Mathematica by Example

Martha L. Abell

James P. Braselton

Mathematica by Example

Martha L. Abell
Department of Mathematics and Computer Science
Georgia Southern University
Statesboro, Georgia

James P. Braselton
Department of Mathematics and Computer Science
Georgia Southern University
Statesboro, Georgia

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers

Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper. ()
Copyright © 1992 by Academic Press, Inc.
All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Mathematica is a registered trademark of Wolfram Research, Inc. Macintosh is a registered trademark of Apple Computer, Inc.
Windows is a registered trademark of Microsoft Corporation.

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, CA 92101
United Kingdom Edition published by ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1 7DX

LCCCN: 91-58715
ISBN: 0-12-041540-2

Printed in the United States of America
$92939495 \quad 987654321$

PREFACE

Mathematica by Example is intended to bridge the gap which has existed between the very elementary handbooks available on Mathematica and those reference books written for the more advanced Mathematica users. This book is an extension of a manuscript which was developed to quickly introduce enough Mathematica commands to a group of students at Georgia Southern University that they could apply Mathematica towards the solution of nonlinear ordinary differential equations. In addition to these most basic commands, these students were exposed to the vast uses of lists in Mathematica. Having worked through this material, these students were successfully able to take advantage of the capabilities of Mathematica in solving problems of interest to our class.

Mathematica by Example is an appropriate reference book for readers of all levels of Mathematica experience. It introduces the very basic commands and includes examples of applications of these commands. It also includes commands useful in more advanced areas such as ordinary and partial differential equations. In all cases, however, examples follow the introduction of new commands. Of particular note are the sections covering Mathematica Packages (Chapters 7,8, and 9), because the commands covered in these chapters are absent from most Mathematica reference books. The material covered in this book applies to all versions of Mathematica as well with special notes concerning those commands available only in Version 2.0. Other differences in the various versions of Mathematica are also noted.

Of course, appreciation must be expressed to those who assisted in this project. We would like to thank our department head Arthur Sparks for his encouragement and moral support and for being the instigator of the Computer Calculus Project which initiated the idea of writing a book like Mathematica by Example. We would also like to thank Prof. William F. Ames for suggesting that we publish our work and for helping us contact the appropriate people at Academic Press. We would like to express appreciation to our editor, Charles B. Glaser, and our production manager, Simone Payment, for providing a pleasant environment in which to work. We would also like to thank our colleagues for taking the time to review our manuscript as it was being prepared for publication. We appreciated their helpful comments. Finally, we would like to thank those close to us for enduring with us the pressures of meeting a deadline and for graciously accepting our demanding work schedules. We certainly could not have completed this task without your care and understanding.

M. L. Abell

J. P. Braselton

Chapter 1 Getting Started

- Mathematica, first released in 1988 by Wolfram Research, Inc., is a system for doing mathematics on a computer. It combines symbolic manipulation, numerical mathematics, outstanding graphics, and a sophisticated programming language. Because of its versatility, Mathematica has established itself as the computer algebra system of choice for many computer users. Overall, Mathematica is the most powerful and most widely used program of this type. Among the over 100,000 users of Mathematica, 28% are engineers, 21% are computer scientists, 20% are physical scientists, 12% are mathematical scientists, and 12% are business, social, and life scientists. Two-thirds of the users are in industry and government with a small (8\%) but growing number of student usts. However, due to its special nature and sophistication, beginning users need to be aware of the special syntax required to make Mathematica perform in the way intended.
- The purpose of this text is to serve as a guide to beginning users of Mathematica and users who do not intend to take advantage of the more specialized applications of Mathematica. The reader will find that calculations and sequences of calculations most frequently used by beginning users are discussed in detail along with many typical examples. We hope that Mathematica by Example will serve as a valuable tool to the beginning user of Mathematica.

图 A Note Regarding Different Versions of Mathematica

For the most part, Mathematica by Example was created with Version 1.2 of Mathematica. With the release of Version 2.0 of Mathematica, several commands from earlier versions of Mathematica have been made obsolete. In addition, Version 2.0 incorporates many features not available in Version 1.2. Mathematica by Example adopts the following conventions:

Sections that discuss features of Yersion 1.2 will begin with symbols like $\square \square$; unless otherwise noted, these commands are supported under Yersion 2.0.
Sections that discuss the features of Yersion 2.0 will begin with symbols like 0 . These sections ane NOT pertinent to Version 1.2.

1.1 Macintosh Basics

Since Mathematica by Example was created using Macintosh computers, we will quickly review several of the fundamental Macintosh operations common to all application programs for the Macintosh, in particular to Mathematica. However, this book is not meant to be an introduction to the Macintosh and the beginning user completely unfamiliar with the Macintosh operating system should familiarize himself with the Macintosh by completing the Macintosh Tour and consulting the Macintosh_Reference. The material that appears in Mathematica by Example should be useful to anyone who uses Mathematica in a windows environment. Non-Macintosh users may either want to quickly read Chapter 1 or proceed directly to Chapter 2, provided they are familiar with their computer.

After the Mathematica program has been properly installed, a user can access Mathematica by first clicking twice on the hard disk icon located in the upper right hand comer of the computer screen. The following window will appear:

File Edit Diew Special
 Open your hord disk by clicking twice on the icon

The Mathematica f folder can be opened by clicking twice on its icon. After opening the Mathematica f folder, start Mathematica by double clicking on the icon labeled Mathematica. These steps are illustrated below:

File Edit Diew Special

HardDisk			 HardDisk		
3 items	52,779K in disk	25,958K available			
System Folder Mathematica f \square Other Stuff Click twice on the Mothematica icon to stomt Mathematica					
8 items	52,779K in disk		25,958K available		
¢					$\sqrt{\square}$

After double-clicking on the Mathematica icon, an empty Mathematica document appears; the Mathematica session can be initiated by typing anything. When you begin typing, Mathematica automatically creates an input cell for you. If an input cell contains a Mathematica command, the command is evaluated by pressing ENTER or Shift-Return.

In general, the ENTER key and RETURN key are not the same. The ENTER key is used to evaluate Mathematica commands; the RETURN key gives a new line.

When the cursor is horizontcl ond the mouse is clicked once, a black line oppeors ocross the document window:

A horizontal black line appears after clicking the horizontal cursor once. Additional typing causes Mathematica to replace this line with a new input cell containing the most recently typed information.

1.2 Introduction to the Basic Types of Cells, Cursor Shapes, and Evaluating Commands

In the following example, $2+3$ is a Mathematica command. The input cell containing $\mathbf{2 + 3}$ can be evaluated by pressing ENTER after the command has been typed.

Do NOT type " $\operatorname{In}(1)^{-1}$ and "Out(I)". Mathematica cutomatically numbers the calculations for you.

Inactive cells are cells that cannot be evaluated by Mathematica. Inactive cells include output cells, graphics cells, and text cells. Output cells are cells that contain the results of calculations performed by Mathematica; graphics cells are cells that contain two- or three-dimensional graphics produced by Mathematica; and text cells are cells that contain explanations or other written material that cannot be evaluated by Mathematica.

To verify that you are able to evaluate input cells correctly, carefully type and ENTER each of the following commands:

Notice that every Mathematica command begins with capital letters and the argument is enclosed by square brackets " []".

Do NOT type In() or Out(); Methematica cutomatically keeps track of the sequence of performed calculations for you.

* File Eint Cell Graph Find Action Style Window
 $10 / / 5 / 1=$
Expand[(x^2-2x+Y-Y^2)^3]
out/3/=
$-8 x^{3}+12 x^{4}-6 x^{5}+x^{6}+$
$12 x^{2} y-12 x^{3} y+$
$3 x^{4} y-6 x y^{2}-9 x^{2} y^{2}+$
$12 x^{3} y^{2}-3 x^{4} y^{2}+y^{3}+$
$12 x y^{3}-6 x^{2} y^{3}-3 y^{4}-$
$6 x y^{4}+3 x^{2} y^{4}+3 y^{5}-y^{6}$

The arrow " $->$ " in the following example is obtained by typing the minus key " - " followed by the greater than key ">".

File Edit Cell Graph Find fiction Style Window

Be sure to type each command EXACTLY as it appears. In particular, pay close attention to capital letters, square brackets, and braces. To obtain a new line within a cell, press RETURN; to evaluate a Mathematica command, or input, press ENTER.

Plot3D[Sin[x]Cos[Y].

$\{x,-P i, P i\},\{T,-P i, P i\}]$
grophs the function
$f(x, y)=\operatorname{Sin}(x) \operatorname{Cos}(y)$ on the interval
$[-\pi, \pi] \times[-\pi, \pi]$.

BesselJ [$\mathbf{x}, \mathbf{n}]$ denotes the Bessel function of the first kind,
$J_{I}(x)=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!\Gamma(1+j+n)}\left(\frac{x}{2}\right)^{2 j+n}$ where
$\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ is the Gomma function
tablei=Table[BesselJ[x,n].
\{n, 1, 6\}]:
table2=Table[GrapLeqel[j/10] \{j,0.5\}]:
Plot[Release[tablei].
\{x,0.8\}, PlotStyle-s
table2]
creates and grophs, in different shodes of gray, α toble of Bessel functions of the first kind
This excomple shows that several Mathematica commonds con be combined into a single input cell cond executed
Remember: To execute a commord, press ENTER; To obtain a new line, press RETURN.

Often when using a notebook, users need to convert active cells to inactive cells. This may be accomplished as follows:

- To conyert Active Cells to Inactive Cells:

1) Use the mouse to click on the cell bracket of the cell to be modified. The cell bracket will become highlighted.
2) Go to Style and select Cell Style.
3) Use the mouse and cursor to choose the desired cell style.

Notice how the cells from the first example have been modified; the Title Cell is highlighted.

Chapter 1 Getting Started

As the cursor is moved within a Mathematica notebook, the cursor changes shape. The shape depends on whether (a) the cursor is within an active or inactive cell or (b) the cursor is between two cells.

Cersor Sheppes:

When you click within a text cell,
the cursor is verticoh You con then type within the text cell
This is a text cell 1]
\downarrow

1.3 Introduction to the Mathematica Menu

After Mathematica has started, the Mathematica Menu appears at the top of the screen. The purpose of this section is to introduce the most frequently used operations from the Menu. The Menu will be described in more detail in Chapter 10.

- The Menu discussed here is as it appears in Version 1.2. The Version 2.0 Menu is somewhat different from the Version 1.2 Menu. For a discussion of the Version 2.0 Menu, see Chapter 10.

To use the Menu, use the mouse to move the cursor to either File, Edit, Cell, Graph, Find, Action, Style, or Шindow. We briefly describe several of the features available under File, Edit, Style, and Window.

Use the mouse to move the cursor to FILE in order to create a new Mathematica notebook, Open an existing Mathematica notebook, Save changes to a notebook, Print a notebook, or Quit Mathematica.

File

New Creatss a xew Mathematica Natebook	
Saue Saves (3xt does rat clase) te opex Mathematica Notedoak	
Saue Ps...	
Saue Rs Other..:	
Show Page Breaks	Maris where page Breaks will occur
Show Keywords	
Show Names	
Page Setup... Use to........................ify type ofprixter axdpaper used	
Printing Options...	USE to meadify meargies axdpage rexmbering
Print... Prixt the opex Mathematica Natsbook	
Print Selection... Prixts גighlighted cells	
Quit Saves changes to Markematica Matabook thex quit Mathematica	

To take advantage of the standand Macintosh editing commands (Cut, Copy, Paste) select EDIT. One can also divide a cell into two cells or merge two (or more) cells of the same type into a single cell. The various Mathematica settings will be discussed later.

Edit

Undo/Can't Undo	Higktights all cells le cellinte two cells kighted cells of the saxse tj
Cut	
Copy	
Paste	
Clear	
Paste and Discard Convert Clipboard	
Select fill Cells	
Nesting	
Divide Cell Divides asi	
Settings	
Settings	

To modify highlighted text or cells, use the mouse to move the cursor to STYLE. Fonts, faces, sizes, color and cell style can be modified.

WINDOW lists all open notebooks, several options for vie wing several open notebooks simultaneously, and contains lists of the various Mathematica defaults and styles which will be discussed in detail later.

Style

Font Use to change highciohted textto «ijfievextfaxt	
Face Converthighlighted taxtto ithics, bold, ar wxderlise	
Size Chaxge size of hightightedtaxt	
Color change color of kighlightsd taxt	
Format	
Cell Style Change cell style ofnighzightedcells	
Uniform Style	
Default Styles	
All Defautt Styles	

Font Use to chaxge highcighted text to differextfaxts
Face Coxverthighkighted textte italics, bald, ar wadertine
Size Change size of hightighteditant
Color change color of highlightsd taxt
Format
Cell Style change celll styde ofkighkighted cells
Uniform Style
Default Styles
FII Defautt Styles

Window

Preview:

In order for the Mathematica user to take full advantage of the capabilities of this software, an understanding of its syntax is imperative. The goal of Mathematica by Example is to introduce the reader to the Mathematica commands and sequences of commands most frequently used by beginning users. Although all of the rules of Mathematica syntax are far too numerous to list here, knowledge of the following five rules equips the beginner with the necessary tools to start using the Mathematica program with little trouble.

Remember these Five Basic Rules of Mathematica Syntax

1. The ARGUMENTS of functions are given in square brackets.
(2. The NAMES of built-in functions have their first letters capitalized.

- 3. Multiplication is represented by a space.

4. Powers are denoted by a^{\wedge}.

- 5. If you get no response or an incorrect response, you have entered or executed the command incorrectly.

Chapter 2
 Mathematical Operations on Numbers, Expressions and Functions in Mathematica

- Chapter 2 introduces the essential commands of Mathematica. Basic operations on numbers, expressions, and functions are introduced and discussed.

Commands introduced and discussed in this chapter from Version 1.2 are:

```
Operations: Built-In Eunctions: Operations on Equations:
    * E[number]
    - number // E
    # I[mumber,digits]
    A Mbs[number]
    / Sqrt[number]
    Exp[nonber]
Constants: Sin[number]
    E Cos[number]
    I Tan[number]
    Mi ArcCos[number]
    ArcSin[number]
    ArcTan[number]
    log[b]
    Log[a,b]
    Hod[a,b]
    Prime[n]
Operations on Equations:
    Solve
    ERoots
    FindRoot
Operations on Expressions and Eunctions:
    Simplify[expression]
    Factor[expression]
    Expand[erpression]
        Hodulus->p
    Together[expression]
    Apart[expression]
    Eumerator[fraction]
    Denominator[fraction]
    Cancel[expression]
    Clear[fnnctions]
    Conpose[function1, function2, . . . ,X]
    #est[function,m,x]
Evaluation:
    expression /. variable->number
    Out[m]
    *
    l
Graphics:
Plot[f[x],{x,a,b},options] or Plot[{f[x], g[x], . . .},{x,a,b},options]
    Options:
        PlotStyle
        DisplayFunction
        AspectRatio
        Franed
        Ticks
        AxesLabel
        PlotLabel
        Graylevel[number]
        RGBColor[number(1) .number(2), number(3)]
        P1otRange-> {a,b}
        Axes-) {a,b)
Show[graphics,options]
```

- Commands introduced and discussed in this chapter from Version 2.0 are:

Operations on Expressions and Eunctions:
Composition[functioni, function2, . . , functionn][x] ComplexExpand [expression]
Polynomialliod [poly,p]
Graphics:
Graphicshrrat [\{\{graph1.1,graph1.2, ..,graph1.n\}, \{graph2.1, .., graph2.n\}
\{graphn. 1,...graphn. n\} \}]
Rectancle [\{xmin, Yain\}, \{xam, Tmax\}, graphics] Options:

Background
GridLines
Frame
DefanltFont
PlotLabel->FontForm

- Application: Locating intersection points of graphs of functions

2.1 Numerical Calculations and Built-In Functions

- Numerical Calculations and Built-In Constants

The basic arithmetic operations (addition, subtraction, multiplication, and division) are performed in the natural way with Mathematica. Whenever possible, Mathematica gives an exact answer and reduces fractions:
"a plus b " is entered as $\mathrm{a}+\mathrm{b}$;
"a minus b " is entered as $\mathbf{a}-\mathbf{b}$;
" a times b " is entered as either $a * b$ or $a b$ (note the space between a and b); and
"a divided by b " is entered as a / b. Executing the command a / b results in a reduced fraction.

Do NOT type " $1 n^{\prime}$ and "Out". Mathematica automatically mumbers the calculations for you.

a^{b}, " a raised to the $b t h$ power", is entered $a s a^{\wedge} b$.
$\sqrt{a}=a^{1 / 2}$ can be evaluated as either $a^{\wedge}(1 / 2)$ or Sqrt [a]; $\sqrt[3]{a}=a^{1 / 3}$ can be evaluated by $a^{\wedge}(1 / 3)$.

File Edit Cell Graph Find Fction Style Window

RoutineCalculation

Notice that Mathematica gives an exact answer whenever possible. For a variety of reasons, however, numerical approximations of results are either more meaningful or more desirable. The command used to obtain a numerical approximation of the number a , is N [a] or equivalently
a //N. The command to obtain a numerical approximation of a to n digits of precision is $N[a, n]$.
The exact values computed in the previous window are approximated numerically below:

```
ln[3):=
    H[(-5)^(1/9)]
out(5)=
    -1.19581
ln/4]:=
    M[(-5)^121]
out(4)=
    -3.76158 10
1n/*5):=
    Sqrt[233]
ow/%*3/=
    Sqrt[ 233]
m/44/:=
    Sqrt[233] // N
Out/44/=
    15.264384
\(-3.7615810\)
/n/*5): \(=\)
Sqrt[233]
ow \(/ 43 /=\)
Sqrt[233]
m/44/:=
Sqrt[233] // N
out \(144=\)
15.2643
国
```

To numerically approximate cu expression, use the commond M[expression] or expression // H
$\mathbf{H}[(-5) \wedge 121]$ converts $(-5)^{121}$ to scientific nototion

To obtain a numerical approximation of
$\sqrt{233}=(233)^{1 / 2}$
ENTER Sqrt[233] // M OR
H[SqIt[233]].
Note that Sqrt[number] produces'the same output as (number)^(1/2).

Mathematica has built-in definitions of many commonly used constants. In particular,
e is denoted by E ; $\boldsymbol{\pi}$ is denoted by Pi_{i}; and $\mathrm{i}=\sqrt{-1}$ is denoted by \mathbf{I}.

■ Built-In Functions

Mathematica recognizes numerous built-in functions. These include the exponential function, $\operatorname{Exp}[x]$; the absolute value function, $\operatorname{Abs}[x]$; the trigonometric functions $\operatorname{Sin}[x], \operatorname{Cos}[x], \operatorname{Tan}[x], \operatorname{Sec}[x]$, $\operatorname{Csc}[x]$, and $\operatorname{Cot}[x]$; and the inverse trigonometric functions ArcCos $[x], \operatorname{ArcSin}[x]$, $\operatorname{ArcTan}[x], \operatorname{ArcSec}[x], \operatorname{ArcCsc}[x]$, and ArcCot $[x]$. Notice that each of these functions is capitalized and uses square brackets.
(Note that the inverse trigonometric functions include two capital letters!) If both of these requirements are not met, then Mathematica will not recognize the built-in function and undesirable results will be obtained.
\square The Absolute Value, Exponential and Logarithmic Functions
Calculations involving the functions $\operatorname{Abs}[x], \operatorname{Exp}[x]$, and $\log [x]$ appear in the following windows. Notice that in order to obtain a numerical value of $\operatorname{Exp}[x]$, a numerical approximation must be requested by either the command $N[\operatorname{Exp}[x]]$ or $\operatorname{Exp}[x] / / N$. Otherwise, the exact value is given which, in many cases, is not as useful as the numerical approximation.

In addition to real numbers, the function $\mathrm{Abs}[\mathrm{x}]$ can be used to find the absolute value of the complex number $a+b I$, where Abs $[a+b I]=\operatorname{Sqrt}\left[a^{\wedge} 2+b^{\wedge} 2\right]$.

$\log [x]$ computes the natural logarithm of x which is usually denoted as either $\operatorname{Ln}(\mathrm{x})$ or $\log _{\mathrm{e}}(\mathrm{x})$:

$\log [a, b]$ computes $\log _{b}(a)=\frac{\operatorname{Ln}(a)}{\operatorname{Ln}(b)}:$

- Trigonometric Functions

Examples of typical operations involving the trigonometric functions $\operatorname{Sin}[x], \operatorname{Cos}[x]$, and $\operatorname{Tan}[x]$ are given below. (Although not illustrated in the following examples, the functions Sec $[x], \operatorname{Csc}[x]$, and Cot [x] are used similarly.) Notice that Mathematica yields the exact value for trigonometric functions of some angles, while a numerical approximation must be requested for others.

Even though Mathematica's built-in functions cannot compute exact values of

Chapter 2 Mathematical Operations

$\operatorname{Cos}\left(\frac{\pi}{12}\right)$ and $\operatorname{Sin}\left(\frac{-9 \pi}{8}\right)$, numerical approximations can be obtained by entering
N[Cos[Pi/12]] or Sin[-9Pi/8]//N.

```
h/5/:=
    H[Cos[Pi/12]]
out(5)=
    0.965926
/m/b): \(=\)
    Sin[-9 Pi/8]
out(b)=
    \(-9 \mathrm{Pi}\)
    \(\operatorname{Sin}[----1]\)
m/77:=
    \(\operatorname{Sin}[-9 \mathrm{Pi} / 8] / / \mathrm{M}\)
out 7 / \(=\)
    0.382683
```


Similcrly, to obtain a numerical vadue of $\operatorname{Sin}\left[\frac{-9 \pi}{8}\right]$
a numerical opproximation must be requested

- Inverse Trigonometric Functions

Commands involving the inverse trigonometric functions are similar to those demonstrated in the earlier section on trigonometric functions. Again, note the two capital letters in each of the inverse trigonometric functions. The (built-in) inverse trigonometric functions are:
(i) $\operatorname{ArcCos}[x]$; (ii) $\operatorname{ArcCoth}[x]$; (iii) $\operatorname{ArcSec}[x]$; (iv) $\operatorname{ArcSinh}[x]$;
(v) ArcCosh $[x]$; (vi) ArcCsc$[x]$; (vii) ArcSech $[x]$; (viii) ArcTan $[x]$;
(ix) $\operatorname{ArcCot}[x]$; (x) $\operatorname{ArcCsch}[x]$; (xi) $\operatorname{ArcSin}[x]$; and (xii) $\operatorname{ArcTanh}[x]$.

In most instances, a numerical approximation must be requested:

2.2 Expressions and Functions

- Basic Algebraic Operations on Expressions

Mathematica performs standard algebraic operations on mathematical expressions. For example, the command Factor[expression] factors expression; Expand[expression] multiplies expression; Together[expression] writes expression as a single fraction.

In general, a space is not needed between a number and a symbol to denote multiplication. That is, 3dog means " 3 times variable dog"; Mathematica interprets 3 dog the same way. However, when denoting multiplication of two variables, either include a space or *: cat dog means "variable cat times variable dog", cat*dog means the same thing but catdog is interpreted as a variable catdog.

The command Apart [expression] computes the partial fraction decomposition of expression; Cancel [expression] factors the numerator and denominator of expression then reduces expression to lowest terms.

- Naming and Evaluating Expressions

In Mathematica, mathematical objects can be named. Naming objects is convenient: we can avoid typing the same mathematical expression repeatedly and named expressions can be referenced throughout a notebook.
Since every built-in Mathematica function begins with a capital letter, we will adopt the convention that every mathematical object we name will begin with a lower-case letter. Consequently, we will be certain to avoid any possible ambiguity with a built-in Mathematica object. An expression is named by using a single equals sign (=).

Expressions can be evaluated easily. To evaluate an expression we introduce the command / . . The command/. means "replace by". For example, the command $\mathbf{x}^{\wedge} \mathbf{2} / . x^{->} 3$ means evaluate the expression
x^{2} when $x=3$.
The following example illustrates how to name an expression. In addition, Mathematica has several built-in functions for manipulating fractions:

1) Numerator[fraction] yields the numerator of a fraction; and
2) Denominator[fraction] yields the denominator of a fraction.

The naming of expressions makes the numerator and denominator easier to use in the following examples:

	The $x^{3}+2 x^{2}-x-2$
$\left.\begin{array}{l} \text { /n/flg:=} \\ \quad \text { fraction }=\left(x^{\wedge} 3+2 x^{\wedge} 2-x-2\right) /\left(x^{\wedge} 3+x^{\wedge} 2-4 x-4\right) \\ \text { outf } g /= \end{array}\right]$	The expression $\frac{x^{3}+2 x^{2}-4 x-4}{x^{3}+x^{2}-4}$ is nomed fraction.
$\begin{aligned} & \text { out } f(0)= \\ & -2-x+2 x^{2}+x^{3} \end{aligned}$	
$\left.\left.-4-4 x+x^{2}+\mathrm{x}^{3} \quad\right]\right]$	Hunerator[fraction] yields the rumerotor of fraction;
$\left[\begin{array}{l} 1 n / 20 /:= \\ \quad \text { num=Nuserator[fraction] } \end{array}\right]$	the numerator is nomed num.
Out/20)=	
$-2-x+2 x^{2}+x^{3}$	
$\left[\begin{array}{l} \text { n/: } /:= \\ \quad \text { Factor[nue }] \end{array}\right]$	Factor[num] factors num.
$\left[\begin{array}{l} \text { Oot } 2 H= \\ \quad(-1+x)(1+x)(2+x) \end{array}\right]$	
$\left[\begin{array}{l} \ln 22 Y:= \\ \text { nuw } 1 . x \rightarrow 2 \end{array}\right]$	num /. $x \rightarrow 2$ evahuctes num when $x=2$
$\left[\begin{array}{cc} \text { out } 22 /= \\ 12 \end{array}\right]$	Denoninator[fraction]
$\left[\begin{array}{l} n / 2 J /:= \\ \quad \text { den=Denominator[fraction }] \end{array}\right]$	yields the denominctor of
	fraction; the denominator is nomed den.
$-4-4 x+x^{2}+x^{3}$	
$\left[\begin{array}{l} \ln 24 /:= \\ \quad \text { Factor[den }] \end{array}\right]$	Factor[den] factors den.
ow $124=$ $(-2+x)(1+x)(2+x)$	
$\left[\begin{array}{l} 1 n / 25 /:= \\ \text { den } / . x^{2}-33 \end{array}\right]$	den 1. $x \rightarrow 3$ evaßates den when $x=3$.
Out/25/= 7]	
边	

Mathematica can also evaluate and perform standard algebraic operations on named expressions:

Cancel[fraction]

factors the numerator ond denominator of fraction then simplifies.
fraction /. $x \rightarrow 4$
evacuates fraction when $x=4$.
fraction /. $x \rightarrow-3$ evahuates fraction when $x=-3$.

Apart[fraction]

perfoms the porticl fraction decomposition on fraction.

Every Mathematica object can be named; even graphics and functions can be named with Mathematica.

- Defining and Evaluating Functions

It is important to remember that functions, expressions, and graphics can be named anything that is not the name of a built-in Mathematica function or command. Since every built-in Mathematica function begins with a capital letter, every user-defined function or expression in this text will be defined using lower case letters. This way, the possibility of conflicting with a built-in Mathematica command or function is completely eliminated. Also, since definitions of functions are frequently modified, we introduce the command Clear. Clear [expression] clears all definitions of expression. Consequently, we are certain to avoid any ambiguity when we create a new definition of a function. When you first define a function, you must always enclose the argument in square brackets and place an underline after the argument on the left-hand side of the equals sign in the definition of the function.

- Example:

Use Mathematica to define $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \mathrm{~g}(\mathrm{x})=\sqrt{\mathrm{x}}$, and $\mathrm{h}(\mathrm{x})=\mathrm{x}+\operatorname{Sin}(\mathrm{x})$.

	1 cleors allprior definitions of
In/ $101:=$	
$\begin{aligned} & \text { Clear }[f, g, h] \\ & f\left[x_{-}\right]=x^{\wedge} 2 \end{aligned}$	ombiguity if f, g, ond h hove been used previously in the notebook
out $101=$	$f\left[x_{1}\right]=x^{\wedge} 2$ defines $f(x)$ to be the furction $f(x)=x^{2}$.
$\left.\mathrm{x}^{2} \longrightarrow\right]$	Notice the underline (${ }^{-}$) on the left-hand side of the de finition of $f(x)$ does NOT epperr on the
$\left[\begin{array}{ll} h / / / J:= \\ \mathbf{g}\left[\mathbf{x}_{-}\right]=\operatorname{Sqrt}[\mathbf{x}] \end{array}\right]$	right-hemd side. The underline MUST be inciuded on the left-hand side of the equals sign and NOT included on the right-herd side.
	$\mathrm{g}\left[\mathrm{I}_{-}\right]=\mathrm{Sqr} \mathbf{t}[\mathbf{x}]$ defines $\boldsymbol{g}(x)$ to be the function $g(x)=\sqrt{x}$.
$[n / / 2 /:=\quad \text { h[x_ }:=\mathbf{x}+\sin [x]$	$\mathbf{h}[\mathbf{x}]:=\mathbf{x + S i n}[\mathbf{x}]$ defines $h(x)$ to be the function $h(x)=x+\sin (x)$.
$\left[\begin{array}{cl} 1 n / / \bar{j} /:= \\ \mathbf{? h} \end{array}\right]$	Notice that the $:=$ prevents Moxhematica from showing the definition of $h(x)$ after it is entered; nevertheless, the commond ?h
$\left.\begin{array}{l} h \\ h / h\left[x_{-}\right]:=x+\operatorname{Sin}[x] \end{array}\right]$	shows the definition of $h(x)$
Don't forget to include the underline (-) on the left-hored side of the equals sigre in the definition of a function. Remember to ALWAFS inchude arguments of furctions in square brackets.	

When you evaluate a function, type functionname[point] ENTER. Notice that functions can be evaluated for any real number (in the function's domain):

- Example:

Using the definitions of f, g, and h from above, compute $f(2), g(4)$ and $h(\pi / 2)$.

Moreover, Mathematica can symbolically evaluate and manipulate functions.

- Example:

Several examples follow which involve the function $f(x)=x^{2}$ defined above

Many different types of functions can be defined using Mathematica. An example of a function f of two variables is illustrated below.

Additional ways of defining functions will be discussed in later parts of this text.

- Example:

Define $f(x, y)=1-\operatorname{Sin}\left(x^{2}+y^{2}\right)$. Compute $f(1,2), f\left(2 \sqrt{\pi}, \frac{3}{2} \sqrt{\pi}\right), f(0, a)$, and $f\left(a^{2}-b^{2}, b^{2}-a^{2}\right)$.

DefiningFunctions

/n// $9 /:=$
$f\left[x_{-}, Y_{-}\right]=1-\operatorname{Sin}\left[x^{\wedge} 2+Y^{\wedge} 2\right]$
out/19)=
$1-\operatorname{Sin}\left[x^{2}+y^{2}\right]$
$\ln 23 /:=$
f[1.2]
out/23/=
1 - $\operatorname{Sin}[5]$
hf24f:=
f[2 Sqrt[Pi]. 3/2 Sqrt[Pi]]
out/24/=
Sqrt[2]
1 2
/n/25/:=
f[0,a]
out/25/=
$1-\sin \left[a^{2}\right]$
Evaluating $f\left(a^{2}-b^{2}, b^{2}-a^{2}\right)$ is done the same way as in the previous examples:

Chapter 2 Mathematical Operations

Vector-valued functions, such as g below, can also be defined:

- Example:

Define the vector-valued function $g(x)=\left\{x^{2}, 1-x^{2}\right\}$; compute $g(1)$ and $g(\operatorname{Sin}(b))$.

$\mathrm{g}(\operatorname{Sin}(\mathrm{b}))$ is computed the same way:

- Example:

Define the vector-valued function of two variables $h(x, y)=\left\{\operatorname{Cos}\left(x^{2}-y^{2}\right), \operatorname{Sin}\left(y^{2}-x^{2}\right)\right\}$.

Additional Ways to Evaluate Functions and Expressions

Not only can a function $f[x]$ be evaluated by computing $f[a]$ where a is either a real number in the domain of f or an expression, functions and expressions can be evaluated using the command / . . In general, to evaluate the function $\mathrm{f}[\mathrm{x}]$ when x is replaced by expression, the following two commands are equivalent and yield the same output:

1) f [expression] replaces each variable in f by expression; and
2) $f[x] / . x->$ expression replaces each variable x in $f[x]$ by expression.

- Example:

There are several other methods available for evaluating functions. However, depending on the situation, one method may prove to be more appropriate than others. Some of these methods are discussed here in order to make the reader aware of alternate approaches to function evaluation. In the example which follows, a function \mathbf{f} is defined which maps a list of two elements, $\{a, b\}$, to the real number, a Modulo b using the built-in function Mod. If a and b are real numbers, $\operatorname{Mod}[a, b]$ returns a modulo b. The typical approach to evaluating f at $\{a, b\}$ is to directly substitute $\{a, b\}$ into f with $f[\{a, b\}]$. However, two another approaches which yield the same result are $f @\{a, b\}$ and $\{a, b\} / / £$. These are demonstrated below with $\{5,3\}$.

■ Retrieving Unnamed Output

Although naming Mathematica objects is convenient, occasionally, one may want to use previous results in subsequent calculations even though these objects were not necessarily named. Fortunately, Mathematica provides two convenient ways to refer to previously generated output. First, the symbol \& refers to the most recent output; $\% \%$ refers to the second most recent output; $\% \% \%$ refers to the third most recent output and, in general $8 \% \% \ldots \%$ (k-times) refers to the kth most recent output. Second, out [n], where n is a positive integer, refers to the nth output.
Several examples are given below which illustrate these ideas. First, functions \mathbf{f}, \mathbf{g}, and \mathbf{h} are defined. Then, these functions are evaluated using several different methods. The commands $\mathbf{f}[\%]$ and \mathbf{f} [Out [30]] given below yield the same output since both evaluate the function f at $x=.077$.

After clecring cll prior definitions of $f, g, c, o n d h$, define $f(x)=x^{2}, g(x)$ to be the numerical vacue of \sqrt{x} to two decimal places, ond $h(x)$ to be the numerical value of $\operatorname{Sin}(x)+2 \operatorname{Cos}(x)$ to two decimal places.
\mathbf{x} refers to the previous output; xX refers to the second most recent output; XXX refers to the third most recent output; cad, in general, XXX . . X (k-times) refers to the kth most recent output.

These methods of retrieving output are useful as input is altered. For example, a new variable \mathbf{c} is defined below in terms of a and b. The function f can then be evaluated at c in several ways which are demonstrated below. $\mathbf{g}[\%]$ computes g at the previous output, Out [[35]]. Hence, $g[\% \% \% \%]$ computes g at the fourth previous output, Out [[32]]. In the last example below, h is evaluated at the second previous output, Out [[35]].

- Composition of Functions

Mathematica can easily perform the calculation $\mathrm{ffg}[\mathrm{x}]]$. However, when composing several different functions or repeatedly composing a function with itself, two additional commands are provided:

1) Compose $[\mathbf{f 1}, \mathbf{f 2 ,} \mathbf{f 3}$, . . . , $£ \mathrm{n}, \mathrm{x}]$ computes the composition
$\mathrm{f} 1 \circ \mathrm{f} 2 \circ \mathrm{f} 3 \circ \ldots \mathrm{ofn}(\mathrm{x})$ where $\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3, \ldots$, and fn are functions and x is an expression. o In Version 2.0, the function Compose is replaced by the function Composition. In Version 2.0, Composition [f1,f2, .., fn][x] computes the composition
$\mathrm{flof} 2 \circ \mathrm{f} 3 \circ \ldots \mathrm{ofn}(\mathrm{x})$ where $\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3, \ldots$, and fn are functions and x is an expression.
2) Nest [f, $x, n]$ computes the composition
fofo fo. . .of (x)
(f composed with itself n times)
where f is a function, n is a positive integer, and x is an expression.

- Example:

In the following example $f(x)=x^{2}$ and $h(x)=x+\operatorname{Sin}(x)$.

- In Version 2.0 Mathematica displays output for EACH command as it is generated unless a semi-colon is included at the end of the command. Hence, in the following example, output is displayed for all except the last command:

O Example:

Let $f(x)=\log \left(\frac{2 x+1}{x-1 / 2}\right), g(x)=\operatorname{Sin}(3 x)-\operatorname{Cos}(4 x), h(x)=x^{2}$ and $k(x)=h(g(x))$. Compute and simplify k, compute $\operatorname{Exp}[f(x)]=e^{f(x)}$, and write $e^{f(x+i y)}=\operatorname{Exp}[f(x+i y)]$ in terms of its real and imaginary parts, assuming x and y are real.

Version2AlgSimplification

$1 n / 4 /$ / $=$
Clear[f.g.h.k]
$f\left[x_{-}\right]=\log [(2 x+1) /(x-1 / 2)]$
$\mathrm{g}[\mathrm{x}-]=\operatorname{Sin}[3 \mathrm{x}]-\operatorname{Cos}[4 \mathrm{x}]$
$h\left[x_{-}\right]=x^{\wedge} 2$:
out $27=$
$\log \left[\frac{1+2 x}{-\left(\frac{1}{2}\right)+x}\right]$
out $53 /=$
$-\operatorname{Cos}[4 x]+\operatorname{Sin}[3 x]$

- In Version 2.0, the command Compose has been replaced by the command Composition. Even though entering the command Compose $[f, g, x]$ yields $f[g[x]]$, Mathematica issues a warning that Compose is an obsolete function, replaced by Composition.
- Also notice that the option Trig->True has been added to the command Expand. The effect of the option Trig->True is to eliminate powers of Sines and Cosines in trigonometric expressions:
(n/10):=
k[x_]=Conpose[h.g.x]
Compose: : obsfn:
Compose is an obsolete function, superseded by Composition.
out/10/=
$(-\operatorname{Cos}[4 x]+\operatorname{Sin}[3 x])^{2}$
m/20):=
Expand[k[x]]
Out $201=$
$\operatorname{Cos}[4 x]^{2}-2 \operatorname{Cos}[4 x] \operatorname{Sin}[3 x]+$ $\sin [3 x]^{2}$
m/2/J:=
Expand[k[r].Trig->True]
out:21/=
$1-\frac{\operatorname{Cos}[6 x]}{2}+\frac{\operatorname{Cos}[8 x]}{2}+\operatorname{Sin}[x]-$
77111
Even though the commorad Conpose is considered obsolete in Version $20, h(g(x))$ is computed. correctly.

Exponds the terms of $k(x)$

- Version 2.0 also includes the new command ComplexExpand. If expression is a Mathematica expression in terms of $x+I y$, the command ComplexExpand [expression] rewrites expression in terms of its real and imaginary components, assuming that \boldsymbol{x} and \mathbf{y} are both real.
In order to compute $h(g(x))$ in Version 2.0, enter Composition [$h, g][x]$:

2.3 Mod Math

The command Mod $[a, b]$ reduces the number $a \operatorname{modulo} b$. If p is a polynomial, the command Mod $[p, b]$ reduces the coefficients of p modulo b.

- Example:

In the following example, the factors of $x^{4}+x^{3}+x^{2}+x+1$ modulo 5 are found and verified. A function modexpand [poly,p] which expands and factors the polynomial poly modulo \mathbf{p} is then defined for later use.

- Example:

It is well known that if F is a field of characteristic p, p a prime number,
and $a, b \in F$, then $(a+b)^{p^{m}}=a^{p^{m}}+b^{p^{m}}$. Illustrate this fact when $m=1$ for the first five prime numbers.
We proceed by using the user-defined command modexpand from above and the built -in command Prime. Prime [i] returns the ith prime number.
The command Table is discussed in more detail in Chapters 4 and 5.

```In/5\|):= Table[ modexpand[(x+a)^Prime[i].Prime[i]]. {i,1,5}] // TableForn```	$\operatorname{expards}(x+a)^{1}$ cond reduces modulo $p$ for the first five prime numbers.
$\begin{aligned} & \text { Out/J//NTsbleform }= \\ & \mathrm{a}^{2}+\mathrm{x}^{2} \end{aligned}$	
$a^{3}+x^{3}$	
$a^{5}+x^{5}$	
$a^{7}+x^{7}$	
$a^{11}+x^{11}$	
, -	

- In Version 2.0, Mod [a,b] reduces the number a modulo $b$. Notice that unlike prior versions of Mathematica, a must be a number. To reduce the coefficients of a polynomial $p$ modulo $b$, use the command PolynomialMod[p,b]:


## O Example:

(nf79): $=$
Factor[ $x^{\left.\wedge 10+x^{\wedge} 5+2 . ~ H o d u l u s->5\right] ~}$
ouff78/=

$$
\left(2+x+x^{25}\right.
$$

m/77):=
poly=Expand $\left[\left(x^{\wedge} 2+x+1\right)^{\wedge} 5\right]$
Out/77/=
$1+5 x+15 x^{2}+30 x^{3}+$
$45 x^{4}+51 x^{5}+45 x^{6}+$
$30 x^{7}+15 x^{8}+5 x^{9}+x^{10}$
m/sol:=
Hod[13.5]
out/sol=
3
$\mathrm{m} / \mathrm{S} / \mathrm{I}:=$
Hod[poly.5]
out/s1/=
$\operatorname{Mod}\left[1+5 x+15 x^{2}+30 x^{3}+\right.$
$45 x^{4}+51 x^{5}+45 x^{6}+$
$30 x^{7}+15 x^{8}+5 x^{9}+x^{10}$

5]


Hod[13.5]
computes 13 modulo 5.
foctors $x^{10}+x^{5}+2$ modulo 5.
expornds $\left(x^{2}+x+1\right)^{5}$ ond nomes the result poly.

Undike Version 1.2, Hod[poly,5] does not reduce the podnomial poly modulo 5.

However, coefficients of a polynomial $p$ can be reduced modulo $n$ with the command PolynomialMod[p,n]:


PolynonialHod[poly.5] reduces poly modulo 5.

Hence, the previous definition of modexpand must be altered to include PolynomialMod In Version 2.0. This command is then illustrated by creating a table similar to that in the previous example for the prime numbers 13,17 , 19,23 , and 29. Note that this table also includes the prime number as well as the reduced polynomial.


### 2.4 Graphing Functions and Expressions

One of the best features of Mathematica is its graphics capabilities. In this section, we discuss methods of graphing functions and several of the options available to help graph functions. The command used to plot real-valued functions of a single variable is Plot. The form of the command to graph the function $f[x]$ on the domain $[a, b]$ is $P \operatorname{lot}[f[x],\{x, a, b\}]$. To plot the graph of $f[x]$ in various shades of gray or colors, the command is Plot $[f[x],\{x, a, b\}, P l o t S t y l e->G r a y L e v e l[w]]$ where $w$ is a number between 0 and 1 . PlotStyle->GrayLevel[0] represents black; PlotStyle->GrayLevel[1] represents a white graph.

If a color monitor is being used, the command is Plot $[f[x],\{x, a, b\}, P l o t S t y l e->R G B C o l o r[x, g, b]]$ where $x, g$, and $b$ are numbers between 0 and 1 . $\operatorname{RGBColor}[1,0,0]$ represents red, $\operatorname{RGBColor}[0,1,0]$ represents green, and RGBColox $[0,0,1]$ represents blue.

## - Example:

Use Mathematica to define and graph $f(x)=\operatorname{Sin}(x)$ on the interval $[-2 \pi, 2 \pi]$ and $g(x)=e^{-x^{2}}$ on the interval $[-1,1]$.


Graphs of functions, like expressions, can be named. This is particularly useful when one needs to refer to the graph of particular functions repeatedly or to display several graphs on the same axes.


In this excmple, define $f(x)=|\operatorname{Sin}(x)|$ and $g(x)=-\operatorname{Cos}(x)$.
plotf is agroph of $f(x)$ on the interval $[-\pi, \pi]$.
plotg is agroph of $g(x)$ on the interval $[-\pi, \pi]$.

The option
plotStyle->Graplevel[ . 3] specifies that the color of the groph of $g(x)$ be a shade of gray.

The command used to display several graphs on the same axes is Show. To show two graphs named graph1 and graph2, the command entered is Show[graph1, graph2]. This command is shown below using plotf and plotg from above:


More generally, the commands Plot and show have many options. To implement the various options, the form of the command Plot is Plot $\{f[x],\{x, a, b\}$, options]; the form of the command show is Show[graphs, options]. The option DisplayFunction->Identity prevents the graph from being shown; the option DisplayFunction->\$DisplayFunction causes the display of a graph which previously was suppressed. For example, one can create several graphs without displaying any of them, and then display all of them simultaneously:

## - Example:

Let $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}^{2}}, \mathrm{~g}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}^{2}}+1=\mathrm{f}(\mathrm{x})+1$, and $\mathrm{h}(\mathrm{x})=\mathrm{e}^{-(\mathrm{x}-1)^{2}}=\mathrm{f}(\mathrm{x}-1)$.
Graph $f, g$, and $h$ on the intervals $[-1,1],[-1,1]$, and $[-2,1]$, respectively. Show the graphs of all three functions simultaneously.


Even though shiftup and shiftleft are not shown, they may be viewed along with plotexp, using the Show command together with the option DisplayFunction->\$DisplayFunction.

Note that no graphs would be displayed if the DisplayFunction->\$DisplayFunction option were omitted from the following Show command:


The plot command can also be used to plot several functions simultaneously. To display the graphs of the functions $f[x], g[x]$, and $h[x]$ on the domain $[a, b]$ on the same axes, enter commands of the form plot $[\{f[x], g[x], h[x]\},\{x, a, b\}$, options $]$. This command can be generalized to include more than three functions.


## - Other Available Options

Additional Plot options include:

1) AspectRatio->number

This makes the ratio of the length of the $x$-axis to the $y$-axis number. The default value is 1 /GoldenRatio. GoldenRatio is a built-in Mathematica constant (like E and Pi )
with value $\frac{1+\sqrt{5}}{2}$ (approximately 1.61803 ).
2) Framed->True

This draws a frame around the graph; the default value is False--no frame is drawn.

- In Version 2.0, the option Framed is replaced by the option Frame. Hence, if you are using Version 2.0, including Frame->True instructs Mathematica to place a frame around the graph.

3) Ticks->None or Ticks->\{\{x-axis ticks\},\{y-axis ticks\}\}

This specifies that either no tick marks be placed on either axis $\underline{\mathbf{O R}}$ tick marks be placed on the x -axis at $\mathbf{x}$-axis ticks and on the $y$-axis at $y$-axis ticks.
4) AxesLabel->\{"x-axis label","y-axis label"\}

This labels the $x$-axis $x$-axis label and the $y$-axis $y$-axis label. For example, the command Plot [f[x],\{x,xmin, xmax, AxesLabel->\{"jane", "mary"\}] graphs the function $f[x]$ on the interval [ $x$ min, xmax] ; and labels the $x$-axis jane and the $y$-axis mary. The default for the option is that no labels are shown.
5) PlotLabel->\{"name"\}

This centers name above the graph. The default for the option is that the graph is not labeled.
6) Axes-> \{x-coordinate, y-coordinate\}

This option specifies that the $x$-axis and $y$-axis intersect at the point \{xcoordinate, ycoordinate\}.

- In Version 2.0, Axes has been redefined. The option Axes->False specifies that the graph is to be drawn without axes; the option AxesOrigin->\{x-coordinate, $y$-coordinate $\}$ places the axes so they intersect at the point $\{x$-coordinate, $y$-coordinate $\}$.

7) PlotRange->\{y-minimumn, y-maximum\}
specifies the range displayed on the final graph to be the interval [ $\mathbf{y}$-minimum, $\mathbf{y}$-maximum]; PlotRange->All attempts to show the entire graph.

## - Example:

These graphing options are illustrated below:


To illustrote the various fectures of the Plot commond, we define $\mathrm{f}(\mathrm{x})=\operatorname{Sin}(6 \mathrm{x})+2 \operatorname{Cos}(2 x)$ curd groph $f(x)$ on the interval $[-\pi, \pi]$.
Notice that the resulting groph is nomed plot1; This will allow us to use the groph loter.
plot2 is aso agroph of $f(x)$ on the interval $[-\pi, \pi]$. Adding the option
AspectRatio->1
specifies that the ratio of the length of the $x$-axis to the length of the $y$-axis is 1 ; the option Framed-3True encloses the grophics cell in a box (or frome)
In Version 2.0, the option Framed has been replaced by the option Frame.
plot3 is agroph of $f(x)$ The option
Ticks->Hone specifies that no tick morks ore placed on either the $x$-axis or $y$-axis; the option AxesLabel->
\{"x-axis". "Y-axis"\}
specifies that the $x$-axis is morked $\mathbf{x - a x i s}$ and the $y$-axis is morked $\mathbf{Y - a x i s}$.

When working with the Plot command, be sure to begin with a CAPITAL letter and enclose the entire commard in square brackets.

For plot 4 the option
Ticks-> \{\{-Pi, 0, Pi \}, \{-2,0,2\}\} specifies that tick morks be placed ox $x=-\pi$ and $x=\pi$ on the $x-\alpha x i s c o d$ $y=-2$ and $y=2$ on the $y$-cxis; the option plotLabel->
" $\mathrm{f}[\mathrm{x}]=\operatorname{Sin}\left[\begin{array}{ll}6 & \mathrm{x}\end{array}\right]+2 \operatorname{Cos}\left[\begin{array}{ll}2 & \mathrm{x}\end{array}\right]$ spcifies that the top of the groph is morked $f[x]=\operatorname{Sin}[6 x]+2 \operatorname{Cos}[2 x]$.

## GraphingFunctions0ptions

plot3=Plot[f[x].\{x.-Pi.Pi\}. Ticks->Hone.
AxesLabel->
\{"x-axis", "Y-axis"\}]

out $533 /=$
-Graphics-
plot4=Plot[f[x].\{x,-Pi,Pi\}.
Ticks->\{\{-Pi,0,Pi\}, $\{-2,0,2\}\}$.
PlotLabel->
$\left.{ }^{\prime} f[x]=\operatorname{Sin}\left[\begin{array}{ll}6 & x\end{array}\right]+2 \operatorname{Cos}[2 x]^{\prime \prime}\right]$

out/25/=
-Graphics-

## - Graphing Features and Options of Version 2.0

Version 2.0 of Mathematica offers several plotting options which are not available or differ from those in Version 1.2. In the first example below, the fact that a semi-colon must follow a command in Version 2.0 in order that it be suppressed is illustrated. (In Version 1.2, only the output of the last command in a single input cell is given even if semi-colons are not used.) After defining the function $\mathbf{f}$, the graph of $\mathbf{f}$ is plotted and called plotf. Since a semi-colon follows the definition of $£$, the formula for $£$ is not given in the output. Also shown below is the GridLines option in the Plot command. Notice in feature1, GridLines->Automatic causes horizontal and vertical gridlines to be shown on the graph.


The Gridrines option can be altered slightly. The following examples illustrate how one type of gridline is requested. In feature2, GridLines $->$ \{None, Automatic\} specifies that only horizontal gridlines be displayed while in feature3, GridLines $>\{\{1,2,3\}$, None $\}$ gives vertical gridlines at $x=1,2$, and 3. Also in feature3, Ticks-> \{Automatic, None\} causes tick marks to be placed on the x-axis but none on the $y$-axis. Finally in feature3, the $x$ and $y$ axes are labeled with the option
AxesLabel->\{"x-axis", "y-axis"\}.


Several other Plot options are shown in the examples below. In feature 4, Axes0rigin->\{x0,y0\} is illustrated. This causes the major axes to be drawn in such a way that they meet at the point $\{x 0, y 0\}$. Another option is Frame which is demonstrated in both examples. Frame->True encloses the graph in a frame.
o In Version 2.0, AxesOrigin replaces Axes from Version 1.2 and Frame replaces Framed.

Note the tick marks which accompany the frame in feature4. In feature5, however, the FrameTicks->None option prohibits the marking of ticks on the frame. Also notice the PlotLabel option which appears in each plot command. In feature 4, the label is given in quotation marks. This causes the function within the quotations to be printed exactly as it appears in the plotLabel option. Since the label does not appear in quotations in feature5, the label is given in mathematical notation.


## - Displaying Several Graphs with Version 2.0

The plots given in feature1, feature2, feature3, and feature4 are viewed below in a single graphics cell with the GraphicsArray option.
GraphicsArray [\{feature1, feature2\}, \{feature3, feature4\}\}] produces an array of graphics objects called features which is viewed in pairs with Show [features], where features=GraphicsArray[\{\{feature1, feature2\}, \{feature3, feature4\}\}]. In general, GraphicsArray can be used to visualize any $m \times n$ array of graphics objects.


The command Rectangle $[\{x 0, y 0\},\{x 1, y 1\}]$ creates the graphics primitive for a filled rectangle with sides along the lines $\mathbf{x}=\mathbf{x 0}, \mathbf{y}=\mathbf{y 0}, \mathbf{x}=\mathbf{x 1}$, and $\mathbf{y}=\mathbf{y} \mathbf{1}$. Hence, other Mathematica commands must be used to visualize the rectangles represented by Rectangle $[\{x 0, y 0\},\{x \mathbf{1}, \mathrm{y} 1\}]$. Visualization is accomplished with Show and Graphics ass illustrated below.


Rectangle $[\{x 0, y 0\},\{x 1, y 1\}]$ can be used in conjunction with other graphics cells to produce graphics of a particular size. The command Show[Rectangle $\{\{x 0, y 0\},\{x 1, y 1\}, p l o t]]$ displays plot within the rectangle determined with Rectangle $\left[\left\{x_{0}, y_{0}\right\},\left\{x 1, y^{1}\right\}\right]$. This is illustrated below with rectangles from the previous example as well as earlier plots.

## Graphing0ptions

m/74/f:=

```
 Shor[Graphics[
 Rectangle[{0,0}.{1,1}, feature5].
 Rectangle[{1,1},{1.5,1.5}.plotf].
 Rectangle[{0,1.1},{.4,1.5}, feature1]
 Rectangle[{-5,1.1},{.9.1.5}, feature2].
 pectangle[{1.1,0},{1.4,.5}, feature3],
 Rectangle[{1.1, .55}.{1.4,.9}.feature4]}
]]
```

Grophics cells corr be shown in rectorgles of vorying dimensions and then combined into a single grophics cell cond displayed


$$
\left.E^{-\left((-2+x)^{2}\right.} \sin [x]^{2}\right)
$$


$f[x]=\operatorname{Exp}\left[-(x-2)^{\wedge} 2(\operatorname{Sin}[x] \sim 2)\right]$

$y$-axis


1234
out $74 /=$
-Graphics-

## O Labeling Graphs in Version 2.0

In addition to the above features, graphs created with Version 2.0 can be labeled in a variety of ways. For example, in the following example the options DefaultFont->\{"font", size\} and
PlotLabel->FontForm["label", \{"font", size\}], where font andsize is a font available on your computer and label is the desired graphics label, are used to create several trigonometric graphs.

The numbering of the tick marks of plotsin are in size 12 Times font; the graph is labeled in size 14 Times font:


Similarly, the axes can also be labeled in different fonts and sizes using the option

```
AxesLabel->{
 FontForm["x-axis label",{"font",size}],
 FontForm["y-axis label",{"font",size}]
 }
```

In the following example, the function $\operatorname{ArcSin}(x)=\operatorname{Sin}^{-1}(x)$ is graphed on the interval $[-1,1]$. The axes are labeled " x -axis" and " y -axis" in size 12 Times font. The graph is labeled "ArcSin ( x )" in size 12 Venice font since the DefaultFont is chosen to be size 12 Venice font:

```
In/s7):=
 plotinqsin=Plot[ArcSin[[].{x,-1,1}.
 PlotSt7le->GraqLevel[. 3]
 Defaultront->{=Yenice=.12},
 plotLabel-3-ArcSin(x)".
 AresLabel->
 {FontForm["x-aris",{"Times",12}],
 FontForm["F-axis".{"Times",12}]}]
```



```
out/s7/=
-Graphics-
```

Naturally, many different options can be combined together. In the following window, the previous two graphs are displayed. The option Ticks $->$ None specifies that no tick marks are to be drawn on either axis; the graph is labeled $\sin (x)$ and $\operatorname{ArcSin}(x)$ " in size 14 London font:


In the next example we graph $\operatorname{Cos}(x)$ and $\operatorname{ArcCos}(x)$. The option DisplayFunction->Identity is used so the graphs are not immediately displayed. Instead, these three graphs are shown simultaneously with the three previous graphs, plotsin, plotinvsin, and boths, as a graphics array:

```
/n/90/:=
 plotcos=Plot[Cos[x],{x,0,Pi}.
 DefaultFont->{"Yenice".12}.
 PlotLabel->"Cos(x)".
 DisplayFunction-s-Identity]:
 plotinvcos=Plot[ArcCos[x],{x,-1,1}.
 Defaultront->{"Einstein",10}.
 PlotLabel-3-ArcCos(x)".
 PlotStyle-3GrayLevel[.3].
 DisplayFunction-3 Identityl:
 bothc=Sho#[plotcos.plotinpcos.AspectRatio->1,
 Ticks-3None.
 PlotLabel-3FontForm[Cos(x) and ArcCos(x)".
 {"Athens".12}]
]:
 Shov[Graphicskrray[{
 {plotsin,plotinv3in,boths}.
 {plotcos.plotinvcos,bothe}}]]
```

All six graphs are then displayed as a graphics array, illustrating the various options we have used:


## ■ Piecewise Defined Functions

Piecewise defined functions may also be defined and graphed with Mathematica. In the following example, $\mathrm{h}(\mathrm{x})$ is defined in three "pieces". Notice that /; designates the definition of $h(x)$ for different domain values.

## - Example:

Use Mathematica to graph $h(x)$ on the interval $[-3,3]$ if $h(x)=\left\{\begin{array}{l}6+2 x \text { for } x \leq-2 \\ x^{2} \text { for }-2<x \leq 2 \\ 11-3 x \text { for } x>2\end{array}\right.$.
Not that $<=$ represents a less than or equal to symbol.


Functions can be defined recursively. For example, if the function $f[x]$ is defined on the interval $[a, b]$, then $f$ can be defined for $\mathrm{x}>\mathrm{b}$ with $\mathbf{f}[\mathrm{x}] \mathrm{f}:=\mathbf{f}[\mathrm{x}-(\mathrm{b}-\mathrm{a})] /$; $\mathrm{x}>\mathrm{b}$. Two examples are given below. Functions of this type are useful in the study of Fourier series.

O Example:
(A) If $-1 \leq x \leq 1$, let $f(x)=\left\{\begin{array}{c}1 \text { for } 0 \leq x \leq 1 ; \\ -1 \text { for }-1 \leq x<0\end{array}\right.$. If $x>1$, define $f(x)$ recursively by $f(x)=f(x-2)$. Use Mathematica to define $f$ and graph $f$ on the interval $[0,6]$.
(B) If $-1 \leq x \leq 3$, let $h(x)=\left\{\begin{array}{l}\frac{1}{2} x \text { for }-1 \leq x \leq 2 ; \text {; If } x>3 \text {, define } h(x) \text { recursively by } \\ 1 \text { for } 2 \leq x<3\end{array}\right.$ $h(x)=h(x-4)$. Use Mathematica to define $h$ and graph $h$ on the interval [0,12].

- Version 2.0 was used in the following solution to illustrate the Version 2.0 graphics option Background->GrayLevel [ n ], where n is between 0 and 1. If using Version 2.0, the functions are defined the exact same way; however, the option Background->GrayLevel [ n ] is not available in Version 1.2:

/n/B4f:=   Clear[f]   $f\left[x_{1}\right]:=1 /: 0<=x<=1$   $f\left[x_{-}\right]:=-1 /:-1<=x<0$   f[I_]:=f[x-2] /: $\mathbf{x}>1$	After cleconing culpprior definitions of by $f(x)=\left\{\begin{aligned} 1 & \text { for } 0 \leq x \leq 1 \\ -1 & \text { for }-1 \leq x<0\end{aligned}\right.$. Then $f(x)=f(x-2)$ for $x>l$ defines $f$ $x$ greater thom one.	f. $f$ is defined   cursively for
/n/Pob/:=	graphf=Plot[f[x],\{x, 0,6\}.DisplayFunction-s-Identity]: graphftwo=Plot[f[x].\{x,0,6\},	
Background $\rightarrow$ Graylev PlotStyle DisplayFunction->Id		graphf graphf two are different
/n/ool: $=$		grophs off
Clear[h]		illustroting
h[x_]:=1/2x $/:-1<=x<=2$		
		available in
$h\left[x_{-}\right]:=h[x-4]>: 3<x$		
/n/00/: $=$		
graphh=Plot[\{h[x].1/2 h[x-1]\}. \{x, 0.12\}.   PlotStyle-3 \{Grayleqel[0]. GrayLevel[ 3]\}		
Displaypunction-3Identityl;		
Background->GrayLevel[ 0]		
plotStyle $\rightarrow$ \{ GGraplevel[1]\}. \{Graplevel[ - 8]\}\} . DisplayFunction-3Identityl.		

In Version 2.0, arrays of graphics cells can be visualized with the command GraphicsArray. Since graphf, graphftwo, graphh, and graphhtwo are graphics cells,
\{\{graphf, graphftwo\}, \{graphh, graphhtwo\}\} is an array of graphics cells. All four can be viewed in a single graphics cell using the command GraphicsArray:

In/95): $=$
Shov[Graphicshrray[ \{ \{graphf, graphftyo\}. \{graphh.graphhtvo\}\}]]



outfo3j=
-GraphicsArray-


## Chapter 2 Mathematical Operations

Sometimes it is useful to have Mathematica remember functional values it computes. For example, this is particularly useful when defining functions recursively as in the previous examples. In general, to define a function $\mathbf{f}$ to remember the values it computes enter the definition in the form
$f\left[x_{-}\right]:=f[x]=$ mathematical expression.

## - Example:

Use Mathematica to define $\mathrm{k}(\mathrm{x})=\operatorname{Exp}\left[-(\mathrm{x}-2)^{2}|\operatorname{Cos}(\pi(\mathrm{x}-2))|\right]$. For $0 \leq \mathrm{x} \leq 4$, define $\mathrm{g}(\mathrm{x})=\mathrm{k}(\mathrm{x})$ and for $x>4$, define $g$ recursively by $g(x)=g(x-4)$. Graph $g$ on the interval $[0,16]$.
In the following example, notice that $k$ is defined so that Mathematica remembers the values of $k(x)$ it computes. Since $g$ is defined recursively in terms of $k$, evaluation of $g$ for values of $x$ greater than four proceeds quickly since the corresponding k -values have already been computed and remembered:


### 2.5 Exact and Approximate Solutions of Equations

## Exact Solutions of Equations

Mathematica can solve many equations exactly. For example, Mathematica can find exact solutions to systems of equations and exact solutions to polynomial equations of degree four or less. Since a single equals sign $(=)$ is used to name objects in Mathematica, equations in Mathematica are of the form
left-hand side=right-hand side. The "double-equals" sign (==) between the left hand side and right hand side specifies that the object is an equation. For example, to represent the equation $3 x+7=4$ in Mathematica, type $3 x+7==4$. The command Solve [1hs $==r h s, x]$ solves the equation lhs $=r h s$ for $x$.
If the only unknown in the equation lhs=rhs is x and Mathematica does not need to use inverse functions to solve for $x$, then the command Solve [lhs==rhs] solves the equation lhs=rhs for $x$. Hence, to solve the equation $3 x+7=4$, both the command Solve $[3 x+7==4]$ and Solve $3 x+7==4, x]$ produce the same result.

Notice that the representation of equations in Mathematica involves replacing the traditional single equals sign by a double equals sign:

- Example:

Use Mathematica to find exact solutions of the equations $3 x+7=4, \frac{x^{2}-1}{x-1}=0$, and $x^{3}+x^{2}+x+1=0$.


As stated above, the exception to the above rule is when using the command Solve to find solutions of equations where inverse functions must be used:

## $\square$ Example:

Solve $\operatorname{Sin}^{2}(x)-2 \operatorname{Sin}(x)-3=0$.
When the command Solve $[\operatorname{Sin}[x] \wedge 2-2 \operatorname{Sin}[x]-3==0]$ is entered, Mathematica solves the equation for $\operatorname{Sin}[x]$. However, when the command Solve $\left[\operatorname{Sin}[x]^{\wedge} 2-2 \operatorname{Sin}[x]-3==0, x\right]$ is entered, Mathematica attempts to solve the equation for x . In this case, Mathematica succeeds in finding one solution:

(1)	
	Even though the ondy variable in the equation $\sin ^{2}(x)-2 \sin (x)-3=0$   is x , Mathematica will use inverse functions to solve $\sin ^{2}(x)-2 \sin (x)-3=0$   ondy if $x$ is inchuded in the Solve commond

## Chapter 2 Mathematical Operations

Solve [\{lhs1=rhs1, lhs2==rhs2\}, $\{x, y\}]$ solves a system of two equations for $x$ and $y$.
Solve[\{lhs1==rhs1, lhs2==rhs2\}] attempts to solve the system of equations for all unknowns. In general, Solve can find the solutions to a system of linear equations. In fact, if the systems to be solved are inconsistent or dependent, Mathematica 's output will tell you so.

## - Example:

Use Mathematica to solve each of the systems of equations (i) $\left\{\begin{array}{c}3 x-y=4 \\ x+y=2\end{array}\right.$; and
(iii) $\left\{\begin{array}{c}2 x-3 y+4 z=2 \\ 3 x-2 y+z=0 \\ x+y-z=1\end{array}\right.$.

$h / s):=$

$$
\begin{aligned}
& \text { Solve[ }\{2 x-3 y+4 z==2, \\
& 3 x-2 y+z==0, x+y-z==1\},\{x, Y, z\}]
\end{aligned}
$$

out $(3)=$

$$
\left\{\left\{x \rightarrow \frac{7}{10}, y \rightarrow \frac{9}{5}, z \rightarrow \frac{3}{2}\right\}\right\}
$$

Although Mathematica can find the exact solution to every polynomial equation of degree four or less, exact solutions to some equations that Mathematica can solve may not be meaningful. In those cases, Mathematica can provide approximations of the exact solutions using either the N [expression] or the expression // N command:

Remember that Mathematica denotes $\sqrt{-1}$ by $I$.

## - Example:

Approximate the values of $x$ that satisfy the equation (i) $x^{4}-2 x^{2}=1-x$; and (ii) $1-x^{2}=x^{3}$.


H[Solve[ $\left.\left.x \wedge 4-2 x^{\wedge} 2=-1-x\right]\right]$ solves the equation $x^{4}-2 x^{2}=1-x$ cond then provides approximations of the roots

Solve[1- $\left.x^{\wedge} 2==x^{\wedge} 3 . x\right] / / H$ solves the equation $1-x^{2}=x^{3}$
ond then provides approximations of the roots
In gemeral, the commards H[ operation] and operation // M yield the same output.

## Chapter 2 Mathematical Operations

Mathematica can also solve equations involving more than one variable for one of the other variables in terms of other unknowns.


## - Numerical Approximation of Solutions of Equations

When solving an equation is either impractical or impossible, Mathematica provides two functions to approximate roots of equations: FindRoot and NRoots. NRoots numerically approximates the roots of any polynomial equation. FindRoot attempts to approximate a root to an equation provided that a "reasonable" guess of the root is given. FindRoot [lhs==rhs, $\{x$, firstguess $\}$ ] searches for a numerical solution to the equation lhs==rhs, starting with $\mathrm{x}=$ firstguess. ( firstguess can be obtained by using the Plot command.) Thus, FindRoot works on functions other than polynomials. Moreover, to locate more than one root, FindRoot must be used several times. NRoots is easier to use when trying to approximate the roots of a polynomial.

## - Example:

Approximate the solutions of $x^{5}+x^{4}-4 x^{3}+2 x^{2}-3 x-7=0$.


## - Example:

In order to approximate the roots of the equation $\operatorname{Cos}(x)-x=0$, Findroot must be used since $\operatorname{Cos}(x)-x=0$ is not a polynomial equation.


## - Approximating Solutions of Equation in Version 2.0

In addition to the commands FindRoot and NRoots, Version 2.0 contains the command NSolve which can also be used to approximate roots of some equations.

## O Example:

If $\mathrm{h}(\mathrm{x})=\mathrm{x}^{3}-8 \mathrm{x}^{2}+19 \mathrm{x}-12$ and $\mathrm{k}(\mathrm{x})=\frac{1}{2} \mathrm{x}^{2}-\mathrm{x}-\frac{1}{8}$, use Mathematica Version 2.0 to compute approximations of the solution of $h(x)=k(x)$ using (i) NRoots; and (ii) NSolve .


In Version 20, the commond HSolve moy also be used to numerically compute sobutions to polynomial equations.

Notice that the difference between the resut of using the commend RRoots cod HSolve
is the form of the fincll output. These differences will be discussed in detail in Chopter 9.
Ever though three commords are entered simultareously, Version 20 generares output for each commend as it is evaluared.

## Application: Intersection Points of Graphs of Functions

## - (A)

Locate the points where the graphs of $h(x)=x^{3}-8 x^{2}+19 x-12$ and $k(x)=\frac{1}{2} x^{2}-x-\frac{1}{8}$ intersect.
Notice that the $x$-coordinates of the intersection points satisfy the equation $h(x)=k(x)$. Consequently, to locate the intersection points, it is sufficient to solve the equation $\mathrm{h}(\mathrm{x})=\mathrm{k}(\mathrm{x})$. Although this step is not necessary to solve the problem, we first graph $h$ and $k$ and notice that $h$ and $k$ intersect three times.


Since $h(x)=k(x)$ is a polynomial equation of degree three, Mathematica can compute exact values of all three roots. However, the roots are complicated so we approximate the solutions. Moreover, since $h(x)=k(x)$ is a polynomial equation we use the command NRoots $[h[x]==k[x], x]$ :

- Notice that in Version 2.0, NSolve $[h[x]==k[x], x]$ produces the same result.

In the following example, the exact solutions of the equation $h(x)=k(x)$ are computed with the command Solve $[\mathrm{h}[\mathrm{x}]==\mathrm{k}[\mathrm{x}]]$. Notice that the resulting solution is expressed as a list. Lists are discussed in detail in Chapters 4 and 5. Nevertheless, the results of the command Solve[lhs $==\mathrm{rhs}$ ] attempts to solve the equation lhs=rhs for all variables that appear in the equation. The solutions, if any, are displayed as a list. In general, the command Solve[lhs==rhs] [[1]] yields the first element of the list of solutions, Solve[lhs==rhs] [[2]] yields the second element of the list of solutions, and Solve[lhs==rhs] [[j]] yields the jth element of the list of solutions.

```
/n/of:=
 HRoots[h[x]==k[x], x]
out/5/=
 \(x=0.904363| | x==2.66088| | x==4.93476\)
```

/n/7):=
Solve[h[x]==k[x]]
out/7/=

151 Sqrt[-16585] 1/3
$(---+----------) \quad$ )
17

The commond Solve[h[y]==k[x]] computes the exact solutions of the polynomial equation $h(x)=k(x)$ The commond
Solve[h[x]==k[x]][[1]]
yields the exact vadue of the first solution; the commord
Solve[h[x]==k[x]][2]] yields the exact vadue of the second sobution; ond the commond
Solve[h[x]==k[x]][[3]] yields the exact value of the third sobution. Since the degree of the polynomial equation $h(x)=k(x)$ is 3 , there are ot most three distinct sobutions.

## (B)

Locate the points where the graphs of $f(x)=e^{-(x / 4)^{2}} \operatorname{Cos}\left(\frac{x}{\pi}\right)$ and $g(x)=\operatorname{Sin}\left(x^{3 / 2}\right)+\frac{5}{4}$ intersect.
Notice that the $x$-coordinates of the intersection points satisfy the equation $f(x)=g(x)$. Consequently, to locate the intersection points, it is sufficient to solve the equation $f(x)=g(x)$. Since this problem does not involve polynomials, we must first graph $f$ and $g$ and notice that they intersect twice.

To locate the intersection points, first clecr cmy prior definitions of $f$ cond $g$, define $f$ ond $g$, ond groph:
Don't forget to place the urdertine on the left-hend iside of the equals sigr and ierclose the argurents of all functions in square ibrackets.

In order to opproximate the intersection points, we will use FindRoot to copproximate soutions to the equation $f(x)=g(x)$


Mathematica cannot solve $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ exactly. Since $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ is NOT a polynomial equation, the command NRoots cannot be used to numerically approximate the roots. However, we can use the command FindRoot to approximate each root provided we have a "good" initial approximation of the root. To obtain a "good" initial approximation of each root:

1) Move the cursor within the graphics cell and click once. Notice that a box appears around the graph:
2) Press and hold down the Open-Apple key; as you move the cursor within the graphics cell, notice that the thermometer at the bottom of the screen has changed to ordered pairs approximating the location of the cursor within the graphics cell:


## Chapter 2 Mathematical Operations

We then use Findroot twice to compute an approximation of each solution:

	FindRoot $[f[x]==g[x],\{x, 2,59\}]$ computes $\mathrm{on}_{\mathrm{n}}$ opproximaction of the solution to the equation $f(x)=g(x)$ neor the value 259.		
FindRoot $[f[x]==g[x] .\{x, 2,59\}]$			
Owt/25/=			
$\begin{aligned} & \ln (26 /:= \\ & f[2.54105] / / \mathrm{H} \end{aligned}$			
$\begin{aligned} & \text { out/25/= } \\ & 0.461103 \\ & 1 n / 27 /:= \end{aligned}$	FindRoot[ $f[x]==g[x],\{x, 2,98\}]$ computes $\mathrm{m}_{2}$ qpproximation of the solution to the equation $f(x)=g(x)$ necre the value 298.		
$\begin{aligned} & \text { /nf2Sf:=} \\ & \quad \mathrm{f}[2.9746] / / \mathrm{H} \end{aligned}$	We conclude that one intersection point is approximately (2.54105.46113) ond the other intersection point is opproximately (29746,336066)		
$\begin{aligned} & \text { out } f 29 /= \\ & 0.336066 \end{aligned}$			
-		15	

## Chapter 3 Calculus

m Chapter 3 introduces Mathematica's built-in calculus commands. The examples used to illustrate the various commands are similar to examples routinely done in first-year calculus courses.
( Commands introduced and discussed in this chapter from Version 1.2 are:
The command Chop[smallnumber] produces zero when $\mid$ smallnumber $\mid \leq 10^{-10}$
Other commands include:

```
Limits
Multi-Variable Calculus
Limit[expression, x->a]
Differential Calculus
f:[x]
f:[{]
f..'[x]
D[f[x],x]
D[f[x],{x,n}]
#[f[x,F],x]
|[f[X,Y],Y]
D[f[x,Y],{X,n}]
D[f[x,F],{Y,n}]
D[f[x,F],X,F]
Derivative[n,0][f][x,y]
Integrate[f[x,y],{x,a,b},{y,C,d}]
Dt[equation,x]
Integral Calculus
Series Calculus
Integrate[expression, x]
Series[f[x],{x,a,n}]
Integrate[expression, {x,a,b}]
Mornal[Series[f[x],{x,a,n}]]
MIntegrate[expression, {x,a,b}] LogicaiExpand[series1==series2]
Graphics
ContourP1ot[f[x,y],{x,a,b},{y,c,d}]
Plot3D[f[x,y],{x,a,b},{y,c,d},options]
 Options
 PlotPoints->n
 Shading->False
 Boxed->False
 PlotLabel->"text"
 AxesLabel->{"x-axis text",-y-aris text', -z-axis text`}
 Ticks-> Mone
 Ticks->{{x-axis tick marks},{y-axis tick marks},{z-axis tick marks})
 Axes->Mone
 BoxRatios-> {a,b,c}
 Hesh-sFalse
 DisplayFunction->Identity
```

© Commands and options discussed in this chapter from Version 2.0 include:
Graphics
Ieplicitplot [equation, \{x, xein, xeax\},\{y,ymin, yeax \}]
Version 2.0 Graphics Options Include:
$\left.\begin{array}{ll}\begin{array}{l}\text { ContourSmoothing } \\ \text { ContourShading } \\ \text { Contours }\end{array}\end{array}\right\}$ ContourPlot $\left.\begin{array}{ll}\text { Shov } \\ \text { Graphicshrray }\end{array}\right\}$ Plot3D
Other Options:
Direction-> $\pm 1\}$ Linit

- Applications in this chapter include:
- Differential Calculus

Locating Horizontal Tangent Lines
Graphing Functions and Tangent Lines
Maxima and Minima

- Integral Calculus Area between Curves
Volumes of Solids of Revolution
Arc Length
$\square$ Series
Approximating the Remainder
Computing Series Solutions to Differential Equations
- Multi-Variable Calculus

Classifying Critical Points
Tangent Planes
Volume

## Chapter 3 Calculus

### 3.1 Computing Limits

One of the first topics discussed in calculus is that of limits. Mathematica uses the command Limit [expression, $x->a$ ] to find the limit of expression as $x$ approaches the value $a$, where a can be a finite number, positive infinity (Infinity), or negative infinity (-Infinity). The " $->$ " is obtained by typing a minus sign "-" followed by a greater that sign ">".

## - Example:

Use Mathematica to compute (i) $\operatorname{Lim}_{x \rightarrow-3} \frac{3 x^{2}+4 x-15}{13 x^{2}+32 x-21}$; (ii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\operatorname{Sin}(x)}{x}$; (iii) $\underset{x \rightarrow \infty}{\operatorname{Lim}} \frac{50-17 x^{2}}{200 x+3 x^{2}}$; and (iv) $\operatorname{Lim}_{x \rightarrow \infty} \frac{3-x^{2}}{4-1000 x}$.


The Limit command can also be used along with Simplify to assist in determining the derivative of a function by using the definition of the derivative. This is illustrated in the following example. (This example also shows that an expression can be assigned any name, as long as that name is not a built-in Mathematica function or constant.
Remember: Since every built-in Mathematica object begins with a capital letter, we have adopted the convention that all user-defined objects will be named using lower-case letters.)

## $\square$ Example:

Let $g(x)=x^{3}-x^{2}+x+1$ Use Mathematica to compute and simplify (i) $\frac{g(x+h)-g(x)}{h}$;
and (ii) $\quad \operatorname{Lim}_{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$.


The next example illustrates how several Mathematica commands can be combined in a single statement to obtain the desired result.

## - Example:

Let $f(x)=\frac{1}{\sqrt{x}}+\sqrt{x}$. Use Mathematica to compute and simplify (i) $\frac{f(x+h)-f(x)}{h}$;
and (ii) $\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Remember that Mathematica denotes $\sqrt{x}$ by Sqrt [ $x$ ]. Hence, $f$ is defined by $f\left[x_{-}\right]=1 /$ Sqrt $[x]+$ Sqrt $[x]$. Entering $f\left[x_{-}\right]=x^{\wedge}(-1 / 2)+x^{\wedge}(1 / 2)$ would yield the same result.

```
/n/g/:=
 Clear[f]
 f[x_]=1/Sqrt[[x]+Sqrt[x]
out(g)=
 1
 ------- + Sqrit[x]
 Sqrt[x]
/n/1//:=
 quotient=Together[(f[x+h]-f[x])/h]
Ou//1//=
 (Sqrt[x] +h Sqrt[x] + x
 Sqrt[h + x] - x Sqrt[h + x]) /
 (h Sqrt[x] Sqrt[h + x])
/n//5/:=
 Limit[quotient,h->0]
out/15/=
\(\frac{-1}{-\operatorname{Sqrt}[x]}+\frac{\operatorname{Sqrt}[x]}{2}\)
```

quotient is the expression $\frac{\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{h}}$.

Linit[ quatient, h->0]
colculotes $\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Note that the square brackets must be properly nested in order to correctly perform the combined operations. Also note that Simplify can be used to express the result in a more reasonable form:


Sometimes Version 1.2 yields surprising results. For example, if $£$ is an unknown function, Limit $[f[x], x->a]$ yields $f[a]$.
In other cases, the command Limit returns results that do not make sense:


## - Computing Limits with Version 2.0

In Version 2.0, the command Limit does not evaluate when it encounters an unknown function unless the option Analytic->True is included.


In addition, in some cases, the options Direction->1 or Direction->-1 may help in computing limits. The command Limit $[f[x], x->a, D i r e c t i o n->-1]$ computes
$\operatorname{Lim}_{x \rightarrow \mathbf{a}^{+}} f[x] ;$ the command $\operatorname{Limit}[f[x], x->a, D i r e c t i o n->1]$ computes $\operatorname{Lim}_{x \rightarrow a^{-}} f[x]$.
$1 n / 24):=$
Limit[Abs[x]/x, x->0]
outer $24=$
$\operatorname{Limit}\left[\frac{\mathrm{Abs}[x]}{x}, x \rightarrow 0\right]$
Inf:25):=
Linit[Abs[x]/x, x->0.Direction->-1]
out/25/=
$\operatorname{Limit}\left[\frac{\mathrm{Abs}[\mathrm{x}]}{\mathrm{x}}, x \rightarrow 0\right.$.
Direction -> -1]
$n / 26):=$
Limit[Abs[x]/x, x->0, Direction-31]
nor con Moxhematica compute
outess)=
Limit $\left[\frac{\mathrm{Abs}[\mathrm{x}]}{\mathrm{x}}, \mathrm{x} \rightarrow 0\right.$, Direction $\left.\rightarrow 1\right]$


Maxkematica con neither compute $\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{|x|}{x}=1$ $\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{|x|}{x}=-1$.

## 

However, Version 20 does correctly compute $\operatorname{Lim}_{\mathrm{x} \rightarrow 0^{+}} \frac{1}{\mathrm{x}}$ and $\operatorname{Lim}_{\mathrm{x} \rightarrow 0^{-}} \frac{1}{\mathrm{x}}$.


### 3.2 Differential Calculus

## - Calculating Derivatives of Functions and Expressions

If we are given a differentiable function $f(x)$, Mathematica can compute the derivative of $f(x)$ in at least two ways once $\mathrm{f}(\mathrm{x})$ has been properly defined using Mathematica :

1) The command $\boldsymbol{f}^{\prime}[\boldsymbol{x}]$ computes the derivative of $\mathbf{f}[\boldsymbol{x}]$ with respect to $\mathbf{x}$.
2) The command $D[f[x], x]$ computes the derivative of $\mathbf{f}[x]$ with respect to $x$.
3) The command $D[f[x],\{x, n\}]$ computes the $n$th derivative of $f[x]$ with respect to $x$.
4) The command D[expression, variable] computes the derivative of expression with respect to variable.

Other ways Mathematica can compute derivatives of functions and expressions are discussed in Section 3.6.

## - Example:

For example, in order to compute the derivative of $(7 x-3)^{3}\left(5-4 x^{2}\right)^{2}$, we may either directly compute the derivative of $(7 x-3)^{3}\left(5-4 x^{2}\right)^{2}$ or we may define $h(x)=(7 x-3)^{3}\left(5-4 x^{2}\right)^{2}$ and compute $h^{\prime}(x)$.


Notice that both $h^{\prime}[x]$ and $D[h[x], x]$ produce the same result.

$\mathrm{D}[\mathrm{h}[\mathrm{I}] . \mathbf{x}]$ also computes the derivative of $h(x)$ with respect to $x$

Remember that Mathemaxica commards can be rested; be sure that square-brackets are nested correctly.

## Factor[h'[x]]

first computes then factors the derivative of $h(x)$

The exact some result is obtained by executing the commoond
Factor[D[(7x-3)^3(5-4x)^2].x]].

## ■ Graphing Functions and Derivatives

Moreover, since $\mathbf{f} \mathbf{~ [ x ]}$ is a function of $\mathbf{x}, \mathbf{f} \mathbf{~ [ \boldsymbol { x }}]$ can be graphed. The following example shows how to compute the derivative of a function and then plot the original function and its derivative simultaneously :

## - Example:

Let $f(x)=x \operatorname{Sin}^{2}(x)$. Compute $f^{\prime}$ and graph both $f$ and $f^{\prime}$ on the same axes.


## - Computing Higher Order Derivatives

The command $\mathrm{D}[\mathbf{f}[\mathbf{x}],\{\mathbf{x}, \mathbf{n}\}]$ computes the nth derivative of $\mathbf{f}[\mathbf{x}]$ with respect to $\mathbf{x}$ :
$f^{(n)}(x)=\frac{d^{\mathrm{n}} f(\mathrm{x})}{\mathrm{dx}^{\mathrm{n}}}$.
Using the same definition of f as above, the following calculations compute the second, third, and fourth derivatives of $f$ :


These higher order derivatives can be graphed together. Recall that any expression in Mathematica can be assigned a name. The names plotsecond, plotthird, and plotfourth are given to the graphs of the second, third, and fourth derivatives of the function $f(x)$, respectively. By naming these graphs individually, the Show command can be used to plot the three graphs at one time. Notice the relationship of the behavior of the graphs of these three derivatives.

Remember, $f^{(3)}(x)$ is the derivative of $f^{2)}(x)$, so $f^{(3)}(x)>0$ when $f^{(2)}(x)$ is increasing and $f^{(3)}(x)<0$ when $f^{(2)}(x)$ is decreasing .

Also $f^{(4)}(x)$ is the second derivative of $f^{(2)}(x)$, so $f^{(4)}(x)>0$ when $f^{(2)}(x)$ is concave up and $f^{(4)}(x)<0$ when $f^{(2)}(x)$ is concave down .

Notice how GrayLevel is used to distinguish between the three curves; the option DisplayFunction->Identity suppresses the resulting graph; and the option DisplayFunction->\$DisplayFunction is used in the Show command to display the graphs which were suppressed initially with the option DisplayFunction->Identity:

plotsecond is the groph
of second on the interval $[-\pi, \pi]$; the groph is not disployed
plotthird
of third
on the interval $[-\pi, \pi]$;
the groph is not disployed
plotfourth of fourth
on the interval $[-\pi, \pi]$; the groph is not displcyed


## - Locating Critical Points and Inflection Points

Since derivatives of functions are expressions, algebraic procedures can be performed on them. Hence, in addition to finding the roots of a function, $\mathrm{g}(\mathrm{x})$, Mathematica can also be used to locate the critical points and inflection points of $\mathrm{g}(\mathrm{x})$.
In order to observe the location of these points, the Plot command is used to graph $g(x), g^{\prime}(x)$, and $g^{\prime \prime}(x)$ simultaneously.

## - Example:

Let $g(x)=2 x^{3}-9 x^{2}+12 x \quad$ Graph $g, g^{\prime}$, and $g^{\prime \prime}$ on the interval $[-1,4]$. Locate all critical points and inflection points


Solving each of the equations $g(x)=0, g^{\prime}(x)=0$, and $g^{\prime \prime}(x)=0$ locates the roots of $g$, the $x$-coordinates of the critical points of $g$, and the $x$-coordinates of the inflection points of $g$. Since $g$ is a polynomial with degree less than five, these three equations can be solved with the Solve command by entering Solve $[g[x]==0]$,
Solve $\left[g^{\prime}[x]==0\right]$ and Solve $\left[g^{\prime} '[x]==0\right]$. Be sure to include the double-equals sign between the left- and right-hand sides of equations when using the Solve command:


We conclude that the critical points of g are $(1, \mathrm{~g}(1))$ and $(2, \mathrm{~g}(2))$; the inflection point is $(3 / 2, \mathrm{~g}(3 / 2))$.
A similar type of problem which can be solved using Mathematica is as follows :

## - Example:

Locate the values of x for which the line tangent to the graph
$p(x)=\frac{1}{2} x^{6}-2 x^{5}-\frac{25}{2} x^{4}+60 x^{3}-150 x^{2}-180 x-25$ is horizontal.

Notice that the function $p(x)$ is a polynomial of degree 6 , so $p^{\prime}(x)$ is a polynomial of degree 5 . Therefore, when determining the values of $x$ such that $p^{\prime}(x)=0$, the command NRoots must be used instead of Solve. (Recall that Solve finds exact solutions of polynomial equations of degree four or less.) Some of the roots of $p^{\prime}(x)$ are complex numbers. These values are ignored since we are only concerned with real numbers.


Even though $\mathrm{p}^{\prime}$ ' $[\mathrm{x}]$ is a polynomial of degree 4 , the inflection points are found using the command NRoots. (These points can also be determined with the Solve command.)

- If you are using Version 2.0, NSolve can also be used to approximate the solutions of the polynomial equation $\mathrm{p}^{\prime \prime}(\mathrm{x})=0$ by entering NSolve $\left[\mathrm{p}^{\prime} \cdot[\mathrm{x}]==0, x\right]$.


Up to this point in our example problems, we have only considered polynomial functions. This next example involves a function which is not a polynomial. Hence, the FindRoot command, which depends on an initial guess, must be employed.

## - Example:

Let $w(x)=2 \operatorname{Sin}^{2}(2 x)+\frac{5}{2} x \operatorname{Cos}^{2}\left(\frac{x}{2}\right)$ on $(0, \pi)$. Locate the values of $x$ for which
the line tangent to the graph of $w$ at the point $(w, w(x))$ is horizontal.


First clecr prior definitions of $w$ and define $w$.

After defining w, groph w on the interval $[0, \pi]$. Notice that whos three points for which the tongent line is horizontal

The x-coordinates of the points on the groph of $w$ for which the tongent kine is horizontal ore the vakes of $x$ for which $w(x)$ is zero. Since the eguation $w^{\prime}(x)$ is neither an equotion Mathematica com solve exactly nor a polynomial, to opproximate the sobutions to the equation $w^{\prime}(x)=0$, we will use
FindRoot.
In order to use FindRoot we must hove initial approximotions of the solutions to $w^{\prime}(x)=0$. We obtain initial opproximations by grophing $w^{\prime}(x)$.

After using the graph of $w^{\prime}(x)$ to find the initial guesses, the $x$-values such that $w^{\prime}(x)=0$ can be approximated using FindRoot. These three calculations are given below using initial guesses $x=.863, x=1.63, x=2.25$, the values where $w^{\prime}(x)$ appears to cross the $x$-axis.


## - Application: Graphing Functions and Tangent Lines

An equation of the line with slope $m$ that passes through the point $(a, b)$ is given by the relationship $y-b=m(x-a)$. To write a function that describes the line with slope $m$ that passes through the point note that $y-b=m(x-a)$ is equivalent to the statement $\mathrm{y}=\mathrm{m}(\mathrm{x}-\mathrm{a})+\mathrm{b}$.
The following example illustrates how the tangent line to the graph of a function can be determined and plotted simultaneously with the function.

## - Example:

Let $h(x)=\operatorname{Sin}(6 x)+2 \operatorname{Cos}(2 x)$. Graph $h$, the line tangent to the graph of $h$ when $x=\frac{\pi}{3}$, and the line tangent to the graph of $h$ when $x=\frac{2 \pi}{3}$ on the interval $[0, \pi]$.


## Chapter 3 Calculus

Consequently, a linear function tangent to the graph of $h$ at the point
$\left(\frac{\pi}{3},-1\right)$ is given by $y_{1}(x)=(6-2 \sqrt{3})\left(x-\frac{\pi}{3}\right)-1$ and a linear function tangent to the graph of $h$ at the point $\left(\frac{2 \pi}{3},-1\right)$ is given by $y_{2}(x)=(6+2 \sqrt{3})\left(x-\frac{\pi}{3}\right)-1$.
These are defined with Mathematica as follows:

```
in/15/:=
 Y1[m_]=(6-2Sqrt[3])(x-Pi/3)+-1
Out/15/=
 -1 +(6 - 2 Sqrt[3]) (---
m/15/:=
 Y2[x_l=h'[2Pi/3](x-2Pi/3)+h[2Pi/3]
out \(10 /=\)
\[
\left.-1+(6+2 \operatorname{Sqrt}[3]) \frac{-2 \mathrm{Pi}}{3}+-\mathrm{x}\right)
\]
```

[10

The groph of $\mathbf{Y 1}[\mathrm{I}]$ is a line torgent to the groph of $h$ ot the point $\left(\frac{\pi}{3}, n\left(\frac{\pi}{3}\right)\right)$.

The groph of $\mathbf{Y}$ [ I$]$ is a line tongent to the groph of $h$ at the point $\left(\frac{2 \pi}{3}, h\left(\frac{2 \pi}{3}\right)\right)$.

The two lines $y^{\mathbf{1}}[x]$ and $y^{2}[x]$ are plotted with the function $h[x]$ with the single command below. Note that the option Aspectratio $\rightarrow 1$ is used in the $\mathbf{p l o t}$ command. If this option is not used with this particular function, then the graph is difficult to read (and the lineas do not appear tangent to the curve).


## Chapter 3 Calculus

## - Application: Maxima and Minima

Mathematica can be used to solve maximization/minimization problems. An example of this type of problem is as follows :

## - Example:

A farmer has 100 feet of fencing to construct five dog kennels by first constructing a fence around a rectangular region, and then dividing that region into five smaller regions by placing four fences parallel to one of the sides. What dimensions will maximize the total area?

First, let y denote the length across the top and bottom of the rectangular region and let x denote the vertical length. Then, since 100 feet of fencing are used, a relationship between $x$ and $y$ is given by the equation: $2 \mathrm{y}+6 \mathrm{x}=100$. Solving this equation for y , we obtain $\mathrm{y}=50-3 \mathrm{x}$ which is shown in the diagram below:


## Chapter 3 Calculus

Since the area of a rectangle is $\mathrm{A}=\mathrm{xy}$, the function to be maximized is defined by entering area $\left[x_{-}\right]=x(50-3 x)$. The value of $x$ which maximizes the area is found by finding the critical value and observing the graph of area $[x]$.


## Chapter 3 Calculus

The next problem is slightly different.

## - Example:

A farmer wants to construct five dog kennels of total area 500 square feet by first constructing a fence around a rectangular region, and then dividing that region into five smaller regions by placing four fences parallel to one of the sides. What dimensions will minimize the fencing used?

In this case, the total amount of fencing needed to construct the kennels is to be minimized using the constraint that the total area is 500 square feet. (In the first problem, we maximized area using a constraint on the perimeter.) Again, let $y=$ length across the top and bottom of the rectangular region. Using the fact that area $=500$, we have $x y=500$ or $y=500 / x$ :


The perimeter of the rectangular region equals $2 x+2 y$. Substituting for $y$, we define the function perimeter by entering perimeter $[x]=6 x+2(500 / x)$ which is to be minimized. The steps involved in solving this problem are shown below. (Note that only positive values of $x$ are considered since $x$ represents length.)


## Chapter 3 Calculus

Our final example illustrates Mathematica's ability to symbolically manipulate algebraic expressions.

## - Example:

Let $f(x)=m x+b$ and $(x 0, y 0)$ be any point. Find the value of $x$ for which the distance from $(x 0, y 0)$ to $(x, f(x))$ is a minimum.


In order to determine the value of x which minimizes the distance between ( $\mathrm{x} 0, \mathrm{y} 0$ ) and ( $\mathrm{x}, \mathrm{f}(\mathrm{x})$ ), a function which determines this distance must first be defined. This is accomplished by defining the function distance by entering distance $\left.\left[\left\{\mathbf{a}, \mathbf{b} _\right\},\left\{\mathbf{c}_{\mathbf{\prime}}, \mathbf{d}\right\}\right\}\right]$ which gives the distance between any two points (a,b) and ( $\mathrm{c}, \mathrm{d}$ ). Then the particular distance function for this problem is obtained by substituting the appropriate points ( $\mathrm{x} 0, \mathrm{y} 0$ ) and ( $\mathrm{x}, \mathrm{f}(\mathrm{x})$ ) into distance. The value of x that minimizes this function is obtained in the usual manner. (Notice how naming the distance function expression simplifies the solution of the problem.)


## - Application

As was previously stated, Mathematica can define many different types of functions. The following example is a function plotderiv which is a function that depends on a function and an interval. When given a function, $f(x)$, and an interval, $\{a, b\}$, plotderiv simultaneously plots $f(x)$ with GrayLevel [0] and $f(x)$ with GrayLevel [.3]. (Remember, GrayLevel [0] indicates the darker curve.) Note that the labels f, f, f, and $\mathrm{g}^{\prime}$ on the plots below were added later.

plotderiv is defined to be $\alpha$ function that grophs a given function $f$ and its derivative $f$ on an interval $\{a, b\}$.

To illustrate the function we use two elementary examples: $f(x)=x^{2}$ and $g(x)=x^{3}$.
plotderiv[f, $\{-1,1\}]$
displays the graph of $f$ and $f$ on the interval [-1,1].
plotderiv[g.\{-1,1\}] displays the groph of $g$ ond $g^{\prime}$ on the interval [-1,1].

## Chapter 3 Calculus

### 3.3 Implicit Differentiation

## $■$ Computing Derivatives of Implicit Functions

If equation is an equation with variables $x$ and $y$, Mathematica computes the implicit derivative of equation with the command Dt [equation, $x$ ] where equation is differentiated with respect to the variable $x$.

The expression $\mathrm{Dt}[\mathbf{y}, \mathbf{x}]$ encountered when using implicit differentiation represents the derivative of $y$ with respect to $x, d y / d x$. (Hence, Dt [ $x, y$ ] represents $d x / d y$.)

The built-in command $D t$ is versatile. Although here $D t$ is used to perform implicit differentiation,
Dt[expression, variable] computes the total derivative: $\frac{d(e x p r e s s i o n)}{d v a r i a b l e}$; and
Dt[expression] computes the total differential d(expression).
The following examples demonstrate the use of the implicit differentiation command, Dt [equation, $x$ ] and show how this command can be used with Solve to obtain the desired derivative in a single command.

## - Example:

Find $\frac{d y}{d x}$ for: (A) $x^{3}+y^{3}=1$; (B) $\operatorname{Cos}\left(x^{2}-y^{2}\right)=y \operatorname{Cos}(x)$; and (C) $3 y^{4}+4 x-x^{2} \operatorname{Sin}(y)-4=0$.


## Chapter 3 Calculus

## ■ Other Methods to Compute Derivatives of Implicit Functions

The same results as above can be obtained if $y$ is declared to be a function of $x$. Hence instead of entering the equation $x^{3}+y^{3}=1$ as $x^{\wedge} 3+y^{\wedge} 3=1$, enter it as $x^{\wedge} 3+\underbrace{y[x]}_{\begin{array}{l}y \text { is } a \\ \text { function } \\ \text { of } x .\end{array}} \wedge^{\wedge}=1$.


## - Graphing Implicit Functions with Version 2.0

The Version 2.0 package ImplicitPlot.m contains the command ImplicitPlot which can be used to graph some equations; ImplicitPlot . m is not included in earlier versions of Mathematica.
ImplicitPlot is discussed in more detail in Chapter 9.
The most basic form of the syntax for the command Implicitplot is
Implicitplot [equation, $\{x, x \min , x \max \}$ ]. The set of $y$-values displayed can also be specified by entering the command in the form
Implcitplot [equation, $\{x, x \min , x \max \},\{y, y m i n, y m a x\}]$. Be sure to always include the double-equals sign between the right- and left-hand side of equations.

## O Example:

Use Implicitplot to graph the equation $\mathrm{x}^{3}+\mathrm{y}^{3}=1$.


The command ImplicitPlot works best with equations that are (easily) solvable. Notice that Implicitplot cannot be used to graph the equation $\operatorname{Cos}\left(x^{2}-y^{2}\right)=y \operatorname{Cos}(x)$ :

$$
\begin{aligned}
& \text { M/G/:= } \\
& \quad \text { iptwo=InplicitPlot }\left[\operatorname{Cos}\left[x^{\wedge} 2-Y^{\wedge} 2\right]==Y \operatorname{Cos}[x] .\right. \\
& \quad\{x,- \text { Pi, Pi\} }]
\end{aligned}
$$

    Solve: :ifun:
        Warning: Inverse functions are being used
            by Solve, so some solutions may not be
            found.
    Solve: :ifun:
        Warning: Inverse functions are being used
        by Solve, so some solutions may not be
        found.
    Solve: :tdep:
        The equations appear to involve
            transcendental functions of the
            variables in an essentially
            non-algebraic way.
    Replaceall::reps:
        \(\{\) Solve[1. \(\mathrm{y}+\langle<1\rangle\rangle=0, \mathrm{y}]\}\)
        is neither a list of replacement rules
        nor a valid dispatch table, and so
        cannot be used for replacing.
    Solve: :ifun:
        Warning: Inverse functions are being used
        by Solve, so some solutions may not be
        found.
    General::stop:
        Further output of Solve::ifun
        will be suppressed during this
    

Instead a different approach is used taking advantage of the built-in function ContourPlot. The contour graphs shown here were created with the Contourplot command as it is in Version 2.0. The Version 2.0 Contourplot command is substantially different from earlier versions of Contourplot which are discussed later.

To use Contourtplot to graph the equation $\operatorname{Cos}\left(x^{2}-y^{2}\right)=y \operatorname{Cos}(x)$, we begin by noticing that graphing the equation $\operatorname{Cos}\left(x^{2}-y^{2}\right)=y \operatorname{Cos}(x)$ is equivalent to
defining $f(x, y)=\operatorname{Cos}\left(x^{2}-y^{2}\right)-y \operatorname{Cos}(x)$ and graphing $f(x, y)=0$.
Contourplot [f[x,y],\{x,xmin, xmax\}, \{y,ymin,ymax\}] graphs a set of level curves of the function $f[x, y]$ on the rectangle [ $x$ min,max] $x$ [ $y$ min, $y$ max]:


Contourplot has many available options. For example, Mathematica can apply a smoothing algorithm to each contour which results in a smoother graph with the option ContourSmoothing->Automatic; the option ContourShading->False specifies that Mathematica not shade the resulting graph:
in/4): $=$
cptwo=ContourPlot[f[x.Y].
 Contour Shading-3False. Contoursmoothing->Autonatic]


## out/4/=

-ContourGraphics-

In this case, the option ContourShading->False instructs Mothematica to not shode the fincl groph; the option
ContourSnoothing-3 Automatic instructs Mathematica to opply a smoothing algorithm to each contow. The result is a groph somewhot smoother thom the previous.


In addition, the actual contour values or the number of contours to be graphed can be specified. The option Contours->n specifies that Mathematica draw $n$ evenly-spaced level curves (the default value is 10). The option Contours->\{vall, val2, ..,valn\} specifies that Mathematica graph level curves corresponding to vall, val2,... , valn.

Since the graph of $f(x, y)=0$ corresponds to a level curve of $f(x, y)$ for the value 0 , the desired graph is obtained as follows:


## Chapter 3 Calculus

In the same manner as above, the graph of the equation $3 y^{4}+4 x-x^{2} \operatorname{Sin}(y)-4=0$ corresponds to a contour graph of $3 y^{4}+4 x-x^{2} \operatorname{Sin}(y)-4$ for the contour with value 0 .


### 3.4 Integral Calculus

Computing Definite and Indefinite Integrals
$\square$ In order to compute definite integrals, Version 1.2 (or earlier) of Mathematica must load the package Integraltables.m. The package Integraltables.m is contained in the folder StartUp which is contained in the folder Packages in the Mathematica $\mathbf{f}$ folder. The easiest way to load the package
Integraltables.m is to Enter the command
<<IntegralTables.m. If you are using Version 2.0, this procedure is not applicable since Version 2.0 automatically loads the package IntegralTables.m.

- Version 2.0 automatically loads the package Integraltables.m; hence, the above procedure is not pertinent to Version 2.0 users.
- Note Regarding Frequent Computations of Definite Integrals

This note is only applicable if you are NOT using Version 2.0.
If you are going to be computing definite integrals frequently you will want to have Mathematica automatically load up Integral Tables.m when the Mathematica kernel is started. To do this, proceed as follows.

1) Go to Edit and select Settings;
2) Select StartUp;
3) 

Click inside the box beside Integration Rules. Boxes with $x$ 's in them indicote which packages cre cuttomaticolly looded when the kemel is storted.


Each of the following examples illustrate typical commands used to compute indefinite integrals.
The Mathematica command to compute $\int f(x) d x$ is Integrate $[f[x], x]$.
The command Integrate [expression, variable] instructs Mathematica to integrate expression with respect to variable.

## - Example:

Use Mathematica to compute $\int \mathrm{x}^{2}\left(1-\mathrm{x}^{3}\right)^{4} \mathrm{dx}, \int \mathrm{e}^{\mathrm{x}} \operatorname{Cos}(\mathrm{x}) \mathrm{dx}, \int \frac{\operatorname{Ln}(\mathrm{x})}{\mathrm{x}^{3}} \mathrm{dx}$,
and $\int \operatorname{Sin}(2 x) \operatorname{Cos}^{2}(x) d x$.


To compute $\int \frac{\operatorname{Ln}(x)}{x^{3}} d x$, remember that the Mathematica function $\log [x]$ denotes the natural logarithm function $\operatorname{Ln}(x)$ :


Mathematica computes the definite integral $\int_{a}^{b} f(x) d x$ with the command Integrate $[f[x],\{x, a, b\}]$.
In general, the command
Integrate[expression, \{variable, lower limit, upper limit\}] integrates expression with respect to variable and evaluates from lower limit to upper limit.

## - Example:

Use Mathematica to compute $\int_{0}^{\pi} \operatorname{Sin}(x) d x, \int_{0}^{2} \sqrt{4-x^{2}} d x, \int_{1}^{2} x^{3} e^{4 x} d x$, and $\int_{-\pi}^{2 \pi} e^{2 x} \operatorname{Sin}^{2}(2 x) d x$.


When the command Integrate $[f[x],\{x, x \operatorname{xin}, x \operatorname{lnax}\}$ ] is entered, Mathematica computes an anti-derivative $\mathbf{F}$ of $\mathbf{f}$ and computes $\mathbf{F}$ [xmax]-F[xmin]. Nevertheless, Mathematica does not apply the Fundamental Theorem of Calculus since Mathematica does not verify that $f$ is continuous on the interval [ $x \min , x \operatorname{cmax}$ ]. In cases when $f$ is not continuous on [ $x m i n, x m a x$ ], errors often occur:


Mathematica computes
Integrate[1/x,\{x,-1,1\}]
even though the Fundomental Theorem of
Colculus does not opply to the integral
$\int_{-1}^{1} \frac{1}{x} d x$

## Numerically Computing Definite Integrals

Mathematica can also numerically integrate definite integrals of the form
$\int_{\text {upperlimit }}$
lowerlimit
expressiond variable with the command
NIntegrate [expression, \{variable, lowerlimit, upperlimit\}]. NIntegrate is a built-in command and is NOT contained in the package Integraltables.m. Consequently, Version 1.2 users should be aware that it is not necessary to load the package Integraltables.m to use the command NIntegrate.

The command NIntegrate is useful when an anti-derivative of expression cannot be (easily) found and expression is fairly smooth on the interval [lower limit, upper limit] Also, in those cases in which an anti-derivative can be determined, the value of the definite integral can usually be computed more quickly by an approximation with NIntegrate rather than Integrate.

- In Version 2.0, the package GaussianQuadrature.m contained in the Numerical Math folder can also be used to numerically compute integrals. The package GaussianQuadrature.m is discussed in Chapter 9.

Integrate $[f[x],\{x, a, b\}]$ applies the Fundamental Theorem of Calculus, if applicable: it finds an anti-derivative of $f[x]$, evaluates the anti-derivative at the upper limit of integration, and subtracts the value of the anti-derivative evaluated at the lower limit of integration. As noted above, if $\mathbf{f}$ is not continuous on $[\mathrm{a}, \mathrm{b}]$, error often occurs.

## - Examples:

(A) Approximate $\int_{0}^{\pi^{1 / 3}} \mathrm{e}^{-\mathrm{x}^{2}} \operatorname{Cos}\left(\mathrm{x}^{3}\right) \mathrm{dx}$; and
(B) Compute both exact and approximate values of $\int_{0}^{\pi / 8} \mathrm{e}^{3 \mathrm{x}} \operatorname{Cos}(4 \mathrm{x}) \mathrm{dx}$


## - Definite Integration with Version 2.0

The point to be made concerning integration in Version 2.0 is that Integral Tables.m does not have be loaded before evaluating definite integrals. Several examples are given below. In each case, the same results are obtained with Version 1.2:


## - Apolication: Area Between Curves

A type of problem which incorporates the commands Integrate and NIntegrate is that of finding the area between curves. These problems also use several other Mathematica commands (Plot, NRoots, FindRoot, ...) which were introduced earlier in the text.

## - Example:

Let $p(x)=\frac{3}{10} x^{5}-3 x^{4}+11 x^{3}-18 x^{2}+12 x+1$ and $q(x)=-4 x^{3}+28 x^{2}-56 x+32$
Approximate the area of the region bounded by the graphs of $p$ and $q$.
Mathematica is quite helpful in problems of this type. We can observe the region whose area we are seeking using the plot command, and we can locate the points of intersection with one of the commands used in solving equations (NRoots, FindRoot, Solve, or NSolve (Version 2.0 only)) These steps are carried out below:


## Chapter 3 Calculus

Using the roots to the equation $\mathrm{p}(\mathrm{x})=\mathrm{q}(\mathrm{x})$ found above, the graph clearly shows that $p(x)>q(x)$ between $x=0.772058$ and $x=2.29182$; and $\mathrm{q}(\mathrm{x})>\mathrm{p}(\mathrm{x})$ between $\mathrm{x}=2.29182$ and $\mathrm{x}=3.86513$.
Hence, an approximation of the area bounded by $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ given by the integral
$\int_{.772058}^{229182}(\mathrm{p}(\mathrm{x})-\mathrm{q}(\mathrm{x})) \mathrm{dx}+\int_{2.29182}^{3.86513}(\mathrm{q}(\mathrm{x})-\mathrm{p}(\mathrm{x})) \mathrm{dx}$ is computed with either of the following commands

		In this cose, both
	人	
$/ m / 5 /:=$		
Integrate[ $(p[x]-q[x]),\{x, 772058,2.29182\}]+$   Integrate[(q[x]-p[x]).(x,2.29182,3.86513\}]		Integrate
		and
$\begin{aligned} & \text { ow } / J /= \\ & 12.1951 \end{aligned}$		MIntegrate
		yield the some
$1 m / 4 /$ / $=$		approximations
MIntegrate[ $(p[x]-q[x]) .\{x, 772058.2 .29182\}]+$ HIntegrate[ (q[x]-p[x]),\{x,2.29182,3.86513\}]		of the area bounded by the grophs.
out/4/=		
12.1951		
	2,	

Next, consider a problem which involves functions which are not polynomials.

## - Example:

Let $f(x)=e^{-(x-2)^{2} \operatorname{Cos}[\pi x]}$ and $g(x)=4 \operatorname{Cos}(x-2)$ on the interval $[0,4]$.
Approximate the area of the region bounded by the graphs of $f$ and $g$. Since these functions are not polynomials, FindRoot must be used to determine the points of intersection. Recall that FindRoot depends on an initial guess of the root. Therefore, the first step towards solving this problem is to graph the functions $f$ and $g$. Then the cursor is used to locate the initial guesses. (This topic was discussed earlier in the text.)


Once the initial guesses have been determined with the cursor, FindRoot is used to approximate the solutions to the equation $f(x)=g(x)$, and the area is approximated with NIntegrate.


## - Application: Arc Length

## - Example:

Approximate the arc length of the graph of $f(x)=\operatorname{Sin}\left(\pi \operatorname{Sin}(x-2)^{2}\right)$ on the interval $[4,5]$.
Recall the formula for the length of the smooth curve $\mathrm{g}(\mathrm{x})$ from the point $(\mathrm{a}, \mathrm{g}(\mathrm{a})$ ) to (b,g(b))
is given by: Length $=\int_{a}^{b} \sqrt{1+(\mathrm{g}(\mathrm{x}))^{2}} \mathrm{dx}$.
The resulting definite integrals used for determining arc length are usually difficult to compute since they involve a radical. Since the built-in command NIntegrate $[f[x],\{x, a, b\}]$ numerically approximates integrals, Mathematica is very helpful with approximating solutions to these types of problems!


## - Application: Volumes of Solids of Revolution

## - Example:

Find the volume of the solid generated by revolving the region bounded by the graphs of
$g(x)=x^{2} \operatorname{Sin}(x), x=0, x=\pi$, and $y=0$ about the $y-a x i s$.
Before solving the problem, we remark that solids generated by revolving the graph of a function about the x - or $y$-axis can be visualized with Mathematica. The commands used to generate the following graphics are discussed in the Appendix.

Side view of the solid generated by revolving the region bounded by the graphs of $g(x)=x^{2} \operatorname{Sin}(x), x=0, x=\pi$, and $y=0$ about the $y$-axis.


Top view of the solid generated by revolving the region bounded by the graphs of
$g(x)=x^{2} \operatorname{Sin}(x), x=0, x=\pi$, and $y=0$ about the $y-a x i s$.


The method of cylindrical shells is used to compute the volume of this solid.


## - Example:

Use Mathematica to approximate the volume of the solid generated by revolving the region bounded by the graphs of
$\mathrm{m}(\mathrm{x})=\mathrm{e}^{-(\mathrm{x}-3)^{2} \operatorname{Cos}[4(\mathrm{x}-3)]}, \mathrm{x}=1, \mathrm{x}=5$, and $\mathrm{y}=0$ about the x -axis.
The solid generated by revolving the region bounded by the graphs of
$m(x)=e^{-(x-3)^{2} \operatorname{Cos}[4(x-3)]}, x=1, x=5$, and $y=0$ about the $x$-axis can be visualized using Mothematica


The disk method is used to determine the volume of this spool-shaped solid.


Chapter 3 Calculus

### 0.5 Series

## - Computing Power Series

Recall that a power series expansion of a function $f(x)$ about the point $x=a$ is given by the following expression:
$f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$. Mathematica computes the power series expansion of a function $f(x)$ about the point $x=a \operatorname{up}$ to order $n$ with the command: Series $[f(x),\{x, a, n\}]$.
Several familiar power series are computed below using this command.

## - Example:

Compute the first few terms of the power series expansion of $f(x)$ about the point $x=a$ for
(A) $f(x)=e^{x}, a=0 ;$
(B) $f(x)=\operatorname{Sin}(x), a=\pi$;
(C) $\quad f(x)=\operatorname{Cos}(x), \quad a=0$;
and
(D) $f(x)=\log (x), \quad a=1$


Mathematica can also compute the general formula for the power series expansion of a function $y(x)$ :
/n/5/:=
Series[y[x],\{x,0,3\}]
out/5/=
$y[0]+y^{\prime}[0] x+\frac{y^{\prime} \cdot[0] x^{2}}{2}+$
(3)
Y [0] x
--------- $+O[x]$
6
infol:=
Series[y[x].\{x, a, 3\}]
out $/ 5$ ) $=$
$y[a]+y^{\prime}[a](-a+x)+$
2
$y^{\prime} \quad[a](-a+x)$
2
(3)
$y[a](-a+x)$
$---------------+O[-a+x]$
6
近

Mathematica can truncate (remove the remainder term) of the power series Series $[\mathbf{f}[\mathbf{x}],\{x, a, n\}]$ with the command Normal [Series $[f[x],\{x, a, n\}]]$. Hence, with the Normal command, a polynomial is obtained. This polynomial serves as an approximation to the function $f(x)$. These ideas are illustrated below :

## - Example:

Let $f(x)=\operatorname{Sin}(x) \operatorname{Cos}(x)$. Compute the first 8 terms of the power series for $f(x)$ about $x=0$. Use the command Normal to remove the remainder term from the series. Call the resulting polynomial function $g(x)$. Compare the graphs of $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ on the interval $[-\pi / 2, \pi / 2]$. Graph the function $|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})|$ on the interval $[-\pi / 2, \pi / 2]$.



## Application: Approximating the Remainder

Let f have (at least) $\mathrm{n}+1$ derivatives in an interval containing a. If x is any number in the interval, then
$f(x)=f(a)+\frac{f^{(1)}(a)}{1!}(x-a)+\frac{f^{(2)}(a)}{1!}(x-a)^{2}+\ldots+\frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+$

Taylor Remainder of Taylor Polynomial of degree $n$ for $f(x)$ at a
where z is between a and x .

## - Example:

As in the above, let $\mathrm{f}(\mathrm{x})=\operatorname{Sin}(\mathrm{x}) \operatorname{Cos}(\mathrm{x})$. Compute the Taylor Remainder of the Taylor Polynomial of degree 8,9 and 10 for $\mathrm{x}=0$.

We proceed by defining a function that symbolically computes the Taylor remainder of degree $\boldsymbol{n}$ for $£[x]$ at 0 :

remainder[n]
is a furction that gives the Tayior Remainder of $f(x)$ at 0 for each $n$ ( $z$ is between 0 and $x$ )

Then, remainder[8], remainder[9], and remainder [10] are the desired remainders:


Compute the Taylor Remainder of the Taylor Polynomial of degree 11 for $\mathbf{x}=0$. What is an upper bound for the remainder on the interval $[-\pi / 2, \pi / 2]$ ?

First compute the Taylor remainder of the Taylor polynomial of degree 11 for $\mathrm{x}=0$ using the function remainder defined above:

```
/m/37/:=
 remainder[11]
Ou\57%=
 1 2
 4x Cos[z] Sin[z]

 467775
```



```
remainder[11]
calculates the remainder for \(n=11\).
Out \(37 /=\)
\[
12
\]
\(4 x \operatorname{Cos}[z] \operatorname{Sin}[z]\)
467775
```

	remainder[11] calculates the remainder for $n=11$.

To obtain an upper bound of the remainder on the interval $[-\pi / 2, \pi / 2]$, notice that for $x \in[-\pi / 2, \pi / 2],|x| \leq \frac{\pi}{2}$ and for all values of $z,|\operatorname{Cos}(z) \operatorname{Sin}(z)| \leq 1$ Thus, an upper bound on remainder [11] is obtained by replacing $x$ by $\pi / 2$ and $\operatorname{Cos}[z] \operatorname{Sin}[z]$ by 1 :


## - Application: Series Solutions to Differential Equations

## - Example:

Find a function $y(x)$ that satisfies the ordinary differential equation $y^{\prime \prime}-4 y^{\prime}-5 y=0$ and the initial conditions $y(0)=1$ and $y^{\prime}(0)=5$.

Remark: In Chapter 5, the command DSolve will be used to solve the differential equation $y^{\prime \prime}-4 y^{\prime}-5 y=0$ subject to the initial conditions $y(0)=1$ and $y^{\prime}(0)=5$.

Since the point $\mathrm{x}=0$ is an ordinary point of the differential equation, the solution $\mathrm{y}(\mathrm{x})$ is assumed to be the power series $y(x)=\sum_{k=0}^{\infty} \frac{y^{(k)}(0)}{k!} x^{k}$

## Chapter 3 Calculus

The power series is then substituted into the differential equation in order to determine the coefficients.


Mathematica equates the coefficients of like powers of $x$ on each side of the equation with the command LogicalExpand[equation].

```
/n/g/:=
 linearequations=
 LogicalExpand[equation]
Out/g/=
 -25+ y''[0] == 0&&
 (3)
 -25-4 Y'[[0] + Y [0] == 0&&
 -5 y''[0] (3)
 --------- - 2y [0] +
 2
 (4)
 y [0]
 ------- == 0 &&
 2
 (3)
 -5 Y [0] 2 Y [0]
 6
 3
 (5)
 y [0]
 ------== 0
 6
```

LogicalExpand[ equation] equates the corresponding coefficients in equation; the resulting system of equations is nomed linearequations.

The above system of equations is then solved using Solve in order to determine the values of the higher order derivatives of $y$ evaluated at $x=0$. Once these values are determined, they are substituted back into the power series to obtain an approximate solution to the differential equation.


### 3.6 Multi-Variable Calculus

## ■ Elementary Three-Dimensional Graphics

As was mentioned in Chapter 1, functions of more than one variable can be defined with Mathematica. Of particular interest are functions of two variables. The command which plots the graph of the function $f(x, y)$ over the rectangular domain $R$ where $R$ : $x \min \leq x \leq x \max , y \min \leq y \leq y \max$
is: Plot $3 \mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}],\{\mathrm{x}, \mathrm{x} \min , \boldsymbol{x} \boldsymbol{m a x}\},\{\mathrm{y}, \mathrm{ymin}, \mathrm{ymax}\}]$. Since the graphs of functions of two variables are surfaces in three dimensions, the Mathematica command, Plot3D, must be introduced.

Mathematica can also plot the level curves of the function $f(x, y)$. (Recall : Level curves are curves in the $x y-p l a n e$ which satisfy the equation $f(x, y)=$ constant.) Level curves are plotted with the command Contourplot $\{f[x, y],\{x, x m i n, x m a x\},\{y, y m i n, y m a x\}]$.

These commands are demonstrated below using Version 1.2:

- Many options are available with the Version 2.0 command Contourplot that are not available in earlier editions of Mathematica and are discussed last.
- Example:

Let $h(x, y)=\left(x^{2}+y^{2}\right)^{1 / 3} . \quad$ Graph $h$ on the rectangle $[-1,1] \times[-2,2]$.


There are many options which can be included in the Plot3D command. The following examples illustrate the Shading and PlotPoints options.

Shading->False causes Mathematica to NOT shade squares in the graph.
PlotPoints->n causes Mathematica to evaluate the function at $\mathbf{n}^{\wedge} \mathbf{2}$ points when plotting the graph. These $\mathbf{n \wedge 2}$ points are called sample points. In the command,
Plot3D[f[x,y],\{x,xmin,xmax\},\{y,ymin,ymax\}, PlotPoints->n], the sample points are obtained by dividing each interval [xmin, xmax] and [ymin, ymax] into $n$ subintervals. Hence, a larger value of $n$ yields a smoother graph.

Notice the difference in the shading in the following graph of $g(x, y)$ as opposed to the graph of $h(x, y)$ above. The graph of $g(x, y)$ is smoother than that of $h(x, y)$ since the default (the value assumed when not otherwise stated) on PlotPoints is 15 . Thus, the Plot 3D command which plotted $f(x, y)$ earlier automatically used 225 sample points.

## - Example:



After clecring cll prior definitions of g, define $g(x)=x \operatorname{Sin}(y)$
Plot3D[g[x,Y].\{x,-1,1\}.
\{Y.-Pi.Pi\}, PlotPoints->25. Shading->False]
grophs $g(x, y)$ on the domain $[-1,1] \times[-\pi, \pi]$. The option
PlotPoints->25
makes the makes the groph oppeor smoother thon before; the option Shading $\rightarrow$ False couses Mothematica to NOT shade each squacre.


## ContourPlot[g[x,Y].\{x,-1,1\}. \{Y,-Pi, Pi\}] <br> grophs several level curves for $g[x, y]$ on the domain $[-1,1] \times[-\pi, \pi]$.

## - ContourPlot and Version 2.0

The ContourPlot command is much improved in Version 2.0. Evidence of this is observed in the contour plot of the function $\mathrm{g}[\mathbf{x}, \mathbf{y}]$ defined below. The three-dimensional plot of this function is given in plot3d. Recall that contour levels represent intersections of planes of the form $g[x, y]=$ constant with the surface shown in plot3d. cp1 contains the contour plot of $g$ which is obtained without any of the Contourplot options. This plot differs greatly from that obtained in Version 1.2 in that shading is included in all contour plots unless otherwise specified.


As mentioned above, all contour plots are shaded unless the ContourShading->False option is employed. This option is illustrated below along with Contours $->\mathbf{k}$ which instructs Mathematica to use $\mathbf{k}$ contour levels. (This replaces the ContourLevels option in Version 1.2.) In $\mathbf{c p 2}, 25$ contour levels are used and shading is suppressed. In the previous contour plot, the default value of 10 contour levels was used.


In the previous examples, Mathematica has selected the contour levels. However, these values can be chosen by the user with the Contour->valuelist option. This is demonstrated below with the table contvals. After this table is created, Contours->contvals forces Mathematica to use the contour levels given in contvals. Another option is shown below as well. The contour plot in cp 3 is redone in cp 4 with the addition of the ContourSmoothing->Automatic option. This causes the contour levels in $\mathbf{c p} 3$ to appear smoother in cp4.


## - Partial Differentiation

Partial derivatives can be calculated with Mathematica using the command

## D[f[x,y], variable]

where $f[x, y]$ is differentiated with respect to variable.
Second order derivatives can be found using $D[f[x, y]$, variable1, variable2] where $\mathbf{f}[\mathbf{x}, \mathbf{y}]$ is differentiated first with respect to variable2 and then with respect to variablel.
© Example:
Let $h(x, y)=\left(x^{2}+y^{2}\right)^{1 / 3}$ (as above), Calculate $\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}$, and $\frac{\partial^{2} h}{\partial y \partial x}$.


Higher order derivatives with respect to the same variable can be determined with the command
$\mathrm{D}[\mathrm{f}[\mathbf{x}, \mathrm{y}]$, \{variable,n\}]. This command computes the nth partial derivative of $\mathbf{f}$ with respect to variable.

For example, $\mathrm{D}[\mathrm{f}[\mathrm{x}, \mathrm{y}],\{\mathrm{x}, \mathrm{n}\}]$ computes $\frac{\partial^{\mathrm{n}_{\mathrm{f}}}}{\partial \mathrm{x}^{\mathrm{n}}}$.

- Example:

Let $h(x, y)=\left(x^{2}+y^{2}\right)^{1 / 3}$ (as above). Calculate $\frac{\partial^{2} h}{\partial x^{2}}$ and $\frac{\partial^{2} h}{\partial y^{2}}$.

$■$ Other Methods of Computing Derivatives
The command Derivative can also be used to compute derivatives of functions. For example, if $\mathbf{f}[\mathbf{x}]$ is a function of a single variable, the command Derivative[1] [f][a] computes the derivative of $£$ with respect to $x$ and evaluates the result by replacing $x$ by $a$; the command Derivative [ $n$ ] [ $f$ ][a] computes the $n$th derivative of $f$ with respect to $x$ and evaluates the result by replacing $x$ by $a$.

Similarly, if $\mathbf{f}[x, y]$ is a function of two variables, the command Derivative [1,0][f][a,b] computes the partial derivative of $£$ with respect to $x$ and evaluates the result by replacing $x$ by $\mathbf{a}$ and $\mathbf{y}$ by $\mathbf{b}$; the command Derivative 0,1$][f][a, b]$ computes the partial derivative of $f$ with respect to $y$ and evaluates the result by replacing $x$ by $a$ and $y$ by $b$; and the command Derivative [ $\boldsymbol{n}, \mathrm{m}$ ][f][a,b] computes the nth partial derivative of $f$ with respect to $x$ and then the moth partial derivative of $f$ with respect to $y$ and evaluates the result by replacing $\boldsymbol{x}$ by $a$ and $y$ by $b$.

## - Example:

Use the command Derivative to compute $\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial^{2} g}{\partial x \partial y}, \frac{\partial^{2} g}{\partial x^{2}}, \frac{\partial^{2} g}{\partial y^{2}}$, and $\frac{\partial^{3} g}{\partial x \partial y^{2}}\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$ if $g(x, y)=e^{-\left(x^{2}+y^{2}\right) / 8}\left(\operatorname{Cos}^{2}(x)+\operatorname{Sin}^{2}(y)\right)$.

After defining $g$, we illustrate that Derivative $[1,0][g][x, y]$ and $D[g[x, y], x]$ both produce the same result.

## PartialDerivatives

$/ \pi / 50 /:=$

$$
\begin{aligned}
& \text { Clear }[g] \\
& \left.\operatorname{g[x}-\bar{Y}_{-}\right]=\operatorname{Exp}\left[-\left(x^{\wedge} 2+Y^{\wedge} 2\right) / 8\right]^{*} \\
& \left(\operatorname{Cos}[x]^{\wedge} 2+\operatorname{Sin}[Y]^{\wedge} 2\right)
\end{aligned}
$$

out/59/=

$$
\frac{\cos [x]^{2}+\sin [y]^{2}}{E\left(x^{2}+y^{2}\right) / 8}
$$

/n/60/: $=$
gI=Deriqatiqe[1, 0][g][I, Y]
out/50/=

$$
\begin{aligned}
& \frac{-2 \cos [x] \sin [x]}{E^{\left(x^{2}+y^{2}\right) / 8}} \\
& \frac{x\left(\cos [x]^{2}+\sin [y]^{2}\right)}{4 E^{\left(x^{2}+y^{2}\right) / 8}}
\end{aligned}
$$

/n/o//:=

$$
\mathrm{D}[\mathrm{~g}[\mathrm{x}, \bar{Z}], \mathrm{x}]
$$

Out/5/J=

$$
\begin{aligned}
& \frac{-2 \operatorname{Cos}[x] \operatorname{Sin}[x]}{E^{\left(x^{2}+y^{2}\right) / 8}} \\
& \frac{x\left(\operatorname{Cos}[x]^{2}+\operatorname{Sin}[y]^{2}\right)}{4 E^{\left(x^{2}+y^{2}\right) / 8}}
\end{aligned}
$$

After cleoring all prior
definitions ofg,
define
$g(x, y)=e^{-\left(x^{2}+y^{2}\right) / 8}\left(\cos ^{2}(x)+\sin ^{2}(y)\right)$
Since $g$ is defined on two lines, be sure to include the ${ }^{*}$ to denote multiplicoction

Both Derifative[1,0][g][x,Y] fand D[9[x.7]. I] produce $\frac{\partial g}{\partial x}$.


Similarly Derivative $[1,1][g][x, y]$ and Derivative $[g, x, y]$ produce the same result:


7n/64):=
77期
Derivative[2,0][g][x, F]
out/04/=

$$
\begin{aligned}
& \frac{-2 \cos [x]^{2}}{E^{\left(x^{2}+y^{2}\right) / 8}}+\frac{x \cos [x] \sin [x]}{E^{\left(x^{2}+y^{2}\right) / 8}}+ \\
& \frac{2 \operatorname{Sin}[x]^{2}}{E^{\left(x^{2}+y^{2}\right) / 8}-\frac{\cos [x]^{2}+\sin [y]^{2}}{4 E^{\left(x^{2}+y^{2}\right) / 8}}+} \\
& \frac{x^{2}\left(\cos [x]^{2}+\sin [y]^{2}\right)}{16 E^{\left(x^{2}+y^{2}\right) / 8}}
\end{aligned}
$$

/n/65):=
Derivative[0,2][g][x,Y]
out/65/=

$$
\begin{aligned}
& \frac{2 \operatorname{Cos}[y]^{2}}{E^{\left(x^{2}+y^{2}\right) / 8}}-\frac{y \operatorname{Cos}[y] \operatorname{Sin}[y]}{E^{\left(x^{2}+y^{2}\right) / 8}}- \\
& \frac{2 \operatorname{Sin}[y]^{2}}{E^{\left(x^{2}+y^{2}\right) / 8}}-\frac{\operatorname{Cos}[x]^{2}+\sin [y]^{2}}{4 E^{\left(x^{2}+y^{2}\right) / 8}}+ \\
& \frac{y^{2}\left(\operatorname{Cos}[x]^{2}+\operatorname{Sin}[y]^{2}\right)}{16 E^{\left(x^{2}+y^{2}\right) / 8}}
\end{aligned}
$$



## Chapter 3 Calculus

## - Application: Classifying Critical Points

Recall the definition of a critical point :

- Let $f(x, y)$ be a real-valued function with continuous second-order partial derivatives. A critical point of $f$ is a point ( $x_{0}, y_{0}$ ) in the interior of the domain of $f$ for which $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$.
- Remark: The following notation is used:
$f_{x}(x, y)=\frac{\partial f}{\partial x}(x, y), f_{y}(x, y)=\frac{\partial f}{\partial y}(x, y), f_{y x}(x, y)=\frac{\partial f}{\partial x \partial y}(x, y), f_{x x}(x, y)=\frac{\partial^{2} f}{\partial x^{2}}(x, y)$, and $f_{y y}(x, y)=\frac{\partial^{2} f}{\partial y^{2}}(x, y)$
Critical points are classified using the following test:
(Second-Derivative Test for Extrema) Let
$D\left(f ;\left(x_{0}, y_{0}\right)\right)=\left|\begin{array}{cc}\mathrm{f}_{\mathrm{xx}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) & \mathrm{f}_{\mathrm{xy}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \\ \mathrm{f}_{\mathrm{xy}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) & \mathrm{f}_{\mathrm{yy}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\end{array}\right|=\left(\mathrm{f}_{\mathrm{xx}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right)\left(\mathrm{f}_{\mathrm{yy}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right)-\left(\mathrm{f}_{\mathrm{xy}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right)^{2}$.
(a) If $\mathrm{D}>0$ and $\mathrm{f}_{\mathrm{xx}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)>0$, then f has a relative minimum at ( $\mathrm{x}_{0}, \mathrm{y}_{0}$ );
(b) If $\mathrm{D}>0$ and $\mathrm{f}_{\mathrm{xx}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)<0$, then f has a relative maximum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$;
(c) If $\mathrm{D}<0$, then f has a saddle point at ( $\mathrm{x}_{0}, \mathrm{y}_{0}$ ); and
(d) If $\mathrm{D}=0$, no conclusion can be drawn and ( $\mathrm{x}_{0}, \mathrm{y}_{0}$ ) is called a degenerate critical point.


## - Example:

Locate and classify all critical points of the function $f(x, y)=-120 x^{3}-30 x^{4}+18 x^{5}+5 x^{6}+30 x y^{2}$. In order to find the critical points of $f(x, y)$, the derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$
are calculated and set equal to zero. These steps are shown below. Notice how the derivatives are given names to make using them later in the problem easier.


The second derivatives $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}$, and $\frac{\partial^{2} f}{\partial x \partial y}$ are computed below. Recall that if $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x \partial y}$, and $\frac{\partial^{2} f}{\partial y \partial x}$ are continuous on an open set, then $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$
for each point in the set. Therefore, since $f(x, y)$ is a polynomial and, thus, continuous for all values of $x$ and $y$, only three second order derivatives need to be calculated.


## Chapter 3 Calculus

The second-order derivative $\frac{\partial^{2} f}{\partial^{2} x}$ is evaluated at the critical points for later use in the second derivative test:


The discriminant $\frac{\partial^{2} f}{\partial^{2} x}\left(x_{0}, y_{0}\right) \frac{\partial^{2} f}{\partial^{2} y}\left(x_{0}, y_{0}\right)-\left(\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)\right)^{2}$.
is defined as a function so that its value at the critical points can be computed easily.


The Plot 3D command is used to verify that the critical points have been classified correctly by plotting $f(x, y)$ around each critical point.

These graphs also illustrate some of the Plot3D options.


The option Shading->False specifies that the polygons NOT be shoded; the option Ticks->Mone specifies that no tick morks be placed on ary axis; the option Boxed->False specifies that a box is NOT placed around the groph

## The option

PlotLabel->"Degenerate" labels the groph "Degenerote"; the option Hesh->False hides the edges of each polygor (but each polygon is shaded; the option
BoxRatios-> \{1,1,1\} specifies that the ratio of the lengtis of the bounding 3-dimensional box ratios are 1:1:1.


Chapter 3 Calculus

## - Application: Tangent Planes

Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$. Then a function that describes the plane tangent to the graph of $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
at the point $\left(x_{0}, y_{0}, z_{0}=f\left(x_{0}, y_{0}\right)\right)$ is given by
$\operatorname{tanplane}_{\left(f, x_{0}, y_{0}\right)}(x, y)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0}$.

## - Example:

Find a function that describes the plane that is tangent to the graph of $f(x, y)=-6 x y e^{-x^{2}-y^{2}}$ at the point $(.5,0)$.

Mathematica can be used to plot the graph of $f(x, y)$. Using some of the options available to Plot3D, this graph can be plotted in a manner which will aide in visualizing the tangent plane to the graph at $(.5,0)$.


Use Plot3D to groph $f(x, y)$ on the domain
$[-3 / 2,3 / 2] \times[-3 / 2,3 / 2]$. The option
Ticks-3 \{ \{ -5\}. \{0\}. \{\} places a tick mork on the $x$-axis $a t .5$, on the $y$-coxis $\alpha t$ 0, ond no tick morks on the z-axis. The option
Boxed-sFalse prevents the groph from being enclosed by abox The option PlotPoints-> 30 makes Moxhemaxica sample 30 x -vadues and $30 y$-vadues.


Hence, the tangent plane is defined by the function $\mathrm{z}=0(\mathrm{x}-.5)-2.3364(\mathrm{y}-0)$ or, $\mathrm{z}=-2.3364 \mathrm{y}$
of and z can each be graphed with the command Plot3D. However, prior to the release of Version 2.0, two 3-dimension graphics objects created with Plot3D could not be shown simultaneously. However, Version 2.0 permits two (or more) objects created with the command Plot3D to be shown simultaneously with the command show. In the following example, $f$ is graphed on the rectangle $[-3,3] \times[-2,2]$, the resulting graph is not displayed and named plotf. Similarly, $z$ is graphed on the rectangle $[-2,2] \times[-1,1]$, the resulting graph is not displayed and named plotz. The graphs are shown together (but not actually displayed) with the command both=Show[plotf,plotz, BoxRatios->\{1, 1, 1\}].


Since plotf, plotz, and both are graphics objects, they may be shown in a single graphics cell with the command GraphicsArray:


## - Application: Lagrange Multipliers

Certain types of optimization problems can be solved using the method of Lagrange multipliers. This method is based on the following theorem :

## - Lagrange's Theorem:

Let $f$ and $g$ have continuous partial derivatives and $f$ have an extremum at a point
$\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ on the smooth constraint curve $\mathrm{g}(\mathrm{x}, \mathrm{y})=\mathrm{c}$. If $\mathrm{g}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \neq 0$ and $\mathrm{g}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \neq 0$, then there is a real number $\lambda$ such that $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\lambda \mathrm{g}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\lambda \mathrm{g}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$; and $\mathrm{g}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$.

## - Example:

Find the maximum and minimum values of $f(x, y)=4 y^{2}-4 x y+x^{2}$ subject to the constraint $x^{2}+y^{2}=1$.
The commands used to create the following graphics are discussed in the Appendix.

Moxkematica can be used to visualize the graph of $z=f(x, y)$ for $(x, y)$ that satisfy the equation $g(x, y)=0$.

These points correspond to maxima


The first order derivatives (with respect to $x$ and $y$ ) of $f$ and $g$ are computed in order that Lagrange's Theorem can be applied. (The lambda in Lagrange's Theorem is represented in the calculations below as 11 .)


## Chapter 3 Calculus

The values of $x, y$, and lambda which satisfy the system of three equations in Lagrange's Theorem are determined using Solve. The solutions of this system are ordered triples ( $x, y$, lambda). The values of $x$ and $y$ in each ordered triple represent the point at which $f$ may have a maximum or minimum value.


Thus, the maximum and minimum values of $f$ are found by substituting these points back into the function $f(x, y)$ and comparing the resulting values of $f$.


Consequently, the maximum value is 5 and the minimum value is 0 . Notice that

1. $10^{-12}$ is assumed to be zera

In fact, the command Chop $[f[x, y] / . y->-.447214$ /. $x->-.894427]$ yields zero.

## Chapter 3 Calculus

## - Example:

Find the maximum and minimum values of $k(x, y)=x^{2}+4 y^{3}$ subject to the constraint $x^{2}+2 y^{2}=1$.


This problem is solved much like the previous example. Notice how the first derivatives are calculated and the system of equations stated in Lagrange's Theorem are established in a single command. The numerical approximation of the solutions of this system are then found.


## Chapter 3 Calculus

The points which satisfy the system are substituted into $\mathrm{k}(\mathrm{x}, \mathrm{y})$ to obtain the maximum and minimum values of the function by comparing the values obtained.

```
1n/5/:=
 k[.88197..333333] computes
Ow/5/= k(.88197,333333).
 0.926019
m/(%):=
 k[-.88197.. 333333] computes
Out/6/=
 k(-.88197.333333)
 0.926019
/m/7]:=
 k[1,0] computes k(1,0)
out/7/=
 1
\primen/\beta/:=
 k[-1,0] computes k(-1,0)
Out/8/=
 1
inf(g):=
 k[0,.707101] computes k(0.707101)
Out/g/=
 1.41418
in/10):=
 k[0.-. 707101] computes k(0,.707101)
0u4/10/=
 -1.41418
\M,
```

- Multiple Integrals
,Mathematica can compute multiple integrals. The command which computes the double integral

```
\(\int_{x \min }^{x \max } \int_{y \min }^{y \max } f(x, y) d y d x\) is:
Integrate \([f[x, y],\{x, x \min , x m a x\},\{y, y m i n, y m a x\}]\)
```

Multiple integrals are numerically computed with the command
NIntegrate $[f[x, y],\{x, x \min , x \max \},\{y, y m i n, y m a x\}]$.
The first variable given (in this case, $x$ ), corresponds to the outermost integral and integration with respect to this variable is done last. Also, the inner limits of integration (in this case, ymin and ymax) can be functions of the outermost variable. Limits on the outermost integral must always be constants.

- When using Version 1.2, be sure to load the package Integral Tables .m; if using Version 2.0, loading IntegralTables. m is not necessary since Mathematica automatically loads the package.
Several examples are shown below :


## - Example:



## Chapter 3 Calculus

In cases in which the double integral cannot be computed exactly, the command
NIntegrate $\{f[x, y],\{x, x \min , x \max \},\{y, y m i n, y m a x\}]$
can be used to calculate a numerical approximation of the integral
$\int_{x \min }^{x \max } \int_{y_{\min }}^{y_{\max }} f[x, y] d y d x$.

## - Example:

Approximate the value of the double integral $\int_{0}^{1} \int_{0}^{1} \operatorname{Sin}\left(e^{x y}\right) d y d x$


However, sintegrate does not always produce the quickest result. The following example illustrates what happens when an integral which can be computed exactly is attempted using NIntegrate.

Recall that the Error function $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-w^{2}} d w$ is given by $\operatorname{Exf}^{\mathrm{x}}[\mathrm{x}]$.


$1 n / 27 J:=$
M[ value]
Out $27 /=$
1.24012

H[value] computes a numericol opproximation of vacke.

The command NIntegrate [Cos[ $\left.\left.x^{\wedge} 2-y^{\wedge} 2\right],\{x, 0, \operatorname{Sqrt}[P i]\},\{y, 0, \operatorname{sqrt}[P i]\}\right]$ does not produce an output for an approximation of the integral after ten minutes of computing on a Macintosh Icx.

## Chapter 3 Calculus

## - Apnlication: Volume

## - Example:

Find the volume of the region between the graphs of
$q(x, y)=\operatorname{Cos}\left(x^{2}+y^{2}\right) e^{-x^{2}}$ and $w(x, y)=3-x^{2}-y^{2}$ on the domain $[-1,1] \times[-1,1]$.
The region can be viewed using Mathematica's Plot3D command.


## Chapter 3 Calculus

The above graphs show that the region is bounded above by $w(x, y)$ and below by $q(x, y)$. Hence, the volume is determined as follows :


Find the volume of the solid bounded by the graphs of $f(x, y)=1-x-y$ and $g(x, y)=2-x^{2}-y^{2}$.
The graph is used to determine that the region is bounded above by the paraboloid and below by the plane.


## Chapter 3 Calculus

This problem is more difficult than the first example since the limits of integration must be determined. However, using Solve to find the values of $x$ and $y$ such that $f(x, y)=g(x, y)$, these limits are found easily. First, the equation $f(x, y)=g(x, y)$ is solved for $y$ (in terms of $x$ ). To facilitate the use of these $y$-values, they are given the names $\mathbf{y}^{1}$ and $\mathbf{y}^{2}$.


## Chapter 3 Calculus

Next, the limits on the x -coordinate are determined :


## Chapter 3 Calculus

Finally after the limits of integration have been determined, the volume is found :


## - Series in More than One Variable

In the same manner as Integrate, NIntegrate, and D generalize to functions of more than one variable, the command Series also computes power series of funtions of more than one variable.

The command Series $[\mathbf{f}[\mathbf{x}, \mathbf{y}],\{\mathbf{x}, \mathbf{x} \mathbf{0}, \mathrm{n}\},\{\mathbf{y}, \mathbf{y} \mathbf{0}, \mathrm{m}\}]$ computes a power series expansion of $\mathbf{f}[\mathbf{x}, \mathbf{y}]$ about $y 0$ up to order $m$ and then computes a power series expansion about $\mathbf{x 0}$ up to order $n$.

The result of using the Series command always includes a remainder term and hence cannot be treated as a function. In order to remove the remainder term, use the command Normal.

## - Example:

Define $f(x, y)=\operatorname{Cos}(x-\pi \operatorname{Sin}(y))$. (i) Generate the first two terms of the powers series for $f$ about $y=1$; (ii) generate the first two terms of the power series of $f$
about $\mathrm{y}=1$ and then generate the first three terms of the power series about $\mathrm{x}=0$; and (iii) generate the first three terms of the power series of $f$ about $x=0$ and then generate the first two terms of the power series about $\mathrm{y}=1$.
After removing the remainder term, graph and compare the results.
We begin by defining $f$ and then computing the first two terms of the power series for $f$ about $y=1$ :


## SeriesinTwoUariables

inf 1): $=$

$$
f\left[x _Y _\right]=\operatorname{Cos}[x-P i \quad \operatorname{Sin}[Y-1]]
$$

$$
\text { Defines } f(x, y)=\operatorname{Cos}(x-\pi \operatorname{Sin}(y)) \text {. }
$$

Out////=

$$
\operatorname{Cos}[x+\operatorname{Pi} \operatorname{Sin}[1-Y]]
$$

/n/2/:=
serone=Series[f[x,F],\{x,0,3\},\{Y,1,2\}]
ow $/ 2 /=$
$1-\frac{P i^{2}(-1+y)^{2}}{2}+O[-1+y]^{3}+$
$\left(\mathrm{Pi}(-1+y)+O[-1+y]^{3}\right) x+$
$\left(-\left(\frac{1}{2}\right)+\frac{P i^{2}(-1+y)^{2}}{4}+O[-1+y]^{3}\right) x^{2}+O[x]^{3}$
generotes the power series of $f$ with respect to $y$ then $x$.
/n/3/: $=$
seriy=Mormal[serone]
Out/3/=
removes the remainder terms from 3 er one

$$
1-\frac{x^{2}}{2}+P i x(-1+y)+\left(\frac{-P i^{2}}{2}+\frac{P i^{2} x^{2}}{4}\right)(-1+Y)^{2}
$$ the result is an expression in $x$ and $y$ which con be grophed.

## Chapter 3 Calculus

The command seryx=Series $[f[x, y],\{y, 1,2\},\{x, 0,3\}] / /$ Normal computes the series with respect to $x$ then $y$ and removes the remainder terms.
$1 n / 4 / 1=$
seryi=Series[f[x,Y],\{Y,1,2\},\{x,0,3\}]//Hormal
out /4/=

$$
\begin{aligned}
& 1+x^{4}\left(\frac{1}{24}-\frac{P i^{2}(-1+y)^{2}}{48}\right)+x^{8}\left(\frac{1}{40320}-\frac{P i^{2}(-1+y)^{2}}{80640}\right)+ \\
& x^{6}\left(-\left(\frac{1}{720}\right)+\frac{P i^{2}(-1+y)^{2}}{1440}\right)+x^{2}\left(-\left(\frac{1}{2}\right)+\frac{P i^{2}(-1+y)^{2}}{4}\right)+ \\
& \operatorname{Pi} x(-1+y)-\frac{P i x^{3}(-1+y)}{6}+\frac{P i x^{5}(-1+y)}{120}- \\
& \frac{P i x^{7}(-1+y)}{5040}-\frac{P_{i}^{2}(-1+y)^{2}}{2}
\end{aligned}
$$



We create the graphs with Version 2.0 to take advantage of Version 2.0's improved graphics features. In particular, we graph $f[x, y]$, serxy, and seryx with Plot 3D and then show all three simultaneously with the Show command. Finally, all four graphics objects are displayed in a single cell with the command GraphicsArray.

```
/m/g/:=
 plotf=Plot3D[f[x,Y],{x,0,2Pi},{Y,0,2Pi},
 PlotPoints->25,Bored->False.
 Ticks-3 {{0,Pi,2Pi}, Hone,{-1,0,1}}.
 DisplayFunction->>Identity.
 Shading->Falsel:
 plotxy=Plot3D[serxy.{x,0,2Pi}.{Y,0,2Pi}.
 PlotPoints-325,Bored-3False.
 DisplayFunction->Identity.
 Ticks->{Hone,{0,Pi, 2Pi},{-1,0,1}},
 Shading->False]:
 plotym=Plot3D[serym,{x,0,2Pi}.{Y,0,2Pi}.
 PlotPoints->25. Bored - False.
 Ticks->{{0,Pi,2Pi},{0,Pi,2Pi},Hone},
 DisplayFunction-SIdentity.
 Shading->False]:
 allthree=Sho#[plotiy.plotyx.plotf]:
 Shoy[Graphicshrray[{{plotf.plotxy}.
 {plotyx,allthree}}]l
```

The result of the final show command is displayed below:


## Chapter 4 <br> Introduction to Lists and Tables

■ Chapter 4 introduces elementary operations on lists and tables. Chapter 4 is a prerequisite for Chapter 5 which discusses nested lists and tables in detail. The examples used to illustrate the various commands in this chapter are taken from calculus, business, and engineering applications.
$\pm$ Commands introduced and discussed in this chapter from Version 1.2 are:

```
Operations on Tables and Lists:
Table[function[index],{index,start,finish,step]
TableFore[table]
table /f TableFore
HatrixForm[table] Other Operations:
table /f HatrimForm Do[statement[i],(i,istart,istop,istep}]
Prime[positimeinteger] Print[InpntForm[expression]]
table[[positiveinteger]]
Short[expression]
Length[list]
Last[list]
First[list]
Apply[function,list]
Hap[fanction,list]
Release[table]
Fit[data,{limearlgindependentfunctionsofvariable},variable]
Sun[f[j],{j,jstart,jstop,jstep}]
/1
10
Graphics Operations on Lists:
ListPlot[list,options]
ParametricPlot[{x[t],y[t]},{t,tmin,tmax},options]
 Options:
 PlotJoined-s True
 Ticks-> Fone
 AspectRatio-> positivenumber
 PlotRange->Mll
```

$\square$ Commands introduced and discussed in this chapter from Version 2.0 include:

Chapter 4 Introduction to Lists and Tables

- Applications in this chapter include:


# - Business: <br> Creating Business Tables: <br> Interest, Annuities, and Amortization 

- Calculus:

Calculating and Graphing Lists of Functions
Graphing Equations
Tangent Lines and Animations

## - Engineering:

Curve Fitting
Introduction to Fourier Series: Calculating Fourier Series The Heat Equation

## 图 4.1 Defining Lists

A list is a Mathematica object of the form
\{element[1], element[2], . . . ,element[n-1], element[n]\} where element [ $i$ ] is called the ith element of the list. Elements of a list are separated by commas. Notice that lists are always enclosed in "curly" brackets \{\} and each element of a list may be (almost any) Mathematica object; even other lists. Since lists are Mathematica objects, they can be named. For easy reference, we will usually name lists.

Lists may be defined in a variety of ways. Lists may be completely typed in or they may be created by the Table command. For a function $f$ with domain non-negative integers and a positive integer $n$, the command
Table[f[i], $\{i, 0, n\}]$ creates the list $\{f[0], f[1], . . . \quad, f[n-1], f[n]\}$.

- Example:


Mathematica will display a list, like other output, on successive lines which may sometimes be difficult to read or interpret. The commands TableForm and MatrixForm are used to display lists in traditional row/column form. In the following example, list4 is the list of ordered triples \{i, Sqrt [i]//N, $\operatorname{Sin}[i]\}$ for $\mathbf{i = 1}, 2,3,4,5$. Notice that each ordered triple is a list. This will be discussed in more detail in Chapter 5.

- Example:



## list4

is the list of ordered triples
corsisting of $\{1,1,841\}$,
$\{2,1.414,909\}$, $\{3,1.732,141\}$, $\{4,2,-756\}$, and $\{5,2236,-.958\}$.

TableForn[1ist4] represents list4
in tabulor (or matrix) form
The some resukt could have been obtained with

Hatrixform[1ist4].

## Chapter 4 Introduction to Lists and Tables

As indicated above, elements of lists can be numbers, ordered pairs, functions, and even other lists. For example, Mathematica has built-in definitions of many commonly used special functions. Consequently, lists of special functions can be quickly created.

## - Example:

The Hermite polynomials, $H_{n}(x)$, satisfy the differential equation $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$.
The built-in command Hermiter $[\mathrm{n}, \mathrm{x}]$ yields the Hermite polynomial $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$.
Create a table of the first five Hermite polynomials and name the resulting list hermitetable.


## Chapter 4 Introduction to Lists and Tables

In fact, lists can be evaluated at certain numbers so that lists of numbers are created:


Moreover, operations, such as differentiation, can be performed lists:


### 4.2 Operations on Lists

■ Extracting Elements of Lists
Individual elements of lists are obtained using double-square brackets. For example if table is a list, then table[[2]] is the second element of the list table. The jth element of table is table[lj]].

- Example:

The Mathematica function Prime can be used to calculate prime numbers. Prime [1] yields 2; Prime [2] yields 3 ; and, in general, Prime [ $k$ ] yields the kth prime number.
Make a table of the first fifteen prime numbers. What is the third prime number? the thirteenth prime number?


## ■ Graphing Lists and Lists of Functions

If list $=\{a[1], a[2], \ldots, a[n]\}$ is a list of numbers, Listplot[list] plots the points $[1, a[1]\},\{2, a[2]\},\{3, a[3]\}, \ldots,\{n, a[n]\}$. In general, the command Listplot has the same options as the command Plot.

Sometimes it is desirable to suppress the output of lists; particularly when long lists are used. In general, a semi-colon "; " placed at the end of a command suppresses the resulting output.

## - Example:

The following example demonstrates how ListPlot [list] is used to plot the points $\{1, f[1]\}$, $\{2, f[2]\},\{3, f[3]\}, \ldots,\{1000, f[1000]\} \quad$ where $f[x]=\sin [x] / / \mathbb{N}$.
Let $f(x)=\operatorname{Sin}(x)$. First, make a table of the values $\operatorname{Sin}(1), \operatorname{Sin}(2), \ldots, \operatorname{Sin}(10)$; then make a table of the values $\operatorname{Sin}(i)$ for $i=1,2, \ldots, 1000$. Graph the points $(i, \operatorname{Sin}(i))$ for $i=1, \ldots, 1000$.


Both tables of numbers and tables of functions can be graphed. In the following example, we graph the elements of hermitetable (created above) on the interval [-3,3].

## - Example:

Use Mathematica to graph the first five Hermite polynomials on the interval [-3,3].
Notice that within the Plot command, hermitetable is enclosed by the command Release.
Release [hermitetable] allows the elements of hermitetable to be evaluated for the values of $x$ on $[-3,3]$ instead of recreating the table for each value of $x$.

- Version 1.2 (or earlier) users must always enclose the table to be graphed by Release. In Version 2.0, the command Release has been replaced by the command Evaluate. Hence, when graphing tables of functions with Version 2.0, be sure to enclose the table by Evaluate.


out/11/=
-Graphics-
Wher using versions prior to Version 20, be sure to erelose the nome of the list by Release. Wher using Version 20, be sure to erclose the rame of the list by Evaluate.

Each elemert of hernitetable is grophed on the interval $[-3,3\}$ according to the graylevel specified by the list grays.

IIT14
grays is $\alpha$ table of verious grayleved that will be used to groph the table of functions hernitetable.


In the previous examples, the domain of the functions has been the set of natural numbers. This does not have to be the case, however. The command
Table[f[x] , $\{x, x$ min, $x$ max, $x s t e p\}]$
creates a list by evaluating $£$ at values of $x$ from $x=x \operatorname{cmin}$ to $x=x$ max using a stepsize of $x$ step. If $n$ is a positive integer, the command $\operatorname{Table}[f[x],\{x, x \min , x \max ,(x \max -x m i n) / n\}]$ creates the list, containing the $n+1$ elements:

$$
\left\{f[x \operatorname{comin}], f\left[x \operatorname{xmin}+\frac{x \operatorname{cmax}-x \min }{n}\right], f\left[x \min +2 \frac{x \max -x \min }{n}\right], \ldots, f\left[x_{m a x}\right]\right\} .
$$

When dealing with a long Mathematica object expression, another useful Mathematica command is short [expression]. This command produces an abbreviated, one-line output of expression. If list is a table, the command Short [list] produces a one-line output of list. If $n$ is a positive integer greater than one, short [list, n ] produces an abbreviated n -line output of list. This abbreviated list includes an element of the form $\ll \mathrm{n} \gg$ which indicates the number of elements of list that are omitted in the abbreviated output.

## - Evaluation of Lists by Functions

Another helpful command is Map [ $\mathbf{f}$, list].
This command creates a list consisting of elements obtained by evaluating $\mathbf{f}$ for each element of list, provided that each member of list is an element of the domain of $\mathbf{f}$.

## Notice:

To avoid errors, be sure to check that each element of list is in the domain of $f$ prior to executing the command Map[f,list].
If list is a table of $n$ numbers and each element of list is in the domain of $f$, recall that list [ [i]] denotes the ith element of list. The command Map [ $£$, list] produces the same list as the command Table[f[list[[i]]], $\{i, 1, n\}]$. Using Map in conjunction with ListPlot yields an altemative approach to graphing functions.

## - Example:

Let $g(x)=\operatorname{Cos}(x)-2 \operatorname{Sin}(x)$. First create a table of the values from $\pi$ to $5 \pi$ in steps of $\frac{4 \pi}{40}$. Name the list table 3 . This is the same as creating the table of values $\left\{\pi, \frac{44 \pi}{40}, \ldots, \pi+n \frac{4 \pi}{40}, \ldots, 5 \pi\right\}=\left\{\pi+j \frac{4 \pi}{40}: j=0,1,2, \ldots, 40\right\}$.
Evaluate g for each element in table3.


In general, ListPlot and Plot share many of the same options. However, since the ListPlot command graphs a set of points, and is NOT connected, a connected graph is obtained by using the PlotJoined option:

plots the points (i,table4[[i]]) for $i=1,2,3, \ldots, 40 \mathrm{crad}$ then conrects the points with line segments.

Naturally, lists of functions can be evaluated in the same manner as above:

## $\square$ Example:

The Laguerre polynomials are defined recursively by the relationship $\mathrm{L}_{0}(\mathrm{x})=1$ and
$L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}\left(x^{n} e^{-x}\right)}{d x^{n}}$. For each $n, L_{n}(x)$ satisfies the differential equation $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$.
$\mathrm{L}_{\mathrm{n}}(\mathrm{x})$ is computed with the built-in function Laguerrel $[\mathrm{n}, \mathrm{x}]$.
For $n=1,2,3,4$, use Mathematica to verify that $L_{n}(x)$ satisfies $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$.
First a table of the first four Laguerre polynomials is created and then a function $\mathbf{f}$ is defined as follows:
For a given ordered pair $\left\{n, p o l_{y}\right\}, f\left[\left\{n, p o l_{y}\right\}\right]$ returns an ordered quadruple given by
$\{x D[p o l y,\{x, 2\}]$,
(1-x)D[poly,x], n*poly, D[poly,
$\{x, 2\}]+(1-x) D[p o l y, x] n$ poly
J.

Remember that $D[\operatorname{poly},\{x, n\}]$ computes the $n$th derivative of poly with respect to $x$.

$\operatorname{Map}[f$, lagtable] evaluates $\mathbf{f}$ for each element of lagtable. The same result would have been obtained with the command Table[f[lagtable[[i]],\{i,1,4\}].

Note that the fourth component in each ordered quadruple below is zero. Hence, each member of lagtable is a solution.

$\begin{aligned} & \ln 54 /:= \\ & \text { Hap[f. lagtable] } \end{aligned}$	
Out $34 /=3$	
$\left\{(0,-(1-x), 1-x, 0\},\left\{x, \frac{(1-x)(-4+2 x)}{2}, 2-4 x+x^{2}, 0\right\}\right.$	
$(18-6 x) \times(1-x)\left(-18+18 x-3 x^{2}\right) 6-18 x+9 x^{2}-x^{3}$	
6 6 6	
$x\left(144-96 x+12 x^{2}\right)(1-x)\left(-96+144 x-48 x^{2}+4 x^{3}\right)$	
24 24	
$24-96 x+72 x^{2}-16 x^{3}+x^{4}$	
6	
	5,

## ■ Other List Operations

A specific operation can be applied to the elements of a list through the command
Apply [operation, list]. Of course, in order to use this command, the given operation must be defined for the elements of list.
For example, if numbers is a list of real numbers, then the command Apply [Plus, numbers] adds together all the elements of numbers.
Some other Mathematica commands used with lists are:
Length[list], which gives the number of elements in list;
First [list], which gives the first element of list; and
Last[list], which gives the last member of list.
Several examples of these commands are shown below.
Also notice that the definition of a vector-valued function $f: \Re \rightarrow \Re^{n}$
which maps the real numbers to $n$-space can be made using a list. This is done below in the following manner :
$f\left[\mathbf{x}_{-}\right]:=\left\{f_{1}(x), f_{2}(x), f_{3}(x), \cdots, f_{n}(x)\right\}$ where $f_{k}(x): \Re \rightarrow \Re$ for $1 \leq k \leq n$.

## © Example:

Define $f(x)=\left\{\left(\frac{x}{100}\right)^{2}, 36-\left(\frac{x}{100}\right)^{2}\right\}$. Create a table of the numbers $10^{2}, 20^{2}, \ldots, 50^{2}$,
and $60^{2}$. Evaluate f for each number in the table Name the resulting table list 2.

## OperationsOnLists

/n/3: $/=$
Clear[list, list2, list3, g, f] list=Table[j^2.\{j.10.60.10\}]
out(3s)=
$\{100,400,900,1600,2500,3600\}$
In/53):=
Apply[Times.list]
out(35)=
518400000000000000
In/34): $=$
$f\left[x_{-}\right]=\left\{(x / 100)^{\wedge} 2 .(36-(x / 100))^{\wedge} 2\right\}$
list2=Hap[f.list]
0.4/34)=
$\{\{1,1225\},\{16,1024\},\{81,729\}$,
$\{256,400\},\{625,121\},\{1296,0\}\}$
/n/55):=
Length[list2]
out/551=
6
m(30):=
First[list2]
out/55)=
\{1, 1225\}
In/57):=
Last[list2]
out/57)=
\{1296, 0\}
In/3S/:=
Apply[Plus.list2]
Out(38)=
$\{2275,3499\}$
list is the list of numbers
$10^{2}=100,20^{2}=400,30^{2}=900$
$40^{2}=1600,50^{2}=2500, \mathrm{cond}$
$60^{2}=3600$.
Apply[Tines.list] muliplies the elements of list together.

Hap[f.list] computes
f[list[[i]]]
for $i=1,2,3,4,5$, and 6 .
The resulting list is nomed list2.

Length[list2]
gives the rumber of elements in
list2.

First[list2]
gives the first element of list2.

Last[1ist2]
gives the lost element of list2.

Apply[P1us, list2]
computes the sum of the first coordinates cond second coordinctes of
list2.

In the following example, Map is used with the function $g: \Re^{2} \rightarrow \Re$ defined via $g(x, y)=\sqrt{x^{2}+y^{2}}$. - Example:

Evaluate $g$ for each element of list2; call the resulting table list3. Add up the elements of list3; multiply together the elements of list3.

As has been the case with other examples, a numerical approximation of each member of the list is obtained using $/ / \mathrm{s}$. Otherwise, exact values are given.

## OperationsOnLists

h/750):=
g[\{x_. $\left.\left.Y_{-}\right\}\right]=S q r t\left[x^{\wedge} 2+Y^{\wedge} 2\right]$
list3=Hap[g.list2]
out $308=$
\{Sqrt[1500626]. 16 Sqrt[4097]. 81 Sqrt[82].
16 Sqrt[881]. Sqrt[405266], 1296\}

Hap[g.list2]
computes
g[1ist2[[i]]
for $i=1,2,3,4,5,6$.

We use the Apply command to compute the desired sum and product. Mathematica gives exact results unless otherwise requested:

```
ln/20/:=
 Apply[Plus.list3]
Out/401=
 1296 + 81 Sqrt[82] + 16 Sqrt[881] +
 16 Sqrt[4097] + Sqrt[405266] +
 Sqrt[1500626]
m/41/:=
 Apply[Plus.list3] // M
out/41/=
 5390.12
In/42]:=
 Apply[Times.list3]
004/42/=
 26873856 Sqrt[82] Sqrt[881] Sqrt[4097]
 Sqrt[405266] Sqrt[1500626]
In/25/:=
 Apply[Times.list3] // N
out/<3/=
```

    3.6054910
    (10

## - Alternative Way to Evaluate Lists by Functions

## - Example:

A table consisting of ten random real numbers on the interval $\{0,5\}$ is found with Table[Random[Real, $\{0,5\}],\{10\}]$ and is called $t 1$. A function $g[x]=\operatorname{Mod}[x, 1]$ is then defined; hence, $g$ is merely $x$ Modulo 1. In the same manner as above, the command Map [ $g, t 1$ ] evaluates $g$ at each element in t 1 . However, the same result is obtained with $\mathrm{t} 1 / / \mathrm{g}$ and $\mathrm{g} / \mathrm{e} \mathrm{t} 1$ as illustrated below:

- Note that since the command Random is used, if you enter the following sequence of calculations, $\mathbf{t 1}$ will differ each time.


Chapter 4 Introduction to Lists and Tables

## - Example:

The sum of the squares of the first 100 positive integers is computed by several different methods below. First, table $t 2$ of the squares of the first 100 positive integers is created. The commands Sum [i^2,\{i,1,100\}], Apply[P1us,t2], and Plus@@t2 all achieve the correct sum of 338350.


### 4.3 Applications

## - Application: Interest, Annuities, and Amortization

The use of lists and tables are quite useful in economic applications which deal with interest rates, annuities, and amortization. Mathematica is, therefore, of great use in these types of problems through its ability to show the results of problems in tabular form. Also, if a change is made in the problem, Mathematica can easily recompute the results.

A common problem in economics is the determination of the amount of interest earned from an investment. Consider the following: If P dollars are invested for t years at an annual interest rate of $\mathrm{r} \%$ compounded m times per year, the compound amount $A(t)$ at time $t$ is given by: $A(t)=P\left(1+\frac{r}{m}\right)^{m t}$.
A specific example is shown below where the amount of money accrued at time $t$ represents the sum of the original investment and the amount of interest earned on that investment at time $t$.

Chapter 4 Introduction to Lists and Tables

## - Example:

Suppose $\$ 12,500$ is invested at an annual rate of $7 \%$ compounded daily. How much money has accumulated at the end of each five year period for $t=5,10,15,20,25,30$ ?


The problem can be redefined for arbitrary values of $t, P, x$, and $n$ as follows :


Hence, any problem of this type can be worked using the functions defined above.

## - Example:

For example, suppose $\$ 10,000$ is invested at an interest rate of $12 \%$ compounded daily. Create a table consisting of the total value of the investment and the interest earned at the end of $0,5,10,15,20$, and 25 years.
In this case, we use the function results defined above. Here, $t 0=0, t 1=25, m=5, p=10000$, $r=.12$, and $n=365$ :

Notice that if the conditions are changed to $t 0=0, t 1=30, m=10, P=15000, r=15$, and $n=365$, the desired table can be quickly calculated:


The problem of calculating the interest earned on an investment is altered if the interest is compounded continuously. The formula used in this case is as follows :

If P dollars are invested for t years at an annual interest rate of $\mathrm{r} \%$ compounded continuously, the compound amount
$A(t)$ at time $t$ is given by: $A(t)=P e^{r t}$.

- Example: (Future Value)

Consider the following :
If $R$ dollars are deposited at the end of each period for $n$ periods in an annuity hat earns interest at a rate
of $j$ per period, the future value of the annuity is given by: $S_{\text {future }}=R\left[\frac{(1+j)^{n}-1}{j}\right]$
A function which calculates the future value of the annuity and several examples using this function are given below:


Another type of annuity is as follows:
If R dollars are deposited at the beginning of each period for n periods in an annuity with interest that earns
interest at a rate of $j$ per period, the annuity due is given by: $\quad S_{\text {due }}=R\left[\frac{(1+j)^{n+1}-1}{j}\right]-R$
Again, the function to determine the amount due is defined below with accompanying examples.


## - Example:

The following table compares the annuity due on a $\$ 100 \mathrm{k}$ monthly investment at an annual rate of $8 \%$ compounded monthly for $t=5,10,15,20$; and $k=1,2,3,4,5$. This type of table can prove to quite useful in the analysis of investments. (Note that the values of $k$ and $t$ were later added to the table.)


Yet another type of problem deals with determining the amount of money which must be invested in order to insure a particular return on the investment over a certain period of time. This is given with the following :
The present value $\mathbf{P}$ of an annuity of n payments of R dollars each at the end of consecutive interest periods with interest compounded at a rate of interest $j$ per period is given by: $P=R\left[\frac{\left[1-(1+j)^{-n}\right]}{j}\right]$

This problem is illustrated below :


- Example: (Deferred Annuities)

Deferred annuities can also be considered :
The present value of a deferred annuity of R dollars per period for n periods deferred for k periods with interest
rate $j$ per period is given by: $\quad P_{\text {def }}=R\left[\frac{1-(1+j)^{-(n+k)}}{j}-\frac{1-(1+j)^{-k}}{j}\right]$

The function which computes the present value of a deferred annuity is given below where $\boldsymbol{r}=$ the amount of the deferred annuity, $\mathbf{n}=$ the number of years in which in annuity is received, $\mathbf{k}=$ the number of years in which the lump sum investment is made, and $\mathrm{j}=$ the interest rate.


- Example: (Amortization)

A loan is amortized if both the principal and interest are paid by a sequence of equal periodic payments. A loan of $P$ dollars at interest rate $j$ per period may be amortized in $n$ equal periodic payments of $R$ dollars made at the end of each period, where $R=\frac{P j}{1-(1+j)^{-n}}$.

The function, amort [ $p, j, n$ ], defined below determines the monthly payment needed to amortize a loan of $p$ dollars with an interest rate of $j \%$ compounded monthly over $n$ months. A second function, totintpaid $[p, j, n]$, calculates the total amount of interest paid to amortize a loan of $p$ dollars with an interest rate of $j \%$ compounded monthly over $n$ months.


## - Example:

The first calculation below determines the total amount paid on a loan of $\$ 75,000$ at a rate of $9.5 \%$ compounded monthly over twenty years while the second shows how much of this amount was paid towards the interest.


In many cases, the amount paid towards the principle of the loan and the total amount which remains to be paid after a certain payment need to be computed. This is easily accomplished with the functions unpaidbalance and curprinpaid defined below using the function mort $[p, j, n$ ] that was previously defined:

Remark; Mathematica does not retain definitions of functions from previous Mathematical sessions. This means that in order to use a function definition from a previous Mathematical session, the definition must be re-entered.

## Interest

回主

```
In/58): \(=\)
 unpaidbalance[p_.j_, \(\left.n_{-,} \mathbf{m}_{-}\right]=\)
 present[anort[p,j,n],j,n-n]
004 \(7381=\)
 \(\left(1-(1+j)^{-(-m+n)}\right) p\)
 \(-----(1+\cdots)\)
 \(-n\)
 \(1-(1+j)\)
In/39): \(=\)
 curprinpaid[p_.j_.n_.n_]=
 p-unpaidbalance[p.j.n.m]
```

out /50)=
unpaidbalance[p.j.n.m] computes the unpaid balance of a loco of $\$ p$ amortized at a rate of $j$ \% compounded at each payment for a total of $n$ payments immediately after the math payment.
curprinpaid[p,j.n.n]
computes the principal paid immediately
after the moth payment.

out /50)=
out $101=$
35902.1
in/41): $=$
curprinpaid[ 60000.,08/12.120.60]
Out /41/=
24097. 9

```
 p-(1-(1+j\mp@subsup{)}{}{-(-min)}+n)
unpaidbalance[60000,.08/12, 120, 60]
```

out $10 /=$
35902.1
$\ln / 41 / \mathrm{l}=$
curprinpaid[ 60000. .08/12.120.60]
Out /41/=
24097.9

The unpaid balance of a $\$ 60,000$ loon with interest ct arete of $8 \%$ compounded monthly scheduled to be amortized over a period of ten years ( 120 payments) immediately after the 50 th payment is $\$ 35,901.10$.

Consequently, the total principal paid immediately after the 60 th payment is $\$ 60,000-\$ 35,901.10=\$ 24,097.5$

Mathematica can also be used to determine the total amount of interest paid on a loan using the following function :


Tables can be created which show a breakdown of the payments made on a loan (i.e., how much of the total amount paid is allotted to the principle and how much to the interest.) An example is given below :


This table shows the interest paid ond principle paid at the endof0,3,6,9,12 and 15 years.

Since curintpaid $[p, j, n, y]$ computes the interest paid on a loan of $\$ p$ amortized at a rate of $j$ per period over $\boldsymbol{n}$ periods immediately after the yth payment, and curintpaid[p,j, $\mathbf{n}, \mathbf{y} \mathbf{- 1 2 ]}$ computes the interest paid on a loan of $\$ \mathrm{p}$ amortized at a rate of j per period over n periods immediately after the $(\mathbf{y}-12)$ th payment,
curintpaid[ $p, j, n, y]$-curintpaid[ $p, j, n, y-12]$ yields the amount of interest paid on a loan of $\$ p$ amortized at a rate of $j$ per period over $n$ periods between the $(y-12)$ th and $y$ th payment.

Consequently, the interest paid and the amount of principle paid over a year can also be computed :

首				
/n/10): $=$				
annualintpaid[p_.j_, $\left.\mathbf{n}_{\text {- }} \mathbf{Y}_{-}\right]$:				
curintpaid[p,j, $\mathrm{n}, \mathrm{Y}]$-curintpaid[p,j, $\mathrm{m}, \mathrm{Y}-12]$ :				
annualprinpaid[p_.j_.n_, Y_]:=   curprinpaid[p,j, n, Y]-curprinpaid[p,j,n,Y-12]				
/n/1//: $=$				
Table[ft, annualintpaid[ $45000, .07 / 12,1512,12 \mathrm{t}]$. annualprinpaid[45000..07/12.15 12, 12t]\}.\{t, 1,5,1\}]]				
Oul/t/K'STableform= // TableForm				
1	3094.26	1759.41	Column 1 represents the rumber of years the loon has been held; codumn 2 represents	
2	2967.08	1886.6	the interest poid on the loon curring the yeor; ond codurn 3 represents the cmount	
3	2830.69	2022.98		
4	2684.45	2169.22		]
5	2527.64	2326.03		
1-1				

## - Additional Output Features of Version 2.0

## - Example:

Suppose an investor begins investing at a rate of d dollars per year at an annual rate of $\mathrm{j} \%$. Each year the investor increases the amount invested by $\mathrm{i} \%$. How much has the investor accumulated after m years?

The following table illustrates the amount invested each year and the value of the annual investment after $m$ years:

Year	Rate of Increase	Annual Interest	Annual Investment	Value after m Years
$\mathbf{0}$		$\mathrm{j} \%$	d	$(1+\mathrm{j} \%)^{\mathrm{m}} \mathrm{d}$
$\mathbf{1}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%) \mathrm{d}$	$(1+\mathrm{i} \%)(1+\mathrm{j} \%)^{\mathrm{m}-1} \mathrm{~d}$
$\mathbf{2}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%)^{2} \mathrm{~d}$	$(1+\mathrm{i} \%)^{2}(1+\mathrm{j} \%)^{\mathrm{m}-2} \mathrm{~d}$
$\mathbf{3}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%)^{3} \mathrm{~d}$	$(1+\mathrm{i} \%)^{3}(1+\mathrm{j} \%)^{\mathrm{m}-3} \mathrm{~d}$
$\mathbf{4}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%)^{4} \mathrm{~d}$	$(1+\mathrm{i} \%)^{4}(1+\mathrm{j} \%)^{\mathrm{m}-4} \mathrm{~d}$
$\mathbf{5}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%)^{5} \mathrm{~d}$	$(1+\mathrm{i} \%)^{5}(1+\mathrm{j} \%)^{\mathrm{m}-5} \mathrm{~d}$
$\mathbf{k}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%)^{\mathrm{k}} \mathrm{d}$	$(1+\mathrm{i} \%)^{\mathrm{k}}(1+\mathrm{j} \%)^{\mathrm{m}-\mathrm{k}} \mathrm{d}$
$\mathbf{m}$	$\mathrm{i} \%$	$\mathrm{j} \%$	$(1+\mathrm{i} \%)^{\mathrm{m}} \mathrm{d}$	$(1+\mathrm{i} \%)^{\mathrm{m}} \mathrm{d}$

It follows that the total value of the amount invested for the first $k$ years after $m$ years is given by:

Year	Total Investment
0	$(1+j \%)^{m} d$
1	$(1+j \%)^{m} d+(1+i \%)(1+j \%)^{m-1} d$
2	$(1+\mathrm{j} \%)^{m} \mathrm{~d}+(1+\mathrm{i} \%)(1+\mathrm{j} \%)^{m-1} \mathrm{~d}+(1+\mathrm{i} \%)^{2}(1+\mathrm{j} \%)^{m-2} \mathrm{~d}$
3	$\sum_{n=0}^{3}(1+i \%)^{n}(1+j \%)^{m-n} d$
4	$\sum_{n=0}^{4}(1+i \%)^{n}(1+j \%)^{m-n} d$
5	$\sum_{n=0}^{5}(1+i \%)^{n}(1+j \%)^{m-n} d$
k	$\sum_{n=0}^{k}(1+i \%)^{n}(1+j \%)^{m-n} d$
m	$\sum_{n=0}^{m}(1+i \%)^{n}(1+j \%)^{m-n} d$

- The package SymbolicSum.m, contained in the folder Algebra, can be used to find a closed form
of the sums $\sum_{n=0}^{k}(1+i)^{n}(1+j)^{m-n} d$ and $\sum_{n=0}^{m}(1+i)^{n}(1+j)^{m-n} d$.

SymbolicSum.m is included with Version 2.0 but not prior versions of Mathematica:


In the exact same manner a closed form was found and simplified for $\sum_{n=0}^{k}(1+i)^{n}(1+j)^{m-n} d$, SymbolicSum is used to find a closed form for $\sum_{n=0}^{m}(1+i)^{n}(1+j)^{m-n} d$.
In this case, however, the final result is displayed in a print cell in input form with the command Pxint[InputForm[\%]].
/n/50/:=
closedtyo=SymbolicSun $\left[(1+i)^{\wedge} n(1+j)^{\wedge}(1-n) d\right.$. \{n, 0, 且\}]
$004 / 50 /=$

/n/5//:=
Factor[Together[closedtro]]
writes closedtøo
$d(1+j)^{m}\left(\frac{1}{-i+j}+\frac{j}{-i+j}-\frac{(1+i)^{1+m}}{(1+j)^{m}(-i+j)}\right)$ as a single fraction then factors.
OUT/51/=

$$
\frac{d\left(-(1+i)^{\text {In }}-i(1+i)^{\text {In }}+(1+j)^{\text {II }}+j(1+j)^{\text {m }}\right)}{-i+j}
$$

/n/54/:=
prints the previous output
Print[ InputForn[ $\mathbf{X}]$ ]

$$
\begin{aligned}
& \left(d *\left(-(1+i)^{\wedge} m-i *(1+i)^{\wedge} m+(1+j)^{\wedge} m+j *(1+j)^{\wedge} m\right)\right) / \\
& \quad(-i+j)
\end{aligned}
$$

The above results are used to define the functions investment $[\{d, i, j\},\{k, m\}]$ and investmenttot $[\{d, i, j\}, m]$. In the second case, notice that print cells can be edited like any other input or text cell. Consequently, we use Macintosh editing features to copy and paste the above result when we define the the function investmenttot.


Finally, investment and investmenttot are used to illustrate various financial scenarios. In the first example, investment is used to compute the value after twenty-five years of investing $\$ 6500$ the first year and then increasing the amount invested $5 \%$ per year is shown for $5,10,15,20$, and 25 years assuming a $15 \%$ rate of interest on the amount invested. Version 2.0 contains the built-in function AccountingForm which can be used to convert numbers expressed in exponential notation to ordinary notation. In the second example, investmenttot is used to compute the value after twenty-five years of investing $\$ 6500$ the first year and then increasing the amount invested $5 \%$ per year is shown assuming various rates of interest. The results are displayed in AccountingForm:
/n/64/:=
results=Table[ \{t, inpestment[\{6500,.05, 15\}, \{t, 25\}]\}. \{t,5,25,5\}]// TableForn
Outfo4/ㅁ.'Tsbleform=
$5 \quad 1.03506 \quad 10^{6}$
10

1. $5560810^{6}$

15

1. $8866810^{6}$
$\begin{array}{lll}20 & 2.09646 & 10^{6} \\ 25 & 2.22957 & 10^{6}\end{array}$
$\begin{array}{lll}20 & 2.09646 & 10^{6} \\ 25 & 2.22957 & 10^{6}\end{array}$
$\begin{array}{lll}20 & 2.09646 & 10^{6} \\ 25 & 2.22957 & 10^{6}\end{array}$
The commond accounting Forn com be used to convert numbers expressed in exponerticl notation to ordinary digit form.

TableForm AccountingForm[results]]
out/65/:ㄱTsbleform=
$5 \quad 1035065$.
$10 \quad 1556078$.
$15 \quad 1886680$.
$20 \quad 2096460$.
$25 \quad 2229573$.
m/82):=
scenes=Table[ $\{i$, investment tot $[\{6500,05, i\}, 25]\}$.
\{i, 08, 20..02\}]:
AccountingForn[TableForm[scenes]]
ou/s:1) WhoountingForm=
0.08832147.
$0.1 \quad 1087126$.
$0.12 \quad 1437837$.
This table ilhstrates the total vadue of investing $\$ 5500$ the first yeor cund then increasing the comount invested by $5 \%$ per yeor for 25 years for vorious rates of interest.
0.141921899.
$0.16 \quad 2591636$.
$0.18 \quad 3519665$.
0.24806524.

## - Application: Graphing Parametric Equations with ListPlot and ParametricPlot

If list $=\{\{x[1], y[1]\},\{x[2], y[2]\}, \ldots,\{x[n], y[n]\}\}$ is a list of ordered pairs, ListPlot [list] graphs the set of ordered pairs in list. The commands ListPlot and Plot share the same options.
The following example demonstrates how ListPlot is used to create a parametric plot. In this case, both coordinates depend on the variable $t$. A list is produced by evaluating the function $f$ at values of $t$ running from
$t=0$ to $t=3 \pi$ using increments of $\frac{3 \pi}{150}$.
The ordered pairs obtained are then plotted using ListPlot.


Notice that several commerds are combired into a single input cell The semi-colon is placed at the exd to prevent Matherratica from displaying list which consists of 150 ordered pairs.

Two-dimensional parametric functions can also be graphed with the built-in function Parametricplot. - Example:

The unit circle is given by the parametric equation $\{\operatorname{Cos}(\mathrm{t}), \operatorname{Sin}(\mathrm{t})\}, 0 \leq \mathrm{t} \leq 2 \pi$. To graph the unit circle, proceed as follows:


## Chapter 4 Introduction to Lists and Tables

We can obtain essentially the same result with ParametricPlot as we obtained above with ListPlot:


## - Application:

Given a function f , the following example illustrates how to create a table of the first, second, third, ... , and nth derivatives (provided they all exist) of f and then graph the resulting table.

## - Example:

Compute and graph the first three derivatives of $f(x)=x e^{x}$.
Mathematica can produce a table of these derivatives rather easily. This is accomplished through several commands. After defining $f$, a list of $f$ and its first three derivatives in simplified form is obtained with the command
Table[Simplify[D[f[x],\{x,n\}]\},\{n,0,3\}].
This list is then placed in the form of a table using the command TableForm[list].

Lists can be useful in plotting the graphs of functions. Instead of entering the GrayLevel for each function in a multiple plot, these GrayLevel assignments can be made with a list. This approach to plotting several functions is shown below :


Notice that the following result could have been accomplished with the command
Plot[\{f[x], f'[x],f'[x],f''[x]\},\{x,-1,1\},PlotStyle->\{GrayLevel[0], GrayLevel[.1875], GrayLevel[.375], GrayLevel[.5625\}].
However, since the use of lists simplifies the commands needed, this alternate approach is used. In order to make use of list1 and list2 given above, the Release command must be used. The command
Release [argument] causes argument to be evaluated immediately.
Hence, the command
Plot[Release[list1], \{x, -1, 1\}]]
given below causes Mathematica to first produce the list of functions in list1 and then evaluate the functions in the list at the values of $x$ between -1 and 1 in order to plot the functions. Otherwise, a new list would be created for each value of $x$. Release is used similarly with the list of GrayLevel values.

- In Version 2.0, Release has been replaced by the command Evaluate. Consequently, when using Version 2.0, be sure to use Evaluate instead of Release.

A list of functions can be created and plotted in a single command. The second example below shows how the lines
$\mathbf{y}=\mathbf{m x}$ (where $\mathbf{m}$ varies from $\mathbf{m}=-4$ to $\mathbf{m}=2$ in increments of $6 / 5$ ) are ploted using the same GrayLevel list used in the first example.


## - Application: Graphing Equations

Often when working problems, the ability to extract a particular element from a list is quite useful. The following example considers the equation $4 x^{2}+9 y^{2}=81$.
Solving this equation for $y$ yields the two solutions $y= \pm \frac{\sqrt{81-4 x^{2}}}{3}$.

Using Mathematica, these $y$-values appear in the form of a list. Notice below how each element of a list can be extracted for later use. Since many results are rather complicated, this technique can save a great deal of time used on typing and limit careless mistakes.

## - Example:

Graph the equation $4 x^{2}+9 y^{2}=81$.
Begin by defining equation to be the equation $4 x^{\wedge} 2+9 y^{\wedge} 2==81$. Be sure to include the double equals sign so that Mathematica interprets equation as a mathematical equation.
Notice that the elements of the list ycoords are lists. Notice that if table=\{list1, list2, ..., listn\}, where list1, .., listn are lists, table[[1]] yields the first element of table which is list 1 ; table [ $[3,2]]$ yields the second element of the third element of table. In general, table [ $[i, j]$ ] yields the jth element of the ith element of table. Lists of lists, or equivalently, nested lists will be discussed in further detail in Chapter 4.


## 巳

1 오 equation
is the nome of the equation $4 x^{2}+9 y^{2}=81$

Solve[ equation, Y] solves equation for $y$. The resutting list is nomed Ycoords.

## Ycoords[[1]]

is the first elemert of the list Fcoords:
it is a list which contains one element.

The first (and only) element of ycoords [[1]] is found below with ycoords [ [1,1]]. This expression is made up of two parts: the part in front of the arrow and the part following the arrow. Therefore, to obtain the desired formula (the second part), ycoords [ $[1,1,2]]$ is used:


After extracting the appropriate elements from the list, thy can be used below in other commands to determine where the curve intersects the x -axis and then plot the curve.

## EhtractingElementsoflists

in /b): $=$
xralues=Solve[ycoords[[1,1,2]]==0, x]
outfox=

$$
\left\{\begin{array}{lllc} 
& 9 & & 9 \\
2 & & & \\
\hline
\end{array}\right.
$$

(nf):=
Plot[\{Ycoords[[1,1,2]]. Fcoords[[2,1,2]]\}.
solves the equation $\frac{\sqrt{81-4 \mathrm{x}^{2}}}{3}=0$.
Notice that if $x<-9 / 2$ or $x>9 / 2$, $\sqrt{81-4 x^{2}}$ is not real Hence, the
domain of Ycoords[[1,1,2]]
(ord ycoords[[2,1,2]]) is
[-9/2,9/2].
$\{x,-9 / 2,9 / 2\}$, Plot Range $->\{-9 / 2,9 / 2\}$. hspectRatio-31]


Out /7)=
-Graphics-

The equation $4 x^{2}+9 y^{2}=81$ is equivalent to the parametric equation $\left\{\frac{9}{2} \operatorname{Cos}(t), 3 \operatorname{Sin}(t)\right\}, 0 \leq t \leq 2 \pi$.
Consequently, the same result could have been obtained with the command
ParametricPlot[\{9/2 Cos [t], $3 \operatorname{Sin}[t]\},\{t, 0,2 P i\}]$.

- Moreover, Version 2.0 includes the package ImplicitPlot.m which contains the command ImplicitPlot. The command ImplicitPlot can be used to graph the previous example as well as the next example. For additional information on Implicitplot, see Chapter 8. Unfortunately, ImplicitPlot is not available in versions of Mathematica released prior to Version 2.0.

The following example deals with a slightly more complicated curve :

## - Example:

Graph the curve $y^{2}-x^{4}+2 x^{6}-x^{8}=0$.


The curve is then easily plotted using the elements of the yvalues list obtained above. Notice that this curve passes through the x -axis at $\mathrm{x}=-1$ and $\mathrm{x}=1$ as expected from the results of the previous command:
Factor [1-2 $\left.x^{\wedge} 2+x^{\wedge} 4\right]$.


## - Application: Tangent Lines and Animations

The following example illustrates how the tangent line to the graph of $f(x)=x^{3}-\frac{9}{2} x^{2}+\frac{23}{4} x-\frac{15}{8}$ at many values of x on the interval $[0,3]$ can be determined and plotted through the use of lists. Provided f is differentiable when $x=a$, the line tangent to the graph of $f$ at $x=a$ is given by $y-f(x)=f(x)(x-a)$.
Hence, this line line can be defined as a function of $x$ and a with

$$
\operatorname{tanline}\left[x_{_}, a _\right]:=f^{\prime}[a](x-a)+f[a]
$$

The function tangraph [a] defined below plots the tangent line to $f$ at $x=a$ for values of $x$ between 0 and 3. In plotting these lines, a list of values of $a$ is needed. This list is created in table below:

	Since we will name objec
1n/50):=   Clear[f,table, tanline, tangraph] $f\left[x_{1}\right]=x^{\wedge} 3-9 / 2 x^{\wedge} 2+23 / 4$ x-15/8; plotf=P1ot[f[x],\{x,0,3\}.   PlotRange $->\{-1.5,1.5\}]$	$f$, table, tomline, cand tomgroph, clear allprior definitions first. Ther define $f(x)=x^{3}-\frac{9}{2} x^{2}+\frac{23}{4} x-\frac{15}{8}$   and graph $f(x)$ on the interval [0,3]. The option   PlotRange-> \{-1.5.1.5\} specifies that the ronge displayed consists of the $y$-values between -1.5 crad 1.5 .   For a given vadue of a, the function tanline[a, x]
$\begin{aligned} & \text { Out/50/= } \\ & \text {-Graphics- } \end{aligned}$   Mathematica carnot make sense of the furction	is the line tongent to the groph of f ot the point ( $\alpha f_{j}(\alpha)$ )
	For a given vahe of $\alpha$, the furction tangraph[a] grophs tanline[a, $\mathbf{x}]$ (in gray) and $\mathbf{f}[\mathbf{x}]$ (in black)
$\begin{aligned} & \text { Plot[\{tanline[a, x],f[x]\},\{x,0,3\}, } \\ & \text { PlotRange } \rightarrow\{-i, 5,1.5\} \\ & \text { PlotStyle } \rightarrow\{\text { GrayLevel[ . 3]. Graylevel[0]\}] } \end{aligned}$	on the interval [ 0,3$]$. The $y$-values displayed cre between - 1.5 ond 1.5 .
$\left[\begin{array}{l} h / 54 f:= \\ \quad \text { table=Table[j.\{j.0.3,3/20\}] } \end{array}\right]$	table is a list of the vabues $0+n \frac{3}{20}$ for $n=0,1,2, \ldots, 30$.
oud $54 /=$   $\begin{array}{lllllllll}3 & 3 & 9 & 3 & 3 & 9 & 21 & 6 \\ \text { \{0. } & -- & -- & -- & - & - & -- & -- & - \\ 20 & 10 & 20 & 5 & 4 & 10 & 20 & 5\end{array}$.	
$\begin{array}{lllllllll} 27 & 3 & 33 & 9 & 39 & 21 & 9 & 12 & 51 \\ -- & -. & -- & - & -- & -- & - & -- & -- \\ 20 & 2 & 20 & 5 & 20 & 10 & 4 & 5 & 20 \end{array}$	
$\begin{array}{lll} 27 & 57 & \\ --, & --, & 3\} \\ 10 & 20 & \\ \hline \end{array}$	
N10	

Once the list of a values is established in table, Map[tangraph, table] evaluates tangraph at each value of a in table. Hence, a list of the graphs of the lines tangent to the graph of f when $\mathrm{x}=\mathrm{a}$ is produced. Only the first graph in this list is shown below. The others are hidden but can be seen by double-clicking on the outer ("half-arrow") cell containing the first graph. These graphs can also be viewed using Mathematica's animation capabilities.


## © Animation :

Through using animation, many graphs can be seen in succession. Hence, the graphs can be compared quite easily. The first step towards animation is to click once on the outer cell which encloses all of the graphs. This selects all of the graphs contained in the list. Next, select Animate Selected Graphics found under the Graph heading in the Menu at the top of the screen. Animation can be halted by clicking once anywhere on the screen. Some of the animation options are demonstrated below :


## Application: Approximating Lists with Functions

Another interesting application of lists is that of curve-fitting. The command Fit [data, functionset, variables] fits a list of data points found in data using the functions in functionset by the method of least-squares. The functions in functionset are functions of the variables listed in variables.

An example is shown below which gives a quadratic fit to the data points in datalist.

datalist is the list of vackues
\{1.14479,1.5767,268572,25199.
3.58019,3.84176,4.09957, 5.09166,5.98085,6.49449,
6.121133 .
p1 grophs the points
$\{i, d o t c l i s t[[i]]\}$ for $i=1,2$, $3, \ldots, 10,11$.

Fit[datalist. \{1, x, $\left.\left.x^{\wedge} 2\right\}, x\right]$ attempts to find a linear combinction of
$1, x$, and $x^{2}$
which opproximates the list of numbers datalist
as closely es possible.
The resulting function is nomedy.

The approximating function obtained above via the least-squares method can be plotted along with the data points. This is demonstrated below. Notice that many of the data points are not very close to the approximating function. Hence, a better approximation is obtained below using a polynomial of higher degree (4).

p2=Plot[y[x].\{x,-1, 11\}.
DisplayFunction->Identity]
gropks $y$ on the interval $\{-1,11]$ and nomes the resulting groph $p 2$.

Shov[p1.p2. DisplayFunction-> \$DisplayFunction] shows the grophs of 1 and $p 2$ simultoneousiy. Hence, we con see how well the fit opproximates the $\operatorname{dot} \alpha$

## Clear[y]

Y[y_]=Fit[datalist. $\left.\left\{1, x, x^{\wedge} 2, x^{\wedge} 3, x^{\wedge} 4\right\}, x\right]$ attempts to find a lineor combination of
1, $x, x^{2}, x^{3}$, and $x^{4}$
to opproximate datalist as well as possible.

## Chapter 4 Introduction to Lists and Tables

To check its accuracy, this second approximation is simultaneously with the data points.


Next, consider a list of data points made up of ordered pairs. These points are plotted below with ListPlot, and fitted with a polynomial of degree 3 using Fit. (Note that, in this case, since the data is given as ordered pairs, Listplot plots the points as they are given in datalist.)


The list of data and the approximating curve $f(x)$ are ploted together to check the accuracy. Then, a polynomial of degree 4 is used to fit the points.


## Chapter 4 Introduction to Lists and Tables

In this case, the fit resulting from $F$ it [datalist, $\left.\left\{1, x, x^{\wedge} 2, x^{\wedge} 3, x^{\wedge} 4\right\}, x\right]$ does not appear to be much more accurate than the fit resulting from $\operatorname{Fit}$ [datalist, $\left.\left\{1, x_{,} x^{\wedge} \mathbf{2}, x^{\wedge} \mathbf{3}\right\}, x\right]$ :


Again, consider a set of data points composed of ordered pairs. These points are listed and plotted below using ListPlot. In addition to curve-fitting with polynomials, Mathematica can also fit the data with trigonomerric functions of the form $C_{1}+C_{2} \cos x+C_{3} \sin x+C_{4} \cos 2 x+C_{5} \sin 2 x+\cdots$

The approximating function, called g , using the first three terms of the above expression is determined below:


The trigonometric function $g$ and the data are then plotted on the same graph. Afterwards, another approximation is calculated using a function of the form
$\mathrm{C}_{1}+\mathrm{C}_{2} \operatorname{Cos} \mathrm{x}+\mathrm{C}_{3} \operatorname{Sin} \mathrm{x}+\mathrm{C}_{4} \operatorname{Cos} 2 \mathrm{x}+\mathrm{C}_{5} \operatorname{Sin} 2 \mathrm{x}+\mathrm{C}_{6} \operatorname{Cos} 3 \mathrm{x}+\mathrm{C}_{7} \operatorname{Sin} 3 \mathrm{x}$.

This function is later plotted together with the set of data points and proves to be a much better fit.


In this case, the fit, $g$, resulting from
Fit [datapairs, $\{1, \sin [x], \cos [x], \sin [2 x], \cos [2 x], \sin [3 x], \operatorname{Cos}[3 x]\}, x]$ is much better than the fit resulting from Fit $[$ datapairs, $\{1, \operatorname{Sin}[x], \operatorname{Cos}[x]\}, x]$ :


Mathematica supplies several packages which can be used to fit data using different techniques. For additional information regarding the different packages, see Chapter 7.

## - Apolication: Introduction to Fourier Series

Many problems in applied mathematics are solved through the use of Fourier series. Mathematica assists in the computation of these series in several ways. First, recall the definition :

The Fourier series of a periodic function $\mathrm{f}(\mathrm{x})$ with period 2 L is the trigonometric series
$a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right], \quad$ where $a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \operatorname{Cos}\left(\frac{n \pi x}{L}\right) d x$,
and $b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \operatorname{Sin}\left(\frac{n \pi x}{L}\right) d x$.
The kth term of the Fourier series
$a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \operatorname{Cos}\left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]$ is $\quad a_{k} \operatorname{Cos}\left(\frac{k \pi x}{L}\right)+b_{k} \operatorname{Sin}\left(\frac{k \pi x}{L}\right)$.
The kth partial sum of the Fourier series
$a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \operatorname{Sin}\left(\frac{n \pi x}{L}\right)\right]$ is $\quad a_{0}+\sum_{n=1}^{k}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]$
It is a well-known theorem that if $f(x)$ is a periodic function with period 2 L and $\mathrm{f}(\mathrm{x})$ is continuous on [-L,L] except at most finitely many points, then at each point $x$ the Fourier series corresponding to $f$ converges and

Chapter 4 Introduction to Lists and Tables
$a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \operatorname{Cos}\left(\frac{n \pi x}{L}\right)+b_{n} \operatorname{Sin}\left(\frac{n \pi x}{L}\right)\right]=\frac{\operatorname{Lim}_{y \rightarrow x+} f(y)+\operatorname{Lim}_{y \rightarrow x-} f(y)}{2}$.
In fact, if the series $\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)$ converges, then the Fourier series
$a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \operatorname{Cos}\left(\frac{n \pi x}{L}\right)+b_{n} \operatorname{Sin}\left(\frac{n \pi x}{L}\right)\right]$ converges uniformly on $\Re$.
Mathematica simplifies the process of determining the coefficients as well as assists in verifying the convergence of the series. Additional applications discussing Fourier Series will be discussed in Chapter 5. Consider the following example.

- Version 2.0 includes the package Fouriertransform.m in the Calculus folder.

Fouriertransform.m contains several commands which can be used to compute exact or approximate Fourier series of some functions. The package FourierTransform.m is discussed in more detail in Chapter 7.

## - Example:

Let $f(x)=\left\{\begin{aligned} 1 & \text { if } 0 \leq x<1 \\ -x & \text { if }-1 \leq x<0\end{aligned}\right.$ and let $g$ be the periodic extension of $f$ of period 2.
Notice how the piecewise-defined function $f$ is entered. The functions $f$ and $g$ are then plotted. The graph of $g$ is named graphg for later use.


The Fourier series coefficients are computed with the integral formulae given earlier. Executing the command $\mathrm{L}=1$
$a[0]=1 /(2 L)$ NIntegrate $[f[x],\{x,-L, L\}]$ defines $L$ to be 1 and $a[0]$ to be an approximation of
the integral $\frac{1}{2 L} \int_{-L}^{L} f(x) d x$. Executing the command

defines $a[n]$ to be an approximation of the integral
$\frac{1}{L} \int_{-L}^{L} f(x) \operatorname{Cos}\left(\frac{n \pi x}{L}\right) d x$ and $b[n]$ to be an approximation of the integral $\frac{1}{L} \int_{-L}^{L} f(x) \operatorname{Sin}\left(\frac{n \pi x}{L}\right) d x$.
FourierSeries

## h/3 $38 /=$

Clear[a,b,fs.L]
$\mathrm{L}=1$
For this excmple, $L$ is assigned the value 1 .

To opproximate the Fourier series for
$a[0]=1 /(2 L)$ HIntegrate[f[x].\{x,-L,L\}] $f$, we need to compute $a_{0}$ cod vorious vabues of $a_{n}$ and $b_{n}$.
out $7381=$
0. 750409
in/5/:=
$a_{n}$ and $b_{n}$
will be approximated using
Nintegrate.
a[n_]:=1/L NIntegrate[f[x] $\operatorname{Cos}[n P i x / L] .\{x,-L, L\}]$
$b\left[n_{-}\right]:=1 / L$ HIntegrate[f[x] $\left.\operatorname{Sin}[n P i x / L],\{x,-L, L\}\right]$

2

A table containing the coefficients $a[i]$ and $b[i]$ for $i=1,2,3, \ldots, 10$ is created. Notice how the elements of the table are extracted using double brackets with coeffs, the name of the table :


The command Sum[f[i],\{i,1,n\}] computes the sum
$\mathfrak{f}[1]+f[2]+\ldots+f[n-1]+f[n]=\sum_{i=1}^{n} f[i]$.
Once the coefficients are calculated, the kth partial sum of the Fourier series is obtained with Sum.
The kth term of the series is:
fs[k_, $\left.x_{-}\right]:=\operatorname{coeffs}[[k, 1]] \operatorname{Cos}[k \operatorname{Pi} x]+\operatorname{coeffs[[k,2]]\operatorname {Sin}[kPix]}$ where $k=1,2, \cdots, a_{k}=$ coeffs $[[k, 1]]$, and $b_{k}=$ coeffs $[[k, 2]]$.
Therefore, the nth partial sum (the sum of the first $n$ terms) of the Fourier series is obtained by summing the $\mathbf{f s}[\mathbf{k}, \mathbf{x}]$ over k from $\mathrm{k}=1$ to $\mathrm{k}=\mathrm{n}$ and adding to this summation the coefficient $\mathbf{a}[0]$ :
$n$th partial sum $=a[0]+f s[1, x]+\ldots+f s[n-1, x]+f s[n, x]=a[0]+\sum_{k=1}^{n} f s[k, x]$.
This is defined below with the function fourier $[n, x]$. Several examples of this function are then given. Note that the largest value of $n$ which can be used is $n=10$ since the coefficients for the Fourier series have not been calculated for larger values of $n$.


To see how the Fourier series approximates the function, the function g is plotted together with the graph of the Fourier series with $\mathrm{n}=2$. This does not appear to be a very good approximation. (The resulting graph is named graphone.)

```
Out/49)=
```

Out/49)=
-Graphics-
-Graphics-
Out $/ 48 /=$
-Graphics-

```

\section*{FourierSeries}
\(1 \pi / 49 /:=\)
graphone=Plot[fourier[2, \(]\), \{ \(1,-1,5\}\). PlotStyle-sGrayLevel[.2]. DisplayFunction->Identity] Shov[graphone.graphg. DisplayFunction -3\$DisplayFunction]

graphone is the groph of fourier[2.x] on the interval [-1,5]. Notice that the Plot cund Show commond are combined into a single input cell to show graphg ond graphone simultureousiy.

The use of more terms in the Fourier series yields a more accurate approximation of g . Graphs are shown for \(\mathrm{n}=5\) and \(\mathrm{n}=9\). These are named graphfive and graphnine, respectively.
graphfive=Plot[fourier[5,x].\{x,-1,5\}. PlotStyle-sGraylevel[.4].
DisplayFunction- \(\rightarrow\) Identity]
Shov[graphfive, graphg, DisplayFunction
In the scome monner, we con compore
fourier [5, x],
fourier[9.1], ond
g.
-3 DisplayFunction]

graphnine=Plot[fourier[9.x].\{x,-1,5\}. plotStyle->Graylevel[.6].
DisplaqFunction-3 Identity]
Shov[graphnine, graphg, DisplapFunction \(\rightarrow\) SDisplapFunction]

\section*{Chapter 4 Introduction to Lists and Tables}

\section*{- Example: (One-Dimensional Heat Equation)}

A typical problem in applied mathematics which involves the use of Fourier series is that of the one-dimensional heat equation. This initial-value problem which describes the temperature in a uniform rod with insulated surface is given by:
(1) \(\mathrm{k} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{\partial \mathrm{u}}{\partial \mathrm{t}}, \quad 0<\mathrm{x}<\mathrm{a}, \mathrm{t}>0\);
(2) \(\mathrm{u}(0, \mathrm{t})=\mathrm{T}_{0} ; \mathrm{t}>0\);
(3) \(u(a, t)=T_{a} ; \quad t>0 ; \quad\) and
(4) \(u(x, 0)=f(x), \quad 0<x<a\).

The solution to the problem is well-known:
\(u(x, t)=\underbrace{T_{0}+\frac{x\left(T_{a}-T_{0}\right)}{a}}_{v(x)}+\sum_{n=1}^{\infty} b_{n} \operatorname{Sin}\left(\lambda_{n} x\right) e^{-\lambda_{n}^{2} k t}\), where \(\lambda_{n}=\frac{n \pi}{a}\) and \(b_{n}=\frac{2}{a} \int_{0}^{a}[f(x)-v(x)] \operatorname{Sin}\left(\frac{n \pi x}{a}\right) d s\)
and is obtained through separation of variables techniques The coefficient \(b_{n}\) in the solution \(u(x, t)\)
is the Fourier series coefficient \(b_{n}\) of the function \(f(x)-v(x)\), where \(v(x)\) is the steady-state temperature.

Consider the heat equation with initial temperature distribution \(f(x)=-(x-1) \operatorname{Cos}(\pi x)\).
The steady - state temperature for this problem is \(v(x)=1-x\), and the eigenvalue,
\(\lambda_{\mathrm{n}}\), is given by \(\frac{\mathrm{n} \pi}{2}\).

The function f is defined and plotted below. Also, the steady-state temperature, \(\mathrm{v}(\mathrm{x})\), and the eigenvalue are defined. Finally, NIntegrate is used to define a function which will be used to calculate the coefficients of the solution.

Let \(S_{m}=b_{m} \operatorname{Sin}\left(\lambda_{m} x\right) e^{-\lambda m^{2} k t}\). Then the desired solution \(u(x, t)\) is given by \(u(x, t)=v(x)+\sum_{m=1}^{\infty} S_{m}\).
Let \(u(x, t, n)=v(x)+\sum_{m=1}^{n} S_{m}\).
Notice that \(u(x, t, n)=u(x, t, n-1)+S_{n}\). Consequently approximations of the solution to the heat equation are obtained recursively. The solution is first defined for \(n=1, u[x, t, 1]\).

Subsequent partial sums, \(u[x, t, n]\), are obtained by adding the \(n\)th term of the series,
\(S_{n}=b_{n} \operatorname{Sin}\left(\lambda_{n} x\right) e^{-\lambda_{n}^{2} k t}\) to \(u[x, t, n-1]\).
```

inf:5%:=
u[x_,t_.1]:=\mp@code{In]+b[1] Sin[lanbda[1] m}
]Exp[-lanbda[1]^2 1/4 t]
u[x_,t_, n_]:=u[x,t,n-1]+b[n] Sin[
lanbda[n] x]Exp[-lambda[n]^2 1/4 t]

```

By defining the solution in this manner a table can be created which includes the partial sums of the solution :

The syntax of the Mathematica command Do is similar to the syntax of the command Table. The command Do[statement[i], \{i,istart, istop, istep \(\}]\) instructs Mathematica to execute statement [i] for values of \(i\) beginning with istart and continuing through istop in increments of istept.

The solution with \(\mathrm{n}=8\) is plotted below for \(\mathrm{t}=0\) to \(\mathrm{t}=6\) using a step-size in t of \(6 / 20\). Remember that \(\mathbf{u}[x, t, n]\) is determined with a Table command. Therefore, Release must be used in the Do command below so that Mathematica first computes the solution \(u\) and then evaluates \(u\) at the particular values of \(x\). Otherwise, \(u\) is recalculated for each value of \(x\).

The plots of the solution obtained above can be animated :

\section*{Chapter 5 Introduction to Nested Lists: Matrices and Vectors}

Chapter 5 discusses operations on matrices and vectors, including vector calculus and systems of equations. Several linear programming examples are discussed.
- Commands introduced and discussed in this chapter from Version 1.2 include:
```

Operations on Matrices Operations to Create Lists and Tables
\#atrima+@atrixb Table[expression,(positiveinteger}]
matrixa.matrixb Array[rariable,positiveinteger]
Det[eatrix]
Eigenvalues[eatrix]
Eigenvectors[eatriz]
Identitytlatrix[positiveinteger]
Inverse[uatrix]
Transpose[eatrix]
LinearSolve[amtrix,vector]
HatrixPover[natrix,positiveinteger]
HatrixForm[eatrix]
Linear Programming
Constrained\#lin[function,{inequalities},{Tariables}]
ConstrainedHax[function,{inequalities},{fariables}]
LinearProgrameing[rectorc, matrixa,vectorb]
Other Commands
TrigExpand [expression]
BesselJ[alpha,x]
Print[expression]
Saving and Appending Output for Future Mathematica Sessions
>>filename
>>>filename

```

Commands introduced and discussed in this chapter from Version 2.0 include:
```

Expand[Trig->True]

```

Applications in this chapter include linear programming, vector calculus, and saving results for future Mathematica sessions.

\section*{图5.1 Nested Lists: Introduction to Matrices, Vectors and Matrix Operations}

\section*{- Defining Matrices and Vectors}

Marrix algebra can be performed with Mathematica. Before introducing the operations involved in matrix algebra, the method by which a matrix is entered must first be discussed. In Mathematica, a matrix is simply a list of lists where each list represents a row of the matrix. Therefore, the \(m \times n\) matrix
\(A=\left[a_{i, j}\right]=\left[\begin{array}{ccccc}a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3, n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m, 1} & a_{m, 2} & a_{m, 3} & \cdots & a_{m, n}\end{array}\right]\) is entered in the following manner:
\(A=\left\{\left\{a_{1,1}, a_{1,2}, a_{1,3}, \cdots, a_{1, n}\right\},\left\{a_{2,1}, a_{2,2}, a_{2,3}, \cdots, a_{2, n}\right\}, \cdots,\left\{a_{m, 1}, a_{m, 2}, a_{m, 3}, \cdots, a_{m, n}\right\}\right\}\).
For example, to use Mathematica to define \(m\) to be the matrix \(\left[\begin{array}{ll}a[1,1] & a[1,2] \\ a[2,1] & a[2,2]\end{array}\right]\), execute
the command \(m=\{\{a[1,1], a[1,2]\},\{a[2,1], a[2,2]\}\}\).
Another way to create a matrix is to use the command Array. The command m=Array \(\{a,\{2,2\}]\) produces the same result as above.

The following examples illustrate the definition of a \(3 \times 3\) matrix.

\section*{- Example:}
matrixa=Table\{a[i,j],\{i,1,3\},\{j,1,3\}] andmatrixaprime=Array[a, \{3, 3\}] produce the same result.

In addition, non-square matrices may also be defined using Mathematica. For example,
to define matrixb to be the matrix \(\left[\begin{array}{llll}b[1,1] & b[1,2] & b[1,3] & b[1,4] \\ b[2,1] & b[2,2] & b[2,3] & b[2,4]\end{array}\right]\), enter either
matrixb=Table[b[i,j],\{i,1,2\},\{j,1,4\}] ormatrixb=Array[b,\{2,4\}].
\begin{tabular}{|c|c|}
\hline /n/6): \(=\) & \\
\hline matrixb=Array[b, \(\{2,4\}]\) & yields the \(2 \times 4\) matrix \\
\hline & \([b[1,1] \quad b[1,2] \quad b[1,3] \quad b[1,4]]\) \\
\hline \(\{\{b[1,1], b[1,2], b[1,3], b[1,4]\}\) & \([\mathrm{b}[2,1] \quad \mathrm{b}[2,2] \quad \mathrm{b}[2,3] \quad \mathrm{b}[2,4]\)]. \\
\hline \[
\{b[2,1], b[2,2], b[2,3], b[2,4]\}\}
\] & The some resut would hove been obtained using the commond \\
\hline \[
m / 7 / \mid=
\] & \begin{tabular}{l}
Table[b[i,j],\{i,1,2\},\{j,1,4\}] \\
oroorerroppop
\end{tabular} \\
\hline HatrimForn[natrimb] & \\
\hline Out/ \(73 \cdots \cdots\) crinfor & 于 \\
\hline \(\mathrm{b}[1,1] \mathrm{b}[1,2] \mathrm{b}[1,3] \quad \mathrm{b}[1,4]\) & \\
\hline \(b[2,1] \quad b[2,2] \quad b[2,3] \quad b[2,4]\) & \[
J]
\] \\
\hline
\end{tabular}

\section*{- Example:}

Use Mathematica to create the matrix matrixc,
```

$\left[\begin{array}{llll}c[1,1] & c[1,2] & c[1,3] & c[1,4] \\ c[2,1] & c[2,2] & c[2,3] & c[2,4] \\ c[3,1] & c[3,2] & c[3,3] & c[3,4]\end{array}\right]$, where $c(i, j)$ is the numerical value of $\operatorname{Cos}\left(j^{2}-i^{2}\right) \operatorname{Sin}\left(i^{2}-j^{2}\right)$.

```
InI \(171:=\)
 Clear[c.matrixc]
 \(c\left[i \_. j\right.\) _] \(=1\left[\operatorname{Cos}\left[j^{\wedge} 2-i^{\wedge} 2\right] \operatorname{Sin}\left[i \wedge 2-j^{\wedge} 2\right]\right]\)
ow \(/ 17 /=\)
```

    Cos[-1. i' }\mp@subsup{}{}{2}+\mp@subsup{j}{}{2}]\operatorname{Sin}[\mp@subsup{i}{}{2}-1.\mp@subsup{j}{}{2}
    m/(18):=
matrimc=Arrap[c,{3,4}]

```
ow \(/ 131=\)
 \(\{\{0.0 .139708,0.143952,0.494016\}\).
 \(\{-0.139708,0.0 .272011,0.452789\}\),
 \(\{-0.143952,-0.272011,0 .,-0.495304\}\}\)
m/19):=
 HatrixForn[atrixc]
out/IgN'NitrixForm=
0.
0. 139708
0.143952
0.494016
\(-0.139708\)
0.
0.272011
0.452789
\(-0.143952\)
\(-0.272011\)
0.
\(-0.495304\)

After clecring all prior definitions of \(c\) ond matrixc, define \(c(i, j)\) to be the numerical value of
\(c(i, j)=\operatorname{Cos}\left(j^{2}-i^{2}\right) \operatorname{Sin}\left(i^{2}-i^{2}\right)\).

A matrix is a nested list. For the \(2 \times 2\) matrix \(m=\{\{a[1,1], a[1,2]\},\{a[2,1], a[2,2]\}\}\) defined earlier, \(m[[1]]\) yields the first element of matrix \(m\) which is the list \(\{a[1,1], a[1,2]\} ; m[[2,1]\}\) yields the first element of the second element of matrix \(m\) which is \(a[2,1]\). In general, if matrixm is an \(m \times n\) matrix, matrixam [\(i, j]]\) yields the unique element in the ith row and jth column.
Once a matrix has been entered, it can be placed in the usual form (with rows and columns) using the command Matrixform[A].
In Mathematica, a yector is a list of numbers. For example, to use Mathematica
to define the row vector vectorv to be \([\mathrm{v}[1], \mathrm{v}[2], \mathrm{v}[3]]\),
enter vectorv=\{v[1],v[2],v[3]\}.
Similarly, to define the column vector vectorv to be \(\left[\begin{array}{l}\mathrm{v}[1] \\ \mathrm{v}[2] \\ \mathrm{v}[3]\end{array}\right]\),
enter vectorv \(=\{v[1], v[2], v[3]\}\). Thus, Mathematica does not distinguish between row and column vectors. Nevertheless, Mathematica performs computations with vectors and matrices correctly.

\section*{■ Extracting Elements of Matrices:}

Once matrixa has been defined via either
```

matrixa=
{{a[1,1],···,a[1,n]},{a[2,1],···,a[2,n]},···...{a[m,1],···..a[m,n]}}

```
or matrixa=Array \([a,\{m, n\}]\), the unique element of matrixa in the \(i\) th row and \(j\) th column is obtained with matrixa[[i,j]].
- Example:

In the previous examples, mb was defined to be the matrix \(\left[\begin{array}{ccc}10 & -6 & -9 \\ 6 & -5 & -7 \\ -10 & 9 & 12\end{array}\right]\).
\(\mathrm{mb}[[i, j]]\) yields the (unique) number in the \(i\) th row and \(j\) th column of mb . The determinant of mb can be calculated with Det [mb]. Observe how various components of mb (rows, elements) can be extracted and how mb is placed in MatrixForm.

\section*{- Basic Computations with Matrices and Vectors:}

Mathematica performs all of the usual operations on matrices. Matrix addition (\(\mathbf{A}+\mathbf{B}\)), scalar multiplication (\(\mathbf{k A}\)), matrix multiplication (A.B), and combinations of these operations are all possible. In addition, the transpose of a matrix \(\boldsymbol{A}\) is found with the built-in command Transpose [\(\boldsymbol{A}\)].

If \(A\) and \(B\) are \(n x n\) matrices satisfying \(A B=B A=I\). Then \(B\) is the inverse of \(A\) and \(B\) is denoted by
\(A^{-1}\). Then \(A A^{-1}=A^{-1} A=I\).
The inverse of a matrix A, provided it exists, is found with the built-in command Inverse [A].
Recall that if \(A=\left[a_{i, j}\right]\) then the transpose of \(A\) is denoted \(A^{t}\) where \(A^{t}=\left[a_{j, i}\right]\).

Equivalently, the transpose of A is obtained by interchanging the rows and columns of A .

\section*{- Example:}

Use Mathematica to define matrix ma to be \(\left[\begin{array}{ccc}3 & -4 & 5 \\ 8 & 0 & -3 \\ 5 & 2 & 1\end{array}\right]\) and matrix mb to be \(\left[\begin{array}{ccc}10 & -6 & -9 \\ 6 & -5 & -7\end{array}\right]\)
Compute (i) ma+mb; (ii) \(\mathrm{mb}-4 \mathrm{ma}\); (iii) the inverse of \(\mathrm{ma} . \mathrm{mb}\); and (iv) the transpose of (ma-2mb). mb .
As described above, we enter ma and mb as nested lists where each element corresponds to a row of the matrix:

\section*{MatricesandUectors}

1n/1/4f:=
\(m a=\{\{3,-4,5\},\{8,0,-3\},\{5,2,1\}\}\)
ow (1/4] \(=\)
\(\{\{3,-4,5\},\{8,0,-3\},\{5,2,1\}\}\)

The nested list ma conbe interpreted as a matrix.
mb is defined similarly:

Matrices can be expressed in traditional matrix form using either the command MatrixForm or TableForm. The operations are performed and the resulting matrix is expressed in traditional matrix form:

All of the basic operations on matrices can be performed with Mathematica. These include the determinant, Det [A], as shown earlier, as well as the computation of the eigenvalues and corresponding eigenvectors of the matrix.

Recall that a nonzero vector \(x\) is an eigenvector for the square matrix A means there exists
a scalar \(\lambda\) such that \(\mathrm{Ax}=\lambda \mathrm{x} . \quad \lambda\) is called an eigenvalue (or characteristic value) for A .
The command Eigenvalues [m] gives a list of the eigenvalues of the square matrix \(m\).
The command Eigenvectors [m] gives a list of the eigenvectors of the square matrix \(m\).
Several examples are shown below. (Notice that by naming the matrix ma , the matrix operations involving ma are easier to perform.)

\section*{© Example:}

Use Mathematica to compute (i) the determinant of \(\left[\begin{array}{ccc}3 & -4 & 5 \\ 8 & 0 & -3 \\ 5 & 2 & 1\end{array}\right]\);
(ii) numerical approximations of the eigenvalues; and
(iii) numerical approximations of the eigenvectors

In the previous example, Mathematica was used to define ma to be \(\left[\begin{array}{ccc}3 & -4 & 5 \\ 8 & 0 & -3 \\ 5 & 2 & 1\end{array}\right]\).

Sometimes the matrix in which each element is numerically approximated is more useful than the matrix in its original form. This is obtained below for the matrix ma with \(\mathbf{N}\) [ma]. Mathematica can also be used to compute the eigenvectors of the matrix with Eigenvectors [ma].

Notice that this command results in a list of eigenvectors as was the case with eigenvalues. Hence, individual eigenvectors can be extracted from the list of eigenvectors, vector, using vector[[i]] which gives the \(i\) th member of the list of eigenvectors. A similar command yields individual eigenvalues. (This method of extracting elements of lists was discussed earlier in Chapter 4.) Once obtained from the list of eigenvectors, certain operations can be performed with the extracted eigenvector. For example, the ith eigenvector can be multiplied by the matrix, ma. This is accomplished with the command
```

ma.vector[[i]].

```

The above command can be used with \(\mathrm{N}[\mathrm{vals}[[j]]]\) vector [[i]] to verify that the numerical approximation of the eigenvalue vals [[j]] corresponds to the eigenvector vector[[i]]. If this pair corresponds, then
ma.vector[[i]]= \(N[v a l s[[j]]]\) vector[[i]] according to the definition given above (i.e., \(\mathbf{A x}=\lambda \mathbf{x}\).
Notice that the lists of eigenvalues and eigenvalues are not given in corresponding order. That is to say, the \(i\) th eigenvalue in the list of eigenvalues does not necessarily correspond with the ith eigenvector in the list of eigenvectors.
Examples of these operations are demonstrated below :

\section*{- Example:}

Compute numerical approximations of the eigenvectors of \(\mathrm{ma}=\left[\begin{array}{ccc}3 & -4 & 5 \\ 8 & 0 & -3\end{array}\right]\);

\section*{MatricesandUectors}
inf1/0):=

Eigenvectors[\(\mathrm{H}[\) na]] vectors=Eigenvectors[M[ma]]
out \(1 / 9\) / \(=\)
\(\{\{-0.69216,-0.481495,-0.838594\}\).
\(\{0.000471861+0.767318 \mathrm{I}\),
\(1.51846-0.105255 \mathrm{I}\).
\(0.388183-0.71867 \mathrm{I}\}\).
\(\{0.000471861-0.767318 \mathrm{I}\).
\(1.51846+0.105255 \mathrm{I}\).
\(0.388183+0.71867 \mathrm{I}\}\}\)
1n/120):=
vectors[[1]]
gives the first element of the list vectors.
ow \(/ 120 \mathrm{O}=\)
\(\{-0.69216,-0.481495,-0.838594\}\)
h/I21): \(=\)
ma.vectors[[1]]
ow/ \(/ 21 /=\)
\(\{-4.34347,-3.0215,-5.26238\}\)
m/122):=
H[vals[[1]]] vectors[[1]]
ow/r22)=
\(\{-4.34347,-3.0215,-5.26238\}\)

Recall that the \(\mathbf{n} \times \mathbf{n}\) identity matrix is the matrix \(I=\left[b_{i, j}\right]\) where \(b_{i, j}=\left\{\begin{array}{lll}1 & \text { if } i=j \\ 0 & \text { if } & i \neq j\end{array}\right.\)
The command Identitymatrix[n] yields the n x n identity matrix .

\section*{- Example:}

Compute the inverse, \(\mathrm{ma}^{-1}\), of the matrix \(\mathrm{ma}=\left[\begin{array}{ccc}3 & -4 & 5 \\ 8 & 0 & -3 \\ 5 & 2 & 1\end{array}\right]\) and verify that \(\mathrm{ma}^{-1} \mathrm{ma}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\).
The inverse of the matrix ma is found with the command Inverse [ma] and is named mai for easier use.
The matrix ma is then multiplied by its inverse mai and placed in Tableform to verify that the identity matrix is obtained.

\section*{Inverse[n]} computes the inverse of the matrix ma; the inverse matrix is nomed mai.
mai.ma // TableForn multiplies matrix mai by matrix ma
cond expresses the result as a table. Notice the some ouput would have been obtained by the commond
nai.ma // MatrixForin.

\section*{- Example:}

Define matrixb to be the matrix \(\left[\begin{array}{cccc}-2 & 3 & 4 & 0 \\ -2 & 0 & 1 & 3 \\ -1 & 4 & -6 & 5 \\ 4 & 8 & 11 & -4\end{array}\right]\). Compute (i) Det \(\left[\begin{array}{cccc}-2 & 3 & 4 & 0 \\ -2 & 0 & 1 & 3 \\ -1 & 4 & -6 & 5 \\ 4 & 8 & 11 & -4\end{array}\right]\);
(ii) \(\left[\begin{array}{cccc}-2 & 3 & 4 & 0 \\ -2 & 0 & 1 & 3 \\ -1 & 4 & -6 & 5 \\ 4 & 8 & 11 & -4\end{array}\right]^{2}\); (iii) \(\left[\begin{array}{cccc}-2 & 3 & 4 & 0 \\ -2 & 0 & 1 & 3 \\ -1 & 4 & -6 & 5 \\ 4 & 8 & 11 & -4\end{array}\right]^{3}\); and (iv) \(\left[\begin{array}{cccc}-2 & 3 & 4 & 0 \\ -2 & 0 & 1 & 3 \\ -1 & 4 & -6 & 5 \\ 4 & 8 & 11 & -4\end{array}\right]^{4}\).

MatricesandVectors
\(\mathrm{m} / 3 / \mathrm{J}=\)
natrixb \(=\{\{-2,3,4,0\},\{-2,0,1,3\},\{-1,4,-6,5\}\) defines natrixb to be \(\{4,8,11,-4\}\}\)
out/3/=
\(\{\{-2,3,4,0\},\{-2,0,1,3\}\),
\(\{-1,4,-6,5\},\{4,8,11,-4\}\}\)
\(1 \pi / 4):=\)
Det[matrixb]
out/4/=
-855
(n/이): \(=\)
natrixb. natrixb // Hatrixforn
Out \(\mathrm{O} / \mathrm{SN}\) Watrixform=
\(\begin{array}{llll}-6 & 10 & -29 & 29\end{array}\)
\(\begin{array}{llll}15 & 22 & 19 & -7\end{array}\)
\(\begin{array}{llll}20 & 13 & 91 & -38\end{array}\)
\(\begin{array}{llll}-51 & 24 & -86 & 95\end{array}\)
computes the product of matrixb multiplied by matrinb. This is the some as computing
\[
\left[\begin{array}{cccc}
-2 & 3 & 4 & 0 \\
-2 & 0 & 1 & 3 \\
-1 & 4 & -6 & 5 \\
4 & 8 & 11 & -4
\end{array}\right]^{2}
\]

Special attention must be given to the notation which must be used in taking the product of a matrix with itself. The following example illustrates how Mathematica interprets the expression (matrixb) ^3. Usually, the matrix product
matrixb matrixb matrixb is represented as (matrixb)^3.
However, the command (matrixb) \(\wedge 3\) cubes each element of the matrix matrixb.

The built-in command MatrixPower may be used to compute products of matrices:
```

MatrixPower[matrix, $n$ ] computes $\underbrace{\text { matrix } \cdot \text { matrix •... } \cdot \text { matrix. }}_{n-t i m e s}$

```

However, to illustrate Mathematica's recursive abilities, we define a function matrixpower that performs the same calculations as the built-in function Matrixpower.

We define the function matrixpower by first defining the matrix with matrixpower [a_, 1] and then the matrix product matrixpower[a_, \(\left.n_{-}\right]:=a . m a t r i x p o w e r[a, n-1]\).
Hence, Mathematica computes the desired power of the matrix.

\section*{MatricesandUectors}

\subsection*{5.2 Linear Systems of Equations}

\section*{■ Calculating Solutions of Linear Systems of Equations}

To solve the system of linear equations \(\mathrm{Ax}=\mathrm{b}\), where A is the coefficient matrix, b is a known vector and x is the unknown vector, we proceed in the usual manner: If \(A^{-1}\) exists, then \(A^{-1} A x=A^{-1} b\) so \(x=A^{-1} b\).
Mathematica offers several commands for solving systems of linear equations, however, which do not depend on the computation of the inverse of \(A\). These commands are discussed in the following examples.

\section*{- Example:}

Solve the system of three equations \(\left\{\begin{array}{l}x-2 y+z=-4 \\ 3 x+2 y-z=8 \\ -x+3 y+5 z=0\end{array}\right.\) for \(x, y\), and \(z\).
In order to solve an \(n \times n\) system of equations (\(n\) equations and \(n\) unknown variables), the command
Solve[\{eqn1,eqn2, ...,eqna\},\{var1, var2, ...,varn\}] is used. In other words, the equations as well as the variables are entered as lists. If one wishes to solve for all variables that appear in a system, the command Solve [\{eqn1, eqn2, . . eqnn\}] attempts to solve eqn 1, eqn \(2, \ldots\), eqna for all variables that appear in them. The system given above with 3 equations and 3 unknowns is solved below. (Remember that a double equals sign must be used in each equation.) The time required to perform the calculation is also displayed. The steps necessary to have the time displayed are given later in this section.

In this case, entering either Solve \([\{x-2 y+z==-4,3 x+2 y==8,-x+3 y+5 z==0\}]\) or Solve \([\{x-2 y+z, 3 x+2 y,-x+3 y+5 z\}==\{-4,8,0\}]\) yield the same result.
Remark: Be sure to include the double equals signs between the left- and right-hand sides of each equation.
\begin{tabular}{|c|c|}
\hline & Solve[\(\{\mathrm{x}-2 \mathrm{~T}+\mathrm{z}==-4,3 \mathrm{x}+2 \mathrm{Y}-\mathrm{z}==8\) \\
\hline \[
\left.\begin{array}{l}
\text { h/j/: }= \\
\quad \text { Solve[}\{x-2 Y+z==-4,3 x+2 Y-z==8, \\
\quad-x+3 y+5 z==0\},\{x, Y, z\}] \\
\text { Owt } / J /= \\
\{\{x \rightarrow 1, y \rightarrow 2, z \rightarrow-1\}\}
\end{array}\right]
\] & \(-x+3 y+5 z==0\},\{x, y, z\} \mid\) solves the system of equations
\[
\left\{\begin{array}{l}
x-2 y+z=-4 \\
3 x+2 y-z=8 \quad \text { in. } 78 \text { seconds. } \\
-x+3 y+5 z=0
\end{array}\right.
\] \\
\hline Time: 0.78 seconds a \(^{\text {a }}\) - & \\
\hline
\end{tabular}

In this case, Mothematica displays the time it takes to perform the calculation.

Another way to solve systems of equations is based on the matrix form of the system of equations, \(\mathbf{A x}=\mathbf{b}\). The matrix of coefficients in the previous example is entered as matrixa along with the vector of right-hand side values vectorb. After defining the vector of variables, vectorx, the system \(\mathbf{A x}=\mathrm{b}\) is solved explicitly with the command Solve [matrixa. vectorb==vectorb, vectorx].
Compare the computation times for each calculation.

- Example:

Next, the system \(\left\{\begin{array}{c}2 x-4 y+z=-1 \\ 3 x+y-2 z=3 \\ -5 x+y-2 z=4\end{array}\right.\) is solved in a similar manner. Notice that exact values are
given with Solve. This system takes longer to solve than the first example.

As before, consider the alternate approach to solving this system using matrices and vectors.

Notice that executing the commond takes 32 seconds.
The command
LinearSolve [A,b]
calculates the solution \(\mathbf{x}\) of the system \(\mathbf{A x}=\mathbf{b}\).
Comparing the computation times for each, LinearSolve performs the task more quickly (.57 secs.) than does Solve. If the time needed to enter the matrix \(\mathbf{A}\) and vector \(\mathbf{b}\) (.32 secs.) is considered, however, the total time (.89 secs.) for this calculation was slightly larger than the original(. 78 secs.).

In this case, the calulation takes ondy .57 seconds.

\section*{- To Display Time After Each Evaluations:}

In the above examples, the time to perform each calculation is displayed instead of the usual thermometer indicating memory used. To display the time clock after each evaluation, proceed as follows:
1) Use the Mouse to move the cursor to Edit and select Settings; then select Action;
2) The fiction Settings window will appear;
3) Click the box Display clock timing after each evaluation; and
4) Click the OK button.

Action Settings in Version 1.2; the Action Settings in Version 20 are the some.

\section*{\(\square \quad\) fiction Settings}
\(\boxtimes\) New output replaces old \(\mathscr{H} R\)
Q Output cells are grouped with input MGMultiple output cells are grouped together \(\mathscr{H}\)
After evaluation, input cells are locked \(\mathscr{H} \mathrm{L}\)
\(\square\) Beep when an evaluation is finished \(\mathscr{H}\)
\(\triangle\) Display clock timing after each evaluation \(\mathscr{H} T\)
Break \(\square\) to fit window \(\mathscr{H} \square \square\) at page width \(\mathscr{H}\)
Q Break at 45 character widths. \(\mathscr{H} \mathrm{K}\)
Generate unformatted tents for these results:
O All \(\notin \mathrm{O}\) None \(\mathscr{H} \mathrm{N}\) © No graphics or Short \(\mathscr{H}\)
区 Place Print output as it is generated \(\mathscr{H} P\)
\(\square\) Place each Print line in a separate cell \%D
On opening a Notebook, load initialization cells:

When using the Solve command, the equations may be entered in several different ways as the following example shows. For example, if equations is a list of equations and variables is a list of variables, then Mathematica attempts to solve equations in terms of variables when the command Solve [equations, variables] is entered; Mathematica attempts to solve equations in terms of all variables that appear in equations when Solve [equations] is entered:

\section*{- Example:}

Solve the system of equations \(\left\{\begin{array}{c}4 x_{1}+5 x_{2}-5 x_{3}-8 x_{4}-2 x_{5}=5 \\ 7 x_{1}+2 x_{2}-10 x_{3}-x_{4}-6 x_{5}=-4 \\ 6 x_{1}+2 x_{2}+10 x_{3}-10 x_{4}+7 x_{5}=-7 \\ -8 x_{1}-x_{2}-4 x_{3}+3 x_{5}=5 \\ 8 x_{1}-7 x_{2}-3 x_{3}+10 x_{4}+5 x_{5}=7\end{array}\right.\) for \(x_{1}, x_{2}, x_{3}, x_{4}\), and \(x_{5}\).
/n/22):=
Solve[\{4x[1]+5x[2]-5x[3]-8x[4]-2x[5].
7x[1]+2x[2]-10x[3]-x[4]-6x[5].
\(6 x[1]+2 x[2]+10 x[3]-10 x[4]+7 x[5]\).
\(-8 x[1]-x[2]-4 x[3]+3 x[5]\).
\(8 x[1]-7 x[2]-3 x[3]+10 x[4]+5 x[5]\}==\)
(5, -4, -7, 5, 7\}]
out \(202=\)
\[
\begin{aligned}
& \left\{\left\{x[1] \rightarrow \frac{1245}{6626}, x[2] \rightarrow \frac{113174}{-\cdots-2 .} .\right.\right. \\
& x[3] \rightarrow \underset{9939}{-(----)} . x[4] \rightarrow \frac{38523}{6626} . \\
& 49327 \\
& x[5]-3----\}\} \\
& 9939
\end{aligned}
\]

Time: 1.90 secandsk
After defining matrixa to be the matrix \(\left[\begin{array}{ccccc}4 & 5 & -5 & -8 & -2 \\ 7 & 2 & -10 & -1 & -6 \\ 6 & 2 & 10 & -10 & 7 \\ -8 & -1 & -4 & 0 & 3 \\ 8 & -7 & -3 & 10 & 5\end{array}\right]\) and \(t 2\) to be vector \(\left[\begin{array}{c}5 \\ -4 \mid \\ -7 \\ 5 \\ 7\end{array}\right]\)

LinearSolve is used to solve the same system much faster:

\section*{- Application: Characteristic and Minimal Polynomials}

The characteristic polynomial of the \(n \mathrm{x} n\) matrix A is the polynomial
\(p_{A}(x)=\operatorname{Det}\left[x I_{n}-A\right]\), where \(I_{n}\) is the \(n \times n\) identity matrix
It is well-known that the eigenvalues of \(A\) are the roots of the characteristic polynomial of \(A\).
The trace of an \(n \times n\) matrix \(A=\left[a_{i, j}\right]\) is \(a_{1,1}+a_{2,2}+\ldots+a_{n, n}=\sum_{k=1}^{n} a_{k, k}\).
If \(A\) is a marrix with non-zero determinant and characteristic polynomial
\(p_{A}(x)=x^{n}+c_{n-1} x^{n-1}+c_{n-2} x^{n-2}+\ldots+c_{1} x+c_{0}\), then \(\operatorname{Det}[A]=(-1)^{n} c_{0}\) and Trace \([A]=a_{1,1}+\ldots+a_{n, n}=\sum_{k=1}^{n} a_{k, k}=-c_{n-1}\).
Let \(p_{A}(x)\) be the characteristic polynomial of \(A\) and let \(p_{A}(x)=\left(p_{1}(x)\right)^{n_{1}}\left(p_{2}(x)\right)^{n_{2}} \cdot \ldots \cdot\left(p_{m}(x)\right)^{n_{m}}\) be the factorization of \(p_{A}(x)\).
The minimal polynomial \(q(x)\) of \(A\) is the monic polynomial of least degree satisfying \(q(A)=0\). It is well-known
that \(p_{1}(x) p_{2}(x) \bullet \ldots \bullet p_{m}(x)\) divides \(q(x)\); hence, \(p_{A}(A)=0\).

\section*{© Example:}

Find the trace, characteristic polynomial, and minimal polynomial of the matrix \(\left[\begin{array}{ccc}0 & 6 & 3 \\ -2 & -8 & -2 \\ 0 & 0 & -2\end{array}\right]\)
The process begins by entering the matrix, matrixa, and then the associated matrix, assoca, where assocaa=x IdentityMatrix[4]-matrixa.
The characteristic polynomial is then determined using
Det[assoca].

The characteristic polynomial is then easily factored using Factor [Det [assoca]].
This yields \((2+x)^{2}(6+x)\).
Since the minimal polynomial divides the characteristic polynomial, the minimal polynomial must either be \((2+x)^{2}(6+x)\) or \((2+x)(6+x)\).

Now, in order to determine which is the minimal polynomial, the definition given earlier must be employed. Since this definition involves substituting matrixa into these two polynomials to see which gives the zero matrix (the matrix of all zeros), determining the powers of matrixa is necessary. Therefore, the function matrixpower discussed earlier is redefined and used to square and cube matrixa. For easier use, the \(3 \times 3\) identity matrix is named ident, the square of matrixa is called matrixs, and the cube of matrixa is called matrixc.

Note that the same result can be accomplished using the built-in function MatrixPower.

Substitution of matrixa into the possible minimal polynomial (\(2+\mathrm{x})(6+\mathrm{x})\) is done as follows:
(2 ident + matrixa). (6 ident + matrixa)
Notice that since matrixa is a matrix as opposed to a scalar, then each constant in the polynomial must be converted to a matrix by multiplying by the identity matrix. Otherwise, the command would not be defined. Substitution into the other polynomial is done in a similar manner.
Since substitution into the second polynomial yields the zero matrix, the minimal polynomial is
\((2+x)^{2}(6+x)\) or \(x^{3}+10 x^{2}+28 x+24\).
\begin{tabular}{|c|c|}
\hline & \(\left[\begin{array}{ccc}0 & 0 & 6 \\ 0 & 0\end{array}\right]\) \\
\hline \(1 \mathrm{~m} / 39 /:=\) & Sirce \(\left[\begin{array}{llc}0 & 0 & -2 \\ 0 & 0 & 0\end{array}\right]\) \\
\hline (2 ident+matrira). (6 ident+matrira)] & is not the zero matrix, \\
\hline out/sof= & \((2+x)(6+x)\) is not the \\
\hline \(\{\{0,0,6\},\{0,0,-2\},\{0,0,0\}\}\) & minimal polynomial for \\
\hline & matrixa \\
\hline \(1 / 100)=\) & Since this is the zero \\
\hline 24 ident+28 matrima+10natrimas+natrimac & \\
\hline Owf \(001=\) & ynomial \\
\hline \(\{10,0,0\},\{0,0,0\}\), & for matrima. \\
\hline
\end{tabular}

The properties of the minimal polynomial can now be verified. Notice that the order of this polynomial is three. Since the general formula for the minimal polynomial of order three is
\(q(x)=x^{3}+c_{2} x^{2}+c_{1} x+c_{0}\) we have in this case, \(c_{0}=24, c_{1}=28\), and \(c_{2}=10\).
Hence, the trace of A can be computed with following formula:
\(\operatorname{Trace}|A|=a_{1,1}+a_{2,2}+a_{3,3}=\sum_{k=1}^{3} a_{k, k}=-c_{3-1}=-c_{2}=-10\)
as well as the determinant: \(\operatorname{Det}|\mathrm{A}|=(-1)^{3} \mathrm{c}_{\mathrm{o}}=-24\).
These results agree with the calculations shown below using Mathematica :

\section*{a Example:}
\(\left[\left.\begin{array}{cccc}2 & -3 & 1 & 2 \\ 3 & 7 & -5 & 2 \\ 0 & 1 & 9 & -5 \\ -2 & 3 & 4 & 3\end{array} \right\rvert\,\right.\)

This problem is solved in a manner similar to that of the previous example. First, the matrix is entered and named matrixc. Then, the associated matrix assocc is defined. Note that in this case the \(4 \times 4\) identity must be used. The characteristic polynomial is then found with Det [assocc] and called char for later use. From char, the numerical approximation of the roots of the characteristic polynomial (the eigenvalues) of matrixc can be determined with NRoots [\(\mathrm{char}=0, \mathrm{x}\)]. In this case, the characteristic polynomial is irreducible.

A numerical approximation of the eigenvalues can also be found with Eigenvalues [N[matrixc]]. This is demonstrated below.
The method by which assocc is raised to a power is slightly different in this example. Instead of making use of the user-defined function matrixpower seen in the example above, we choose to take advantage of the built-in Mathematica function Matrixpower [matrix, n]. (Note the capital letters.) This function determines the matrix obtained when matrix is raised to the power \(n\) as did matrixpower. The matrices obtained by using Matrixpower to raise matrixe to the powers 2,3 , and 4 are necessary in determining the minimal polynomial. These are calculated and named matrix2, matrix3, and matrix4, respectively. (Note that only the output of the last command in the second input cell is displayed.) To see that the characteristic polynomial is the minimal polynomial, matrixce is substituted into the characteristic polynomial, char, to yield the zero matrix.

The order of the minimal polynomial is 4 . Therefore, since \(c_{0}=1665, c_{1}=-848, c_{2}=181\), and \(c_{3}=21\), we have \(\operatorname{Trace}|A|=-c_{4-1}=-c_{3}=-21\).

\section*{- Application: Maxima and Minima Using Linear Programming}

We call the linear programming problem of the form:
Minimize \(\underbrace{Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}}_{\text {function }}\), subject to the restrictions
inequalities \(\left\{\begin{array}{c}a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n} \geq b_{1} \\ a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n} \geq b_{2} \\ \vdots \\ a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n} x_{n} \geq b_{m}\end{array} \quad\right.\), and \(x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0\)
the standard form of the linear programming problem.
The Mathematica command
ConstrainedMin[function, \{inequalities\}, \{variables\}] solves the standard form of the linear programming problem.

Similarly, the Mathematica command
ConstrainedMax[function, \{inequalities\}, \{variables\}] solves the linear programming problem

Maximize \(\underbrace{Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}}_{\text {function }}\), subject to the restrictions
inequalities \(\left\{\begin{array}{c}a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n} \geq b_{1} \\ a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n} \geq b_{2} \\ \vdots \\ a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n} x_{n} \geq b_{m}\end{array} \quad\right.\), and \(x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0\).

\section*{- Example:}

Maximize \(\mathrm{z}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=4 \mathrm{x}_{1}-3 \mathrm{x}_{2}+2 \mathrm{x}_{3}\) subject to the constraints
\[
\begin{aligned}
& 3 x_{1}-5 x_{2}+2 x_{3} \leq 60, \\
& x_{1}-x_{2}+2 x_{3} \leq 10, \\
& x_{1}+x_{2}-x_{3} \leq 20, \text { and } x_{1}, x_{2}, x_{3} \text { all non - negative }
\end{aligned}
\]

In order to solve a linear programming problem with Mathematica, the variables \(\{\mathbf{x 1}, \mathbf{x 2}, \mathbf{x 3}\}\) and objective function \(\mathbf{z}[x 1, x 2, \times 3]\) must first be defined. In an effort to limit the amount of typing required to complete the problem, the set of inequalities is assigned the name ineqs while the set of variables is called vars. Notice that the symbol " \(<=\) ", obtained by typing the " \(<\) " key and then the " \(=\) " key, represents "less than or equal to" and is used in ineqs. Hence, the maximization problem is solved with the command ConstrainedMax[z[x1, x2, x3], ineqs, vars].

The solution gives the maximum value of \(z\) subject the given constraints as well as the values of \(\times 1, \times 2\), and, \(\times 3\) which maximize \(\mathbf{z}\). These steps are shown below :

Minimization problems are solved in a similar manner. Consider the following :

\section*{- Example:}

Minimize \(z\left(x_{1}, x_{2}, x_{3}\right)=4 x_{1}-3 x_{2}+2 x_{3}\) subject to the constraints
\[
\begin{aligned}
& 3 x_{1}-5 x_{2}+2 x_{3} \leq 60 \\
& x_{1}-x_{2}+2 x_{3} \leq 10, \\
& x_{1}+x_{2}-x_{3} \leq 20, \text { and } x_{1}, x_{2}, x_{3} \text { all non-negative }
\end{aligned}
\]

After clearing all previously used names of functions and variable values, the variables, objective function, and set of constraints for this problem are defined and entered as they were in the first example. By using
Constrainedmin \([z[x 1, x 2, x 3]\), ineqs, vars \(]\)
the minimum value of the objective function is obtained as well as the variable values which give this minimum.

We proceed exactly as before except that the fincl step uses the commornd Constrainedlin.

Herce, we concoude that the minimum value is -90 which occurs when \(\times 1=0, \times 2=50\), and \(\times 3=30\).

\section*{■ The Dual Problem}

Given the standard form linear programming problem
Minimize \(Z=\sum_{j=1}^{n} c_{j} x_{j}\) subject to the constraints \(\sum_{j=1}^{n} a_{i, j} x_{j} \geq b_{i}\) for \(i=1,2, \ldots, m\)
and \(x_{j} \geq 0\) for \(j=1,2, \ldots, n\), the dual problem is
Maximize \(Y=\sum_{i=1}^{m} b_{i} y_{i}\) subject to the constraints \(\sum_{i=1}^{m} a_{i, j} y_{i} \leq c_{j}\) for \(j=1,2, \ldots, n\)
and \(y_{i} \geq 0\) for \(i=1,2, \ldots, m\).
Similarly, for the problem

Maximize \(Z=\sum_{j=1}^{n} c_{j} x_{j}\) subject to the constraints \(\sum_{j=1}^{n} a_{i, j} x_{j} \leq b_{i}\) for \(i=1,2, \ldots, m\) and \(\mathrm{x}_{\mathrm{j}} \geq 0\) for \(\mathrm{j}=1,2, \ldots, \mathrm{n}\), the dual problem is
Minimize \(Y=\sum_{i=1}^{m} b_{i} y_{i}\) subject to the constraints \(\sum_{i=1}^{m} a_{i, j} y_{i} \geq c_{j}\) for \(j=1,2, \ldots, n\) and \(y_{i} \geq 0\) for \(i=1,2, \ldots, m\).

\section*{- Example:}

Maximize \(Z=6 x_{1}+8 x_{2}\) subject to the constraints \(5 x_{1}+2 x_{2} \leq 20, x_{1}+2 x_{2} \leq 10, x_{1} \geq 0\), and \(x_{2} \geq 0\).

State the dual problem and find its solution.
First, the original (primal) problem is solved. The objective function for this problem is represented by \(\mathbf{2 x}\) while that of the dual is given by \(\mathbf{z y}\). The set of variables \(\{x[1], x[2]\}\) of the primal are called valsx.
Similarly, those of the dual \(\{y[1], y[2]\}\) are assigned the name valsy. Finally, the set a of inequalities for the primal and dual are ineqs \(x\) and ineqsy, respectively. Using the command
ConstrainedMax[zx, ineqsx,\{x[1],x[2]\}],
the maximum value of \(z x\) is found to be 45 .
\begin{tabular}{|c|c|}
\hline & \multirow[t]{2}{*}{We begin by clecring all prior definitions of the objects we will use in this excomple} \\
\hline ```
\/n/5%/:=
``` & \\
\hline  & We rame the functions we wish to maximize zx ond we rame the constraints ineqs. \\
\hline \[
\left[\begin{array}{l}
\text { Out } 53 /= \\
\{5 \times[1]+2 \times[2]<=20, x[1]+2 x[2]<=10\}
\end{array}\right]
\] & \\
\hline \(\left.\begin{array}{l}h(54 / /:= \\ \quad \text { ConstrainedHax[zx, ineqsx, (x[1] , x[2] \}] } \\ \text { ow } / 54 /=\end{array}\right]\) & The maximum vadue is 45 which occurs when \(x[1]\) is \(5 / 2\) and when \(x[2]\) is \(15 / 4\). \\
\hline \(\left\{45,\left\{x[1] \rightarrow \frac{5}{2}, x[2] \rightarrow \begin{array}{l}15 \\ 4\end{array}\right.\right.\) & \\
\hline
\end{tabular}

Since in this problem, we have \(c_{1}=6, c_{2}=8, b_{1}=20\), and \(b_{2}=10\), the dual problem is Minimize \(Z=20 y_{1}+10 y_{2}\) subject to the constraints \(5 y_{1}+y_{2} \geq 6,2 y_{1}+2 y_{2} \geq 8, y_{1} \geq 0\), and \(y_{2} \geq 0\).

The dual is solved in a similar fashion by defining the objective function \(\mathbf{z y}\) and the collection of inequalities ineqsy. The minimum value obtained by zy subject to the constraints ineqsy is 45 which agrees with the result of the primal and is found with
ConstrainedMin[zy,ineqsy, (y[1] , y[2])].


To soive the duclproblem, we proceed the scme woy except we use the commond ConstrainedHin.

Of course, linear programming models can involve numerous variables. Consider the following :
Given the standard form linear programming problem
Minimize \(Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}\), subject to the restrictions
\[
a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n} \geq b_{1}
\]
\[
a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n} \geq b_{2}
\]
\[
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n} x_{n} \geq b_{m} \text {, and } x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\]
let \(x=\left[\begin{array}{c}x_{1} \\ \vdots \\ \vdots \\ x_{n}\end{array}\right], b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right], c=\left[c_{1}, \ldots, c_{n}\right]\), and \(A\) denote the \(m \times n\) matrix \(A=\left[a_{i, j}\right]\).
Then the standard form of the linear programming problem is equivalent to find the vector x that maximizes the number \(\mathrm{Z}=\mathrm{c} . \mathrm{x}\) subject to the restrictions \(\mathrm{A} . \mathrm{x} \geq \mathrm{b}\) and \(\mathrm{x} \geq 0\). The dual problem of Maximize the number \(Z=c . x\) subject to the restrictions \(A . x \geq b\) and \(x \geq 0\) is Minimize the number \(Y=y . b\) subject to the restrictions \(y . A \leq c\) and \(y \geq 0\).
The Mathematica command LinearProgramming [ \(c, A, b]\) finds the vector \(x\) which minimizes the quantity \(\mathrm{Z}=\mathrm{c} . \mathrm{x}\) subject to the restrictions \(\mathrm{A} . \mathrm{x} \geq \mathrm{b}\) and \(\mathrm{x} \geq 0\). This command does not yield the minimum value of Z as did ConstrainedMin and ConstrainedMax. This value must be determined from the resulting vector.

\section*{- Example:}

Maximize \(Z=5 x_{1}-7 x_{2}+7 x_{3}+5 x_{4}+6 x_{5}\) subject to the constraints
\(2 x_{1}+3 x_{2}+3 x_{3}+2 x_{4}+2 x_{5} \leq 10\),
\(6 x_{1}+5 x_{2}+4 x_{3}+x_{4}+4 x_{5} \leq 30\),
\(-3 x_{1}-2 x_{2}-3 x_{3}-x_{4} \leq-5\),
\(-x_{1}-x_{2}-x_{4} \leq-10\), and \(x_{i} \geq 0\) for \(i=1,2,3,4,5\).
For this problem, \(x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right], b=\left[\begin{array}{c}10 \\ 30 \\ -5 \\ -10 \\ 0\end{array}\right], c=[5,-7,7,5,6]\), and \(A=\left[\begin{array}{ccccc}2 & 3 & 3 & 2 & 2 \\ 6 & 5 & 4 & 1 & 4 \\ -3 & -2 & -3 & -4 & 0 \\ -1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]\).
Clearly, Mathematica's ability to perform matrix algebra will be advantageous in the completion of this type of problem. First, the vectors c and b are entered.

Remark; Notice that Mathematica does NOT make a distinction between row and column vectors; it "interprets" the vector correctly and consequently performs the calculation correctly

The matrix \(A\) is entered and named matrixa.
A helpful function which can be used in this problem is zerovec \(=\) Table \([0,\{5\}]\) which creates a list of five zeros. This can be used instead of typing a vector made up of 5 zeros and is used in defining matrixa below. In general, the command Table[expression, \(\{n\}]\) produces a list of \(n\) copies of expression.


Another useful Mathematica command is Array \([\mathrm{x}, \mathrm{n}]\) which creates the list of n elements \(\{x[1], x[2], \ldots, x[n]\}\). This command is used below to define the list of variables xvec. Similarly, the command Table \([x[i],\{i, 1, n\}]\) yields the same list. These variables must be defined before attempting to solve this linear programming problem.
```

/n/PSJ:=
xvec=Array[x.5]
out/8S/=
{x[1], x[2], x[3], x[4], x[5]}
\primen/99/:=
Table[x[i],{i,1,5}]
Out/80/=
{x[1], x[2], x[3], x[4], x[5]}
Notice that the commomed
Array[2.5]
yields the some os the commond
Table[x[i],{i,1,5}].

```


We will see thoct using indexed variables com save us considerable typing.


After entering the objective function coefficients with the vector \(c\), the matrix of coefficients from the inequalities with matrixa, and the right-hand side values found in \(b\); the problem is solved with
LinearProgramming[c,matrixa,b].
The solution is called xrec. Hence, the maximum value of the objective function is obtained by evaluating the objective function at the variable values which yields a maximum. Since these values are found in revec , the maximum is determined with the product of the vector c and the vector \(\boldsymbol{x}\) vec. (Recall that this product is entered as \(c\).xvec.) This value is found to be \(35 / 4\).


State the dual problem. What is its solution?
Since the dual of the problem is Minimize the number \(Y=y . b\) subject to the restrictions \(y . A \leq c\) and \(y \geq 0\), we use Mathematica to calculate y.b and y.A:

Remark: Notice that Mathematica does NOT make a distinction between row and column vectors; it interprets the vector correctly and consequently performs the calculation properly.

A list of the dual variables \(\{y[1], y[2], y[3], y[4], y[5]\}\) is created with Array[y,5]. This list includes 5 elements since there are five constraints in the original problem. The objective function of the dual problem is, therefore, found with yrec.b, and the left-hand sides of the set of inequalities are given with yvec.matrixa.


Hence, we may state the dual problem as follows:
Minimize \(\mathrm{Y}=10 \mathrm{y}_{1}+30 \mathrm{y}_{2}-5 \mathrm{y}_{3}-10 \mathrm{y}_{4}\) subject to the constraints
\(2 \mathrm{y}_{1}+6 \mathrm{y}_{2}-3 \mathrm{y}_{3}-\mathrm{y}_{4} \leq 5\),
\(3 \mathrm{y}_{1}+5 \mathrm{y}_{2}-2 \mathrm{y}_{3}-\mathrm{y}_{4} \leq-7\),
\(3 \mathrm{y}_{1}+4 \mathrm{y}_{2}-3 \mathrm{y}_{3} \leq 7\),
\(2 y_{1}+y_{2}-4 y_{3}-y_{4} \leq 5\),
\(2 \mathrm{y}_{1}+4 \mathrm{y}_{2} \leq 6\), and \(\mathrm{y}_{\mathrm{i}} \geq 0\) for \(\mathrm{i}=1,2,3\), and 4 .

\section*{- Application: A Transportation Problem}

A certain company has two factories, F 1 and F 2, each producing two products, Product 1 and Product 2, that are to be shipped to three distribution centers, Dist 2, Dist 2, and Dist 3.

The following table illustrates the cost associated with shipping each product from the factory to the distribution center, the minimum number of each product each distribution center needs, and the maximum output of each factory.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & F1/P 1 & F1/P2 & F2/P 1 & F2/P2 & Minimum \\
\hline Dist 1/Product 1 & \$0.75 & & \$0.80 & & 500 \\
\hline Dist 1/Product 2 & & \$0.50 & & \$0.40 & 400 \\
\hline Dist 2/Product 1 & \$1.00 & & \$0.90 & & 300 \\
\hline Dist 2/Product 2 & & \(\$ 0.75\) & & \$1.20 & 500 \\
\hline Dist 3/Product 1 & \$0.90 & & \$0.85 & & 700 \\
\hline Dist 3/Product 2 & & \(\$ 0.80\) & & \$0.95 & 300 \\
\hline & & & & & \\
\hline Maximum Output & 1000 & 400 & 800 & 900 & \\
\hline
\end{tabular}

How much of each product should be shipped from each plant to each distribution center to minimize the total shipping costs?

Let \(x_{1}\) denote the number of units of Product 1 shipped from F1 to Dist 1 ;
\(\mathrm{x}_{2}\) denote the number of units of Product 2 shipped from F1 to Dist 1 ; \(\mathrm{x}_{3}\) denote the number of units of Product 1 shipped from F1 to Dist 2;
\(x_{4}\) denote the number of units of Product 2 shipped from F1 to Dist 2;
\(x_{5}\) denote the number of units of Product 1 shipped from F1 to Dist 3; and \(\mathrm{x}_{6}\) denote the number of units of Product 2 shipped from F1 to Dist 3.

Let \(\mathrm{x}_{7}\) denote the number of units of Product 1 shipped from F 2 to Dist 1 ;
\(x_{8}\) denote the number of units of Product 2 shipped from F2 to Dist 1 ;
\(x_{9}\) denote the number of units of Product 1 shipped from F 2 to Dist 2;
\(\mathrm{x}_{10}\) denote the number of units of Product 2 shipped from F2 to Dist 2;
\(\mathrm{x}_{11}\) denote the number of units of Product 1 shipped from F 2 to Dist 3; and
\(\mathrm{x}_{12}\) denote the number of units of Product 2 shipped from F 2 to Dist 3.
Then it is necessary to minimize the number:
\[
\mathrm{Z}=.75 \mathrm{x}_{1}+.5 \mathrm{x}_{2}+\mathrm{x}_{3}+.75 \mathrm{x}_{4}+.9 \mathrm{x}_{5}+.8 \mathrm{x}_{6}+.8 \mathrm{x}_{7}+.4 \mathrm{x}_{8}+.9 \mathrm{x}_{9}+1.2 \mathrm{x}_{10}+.85 \mathrm{x}_{11}+.95 \mathrm{x}_{12}
\]
subject to the constraints
\(\mathrm{x}_{1}+\mathrm{x}_{3}+\mathrm{x}_{5} \leq 1000 ; \mathrm{x}_{2}+\mathrm{x}_{4}+\mathrm{x}_{6} \leq 400 ; \mathrm{x}_{7}+\mathrm{x}_{9}+\mathrm{x}_{11} \leq 800 ;\)
\(x_{8}+x_{10}+x_{12} \leq 900 ; x_{1}+x_{7} \geq 500 ; x_{3}+x_{9} \geq 300 ; x_{5}+x_{11} \geq 700 ;\)
\(x_{2}+x_{8} \geq 400 ; x_{4}+x_{10} \geq 500 ; x_{6}+x_{12} \geq 300 ;\) and \(x_{i} \geq 0\) for \(i=1, \ldots, 12\).

In order to solve this linear programming problem, the objective function which computes the total cost, the 12 variables, and set of inequalities must be entered. The coefficients of the objective function are given in the vector c. Using the command Array \([x, 12]\) illustrated in the previous example to define the list of 12 variables \(\{x[1], x[2], \ldots, x[12]\}\), the the objective function is given by the product \(\mathbf{z = x v e c} . c\) where \(\mathbf{x v e c}\) is the name assigned to the list of variables.


The set of constraints are then entered and named constraints for easier use. Therefore, the minimum cost and the value of each variable which yields this minimum cost are found with the command
ConstrainedMin[z, constraints, xvec].


The elements of the list which results from the command ConstrainedMin [ \(z\), constraints, \(x\) vec ] can be extracted if this list is assigned a name. Therefore, the name values is given to this list. Notice that values is a list made up of two elements, the minimum value of the cost function, 2115 , and the list of the variable values \(\{x[1]->500, x[2]->0, \ldots\}\) Hence, the minimum cost is obtained with the command values [[1]] and the list of variable values which yield the minimum cost is extracted with values [[2]].


Using these extraction techniques, the number of units produced by each factory can be computed. Since
\(\mathrm{x}_{1}\) denotes the number of units of Product 1 shipped from F1 to Dist 1 ;;
\(x_{3}\) denotes the number of units of Product 1 shipped from F1 to Dist 2; and \(x_{5}\) denotes the number of units of Product 1 shipped from F 1 to Dist 3,
then the total number of units of Product 1 produced by Factory 1 is given by \(\times[1]+x[3]+x[5]\). The command
```

x[1]+x[3]+x[5] /. values[[2]]

```
 of units of each product that each factory produces can be calculated. These results are shown below :


Also, the number of units of Products 1 and 2 received by each distribution center can be computed. The command \(x[3]+x[9] / . v a l u e s[2]]\)
gives the total amount of Product 1 received at Dist 1 since \(x[3]=\) amount of Product 1 received by Dist 2 from F1 and x[9]= amount of Product 1 received by Dist 2 from F2 .
Notice that this amount is the minimum number of units (300) of Product 1 requested by Dist 1 . The amount of Products 1 and 2 received at each distribution center are calculated in a similar manner and illustrated below :


\subsection*{5.3 Vector Calculus}

\section*{m Review of Definitions and Notation}

The terminology and notation used in Mathematica by Example is standard. Nevertheless, we review basic definitions briefly.
A scalar field is a function with domain a set of ordered-triples and range a subset of the real numbers:
\(\mathrm{f}: \mathrm{U} \rightarrow \mathrm{V}\) is a scalar field means \(\mathrm{U} \subseteq \mathfrak{R}^{3}\) and \(\mathrm{V} \subseteq \Re\).
The gradient of the scalar field \(f\) is defined to be the vector
\(\operatorname{grad} f=\frac{\partial f}{\partial x} i+\frac{\partial f}{\partial y} j+\frac{\partial f}{\partial z} k=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\left\langle f_{x}, f_{y}, f_{L}\right\rangle\), where \(i=(1,0,0), j=(0,1,0\rangle\), and \(k=\langle 0,0,1\rangle\).
A yector field \(f\) is a vector-valued function:
\(\mathrm{f}: \mathrm{V} \rightarrow \mathrm{U}, \mathrm{U} \subseteq \mathfrak{R}^{3}\) and \(\mathrm{V} \subseteq \mathfrak{R}\), is a vector field means that f can be written in the form \(f(x, y, z)=f_{1}(x, y, z) i+f_{2}(x, y, z) j+f_{3}(x, y, z) k=\left\langle f_{1}(x, y, z), f_{2}(x, y, z), f_{3}(x, y, z)\right\rangle\)
for each ( \(x, y, z\) ) in the domain of \(f\).
A conservative vector field \(f\) is a vector field that is the gradient of a scalar field:
\(f\) is a conservative vector field means there is a scalar field \(g\) satisfying
\(f=\nabla^{2} g\). In this case, \(g\) is usually called a potential function for \(f\).
The divergence of the vector field \(\mathbf{f}\) is defined to be the scalar
\[
\begin{aligned}
& \operatorname{div} f=\operatorname{div} f(x, y, z)=\operatorname{div}\left\langle f_{1}(x, y, z), f_{2}(x, y, z), f_{3}(x, y, z)\right\rangle \\
&=\frac{\partial f_{1}(x, y, z)}{\partial x}+\frac{\partial f_{2}(x, y, z)}{\partial y}+\frac{\partial f_{3}(x, y, z)}{\partial z} \\
&=\nabla \bullet f .
\end{aligned}
\]

The laplacian of the scalar field \(f\) is defined to be \(\operatorname{div}(g r a d f)\)
\(\operatorname{laplacian}(f)=\nabla^{2} f=\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=f_{x x}+f_{y y}+f_{z z}\).
For three-dimensional vector analysis, the package VectorAnalysis.m contains the commands Grad, Div, Curl, and Laplacian.

Be sure to load the package VectorAnalysis.mprior to using these functions.
VectorAnalysis.m is contained in the folder Calculus.
Because Mathematica recognizes Cartesian ( \(x, y, z\) ), Cylindrical ( \(r, p h i, z\) ), and Spherical ( \(r\),theta,phi) coordinates, and because the operations discussed in this section differ in the various coordinate systems, the desired coordinate system must be indicated. This is accomplished with
SetCoordinates[System] where
System is usually one of Cartesian , Cylindrical, or Spherical.
However, the available coordinate systems are:
```

Cartesian, Cylindrical, Spherical, Parabolic, parabolicCylinder,
ProlateEllipsoidal, EllipticCylinder,OblateEllipsoidal,Toroidal,
Elliptic, and Bipolar.

```

The examples illustrated below are done in cartesian coordinates.
After the function \(f[x, y, z]\) has been defined, the gradient is found with:
\(\operatorname{Grad}[f[x, y, z]]\).
Since this is a function of \((x, y, z)\), it is denoted gradient \(f[x, y, z]\) for later use.
The laplacian of \(f\) is determined using
Laplacian \([f[x, y, z]]\),
and the divergence is found with
Div[gradient[f[x,y,z]]].
- Example:

Let \(\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\operatorname{Cos}(\mathrm{xyz})\). Compute \(\nabla \mathrm{f}, \nabla^{2} \mathrm{f}\), and \(\operatorname{Div}(\nabla \mathrm{f})\).
Note: When defining \(f\), be sure to include the space between the variables.
Notice tha. Laplacian [f[x,y,z]] yields the same result as \(\operatorname{Div}[\operatorname{gradient}[x, y, z]]\).


If \(S\) is the graph of \(f(x, y)\) and \(g(x, y, x)=z-f(x, y)\), then the gradient
\(\nabla g(x, y, z)\) is a normal vector to the graph of \(g(x, y, z)=0\).
At the point ( \(x, y, z\) ) a unit normal vector \(n\) can be obtained via:
\[
n=\frac{\nabla g(x, y, z)}{\|\nabla g(x, y, z)\|}=\frac{-f_{x}(x, y) i-f_{y}(x, y) j+k}{\sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1}}=\frac{1}{\sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1}}\left\langle-f_{x}(x, y),-f_{y}(x, y), 1\right\rangle
\]

The curl of the yector field \(f\) is defined to be the vector field
\[
\operatorname{curl} f=\operatorname{curl} f(x, y, z)=\operatorname{curl}\left\langle f_{1}(x, y, z), f_{2}(x, y, z), f_{3}(x, y, z)\right\rangle
\]
\[
\begin{aligned}
& =\left(\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z}\right) i+\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right) j+\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) k \\
& =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right| .
\end{aligned}
\]

\section*{- Example:}

Let \(f(x, y, z)=x y i+x z^{2} y j-e^{2 z} k=\left\{x y, x z^{2} y,-e^{2 z}\right\} . \quad\) Compute
Curlf \(=\left\{\left(\frac{\partial}{\partial y}\left(-\mathrm{e}^{2 \mathrm{z}}\right)-\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{xz}^{2} \mathrm{y}\right)\right),\left(\frac{\partial}{\partial \mathrm{z}}(\mathrm{xy})-\frac{\partial}{\partial \mathrm{x}}\left(-\mathrm{e}^{2 \mathrm{z}}\right)\right),\left(\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{xz}^{2} \mathrm{y}\right)-\frac{\partial}{\partial \mathrm{y}}(\mathrm{xy})\right)\right\}\);
\(\operatorname{Divf}=\frac{\partial}{\partial x}(x y)+\frac{\partial}{\partial y}\left(x^{2} y\right)+\frac{\partial}{\partial z}\left(-e^{2 z}\right) ;\) Laplacian \((\operatorname{Divf})=\nabla^{2}(\operatorname{Divf}) ;\)
\(\operatorname{Grad}(\operatorname{Laplacian}(\operatorname{Divf}))=\operatorname{Grad}\left(\nabla^{2}(\operatorname{Divf})\right) ;\) and
\(\operatorname{Laplacian}(\operatorname{Grad}(\operatorname{Laplacian}(\operatorname{Divf})))=\nabla^{2}(\operatorname{Grad}(\operatorname{Laplacian}(\operatorname{Divf})))\).
The first step towards solving this problem is to enter the unit vectors in Cartesian coordinates \(\mathbf{i}=\{1,0,0\}\), \(j=\{0,1,0\}\), and \(k=\{0,0,1\}\). The vector-valued function \(f[x, y, z]\) can then be defined using these three unit vectors as follows:
 variables for multiplication).

Notice that the coordinate system has not been set in this problem. However, the correct system can be indicated in each command. For example, the curl of \(f\) in Cartesian coordinates is determined with
Curl[f[x,y,z], Cartesian]. The curl could similarly be obtained in the other systems by replacing Cartesian with Cylindrical, Spherical, or one of the other available coordinate systems, in the command above.


As was the case with computing the curl of \(f\), the divergence of \(f\) can be calculated in Cartesian coordinates with \(\operatorname{Div}[f[\mathbf{x}, \mathbf{y}, \mathbf{z}]\), Cartesian] ]. Again, since the divergence is a function of ( \(\mathbf{x}, \mathrm{y}, \mathrm{z}\) ), it is named \(\operatorname{div} f[x, y, z]\) for later use. Hence, the Laplacian of the divergence of \(f\) is computed with Laplacian[divf[x,y,z],Cartesian]]. This function is called ladiv[x,y,z] so that
\(\operatorname{Grad}(\operatorname{Laplacian}(\operatorname{Divf}))=\operatorname{Grad}\left(\nabla^{2}(\operatorname{Divf})\right)\)
can be found with \(\operatorname{Grad}[\operatorname{ladivf}[x, y, z]\), Cartesian \(]]\). The resulting function is then named \(\operatorname{grad}[\mathbf{x}, \mathbf{y}, \mathbf{z}]\) so that \(\operatorname{Laplacian}(\operatorname{Grad}(\operatorname{Laplacian}(\operatorname{Divf})))=\nabla^{2}(\operatorname{Grad}(\operatorname{Laplacian}(\operatorname{Divf})))\) can be computed with Laplacian \([\operatorname{grad}[x, y, z]\), Cartesian].


> Div[f[x, y,z].Cartesian] computes the divergence of the (vector-valued) furction f. The resuiting real-valued function of \(x, y\), and \(z\) is defined to be divf[z.Y.z].

computes the Loplacion of the real-vadued function divf. The resulting function is defined to be ladiyf[x,Y,z].
computes the gradient of the real-valued function ladiv. The resulting (vector-valued) function is defined to be grad[ \(\mathbf{x}, \mathbf{Y}, \mathbf{z}]\).
computes the Loplacion of the (vector-vadued) function grad.
- Example:

Let \(w(x, y)=\operatorname{Cos}\left(4 x^{2}+9 y^{2}\right)\). Let \(n_{(x, y)}\) denote a unit vector normal to the graph of \(w\) at the point ( \(x, y, w(x, y)\) ). Find a formula for \(n\).
In order to visualize the unit normal vector at points ( \(x, y, w(x, y)\) ) to the surface \(w(x, y)\), this function is plotted using several of the options available with Plot3D. These options are discussed below :


The equation \(\mathrm{z}=\mathrm{w}(\mathrm{x}, \mathrm{y})\) is written as \(\mathrm{z}-\mathrm{w}(\mathrm{x}, \mathrm{y})=0\). The left-hand side of this equation is a function of \(\mathrm{x}, \mathrm{y}\), and z and is defined as \(w z\left[x_{-}, y_{-}, z_{-}\right]=\mathbf{z}-w[x, y]\).

Since the partial derivative of \(w z\) with respect to \(z\) is -1 , the gradient of \(w z\) is a function of \(x\) and \(y\) only. Hence, the gradient of \(w z\) is named \(g w\left[x, y y_{-}\right]\)and is computed with \(\operatorname{Grad}[w z[x, y, z], C a r t e s i a n]\). The length of the gradient of \(\mathbf{w z}\) which is necessary in determining the unit normal vector is the square root of the dot product of the gradient of \(w z\) with itself. This product is computed with \(g w[x, y] . g w[x, y]\).


Therefore, the unit normal vector is the gradient of \(\mathrm{g}, \mathrm{gw}[\mathrm{x}, \mathrm{y}]\), divided by the the square root of \(\mathrm{gw}[\mathrm{x}, \mathrm{y}] . \mathrm{gw}[\mathrm{x}, \mathrm{y}]\) as shown below. This is also a function of the variables x and y since the unit normal vector differs from point to point on the surface. Hence, this vector is assigned the name normalw [ \(\boldsymbol{x}_{\mathbf{\prime}}, \mathbf{y}_{\mathbf{\prime}}\) ] so that the unit vector at any point ( \(\mathrm{x}, \mathrm{y}, \mathrm{w}(\mathrm{x}, \mathrm{y})\) ) can be easily determined by evaluating normalw [ \(\mathrm{x}_{\mathbf{\prime}}, \mathrm{y}_{\mathbf{\prime}}\) ] at any point ( \(\mathrm{x}, \mathrm{y}\) ).


We can use
Mathematica to visualize \(w(x, y)\) along with several normal unit vectors.



\section*{- Application: Green's Theorem}

Green's Theorem: Let \(C\) be a piecewise smooth simple closed curve and let \(R\) be the region consisting of \(C\) and its interior. If \(f\) and \(g\) are functions that are continuous and have continuous first partial derivatives throughout an
open region \(D\) containing \(R\), then \(\oint_{C}(m(x, y) d x+n(x, y) d y)=\iint_{R}\left(\frac{\partial n}{\partial x}-\frac{\partial m}{\partial y}\right) d A\).

\section*{- Example:}

Use Green's Theorem to evaluate \(\int_{C}\left(x+e^{\sqrt{y}}\right) d x+(2 y+\operatorname{Cos}(x)) d y\) where
\(C\) is the boundary of the region enclosed by the parabolas \(y=x^{2}\) and \(x=y^{2}\).
To calculate the limits of integration, we use Mathematica to graph the functions \(x^{2}\) and \(\sqrt{x}\).

This is the graph of the function \(x^{2}\).

This is the graph of the function \(\sqrt{x}\).

Notice that the two functions intersect ot the points ( 0,0 ) ond (1,1)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Plot[\{x^2, Sqrt[x]\}.\{x. PlotStyle-3\{GrayLevel[ Graplevel[.3]\}. AspectRatio-31]}} \\
\hline & \\
\hline
\end{tabular}

In this example,
\(m(x, y)=x+e^{\sqrt{y}}\) and \(n(x, y)=2 y+\operatorname{Cos}(x)\). Therefore, applying Green's Theorem,
\(\int_{C}\left(x+e^{\sqrt{y}}\right) d x+(2 y+\operatorname{Cos}(x)) d y=\int_{C} m(x, y) d x+n(x, y) d y\)
\[
=\iint_{R}\left(\frac{\partial n}{\partial x}-\frac{\partial m}{\partial y}\right) d A=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}\left(\frac{\partial n}{\partial x}-\frac{\partial m}{\partial y}\right) d y d x .
\]

Therefore we will use Mathematica to define \(m(x, y), n(x, y)\), and to compute \(\frac{\partial n}{\partial x}, \frac{\partial m}{\partial y}\), and \(\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}\left(\frac{\partial n}{\partial x}-\frac{\partial m}{\partial y}\right) d y d x\).

First, the functions \(m(x, y)\) and \(n(x, y)\) are defined. Recall that in computing partial derivatives, the variable of differentiation must be given. Therefore, the partial of \(n[x, y]\) with respect to \(x\) is given by \(D[n[x, y], x]\). This derivative is then named \(n x\) for later use. Similarly, the partial derivative of \(m[x, y]\) with respect to \(y\) is found with \(D[m[x, y], y]\) and named \(m y\).

\section*{GreensTheorem}
```

(n/S):=
<<IntegralTables.
out/8/=
Integrator`
Be sure to load the package IntegralTables. before attempting to compute cony definite integrals with Mathematica.

```
``` m
```

/n/10):=
$\mathrm{nx}=\mathrm{D}[\mathrm{n}[\mathrm{X}, \mathrm{Y}], \mathrm{X}]$
out/10/=
$-\operatorname{Sin}[x]$
/n/t/I): $=$
$M Y=D[B[X] . Y]$
out/1/1=
Sqrt[y]
E
----------
2 Sqrt[y]

After cleccing cll prior definitions of $m$ ord $n$, define $m$ and $n$

```
m/员:=
 Clear[m,n]
 m[x_.Y_]=x+Emp[Sqrt[Y]]
 n[x_.Y_]=2Y+Cos[I]:
```

Mathematica computes the exact value of the double integral. To obtain a more meaningful value, we approximate the value of the double integral using the $\mathbf{N}$ command. In general, the command $\mathbf{N}[\%]$ produces a numerical approximation of the previous output.


## - Application: The Divergence Theorem

The Divergence Theorem; Let Q be any domain with the property that each straight line through any interior point of the domain cuts the boundary in exactly two points, and such that the boundary $S$ is a piecewise-smooth, closed, oriented surface with unit outer normal $n$. If $f$ is a vector field that has continuous partial derivatives on $Q$, then
$\iint_{S} f \bullet n d S=\iiint_{Q} d i v f d V=\iiint_{Q} \nabla \cdot f d V$.
$\iint_{S} f \circ n d S$ is called the outward flux of the vector field $f$ across the surface $S$.
If $S$ is a portion of the level curve $g(x, y, z)=c$ for some $g$, then a unit normal vector $n$ may be taken to be either

$$
\mathrm{n}=\frac{\nabla \mathrm{g}}{\|\nabla \mathrm{~g}\|} \text { or } \mathrm{n}=-\frac{\nabla \mathrm{g}}{\|\nabla \mathrm{~g}\|} \text {. }
$$

- Recall the following formulas for the evaluation of surface integrals:

Let $S$ be the graph of $z=f(x, y)(y=h(x, z)$ or $x=k(y, z))$ and let
$R_{x y}\left(R_{x z}\right.$ or $\left.R_{y z}\right)$ be the projection of $S$ on the $x y(x z$ or $y z)$-plane. Then,
$\iint_{S} g(x, y, z) d S=\left\{\begin{array}{l}\left\{\begin{array}{l}\iint_{x y} g(x, y, f(x, y)) \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d A \\ \iint_{R_{x z}} g(x, h(x, z), z) \sqrt{\left(h_{x}(x, z)\right)^{2}+\left(h_{z}(x, z)\right)^{2}+1} d A . \\ \left\{\begin{array}{l}\iint_{R_{y z}} g(k(y, z), y, z) \sqrt{\left(k_{y}(y, z)\right)^{2}+\left(k_{z}(y, z)\right)^{2}+1} d A .\end{array}\right.\end{array} . \begin{array}{l}\end{array} .\right.\end{array}\right.$

## - Example:

Use the Divergence Theorem to compute the outward flux of the field
$\mathrm{vf}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left\{\mathrm{xy}+\mathrm{x}^{2} \mathrm{yz}, \mathrm{yz}+\mathrm{x} \mathrm{y}^{2} \mathrm{z}, \mathrm{xz}+\mathrm{xyz}^{2}\right\}=\left(\mathrm{xy}+\mathrm{x}^{2} \mathrm{yz}\right) \mathrm{i}+\left(\mathrm{yz}+\mathrm{x} \mathrm{y}^{2} \mathrm{z}\right) \mathrm{j}+\left(\mathrm{xz}+\mathrm{xyz}^{2}\right) \mathrm{k}$
through the surface of the cube cut from the first octant by the planes $x=2, y=2$, and $z=2$.
By the Divergence Theorem,

$$
\iint_{\text {Cube Suricce }} \mathrm{vf} \bullet \mathrm{ndA}=\iiint_{\text {Cube Interior }} \nabla \bullet v f \mathrm{dY} .
$$

Notice that without the Divergence Theorem, calculating $\iint_{\text {Cube Sufface }}^{\int v i}$ ndA would require six separate integrals. However, with the Divergence Theorem, calculating the flux can be accomplished by integrating the divergence.

$(2,2,0)$

After loading the Integraltables.mand VectorAnalysis.m packages, the vector field $\mathbf{v} f$ is defined as a list of three elements, the $x, y$, and $z$ components. Since the volume integral is that of a cube, the logical choice for a coordinate system is cartesian coordinates. Hence the divergence of $v f$ is calculated with $\operatorname{Div}[v f[x, y, z]$, Cartesian]. Since the divergence is a function of ( $x, y, z$ ), it is defined as the function divvf for later use in the volume integral. Therefore, the outward flux of the field $\mathbf{v f}$ through the surface of the cube is found to be 72 with
Integrate [divvf $[x, y, z],\{x, 0,2\},\{y, 0,2\},\{z, 0,2\}]$.


## Application: Stoke's Theorem

Stokes's Theorem: Let $S$ be an oriented surface with finite surface area, unit normal $n$, and boundary $C$. Let $F$ be a continuous vector-field defined on $S$ such that the component functions of $F$ have continuous partial derivatives
at each non-boundary points of $S$. Then, $\iint_{C} F \bullet d r=\iint_{S}($ Curl $F) \bullet n d S$.
In other words, the surface integral of the normal component of the curl of $F$ taken over $S$ equals the line integral of the tangential component of the field taken over $C$ : $\oint_{C} F \cdot T d s=\iint_{S}$ curlF•ndS.
In particular, if $\mathrm{F}=\mathrm{Mi}+\mathrm{Nj}+\mathrm{Pk}=\{\mathrm{M}, \mathrm{N}, \mathrm{P}\}$, then $\int_{C}(M(x, y, z) d x+N(x, y, z) d y+P(x, y, z) d z)=\iint_{S}($ Curl $F) \bullet n d S$.

## - Example:

Verify Stoke's Theorem for the vector field
$\mathrm{vf}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\mathrm{y}^{2}-\mathrm{z}\right) \mathrm{i}+\left(\mathrm{z}^{2}+\mathrm{x}\right) \mathrm{j}+\left(\mathrm{x}^{2}-\mathrm{y}\right) \mathrm{k}=\left\{\mathrm{y}^{2}-\mathrm{z}, \mathrm{z}^{2}+\mathrm{x}, \mathrm{x}^{2}-\mathrm{y}\right\}$ and S the paraboloid
$z=f(x, y)=4-\left(x^{2}+y^{2}\right), z \geq 0$.
Since we must show
$\int_{C} \mathrm{vf} \bullet \mathrm{dr}=\iint_{\mathrm{S}}($ Curl vf $) \bullet \mathrm{ndS}$, we must compute Curl vf, $n, \iint_{S}($ Curl vf $) \bullet n \mathrm{dS}, \mathrm{r}, \mathrm{dr}$, and $\int_{\mathrm{C}} \mathrm{vf} \bullet \mathrm{dr}$.
First define the vector-field and the surface as $v f$ and $f$, respectively. Compute the curl of $v f$ and name it curlvf[x,y,z] then compute a normal vector and name it normal $[\mathbf{x}, \mathbf{y}, \mathbf{z}]$ :


A unit normal vector $n$ is given by $n=\frac{\nabla h}{\|\nabla h\|}=\frac{\text { normal }[x, y, z]}{\| \text { normal }[x, y, z] \|}$.
Since normal [ $\mathbf{x}, \mathbf{y}, \mathbf{z}]$ is a list (of three elements), normal $[\mathbf{x}, \mathbf{y}, \mathbf{z}][[\mathrm{i}]$ ] yields the ith element of the list normal $[x, y, z]$. Therefore, llnormal $[x, y, z] \|$ is given by the command
Sqre [Sum[(normal $[x, y, z][[i]]) \wedge 2,\{i, 1,3\}]]$. An alternative approach is to recall that for a vector $v,\|v\|=\sqrt{v \bullet v}$. Consequently, the command Sqrt[normal[ $x, y, z]$ normal $[x, y, z]]$
yields the same result.
In order to easily use the surface integral evaluation formula, define $g[x, y, z]$ to be the dot product of curlvf[x,y,z] and un $[x, y, z]$.


Here we visualize $f(x, y)$ with several nomal unit vectors.


By the surface integral evaluation formula,
$\iint_{S}^{\text {curlvf }} \overbrace{(\text { Curl vf })} \cdot \underbrace{n}_{\text {un }} d S=\iint_{S} g(x, y, z) d S=\iint_{R} g(x, y, f(x, y)) \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d A$, where $R$ is the projection of $f(x, y)$ on the $x y$-plane. Hence, in this example, $R$ is the region bounded by the graph of the circle $x^{2}+y^{2}=4$. Thus,
$\iint_{R} g(x, y, f(x, y)) \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d A=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} g(x, y, f(x, y)) \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d y d x$.
Notice that the integral $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} g(x, y, f(x, y)) \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d y d x$ can be
easily evaluated using polar coordinates. To do so, in
$g(x, y, f(x, y)) \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1}$, replace each $x$ by $r \operatorname{Cos}(t)$ and each $y$ by $r \operatorname{Sin}(t)$.

## StokesTheorem

$1 n / \beta)=$
function=g[X,Y,f[X,F]] Sqrt[(D[f[I,Y],X])^2 $\left.+(D[f[X, Y], Y])^{\wedge} 2+1\right]$
out/s/=
$1-2 x-4 y-4 x y-4 x\left(4-x^{2}-y^{2}\right)$
$h(g)=$
Integrate[function. $\{x,-2,2\},\left\{7,-S q r t\left[4-x^{\wedge} 2\right]\right.$, Sqxt[4-x^2]\}]
owtol $=$
4 Pi
Notice that when we redefine function the prior definition is erased.
inf10):=
function=g[X,Y,f[I,F]] Sqrt[(D[f[I,Y],I])^2 $\left.+(D[f[x, Y], Y])^{\sim} 2+1\right] / . x \rightarrow r \operatorname{Cos}[t] /$. $Y \rightarrow I \operatorname{Sin}[t]$
out $101=$
$1-2 r \operatorname{Cos}[t]-4 r \operatorname{Sin}[t]-$
2
$4 r \operatorname{Cos}[t] \operatorname{Sin}[t]-$
$4 r \cos [t]\left(4-r^{2} \cos [t]^{2}-r^{2} \sin [t]^{2}\right)$

Hence, the value of the surfoce integral is $4 \pi$


To use polor coordinctes, replace each $x$ in function byr $\operatorname{Cos}(t)$ ond each y in function
by $r \operatorname{Sin}(t)$

The command TrigExpand [expression] applies basic trigonometric identities to attempt to simplify expression. Finally, to evaluate the integral in polar coordinates, the limits of integration must be changed and $d x$ dy must be replaced by $r d t d r$. Hence, the same value is obtained by the integral:
$\int_{0}^{2} \int_{0}^{\pi} \underbrace{\left(1-18 r \operatorname{Cos}(t)+4 r^{3} \operatorname{Cos}(t)-4 r \operatorname{Sin}(t)-2 r^{2} \operatorname{Sin}(2 t)\right)}_{\text {simplified version of function }} r d t d r$.
o Version 2.0 does not include the command TrigExpand. The same results as
TrigExpand[expression] are obtained with Expand[expression, Trig->True].


We are able to evaluate the line integral directly by noticing that the boundary of
$z=f(x, y)=4-\left(x^{2}+y^{2}\right), z \geq 0$ is the circle $x^{2}+y^{2}=4$ which has parametrization $\mathrm{x}=2 \operatorname{Cos}(\mathrm{~s}), \mathrm{y}=2 \operatorname{Sin}(\mathrm{~s})$, and $\mathrm{z}=0$, for $0 \leq \mathrm{s} \leq 2 \pi$.



### 5.4 Saving Results for Future Mathematica Sessions

Beginning users of Mathematica quickly notice that in order to use results from a previous Mathematica session, they must first be re-calculated. The purpose of this example is to illustrate how results can be saved for future use.

## - Application: Constructing a Table of Zeros of Bessel Functions

In this example, we will create a table of the first six zeros of the Bessel functions of the first kind, $\mathrm{J}_{0}(\mathrm{x}), \mathrm{J}_{1}(\mathrm{x}), \mathrm{J}_{2}(\mathrm{x}), \mathrm{J}_{3}(\mathrm{x}), \mathrm{J}_{4}(\mathrm{x})$, and $\mathrm{J}_{5}(\mathrm{x})$ then save the resulting table of numbers in a file. Consequently, for future calculations involving zeros of Bessel functions, we need only use the table of numbers we have already created instead of re-computing the zeros. This will thus save not only substantial time but also substantial memory.

The built-in Mathematica command BesselJ [alpha, $x$ ] represents $J_{a l p h a}(x)$, and, hence will be used in the construction of this table of zeros. This command as well as Bessel functions are discussed in more detail in Chapter 6.

We begin by looking at a graph of Bessel $\int[0, x]$ on the interval $[0,25]$ and observing the first six zeros. We create a list of six numbers corresponding to initial guesses of the first six zeros and then use FindRoot to approximate the first six zeros.

The list guess [0], a list of initial guesses of the first six zeros of Besselv [0,x] is used with FindRoot to approximate these zeros. Since this list is used in conjunction with Table, an approximation of the first zero is obtained with guess[0][[1]], an approximation of the second zero is obtained with guess[0][[2]], and so forth. This produces a list of approximations of the first six zeros of Besselv $0, \mathrm{x}]$ called $\mathrm{bz}[0]$.


We then proceed to Besselv $[1, x]$ :


In the some monner as above, we use the groph of $\mathrm{J}_{1}(\mathrm{x})$ to obtain our initicl guesses of its first six zeros.
guess[1]
is a list of six numbers corresponding to our initial guesses of the first six zeros of $J_{1}(x)$.
$b z[1]$
is a list of copproximactions of the first six zeros of $\mathrm{J}_{1}(x)$.

We repeat the procedure for Besselv[2,x], Besselv[3,x],Besselv[4,x] and Besselv[5,x]:


The first six zeros of Besselv $[3, x]$ are found below:


## Chapter 5 Nested Lists: Matrices and Vectors

Similarly, the zeros of Besselv $[4, x]$ are found.


Finally, a list of the first six zeros of Besselv $[5, x]$ is determined.


An alternative approach would have been to compile a list of initial guesses for the first six zeros by looking at the graphs of Besselv $[0, x]$, Besselv $[1, x]$, Besselv $[2, x]$, Besselv $[3, x]$, BesselJ [4, x] and Besselu $[5, x]$ and then to use FindRoot. In order to apply this alternate approach, a table of initial guesses must be compiled. This is done in starts below using the previously defined lists guess [ n ] for n $=0,1,2,3,4,5$. Then, a list of the first six zeros of the Bessel functions of the first kind

$$
\mathrm{J}_{0}(\mathrm{x}), \mathrm{J}_{1}(\mathrm{x}), \mathrm{J}_{2}(\mathrm{x}), \mathrm{J}_{3}(\mathrm{x}), \mathrm{J}_{4}(\mathrm{x}) \text {, and } \mathrm{J}_{5}(\mathrm{x})
$$

are computed in besselzeros. Notice that besselzeros is a list of lists, so the nth zero of the Bessel function BesselJ $[m, x]$ is extracted with besselzeros $[m+1, n, 1,2]]$.


The first list in besselzeros is the list of zeros of BesselJ [ $0, x$ ]. Hence, besselzeros [[1]] gives this list. Since the indices are shifted, besselzeros [ $[j+1]]=b z[j]$ where $b z[j]$ is the list of the first six zeros of Bessel $\mathfrak{J}[j, x]$ found earlier. We verify that the results obtained by the alternative approach are the same as those found by the previous approach.

The notation commonly used to denote the nth zero of the Bessel function $\mathrm{J}_{\mathrm{m}}(\mathrm{x})$ is $\alpha_{\mathrm{mn}}$.

Hence, the function alpha $[\mathrm{m}, \mathrm{n}]$ is defined below in terms of the values in $\mathrm{bz}[\mathrm{n}]$ for later use.


The table zeros is a table of the first six zeros of the first six Bessel functions.
The command Table $[a 1 p h a[m, n],\{m, 0,5\},\{n, 1,6\}] \gg b e s s e l z e r o s$ first computes the table of numbers Table $[a l p h a[m, n],\{m, 0,5\},\{n, 1,6\}]$ and then writes the results to the file besselzeros.

It is important to notice that if the file besselzeros does not exist, it is created; if it does exist, it is written over. To append the results of a command to an existing file, the form of the command is command>>>output file.

The function alphaalt $[m, n]$ can then easily find the nth zero of Besselj $[m, x]$ from the list besselzeros. These zeros do not have to be recomputed with this approach and are located in the table zerosalt. The fact that identical values are contained in zeros and zerosalt is verified.


The file besselzeros is a nested list of numbers; it does not rely on previous calculations.

## The file besselzeros is in the folder Mathematicaf.

\{\{2.404825557624828635, 5.520078082173197342, 87 송 11.79153159732223503. 14.93091770603674345. \{3.83170525143123663. 7.01558655548211243. 10 13.3236919362232029, 16.47063000385284817. 1 \{5.135621887451435987, 8. 417243947281169003. 14.79595114197812931. 17.95981943405801651, \{6.380161895464166835. 9.761023129207743131. 16. 22346615704028987 . 19. 40941267380204939. \{7.588342434475555476, 11.06470948793955275. 17.61596604980382726. 20.82693295541904514. \{8.771483762897060509. 12.33860419738229831. 18.98013385271306593. 22. 21779989413968912.
TMTM,

In this case, we modify besselzeros by converting the initialization cell to an ordinary input cell (by selecting Input Cell from Cell Style under the Style heading on the Mathematica Menu), naming the table zbj and defining bzero $[\mathrm{m}, \mathrm{n}]$. For future use, we need only open the file besselzeros, enter its input cells, and the
function bzero $[m, n]$ will give the $n t h$ zero of the $m$ th Bessel function, $J_{m}(x)$.
The calculation of the zeros of the Bessel functions are important in many problems in applied mathematics, so the procedures described here can be quite useful. Notice how these values are easily obtained using bzero $[\mathrm{m}, \mathrm{n}]$.

In order to use the values located in $\mathbf{z b j}$, the input cell containing $\mathbf{z b j}$ and the input cell containing the definition of bzero must first be entered.


## - An Alternative Method

In the previous example, we saw how to create a table of numbers and save them in a separate file for future use. The
 pairs [Cos[j], $\operatorname{Sin}[i]\}$ for $i=1,2,3$ and $j=1,2,3$, creates (or erases) outputfile and places the table in outputfile. Notice that in the first example below that the results are given in an output cell which cannot be accessed. Hence, if the output is to be saved for later use another approach may be more desirable. The second example illustrates such an approach. Print is used within the Table command so that the results are given in a print cell which can be accessed with the cursor. This gives the user a second method by which to save a file for futur use.


## Chapter 6 Applications Related to Ordinary and Partial Differential Equations

- Mathematica can perform calculations necessary when computing solutions of various differential equations and, in some cases, can be used to find the exact solution of certain differential equations using the built-in command DSolve. In addition, Version 2.0 contains the built-in command NDSolve which can be used to obtain numerical solutions of other differential equations. The purpose of Chapter 6 is to illustrate various computations Mathematica can perform when solving differential equations.
m Commands introduced and discussed in this chapter from Version 1.2 include:

```
Differential Equations: Special Functions:
DSolve[differentialequation, function, variable] Besseld[alpha,x]
DSolve[{differentialequations},{functions},variable] Bessely[alpha,x]
DSolve[{de,initialcond},...]
DSolve{{des,initialconds},...]
Programming Trigonometric Operations:
Block[{localvariables},procedurel TrigExpand [expression]
Algebraic Operations:
ConplexToTrig[expression]
```

Tariables [expression]
Exponent[polynomial, variable]
Coefficient[poly, far,i]
Other Operations:
Flatten[list]
Print[expression]
Dt[function]
=

E Commands introduced and discussed in this chapter from Version 2.0 include:

```
mSolve
InterpolatingFunction
Emaluate
```

Commands from previous chapters are frequently used.

- Applications discussed in this chapter include the Falling Bodies Problem, Spring Problems, Classification of Equilibrium Points, and the Wave Equation.


## 圈 6.1 Linear Equations

The general solution of the linear equation $\frac{d y}{d x}+P(x) y=f(x)$, where $P$ and $f$ are continuous on the interval $I$, is $y=e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x+c_{1} e^{-\int P(x) d x}$.

Mathematica can solve equations of this type with DSolve. However, since solutions of first-order linear equations obviously depend on the computation of an integral, if you are using Version 1.2, Integraltables.m must be loaded before trying to solve any differential equations.
o If you are using Version 2.0, Integraltables .m is automatically loaded at startup.
After this is done, the linear equation given above is solved with the command DSolve [ $\boldsymbol{y}^{\prime}[\mathbf{x}]+\mathbf{P}[\boldsymbol{x}] \mathbf{y}[\boldsymbol{x}]$ $=f[x], y[x], x]$ where the functions $P(x)$ and $f(x)$ are usually directly entered in the DSolve command. Notice that the command consists of three parts : the differential equation; the dependent variable (or solution), $\boldsymbol{y}[x]$; and the independent variable, $\boldsymbol{x}$. Also notice that the dependent variable must be entered as $\boldsymbol{y}[\boldsymbol{x}]$ each time it appears in the differential equation. Otherwise, DSolve will yield a meaningless result. Several examples are given below to illustrate the use of DSolve.

## - Example:

Solve the first order linear differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+x y=-\left(x^{3}+x\right)$.
The solution, called sol, is easily found below with
DSolve $\left[\left(1+x^{\wedge} 2\right) y^{\prime}[x]+x \quad y[x]==-\left(x^{\wedge} 3+x\right), y[x], x\right]$.
Notice that the output for this command is a list of one element (obtained with sol [ [1] ]),

$$
\left\{y[x]>\frac{1-\left(1+x^{2}\right)^{3 / 2}}{3 E^{\log \left[1+x^{2}\right] / 2}}+\frac{C[1]}{E^{\log \left[1+x^{2}\right] / 2}}\right\}
$$

This is also a list of one element (obtained with sol [ [1, 1] ]),

$$
y[x]->\frac{1-\left(1+x^{2}\right)^{3 / 2}}{3 E^{\log \left[1+x^{2}\right] / 2}}+\frac{C[1]}{E^{\log \left[1+x^{2}\right] / 2}}
$$

which is composed of two parts, $\mathbf{Y}[\mathbf{x}]$ and the expression following the arrow. Of course, the second part of this element is the portion of interest since it gives the formula of the solution. Therefore, in order to extract this formula, the command sol[ [1, 1, 2]] is used. (sol[ [1, 1, 1]] yields y[x].)

Note: In most instances, the ability to extract the formula for the solution will be of great importance. In order to analyze solutions to most differential equations, obtaining the formula of the solution is necessary. One altemative is to define the solution as a function once it has been found with DSolve. However, many solutions are rather complicated, so typing is cumbersome and mistakes are likely. Hence, the logical choice for obtaining the formula is by extracting it from the output list. At first, the technique of extracting solutions may seem difficult to understand, but it should become clearer after several examples.


Solutions for various values of the constant $C$ [1] can be graphed. First, the graphs for $C[1]=-4,-2,0$, and 2 are requested in a single input cell using different GrayLevel assignments. Each plot is assigned a name so that the Show command can be used in the same cell to plot these four graphs simultaneously. Since all of the commands are in the same cell, only the output from the last command is shown.


Mathematica's DSolve command can also be used to solve initial value problems. The command is altered slightly to include the initial condition.

## - Example:

Solve: $x \frac{d y}{d x}+(x+2) y=2 e^{-x}, y(1)=0$.
The differential equation can be solved with DSolve as in the previous example. However, this gives the general solution to the problem which represents a family of solutions. The solution to the initial value problem the one solution which passes through the point $(1,0)$.


To find the solution to the initial value problem with DSolve, the initial condition must be entered in the DSolve command. This is accomplished in the following way:
DSolve $\left[\left\{x \quad y^{\prime}[x]+(x+2) y[x]==2 E x p[-x], y[1]==0\right\}, y[x], x\right]$.

Notice that the initial condition is placed in "curly" brackets ,\{ \}, along with the differential equation. Otherwise, the command is unchanged. Also note that a double equals sign is used in the initial condition.
The solution is found below and named sol. The formula for $y[x]$ is then extracted and simplified in a single command. The expression which results is called simsol for use in the Plot command which follows.


## - Application: The Falling Body Problems

A useful application of first-order differential equations is solving problems encountered in mechanics. One such problem is as follows:
A body falls through the air towards the earth. In such a circumstance, the body is subjected to a certain amount of air resistance (which in some cases is proportional to the body's velocity). The objective is to determine the velocity and the distance fallen at time $t$ seconds.
Mathematica can be quite useful in solving problems of this type. To illustrate how these falling body problems are solved, consider the following problem.

An object weighing 32 pounds is released from rest 50 feet above the surface of a calm lake. The air resistance (in pounds) is given by 2 v , where v is the velocity (in feet/sec). After the object passes beneath the surface, the water resistance (in pounds) is given by 6 v . Further, the object is then buoyed up by a buoyancy force of 8 pounds. Find the velocity of the object 2 seconds after it passes beneath the surface of the lake.
This problem is made up of two parts. First, the forces acting on the object before it reaches the surface of the lake must be considered. Then, the set of forces which act upon the object beneath the lake's surface must be determined in order to solve the problem. Using Newton's second law, the initial value problem which determines the object's
velocity above the surface is: $\frac{\mathrm{dv}}{\mathrm{dt}}=32-2 \mathrm{v}, \mathrm{v}(0)=0$.
DSolve can be used to solve this initial value problem. This is done below. The velocity is then extracted from the resulting expression with deq $[[1,1,2]]$ and named vel1.


## Chapter 6 Ordinary and Partial Differential Equations

Before determining the velocity beneath the lake's surface, the object's velocity at the point of impact must be found. Therefore, the time at which the object hits the surface of the lake must be calculated by integrating the velocity $v(t)$ to obtain the object's position function $x(t)$ using the initial position $x(0)=0$. (Recall that $\left.x^{\prime}(t)=v(t)\right)$ This calculation is carried out below. Note that the position function is extracted and assigned the name position1.

FallingBodies


Then, the value of $t$ when $x(t)=50$ is computed (i.e., the time when the object hits the lake's surface). This is accomplished by making use of FindRoot. Since FindRoot depends on an initial guess of the solution to the equation, position 1 is graphed in order to obtain an approximate value of $t$ when $x(t)=50$. The position appears to equal 50 near $t=4$. Hence, Findroot is used to determine the root of the equation $x(t)=50$ with the initialguess $t=4$. Therefore, the velocity at the point of impact is found by substituting the value obtained with FindRoot, $t=3.62464$, into the velocity function of the object above the surface, vell. This is accomplished with vell/.t->3.62464, and the resulting expression is named initvel2.


Now that the velocity of the object at its point of impact is known, the initial value problem to determine the velocity beneath the lake's surface is: $\frac{\mathrm{dv}}{\mathrm{dt}}=24-6 \mathrm{v}, \mathrm{v}(0)=15.9886$.
can be solved. This problem is solved below with DSolve. (Note that initvel2 is used in the initial condition instead of entering the numerical value.) Once solved, the exact value of the velocity at $t=2$ seconds is calculated by extracting the velocity formula from deq3 and evaluating it at $t=2$ with deq $3[[1,1,2]] / . t->2$. The numerical approximation of the velocity ( 4.00007 seconds) is then computed.


### 6.2 Exact Differential Equations

Certain types of nonlinear ordinary differential equations such as exact differential equations can be solved with the aid of Mathematica. The differential equation $M(x, y) d x+N(x, y)=0$ is called an exact differential equation in
a domain $D$ if there exists a function $F$ such that $\frac{\partial F(x, y)}{\partial x}=M(x, y)$ and $\frac{\partial F(x, y)}{\partial y}=N(x, y)$
for all ( $x, y$ ) in D. In order to determine if an equation is exact, the following well-known theorem can be used: Let M and N have continuous first partial derivatives at all points ( $\mathrm{x}, \mathrm{y}$ ) in a domain D .

If $\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}$ for all ( $x, y$ ) in $D$, then the differential equation $M(x, y) d x+N(x, y) d y=0$ is exact
Hence, if the differential equation is exact the total differential of $F$, $d F(x, y)=M(x, y) d x+N(x, y) d y=0$.
Therefore, the solution of the exact equation is $F(x, y)=$ Constant. The method by which $F(x, y)$ is determined is illustrated with the following example.

## - Example:

Solve the initial value problem $\frac{1+8 x y^{2 / 3}}{x^{2 / 3} y^{1 / 3}} d x+\frac{2 x^{4 / 3} y^{2 / 3}-x^{1 / 3}}{y^{4 / 3}} d y=0, \quad y(1)=8$.
First, we must verify that this differential equation is exact . This is done by entering the functions $M(x, y)$ and $\mathrm{N}(\mathrm{x}, \mathrm{y})$. (To avoid confusion with any built-in Mathematica function or constant, small letters are used in these definitions.) Next, the partial derivative of $M(x, y)$ with respect to $y, D[m[x, y], y]$, must be calculated so that it can be compared with the partial derivative of $N(x, y)$ with respect to $x, D[n[x, y], x]$. These derivatives are conveniently named my and nx .


At this point my and $n x$ do not appear to be equal. However, once simplified, equality is verified when the result of the test equality my1 ==nm1 (note the double equals sign) is True. (The simplified derivatives are assigned the names my 1 and $n \times 1$ ).


M1=Simplify[my] simplifies $\mathbf{n} \mathbf{y}$.
nx1=Simplify[nx] simplifies nx.

## ny1 $==n \times 1$

tests to see if my curd
Hys cae the some. If they were not the some, False would be retumed instead of True.

Now that the equation is known to be exact, the process of finding the function $F(x, y)$ can begin. Since by definition,
$\frac{\partial F(x, y)}{\partial x}=M(x, y)$, we have $F(x, y)=\int M(x, y) \partial x+g(y)$.
where $g(y)$ is an arbitrary function of $y$. In order to determine $g(y)$, differentiate the above equation with respect to $y$ and, make use of the fact that $\frac{\partial F(x, y)}{\partial y}=N(x, y)$. Then, $\frac{\partial F(x, y)}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) \partial x+g(y)=N(x, y)$.
Therefore, $g(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) \partial x$ so $g(y)=\int\left(N(x, y)-\frac{\partial}{\partial y} M(x, y) \partial x\right) d y$.
These steps are carried out with Mathematica in the following manner.
First, integrate $M(x, y)$ with respect to $x$. The resulting expression is called $£$. Of course, Mathematica does not indicate the presence of the arbitrary function of $y, g(y)$. However, the possibility that a nonconstant function $g(y)$ exists must be investigated. This is accomplished by differentiating $\mathbf{f}$ with respect to $y$, naming it $\boldsymbol{f}_{\mathbf{y}}$, and comparing fy to $N(x, y)$. Since the difference of $N(x, y)$ and $f_{y}$ is $g^{\prime}(y)$, their difference is computed below and named gprime. When simplified, gprime is found to be zero. Therefore, $g(y)$ is a constant function, so the solution of this exact differential equation is $f=C$. The constant $C$ is found by evaluating $f$ at the point $(1,8)$. This is done with the command: $f / . x->1 / . y->8$

## Chapter 6 Ordinary and Partial Differential Equations

This shows that $C=\frac{27}{2}$. Therefore, the solution to the initial value problem is: $\frac{3 x^{1 / 3}}{y^{1 / 3}}+6 x^{4 / 3} y^{1 / 3}=\frac{27}{2}$.


Mathematica can now be used to check that the function $£$ is correct.
Dt [ f ] computes the total differential of f . This is computed below and called totalf. The symbols Dt [ x ] and $D t[y]$ in the output represent $d x$ and $d y$, respectively. Hence, the command
Together[Coefficient[totalf, $\mathrm{Dt}[\mathrm{x}]$ ]] gives the coefficient of dx and writes it as a single fraction. A similar command is used to obtain the coefficient of dy. Since the differential equation is exact, the coefficients of $d x$ and dy should be the functions

$$
\mathrm{M}(\mathrm{x}, \mathrm{y})=\frac{1+8 \mathrm{xy}^{2 / 3}}{\mathrm{x}^{2 / 3} \mathrm{y}^{1 / 3}} \text { and } \mathrm{N}(\mathrm{x}, \mathrm{y})=\frac{2 \mathrm{x}^{4 / 3} \mathrm{y}^{2 / 3}-\mathrm{x}^{1 / 3}}{\mathrm{y}^{4 / 3}}
$$

from the differential equation. The results below verify the solution.


Chapter 6 Ordinary and Partial Differential Equations

## - Example:

To illustrate that the arbitrary function $\mathrm{g}(\mathrm{y})$ may not be constant, consider the following problem:
$\frac{3-y}{x^{2}} d x+\frac{y^{2}-2 x}{x y^{2}} d y=0, y(-1)=2$
Begin by clearing all previously used expression names. Then, the same steps are followed as were used in the previous example. The functions $M(x, y)$ and $N(x, y)$ are entered and the equation found to be exact by verifying that $\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}$.
Note that the partial derivative of $N(x, y)$ with respect to $x$ must be simplified to see that it is identical to the partial of $\mathrm{M}(\mathrm{x}, \mathrm{y})$ with respect to y .


Next, the function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is determined as in the previous example. Note that in this problem, the simplified form of gprime is nonconstant.


Therefore, gprime must be integrated with respect to $y$ to find the formula for $g(y)$, and the solution of the exact equation, solution, is the sum of the functions $£$ and $g(y)$. Finally, to solve the initial value problem, solution is evaluated at the point $(-1,2)$ with the command solution/.x->-1/.y->2 to obtain a value of 2 . Hence the solution is $-\frac{3-y}{x}+\frac{2}{y}=2$


As was illustrated in the previous example, the solution can be verified by calculating the total differential, totalsol,of solution with $D t$ [solution]. Again, collecting the coefficients of $\mathrm{Dt}[\mathrm{x}]$ and $\mathrm{Dt}[\mathrm{y}]$ in totalsol and comparing these results to the functions $M(x, y)$ and $N(x, y)$ from the differential equation shows that the solution is correct.


## © 6.3 Undetermined Coefficients

## - Example:

Use the method of undetermined coefficients to solve the differential equation $y^{\prime \prime}-2 y^{\prime}+y=\operatorname{Sin}(x)$.
Recall that the method of undetermined coefficients is used to solve nonhomogeneous linear ordinary differential equations. The general solution to the nonhomogeneous equation
$a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(x)$ is $y(x)=y_{h}(x)+y_{p}(x)$, where $y_{h}(x)$ is the solution to the corresponding homogeneous equation $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0$, and $y_{p}(x)$ is a particular solution to the nonhomogeneous equation.
The following solution is constructed with Version 1.2. Notice that Version 1.2 is unable to solve the differential equation $y^{\prime \prime}-2 y^{\prime}+y=\operatorname{Sin}(x)$ with the built-in command DSolve.

- Because DSolve does not solve most nonhomogeneous equations (as illustrated below) the problem must be divided into two parts. First, the homogeneous equation must be solved, and then a particular solution to the nonhomogeneous equation must be found.
Since DSolve can be used to solve homogeneous linear ordinary differential equations with constant coefficients of degree four or less, the homogeneous solution, $y_{h}(x)$, is found with DSolve [y' $\left.[x]-2 y^{\prime}[x]+y[x]==0, y[x], x\right]$ and called soll for later use. Also, the nonhomogeneous function, $g(x)=\sin x$, is assigned the name exp.


## UndeterminedCoeffs

$1 \mathrm{n} / 201:=$
DSolve[y' $[x]-2 Y^{\prime}[x]+y[x]==\operatorname{Sin}[x]$. Y[x]. $X]$

DSolve: NotYet:
Built-in procedures cannot salve this differential equation.
out $200 \mathrm{~F}=$
DSolve[y[x]-2 $y^{\prime}[x]+y^{\prime \prime}[x]==$
$\operatorname{Sin}[x], y[x], x]$
(alst): $=$

$$
\text { sol1=DSolve[ } y^{\prime}\left[[x]-2 Y^{\prime}[x]+Y[x]==0\right. \text {. }
$$ Y[I]. $\mathbf{x}]$

out:21/=
 to be $\operatorname{Sin}(x)$

However, to use the method of undetermined coefficients, we moust soive the (lineor) differentical equation
$y^{\prime \prime}-2 y^{\prime}+y=0$
The Moxhematica commond DSolve is used to solve this equation ond its solution is
$y(x)=c_{1} e^{x}+c_{2} x e^{x}$

The Macthernatica commond DSolve is watle to solve the (nor-lineor) differentiol equation $y^{\prime \prime}-2 y^{\prime}+y=\operatorname{Sin}(x)$.

The annihilator form of the method of undetermined coefficients will be used to find a particular solution of the nonhomogeneous problem. Recall that the $n-t h$ order derivative of a function $y$ is $D^{n} y=\frac{d^{n} y}{d x^{n}}$.
Thus, the linear $n$-th order ordinary differential equation with constant coefficients
$a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=g(x)$ can be expressed in operator notation
$a_{n} D^{n} y+a_{n-1} D^{n-1} y+\cdots+a_{1} D y+a_{0} y=g(x)$ or $\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}\right) y=g(x)$.
The expression ( $a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}$ ) is called an $n-t h$ order differential operator.
The differential operator $\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}\right)$ is said to annihilate a function $f$ (which possesses at least $n$ derivatives) if $\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}\right) f(x)=0$.
In order to solve the nonhomogeneous equation, recall the following :
(i) The differential operator $D^{n}$ annihilateseach of the functions $1, x, x^{2}, \ldots, x^{n-1}$.
(ii) The differential operator $(D-\alpha)^{n}$ annihilateseach of the functions $e^{\alpha x}, x e^{\alpha x}, x^{2} e^{\alpha x}, \ldots, x^{n-1} e^{\alpha x}$.
(iii) The differential operator $\left[D^{2}-2 \alpha D+\left(\alpha^{2}+\beta^{2}\right)\right]^{\mathrm{n}}$ annihilateseach of the functions $e^{\alpha x} \cos \beta x, x e^{\alpha x} \cos \beta x, x^{2} e^{\alpha x} \cos \beta x, \ldots, x^{n-1} e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x, x e^{\alpha x} \sin \beta x, x^{2} e^{\alpha x} \sin \beta x, \ldots, x^{n-1} e^{\alpha x} \sin \beta x$.
Let $P(D)$ denote the differential operator ( $\left.a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}\right)$.
Then the nonhomogeneous linear n-th order ordinary differential equation with constant coefficients equation can be expressed as $P(D) y=g(x)$. When $g(x)$ consists of either
(a) a constant k ,
(b) a polynomial in x ,
(c) an exponential function $\mathrm{e}^{\alpha \mathrm{x}}$,
(d) $\sin \beta x, \cos \beta x$
or finite sums and products of these functions, another differential operator which annihilates $\mathrm{g}(\mathrm{x})$ can be determined.

Suppose that the differential operator $P_{1}(D)$ annihilates $g(x)$. Then applying $P_{1}(D)$ to the nonhomogeneous equation yields $P_{1}(D) P(D) y=P_{1}(D) g(x)=0$. The form of the particular solution is found by solving the homogeneous equation $P_{1}(D) P(D) y=0$.

The function ann $[\mathbf{q}, \mathbf{f}]$ which verifies that the annihilating operator, $q$ (a polynomial in $\mathbf{d}$ ), annihilates the function $f$ is defined below with a Block. This is accomplished by transforming the polynomial $q$ into its equivalent differential form and applying it to the function $\mathbf{f}$.

Block[\{var1, var2, ...\}, procedure] allows the variables to be treated locally in the procedure without affecting their value outside. Hence, each time the procedure is executed, the original value of each of the variables in the list \{var1, var2, . .\} is saved and restored at the end of the procedure. The commands used in the definition of ann $[q, £]$ are explained below. Expand $[q]$ expands all products and powers in $\mathbf{q}$. This is useful when the annihilator is a product of differential operators.
This expanded form of $q$ is called $p$ locally.

- In Version 2.0, the command Block has been replaced by the command module.

Variables [p] gives a list of all of the variables in $p$. This command is used to obtain the variable, $d$, used in the annihilating operator.

Exponent [p, var[[1]]] yields the maximum power for which var[[1]] appears in $\mathbf{p}$. In this case, var [ [1]] represents the variable $\mathbf{d}$. Hence, this command determines the highest power of $\mathbf{d}$ in $\mathbf{p}$ and names it exp. (Since exp is contained in the Block, it should not be confused with the name of the nonhomogeneous function, $g(x)=\sin x$, which was named exp outside of the Block.) Knowing the highest power of $d$ enables the differential form of the operator to be determined by, first, finding the coefficients.
$c[i]:=C o e f f i c i e n t[p, \operatorname{var}[[1]], i]$ gives the coefficient of var[[1]]^i in $p$. In other words, it finds the coefficient of each term in $p$. ( $c[1]$ is the coefficient of $d, c[2]$ is the coefficient of $d^{\wedge} 2$, etc.) Since $c[0]$ is the the constant in $p$, it can be obtained by evaluating $p$ when the variable $d=0$.
The final command, $\operatorname{Sum}[c[i] D[f,\{x, i\}],\{i, 0, \exp \}]$, applies the annihilator to the function by substituting $£$ into the differential form of the operator.

In this example, the nonhomogeneous term in the equation is the function $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ which falls under category (iii) given above. Therefore, the annihilator is $\mathrm{d}^{\wedge} \mathbf{2 + 1}$ (since $\alpha=0, \beta=1$, and $\mathrm{n}=1$ ). This is verified with ann $\left[d^{\wedge} 2+1, \exp \right]$ where $g(x)=\sin x$ was given the name exp.

The voriables var, exp. c, val, and p cre local to the function ann[ $\mathbf{q}, \mathrm{f}]$.


After the annihilator has been verified, the procedure to determine the particular solution to the nonhomogeneous differential equation may begin. The first step is to represent both the annihilator and the left-hand side of the differential equation in differential operator form. The annihilator is, therefore, represented as $\mathbf{y}^{\wedge} \mathbf{2 + 1}$, and the differential equation as $y^{\wedge} 2-2 y+y$. (The variable $y$ is being used instead of d.) Now, applying the annihilator to the differential equation is equivalent to taking the product of these two differential operators. This is done with Expand $\left[\left(y^{\wedge} 2+1\right)\left(y^{\wedge} 2-2 y+1\right)\right]$. Hence, a fourth-order differential operator is obtained. This operator must then be used to return to the form of a differential equation. (i.e., the fourth-order differential operator obtained must be applied to $y$.) The function polytodiff defined in the Block below accomplishes this task by making the
making the conversion from $\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\cdots+a_{1} D+a_{0}\right) y=0$ to the differential equation $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0$.

It uses the same commands which appeared in ann $[q, f]$ above to yield a fourth-order differential equation. This equation is solved with DSolve with the result named sol2.


Since sol2 is a list, the formula for $\mathrm{y}[\mathrm{x}]$ must be extracted. This is done with sol2 [ [1, 1, 2] ]. Obviously, this formula can be simplified with trigonometric identities. The command,
TrigExpand [sol2[ [ $1,1,2]]]$, does this. Recalling that the general solution to the homogeneous equation obtained earlier in the example, soll, was
given by $y[x]=C[1] \mathrm{E}^{\mathrm{x}}+\mathrm{C}[2] \mathrm{x} \mathrm{E}^{\mathrm{x}}$, the form of the particular solution must be the remaining terms in the simplified version of sol2 $\{[1,1,2]\}$ given below. Therefore, the particular solution is defined as
$y_{p}(x)=c_{1} \operatorname{Cos} x+c_{2} \operatorname{Sin} x$.

- In Version 2.0, TrigExpand is obsolete. The command Expand[expression, Trig->True] in Version 2.0 performs the same calculation as TrigExpand [expression] in Version 1.2.

Note that the constants are arbitrary, so the negative sign associated with $\mathrm{C}[1]$ in sol2 [ [1, 1, 2] ] as well as the order of these constants can be ignored. The objective is to solve for the arbitrary constants found in the particular solution. Hence, the name of these constants and the signs associated with them is not a concem. In order to find the values of these two constants, the particular function is defined below as the function yp.


The particular solution of a nonhomogeneous equation satisfies the nonhomogeneous equation. Hence, yp must satisfy $y^{\prime \prime}-2 y+y=\operatorname{Sin}(x) . \quad y p$ is substituted into this equation below, and the expression which
results is named eqn so that it can be easily simplified with Simplify [eqn]. This simplified equation reveals that $c[1]=1 / 2$ and $c[2]=0$ by equating the coefficients of $\operatorname{Cos}[x]$ and $\operatorname{Sin}[x]$ on each side of the equation. Evaluating the function $y p$ for these values of $c[1]$ and $c[2]$ yields the particular solution.

```
/n(35): \(=\)
 ечр=Yp''[x]-2 YP'[x]+Yp[x]==Sin[x]
```

out/35/=
$-2(-(\operatorname{Sin}[x] c[1])+$
$\operatorname{Cos}[x] c[2])==\operatorname{Sin}[x]$
/n(34):=
Simplify[eqp]
out/34]=
$2 \operatorname{Sin}[x] c[1]-2 \operatorname{Cos}[x] c[2]==$
$\operatorname{Sin}[x]$
$\ln (36):=$
Clear[Yp]
$\operatorname{Yp}\left[I_{-}\right]=c[1] \operatorname{Cos}[x]+c[2] \operatorname{Sin}[x] / . c[1]-31 / 2$
f. c[2] $\rightarrow 0$
out $367=$
$\operatorname{Cos}[x]$
2
Suce $y_{p}(x)=c_{1} \operatorname{Sin}(x)+c_{2} \operatorname{Cos}(x)$
must satisfy the differential equation
$y^{\prime \prime}-2 y^{\prime}+y=\sin (x)$, we substitute
y by Yp in the equation; for convenience,
we nome the resut eqp.

After cleoring Yp we redefine YP to be $\mathrm{c}[1] \operatorname{Cos}[\mathrm{x}]+\mathrm{c}[2] \operatorname{Sin}[\mathrm{x}]$ with c[l] replaced by $1 / 2$ cred c[2] replaced by 0.
out 350$]=$
$\operatorname{Cos}[x]$
2

The general solution to the nonhomogeneous equation is the sum of the general solution to the homogeneous equation and the particular solution to the nonhomogeneous equation. This solution is defined below with $\mathbf{y}$. To check that the solution is correct, it is substituted into the left-hand side of the differential equation and simplified to verify the results.

o The command DSolve has been dramatically improved in Version 2.0. In fact, Version 2.0 computes the exact solution of $y^{\prime \prime}-2 y^{\prime}+\mathrm{y}=\operatorname{Sin}(\mathrm{x})$. In general, when attempting to solve a differential equation, try DSolve first; if DSolve does not produce a solution, try other methods.

## Uersion2.0DifferentialEquations

(n/4): $=$
DSolve[Y' $\left.[x]-2 Y^{\prime}[x]+Y[x]==\operatorname{Sin}[x], Y[x], x\right]$
out/4/=
$\left\{\left\{y[x] \rightarrow E^{x} C[1]+E^{x} x C[2]+\frac{\operatorname{Cos}[x]}{2}\right\}\right\}$

Version 20 con calculoxe the exact sodution of the differenticl equaction $y^{\prime \prime}-2 y^{\prime}+y=\operatorname{Sin}(x)$


### 6.4 Linear n-th Order Differential Equations with Constant Coefficients

A differential equation of the form $a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0$, where each $a_{i}$
is a real number, is called

## a linear $n$-th order homogeneous differential equation.

The characteristic equation of the linear $n$-th order homogeneous differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0$ is $a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0$.
Recall that this characteristic equation is found by assuming that the solutions of the differential equation are of the form $y(x)=e^{m x}$, and the solution is found by substituting this solution into the differential equation and solving for $m$. Hence, the roots of the characteristic equation are values of $m$ which yield solutions to the differential equation. Mathematica is somewhat limited in its ability to solve linear n-th order homogeneous differential equations with constant coefficients directly with DSolve since DSolve only works for equations of this type of degree four or less. However, these equations can still be solved with Mathematica by considering the characteristic equation.

## - Example:

Mathematica's inability to solve the fifth-order equation
$\frac{d^{5} y}{d x^{5}}-3 \frac{d^{4} y}{d x^{4}}-5 \frac{d^{3} y}{d x^{3}}+15 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-12 y=0$
with DSolve is demonstrated below by first defining the left-hand side of the equation with lhseqn, and then using DSolve [lhseqn=$=0, y[x], x]$. Recall that the $n$-th derivative of $y[x]$ is given with
$\mathrm{D}[\mathrm{y}[\mathrm{x}],\{x, \mathrm{n}\}]$. Also, since y is a function of $\mathrm{x}, \mathrm{y}[\mathrm{x}]$ must be used in defining the left-hand side of the differential equation.
When DSolve fails to solve the equation, the characteristic equation is defined as chareqn so that an alternate method of solution can be employed.


Since the characteristic equation is of degree five, the roots can be found exactly with Solve [chareqn,m].
Since five distinct roots result, the functions $e^{-2 x}, e^{-x}, e^{x}, e^{2 x}, e^{3 x}$ are five linearly independent
solutions to the fifth-order differential equation. Therefore, the general solution to the differential equation is the linear combination of these five functions. The general solution is defined below as $\mathbf{y}[\mathbf{x}]$. It is then substituted into the left-hand side of the differential equation. Since this expression is lengthy, a shorted version is requested with Short [lhseqn , 3]. This expression is simplified to show that $y$ satisfies the homogeneous differential equation.


If a set of initial conditions accompany the differential equation, then the constants in the general solution must be found so that the solution satisfies the differential equation and the initial conditions. Consider the following set of initial conditions:
$y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=3, y^{\prime \prime \prime \prime}(0)=0$.
These initial conditions are entered as the list initialconds below. Next, a table consisting of the constants $c[1], c[2], c[3], c[4]$, and $c[5]$ is created with Table[c[i], \{i,1,5\}] and named table. Then the command Solve[initialconds, table] calculates the constants. The result is named values so that the solution of the initial value problem can be easily obtained by evaluating $y$ for the values of the constants extracted from the list values. This is done with $y[x] / . v a l u e s[[1]]$.


Consider another set of conditions :
$y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=3, y^{\prime \prime \prime \prime}(0)=0$.
After clearing all previously used definitions, the problem is solved in a similar manner as the previous example. The new set of conditions are defined in a list, and the exact values of the constants are found in values as they were above. However, the exact values are not as meaningful as the numerical approximation to each constant. Therefore, a numerical approximation, named nvalues, is obtained with $N$ [values]. The solution $y[x]$ can then be evaluated at nvalues [[1]] to yield the solution to this problem.


To obtain the solution, the function $\mathrm{y}[\mathrm{x}]$ is evaluated at the elements of nvalues with $y[x] / . n v a l u e s[[1]]$.

## NthOrderLinear

Falues

$$
\begin{aligned}
& \text { \{\{c[1] } \rightarrow \\
& \left(\left(2 E ^ { 6 } \left(\left(<\left(<-\left(2 E^{5}\right)+7 E^{6}\right)-\right.\right.\right.\right. \\
& \left.2 E^{7}-18 E^{8}+26 E^{9}\right) 1 \\
& 10 \quad 11 \\
& \text { - } 4 \mathrm{E} \text { - } 16 \mathrm{E} \text { - } \\
& \left.18 E^{12}+54 E^{13}\right)- \\
& 14 \quad 15 \\
& 39 E-30 E+ \\
& \left.108 \mathrm{E}^{16}\right)-126 \mathrm{E}^{17}+ \\
& 18 \\
& 108 \mathrm{E} \text { ) )/ } \\
& 5 \\
& \text { ( }(\text { ( }(\lll<(<)-(32 \mathrm{E})+
\end{aligned}
$$

### 6.5 The Cauchy-Euler Equation

A differential equation of the form $a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+a_{0} y=g(x)$
is called a Cauchy-Euler equation.
Equations of this type are solved by assuming solutions of the form $y=x^{m}$, substituting this solution into the differential equation, and solving for $m$.

## - Example:

Solve the Cauchy-Euler equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$.
Problems of this type can be solved nicely with Mathematica as shown below. For convenience, the left-hand side of the equation is defined and named exp. After defining the solution $\mathbf{y}[x]$ as $x^{\wedge} m$, re-entering exp causes this form of the solution ( $x^{\wedge} \mathrm{m}$ ) to be substituted into the left-hand side of the equation. This results in an expression involving terms which can be simplified with Simplify [exp]. This simplified expression is called exp2.


Division of exp 2 by $x^{\wedge} \mathrm{m}$ yields the expression exp 3 which depends only on $m$. Therefore, equating exp 3 to 0 and solving for $m$, yields the solution of the differential equation. Since these roots of are $m=3$ and $m=2$, the
functions $x^{2}$ and $x^{3}$ are both solutions Because these functions are linearly independent, the general solution to the differential equation is $y=c_{1} x^{3}+c_{2} x^{2}$.
This general solution is defined as $y[x]$ below. As was seen earlier, entering exp results in the substitution of $\mathbf{y}[\mathbf{x}]$ into the left-hand side of the equation. Simplification reveals that $\mathbf{y}[x]$ is, in fact, the solution since a value of zero results.


## Chapter 6 Ordinary and Partial Differential Equations

o Even though Version 1.2 is unable to solve the Cauchy-Euler equation with the command DSolve, Version 2.0 can solve Cauchy-Euler equations:


### 6.6 Variation of Parameters

Let $y_{1}$ and $y_{2}$ be a fundamental set of solutions on the interval $I$ of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, where $P$ and $Q$ are continuous on the interval I.

The Wronskian $W$ of $y_{1}$ and $y_{2}$ is $W=\operatorname{det}\left[\begin{array}{ll}y_{1} & y_{2} \\ y_{1^{\prime}} & y_{2^{\prime}}\end{array}\right]$.
Let $u_{1}=-\int \frac{y_{2} f(x)}{W} d x, u_{2}=\int \frac{y_{1} f(x)}{W} d x$, and $y_{p}=u_{1} y_{1}+u_{2} y_{2}$. Then the general solution of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$ is $y=y_{c}+y_{p}$ where $y_{c}=c_{1} y_{1}+c_{2} y_{2}$ is the general solution of the differential equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$.
Because the method of variation of parameters depends on integration, Mathematica can be of great service in solving second-order linear nonhomogeneous ordinary differential equations by this method. Consider the following problem:

- Example:

Solve $y^{\prime \prime}-\frac{4}{x} y^{\prime}+\frac{6}{x^{2}} y=\frac{1}{x^{4}}$ by the method of variation of parameters
DSolve does not solve this equation, as shown below, since it is nonhomogeneous and involves variable coefficients. Once again, the problem must be solved in two parts. The homogeneous equation must be solved and a particular solution must be determined through variation of parameters.
The homogeneous equation is $y^{\prime \prime}-\frac{4}{x} y^{\prime}+\frac{6}{x^{2}} y=0$. Multiplication by $x^{2}$ yields $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$.

This equation is the same as that solved the previous section on Cauchy-Euler equations. Hence, the solution to the homogeneous equation (the complimentary solution) has been found to be
$y_{c}(x)=c_{1} x^{2}+c_{2} x^{3}$. This function is defined below as yc.


The next step in the solution process is to find a particular solution to the nonhomogeneous problem. In order to do this by the method of variation of parameters, the Wronskian of the two solutions to the homogeneous equation must be determined. The Wronskian for two arbitrary functions $h$ and $k$ is defined below as a function wronskian of two variables, $h$ and $k$. Since the solutions to the homogeneous equation are defined as $\mathbf{y} \mathbf{1}$ and $\mathbf{y} \mathbf{2}$, the
 variable $\mathbf{x}$ and is defined as $w[\mathbf{x}]$.

Before attempting to evaluate the integrals involved in the formulas given earlier, Version 1.2 users must load the package Integraltables.m as illustrated below.


In order to find a particular solution of the form $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, the functions $u_{1}$ and $u_{2}$
must be calculated with the following integrals $u_{1}=-\int \frac{y_{2} f(x)}{W} d x$ and $u_{2}=\int \frac{y_{1} f(x)}{W} d x$.
The functions $u_{1}$ and $u_{2}$ are determined below with Integrate. The general solution to the nonhomogeneous problem is then defined as the sum of the complimentary solution found earlier,

## Chapter 6 Ordinary and Partial Differential Equations

$y c[x]$, and the particular solution, $y p[x]=u 1[x] y 1[x]+u 2[x] y 2[x]$. The general solution is defined as $\boldsymbol{y}[\boldsymbol{x}]$.

## UariationofParameters

1n/OSI:=
u1[ $x$ _]=Integrate[ (-Y2[x] $f[x]) / \bar{y}[x], x]$
out/08/=
1
----
4
$4 x$
infog/:=

out $109 /=$
-1
---
5 x
inf 100 ): $=$
$\overline{Y P}[x-]=u 1[x] \quad Y_{1}[x]+u 2[x] \quad Y^{2}[x]$
out $1001=$
1
-----
20 x
$1 n / 101 /:=$
$\mathrm{Y}\left[\mathrm{I}_{-}\right]=\mathrm{Yc}[\mathrm{x}]+\mathrm{YP}[\mathrm{X}]$
$004101 /=$
$\frac{1}{---x^{2}}+x^{2} c[1]+x^{3} c[2]$
computes
$y(x)=y_{0}(x)+y_{p}(x)=c_{1} x^{2}+c_{2} x^{3}+\frac{1}{20 x^{2}}$

The general solution is verified by substitution into the left-hand side of the differential equation. If correct, the resulting expression is equivalent to $\mathrm{x}^{-4}$. After simplification, the desired result is obtained:


### 6.7 Capabilities of DSolve

Although the command DSOlve is quite useful in Version 1.2, DSolve is unable to solve many standard differential equations:


## - Example:

- In Version 2.0, the command DSolve has been improved. In fact, exact solutions can be computed for Bessel's equation, Legendre's equation, and Airy's equation:


## Uersion2.0MoreDifferentialEquat

/nf $/ 1:=$

out /1/=
Version 20 computes the exact solution
$\left\{\left\{y[x] \rightarrow\right.\right.$ BesselY[Sqrt[ $\left.\left.n^{2}\right], x\right] C[1]+$ BesselJ[Sqrt[n ${ }^{2}$ ], $\left.\left.\left.x\right] C[2]\right\}\right\}$
( $n / P /:=$
$\mathrm{n}=2$ :
ne:
lf=DSolve[
(1-x^2) $Y^{\prime}[x]-2 x Y^{\prime}[x]+$ $\left(n^{\wedge} 2+n-m^{\wedge} 2 /\left(1-x^{\wedge} 2\right)\right) Y[x]==0, Y[x], x$ ]
Out/ oj=

$$
\begin{aligned}
\{\{y[x] \rightarrow & \left(\frac{x C[1]}{(-1+x)^{3 / 2}(1+x)^{3 / 2}+}\right. \\
& \left(x \left(\frac{1}{x}+3 x-x^{3}+\frac{x^{5}}{5}-\frac{1}{C[1]}-3 C[1]\right.\right. \\
& \left.\left.\left.\frac{C[1]^{5}}{5}\right) C[2]\right)\right) \\
& E^{(3(\log [-1+x]+\log [1+x])) / 2)}, \\
& \left.\left.\operatorname{Sqrt}\left[-1+x^{2}\right]\right\}\right\}
\end{aligned}
$$

$$
\left(x \left(\frac{1}{x}+3 x-x^{3}+\frac{x^{5}}{5}-\frac{1}{C[1]}-3 C[1]+C[1]^{3}-\right.\right.
$$

lnf73/:=
$c 1=\{-1,2,-3,4\}$ :
$c 2=\{0,1,-2,3\}$ :
grays=Table[Graylevel[j/30].\{j.0.15\}]:
graphs=Table[1f[[1,1,2]]

1. C[1]->c1[[j]] /. C[2]->c2[[k]]
$\{j, 1,4\},\{k, 1,4\}$
] // Flatten:

## Short[graphs.2]

out/73/. $\cdot 5$ hort $=$

$$
\begin{aligned}
& \left\{-\left(\frac{x}{(-1+x)^{3 / 2}(1+x)^{3 / 2} \operatorname{sqrt}\left[-1+x^{2}\right]}\right), \ll 14 \gg,\right. \\
& \left.\frac{(-1+x)^{3 / 2}(1+x)^{3 / 2}+\langle<1 \gg}{\operatorname{sqrt}\left[-1+x^{2}\right]}\right\}
\end{aligned}
$$

1af74):=
Plot[Evaluate[graphs]. \{x,1.1.6\},
PlotRange-3\{-40,40\}, Plotstyle->grays]

ow 174 / $=$
-Graphics-
n/70):=
airy=DSolve[ $\left.Y^{\prime \prime}[x]-x \quad Y[x]==0 . Y[x], x\right]$
out $75 /=$
$\{\{y[x] \rightarrow \operatorname{AiryBi}[x] C[1]+\operatorname{AiryAi}[x] C[2]\}\}$
graphs is $a$ table of socutions of Legendre's equation with C[1] $\mathrm{cmdC} C[2]$ replaced by the vabues of c1 and c2 The commond Flatten must be used remove brackets from the nested list resulting from the table commond graphs is a list of expressions in terms of $x$.

In Version 2.0, the commord Evaluate replaces the commond Release Be sure to use it when graphing lists of functions.


## 㽧 6.8 Systems of Linear Differential Equations

The general form of the first-order linear system of $n$ dimensions is $x=A(t) x$ where $A(t)=\left[a_{i, j}(t)\right]$ is an $n \times n$ matrix with each $a_{i, j}$ a function of $t$ and $x(t)$ is a column vector of the $n$ dependent variables The general form of the first-order linear system may
be written as:

## - Application: Spring Problems

An application of second-order linear differential equations with constant coefficients is the differential equation of the vibrations of a mass on a spring. The problem to be solved is as follows :

A coil spring is suspended from a point on a rigid support such as a ceiling or beam. A mass is then attached to the spring and allowed to come to rest in an equilibrium position. The system is then set into motion in one of two manners: (1) the mass is pulled below (or pushed above) its equilibrium and released with a zero or nonzero initial velocity at $t=0$, or (2) the mass is forced out of its equilibrium position by giving it a nonzero (downward or upward) initial velocity at $\mathrm{t}=0$. The problem is to determine the motion of the mass on the spring which results.

By making use of Newton's second law and Hooke's Law, and by determining the forces acting
upon the mass, the differential equation for this problem is found to be $m \frac{d^{2} x}{d t^{2}}+a \frac{d x}{d t}+k x=F(t)$.
where $\mathrm{m}=$ the mass attached to the spring, $\mathrm{a}=$ the damping constant, $k=$ the spring constant determined with Hooke's Law, and $F(t)=$ the function which describes any external force acting on the spring.

## - Compare the Effects of Damping

An interesting problem to consider is that of investigating the effect that different values of the damping constant, $a$, have on the resulting motion of the mass on the spring. Consider the following problem :

A 3-kilogram mass is attached to a spring having spring constant, $\mathrm{k}=12$. Determine the equation of the motion which results if the motion starts at $\mathrm{x}(0)=3$ with zero initial velocity if the damping constant is (i) $\mathrm{a}=6$ and (ii) $\mathrm{a}=12$. Plot the solutions obtained.

The differential equation with initial conditions for (i) is $3 x^{\prime \prime}+6 x^{\prime}+12 x=0, x(0)=3, x^{\prime}(0)=0$.

This initial value problem is solved below using DSolve. The solution is called sol for later use. Notice that sol is a list of one element which is a list made up of two parts. Therefore, sol [ [1, 1, 2] ] is used to extract the solution from sol. The name eq1 is given to this expression for convenience when plotting.


The differential equation for (ii) is similar to that of ( i ) with the exception that the damping constant, $\mathrm{a}=12$. Hence the coefficient of $x^{\prime}$ is 12 in this case instead of 6 . The initial conditions are the same as those used in the calculations for (i). After the solution of (ii) is obtained in an identical manner as (i), the solutions to (i) and (ii) are plotted simultaneously. Note that the graph of the solution with $a=6$ is the darker of the two curves since it has a GrayLevel[0] as compared to GrayLevel[0.3] for the problem with $a=12$. The graph illustrates that the spring approaches its equilibrium more quickly when the damping constant is increased.


## - Compare Different Initial Velocities

The effect that a change in initial velocity has on the subsequent motion is yet another problem of interest. Again, consider the problem stated above for the damping problem with $a=6$. In this case, however, consider the problem in which the damping and initial position, $x(0)=3$, remain unchanged while the initial velocity is varied. First, determine the motion when the initial velocity is $x^{\prime}(0)=2$ and then again when $x^{\prime}(0)=-2$. Plot the solutions to compare the effects that a change in initial velocity has on the motion of the mass on the spring.

The method of solution is similar to that of the previous problem. The initial value problem which must be solved when $x^{\prime}(0)=2$ is as follows :

$$
3 x^{\prime \prime}+6 x^{\prime}+12 x=0, x(0)=3, x^{\prime}(0)=2 .
$$

This problem is solved below with DSolve, and the resulting expression is named soln1 for later use. As in the previous example, the equation of the solution is extracted from soln1 with soln1 [ $[1,1,2]]$. This equation is assigned the name eq1.


The solution to the initial value problem in which $x^{\prime}(0)=-2$ is found in a similar manner. The value of the initial velocity is simply changed and the same commands executed.


When both problems have been solved, the solutions can be compared by observing their graphs. These solutions are shown below with the solution to the problem in which $\mathrm{x}^{\prime}(0)=0$ (which was solved in (i) in the previous example). Note how a positive initial velocity $\left(x^{\prime}(0)=2\right)$ affects the motion as compared to an initial velocity in the negative direction. (Recall, eq1 is the solution to the problem with zero initial velocity. It is the darkest of the three curves below.) Note also that the change in initial velocity eventually has little effect on the motion of the mass. (i.e., the three curves appear to overlap for larger values of t .)


## - Application: Classification of Equilibrium Points

The equilibrium points of the general first-order system
$\dot{x}=X(x, y), \dot{y}=Y(x, y)$ are the points where $X(x, y)=0$ and $Y(x, y)=0$. If the system
$\dot{x}=X(x, y), \dot{y}=Y(x, y)$ has an equilibrium point $\left(x_{0}, y_{0}\right)$ the

## linear approximation to the system in the neighborhood of the equilibrium point is defined as the system

$\dot{x}=a x+b y, \dot{y}=c x+d y$, where $a=\frac{\partial X}{\partial x}\left(x_{0}, y_{0}\right), \quad b=\frac{\partial X}{\partial y}\left(x_{0}, y_{0}\right), \quad c=\frac{\partial Y}{\partial x}\left(x_{0}, y_{0}\right)$, and $d=\frac{\partial Y}{\partial y}\left(x_{0}, y_{0}\right)$.
The eigenvalues of the system $\bar{x}=a x+b y, \dot{y}=c x+d y$ are the
eigenvalues of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If the eigenvalues of the
system are complex, the phase diagram in a neighborhood of the equilibrium point is an unstable spiral. If the eigenvalues are real, distinct, and have the same sign, the equilibrium point is a node; if the eigenvalues are real, distinct, and have opposite signs, the equilibrium point is a saddle. If the eigenvalues are the same, no conclusion can be drawn.

## - Example:

Classify the equilibrium points of the system $\dot{x}=-x-5 y, \dot{y}=x+3 y$.
First, the critical points of the system must be located. This is accomplished by solving the linear system
$-x-5 y=0$
$x+3 y=0$
for $x$ and $y$ using Solve $[-x-5 y==0, x+3 y==0\},\{x, y\}]$. Once the critical point $(0,0)$ is found, it can be
classified by investigating the eigenvalues of the matrix of coefficients $\left[\begin{array}{cc}-1 & -5 \\ 1 & 3\end{array}\right]$.
Recall that a matrix is represented as a list with Mathematica where each element of the list is a row of the matrix. Hence, the matrix of coefficients, matrixxy, is $\{\{-1,-5\},\{1,3\}\}$. The eigenvalues are easily determined with Eigenvalues [matrixxy]. The eigenvalues are complex conjugates with positive real part. Therefore, $(0,0)$ is classified as an unstable spiral.


To loccte the equilibrium points, we solve the system $\left\{\begin{array}{l}-x-5 y=0 \\ x+3 y=0\end{array}\right.$.
Thus the equilibrium point is $(0,0)$
The eigenvalues of the system

Thus, we first define matrixy cund then we use the commord Eigenvalues[matrixyy] to compute the eigenvades.

Notice that we may solve the system using the command DSolve:
Each equation is entered separately. Remember that since $x$ and $y$ both depend on the variable $t$, they must be defined as functions of $t$ in the two equations using square brackets. For convenience, the equations are assigned the names, eq1 and eq2, respectively. Hence, the command
DSolve [\{eq1, eq2\}, $\{x[t], y[t]\}, t]$
solves the system for $x[t]$ and $y[t]$. The resulting expression is named complexsol for later use. By entering the command Short [complexsol, 4] in the same input cell, only a portion of the solution (four lines) is displayed on the screen.

In order to simplify this solution which involves complex numbers, some of the Mathematica commands found in the package Trigonometry.m must be used. This package is located in the Algebra folder under Packages and must be located by the user when loading.


The command Complextotrig [complexsol] uses Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ to eliminate complex exponents from the solution. Again, a shortened form of the result is requested with short [solution, 5]. The solution is simplified further with
Simplify[solution]. This yields a real-valued solution. Recall that if the complex function
$\left.\begin{array}{l}{\left[f_{1}(t)+i g_{1}(t)\right\rceil} \\ {\left[f_{2}(t)+i g_{2}(t)\right.}\end{array}\right]$ is a solution of a linear system of first-order differential equations,
the real part $\left[\begin{array}{c}{\left[f_{1}(t)\right]} \\ f_{2}(t)\end{array}\right]$ and the imaginary part $\left[\begin{array}{l}g_{1}(t) \\ g_{2}(t)\end{array}\right]$ are linearly independent solutions of the
system. Therefore, the general solution is $\left[\begin{array}{l}x \\ y \\ y\end{array}\right]=C[1]\left[\begin{array}{l}{\left[f_{1}(t)\right]} \\ f_{2}(t)\end{array}\right]+C[2]\left[\begin{array}{l}{\left[\begin{array}{l}g_{1}(t) \\ g_{2}(t)\end{array}\right]}\end{array}\right.$
Thus, Simplify[solution] collects the real and imaginary parts of solution and expresses the general solution in the appropriate manner.


Yarious values of $\mathrm{C}[1]$ and $\mathrm{C}[2]$ may be substituted into the solution and then graphed to verify that the equilibrium point is an unstable spiral.


## - Example:

Locate and classify the equilibrium points of the (non - linear) system $\left\{\begin{array}{l}\dot{x}=2 x-y^{3} \\ \dot{y}=2-3 x y\end{array}\right.$.
First, Solve is used to find the equilibrium points of the system by setting each equation equal to zero and solving for x and y . Remember, equilibrium points are real solutions to the system, so complex values are disregarded. Since the solution set of this system was named eqpts, the two real points (the first and third elements in eqpts ) can be extracted from the list with eqpts [ [1]] and eqpts [ [3]. After locating the
two equilibrium points, the nonlinear system $\dot{x}=X(x, y), \dot{y}=Y(x, y)$ must be linearized
about these points using the Jacobian matrix $\left[\begin{array}{cc}\frac{\partial \mathrm{X}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}} & \frac{\partial \mathrm{X}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{y}} \\ \frac{\partial \mathrm{Y}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}} & \frac{\partial \mathrm{Y}(\mathrm{x}, \mathrm{y})}{\partial y}\end{array}\right]$.
The easiest way to obtain this matrix is to assign names to the functions $X(x, y)$ and $Y(x, y)$. In this problem, $X(x, y)=2 x-y^{3}$ and $Y(x, y)=2-3 x y$ so the assignment of
the names $x t$ and $y t$ to these functions, respectively, allows for the Jacobian to be determined with $\{\{D[x t, x], D[x t, y]\},\{D[y t, x], D[y t, y]\}$.
This matrix is named matrix for later use and displayed in Matrixform to verify that the desired matrix has been obtained.


In order to linearize the nonlinear system about each equilibrium point, matrix must be evaluated at each point. Then, the eigenvalues for each system can be found with Eigenvalues to classify these equilibrium points. The matrix of coefficients for the linearized system about the first equilibrium point is easily found with matrix/.eqpts[[1]].
These values are real and have opposite signs. Hence, this point is a saddle.
The linearized system about the second equilibrium point is found similarly. The eigenvalues for this system are complex with positive real part. Therefore, the second equilibrium point is classified as an unstable node.


### 6.9 Series Solutions to Ordinary Differential Equations

As was demonstrated in Chapter 3, Mathematica is very useful in the computation of power series solutions to ordinary differential equations.

Recall that if $x=x_{0}$ is an ordinary point of a differential equation, then a power series
solution of the form $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ is assured.
Hence, the solution is obtained by finding the coefficient of each term in the series. Several examples are given below which illustrate how Mathematica is used to determine these values.
When using Mathematica's Series command, the solution is assumed to have the form
$y=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$.

- Example:

Use power series to compute an approximation of the solution to the initial value problem
$\left(x^{3}+1\right) y^{\prime \prime}+3 \operatorname{Sin}(x) y^{\prime}=0, y(0)=1$ and $y^{\prime}(0)=2$.
Mathematica is not able to solve this differential equation with DSolve, so an altemate approach must be taken. The problem is solved below using power series. When solving problems of this type by hand, the first step is to compute the appropriate derivatives of the assumed power series solution and substitute the solution and its derivatives into the differential equation. Then, the coefficients are determined by collecting like powers of $\mathbf{x}$. This usually involves changing the indices in one or more terms in the equation. To better understand the method of solution given here, a brief reminder of Mathematica's Series command is given:
Series $[f[x],\{x, x 0, n\}]$ computes the Taylor series expansion of the function $\mathbf{f}$ about the point $x=x 0$ of order at most $n$. For example,
Series $[y[x],\{x, 0,5\}]$ yields the first 5 terms of the Taylor series expansion about $x=0$ :

$$
y[0]+y^{\prime}[0] x+\frac{y^{\prime \prime}[0] x^{2}}{2}+\frac{y^{(3)}[0] x^{3}}{6}+\frac{y^{(4)}[0] x^{4}}{24}+\frac{y^{(5)}[0] x^{5}}{120}+O[x]^{6}
$$

Therefore, the command
Series [( $\left.\left.x^{\wedge} 3+1\right) y^{\prime} '[x]+3 \operatorname{Sin}[x] \quad y^{\prime}[x],\{x, 0,5\}\right]$ accomplishes many steps at once. It computes the series expansions of $y[x]$ and $\operatorname{Sin}[x]$, performs the necessary multiplication, and collects like terms to compute the series expansion which results from substitution into the left-hand side of the differential equation. This series is called serapprox.


The next step in the solution process is to equate the coefficients of serapprox to the corresponding coefficients of the series on the right-hand side of the equation by matching like powers of $x$. In this case, each coefficient on the right is 0 . This is done below with LogicalExpand. The resulting expression is named equations since each term is, in fact an equation.


The initial conditions are entered so that equations can be solved for the unknown quantities.
When equations is solved for

$$
y^{\prime \prime}[0], y^{(3)}[0], y^{(4)}[0], \ldots,
$$

the solution is determined by substituting these values into the assumed solution

$$
y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}[0]}{n!} x^{n} .
$$

Notice that $y{ }^{(7)}[0]$ is the last element in the list values. Hence, the solution can be approximated with the series expansion of at most order 7. values [[1]] extracts the appropriate list from values . Therefore, the approximate solution, a series of order 7 , is found with
Series [y[x], $[x, 0,7\}] /$.values [[1]].
The expression which results from this command cannot be considered a function since it contains a remainder term. Hence, the remainder term is eliminated with Normal[Series [y[x], \{x, 0, 7\}/.values[[1]]. This function is called yapprox.


The approximate solution can then be graphed.

${ }^{\circ}$ Although DSolve cannot be used to find an explicit solution of $\left(x^{3}+1\right) y^{\prime \prime}+3 \operatorname{Sin}(x) y^{\prime}=0$,
Version 2.0 users can use the built-in command DSolve to compute a numerical solution. For example, the command sol=NDSolve $\left[\left\{x^{\wedge} 3+1\right) y^{\prime} '[x]+3 \sin [x] y^{\prime}[x]==0, y[0]==1, y^{\prime}[0]==2\right\}$, $y[x],\{x,-3,3\}]$
computes a numerical solution of $\left(x^{3}+1\right) y^{\prime \prime}+3 \operatorname{Sin}(x) y^{\prime}=0$ satisfying $y(0)=1$ and $y^{\prime}(0)=2$ on
the interval $[-3,3]$. The resulting interpolating function is named sol and is then graphed on the interval $[-3,3]$ with the command Plot $[y[x] / . \operatorname{sol},\{x,-3,3\}]$.


Problems which involve arbitrary initial conditions can also be considered. With the help of Mathematica, approximate solutions can be found in terms of these conditions and plotted for various values. The following example illustrates this idea by using the procedures found in the previous problem.

## - Example:

Use power series to compute approximations of the solution to the initial value problems
$y^{\prime \prime}-4 x^{2} y^{\prime}-4 y=x e^{x}, y(0)=i$ and $y^{\prime}(0)=j$, $i$ and $j$ both integers, $-2 \leq i \leq 2$, $-2 \leq \mathrm{j} \leq 2$.

Again, this problem cannot be solved with DSolve. Hence, another method of solution must be used. Clearly, $\mathbf{x}$ $=0$ is an ordinary point of this differential equation, so a power series solution can be assumed. The fifth-order power series expansions of the left and right-hand sides of the equation are computed with
Series [y' $\left.\quad[x]-4 x^{\wedge} 2 y^{\prime}[x]-4 y[x],\{x, 0,5\}\right]$ and Series[x Exp[x], $\left.\{x, 0,5\}\right]$, respectively. These expressions are named ser1 and ser2, so the command
Logicalexpand[ser1==ser2] equates the coefficients of like powers of $x$ from serl and ser2. This gives a sequence of equations which is called equations.


The following function, called solutions, is defined with a Block and solves equations to determine the coefficients of the power series solution using the initial conditions $y[0]=\mathbf{i}$ and $y^{\prime}[0]=j$. It also computes the approximate solution of order five by eliminating the remainder term. A table of functions, conditions, is then created for several values of $i$ and $j$ using solutions $[i, j]$.

- In Version 2.0, the command Block has been replaced by the command Module.

$\begin{aligned} & \ln (4):= \\ & \quad \text { solutions }[: \end{aligned}$	solutions[i.j]   is a function that first solves the system of equactions equations for the unknowns when $y(0)=i$ ond $y^{\prime}(0)=j$. It then computes a series approximation of $y(x)$ using the obtcinced $y$ asues. The remainder is removed cand the result is a function of $x$.	
```Mormal[Series[y[x].{x,0.5}] /. Values[[1]]] l```		
```/n/5/:= conditions=Table[solutions[i.j]. {i,-2,2},{j,-2,2}]:```	conditions is a table of functions of $x$. For each $i$ oud $j$, the correspording element of conditions is can opproximation of the solution of the differential equation	
1-1, 1	$\begin{aligned} & y^{\prime \prime}-4 x^{2} y^{\prime}-4 y=x e^{x} \\ & \text { satisfying } y(0)=i \operatorname{cond} y^{\prime}(0)=j . \end{aligned}$	

Since conditions is a list of lists, the Mathematica command Flatten can be used to obtain a list of functions which is needed to complete the problem. A simple example is given to illustrate this command. Hence, Flatten[conditions] yields a list of functions called solutionlist. (Only a portion of this list is shown below.)


In order to plot these functions, a GrayLevel table is useful. So that a GrayLevel can be assigned to each function in the list, the length of solutionlist must be known. Once this length is found to be 25 , a table of 25 GrayLevel assignments is created and called graylist. Hence, the list of approximate solutions can be plotted and identified by referring to the GrayLevel of each curve.

- In Version 2.0, the command Release has been replaced by the command Evaluate.



## 6. $\mathbf{0}$.10 Series Solutions to Partial Differential Equations

## E Application: Two-Dimensional Wave Equation in a Circular Region

The Bessel equation is the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0$.
If $\alpha$ is a positive integer, the Bessel Function $J_{\alpha}(x)$ of the first kind of order $\alpha$ is defined by the series $J_{\alpha}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+\alpha)!}\left(\frac{x}{2}\right)^{2 n+\alpha}$.
The Bessel Functions of the first kind have the following properties:

The Bessel Function $Y_{\alpha}(x)$ of the second kind of order $\alpha$ is defined
by the integral $Y_{\alpha}(x)=J_{\alpha}(x) \int \frac{d x}{x\left(J_{\alpha}(x)\right)^{2}}$.
It is well-known that the general solution of Bessel's equation, $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0$,
is given by $\mathrm{y}_{\alpha}(\mathrm{x})=\mathrm{C}_{1} \mathrm{~J}_{\alpha}(\mathrm{x})+\mathrm{C}_{2} \mathrm{Y}_{\alpha}(\mathrm{x})$.
The Mathematica function for the Bessel Function of the first kind of order alpha as a function of $\mathbf{x}$ is given by the command Besselv [alpha, x]; the Mathematica function for the Bessel Function of the second kind of order alpha as function of $\boldsymbol{x}$ is given by Bessely [alpha, $\boldsymbol{x}]$.

Chapter 6 Ordinary and Partial Differential Equations

## - Example:

Graph $\mathrm{J}_{0}(\mathrm{x}), \mathrm{J}_{2}(\mathrm{x}), \mathrm{J}_{4}(\mathrm{x}), \mathrm{J}_{6}(\mathrm{x})$ and $\mathrm{J}_{8}(\mathrm{x})$ on the interval $[0,15]$.
This is accomplished below by creating a table of the 5 Bessel functions in tableb as well as a table of GrayLevel assignments in tablec.

O If using Version 2.0, use Evaluate instead of Release.


In solving numerous problems in applied mathematics, polar or cylindrical coordinate systems are often convenient to use. For example, the wave equation in a circular membrane lends itself quite naturally to the use of polar coordinates. The two-dimensional wave equation in a circular region which is radially symmetric ( no dependence on $\theta$ ) with boundary and initial conditions is easily expressed in polar coordinates as follows :
(i) $\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right) \quad 0<r<R, 0<t$;
(ii) $\mathrm{u}(\mathrm{R}, \mathrm{t})=0 \quad 0<\mathrm{t}$;
(iii) $|u(0, t)|$ bounded, $0<t$;
(iv) $u(r, 0)=f(r) \quad 0<r<R$; and
(v) $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}(\mathrm{r}, 0)=\mathrm{g}(\mathrm{r}) \quad 0<\mathrm{r}<\mathrm{R}$.

Using the method of separation of variables with $u(r, t)=F(r) W(t)$ leads to the two ordinary differential equations :
$\frac{\partial^{2} \mathrm{G}}{\partial \mathrm{t}^{2}}+\lambda^{2} \mathrm{G}=0$ where $\lambda=\mathrm{ck}$; and $\frac{\partial^{2} \mathrm{~W}}{\partial \mathrm{r}^{2}}+\frac{1 \mathrm{dW}}{\mathrm{r}} \frac{\mathrm{dr}}{}+\mathrm{k}^{2} \mathrm{~W}=0$ where $-\mathrm{k}^{2}$ is the constant of separation. $\frac{\partial^{2} W}{\partial r^{2}}+\frac{1}{r} \frac{d W}{d r}+k^{2} W=0$ is Bessel's equation of order zero and, thus, has solutions of the form $W(r)=C_{1} J_{0}(k r)+C_{2} Y_{0}(k r)$ where $J_{0}(k r)$ and $Y_{0}(k r)$ are Bessel functions of order zero of the first and second kind, respectively:

In order to determine the constants $C_{1}$ and $C_{2}$ in $W(r)$, the following graphs are necessary:


Notice the error messages which accompany the second plot. These, of course, are due to the fact that the Bessel function of the second kind is unbounded near $\mathrm{r}=0$.

These two functions can be plotted simultaneously (Note that the interval for the variable r is chosen to avoid $\mathrm{r}=0$. The darker function is the Bessel function of the first kind. ) :


Shov[plotb10.plotb20] shows both grophs simultoxeousty.

By using the graphs above, the coefficient of the Bessel function of the second kind must be zero in the equation $\mathrm{W}(\mathrm{r})=\mathrm{C}_{1} \mathrm{~J}_{0}(\mathrm{kr})+\mathrm{C}_{2} \mathrm{Y}_{0}(\mathrm{kr})$. Otherwise, the solution is unbounded at the origin which contradicts the boundary condition. Applying the
other boundary condition, $u(R, t)=0$, leads to the equation $J_{0}(k R)=0$. Hence,
$k_{m}=\frac{\alpha_{m}}{R}$ where $\alpha_{m}=m^{\text {th }}$ zero of $J_{0}(k r)$ and $m=1,2,3, \ldots$. These zeros of the

Bessel function can be located using Mathematica as opposed to simply looking them up in a table．Hopefully，some of the artificial nature of these values is alleviated by using this approach to the problem．In order to find the zeros of the Bessel function of the first kind，the Mathematica command
FindRoot［equation，\｛variable，firstguess\}] is used. FindRoot depends on an initial guess to the root of the equation．This initial guess is obtained from the graph plotb10．


Shov［plotb10］
redisplays the graph of the Bessel function of the first kind of order zero on the interval $\{0,20]$ ．

Using the plot shown above，the Bessel function of the first kind appears to have its first four roots near $\mathrm{r}=2.5$ ， $5.5,8.5$ ，and 11．5．Therefore，the following command numerically determines approximations of the first four roots by using the command FindRoot with the initial guesses start．Note that start obtains values on the interval 2.5 to 11.5 using a stepsize of 3 units．Hence，the four initial guesses are the same as thos given earlier， $2.5,5.5,8.5$ ，and 11．5．（Notice the double equals sign which must always be used with an equation）：

吅	sselEsample
$1 \mathrm{~L} / 2 /:=\mathrm{L}$	
table＝Table［FindRoot［BesselJ［0，$]==0,\{r, \operatorname{start}\}]$ ． \｛start．2．5．11．5．3\}]	
TableForn［table］ out／12li＇Tableform＝	numericolly approximotes the first four zeros of the Eessel function of the first kind of order zero． The resut is expressed in Table Form．
$r \rightarrow 2.40482$	家
r $\rightarrow 5.52008$	
$r \rightarrow 8.65373$	
r $\rightarrow 11.7915$	5
	［可

These values will be used to determine the coefficients in the solution．

The solution to $\frac{\partial^{2} G}{\partial t^{2}}+\lambda^{2} G=0$ is clearly $G_{m}(t)=A_{m} \cos \left(\lambda_{m} t\right)+B_{m} \sin \left(\lambda_{m} t\right)$.
Thus, the functions $u_{m}(r, t)=W_{m}(t) G_{m}(t)=\left(A_{m} \cos \lambda_{m} t+B_{m} \sin \lambda_{m} t\right) J_{0}\left(k_{m} r\right)$ are solutions of (i) satisfying the boundary conditions (ii)-(iii). To obtain a solution which also satisfies the initial conditions
(iv) $-(v)$, the series $u(r, t)=\sum_{m=1}^{\infty} u_{m}(r, t)=\sum_{m=1}^{\infty}\left(A_{m} \cos \lambda_{m} t+B_{m} \sin \lambda_{m} t\right) J_{0}\left(k_{m} r\right)$
must be considered. In applying the initial condition (iv), the equation
$u(r, 0)=\sum_{m=1}^{\infty} A_{m} J_{0}\left(k_{m} r\right)=f(r)$ is obtained Using the orthogonality properties of the Bessel functions, the coefficients $A_{m}$ and $B_{m}$
in $u(r, t)=\sum_{m=1}^{\infty}\left(A_{m} \cos \lambda_{m} t+B_{m} \sin \lambda_{m} t\right) J_{0}\left(k_{m} r\right)$ are found with the integral formula $A_{m}=\frac{2}{R^{2} J_{1}{ }^{2}\left(\alpha_{m}\right)} \int_{0}^{R} r f(r) J_{0}\left(\frac{\alpha_{m}}{R} r\right) d r$. The coefficient $B_{m}$ is found with a similar formula:
$B_{m}=\frac{2}{c \alpha_{m} R J_{1}{ }^{2}\left(\alpha_{m}\right)} \int_{0}^{R} r f(r) J_{0}\left(\frac{\alpha_{m}}{R} r\right) d r$. In most cases, these two formulas are difficult to evaluate For a limited number of functions, integration by parts using $\frac{d}{d r}\left[r^{v} J_{V}(r)\right]=r^{v+1} J_{v}(r)$ is possible. However, even when possible, this calculation is quite tedious and lengthy. Fortunately, Mathematica can ease the difficulty of the computation of the coefficients through the use of NIntegrate.

For example, consider equations (i)-(v) with $R=1, c=2$, initial position function
$f(r)=1-r^{2}$ and initial velocity function $g(r)=0$. Clearly, $B_{m}=0$ for all $m$ and $A_{m}=\frac{2}{J_{1}^{2}\left(\alpha_{m}\right)} \int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\alpha_{m} r\right) d r$. This particular integral can be evaluated exactly with
integration by parts, but the determination of the approximate values of the coefficients will be demonstrated. The following examples illustrate how the zeros of the Bessel function are extracted from the table. Similar commands will be included in the calculations which follow:


Print[table[[1.1.2]]] Print[table[[4,1,2]]]
prints the vadue of table[[1,1,2]] and then prints the vaise of table[ [4, 1, 2]].

This means that the vakue of
$\alpha_{1}$ is approximately 240482 ord the value of
$\alpha_{4}$ is approximately 11.7915.

To approximate the first coefficient with NIntegrate, the following command is entered :


The other coefficients are easily determined as well :

	[或
```/n/22]:= a[2]=(2/(BesselJ[1, table[[2,1,2]]])^2)* HIntegrate[ r (1-r^2) BesselJ[0,table[[2,1,2]] r].{r.0.1}]```	computes con opproximation of $\frac{2}{J_{1}^{2}\left(\alpha_{2}\right)} \int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\alpha_{2} r\right) d r$
$\begin{aligned} & \text { Owt } 22 y= \\ & -0.139778 \end{aligned}$	cond nomes the resutital \mathbf{a}].
```/n/25/:= a[3]=(2/(BesselJ[1.table[[3.1,2]\|])^2)* MIntegrate[ ( (1-r^2) BesselJ[0.table[[3,1,2]] r].{r,0,1}]```	computes con opproximation of $\frac{2}{J_{1}^{2}\left(\alpha_{3}\right)} \int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\alpha_{3} r\right) d r$
$\begin{aligned} & \text { out } 23 /= \\ & 0.0454765 \end{aligned}$	cond nomes the result a[3].
```/n(24):= a[4]=(2/(BesselJ[1,table[[4,1,2]]])^2)* HIntegrate[ r (1-r^2) BesselJ[0,table[{4,1.2]] x].{r,0,1}]```	computes on opproximation of $\frac{2}{J_{1}^{2}\left(\alpha_{4}\right)} \int_{0}^{1} r\left(1-r^{2}\right) J_{0}\left(\alpha_{4} r^{2}\right) d r$
Owt24/=	crad nomes the resuit a[4].
-0.0209908] $\sqrt{\text { aja }}$
	[5]

Hence, the first four terms of the solution are found with the function $r[r, t, j]$ defined below. This function is then used to compute the approximate solution by adding the first terms of the series. (Note that in this case only the first four coefficients have been calculated. Therefore, if more terms are desired, similar steps may be followed to compute more zeros of Besselv $[0, x]$ and more series coefficients.)

Solutions of this form are hard to visualize. In an attempt to bring true meaning to the "circular drumhead" problem, Mathematica can be used to actually see the drumhead either from a side view in two-dimensions or a full view in three.
Plotting in two-dimensions is simple. The question which needs to be answered is : "What shape does the drumbead assume at a particular time t ?" This can be answered using several different methods. The easiest approach involves plotting the solution individually for various values of t. However, this involves much more time than a second method which takes advantage of a Do loop. Once plotted, these graphs can be animated to see the actual movement of the drumhead. The following command plots the solution for values of t between 0 and 1 using increments of 0.1. (Notice that r assumes values from $r=-1$ to $r=1$. This seems to contradict the idea that r represents a nonnegative distance from the origin. However, $u(r, t)$ is symmetric about the y-axis.)

Several of these graphs are shown below. These graphs can then be animated.

Several of the three-dimensional plots are shown below. These plots were obtained using the command solidrev. The command solidrev is discussed in the Appendix.

This is the groph of uapprox [r,0] on the unit circle:

This is the groph of uapprox [$\mathbf{r}, .4]$ on the unit circle:

This is the groph of uapprox[r., 2]

This is the groph of uapprox[x.1] on the unit circle:

- 6.11 Numerical Solutions of Differential Equations

Version 2.0 of Mathematica contains the command NDSolve which numerically solves ordinary differential equations with initial conditions. This command is particularly useful when working with nonlinear equations which DSolve is unable to solve. As was the case with DSolve, NDSolve can be used with single equations as well as systems. (Note that enough initial conditions must accompany the differential equation to completely solve the problem in order for NDSolve to be successful.)

- Application: The Damped Pendulum Equation

In order to illustrate NDSOI ve, consider the nonlinear pendulum equation,$x^{\prime \prime}+.25 x^{\prime}+\sin (x)=0$ with initial conditions $x(0)=1, x^{\prime}(0)=0$. The differential equation is defined below as equation. (Note the square brackets which must be used with the dependent variable $\mathbf{x}[t]$ in the definition.)
The syntax for NDSolve (to solve a second order initial value problem with dependent variable $\mathbf{x}[t]$ as is the case here) is as follows :

```
NDSolve[{eqn, x[t0]==c0,x'[t0]==c1}, x[t],{t,t0,t1}].
```

This finds a numerical solution to eqn which is valid over the interval $\{t 0, t 1\}$ and satisfies the given initial conditions. Since the results are numerical, they are given in terms of the list
$\{x[t]->$ InterpolatingFunction $[\{t 0, t 1\},<>]\{[t]\}\}$. The pendulum equation given earlier is solved and plotted below. The list which results from NDSolve is called soll while the graph is assigned the name plot1. (Note the manner in which the plot command involving the interpolating function is stated.)

Next, consider the same equation defined in equation with the initial conditions $x(0)=3, x^{\prime}(0)=0$. This initial value problem is solved and plotted in the same manner as the previous example. These results are named sol6 and plot6, respectively.

Similarly, the initial value problem with $x(0)=4$ and $x^{\prime}(0)=0$ is solved and plotted below in sol7 and plot 7 . Note the effect that the nonlinear term in equation has on the behavior of the solution. The solutions to this equation differ considerably from solutions to the second-order linear differential equations with constant coefficients discussed earlier in Mathematica By Example.

Solutions to the pendulum equation for varying initial conditions are computed with NDSolve. The plots for eight other solutions are given in plot5, plot6,.., plot 13 , and plot 14. These solutions are viewed simultaneously with Show. First, the graphs are shown in a single graphics cell in groups of four in multone, multtwo, multthree, and multfour. In the final command, however, all fourteen graphs are shown simultaneously.

pendulumgraph

multone $=$ Shoㅍplot1，plot2．plot3．plot4． DisplayFunction－3－Identity］：
multtwo Shov［plot5．plot6．plot7．plot8． DisplayFunction－3 Identityl：
multhree＝Shom［plot9．plotio．pioti1．ploti2． DisplayFunction－3 Identityl：
multfour＝Shomplot1，plot2．ploti3．plot14． plot15．DisplapFunction－＞Identity］：
Show［Graphicsarray［ \｛\｛multone，nulttyo\}. ［皿ulthree，multfour\})]]

－Graphicsarray－

Shovimultone，multtyo，multhree，multfour． DisplapFunction－3DisplapFunction］

－Graphics－

In fact，continuing in the some momner as above， opproximations of sohutions corresponding to a voriety of initial conditions con be computed．In this case，the resulting grophs were nomed． plot1．plot2． plot13．cand plot14． Several of the grophs cre shown simultconeousty in agrophics arroy．

Finally，all fourteen approximations are shown

6.12 Numerical Solutions of Systems of Differential Equations

- Application: Van der Pol's Equation

As indicated earlier NDSolve can be used to solve systems of ordinary differential equations. Of course, there is a slight difference in the syntax from the previous case. For a first-order system of two equations with dependent variables $x[t]$ and $y[t]$, the correct command is as follows:
NDSolve $\{\{e q 1$, eq2, $x[t 0]==c 0, y[t 0]==c 1\},\{x[t], y[t]\},\{t, t 0, t 1\}]$. Again, the results are given as an interpolating function and are only valid over the interval $\{t 0, t 1\}$. Solving a system of differential equations with NDSolve is illustrated below with Van der Pol's equation, $x^{\prime \prime}+e\left(x^{\wedge} 2-1\right) x^{\prime}+x=0$, $x(0)=c 0, x^{\prime}(0)=c l$. This second-order equation can be transformed into a system of first-order equations with the substitution, $x^{\prime}=y$. Hence, the following first-order system is obtained : $x^{\prime}=y, y^{\prime}=e\left(1-x^{\wedge} 2\right) y-x, x(0)=c 0$, $y(0)=c 1$.

In the steps which follow, the parameter " e " is assumed to equal $1(e=1)$, and the equations are named eq1 and eq2, respectively. (Note the square brackets which must accompany the dependent variables, $\mathbf{x}[t]$ and $\mathbf{y}[t]$.) Van der Pol's equation with initial conditions $x(0)=.25, y(0)=0$ is solved in sol below. In this case, the solution is made up of the ordered pair $\{x[t], y[t]\}$. Hence, ParametricPlot is used to graph the numerical solutions in plotone.

Next, the same equation is solved using the initial conditions $x(0)=0, y(0)=-.2$. This solution is determined in the same manner as above and is plotted in plot two.

plotthree and plotfour are given below. These correspond to solutions to Van der Pol's equation with initial conditions $x(0)=-.15, y(0)=0$ and $x(0)=0, y(0)=.1$, respectively.

In the same mantrer as above, two other approximations are computed. cond grophed

sol=HDSolye[\{eq1, eq2, $x[0]==0,7[0]==1\}$.
$\{x[t], Y[t]\},\{t, 0,13\}]$:
plotfour=ParametricPlot[Evaluate[
$\{\mathrm{I}[\mathrm{t}] . \mathrm{Y}[\mathrm{t}]\} / \mathrm{sol}$. $\{\mathrm{t}, 0.13\}]$

-Graphics-

The four approximate solutions to Van der Pol's equation computed to this point with NDSolve are displayed in a single cell below using GraphicsArray within the Show command. This is named setone. The graphs are also shown simultaneously in partone by using the Show command without GraphicsArray.

By choosing other initial conditions, several solutions to Van der Pol's equation are computed in the same manner as before. The graphs of these approximate solutions are named cycle1, cycle2, cycle3, and cycle4. They are first shown below in the single graphics cell, called settwo, and are then displayed simultaneously in parttwo. In the final command, the eight approximate solutions to Van der Pol's equation which have been computed with NDSolve are displayed simultaneously in partthree.

Chapter 7

Introduction to Mathematica Packages

Many useful commands and functions which are not automatically performed by Mathematica can be found in Packages. The following window is obtained by opening the Packages folder as shown below. There are thirteen folders located in Packages in Version 1.2 (fourteen folders are located in Version 2.0 Packages); each folder contains several packages. The contents of each folder can be seen by double-clicking on the appropriate icon.

File Edit Diew Special

Chapters 7, 8, and 9 contain discussions of some Mathematica packages. Chapter 7 discusses elementary packages from the Algebra, Linear Algebra, Calculus, and Discrete Math folders; Chapter 8 discusses some of the packages contained in the Graphics folder; and Chapter 9 discusses some of the more specialized packages contained in the Numerical Math and Data Analysis folders.

－A Note Regarding Packages：

When directly opening a package，notice that the functions defined within the package are listed along with their definitions．Consequently，users can usually determine the purpose of a package by reading the beginning statements and experimenting．

7．1 Algebra

The packoge Trigononetry． has been used throughout Mothematica by Example． Hence，here we discuss the packoges ReIn． 1 and GosperSun． Note that the package Gospersum． is NOT inchuded in Version 20. Instead，it is replaced by the （considerably）exponded package SymbolicSun．

－GosperSum．m

－The GosperSum．m package is not included with Version 2．0；instead it is superseded by the package SymbolicSum．m．

The symbolic summation of some series of the form $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}$ ，which are useful in many areas of mathematics can be determined with the use of the GosperSum ．m package
These calculations are not possible without this package．The built－in Mathematica command Sum can be used for finite sums as illustrated in the first example below．However，this command cannot find a closed form of the summation in the second example．Therefore，the GosperSum．m package must be loaded．

	回㝣	Akthough Mothematica is able to compute
```ln/l/:= Sun[i^3.{i,1.5}]```	$7]$ ¢	$\sum_{i=1}^{5} \mathrm{i}^{3}$ with the commond
$\begin{array}{r} \text { owi/f/ }= \\ 225 \end{array}$	］	Sun［i＾3． i，1，5\}] $^{\text {a }}$
```M/2%:= Sum[i^2.{i,1,n}] out(2)=```	$77$	Matheractica is unable to compute a closed form for $\sum_{i=1}^{\mathrm{K}} \mathrm{i}^{2}, \mathrm{n}$ any integer．
$\operatorname{Sum}\left[i^{2},\{i, 1, n\}\right]$	$1]$	
込	इ可	

- Example:

The command which can be used to determine a closed form expression of some sums of the form

$$
\begin{aligned}
& \sum_{k=k m i n}^{\text {kmax }} \mathrm{a}[k] \text { is GosperSum }[a[k],\{k, k m i n, k m a x\}] \text {. After the package GosperSum .m } \\
& \text { is loaded, a table is constructed below which consists of the summation formula for each of the series } \\
& \sum_{k=1}^{n} k^{i} \text { for } i=2,4,6 \text {, and 8. Since Print is used in the Table command, the results }
\end{aligned}
$$

appear in a print cell and can be accessed for later use. Although quite useful in many cases, Gospersum cannot compute the closed form summation for many series as illustrated in the second example.

- SymbolicSum.m

- In Version 2.0 the package SymbolicSum.m replaces the package GosperSum.m from previous versions of Mathematica. In general, Mathematica's standard built-in commands cannot compute symbolic sums
of the form $\sum_{k=n_{1}}^{n_{2}} f(k)$ when n_{1} and n_{2} are not specific numbers
The command SymbolicSum [$\mathbf{f}[\mathbf{k}],\{\mathbf{k}, \mathbf{n} 1, \mathbf{n} 2\}]$ attempts to write the symbolic sum $\sum_{k=n 1}^{n 2} f[k]$ in a closed form when $f[k]$ is a rational function.
- Example:

Find closed forms for (i) $\sum_{n=1}^{k}(n+2)(n-3)$ and (ii) $\sum_{n=1}^{k} \frac{1}{n+3}$. For (ii), evaluate when $k=100$.

Since $\sum_{n=1}^{100} \frac{1}{n+3}$ is not a symbolic sum, the commands Sum and NSum can be used to calculate $\sum_{n=1}^{100} \frac{1}{n+3}$:
(nf23):=
M[EulerGanma]
out $23 /=$
0.577216
(n/24):=
sum /. $\mathrm{k} \rightarrow$ >100 // M
outerif=
3.38346
/n/25/:=
Sun[1/(n+3), (n, 1, 100\}]
outre5/=
$981610226095936883493952795069110849982 \backslash$ 83133 /
$2901204254058795599770580857416215575 \backslash$ 6055616
/n/2b/:=
1f[Sun $[1 /(n+3),\{n, 1,100\}]]$
outr2b/=
3.38346

EulerGanma is Euler's constornt with opproximate vadue 0.577.
sum /. $k \rightarrow 100$ // H computes a numerical approximaction of
$\sum_{n=1}^{100} \frac{1}{n+3}$.
Although the commond comnot be used to compute symbolic sums, it computes the exact value of
$\sum_{n=1}^{100} \frac{1}{n+3}$.

- ReIm.m

The built-in Mathematica functions $\operatorname{Re}[z]$ and $\operatorname{Im}[z]$ compute the real and imaginary parts of the complex number \mathbf{z}. However, these commands are not helpful when working with complex-valued functions as shown below. Since determining the real and imaginary parts of functions is important in many problems such as the solution of differential equations, a technique to find the quantities is necessary.

The package ReIm.m is loaded so that many of the identities from complex analysis can be used. Hence, simplification can be accomplished in the following way:

$$
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y) .
$$

Therefore, the real and imaginary parts are determined where $x=\operatorname{Re}[z]$ and $y=\operatorname{Im}[z]$ below. Similar calculations yield $\operatorname{Re}[\operatorname{Sin}[z]]$ and $\operatorname{Im}[\operatorname{Cos}[z]]$.

- Example:

These techniques are useful in determining the solutions to differential equations with complex eigenvalues. Considet the second order linear equation with constant coefficients, $y^{\prime \prime}+y^{\prime}+y=0$. Problems of this form arise when modeling spring problems. In this case, a spring of mass, m , and spring constant, k , is displaced in a medium with damping coefficient, a, where $m=k=a$. The solution of the equation is known to be
$y(x)=e^{-x / 2}\left(c_{1} \operatorname{Cos}\left(\frac{\sqrt{3} x}{2}\right)+c_{2} \operatorname{Sin}\left(\frac{\sqrt{3} x}{2}\right)\right)$. Unfortunately, since this equation has complex
eigenvalues, DSolve yields a solution involving complex terms. The Trigonometry.m package is useful in the application of DeMoivre's formula. Yet, the results obtained with the command ComplexToTrig are less than desirable. Hence, an altemate approach is demonstrated.

The real part of the solution, rexpression, is obtained with Re[expression]. Note that in the calculation of rexpression, the variable x is considered a complex number.

Then, the imaginary part of expression is found with Im[expression] and called iexpression.

The expressions which result from the commands Re and Im can be further simplified by establishing several rules. This is done below with rule. Since x is a real number, rule replaces $\operatorname{Im}[x]$ with 0 and $\operatorname{Re}[x]$ with x. Also, the constants $\mathbf{C}[1]$ and $\mathrm{C}[2]$ are real, so they should have zero imaginary parts. This is done in rule with $\operatorname{Im}[C[1]]->0, \operatorname{Im}[C[2]]->0, \operatorname{Re}[C[1]]->C[1]$, and $\operatorname{Re}[C[2]]->C[2]$. Therefore, the command rexpression/.rule applies rule to rexpression. The result is called solone.

Next, solone is simplified and factored with TrigReduce [solone]. The resulting expression involves the constant, $\mathrm{C}[1]+\mathrm{C}[2]$ which can be replaced with a single constant $\mathrm{C}[0]$. This is done with \%/. $(C[1]+C[2]) \rightarrow C[0]$. This gives the real part of the solution to the differential equation and is named solutionone.

A similar approach leads to the imaginary part of the solution. First, soltwo is obtained by applying rule to iexpression. Then, soltwo is simplified and factored. This yields an expression involving the constant, $\mathrm{C}[1]-\mathrm{C}[2]$. This constant is replaced with the imaginary constant, I C [1], in order to obtain the desired results. The expression which results after substitution of this constant is called solutiontwo. Notice that solutiontwo involves I.

Chapter 7 Introduction to Packages

The general solution to the differential equation, solution, is therefore obtained with the linear combination of solutionone and solutiontwo, solutionone+I solutiontwo. The solution is then verified by the substitution of solution into the original differential equation.

	1010
/n/35/: $=$	min
solution=solutionone+I solutiontwo	the soiution to the differentiol equation $y^{\prime \prime}+y^{\prime}+y=0$ is solution=solutionone+ I solutiontyo.
Out/35/= \quad Sqrt[3] x Sqrt[3] x	
$\mathrm{E}^{\mathrm{x} / 2} \mathrm{E}^{\mathrm{x} / 2}$	$\left.\int\right\rfloor$
ha/34):=	17
D[solution, $\{\mathrm{x}, 2\}]+\mathrm{D}[$ solution, x$]+$ solution	verifies that solution is the sobution to the differentiol equation$y^{2}+y^{\prime}+y=0$
Ont/34/=	
0	

7.2 Linear Algebra

- Cholesky.m

O Cholesky.m is contained within the Linear Algebra folder in Version 2.0; Cholesky.m is not available with Version 1.2.

The complex conjingate transpose of an $m \times n$ matrix A is the $n \times m$ matrix
$\overline{\mathrm{A}^{\prime}}$ obtained from A by taking the complex conjugate of each element of A and transposing the result.

An $m \times n$ matrix A is Hermitian means $A=\overline{A^{\prime}}$. An $n \times n$ Hermitian matrix A is positive definite means the eigenvalues of A are positive. This is equivalent to saying
($A x, x$) $=A x \bullet \bar{x}$ is positive for every nonzero vector x.
The concept of positive definite matrices is of importance in many areas such as physics and geometry. An $n \times n$ matrix is symmetric if \mathbf{A} is equal to its transpose.
The Cholesky.m package contains the command CholeskyDecomposition [a] which yields a matrix u such that

$$
\mathbf{u}^{\mathrm{T}} \mathbf{u}=\mathbf{a} \text { where } \mathbf{u}^{\mathrm{T}}=\text { the transpose of } \mathbf{u}
$$

In order to determine this decomposition, however, a must be a symmetric, positive definite (and, hence, real) matrix. Therefore, the command CholeskyDecomposition [a] can serve as a test to determine if the matrix a is positive definite.

O Example:

This command is illustrated below with the 2×2 matrix, $\{\{2,1\},\{1,2\}\}$. The matrix which results is called u so that the property stated above can be verified with $a==$ Transpose [u]. u. Since a value of True is obtained, the result is correct.

As mentioned above, the CholeskyDecomposition command only applies to symmetric, positive definite matrices. However, the command does not check for these properties before trying to perform the decomposition. This is demonstrated in the two examples below. In the following example, a non-symmetric matrix is considered. The resulting matrix is incorrect since a False response to $a==T r a n s p o s e[u] . u$ is given:
/n/33/:=
Clear[a.u]:
$a=\{\{2,1\},\{0,2\}\}$:
HatrixForn[a]
owt/33/:N\%atrixform=
21
02
m/34): $=$
u=CholeskyDeconposition[a]
out/34/=
$\left\{\left\{\operatorname{Sqrt}[2], \frac{1}{S q r t[2]}\right\}\right.$.
3
\{0, Sqrt[-] \} $\}$
2
In/55):=
a==Transpose[u].
In this case, a cond Transpose[u].u

0ut/35)=
False

7 7 薮

Cleors all prior definition of a cond \mathbf{u}. then defines a $\left[\begin{array}{ll}2 & 1 \\ \text { to be the matrix } \\ 0 & 2\end{array}\right]$ cond expresses the result in motrix form.

Computes the Cholesky decomposition of to be $\left[\begin{array}{cc}\sqrt{2} & 11 \sqrt{2} \\ 0 & \sqrt{312}\end{array}\right]$ cond nomes the result \mathbf{u}. cre not the some.

Chapter 7 Introduction to Packages

In the next case, the matrix is not positive definite, so several error messages result:

The matrix which results from the decomposition may contain imaginary numbers. This is shown below with the matrix a. However, the resulting matrix is verified since Transpose $[x] . x==a$.

O Application: Quadratic Equations

An application of positive definite matrices is the analysis of quadratic equations.
For any symmetric matrix A, the product $f=x^{T} A x$ is a pure quadratic form :

$$
\begin{aligned}
x^{T} A x & =\left[x_{1}, x_{2}, \ldots, x_{n}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =a_{11} x_{1}{ }^{2}+a_{12} x_{1} x_{2}+a_{21} x_{2} x_{1}+\cdots+a_{n n} x_{n}^{2} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} .
\end{aligned}
$$

If the matrix A is positive definite, then $f>0$ for all values of x. Consider the following quadratic equation:

$$
2 x^{2}-2 x y+2 y^{2}-2 x z+2 y z+2 z^{2}=-1
$$

We attempt to determine if this equation has any real roots by considering the matrix A. If the symmetric matrix
$A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2\end{array}\right]$
which results when this equation is represented as $x^{T} A x$ is positive definite, then $x^{T} A x>0$ for all x. Hence, $x^{T} A x \neq-1$ for any values of x.

Chapter 7 Introduction to Packages

The matrix A is defined below as a. Note that this matrix yields the appropriate quadratic form as shown with Expand[Transpose[vec].a.vec] where vec $=\{x, y, z\}$. The matrix A is then shown to be positive definite by using CholeskyDecomposition. Therefore, this equation has no real solutions.

```
\(n / 4771=\)
    Clear[a]:
    \(a=\{\{2,-1,-1\},\{-1,2,1\},\{-1,1,2\}\}\) :
    vec=\{x,Y,z\}:
/n/49):=
    Expand[Transpose[vec].a.vec]
out/ \(\% 3 /=\)
            2
    \(2 x-2 x y+2 y-2 x z+\)
                2
            \(2 y z+2 z\)
inf 49 ): \(=\)
    r=CholeskyDeconposition[a]
Out \(490 /=\)
    \(\left\{\left\{\operatorname{Sqrt}[2],-\left(\frac{1}{\operatorname{Sqrt}[2]}\right)\right.\right.\),
        \(\left.-\left(\frac{1}{\operatorname{Sqrt}[2]}\right)\right\}\).
            31
            \{0. Sqrt[ \(\underset{2}{-]}, \overline{\operatorname{Sqrt}[6]}\}\).
                2
            \(\{0,0, \overline{\operatorname{Sqrt}[3]}\}\)
/n/50):=
    a==Transpose[ r\(]\). T
out \(501=\)
    True
(
```


- CrossProduct.m

Neither Version 1.2 nor Version 2.0 contain a built-in command for computing the cross product of two three-dimensional vectors. In order to compute cross products of vectors, Version 1.2 users must load the package Cross.m in the Linear Algebra folder to use the command Cross [vec1, vec2] which computes the cross product of vectors vecl and vec2; Version 2.0 users must use the package Croserroduct.m in the Linear Algebra folder to use CrossProduct [vec1, vec2]. Of course, the vector which results from the cross product is orthogonal to each of the original vectors. This is verified below as is the property that the cross product of two parallel vectors is the zero vector.

- Example:

- Example:

One application of the cross product is in computing the area of a triangle the vertices of which are the points P, Q, and R . This area is given by the formula

Area $=\frac{1}{2}|\overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}|$.
Mathematica does not contain a built-in function to calculate the length of vectors. Hence, the function length [v] which yields this value is defined as the square root of the dot product of v with itself. This function is illustrated with the vector $\{1,2,-1\}$ to show that the exact value results. There is no restriction on the dimension of vectors to be used with length as seen below with $\{1,3,-2,4,0,8\}$.

The area of the triangle is computed by, first, defining the points \mathbf{p}, \mathbf{q}, and \mathbf{r}; and then determining the vectors $\mathbf{p q}$ and pr . The numerical approximation of the area is easily found with
N[. 5 length[Crose [pq, pr]]].

This triangle is shown below:

Another similar application of the cross product is in finding the distance from a line containing the points P and Q to a point R not on the line. This distance is known to be

$$
\mathrm{d}=\frac{1}{|\overline{\mathrm{PQ}}|}|\overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}| .
$$

A function which computes this distance is defined as distance below and is illustrated by finding the distance from the point $(2,1,-2)$ to the line through the points $(3,-4,1)$ and $(-1,2,5)$. Since distance is defined in terms of the points P, Q, and R, this distance is found by simply entering the appropriate points.

The variables

pq. pr, crosscand id ore local to the user-defined function distance.
computes the distonce from the point ($2,1,-2$) to the line possing through the points $(3,-4,1)$ and $(-1,2,5)$

A useful feature of the Cross [v1, v2] command is that when numerical vectors are not given, Mathematica gives the formula used to compute the cross product. This can be used as a tool in finding vectors with certain properties. For example, the function $\mathbf{c p}[p, q, x]$ defined below computes the cross product of the vectors $p q$ and $p r$. The arbitrary points $\{p 1, p 2, p 3\},\{q 1, q 2, q 3\}$, and $\{x 1, \mathbf{x 2}, \mathbf{r 3}\}$ are used below to show that the cross product formula is obtained. Then, this formula is used to determine the value(s) of p 3 such that the triangle formed by the points $\{1,-1, p 3\},\{1,2,0\}$, and $\{-3,5,-1\}$ has area a. (Hence, the cross product has magnitude 2a.) This is accomplished by substituting the known points into cp and solving for p 3 .

```
1n/1/f:=
    Clear[p.q.r]:
    cp[p_,q_,r_]:=Cross[q-p,r-p]
    vec=cp[{1,-1,p3},{1,2,0},{-3,5,-1}]
out/1/=}
    {-3 + 3 p3, 4 p3, 12}
in(12):=
    l=1ength[vec]
Out/12/=
    Sqrt[144 + 16 p3 + (-3 + 3 p3) ]
in/14/:=
    sol=SimplifY[Solve[1==2a,p3]]
0w///4/=
```


The following calculations reveal two possibilities for p3. However, these roots are imaginary if a < 6.11882 (Negative values of a are disregarded.) Therefore, only values of a greater than 12.2376 can be considered. An example is worked and verified for $\mathrm{a}=7$.

```
m/15/:=
    Solve[-14976+400a^2==0,a]//H
out/15/=
    \(\{\{a \rightarrow 6.11882\},\{a \rightarrow-6.11882\}\}\)
h/fiof:=
    sol=Solve[1==14,p3]//M
out/10/=
    \(\{\{p 3->-1\},.\{p 3 \rightarrow 1.72\}\}\)
m/ \(/ 7 /\) : \(=\)
```



```
out/17/=
    -1.
/a/ 183 :=
    test=cp[\{1,-1,p\},\{1,2,0\},\{-3,5,-1\}]
out \(/ 181=\)
    \(\{-6 .,-4 ., 12\).
m/fof:=
    length[test]//is
out/10/=
    14.
```


- MatrixManipulation.m

- Version 2.0 contains the package MatrixManipulation.m which contains several commands useful for manipulating matrices. MatrixManipulation.m is not contained with Version 1.2. The command AppendColumns $[\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \ldots$] yields a new matrix composed of the submatrices $m 1, m 2, \ldots$, by joining the columns of $m 1, m 2, \ldots$ while AppendRows [m1, m2, ...] performs a similar operation by joining the rows of the matrices. In each command, the submatrices must have the same number of columns or rows, respectively. Several examples of these commands are given below and viewed in Matrixuromm to better understand the results. After defining the 2×2 matrices a and b, the command AppendColumns $[a, b]$ appends the columns of b to the columns of a, and Appendrows $[a, b]$ adds the rows of b to those of a.

O Example:

The matrix c is then defined to illustrate that more than two matrices can be used as arguments as well as the fact that correct dimensions must be used. The command AppendColumns [a, c] is not evaluated since c has more columns than a.

O Application: Computing the Adjacency Matrix of a Graph
An application of these commands is the manipulation of the adjacency matrix of a graph. Recall that two vertices of a graph are said to be adiacent if there is at least one edge joining them. Consider the graph G with no loops and n vertices labeled $1,2, \ldots, n$. The adiacency matrix of G is the $n \times n$ matrix in which the entry in row i and column j is the number of edges joining the vertices i and j . For example, suppose that a graph has the
adjacency matrix $\mathrm{A}=\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0\end{array}\right]$.
This matrix is represented as adj below. Then, suppose that two more vertices are added to the graph with vertex 5 adjacent to vertices 2 and 3 ; and vertex 6 adjacent to vertices 1 and 4. Instead of defining a new adjacency marrix for the revised graph (which can be quite cumbersome in many cases), these additions can be made with AppendColumns and Appendrows.

This is done below in addtocols and addtorows. The rows added in addtocols represent the edges from vertices 5 and 6 to vertices $1,2,3$, and 4 while the columns added in addtorows give these same edges from the original set of vertices to vertices 5 and 6 .

An interesting fact conceming an adjacency matrix M is that the (i, j) th-element of the kth power of M represents the number of walks of length k from vertex i to vertex j . A walk of length k in a graph is a succession of k edges. This is important in problems in which the number of ways to travel between two locations must be determined.

Using the matrix given in addtorows, the number of walks of length 2 between every vertex pair is determined from twowalks. For example, there are 4 walks of length 2 from vertex 4 to vertex 5 as seen with twowalks [$[4,5]]$. The number of walks of length 3 are found in threewalks.

```
/n/21/:=
    twowalks=addtoroms.addtorops
out<2%/=
    {{3,2,2,3,2,1}, {2, 7, 3, 2, 1, 4}.
        {2, 3, 3, 2, 1, 2}, {3, 2, 2, 7, 4, 1},
        {2,1,1,4,3,0}, {1,4,2,1,0,3}}
1n/22%:=
    twovalks[[4,5]]
outa</=
    4
/n(23):=
    threewalks=twowalks.addtorows
out[33)=
    {{6, 13, 7, 10, 5, 8},
        {13, 10, 10, 23, 14, 5},
        {7, 10, 6, 13, 8, 5},
        {10, 23, 13, 10, 5, 14},
        {5, 14, 8, 5, 2, 9}, {8, 5, 5, 14, 9, 2}}
```


As the power increases, the built-in command MatrixPower [matrix, k] is useful. This is used below to find the number of walks of length 10.

```
miz4):=
    tenvalks=HatrixPower[adj.10]
0u/2%4]=
    {{17408, 28160, 17408, 28160}.
        {28160, 46080, 28160, 45056}.
        {17408, 28160, 17408, 28160}.
        {28160, 45056, 28160, 46080}}
```

MatrixManipulation.m also contains several well-known matrices such as the Hilbert matrix. The
Hilbert matrix H is given by $H=$

$$
=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \cdots \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots \\
\vdots & & &
\end{array}\right] .
$$

The $\mathrm{n} x \mathrm{n}$ Hilbert matrix is found with HilbertMatrix[n] and is illustrated with milbertMatrix[3] below. This matrix is named hm3 and its inverse is called hm3inv. This is verified with hm3.hm3inv which yields the 3×3 identity matrix. Next, the 10×10 Hilbert matrix, hm 10 , is computed so that the system of equations $A x=b$ can be solved where $A=\operatorname{hm} 10$ and $b=\{1,0,0,0,0,0,0,0,0,0\}$.
/n/34): $=$
hmeHilbertlifatrix 3]
out $345=$
$\left\{\begin{array}{llllllcll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -, & -\} & \{-, & -, & -\} & \{-, & -, & -\} \\ 2 & 3 & 2 & 3 & 4 & 3 & 4 & 5\end{array}\right\}$
/n/35):=
ha3inv=Inferse[hn3]
out/55/=
$\{\{9,-36,30\},\{-36,192,-180\},\{30,-180,180\}\}$
In(35): $=$

hm3.ha3iny

out/56)=
$\{\{1,0,0\},\{0,1,0\},\{0,0,1\}\}$
In/3s):=
hm10=HilbertHatrix[10]: Short[hmio.3]
out/3s/ishart=

$$
\left\{\left\{1, \begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
- & - & - & - & - & - & - & - & \frac{7}{4}
\end{array}\right\}, \ll 8 \gg,\right.
$$

$$
\left.\left\{\frac{1}{10}, \frac{1}{11}, \frac{1}{12}, \frac{1}{13}, \frac{1}{14}, \frac{1}{15}, \frac{1}{16}, \frac{1}{17}, \frac{1}{18}, \frac{1}{19}\right\}\right\}
$$

$1 n / \infty):=$

$$
b=\{1,0,0,0,0,0,0,0,0,0\}
$$

LinearSolve[hmio.b]
out $/ 401=$
\{100, -4950, 79200, -600600, 2522520, -6306300.
$9609600,-8751600,4375800,-923780\}$

This system is also solved with $b 1=\{.75,0,0,0,0,0,0,0,0,0\}$ to illustrate that this system is sensitive to small changes.

```
/n/20]:=
    b={1,0,0,0,0,0,0,0,0,0}:
    LinearSolve[hm10.b]
out/40)=
    {100, -4950, 79200, -600600, 2522520, -6306300.
            9609600, -8751600, 4375800, -923780}
m/42]:=
    b1={,75,0,0,0,0,0,0,0,0,0}:
    LinearSolve[hm10.b1]
Out/%%/=
    {75., -3712.5, 59400., -450450.. 1.89189 10.
        6 6 6
        -4.72972 10.7.2072 10.-6.5637 10.
            6
        3.28185 10, -692835.}
```

The sensitivity of the system $A x=b$ can be measured with the condition number of A. This number is defined in several ways, one of which is based on the 1-norm of A :

For a nonsingular $m \times m$ matrix A, the condition number of A is denoted $c(A)$ and is defined
by $c(A)=\|A\|\left\|A^{-1}\right\|$ where $\|A\|=\operatorname{Max}\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\}$ for $j=1,2, \ldots, m$.
If $\mathrm{c}(\mathrm{A})$ is small, then A is said to be well-conditioned; A is ill-conditioned otherwise.
The function norm [matrix] is defined below to compute the 1-norm of matrix. This definition is given in terms of a general $\mathrm{m} \times \mathrm{n}$ matrix. Note that this definition involves the built-in Mathematica command Dimensions [matrix] which gives the dimensions of an mxn matrix in the form $\{\mathrm{m}, \mathrm{n}$) as demonstrated below with Dimensions[hm3].

The 1 -norm is calculated for hm 3 and hm3inv using the function norm. The condition number of matrix is then defined as the product of the norm of matrix and the norm of its inverse. This function is called cnum and is illustrated with hm3 to reveal a very large number. This is expected based on the results from the previous problem in which small changes in the original system involving hm3 led to large changes in the solution.
$/ n / 65 /=$
Dimensions[hm3]
out $/ 40 /=$
$\{3,3\}$
$n / 44 / 4:=$
norn[matrix_]:=
Hodule[\{din, rot, col, sums, max\}.
dim=Dinensions[matrix]:
row=dim[[1]]:
col=dim[[2]]:
suns=Table[Sum[Abs[natrix[[i, j]]].
\{i, i, ro\#\}],\{j, i, col\}]:
max=Hay[suns]
]
/n/45):=
norn[ha3]
out(25)=
11
6
($n / 46 /:=$

out $401=$
408
$1 n / 47$): $=$
cnum[matrix_]:= M[norn[natrix]
norn[Inverse[matrix]]]
/n/4s/:=
cnum [he3]
Produces the condition rumber
of a matrix. In this case, the
condition number of the 3×3
Hibert matrix is computed to
be 748 .
out $483 /=$
748.

The voriables din, roy, col. surs, curd max are declered to be local to the user defined furction norn.

Produces the condition number of a matrix. in this case, the condition number of the 3×3 Hibert matrix is computed to be 748.
out $7481=$
748.

Mathematica has a built-in command which can be used in determining the condition number.
SingularValues [m] returns the list $\{u, w, v\}$ where w is a list of non-zero singular values. The condition number is the ratio of the largest singular value of the matrix to the smallest one. The other information in the output of SingularValues [m] can be used to represent the matrix m as
Transpose[u].Diagonalmatrix[w].v. This is known as the singular value decomposition of m.
Hence, the condition number can be found by determining the ratio of the values in the list w . This is shown below with matrix a. The definition of condition number used in the built-in function differs from the one stated earlier since the value obtained with Singularvalues and that found with cnum [a] differ. At any rate, each method yields a very large condition number. Hence, a is ill-conditioned, so numerical methods used to solve systems involving a are unreliable.

Unfortunately , the built-in command does not work with all matrices. An error message is given with Singularvalues [hm3]. Therefore, the earlier procedure for calculating the condition number may prove to be more useful.

```
In/50):=
    a={{34.9,23.6},{22,9,15,6}}:
    s=SingularPalues[a]
owt/50)=
\(\{\{\{-0.835497,-0.549495\},\{-0.549495,0.835497\}\}\),
```

$\{50.4255,0.0793249\}$.
$\{\{-0.827801,-0.561022\},\{-0.561022,0.827801\}\}\}$
/n/5/f:=
3[[2]]
out/51/=
$\{50.4255,0.0793249\}$
In/52):=
cdn=Har[3[[2]]]/Hin[s[[2]]]
out $52 /=$
635.683
in/53/: $=$
cnum[a]
out $535=$
845.325
/n/54/:=
sing=SingularYalues[hm3]
SingularYalues: :svdf:
SingularValues has received a matrix with infinite precision.

SingularYalues: : svdf :
SingularYalues has received a matrix with infinite precision.
out $1541=$
SingularYalues[\{\{1, $\left.\begin{array}{ccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ - & -\} & \{ & \{- & - & -\} & \{- & - & -\}\end{array}\right\}$

ETTYTMTITM11

- Orthogonalization.m

Version 2.0's Orthogonalization.m package contains useful commands for working with vector spaces. The main command in this package is Gramschmidt [veclist, options] which produces an orthonormal basis for the vectors in veclist. Recall that two properties of an orthonormal basis are that the inner product of any two basis vectors is 0 , and the norm of each basis vector is 1 . In the first example below, a basis for the list of vectors in vecs is found with GramSchmidt [vecs].

O Example:

Some of the previously mentioned properties are verified using the orthonormal basis found in basis.

```
/n/17]:=
    basis[[1]].basis[[2]]
    basis[[2]].basis[[3]]
    basis[[1]].basis[[3]]
    basis[[1]].basis[[1]]
    basis[[2]].basis[[2]]
    basis[[3]].basis[[3]]
```

out/12\%=
0
out/13/=
0
out/14/=
0
out/15/=
1
owt/15/=
1
ow $/ 17 / 7=$
1

O Application: Distance

One application of the determination of an orthonormal set of basis vectors is in the calculation of the distance of a point \mathbf{x} from a subspace W. If \mathbf{u} is an orthonormal basis for W, then the distance from \mathbf{x} to S is defined as the magnitude of the component of \mathbf{x} which is orthogonal to each vector in W. This vector is found by projecting \boldsymbol{x} onto W using the basis vectors in u . More formally, the distance is given by the formula :
$\left\|\mathbf{x}-\operatorname{proj}_{\mathbf{W}} \mathbf{x}\right\|$ where $\operatorname{proj}_{\mathbf{W}} \mathbf{x}$ is the projection of \mathbf{x} onto W .
In the example which follows, the distance of the point $\boldsymbol{x}=(4,1,-7)$ to the subspace W which consists of all vectors of the form (a, b, b) is found. Every vector in W can be written as the linear combination of the vectors $\{1,0,0\}$ and $\{0,1,1\}$. Hence, the orthogonal basis for W is found in onbasis below using $\{1,0,0\}$ and $\{0,1,1\}$.

The elements of onbasis are extracted in the usual manner as illustrated with onbasis [[1]]. The vector x is defined and the projection of x onto W is determined in proj. The orthogonal component is given in diff, and finally, the length of this vector is found in the standard way by using the dot product.
(nf/ 18): $=$
onbasis=GranSchmidt[\{\{1,0,0\}, $0,1,1\}\}]]$
ow $/ 181=$
$\left\{\{1,0,0\},\left\{0, \frac{1}{\operatorname{Sqrt}[2]}, \frac{1}{\operatorname{Sqrt}[2]}\right\}\right\}$
ln/10):=
onhasis[[1]] corresponds to the first element
ow $/ / 9 /=$ of the list onbasis.
$\{1,0,0\}$
$m(21)=$
$x=\{4,1,-7\}$;
proj=Projection[x,onbasis[[1]]]+ Projection[r, onbasis[[2]]]
out $21 /=$
$\{4,-3,-3\}$
$n(20)=$
diff=x-proj
outces/=
$\{0,4,-4\}$
m/23/:=
distance=Sqrt[diff.diff]
out $53 /=$
5/2
2
onbasis
is a set of orthonormal vectors constructed from the lineocrly independent set of vectors
$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \operatorname{crdd}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
proj is defined to be the vector
$\mathrm{pr}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]^{(\mathrm{x})+\mathrm{pr}}\left[\begin{array}{c}0 \\ 11 \sqrt{2} \\ 11 \sqrt{2}\end{array}\right]^{(\mathrm{x})}$.

The length of a vector v is given by
$\|F\|=\sqrt{v \cdot \psi}$.

The above calculations to determine the distance from a point to a subspace can be generalized in the function distance below. The arguments of distance are the point v and a list of basis vectors, vecs, for W . The function performs all of the necessary calculations to find the desired distance. To verify that distance does yield the correct output, it is demonstrated with the same problem as before and gives the same result. First, all previously used definitions are cleared.

```
/n/24/:=
    Clear[%,proj, onbasis, Fecs, x,diff,distance]
/n/25/:=
    distance[T_,Fecs_]:=Hodule[{d,onbasis.proj.diff},
        onbasis=GranSchmidt[Evaluate[vecs]]:
        proj=Sum[Projection[v, onbasis[[i]]].
            {i,1,Length[onbasis]}]:
        diff=%-proj:
        d=Sqrt[diff.diff]
        ]
ln/26/:=
    distance[{4,1,-7},{{1,0,0},{0,1,1}}]
Out/25/=
        5/2
    2
```

One of the options available to GramSchmidt is that of InnerProduct. In the earlier examples the dot product (the default value of InnerProduct) was used as the the inner product. However, with this option, other vector spaces such as function spaces can be considered.
The inner product of two continuous functions f and g is given by

$$
(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x
$$

where $f, g \in C[a, b]$ and $w(x)$ is a nonnegative weight function on (a, b).
The InnerProduct option must be given in terms of a pure function. In order to do this, the syntax (option->(function\&) must be used. Hence, the inner product with $w(x)=1$ is defined with InnerProduct-> (Integrate [\#1 \#2, $(x,-1,1\}] \&)$ where \#1 and \#2 represent the first and second variables of the inner product, respectively.

Chapter 7 Introduction to Packages

The first command below yields the orthonormal basis from $\left\{1, x, x^{\wedge} \mathbf{2}, x^{\wedge} \mathbf{3}, x^{\wedge} \mathbf{4}\right\}$, the basis for the space of fourth-order polynomials. Another GramSchmidt option is Normalized->False. When this is used, the basis vectors which result are orthogonal but not of length 1 . The first command is repeated with this command and called legendre5.
/n/2]:=
GranSchnidt[\{1, x, x^2, x^3, x^4\}.
InnerProduct->(Integrate[\#1 2,\{x,-1,1\}]\&)]
out $\%=$

in/5/:=
legendre5=GramSchnidt[\{1, $\left.x, x^{\wedge} 2, x^{\wedge} 3, x^{\wedge} 4\right\}$. InnerProduct-3(Integrate[象2, $\{x,-1,1\}] \&$). Nornalized->False]
out/3/=

On the other hand, when the option Normalized->True is used, the basis vectors which result are orthogonal with length 1 . In the following example, several integrals are computed to verify that the resulting basis vectors are orthogonal and have length 1 :

```
in/2/:=
    gs=GramSchmidt[{1,x, x^2, x^3, x^4}.
            InnerProduct->(Integrate[#1 #2.{x,-1,1}]&).
                    Hormalized->Truel
Out/2/=
    {\frac{1}{Sqrt[2]}, Sqrt[\frac{3}{2}]x,3 Sqrt[\frac{5}{8}](-(\frac{1}{3})+\mp@subsup{x}{}{2}).
    5Sqt[\frac{7}{8}](\frac{-3x}{5}+\mp@subsup{x}{}{3}),\frac{105(-(\frac{1}{5})+\mp@subsup{x}{}{4}-\frac{6(-(\frac{1}{3})+\mp@subsup{x}{}{2})}{7})}{\mp@subsup{2}{}{7/2}}}
Mm/5):=
    gs[[1]]
0w/5]=
    Sqrt[2]
/n/4/:=
    Integrate[gs[[1]] gs[[2]].{x,-1,1}] computes }\mp@subsup{\int}{-1}{1}\frac{1}{\sqrt{}{2}}\sqrt{}{\frac{3}{2}}xdx
Owt/4/=
    0
in/5/:=
    Sqrt[Integrate[ gs[[1]|^2,{x,-1,1}]]
out(5)=
    1
m/b):=
    Integrate[gs[[1]] gs[[4]].{x,-1,1}]|computes }\mp@subsup{\int}{-1}{1}\frac{1}{\sqrt{}{2}}5\sqrt{}{\frac{7}{8}}(\mp@subsup{x}{}{3}-\frac{3}{5}x)\textrm{dx
out/o/=
    0
inf7/:=
    Sqrt[Integrate[ gs[[4]]^2,{x,-1,1}]]
ouf7]=
    1
```

The polynomials which result are normalized in 1 poly so that each member equals 1 at $x=1$. This yields a list of the first five Legendre polynomials and is accomplished by dividing each entry in legendre5 with its value at $\mathbf{x}=1$. In this case, the Legendre polynomials were the result of an example illustrating the InnerProduct option with GramSchmidt. Nevertheless, Mathematica contains the built-in command LegendreP [n, x] which gives these polynomial.

Infif: $=$
lpoly=Table[Simplify[1egendre5[[i]]/
(legendre5[[i]]/. $x \rightarrow 1$)].\{i,1,5\}]
out/4/=

$$
\left\{1, x, \frac{-1+3 x^{2}}{2}, \frac{x\left(-3+5 x^{2}\right)}{2}, \frac{3-30 x^{2}+35 x^{4}}{8}\right\}
$$

$1 m / 101:=$
Table[LegendreP[n, x].\{n,0,4\}]//TableForn
out/10/i.'Tobleform=
1
x

```
        2
    -1+3x
        2
```

 \(-3 x+5 x^{3}\)
 2
 \(3-30 x^{2}+35 x^{4}\)
 8
 A useful purpose for obtaining an orthogonal set of basis vectors is in approximating functions with polynomials. If a function $f(x)$ is to be approximated with a polynomial of degree n, then the closest polynomial is computed by projecting $f(x)$ onto each of the first n (or $n+1$) basis members of the space of n-th order polynomials. Hence, approximation can be conducted by using a basis made up of the Legendre polynomials created earlier. In order to illustrate this technique, the command Projection [vec1, vec2, options] which also appears in Oxthogonalization.m must be discussed. This command projects vec1 onto vec2 and can employ the same option of InnerProduct as was shown earlier with GramSchmidt. The function proj is defined below to project a vector (the function) v onto the basis vectors in basis using the appropriate inner product for function spaces. This function is then demonstrated by projecting Exp [x] onto the orthogonal basis obtained earlier in 1 poly. Hence, this calculation results in the approximation of $\operatorname{Exp}[x]$ using the first 5 Legendre polynomials. The approximating polynomial is then simplified and expressed with numerical coefficients in app. Both functions are plotted simultaneously to show the closeness of the approximation, and then the difference is plotted to better illustrate the accuracy of the approximation with Legendre polynomials.

```
m/5%/f:=
    Clear[v.basis]:
    proj[`_.basis_]:=Sum[Projection[\nabla.basis[[i]].
                                    InnerProduct->
                                    (Integrate[*1 #2,{x,-1,1}]&)].
            {i.1.Length[hasis]}]
/nf65/:=
    proj[Exp[x],1poly]
out/65/=
            1 -7 2
    -(-)+E S 3x 5 (- + + E) (-1 + 3x)
    E
    37
                            2
        7(--5E) x (-3+5x)
            E
4
\(9\left(\frac{-266}{E}+36 E\right)\left(3-30 x^{2}+35 x^{4}\right)\)

The approximating polynomial is then simplified and expressed with numerical coefficients in app.
/n/606/:=
app=Sinplify[1[ proj[Exp[x].1poly]]]
out/ós/=
\(1.00003+0.997955 x+0.499352 x^{2}+0.176139 x^{3}+\)
4
\(0.0435974 x\)


Both functions are plotted simultaneously to show the closeness of the approximation, and then the difference is plotted to better illustrate the accuracy of the approximation with Legendre polynomials.
/n/67/:=
Plot[\{app.Exp[x]\},\{x,-1,1\}]

out/57/=
-Graphics-
/n/503):=
Plot[app-Exp[x].\{x,-1,1\}]

outfos)=
-Graphics-


\section*{- Tridiagonal.m}

Version 2.0's Tridiagonal.m package offers the command TridiagonalSolve[a,b,c,r] to solve the system of equations \(A x=r\) where \(A\) is a tridiagonal matrix with diagonal \(b\), upper diagonal \(c\), and lower diagonal a. Matrices of this type arise in many areas of applied mathematics and can be rather large in dimensions. Therefore, this command may be more useful than other commands available for solving systems of linear equations. In the first example below, the following system is solved:

\section*{O Example:}
\[
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\frac{\pi^{2}}{4}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] .
\]

Notice that the solution of the system is given as the list \(\{x 1, x 2, x 3\}\).

\section*{TridiagonalSolve}
\(/ n / 2 /:=\)
<<Tridiagonal.
( \(n / 7 / 7:=\)
\(a=\{-1,-1\}\) :
\(b=\{2,2,2\}\) :
\(c=\{-1,-1\}\) :

TridiagonalSolve[ \(a, b, c, r]\)
out/7/=
\{1.2337. 0., -1.2337\}

We interpret the resuit to meon:
\(\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{c}1.2337 \\ 0 \\ -1.2337\end{array}\right]=\frac{\pi^{2}}{4}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\)

\section*{- Example:}

As previously indicated, tridiagonal systems are common in many fields. One example of this is the numerical solution to differential equations. Consider the boundary value problem
\[
\begin{gathered}
-\frac{d^{2} u}{d x^{2}}=f(x), \quad 0 \leq x \leq 1 \\
u(0)=0, u(1)=0 .
\end{gathered}
\]
(This is the problem which describes the steady-state case of the heat equation with fixed end temperatures of zero degrees and heat source \(f(x)\).) In order to solve this problem numerically, it must be changed from a continuous problem to a discrete one. This is accomplished first by providing a finite amount of information about \(f\) at the equally spaced points \(x=h, x=2 h, \ldots, x=n h\). An approximate solution is computed at these values of \(x\). At the endpoints, \(x=0\) and \(x=1=(n+1) h\), the solution must be zero from the boundary conditions. Hence, the approximate solutions at the endpoints are known to be
\[
\mathrm{u}_{0}=0 \text { and } \mathrm{u}_{\mathrm{n}+1}=0 .
\]

The derivatives in the differential equation are replaced by the difference quotients
\[
\frac{d u}{d x}=\frac{u(x+h)-u(x-h)}{2 h}
\]
and
\[
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}=\frac{\mathrm{u}(\mathrm{x}+\mathrm{h})-2 \mathrm{u}(\mathrm{x})+\mathrm{u}(\mathrm{x}-\mathrm{h})}{\mathrm{h}^{2}}
\]

Hence, at a typical mesh point \(\mathrm{x}=\mathrm{jh}\), the differential equation is replaced by the discrete analog
\[
-u_{j+1}+2 u_{j}-u_{j-1}=h^{2} f(j h) .
\]

There are \(n\) equations of the form, one for each value of \(j=1, \ldots, n\). (Note that \(h=1 /(n+1)\) ). Therefore, \(a\) numerical solution to this differential equation is obtained by solving the tridiagonal system which results from the discrete problem. The function \(\mathbf{s o l n}\) which sets up and solves the system for any value of \(\boldsymbol{n}\) and any function \(\mathbf{f}\) is defined below. The output is given as a list of ordered pairs in which the first coordinate represents the meshpoint while the second coordinate gives the approximate solution at the corresponding meshpoint. In the example which follows, the boundary-value problem
\[
\begin{gathered}
-\frac{d^{2} u}{d x^{2}}=4 \pi^{2} \sin (2 \pi x), \quad 0 \leq x \leq 1 \\
u(0)=0, u(1)=0
\end{gathered}
\]
is solved. Of course, the exact solution to this problem is known to be \(u(x)=\sin 2 \pi x\). Hence, the approximate solutions found with this finite-difference method can be compared to the true solution.

The solution is approximated, first, for \(n=6\). The points given by soln are then plotted with ListPlot and shown simultaneously with the graph of the exact solution.
infol:=
    Clear[a,b,c,r]
    soln[f_,n_]:=
            Hodule[ \{h, a,b, c, r, vec, table\}.
                \(h=1 /(n+1)\) :
                \(a=T a b l e[-1,(i, 1, n-1)]\) :
                b=Table[2, (i,1,n\}]:
                c=Table[-1.\{i,1,n-1\}]:
                r=Table[ h^2 \(\mathrm{H}[\mathrm{f}[\mathrm{i} \mathrm{h}]\) ]. \(\{\mathrm{i}, 1, \mathrm{n}\}] / / \mathrm{M}\);
                vec=TridiagonalSolve[a,b,c, r]//H;
                table=Table[\{i h, vec[[i]]\}.\{i,1,n\}]
            ]
/n/ 10 ): \(=\)
    \(f\left[x_{-}\right]=4 P^{\wedge}{ }^{\wedge} 2 \operatorname{Sin}[2 \mathrm{Pi} 1]\) For this excmple, define \(f(x)=4 \pi^{2} \operatorname{Sin}(2 \pi x)\).
out \(/ 10 /=\)
        2
    \(4 \mathrm{Pi} \operatorname{Sin}[2 \mathrm{Pi} \mathrm{x}]\)
/n////:=
    soln[f.6]
out/1/1=

    \(\left.\left.\left.\begin{array}{c}5 \\ \{-, \\ 7\end{array},-1.04311\right\}, \stackrel{6}{7},-0.836508\right\}\right\}\)

The points given by soln are then plotted with ListPlot and shown simultaneously with the graph of the exact solution.
```

/n/20]:=
approx=ListPlot[soln[f,6].
PlotStyle->GrayLevel[0].
DisplayFunction->Identity]:
plot=Plot[Sin[2 Pi m].{x,0,1}.
DisplapFunction-> Identity]:
Sho\#[approx.plot.DisplayFunction->\$DisplayFunction]
0.5
out/20%=
-Graphics-

```

Similar steps are followed below with \(\mathbf{n}=20\) and \(\mathbf{n}=50\) to demonstrate the improved approximation as \(\mathbf{n}\) increases.
```

/n/35]:=
sol=soln[f,20]:
Short[sol,2]

```
ow \(/ 33 / \cdots 5\) hort \(=\)
```

 1
 \(\left\{\left\{\frac{1}{21}, 0.296964\right\},\{-, 0.567541\},\{-, 0.78769\}, \ll 15 \gg\right.\),
 1920
 \(\left.\left\{\begin{array}{l}21\end{array},-0.567541\right\},\{-,-0.296964\}\right\}\)
 in/36):=
approx=ListPlot[sol.
PlotStyle \rightarrow Graylevel[0].
DisplayFunction-sIdentity]:
plot=Plot[Sin[2 Pi x]. $\{x, 0,1\}$.
DisplayFunction->Identity]:

```
    Shov[approx.plot.DisplayFunction-3 \$DisplayFunction]

out/36/=
-Graphics-

The calculations for \(\mathrm{n}=50\) are given below. Note the improvement of the approximation which results:
/n/38):=
\[
\begin{aligned}
& \text { sol=soln}[f, 50]: \\
& \text { Short[sol, } 2]
\end{aligned}
\]
out/3s/ishort =
\(\left.\left.\left\{\begin{array}{c}1 \\ 51\end{array}, 0.123044\right\}, \frac{2}{51}, 0.244222\right\}, \frac{1}{17}, 0.361699\right\}, \ll 45 \gg\),

49 50
\(\left.\left\{\frac{-}{51},-0.244222\right\},\left\{\frac{-}{51},-0.123044\right\}\right\}\)
/n/47/:=
approx=ListPlot[sol. plotStyle--GraqLevel[0]. DisplayFunction-3Identity]:
plot=Plot[Sin[2 Pi x].\{x,0.1\}. DisplayFunction->Identity]:
Shov[approx, plot, DisplayFunction-3 SDisplayPunction]


Out/47/=
-Graphics-
\(100 \%\) V

\section*{- 7.3 Version 2.0 Calculus}

The packages contained in the Version 2.0 Calculus folder appear as follows:


The packages Fouriertransform.m and Laplacetransform.m are discussed here; VectorAnalysis.m was discussed in Chapter 5.

\section*{- LaplaceTransform.m}

Commands which can be used to compute Laplace transforms and inverse Laplace transforms are located in the LaplaceTransform.m package. The command InverseLaplaceTransform[f[s],s,t] computes the inverse Laplace transform of \(f[s]\) and the result is a function of \(t\) while LaplaceTransform [g[t],t,s] yields the Laplace transform of \(g[t]\) as a function of \(s\). Several examples are given below.
- Example:


Of course, an application of Laplace transforms is the solution of differential equations. In order to use these techniques, however, several important properties of Laplace transforms must be recalled. Two of these are investigated below with Mathematica and will be used later. Note how the derivative of the Laplace transform is represented in the second problem.


\section*{O Application: Solutions of Ordinary Differential Equations}

Consider the following second-order system of ordinary differential equations with initial conditions:

Laplace transforms can be used to solve this system. After clearing all definitions, the Laplace transform of the first equation is found and called leq1. Similarly, the Laplace transform of the second equation is found and called leq2.


The usual convention when working with Laplace transforms is to use the capital letter X when referring to the Laplace transform of \(x\). Hence, in the above calculations, LaplaceTransform \([x[t], t, s]\) is replaced with capx and Laplacetransform \([y[t], t, s]\) is replaced with capy. Also the initial values \(x[0]=0, x^{\prime}[0]=3 / 2, y[0]=0\), and \(y^{\prime}[0]=-3 / 2\) can be substituted into the previous calculations.

These substitutions are made after defining the list of replacements, called rule, below. Then, leq1/.rule and leq2/.rule make all of the replacements given in rule. (leq1/.rule is an equation involving capx while leq2/.rule involves capy). Hence, the two equations which result are solved for capx and capy, respectively, in the Solve command. The result is named solution.
```

1n/134/:=
rule={LaplaceTransform[x[t],t.s]->capx,
x[0]->0, x[[0]->3/2.
Y[0]-30.Y'[0]-3-3/2.
LaplaceTransform[y[t].t.s]->capy}:
/n//35/:=
solution=Solve[
{leq1 /. rule.leq2 /. rule}.
{capx, capy}]
out/55/=
{{capx ->

```

```

 , capy -3
 24 3(20+23)

 }
    ```
We must soive leq1
ord leq2 for
LaplaceTransf orn [
    x[t],t,s] cord
LaplaceTransf orm [
    \(\mathbf{Y}[\mathbf{t}], \mathbf{t}, \mathbf{s}]\) with the
conditions that \(x(0)=0, x(0)=3 / 2\),
\(y(0)=0, \operatorname{cord} y^{\prime}(0)=-3 / 2\)
Hence, for convenience, define
rule to substitute the oppropriate
values into leq1 cond leq2.
TOTSolution=Solve[ \(\{\)
    leq1 /. rule.
    leq2 /. rule\}.
    \{capx, capy\}]
first reploces the expressions
LaplaceTransfori[
    r[t],t,s].
LaplaceTransform
Y[t],t, s\(]\), \([\mathbf{0}]\).
\(\mathrm{I}^{\prime}[0]\). \(\mathrm{Y}[0]\). cond \(\mathrm{Y}^{\prime}[0]\)
by capr. capy. 0, 3/2.
0, cond -3/2, then solves the
resulting system for capx
cond capy.
The resulting list is nomed
solution.

Note that solution is a list. Therefore, the formulas for capx and capy must be extracted. This is accomplished with solution [ \([1,1,2]]\) and solution \([1,2,2]]\), respectively. This is shown below:


The solution ( \(x[t], y[t]\) ) is now obtained through the inverse Laplace transform of the formulas of the Laplace transform of \(x\), capx, and that of \(y\), capy. These are determined below with the Inverselaplacetransform command. Finally, the solution is graphed with Parametricplot for values of \(t\) from \(t=0\) to \(t=2 \mathrm{Pi}\).


\section*{- FourierTransform.m}

The FourierTransform.m package contains two commands useful for the computation of Fourier series. The first of these is FourierTrigSeries \([f[x],\{x,-L, L\}, n]\) which computes the first \(n\) terms (the n th partial sum) of the Fourier series of the periodic extension of \(£[x]\) on the interval \(\{-\mathbf{L}, \mathbf{L}\}\). This series is given by the formula
\[
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
\]
where
\[
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, n=1,2, \ldots \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x, n=1,2, \ldots
\end{aligned}
\]

Since these integrals are rather complicated in most cases, the FourierTrigSeries command is quite useful. This package also includes the command NFourierTrigSeries which gives the Fourier series in terms of numerically approximated Fourier series coefficients. These two commands are illustrated below.

\section*{- Example:}

First, the fourth partial sum of the Fourier series for the periodic extension of \(\mathbf{f}[\boldsymbol{x}]=\boldsymbol{x}\) is computed with FourierTrigSeries and named serexact. Next, the same is given numerically for the function \(f[x]=A b s[x]\). This result is called serapprox.


The graphs of \(\mathbf{f}[\mathbf{x}]=\mathbf{x}\) and \(\mathbf{f}[\mathbf{x}]=\mathbf{A b s}[\mathbf{x}]\) along with the fourth partial sums of the corresponding Fourier series, serexact and serapprox, can be displayed in the same graphics cell. This is accomplished in the single command below. Recall that the Plot option DisplayFunction->Identity causes the graph to be suppressed initially. Then, the command
Show[GraphicsArray[\{\{plotx, plotserexact\}, \{plotabsx, plotserapprox\}\}]] displays all four graphs in one cell. Also, because of the grouping within GraphicsArray, the plots are displayed in the appropriate order. The Fourier series approximation of each function can easily be viewed in this manner.

\section*{FourierEhample}

\section*{\(\mathrm{h} / 16 /:=\)}
plotx=Plot[x. \{x,-Pi.Pi\}. DisplayFunction-sIdentity]:
plotserexact \(=\) Plot[sereract, \(\{x,-P i, 5 P i\}\). DisplayFunction-sIdentity]:
plotabsx=Plot[Abs[x].\{x,-Pi, Pi\}. DisplayFunction->Identity]:
plotserapprox=Plot[serapprox, \{x,-Pi, 5Pi\}. DisplayFunction-3Identity]:
Shov[Graphicsirray \(\{\{p l o t x, p l o t s e r e x a c t\}\). \{plotabsx,plotserapprox\}\}]]

out/15/=
-GraphicsArray-
(100\% ح

\section*{- Example:}

The Fourier series of piecewise-defined functions can also be computed. This is illustrated with the function \(\mathbf{f}[\mathbf{x}]\) below. After making the correct definition of this function, a table called approxs which consists of the second, sixth, and tenth partial sums of the Fourier series for the periodic extension of \(\mathbf{f}\) is constructed with NFourierSeries. (A shortened output for approxs is given below.) Since approxs is a list of three elements, the second partial sum is given by approxs [[1]], the sixth by approxs [[2]], and the tenth by approxs[[3]].


The accuracy of the approximation of \(\mathrm{f}[\mathrm{x}]\) by the partial sums of the Fourier series can be seen by plotting approxs [[1]], approxs [[2]], and approxs [[3]]. The graphs below clearly show that the approximation becomes more accurate (the corresponding curves move closer to the function \(£\) ) as more terms of the Fourier series are used.
```

/h/1//:=
graphone=Plot[approxs[[1]].{x,0,4}.
DisplapFunction->Identity]:
grapht*o=plot[approxs[[2]].{x,0.4}.
DisplayFunction-3Identity]:
graphthree=Plot[approxs[[3]1.{x.0.4}.
DisplayFunction->Identity]:
Shov[Graphicshrray[{graphone,graphtซo.graphthree}]]

```

out/1/1=
-GraphicsArray-
- These three graphs can also be plotted simultaneously in the single command below. Note that Evaluate [approxs] must be used in the Plot command just as Release was used in Version 1.2. The three are given in varying GrayLevel with the tenth partial sum represented by the darkest curve.
/n/7/:=
Plot[Evaluate[approxs], (x, 0, 4\}, PlotStyle-3 (Graplevel[.6] Graylevel[.3]. Graylevel[0]\}]

out/7)=
-Graphics-

It is VERY importcrat to isechude the commend Evaluate In Version 20, the commend Evaluate replaces the command Rel ease from Version 1.2

In this case, Macthematica first computes the table approxs ond then grophs the functions in different shades of gray.

\subsection*{7.4 Discrete Math}


\section*{■ CombinatorialFunctions.m}

In addition to the built-in Mathematica functions Binomial [m, n ] and Multinomial[n1, n2, n3, ...,nm], the package Combinatorialfunctions.m, included with both Version 1.2 and Version 2.0, provides commands which deal with subfactorials, Catalan and Fibonacci numbers as well as the Hoftstadter functions. We first discuss the built-in functions.

Binomial \([n, m]\) gives the binomial coefficient \(\binom{n}{m}=\frac{n!}{m!(n-m)!}\). (The number of ways to choose m objects from a collection of n objects, without consideration to order.)

Multinomial \(\left[n_{1}, n_{2}, \ldots, n_{m}\right]\) gives the multinomial coefficient \(\frac{N!}{n_{1}!n_{2}!\cdots n_{m}!}\), where \(\sum_{i=1}^{m} n_{i}=N\). Hence, the multinomial coefficient gives the number of ways to partition \(N\) distinct objects into \(m\) sets, each having size \(n_{i}\).

Several examples of these functions are given below prior to loading the package :


Typical problems which involve determining the binomial and multinomial coefficients are as follows :

\section*{\(\square\) Example:}

In how many ways can an unordered 5-card poker hand be selected from a deck of 52 cards?

\section*{Solution :}

The answer is \(\binom{52}{5}\) and is easily computed by entering Binomial \([52,5]\).

\section*{- Example:}

How many strings can be formed from the letters in Mathematica?
Solution : The solution is determined using the multinomial coefficient. In the word Mathematica, the letter A appears 3 times while the letters M and T each appear twice. All others appear only once and there are 11 total letters. Therefore, the correct value is found with Multinomial \([3,2,2,1,1,1,1]\). (The 1's must not be omitted because the command uses them to determine the numerator in the calculation.)

Answers to both examples are computed below:


\section*{- Example:}

A useful combinatorial function which can be used only after loading CombinatorialFunctions.m, is Subfactorial [ \(n\) ]. This gives the number of permutations of \(n\) objects which leave no object fixed and is determined using the formula \(n!\operatorname{Sum}\left[(-1)^{\wedge} \mathbf{k} / k!,\{k, 0, n\}\right]\).
After loading Combinatorialfunctions.m, several examples are given. Subfactorial[4] is also found using the formula 4 ! \(\operatorname{Sum}\left[(-1)^{\wedge} k / k!,(k, 0,4\}\right]\) to verify that the same value results from each command.


Another function found in CombinatorialFunctions.m determines the Catalan numbers. These numbers are found with the formula Binomial \([2 n, n] /(n+1)\) and are named after the Belgian mathematician Eugene-Charles Catalan (1814-1894) who discovered an elementary derivation of the formula. The problem which led to this discovery was that of determining the number of ways to divide a convex ( \(\mathrm{n}+2\) )-sided polygon, \(n\) greater than or equal to 1 , into triangles by drawing ( \(\mathrm{n}-1\) ) lines through the comers that do not intersect in the interior of the polygon. This number is found with CatalanNumber [ \(n\) ] which gives the nth Catalan number.

\section*{- Example:}

For example, there are five ways to divide a convex pentagon ( \(n=3\) ) into triangles by drawing two nonintersecting lined through the corners. This is given with CatalanNumber [3]. A table of Catalan numbers can also be created as illustrated below.


Another useful sequence is that of the Fibonacci numbers named for the Italian merchant and mathematician, Leonardo Fibonacci (1170-1250). These numbers are encountered in many areas as well and first arose in a puzzle about rabbits. One interesting fact about this sequence involves the ratio of successive terms. The limiting value of this ratio is:

GoldenRatio \(-1=\frac{1+\sqrt{5}}{2}-1=\frac{\sqrt{5}-1}{2} \approx 0.61803\).

\section*{- Example:}

This is demonstrated below. First, a table of the first 16 Fibonacci numbers is created with Table and Fibonacci [ \(n\) ] which yields the nth Fibonacci number. This is called table1. Then, a table of the ratios of successive Fibonacci numbers is computed using table1 to illustrate that the limit is the Golden Mean-1. A numerical approximation of the Golden Mean is also computed for comparison. Note that the first Fibonaaci number is found with index, \(\mathbf{n}=0\). Thus, the \(n\)th Fibonacci number is found with Fibonacci[ \(\mathbf{n - 1}\) ].


\section*{- Example:}

It should be noted that calculation of Fibonacci [ \(n\) ] for \(n>10\) is quite slow. Hence, an alternate approach is suggested. A table of the first 250 Fibonacci numbers can easily be found as follows (a shortened table of five lines i: requested to save space).

Mathematica is designed to allow it to "remember" computed function values. In general, functions defined in the form
\(\mathbf{f}\left[x_{z}\right]:=f[x]=\) function definition will retain all values computed for later use.

The calculation of the first 250 Fibonacci numbers required approximately 1200 seconds in computation time with Fibonacci [n], but the output was practically instantaneous when using the commands below.


A table containing the values \(\mathbf{f i b}[50], \mathbf{f i b}[100], \mathbf{f i b}[150]\), and \(\mathbf{f i b}[200]\) is given below.
Since \(\mathbf{f i b}[50], \mathbf{f i b}[100]\), \(\mathbf{f i b}[150]\), and \(\mathbf{f i b}[200]\) were computed above, we note that recalling them is nearly instantaneous. Using the function Fibonacci [n] to compute Fibonacci[50], Fibonacci[100], Fibonacci[150], and Fibonacci[200] takes considerable time.


\section*{- Application:}

Some interesting facts conceming Fibonacci numbers can now be investigated.
Consider the sequence \(\left\{T_{n}\right\}_{n=1}^{\infty}\) where \(T_{n}=\frac{F_{5 n}}{5 F_{n}}\), \(F_{n}\) being the nth Fibonacci number.
Theorem: If \(\mathrm{T}_{\mathrm{n}}\) is prime, then n is either prime or a power of 5 .
(Another interesting fact about this sequence is that all numbers end in 1.) By computing the following table with the sequence of Fibonacci numbers in \(f i b[n]\) found above, these properties can be investigated.


The Hofstadter function, Hof, is recursively defined by
(i) \(\operatorname{Hof}(1)=\operatorname{Hof}(2)=1\); and
(ii) \(\operatorname{Hof}(\mathrm{n})=\operatorname{Hof}[\mathrm{n}-\operatorname{Hof}(\mathrm{n}-1))+\operatorname{Hof}(\mathrm{n}-\operatorname{Hof}(\mathrm{n}-2))\)

Mathematica's definition of the Hofstadter function is contained in the package Combinatorialfunctions.m and is denoted by Hofstadter[n].

\section*{Chapter 7 Introduction to Packages}

\section*{- Example:}

A table of the first thirty values of the Hofstadter function is given below :


\section*{■ CombinatorialSimplification.m}

The package Combinatorialsimplification.m includes several rules which can be used to simplify certain expressions which Mathematica does not automatically simplify. For specific integers \(m\) and \(n, n\) !
computes the factorial of \(n\); Binomial \([m, n]\) computes \(\binom{m}{n}=\frac{m!}{(m-n)!n!}\).
Unfortunately, if m and n are not specific integers, Mathematica does not automatically simplify the following expressions involving factorials and binomial coefficients:


\section*{- Example:}

Fortunately, these expressions can be simplified with after loading the package
Combinatorialsimplification.m. since Combinatorialsimplification.m redefines the built-in combinatorial functions so that Mathematica symbolically reduces combinatorial functions:

\section*{CombinatorialSimplification}

\section*{\(1 n / 12 /=\)}
ecCombinatorialSinplification.
/n//3/:=
\((n+1)!/ n!\)
ou \(/ 15 /=\)
\(1+n\)
/n//4/:=
\((2 n+1)!/(2 n)!\)
ow \(/ 14 / 4=\)
\(1+2 \mathrm{n}\)
/n/15/:=
\((2 n+5)!/(2 n)!\)
ouf/15/=
\((1+2 n)(2+2 n)(3+2 n)\)
\((4+2 n)(5+2 n)\)

After loading the packoge
ConbinatorialSimplification. the Mothematica assumes that \(n\) is on integer cond correctly simplifies the expressions \(\frac{(n+1)!}{n!}, \frac{(2 n+1)!}{(2 n)!}\), and \(\frac{(2 n+5)!}{(2 n)!}\).

Binomial \([n, m]\) is also redefined for the quotients Binomial \([n, k] / B i n o m i a l[n, k-1]:\)
h/2l)=
Binonial[n.3]/Binomial[n, 2]
out/21/=
\(-2+n\)
------
3
han23:=
Binonial[n,k+1]/Binomial[n,k]
outa2:7=
\(-\mathrm{k}+\mathrm{n}\)
\(1+k\)
(n/23):=
Binomial[n,k]/Binomial[n,k+1]
out/23/=
\(1+k\)
------
\(-\mathrm{k}+\mathrm{n}\)
\(n(244)=\)
Binonial[4,k+1]/Binomial[4,k]
oute4)=
4-k
-----
\(1+k\)

Similorly, Mathematicc cossumes that \(k\) is \(\omega_{n}\) integer ond simplifies
\(\frac{\binom{n}{3}}{\binom{n}{2}}, \frac{\binom{n}{k+1}}{\binom{n}{k}} \cdot \frac{\binom{n}{k}}{\binom{n}{k+1}}\), and \(\frac{\binom{4}{k+1}}{\binom{4}{k}}\)
((Binomial[n,k+1]/Binomial[n,k])^2)/
((Binomial[n,k+1]/Binomial \([\mathbf{n}, \mathbf{k}])^{\wedge} \mathbf{p}\) denotes the expression

\(\left.\left.\frac{\left(\binom{n}{k+1}\right.}{\left(\frac{(n}{n} k\right.}\right)\right)^{p}\).
Mathematica is unable to simplify this expression until after the package
has been loaded:

\section*{CombinatorialSimplification}
```

ln/3):=
((Binomial[n,k+1]/Binomial[n,k])^2)/
((Binomial[n,k+1]/Binomial[n,k])^p)
Out/5/=
Binomial[n, k] -2 + P Binomial[n, 1 + kl 2-p
m/4/:=
<<CombinatorialSimplification.
/n/5/:=
((Binonial[n,k+1]/Binonial[n,k])^2)/
((Binomial[n,k+1]/Binonial[n,k])^p)
Out/5/=
(1 + k) }\mp@subsup{}{}{-2+p}(-k+n\mp@subsup{)}{}{2-p

```


Upon closing the Combinatorialsimplification.m package, all new definitions are cleared. Hence, any built-in function which was redefined is unaltered by the changes made in the package.

\section*{- Permutations.m}

A permutation of n distinct elements \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\) is an ordering of the n elements.
Permutations .m gives several commands in addition to the built-in commands which are helpful in working with permutations. Mathematica already includes the function Permutation [list] which gives all possible permutations of the list of \(n\) elements list. This package includes Permutationd [list] which gives a value of True if list is a possible permutation of \(n\) distinct elements and False otherwise. Therefore, if any of the \(n\) elements is omitted or repeated in list, a value of False is given. Several examples that illustrate these ideas are given below. These calculations can be made after loading the package :


The package also includes the command RandomPermutation [ n ] which yields one possible permutation of the \(n\) elements in the list \(\{1,2,3, \ldots n\}\). This permutation is selected at random. Notice in the example which follows that two different permutations are given with RandomPermutation [15]. Two other commands found in the package are ToCycles [permutation] which gives permutation as a list of cyclic permutations and FromCycles [cycles] which returns permutation to its original form.
Notice in the example which follows that two different permutations are given with
Randompermutation[15].



\section*{Chapter 8 Some Graphics Packages}

■ Chapter 8 introduces several of the graphics packages available with Mathematica. Differences between Version 1.2 and Version 2.0 are discussed where appropriate.

\section*{Graphics}

Opening the Version 1.2 Graphics folder yields the following window. Each package shown below contains one or more Mathematica commands or functions which cannot be used without loading the appropriate package.


\section*{- 8.1 Graphics.m}

Loading Graphics .m enables the user to take advantage of several commands which will improve the graphing capabilities previously available. The first command discussed below, Polarplot, allows for the graphing of functions given in polar coordinates \((r, \theta)\). This command should be entered in the following manner:
Polarplot [function[var], \{var, var1, var2\}, options] where var represents the angular coordinate \(\theta\) and var varies from varl to var2. This command produces the graph of the function r=function[var].

\section*{- Example:}

In the first example below, the graph of \(\mathrm{r}=1-2 \sin \theta\) is given. It is followed by the graph of \(\mathrm{r}=1+2 \cos \theta\) which is plotted with the Graylevel option. Notice that the graphs are named polarone and polartwo, respectively, for later use.


Since the two previous graphs were assigned names, they can easily be recalled and graphed together with Show[polarone, polartwo].


\section*{- Example:}

The following command produces the "spiral-shaped" graph of Log \([1+r]\). Note that \(\mathbf{r}\) represents the angular coordinate.


Another useful command in Graphics.m is PolarListPlot. This enables the user to be able to plot a list of points given in polar coordinates. This command is stated in the following manner:
PolarlistPlot[list, options] where list a list of points. A convenient way to enter list is in the form of a table.

\section*{D Example:}

In the example which follows, a table of values of \(\sin (2 t)\) is created where \(t\) varies from 0 to \(2 \pi\), using increments of \(2 \pi / 90\). In this case, the variable \(t\) represents the angular coordinate. The graph is given below and named listplotone.


Next, the graph of the list of values of \(3 / 2 \cos (3 t)\) is produced. In the PolarListPlot command, the plotJoined->True option is used, so the points are connected. This plot is called listplottwo.
Notice the overlap in the graph; the three-petal rose is produced for t between 0 and \(\pi\). Hence, the curve is retraced for \(t\) between \(\pi\) and \(2 \pi\).


The previous plots can be displayed simultaneously with Show.


Bar graphs can be drawn using Graphics.m with BarChart [list]. For each number in list, Mathematica draws a rectangle of that height. These rectangles are drawn in order from left to right. The position of the element is given beneath each rectangle. These numbers are quite small in the following graph, but resizing the graph, which will be described next, is possible.
- Example:


Resizing is accomplished by clicking once anywhere inside the graphics cell. This encloses the graph in a box as shown below. If the cursor is moved to the lower right-hand corner and dragged, the graph can be enlarged to the desired size. Notice below that the numbers beneath the graph are now readable.


Before producing BarChart[list], the elements of list can first be sorted. Sort [list] sorts the elements of list from smallest to largest. In the following example, the grades found in finalaverages are sorted and named sort. A shortened 2 -line output of sort is given with Short [sort, 2], and the bar graph corresponding to the sorted list is produced with BarChart [sort]. The options of BarChart are listed below along with the default values. To use an option with BarChart simply enter the command as BarChart[list, options].


Pie charts are also possible with Mathematica by making use of the PieChart [list] command found in Graphics.m. This can be done in two ways. In the first example below, a pie chart is created from the list of numbers, percents. PieChart [percents] produces a pie chart in which each segment of the pie represents a number in percents. The segments are numbered to correspond to the position in percents. Notice that the sum of the numbers in percents is 1 . However, a pie chart can be created which depicts both a quantity and a description. The list description is given below. Note that each element of description contains a number and a description. These represent portions of a governmental budget.
- Example:


Hence, a labeled pie chart is given with PieChart [description]. This chart demonstrates the percentage of the budget that is allotted to each area.


\section*{■ 8.2 Polyhedra.m}

Pictures of polyhedra can be produced with Polyhedra.m. Many geometrical properties of polyhedra are stored in this package, so some pictures can be obtained by specifying a desired polyhedra with Show [Polyhedron [Shape]]. Since stored polyhedra include the icosahedron, dodecahedron, octahedron, cube, and tetrahedron. Shape is one of the following: Icosahedron, Dodecahedron, Octahedron, Cube, or Tetrahedron. If unspecified, the center is taken to be ( \(0,0,0\) ). A cube centered at the origin in produced in the first example below.

Several polyhedra can be shown simultaneously and, thus, complicated three-dimensional objects can be constructed. However, another command which involves more options must first be introduced.
Three-dimensional graphics objects are created but not displayed with
Graphics3D[Polyhedron [\{x0,y0,z0\},scale]] where Polyhedron is the desired polyhedron from the list of stored polyhedra: Icosahedron, Dodecahedron, Octahedron, Cube, and Tetrahedron. \(\{\mathbf{x} 0, \mathbf{y} 0, \mathbf{z} 0\}\) represents the center, and scale adjusts the size. The default value of scale is 1 , so scale \(>1\) produces a larger polyhedron and scale \(<1\), a smaller one. The second command below creates and stores (as figure1) the graphics of a dodecahedron centered at the origin using scale \(=1 / 2\). Since show is not used, the picture is not shown.


\section*{- Example:}

Next, the graphics of an octahedron centered at \(\{\operatorname{Cos}[\mathrm{Pi} / 3], \operatorname{Sin}[\mathrm{Pi} / 3], 0\}\) and scale \(=1 / 3\) is created and stored as figure2. Also, a tetrahedron with center \(\{\operatorname{Cos}[2 \mathrm{Pi} / 3], \operatorname{Sin}[2 \mathrm{Pi} / 3], 1 / 3\}\) and scale \(=1 / 4\) is stored as \(f i g u r e 3\). Since the graphics of each polyhedra was named, they can be shown simultaneously with Show[figure1,figure2,figure3].


Another command available in Polyhedra.m is Stellate[Polyhedron[Shape], ratio] where Shape is again one of the following: Icosahedron, Dodecahedron, Octahedron, Cube, or Tetrahedron. This takes the symbolic representation of the polyhedron and represents it as a stellated polyhedron. (Each face is replaced by a stellate.) A function a[i] is defined below as
Stellate [Polybedron [Dodecadron], i]. This function is then used in a Do loop to produce the graphics of stellated dodecahedra for values of \(i\) from \(i=.25\) to \(i=2\) using increments of .25. The first graph with \(i=.25\) is shown below.


Notice how the pictures change with ratio. If ratio \(<1\), the object is concave. If ratio \(>1\), the object is convex. Shown below are three pictures. In the first, ratio \(=.25<1\), so the object produced is concave. In the third, ratio \(=2>1\), so a convex object is given. Both can be compared to the middle picture which is simply a dodecahedron (ratio \(=1\) ). The graphics obtained with this Do loop can be animated to observe the changes which take place as ratio changes.


\section*{- 8.3 Shapes.m}

Shapes .m contains commands which produce the graphics of many shapes commonly used in mathematics. As with the all graphics objects, different shapes may be combined and shown simultaneuously to create more complicated objects.

\section*{- Example:}

Illustrated first below is MoebiusStrip[outerradius, innerradius, \(n\) ] where innerradius and outerradius are the inner and outer radii, respectively, and the Moebius strip is approximated using \(2 \mathbf{n}\) polygons. (MoebiusStrip actually produces a list of polygons which are displayed with Show.) In the example below, the graphics are produced for a Moebius Strip with inner radius 2 and outer radius 4 . The graph uses 60 polygons and is called msone. The list of polygons created with MoebiusStrip is visualized with Show[msone].


\section*{nsone}
is a Grophics 3D object consisting of 60 polygons. When visuclized, these polygons opproximate a Moebius Strip with inner radius 2 and outer rodius 4.
Shov[ msone] produces a visualization of msone.

\section*{- Example:}

Another shape which can be approximated in this package is that of a torus. This is accomplished with Torus [outerradius, innerradius, \(m, n\) ] where \(m\) times \(n\) polygons are used to approximate the shape of the torus. A torus of inner radius .5 and outer radius 1 is approximated with 300 polygons and called torusone. The approximation is then shown with Show[torusone].


\section*{torusone}
is a Grophics3D object consisting of \(20 \times 15=300\) polygons which opproximate a torus with inner radius . 5 cond outer radius one when visualized

Shop[torusone] produces a visualization of torusone.

\section*{- Example:}

The command Sphere \([\mathbf{r}, \mathrm{m}, \mathrm{n}]\) produces an approximation of a sphere of radius \(=\boldsymbol{x}\) using \(\boldsymbol{m}\) times \(\mathbf{n}\) polygons. The approximation of a sphere of radius 1 is obtained below using 225 polygons.


Several other commands are available for visualizing the lists of polygons produced by the commands found in Shapes.m. The command wireframe [polygonlist] replaces each polygon in polygonlist by closed lines, so the shape resembles that of a wire frame when visualized.

\section*{- Example:}

In the example below, a list of 144 polygons to approximate a sphere of radius 2 is obtained with Sphere \([2,12,12]\). This list is called spheretwo. WireFrame is then applied to this list of polygons, and the list of closed lines wiretwo which results is visualized with Show [wiretwo, Boxed->False]. (The Show option, Boxed->False, causes no box to be drawn around the sphere.)


Shapes can be viewed simultaneously using the commands previously discussed.

\section*{- Example:}

The following example shows how the approximations of the sphere of radius 1 , sphereone, and the wire frame form of the sphere of radius 2 ,wiretwo, are shown together.


Below, the graphs of two Moebius strips are shown simultaneously by first computing the lists of approximating polygons in msone and mstwo. Show is then used to visualize these objects. Two other useful commands in Shapes.m are illustrated in the second example.

RotateShape[shape, xrotate, yrotate, zrotate] causes shape to be rotated xrotate units about the x -axis, yrotate units about the y -axis, and zrotate units about the z -axis.

In the example below, msone is rotated \(\pi / 2\) units about the \(y\)-axis.
The other command introduced is TranslateShape [shape, \(\{x 0, y 0, z 0\}\) ] which translates shape \(x 0\) units along the x -axis, y 0 units along the y -axis, and z 0 units along the z -axis.

\section*{- Example:}

The Moebius strip obtained through rotation in msone is then translated 2 units along the x -axis and called mstwo. The two are then shown simultaneously with mstwo being the Moebius strip to the right of msone.

nsone and nstyo are Moebius strips centered around the \(z\)-axis. Notice that Show is an option for Grophics3D objects.

The Moebius strip mstwo given previously is then rotated \(\pi / 2\) radians about both the x - and z -axes. This is named msfive. Then, msfive is translated (-2) units along the y-axis to obtain mssix. mefive and mssix are then visualized below with Show where mssix is the Moebius strip to the rear of msfive. Several Graphics3D objects can be viewed simultaneously as shown below.


Yet another shape that can be graphed in Shapes.m is Helix \([x, h, m, n]\) which approximates a helix with half height \(h\) and \(m\) turns using \(m * n\) (where \(n=20 x\) ) polygons.

\section*{- Example:}

Shown below is a helix of half height 3 with 5 turns. The list of polygons which approximate the helix is found in helixtwo. Hence, Show [helixtwo] displays the helix.


A Do loop which shows the rotation of helixtwo \(n * P i / 2\) radians (where \(n\) varies from \(n=0\) to \(n=12\) ) about the z -axis is defined below. This loop produces 13 graphics cells which can be animated to view the rotation of the helix about the z -axis. Several of these cells are shown below.


\section*{- Example:}

In the following example, we define a function surface [ \(n\) ] which simultaneously graphs the tori obtained with torus \(j[1,1 / 2,10,9 / 5(j-1), 0\}]\) for \(j=1\) to \(j=n\). The result allows us to visualize a surface of genus n .
The command torusj, given in the first line below, is defined in terms of Torus and may seem redundant. However, defining it in this manner enables Mathematica to remember the previous torus as it proceeds through the loop contained within the Block. Hence, torusj\([j-1]\) does not have to be recomputed in order to find torusj[ \(j\) ]. After the loop is completed for \(\boldsymbol{j}=\mathbf{n}\), the table of tori found in \(\mathbf{s}\) is displayed with Show. The surface obtained with \(\mathbf{n}=\mathbf{4}\) is shown below.
o In Version 2.0, Block, although still recognized, has been replaced by the command Module.
```

torusj[a_.b_, c_,d_]:=torusj[a,b,c,d]=Torus[a,b,c,d]
surface[n_]:=Block[{torus, s}.
torus[j_]:=TranslateShape[torusj[1,1/2,12,15].
{0,9/5 (j-1),0}]:
s=Table[torus[j].{j,1,n}]:
Show[s.Fie\#Point->{-4.000. 4.000. 4.000}.
Boxed->False]:
l
surface[4]
By tronslating tori, we cre able
to visuodize a surfoce of genus in
In this case, we cre able to
visualize a surface of gerus 4.

```


\section*{■ 8.4 ParametricPlot3D.m}

ParametricPlot3D.m provides the capabilities to produce three-dimensional graphs of functions which depend on two parameters. These equations exist in many different forms. The example below illustrates how the surface of revolution generated by a function of one variable revolved about the \(y\)-axis can be generated with
ParametricPlot3D. The command is entered in the following way:
ParametricPlot3D[\{x[u,v],y[u,v],z[u,v]\},\{u,u0,ul\},\{v,v0,v1\},options] where \(\mathbf{x}, \mathbf{y}\), and \(\mathbf{z}\) are defined in terms of the parameters \(u\) and \(v\). The limits on the parameters are \(\{u 0, u 1\}\) and \{vo, v1\}.
o In Version 2.0, ParametricPlot \(3 \mathrm{D}[\{x[t], y[t], z[t]\},\{t, t 0, t 1\}, o p t i o n s]\) where \(\mathbf{x}, \mathbf{y}\), and \(\mathbf{z}\) are defined in terms of the parameter \(\mathbf{t}\) graphs the vector-valued function \(\{\mathbf{x}[t], \mathbf{y}[t], \mathbf{z}[t]\}\) for \(t 0 \leq t \leq t 1\).

In addition to the command Parametricplot 3D, Versions 1.2 and 2.0 of the package
ParametricPlot3D.m contain the command Sphericalplot[r[theta, phi],
\{theta, theta0, thetal\}, \{phi, phio, phil\},options] which is used to create a graph of \(x\) [theta, pi] using spherical coordinates; and
o the Version 2.0 edition of ParametricPlot 3D.m contains the command Cylindricalplot \([z[r\), theta], \(\{z, z 0, z 1\}\), theta, theta 0, thetal \(\}\), options] which is used to graph \(\mathbf{z}[\mathbf{r}\), theta] using cylindrical coordinates.

Since the surface of revolution generated by revolving \(y=f(x)=\frac{\operatorname{Cos}(\pi x)}{x^{3}+1}\) about the \(y\)-axis is radially symmetric ( \(\mathbf{z}\) does not depend on the angular coordinate), the surface is visualized by representing \(x\) and \(y\) in polar coordinates and replacing \(x\) in the function \(\operatorname{Cos}[2 \mathrm{Pi} x] /(x+1)\) with \(u\) to form the equation for \(z\) in terms of the parameters.


In order to change the perspective from which hree-dimensional graphics are viewed, the 3D UiewPoint Selector which is shown below can be used. The window seen below is obtained by selecting Prepare Input under Action in the Mathematica Menu. The sub-menu found under Prepare Input contains this 3D UiewPoint Selector. The numbers in the three boxes on the right represent the coordinates of the viewpoint. The x and y coordinates are changed by dragging the boxes beneath the graphics window. Similarly, the z coordinate is increased and decreased by dragging the box which is along the right side of the graphics window. Once a desirable viewpoint is located, it can be pasted into the parametricPlot3D command by clicking the Paste button.


In the next example, all three components \(\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}\) depend on two parameters, \(\boldsymbol{r}\) and \(t\). Again, the \(\mathbf{x}\) and \(\mathbf{y}\) coordinates are defined as functions of the polar coordinates, \(\mathbf{r}\) and \(t\), where \(t\) represents the angular coordinate. The third coordinate is defined as the function \(£[r, t]\). The graph of this function of two parameters is ploted for values of \(\boldsymbol{r}\) from \(\boldsymbol{r}=0\) to \(\boldsymbol{r}=2\) using increments of \(2 / 25\) and for \(t=0\) to \(t=2 P i\) with \(2 \mathrm{Pi} / 25\) increments. Several options are illustrated in this command. The graph is not enclosed in a box, the axes are given automatically, the ratios of the \(\mathbf{x}, \mathbf{y}\), and \(\mathbf{z}\) coordinates are 1-1-1, and the viewpoint is selected to be the point \(\{0.390,-4.000,3.360\}\).
Another command included in the Version 1.2 edition of ParametericPlot3D.m is SpaceCurve which allows curves that depend on one variable to be plotted in three dimensions. This command is entered as SpaceCurve \(\{\{\mathbf{x}, \mathbf{y}, \mathbf{z}\},\{\mathbf{t}, \mathbf{t 0}, \mathbf{t 1}\}\), options] where the coordinates \(\mathbf{x}, \mathbf{y}\), and \(\mathbf{z}\) depend on the parameter \(t\) and \(t\) varies from \(t=t 0\) to \(t=t 1\). The options for SpaceCurve are the same as those for ParametericPlot3D.

In the second example below, a spiral shaped curve is plotted. All three coordinates increase as \(t\) increases, so the points along the curve move away from the origin. The spiraling is due to the sine and cosine terms in the \(\mathbf{x}\) and \(\mathbf{y}\) coordinates.
- In Version 2.0, the command SpaceCurve has been replaced by the command ParametricPlot3D. If using Version 2.0, ParametricPlot3D[\{x[t],y[t],z[t]\},\{t,t0,t1\}] yields the same result as the command SpaceCurve \([\{x[t], y[t], \mathbf{z}[t]\},\{t, t 0, t 1\}]\) from earlier versions.


\section*{- Example:}

The following example shows how functions which have been previously defined can be graphed with SpaceCurve. A function \(v[t]\) is defined in terms of the parameter \(t\). Then, a function norm [ \(t\) ] is given. This function is simply the square root of the sum of the squares of the components of \(v[t]\). Since \(v\) is a list, Length [ \(v\) ] represents the number of components of \(v\) which in this case is 3 .
In this case, defining norm [v_]:=Sqrt[v.v] produces the same result.
Finally, a function \(w[t]\) is defined as \(v[t] /\) norm [ \(t]\).
The graph of \(v\) is plotted with SpaceCurve and called scone. Notice that Release[v[t]] must be entered in this command in order for the components of \(v[t]\) to be evaluated at the various values of \(t\). The curve is plotted for \(t=0\) to \(t=2 P i\) using small increment sizes of \(2 P i / 300\).
o If using Version 2.0, use ParametricPlot3D instead of SpaceCurve; use Evaluate instead of Release.


The graph of \(\mathbf{w}[t]\) is then plotted with a similar command. Again, Release [w[t]] must be used in order to plot this function of one parameter.
- If using Version 2.0, be sure to use Evaluate instead of Release.


\section*{- Version 2.0 Graphics}

The following window shows the contents of the Graphics folder in Version 2.0 of Mathematica. Notice that several new packages are included. In this section, we discuss ImplicitPlot.m,


\section*{- 8.5 ImplicitPlot.m}

Plotting an implicit equation was demonstrated earlier using the commands available in Version 1.2. This involved a rather lengthy procedure in which the equation was graphed in pieces. Fortunately, this task is not required in Version 2.0 which contains the Graphics package ImplicitPlot.m. This package includes the command ImplicitPlot [equation, \(\{x, x \min , x \max \}]\) which graphs the implicit equation, equation, from \(x=x \min\) to \(x=x \max\). The set of \(y\)-values displayed may be specified by entering the command Implicitplot [equation, \(\{x, x m i n, x m a x\},\{y, y m i n, y m a x\}]\).

\section*{- Example:}

After loading ImplicitPlot.m, this command is demonstrated with the same equation that was plotted earlier with Version 1.2 in Chapter 4 on page 237:


\section*{- Example:}

Implicit equations can be plotted simultaneously, as with the command Plot, with
ImplicitPlot [\{eq1,eq2, ...,eqn\}, \(\{x, x m i n, x m a x\}]\) and
Implicitplot [\{eq1,eq2,...,eqn\}, \{x,xmin, xmax\},\{ymin,ymax\}]. This is shown below. Recall that a double equals sign must be used with each equation.


\section*{- Example:}

Conic sections can also be plotted with ImplicitPlot. A table of conic equations of the form conic=a \(x^{\wedge} \mathbf{2 + b} \quad y^{\wedge} \mathbf{2 =}=1\) is produced below.

The values of \(a\) are found in alist \(=\{-2,-1,1,2\}\) while those for \(b\) are in \(b l i s t=\{1,2\}\). The eight equations found in conicequations result when conic is evaluated at the values in alist and blist. Note that conicequations is a list of pairs of elements.
Hence, the conic equations can be extracted from this list with conicequations [ \([i, j]\) ], where \(\mathbf{i}=1,2,3,4\) and \(\mathbf{j}=1,2\).

A function which yields the graphics of each equation is defined as
graph[i,j]=ImplicitPlot[conicequations[[i,jl],\{x,-2,2\},
Displaypunction->Identity].
The option DisplayFunction->Identity causes the plot to be suppressed. Then, the table of graphics for each equation in conicequations is produced with
graphics=Table[graph[i,j],\{i,1,4\},\{j,1,2\}].
\begin{tabular}{|c|c|}
\hline & \\
\hline /n/g/:= & \\
\hline \multicolumn{2}{|l|}{General::spell1:
Possible speiling error: new symbol name Version 2 issues wornings
"blist" is similar to existing symbol
"alist".
if you define objects to have
nomes similor to existing} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} \\
\hline & \\
\hline
\end{tabular}

The graphics contained in graphics can be visualized with Show[GraphicsArray[graphics]]. GraphicsArray[graphics] sets up similar rectangular areas to display each graph in graphics.


\section*{- 8.6 PlotField.m}

The package PlotField.m contains the commands PlotVectorfield and PlotGradientrield which are useful in many areas of physics and engineering.
PlotVectorfield[vector \([x, y],\{x, x \min , x \max \},\{y, y m i n, y m a x\}]\) graphs the vector field given by the vector-valued function, vector \([x, y]\). This is illustrated below with the vector field \(\mathbf{f}[\boldsymbol{x}, \mathrm{y}]\).

O Example:

\section*{PlotfieldtEsample}
\(\mathrm{m} / \mathrm{l} /=\)
```

 <<PlotField.
    ```
hnflol:=

The packuge plotField.
contains the commonds PlotFectorField cond PlotGradientrield.
\(f\left[x_{-} \quad Y_{-}\right]=\left\{x / S q r t\left[x^{\wedge} 2+Y^{\wedge} \mathbf{Z + 1}\right]\right.\).
\(\left.-\frac{1}{4} \operatorname{Sqrt}\left[x^{\wedge} 2+\mathrm{Y}^{\wedge} 2+1\right]\right\}\) :
vfone=PlotYectorField \(f[x, Y],\{x,-2,2\}\)
( \(\mathrm{Y},-2,2\) )]

out/ \(101=\)
-Graphics-

After defining the vector field
\[
f(x, y\rangle=\left\{\frac{x}{\sqrt{x^{2}+y^{2}+1}}, \frac{-y}{\sqrt{x^{2}+y^{2}+1}}\right\}
\]
\[
\text { PlotYectorField }[f[\mathrm{I}, \mathrm{Y}] \text {, }
\]
\[
\{x,-2,2\},\{Y,-2,2\}]
\] grophs the vector field fon the squace \([-2,2] \times[-2,2]\).

The command PlotGradientField[function[ \(x, y],\{x, x \min , x m a x\},\{y, y m i n, y m a x\}]\) graphs the gradient field of the function, function \([x, y]\). This is done by first computing the gradient of function \([x, y]\) (which yields a vector field) and then plotting the gradient. This is shown below with the function \(w[x, y]=\operatorname{Cos}\left[4 x^{\wedge} 2+8 y^{\wedge} 2\right]\).

\section*{O Example:}


\section*{- 8.7 PlotField3D.m}

Vector fields can be plotted in three dimensions as well. The commands needed to plot these fields are found in the PlotField3D.m package. The syntax for the PlotGradientrield3D and PlotVectorField3D commands are similar to those used in the two-dimensional case in the previous section with the additional z-component.

\section*{O Example:}

PlotGradientrield3D is shown below with the three dimensional function, \(\operatorname{Cos}\left[\begin{array}{ll}x & y\end{array}\right]\).

\section*{Plotfield3DtEsample}

The commonds PlotGradientField3D
\(1 n / 1 /:=\)
<ePlotField3D. and PlotFectorField3D
are contoined in the packoge PlotField3D .
pgf=PlotGradientField3D[ \(\operatorname{Cos}\left[\mathrm{I}_{\mathrm{z}} \mathrm{z}\right] .\{\mathrm{x},-\mathrm{Pi} . \mathrm{Pi}\}\). \{Y,-Pi,Pi\},\{z,-Pi,Pi\}]
first computes the grodient of Cos \((x y z)\) ond then grophs the resulting vector field for \(x\)-vokues between \(-\pi\) ond \(\pi, y\)-vaihes between- \(\pi\) ond \(\pi\), ond \(z\)-values between \(-\pi\) cond \(\pi\)

\section*{Don't forget to include the space between the \(x, y\), and \(z\) to derote the product of \(x, y\), and \(z\).}


\section*{© Example:}

The vector field, \(v f[x, y, z]=\left\{y^{\wedge} \mathbf{2 - z}, z^{\wedge} \mathbf{2}+x, x^{\wedge} \mathbf{2 - y}\right\}\), is plotted below using the command plotVectorField3D. This graph is named vfone for later use.


\section*{- Example:}
 vgone, is graphed with PlotGradientField3D. Notice that since the definition of \(h\) and the PlotGradientField3D command are enclosed in the same input cell and no semi-colon follows the definition of \(h\), the formula for \(h\) is given as part of the output.


\section*{Chapter 8 Some Graphics Packages}

The three-dimensional graphs, vfone and vgone, obtained earlier can be viewed together with Show[GraphicsArray[\{vfone, vgone\}].


\section*{- 8.8 ComplexMap.m}

A problem of interest in complex analysis is finding the image of a complex-valued function \(f(z)\). The package ComplexMap.m provides several commands which are useful in solving problems of this type.
Cartesianmap \([f[z],\{\{x 0, x \mathbf{f}\},\{y 0, y 1\}]\) gives the image of \(f[z]\) using Cartesian coordinate grid lines over the rectangular region \(\{\mathbf{x} \mathbf{0}, \mathbf{x 1}\} \mathbf{x}\{\mathbf{y} \mathbf{0}, \mathrm{y} \mathbf{1}\}\).

This is illustrated below with the functions id \([z]=z\) and \(f[z]=(z-1) /(z+1)\). Since \(i d[z]\) is the identity map, each point in the domain is mapped to itself. Hence, the Cartesian grid, called cmid, is unchanged upon application of id[z]. (This region can therefore be viewed as the domain of \(f[z]\).) The second graph, cmf, illustrates the effects that \(\mathbf{f}[\mathbf{z}]\) has on the points in cmid.


The two graphics objects, cmid and cmf, can be viewed in a single graphics cell with
Show [GraphicsArray [\{cmid, cmf\}]. This gives the usual manner in which the domain and image of a function are illustrated.

> Outfof=
> -GraphicsArray-


Show[ Graphicsirray[ (ceid, cief \}]
shows the two grophics objects ceid ond cef in a single grophics cell.

In addition to Cartesian coordinates, polar coordinates can also be used. This is done with PolarMap \([f[\mathbf{z}],\{\mathbf{x}, \mathbf{r l}\}\), \(\{\) thetal thetal \(\}]\) which produces the image of \(\mathbf{f}[\mathbf{z}]\) over the circular region \(R\) bounded by limits placed on the polar coordinates \(r\) and \(\theta\) :
\(R: r 0 \leq r \leq r 1\), theta \(0 \leq \theta \leq\) thetal.

The following problem is worked in a method similar to that of the previous problem involving Cartesian coordinates. However, many of the graphs are suppressed by using the DisplayFunction->Identity option. Again, the identity map, \(\operatorname{id}[\mathbf{z}]=\mathbf{z}\), is used to produce the polar grid, called pmid, to be viewed as the domain of the function \(\mathbf{f}[\mathbf{z}]\). The image of \(\mathbf{f}\), named pmf , is then determined with PolarMap and the two are displayed with Show[GraphicsArray[\{pmid,pmf\}]].


The following example illustrates several ideas. First, the built-in Mathematica function Identity can be used to produce the domain grid for a function as opposed to defining id \([\mathbf{z}]=\mathbf{z}\) which was done in the previous examples. Also, GraphicsArray can be used to plot graphics cells in a desired order. For example, the domain and image of a function can be displayed consecutively.

This is done below for the functions \(w[z]=(1-\operatorname{Cos}[z]) /(1+\operatorname{Cos}[z])\) and \(m[z]=(z-2) /(2 z-1)\). The domain and image of \(w\) are called cmid and cmw, respectively, while those of \(m\) are named pmid and pman. These graphics objects are shown in the appropriate order with the command Show[GraphicsArray [\{\{cmid, cmw\}, \{pmid, pmm\}\}, AspectRatio->1]. (Notice the grouping of [domain, image] within GraphicsArray.)


\section*{Chapter 9 Some Special Packages}

Chapter 9 discusses some of the more specialized packages available with Mathematica.

\section*{- Numerical Math}

The packages within the Numerical Math folder in Version 2.0 are shown below:


\section*{-9.1 Approximations.m}
- Although the examples done here were completed with Version 2.0, Version 1.2 also contains the package Approximations.m in the Numerical Math folder.
The package Approximations.m contains useful commands for the approximation of functions with rational functions. The first command discussed is that of
RationalInterpolation[function, \(\{x, m, n\},\{x, x 0, x 1\}, o p t i o n s]\) which gives the interpolating rational function \(P(x, y) / Q(x, y)\) on the interval from \(x 0\) to \(x 1\) where the the degree of \(P(x, y)\) is \(m\) and that of \(Q(x, y)\) is \(n\).

\section*{O Example:}

This command is illustrated below with Sqrt [1-4x^2]. The interpolating rational function rint1 is found and then this approximation is compared to the original function by investigating the error function,
Abs[rint1-Sqrt[1-4x^2]].


This error, eplot1, is graphed below.
(n//7):=
eplot1=Plot[Abs[approx[x]-Sqrt[1-4 \(\left.x^{\wedge} 21\right]\) \{x,-5, 5\}, PlotRange->A11]

out/17/=
-Graphics-

grophs approx[x] \(\sqrt{1-4 x^{2}}\) on the interval \([-1 / 2,1 / 2]\). The option PlotRange-s 111
specifies that the entire groph is to be displayed

Several other interpolating rational functions are computed below. rint2 is a function of order 3 in both the numerator and denominator. Similarly, rint 3 is of order 4 in both the numerator and denominator. The output of these functions is suppressed. Finally, the error for each rational interpolating function is graphed in order to compare accuracy. Clearly, rint3 yields the best approximation of the three.
```

ln(36):=
rint2=RationalInterpolation[Sqrt[1-4 m^2].{x,3.3},
{x,-.5,.5}]:
rint3=RationalInterpolation[Sqrt[1-4 x^2].{x,4,4}.
{x,-.5,.5}]:
m/44/:=
eplot2=Plot[Abs[rint2-Sqrt[1-4 x^2]].{x,-.5,.5},
PlotStyle-3GrayLevel[.2].
PlotRange->k11.
DisplayFunction-> Identity]:
eplot3=Plot[4bs[rint3-Sqrt[1-4 x^2]].{x,-.5..5}.
PlotStyle-3GrayLevel[.3].
plotRange-sh11.
DisplayFunction-3 Identity]:
all=Shov[eplot1, eplot2, eplot3.
DisplapFunction-3Identity]:
Shov[Graphicsarray[{{eplot1, eplot2},{eplot3,all}}]

```


out/44/=
-GraphicsArray-



rint2 cma rint3 are degree 3 ard degree 4, rational opproximations of \(\sqrt{1-4 x^{2}}\). grophed cond the
cull three error grophs cre shown simultoneousiy. Fincoly, oul four grophs cre shown in a grophics corray.


Also located in the Approximations.m package is the command MiniMaxApproximation \([f[x],\{x,\{x 0, x 1\}, m, k\}]\) which improves on the approximation found with RationalInterpolation \(\{f[x],\{x, m, k\},\{x, x 0, x]\}]\). Although the syntax differs, both of these commands yield a rational function of order \(m\) in the numerator and \(\mathbf{k}\) in the denominator which approximates \(f[x]\) over the interval \(\{x 0, x 1\}\). Another difference in the commands occurs in the output. While RationalInterpolation gives only the approximating rational function, MiniMaxApproximation gives some additional information of the form
\{abscissalist, \{approx, maxerror\}\} where abscissalist is a list of abscissa at which the maximum error occurs, approx is the desired rational approximation, and maxerror is the value of the minimax error.

\section*{O Example:}

These two commands are investigated below with \(f[x]=\operatorname{Exp}[x]\) on the interval \(\{-1,1\}\) using a rational function of order 2 in the numerator and 1 in the denominator. First, the approximating rational function is found with RationalInterpolation and named rint 1. Note that this command yields only the approximating function as output. Next, an approximation is found with MinimaxApproximation. These results (which are given in the form mentioned earlier) are named mmax1.


In order to work with the approximating function obtained with MiniMaxApproximation, the technique of extracting an element from a list must be used. Since mmax 1 is a list of two parts, the second of which contains the approximating function, maxil \([[2,1]]\) yields the desired rational function from the list. This function is called apx1. After extracting the approximating function apx1, the error for both approximations is investigated. This is done by observing the error function for each. The function rintlerror which represents the error of the RationalInterpolation approximation is given by Abs[rint1-Exp[x]]. Likewise, the error of the MinimaxApproximation, called mmaxlerror, is given by apx1-Exp [x]. These error functions are plotted simultaneously below. Notice how the critical points of the maxierror curve (graphed in the lighter print) correspond to the values in abscissalist.
```

/n/18/:=
errorrint=Plot[Abs[Erp[x]-rint1].
{x,-1,1},PlotRange-3Al1.
PlotStyle-3GrayLevel[.3].
DisplaqFunction->-Identity]:
errormmax=Plot[4bs[Exp[x]-max1[[2,1]]].
{x,-1,1},PlotRange->All.
DisplayFunction-3 Identity]:
Shov[errorrint, errornmar,
DisplayFunction-3 \$DisplaqFunction]
<<<c
Out/1S/=
-Graphics-

```
errorrint is agroph of the error between Exp[x] and rinti.
Remember that the option DisplayFunction-> Identity specifies that the resulting grophics object not be displayed. Similorly, errormax is \(\alpha\) groph of the error between \(\operatorname{Exp}[1] \operatorname{cond}\) max[[2,1]].

Finclly, both grophs are shown simultoneously.

The option
DisplayFunction-s
\$DisplayFunction indicates that the resulting grophics objects cre to be displayed
The lighter groph represents errorrint.

\section*{-9.2 GaussianQuadrature.m}
- The package GaussianQuadrature.m is contained only in the Version 2.0 Numerical Math and is not included with Version 1.2.

Numerical integration by Gaussian quadrature is based on the Lagrange interpolation formula
\[
p(x)=\sum_{i=1}^{n} f\left(x_{i}\right) \ell_{i}(x) \text { where } \ell_{i}(x)=\prod_{\substack{\mathrm{j}=1 \\ j \neq i}}^{n}\left(\frac{\mathrm{x}-\mathrm{x}_{\mathrm{j}}}{\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}}\right)
\]

If this formula provides a good approximation of \(f\), then the integral of \(p\) yields a good approximation to the integral of \(f\). Therefore,
\[
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p(x) d x=\sum_{i=1}^{n} f\left(x_{i}\right) \int_{a}^{b} \ell_{i}(x) d x=\sum_{i=1}^{n} A_{i} f\left(x_{i}\right)
\]
where \(A_{i}\) represents the weights and \(x_{i}\) the nodes for \(i=1,2, \ldots, n\).
The Mathematica command GaussianQuadratureWeights [ \(n, a, b\) ] which is located in the GaussianQuadrature.m package determines the values of these weights and nodes. The output is given in the form of ordered pairs where the first entry in each pair gives the node while the second entry represents the corresponding weight. Several examples of this command are given below for different values of n using the same interval from -2 to 2 . Note that the calculation of the weights and nodes is independent of the function \(f\).
- Example:

\section*{Gaussianquadrature(NumMath)}
\(/ n / / /:=\)
ecGaussianQuadrature.
m/2):=
GaussianQuadrature耳eights[2, 2.2]
owt \(2 \%=\)
\(\{\{-1.1547,2\},.\{1.1547,2\}\).
/n/3):=
GaussianQuadrature耳eights[3,-2,2]
out/3/=
\(\{\{-1.54919,1.11111\},\{0 ., 1.77778\},\{1.54919,1.11111\}\}\)
\(1 / 4 / 4 /=\)
GaussianQuadratureFeights[4, -2, 2]
out/4/ \(=\)
\(\{\{-1.72227,0.69571\},\{-0.679962,1.30429\},\{0.679962,1.30429\}\),
\(\{1.72227,0.69571\}\}\)

Since the output appears in the form of a list, the weights and nodes can be extracted from the output. This is illustrated below by assigning the name of gqw to the expression which results from the command
GaussianQuadratureWeights [3,-1,1]. Hence, gqw [ [1, 1]] gives the first node on the interval \([-1,1]\), and \(g q w[[1,2]]\) gives the weight which corresponds to this node. Therefore, the integral of a function \(\mathrm{f}(\mathrm{x})\) from -1 to 1 can be approximated with the Gaussian quadrature formula given earlier using the values obtained with gqw. This is done in gqint below. Since no function is specified, the general integral formula results.

\section*{O Example:}

In the next command, however, the function \(f[x]=\operatorname{Exp}\left[-(\operatorname{Cos}[x])^{\wedge} 2\right]\) is defined. Thus, a numerical approximation of the integral of \(f\) from \(x=-1\) to \(x=1\) is given.
```

/n/5/:=
gq\#=GaussianQuadrature\#eights[3,-1,1]
Owt5/=
{{-0.774597, 0.555556}, {0., 0.888889}.
{0.774597, 0.555556}}

```
/nfol:=
    gqw [ 1,1\(]\) ]
out/5)=
    -0. 774597
/n/7):=
    gqw[ [1.2]]
out/7/=
    0.555556
/n/3/:=
    gqint=Sun[gqu[[i,2]] f[gqu[[i,1]]]. \{i.1.3\}]
out \(/ 3\) ) \(=\)
    \(0.555556 \mathrm{f}[-0.774597]+0.888889 \mathrm{f}[0]+\).
        0.555556 f[0.774597]
/m/10):=
    \(\mathbf{f}\left[x_{-}\right]=\operatorname{Exp}\left[-(\operatorname{Cos}[x])^{\wedge} 2\right]:\)
    gqint1=Sun[gqu[\{i,2]] f[gqv[[i,1]]]. \{i.1.3\}]
out/10/=
    0.993687

\section*{77简}
\(\mathbf{9 q 4}\) is a nested list of three elements. Eoch element of \(\mathbf{g q}\) is a list with two elements where the first element represents the node ond the second element represents the weight.
 the first element of \(\mathbf{g q}{ }^{\text {P }}\) which is \(\{-0.774597,0.555556\}\).


After defining
\(f(x)=e^{-\operatorname{Cos}^{2}(x)}\), we use the weights cond nodes from above to estimate \(\int_{-1}^{1} f(x) d x\).
0.993687

A function which evaluates the Gaussian quadrature for any value of \(\mathbf{n}\) is defined below in gauss [ n ]. A table of approximations of the integral of \(\mathbf{f}\) given above is then created for \(\boldsymbol{n}=2\) to \(\boldsymbol{n}=10\) and placed in Tablerorm. This procedure is useful in comparing the approximations obtained with Gaussian quadrature and can be repeated for other integrals.
```

m/1//:=
gauss[n_]:=
Hodule[{k=n}.
veights=M[GaussianQuadratureWeights[k, -1,1]]:
quad=Sun[veights[[i,2]] f[veights[[i,1]]].
{i,1,k}]
]
In/12):=
Table[{i,N[gauss[i]]}.{i,2,10}]//TableForn
out/2Ji:Tableform=
20.991091
0.993687
4 0.991297
5 0. 991294
6 0.991308
7 0.991308
8 0.991308
9 0.991308
10 0.991308

```

We con create \(\alpha\) table of approximations of
\(\int_{-1}^{1} f(x) d x\) for vorious vadues of \(n\)
```

$5 \quad 0.991294$
$6 \quad 0.991308$
$7 \quad 0.991308$
$8 \quad 0.991308$
$9 \quad 0.991308$
$10 \quad 0.991308$

```

Gaussian Quadrature procedures are useful when the exact value of an integral cannot be computed. This is the case with \(\int_{-1}^{1} e^{-\operatorname{Cos}^{2}(x)}\) as shown below. However, in this case, our results can be verified with NIntegrate:
```

/m/2/:=
f[x_]=Exp[-(\operatorname{Cos[x])^2];}
Integrate[f[x].{x,-1.1}]

```
    Syntax: bktwrn:
        Warning: "f (b+a \(x^{\wedge} d g\) )" should probably be "f [b+a \(\left.x^{\wedge} d g\right]\) ".
        (line 169 of "Integrate"mainalgorithm"")
    Syntax: bktwrn:
        Warning: "f (Denominator[a]^Abs[b])" should probably be
            "f [Denominator[a]^Abs[b]]".
                (line 1227 of "Integrate'mainalgorithm"")
owt \(2 /=\)
    Integrate \(\left[\mathrm{E}^{-\operatorname{Cos}[x]^{2}},\{x,-1,1\}\right]\)
m/3/:=
    MIntegrate[f[x].\{x,-1,1\}]
ow \(/ 3\) ) \(=\)
                                    Mochematica counot compute the exact vabe
                                    of
athough a numerical approximaction which agrees with the above com be calculated using HIntegrate.
0.991308

TMTM

\section*{- 9.3 NLimit.m}

O NLimit .m is included with Version 2.0 but not earlier versions.
The NLimit.m package contains which are useful in the calculation of limits and derivatives. These are NLimit \([f[x], \quad x->x 0]\) and \(\operatorname{ND}[f[x], x, x 0]\). NLimit \([f[x], x->x 0]\) computes the numerical limit of \(\operatorname{Lim}_{x \rightarrow x 0} f[x]\).
The value of \(x 0\) can be either Infinity or -Infinity. However, a limit is not given with NLimit if the limit is Infinity or -Infinity. This command may be used when the built-in function Limit \([\boldsymbol{f}[x]\), \(\mathbf{x - > x} 0\) ] fails.
- Example:

Compute \(\operatorname{Lim}_{\mathrm{x} \rightarrow \infty} \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}!}\).
Illustrated below is the calculation of the limit as \(\mathbf{x}\) approaches Infinity of the function Exp \([\boldsymbol{x}] /(\mathbf{x}!)\). First, the limit is attempted using Limit. Since this is unsuccessful, a second attempt is made with NLimit to yield a limit of 0 .


Similarly, Limit is unsuccessful in computing the limit as \(\mathbf{x}\) approaches Infinity of the function \(\left(x^{\wedge} 5\right) / E x p[x]\). However, NLimit is used to obtain a numerical approximation of this limit. Note that the result is quite close to 0 . The built-in Mathematica command Chop [expression] replaces all approximate real numbers in expression which are less than \(10^{\wedge}(-10)\) in magnitude with the number 0 . Hence, Chop [\%] yields the correct limit.
```

/nfo):=
Linit[(x^5)/Exp[x], x-3-Infinity]
owt/\sigma)=
5
Limit[- x x m Infinity]
x
E
m/7/:=
mlimit[(x^5)/Emp[r],x-3Infinity]
ouf/7/=
-19
1.35525 10
(n/\beta):=
Chop[%]
owt/9)=
0

```

\section*{- Example:}

Special care must be taken when dealing with limits which achieve the value of Infinity or -Infinity. NLimit cannot calculate limits of this type! In these cases, NLimit may yield an incorrect limit or no limit at all. In the first example which follows, NLimit gives a value which obviously is not the limit of the given function. The limit of this function is Infinity as substantiated with the graph which follows as well as with well-known properties of functions of this type. In the second example, NLimit does not compute the limit as \(\boldsymbol{x}\) approaches Infinity of the function \(\mathbf{x}^{\boldsymbol{\wedge} 2}\). This limit is clearly Infinity.


When dealing with certain functions, the calculation of a numerical derivative may be necessary. The command \(\operatorname{ND}[f[x], x, x 0]\) gives the numerical approximation of \(f '[x 0]\). This method is based on Richardson extrapolation and does not yield a formula for the derivative. It simply gives an approximation of the derivative at the value \(\boldsymbol{x}=\mathbf{x} \mathbf{0}\).

\section*{O Example:}

The derivative of ( \(x\) ! \()^{\wedge}{ }^{\wedge}\) at \(x=1\) is approximated below. Next, an attempt to illustrate the accuracy of \(\operatorname{ND}[f[x], x, x 0]\) is performed with the function \(\operatorname{Tan}[x]\).

The function (x!) \({ }^{2}\) is the same as the function \((\Gamma(x))^{2}\) where \(\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t\)
\[
=\operatorname{Lim}_{n \rightarrow \infty} \frac{n!n^{x}}{x(x+1) \ldots(x+n)}
\]
is the Gamma function which is given by the command Gamma [a].
\(\Psi(x)=\Gamma^{\prime}(x)\) is called the Digamma Function and is given by the command Polygamma[x].


Since the derivative of \(\operatorname{Tan}[x]\) is known to be \((\operatorname{Sec}[x])^{\wedge}\), the numerical values obtained using ND are compared to the values of \((\sec [x])^{\wedge} 2\) for \(x=-1.5\) to \(x=1.5\). A table of numerical approximations of the derivative of \(\operatorname{Tan}(x)\) at values of \(x\) in the interval \([-1.5,1.5]\) using ND are given in dtable.

This table of ordered pairs is created in order to plot the approximated derivative. These points are plotted simultaneously with \((\operatorname{Sec}[x])^{\wedge} 2\) to show the accuracy of this approximation.
\(/ n / 4 / /=\)
dtable=Table[\{t, \(\operatorname{HD}[\operatorname{Tan}[x], x, t]\}\),
            \(\{\mathrm{t},-1.5,1.5,1\}]\) :
Short[dtable, 3]
out/4/i'Short=
\(\{\{-1.5,197.742\},\{-1.4,34.5964\}\).
\(\{-1.3,13.974\}, \ll 26 \gg,\{1.4,27.5755\}\),
\(\{1.5,1556.58\}\}\)
\(/ n / 10 /:=\)
ploti=ListPlot[dtable,
DisplayFunction-s Identity]:
plot \(2=\operatorname{Plot}\left[(\operatorname{Sec}[x])^{\wedge} 2,\{x,-1.5 .1 .5\}\right.\).
DisplayFunction- - Identity.
Plotstyle-s-GrayLeqel[.4]]:
Shoш[plot1.plot2.
DisplayFunction-> \(\$\) DisplayFunction]

Out//0/=
-Graphics-
- Displaying Points with Versions 1.2 and 2.0:

Since the points are difficult to see in the previous plot, the command PointSize [n] is used to increase the size of the points. In order to increase their size, the ordered-pairs must be specified as points. Given an ordered pair \(\{\mathbf{a}, \mathbf{b}\}\), Point \([\{\mathbf{a}, \mathbf{b}\}]\) specifies the graphics object which represents a point with coordinates \(\{\mathbf{a}, \mathbf{b}\}\). The graphics object may then be displayed with Show[Point [\{a,b\}]]. Therefore, the command
Map [Point, dtable] produces the list of points
\{Point[\{-1.5,197.742\}], Point[\{-1.4, 34.5964\}],...,
Point \(\{\{1.5,1556.58\}]\}\).

Given a list of points orderedpairs, Show[Graphics [\{PointSize[n],orderedpairs]] displays orderedpairs according to the sixe given by PointSize[n]. Consequently, plot3 represents the points created by Map [Point, dtable] displayed in size .015. The resulting graph is not displayed because the option DisplayFunction->Identity is included. Instead both plot2 and plot3 are displayed together by including the option DisplayFunction->\$DisplayFunction.


\section*{- 9.4 PolynomialFit.m}

Version 2.0 includes the package Polynomialfit.m which offers the command
Polynomialfit [datalist, \(n\) ] that can be used to approximate a list of data in datalist with a polynomial of degree \(n\). The evaluation of the approximating polynomial is based on Chebyshev polynomials and the formula for this polynomial is not given as output as it was with the built-in Fit command. Instead, the command PolynomialFit[datalist, \(n\) ] yields the true function, FittingPolynomial [<>, \(n\) ] which can be used to investigate the accuracy of the approximation. (Note that datalist is not a list of ordered pairs.)
A list of data is given below in values. After loading this package, this data is approximated with a polynomial of degree 2. This polynomial is named approxl and is found with Polynomialfit[values, 2]. The true function approxi can be plotted as shown in plot1. (Note that square brackets must be used with approx 1 in the plot command.) It can also be evaluated for any value of \(x\) as illustrated below with approx1[4.5].


\section*{Chapter 9 Special Packages}

In order to investigate how well the approximating polynomial approx1 fits the data in values, the two are plotted simultaneously. Recall that the ListPlot option DisplayFunction->Identity causes the graph of the data points in points to be suppressed initially. Then, DisplayFunction->\$DisplayFunction is used in the Show command to display plot1 and points.
/n/50):=
points=ListPlot[values,DisplapFunction-s Identity]: graph1=Shov[ploti.points.

DisplayFunction-s \$DisplayFunction]

out(50)=
-Graphics-

Since the second order polynomial determined above does not yield an accurate approximation, the polynomial of order 4 is computed below. This polynomial is called approx 2 and is found with Polynomialfit [values, 4]. In a manner similar to that used above, the data and the approximating polynomial are plotted together.


In an attempt to improve on the approximation, the sixth order polynomial, approx3, is found andplotted below. This appears to be an accurate approximation of the data after plotting all three simultaneously.
\[
m / 5 s):=
\]
approx3=Polynonialfit[values, 6]:
plot3=Plot[approx3[x]. (x, 0, 6).
DisplayFunction->Identity]:
graph3=5how[plot3.points.
DisplayFunction->\$DisplayFunction]

out \(589 /=\)
-Graphics-
/n/59):=
Show[Graphicshrray[ \{graph1, graph2.graph3\}]]



out(59)=
-GraphicsArray-
All three grophs of approximations curd poires cre shown to illustrate thot the higher the degree of the fit, the better it is.

」
]
5


\section*{O Example:}

The determination of an approximating polynomial has many applications. For instance, this method can be used on existing data to estimate future values such as population. Consider the following census data:
\begin{tabular}{cc} 
Year & Population (million) \\
\hline 1950 & 150.7 \\
1960 & 179.3 \\
1970 & 203.3 \\
1980 & 226.5 \\
1990 & 252.7
\end{tabular}

This data are entered as data below. Polynomials of order 2 and 3 are calculated and plotted below along with the data points. Both polynomials, poly2 and poly3, appear to be accurate approximations. Since Listplot is used to plot the data points, one unit along the x -axis represents 10 years.

poly 2 [6] and poly 3 [6] yield the approximate population in the year 2000 based on each polynomial. These values are given below.


\section*{-9.5 RungeKutta.m}
o In Version 1.2, RungeKutta.m is contained in the Numerical Math folder; in Version 2.0 RungeKutta.m is contained in the Programming Examples folder.

The Runge-Kutta method is used to numerically approximate the solution of the initial value problem
\(y^{\prime}=f(x, y)\)
\(y\left(x_{0}\right)=y_{0}\),
at \(x_{1}=x_{0}+h, x_{2}=x_{1}+h, \ldots\).
This method can be used with systems of equations as well as a single equation. The steps towards solving ordinary differential equations of this form by the Runge-Kutta method are given in the package Runge-Kutta.m in the Numerical Methods folder located in Packages. It should be noted that the package be used to solve those differential equations which are classified as nonstiff. Note the following definition of a stiff differential equation.

The differential equation \(y^{\prime}=f(x, y)\) is stiff if the ratio of the largest eigenvalue to the smallest eigenvalue of the matrix \(\frac{\partial f}{\partial y}(x, y)\) is very large.

The syntax for the command is given as follows:
```

RungeKutta[ListofODEexpressions,ListOfVariables,
ListOfInitialValues,
Finalx, ErrorTolerance, (options...)]

```
where Listofodeexpressions is made up of the components of \(f(x, y)\), Listofvariables is the list of both independent and dependent variables, Listofinitialvalues is the initial vector (including the initial value of the independent variable \(x\) ), Final \(x\) is the value of \(x\) at which a solution is sought, and Errortolerance is the local error tolerance which must be met at each integration. In giving Listofodeexpressions, Listofvariables, and Listofinitialvalues, the variables must be entered in the same order in which the system of differential equations is stated with the independent variable listed first.

The RungeKutta options are given below along with their default values :
WorkingPrecision->Precision[N[1]],
MaximumStepSize->Finalx-Initialx,
InitialStepSize->MaximumStepSize,
Progresstrace->False.
ProgressTrace->True causes the value of \(x\), the step-size, and the local error to be given as the calculation is performed.

\section*{© Example:}

The following example illustrates how the package is used to solve the following initial value problem:
\[
\left\{\begin{array}{l}
y^{\prime}=2 x+y \\
y(0)=1
\end{array}\right.
\]

Notice that the differential equation must be entered in the form of a list even though there is only one equation. ErrorTolerance is selected to be \(10^{\wedge}(-5)\) and the solution, \(y\), is found at values of \(x\) between 0 and 1 . Since a value of False is assumed by ProgressTrace, no progress report is given. The elements given in the output are of the form \(\{x, y\}\) where \(y\) is the approximate solution to the differential equation at \(x\).
```

1n/20/:=
<Rungerutta.
mf2/I:=
sol1=RungeRutta[{2 x +Y}.{x,Y}.{0,1}.1.10^(-5).
\#orkingPrecision->20. InitialStepSize->.1.
HarimunStepSize->0.2, ProgressTrace->False]
Out/21/=
{{0., 1.}, {0.1, 1.115512755}, {0.3, 1.4495764739790405334},
{0.5, 1.946163936143421276}, {0.7. 2.6412583489668909842},
{0.9. 3.5788097018513151164}, {1., 4.154845894401927461}}

```

If True is used with ProgressTrace, the following output is given:


RungeKutta::progress \(x=0\). step \(=0.1\). local error \(=\) -8
2. 0876049956110

RungeKutta::progress \(x=0.1\), step \(=0.2\). local error \(=\)
\(-7\)
5. 45275295909210

RungeKutta::progress \(x=0.3\), step \(=0.2\), local error \(=\) \(-7\)
4. 96062543071110

RungeKutta: :progress \(x=0.5\), step \(=0.2\), local error \(=\) \(-7\)
4. 46440796992810

RungeKutta::progress \(x=0.7\), step \(=0.2\), local error \(=\) \(-7\)
4. 02434359571710

RungeKutta::progress \(x=0.9\). step \(=0.1\), local error \(=\)
-8
1. 3785832679810

Out \(23 /=\)
\(\{\{0 ., 1\},.\{0.1,1.115512755\},\{0.3,1.4495764739790405334\}\).
\(\{0.5,1.946163936143421276\},\{0.7,2.6412583489668909842\}\).
\(\{0.9,3.5788097018513151164\},\{1 ., 4.154845894401927461\}\}\)

\section*{© Example:}

As stated earlier, the RungeKutta command can also be used to solve systems of first-order ordinary differential equations. Consider the following initial value problem :
\[
\left\{\begin{array}{l}
y^{\prime}=z \\
z^{\prime}=2 x z-4 y \\
y(0)=1, z(0)=0
\end{array}\right.
\]

Here there are two equations which are entered as the list \(\{\mathrm{z}, \mathbf{2 x z - 4 y \}}\) for Listofodexpressions in the RungeKutta command. The variables must, therefore, be given as the list \(\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}\). The initial conditions are given for y and z at \(\mathrm{x}=0\), so ListOfInitialValues is the list \(\{0,1,0\}\) which represents the initial values for the variables \(\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}\), respectively. As in the previous example, the local tolerance is taken to be \(10^{\wedge}(-5)\) and the solution is approximated for values of \(x\) between 0 and 1 . Each element in the output consists of the value of x and the approximate values of y and z found with this procedure.
```

/n/24/:=
sol2=RungeKutta[{z, 2 x z-4 Y}, {x,Y,z}, {0,1,0}, 1, 10^-5.
\#orkingPrecision -> 20. InitialStepSize -3 0.1.
HarimunStepSize -> 0.2. ProgressTrace - F False]
out/24/=
{{0., 1., 0.}, {0.1, 0.9799999817919399506, -0.4000000190929186766},
{0.2652985946997730703, 0.8592329761222134417.
-1.0611951756237893048}, {0.4353952520609771713.
0.6208612134185668668, -1.7415828078592385648},
{0.6258389127874684977, 0.2166499887699848187,
-2.5033597842530430796}. {0.8258389127874684977.
-0.3640218792002295708, -3.3033631282921385819}.
{1., -1.0000032370017912819, -4.0000094146543892189}}

```

If less precision is desired, a smaller value can be used for WorkingPrecision. The following command shows how this change affects the results obtained with the previous command. (A value of 10 is used below as compared to 20 in the previous example.)


Solutions found using RungaKutta can easily be plotted in two dimensions with the command plotodesolution [solutionlist, \(m, n\),options] where \(m\) and \(n\) are the components of the solution vector to be plotted.

In the previous problem, the solution was represented as the list \(\{x, y, z\}\). Hence, a graph of the \(y\) and \(z\) values at each \(x\) can be generated with Plotodesolution \([8,2,3]\). The values of 2 and 3 in this command represent y and z , respectively. The solution list to the previous problem was conveniently named sol2 for use with Plotodesolution.


\section*{Chapter 9 Special Packages}

Solutions to a single ordinary differential equation can also be plotted with PlotODESolution. Since each element in the solution list has only two components, \(x\) and \(y\), the command is entered in the following way to produce a graph of the approximate solution \(y\).


As indicated earlier, ListPlot options can be included in the Plotodesolution command. Several options are illustrated in the following command.


\section*{- Version 1.2 Data Analysis}
o The Version 1.2 Data Analysis folder depicted below contains several packages useful in the area of statistics In Version 2.0, the Data Analys \(\vdots=s\) folder is replaced by the Statistics folder.


\section*{- 9.6 Continuous Distributions.m and DescriptiveStatistics.m}

The Mathematica packages ContinuousDistributions.m and DescriptiveStatistics.m contain many useful commands which can be used to solve problems in statistics.
o In Version 2.0, ContinuousDistributions.m and DescriptiveStatistics.m are contained in the Statistics folder.

These packages are first loaded below in order that several examples can be shown.
ContinuousDistributions.m includes the following distributions: BetaDistribution, CauchyDistribution, ChiDistribution, ChiSquareDistribution, Exponentialdistribution, ExtremeValueDistribution, FRatioDistribution, GammaDistribution, NormalDistribution, HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution, LogisticDistribution, RayleighDistribution, StudentTDistribution, UniformDistribution, and WeibullDistribution.

The mean value of a continuous distribution with probability density f is given by \(\mu=\int_{-\infty}^{+\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}\). The variance of a distribution is given by \(\sigma^{2}=\int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) d x\); the standard deviation is given by \(\sigma=+\sqrt{\sigma^{2}}=+\sqrt{\int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) d x}\).
The DescriptiveStatistics.m package includes several functions which can be applied to these distributions. For example, Density [Distribution, t] gives the density function which corresponds to Distribution. Mean [Distribution] gives the mean of Distribution and Variance[Distribution] gives the variance of Distribution. These values are commonly known for the Normal distribution and are given below using these newly introduced commands .
- Example:


The following example illustrates how a set of data is analyzed with Mathematica. The command
Table[Random[NormalDistribution[mu, sigma]], \{n\}] generates a random list of numbers which approximates a normal distribution of mean mu and standard deviation sigma.

\section*{- Example:}

In this example, a list of 175 numbers which approximate the normal distribution of mean 75 and standard deviation 10 is produced and stored in table1. The values in tablel are rounded to integers with
Map [Floor,tablel] where Floor [x] gives the greatest integer not larger than \(\boldsymbol{x}\). Map applies \(\operatorname{Floor}\) to each value in table1. This new table is called table2. The integer values in table2 are then sorted with Sort [table2] and named table3. A shortened list of these sorted integers is given with Short[table3,3].

Since the command Random is used, each time these commands are executed, different results are obtained.

The mean of table 3 is computed by adding the integers in table 3 and dividing by the number of integers found in table3. This is accomplished in the single command Apply[Plus, table3]/Length[table3]//N. Of course, the mean can also be computed with Mean [table3] which is illustrated below.

\section*{StatsEsamples}

\section*{/n/22/:=}
tablei=Table[ Randon[
HornalDistribution[75,10]].\{175\}]:
table2=Hap[Floor, table1]
table3=Sort[table2]
Short[table3.3]
outis3/ishart=
\{49, 49, 53, 54, 54, 56, 57, 58, 59, 60.
\(60,60,61,61,61, \ll 153 \gg, 88,89,90\),
91, 93, 93, 97\}
\(1 n / 23 /:=\)
Apply[Plus, table3]/
Length[table3] // M
out \(537=\)
73.6629

1mi24):=
Hean[table3]
out \(244=\)


12891
-----
175
table1 is a table of 175 "rcondom" numbers that approximate a normal distribution of meon 75 cmd vorionce 100 .
Hap[Floor, table1] computes
Floor[table1[[i]]]
for eack \(i=1,2, \ldots, 175\) and romes the resuting list table2.
Sort[table2]
sorts table2 according to the stomdoxd increasing order ond romes the resulting list table3. Short[table3, 3] displays an abbreviated form of table3 on no more thon three lines.

In order to compare the mean of table 3 obtained by the two methods, a numerical approximation of Mean [table3] is requested to show that the same result is achieved by each approach. Median [table3] determines the median of table3 and Quartiles [table3]//N determines the numerical approximation of the quartiles of table3. MeanDeviation [table3]//N gives a numerical value of the mean deviation and \(\mathbb{N}\) [MedianDeviation [table3]] gives a numericel value for the median deviation of table3.


A summary of some of the information concerning table3 is obtained with the command DispersionReport [table3]//N. These numerical values are shown below:


\section*{- Example:}

In the following example, the function countlist [table] is defined. This function counts the number of times each distinct member of the list table appears in table. First the variables \(\mathbf{j}\) and list are defined to be local to the function countlist. Second, table is sorted with Sort [table] and this sorted list is named list. Then, Union[list] removes all duplicates from list to obtain a new list, list2. Finally, Count [list, list2[[j]]] gives the number of elements in list that match each element in the list of distinct elements, list2[[j]]. In other words, the number of times each element in list appears is given. This number is divided by Length [list] (the total number of elements in list) to yield the portion of list that each element comprises. This function is illustrated below with table3 given earlier. The output lists the distinct elements of table3 along with a numerical value which indicates the portion of table3 that each element constitutes. Hence, if \{number, \(p\) \} is an element of table3, then the probability of choosing number from the list of numbers in table3 is \(p\).

Also defined below is the function between[list, \(\{a, b\}]\) which counts the number of elements of list which fall on the interval from \(a\) to \(b\), including the endpoints. This is done with the command Sum [Count [list, \(j],\{j, a, b\}]\) where Count [list, \(j]\) gives the number of elements of list which match \(\mathbf{j}\) (i.e., the number of times \(\mathbf{j}\) appears in list). This is done for each value of \(\mathbf{j}\) from \(\mathbf{j}=\mathbf{a}\) to \(\mathbf{j}=\) \(\mathbf{b}\) and then the sum of these numbers is taken to yield the total number of values between \(\mathbf{a}\) and \(\mathbf{b}\).
o In Version 2.0, the command Block has been replaced by the command Module. However, Block is evaluated correctly when using Version 2.0.


The sum of the numerical values given in table 4 should equal 1. This is verified below with Apply[Plus,table4][[2]]. The command Apply[Plus,table4] adds the corresponding components of the members of table4 and is, therefore, of the form of each element of table4. Hence, the sum of the second components is given with Apply[Plus,table4][[2]].

A table is then compiled which gives an interval breakdown of the values found in table3. This is accomplished by choosing several intervals, \(\{45,55\},\{55,65\}, \ldots,\{95,105\}\), and using the function between. The output is given in the form of a table as shown below.


The elements of table 4 can be graphed along with the normal distribution with mean 75 and variance 10 to show how well these values approximate the density function of this distribution. Since each member of table 4 is an ordered pair, the elements in table4 are plotted with Listplot below. However, the graph is not shown initially, because the option DisplayFunction->Identity is used. The density function of the normal distribution is plotted for values of \(t\) between 49 and 97 . This plot is named plot1. The second graph below shows plot and plot 1 simultaneously. The option DisplayFunction->\$DisplayFunction allows plot to be displayed. The Show command also specifies that the axes meet at the point \((47,0\}\).


\section*{- Version 2.0 Statistics}

In Version 2.0, the Data Analysis folder is replaced by the following Statistics folder. Some of the added packages are discussed below.


\section*{- 9.7 HypothesisTests.m}

The Version 2.0 Hypothesistests.m package contains useful hypothesis test commands for solving problems in statistics. The first command shown below is MeanTest [list, muo, options] which is used to test the null hypothesis that the population mean equals ma0. Each command in this package yields the appropriate P -value. Recall that the P -value of a hypothesis test is equal to the smallest significance level at which the null hypothesis can be rejected. Hence, if the P -value is less than or equal to the specified significance level, then the null hypothesis is rejected. Otherwise, the null hypothesis is not rejected.

\section*{O Example:}

Consider the data collected by the U.S. Energy Information Administration on residential energy expenditures. According to this agency, the mean residential energy expenditure of all American families was \(\$ 1123\) in 1985. The expenditures of 15 upper-level families is given in energy. The hypothesis that the population mean equals \(\$ 1123\) is tested with this data (with mu0 = 1123). The command MeanTest [energy, 1123] gives the one-sided P-value. Assuming a significance level of .05 , the P -value obtained is compared to \(.5(.05)=.025\). Since .0014959 \(<.025\), the null hypothesis is rejected.

A helpful option of all of the tests to be discussed in this section is that of FullReport->True. This option is illustrated with the same problem to reveal the sample mean, the test statistic, the number of degrees of freedom (when applicable), and type of test statistic used. These commands use the test statistics based on the normal distribution, the Student's \(t\)-distribution, the chi-square distribution, or the F-distribution. The FullReport shows that in this case, the Student's t -distribution was employed.


Another option is KnownVariance->var0. When this option is used, the normal test statistic is used to obtain the P -value as expected. This is also shown below.
```

/n// 7/:=
MeanTest[energy. 1123.
Ful1Report-3True, EnopnYariance-3-53361]
Out/17/=
{FullReport - M Mean TestStat,
20164
15 3.70979
NormalDistribution,
OneSidedPYalue m 0.000103715}

```


\section*{O Example:}

Consider another set of data which gives the daily intake of calcium (in milligrams) for 35 people with an income below the poverty level. This is given in calcium below.
calcium \(=\{879,1096,701,986,828,1077,703\).
555.422.997.473.702.508.530.

513,720,944,673,574,707,864, 1199.743.1325,655,1043.599.1008. 705.180.287,542.893.1052.473\}:

The recommended daily allowance (RDA) is 800 milligrams. A nutritionist states that the average person with an income below the poverty level gets less than the RDA of 800 mg . This claim is tested below with MeanTest. This is a one-sided test. Suppose that the significance level is again .05. Since the \(P\)-value which results (.124765) is greater than .05 , the null hypothesis (that the calcium intake of people of poverty level incomes is equal to 800 mg ) is not rejected. Another option available to MeanTest is KnownStandardDeviation->sigma. Suppose that the standard deviation is assumed to be 262. When the sample standard deviation equals the known standard deviation, Mathematica uses the normal distribution with MeanTest. This is indicated in the FullReport.
```

/n/19/:=
HeanTest[calcium, 800.
Ful1Report-3Truel
out/10/=
{FullReport -> Mean TestStat DF,
26156
35 -1.17153 34
StudentTDistribution, OneSidedPYalue -> 0.124765}
Inf20):=
HeanTest[calcium, 800.
FullReport->True.
KnognStandardDeviation -3 262]
Out/2O/=
{FullReport -> Mean TestStat,
26156
35 -1.18967
NormalDistribution, OneSidedPValue -> 0.117089}

```

Mathematica can also be used to conduct hypothesis tests for the means of two normal populations with equal standard deviations using independent samples. This is accomplished with the command MeandifferenceTest[list1, list2, diff0,options] where the two populations are given in list1 and list2. The value diffo is compared to Mean[list1]-Mean[list2].

\section*{O Example:}

The data given in below represents the daily protein intake in grams for 10 people with incomes below the poverty level while above represents that of 15 people with incomes above the poverty level. The null hypothesis is that the below-poverty mean is not less than the above-poverty mean. Hence, the alternative hypothesis is that the below-poverty mean is less than the above-poverty mean. If the means of these two populations are equal, the difference of the respective means equals zero. Hence, diff0 \(=0\) in the command below. The \(P\)-value given is .00934066 which is less than a significance level of .05 . Thus, the null hypothesis is rejected. In the FullReport which follows, the test statistic used in the determination of this P -value is given.
```

/n/20/:=
belor={51.4,76.7,73.7,66.2,65.5.
49.7.65.8.62.1.75.8.62.0.
72.0,55.0,79.7,65.4,73.3};
above={86.0,59.7,68.6.98.6,87.7.
69.0.80.2.78.1.69.8.77.2}:
/n/23/:=
HeanDifferenceTest[below,above,0]
004/33/=
OneSidedPYalue -> 0.00934066
/n/24/:=
HeanDifferenceTest[below, above,0.
FullReport-3-True]
owt24/=
{FullReport -> MeanDiff TestStat DF
-11.2033 -2.60755 16.5403
StudentTDistribution,
OneSidedPYalue -> 0.00934066}

```

\section*{O Example:}

Consider the data below which is used to compare the lifetimes of two brands of water heaters. The lifetimes (in years) of one brand is given in the list heater1 while that of the other brand is given in heater2. In this problem, the null hypothesis is that the mean of the lifetimes of heater1 equals that of heater2. Hence, this is a two-sided test. Assume a significance level of .05 . The P -value for this test is determined from the Student's t -distribution. Since this value is greater than .025 , the null hypothesis is not rejected. Hence, the data do not provide sufficient information to conclude that the two brands of water heaters have different mean lifetimes.
```

/N/2\sigma/:=
heateri={6,9,7.2,7.6,7,3,6.6,5,7.
7.8,6.2,5.5,7.4,8.2,6.9};
heater }2={8,7,8,6,11,2,7,0,6.1,6.1.
8.7.7.5.6.3.6.7.7.7.7.0.
7.8.7.5.10.7};
/n/27/:=
HeanDifferenceTest[heateri, heaterz,0.
FullReport->True]
Out/27/=
{FullReport -> MeanDiff TestStat DF
-0.898333 -1.94567 22.2285
StudentTDistribution.
OneSidedPYalue -> 0.0322241}

```

In addition to hypothesis tests on the mean of a population as was illustrated with MeanTest, Mathematica is able to consider hypothesis tests for a population standard deviation (or variance). This is done with VarianceTest [list, var0, options]. In problems of this type, the null hypothesis is that the variation of the population in list equals var0. This command uses the same options as the previously used commands.

\section*{Chapter 9 Special Packages}

\section*{- Example:}

An analysis is conducted on the data in diameter which gives the diameter in millimeters of 20 bolts produced by a hardware manufacturer. It has been determined that an acceptable standard deviation for bolt diameters is .09 millimeters. Therefore, var \(0=(.09)^{\wedge} 2\) in the varianceTest command which follows. The FullReport indicates that the chi-square distribution is used as is expected. If a significance level of .05 is assumed, the null hypothesis is rejected. Hence, the bolts produced by the manufacturer have diameter less than .09 millimeters.
```

/n/17/=
diameter={10.03.10.08.10.05.10.03.
9.89.9.95,9.97.9.99.
9.99.10.00.10.03.10.08.
9.96.9.94.9.98.10.02.
10.10.10.01.10.05.9.98};
In/18/:=
YarianceTest[diameter. (.09)^2.
Ful1Report->True]
0ut/19%=
{FullReport -> Yariance TestStat DF,
0.00272921 6.73879 19
ChiSquare Distribution, OneSidedPYalue -> 0.00451858}

```

\section*{-9.8 ConfidenceIntervals.m}
o In Version 2.0, ConfidenceIntervals.m is contained in statistics; in Version 1.2 ConfidenceIntervals.m is contained in Data Analysis.

An important concept in statistics is that of confidence intervals. For the two-sided hypothesis test,
\[
\begin{aligned}
& \mathbf{H}_{0}: \mu=\mu_{0} \\
& H_{a}: \mu \neq \mu_{0}
\end{aligned}
\]
at a significance level \(\alpha\), the null hypothesis is not rejected if \(\mu_{0}\) lies in the ( \(1-\alpha\) )-level confidence interval for \(\mu\) and, the null hypothesis is rejected if \(\mu_{0}\) does not lie in the ( \(1-\alpha\) )-level confidence interval for \(\mu\).

These confidence intervals can be determined for the normal, Student's \(t\), chi-square, and \(F\) distributions for several types of hypothesis tests using commands found in ConfidenceIntervals .m.

\section*{- Example:}

In the first example below, the data used in the Hyoothesistests.m section concerning the residential energy expenditures of 15 upper level families located in energy is considered. In the previous section, the null hypothesis that the mean expenditure equals \(\$ 1123 \mathrm{wai}\) tested. Since this is a test conceming the mean, the command MeancI [list, options] is used. Therefore, the confidence interval for this data is determined with Meanci [energy]//N. (//N requests that numerical values be given as opposed to exact.) Since 1123 does not lie in this interval, the null hypothesis is rejected as it was in the previous section. One of the options available is that of ConfidenceLevel->alpha with default value .95. The (.10)-level confidence interval is determined with the ConfidenceLevel->.90 option. Of course, a smaller interval is the result.


\section*{- Example:}

In the case of the daily calcium intake in which the standard deviation was known, the null hypothesis that the daily intake of people with incomes below the poverty level equals 800 milligrams was not rejected. This test is investigated below with the data given in calcium. This illustrates another option, KnownStandardDeviation->sd. For this problem, sd \(=262\). The confidence interval found with meanCI shows that 800 is in the interval. Thus, the null hypothesis is not rejected.
```

/a/\sigma/:=
calcius={879,1096,701,986,828,1077,703.
555.422.997.473.702.508.530.
513,720,944,673,574,707,864,
1199.743.1325.655.1043,599.1008.
705.180.287.542.893.1052.473}:
HeanCI[calciuE, EnownStandardDeviation, -z 262]//M
Out/s/=
{660.515, 834.113}
In this cose, the confidence intervol is
(660.515,834.113)

```

Hypothesis tests for the comparison of two population means can also be considered with confidence intervals. Again, referring to data from the previous section, the command
MeandifferenceCI[1ist1,list2,options] is explored.

\section*{- Example:}

Recall that below represents the daily protein intake in grams for 10 people with incomes below the poverty level while above represents that of 15 people with incomes above the poverty level. The null hypothesis is that the below-poverty mean is not less than the above-poverty mean. The confidence interval obtained below does not contain zero (the hypothesized mean difference). Hence, the null hypothesis is rejected. Therefore, the data indicate that the average person with an income below the poverty level gets less protein than the average person with an income above the poverty level.
```

/n/g]:=
beloш={51, 4,76,7,73,7,66.2,65.5.
49.7.65.8.62.1,75.8.62.0.
72.0.55.0.79.7.65.4.73.3}:
above={86.0.59.7,68.6,98.6.87.7.
69.0,80.2,78.1,69.8,77.2}:
HeanDifferenceCI[belov, above]
General::spell1:
Possible spelling error: new symbol name
"below" is similar to existing symbol "Below"
General::spell1:
Possible spelling error: new symbol name
"above" is similar to existing symbol "Above"
out(9)=
{-20.2874, -2.11927}
General:: spell1: Possible spelina error: new syabol name "above" is similar to existing symbol "Above"
out/9)=
$\{-20.2874,-2.11927\}$

```


Mathematica can also determine the confidence interval of the variance of a population. (Note that the variance is used instead of the standard deviation.)

\section*{- Example:}

Recall the information collected by a hardware manufacturer giving the diameter of 20 bolts produced by the company. It was determined that an acceptable standard deviation for bolt diameters is .09 millimeters. Hence, the null hypothesis is that the variance of the diameters equals \((.09)^{\wedge} 2=.0081\). The command which determines the confidence interval for variance is VarianceCI[Iist, options]. When this command is used with diameter, the interval obtained does not contain . 0081. Thus, the null hypothesis is rejected. However, the manufacturer can be \(95 \%\) confident that the variance of the diameters of all 10 -millimeters bolts produced is somewhere between .00157843 and .00582214 .
```

/m/l2]:=
dianeter={10.03,10.08,10.05,10.03.
9.89.9.95.9.97.9.99.
9.99.10.00.10.03.10.08.
9.96.9.94.9.98.10.02.
10.10,10.01,10.05,9.98};
YarianceCI[diameter]

```
out/1/1=
    \(\{0.00157843,0.00582214\}\)
N100\%

\(\{0.00157843,0.00582214\}\)
\(100 \%\) |k

\section*{-9.9 LinearRegression.m}

The Version 2.0 LinearRegression.m package contains the command
Regress [data, functions, vars] which leads to the determination of the linear regression equation for the data points in data as well as other useful information concerning data. In the Regress command, the regression equation is formed from the linear combination of functions given in the list functions. Also, vars represents the variables in the regression equation. Since Mathematica can be used for multiple regression, the number of functions and variables will depend on the type of problem to be solved.

\section*{- Example:}

Consider the following list of data in data4. The regression equation for data4 is found with Regress. The coefficients of the regression equation appear in the column labeled Estimate under Pa rameterTable with 1.5 as the coefficient of x and -.25 the coefficient of 1 . Hence, the regression equation is \(\mathrm{y}=1.5 \mathrm{x}-.25\). The other information given is discussed in later examples.



\section*{O Example:}

Next, consider the age versus price data collected on a particular type of sports car. This data is as follows and is defined below in price.
Age(years) Price( \(\$ 100 \mathrm{~s}\) )
\(5 \quad 85\)
\(4 \quad 103\)
\(6 \quad 70\)
\(5 \quad 82\)
\(5 \quad 89\)
\(5 \quad 98\)
\(6 \quad 66\)
\(6 \quad 95\)
\(2 \quad 169\)
\(7 \quad 70\)
\(7 \quad 48\)
The regression equation is found to be \(\mathrm{y}=195.468-20.2613 \mathrm{x}\). Notice in the output that there is not enough room to include all of the information in ANOVATable on one line. Therefore, the remaining information conceming Model, Error, and Total is given beneath these headings. Most of the information provided is self-explanatory. Since the value of RSquared (the coefficient of determination) is near one (.853373), a good deal of the variation in the sampled prices is explained by the regression line. This implies that age is useful in predicting price.
Another way to analyze the provided information is through hypothesis tests for the slope of the regression line. The variable x is a useful predictor of y if they are linearly related. This can be tested by forming the hypothesis test :
\(\mathrm{H}_{0}: \beta_{1}=0\) ( \(x\) is not useful for predicting \(y\) )
\(H_{a}: \beta_{1} \neq 0\) ( \(x\) is useful for predicting \(y\) )
where the regression line is of the form \(y=\beta_{0}+\beta_{1} x\).

\section*{Chapter 9 Special Packages}

The final entry in the row corresponding to x is the P -value for the hypothesis test. If a significance level of .05 is used, the null hypothesis is rejected since \(.00004<.025\).
```

/n/O):=
price={{5,85},{4,103},{6,70},{5,82}.
{5,89},{5,98},{6,66},{6,95}.
{2,169},{7,70},{7,48}}:
Regress[price.{1, I}, I]

```

\section*{out \(/\) / \(=\)}
\{ParameterTable -
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{1} & & mate & SE & TStat & PYalue & \\
\hline & 19 & 468 & 15.2403 & 12.8257 & 0 & \\
\hline x & & 2613 & 2. 79951 & \(-7.23743\) & 0.0000 & 88191 \\
\hline \multicolumn{7}{|l|}{RSquared \(\rightarrow\) 0.853373. AdjustedRSquared \(\rightarrow\) ( 0.837081.} \\
\hline \multicolumn{7}{|l|}{EstimatedYariance -> 158.17,} \\
\hline \multicolumn{7}{|l|}{ANOYATable ->} \\
\hline \multicolumn{3}{|r|}{DoF} & SoS & Meanss & FRatio & \\
\hline \multicolumn{7}{|c|}{PYalue} \\
\hline \multirow[t]{2}{*}{} & & 1 & 8285.01 & 8285.01 & 52. 3804 & 0.0000 \\
\hline & \multicolumn{6}{|c|}{488191} \\
\hline & & 9 & 1423.53 & 158.17 & & \\
\hline \multicolumn{7}{|l|}{Model} \\
\hline \multicolumn{2}{|l|}{Error} & 10 & 9708.55 & & & \\
\hline \multicolumn{7}{|l|}{Total} \\
\hline \multicolumn{7}{|l|}{\}} \\
\hline
\end{tabular}


The regression equation is plotted below with the ListPlot of the data in price. As expected, as the age of the car increases, the price decreases.


As indicated before, Regress can be used for multiple regression. This is demonstrated below with the addition of the number of miles driven (in thousands) to the data in the previous example.

\section*{- Example:}

It was determined above that \(85.3 \%\) ( \(\mathrm{RSquared} \mathrm{d}^{*} 100\) ) of the variation in the price data is explained by age. Then, by using this additional information (mileage), perhaps this variation is better explained. The revised data is given in extra below. The variables in the new regression equation are \(x 1\) and \(x 2\) which represent age and miles, respectively. Using the Regress command below, the equation is found to be \(y=183.035-9.50427 \times 1\) \(.821483 \times 2\). Again, the coefficients are located under the column labeled Est imate. To determine if the variation is better explained with the additional data, the value of RSquared is considered. In this case, RSquared \(=\) .936115 . Hence, \(93.6 \%\) of the price variation is explained by age and miles driven. Since age only explained \(85.3 \%\) of the variation, the multiple regression equation provides a much better explanation of the variation in the price data than the simple linear equation found in the previous example.
As was the case above, hypothesis tests can be used with multiple regression.
Assuming a regression equation of the form \(y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\), the following hypothesis test is formed :
\(\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0\)
\(\mathrm{H}_{\mathrm{a}}\) : At least one of \(\beta_{1}\) and \(\beta_{2}\) is not zero.

This test depends on the the F-statistic. The P-value for this test appears under PValue in the ANOVATable in the output below. Since this P -value ( .0000166571 ) is much smaller than a reasonable significance level, the null hypothesis is rejected. Hence, the previous findings that age and mileage are good predictors of price is verified.
```

/n//4/:=
extra={{5,57,85},{4,40,103},{6,77,70},{5,60,82}.
{5,49,89},{5,47,98},{6,58,66},{6,39,95}.
{2,8,169},{7,69.70},{7,89.48}}:

```
    Regress[extra, \(\{1, \ldots 1,12\},\{x 1, x 2\}]\)
out/14/=
\{ParameterTable ->
\begin{tabular}{lllll} 
& Estimate & SE & TStat & PYalue \\
1 & 183.035 & 11.3476 & 16.1298 & 0 \\
x1 & -9.50427 & 3.87419 & -2.45323 & 0.0397362 \\
\(\times 2\) & -0.821483 & 0.255207 & -3.21889 & 0.0122595
\end{tabular}

RSquared \(\rightarrow 0.936115\), AdjustedRSquared \(\rightarrow 0.920144\).
EstimatedYariance -> 77.529.
ANOVATable ->

Model

Error
Total


\title{
Chapter 10 \\ Getting Help from Mathematica and \\ Making Mathematica Do What You Want
}

\subsection*{10.1 Getting Help from Mathematica}

\section*{- Help Commands}

Becoming competent with Mathematica can take a serious investment of time. Hopefully, messages that result from syntax errors are viewed lightheartedly. Ideally, instead of becoming frustrated, beginning Mathematica users will find it challenging and fun to locate the source of errors. In this process, it is natural that one will become more proficient with Mathematica .

One way to obtain information about commands and functions is the command ?. ?Name gives information on the Mathematica function Name

\section*{- Example:}

The following window shows how information is obtained on the command Solve as well as the form in which this information is given. Notice how the description includes the particular forms in which the command Solve should be entered. This can be quite helpful in attempting to use the command.
The command ? can be used in several different ways. For example, ? letter* gives a list of all Mathematica commands which begin with letter. This is illustrated below with the letter \(N\).


Another useful application of ? is in determining the definition of functions. This is especially helpful in verifying that a user-defined function has been defined correctly. The following example shows that after the function \(f\) is defined, the command \(£\) gives the definition of \(£\). Notice that after \(£\) is cleared, the formula for \(£\) is no longer known. Hence, \(\boldsymbol{? £}\) yields nothing. If the symbol " \(:=\) " is used in the definition of a function, the function's formula is not automatically given as output as it is below when the equals sign is used in the definition. Therefore, ? is of particular help in obtaining the definition.


\section*{- Example:}

Several other forms of the ? command are shown below :
?*letters gives all Mathematica commands which end in letters.
?letters* gives all Mathematica commands which begin with letters.
? function gives a description of the built-in Mathematica function, function.
Examples which illustrate these commands follow :


Yet another form of the command ? is ?*letters*. This command gives a list of all Mathematica commands that contain letters. Several examples which illustrate this are given below.

- Version 2.0 users will notice that some commands from earlier versions of Mathematica have been made obsolete with the release of Version 2.0. In these cases, Mathematica is able to tell what command replaces the outdated command.
- Example:

For example, in Version 2.0 the functions TrigExpand and TrigCanonical from previous versions of Mathematica are obsolete. Nevertheless, the Version 2.0 command
Expand[expression, Trig->True] performs the same function as the command TrigExpand[expression] from earlier versions.


Another way to obtain information on Mathematica commands is the command Options. Options [Command] gives all of the available options associated with Command. This is quite useful when working with a Mathematica command such as Plot which has many options. Notice that the default value (the value automatically assumed by Mathematica ) for each option is given in the output.


Chapter 10 Getting Help

The command ??Command gives a brief description of Command as well as the list of Options available to Command.

\section*{- Example:}

This is illustrated below with the Mathematica command ListPlot.


Yet another method for acquiring information on Mathematica commands is through the use of Complete Selection. This is located under Prepare Input in the fiction submenu and is useful when attempting to complete a command.

\section*{- Example:}

For example, if the user wishes to use a command which begins with Polynomial, but does not remember the rest of the command, help can be obtained in the following manner : (1) Type the word Polynomial, (2) Move the cursor to the Action heading and use to the mouse to obtain the Action submenu, (3) Choose Complete Selection from the submenu (This causes a list of commands which begin with Polynomial to be displayed), (4) Move the cursor to the desired command in the list and click. The correct command is then completed on the screen.

\section*{File Edit Cell Graph Find fiction Style Uindow}


Similar steps may be taken to obtain the proper syntax of a command. The following windows illustrate how Prepare Input can be chosen from the Action submenu to yield the arguments of nroots.


The same steps which were described above for using Complete Selection are followed in this case with the exception that Make Template is chosen instead of Complete Selection. Note that if other Mathematica commands begin with the word NRoots, then they would all be displayed as they were in the previous example with Polynomial.


\section*{- Mathematica Help}

The Mathematica Help file is located in the Mathematica folder. The information in the window below is given when this file is opened. This describes what is contained in the file and points out that it should be rarely opened. No changes should be made to Mathematica Help, since this would only cause confusion. Information can be printed from this file, however, by using Print... or Print Selection... from File.

File Edit Cell Graph Find Action Style Uindow

\section*{Mathematica Help}

\section*{Mathematica Help}

This is the N themematice Help file. It contains all the help messages pertaining to Nethematice's Maci ntosh Front End. When you use the various help features available in Methematice, the text you read will come from this file. You should not add any cells to or remove any cells from this file, since it will confuse Mothemetics's built-in help mechanisms. You can, however, edit the text within any single cell, for example to make your own notes about a particular feature.

You will probably not need to open this Notebook very often, since the automatic help features are a more convenient way of finding the help you need. You can, however, use this Notebook in a number of other ways. If you want to print out part or all of it, you can use the Print or Print Selection menu commands in the File menu. If you want to search for a particular topic or word, you can use the Find command in the Find menu (select the outermost grouping bracket and choose Open All Subgroups from the Cell menu first).

To find out about the automatic help features available in reathematics, choose the about Mathematica command in the Apple menu. Click the Help button and then read the text in the dialog box that appears.
Menu Help
Dialog Box Help
Other Help Sections


\section*{- Example:}

The following window appears when the command \(\mathrm{Plot}[\operatorname{Sin}[x],\{x,-2 P i, 2 P i\}]\) is selected and Esplain Selection... is chosen from under the apple icon on the Mathematica Menu. The window gives a description of the cell and explains how the cell can be altered.


\section*{－Version 2．0 Help and Kernel Help}

The folder Kemel Help is installed on the desk top when Version 2.0 of Mathematica is installed on the computer．
The folder Kernel Help contains sixteen notebooks that provide examples of nearly every built－in Mothematica command．Since these notebooks can be opened during a Mothematica session， they can be particularly helpful sources of documentation．
\begin{tabular}{|c|c|}
\hline 吅全㐙 Kernel Help & 目目 \\
\hline Name & Size Kind \\
\hline ［ 00．Getting Started & 56K M 人 \\
\hline D 01．Calculator Operations & 54K M． \\
\hline ［ 02．Algebra \＆Trig． & 110K \\
\hline ［ 03．Solving Equations & 98K \\
\hline ［］04．Calculus \＆D．E． & 140K \\
\hline ［ 05．Linear Algebra & 131K \\
\hline ［ 06．Numerical Operations & 74K \\
\hline ［ 07．Numbers \＆Lists & 110K \\
\hline ［ 08．Math．Functions & 137K M \\
\hline －09．Transformation Rules & 63K M． \\
\hline ［ 10．2－D Graphics & 653K M \\
\hline D 11．3－D Graphics & 929K M． \\
\hline ［ 13．Animation \＆Sound & 201K M \\
\hline ［ 14．Programming & 96 K \\
\hline ［ 15．System Operations & \[
98 \mathrm{KM}
\] \\
\hline （3） & ［5］ \\
\hline
\end{tabular}

The first two notebooks，Getting Started and Calculator Operations，look as follows when they are opened：


Similarly, Calculus and Differential Equations, Built-in Mathematical Functions, and Programming look the same:


\subsection*{10.2 The init.m file}

The init.m file gives the user the opportunity to supply information to be read in each time the Mathematica kernel is started. Since this file is read each time the kernel is started, any information included in the file is automatically loaded. The init.m file is found inside of the Packages folder. The window obtained by double-clicking on the Packages folder is shown below:


Double-clicking on the init.m icon yields the following window which gives a brief description of the file and how new information can be entered.

\section*{File Edit Cell Graph Find Action Style Window}

\section*{User Mathematica " Initialization File}

This file is read in every time the Alathemation kernel is started up. You can insert anything you like in the following cell(s). For example, if you have defined a function you use very often, you can put it in this file, and it will be loaded every time you use Bathematian.

You can also add new folders to the kernel search path. If you have several Notebook you want to be able to load in using the kernel file reading function "<<filename", you can put them together in a folder and add its path name to the list below.
\(\square\) Path
\(\square\) Default VieqPoint
- User Initialization
\([101111011\)
A useful property of the init. m file is user initialization of functions and commands. This gives the user the opportunity to "customize" his or her own commands or define functions which the user often employs. The following is an illustration of how this is done. If the user prefers not to capitalize the trigonometric functions, they can be redefined with small letters in terms of the associated built-in Mathematica commands. The same can be done with the constant Pi. Below, the user chooses to use a five-place decimal approximation of the well-known constant and name it pi. Hence, whenever the Mathematica kernel is opened, these new definitions will be read in and, thus, will be recognized when used.


After initializing, Mathematica uses the user-defined functions to give the correct results. Of course, the built-in commands would be properly evaluated as well, so these newly-defined commands have not replaced the original ones.


Since the file init. n
is automatically loaded when the kemel is started, these commands yield the desired values instead of enor messages.

\subsection*{10.3 Explanation of the Mathematica Menu}

\section*{\(\square\) The Version 1.2 Menu}

For a complete discussion of the menu as it appears in either Version 1.2 or Version 2.0, see the User's Guide for the Macintosh in the Mathematica software package.

The menu below which indicates the editing capabilities of Mathematica appears under Edit in the Mathematica Menu. The usual Macintosh editing features are included in this list along with the addition of several commands for working with Mathematica cells. The main item to notice in the list is Settings. These Settings options are discussed in greater detail below.

\section*{Edit}
\begin{tabular}{|l|}
\hline Can't Undo \\
\hline Cut \\
Copy \\
Paste \\
Clear \\
Paste and Discard \\
Convert Cliphoard \\
\hline Select fll Cells \\
\hline Nesting \\
Diuide Cell \\
Merge Cella \\
\hline Settings \\
\hline
\end{tabular}

In Yersion 2.0, Settings has been changed to Preferences; Diuide Cell and Merge Cells are found under Cell.

The Settings options which are available under Edit are accessed by moving the cursor to the Edit heading on the Mathematica Menu and dragging the cursor to the last entry which is Settings. A list of six Settings options is then displayed: Display, Graphics, Color, Animation, Action, and Startup. To obtain a particular Settings window, move the cursor to the desired Settings option and release the mouse button.

The first of these options discussed are those found under Startup Settings. Instead of loading certain files or tables during a Mathematica session, the user has the option of requesting that they be loaded automatically. This is done on the window below by placing an X in the box next to the package which is to be loaded each time a Mathematica session begins. (To place the X in a box, move the cursor inside the box and click once with the mouse; to remove the X , place the cursor on the X which is to be deleted and click once with the mouse.)


The checked boxes indicate the packages that Mathematica automatically loads when the Mathematica kemel is loaded. Many users like to have both negg. and inf o. mloaded each time. In addition, if you are frequently computing definite integrals, you may also want Mathematica to load the package IntegralTables.

Several settings can be made under fiction Settings. These are listed on the fction Settings window which is shown below. The user has selected those options which are checked. Some of the more useful of these options include, displaying the computation time of calculations and having the output displayed so that it fits in a window of specified width.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Action Settings} & \multirow[t]{2}{*}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{14}{*}{\begin{tabular}{l}
New output replaces old \(\notin R\) \\
Output cells are grouped with input \(\mathscr{A} G\) Multiple output cells are grouped together \(\mathscr{H}\) After evaluation, input cells are locked \(\mathscr{H} L\) \\
Beep when an eualuation is finished \(\mathscr{H} B\) Display clock timing after each evaluation \(\mathscr{H} T\) Break \(\square\) to to fit window \(\mathscr{H}\) \(\square\) at page width \(\mathscr{H}\)区 Break at \(\square\) 30 character widths. \#K \\
Generate unformatted terts for these results:
All \#H None \(\mathscr{H}^{N}\) No graphics or Short \#S
Place Print output as it is generated \(\mathscr{H}\)
Place each Print line in a separate cell \(\mathscr{H} D\) \\
On opening a Notebook, load initialization cells:
Always \(8: 1\) \\
Never \&U \\
Ask each time \(\mathscr{H}\)
\end{tabular}}} & \\
\hline & & & & & \multirow[t]{14}{*}{A checked box means that Mathematice will perform the option.} \\
\hline & & & & & \\
\hline OK & Apply & Defaults & Help & Cancel & \\
\hline
\end{tabular}

In the following window, the user has requested that 78 characters be included on each line of output. This may lead to the results being in a form which are more easily read, since longer expressions can be printed on one line.

Action settings:


When working with the animation of graphics, the user may find the options located under Animation Settings helpful. Most importantly, the user can set the speed of animation by increasing or decreasing the number of frames viewed per second. This number can be changed by simply typing the desired value for the speed (when the box is darkened) or by moving the cursor to the box and clicking the mouse button once to obtain a vertical flashing cursor. Then, any changes can be made in the usual manner. Other options include the order in which the animation is viewed. The user selects the desired order by placing a dot in the circle corresponding to the appropriate order (Forward, Backward, or Cyclic). Dots are placed and removed in the same manner as boxes are checked.


Cell options are found under the Cell heading in the Mathematica Menu. These options allow the user to create a Mathematica notebook in any form desired. These options are used by selecting a cell or cells in a Mathematica notebook and then choosing the appropriate Cell option. One of the more useful Cell options is that of grouping cells. This Group Cells option is illustrated in greater detail in a subsequent window. Another option is that of locking cells. If the Locked option is chosen, then no changes can be made in that cell. (Output cells are automatically locked.)

O In Version 2.0, the options Page Break are found under Style and the options Formatted, Inactive, Initialization, Locked, Closed, and Fised Height are contained under Attributes which is also found under Style.

\section*{Cell}
\begin{tabular}{|c|c|}
\hline Formatted & \multirow[t]{2}{*}{The Cell Options allow notebooks to be customized} \\
\hline Inactive & \\
\hline \multicolumn{2}{|l|}{PostScript} \\
\hline Locked & \\
\hline Closed & \multirow[t]{3}{*}{Initialization cells cre cells within a notebook that cre cautomactically evaluated when the Mothematica kemel is started} \\
\hline Initialization & \\
\hline Fined Height & \\
\hline Page Break & \\
\hline \multirow[t]{4}{*}{Group Cells Ungroup Cells Open All Subgroups Close All Subgroups} & \multirow[t]{6}{*}{Cells moy be grouped, ungrouped, opened or closed.} \\
\hline & \\
\hline & \\
\hline & \\
\hline Closed Group & \\
\hline Eualuation Group & \\
\hline
\end{tabular}

The following sequence of windows illustrates how Group Cells is implemented. Consecutive cells can be grouped by first selecting the cells and then choosing the Group Cells option. When cells are grouped, they can be closed simultaneously by double-clicking on the outermost cell which encloses the group. In the first window below, all of the cells are selected by first selecting the uppermost cell and then dragging down through all of the cells. After these cells are selected (as shown in the second window), choosing Group Cells from the list of Cell options causes the selected cells to be enclosed in a single (outermost) cell. This is displayed in the third window below.



An important option located under Action is Interrupt. This can be used to interrupt a calculation if the calculation is taking longer than it should or if the user notices a mistake in the command which would lead to undesirable results. The following window appears when Interrupt is selected from the menu. This window includes several options. Step and Trace display the calculations that Mathematica is performing. These calculations appear within the window to the right of the four options. Abort causes the calculation to be stopped. In the case of Abort, the current Mathematica session may be continued. On the other hand, Quit Kernel causes the calculation to cease, and the user must exit and restart Mathematica if more calculations are desired.


If a calculation is taking longer than expected and one wishes to abort the calculation, click abort. To quit the kemel completely (in which case, one must completely exit the Mathematica session and restart to continue using Mathematica) click quit kemel. In addition, one may view the calculations Mathematica is performing by clicking on either step or trace.

O In Version 2.0, users can abort a calculation directly from the fiction menu. However, to Trace a calculation, Version 2.0 users must select Enter Dialog from the Version 2.0 Action menu and then use the commands Stack or Trace.

Mathematica notebooks can be customized by taking advantage of the features under Style and Window.
\begin{tabular}{|c|c|}
\hline Style & \\
\hline \begin{tabular}{l}
Font \\
Face \\
Size \\
Color \\
Format \\
Cell style
\end{tabular} & \multirow[t]{3}{*}{In Yersion 1.2, text Font, Face, Size, Color, and Format, in addition to Cell Style can be changed from the Style menu.} \\
\hline Uniform Style & \\
\hline Default Style All Default Styles... & \\
\hline
\end{tabular}

Format contains alignment, scrolling, and word-wrapping options as well as cell variations or "dingbats"

Cell styles are modified by going to Window and selecting Styles Window. Once the Styles Window appears on the screen, fonts, sizes, and faces of the various cell types are modified using Font, Fece, and Size found under Style. Selecting fll Default Styles... resets all cell styles to their defaults.
© In Version 2.0, Style is considerably expanded, containing many of the options found under Cell and Window in Version 1.2.


Stack Windows, Tile Windows Wide, and Tile Windows Tall are various ways of viewing several open Mcthematica notebooks simultomeously.

The Defoults Window shows Mathematica's defoult vakues which may be modified Similoriy, the Styles Window shows the fort cond size for each type of cell which may also be changed

All open notebooks cre shown; when a notebook is selected, it is brought to the front of the screen cand becomes the active wirdow.

Several options are found under the Шindow heading on the Mathematica Menu. The first group of options deals with viewing several Mathematica notebooks at once. These options, Stack Шindows, Tile Шindows Шide, and Tile Шindows Tall, are illustrated individually after the menu below.
Two of the windows which may be viewed are the Defaults Шindow and the Styles Шindow. The Defaults Window is displayed and explained below. The Styles Шindow displays all of the styles (font, face, and size) used for each particular type of cell in the Mathematica notebook. These styles can be changed by selecting a cell (or cells) and choosing another font, face, or size. This window, therefore, allows the user to customize the notebook.
The last entry in the list of Шindow options is a list of all open Mathematica notebooks. Hence, an opened notebook can be brought to the front of the screen by selecting it from the list with the cursor.

If Stack Шindows is chosen, then the notebook windows are stacked one behind the other so that only the notebook in front can be fully viewed. The other open notebooks can only be partially viewed. However, a notebook can be brought to the front by simply moving the cursor to that notebook and clicking the mouse button once.


Tile Windows Tall, illustrated below with NotebookOne and NotebookTwo, changes the width of each notebook window so that they fit side-by-side on the screen. (Note that each window has a complete boundary.)

\section*{File Edit Cell Graph Find Action Style Hindow}


Tile Windows Wide alters the height of each notebook window so that the reduced windows fit on the computer screen simultaneously. (Again, each window has a complete boundary.) NotebookOne and NotebookTwo are displayed in the following manner with Tile Uindows Шide.


The defaults of the fonts, faces, and sizes used in each of the cell types can be viewed in the Defaults Window. This window also includes the graphics size. The window obtained when Default Шindow is selected is shown below with a description of the steps necessary for changing the default size of graphics cells. Changes in the cell styles are accomplished through opening the Styles Window.


\section*{- The Version 2.0 Menu}

The Mathematica Menu in Version 2.0 appears at first glance to be identical to that of Version 1.2. Upon further inspection, however, the user easily notices that many of the features in Version 1.2 have been rearranged under the menu headings. Version 2.0 also has a Short Menu option which is located under Edit. The Long Menu is displayed if a check mark is placed beside Long Menu. This can be changed to Short Menu by clicking once on this check mark. Both menus are shown below.


Edit


\section*{- Action Settings for Version 2.0:}

The Action Preferences shown below are the same as those in Action Settings in Version 1.2, however.
\begin{tabular}{|c|c|c|}
\hline Action Preferences & & \multirow[t]{2}{*}{The Action Settings available in Version 20.} \\
\hline \begin{tabular}{l}
Output cells are grouped with input
Multiple output cells are grouped together
After evaluation, input cells are locked
Beep when an evaluation is finished
Display clock timing after each evaluation
Append kernel name to In/Out names \\
Break to fit window at page width
Break at \(\square\) character widths \\
Generate unformatted text for these results:
All None No graphics or Short
Place Print output as it is generated
Place each Print line in a separate cell \\
On opening a Notebook, load initialization cells:
Always Never Ask each time
\end{tabular} & \begin{tabular}{c} 
OK \\
\hline Hpply \\
Defaults \\
Help \\
Cancel
\end{tabular} & \\
\hline
\end{tabular}

The changes in Startup Preferences are clear. The option of automatically loading msg.m, info.m, Integraltables.m, Elliptic.m, and Series.m at the beginning of each Mathematica session is not offered in Version 2.0 as it was in Version 1.2.

The Stortup Preferences in Version 20 are substorticaly different from prior versiors. In poriculor, packages such os
IntegralTables.m cre cutomatically loaded when the kemel is stomed

\section*{Startup Preferences}

Stack size (number of KBytes):
Current: 512 Requested: 512
Automatically start a kernel on launch When automatically starting a kernel, start the following kernel:
Local Kernel

\section*{OK}

\section*{Apply}

Defaults
Help
Cancel

Display Preferences are basically the same as Display Settings in Version 1.2 with the exception of the cell sizing options which were included in Version 1.2. Version 2.0 includes several options such as Gray Areas jump-scroll and Measurement units, however, which were not found in Version 1.2.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Display Preferences} \\
\hline 区 Auto indent text & \\
\hline \(\square\) Dialog box for all errors & OK \\
\hline 区 Automatically italicize "Mathematica" & \\
\hline Q Show selections in back windows & Apply \\
\hline QRender PostScript in the background & Defaults \\
\hline \(\square\) Real-time scroll bar thumb & \\
\hline \(\square\) Gray areas jump-scroll & Help \\
\hline Measurement units: & Cancel \\
\hline OInches OPaints OCentimeters & \\
\hline O Decimal inches Opicas OMillimeters & \\
\hline Tab width: 4 Spaces & \\
\hline Scroll width: 42 Inches & \\
\hline
\end{tabular}

Display Preferences available in Version 2.0.

Yersion 2.0 Cell settings differ
Cell substantially from earlier versions. Notice that Divide Cell and Merge Cells, which wrere contained under Edit in prior versions, are now contained under Cell.
Cell
\begin{tabular}{|l|}
\hline Divide Cell \\
Merge Cells \\
\hline Group Cells \\
Ungroup Cells \\
Rutomatic Grouping \\
Group Like \\
\hline Open All Subgroups \\
Close fll Subgroups \\
\hline Closed Group \\
Eualuation Group \\
\hline
\end{tabular}

The menu which accompanies the Шindows heading no longer contains the windows for Network, Defaults, Styles, and Clipboard. However, the remaining menu members perform the same tasks as those in Version 1.2.

\section*{Window}
\begin{tabular}{|l|}
\hline Stack Windows \\
Tile Windows Uide \\
Tile Uindows Tall \\
\hline TIpen Natehaaks \\
\hline
\end{tabular}

Stack Windows, Tile Windows wide, and Tile Uindows Tall perform the same task as in Yersion 1.2.

The main difference in Action is found under Interrupt Calculation. The window which was displayed with Interrupt in Version 1.2 no longer exists. Instead, the options found in this window are listed when Interrupt Calculation is selected. These are shown under Interrupt Calculation in the window below even though this list is actually hidden until Interrupt Calculation is selected.
\begin{tabular}{|c|c|}
\hline Prepare Input & \\
\hline Edit Connections... & \\
\hline Terminals * & \\
\hline Current Kernel & \\
\hline Notebook's Kernel * & \\
\hline Connect Remote Kernel... Quit/Disconnect Kernel & \\
\hline Eualuate Selection & In Yersion 2.0, a calculation may be \\
\hline Eualuate Nert Input & aborted by selecting Action and then \\
\hline Eualuate in Dialog & \multirow[t]{2}{*}{Abort Calculation. Yersion 2.0 is able to stop calculations much faster than} \\
\hline Don't Eualuate & \\
\hline Eualuate Notebook & \multirow[t]{2}{*}{prior version. Also note that if the option Auto Saue Bfter Each Result is check} \\
\hline Eualuate Initialization & \\
\hline Interrupt Calculation & \begin{tabular}{l}
Huto Saue After Each Result is checked, then \\
Mcthematica will save the file after each
\end{tabular} \\
\hline Abort Calculation & \multirow[t]{2}{*}{calculation. When lengthy calculations are} \\
\hline Abort to Top & \\
\hline Enter Dialog & being perfomed and there is fear that the \\
\hline Erit Dialog & computer may crash, this option can often \\
\hline Huto Save after Each Result & help avoid heartache. \\
\hline
\end{tabular}

\footnotetext{
- While Mathematica is performing calculations, Version 2.0 users can select Enter Dialog which pauses the current calculation and allows the user to perform other calculations. Exit Dialog causes the suspended calculation to resume.
}


The menu under Style has several changes although many of these changes are only in appearance. Attributes contains the option Dingbats... which allows for the use of symbols in creating a notebook. These symbols include the circle and block which were found in the section and subsection styles in Version 1.2. Also under Attributes are many of the options such as Formatted, Locked, Closed, and Fised Height found under Cell in Version 1.2. Useful additions located under Face include Superscript, Subscript, and Ouerstrike. Another obvious change is Show Ruler. If this is chosen, then a ruler which includes three alignment options (left, right, and center) is displayed in the notebook. The Styles Шindow which no longer appears under Шindows is opened by selecting Edit Styles... in Version 2.0.

\section*{- 10.4 Some Common Errors and Their Remedies}

Learming to recognize and correct errors will alleviate many of the frustrations that some first-time users encounter when working with Mathematica and will enable the user to make the most of Mathematica's vast capabilities. Some of the more common errors and their remedies are illustrated below.
- A list of all Mathematica warning messages is contained in Technical Report: Mathematica Warning Messages, by David Withoff which is included in the Mathematica packaging box.

One of the most commonly made mistakes occurs when using built -in Mathematica commands, functions, or constants. The user must always remember to use square brackets and/or capital letters. Several examples are shown below which demonstrate these types of errors.
In the first example, Mathematica interprets the command \(\sin (\mathrm{pi} / 2)\) as \(\sin ^{*}(\mathrm{pi} / 2)\) which certainly was not intended. The user also failed to capitalize the Sine function and the constant Pi.
The second example demonstrates that even if capital letters are used correctly, the absence of square brackets yields almost the same output as the first command. In this case, however, the expressions are capitalized.
Finally, the third example shows that when square brackets are used, Mathematica interprets the command correctly and gives the exact value of \(\operatorname{Sin}[\mathrm{Pi} / 2]\) which, of course, is 1 .


Error messages can be disturbing to receive. In some cases, however, they can be ignored. For example, in the following window, the user attempts to load a package, IntegralTables.m, which has already been loaded. Hence, the error messages are given, but they may be deleted.
- Version 2.0 users need never load the package Integraltables.m. Neverthess, if one reads in a package and then reads it in again, messages of this sort often appear.


If the package IntegralTables. has already been loaded and the user attempts to load it again, these emor messages appear. They may be ignored or deleted.

The following error is quite common to new Mathematica users. The user attempts to plot a function \(\mathbf{g}\) without properly defining the function beforehand. Hence, there is no function to graph. After receiving the error message, an easy way to check that this is the problem is to use ? g . If the function is undefined, the output is simply g as shown below. Otherwise, the formula for \(g\) would be displayed.


This message indicates that \(g\) is not a properiy defined

Notice that when we enter the commond ?g we confirm that \(g\) is not a well-defined function In this case, we woukd re-enter the correct definition of \(g\) and then re-enter the plot commond

Another common mistake occurs when trying to work with the elements of a table produced with two indices. In the example below, a table of Legendre polynomials is formed in lps. Note that the output is in the form of a list in which every element is itself a list of two elements. (Mathematica computes the polynomials in pairs, one pair for each value of n .) Therefore, the Plot command as it is stated below cannot plot the members of lps.


\section*{Chapter 10 Getting Help}

To remedy the problem, Flatten [lps] must be used before trying to plot the Legendre polynomials in 1ps. Notice that Flatten [lps] removes the inner brackets contained in lps and converts it to a list of length 6 called Ipstwo. A table of GreyLevel values is created in grays.
1pstro consists of six elements; each element is on expression in \(x\) ond con thus be grophed
out \(253 /=\)
6
/nf25/:=
Length[ 1pstwo]
(nたs):=
1pstwo=Flatten[1ps]
outis2/=
\[
\begin{aligned}
& \left\{-3 \times \operatorname{Sqrt}\left[1-x^{2}\right], 3\left(1-x^{2}\right)\right. \\
& \frac{5 \operatorname{Sqrt}\left[1-x^{2}\right]\left(3 x-7 x^{3}\right)}{2} \cdot \frac{15\left(-1+8 x^{2}-7 x^{4}\right)}{2} \\
& \frac{21 \operatorname{Sqrt}\left[1-x^{2}\right]\left(-5 x+30 x^{3}-33 x^{5}\right)}{8} \\
& \left.\frac{105\left(1-19 x^{2}+51 x^{4}-33 x^{6}\right)}{8}\right\}
\end{aligned}
\]
1n/23/:=
```

grays=Table[Grayleqel[i/10], \{i,0,5\}]:
grays=Table[Graylevel[i/10],{i,0,5}]:
grays=Table[Graylevel[i/10],{i,0,5}]:

After making the appropriate changes, the six Legendre polynomials found in 1pstwo are correctly plotted using grays in the command below.

Throughout Mathematica by Example, user-defined functions have always been defined using lower-case letters. Since every built-in command begins with a capital letter, we have been sure to avoid any ambiguity with built-in functions. Nevertheless, if one does attempt to define a function that conflicts with a built-in function, errors like the following result:

In this cose, we have atempted. to define

10.5 Additional References

- Additional References regarding Macintosh Computers:
- Getting Started With Your Macintosh, Apple Computer, Inc.
- Macintosh Reference, AppleComputer, Inc.

$■$ Additional references regarding Mathematica:

- Crandall, Richard E., Mathematica for the Sciences, Addison-Wesley Publishing Co. (1991);
a Gray, Theodore and Glynn, Jerry, Exploring Mathematics with Mathematica, Addison-Wesley Publishing Co. (1991);
- Maeder, Roman, Programming in Mathematica, Addison-Wesley Publishing Co. (1990);
- Wagon, Stan, Mathematica in Action, W. H. Freeman and Co. (1991);
- Wolfram Research, Inc., Mathematica: A System for Doing Mathematics by Computer, User's Guide for the Macintosh (1991);
- Wolfram, Stephen, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley Publishing Co. (1988);
- Wolfram, Stephen, Mathematica: A System for Doing Mathematics by Computer, Second Edition, Addison-Wesley Publishing Co, (1991); and
- The Mathematica Joumal, published quarterly by the Advanced Book Program, Addison-Wesley Publishing Co.
- Additional references regarding the mathematical topics that appeared in Mathematicaby Examole:
- Amold, Steven F., Mathematical Statistics, Prentice-Hall (1990);
- Cheney, Ward and Kincaid, David, Numerical Mathematics and Computing, Second Edition, Brooks/Cole Publishing Co. (1985);
- Hillier, Frederick S. and Lieberman, Gerald L., Introduction to Operations Research, Fifth Edition, McGraw-Hill Publishing Co. (1990);
- Jordan, D. W. and Smith, P., Nonlinear Ordinary Differential Equations, Second Edition, Oxford University Press (1988);
- Kreyszig, Erwin, Advanced Engineering Mathematics, Sixth Edition, John Wiley \& Sons (1988);
- Powers, David L., Boundary Value Problems, Second Edition, Academic Press (1979);
- Strang, Gilbert, Linear Algebra and its Applications, Third Edition, Harcout Brace Jovanovich, Publishers (1988);
- Weiss, Neil A. and Hassett, Matthew J., Introductory Statistics, Second Edition, Addison Wesley Publishing Co. (1991); and
- Wilson, R. J., and Watkins, J. J., Graphs: An Introductory Approach, John Wiley \& Sons (1990).

Appendix Introduction to Programming in Mathematica

The Appendix provides a brief introduction to programming in Mathematica. Examples include some of the programs that were used to create some of the graphics objects in Mathematica By Example. However, users that intend to become proficient Mathematica programmers should refer to Maeder's book Programming in Mathematica.
In Version 1.2, local variables are declared using the command Block. The following example illustrates the use of local variables within a Block. Notice that changes in the local variable j in the function value do not affect the value of the previously defined global variable $\mathbf{j}=0$. This value remains zero although the local variable \mathbf{j} has value 4.
o In Version 2.0, the command Module replaces the command Block; although Block is still supported under Version 2.0.

Functions can be defined to perform various tasks using Mathematica programming skills. This is shown below with the definition of the function arclength which calculates the length of the curve given by x over the interval from $t=a$ to $t=b$. This function depends on the local variables rprime, length, and integrand which give the derivative of \boldsymbol{r}, the number of components of \boldsymbol{r}, and the integrand given in the integral formula to determine arc length, respectively. A particular function $x[t]$ is then defined to illustrate the use of arclength.


```
In/49/:=
    arclength[r_.{t_.a__b_}]:=
        Block[ {rprime, length,integrand),
        rprime=D[r,t]:
        length=Length[rprime]:
        integrand=Sqrt[
                    Sum[(rprime[[i]])^2,{i,1, length}]
                    ]:
            NIntegrate[integrand.{t,a,b}]
            ]
/n/50/:=
    r[t_]={t-Sin[t].1-Cos[t]}
                            Defines n(t)={t-Sin (t),l-Cos (t)}
out/50)=
    {t - Sin[t], 1 - Cos[t]}
```

To better understand the use of arclength, the function $r[t]$ is plotted below from $t=0$ to $t=4 \mathrm{Pi}$. Then, the length of this curve is determined with arclength. Note that the dependent variable is not of importance in the use of this function as s is used in this command instead of the variable t.

Another point of interest is the manner in which arclength is defined. Notice that it is defined in terms of the number of components in the function r. Hence, arclength can be used with functions of more than two components as illustrated below with the function $v[t]$.

After plotting this curve with SpaceCurve (located in the package ParametricPlot 3D.m), the length of this curve in three-dimensions is found with arclength. Note that Release must be used with $v[t]$ in order for it to be evaluated at various values of t in the SpaceCurve command.

- In Version 2.0, the command Release is replaced by the command Evaluate; SpaceCurve is replaced by ParametricPlot3D.

Appendix

Mathematica also includes several typical programming techniques. These include the If statement and the Do loop. Before illustrating these ideas, however, several built-in Mathematica commands must be introduced. These include Divisors [n] which lists all divisors of the integer n, including n, and Drop [1ist, -1] which deletes the last element of list and returns the resulting list. In the example below, the divisors of 6 are computed with Divisors [6]. This list is called div6. Next, the last term in div6 is removed with Drop [div6, -1] anc the resulting list named divs. Finally, the sum of the elements of divs is found with Apply[Plus, dive]. Similar steps will be used in the example which follows.

```
/n/b/\:=
    div6=Divisors[6]
```

out $61 /=$
$\{1,2,3,6\}$
mfor):=
divs=Drop[div6,-1]
out/6:2/=
$\{1,2,3\}$
In(63):=
Apply[Plus.divs]
ou/ $55 /=$
6
div6=Divisors[6]
computes a list of all divisors of 6 and nomes the list dip6.
divs=Drop[div6,-1] removes the last elemert from the list div6 ond nomes the resulting list divs.

Apply[Plus,divs]

computes the sum of the elements of the list divs.
Since the sum of cullproper divisors of 6 is 6 , δ is a perfect ramber.

The calculations previously discussed can be used to find perfect numbers. Recall that a number \mathbf{n} is perfect if the sum of its divisors (not including n) equals the number n itself. A function perfectq[n] is defined below using the steps illustrated above. Note that there is an If statement within this function. Syntax for an If statement is If [condition, then, else]. In the case of the function below, if the sum of the divisors is n, then a value of yes is assumed while a no is assumed otherwise. Next, the function printp [j] is defined to print a number if it is perfect. Finally, a Do loop is used to find all of the perfect numbers between 1 and 10,000 . Note that the loop Do[expression, \{i,imin, imax\}] evaluates expression from $i=\operatorname{imin}$ to $i=i m a x$.

The command solidrev was used to create the solids of revolution found in Chapters 3 and 6. A brief description of solidrev is given below. Notice that the arguments of this command include the function \mathbf{f}, the domain $\{a, b\}$, the axis about which $£$ is to be revolved (either xaxis or yaxis), and the solid option which graphs the resulting solid of revolution.

```
solidrev: :usage="solidrev[f, {a,b},axis]
yields a three-dimensional meshed
image of the function f[x] defined
on the domain [a,b] revolved about
the xaxis or yaxis.solidrev[f,{a,b},axis,solid]
yields a solid surface.
The interval [a,b] is automatically
divided into 10 subintervals. This
may be changed by substituting {a,b,n} for {a,b}
where n is the desired number of subintervals."
```

Appendix

```
solidrev[f_, \{a_,b_,m_Automatic\}, axis_, 11_:Automatic]:=
Block [
```

```
{n,ll, xaxis, yaxis,un, list1, s,t,list2,q, list4, poly},
xaxis=0;
yaxis=1;
uu=axis;
If [m===Automatic,n=10,n=m];
list1=Table[{x,f[x]},{x,a,b,(b-a)/n}] // N;
list2=If[uu==0,
    s[{x_, y_}]:=Table[{x , y sincostab[[i, 2]],
            y sincostab[{i, 1]]},{i,1, Length[sincostab]}];
    Map[s, list1],
    t[{x_, y_}]:=Table[{x sincostab[[i, 1]],
            x sincostab[[i,2]],y},{i,1,Length[sincostab]}];
    Map[t, list1]
    ];
un[k_]:=Partition[k, 2, 1];
list3=Map[un, list2];
q[i_,j_]:=Join[list3[[i,j]],Reverse[list3[[i+1,j]]]];
list4=Flatten[Table[q[i,j],{j, 1,Length[list3[[1]]]},
    {i,1, Length[1ist3]-1}],1];
poly=If[1l===Automatic,Map[Line, list4],Map[Polygon,1ist4]];
Show[Graphics3D[poly]]
```

];

- Example of solidrev:

An illustration of the use of solidrev is given below. A function \mathbf{f} is first defined and plotted.

This function is then revolved about the x -axis with solidrev. Note the manner in which the arguments are entered in solidrev.
$1 n / 4\}=$
nsolidxaxis=solidrev[f.\{0.4,40\},xaris.solid]

out $4 /=$
-Graphics3D-

The same function is then revolved about the y -axis.

Some other graphics which were illustrated earlier in Mathematica By Example without explanation occurred in the section on Lagrange multipliers. These graphics were produced with the function lagrangem below. This function graphs the curves $£$ and g for values of x over the interval xamin to xamax by evaluating each function at n points and joining the points obtained with line segments. Graphs of this type are useful in giving a geometrical impression of where the optimum values of \boldsymbol{f} occur subject to the constraint \mathbf{g}.

- Example:

```
lagrangem \(\left\{\left\{\mathrm{f}_{\mathrm{Z}}, \mathrm{g}_{\mathrm{\prime}}, \mathrm{cc}\right.\right.\) _: 0\(\}\),
    \(\left.\left\{x \min , x^{\operatorname{cmax}}, n_{2}: 15\right\}, u_{2}:\{1,1, .4\}\right]:=\)
```

 Block[\{values, graphf, graphg, y, ycoords,t1,t2, coords, ff,
 fpoints\},
 values=Table[N[xmin +i(xmax-xmin)/n], \(\{i, 0, n\}] ;\)
 \(y[k]\) : \(=\) NRoots \([g[k, y]==0, y] ;\)
 ycoords=Map [Y, values];
 tl=Table [\{values[[i]], ycoords [[i, 1, 2]], cc\}, \(\{i, 1, n+1\}] ;\)
 t2=Table[\{values[[i]], ycoords[[i, 2, 2]], cc\}, \(\{i, 1, n+1\}] ;\)
 graphg1=Graphics3D[\{GrayLevel[.3], Line [t1] \}];
 graphg2=Graphics3D[\{GrayLevel[.3], Line[t2]\}];
 \(f f[\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}\}]:=\{\mathrm{a}, \mathrm{b}, \mathrm{f}[\mathrm{a}, \mathrm{b}]\} ;\)
 fpoints1=Map[ff,t1];
 fpoints2=Map[ff,t2];
 graphf1=Graphics3D[Line [fpoints1]];
 graphf2=Graphics3D[Line[fpoints2]];
 Show[graphf1, graphf2, graphg1, graphg2, Axes->Automatic,
 Boxed->False, BoxRatios->u, ViewPoint->\{3.880,0.950,2.220\}]
]

- Example of lagrangem:

The function lagrangem is illustrated below with the two functions, \mathbf{f} and g . This is done over the interval from -2 to 2 using 100 points. Notice where the maximum and minimum values of the function $£$ occur.

Begin by defining
$f(x, y)=e^{\operatorname{Sin}^{2}(x)+\operatorname{Cos}^{2}(y)}$ and
$g(x, y)=\frac{x^{2}}{4}+\frac{y^{2}}{9}-1$.
lagrangen[\{t,g\},\{-2,2,100\}]
grophs and connects
the points $(x, y, 0)$
sotisfying $g(x, y)=0$ with
line segments and
then grophs ond connects
the set of points $(x, y, f(x, y))$
satisfying $g(x, y)=0$.

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0.
\&\& (logical connective "and"), 394
\%, 38
l., 27

II, 37
3D ViewPoint Selector, 524
?, 594-599
??, 601
@, 37

A

Abs, 20
absolute value, 20
Action (Menu) (2), 625
Action (Menu), 618
Action Settings, 613-614
Airy's equation, 379
Algebra folder, 423
amortization
annual interest paid, 223
annual principle paid, 223
current interest paid, 222
current principle paid, 221
monthly payments, 219
total interest paid, 220
unpaid balance, 221
Analytic (2), 90
Animation Settings, 240,615
annihilator, 356
annuities
future value, 214
deferred, 217
present value, 216
annuity due, 214,215
Apart, 27,29
AppendColumns, 447
AppendRows, 447
Apply, 204
applying operations to lists, 204, 209
approximation of functions
with polynomials (2), 559-564
Approximations.m (2), 544-548
arc length, 133,135
ArcCos, 25
ArcCosh, 25
ArcCot, 25
ArcCoth, 25
ArcCsc, 25
ArcSec, 25
ArcSech, 25
ArcSin, 25
ArcSinh, 25
ArcTan, 25

ArcTanh, 25
area between two curves, 130-132
arithmetic operations, 16
Array, 262
AspectRatio, 54,229
Axes (Plot3D option), 309
Axes, 54
AxesLabel, 54
AxesLabel, 63
AxesOrigin (2), 58

B

Background (2), 68
BarChart, 504-506
Bessel functions
of the first kind, 322, 402
of the second kind, 402
zeros of, 407
Bessel's equation, 377, 378
BesselJ, 8,322,402
BesselY, 402
Binomial, 481-483
Block, 576
Boxed (Plot3D option), 309
C
Calculus folder, 470
calculus differential, 92-122
integral, 123-146
multi-variable, 147-189
Cancel, 27,29
Cartesian coordinates, 303
CartesianMap (2), 539, 540
CatalanNumber, 485
Cell (Menu), 616, 617
cell
active, 6
changing style, 9
graphics, 6
inactive, 6
input, 4
output, 6
text, 6
characteristic polynomial of a matrix, 282
Chebyshev polynomials, 461
Cholesky.m, 435-441
CholeskyDecomposition, 435
Chop, 173, 554
Coefficient, 357
CombinatorialFunctions.m, 481-489

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0 .

CombinatorialSimplification.m,

 490-493combining fractions, 26
complex numbers
real and imaginary parts 427-435
ComplexExpand (2), 43
ComplexMap.m (2), 539-542
ComplexToTrig, 388, 429
Compose (o), 39
Composition (2), 39,43
composition of functions, 39
computing limits, 87
ConfidenceIntervals.m, 586-588
ConfidenceLevel, 586
conic sections
plotting of (2), 530-532
conservative vector field, 303
ConstrainedMax, 288
ConstrainedMin, 288
continuous distribution
mean value of, 571
variance of, 571
ContinuousDistributions.m, 571-578
ContourPlot, 119-124, 147,148,150,152, 153
ContourPlot, options (2)
Contours,121, 122, 152, 153
ContourShading, 120-122, 150-153
ContourSmoothing, 120-122, 153
PlotPoints, 121, 122
coordinate systems (built-in), 304
Cos, 8, 20, 23
Cot, 20
counting distinct elements
of a list, 575-577
creating a list of functions, 231
creating a nested list, 193
creating lists, 192
critical points, 99
classification of, 160-166
locating, 98-103
Cross.m, 442
Csc, 20
Cube, 509
curl of a vector field, 306
Curl, 307
cursor shapes, 10
Cylindrical coordinates, 303

Defaults Window, 621
defining inequalities, 289
matrices, 262
piecewise functions, 251
series recursively, 257
vector-valued functions, 205
vectors, 266
definition of replacement rules, 431
Denominator, 27
Density, 571, 572
Derivative, 156-159
derivatives
computing, 92-96
higher, 97
numerical (2), 555-557
partial, 154-155
DescriptiveStatistics.m, 571-578
Det, 267
determining the area of a triangle, 442
difference quotient, 88,89
differential equations, see
ordinary differential equations
partial differential equations
differential operator, 356
Dimensions, 452, 453
Direction (2), 91
DiscreteMath folder, 481
DispersionReport, 575
display clock, 280
DisplayFunction, 52,66, 242
displaying multiple graphics, $51,60,61,62$
distance formula, 113,114
distance from a point to a line, $111,112,444$
distance from a point
to a subspace, 457,458
distribution functions available, 571
Div, 304
Divergence Theorem, 314, 315
divergence of a vector field, 303
Do loop, 258
Dodecahedron, 509
dot product of vectors, 310
DSolve (2), 362, 371, 377-379
DSolve, 336
Dt, 114-116, 350
dual linear programming problem, 290

D

D, 92-96, 154-156
Data Analysis folder, 571-593
DefaultFont (2), 63

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0.

E

E, 19,21
Edit (Menu) (2), 622
Edit (Menu), 612-615
edit, 12
Eigenvalues, 270
Eigenvectors, 272
equations
approximate solutions, 76,81
exact solutions, 71-74
graphing, 118
equilibrium points, 385
errors, common, 627-633
Euler's constant, EulerGamma, 426
Evaluate (2), 231
evaluating a list of functions, 200
evaluating expressions, 28,29
evaluating functions, 30
evaluation of function at values
of list, 207, 208
Exp, 20,21
Expand, 6,26
Expand, Trig->True (2), 42, 599
Exponent, 357
exponential function, 20,21
exponents, 17
expressions, graphing, 48
extracting elements of lists, 233-236
extracting elements of matrices, 266

F

Factor, 26,28
Factor, Trig option (2), 599
factoring polynomials, 26,28
falling body problem, 341-344
Fibonacci sequence,
application of, 488
Fibonacci, 486, 487
file, 11
FindRoot, 76,81, 102-105, 132,134
First, 204
Fit, 241-248
FittingPolynomial (2), 559
Flatten, 400
Floor, 572, 573
flux, 314
FontForm (2), 63
Fourier series, 249-250, 477-480
FourierTransform.m (2), 250, 477-480
FourierTrigSeries (2), 477

Frame (2), 54,58
Framed (o), 54
FrameTicks (2), 59
FromCycles, 495, 496
FullReport, 580
function@list, 207, 208
functions
composing, 39
defining, 30
graphing, 48
periodic extension of, 479
plotting complex-valued (2), 539-542
recursive definition of, 486

G

gamma function, 556
Gamma[x], 556
GaussianQuadrature.m (2), 549-552
GaussianQuadratureWeights (2), 549
genus of a surface, 522
GoldenRatio, 485
GosperSum (o), 424
GosperSum.m (o), 423
Grad, 304
gradient of a scalar function, 303
GramSchmidt, 455-459
graph theory application, 448-450
Graphics, 61,62
Graphics folder, 497-542
graphics, displaying multiple, $60,61,62$
Graphics.m, 497-508
GraphicsArray, 60,66, 169,416, 420-421
graphing
equations, 118
functions, 48
functions and derivatives, 95, 113
implicit functions, 117-122, 529-531
options, 68,54
options, examples, 55
parametric equations, 228-230
multiple, 51
piecewise defined functions, 67,68
Version 2.0, 57
graphs
locating intersection points, 79
Green's Theorem, 312
GridLines (2), 57
Group Cells, 616, 617

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0 .

H

Helix, 520, 521
Help (2), 606-608
Help file, 604, 605
help
commands, 594-608
completing a command, 602, 603
HermiteH, 194
higher order derivatives, 96,97
HilbertMatrix, 451
Hofstadter function, 488
Hofstadter, 488, 489
HypothesisTests.m, 580-585

I

I, 19,21
Icosahedron, 509
IdentityMatrix, 286
Im, 427
implicit differentiation, 114-118
ImplicitPlot (2), 117, 118-120, 235, 529-531
ImplicitPlot.m (2), 529-532
Infinity, 87,92
inflection points, locating, 98-103
init.m file, 609-611
initializing functions, 610,611
inner product of space
of continuous functions, 458
InnerProduct
(GramSchmidt Option), 458,459, 461, 462
InputForm (2), 225
integral calculus, 123-136
integral tables, loading, 123
integrals
approximation, 129
definite (2), 129
definite, $125-129$
indefinite, 124, 125
multiple, 176-184
numerical approximation by Gaussian Quadrature (2), 549-552
IntegralTables.m, 125
Integrate (double integrals), 176
Integrate, 123-128
interest compounded daily, 210
InterpolatingFunction, 414, 415
plotting of, 415
interpolation with a rational
function (2), 544-548
Interrupt, 618
intersection points of graphs, 79
inverse trigonometric functions, 24
Inverse, 269
InverseLaplaceTransform (2), 471
investments, 224-227

J

Jaccobian matrix, 390

K

Kernel Help (2), 606-608

L

Lagrange multipliers
(optimization problems), 170-176
LaguerreL, 202
LaplaceTransform (2), 471
LaplaceTransform.m (2), 471-476
laplacian of a scalar field, 303
Laplacian, 304
Last, 204
Legendre polynomials, 459, 460
Legendre's equation, 377,378
length of vector, 311, 317-318
Length, 204
Limit (2), 90, 91
Limit, 86-89
limits
computation of, 86-91
numerical approximation of (2), 553-558
one-sided, 91,92
Linear Algebra folder, 435
linear programming, 288-302
LinearProgramming, 295
LinearRegression.m, 589-593
LinearSolve, 279,451
list, 192
list//function, 207, 208
ListPlot, 198,202
Log, 20,21,22
Logical Expand, 145,149, 394
Long Menu (2), 622

M

Map, 200, 201
matrix
multiplication, powers of matrices, 274, 275
operations, 268
adjacency, 448
complex conjugate transpose, 435

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0.
condition number of, 452, 453
Hermetian, 435
Hilbert, 451
norm of, 452, 453
positive definite, 435
symmetric, 435
well-conditioned, 452, 453
MatrixForm, 263
MatrixManipulation.m, 447-454
MatrixPower, 275, 276, 450
maxima and minima, 109-114
maximization/minimization (calculus) problems, 107-110
Mean, 571, 572
MeanCI, 586
MeanDeviation, 574
MeanDifferenceTest, 582
MeanDifferenceTest, 582
MeanTest, 580
Median, 574
MedianDeviation, 574
Menu (2), 622-626
Menu, 612-626
menu, 11
minimal polynomial of a matrix, 282
MiniMaxApproximation (2), 547
Mod, 37,44, 207
Module (2), 576
MoebiusStrip, 513, 518, 519
multi-variable calculus, 147-189
Multinomial, 481-483

N

N, 6,18,22
naming graphs, 50
naming objects, 28
natural logarithm, 20
ND (2), 555-557
NDSolve (2), 396-397, 414-415, 417-419
Nest, 40
NFourierTrigSeries (2), 477, 479
NIntegrate (double integrals), 176
NIntegrate, 127,129
NLimit.m (2), 553-558
Normal, 140,141, 186,395
NormalDistribution, 572
Normalized
(GramSchmidt Option), 459
notebook, 4
NRoots, 76,100, 101,102, 130
NSolve (2), 78,103
NSum, 426

Numerator, 27
Numerical Math folder (2), 543
numerical
differentiation (2), 555-557
integration, 129
limits (2), 553-555
solutions of differential
equations (2), 396-397,414-415,417-419

0

objective function, 298
Octahedron, 510
operation@@list, 209
Options, 600
ordinary differential equations
Cauchy-Euler, 369-371
characteristic equation, 363
equilibrium points of, 385, 389-390
exact, 345-354
finite element method
of solution of, 465-469
first-order linear (DSolve), 336-344
initial value problem, 366
initial value system (DSolve), 380-381
linear n-th order
homogeneous, 363
linearization of
nonlinear systems, 385, 389-391
numerical solution of (2), 414-416
numerical solution of systems of (2), 417-421
power series solutions, 143-146
Runge-Kutta approximate
solution to, 565-570
series solutions, 392-401
solution by Laplace
transform (2), 473-476
systems of linear
(DSolve), 380-385
undetermined coefficients, 355-362
variation of parameters, 372-376
Orthogonalization.m, 455-463
Out[n], 38
output, Version 2.0, 41

P

p-value, 580
Packages folder, 422
ParametricPlot, 229,476
ParametricPlot3D, 413,523
ParametricPlot3D.m, 523-527

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0 .
partial differential equations
series solutions to, 402-413
partial fraction decomposition, 27
pendulum equation, nonlinear, 414-416
PermutationQ, 494
Permutations.m, 494-496
Pi, 8,19,21
piecewise defined functions, 67,68
PieChart, 507-508
Plot, 8,48
Plot options, 54
PlotRange, 141
PlotRange, 545
PlotStyle, 48
RGBColor, 48
Plot3D, 8,147, 149,151
Plot3D options
Axes, 166
Boxed, 165
BoxRatios, 165
DisplayFunction, 169
Mesh, 165
PlotLabel, 165
PlotPoints, 149
Shading, 149
Ticks, 165
PlotField.m (2), 533-534
PlotField3D.m (2), 535-538
PlotGradientField (2), 534
PlotGradientField3D (2), 535, 537
PlotJoined (ListPlot option), 202
PlotLabel, 54,59, 63
PlotODESolution, 569
PlotPoints (Plot3D option), 309,153
PlotRange, 54,229
PlotStyle, 8,53
plotting a list of functions, 199,231
plotting tangent line to curve, 237-239
PlotVectorField (2), 533
PlotVectorField3D (2), 536
PolarListPlot, 501-503
PolarMap (2), 540-542
PolarPlot, 497-500
PolyGamma, 556
Polyhedra.m, 509-512
Polyhedron, 509
polynomial approximation
with Legendre polynomials, 462, 463
PolynomialFit (2), 559
PolynomialFit.m (2), 559-564
PolynomialMod (2), 46
power series, 137-146
power series of a function of more
than one variable, 185-189
power series, remainder term of, 141-143
Preferences (2), 623, 624
Prime, 45
prime notation, 94
Prime, 197
Print (2), 225
Projection, 457

Q

quadratic equations
(quadratic form), 440, 441
Quartiles, 574

R

Random, 573
RandomPermutation, 495, 496
RationalInterpolation (2), 544
Re, 427
Rectangle (2), 61,62
references, 634
Regress, 589, 593
Relm.m, 427-435
Release, 8,199, 231
resizing graphics cell, 505
retrieving unnamed output, 38
RotateShape, 518, 519, 521
RungeKutta, 565
RungeKutta.m, 565-570

S

saving output files, 332-334
scalar function, 303
Sec, 20
second-derivative
test for extrema, 160
Series, $137,139,185,393$
series, truncation of, 395
SetCoordinates[System], 303
Settings
Action, 613, 614
Animation, 615
Startup, 612, 613
Shading (Plot3D option), 153,309
Shapes.m, 513-522
Short, 573
Short Menu (2), 622
Short, 200
Show, 51,61,62
Simplify, 32,88,90
simultaneous plots with Show, 243, 245, 248

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0.

Sin, 8,20, 23
SingularValues, 453, 454
solidrev, 413
solids of revolution, 134-136
Solve, 71-75,80
solving equations, 71,76
solving systems of
linear equations, 277-282
solving systems with
LinearSolve[A,b], 279, 282
solving systems with Solve, 277, 278, 281
Sort, 573
SpaceCurve (o), 524-527
Sphere, 515-517
Spherical coordinates, 303
spring motion, 380-385
Sqrt, 18
Stack Windows, 619
Startup Settings, 612, 613
Statistics folder (2), 579
statistics
confidence intervals, 586-588
ConfidenceLevel, 586
Density, 572
DispersionReport, 575
hypothesis tests, 580-585
KnownStandardDeviation, 582, 587
mean, 571-575
Mean, 572
MeanCI, 586
MeanDifferenceTest, 582
MeanTest, 580
p-value, 580
Quartiles, 574
variance, 571-575
Variance, 572
VarianceCI, 588
VarianceTest, 585
Stellate, 511, 512
Stoke's Theorem, 316-321
Style (Menu) (2), 626
Style (Menu), 9,12, 618
Styles Window, 621
Subfactorial, 484
sums,
closed form expressions of, 424-426
SymbolicSum (2), 425
SymbolicSum.m (2), 224, 225, 423

T

Table, 8,45, 192
TableForm, 45,230

Tan, 20,23
tangent lines, 104-106
graphing, 106,107, 108
horizontal, 101
tangent planes, 167-169
Taylor polynomials, 142
Taylor remainder, 144
test equality, 331, 347
Tetrahedron, 510
Ticks, 54,228
Tile Windows Tall, 620
Tile Windows Wide, 620
ToCycles, 495, 496
Together, 26
Torus, 514, 522
total differential, 350
trace of a matrix, 282
TranslateShape, 518, 519, 522
transportation problem, 297-302
Transpose, 269,436, 437,439, 441
Tridiagonal.m, 464-469
TridiagonalSolve, 464
TrigCanonical (o), 599
TrigExpand (o), 320, 360
trigonometric functions, 20,23
Trigonometry.m, 387,429
TrigReduce, 432

U

unit normal vector, 305,317
user-defined functions, 30

V

Van der Pol's equation , 417-421
Variables, 357
Variance, 571, 572
VarianceCI, 588
VarianceTest, 585
vector calculus, 303-321
vector-valued functions, 34,35
VectorAnalysis.m, 303
vectors
cross product of, 442
Gram-Schmidt orthogonalization of basis, 455-459
length of, 443, 457
projection onto subspace, 456
volume, 136
volume,
computation with multiple integral, 180-184
volumes of solids of revolution, 134-136

Index

(o) implies obsolete in Version 2.0;
(2) implies applicable only to Version 2.0.

W

wave equation
(with initial and boundary conditions), 403-404
wave equation, solution to, 408-413
Window (Menu) (2), 624
Window (Menu), 619, 620
window, 12
WireFrame, 516
Wronskian matrix, 372

