
x, y, and z. 

wimmt&$ft&immfmmm 

-Graphics3D- 1 

Βιοο% Ι̂ΙΦΙ I — a Is 

mm 
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D Example: 

The vector field, v f [ x ,y , z ] = {y A 2-z , z A 2+x ,x A 2 -y} , is plotted below using the command 
PlotVectorFie ld3D. This graph is named vf one for later use. 

Plotfield3DtEKample 
inf4j:= 

Clear[vf ,h] 
▼f[x_,y_,z_]={y-2-z,zA2+x,xA2-y); 
▼£ one=PlotVectorField3D[vf [ x, y, z ] 

{x,-2,2K{y,-2,2K(z,-2,2}] 

Outf4j= 
-Graphics3D- ]\ 

K> PlotYectorField3D[ 
▼£[x,y.z], 
{x,-2,2>.{y,-2.2> 
{z,-2,2}] 

grcpks the three-dimensioned 
vector field 

vf(x,y,z) = [y2 -z,z2 + x,x2 - y } 
\for x-values between -2 and 2, 
y-vabues between -2 and 2, and 
z-vahi&z between -2 and 2 
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D Example: 

The function h [x, y , z ] =xA2+yA2+z+4 is defined below and the gradient field for h [x, y , z ] , called 
vgone, is graphed with P lo t6rad ientF ie ld3D. Notice that since the definition of h and the 
PlotGradientField3D command are enclosed in the same input cell and no semi-colon follows the 
definition of h, the formula for h is given as part of the output. 

h [ x _ . y _ , z _ ] = x A 2 + y A 2 + z - 4 
v g o n e = P l o t G r a d i e n t F i e l d 3 D [ h [ x , y , z ] 

{ x , - 2 , 2 } , { y , - 2 , 2 } , { z , - 2 , 2 } ] 

Outf5j= 
2 2 

-4 + x + y + z 
General : :spelll: 

Possible spelling error: new symbol 
name "vgone" 
is similar to existing symbol 
"vfone". 

Mwwwvm 

PlotGradientField3D[ 
h[x.y.z],{x.-2,2K 
{y.-2,2K{z,-2.2>] 

\first computed the gradient of 
2 2 

h(x,y,z) = x + y + z-4 andtke; 
Igrcpks the resulting vector field 

Notice that Version 2 displays 
the definition ofk since a semi-
colon was NOTincluded at the 
command 
Version 2 warns of a possible 

« spelling error. 
mvmmwn 

Outf4j= 
-Graphics3D- ]J 
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The three-dimensional graphs, vfone and vgone, obtained earlier can be viewed together with 
S h o w [ G r a p h i c s A r r a y [ { v f o n e , v g o n e } ] . 

inf?J:> 
S h o v [ G r a p h i c s A r r a y [ { v f o n e , v g o n e } ] ] 

Outf7j= 
-Graphi c s Ar r a y -

«ûfittttfl 
?1ΪΟΟ%^ΙΙΦΙ 

]J 
& 

a 

£>otfi v f o n e 
and v g o n e 
can be displayed in a 
single grcpkics ceä with 
the coYnmand 
Shov[ GraphicsArray 

[{vfone,vgone >]] 
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• 8.8 ComplexMap.m 

A problem of interest in complex analysis is finding the image of a complex-valued function f(z). The package 
ComplexMap.m provides several commands which are useful in solving problems of this type. 
Cartes ianMap[£[z ] , { { χ θ , χ ΐ } , { y O , y l } ] gives the image of f [z] using Cartesian coordinate 
grid lines over the rectangular region {xO, x l } x {y0, y 1}. 

This is illustrated below with the functions i d [ z ] = z a n d f [ z ] = ( z - l ) / ( z + l ) . Since i d [ z ] is the 
identity map, each point in the domain is mapped to itself. Hence, the Cartesian grid, called cmid, is unchanged 
upon application of i d [ z ] . (This region can therefore be viewed as the domain of f [ z ].) The second graph, 
cmf, illustrates the effects that f [z] has on the points in cmid. 

CompleHMapEHample 
InflJ:-

«ComplexHap. m 

inf3j:= 
id[z_]=z; 
f[z_]=(z-i)/(z+i); 

in[5j:= 
cmid=Car t e s i a n r J a p [ i d , { 0 , 2 } , { 0 , 2 } ] 
c m f = C a r t e s i a n H J a p [ f , { 0 , 2 } , { 0 , 2 } ] 

iy , 
The package ComplexMap.m 
contains definitions of the fonctions C a r t e s i a n H a p 
■ί^.,ηΕ^,ΐί,^.^,^/Β.,.ο.,,ρ,,,ο.Μθ,Μ..,, 

2 

1.5 

1 

0.5 

_«_ 

We first define id(z)=zand 

f (2) = . Notice that a semi-
z + 1 

colon is placed after EACH line to 
suppress the output. 

cmid is the image ofid(z) under the 
Cartesian coordinate lines; thus it is 
the Cartesian coordinate lines. 

9m0MWMvm0wcMmMwoaAoce«myMrt< 

0.5 

Outf4j= 
-Graph ics -

1.5 

LAAAPU&WIWBMW 

cmf is the image off(z) under the. 
Cartesian coordinate lines. Hence, the 
image of cmid is cmf . 

- 0 . 7 5 - 0 . 5 - 0 . 2 5 0.25 0.5 

Outf5j= 
-Graphics-
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The two graphics objects, cmid and cmf, can be viewed in a single graphics cell with 
Show [ Graph ic sAr r a y [ {cmid, cmf} ] . This gives the usual manner in which the domain and image of 
a function are illustrated. 

| Shov[ Graphic3Àrray[ 
{cmid,cmf}] 

| shows the two graphics objects 
cmid and cmf 
in a single graphics ceil 

tn[6L = 
S]]LD i [5rapl i i c3ÀrraY[ { cmid , cmf } 

*»\~] 1 1 1 1 

1 

o s M 11II 

0.5 1 

Outf6l= 
-Graphic sAr] 

.1.1.1 l I.I.I -1-0.790.50.25 
1.5 2 

:ay-

Ü
 

1 
1 

0.250.5 

1 

M 

In addition to Cartesian coordinates, polar coordinates can also be used. This is done with 
PolarMap [f [ z ] , {rO, r l ) , { t h e t a O , t h e t a l } ] which produces the image of f [ z ] over the 
circular region R bounded by limits placed on the polar coordinates r and Θ: 

R : rO < r < r l , t h e t a O < Θ < t h e t a l , 
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The following problem is worked in a method similar to that of the previous problem involving Cartesian 
coordinates. However, many of the graphs are suppressed by using the D i s p l a y F u n c t i o n - > i d e n t i t y 
option. Again, the identity map, i d [ z ] =z, is used to produce the polar grid, called pmid, to be viewed as the 
domain of the function f [ z ] . The image of f, named pmf, is then determined with PolarMap and the two are 
displayed with Show [ GraphicsAr ray [ {pmid, pmf } ] ] . 

pmid=PolarHap[id,{0,1/2},{0,2Pi} 
DisplayFunction->Identity]; 

paf=PolarHap[f,{0,1/2},{0,2Pi}, 
DisplayFunction-> Id entity]; 

Shov[GraphicsArray[{pmid,pmf}]] 

Outft2j= 
-Graphi c sÀr ray-

QIOQ*HPI \ IHM 
m 
a 

In the same manner as above, 
pmid consàts of the Polar 
coordinate lines and pmf 
is the image of the Polar 
coordinate lines. 
Remember that the option 
D i sp layFunc t i on-> 

I d e n t i t y 
suppresses the output* of the 
resisting graphics. 

The following example illustrates several ideas. First, the built-in Mathematica function I d e n t i t y can be used 
to produce the domain grid for a function as opposed to defining i d [z ] =z which was done in the previous 
examples. Also, GraphicsArray can be used to plot graphics cells in a desired order. For example, the 
domain and image of a function can be displayed consecutively. 

This is done below for the functions w [ z ] = ( l - C o s [z] ) / (1+Cos [z] ) and m[z] = ( z -2 ) / ( 2 z - l ) . 
The domain and image of w are called cmid and cmw, respectively, while those of m are named pmid and pmm. 
These graphics objects are shown in the appropriate order with the command 
Show [ G r a p h i c s A r r a y [ { {cmid, cmw} , {pmid, pmm} } , A s p e c t R a t i o - > l ] . (Notice the 
grouping of {domain, image} within GraphicsArray.) 
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ÏD1 CornpleKMapEKample ÎHÏ 

l-Cos(z) , z - 2 
defines v(z) = an<im(z) = - — -

' l + Cos(z) 2z - l 
iiiiiiniiniii 

lnf!7j:= 
w[z_]=(i-Co3[z])/(i+Co3[z]); 
n[z_]=(z-2)/(2z-i); 

tnf22j:= 
cmid=Carte3ianHap[ Identity, 

{0,Pi/2,Pi/20},{0,2,2/10}, 
DisplayFunction->Identity]; 

cmv^Carte3ianHap[v,{0,Pi/2,Pi/20},{0,2,2/10}, 
DisplayFunction->Identity]; 

pmid=PolarUap[Identity, 
{0,1,1/10},{0,2Pi}, 
DisplayFunction->Identity]; 

pmm=PolarHap[&, 
{0,1,1/10},{0,2Pi}, 
DisplayFunction->Identity]; 

Shov[Grapliic3Ärray[ { {cmid, ci?} , 
{pnid,pnm}},AspectRatio->i]] 

-E2 

I d e n t i t y [ x ] isabuilt-in 
Matkematica function 

Power::infy: In f in i t e expression - encountered. 
0 

2 

1.5 

1 

0.5 

Even though Mathematica 
encounters an undefined 
expression, the final result 
issatisf tisfactory. 

oioioloiftoliîiiiinoioioiHOi 

corresponds to the Cartesian coordinate 
lines and the image ofw(z) under the 
Cartesian coordinate lines. 

-0.73^5.25 0 .28 .8 .751 

0.2Œ.5.7511.26.5 
lisiiiinn 

I corresponds to the Polar coordinate 
lines and the image ofm(z) under the 
Polar coordinate lines. 

Outf22/= 
-Graphi c sAr r a y-

*.. 
1100% ▼ IK? ΓJlllllllllllllllllllllilllllllilliiiliil d 
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Chapter 9 
Some Special Packages 

Chapter 9 discusses some of the more specialized packages available with Mathematica. 

• Numerical Math 

The packages within the Numerical Math folder in Version 2.0 are shown below: 

NumericalMath 
11 items 57,347K in disk 21,390K available 

IS 
Approximations .m 

ï5\ 

Butcher .m Cauchy Principal Value. Computer Arithmetic .m 

NLimit.m Poly nomialFit .m GaussianQuadrature .m 

Interval Arithmetic.m List Integrate .m Master .m NevtonCotes.m 

EL Tag 
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• 9.1 Approximations.nl 

o Although the examples done here were completed with Version 2.0, Version 1.2 also contains the package 
Approximat ions . m in the Numerical Math folder. 

The package Approximations . m contains useful commands for the approximation of functions with rational 
functions. The first command discussed is that of 
R a t i o n a l i n t e r p o l a t i o n [ f u n c t i o n , { x , m , n } , {x, xO, x l } , o p t i o n s ] which gives the 
interpolating rational function P(x,y)/Q(x,y ) on the interval from xO to x l where the the degree of P(x,y) is m and 
that of Q(x,y) is n. 

O Example: 

This command is illustrated below with Sqr t [ l -4xA2 ] . The interpolating rational function r i n t l is found 
and then this approximation is compared to the original function by investigating the error function, 
Abs [ r i n t l -Sqrt [ l - 4 x A 2 ] ] . 

Rational Interpolation 

«Approximations, m 

inf!5j:= 

^M 
Ui£ command R a t i o n a l i n t e r p o l a t i o n 
is contained in the package A p p r o x i m a t i o n s , ι 

LJ r i n t l is a rational r i n t l = S a t i o n a l I n t e r p o l a t i o n [ S q r t [ i - 4 x A 2 ] , 
{ x , 2 , 2 > , { x , - . 5 , 5 } ] 

Outf!5j= 
-21 

(1. + 8.3759224159064725 10 x -

3.577708763999663515 x ) / 

(1 + 2.710505431213761085 10 

2 
1.689164944001345945 x ) 

inf/6j:= 
approx[x__]=Chop[ r i n t l ] 

Outf/6j= 
2 

1. - 3.577708763999663515 x 

2 
1 - 1.689164944001345945 x 

-20 
x -

approximation of 
*jl _ 4X

2 on the interval 

[-1/2,2/2]. Both the 
numerator and 
denominator have 
degree 2 

Notice that the 
coefficient of x in 
both the numerator 
and denominator is 
"smcdl". 
C h o p [ r i n t l ] 
replaces the "smaü" 
numbers by zero. 
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This error, e p l o t l , is graphed below. 

tnf!7j:= 
eplotl=Plot[Äbs[approx[x]-Sqrt[1-4 x~2]] 

{x,-.5,.5},PlotRange->Àll] 

0.175 

0.15 

0.125 

0.1 

0.075 

0.05 

0.025 

- 0 . 4 

Outf!7j= 
-Graphics-

-0 .2 0.2 0.4 

loAifAffiMioi 

grcphs approx[x] -Vl -4x 2 

ontke interval [-1/2,1/2]. The 
option P l o t S a n g e - > 

A l l 
specifies that the entire grcpk 
is to be displayed 
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Several other interpolating rational functions are computed below. r in t2 is a function of order 3 in both the 
numerator and denominator. Similarly, r in t3 is of order 4 in both the numerator and denominator. The output of 
these functions is suppressed. Finally, the error for each rational interpolating function is graphed in order to 
compare accuracy. Clearly, r in t3 yields the best approximation of the three. 

{X.-.5..5}, 

lnf36j:= 
rint2=RationalInterpolation[Sqrt[l-4 χΛ2]„{x,3,3}< 

{x,-.5,.5}]; 
rint3=RationalInterpolation[Sqrt[i-4 xA2],{x,4,4}, 

{Z.-.5..5}]; 

inf44j:= 
eplot2=Plot[Abs[rint2-Sqrt[i-4 xA2]].{x,-.5,.5}. 

PlotStyle->GrayLevel[ . 2], 
PlotRange->All, 
DisplayFunction->Identity]; 

eplot3=Plot[Abs[rint3-Sqrt[i-4 x~2]] 
PlotStyle->GrayLevel[.3]. 
PlotRange->All, 
DisplayFunction->Identity]; 

all=Shov[eploti,eplot2,eplot3, 
DisplayFunction->Identity]; 

Shov[GraphicsArray[{{eploti,eplot2},{eplot3,all}}] 

0.175 
0.15 

0.125 
0.1 

0.075 
0.05 

0.025 J Q ^ ^CL * \ -<—-
-0.4 - 0 . 2 0.2 0.4 - 0 . 4 - 0 . 2 0.2 0.4 

0.08 

0.06 

0.04 

0.02 

- 0 . 4 - 0 . 2 

Outf44j= 
-Gr aph i c s Ar r a y -

0.2 0.4 -0.4 - 0 . 2 0.2 0.4 

«ManlMMManaiimmmflk 

rint2<27KÎ 
r i n t 3 are 
degree 3 and 
degree 4, 
rational 

1 cpproximations 

of^ 4x6 

In each case, the 
resulting error is 
graphed and then 
all three error 
gnopks are shown 
svmukan&ousty. 
Finally, aü four 
graphs are shown 
inagrcpfucs 
array. 

i\ 
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Also located in the Approximations .m package is the command 
NiniMaxApproximation [f [ x ] , {x , {xO, x l } , m, k} ] which improves on the approximation found 
with R a t i o n a l i n t e r p o l a t i o n [ £ [ x ] , { χ , π ι , κ } , { χ , χ θ , χ ΐ } ] . Although the syntax differs, both 
of these commands yield a rational function of order m in the numerator and k in the denominator which 
approximates f [x] over the interval {xO, x l } . Another difference in the commands occurs in the output. While 
R a t i o n a l i n t e r p o l a t i o n gives only the approximating rational function, 
MiniMaxApproximation gives some additional information of the form 
{ a b e c i s s a l i s t , {approx , m a x e r r o r } } where a b s c i s s a l i s t is a list of abscissa at which the 
maximum error occurs, approx is the desired rational approximation, and maxerror is the value of the 
minimax error. 

O Example: 

These two commands are investigated below with f [x] =Exp [x] on the interval { -1 ,1} using a rational 
function of order 2 in the numerator and 1 in the denominator. First, the approximating rational function is found 
with R a t i o n a l i n t e r p o l a t i o n and named r i n t l . Note that this command yields only the 
approximating function as output. Next, an approximation is found with MiniMaxApproximation. These 
results (which are given in the form mentioned earlier) are named mmaxl. 

MiniMaHRpproH 

infU:* 
« A p p r o x i m a t i o n s . m 

r i n t i = R a t i o n a l I n t e r p o l a t i o n [ 
E x p [ x ] , { x , 2 , i K { x , - i , i } ] 

Outf2j= 
2 

1.00168 + 0.678005 x + 0.164056 x 

1 - 0.322666 x 

tnfS/:» 
mmaxl=II in inaxApproximat ion[ 

E x p [ x K { x , { - i , i K 2 , i } ] 

Outf3/= 
{{-!., -0 .743577, -0 .067892, 0.679364, 

1 . } , { 

2 
1.00167 + 0.673354 x + 0.16033 x 

KS 

0.325977 x 

-0.00172826}} 

r i n t l is a rational approximation 
of ex on the interval [-1,1]. The 
degree of the numerator is 2; the 
degree of the denominator is 1. 

The command 
HinimHa x App r o z ima t i on 
not only computes a rational 
cpproximation but also gives 
a list of numbers for which the 
maximum error occurs. 
Hence, in this case, the 
maximum error occurs when x is 
-1,-0.743577,-0.067892, 
0.679364, <md I. 

547 



Chapter 9 Special Packages 

In order to work with the approximating function obtained with MiniMaxApproxixnation, the technique of 
extracting an element from a list must be used. Since mmaxl is a list of two parts, the second of which contains the 
approximating function, mmaxl [ [ 2 , 1 ] ] yields the desired rational function from the list. This function is 
called apxl. After extracting the approximating function apxl , the error for both approximations is investigated. 
This is done by observing the error function for each. The function r i n t l e r r o r which represents the error of 
the R a t i o n a l i n t e r p o l a t i o n approximation is given by Abs [ r i n t l - E x p [x] ] . Likewise, the 
error of the MiniMaxApproxixnation , called mmaxle r ro r , is given by apxl -Exp [x] . These 
error functions are plotted simultaneously below. Notice how the critical points of the mmaxlerror curve 
(graphed in the lighter print) correspond to the values in a b s c i s s a l i s t . 

errorrint=Plot[Àbs[Exp[x]-rintl], 
{x,-1,1},PlotRange->All, 
PlotStyle->GrayLevel[.3]„ 
DisplayFunction->Identity]; 

errornmax=Plot[Abs[Exp[x]-»maxl[[2,l]]] 
{x,-1,1},PlotRange->All, 
DisplayFunction->Identity]; 

Shov[errorrint.erroriiai, 
DisplayFunction->$DisplayFunction] 

]J 

e r r o r r i n t isagrcphofthe 
error between Exp[ x ] 
and r i n t l . 
Remember that the option 
D i s p l a y F u n c t i on-> 

I d e n t i t y 
specifies that the resulting 
graphics object not be displayed 
Similarly, e r r o r i i a x is 
agrcph of the error between 
E x p [ x ] and u a x [ [ 2 , 1 ] ] . 

Finally, both graphs are 
shown simultaneously. 

The option 
D i s p l a y F u n c t i on-> 

$D i s p l a y F u n c t i on 
indicates that the resulting 
graphics objects are to be 
displayed 
The lighter grcph represents 
e r r o r r i n t . 
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• 9.2 GaussianQuadrature.ni 

o The package GauseianQuadrature .m is contained only in the Version 2.0 Numerical Math and is 
not included with Version 1.2. 

Numerical integration by Gaussian quadrature is based on the Lagrange interpolation formula 

p(x) = £ f (x i ) / i ( x ) where Λ00 = Π 
i=l j=l 

j*i 

If this formula provides a good approximation of f, then the integral of p yields a good approximation to the integral 
off. Therefore, 

Ja
b f(x) dx « Ja

b p(x) dx = £ f ( X i ) Ja
b^(x) dx = XAif(Xi) 

i=l i=l 

where Â  represents the weights and Xi the nodes for i = 1,2,...,n. 

The Mathematica command GaussianQuadratureWeights [n, a ,b ] which is located in the 
GaussianQuadrature. m package determines the values of these weights and nodes. The output is given 
in the form of ordered pairs where the first entry in each pair gives the node while the second entry represents the 
corresponding weight. Several examples of this command are given below for different values of n using the same 
interval from -2 to 2. Note that the calculation of the weights and nodes is independent of the function f. 

O Example: 

GaussianQuadrature(NurnMath) 

ft/7/-
«GaussianQuadrature. m 

fn[2j:= 
Gauss ianQuadrature¥e ights [2 , -2 ,2 ] 

Out[2/= 
{ { - 1 . 1 5 4 7 , 2 . } , { 1 . 1 5 4 7 , 2 . } } 

M3J:= 
GaussianQuadratureYeights[3,-2,2] 

Outf3j= 
{ { - 1 . 5 4 9 1 9 , 1 . 1 1 1 1 1 } , { 0 . , 1 . 7 7 7 7 8 } , { 1 . 5 4 9 1 9 , 1 . 1 1 1 1 1 } } 

inf4j:= 
Gaus s ianQuad ra tur e¥e igh t s [ 4, - 2, 2 ] 

Outf4j= 
{ { - 1 . 7 2 2 2 7 , 0 . 6 9 5 7 1 } , { - 0 . 6 7 9 9 6 2 , 1 . 3 0 4 2 9 } , { 0 . 6 7 9 9 6 2 , 1 . 3 0 4 2 9 } , 

{ 1 . 7 2 2 2 7 , 0 . 6 9 5 7 1 } } 

^ 
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Since the output appears in the form of a list, the weights and nodes can be extracted from the output. This is 
illustrated below by assigning the name of gqw to the expression which results from the command 
GauseianQuadratureWeights [3 , - 1 , 1 ] . Hence, gqw[ [ 1 , 1 ] ] gives the first node on the 
interval [-1,1], and gqw [ [ 1 , 2 ] ] gives the weight which corresponds to this node. Therefore, the integral of a 
function f(x) from -1 to 1 can be approximated with the Gaussian quadrature formula given earlier using the values 
obtained with gqw. This is done in g q i n t below. Since no function is specified, the general integral formula 
results. 

O Example: 

In the next command, however, the function f [x] =Exp [ - (Cos [x] ) A2 ] is defined. Thus, a numerical 
approximation of the integral of f from x = -1 to x = 1 is given. 

Inf5j:= 
g q v = G a u s s ± a n Q u a d r a t u r e ¥ e i g l i t 3 [ 3 , - 1 , i j 

Outf5j= 
{{-0.774597, 0.555556}, {0., 0.888889}, 

{0.774597, 0.555556}} 

info/:» 
g q w [ [ l , l ] ] 

Outf6/= 
-0.774597 

tnf7/:-
g q w [ [ i , 2 ] ] 

Outf7f= 
0.555556 

tnfS/:» 
g q i n t = S u m [ g q w [ [ i , 2 ] ] f [ g q w [ [ i , 1 ] ] ] . ( i . 1 , 3 ) ] 

Outf8j= 
0.555556 f[-0.774597] + 0.888889 f[0.] + 

0.555556 f[0.774597] 

inf!Oj:= 
f [ x _ ] = E x p [ - ( C o s [ x ] ) A 2 ] ; 
g q i n t l = S u m [ g q w [ [ i , 2 ] ] f [ g q w [ [ i , 1 ] ] ] . { i , l , 3 > ] 

OutftOj* 
0.993687 

iioiliiUiiiiiiL· 
gqw is a nested list of three 
elements. Each element of 
gqw is a list with two elements 
where the first element represents 
the node and the second element 
represents the weight. 

■ m m 
ΛΪιΙιΐΐλι Ma 

g q v [ [ l ] ] wouîdyield 
the first element of gqw 
which is {-0. 774597,0.555556}. 

ΤΓ 
l|0|l|OUIOMIOHIOIIIOMIOIIIOIIIOIIIOIlff 

After defining 

we use the weights and 
nodes from above to 
estimate 

J\f(x)dx. 

i 
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A function which evaluates the Gaussian quadrature for any value of n is defined below in gauss [n] . A table of 
approximations of the integral of f given above is then created for n = 2 to n = 10 and placed in TableForm. 
TTliis procedure is useful in comparing the approximations obtained with Gaussian quadrature and can be repeated for 
other integrals. 

inf!!/:= 
gaus3[n__] : = 
nodule[{k=n}, 

weights=H[GaussianQuadratureWeights[k,-1*1]] 
guad=Sum[veights[[i,2]] f[weights[[i,l]]], 

{1.1. M l 
] 

inf!2/:= 
T a b l e [ { i , H [ g a u s 3 [ i ] ] } , { i . 2 , 1 0 } ] / / T a b l e F o n 

Outf!2jsYTaö?eForm= 
2 0.991091 

3 

4 

5 

6 

7 

8 

9 

10 

0.993687 

0.991297 

0.991294 

0.991308 

0.991308 

0.991308 

0.991308 

0.991308 

WIWWW 

We can create a 
table ofcpproximations 
of 
£tf(x)dx 
for various values 
ofn 
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Gaussian Quadrature procedures are useful when the exact value of an integral cannot be computed. This is the case 

1 2 
with J e~Cos ^ as shown below. However, in this case, our results can be verified 

with NIntegrate: 

inf?J:= 
f [ x _ ] = E x p [ - ( C o s [ x ] ) - 2 ] ; 
I n t e g r a t e [ f [ x ] , { x , - i , i > ] 

Syntax::bktwrn: 
¥arning: "f (b+a x"dg)M should probably be "f [b+a x"dg]". 

(line 169 of "Integrate%mainalgorithm%") 

Syntax::bktwrn: 
Warning: "f (Denominator[a]^Abs[b])" should probably be 
"f [ Denominator a PAbs[b]]H. 
(line 1227 of "Integrate%mainalgorithm%") 

Outf2j= 
2 

In tegra te [E~ C o s [ x ] , {x, - 1 , 1}] 
tnf3j:* 

N I n t e g r a t e [ f [ x ] , { x , - i , i } ] 

Outf3j= 
0.991308 

Mathematica cannot compute the exact value 
of 

J^f(x)dx 

although a numerical approximation which 
agrees with the above can be calculated 
using Mint eg r a t e . 

BttfiU PI 100% ▼ i io r~^iwiwiwi{i^^ii^^iiiiiiiiiiwwMi8awii da 
Kä 
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• 9.3 NLimit.m 

o NLimit .m is included with Version 2.0 but not earlier versions. 

The NLimit .m package contains which are useful in the calculation of limits and derivatives. These are 
N L i m i t [ f [ x ] , x ->x0] and ND [f [x] , x , xO]. N L i m i t [ f [ x ] , x ->x0] computes the 

numerical limit of Lim f [x]. 
x-»x0 

The value of xO can be either I n f i n i t y or - I n f i n i t y . However, a limit is not given with NLimit if the 
limit is I n f i n i t y or - I n f i n i t y . This command may be used when the built-in function Limi t [f [ x ] , 
x ->x0] fails. 

O Example: 

Compute Lim—. 
X->oo X! 

Illustrated below is the calculation of the limit as x approaches I n f i n i t y of the function Exp [x] / (x ! ). 
First, the limit is attempted using Limit . Since this is unsuccessful, a second attempt is made with NLimit to 
yield a limit of 0. 

NumericalLimits 

inf!j:= 
« N L i m i t . m 

inf3j:= 
Limit[Exp[ i] / (i ! ) . x-> Infinity] 

Series::esss: 
Essential singularity encountered 

1 
in Gamma[- + « 2 » ] . 

x 

General::stop: 
Further output of Series::esss 
will be suppressed during this 
calculation. 

Outf3j= 

E 
Limi t [—* 

x! 
x -> I n f i n i t y ] 

tnf4j:= 
N L i m i t [ E x p [ x ] / ( x ! ) , x - > I n f i n i t y ] 

Outf4j= 
0. 

η Μ Μ Μ Ί Μ . 1 1 0 0 % ^ | | ς ι [ - - | ; | 

KS 

Mathematka is unable to 
compute 

x! 
L i m i t . 

In this case, 
NLimit can be used to 
compute the value of 

Lim —. 
x->~x! 
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Similarly, Limit is unsuccessful in computing the limit as x approaches I n f i n i t y of the function 
(x*5) /Exp [x ] . However, NLimit is used to obtain a numerical approximation of this limit. Note that the 
result is quite close to 0. The built-in Mathematica command Chop [express ion] replaces all approximate 
real numbers in express ion which are less than ΙΟ^-ΙΟ) in magnitude with the number 0. Hence, 
Chop [ % ] yields the correct limit. 

infold 
L i m i t [ ( x A 5 ) / E x p [ x ] , x - > I n f i n i t y ] 

OutfoJ= 
5 

x 
L i m i t [ — , x -> I n f i n i t y ] 

x 
E 

H L i m i t [ ( x A 5 ) / E x p [ x ] , x - > I n f i n i t y ] 

Outf?J= 
-19 

1.35525 10 

fnf8/:= 
Cliop[ X] 

Outf8j= 
0 ]J 

Similarly, even though 
Mathematic cannot compute 

x5 

Lim — using the command 

L i m i t , 

the command HLimit 
can be used to approximate 
the limit. 

Chop[%] 
produces zero since 

1.35525 10"19<10"10. 
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O Example: 

Special care must be taken when dealing with limits which achieve the value of I n f i n i t y or - I n f i n i t y . 
NLimit cannot calculate limits of this type ! In these cases, NLimit may yield an incorrect limit or no limit at 
all. In the first example which follows, NLimit gives a value which obviously is not the limit of the given 
function. The limit of this function is I n f i n i t y as substantiated with the graph which follows as well as with 
well-known properties of functions of this type. In the second example, NLimit does not compute the limit as x 
approaches I n f i n i t y of the function χΛ2. This limit is clearly I n f i n i t y . 

kri====E=^== NumericalLimits s s 

NLimi t [ Exp[ x ] / ( x A 5 ) m x - > I n f i n i t y ] 

2.71828 

P l o t [ E x p [ x J / ( x A 5 ) , { x , 8 0 , 1 0 0 } ] 

32 
2 .5 10 

32 
2. 10 

32 1.5 10 
32 

1. 10 
31 

5. 10 

85 90 95 

- G r a p h i c s -

NLimit [ x A 2 . x - > I n f i n i t y 1 

2 
NLimit[x , x -> I n f i n i t y ] 

tj|r i g · ! · ! · ί * | · Ϊ . | · Ϊ · | Ι Ϊ · | i i i j | i ^ ■ iiijjiiijjjijijjjjjjjjjijiijjiijj! 

^ ^ ^ S E 

]1 
]J 
]] 

1 0 0 I I ! 

ll 
η 
i 

lllllllld 

1 
3 

S a 

Here VLlmlt 
\yields an incorrect value 
since 

ex 

Lim -ë- = ~. 
xD 

iNLimit is unable to 
I compute 

Lim x = ~. 

When dealing with certain functions, the calculation of a numerical derivative may be necessary. The command 
ND [f [ x ] , x, x0] gives the numerical approximation of ff [x0] . This method is based on Richardson 
extrapolation and does not yield a formula for the derivative. It simply gives an approximation of the derivative at 
the value x = x0. 
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O Example: 

The derivative of (x! ) A2 at x = 1 is approximated below. Next, an attempt to illustrate the accuracy of 
ND [f [ x ] , x, xO] is performed with the function Tan [ x ] . 

The function (x!)2 is the same as the function (Γ(χ))2 where Γ(χ) = J e ' V ^ d t 

n!nx 

= Lim 
n->°ox(x + l)...(x + n) 

is the Gamma function which is given by the command Gamma [a ] . 

ψ(χ) = Γ(χ) is called the Digamma Function and is given by the command Polygammafx]. 

NumericalLimits 
!nf!4j:= 

H D [ ( x ! ) ~ 2 . x , l ] 

Outf!4j= 
0.845569 

D[Gama[x]~2 ,x ] 

Outf23j= 
2 

2 Gamma[x] PolyGamma[ x] 

inf24j:= 
% / . x ->2 

Outf24j= 
2 (1 - EulerGamma) 

lnf25j:= 
N[X] 

Outf25j= 
0 . 8 4 5 5 6 9 

]\ 

Œ 

I "'Μ''",'"Ίΐοο%^ιιοι .iiMa 
& 

Mathematka numerically computes 
.21 

dx^ ' x=l 
* 0.845569. 

The same result can be computed by first 
cakulating 

-^(Γ(χ))2=2(Γ(χ))2Ψ(χ) 
αχ 

and then evaluating 2(Γ(χ))2Ψ(χ) 

by substituting x by 2 in the previous expression 
s i ^e r (x + l) = x!. 
This produces the exact value 2(1 - y). 

N[ X ] computes a numerical approximation 
of the previous result. Notice that, as expected, 
Out(14) and Out(25) are the same. 

Since the derivative of Tan [x] is known to be (Sec [x] ) A2, the numerical values obtained using ND are 
compared to the values of (Sec [x] ) A2 for x = - 1 . 5 to x = 1.5. A table of numerical approximations of the 
derivative of Tan(x) at values of x in the interval [-1.5,1.5] using ND are given in dtable . 
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This table of ordered pairs is created in order to plot the approximated derivative. These points are plotted 
simultaneously with (Sec [x] ) A2 to show the accuracy of this approximation. 

tnf4j:= 
d t a b l e = T a b l e [ { t . N D [ T a n [ x ] , x , t ] } , 

{t,-1.5,1.5,.1}]; 
Sbort[dtable,3] 

Outf4jsVShort= 

{ { - 1 . 5 , 197 .742} , {-1.4, 34.5964}, 

{-1.3 , 13 .974} , « 2 6 » , {1.4 , 27.5755}, 

{1 .5 , 1556.58}} 
tnf!Oj:= 

ploti=ListPlot[dtable, 
DisplayFunction->Identity]; 

plot2=Plot[(Sec[x])A2,{x,-i.5,1.5}, 
DisplayFunction->Identity, 
PlotStyle->GrayLevel[ . 4]]; 

Snov[plotl,plot2, 

d t a b l e is a table consisting 
of the ordered pairs 
{ t , H D [ T a n [ x ] , x , t ] } 
fort=-L5f-1.4t-1.3t...J.4J.5. 

The command 
S b o r t [ d t a b l e , 3 ] 

prints an abbreviated form 
of d t a b l e 
on no more than three lines. 

i ΙΟΙΛΟΓΑΆ'ΛΛ 

The command L i s t P l o t 
is used to plot the table of points 
d t a b l e . 
Remember that with Version ZO, 
a semi-colon must be placed after 
each command for which the output 
is to be suppressed 

D i splayFunc t i on->$D i splayFunc t i on] 

80 l· 

60 

40 l· 

20 r 

M . - K . - J . - . M - J - ^ - ^ . , . ^ . « , . / ! .. .*s 
-1.5 -1 -0.5 0.5 1.5 

The Show command 
is used to display bothgropks 
simultaneously. 

OutflOj= 
- G r a p h i c s -

D Displaying Points with Versions 1.2 and 2.0: 
Since the points are difficult to see in the previous plot, the command P o i n t S i z e [n] is used to increase the 
size of the points. In order to increase their size, the ordered-pairs must be specified as points. Given an ordered 
pair {a ,b} , P o i n t [ {a ,b}] specifies the graphics object which represents a point with coordinates {a ,b} . 
The graphics object may then be displayed with Show [Poin t [ {a, b} ] ] . Therefore, the command 
Map [ P o i n t , d t a b l e ] produces the list of points 
{ P o i n t [ { - 1 . 5 , 1 9 7 . 7 4 2 } ] , P o i n t [ { - 1 . 4 , 3 4 . 5 9 6 4 } ] 

P o i n t [ { 1 . 5 , 1 5 5 6 . 5 8 } ] } . 
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Given a list of points orderedpairs, Show [Graphics [ {PointSize [n] , orderedpairs] ] displays 
orderedpairs according to the sixe given by PointSize [n]. Consequently, plot3 represents the points 
created by Map [Point, dtable] displayed in size . 015. The resulting graph is not displayed because the 
option DisplayFunction->ldentity is included. Instead both p lot2 andplot3 are displayed 
together by including the option DisplayFunction->$DisplayFunction. 

p1o 13=Sho v[Graphi c s[ 
{ P o i n t S i z e [ . 0 1 5 ] , U a p [ P o i n t , d t a b l e ] } ] , 
D i s p l a y F u n c t i o n - > I d e n t i t y ] ; 

S h o v [ p l o t 2 , p l o t 3 , 
D i splayFunc t i on-> $D i splayFunc t i on] 

i 

1 

1 

\ 

80 

60 

40 

20 

• 

,! 

1 
1 

1 

j 

-1.5 -1 - 0 . 5 0.5 1.5 

Outf!7j= 

-Graphics-

Ι Η Η ^ ^ ▼ΙΙΟί 

Remember that the option 
D1splayFunc t i on-> 

I d e n t i t y 
specifies that the resulting 
graphics object is not to 
be displayed; the option 
D i splayFunc t i on-> 

$DisplayFunction 
specifies to show the 
resulting graphics object. 

iiiilM 
m 
Q 
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• 9.4 PoIynomialFit.m 

Version 2.0 includes the package Po lynomialFi t . m which offers the command 
PolynomialFi t [ d a t a l i s t , n ] that can be used to approximate a list of data in d a t a l i s t with a 
polynomial of degree n. The evaluation of the approximating polynomial is based on Chebyshev polynomials and 
the formula for this polynomial is not given as output as it was with the built-in F i t command. Instead, the 
command Po lynomialFi t [ d a t a l i s t , n] yields the true function, F i t t i n g P o l y n o m i a l [<>, n] 
which can be used to investigate the accuracy of the approximation. (Note that d a t a l i s t is noi a list of ordered 
pairs.) 
A list of data is given below in values. After loading this package, this data is approximated with a polynomial 
of degree 2. This polynomial is named approxl and is found with Po lynomia lF i t [ v a l u e s , 2 ] . The 
true function approxl can be plotted as shown in p l o t l . (Note that square brackets must be used with 
approxl in the P l o t command.) It can also be evaluated for any value of x as illustrated below with 
a p p r o x l [ 4 . 5 ] . 

PolynomialRppro» 

«PolynomialFit. m 

▼ a l u e s = { 1 . 2 , - . 3 , . 5 , 2 . 3 , i . 7 , . 5 > ; 

inf44j:= 
a p p r o x l = P o l y n o m i a l F i t [ v a l u e s , 2 ] 

Outf44j= 
FittingPolynomial[<>, 2 ] 

inf45f:= 
p l o t l = P l o t [ a p p r o i i [ i ] , { x , 0 , 6 } ] 

^ 

]J 

1.2 

0.8 

0.6 

1 2 / 3 4 5 6 

Outf45j= 
-Graphics-

inf46j:= 
a p p r o x i [ 4 . 

Outf46/= 
1.24652 

5 ] computes a p p r o x l [ 4 . 5 ] 

Defines v a l u e s 
to be the list consisting of 
{l2r.3y5tZ3fl.7r5l The 
semi-colon placed at the end 
of the command suppresses 
the resulting output. 
a p p r o x l is a function; 
thus, 
P l o t [ a p p r o x i [ x ] , 

{ x , 0 \ 6 > ] 

graphs the second degree 
pofynomialfor vahies ofx 
between 0 and 6. 

| · I · | · I · | l!lJT!350% ▼IIQi 

The same result would be obtained by entering 
a p p r o x l [ x ] / . x -> 4 . 5 . 

^fal 
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In order to investigate how well the approximating polynomial approxl fits the data in values , the two are 
plotted simultaneously. Recall that the L i s t P l o t option D i s p l a y F u n c t i o n - > l d e n t i t y causes the 
graph of the data points in p o i n t s to be suppressed initially. Then, 
D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n is used in the Show command to display p l o t 1 and 
p o i n t s . 

fafSO/:* 
p o i n t 3 = L i s t P l o t [ v a l u e s , D i s p l a y F u n e t i o n - > I d e n t i t y ] ; 
graphi=Show[plo t1 ,points , 

D i splayFunc t i on-> $D i splayFunct i on] 

2 

1.5 

1 

0 .5 ■ y S 

1 2 

■ 

3 4 5 

• 

6 

0ut[50j= 
-Graphics-
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Since the second order polynomial determined above does not yield an accurate approximation, the polynomial of 
order 4 is computed below. This polynomial is called approx2 and is found with 
PolynomialFit [ v a l u e s , 4 ] . In a manner similar to that used above, the data and the approximating 
polynomial are plotted together. 

inf5tj:= 
a p p r o x 2 = P o l y n o m i a l F i t [ v a l u e s , 4 ] 

OutfSU* 
Fi t t ingPo lynomia l [<> , 4] 

tofSSj:» 
p l o t 2 = P l o t [ a p p r o x 2 [ x ] m { x , 0 , 6 } , 

DisplayFunction-> Id entity] ; 
graph2=Shov[plot2,points, 

D i splayFunc ti on->$Di splayFunc t i on] 

JM 
cpproycimates the list v a l u e s 
wick a polynomial of degree 4. 3 

The resulting polynomial 
a p p r o x 2 [ x ] is 

graphed on the interval [0,6] 
and shown simultaneously 
wi*htkegrophJP0*11*3-

Outf55j= 
-Graphics -
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In an attempt to improve on the approximation, the sixth order polynomial, approx3, is found and̂ plotted below. 
This appears to be an accurate approximation of the data after plotting all three simultaneously. 

infSSj-
approx3=PolynomialFit[values,6]; 
plot3=Plot[approx3[x].{x,0,6}, 

DisplayFunction->Identity]; 
graph3=Shov[plot3,points, 

D i splayFunct i on->$Di splayFunct i on] In the 
above, approx3 
is a polynomial of degree 
6 that approximates the 
table of numbers v a l u e s . ] 

Outf58j= 
-Graphics-

Shov[GraphicsArray[{graphl,graph2,grapli3} ] ] 

2 
1.5 

1 
0.5 

1 2 3 4 5 6 

Outf59j= 
-Graphi c sÀr ray-

1 2 3 4 5 6 

All three gropks of 
epproximations and 
points are shown 
to illustrate that the 
higher the degree of 
the fit, the better it 
is. 

—Ί 

]\ 
'"■ '''■''''■ ''150% ▼ IKJ1 JiiilM^li^^W^^WS^WWiiiliBiWIBWMIWON 

R2 
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O Example: 

The determination of an approximating polynomial has many applications. For instance, this method can be used on 
existing data to estimate future values such as population. Consider the following census data: 
Year Population (million) 
1950 150.7 
1960 179.3 
1970 203.3 
1980 226.5 
1990 252.7 

This data are entered as data below. Polynomials of order 2 and 3 are calculated and plotted below along with the 
data points. Both polynomials, poly2 and poly3, appear to be accurate approximations. Since L i s t P l o t is 
used to plot the data points, one unit along the x-axis represents 10 years. 

PolynomialRpproH 

We first Enter the list d a t a . 
p o l y 2 [ z ] is a polynomial 
of degree 2 that cpproximates d a t a 
p o l y 3 [ x ] isapofynomial 
of degree 3 that cpproximates d a t a . 
Both polynomials are grcphed 
on the interval [1,6], displayed 
simukan&oyisly andfincdfy all 
three grcphs are shown using 
the command G r a p h ! csAr r a y 

in[3j:= 
Clear[data] 
data={150.7,179.3,203.3,226.5,252.7} 

poly2=PolynonialFit[data,2]; 
plot2=Plot[poly2[i],{x,1,6}. 

DisplayFunction->Identity]; 
poly3=PolynomialFit[data,3]; 
p l o t 3 = P l o t [ p o l y 3 [ x ] , { x , i , 6 } , 

PlotStyle->GrayLevel[ . 2], 
DisplayFunction-> Id entity] ; 

dataplot=ListPlot[data, 
DisplayFunct ion-> Id e n t i t y ] ; 

combined=Sliov[ p lot2„ p l o t 3 , dataplo t , 
DisplayFunction-> Id entity] ; 

Shov[GraphicsÀrray[{plot2,plot3,combined}]] 

280 
260 
240 
220 
200 
180 

280 
260 
240 
220 
200 
180 

y 

S 
^''' 

y"' 
S' 

, V 

/ 2 3 4 5 6 
S 

2 3 4 5 6 
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poly2 [6] and poly3 [6] yield the approximate population in the year 2000 based on each polynomial. These 
values are given below. 

Polynomialflppro» 

tnf!t/:= 
p o l y 2 [ 6 ] 

OutfitJ= 
275.06 

tnf!2j:= 
p o l y 3 [ 6 ] 

Outf!2j= 
285.7 

\5\ 

immm t o o % ▼ I \o I mi ci 

p o l y 2 [ 6 ] 
evaluates p o l y 2 [ x ] 
forn=6. The seme result could 
be obtained by entering 
p o l y 2 [ z ] / . x->6 

p o l y 3 [ 6 ] 
évaluâtes p o l y 3 [ x ] 
for y^6. The same resuk could 
be obtained by entering 
p o l y 3 [ x ] / . x-> 6 
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■ 9.5 RungeKutta.m 

o In Version 1.2, RungeKutta .m is contained in the Numerical Math folder; in Version 2.0 
RungeKutta.m is contained in the Programming Examples folder. 

The Runge-Kutta method is used to numerically approximate the solution of the initial value problem 

y'=f(x,y) 

y(xo) = yo> 
at Xj = x0 + h , x2 = X! + h, 

This method can be used with systems of equations as well as a single equation. The steps towards solving ordinary 
differential equations of this form by the Runge-Kutta method are given in the package Runge-Kutta. m in the 
Numerical Methods folder located in Packages. It should be noted that the package be used to solve those 
differential equations which are classified as nonstiff. Note the following définition of a stiff differential equation. 

The differential equation y'= f(x,y) is stiff if the ratio of the largest eigenvalue to the smallest 
3f 

eigenvalue of the matrix —(x,y) is very large. 
dy 

The syntax for the command is given as follows: 

RungeKutta[ListofODEexpressions,ListOfVariables, 
ListOfInit ialValues, 

F i n a l x , E r r o r T o l e r a n c e , ( o p t i o n s . . . ) ] 

where L is tofODEexpress ions is made up of the components of f(x,y), L i s t O f V a r i a b l e s is the 
list of both independent and dependent variables, ListOf i n i t i a l V a l u e s is the initial vector (including the 
initial value of the independent variable x), Finalx is the value of x at which a solution is sought, and 
ErrorTolerance is the local error tolerance which must be met at each integration. In giving 
ListofODEexpressions , ListOfVariables , and ListOf I n i t i a l V a l u e s , the variables 
must be entered in the same order in which the system of differential equations is stated with the independent 
variable listed first. 

The RungeKutta options are given below along with their default values : 

WorkingPrecis ion->Precis ion[N[1]] , 
MaximumStepSize->Finalx-Initialx / 

Ini t ia lStepSize->MaximumStepSize , 
ProgressTrace->False . 

ProgressTrace->True causes the value of x, the step-size, and the local error to be given as the calculation 
is performed. 
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D Example: 

The following example illustrates how the package is used to solve the following initial value problem: 

fy'=2x + y 

ly(0) = i 
Notice that the differential equation must be entered in the form of a list even though there is only one equation. 
ErrorTolerance is selected to be 10 A (-5) and the solution, y, is found at values of x between 0 and 1. 
Since a value of Fa l se is assumed by Progrès sTrace, no progress report is given. The elements given in 
the output are of the form {x, y} where y is the approximate solution to the differential equation at x. 

Inf20j:= 
« R u n g e K u t t a . m 

soll=RungeKutta[{2 x +y}, {x,y},{0,i}.i,10A(-5)„ 
¥orkingPrecision->20, InitialStepSize->.1. 
HaximumStepSize->0.2, ProgressTrace->Fal3e] 

Outf2U= 
{{0., 1.}, {0.1, 1.115512755}, {0.3, 1.4495764739790405334}, 

{0.5, 1.946163936143421276}, {0.7, 2.6412583489668909842}, 

{0.9, 3.5788097018513151164}, {1., 4.154845894401927461}} 
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If True is used with ProgressTrace, the following output is given: 

inf23j:= Til 
B u n g e l u t t a [ { 2 x + y } , { x , y > , { 0 , i > . i , 1 0 A ( - 5 ) . 

¥ o r k i n g P r e c i s i o n - > 2 0 , I n i t i a l S t e p S i z e - > . 1 , 
H a x i m u m S t e p S ± z e - > 0 . 2 , P r o g r e s s T r a c e - > T r u e ] J 

RungeKutta: : p r o g r e s s x = 0. , s t e p = 0 . 1 , l o c a l e r r o r = 1 

-8 
2.08760499561 10 

RungeKut ta : :p rogress x = 0 . 1 , s t e p = 0 . 2 , l o c a l e r r o r = 

-7 
5.452752959092 10 

R\mgeKut ta : :p rogress x = 0 . 3 , s t e p = 0 . 2 , l o c a l e r r o r = 

-7 
4.960625430711 10 

RungeKut ta : :p rogress x = 0 . 5 , s t e p = 0 . 2 , l o c a l e r r o r = 

-7 
4.464407969928 10 

RungeKut ta : :p rogress x = 0 . 7 , s t e p = 0 . 2 , l o c a l e r r o r = 

-7 
4.024343595717 10 

RungeKut ta : :p rogress x = 0 .9 , s t ep = 0 . 1 , l o c a l e r r o r = 

-8 
1.37858326798 10 J 

\uutf23j= 1 
{{0 . , 1 . } , { 0 . 1 , 1.115512755}, { 0 . 3 , 1.4495764739790405334}, 

{0 .5 , 1.946163936143421276}, {0 .7 , 2.6412583489668909842}, 

{0 .9 , 3.5788097018513151164}, { 1 . , 4.154845894401927461}} JJ l i 
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D Example: 

As stated earlier, the RungeKutta command can also be used to solve systems of first-order ordinary differential 
equations. Consider the following initial value problem : 

iy=z 
<z'=2xz-4y 
[y(0) = 1, z(0) = 0 

Here there are two equations which are entered as the list {z , 2xz-4y} for ListofODEexpressions in 
the RxingeKutta command. The variables must, therefore, be given as the list {x, y , z} . The initial 
conditions are given for y and z at x = 0, so Lis tOf I n i t i a l V a l u e s is the list { 0 , 1 , 0 } which represents 
the initial values for the variables {x, y , z}, respectively. As in the previous example, the local tolerance is taken 
to be 10A (-5) and the solution is approximated for values of x between 0 and 1. Each element in the output 
consists of the value of x and the approximate values of y and z found with this procedure. 

sol2=Sunge£utta[ {z, 2 x z-4 y}, {x,y,z>, {0,1,0}, 1, 10~-5, 
YorkingPrecision -> 20, InitialStepSize -> 0.1, 
HaximumStepSize -> 0.2, ProgressTrace -> False ] 

Outf24j= 
{{0., 1., 0.}, {0.1, 0.9799999817919399506, -0.4000000190929186766}, 

{0.2652985946997730703, 0.8592329761222134417, 

-1. 0611951756237893048}, {0.4353952520609771713, 

0.6208612134185668668, -1.7415828078592385648}, 

{0.6258389127874684977, 0.2166499887699848187, 

-2.5033597842530430796}, {0.8258389127874684977, 

-0.3640218792002295708, -3.3033631282921385819}, 

{!., -1.0000032370017912819, -4.0000094146543892189}} 

568 



Chapter 9 Special Packages 

If less precision is desired, a smaller value can be used for WorkingPrecision. The following command 
shows how this change affects the results obtained with the previous command. (A value of 10 is used below as 
compared to 20 in the previous example.) 

Rungelutta[ {z, 2 x z-4 γ}, {χ,γ,ζ}, {0,1,0}, 1, 10A-5, 
YorkingPrecision -> 10, InltlalStepSlze -> 0.1, 
HaximumStepSize -> 0.2, ProgressTrace -> False ] 

Outf25j= 
{{0. , 1. , 0 . } , { 0 . 1 , 0 .98 , - 0 . 4 } , {0.265299, 0.859233, - 1 . 0 6 1 2 } , 

{0.435395, 0.620861, -1.74158}, {0.625839, 0.21665, -2.50336}, 

{0.825839
,
 -0.364022

,
 -3.30336}

,
 {1.

,
 -1.

,
 -4.00001}} 

Solutions found using RungaKutta can easily be plotted in two dimensions with the command 
P l o t O D E S o l u t i o n [ s o l u t i o n l i s t , m , n , o p t i o n s ] where m and n are the components of the 
solution vector to be plotted. 

In the previous problem, the solution was represented as the list {x, y, z}. Hence, a graph of the y and z values at 
each x can be generated with PlotODESolut ion [%, 2 , 3 ] . The values of 2 and 3 in this command 
represent y and z, respectively. The solution list to the previous problem was conveniently named so l2 for use 
with P lo tODESolut ion . 

M26J:= 
PlotODESolution!sol2,2,3] 

Ovtf26j= 
-Graph i c s -
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Solutions to a single ordinary differential equation can also be plotted with PlotODE Solution. Since each 
element in the solution list has only two components, x and y, the command is entered in the following way to 
produce a graph of the approximate solution y. 

PlotODESolution[soil,i,2] 

0.2 0.4 0.6 0.8 1 
Outf27j= 

-Graphics- ]J 
As indicated earlier, L i s t P l o t options can be included in the PlotODE So l u t ion command. Several 
options are illustrated in the following command. 

tof29j:= 
P l o t O D E S o l u t i o n [ s o l l , l , 2 , P l o t L a b e l - > " S o l u t i o n l ' 

P l o t R a n g e - > { 0 , 5 } ] 

So lut ion l 

0 .2 0.4 0.6 0.8 1 

Outf29/= 
-Graphics-

rei ÎIÎÉàÉiÉÎÉÎÉiÉÏÉUUUiÉâÉkkÎÉÎÉÎÉÎÉÎÉUÎÉÏÉUâtÎÉiÉÎÉÎÉiÉiiiÉÎiâtÎÉÎ ■a E3 
a 
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■ Version 1.2 Data Analysis 
o The Version 1.2 Data Analys i s folder depicted below contains several packages useful in the area of 

statistics In Version 2.0, the Data Analys i s folder is replaced by the S t a t i s t i c s folder. 

DataRnalysis 
6 items 50,154K in disk 28,583K available 

DescriptiveStatistics .m Confidence Intervals .m DataManipulation .m 

DiscreteDistributions .m ContinuousDistributions .m 
IS 

DescriptiveFunctions .m 

H Tola 
■ 9.6 Continuous Distributions.m and DescriptiveStatistics.m 

The Mathematica packages C o n t i n u o u s D i s t r i b u t i o n s .m and D e s c r i p t i v e S t a t i s t i c s .m 
contain many useful commands which can be used to solve problems in statistics. 

o In Version 2.0, C o n t i n u o u s D i s t r i b u t i o n s .m and D e s c r i p t i v e S t a t i s t i c s .m are 
contained in the Statistics folder. 

These packages are first loaded below in order that several examples can be shown. 
ContinuousDistributions.m includes the following distributions: BetaDistribution, 
CauchyDistribution, ChiDistribution,ChiSquareDistribution, 
ExponentialDistribution, ExtremeValueDistribution, 
FRatioDistribution, GammaDistribution, NormalDistribution, 
HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution, 
LogisticDistribution, RayleighDistribution, StudentTDistribution, 
UniformDistribution, and WeibullDistribution . 

The mean value of a continuous distribution with probability density f is given by μ= Jxf(x)dx. 

-H» 

The variance of a distribution is given by σ2 = ί (χ -μ) f(x)dx; the standard deviation is given 

by σ 
- $ 

= + ν ? = +Γ7(χ-μ) -f(x)dx. 

The D e s c r i p t i v e S t a t i s t i c s . m package includes several functions which can be applied to these 
distributions. For example, Dens i ty [ D i s t r i b u t i o n , t ] gives the density function which corresponds to 
D i s t r i b u t i o n . Mean [ D i s t r i b u t i o n ] gives the mean of D i s t r i b u t i o n and 
Variance [ D i s t r i b u t i o n ] gives the variance of D i s t r i b u t i o n . These values are commonly known 
for the Normal distribution and are given below using these newly introduced commands . 
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D Example: 

StatsEKamples 

in[!7j:= 
« C ont inuousD i s t r ibut i ons. 

, lists. « D e s c r i p t i v e S t a t i s t i c s . m 

D e n s i t y [ C a u c h y D i s t r i b u t i o n [ a , b J , t ] 

Outft9j= 
1 

2 
(-a + t ) 

P i b (1 + ) 
2 

b 

Hean[NormalDistribution[iu,sigma]] 

0utf20j= 
mu 

infZlJ:* 

The package Con t i n u o u s D i s t r i b u t i o n s . 
contains definitions ofmanyfamiiiar 
continuous distributions 
and the package D e s c r i p t i v e s t a t i s t i c s . 
contains commands to extract data from various 

w.yw 
ΜΜΜΜΜΜίΟΜΜ 

computes the density (as a function oft) 
of the Cauchy distribution 
CaucbyD i s t r i b u t i o n [ a , b ] 

computes the mean of the normal distribution 
N o r m a l D i s t r i b u t i o n [ m u , s igma] . 
' |Ι0ΜΙ||^^Ι 

9MMMUW Γ™ 

\distribution. 
Y a r i a n c e [ N o r m a l D i s t r i b u t i o n [ i u , s i g m a ] ] Icomputes the variance of the normal 

i 

2 
sigma Ώ\ 

a 
The following example illustrates how a set of data is analyzed with Mathematica. The command 
Table [Random [Norma ID i s t r i b u t i o n [mu, s igma] ] , {n} ] generates a random list of n numbers 
which approximates a normal distribution of mean mu and standard deviation sigma. 

D Example: 

In this example, a list of 175 numbers which approximate the normal distribution of mean 75 and standard deviation 
10 is produced and stored in t a b l e l . The values in t a b l e l are rounded to integers with 
Map [Floor, t a b l e l ] where F loor [x] gives the greatest integer not larger than x. Map applies F loor 
to each value in t a b l e l . This new table is called t a b l e 2 . The integer values in t a b l e 2 are then sorted with 
Sort [ tab le2] and named t a b l e 3 . A shortened list of these sorted integers is given with 
Short[table3,3]. 
Since the command Random is used, each time these commands are executed, different results are obtained. 
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The mean of t a b l e 3 is computed by adding the integers in t a b l e 3 and dividing by the number of integers 
found in t ab le3 . This is accomplished in the single command 
Apply[Plus,table3]/Length[table3]//N. 
Of course, the mean can also be computed with Mean [ table3] which is illustrated below. 

StatsExamples 

t a b 1 e l = T a b 1 e [ S a n d o i [ 
M o r m a l D i s t r i b u t i o n [ 7 5 , 1 0 ] ] , { 1 7 5 } ] 

t a b l e 2 = H a p [ F l o o r , t a b l e l ] 
t a b l e 3 = S o r t [ t a b l e 2 ] 
S b o r t [ t a b l e 3 , 3 ] 

Outf2&sVShort= 
{49, 49, 53 , 54, 54, 56, 57, 58, 59, 60, 

60, 60, 6 1 , 6 1 , 6 1 , « 1 5 3 » , 88, 89, 90, 

91 , 93 , 93, 97} 

inf23j:= 
Apply[Plus.table3]/ 

Lengtb[table3] // N 

Outf23j= 
73.6629 

Z computes a numerical 1 
value of the mean of 
t a b l e 3 . 

tn[24j:= 
H e a n [ t a b l e 3 ] 

Outf24j= 
12891 

175 

computes an exact value of the mean] 
of t a b l e 3 . 

t a b l e l isatableof 
175 "random" numbers 
that approximate a normal 
distribution of mean 75 and 
variance 100. 
H a p [ F l o o r , t a b l e l ] 
computes 
F l o o r [ t a b l e i [ [ i ] ] ] 
for each i^ 1,2,..., 175 and 
names the resulting list 
t a b l e 2 . 
Sort[table2] 
sorts t a b l e 2 
according to the standard 
increasing order and names 
the resulting list t a b l e 3 . 
S h o r t [ t a b l e 3 , 3 ] 
displays an abbreviated form 
of t a b l e 3 
on no more than three lines. 
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In order to compare the mean of t ab le3 obtained by the two methods, a numerical approximation of 
Mean [ tab le3 ] is requested to show that the same result is achieved by each approach. Median [ tab le3 ] 
determines the median of t a b l e 3 and Quart i l e s [ tab le3 ] / / N determines the numerical approximation of 
the quartiles of t a b l e 3 . MeanDeviation [ t a b l e 3 ] / / N gives a numerical value of the mean deviation 
and N [MedianDeviation [ t a b l e 3 ] ] gives a numericd value for the median deviation of t a b l e 3 . 

computes a numerical cpproyümation of the mean 
of t a b l e 3 . 

Inf25j:= 
H e a n [ t a b l e 3 ] / / H 

ûvtf£5j* 
73.6629 

Med i a n [ t a b 1 e 3 ] | computes ^ median of t a b 1 e 3 

OutfZôJ* 
74 

iiliiAifrtfin^ii 

Ά 

JX 
computes numerical values of the 
quartiles of t a b l e 3 . 

WHIMUMI 

inf27j:= 
Q u a r t i l e s [ t a b l e 3 ] / / M 

Outf27j~ 
{67. , 81.} 

tnf28/:= 
n e a n D e v i a t i o n [ t a b l e 3 ] / / N \ computes a numerical value of 

_ . , „ , g the mean deviation of t a b l e 3 . 
0utf28j= \ , L»l]!fm 

7.64193 JJ 

tnf29l:= JJ 
H[ Hed ianD e v i a t i on[ t a b 1 e 3 ] ] I computes a numerical value of the 

n.r „ , 1 median deviation of t a b 1 e 3 . 

7. 
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A summary of some of the information concerning tab le3 is obtained with the command 
Dispers ionReport [ t a b l e 3 ] / /N . These numerical values are shown below: 

I /fi/JÛ/;= 

Dispersion£eport[table3] // M 

\outf30]= 
{Variance -> 87 .2063, 

StandardDeviation -> 9.33843, 

SampleRange -> 48., 

MeanDeviation -> 7.64193, 

MedianDeviation -> 7. , 

QuartileDeviation -> 7. } 

D Example: 

In the following example, the function c o u n t l i s t [ tab le ] is defined. This function counts the number of 
times each distinct member of the list t a b l e appears in t ab le . First the variables j and l i s t are defined to be 
local to the function c o u n t l i s t . Second, t a b l e is sorted with Sort [ t a b l e ] and this sorted list is named 
l i s t . Then, Union [ l i s t ] removes all duplicates from l i s t to obtain a new list, l i s t 2 . Finally, 
Count [ l i s t , l i s t 2 [ [ j ] ] ] gives the number of elements in l i s t that match each element in the list of 
distinct elements, l i s t 2 [ [ j ] ] . In other words, the number of times each element in l i s t appears is given. 
This number is divided by Length [ l i s t ] (the total number of elements in l i s t ) to yield the portion of list that 
each element comprises. This function is illustrated below with t ab le3 given earlier. The output lists the distinct 
elements of t a b l e 3 along with a numerical value which indicates the portion of t a b l e 3 that each element 
constitutes. Hence, if {number, p} is an element of tab le3 , then the probability of choosing number from the 
list of numbers in t a b l e 3 is p. 

computes numerical approximations of 
the variance, standard deviation, sample range, 
mean deviation, median deviation, and 
quartUe deviationof t a b l e 3 . 
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Also defined below is the function between [ l i s t , {a , b} ] which counts the number of elements of l i s t 
which fall on the interval from a to b, including the endpoints. This is done with the command 
Sum[Count [ l i s t , j ] , {j,a,b}] where Count [ l i s t , j ] gives the number of elements of l i s t 
which match j (i.e., the number of times j appears in l i s t ) . This is done for each value of j from j = a to j = 
b and then the sum of these numbers is taken to yield the total number of values between a and b. 

o In Version 2.0, the command Block has been replaced by the command Module. However, Block is 
evaluated correctly when using Version 2.0. 

StatsEuamples 
lnf3tj:= 

countlist[table_]:= 
Block[{j,list}, 
list=Sort[table]; 
list2=Union[list1 ; 
Tablet{list2[[j]], 

H[Count[list,list2[[j]]]/ 
Length[list]]} 
,{j,i,Length[list2]}] 

] 

inf32j:= 
betveen[list_,{a_,b_}]:= 

Sum[Count[list,j],{j,a,b}] 

in[33j:= 
table4=countlist[table3] 
Short[table4,4] 

Ûutf33M<S/tort= 
{{49, 0.0114286}, {53, 0.00571429}, 

m 
Be sure that square 
brackets are nested 
correctly. Notice that 
a semi-colon is placed at 
the end of each command, 
except for the last. 

UlWyWUlWWWiWWWUiiUiiUWilW 

computes c o u n t l i s t [ t a b l e 3 ] 
and names the resulting list t a b l e 4 . 
S h o r t [ t a b l e 4 , 4 ] 
dkplays <m abbreviatedform of t a b l e 4 

1 on no more tfumfow lines. 

{54, 0.0114286}, {56, 0.00571429}, 

«35», {93, 0.0114286}, {97, 0.00571429}} 

The sum of the numerical values given in table4 should equal 1. This is verified below with 
Apply [ P l u s , t a b l e 4 ] [ [2] ] . The command Apply [ P l u s , t a b l e 4 ] adds the corresponding 
components of the members of tab le4 and is, therefore, of the form of each element of tab le4 . Hence, the sum 
of the second components is given with Apply [P lus , t a b l e 4 ] [ [2] ] . 
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A table is then compiled which gives an interval breakdown of the values found in table3 . This is accomplished 
by choosing several intervals, {45,55}, {55,65},...,{95,105}, and using the function between. The output is 
given in the form of a table as shown below. 

Inf34j:= 
Àpply[Plus,table4][[2]] 

Outf34j= 
1. 

inf35j:= 
!^b le [ {45+10 1 ,55+101, 

betveen[table3,{45+10 i,55+101}1} , 
{i,0,5}l//TableForm 

]J 

Outf35j//TâbteForm= 

45 55 5 

55 65 33 

65 75 70 

75 85 61 

85 95 23 

95 105 1 

Hence, there are jive elements of t a b l e 3 
between 45 and 55; 
S3 elements between 55 and 65; 
70 elements between 65 and 75; 
61 elements between 75 and 85; 
23 elements between 85 and 95; and 

ll element between 95 and 105. 
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The elements of tab le4 can be graphed along with the normal distribution with mean 75 and variance 10 to show 
how well these values approximate the density function of this distribution. Since each member of table4 is an 
ordered pair, the elements in t a b l e 4 are plotted with L i s t P l o t below. However, the graph is not shown 
initially, because the option D i s p l a y F u n c t i o n - > l d e n t i t y is used. The density function of the normal 
distribution is plotted for values of t between 49 and 97. This plot is named p l o t l . 
The second graph below shows p l o t and p l o t l simultaneously. The option 
DisplayFunction->$DisplayFunction allows p lot to be displayed. The Show command also 
specifies that the axes meet at the point (47,0}. 

StatsEuamples 
KS 

fn[37j:= 
p l o t = L i s t P l o t [ t a b l e 4 , 

D i splayFunct i on->Id ent i t y ] 
p lo t l=Plo t [Dens i ty [NormalDis tr±but ion[ 

7 5 , 1 0 ] , t ] , { t , 4 9 , 9 7 > ] 

60 70 80 90 
Outf37j= 

-Graphics-

in[38j:= 
S b o v [ p l o t , p l o t l , À x e s - > { 4 7 , 0 } 

D i splayFunc t i on-> 
$Di splayFunc t i on] 

50 60 70 80 90 

Outf38j= 
-Graphics- ]J 

| ■ I · I I I 
Κ^^ΛΛ.ΛΛΛΛΛΛΛΛ^Λ^ΛΛΛΛ.ΛΛΛ» titititiÉiÉÊéiàiÉiàiÉiÉmÊiiiiià^iÉii t A M M M é 

ES Isa 
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»Version 2.0 Statistics 
In Version 2.0, the Data A n a l y s i s folder is replaced by the following S t a t i s t i c s folder. Some of the 
added packages are discussed below. 

Statistics 
12 items 55,251 Kin disk 23,486K available 

Common ContinuousDistributions .m DescriptiveStatistics .m 

DiscreteDistributions .m DataManipulation .m Confidence Intervals .m 

NormalDistribution .m Master.m Moving Average .m 

Hy pothesisTests .m LinearRegression .m InverseStatisticalFunctions .m 

EE 
K2 

In Version 2 O.the 
folder DataRnalysis 
has been replaced bv 
the folder Statist ics 
Notice that a 
considerable number 
of packages have been 
added 
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• 9.7 HypothesisTests.m 

The Version 2.0 H y p o t h e s i s T e s t s .m package contains useful hypothesis test commands for solving 
problems in statistics. The first command shown below is MeanTest [ l i s t , m u O , o p t i o n s ] which is used 
to test the null hypothesis that the population mean equals muO. Each command in this package yields the 
appropriate P-value. Recall that the P-value of a hypothesis test is equal to the smallest significance level at which the 
null hypothesis can be rejected. Hence, if the P-value is less than or equal to the specified significance level, then the 
null hypothesis is rejected. Otherwise, the null hypothesis is not rejected. 

O Example: 

Consider the data collected by the U.S. Energy Information Administration on residential energy expenditures. 
According to this agency, the mean residential energy expenditure of all American families was $1123 in 1985. The 
expenditures of 15 upper-level families is given in energy. The hypothesis that the population mean equals $1123 
is tested with this data (with muO = 1123). The command MeanTest [energy , 1123] gives the one-sided 
P-value. Assuming a significance level of .05, the P-value obtained is compared to .5(.05) = .025. Since .0014959 
< .025, the null hypothesis is rejected. 

A helpful option of all of the tests to be discussed in this section is that of Fu l lRepor t ->True . This option is 
illustrated with the same problem to reveal the sample mean, the test statistic, the number of degrees of freedom (when 
applicable), and type of test statistic used. These commands use the test statistics based on the normal distribution, 
the Student's t-distribution, the chi-square distribution, or the F-distribution. The Ful lRepor t shows that in this 
case, the Student's t-distribution was employed. 

HypothesisTests 

«HypothesisTests. m 

tnf!4j:= 
energy={1254.1615,1711,1350,1521,1293. 

1227,908,1205,1154,1231,1351, 
1790,1369,1185); 

HeanTest[energy, 1123] 

yu"u"u ,""' j , u , u~">~"M'">~"u ,kJ 

The semi-colon is placed 
the end of the definition of 
ene r g y in order to 

suppress the resulting output. 

Outft5j= 
OneSidedPValue -> 0.0014959 

H e a n T e s t [ e n e r g y , 1 1 2 3 , 
Fui1R ep o r t - > T r u e 1 

Outf!6j= 
{FullReport -> Mean 

20164 

JQ 
More information cccn be obtained 
with the command MeanTest 
by using the option F u l l R e p o r t - > T r u e . 

^.^.■*vrj*Jrj*v*il**iirJVJ»M*MWiimurumuwumiwuwumimumi*^^ w^^m>>^p^rum̂jmjm̂am̂umjmjmA 

T e s t S t a t DF, 

15 3.58403 

StudentTDistribution, 

OneSidedPYalue -> 0.0014959} 

14 
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Another option is KnownVariance->varO. When this option is used, the normal test statistic is used to obtain 
the P-value as expected. This is also shown below. 

HeanTest[energy, 1123, 
FullReport->True,KnoraYariance->53361] 

Outf!7j= 
{FullReport -> Mean TestStat, 

20164 

15 3.70979 

NormalDistribution, 

OneSidedPValue -> 0.000103715} 

O Example: 

Consider another set of data which gives the daily intake of calcium (in milligrams) for 35 people with an income 
below the poverty level. This is given in ca lc ium below. 

calcium={879,1096,701,986,828,1077,703, 
555,422,997,473,702,508,530, 
513,720,944,673,574,707,864, 
1199,743,1325,655,1043,599,1008, 
705,180,287,542,893,1052,473}; 

[ A sample list indicating 
the daily intake of 
calcium for 35 people 
with, income below the 
poverty level 

581 



Chapter 9 Special Packages 

The recommended daily allowance (RDA) is 800 milligrams. A nutritionist states that the average person with an 
income below the poverty level gets less than the RDA of 800 mg. This claim is tested below with MeanTest. 
This is a one-sided test. Suppose that the significance level is again .05. Since the P-value which results (.124765) is 
greater than .05, the null hypothesis (that the calcium intake of people of poverty level incomes is equal to 800 mg) is 
not rejected. Another option available to MeanTest is KnownStandardDeviation->sigma. Suppose 
that the standard deviation is assumed to be 262. When the sample standard deviation equals the known standard 
deviation, Mathematica uses the normal distribution with MeanTest. This is indicated in the Ful lRepor t . 

tnf!9j:= 
M e a n T e s t [ c a l c i u m , 8 0 0 , 

F u l l R e p o r t - > T r u e ] 

Outf!9j= 
{FullReport -> Mean T e s t S t a t DF, 

26156 

35 -1 .17153 34 

S t u d e n t T D i s t r i b u t i o n , OneSidedPValue -

inf20j:= 
H e a n T e s t [ c a l c i u m , 8 0 0 , 

Ful1R ep o r t - > T r u e m 

EnovnS t a n d a r d D e v i a t i on 

0ut[20j= 
{FullReport -> Mean T e s t S t a t , 

26156 

35 -1.18967 

NormaIDis t r ibu t ion , OneSidedPValue -> 

- i -

•Ά 

-> 0.124765} _[ 
- i -

-> 262] J 
η 

0.117089} J_ 

pi 

Mathematica can also be used to conduct hypothesis tests for the means of two normal populations with equal 
standard deviations using independent samples. This is accomplished with the command 
M e a n D i f f e r e n c e T e s t [ l i s t l , l i s t 2 , d i f f 0, o p t i o n s ] where the two populations are given in 
l i s t l and l i s t 2 . The value d i f fO is compared to Mean [ l i s t l ] -Mean [ l i s t 2 ] . 
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O Example: 

The data given in below represents the daily protein intake in grams for 10 people with incomes below the poverty 
level while above represents that of 15 people with incomes above the poverty level. The null hypothesis is that the 
below-poverty mean is not less than the above-poverty mean. Hence, the alternative hypothesis is that the 
below-poverty mean is less than the above-poverty mean. If the means of these two populations are equal, the 
difference of the respective means equals zero. Hence, diffO = 0 in the command below. The P-value given is 
.00934066 which is less than a significance level of .05. Thus, the null hypothesis is rejected. In the Ful lRepor t 
which follows, the test statistic used in the determination of this P-value is given. 

b e l o ^ { 5 1 . 4 , 7 6 . 7 , 7 3 . 7 , 6 6 . 2 , 6 5 . 5 , 
4 9 . 7 , 6 5 . 8 , 6 2 . 1 , 7 5 . 8 , 6 2 . 0 , 
7 2 . 0 , 5 5 . 0 , 7 9 . 7 , 6 5 . 4 , 7 3 . 3 } ; 

a b o v e = { 8 6 . 0 , 5 9 . 7 , 6 8 . 6 , 9 8 . 6 , 8 7 . 7 , 
6 9 . 0 , 8 0 . 2 , 7 8 . 1 , 6 9 . 8 , 7 7 . 2 } ; 

H e a n D i f f e r e n c e T e s t [ b e l o w , a b o v e , 0 ] 

Outf23/= 
OneSidedPValue -> 0.00934066 

lnf24j:= 
H e a n D i f f e r e n c e T e s t [ b e l o v , a b o v e , 0 , 

F u l l R e p o r t - > T r u e ] 

Outf24j= 
{FullReport -> MeanDiff TestStat DF 

-11.2033 -2.60755 16.5403 

StudentTDistribution, 

OneSidedPValue -> 0.00934066} 
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O Example: 

Consider the data below which is used to compare the lifetimes of two brands of water heaters. The lifetimes (in 
years) of one brand is given in the list h e a t e r l while that of the other brand is given in heat er 2. In this 
problem, the null hypothesis is that the mean of the lifetimes of h e a t e r l equals that of heater2. Hence, this is 
a two-sided test. Assume a significance level of .05. The P-value for this test is determined from the Student's 
t-distribution. Since this value is greater than .025, the null hypothesis is not rejected. Hence, the data do not provide 
sufficient information to conclude that the two brands of water heaters have different mean lifetimes. 

h e a t e r l = { 6 - 9 , 7 . 2 , 7 . 6 , 7 . 3 , 6 . 6 , 5 . 7 , 
7 . 8 , 6 . 2 , 5 . 5 , 7 . 4 , 8 . 2 , 6 . 9 ) ; 

h e a t e r 2 = { 8 . 7 , 8 . 6 , 1 1 . 2 , 7 . 0 , 6 . 1 , 6 . 1 , 
8 . 7 , 7 . 5 , 6 . 3 , 6 . 7 , 7 . 7 , 7 . 0 , 
7 . 8 , 7 . 5 , 1 0 . 7 ) ; 

inf27j:= 
H e a n D i f f e r e n c e T e s t [ h e a t e r l , h e a t e r 2 , 0 , 

FullReport->TrueJ 

Outf27j= 
{FullReport -> MeanDiff TestStat DF 

-0.898333 -1.94567 22.2285 

StudentTDistribution, 

OneSidedPValue -> 0.0322241} 

In addition to hypothesis tests on the mean of a population as was illustrated with NeanTest, Mathematica is able 
to consider hypothesis tests for a population standard deviation (or variance). This is done with 
VarianceTest [ l i s t , varO, o p t i o n s ] . In problems of this type, the null hypothesis is that the 
variation of the population in l i s t equals varO. This command uses the same options as the previously used 
commands. 
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O Example: 

An analysis is conducted on the data in diameter which gives the diameter in millimeters of 20 bolts produced by 
a hardware manufacturer. It has been determined that an acceptable standard deviation for bolt diameters is .09 
millimeters. Therefore, varO = ( .09) Λ2 in the VarianceTest command which follows. The 
FullReport indicates that the chi-square distribution is used as is expected. If a significance level of .05 is 
assumed, the null hypothesis is rejected. Hence, the bolts produced by the manufacturer have diameter less than .09 
millimeters. 

diameter={10.03,10.08,10. 05.10. 03, 
9.89,9.95,9.97,9.99, 
9.99,10.00,10.03,10.08, 
9.96,9.94,9.98,10.02, 
10.10,10.01,10.05,9.98}; 

lnf!8/:= 
YarianceTest[diameter, (.09)A2, 

Fui1R ep o r t - > T r u e ] 

OutflSj* 
{FullReport -> Variance TestStat DF, 

0.00272921 6.73879 19 

ChiSquare Distribution, OneSidedPValue -> 0.00451858} 
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• 9.8 Confidencelntervals.m 

o In Version 2.0, Conf i d e n c e l n t e r v a l s .m is contained in S t a t i s t i c s ; in Version 1.2 
Conf i d e n c e l n t e r v a l s . m is contained in Data A n a l y s i s . 

An important concept in statistics is that of confidence intervals. For the two-sided hypothesis test, 

Η 0 : μ = μ0 

Η α : μ * μ 0 

at a significance level a, the null hypothesis is not rejected if μ0 lies in the (1 - a) - level confidence interval 
for μ and, the null hypothesis is rejected if μ0 does not lie in the (1 - a) - level confidence interval for μ. 

These confidence intervals can be determined for the normal, Student's t, chi-square, and F distributions for several 
types of hypothesis tests using commands found in Conf i d e n c e l n t e r v a l s .m. 

G Example: 

In the first example below, the data used in the Hyoo thes i sTes t s .m section concerning the residential energy 
expenditures of 15 upper level families located in energy is considered. In the previous section, the null 
hypothesis that the mean expenditure equals $1123 waj tested. Since this is a test concerning the mean, the 
command MeanCI [ l i s t , o p t i o n s ] is used. Therefore, the confidence interval for this data is determined 
with MeanCI [energy] / /N. (//N requests that numerical values be given as opposed to exact.) Since 1123 
does not lie in this interval, the null hypothesis is rejected as it was in the previous section. One of the options 
available is that o fConf idenceLevel ->a lpha with default value . 95. The (.10)-level confidence interval 
is determined with the Conf i d e n c e L e v e l - > . 90 option. Of course, a smaller interval is the result. 

Confidencelnteruals m 
inf!j:= 

«Conf idencelntervals. m 

tnf2j:= 
energy*= {1254.1615,1711,1350,1521,1293. 

1227,908,1205,1154,1231,1351, 
1790,1369,1185}; 

HÖH 

lin this case, it is 95% certain that 
Ithe population mean lies between 
11211.85 and 1476.68. 

inf3j:= 
HeanCI[energy]//N 

Outf3j= 
{1211.85, 1476.68} 

tnf4j:= 
H e a n C I [ e n e r g y , C o n f i d e n c e L e v e l - > 

Outf4j= 
{1235.53, 1453.} 

9 0 ] / / M In this case, it is 90% 
certain that the population 
mean lies between 

\ 1235.53 and 1453. 
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D Example: 

In the case of the daily calcium intake in which the standard deviation was known, the null hypothesis that the daily 
intake of people with incomes below the poverty level equals 800 milligrams was not rejected. This test is 
investigated below with the data given in calcium. This illustrates another option, 
KnownStandardDeviation->sd. For this problem, sd = 262. The confidence interval found with 
MeanCI shows that 800 is in the interval. Thus, the null hypothesis is not rejected. 

calcium={879,1096,701,986,828,1077,703, 
555,422,997,473,702,508,530, 
513,720,944,673,574,707,864, 
1199,743,1325,655,1043,599,1008. 
705,180,287,542,893,1052,473); 

HeanCI[calcium,KnoTOStandar ]//M 

OutfôJ* 
{660.515, 834.113} 

j In this case, the confidence interval is 
1(660.515,834113). }\ 

Hypothesis tests for the comparison of two population means can also be considered with confidence intervals. 
Again, referring to data from the previous section, the command 
MeanDif f e r e n c e C I [ l i s t 1, l i s t 2 , o p t i o n s ] is explored. 

D Example: 

Recall that below represents the daily protein intake in grams for 10 people with incomes below the poverty level 
while above represents that of 15 people with incomes above the poverty level. The null hypothesis is that the 
below-poverty mean is not less than the above-poverty mean. The confidence interval obtained below does not 
contain zero (the hypothesized mean difference). Hence, the null hypothesis is rejected. Therefore, the data indicate 
that the average person with an income below the poverty level gets less protein than the average person with an 
income above the poverty level. 

tnf9j:= 
b e l o v = { 5 1 . 4 , 7 6 . 7 , 7 3 . 7 , 6 6 . 2 , 6 5 . 5 , 

4 9 . 7 , 6 5 . 8 , 6 2 . 1 , 7 5 . 8 , 6 2 . 0 , 
7 2 . 0 , 5 5 . 0 , 7 9 . 7 , 6 5 . 4 , 7 3 . 3 } ; 

a b o v e = { 8 6 . 0 , 5 9 . 7 , 6 8 . 6 , 9 8 . 6 , 8 7 . 7 , 
6 9 . 0 , 8 0 . 2 , 7 8 . 1 , 6 9 . 8 , 7 7 . 2 } ; 

U e a n D i f f e r e n c e C I [ b e l o v , a b o v e ] 

General : : s p e l l l : 
P o s s i b l e s p e l l i n g e r r o r : new symbol name 

"below" i s s i m i l a r to e x i s t i n g symbol "Below" 

General : : s p e l l l : 
P o s s i b l e s p e l l i n g e r r o r : new symbol name 

"above" i s s i m i l a r to e x i s t i n g symbol "Above" 

Out[9j= 
{-20.2874, -2.11927} 

Version ZO warns of 
possible spelling errrors. 
In this case, the warning 
message can be ignored 
since no error was made. 

}\ 
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Mathematica can also determine the confidence interval of the variance of a population. (Note that the variance is used 
instead of the standard deviation.) 

D Example: 

Recall the information collected by a hardware manufacturer giving the diameter of 20 bolts produced by the 
company. It was determined that an acceptable standard deviation for bolt diameters is .09 millimeters. Hence, the 
null hypothesis is that the variance of the diameters equals (.09^2 = .0081. The command which determines the 
confidence interval for variance is Var ianceCl [ l i s t , o p t i o n s ] . When this command is used with 
diameter, the interval obtained does not contain .0081. Thus, the null hypothesis is rejected. However, the 
manufacturer can be 95% confident that the variance of the diameters of all 10-millimeters bolts produced is 
somewhere between .00157843 and .00582214. 

Inf!2j:= Tl 
d i a m e t e r = { 1 0 . 0 3 , 1 0 . 0 8 , 1 0 . 0 5 , 1 0 . 0 3 , 

9 . 8 9 , 9 . 9 5 , 9 . 9 7 , 9 . 9 9 , 
9 . 9 9 , 1 0 . 0 0 , 1 0 . 0 3 , 1 0 . 0 8 , 
9 . 9 6 , 9 . 9 4 , 9 . 9 8 , 1 0 . 0 2 , 
1 0 . 1 0 , 1 0 . 0 1 , 1 0 . 0 5 , 9 . 9 8 } ; 

YarianceCI[diameter] 

Outf!!j= 1 
{0.00157843, 0.00582214} JJ 

lllllln 

is 
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• 9.9 LinearRegression.m 

The Version 2.0 LinearRegress ion .m package contains the command 
Regress [data, f u n c t i o n s , vars ] which leads to the determination of the linear regression equation for 
the data points in data as well as other useful information concerning data. In the Regress command, the 
regression equation is formed from the linear combination of functions given in the list funct ions . Also, vars 
represents the variables in the regression equation. Since Mathematica can be used for multiple regression, the 
number of functions and variables will depend on the type of problem to be solved. 

O Example: 

Consider the following list of data in data4. The regression equation for data4 is found with Regress. The 
coefficients of the regression equation appear in the column labeled Est imate under ParameterTable with 1.5 
as the coefficient of x and -.25 the coefficient of 1. Hence, the regression equation is y = 1.5 x -.25. The other 
information given is discussed in later examples. 

« L i n e a r R e g r e s s i o n . m 

Aa/5/·-
d a t a 4 = { { i , i K { i , 2 } , { 2 , 2 } , { 4 , 6 } } ; 
K e g r e s s [ d a t a 4 , { x , i } , x ] 

Outf5j= 
{ParameterTable -> 

Estimate SE TStat 

PValue 
1.5 0.322749 4.64758 0. 04\ 

33108 

x -0.25 0.756913 -0.330289 

1 0.772571 

, RSquared -> 0.915254, 

AdjustedRSquared -> 0.872881, 

EstimatedYariance -> 0.625, 
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ANOVATable -> 

DoF 

1 

2 

Model 

E r ro r 3 

T o t a l 

SoS MeanSS 

P Va lue 
13.5 13.5 

0.0433108 

1.25 0.625 

14.75 

F R a t i o Ijjjjjj 

} Il 
21.6 M i l 

_J_J llillljl 

O Example: 
Next, consider the age versus price data collected on a particular type of sports car. This data is as follows and is 
defined below in p r i c e . 
Age(vears) Priced lOOŝ  

5 
4 
6 
5 
5 
5 
6 
6 
2 
7 
7 

85 
103 
70 
82 
89 
98 
66 
95 

169 
70 
48 

The regression equation is found to be y = 195.468 - 20.2613 x. Notice in the output that there is not enough room to 
include all of the information in ANOVATable on one line. Therefore, the remaining information concerning Model, 
Error, and Tota l is given beneath these headings. Most of the information provided is self-explanatory. Since the 
value of RSquared (the coefficient of determination) is near one (.853373), a good deal of the variation in the 
sampled prices is explained by the regression line. This implies that age is useful in predicting price. 
Another way to analyze the provided information is through hypothesis tests for the slope of the regression line. The 
variable x is a useful predictor of y if they are linearly related. This can be tested by forming the hypothesis test : 

Ho : ßi = 0 ( x is not useful for predicting y ) 
Ha : ßi ^ 0 ( x is useful for predicting y ) 
where the regression line is of the form y = ß0 + ßix . 
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The final entry in the row corresponding to x is the P-value for the hypothesis test. If a significance level of .05 is 
used, the null hypothesis is rejected since .00004 < .025. 

/fif&:~ T 
p r i c e = { { 5 , 8 5 } , { 4 , 1 0 3 } , { 6 , 7 0 } , { 5 , 8 2 } , 

{ 5 , 8 9 } , { 5 , 9 8 } , { 6 , 6 6 } , { 6 , 9 5 } , 
{ 2 , 1 6 9 } , { 7 , 7 0 } , { 7 , 4 8 } } ; 

K e g r e s s [ p r i c e , { l , z } , z ] J 

Out/9/= 1 
{ParameterTable -> 

Es t ima te SE TSta t PValue 
1 195.468 15.2403 12.8257 0 

x -20.2613 2.79951 -7 .23743 0.0000488191 

RSquared -> 0.853373, AdjustedRSquared -> 0.837081, 

Es t imatedVar iance -> 158.17, 

ANOVATfcble -> 

DoF SoS HeanSS FRat io 

PValue 
1 8285.01 8285.01 52.3804 0.0000\ 

488191 

9 1423.53 158.17 

Model 

E r r o r 10 9708.55 

T o t a l 

j > 1 

1 1 

I I 
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The regression equation is plotted below with the L i s t P l o t of the data in pr ice . As expected, as the age of the 
car increases, the price decreases. 

tnftZj:* 
plotreg=Plot[195.468-20.3613 x,{x,i,8>, 

DisplayFunction->Identity]; 
plotdata=ListPlot[price, 

DisplayFunction->Identity]; 
Shov[plotreg„plotdata, 

D i splayFunc t i on->$D i splayFunc t i on] 
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^ S v 

*-̂ r 
Outf!2j= 

-Graphics -

As indicated before, Regress can be used for multiple regression. This is demonstrated below with the addition of 
the number of miles driven (in thousands) to the data in the previous example. 

O Example: 

It was determined above that 85.3% (RSqua red* 100) of the variation in the price data is explained by age. Then, 
by using this additional information (mileage), perhaps this variation is better explained. The revised data is given in 
extra below. The variables in the new regression equation are x l and x2 which represent age and miles, 
respectively. Using the Regress command below, the equation is found to be y = 183.035 - 9.50427 x l -
.821483 x2. Again, the coefficients are located under the column labeled Est imate . To determine if the variation 
is better explained with the additional data, the value of RSquared is considered. In this case, RSquared = 
.936115. Hence, 93.6% of the price variation is explained by age and miles driven. Since age only explained 85.3% 
of the variation, the multiple regression equation provides a much better explanation of the variation in the price data 
than the simple linear equation found in the previous example. 
As was the case above, hypothesis tests can be used with multiple regression. 

Assuming a regression equation of the form y = β0 + β ^ + ß2x2 ,the following hypothesis test is formed : 
H 0 : ß i = ß 2 = 0 
Ha: At least one of ßj and ß2 is not zero. 
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This test depends on the the F-statistic. The P-value for this test appears under PValue in the ANOVATable in the 
output below. Since this P-value (.0000166571) is much smaller than a reasonable significance level, the null 
hypothesis is rejected. Hence, the previous findings that age and mileage are good predictors of price is verified. 

inf!4/:= "|"]I|| 
e x t r a = { { 5 , 5 7 , 8 5 } , { 4 , 4 0 , 1 0 3 } , { 6 , 7 7 , 7 0 } , { 5 , 6 0 , 8 2 } , II 

{ 5 , 4 9 , 8 9 ) . { 5 , 4 7 , 9 8 } . { 6 , 5 8 , 6 6 } . { 6 , 3 9 , 9 5 } , ■ 
{ 2 , 8 , 1 6 9 } , { 7 , 6 9 , 7 0 } , { 7 , 8 9 , 4 8 } } ; jfjjj 

R e g r e s s [ e x t r a , { i , x i , x 2 } , { x l , x 2 } ] J jjjjjj 

Outf!4j= 1 | | 
{ParameterTable -> | β 

Es t ima te SE TSta t PValue , ■ 
1 183.035 11.3476 16.1298 0 1 11| | | 

x l -9 .50427 3.87419 -2 .45323 0.0397362 B 

x2 -0.821483 0.255207 -3.21889 0.0122595 | | 

RSquared -> 0.936115, AdjustedRSquared -> 0.920144, IB 

Es t imatedVar iance -> 77.529, I I 
ANOVATable -> jjjjjj 

Model | | 

E r ro r [jjjjjj 

Total II 
DoF SoS MeanSS FRatio PValue jjjjjj 
2 9088.31 4544.16 58.6124 0.0000166571 F l 

8 620.232 77.529 jjjjjj 

10 9 7 0 8 . 5 5 J J H 

H i i i i i i i i i i i r ^ ι ■ ■ "■ i '11oo% ▼ | \ Q | llIlIlllillliillliHIlljlllIlIlllilllllllllillllĤ ^ θ Κ 
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Chapter 10 
Getting Help from Mathematica 

and 
Making Mathematica Do What You Want 

■ 10.1 Getting Help from Mathematica 

■ Help Commands 

Becoming competent with Mathematica can take a serious investment of time. Hopefully, messages that result from 
syntax errors are viewed lightheartedly. Ideally, instead of becoming frustrated, beginning Mathematica users will 
find it challenging and fun to locate the source of errors. In this process, it is natural that one will become more 
proficient with Mathematica. 

One way to obtain information about commands and functions is the command ?. ?Naxne gives information on the 
Mathematica function Name 

D Example: 

The following window shows how information is obtained on the command S o l v e as well as the form in which 
this information is given. Notice how the description includes the particular forms in which the command S o l v e 
should be entered. This can be quite helpful in attempting to use the command. 
The command ? can be used in several different ways. For example, ? l e t t e r * gives a list of all Mathematica 
commands which begin with l e t t e r . This is illustrated below with the letter N. 
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é File Edit Cell Graph Find Rction Style Window 

GettingHelp 

?Solve 

Solve[eqns, vars] attempts to 
solve an equation or set of 
equations for the variables 
vars. Solve[eqns, vars, 
elims] attempts to solve the 
equations for vars, 
elmininating the variables 
elims. 

M5J:* 
?M* 

N 
NBernoulliB 
NIntegrate 
NProduct 
NPoots 
NSum 
NameQ 
Names 
Needs 
Negative 
Nest 

W i l W D Z i n T l Z I I K P I ΙΙ1ΙΙΙΙΙΙΙΙΙ1ΙΙΙ1ΙΙΙΙΙΙ1ΙΙΙ1ΙΙΙΙΙ1Ι1ΙΙΙΙΙΙΙΙΙ1ΙΙΙΙΙΪ 

τ ^ 

m 

? S o l v e 
yields a brief description of 
the S o l v e command. 

gives a list of all commands 
that begin vith 
N. 
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Another useful application of ? is in determining the definition of functions. This is especially helpful in verifying 
that a user-defined function has been defined correctly. The following example shows that after the function f is 
defined, the command f gives the definition of f. Notice that after f is cleared, the formula for f is no longer 
known. Hence, ?f yields nothing. If the symbol " : = " is used in the definition of a function, the function's 
formula is not automatically given as output as it is below when the equals sign is used in the definition . Therefore, 
? is of particular help in obtaining the definition. 

ί=Π ^ s UserFunctions ^ ^ Ξ 

\inf2j:= 
f [ x_ ]=S in [3x ]Cos [4x l 

\Outf2j= 
Cos[4 x] Sin[3 x] 

/nfJ/:-
?£ 

f 
f / : f [ x_ ] = Cos[4 x] Sin[3 x] 

tnf4j:= 
C l e a r [ f ] 

\tnf5j:= 
?£ 

f 

SH1| 

Jl 
]J 
11 
]J 
] 
11 
]J 

;u,M|..,T...|..,p1M,y^^y^y^|||M H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ g R£ 

ΚΉ 
LJ 

H 
M 

lilifegift by defining £ [ x ] = S i n [ 3x ] Cos[ 4x ] 

Then ?£ yields the definition off 

However, after charing the definition of 
\fwith the command C l e a r [ £ ] 
?f yields nothing. 
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D Example: 

Several other forms of the ? command are shown below : 
? * l e t t e r s gives all Mathematica commands which end in l e t t e r s . 
? l e t t e r s * gives all Mathematica commands which begin with l e t t e r s . 
? f u n c t i o n gives a description of the built-in Mathematica function, funct ion. 
Examples which illustrate these commands follow : 

é File Edit Cell Graph Find fiction Style UJindoui 

GettingHelp 

0 
infôj:= 

? * o l v e 

DSolve MainSolve 
LinearSolve Solve 

? B e s s e l * 

Bessell BesselJ BesselK BesselY 

?BesselT 

BesselY[n, z] gives the Bessel 
function of the second kind. 

inftOj:= 
?Plot* 

Plot PlotJoined 
Plot3D PlotLabel 
Plot3Matrix PlotPoints 
PlotColor PlotRange 
PlotDivision PlotStyle 

;· i | · I l | EE 

?*olve 
lists all commands with last 
4 letters 
o l v e . 

? B e s s e l * 
lists aü commands with first 
6 letters 
B e s s e l . 

? B e s s e l T 
yields information aboitt the 
command B e s s e l Y . 

? P l o t * 
lists all commands with first 
4letters P l o t . 
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Yet another form of the command ? is ? * l e t t e r s * . This command gives a list of all Mathematica commands 
that contain l e t t e r s . Several examples which illustrate this are given below. 

é File Edit Cell Graph Find fiction Style Window 

^ D ^ ^ Z ™ 8 ™ GettingHelp m I 
\inf!Oj:= T 

?»olve* J 

DSolve Solve 1 
LinearSolve SolveAlways 
MainSolve J_ 

/*////- ]" 
?*grate* J 

Integrate NIntegrate ]_ 

\inf!2j:= T 
?*lot* J 

ContourPlot 1 
Cyclotomic 
DensityPlot 
ListContourPlot 
ListDensityPlot 
ListPlot 
ListPlot3D 
ParametricPlot 
Plot 
Plot3D 
Plot3Matrix 
PlotColor 
PlotDivision 
PlotJoined 
PlotLabel 

PI 
ιΗ 
ill 
11 
lili 
i l 
fill 
1 1 
ill 
II 
ifl 
il III III Π 
f:·:·:·! 

uS m 

? * ο 1 τ β * 
gives a list of aä the commands 
containing the letters olve. 

?*grate* 
gives a list of aä the commands 
containing the letters grate. 

?*lot* 
gives a list of aü the commands 
containing the letters lot. 

598 



Chapter 10 Getting Help 

o Version 2.0 users will notice that some commands from earlier versions of Mathematica have been made 
obsolete with the release of Version 2.0. In these cases, Mathematica is able to tell what command replaces the 
outdated command. 

O Example: 

For example, in Version 2.0 the functions TrigExpand and T r i g C a n o n i c a l from previous versions of 
Mathematica are obsolete. Nevertheless, the Version 2.0 command 
Expand [ e x p r e s s i o n , T r i g - > T r u e ] performs the same function as the command 
TrigExpand [ e x p r e s s i o n ] from earlier versions. 

Uersion2.0Help 

«Trigonometry, m 

InfâJ:* 
?Trig* 

Trig TrigFactor 
TrigCanonical TrigReduce 
Tr igE xpand Tr igToC omp1e x 

inf7/:= 
?TrigExpand 

TrigExpand[expr] is obsolete. Its 
functionality is provided by 
E xpand[e xp r, Tr ig->True]. 

?Tr igCanoni ca 1 

TrigCanonical[expr] is obsolete. 
Its functionality is now 
built-in. 

KS 

Ί' ϋϋιοιι%<τΙΚι| 

After boding the package 
T r i g o n o m e t r y , m 
the command ? T r i g * 
causes Mathematica to list 
all commands that begin 
with the four letters 
T r i g . 

Version Z0 tells which command 
replaces Tr igExpand 

and T r i g C a n o n i c a l . 
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Another way to obtain information on Mathematica commands is the command Options. 
Opt ions [Command] gives all of the available options associated with Command. This is quite useful when 
working with a Mathematica command such as P l o t which has many options. Notice that the default value (the 
value automatically assumed by Mathematica ) for each option is given in the output. 

é File Edit Cell Graph Find fiction Style Window 

GettingHelp 

I | I | I 
IftïiïnYmwiYiïiYiffl ffi *********ak*****ifc**iiiii 

Kfi Options[Plot] 
lists all options and their 
default values associated 
witktke P l o t 
command 
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Options[Plot] 

\outf!!j= 
{PlotRange -> Automatic, 

PlotPoints -> 25, 

DisplayFunction :> 

$D i sp la yFunc t i on, 

PlotStyle -> Automatic, 

AspectRatio -> 
1 

>. f 

GoldenRatio 

PlotColor -> Automatic, 

Axes -> Automatic, 

PlotLabel -> None, 
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The command ??Command gives a brief description of Command as well as the list of Options available to 
Command. 

D Example: 

This is illustrated below with the Mathematica command L i s t P l o t . 

é File Edit Cell Graph Find fiction Style Window 

GettingHelp 

!nf!3j:= 
? ? L i s t P l o t 

j L i s t P l o t [ { y l , y2 , . . . } ] p l o t s 
a l i s t of v a l u e s . The x 
c o o r d i n a t e s for each p o i n t 
a r e t aken to be 1, 2 
ListPlot[{{xl, yl}, {x2, 
y2}, ...}] plots a list of 
values with specified x and 
y coordinates. 

Àttributes[ListPlot] = 

{Protected} 
ListPlot/: 

Options[ListPlot] = 

{PlotJoined -> False, 

PlotRange -> Automatic, 

PlotStyle -> Automatic, 

DisplayFunction :> 

$D i splayFunc t i on, 

Jm 

Kii ^mmmmmm^i 

1/ The command ? L i s t P l o t 
would yield this information 
about the command L i s t P l o t . 

The command ? ? L i s t P l o t 
yields the information xiven by 
both the command ? L i s t P l o t 
and the command 
O p t i o n s [ L i s t P l o t ] . 
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Yet another method for acquiring information on Mathematica commands is through the use of Complete 
Selection. This is located under Prepare I nput in the Action submenu and is useful when attempting to 
complete a command. 

D Example: 

For example, if the user wishes to use a command which begins with Polynomial, but does not remember the 
rest of the command, help can be obtained in the following manner : (1) Type the word Polynomial, (2) Move 
the cursor to the Action heading and use to the mouse to obtain the Action submenu, (3) Choose Complete 
Selection from the submenu (This causes a list of commands which begin with Polynomial to be 
displayed), (4) Move the cursor to the desired command in the list and click. The correct command is then 
completed on the screen. 

é File Edit Cell Graph Find Action Style Window 

CompletingSelection 
■ ^ 1 " ' 1 ' 1 " ■ " 

">ΛΛΛΛ"ΛΛΛΛΛΛ' 

Complete Selection displays 
aü built-in commands that 
begin, with the letters 
P o l ynomia 1 . The desired 
command may then be selected 
using the cursor. 

m 
Polynomial·. 
PolynomialQ 
PolynomialQuotient 
PolynomialQuotientRemainder 
PolynomialRemainder 

Similar steps may be taken to obtain the proper syntax of a command. The following windows illustrate how 
Prepare Input can be chosen from the Rction submenu to yield the arguments of NRoots. 

é File Edit Cell Graph Find ficfcon Style Window 

NRoots 

CompletingSelection 
After the command has been writtenfgotofiction | ] fd] 
andselect Prepare Input 
andthenselect Make Template. Ï 

a 
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The same steps which were described above for using Complete Selection are followed in this case with the 
exception that Make Template is chosen instead of Complete Selection. Note that if other Ntathematica 
commands begin with the word NRoots, then they would all be displayed as they were in the previous example 
with Polynomial. 

é File Edit Cell Graph Find Action Style Window 

CompletingSelection 
HSoots[ I h 3 = = r h 3 , y a r ] ! Make Template automatically fiäs in 

j the command with "typical syntax. " 
Notice that more information is obtained 

\ itsing the command ?HRoots or 
??HRoots. 
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\ Mathematica Help 

The Mathematica Help file is located in the Mathematica folder. The information in the window below is given 
when this file is opened. This describes what is contained in the file and points out that it should be rarely opened. 
No changes should be made to Mathematica Help, since this would only cause confusion. Information can be 
printed from this file, however, by using Print... or Print Selection.. . from File. 

é File Edit Cell Graph Find fiction Style Window 

Mathematica Help 

Mathematica Help 
This is the tlathematics Help file. It contains all the help messages pertaining to 
t*iathematicä% Macintosh Front End. When you use the various help features available in 
tlathematica, the text you read will come from this file. You should not add any cells to or 
remove any cells from this fi le, since it v i l l confuse Ptathematica's built-in help 
mechanisms. You can, however, edit the text within any single cell, for example to make 
your own notes about a particular feature. 

You will probably not need to open this Notebook very often, since the automatic help 
features are a more convenient way of finding the help you need. You can, however, use this 
Notebook in a number of other ways. If you want to printout part or all of i t , you can use 
the Print or Print Selection menu commands in the File menu. If you want to search for 
a particular topic or word, you can use the Fi nd command i n the Fi nd menu (select the 
outermost grouping bracket and choose Open All Subgroups from the Cell menu f i rst) . 

To find out about the automatic help features available in ttathematica, choose the About 
Mathematica command in the Apple menu. Click the Help button and then read the text in 
the dialog box that appears. 

I Menu Help 

I Dialog Box Help 

I Other Help Sections 

κ> 

Yffftlljtgjfjlffffftgiltttlftillf^ 
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D Example: 

The following window appears when the command P l o t [Sin [ x ] , {x, - 2 P i , 2Pi} ] is selected and 
EKplain Selection.. . is chosen from under the apple icon on the Mathematica Menu. The window gives ί 
description of the cell and explains how the cell can be altered. 

é File Edit Cell Graph Find Action Style Window 

The active window is a Notebook window. This type of 
window organizes information in cells, each of which 
contains text, mathematical expressions, graphics, or a 
combination of these. For more information about 
Notebooks in general, see your manual. 

The selected cell is an active, unformatted cell. You can 
edit the text in the ordinary Macintosh way. If you want 
to see the contents formatted mathematically, format the 
cell using the Formatted command in the Cell menu. This 
will place mathematical expressions in two-dimensional 
notation. 

If you don't want the cell to be evaluated, you shoulu make 
it inactive by choosing the Inactive command in the Cell 
menu. 

a^o 
E Long Form 98L 

Ka 

P l o t [ S i n [ x ] , { x , - 2 P i , 2 P i } ] 

Ea 
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• Version 2.0 Help and Kernel Help 

The folder Kernel Help is installed on the desk top when Version 2.0 of Mathematica is installed on the computer. 

The folder Kernel Help contains 
sixteen notebooks that provide examples 
of nearly every built-in Mathematica 

command. Since these notebooks can 
be opened during a Mathematica session, 
they can be particularly helpful sources 
of documentation. 

i D l l I l I Kernel Help 
Name 

D 00. Getting Started 

D 01 . Calculator Operations 

D 02. Algebra & Trig. 

D 03. Solving Equations 

D 04. Calculus & D.E. 

D 05. Linear Algebra 

D 06. Numerical Operations 

D 07. Numbers & Lists 

D 08. Math. Functions 

D 09. Transformation Rules 

Q 10. 2-D Graphics 

D 11 · 3-D Graphics 

D 13. Animation & Sound 

D 14. Programming 

D 15. System Operations 

E 

Size 

56K 

54K 

110K 

98K 

140K 

131K 

74K 

110K 

137K 

63K 

653K 

929K 

201K 

96K 

98K 

iöi 
Kind 1 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

ù\ 

<fl 
loial 

The first two notebooks, Getting Started and Calculator Ope rat ions, look as follows when they are 
opened: 
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D= j 00, Getting started j 

I Getting Started 

■ A&t/iematrca Notebooks 11 

■ Interacting with the M&tf&matica Kernel 1] 

■ Kernel Help 

PT^TT'-l-l-T-'!fi 

01. Colculnlor Operations ! 

Calculator Operations 

■ Index 

■ Arithmetic 

■ Exact, Approximate and Aroitraiy-Precision 
Calculations 

■ Cnmman hblhemalical Constants 

■ Common Malhematical Fund ions 

■ Complex Numbers 

G 

I 

J] 

J] 
J] 

[TIilKaiMH[iiii8iiil!ii!!illlJlliiillflüiiiiiUIUillHH)llfl!Ki'J 

Similarly, Calculus and Dif ferent ial Equations, Bui l t - in Mathemat ical Functions, and 
Programming look the same: 

607 



Chapter 10 Getting Help 

! 04. Calculus B D.E. =E3 

Calculus and Differential Equations ]]p 

■ Index 

■ Derivatives 

■ Integrals 

■ Lim il s 

■ Numerical Series and Products 

■ Power Series 

■ Residues 

■ Ordinary Differential Equations 

! DO. Main. Function* ! 

Built-in Mathematical Functions] 

■Index 

■ Naming Conventions 

■ Numerical Functions 

■ Pseudorandom Number? 

Λ 

J 
■ Integerand Number-Theoretical Function: 

I Combinatorial Functions 

■ Elementary Transcende mal Functions 

SI 
J 
J 

H . Programming I Eggmalical Constants 
Programming 

■ Index 

■A Note on Programming 

■ Loops and Control Structures 

■ Conditionals 

■ Blocksand Modules 

■ Sample Programs 

y^gonal Polynomials 

| · I · | · I 

1 
Ί1 

[EEDiaBiiiiffttuttffiifJittitiJJtititifmtKP 

[FnS3niMeifflHflHittiBH{irifliKH 

608 



Chapter 10 Getting Help 

110.2 The i n i t . m file 

The i n i t .m file gives the user the opportunity to supply information to be read in each time the Mathematica 
kernel is started. Since this file is read each time the kernel is started, any information included in the file is 
automatically loaded. The i n i t .m file is found inside of the Packages folder. The window obtained by 
double-clicking on the Packages folder is shown below: 

é File Edit Uiew Special 

Packages 
15 items 49/739K in disk 28,998K available 

0 ,r~\ 

Startup 

Algebra Calculus Data Analysis DiscreteMath 

Examples Geometry Graphics Linear Algebra 

c 
Miscellaneous NumberTheon NumericalMath Utilities 

BE 

The file i n i t . m 
is contained in the folder 
Packages. 
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Double-clicking on the i n i t .m icon yields the following window which gives a brief description of the file and 
how new information can be entered. 

é File Edit Cell Graph Find fiction Style UJindotiP 

User Mathematica ™ 
Initialization File 

This file is read in every time the MattiematJca kernel is started up. 
You can insert anything you like in the following cell(s). For example, if 
you have defined a function you use very often, you can put it in this 
file, and it will be loaded every time you use AfatAejztatJca. 

You can also add new folders to the kernel search path. If you have 
several Notebook you want to be able to load in using the kernel file 
reading function " «fJUname ", you can put them together in a folder 
and add its path name to the list below. 

DPath 

D Default VievPoint 

D user Initialization 

\5\ 

ΤΤΤΤΤΤΤΤΓΤΤΤΤΤ^ΤΤΤΤΤΤΤΤΤΤΐϊΓΤΤΤΤΤΤΤ E2 

A useful property of the i n i t .m file is user initialization of functions and commands. This gives the user the 
opportunity to "customize" his or her own commands or define functions which the user often employs. The 
following is an illustration of how this is done. If the user prefers not to capitalize the trigonometric functions, they 
can be redefined with small letters in terms of the associated built-in Mathematica commands. The same can be done 
with the constant Pi. Below, the user chooses to use a five-place decimal approximation of the well-known constant 
and name it p i . Hence, whenever the Mathematica kernel is opened, these new definitions will be read in and, thus, 
will be recognized when used. 

init.m HI 

D User Initialization 

Insert anything you would like to be evaluated every time the kernel 
is started up in the initialization cell below: 

s i n [ x _ l = S i n [ x ] 
cos[x_]=Cos[x] 
tan[x_]=Tan[x] 
p i=3.14159 

\Q\ 

nl^HJbHBaiiÎâÉÎÉÎtiîâÉÏÉiÉÎÎiU^iUiÉa*^ 
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After initializing, Mathematica uses the user-defined functions to give the correct results. Of course, the built-in 
commands would be properly evaluated as well, so these newly-defined commands have not replaced the original 
ones. 

= Π = ^ InitEKample WM 
/ / ? / / / -

s i n [ P i / 2 ] 

\Outf!j= 
1 

/ * / # ■ -

cos [p i ] 

\Outf2j» 
- 1 . 

ΑΛΓ/·-
p i A 2 

\(Mf3j* 
9.86959 

^ S H i | 
ηη 

ηη 

J J 
"1"1 

J J 

ί; ■■■■r̂ - ".ÎXIIIJJKI □ l l l l l l l Φ 

H 
\rÀ 

H M 

Since the file i n i t . m 
is automatically loaded vhen the kernel is 
started, these commands yield the desired 
values instead of error messages. 
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■ 10.3 Explanation of the Mathematica Menu 

■ The Version 1.2 Menu 

For a complete discussion of the menu as it appears in either Version 1.2 or Version 2.0, see the User's Guide for 
the Macintosh in the Mathematica software package. 

The menu below which indicates the editing capabilities of Mathematica appears under Edit in the Mathematica 
Menu. The usual Macintosh editing features are included in this list along with the addition of several commands 
for working with Mathematica cells. The main item to notice in the list is Settings. These Settings options 
are discussed in greater detail below. 

Edit 

ί?.?ϋ!Ϊ..Ϊ!ΐί!.9. I 
Cut 
Copy 
Paste 
Clear 
Paste and Discard 
Conuert Clipboard 

[Nesting 1 I n Version 2.0, Sett ings has been changed 
Diuide Cell to Preferences; Diuide Cell and Merge Cells 
Merge Cells are found under Cell. 

Settings 

The Settings options which are available under Edit are accessed by moving the cursor to the Edit heading on 
the Mathematica Menu and dragging the cursor to the last entry which is Se ttings. A list of six Settings 
options is then displayed: Display, Graphics, Color, Animation, Action, and Startup. To obtain a 
particular Settings window, move the cursor to the desired Settings option and release the mouse button. 

The first of these options discussed are those found under Start up Settings. Instead of loading certain files 
or tables during a Mathematica session, the user has the option of requesting that they be loaded automatically. 
This is done on the window below by placing an X in the box next to the package which is to be loaded each time a 
Mathematica session begins. (To place the X in a box, move the cursor inside the box and click once with the 
mouse; to remove the X, place the cursor on the X which is to be deleted and click once with the mouse.) 
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Startup Settings 

Stack size (number of KBytes) 

Current: 256 Requested: 

fit startup load these packages: 
E>3 Messages (msg.m) 3§M 
S Function information (info.m) S€F 
D Integration rules (IntegralTables.m) §€I 
□ Elliptic functions (Elliptic.m) §€E 
D Series functions (Series.m) 3§S 

□ Automatically start local kernel §êfi 

[[ OK )| f Apply ] (Defaults] [Help ] [Cancel] 

The checked boxes indicate the packages 
that Mathematica automatically loads vhen 
the Mathematica kernel is loaded. 
Many users like to have both msg . m 
and i n f o . mloaded each time. In addition, 
if you axe frequently computing definite 
integrals, you may also want Mathematica 
to load the package I n t e g r a l T a b l e s . ] 

Several settings can be made under fiction Se t t ings . These are listed on the fiction Sett ings window 
which is shown below. The user has selected those options which are checked. Some of the more useful of these 
options include, displaying the computation time of calculations and having the output displayed so that it fits in a 
window of specified width. 

fiction Settings 
[3 New output replaces old 3êR 
[x] Output cells are grouped with input 9§G 
D Multiple output cells are grouped together 3§M 
□ After eualuation, input cells are locked 98L 
□ Beep when an eualuation is finished 9§B 

D Display clock timing after each eualuation âëT 

Break □ to fit window âêW □ at page width 36Q 

Ë3 Break at character widths. 3ëK 

Generate unformatted tents for these results: 
O H» 96H O None SSN ® No graphics or Short 8ëS 

[x] Place Print output as it is generated §8P 
□ Place each Print line in a separate cell 9SD 

On opening a Notebook, load initialization cells: 

Q Always §61 O Neuer âêU <§) fisk each time §§E 

[[ OK )|( Apply ] [Defaults] [ Help ] [ Cancel ] 

Users can customize Mathematica by 
modifying various options. 

A checked box means that Mathematica 
vill perform the option. 
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In the following window, the user has requested that 78 characters be included on each line of output. This may 
lead to the results being in a form which are more easily read, since longer expressions can be printed on one line. 

I fiction Settings 
[X] New output replaces old 9SR 
E3 Output cells are grouped with input 3§G 
□ Multiple output cells are grouped together §§M 
□ After eualuation, input cells are locked 9§L 
□ Beep when an eualuation is finished 96B 
[X] Display clock timing after each eualuation 9βΤ 
Break [X] to fit window §€LL) □ at page uiidth §§Q 

□ Break at character widths. §§K 

Generate unformatted tents for these results: 
O ΠΙΙ 3€H O None §£N ® No graphics or Short 98S 

£3 Place Print output as it is generated 9ëP 
D Place each Print line in a separate cell 9SD 

On opening a Notebook, load initialization cells: 

Q Always 361 <§) Neuer §§U O Hsk each time §§E 

[[ OK ]][ Apply ] [Defaults] f~Help ] [ Cancel ] 
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When working with the animation of graphics, the user may find the options located under Rn im at ion 
Settings helpful. Most importantly, the user can set the speed of animation by increasing or decreasing the 
number of frames viewed per second. This number can be changed by simply typing the desired value for the 
speed (when the box is darkened) or by moving the cursor to the box and clicking the mouse button once to obtain 
a vertical flashing cursor. Then, any changes can be made in the usual manner. Other options include the order in 
which the animation is viewed. The user selects the desired order by placing a dot in the circle corresponding to 
the appropriate order (Forward, Backward, or Cyclic). Dots are placed and removed in the same manner 
as boxes are checked. 

Animation Settings 

Speed of graphics animation: 

Frames/Second 

® Forward 9€F 
O Backward 9§B 

O Cyclic âêR 

Rt the first or last frame of the animation, 
pause this many frame-times: 

First frame: 0.00 

Last frame: 0.00 

j o i c l f ö p p l y ] [ Help ] (Defaults] [CanceT) 

Animation options can also be modified 
through the different settings. 

Cell options are found under the Cell heading in the Mathematica Menu. These options allow the user to create a 
Mathematica notebook in any form desired. These options are used by selecting a cell or cells in a Mathematica 
notebook and then choosing the appropriate Cell option. One of the more useful Cell options is that of grouping 
cells. This Group Cells option is illustrated in greater detail in a subsequent window. Another option is that of 
locking cells. If the Locked option is chosen, then no changes can be made in that cell. (Output cells are 
automatically locked.) 
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° In Version 2.0, the options Page Break are found under Style and the options Formatted, Inactiue, 
Initialization, Locked, Closed, and Fined Height are contained under Attributes which is also 
found under Style. 

Cell 

[Formatted 
Inactiue 
PostScript 
Locked 
Closed 
Initialization 
Fixed Height 
Page Break 
GîroiiïpTeïÎs 
Ungroup Cells 
Open fill Subgroups 
Close fill Subgroups 
CÏosëïWiîrup 
jEualuation Group 

The following sequence of windows illustrates how Group Cells is implemented. Consecutive cells can be 
grouped by first selecting the cells and then choosing the Group Cells option. When cells are grouped, they can 
be closed simultaneously by double-clicking on the outermost cell which encloses the group. In the first window 
below, all of the cells are selected by first selecting the uppermost cell and then dragging down through all of the 
cells. After these cells are selected (as shown in the second window), choosing Group Cells from the list of 
Cell options causes the selected cells to be enclosed in a single (outermost) cell. This is displayed in the third 
window below. 

The Cell Options allow notebooks to be customized 

Initialization cells are cells within a notebook that are automatically 
evaluated when the Mathematica kernel is started 

Cells may be grouped, ungrouped, opened or closed 
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ÏDÏ Grouping IH1 
infi?J:= 

Clear[f] 
f [x_]:=(x- l ) / (2x- l ) 

inf!8j:= 
Plot[f[x],{x,-1/1,3/2} 
AspectRatio->l] 

20 

10 

® ^ 

-1 -0.5 

-10 

β ^ ί Γ"Β 

OutffS/= 
-Graphics-

Togetlier[ f ' [x]] 

Outfi9j= 
-2 

(-1 + 2 x) 

]J 

I • I · I · I i I 1k>niil!liilliiia 

1DÏ Grouping 

irouping 

® | 
i)/(2x-l) v | 

{x,-1/1.3/2) . 1 
o->l] | 

r— · ' 

1 1. 

' [ I ] ] 

G ΓιΊΙΪιΙϊήΙΙΪιϊΙϊιϊιΥιιϊ 

1 ® l 
Π-1)/(2χ-1) | 

. {x . -1/1 ,3/2} , 
ίο->11 

a 

Dt 

3t 

3t 

r 1 1.5 

: " [ x ] ] 
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fiction 
Prepare Input 

Eualuate Selection 
Eualuate Ne»t Input 
Eualuate Notebook 
Eualuate Initialization 
Interrupt 

Kernels 
Clear Kernel History 
Quit Kernel 

When Prepare Input is 
selected, this menu appears: 

Copy Input from flboue 
Copy Output from flboue 

Complete Selection 

.Î!i.?.!?.Ç.J.?.!]!?P.!.?*.?. 
3D UieuiPoint Selector... 
Color Selector... 

Interrupt can be used to stop Mathematica 

calculations. The Interrupt menu is discussed below. 

An important option located under Action is I nterrup t. This can be used to interrupt a calculation if the 
calculation is taking longer than it should or if the user notices a mistake in the command which would lead to 
undesirable results. The following window appears when Interrupt is selected from the menu. This window 
includes several options. Step and Trace display the calculations that Mathematica is performing. These 
calculations appear within the window to the right of the four options. Abort causes the calculation to be stopped. 
In the case of Abort, the current Mathematica session may be continued. On the other hand, Quit Kernel 
causes the calculation to cease, and the user must exit and restart Mathematica if more calculations are desired. 

Local Kernel Interrupt If a calculation is taking longer than 
expected and one wishes to abort the 
calculation, click abort. To quit the 
kernel completely (in which case, one 
must completely exit the Mathematica 
session and restart to continue using 
Mathematica) click quit kernel. 
In addition, one may vie v the calculations 
Mathematica is performing by clicking on 
either step or trace. 
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O In Version 2.0, users can abort a calculation directly from the Action menu. However, to Trace a 
calculation, Version 2.0 users must select Enter Dialog from the Version 2.0 Ret ion menu and 
then use the commands Stack or Trace. 

Mathematica notebooks can be customized by taking advantage of the features under Style and Wind oui. 

Style 
[Font 
Face 
Size 
Color 
Format 
Cell Style 
Uniform Style 

Default Style 
|ffll Default Styles... 

Format contains alignment, scrolling, and word-wrapping options as well as cell variations or 
"dingbats" 

Cell styles are modified by going to Window and selecting Sty les Window. Once the Styles Window 
appears on the screen, fonts, sizes, and faces of the various cell types are modified using Font, Face, and Size 
found under Style. Selecting fill Default Styles... resets all cell styles to their defaults. 

° In Version 2.0, Style is considerably expanded, containing many of the options found under Cell and 
Window in Version 1.2. 

In Version 1.2, text Font, Face, Size, Color, and Format, 
in addition to Cell Style can be changed from the Style menu. 
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UJindoui 
Stack Windows 
Tile Windows Wide 
Tile Windows Tall 
Network UJindoui 
Defaults UJindoui 
Styles UJindoui 
Clipboard UJindoui 
(open notebooks) 

Stack Windows, Tile Windows Wide, and Tue Windows Tau are 
various ways of viewing several open Mathematica notebooks 
simultaneously. 

The Defaults Window shows Mathematical default values which may 
be modified Similarly, the Styles Window shows the font and size 
for each type of cell which may also be changed 

All open notebooks are shown; when a notebook is selected, it is 
brought to the front of the screen and becomes the active window. 

Several options are found under the UJindoui heading on the Mathematica Menu. The first group of options deals 
with viewing several Mathematica notebooks at once. These options, Stack Windows, Tile Windows 
Wide, and Tile Windows Tall, are illustrated individually after the menu below. 
Two of the windows which may be viewed are the De faults Window and the Styles Window. The 
Defaults Window is displayed and explained below. The Styles Window displays all of the styles (font, 
face, and size) used for each particular type of cell in the Mathematica notebook. These styles can be changed by 
selecting a cell (or cells) and choosing another font, face, or size. This window, therefore, allows the user to 
customize the notebook. 
The last entry in the list of Window options is a list of all open Mathematica notebooks. Hence, an opened 
notebook can be brought to the front of the screen by selecting it from the list with the cursor. 

If Stack Windows is chosen, then the notebook windows are stacked one behind the other so that only the 
notebook in front can be fully viewed. The other open notebooks can only be partially viewed. However, a 
notebook can be brought to the front by simply moving the cursor to that notebook and clicking the mouse button 
once. 

é File Edit Cell Graph Find fiction Style Window 

NotebookTwo 1 
NotebookOne 

I · | i 
O^aiJl^MÉiUÎÉiÂÎÉiÎÎiÎÉiÉÎiiÎÉîUiÉiUÎia^^ a 

When Stack Windovs is 
selected, the open notebooks 
are "layered". 
In this case, NotebookOne 
is the active window and 
NotebookTwo may be made 
active by clicking in the 
NotebookTwo region 
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Tile Windows Tall, illustrated below with NotebookOne and NotebookTwo, changes the width of 
each notebook window so that they fit side-by-side on the screen. (Note that each window has a complete 
boundary.) 

é File Edit Cell Graph Find Action Style Window 

NotebookTwo NotebookOne 
K> 

In this case, the two open notebooks, NotebookOne and NotebookTwo, aie 
viewed simultaneously after selecting Tile Windows Tall. 

NotebookOne is the active window. NotebookTwo may be made active 
by moving the cixrsor within the NotebookTwo region and clicking once. 

E us DEI f l ^ ES 
y 

Tile UJindoiiis Wide alters the height of each notebook window so that the reduced windows fit on the 
computer screen simultaneously. (Again, each window has a complete boundary.) NotebookOne and 
NotebookTwo are displayed in the folio wing manner with Tile Windows Wide. 

é File Edit Cell Graph Find fiction Style Window 

NotebookOne 
\ù\ 

In this case, two open 
notebooks axe viewed 
simultaneously using the 
option Tile Windows Wide. 

NotebookTwo 

In this case, NotebookTwo 
h=rl is the active window. 

NotebookOne can be made 
the active window by 
moving the cursor within 
the NotebookOne region 
and clicking once. KS 

HOST ^jyyj^j^^j^yj^j jy^j^ 
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The defaults of the fonts, faces, and sizes used in each of the cell types can be viewed in the Defaults Window. 
This window also includes the graphics size. The window obtained when Default UJindouiis selected is 
shown below with a description of the steps necessary for changing the default size of graphics cells. Changes in 
the cell styles are accomplished through opening the Styles Window. 

Defaults 
This is a prototypical new cell. 

This is a prototypical new output cell. 

This is a prototypical new message cell. 

This is a prototypical new Print cell. 

This is a prototypical new information cell. 

Default 
Graphics size 

The hrλφ\ and «ridth 
of this picturr Mill bv 
teed «s 1he maximum 

height and width of 
new PostScript 

g-aphica. 

This is a prototypical cell 
for non-Hathematica text files 

] 
] 
]| 
] 

| · I l I · 
IStlύ^^JLmmmiiiiύύύiL·L·L·iύiL·L·L·ïiύύiiïίίi& 

The defaults for each cell 
type may be changed using 
the fonts and sizes available 
under Styles. 

The default size for graphics 
cells can be changed by using 
the mouse to move the cursor 
•o a comer. When the cursor is 

on a corner, click and dreg to 
the desired size. 
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• The Version 2.0 Menu 

The Mathematica Menu in Version 2.0 appears at first glance to be identical to that of Version 1.2. Upon further 
inspection, however, the user easily notices that many of the features in Version 1.2 have been rearranged under the 
menu headings. Version 2.0 also has a Short Menu option which is located under Edit. The LongMenuis 
displayed if a check mark is placed beside Long Menu. This can be changed to Short Menu by clicking once 
on this check mark. Both menus are shown below. 

é File Edit Cell Graph Find fiction Style Window LongMenu 

MenuUariations 

> — < 

j , , , T , I p ai,|, yjL j |ga | II m a 
Short Menu é File Edit Rction Style 

§ Ρ ^ ^ ^ Ξ = = MenuUariations ^m 

> — < 

MMïum 100% ▼ I KP I IBBBBBBBBBlHi :i:j:j:j:j:i:j:j:j:;:j:i:i:i:i:i:! 

mpi 

IE 

<y 

s] 
H 

Edit 
Undo Typing 
Cut 
Copy 
Paste 
Clear 
Paste and Discard 
Conuert Clipboard. 

Select fill Cells 
Nesting 
Preferences 
Long Menus 

Version 2.0 Edit Settings differ 

somewhat from earlier versions. 

Rction and other settings die 

contained under Preferences. 
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i Action Settings for Version 2.0: 

The fiction Preferences shown below are the same as those in Action Sett ings in Version 1.2, 
however. 

fiction Preferences 

S Output cells are grouped with input 
□ Multiple output cells are grouped .together 
□ After evaluation, input cells are locked 
□ Beep when an evaluation is finished 
□ Display clock timing after each evaluation 
□ Append kernel name to In/Out names 

Break 13 to f i t window □ at page width 

□ Break at character widths 

Generate unformatted text for these results: 
OA11 ONone <§) No graphics or Short 

□ Place Print output as i t is generated 
□ Place each Print line in a separate cell 

On opening a Notebook, load initialization cells: 
O Always O Never ® Ask each time 

OK 31 
flppiy ] 

Defaults] 

Help ] 

Cancel ] 

The Action, Settings 
available in Version 
Z0. 

The changes in S t a rt u p P r e f e r e n c e s are clear. The option of automatically loading msg. m, i n f o . m, 
I n t e g r a l T a b l e s .m, E l l i p t i c .m, and S e r i e s . m at the beginning of each Mathematica session is 
not offered in Version 2.0 as it was in Version 1.2. 

The Startup Preferences 
inVersionZOare 
substantial different 
fromprior versions. 
In particular, packages 
suck as 
IntegralTables.m 
are automatically loaded 
when the kernel is 
started 

Startup Preferences 

Stack size (number of KBytes): 
_, . _. _ _ . . 
Current: 512 Requested: 3 3 H 
L_l AuiumaLicai iy s i a rL a Kernel un launun 
When automatically starting a kernel, 
start the following kernel: 
|Local Kernel ▼ ! 

»-

K OK i 
^^m^^^mmm^^^r 

iT^pp'y ) 
[Defaults] 

[ Help ] 

[ Cancel ] 

, ) 
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Display Preferences are basically the same as Display Settings in Version 1.2 with the exception of 
the cell sizing options which were included in Version 1.2. Version 2.0 includes several options such as Gray 
Areas jump-scroll and Measurement units, however, which were not found in Version 1.2. 

Display Preferences 

E Auto indent text 
□ Dialog box for all errors 
S Automatically i ta l ic ize "Mathematica" 
[3 Show selections in back windows 
S Render PostScript in the background 
□ Real-time scroll bar thumb 
□ Gray areas jump-scrol l 
Measurement units: 

(§) Inches O Points O Centimeters 

O Decimal inches O Picas O Mill imeters 

Tab width: 

Scroll width: 

E^H] 
42 

Spaces 

Inches 

GD 
[ Bppiy ] 

[Defaults] 

[ Help ] 

[ Cancel J 

Display Preferences 
available in Version 
20. 

Version 2.0 Cell settings differ 
substantially from earlier versions. 
Notice that Diuide Cell and Merge 

Cells, vhicli were contained under Edit 

in prior versions, are nov contained 
under Cell. 

Cell 
Diuide Cell 
Merge Cells 
Group Cells 
Ungroup Cells 
Automatic Grouping 
Group Like ¥ 
Open ΠΙΙ Subgroups 
Close fill Subgroups 
Closed Group 
Eualuation Group 

The menu which accompanies the UJindOlllS heading no longer contains the windows for Network, 
Defaults, Styles, and Clipboard. However, the remaining menu members perform the same tasks as those 
in Version 1.2. 

Window 

Stack Windows 
Tile Windows Wide 

î!J^Mn.i!.9.!Î?.?J.?.!.! 
(Open Notebooks} 

Stack Windows, Tile Windows wide, 
and Tile Windows Tall perform the 
same task as in Version 1.2. 
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The main difference in Action is found under I ntemjpt Calculation. The window which was displayed 
with I ntemjpt in Version 1.2 no longer exists. Instead, the options found in this window are listed when 
Interrupt Calculation is selected. These are shown under Interrupt Calculation in the window 
below even though this list is actually hidden until I nteiTUpt Calculation is selected. 

Rction 
Prepare Input 
Edit Connections... 
Terminals ► 
Current Kernel ► 
Notebooks Kernel ¥ 
Connect Remote Kernel. 
Quit/Disconnect Kernel 
Eualuate Selection 
Eualuate Next Input 
Eualuate in Dialog 
Don't Eualuate 
Eualuate Notebook 
iM!.yMÇJM?JM?M!.9.P. 
Interrupt Calculation 
Rbort Calculation 
Rbort to Top 
Enter Dialog 
EKit Dialog 
fluto Saue after Each Result 

In Version 2.0, a calculation may be 
aborted by selecting Rction and then 
Rbort Calculation. Version 2.0 12 able 
to stop calculations much faster than 
prior version. Also note that if the option 
RutoSaue Rfter Each Result is checked, then 
Mathematica vill save the file after each 
calculation. When lengthy calculations are 
being performed and there is fear that the 
computer may crash, this option can often 
help avoid heartache. 

0 WHleMathematica is performing calculations, Version 2.0 users can select Enter Dialog which pauses the 
current calculation and allows the user to perform other calculations. EKit Dialog causes the suspended 
calculation to resume. 
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Style 

CellStyle 

Rttributes 
Font 
FaceSize 
Leading 
RlignmentTeKt Color 
Backgroung Color 
Page Breaks 
Formatter 
Eualuator 
Show Ruler 

MÎiAlU.!.?.?.:.:.:. 
Uniform Style 
Rll Oefault Styles. 

In earlier versions, Page Break vas 
contained under Cell; nov it is contained 
under Style. 

Similarly, Edit Styles vas contained under Windows 
as Styles Window In Version 2.0, the styles may be 
changed by selecting Styles and then Edit Styles. 

The menu under Style has several changes although many of these changes are only in appearance. Attributes 
contains the option Dingbats... which allows for the use of symbols in creating a notebook. These symbols 
include the circle and block which were found in the section and subsection styles in Version 1.2. Also under 
Attributes are many of the options such as Formatted, Locked, Closed, and FiKed Height found 
under Cell in Version 1.2. Useful additions located under Face include Superscript, Subscript, and 
Ouerstrike. Another obvious change is ShOUl Ruler. If this is chosen, then a ruler which includes three 
alignment options (left, right, and center) is displayed in the notebook. The Styles LUindOUl which no longer 
appears under LUindOUJS is opened by selecting Edit Styles... in Version 2.0. 
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■ 10.4 Some Common Errors and Their Remedies 
Learning to recognize and correct errors will alleviate many of the frustrations that some first-time users encounter 
when working with Mathemaaca and will enable the user to make the most of Mathematicds vast capabilities. Some 
of the more common errors and their remedies are illustrated below. 

o A list of all Mathemaaca warning messages is contained in Technical Report Mathematica Warning Messages, by 
David WithofT which is included in the Mathematka packaging box. 

One of the most commonly made mistakes occurs when using built -in Mathematica commands, functions, or 
constants. The user must always remember to use square brackets and/or capital letters. Several examples are 
shown below which demonstrate these types of errors. 
In the first example, Mathematica interprets the command s in ( p i / 2 ) as s in* ( p i / 2 ) which certainly was not 
intended. The user also failed to capitalize the Sine function and the constant Pi. 
The second example demonstrates that even if capital letters are used correctly, the absence of square brackets yields 
almost the same output as the first command. In this case, however, the expressions are capitalized. 
Finally, the third example shows that when square brackets are used, Mathematica interprets the command correctly 
and gives the exact value of Sin[ P i /2 ] which, of course, is 1. 

Sometimes Mathematka will return a command to 
you that is entered incorrectly. 

Neither of these commands produce the 
desired ontpnt because every Mathematica 
command begins with a capital letter and 
the argument is enclosed by square brackets. 

ri 
\inf5j:= Tljj 

sin(pi/2) J jjjjljjl 
\uut[5j= ./MFI 

p i s i n ^ ^ (ijjjijl 

2 s^ JJjiiil 

Sin(Pi/2) ^ J |j|jj| 

\Outf8j= Λ | | 

Pi Sin [jjjjjjl 

2 -Ι-ΙΓΙ 

Sin[Pi/2] J H 
\outfôj= i l l 

1 -ija 

Entering S i n [ P i / 2 ] 
produces the desired output. 
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Error messages can be disturbing to receive. In some cases, however, they can be ignored. For example, in the 
following window, the user attempts to load a package, Integra lTables .m, which has already been loaded. 
Hence, the error messages are given, but they may be deleted. 

o Version 2.0 users need never load the package I n t e g r a l T a b l e s .m. Neverthess, if one reads in a package 
and then reads it in again, messages of this sort often appear. 

LinearEquations 

«IntegralTables. m 

Set::write: 
Symbol IntBase 
is write protected. 

Attributes : : locked : 
Attributes of IntBase 
are locked. 

Set:.write: 
Symbol ExpQuad 
is write protected. 

Attributes : : locked : 
Attributes of ExpQuad 
are locked. 

Set::write: 
Symbol ExpLinear 
is write protected. 

General::stop: 
Further output of Set::wr 
will be suppressed duri 

l i 

\ù\ If the package I n t e g r a l T a b l e s . a 
has already been loaded and the user attempts 
to load it again, these error messages appear. 
They may be ignored or deleted. 
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The following error is quite common to new Mathematica users. The user attempts to plot a function g without 
properly defining the function beforehand. Hence, there is no function to graph. After receiving the error message, 
an easy way to check that this is the problem is to use ?g. If the function is undefined, the output is simply g as 
shown below. Otherwise, the formula for g would be displayed. 

Errors 

P l o t [ g [ x ] , { x , 0 , 5 } ] 

Plot: :notnum: 
|g[x] does not evaluate to a 

real number at x=0. . 

Plot::notnum: 
g[x] does not evaluate to a 
real number at x=0.208333 

Plot::notnum: 
g[x] does not evaluate to a 
real number at x=0.416667 

General::stop: 
Further output of Plot:: 
notnum will be suppressed 
during this calculation. 

It 

Ο.β ΐ 

0 .6 | 

0 .4 | 

O.2I 

0.2 0.4 0.6 0.8 1 

Outft/= 
-Grapbics-

lnf2j:= 

öS 

1 
r . i / : r "n i loo i j^ 

/This message indicates that g is not a properly 
function, 

Notice that when we enter the command ?g 
we confirm that g is not a well-defined 
function, In this case, we would re-enter 
the correct definition of g and then re-enter 
the P l o t command 
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Another common mistake occurs when trying to work with the elements of a table produced with two indices. In the 
example below, a table of Legendre polynomials is formed in lps. Note that the output is in the form of a list in 
which every element is itself a list of two elements. (Mathematica computes the polynomials in pairs, one pair for 
each value of n. ) Therefore, the P l o t command as it is stated below cannot plot the members of l p s . 

TablesofFunctions 

tnffPl-' ^ 
l p s = T a b l e [ L e g e n d r e P [ n , m , x ] , { n . 2 , 6 , 2 } , { a , 1 , 2 } ] 

Outf?9j» 

{{-3 x S q r t [ l - x 2 ] , 3 (1 - x 2 ) } , 

JJM 
Computes a table of 
L e g e n d r e P [ n , m , x ] 

for n= 2,4,6 and 
m^lZ. 

I 
5 S q r t [ l - x 2 ] (3 x - 7 x 3 ) 15 ( -1 + 8 x 2 - 7 x 4 ) 

2 

21 Sqrt[l - x2] (-5 x + 30 x3 - 33 x5) 
{ 8 
105 (1 - 19 x 2 + 51 x4 - 33 x 6 ) 

>-

8 }} 

l p s is a nested äst with three elements. Each element of l p s | 
is a list of two expressions in x, 

InfZOj-
L e n g t h [ l p s ] 

OulfZOj-
3 

P l o t [ E v a l u a t e [ l p s ] , { x , - 1 , 1 > ] 

P l o t : : p l n r : CompiledFunct ion[{x}, « 1 » , -CompiledCode-] 
[ « 1 » ] i s no t a machine-s ize r e a l number a t x = - l . | 

General : : s t op : 
F u r t h e r ou tpu t of P l o t : : p l n r 

w i l l be suppressed dur ing t h i s c a l c u l a t i o n 

1 

0.8 

0.6 

0.4 

0.2 

Even though we 
have included the 
command 
E v a l u a t e 
Mathematica 
generates error 

\ fails to produce 
the desired 
graphs. 

iioo% ▼ΙΙΦΙ nag 
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To remedy the problem, F l a t t e n [ Ips ] must be used before trying to plot the Legendre polynomials in Ips. 
Notice that F l a t t e n [ Ips ] removes the inner brackets contained in I p s and converts it to a list of length 6 
called Ipstwo. A table of GreyLevel values is created in g r a y s . 

ID! TablesofFunctions 

ιΐοιοΙοιηοΙηΛΛί 

l p s t v o = F l a t t e n [ I p s ] I converts lj*3 from a nested list to a list of expressions νηκ ] 

{-3 x Sqrt[l - x2], 3 (1 - x2), 

5 Sqrt[l - x2] (3 x - 7 x3) 15 (-1 + 8 x2 - 7 x4) 
2 ' . 2 

21 Sqrt[l - x2] (-5 x + 30 x3 - 33 x5) 
8 

105 (1 - 19 x2 + 51 x4 - 33 x6) 
8 ' 

I p s t w o consists of six elements; each element 
is an expression in x and can thus be graphed 

M23J:= 
Leng t h [ I p s t w o ] 

Outf23j= 
6 

tofW:= 
g r a y s = T a b l e [ G r a y L e v e l [ i / i ü l , { 1 , 0 , 5 } ] ; 

After making the appropriate changes, the six Legendre polynomials found in Ipstwo are correctly plotted using 
g rays in the command below. 

MOJJUM&SMI inf27j:= 
Plot[Evaluate[lpstvo],{x,-l,l},PlotStyle->grays] 

A 20 t 

I p s t w o 
is graphed according 
to the shades of 
gray created in J 
g r a y s . j 

Outf27j= 
-Graphics- ]J 

WUtSίSieSSitiÊtWiL·mÊ^m^mmmm———mmmΔJLmmmJL·mmL·iL·iià*^ 
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Throughout Mathematica bv Example, user-defined functions have always been defined using lower-case letters. 
Since every built-in command begins with a capital letter, we have been sure to avoid any ambiguity with built-in 
functions. Nevertheless, if one does attempt to define a function that conflicts with a built-in function, errors like the 
following result: 

MoreErrors 
M4!:* 1 

Sin[x_]:=xA2 Cos[x] J 
Set::write: Symbol Sin is write protected] 

Sin[Pi /2] J 
Outf5/= 

1 ]J 
IMiiignZl!ll!ZIl!lrvi I |lllllllllllllllllllllllllllllll|llllllflllllilllilllllllllllllllllllllllllllllll C\ B 

Ka 

In this cesse, we hexve attempted 
to define 
Sin(x) = x2Cos(x). 
The définition conflicts with the 
biwkt-in function Sin[ z ] 
Consequently, the user-definition 
is refused and 
S i n [ P i / 2 ] returns the 
"correct" value. 
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■ 10.5 Additional References 

■ Additional References regarding Macintosh Computers: 

D Getting Started With Your Macintosh. Apple Computer, Inc. 

D Macintosh Reference. AppleComputer, Inc. 

■ Additional references regarding Mathematical 

D Crandall, Richard E., Mathematica for the Sciences. Addison-Wesley Publishing Co. (1991); 

D Gray, Theodore and Glynn, Jerry, Exploring Mathematics with Mathematica. Addison-Wesley Publishing Co. 
(1991); 

D Maeder, Roman, Programming in Mathematica. Addison-Wesley Publishing Co. (1990); 

D Wagon, Stan, Mathematica in Action. W. H. Freeman and Co. (1991); 

o Wolfram Research, Inc., Mathematica: A System for Doing Mathematics bv Computer. User's Guide for the 
Macintosh (1991): 

D Wolfram, Stephen, Mathematica: A System for Doing Mathematics bv Computer. Addison-Wesley Publishing 
Co. (1988); 

o Wolfram, Stephen, Mathematica: A System for Doing Mathematics bv Computer. Second Edition, 
Addison-Wesley Publishing Co, (1991); and 

D The Mathematica Journal, published quarterly by the Advanced Book Program, Addison-Wesley Publishing Co. 

■ Additional references regarding the mathematical topics that appeared in Mathematica bv 
Ëxanuik: 

D Arnold, Steven F., Mathematical Statistics. Prentice-Hall (1990); 

D Cheney, Ward and Kincaid, David, Numerical Mathematics and Computing. Second Edition, Brooks/Cole 
Publishing Co. (1985); 

D Hillier, Frederick S. and Lieberman, Gerald L., Introduction to Operations Research. Fifth Edition, McGraw-Hill 
Publishing Co. (1990); 

D Jordan, D. W. and Smith, P., Nonlinear Ordinary Differential Equations. Second Edition, Oxford University 
Press (1988); 

D Kreyszig, Erwin, Advanced Engineering Mathematics. Sixth Edition, John Wiley & Sons (1988); 

D Powers, David L., Boundary Value Problems. Second Edition, Academic Press (1979); 

D Strang, Gilbert, Linear Algebra and its Applications. Third Edition, Harcout Brace Jovanovich, Publishers (1988); 

D Weiss, Neil A. and Hassett, Matthew J., Introductory Statistics. Second Edition, Addison Wesley Publishing Co. 
(1991); and 

D Wilson, R. J., and Watkins, J. J., Graphs: An Introductory Approach. John Wiley & Sons (1990). 
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Introduction to Programming in Mathematica 

The Appendix provides a brief introduction to programming in Mathematica, Examples include some 
of the programs that were used to create some of the graphics objects in Mathematica Bv Example. However, users 
that intend to become proficient Mathematica programmers should refer to Maedefs book Programming in 
Mathematica. 
In Version 1.2, local variables are declared using the command Block. The following example illustrates the use of 
local variables within a Block. Notice that changes in the local variable j in the function va lue do not affect the 
value of the previously defined global variable j = 0. This value remains zero although the local variable j has value 
4. 

o In Version 2.0, the command Nodule 
Version 2.0. 

replaces the command Block; although Block is still supported under 

I D s Uersion1.2LocalUariable 
lnf5j:= 

C l e a r [ j ] 
j=0 

\outf5j* 
0 

▼ a l u e [ i _ ] : = B l o c k [ { j } , 

P r i n t [ j ] 
] 

v a l u e [ 4 ] 

4 

?3 

j 

1 j - o 
l i i i i i i ^ I · .· 

B Z I | 

ll 

Jl 
11 

Jl 
il 

ZK 

H 

m 
aa 

I C l e a r [ j ] 
1 j - 0 

defines the variable j 
to be zero. 

I On the other hand, j is also defined to be a 
variable heal to the function v a l u e . 

▼alue[4] assigns the value 4 to 
j locally. 

The global value of j 
remains 0. 
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Functions can be defined to perform various tasks using Mathematica programming skills. This is shown below with 
the definition of the function arclength which calculates the length of the curve given by r over the interval 
from t = a to t = b. This function depends on the local variables rp r ime , l e n g t h , and in tegrand which 
give the derivative of r, the number of components of r, and the integrand given in the integral formula to determine 
arc length, respectively. A particular function r [ t ] is then defined to illustrate the use of arclength. 

Uersionl .2LocalUariable 

in[49j:= 
arclength[ r_, {t__,a__,b__} ] : = 

Block[{rprime,length,integrand}, 

rprime=D[r,t]; 

length=Length[ rprime] ; 

integrand=S qr t[ 

Sun[(rprime[[i]])A2,{i,i,length}] 
]: 

Mintegrate[integrand,{t,a,b}] 
] 

K> 

iftf5Uj:= 
r[ t_J = { t - S i n [ t ] , i-Co3[ t ] } 

0utf50j= 
{t - S i n [ t ] , 1 - Cos[t]} 

jMlWlWlWlWllUMWIWlWWWIJttW^^ 

The variables r p r i m e , 
l e n g t h , and 
integrand 
are declared to be local 
to the function 
a r c l e n g t h . 
Notice that a semi-colon 
is placed at the end of 
each command (except 
for the last} 

Defines r(ty{t-Sin (t)J-Cos (t)}. 
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To better understand the use of arc length , the function r [ t ] is plotted below from t = 0 to t = 4Pi. Then, 
the length of this curve is determined with arclength. Note that the dependent variable is not of importance in the 
use of this function as a is used in this command instead of the variable t . 

Inf5lj:= 
P a r a m e t r i c P I o t [ r [ t 1 , { t , 0 , 4 P i } ] 

MoooloMwfctfftVnon 

Since r(t) is aparametric equation, 
Parametr icPlot isusedto 
grcphr(t)for 0 < t < 2ti. 

2 4 6 8 10 12 
Out[5iJ= 

-Graphics-

inf52j:= 
a r c l e n g t l i [ r [ 3 ] , { s . 0 , 2 P i } ] 

Outf52j= 
8. 

]J 
icioleiwowi 

rtumnericalfy computes the length of 
the curve parameterized by r(t), 
0 < t < fi. 

Another point of interest is the manner in which arc length is defined. Notice that it is defined in terms of the 
number of components in the function r . Hence, a r c l e n g t h can be used with functions of more than two 
components as illustrated below with the function v [ t ] . 
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After plotting this curve with SpaceCurve (located in the package ParametricPlot3D .m), the length of 
this curve in three-dimensions is found with arc length. Note that Release must be used with v [ t ] in order 
for it to be evaluated at various values of t in the SpaceCurve command. 

o In Version 2.0, the command Re lease is replaced by the command Evaluate; SpaceCurve is replaced 
by P a r a m e t r i c P l o t 3 D . 

Defines the curve 
v(t>fCos(t\ Sizi(t\ tf 

▼ [ t _ ] = { C o s [ t ] , S i n [ t ] , t } 

Outf53j= 
{Cos [ t ] , S i n [ t ] , t } 

inf54j:= 
« P a r a m e t r i c P l o t 3 D . m 

inf55j:= 
S p a c e C u r v e [ R e l e a s e [ v [ t ] ] . 

{ t , 0 , 8 P i , 8 P i / 2 0 0 } , B o x R a t i o s - > { l , i , 2 } ] 

JOi 

The vector-valued^function v can be graphed with 
the command SpaceCurve 
which is contained in the package 
P a r a m e t r i c P l o t 3 D . m 

Outf55j= 
-Graphics3D-

in[56j:= 
a r c l e n g t h [ > [ t ] , { t , 0 , 2 P i } ] 

Outf56j= 
8.88577 

ΛΚΧΤ/ΜΧΛνΛηΛΚΛΛ WMWebeC 

iiiiiJil The command 
SpaceCurve 
ordy graphs three-
dimensional vectors. 
Hence, 
S e l e a s e [ T [ t ] ] 
must be included so 
that Mathernatica 
first computes ▼[ t ] . 
Otherwise, Mathernatica 
will assime ▼[ t ] 
is a one-dimensional 
vector and notgrcph v. 

Numericalfy computes the arc length of 
the curve parameterized by v(t), 
0 < t < 2ti. 
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Mathematica also includes several typical programming techniques. These include the i f statement and the Do loop. 
Before illustrating these ideas, however, several built-in Mathematica commands must be introduced. These include 
D i v i s o r s [n] which lists all divisors of the integer n, including n, and Drop [ l i s t , - 1 ] which deletes the 
last element of l i s t and returns the resulting list. In the example below, the divisors of 6 are computed with 
D i v i s o r s [ 6 ] . This list is called d iv6 . Next, the last term in d iv6 is removed with Drop [d iv6 , - 1 ] anc 
the resulting list named d i v s . Finally, the sum of the elements of d i v s is found with Apply [Plus , d i v e ] . 
Similar steps will be used in the example which follows. 

infôU:= 
d i v 6 = D i v i s o r s [ 6 ] 

Outf6iJ= 
{1, 2, 3 , 6} 

in[62j:= 
d i v s = D r o p [ d i v 6 . - 1 ] 

Outf62j= 
{1, 2, 3} 

inf63j:= 
Apply[Plus„divs ] 

Outf63j= 
6 

d i v 6 = D i v i s o r s [ 6 ] 
computes a list of all divisors of 6 and 
names the list d i v 6 . 

d i v s = D r o p [ d i v 6 , - i ] 
removes the last element from the 
list d i v 6 and names the resulting 
list d i v s . 

Àpply[Plus .d i v s ] 
computes the sum of the elements of 
the list d i v s . 
Since the sum ofall proper divisors of 6 is 6, 
6 is aperfect number. 
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The calculations previously discussed can be used to find perfect numbers. Recall that a number n is perfect if 
the sum of its divisors (not including n) equals the number n itself. A function p e r f e c t q [n] is defined 
below using the steps illustrated above. Note that there is an i f statement within this function. Syntax for an I f 
statement is I f [ cond i t ion , then , e l s e ] . In the case of the function below, if the sum of the divisors 
is n, then a value of yes is assumed while a no is assumed otherwise. Next, the function p r i n t p [ j ] is 
defined to print a number if it is perfect. Finally, a Do loop is used to find all of the perfect numbers between 1 
and 10,000. Note that the loop Do [ e x p r e s s i o n , { i , imin, imax} ] evaluates e x p r e s s i o n from 
i = imin to i = imax. 

Uersion2Module 
ifif57j:= 

p e r f e c t q [ n _ J : = 
Hodule[ {div3l,divs2,su»n}, 
divsl=D±T±sors[n] ; 
divs2=Drop[diY3l,-l]; 
sumn=Àpply[Plus„dITS 2]; 
If[suin==n,yes,no] 
] 

lnf58j:= 
printp[j_] : = 

If[perfectq[j]==yes,Print[j]] 

inf60j:= T 
Do[printp[i],{1,1,10000}] J 

6 
28 
496 
8128 

KS 

3ioo% Η|Φ| t i i i i i i i ^ 

In Version Z0, the command Module 
has replaced the command B l o c k 
(although Version Z0 supports the 
command B l o c k ) 
The fonction p e r f e c t q [ n ] 

\ first computes a list of aä divisors 
ofn, then removes the last element 

\from the äst (which is n), computes 
the sum of the list, and if the sum is 
n, prints "yes"; if not, prints "no". 

The function p r i n t p [ j ] 
computes p e r f e c t q [ j ] 
and prints) if) is a perfect number 
and does nothing if) is not a perfect 
number. 
Confutes p r i n t p [ i 1 

\fori=l,... ,10000. We conclude that 
the only perfect numbers between 
I and ÎOOOOare 6,28,496,and8128. 

Π Example: 

The command s o l i d r e v was used to create the solids of revolution found in Chapters 3 and 6. A brief 
description of s o l i d r e v is given below. Notice that the arguments of this command include the function f, the 
domain { a , b } , the axis about which f is to be revolved (either x a x i s or yaxis) , and the s o l i d option 
which graphs the resulting solid of revolution. 

solidrev : : usage= " solidrev [ f, { a, b } , axis ] 
yields a three-dimensional meshed 
image of the function f[x] defined 
on the domain [a,b] revolved about 
the xaxis or yaxis .solidrev[f, {a,b} , axis, solid] 
yields a solid surface. 
The interval [a,b] is automatically 
divided into 10 subintervals. This 
may be changed by substituting {a,b,n} for {a,b} 
where n is the desired number of subintervals." 
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solidrev[f_, { a_, b_, m_ : Automat ic} ,ax i s_ , 11_: Automatic] : = 
Block[ 

{ n , l l , x a x i s , y a x i s , u n , l i s t l , s , t , l i s t 2 , q , l i s t 4 , p o l y } , 
xaxis=0; 
yaxis=l; 
uu=axis; 

If [m=Automatic, n=10, n=m] ; 

listl=Table[{x,f[x]},{x,a,b, (b-a)/n}] // N; 

list2=If [uu=0, 
s[{x_,y_}]:=Table[{x ,y sincostab[[i,2]], 

y sincostab[[i,l]]},{i,1,Length[sincostab]}]; 
Map[s, listl], 

tΗχ_/ν_Π:=Table[{x sincostab[[i,1]], 
x sincostab[[i,2]],y},{i,1,Length[sincostab]}]; 

Map[t, listl] 
]; 

un[k_] :=Partition[k,2,l]; 

list3=Map[un,list2]; 

q[i_,j_]:=Join[list3[[i,j]],Reverse[list3[[i+1,j]]]]; 

list4=Flatten[Table[q[i,j],{j,1,Length[list3[[1]]]}, 
{i,1,Length[list3]-l}],l]; 

poly=If[ll=Automatic, Map [Line, list4], Map [Polygon, list4] ] ; 

Show[Graphics3D[poly]] 
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D Example of solidrev: 

An ilUustration of the use of s o l i d r e v is given below. A function f is first defined and plotted. 

Rppendi» 

Clear[£ ] 
f [ * _ ] : = E x p [ - ( x - 3 ) A 2 C o s [ x - 3 ] ~ 2 - < x - i ) A 2 C o s [ x - i ] A 2 ] ; 
P l o t [ f [ x ] , { x , 0 , 4 } ] 

0.8 

0 .64 

0.4 

0.2 

\Q\ 

iiKiftVbVfloi 

Defines f(x) = Exp[-(x - 3)2Cos2(x - 3) - (x - l)2Cos2(x -1)]| 
and graphs f on the interval [0,4]. 

-Graph ics -

ΉΦΏ 

This function is then revolved about the x-axis with s o l i d r e v . Note the manner in which the arguments are 
entered in s o l i d r e v . 

\inf4]:= 11 | | | 
n3olidzazis=solidrev[£, {0, 4, 40} , zazis, solid] J |jjjjjj| 

\Outf4j= Ί I I 
-Graphi c s 3D - J J |{ j j j{ jl 
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The same function is then revolved about the y-axis. 

n s o l ± d y a x i s = 3 o l i d r e v [ f , { 0 , 4 , 3 0 } , y a x i s l 

Outf5j= 
-Graphics3D-

Some other graphics which were illustrated earlier in Mathematica By Example without explanation 
occurred in the section on Lagrange multipliers. These graphics were produced with the function 
lagrangem below. This function graphs the curves f and g for values of x over the interval 
xmin to xmax by evaluating each function at n points and joining the points obtained with line 
segments. Graphs of this type are useful in giving a geometrical impression of where the optimum 
values of f occur subject to the constraint g. 
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D Example: 

lagrangem [ { f_, g_, cc_ : 0 }, 
{xmin_,xmax_,n_:15},u_: {1,1, .4}] : = 

Block[{values,graphf,graphg,y,ycoords,t1,t2,coords,ff, 
fpoints}, 

values=Table[N[xmin +i(xmax-xmin)/n],{i,0,n}]; 

y[kj :=NRoots[g[k,y]=0,y]; 

ycoords=Map [y, values] ; 

tl=Table [ {values [ [i]],ycoords [ [1,1,2] ] ,cc}, {i, l,n+l}] ; 

t2=Table [ {values [ [i] ], ycoords [ [i,2,2]] ,cc}, {i,l,n+l}] ; 

graphgl=Graphics3D [ {GrayLevel [. 3], Line [tl] } ] ; 

graphg2=Graphics3D[{GrayLevel[.3],Line[t2]}]; 

ff[{a_,b_,c_}]: = {a,b,f[a,b]}; 

fpointsl=Map[ff,tl]; 

f points2=Map[ff,t2]; 

graphfl=Graphics3D[Line[£pointsi]]; 

graphf2=Graphics3D[Line[f points2]]; 

Show [graphf 1, graphf 2, graphgl, graphg2, Axes->Automatic, 

Boxed->False,BoxRatios->u,ViewPoint->{3.880,0.950,2.220}] 

] 

644 



Appendix 

G Example of lagrangem: 

The function lagrangem is illustrated below with the two functions, f and g. This is done over the interval from 
-2 to 2 using 100 points. Notice where the maximum and minimum values of the function f occur. 

tnfSJ:» 
f [ * _ . y _ l : = E x p [ S i n [ x l A 2 + C o s [ y l A 2 1 
g [ x _ . y _ ] : = x ~ 2 / 4 + y A 2 / 9 - l 

l a g r a n g e m [ { £ , g } , { - 2 , 2 , 1 0 0 ) 1 J 

Outf!!j= 
-Graphics3D- ]J 

βββ''',''''β''β5Γ>ΕΤ"™™ΤϊΦ:':":·:':':':':':·&·:':':·;'&^^·& JK. I 

iÉÎÉiÉÎii*A«iÉÎtÎÉÎ«iÉÎfc«ÉWMÉÎÉak*** 

Begin by defining 

ffey) = eS*2(x )+Co î2 ( i r ) and 

x2 y2 

g(x,y) = T + y - i . 
l a g rang em[{f, g ) , {- 2 ,2,10 0}] 

grcphs and connects 

tke points (x,y,Q) 
satisfying g(x,y) = 0 with 

line segments and 

then graphs and connects 

tke set of points (x,y,f(x,y)) 
satisfying g(x,y) = 0. 

645 



Index 

(o) implies obsolete in Version 2.0; 
(2) implies applicable only to Version 2.0. 

&& (logical connective "and"), 394 
%, 38 
/., 2 7 
//, 37 
3D ViewPoint Selector, 524 
?, 594-599 
??, 601 
@, 37 

Abs, 20 
absolute value, 20 
Action (Menu) (2), 625 
Action (Menu), 618 
Action Settings, 613-614 
Airy's equation, 379 
Algebra folder, 423 
amortization 

annual interest paid, 223 
annual principle paid, 223 
current interest paid, 222 
current principle paid, 221 
monthly payments, 219 
total interest paid, 220 
unpaid balance, 221 

Analytic (2), 90 
Animation Settings, 240,615 
annihilator, 356 
annuities 

future value, 214 
deferred, 217 
present value, 216 

annuity due, 214,215 
Apart, 27,29 
AppendColumns, 447 
AppendRows, 447 
Apply, 204 
applying operations to lists, 204, 209 
approximation of functions 

with polynomials (2), 559-564 
Approximations.m (2), 544-548 
arc length, 133,135 
ArcCos, 25 
ArcCosh, 25 
ArcCot, 25 
ArcCoth, 25 
ArcCsc, 25 
ArcSec, 25 
ArcSech, 25 
ArcSin, 25 
ArcSinh, 25 
ArcTan, 25 

ArcTanh, 25 
area between two curves, 130-132 
arithmetic operations, 16 
Array, 262 
AspectRatio, 54,229 
Axes (Plot3D option), 309 
Axes, 54 
AxesLabel, 54 
AxesLabel, 63 
AxesOrigin (2), 58 

B 
Background (2), 68 
BarChart, 504-506 
Bessel functions 

of the first kind, 322,402 
of the second kind, 402 
zeros of, 407 

Bessel's equation, 377, 378 
BesselJ, 8,322,402 
BesselY, 402 
Binomial, 481-483 
Block, 576 
Boxed (Plot3D option), 309 

Calculus folder, 470 
calculus 

differential, 92-122 
integral, 123-146 
multi-variable, 147-189 

Cancel, 27,29 
Cartesian coordinates,303 
CartesianMap (2), 539, 540 
CatalanNumber,485 
Cell (Menu), 616, 617 
cell 

active, 6 
changing style, 9 
graphics, 6 
inactive, 6 
input, 4 
output, 6 
text, 6 

characteristic polynomial 
of a matrix, 282 

Chebyshev polynomials, 461 
Cholesky.m, 435-441 
CholeskyDecomposition, 435 
Chop, 173, 554 
Coefficient, 357 
CombinatorialFunctions.m, 481-489 

647 

A 

C 



Index 

(o) implies obsolete in Version 2.0; 
(2) implies applicable only to Version 2.0. 

CombinatorialSimplification.m, 
490-493 

combining fractions, 26 
complex numbers 

real and imaginary parts 427-435 
ComplexExpand (2), 43 
CompIexMap.m (2), 539-542 
ComplexToTrig, 388, 429 
Compose (o), 39 
Composition (2), 39,43 
composition of functions, 39 
computing limits, 87 
Confidencelntervals.m, 586-588 
ConfidenceLevel, 586 
conic sections 

plotting of (2), 530-532 
conservative vector field, 303 
ConstrainedMax, 288 
ConstrainedMin, 288 
continuous distribution 

mean value of, 571 
variance of, 571 

ContinuousDistributions.m, 571-578 
ContourPIot, 119-124, 147,148,150,152, 153 
ContourPIot, options (2) 

Contours,121, 122, 152, 153 
ContourShading, 120-122, 150-153 
ContourSmoothing, 120-122, 153 
PlotPoints, 121, 122 

coordinate systems (built-in), 304 
Cos, 8, 20, 23 
Cot, 20 
counting distinct elements 

of a list, 575-577 
creating a list of functions, 231 
creating a nested list, 193 
creating lists, 192 
critical points, 99 

classification of, 160-166 
locating, 98-103 

Cross.m, 442 
Csc, 20 
Cube, 509 
curl of a vector field, 306 
Curl, 307 
cursor shapes, 10 
Cylindrical coordinates, 303 

D 
D, 92-96, 154-156 
Data Analysis folder, 571-593 
DefaultFont (2), 63 

Defaults Window, 621 
defining 

inequalities, 289 
matrices, 262 
piecewise functions, 251 
series recursively, 257 
vector-valued functions, 205 
vectors, 266 

definition of replacement rules, 431 
Denominator, 27 
Density, 571, 572 
Derivative, 156-159 
derivatives 

computing, 92-96 
higher, 97 
numerical (2), 555-557 
partial, 154-155 

DescriptiveStatistics.m, 571-578 
Det, 267 
determining the area of a triangle, 442 
difference quotient, 88,89 
differential equations, see 

ordinary differential equations 
partial differential equations 

differential operator, 356 
Dimensions, 452, 453 
Direction (2), 91 
DiscreteMath folder, 481 
DispersionReport, 575 
display clock, 280 
DisplayFunction, 52,66, 242 
displaying multiple graphics, 51,60, 61,62 
distance formula, 113,114 
distance from a point to a line, 111,112, 444 
distance from a point 

to a subspace, 457, 458 
distribution functions available, 571 
Div, 304 
Divergence Theorem, 314, 315 
divergence of a vector field, 303 
Do loop, 258 
Dodecahedron, 509 
dot product of vectors, 310 
DSolve (2), 362, 371, 377-379 
DSolve, 336 
Dt, 114-116,350 
dual linear programming problem, 290 

648 



Index 

(o) implies obsolete in Version 2.0; 
(2) implies applicable only to Version 2.0. 

E 
E, 19,21 
Edit (Menu) (2), 622 
Edit (Menu), 612-615 
edit, 12 
Eigenvalues, 270 
Eigenvectors, 272 
equations 

approximate solutions, 76,81 
exact solutions, 71-74 
graphing, 118 

equilibrium points, 385 
errors, common , 627-633 
Euler's constant, EulerGamma, 426 
Evaluate (2), 231 
evaluating a list of functions, 200 
evaluating expressions, 28,29 
evaluating functions, 30 
evaluation of function at values 

of list, 207, 208 
Exp, 20,21 
Expand, 6,26 
Expand, Trig->True (2), 42, 599 
Exponent, 357 
exponential function, 20,21 
exponents, 17 
expressions, graphing, 48 
extracting elements of lists, 233-236 
extracting elements of matrices, 266 

Factor, 26,28 
Factor, Trig option (2), 599 
factoring polynomials, 26,28 
falling body problem, 341-344 
Fibonacci sequence, 

application of, 488 
Fibonacci, 486, 487 
file, 11 
FindRoot, 76,81, 102-105, 132,134 
First, 204 
Fit, 241-248 
FittingPolynomial (2), 559 
Flatten, 400 
Floor, 572, 573 
flux, 314 
FontForm (2), 63 
Fourier series, 249-250, 477-480 
FourierTransform.m (2), 250, 477-480 
FourierTrigSeries (2), 477 

Frame (2), 54,58 
Framed (o), 54 
FrameTicks (2), 59 
FromCycles, 495, 496 
FullReport, 580 
function@list, 207, 208 
functions 

composing, 39 
defining, 30 
graphing, 48 
periodic extension of, 479 
plotting complex-valued (2), 539-542 
recursive definition of, 486 

G 
gamma function, 556 
Gamma[x], 556 
GaussianQuadrature.m (2), 549-552 
GaussianQuadratureWeights (2), 549 
genus of a surface, 522 
GoldenRatio, 485 
GosperSum (o), 424 
GosperSum.m (o), 423 
Grad, 304 
gradient of a scalar function, 303 
GramSchmidt, 455-459 
graph theory application, 448-450 
Graphics, 61,62 
Graphics folder, 497-542 
graphics, displaying multiple, 60,61,62 
Graphics.m, 497-508 
GraphicsArray, 60,66, 169,416, 420-421 
graphing 

equations, 118 
functions, 48 
functions and derivatives, 95, 113 
implicit functions, 117-122, 529-531 
options, 68,54 
options, examples, 55 
parametric equations, 228-230 
multiple, 51 
piecewise defined 

functions, 67,68 
Version 2.0, 57 

graphs 
locating intersection points, 79 

Green's Theorem, 312 
GridLines (2), 57 
Group Cells, 616, 617 
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H 
Helix, 520, 521 
Help (2), 606-608 
Help file, 604, 605 
help 

commands, 594-608 
completing a command, 602, 603 

HermiteH, 194 
higher order derivatives, 96,97 
HilbertMatrix, 451 
Hofstadter function, 488 
Hofstadter, 488, 489 
HypothesisTests.m, 580-585 

I, 19,21 
Icosahedron, 509 
IdentityMatrix, 286 
Im, 427 
implicit differentiation, 114-118 
ImplicitPlot (2), 117, 118-120, 235, 529-531 
ImplicitPlot.m (2), 529-532 
Infinity, 87,92 
inflection points, locating, 98-103 
initm file, 609-611 
initializing functions, 610, 611 
inner product of space 

of continuous functions, 458 
InnerProduct 

(GramSchmidt Option), 458,459, 461, 462 
InputForm (2), 225 
integral calculus, 123-136 
integral tables, loading, 123 
integrals 

approximation, 129 
definite (2), 129 
definite, 125-129 
indefinite, 124,125 
multiple, 176-184 
numerical approximation by 

Gaussian Quadrature (2), 549-552 
IntegralTables.m, 125 
Integrate (double integrals), 176 
Integrate, 123-128 
interest compounded daily, 210 
InterpolatingFunction, 414,415 

plotting of, 415 
interpolation with a rational 

function (2), 544-548 
Interrupt, 618 

intersection points of graphs, 79 
inverse trigonometric functions, 24 
Inverse, 269 
InverseLaplaceTransform (2), 471 
investments, 224-227 

Jaccobian matrix, 390 

K 
Kernel Help (2), 606-608 

Lagrange multipliers 
(optimization problems), 170-176 

LaguerreL, 202 
LaplaceTransform (2), 471 
LaplaceTransform.m (2), 471-476 
laplacian of a scalar field, 303 
Laplacian, 304 
Last, 204 
Legendre polynomials, 459,460 
Legendre's equation, 377, 378 
length of vector, 311, 317-318 
Length, 204 
Limit (2), 90, 91 
Limit, 86-89 
limits 

computation of, 86-91 
numerical approximation of (2), 553-558 
one-sided, 91,92 

Linear Algebra folder, 435 
linear programming, 288-302 
LinearProgramming, 295 
LinearRegression.m, 589-593 
LinearSoIve, 279,451 
list, 192 
list//function, 207, 208 
ListPlot, 198,202 
Log, 20,21,22 
Logical Expand, 145,149, 394 
Long Menu (2), 622 

M 
Map, 200, 201 
matrix 

multiplication, 
powers of matrices, 274, 275 

operations, 268 
adjacency, 448 
complex conjugate transpose, 435 
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condition number of, 452,453 
Hermetian, 435 
Hubert, 451 
norm of, 452, 453 
positive definite, 435 
symmetric, 435 
well-conditioned, 452,453 

MatrixForm, 263 
MatrixManipuIation.m, 447-454 
MatrixPower, 275, 276, 450 
maxima and minima, 109-114 
maximization/minimization (calculus) 

problems, 107-110 
Mean, 571, 572 
MeanCI, 586 
MeanDeviation, 574 
MeanDifferenceTest, 582 
MeanDifferenceTest, 582 
MeanTest, 580 
Median, 574 
MedianDeviation, 574 
Menu (2), 622-626 
Menu, 612-626 
menu, 11 
minimal polynomial of a matrix, 282 
MiniMaxApproximation (2), 547 
Mod, 37,44, 207 
Module (2), 576 
MoebiusStrip, 513, 518, 519 
multi-variable calculus, 147-189 
Multinomial, 481-483 

N 
N, 6,18,22 
naming graphs, 50 
naming objects, 28 
natural logarithm, 20 
ND (2), 555-557 
NDSolve (2), 396-397, 414-415, 417-419 
Nest, 40 
NFourierTrigSeries (2), 477, 479 
NIntegrate (double integrals), 176 
NIntegrate, 127,129 
NLimit.m (2), 553-558 
Normal, 140,141, 186,395 
NormalDistribution, 572 
Normalized 

(GramSchmidt Option), 459 
notebook, 4 
NRoots, 76,100, 101,102, 130 
NSolve (2), 78,103 
NSum, 426 

Numerator, 27 
Numerical Math folder (2), 543 
numerical 

differentiation (2), 555-557 
integration, 129 
limits (2), 553-555 
solutions of differential 

equations (2), 396-397,414-415,417-419 

o 
objective function, 298 
Octahedron, 510 
operation@@list, 209 
Options, 600 
ordinary differential equations 

Cauchy-Euler, 369-371 
characteristic equation, 363 
equilibrium points of, 385, 389-390 
exact, 345-354 
finite element method 

of solution of, 465-469 
first-order linear (DSolve), 336-344 
initial value problem, 366 
initial value system (DSolve), 380-381 
linear n-th order 

homogeneous, 363 
linearization of 

nonlinear systems, 385, 389-391 
numerical solution of (2), 414-416 
numerical solution of systems 

of (2), 417-421 
power series solutions, 143-146 
Runge-Kutta approximate 

solution to, 565-570 
series solutions, 392-401 
solution by Laplace 

transform (2), 473-476 
systems of linear 

(DSolve), 380-385 
undetermined coefficients, 355-362 
variation of parameters, 372-376 

Orthogonalization.m, 455-463 
Out[n], 38 
output, Version 2.0, 41 

p 
p-value, 580 
Packages folder, 422 
ParametricPIot, 229,476 
ParametricPlot3D, 413,523 
ParametricPlot3D.m, 523-527 
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partial differential equations 
series solutions to, 402-413 

partial fraction decomposition, 27 
pendulum equation, nonlinear, 414-416 
PermutationQ, 494 
Permutations.m, 494-496 
Pi, 8,19,21 
piecewise defined functions, 67,68 
PieChart, 507-508 
Plot, 8,48 
Plot options, 54 

PlotRange, 141 
PlotRange, 545 
PlotStyle, 48 
RGBColor, 48 

Plot3D, 8,147, 149,151 
Plot3D options 

Axes, 166 
Boxed, 165 
BoxRatios, 165 
Display Function, 169 

Mesh, 165 
PlotLabel, 165 
PlotPoints, 149 
Shading, 149 
Ticks, 165 

PlotField.m (2), 533-534 
PlotField3D.m (2), 535-538 
PlotGradientField (2), 534 
PlotGradientField3D (2), 535, 537 
Plotjoined (ListPlot option), 202 
PlotLabel, 54,59, 63 
PIotODESolution, 569 
PlotPoints (Plot3D option), 309,153 
PlotRange, 54,229 
PlotStyle, 8,53 
plotting a list of functions, 199,231 
plotting tangent line to curve, 237-239 
PlotVectorField (2), 533 
PlotVectorField3D (2), 536 
PolarListPlot, 501-503 
PolarMap (2), 540-542 
PolarPlot, 497-500 
PolyGamma, 556 
Polyhedra.m, 509-512 
Polyhedron, 509 
polynomial approximation 

with Legendre polynomials, 462,463 
PolynomialFit (2), 559 
PolynomialFit.m (2), 559-564 
PolynomialMod (2), 46 
power series, 137-146 
power series of a function of more 

than one variable, 185-189 
power series, remainder term of, 141-143 
Preferences (2), 623, 624 
Prime, 45 
prime notation, 94 
Prime, 197 
Print (2), 225 
Projection, 457 

Q 
quadratic equations 

(quadratic form), 440,441 
Quartiles, 574 

R 
Random, 573 
RandomPermutation, 495, 496 
Rationalinterpolation (2), 544 
Re, 427 
Rectangle (2), 61,62 
references, 634 
Regress, 589, 593 
Relm.m, 427-435 
Release, 8,199, 231 
resizing graphics cell, 505 
retrieving unnamed output, 38 
RotateShape, 518, 519, 521 
RungeKutta, 565 
RungeKutta.m, 565-570 

saving output files, 332-334 
scalar function, 303 
Sec, 20 
second-derivative 

test for extrema, 160 
Series, 137,139, 185,393 
series, truncation of, 395 
SetCoordinates[System], 303 
Settings 

Action, 613, 614 
Animation, 615 
Startup, 612, 613 

Shading (Plot3D option), 153,309 
Shapes.m, 513-522 
Short, 573 
Short Menu (2), 622 
Short, 200 
Show, 51,61,62 
Simplify, 32,88,90 
simultaneous plots with Show, 243, 245, 248 
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Sin, 8,20, 23 
SingularValues, 453, 454 
solidrev, 413 
solids of revolution, 134-136 
Solve, 71-75,80 
solving equations, 71,76 
solving systems of 

linear equations, 277-282 
solving systems with 

LinearSolve[A,b], 279, 282 
solving systems with Solve, 277, 278, 281 
Sort, 573 
SpaceCurve (o), 524-527 
Sphere, 515-517 
Spherical coordinates, 303 
spring motion, 380-385 
Sqrt, 18 
Stack Windows, 619 
Startup Settings, 612, 613 
Statistics folder (2), 579 
statistics 

confidence intervals, 586-588 
ConfidenceLevel, 586 
Density, 572 
DispersionReport, 575 
hypothesis tests, 580-585 
KnownStandardDeviation, 582, 587 
mean, 571-575 
Mean, 572 
MeanCI, 586 
MeanDifferenceTest, 582 
MeanTest, 580 
p-value, 580 
Quartiles, 574 
variance, 571-575 
Variance, 572 
VarianceCI, 588 
VarianceTest, 585 

Stellate, 511,512 
Stoke's Theorem, 316-321 
Style (Menu) (2), 626 
Style (Menu), 9,12, 618 
Styles Window, 621 
Subfactorial, 484 
sums, 

closed form expressions of, 424-426 
SymbolicSum (2), 425 
SymbolicSum.m (2), 224, 225, 423 

T 
Table, 8,45, 192 
TableForm, 45,230 

Tan, 20,23 
tangent lines, 104-106 

graphing, 106,107, 108 
horizontal, 101 

tangent planes, 167-169 
Taylor polynomials, 142 
Taylor remainder, 144 
test equality, 331,347 
Tetrahedron, 510 
Ticks, 54,228 
Tile Windows Tall, 620 
Tile Windows Wide, 620 
ToCycles, 495, 496 
Together, 26 
Torus, 514, 522 
total differential, 350 
trace of a matrix, 282 
TranslateShape, 518, 519, 522 
transportation problem, 297-302 
Transpose, 269,436, 437,439, 441 
Tridiagonal.m, 464-469 
TridiagonalSolve, 464 
TrigCanonical (o), 599 
TrigExpand (o), 320, 360 
trigonometric functions, 20,23 
Trigonometry.m, 387,429 
TrigReduce, 432 

u 
unit normal vector, 305, 317 
user-defined functions, 30 

Van der Pol's equation , 417-421 
Variables, 357 
Variance, 571, 572 
VarianceCI, 588 
VarianceTest, 585 
vector calculus, 303-321 
vector-valued functions, 34, 35 
VectorAnalysis.m, 303 
vectors 

cross product of, 442 
Gram-Schmidt orthogonalization 

of basis, 455-459 
length of, 443, 457 
projection onto subspace, 456 

volume, 136 
volume, 

computation with multiple integral, 180-184 
volumes of solids of revolution, 134-136 
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w 
wave equation 

(with initial and boundary conditions), 403-404 
wave equation, solution to, 408-413 
Window (Menu) (2), 624 
Window (Menu), 619, 620 
window, 12 
WireFrame, 516 
Wronskian matrix, 372 
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