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Preface 

Mathematica By Example bridges the gap which exists between the very elementary 
handbooks available on Mathematica and those reference books written for the advanced 
Mathematica users. This book is an extension of a manuscript which was developed to 
quickly introduce enough Mathematica commands to a group of students at Georgia 
Southern University so that they could apply Mathematica towards the solution of 
nonlinear ordinary differential equations. In addition to these most basic commands, these 
students were exposed to the vast uses of lists in Mathematica. Having worked through 
this material, these students were successfully able to take advantage of the capabilities of 
Mathematica in solving problems of interest to the class. 

Mathematica By Example is an appropriate reference book for all users of Mathematica 
and, in particular, for beginning users like students, instructors, engineers, business 
people, and other professionals first learning to use Mathematica. Mathematica By Example 
introduces the very basic commands and includes typical examples of applications of these 
commands. In addition, the text also includes commands useful in areas such as calculus, 
linear algebra, business mathematics, ordinary and partial differential equations, and 
graphics. In all cases, however, examples follow the introduction of new commands. 
Readers from the most elementary to advanced levels will find that the range of topics 
covered will address their needs. 

Some of the changes in the revised edition include: 

1. Table of contents. The table of contents includes all chapters, section headings, 
and sub-section headings. Along with the index, we hope that users will be 
able to locate information quickly and easily. 

2. Additional examples. We have considerably expanded the topics in Chapters 1 
through 6. The results should be more useful to instructors, students, business 
people, engineers, and other professionals using Mathematica on a variety of 
platforms. In addition, several sections have been added to help make locating 
information easier for the user. 

xi 



xii Preface 

3. Index. The index to the text is substantially more comprehensive than that in 
the first edition. Consequently, mathematical examples of commands and 
elementary sequences of commands will be easier to locate. In addition, 
commands listed in the index are cross-referenced with frequently used 
options. Functions contained in packages are cross-referenced both by package 
and alphabetically. 

Of course, appreciation must be expressed to those who assisted in this project. Most 
importantly, we would like to thank our assistant, Lori Braselton, for typing, running, and 
verifying a substantial portion of the code that appears in the text in addition to proof-
reading a large portion of the text. We would also like to thank Professor William F. Ames 
for suggesting that we publish our work and for helping to contact the appropriate people 
at Academic Press. We would like to express appreciation to our editor, Charles B. Glaser, 
and our production manager, Brian Miller, for providing a pleasant environment in which 
to work. Finally, we would like to thank those close to us for enduring with us the 
pressures of meeting a deadline and for graciously accepting our demanding work 
schedules. We certainly could not have completed this task without their care and 
understanding. 

M. L. Abell 

J. P. Braselton 

Statesboro, Georgia 















[ira I 
Getting Started 

/. / Introduction to Mathematica 

Mathematica, first released in 1988 by Wolfram Research, Inc., is a system for doing math-
ematics on a computer. It combines symbolic manipulation, numerical mathematics, out-
standing graphics, and a sophisticated programming language. Because of its versatility, 
Mathematica has established itself as the computer algebra system of choice for many 
computer users. Among the over 100,000 users of Mathematica, 28% are engineers, 21% are 
computer scientists, 20% are physical scientists, 12% are mathematical scientists, and 12% 
are business, social, and life scientists. Two-thirds of the users are in industry and gov-
ernment with a small (8%) but growing number of student users. However, due to its spe-
cial nature and sophistication, beginning users need to be aware of the special syntax re-
quired to make Mathematica perform in the way intended. 

The purpose of this text is to serve as a guide to beginning users of Mathematica and 
users who do not intend to take advantage of the more specialized applications of 
Mathematica. The reader will find that calculations and sequences of calculations most 
frequently used by beginning users are discussed in detail along with many typical exam-
ples. In addition, the comprehensive index not only lists a variety of topics but also cross-
references commands with frequently used options. We hope that Mathematica By Example 
will serve as a valuable tool to the beginning user of Mathematica. 

I 



2 I Getting Started 

A Note Regarding Different Versions 
of Mathematica 

For the most part, Mathematica By Example was created with Version 2.2 of Mathematica. 
With the release of Version 2.0 of Mathematica, several commands from earlier versions of 
Mathematica have been made obsolete. In addition, Version 2.0 incorporates many 
features not available in Version 1.2. Version 2.2 contains even more features than Version 
2.0. If you are using an earlier or later version of Mathematica, your results may not appear 
in a form identical to those in this text. Similarly, the physical appearance of results may 
not be identical on all computer platforms. 

You can determine the version of Mathematica you are using during a given 
Mathematica session by entering either the command $ Ver s i o n or the command 
$Vers ionNumber. 

/. 2 Getting Started 
with Mathematica 

After the Mathematica program has been properly installed, a user can access 
Mathematica. If you are using a text-based interface (like UNIX), Mathematica is started 
with the operating system command math. If you are using a notebook interface (like 
Macintosh, Windows, or NeXT), Mathematica is started by selecting the Mathematica icon 
and double-clicking or selecting the Mathematica icon and selecting Open from the File 
menu. 

Once Mathematica has been started, computations can be carried out immediately. 
Mathematica commands are typed to the right of the prompt and then evaluated by 
pressing ENTER. Generally, when a semicolon is placed at the end of the command, the 
resulting output is not displayed. Note that pressing ENTER evaluates commands and 
pressing RETURN yields a new line. Output is displayed below input. We illustrate some 
of the typical steps involved in working with Mathematica in the calculations below. In 
each case, we type the command and press ENTER. Mathematica evaluates the command, 
displays the result, and inserts a new prompt. For example, entering 

N [ P i , 5 0 ] 

3 .14159265358979323846264338327950288419716939937511 

returns a 50-digit approximation of π. 
The next calculation can then be typed and entered in the same manner as the first. For 

example, entering 
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Solve [χΛ3-2χ+1==0] 

-1 - Sqrt[5] -1 + Sqrt[5] 
{{x -> 1}, {x -> }, {x -> }} 

2 2 

solves the equation x3-2x + l = 0 for x. Subsequent calculations are entered in the same 
way. For example, entering 

Plot [{Sin[x],2 Cos[2x]},{x,0,3Pi}] 

graphs the functions sin* and 2cos2x on the interval [0,3π]. Similarly, entering 

Plot3D [Sin[x+Cos[y]] ,{x,0,4Pi} ,{y,0,4Pi} ,Ticks->None,Boxed->False, 
Axes->None,PlotPoints->25] 

graphs the function sin(x + cosy) on the rectangle [0,4π]χ[0,4π]. 
Notice that every Mathematica command begins with capital letters and the argument 

is enclosed by square brackets " [ . . . ] " . 
Mathematica sessions are terminated by entering Q u i t [ ] . On several platforms with 

notebook interfaces (like Macintosh, Windows, and NeXT), Mathematica sessions are 
ended by selecting Quit from the File menu, or by using the keyboard shortcut 36Q, as 
with other applications. They can be saved by referring to <H>S from the File menu. 

On these platforms, input and text regions in notebook interfaces can be edited. Editing 
input can create a notebook in which the mathematical output does not make sense in the 
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sequence it appears. It is also possible to simply go into a notebook and alter input without 
doing any recalculation. This also creates misleading notebooks. Hence, common sense 
and caution should be used when editing the input regions of notebooks. Recalculating all 
commands in the notebook will clarify any confusion. 

Preview 

In order for the Mathematica user to take full advantage of the capabilities of this software, 
an understanding of its syntax is imperative. The goal of Mathematica By Example is to 
introduce the reader to the Mathematica commands and sequences of commands most 
frequently used by beginning users. Although all of the rules of Mathematica syntax are 
far too numerous to list here, knowledge of the following five rules equips the beginner 
with the necessary tools to start using the Mathematica program with little trouble. 

Five Basic Rules of Mathematica Syntax 

1. The arguments of functions are given in brackets [ . . . ] parentheses ( . . . ) 
are used for grouping operations; vectors, matrices, and lists are given in 
braces { . . . } ; and double square brackets [ [ · - - ] ]are used for indexing lists 
and tables. 

2. The names of built-in functions have their first letters capitalized; if a name 
consists of two or more words, the first letter of each word is capitalized. 

3. Multiplication is represented by a space or *. 
4. Powers are denoted by a Λ. 
5. If you get no response or an incorrect response, you may have entered or 

executed the command incorrectly. In some cases, the amount of memory 
allocated to Mathematica can cause a crash; like people, Mathematica is not 
perfect and some errors can occur. 

1.3 Loading Packages 

Although Mathematica contains many built-in functions, some other functions are 
contained in packages which must be loaded separately. A tremendous number of 
additional commands are available in various packages which are shipped with each 
version of Mathematica. Experienced users can create their own packages; other packages 
are available from user groups and MathSource, which electronically distributes 
Mathematica-related products. For information about MathSource, send the message 
"help" to mathsource@wri.com. On a computer with a notebook interface, the folder 
containing the packages shipped with Mathematica is shown below. Descriptions of the 
various packages shipped with Mathematica are contained in the Technical Report: Guide to 
Standard Mathematica Packages published by and available from Wolfram Research, Inc. 

mailto:mathsource@wri.com
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= Π = = = 
16 items 

□ 
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Packages are loaded by entering the command « d i r e c t o r y " packagename" where 

d i r e c t o r y is the location of the package p a c k a g e name. Entering the command 
« d i r e c t o r y v M a s t e r v makes all the functions contained in all the packages in 
d i r e c t o r y available. In this case, each package need not be loaded individually. For 
example, to load the package SymbolicSum contained in the Algebra folder (or directory), 
we enter 

«Algebra" SymbolicSum" 

In addition to defining the function SymbolicSum, this package enhances the capabilities 
of the built-in Sum function. For example, after the package SymbolicSum has been 
loaded, entering 

S u m [ k ~ 3 , { k , l , n } ] 

2 2 
n (1 + n) 

computes a closed form of the sum \ \ k3. The same results are obtained by entering 

S y m b o l i c S u m [ k ^ 3 , { k , 1 , n } ] 

2 2 
n (1 + n) 

4 

5 
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After loading the package SymbolicSum we are able to compute the partial sums of a 

geometric series like V — and V — as illustrated below. I n f i n i t y represents °°. 

S u m [ ( l / 3 ) " n , { n , l , k } ] 

1 k 
1 - ( - ) 

3 

2 

S u m [ ( l / 3 ) * n , { n , l , I n f i n i t y }] 

1 

2 

Exact values of many series studied in standard calculus courses can be computed 

explicitly like V —, as shown below. The symbol E in the resulting output represents the 
k=0 

mathematical constant e~ 2.71828. The symbol !, also represented by F a c t o r i a l , 
represents the factorial function: n\ = n · (n -1) · (n - 2) ·...3 · 2 · 1. 

Sum[l/k! , { k , 0 , I n f i n i t y } ] 

E 

Two Words of Caution 

When users take advantage of packages frequently, they often encounter the error 
messages discussed here. For example, suppose we have loaded the package 
Trigonometry contained in the Algebra folder by entering 

«Algebra" Trigonometry " 

We can then use the command T r i g R e d u c e contained in the Trigonometry package 
which applied multiple angle identities (like sin(x±y) = sinxcosy±sinycosx and 
cos(x ±y) = cos x cos y + sin x sin y ) to an expression to simplify an expression like cos(2x - y), as 
illustrated below. 

TrigReduce [Cos[2x-y]] 

2 
(-1 + 2 Cos[x] ) Cos[y] + 2 Cos[x] Sin[x] Sin[y] 

If, during the same Mathematica work session, we attempt to reload the Trigonometry 
package, we obtain several error messages as shown below. 

6 
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«Algebra" Trigonometry " 

SetDelayed::write: 
Tag TrigCanonical in TrigCanonical[e_] is Protected. 

SetDelayed::write: Tag TrigExpand in TrigExpand[ ] is Protected. 
SetDelayed::write: Tag TrigExpand in TrigExpand[e_] is Protected. 
General::stop: 

Further output of SetDelayed::write 
will be suppressed during this calculation. 

Set::wrsym: Symbol TrigFactorRel is Protected. 
Set::wrsym: Symbol TrigFactorRel is Protected. 

These error messages may be ignored as the functions contained in the package 
Trigonometry work in the same way as they did before reloading the package. For 
example, below we use TrigFactor to write sin3x-sinx as a product of trigonometric 
functions. 

TrigFactor [Sin[3x]-Sin[x]] 

2 Cos[2 x] Sin[x] 

Another error message that occurs frequently is when a command is entered before the 
package is loaded. For example, the command G r a m S c h m i d t [ { v l , v2 , . . . , v n } ] 
returns an orthonormal set of vectors with the same span as the vectors wv v2,..., vn. Below, 
we attempt to use the command GramSchmid t , contained in the Orthogon-alization 
package located in the LinearAlgebra folder before the package has been loaded. Since 
Mathematica does now know the meaning of GramSchmidt, our input is returned. 

GramSchmidt[{{1,1,0},{0,2,1},{1,0,3}}] 

GramSchmidt[{{l, 1, 0}, {0, 2, 1}, {1, 0, 3}}] 

At this point, we load the Orthogonalization package, which contains the GramSchmidt 
command, located in the LinearAlgebra folder. Several error messages result. 

«LinearAlgebra*Orthogonaliz at ion" 

GramSchmidt::shdw: 
Warning: Symbol GramSchmidt appears in multiple contexts 
{LinearAlgebra"Orthogonalization", Global"}; definitions in 
context LinearAlgebra"Orthogonalization" 
may shadow or be shadowed by other definitions. 

In fact, when we reenter the command, we obtain the same result as obtained above. 

GramSchmidt[{{1,1,0},{0,2,1},{1,0,3}}] 

GramSchmidt[{{l, 1, 0}, {0, 2, 1}, {1, 0, 3}}] 

However, after using the command Remove, the command GramSchmid t works as 
expected. Alternatively, we can quit Mathematica, restart, load the package, and then 
execute the command. 

7 
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Remove[GramSchmidt] 
GramSchmidt 

1 1 1 1 1 
{ { , , 0} , {-( ) , , }, 

Sqr t [2] Sqr t [2] Sqr t [3] Sqr t [3] Sqr t [3] 

1 1 2 
{ , _( } , s q r t [ - ] } } 
Sqr t [6] Sqr t [6] 3 

Similarly, we can take advantage of other commands contained in the Orthogonalization 
package like N o r m a l i z e which normalizes a given vector. 

Normalize[{l,2,3}] 

1 2 3 
{ , S q r t [ - ] , } 
Sqrt[14] 7 Sqrt[14] 

1.4 Getting Help from Mathematica 

Help Commands 

Becoming competent with Mathematica can take a serious investment of time. Hopefully, 
messages that result from syntax errors are viewed lightheartedly. Ideally, instead of 
becoming frustrated, beginning Mathematica users will find it challenging and fun to 
locate the source of errors. Frequently, Mathematica's error messages indicate where the 
error(s) has (have) occurred. In this process, it is natural that one will become more 
proficient with Mathematica . 

One way to obtain information about commands and functions, including user-defined 
functions, is the command ?. ? o b j e c t gives information on the Mathematica object 
o b j e c t . 

EXAMPLE: Use ? to 
PolynomialDivis ion. 

obtain information about the command 

SOLUTION: 

?PolynomialDivision 

PolynomialDivision[p, q, x] gives a list of 
the quotient and remainder obtained by 
division of the polynomials p and q in x. 
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Below, we illustrate P o l y n o m i a l D i v i s i o n by computing the quotient and 
remainder obtained by dividing x3 + 1 by x - 1 . 

PolynomialDivision [x A 3+l ,x-1 ,x] 

2 
{1 + x + x , 2} 

The result means that (x-l)(x2+x + l) + 2 = x3+l which is verified below with 
Expand. 

Expand [(1+χ+χΛ2)(x-l)+2] 

3 
1 + x 

Another way to obtain information on Mathematica commands is the command 
O p t i o n s . O p t i o n s [ o b j e c t ] returns a list of the available options associated with 
o b j e c t along with their current settings. This is quite useful when working with a 
Mathematica command such as P a r a m e t r i c P l o t which has many options. Notice that 
the default value (the value automatically assumed by Mathematica ) for each option is 
given in the output. 

EXAMPLE: Use O p t i o n s to obtain a list of the options and their current settings 
for the command P a r a m e t r i c P l o t . 

SOLUTION: The command O p t i o n s [ P a r a m e t r i c P l o t ] lists all the options 
and their current settings for the command P a r a m e t r i c P l o t . 

Options[ParametricPlot] 

1 
{AspectRatio -> , Axes -> Automatic, 

GoldenRatio 
AxesLabel -> None, AxesOrigin -> Automatic, 
AxesStyle -> Automatic, Background -> Automatic, 
ColorOutput -> Automatic, Compiled -> True, 
DefaultColor -> Automatic, Epilog -> {}, 
Frame -> False, FrameLabel -> None, 
FrameStyle -> Automatic, FrameTicks -> Automatic, 
GridLines -> None, MaxBend -> 10., 
PlotDivision -> 20., PlotLabel -> None, 
PlotPoints -> 25, PlotRange -> Automatic, 
PlotRegion -> Automatic, PlotStyle -> Automatic, 
Prolog -> {}, RotateLabel -> True, 
Ticks -> Automatic, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

9 
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? ? o b j e c t or, equivalently, I n f o r m a t i o n [ o b j e c t ] yields the information on the 
Mathematica object o b j e c t returned by both ?object and O p t i o n s [ o b j e c t ] in addition 
to a list of attributes of o b j e c t . Note that o b j e c t may either be a user-defined object or a 
built-in Mathematica object. 

EXAMPLE: Use ? ? to obtain information about the command Map. Use 
I n f o r m a t i o n to obtain information about the command PolynomialLCM. 

SOLUTION: Below we use ? ? to obtain information about the commands S o l v e 
and Map, including a list of options and their current settings. 

??Solve 

Solve[eqns, vars] attempts to solve an equation or 
set of equations for the variables vars. Any 
variable in eqns but not vars is regarded as a 
parameter. Solve[eqns] treats all variables 
encountered as vars above. Solve[eqns, vars, 
elims] attempts to solve the equations for vars, 
eliminating the variables elims. 

Attributes[Solve] = {Protected} 

Options[Solve] = 
{InverseFunctions -> Automatic, 
MakeRules -> False, Method -> 3, Mode -> Generic, 
Sort -> True, VerifySolutions -> Automatic, 
WorkingPrecision -> Infinity} 

??Map 

Map[f, expr] or f /@ expr applies f to each element 
on the first level in expr. Map[f, expr, 
levelspec] applies f to parts of expr specified 
by levelspec. 

Attributes[Map] = {Protected} 

Options[Map] = {Heads -> False} 

Similarly, we use I n f o r m a t i o n to obtain information about the command 
PolynomialLCM including a list of options and their current settings. 

Information[PolynomialLCM] 

PolynomialLCM[poly1, poly2, ...] gives the 
least common multiple of the polynomials 
polyl, poly2, ... . PolynomialLCM[poly1, 
poly2, ..., Modulus->p] gives the LCM 
modulo the prime p. 

10 
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Attributes[PolynomialLCM] = 
{Listable, Protected} 

Options[PolynomialLCM] = 
{Modulus -> 0, Trig -> False} 

The command Names [ " fo rm" ] lists all objects which match the pattern defined in 
form. For example, Names [ " P l o t " ] returns P l o t , Names [ " * P l o t " ] returns all objects 
that end with the string P l o t , and Names [ " P l o t * " ] lists all objects that begin with the 
string P l o t , and Names [ " * P l o t * " ] lists all objects which contain the string P l o t . 
Names [ "form" , S p e l l i n g C o r r e c t i o n - > T r u e ] finds those symbols which match the 
pattern defined in form after a spelling correction. 

EXAMPLE: Create a list of all built-in functions beginning with the string P l o t . 

SOLUTION: Below, we use Names to find all object which match the pattern 
P l o t . 

Names["Plot"] 

{Plot} 

Next, we use Names to create a list of all built-in functions beginning with the 
string P l o t . 

Names["Plot*"] 

{Plot, PlotColor, PlotDivision, PlotJoined, 

PlotLabel, PlotPoints, PlotRange, PlotRegion, 

PlotStyle, Plot3D, Plot3Matrix} 

The command ? can be used in several other ways. Entering 

? l e t t e r s * gives all Mathematica commands which begin with the string 
l e t t e r s ; 
? * l e t t e r s * gives all Mathematica commands that contain the string l e t t e r s ; 
and 
? * l e t t e r s gives all Mathematica commands which end in the string l e t t e r s . 
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EXAMPLE: What are the Mathematica functions that (a) end in the string Cos; (b) 
contain the string Sin; and (c) begin with the string Po lynomia l ? 

SOLUTION: Entering 

?*Cos 

ArcCos Cos 

yields all functions that end with the string Cos, entering 

?*Sin* 

ArcSin SingularValues 
ArcSinh Sinh 
IncludeSingularTerm Sinhlntegral 
Sin Sinlntegral 
SingularityDepth 

returns all functions containing the string Sin, and entering 

?Polynomial* 

PolynomialDivision PolynomialQ 
PolynomialGCD PolynomialQuotient 
PolynomialLCM PolynomialRemainder 
PolynomialMod 

returns all functions that begin with the string P o l y n o m i a l . 

Mathematica Help 

On some platforms with a notebook interface (like Macintosh, Windows, and NeXT), 
additional help features are accessed from the Mathmematica Menu. For example, if the 
user wishes to use a command which begins with P o l y n o m i a l , but does not remember 
the rest of the command, help can be obtained in the following manner. 
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é File Edit Cell Graph Find ^ f l ^ | Stole Window Help ^ 

GettingHelp 

mSrSSBSSi 
PolynomialDivisiori 
I î/ïl CTflii iiit:i BHIMB̂ MÎ B 
PolynomialLCM ^ 
PolynomialMci 
PolynomialQ 
PolynomialQuo tient 
PolynomialRemmidei 

3ιοο% ▼ ΙΦΓ na 
\ö\ 
a 

é File Edit Cell Graph Find Action Style Window Help 

GettingHelp i 

PolynomialDivision! M 

J100% ^r|OL vem 
\o\ 
a 

2. 

3. 

4. 

Type the word P o l y -
nomia l , 
Move the cursor to the 
Ret ion heading and use 
the mouse to obtain the 
Ret ion submenu, 
Choose Complete 
Selection from the 
submenu (This causes a 
list of commands which 
begin with P o l y n o m i a l 
to be displayed), 
Move the cursor to the 
desired command in the 
list and click. In this 
particular case, we select 
P o l y n o m i a l D i v i s i o n . 
The selected command is 
then completed on the 
screen. 

In addition to helping you complete commands, Mathematica can also complete a given 
command with its typical syntax. For example, to find the typical syntax of the command 
P o l y n o m i a l D i v i s i o n , 

(1) Type the command P o l y n o m i a l D i v i s i o n , (2) Move the cursor to the Rct ion 
heading and use the mouse to obtain the R c t i o n submenu, and (3) Choose M a k e 
Template from the submenu. The results are shown below. At this point, you can select 
each argument and replace them with the values you wish. 
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é File Edit Cell Graph Find Rction Style Window Help 

GettingHelp 
P o1ynomiaID i v i s i on[ft 

1100% ▼IOC 

m 

o\ 
a 

Additional features available to those working with notebook interfaces include the 
Help heading of the Mathematica menu. Under the Help heading of the Mathematica 
menu, we have Open Function Browser..., Find in Function Browser..., LUhy 
the Beep?..., Getting Started..., Shortcuts..., and Help Pointer. 

Moving the cursor to the Help heading and using the mouse to select Getting 
Started yields the following window. 

é File Edit Cell Graph Find Action Style Window Help 

Getting Help In Mathematica p>] 

To learn the basics of using ^Jat/tematfca, read the 
"Getting Started v i t h Ptathematicé' section below. 

To get hel p about a menu command, press Command- ? and 
then select the command from the menu. 

To get help about a dialog box, click the Help button in the 
dialog box. 

To get hel p about an object on the screen ( e.g., the scroll 
bar ) , press Command- ? and then click the object. 

To get help about a tlathematica language command, type a 
question mark followed by the command name 
(?command} into a new cel l , then evaluate i t by pressing 

OK 

This document provides a variety of basic information about Mathematica. 
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é File Edit Cell Graph Find fiction Style Window Help 

Getting Started with Mathematics 

Evaluating Expressions 

To evaluate an expression, type in the expression, then 
press Shift-Return or Enter. (If this is the first 
expression you have evaulated, it will take a while to 
start the tlathermtica kernel.) 

To change or re-eval uate an expression that is al ready i n 
your Notebook, click it and edit 
in the normal Macintosh way. Pres3 Shift-Return or 
Enter to re-evaluate it. The answer will replace the old 
answer, directly below the input expression. 

Note: It is not necessary to select the whole expression |Ol 

C^T3 

Moving the cursor to the Help heading and using the mouse to select S h o r t c u t s 
yields the following window which describes keyboard shortcuts to several of the 
commands available from the Mathematica menu. 

é File Edit Cell Graph Find Rction Style Window Help 

oo Mathematica Shortcuts K> 

(For information about these functions, see the relevant 

menu and dialog box help messages.) 

Evaluate an expression: Shift-Return or Enter. 

Evaluate in Dialog: Shift-Option-Return. (Interrupts 
current calculation and evaluates selected cells, then 
continues). 

Open or close a group of cells: Double-click the 
group bracket. 

Crop (cl ip) a graphic: Command-drag the graphic'3 
bounding box handle. R> 

The selection Help Po inter can be used to obtain information about particular regions 
in a notebook. In the following example, we use Help Pointer to obtain information about 
a graphics cell. 
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é File Edit Cell Graph Find Rction Style UJindoui Help 

^W 
GettinyHelp i 

_E_ Ιβ. , . i 

|lnput JÎ IBMM 
(Local) ini3!j.= 

P l o t 3 D [ S i n [ x + C o s [ y l ] . { x , 0 \ 4 P i } , { y , 0 , 4 P i } , 
Tick3->Hone,Boxed->False, 
Àxes->None, 
P lo tPo int3->25] 

File Edit Cell Graph Find Rction Style Window Help 

In this case, we have used 
the P l o t 3D command to 
graph sin (x + cosy) on the 
rectangle [0,4π]χ[0,4π]. 

We then move the cursor to 
the Help heading and use the 
mouse to select H e l p 
Pointer. Note that the cursor 
becomes a question mark. 

We then move the cursor to 
the Help heading and use the 
mouse to select Why t h e 
Beep? . Mathematica displays 
the following window. 
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Why the Beep?... can help explain why Mathematica "beeps" at certain times or 
under certain conditions. 

é File Edit Cell Graph Find Rction Style Window Help 

(Local) Out[5U= 
- Sur f a c eGraphi c s -
P l o t [ x A 2 / ( l + x A 2 , { z , - 2 , 2 ] 

J l00% ▼1^1" B m 

This plot command 
contains two errors. 

é File Edit Cell Graph Find Action Style Window Help When we press ENTER, 
Mathematica "beeps" and dis-
plays an error message. 
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é File Edit Celt Graph Find fiction Style Window Help 

(Loc*f.)Ottif3tJ* 
-SurfaceGij 

(Local) titf34]À 
P l o t [ x A 2 i | 

Syntax : :b] 
M{x,-2 

Mathematica could not understand the 
expression you tried to evaluate. It left the 
insertion bar at the place where i t got 
confused. 

;v must be followed by "}" , not " ] " . I T 

lioo% ▼!<£!" J3 
é File Edit Cell Graph Find Rction Style 

| 1 Π = ^ ^ ^ ^ ^ GettingHelp S U M 
. It. , . i . . . 12. . . , . , . |3. , . , . , . |4. , . , . , . |5. , 

Window 

. . . . 16. , 

Help 

^^mm 
. 1 . , . 

1 impÎt ~^η m m m 
(Local) lnf34j.= 

P l o t [ x A 2 / ( l + x A 2 ) , { x , - 2 , 2 } ] 

\ °'8 

\ ° 6 

\ ° 4 

\ 0.2 

y-
/ 

/ 

j 
- 2 - 1 1 2 

(Local) Outf34j= 
1 -Graphics-

J 

J 
]J 

! ; ■ ■ ■ ■ ■ lioo% ▼lOU £ 

Ή 

LJ 

W\ 
>ld 

We then move the cursor to 
the Help heading and use the 
mouse to select ID h y t h e 
Beep? . Mathematica displays 
the following window. 

Correcting the command 
and pressing ENTER results 

x2 

in the graph of on the 
6 Y 1 + x2 

interval [-2,2]. 
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Open Function Brom S er... contains descriptions of all Mathematica commands. As 
the commands are arranged by topic, the Function BroiDSer is an excellent way to 
become familiar with Mathematica commands. Moving the cursor to Help and selecting 
Open Function Browser... yields the following window. 

ΗΠΠΐππίΤϊΙΠΠΠΗΐη 
(§) Built-in Functions O Packages O Loaded Packages (Ûpïïiïi) 
1 Numeri cal Computati on ► 
Algebraic Computation^ 
Mathemati cal Functi ons ► 
Lists and Matrices ► 
Graphics and Sound ► 

(Programming ► <> 

<> 

Options: (int&rtOpMon 

\ 

<> 

51 

§1 
1 I 

Help II Paste Template^ [Eualuate Template) 

In this case, we select Lists and Matrices, then List Construction, and 
DiagonalMatrix. Mathematica displays a brief description of the command 
DiagonalMatrix as shown below. 

DiagonalMatrix[list] gives a matrix with the elements of list on the leading 
diagonal, and 0 elsewhere. 

Options: ( I n ^ r t Dptioft]! DiaoonalMatrixi l lHll 

| Help [[Paste Template )(Ëualuate Template 
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If we then replace list with a list of numbers and press Eualuate Template , 
Mathematica inserts the command into the active notebook and evaluates the command. 

DiagonalMatrix[list] gives a matrix with the elements of list on the leading 
diagonal, and 0 elsewhere. 

O 
Options: firmer I DpUonjI DiagonalMatrix[{1,2,3,4,5}|] 

Help [[paste Template][Eualuate Template] 

We can also use the Funct ion B r o w s e r to obtain information about commands 
contained in a notebook. For example, in the following notebook, we highlight the 
command P a r a m e t r i c P l o t 3 D 

Untitled-1 

Jl00% ^lOIJjij 

m 

m a 
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and then move the cursor to Help and select Find in Function Browser. 
result is displayed below. 

The 

Numerical Computation ► 
Algebraic Computation^ 
Mathematical Functions ► 
Lists and Matrices ► 

KH2D Plots 

Programming 

Contour Plots 
Density Plots 
Sound Generation 
Combinations 

ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}] produces a three-dimensional 
space curve parameterized by a variable t which runs from tmin to tmax. 
ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}, {u, umin, umax}] produces a 
three-dimensional surface parametrized by t and u. ParametricPlot3D[{fx, fy, 
fz, s},...] shades the plot according to the color specification s. 
ParametricPlot3D[{{fx, fy, fz}, {gx, gy, gz},...},...] plots several objects 
together. 

Options: [ in tgr t Op Hon 
AmbientLight 
AspectRatio 
Axes 

ParametricPlot3DfB«. fy, fz}, {t, tmin, tmax}] 

[ Help ](Paste Template][Eualuate Template]! 



Mathematical Operations 
on Numbers, Expressions, 

and Functions 

Chapter 2 introduces the essential commands of Mathematica. Basic operations on 
numbers, expressions, and functions are introduced and discussed. 

2. / Numerical Calculations and 
Built-in Functions 

Numerical Calculations 

The basic arithmetic operations (addition, subtraction, multiplication, and division) are 
performed in the natural way with Mathematica . Whenever possible, Mathematica gives 
an exact answer and reduces fractions: 

23 

CWTER 2 
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"a plus b" is entered as a+b; 
"a minus b" is entered as a -b ; 
"a times b" is entered as either a*b or a b (note the space between a and b); and 
"a divided by bM is entered as a / b . Executing the command a / b results in a 
reduced fraction. 

EXAMPLE: C o m p u t e (a) 121 + 542; (b) 3231-9876; (c) -23·76; 

(d) 22361· 832748· 387281; and (e) — . 

SOLUTION: In each case, we use Mathematica to perform the indicated 
operation. To execute a command, press ENTER or, equivalently, Shift-RETURN. 
In general, the RETURN key gives a new line; the ENTER key evaluates a 
Mathematica command. 

(a) 

121+452 

573 

(b) 

3231-9876 

-6645 

(d) Note that a * represents multiplication. However, a space between two 
expressions on the same line of input also denotes multiplication as shown in (e). 

-23*76 

-1748 

22361 832748 387281 

7211589719761868 

(f) The symbol / denotes division. Generally, Mathematica expresses fractions in 
reduced form and not in decimal form, unless a decimal form is requested. 

4 6 7 / 3 1 

467 

31 



2.1 Numerical Calculations and Built-in Functions 25 

In the same manner as arithmetic operations are entered, 

ab, "a raised to the bth power," is entered a s a A b . 
4a=ax'2 is computed by entering either a A ( l / 2 ) or S q r t [ a ] ; \[α=α1ί3 is 
computed by entering aA ( 1 / 3 ) . 

In each of these cases, note that the exponent is included in parentheses. In cases where 
the exponent consists of more than one symbol, be sure to include the entire exponent in 
parentheses to avoid possible errors. 

Whenever possible, Mathematica returns exact values. To obtain approximations of 
exact values, use N. N[ e x p r e s s i o n ] returns an approximation of e x p r e s s i o n ; 
N [ e x p r e s s i o n , n ] returns an approximation of e x p r e s s i o n accurate to n digits, if 
possible. Notice that the arguments of the commands S q r t and N are contained in 
brackets ( [ . . . ] ) . In fact, arguments of all functions are always contained in brackets 
( [ . . . ] ) . 

EXAMPLE: Calculate (a) (-5)121 and (b) 5* 

SOLUTION: For (a), we enter the command ( - 5 ) A 121 . Note that the symbol \ is 
used to indicate that the resulting output continues onto the next line. 

(-5)Λ121 

-376158192263132002549995691911118616V 
9019729781670680068828005460090935\ 
230255126953125 

On the other hand, using N to evaluate this expression yields the result in scientific 
notation. 

N [ ( - 5 ) " 1 2 1 ] 

84 
- 3 . 7 6 1 5 8 10 

For (b), we see that Mathematica returns 51/9 as the exact simplified form of 51/9 is 
51/9. 

5 Λ ( 1 / 9 ) 

1/9 
5 

However, we may approximate 51/9 using N. 

Ν [ 5 Λ ( 1 / 9 ) ] 

1.19581 
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EXAMPLE: Calculate V233 . 

SOLUTION: We use the command S q r t to calculate V233 . However, since V233 
is the simplified form of V233, the result returned is S q r t [ 233 ]. 

S q r t [ 2 3 3 ] 

Sqrt[233] 

However, including / / N after the command yields an approximation of V233 . The 
same results are obtained with N [ S q r t [233] ] . 

Sqrt[233]//N 

15 .2643 

When computing odd roots of negative numbers, Mathematica results are surprising to 
the novice. Namely, Mathematica returns a complex number. We will see that this has 
important consequence when graphing certain functions. 

EXAMPLE: Calculate 3VI3=(-3)1 

SOLUTION: When entering ( - 3 ) Λ ( 1 / 3 ) , Mathematica returns an exact value of 
V=3=(-3)1/3 

( - 3 Γ ( 1 / 3 ) 

1/3 1/3 
( -1 ) 3 

When we include / /N at the end of the command, an approximation is returned. 
We see that the resulting expression contains a term with an I . The symbol I 
represents the imaginary number i = V-Ï · 

(-3)Λ(1/3)//Ν 

0.721125 + 1.24902 I 

Note that in order to calculate ^3=( -3 ) 1 / 3 , we must be sure to include the 

(-3)1 parentheses around the term 1/3. If we don't, Mathematica computes —̂— = - 1 . 

( - 3 ) Λ 1 / 3 

- 1 
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Built-in Constants 

Mathematica has built-in definitions of many commonly used constants. Frequently used 
constants include π~3.14159, denoted by P i , e«2.71828, denoted by E, and i = 4^ï, 
denoted by I . Other built-in constants include <», denoted by I n f i n i t y , Euler's constant, 
7 = 0.577216, denoted by EulerGamma, Catalan's constant, approximately 0.915966, 

denoted by C a t a l a n , and the golden ratio, — Î1 + V5 j« 1.61803, denoted by G o l d e n R a t i o . 

In the previous examples, we see that Mathematica gives an exact answer whenever 
possible. For a variety of reasons, however, numerical approximations of results are often 
either more meaningful or more desirable. The command used to obtain a numerical 
approximation of the number a, is N [ a ] or, equivalently, a / / N. The command to obtain 
a numerical approximation of a to n digits of precision is N [ a , n ] . 
For example, entering 

N[E,50] 

2.718281828459045235360287471\ 
3526624977572470937 

produces a 50-digit approximation of e. Entering 

Ε Λ ( - 5 ) 

computes e~5 = — while entering 

Ε Λ ( - 5 ) / / Ν 

0 .00673795 

computes an approximation of e~5 = —. Entering 
e5 

N [ P i , 2 5 ] 

3.1415926535897932384626434 

computes a 25-digit approximation of π. Entering 

Sqrt[-9] 

3 I 

computes Λ/^9 = i^9 = 3i. Entering 

( 1 - Ι Γ 4 

- 4 



28 2 Mathematical Operations on Numbers, Expressions, and Functions 
mmmmmmmmm^mm:umm^mw&< 

expands (1-f)4 and entering 

( 3 + I ) / ( 4 - I ) 

11 7 1 

17 17 

simplifies : . 

Built-in Functions 

Mathematica recognizes numerous built-in functions. These include the exponential 
function, E x p [ x ] ; the absolute value function, A b s [ x ] ; the trigonometric functions 
S i n [ x ], Cos [ x ], Tan [ x ] , Sec [ x ], Csc [ x ], and Cot [ x ]; and the inverse trigonometric 
functions A r c C o s [ x ] , A r c S i n [ x ] , A r c T a n [ x ] , A r c S e c [ x ] , A r c C s c [ x ] , and 
Arc Cot [ x ] . Notice that each of these functions is capitalized and uses square brackets. 
Entering Exp [ x ] produces the same results as entering ΕΛχ. Entering Log [ x ] returns the 
natural logarithm of x; entering Log [ n , x ] returns the logarithm of x to base n. 

(Note that the inverse trigonometric functions include two capital letters! If both of 
these requirements are not met, then Mathematica will not recognize the built-in function 
and undesirable results will be obtained.) 

The Absolute Value, Exponential and 
Logarithmic Functions 
Calculations involving the functions A b s [ x ] , E x p [ x ] , and Log [ x ] appear in the 
following examples. Notice that in order to obtain a numerical value of E x p [ x ] , a 
numerical approximation must be requested by either the command N [ E x p [ x ] ] or 
Exp [ x ] / /N. Otherwise, the exact value is given which, in many cases, is not as useful as 
the numerical approximation. 

EXAMPLE: Approximate e~5 =— and graph ex on the interval [-2,2]. 

SOLUTION: We see that entering 

Exp[ -5 ] 

-5 
E 

yields the exact value of e~5 = — while entering 

E x p [ - 5 ] / / N 

0 .00673795 
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yields an approximation. The same result would have been obtained if 
N [ Exp [ - 5 ] ] had been entered. P l o t is used to graph ex on the interval [-2,2]. 

Plot [Exp[x] , {x , -2 ,2} ] 

t 
6F 

5F 

4 F 

3 [ 
2\ 

- 2 

In addition to real numbers, the function Abs [ x ] can be used to find the absolute value 
of the complex number a+bl , where Abs [ a + b l ] = S q r t [ a*2+b"2 ] . 
For example, entering 

Abs[-5] 

5 

computes |-5| = 5 and entering 

Abs[14] 

14 

returns |14| = 14 while entering 

Abs[3-4I] 

5 

computes |3 - 4/1 = V32+42 = 5 and entering 

Abs[ (3+2 l ) / (2 -9 l ) ] 

13 
Sqrt[ —] 

85 

returns 13 + 2/1 
2-9/ 
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EXAMPLE: Graph \x\ on the interval [-5,5]. 

SOLUTION: P l o t is used to graph the function Abs [ x ] . 

P l o t [ A b s [ x ] , { x , - 5 , 5 } ] 

- 4 - 2 

L o g [ x ] computes the natural logarithm of x, which is usually denoted by lnx or 
loge x. Thus, entering 

Log[E] 

1 

returns 1; entering 

Log[E"3] 

3 

returns 3; and entering 

Exp[Log[Pi]] 

Pi 

returns π. 
The Log function is also used to calculate logarithms with base other than e. Log [ a , b ] 

computes loga b = . Therefore, entering 

L o g [ 3 , 9 ] 

2 

returns 2 and entering 

L o g [ 2 , 1 0 ] 

Log[10] 

Log[2] 
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returns . An approximation to 10 digits of accuracy is obtained below with N. 

N[Log[2,10],10] 

3.321928095 

EXAMPLE: Graph In* on the interval [0.001,5]. 

SOLUTION: Below we use P l o t to graph In* on the interval [0.001,5]. 

Plot[Log[x],{x,.001,5}] 

Trigonometric Functions 

Examples of typical operations involving the trigonometric functions S i n [ x ] , C o s [ x ] , 
and Tan[x] are given below. (Although not illustrated in the following examples, the 
functions Sec [ x ], Csc [ x ], and Cot [ x ] are used similarly.) Notice that Mathematica 
yields the exact value for trigonometric functions of some angles, while a numerical 
approximation must be requested for others. 

EXAMPLE: Calculate cos , sin| 
, 3 , 

/ tanj '3TO 

A ) 
, cos 

,12, 
, cos 

, 5 , 
, and sin 9 π 1 

8 ) ' 

SOLUTION: 

Cos[Pi/4] 

1 

Sqrt[2] 
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Sin[Pi/3] 

Sqrt[3] 

2 

Tan[3 Pi/4] 

-1 

Cos[Pi/12] 

1 + Sqrt[3] 

2 Sqrt[2] 

Even though Mathematica returns the exact value of cos — , N can be used to obtain an 
approximation as shown below. 

N[Cos[Pi/12]] 

0.965926 

However, Mathematica does not return a numerical value for cos — 

Cos[Pi/5] 

Pi 
Cos[ —] 

5 

so we use N to obtain an approximation. 

N[Cos[Pi/5]] 

0.809017 
( 9π Similarly, we use N to compute an approximation of sin 

Sin[-9 Pi/8] 

9 Pi 
_Sin[ ] 

8 

0.382683 
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EXAMPLE: Graph sinx, cosx, and tan*. 

SOLUTION: In each case, we use P l o t to graph the indicated function. 

Plot[Cos[x],{x,-2Pi,2Pi}] 

Plot[Sin[x],{x,-2Pi,2Pi}] 

Plot[Tan[x],{x,-Pi,Pi}] 

20 

Inverse Trigonometric Functions 
Commands involving the inverse trigonometric functions are similar to those 
demonstrated in the earlier section on trigonometric functions. Again, note the two capital 
letters in each of the inverse trigonometric functions. The (built-in) inverse trigonometric 
functions are: 
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ArcCosfx] ArcCoth[x] ArcSec[x] ArcSinh[x] 
ArcCosh[x] ArcCsc[x] ArcSech[x] ArcTan[x] 
ArcCot[x] ArcCsch[x] ArcSin[x] ArcTanh[x] 

When particular values are well-known, Mathematica returns them. For example, 
entering 

ArcCos[l/2] 

Pi 

3 

returns cos1 - = — ; entering 

ArcSin[- l ] 

-Pi 

2 

returns sin^(-l) = — ; and entering 

ArcTan[1] 

Pi 

returns tan1 1 = —. In most instances, however, approximation must be computed with N. 
For example, entering 

ArcSin[ l /3] / /N 

0.339837 

returns an approximation of sin1—; entering 

N[ArcCos[2/3]] 

0.841069 
2 

returns an approximation of cos1 — ; and entering 

ArcTan[100]//N 

1.5608 

returns an approximation of tan-1100. 
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EXAMPLE: Graph sirr1*, cos1 x, and tarr1*. 

SOLUTION: In each case, we use P l o t to graph the indicated function. 

Plot[ArcSin[x],{x,-l,1}] 

Plot[ArcCos[x],{x,-l,1}] 

- 1 0 0 1 

Plot[ArcTan[x],{x,-25,25}] 

1 

1 

0 

- 2 0 - 1 0 j 

Ί 

— * 

10 20 

The hyperbolic trigonometric functions and their inverses are computed in the same 
way as those above. N is used to obtain an approximation, when necessary. 
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EXAMPLE: Compute sinhO, sinh5, cosh(ln4), cosh(-5), tanh(ln5), and tanhl. 
Graph each of the functions sinhx , coshx, and tanhx. 

SOLUTION: We first compute the indicated values. 

Sinh[0] 

0 

Sinh[5] 

Sinh[5] 

Sinh[5]//N 

74.2032 

Cosh[0] 

1 

Cosh[Log[4]] 

17 

8 

Cosh[-5] 

Cosh[5] 

N[Cosh[-5]] 

74.2099 

Tanh[Log[5]] 

12 

13 

Tanh[1] 

Tanh[l] 

Tanh[l]//N 

0.761594 
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Next, we use Plot to graph each function. 

Plot[Sinh[x],{x,-10,10}] 

1500 

1000 

500 

-10 

-500 

-1000 

-1500 

Plot[Cosh[x],{x,-10,10}] 

i 3500 

1 3000 

1 2500 

\ 2000 

I 1500 

\ 1000 

V 500 

1 

1 
j 
/ 
/ 
/ 

_ _ _ _ ^ _ _ , 
-10 -5 

Plot[Tanh[x],{x,-10,10}] 

-10 -5 

1 

0 

J. 
r~ 

5 10 
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The next example illustrates the inverse hyperbolic trigonometric functions. 

EXAMPLE: Calculate sinh-^, cosh16, and tanh1 — . Graph each of the 

functions sinh1*, cosh1 x, and tanh1*. 

SOLUTION: We proceed as in the previous example: first we compute the 
indicated values and then graph each function. 

ArcSinh[5] 

ArcSinh[5] 

ArcSinh[5]//N 

2.31244 

ArcCosh[6] 

ArcCosh[6] 

N[ArcCosh[6]] 

2.47789 

ArcTanh[-l/2] 

-ArcTanh[-] 
2 

ArcTanh[-l/2]//N 

-0.54925 

Plot[ArcSinh[x],{x, -10,10}] 

- 1 0 - 5 

3 

2 

1 

A 
- 2 

- 3 

5 10 
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Plot[ArcCosh[x],{χ,1,10}] 

2 4 

P l o t [ A r c T a n h [ x ] , { x , - 0 . 9 9 9 , 0 . 9 9 9 } ] 

δ ιο 

A Word of Caution 

As stated above, every built-in Mathematica object begins with a capital letter and 
arguments of functions are always contained in brackets. If capital letters are not used or 
brackets are omitted, errors result. For example, entering 

sin(pi/2) 

General: :spelll: 
Possible spelling error: new symbol name "sin" 
is similar to existing symbol "Sin". 

pi sin 

2 

returns nonsense as parentheses are used instead of brackets, s i n is used instead of Sin, 
and p i is used instead of Pi. 
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2.2 Expressions and Functions 

Basic Algebraic Operations on Expressions 

Expressions involving unknowns are entered in the same way as numbers. Mathematica 
performs standard algebraic operations on mathematical expressions. For example, the 
command 

Factor [ e x p r e s s i o n ] factors e x p r e s s i o n ; 
Expand [ e x p r e s s i o n ] multiplies e x p r e s s i o n ; and 
T o g e t h e r [ e x p r e s s i o n ] writes e x p r e s s i o n as a single fraction. 

When entering expressions, be sure to include a space or * between variables to denote 
multiplication. 

EXAMPLE: (a) Factor the polynomial 12x2 + 27xy-84y2. (b) Expand the expression 

(x + y) (3x - y) . (c) Write the sum as a single fraction. 

SOLUTION: The first command below, with F a c t o r , indicates that 

12x2 + 27xy - 84y2 = 3(x + 4y)(4x - 7y). 

When entering the F a c t o r command, be sure to include a space, or *, between 
the x and y terms to denote multiplication, xy represents an expression while x y 
or x*y denotes x multiplied by y. The second, with Expand, computes the 

product (x + y) (3JC — y) , and the third, with T o g e t h e r , expresses as a 

single fraction. 

Factor[12χΛ2+27 χ y-84y^2] 

3 (-x - 4 y) (-4 x + 7 y) 

Expandf (x+y)"2 (3x-y)"3] 

5 4 3 2 
27 x + 27 x y - 18 x y 

Together[2/χΛ2 - xA2/2] 

4 
4 - x 

2 

2 3 4 
- 10 x y + 7 x y 

5 
- y 

2 x 
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In general, a space is not needed between a number and a symbol to denote 
multiplication. That is, 3dog means "3 times variable dogD"; Mathematica interprets 3 
dog the same way. However, when denoting multiplication of two variables, either 
include a space or *: 

c a t dog means "variable c a t times variable dog", 
c a t * d o g means "variable c a t times variable dog", but 
c a t dog is interpreted as a variable c a t dog. 

The command A p a r t [ e x p r è s s i o n ] computes the partial fraction decomposition of 
expression; C a n c e l [ e x p r e s s i o n ] factors the numerator and denominator of 
e x p r e s s i o n then reduces e x p r e s s i o n to lowest terms. 

EXAMPLE: (a) Determine the partial fraction decomposition of the rational 
1 x2 — 1 

function . (b) Simplify the expression x-3)(x-l) r J r x2-2x + \ 

SOLUTION: A p a r t is used below to show that 

1 1 1 
(x-3)(*-l) 2(*-3) 2(x-l) 

Then, C a n c e l is used to find that 

χΐ-1 = (*-!)(* + !) = * + l 

x2-2x + \~ (x-1)2 ~ x-1 

A p a r t [ l / ( ( x - 3 ) ( x - l ) ) ] 

1 1 

2 ( -3 + x) 2 ( -1 + x) 

C a n c e l [ ( χ Λ 2 - 1 ) / ( χ Α 2 - 2 χ + 1 ) ] 

1 + x 

- 1 + x 
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Naming and Evaluating Expressions 

In Mathematica, mathematical objects can be named. Naming objects is convenient: we can 
avoid typing the same mathematical expression repeatedly and named expressions can be 
referenced throughout a notebook or Mathematica session. 

Since every built-in Mathematica function begins with a capital letter, we will adopt the 
convention that every mathematical object we name will begin with a lower case letter. 
Consequently, we will be certain to avoid any possible ambiguity with a built-in 
Mathematica object. An expression is named by using a single equals sign (=). 

Be aware that Mathematica does not remember anything defined in a previous 
Mathematica session. That is, if you define certain symbols during a Mathematica session, 
quit the Mathematica session, and then continue later, the previous symbols must be 
redefined to be used. 

Expressions can be evaluated easily. To evaluate an expression, we introduce the 
command / . . The command / . means "replace by". For example, entering the command 

χ Λ 2 / . x - > 3 

returns the value of the expression x2 when x = 3. Note, however, this does not assign the 
symbol x the value 3. The symbol "->" is obtained by typing a minus sign (-) followed by 
a greater than sign (>). 

The following example illustrates how to name an expression. In addition, Mathematica 
has several built-in functions for manipulating fractions: 

Numera tor [ f r a c t i o n ] yields the numerator of a f r a c t i o n ; 
ExpandNumerator [ f r a c t i o n ] expands the numerator of f r a c t i o n ; 
Denomina tor [ f r a c t i o n ] yields the denominator of a f r a c t i o n ; 
E x p a n d D e n o m i n a t o r [ f r a c t i o n ] expands the denominator of f r a c t i o n ; 
and 
E x p a n d A l l [ f r a c t i o n ] expands both the numerator and denominator of 
f r a c t i o n . 

The naming of expressions makes the numerator and denominator easier to use in the 
following examples. 
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χ3 + 2.x2 — x — 2 
EXAMPLE: Given the rational expression , (a) factor both the 

r x3+x2-4x-4 
numerator and denominator; (b) evaluate the numerator when x=2, evaluate the 

χ3 _|_ 2.X2 — X — 2 
denominator when x=3; (c) reduce to lowest terms; (d) evaluate 

x3+x2-Ax-4 
y3 _|_ 2x2 — x — 2. 

when x=4 and when x=-3 ; and (e) find the partial fraction 
x 3 +x 2 -4x -4 

x3 + 2x2 — x — 2 decomposition of 
χ 3 + χ 2 - 4 χ - 4 

SOLUTION: To avoid retyping ( χ Λ 3 + 2 χ Λ 2 - χ - 2 ) / ( χ Α 3 + χ Λ 2 - 4 χ - 4 ), we define 
f r a c t i o n to be 

χ 3 + 2 χ 2 - χ - 2 
x3+x2-4x-4 " 

f r a c t i o n = ( x " 3 + 2 x A 2 - x - 2 ) / ( x " 3 + x " 2 - 4 x - 4 ) 

2 3 
- 2 - X + 2 X + x 

2 3 
- 4 - 4 X + X + x 

The numerator of f r a c t i o n is extracted with N u m e r a t o r and named num for 
later use. We then use F a c t o r to factor num and use / . to evaluate num when 
x=2. 

num=Numerator[fract ion] 

2 3 
-2 - x + 2 x + x 

Factor[num] 

( -1 + x) (1 + x) (2 + x) 

num / . x->2 

12 

Similarly, we use D e n o m i n a t o r to extract the denominator of f r a c t i o n and 
name the resulting output den for later use. Again, F a c t o r is used to factor den 
and / . is used to evaluate den when x=3. 
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den=Denominator[fraction] 

2 3 
-4 - 4 x + x + x 

Factor[den] 

(-2 + x) (1 + x) (2 + x) 

den / . x->3 

20 

Mathematica can also evaluate and perform standard algebraic operations on 
named expressions. C a n c e l is used to reduce f r a c t i o n to lowest terms. 

Cancel[fraction] 

-1 + x 

-2 + x 

/ . is used to evaluate f r a c t i o n when x=4 and when x=-3. 

fraction / . x->4 

3 

2 

fraction / . x->-3 

4 

5 

Finally, A p a r t is used to find the partial fraction decomposition of f r a c t i o n . 

Apart[fraction] 

1 
1 + 

-2 + x 

■ 

Every Mathematica object can be named; even graphics and functions can be named 
with Mathematica. 

A Word of Caution 

When you assign a name to an object that is similar to a previously defined or built-in 
function, Mathematica issues an error message like that shown below. 
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function=x/s2 

General: :spelll: 
Possible spelling error: new symbol name "function" 
is similar to existing symbol "Function". 

2 
x 

Since we have adopted the convention that every user-defined function begin with a lower 
case letter, we know that we have not made an error and the message can be ignored. 
Sometimes, however, the message can occur frequently and become annoying. If desired, 
the message 

General: :spelll: 

can be suppressed by entering 

Off[General::spelll] . 

Generally, Of f [ s : : t a g ] switches off the message s : : t a g so that it is not printed. On is 
used to switch on warning or error messages. Specific messages may be permanently 
turned off by inserting the desired Off commands in the init .m file which is contained in 
the Packages folder (or directory). 

Defining and Evaluating Functions 

It is important to remember that functions, expressions, and graphics can be named 
anything that is not the name of a built-in Mathematica function or command. Since every 
built-in Mathematica function begins with a capital letter, every user-defined function or 
expression in this text will be defined using lower case letters. This way, the possibility of 
conflicting with a built-in Mathematica command or function is completely eliminated. 
Also, since definitions of functions are frequently modified, we introduce the command 
C l e a r . C l e a r [ e x p r e s s i o n ] clears all definitions of expression. You can see if a 
particular symbol has a definition by entering ? symbol . Consequently, we are certain to 
avoid any ambiguity when we create a new definition of a function. When you first define 
a function, you must always enclose the argument in square brackets ( [ . . . ] ) and place 
an underline (or blank) "__" after the argument on the left-hand side of the equals sign in 
the definition of the function. 
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EXAMPLE: Define f{x) = x2, g(x) = 4x, and /z(x) = x + sinx. 

SOLUTION: We first use C l e a r to clear all prior definitions of f, g, and h, if any, 
and then enter the definition of each function. Entering f [ x_] =χΛ2 defines and 
computes f(x) = x2. 

Clear[ f ,g ,h] 

f[χ_]=χΛ2 

2 
x 

Similarly, entering g [ x_J = S q r t [ x ] defines and computes g(x) = 4x . 

g[x_]=Sqrt[x] 

Sqr t [x] 

However, entering h [ x _ ] : = x + S i n [ x ] simply defines h(x) = x + sinx', h [ x ] is not 
computed so Mathematica does not return any output. 

h[x_]:=x+Sin[x] 

We may see the definition of h, however, by entering ?h. 

?h 

Global^h 
h[x_] := x + Sin[x] 

In each of the above cases, don't forget to include the underline (_) on the left-
hand side of the equals sign in the definition of each function. Remember to 
always include arguments of functions in square brackets. ■ 

In the preceding examples, functions were defined using each of the forms 
f [ x__l : = . . . and f [ x__] = . . . . As a practical matter, when defining "routine" functions 
with domains consisting of sets of real numbers and ranges consisting of sets of real 
numbers, either form can be used. Defining a function using the form f [ x _ ] = . . . 
instructs Mathematica to define f and then compute and return f [ x ] (immediate 
assignment); defining a function using the form f [ x__ ] : = . . . instructs Mathematica to 
define f. In this case, f [ x ] is not computed and, thus, Mathematica returns no output 
(delayed assignment). The form f [ x__] : = . . . should be used when f [ x ] does not make 
sense unless x is a particular value. 

Generally, if attempting to define a function using the form f [ x_J = . . . produces one 
or more error messages, use the form f [ x__] : = . . . instead. 

When you evaluate a function, type f u n c t i o n n a m e [ p o i n t ] ENTER. Notice that 
functions can be evaluated for any real number (in the function's domain). 
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EXAMPLE: Using the definitions of f, g, and h, from above, compute f(2), g(4), 
and η(π/2). 

SOLUTION: 

f [2 ] 

4 

g[4] 

2 

h[Pi /2] 

Pi 
1 + — 

2 

Moreover, Mathematica can symbolically evaluate and manipulate many functions. 

EXAMPLE: Using the definitions of f, from above, (a) calculate f(a-b2); 

late and expa 

f{x + h)-f(x) 

(b) calculate and expand f(a-b2); (c) compute ^ ; ' ; and (d) compute and 

simplify 

SOLUTION: We evaluate functions when the argument consists of symbols other 
than numbers in the same way as we evaluate functions when the argument 
consists of numbers in the functions' domain. Note that when evaluating functions 
when the argument consists of symbols other than numbers, errors are returned if 
the function does not make sense for non-numerical arguments. 
Entering 

f [ a - b " 2 ] 

2 
(a - b 

calculates f(a-

Expand[f[a-

2 

) 

-b1); entering 

b - 2 ] ] 

2 2 4 
a - 2 a b + b 
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computes and expands f(a-b2); entering 

( f [ x + h ] - f [ x ] ) / h 

2 2 
-x + (h + x) 

computes, but does not simplify, — '—i—-; and entering 

Simplify[(f[x+h]-f[x])/h] 

h + 2 x 

A · I T f{x + h)-f(x) _ 
computes and simplifies — '—*■—. ■ 

h 
Many different types of functions can be defined using Mathematica. Examples 

illustrating how to define a function of two variables and vector-valued functions are 
illustrated below. Additional ways of defining functions will be discussed, as needed, 
throughout the text. 

EXAMPLE: Define f(x,y) = l-sm(x*+y2). Calculate /(1,2), λΐ4η,-4η j , /(0,e), and 

f(a2-b2,b2-a2). 

SOLUTION: After clearing all prior definitions of f, we define f. Note that since f 
is a function of two variables, an underline (or blank) "_" is placed after each 
argument on the left-hand side (but not on the right-hand side) of the definition of 
the function. Thus, entering f [ x _ , y _ ] =1 - S i n [ x Λ 2 + y Λ 2 ] defines 
f(x, y) = 1 - sin(x2 + y2 ) and then computes and returns f(x, y). 

Clear[f] 

*[x_rY ]=l-Sin[x"2+y"2] 

2 2 
1 - Sin[x + y ] 
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We then evaluate /(1,2) by entering: 

f [ l , 2 ] 

1 - S i n [ 5 ] 

Note that / . can also be used to evaluate /(1,2). Namely, entering 

f [ x , y ] / . x - > l / . y->2 

or 

f [ x , y ] / · { x - > l , y - > 2 > 

both produce the same result. Similarly, entering 

f[2 Sqrt[Pi],3/2 Sqrt[Pi]] 

1 
1 

Sqrt[2] 

computes f\ ΐ4π,—4κ · In the same manner as above, entering 

f[x,y] /· {x->2Sqrt[Pi],y->3/2 Sqrt[Pi]} 

yields the same result. In this case, we can evaluate f for non-numerical 
arguments. Entering 

f [ 0 , a ] 

2 
1 - S i n [ a ] 

computes f(0,a) and entering 

f [ a A 2 - b A 2 , b A 2 - a A 2 ] 

2 2 2 2 2 2 
1 - S i n [ ( a - b ) + ( - a + b ) ] 

computes f(a2-b2rb2-a2).Wk 

EXAMPLE: Define g to be the vector-valued function g(x) = (x2,l-x2). Calculate 
g(l) and g(sinb). 

SOLUTION: We remark that Mathematica uses braces " { . . . } " to denote vectors, 
lists, and sets. These topics are discussed in more detail in Chapters 4 and 5. Since 
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g is a function of a single variable, we define g in the same manner as defining 
functions of a single variable, discussed above. As before, be sure to place an 
underline (or blank) "_" after the argument on the left-hand side of the definition 
of the function (but not on the right-hand side). Thus, entering g [ x _ ] = { x / v 2 / l -
xA2} defines 8\χ) = \χ2Λ-χ2) and then computes and returns g(x). 

Clearfg] 

9 [ χ _ ] = { χ Λ 2 , 1 - χ Λ 2 } 

2 2 
{X , 1 - X } 

We then compute g(l) and g(sinlb). 

g [ i ] 

{If 0} 

g[Sin[b]] 

2 2 
{Sin[b] , 1 - Sin[b] } 

In each case, note that entering g [ x ] / . x - > l and g [ x ] / . x - > S i n [ b ] 
produce the same result. ■ 

Our last example illustrates how to define a vector-valued function of two variables. 

EXAMPLE: Define h 
h(x,y) = (cos(x2-y2),sm(x2 

Calculate h(l,2), h(n,--π), 

to be 

-3/2))· 
and h(( 

the 

zos(a: 

vector-valued 

-),cos(l--*)) . 

function of two variables 

SOLUTION: Proceeding as in the previous example, we first clear all prior 
definitions of h and then define h. Note that Mathematica returns h(x,y). 

Clear[h] 

h[x_,y_]={Cos[x"2-y"2],Sin[y"2-x"2]} 

2 2 2 2 
{Cos[x - y ], -Sin[x - y ]} 

Next, we calculate /ί(1,2), /ζ(π,-π), and /z(cos(a2),cos(l-ß2)). 

h[l,2] 

{Cos[3], Sin[3]} 



2.2 Expressions and Functions 51 

h[Pi,-Pi] 

{1, 0} 

h[Cos[a*2],Cos[l-

2 2 
{Cos[Cos[a ] 

Cos[l - a 

2 
-Sin[Cos[a 

Cos[l - < 

aA2]] 

-

2 2 
] ], 

2 

] -

2 2 

a ] ]} 

Additional Ways to Evaluate Functions 
and Expressions 

Once f has been properly defined, not only can a function f [ x ] be evaluated by 
computing f [ a ] where a is either a real number in the domain of f or an expression, 
functions and expressions can be evaluated using the command / . . In general, to 
evaluate the function f [ x ] when x is replaced by e x p r e s s i o n , the following two 
commands are equivalent and yield the same output: 

1. f [ e x p r e s s i o n ] replaces each variable in f by e x p r e s s i o n ; and 
2. f [ x ] / . x -> e x p r e s s i o n replaces each variable x in f [ x ] by 

e x p r e s s i o n . 

This is illustrated in the following example. 

EXAMPLE: Evaluate /(l) and g(l,2) if 
f(x) = x2 and 
g(x, y) = (sin(x2 - y * ), cos(y2 - x2 )}. 

SOLUTION: After clearing all prior definitions of f and g, we define f and g. Note 
that since we use : = to define the functions, f(x) and g(x,y) are not computed and 
returned. 



52 2 Mathematical Operations on Numbers, Expressions, and Functions 

C l e a r [ f , g ] 

f [ x _ ] : = x A 2 

g [ x _ , y _ ] : = { S i n [ x ~ 2 - y * 2 ] , 0 θ 8 [ γ Λ 2 - χ Λ 2 ] } 

We note that entering 

f [ i ] 

1 

and 

g [ i , 2 ] 

{ - S i n [ 3 ] , C o s [ 3 ] } 

produces the same results as entering each of the following commands. 

f[x] /. x->l 

1 

g[x,y] /. x->l /. y->2 

{-Sin[3], Cos[3]} 

g[x,y] /. {x->l,y->2} 

{-Sin[3], Cos[3]} 

Composition of Functions 

Mathematica can easily perform the calculation f [ g [ x ] ]. However, when composing 
several different functions or repeatedly composing a function with itself, two additional 
commands are provided. 

Composit ion! f l , f 2 , f 3 , . . . , f n ] [ x ] computes the composition 

(W 2 °- O / .X*)=4A-( / . (# 
Nest [ f , x, n] computes the composition (fof°'--°f){x)=f(f--f(x)), where f is 

n times n times 

a function, n is a positive integer, and x is an expression. 

Mathematica displays output for EACH command as it is generated unless a semi colon 
(; ) is included at the end of the command. Thus, in the following example, the formulas 
for f [ x ], g [ x ], and h [ x ] are not displayed since a semi colon is placed at the end of each 
command. 
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EXAMPLE: Let /(*) = 

(a) (/°s)(*)=/(g(*)); 

= X2+X, g(x) = X3 

(b) (go/)(x-l) = 

+ 1, and 

= ( * ( / ( * - # 

(d) /(sinx); (e) (fok)(x)=f(k(xj); and (f) /(sin(x + n/)); 

/:(x) = sinx + cosx. 

(c) ( / ° < ! ) 

Compute 

-m\ 
SOLUTION: We begin by clearing all prior definitions of f, g, and k, if any, and 
then defining f, g, and k. 

C l e a r [ f , g , h ] 

f [ χ _ ] = χ Λ 2 + χ ; 

g [ x _ ] = x A 3 + l ; 

k [ x _ J = S i n [ x ] + C o s [ x ] ; 

For (a), we note that entering f [ g [ x ] ] and C o m p o s i t i o n [ f, g ] [ x ] produce the 
same result. The results are not simplified. 

f[g[x]] 

3 3 2 
1 + x + (1 + x ) 

Composition[f,g][x] 

3 3 2 
1 + x + ( 1 + x ) 

For (b), we use C o m p o s i t i o n to compute (g°/)(*-1) = (#(/(*-1)))· The same 
results would be obtained with g [ f [ x - 1 ] ] . 

C o m p o s i t i o n [ g , f ] [ x - 1 ] 

2 3 
1 + ( -1 + ( -1 + x) + x) 

For (c), we use C o m p o s i t i o n along with S i m p l i f y to compute 

MfM<!))· 
Composition[f,k][Pi/3]//Simplify 

3 
- + Sqrt[3] 
2 

For (d), we use the built-in function S in to compute /(sinx). 

Composition[f,Sin][x] 

2 
Sin[x] + Sin[x] 
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For (e), we use C o m p o s i t i o n to compute (fok)(x) = f(k(x)) and name the resulting 
output e x p l . To simplify e x p l , we use Expand along with the option T r i g -
>True. The effect of the option T r i g - > T r u e is to eliminate powers of sines and 
cosines in trigonometric expressions. 

expl=Composition[f,k][x] 

2 
Cos[x] + Sin[x] + (Cos[x] + Sin[x]) 

Expand[expl,Trig->True] 

1 + Cos[x] + Sin[x] + Sin[2 x] 

For (f), we use C o m p o s i t i o n to compute f(sin(x + iy)) and name the resulting 
output exp2. We then rewrite e x p l in terms of its real and imaginary parts with 
ComplexExpand. If e x p r e s s i o n is a Mathematica expression in terms of x+I y, 
the command ComplexExpand [ e x p r e s s i o n ] rewrites e x p r e s s i o n in terms 
of its real and imaginary components, assuming that x and y are both real. 

exp2=Composition[f,Sin][x+I y] 

2 
Sin[x + I y] + Sin[x + I y] 

ComplexExpand[exp2] 

2 2 2 2 
Cosh[y] Sin[x] + Cosh[y] Sin[x] - Cos[x] Sinh[y] + 

I (Cos[x] Sinh[y] + 2 Cos[x] Cosh[y] Sin[x] Sinh[y]) 

■ 

The next example illustrates the use of Nes t . 

EXAMPLE: Let f(x) = x2 + x as in the previous example. Compute: 

(a) (/°/°/)(*) = /(/(/(*))); and (b) f(x)-sin(sin(sin(sin(sin(sinx))))). 

SOLUTION: For (a), we use N e s t and name the resulting output exp3. Entering 
f [ f [ f [ x ] ] ] produces the same results. Since e x p 3 is not simplified, we use 
Expand to simplify exp3. 

e x p 3 = N e s t [ f , x , 3 ] 

2 2 2 2 2 2 2 
x + x + ( x + x ) + ( x + x + ( x + x ) ) 
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Expand[exp3] 

2 3 4 5 6 7 8 
x + 3 x + 6 x + 9 x + 10 x + 8 x + 4 x + x 

We define the function t(x) = sinf sin(sin(sin(sin(sinx)) M 1 with Nes t . 

t [x_]=Nest [Sin ,x ,6] 

Sin[Sin[Sin[Sin[Sin[Sin[x]]]]]] 

We can compare the graphs of t(x) and sinx by graphing them on the same axes. 
Below, we use P l o t to graph each function. The graph of sinx is dashed. 
Graphing functions and expressions is discussed in more detail in the next section. 

Plot[{Sin[x],t[x]},{x,0,4Pi},PlotStyle->{Dashing[{.01}],GrayLevel[0]}] 

A Word of Caution 

As stated above, we have adopted the convention that the name of every user-defined 
object will begin with lower case letters. If you don't follow this convention and 
accidentally attempt to define a function that has the same name as a built-in function, 
errors result as indicated below. If you use capital letters when defining functions, be 
careful! 

Sin[x ]:=Cos[x] 

SetDelayed::write: Tag Sin in Sin[x_] is Protected. 
$Failed 
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2.3 Graphing Functions, 
Expressions, and Equations 

One of the best features of Mathematica is its graphics capabilities. In this section, we 
discuss methods of graphing functions, expressions and equations and several of the 
options available to help graph functions. 

Graphing Functions of a Single Variable 

The command used to graph real-valued functions of a single variable is P l o t . The form 
of the command to graph the function f [ x ] on the domain [a,b] is 

P l o t [ f [ x ] , { x , a , b } ] . 

Mathematica returns information about the basic syntax of the P l o t command with 
? P l o t . 

?Plot 

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of x 
from xmin to xmax. Plot[{fl, f2, . . . } , {x, xmin, xmax}] plots 
several functions fi. 

In the following examples, we illustrate the P l o t function. 

EXAMPLE: Let / ( J ) = 4 X 3 + 6 X 2 - 9 X + 2 , g(x) = l2x2 + l2x-9, and h(x) = 24x + 12. 

Graph f(x) on the interval [-3,2]. 

SOLUTION: After clearing all prior definitions of f, g, and h, if any, we define f, g, 
and h, and then use P l o t to graph f on the interval [-3,2]. 

Clear[f,g,h] 

f[χ_]=4χΛ3+6χΛ2-9χ+2? 

g[x_]=12x"2+12x-9; 

h[x_]=24x+12; 

Plot[f[x],{x,-3,2}] 
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To plot the graph of f [x] in various shades of gray or colors, the command is 

P lo t [ f [x ] , {x , a , b} ,P lo tS ty l e ->GrayLeve l [w] ] , 

where w is a number between 0 and 1. P l o t S t y l e - > G r a y L e v e l [ 0 ] represents black; 
P l o t S t y l e - > G r a y L e v e l [ 1 ] represents a white graph. If a color monitor is being used, 
the command is 

Plot[f[x],{x,a,b},PlotStyle->RGBColor[r,g,b]], 

where r, g, and b are numbers between 0 and 1. RGBColor [ 1 , 0 , 0 ] represents red, 
RGBColor [ 0 , 1 , 0 ] represents green, and RGBColor [ 0 , 0 , 1 ] represents blue. 
Remember that the results of entering a P l o t command are Mathematica objects and, 
consequently, can be named for later use. A dashed graph can be generated by using the option 

P l o t S t y l e - > D a s h i n g [ { n l , n 2 , . . . } ] , 

where n l , n2,. . . are numbers. 
Graphs of functions, like expressions, can be named. This is particularly useful when 

one needs to refer to the graph of particular functions repeatedly or to display several 
graphs on the same axes. 

The command used to display several graphs on the same axes is Show. To show two 
graphs named g r a p h 1 and g raph2 , the command entered is Show [ g r a p h 1, g raph2 ] . 

EXAMPLE: Show the graphs of f, g, and h, defined in the previous example, on 
the same axes. 

SOLUTION: Below, we graph g on the interval [-3,2]. We use P l o t S t y l e and 
Dash ing so that the graph of g is dashed. The resulting output is named p l o t g . 
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plotg=Plot[g[x],{x,-3,2},PlotStyle->Dashing[{.01}]] 
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Next, we graph f and h, in gray, on the interval [-3,2], naming the results p l o t f 
and p l o t h . In each case, the option 

DisplayFunction->Identity 

is used to indicate that the graphics objects generated are not displayed. These 
graphs, along with p l o t g , are shown simultaneously by using the Show 
command together with the option 

DisplayFunction->$DisplayFunction 

which instructs Mathematica to display the resulting graphics objects. Note that no 
graphs would be displayed if the D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n 
option were omitted from the following Show command: 

plotf=Plot[f[x],{x,-3,2},DisplayFunction->Identity J; 

ploth=Plot[h[x],{x,-3,2>,PlotStyle->GrayLevel[.3], 

DisplayFunction->Identity]; 

Show[plotf,plotg,ploth,DisplayFunction->$DisplayFunction] 

A complete list of the available options along with their current settings is obtained by 
entering the command O p t i o n s [ P l o t ] as indicated below. The commands P l o t and 
Show have many options. To implement the various options, the form of the command 
P l o t is 
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Plot[f[x],{x,a,b},options]; 

the form of the command Show is 

Show[graphs, options]. 

Several of these options are discussed below. 

Options [Plot] 

1 
{AspectRatio -> , Axes -> Automatic, AxesLabel -> None, 

GoldenRatio 
AxesOrigin -> Automatic, AxesStyle -> Automatic, 
Background -> Automatic, ColorOutput -> Automatic, 
Compiled -> True, DefaultColor -> Automatic, Epilog -> {}, 
Frame -> False, FrameLabel -> None, FrameStyle -> Automatic, 
FrameTicks -> Automatic, GridLines -> None, MaxBend -> 10., 
PlotDivision -> 20., PlotLabel -> None, PlotPoints -> 25, 
PlotRange -> Automatic, PlotRegion -> Automatic, 
PlotStyle -> Automatic, Prolog -> {}, RotateLabel -> True, 
Ticks -> Automatic, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

Other Available Options 
Additional P l o t options include: 

1. AspectRatio->number 
This makes the ratio of the length of the x-axis to the y-axis number. The 
default value is 1 / G o l d e n R a t i o . G o l d e n R a t i o is a built-in Mathematica 
constant (like E and P i ) which represents the golden ratio, (l +V5J/2 « 1.61803. 

2. Frame->True 
This draws a frame around the graph; the default value is F a l s e — n o frame is 
drawn. 

3. T icks ->None or T i c k s - > { { x - a x i s t i c k s } , { y - a x i s t i c k s } } 
This specifies that either no tick marks be placed on either axis or tick marks be 
placed on the x-axis at x - a x i s t i c k s and on the y-axis at y - a x i s t i c k s . 

4. A x e s L a b e l - > { " x - a x i s l a b e l " , " y - a x i s l a b e l " } 
This labels the x-axis x - a x i s l a b e l and the y-axis y - a x i s l a b e l . For 
example, the command 
Plot[f[x],{x,xmin,xmax,AxesLabel->{"jane","mary"}] 
graphs the function f [ x ] on the interval [xmin,xmax]; and labels the x-axis 
j a n e and the y-axis mary . The default for the option is that no labels are 
shown. 
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5. P l o t L a b e l - > { " n a m e " } 
This centers name above the graph. The default for the option is that the graph 
is not labeled. 

6. A x e s O r i g i n - > { x - c o o r d i n a t e , y - c o o r d i n a t e } 
This option specifies that the x-axis and y-axis intersect at the point 
( x c o o r d i n a t e , y c o o r d i n a t e ) . The option A x e s - > F a l s e specifies that the 
graph is to be drawn without axes. 

7. P lo tRange->{y-min imum, y-maximum} 
This option specifies the range displayed on the final graph to be the interval 
[ y-minimum, y-maximum] ; P l o t R a n g e - > A l l attempts to show the entire 
graph. P l o t R a n g e - > { { x m i n , x m a x } , {ymin,ymax}} shows the graph on 
the rectangle [ xmin, xmax ] ¥ [ ymin, ymax ] . 

8. G r i d L i n e s 
G r i d L i n e s - > A u t o m a t i c specifies that grid lines on the resulting graph are 
drawn automatically, G r i d L i n e s - > { N o n e , A u t o m a t i c } specifies that only 
horizontal gridlines be displayed, and G r i d L i n e s - > { { 1 , 2 , 3 } , N o n e } gives 
vertical gridlines at x =1, 2, and 3. 

Graphing Several Functions 
The P l o t command can also be used to graph several functions simultaneously. To 
display the graphs of the functions f [ x ], g [ x ], and h [ x ] on the domain [a,b] on the same 
axes, enter commands of the form P l o t [ { f [ x ] , g [ x ] , h [ x ] } , { x , a , b } , o p t i o n s ] . 
This command can be generalized to include more than three functions. 

EXAMPLE: Graph the functions sinx, sin2x, and sin— on the interval [0,4π]. 
Display all three graphs on the same axes. 

SOLUTION: We use P l o t to graph the functions on the interval [0,4π]. The 
option P l o t S t y l e is used to display the graph of sin* in black, sin2x in gray, 

and sin— dashed; P l o t R a n g e is used to specify that the y-values displayed 
2 

3 3 
2 2 
3 3 correspond to the interval —,— ; and T i c k s is used to specify that the tick 

marks placed on the x-axis are chosen automatically while those placed on the y-
axis are placed at -1 and 1. 

Plot[{Sin[x],Sin[2x],Sin[x/2]},{x,0,4Pi}, 

PlotStyle->{GrayLevel[0],GrayLevel[.3],Dashing[{.01}]}, 

PlotRange->{-3/2,3/2},Ticks->{Automatic,{-l,l}}] 
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Instead of plotting several graphs simultaneously with P l o t , each graph may be 
generated individually and named and then the resulting graphs can be displayed 
together with Show. 

EXAMPLE: Sketch the graph of the circle x2 - 4x + y2 -2y = 4. 

SOLUTION: We find the center and radius of the circle x2-4x + y2-2y = 4 by 
completing the square and obtain the equation (x - 2)2 + (y -1) = 32. Thus, the center 

is (2,1) and the radius is 3. Solving this equation for y results in y = 1 ± ̂ 9 - (x - 2) . 

Thus, a function describing the top half of the circle is given by 

y1(x) = l + ̂ j9-(x-2)z, while a function describing the bottom half is given by 

y2(x) = l - ^ 9 - ( x - 2 ) 2 . Below, we define y l and y2 to be the functions describing 
the top and bottom half of the circle, respectively. We then use P l o t to graph y 1 
and y2 on the interval [-1,5], naming the resulting graphs p i and p2, respectively. 
Neither graph is displayed since the option D i s p l a y F u n c t i o n - > I d e n t i t y is 
included. We then use Show to display both graphs together. Since Mathematica's 
default A s p e c t R a t i o is 1 /Go ldenRa t io , the resulting displayed graphics object 
does not look like a circle. 

Clear[yl,y2] 

yl=l+Sqrt[9-(x-2)A2]; 

y2=l-Sqrt[9-(x-2)Λ2]; 

pl=Plot[yl,{χ,-1,5},DisplayFunction->Identity]; 

p2=Plot[y2,{x,-l,5>,DisplayFunction->Identity]? 

Show[pl,p2,DisplayFunction->$DisplayFunction] 
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However, when we include the option A s p e c t R a t i o - > l , the resulting graph looks 
like a circle. 

Show[pl,p2,AspectRatio->l,DisplayFunction->$DisplayFunction] 

Piecewise-Defined Functions 

Piecewise-defined functions may also be defined and graphed with Mathematica. In the 
following example, f(x) is defined in two "pieces". Notice that C o n d i t i o n (/ ; ) designates 
the definition of f(x) for different domain values. 

Note that <= represents a < symbol; >= represents a > symbol. 

EXAMPLE: If /(*) = \fx^fifX^0r graph f on the interval [-2,2]. 
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SOLUTION: Entering f [ x _ ] :=χΛ2 + 1 / ; x>=0 defines f(x) = x2+lifx>0 and 
entering f [ x _ ] : = - χ Λ 2 - 1 / ; x<0 defines f(x) = -x2-lif x<0. In this case, we 
must use : = when defining f, because f [ x ] does not make sense unless x is a 
particular number. After defining f, we use P l o t to graph f on the interval [-2,2]. 

Clear[f] 
f[x_]:=xA2+l / ; x>=0 
f [x_] :=-χ Λ 2-1 / ; x<0 
P l o t [ f [ x ] , { x , - 2 , 2 } ] 

Functions can be defined recursively. For example, if the function f [ x ] is defined on 
the interval [a,b], then f can be defined for x > b with f [ x_] : =f [ x - ( b - a ) ] / ; x>b. 
Functions of this type are useful in the study of Fourier series. 

f xifO<x<l 
EXAMPLE: Let g(x) be the periodic extension of the function f(x) = 1 lifl<x<2 . 

[3-xif2<x<3 

Graph g on the interval [0,12]. 

SOLUTION: We proceed as in the p rev ious example . Enter ing 
g [ x _ ] : = x / ; 0<=x<l defines g(x) = xif0<x<l, entering g [ x _ ] : = l / ; 
K=x<2 defines g(x) = lifl<x<2, and entering g [ x _ ] : = 3 - x / ; 2<=x<3 defines 
g(x) = 3-xif2<x<3. For x>3, we define g(x) = g(x-3). We then use P l o t along 
with the P l o t R a n g e and T i c k s option to graph g on the interval [0,12]. As in the 
previous example, we must use : = when defining g as g [ x ] does not make sense 
unless x is a particular number. 
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Clear[g] 

g[x_]:=x /; 0<=x<l 

g[x_]:=l /; K=x<2 

g[x_]:=3-x /; 2<=x<3 

g[x_]:=g[x-3] /; x>=3 

Plot[g[x]/{xf0,12},PlotRange->{0/2}fTicks->{Automatic/{l,2}}] 

2r 
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Graphs of Parametric Functions 
in Two Dimensions 

The function P a r a m e t r i c P l o t is used to graph parametric curves in two dimensions. 
The command 

ParametricPlot[{x[t],y[t]},{t,tmin,tmax}] 

plots the curve given by x = x [ t ] and y = y [ t ] from t = t m i n to t=tmax. 
P a r a m e t r i c P l o t has the same options as P l o t . 

EXAMPLE: Use P a r a m e t r i c P l o t to graph the circle x2-4x + y2-2y = 4. 

SOLUTION: In the previous example, we saw the equation x2-4x + y2-2y = 4 is 
equivalent to the equation (x-2)2+(y-l) =32. Thus, the center of the circle 
x2 -4x + y2 -2y = 4 is (2,1) and the radius is 3. Parametric equations of the circle are 

given by | y = i + 3 s l r î f ' ° - ί - 2 π · B e l o w / w e u s e P a r a m e t r i c P l o t along with the 

option A s p e c t R a t i o - > l to graph the circle. 

ParametricPlot[{2+3Cos[t],l+3Sin[t]},{t,0,2Pi},AspectRatio->l] 
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Arrays of graphics objects can be displayed with the command G r a p h i c s Ar r a y as 
illustrated in the following example. 

EXAMPLE: For a<b, the Prolate Cycloid is the graph of the parametric equations 
3at 

ä £ - Graph the \x = at-bsmt \y~=a-bcost' T h e F o l i u m o f Descartes has parametrization i 

Prolate Cycloid and the Folium of Descartes for a=l and b=2. 

x = -

SOLUTION: After clearing all prior definitions of x and y, if any, we define x and 
y and then use P a r a m e t r i c P l o t to graph the Prolate Cycloid, naming the 
resulting graphics object p p l . Note that p p l is not displayed since the option 
D i s p l a y F u n c t i o n - > I d e n t i t y is included. 

Clear[x,y] 

x[t_]=t-2Sin[t]; 

y[t_]=l-2Cos[t]; 

ppl=ParametricPlot[{x[t],y[t]},{t,0,8Pi}, 

PlotRange->{-3/2, 5 },DisplayFunction->Identity]; 

Similarly, we use P a r a m e t r i c P l o t to graph the Folium of Descartes, naming the 
resulting graphics object pp2. 

Clear[x,y] 

x[t_]=3t/(l+t/v3); 

y[t_]=3t-2/(l+t~3); 

pp2=ParametricPlot[{x[t],y[t]},{t,-10,10},PlotRange->{{-4,5},{-4,5}}, 

AspectRatio->l,DisplayFunction->Identity]; 

The set of graphics { p p l , pp2 } can be displayed together, but not on the same 
axes, with the command G r a p h i c s A r r a y as shown below. 
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Show[GraphicsArray[{ppl,pp2}]] 
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Three-Dimensional Graphics 

As was mentioned in Chapter 1, functions of more than one variable can be defined with 
Mathematica . Of particular interest are functions of two variables. The command which 
plots the graph of the function f(x,y) on the rectangle [xmin,xmax] x [ymin,ymax] is 

Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax}] 

EXAMPLE: Let f(x,y) = x2 - 4x + y2 - 2y + 5. Graph f on the rectangle [0,4] x [-1,3]. 

SOLUTION: After clearing all prior definitions of f, if any, we define f and then 
use P lo t3D to graph f on the rectangle [0,4]x[-l,3]. 

C l e a r [ f ] 

f [x_,y_]=xA2-4x+y"2-2y+5; 

P l o t 3 D [ f [ x , y ] , { x , 0 , 4 } , { y , - l , 3 } ] 

Information about the P l o t 3D command, including a brief explanation of the syntax 
along with a list of the associated options and their current settings is obtained with 
? ?P lo t3D or, equivalently, I n f o r m a t i o n [ P lo t3D ] . 
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??Plot3D 

Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a 
three-dimensional plot of f as a function of x and y. Plot3D[{f, 
s}, {x, xmin, xmax}, {y, ymin, ymax}] generates a 
three-dimensional plot in which the height of the surface is 
specified by f, and the shading is specified by s. 

Attributes[Plot3D] = {HoldAll, Protected} 

Options[Plot3D] = 
{AmbientLight -> GrayLevel[0], AspectRatio -> Automatic, 
Axes -> True, AxesEdge -> Automatic, AxesLabel -> None, 
AxesStyle -> Automatic, Background -> Automatic, Boxed -> True, 
BoxRatios -> {1, 1, 0.4}, BoxStyle -> Automatic, 
ClipFill -> Automatic, ColorFunction -> Automatic, 
ColorOutput -> Automatic, Compiled -> True, 
DefaultColor -> Automatic, Epilog -> {}, FaceGrids -> None, 
HiddenSurface -> True, Lighting -> True, 
LightSources -> 
{{{1., 0., 1.}, RGBColorfl, 0, 0]}, 
{{1., 1., 1.}, RGBColor[0, 1, 0]}, 
{{0., 1., 1.}, RGBColor[0, 0, 1]}}, Mesh -> True, 

MeshStyle -> Automatic, PlotLabel -> None, PlotPoints -> 15, 
PlotRange -> Automatic, PlotRegion -> Automatic, 
Plot3Matrix -> Automatic, Prolog -> {}, Shading -> True, 
SphericalRegion -> False, Ticks -> Automatic, 
ViewCenter -> Automatic, Viewpoint -> {1.3, -2.4, 2.}, 
ViewVertical -> {0., 0., 1.}, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

On several platforms, the option V i e w p o i n t can be changed by going to the Mathematica 
menu, selecting Rction, then Prepare Input, and then 3D UiewPoint Selector... at 
which point the following window appears. 

mi 
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[ Defaults"] 
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Various perspectives can be adjusted by scrolling as indicated above. When a 
satisfactory Viewpoint is found, select Paste and the Viewpoint will be pasted into the 
Mathematica notebook at the location of the cursor. 

Several of these options are illustrated in the following examples. 

EXAM PLE: Graph f(x, y) = x* - 4x + y2 - 2y + 5 on the rectangle [0,4] x [-1,3]. 

SOLUTION: Unlike the previous example, we take advantage of Viewpoint and 
BoxRatios to adjust the point from which the graphics object is viewed and the 
ratios of the side lengths of the bounding box in the resulting graph. 

Clear[f] 

f[χ_,γ_]=χΛ2-4χ+γΛ2-2γ+5; 

Plot3D[f[x,y],{x,0,4},{y,-l,3},BoxRatios->{l,l,3}, 

ViewPoint->{3.752, 2.219, 1.137}] 

In the following example, we illustrate the P l o t P o i n t s and Shading options. 

EXAMPLE: If g(x,y) = xsiny + ysinx, graph g on the rectangle [0,5π]χ[0,5π]. 

SOLUTION: We first use P l o t 3D to graph g. The resulting graph appears 
"choppy." 

Clear[g] 

g[x_,Y_]=x Sin[y]+y Sin[x]; 

Plot3D[g[x,y],{x,0,5Pi},{y,0,5Pi}] 
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The option P lo tPo in t s ->n causes Mathematica to evaluate the function at ηΛ2 points 
when plotting the graph. These nA2 points are called sample points. In the command 

P l o t 3 D [ f [ x , y ] / { x , x m i n , x m a x } , { y , y m i n , y m a x } , P l o t P o i n t s - > n ] , the 
sample points are obtained by dividing each interval [xmin,xmax] and [ymin,ymax] into n 
subintervals. If different numbers are to be used in the two directions, then 

PlotPoints->{nx,ny} 

is used. Hence, a larger value of n (or nx and ny) yields a smoother graph. The option 

Shading->False 

causes Mathematica to not shade squares in the graph. Below, we use the options 
P l o t P o i n t s - > 3 0 and Shad ing ->Fa l s e to indicate that 30 points be selected in the 
direction of both the x and the y-coordinates, for a total of 900 sample points, and that the 
resulting graph is not shaded. The resulting graph is smoother than the first. 

Plot3D[g[x,y],{x,0,5Pi}f{y,0f5Pi},PlotPoints->30,Shading->False] 
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Graphing Level Curves of Functions 
of Two Variables 

The level curves of the function f(x,y) are curves in the xy-plane which satisfy the equation 
f(x,y)=c where c is a constant. Mathematica graphs several of the level curves of the 
function f(x,y) with the command 

ContourPlot[f[x,y],{x,xmin,xmax},{y,ymin,ymax}]. 

I n f o r m a t i o n [ C o n t o u r P l o t ] or ?? C o n t o u r P l o t yields the basic syntax of the 
C o n t o u r P l o t command along with a list of the options for C o n t o u r P l o t and their 
current settings. 

??ContourPlot 

ContourPlot[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a contour 
plot of f as a function of x and y. 

Attributes[ContourPlot] = {HoldAll, Protected} 

Options[ContourPlot] = 
{AspectRatio -> 1, Axes -> False, AxesLabel -> None, 
AxesOriqin -> Automatic, AxesStyle -> Automatic, AxesOrigin -> Automatic, AxesStyle -> Automatic, 
Background -> Automatic, ColorFunction -> Automatic, 
ColorOutput -> Automatic, Compiled -> True, ContourLines -> True, 
Contours -> 10, ContourShading -> True, ContourSmoothing -> True, 
ContourStyle -> Automatic, DefaultColor -> Automatic, 
Epilog -> {}, Frame -> True, FrameLabel -> None, 
FrameStyle -> Automatic, FrameTicks -> Automatic, 
PlotLabel -> None, PlotPoints -> 15, PlotRange -> Automatic, 
PlotRegion -> Automatic, Prolog -> {}, RotateLabel -> True, 
Ticks -> Automatic, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

All contour plots are shaded unless the ContourShading->False option is employed. 
The option Contours->k instructs Mathematica to use k contour levels. 

EXAMPLE: Sketch several level curves of g(x,y) = xsiny + y sinx on the rectangle 
[0,5π]χ[0,5π]. 

SOLUTION: The three-dimensional plot of this function was given in the 
previous example. Contour levels represent intersections of planes of the form 
g(x,y) = constant with the surface shown in the previous example. Below we use 
C o n t o u r P l o t to generate various level curves of g. The option 
P l o t P o i n t s - > 3 0 is included so that 30 sample points in the x and y directions 
are used to create the plot. 
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Clear[g] 
g[x_,y_]=x Sin[y]+y Sin[x]; 

ContourPlot[g[x,y],{x,0,5Pi},{y,0,5Pi},PlotPoints->30] 

Next, we generate a similar graph except that the option C o n t o u r s - > 2 0 specifies that 
20 contours be included in the contour plot, C o n t o u r S h a d i n g - > F a l s e specifies that the 
resulting contour plot not be shaded, A x e s - > A u t o m a t i c specifies that the resulting 
graph have axes, F r a m e - > F a l s e specifies that the resulting contour plot not be enclosed 
in a frame, A x e s O r i g i n - > { 0 , 0 } specifies that the axes intersect at the point (0,0), and 
the option P l o t P o i n t s - > 6 0 specifies that 60 sample points in the x and y directions are 
used to create the plot. 

ContourPlot[g[x,y],{x,0,5Pi},{y,0,5Pi},Contours->20, 

ContourShading->False,Axes->Automatic,Frame->False, 

AxesOrigin->{0,0},PlotPoints->60] 

2.5 5 7.5 10 12.5 15 
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In the previous examples, Mathematica has selected the contour levels. However, these 
values can be chosen by the user with the C o n t o u r s - > v a l u e l i s t option. This particular 
feature is helpful in graphing equations. 

EXAMPLE: (a) Graph several level curves of f(x,y) = x2-4x + y2-2y + 5 on the 
rectangle [-2,6] x [-3,5]. (b) Graph the circle x2 - 4x + y2 - 2y + 5 = 9. 

SOLUTION: After defining f, we use C o n t o u r P l o t along with the option 
Con tour Shad ing to graph several level curves of f on the rectangle [-2,6]x[-3,5]. 

Clear[f] 

f[x_,y_]=x"2-4x+y"2-2y+5; 

ContourPlot[f[x,y],{xf-2,6},{y,-3,5},ContourShading->False] 

To graph the circle x2-4x + y2-2y + 5 = 9, which is the same as the circle 
(x-2)2+(y-l) =32 considered in previous examples, we note that the graph of 
x2-4x + y2-2y + 5 = 9 is the level curve of f(x,y) corresponding to 9. Below, we use 
C o n t o u r P l o t to graph this particular curve by including the option C o n t o u r s - > { 9 } 
which specifies that the contour corresponding to 9 be graphed. If, for example, the option 
C o n t o u r s ->{ 4 , 9 , 16 , 25} had been included, then the contours corresponding to 4, 9, 
16, and 25 would be graphed. 
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ContourPlot[f[X/y],{x,-2,6},{y,-3,5},Contours->{9}, 

Frame->False,Axes->Automatic,AxesOrigin->{0,0}, 

PlotPoints->30,ContourShading->False] 

C o n t o u r P l o t can also help us investigate the behavior of some functions near 
particular points. 

EXAMPLE: Graph h and several level curves of h on the rectangle [-2,2]x[-2,2] if 

h(xfy)= ' 
*2+y2 

SOLUTION: In the following graphs, Mathematica does not compute h [ 0 , 0 ] 
and thus no error messages are generated even though h is undefined when x=0 
and y=0. In the following code, we use P l o t 3 D to graph h, naming the resulting 
graph p l o t h , and C o n t o u r P l o t to graph several level curves of h, naming the 
result ing graph c p h . Neither graph is displayed since the option 
D i s p l a y F u n c t i o n - > I d e n t i t y is included in each command. We then use 
G r a p h i c s A r r a y to display the set of graphs { p l o t h , c p h } . 

Clear[h] 

h[x.fy_]=(xA2-yA2)/(xA2+yA2); 

ploth=Plot3D[h[x/y],{x,-2,2},{y,-2,2},PlotPoints->25, 

Shading->False,DisplayFunction->Identity]; 

cph=ContourPlot[h[x,y],{x,-2,2},{y,-2,2},Frame->False, 

Axes->Automatic,AxesOrigin->{0,0},PlotRange->{-1,1}, 

ContourShading->False,DisplayFunction->Identity]; 

Show[GraphicsArray[{ploth,cph}]] 
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From the graph on the left, we see that h behaves strangely near (0,0). In fact, if h 
had been graphed on a different rectangle, Mathematica may have sampled (0,0) 
and subsequently displayed an error message. In any case, the resulting graph 
would be sufficiently accurate for our purposes. From the graph on the right, we 
see that all contours are approaching (0,0). In fact, near (0,0), h attains every value 
between -1 and 1 and in calculus we show that lim h(x, y) does not exist. ■ 

(,,yH0,0) V D> 

Graphing Parametric Curves and 
Surfaces in Space 

P a r a m e t r i c P l o t 3 D is used to graph parametric curves and surfaces in space. The 
command 

ParametricPlot3D[{x[t],y[t],z[t]},{t,tmin,tmax}] 

generates the three-dimensional curve defined by x = x [ t ] , y = y [ t ] , and z = z [ t ] for 
t = t m i n to t= tmax and the command 

P a r a m e t r i c P l o t 3 D [ { x [ u , v ] , y [ u , v ] , z [ u , v ] } , 
{u ,umin ,umax} , {v ,vmin ,vmax}] 

plots the surface defined by x=x [ u , v ] , y=y [ u , v ] , and z=z [ u , v ] for umin < u < umax 
and vmin < v < vmax. 

The command I n f o r m a t i o n [ P a r a m e t r i c P l o t 3 D ] or ? ? P a r a m e t r i c P l o t 3 D 
returns a description of the P a r a m e t r i c P l o t 3 D command along with a list of options 
and their current settings. 
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? ?ParametricPlot3D 

ParametricPlot3D[{fx, fy, fz}, {t, tmin, tmax}] produces a 
three-dimensional space curve parameterized by a variable t which 
runs from tmin to tmax. ParametricPlot3D[{fx, fy, fz}, {t, tmin, 
tmax}, {u, umin, umax}] produces a three-dimensional surface 
parametrized by t and u. ParametricPlot3D[{fx, fy, fz, s}, ...] 
shades the plot according to the color specification s. 
ParametricPlot3D[{{fx, fy, fz}, {gx, gy, gz}, . . . } , ...] plots 
several objects together. 

Attributes[ParametricPlot3D] = {HoldAll, Protected} 

Options[ParametricPlot3D] = 
{AmbientLight -> GrayLevel[0.], AspectRatio -> Automatic, 
Axes -> True, AxesEdge -> Automatic, AxesLabel -> None, 
AxesStyle -> Automatic, Background -> Automatic, Boxed -> True, 
BoxRatios -> Automatic, BoxStyle -> Automatic, 
ColorOutput -> Automatic, Compiled -> True, 
DefaultColor -> Automatic, Epilog -> {}, FaceGrids -> None, 
Lighting -> True, LightSources -> 
{{{1., 0., 1.}, RGBColor[l, 0, 0]}, 
{{1., 1., 1.}, RGBColor[0, 1, 0]}, 
{{0., 1., 1.}, RGBColor[0, 0, 1]}}, PlotLabel -> None, 

PlotPoints -> Automatic, PlotRange -> Automatic, 
PlotRegion -> Automatic, Plot3Matrix -> Automatic, 
Polygonlntersections -> True, Prolog -> {}, RenderAll -> True, 
Shading -> True, SphericalRegion -> False, Ticks -> Automatic, 
ViewCenter -> Automatic, Viewpoint -> {1.3, -2.4, 2.}, 
ViewVertical -> {0., 0., 1.}, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

The following examples illustrate the P a r a m e t r i c P l o t 3 D command along with several 
frequently used options. 

EXAMPLE: Compare the graphs of (? 
:COS2f 
= sin2£, 
= t/5 

0 < t < 8π and f; tcoslt 
-tsinlt, 
= t/5 

0<t<8n. 

SOLUTION: In p p l we graph 

x = cos2f 
ly = sm2t,0<t<8n 

z = t/5 
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and in pp2 we graph 

ix = tcos2t 
\y = tsm2t,0<t<8n. 
[ z = t/5 

In each case, the option P l o t P o i n t s - > 1 2 0 is used to increase the number of 
sample points to assure smooth graphs and the option T i c k s - > N o n e specifies 
that the resulting graphs are to be displayed without tick marks. Neither graph is 
displayed since the option D i s p l a y F u n c t i o n - > I d e n t i t y is included. The set 
of graphs { p p l , pp2 } is displayed side-by-side with G r a p h i c s A r r a y . 

ppl=ParametricPlot3D[{Cos[2t],Sin[2t],t/5},{t,0,8Pi}, 

PlotPoints->120,Ticks->None,DisplayFunction->Identity]; 

pp2=ParametricPlot3D[{t Cos[2t],t Sin[2t],t/5},{t,0,8Pi}, 

PlotPoints->120,Ticks->None,DisplayFunction->Identity]; 

Show[GraphicsArray[{ppl,pp2}]] 

The intersection of a plane and a surface is called the trace of the surface. We can use 
P a r a m e t r i c P l o t 3 D to help us visualize the traces of some surfaces. 

EXAMPLE: Let g(x,y) = cos(x + siny). Sketch a graph of the intersection of the 
graph of g with the plane (a) x = 5;(b) y = 6;(c) x = y ;and(d) y = 4n-x. 

SOLUTION: We begin by using P l o t 3D to graph g on the rectangle [0,4π]χ[0,4π]. 

Clear[g] 

g[x_,y_]=Cos[x+Sin[y]]; 

Plot3D[g[x,y],{x,0,4Pi},{y,0f4Pi},PlotPoints->25] 
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For (a), the intersection of the plane x = 5 and the xy-plane is the line x = 5 which has 
parametrization 

The intersection of the plane x = 5 and the graph of g is the set of points on the graph of g 
above the line x - 5 which has parametrization 

x = 5 

The lines 

\x = 5 \ x = 5 
ly = t and < y = t 
[z = 0 [z = g(5,t) 

are graphed below using P a r a m e t r i c P l o t 3 D for 0 < t < 4π in p p l and pp2, respectively. 
Similarly, for (b), the intersection of the plane y = 6 and the xy-plane is the line y = 6 with 
parametrization 

and the intersection of the plane y = 6 and the graph of g is the set of points on the graph 
of g above the line y = 6 which has parametrization 
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These two curves are graphed in pp3 and pp4. Finally, Show is used to display the graphs 
of p p l , pp2, pp3, and pp4. 

ppl=ParametricPlot3D[{5,t,0},{t,0,4Pi}/DisplayFunction->Identity]; 

pp2=ParametricPlot3D[{5,t,g[5,t]},{t,0,4Pi},DisplayFunction->Identity]; 

pp3=ParametricPlot3D[{t,5,0},{t,0,4Pi},DisplayFunction->Identity]; 

pp4=ParametricPlot3D[{t,6,g[t,6]},{t,0,4Pi},DisplayFunction->Identity]; 

Show[ppl,pp2,pp3,pp4,DisplayFunction->$DisplayFunction] 

For (c) and (d) we proceed in the same manner as in (a) and (b). The line of intersection of 
the plane x = y with the xy-plane is the line x = y with parametrization 

the intersection of the plane x-y with g has parametrization 

P a r a m e t r i c P l o t 3 D is used to graph these two curves in pp5 and pp6. Similarly, the line 
of intersection of the plane y = 4n-x with the xy-plane is the line y = 4n-x with 
parametrization 
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the intersection of the plane y = 4n-x with g has parametrization 

x = t 
y = 4n-t . 

{z = g(t,4n-t) 

These two curves are graphed with P a r a m e t r i c P l o t 3 D in pp7 and pp8. Show is used to 
display all four graphs. 

pp5=ParametricPlot3D[{t,t,0},{t,0,4Pi},DisplayFunction->Identity]; 

pp6=ParametricPlot3D[ {t, t, g [ t, t ] } , {t, 0,4Pi},DisplayFunction->Identity]; 

pp7=ParametricPlot3D[{t,4Pi-t,0},{t,0,4Pi}, 

DisplayFunction->Identity]; 

pp8=ParametricPlot3D[{t,4Pi-t,g[t,4Pi-t]},{t,0,4Pi}, 

DisplayFunction->Identity]; 

Show[pp5,pp6,pp7,pp8,DisplayFunction->$DisplayFunction] 

In Chapter 3, we will use the Method of Lagrange Multipliers to solve some problems 
of the form "find the minimum and maximum values of f(x,y) subject to the constraint 
g(x,y) = c. To see that the maximum and minimum values subject to the constraint exist, 
we can graph f(x,y) for points (x,y) on the graph of g{x,y) = c if we know a parametrization 
of the equation g(x,y) - c with P a r a m e t r i c P l o t 3 D . 
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EXAMPLE: Sketch the graph of f(x,y) for points (x,y) on the circle x2+y2 = l if 
f(x, y ) = x3 sin 4y + y2 cos 3x. 

SOLUTION: A parametrization of the circle x2 + y2 = 1 is given by 

I x = cos t 
y = sint,0<t<2n . 

2 = 0 

Thus, a graph of f(x,y) for points (x,y) on the circle is obtained by graphing 

x = cosf 
y = sinf ,0<t<2n. 

\z= /(cost, sin t) 

We use P a r a m e t r i c P l o t 3 D to graph each of these curves in pp3 and pp4. We 
use Show to show the graphs pp3 and pp4 together, naming the resulting graph 
pp5. Note that the results of the Show command are not displayed since pp3 is not 
displayed and the option D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n is not 
included in the S h o w command. We also use P l o t 3D to graph 
/(x,y) = x3sin4y + y2cos3x on the rectangle [-1.5,1.5]x[-1.5,1.5], naming the resulting 
graph pp6. Finally, we use G r a p h i c s A r r a y to display the set of graphs pp5 and 
pp6. 

Clear[f] 

f[x_,y_J=x"3 Sin[4y]+y~2 Cos[3x]; 

pp3=ParametricPlot3D[{Cos[t],Sin[t],0},{t,0,2Pi}, 

DisplayFunction->Identity]; 

pp4=ParametricPlot3D[{Cos[t],Sin[t],f[Cos[t],Sin[t]]}, 

{t,0f2Pi},DisplayFunction->Identity]; 

pp5=Show[pp3,pp4]; 

pp6=Plot3D[f[x,y],{xf-1.5f1.5},{y,-1.5/1.5}/ 

PlotPoints->20,DisplayFunction->Identity]; 

Show [ GraphicsArray[{pp5,pp6}]] 
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P a r a m e t r i c P l o t 3 D can also be used to graph parametric equations of surfaces.. 

EXAMPLE: The quadric surfaces are the three-dimensional objects corresponding 
to the conic sections in two dimensions. A quadric surface is a graph of 

Ax2 + By2+Cz2+Oxy + Exz + Fyz + Gx + Hy + Iz + J = 0. 

The intersection of a plane and a quadric surface is a conic section. Several of the 
basic quadric surfaces, in standard form, and a parametrization of the surface are 
listed in the following table. 

X2 XI1 

Use P a r a m e t r i c P l o t 3 D to graph the ellipsoid with equation — + ̂ - + z2 = 1 and 
x2 y2 the hyperboloid of one sheet with equation — + *— - z2 = 1. 

Name Parametric Equations 

Ellipsoid 
x2 y2 z2 Λ 

a2 b2 c2 

Hyperboloid of One Sheet 
x2 y2 z2 Λ 

a2 b2 c2 

Hyperboloid of Two Sheets 

a2 b2 c2 
= 1 

\x = acos(t)cos(r) 
y = frcos(f)sin(r), 

z = csin(f) 

— < t < — and -n<r<n. 
2 2 

ix = asec(f)cos(r) 
y = frsec(f)sin(r), 

z = ctan(t) 

— < t< — and-n<r<n. 
2 2 

x = asec(t) 
ly = btan(t)cos(r), 
z = ctan(f)sin(r) 
π Α π , ^ ^ π . 3π 

— <t< — and-n<r<n or —<t< — . 
2 2 2 2 
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X2 y2 SOLUTION: A parametrization of the ellipsoid with equation — + ̂ - + z 2 =l is 

given by I
x = 4cos£cosr π π 
y = 2cos£sinr, — < t < — and-n<r<n , 

z = sinf 2 2 

which is graphed below with P a r a m e t r i c P l o t 3 D . 

Clear[x,y,z] 

x[t_,r_J=4Cos[t]Cos[r] ; 
y [ t_ ,r_]=2Cos[ t ]S in[r ] ; 
z [ t_ , r_J=S in [ t ] ; 
ParametricPlot3D[{x[t ,r ] ,y[ t ,r ] , z [ t , r ] } , { t , - P i / 2 , P i / 2 } , { r , - P i , P i } ] 

A parametrization of the hyperboloid of one sheet with equation — + ̂ - - z 2 = 1 is 

given by 

x = 4secfcosr 
y = 2sec£sinr , 

z = tan t 

— < t < — ana - π < r < π . 
2 2 

Since sect and tant are undefined when t = ±—, we use P a r a m e t r i c P l o t 3 D to 
2 

graph these parametric equations on a subinterval of π π π π 
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C l e a r [ x , y , z ] 

x [ t _ , r _ ] = 4 S e c [ t ] C o s [ r ] ; 

y [ t _ , r _ ] = 2 S e c [ t ] S i n [ r ] ; 

z [ t _ , r _ ] = T a n [ t ] ; 

P a r a m e t r i c P l o t 3 D [ { x [ t , r ] , y [ t , r ] , z [ t , r ] } , { t f - P i / 3 , P i / 3 } , { r , - P i , P i } ] 

A Word of Caution 

If we enter a P l o t command before defining a function as in the following, errors result 

Plot[g[x],{x,0,l}] 

Plot::plnr: CompiledFunction[ {x} , « 1 » , -CompiledCode-] [x] 
is not a machine-size real number at x = 0.. 

Plot::plnr: CompiledFunction[{x}, « 1 » , -CompiledCode-] [x] 
is not a machine-size real number at x = 0.0416667. 

Plot::plnr: CompiledFunction[ {x} , « 1 » , -CompiledCode-] [x] 
is not a machine-size real number at x = 0.0833333. 

General::stop: 
Further output of Plot::plnr 
will be suppressed during this calculation. 

11 

0.8 

0.6 

0.4 

0.2 

0.8 

In this case, g has not been defined. Defining g to be a real-valued function defined on 
the interval [0,1] and reentering the command eliminates the error messages. 
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2.4 Exact and Approximate 
Solutions of Equations 

Exact Solutions of Equations 
Mathematica can find exact solutions of many equations. For example, Mathematica can 
find exact solutions to systems of equations and exact solutions to polynomial equations of 
degree four or less. Since a single equals sign "=" is used to name objects and assign values 
in Mathematica, equations in Mathematica are of the form 

left-hand side==right-hand side. 

The double equals sign "==" between the left-hand side and right-hand side specifies that 
the object is an equation. For example, to represent the equation 3x+7=4 in Mathematica, 
type 3x+7==4. The command S o l v e [ l h s = = r h s , x ] solves the equation l h s = r h s for x. 
If the only unknown in the equation l h s = r h s i s x and Mathematica does not need to use 
inverse functions to solve for x, then the command S o l v e [ l h s = = r h s ] solves the 
equation l h s = r h s for x. Hence, to solve the equation 3x+7=4, both the command 
S o l v e [ 3x+7==4 ] and S o l v e [ 3x+7==4, x ] produce the same result. 

EXAMPLE: Solve the equations 3x + 7 = 4, —— = 0, and x3+x2+x + l = 0. 

SOLUTION: In each case, we use S o l v e to solve the indicated equation. Be sure 
to include the double equals sign "==" between the left- and right-hand sides of 
each equation. Thus, the result of entering 

Solve[3x+7==4] 

{{x -> - 1 } } 

means that the solution of 3x + 7 = 4 is x = -1 and the result of entering 

Solve [ (x*2- l ) / (x - l )==0] 

{{x -> - 1 } } 

x2 — 1 means that the solution of = 0 is x = -l. On the other hand, the equation 

x3+x2+x + l = Q has two imaginary roots. We see that entering 

Solve[χΛ3+χΛ2+χ+1==0] 

{{x -> -1}, {x -> -I}, {x -> I}} 
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yields all three solutions. Thus, the solutions of x3+x2+x + l = 0 are x = -l and x = ±i. 
Remember that the Mathematica symbol I represents the complex number i = V^ï. In general, 
Mathematica will find the exact roots of any polynomial equation of degree four or less. ■ 

As stated above, the exception to the above rule is when using the command S o l v e to 
find solutions of equations where inverse functions must be used. 

EXAMPLE: Find a solution of s in2x-2sinx-3 = 0. 

SOLUTION: When the command S o l v e [ S i n [ x ] A 2 - 2 S i n [ x ] - 3 = = 0 ] is 
entered, Mathematica solves the equation for S i n [ x ] . However, when the 
command 

Solve[Sin[x]*2-2Sin[x]-3==0,x] 

is entered, Mathematica attempts to solve the equation for x. In this case, 
Mathematica succeeds in finding one solution. 

Solve[Sin[xp2-2Sin[x]-3==0] 

{{Sin[x] -> -1}, {Sin[x] -> 3}} 

Solve [Sin[xp2-2Sin[x]-3==0,x] 

Solve::ifun: 
Warning: Inverse functions 
are being used by Solve, 
so some solutions may not 
be found. 
-Pi 

{{x _> yf {x _> ArcSin[3]}} 
2 

We can also use S o l v e to find the solutions, if any, of various types of systems of 
equations. Entering 

Solve[{lhsl=rhsl,Ihs2==rhs2},{x,y}] 

solves a system of two equations for x and y, while entering 

Solve[{ lhs l==rhs l , Ihs2==rhs2}] 

attempts to solve the system of equations for all unknowns. In general, S o l v e can find the 
solutions to a system of linear equations. In fact, if the systems to be solved are 
inconsistent or dependent, Mathematica 's output will tell you so. 
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EXAMPLE: Solve each system: (a) (3x--y-
y = 

= 4 
■-2 

and (b) | 3x-2y + z = 0 . 
1 x+y-z=l 

SOLUTION: In each case we use S o l v e to solve the given system. For (a), the 
result of entering 

Solve[{3x-y==4,x+y==2},{x,y}] 

3 1 
{ { x -> - , y -> - } } 

2 2 

means that the solution of 

\x+y=2 y '*> [2 2 

For (b), the result of entering 

S o l v e [ { 2 x - 3 y + 4 z = = 2 , 3 x - 2 y + z = = 0 , x + y - z = = l } , { x , y , z } ] 

7 9 3 
{{X -> — , y -> - , z -> - } } 

10 5 2 

means that the solution of 

lx-3y + 4z = 2 (7 9' 
3x-2y + z = 0 i s (x,y,z)= —,-,- | 

x + y-z = \ v10 5 ' -y 

Our next example illustrates how to use S o l v e to find the solutions of a nonlinear 
system of equations. 

SOLUTION: We note that the graphs of the equations 4x2+y2 = 4 and x2 +4y2 = 4 
are both ellipses. We use C o n t o u r P l o t to graph each equation, naming the 

EXAMPLE: Solve the systems (a) [4x2+y2=4 
[x2+4y2=4 and (b) \ a1 b2 

[ y = mx 
(a, b greater 

than zero) for x and y. 
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results c p l and cp2, respectively, and then use Show to show both graphs 
simultaneously. The solutions of the system 

4x 2 + y2 = 4 
X2+4y2 = 4 

correspond to the intersection points of the two graphs. 

cpl=ContourPlot[4χΛ2+γΛ2-4,{x,-3,3},{y,-3,3},Contours->{0}, 

ContourShading->False,PlotPoints->50,DisplayFunction->Identity]; 

cp2=ContourPlot[χΛ2+4γΛ2-4,{x,-3,3},{y,-3,3},Contours->{0}, 

ContourShading->False,PlotPoints->50,DisplayFunction->Identity]; 

Show[cpl,cp2,Frame->False,Axes->Automatic,AxesOrigin->{0,0}, 

DisplayFunction->$DisplayFunction] 

Finally, we use Solve to find the solutions of the system. 

Solve[{4x*2+y"2==4,x"2+4y"2==4}] 

-2 -2 
{{x -> , Y -> }, 

Sqrt[5] Sqrt[5] 

-2 2 

{x -> / Y -> }/ 
Sqrt[5] Sqrt[5] 

2 -2 

{x -> . y -> }r 
Sqrt[5] Sqrt[5] 

2 2 

{x -> , y -> }> 
Sqrt[5] Sqrt[5] 
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For (b), we also use S o l v e to find the solutions of the system. However, since the 
unknowns in the equations are a, b, m, x, and y, we must specify that we want to 
solve for x and y in the S o l v e command. 

Solve[{x/v2/a"2+y"2/b"2==l,y==m x},{x,y}] 

a b m 
{{y -> -( ), 

2 2 2 
Sqrt[b + a m ] 

a b 
x _> _( )}f 

2 2 2 
Sqrt[b + a m ] 

a b m 
{y _> , 

2 2 2 
Sqrt[b + a m ] 

a b 
x _> } } 

2 2 2 
Sqrtfb + a m ] 

Although Mathematica can find the exact solution to every polynomial equation of 
degree four or less, exact solutions to some equations that Mathematica can solve may not 
be meaningful. In those cases, Mathematica can provide approximations of the exact 
solutions using either the N [ e x p r e s s i o n ] or the e x p r e s s i o n / / N command. 

EXAMPLE: Approximate the solutions of the equations (a) x4-2x2 =l-x; and (b) 
l-x2=xK 

SOLUTION: Since each of these is a polynomial equation with degree less than 
five, S o l v e will find the exact solution of each equation. However, since the 
solutions are quite complicated, we use N to obtain approximate solutions of each 
equation. 

For (a), entering 

N[Solve[x~4-2x~2==l-x]] 

{{x -> 

0.182777 - 0.633397 I}, 



2.4 Exact and Approximate Solutions of Equations 89 

{x -> 

0.182777 + 0.633397 I}, 

{x -> -1.71064}, 

{x -> 1.34509}} 

first finds the exact solutions of the equation x*-2x2 =l-x and then computes 
approximations of those solutions. The resulting output is the list of approximate 
solutions. 

For (b), entering 

Solve[l-x"2==xA3,x]//N 

{{x -> 0.754878}, 

{x -> 

-0.877439 + 0.744862 I}, 

{x -> 

-0.877439 - 0.744862 I}} 

first finds the exact solutions of the equation l-x2 = x3 and then computes 
approximations of those solutions. The resulting output is the list of approximate 
solutions. ■ 

Mathematica can also solve equations involving more than one variable for one variable 
in terms of other unknowns. 

EXAMPLE: (a) Solve the equation v-— for h. (b) Solve the equation a1 +b2 =c2 

fore. 

SOLUTION: Since these equations involve more than one unknown, we must 
specify the variable for which we are solving. Thus, entering 

Solve[v==Pi r"2/h,h] 

2 
Pi r 

{ { h -> } } 
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solves the equation v = — for h. Note that if we had wanted to solve for r instead, 
h 

then we would have entered S o l v e [ v==Pi r Λ 2h , r ] . Similarly, entering 

Solve[a*2+bÄ2==cA2,a] 

2 2 
{{a -> -Sqrt[-b + c ]}, 

2 2 
{a -> Sqrt[-b + c ]}} 

solves the equation a2 + b2 = c2 for a. ■ 

Numerical Approximation of Solutions 
of Equations 

When solving an equation is either impractical or impossible, Mathematica provides 
several functions to approximate roots of equations. Some of these commands include 
F indRoot and NRoots. 

N R o o t s numerically approximates the roots of any polynomial equation. The 
command NRoots [ p o l y l = = p o l y 2 , x ] approximates the solutions of the polynomial 
equation p o l y l = = p o l y 2 , where both p o l y l a n d p o l y 2 are polynomials in x. 

F i n d R o o t attempts to approximate a root to an equation provided that a "reasonable" 
guess of the root is given. The command F indRoot [ l h s = = r h s , { x , f i r s t g u e s s } ] 
searches for a numerical solution to the equation l h s = = r h s , starting with 
x=f i r s t g u e s s . One way of obtaining f i r s t g u e s s is to graph both l h s and r h s with 
P l o t , find the point(s) of intersection, and estimate the x-coordinates of the point(s) of 
intersection. Thus, F i n d R o o t works on functions other than polynomials. Moreover, to 
locate more than one root, F i n d R o o t must be used several times. NRoots is easier to use 
when trying to approximate the roots of a polynomial. 

EXAMPLE: Approximate the solutions of x5 + x4 - 4x3 + 2x2 -3x- 7 = 0. 

SOLUTION: Since x 5 +x 4 -4x 3 +2x 2 -3x-7 = 0 is a polynomial equation, we may 
use NRoots to approximate the solutions of the equation. Thus, entering 

NRoots[χΛ5+χΛ4-4χΛ3+2χΛ2-3χ-7==0,χ] 

x == -2.74463 || 

x == -0.880858 || 

x == 0.41452 - 1.19996 I | | 
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x == 0.41452 + 1.19996 I || 

x == 1.79645 

approximates the solutions of x5 + x4 - 4x3 + 2x2 - 3x - 7 = 0. 
F i n d R o o t may also be used to approximate each root of the equation. However, 
to use F indRoot , we must supply an approximation of the solution. Note that the 
solutions of x5 + x4 - 4x3 + 2x2 - 3x - 7 = 0 correspond to the values of x where the 
graph of x5 +x4 -4x3 +2x2 -3x-7 intersects the x-axis. Below we use P l o t to graph 
x5+x*-4x3+2x2-3x-7. 

Plot[x"5+x"4-4x"3+2x"2-3x-7,{xf-3,2}] 

Note that the graph intersects the x-axis when x«-2.5, x~-l, and when x = 1.5. 
We use these values as initial approximations of each solution. Thus, entering 

FindRoot[χΛ5+χΛ4-4χΛ3+2χΛ2-3χ-7,{x,-2.5}] 

{x -> -2.74463} 

approximates the solution near -2.5, entering 

FindRoot[χΛ5+χΛ4-4χΛ3+2χΛ2-3χ-7,{x,-l}] 

{x -> -0.880858} 

approximates the solution near - 1 , and entering 

FindRoot[χΑ5+χΛ4-4χΛ3+2χΛ2-3χ-7f{x,2}] 

{x -> 1.79645} 

approximates the solution near 1.5. 

Note that F i n d R o o t may be used to approximate complex solutions as well. 
Thus, entering 

FindRoot[χΛ5+χΛ4-4χΛ3+2χΛ2-3χ-7,{χ,.5+1}] 

{x -> 0.41452 + 1.19996 1} 

approximates the solution near 0.5+i. Of course, finding an initial estimation of a 
complex root may be difficult. ■ 
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EXAMPLE: Approximate the positive solutions of the equation cosx-x = 0. 

SOLUTION: In order to approximate the roots of the equation cosx-x = 0, 
F i n d R o o t must be used since cosx-x = 0 is not a polynomial equation. Note that 
since cosx < 1 for all values of x, cosx < x when x > 1. Thus, all positive solutions of 
the equation cosx-x = 0, if any, must be contained in the interval [0,1]. Therefore, 
to obtain initial approximations of the solution(s) of cosx-x = 0, we graph cosx-x 
on the interval [0,1]. 

Clear[f] 

f[x_]=Cos[x]-x 

Plot[f[x],{x,0,l}] 

-x + Cos[x] 

Notice that cosx-x = 0 near 0.7. Thus, we use 0.7 as our initial approximation in 
the F indRoot command below. 

F i n d R o o t [ f [ x ] = = 0 , { x , . 7 } ] 

{x -> 0 .739085} 

F indRoot can also be used to approximate solutions to systems of equations. Although 
NRoots can solve a polynomial equation, NRoots cannot be used to solve a system of 
polynomial equations. When approximations of solutions of systems of equations are 
desired, use either S o l v e and N together, when possible, or F indRoot . 

EXAMPLE: Approximate the solutions to the system of equat ions 
x2 + 4xy + y2 = 4 

5x2-4xy + 2y2 = 8* 
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SOLUTION: We begin by using C o n t o u r P l o t to graph each equation. From the 
resulting graph, we see that x2 + 4xy + y2 = 4 is a hyperbola, 5x2 -4xy + 2y2 = 8 is an 
ellipse, and there are four solutions to the system of equations. 

cpl=ContourPlot[x"2+4x y+y~2-4,{x,-4,4},{y,-4,4}, 

Contours->{0},PlotPoints->50, 

ContourShading->False,DisplayFunction->Identity]; 

cp2=ContourPlot[5x"2-4x y+2y*2-8,{x,-4,4},{y,-4,4}, 

Contours->{0},PlotPoints->50, 

ContourShading->False,DisplayFunction->Identity]; 

Show[cpl,cp2,Frame->False,Axes->Automatic, 

AxesOrigin->{0,0},DisplayFunction->$DisplayFunction] 

From the graph we see that possible solutions are (0,2) and (0,-2). In fact, 
substituting x=0 and y=-2 and x=0 and y=2 into each equation verifies that these 
points are both exact solutions of the equation. The remaining two solutions are 
estimated with F indRoot . 

FindRoot[{χΛ2+4χ y+y"2==4,5x"2-4x y+2y"2==8},{x,1},{y,.25}] 

{x -> 1.39262, y -> 0.348155} 

FindRoot[{χΛ2+4χ y+y*2==4,5xA2-4x y+2y"2==8},{x,-l},{y,-.25}] 

{x -> -1.39262, y -> -0.348155} 

■ 

In addition to the commands F i n d R o o t and NRoo t s , N S o l v e can also be used to 
approximate roots of some equations. 

EXAMPLE: If h(x) = x3-8x2+l9x-12 and k(x) = -x2-x—, approximate the 
2 8 

solutions of the equation h(x) = k(x) using NRoots and NSolve. 
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SOLUTION: After clearing all prior definitions of h and k, if any, we use NRoots 
to approximate the solutions of the equation. 

Clear[h,k] 

h[x_]=x"3-8x"2+19x-12 

k[x_]=l/2x"2-x-l/8 

NRoots[h[x]==k[x],x] 

2 3 
-12 + 19 x - 8 x + x 

2 
1 x 

-(-) - x + — 
8 2 

x == 0.904363 || 

x == 2 .66088 | | x == 4 .93476 

As expected, the same results are obtained with NSolve. 

NSolve[h[x]==k[x],x] 

{{x -> 0.904363}, 

{x -> 2.66088}, 

{x -> 4.93476}} ■ 

Application: Intersection Points of Graphs 
of Functions 

In several later examples, we will need to locate the intersection points of graphs of 
functions. Here we discuss several methods to locate the intersection points of graphs of 
functions. 

EXAMPLE: If h(x) = x3-8x2+l9x-12 and k(x) = -x2-x—, find the x-coordinates 
2 8 

of the points where the graphs of h and k intersect. 

SOLUTION: Notice that the x-coordinates of the intersection points satisfy the 
equation h(x)=k(x). Consequently, to locate the intersection points, it is sufficient 
to solve the equation h(x)=k(x). Although this step is not necessary to solve the 
problem, we first graph h and k and notice that h and k intersect three times. 

Clear[h,k] 

h[x_]=x"3-8x"2+19x-12; 

k[x_]=l/2x"2-x-l/8; 

Plot[{h[x],k[x]},{x,0,7},PlotStyle->{GrayLevel[0],GrayLevel[.5]}] 
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Since h(x)=k(x) is a polynomial equation of degree three, Mathematica can 
compute exact values of all three roots. However, the roots are complicated so we 
approximate the solutions. Moreover, since h(x)=k(x) is a polynomial equation we 
use the command NRoots [ h [ x ] ==k [ x ] , x ] . Using NSolve [ h [ x ] ==k [ x ] , x ], 
instead, produces the same result. 

NRoots[h[x]==k[x],x] 

x == 0.904363 || 

x == 2.66088 || x == 4.93476 

In the following example, the exact solutions of the equation h(x)=k(x) are 
computed with the command S o l v e [ h [ x ] = = k [ x ] ] and named e x a c t s o l s . 
Note that since a semicolon " ; " is included at the end of the command, 
Mathematica suppresses the resulting output (it is very long!). However, an 
abbreviated three-line portion of e x a c t s o l s is displayed using S h o r t . 

exactsols=Solve[h[x]==k[x]]; 

Short[exactsols,3] 

1/3 
17 98 2 

{ { x _> __ + + 

6 1/3 
3 (9664 + 192 I Sqrt[49755]) 

1/3 
(9664 + 192 I Sqrt[49755]) 

}f { « 1 » } , 

1/3 
24 2 

17 (1 + I Sqrt[3] ) « 1 » 
{x _> — + « i » _ }} 

6 1/3 
48 2 

Notice that the resulting solution is expressed as a list. Lists are discussed in detail 
in Chapters 4 and 5. We can obtain particular solutions using P a r t " [ [ . . . ] ] " . In 
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general, the command Solve [ lhs==rhs ] [ [ 1 ] ] (as illustrated below) yields the 
first element of the list of solutions, Solve [ lhs==rhs ] [ [ 2 ] ] yields the second 
element of the list of solutions, and Solve [ l h s = = r h s ] [ [ j ] ] yields the jth 
element of the list of solutions. 

Solve[h[x]==k[x]][[l]] 

17 1/3 
{x -> — + (98 2 ) / 

6 

(3 Power[9664 + 

192 I Sqrt[49755], 

1/3]) + 

Power[9664 + 

192 I Sqrt[49755], 1/3] 

1/3 
/ (24 2 )} 

In other cases, when exact solutions cannot be obtained and the equation to be solved is 
not a polynomial equation, we use FindRoot to estimate the intersection points. 

EXAMPLE: 

gW = 
5 . 

= — + sinx 
4 

Locate the 

3/2 intersect. 

points where the graphs of /(*) = -e-(x/4) '~COSti) and 

SOLUTION: Notice that the x-coordinates of the intersection points satisfy the 
equation f(x)=g(x). Consequently, to locate the intersection points, it is sufficient to 
solve the equation f(x)=g(x). Since this problem does not involve polynomials, we 
must first graph f and g and notice that they intersect twice. On a color monitor, 
the graph of f would be in red and the graph of g would be in blue. 

Clear[f,g] 

f[x_]=Exp[-(x/4)A2] Cos[(x/Pi)]; 

g[x_]=Sin[x"(3/2)]+5/4; 

Plot[{f[x],g[x]},{x,0,5},PlotStyle->{RGBColor[l,0,0],RGBColor[0,0,1]}] 
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/ 

/ 
λ 

\ 
. \ 

/ 

Mathematica cannot solve f(x)=g(x) exactly. Since f(x)=g(x) is not a polynomial 
equation, the command NRoots cannot be used to numerically approximate the 
roots. However, we can use the command F i n d R o o t to approximate each root 
provided we have a "good" initial approximation of the root. To obtain a "good" 
initial approximation of each root on a computer with a notebook interface we 
proceed as follows. 

IntersectionPoints 
(local) Inf? 7j:= 

C l e a r [ f , g ] 
f [ x _ ] = E x p [ - ( x / 4 ) A 2 ] C o s [ ( x / P i ) ] ; 
g [ x _ ] = S i n [ x A ( 3 / 2 ) ] + 5 / 4 , 
P l o t [ { f [ x ] , g [ x ] ) , { x , 0 , 5 > , 

P l o t S t y l e - > { R G B C o l o r [ 1 , 0 , 0 ] , 
R G B C o l o r [ 0 , 0 , 1 ] } ] 

V 
1 —"̂ -̂  

\ \ 
\ 
\ 
\ 

... \ 

Λ 
/ \ 

l _ V 
(Local) 0utf20j= 

-Graphics-

lioo% ▼IOC m \ö\ 
a 

1. The result of defining 
and then graphing f and 
g is shown to the left on 
a compute r wi th a 
notebook interface. 

To approximate the points of 
intersection, first move the 
cursor within the graphics cell 
and click once. Notice that a 
box appears around the graph 
as shown in the figure below. 
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IntersectionPoints 
(Local) Inf 17]:= 

C l e a r [ f , g l 
f [ x _ ] = E x p [ - ( x / 4 ) A 2 ] C o 3 [ ( x / P i ) ] ; 
g [ x _ ] = S i n [ x A ( 3 / 2 ) ] + 5 / 4 ; 
P l o t [ { f [ x ] , g [ x ] } , { x , 0 , 5 } , 

P l o t S t y l e - > { R G B C o l o r [ 1 , 0 , 0 ] , 
R G B C o l o r [ 0 , 0 , 1 ] } ] 

■— 

2 

1 

■ 1 

0 

■ 

/ 

/ \ 

- \ 

1 2 . 

Λ : 
I _ _ V 3 4 5 . 

(local.) 0utf20j= 
-Graphics-

{2.52, 0.465} |ioo% ▼ I^CT 

iO 

o 
a 

2. Next, press and hold 
down the 36-key; as you 
move the cursor within 
the graphics cell, notice 
that the thermometer at 
the bottom of the screen 
has changed to ordered 
pairs approximating the 
location of the cursor 
within the graphics cell. 

When the cursor is placed 
over the point of intersection, 
the corresponding coordinates 
are displayed in the lower left-
hand corner of the screen. 

IntersectionPoints 
(Local) Ifift 7J:= 

C l e a r [ f , g ] 
f [ x _ ] = E x p [ - ( x / 4 ) A 2 ] C o 3 [ ( x / P i ) ] : 
g [ x _ ] = S i n [ x A ( 3 / 2 ) ] + 5 / 4 ; 
P l o t [ { f [ x ] , g [ x l > , { x , 0 , 5 > , 

P l o t S t y l e - > { R G B C o l o r [ 1 , 0 , 0 ] . 
R G B C o l o r [ 0 , 0 , 1 ] } ] 

2 

1 

■ 1 

0 

■ 

v \ i \ 

1 2 . 3 4 5 . 

(Local) 0ut[20]= 
-Graphics-

O 

{2.99,0.332} h 00% ▼ΙΦΓ 
w 
a 

3. Similarly, an approxi-
mation of the second 
intersect ion point is 
obtained by placing the 
cursor over the point of 
intersection. 

We then use F indRoot twice to compute an approximation of each solution: 

FindRoot[f[x]==g[x],{x,2.52}] 

{x -> 2.54105} 
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f[2.54105]//N 

0.461103 

FindRoot[f[x]==g[x],{x,2.99}] 

{x -> 2.9746} 

f [2.9746]//N 

0.336066 

We conclude that one intersection point is approximately (2.54105,0.461103) and the 
other intersection point is approximately (2.9746,0.336066). ■ 



Calculus 

Chapter 3 introduces Mathematica's built-in calculus commands. The examples used to 
illustrate the various commands are similar to examples routinely done in first-year 
calculus courses. 

3.1 Computing Limits 
*<* M'.i~~w #&& 'wmmmmm 

One of the first topics discussed in calculus is that of limits. Mathematica can be used to 
investigate limits graphically and numerically. In addition, Mathematica uses the 
command 

Limit[expression,x->a] 

to find the limit of e x p r e s s i o n as x approaches the value a, where a can be a finite 
number, positive infinity ( i n f i n i t y ) , or negative infinity ( - I n f i n i t y ) . The "->" is 
obtained by typing a minus sign "-" followed by a greater than sign ">". 

EXAMPLE: Use a graph and table of values to investigate lim 

101 

tflfflH 3 
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SOLUTION: Below, we use C l e a r to clear all prior definitions of f, define 

f(x) = , and then graph f on the interval [-π,π]. 

Clear[f] 

f[x_]=Sin[3x]/x; 

P l o t [ f [ x ] , { x , - P i , P i } ] 

I2\ \ 
/ 2F \ 

/ 1 [ \ 
/ i E \ 

/ of \ 

-3 - \ / l E l \ Â 3 
v y ot v / 

sin3x From the graph, we might, correctly, conclude that lim = 3. Further evidence 

■■ 3 can be obtained by computing the values of f(x) for values of x ,i . Λ. s in3x that lim 
x->0 x 

"near" 0. In the following we define x v a l s to be a table of 5 "random" real 
numbers. Note that the first number in x v a l s is between - 1 and 1, the second 

between and —, and so on. 
10 10 

xvals=Table[Random[Real,{-10Λ(-η),10Λ(-η)}],{η,Ο,δ}] 

{0.371263, 0.0587702, -0.00452615, 0.0000945869, 

-6 
0.0000788866, -5.81236 10 } 

We then use Map to compute the value of f(x) for each x in x v a l s : 

f v a l s = M a p [ f , x v a l s ] 

{ 2 . 4 1 7 0 9 , 2 . 9 8 4 4 8 , 2 . 9 9 9 9 1 , 3 . , 3 . , 3 . } 

The x-values along with the corresponding y-values are shown in TableForm, 
below: 

p a i r s = T a b l e [ { x v a l s [ [ i ] ] , £ v a l s [ [ i ] ] } , { i , 1 , 6 } ] ; 
TableForm[pairs ] 

0.371263 
0.0587702 
-0.00452615 
0.0000945869 
0.0000788866 

-6 
-5.81236 10 

2 
2 
2 
3 
3 

3 

41709 
98448 
99991 

102 
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From the table of values, above, we might again correctly deduce that 

lim = 3. Of course, these results do not prove that lim = 3 but they are 

helpful in convincing us that lim = 3. ■ 

Computing Limits 

Some limits involving rational functions can be computed by factoring the numerator and 
denominator. 

2x2 + 25* + 72 EXAMPLE: Compute lim + ^ * + / z 
r ^-9/2 72-47x-14x2 

SOLUTION: Below we define f r a c l to be the rational expression . 
Y 72-47* -14*2 

2x2 + 25x + 72 9 We then attempt to compute the value of when x = — but this 
r r 72-Wx-Ux2 2 

valu
e

 i
s

 undefined
. 

fracl=(2x"2+25x+72)/(72-47x-14x"2) 

2 
72 + 25 x + 2 x 

2 
72 - 47 x - 14 x 

fracl /. x->-9/2 

1 
Power::infy: Infinite expression - encountered. 

0 
Infinity::indet: 

Indeterminate expression 0 Complexlnfinity 
encountered. 

Indeterminate 

Factoring the numerator and denominator below with F a c t o r , Numera tor , and 
Denominator , we see that 

2x2+25x + 72 ,. (x + 8)(2x + 9) ,. x + 8 hm = hm -̂  -h -= lim — 
J C - * - 9 /2 - - - - -/2 72_47x-14x2 *-*-9/2(8-7*)(2JC + 9) χ-*-*η$-7χ 
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γ I Ο 

The fraction is named f r a c 2 and the limit is evaluated by computing the 
8 — 7 x 

9 
value of f r a c 2 when x = — . 

2 
Factor[Numerator[fracl]] 

Factor[Denominator[fracl]] 

(8 + x) (9 + 2 x) 
(8 - 7 x) (9 + 2 x) 

f r a c 2 = F a c t o r [ f r a c l ] 

8 + x 

8 - 7 x 

f r a c 2 / . x - > - 9 / 2 

7 

79 

2x2+25x + 72 7 _ We conclude that lim 
-9 /272- 47x-Ux2 79 

We can also use the command L i m i t to evaluate frequently encountered limits as 
illustrated in the following example. 

EXAMPLE: Calculate the indicated limits. 
/ x .. 3x2-7x-20 /, v .. sin* 
(a) lim ; (b) lim ; 

~- 5/3 21χ2+14χ-35
 *-* x 

, v ,. 50x2+95x + 24 , ,,v ,. l + 4x-16x2-64x3 (c) lim ; and (d) lim — 20x2+77x + 72  *->- 20x2+13x + 2 

SOLUTION: In each case, we use L i m i t to evaluate the indicated limit. Entering 

L i m i t [ ( 3 x " 2 - 7 x - 2 0 ) / ( 2 1 x " 2 + 1 4 x - 3 5 ) , x - > - 5 / 3 ] 

17 

56 

3x2 - 7x-20 17 
computes lim = — ; entérine 

r *_>- 5/3 21x2+14x-35 56 ö 

L i m i t [ S i n [ x ] / x , x - > 0 ] 

1 
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.. sinx Λ , . computes lim = 1; enterine 
χ^Ο χ 

Limit[(50xA2+95x+24)/(20x~2+77x+72),x->Infinity] 

5 
2 

. ,. 50χ2+95χ + 24 5 , . . 
computes lim = — ; and enterine 

* *->+~20χ2+77χ + 72 2 6 

Limit[(1+4χ-16χΛ2-64χΛ3)/(20χΛ2+13χ+2),x->-Infinity] 

Inf in i ty 

. ,. l + 4x-16x2-64x3 _ 
computes hm = + » . ■ 

γ — 20x2+13*+ 2 
In differential calculus, we learn that the derivative of f at x is given by 

provided the limit exists. The L i m i t command can also be used along with S i m p l i f y to 
assist in determining the derivative of a function by using the definition of the derivative. 
This is illustrated in the following example. (This example also shows that an expression 
can be assigned any name, as long as that name is not a built-in Mathematica function or 
constant. Remember: Since every built-in Mathematica object begins with a capital letter, 
we have adopted the convention that all user-defined objects will be named using 
lowercase letters.) 

EXAMPLE: Compute and simplify (a) ^ * + /z) g(*) a n d (b) ^ i i i ± ! î L i W if 

g(x) = x3-3x2 + x + l. 

Q\X -j- \l ) — Q\ X ) 

SOLUTION: After defining g, we compute and simplify — } ό ν , naming the 
result quog. 

Clear[g] 
g[x_]=xÄ3-3x*2+x+l 

2 3 
l + x - 3 x + x 
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quog=Simplify[(g[x+h]-g[x])/h] 

2 2 
1 - 3 h + h - 6 x + 3 h x + 3x 

%( x + h) — %( x) Next, we use L imit to compute lim— ' ό ν ; . The result, g'{x), is named dg. 

d g = L i m i t [ q u o g , h - > 0 ] 

1 - 6 x + 3 x 

Last, we use P l o t to graph g(x) and g'{x). The graph of dg {g'(x)) is dashed; the 
graph of g(x) is in black. 

P lo t [ {g [x ] f dg} / {x / - l / 3 } / P lo tS ty le ->{GrayLeve l [0 ] f Dash ingI{ .01 , . 01} l } ] 

The next example illustrates how several Mathematica commands can be combined in a 
single statement to obtain the desired result. 

EXAMPLE: Compute and simplify (a) / ( * + /î) / ( x ) and (b) l im/ (* + /z) / W if 

S O L U T I O N : Below we define f. In this case, we define f by entering 
f [ x_] =1 / S q r t [ x ] + S q r t [ x ] . However, entering f [ x_]=xA ( - 1 / 2 ) +xA ( 1 / 2 ) 
would yield the same result, but in this case we must be particularly careful to 
enclose parentheses around the exponents. For example, entering χ Λ - 1 / 2 returns 

-x-i= — * j r i / 2 = - L 
2 2x V* 
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f[x_]=l/Sqrt[x]+Sqrt[x] 

1 
+ Sqrt[x] 

Sqrt[x] 

Then, proceeding in the same manner as in the previous example, we define quof 

to be — ' ^ ' . T o g e t h e r is used to express the result as a combined fraction. 
h 

quof=Together[(f[x+h]-f[x])/h] 

3/2 
(Sqrt[x] + h Sqrt[x] + x - Sqrt[h + x] -

x Sqrt[h + x]) / (h Sqrtfx] Sqrt[h + x]) 

f(x + //) _ f(x) 
L i m i t is used to compute /'(*) = lim— } } and the result is named df. 

df=Limit[quof,h->0] 

-1 + x 

3 / 2 
2 x 

Note that the square brackets must be properly nested in order to correctly 
perform the combined operations. 

Last, we use P l o t to graph f(x) and /'(x)(df ). To see that f has a minimum when 
x=l, we use the option P l o t R a n g e - > { - 8 , 8 } to indicate that the range displayed 
corresponds to the interval [-8,8]. 

Since division by 0 is undefined, Mathematica produces several error messages 
because the P l o t command instructs Mathematica to graph the functions on an 
interval containing 0. We do not display all the error messages generated here. 
Nevertheless, the resulting graphs are displayed correctly. The graph of f(x) is in 
black and the graph of f'(x)(df) is dashed. 

Plot[{f[x],df},{x,0,3},PlotRange->{-8,8}, 
PlotStyle->{GrayLevel[0],Dashing[{.01,.01}]}] 

1 
Power::infy: Infinite expression encountered. 

Sqrt[0.] 
1 

Power::infy: Infinite expression encountered. 
Sqrt[0.] 
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One-Sided Limits 

In some cases, Mathematica can compute certain one-sided limits. The command 

L i m i t [ f [ x ] , x - > a , D i r e c t i o n - > l ] 

attempts to compute lim/(x) while 

L i m i t [ f [ x ] , x - > a , D i r e c t i o n - > - l ] 

attempts to compute lim/(x). 

EXAMPLE: Compute (a) lim— and (b) lim — . 

SOLUTION: Entering 

Limit[1/x,x->0,Direction->l] 

-Infinity 

computes lim — = -°o and entering 

Limit[1/x,x->0,Direction->-1] 

Infinity 

computes lim — = -H» . | 

However, even with this option, Mathematica cannot compute many familiar one-sided 
\x\ \x\ 

limits. For example, l i m ^ = l and lim-!-Î = - l . But, Mathematica is unable to compute 
x->0+ χ x^Q- x L 

either of these limits: 
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Limit[Abs[x]/x,x->0,Direction->l] 
Limit[Abs[x]/x,x->0,Direction->-l] 

Abs[x] 
Limit[ , x -> 0, Direction -> 1] 

x 
Abs[x] 

Limit[ , x -> 0, Direction -> -1] 
x 

A Word of Caution 

Results obtained with L i m i t should be questioned. In some cases, Mathematica returns 
surprising, or even incorrect, results. For example, Mathematica can compute lim xe~x = 0 

Limit[x Exp[-x],x->Infinity] 

0 

but cannot compute lim x5e~x = 0. 

Limit[x^5 Exp[-x],x->Infinity] 

5 
x 

Limit[—, x -> Infinity] 
x 

6X 

Similarly, Mathematica cannot compute more difficult limits like lim — = 0. 

Limit[Exp[x]/x!,x->Infinity] 

Series::esss: 
Essential singularity encountered in 

1 3 
Gamma[- + 1 + 0[x] ]. 

x 
X 

E 
Limit[—, x -> Infinity] 

x! 

In these particular cases, the command NLimit contained in the package NLimit which is 
located in the NumericalMath folder (or directory) can be used to compute the limits. 
After loading the NLimit package, we use NLimit to calculate each limit. In each case, we 
interpret the results to mean that the value of each limit is 0. 
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«NumericalMath NLimit^ 

NLimit[Exp[x]/x!,x->Infinity] 

0. 

NLimit[x*5 Exp[-x],x->Infinity] 

-19 
1.35525 10 

3.2 Differential Calculus 

Calculating Derivatives of Functions 
and Expressions 

If we are given a differentiable function f(x), Mathematica can compute the derivative of 
f(x) in at least two ways once f(x) has been properly defined using Mathematica. 

1. The command f ' [ x ] computes the derivative of f [ x ] with respect to x. 
2. The command D [ f [ x ] , x ] computes the derivative of f [ x ] with respect to x. 
3. The command D [ f [ x ] , { x , n } ] computes the nth derivative of f [ x ] with 

respect to x. 
4. The command D [ e x p r e s s i o n , v a r i a b l e ] computes the derivative of 

e x p r e s s i o n with respect to v a r i a b l e . 
5. The command D [ e x p r e s s i o n , { v a r i a b l e , n} ] computes the nth derivative 

of e x p r e s s i o n with respect to v a r i a b l e . 

Other ways Mathematica can compute derivatives of functions and expressions are 
discussed in Section 3.6. 

EXAMPLE: Calculate the indicated derivatives: 

(a)-£-(2x'-7x-4); 
ax 

(c) A((3* + 4)2(x + 5)2); 

(e) f(x) if f(x) = x3e~2* ; and 
(f) g'(x) if g(x) = xtan-lx 

(b) — (sin*); 
ax 

(d) A^^ry 

SOLUTION: For (a)-(d), we use D to compute the derivative of the indicated 
expression. Generally, the results from D are not expressed in simplified form. 

3 Calculus 
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(a) 
D [ 2 x " 2 - 7 x - 4 , x ] 

-7 + 4 x 

(b) 
D [ S i n [ x ] , x ] 

Cos [x ] 

(c) 

ϋ [ ( 3 χ + 4 ) Λ 2 ( χ + 5 ) Λ 2 , χ ] 

2 2 
6 (5 + x) (4 + 3 x) + 2 (5 + x) (4 + 3 x) 

(d) 

ϋ [ ( χ Λ 2 + 2 χ + 1 ) / ( χ Λ 2 + 3 χ ) , χ ] 

2 
(3 + 2 x) (1 + 2 x + x ) 2 + 2 x 

_ ( ) + 

2 2 2 
(3 x + x ) 3 x + x 

For (e) and (f), we first clear all prior definitions of f and g, define f and g, and then 
compute the indicated derivatives. 

Clear[f,g] 

f[χ_]=χΛ3 Εχρ[-2χ]; 

g[x_J =x ArcTan[x]; 

f[x] 

2 
3 x 

2 x 
E 

D[f[x],x] 

2 
3 x 

2 x 
E 

g'[x] 

X 

2 

3 
2 x 

2 x 
E 

3 
2 x 

2 x 
E 

+ ArcTan[x] 

1 + x 

I l l 
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x 
+ ArcTan[x] 

2 
1 + x 

Note that the results using D and ' are the same, as should be expected. ■ 

Mathematica knows the familiar rules of differentiation like the product rule, quotient 
rule, and chain rule. After clearing all prior definitions of f and g, below, we compute the 
derivative of f(x)g(x), f(x)/g(x), and f(g(x)). Note that we use T o g e t h e r to see the familiar 
form of the quotient rule. 

Clear[f,g] 

D[f[x] g[x] 

g[x] f 

Together[D 

g[x] f 

D[f[g[x]],a 

,x] 

[x] + f[x] 

f[x]/g[x], 

[X] - f[X] 

2 

g[x] 

;] 

g'[x] 

x]] 

g'[x] 

f [ g [ x ] ] g ' [ x ] 

The next example illustrates how to compute higher order derivatives. 

EXAMPLE: Compute the indicated derivatives. 

(a) — (χ4-2*3_36χ2 + 162χ + 24); 
dx2 

d3 

(b) (x2+2cosx); dx3 

(c) h"(x) if /z(x) = (2x + l)(3x2-4x + 2);and 
(d)r(x)iff(x) = ^ ^ . 
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SOLUTION: For (a) and (b) we use D to compute the desired derivative. 

(a) 

D[x"4-2x~3-36x"2+162x+24,{x,2}] 

2 
-72 - 12 x + 12 x 

(b) 

D[x"2+2Cos[x],{x,3}] 

2 Sin[x] 

For (c) and (d), we first clear all prior definition of h and f and then use ■ ' and 
' ' ' , respectively, to compute the desired derivatives. 

Clear[h,f ] 
h[x_]=(2x+l)(3χΛ2-4χ+2); 
f [x_]=ArcSin[x] / (x"2-l) ; 
h ' ' [ x ] 

6 (1 + 2 x) + 4 (-4 + 6 x) 

We use T o g e t h e r to simplify /'"(*) as the output obtained when entering 
f ' ' · [ x ] is very long. 

Together[f'■·[x]] 

2 4 2 
(-7 - 19 x + 26 x - 24 x Sqrt[l - x ] ArcSin[x] -

3 2 
24 x Sqrt[l - x ] ArcSinfx]) / 

2 2 4 

(Sqrt[l - x ] (-1 + x ) ) 

Note that using D in the same manner as in (a) and (b) would have produced the 
same results. ■ 

Tangent Lines 

If f is a function for which f'(x0) exists, then f'(x0) is the slope of the line tangent to the 

graph of f at the point (x0,/(x0)). An equation of the line tangent to the graph of f at the 

point (x0,/(*0)), m point-slope form, is given by 

y- / ( *o)=/ ' ( *o)(* -*o) ' 
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while a function of x, which can be graphed by Mathematica, is given by 

y=/1*.X*-*.M*„)· 

EXAMPLE: Find an equation of the line tangent to the graph of 
f(x) = 2x* + 3x2-l2x + 7 when * = - l . 

SOLUTION: After clearing all prior definitions of f, we define f and then compute 

C l e a r [ f ] 

f [x_J=2x~3+3x"2-12x+7; 

f ' [ x ] 

2 
-12 + 6 x + 6 x 

The slope of the line tangent to the graph of f when x = -l is / ' ( - l ) . 

f ' [ - l ] 

-12 

Finally, to find an equation of the desired tangent line, we must compute the value 
of / ( - I ) . 

f [ - l ] 

20 

Thus, in point-slope form, an equation of the line tangent to the graph of f when 
x = -l is 

y-20 = -12(*-(-l)). 

We graph f along with the tangent line below. 

plotf=Plot[f[x],{x,-4,3},DisplayFunction->Identity]; 

plotl=Plot[f'[-1](x+l)+20,{x,-4,3},DisplayFunction->Identity]; 

Show[plotf,plotl,DisplayFunction->$DisplayFunction] 
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Note that the option D i s p l a y F u n c t i o n - > I d e n t i t y is used to prevent 
p l o t f , the graph of f, and p l o t l , the graph of the tangent line, from 
be ing d i s p l a y e d i m m e d i a t e l y wh i l e in the Show command, 
D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n is used so that the graphs are 
displayed. ■ 

We can also use Mathematica to locate the values of x for which the line tangent to the 
graph of a particular function has certain properties. For example, the values of x for 
which the line tangent to the graph of f at the point (x,f(x)) is horizontal are the solutions of 
the equation f'(x) = 0. 

EXAMPLE: Find the values of x for which the line tangent to the graph of 

h(x) = is horizontal. 

SOLUTION: As in the previous examples, we begin by clearing all prior 
definitions of h and then define h and compute h!. T o g e t h e r is used so that K is 
expressed as a single fraction. 

Clear[h] 
h [x_)=(x*2-x+4) / (x - l ) ; 
Together[h'[x]] 

- 3 2 x + x 

( -1 + x) 

The values of x for which the tangent line is horizontal are the solutions of the 
equation h'(x) = 0. We can compute these numbers by either factoring the 
numerator of h' or using S o l v e . 
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Factor[h'[x]] 

(-3 + x) (1 + x) 

2 
(-1 + x) 

Solve[h'[x]==0] 

{{x -> -1}, {x -> 3}} 

We conclude that the line tangent to the graph of h is horizontal when * = -1 and 
x = 3. These results are confirmed by examining the graph of h shown below. 

P l o t [ h [ x ] , { x , - 4 , 6 } ] 

20 

10 

- iL ^Σ ' 

- 1 0 

- 2 0 
\ \ 

I 
2 4 6 

Locating Critical Points 
and Inflection Points 

Since derivatives of functions are expressions, algebraic procedures can be performed on 
them. Hence, in addition to finding the zeros of a function, f, Mathematica can also be used 
to locate the critical points and inflection points of f. The critical points correspond to 
those points on the graph of f where the tangent line is horizontal or vertical; the inflection 
points correspond to those points on the graph of f where the graph of f is neither concave 
up nor concave down. 

EXAMPLE: Find the critical points and inflection points of f(x) if 

(a)/(x) = (l + 5x-3x2)(x2+x-2)and(b) f(x)= x + 2 . 

SOLUTION: For (a), we first clear all prior definitions of f, define f, and then 
compute / ' and /", naming the results df and ddf, respectively. 
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Clear[f] 
f [χ_ ]= (1+5χ-3χ Λ 2 ) (χ Λ 2+χ-2 ) ; 

d f = f [ x ] 

d d f = f ' ' [ x ] 

2 2 
(1 + 2 x) (1 + 5 x - 3 x ) + (5 - 6 x) ( -2 + x + x ) 

2 
2 (5 - 6 x) ( l + 2 x ) + 2 ( l + 5 x - 3 x ) -

2 
6 ( -2 + x + x ) 

Next, we must solve the equations f'{x) = 0 and f"(x) = 0. We first try to factor / ' 
a n d / " . 

Factor[df] 

Factor[ddf] 

2 

3 (-3 + 2 x) (1 - 2 x - 2 x ) 
12 (1 - x) ( 2 + 3 x) 

3 
From the above, we see that one solution of f'(x) = Q is x = — , while the other two 

solutions are the two solutions of the equation l -2x-2x 2 =0. On the other hand, 

we see that the two solutions of f"(x) = 0 are x = l and x = — .To obtain the exact 

solutions of the equation f '(x) = 0, we use S o l v e . When representing an equation 
with Mathematica, be sure to include the double equals (==) between the left- and 
right-hand side of the equation. The resulting list is named c r i t n u m s , and 
approximations of the solutions are obtained with N. 

critnums=Solve[df==0] 

N[critnums] 

3 - 2 - 2 Sqrt[3] - 2 + 2 Sqrt[3] 
{{x -> - } , {x -> >, {x -> >} 

2 4 4 
{{x -> 1.5}, {x -> -1.36603}, {x -> 0.366025}} 

The critical points and inflection points are then obtained by evaluating f when 

x- —, x- , and x = and when x = l and x = — , respectively. 

{3/2,f[3/2]> 

{(-2-2Sqrt[3])/4,Simplify[f[(-2-2Sqrt[3])/4]]} 

{(-2+2Sqrt[3])/4,Simplify[f[(-2+2Sqrt[3])/4]]} 

{l,f[l]> 

{-2/3,f[-2/3]> 

3.2 117 
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3 49 
{-, — } 
2 16 
- 2 - 2 Sqrt[3] 27 

{ , __ + 6 Sqrt[3]} 

4 4 
- 2 + 2 Sqrt[3] 27 

{ , 6 Sqrt[3]} 

4 4 

{1, 0} 
2 220 

{-(-), — } 
3 27 

Thus, the critical points are 

1 i?. 
2 '16 

-2 -2V3 27 ■6V3 L and 
-2 + 2V3 27 

·6Λ/3 

while the inflection points are 

(1,0) and 2 220 
Y 27 

For (b), we again first clear all prior definitions of f, define f, and then compute 
and simplify / ' and / " . 

Clear[f] 

f[χ_]=(χ+2)/(χ+5)Λ2; 

Together[f'[x]] 

Together[f''[x]] 

1 - x 

(5 + x) 
2 (-4 + x) 

(5 + x) 

In each case, we can see that the solution of f'(x) = 0 is x=l while the solution of 
/"(x) = 0 is x=4. Below, we calculate f(l) and f(4). 

f [ i ] 
f [ 4 ] 
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12 
2 

27 

We conclude that the only critical point of f is 1,— and the only inflection point 

is ί*Λ 

Using Derivatives to Graph Functions 

Mathematica is of great use in graphing functions. Unfortunately, if we have no idea of 
how the graph of a function ought to look or desire to see particular features of the graph, 
"randomly" choosing an interval on which to graph a particular function yields 
unsatisfactory results. In these cases, information supplied by the derivative can help us 
locate an interval on which the graph of f will show the features we wish to see. In 
particular, the first and second derivatives of a function give us the following information: 

a. The values of x for which f is increasing are the same as the values of x for 
which / ' is positive. 

b. The values of x for which f is decreasing are the same as the values of x for 
which / ' is negative. 

c. The values of x for which f is concave up are the same as the values of x for 
which / " is positive. 

d. The values of x for which f is concave down are the same as the values of x for 
which / " is negative. 

EXAMPLE: Graph f(x) = x* + 2x3 - 72x* + 70x + 24. 

SOLUTION: We proceed by clearing all prior definition of f, defining f, and 
computing / ' and / " . 

Clear[f] 
ϋ[χ_]=χΛ4+2χΛ3-72χΛ2+70χ+24; 

f ' [ x ] 

f " [ x ] 

2 3 
70 - 144 x + 6 x + 4 x 

2 
-144 + 12 x + 12 x 
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To solve the equations f'(x) = 0 and f"(x) = 0, we use Solve. 
Solve[f'[x]=-0] 

Solve[f'»[x]==0] 

1 
{{x -> -7}, {x -> - } , {x -> 5}} 

2 
{{x -> -4}, {x -> 3}} 

Since the solutions of these polynomial equations are rational numbers, we could 
have used Fac to r to factor / ' and /" and, consequently, determine the solutions 
of the equations f'(x) = 0 and f"(x) = 0. Below, we graph / ' on an interval 
containing -7, 1/2, and 5, and graph /" on an interval containing -4 and 3. The 
results are displayed as a graphics array. 

pdf=Plot[f'[x],{x,-8,6},DisplayFunction->Identity]; 

pddf-Plot [£"[χ],{χ,-5,4}, DisplayFunct ion->Ident it y ] ; 

Show[GraphicsArray[{pdf,pddf}]] 

From the graphs, we see that / ' is positive when -7<x< — orx>5 and / ' is 

negative when x<-l or — <x<5, while /" is positive when x < -4 or x > 3 and /" is 
negative when -4 < x < 3. Thus, f is decreasing and concave up when x < -7, f is 
increasing and concave down when -7 < x < -4, f is increasing and concave down 
when -4 < x < —, f is decreasing and concave down when — < x < 3, f is decreasing 
and concave up when 3<x<5, and f is increasing and concave up when x>5. 
Below, we graph f. 

P l o t [ f [ x ] , { x , - 9 , 7 } ] 
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Since f is a polynomial of degree 4, we know that for "large" values of x, the graph 
of f looks like the graph of x because. 

£( , Λ 2 72 70 24 ^ 
f(x) = x*\l + - + — + — , 

lv X X2 X3 X* ) 

2 72 70 24 and for "large" values ofx, 1 + + — +— is close to 1. However, when we 
° X X2 X3 X4 

graph f on a large interval, we do not see the subintervals on which f is increasing 
or decreasing and concave up or concave down. 

P l o t [ f [ x ] , { x , - 1 0 0 , 1 0 0 } ] 

I 1. 

i 8 · 

\ 6 

\ 4' 

\ 2 · 

7 
10 

6 
10 

6 
10 

6 
10 

6 
10 

| 
ί 

/ 

/ 
/ 

\_J__ 
In our next example, we graph a function with a vertical tangent. 

EXAMPLE: Graph h(x) = (x-7)\[x~^3. 

SOLUTION: As in the previous examples, we first clear all prior definitions of h, 
define h, and then compute h'(x). Be particularly careful when defining h to 
include the parentheses around the exponent. Entering h [ x _ ] = ( x - 7 ) ( x - 3 ) ^ l / 3 

defines h(x) to be ^ — ^ — ' - *(x-7)%]x-3 . 

C l e a r [ h ] 
h [ x _ ] = ( x - 7 ) ( x - 3 ) ^ ( l / 3 ) 
h ' [ x ] 
Together[h'[x]] 

1/3 
(-7 + x) (-3 + x) 

-7 + x 1/3 
+ ("3 + x) 

2/3 
3 (-3 + x) 

4 (-4 + x) 

2/3 
3 (-3 + x) 

file:///_J__
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From the simplified form of h'(x), we see that the critical numbers are x=4 and 
x=3. Note that x=3 is a critical number, because h(3) exists and h\x) is not defined 
when x=3. Thus, h has a vertical tangent when x=3. We compute the values of x 
for which h"(x) = 0 in the same manner. 

T o g e t h e r [ h ' 

4 ( -1 -

9 ( -3 + 

1- X) 

5 /3 

x) 

We see that h"(x) = 0 when x=l. Of course, since h'(x) does not exist when x=3, 
neither does h"{x). Constructing a sign chart for both h'(x) and h"(x), or using an 
equivalent method, we see that h'(x) is positive when x > 4 and is negative when 
x < 4 as long as x * 3, while h"(x) is positive when x < 1 or x > 3 and negative when 
1 < x < 3. Thus, h is decreasing and concave up when x < 1, decreasing and concave 
down when l < x < 3 , decreasing and concave up when 3<x<4 , and increasing 
and concave up when x > 4. 

Graphing h with Mathematica requires several steps. To understand why, we note 
that if x is negative, then Mathematica does not return a real number when 
computing \fx . We illustrate this below with - 1 . 

< - i ) A ( i / 3 ) 

1/3 
( -1 ) 

Ν [ ( - 1 ) Λ ( 1 / 3 ) ] 

0 .5 + 0 .866025 I 

The symbol I represents the (complex) number i = V-1. Because Mathematica 
does not return real numbers, we are unable to graph h in the usual manner. 
Instead, we note that when x<3, the unique real number \lx-3 satisfying 

\\lx-3] =x-3 also satisfies V*-3 = - y j i - 3 | . Thus, we redefine h as a piecewise-
defined function and graph h as indicated below. 

Clear[h] 

h[x_J : = (χ-7)(χ-3)Λ(1/3) /; x>=3 

h[x_]:=-(x-7)Abs[x-3]"(l/3) /; x<3 

Plot[h[x],{x,-3,8}] 

file:///lx-3
file:////lx-3
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Graphing Functions and Derivatives 

Because f(x) is a function of x, f(x) can be graphed. The following example shows how 
to compute the derivative of a function and then plot the original function and its 
derivative simultaneously. 

EXAMPLE: Graph f and f if f(x) = 
x2+l 

SOLUTION: After clearing all prior definitions of f and defining /(*) = 

compute / ' . 

Clear[f] 

£[χ_]=χ/(χΛ2+1); 

Together[f'[x]] 

x2+l we 

2 2 
(1 + x ) 

By examining the result, we can see that f(x) = 0 when x = 1 and when x = - 1 . 
Thus, we graph f and / ' on an interval containing these values, so we see the 
maximum and minimum values of f. Below, we use P l o t to graph f and / ' on the 
interval [-5,5]. The graph of f is in black; the graph of / ' is dashed. 

Plot[{f[x],f·[x]},{x,-5,5},PlotStyle->{GrayLevel[0],Dashing[{.01,.01}]}] 
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x\ 
O.g 
0./S 
0/4 
0/.2 

^ ^ • ^ - 0 . 2 
^ ^ \ ^ 0 / l 

1 
1 
1 

, l 
1 
1 _ 

/ » ^ ^ « s ^ 
/ » ^^^ 
/ » ^^ 
/ 1 V-2- - 4 - -

Instead of graphing f and / ' simultaneously, we can also graph each separately and 
then show the results together with Show or as a graphics array with G r a p h i c s A r r a y . 

EXAMPLE: Graph fand / ' if f(x) = (x-3)mx-S)2. 

SOLUTION: Proceeding in the same manner as in the previous example, we first 
clear all prior definitions of f, define f, and then compute / ' . 

C l e a r f f ] 

f [ x _ ] = ( x - 3 ) ( x - 8 ) A ( 2 / 3 ) ; 

f [ x ] 

2 / 3 2 ( -3 + x) 
( -8 + x) + 

1/3 
3 ( -8 + x) 

To identify the zeros of / ' , we use T o g e t h e r to express the above results as a 
single fraction. We could also use S o l v e to solve the equation f'(x) = 0. 

T o g e t h e r [ f ' [ x ] ] 

5 ( -6 + x) 

1/3 
3 ( -8 + x) 

From the above, we see that f'(x) = 0 when x=6. Thus, we will graph both f and / ' 
on an interval containing 6. 

We have seen that when x is negative, Mathematica does not return a real number 
when entering χΛ ( 1 / 3 ). However, 

f(x) = {x- 3)lJ{x-8)2 ={x- 3)\x - 8|2/3 

and 
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/'(*)= 
5(s-6) -(x-6)(x-8f"forx>8 

--(x-6)\x-8[V3forx<8' 

Thus, to graph f and / ' , we redefine them as follows. Note that df corresponds to 
/'· 

Clear[f] 

f[x_] = (x-3)Abs[x-8p(2/3); 

df[x_] :=5/3(x-6)(x-8)A(-l/3) /; x>8 

df[x_]:=-5/3(x-6)Abs[x-8p(-l/3) /; x<8 

Next, we graph f and / ' , naming the results pf and pdf, respectively. In each case, 
the option D i s p l a y F u n c t i o n - > I d e n t i t y is included so that the resulting 
graphics are not displayed. If this option had not been included, both results 
would have been displayed. 

pf=Plot [ f [x] , {x ,0^3} ,PlotRange->{-15 ,15} ,DisplayFunct ion->Ident i ty] ; 
pdf=Plot[df[x] , {x ,0 ,13} ,PlotRange->{-15,15} , 

PlotStyle->Dashing[{ .01, .01}] ,DisplayFunct ion->Identi ty]; 

The results can be displayed simultaneously with Show: 

Show[pf,pdf,DisplayFunction->$DisplayFunction] 

-15 

or, they can be displayed separately, but as a single graphics object, with 
G r a p h i c s A r r a y . 

Show[GraphicsArray[{pf,pdf}]] 
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Approximations with F i n d R o o t 

In many cases, finding exact values of the zeros of the derivative of a function may be 
difficult. However, we may use F i n d R o o t to approximate the zeros of the derivative of 
many functions. 

EXAMPLE: Let w(x) = 2sin22x + -xcos2 — on (Ο,π). Approximate the values of x 

for which the line tangent to the graph of w is horizontal. 

SOLUTION: We begin by clearing all prior definitions of w, defining w, and then 
graphing w on the interval [Ο,π]. From the graph, we see that the tangent line is 
horizontal at three points. 

Clear[w] 
w[x_]=2Sin[2xp2+5/2x Cos [x /2p2; 
P lo t [w[x ] , {x ,0 ,P i } ] 

To approximate the values of x for which the tangent line is horizontal, we will use 
F i n d R o o t which requires an initial approximation. To obtain reasonable 
approximations to use in the F indRoot commands later, we graph w'{x). 

P l o t [ w ' [ x ] , { x , 0 , P i } ] 
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After using the graph of w'(x) to find the initial guesses, the x-values such that 
w'(x) = 0 can be approximated using FindRoot. These three calculations are given 
below using initial guesses x=0.863, x=1.63, x=2.25, the values where w\x) appears 
to cross the x-axis. 

FindRoot[W[x]==0,{x,0.863}] 

FindRootfw'[χ]==0,{χ,Ι-63}] 

FindRoot[w'[x]==0,{x,2.25}] 

{x -> 0.864194} 
{x -> 1.62391} 
{x -> 2.24489} 

When dealing with polynomial equations, NRoots can be used to solve polynomial 
equations. 

EXAMPLE: Approximate 

p(x) = -xe-2x5-

is horizontal. 

25 x4+60x3 2 

the values of x for which the line tangent to the 

-150x2--180*--25 

graph of 

SOLUTION: For this example, we begin by clearing all prior definitions of p, 
defining p, and then graphing p and p' on the interval [-6,6]. The graph of p' is 
dashed. 

Clear[p] 

ρ[χ_]=1/2χΛ6-2χΛ5-25/2χΑ4+60χΛ3-150χΛ2-180χ-25; 

Plot[{p[x],ρ'[x]},{x/-6,6}/PlotStyle->{GrayLevel[0],Dashing[{.01}]}] 

; -îoooof 

Next, we use NRoots to find the values of x for which p'(x) = 0. Those values that 
contain I are imaginary values which we ignore. 
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NRoots[p'[x]==0,x] 

x == -4.44315 || x == -0.459096 || 

x == 1.55293 - 1.82277 I || 

x == 1.55293 + 1.82277 I || x == 5.12971 

Thus, we conclude that approximations of the values of x for which the line 
tangent to the graph of p at the point (x,f(x)) is horizontal are -4.44315, -0.459096, 
and 5.12971. ■ 

Application: Rolle9s Theorem and 
The Mean-Value Theorem 

Let f be a continuous function on [a,b] and differentiable on (a,b). 

RoUe's Theorem says that if f(a)=f(b)=0, then there is at least one value of c in (a,b) 
satisfying /'(c) = 0. 

The Mean-Value Theorem says that there is at least one value of c in (a,b) 

satisfying f(c) = M , 
b-a 

EXAMPLE: Verify that f(x) satisfies the hypotheses of Rolle's Theorem on the 
interval [-3,2] if f{x) = x3-7x + 6 and find all values of c on the interval [-3,2] that 
satisfy the conclusion of the theorem. 

SOLUTION: Since f is a polynomial function, f is differentiable for all real 
numbers and, in particular, on the interval (-3,2). We first define f and compute 
f(-3) and f(2). 

C l e a r [ f ] 

f [χ__]=χΛ3-7χ+6 

f [ - 3 ] 

f [ 2 ] 

3 
6 - 7 x + x 
0 
0 

Since both values are 0, we know that there is at least one value of c in the interval 
[-3,2] for which /'(c) = 0. Next, we graph f on an interval containing the interval 
[-3,2]. From the graph, we see that we should be able to find at least two values of 
c for which /'(c) = 0. 

128 



3.2 Differential Calculus 129 
« ^ : « $ « » ^ "K^*' <=<: 

P l o t [ f [ x ] , { x , - 4 , 3 } ] 

- 4 / 3 - 2 - 1 

\ ΐ ο 

- 1 0 

- 2 0 

- 3 0 

1 2 3 

Computing f\x) and solving the equation /'(*) = 0 yields the desired values. 

f'[xj 

2 
-7 + 3 x 

Solve[f'[x]==0] 

7 7 
{{x -> -Sqrt[-]>, {x -> Sqrt[-]}} 

3 3 

We conclude that the values of c for which /'(c) = 0 are c = ± — . ■ 

Generally, verifying Rolle's Theorem and the Mean-Value Theorem for particular 
functions is difficult, as the resulting equations that need to be solved are either very 
difficult or even impossible to solve. In these cases, F i n d R o o t can be helpful in 
approximating solutions of equations; NRoots can be used when dealing with polynomial 
equations. 

EXAMPLE: Approximate the values of c that satisfy the conclusion of the Mean-
Value Theorem for f(x) = on the interval [0, πΐ. 

SOLUTION: We begin by defining and graphing f on the interval [Ο,π], We name 
the graph of f p l o t f for later use. 

Clear[f] 

f [x_J=Cos[3x]/(x"2+l); 

plotf=Plot[f[x],{x,0,Pi}] 
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We must find the values of c in (Ο,π) that satisfy the equation f'(c) = ^ ' ^ '. 

Below we compute J^ ' ^ ' and name the number 
r π - 0 

avg. 

a v g = ( f [ P i ] - f [ 0 ] ) / ( P i - 0 ) / / N 

- 0 . 3 4 7 5 9 4 

S o l v e cannot be used to solve the equation f\c) = ^ ' ^ . But, graphing f\x) 
π - 0 

and avg on the interval [Ο,π] shows that there are 4 values of c satisfying the 
conclusion of the Mean-Value Theorem. We use F i n d R o o t to approximate these 
values and name the results c l , c2, c3 , and c4, respectively. 

Plot[{f[x],avg},{x/OfPi}] 

cl=FindRoot[f'[x]==avg,{x,.03}] 

{x -> 0.0317021} 

c2=FindRoot[f'[x]==avg,{x,.869}] 

{x -> 0.875621} 

c3=FindRoot[f'[x]==avg,{x,2.25}] 

{x -> 2.26848} 

c4=FindRoot[f'[x]==avg,{x,2.71}] 

{x -> 2.67683} 
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These numbers represent the values of c for which the slope of the line tangent to 
the graph of f at (c,f(c)) is the same as the slope of the line passing through (0,f(0) 
and (π,ί(π)). Below, we define s e c l i n e to be the line segment with endpoints 
(0,f(0)) and (π,ί(π)), p i to be a graph of the line tangent to the graph of f at the 
point (.8756,f(.8756)), and p2 to be a graph of the line tangent to the graph of f at 
the point (2.6768,f(2.6768)). All three graphs along with p l o t f are shown together. 
Note that all three lines are parallel. 

secline=Graphics[Lxne[{{0,f[0]},{Pi,f[Pi]}}]]; 

pl=Plot[f·[.8756](X-.8756)+f[.8756],{x,0,Pi},DisplayFunction->Identity]; 

p2=Plot[f'[2.6768](x-2.6768)+f[2.6768],{x,0,Pi}, 

DisplayFunction->Identity]; 

Show[plotf,secline,pi,p2,DisplayFunction->$DisplayFunction] 

Application: Graphing Functions 
and Tangent Lines 

If f is a differentiable function, then the graph of the function y=f'(x0)(x-x0)+f(x0) is the 

line tangent to the graph of f at the point (x0,/(x0)). Often, we wish to graph both f and the 

line tangent to the graph of f at the point (x0,/(*o)) ^or m a n v values of x0. Mathematical 
animation capabilities can be used to animate the resulting set of graphics. 

EXAMPLE: Let f(x) = xsinx. Graph f along with various tangent lines on the 
interval [0,4π]. 

SOLUTION: We begin by clearing all prior definitions of f, defining f, and then 
graphing f on the interval [0,4π]. The graph of f, named p l o t f , is not displayed 
because the option D i s p 1 a y F u n c t i o n - > I d e n t i t y is included. Also, the option 
P l o t R a n g e - > { - 1 2 ,12 } is included to assure that the coordinates on the y-axis 
correspond to [-12,12]. We can use Show to display p l o t f . 
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Clear[f] 

f [x__]=x Sin[x] ; 

plotf=Plot[f[x],{x,0,4Pi},PlotRange->{-12,12}, 

DisplayFunction->Identity]; 

Show[plotf,DisplayFunction->$DisplayFunction] 

Since we will be graphing the tangent line for various values of x, we define the 
function t l below. The function t l is defined using Module because t l performs 
several operations. First, the variables 1 and p i are declared local to the procedure 
t l . This means that if 1 and p i have other (global) values, changes in the value of 
1 and p i within the procedure t l do not affect their (global) values. Then, for a 
given value of xO, t l first defines 1 to be the function f ' [ xO ] (x-xO ) +f [ xO ], 
corresponding to the function with graph tangent to the graph of f at the point 
(xo>f{xo))> a n d p l to be the graph of 1 on the interval [0,4π]. Note that p i is not 
displayed since the option D i s p l a y F u n c t i o n - > I d e n t i t y is included. 
Moreover, including the option P l o t R a n g e - > { - 1 2 , 1 2 } assures that the y-range 
displayed is the same as the y-range displayed in p l o t f . Finally, t l shows the 
graph of p l o t f and p l . Note that the graphs are not actually displayed because 
the option D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n is not included in the 
Show command. 

tl[x0_] :=Module[{1,pl}, 

l=f■[xO](x-xO)+f[xO]; 

pl=Plot[1,{x,0,4Pi},PlotRange->{-12,12}, 

DisplayFunction->Identity]; 

Show[plotf,pl] 

] 

However, if we do include D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n , the 
resulting graph is displayed. Below, we display a graph of f along with the line 
tangent to the graph of f at the point (5,f(5)). 

132 
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S h o w [ t l [ 5 ] , D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n ] 

We may use a Do loop to generate several graphs. The results can then be 
animated. The following shows the resulting animation on a computer with a 
notebook interface. 

TangentLines 
ÜOCe}} ifi[28j:= 

Do[ 
S h o v [ t l [ n ] , 

D i s p l a y F u n e t i o n - > $D i s p l a y F u n c t i o n ] , 
{ n , 0 , 4 P i , 4 P i / 2 4 } ] 

From (Local) lnf28j:= 

S)OQDI(2XSIioo% ▼ löTT 
RS 
a 

Alternatively, we can use T a b l e to create a table of several graphs and display the 
result as a graphics array. In the following commands, g r a p h s is defined to be a 
table consisting of 1 1 [ n ] for 8 equally spaced values of n between 0 and 4π. 
g r a p h s is a set consisting of eight graphics objects. Then, P a r t i t i o n is used to 
partition g r a p h s into a set consisting of two sets each containing four graphics 
objects. The result is a 2x4 array of graphics cells named to show displayed with 
G r a p h i c s A r r a y . Note that the option T icks ->None is included so that the axes 
are shown without tick marks. 

graphs=Table[Show[tl[n],Ticks->None],{n,0,4Pi,4Pi/7}]; 

toshow=Partition[graphs,4]; 

Show[GraphicsArray[toshow]] 
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Remember that each time Mathematica generates a plot, unless otherwise instructed to 
do so, Mathematica selects a range for the displayed graphics object. Consequently, when 
generating graphics for an animation, be sure to specify the range displayed with 
P lo tRange . Otherwise, the resulting animation may appear "choppy." 

Application: Maxima and Minima 

Mathematica can be used to solve maximization/minimization problems. An example of 
this type of problem is as follows : 

EXAMPLE: A farmer has 100 feet of fencing to construct four dog kennels by first 
constructing a fence around a rectangular region, and then dividing that region 
into four smaller regions by placing fences parallel to one of the sides. What 
dimensions will maximize the total area? 

SOLUTION: First, let y denote the length across the top and bottom of the 
rectangular region and let x denote the vertical length. A figure describing this 
situation is shown below. 

Then, since 100 feet of fencing are used, a relationship between x and y is given by 
the equation: 2y + 5x = 100. 

Solving this equation for y, we obtain y = which is shown below. 
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Solve[2y+5x==100,y] 

5 (20 - x) 
{ { y _> } } 

2 

Since the area of a rectangle is area = xyf the function to be maximized is 

, v 100-5* n ^ ^ . n 
area(x) = x· , 0<x <20 . 

After defining a r e a , the value of x which maximizes the area is found by finding 
the critical value and observing the graph of a r e a [ x ] . 

area[x_]=x(100-5x)/2; 

Plot[area[x],{x,0,20}] 

Solve[area'[x]==0] 

{{x -> 10}} 

Thus, we see the value of x that maximizes area is 10. To find the other dimension, 

we evaluate y = when x=10. 
y 2 

(100-5x)/2 / . x->10 

25 

Thus, dimensions that maximize the area are 10x25. ■ 

The next problem is slightly different. 

EXAMPLE: A woman is located on one side of a body of water 4 miles wide. Her 
position is directly across from a point on the other side of the body of water 16 
miles from her house. If she can move across land at a rate of 10 miles per hour 
and move over water at a rate of 6 miles per hour, find the least amount of time for 
her to reach her house. 
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SOLUTION: The figure below illustrates the situation described in the problem. 

16 

From the figure, we see that the woman will travel from A to B by land and then 
from B to D by water. We wish to find the least time for her to complete the trip. 
Let x denote the distance BC, where 0 < x < 16. Then, the distance AB is given by 
16 -x and, by the Pythagorean theorem, the distance BD is given by 

-7^2+42 =Λ/χ2+ΐ6 . Since rate x time = distance, time = . Thus, the time to 
rate 

travel from A to B is , the time to travel from B to D is , and the total 
10 6 

time to complete the trip, as a function of x, is 

.. , v 16-x Λ/*2+16 n . .Λ, 
time(x) = + , 0<x<16. 

10 6 
We must minimize the function time. Below, we use Mathematica to define t i m e . 
To verify that t i m e has a minimum, we graph t i m e on the interval [0,16]. 

Clear[time] 

time[x_]=(16-x)/10+Sqrt[x"2+16]/6; 

Plot[time[x],{x,0,16},PlotRange->{{0,16},{2,3}}] 
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10 12 14 16 

Next, we compute the derivative of t i m e and find the values of x for which the 
derivative is 0 with S o l v e . The resulting output is named c r i t n u m s . 

Together[t ime'[x]] 

2 
5 x - 3 Sqrt[16 + x ] 

30 Sqrt[16 + x ] 

critnums=Solve[time'[x]==0] 

{{x -> 3}} 

At this point, we can calculate the minimum time by calculating t i m e [ 3 ] . 
Alternatively, we also demonstrate how to find the value of t i m e [ x ] for the 
value(s) listed in c r i t n u m s . 

time[3] 
time[x] /. critnums[[1]] 

32 

15 
32 

15 

Thus, we see that the minimum time to complete the trip is 32/15 hours. 

Our final two examples illustrates Mathematica's ability to symbolically manipulate 
algebraic expressions. 

EXAMPLE: Let f{x) = mx + b and (xQ,y0) be any point not on the graph of f. Find 

the value of x for which the distance from (x0,y0) to (x,f(x)) is a minimum. 
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SOLUTION: The distance between two points [xvy^) and {xz,y2) is given by 

d i s t anceKx^yJ , ^ , ^ ) ) ^ , ! / ^ J(x2 -Xlf + (y2 - y j 2 . 

In order to determine the value of x which minimizes the distance between (x0,y0) 
and (x,f(x)), a function which determines this distance must first be defined. This 
is accomplished by defining the function d i s t a n c e by entering 

d i s t a n c e [ {xl__, y 1_} , {x2_ , y2_} ] 

which gives the distance between any two points (x^yj and (x2,y2). Then the 
particular distance function for this problem is obtained by substituting the 
appropriate points (x0,y0) and (x,f(x)) into d i s t a n c e and naming the resulting 
output t o m i n i m i z e . Note that minimizing the square of t o m i n i m i z e produces 
the same results as minimizing t o m i n i m i z e . The value of x that minimizes this 
function is obtained in the usual manner. (Notice how naming the distance 
function expression simplifies the solution of the problem.) 

Clear[f,a,m,b,xO,yO,x1,y1,x2,y2] 

distance[{xl_,y1_},{x2_, y2_}]=Sqrt[(x2-xl)Λ2+(y2-yl)A2] 

f[x_J=m x+b 

2 2 
Sqrt[(-xl + x2) + (-yl + y2) ] 
b + m x 

tominimize=distance[{xO,yO},{x,f[x]}] 

2 2 
Sqrt[(x -xO) + (b + m x - yO) ] 

To find the minimum, we first compute the derivative of t o m i n i m i z e , name 
the result dtm, and then use S o l v e to find the values of x for which the derivative 
isO. 

dtm=D[tominimize,x] //Simplify 

2 
b m + x + m x - x O - m y O 

2 2 
S q r t [ ( x - xO) + (b + m x - yO) ] 

val=Solve[Numerator[dtm]==0,x] 

b m - xO - m yO 
{{x _> _( )}} 

2 
1 + m 

The value of x that minimizes d t m is extracted from v a l below and named 
xcoord . 

x c o o r d = v a l [ [ 1 , 1 , 2 ] ] 

138 
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b m - χ θ - m yO 
_( ) 

2 

1 + m 

We then compute and simplify the value of f(x) for the number xcoord and name 
the result ycoord. Thus, (xcoord,ycoord) is the point on the graph of f closest 
to (*0,y0). The minimum distance is then computed using d i s t a n c e . 

ycoord=f[xcoord] // Simplify 

2 
b + m xO + m yO 

2 
1 + m 

distance[{xO,yO},{xcoord,ycoord}]//Simplify 

2 
(-b - m xO + yO) 

Sqrt[ ] 
2 

1 + m 

Thus, the point on the graph of f(x) = mx + b closest to (*0,y0) *s 

my0+xQ-bm m2y0+mx0+b 
m2+l ' ra2+l 

and the minimum distance is 

(y0-mx0-bf _\yQ-mx0-b\ 

V m2+l Vm2+1 

The next example is a familiar exercise to students in introductory differential calculus 
courses. 

EXAMPLE: Find the dimensions of the cone of minimum volume that can be 
inscribed about a sphere of radius R. 

SOLUTION: Let r and h denote the radius and height, respectively, of the right 
circular cone of base radius r and height h circumscribed about the sphere of 
radius R. Then a cross section of the solid containing a diameter of the base of the 
cone is shown in the figure below. 
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Right circular cone circumscribed Cross section of a right circular cone 
about a sphere. circumscribed about a sphere 

From the figure, notice that triangle BOD is similar to triangle BAF. Moreover, 
BO=h-R, OD=R, and AF=r and, by the Pythagorean Theorem, r2 + h2 = BA2 so that 

i h — R Jr2 + h2 

BA = ^r2+h2. Consequently, = . Below, we use Mathematica to solve 
this equation for h in terms of r. Note our convention to use capr to represent R 
in the equation. 

Clear[h,capr,r] 
Solve[(h-capr)/capr==Sqrt[r~2+h*2]/r,h] 

-2 capr r 
{{h -> 0 } , {h -> }} 

2 2 
capr - r 

1 2r2R The volume of the cone is given by V = —nr2h and substituting h = yields V, 

as a function of r, 

Below we define capv to be V(r) = 

V(r) = 

2πΒ 

2nRr* 
3(r2-R2) 

ir* T ^ . Then, we differentiate capv and find 
3(r2-R2) 

the values of r for which capv equals 0. Note that r can be neither 0 nor -R-y/2. 
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capv[r_]=2 Pi capr rA4/(3(rÄ2-caprÄ2) ) 

4 
2 capr Pi r 

2 2 
3 (-capr + r ) 

capv'[r]//Together 

3 3 5 
4 (-2 capr Pi r + capr Pi r ) 

2 2 2 
3 (capr - r ) 

critnums=Solve[capv'[r]==0,r] 

{{r -> 0}, {r -> 0}, {r -> 0}, {r -> -(Sqrt[2] capr)}, 

{r -> Sqrt[2] capr}} 

The value R^l is extracted from c r i t n u m s with c r i t n u m s [ [ 5 , 1 , 2 ] ] . 
Extracting data from lists is discussed in more detail in Chapters 4 and 5. 

cr i tnums[[5 ,1 ,2] ] 

Sqr t [2 ] capr 

To see that r = R^2 yields the desired minimum, we evaluate V"(r) when r - RV2 . 

capv·'[capr Sqrt[2]] 

32 capr Pi 

3 

Since the value of V"{r) when r = #V2 is positive, we conclude that r = R^2 yields 
the minimum volume, computed below. 

capv[capr Sqrt[2]] 

3 
8 capr Pi 

- = R4I and height h= 2 r ' R =4R. 

We conclude that the minimum volume is V nR3 and the cone has radius 
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3.3 Implicit Differentiation 

Computing Derivatives of Implicit Functions 

If e q u a t i o n is an equation with variables x and y, Mathematica computes the implicit 
derivative of e q u a t i o n with the command Dt [ e q u a t i o n , x ] , where e q u a t i o n is 
differentiated with respect to the variable x. 

The expression Dt [ y , x ] encountered when using implicit differentiation represents 
the derivative of y with respect to x, dy / dx . (Hence, Dt [ x , y ] represents dx / dy.) 

The built-in command Dt is versatile. Although here Dt is used to perform implicit 
differentiation, D t f e x p r e s s i o n , v a r i a b l e ] computes the total derivative: 

— -; and Dt [ e x p r e s s i o n ] computes the total differential d ( e x p r e s s i o n ) . 
^ v a r i a b l e 
The following examples demonstrate the use of the implicit differentiation command, 

Dt [ e q u a t i o n , x ] and show how this command can be used with S o l v e to obtain the 
desired derivative in a single command. 

EXAMPLE: 

at the points 

Find 

(4 

an equation of the line 

-1 ] and f-

2x2-2xy + y2 

■H 

tangent to the 

+x+2y+l=0 

graph of 

S O L U T I O N : The slope of the lines tangent to the graph of 

2x2-2xy + y2+x + 2y + \ = ü at the points — , - 1 and — , - 4 is obtained by 

evaluating the derivative of this equation at each of these points. To find the 
derivative, we use implicit differentiation. 

After clearing all prior definitions of eq, we define eq to be the equation 

2x2-2xy + y2+x + 2y + l = 0. 

Don't forget to include the space between the x and y to denote multiplication and 
the double equals sign (==) between the left- and right-hand sides of the equation. 
Note that the left-hand side of eq is extracted from eq with eq [ [ 1 ] ] . 

eq=2x~2-2x y+y~2+x+2y+l==0 

2 2 
l + x + 2 x + 2 y - 2 x y + y = = 0 
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e q [ [ l ] ] 

1 + x + 2 x + 2 y - 2 x y + y 

The graph of e q corresponds to the level curve of 2x2-2xy + y2 + x + 2y + 1 with 
2x2-2xy + y2+x + 2y + \ = 0. Thus, we can use C o n t o u r P l o t to generate this 
particular level curve. 

In the following command, e q [ [ 1 ] ] is enclosed in E v a l u a t e . This ensures 
that Mathematica computes eq [ [ 1 ] ] before sampling points. This is important: 
if E v a l u a t e is not included, error messages occur. The option 
C o n t o u r s - > { 0 } is included so that Mathematica only graphs the level 
c u r v e of 2x2-2xy + y2+x + 2y + \ with 2x2-2xy + y2+x + 2y + l = ü 
C o n t o u r S h a d i n g - > F a l s e specifies that the resulting graph not be shaded 
P l o t P o i n t s - > 5 0 helps assure that the resulting graph is smooth 
F r a m e - > F a l s e specifies that no frame is to be displayed around the resulting 
graphics object; A x e s - > A u t o m a t i c specifies that the resulting graphics object be 
displayed with axes; and A x e s O r i g i n - > { 0 , 0 } specifies that the axes intersect at 
the point (0,0). 

grapheq=ContourPlot [Evaluate[eq[ [1] ] ] , {χ , -6 ,1} , {y / -6 , l } , 
Contours->{0},ContourShading->False,PlotPoints->50, 
Frame->False,Axes->Automatic,AxesOrigin->{0,0}] 

We see that the graph of 2x2 - 2xy + y2 + x + 2y +1 = 0 is an ellipse. Next, we use Dt to 
implicitly differentiate the equation with respect to x. The result is named d e r i v . 
We then use S o l v e to solve the equation d e r i v for D t [ y , x ] and name the 
result i m d e r i v . 
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d e r i v = D t [ e q , x ] 

l + 4 x - 2 y + 2 D t [ y , x ] -

2 x D t [ y , x ] + 2 y D t [ y , x] == 0 

imderiv=Solve[deriv,Dt[y,x]] 

-(1 + 4 x - 2 y) 
{{Dt[y, x] -> }} 

2 (1 - x + y) 

The derivative of 2x2-2xy + y2+x + 2y + l = 0 is — = —-, \ . This expression is 
dx 2(1 - Ac + y ) 

extracted from i m d e r i v with i m d e r i v [ [ 1 , 1 , 2 ] ] . Extracting data from lists is 
discussed in more detail in Chapters 4 and 5. 

i m d e r i v [ [ 1 , 1 , 2 ] ] 

- ( 1 + 4 x - 2 y) 

2 (1 - x + y) 

To find the slope of each tangent line, we evaluate — = —-. K- at each point. 
v ö dx 2 ( l -* + y) v 

Below, we calculate the value of i m d e r i v [ [ 1 , 1 , 2 ] ] at the points — , - 1 and 

— , - 4 , naming the results ml and m2, respectively. Note that in each case, the 

slope of the tangent line is 1. 

m l = i m d e r i v [ [ 1 , 1 , 2 ] ] / . { x - > - 3 / 2 , y - > - l } 

m 2 = i m d e r i v [ [ 1 , 1 , 2 ] ] / . { x - > - 3 / 2 , y - > - 4 } 

1 
1 

To visualize the tangent line at these points, we graph the tangent lines 
simultaneously and name the result p l o t l i n e s . Note that p l o t l i n e s is not 
displayed since we include the option D i s p l a y F u n c t i o n - > I d e n t i t y . To see 
each particular point, we use G r a p h i c s , P o i n t , and P o i n t S i z e to represent the 

points — , - 1 and — , - 4 as graphics objects. Finally, Show is used to show 

grapheq , generated above, p l o t l i n e s , and p o i n t s , simultaneously. 

plotlines=Plot[{ml(x+3/2)-l,m2(x+3/2)-4},{x,-6,l}, 

DisplayFunction->Identity]; 

points=Graphics[{PointSize[.03],Point[{-3/2,-1}],Point[{-3/2,-4}]}]; 

Show[grapheq,points,plotlines,PlotRange->{{-6,1},{-6,1}}] 
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In the next example, we implicitly differentiate an equation in which the right-hand side 
is not zero. 

EXAMPLE: Find y' = — if cos(x + siny) = sin y. 

SOLUTION: As in the preceding example, we begin by clearing all prior 
definitions of eq and defining eq to be the equation cos(x + siny) = siny. 

Clear[eq] 

eq=Cos[x+Sin[y]]==Sin[y] 

Cos[x + Sin[y]] == Sin[y] 

Next, we use Dt to compute the derivative of eq with respect to x. The result is 

named d e r i v . Remember that the symbol Dt [ y , x ] represents y' = —. 
dx 

deriv=Dt[eq,x] 

-((1 + Cos[y] Dt[y, x]) 

Sin[x + Sin[y]]) == Cos[y] Dt[y, x] 

Finally, we use S o l v e to solve d e r i v for Dt [ y , x ] . The result means that 

, dy 
y = — 

sin(x + siny) 
dx -cosy-cosysin(x + siny) 
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Solve[deriv,Dt[y,x]] 

{{Dt[y, x] 

Sin[x + Sin[y]] 

-}} 
-Cos[y] - Cos[y] Sin[x + Sin[y]] 

Finally, we use C o n t o u r P l o t to graph the equation cos(x + siny) = siny. First, we 
rewrite this equation in the form cos(x + siny)-siny = 0. The graph of 
cos(x + s iny)-s iny = 0 is the same as the level curve of cos(x + siny)-siny 
corresponding to 0. Thus, we proceed in the exact same manner as in the previous 
example. The displayed graph corresponds to the graph of cos(x + siny) = siny on 
the interval [-4π,4π]. 

ContourPlot[Cos[x+Sin[y]]-Sin[y],{x,-4Pi,4Pi},{y,-4Pi,4Pi}, 

Contours->{0},PlotPoints->7 0,ContourShading->False, 

Frame->False,Axes->Automatic,AxesOrigin->{0,0}] 

Other Methods to Compute Derivatives 
of Implicit Functions 

Implicit derivatives can also be computed with D if y is declared to be a function of x. For 
example, to implicitly differentiate (x2+y2f = a2(x2-y2) (the Lemniscate of Bernoulli), 

where a is a constant, we define eq to be 

Clear[a ,x ,y ,eq] 
eq=(x"2+y[xp2)"2==a"2(x"2-y[xp2) 

2 2 2 
(x + y [ x ] ) 

2 2 2 
a (x - y [ x ] ) 

and then use D to differentiate eq with respect to x, naming the result d e r i v . 
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deriv=D[eq,x] 

2 2 
2 (x + y [ x ] ) (2 x + 2 y [ x ] y " [ x ] ) == 

2 
a (2 x - 2 y [ x ] y ' [ x ] ) 

Finally, we use S o l v e to solve d e r i v for y ' [ x ] . 

So lve [der iv ,y ' [x ] ] 

{{y'[x] -> 

2 3 2 
-(a x) + 2 x + 2 x y[x] 

. ( ) y y 
2 2 3 
a y[x] + 2 x y[x] + 2 y[x] 

Other Methods to Graph Equations 

As we have seen, C o n t o u r P l o t can be used to graph many equations by including the 
appropriate options in the C o n t o u r P l o t command. Some equations may also be graphed 
with the command I m p l i c i t P l o t . I m p l i c i t P l o t is not a built-in Mathematica 
function and is contained in the package ImplicitPlot located in the Graphics folder (or 
directory). 

The most basic form of the syntax for the command I m p l i c i t P l o t is 

ImplicitPlot[equation,{x,xmin,xmax}]. 

The set of y-values displayed can also be specified by entering the command in the form 

ImplicitPlot[equation,{x,xmin,xmax},{y,ymin,ymax>]. 

Be sure to always include the double-equals sign between the right- and left-hand side of 
equations. 

EXAMPLE: Graph (x2 + y2f = a2(x2-y2) when a=2. 

SOLUTION: In this case, we first load the package ImplicitPlot After the package 
is loaded, we may use the command I m p l i c i t P l o t . 

«Graphics" Implici tPlotv 



3 Calculus 

Next, we define a=2 and use I m p l i c i t P l o t to graph the equation for x-values in 
[-3,3]. Note that the actual interval displayed corresponds to [-2,2]. 

a=2; 
ImplicitPlot[(x"2+y~2)*2==a's2(xA2-y/ v2) /{x,-3,3}] 

f 
The command I m p l i c i t P l o t works best with equations that are (easily) solvable. 

Notice that the command 

ImplicitPlot[yΛ2==χ Cos[x y ] , { x , - 3 P i , 3 P i } ] 

Solve::tdep: 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 
Solve::tdep: 

The equations appear to involve transcendental functions 
of the variables in an essentially non-algebraic way. 

ImplicitPlot::epfail: 
2 

Equation y == x Cos[x y] 
could not be solved for points to plot. 

2 
ImplicitPlot[y == x Cos[x y], {x, -3 Pi, 3 Pi}] 

produces several error messages and cannot graph the equation y2 - xcos(xy). On the other 
hand, entering 

ImplicitPlot[y^2==x Cos[x y],{x,-3Pi,3Pi},{y,-Pi,Pi},PlotPoints->50] 

3 

2 

1 

0 

-1 

-2 

- 3 

- 7 - 5 - 2 0 2 5 7 

produces the desired graph. C o n t o u r P l o t is used with equal success to generate the 
same graph. 
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-1 

0.6 
^Χ0.4 

Ai A 
^ - 0 .6 

\ 1 k 
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ContourPlot[y^2-x Cos[x y],{x,-3Pi,3Pi},{y,-Pi,Pi}, 

PlotPoints->50,Contours->{0},ContourShading->False, 

Frame->False,Axes->Automatic,AxesOrigin->{0,0}] 

i - 3 

i 2 J5 —7 " 

4? 

3.4 Integral Calculus 

Estimating Areas 

In integral calculus courses, the definite integral is frequently motivated by investigating 
the area under the graph of a positive continuous function on a closed interval. 

Let y = f(x) be a positive continuous function on an interval [a,b] and let n be a positive 
integer. If we divide [a,b] into n equal subintervals and let [ x^ / z j denote the kth 

subinterval, x.=a + k and the width of each subinterval is . Then, the area 
n n 

bounded by the graphs of y=f{x), x = a, x = b, and the y-axis can be approximated with the 
sums 

b-a Λ 

s*~Z#JandS^=^5>.) 

In the case when f is increasing on [a,b], Slcft is an under approximation and Snht is an 
upper approximation. Sleft corresponds to an approximation of the area using n inscribed 
rectangles; S corresponds to an approximation of the area using n circumscribed 
rectangles. When f is decreasing on [afb\, S ht is an under approximation and S an 
upper approximation. Sright corresponds to an approximation of the area using n inscribed 
rectangles; Slcft corresponds to an approximation of the area using n circumscribed 
rectangles. 
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Our first example illustrates the case when f is increasing. 

EXAMPLE: Let /(x) = l+12x-x2. Approximate the area bounded by the graph of 
f (x), the y-axis, x = 2, and x = 5 using (a) 100 inscribed and (b) 100 circumscribed 
rectangles, (c) What is the exact value of the area? 

SOLUTION: We begin by defining and graphing f. 

Clear[f] 

f[χ_]=1+12χ-χΛ2; 

Plot[f[x],{x,-l,13}] 

Since f'(x) = 2(6-x) is positive on the interval [2,5], f is increasing on [2,5]. Thus, 
an approximation of the area using 100 inscribed rectangles is given by 

— jT/12 + fc— ' w h i l e an approximation of the area using 100 circumscribed 

rectangles is given by V / j 2 + k . Each of these numbers, along with a 

corresponding approximation, is computed below with Sum. The symbol % 
represents Out. N [ % ] returns a numerical approximation of the previous output. 

3/100 Sum[f[2+k 3/100] , {k,0,99}] 

1795491 

20000 

N[%] 

89.7745 

3/100 Sum[f[2+i 3/100],{i,1,100}] 

1804491 

20000 
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N[%] 

90 .2245 

More generally, below we define the functions l a and r a , which compute the 

sums ^ = ^ Σ / ( * * _ 0 and Sr^ = - ^ ^ / ( x , ) , respectively. 
* = 1 J t =l 

la[f_, {a_,b__},n_] : = (b-a)/n Sum[f[a+k (b-a)/n],{k,0,n-l}]//N; 

ra[f_,{a_,b_},n_] : = (b-a)/n Sum[f[a+k (b-a)/n],{k,l,n}]//N; 

We then use l a and r a to compute —V/12 + fc— and — > f]2 + k for 
V n ^ \ lOOj n^f\ lOOj 

n = 2,4,8,24,...,29 = 512. Note that the under approximations computed with l a 
and the over approximations computed with r a appear to be getting closer 
together. 

approxes=Table [ {2Λη, la [f,{2,5},2~n],ra[f, {2,5}, 2Λη]}, {11,1,9}]; 

TableForm[approxes,TableHeadings->{None,{"n","Lower","Upper"}}] 

n Lower Upper 
2 
4 
8 
16 
32 
64 
128 
256 
512 

77, 
84, 
87, 
88, 
89, 
89, 
89, 
89, 
89, 

.625 

.0937 

.1172 

.5762 

.2925 

.6473 

.8239 

.912 

.956 

100.125 
95. 
92. 
91. 
90. 
90. 
90. 
90, 
90. 

.3437 

.7422 

.3887 

.6987 

.3505 

.1755 

.0878 

.0439 

In fact, Km—Vf(xJ = lim—V f(xk J , and this number is the exact value of the area 
Jt=0 k=\ 

bounded by the graphs of y = f(x), the y-axis, x = 2, and x = 5. To help us see why 
this is true, we define the function r i e f t which, given f, a, b, and n, graphs f on 
the interval [a,b\ and then shows the graph of f along with n rectangles, where the 

kth rectangle has vertices (xk λ,0), (xk_x,f(xk_^\, (xk,f{xk.i% a n d ( v 0 ) · Since the 
function f(x) = l + 12x-x2 on the interval [2,5] is increasing, in this case, these 
rectangles are inscribed rectangles. The commands used in defining the function 
r i e f t are discussed in later chapters. 

rleft[f_,{a_,b__} ,n_]:=Module[{recs,plotf,x,pts}, 

x[k_]=a+k (b-a)/n; 

recs=Table[Rectangle[{x[k],0},{x[k-l],f[x[k-l]]}], 

{k,l,n}]? 

pts=Table[Point[{x[k],f[x[k]]}],{k,0/n-l}]; 
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plotf=Plot[f[x],{x,a,b},DisplayFunction->Identity]; 

gl=Show[Graphics[{GrayLevel[.8],recs}], 

DisplayFunction->Identity]; 

g2=Show[Graphics[{PointSize[.02],pts}], 

DisplayFunction->Identity]; 

Show[gl,g2,plotf,Axes->Automatic] 

] 

We then use r i e f t to show the graph of f on the interval [2,5] with 2·2-
inscribed rectangles for i = 0,1,2,3. First, we use T a b l e to generate the graphs. 

graphs=Table[rieft[f,{2,5},2*2~i],{i,0,3}] 

{-Graphics-, -Graphics-, -Graphics-, -Graphics-} 

We then partition the set of four graphics objects, g r a p h s , into two element 
subsets with P a r t i t i o n . 

toshow=Partition[graphs,2] 

{{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-}} 

Finally, we display the 2x2 array of graphics objects, t o show, with Show and 
G r a p h i c s A r r a y . 

Show[GraphicsArray[toshow]] 

*2. 533. 594.'55 2.533.544.55 

Similarly, we define r r i g h t , which, given f, a, b, and n, graphs f on the interval 
[a,b] and then shows the graph of f along with n rectangles, where the kth 

rectangle has vertices (χ^,θ), Uk_lff(xk% (**'/(**))' anc* (χ*'°)· Since the function 
f(x) = l + 12x-x2 on the interval [2,5] is increasing, in this case, these rectangles are 
circumscribed rectangles. Note that r i e f t and r r i g h t could be combined into a 
single function by using an I f statement. 

152 
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rright [ f_, {a__, b_} , n_] : =Module [ {recs,plotf, x,pts} , 
x[k__]=a+k (b-a)/n; 
recs=Table[Rectangle[{x[k-l],0},{x[k],f[x[k]]}], 

{k,l,n}]; 
pts=Table[Point[{x[k],f[x[k]]}],{k,1,n}]; 
plotf=Plot[f[x],{x,a,b},DisplayFunction->Identity]; 
gl=Show[Graphics[{6rayLevel[.8],recs}], 

DisplayFunction->Identity]; 
g2=Show[6raphics[{PointSize[.02],pts}], 

DisplayFunction->Identity]; 
Show[gl,g2,plot£,Axes->Automatic] 

1 

Then, in the exact same manner as with r i e f t above, we use r r i g h t to show the 
graph of f on the interval [2,5] with 2 · 2· circumscribed rectangles for i = 0,1,2,3. 

graphs=Table[rright[f, {2,5},2*2"i],{i,0,3}]; 

toshow=Partition[graphs,2]; 

Show[GraphicsArray[toshow]] 

2 . 5 3 3 . 5 4 4 . 5 5 2 . 5 3 3 . 5 4 4 . 5 5 

The graphs above help convince us that the limit of the sum of the areas of the 
inscribed and circumscribed rectangles is the same. In fact, for any positive integer 

n, the sum of the areas of the inscribed rectangles is given by —\f\2 + k—\ and 
n —* I n J k=0 

3 ν Λ , 3Ν the sum of the areas of the circumscribed rectangles is given by — ^ V 2 + ^— 

Closed forms of these sums can be computed with Sum after the SymbolicSum 
package, located in the Algebra f o l d e r (or directory), is loaded. Below, we load 
the SymbolicSum package and then use Sum to calculate closed forms for each of 
these sums, naming the resulting output l e f t and r i g h t , respectively. 
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«Algebra" SymbolicSum" 

left=3/n Sum[f[2+3k/n],{k,0,n-l}]//Simplify 

2 
9 (-1 - 5 n + 20 n ) 

2 
2 n 

right=3/n Sum[f[2+3k/n],{k,l,n}]//Simplify 

2 
9 (-1 + 5 n + 20 n ) 

2 
2 n 

We then use L i m i t to compute the limit as n -> °° of both l e f t and r i g h t . The 
results, as expected, are the same. 

Limit[left,n->Infinity] 

Limit[right,n->Infinity] 

90 
90 

We conclude that the area is 90. ■ 

In our next example we examine a function that is decreasing on the interval under 
consideration. Be sure the functions l a , r a , r r i g h t , and r i e f t from the previous 
example have been defined and the package Symbol icSum has been loaded before 
carrying out the subsequent calculations. 

EXAMPLE: 
x = l, and x 

Approximate 
= 3 using 2, 4, 

(b) inscribed rectangles if 
area? 

the area bounded 
8,16, 
/(*) = 

32, 
2x3 

64, 
-9x2 

128, 
+ 30 

by the graphs of y =/(*), the y-axis, 
256, and 512 (a) circumscribed and 
(c) What is the exact value of the 

SOLUTION: As in the previous example, we begin by defining and graphing f. 

C l e a r [ f ] 

f [ χ _ ] = 2 χ Λ 3 - 9 χ Λ 2 + 3 0 ; 

P l o t [ f [ x ] , { x , - l , 4 } ] 
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Then, we use the functions l a and r a to approximate the area for the indicated 
numbers of circumscribed and inscribed rectangles. In this case, because f is 
decreasing on the interval [1,3], l a yields an upper approximation, while r a 
yields a lower approximation. 

approxes=Table[{2"n,la[f,{l,3},2An],ra[f,{1,3},2Λη]},{n,1,9}]; 

TableForm[approxes,TableHeadings->{None,{"n","Upper","Lower"}}] 

Upper Lower 
2 
4 
8 
16 
32 
64 
128 
256 
512 

33 
27 
24 
23 
22 
22 
22 
22 
22 

25 
5625 
2656 
6289 
3135 
1565 
0782 
0391 

13 
17 
19 
20 
21 
21 
21 
21 
21 

25 
5625 
7656 
3789 
6885 
844 
.9219 
961 

We also use the functions r i e f t and r r i g h t , defined in the previous example, to 
visualize various circumscribed and inscribed rectangles. 

toshow=Partition[graphs,2]; 

Show[GraphicsArray[toshow]] 
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g r a p h s = T a b l e [ r r i g h t [ f , { 1 , 3 } , 2 * 2 Λ ί ] , { i , 0 , 3 } ] ; 
toshow=Part i t ion[graphs ,2] ; 
Show[GraphicsArray[toshow]] 

1.5 2 2 . 5 3 1.5 2 2 . 5 3 

For any positive integer n, the sum of the areas of the circumscribed rectangles is 

given by — V^/| 1 + fc— and the sum of the areas of the inscribed rectangles is 

given by — V / j \ + k— . Closed forms of these sums can be computed with Sum 

after the SymbolicSum package, located in the Algebra f o l d e r (or directory), has 
been loaded. 

left=2/n Sum[f[l+2k/n],{k,0,n-l}]//Simplify 

4 20 
22 + — + — 

2 n 
n 

right=2/n Sum[f[l+2k/n],{k,1,n}]//Simplify 

4 20 
22 + 

2 n 

To find the exact area, we use L i m i t to compute the limit as n -> °° of both l e f t 
and r i g h t . The area is 22. 

Limit[left,n->Infinity] 

Limit[right,n->Infinity] 

22 
22 
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Computing Definite and 
Indefinite Integrals 

The built-in command I n t e g r a t e can be used to find antiderivatives of some functions 
and evaluate some definite integrals. 

The command I n t e g r a t e [ f [ x ] , x ] attempts to compute /(x)dx, while the 

command I n t e g r a t e [ f [ x ] , { x , a , b } ] attempts to compute the definite integral 
b 

f(x)dx. The command I n t e g r a t e [ e x p r e s s i o n , v a r i a b l e ] instructs Mathematica to 
a 

try to integrate e x p r e s s i o n with respect to v a r i a b l e . Each of the following examples 
illustrates typical commands used to compute indefinite integrals. 

EXAMPLE: Compute each of the following indefinite integrals. 

(a) ïx2(l-x*)5dx; (b) fe~2xsin3xdx; 

(c) IV tan-1*; (d) [f(x)dx if f(x)= * 2 " 4 * ; and 
J J x 2 - 2 x - 3 

(e) jg(y)dy if #(y) = y3(lny)2. 

SOLUTION: For (a), (b), and (c), we use I n t e g r a t e directly. Entering 

Integrate[χΛ2(l-xA3)Λ5,x] 

3 6 9 12 15 18 
x 5 x 10 x 5 x x x 

3 6 9 6 3 18 

computes \x2(1 - x3 f dx ; entering 

Integrate[Exp[ · 

-3 Cos[3 x] 

2 x 
E 

-2x 

13 

]Sin[3x],x] 

2 Sin[3 x] 

2 x 
E 

computes e~2x sin3xdx; and entering 

Integrate[xΛ 2 ArcTan[x],x] 

2 3 2 
-x x ArcTan[x] Log[l + x ] 

+ + 

6 3 6 

computes x2 tan -1 x. 
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For (d) and (e), we first define f and g and then use I n t e g r a t e . 

Clear[f] 

f[χ_]=(χΑ2-4χ)/(χΛ2-2χ-3); 

Integrate[f[x],x] 

3 Log[-3 + x] 5 Log[l + x] 
x _ _ 

4 4 

Clearfg] 

g[y_J=y"3 Log[y]A2; 

Integrate!g[y],y] 

4 4 4 2 
y y Log[y] y Log[y] 

32 8 4 

Generally, Mathematica can compute antiderivatives of most functions 
encountered in an introductory integral calculus course. ■ 

Since integration is a difficult procedure, it is relatively easy to make up integrals that 
Mathematica cannot calculate. Nevertheless, Mathematica can calculate a wide variety of 
integrals. 

EXAMPLE Calculate (a) sinxlnxiù:; (b) dx;and(c) dx. 
J J sin2x + 2 J sinx + 2 

SOLUTION: Mathematica can compute (a) and (b), but not (c). 

Integrate[Sin[x] Log[x],x] 

Coslntegral[x] - Cos[x] Log[x] 

The function C o s l n t e g r a l [ x ] , appearing in the result above, represents the 
cosine integral function, Ci(z), where 

_ , x fcosf. . f c o s f - 1 ^ 
Ci(z) = -\ dt = y + \nz+ dt. 

Here, γ represents Euler's constant which is approximately 0.577216. Note that 
Mathematica has a built-in definition of Euler's constant, EulerGamma. 

In tegra te [ l / (S in [xp2+2) ,x] 
3 

ArcTan[Sqrt[-] Tan[x]] 
2 

Sqrt[6] 
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Integrate[x/(Sin[x]+2),x] 

x 
Integratef , x] 

2 + Sin[x] 

Definite integrals are also computed with I n t e g r a t e . In general, the command 

Integrate[expression,{variable,lowerlimit,upperlimit}] 

integrates e x p r e s s i o n with respect to v a r i a b l e and evaluates from l o w e r l i m i t to 
u p p e r l i m i t as illustrated in the following example. 

EXAMPLE: Calculate each definite integral. 
1 π 

(a) |(x-x2)dx; (b) fsinxiü:; 
0 0 

2 2 

(c) [ Λ / 4 - Χ 2 ^ ; (d) [f(x)dx, if f(x) = x^e^; and 
1 1 

In 

(e) \g(x)dx,\î g(x) = elxsm22x. 

SOLUTION: For (a), (b), and (c), we use I n t e g r a t e to evaluate each definite 
integral. 

Integrate!χ-χΛ2,{χ,Ο,Ι}] 

1 

6 

Integrate[Sin[x],{x,0,Pi}] 

2 

Integrate[Sqrt[4-x"2],{x,l,2}] 

-Sqrt[3] 2 Pi 

2 3 

On the other hand, for (d) and (e), we clear all prior definitions of f and g, define f 
and g, and then use I n t e g r a t e to compute the indicated definite integral. 

Clear[£] 

f[χ_]=χΛ3 Εχρ[-4χ]; 

lntegrate[f[x],{x,l,2}] 
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-379 71 
- I -

8 4 
128 E 128 E 

C l e a r [ g ] 

g[x_J=Exp[2x] S i n [ 2 x ] A 2 ; 

I n t e g r a t e [ g [ x ] , { x , - P i , 2 P i } ] 

4 P i 
- 1 E 

+ 

2 Pi 5 
5 E 

When the command I n t e g r a t e [ f [ x ] , { x , x m i n , x m a x } ] is entered, Mathematica 
computes an antiderivative F of f, when possible, and computes F [xmax] -F [xmin ] . 
Nevertheless, Mathematica does not apply the Fundamental Theorem of Calculus since 
Mathematica does not verify that f is continuous on the interval [xmin,xmax]. In cases 
when f is not continuous on [xmin,xmax], errors often occur. Consequently, before 
believing the results presented by Mathematica, be sure the results that Mathematica gives 
you are reasonable. 

1 

EXAMPLE: Calculate \-dx, 

SOLUTION: Below we use I n t e g r a t e to attempt to calculate the definite 
integral. 

I n t e g r a t e [ l / x , { x , - l , l } ] 

- I Pi 

-Log[- l ] 

- I Pi 

Since the function — is not continuous when x=0, we cannot use the Fundamental 
x 

1 

Theorem of Calculus to calculate this integral. In fact, the integral — dx does not 
-1 

exist. ■ 
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Approximating Definite Integrals 

When an exact value of a definite integral is either unnecessary or impossible to compute, 
Mathematica can frequently compute approximations of definite integrals with 
N I n t e g r a t e , 

NIntegrate[expression,{variable,lowerlimit,upperlimit}], 

which numerically integrates e x p r e s s i o n with respect to v a r i a b l e and evaluates from 
l o w e r l i m i t to u p p e r l i m i t . 

The command N I n t e g r a t e is useful when an anti-derivative of e x p r e s s i o n 
cannot be (easily) found and e x p r e s s i o n is fairly smooth on the interval 
[ l o w e r l i m i t , u p p e r l i m i t ] Also, in those cases in which an anti-derivative can be 
determined, the value of the definite integral can usually be computed more quickly by an 
approximation with N I n t e g r a t e rather than I n t e g r a t e . 

f v4x2 — 9 EXAMPLE: Compute both exact and approximate values of àx, 

SOLUTION: I n t e g r a t e is used to compute the exact value of the integral; 
N I n t e g r a t e is used to compute an approximation of the integral. 

Integrate[Sqrt[4x*2-9]/x*3,{x,4,10}] 

Sqrt[55] Sqrt[391] 
_ + 

32 200 

3 3 
2 ArcTan[ ] 2 ArcTan[ ] 

Sqrt[55] Sqrt[391] 

3 3 

NIntegrate[Sqrt[4x^2-9]/χΛ3,{χ,4,10}] 

0.288773 

The approximation obtained with N I n t e g r a t e is computed much more quickly 
than the exact value computed with I n t e g r a t e . ■ 

In many cases, Mathematica can compute approximate values of definite integrals it 
cannot compute exactly. 
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EXAMPLE: Approximate e-*2 cosx3dx. 

SOLUTION: We first graph e~x2 cosx3 on the interval [Ο,π]. Note that the graph is 
relatively smooth so that the chances of N I n t e g r a t e producing a reasonable 
approximation of the integral are good. 

Plot[Exp[-x~2] Cos[x~3],{x,0,Pi},PlotRange->All] 

Next, we try to use I n t e g r a t e to evaluate the integral but are unsuccessful. In 
this particular case, the Mathematica kernel ran out of memory and quit. 

Integrate[Exp[-xA2] Cos[x"3],{x,0,Pi"(l/3)}] 

General:rintinit: Loading integration packages — please wait. 

Finally, we use N I n t e g r a t e to approximate the integral. 

NIntegrate[Exp[-x"2] Cos[x"3],{χ,0,ΡΐΛ(1/3)}] 

0.701566 

Application: Area Between Curves 

A type of problem which incorporates the commands I n t e g r a t e and N I n t e g r a t e is 
that of finding the area between curves. These problems also use several other 
Mathematica commands ( P l o t , NRoots , F i n d R o o t , Solve,. . .) which were introduced 
earlier in the text. 

EXAMPLE: Find the area between the graphs of y = sinx and y = cosx on the 
interval [0,2π]. 
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SOLUTION: Below, we graph y = sinx and y = cosx on the interval [0,2π]. The 
graph of y = cos* is dashed. 

Plot[{Sin[x],Cos[x]},{x,0,2Pi},PlotStyle->{GrayLevel[0],Dashing[{.01}]}] 

To find the upper and lower limits of integration, we must solve the equation 
sin* = cos* for x. We see that S o l v e is unable to solve this equation. However, we 

see that sin* = cos x on the interval [0,2π1 when x = — and when x = — . Note that 

F i n d R o o t can be used to approximate these numbers, but the resulting area 
computed would not be exact. 

Solve[Sin[x]==Cos[x],x] 

Solve::tdep: 
The equations appear to involve 

transcendental functions of the 
variables in an essentially 
non-algebraic way. 

Solve[Sin[x] == Cos[x], x] 

Sin[Pi/4]==Cos[Pi/4] 

Sin[5Pi/4]==Cos[5Pi/4] 

True 
True 

Thus, the desired area is given by 

ic/4 5 π / 4 2π 

Area= \(cosx-sii\x)dx-l· Usmx-cosx)dx+ Ucosx-sinx)dx 

which is computed below. 

Integrate[Cos[x]-Sin[x],{x,0,Pi/4}]+ 

Integrate[Sin[x]-Cos[x],{x,Pi/4,5Pi/4}]+ 

Integrate[Cos[x]-Sin[x],{x,5Pi/4,2Pi}] 

4 Sqrt[2] 

3.4 
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Thus, the desired area is 4Λ/2 . ■ 

In cases when we cannot calculate the points of intersection of two graphs exactly, we 
can frequently use NRoots or F indRoo t to estimate the points of intersection. 

EXAMPLE: Let 

and 

Approximate the 

p(x) 

area 

10 

q(x) = 

of the 

-3x4+llx3 

-4x3+28x2-

-18x2 

-56x + 

region bounded 

+ 12x + l 

32. 

by the graphs of p and q. 

SOLUTION: Mathematica is quite helpful in problems of this type. We can 
observe the region whose area we are seeking using the P l o t command, and we 
can locate the points of intersection with one of the commands used in solving 
equations (NRoots, F i n d R o o t , S o l v e , or NSolve) . These steps are carried out 
below. After defining p and q, we graph p and q (the graph of q is dashed) and 
then use NRoots to find the x-coordinates of the points of intersection, naming the 
resulting output i n t p t s . 

C l e a r [ p , q ] 

ρ [ χ _ ] = 3 / 1 0 χ Λ 5 - 3 χ Α 4 + 1 1 χ Λ 3 - 1 8 χ Λ 2 + 1 2 χ + 1 ; 

q [x_ ]=-4x*3+28x"2-56x+32; 

Plot[{p[x],q[x]},{x,-l,5},PlotStyle->{GrayLevel[0],Dashing[{.01}]}] 

20 \ / 

intpts=NRoots[p[x]==q[x],x] 

x == 0.772058 || x == 1.5355 - 3.57094 I || 

x == 1.5355 + 3.57094 I || x == 2.29182 || 

x == 3.86513 

Two of the solutions listed contain an imaginary part. We can ignore these 
solutions. The real solutions are extracted from i n t p t s and named x l , x2, and 
x3, respectively. 
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xl=intpts[[l,2]] 

x2=intpts[[4,2]] 

x3=intpts[[5,2]] 

0.772058 
2.29182 
3.86513 

Using the roots to the equation p(x) = q(x) found above, the graph shows that 
p(x) > q(x) between x=0.772058 and x=2.29182 ; and 
q(x) > p(x) between x=2.29182 and x=3.86513. 

Hence, an approximation of the area bounded by p(x) and q(x) is given by the 
integral 

»2.29182 -3.86513 

(p(x)-q(x))dx+ (q(x)-p(x))dx . 
•/0.772058 J2.29182 

This integral is computed below with both I n t e g r a t e and N I n t e g r a t e . In 
either case, the result is the same. 

12.1951 

NIntegrate[p[x]-q[x],{x,xl,x2}]+NIntegrate[q[x]-p[x],{x,x2,x3}] 

12.1951 

Next, consider a problem which involves functions which are not polynomials. 

EXAMPLE: Let 

f(x) = e-i*-2) 

on the interval [0,4]. Approximate 
f and g. 

ZCOSrtX 

the 

and 

area 
*(*) = 
of the 

4cos(x-

region 
-2) 
bounded by the graphs of 

SOLUTION: Since these functions are not polynomials, FindRoot must be used 
to approximate the x-coordinates of the points of intersection. Recall that 
FindRoot depends on an initial guess of the root. Therefore, the first step towards 
solving this problem is to graph the functions f and g and estimate the x-
coordinates of the points of intersection. 

Clear[f,g] 

f[x_]=Exp[-(x-2)"2Cos[Pi x]]; 

g[x_]=4Cos[x-2]; 

Plot[{f[x],g[x]},{x,0,4},PlotStyle->{GrayLevel[0],Dashing[{.01}]}] 
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Once the initial guesses have been determined, FindRoot is used to approximate 
the solutions to the equation f(x) = g(x), and the area is approximated with 
NIn teg ra t e . Below, we use FindRoot to approximate the x-coordinate of each 
intersection point. The results are named f r l and fr2, respectively. The values 
are then extracted from f r 1 and f r2 and named xl and x2, respectively. 

frl=FindRoot[f[x]==g[x],{x,1.06}] 

fr2=FindRoot[f[x]==g[x],{x,2.93>] 

{x -> 1.06258} 
{x -> 2.93742} 

xl=frl[[l,2]] 

x2=fr2[[l,2]] 

1.06258 
2.93742 

Application: Arc Length 

Let f(x) be a function for which f'(x) is continuous on an interval [a,b]. Then the arc length 
of the graph of f from (a,f(a)) to (b,f(b)) is given by 

Length = j,jl + (f'(x))2dx. 

Thus, the area is approximated by the integral [x)-f(x))dx which is computed 

below with NIn tegra te . 

N l n t e g r a t e [ g [ x ] - f [ x ] , { x , x l , x 2 } ] 

4.17413 
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The resulting definite integrals used for determining arc length are usually difficult 
to compute since they involve a radical. Because the built-in command 

b 

N I n t e g r a t e [ f [ x ] , { x , a , b } ] numerically approximates the integral Γ/(χ)ί2χ, Mathe-

matica is very helpful with approximating solutions to these types of problems. 

EXAMPLE: Let f{x) = sin(x + xsmx). Approximate the arc length of the graph of f 
from (0,f(0)) to (2π,ί(2π)). 

SOLUTION: We begin by defining and graphing f on the interval [0,2π]. 

Clear[f] 

f[x_]=Sin[x+x Sin[x]]; 

Plot[f[x],{x,0,2Pi}] 

In order to evaluate the arc length formula, we first compute the derivative of f(x) 

and then approximate U l + (/'(x))2 dx with NIn tegra te . 
0 

f ' [ X ] 

Cos[x + x Sin[x]] (1 + x Cos[x] + Sin[x]) 

NIntegrate[Sqrt[l+f[x]A2],{x,0,2Pi}] 

12.0564 

Thus, an approximation of the arc length is 12.0564. ■ 

Application: Volume of 
Solids of Revolution 

Mathematica can be used to solve volume problems as well. Let f be a non-negative 
continuous function on [a,b] where both a and b are greater than zero. Then the volume of 
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the solid of revolution obtained by revolving the region bounded by the graphs of y=f(x), 
x=a,x=b, and the x-axis about the x-axis is given by 

--JK(f(x)fdx. 

The volume of the solid of revolution obtained by revolving the region bounded by the 
graphs of y=f(x), x=a, x=b, and the x-axis about the y-axis is given by 

V = J2nxf(. x)dx , 

EXAMPLE: Let g(x) = xsin2(x). Find the volume of the solid obtained by revolving 
the region bounded by the graphs of y=g(x), x=0, χ=π, and the x-axis about (a) the 
x-axis; and (b) the y-axis. 

SOLUTION: In this case, after defining g, we graph g on the interval [Ο,π] and 
then use I n t e g r a t e to compute the volume of each solid. The volume of the 

solid obtained by revolving the region about the x-axis is given by V = \ n(g(x)) àx, 
0 

while the volume of the solid obtained by revolving the region about the y-axis is 
π 

given by V = \ 2nxg(x)dx. These integrals are computed below and named xvol 
0 

and y vol, respectively. N is used to approximate each volume. 
Clear[g] 

g[x_]=x Sin[x] 

Plot[g[x],{x,0 

*2; 

rPi}] 

1.75 

1 

1.25 

1 

0.75 

0 

0.25 
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xvol=Tntegrate[Pi g[x]Λ2,{xf0,Pi}] 

2 4 
-60 Pi + 32 Pi 

256 

N[xvol] 

9.86295 

yvol=Integrate[2 Pi x g[x],{x,OfPi}] 

2 4 
-6 Pi + 4 Pi 

12 

N [ y v o l ] 

27 .5349 

We can use P a r a m e t r i c P l o t 3 D to visualize the resulting solids by 

parametrically graphing the equations given by for r between 0 and π 

and t between -π and π to visualize the graph of the solid obtained by revolving 
the region about the y-axis, or by parametrically graphing the equations given by 

of the solid obtained by revolving the region about the x-axis. In this case, we 
identify the z-axis as the y-axis. Notice that we are simply using polar coordinates 
for the x- and y-coordinates, and the height above the x,y-plane is given by g(r) 
since r is replacing x in the new coordinate system.. 

for r between 0 and π and t between -π and π to visualize the graph 

x[r_,t_]=r Cos[t]; 

y[r_,t_]=r Sin[t]; 

z[r_,t_]=g[r]; 

ParametricPlot3D[{x[rft],y[r,t]/z[r/t]},{r/0,Pi},{t,-Pi/Pi}] 
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Clear[x,y,z] 

x[r_,t_]=r; 

y[r_,t_]=g[r] Cos[t]; 

z[r_,t_J=g[r] Sin[t]; 

ParametricPlot3D[{x[r,t] ,y[r,t] ,z[r,t] }, {r,0,Pi}, {t,-Pi,Pi}] 

We now demonstrate a volume problem for which we cannot use I n t e g r a t e to 
calculate an exact value of the volume. Instead, we use N I n t e g r a t e to approximate the 
volume. 

EXAMPLE: Let f(x) = e~(x~3)2ros(4(^-3)). Approximate the volume of the solid obtained 
by revolving the region bounded by the graphs of y=f(x), x=l, x=5, and the x-axis 
about the y-axis. 

SOLUTION: Proceeding as in the previous example, we first define and graph f 
on the interval [1,5]. 
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Clear[f] 
f [x_ ]=Exp[ - (x -3r2 Cos[4(x-3) ] ] ; 
P l o t [ f [ x ] , { x , l , 5 } ] 

2 3 4 5 

In this case, an approximation is desired so we use N I n t e g r a t e to approximate 
5 

the integral V= \ n(f(xjfdx. 

NIntegra tefPi f [ x ] Λ 2 , { x , l , 5 } ] 

16.0762 

In the same manner as before, P a r a m e t r i c P l o t 3 D can be used to visualize the 
resulting solid by graphing the set of equations given parametrically by 

x = r 
ly = f(r)cos(t) 
[z=/(r )sin(f) 

for r between 1 and 5 and t between 0 and In. In this case, polar coordinates are 
used in the y,z-plane with the distance from the x-axis given by f(x). Because r 
replaces x in the new coordinate system, f(x) becomes f(r) in the equations given 
above. 

Clear[x,y,z] 

x[r_,t_]=r; 

y[r_,t_]=f[r] Cos[t]; 

z[r_,t_]=f[r] Sin[t]; 

ParametricPlot3D[{x[r/t],y[r,t]fz[r,t]},{r/l/5}/{t/-Pi,Pi}] 
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Application: The Mean-Value Theorem 
for Integrals 

Another application of integrals involves the Mean-Value Theorem for Integrals. The 
Mean-Value Theorem for Integrals states that if f is continuous on [a,b] then there is at 

b 

least one number c between a and b satisfying f(x)dx = f(c)(b - a). 

EXAMPLE: Find all values of c satisfying the conclusion of the Mean-Value 
theorem for integrals for the function f(x) = x2 - 3x + 4 on the interval [2,6]. 

6 

SOLUTION: After defining f, we compute f(x)dx and name the resulting output 
2 

6 

v a l . We then solve the equation \f(x)dx=f(x) (6-2) for x and name the resulting 
2 

output e x v a l s . To determine which of the numbers in the list e x v a l s is 
contained in the interval [2,6] we use N to compute an approximation of each 
number in e x v a l s . We conclude that the only value of c satisfying the conclusion 

of the Mean-Value theorem is — + 
2 6 
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Clear[f] 

f[χ_]=χΛ2-3χ+4; 

val=Integrate[f[x],{x,2,6}] 

112 

3 

exvals=Solve[val==f[x](6-2)] 

9 - Sqrt[273] 9 + Sqrt[273] 
{{x _> }f {x _> }} 

6 6 

N[exvals] 

{{x -> -1.25379}, {x -> 4.25379}} 

A Word of Caution 

When using commands like I n t e g r a t e and D, be sure to include the correct number of 
arguments. For example, entering 

Integrate[Sin[x]+Cos[x]] 

Integrate : :argmu: 
Integrate called with 1 argument; 2 
or more arguments are expected. 

Integrate[Cos[x] + Sin[x]] 

results in an error message because there are not enough arguments in the command. 
Entering the command I n t e g r a t e [ S i n [ x ] + C o s [ x ] , x ] computes J(sinx + cosx)dx. 

3.5 Series 

Introduction to Series 

Sequences and series are usually discussed in the third quarter or second semester of 
introductory calculus courses. The first topic addressed in these courses usually is 
determining whether a sequence or series converges or diverges. Mathematica can help 
determine the answer to these questions in some problems either graphically or explicitly. 

173 
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EXAMPLE: Find the sum of each of the following series: (a) > ; 

(b)2>;and(c)£^. 
„-, 5" 

SOLUTION: Since we will be computing infinite sums, we begin by 
loading the package S y m b o l i c S u m contained in the A l g e b r a folder 

(or directory). We compute V by entering Sum[ 1 / ( 4nA2 + 8n+3 ) , 

{ n , l , I n f i n i t y } ] . The same results are obtained by entering 
S y m b o l i c S u m [ 1 / ( 4 n " 2 + 8 n + 3 ) , { n , 1 , I n f i n i t y } ] . 

«Algebra" SymbolicSum" 

Sum[1/(4n"2+8n+3),{n,1,Infinity}] 

6 

Similarly, we use Sum, or SymbolicSum, to compute Y x 3 1 . The result is valid for 

|x|<l. 

Sum[x"(3k) ,{k , l , Inf ini ty}] 

3 

3 
1 - x 

« = 1 

Sum[3"(n/2)/5~n,{n,l,Infinity}] 

V 1 3"/ 2 In the same manner as in the previous two examples, Sum calculates > . 

Sqrt[3] 

5 - Sqrt[3] 

EXAMPLE: Determine whether or not the series converges. 
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X k2 — converges. 
J t = l 

f " k We begin by calculating the integral —dk with I n t e g r a t e and naming the resulting 
Ji 2k 

output expl. W e then use Simplify to simplify expl and name the resulting output exp2. 

Limit[exp2,n->Infinity] 

Infinity:rindet: 
Indeterminate expression -2 + -Infinity + Infinity + Infinity 
encountered. 

Infinity::indet: 
Indeterminate expression -2 + -Infinity + Infinity + Infinity 
encountered. 

Infinity::indet: 
Indeterminate expression -2 + -Infinity + Infinity + Infinity 
encountered. 

General::stop: 

Further output of Infinity ::indet 
will be suppressed during this calculation. 

n n 
- 2 + 2 + 2 Log[2] - 2 n Log[2] 

Limitf , n -> Infinity] 
n 2 

2 2 Log[2] 

Since we are unsuccessful with L i m i t , we load the package NLimit contained in 
the NumericalMath folder (or directory) and then attempt to use the command 
NLimit but are again unsuccessful. 

«NumericalMath" NLimit " 

NLimit[exp2,n->Infinity] 

SOLUTION: We use the Integral test to determine whether or not the series 

Next, we must calculate lim dk. We first try using L i m i t but are unsuccessful. 

exp2=Simplify[expl] 

expl=Integrate[k/2Ak, {k,l,n}] 

-2 1 -2 n 
Log[2] + -Log[2] 

Log[2] Log[2] 
+ 

2 n 
2 

n n 
- 2 + 2 + 2 Log[2] - 2 n Log[2] 

n 2 
2 2 Log[2] 
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NLimit:: noise: 
Cannot recognize a limiting value. This may be due to noise 
resulting from roundoff errors in which case higher 
WorkingPrecision, fewer Terms, or a different Scale might help. 

n n 
-2 + 2 + 2 Log[2] - 2 n Log[2] 

NLimit[ , n -> Infinity] 
n 2 

2 2 Log[2] 

However, we are able to use I n t e g r a t e to calculate the improper integral 

—dk as shown below. Thus, by the Integral test, we conclude that the series 
i 2k 

k V — converges. 
u,'2' 

Integrate[k/2"k,{k,l,Infinity}] 

-2 1 
Log[2] + 

Log[2] 

Since the series converges, we know that the limit of the partial sums is the value 
of the series. Below, we use Sum to approximate the value of the series by 

1000 -

computing ] £ — . 
J t =l 

Sum[k/2"k,{k,l ,1000}]//N 
2. 

In fact, after loading the SymbolicSum package contained in the Algebra folder 

(or directory), we are able to compute the exact value of \.—· 
(2* 

J f c =l 

«Algebra^ Symbol icSunT 
Sum[k/2"k,{k, l , Inf inity}] 

EXAMPLE Determine whether or not the series V — converges. 
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SOLUTION: After clearing all prior definitions of a, if any, we define an = — and 

then use T a b l e to calculate αλ, «2,... ,α24, α15, naming the resulting set of numbers 
v a i s . These numbers are then graphs with L i s t P l o t . 

Clear[a] 

a[n_]=l(Kn/nï ; 

vals=Table[a[n],{n,l,25}]; 

ListPlot[vais] 

2500 

2000 

1500 

1000 

500 

5 10 15 20 25 

To determine whether or not the series converges, we use the Ratio test. First, we 

compute -JLtL and then attempt to use L i m i t to calculate lim-211 but are 
a «->- a 

n n 

unsuccessful. 
a[n+l]/a[n] 

10 n! 

(1 + n)I 

Limit[a[n+1]/a[n],n->Infinity] 

Series::esss: 

1 3 
Essential singularity encountered in Gamma[- + 1 + 0[n] ]. 

n 
Series::esss: 

1 3 
Essential singularity encountered in Gamma[- + 2 + 0[n] ]. 

n 
Series::esss: 

1 3 
Essential singularity encountered in Gamma[- + 1 + 0[n] ]. 

n 
General::stop: 

Further output of Series::esss 
will be suppressed during this calculation. 

10 n! 
Limit[ , n -> Infinity] 

(1 + n)l 
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Since L i m i t is unsuccessful, we load the package NLimit, as in the preceding 

example, and then attempt to use N L i m i t to calculate l i m - ^ . In this case, we 
n-»oo a^ 

interpret the result to be the same as 0. Thus, by the Ratio test, we conclude that 

the series > —converges . 

«Numer icalMath " NLimit " 

NLimit[a[n+l]/a[n],n->Infinity] 

-1.59203 10 

Alternatively, we load the package CombinatorialSimplification contained in the 
DiscreteMath folder (or directory) which contains elementary rules for 
simplifying expressions involving factorials and similar expressions. After loading 

the package, the expression - ^ = γ is simplified to and we see that 
n \ / 

hm-2*3- = lim- = lim = 0 . 
„_>«- ^ „-»« (n + 1)! "^ n + l 

Thus, by the Ratio test, the series converges. 

«DiscreteMath CombinatorialSimplification^ 
a[n+l] /a[n] 

10 

1 + n 

In fact, after loading the Symbolic Sum, Mathematica can compute the exact value 
of the series with Sum, or Symbol ic Sum, as shown below. 

«Algebra" Symbol icSunT 

Sum[10An/n!,{n,1,Infinity}] 

10 
-1 + E 

In addition to the above examples, which are similar to those discussed in introductory 
calculus courses, Mathematica can also help determine the solution of more difficult 
problems. 



3.5 Series 179 

SOLUTION: We begin by defining 0̂  sin/: and then using Table to compute a 

list of the values αλ,a2,a3,...,a999,alQ00, naming the resulting list of numbers nums. 
We then use L i s t P l o t to graph the list of numbers nums. 

Clear[a] 
a[k_]=Sin[k]/k; 
nums=Table[a[k], {k ,1 ,1000}] ; 
ListPlot[nums,Axes->None,Frame->True] 

0 . 0 0 6 
0 . 0 0 4 
0 . 0 0 2 

0 
- 0 . 0 0 2 
- 0 . 0 0 4 
- 0 . 0 0 6 . '/ 

0 200 400 600 800 1000 

Although the graph is not helpful in determining whether or not the series 
1000 

sink converges, we compute > with Sum. At this point, we might 

conclude that the series converges. However, we must be careful about any 

conclusions, as the partial sums, > - , of the series > — are relatively small for 
Tfk tfk 

"large" values of n, like n = 1000, even though the series V - diverges. 

Sum[Sin[k] /k,{k, l ,1000}] / /N 

1.07069 

However, after loading the package SymbolicSum, we are able to compute the 
exact value of the series. 

«Algebra Symbol icSunT 
val=Sum[Sin[k] /k ,{k ,1 , Inf in i ty} ] 

I - I I 
- (-Log[l - E ] + Log[l - E ]) 
2 

EXAMPLE: Determine whether or not the series 
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To see that this is a real number, we use ComplexExpand and PArcTan. 

val2=ComplexExpand[val] 

-ArcTan[l - Cos[l], -Sin[l]] + ArcTan[l - Cos[l], Sin[l]] 

2 

PArcTan 

ArcTan[z] gives the inverse tangent of z. ArcTan[x, y] gives the 
inverse tangent of y/x where x and y are real, taking into 
account which quadrant the point (x, y) is in. 

A numerical approximation of the result given above is obtained with N. 

N [ v a l 2 ] 

1.0708 

Determining the Interval of Convergence 
of a Power Series 

After discussing sequences and series, the next topic addressed in these courses is usually 

power series. Given a power series V ß *", a fundamental problem is finding the interval 

of convergence of the given power series. 

EXAMPLE: Find the interval of convergence of each series: (a) V -——x2"+1; and 

SOLUTION: For (a), we proceed using the Root test. The Root test says that if 
} \an is a series with positive terms and t = l im^T, then 

i. the series converges if t < 1. 
ii. diverges if I > 1; and 

iii. no conclusion can be drawn if i = 1 
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\ 
We begin by defining an to be -——x2n+l and then computing and simplifying 

(-5) 

-x2n+l. Note that S i m p l i f y does not simplify the expression J - x 2 n + l a s 
(-5)" V V %5)" 

desired so we use PowerExpand to simplify the resulting powers. We name the 
resulting output s t e p o n e . 

Clear[a] 
a[n_]=x A (2n+l) / ( -5) A n; 
a [ n p ( l / n ) / /S impli fy 

1 + 2 n 
x 1/n 

( ) 
n 

( - 5 ) 

s t e p o n e = P o w e r E x p a n d [ a [ n p ( 1 / n ) ] / / S i m p l i f y 

2 + 1/n 

We then compute the limit of s t e p o n e as n approaches infinity. This is the same 
as computing 

l i m j - — — x 2 n + l = l i m — x 2 x 1 1 " . 
~-^(-5)" - 5 

Limit[stepone,n->Infinity] 

2 

The result means that \ . 7—ψχ2η+ι converges absolutely when 

this inequality below: 

Solve[x*2/5==l,x] 

{{x -> -Sqrt[5]}, {x -> Sqrt[5]}} 

Plot[{l,x~2/5},{x,-3,3}] 

5 
<1. We solve 
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\ 1.75 

\ 1.25 

\ 0.75 

\ ° 
\ ^ 0.25 

/ 

/ 

/ 
/ 

^z _ 
-3 -2 -1 

We conclude that V^ -x2n+l converges absolutely when -V5<x<V5. We 

investigate if V-— -x2 n + 1 converges when x = -V5 and x = V5 separately. We first 

substitute x = -^5 in an. The resulting alternating series diverges, since the an 

which results does not approach zero as n approaches infinity. 

PowerExpand[a[n] /. x->-Sqrt[5]]//Simplify 

2 n 1/2 + n 
(-1) 5 

_( ) 

n 

(-5) 

PowerExpand[a[n] /. x->Sqrt[5]]//Simplify 

1/2 + n 

(-5) 

We conclude that the interval of convergence of the series \ -——x2n+l is the open 

interval (-V5,V5J. 

For (b), we use the Ratio test. The Ratio test says that if V an is a series with 

positive terms and £ = l i m - ^ , then 

i. the series converges if £ < 1; 
ii. diverges if £ > 1; and 

iii. no conclusion can be drawn if £ = 1. 
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42" In the same manner as above, we begin by defining an to be (x -3 ) \ We then 

compute and simplify -213-, naming the resulting output s t e p o n e , 

Clear[a] 

a[n_]=4*(2n)(x-3)"n/(n+2); 

stepone=a[n+l]/a[n]//Simplify 

16 (2 + n) (-3 + x) 

3 + n 

and then compute liml6 (x-3), naming the resulting output s t e p t w o . 
«-*- n + 3 

steptwo=Limit[stepone,n->Infinity] 

16 (-3 + x) 

The result means that \ \ (x~3)" converges absolutely when |16x —48| < 1. We 

47 solve this inequality below and then test to see if the series converges when x = — 

49 and x = — separately. 

rp=Solve[steptwo== 

lp=Solve[steptwo== 

49 
{{x -> — } } 

16 
47 

{{x -> — } } 
16 

a[n] /. rp[[l]] 

1 n 2 n 
( — ) 4 
16 

2 + n 

a[n] /. lp[[l]] 

1 n 2 n 
<-<")) 4 

16 

=l,x] 

:-lfX] 

2 + n 
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°° (_-\γ °° Λ 

Since V -—— converges by the alternating series test and V diverges by the 

basic comparison test, we conclude that the interval of convergence of the series 

Σ Λλη 

— ( x - 3 ) " is 47 49 
16' 16 

Computing Power Series 

Recall that the power series expansion of a function f(x) about the point x=a is given by the 
expression 

Mathematica computes the power series expansion of a function f(x) about the point x = a 
up to order n with the command 

S e r i e s [ f [ x ] , { x , a , n } ] . 

The symbol 0 [ x - a ] Λ ( n+1 ) appear ing in the output that results from the 
S e r i e s [ f [ x ] , { x , a , n } ] command represents the terms that are omitted from the 
power series for f expanded about the point x=a. The O-term is removed from the output of 
the S e r i e s command with the Normal command; the result is a polynomial function. 

Several familiar power series are computed below using this command. 

EXAMPLE: Find the first few terms of the power series for the given function 
about the indicated point: 
(a) cosx about x = 0; (b) ex about x = 0; 
(c) sinx about x = π; and (d) lnx about x = 1. 

SOLUTION: Entering 

Series[Cos[x],{x,0,6}] 

2 4 6 
x x x 7 

1 _ __ + + o[x] 

2 24 720 

computes the terms of the power series for cos* about x = 0 to order 6; entering 
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Series[Exp[x],{x,0,7}] 

2 3 4 5 6 7 
x x x x x x 8 

1 + x + — + — + — + + + + o[x] 
2 6 24 120 720 5040 

computes the terms of the powers series for ex about x = 0 to order 7; entering 

Series[Sin[x],{x,Pi,5}] 

3 5 
(-Pi + x) (-Pi + x) 

-(-Pi + x) + + 
6 120 

6 
0[-Pi + x] 

computes the terms of the power series for sinx about χ = π to order 5; and 
entering 

2 3 4 

( - 1 + x) ( - 1 + x) ( - 1 + x) 

2 3 4 

5 6 7 
( - 1 + x) ( - 1 + x) ( - 1 + x) 

_ + _ 
5 6 7 

8 
( - 1 + x) 9 

+ o [ - l + x] 
8 

computes the terms of the power series for \nx about x = 1 to order 8. ■ 

Mathematica can also compute the general formula for the power series expansion of a 
function y(x). The results of entering the following commands 

Series[y[x],{x,0,3}] 

2 (3) 3 
y ' ' [ 0 ] x y [ 0 ] x 4 

y [ 0 ] + y'[0] x + + + 0 [ x ] 
2 6 

S e r i e s [ y [ x ] , { x , a , 3 } ] 

2 
y ' ' [ a ] ( - a + x) 

y [ a ] + y [ a ] ( - a + x) + + 
2 
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(3) 3 
y [a ] ( -a + x) 4 

+ o [ - a + x ] 
6 

are the power series for y(x) about x=0 and x=a to order 3, respectively. 
Note that the result of entering a S e r i e s command is not a function that 

can be evaluated when x is a number. However, we can remove the remainder term 
of the power series S e r i e s [ f [ x ] , { X / a , n } ] w i t h the c o m m a n d 
Normal [ S e r i e s [ f [ x ] , { x , a , n } ] ] and evaluate the resulting polynomial. Hence, with 
the N o r m a l command, a polynomial is obtained. This polynomial serves as an 
approximation to the function f(x). These ideas are illustrated below. 

EXAMPLE: Find the fifth degree Maclaurin polynomial of f(x) = tan~lx. Compare 
the graphs of f(x) = tan1 x and the polynomial. 

SOLUTION: If f is a function with n derivatives at 0, then the nth degree 
Maclaurin polynomial of f is 

it fc! 

Below, we define s e r l to be the power series expansion for the function 
f (x) = tan- x about x=0 to order 5. To illustrate that the resulting output is not a 
function, we attempt to evaluate s e r l when x=l. Note the error messages that 
occur. 

serl=Series[ArcTan[x] ,{x,0 ,5}] 

3 5 
x x 6 

x - — + — + 0[x] 
3 5 

ser l / . x->2 

SeriesData::ssdn: 
Attempt to evaluate a series at the number 2; 

returning Indeterminate. 
Indeterminate 

However, we can use Normal to remove the O-term which represents the omitted 
higher-order terms of the series. Below, we use Normal and name the resulting 
output p o l y . Note that p o l y is an expression which can be evaluated for 
particular numbers. In fact, p o l y represents the fifth degree Maclaurin 
polynomial of f(x) = tan1 x. 
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poly=Normal[ser1] 

3 5 
x x 

χ _ + 

3 5 

p o l y / . x->2 

86 

15 

Finally, we use P l o t to compare the graphs of p o l y and f(x) = tan~lx. The graph 
of f(x) = tàn~lx is dashed and the graph of p o l y is in black. Note that p o l y 
appears to approximate f well on an interval containing 0. 

Plot[{ArcTan[x],poly},{x,-3/2,3/2}, 

PlotStyle->{Dashing[{.01}],GrayLevel[0]}] 

We can also use S e r i e s to compute Taylor polynomials. If f is a function with n 
derivatives at x=a, then the nth degree Taylor polynomial of f at x=a is 

Jt=0 

EXAMPLE: Find the 8th degree Taylor polynomial of f(x) about x=l if 
f(x) = e-(*-i)2(*+i)2. Compare the graphs of the polynomial and f. 

SOLUTION: After clearing all prior definitions of f, we define and graph f naming 
the result p l o t f . Note that p l o t f is not displayed since the option 
D i s p l a y F u n c t i o n - > I d e n t i t y is included. The option A x e s O r i g i n - > { 0 , 0} 
assures that the axes in the plot intersect at the point (0,0); the option 
P l o t S t y l e - > D a s h i n g [ { . 01} ] assures that the resulting displayed graph is 
dashed. 
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Clear[f] 

ί[χ_]=Εχρ[-(χ-1)Λ2(χ+1)Λ2]; 

plotf=Plot[f[x],{x,-1.75,1.75},PlotStyle->Dashing[{.01}], 

AxesOrigin->{0,0},DisplayFunction->Identity]; 

Next, we define s e r to be the power series of f about x=l to order 8. We then 
remove the O-term from s e r with Normal and name the resulting polynomial 
po ly , p o l y represents the 8th degree Taylor polynomial of f(x) about x=l. 

ser=Series[f[x],{x,l,8}] 

2 3 4 
1 - 4 (-1 + x) - 4 (-1 + x) + 7 (-1 + x) + 

6 
5 4 (-1 + x) 7 

16 (-1 + x) + 28 (-1 + x) -
3 

8 
173 (-1 + x) 9 

+ o[-l + x] 

6 

poly=Normal[ser] 

2 3 4 
1 - 4 (-1 + x) - 4 (-1 + x) + 7 (-1 + x) + 

6 
5 4 (-1 + x) 7 

16 (-1 + x) + 28 (-1 + x) -
3 

8 
173 (-1 + x) 

Next, we graph p o l y and name the resulting graph p l o t p o l y . p l o t f and 
p l o t p o l y are displayed together with Show. Note that if the option 

DisplayFunction->$DisplayFunction 

had not been included in the Show command, the graphs would not have been 
displayed. 

plotpoly=Plot[poly,{x,-1.75,1.75},DisplayFunction->Identity]; 

Show[plotf,plotpoly,PlotRange->{-2f3/2}, 

DisplayFunction->$DisplayFunction] 

188 
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Application: Approximating the Remainder 

Let f have (at least) n+1 derivatives in an interval containing a. Taylor's Theorem says that 
if x is any number in the interval, then 

i /(*>(a) / ( " + 1 ) (* ) , 
* * ) = 1 «(*-*) +ΐϊτΐ)ΐ ίχ-β) 

nth degree Taylor 
polynomial of f 
at x=a. 

where z is between a and x. We may use Taylor's Theorem to estimate the error involved 
when using a Taylor polynomial to approximate a given function. 

EXAMPLE: Find an upper bound on the error when using the 4th degree 
Maclaurin polynomial of f(x) to approximate f(x) on the interval [0,1/2] if 

f(x) = . What is an upper bound on the error when using the 10th degree 

Maclaurin polynomial to approximate f(x) on the interval [0,1/2]? 

SOLUTION: We proceed by clearing all prior definitions of f, defining f, and then 
graphing f. 

Clear[f] 
f [χ_]=χ/ (χ Λ 2+1); 
P l o t [ f [ x ] , { x , - 4 , 4 } ] 

0.4 

0.2 
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Since we will be computing several Maclaurin polynomials for f, we define mp to 
compute the nth Maclaurin polynomial of f. We then use mp to compute the 4th 
degree Maclaurin polynomial of f. 

mp[n_]:=Norraal[Series[f[x],{χ,Ο,η}]] 

mp[4] 

3 
x - x 

Since we will examine the (n+l)st derivative when estimating an upper bound on 
the error, we next define d to compute the (n+l)st derivative of f and then replace 
the x's by z's. We then compute d [ 4 ] . 

d[n_]:=(D[f[x],{x,n+l}] /. x->z)//Simplify 

d[4] 

2 4 6 
120 (1 - 15 z + 15 z - z ) 

2 6 
(1 + z ) 

To estimate the maximum value of d [ 4 ] on the interval [0,1/2], we graph d [ 4 ] . 
We see that the maximum value of d[ 4 ] on the interval [0,1/2] is 120, which 
occurs when z=0. 

Plot[d[4],{z,0,2}] 

100 

75 

50 

25 

- 2 5 

- 5 0 

V ° / I 1 

Next, we define r to compute the nth remainder and compute r [ 4 ] . 

r[n_]:=d[n] χΛ(n+1)/(n+1)!//Simplify 

r[4] 

5 2 4 6 
x (1 - 15 z + 15 z - z ) 

2 6 
(1 + z ) 

Since we know that the maximum value of d[ 4 ] on [1,1/2] is 120, it follows that 
the maximum possible value of r [ 4 ] for any value of x in the interval [0,1/2] is 

190 
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120 i l 1 
120l2y 32 

- 0.03125. 

Below, we use P l o t to graph both f and the 4th degree Maclaurin polynomial on 
the interval [0,1/2]. Be sure to include the command E v a l u a t e so that mp[ 4 ] is 
computed immediately; otherwise, error messages result. 

Plot[Evaluate[{f[x],mp[4]}],{x,0,1/2}, 

PlotStyle->{Dashing[{.01}],GrayLevel[0]}] 

0.1 0 .2 0 . 3 0 .4 0 .5 

We proceed in the same manner in estimating an upper bound on the error when 
using the 10th degree Maclaurin polynomial. First, we compute the 11th derivative 
of f and then graph this function on the interval [0,1/2]. 

d[10] 

2 4 6 
(39916800 (-1 + 66 z - 495 z + 924 z -

8 10 12 2 12 
495 z + 66 z - z )) / (1 + z ) 

P l o t [ d [ 1 0 ] , { z , 0 , l } ] 

Next, computing the 10th remainder, we have: 

r[10] 

11 2 4 6 8 
(x (-1 + 66 z - 495 z + 924 z - 495 z + 

10 12 2 12 
66 z - z )) / (1 + z ) 
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Thus, the maximum possible error is — - « 0.000489299. 

4 10Λ7/11! (1/2)Λ11//Ν 

0.000489299 

In the graph below, we see that the graphs of f and the 10th Maclaurin polynomial 
are virtually identical on the interval [0,1/2]. 

Plot[Evaluate[{f[x],mp[10]}], {x,0,1/2}, 

PlotStyle->{Dashing[{.01}],GrayLevel[0]}] 

0.1 0 .2 0 . 3 0 .4 0 .5 

Application: Series Solutions to 
Differential Equations 

Power series can be used to find series solutions of some differential equations. This topic 
is discussed in further detail in section 7.3. 

EXAMPLE: Use power series to approximate a function y(x) that satisfies the 
differential equation 4y" + 4y' + 37y = 0 and the initial conditions y(0) = y'(0) = 2. 

SOLUTION: Let y(x) = 2_,αηχη ^ e a f u s i o n that satisfies the differential equation 

and initial conditions. Below, after clearing all prior definitions of y, we define 
s e r y to be the power series expansion of y about x=0 to order 10. 

Clear[y] 

sery=Series[y[x],{χ,Ο,ΙΟ}] 

2 (3) 3 
y'[0] x y [0] x 

y[0] + y'[0] x + + + 
2 6 
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(4) 4 (5) 5 (6) 6 
y [0] χ y [0] χ y [0] x 

+ + + 

24 120 720 

(7) 7 (8) 8 (9) 9 
y [0] x y [0] x y [0] x 

+ + + 

5040 40320 362880 

(10) 10 
y [0] x 11 

+ o[x] 

3628800 

Since we must have the condition that y(0) = y'(0) = 2, we replace the symbols y(0) 
and y'(0) by 2 in s e r y and name the resulting output s e r s o l . 

sersol=sery /. {y[0]->2,y'[0]->2} 

2 (3) 3 (4) 4 
y' '[0] x y [0] x y [0] x 

2 + 2 x + + + + 
2 6 24 

(5) 5 (6) 6 (7) 7 
y [0] x y [0] x y [0] x 

+ + + 

120 720 5040 

(8) 8 (9) 9 (10) 10 
y [0] x y [0] x y [0] x 11 

+ + + o[x] 

40320 362880 3628800 

s e r s o l must satisfy the differential equation 4y" + 4y' + 37y = 0. Therefore, we 
substitute s e r s o l into the equation 4y" + 4y' + 37y = 0 and name the resulting 
output eq. 

eq=4D[sersol ,{x,2}]+4D[sersol ,x]+37 sersol==0 

( 3 ) 
(82 + 4 y ' [ 0 ] ) + (74 + 4 y ' ' [ 0 ] + 4 y [ 0 ] ) 

37 y " [ 0 ] ( 3 ) ( 4 ) 
x + ( + 2 y [ 0 ] + 2 y [ 0 ] ) 

2 

( 3 ) ( 4 ) ( 5 ) 
2 37 y [ 0 ] 2 y [ 0 ] 2 y [ 0 ] 

x + ( + + ) 

6 3 3 

3.5 Series 
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(4) (5) (6) 
3 37 y [0] y [0] y [0] 4 

χ + ( + + ) χ + 

24 6 6 

(5) (6) (7) 
37 y [0] y [0] y [0] 5 
( + + ) x + 

120 30 30 

(6) (7) (8) 
37 y [0] y [0] y [0] 6 
( + + ) x + 

720 180 180 

(7) (8) (9) 
37 y [0] y [0] y [0] 7 
( + + ) x + 

5040 1260 1260 

(8) (9) (10) 
37 y [0] y [0] y [0] 8 9 
( + + ) x + 0[X] \ 

40320 10080 10080 

== 0 

At this point, we note that two power series are equal, if and only if all their 
coefficients are exactly the same. When we equate the coefficients on the left-hand 
side of e q with those on the right (namely, 0), we obtain a system of linear 
equations. This system of linear equations is obtained below with 
L o g i c a l E x p a n d and named l i n e q s . 

lineqs=LogicalExpand[eq] 

82 + 4 y " [0] == 0 && 

(3) 
74 + 4 y'·[0] + 4 y [0] == 0 && 

37 y"[0] (3) (4) 
+ 2 y [0] + 2 y [0] == 0 && 

2 

(3) (4) (5) 
37 y [0] 2 y [0] 2 y [0] 

+ + == o && 

6 3 3 

(4) (5) (6) 
37 y [0] y [0] y [0] 

+ + == o && 

24 6 6 
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(5) (6) (7) 
37 y [0] y [0] y [0] 

+ + == o && 

120 30 30 

(6) (7) (8) 
37 y [0] y [0] y [0] 

+ + == o && 

720 180 180 

(7) (8) (9) 
37 y [0] y [0] y [0] 

+ + == o && 

5040 1260 1260 

(8) (9) (10) 
37 y [0] y [0] y [0] 

+ + == o 

40320 10080 10080 

We then use Solve to solve this system for the unknowns and name the resulting 
output r o o t s . 

roots=Solve[lineqs] 

(10) 28969841 
{{Y [0] -> -( ), 

512 

(9) 5439299 41 
y [0] -> -( ), y"[0] -> -(--), 

128 2 

(3) (4) 1501 
Y [0] -> 2, y [0] -> , 

8 

(5) 1649 (6) 48941 
y [0] -> -( ), y [0] -> -( ), 

8 32 

(7) 54977 (8) 1371001 
y [0] -> , y [0] -> }} 

16 128 

The values obtained above are then substituted into our series solution, s e r s o l . 
s e r s o l / . r o o t s [ [ 1 ] ] 

2 3 4 5 
41 x x 1501 x 1649 x 

2 + 2 x + — + 
4 3 192 960 
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6 7 8 
48941 x 54977 x 1371001 x 

+ + _ 

23040 80640 5160960 

9 10 
5439299 x 28969841 x 11 

+ o[x] 

46448640 1857945600 

Since this series cannot be evaluated for real numbers, we remove the 0-term with 
Normal and name the result p o l y . This is our approximate solution of the 
equation. 

poly=Normal[sersol /. roots[[l]]] 

2 3 4 5 

41 x x 1501 x 1649 x 

4 3 192 960 

6 7 8 

48941 x 54977 x 1371001 x 
+ + _ 

23040 80640 5160960 

9 10 
5439299 x 28969841 x 

46448640 1857945600 

We then graph poly on the interval [Ο,π] and name the resulting graph papprox 
for later use. 

papprox=Plot[poly,{x,0,Pi}] 

In this case, we can also use DSolve to find an exact solution of the equation, 
naming the result so l . We will discuss this topic in more detail in Chapter 7. 

Clear[y] 

sol=DSolve[{4y'■[x]+4y'[x]+37y[x]==0,y[0]==2,y'[0]==2>,y[x],x] 

196 
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2 Cos[3 x] Sin[3 x] 
{ { y [ x ] - > + } } 

x/2 x/2 
E E 

The exact solution is graphed below and named p e x a c t . 

pexact=Plot[y[x] / . sol,{x,0,2Pi}] 

To compare the approximate solution with the exact solution, we use Show to 
show both graphs simultaneously. 

Show[pexact,papprox] 

Alternatively, if we let y(x) = 2\αηχη ' computing y' and y" results in 

y'(x) = £ n anx-* = ]T (n + l)a^x» 

and 

Substituting into the equation 4y" + 4y' + 37y = 0 yields 

V ( n + 2)(n + l)fln+2x" +4 \(η + 1)αη+1χ» + 37 V e x " 
^ n=o J v «=o y V «=o y 

= 0. 
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Simplifying and equating coefficients we obtain 

fl = —L^—L-a±2—^L or, equivalently, a = —* V x—2=2-. 
"+2 4(w + 2)(n + l) ^ ^ " 4n(n-l) 

These coefficients may then be calculated with Mathematica. In the following we 
define a [ 0 ] and a [ 1 ] using the initial conditions specified in the problem. We 

then define a [ n ] to be the coefficient of x n in y(x)= V « r» using the formula 

obtained above. Note that a is defined to remember the values it computes. We 
then compute the values of a [ n ] for values of n from 0 to 30 in steps of 3. Of 
course, these are the same as those found previously. 

a[0]=2; 

a[l]=2; 

a[n_] :=a[n] = (-4(n-l)a[n-l]-37a[n-2])/(4n (n-1)); 

Tablet{n,a[n]},{n,0,30,3}] 

1 48941 
{{0, 2}, {3, - } , {6, -( )}, 

3 23040 

5439299 150988501 
{9, _( )}, {i2, }, 

46448640 980995276800 

145836290927 
{15, >, 

5356234211328000 

117187844492359 
{18, }, 

839171926357180416000 

131470113409897 
{21, -( )}, 

1575668699371835228160000 

362762759591677421 
{24 , - ( ) } , 

273931496124561380364779520000 

78035955515313060037 
{ 2 7 , -( )}, 

45671228691367496141317865472000000 

{30, 

81930307485915574145659 
}} 

142406544757979162368320409970933760000000 ■ 
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Other Series 

In calculus, we show that if /(*)= V c *" *s a P o w e r series with radius of convergence 

r>0, then f is differentiable and integrable on its interval of convergence. However, if 
f is not a power series, this result is not true in general. For example, the 

function f(x) = V — - — - is continuous for all values of x but nowhere differentiable. We 

can use Mathematica to help us see why this function is not differentiable. Let 

fSx^= y\—— · Below, we use Mathematica to recursively define f̂ . 
n=0 

Clear[f] 

f[0]=Cos[x]; 

f[k_]:=f[k]=f[k-l]+Cos[3"k x]/2Ak 

We define f using the form f [k_] :=f [k ] = . . . so that Mathematica "remembers" the 
values it computes. Thus, to compute f [ 5 ] , Mathematica uses the previously computed 
values, namely f [ 4 ] , to compute f [ 5 ] . 

Note that we can produce the same results by defining f with the command 

f [k_] :=Sum[Cos[3"n x ] / 2 Λ η , { η , 0 , k } ] . 

The disadvantage of defining f in this manner is that Mathematica does not "remember" 
the previously computed values and thus takes longer to compute f [ k ] for larger values 
ofk. 

Next, we use T a b l e to generate f [ 3 ] , f [ 6 ] , f [ 9 ] , and f [ 12 ] , naming the result 
t o g r a p h and then display tograph, in TableForm. 

tograph=Table[f[n],{n,3,12,3}]; 

TableForm[tograph] 

Cos[3 x] Cos[9 x] Cos[27 x] 
Cos[x] + + + 

2 4 8 
Cos[3 x] Cos[9 x] Cos[27 x] 

Cos[x] + + + + 

2 4 8 

Cos[81 x] Cos[243 x] Cos[729 x] 
+ + 

16 32 64 
Cos[3 x] Cos[9 x] Cos[27 x] 

Cos[x] + + + + 
2 4 8 
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Cos[81 x] Cos[243 x] Cos[729 x] 
+ + + 

16 32 64 

Cos[2187 x] Cos[6561 x] Cos[19683 x] 
+ + 

128 256 512 
Cos[3 x] Cos[9 x] Cos[27 x] 

Cos[x] + + + + 
2 4 8 

Cos[81 x] Cos[243 x] Cos[729 x] 
+ + + 

16 32 64 

Cos[2187 x] Cos[6561 x] Cos[19683 x] 
+ + + 

128 256 512 

Cos[59049 x] Cos[177147 x] Cos[531441 x] 
+ + 

1024 2048 4096 

Finally, we use Table and P l o t to graph each of the functions in tograph and name the 
resulting set of four graphs g raphs . Note that t og raph [ [ i ] ] corresponds to the ith 
element of tograph; tog raph [ [ 1 ] ] is the first function in tograph, corresponding to 

1 1 1 COSX+—eos3x+—cos9x+—cos27x. Be sure to include the command Eva lua te within the 2 4 8 
P l o t command and be sure to nest square brackets correctly. To compare the graphs we 
use P a r t i t i o n to partition graphs into a set consisting of two sets of two graphs and 
name the result toshow. Last, GraphicsArray is used to show the set of graphs toshow. 

graphs-Table[Plot [Evaluate[ tograph[[ i ] ] ] , {x ,0 ,3Pi} , 
D i sp layFunct ion->Ident i ty ] , { i , l , 4 } ] ; 

toshow=Partition[graphs,2]; 
Show[GraphicsArray[toshow]] 

From the graphs above, we see that for large values of k, the graph of fk{x), although 
actually smooth, appears "jagged", and thus we might suspect that f(x) is indeed 
continuous everywhere but nowhere differentiable. 
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Limits of Functions of Two Variables 

One of the first topics discussed in mulivariable calculus courses is limits of functions of 
two variables. Mathematica's graphics and numerical capabilities are helpful in 
investigating these problems. 

EXAMPLE: Show that the limit lim — — does not exist. 
(x,y)->(0,0)X2+y2 

SOLUTION: We begin by clearing all prior definitions of f, if any, and defining 

/(x,y) = —"—. Next, we use P l o t 3D to graph f on the rectangle [-2,2]x[-2,2] and 

C o n t o u r P l o t to graph several level curves on the same rectangle. Note that the 
point (0,0) is not in the domain of f and if Mathematica computes f [ 0 , 0 ] while 
generating either graph, several error messages will result but the graphs will be 
displayed correctly. 

Clear[f] 

£[χ_Ύ_]=χ γ/(χΑ2+γΛ2); 

pl=Plot3D[f[x,y],{x,-2,2},{y,-2f2},DisplayFunction->Identity] 

cl=ContourPlot[f[x,y],{x,-2,2},{y,-2,2},ContourShading->False, 

Axes->Automatic,AxesOrigin->{0,0},DisplayFunction->Identity]; 

Show[GraphicsArray[{pl,cl}]] 

2 

1 

0 

-11 

-2 
- 2 - 1 0 1 

Ί 
1 

ψ 
ί ;-; 

\ 'v 

From the graphs above, we see that f behaves strangely near (0,0). In fact, from the 
graph of the level curves, we see that near (0,0), f attains many different values. 
We can obtain further evidence that the limit does not exist by computing the 
value of f for various points chosen randomly near (0,0). Below, we use T a b l e , 
Random, and R e a l to generate 10 ordered pairs near (0,0) and name the result 
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p t s . Note that since Random is included in the calculation, your results will 
almost certainly be different from those here. Tables and lists are discussed in 
more detail in Chapters 4 and 5. 

pts=Table[Random[Real/{-10"-i,10"-i}],{i,l,10},{2}] 

{{0.0407686, -0.0753765}, {-0.00335464, 0.00237699}, 

{0.000961185, 0.000332866}, {-0.0000963083, 0.0000547618}, 

-6 -6 -7 -7 
{4.94446 10 , -2.24515 10 }, {-3.88716 10 , 2.84132 10 }, 

-8 -8 -9 -9 
{6.52111 10 , 1.04603 10 }, {5.04186 10 , 4.23245 10 }, 

-10 -10 -11 -11 
{9.69119 10 , 7.635 10 }, {-5.37026 10 , -4.85893 10 }} 

Next, we define a function g, which given x and y, returns x, y, and f(x,y). We then 
use Map to compute the value of g for each point in p t s and display the result in 
TableForm. Note that the first column corresponds to the x-coordinate, the 
second column the y-coordinate, and the third column the value of f(x,y). 

g [ { x _ , y _ } ] = { X f y , f [ x , y ] > 

x y 

{x, Y, } 
2 2 

x + y 

g,pts]//TableForm 

0.0407686 
-0.00335464 
0.000961185 
-0.0000963083 

-6 
4.94446 10 

-7 
-3.88716 10 

-8 
6.52111 10 

-9 
5.04186 10 

-10 
9.69119 10 

-11 
-5.37026 10 

-0.0753765 
0.00237699 
0.000332866 
0.0000547618 

-6 
-2.24515 10 

-7 
2.84132 10 

-8 
1.04603 10 

-9 
4.23245 10 

-10 
7.635 10 

-11 
-4.85893 10 

-0.418453 
-0.471728 
0.309223 
-0.429685 

-0.376455 

-0.47641 

0.156383 

0.492441 

0.486112 

0.497508 

From the third column, we see that f does not appear to approach any particular 
value for points chosen randomly near (0,0). In fact, along the line y = x we see 

202 
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that f(x,y) = f{x,x) = —, while along the line y = -x, f(x,y) = f(x,-x) = — . Thus, f 

does not have a limit as [x,y) -> (0,0). 

Simplify[f[x,x]] 

1 

2 

Simplify!f[x,-x]] 

1 

2 

Partial Differentiation 

Partial derivatives can be calculated with Mathematica using the command 

D [ f [ x , y ] , v a r i a b l e ] , 

where f [ x , y ] is differentiated with respect to v a r i a b l e . 
Second order derivatives can be found using D [ f [ x , y ] , v a r i a b l e 1 , v a r i a b l e 2 ], 

where f [ x , y ] is differentiated first with respect to v a r i a b l e 2 and then with respect to 
v a r i a b l e l . 

EXAMPLE: Calculate %-, -2-, —4- -r-4-, and the value of —4- when x = — and 
ox dy axay dyax dydx 2 

y=lif f(x,y) = sinxy. 

SOLUTION: After defining f, we graph f on the rectangle [-π,π]χ[-π,π]. The 
option P l o t P o i n t s - > 2 0 is included in the P l o t 3D command to help assure that 
the resulting displayed graph is smooth. 

Clear[f] 

f[x_/y_]=Sin[x y] 

Sin[x y] 

Plot3D[f[x,y],{χ,-Ρΐ,Ρί},{γ,-Ρΐ,Ρι},PlotPoints->20] 
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Next, we use D to compute the indicated partial derivatives. Entering 

D [ f [ x , y ] , x ] 

y Cos[x y] 

computes -z-, entering 
ax 

D [ f [ x , y ] , y ] 

x Cos[x y ] 

computes -2-, and entering 

Cos[x y] - x y Sin[x y] 

computes —*—. Similarly, entering 

axdy 
dyx=D[f[x,y] ,y ,x] 

Cos[x y] - x y Sin[x y] 

computes —— and names the resulting output d y x . Note that —4- = ^-4-. 
dydx axdy aydx 

Below, we calculate the value of —— when x = — and y=l. 
aydx 2 J 

dyx / . {x->Pi /2 ,y->l} 

-Pi 

2 
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Higher order derivatives with respect to the same variable can be determined with the 
command D [ f [ x , y ] , { v a r i a b l e , n} ] . This command computes the nth partial 
derivative of f with respect to v a r i a b l e . 

d2h Λ d% ., 
EXAMPLE: Calculate ^ and ^ if /z(x,y) = 3>2+y2 · 

ax1 dy1 v 

SOLUTION: Proceeding as in the previous example, we first define and graph h 
and then use D to calculate the indicated partial derivatives. 

C l e a r [ h ] 

* ι [χ_ ,γ_] = ( χ Λ 2 + γ Λ 2 Γ ( 1 / 3 ) ; 
P l o t 3 D [ h [ x / y ] , { x , - 2 , 2 } , { y , - 2 , 2 } ] 

Entering 

h x x = D [ h [ x , y ] , { X / 2 } ] 

2 
- 8 x 2 

+ 
2 2 5 /3 2 2 2 / 3 

9 (x + y ) 3 (x + y ) 

<92/ί computes —— and names the resulting output hxx . We can display hxx as a 

single fraction with T o g e t h e r . 

T o g e t h e r [ h x x ] 

2 2 
2 ( - x + 3 y ) 

2 2 5 /3 
9 (x + y ) 
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Similarly, entering 

T o g e t h e r [ D [ h [ x , y ] , { y , 2 } ] ] 

2 2 
2 (3 x - y ) 

2 2 5 /3 
9 (x + y ) 

d2h computes —— and combines the result into a single fraction. 

Other Methods of Computing Derivatives 

The command D e r i v a t i v e can also be used to compute derivatives of functions. For 
example, if f [ x ] is a function of a single variable, the command D e r i v a t i v e [ 1 ] [ f ] [ a ] 
computes the derivative of f with respect to x and evaluates the result by replacing x by a; 
the command 

Derivative[n][f][a] 

computes the nth derivative of f with respect to x and evaluates the result by replacing x 
by a. Similarly, if f [ x , y ] is a function of two variables, the command 

D e r i v a t i v e [ l , 0 ] [ f ] [ a , b ] 

computes the partial derivative of f with respect to x and evaluates the result by replacing 
x by a and y by b; the command D e r i v a t i v e [ 0 , l ] [ f ] [ a , b ] computes the partial 
derivative of f with respect to y and evaluates the result by replacing x by a and y by b; 
and the command D e r i v a t i v e [ n , m ] [ f ] [ a , b ] computes the nth partial derivative of f 
with respect to x and then the mth partial derivative of f with respect to y and evaluates 
the result by replacing x by a and y by b. 

EXAMPLE: 

d3g (π n) 

If g{x,y) = e-(x2+y2)/8(cos2x + sm2y), calculate ~-(x,y), -Èk{x'y)r and 
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SOLUTION: Below, we define and graph g on the rectangle [-π,π]χ[-π,π]. 

Clear[g] 

g[x_,yJ=Exp[-<xÄ2+y-2)/8]*(Cos[xr2+Sin[yp2); 

Plot3D[g[x,y],{x,-Pi,Pi},{y,-Pi,Pi},PlotPoints->25] 

After defining g, we illustrate that D e r i v a t i v e [ 1, 0 ] [g] [ x ,y ] and 
D [ 9 [ x / y 1 / x ] both produce the same result. 

gx=Derivative[l,0][g][x,y] 

2 2 
(-x - y )/8 

-2 E Cos[x] Sin[x] -

2 2 
(-x - y )/8 2 2 

E x (Cos[x] + Sin[y] ) 

D[g[x,y],x] 

2 2 
(-x - y )/8 

-2 E Cos[x] Sin[x] -

2 2 
(-x - y )/8 2 2 

E x (Cos[x] + Sin[y] ) 

Similarly D e r i v a t i v e [ l , l ] [ g ] [ x , y ] and Der iva t i v e [ g [ x , y ] , x , y ] 
produce the same result: 
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gxy=Derivative[l,l][g][x,yj 

2 2 
(-X - y )/8 

E y Cos[x] Sin[x] 

2 

2 2 
(-X - y )/8 

E x Cos[y] Sin[y] 
+ 

2 

2 2 
(-x - y )/8 2 2 

E x y (Cos[x] + Sin[y] ) 

16 

2 2 
(-x - y )/8 

E y Cos[x] Sin[x] 

2 

2 2 
(-x - y )/8 

E x Cos[y] Sin[y] 
+ 

2 

2 2 
(-x - y )/8 2 2 

E x y (Cos[x] + Sin[y] ) 

16 

Last, we compute „ 5 —/— · 

Derivative[l,2][g][Pi/3fPi/6] 

Sqrt[3] 7 Pi 
_ + 

2 2 
(5 Pi )/288 (5 Pi )/288 

8 E 96 E 

2 3 
Pi Pi 

2 2 
(5 Pi )/288 (5 Pi )/288 

128 Sqrt[3] E 13824 E 
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Note that when we can use D e r i v a t i v e to evaluate the derivative of a function 
for a particular number or point in a single command. On the other hand, using D, 
we must first compute the derivative and then evaluate the result at the desired 
number or point. ■ 

Application: Classifying Critical Points 

Mathematica can be used to assist in determining certain properties of functions of more 
than one variable. Just as we found critical points of single variable functions in an earlier 
example, we can perform a similar task in the case of multivariable functions. We begin 
with the following. Let f be a real-valued function of two variables with continuous 
second-order partial derivatives. A critical point of f is a point (x0,y0) in the interior of the 

domain of f for which fx(x0,y0) = £"(*ο^ο) = ° a n d /y(vy<>) = |~(*ο^ο) = °· Critical points are 

classified by the Second Derivatives Test which is stated below. Let f (x,y) = ^-{x,y), 
x dx 

Second Derivatives Test for Extrema 

Let (x0,yQ) be a critical point of a function f of two variables and let 

nlf(v J l - h n ^ J /vy(vy0) 
l M 0,yojj"L(-o^yo) 4(vy 0 

= (/x,(^o^o))(4(xo^o))-(/,yk'yo))2· 

a. if D(/,(x0,y0)j>0 and fxx(x0,y0)>0, then f has a relative minimum at (x0,y0)m, 

b. if O\f,(xQ,yQ M > 0 and fxx(xQ,y0) < 0, then f has a relative maximum at (x0,y0)', 

c. if DÎ/,(x0,y0)j < 0, then f has a saddle at (x0,y0)', and 

d. if D(/,(x0,y0 n = 0, no conclusion can be drawn and (x0,y0) is called a degenerate 
critical point. 
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We show how Mathematica can be used to locate and classify the critical points of a 
function of two variables in the following example. 

EXAMPLE: Locate and classify all the critical points of the function 
f(x, y) = -120x3 - 30x4 + 18x5 + 5J6 + 30xy2. 

SOLUTION: After clearing all prior definitions of f, we define f. Be sure to include 
the space between the x and γΛ2 to denote multiplication. 

C l e a r [ f ] 

f [ χ _ , γ _ ] = - 1 2 0 χ Λ 3 - 3 0 χ " 4 + 1 8 χ Λ 5 + 5 χ Α 6 + 3 0 χ y"2 

3 4 5 6 2 
-120 x - 30 x + 18 x + 5 x + 3 0 x y 

The critical points of f correspond to the solutions of the system of equations 

| f c y > = 0 

,f^y)=°" 

In order to find the critical points of f(x,y), the partial derivatives fx{x,y) and 
fy(x,y) are calculated and set equal to zero. These steps are shown below. We 
then locate the critical points by solving the system of equations 

'fx(*,y)=o 
/y(*,y) = o 

with S o l v e and naming the resulting list of numbers c r i t p t s . 

dfx=D[f[x,y],x] 

dfy=D[f[x,y],y] 

2 3 4 5 2 
-360 x - 120 x + 90 x + 30 x + 30 y 
60 x y 

critpts=Solve[{dfx==0,dfy==0}] 

{{y -> 0, x -> -3}, {y -> 0, x -> -2}, 

{y -> 0, x -> 0}, {y -> 0, x -> 0}, 

{y -> 0, x -> 0}, {y -> 0, x -> 0}, 

{y -> 0, x -> 2}} 
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Next, we define dfxx, dfyy, and dfxy to be fxx(x,y), fyy(x,y), and fXy(x,y), 
respectively: 

dfxx=D[f[x,y],{x,2}] 

dfyy=D[f[x,y],{y,2}] 

dfxy=D[f[x,y],x,y] 

2 3 4 
-720 x - 360 x + 360 x + 150 x 
60 x 
60 y 

and discriminant tobe {fjx,y))(fjx,y))-(fx},(x,y) · 

discriminant=dfxx dfyy-dfxyA2; 

In order to classify the critical points, we need to evaluate dfxx and 
d i s c r i m i n a n t for each critical point. Below, we evaluate d f x x and 
d i s c r i m i n a n t when x = -2 and y = 0. 

{dfxx,discriminant} /. {x->-2,y->0} 

{-480, 57600} 

Since dfxx is negative and d i s c r i m i n a n t is positive, the f has a relative 
maximum at (-2,0). Below, we define d a t a to be the ordered quadruple 
{ x , y , d f x x , d i s c r i m i n a n t } and evaluate da t a for each set of ordered pairs in 
c r i t p t s . In addition, we use TableForm and TableHeadings to display the 
result in row-and-column form with columns labeled x , y , dfxx, and 
d i sc r iminan t . 

data={x,y,dfxx,discriminant}; 

TableForm[data /. critpts, 

TableHeadings->{None,{"x","y","dfxx","discriminant"}}] 

x y dfxx discriminant 
-3 0 1350 -243000 
-2 0 -480 57600 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
2 0 2400 288000 

By the Second Derivatives test we conclude that (0,0) is a degenerate critical point, 
f has a relative minimum at (2,0), (-3,0) is a saddle, and f has a relative maximum 
at (-2,0). ■ 
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Application: Tangent Planes 

Mathematica can be used to determine the equation of the plane tangent to a three-
dimensional surface at a particular point as well as to graph this plane simultaneously 
with the surface. Let f be a real-valued function of two variables. If both fx(x0,y0) and 
f(x0,y0) exist, then an equation of the plane tangent to the graph of f at the point 

(vy0'/(vy0)) i sg i v e n by 

fMo>yo){x-xo)+f»{xo>yo){y-yo)-{z-zo)=0· 

Solving for z yields the function (of two variables) 

z=fx{xo>yo){x-xo)+fv{xo>y0){y-yo)+zo-

We demonstrate the usefulness of Mathematica in finding and graphing the tangent plane 
in the example below. 

EXAMPLE: Find 

when x= -1 and y= 

an 

=2. 

equation 

k(x 

of the 

-,y) = e-

plane tangent to the 

-(x2+y2 )/8(cos2x + sin2y) 

graph of 

SOLUTION: We begin by defining and graphing k on the rectangle [-5,5]χ[-π,π]. 
The resulting graphics object is named plotk . 

Clear[k] 

k[x_,y_]=Exp[-(xA2+y"2)/8](Cos[x]A2+Sin[y]Λ2); 

plotk=Plot3D[k[x,y],{x,-5,5},{y,-Pi,Pi},PlotPoints->30] 
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To find an equation of the tangent plane, we must compute the partial derivatives 
r)k r)k 
— and — and evaluate each when x = -l and y = 2. Below, we calculate 
3x dy 
r)k r)k 
— (-1,2) and —(-1,2), naming the resulting output kx and ky, respectively. In 
dx 3y 
each case, N is used to obtain an approximation of the result. 

kx=D[k[x,y],x] /. {x->-l,y->2} 

N[kx] 

ky=D[k[x,y],y] /. {x->-l,y->2} 

N[ky] 

2 2 
2 Cos[l] Sin[l] Cos[l] + Sin[2] 

+ 

5/8 5/8 
E 4 E 

0.636418 
2 2 

2 Cos[2] Sin[2] Cos[l] + Sin[2] 

5/8 5/8 
E 2 E 

-0.704499 

Hence, the tangent plane is defined by the function z = kx(x +1) + ky(y - 2) + k(-l, 2). 

Below, we define and graph z on the rectangle [-5,5]χ[-π,π]. Note that p l o t z is 
not displayed because the option D i s p l a y F u n c t i o n - > I d e n t i t y is included. 
Last, we use Show to display both p l o t k and p lo t z . 

z=kx(x+l)+ky(y-2)+k[-l,2] ; 

plotz=Plot3D[z,{χ,-5,5},{y,-Pi,Pi},DisplayFunction->Identity]; 

Show[plotk,plotz,PlotRange->{0,2},DisplayFunction->$DisplayFunction] 
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Application: The Method of 
Lagrange Multipliers 

Certain types of optimization problems can be solved using the method of Lagrange 
multipliers which is based on the following theorem: 

Lagrange's theorem: Let f(x,y) and g(x,y) be real-valued functions with continuous 
partial derivatives and let f have an extreme value at a point (x0,yQ) on the smooth 

constraint curve g(x,y)=c. If gv(vy0)*0 a n d gy(x0,y0)*0, then there is a real 

number λ satisfying fx(x0,y0) = ^gx(xQ/y0) and fy{x0,yQ) = λgy{xQ/y0). 

The points (x0,y0) at which the extreme values occur correspond to the points where the 
level curves of f(x,y) are tangent to the graph of g(x,y)=c. 

EXAMPLE: Find the maximum and minimum values of f{x,y) = J2+4y3 subject to 
the constraint x2 + 4y2 = 1. 

SOLUTION: We can graph f(x,y) = x2+4y3 on the ellipse x2+4y2 = l using 
P a r a m e t r i c P l o t 3 D . A parametrization of x2 +4y2 = 1 is given by 

ix(t) = cost 
\ ,,* sint,0<t<2n. 

r)=— 
To graph this equation in space, we set the z-coordinate equal to 0. 

ppl=ParametricPlot3D[{Cos[t],Sin[t]/2/0},{t,0,2Pi}] 
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To graph /(x,y) = x2+4y3 on the ellipse x2 + 4y2 =1, we first define f and then use 
P a r a m e t r i c P l o t 3 D to graph the set of points 

x(t) = cost 

2 ( f ) = / c o s f , £ | ! 

To see the graph of f on the ellipse, we use Show to display p p l and p p 2 
simultaneously. 

Clear[f] 

f[x_,y_J=xÄ2+4yA3; 

pp2=ParametricPlot3D[{Cos[t],Sin[t]/2,f[Cos[t],Sin[t]/2]},{t,0,2Pi}, 

DisplayFunction->Identity]; 

Show[ppl,pp2,BoxRatios->{1,1,1},DisplayFunction->$DisplayFunction] 

From the graphs above, we see that /(x,y) = x2 + 4y3 attains a minimum and 
maximum on the ellipse x2 + 4y2 = 1. The minimum and maximum values occur at 
the points where the level curves of f are tangent to the graph of x2 +4y2 =1. We 
can see these points using C o n t o u r P l o t . To graph the equation x2+4y2 =1, we 
first define g(x,y) = x2+4y2-l. Then, the graph of x2+4y2=l is the graph of the 
level curve of g corresponding to 0. Below, we use C o n t o u r P l o t to graph this 
level curve and name the resulting graphics object c p l . 

9[*_rY_]=*A2+4yA2-l; 

cpl=ContourPlot[g[x,y],{x,-2,2},{y,-2,2}, 

Contours->{0},PlotPoints->30,ContourShading->False, 

Frame->False,Axes->Automatic,AxesOrigin->{0,0}] 
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Next, we use C o n t o u r P l o t to graph several level curves of f and name the 
resulting graphics object cp2 . The graphs c p l and cp2 are shown together with 
Show. 

cp2=ContourPlot[f[x,y],{x,-2,2},{y,-2,2}, 

PlotPoints->30,Contours->10,ContourShading->False, 

PlotRange->{-2,2},Frame->False,Axes->Automatic, 

AxesOrigin->{0,0},DisplayFunction->Identity]; 

Show[cpl,cp2,DisplayFunction->$DisplayFunction] 

In order to find the points at which the minimum and maximum values are 
located, the first order derivatives (with respect to x and y) of f and g are 
computed so that Lagrange's Theorem can be applied. We then define e q l , eq2, 

and e q 3 to be the equations representing ^- = λ-%-, ^- = X-f-, and g(x,y) = 0, 
ax ax ay ay 

respectively. (The lambda in Lagrange's Theorem is represented in the calculations 
below as lambda.) 
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dfx=D[f[x,y],x]; 

dfy=D[f[x,y],y]; 

dgx=D[g[x,y],x]; 

dgy=D[g[x,y],y]; 

eql=dfx==lambda dgx; 

eq2=dfy==lambda dgy; 

eq3=g[x,y]==0; 

The values of x, y, and lambda which satisfy the system of three equations in 
Lagrange's Theorem are determined using So lve and the resulting output is 
named e x t p o i n t s . The solutions of this system are ordered triples (x, y, 
lambda). The values of x and y in each ordered triple represent the point at which 
f may have a maximum or minimum value. 

extpoints=Solve[{eql,eq2,eq3},{x,y,lambda}] 

3 1 
{{lambda -> -(-), x -> 0, y -> -(-)}, 

4 2 

3 1 
{lambda -> -, x -> 0, y -> - } , 

4 2 

{lambda -> 1, x -> -1, y -> 0}, 

{lambda -> 1, x -> 1, y -> 0}, 

-I 2 
{lambda -> 1, x -> — Sqrt[7], y -> - } , 

3 3 

I 2 
{lambda -> 1, x -> - Sqrt[7], y -> -}} 

3 3 

Thus, the maximum and minimum values of f are found by substituting these 
points back into the function f(x,y) and comparing the resulting values of f. We 

may evaluate each point directly as we have done below to compute /] 0,— 

f [ 0 , - l / 2 ] 

1 

2 

However, we may also compute all four values with a singe command. Below, we 
compute f(x,y) for each value in the table e x t p o i n t s . We use TableForm and 
TableHeadings to display the result in row-and-column form. The columns are 
labeled x, y, and f [ x, y ]. 
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TableForm[{x,y,f[x,y]} /. extpoints, 

TableHeadings->{None,{"x","y","f[x,y]"}}] 

x y f[x,y] 
1 1 

-(-) -(-) 
0 2 2 

1 1 

0 2 2 
-1 0 1 
1 0 1 
-I 2 11 
— Sqrt[7] 
3 3 27 
I 2 11 
- Sqrt[7] 
3 3 27 

Thus, we see that maximum values of 1 occur at (-1,0) and (1,0); a minimum value 

of — occurs at 0,— . The imaginary results, containing the symbol I which 

represents / = V-Ï, are ignored. I 

Double Integrals 

The command I n t e g r a t e , used to compute single integrals, is used to compute iterated 
integrals. The command which computes the iterated integral 

\f(x,y)dydx 
Jx() •'.vn 

IS 

I n t e g r a t e [ f [ x , y ] , { χ , χ θ , χ ΐ } , { y , y 0 , y l } ] 

pYi fyi 
and the definite integral f{x,y)dydx is numerically evaluated with the command 

N l n t e g r a t e [ f [ x , y ] , { χ , χ θ , χ ΐ } , { y , y 0 , y l } ] . 

The first variable given (in this case, x), corresponds to the outermost integral and 
integration with respect to this variable is done last. Also, the inner limits of integration (in 
this case, yO and y l ) can be functions of the outermost variable. 
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EXAMPLE: Evaluate each of the integrals: (a) M xy2dxdy; (b) \xy2dxdy, and (c) 
1 1-y 

π / 6 π / 2 

j J(ysin(x)-xsin(y))iiyifo. 

SOLUTION: In each case we use I n t e g r a t e . Entering 

Integrate[x y*2,y ,x] 

2 3 
x y 

computes \\xy2dxdy, entering 

i n t e g r a t e d y " 2 , { y , l , 2 } , { x , l - y , S q r t [ y ] } ] 

163 

120 

computes | \xy2dxdy, and entering 
1 1-y 

Integrate!y Sin[x]-x Sin[y],{x,0,Pi/6},{y,0,Pi/2}] 

2 2 
-Pi Sqrt[3] Pi 

2 

Pi 9 2 
+ 

8 8 

π/6π/2 

computes ί ί (y sin(x) - x sin(y )) dydx.M 
0 0 

When I n t e g r a t e produces an exact value of an integral but an approximation is 
desired, N can be used to compute an approximation of the result. On the other hand, in 
cases when the double integral cannot be computed exactly, or when a numerical 
approximation is desired instead of an exact result, the command 

Nlntegratef f[x,y],{x,xmin,xmax},{y,ymin,ymax}] 

can frequently be used to quickly calculate a numerical approximation of the integral. 
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EXAMPLE: Find both an exact and approximate value of cos(x2 -y2)dydx. 

SOLUTION: In this case, I n t e g r a t e produces an exact value of the integral 
which we name v a l u e . 

value=Integrate[Cos[xÄ2-y^2],{x,0,Sqrt[Pi]},{y,0,Sqrt[Pi]}] 

2 
(Pi (FresnelC[Sqrt[2]] + 

2 
FresnelS[Sqrt[2]] )) / 2 

The symbols F r e s n e l C and F r e s n e l S represent the Fresnel integrals C(x) and 
S(x), respectively. 

PFresnelC 
?FresnelS 

FresnelC[ x] gives the Fresnel integral C[x] 
= Integrate[Cos[Pi tA2/2], {t, 0, x}]. 

FresnelS[x] gives the Fresnel integral S[x] 
= Integrate[Sin[Pi t*2/2], {t, 0, x} ] . 

An approximation of v a l u e is then obtained with N. Note that the result is an 
approximation of π. 

N [ v a l u e ] 

3 .14159 ■ 

EXAMPLE 
1 1 

: Approximate the value of sin(exv)dydx. 

SOLUTION: In this case, I n t e g r a t e does not produce a result as indicated 
below. 

Integrate!Sin[Exp[x y]],{x,0,1},{y,0,1}] 

General:rintinit: 
Loading integration packages — please 
wait. 

However, N I n t e g r a t e quickly approximates the integral. 

N I n t e g r a t e [ S i n [ E x p [ x y ] ] , { χ , Ο , Ι } , { y , 0 , l } ] 

0 .917402 ■ 
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Application: Volume 

A typical application of iterated integrals is determining the volume of a region in three-
dimensional space. We illustrate the solution of a problem of this type in the following 
example. 

EXAMPLE: Find the volume of the region between the graphs of 
q(x,y) = e-x2cos(x2+y2) and w(x,y) = 3-x2-y2 on the domain [-l,l]x[-l,l]. 

SOLUTION: After defining q and w, the region can be viewed using 
Mathematical P lot3D command. 

Clear[q,w] 

* [ x _ ' y _ ] = E x p [ - x A 2 i C o s [ x * 2 + y " 2 ] ? 
w[x_,y_]=3-x"2-y"2; 
pq=Plot3D[q[x,y],{x,-l,l},{y,-l,1},DisplayFunction->Identity]; 

pw=Plot3D[w[x,y],{x,-l,l},{y,-l,1},DisplayFunction->Identity]; 

Show[pq,pw,DisplayFunction->$DisplayFunction] 

In this case, we see that q and w do not intersect on the rectangle. However, to 
compute the volume of the region we must know which function is larger on the 
interval. We proceed by graphing q and w on the interval [-3,3]x[-3,3] to observe 
that the graphs do intersect and computing q(0,0) and w(0,0). 
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pq2=Plot3D[q[x,y],{x,-3,3},{y,-3,3}, DisplayFunction->Identity]; 

pw2=Plot3D[w[x,y],{x,-3,3},{y,-3,3},DisplayFunction->Identity]; 

Show[pq2,pw2,DisplayFunction->$DisplayFunction] 

w[0,0] 

q[0,0] 

3 
1 

Since w(0,0) is greater than q(0,0), we conclude that w is larger than q on the 
rectangle [-l,l]x[-l,l]. Thus, the region is bounded above by w(x,y) and below by 

q(x,y)so that the volume is given by the double integral ΓΓ (w{x,y)-q(x,y))dA 

-uM-u] 

which is equivalent to the iterated integral (w{x,y)-q(x,yj)dydx. We then use 

N I n t e g r a t e to approximate the integral (w{x,y)-q{x,y))dydx. 

vo lume=NIntegrate [w[x ,y ] -q [x ,y ] , {x , - l , 1 } , {y , - l , 1 } ] 

7.02707 

In the example below, the surfaces intersect. Hence, we must determine the region of 
integration. 

EXAMPLE: Find the volume of the solid bounded by the graphs of f(x,y) = l-x-y 
and g(x,y) = 2-x2-y2. 

SOLUTION: After defining f and g, we use P l o t 3D to graph each function and 
then use Show to observe that the graphs intersect. 
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Clear[f,g] 
f[x_,y_]=l-x-y; 
g[x_,y_]=2-x"2-y"2; 
plotf=Plot3D[f[x,y],{x,-3/2,2},{y,-3/2,2},DisplayFunction->Identity]; 
plotg=Plot3D[g[x,y],{xf-3/2,2},{y,-3/2,2},DisplayFunction->Identity]; 
Show[plotf,plotg,ViewPoint->{0.010, -2.723, 2.000}, 

DisplayFunction->$DisplayFunction] 

From the graph, we see that the region is bounded above by the paraboloid and 
below by the plane. In this case, we note that the graphs of f(x,y) = l-x-y and 
g(x,y) = 2-x2 -y2 intersect when f(x,y) = g(x,y), which is equivalent to the equation 
l-x-y = 2-x2-y2. Simplifying and completing the square yields 

X2-x + y2-y = (x-i/2)2+(y-l/2)2=(j3j2)2 

so that the graph of the intersection is a circle with center (1/2,1/2) and radius 
Λ/3/2 . To graph this equation, we note that the graph of the f(x,y) = g(x,y) is the 
graph of the level curve of f(x,y)-g(x,y) corresponding to 0. Below, we use 
C o n t o u r P l o t to graph the circle f(x,y) = g(x,y). 

ContourPlot[f[x,y]-g[x,y],{x,-3/2,2},{y,-3/2,2}, 

Contours->{0},ContourShading->False,PlotPoints->30, 

Frame->False,Axes->Automatic,AxesOrigin->{0,0}] 
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2r 

- i v T o l y 2 

-l [ 

_ 1 I 

Let R denote the interior and boundary of the circle: 

R={{x,y):(x-l/2f +(y-l/2f <3/2] . 

Then the volume of the region bounded by the graphs of f and g is given by the 

double integral (g(x,y)-f(x,y))dA since g is the larger of the two functions over 
R 

R, as shown in the graph above. To rewrite this double integral as an iterated 
integral, we first use S o l v e to solve the equation \-x-y = 2-x2-y2 for y and 
name the resulting output i n t p t s . These numbers represent the upper and lower 
limit of integration with respect to y and are extracted from i n t p t s with 
y l = i n t p t s [ [ 1 , 1 , 2 ] ] and y 2 = i n t p t s [ [ 2 , 1 , 2 ] ] , respectively. Extracting 
data from lists is discussed in more detail in Chapters 4 and 5. Note that an 
alternate method of solution can be performed in the same way by solving the 
equation for x. Note that the result of entering i n t p t s [ [ 1 , 1 , 2 ] ] and 

1 + J5 + 4x — 4x2 
i n t p t s f [ 2 , 1 , 2 ] ] corresponds to the equations y = and 

y = -
1-Λ/5 + 4Χ-4Χ 2 

intpts=Solve[f[x,y]==g[x,y],y] 

{{y -> 

1 - Sqrt[l - 4 (-1 - x + x )] 

{y -> 

1 + Sqrt[l - 4 (-1 - x + x )] 

-}} 

file:///-x-y
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yl=intpts[[1,1,2]] 

y2=intpts[[2,1,2]] 

2 
1 - Sqrt[l - 4 (-1 - x + x )] 

2 
2 

1 + Sqrt[l - 4 (-1 - x + x )] 

Then, to find the upper and lower limits of integration with respect to x we solve 
the equation 5 + 4x-4x 2 =0. We illustrate how the expression 5 + 4x-4x2 is 
extracted from y 2 with [ [ . · . ] ] . We name the resulting solutions x v a l s . 
Extracting elements from lists is discussed in more detail in Chapters 4 and 5. 

y2[[2]] 

2 
1 + Sqrtfl - 4 (-1 - x + x )] 

y2[[2,2]] 

2 
Sqrt[l - 4 (-1 - x + x )] 

y2[[2,2,l]] 

2 
1 - 4 (-1 - x + x ) 

xvals=Solve[y2[[2,2,1]]==0] 

4 - 4 Sqrt[6] 
{{x _> }, 

8 

4 + 4 Sqrt[6] 
{x _> }} 

8 

Note that entering x v a l s [ [ 1 , 1 , 2 ] ] yields , while x v a l s [ [ 2 , 1 , 2 ] ] 

• ΛΑ 1 + V6 yields —. 
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xl=xvals[[1,1,2]] 

x2=xvals[[2,1,2]] 

4 - 4 Sqrt[6] 

8 
4 + 4 Sqrt[6] 

8 

Then, the volume is given by the iterated integral 

/·/· f(l+V6)/2 Jl+yÎ5+4x-4x2)/2 

\Ug(x,y)-f(x,y))dA=\ \ r ' {g(x,y)-f{x,y))dydx 

which is evaluated below in volume. Note that we do not need to retype the limits 
of integration since they have been named x l , x 2 , c, and y2 in previous 
calculations. We also obtain an approximation of volume with N. 

volume=Integrate[g[x,y]-f[x,y],{x,xl,x2},{y,yl,y2}] 

9 Pi 

8 

N[volume] 

3.53429 

Triple Integrals 

Triple iterated integrals are calculated in the same manner as double iterated integrals. The 
commands 

Integrate[f[x,y,z],{ζ,ζθ,zl},{y,yO,yl},{χ,χθ,χΐ}] 

and 

N I n t e g r a t e [ f [ x , y , z ] , { z , z O , z l } , { y , y O , y l } , { χ , χ θ , χ ΐ } ] 

attempt to evaluate and numerically evaluate, respectively, the triple iterated integral 

\f{x,y,z)dxdydz. 
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EXAMPLE: Evaluate [ Γ [e^(ly-z)dydzdx. 
JO J\ Jz-x 

SOLUTION: Entering 

I n t e g r a t e [ E x p [ 2 x ] ( 2 y - z ) , { χ , 0 , 3 > , { ζ , Ι , χ } , { y , z - x , z + x } ] 

6 
1 59 E 

8 8 

computes e2* (2y - z)dy dzdx.M 
JO J\ Jz-x 

We illustrate how triple integrals can be used to find the volume of a solid when using 
spherical coordinates. 

EXAMPLE: Find the volume of the torus with equation in spherical coordinates 
p = 5sin#. 

SOLUTION: In general, the volume of the solid region D is given by ldV. We 
D 

proceed by graphing the torus. Since the equation of the torus is given in spherical 
coordinates we will use the command S p h e r i c a l P l o t 3 D to graph the torus. The 
command S p h e r i c a l P l o t 3 D is not a built-in command but is contained in the 
package ParametricPlot3D. Thus, we first load the package ParametricPlot3D 
located in the Graphics folder (or directory) and then use S p h e r i c a l P l o t 3 D to 
graph p = 5sin0. 

«Graphics"ParametricPlot3D^ 

SphericalPlot3D[5 Sin[theta],{theta,0,Pi},{phi,0,2Pi}, 

ViewPoint->{4.000, 0.540, 2.000}] 
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In the graph, we see that the volume of the torus is the volume of the set points 
with spherical coordinates (ρ,φ,θ) satisfying Ο<0<2π, Ο<0<π, and O<p<5sin0. 

Thus, the volume is given by the triple integral \dV = p2 sin0άράθάφ, 
D 

evaluated below. 

Integrate[rΛ2 Sin[theta],{phi,0,2Pi},{theta,0,Pi},{r,0,5Sin[theta]}] 

2 
125 Pi 

4 

125 
Thus, the volume of torus is π2. ■ 

4 

Higher-Order Integrals 

Higher order iterated integrals are computed in the same manner as double and triple 
iterated integrals. 

SOLUTION: Entering 

Integrated y z w, {χ,Ο,Ι}/{y,Ο,χ}, {ζ,Ο,χ+y},{w,0,x+y+z}] 

731 

1920 

fi f»x fx+y f>x+y+z 

EXAMPLE: Evaluate 

computes xyzwdwdzdydx 
0 

xyzwdwdzdydx . 
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Introduction to Lists 

and Tables 

Chapter 4 introduces elementary operations on lists and tables. Chapter 4 is a prerequisite 
for Chapter 5 which discusses nested lists and tables in detail. The examples used to 
illustrate the various commands in this chapter are taken from calculus, business, and 
engineering applications. 

4.1 Defining Lists 

A list is a Mathematica object of the form 

{element[[1]], element[[2]], . . . ,element[[n-1]], element[[n]]}, 

where e l e m e n t [ [ i ] ] is the ith element of the list. Elements of a list are separated by 
commas. Notice that lists are always enclosed in braces { . . . } and each element of a list 
may be (almost any) Mathematica object; even other lists. Since lists are Mathematica 
objects, they can be named. For easy reference, we will usually name lists. 

Lists may be defined in a variety of ways. Lists may be completely typed in or they may 
be created with either the T a b l e or A r r a y commands. Given a function f and a number 
n, the command 

229 
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Table [ f [ i ] , { i , n } creates the list consisting o f { f [ l ] , . . . , f [ n ] ; 
Table [ f [ i ] , { i , 0 , n } ] creates the list consisting o f { f [ 0 ] , . . . , f [ n ] } ; 
Table[ f [ i ] ,{ i ,n ,m}] creates the list {f [ n ] , f [n+1], . . . , f [m-1 ] , f [m] } ; 
Table[ f [ i ] , { i , im in , imax , i s t ep} ] creates the list 
{ f [ i m i n ] , f [ i m i n + i s t e p ] , f [ i m i n + 2 s t e p ] , . . . , f [ imax]} ; and 
Array [ f, n ] creates the list { f [ l ] , . . . , f [ n ] } . 

In addition to the above, lists of numbers can be calculated using Range: 

Range[n] generates the list {1,2, . . . , n } ; 
Range [n l ,n2] generates the list {n 1, nl + 1, . . . , n 2 - l , n2}; and 
Range [ n 1, n2 , ns tep ] generates the list 
{nl , n l+ns tep ,n l+2ns tep , . . . , n2 -ns t ep ,n2} . 

EXAMPLE: Use Mathematica to generate the list {1,2,3,4,5,6,7,8,9,10}. 

SOLUTION: Generally, a list can be constructed in several ways. In fact, each of 
the following five commands generates the list {1,2,3,4,5,6,7,8,9,10}. 

{1,2,3,4,5,6,7,8,9,10} 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Table [i,{i,10}] 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Table[i,{i,l,10}] 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Table[i/2,{i,2,20,2}] 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Range[10] 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

EXAMPLE: Use Mathematica to define l i s t o n e to be the list of numbers 
consisting of 1, 3/2, 2, 5/2, 3, 7/2, and 4. 

SOLUTION: In this case, we generate a table and name the resulting output 
l i s t o n e . As in the previous example, we illustrate that l i s t o n e can be created 
in several ways. 
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l i s t o n e = { 1 , 3 / 2 , 2 , 5 / 2 , 3 , 7 / 2 , 4 } 

3 5 7 
{ 1 , - , 2 , - , 3 , - , 4} 

2 2 2 

l i s t o n e = T a b l e [ i , { i , l , 4 , l / 2 > ] 

3 5 7 
{ 1 , - , 2 , - , 3 , - , 4} 

2 2 2 

n 1 Last, we define i(n) = — + — and use Array to create the table l i s t o n e . 
2 2 * 

i [ n _ ] = n / 2 + l / 2 ; 

l i s t o n e = A r r a y [ i , 7 ] 

3 5 7 
{ 1 , - , 2 , - , 3 , - , 4} 

2 2 2 ■ 

In the following example, we define a list consisting of ordered pairs. 

EXAMPLE: Create a list of the first 25 prime numbers. What is the fifteenth prime 
number? 

SOLUTION: The built-in function P r i m e [ n ] yields the nth prime number. 
Below, we use T a b l e to generate a list of the ordered pairs { n , P r i m e [ n ] } for 
n=l, 2, 3 , . . . , 25. 

Tablet{n,Prime[n]},{n,1,25}] 

{{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13}, 

{7, 17}, {8, 19}, {9, 23}, {10, 29}, {11, 31}, 

{12, 37}, {13, 41}, {14, 43}, {15, 47}, {16, 53}, 

{17, 59}, {18, 61}, {19, 67}, {20, 71}, {21, 73}, 

{22, 79}, {23, 83}, {24, 89}, {25, 97}} 

From the resulting output, we see that the fifteenth prime number is 47. ■ 

EXAMPLE: The Fibonacci numbers are defined by the recursive relationship 
/(0) = 1, /(1) = 1, and f{n) = f{n-l)+f{n-2). 
Create a list, f i b l i s t , consisting of the first 10 Fibonacci numbers. 

231 



232 4 Introduction to Lists and Tables 

SOLUTION: We begin by defining f. Note that we define f using the form 
f [ n__ ] : = f [ n ] = . . . so that Mathematica remembers the functional values it 
computes and thus avoids recomputing functional values previously computed. 
This is particularly advantageous if we were to compute the value of f for large 
values of n. We then use T a b l e to compute a list consisting of the values of f for 
n=0,1 , . . . , 9. The resulting list is a list of the first ten Fibonacci numbers. 

Clear[f] 

f[0]=l; 

f[l]=l; 

f[n_] :=f[n]=f[n-l]+f[n-2] 

Table[f[n],{11,0,9}] 

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55} ■ 

In addition, we can use T a b l e to generate lists consisting of the same or similar objects. 

EXAMPLE: (a) Generate a list consisting of five copies of the letter a. (b) Generate 
a table consisting of ten random integers between -10 and 10. 

SOLUTION: Entering 

Table[a,{5}] 

{a, a, a, a, a} 

generates a table consisting of five copies of the letter a. For (b), we use the 
command Random to generate the desired table. 

Table[Random[Integer,{-10,10}],{10}] 

{0, -5, -8, 6, 2, 0, -3, 7, 9, -7} ■ 

As indicated above, elements of lists can be numbers, ordered pairs, functions, and even 
other lists. For example, Mathematica has built-in definitions of many commonly used 
special functions. Consequently, lists of special functions can be quickly created. 

EXAMPLE: The Mathematica function C y c l o t o m i c [ n , x ] produces the 
cyclotomic polynomial of order n, Cn(x) = ΓΤ(x-elKikhi), where the product ranges 

k 

over integer values of k which are relatively prime to n. The cyclotomic 
polynomials are irreducible over the integers. Create a table of the first ten 
cyclotomic polynomials and name the resulting table p o l y s . 
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SOLUTION: Mathematica will display a list, like other output, on successive lines 
which may sometimes be difficult to read or interpret. The commands TableForm 
and Ma t r i xFo rm are used to display lists in traditional row/column form. In the 
following, we first define p o l y s to be a table consisting of the first ten cyclotomic 
polynomials. Note that the resulting output is not displayed because a semi-colon 
is included at the end of the command. We then use TableForm to display each of 
the ten polynomials in p o l y s on successive lines. 

polys=Table[Cyclotomic[n,x],{n,l,10}]; 

TableForm[polys] 

-1 + x 
1 + x 

2 
1 + x + x 

2 
1 + x 

2 3 4 
1 + x + x + x + x 

2 
1 - x + x 

2 3 4 5 6 
1 + x + x + x + x + x + x 

4 
1 + x 

3 6 
1 + x + x 

2 3 4 

1 - x + x - x + x I 

The following example shows that a variety of operations can be performed on lists. We 
will discuss other operations that can be performed on lists in the following sections. 

EXAMPLE: The Hermite polynomials, H;(x), satisfy the differential equation 
y"-2xy, + 2tty = 0. The Mathematica command H e r m i t e H [ n , x ] yields the 
Hermite polynomial Hn(x). (a) Create a table of the first five Hermite polynomials; 
(b) evaluate each Hermite polynomial when x=l and then compute the value of 
each Hermite polynomial for j=l, 6/5, 7 /5 , . . . , 2; (c) compute the derivative of each 
Hermite polynomial in the table; and (d) graph the five Hermite polynomials on 
the interval [-2,2]. 

SOLUTION: We proceed by defining h e r m i t e t a b l e to be the table consisting of 
the first five Hermite polynomials. 

hermitetable=Table[HermiteH[n,x],{n,1,5}] 

2 3 2 4 
{2 x, -2 + 4 x , -12 x + 8 x , 12 - 48 x + 16 x , 

3 5 
120 x - 160 x + 32 x } 



234 4 Introduction to Lists and Tables 

We then use -> to evaluate each member of h e r m i t e t a b l e when x is replaced 
b y l . 

hermitetable /. x->l 

{2, 2, -4, -20, -8} 

For (b), we use T a b l e and N to evaluate the ordered pair { i , h e r m i t e t a b l e / 
. x - > i } for i=l, 6/5, 7/5, ..., 2. Note that the elements of the resulting list are 
also lists. 

Table[N[{i,hermitetable /. x->i}],{i,1,2,1/5}] 

{{1., {2., 2., -4., -20., -8.}}, 
{1.2, {2.4, 3.76, -0.576, -23.9424, -52.8538}}, 
{1.4, {2.8, 5.84, 5.152, -20.6144, -98.9363}}, 
{1.6, {3.2, 8.24, 13.568, -6.0224, -127.816}}, 
{1.8, {3.6, 10.96, 25.056, 24.4416, -112.458}}, 
{2., {4., 14., 40., 76., -16.}}} 

In the same manner as when a built-in function is applied to a list of numbers, a 
built-in function applied to a list of functions results in each member of the list 
being evaluated by the given function. Therefore, we use D to compute the 
derivative of each term of h e r m i t e t a b l e . Note that i n t could be used in the 
same manner to integrate each term of a table or list.. 

D [ h e r m i t e t a b l e , x ] 

2 3 
{ 2 , 8 x , -12 + 24 x , -96 x + 64 x , 

2 4 
120 - 480 x + 160 x } 

To graph the list h e r m i t e t a b l e , we use P l o t to plot each function in the set 
h e r m i t e t a b l e on the interval [-2,2]. Be sure to include h e r m i t e t a b l e within 
the E v a l u a t e command as indicated below. In this case, we specify that the 
displayed y-values consist of the interval [-50,50]. 

Plot[Evaluate[hermitetable],{x,-2,2},PlotRange->{-50,50}] 
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In the above example, applying D to the list h e r m i t e t a b l e produces the list obtained 
from h e r m i t e t a b l e by computing the derivative of each element of h e r m i t e t a b l e 
with respect to x. If f is a function and f [ l i s t ] returns 

{f[list[[1]]],f[list[[2]]],...,f[list[[n]]]}, 

where l i s t = { l i s t [ [1 ] ] , l i s t [ [2 ] ] , . . . , l i s t [ [n ] ] } , then f is l i s t a b l e . Many 
built-in Mathematica functions, like D, are listable. To see if a built-in function f u n c t i o n 
is listable, enter the command A t t r i b u t e s [ f u n c t i o n ] ; if L i s t a b l e appears in the 
resulting list, the function f u n c t i o n is listable. 

A Word of Caution 

As indicated above, when graphing a lists of functions l i s t , the list must be included in 
the command using E v a l u a t e [ l i s t ] or errors result as indicated below. 

funs={x,x*2,x*3}; 

Plot[funs,{x,-l,1}] 

Plot::plnr: CompiledFunctionf{x}, funs, -CompiledCode-][x] 
is not a machine-size real number at x = -1.. 

Plot::plnr: CompiledFunction[{x}, funs, -CompiledCode-][x] 
is not a machine-size real number at x = -0.916667. 

Plot::plnr: CompiledFunctionf{x}, funs, -CompiledCode-][x] 
is not a machine-size real number at x = -0.833333. 

General::stop: 
Further output of Plot::plnr 
will be suppressed during this calculation. 

0 . 8 

0 . 6 

0 . 4 

0 . 2 

0 . 2 0 . 4 0 . 6 0 . 8 1 

Entering the command P l o t [ E v a l u a t e [ funs ] , {x , - 1 , 1 } ] graphs the functions x, 
x2, and x3 on the interval [-1,1]. 
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4.2 Operations on Lists 

Extracting Elements of Lists 

Individual elements of lists are obtained using double-square brackets [ [ . . . ] ] or P a r t . 
For example if t a b l e is a list, then entering t a b l e [ [ 2 ] ] or P a r t [ t a b l e , 2 ] returns the 
second element of the list t a b l e . The jth element (or part) of t a b l e is extracted with 
t a b l e [ [ j ] ] or P a r t [ t a b l e , j ] . Several elements can be extracted with Take. The first 
and last elements of table are extracted with F i r s t [ t a b l e ] and L a s t [ t a b l e ] , 
respectively. The number of elements in a list t a b l e is obtained by entering the command 
L e n g t h [ t a b l e ] . 

EXAMPLE: A table corresponding to approximations of the first eight zeros of the 
Bessel function of the first kind of order zero, J0(x), is listed below. Use 
Mathematica to define this list to be z e r o s . Then, (a) determine the number of 
elements in z e r o s ; (b) extract the third and fifth elements of zeros; (c) extract the 
fourth and sixth elements of zeros; (d) extract lists consisting of the first three 
elements of z e r o s , the fourth through sixth elements of z e r o s , and the last two 
elements of z e r o s ; and (e) determine the location of the element 18.071. 

2.4048 5.5201 8.6537 11.792 14.931 18.071 21.212 24.352 

SOLUTION: We first define z e r o s to be the table of numbers listed above. 

zeros={2.4048,5.5201,8.6537,11.792,14.931,18.071,21.212,24.352} 

{2.4048, 5.5201, 8.6537, 11.792, 14.931, 18.071, 21.212, 24.352} 

The number of elements in the list z e r o s is obtained below with Length . 

Length[zeros] 

8 

The first and last elements of z e r o s are extracted with F i r s t and Las t , 
respectively. 

First[zeros] 

Last[zeros] 

2.4048 

24.352 

The third and seventh elements of z e r o s are extracted from z e r o s using double 
square brackets [ [ · - . ] ] and P a r t , respectively. 



4.2 Operations on Lists 237 

zeros[[3]] 

8.6537 

Part[zeros,7] 

21.212 

Below, we use P a r t to extract the fourth and sixth elements of z e r o s 
simultaneously. 

P a r t [ z e r o s , { 4 , 6 } ] 

{ 1 1 . 7 9 2 , 1 8 . 0 7 1 } 

We use Take to extract the first three elements of zeros, the fourth through sixth 
elements of zeros, and the last two elements of zeros below. 

Take[zeros,3] 

Take[zeros,{4,6}] 

Take[zeros,-2] 

{2.4048, 5.5201, 8.6537} 
{11.792, 14.931, 18.071} 
{21.212, 24.352} 

Last, we use P o s i t i o n to determine that the element 18.071 occurs in the sixth 
position of z eros . 

Position[zeros,18.071] 

{{6}} 

■ 

Often, Mathematica's output is given to us as a list which we desire to use in subsequent 
calculations. 

EXAMPLE: Let f(x) = 3x4 -8x3 -30x2 +72x. Locate and classify the critical points of 
f. 

SOLUTION: We begin by clearing all prior definitions of f and then defining f. 
Since f is a polynomial, the critical numbers are found by solving the equation 
f'(x) = 0. The resulting list is named cr i tnums. 

Clear[f] 

f[χ_]=3χΛ4-8χΛ3-30χΛ2+72χ; 

critnums=Solve[f *[x]==0] 

{{x -> -2}, {x -> 1}, {x -> 3}} 
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Note that c r i t n u m s is actually a list of lists. For example, the number -2 is the 
second part of the first part of the second part of c r i t n u m s as illustrated below. 

critnums[[1]] 

{x -> -2} 

critnums[[1,1]] 

x -> -2 

critnums[[1,1,2]] 

-2 

Similarly, the numbers 1 and 3 are extracted with c r i t n u m s [ [ 2 , 1 , 2 ] ] and 
c r i t n u m s [ [ 3 , 1 , 2 ] ] , respectively. 

c r i t n u m s [ [ 2 , 1 , 2 ] ] 

c r i t n u m s [ [ 3 , 1 , 2 ] ] 

1 
3 

We locate and classify the points by evaluating f and f " for each of the numbers in 
c r i t n u m s . 

{ x , f [ x ] , f ' [ x ] } / . cr i tnums 

{ { - 2 , - 1 5 2 , 1 8 0 } , { 1 , 37 , - 7 2 } , { 3 , - 2 7 , 120}} 

By the Second Derivative Test, we conclude that the points (-2,-152) and (3,-27) 
are relative minima while (1,37) is a relative maximum. In fact, since lim/(x) = +°°, 
-152 is the absolute minimum of f. These results are confirmed by the graph of f 
shown below. 

P l o t [ f [ x ] , { x , - 4 , 4 } ] 
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EXAMPLE: Compute a 101-digit approximation of π. How many times does each 
digit occur in the approximation? What is the 66th digit to the right of the decimal 
place? 

SOLUTION: The command Rea lDig i t s [ x ] yields a list of the decimal digits of 
x along with the number of digits to the left of the decimal; the command 
I n t e g e r D i g i t s [ n ] yields a list of the digits of the integer n. Below, we use 
R e a l D i g i t s and N to compute a 101-digit approximation of π and then convert 
the approximation to a list of the decimal digits in the approximation. The 
resulting list is named d i g i t s . 

d i g i t s = R e a l D i g i t s [ N [ P i , 1 0 1 ] ] 

{ { 3 , 1, 4 , 1, 5, 9 , 2, 6, 5 , 3 , 5 , 8, 9 , 1, 9, 3 , 2 , 

3 , 8, 4 , 6, 2, 6, 4 , 3 , 3 , 8, 3 , 2, 7, 9, 5 , 0, 

2, 8 , 8 , 4 , 1, 9, 7, 1, 6, 9, 3 , 9 , 9, 3 , 7, 5 , 

1, 0, 5 , 8 , 2, 0, 9, 7, 4 , 9, 4 , 4 , 5 , 9, 2, 3 , 

0, 7, 8, 1, 6, 4 , 0, 6, 2 , 8, 6, 2, 0, 8, 9, 9, 

8, 6, 2, 8 , 0 , 3 , 4 , 8 , 2, 5 , 3 , 4 , 2, 1 , 1, 7, 

0, 6, 8, 0 } , 1} 

Below we use Length to see that d i g i t s has two elements. The first element, 
extracted with d i g i t s [ [ 1 ] ], consists of the list of the 101 digits in the 
approximation of π and the second element, extracted with d i g i t s [ [ 2 ] ] , i s l 
which means there is only one digit (namely 3) to the left of the decimal. 

Length[digits] 

2 

digits[[1]] 

{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 1, 9, 3, 2, 

3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 1, 9, 5, 0, 2, 

8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 

5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 

1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 

0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 8, 0} 
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The command Count [ l i s t , p a t t e r n ] returns the number of elements in l i s t 
which match the form defined by p a t t e r n . Thus, Count [ d i g i t s [ [ 1 ] ] , i ] 
yields the number of elements in d i g i t s [ [ 1 ] ], corresponding to the digits in the 
101-digit approximation of π, of form i . Below we use T a b l e together with Count 
to count the number of occurrences of 0, 1, 2, 3, ..., 9 in d i g i t s [ [ 1 ] ] . The result 
is expressed in TableForm. 

Table[{i,Count[digits[[1]],i]},{i,0,9}]//TableForm 

0 9 
1 8 
2 12 
3 12 
4 10 
5 8 
6 9 
7 7 
8 13 
9 13 

Thus, we see that there are nine 0's, eight l 's, and so on, in the 101-digit 
approximation of π. The 66th digit to the right of the decimal in the approximation 
of π is the 67th element of d i g i t s [ [ 1 ] ] extracted below with 
d i g i t s [ [ l , 6 7 ] ] . Both the commands P a r t [ d i g i t s , 1 , 6 7 ] and 
P a r t [ d i g i t s [ [ 1 ] ] , 67 ] would return the same result. 

d i g i t s [ [ 1 , 6 7 ] ] 

7 

Thus, the 66th digit to the right of the decimal in the approximation of π is 7. ■ 

Graphing Lists of Points and Lists of Functions 

If l i s t = { l i s t [ [1 ] ] , l i s t [ [2 ] ] , . . . , l i s t [ [n] ]} is a list of numbers, 

ListPlot[list] 

plots the points ( l , l i s t [ [ 1 ] ] ), ( 2 , l i s t [ [ 2 ] ] ) , . . . , ( n , l i s t [ [ n ] ] ). In general, the 
command L i s t P l o t has the same options as the command P l o t which can be viewed by 
entering the command O p t i o n s [ L i s t P l o t ] . 

Often it is desirable to suppress the output of lists, particularly when long lists are used. 
In general, a semi-colon " ; " placed at the end of a command suppresses the resulting 
output. When dealing with a long Mathematica object expression, another useful 
Mathematica command is S h o r t [ e x p r e s s i o n ] . This command produces an 
abbreviated, one-line output of e x p r e s s i o n . If l i s t is a table, the command 
S h o r t [ l i s t ] produces a one-line output of l i s t . If n is a positive integer greater than 
one, S h o r t [ l i s t , n ] produces an abbreviated n-line output of l i s t . This abbreviated 
list includes an element of the form « n » , which indicates the number of elements of the 
list that are omitted in the abbreviated output. 
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EXAMPLE: Graph the set of points (x,sinx) for x=l, 2, 3,. . . ,1000. 

SOLUTION: We first use T a b l e and N to create a table of approximations of sin* 
for x=l, 2, 3, ... ,1000 and name the resulting table s i n v a l s . Note that s i n v a l s is 
not displayed since a semi-colon is placed at the end of the command. However, 
we do view portions of the list s i n v a l s with S h o r t . 

sinvals=Table[N[Sin[x]],{x,1,1000}]; 

Short[sinvals] 

{0.841471, 0.909297, 0.14112, « 9 9 6 » , 0.82688} 

Short[sinvals,3] 

{0.841471, 0.909297, 0.14112, -0.756802, -0.958924, 

-0.279415, 0.656987, « 9 8 9 » , « 8 » 7 , -0.855473, 

-0.0264608, 0.82688} 

Then, we use L i s t P l o t [ s i n v a l s ] to graph the set of points (x,sinx) for 
x = 1,2,. ..,1000. 

L i s t P l o t [ s i n v a l s ] 

. ■ m r—. ■ ■ ■ ■  ̂ i '. ·—'—' '. ' *. ' — ' —' ■ ' ; 

Both tables of numbers, points, and functions can be graphed. In the following example, 
we illustrate another method to graph a set of points. 

EXAMPLE: In the following, the percentage of the United States labor force which 
belonged to unions during certain years is displayed. Graph the data represented 
in the table. 
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Year 

1930 

1935 

1940 

1945 

1950 

1955 

1960 

1965 

1970 

1975 

1980 

1985 

1990 

Union Membership 
as a Percentage of 

the Labor Force 

11.6 

13.2 

26.9 

35.5 

31.5 

33.2 

31.4 

28.4 

27.3 

25.5 

21.9 

18.0 

16.1 

Source: The World Almanac and Book of Facts, 1993. 

SOLUTION: We begin by entering the data represented in the table as 
d a t a u n i o n : the x-coordinate of each point corresponds to the year, where x is the 
number of years past 1900, and the y-coordinate of each point corresponds to the 
percentage of the United States labor force which belonged to unions in the given 
year and then using L i s t P l o t to graph the set of points represented in 
d a t a u n i o n . 

d a t a u n i o n = { { 3 0 , 1 1 . 6 } , { 3 5 , 1 3 . 2 } , { 4 0 , 2 6 . 9 } , { 4 5 , 3 5 . 5 } , { 5 0 , 3 1 . 5 } , { 5 5 , 3 3 . 2 } , 

{ 6 0 , 3 1 . 4 } , { 6 5 , 2 8 . 4 } , { 7 0 , 2 7 . 3 } , { 7 5 , 2 5 . 5 } , { 8 0 , 2 1 . 9 } , { 8 5 , 1 8 . 0 } , 

{ 9 0 , 1 6 . 1 } } ; 

L i s t P l o t [ d a t a u n i o n ] 

242 
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An alternative to using L i s t P l o t is to use Show, G r a p h i c s , and P o i n t to view 
the data represented in d a t a u n i o n . The point (x0,y0) is represented with 
P o i n t [ { x 0 , yO } ] . This object is then declared to be a graphics object with 
G r a p h i c s [ P o i n t [ { x O , y 0 } ] ] a n d d i s p l a y e d w i t h 
Show[Graph ics [ P o i n t [ { x 0 , y 0 } ] ] ] . In the following command we use Map 
to apply the function P o i n t to each pair of data in d a t a u n i o n . The result is not a 
graphics object and cannot be displayed with Show. 

Map[Point,dataunion] 

{Point[{30, 11.6}], Point[{35, 13.2}], Point[{40, 26.9}], 
Point[{45, 35.5}], Point[{50, 31.5}], Point[{55, 33.2}], 

Point[{60, 31.4}], Point[{65, 28.4}], Point[{70, 27.3}], 
Point[{75, 25.5}], Point[{80, 21.9}], Point[{85, 18.}], 

Point[{90, 16.1}]} 

Next, we use S h o w and G r a p h i c s to declare the set of points 
M a p [ P o i n t , d a t a u n i o n ] as graphics objects and display the resulting graphics 
object. Note that the collection of all commands contained within the G r a p h i c s 
command are contained in braces { }. The command P o i n t S i z e [ . 03 ] specifies 
that all P o i n t s be displayed as circles of radius 0.03 of the final displayed 
graphics object. The option A x e s - > A u t o m a t i c instructs Mathematica to display 
the resulting graphics object with an axes. 

datapts=Show[Graphics[{PointSize[.03],Map[Point,dataunion]}], 

Axes->Automatic] 

30 f 

20 h 
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Tables of functions are graphed with P l o t . 

EXAMPLE: The Laguerre polynomials, Lan(x), satisfy the ordinary differential 
equation xy" + (0 +1 -x)y'+ ny = 0. The built-in function L a g u e r r e L [ n , a , x ] 
represents the Laguerre polynomial Lau(x). Graph the Laguerre polynomials (a) 
L°(*)for w = l ,2 , . . . ,5;and(b) L\{x) for w = l ,2, . . . ,5 . 

SOLUTION: For (a), we use T a b l e and L a g u e r r e L to generate a table consisting 
of L°n(x) for n = 1,2,..., 5 and name the resulting output I p o l y s l . 

lpolysl=Table[LaguerreL[η,Ο,χ],{η,1,5}] 

2 2 3 
2 - 4 x + x 6 - 18 x + 9 x - x 

{1 _ x, , , 

2 6 

2 3 4 
24 - 96 x + 72 x - 16 x + x 

f 

24 

2 3 4 5 
120 - 600 x + 600 x - 200 x + 25 x - x 

} 

120 

Next, P l o t is used to graph the set of functions I p o l y s l on the interval [0,15]. 
Notice that within the P l o t command, I p o l y s l is enclosed by the command 
E v a l u a t e . E v a l u a t e [ I p o l y s l ] allows the elements of I p o l y s l t o b e 
evaluated for the values of x on [0,15] instead of recreating the table for each value 
of x. 

Plot[Evaluate[lpolysl],{x,0,15}] 
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For (b), we use T a b l e and L a g u e r r e L to generate a table consisting of Ln4(x) for 
« = 1,2,...,5 and name the resulting table l p o l y s 2 . We also use T a b l e to 
generate a table of various Gray Levé I s which we will use to help distinguish our 
graphs in the final displayed graphics object. 

lpolys2=Table[LaguerreL[4,η,χ],{n,l,5}]; 

grays=Table[GrayLevel[i],{i,0,.4,.l}] 

{GrayLevel[0], GrayLevelf0.1], GrayLevelf0.2], GrayLevel[0.3], 

GrayLevel[0.4]} 

Next, we use P l o t to graph the functions in l p o l y s 2 . Each element of l p o l y s 2 
is graphed on the interval [0,15] according to the G r a y L e v e l specified in g r a y s . 
Thus, the first function is graphed in GrayLeve l [ 0 ] , corresponding to black, and 
the fifth function is graphed in G r a y L e v e l [ 0 . 4 ] , corresponding to the lightest 
gray in the displayed graphics object. 

Plot[Evaluate[lpolys2],{x,0,15},PlotStyle->grays] 

Evaluation of Lists by Functions 

Another helpful command is Map [ f, l i s t ] which creates a list consisting of elements 
obtained by evaluating f for each element of l i s t , provided that each member of l i s t is 
an element of the domain of f. Note that if f is listable, f [ l i s t ] produces the same result 
as Map [f , l i s t ] . 

To avoid errors, be sure to check that each element of l i s t is in the domain of f prior 
to executing the command Map [ f, l i s t ] . 

EXAMPLE: Create a table, named o d d i n t s , consisting of the first 25 odd 
integers. Square each number in o d d i n t s . 
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SOLUTION: We begin by using T a b l e to create a table of the first 25 odd 
integers and name the resulting table o d d i n t s . 

o d d i n t s = T a b l e [ 2 i - l , { i , l / 2 5 } ] 

{1 , 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 

31, 33, 35, 37, 39, 41, 43, 45, 47, 49} 

Next, we define f(x) = x2 and use Map to compute f(x) for each x in o d d i n t s . 

f[x_]=x^2; 

Map[f,oddints] 

{1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 

625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 

1849, 2025, 2209, 2401} 

Note that since f is L i s t a b l e , f [ o d d i n t s ] produces the same results as 
M a p [ f , o d d i n t s ] . 

f[oddints] 

{1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 

625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 

1849, 2025, 2209, 2401} 

We can use Map on any list, including lists of functions. 

EXAMPLE: 
differential 
L e g e n d r e P I 
satisfies (l-x: 

The Legendre polynomials, P(*)> 
equat ion (l-x2)y"-2xy' + n(n + l)y = 

n , x ] represents the Legendre 
)y" - 2xy' + n(n + l)y = 0 for n=l, 2, 

are solutions of the 
0. The 

polynomial P 
. . . ,5 

bui l t - in 

(*)· Verify 

ordinary 
function 
that Pn(x) 

SOLUTION: Below, we use T a b l e to define l e g e n d r e p o l y s to be the list 
consisting of the ordered pairs (η,Ρη(χ)) for n=l, 2 , . . . , 5. 

legendrepolys=Table[{n,LegendreP[n,x]},{n,l ,5}] 

2 3 
- l + 3 x - 3 x + 5 x 

{{1 , x } , {2, } , {3, } , 
2 2 
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2 4 3 5 
3 - 30 x + 35 x 15 x - 70 x + 63 x 

{ 4 , } , { 5 , }} 
8 8 

Next, we define the function f which given an ordered pair (n,y) computes and 
simplifies (1 - x2 )y" - 2xy' + n(n + \)y = 0. 

Clear[f] 
f[{n_,y_}]:=Simplify[(l-xÄ2)D[y,{x,2}]-2x D[y,x]+n<n+l)y] 

Last, we use Map to compute the value of f for each of the ordered pairs in 
l e g e n d r e p o l y s . As expected, the resulting output is a list of five 0's. 

M a p [ f , l e g e n d r e p o l y s ] 

{ 0 , 0 , 0 , 0, 0} ■ 

EXAMPLE: Compute a table of the values of the trigonometric functions sinx, 
cosx, and tanx for the principal angles. 

SOLUTION: We first construct a table of the principal angles which is 

accomplished by defining 11 to be the table consisting of — for n = 0,1,.. . , 8 and 

t 2 to be the table consisting of — for « = 0,1,...,12. The principal angles are 
6 

obtained by taking the union of t l and t 2 . Note that Union[ t l , t 2 ] joins the 
lists t l and t 2 , removes repeated elements, and sorts the results. If we did not 
wish to remove repeated elements and sort the result, the command 
J o i n [ 1 1 , t 2 ] concatenates the lists 11 and t 2 . 

tl=Table[n Pi/4,{n,0,8}]; 

t2=Table[n Pi/6,{n,0,12}]; 

prinangles=Union[tl,t2] 

Pi Pi Pi Pi 2 Pi 3 Pi 5 Pi 7 Pi 5 Pi 
xu, , , , , , , , PI, , , 

6 4 3 2 3 4 6 6 4 

4 Pi 3 Pi 5 Pi 7 Pi 11 Pi 
, , , f f 2 Pi} 

3 2 3 4 6 

Next, we define f(x) to be the function which returns the ordered quadruple 
(x,sinx,cosx,tanx) and compute the value of f for each number i n p r i n a n g l e s 
with Map naming the resulting table p r i n v a l u e s . Note that p r i n v a l u e s is not 
displayed since a semi-colon is included at the end of the command. 
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Clear[f] 

f[x_]={XfSin[x],Cos[x],Tan[x]} 

{x, Sin[x], Cos[x], Tan[x]} 

prinvalues=Map[f,prinangles]; 

Finally, we use Tab leForm and T a b l e H e a d i n g s to display p r i n v a l u e s in 
row-and-column form; the columns are labeled x, sinx, cosx, and tanx. 

TableForm[prinvalues, 

TableHeadings->{None,{"x","sin(x)","cos(x)","tan(x)"}}] 

x sin(x) cos(x) tan(x) 
0 0 1 0 
Pi 1 Sqrt[3] 1 

6 2 2 Sqrt[3] 
Pi 1 1 

4 Sqrt[2] Sqrt[2] 
Pi Sqrt[3] 1 

3 2 2 Sqrt[3] 
Pi 

2 1 0 Complexlnfinity 
2 Pi Sqrt[3] 1 

3 2 2 -Sqrt[3] 
3 Pi 1 1 

_( ) 
4 Sqrt[2] Sqrt[2] -1 

5 Pi 1 -Sqrt[3] 1 
- -( ) 

6 2 2 Sqrt[3] 
Pi 0 -1 0 
7 Pi 1 -Sqrt[3] 1 

-(-) 
6 2 2 Sqrt[3] 

5 Pi 1 1 
_( ) _( ) 

4 Sqrt[2] Sqrt[2] 1 
4 Pi -Sqrt[3] 1 

_(_) 
3 2 2 Sqrt[3] 

3 Pi 

2 - 1 0 Complexlnfinity 
5 Pi -Sqrt[3] 1 

3 2 2 -Sqrt[3] 
7 Pi 1 1 

_( ) 
4 Sqrt[2] Sqrt[2] -1 
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11 Pi 1 Sqr t [3] 1 
- ( - ) - ( ) 

6 2 2 S q r t [ 3 ] 
2 P i 0 1 0 

Evaluation of Parts of Lists by Functions 

Parts of lists may be evaluated by functions with the command MapAt: 
MapAt [ f, l i s t , j ] applies f to the jth part of l i s t and returns the list 

{list[[1]],...,list[[jl]],f[list[[j]]],list[[j+l]],...,list[[n]]}; 

similarly MapAt[f,list,{jl,j2,...,jk}] applies f to list[[jl,j2,...,jk]]. 

EXAMPLE: Generate a table of 10 random numbers between - 5 and 5 and name 
the resulting table nums . (a) Reduce the third number in nums modulo 1. 
(b) Reduce all the numbers in nums modulo 1. 

SOLUTION: We use T a b l e and Random to generate a table of ten random 
numbers between -5 and 5 and name the result nums. Note that because the 
command Random is used, when you enter the following calculations, your results 
will most certainly be different from those here. 

nums=Table[Random[Real,{-5,5}],{10}] 

{4.78995, 0.619918, -1.83003, 0.409594, -1.11787, 

1.92788, 3.09407, 1.31449, 3.4408, 2.4368} 

The command M o d [ a , b ] represents the remainder generated by a /b which is 
known as a modulo b or a mod b. We define g(x) to reduce x modulo 1 and use 
MapAt to reduce the third number in nums modulo 1. 

g [ x _ ] : = M o d [ x , l ] 

MapAt[g,nums ,3] 

{ 4 . 7 8 9 9 5 , 0 . 6 1 9 9 1 8 , 0 . 1 6 9 9 7 1 , 0 . 4 0 9 5 9 4 , - 1 . 1 1 7 8 7 , 

1 .92788 , 3 . 0 9 4 0 7 , 1 .31449 , 3 . 4 4 0 8 , 2 . 4 3 6 8 } 

To reduce all the numbers in nums modulo 1, we use Map. 

Map[g,nums] 

{ 0 . 7 8 9 9 4 8 , 0 . 6 1 9 9 1 8 , 0 . 1 6 9 9 7 1 , 0 . 4 0 9 5 9 4 , 0 . 8 8 2 1 3 1 , 

0 . 9 2 7 8 7 5 , 0 . 0 9 4 0 6 6 , 0 . 3 1 4 4 9 5 , 0 . 4 4 0 7 9 7 , 0 .436799} ■ 
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Other List Operations 

A specific operation can be applied to the elements of a list through the command 
A p p l y [ o p e r a t i o n , l i s t ] . Of course, in order to use this command, the given 
operation must be defined for the elements of l i s t . 

For example, if n u m b e r s is a list of real numbers , then the command 
A p p l y [ P l u s , n u m b e r s ] adds together all the elements of n u m b e r s while 
Apply [ T imes , numbers ] multiplies together all the elements of numbers. 

EXAMPLE: Define l i s t to be a list of the first 100 positive integers. Compute the 
sum and product of the elements of l i s t . 

SOLUTION: We use Range to define l i s t to be a list of the first 100 positive 
integers. Then, Apply , P l u s , and T i m e s are used to compute the sum and 
product of the members of l i s t . 

list=Range[100]; 

Apply[Plus,list] 

5050 

Apply[Times,list] 

93326215443944152 68169923885626670049071596826438162\ 

14685929638952175999932299156089414639761565182862\ 

53697920827223758251185210916864000000000000000000X 

000000 

In this example, Sum and P r o d u c t can also be used to compute the sum and 
product, respectively. 

Sum[i,{i,1,100}] 

5050 

Product [ i, { i, 1,100 } ] 

933262154439441526816992388562667004907159682643816\ 

2146859296389521759999322991560894146397615651828\ 

6253697920827223758251185210916864000000000000000X 

000000000 

Some other Mathematica commands used with lists are: 
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Append[ l i s t , e l emen t ] , which appends element to l i s t ; 
AppendTo [ l i s t , element ] , which appends element to l i s t and names the result 
l i s t ; 
Drop [ l i s t , n ] , which returns the list obtained by dropping the first n elements from l i s t ; 
Drop [ l i s t , -n ] , which returns the list obtained by dropping the last n elements of l i s t ; 
Drop [ l i s t , { n , m } ] , which returns the list obtained by dropping the nth through mth 
elements of l i s t ; 
Drop [ l i s t , { n} ] , which returns the list obtained by dropping the nth element of l i s t ; 
Prependf l i s t , e l e m e n t ] , which prepends element to l i s t ; and 
PrependTo[ l i s t , element ] , which prepends element to l i s t and names the result 
l i s t . 

Alternative Way to Evaluate Lists by Functions 
Abbreviations of several of the commands discussed in this section are summarized below 
and illustrated in the following example. 

§@ Apply // (function {.··} List 
application) 

/§ Map [[·..]] Part 

EXAMPLE: Define p o l y s to be the set of polynomials consisting of l5x2-6x-9, 
4x2-39x + 56, 14x2+24x-8, and 8x2-17x-21. (a) Factor each polynomial in 
p o l y s , (b) Find the sum of the polynomials in p o l y s . 

SOLUTION: After defining p o l y s , we use Map, / / , and /@ to factor the list of 
polynomials p o l y s . 

Clear[polys,x] 

polys={15xA2-6x-9,4x"2-39x+56,14x~2+24x-8,8x"2-17x-21}; 

Map[Factor,polys] 

{3 (-1 + x) (3+5 x), (-8 + x) (-7 + 4 x), 

2 (2 + x) (-2 + 7 x), (-3 + x) (7+8 x)} 

polys//Factor 

{3 (-1 + x) (3+5 x), (-8 + x) (-7 + 4 x), 

2 (2 + x) (-2 + 7 x), (-3 + x) (7+8 x)} 
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Factor /@polys 

{3 ( -1 + x) ( 3 + 5 x ) , ( -8 + x) ( -7 + 4 x ) , 

2 (2 + x) ( -2 + 7 x ) , ( -3 + x) ( 7 + 8 x ) } 

For (b), we find the sum using @ @ instead of Apply. 

P lus @@; p o l y s 

2 
18 - 38 x + 41 x ■ 

4.3 Mathematics of Finance 

The use of lists and tables are quite useful in economic applications which deal with 
interest rates, annuities, and amortization. Mathematica is, therefore, of great use in these 
types of problems through its ability to show the results of problems in tabular form. Also, 
if a change is made in the problem, Mathematica can easily recompute the results. 

Application: Compound Interest 

A common problem in economics is the determination of the amount of interest earned 
from an investment. If P dollars are invested for t years at an annual interest rate of r% 
compounded m times per year, the compound amount, A(t), at time t is given by 

m=pHÏ-
If P dollars are invested for t years at an annual interest rate of r% compounded 
continuously, the compound amount, A(t), at time t is given by A(t) = Pemt. 

A specific example is shown below where the amount of money accrued at time t 
represents the sum of the original investment and the amount of interest earned on that 
investment at time t. 

EXAMPLE: Suppose $12,500 is invested at an annual rate of 7% compounded 
daily. How much money has accumulated and how much interest has been earned 
at the end of each five year period for t = 0, 5,10,15, 20, 25, 30? How much money 
has accumulated if interest is compounded continuously instead of daily? 

SOLUTION: Below, we define ac [ t ] to give the total value of the investment at 
the end of t years and i n t e r e s t [ t ] to yield the total amount of interest earned at 
the end of t years. Then Table and TableForm are used to produce the table of 
ordered triples corresponding to the year, total value of the investment, and total 
interest earned. 



4.3 Mathematics of Finance 253 

Clear[ac,interest] 

ac[t_]=12500 (1+0.07/365)Λ(365 t); 

interest[t_]=ac[t]-12500; 

Tablet{t,ac[t],interest[t]},{t,0,30,5}]//TableForm 

0 
5 
10 
15 
20 
25 
30 

12500 
17737.7 
25170.2 
35717. 
50683.2 
71920.5 
102057. 

0 
5237.75 
12670.2 

23217. 
38183.2 
59420.5 

89556.6 

The value of the investment if interest is compounded continuously is shown 
below. 

Clear[ac] 

ac[t_]=12500 Exp[.07 t]; 

Table[{t,ac[t]},{t,0,30,5}]//TableForm 

0 
5 
10 
15 
20 
25 
30 

12500 
17738.3 
25171.9 
35720.6 
50690. 
71932.5 
102077. 

The problem can be redefined for arbitrary values of t, P, r, and n as follows : 

Clear[ac,interest,results] 

ac[t_,P_,r_,n_]=P (l+r/n)"(n t); 

interest[t_,P_,r_,n_]=ac[t,P,r,n]-P; 

results [ {t0__, tl__,m_}, P_, r_, n__] : = 

Table[{t,ac[t,P,r,n],interest[t,P,r,n]},{t,tO,tl,m}]//TableForm 

Hence, any problem of this type can be worked using the functions defined above. 

EXAMPLE: Suppose $10,000 is invested at an interest rate of 12% compounded 
daily. Create a table consisting of the total value of the investment and the interest 
earned at the end of 0, 5, 10, 15, 20, and 25 years. What is the total value and 
interest earned on an investment of $15,000 invested at an interest rate of 15% 
compounded daily at the end of 0,10, 20, and 30 years? 

SOLUTION: In this case, we use the function r e s u l t s defined above. Here, 
t0=0, t l = 2 5 , m=5, P=10000, r=.12, and n=365: 



254 4 Introduction to Lists and Tables 

resu l t s [ {0 ,25 ,5} ,10000 ,0 .12 ,365] 

0 
5 
10 
15 
20 
25 

10000 
18219.4 
33194.6 
60478.6 
110188. 
200756. 

0 
8219.39 
23194.6 
50478.6 
100188. 
190756. 

Notice that if the conditions are changed to t0=0, t l = 3 0 , m=10, P=15000, r=.15, 
and n=365, the desired table can be quickly calculated: 

results[{0,30,10},15000,0.15,365] 

0 15000 0 
10 67204.6 52204.6 
20 301097. 286097. 

6 6 
30 1.34901 10 1.33401 10 ■ 

Application: Future Value 

If R dollars are deposited at the end of each period for n periods in an annuity that earns 
interest at a rate of j % per period, the future value of the annuity is given by: 

future j 

EXAMPLE: Define a function f u t u r e which calculates the future value of an 
annuity. Compute the future value of an annuity where $250 is deposited at the 
end of each month for 60 months at a rate of 7% per year. Make a table of the 
future values of the annuity where $150 is deposited at the end of each month for 
12t months at a rate of 8% per year for t=l, 5, 9,13, . . . , 21, 25. 

SOLUTION: After defining f u t u r e , we use f u t u r e to calculate that the future 
value of an annuity where $250 is deposited at the end of each month for 60 
months at a rate of 7% per year is $17898.22. 

Clear[r,n] 
future[r_,j_ ,n_]=r ( (1+j ) Λ η-1) / j 

n 
(-1 + (1 + j) ) r 

J 
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future[250,0 .07/12,5 12] 

17898.2 

For the second problem, we use T a b l e and f u t u r e to compute the future values 
of the annuity where $150 is deposited at the end of each month for 12t months at 
a rate of 8% per year for t=l, 5, 9 ,13, . . . , 21, 25. Hence, the first column in the table 
below corresponds to the time (in years) and the second column corresponds to 
the future value of the annuity. 

Table[{t,future[150,0.08/12,12 t]},{t,1,25,4}]//TableForm 

1 1867.49 
5 11021.5 
9 23614.4 
13 40938.1 
17 64769.6 
21 97553.8 
25 142654. 

Application: Annuity Due 

Another type of annuity is as follows. If R dollars are deposited at the beginning of each 
period for n periods with an interest rate of j % per period, the annuity due is given by: 

Γ(1 + ; Γ - 1 1 SA =RU—'-1 1 I 
due 

V ^ ) 

EXAMPLE: Define a function due that computes the annuity due. Use due to (a) 
compute the annuity due of $500 deposited at the beginning of each month at an 
annual rate of 12% compounded monthly for three years; and (b) calculate the 
annuity due of $100k deposited at the beginning of each month at an annual rate 
of 9% compounded monthly for 10 years for k=l, 2, 3,. . . ,10. 

SOLUTION: In the same manner as the previous example, we first define due and 
then use due to compute the annuity due of $500 deposited at the beginning of 
each month at an annual rate of 12% compounded monthly for three years. 

d u e [ r _ , j _ , n _ ] = r ( ( ( l + j r ( n + l ) - l ) / j ) - r 

1 + n 
(-1 + (1 + j) ) r 

_r + 
j 
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d u e [ 5 0 0 , 0 . 1 2 / 1 2 , 3 12] 

21753 .8 

We then use T a b l e and due to calculate the annuity due of $100k deposited at the 
beginning of each month at an annual rate of 9% compounded monthly for 10 
years for k=l, 2, 3, ... ,10. Notice that the first column corresponds to the amount 
deposited each month at an annual rate of 9% compounded monthly and the 
second column corresponds to the value of the annuity. 

Table[{100 k,due[100 k,0.09/12,10 12]},{k,1,10}]//TableForm 

100 
200 
300 
400 
500 
600 
700 
800 
900 
1000 

19496.6 
38993.1 
58489.7 
77986.3 
97482.8 
116979. 
136476. 
155973. 
175469. 
194966. 

We solve a similar problem below. 

EXAMPLE: Compare the annuity due on $100k monthly investment at an annual 
rate of 8% compounded monthly for t=5,10,15, 20 and k=l, 2, 3, 4, 5. 

SOLUTION: We use T a b l e and due to calculate due [100 k , 0 . 0 8 / 1 2 , t 12] , 
corresponding to the annuity due of $100k deposited monthly at an annual rate of 
8% compounded monthly for t years, for k=l, 2, 3, 4, and t=5,10,15, and 20. Notice 
that the rows correspond to the annuity due on $100, $200, $300, $400, and $500 
monthly investment for 5, 10, 15, and 20 years, respectively. For example, the 
annuity due on $300 deposited monthly at an annual rate of 8% compounded 
monthly for 15 years is $104,504. 

Table[due[100 k,0.08/12,t 12],{k,1,5},{t,5,20,5}]//TableForm 

7396.67 
14793.3 
22190. 
29586.7 
36983.4 

18416.6 
36833.1 

55249.7 
73666.3 
92082.8 

34834.5 
69669. 
104504. 
139338. 
174173. 

59294.7 
118589. 
177884. 
237179 
296474 
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Application: Present Value 

Yet another type of problem deals with determining the amount of money which must be 
invested in order to insure a particular return on the investment over a certain period of 
time. This is given with the following. The present value, P, of an annuity of n payments 
of R dollars each at the end of consecutive interest periods with interest compounded at a 
rate of interest j % per period is given by: 

1-(1+ ;)-" 
P = R—*—^-. 

; 

EXAMPLE: Define a function p r e s e n t to compute the present value of an 
annuity, (a) Find the amount of money that would have to be invested at 7 1/2% 
compounded annually to provide an ordinary annuity income of $45,000 per year 
for 40 years; and (b) find the amount of money that would have to be invested at 
8% compounded annually to provide an ordinary annuity income of 
$20000+$5000k per year for 35 years for k=0,1, 2, 3, 4, and 5 years. 

SOLUTION: In the same manner as in the previous examples, we first define the 
function p r e s e n t which calculates the present value of an annuity. We then use 
p r e s e n t to calculate the amount of money that would have to be invested at 7 
1/2% compounded annually to provide an ordinary annuity income of $45,000 per 
year for 40 years. 

present[r_,j__,n_]=r ( (l-(l+j ) A <-n) )/j ) 

-n 
(1 - (1 + j) ) r 

present[45000,0.075,40] 

566748. 

Also, we use T a b l e to find the amount of money that would have to be invested 
at 8% compounded annually to provide an ordinary annuity income of 
$20000+$5000k per year for 35 years for k=0, 1, 2, 3, 4, and 5. Notice that the first 
column corresponds to the annuity income and the second column corresponds to 
the present value of the annuity. 

Tablet{20000+5000k/present[20000+5000 k, 0.08,35]},{k,0,5}]//TableForm 
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20000 
25000 
30000 
35000 
40000 

45000 

233091. 
291364. 
349637. 
407910. 
466183. 

524456. 

Application: Deferred Annuities 

Deferred annuities can also be considered. The present value of a deferred annuity of R 
dollars per period for n periods deferred for k periods with interest rate j per period is 
given by: 

*V = « i-( i+/)- ( } i - ( i+ ;T 

EXAMPLE: Define a function d e f [ r , n , k , j ] , which computes the value of a 
deferred annuity where r equals the amount of the deferred annuity, n equals the 
number of years in which the annuity is received, k equals the number of years in 
which the lump sum investment is made, and j equals the rate of interest. Use def 
to compute the lump sum that would have to be invested for 30 years at a rate of 
15% compounded annually to provide an ordinary annuity income of $35,000 per 
year for 35 years. How much money would have to be invested at the ages of 25, 
35, 45, 55f and 65 at a rate of 8 1 /2% compounded annually to provide an ordinary 
annuity income of $30,000 per year for 40 years beginning at age 65? 

SOLUTION: As in the previous examples, we first define def and then use def to 
compute the lump sum that would have to be invested for 30 years at a rate of 15% 
compounded annually to provide an ordinary annuity income of $35,000 per year 
for 35 years. The function which computes the present value of a deferred annuity 
is given below where 

r = the amount of the deferred annuity, 
n= the number of years in which in annuity is received, 
k = the number of years in which the lump sum investment is made, and 
j = the interest rate. 

def[r_,n_,k_,j_]=r ( (l-(l+j ) Λ ( - (n+k) ) ) / j - ( l - ( l + j T ( - k ) ) / j ) 

-k -k - n 
1 - (1 + j ) 1 - (1 + j ) 

( _ ( ) + ) r 

j J 
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d e f [ 3 5 0 0 0 , 3 5 , 3 0 , 0 . 1 5 ] 

3497 .58 

To answer the second question, we note that the number of years the annuity is 
deferred is equal to 65 (the age at retirement) minus the age at which the money is 
initially invested, and then use T a b l e and de f to compute the amount of money 
would have to be invested at the ages of 25, 35, 45, 55, and 65 at a rate of 8 1 /2% 
compounded annually to provide an ordinary annuity income of $30,000 per year 
for 40 years beginning at age 65. Note that the first column corresponds to the 
current age of the individual, the second column corresponds to the number of 
years from retirement, and the third column corresponds to the present value of 
the annuity. 

Table[{k,65-k,def[30000,40,65-k,0.085]},{k,25,65,10}]//TableForm 

25 40 12988.8 
35 30 29367.4 
45 20 66399.2 
55 10 150127. 
65 0 339436. 

Application: Amortization 

A loan is amort ized if both the principal and interest are paid by a sequence of equal 
periodic payments. A loan of P dollars at interest rate j per period may be amortized in n 
equal periodic payments of R dollars made at the end of each period, where 

R= rj 
i-(i+,r 

The function, amor t [ p , j , n ], defined below determines the monthly payment needed to 
amortize a loan of p dollars with an interest rate of j % compounded monthly over n 
months. A second function, t o t i n t p a i d [ p , j , n ], calculates the total amount of interest 
paid to amortize a loan of p dollars with an interest rate of j % compounded monthly over 
n months. 

amort [p_,j_,n_] = (p j ) / (l-(l+j ) Λ (-η) ) 

j P 

1 - (1 + j) 

totintpaid[p_,j_,n_J= n amort[p,j,n]-p 
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J n p 
-P + 

-n 
1 - (1 + j ) 

EXAMPLE: What is the monthly payment necessary to amortize a loan of $75,000 
with interest 9.5% compounded monthly over 20 years? 

SOLUTION: The first calculation below uses a m o r t to determine the necessary 
monthly payment to amortize the loan. The second calculation determines the 
total amount paid on a loan of $75,000 at a rate of 9.5% compounded monthly over 
twenty years, while the third shows how much of this amount was paid towards 
the interest. 

amort[75000,0.095/12,20 12] 

699.098 

240 amort[75000,0.095/12,240] 

167784. 

totintpaid[75000,0.095/12,240] 

92783.6 ■ 

EXAMPLE: What is the monthly payment necessary to amortize a loan of $80,000 
at an annual rate of j % in twenty years for j=8,8.5, 9, 9.5,10, and 10.5? 

SOLUTION: Below, we use amor t to calculate the necessary monthly payments. 
The first column corresponds to the annual interest rate and the second column 
corresponds to the monthly payment. 

Table[{j,amort[80000,j/12,20 12]},{j,0.08,0.105,0.005}]//TableForm 

0 
0 
0 
0 
0 

0 

08 
085 
09 
095 
1 

105 

669 
694 
719 
745 
772 

798 

152 
259 
781 
705 
017 

704 

In many cases, the amount paid towards the principal of the loan and the total amount 
which remains to be paid after a certain payment need to be computed. This is easily 
accomplished with the functions u n p a i d b a l a n c e and c u r p r i n p a i d defined below 
using the function amor t [ p , j , n ] that was previously defined: 
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unpaidbalance[p_,j_,n_,m_J=present[amort[p,j,n],j,n-m] 

m - n 
(1 - (1 + j) ) P 

-n 
1 - (1 + j ) 

curprinpaid[p_,j_,n_,m_]=p-unpaidbalance[p,j,n,m] 

m - n 
(1 - (1 + j) ) P 

p 

-n 

1 - (1 + j) 

Note that Mathematica does not retain definitions of functions from previous Mathematica 
sessions. This means that in order to use a function definition from a previous 
Mathematica session, the definition must be re-entered. 

EXAMPLE: What is the unpaid balance of the principal at the end of the fifth year 
of a loan of $60,000 with an annual interest rate of 8% scheduled to be amortized 
with monthly payments over a period of ten years? What is the total interest paid 
immediately after the 60th payment? 

SOLUTION: We use the functions u n p a i d b a l a n c e and c u r p r i n p a i d , defined 
above, to calculate that of the original $60,000 loan, $24,097.90 has been paid at the 
end of five years; $35,902.10 is still owed on the loan. 

unpaidbalance[60000,0.08/12,120,60] 

35902.1 

curprinpaid[60000,0.08/12,120,60] 

24097.9 ■ 

Mathematica can also be used to determine the total amount of interest paid on a loan 
using the following function 

curintpaid[p_,j_,n_,m_]=m amort[p,j,n]-curprinpaid[p,j,n,m] 

m - n 
(1 - (1 + j) ) p j m p 

_p + + 

-n -n 

1 - (1 + j) 1 - (1 + j) 

where c u r i n t p a i d [ p , j , n , m ] computes the interest paid on a loan of $p amortized at a 
rate of j per period over n periods immediately after the mth payment. 
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EXAMPLE: What is the total interest paid on a loan of $60,000 with an interest 
rate of 8% compounded monthly amortized over a period of ten years (120 
months) immediately after the 60th payment? 

SOLUTION: Using c u r i n t p a i d , we see that the total interest paid is $19,580.10. 

curintpaid[60000,0.08/12,120,60] 

19580.1 ■ 

Using the functions defined above, amortization tables can be created which show a 
breakdown of the payments made on a loan. An example is given below. 

EXAMPLE: What is the monthly payment necessary to amortize a loan of $45,000 
with interest rate of 7% compounded monthly over a period of 15 years (180 
months)? What is the total principal and interest paid after 0, 3, 6, 9, 12, and 15 
years? 

SOLUTION: We first use a m o r t to calculate the monthly payment necessary to 
amortize the loan. 

amort[45000,0.07/12,15 12] 

404.473 

Next, we use T a b l e , c u r p r i n p a i d , and c u r i n t p a i d to determine the interest 
and principal paid at the end of 0, 3, 6, 9,12, and 15 years. 

Table[{t,curprinpaid[45000,0.07/12,15 12,12 t ] , 
curintpaid[45000,0.07/12,15 12,12 t ] } , { t ,0 ,15 ,3} ] / /TableForm 

0 
3 
6 
9 
12 
15 

0. 
5668.99 
12658.4 
21275.9 
31900.6 
45000 

0. 
8892.03 
16463.6 
22407.2 
26343.5 
27805.1 

Note that the first column represents the number of years, the second column 
represents the principal paid, and the third column represents the interest paid. 
Thus, at the end of twelve years, $31,900.60 of the principal has been paid and 
$26,343.50 has been paid in interest. ■ 

Since c u r i n t p a i d [ p , j , n , y ] computes the interest paid on a loan of $p amortized at 
a rate of j per period over n periods immediately after the yth payment, and 
c u r i n t p a i d [ p , j , n , y - 1 2 ] computes the interest paid on a loan of $p amortized at a 
rate of j per period over n periods immediately after the (y-12 )th payment, 

curintpaidfp,j ,n,y]-curintpaid[p,j ,n,y-12] 
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yields the amount of interest paid on a loan of $p amortized at a rate of j per period over n 
periods between the (y-12)th and yth payment. Consequently, the interest paid and the 
amount of principal paid over a year can also be computed. 

EXAMPLE: Suppose that a loan of $45,000 with interest rate of 7% compounded 
monthly is amortized over a period of 15 years (180 months)? What is the principal 
and interest paid during each of the first five years of the loan? 

S O L U T I O N : We begin by defining the functions a n n u a l i n t p a i d and 
a n n u a l p r i n p a i d which calculate the interest and principal paid during the yth 
year on a loan of $p amortized at a rate of j per period over n periods. 

annualintpaid [p_,j_,n__,y_] :=curintpaid[p, j ,n,y] -curintpaid[p, j ,n,y-12] ; 

annualprinpaid[p_,j_,n_,y_]:=curprinpaid[p,j,n,y]-

curprinpaid[p,j,n,y-12]; 

We then use these functions along with T a b l e to calculate the principal and 
interest paid during the first five years of the loan. Note that the first column 
represents the number of years the loan has been held, the second column 
represents the interest paid on the loan during the year, and the third column 
represents the amount of the principal that has been paid. 

Tablet{t ,annualintpaid[45000,0.07/12, 15 12,12 t ] , 
a n n u a l p r i n p a i d [ 4 5 0 0 0 , 0 . 0 7 / 1 2 , 1 5 1 2 , 1 2 t ] } , { t , 1 , 5 , 1 } ] / / T a b l e F o r m 

1 3094.26 1759.41 
2 2967.08 1886.6 
3 2830.69 2022.98 
4 2684.45 2169.22 
5 2527.64 2326.03 

For example, we see that during the third year of the loan, $2830.69 was paid in 
interest and $2022.98 was paid on the principal. ■ 

Application: Financial Planning 

We can use many of the functions defined above to help make decisions about financial 
planning. 

EXAMPLE: Suppose a retiree has $1,200,000. If she can invest this sum at 7%, 
compounded annually, what level payment can she withdraw annually for a 
period of forty years? 



264 4 Introduction to Lists and Tables 

SOLUTION: The answer to the question is the same as the monthly payment 
necessary to amortize a loan of $1,200,000 at a rate of 7% compounded annually 
over a period of forty years. Thus, we use a m o r t to see that she can withdraw 
$90,011 annually for forty years. 

a m o r t [ 1 2 0 0 0 0 0 , . 0 7 , 4 0 ] 

90011 . 

EXAMPLE: Suppose an investor begins investing at a rate of d dollars per year at 
an annual rate of j % . Each year the investor increases the amount invested by i%. 
How much has the investor accumulated after m years? 

SOLUTION: The following table illustrates the amount invested each year and the 
value of the annual investment after m years. 

Year 

0 

1 

2 

3 

k 

m 

Rate of 
Increase 

i% 

i% 

i% 

i% 

i% 

Annual 
Interest 

j% 

j% 

j% 

j% 

j% 

j% 

Amount 
Invested 

d 

(l + i%)d 

(l + i%fd 

(l + i%fd 

(l + i%fd 

(l + i%)md 

Value after m 
Years 

(1+;'%)'" d 

{l + i%){\ + j%)m-'d 

(l + i%)2(l + j%)""2d 

(i+i%f(i+j%)m-3d 

(l + i%)k(l + j%)'"~kd 

(l + i%)md 

It follows that the total value of the amount invested for the first k years after m 
years is given by: 
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Year 

0 

1 

2 

3 

k 

m 

Total Investment 

(1+ /%)"<* 

(l + ;-%)"d + (l + i%Xl + /%)" xd 

(i+/%)m <*+(i+f%)(i+j%y~J d+{i+i%f(i+i%y~2d 

n=0 

M=0 

m 

J(i+i%)"(i+i%r<i 
n=0 

The package SymbolicSum.m, contained in the Algebra folder (or directory), 
contains the command SymbolicSum which can be used to find a closed form of 

k m 

the sums ^ ( l + i%)"(l + ;%)m"Bd and ^{l + i%)n{\ + j%)m~nd. Below, we first load the 

package Symbol i cSum and then use S y m b o l i c S u m to find the sum 
k 

V (l + i%)n(l + j%)m~"d and name the result c losedone . We then use Fac to r and 

T o g e t h e r to first write c l o s e d o n e as a single fraction and then factor the 
numerator. 

«Algebra" SymbolicSum" 

closedone=SymbolicSum[(1+i)An (l+j)*(m-n) d,{n,0,k}]//Simplify 

-k + m 
(d (1 + j) 

k k 
((1 + i) + i (1 + i) -

k k 
(1 + j) - j (1 + j) ))\ 

/ (i - j) 

Factor[Together[closedone]] 
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-k + m 
(d (1 + j ) 

k k 
( - ( 1 + i ) - i (1 + i ) + 

k k 
(1 + j ) + j (1 + j ) ) ) \ 

/ ( - i + j ) 

In the exact same manner as above, Symbol ic Sum is used to find a closed form of 

V ( l + /%)"(l+ /%)"'~"d, naming the result c l o s e d t w o . In this case, however, the 
n=0 

final result is displayed in a print cell in input form with the command 
P r i n t [ I n p u t F o r m [ % ] ] . Remember that the symbol % refers to the previous 
output. 

c losedtwo=Symbol i cSum[(1+ί ) Λ η ( l + j ) A ( m - n ) d , { n , 0 , m } ] 

m m 
(d ( ( 1 + i ) + i (1 + i ) -

m m 
(1 + j ) - j (1 + j ) ) ) \ 

/ (i - j) 

Factor[Together[closedtwo]] 

m m 
(d (-(1 + i) - i (1 + i) + 

m m 
(1 + j) + j (1 + j) ))\ 

/ (-i + j) 

Print[InputForm[%]] 

( d * ( - ( l + i ) A m - i * ( l + i ) A m + (1 + j)"m + j * ( l + j ) " m ) ) / ( - i + j ) 

The a b o v e r e s u l t s a re u s e d to de f ine t he f u n c t i o n s 
i n v e s t m e n t ! { d , i , j } , { k , m } ] and i n v e s t m e n t t o t [ {d , i , j } ,m] which 
return the value of the investment after k and m years, respectively. In the second 
case, notice that print cells can be edited like any other input or text cell. 
Consequently, we use notebook editing features to copy and paste the above result 
when we define the function i n v e s t m e n t t o t . 

investment[{d_,i_,j_},{k_,m_}]=(d*(1+j)Λ(-k+m)*((1+i)^k+i* 
( i + i r k - < i + j r k - j * ( i + j r k ) ) / ( i - j ) 
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-k + m 
(d (1 + j ) 

k k 
( ( 1 + i ) + i (1 + i ) -

k k 
(1 + j ) - j (1 + j ) ) ) \ 

/ ( i - j ) 

i n v e s t m e n t t o t [ { d _ , i _ , j _ } , m _ ] = ( d * ( - ( 1 + i ) A m - i * ( 1 + i ) A m + ( 1 + j ) Λ π ι + 

j * ( l + j ) A m ) ) / ( - i + j ) 

m m 
(d ( - ( 1 + i ) - i (1 + i ) + 

m m 
(1 + j ) + j (1 + j ) ) ) \ 

/ ( - i + j ) 

Finally, i n v e s t m e n t and i n v e s t m e n t t o t are used to illustrate various financial 
scenarios. In the first example, i n v e s t m e n t is used to compute the value after 
twenty-five years of investing $6500 the first year and then increasing the amount 
invested 5% per year for 5, 10, 15, 20, and 25 years assuming a 15% rate of interest 
on the amount invested. The built-in function A c c o u n t i n g F o r m i s used to 
convert numbers expressed in exponential notation to ordinary notation. In the 
second example, i n v e s t m e n t t o t is used to compute the value after twenty-five 
years of investing $6500 the first year and then increasing the amount invested 5% 
per year for 25 years assuming various rates of interest. The results are displayed 
in Account ingForm. 

results=Table[{t,investment[{6500,0.05,0.15},{t,25}]}, 

{t,5,2 5,5}]//TableForm 

6 
5 1.03506 10 

6 
10 1.55608 10 

6 
15 1.88668 10 

6 
20 2.09646 10 

6 
25 2.22957 10 

TableForm[AccountingForm[results]] 

5 1035065. 
10 1556078. 
15 1886680. 
20 2096460. 
25 2229573. 
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scenes=Table[{i,investmenttot[{6500,0.05,i},25]},{i,0.08,0.20,0.02}]; 

AccountingForm[TableForm[scenes]] 

0 
0 
0 
0 
0 
0 
0 

08 
1 
12 
14 
16 
18 
2 

832147. 
1087126. 
1437837. 
1921899. 
2591636. 
3519665. 
4806524. 

Another interesting investment problem is discussed in the following example. In this 
case, Mathematica is useful in solving a recurrence equation which occurs in the problem. 
The command used to solve equations of this type is RSolve. In general, 

RSolve[{equat ions} ,a[n] ,n] 

attempts to solve the recurrence equations e q u a t i o n s for the variable a [ n ] with no 
dependence on n. Note that the command R S o l v e is contained in the package RSolve 
located in the DiscreteMath folder (or directory) so it must first be loaded before using. 
We illustrate the use of this command in the following example. 

EXAMPLE: I am fifty years old and I have $500,000 which I can invest at a rate of 
7% annually. Furthermore, I wish to receive a payment of $50,000 the first year. 
Future annual payments should include cost-of-living adjustments at a rate of 3% 
annually. Is $500,000 enough to guarantee this amount of annual income if I live to 
be eighty- years old? 

SOLUTION: Instead of directly solving the above problem, let's solve a more 
general problem. Let a denote the amount invested and p the first-year payment. 
Let a n denote the balance of the principal at the end of year n. Then, the amount of 
the nth payment, the interest earned on the principal, the decrease in principal, 
and the principal balance at the end of year n is shown in the table for various 
values of n. Observe that if (l + j)n~1p>(l + j)an_i, then the procedure terminates and 
the amount received in year n is (l + j)anl. 
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Year 

1 

2 

3 

4 

n 

Amount 

P 

(1+/)p 

(i+/)V 

(i+/)V 

(i+;TV 

Interest 

ia 

iai 

ia2 

ia3 

'«„-, 

From Principal 

p-ia 

( i+ ;> - ' « , 

(l + ;)V-fû2 

(l + ;)3p-ie, 

(i+;')"" V-W..1 

Principal Balance 

«, =(l + i > - P 

«2 = ( i+'K - ( i + ; > 

fl3=(l + i> 2 - ( l + ;)V 

«4=(1 + I'K-(1 + 7')3P 

« ^ ( Ϊ + ' Κ Ι - ^ + Ζ Γ ' Ρ 

The recurrence equation «n =(l + i)an_1-(l + ;)H~1p is solved for 0n with no 
dependence on anl with Mathematica below. After clearing several definitions of 
variable names, we use R S o l v e to solve the recurrence equation given above 
where the initial balance is represented by amount . Hence, an is given by the 
expression found in b i g s t e p . 

«DiscreteMath" RSolve" 

eql=a[1]==(1+i)amount-p; 

eq2=a[n]==(l+i)a[n-l]-(l+j)"(n-l)p; 

bigstep=RSolve[{eql,eq2},a[n],n] 

-1 + n 
(-1 - j) (1 + j) p 

{{a[n] -> -( ) + 

i - j 

-1 + n 
((-1 - i) (1 + i) 

(-(amount i) + amount j + p)) / (i - j)}} 

We then define a m [ n , a m o u n t , i , p , j ] to be the explicit solution found in 
b i g s t e p , extracted from b i g s t e p with b i g s t e p [ [ 1 , 1 , 2 ] ] . Last we compute 
a m [ n , a , i , p , j ] which corresponds to the balance of the principal of a dollars 
invested under the above conditions at the end of the nth year. 

am[n_,amount_,i__,p_, j_]=bigstep[ [1,1,2]] //Together; 

am[n,a,i,p,j] 

n n n 
(-(a i (1 + i) ) + a (1 + i) j + (1 + i) p -

(1 + j) p) / (-i + j) 
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To answer the question, we first define a n n u i t y t a b l e in the following. For given 
a, i, p , j , and m, a n n u i t y t a b l e f a , i , p , j ,m] returns an ordered triple 
corresponding to the year, amount of income received in that year, and principal 
balance at the end of the year for m years. 

annuitytable [a_,i_,p_, j_/Hi_] :=Table[{k, (l+j)A(k-l) p, 

am[k,a,i,p,j]},{k,l,m}] //TableForm 

Then we compute a n n u i t y t a b l e f 500000 , . 0 7 , 5 0 0 0 0 , . 0 3 , 1 5 ] . In this case, 
we see that the desired level of income is only guaranteed for thirteen years which 
corresponds to an age of 67 since the principal balance is negative after thirteen 
years. 

annuitytable[500000,.07,50000,.03,15] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

50000 
51500, 
53045, 
54636. 
56275. 
57963. 
59702. 
61493. 
63338. 
65238. 
67195. 
69211. 
71288. 
73426. 
75629. 

.3 

.4 

.7 

.6 

.7 

.5 

.7 

.8 

.7 

.7 

.5 

485000. 
467450. 
447126. 
423789. 
397179. 
367018. 
333006. 
294823. 
252122. 
204532. 
151653. 
93057.4 
28283.4 
-43163.5 
-121814. 

An alternative method of defining a n n u i t y t a b l e is presented below. In this 
case, the procedure terminates when the principal is negative or after fifty years. 

Clear[annuitytable] 

annuitytable [ a_, i_,p__, j_] : =Module [ { } , 

For[k=l,am[k,a,i,p,j]>=0 && k<=50,k++, 

Print [{k,(l+jr(k-l) p,am[k,a,i,p, j ] } ] ] ; 

Print[{k,am[k-l,a,i,p,j],0}] 

] 

We see that if the first year payment is $29,000, 3% increases can occur annually 
for thirty years: 

annuitytable[500000,.07,29000,.03] 

{1, 29000, 506000.} 
{2, 29870., 511550.} 
{3, 30766.1, 516592.} 
{4, 31689.1, 521065.} 
{5, 32639.8, 524900.} 
{6, 33618.9, 528024.} 
{7, 34627.5, 530358} 
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{8, 
{9, 
{10 

{11 
{12 
{13 
{14 
{15 
{16 
{17 
{18 
{19 
{20 
{21 
{22 
{23 
{24 
{25 
{26 
{27 
{28 
{29 
{30, 
{31 

35666.3, 
36736.3, 
37838 
38973 
40142 
41347 
42587 
43865 
45181 
46536 
47932 
49370 
50851 
52377 
53948 
55567 
57234 
58951 
60719 
62541 
64417 
66349 
68340 
47007 

4, 
6, 
8, 

.1, 

.5, 

.1, 

.8, 

5, 
6, 
6, 
7, 
.2, 

5, 

/ 
/ 
/ 
6, 

1, 
4, 
9, 
4, 
9, 

531816.} 
532307.} 
531730.} 
529978.} 
526934.} 
522472.} 
516457.} 
508744.} 
499175.} 
487581.} 
473779.} 
457573.} 
438752.} 
417087.} 
329335.} 

364231.} 
332493..} 
296817.} 
256874.} 
212314.} 
162759.} 
107802.} 
47007.9} 

0} 

We can also investigate certain other problems. For example, a thirty-year 
mortgage of $80,000 with an annual interest rate of 8.125% requires monthly 
payments of approximately $600 ($7,200 annually) to amortize the loan in 30 years. 
However, using a n n u i t y t a b l e , we see that if the amount of the payments is 
increased by 3% each year, the thirty-year mortgage is amortized in 17 years. In 
the following result, the first column corresponds to the year of the loan, the 
second column the annual payment, and the third column the principal balance. 

annuitytable[80000,.08125,7200,.03] 

{1, 
{2, 
{3, 
{4, 
{5, 
{6, 
{7, 
{8, 
{9, 
{10, 
{11, 
{12, 
{13, 
{14, 
{15, 
{16, 
{17, 

{18, 

7200, 79 
7416., 7 
7638.48, 
7867.63, 
8103.66, 
8346.77, 
8597.18, 
8855.09, 
9120.74, 
9394.37 
9676.2, 
9966.48 
10265.5 
10573 
10890 
11217 
11553 

.7} 

3954.36 

300.} 
8327.1} 
77052.7} 
75445.6} 
73471.9} 
71094. 
68274. 
64966.2} 
61123.9} 
, 56695.9} 
51626.2} 
, 45854.4} 
, 39314.6} 
, 31935.4} 
, 23639.5} 
, 14342.9} 
, 3954.36} 
0} 
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4A Other Applications 
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We now discuss several other interesting applications that require the manipulation of 
lists. 

Application: Secant Lines, Tangent Lines, 
and Animations 

f(x + h)- fix) 
In differential calculus, we learn that /'(*) = lim— ; M ', provided this limit exists. One 

way we may interpret f\d) is as the limit as ^ -> 0 0f the slopes of the secant lines passing 
through (<*,/(«)) and (a + h,f(a + tifj. Given a differentiable function f and a number a, we 
can use Mathematica to graph f and the secant line passing through (a,f(a)) and 
(a + h,f(a + h)) for various values of h and animate the result or display the result as a 
graphics array. 

9 23 15 
EXAMPLE: Let f(x) = x3—x2+—x . Graph f and the secant line passing 

through (l,/(l)) and (l + /z,/(l + /z)) for various values of h. 

SOLUTION: We begin by defining and graphing f. We use the option T i c k s to 
place to place tick marks corresponding to 1, 2, and 3 on the x-axis and - 1 , 1 , and 2 
on the y-axis. The option P l o t R a n g e - > { - l . 5 , 2 } specifies that the range 
displayed consists of the y-values between -1.5 and 2. 

Clear[f] 

f[χ_]=χΛ3-9/2χΛ2+23/4χ-15/8; 

plotf=Plot[f[x],{x,0,3},PlotRange->{-1.5,2},Ticks->{Range[3],{-1,1,2}}] 
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An equation of the line passing through the points (a,f(a)) and (a + h,f(a + h)) is 

given by y = — ' (x-a)+f(a). Next, we define s e c a n t to be the function 

corresponding to the secant line passing through these points. 

s e c a n t [ a _ , h _ ] : = ( f [ a + h ] - f [ a ] ) / h ( x - a ) + f [ a ] ; 

Since we will be graphing the secant line for a = 1 and various values of h, we 
define the function s e c g r a p h which, given h, 

1. graphs the secant line passing through (l,/(l)) and (l + /i,/(l + /i)) and names the 
resulting graphics object s i ; 

2. generates the points (l,/(l)) and (l + fe,/(l + /i)), declares them to be graphics 
objects, and names them p o i n t s ; and 

3. shows s i , p o i n t s , and p l o t f . 

Note that s i and p o i n t s are variables that are local to the function s e c g r a p h . 
The result of entering s e c g r a p h [ h ] for a particular value of h can be displayed 
by entering 

Show[secgraph[h],DisplayFunction->$DisplayFunction]. 

Clear[secgraph,points] 

secgraph[h_]:=Module[{si,points}, 

sl=Plot[secant[1,h],{x,0,3}, 

DisplayFunction->Identity]; 

points=6raphics[{ 

PointSize[.02], 

Point[{l,f[l]>],Point[{1+h,f[1+h]}]}]; 

Show[si,plotf,points,PlotRange->{-1.5,2}, 

Ticks->{Range[3],{-1,1,2}}] 

] 

To generate graphics that can be animated, we use a Do loop. The syntax of the 
Mathematica command Do is similar to the syntax of the command T a b l e . The 
c o m m a n d Do[ s t a t e m e n t [ i ] , { i , i s t a r t , i s t o p , i s t e p } ] instructs 
Mathematica to execute s t a t e m e n t [ i ] for values of i beginning with i s t a r t 
and continuing through i s t o p in increments of i s t e p . 

The following two windows show the results of entering the command: 

Do[Show[secgraph[h],DisplayFunction->$DisplayFunction],{h,2,.2,-.3}] 

To animate graphics, select the cells of the graphics to be animated as shown 
below. 
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File Edit Cell Graph Find Rction Style Window Help 

Secant and Tangent Lines 
Do[Shov[secgraph[h]„ 

D i splayFunc t i on-> $D i sp layFunct i o n ] , 
{ h , 2 , . 2 , - 3 } ] 

K> 

1100% ^ ΙΦΙ l 
\ö\ 
a 

Then, go to Graph on the Mathematica menu and select Hnimate S e l e c t e d 
Graphics or press 3§y. 

File Edit Cell Graph Find Rction Style Window Help 

Secant and Tangent Lines 
Do[ Shov[ s e c g r a p h [ h ] , 

D i splayFunc t i on-> $D i splayFunc t i o n ] , 
{ h , 2 , . 2 , - . 3 ) l 

O 

lE)@OIQDI(M)(ai 100% ▼ ΙΦΠΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΐΙΙΙΙΙΙΙΦΐ s a 

The six buttons in the lower left-hand corner of the window control the animation. 
From left to right, the buttons 

run the animation backward; 
run the animation cyclically; 
run the animation forward; 
pause the animation; 
slow the animation; and 
speed up the animation. 
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Animations may also be controlled by selecting Hnimation. . . under Graph on 
the Mathematica menu. 

An alternative approach is to generate the desired graphs and display the result as 
a graphics array. In the following, we use T a b l e to generate s e c g r a p h [ h ] for 
values of h from 1.7 to .2 in steps of - . 3 . The resulting list of six graphics objects is 
named g r a p h s . 

graphs=Table[secgraph[h] ,{h ,1 .7 , .2 , - .3}] 

{-Graph ics - , -Graph ics - , -Graph ics - , -Graph ics - , -Graph ics - , -Graphics-} 

We then use P a r t i t i o n to partition the set of six graphs in graphs into two sets 
of three graphs named toshow and use G r a p h i c s A r r a y to display toshow. 

toshow=Partition[graphs,3] 

{{-Graphics-, -Graphics-, -Graphics-}, 

{-Graphics-, -Graphics-, -Graphics-}} 

Show[GraphicsArray[toshow]] 

Similarly, we may also graph the line tangent to the graph of f at the point («,/(«)) for 
many values of a and animate the result or display the results as a graphics array. 

9 23 15 
EXAMPLE: Let f{x) = x3—x2 +—x . Graph f and the tangent line passing 

2 4 8 
through («,/(«)) for various values of a. 

SOLUTION: If f(x) is differentiable when x = a, the line tangent to the graph of f 
at the point («,/(«)) is given by y =f'(a)(x -a)+f(a). Below, we define t a n g e n t [ a ] 
to be a function corresponding to the line tangent to the graph of f at the point 
(fl,/(a)) and define t a n g r a p h which, given a, 

1. graphs the tangent line passing through (a,f(a)) and names the resulting 
graphics object t l ; 
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2. generates the point (a,f(a)) declares it to be graphics objects, and names it 
p o i n t ; and 

3. shows t l , p o i n t , and p l o t f . Note that p l o t f was generated in the previous 
example. 

Note that t l and p o i n t are variables that are local to the function t a n g r a p h . The 
result of entering t a n g r a p h [ a ] for a particular value of a can be displayed by 
entering 

Show[tangraph[h],DisplayFunction->$DisplayFunction]. 

tangent[a_]:=f'[a](x-a)+f[a]; 

tangraph[a_J :=Module[{tl,point}, 

tl=Plot[tangent[a],{x,0,3}, 

DisplayFunction->Identity]; 

point=6raphics[{ 

PointSize[.02],Point[{a,f[a]}]}]; 

Show[11,plot f,point,PlotRange->{-1.5,2}, 

Ticks->{Range[3],{-1,1,2}}] 

] 

As in the preceding example, we can use a Do loop to generate a set of graphics 
objects which can be animated. The results of entering the following command are 
shown below. 

D o [ S h o w [ t a n g r a p h [ a ] , D i s p l a y F u n c t i o n - > $ D i s p l a y F u n c t i o n ] , { a , . 2 5 , 2 . 7 5 , . 2 5 } ] 

File Edit Cell Graph Find fiction Style Window Help 

Secant and Tangent Lines 
D o [ S h o v [ t a n g r a p h [ a ] , 

D i s p l a y F u n c t i on->$Di sp layFunct i o n ] , 
{ a , . 2 5 , 2 . 7 5 , . 2 5 } ] 

ΙΕ@ΟΙΟΡΚ8Χ5) ΙΟΟ% ^ΙΦΓ MB a 
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Alternatively, we can use T a b l e and P a r t i t i o n to generate a table of graphics 
object, partit ion the result into an array of graphics objects, and use 
G r a p h i c s Ar r a y to display the results. 

graphs=Table[tangraph[a],{a,.25,2.75,.5}]; 

toshow=Partition[graphs,3]; 

Show[GraphicsArray[toshow]] 

-1 

Application: Approximating Lists 
with Functions 

Another interesting application of lists is that of curve fitting. The command 

F i t [ d a t a , f u n c t i o n s e t , v a r i a b l e s ] fits the list of data points d a t a using the 
functions in f u n c t i o n s e t by the method of least-squares. The functions in 
f u n c t i o n s e t are functions of the variables listed in v a r i a b l e s ; and 
I n t e r p o l a t i n g P o l y n o m i a l [ d a t a , x ] fits the list of data points d a t a with a n n - 1 
degree polynomial in the variable x. 

An example is shown below which gives a quadratic fit to the data points in d a t a l i s t . 

EXAMPLE: Define d a t a l i s t to be the list of numbers consisting of 1.14479, 
1.5767, 2.68572,2.5199, 3.58019, 3.84176, 4.09957, 5.09166, 5.98085,6.49449, and 
6.12113. (a) Find a quadratic approximation of the points in d a t a l i s t . (b) Find a 
fourth degree polynomial approximation of the points in d a t a l i s t . 

SOLUTION: The approximating function obtained above via the least-squares 
method can be plotted along with the data points. This is demonstrated below. 
Notice that many of the data points are not very close to the approximating 
function. Hence, a better approximation is obtained below using a polynomial of 
higher degree (4). 
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Clear[datalist] 

datalist={l.14479, 1.5767, 2.68572,2.5199, 3.58019, 3.84176, 

4.09957, 5.09166, 5.98085,6.49449, 6.12113}; 

pl=ListPlot[datalist,DisplayFunction->Identity]; 

Clear[y] 

y[x_]=Fit[datalist,{1,χ,χΛ2},χ] 

2 
0.508266 + 0.608688 x - 0.00519281 x 

p2=Plot[y[x],{x,-l,11},DisplayFunction->Identity]; 

Show[pl,p2,DisplayFunction->$DisplayFunction] 

6 

5 

4 

3 

2 

1 

2 4 6 8 10 

Clear[y] 

y[x_]=Fit[datalist,{1,χ,χΑ2,χΛ3,χΑ4},x] 

2 
-0.54133 + 2.02744 x - 0.532282 x + 

3 4 
0.0709201 x - 0.00310985 x 

To check its accuracy, this second approximation is simultaneously with the data 
points. 

p3=Plot[y[x],{x,-l,11},DisplayFunction->Identity]; 

Show[pl,p3,DisplayFunction->$DisplayFunction] 

Next, consider a list of data points made up of ordered pairs. 
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EXAMPLE: The following table shows the average percentage of petroleum 
products imported to the United States for certain years, (a) Graph the points 
corresponding to the data in the table and connect the consecutive points with line 
segments, (b) Use I n t e r p o l a t i n g P o l y n o m i a l to find a function which 
approximates the data in the table, (c) Find a fourth degree polynomial 
approximation of the data in the table, (d) Find a trigonometric approximation of 
the data in the table. 

Year 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

Percent 

34.8105 

35.381 

35.8167 

40.6048 

47.0132 

42.4577 

43.1319 

37.3182 

33.6343 

28.0988 

28.3107 

29.9822 

27.2542 

33.407 

35.4875 

38.1126 

41.57 

42.1533 

39.5108 1 

Source: The World Almanac and Book of Facts, 1993. 
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SOLUTION: We begin by defining d a t a to be the set of ordered pairs represented 
in the table: the x-coordinate of each point represents the number of years past 
1900 and the y-coordinate represents the percentage of petroleum products 
imported to the United States. 

d a t a = { { 7 3 . , 3 4 . 8 1 0 5 } , { 7 4 . , 3 5 . 3 8 1 } , { 7 5 . , 3 5 . 8 1 6 7 } , { 7 6 . , 4 0 . 6 0 4 8 } , 

{ 7 7 . , 4 7 . 0 1 3 2 } , { 7 8 . , 4 2 . 4 5 7 7 } , { 7 9 . , 4 3 . 1 3 1 9 } , { 8 0 . , 3 7 . 3 1 8 2 } , 

{ 8 1 . , 3 3 . 6 3 4 3 } , { 8 2 . , 2 8 . 0 9 8 8 } , { 8 3 . , 2 8 . 3 1 0 7 } , { 8 4 . , 2 9 . 9 8 2 2 } , 

{ 8 5 . , 2 7 . 2 5 4 2 } , { 8 6 . , 3 3 . 4 0 7 } , { 8 7 . , 3 5 . 4 8 7 5 } , { 8 8 . , 3 8 . 1 1 2 6 } , 

{ 8 9 . , 4 1 . 5 7 } , { 9 0 . , 4 2 . 1 5 3 3 } , { 9 1 . , 3 9 . 5 1 0 8 } } ; 

Next, we use G r a p h i c s , Map, and P o i n t to convert each of the ordered pairs in 
d a t a to points and declare the result to be a graphics object named ps . Note that 
since P o i n t S i z e [ . 03 ] is included within the G r a p h i c s command, the points 
will be larger than they would be if L i s t P l o t had been used to graph the points. 
We also use L i s t P l o t with the option P l o t J o i n e d - > T r u e to graph the set of 
points d a t a and connect consecutive points with line segments. Then we use 
Show to display ps and l p d a t a simultaneously. Note that in the result, the points 
are easy to distinguish because of their larger size. 

ps=Graphics[{PointSize[.03],Map[Point,data]}]; 

lpdata=ListPlot[data,PlotJoined->True,DisplayFunction->Identity]; 

Show[lpdata,ps,DisplayFunction->$DisplayFunction] 

Next, we use I n t e r p o l a t i n g P o l y n o m i a l to find a polynomial approximation, 
p, of the data in the table. Note that the result is lengthy, so S h o r t is used to 
display an abbreviated form of p. We then graph p and show the graph of p along 
with the data in the table for the years corresponding to 1971 to 1993. Although the 
interpolating polynomial agrees with the data exactly, the interpolating 
polynomial oscillates wildly. 
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p=InterpolatingPolynomial[data,x]; 

Short[p,3] 

34.8105 + (0.5705 + (-0.0674 + 

(0.747867 + « 1 » ) (-75. + x) ) (-74. + x) ) 

(-73. + x) 

plotp=Plot[p,{x,71,93},DisplayFunction->Identity]; 

Show[plotp, ps, PlotRange->{0,50}, DisplayFunction->$DisplayFunction ] 

75 80 85 90 

To find a polynomial which approximates the data but does not oscillate wildly, 
we use F i t . Again, we graph the fit and display the graph of the fit and the data 
simultaneously. In this case, the fit does not identically agree with the data and 
does not oscillate wildly. 

Clear[p] 

p=Fit[data,{1,χ,χΑ2,χΛ3,χΛ4},χ] 

2 3 
-198884. + 9597.83 x - 173.196 x + 1.38539 x -

0.00414481 x 

plotp=Plot[p,{x,71,93},DisplayFunction->Identity]; 

Show[plotp,ps,PlotRange->{0,50},DisplayFunction->$DisplayFunction] 

75 80 85 90 
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In addition to curve fitting with polynomials, Mathematica can also fit data with 
trigonometric functions. In this case, we use F i t to find an approximation of the 

data of the form p = cl+c2smx + c3sin— + c4cosx + c5cos—. As in the previous two 

cases, we graph the fit and display the graph of the fit and the data 
simultaneously. 

Clear[p] 

p=Fit[data,{1,Sin[x],Sin[x/2],Cos[x],Cos[x/2]},x] 

35.4237 + 4.25768 Cos[-] - 0.941862 Cos[x] + 
2 

6.06609 Sin[-] + 0.0272062 Sin[x] 
2 

plotp=Plot[p,{x,71,93},DisplayFunction->Identity]; 

Show[plotp,ps,PlotRange->{0,50},DisplayFunction->$DisplayFunction] 

75 80 85 90 

Mathematica supplies several packages which can be used to fit data using different 
techniques. We illustrate the command N o n l i n e a r F i t in the following example. 

EXAMPLE: The interest paid on the public debt of the United States of America 
as a percentage of Federal expenditures for selected years is shown in the 
following table, (a) Find a fifth degree polynomial approximation of the data in 

fl X^ + CL X *+■ CL 
the table, (b) Find an approximation of the data of the form h{x) = -1 l L. 

b^+b^x + b^ 
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Year 

1930 

1940 

1945 

1 1950 

1 1955 

1960 

1965 

1970 

1975 

1 1980 

1 1985 

1 1990 

Interest Paid as a 
Percentage of 

Federal 
Expenditures 

0 

10.5 

4.1 

13.4 

9.4 

10.0 

9.6 

9.9 

9.8 

12.7 

18.9 

21.1 

Source: The World Almanac and Book of Facts, 1993 

SOLUTION: Proceeding as in the previous example, we define d a t a to be the set 
of ordered pairs represented in the table: the x-coordinate of each point represents 
the number of years past 1900 and the y-coordinate represents the interest paid on 
the public debt of the Untied States as a percentage of Federal expenditures. We 
also use G r a p h i c s , Map, and P o i n t to convert each of the ordered pairs in d a t a 
to points and declare the result to be a graphics object named p t s . Note that since 
P o i n t S i z e [ . 03 ] is included within the G r a p h i c s command, the points will be 
larger than they would be if L i s t P l o t had been used to graph the points. 

Clear[data] 

data={ {30,0},{40,10.5},{45,4.1},{50,13.4},{55,9.4}, 

{60,10.0},{65,9.6},{70,9.9},{75,9.8},{80,12.7}, 

{85,18.9},{90,21.1}}; 

pts=Graphics[{PointSize[.03],Map[Point,data]}]; 
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Next, we use F i t to find a fifth degree polynomial approximation of the data in 
data. We graph the approximation and name the result p i and then display both 
p i and p t s simultaneously, naming the result p2. Note that p2 is not displayed 
since p i is not displayed. 

Clearff] 

f[x_]=Fit[data,{Ι,χ,χΛ2,χΛ3,χΛ4,χΛ5},χ] 

2 
30.8223 - 6.35418 x + 0.340698 x -

3 4 -7 5 
0.00726226 x + 0.0000681248 x - 2.32417 10 x 

pl=Plot[f[x],{x,0,90},DisplayFunction->Identity]; 

p2=Show[pl,pts]; 

To find a nonlinear fit of the data, we use the command N o n l i n e a r F i t which is 
contained in the package Nonl inearF i t located in the Sta t i s t ics folder (or 
directory). Since N o n l i n e a r F i t is not a built-in command, we first load the 
package NonlinearFit and then use N o n l i n e a r F i t to find values of av a2, a3, bx, 

β -χΐ _j_ d % _|_ β 

bo, and b, so that h(x) = — - - approximates the data in the table and name 
3 ^ + ^ χ + ^ 

the resulting list v a i s . 

«Statistics"NonLinearFit^ 

Clear[h] 

vals=NonlinearFit[data, 

(al x"2+a2 x+a3)/(bl x"2+b2 x+b3),x,{31,32,33,01,02,03}] 

NonlinearFit::lmpnocon: 
Warning: The values of the parameters given to 

NonlinearFit do not appear to have converged. 
The returned value may not be at the minimum. 

{al -> -2.60692, a2 -> 476.384, a3 -> -11947.2, 

bl -> -0.69463, b2 -> 93.2257, b3 -> -2312.4} 

tt. X^ 4* fl X + 0. 
We then substitute the values obtained in v a i s into h(x) = — - - . As in the 

b^+b^x + b^ 
above, we graph the approximation and name the result p3 and then display both 
p3 and p t s simultaneously, naming the result p4. Last, we use G r a p h i c s A r r a y 
to show both p2 and p4. In spite of the error messages obtained above, h appears 
to approximate the data in the table relatively well. 

h[x_]=(al χΛ2+β2 x+e3)/(bl x^2+b2 x+b3) /. vais; 

p3=Plot[h[x],{x,0,90},DisplayFunction->Identity]; 

p4=Show[p3,pts]; 

Show[GraphicsArray[{p2,p4}]] 
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Application: Introduction to Fourier Series 

Many problems in applied mathematics are solved through the use of Fourier series. 
Mathematica assists in the computation of these series in several ways. First, we restate the 
following standard definitions. 

The Fourier series of a periodic function f(x) with period 2L is the trigonometric series 
ηπχλ . . ίηπχ 

a cosl \ + b sin 

L L L 

where a0= — f(x)dx, an = — /(x)cos \dx, and bn = — /(x)sin \dx. 

The kth term of the Fourier series e 0 + / ] nnx \ . . f ηπχ 
a cosl —— I + 0_ sin| 

'Ιαπχλ . . (knx 
a, cosl + bv sin 

L ) k V L 

The kth partial sum of the Fourier series a0 + V 

it 

βο+Χ 

ηπχ I , . ί ηπχ 
a cosl —— I + 0. sm| is 

«ÏÏX Ϊ , . ( ηπχ 
a cosl + 0 sin 

L ) " V L 

It is a well-known theorem that if f(x) is a periodic function with period 2L and f (x) is 
continuous on [-L,L] except at finitely many points, then at each point x the Fourier series 
corresponding to f converges and 

flo + X nnx ) . . \ ηπχ 
a cosl +0 sin 

Lim f(y) +Lint f(y) 
y->x+ y-*x-

In fact, if the series y^(|"„|+|fr„|) converges, then the Fourier series 

«ο + Σ 
nnx ) , . f nnx 

a cosl \ + b sin 
L ) n \ L 

converges uniformly on 9Î. 
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lifO<x<l 
EXAMPLE: Let f(x) = l-xif-l<x<0. Compute and graph the first few partial 

[f(x-2)ifx>l 

sums of the Fourier series for f. 

SOLUTION: We begin by clearing all prior definitions of f. We then define the 
piece wise function f and graph f on the interval [-1,5]. 

Clear[f] 

f[x_] :=1 /; 0<=x<=l 

f[x_]:=-x /; -K=x<0 

f[x_]:=f[x-2] /; x>l 

graphf=Plot[f[x],{x,-l,5}] 

\ 1 

\o .8 
a. β 

OH 

O.E 

~ ~ \ 

\ 

\ 

_ \ 

The Fourier series coefficients are computed with the integral formulas given 
earlier. Executing the commands 

L=l; 
a[0 3 =1/(2L) NIntegrate[f[x],{x,-L,L}] 

1 fL defines L to be 1 and a [ 0 ] to be an approximation of the integral — f(x)dx. 
2L J-L 

Executing the commands 

a[n_]:=l/L Nlntegrateff[x] Cos[n Pi x/L],{x,-L,L}] 
b[n_]:=l/L NIntegrate[f[x] Sin[n Pi x/L],{x,-L,L}] 

I f (ηκχ i defines a [ n ] to be an approximation of the integral — /(x)cos \dx and b[n] 

to be an approximation of the integral — /(x)sin \dx. 

Clear[a,bffs,L] 

L=l; 

a[0]=l/(2L) NIntegrate[f[x],{x,-L,L}] 

0.75 

a[n__]:=l/L NIntegrate[f [x] Cos[n*Pi x/L] , {x,-L/L}] 

b[n_]:=l/L NIntegrateff[x] Sin[n*Pi x/L],{x,-L/L}] 
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A table containing the coefficients a [ i ] and b [ i ] for i = 1, 2, 3,..., 10 is created 
and named c o e f f s . Several error messages are generated because of the 
discontinuities but the resulting approximations are satisfactory for our purposes. 
The elements in the first column of the table represent the aj's and the second 
column represents the bj's . Notice how the elements of the table are extracted 
using double brackets with coe f f s. 

coeffs=Table[{a[i],b[i]},{i,l,10}]; 

NIntegrate::ncvb: 
NIntegrate failed to converge to 

prescribed accuracy after 7 
recursive bisections in x near x = -1.. 

NIntegrate: :ncvb: 
NIntegrate failed to converge to 

prescribed accuracy after 7 
recursive bisections in x near x = -1.. 

TableForm[coeffs] 

-0.202642 
-20 

1.01644 10 
-0.0225158 

-20 
2.95932 10 
-0.00810569 

-20 
-3.17637 10 
-0.00413556 

-20 
5.84453 10 
-0.203173 

-20 
7.48565 10 

0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

.31831 

.159155 

.106103 

.0795775 

.063662 

.0530516 

.0454873 

.0397887 

.0357218 

.031831 

The first element of the list is extracted with coe f f s [ [ 1 ] ] : 

c o e f f s [ [ l ] ] 

{ - 0 . 2 0 2 6 4 2 , 0 .31831} 

The first element of the second element of c o e f f s and the second element of the 
third element of c o e f f s are extracted with c o e f f s [ [ 2 , 1 ] ] and 
coef f s [ [ 3 ,2 ] ] , respectively. 

coeffs[[2,1]] 

-20 
1.01644 10 

coeffs[[3,2]] 

0.106103 
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Once the coefficients are calculated, the nth partial sum of the Fourier series is 
obtained with Sum. The kth term of the Fourier series, a^ cos(lorx) + b^ sin(larx), is 
defined in f s below. Hence, the nth partial sum of the series is given by 

a0 + Y* ak cos(k7öc) + bk sm(k7Dc) = a [ 0 ] + V ' f s [ k , x ] 
k=\ k=l 

which is defined in f o u r i e r using Sum. We illustrate the use of f o u r i e r by 
finding f o u r i e r [ 2 , x ] and f o u r i e r [ 3 , x ] . 

fs[k_,x_]:=coeffs[[k,l]] Cos[k Pi x]+coeffs[[k,2]] Sin[k Pi x] 

fourier[n_,x__] :=a[0]+Sum[fs[k,x] , {k,I,n}] 

fourier[2,x] 

0.75 - 0.202642 Cos[Pi x] + 

-20 
1.01644 10 Cos[2 Pi x] + 

0.31831 Sin[Pi x] + 

0.159155 Sin[2 Pi x] 

fourier[3, x] 

0.75 - 0.202642 Cos[Pi x] + 

-20 
1.01644 10 Cos[2 Pi x] -

0.0225158 Cos[3 Pi x] + 

0.31831 Sin[Pi x] + 

0.159155 Sin[2 Pi x] + 

0.106103 Sin[3 Pi x] 

To see how the Fourier series approximates the periodic function, we plot the 
function simultaneously with the Fourier approximation for n=2 and n=5. The 
results are displayed together using G r a p h i c s Ar r ay . 

graphtwo=Plot[fourier[2,x],{x,-l,5},PlotStyle->GrayLevel[0.2], 

DisplayFunction->Identity]? 

bothtwo=Show[graphtwo,graph f]; 

graphfive=Plot[fourier[5,x],{x,-l,5},PlotStyle->GrayLevel[0.2], 

DisplayFunction->Identity]; 

bothfive=Show[graphfive,graphf]; 

Show[GraphicsArray[{bothtwo,bothfive}]] 
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1 2 3 4 5 1 2 3 4 5 

The package FourierTransform in the Calculus folder (or directory) contains several 
commands, such as F o u r i e r T r i g S e r i e s , F o u r i e r S i n S e r i e s C o e f f i c i e n t , 
F o u r i e r C o s S e r i e s C o e f f i c i e n t , and N F o u r i e r T r i g S e r i e s , which can be used to 
compute exact or approximate Fourier series of some functions. 

Application: The One-Dimensional 
Heat Equation 
A typical problem in applied mathematics which involves the use of Fourier series is that 
of the one-dimensional heat equation. This initial value problem which describes the 
temperature in a uniform rod with insulated surface is given by: 

, d2U du . L Λ 
l. k—— = — , 0 < χ < Μ > 0 ; 

ax1 at 

ii. u(0,t)=T0, t>0; 
iii. u(a,t)=Ta, t>0; and 
iv. u(x,0)=f(x), 0<x<a. 

The solution to the problem is 

u(x,t) = T0+-x(Ta-T0) + ^bnsm(Xnx)e-%kt 

v v / n=\ 
v(x) ' 

a . . 

where λη =— and bn =—\ (f(x)-v(xj)sm\ \dx, and is obtained through separation of 

variables techniques. The coefficient b n in the solution, u(x,t), is the Fourier series 
coefficient b n of the function f{x)-v{x), where v(x) is the steady-state temperature. 

EXAMPLE: Consider the heat equation with k = \ and initial temperature 
distribution f(x) = -(x-l)cos(nx). The steady-state temperature for this problem is 

v{x) = l-x, and the eigenvalue, λη, is given by — . Approximate the solution u(x,t) 

using these conditions. 
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SOLUTION: The function f is defined and plotted below. Also, the steady-state 
temperature, v(x), and the eigenvalue are defined. Finally, I n t e g r a t e is used to 
define a function which will be used to calculate the coefficients of the solution. 

Clear[f] 

f[x__]:=-(x-l) Cos[Pi x] 

Plot[f[x],{x,0,4}] 

v[x__] :=l-x 

lambda[n_]:=n Pi/4 

b[n_J :=b[n]=Integrate[(f [x]-v[x])*Sin[n Pi x/4],{x,0,4}] 

Notice that b [ n ] is defined using b [ n_ ] : =b [ n ] = . . . so that Mathematica 
"remembers" the values of b [ n ] computed and thus avoids recomputing 
previously computed values. In the following table, we compute exact and 
approximate values of b [ 1 ] , . . . , b [ 10 ]. 

Table[{n 

1 

2 

3 

4 

5 

6 

i,b[n] ,b[n]//N},{n,l,10}]//TableForm 

128 

15 Pi 
-32 

3 Pi 
128 

21 Pi 
-3 

Pi 
-128 

45 Pi 
32 

15 Pi 
-128 

2.71624 

-3.39531 

1.94017 

-0.95493 

-0.905415 

0.679061 

7 231 P i - 0 . 1 7 6 3 8 
2 
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8 3 Pi 0.212207 
-128 

9 585 Pi -0.0696473 
32 

10 105 Pi 0.0970087 

Let Sm = bm sin( Amx)<rΛ .̂ Then, the desired solution u(x,t) is given by 

u(x,t) = v(x)+ / S , 
m=\ 

Let u(x,t,n) = v{x)+2\Sm· Notice that u(x,t,n) = u(x,t,n-l) + Sn. Consequently, 
m=\ 

approximations of the solution to the heat equation are obtained recursively taking 
advantage of Mathematica's ability to compute recursively. The solution is first 
defined for n = 1 by u [ x , t , 1 ] . Subsequent partial sums, u [ x , t , n ], are obtained 
by adding the nth term of the series, Sn = bn sin( A x)e-%* , t o u [ x , t , n - l ] . 

u[x_,t_,l]:=v[x]+b[l] Sin[lambda[l]*x]Exp[-lambda[lp2 t] 

u[x__,t__,n_J :=u[x,t,n-l]+b[n] *Sin[lambda[n] x] Exp[-lambda[n] Λ2 t] 

By defining the solution in this manner a table can be created which includes the 
partial sums of the solution. In the following table, we compute the first, fourth, 
and seventh partial sums of the solution to the problem. 

Table[u[x,t,n],{n,l,7,3>]//TableForm 

Pi x 
128 Sin[ ] 

4 
1 - x + 

2 
(Pi t)/16 

15 E Pi 
Pi x Pi x 

128 Sin[ ] 32 Sin[ ] 
4 2 

1 _ x + _ + 

2 2 
(Pi t)/16 (Pi t)/4 

15 E Pi 3 E Pi 

3 Pi x 
128 Sin[ ] 

4 3 Sin[Pi x] 

2 2 
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(9 Pi t)/16 Pi t 
21 E Pi E Pi 

Pi x Pi x 
128 Sin[ ] 32 Sin[ ] 

4 2 
1 _ x + _ + 

2 2 
(Pi t)/16 (Pi t)/4 

15 E Pi 3 E Pi 

3 Pi x 
128 Sin[ ] 

4 3 Sin[Pi x] 

2 2 
(9 Pi t)/16 Pi t 

21 E Pi E Pi 

5 Pi x 3 Pi x 
128 Sin[ ] 32 Sin[ ] 

4 2 
+ 

2 2 
(25 Pi t)/16 (9 Pi t)/4 

45 E Pi 15 E Pi 

7 Pi x 
128 Sin[ ] 

4 

2 
(49 Pi t)/16 

231 E Pi 

To generate graphics which can be animated, we use a Do loop. The 10th partial 
sum of the solution is plotted below for t = 0 to t = 3 using a step-size in t of 3/20. 
Remember that u [ x , t , n ] is determined with a T a b l e command. Therefore, 
E v a l u a t e must be used in the Do command below so that Mathematica first 
computes the solution u and then evaluates u at the particular values of x. 
Otherwise, u is recalculated for each value of x. The plots of the solution obtained 
above can be animated as indicated in the following window. 
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One-Dimensional Heat Equation 
(Local) inf!7j:= 

Do[Plot [Evaluate[u[x , t ,10] ] , {x ,0 ,4} , 
P lotRange->{-4 ,7) ] , { t ,0 ,3 ,6 /20}] 

|(S(s)SMGDI(g)(aioo% ▼ ΙΦΓ m FS 
a 

Do[Plot[Evaluate[u[x,t,10]],{x,0,4},PlotRange->{-4,7}],{t,0,3,6/20}] 

Alternatively, we may generate several graphics and display the resulting set of 
graphics as a GraphicsArray. Below, we plot the 10th partial sum of the solution 
for t = 0 to t = 3 using a step-size in t of 3/8. The resulting nine graphs are named 
graphs which are then partitioned into three element subsets with P a r t i t i o n 
and named toshow. We then use Show and GraphicsArray to display toshow. 

graphs=Table[Plot[Evaluate[u[x,t,10]],{x,0,4},Ticks->None, 

PlotRange->{-4,6.5},DisplayFunction->Identity],{t,0,3,3/8}]; 

toshow=Partition[graphs,3]; 

Show[GraphicsArray[toshow]] 

\ 



Nested Lists: 
Matrices and Vectors 

Chapter 5 discusses operations on matrices and vectors, including vector calculus and 
systems of equations. Several linear programming examples are discussed. Applications 
discussed in this chapter include linear programming, and vector calculus. 
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5.1 Nested Lists: Introduction 
to Matrices, Vectors, and 
Matrix Operations 

Defining Nested Lists: Matrices and Vectors 

Matrix algebra can be performed with Mathematica. Before introducing the operations 
involved in matrix algebra, the method by which a matrix is entered must first be 
discussed. In Mathematica, a matrix is simply a list of lists where each list represents a row 
of the matrix. Therefore, the m x n matrix 

-M- « , 1 «er 

V m\ ml m3 

is entered in the following manner: 

A = { { a [ l , l ] , a [ 1 , 2 ] , . . . , a [ 1 , n ] } , { a [ 2 , 1 ] , a [ 2 , 2 ] , . . . , a [ 2 , n ] } , . 
{ a [ m , l ] , a [ m , 2 ] , . . . , a [ m , n ] } } . 

For example, to use Mathematica to define m to be the matrix a„ a,. enter the command 

m = { { a [ l , l ] , a [ l , 2 ] } , { a [ 2 , l ] , a [ 2 , 2 ] } } , 

where a[ 1,1 ] = απ, a[ 1,2 ] = an, a [ 2 , 1 ] = α2λ, and a [ 2 , 2 ] = a22. 
Another way to create a matrix is to use the command A r r a y . The command 

m=Array [ a , { 2 ,2 } ] produces the same result as above. Once a matrix has been entered, 
it can be placed in the usual form (with rows and columns) using the command 
Mat r ixForm[A] . 

The following examples illustrate the definition of a 3 x 3 matrix and of a 2 x 4 matrix. 

EXAMPLE: Use Mathematica to define the matrices 
«11 «12 «13 

«21 «22 «23 

I «31 «32 «33 J 

ΐΛΐ 2̂2 2̂3 K) 

and 
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SOLUTION: In this case, both T a b l e [ a [ i , j ] , { i , 1, 3} , { j , 1, 3} ] and 
A r r a y [ a , { 3 , 3} ] produce the same result. Below, we use each to define 
mat r ixa to be the matrix 

*21 a22 «23 

Vfl31 fl32 fl33y 

The commands MatrixForm or TableFormare used to display the results in 
traditional matrix form. 

Clear[a,b,matrixa,matrixb] 

matrixa=Table[a[i,j],{i,l,3},{j,l,3}] 

{{a[l, 1], a[l, 2], a[l, 3]}, 

{a[2, 1], a[2, 2], a[2, 3]}, 

{a[3, 1], a[3, 2], a[3, 3]}} 

MatrixForm[matrixa] 

a[l, 1] a[l, 2] a[l, 3] 
a[2, 1] a[2, 2] a[2, 3] 
a[3, 1] a[3, 2] a[3, 3] 

matrixa=Array[ a, { 3,3 } ] 

{{a[l, 1], a[l, 2], a[l, 3]}, 

{a[2, 1], a[2, 2], a[2, 3]}, 

{a[3, 1], a[3, 2], a[3, 3]}} 

MatrixForm[matrixa] 

a[l, 1] a[l, 2] a[l, 3] 
a[2, 1] a[2, 2] a[2, 3] 
a[3, 1] a[3, 2] a[3, 3] 

We may also use Mathematica to define non-square matrices as indicated below. 
The same results would have been obtained by entering 
T a b l e [ b [ i , j ] , { i , l , 2 } , { j , l , 4 } ] . 

matrixb=Array[b,{2,4}] 

{{b[l, 1], b[l, 2], b[l, 3], b[l, 4]}, 

{b[2, 1], b[2, 2], b[2, 3], b[2, 4]}} 

MatrixForm[matrixb] 

b[l, 1] b[l, 2] b[l, 3] b[l, 4] 
b[2f 1] b[2, 2] b[2, 3] b[2, 4] ■ 
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More generally the commands T a b l e [ f [ i , j ] , { i , i m a x } , { j , j m a x } ] and 
Ar ray [ f, { imax, jmax} ] yield nested lists corresponding to the imax x jmax matrix 

' /(1,1) /(l, 2) - /(l,jmax) ) 
/(2,1) /(2,2) - /(2,jmax) 

I/(imax, 1) /(imax,2) ··· /(imax, jmax) 

T a b l e [f [ i , j ] , { i , i m i n , imax , i s t e p } , { j , j m i n , jmax, j s t e p } ] calculates the 
list of lists 

{{f[imin,jmin], f[imin,jmin+jstep],..., 
f[imin,jmax]},{f[imin+istep,jmin],...,f[imin+istep,jmax]} 
,...,{f[imax,jmin],...,f[imax,jmax]}}, 

and the command 

Table[f[i,j,k,...],{i,imin,imax,istep},{j,jmin,jmax,jstep}, 
{k,kmin,kmax,kstep},...] 

calculates a nested list; the list associated with i is outermost. If i s t e p is omitted, the 
s t e p s i z e is one. 

EXAMPLE: Define C to be the 3 x 4 matrix (c\, where qj, the entry in the ith row 

and jth column of C, is the numerical value of cos(/2 - z'2)sin(/2 -j2). 

SOLUTION: After clearing all prior definitions of c, if any, we define c(i,j) to be 
the numerical value of c(/,7) = cos(;2-/2)sin(/2-72) and then use A r r a y to compute 
the 3x4 matrix m a t r i x c . 

Clear[c,matrixc] 

c[i_,j_]=N[Cos[j"2-i"2]*Sin[i"2-j~2]] 

2 2 
Cos[i - 1. j ] 

2 2 
Sin[i - 1. j ] 

matrixc=Array[c,{3,4}] 

{{0., 0.139708, 0.143952, 0.494016}, 

{-0.139708, 0., 0.272011, 0.452789}, 

{-0.143952, -0.272011, 0., -0.495304}} 
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MatrixForm[matrixe] 

0. 
- 0 . 1 3 9 7 0 8 
- 0 . 1 4 3 9 5 2 

0 .139708 
0 . 
- 0 . 2 7 2 0 1 1 

0 .143952 
0 .272011 
0 . 

0 .494016 
0 .452789 
- 0 . 4 9 5 3 0 4 

EXAMPLE: Define the matrix 
(1 0 0̂  
0 1 0 

1° o ij 

SOLUTION: The matrix 

(1 
0 

1° 
0 
1 
0 

0} 
0 
υ 

is the 3x3 identity matrix. The command I d e n t i t y M a t r i x [ n ] returns the 
nxn identity matrix. 

IdentityMatrix[3] 

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

EXAMPLE: Generate a 2x3 where the entries are randomly chosen integers 
between -4 and 4. 

SOLUTION: Below, we use Tab le , Random, and I n t e g e r to generate the matrix. 
If you enter the following command, your results will almost certainly be different 
than the results shown here. 

b=Table[Random[Integer,{-4,4}],{2},{3}]; 

MatrixForm[b] 

-4 
2 

-2 -2 
-1 -1 

In Mathematica, a vector is a list of numbers and, thus, is entered in the same manner as 
lists. For example, to use Mathematica to define the row vector v e c t o r v to be (vl v2 v3) 

enter v e c t o r v = { v [ l ] , v [ 2 ] , v [ 3 ] } . Similarly, to define the column vector v e c t o r v to 
be 
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^Λ 

enter v e c t o r v = { v [ l ] , v [ 2 ] , v [ 3 ] } . Mathematica does not distinguish between row 
and column vectors. Nevertheless, Mathematica performs computations with vectors and 
matrices correctly as long as the computations are well-defined. 

EXAMPLE: Define w to be the vector 
-4 
-5 

v 2 y 

, v e c t o r v to be the vector 

(νλ v2 v3 i;4), and z e r o v e c to be the vector (0 0 0 0 0). 

SOLUTION: To define w, we enter: 

w = { - 4 , - 5 , 2 } 

{ - 4 , - 5 , 2} 

Similarly, to define v e c t o r v , we enter: 

vectorv=Array[v,4] 

{v[l], v[2], v[3], v[4]} 

The same results as above would have been obtained by entering 
T a b l e [ v [ i ] , { i , l , 4 } ] . Last, to define z e r o v e c , we enter: 

zerovec=Table[0,{5}] 

{ 0 , 0, 0 , 0, 0} 

Extracting Elements of Matrices 

For the 2 x 2 matrix m={{a[ 1,1 ] , a [ 1 ,2 ] } , { a [ 2 , 1 ] , a [ 2 , 2 ] }} defined earlier, 
m[ [ 1 ] ] yields the first element of matrix m which is the list { a [ l , l ] f a [ l , 2 ] } ; 
m [ [ 2 , 1 ] ] yields the first element of the second element of matrix m which is a [ 2 , 1 ] . In 
general, if m is an m x n matrix, m[ [ i , j ] ] yields the unique element in the i t h row and 
j t h column. More specifically, m[ [ i , j ] ] yields the j t h part of the i t h part of m. 
Generally, l i s t [ [ i ] ] or P a r t [ l i s t , i ] yields the i t h part of l i s t ; l i s t [ [ i , j ] ] or 
P a r t [ l i s t , i , j ] yields the j th part of the i t h part of l i s t , and so on. 
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EXAMPLE: Define mb to be the matrix 
10 -6 -9 
6 -5 -7 

-10 9 12 
(a) Extract the third row of 

mb. (b) Extract the element in the first row and third column of mb. (c) Display mb 
in traditional matrix form. 

SOLUTION: We begin by defining mb. mb [ [ i , j ] ] yields the (unique) number in 
the i t h row and j th column of mb. Observe how various components of mb (rows 
and elements) can be extracted and how mb is placed in Matr ixForm. 

mb={{10,-6,-9},{6,-5,-7},{-10,9,12}} 

{{10, -6, -9}, {6, -5, -7}, {-10, 9, 12}} 

MatrixForm[mb] 

10 
6 
-10 

-9 
-7 
12 

mb[[3]] 

{ - 1 0 , 9 , 12} 

m b [ [ l , 3 ] ] 

-9 ■ 

In the previous example, we saw that the third row of mb is extracted with mb [ [ 3 ] ] . 
More generally, if m is a matrix, the i t h row of m is extracted with m[ [ i ] ] . The command 
T r a n s p o s e [m] yields the transpose of the matrix m, obtained by interchanging the rows 
and columns of m. We can use T r a n s p o s e to extract a column from a matrix m by 
extracting rows from the transpose. Namely, if m is a matrix, T r a n s p o s e [ m ] [ [ i ] ] 
extracts the i t h row from the transpose of m which is the same as the i t h column of m. 

EXAMPLE: Extract the second and third columns from A if A = 
-2 2 
1 3 

-4 1 

SOLUTION: We first define m a t r i x a and then use T r a n s p o s e to compute the 
transpose of m a t r i x a , naming the result t a , and then displaying t a in 
Matr ixForm. 
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matrixa={{0,-2,2},{-1,1,-3},{2,-4,1}}; 

ta=Transpose[matrixa]; 

MatrixForm[ta] 

0 - 1 2 
-2 1 -4 
2 - 3 1 

Next, we extract the second column of m a t r i x a using T r a n s p o s e . Since we have 
already defined t a to be the transpose of m a t r i x a , entering t a [ [ 2 ] ] would 
produce the same result. 

Transpose[matrixa][[2]] 

{-2, 1, -4} 

To extract the third column, we take advantage of the fact that we have 
a l ready defined t a to be the t ranspose of m a t r i x a . Entering 
T r a n s p o s e [ m a t r i x a ] [ [ 3 ] ] would produce the same result. 

t a [ [ 3 ] ] 

{2, - 3 , 1} 

■ 

Once a matrix or array has been defined, we may use it in subsequent calculations. 

EXAMPLE: The following table contains approximations of the first eight zeros 
for the Bessel functions of the first kind, Jn(x), of order n=0, 1, 2, ... , 6. (a) List 
approximations of the first eight zeros of the Bessel function of the first kind of 
order 1. (b) What is an approximation of the fourth zero of the Bessel function of 
the first kind of order 2 and an approximation of the third zero of the Bessel 
function of the first kind of order 2? (c) Define a function a l p h a which, given n 
and m, returns an approximation of the mth zero of the Bessel function of the first 
kind of order n. (d) Use a l p h a to obtain an approximation of the third zero of the 
Bessel function of the first kind of order 0 and the third zero of the Bessel function 
of the first kind of order 5. 
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h(x) 

/.M 

AW 

/aW 

J.M 

/,(*) 

/.(*) 

1 

2.4048 

3.8317 

5.1356 

6.3802 

7.5883 

8.7715 

9.9361 

2 

5.5201 

7.0156 

8.4172 

9.7610 

11.065 

12.339 

13.589 

3 

8.6537 

10.173 

11.620 

13.015 

14.373 

15.700 

17.004 

4 

11.792 

13.324 

14.796 

16.223 

17.616 

18.980 

20.321 

5 

14.931 

16.471 

17.960 

19.409 

20.827 

22.218 

23.586 

6 

18.071 

19.616 

21.117 

22.583 

24.019 

25.430 

26.820 

7 

21.212 

22.760 

24.270 

25.748 

27.199 

28.627 

30.034 

8 

24.352 

25.904 

27.421 

28.908 

30.371 

31.812 

33.233 

SOLUTION: We begin by defining zeros to be the array of numbers in the table 
above. 

zeros={{2.4048,5.5201,8.6537,11.792,14.931,18.071,21.212,24.352}, 

{3.8317,7.0156,10.173,13.324,16.471,19.616,22.760,25.904}, 

{5.1356,8.4172,11.620,14.796,17.960,21.117,24.270,27.421}, 

{6.3802,9.7610,13.015,16.223,19.409,22.583,25.748,28.908}, 

{7.5883,11.065,14.373,17.616,20.827,24.019,27.199,30.371}, 

{8.7715,12.339,15.700,18.980,22.218,25.430,28.627,31.812}, 

{9.9361,13.589,17.004,20.321,23.586,26.820,30.034,33.233}}; 

The second element of z e r o s , corresponding to approximations of the first eight 
zeros of the Bessel function of the first kind, ]\ (x), is extracted with z e r o s [ [ 2 ] ] . 

zeros [ [2 ] ] 

{3.8317, 7.0156, 10.173, 13.324, 16.471, 19.616, 22.76, 25.904} 

An approximation of the fourth zero of the Bessel function of the first kind of 
order 2 is the fourth element of the third element of z e r o s . 

zeros [ [3 ,4 ] ] 

14.796 

On the other hand, the third zero of the Bessel function of the first kind of order 3 
is the third element of the fourth element of z e r o s , extracted below with P a r t . 
The same result would be obtained by entering z e r o s [ [ 4 , 3 ] ] . 

Part[zeros ,4 ,3] 

13.015 
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Below we define the function a l p h a . Given n and m, a l p h a [ n , m ] returns an 
approximation of the mth zero of the Bessel function of the first kind of order n. 
We use a l p h a to obtain an approximation of the third zero of the Bessel function 
of the first kind of order 0 and the third zero of the Bessel function of the first kind 
of order 5. 

alpha[n__,m_] :=zeros[ [n+l,m] ] 

alpha[0,3] 

8.6537 

alpha[5,3] 

15.7 

Basic Computations with 
Matrices and Vectors 

Mathematica performs all of the usual operations on matrices. Matrix addition (A+B), 
scalar multiplication (kA), matrix multiplication, when defined, (A. B), and combinations 
of these operations are all possible. The transpose of A is obtained by interchanging the 
rows and columns of A and is found with the built-in command T r a n s p o s e [A] . If A is 
a square matrix, the determinant of A is obtained with Det [ A ]. 

If A and B are n x n matrices satisfying AB = BA = I, then B is called the inverse of A 
and is denoted by A~ . The inverse of a matrix A, provided it exists, is found with the 
command I n v e r s e [A]. 

EXAMPLE: Define ma to be the matrix 
3 - 4 5 
8 0 - 3 
5 2 1 

and mb to be the matrix 

6 -9Ï 
■5 -7 

-10 9 12 

' 10 
6 . Compute (a) ma+mb; (b) mb-4ma; (c) the inverse of ma»mb; (d) the 

transpose of (ma-2mb)«mb; and (e) det 
(3 -4 5 
8 0 - 3 
5 2 1 

\ 
= 

/ 

3 -4 
8 0 
5 2 

5 
-3 
1 

SOLUTION: As described above, we enter ma and mb as nested lists where each 
element corresponds to a row of the matrix: 

m a = { { 3 , - 4 , 5 } , { 8 , 0 , - 3 } , { 5 , 2 , 1 } } ; 

m b = { { 1 0 , - 6 , - 9 } , { 6 , - 5 , - 7 } , { - 1 0 , 9 , 1 2 } } 
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Entering 

ma+mb//TableForm 

13 -10 -4 
14 - 5 -10 
-5 11 13 

adds matrix ma to mb and expresses the result in traditional matrix form. Entering 

mb-4 ma//TableForm 

-2 10 -29 
-26 - 5 5 
-30 1 8 

subtracts four times matrix ma from mb and expresses the result in traditional 
matrix form. Entering 

Inverse [ma.mb] / /TableForm 

59 

380 
223 

-( — ) 
570 

49 

114 

53 

190 
92 

-( — ) 
95 

18 

19 

167 
_ / 

380 
979 

570 
187 

114 

computes the inverse of ma»mb. Similarly, entering 

Transpose[(ma-2 mb).mb]//TableForm 

-352 -90 384 
269 73 -277 
373 98 -389 

computes the transpose of (ma-2mb)»mb and entering 

Det[ma] 

190 

computes the determinant of ma. ■ 

As indicated in the previous example, matrix products, when defined, are computed 
with .. Note that . is also used to compute the dot product of two vectors, when defined. 
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EXAMPLE: Compute A< • B and B« 
f-i 

>A if A = -3 
[-4 

-5 
5 
4 

-5 
3 
2 

-4) 
-2 and B = 
"3j 

(1 
-4 
4 

I-5 

-2Ï 
3 

-3J 

SOLUTION: Since A is a 3 x4 matrix and B is a 4 x 2 m a t r i x , A·B is defined and 
is a 3x2 matrix. Below we first define m a t r i x a and m a t r i x b , then compute the 
product, naming the result ab, and display ab inMatr ixForm. 

matrixa={{-l, -5, -5, -4}, {-3, 5, 3, -2}, {-4, 4, 2, -3}}; 

matrixb={{l, -2}, {-4, 3}, {4, -4}, {-5, -3}}; 

ab=matrixa.matrixb; 

MatrixForm[ab] 

19 19 
-1 15 
3 21 

However, the matrix product B · A is not defined and Mathematica produces error 
messages when we attempt to compute B · A. 

matrixb.matrixa 

Dot::dotsh: Tensors {{1, -2}, {-4, 3}, {4, -4}, {-5, -3}} and 
{{-1, -5, -5, -4}, {-3, 5, 3, -2}, {-4, 4, 2, -3}} 
have incompatible shapes. 

{{1, -2}, {-4, 3}, {4, -4}, {-5, -3}} . 

{{-1, -5, -5, -4}, {-3, 5, 3, -2}, {-4, 4, 2, -3}} 

Computations with vectors are performed in the same way. 

EXAMPLE: Let 5 
1 

KV 

and w = 0 
4 

{-y 
. (a) Calculate v-2w and via (b) Find a unit 

vector with same direction as v and a unit vector with the same direction as w. 

SOLUTION: We begin by defining v and w and then compute v - 2w and v · w 

v = { 0 , 5 , l , 2 } ; 

w = { 3 , 0 , 4 , - 2 } ; 

v-2w 

{ - 6 , 5 , - 7 , 6} 

0 
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The norm of a vector 

v = i s Ibll = Jv2 + V2 + ... + V2 = 4ν·ν 
\\ \\ V 1 2 n v 

If k is a scalar, the direction of kv is the same as the direction of v. Thus, if z is a 

nonzero vector, the vector π has the same direction as v, and since 

1 7? 

= — |i?|| = l, T-T is a unit vector. Below, we define the function norm which, 

given v, computes ||i;||. We then compute τ—τ and j—r. The results correspond to 

unit vectors with the same direction as v and w, respectively. 

norm[v_]:=Sqrt[v.v] 

uv=v/norm[v] 

5 1 
{0, Sqrt[-], , 

6 Sqrt[30] 

norm[uv] 

1 

w/norm[w] 

3 4 
/ , o, 

2 
Sqrt[ — ] } 

15 

-2 

- } 
Sqrt[29] Sqrt[29] Sqrt[29] ■ 

Special attention must be given to the notation which must be used in taking the 
product of a matrix with itself. The following example illustrates how Mathematica 
interprets the expression ( m a t r i x b ) Λ 3 . The command ( m a t r i x b ) Λ3 cubes each 
element of the matrix m a t r i x b . The built-in command M a t r i x P o w e r may be used to 
compute powers of matrices. 

EXAMPLE: Let B = 

ofB. 

(-2 
-2 
-1 
4 

3 
0 
4 
8 

4 
1 
-6 
11 

0^ 
3 
5 
-4 

. (a) Compute B2 and B3. (b) Cube each entry 
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SOLUTION: After defining B, we compute B2. The same results would have been 
obtained by entering Mat r ixPower [ B , 2 ]. 

matrixb={{-2,3,4,0},{-2,0,1,3},{-1,4,-6,5},{4,8,11,-4}}; 

matrixb.matrixb//MatrixForm 

-6 10 -29 29 
15 22 19 -7 
20 13 91 -38 
-51 24 -86 95 

Next, we use M a t r i x P o w e r to compute B3. The same results would be obtained 
by entering m a t r i x b . m a t r i x b . m a t r i x b . 

MatrixPower[matrixb,3]//MatrixForm 

137 98 479 -231 
-121 65 -109 189 
-309 120 -871 646 
520 263 1381 -738 

Last, we cube each entry of B with 

matrixb^ 3//MatrixForm 

-8 
-8 
- 1 
64 

27 
0 
64 
512 

64 
1 
-216 
1331 

0 
27 
125 
-64 

5,2 Linear Systems of Equations 
, -<&3κ v- * imrw,&e*^^*i$!*ï*"* ï*%g$>®m&$^ xz^tftwr****·* ♦* w* 

Calculating Solutions of Linear Systems 
of Equations 

To solve the system of linear equations Ax=b, where A is the coefficient matrix, b is the 
known vector, and x is the unknown vector, we proceed in the usual manner: if A-1 exists, 
then A-1 Ax = A~lb so x = A~lb 

EXAMPLE: Solve the matrix equation 
' 3 0 2>fx) (3λ 

-1 
V47 

-3 2 2 
2 - 3 3 
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SOLUTION: The solution is given by 

y 
3 

-3 
2 

0 
2 
-3 

2> 
2 
3j 

-1 f3 l 
-1 

l 4 J 
We proceed by defining m a t r i x a and b and then using I n v e r s e to calculate 
I n v e r s e [ m a t r i x a ] . b , naming the resulting output { x , y , z } . 

matrixa={{3,0,2},{-3,2,2},{2,-3,3}}; 

b={3,-l,4}; 

{x,y,z}=Inverse[matrixa].b 

13 7 15 
{--, -<--), — } 
23 23 23 

We verify that the results are the desired solution by calculating 
m a t r i x a . {x, y , z }. Because the result is 

-1 
v 4 y 

we conclude that the solution to the system is 

x (13/23Λ 
-7/23 

[ l5 /23 y 

matrixa .{x ,y ,z} 

{ 3 , - 1 , 4} 

Mathematica offers several commands for solving systems of linear equations, however, 
which do not depend on the computation of the inverse of A. These commands are 
discussed in the following examples. 

The command 

Solve[{eqnl,eqn2,...,eqnn},{varl,var2,...,varn}] 

solves an n x n system of linear equations (n equations and n unknown variables). Note 
that both the equations as well as the variables are entered as lists. If one wishes to solve 
for all variables that appear in a system, the command S o l v e [ { e q n l , e q n 2 , . , . eqnn} ] 
attempts to solve e q n l , e q n 2 , ..., eqnn for all variables that appear in them. (Remember 
that a double equals sign (==) must be used in each equation.) 
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EXAMPLE: Solve the system of three equations 
f x-2y + z = -4 

3x + 2y - z = 8 for x, y, and z. 
[-x + 3y + 5z = 0 

SOLUTION: In this case, entering either 

Solve[{x-2y+z==-4,3x+2y==8,-x+3y+5z==0}] 

or 

Solve[{x-2y+z,3x+2y,-x+3y+5z}=={-4,8,0}] 

yield the same result. 

Solve[{x-2y+z==-4,3x+2y-z==8,-x+3y+5z==0},{x,y,z}] 

{{x -> 1, y -> 2, z -> -1}} 

Remark: Be sure to include the double equals signs between the left- and right-
hand sides of each equation. 

Another way to solve systems of equations is based on the matrix form of the 
system of equations, Ax=b. This system of equations is equivalent to the matrix 
equation 

(1 
3 

l·1 

-2 
2 
3 

1) 
-1 

5J 

X 

y 

UJ 
= 

Γ-4Ϊ 
8 

l°J 

The matrix of coefficients in the previous example is entered as m a t r i x a along 
with the vector of right-hand side values v e c t o r b . After defining the vector of 
variables, v e c t o r x , the system Ax=b is solved explicitly with the command 
So lve . 

matrixa={{l,-2,l},{3,2,-1},{-1,3,5}}; 

vectorb={-4,8,0}; 

vectorx={xl,yl,zl} 

{xl, yl, zl} 

Solve[matrixa.vectorx==vectorb,vectorx] 

{{xl -> 1, yl -> 2, zl -> -1}} 
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In addition to using S o l v e to solve a system of linear equations, the command 

LinearSolve[A,b] 

calculates the solution x of the system Ax=b. L i n e a r S o l v e generally solves a system 
more quickly than does So lve . 

(2x - 4y + z = -1 
EXAMPLE: Solve the system I 3x + y-2z = 3 . Verify that the results returned 

[-5* + y - 2z = 4 
satisfy the system. 

SOLUTION: To solve the system using S o l v e , we define e q s to be the set of 
three equations to be solved and v a r s to be the variables x, y, and z and then use 
S o l v e to solve the set of equations e q s for the variables in v a r s . The resulting 
output is named s o l s . 

eqs={2x-4y+z==-l,3x+y-2z==3,-5x+y-2z==4}; 

vars={x,y,z}; 

sols=Solve[eqs,vars] 

1 15 51 
{{x -> -(-), y -> -( — ), z -> -( — )}} 

8 56 28 

To verify that the results given in s o l s are the desired solutions, we replace each 
occurrence of x, y, and z in e q s by the values found in s o l s . Since the results 
indicate each of the three equations is satisfied, we conclude that the values given 
in s o l s are the desired solutions. 

eqs /. sols 

{{True, True, True}} 

To solve the system using L i n e a r S o l v e , we note that the system is equivalent to 
the matrix equation 

(2 -4 n 
3 1 -2 

-5 1 -2 V 4 / 

define m a t r i x a and v e c t o r b , and use L i n e a r S o l v e to solve this matrix 
equation. 
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matrixa={{2,-4,l},{3,1,-2},{-5,1,-2}}? 

vectorb={-l,3,4}; 

solvector=LinearSolve[matrixa,vectorb] 

{-(■ 

15 51 

·( — ) f "( — ) } 
56 28 

To verify that the results are correct, we compute m a t r i x a . s o l v e c t o r . Since the 
result is 

V 4 7 

we conclude that the solution to the system is 

matrixa.solvector 

{ - 1 , 3 , 4} ■ 

rx\ ( -1/8 Ï 
-15/36 
-51/28 

EXAMPLE: Solve the system of equations « 

4x] + 5x2 - 5x3 - 8x4 - 2x5 = 5 
7xi+2x2-l0x3-x4-6x5 = -4 

6xx + 2x2 + IOX3 - 10x4 + 7x5 = -7. 
-8xl -x2- 4x3 + 3x5 = 5 

8*, - 7x, - 3x, + 10*, + 5x = 7 
1 2 3 4 5 

SOLUTION: We solve the system in two ways. First, we use S o l v e to solve the 
system. Note that in this case, we enter the equations in the form 

set of left-hand sides==set of right-hand sides. 

Solve[{4x[l]+5x[2]-5x[3]-8x[4]-2x[5],7x[l]+2x[2]-10x[3]-x[4]-6x[5], 

6x[l]+2x[2]+10x[3]-10x[4]+7x[5],-8x[1]-x[2]-4x[3]+3x[5], 

8x[l]-7x[2]-3x[3]+10x[4]+5x[5]}=={5,-4,-7,5,7}] 

38523 1245 
{ { x [ 4 ] -> , x[l] -> , 

6626 6626 

113174 7457 
x [ 2 ] -> , x[3] -> -( ), 

9939 9939 

49327 
x [ 5 ] -> }} 

9939 
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We also use L i n e a r S o l v e after defining m a t r i x a and t 2 . As expected, in each 
case, the results are the same. 

Clear[matrixa] 

matrixa={{4,5,-5,-8,-2},{7,2,-10,-1,-6},{6,2,10,-10,7}, 

{-8,-1,-4,0,3},{8,-7,-3,10,5}}; 

t2={5,-4,-7,5,7}; 

LinearSolve[matrixa,t2] 

1245 113174 7457 38523 49327 

6626 9939 9939 6626 9939 

Gauss-Jordan Elimination 

Given the matrix equation Ax=b, where 

A = 

K, 
«21 

S.l 

a,2 ■ 

a? : 

« m2 ■ 

■ « , ) 
In 

" fl?» 

·· a 
mn J 

r 

x = 
ixA 

x? 

UJ 
b = 

, and 

(bA 
K 

K) 

the m x n matrix A is called the coefficient matrix for the matrix equation Ax=b and the 
rax(n + l) matrix 

(A\b) = 

is called the augmented matrix for the matrix equation. 
We may enter the augmented matrix associated with a linear system of equations 

directly or we can use the package MatrixManipulation contained in the LinearAlgebra 
folder (or directory) to help us construct the augmented matrix. 

(«., 
«21 

,flm] 

«12 ' 

«22 · 

«„,2 · 

- «,„ 
· · «2„ 

·· a 
mn 

M 
K 
K) 

EXAMPLE: Solve the system < 

' -2x + y - 2z = 4 
2 x - 4 y - 2 z = -4 using Gauss-Jordan elimination. 

x - 4 y - 2 z = 3 
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SOLUTION: The system is equivalent to the matrix equation 

(-2 
2 

I1 

1 
-4 
-4 

-2Ί 
-2 
-v 

X 

y 
UJ 

= 
r 4 ^ 
-4 

l 3 J 

The augmented matrix associated with this system is 

i-2 
2 
1 

V 

1 
-4 
-4 

-2 
-2 
-2 

4Ί 
-4 
3 

which we construct using the command A p p e n d R o w s contained in the 
MatrixManipulation package. We proceed by loading the MatrixManipulation 
package, defining m a t r i x a and b, and then using AppendRows to construct the 
augmented matrix which we name augm and display in Matr ixForm. 

«Linear Algebr avMatrixManipulationv 

matrixa={{-2,l,-2},{2,-4,-2},{l,-4,-2}}; 

b={{4},{-4},{3}}; 

augm=AppendRows[matrixa,b]; 

MatrixForm[augm] 

-2 1 -2 4 

2 -4 -2 -4 

1 - 4 - 2 3 

We calculate the solution by row-reducing augm using the built-in command 
RowReduce. 

RowReduce[augm]//MatrixForm 

1 0 0 - 7 

0 1 0 - 4 

0 0 1 3 

From the result above, we see that the solution is 

X 

y 
l2J 

= 
(-Ά 
-4 

l 3 J 
We verify this below by replacing each occurrence of x, y, and z on the left-hand 
side of equation by -7 , -4 , and 3, respectively, and noting that the results are equal 
to the right-hand side of each equation. 
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Clear[x ,y ,z ] 
{-2x+y-2z,2x-4y-2z,x-4y-2z} / . {x->-7 ,y->-4 ,z->3} 

{ 4 , - 4 , 3} 

EXAMPLE: Solve the system 

elimination. 

(1 -3 -4) 
4 0 - 1 

[2 -3 -3) 

( \ 
X 

y = 
Γ-3Ί 

3 
l 4 J 

using Gauss-Jordan 

SOLUTION: The augmented matrix associated with this system is 

(1 
4 
2 V 

-3 
0 

-3 

-4 
-1 
-3 

-A 
3 
4 

defined below as aug. We then proceed as in the previous example by using 
RowReduce to row-reduce the augmented matrix. 

a u g = { { l , - 3 , - 4 , - 3 } , { 4 , 0 , - l , 3 } , { 2 , - 3 , - 3 , 4 } } ; 

RowReduce[aug] 

{ { 1 , 0 , 0 , 2 } , { 0 , 1, 0, - 5 } , { 0 , 0, 1, 5 } } 

From the results, we see that the desired solution is 

X 

y 
l z J 

= 
f * Ί 
-5 

l 5 J 
which is verified below. 

Clear[x,y,z] 

eql=x-3y-4z+3==0; 

eq2=4x-z-3==0; 

eq3=2x-3y-3z-4==0; 

x=2;y=-5;z=5; 

{eql,eq2,eq3} 

{True,True,True} I 
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53 Selected Topics from 
Linear Algebra 

Fundamental Subspaces Associated 
with Matrices 

Let A denote the n x m matrix 

I a . a . · · · A I · 
V «1 n2 nm/ 

The row space of A, row(A), is the spanning set of the rows of A; the column space of A, 
col(A), is the spanning set of the columns of A. If A is any matrix, then the dimension of 
the column space of A is equal to the dimension of the row space of A. The dimension of 
the row space (column space) of a matrix A is called the rank of A. The nullspace of A is 
the set of solutions to the system of equations Ax=0. The nullspace of A is a subspace and 
its dimension is called the nullity of A. In the same manner as the rank of A is equal to the 
number of non-zero rows in the row-echelon form of A, the nullity of A is equal to the 
number of zero rows in the row-echelon form of A. Thus, if A is a square matrix, the sum 
of the rank of A and the nullity of A is equal to the number of rows (columns) of A. 

The built-in commands 

N u l l S p a c e [ m ] returns a list of vectors which form a basis for the nullspace (or 
kernel) of the matrix m; and 
RowReduce [ m] yields the reduced row echelon form of the matrix m. 

Below, we show how Mathematica can be used to determine the column space, rank, 
null space, and nullity of matrices. 

EXAMPLE: Place the matrix A = 

(-1 - 1 2 0 -ΐλ 

- 2 2 0 0 - 2 
2 - 1 - 1 0 1 

- 1 - 1 1 2 2 
1 - 2 2 - 2 0 

in reduced 

form. What is the rank of A? Find a basis for the nullspace of A. 

row echelon 

A = 
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SOLUTION: We begin by defining the matrix m a t r i x a . Then, RowReduce is 
used to place m a t r i x a in reduced row echelon form. 

matrixa={{-l,-l,2,0,-l},{-2,2,0,0,-2},{2,-1,-1,0,1},{-1,-1,1,2,2}, 
{1,-2,2,-2,0}}; 

RowReduce[matrixa]//MatrixForm 

1 0 0 - 2 0 
0 1 0 - 2 0 
0 0 1 - 2 0 
0 0 0 0 1 
0 0 0 0 0 

Since the row-reduced form of m a t r i x a contains four nonzero rows, the rank of 
A is 4 and thus the nullity is 1. We obtain a basis for the nullspace with 
N u l l S p a c e . 

NullSpace[matrixa] 

{{2, 2, 2, 1, 0}} 

EXAMPLE: Find a basis for the column space of B = 

( 1 -2 2 1 -2) 
1 1 2 - 2 - 2 
1 0 0 2 - 1 
0 0 0 - 2 0 
- 2 1 0 1 2 

SOLUTION: A basis for the column space of B is the same as a basis for the row 
space of the transpose of B. We begin by defining m a t r i x b and then using 
T r a n s p o s e to compute the transpose of m a t r i x b , naming the resulting output 
t b . 

matrixb={{l,-2,2,l,-2},{1,1,2,-2,-2},{1,0,0,2,-1},{0,0,0,-2,0}, 

{-2,1,0,1,2}}; 

tb=Transpose[matrixb] 

{{1, 1, 1, 0, -2}, {-2, 1, 0, 0, 1}, {2, 2, 0, 0, 0}, 

{1, -2, 2, -2, 1}, {-2, -2, -1, 0, 2}} 

Next, we use RowReduce to row reduce t b and name the result r r t b . A basis for 
the column space consists of the first four elements of r r t b . We also use 
T r a n s p o s e to show that the first four elements of r r t b are the same as the first 
four columns of the transpose of r r t b . Thus, the j th column of a matrix m can be 
extracted from m with T r a n s p o s e [m] [ [ j ] ] . 
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rrtb=RowReduce[tb]; 

Transpose[rrtb]//MatrixForm 

1 

0 

0 

0 
1 

3 

0 

1 

0 

0 
1 

3 

0 

0 

1 

0 

-2 

0 

0 

0 

1 

- 3 

0 

0 

0 

0 

0 

We extract the first four elements of r r t b with Take. The results correspond to a 
basis for the column space of B. 

Take[rrtb,4] 

1 1 
{ { 1 , 0 , 0 , 0 , - ( - ) } , {0 , 1, 0 , 0 , - } , {0 , 0 , 1, 0 , - 2 } , 

3 3 

{0, 0 , 0 , 1, - 3 } } ■ 

EXAMPLE: Find a basis for the nullspace of C = 
(0 2 -2 1 1Λ 
- 1 3 - 3 3 -1 
0 - 1 1 1 2 

SOLUTION: After defining m a t r i x c , we use N u l l S p a c e to calculate a basis for 
the nullspace of C. 

matrixc={{0,2,-2,l,l},{-l,3,-3,3,-l},{0,-l,l,l,2}}; 

NullSpace[matrixc] 

{{-15, 1, 0, -5, 3}, {0, 1, 1, 0, 0}} 

The Gram-Schmidt Process 

A set of vectors [νι/ν2,.../νιι] is or thonormal means that \νί = 1 for all values of i and 

ν.·ν =0 for ΪΦ). Given a set of linearly independent vectors \ρλ,ν2,...,ν^, the set of all 

linear combinations of the elements of \νλ,ν2,...,ν^, V = span{vl,v2,...,vn} is a vector space. 

Note that if {ι/ιΛ M2,..., W;I} is an orthonormal set and vespanfa, u2,...,un}, then 

v = (v·u^ +(v·u2)u2+... + (v·uti)un. Thus, we may easily express v as a linear combination 
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of the vectors in [uif u2,...,wj. Consequently, if we are given any vector space, V, it is 
frequently convenient to be able to find an orthonormal basis of V. We may use the Gram-
Schmidt process to find an orthonormal basis of the vector space V = span{vl,v2,...,vn}. 

We summarize the algorithm of the Gram-Schmidt Process below. 

1. Letu^X; 

^ « L . T h e n , 2. Compute pro], yV2 = (ux *v2)u1/ v2 -pro], ,z?2, and let u2 = 

lvi~pr0JMv2\\ 

spanfa,uA = spanfa, v2} and spanlu^,u2,v3, ...,v\ = spanlvl, v2, v3,..., v \; 
3. Generally, for 3<i<n, compute 

Pr0J{uvu2 B l . . 1 } ü i =( M l # ü ,0 M l + ( M 2 # ü ,J M 2+»- + (M/-l# üJMM/ 

v.-pro], u ir ]vi 

v. -pro], \V.t and let u = -r-'■ 1"1'"2 "'~lj ',,. Then, 
' r J{u\'u2 ui-l) «' ' 

\\v.-proi, λν.\\ 
\\ ' r y{"l'"2 "i-l) '|| 

spanlu^ u2,..., u.\ = spanlv^, v2,..., v\ and 
span{uv u2,...f u.,i?.+1, ...,vn} = span{vu v2, v3,..., un}; and 

4. Since spanlulf u2,...f u \ = span\vlfv2, ...,ν^ and \uvu2,... ,u\ is an 
orthonormal set, {wir u2,..., WM} is an orthonormal basis of span\vx, v2,..., vt;}. 

The Gram-Schmidt procedure is well-suited to computer arithmetic. The following code 
performs each step of the Gram-Schmidt Process on a set of n linearly independent vectors 
{vlfv2,...,On}. At the completion of each step of the procedure, g r a m s c h m i d t [ v e c s ] 
prints the list of vectors corresponding to {u1,u2,...,u!,vi+1,...,vi} and returns the list of 
vectors { U ^ I L , , . . . , ^ } . Note how comments are inserted into the code using ( * . . . * ) . 

gramschmidt[vecs_]:= 

Module[{n,proj,u,capw}, 

(*n represents the number of vectors in the 

list vecs*) 

n=Length[vecs]; 

(*proj[v,capw] computes the projection of v 

onto capw*) 

proj[v_,capw_]:= 

Sum[(capw[[i]],v)capw[[i]],{i,1,Length[capw]}]; 

u[l]=vecs[[1]]/Sqrt[vecs[[1]].vecs[[l]]]; 

capw={}; 

file:////v.-proi
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u[i_]:=u[i]= 

Module[{stepone}, 

stepone=vecs[[i]]-proj[vecs[[i]],capw]; 

stepone/Sqrt[stepone.stepone]//Together 

]; 

Do[ 

u[ij; 

AppendTo[capw,u[i]]; 

Print[Join[capw,Drop[vecs,i]]] 

,{i,l,n-l}]; 

u[n]; 

AppendTo[capw,u[n]] 

] 

EXAMPLE: Use the Gram-Schmidt process to transform the basis 
If n\ f n Λ ( 1 M 

> of 9î^ into an orthonormal basis. 
v ' 2 / v 2 / v ' 2 y 

SOLUTION: We proceed by defining v l , v2, and v3 to be the vectors in the basis 

{-A 
-1 

l - 2 J 
/ 
fol 
-1 / 3 

l - 2 J 
and using g ramschmid t [ { v l , v 2 , v3 } ] to find an orthonormal basis. 

v l = { - 2 , - l , - 2 } ; 

v 2 = { 0 , - l , 2 } ; 

v 3 = { l , 3 , - 2 } ; 

g r a m s c h m i d t [ { v l , v 2 , v 3 } ] 

2 1 2 
{ { - ( - ) , - ( - ) , - ( - ) } , { 0 , - 1 , 2 } , { 1 , 3 , - 2 } } 

3 3 3 
2 1 2 1 2 2 

{ { - ( - ) , - ( - ) , - ( - ) } , { - ( - ) , - ( - ) / - } , { l r 3 , - 2 } } 
3 3 3 3 3 3 
2 1 2 1 2 2 2 2 1 

{ { - < - ) r - ( - ) / - ( - ) } / { - ( - ) f -(-), -}, { - ( - ) / -* - > } 
3 3 3 3 3 3 3 3 3 
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EXAMPLE: Compute an orthonormal basis for the subspace of 9Î4 spanned by the 

vectors 

have norm 1 
Kh 

-4Ί 
1 

-3 
v2y 

, and 4 
4 . Also, verify that the basis vectors are orthogonal and 

SOLUTION: With g r a m s c h m i d t below, we compute the orthonormal basis 
vectors. The orthogonality of these vectors is then verified. Notice that T o g e t h e r 
must be used to simplify the result in the case of o s e t [ [ 2 ] ] . o s e t [ [ 3 ] ] . The 
norm of each vector is then found to be 1. 

oset=gramschmidt[{{2,4,4,1},{-4,1/-3,2},{1,4,4,-1}}] 

2 4 4 1 
{ { , , , }, {_4/ 1, -3, 2}, 

Sqrt[37] Sqrt[37] Sqrt[37] Sqrt[37] 

{1, 4, 4, -1}} 
2 4 4 1 

{{ , , , }, 
Sqrt[37] Sqrt[37] Sqrt[37] Sqrt[37] 

32 93 -55 
{-15 Sqrt[ ], , , 

16909 Sqrt[33818] Sqrt[33818] 

32 
11 Sqrt[ ]}, {1, 4, 4, -1}} 

16909 
2 4 4 1 

{{ , , , }, 
Sqrt[37] Sqrt[37] Sqrt[37] Sqrt[37] 

32 93 -55 
{-15 Sqrt[ ], , , 

16909 Sqrt[33818] Sqrt[33818] 

32 -449 268 
11 Sqrt[ ]}, { , , 

16909 Sqrt[934565] Sqrt[934565] 

156 -798 

-}} 
Sqrt[934565] Sqrt[934565] 

The three vectors are extracted with o s e t with o s e t [ [ 1 ] ] , o s e t [ [ 2 ] ] , and 
o s e t [ [3 ] ] . 



322 5 Nested Lists: Matrices and Vectors 

[l]].oset[[2]] 

[l]].oset[[3]] 

oset[ 

oset[ 
0 
0 

oset[[2]].oset[[3]]//Together 
0 

Sqrt[ 

Sqrt[ 

Sqrt[ 
1 
1 
1 

oset[[l]].oset[[l]]] 

oset[[2]].oset[[2]]] 

oset[[3]].oset[[3]]] 

The package Orthogonalization in the LinearAlgebra folder (or directory) contains 
several useful commands which include 

GramSchmidt [ { v l , v2 , . . . } ] returns an orthonormal set of vectors given the 
set of vectors {vl,v2,...}. Note that this command does not illustrate each step of 
the Gram-Schmidt procedure as the g ramschmid t function defined above; 

v N o r m a l i z e [ v l ] returns j — ^ given the nonzero vector vx) and 

P r o j e c t i o n [ v l , v2 ] returns the projection of νλ onto v2: projv νλ=γ-

Linear Transformations 

A function T:9în—>9tm is a linear transformation means that T satisfies the properties 
T(w+i?)=T(w)+T(z;) and T(cu)=cT(u) for all vectors u and v in 9în and all real numbers c. Let 
T:9în—>9îm be a linear transformation and suppose Ύ(βι)=νρ ^el)^v2' ··· ^en)=vn w here 
[ei, e2, ··· ,en] represents the standard basis of 9în and Vy ν2, ..., vn are (column) vectors in 
9îm. The associated matrix of T is the m x n matrix Α = (νλ v2 · · · v J : 

if x = 

rrx\ 

, T{x) = T\ = Ax = (vl v2 .·· vn)\ 

Moreover, if A is any mxn matrix, then A is the associated matrix of the linear 
transformation defined by T(x)=Ax. In fact, a linear transformation T is completely 
determined by its action on any basis. 

The kernel of the linear transformation T, ker(T), is the set of all vectors x in 9în such 
that T(x)=0: ker(T)={xe 9în: T(x)=0}. The kernel of T is a subspace of 9în. Since T(x)=Ax for 
all x in 9în, ker(T)={xe 9în: T(x)=0)={xe9în: Ax=0} so the kernel of T is the same as the 
nullspace of A. 
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EXAMPLE: Let Γ:9ί5->9ί3 be the linear t ransformation defined by 

T(x) = 
(0 - 3 - 1 -3 -1) 
-3 3 -3 -3 -1 
2 2 - 1 1 2} 

x. (a) Calculate a basis for the kernel of the linear 

transformation, (b) Determine which of the vectors 

(A) 
2 
0 
0 

and 

(1) 
2 
-1 
-2 

is in the kernel 

{-bJ K3J 
ofT. 

SOLUTION: We begin by defining m a t r i x a to be the matrix 

λ 0 - 3 - 1 -3 -1] 
-3 3 -3 -3 -1 

v 2 2 - 1 1 2) 

and then defining t . A basis for the kernel of T is the same as a basis for the 
nullspace of 

(0 - 3 - 1 -3 -1) 
-3 3 -3 -3 -1 
2 2 - 1 1 2 

found with N u l l S p a c e . 

Clear[t ,matrixa] 
m a t r i x a = { { 0 , - 3 , - 1 , - 3 , - 1 } , { - 3 , 3 , - 3 , - 3 , - 1 } , { 2 , 2 , - 1 , 1 , 2 } } ; 
t [ x__] =matrixa. x ; 
NullSpace[matrixa] 

Since 
{ { - 2 , - 1 , 0, 0, 3 } , {-6, - 8 , -15 , 13, 0}} 

Α 4 λ 

2 
0 
0 

is a linear combination of the vectors which form a basis for the kernel, 

4 
2 
0 
0 

V-6; 



324 5 Nested Lists: Matrices and Vectors 

is in the kernel while 

2 
-1 
-2 

v3y 

is not. These results are verified below by evaluating t for each vector. 

t [ { 4 , 2 , 0 , 0 , - 6 } ] 

{ 0 , 0, 0} 

t [ { l , 2 , - l , - 2 , 3 } ] 

{ - 2 , 9 , 11} ■ 

Application: Rotations 

Let x = \ l be a vector in 9Î2 and Θ an angle. Then, there are numbers r and φ given by 

r = ^x\ + x\ and φ = tan1 -^ so that xx = rcos0 and x2 = rsin0. When we rotate 

_( x1 )_f rcos0 
rsin0 

through the angle Θ, we obtain the vector 

X©: 
COs(0 + 0) 

^rsin(0 + 0) 

as illustrated in the following diagram. 

_/rcos(e+<|>)\ 
~\rsin(e+<|>)/ 

X-\x2)~\rsm(Q)J 
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Using the trigonometric identities 

sin(0±0) = sin0cos0±sin0cos0 and cos(0±0) = cos0cos0 + sin0sin0 

we rewrite 
(rcosfi + tfr)) 

x& 
rsmi in(0 + 0) 

/rcosöcos0-rsinösin0 
rsin#cos0 + rsin0cos0 

cos θ - sin Θ Y r cos φ ï _ (cos θ - sin θ 
sinö cosö II rsino J~l sinö cos0 

Thus, the vector χ' is obtained from x by computing 

fcosO -sin0 
sin0 cos0 '*· 

Generally, if Θ represents an angle, the linear transformation T : 9Î2 -» 9Î2 defined by 

r(Y\-(cose - s i n ö l r 
n x J " l v s in0 cosflj* 

is called the rotation of 9Î2 through the angle Θ. 
Below, we write code to rotate a polygon through an angle Θ. The procedure r o t a t e 

uses a list of n points and the rotation matrix defined in r to produce a new list of points 
which are joined using the L i n e graphics directive. Entering 

Line[{{xl/yl},{x2,y2},...,{xn,yn}}] 

represents the graphics primitive for a line in two dimensions which connects the points 
listed in { { x l , y l } , { x 2 , y 2 } , . . . , { x n , y n } } . Entering 

Show[Graphics[Line[{{xl,yl>,{x2,y2},...,{xn,yn}>]]] 

displays the line. This rotation can be determined for one value of t (which represents the 
angle Θ). However, a more interesting result is obtained by creating a list of rotations for a 
sequence of angles and then displaying the graphics objects. This is done below for θ=0 to 

K 71 

Θ = — using increments of —. Hence, a list of nine graphs is given for the square with 
vertices (-1,1), (1,1), (1, -1), and (-1,-1). 

r[theta_]={{Cos[theta],-Sin[theta]},{Sin[theta],Cos[theta]}} 

rotate [pts__,angle_] : = 

Module[{newpts}, 

newpts=Table[r[angle],pts[[i]],{i,l,Length[pts]}]; 

newpts=AppendTo[newpts,newpts[[1]]]; 

figure=Line[newpts]; 

Show[Graphics[figure],AspectRatio->l, 

PlotRange->{{-1.5,1.5},{-1.5,1.5}}, 

DisplayFunction->Identity] 

] 
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graphs=Table[rotate[{{-1,1},{1,1},{1,-1},{-1,-1}},t],{t,0,Pi/2,Pi/16} ]? 

array=Partition[graphs,3]; 

Show[GraphicsArray[array]] 

DOO 

ODD 
Eigenvalues and Eigenvectors 

Let A be an n x n matrix with real components. Then the number λ is called an eigenvalue 
of A if there is a nonzero vector v which satisfies Αν=λν. This nonzero vector is called the 
eigenvector of A which corresponds to λ. The characteristic matrix of A is the matrix A -
λΐ, where I represents the identity matrix. The eigenvalues are roots of the characteristic 
equation |A - λΐ| = 0 which may have at most n real distinct roots; it may also have 
repeated roots and roots which are complex conjugates. The equation ρ(λ)=|Α - λΐ| is 
called the characteristic polynomial. After obtaining the eigenvalues, the corresponding 
eigenvectors are found by substituting the eigenvalues into the homogeneous system of 
equations (A - λΐ) ν =0 and solving for v. Mathematica contains several commands that 
can be used to determine the characteristic matrix, characteristic polynomial, eigenvalues, 
and eigenvectors of an n x n matrix. We begin by discussing commands for determining 
the characteristic matrix and characteristic polynomial below. 

The command 

C h a r a c t e r i s t i c P o l y n o m i a l [m, x ] gives the characteristic polynomial of m as 
a polynomial in x. 
E i g e n v a l u e s [ m ] gives a list of the eigenvalues of the square matrix m; 
E i g e n v e c t o r s [m] gives a list of the eigenvectors of the square matrix m; and 
E i g e n s y s t e m [ m ] gives a list of the eigenvalues and corresponding eigenvectors 
of the square matrix m. 
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Several examples are shown below. 

EXAMPLE: If A = 
(4 - 3 4) 

1 -3 1 
-1 -1 5 

, find the characteristic polynomial of A (with 
V / 

respect to the variable x). 

SOLUTION: We begin by defining m a t r i x a . We then compute the characteristic 
polynomial by computing the determinant of A-xI, where I represents the 3 x 3 
identity matrix, with D e t and then directly computing the characteristic 
polynomial with C h a r a c t e r i s t i c P o l y n o m i a l . N o t e t h a t 
I d e n t i t y M a t r i x [ n ] returns the n x n identity matrix. 

Clear[matrixa] 

matrixa={{4,-3,4},{l,-3,l},{-l,-l,5}}; 

Det[matrixa -x IdentityMatrix[3]] 

-54 x + 6 x 

p=CharacteristicPolynomial[matrixa,x] 

-54 x + 6 x 

EXAMPLE: (a) If A = 
0 

-1/2 
4 
0 
-1 

2/3 
-1/6 
-1/4 
1/2 
-1 

1/6 

1 
-2 

5/2 
0 
0 
-1 

- 4 /3 _4 -4/3Λ 
-1/6 
-1/4 
1/2 

0 
1/6 

7 
1 

-3 
4 
2 

23/6 
3/4 
-1/2 

1 
19/6 

, find the eigenvalues 

and eigenvectors of A. (b) If B = 

values for the eigenvalues of B. 

(i 5 n 
-3 6 -6 
-4 1 7 

, find both exact and approximate 

SOLUTION: In each case, we may calculate the eigenvalues by finding the 
characteristic polynomial of each matrix and then finding the zeros of each 
characteristic polynomial. For (a), we first define m a t r i x a and then use 
E i g e n v a l u e s and E i g e n v e c t o r s to find the eigenvalues and eigenvectors. 

matrixa={{5,2/3,1,-4/3,-4,-4/3},{0,-1/6,-2,-1/6,7,23/6}, 

{-1/2,-1/4,5/2,-1/4,1,3/4},{4,1/2,0,1/2,-3,-1/2}, 

{0,-1,0,0,4,1},{-1,1/6,-1,1/6,2,19/6}}; 

Eigenvalues[matrixa] 

{2, 2, 2, 3, 3, 3} 
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Eigenvectors[matrixa] 

1 1 
{{-(-), -1, -<-), 0, -1, 1}, {0, 0, 0, 0, 0, 0}, 

2 2 

{0, 0, 0, 0, 0, 0}, {0, 1, 2, -1, 1, 0}, {0, 0, 0, 0, 0, 0}, 

{0
,
 0

,
 0

,
 0

,
 0

,
 0}} 

For (b), we first define m a t r i x b and then use E i g e n v a l u e s to find the exact 
eigenvalues of the matrix. 

matrixb={{l,5,l},{-3,6,-6},{-4,1,7}}; 

Eigenvalues[matrixb] 

1/3 
14 44 2 

{ + 

3 1/3 
3 (3346 + 6 Sqrt[320457]) 

1/3 
(3346 + 6 Sqrt[320457]) 

1/3 
3 2 

1/3 
14 22 2 (1 + I Sqrt[3]) 
— + _ 

3 1/3 
3 (3346 + 6 Sqrt[320457]) 

1/3 
(1 - I Sqrt[3]) (3346 + 6 Sqrt[320457]) 

1/3 
6 2 

1/3 
14 22 2 (1 - I Sqrt[3]) 
— + _ 

3 1/3 
3 (3346 + 6 Sqrt[320457]) 

1/3 
(1 + I Sqrt[3]) (3346 + 6 Sqrt[320457J) 

} 

1/3 
6 2 
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From the lengthy results obtained above, we see that approximate values may be 
more meaningful. To obtain numerical approximations, we use N as shown below. 

Eigenvalues[N[matrixb]] 

{8.68668, 2.65666 + 5.17562 I, 2.65666 - 5.17562 1} 

The next example illustrates how E i g e n s y s t e m can be used to find both the 
eigenvalues and corresponding eigenvectors simultaneously. 

SOLUTION: Below, we define m a t r i x b and then use E i g e n s y s t e m to compute 
the eigenvalues and corresponding eigenvectors and name the resulting output 
e i g s b . 

matrixb={{0,4},{2,-2}}; 

eigsb=Eigensystem[matrixb] 

{{-4, 2}, {{-1, 1}, {2, 1}}} 

The eigenvalues correspond to the first element of e i g s b while the corresponding 
eigenvectors are given in the second part of e i g s b , extracted below with 
e i g s b [ [ 1 ] ] and e i g s b [ [ 2 ] ] , respectively. 

eigsb[[l]] 

eigsb[[2]] 

{-4, 2} 
{{-1, 1}, {2, 1}} 

Finally, we verify that the numbers and vectors given in e i g s b are eigenvalues 

and corresponding eigenvectors. Below, we first verify that BI "̂  j = -4[ ~ and 

then verify that B ^ W i ^ ) . 

matrixb.eigsb[[2,1]]==eigsb[[1,1]] eigsb[[2,1]] 

True 

matrixb.eigsb[[2,2]]==eigsb[[1,2]] eigsb[[2,2]] 

True 

EXAMPLE: Find the eigenvalues and corresponding eigenvectors of B = 



330 5 Nested Lists: Matrices and Vectors 

Sometimes the matrix in which each element is numerically approximated is more 
useful than the matrix in its original form. This is obtained below for the matrix m a t r i x a 
with N [ m a t r i x a ] . 

EXAMPLE:» A = 

eigenvectors of A. 

Λ3 - 5 - 4 
-5 6 3 
-3 2 -2 

, approximate the eigenvalues and corresponding 

SOLUTION: We first define m a t r i x a and then use E i g e n s y s t e m and N to 
approximate the eigenvalues and corresponding eigenvectors of the matrix, 
naming the resulting output e i g s . 

matrixa={{3,-5,-4},{-5,6,3},{-3,2,-2}}; 

eigs=Eigensystem[N[matrixa]] 

{{10.9879, -3.77071, -0.217222}, 

{{-0.601654, 0.756787, 0.255509}, 

{0.505049, -0.00654559, 0.863066}, 

{0.651499, 0.68315, -0.329933}}} 

As in the previous example, the first part of e i g s corresponds to the eigenvalues 
of the matrix while the second part corresponds to the eigenvectors. These are 
extracted from e i g s with e i g s [ [ 1 ] ] and e i g s [ [ 2 ] ] . 

eigs[[l]] 

{10.9879, -3.77071, -0.217222} 

eigs[[2]] 

{{-0.601654, 0.756787, 0.255509}, 

{0.505049, -0.00654559, 0.863066}, 

{0.651499, 0.68315, -0.329933}} 

Below we verify that these results are indeed approximations of the eigenvalues 
and corresponding eigenvectors of the matrix. 

matrixa.eigs[[2,1]] 

{-6.61094, 8.31552, 2.80752} 

eigs[[l,l]] eigs[[2,l]] 

{-6.61094, 8.31552, 2.80752} 
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The results obtained above appear to be the same. However, when we verify that 
the second element of each list is an eigenvalue and corresponding eigenvector, 
our subtraction does not result in zero. In fact, entering 

matrixa.eigs[[2,2]]==eigs[[1,2]] eigs[[2,2]] 

yields F a l s e . 

verify2=matrixa.eigs[[2,2]]-eigs[[1,2]] eigs[[2,2]] 

-19 -19 -19 
{-4.33681 10 , 9.72394 10 , 4.33681 10 } 

However, these numbers are very "small" and can assume that they are 0. We use 
the command Chop to replace these "small" numbers by 0. 

Chop[verify2] 

{0, 0, 0} 

Finally, we verify that the third element of each list is an eigenvalue and 
corresponding eigenvector. 

verify3=Chop[matrixa.eigs[[2,3]]-eigs[[1,3]] eigs[[2,3]]] 

{0, 0, 0} 

Jordan Canonical Form 

ι \ f U ^ + i Let Nu = ni i I = s Λ , represent a k x k matrix with indicated elements. The k x k 
K }l [0, otherwise r 

Jordan block matrix is given by Β(λ)=λΙ + Ν^ where λ is a constant. Hence, these 
matrices are defined by the following matrices. 

Nk = 

0 1 0 . . 
0 0 1 . . 

0 0 0 . . 
0 0 0 . . 

. 0̂  

. 0 

. 1 

. 0, 

and Bft) = XI + Nk 

(λ 1 0 · 
0 λ 0 · 

0 0 0 · 
y0 0 0 · 

• 0 0̂ 1 
• 9 9 
• λ 1 
• 0 \J 

Hence, Β(λ) can be defined as 

B(X) = (bij) = 
λ , ΐ =j 
l , j = i + l 
0, otherwise · 
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A Jordan matrix has the form 

(Βι(λ) 0 ··· 0 ) 
0 Β2(λ) ··· 0 

{ o o ··· Βη(λ); 

where the entries B j ^ ) , j = l,2,...,n represent Jordan block matrices. Suppose that A is an 

n x n matrix. Then there is an invertible n x n matrix C such that C~ AC = J where J is a 
Jordan matrix with the eigenvalues of A as diagonal elements. The matrix J is called the 
Jordan canonical form of A. 

The command 

J o r d a n D e c o m p o s i t i o n [ m ] yields a list of matrices { s , j } such that 
m=s. j . i n v e r s e [ s ] and j is the Jordan canonical form of the matrix m. 

For a given matrix A, the unique monic polynomial p of least degree satisfying p(A)=0 
is called the minimal polynomial of A. Let q denote the characteristic polynomial of A. 
Since q(A)=0, it follows that p divides q. We can use the Jordan canonical form of a matrix 
to determine its minimal polynomial. We illustrate the procedures necessary to accomplish 
this in the example below. 

EXAMPLE: Find the Jordan canonical form, JA, of A = 
(2 9 -9) 
0 8 - 6 

1° 9 "7J 

SOLUTION: After defining m a t r i x a , we use J o r d a n D e c o m p o s i t i o n to find 
the Jordan canonical form of A and name the resulting output j a. 

matrixa={{2,9,-9},{0,8,-6},{0,9,-7}}; 

ja=JordanDecomposition[matrixa] 

{{{3, 0, 1}, {2, 1, 0}, {3, 1, 0}}, 

{{-1, 0, 0}, {0, 2, 0}, {0, 0, 2}}} 

The Jordan matrix corresponds to the second element of j a extracted below with 
j a [ [ 2 ] ] and displayed in Matr ixForm. 

j a [ [ 2 ] ] / / M a t r i x F o r m 

- 1 0 0 
0 2 0 
0 0 2 
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We also verify that the matr ices j a [ [ 1 ] ] and j a [ [ 2 ] ] satisfy 
m a t r i x a = j a [ [ l ] ] . j a [ [ 2 ] ] . I n v e r s e [ j a [ [ 1 ] ] ] . 

ja[[l]].ja[[2]].Inversefja[[l]]] 

{{2, 9, -9}, {0, 8, -6}, {0, 9, -7}} 

Next, we use C h a r a c t e r i s t i c P o l y n o m i a l to find the characteristic 
polynomial of m a t r i x a and then verify that m a t r i x a satisfies its characteristic 
polynomial. 

p=CharacteristicPolynomial[matrixa,x] 

2 3 
- 4 + 3 x - x 

-4 IdentityMatrix[3]+3 MatrixPower[matrixa,2]-MatrixPower[matrixa,3] 

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

From the Jordan form, we see that the minimal polynomial of A is (x + l ) ( x - 2 ) . 
Below, we define the minimal polynomial to be q and then verify that m a t r i x a 
satisfies its minimal polynomial. 

q=Expand[(x+1)(x-2)] 

2 
-2 - x + x 

-2 IdentityMatrix[3]-matrixa+MatrixPower[matrixa,2] 

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

As expected, q divides p as verified below. 

Cancel[p/q] 

2 - x ■ 

EXAMPLE: Let A = 

polynomials of A. 

(3 8 6 - 0 
- 3 2 0 3 
3 -3 -1 -3 

^4 8 6 - 2 
. Find the characteristic and minimal 

SOLUTION: As in the previous example, we first define m a t r i x a and then use 
J o r d a n D e c o m p o s i t i o n to find the Jordan canonical form of A. 

m a t r i x a = { { 3 , 8 , 6 , - l } , { - 3 , 2 , 0 , 3 } , { 3 , - 3 , - 1 , - 3 } , { 4 , 8 , 6 , - 2 } } ; 
ja=JordanDecomposition[matrixa] 
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1 1 
{ { { 3 , - 1 , 1, 0 } , { - 1 , - 1 , 0 , - } , { 0 , 2 , 0, - ( - ) } , { 4 , 0, 1, 0 } } , 

2 2 

{ { - 1 , 0, 0, 0 } , { 0 , - 1 , 0 , 0 } , { 0 , 0, 2 , 1 } , { 0 , 0, 0, 2 } } } 

The Jordan canonical form of A is the second element of j a, extracted below and 
displayed in MatrixForm. 

j a [ [ 2 ] ] / / M a t r i x F o r m 

- 1 0 0 0 
0 - 1 0 0 
0 0 2 1 
0 0 0 2 

From the result above, we see that the minimal polynomial of A is (x + l)(x - 2)2. 
Below, we define q to be the minimal polynomial of A and then verify that 
matr ixa satisfies q. 

q=Expand[(x-2)Λ2(x+1)] 

2 3 
4 - 3 x + x 

4 IdentityMatrix[4]-3MatrixPower[matrixa,2]+MatrixPower[matrixa,3] 

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}} 

The characteristic polynomial is obtained below and named p. As expected, q 
divides p, verified below with C a n c e l . 

p = C h a r a c t e r i s t i c P o l y n o m i a l [ m a t r i x a , x ] 

2 3 4 
4 + 4 x - 3 x - 2 x + x 

C a n c e l [ p / q ] 

1 + x 

The QR Method 

The conjugate transpose (or Hermitian adjoint matrix) of the m x n complex matrix A 
which is denoted by A is the transpose of the complex conjugate of A. Symbolically, we 
have A = (A) . An n x n complex matrix A is unitary if A* = A-1. Given a matrix A, there is 
a unitary matrix Q and an upper triangular matrix R such that A=QR. The matrices Q and 
R form the QR factorization of A. 
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The command QRDecomposi t ion[N[m] ] determines the QR decomposition of the 
matrix m by returning the list { q , r }, where q is an orthogonal matrix, r is an upper 
triangular matrix and m=Transpose [ q ] . r . 

EXAMPLE: Find the QR factorization of the matrix A = 
4 -1 1\ 
-1 4 1 
1 1 4 

SOLUTION: We define m a t r i x a and then use QRDecompos i t ion to find the 
QR decomposition of m a t r i x a , naming the resulting output qrm. 

matrixa={{4,-l,l},{-l,4,l},{l,l,4}}; 

qrm=QRDecomposition[N[matrixa]] 

{{{-0.942809, 0.235702, -0.235702}, 

{-0.142134, -0.92387, -0.355335}, 

{0.301511, 0.301511, -0.904534}}, 

{{-4.24264, 1.64992, -1.64992}, {0, -3.90868, -2.48734}, 

{0, 0, -3.01511}}} 

The first matrix in q r m is extracted with q rm[ [ 1 ] ] and the second with 
q r m [ [ 2 ] ] . 

qrm[[1]]//MatrixForm 

-0.942809 0.235702 -0.235702 
-0.142134 -0.92387 -0.355335 
0.301511 0.301511 -0.904534 

qrm[[2]]//MatrixForm 

-4.24264 1.64992 -1.64992 
0 -3.90868 -2.48734 
0 0 -3.01511 

Below, we verify that the results returned are the QR Decomposition of A. 

Transpose[qrm[[1]]].qrm[[2]]//MatrixForm 

4. -1. 1. 
-1. 4. 1. 
1. 1. 4. 
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One of the most efficient and most widely used methods for numerically calculating the 
eigenvalues of a matrix is the QR Method. Given a matrix A, then there is a Hermitian 
matrix Q and an upper triangular matrix R such that A = QR. If we define a sequence of 
matrices 

A=A,A =QR,A =R Q ,m = l,2,..., 

then the sequence JAw} converges to a triangular matrix with the eigenvalues of A along 
the diagonal or to a nearly triangular matrix from which the eigenvalues of A can be 
calculated rather easily. 

EXAMPLE: Consider the 3 x 3 matrix A = 

eigenvalues of A with the QR Method. 

f 4 -1 l) 
-1 4 1 

I 1 i V 
. Approximate the 

SOLUTION: We define the sequence a and q r recursively. Note that we define a 
using the form a[ n_] : =a[ n] = . . . and q r using the form q r [ n_] : =qr [ n ] = . . . 
so that Mathematica "remembers" the values of a and q r computed, and thus 
Mathematica avoids recomputing values previously computed. This is of 
particular advantage when computing a [ n ] and q r [ n ] for large values of n. 

m a t r i x a = { { 4 , - l , l } , { - l , 4 , l } , { l , l , 4 } } ; 
a[l]=N[matrixa]; 
qr[1]=QRDecomposition[a[1]]; 

a [n_] :=a[n]=qr[n- l ] [ [2 ] ] .Transpose [qr [n- l ] [ [1 ] ] ] ; 
qr[n_]:=qr[n]=QRDecomposition[a[n]]; 

Below, we illustrate a [ n ] and q r [ n ] by computing q r [ 9 ] and a [ 10 ] . Note that 
computing a [ 10 ] requires the computation of q r [ 9 ] . From the results, we 
suspect that the eigenvalues of A are 5 and 2. 

qr[9] 

-7 
{{{-1., 2.23173 10 , -0.000278046}, 

-8 
{-8.92692 10 , -1., -0.000481589}, 

{0.000278046, 0.000481589, -1.}}, 

-6 
{{-5., 1.56221 10 , -0.00194632}, {0, -5., -0.00337112}, 

{0, 0, -2.}}} 
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a[10]//MatrixForm 

-7 
5. -1.78538 10 0.000556091 

-7 
-1.78538 10 5. 0.000963178 

0.000556091 0.000963178 2. 

Next, we compute a [ n ] for n=5, 10, and 15, displaying the result in TableForm. 
We obtain further evidence that the eigenvalues of A are 5 and 2. 

Table[a[n]//MatrixForm,{n,5,15,5}]//TableForm 

4.99902 -0.001701 0.0542614 
-0.001701 4.99706 0.0939219 
0.0542614 0.0939219 2.00393 

-7 
5. -1.78538 10 0.000556091 

-7 
-1.78538 10 5. 0.000963178 

0.000556091 0.000963178 2. 
-11 -6 

5. -1.87211 10 5.69438 10 
-11 -6 

-1.87211 10 5. 9.86295 10 
-6 -6 

5.69438 10 9.86295 10 2. 

We verify that the eigenvalues of A are indeed 5 and 2 with E i g e n v a l u e s . 

Eigenvalues[matrixa] 

{ 2 , 5 , 5} 

SA Maxima and Minima Using 
Linear Programming 

The Standard Form of a Linear 
Programming Problem 

We call the linear programming problem of the form: Minimize Z = clxl + c2x2 +... + cnxn, 
function 

subject to the restrictions 

337 
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auxx + anx2 +... + alnxn > bx 

a1^a12x2+... + a;ixn>b2 ^ χ ^ ^ Q χ ^ 

a ΛχΛ+α jxn +... + a x >b 
mi 1 m2 2 mn n m 

the standard form of the linear programming problem. The command 

ConstrainedMin[function,{inequalities},{variables}] 

solves the standard form of the linear programming problem. 
Similarly, the command 

Cons t ra inedMax[ func t ion ,{ inequa l i t i e s} ,{var iab les} ] 

solves the linear programming problem: Maximize Z = clxl+c2x2+... + c>xn subject to the 
function 

restrictions 

αΛ.χΛ +α„χΊ + . . . + Λ. x >b, 
11 1 12 2 \n n 1 

21 l 22 2 In n 2 a R C J χ > Q J > 0 , ... , X > 0 . 
' \ ' 2 ' ' n 

,a x + f l j r . +... + Λ x >b 
t nil ι tn2 2 mn n m 

EXAMPLE: Maximize z{xl/x2,x3) = ^xl-3x2+2x3 subject to the constraints 
3^-5*2+2*3 <60, xi-x2+2x3 <10, xl +x2 -x3 <20, and χχ, Χ2, Χ3 all non-negative. 

SOLUTION: In order to solve a linear programming problem with Mathematica , 
the variables { x l , x2 , x3 } and objective function z [ x l , x 2 , x3 ] are first defined. 
In an effort to limit the amount of typing required to complete the problem, the set 
of inequalities is assigned the name i n e q s while the set of variables is called 
v a r s . Notice that the symbol "<=", obtained by typing the "<" key and then the "=" 
key, represents "less than or equal to" and is used in i n e q s . Hence, the 
m a x i m i z a t i o n p r o b l e m is s o l v e d w i t h t h e c o m m a n d 
C o n s t r a i n e d M a x [ z [ x l , x 2 , x 3 ] , i n e q s , v a r s ] . 

Clear[xl,x2,x3,z,ineqs,vars] 

vars={xl,x2,x3}; 

z[xl_,x2_,x3_]=4x1-3x2+2x3 

4 xl - 3 x2 + 2 x3 

ineqs={3xl-5x2+x3 <=60,xl-x2+2x3 <=10,xl+x2-x3 <=20}; 

ConstrainedMax[z[xl,x2,x3],ineqs,vars] 

{45, {xl -> 15, x2 -> 5, x3 -> 0}} 
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The solution gives the maximum value of z subject to the given constraints, as 
well as the values of x l , x2 , and, x3 which maximize z. Thus, we see that the 
maximum value of z is 45 when x1 =15, x2 = 5, and x3 = 0. ■ 

We demonstrate the use of C o n s t r a i n e d M i n in the example below. 

EXAMPLE: Min imize Z(x,y,z) = 4x-3y + 2z subject to the const ra ints 
3x - 5y + 2z < 60, x - y + 2z < 10, x + y - z < 20, and x, y, and z, all non-negative. 

SOLUTION: After clearing all previously used names of functions and variable 
values, the variables, objective function, and set of constraints for this problem are 
defined and entered as they were in the first example. By using 

ConstrainedMin[z[xl,x2,x3],ineqs,vars] 

the minimum value of the objective function is obtained as well as the variable 
values which give this minimum. 

Clear[xl,x2,x3,z,ineqs,vars] 

vars={xl,x2,x3}; 

z [ xl_, x2_, x3_] =4x1-3x2+2x3 ; 

ineqs={3xl-5x2+x3 <= 60/xl-x2+2x3 <=10,xl+x2-x3 <=20}; 

ConstrainedMin[z[xl,x2,x3],ineqs,vars] 

{-90, {xl -> 0, x2 -> 50, x3 -> 30}} 

We conclude that the minimum value is -90 and occurs when x1 =0, x2 = 50, and 
x3=30.B 

The Dual Problem 
n 

Given the standard form of the linear programming problem: Minimize Z = \ \ x subject 

to the constraints Vfly*y ^b. for i=l, 2, ..., m and x. >0 for j=l, 2, ..., n, the dual problem 
m m 

is: Maximize Y = \b.y. subject to the constraints ^flyy, ^c. for j=l, 2, ..., n and y. >0 for 
i = l i =l 

n 

i=l, 2, ... , m. Similarly, for the problem: Maximize Z = Y c x subject to the constraints 
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2\aix -bj for i=l/ 2, ... , m and x >0 for j=l, 2, ... , n, the dual problem is: Minimize 
7 =1 

Y = V fr.y. subject to the constraints V ^ y , ^ c. for j=l, 2, . . . , n and y. > 0 for i=l, 2, . . . , m. 

EXAMPLE: Maximize Z = 6x + 8y subject to the constraints 5x + 2y < 20, x + 2y < 10, 
x >0, and y > 0. State the dual problem and find its solution. 

SOLUTION: First, the original (primal) problem is solved. The objective function 
for this problem is represented by zx. Finally, the set of inequalities for the primal 
is defined to be i n e q s x . Using the command 

ConstrainedMax[zx,ineqsx,{x[1],x[2]}], 

the maximum value of zx is found to be 45. 

Clear[zx,zy,x,y,valsx,valsy,ineqsx,ineqsy] 

zx=6x[l]+8x[2]; 

ineqsx={5x[1]+2x[2]<=20,x[1]+2x[2]<=10} 

{5 x[l] + 2 x[2] <= 20, 

x[l] + 2 x[2] <= 10} 

ConstrainedMax[zx,ineqsx,{x[l],x[2]}] 

5 15 
{45, {x[l] -> -, x[2] -> — } } 

2 4 

Because in this problem we have cx = 6, c2 = 8, bx= 20, and b2 = 10, the dual problem 
is: Minimize Z = 20y: + 10y2 subject to the constraints 5yl + y2 > 6, 2yl + 2y2 > 8, y1 > 0, 
and y2 > 0. The dual is solved in a similar fashion by defining the objective 
function zy and the collection of inequalities i n e q s y . The minimum value 
obtained by zy subject to the constraints i n e q s y is 45 which agrees with the 
result of the primal and is found with 

ConstrainedMin[zy,ineqsy,{y[1] , y[2]>]. 

zy=20y[l]+10y[2]; 

ineqsy={5y[l]+y[2]>=6,2y[l]+2y[2]>=8} 

{5 y[l] + y[2] >= 6, 

2 y[l] + 2 y[2] >= 8} 
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ConstrainedMin[zy,ineqsy,{y[l],y[2]}] 

1 7 
{45, {y[l] -> -, y[2] -> -}} 

2 2 

Of course, linear programming models can involve numerous variables. Consider the 
following: Given the standard form linear programming problem: Minimize 
Z = c1x] + c2x2 +... + cxn, subject to the restrictions 

function 

0Π*1+"ΐ2*2+··· + β ΐΛ^1 
α^χΛ + a„x^ +... + a^x >fr 

2 , a n d ^ > 0 , x 2 > 0 , ..., xn > 0 . 

a ΛχΛ+α 0 χ ,+ . . . + α x >b 
ml 1 ml 2 mn n m 

Let 

X, 

\X,.J 

, b = 
b, 

,b , 
V mj 

= fc 0< 

and A denote the m x n matrix 

Then the standard form of the linear programming problem is equivalent to finding the 
vector x that maximizes Ζ = ε·χ subject to the restrictions A · x > b and x > 0. The dual 
problem of: Maximize the number Ζ = ε·χ subject to the restrictions A*x>b and x>0 is: 
Minimize the number Y = yb subject to the restrictions yA<c and y > 0. 

The command L i n e a r P r o g r a m m i n g [ c , A , b ] finds the vector x which minimizes the 
quantity Z=c. x subject to the restrictions A. x > b and x > 0. This command does not yield 
the minimum value of Z as did C o n s t r a i n e d M i n and C o n s t r a i n e d M a x and the value 
must be determined from the resulting vector. 

EXAMPLE: 
c o n s t r a i n t 
- 3 ^ - 2 ^ - 3 * 3 

dual problem. 

Max imize Z = 5xx 

5 2χΛ + 3 x, + 3x, + 2xA 
1 2 3 4 

- 4 x 4 > - 5 , -χλ-χ2-χΑ>-

What is its solution? 

-7x2+7x3 

+ 2x5>10, 
-10, and x 

f 5x. + 6xe 
4 5 

> 0 for i 
6x, 
=1, 

s u b j e c t to 
+ 5x2 + 4x3 + x4 + 4x5 

t h e 
>30, 

2, 3, 4, and 5. State the 
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SOLUTION: For this problem, 

x = 
X2 

X3 

X4 

X 

and 

' 1 0 ' 
30 
-5 
-10 

V 

A = 

c = (5 -7 7 5 6), 

(2 
6 

-3 
. - i 

3 
5 

-2 
-1 

3 
4 

-3 
0 

2 
1 

-4 
-1 

2^ 
4 
0 
0 

First, the vectors c and b are entered and then matrix A is entered and named 
m a t r i x a . 

Clear[matrixa,x,y,c,b] 

€={5,-7,7,5,6}; 

b={10,30,-5,-10}; 

matrixa={{2,3,3,2,2},{6,5,4,1,4},{-3,-2,-3,-4,0},{-1,-1,0,-1,0}}; 

Next , we use A r r a y [ x , 5 ] to create the list of 5 elements 
{ x [ l ] f x [ 2 ] / . . . f x [ 5 ] } named xvec . The command T a b l e [ x [ i ] , { 1 , 1 , 5 } ] 
returns the same list. These variables must be defined before attempting to solve 
this linear programming problem. 

xvec=Array[x,5] 

{x[l], x[2], x[3], x[4], x[5]> 

After entering the objective function coefficients with the vector c , the matrix of 
coefficients from the inequalities with m a t r i x a , and the right-hand side values 
found in b, the problem is solved with 

L i n e a r P r o g r a m m i n g [ c , m a t r i x a , b ] . 

The solution is called xvec . Hence, the maximum value of the objective function 
is obtained by evaluating the objective function at the variable values which yield 
a maximum. Since these values are found in xvec , the maximum is determined 
with the product of the vector c and the vector xvec . (Recall that this product is 
entered as c . xvec.) This value is found to be 35/4 . 

xvec=LinearProgramming[c,matrixa,b] 

5 35 
{0, -, 0, 0, — } 

2 8 

c.xvec 

35 

4 



5.4 Maxima and Minima Using Linear Programming 343 

Because the dual of the problem is Minimize the number Y=y. b subject to the 
restrictions y . A<c and y > 0, we use Mathematica to calculate y . b and y . A: 

Remark: Notice that Mathematica does NOT make a distinction between row 
and column vectors; it interprets the vector correctly and consequently performs 
the calculation properly. 

A list of the dual variables { y [ l ] , y [ 2 ] , y [ 3 ] , y [ 4 ] } is created with 
Array [ y , 4 ] . This list includes 4 elements because there are four constraints in 
the original problem. The objective function of the dual problem is, therefore, 
found with y v e c . b, and the left-hand sides of the set of inequalities are given 
with yvec . m a t r i x a . 

yvec=Array[ y, 4 ] 

{y[i]f y[2], y[3j, y[4]> 

yvec.b 

10 y[l] + 30 y[2] - 5 y[3] - 10 y[4] 

yvec.matrixa 

{2 y[l] + 6 y[2] - 3 y[3] - y[4], 

3 y[l] + 5 y[2] - 2 y[3] - y[4], 

3 y[l] + 4 y[2] - 3 y[3], 

2 y[l] + y[2] - 4 y[3] - y[4], 2 y[l] + 4 y[2]> 

Hence, we may state the dual problem as follows: 

Minimize Y = 10y1 + 30y2 - 5y3 - 10y4 subject to the constraints 
2y 1 + 6y 2 -3y 3 -y 4 <5, 
3y 1 + 5y 2 -2y 3 -y 4 <-7 , 
3y1 +4y2-3y3<7, 
2y 1 + y 2 -4y 3 -y 4 <5 , 
2y, + 4y2 < 6, and y. > 0 for i = I, 2, 3, and 4. ■ 

Application: A Transportation Problem 

A certain company has two factories, Fl and F2, each producing two products, PI and P2, 
that are to be shipped to three distribution centers, Dl , D2, and D3. The following table 
illustrates the cost associated with shipping each product from the factory to the 
distribution center, the minimum number of each product each distribution center needs, 
and the maximum output of each factory. How much of each product should be shipped 
from each plant to each distribution center to minimize the total shipping costs? 
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DI/PI 

1 DI/P2 

D2/PI 

D2/P2 

D3/PI 

D3/P2 

Maximum 
Output 

FI/PI 

$0.75 

$1.00 

$0.90 

1000 

FI/P2 

$0.50 

$0.75 

$0.80 

400 

F2/PI 

$0.80 

$0.90 

$0.85 

800 

F2/P2 

$0.40 

$1.20 

$0.95 

900 

Minimum 

500 

400 

300 

500 

700 

300 

SOLUTION: Let x\ denote the number of units of PI shipped from Fl to Dl; X2 
the number of units of P2 shipped from Fl to Dl ; X3 the number of units of PI 
shipped from Fl to D2; X4 the number of units of P2 shipped from Fl to D2; X5 the 
number of units of PI shipped from Fl to D3; x^ the number of units of P2 shipped 
from Fl to D3; xy the number of units of PI shipped from F2 to Dl; X8 the number 
of units of P2 shipped from F2 to Dl; X9 the number of units of PI shipped from F2 
to D2; xi0 the number of units of P2 shipped from F2 to D2; x n the number of 
units of PI shipped from F2 to D3; and x\2 the number of units of P2 shipped from 
F2 to D3. 

Then, it is necessary to minimize the number 

Z = 75x\ + 5x2 + x3 + 75x4 + .9x5 + .8xb + .Sx7 + Ax8 + .9xg + 1.2x10 + .S5xu + .95xu 

subject to the constraints xt+x3+x5 <1000, x2+x4+x6 <400, x7+x9+xn <800, 
x8 + x10+x12<900, xx+x7>5m, x3 + x9>300, x5 + χπ > 700, x2 + *8>400, x4+xw>500, 
xe +xu > 300, and Xi non-negative for i=l, 2, . . . , 12. 

In order to solve this linear programming problem, the objective function which 
computes the total cost, the 12 variables, and set of inequalities must be entered. 
The coefficients of the objective function are given in the vector c. Using the 
command A r r a y [ x , 12 ] illustrated in the previous example to define the list of 
12 variables { x [ l ] , x [ 2 ] , . . . , x [ 1 2 ] } , the objective function is given by the 
product z = x v e c . c, where xvec is the name assigned to the list of variables. 

Clear[xvec,z,constraints,vars,c] 

c={0.75, 0.5, 1, 0.75, 0.9, 0.8, 0.8, 0.4, 0.9, 1.2, 0.85, 0.95}; 

xvec=Array[x,12] 

{x[l], x[2], x[3], x[4], x[5], x[6], x[7], x[8], 
x[9], x[10], x[ll], x[12]} 
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z=xvec.c 

0.75 x[l] + 0.5 x[2] + x[3] + 0.75 x[4] + 

0.9 x[5] + 0.8 x[6] + 0.8 x[7] + 0.4 x[8] + 

0.9 x[9] + 1.2 x[10] + 0.85 x[ll] + 0.95 x[12] 

The set of constraints is then entered and named c o n s t r a i n t s for easier use. 
Therefore, the minimum cost and the value of each variable which yields this 
minimum cost are found with the command 

ConstrainedMin[z,constraints,xvec]. 

constraints={x[1]+x[3]+x[5]<=1000,x[2]+x[4]+x[6]<=400, 

x[7]+x[9]+x[ll]<=800,x[8]+x[10]+x[12] <=900, 

x[l]+x[7]>=500, x[3]+x[9]>=300,x[5]+x[ll]>=700, x[2]+x[8]>=400, 

x[4]+x[10]>500, x[6]+x[12]>300}; 

values=ConstrainedMin[z,constraints,xvec] 

{2115, {x[l] -> 500, x[2] -> 0, x[3] -> 0, 

x[4] -> 400, x[5] -> 200, x[6] -> 0, x[7] -> 0, 

x[8] -> 400, x[9] -> 300, x[10] -> 100, 

x[ll] -> 500, x[12] -> 300}} 

Notice that values is a list made up of two elements, the minimum value of the 
cost function, 2115, and the list of the variable values { x [ l ] - > 5 0 0 , x [ 2 ] - > 0 , 
. . . } . Hence, the minimum cost is obtained with the command v a l u e s [ [ 1 ] ] 
and the list of variable values which yield the minimum cost is extracted with 
v a l u e s [ [2 ] ] . 

values[[1]] 

2115 

values[[2]] 

{x[l] -> 500, x[2] -> 0, x[3] -> 0, x[4] -> 400, 

x[5] -> 200, x[6] -> 0, x[7] -> 0, x[8] -> 400, 

x[9] -> 300, x[10] -> 100, x[ll] -> 500, 

x[12] -> 300} 

Using these extraction techniques, the number of units produced by each factory 
can be computed. Since xi denotes the number of units of PI shipped from Fl to 
Dl, X3 the number of units of PI shipped from Fl to D2, and X5 the number of 
units of PI shipped from Fl to D3, the total number of units of Product 1 produced 
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by Factory 1 is given by the command x [ 1 ] + x [ 3 ] + x [ 5 ] / . v a l u e s [ [ 2 ] ] , 
which evaluates this sum at the values of x [ 1 ] , x [ 3 ] , and x [ 5 ] given in the list 
v a l u e s [ [ 2 ] ] . 

x[l]+x[3]+x[5] /. values[[2]] 

700 

Also, the number of units of Products 1 and 2 received by each distribution center 
can be computed. The command x [ 3 ] + x [ 9 ] / . v a l u e s [ [ 2 ] ] gives the total 
amount of Product 1 received at Dist 1 because 

x [ 3 ] = amount of Product 1 received by Dist 2 from Fl and 

x [ 9 ] = amount of Product 1 received by Dist 2 from F2. 

Notice that this amount is the minimum number of units (300) of Product 1 
requested by Dist 1. 

x[3]+x[9] /. values[[2]] 

300 

The number of units of each product that each factory produces can be calculated, 
and the amount of Products 1 and 2 received at each distribution center are 
calculated in a similar manner and illustrated below. 

{x[l]+x[3]+x[5],x[2]+x[4]+x[6],x[7]+x[9]+x[ll], 

x[8]+x[10]+x[12],x[l]+x[7], x[3]+x[9],x[5]+x[U], x[2]+x[8], 

x[4]+x[10], x[6]+x[12]} /. values[[2]]//TableForm 

700 
400 
800 
800 
500 
300 
700 
400 
500 
300 

From the results above, we see that factory 1 produces 700 units of Product 1, 
factory 1 produces 400 units of Product 2, factory 2 produces 800 units of Product 
1, factory 2 produces 800 units of product 2, and each distribution center receives 
exactly the minimum number of each product it requests. 

346 
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5.5 Vector Calculus 

Definitions and Notation 
The terminology and notation used in Mathematica By Example is standard. Nevertheless, 
we review basic definitions briefly. 

A scalar field is a function with domain a set of ordered triples and range a subset of 
the real numbers: 

/ : U -^ V is a scalar field means U ç 9Î3 and V e 9Î. 

The gradient of the scalar field f is defined to be the vector 

where i = (1,0,0), / = (0,1,0), and Jc = (0,0,1). 
A vector field f is a vector-valued function: 

/ : V -> Li, U ç 9Î3 and V e 9Î3 is a vector field means that f can be written in the form 

f(x/y/z) = fl(x/yfz)i+f2(x/y/z)j+f3(x/y/z)k = (f^(x/yfz)j2(x/y/z)j3(x/y/z^ 

for each (x,y,z) in the domain of f. 
A conservative vector field f is a vector field that is the gradient of a scalar field: f is a 

conservative vector field means that there is a scalar field g satisfying f = V2g. In this case, 
g is usually called a potential function for f. 

The divergence of the vector field f is defined to be the scalar 

divf = divf(x, y, z) = div(jA {x, y, z),/7 {x, y, z),f3(x, y, zf} 

dx dy (k 

The laplacian of the scalar field f is defined to be div(grad f)): 

laplacianif) = V*/ = Δ/ = g + | J f + g = /„ + 4 +/:; 

For three-dimensional vector analysis, the package VectorAnalysis contains the 
commands Grad, Div, C u r l , and L a p l a c i a n , which we use to compute the gradient and 
divergence of vector fields and curl and laplacian of scalar fields. 

Be sure to load the package VectorAnalysis, contained in the Calculus folder (or 
directory) by entering « C a l c u l u s ' V e c t o r A n a l y s i s ' prior to using these functions. 
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Because Mathematica recognizes C a r t e s i a n [ x , y , z ], C y l i n d r i c a l [ r , p h i , z ], 
and S p h e r i c a l [ r , t h e t a , p h i ] coordinates, and because the operations discussed in 
this section differ in the various coordinate systems, the desired coordinate system must be 
indicated. This is accomplished with 

SetCoordinates[System], 

where System is usually either C a r t e s i a n , Cy l ind r i ca l , or Spher ica l . 
However, the available coordinate systems are: C a r t e s i a n , C y l i n d r i c a l , 

S p h e r i c a l , P a r a b o l i c , P a r a b o l i c C y l i n d e r , P r o l a t e E l l i p s o i d a l , 
E l l i p t i c C y l i n d e r , O b l a t e E l l i p s o i d a l , T o r o i d a l , E l l i p t i c , and 
Bipolar . 

In addition to the above commands, others included in the VectorAnalysis package 
include C o o r d i n a t e s T o C a r t e s i a n [ p o i n t , system] which gives the Cartesian 
coordinates of p o i n t when p o i n t is given in the coordinate system system, 
Coordina tesFromCar tes ian[poin t , sys tem] which gives c o o r d i n a t e s in the 
coordinate system s y s t e m when p o i n t is given in Cartesian coordinates, 
D o t P r o d u c t [ u , v , s y s t e m ] which computes the dot product of u and v in the 
coordinate system system, CrossProduct [ u, v ] which computes the cross product of u 
and v in the coordinate system system, and Sca la rTr ip l eProduc t [u, v,w, system] 
which computes the scalar triple product of u, v, and w in the coordinate system system. 
Other interesting commands include A r c L e n g t h F a c t o r , J acob ianMat r ix , and 
JacobianDeterminant . For a comprehensive discussion of the commands contained in 
the package VectorAnalysis see the Technical Report: Guide to Standard Mathematica Packages 
published by Wolfram Research, Inc. 

EXAMPLE: Let f(x,y,z) = cos(xyz). Compute V/, V2/, and div(Vf). 

S O L U T I O N : After loading the package VectorAnalysis, we enter 
S e t C o o r d i n a t e s [ C a r t e s i a n ] to specify that our calculations will be using 
Cartesian coordinates. We then use Grad, Laplac ian , and Div to compute V/, 
V2/, and div{Vf). 

«Calculus'VectorAnalysis' 

SetCoordinates[Cartesian]; 

Clear[f] 

f[x_,y_,z_]=Cos[x y z ] ; 

gradientf [ x__, y_, z_] =Grad [ f [ x, y, z ] ] 

{-(y z Sin[x y z]), -(x z Sin[x y z]), -(x y Sin[x y z])} 
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<%*V<^v^ -s- , νΐ 

Laplacian[f[χ,y,ζ]J 
2 2 2 2 2 2 

-(χ y Cos[x y ζ]) - χ z Cos[x y z] - y z Cos[x y z] 

Div[gradientf[x,y,z]] 

2 2 2 2 2 2 

-(x y Cos[x y z]) - x z Cos[x y z] - y z Cos[x y z] 

If S is the graph of f(x,y) and g[x,y,z) = z-f[x,y), then the gradient Vg(x,y,z) is a normal 
vector to the graph of g(x,y,z)=0. At the point (x,y,z), a unit normal vector, n, can be 
obtained via: 

_ vg(*,y,z) _ -fx(x>y)i-fy(x>y)i+k _ \-fSx'y)Hy^y\\ 

Ν * Ή " ^U,y))2+(/v(x,y))2+l " ^(x,y))2 + (/y(x,y))2 

The curl of the vector field f is defined to be the vector field: 

curl f = curl f(x,y,z) = curl(fi(x,y,z),f2(x,y,z),f3(x,y,z)) 

+ 1 

dy dz dz dx J + dx dy 
f . 

= det 
i j k 
d_ d_ d_ 
dx dy dz 
A Λ fj 

EXAMPLE: Let f(x,y,z) = xyi + xyz2j-e2zk = (xy,xyz2,-e2z). Compute curlf, divf, 

laplacian(divf), and grad(laplacian(divf)) = grad(y2(divf)). 

SOLUTION: The first step towards solving this problem is to enter the unit 
vectors in cartesian coordinates ± = { 1 , 0 , 0 } , j = { 0 , 1 , 0 }, and k= { 0 , 0 , 1 } . The 
vector-valued function f [ x , y , z ] can then be defined using these three unit 
vectors as follows: 

f[x_,y_,z_]=x y i+x zA2 y j-Exp[2z] k 

(remembering to place appropriate spaces between variables for multiplication). 
Alternatively, we could define f by entering 

f [ x _ , y _ , z _ ] = { x y , x ζΛ2 y , - E x p [ 2 z ] } . 
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Be sure to load the package VectorAnalysis, as done below, if you have not 
already loaded it during your current Mathematica session. 

Notice that the coordinate system has not been set in this problem. However, the 
correct system can be indicated in each command. For example, the curl of f in 
Cartesian coordinates is determined with 

Curl[f[x,y,z],Cartesian]. 

The curl could similarly be obtained in the other systems by replacing C a r t e s i a n 
with C y l i n d r i c a l , S p h e r i c a l , or one of the other available coordinate 
systems, in the command above. 

«Calculus'VectorAnalysis' 

Clear[i,j,k] 

i={l,0,0}; 

j={0,l,0}; 

k={0,0,l}; 

Clear[f] 
f [ x _ , y _ , z _ ] = x y i + x ζ Λ 2 y j - E x p [ 2 z ] k; 

Next we use C u r l to compute the curl of the vector-valued function f. 

c u r l f [ x _ , y _ , z _ ] = C u r l [ f [ x , y , z ] , C a r t e s i a n ] 

2 
{ - 2 x y z , 0 , - x + y z } 

As was the case with computing the curl of f, the divergence of f can be calculated 
in Cartesian coordinates with 

D i v [ f [ x , y , z ] , C a r t e s i a n ] ] . 

Again, since the divergence is a function of (x,y,z), it is named d i v f [ x , y , z ] for 
later use. The Laplacian of the divergence of f is computed with 

L a p l a c i a n [ d i v f [ x , y , z ] , C a r t e s i a n ] ] . 

This function is called l a d i v f [ x , y , z ] so that grad(laplacian(divf)) = grad{y2{divf))j 
can be found with 

G r a d [ l a d i v f [ x , y , z ] , C a r t e s i a n ] ] . 

d i v f [ x _ , y _ , z _ ] = D i v [ f [ x , y , z ] , C a r t e s i a n ] 

2 z 2 
-2 E + y + x z 



5.5 Vector Calculus 351 

ladivf[x_,y_,z_J =Laplacian[divf[x,y,z],Cartesian] 

2 z 
-8 E + 2 x 

G r a d [ l a d i v f [ x , y , z ] , C a r t e s i a n ] 

2 z 
{ 2 , 0 , -16 E } 

We demonstrate the computation of a unit normal vector in the example below. 

EXAMPLE: Let w(x,y) = cos(4x2 +9y2). Let n(x,y) denote a unit vector normal to the 
graph of w at the point [x,y,w{x,y)). Find a formula for n. 

SOLUTION: In order to visualize the unit normal vector at points (x,y,w{x,y)) to 
the surface w(x,y), this function is plotted below using several of the options 
available with P l o t 3D. The option B o x e d - > F a l s e specifies that the 
G r a p h i c s 3 D object be displayed without a bounding box, while the option 
P l o t P o i n t s - > 3 5 specifies that the number of sample points used consist of 35 
along the x-axis and 35 along the y-axis, for a total of 35 x 35 = 1225 sample points 
used in the generation of the graph. The options A x e s - > A u t o m a t i c and 
S h a d i n g - > F a l s e indicate that Mathematica is to automatically place axes in the 
final displayed graph and the results will not be shaded. 

Clear[w] 

w[x_,y__]=Cos[4x>v2+9y~2] ; 

plotw=Plot3D[w[x,y],{x,-l,1},{y,-l,1},Boxed->False, Axes->Automatic, 

PlotPoints->35, Shading->False] 
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The equation z = w(x,y) is written as z-w(x,y) = 0. The left-hand side of this 
equation is a function of x, y, and z and is defined a s w z [ x _ / y _ , z _ ] = z - w [ x / y ] . 
Since the partial derivative of wz with respect to z is - 1 , the gradient of wz is a 
function of x and y only. Hence, the gradient of wz is named gw[ x_ , y_] and is 
computed with Grad [ wz [ x , y , z ] , C a r t e s i a n ]. The length of the gradient of wz 
which is necessary in determining the unit normal vector is the square root of the 
dot product of the gradient of wz with itself. This product is computed with 
g w [ x , y ] . g w [ x , y ] . 

wz[x_,y_,z_]=z-w[x,y] 

2 2 
z - Cos[4 x + 9 y ] 

gw[x_,y_]=Grad[wz[ x, y, z ],Cartesian] 

2 2 2 2 

{8 x Sin[4 x + 9 y ], 18 y Sin[4 x + 9 y ], 1} 

gw[x,y].gw[x,y] 

2 2 2 2 2 2 2 2 
1 + 64 x S i n [ 4 x + 9 y ] + 324 y S i n [ 4 x + 9 y ] 

Therefore, the unit normal vector is the gradient of g, gw [ x , y ] , divided by the 
V<?(x y z) 

square root of g w [ x , y ] . g w [ x , y ] , ■■ , ... as shown below. This is also a 

function of the variables x and y since the unit normal vector differs from point to 
point on the surface. Hence, this vector is assigned the name n o r m a l w [ x , y ] so 
that the unit vector at any point (x,y,w(x,y)) can be easily determined by 
evaluating normalw [ x , y ] at any point (x,y). 

n o r m a l w [ x _ , y _ ] = g w [ x , y ] / S q r t [ g w [ x , y ] . g w [ x , y ] ] 

2 2 
{(8 x S i n [ 4 x + 9 y ]) / 

2 2 2 2 
Sqrt[l + 64 x Sin[4 x + 9 y ] + 

2 2 2 2 
324 y Sin[4 x + 9 y ] ], 

2 2 
(18 y Sin[4 x + 9 y ]) / 

2 2 2 2 
Sqrt[l + 64 x Sin[4 x + 9 y ] + 

2 2 2 2 
324 y Sin[4 x + 9 y ] ], 
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2 2 2 2 
1 / Sqrt[l + 64 x Sin[4 x + 9 y ] + 

2 2 2 2 
324 y Sin[4 x + 9 y ] ]} 

We can graph various normal vectors with the command P lo tVec torF ie ld3D 
which is contained in the package PlotField3D located in the Graphics folder (or 
directory). After loading the PlotField3D package, we graph normalwfx,y ] in 
the cube given by [-l,l]x[-l,l]x[-l,l] and name the resulting graph p lo tn . We 
then use Show to display plotw and p l o t n together. 

«Graphics ' PlotField3D ' 
p lo tn=Plo tVectorFie ld3D[normalw[x ,y ] , {x , - l , 1 } , {y , - l , 1 } , { z , - l , 1 } ] 

Show[plotw,plotn] 
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Similarly, we may graph the gradient vector field of the scalar function wz with 
the command P l o t G r a d i e n t F i e l d 3 D , also contained in the PlotField3D 
package. In the following command, we include the option V e c t o r H e a d s - > T r u e 
so we can see the direction of the resulting arrows. 

PlotGradientField3D[wz[x,y,z],{xr-l,l},{y,-l,l},{z,-l,l}, 

VectorHeads->True] 

Application: Green's Theorem 

Green's Theorem: Let C be a piecewise smooth simple closed curve and let R be the region 
consisting of C and its interior. If f and g are functions that are continuous and have 
continuous first partial derivatives throughout an open region D containing R, then 

£(m(x,y)dx + »(x/y)rfy) = J J R [ | - ^ j dA. 

EXAMPLE: Use Green's Theorem to evaluate i>(x + eJy)dx + (2y + cos(x))dy, where C 

is the boundary of the region enclosed by the parabolas y = x2 and x = y2. 

SOLUTION: To calculate the limits of integration, we use Mathematica to graph 
the functions x2 and Λ[Χ . Note that the two functions intersect at the points (0,0) 
and (1,1). 
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P l o t [ { x " 2 , S q r t [ x ] } , { x , 0 , 1 . 2 } ] 

0 .2 0 .4 0 .6 0 .8 1 1.2 

In this example, m(x, y) = x + eVy and n(x, y) = 2y + cos(x). Therefore, applying Green's 
theorem, 

Φ (x + e/y )ifo + {ly + cos(x))dy = (p m(x, y)dx + rc(x, y)dy 

-m-tr-w \dydx. 

Next, we will use Mathematica to define m(x,y), n(x,y), and to compute —, — , 
dx dy 

l V x / \ 

and 3 Γ ~ 3 ~ Γ^^χ· First, the functions m(x,y), and n(x,y) are defined. Recall 
o X2V °y ) 

that in computing the partial derivatives, the variable of differentiation must be 
specified. These partial derivatives are calculated in nx and my, respectively. 
I n t e g r a t e cannot be used to find an exact value of this integral (as shown in our 
final calculation) so we approximate it with N I n t e g r a t e . 

Clear[m,n] 

m[x_,y_]=x+Exp[Sqrt[y]]; 

n[x_,y_]=2y+Cos[x]; 

nx=D[n[x,y],x] 

-Sin[x] 

my=D[m[x,y],y] 

Sqrt[y] 

2 Sqrt[y] 

NIntegrate[nx-my,{xf0,1},{y,x*2,Sqrt[x]}] 

-0.676441 

file:///dydx
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Integrate[nx-my,{χ,Ο,Ι},{y,xÄ2,Sqrt[x]}] 

General: :intinit: 
Loading integration packages — please wait. 

Pi 2 
-26 + 8 E + 2 Cos[l] - Sqrt[ — ] FresnelC[Sqrt[ — ] ] + 

2 Pi 

2 
Sqrtfx ] 

Integrate[E , {x, 0, 1}] + 2 Sin[l] 

Application: The Divergence Theorem 

The Divergence Theorem: Let Q be any domain with the property that each straight line 
through any interior point of the domain cuts the boundary in exactly two points, and 
such that the boundary S is a piecewise smooth closed, oriented surface with unit outer 
normal n. If f is a vector field that has continuous partial derivatives on Q, then 

\\f^S = \\\älVfäV-\\\v.fäV 

\\f*ndS is called the outward flux of the vector field f across the surface S. If S is a 

portion of the level curve g(x,y)=c for some g, then a unit normal vector n may be taken to 

be either n = τ—^-τ or n = Tl—£. 
NI IM 

Recall the following formulas for the evaluations of surface integrals: Let S be the graph 
of z=f(x,y) (y=h(x,z) or x=k(y,z)) and let Rx y (Rxz or Ry z) be the projection of S on the xy-
(xz- or yz-) plane. Then, 

]]g{x,yfz)dS = jj g{xMx^z)]{hx{x,z))\{hz{x,z))2 +ldA. 

J ] R ^(%,ζ)^,ζ)^ν(^ζ))2 +( / : 2( ν /ζ))2 + 1 ^ 
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EXAMPLE: Use the Divergence Theorem to compute the outward flux of the field 

vf(x, y, z) = (xy + x2yz, yz + xy2z, xz + xyz2 ) 

through the surface of the cube cut from the first octant by the planes x=2, y=2, 
and z=2. 

SOLUTION: By the Divergence Theorem, [ j vf · n dA = ί [J V*vfdV. Notice that 
Cube Surface Cube Interior 

without the Divergence theorem, calculating I υ/·«ίίΑ would require six 
Cube Surface 

separate integrals. However, with the Divergence Theorem, calculating the flux 
can be accomplished by integrating the divergence. Because we need the 
command Div, we load the VectorAnalysis package. The vector field is defined 
in vf as a list of three elements, the x, y, and z components, so that the divergence 
can be determined in d ivv f . The divergence is then integrated over the cube [0,2] 
x [0,2] x [0,2] to yield a value of 72. 

« C a l c u l u s ' V e c t o r A n a l y s i s ' 

v f [ x _ / Y _ f z _ ] = { x γ+χΛ2 z y , y z+x γΛ2 z, x z+x y ζ Λ 2} 

2 2 
{ x y + x y z , y z + x y z, 

2 
x z + x y z } 

d i v v f [ x _ , y _ , z__] =Div[v f [ x , y , z ] , C a r t e s i a n ] 

x + y + z + 6 x y z 

I n t e g r a t e [ d i v v f [ x , y , z ] , { x , 0 , 2 } , { y , 0 , 2 } , { z , 0 , 2 } ] 

72 

In the same manner as in the previous example, we can use the command 
P l o t V e c t o r F i e l d 3 D contained in the PlotField3D package to graph the vector 
field vf . After loading the PlotField3D package, we graph v f in the cube 
[0,2]x[0,2]x[0,2]. 

«Graphics ' PlotField3D ' 

PlotVectorField3D[vf[x,y,z],{x,0,2},{y,0,2},{z,0,2},VectorHeads->True] 
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Application: Stoke's Theorem 

Stoke's Theorem: Let S be an oriented surface with finite surface area, unit normal n, and 
boundary C. Let F be a continuous vector field defined on S such that the component 
functions of F have continuous partial derivatives at each non-boundary point of S. Then, 

i>F»dr = (curlf)9tidS. In other words, the surface integral of the normal component of the 

curl of F taken over S equals the line integral of the tangential component of the field taken 

overC: &F*Tds = lUcurlfyndS. In particular, if F = (M,N,P) = Mi + N j + Pk, then 

M(x,y,z)dx + N(x,y,z)dy + P(x,y,z)dz = (curlff)9tidS. 

EXAMPLE: Ver i fy 
vf(x,y,z) = (y2-z, 

z non-negative. 
z2+x, 

Stok 
* 2 -y) 

e 's 
and 

Th 
S 

e o r e m for t h e 
the parabolo id z = 

vec t 
=/(*,y) = 

or 
= 4--(* 

f ie ld 

2+y2)> 

SOLUTION: Since we must show ά>ν/·άν= (curlvfl^ndS, we must compute curl 

vf, n, [curlvfyndS, r, dr, and <hvf*dr. We begin by loading the VectorAnalysis 

package and defining the vector field vf and the function f. The curl of vf is then 
computed in c u r l v f . The function h(xfy,z) = z-f(x,y), which will be used in the 
computation of the unit normal vector, is also defined. Hence, the normal vector to 
the surface is given by Vh ,which is found below in normal . 



5.5 Vector Calculus 359 

«Calculus'VectorAnalysis' 

Clear[vf,f,h,normal,un,g,cur1vf,n] 

vf[x_,y_,z_]={y~2-z,z"2+x,x"2-y}; 

f[x_,yJ=4-(xA2+yA2); 

curlvf [x__,y_,z_]=Curl[vf[x,y,z] ,Cartesian] 

{-1 - 2 z, -1 - 2 x, 1 - 2 y} 

h[x_,y_,z_]=z-f [x,y] 

2 2 
-4 + x + y + z 

normal[x_,y_,z_J =Grad[h[x,y,z],Cartesian] 

{2 x, 2 y, 1} 

Since n o r m a l is a normal vector to the surface, T—τ = — „ represents 
||V/z( ||normal[x,y,z]|| 

a unit normal vector. This vector is found below in un. Recall that 

||normal [ x,y,z ]|| = ̂ normal [ x ,y,z ] · normal [ x ,y,z ] . 

Note tha t n o r m a l [ x , y , z ] is a list (of three elements) and 
n o r m a l [ x , y , z ] [ [ i ] ] yields the ith element of the list n o r m a l [ x , y , z ]. 
Therefore, 

| | no rmal [ x , y , z ] | | is given by the command 

S q r t [ S u m [ ( n o r m a l [ x f y , z ] [ [ i ] ] ) A 2 , { i , l , 3 } ] ] . 

Thus, an alternative approach is to define un by entering: 

un[x_,y_,z_]=normal[ x, y, z ]/Sqrt[ 

Sum [( normal [x,y,z][[i]]r2,{i, 1,3}]] 

In order to easily use the surface integral evaluation formula, define g [ x , y , z ] to 
be the dot product of c u r l v f [ x , y , z ] and un [ x , y, z ] . 

un[x_,y_,z_]=normal[x,y,z]/Sqrt[normal[x,y,z].normal[x,yfz]] 

2 x 
{ , 

2 2 
Sqrt[l + 4 x + 4 y ] 

2 y 

2 2 
Sqrt[l + 4 x + 4 y ] 
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1 
} 

2 2 
Sqrt[l + 4 x + 4 y ] 

g[x__,y_,z_]=Together[curlvf [x,y,z] .un[x,y,z]] 

l - 2 x - 4 y - 4 x y - 4 x z 

2 2 
Sqrt[l + 4 x + 4 y ] 

By the surface integral evaluation formula, 

jj{curlvf).ndS = jjg{x,y,z)dS = jj8(x,y,f{x,y))^(l{x,y))2 + (/,(*,y))2 + 1 A4, 
S S R 

where R is the projection of f(x,y) on the xy-plane. Hence, in this example, R is the 
region bounded by the graph of the circle x2 + y2 = 4. Thus, 

JJ^y^y))^(^y))2+(/„(^y))2+i^ = 

ml r^4-X2 

JJ^2^yJ(^y))#(^3/))2+(/y(^y))2+1^· 

This surface integral is computed below to yield a value of 4π. 
function=g[x,y,f[x,y]] Sqrt[(D[f[x,y],x])"2+(D[f[x,y],y])Λ2+1] 

l - 2 x - 4 y - 4 x y -

2 2 
4 x (4 - x - y ) 

Integrate[function,{x,-2,2},{y,-Sqrt[4-χΛ2],Sqrt[4-χΛ2]}] 

4 Pi 

Notice that the integral 

££^^y,/(^y))^(^y))2+(/v(^y))2+i^ 

can be easily evaluated using polar coordinates. To do so, replace each occurrence 

of x and y in g(x,yj{x,y))J(fXx,y))2+[fv{x>y)) +1 by rcosf and rsint, respectively. 
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function=g[x,y,f[x,y]] Sqrt[(D[f[x,y],x])^2+(D[f[x,y],y])Λ2+1] /. 

{x->r Cos[t],y->r Sin[t]} 

1 - 2 r Cos[t] - 4 r Sin[t] -

2 
4 r Cos[t] Sin[t] -

2 2 
4 r Cos[t] (4 - r Cos[t] -

r Sin[t] ) 

We then simplify function with Expand using the option T r i g - > T r u e which 
applies basic trigonometric identities to attempt to simplify f u n c t i o n . The 
expression in p o l a r f u n c t i o n is then integrated over the circular region 
R: 0 < r < 2,0 < t < 2π to yield the value of 4π which was obtained in the integral in 
Cartesian coordinates above. 

polarfunction=Expand[function,Trig->True] 

3 
1 - 18 r Cos[t] + 4 r Cos[t] -

2 
4 r Sin[t] - 2 r Sin[2 t] 

Integrate [polarfunction r, {r,0,2} , {t,0,2Pi}] 

4 Pi 

Now, to verify Stoke's Theorem, we must compute the associated line integral. We 

begin by noticing that the boundary of z=f(x,y)=4-1 x +y ), z > 0 is the circle 

2 2 x + y =4 which has parameterization x = 2 * C o s [ s ] , y = 2 * s i n [ s ] , and z=0 
for 0< s < 2π. This parameterization is substituted into vf and named pvf below. 
In order to evaluate the line integral along the circle, we must define the 
parameterization of the circle, r [ s ] , and calculate r ' [ s ] . The dot product of pvf 
and r ' [ s ] represents the integrand of the line integral. 

pvf=vf[x,y,z] /. {x->2 Cos[s],y->2 Sin[s],z->0} 

2 
{4 Sin[s] , 2 Cos[s], 

2 
4 Cosfs] - 2 Sin[s]} 

r[s_]={2 Cos[s],2 Sin[s],0} 

{2 Cos[s], 2 Sin[s], 0} 
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r'[s] 

{-2 Sin[s], 2 Cos[s], 0} 

pvf.r'[s] 

2 3 
4 Cos[s] - 8 Sin[s] 

The resulting expression is then integrated along the circle to yield a value of 4π, 
which verifies Stake's Theorem. 

Integrate[pvf.r'[s],{s,0,2Pi}] 

4 Pi 



MOTH R 

Applications Related 
to Ordinary and 

Partial Differential 
Equations 

Mathematica can perform calculations necessary when computing solutions of various 
differential equations and, in some cases, can be used to find the exact solution of certain 
differential equations using the built-in command DSolve . In addition, Mathematica 
contains the command NDSolve which can be used to obtain numerical solutions of other 
differential equations. The purpose of Chapter 6 is to illustrate various computations 
Mathematica can perform when solving differential equations. Applications discussed in 
this chapter include the Falling Bodies Problem, Spring Problems, Classification of 
Equilibrium Points, and the Wave Equation. 

363 
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6. / First-Order Ordinary 
Differential Equations 
*&&&&*&&&*** 

Separable Differential Equations 

A differential equation that can be written in the form g(y)y&f(x) is called a separable 

differential equa t ion . Rewriting g(y)y&f(x) in the form g(y)-¥- = f(x) yields 
dx 

g(y)dy=f(x)dx so that g(y)dy= \f(x)dx + C, where C represents an arbitrary constant. An 

equation of this type is solved with Mathematica in the following example. 

EXAMPLE: Solve the initial value problems ycos(x)dx-(l + y2)dy = 0,y(0) = l. 

SOLUTION: We first try to solve the equation with D S o l v e by defining the 
equation and then entering the command DSolve [ e q , y [ x ] , x ] which attempts 
to solve the equation eq for y [ x ] . 

eq=y'[x]==y[x] Coe[x]/(l+y[x]A2); 

DSolve[eq,y[x],x] 

Solve::tdep: The equations appear to involve transcendental functions of 

the variables in an essentially non-algebraic way. 
Solve::tdep: The equations appear to involve transcendental functions of 
the variables in an essentially non-algebraic way. 

2 

y[x] 
Solve[Log[y[x]] - Sin[x] + == C[l], y[x]] 

2 

However, in this case, DSolve is unable to solve this nonlinear equation so we 
1 + v2 rewrite the equation in the form cos(x)dx = —^—dy. To solve the equation, we must 

y 
integrate both the left- and right-hand sides, which we do below with I n t e g r a t e , 
naming the resulting output l h s and r h s , respectively. 

lhs=Integrate[Cos[x],x] 

rhs=Integrate[(1+yΛ2)/y,y] 

Sin[x] 
2 

y 
— + Log[y] 
2 
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Therefore, a general solution to the equation is sinx + C1 = ln|y| +—y2. Below, we use 

C o n t o u r P l o t to graph sinx + Cj =ln|y| + - y 2 for various values of Cx by observing 

that the level curves of sinx-ln|y| + —y2 correspond to the graph of 

sinx + Cj = ln|y| +—y2 for various values of €λ. 

ContourPlot[lhs-rhs,{x,0,10},{y,0,10},ContourShading->False, 
Frame->False,Axes->Automatic,AxesOrigin->{0,0}] 

By substituting y(0)=l into this equation, we find that €λ = —, so the implicit 

1 1 
solution is given by sinx + — = ln|y| +—y2. 

gensol=lhs==rhs+c 

Sin[x] == c + — + Log[y] 
2 

initeq=gensol /. {x->0,y->l} 

0 == - + c 
2 

Solve[initeq] 

{ { c -> -(-)}} 
2 
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Homogeneous Differential Equations 

A differential equation that can be written in the form M(x,y)dx+N(x,y)dy=0 where 
M(tx,ty) = t"M(x,y) and N(tx,ty) = t"N(x,y) is called a homogeneous differential equation 
(of degree n). This type of equation can be solved with the help of Mathematica as 
illustrated in the following example. 

EXAMPLE: Solve the equation (x2-y2)dx + xydy = 0. 

SOLUTION: Proceeding as in the previous example, we first define eq to be the 
equation (x2-y2)dx + xydy = 0, and then we attempt to use DSolve to solve the 
equation. 

Clear[eq] 

eq=x y y'[x]==(y[x]Α2-χΛ2); 

DSolve[eq,y[x],x] 

2 2 

DSolve[x y y ' [ x ] ==-x +y[x] , y[x], x] 
Since D S o l v e is unsuccessful, let M(x,y) = x2-y2 and N(x,y) = xy. Then, 
M(tx,ty) = t2M(x,y) and N(tx,ty) = t2N(x,y), which means that (x2 -y2)dx + xydy = 0 is 
a homogeneous equation of degree 2. 

Clear[m,n,x,y] 

m[x_,y_]=x"2-y~2; 

n[x_,y_]=x y; 

m[t x,t y]//Factor 

n[t x,t y]//Factor 

2 
t (x - y) (x + y) 
2 

t x y 

Assume x=vy. Then, dx = vdy + ydv, and directly substituting into the equation 
and simplifying yields y2 v3 dy + y3(v2 - Vjdv = 0. 

l eqone=m[x ,y ] D t [ x ] + n [ x , y ] D t [ y ] 

2 2 
(x - y ) D t [ x ] + x y D t [ y ] 
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x=v y; 
leqtwo=leqone//ExpandAll 

3 2 3 3 2 
-(y Dt[v]) + v y Dt[v] + v y Dt[y] 

leqthree=Collect[leqtwo,{Dt[v],Dt[y]}] 

3 2 3 3 2 

(-y + v y ) Dt[v] + v y Dt[y] 
Dividing this equation by y3v3 yields the separable differential equation 

«*y ,(p2-i)<fo= 0 > 

y v* 
leqfour=Cancel[Apart[leqthree/(γΛ3 νΛ3)]] 

2 
(-1 + v ) Dt[v] Dt[y] 

+ 

3 y 
v 

We solve this equation by rewriting it in the form 

dy = (l-v>)dv J 1 1Λ 
y v3 \v3 v) 

and integrating each side with I n t e g r a t e . Note how [ [ . . . ] ] and Take are 
used to extract the terms to be integrated. 

l eqfour[ [1 ,1 ] ] 

-3 

l e q f o u r n i ^ ] ] 

2 
-1 + v 

Take[ leqfour[ [ l ] ] ,2 ] 

2 
-1 + v 

3 

l e q f o u r [ [ 2 , l ] ] 

1 

y 
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first=Integrate[Take[leqfour[[1]],2],v] 

1 

+ Log[v] 
2 

2 v 

second=Integrate[ leqfour[[2 ,1]] ,y] 

Log[y] 

This yields 
-2 

v v2 l 

_2 
which can be simplified as ln(vy) = — + Cv so 

vy = C e~2 !l'2 , where C = ec 

x Since x=vy, v = — , resubstituting into the above equation yields 

x = Ce-2y2/*2 

as a general solution of the equation (x2-y2)dx + xydy = 0. Of course, the same 

results are obtained by substituting v = — into f i r s t . 

Clear[x,v,y] 

first /. v->x/y 

2 

y x 
+ Log[-] 

2 y 
2 x 

To graph x = Ce 2y2/x2 for various values of C, we note that the graph of x = Ce2y2/x2 

for various values of C is the same as the level curves of xe2y2/x2 which we graph 
with C o n t o u r P l o t . We graph the level curves of xe2y2/x2 corresponding to the C-
values defined in v a i s , which is specified in the C o n t o u r P l o t command with 
C o n t o u r s - > v a l s . Including the option P l o t P o i n t s - > 6 0 increases the number 
of points sampled and, thus, helps assure that the resulting graphs are smooth. 
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v a l s = T a b l e [ i , { i , . 5 , 5 . 5 , . 5 } ] 

{ 0 . 5 , 1 . , 1 . 5 , 2 . , 2 . 5 , 3 . , 3 . 5 , 4 . , 4 . 5 , 5 . , 5 . 5 } 

ContourPlot[x Εχρ[2γΛ2/χΛ2],{x,.01,6},{y,-3,3}, 

ContourShading->False,Frame->False,Contours->vals, 

PlotPoints->60,Axes->Automatic,AxesOrigin->{0,0}] 

Exact Equations 

A differential equation that can be written in the form M(x,y)dx + N(x,y)dy = 0 where 

—- = —— is called an exact differential equation. If M(x,y)dx + N(xfy)dy = 0 is exact, there is 

a function F such that the total differential of F, dF, satisfies the equation 
df = M[x,y)dx + N[x,y)dy = 0. The solution of the exact differential equation is F(x,y)=c where 
c is a constant. The method by which F(x,y) is determined with Mathematica is illustrated 
in the following example. 

EXAMPLE: Find a general solution of the equation 

(-l + exyy + ycos(xy))dx + (l + exyx + xcos(xy))dy = 0. 

SOLUTION: We beg in by de f in ing m(x,y) = - l + exyy + ycos(xy), 
n(x,y) = l + exyx + xcos(xy) ,and then trying to use DSolve to solve the equation. 
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Clear[m,n] 

m[x_,y_]=-l+Exp[x y]y +y Cos[x y]; 

n[x_,y_]=l+Exp[x y]x +x Cos[x y]; 

equation=DSolve[m[x,y[x]]+n[x,y[x]]*y·[x]==0,y[x],x] 

Solve::tdep: 
The equations appear to 

involve transcendental 
functions of the 
variables in an 
essentially non-algebraic 
way. 

x y[x] 
Solve[E - x + 

Sin[x y[x]] + y[x] == C[l] 

, y[x]] 

Since D S o l v e is unsuccessful, we verify that — = — and consequently the 
dy dx 

equation must be exact. 

D [ m [ x , y ] , y ] = = D [ n [ x , y ] , x ] 

True 

We then use I n t e g r a t e to compute m(x,y)dx and name the resulting output 

s t e p o n e . 

stepone=Integrate[m[x,y],x] 

x y 
E - x + Sin[x y] 

The result means that the desired solution is of the form e*y -x + sm(xy) + g(y). 
Therefore, we define s t e p t w o to be the partial derivative of s t e p o n e + g [ y ] with 
respect to y. 

steptwo=D[stepone+g[y],y] 

x y 
E x + x Cos[x y] + g'[y] 

Since —(stepone + g [ y ]) = n(x, y ), we use the S o l v e command to find the value of 

stepthree=Solve[steptwo==n[x,y] ,g'[y]] 

{ { g ' [ y ] -> i } } 
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Therefore, g{y) = y + c and a general solution of the equation is e*y -x + y + sin(xy) = c. 

stepfour=Integrate[g *[y] /. stepthree[[1]],y] 

y 

solution=stepone+stepfour 

x y 
E - x + y + Sin[x y] 

In this case, we can graph various solutions with the command ContourPlot by 
observing that level curves of the function e*y -x + y + sin(xy) correspond to the 
graphs of e*y -x + y + sin(xy) = c for various values of c. As in the previous example, 
including the option P l o t P o i n t s - > 3 0 increases the number of points sampled 
and, consequently, helps to assure that the resulting graphs are smooth. The 
option Contour s ->2 0 instructs Mathematica to graph 20 contours, while the 
option P lo tRange->{-10 ,10} specifies that the level curves correspond to c-
values between -10 and 10. 

ContourPlot[solution,{x,-Pi,Pi},{y,-Pi,Pi},Contours->20,PlotPoints->30, 

PlotRange->{-10,10},ContourShading->False] 

Linear Equations 

A differential equation that can be written in the form -*- = p(x)y = q(x)is called a first-order 
dx 

linear differential equation. If -^ = p(x)y = q{x), then multiplying by e\^x)dx results in 
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e\r(x)dx -Ä. + e]p(x)dxp(x)y = ejp(x)dxq(xy j n e term ey^dx is called the integrating factor. Applying 

the product rule and Fundamental Theorem of Calculus yields 

— ( e]pwdx y) = e)pwdx — + e\p^dxp(x)y 
dx\ i dx 

so the equation 

ejp(x)dx _z. + ejp^dxp(x)y = ejpwdxq(x) 
dx 

is equivalent to the equation 

—[ejpUKv y\ = ejpwd*q(x). 
dx \ i 

Integrating, we obtain e\p{x)dxy = e\p{x^dxq{x)dx. Dividing by e\p^dx results in the solution 

y = e-]pMdx e\p^dxq(x)dx 

Mathematica's DSolve command can solve most first-order linear differential equations 
without having to calculate the integrating factor and following the procedure described 
above. We show this in the following example. 

EXAMPLE: Find the general solution of x— + 3y = xsin(x). Graph the solution for 
dx 

the values of c=-6, -4, -2 , 0, 2, 4, and 6. 

SOLUTION: In this case, we are able to use DSolve to directly solve the equation. 
Note that the resulting output is named s o l . 

sol=DSolve[x y'[x]+3y[x]==x Sin[x],y[x],x] 

3 2 
C[l] 6 x Cos[x] - x Cos[x] - 6 Sin[x] + 3 x Sin[x] 

{{y[x] -> + }} 
3 3 

x x 

We extract the explicit solution from s o l with s o l [ [ 1 , 1 , 2 ] ] below. 
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sol[[l,l,2]] 

3 2 
C[l] 6 x Cos[x] - x Cos[x] - 6 Sin[x] + 3 x Sin[x] 

3 3 
X X 

To graph the solution for the indicated values of c, we use E v a l u a t e and T a b l e . 
The command 

Table[sol[[l,l,2]] /. C[1]->i,{i,-6,6,2}] 

generates a table of the functions to be graphed. Be sure to include the T a b l e 
command in the E v a l u a t e command so that Mathematica first computes the 
table and then graphs each function in the table. 

Plot [Evaluate [Table [so l [ [1 ,1 ,2 ] ] / . C [ 1 ] - > i , { i , - 6 , 6 , 2 } ] ] , 
{x , .01 ,3 /2Pi} ,PlotRange->{-5 ,5}] 

The effects of various forcing functions f(x) in the equation —^ + a(x)y = f(x) are 

demonstrated in the example below. 

EXAMPLE: Compare the solutions of —+ y =/(*) subject to y(0)=0 where f(x)=x, 

sinx, cosx, ex, e~x, e*sinx, x cos x, and xex. 

SOLUTION: To compute each solution, the table f u n s is first defined and then 
the T a b l e and DSo lve commands are used to find the solution of each of the 
eight equations. The command 

DSolve[{y'[x]+y[x]==funs[[i]],y[0]==0},y[x],x] 
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solves the differential equation y' + y = funs [ [ i ] ], where f u n s [ [ i ] ] is the ith 
element of f u n s , subject to the initial condition y(0)=0. The result of the T a b l e 
command is named s o l s which we display in a two-line abbreviated form with 
S h o r t . 

funs={x,Sin[x],Cos[x],Exp[x],Exp[-x],Sin[x]Exp[-x],x Cos[x],x Exp[-x]}; 

sols=Table[DSolve[{y[x]+y[x]==funs[[i]]/y[0]==0}fy[x],x],{ifl,8}]; 

Short[sols,2] 

-x 1 -Cos[x] + Sin[x] 
{{{y[x] -> -1 + E + x}}, {{y[x] -> + }}, 

x 2 
2 E 

2 
-1 x 

{{y[x ] -> + « 1 » } } , « 4 » , {{y [x ] -> }}} 
x x 

2 E 2 E 

Observe that the first element of s o l s is the list {y [ x ] - > -1 + E~x + x} which can be 
obtained with the command s o l s [ [ 1 ] ] . To evaluate the expression - ι + Ε-χ +x 
for explicit values of x, we must either reenter the expression or extract it from 
s o l s . One way of extracting the expression - l + E-x+x from the list s o l s is to 
enter 

y[x] /. sols[[l]], 

which replaces y [ x ] by the expression -1 + Ex + x, or to enter s o l s [ [ 1 , 1 , 2 ] ] . 

To graph each of the explicit solutions in s o l s , we must extract the explicit 
solutions. One way of extracting the solutions is to create a table of values of y [ x ] 
where y [ x ] is replaced by the rule in the ith element of s o l s as done in the 
following command. The resulting list of functions is named t o p l o t for future 
use and displayed in an abbreviated two-line form with S h o r t . Alternatively, the 
t a b l e c a n be c r e a t e d by e n t e r i n g t h e c o m m a n d 
T a b l e [ s o l s [ [ i , l , 2 ] ] , { i , l , 8 } ] . 

toplot=Table[y[x] /. sols[[i,l]],{i,l,8}]; 

Short[toplot,2] 

-x 1 -Cos[x] + Sin[x] -1 Cos[x] + Sin[x] 
{-1 + E + x, + , + , 

x 2 x 2 
2 E 2 E 



6.1 First-Order Ordinary Differential Equations 375 

x Cos[x] + « 1 » + x Sin[x] x 
« 3 » , , } 

2 x 
2 E 

To graph each of the functions in t o p l o t , we define g [ i ] which graphs the ith 
element of t o p l o t on the interval [-π,2π]. Note that the results of g are not 
displayed since the option D i s p l a y F u n c t i o n - > I d e n t i t y is included. We then 
use g to graph each function in t o p l o t on the interval [-π,2π] and partition the 
resulting set of eight graphics into two element subsets with P a r t i t i o n . The 
resulting eight graphics objects are displayed as a graphics array for easy 
comparison. 

g[i_]:=Plot[toplot[[i]],{x,-Pi,2Pi},DisplayFunction->Identity]; 

graphs=Partition[Table[g[i],{i,l,8}],2]; 

Show[GraphicsArray[graphs]] 

ζΣ^ 
°l 2 4N* 

-2 2 4 6 

-2 2 4 6 

Numerical Solutions of First-Order 
Ordinary Differential Equations 

Numerical approximations of solutions to differential equations can be obtained with 
NDSolve. This command is particularly useful when working with nonlinear equations 
for which DSolve is unable to find an explicit solution. This command is entered in the 
form 

NDSolve[{deq,ics},fun,{var,varmin,varmax}], 
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where deq is solved for fun and the solution is valid over the interval [varmin,varmax]. 
In some cases, the interval on which the solution is valid is smaller than the interval 
requested. Note that the number of initial conditions in i c s must equal the order of the 
differential equation indicated in deq. In order to illustrate the command NDSolve, we 
consider the nonlinear equations below. 

EXAMPLE: Graph the solution of — = sin(2x-y) subject the initial condition 

y(0) = 0.5 on the interval [0,15]. 

SOLUTION: First, we define eq to be the equation — = sin(2x-y) and then use 

N D S o l v e to approximate the solution of e q subject to the initial condition 
y(0) = 0.5, naming the resulting output s o l . The resulting output is an 
I n t e r p o l a t i n g F u n c t i o n which represents an approximate function obtained 
through interpolation. This solution is extracted from s o l with s o l [ [ l , l , 2 ] ] . 
The interval { 0 . , 1 5 . } is the range of values over which the approximation is 
valid. 

Clear[x,y] 
eq=y'[x]==Sin[2x-y[x]]; 
sol=NDSolve[{eq,y[0]==.5} ,y[x] ,{x ,0 ,15}] 

{{y[x] -> InterpolatingFunction[{0., 15.}, <>][x]}} 

We then graph the solution by replacing y [ x ] by the result obtained in s o l . The 
same result is obtained if y [ x ] / . s o l is replaced by s o l [ [ 1 , 1 , 2 ] ] . 

We can also use NDSolve to generate approximations of solutions to a differential 
equation under changing initial conditions. 

Plot[y[x] / . s o l , { x , 0 , 1 5 } ] 
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EXAMPLE: Graph the solution of y' = sin(xy) subject to the initial condition y(0) = ι 
on the interval [0,7] for i = 0.5,1.0,1.5,2.0, and 2.5. 

SOLUTION: We begin by defining e q to be the equation y' = sinxy. We then 
define s o l [ i ] to return the approximate function obtained from 

NDSolve[{eq,y[0]==i},y[x],{x,0,7}]. 

Clear[x,y,sol] 

eq=y[x]==Sin[x y[x]]; 

sol[i_J :=Module[{sol}, 

sol=NDSolve[{eq,y[0]==i},y[x],{x,0,7}]; 

sol[[l,l,2]]] 

Next, we define t o p l o t to be a table consisting of s o l [ i ] for 
i = 0.5,1.0,1.5,2.0, and 2.5. We display an abbreviated form of t o p l o t with S h o r t to 
show that the list t o p l o t consists of I n t e r p o l a t i n g F u n c t i o n s . Finally, P l o t 
is used to graph the functions in t o p l o t on the interval [0,7]. 

toplot=Table[sol[i],{i,.5,2.5,.5}]; 

Short[toplot] 

{InterpolatingFunction[ {0. , 7.}, <>][x], « 4 » } 

Plot[Evaluate[toplot],{x,0,7}] 

Application: Population Growth 
and the Logistic Equation 

The logistic equat ion (or Ve rhu l s t equa t ion) , first introduced by the Belgian 
mathematician Pierre Verhulst to study population growth, is the equation 

yV) = (r-ay(t))y(t), 
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where r and a are constants, subject to the condition y(0) = y0. This equation can be written 

as -^- = (r-ay)y = ry-ay2 where the term (-y2) represents an inhibitive factor or "death 

rate." Hence, the population under these assumptions is not allowed to grow out of control 
as it is in some other models like the Malthus model. Also, the population does not grow 
or decay constantly. 

The logistic equation is separable, and, thus, can be solved by separation of variables. 
We proceed by using DSolve to find a general solution of the equation: 

Clear[logistic,y] 

logistic=y'[t]==(r-a y[t])y[t]; 

sol=DSolve[logistic,y[t],t] 

r t 
E r 

{{y[t] -> }, {y[ t ] -> 0}} 
r t 

a E + r C[ l ] 

We see that the function y=0 is a (trivial) solution to the equation. We are only interested in 
the first solution which we extract from sol with s o l [ [ l , l , 2 ] ] . 

s o l [ [ l , l , 2 ] ] 

r t 
E r 

r t 
a E + r C[ l ] 

Applying the initial condition y(0) = yo to solve for C [ 1 ] , we find that 

cval=Solve[Evaluate[sol[[1,1,2]] /. t->0]==y0,C[1]] 

r - a yO 
{{C[l] -> }} 

r yO 

and evaluating s o l [ [ 1 , 1 , 2 ] ] for the value obtained above yields the solution which we 
define as y. We define y as a function of t , yO, r , and a so that we can refer to this solution 
in other problems without solving the differential equation again. 

y [ t _ , y O _ , r _ , a _ ] = s o l [ [ 1 , 1 , 2 ] ] / . c v a l [ [ 1 ] ] / / T o g e t h e r 

r t 
E r yO 

r t 
r - a yO + a E yO 

The solution can also be written as 
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Notice that limy(0 = - · 
f^°° a 

EXAMPLE: Use the logistic equation to approximate the population of the United 
States using r = 0.03, A = 0.0001, and yg = 5.3. Compare this result with the actual 
census values given in the table below. Use the model obtained to predict the 
population of the United States in the year 2000. 

Year ( t ) 

1800 (0) 

1810 (10) 

1820 (20) 

1830 (30) 

1840 (40) 

1850 (50) 

1860 (60) 

1870 (70) 

1880 (80) 

1890 (90) 

Population 
(in mill ions) 

5.30 

7.24 

9.64 

12.68 

17.06 

23.19 

31.44 

38.56 

50.19 

62.98 

Year (t) 

1900 (100) 

1910(110) 

1920 (120) 

1930 (130) 

1940 (140) 

1950 (150) 

1960 (160) 

1970 (170) 

1980 (180) 

1990 (190) 

Population 
(in mill ions) 

76.21 

92.23 

106.02 

123.20 

132.16 

151.33 

179.32 

203.30 

226.54 

248.71 

Source: The World Almanac and Book of Facts, 1993 

SOLUTION: We substitute the indicated values of r, a, and yo into 

y = —h.— — to obtain the approximation of the population of the United 

States at time t, where t represents the number of years since 1800, 

( v = 0.03· 5.3 0.159 
y ~ 0.0001 ·5.3 + (0.03-0.0001 ·5.3)«?-03' ~ 0.00053 + 0.02947?-o3' " 

We compare the approximation of the population of the United States given by the 
approximation y(t) with the actual population obtained from census figures. First, 
we enter the data represented in the table as d a t a and then graph the points in 
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d a t a using G r a p h i c s , Map, and P o i n t , naming the resulting graphics object 
d o t s. We then graph y [ t , 5 . 3 , . 0 3 , . 0001] for the years corresponding to 1800 
to 2000 and name the resulting graph p l o t y . Finally, Show is used to display 
d o t s and p l o t y together. 

data={{0,5.30},{10,7.24},{20,9.64},{30,12.68},{40,17.06}f 

{50,23.19},{60,31.44},{70,38.56},{80,50.19},{90,62.98}, 

{100,76.21},{110,92.23},{120,106.02},{130,123.20}, 

{140,132.16},{150,151.33},{160,179.32},{170,203.30}, 

{180,226.54},{190,248.71}}; 

dots=Graphics[{PointSize[.015],Map[Point,data]}]; 

ploty=Plot[y[t,5.3,.03,.0001],{t,0,200},DisplayFunction->Identity]; 

Show[ploty,dots,DisplayFunction->$DisplayFunction] 

200 

We can also compare the data by making a table of the year, actual population, 
and population predicted by y [ t , 5 . 3 , . 0 3 , . 0001 ] . 

Table[{data[[i,l]]+1800,data[[i,2]],y[data[[i,1]],5.3,.03,.0001]}, 

{i,l,20}]//TableForm 

1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 

5.3 
7.24 
9.64 
12.68 
17.06 
23.19 
31.44 
38.56 
50.19 
62.98 
76.21 
92.23 
106.02 
123.2 
132.16 
151.33 
179.32 
203.3 
226.54 
248.71 

5.3 
7.1103 
9.51898 
12.7082 
16.9038 
22.3766 
29.437 
38.417 
49.6339 
63.3328 
79.6105 
98.3335 
119.081 
141.141 
163.594 
185.448 
205.817 
224.047 
239.782 
252.941 
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To predict the population of the United States in the year 2000 with this model, we 
evaluate 

y [ 2 0 0 , 5 . 3 , . 0 3 , . 0 0 0 1 ] 

263 .66 

Thus, we predict that the population will be approximately 263.66 million in the 
year 2000. Note that projections of the population of the United States in the year 
2000 made by the Bureau of the Census range from 259.57 million to 278.23 
million. ■ 

Application: Newton's Law of Cooling 

Newtonfs Law of Cooling states that the rate at which the temperature T(t) changes in a 
cooling body is proportional to the difference between the temperature of the body and the 
constant temperature Ts of the surrounding medium. This situation is represented as the 

AT 

first-order initial value problem — = k(T-Ts) subject to T(0) = T0, where To is the initial 
temperature of the body and k is the constant of proportionality. We solve a problem 
involving Newton's law of cooling in the following example. 

EXAMPLE: A pie is removed from a 350° oven. In 15 minutes, the pie has a 
temperature of 150°. Determine the time required to cool the pie to a temperature 
of 80° so that it may be eaten. 

SOLUTION: Newton's Law of Cooling states that an object of higher temperature 
than its environment cools at a rate that is proportional to the difference in 

AT 
temperature: — = k(A-T), where k is a positive constant, A is the surrounding 

dt 
temperature, and T is the temperature of the object. The general solution, which 
depends on the parameters of the problem, is determined. Here, the resulting 
function is called t e m p , the surrounding temperature t e m p s , the initial 
temperature tempO, and the constant of proportionality k. The solution based on 
the data indicated in this example is then easily found. 

del=DSolve[{tp·[t]==-k (tp[t]-tempS),tp[0]==tempO},tp[t],t] 

{{tp[t] -> 

-tempS + tempO 
temps + }} 

k t 
E 
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temp [ tempS_, tempO_, k_, t_] =del [[1,1,2]] 

-tempS + tempO 
temps + 

k t 
E 

The solution using the parameter values needed for this problem is given below. 

temp[75,350,k,15] 

275 
75 + 

15 k 
E 

Since the constant k is unknown, it is determined below with S o l v e and called k l 
for convenience. (Note that F i n d R o o t could have been used to determine the 
constant of proportionality above instead of So lve , in order to avoid the warning 
messages which result with Solve. ) In this case, only a portion of the result from 
the So lve command is displayed. 

kl=Solve[temp[75,350,k,15]==150,k]//N 

So lve : : i fun : 
Warning: Inverse functions 

are being used by Solve, 
so some solutions may not 
be found. 

{{k -> 0.0866189}, 

This number is extracted in the usual manner so that it can be used to determine 
the time at which the pie reaches its desired temperature. 

k l [ [ l , l , 2 ] ] 

0.0866189 

This is accomplished with F i n d R o o t by, first, plotting the solution to obtain an 
estimate of the time at which the temperature is 80 degrees and then, using this 
initial approximation with F i n d R o o t . Since the value of the function seems to 
equal 80 near t = 40, the initial guess of 40 is used to achieve the more accurate 
value of t = 46.264. 
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P l o t [ t e m p [ 7 5 , 3 5 0 , k l [ [ l , l , 2 ] ] , t ] , { 1 , 0 , 5 0 } ] 

10 20 30 40 50 

F i n d R o o t [ t e m p [ 7 5 , 3 5 0 , k l [ [ 1 , 1 , 2 ] ] , t ] = = 8 0 , { t , 4 0 } ] 

{ t -> 4 6 . 2 6 4 } ■ 

Application: Free-Falling Bodies 

The motion of objects can be determined through the solution of a first-order equation. 
We begin by explaining some of the theory which is needed to set up the differential 
equation that models the situation. 

Newton's Second Law of Motion: The rate at which the momentum of a body 
changes with respect to time is equal to the resultant force acting on the body. 

Because the body's momentum is defined as the product of its mass and velocity, this 
statement is modeled as 

— (mv) =F 
dt 

where m and v represent the body's mass and velocity, respectively, and F is the sum of 
the forces acting on the body. Because m is constant, differentiation leads to the well-
known equation 

m—=F. 
dt 

If the body is subjected to the force due to gravity, then its velocity is determined by 
solving the differential equation 

dv dv 
m— = mg or — =g 

dt dt 
2 2 

where g =32 ft/s (English system) and 9.8 m/s (metric system). 

This differential equation is applicable only when the resistive force due to the medium 
(such as air resistance) is ignored. If this offsetting resistance is considered, we must 
discuss all of the forces acting on the object. Mathematically, we write the equation as 
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m— = 2,(forces acting on the object) 

where the direction of motion is taken to be the positive direction. 
We use a force diagram to set up the differential equation which models the situation. 

Because air resistance acts against the object as it falls and g acts in the same direction of 
the motion, we state the initial value problem in the form given below. 

dv / _ \ dv „ 
m — = mç +1 -F„ or m — = mg-FD 

dt * { R) dt * R 

where F R represents this resistive force. Note that down is assumed to be the positive 
direction. The resistive force is typically proportional to the body's velocity (v) or the 
square of its velocity (z;2). Hence, the differential equation is linear or nonlinear based on 
the resistance of the medium taken into account. 

negative direction 

F 
R 

A 

object 

g 

positive direction 

Force Diagram 

EXAMPLE: An object of mass m = 1 is dropped from a height of 50 feet above the 
surface of a small pond. While the object is in the air, the force due to air 
resistance is v. However, when the object is in the pond, it is subjected to a 
buoyancy force equivalent to 6v. Determine how much time is required for the 
object to reach a depth of 25 feet in the pond. 

SOLUTION: This problem must be broken into two parts: an initial value problem 
for the object above the pond, and an initial value problem for the object below the 
surface of the pond. Using techniques discussed in previous examples, the initial 
value problem above the pond's surface is found to be 

— = 3 2 - I M < 0 ) = 0 . 

dt 
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However, to define the initial value problem to find the velocity of the object 
beneath the pond's surface, the velocity of the object when it reaches the surface 
must be known. Hence, the velocity of the object above the surface must be 

determined by solving the initial value problem above. The equation — = 32-v is 

separable and solved with DSolve in d l . 

Clear[v,y] 

dl=DSolve[{v'[t]==32-v[t],v[0]==0},v[t],t] 

32 
{{v[t] -> 32 }} 

t 
E 

In order to find the velocity when the object hits the pond's surface we must know 
the time at which the position of the object is 0. Thus, we must find the position 
function, which is done by integrating the velocity function, obtaining 
y(t) = 32e-'+32t-32. 

p l = D S o l v e [ { y ' [ t ] = = d l [ [ l , l , 2 ] ] , y [ 0 ] = = 0 } , y [ t ] , t ] 

32 
{ { y [ t ] -> -32 + — + 32 t } } 

t 
E 

The position function is graphed below The value of t at which the object has 
traveled 50 feet is needed. This time appears to be approximately 2.5 seconds. 

P l o t [ { p l [ [ l , l , 2 ] ] , 5 0 } , { t , 0 , 5 } ] 

120 

100 

80 

60 

40 

20 

A more accurate value of the time at which the object hits the surface is found 
using F i n d R o o t . In this case, we obtain t = 2.47864. The velocity at this time is 
then determined by substitution into the velocity function resulting in 
z;(2.47864) = 29.3166. Note that this value is the initial velocity of the object when it 
hits the surface of the pond. 

t l = F i n d R o o t [ p l [ [ l , l , 2 ] ] = = 5 0 , { t , 2 . 5 } ] 

{ t -> 2 . 4 7 8 6 4 } 
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v l = d l [ [ l , l , 2 ] ] / . t l 

29 .3166 

Thus, the initial value problem which determines the velocity of the object beneath 

the surface of the pond is given by — = 32 - 6v, v(0) = 29.3166. The solution of this 
dt 

16 
initial value problem is v(t) = — + 23.9833 e~l, and integrating to obtain the position 

1 f> function (the initial position is 0), we obtain y(t) = 3.99722-3.99722e-6' +—t. These 

steps are carried out in d2 and p2 below. 

A more accurate approximation of the time at which the object is 25 feet beneath 
the pond's surface is obtained with F indRoo t . In this case, we obtain t «3.93802. 
Finally, the time required for the object to reach the pond's surface is added to the 
time needed for it to travel 25 feet beneath the surface, to see that approximately 
6.41667 seconds are required for the object to travel from a height of 50 feet above 
the pond to a depth of 25 feet below the surface. 

d 2 = D S o l v e [ { V [ t ] = = 3 2 - 6 v [ t ] , v [ 0 ] = = v l } , v [ t ] , t ] 

16 23 .9832 
{ { v [ t ] -> — + }} 

3 6 t 
E 

p 2 = D S o l v e [ { y ' [ t ] = = d 2 [ [ l , l , 2 ] ] , y [ 0 ] = = 0 } , y [ t ] , t ] 

3 .99721 16 t 
{ { y [ t ] -> 3 .99721 + }} 

6 t 3 
E 

This position function is then plotted to determine when the object is 25 feet 
beneath the surface of the pond. This time appears to be near 4 seconds. 

P l o t [ { p 2 [ [ l , l , 2 ] ] , 2 5 } , { t , 0 , 5 } ] 
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t2=FindRoot[p2[[1,1,2]]==25,{t,4}] 

{t -> 3.93802} 

tl[[l,2]]+t2[[l,2]] 

6.41667 

6.2 Higher-Order Ordinary 
Differential Equations 

An ordinary differential equation of the form 
n 

^ ak (x)y<k>(x) = an (x)y (n)(x) + an-1 (x)y (π-υ(χ) +... + a, (x)y '(x) + a Q (x)y(x) = f (x) 
k=0 

is called an nth order ordinary linear differential equation. If f(x) is identically the zero 
function, the equation is said to be homogeneous; if f(x) is not the zero function, the 
equation is said to be nonhomogeneous; and if the functions aj(x), i=0, 1, 2, ... , n are 
constants, the equation is said to have constant coefficients. 

Let fj(x), f2(x)/ fsM/ ··· / f n - l M ' an<^ *τιΜ ke a s e t °f n functions at least n - 1 times 
differentiable. S is linearly dependent on an interval I means that there are constants cx, 

c2,..., cn, not all zero, so that £^ckfk(x) = 0 for every value of x in the interval I. S is linearly 
J t = l 

independent means that S is not linearly dependent. The Wronskian of S, denoted by 
W(S) = W(Ç (x), f2 (x), f3 (x),..., fn_, (x), fn (x)), is the determinant 

W(S) = 

fx{x) f2(x) .- fn(x) 
f;(x) /;(*) ·:· f;(x) 

ti"-h(x) f^-\x) .:. /,(Ji)(*)| 

The following theorem can help us determine if a set of functions is either linearly 
dependent or linearly independent. 

Theorem: Let f^x), f2(x), f3(x), ..., fn-l(x)/ anc* *τι(χ) ^ e a s e t °* n functions at least 
n-1 times differentiable. If W(S)*0 for at least one value of x in the interval I, S is 
linearly independent. 
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Application of this theorem with the help of Mathematica is illustrated in the example 
below. 

EXAMPLE: Show that S = [ex,xex,x2ex] is linearly independent. 

SOLUTION: The Wronskian of S is 

W(S) = 

xlex 

—(ex) —(xex) —(x2ex) 
dxy ) dxy ) dxK ) 

I d2 ( \ d2 ( \ d2 ( , \\ 
ldx*K } dx*K } dx2^ y| 

xex x2ex 

\ex (x + l)ev (x2+2x)ex 

ex (x + 2)ex (x2+4x + 2)eJ 

We compute this below with Mathematica by defining c a p s to be the list of 
functions consisting of ex, xex; and x2ex; and m a t r i x to be the matrix 

xlex 

2px\ 

dxy } dxK } dxy 

d2 ( \ d2 / x d2 , , v 
(ex) (xex) (x2ex) 

ydx2K } dx2X } dx2^ }. 
We then use Det to compute the determinant of m a t r i x . 

caps={Exp[x],x Exp[x],x^2 Exp[x]}; 

matrix={caps/D[caps/x],D[caps,{x,2}]}; 

TableForm[matrix] 

x 
E x 
x x 

E + E x 
X X 

x 2 
E x 

x x 2 
2 E x + E x 

X X x 2 
E 2 E + E x 2 E + 4 E x + E x 

D e t [ m a t r i x ] 

3 x 
2 E 

Since the Wronskian is 2e3x Φ 0, the set of functions is linearly independent. ■ 

An alternative approach, which will allow us to quickly compute the Wronskian of 
other sets of functions, begins by defining the function w r o n s k i a n . The command 
w r o n s k i a n is defined to compute the Wronskian of a list of functions in the variable x. 
w r o n k s i a n [ l i s t ] computes the Wronskian of the list l i s t by: 
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1. Defining the variables n, r , and m a t r i x local to the procedure wronskian; 
2. Defining n to be the number of elements of l i s t ; 
3. Defining r [ 1 ] to be the 1 x n matrix l i s t . Note that r [ 1 ] corresponds to the 

vector [fx(x) f2(x) ··· /„(*)), which corresponds to the top row of the matrix 

( AM AW 
KM 

[frw fiW ··· /, wj 

4. Defining r [ k ] to be the derivative o f r [ k - l ] . r [ k ] corresponds to the kth 
row of the matrix 

< /,(*) AM 
KM KM 

f,,M λ 
KM 

Κ"Λ)Μ 

5. Defining m a t r i x to be the matrix 

' m ÂM ■ 
KM KM · 

jr\X) fi"\x) ■ 

f„M λ 
KM 

/r'Mj 
; and 

6. Computing and returning the determinant of m a t r i x corresponding to the 
Wronskian of l i s t . 

We define this function below. 

wronskian[list_]:=Module[{n,r,matrix}, 

n=Length[list]; 

r[l]=list; 

r[k__]:=r[k]=D[r[k-l],x]; 

matrix=Table[r[i],{i,l,n}]; 

Det[matrix]]; 

EXAMPLE: Determine if the set of functions {cosx,cos2x,cos3x,cos4x} is linearly 
independent. 

SOLUTION: We use w r o n s k i a n , defined above, to compute the Wronskian of 
the set of functions. 



390 6 Applications Related to Ordinary and Partial Differential Equations 

trigex=wronskian[{Cos[x],Cos[2x],Cos[3x],Cos[4x]}] 

-42 Cos[3 x] Cos[4 x] Sin[x] Sin[2 x] + 

288 Cos[2 x] Cos[4 x] Sin[x] Sin[3 x] -

450 Cos[x] Cos[4 x] Sin[2 x] Sin[3 x] -

300 Cos[2 x] Cos[3 x] Sin[x] Sin[4 x] + 

768 Cos[x] Cos[3 x] Sin[2 x] Sin[4 x] -

252 Cos[x] Cos[2 x] Sin[3 x] Sin[4 x] 

To see that this is not the zero function, we use S i m p l i f y to simplify t r i g e x . 

Simplify[trigex] 

6 
96 (18 + 16 Cos[2 x] + Cos[4 x]) Sin[x] 

The output above is not the zero function since it is not zero when x = — as shown 

below. 

tr igex / . x->Pi/2 

288 

■ 
A set S = { (̂x), f2(x), f3(x),..., f^x), fn(x)} of n linearly independent non-trivial solutions of 

the nth order linear homogeneous equation 

an(x)y(n)(x) + an_1(x)y(n_1)(x) + · ·. + a](x)y(1Kx) + a0(x) = 0 

is called a fundamental set of solutions of the equation. Observe that if S = {/J(*)}"= is a 
fundamental set of solutions of 

n 

^a.(x)y(i)(x) = an(x)y(n)(x) + an_1(x)y("-1)(x) + ... + a1(x)y,(x) + a0(x)y(x) = 0 
i=0 

n n 

and {c.}n is a set of n numbers, then f(x) = Yc.ffx) is also a solution of Ya.(x)y«(x) = 0. 
i=l i=0 

The following two theorems tell us that under reasonable conditions the nth-order 
h o m o g e n e o u s equa t ion an(x)y<n>(x)+an l(x)y(n-1)(x) + ... + a1(x)y(1)(x) + a0(x) = 0 h a s a 
fundamental set of n solutions. 
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Theorem: If ai(x) is continuous on an open interval I for i=0,1, ..., n, then the nth-
n 

order linear homogeneous equation Va.(x)yw(x) = 0 has a fundamental set of 
i=0 

solutions on I. 

Theorem: Any set of n+1 solutions of the nth-order linear homogeneous equation 
n 

2\aj(x)y(i)(x) = 0 is linearly dependent. 
i=0 

If S = {/(*)}" is a fundamental set of solutions of the nth-order linear homogeneous 
n n 

equation V*ai(x)y^(x) = 0, then a general solution of the equation is f(x)= Vc.f.(x), where 
i=0 i=l 

{c.}n is a set of n arbitrary constants. 

The equation 
n 

a m n + a mn~l + ... + a1m + an = > a,mk =0 
n n-1 1 0 ^^j k 

k=0 

is called the characteristic equation of the nth-order homogeneous linear differential 
n 

equation with constant coefficients ajw(x)+an]yf"-1»(x)+... + aj'(x)+a0y(x) = Yaj<k»(x) = 0. 
k=0 

The general solutions of the nth-order homogeneous linear differential equation with 
constant coefficients are determined by the solutions of its characteristic equation. 

The Homogeneous Second-Order 
Equation with Constant Coefficients 

Let ay" + by' + cy = 0 be a homogeneous second-order equation with constant coefficients, 
and let mi and m2 be the solutions of the characteristic equation am1 + bm + c = 0. 

(a) If m1 * m2 and both mi and m2 are real, a general solution of ay" + by' + cy = 0 is 
y(t) = clemit +c2ew2'; 

(b) If m1 = m2 and both mi and m2 are real, a general solution of ay" + by' + cy = 0 is 
y(t) = clennt +c2temit; and 
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(c) If m1 =a + iß,βφθ, and m1 = m2, a general solution of ay" + by' + cy = 0 is 
y(t) = c 0̂* cosßt + cß« sinßt. 

In (c) above, m2 is the complex conjugate of m2: m2=a-iß = a + iß. 
Mathematica is useful in solving these equations and plotting the corresponding 

solutions. 

EXAMPLE: 

(a)3y" 

(b) 2/ 

+ 2y'-

' + 5y' 

(c)y" + 4y' + 

Find the solution of each problem: 

-5y = 

+ 5y 

4y = 

^0; 

= 0 subject to the initial conditions y(0)= 

0 subject to the initial conditions y(0)= 

=0and 

0 and i 

y'(o) = 

^(0) = 

1 

1 
2' 

and 

SOLUTION: In each case, DSolve is used to find an exact solution. For (a), we 
have: 

solution=DSolve[3y''[x]+2y·[x]-5y[x]==Ofy[x],x] 

C [ l ] x 
{ { y [ x ] - > + E C [ 2 ] } } 

( 5 x ) / 3 
E 

When DSolve is used to solve (b), the resulting solution is expressed as a complex 
exponential. To see that the solution is real, we use ComplexExpand. 

solution=DSolve[{2y'·[x]+5y'[x]+5y[x]==0,y[0]==0,y'[0]==l/2},y[x]fx] 

{{y[x] -> 

((-5 - I Sqrt[15]) x)/4 
I E 

Sqrt[15] 

((-5 + I Sqrt[15]) x)/4 
I E 

}} 

Sqrt[15] 

Notice that s o l u t i o n is a nested list, s o l u t i o n [ [ 1 , 1 , 2 ] ] yields the second 
element of the first element of the first element of s o l u t i o n . In other words, 
s o l u t i o n ! [ 1 , 1 , 2 ] ] yields the expression corresponding to the desired 
solution. ComplexExpand is used to expand s o l u t i o n [ [ 1 , 1 , 2 ] ] assuming 
that x is real. The result is clearly a real-valued function. 
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simp=solution[[1,1,2]]//ComplexExpand 

Sqrt[15] x 
2 Sin[ ] 

4 

(5 x)/4 
Sqrt[15] E 

Finally, the solution is graphed on the interval [-π/2,π] 

Plo t [ s imp , {x , -P i /2 ,P i } ] 

Similarly DSolve successfully solves (c). 

solution=DSolve[{y''[x]+4y'[x]+4y[x]==0,y[0]==l,y'[0]==-l/2},y[x],x] 

-2 x 3 x 
{{y[x] -> E + }} 

2 x 
2 E 

The result is then graphed on the interval [-1,1]. Note that the command 
P l o t [ s o l u t i o n ! [ l , l , 2 ] ] , { x , - l , l } ] would produce the same result. 

Plot[y[x]/.solution,{x,-1,1}] 

- 1 / ° 

0.75 

0 

0.25 

-0.25 

0 

0 1 
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In the same manner as in the case for a second-order homogeneous equation with real 
constant coefficients, a general solution is also determined by the solutions of the 
characteristic equation. Instead of stating an exact rule for the numerous situations 
encountered, we illustrate how a general solution is found in the following examples. 

The command DSolve can be used to solve nth-order linear homogeneous differential 
equations with constant coefficients as long as n is smaller than 5. In cases when the roots 
of the characteristic equation are symbolically complicated, approximations of the roots of 
the characteristic equation can be computed with the commands S o l v e or NRoots. 

EXAMPLE: Find a general solution of 9y<4> -6y'" + 46y" -6y ' + 37y = 0. 

SOLUTION: The characteristic equation of 9y(4>-6y"' + 46y"-6y' + 37y = 0 is 
9x4 -6x3 +46x2 -6x + 37 = 0, solved below with So lve . 

Solve[9χ"4-6χΛ3+46χΛ2-6χ+37==0] 

1 1 
{{x -> -I}, {x -> I}, {x -> - - 2 I}, {x -> - + 2 I}} 

3 3 

Since the solutions of the characteristic equation are x = ±i and x = — ±2i, a general 

solution of the equation is given by y = cl cos x + c2 sin x + ex/ 3 (c3 cos 2x + c4 sin 2*). Since 
the order of the equation is 4, which is smaller than 5, DSolve can also be used to 
find a general solution. Below, we first define e q to be the equation 
9y(4>-6y," + 46y"-6y' + 37y = 0, and then use DSolve to find a general solution of 
eq, naming the resulting output s o l . 

Clear[eq,sol] 

eq=9D[y[x],{x,4}]-6D[y[x],{x,3}]+46y'■[x]-6y'[x]+37y[x]==0; 

sol=DSolve[eq,y[x],x] 

x/3 
{{y[x] -> C[2] Cos[x] + E C[4] Cos[2 x] - C[l] Sin[x] -

x/3 
E C[3] Sin[2 x]}} 

Note that the explicit form of the solution is extracted from s o l with 
s o l [ [ l , l , 2 ] ] . T o graph the solution for various values of the constants, we 
define t o g r a p h to be the table of functions obtained by replacing each occurrence 
o f C [ l ] , C [ 2 ] , C [ 3 ] , and C [ 4 ] in s o l [ [ 1 , 1 ,2 ] ] by i, j , k, and m, respectively, 
for i=0 and 1, j= - l and 0, k=0 and 1, and m = - l and 0. The result of the T a b l e 
command is a 2x2x2x2-dimensional array so F l a t t e n is used to remove 
parentheses from the result of the T a b l e command. Thus, t o g r a p h is a 1-
dimensional array consisting of 16 functions. 
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tograph=Table[sol[[1,1,2]] /. {C[l]->i,C[2]->j,C[3]->k,C[4]->m}, 

{i,0,l},{j,-l,0},{k,0,l},{m,-1,0}]//Flatten; 

Length[tograph] 

16 

To avoid having messy graphs, we graph the first eight functions in tograph by 
defining f i r s t to be the first eight functions in tograph. Similarly, we graph the 
second eight by defining second to be the last eight functions in tograph . Both 
f i r s t and second are displayed in an abbreviated one-line form with Short. 

first=Take[tograph,8]; 

Short[first] 

second=Take[tograph,-8]; 

Short[second] 

x/3 x/3 
{-Cos[x] - E Cos[2 x], -«1», « 5 » , -(E Sin[2 x])} 

x/3 
{-Cos[x] - E Cos[2 x] - Sin[x], « 6 » , - « 1 » + « 1 » } 

pl=Plot[Evaluate[first],{x,0,2Pi}] 

p2=Plot[Evaluate[second],{x,0,2Pi}] 

■ 
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Nonhomogeneous Equations with Constant 
Coefficients: Variation of Parameters 

Let p(x), q(x), and f(x) be continuous on an interval I. The associated homogeneous 
equation of y"(x) + p(x)y'(x) + q(x)y(x) = f(x) is y"(x) + p(x)y'(x) + q(x)y(x) = 0. Let yi (x) and y2(x) 
form a fundamental set of solutions for the associated homogeneous equation of 

y"(x)+p(x)y'(x) + q(x)y(x) = f{x). L e t ηλ(χ)= f . " f 2 ! * ^ , Jx a n d 

uAx)= I—, v , x ^ , x—ττ^χ· Then, y (x) = y, (*K(*) +y, (*)«,(*) is a particular solution of J y1(x)y;(x)-y1(x)y2(x) p 

y"(x)+p(x)y'(x) + i/(x)y(x) = /(x), and a general solution is y(x) = cly1(x) + c2y2(x) + y (x). 

We show how Mathematica can be used to assist in the Method of Variation of 
Parameters in the example below. 

EXAMPLE: Solve y" + 4y' + 13y = xcos23x. 

SOLUTION: The associated homogenous equat ion of the equation 
y" + 4y, + 13y = xcos23x is y" + 4y, + 13y = 0, which has characteristic equation 
ra2+4ra + 13 = 0. Since the symbols y l , y 2 , y c , y p , u l , and u2 will be used in 
constructing the solution, all prior definitions are first cleared and then the 
characteristic equation is solved for m: 

C l e a r [ y l , y 2 , y c , y p , y , u l , u 2 , f ] 

Solve[m"2+4m+13==0] 

{{m -> - 2 - 3 I } , {m -> - 2 + 3 I } } 

Since the solutions of the characteristic equation a r e - 2 - 3 i and -2+3i, a 
fundamental set of solutions of y" + 4y, + 13y = 0 is {e-2*cos3x,e-2*sin3x}. Therefore, 
we define /(x) = xcos23x, y1(x) = e-2xcos3x, and y2(x) = e-2xsin3x: 

f[x_]=x Cos[3xp2; 
yl[x_]=Exp[-2x]Cos[3x]; 
y2[x_]=Exp[-2x]Sin[3x]; 

and wronskian = \yx{x) y2(x)| 
= 3e-** 

w r o n s k i a n = D e t [ { { y l [ x ] , y 2 [ x ] } , D [ { y l [ x ] , y 2 [ x ] } , x ] } ] / / S i m p l i f y 

4 x 
E 
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To find a particular solution of y" + 4y' + 13y = xcos23x, we first define 

ulprime = - -y2(*)/(*) 
wronskian 

ulprime=-y2[x] f[x]/wronskian 

2 x 2 
-(E x Cos[3 x] Sin[3 x]) 

and then compute uj(x)= [ u l p r i m e d x = f dx. 
J J wronskian 

ul[x_]=Integrate[ulprime,x] 

2 x 2 x 
(-86700 E Cos[3 x] + 281775 E x Cos[3 x] -

2 x 2 x 
6084 E Cos[9 x] + 129285 E x Cos[9 x] -

2 x 2 x 
36125 E Sin[3 x] - 187850 E x Sin[3 x] -

2 x 2 x 
13013 E Sin[9 x] - 28730 E x Sin[9 x]) / 14652300 

<-· i i J <·· . V,(x)f(x) 
Similarly, we define u2pnme = — ^ — : 

wronskian 
u2prime=yl[x] f[x]/wronskian 

2 x 3 
E x Cos[3 x] 

Γ f V (x) fix) 
and then compute u (x)= u2primed* = —^— dx. 

J J wronskian 
u2[x_]=Integrate[u2prime,x] 

2 x 2 x 
(108375 E Cos[3 x] + 563550 E x Cos[3 x] + 

2 x 2 x 
13013 E Cos[9 x] + 28730 E x Cos[9 x] -

2 x 2 x 
260100 E Sin[3 x] + 845325 E x Sin[3 x] -

2 x 2 x 
6084 E Sin[9 x] + 129285 E x Sin[9 x]) / 14652300 
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Then a par t icu la r so lu t ion of y" + 4y' + 13y = xcos23x is g iven by 
yp{x) = y1(x)w1(x) + y2(x)u2(x) : 

yp[x_]=yl[x]ul[x]+y2[x]u2[x] 

2 x 2 x 
(Cos[3 x] (-86700 E Cos[3 x] + 281775 E x Cos[3 x] -

2 x 2 x 
6084 E Cos[9 x] + 129285 E x Cos[9 x] -

2 x 2 x 
36125 E Sin[3 x] - 187850 E x Sin[3 x] -

2 x 2 x 
13013 E Sin[9 x] - 28730 E x Sin[9 x])) / 

2 x 
(14652300 E ) + (Sin[3 x] 

2 x 2 x 
(108375 E Cos[3 x] + 563550 E x Cos[3 x] + 

2 x 2 x 
13013 E Cos[9 x] + 28730 E x Cos[9 x] -

2 x 2 x 
260100 E Sin[3 x] + 845325 E x Sin[3 x] -

2 x 2 x 
6084 E Sin[9 x] + 129285 E x Sin[9 x])) / 

2 x 
(14652300 E ) 

and a complimentary solution of y" + 4y' + 13y = 0 is given by yc(x) = c^y^x) + c2y2(x) : 

yc[x_]=cl yl[x]+c2 y2[x] 

cl Cos[3 x] c2 Sin[3 x] 

+ 
2 x 2 x 

E E 

so a general solution of y" + 4y' + 13y = xcos23x is given by y{x) = yc{x) + y {x)· 

y[x_]=yc[x]+yp[x] 

cl Cos[3 x] c2 Sin[3 x] 
+ + 

2 x 2 x 
E E 
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2 x 2 x 
(Cos[3 x] (-86700 E Cos[3 x] + 281775 E x Cos[3 x] -

2 x 2 x 
6084 E Cos[9 x] + 129285 E x Cos[9 x] -

2 x 2 x 
36125 E Sin[3 x] - 187850 E x Sin[3 x] -

2 x 2 x 
13013 E Sin[9 x] - 28730 E x Sin[9 x])) / 

2 x 
(14652300 E ) + (Sin[3 x] 

2 x 2 x 
(108375 E Cos[3 x] + 563550 E x Cos[3 x] + 

2 x 2 x 
13013 E Cos[9 x] + 28730 E x Cos[9 x] -

2 x 2 x 
260100 E Sin[3 x] + 845325 E x Sin[3 x] -

2 x 2 x 
6084 E Sin[9 x] + 129285 E x Sin[9 x])) / 

2 x 
(14652300 E ) 

In order to graph various solutions corresponding to different values of Cj and C2, 
we first create a table of functions t o g r a p h which we display in an abbreviated 
six-line form with S h o r t : 

tograph=Table[y[x], {01,-5,5,5},{02,-4,4,2}]; 

Short[tograph,6] 

-5 Cos[3 x] 4 Sin[3 x] 
{{ + « i » + 

2 x 2 x 
E E 

2 x 
(Sin[3 x] (108375 E Cos[3 x] + 

2 x 2 x 
563550 E x Cos[3 x] + 13013 E Cos[9 x] + 

2 x 2 x 
28730 E x Cos[9 x] - 260100 E Sin[3 x] + 

2 x 2 x 
845325 E x Sin[3 x] - 6084 E Sin[9 x] + 
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2 x 2 x 
129285 E x S i n [ 9 x ] ) ) / (14652300 E ) , « 4 » } \ 

, « 1 » , { « 5 » } } 

and then graph the table t o g r a p h on the interval [-1,1]: 

Plot[Evaluate[tograph],{x,-1,1},PlotRange->{-20,20},PlotPoints->100] 

DSolve can frequently be used to find solutions of equations that can be solved using 
the method of Variation of Parameters. 

EXAMPLE: Solve y"-2y' + y = ex1nx,x>0. 

SOLUTION: We use DSolve to find a general solution of the equation, naming 
the resulting output s o l . The explicit form of the solution is extracted from s o l 
with s o l [ [ 1 , 1 , 2 ] ] . 

s o l = D S o l v e [ y · ' [ x ] - 2 y ' [ x ] + y [ x ] = = E x p [ x ] L o g [ x ] , y [ x ] , x ] 

x 2 x 2 
- 3 E x x x E x Log[x] 

{{y [x ] -> + E C [ l ] + E x C[2] + }} 
4 2 

To graph the solution for various values of the constants, we define t o g r a p h to be 
the table obtained by replacing each occurrence of C [ 1 ] and C [ 2 ] in 
s o l [ [ 1 , 1 , 2 ] ] b y i and j , respectively, for i=-3, -2 , and - 1 and j=l and 2. 

t o g r a p h = T a b l e [ s o l [ [ 1 , 1 , 2 ] ] / . { C [ 1 ] - > i , C [ 2 ] - > j } , { i , - 3 , - 1 } , { j , 1 , 2 } ] ; 

We then use P l o t to graph the functions in t o g r a p h . Note that the solutions 
obtained are only valid for x>0; thus we obtain several error messages, since we 
request that the solutions be graphed on the interval [0,5]. Nevertheless, the 
resulting graphs are displayed correctly. 
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Plot[Evaluate[ tograph] ,{x ,0 ,5}] 

Infinity::indet: 
0. 1. (-Infinity) 

Indeterminate expression encountered. 
2 

Cauchy-Euler Equations 

A Cauchy-Euler differential equation is a differential equation of the form 
anxny(n)(x) + a ^ x ^ y ^ K x ) +... + a^y^x) + a0y(x) = g(x), 

where {«}" is a collection of constants. 
Let ax2y" + bxy'+cy = Q be the general second-order homogeneous Cauchy-Euler 

equation. The equation am(m-l) + bm + c = 0 is called the auxiliary equation of the Cauchy-
Euler equation of order two. The solutions of the auxiliary equation completely determine 
the general solution of the homogeneous Cauchy-Euler equation of order two. Let mi and 
m2 denote the two solutions of the equation am(m-l) + bm + c = 0, which is obtained by 
assuming solutions of the form y=xm, x >0. 

(a) If ml Φ m2 are real, then a general solution of ax2y" + bxy'+cy = 0 is 

y = cxxm\ + c2xm2 ; 

(b) If m1 = m2, then a general solution of ax2y" + bxy'+cy = Q is 

y = cxxm\ + c2xmi ln(x); and 

(c) If m1 = m2 =a + iß, ß*0, then a general solution of ax2y" + bxy'+cy = 0 is 

y = xa [cj cos(/? ln(jc)) + c2 sin(/3 ln(x))]. 
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The auxiliary equation of higher-order Cauchy-Euler equations is defined in the same way, 
and solutions of higher-order homogeneous Cauchy-Euler equations are determined in the 
same manner as solutions of second-order homogeneous differential equations with 
constant coefficients. Note that in some cases the method of variation of parameters can be 
used to solve nonhomogeneous Cauchy-Euler equations. Below, we solve a third-order 
homogeneous Cauchy-Euler equation. 

EXAMPLE: Solve x*y'" + 16x2y" + 79xy' + 125y = 0. 

SOLUTION: We proceed by defining eq to be the equation 

* y ' ' + 16*2y'' + 79*y' + 125y = 0 

and then using D S o l v e to find a general solution of the equation, naming the 
resulting output s o l . 

Clear[x,y,eq] 

eq=xA3 y'·"[χ]+16χΛ2 γ'·[χ]+79χ y'[x]+125y[x]==0; 

sol=DSolve[eq,y[x],x] 

C[l] C[3] Cos[3 Log[x]] C[2] Sin[3 Log[x]] 

{{y[x] -> + }} 
5 4 4 

X X X 

To graph the solution for various values of the constants, we define t o g r a p h to be 
the set of functions obtained by replacing each occurrence of C [ 1 ] , C [ 2 ] , and 
C [ 3 ] i n s o l [ [ l , l , 2 ] ] by i, j , and k, respectively, for i= - l and i, j=0 and 4, and 
k=-4 and 0. The resulting eight functions are graphed with P l o t on the interval 
[0.25,1.5]. The option P l o t R a n g e - > { {0 , 3 / 2 } , { - 2 0 , 2 0 } } specifies that the 
resulting graph be displayed with x-coordinates corresponding to the interval 

0,— and y-coordinates corresponding to the interval [-20,20]. 

tograph=Table[sol[[1,1,2]] /. {C[l]->i,C[2]->j,C[3]->k}, 

{i,-l,l,2},{j,0,4,4},{k,-4,0,4}]; 

Plot[Evaluate[tograph],{x,.25,1.5},PlotRange->{{0,3/2},{-20,20}}] 
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We may also solve this equation by traditional methods. If we assume that 
y(x) = xm, then the value of eq becomes: 

y[x_]=x A m; 

eq 

m m m m 
125 x + 79 m x + 1 6 ( -1 + m) m x + ( -2 + m) ( -1 + m) m x = = 0 

We can solve this equation directly or we can divide the left-hand side of the 
equation by xm and factor the result. We interpret the resulting output to mean 
t h a t the a u x i l i a r y e q u a t i o n of x*y'" + l6x2y" + 79xy' + l25y = 0 is 
(m + 5)(m2+8m + 25) = 0. 

e q [ [ 1 ] ] / x A m / / C a n c e l / / F a c t o r 

2 
(5 + m) (25 + 8 m + m ) 

We may use S o l v e to solve the auxiliary equation. Solving eq for m results in: 

Solve[eq,m] 

Solve::ifun: Warning: Inverse functions are being used by Solve, so 
some solutions may not be found. 

{{m -> -5}, {m -> -4 - 3 I}, {m -> -4 + 3 I}, {m -> -Infinity}} 

Since we are only interested in the real and complex solutions, we conclude that 
the solutions of the auxiliary equation are m = -5 and ra = -4±3/ . Thus, a general 
solution of the equation is given by y = εΊχ~5 + x~4(c2 cos(31nx) + c3 sin(31nx)). ■ 

Application: Harmonic Motion 

Suppose that a mass is attached to an elastic spring which is suspended from a rigid 
support such as a ceiling. According to Hooke's law, the spring exerts a restoring force in 
the upward direction which is proportional to the displacement of the spring. 
Mathematically, this is stated as follows: 

Hooke's law: F=ks, where k>0 is the constant of proportionality or spring 
constant, and s is the displacement of the spring. 

Using this law and assuming that x(t) represents the position of the mass, we obtain the 
d2x initial value problem m— + kx = 0 subject to x(0) = a and x'(0) = ß. Note that the initial 

conditions give the initial position and velocity, respectively. The solution, x(t), to this 
problem represents the position of the mass at time t. This differential equation disregards 
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all retarding forces acting on the motion of the mass, and a more realistic model which 
takes these forces into account is needed. Studies in mechanics reveal that resistive forces 

dx due to damping are proportional to a power of the velocity of the motion. Hence, F = c— 
dt 

or FR=c\ — , where c>0, are typically used to represent the damping force. Then, we have 

dx d2x dx the following initial value problem, assuming that FR=c—: m— + c— + kx = 0 subject to 

x(0) = a and x'(0) = ß. Problems of this type are characterized by the value of c2 - 4m/c as 
follows: 

(a) c2-4mk>0. This situation is said to be overdamped since the damping 
coefficient c is large in comparison with the spring constant k. 

(b) c2 -4m/:=0. This situation is described as critically damped since the resulting 
motion is oscillatory with a slight decrease in the damping coefficient c. 

(c) c2-4ra/:<0. This situation is called underdamped because the damping 
coefficient c is small in comparison with the spring constant k. 

Mathematica can be used to investigate the solutions of various problems involving 
harmonic motion as illustrated in the example below. 

EXAMPLE: Classify the following differential equations as overdamped, 
underdamped, or critically damped. Also, solve the corresponding initial value 
problem using the given initial conditions, and investigate the behavior of the 
solutions. 

(a) — + 8— + 16x = 0 subject to x(0)=0 and x'(0) = l; 
dt2 dt ] 

(b) ^ + 5— + 4x = 0 subject to x(0)=l and x'(0) = 1; and 

(c) ^1 + ^ί + ι6χ = ο subject to x(0)=0 and *'(0) = 1. 
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SOLUTION: For (a), we identify m=l , c=8, and k=16 so that c2-4mfc=0, which 

means that the differential equation — + 8— + 16x = 0 is critically damped. After 

defining d e l , we solve the equation subject to the initial conditions and name the 
resulting output s o i l . We then graph the solution, extracted from s o i l with 
s o i l [ [ 1 , 1 , 2 ] ] , on the interval [0,4]. Note that replacing s o i l [ [ 1 , 1 , 2 ] ] with 
x [ t ] / . s o l 1 in the P l o t command produces the same results. 

Clear[del,x,t] 

del=x''[t]+8x'[t]+16x[t]==0; 

soll=DSolve[{del,x[0]==0,x'[0]==l},x[t],t] 

{{x[t] -> }} 
4 t 

E 

Plot[soll[[l,l,2]],{t,0,4}] 

For (b), we proceed in the same manner. We identify m=l, c=5, and k=4 so that 
d?~x dx 

c2-4:ink=9, and the equation — + 5— + 4* = 0 is overdamped. We then define de2 

to be the equation and the solution of the equation obtained with DSolve, s o l 2 , 
and then graph x(t) on the interval [0,4]. 

Clear[de2,x,t] 

de2=x''[t]+5x'[t]+4x[t]==0? 

sol2=DSolve[{de2,x[0]==l,x'[0]==l},x[t],t] 

{{x[t] -> 
-2 5 

+ } } 

4 t t 
3 E 3 E 

Plot[so!2[[1,1,2]],{t,0,4}] 
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1 

0 .8 

0 .6 

0 .4 

0 .2 

For (c), we proceed in the same manner as in (a) and (b) to show that the equation 
is underdamped because the value of c2 -4mHs -63. 

Clear[de3,x,t] 

de3=x''[t]+x'[t]+16x[t]==0; 

sol3=DSolve[{de3,x[0]==0,x'[0]==l},x[t],t] 

I ((-1 - 3 I Sqrt[7]) t)/2 I ((-1 + 3 1 Sqrt[7]) t)/2 
- E - E 
3 3 

{{x[t] -> }} 
Sqrt[7] Sqrt[7] 

piot[soi3[[i,i,2]],{t,o,4}] 

Plot::plnr: CompiledFunction[{t}, « 1 » , -CompiledCode-] [t] 
is not a machine-size real number at t = 0.. 

Numerical Solutions of Higher-Order Ordinary 
Differential Equations 

As in the case with first-order ordinary differential equations, numerical approximations 
of solutions to higher-order differential equations can also be obtained with NDSolve. 
This command is particularly useful when working with nonlinear equations for which 
DSolve is unable to find an explicit solution. In order to illustrate the command NDSolve 
for higher-order ordinary differential equations, we consider the nonlinear pendulum 
equation below. 
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Application: The Simple Pendulum 

Another situation which leads to a second-order ordinary differential equation is that of 
the simple pendulum. In this case, a mass m is attached to the end of a rod of length L 
which is suspended from a rigid support. Because the motion is best described in terms of 
the angular displacement Θ, we let θ=0 correspond to the rod hanging vertically. The 
objective is to find the motion of the mass as a function of Θ, an initial position, and an 
initial velocity. Assuming that the pendulum is allowed to rotate without friction, the only 
force acting on the pendulum is that of gravity. Newton's second law and the relationship 
s=LG are used to establish the following initial value problem which models this situation: 

L — + gsin(0) = O subject to the initial conditions θ(0) = θ0αηάθ'(0) = ν0. Notice that this 

differential equation is nonlinear. However, this nonlinear equation can be approximated 
by mak ing use of the power series expans ion of sin(6 ) given by: 

x^ (—1)ηθ2η+ι 03 05 in(0)=> V ^ — τ - = θ + — + ···. Hence, for small displacements, we have the 
v } La (2n + l)! 3! 5! r 

d26 approximation sin(0)^0. Therefore, the initial value problem becomes L — + g0 = o subject 

to 0(0) = 0O and 0'(O) = v0. Notice that this problem is linear and can easily be solved. Suppose 
that the pendulum undergoes a damping force which is proportional to the instantaneous 

άθ velocity. Then, the force due to damping is given as FD=-b—. Incorporating this force 

ά2θ άθ into the sum of the forces acting on the pendulum, we have L— + b— + gsin(0) = O subject 

to 0(0) = 0O and 0'(O) = v0. We now investigate the properties of this nonlinear differential 
equation. 

sin! 

EXAMPLE: Use NDSolve to investigate the solutions to the damped pendulum 
d2G dO 

problem + 0.50—+sin(0) = O subject to the initial conditions 0(0) = 0O and 0'(O) = v0 

using the following initial conditions: 

(a) 0(0) = i and 0'(O) = 0 for i = -1 , -0.5, 0.5, and 1; 
(b) 0(0) = 0 and 0'(O) = i for i=-2, - 1 , 1 , and 2; 
(c) θ(0) = 1 and θ'(0) = 1, θ(0) = 1αηαθ'(0) = -1, θ(0) = -1 and 0'(O) = 1, and 
θ(0) = -1 and θ'(0) = -1; 

(d) θ(0) = 1αηάθ'(0) = 2, θ(0) = 1 and0'(O) = 3, 0(O) = -l«w/0'(O) = 4, and 
0(O) = -limd0,(O) = 5;and 
(e) θ(0) = -1 and θ'(0) = 2, θ(0) = -1αηάθ'(0) = 3, 0(0) = 1 and 0'(O) = -4, and 
θ(0) = 1 and θ'(0) =-5. 
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SOLUTION: Notice that, in this case, the damping coefficient is relatively small 
compared to the other coefficients. The differential equation is defined below as 
eq. To make the calculations in solving the problem easier, we define the function 
s [ i / j ] / which uses NDSolve to solve the initial value problem with initial 
position i and initial velocity j . The solution is extracted from s [ i , j ] with 
s [ i , j ] [ [ l , l , 2 ] ] . 

Clear[eq,s] 

eq=x''[t]+0.5 x ' [t]+Sin[x[t]]==0 

Sin[x[t]] + 0.5 x'[t] + x"[t] == 0 

sli^jJ^NDSolvelie^xIOl^i^'IO]«]},!^],^^,«}]; 

For (a), the function s is used with the values of initial positive given in t a b l e 1 
below and j=0 to generate a list of four interpolating functions. 

tablel={-l,-0.5,0.5,1}; 

solsl=Table[s[tablel[[i]],0][[l,l,2]],{i,l,4}] 

{InterpolatingFunction[{0., 15.}, <>][t], 

InterpolatingFunction[{0., 15.}, <>][t], 

InterpolatingFunction[{0., 15.}, <>][t], 

InterpolatingFunction[{0., 15.}, <>][t]} 

These four solutions are graphed below in one. 

one=Plot[Evaluate[solsl],{t,0,15}] 

Next, a list of solutions is found with s using i = 0 and values of initial velocity 
given in t a b l e 2 . These functions are then graphed in two. 
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t a b l e 2 = { - 2 , - l , l , 2 } ; 

s o l s 2 = T a b l e [ s [ 0 , t a b l e 2 [ [ i ] ] ] [ [ l , l , 2 ] ] , { i , l , 4 } ] ; 

two=Plot [Evaluate[so ls2] , { t ,0 ,15}] 

For (c), (d), and (e), we proceed in the same manner as in (a) and (b). 

table3={{1,1},{1,-1},{-1,1},{-1,-1}}; 

sols3=Table[s[table3[[i,l]],table3[[i,2]]][[l,l,2]],{i,l,4}] 

three=Plot[Evaluate[sols3],{t,0,15}] 

table4={{l,2},{l,3},{-l,4},{-l,5}}; 

sols4=Table[s[table4[[i,l]],table4[[i,2]]][[l,l,2]],{i,l,4}]; 

four=Plot[Evaluate[sols4],{t,0,15}] 

10 12 14 
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t a b l e 5 = { { - l , 2 } , { - 1 , 3 } , { 1 , - 4 } , { 1 , - 5 } } ? 
s o l s 5 = T a b l e [ s [ t a b l e 5 [ [ i , l ] ] , t a b l e 5 [ [ i , 2 ] ] ] [ [ l , l , 2 ] ] , { i , l , 4 } ] 
f i v e = P l o t [ E v a l u a t e [ s o l s 5 ] , { t , 0 , 1 5 } ] 

Finally, all five of the plots obtained above are displayed together. 

s ix=Show[one,two,three,four,five] 

These solutions are also displayed in the form of a G r a p h i c sAr ray . 

Show[GraphicsArray[{{one,two},{three,four},{f ive,six}}]] 

2 4V81QL2L4 
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6.3 Power Series Solutions of 
Ordinary Differential Equations 

Power Series Solutions about Ordinary Points 

Mathematica can also be used to help construct power series solutions of ordinary 
differential equations. This topic was discussed briefly in section 3.5. 

Let a(x)y'\x) + a(x)y'(x) + a(x)y(x) = 0 and let p(x) = ^ \ and q(x) = ^ - . Then, 
a2(x) a2(x) 

a2(x)y"(x)+ai(x)y'(x) + a0(x)y(x) = 0 is equivalent to y"(x) + p(x)y'(x) + q(x)y(x) = 0. A number XQ 
is an ordinary point means that both p(x) and q(x) are analytic at xo- If xo is not an 
ordinary point, then XQ is called a singular point. 

EXAMPLE: Solve the equation y"-2xi/' + 2*4y = 0 subject to the initial conditions 
y(0)=12and y'(0) = 0. 

SOLUTION: We begin by defining l h s to be the left-hand side of the equation 
y"-2xy' + 2»4y = 0 and then defining s e r l e f t to be the power series for l h s 
about x=0. 

Clear[x,y,lhs,serleft,eqs,roots,sol] 

lhs=y"[x]-2 x y'[x]+2 4y[x] ; 

serleft=Series[lhs,{x,0,6}] 

(3) 
(8 y[0] + y"[0]) + (6 y'[0] + y [0]) x + 

(4) (3) (5) 
y [0] 2 y [0] y [0] 3 

(2 y"[0] + ) x + ( + ) x + 
2 3 6 

(6) 4 (5) (7) 
Y [0] x -y [0] y [0] 5 

+ ( + ) x + 

24 60 120 

(6) (8) 
-Y [0] y [0] 6 7 
( + ) x + o[x] 

180 720 

Since the coefficient of r must be 0 for all values of i, we use L o g i c a l E x p a n d to 
equate the coefficients of s e r l e f t and 0, the right-hand side of the equation, and 
name the resulting system of equations eqs . 
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eqs=LogicalExpand[serleft==0] 

(3) 
8 y[0] + y"[0] == 0 && 6 y'[0] + y [0] == 0 && 

(4) 
Y [0] 

2 y''[0] + == 0 && 
2 

(3) (5) (6) 
Y [0] y [0] y [0] 

+ == o && == 0 && 

3 6 24 

(5) (7) (6) (8) 
-y [0] y [0] -y [0] y [0] 

60 120 180 720 

The command T a b l e [ D [ y [ x ] , { x , i } ] , { i , 2 , 8 } ] / . x->0 ] generates the list 
consisting of y"(0), y'"(0),..., y(8)(0). We then solve e q s for y"(0), y'"(0),..., y(8)(0). 
The result, named r o o t s , is in terms of y(0) and y'(0). 

roots=Solve[eqs,Evaluate[Table[D[y[x],{x,i}],{i,2,8}] /. x->0]] 

(4) (7) 
{{y [0] -> 32 y[0], y [0] -> 24 y'[0], 

(8) 
y [0] -> 0, y"[0] -> -8 y[0], 

(3) (5) 
y [0] -> -6 y'[0), y [0] -> 12 y'[0], 

(6) 
y [0] -> 0}} 

The solution is obtained by computing the power series for y(x) about x=0 and 
then replacing each unknown by the values obtained in r o o t s . The resulting 
series is named s o l . 

sol=Series[y[x],{x,0,5}] /. roots[[l]] 

4 
2 3 4 y[0] x 

y[0] + y'[0] x - 4 y[0] x - y'[0] x + + 
3 

5 
y'[0] x 6 

+ o[x] 

10 

412 
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We then compute the value of s o l when y(0)=12 and y'(0) = 0. The same result is 
obtained with HermiteH [ 4, x ]. 

y[0]=12; 

y'[0]=0; 

sol 

2 4 6 
12 - 48 x + 16 x + 0[x] 

HermiteH[4,x] 

2 4 
12 - 48 x + 16 x 

In fact, the Hennite polynomials, Hn(x), are solutions of the ordinary differential 
equation y"-2xy' + 2m/ = 0. The command HermiteH [ n , x ] yields the Hermite 
polynomial Hn(x). The following commands compute a table of the first five 
Hermite polynomials, name the resulting table t h s , display t h s in TableForm, 
and then graph each function in t h s on the interval [-4,4]. 

ths=Table[HermiteH[η,χ],{n,l,5}]; 

TableForm[ths] 

2 x 
2 

-2 + 4 x 

-12 x + 8 x 
2 4 

12 - 48 x + 16 x 
3 5 

120 x - 160 x + 32 x 

Plot[Evaluate[ths],{x,-4,4}] 

In the next example, we construct a power series solution of an equation which cannot 
be solved with DSolve. 
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EXAMPLE: Find a power series solution of y"'+f(x)y' + y = cosx, where 
isinx 

f(x) = J x >lJx*ö/ subject to the initial conditions y(0)=l and y'(0) = - 1 . Graph the 
[ l,ifx = 0 

ninth Maclaurin polynomial of the power series solution to the problem. 

SOLUTION: We begin by trying unsuccessfully to use D S o l v e to solve the 
equation. Because DSolve does not solve the equation, we then define l h s to be 
the left-hand side of the equation, and r h s to be the right-hand side. 

DSolve[y''[x]+Sin[x]/x y'[x]+y[x]==Cos[x],y[x],x] 

Sin[x] y'[x] 
DSolve[y[x] + + y''[x] == Cos[x], y[x], x] 

x 

lhs=y" [x]+Sin[x]/x y'[x]+y[x]; 

rhs=Cos[x]; 

We then use S e r i e s to compute the power series expansion of l h s about x = 0 

and name the resulting output s e r . Note that even though is undefined 

when x = 0, Mathematica is able to compute the correct series expansion. 

ser=Ser i e s [ lhs , {x ,0 ,7 } ] 

<y[0] + y'[0] + y"[0]) + 

(3) 
<y'[0] + y"[0] + y [0]) x + 

(3) (4) 
-y'[0] y"[0] y [0] y [0] 2 

6 2 2 2 

(3) (4) (5) 
-y"[0] y [0] y [0] y [0] 3 
( + + + ) χ + 

6 6 6 6 

(3) (4) (5) (6) 
y'[0] y [0] y [0] y [0] y [0] 4 
( _ + + + ) X + 

120 12 24 24 24 

(4) (5) (6) (7) 
y"[0] y [0] y [0] y [0] y [0] 5 
( _ + + + ) x + 

120 36 120 120 120 
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(3) (5) (6) (7) 
-y'[0] y [0] y [0] y [0] y [0] 
( + _ + + + 

5040 240 144 720 720 

(8) (4) (6) 
Y [0] 6 -y"[0] y [0] y [0] 

) x + ( + + 

720 5040 720 720 

(7) (8) (9) 
y [0] y [0] y [0] 7 8 

+ + ) x + 0[x] 

5040 5040 5040 

We then apply the initial conditions y(0)=l and y'(0) = - l by replacing each 
occurrence of y [ 0 ] and y ' [ 0 ] in s e r by 1 and - 1 , respectively, naming the 
resulting output serone. 

serone=ser / . { y [ 0 ] - > l , y ' [ 0 ] - > - l } 

( 3 ) 
y " [ 0 ] + ( - 1 + y " [ 0 ] + y [ 0 ] ) x + 

( 3 ) ( 4 ) 
1 y " [ 0 ] y [ 0 ] y [ 0 ] 2 

(_ + + + ) χ + 
6 2 2 2 

( 3 ) ( 4 ) ( 5 ) 
- y " [ 0 ] y [ 0 ] y [ 0 ] y [ 0 ] 3 

( + + + ) χ + 

6 6 6 6 

( 3 ) ( 4 ) ( 5 ) ( 6 ) 
1 y [ 0 ] y [ 0 ] y [ 0 ] y [ 0 ] 4 

120 12 24 24 24 

( 4 ) ( 5 ) ( 6 ) ( 7 ) 
y " [ 0 ] y [ 0 ] y [ 0 ] y [ 0 ] y [ 0 ] 5 
( _ + + + ) x + 

120 36 120 120 120 

(3) (5) (6) (7) 
1 y [0] y [0] y [0] y [0] 

( + _ + + + 

5040 240 144 720 720 

(8) (4) (6) 
y [0] 6 -y"[0] y [0] y [0] 

720 5040 720 720 
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(7) (8) (9) 
y [0] y [0] y [0] 7 8 

+ + ) χ + o[x] 

5040 5040 5040 

In the same manner as above, we define s e r two to be the power series of cos* 
about x = 0. 

s e r t w o = S e r i e s [ C o s [ x ] , { x , 0 , 7 } ] 

2 4 6 
x x x 8 

1 _ — + — _ + o [ x ] 
2 24 720 

Since two power series are equal if and only if their corresponding coefficients are 
equal, LogicalExpand is used to equate the coefficients of the series serone and 
sertwo. The resulting system of equations is named equat ions . 

equations=LogicalExpand[serone==sertwo] 

(3) 
-1 + y''[0] == 0 && -1 + y''[0] + y [0] == 0 && 

(3) (4) 
2 y"[0] y [0] y [0] 

3 2 2 2 

(3) (4) (5) 
-y"[0] y [0] y [0] y [0] 

+ + + == o && 

6 6 6 6 

(3) (4) (5) (6) 
1 y [0] y [0] y [0] y [0] 

20 12 24 24 24 

(4) (5) (6) (7) 
y"[0] y [0] y [0] y [0] y [0] 

_ + + + == 0 && 

120 36 120 120 120 

(3) (5) (6) (7) 
1 y [0] y [0] y [0] y [0] 

+ _ + + + 

630 240 144 720 720 

(8) (4) (6) 
y [0] -y"[0] y [0] y [0] 

720 5040 720 720 

416 
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(7) (8) (9) 
Y [0] y [0] y [0] 

+ + == o 

5040 5040 5040 

Then, e q u a t i o n s is solved for the unknowns and the resulting solution list is 
named r o o t s . 

roots=Solve[equations] 

(9) 358 (8) 1741 (7) 554 
{{y [0] -> — , y [0] -> , y [0] -> -( ), 

105 63 45 
(5) 10 (6) 1 (3) 

y [0] -> — , y [0] -> -, y [0] -> 0, 
3 5 

(4) 7 

y [0] -> -(-), y"[0] -> i}} 
3 

To display the first few terms of the series, we first compute the power series for 
y(x) about x = 0 and name the resulting series se ry , and then replace y(0) by 1 
y'(0) by - 1 , and the remaining unknowns by the values specified in r o o t s . The 
resulting series is converted to a normal expression with Normal, and the 
resulting output is named solapprox. 

sery=Series[y[x],{x,0,9}]; 

solapprox=Normal[sery] /. {y[0]->l,y[0]->-l> /.roots[[l]] 

2 4 5 6 7 8 
x 7 x x x 277 x 1741 x 

2 72 36 3600 113400 2540160 

179 x 

19051200 

Finally, we graph solapprox on the interval [0,3]. 
pone=Plot[solapprox,{x,0,3}] 

0.2 

417 
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Power Series Solutions about 
Regular Singular Points 

Let xo be a singular point of y"(x) + p(x)y'(x) + q(x)y(x) = 0. XQ is a regular singular point 

means that both (x-xQ}p(x) and (x - XQ) q(x) are analytic at x = xQ. If XQ is not a regular 
singular point, xo is called an irregular singular point. 

Let x=0 be a regular singular point of the equation y"(x) + p(x)y'(x)+q(x)y(x) = 0. Then, xp(x) 

is analytic at x=0, so p(x) = V p,x"~l and x2q(x) is analytic at x=0, so q(x)= /\qnxn~2 · If we 
»=0 11=0 

assume there is a constant r so that y(x) = xr 2_.α„χ" *s a solut ion of 
»1=0 

y"(x) + p(x)y'(x) + q(x)y(x) = 0, substituting this solution into the equation and equating 
coefficients results in the equation r2 + (p0-l)r + qQ = 0. This equation is called the indicial 

equation of the problem. The solutions of the problem are determined by the solutions of 

the indicial equation. Let r, = - ( l - p 0 + ^ l -2p 0 +p2-4 i o ) and r 2 = | ( l - p 0 - ^ l - 2 p 0 + p 2 - 4 î o ) 

be the two solutions of the indicial equation. If τλ-χ2 is not an integer, then there are two 

linearly independent solutions of the problem of the form yl(x) = xn Y V x" and 
M = 0 

y2(x) = xr2 Vfl2nx». If τλ-τ2 is a non-zero integer, then there are two linearly independent 

solutions of the form y^x) = xr\ V^ n x" and y2(x) = cy^(x)Inx + x^y^x". If ^ - ^ is zero, then 

there are two linearly independent solutions of the problem of the form yA{x) = xr\}auxn 

n=0 

and y2(x) = y1(x)ln(x) + x'i ΥΑ1 / ;Χ" · m a n y case, if yi(x) is a solution of the problem, a second 

Ç e-\p{x)dx 

linearly independent solution is given by y2(x) = yx{x) —=*—-̂ άχ. 

EXAMPLE: Find a general solution of y" 
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SOLUTION: We identify p(x) = — + 1 and q(x) = -^ + x so that the indicial 

equation is r2 + 1 r + — = 0. In this case, factoring yields the equation 

-H-HB)-
so that the solutions of the indicial equation are rx=— and r2=— and τλ-τ2=1. 

Since the roots of the indicial equation differ by an integer, we search for one 
solution of the form 

y1(x) = ^ a „ x " ■4/3 

n=0 

and another linearly independent solution of the form 

y2(x) = cy1(x)]nx+}bnxn 1/3 

H=0 

where c is a constant that may be zero. Let γλ(χ) = 2\αηχη+Α/3· Then, 
n=0 

y[M = YJ^(n + ̂ y+1/3 and y ^ z z ^ e ^ n + i Y n + Ijx«-

Substituting yi(x) into the equation and simplifying yields 

V ann(n + l)x"-2'3 + V a f n + - x"+1/3 + V anxn+7'3 = 0 . 
«=0 n=0 ^ ^ n=0 

Expanding and reindexing produces 

2/3 

2fll+|floV/3+i6fl2+ffll^4/3 + 

10̂ 1 

Because the coefficient of r 2 / 3 must be 0 for all values of i, 

;r+ 7 / 3=0. 
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2a+-a=0 
i 3 o 

7 
6a,+ — a. =0 

2 3 l 

(n + 4)(n + 3)fl?;+3 +\n + — \an+2 +a„=0 for n = 0,. 

We then use Mathematica to find the values of an. With the following command, 
we solve for a^ in terms of ag and name the resulting output a l . 

Clear[a,b,al,a2,as,bl,b2,bs,c] 

al=Solve[2a[l]+4/3a[0]==0,a[l]] 

-2 a[0] 
{{a[l] -> }} 

3 

Similarly, we solve for a2 in terms of a^ and then replace aj by the value obtained 
in a l : 

a2=Solve[6a[2]+7/3a[l]==0,a[2]] 

-7 a[l] 
{ { a [2] -> }} 

18 

a2 /. al[[l]] 

7 a[0] 
{{a[2] -> }} 

27 

10 Ï Finally, we solve (n + 4)(n + 3)at/+3 + n + — k+2+«„ =0 for au+3, naming the resulting 

output an3, and then replace each occurrence of n in an3 by n - 3. 

an3=Solve[(n+4)(n+3)a[n+3]+(n+10/3)a[n+2]+a[n]==0,a[n+3]] 

-(3 a[n] + 10 a[2 + n] + 3 n a[2 + n]) 
{{a[3 + n] -> }} 

3 (3 + n) (4 + n) 

an3 /. n->n-3//ExpandAll 

-3 a[-3 + n] a[-l + n] 3 n a[-l + n] 
{{a[n] -> }} 

2 2 2 
3 n + 3 n 3 n + 3 n 3 n + 3 n 

The result means that for n > 3, a = ——— !L±. Let 
3n2+3n 

420 
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y2{x) = cy1 (x)lnx+ V bnxn+l1* = clnx V αηχη+ΑΙ* + /bnxn 

be a second linearly independent solution of the equation. Then, 

and 

y?*)=2^»r+^r 2/3+^^^ 

Substituting into the equation and simplifying yields 

Yn(n-l)h«-5/3 + y c(3n-l) 3n + l , 
— -a + b 

χ„-2/3 + 

Ycfl t r i + 1 / 3 + V btx»+*'3 = 0. 
»1=0 M=0 

Expanding and reindexing results in 

— fln+-frnV2/3 + 
3 ° 3 °J 

2c 4 2fc +—a,+-h+can \x^3 + 2 3 i 3 i o 

/ ow nM. 3(3n + 5) 3rc + 7 , 
(n + 3)(n + 2)fr , + — -a ,+ b ,+ca ,+b 

n+3 3 n+2 3 „+2 «+1 

| χ « + 4 / 3 = 0 . 

Because the coefficient of r'-2/3 is 0 for all values of i, 

2c 4 
2k, +—a. +—fo + can = 0 

2 3 1 3 1 0 

/ ow r»\T 3(3n + 5) 3n + 7, , 

In the same manner as above, we solve for bg in terms of a0 and name the resulting 
output bO. 
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Clear[a,b] 

bO=Solve[-c/3a[0]+l/3b[0]==0,b[0]] 

{{b[0] -> c a[0]}} 

Similarly, we solve for b 2 in terms of a^, a0, and b j . (bi is arbitrary.) 

b2=Solve[2b[2]+2c/3a[l]+4/3b[l]+c a[0]==0,b[2]] 

-3 c a[0] - 2 c a[l] - 4 b[l] 
{{b[2] -> }} 

6 

Finally, we solve 

/ o\/ oM, 3(3n + 5) 3n + 7, , n 

(n + 3)(n + 2)b ,+ — -a _ + b ,+ca ,+b = 0 
v /v ' n+3 o n+2 o n+2 n+1 H 

for bn+3, naming the resulting output bn3, and then replace each occurrence of n in 
bn3 by n-3. 

bn3=Solve[(n+3)(n+2)b[n+3]+3(3n+5)/3a[n+2]+ 

(3n+7)/3b[n+2]+c a[n+l]+b[n]==0/b[n+3]] 

{{b[3 + n] -> 

-(3 c a[l + n] + 15 a[2 + n] + 9 n a[2 + n] + 3 b[n] + 

7 b[2 + n] + 3 n b[2 + n]) / (3 (2 + n) (3 + n))}} 

bn=bn3 /.n->n-3//ExpandAll 

-3 c a[-2 + n] 12 a[-l + n] 9 n a[-l + n] 
{{b[n] -> + 

2 2 2 
- 3 n + 3 n - 3 n + 3 n - 3 n + 3 n 

3 b[-3 + n] 2 b[-l + n] 3 n b[-l + n] 
+ } } 

2 2 2 
- 3 n + 3 n - 3 n + 3 n - 3 n + 3 n 

The result means that for n - 3 , 
-3ca ,+12Λ -9na-3b _+2b -3nb. 

3n2-3n 

Because we have computed recurrence relations that yield the value of an and b n 

for all values of n, we may construct our solutions y^(x) and y2(x)· 

In the following commands, we define a0=l , a - ^ - 2 / 3 , a2=7/27, and then an as 
above and then compute a table of values of an for n=0, 1, 2, ... , 10, name the 
resulting table a s , and display a s in TableForm. Note that a is defined using the 
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form a [ n_] : =a [ n ] = . . . so that Mathematica "remembers" the values of a [ n ] 
computed and thus avoids recomputing values previously computed. This is 
particularly advantageous and time-saving when computing a [ n ] (and, 
subsequently, b [ n ] ) for large values of n. 

Clear[a,b] 

a[0]=l; 

a[l]=-2/3; 

a[2]=7/27; 

a[n_]:=a[n]=(-3a[n-3]-a[n-l]-3n a[n-l])/(3η+3ηΛ2) 

as=Table[{n,a[n]},{η,Ο,ΙΟ}]; 

TableForm[as] 

0 1 
2 

-(-) 
1 3 

7 

2 27 
151 

-( — ) 
3 972 

3907 

4 58320 
3371 

-( ) 
5 164025 

561971 

6 82668600 
57955759 

-( ) 
7 27776649600 

3161469847 

8 5999756313600 
1075908049 

-( ) 
9 8264970432000 

4169289225091 

10 133644571885440000 

In this case, we let c=l, b 0 = l , b - ^ 1 , and b 2 and b n as above, then compute a table 
of values of b n for n=0, 1, 2, ..., 10, name the resulting table b s , and display b s in 
TableForm. 
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b[0]=l; 

b[l]=l; 

b[2]=-(3a[0]+2a[l]+4b[l])/6; 

b[n_] :=b[n] = (-3 a[n-2]+12a[n-l]-9n a[n-l]-

3b[n-3]+2b[n-l]-3n b[n-l])/(3n*2-3n) 

bs=Table[{n,b[n]},{η,Ο,ΙΟ}]; 

TableFormfbs] 

0 1 
1 1 

17 

2 18 
31 

3 324 
163 

-( ) 
4 5832 

84679 

5 3499200 
3509 

-( ) 
6 26244000 

109479869 

-( ) 
7 69441624000 

4644389783 

8 11666192832000 
2775418878709 

_( ) 
9 15119385910272000 

94843769731 

10 1388515032576000 

We then compute the first eleven terms of the series for yi(x) and name the 
resulting function ylapprox: 

ylapprox[x_]=Sum[a[n]xA(n+4/3),{η,Ο,ΙΟ}] 

7/3 10/3 13/3 16/3 
4/3 2 x 7 x 151 x 3907 x 

x + + 

3 27 972 58320 

19/3 22/3 25/3 
3371 x 561971 x 57955759 x 

+ _ + 

164025 82668600 27776649600 
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28/3 31/3 34/3 
3161469847 x 1075908049 x 4169289225091 x 

_ + 

5999756313600 8264970432000 133644571885440000 

and compute the first eleven terms of the series for V2M and name the result 
y2approx . 

y2approx[x_J=ylapprox[x] Log[x]+Sum[b[n]x"(n+1/3),{n,0,10}] 

7/3 10/3 13/3 
1/3 4/3 17 x 31 x 163 x 

x + x _ + _ + 

18 324 5832 

16/3 19/3 22/3 
84679 x 3509 x 109479869 x 

_ _ + 

3499200 26244000 69441624000 

25/3 28/3 
4644389783 x 2775418878709 x 

_ + 

11666192832000 15119385910272000 

31/3 7/3 10/3 
94843769731 x 4/3 2 x 7 x 

+ (x _ + _ 

1388515032576000 3 27 

13/3 16/3 19/3 22/3 
151 x 3907 x 3371 x 561971 x 

+ _ + _ 

972 58320 164025 82668600 

25/3 28/3 31/3 
57955759 x 3161469847 x 1075908049 x 

+ _ + 

27776649600 5999756313600 8264970432000 

34/3 
4169289225091 x 

) Log[x] 

133644571885440000 

We then graph both y l a p p r o x and y 2 a p p r o x on [0,1] and display the two 
graphs as a graphics array. Note that several error messages are generated when 
Mathematica graphs y 2 a p p r o x , due to the logarithm term, but the resulting 
graphs are displayed correctly. 

pyl=Plot[ylapprox[x],{x,0,1},DisplayFunction->Identity]; 

py2=Plot[y2approx[x],{x,0,l>,DisplayFunction->Identity]; 

Show[GraphicsArray[{pyl,py2}]] 
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Infinity::indet: 

Indeterminate expression 0. (-Infinity) encountered. 

Infinity::indet: 

Indeterminate expression 0. (-Infinity) encountered. 

Plot::plnr: CompiledFunction[{x}, « 1 » , -CompiledCode-] 

[ « 1 » ] is not a machine-size real number at x = 0.. 

0.5i 
0.4 
0.3 
0.2 
0.1 

0.20.40.60.8 1 0.20.40.60.8 1 

6.4 Using the Laplace Transform to 
Solve Ordinary Differential 
Equations 

Definition of the Laplace Transform 

Let f(t) be a function defined on the interval [0,+oo). The Laplace transform of f(t) is the 
function (of s) 

L{f}(s)=je-«f(t)dt, 
0 

provided the integral exists. 
f(t) is the inverse Laplace transform of F(s) means that L{f}(s)=F(s) and we write 

L-i{F(s)}(0 = /(i). 
Commands which can be used to compute Laplace transforms and inverse Laplace 

transforms are located in the LaplaceTransf orm package contained in the Calculus folder 
(or directory). The command I n v e r s e L a p l a c e T r a n s f orm[ f [ s ] , s , t ] computes the 
inverse Laplace transform of f[s] and the result is a function of t, while 
L a p l a c e T r a n s f orm [ g [ t ] , t , s ] yields the Laplace transform of g[t] as a function of s. 
Several examples are given below. 

EXAMPLE: Find the Laplace transform of (a) f(t) = t3; (b) f(t) = sinat; and (c) 
f(t) = cos at. 

1 
0 .8 
0 .6 
0 .4 
0 .2 
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SOLUTION: For (b) and (c) we will use the command L a p l a c e T r ans form 
contained in the L a p l a c e T r a n s f orm package so we begin by loading the 
L a p l a c e T r a n s f orm package. For (a), we use the definition of the Laplace 

transform and compute t3e~stdt, naming the resulting output s t e p o n e . 
Jo 

«Calculus'LaplaceTransform' 
stepone=Integrate[t^3 Exp[-s t ] , { t , 0 , A } ] 

2 3 
-6 6 A 3 A A 

4 3 2 s 
s s s 6 

+ — 
A s 4 

E s 

Then, the Laplace transform of f(t) = t3 is 

lim t3e~stdt = lim stepone 

_ , -6s - 4 -6As 3 -3A 2 s~ 2 -A 3 s~ l _6_Λ__6_ 

For (b) and (c) we use the command L a p l a c e T r a n s f orm. 

LaplaceTransform[Sin[a t ] , t , s ] 

2 2 
a + s 

LaplaceTransform[Cos[a t ] , t , s ] 

2 2 
a + s 

In this case, we see that L a p l a c e T r a n s f orm is successful and that the Laplace 

transform of f(t) = sinat is , while the Laplace transform of f(t) = cosat is 

a2+s2 

Although L a p l a c e T r a n s f orm can be used to compute the Laplace transform of many 
"standard" functions, in other cases it is best to proceed directly and use Mathematica to 
perform the calculations necessary in computing the Laplace transform of a function. 
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EXAMPLE: Find the Laplace transform of the function f defined by 

f^= 1 H\'-W Ί ~i * Hence, f represents the periodic extension of the function \-t 

on [0,1]. 

SOLUTION: In this case, we illustrate how to use Mathematica to define and 
graph a piecewise defined function. We begin by defining and graphing the 

function f(t) _jl-t,ifO<t<l 
-\f{t-l),ift>V 

Clear[f] 
f[x__]:=l-x / ; 0<=x<=l 
f [ x _ ] : = f [ x - l ] / ; x>l 
P lot [ f [x ] , {x ,0 ,5} ,P lotRange->{0 ,3 /2} ,Ticks->{Automat ic , {0 , .5 ,1 ,1 .5}} ] 

The Laplace transform of the periodic function f with period P is given by 
P 

0 

1 

Therefore, the Laplace transform of f is given by —\e-stf(t)dt. With the 
1 € ' J 

o 
1 

following commands, we compute and simplify (1 - t)e~st dt. 
0 

stepone=Integrate[( l - t )Exp[-s t ] , { t , 0 , 1 } ] 

1 - s 1 
+ _ 

2 s 
1 - s 

2 
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steptwo=Together[stepone] 

s s 
1 - E + E s 

s 2 
E s 

We then compute s t ep two and name the result I f . Therefore, the Laplace 

l-es+ses transform of f(t) is 
s2(es-l) 

l f = l / ( l - E x p [ - s ] ) steptwo//Simplify 

s s 
1 - E + E s 

s 2 
( -1 + E ) s 

The fo l lowing e x a m p l e i l l u s t r a t e s h o w to u se the c o m m a n d 
I n v e r s e L a p l a c e T r a n s f orm to compute the inverse Laplace transform of some 
functions. 

EXAMPLE: Find the inverse Laplace transform of 
s2+16 

S O L U T I O N : After loading the package L a p l a c e T r a n s f orm, we use 

I n v e r s e L a p l a c e T r a n s f orm to see that the inverse Laplace transform of 

is sin4f. 

«Calculus'LaplaceTransform' 

InverseLaplaceTransform[4/(s*2+16),s,t] 

Sin[4 t] 
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Solving Ordinary Differential Equations 
with the Laplace Transform 

Laplace transforms can be used to solve a variety of differential equations. Typically, when 
we use Laplace transforms to solve a differential equation for a function y, we will 
compute the Laplace transform of each term of the equation, solve the resulting equation 
for the Laplace transform of y, L{y}, and finally determine y by computing the inverse 
Laplace transform of L{y}. This step-by-step procedure can be carried out with 
Mathematica as illustrated in the example below. 

EXAMPLE: Let f(t) be defined recursively by f(t) = j ^ V ^ % and f(t)=f(t-2) if 

t> 2. Solve y" + 4y' + 20y =/(*). 

SOLUTION: We begin by defining and graphing f and u where u(t ) = \r\-ft~ Q a n d 

then displaying the resulting graphs as a graphics array. 

Clear[f,g,u,y1,y2,sol] 

f[t_] :=1 /; 0<=t<l 

f[t_]:=-l /; K=t<=2 

f[t_]:=f[t-2] /; t>2 

u[t_] :=1 /; t>=0 

u[t_]:=0 /; t<0 

plot£=Plot[f[t],{1,0,5},Ticks->{Automatic,{-2,-1,0,1,2}}, 

PlotRange->{-2,2},DisplayFunction->Identity]; 

plotu=Plot[u[t],{t,-2,2},AxesOrigin->{0,0}, 

Ticks->{Automatic,{-2,-1,0,1,2}}, 

PlotRange->{-2,2},DisplayFunction->Identity]; 

Show[GraphicsArray[{plotf,plotu}]] 

2 
1 

- 1 
- 2 

= i 
> ' u 1 \ 

2 
1 

> "2 -l_i 

- 2 

1 2 

We then define l h s to be the left-hand side of the equation y" + 4y' + 20y =f(t). 

Clear[y ,x , lhs ,s tepone,s teptwo] 
l h s = y ' ' [ t ] + 4 y · [ t ] + 2 0 y [ t ] 

20 y [ t ] + 4 y ' [ t ] + y " [ t ] 
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Let l y denote the Laplace transform of y. Then, the Laplace transform of y' is 
sly-1/(0), and the Laplace transform of y" is s2ly-sy(0)-y'(0). These 
relationships are defined below in l a p l a c e r u l e . In the second command, 
l a p l a c e r u l e is applied to l h s , and the simplified result is named s t e p o n e . 

laplacerule={y[t]->ly,y'[t]->s ly-y[0],y" [t]->s^2 ly-s y[0]-y'[0]}; 

stepone=lhs /. laplacerule//Simplify 

2 
20 l y + 4 s l y + s l y - 4 y [ 0 ] - s y [ 0 ] - y ' [ 0 ] 

Let l r denote the Laplace transform of the right-hand side of the equation, f(t). We 
then solve the equation 201y + 4sly + s2ly-4y(0)-si/(0)-i/'(0) = l r for l y and name 
the resulting output s t e p t w o . 

steptwo=Solve[stepone==lr,ly] 

lr + 4 y[0] + s y[0] + y'[0] 
{ { l y _> } } 

2 

20 + 4 s + s 

To compute y, we must compute the inverse Laplace transform of l y which is 
explicitly obtained from s t e p t w o with s t e p t w o [ [ 1 , 1 , 2 ] ] . We begin by 
collecting those terms which contain l r and name the resulting output 
s t e p t h r e e . 

stepthree=Collect[steptwo[[1,1,211,1T] 

lr 4 y[0] s y[0] y'[0] 
+ + + 

2 2 2 2 
2 0 + 4 s + s 20 + 4 s + s 20 + 4 s + s 20 + 4 s + s 

Since the first term of s t e p t h r e e is the only term containing l r , we drop the first 
term from s t e p t h r e e and name the result s t e p f our . 

stepfour=Drop[stepthree,1] 

4 y[0] s y[0] y'[0] 
+ + 

2 2 2 

20 + 4 s + s 20 + 4 s + s 20 + 4 s + s 
Completing the square yields s2+4s + 20 = (s + 2)2+16. Because the inverse Laplace 

transform of -= is eatsinbt and the inverse Laplace transform of = 
(s-af+b* ^ (s-af+b* 

is eat cosbt, the inverse Laplace transform of 
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s t e p f o u r - 4 y ( Q ) + S y(Q ) + ^ Q ^ y ( 0 ) S + 2 + ^ ( ° ) + 2 ^ ° ) ί 
s2+4s + 20 yV ;(s + 2)2+42 4 (s + 2)2 + 42 

is y(0)e-2icos4f + ̂ - ^ — ^ i ^ - 2 f sin4i which is defined below as yx{t). 

yl[t_]=(4 Cos[4t] y[0]+2 Sin[4t] y[0]+Sin[4t] y'[0])/(4 Exp[2t]) 

4 Cos[4 t] y[0] + 2 Sin[4 t] y[0] + Sin[4 t] y'[0] 

2 t 
4 E 

l r 
To compute the inverse Laplace transform of , we begin by computing 

1 r . Let Me(0 = JoTf **' Then, ua(t) = u(t-a). The periodic function 

/W = \ _i -f i~< f"< ? anc* ί(*)=ί(*"~2) if £ > 2 can be written in terms of step functions 

as 

f(x) = u0(t)-2u1t + 2u2(t)-2u3(t) + 2u4(t)-... 

= u(t) - 2u(t -1) + 2u(t - 2) - 2u(t - 3) + 2u(t - 4) -

= "(0 + 2£(-l)"«(i-n). 

e~ In general, the Laplace transform of ua(t) = u(t-a) is — and the Laplace transform 

of f(t-a)ua(t)=f(t-a)u(t-a) is e-asF(s), where F(s) is the Laplace transform of f(t). 
Then, 

l r = L{/j(s) = - - 2 — + 2 — - 2 — + ... 
L J s s s s 

= -(l-2e-s +2e~2s -2e~3s + ...) 
s 

and 

— = - -(l-2e-s+2e-2s-2e-*s+...) 
s2+4s + 20 s(s2+4s + 20)v ' 

s(s2+4s+ 20) ^ v ; s(s2 +4s+ 20) 

432 
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l r In the following command we extract from s t e p t h r e e and name the 
0 s2+4s + 20 * 

result s t e p f i v e . 
s tepf ive=stepthree[ [1] ] 

l r 

2 
20 + 4 s + s 

We then use C a n c e l to obtain the expression — and name it s t e p s i x . 
r
 s(s2+ 4s + 20) * 

stepsix=Cancel[1/(s l r ) s tepf ive] 

1 
2 

s (20 + 4 s + s ) 

Because the inverse Laplace t ransform of = 5 

r s2+4s + 20 4(s + 2) + 42 

1 1 ff 1 is — e2fsin4f, the inverse Laplace transform of — is — e-2asm^ada, 
4 Y s(s2+4s + 20) Jo 4 

computed below and defined to be the function g(t). 

g[ t_ ]=Integrate [ l /4Exp[ -2a]S in[4a] , {a ,0 , t } ] 

-2 Cos[4 t] Sin[4 t] 

2 t 2 t 
I E E 
— + 

20 40 

T h e n , t he i n v e r s e L a p l a c e t r a n s f o r m of 2(-Ϋ\— 
r v ; s(s2+4s+ 20) 

is 2(-l)n g(t-n)u(t-n) a n d the i n v e r s e Lap lace t r a n s f o r m of 

2 _ _ + 2 Υ ( - ΐ ) " - — — is y(t) = g{t)+iy(-\)ng(t-n)u(t-n). It then 
s(s2+4s + 20) ^ v ; s(s2+4s+ 20) ^ 2 W ό f^K } όΚ ; ν } 

follows that 



434 6 Applications Related to Ordinary and Partial Differential Equations 

y(0 = y1(0+y2(0 

= y(0)e-2tcos4t+y ' '* ^ K~21 sin At + g(t) +1\ (-Ï)" g(t-n)u(t-n), 

1 1 1 
where g(t) = e~2t cos At e~2t s inAt . 

* w 20 20 40 To graph the solution for various initial conditions on the interval [0,5], we define 
5 ■ 

y2{t) = g{t) + lS\{-\)ng(t-n)u(t-n), s o l , and i n i t s . Note that we can graph the 

solution for various initial conditions on the interval [0,m] by defining 
m 

y2(t) = g(t) + 2^(-l)"g(t-n)u(t-n). 

y2[t_]:=g[t]+2 Sum[(-1)An*g[t-n]u[t-n],{n,1,5}] 

s o l [ t _ ] : = y l [ t ] + y 2 [ t ] 
i n i t s = { - l / 2 , 0 , 1 / 2 } ; 

We then create a table of graphs of s o l [ t ] on the interval [0,5] corresponding to 
replacing y(0) and y'(0) by the values - 1 / 2 , 0, and 1/2 and then displaying the 
resulting graphics array. 

graphs=Table[Plot[sol[t] /. {y[0]->inits[[i]], 

y'[0]->inits[[j]]},{t,0,5},DisplayFunction->Identity], 

{i,l,3},{j,l,3}]//Flatten; 

array=Partition[graphs,3]; 

Show[GraphicsArray[array]] 

0.1 

-0.1 
-0.2 
-0.31 

0.1 

-0.1 
-0.2 
-0.31 

o0o; 

002 

0?0 
-0.051 

002! 
°01! 

-0.051 r^n 
002! 
°01! 0.0! 
-0.051 
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Application: The Convolution Theorem 
In many cases, we are required to determine the inverse Laplace transform of a product of 
two functions. Just as in differential and integral calculus, when the derivative and integral 
of a product of two functions did not produce the product of the derivatives and integrals, 
respectively, neither did the inverse Laplace transform of the product yield the product of 
the inverse Laplace transforms. The Convolution Theorem tells us how to compute the 
inverse Laplace transform of a product of two functions. 

The Convolution Theorem: Suppose that f(t) and g(t) are piecewise continuous on 
[0,+°o) and both are of exponential order. Further, suppose that the Laplace 
transform of f(t) is F(s) and that of g(t) is G(s). Then, 

f 

L->{F(s)G(s)} = L->{L{(/*s)(f)}} = {f*g)(t) = jf(t-v)g(v)dv. 
0 

t 

Note that (/*#)(£)= \f(t-v)g(v)dv is called the convolution integral. 
0 

We show how Mathematica can be used to apply the Convolution Theorem in the 
example below. 

EXAMPLE: The differential equation used to determine the charge q(t) on the 

capacitor in an L-R-C circuit is L— + R-L +—q = v(t), q(0) = 0, q'(0) = 0, where L 
r dt2 dt C 

denotes inductance (The bar is used so that it will not be confused with the 

notation for Laplace transforms.), — = i, i(t) current, R resistance, C capacitance, 
dt 

and v(t) voltage supply. Since — = i, this differential equation can be represented 
dt 

t 

as L— + JR/ + — i(u)du = v(t). Note also that the initial condition q(0)=0 is satisfied 
dt C J 

0 

0 

since ^(0) = — i(u)du = 0. The condition ^'(0) = 0 is replaced by i(0)=0. (a) Solve this 
0 

integrodifferential equation, an equation which involves a derivative as well as 
an integral of the unknown function, by using the Convolution Theorem, (b) 
Cons ide r th is example w i th cons t an t va lues L = C = R = 1 a n d 

if ί > π / 2 ^ 2 ' D e t e r m i n e HO and graph the solution. 
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SOLUTION: We proceed as in the case of a differential equation by taking the 
Laplace transform of both sides of the equation. The Convolution Theorem is used 
in determining the Laplace transform of the integral as follows: 

L |i(u)du = L{(1 * 1(0X0} = L{l}L\i(t)} = ^ , 

where I(s) denotes the Laplace transform of i(t). Therefore, application of the 
Laplace transform yields 

LsI(s)-si(0) + RI(s) + - ^ - = V(s)f 
C s 

where V(s) denotes the Laplace transform of v(t). Since i(0)=0, we have 

LsI{s) + RI(s) + — — = V(s). Simplifying and solving for I(s) results in 
C s 

/(s) = T 
V(s) 

LCs2+RCs + l 
and, hence, 

i(t) = L-
V(s) 

LCs2 + RCs + l 

For (b), we note that v(t) = \ Q %. ,~ can be written as v{t) = sm(t )u\ — 1 \ , 

where u(t) = \ryrt~ n · We first define the unit step function, u, and then define and 

plot the forcing function f on the interval [Ο,π]. 

Clear[u,f] 

«Calculus'LaplaceTransform' 

u[t_,a_]:=0 /; t<a 

u[t_,a_]:=1 /; t>=a 

f[t_]:=Sin[t]*(u[t,0]-u[t,Pi/2]) 

p ^ P l o t t f t t l ^ t ^ O ^ P i } ] 

0 1 1 2 2 3 
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Next , we def ine l p t and i n v l p t . I p t [ g [ t ] , a ] c o m p u t e s 
L[g(t)u(t - a)} = e~asL{g(t + a)}, the Laplace transform of functions involving unit step 
functions, while i n v l p t [G[ s ] , a ] computes L-l[e-asG(s)} = g(t-a)u(t-a), the 
inverse Laplace transform of functions involving exponential functions. 

lpt[g_,a_J :=Exp[-a s]*LaplaceTransform[g /.t->t+a,t,s] 

invlpt[lpg_,a_J:=(InverseLaplaceTransform[lpg, s, t ] / .t->t-a)*u[t,a] 

We, therefore, compute the Laplace transform of v(t) using a combination of 
L a p l a c e T r ans form and l p t (since g[ l , t ] = l ) . We call this result c a p v. 

capv=LaplaceTransform[Sin[t],t,s]-lpt[Sin[t],Pi/2] 

1 s 

2 (Pi s)/2 2 
1 + s E (1 + s ) 

Using the general formula obtained for the Laplace transform of i(t), we note that 
the denominator of this expression is given by s2+s + l, which is entered as denom 
below. Hence, the Laplace transform of i, called c a p i , is given below by the ratio 
capv/denom. 

denom=s^2+s+l; 

capi=capv/denom; 

soll=Simplify[capi] 

(Pi s)/2 
E - s 

(P i s ) / 2 2 3 4 
E ( l + s + 2 s + s + s ) 

Simplifying the expression given above in s o i l , we notice that one component 
involves e-™'2. Hence, we employ the user-defined function i n v l p t to determine 
the inverse Laplace t ransform of this pa r t of s o i l and use 
I n v e r s e L a p l a c e T r a n s f o r m t o determine that of the rest of it. The solution 
which results is defined as i . 

i[t_]=InverseLaplaceTransform[1/(l+s+2s^2+s^3+s~4),s,t]-

ίην1ρΜ8/(1+8+28Λ2+8Λ3+8Λ4) ,Pi/2] 

Sqrt[3] t Sqrt[3] t 
Cos[ ] Sin[ ] 

2 2 
-Cos[t] + + 

t/2 t/2 
E Sqrt[3] E 
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-Pi 
Sqrt[3] (— + t) 

(Pi/2 - t)/2 2 
2 E Sin[ ] 

2 
(-Cos[t] ) 

Sqrt[3] 

Pi 
u[t, — ] 

2 

This solution is plotted below in p2 and displayed with the forcing function in the 
plot which follows. Notice the effect that the forcing function has on the solution 
to the differential equation. 

p2=Plot[i[t],{t,0,10},DisplayFunction->Identity]. 

Show[pi,p2,PlotRange->All,DisplayFunction->$DisplayFunction] 

Application: The Dirac Delta Function 

Let δ denote the function with the two properties (i) ô(t-t0) = 0ift*t0; and (ii) 

\ô(t-t^dt-l. The function S{t-tQ) is known as the Dirac delta function and is quite 

useful in the definition of impulse forcing functions which arise in some differential 
equations. The Laplace transform of S(t-t0) is LJ<5(f-£0)j = e-sio. Mathematica contains a 
definition of the Dirac delta function, D i r a c D e l t a , which is contained in the package 
DiracDelta located in the Calculus folder (or directory). We illustrate how problems 
involving the Dirac delta function can be solved through the use of Mathematica and 
Laplace transforms in the following example. 

EXAMPLE: Find the solution to the initial value problem x" + x'+ x = 5{t)+u(t-In), 

x(0)=0and *'(0) = 0, where "(0 = { Î | Î < J · 



6.4 Using the Laplace Transform to Solve Ordinary Differential Equations 439 

SOLUTION: After loading the packages L a p l a c e T r a n s f orm and D i r a c D e l t a , 
we define eq to be the left-hand side of the equation x" + x' + x = ô(t) + u(t -2π) and 
then use L a p l a c e T r a n s f orm to compute the Laplace transform of eq, naming 
the resulting output l e q . Note that the symbol L a p l a c e T r a n s f orm [ x [ t ] , t , s ] 
represents the Laplace transform of x. We then apply the initial conditions x(0)=0 
and x'(0) = 0, to l e q and name the resulting output i c s . 

«Calculus'LaplaceTransform' 

«Calculus ' DiracDelta ' 

Clear[x,eq] 

eq=x"[t]+x'[t]+x[t]; 

leq=LaplaceTransform[eq,t,s] 

LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] + 

2 
s LaplaceTransform[x[t], t, s] - x[0] - s x[0] - x'[0] 

ics=leq /. {x[0]->0,x'[0]->0} 

LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] + 

2 
s LaplaceTransform[x[t], t, s] 

In addition to containing the command D i r a c D e l t a , the package DiracDelta also 
contains the command U n i t S t e p , which represents the unit step function: 

Un i tS t ep [ t ] = <L-y ~ . In r h s , we use L a p l a c e T r a n s f orm, D i r a c D e l t a , and 

U n i t S t e p to compute the Laplace transform of the right-hand side of the 
equation x" + x' + x = ô(t) + u(t-2n). 

rhs=LaplaceTransform[DiracDelta[t]-UnitStep[t-2Pi],t,s] 

1 
1 

2 Pi s 
E s 

Next, we use S o l v e to solve the equation i c s = r h s for the Laplace transform of x. 
The expression for the Laplace transform is extracted from s o i n with 
s o l n [ [ l , l , 2 ] ] . 

soln=Solve[ics==rhs,LaplaceTransform[x[t],t,s]] 

2 Pi s 
1 - E s 

{{LaplaceTransform[x[t], t, s] -> -( )}} 
2 Pi s 2 

E s (1 + s + s ) 



440 6 Applications Related to Ordinary and Partial Differential Equations 

To find x, we must compute the inverse Laplace transform of the Laplace 
transform of x obtained above. Below, we use I n v e r s e L a p l a c e T r a n s f o r m t o 
compute the inverse Laplace transform of s o l n [ [ 1 , 1 , 2 ] ] and name the 
resulting function x. 

x[t__]=InverseLaplaceTrans form [ soin [ [l,l,2]],s,t] 

Sqrt[3] t 
2 Sin[ ] 

2 

- UnitStep[-2 Pi + t] + 
t/2 

Sqrt[3] E 

Pi - t/2 Sqrt[3] (-2 Pi + t) 
2 E Sin[ ] UnitStep[-2 Pi + t] 

2 
+ 

Sqrt[3] 

P i - t / 2 S q r t [ 3 ] (-2 P i + t ) 
(E Cos[ ] -

2 

P i - t / 2 S q r t [ 3 ] (-2 P i + t ) 
E S i n [ ] 

2 
) U n i t S t e p [ - 2 P i + t ] 

S q r t [ 3 ] 

Finally, we use P l o t to graph the solution on the interval [0,8π]. 

P l o t [ x [ t ] , { t , 0 , 8 P i } ] 
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6.S Systems of Ordinary 
Differential Equations 

Homogeneous Linear Systems 
with Constant Coefficients 

Let 

/.X&.*i^*iJ83« 

A = 

tin ) 

be an n x n real matrix and let [λ^ ^ be the eigenvalues and {yk}" the corresponding 
eigenvectors of A. The general solution of the system X'(f) = AX(f) is determined by the 
eigenvalues of A. If the eigenvalues {\}' are distinct and real, then a general solution of 
X'(t) = AX(f) is 

X(f) = c.y.eW + c,v0eA2< +... + c v eV = > c.v.eV. 
v ' 1 1 2 2 n n ^^j ι ι 

If the eigenvalues {Xk =ak+ßkiy , where ßk*0, are complex and the corresponding 

eigenvectors {yk}"_ are distinct, then a general solution of X'(f) = AX(i) is 

X(0 = c1w11eAif + c2w12eAi* + c3w21eA2f + c4w22eA2' +... + c^^w^eV + 

wfl = -[ν,; +v.]cos(j3i) + ̂ [vj, -v.]sin(j9i) and 

wi2 =— lv.-v.lcos(ßi)—|v.+v1sin(/?i). Mathematica can solve many systems of 

differential equations. 
In order to solve the 2 x 2 system with constant coefficients, 

dx 
— = ax + by 
dt 

-**- = ex + dy 
Idt 

we enter the command 

DSolve[{x'[t]==a x[t]+b y[t],y'[t]==c x[t]+d y[t]},{x[t],y[t]},t] 
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We illustrate how systems can be solved with Mathematica through the use of eigenvalues 
as well as DSolve in the examples below. 

SOLUTION: We begin by finding the eigenvalues and associated eigenvectors of 

the matrix of coefficients ^ = (_1 ~Q with E i g e n s y s t e m . This gives us λλ =-1 

and λ2 = 1. An eigenvector corresponding to λλ = -1 is given by vx = L , while that 

corresponding to A2=l is v2= _ J . Therefore, a general solution is 

v?y 
= q -t 

/ i λ 
+ C2 

y-h 
tl. 

Eigensystem[{{0,-1},{-1,0}}] 

{{-1, 1}, {{1, 1}, {-1, 1}}} 

We can graph the solutions for various values of the constants q and C2- Notice 
that x and y both depend on the variable t where x(t) represents the x-coordinate 
at a particular time t and y(t) represents the y-coordinate at a particular time t. 
Hence, we can plot these solutions parametrically in the xy-plane. (This type of 
graph is known as the phase plane of the system of equations.) First, the solutions 
are defined as x and y using the formula obtained above. Several members of the 
family of solutions are created in f n e a r r a y by substituting the values -6, -4 , -2 , 
0, 2, 4, and 6 for the constants c l and c2 . Note that f n c a r r a y is a 7 x 7 x 2 . We 
then use F l a t t e n to remove all but the innermost set of braces naming the result 
t o g r a p h . t o g r a p h consists of 49 sets of functions which are then plotted with 
P a r a m e t r i c P l o t i n g r a p h o n e and displayed in an abbreviated form with 
S h o r t . 

x[t_]:=cl Exp[-t]+c2 Exp[t] 

y[t_]:=cl Exp[-t]- c2 Exp[t] 

fncarray=Table[{x[t]/y[t]}/.{cl->i,c2->j}f{1,-6,6,2},{j,-6,6,2}] ; 

tograph=Flatten[fncarray,1]; 

Short[tograph] 

EXAMPLE: Solve the system of equations 
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graphone=ParametricPlot[Evaluate[tograph],{t,-2,2}, 

PlotRange->{{-15,15},{-15,15}}] 

-6 t -6 t 6 
{{— - 6 E , — + 6 E }, «47», {-- + « 1 » , «1»}} 

t t 
E E E 

In order to determine the direction associated with these solutions, we consider 
the direction field (i.e., the collection of vectors which represent the tangent line at 
points on the solutions. Note that the slope of these tangent lines is given by 

dV = dt =cx + dy 
dx d*_ ax + by 

dt 

at each point (x,y)). The direction fields are graphed with the command 
P l o t V e c t o r F i e l d located in the PlotField package contained in the Graphics 
folder (or directory). Finally, the direction field is displayed with the solutions to 
illustrate the associated motion. Notice that when the associated direction field is 
plotted, solutions near the line in the direction of the eigenvector corresponding 
the positive eigenvalue move away from the equilibrium point. On the other hand, 
solutions near the line in the direction of the eigenvector corresponding to the 
negative eigenvalue move towards the equilibrium point. 

«Graphics ' PlotField ' 
graphtwo=PlotVectorFie ld[{ -y , -x} , {x , -15 ,15} , {y , -15 ,15} , 

DisplayFunction->Identity]; 
Show[graphone,graphtwo] 
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EXAMPLE: Find a general solution of the system of equations 

dx 

dy_ 

dt = -x 

SOLUTION: The matrix of coefficients is defined in m a t below, and the 
eigenvalues and eigenvectors determined with E i g e n s y s t e m . The result means 

that the eigenvalues are A = ±i and the eigenvectors are v, = M and v2 = I ^ 

Hence, the solution in given in x and y (in terms of sines and cosines). Note that 
the exponential function is not included because the eigenvalues are imaginary 
with no real part. A collection of solutions is created in f n c a r r a y by substituting 
values of - 6, - 4, - 2, 0, 2, 4, and 6 for the arbitrary constants c 1 and c 2. A 
shortened list of these solutions is then displayed with S h o r t . 

m a t = { { 0 , l } , { - l , 0 } } ; 

Eigensystem[mat] 

{ { - I , I } , { { I , 1 } , { - I , 1 } } } 

x[t__]:=-cl Sin[t]+c2 Cos[t] 

y[t_]:=cl Cos[t]+c2 Sin[t] 

fncarray=Table[{x[t],y[t]}/.{cl->i/c2->j}/{i,-6/6f2},{j/-6,6,2}]; 

tograph=Flatten[fncarray,1]; 

Short[tograph] 

{{-6 Cos[t] + 6 Sin[t], -6 « 1 » + « 1 » } , « 4 8 » } 

P a r a m e t r i c P l o t is used to graph the phase plane in g r a p h t h r e e . In order to 
determine the direction associated with the motion of these curves as t increases, 
we plot the direction field in g r a p h d f . This vector is then displayed with the 
family of solutions to show that the motion is clockwise. Because these solutions 
remain at a constant distance from the origin, we say that the point (0,0) is a 
center. 
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graphthree=ParametricPlot[Evaluate[tograph],{t,-1,1}, 

PlotRange->{{-10,10},{-10,10}}, AspectRatio->l, 

DisplayFunction->Identity]; 

«Graphics v PlotField^ 

graphdf=PlotVectorField[{y,-x},{x,-10,10},{y,-10,10}, 

DisplayFunction->Identity]; 

Show[graphthree,graphdf,DisplayFunction->$DisplayFunction] 

We now illustrate how DSolve can be used to solve systems of differential equations. 

EXAMPLE: Find a general solution of jy= -5x+ 
\y' = -2x-

3y 
10' 

SOLUTION: After clearing all prior definitions of x, y, and s o l , we use DSolve 
' = — 5x + 3v 
r,__2 iQ, naming the resulting output s o l . The 

expressions for x(t) and y(t) are extracted from s o l with s o l [ [ 1 , 1 , 2 ] ] and 
s o l [ [ 1 , 2 , 2 ] ] , respectively. 

C l e a r [ x , y , s o l ] 

s o l = D S o l v e [ { x ' [ t ] = = - 5 x [ t ] + 3 y [ t ] / y ' [ t ] = = - 2 x [ t ] - 1 0 y [ t ] } / { x [ t ] , y [ t ] } / t ] 

-2 3 - 3 3 
{ { x [ t ] -> ( + ) C [ l ] + ( + ) C [ 2 ] , 

8 t 7 t 8 t 7 t 
E E E E 

2 2 3 2 
y [ t ] -> ( ) c [ i ] + ( ) c [ 2 ] } > 

8 t 7 t 8 t 7 t 
E E E E 

to find a general solution of 
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To graph the solution for various values of C [ 1 ] and C [ 2 ] , we define funs to be 
the table of functions obtained by replacing each occurrence of C [ 1 ] and C [ 2 ] in 
{ s o l [ [ 1 , 1 , 2 ] ] , s o l [ [ 1 , 2 , 2 ] ] }, corresponding to the pair of functions 
(x(t),y(t)), by i and j for i=-6, - 3 , 0, 3, and 6 and j=-6, - 3 , 0, 3, and 6. Note that 
f u n s is a 5x5x2 array. In order to graph this list of functions, with 
P a r a m e t r i c P l o t , we must convert funs to an array consisting of ordered pairs 
of functions, which we accomplish with F l a t t e n , naming the resulting output 
t o p l o t . The list t o p l o t consists of 25 pairs of functions which are then graphed 
with P a r a m e t r i c P l o t in pptwo. We also use the command P l o t V e c t o r F i e l d 
to graph the associated direction fields in g r a p h 4 . Show is used to display both 
pptwo and g raph4 together. 

funs=Table[{sol[[1,1,2]],sol[[1,2,2]]} /. 

{C[l]->i,C[2]->j},{i,-6,6,3},{j,-6,6,3}],· 

toplot=Flatten[funs,1]; 

Length[toplot] 

25 

«Graphics" PlotFielcT 

pptwo=ParametricPlot[Evaluate[toplot],{t,-2,l}, 

Compiled->False,PlotRange->{{-10,10},{-10,10}}, 

DisplayFunction->Identity] ; 

graph4=PlotVectorField[{-5x+3y,-2x-10y},{x,-10,10},{y,-10,10}, 

DisplayFunction->Identity]; 

Show[pptwo,graph4,DisplayFunction->$DisplayFunction] 

- 7 - 3r0 

Variation of Parameters 

We now consider nonhomogeneous systems of equations of the form X'=AX+F(t). Recall 
that the solution to the corresponding homogeneous system of equations X'=AX can be 
represented in terms of the fundamental matrix Φ(ί) and the n x 1 constant vector C with 
X=<ï>(t)C Hence, by assuming a particular solution to the nonhomogeneous system of the 
form Xp=0(t)U(t), where U(t) is a vector of the form 
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υ(0= 
u2(t) 

[u (t) 

we find that a particular solution is given by Xp = Φ(£) Φ-^ήΈ^άί. Hence a general solution 
is determined with 

X = O(0C + 0(t)\o-*(t)F(t)dt. 

In addition to determining the solution of differential equations, Mathematica can also be 
used to plot the solutions. In the following example, we illustrate how this is 
accomplished. 

{ j^' y — g-t 
' S 2 - ' (Ίί\ subject to the initial conditions x(0) = x0 and 

y(0) = y0. Graph the solution for various initial conditions. 

Clear[x,y,xO,yO,t,sol] 

sol=DSolve[{x'[t]-y[t]==Exp[-t],y'[t]+5x[t]+2y[t]==Sin[3t], 

y[0]==yO,x[0]==xO},{x[t],y[t]},t] 

1 5 I (-1 - 2 I) t 
{{x[t] -> + (— + — ) E 

t 104 104 
4 E 

(7 I + (11 + 3 I) xO + (1 + 5 I) yO) + 

1 5 1 (-1 + 2 I) t 

(-( ) ) E 
104 104 

3 Cos[3 t] Sin[3 t] 
(7 + (3 + 11 I) xO + (5 + I) yO) , 

26 13 

SOLUTION: We use DSolve to solve the equation subject to 

the initial conditions x(0) = xQ and y(0) = y0, naming the resulting output s o l . The 
expressions for x(t) and y(t) are extracted from s o l with s o l [ [ l , l , 2 ] ] and 
s o l [ [ 1 , 2 , 2 ] ], respectively. 

x'-y = e-< 
y' + 5x + 2y = sin(3f) 

EXAMPLE: Solve 
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-5 3 11 I (-1 - 2 I) t 
y[t] -> + (-( — ) ) E 

t 104 104 
4 E 

(7 I + (11 + 3 I) xO + (1 + 5 I) yO) + 

11 3 1 (-1 + 2 I) t 
( + ) E (7 + (3 + 11 I) xO + (5 + I) yO) -
104 104 

3 Cos[3 t] 9 Sin[3 t] 
+ } } 

13 26 

To see that the expressions obtained above are real, we proceed by defining x 
andy. 

C l e a r [ x , y ] 

x [ t _ , x O _ , y O _ ] = s o l [ [ 1 , 1 , 2 ] ] ; 

y [ t _ , x 0 _ , y 0 _ ] = s o l [ [ l , 2 , 2 ] ] ; 

Note that when we evaluate x and y, as illustrated below, an imaginary 
component, although 0, is given in the resulting output. 

{ x [ . 4 , . 5 , . 5 ] , y [ . 5 , . 5 , . 5 ] > 

{0 .788798 + 0 . I , - 0 . 7 5 1 7 6 4 + 0 . 1} 

These 0-valued imaginary components are removed with Chop. 

Chop[{x[.4,.5,.5],y[.5,.5,.5]}] 

{0.788798, -0.751764} 

We will graph the solution for the initial conditions given in o rderedpa i r s , 
below. 

o r d e r e d p a i r s = F l a t t e n [ T a b l e [ { i , j } , { i , - 1 , 1 , 2 / 3 } , { j , - 1 , 1 , 2 / 3 } ] , 1 ] 

1 1 1 1 1 
{ { - 1 , - 1 } , { - 1 , - ( - ) } , { - 1 , - } , { - 1 , 1 } , { - ( - ) , - 1 } , { - ( - ) , - ( - ) } , 

3 3 3 3 3 

1 1 1 1 1 1 1 1 1 
{ - ( - ) , - } , { - < - ) , 1 } , {-, - I K {-, - < - ) } , {-, - > , {-, 1 } , 

3 3 3 3 3 3 3 3 3 

1 1 
{ 1 , - 1 } , { 1 , - ( - ) } , { 1 , - } , { 1 , 1}} 

3 3 
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Next, we define solgraph, which given a and b, graphs the parametric equations 
C h o p [ { x [ t , a , b ] , y [ t , a , b ] } for 0 < £ < 7. This corresponds to graphing the 

{y' + 5* + 2y==sin(3f) S u b ' e C t t 0 the ^ * 1 c o n d i t i o n s *(°) = a 

and y(0) = b. Note that the results of s o l g r a p h are not displayed. We then use 
Map to compute so lg raph for each of the ordered pairs in o r d e r e d p a i r s . The 
resulting set of sixteen graphs is partitioned into four-graph subsets with 
P a r t i t i o n , naming the resulting array toshow. The array toshow is displayed 
with Show and GraphicsArray. 

solgraph [{a__,b_}] : = 

ParametricPlot[Chop[{x[t,a,b],y[t,a,b]}], 

{t,0,7},Ticks->None,Corapiled->False,DisplayFunction->Identity] 

graphs=Map[solgraph,orderedpairs]; 

toshow=Partition[graphs,4]; 

Show[GraphicsArray[toshow]] 

Nonlinear Systems, Linearization, and 
Classification of Equilibrium Points 

An equilibrium point (x0,y0) of the system of differential equations 

\dx 
dt =f(x,y) 

§=sM 

solution of the equation 
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\f(x0,y0) = 0 
is a point which satisfies \ . For the 2 x 2 system of linear differential equations 

x' = Ax, in which the matrix of coefficients A has eigenvalues λ1 and A2, the equilibrium 
point (0,0) is classified according to the following criteria. 

Eigenvalues: 

Real: A ^ A ^ O 

Real: A1 < 0 < A2 

Real: 0 < A1 < A2 

Complex: λλ = A2 = a + ßi, β Φ 0, α<0 

Complex: Α1 = Α2 = a + ßi, ß * 0, α>0 

Complex: λλ = Α2 = a + ßi, ß Φ 0, α=0 

Classification: 

Stable Node 

Saddle 

Unstable Node 

Stable Spiral 

Unstable Spiral 

Center 

The general form of the autonomous system (in which there is no dependence on t) is 

Approximate solutions to problems of this type can be found by considering the linearized 
system about each equi l ibr ium point (x0,y0), which in this case satisfy 

[f(x0,y0) = 0,g(x0,y0) = o}. This linearized system is given by 

[ax 
fx{xo>yo)x+f»{xo>yo)y+^ 

-Tr=gx{xo>y0)x+8y{xo>yo)y+f2 

where fx(xQ,y0) = Î(x0,y0), / y (^y 0 ) = | ( v y 0 ) , gx(xo>yo) = %(xo>yo)> ? y (vy0) = ? ( v y o ) / a n d 
dx 

ίλ,ί2 are constants. 
à) dx' V 
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Note that 

JM= 

is known as the Jacobian matrix. Hence, the linearized system can be written as 

dt 
ÈL 
dt) 

f,{xo>y0) /»ivy») 
sX\>y0) *y(vy0) ^y-i^-h-i 

Numerical Solutions of Systems of 
Ordinary Differential Equations 

Mathematica's NDSolve command can be used to approximate the solution of many 
nonlinear systems of differential equations. The correct number of initial conditions must 
be supplied within the NDSolve command. 

This command is entered in the form 

NDSolve[{desys,ics},funs,{var,varmin,varmax}], 

where the equations d e s y s subject to the initial conditions i c s are solved for the 
functions f u n s and the solution is requested to be valid over the interval 
[varmin,varmax]. Each component of the result is given in the form 

InterpolatingFunction[{varmin,varmax},<>]. 

In the following example, we illustrate the use of this command to solve a first-order 
system of nonlinear differential equations. 

Application: Predator—Prey 

EXAMPLE: The Lotka-Volterra system (Predator-Prey model) is the system 

x'= axx-a2xy 

where ai , a2, \>\, and \>2 are constants. Find and classify the equilibrium points of 
the Lotka-Volterra equations. 
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SOLUTION: We begin by defining e q o n e r h s and e q t w o r h s to be a^x-a2xy and 

-b1yn-b2xy/ respectively, and then solving the system of equations \_l } -n 

for x and y to locate the equilibrium points. 

Clear[a,b,x,y] 

eqonerhs=a[l]x-a[2]x y; 

eqtworhs=-b[1]y+b[2]x y; 

cps=Solve[{eqonerhs==0,eqtworhs==0},{x,y}] 

b[l] a[l] 
{{x -> 0, y -> 0}, {x -> , y -> }} 

b[2] a[2] 

To classify the equilibrium points, we first define l i n m a t r i x to be the matrix 

( d ( \ d ( \ 
_{axX-aiXy} _[axx-a2xy) 
^(-bj + Kxy) j-(-biy + bixy) 

and display l i n m a t r i x in Matr ixForm. 

linmatrix={{D[eqonerhs,x],D[eqonerhs,y]},{D[eqtworhs,x],D[eqtworhs,y]}}; 

MatrixForm[linmatrix] 

a[l] - y a[2] 
Y b[2] 

-(x a[2]) 
-b[l] + x b[2] 

We then compute the value of l i n m a t r i x when x = -L and y = — : 

linmatrix /. cps[[2]] // MatrixForm 

a[2] b[l] 
-( ) 

0 b[2] 
a[l] b[2] 

a[2] 0 

and then compute the eigenvalues. Since the eigenvalues are complex conjugates 
( h Λ 

with the real part equal to 0, we conclude that the equilibrium point I T^,— I is a 
Λ au 

center. 

linmatrix /. cps[[2]] // Eigenvalues 

{-I Sqrt[a[l]] Sqrt[b[l]], I Sqrt[a[l]] Sqrt[b[l]]} 
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Similarly we compute the value of l i n m a t r i x when x=0 and y=0: 

linmatrix /. cps[[l]] // MatrixForm 

a[l] 0 
0 -b[l] 

and then compute the eigenvalues. Since the eigenvalues are real and have 
opposite signs, we conclude that the equilibrium point (0,0) is a saddle. 

linmatrix /. cps[[l]] // Eigenvalues 

{a[l], -b[l]> 

Unsuccessfully, we attempt to use DSolve to solve the system in the special case 
when aj=2, a2=l, b^=3, and b2=l: 

Clear[ x, y,eqone,eqtwo] 

eqone=x'[t]==2 x[t]-x[t] y[t]; 

eqtwo=y'[t]==-3y[t]+x[t]y[t]; 

DSolve[{eqone,eqtwo},{x[t],y[t]},t] 

DSolve[{x'[t] == 2 x[t] - x[t] y[t], 

Y'[t] == -3 y[t] + x[t] y[t]>, {x[t], y[t]>, t] 

However, we are able to use NDSolve to solve the system when x(0)=l and y(0)=l 
for 0 < t < 3 . 

solone=NDSolve[{eqone,eqtwo,x[0]==1,y[0]==1},{x[t],y[t]},{t,0,3}] 

{{x[t] -> InterpolatingFunction[{0., 3.}, <>][t], 

y[t] -> InterpolatingFunction[{0., 3.}, <>][t]}> 

We then use P a r a m e t r i c P l o t to graph the solution, s o l o n e , obtained above. 
Note that the resulting error message indicates that the functions to be graphed 
cannot be compiled, which normally results in faster computations. In this case, 
the functions are not compiled and still graphed. 

ParametricPlot[{x[t],y[t]} /. solone,{t,0,3}] 

ParametricPlot:rppcom: 
Function {x[t], y[t]} /. solone 

cannot be compiled; plotting will proceed with the 
uncompiled function. 
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5 

4 

3 

2 
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1 2 3 4 5 6 7 

We define a function s o l to graph various numerical solutions of the system 
above. 

Clear[sol] 

sol[s_]:=Module[{solt,y,x,t,eqone,eqtwo}, 

eqone=x'[t]==2 x[t]-x[t] y[t]; 

eqtwo=y'[t]==-3y[t]+x[t]y[t]; 

solt=NDSolve[{eqone,eqtwo,x[0]==3 s,y[0]==2 s}, 

{x[t],y[t]},{t,0,4}]; 

ParametricPlot[{x[t]fy[t]} /. soit,{t,0,4},Compiled->False, 

DisplayFunction->Identity] 

] 

We plot the solution with s o l for values of t from t = l / 8 t o t = 7/8 using 
increments of 3/40 

graphs=Table[sol[t],{t,1/8,7/8,3/40}]; 

and display these graphs below. Notice that all of the solutions oscillate about the 
center. These solutions reveal the relationship between the two populations: prey, 
x(t), and predator, y(t). As we follow one cycle counterclockwise beginning, for 
example, near the point (2,0), we notice that as x(t) increases, then y(t) increases 
until y(t) becomes overpopulated. Then, since the prey population is too small to 
supply the predator population, y(t) decreases which leads to an increase in the 
population of x(t). Since the number of predators becomes too small to control the 
number in the prey population, x(t) becomes overpopulated and the cycle repeats 
itself. 

Show[graphs,PlotRange->All,DisplayFunction->$DisplayFunction] 
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8 

6 

4 

2 

2 4 6 8 10 12 



6.5 Systems of Ordinary Differential Equations 455 
"?,<L ^ *y^ , "V i >νϋ$βΝΜΚ 

In fact, we can view these changes by graphing x(t) and y(t). Below, we use 
NDSolve to approximate the solution to the problem for 0 < t < 10. We then graph 
x(t) and y(t) with P l o t , naming the results p l o t x and p l o t y , respectively, and 
graph (x(t),y(t)) with P a r a m e t r i c P l o t , naming the result param. Last, we use 
Show and G r a p h i c s A r r a y to display all three graphs. 

sol=NDSolve[{eqone,eqtwo,x[0]==l,y[0]==l},{x[t],y[t]},{t,0,10}] 

{{x[t] -> InterpolatingFunction[{0., 10.}, <>][t], 

y[t] -> InterpolatingFunction[{0., 10.}, <>][t]}} 

plotx=Plot[x[t] /. sol,{t,0,10},DisplayFunction->Identity]; 

ploty=Plot[y[t] /. sol,{t,0,10},DisplayFunction->Identity]; 

param=ParametricPlot[{x[t],y[t]} /. sol,{t,0,10}, 

DisplayFunction->Identity]; 

Show[GraphicsArray[{plotx,ploty,param}]] 

1 2 3 4 5 6 7 

Next, we consider the solution of a second-order nonlinear equation by transforming 
the equation into the corresponding system of equations. We then use NDSolve to 
approximate the solutions to this system 

EXAMPLE: The Van-der-Pol equation χ" + μ(χ2-ϊ)χ' + χ = 0 is equivalent to the 
x' = y system <̂ ,_ H_ 2\ _ · Classify the equilibrium points, use NDSolve to 

approximate the solutions to this nonlinear system, and plot the phase plane. 

SOLUTION: We find the equilibrium point of this well-known system below in 
r o o t s . The associated linear system is then entered as l i n m a t r i x . 

roots=Solve[{y==0,mu(l-x^2)y-x==0},{x,y}] 

{{y -> 0, x -> 0}} 

linmatrix={{0,1},{-2mu x y-l,mu(l-x^2)}}; 

MatrixForm[1inmatrix] 

0 1 
2 

- l - 2 m u x y m u ( l - x ) 



456 6 Applications Related to Ordinary and Partial Differential Equations 

The eigenvalues of the linearized system at the equilibrium point (0,0) are given 
below. 

linmatrix /. roots[[l]] // Eigenvalues 

2 2 
mu - Sqrt[-4 + mu ] mu + Sqrt[-4 + mu ] 
{ , } 

2 2 

JU± III2 — 4 Notice that these eigenvalues simplify to A = ^ , which are: 

(a) both positive, real if μ > 2 since μ2 - 4 > 0. Hence, (0,0) is an unstable node. 
(b) complex conjugates with positive real part if 0<μ<2. Hence, (0,0) is an 

unstable spiral. (Note that μ is assumed positive since Van der Pol's equation 
came about from the study of nonlinear damping. Therefore, μ represents the 
damping coefficient in spring-mass systems. We disregard the case with μ =2 
since it results in a repeated eigenvalue.) 

We now employ NDSolve to determine and plot solutions which correspond to 
Van der Pol's equation with μ=1. This means that the equilibrium point (0,0) is an 
unstable focus according to our classification above. The two equations are 
defined in eqone and eqtwo and then used with NDSolve to determine the 
solution to the initial value problem x [ 0 ] =0 on the interval [0,10]. 

eqone=x'[t]==y[t]; 

eqtwo=y'[t]==(l-x[tr2)y[t]-x[t]; 

solone=NDSolve[{eqone,eqtwo,x[0]==l,y[0]==l},{x[t],y[t]},{t,0,10}] 

{{x[t] -> InterpolatingFunctionf{0., 10.}, <>][t], 

y[t] -> InterpolatingFunction[{0., 10.}, <>][t]}> 

The approximate solution is then plotted with ParametricPlot below. 

ParametricPlot[{x[t],y[t]} /. solone,{t,0,10}] 

ParametricPlot::ppcom: 
Function {x[t], y[t]} /. solone 

cannot be compiled; plotting will proceed with the 
uncompiled function. 
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We now attempt to plot the phase plane associated with Van der Pol's equation. 
This is done in a manner similar to the previous example by defining a function 
s o l which, given s, numerically approximates the solution using the initial 

conditions x(0) = —coss and y(0) = —sins and plots the solution parametrically 

over the interval [0,10]. 

Clear[sol,eqone,eqtwo,x,y,t] 

sol[s_]:=Module[{solt,x,y,t,eqone,eqtwo}, 

eqone=x'[t]==y[t]; 

eqtwo=y'[t]==(l-x[tr2)y[t]-x[t]; 

solt=NDSolve[{eqone,eqtwo, 

x[0]==s/24 Cos[s],y[0]==s/24 Sin[s]}, 

{x[t],y[t]},{t,0,10}]; 

ParametricPlot[{x[t],y[t]} /. solt,{t,0,10}, 

Compiled->False,DisplayFunction->Identity] 

] 

A table of solutions is produced in g r a p h s below for s = 1/4 to s = 8π using 

increments of (8π-1 /4)/15. 

g r a p h s = T a b l e [ s o l [ t ] , { t , l / 4 , 8 P i , ( 8 P i - l / 4 ) / 1 5 } ] ; 

The solutions which were found are then shown simultaneously to reveal the 
phase plane. Notice that the solutions seem to approach a closed path as the 
variable t increases. (Recall that (0,0) is an unstable spiral, so the solutions are 
directed away from the origin.) This closed path is called a limit cycle because all 
solutions approach it as t increases. 

Show[graphs,PlotRange->All,DisplayFunction->$DisplayFunction] 
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Application: The Double Pendulum 

EXAMPLE: The motion of a double pendulum is modeled by the following 
system of equations using the approximation sin θ ~ Θ for small displacements: 

| (m 1 +m 2 )^e j / +m 2 V2 e 2 + ( m l + m2^1gel = ° 
{ ΠΙ2Φ2 +™2hW{ + m2^2g02=O 

where 0j represents the displacement of the upper pendulum, and Θ2 that of the 
lower pendulum. Also, mi and m2 represent the mass attached to the upper and 
lower pendulums, respectively, while the length of each is given by l\ and £2. 
Suppose that m^ = 3, m2= 1, and each pendulum has length 16. If 6^0) = 1, 
θί(0) = 0, Θ2(0) = - 1 , and 02(0) = 0, then solve the double pendulum problem 
using g = 32. Also, plot the solution. 

SOLUTION: Application of the system of equations given above yields the 
following system of second order equations 

4(16)2 θ^ +(16)2Θ£ +4(16)(32)θ1=0, 

(16)2Θ^ +(16)2Θ[ +(16)(32)θ2=0, 

θ!(0) = 1, θί(0) = 0, Θ2(0) = 1, θ^(0) = 0. 

For convenience, we refer to θ^ as x and θ2 as y in the commands below. We 
define the left-hand sides of the equations in e q l and eq2 as well as the 
transformation rules in r u l e . 

Clear[x ,rule ,eq l ,eq2] 
«Calculus'LaplaceTransform' 

eql=4 16Λ2χ' ' [t]+16A2 y " [ t ] + 6 4 3 2 x [ t ] ; 
eq2=16"2 y"[ t ]+16"2 x " [ t ] + 1 6 32 y [ t ] ; 

r u l e = { x [ t ] - > l x , x ' [ t ] - > s 1 χ - χ [ 0 ] , χ ' ' [ t ] - > s A 2 l x - s x [ 0 ] - x ' [ 0 ] , 

Y [ t ] - > l y , y ' [ t ] - > s l y - y [ 0 ] , y " [ t ] - > s " 2 l y - s y [ 0 ] - y ' [ 0 ] } ; 

The Laplace transform is applied below in eqs. 

eqs={eql,eq2} /. rule 

2 
{2048 lx + 1024 (lx s - s x[0] - x'[0]) + 

2 
256 (ly s - s y[0] - y'[0])r 
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2 

512 ly + 256 (lx s - s x[0] - x'[0]) + 

2 
256 (ly s - s y[0] - y'[0])} 

Since the system is homogeneous, each of the components of e q s is equated to 
zero and the Laplace transform of x and y, l x and ly , are found. 

sols=Solve[eqs=={0,0},{lx,ly}] 

2 2 
{{lx -> ((2 + s ) (s (-4 s x[0] - s y[0] - 4 x'[0] -

2 
y'[0]) - 4 (2 + s ) 

(-(s x[0]) - s y[0] - x'[0] - y'[0]))) / 

2 2 4 

(s (-16 - 16 s - 3 s ) ) -

-(s x[0]) - s y[0] - x'[0] - y'[0] 

2 

2 
ly -> -((s (-4 s x[0] - s y[0] - 4 x'[0] - y'[0]) -

2 
4 (2 + s ) (-(s x[0]) - s y[0] - x'[0] - y'[0])) / 

2 4 
(-16 - 16 s - 3 s ) ) } } 

Below, the initial conditions are applied. 

conds=sols /. {x[0]->l,y[0]->-l,x'[0]->0,y'[0]->0} 

2 3 
-3 s (2 + s ) 3 s 

{{lx -> f iy _> } } 

2 4 2 4 
-16 - 16 s - 3 s -16 - 16 s - 3 s 

I n v e r s e L a p l a c e T r a n s f orm is used to obtain the formulas for x and y. These 
are given below. 

x[t_]=InverseLaplaceTransform[conds[[l,l,2]],s,t] 

2 t 
Cos[ ] 

3 Cos[2 t] Sqrt[3] 
+ 

4 4 
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y[t_]=InverseLaplaceTransform[conds[[1,2,2]] ,s , t] 

2 t 
Cos[ ] 

-3 Cos[2 t] Sqrt[3] 
+ 

2 2 

The position functions are then plotted with the dashed curve representing the 
second spring and the darker curve the first spring. 

Plot[{x[t],y[t]},{t,0,10},PlotStyle->{GrayLevel[0],Dashing[{.01}]}] 

We can generate the graphics far more easily viewing the motion of the double 
pendulum. We do this by defining the function pen2, which depends on the time 
t as well as the length of the two pendulums, l e n l and len2, below. Since the 
angles are measured from the vertical axis, polar coordinates with the reference 
angle at 3π/2 are used. In this function, p t l represents the position of the mass 
attached to the end of the first pendulum and p t2 that of the mass at the end of 
the second spring. pen2 uses Line to produce the graphics of the lines joining the 
points representing the masses. 

Clear[pen2] 

pen2[t_,lenl_,len2_]:=Module[{ptl,pt2}, 

ptl={lenl Cos[3Pi/2+x[t]], 

lenl Sin[3Pi/2+x[t]]}; 

pt2={lenl Cos[3Pi/2+x[t]]+len2 Cos[3Pi/2+y[t]], 

lenl Sin[3Pi/2+x[t]]+len2 Sin[3Pi/2+y[t]]}; 

Show[Graphics[{ 

Line[{{0,0},ptl}], 

PointSize[.05],Point[ptl], 

Line[{ptl,pt2}], 

PointSize[.05],Point[pt2]} 

] , 

Axes->Automatic,Ticks->None, 

PlotRange->{{-32,32},{-32,0}}, 

DisplayFunction->Identity] 
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Below, we generate the graphics of the pendulum for t =0 to t =8 using increments 
of one. These graphics are partitioned into groups of three and displayed as a 
graphics array. In the same manner as in the previous examples, an alternative to 
p roduc ing an array of graphics cells is to use the command 
Do [ pen2 [ t , l , 6 , 1 6 ] , { t , 0 , 8 } ] and then animate the resulting graphics cells. 

graphs=Table[pen2[t,16,16],{t,0,8>]; 

groups=Partition[graphs,3]; 

Show[GraphicsArray[groups]] 
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The One-Dimensional Wave Equation 

Suppose that we pluck a string, like a guitar or violin string, of length a and constant mass 
density that is fixed at each end. What is the position of the string at a particular instance 
of time? The problem of determining the position of a string of length a and mass density c 
is modeled by the following initial-boundary value problem where f(x) and g(x) in (iii) 
represent the initial position and velocity functions, respectively. The boundary conditions 
in (ii) represent the fixed ends of the string at x=0 and x=a. 

,.* d2U d2U A χ η 

(z) c2 = , 0 < x < a, t > 0; 
dx2 dt2 

(ii) w(0, t) = 0, u(a, t) = 0, t > 0; and 

du\ {iii) u(x,0) = f(x), 
dt 

= g(x), 0<x<a. 
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This problem is typically solved through separation of variables by assuming a solution of 
the form u(x,t)=X(x)T(t). Substituting this solution into the partial differential equation (i), 

X" T" we obtain c2X"T = XT". Dividing by XT yields — = — = -A2 where -A2 is the constant of 

separation. Hence, we have the two ordinary differential equations X" + A2X = 0 and 
T" + A2c2T = 0. The boundary conditions in (ii) correspond to X(0)=X(a)=0. The 

corresponding boundary value problem I _ is an eigenvalue problem with 

eigenvalues A = and corresponding eigenfunctions X (x) = sin(A x) = sin for n=l, 
" a " v " v 0 J 

2, ... . Similarly, the solutions to T" + A2c2T = 0 are Tn(t) = ansinfinct) + bncos(Xnct), so the 
solutions of this problem are 

un(x,t) = Xn(x)Tß) 

= [an sin(Afici) + bn cos(A/cf)jsin(Aix) 

( . (n7tet\ , (nmt\\ . ( ητνχλ 
= an sin + bn cos sin . 

\ a J \ a J \ a ) 

Therefore, the linear combination of these solutions is also a solution. This gives us 

. (nmt\ , (nnctX) . (ητνχ^ 
"Λ\ \ + b COS -

I a J " I 
,(x,0 = XU ( I s in ^ U c o e ^ s i n i » . 

Application of the initial position function gives us u(x,0) = V bn sin =/(^) · Use of the 

orthogonality conditions yields b =—\ f(x)sm\ \dx. In order to apply the initial 
" a Jo \ a ) 

velocity, we first differentiate u(x,t) with respect to t: 

/ ,\ V ' f a (n7tct\ . a . (njxt\\ . (ηπχ^ 
u(x,t)= > a cos \-b sin sin 

£f{ "nnc { a J " nnc \ a )) \ a À 

Therefore, we have u(x,0)= > a sin =#(*), which through the use of the 
*-i " riTtc \ a ) 

orthogonality condition yields an = g(x 
a Jo 

(x)sinl \dx. 
a J 

We show how Mathematica is used to solve this problem in the following example. 
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EXAMPLE: Solve the wave equation with c=l and a=l subject to the indicated 
initial conditions: 

/ Λ d2u d2u 
(i) —— = , 0 < x < 1, t > 0; 

\ dx2 à1 (it) u(0,t) = 0, u(a, f ) = 0, f > 0; and 

(Hi) u(x,0) = sm(7rx)/—-
at 

= 3x + l , 0 < x < l . 
f=0 

SOLUTION: The appropriate parameters and initial conditions are entered below. 

Clear[alpha,beta] 

a=l; 

c=l; 

f[x_]:=Sin[Pi x]; 

g[x_]=3x+l? 

Next, the functions to determine the coefficients a and ß in the series 
approximation of the solution u(x,t) are defined in a l p h a and b e t a , a l p h a and 
b e t a are defined using the form a l p h a [ n _ ] : = a l p h a [ n ] = . . . and 
b e t a [ n _ ] : = b e t a [ n ] = . . . , respectively, so that Mathematica "remembers" the 
values of a l p h a f n ] and b e t a [ n ] computed and thus avoids recomputing 
previously computed values. The use of N I n t e g r a t e in these functions causes 
the calculations to be performed more quickly in most cases. 

alpha[n_]:=alpha[n]=2/(n Pi c)* 

NIntegrate[g[x]Sin[n Pi x/a],{x,0,a}]//N//Chop; 

beta[n_]:=b[n]=2/a*NIntegrate[f[x]Sin[n Pi x/a],{x,0,a}]//Chop; 

A table of the first five a and ß is found below. 
M "n 

Table[{n,alpha[n],beta[n]},{n,1,5}]//TableForm 

1 
2 
3 
4 
5 

1 .01321 
- 0 . 1 5 1 9 8 2 
0 .112579 
- 0 . 0 3 7 9 9 5 4 
0 .0405285 

1. 
0 
0 
0 
0 

The function u defined below represents the nth term in the series expansion. 
Hence, u n a p p r o x determines the approximation of order five by summing the 
first five terms of the expansion. 
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u[x_,t__,n_] : = (alpha[n]Sin[n Pi c t/a]+ 

beta[n]Cos[n Pi c t/a])Sin[n Pi x/a]; 

unapprox [x__,t_]=Sum[u[x,t,k] , {k, 1,5}] 

x 
(1. Cos[Pi t] + 1.01321 Sin[Pi t]) Sin[Pi x] -

0.151982 Sin[2 Pi t] Sin[2 Pi x] + 

0.112579 Sin[3 Pi t] Sin[3 Pi x] -

0.0379954 Sin[4 Pi t] Sin[4 Pi x] + 

0.0405285 Sin[5 Pi t] Sin[5 Pi x] 

In the graphs below, unapprox is graphed over the interval [0,2] (in x) for values 
of t from t=0 to t=2 using increments of 2/19. This produces a list of 20 plots which 
is partitioned into groups of four in gar ray and viewed as a graphics array. These 
plots can be displayed via a Do command so that the resulting graphs may be 
animated to see the motion of the string. 

graphs=Table[Plot[unapprox[x,t], { x, 0,1} ,PlotRange->{-1.5,1.5}, 

Ticks->None,DisplayFunction->Identity],{t,0,2,2/19}]; 

garray=Partition[graphs,4]; 

Show[GraphicsArray[garray]] 

Beginning users of Mathematica quickly notice that in order to use results from a 
previous Mathematica session, they must first be re-calculated. The purpose of the 
following example is to illustrate how results can be saved for future use. 
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Application: Zeros of the Bessel Functions 

EXAMPLE: Since the zeros of the Bessel functions play an important role in the 
generalized Fourier series involving Bessel functions, use Mathematica to 
approximate the first eight zeros of the Bessel functions of the first kind, Jn(x)/ of 
order n=0,1, 2 , . . . , 5. 

SOLUTION: The Bessel function of the first kind of order n, J n M/ is represented 
by B e s s e l J [ n , x ] . Below, we graph the Bessel functions of the first kind of 
order n for n=0, 1, ..., 5 on the interval [0,33] and display the resulting six graphs 
as a G r a p h i c s A r r a y . 

graphs=Table[Plot[BesselJ[n,x],{x,0,33}, 

DisplayFunction->Identity],{n,0,5}]; 

array=Partition[graphs,3]; 

Show[GraphicsArray[array]] 
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In order to approximate the zeros of the Bessel functions we will use the command 
F i n d R o o t . Recall that F i n d R o o t [ e q u a t i o n , { x , a } ] attempts to locate an 
approximation of the solution to e q u a t i o n , which represents an equation in x, 
near x = a. We use the above graphs to determine initial approximations of the 
zeros to be approximated. For example, the zeros of the Bessel function of order 
zero appear to occur at x=2.5, 5.5, 8.7, 11.8, 15.1, 18.1, 21.2, and 24.4. These values 
are entered in the list az which is used with F i n d R o o t in a [ 0 ] to supply the 
initial guess for each of the first eight zeros. A similar list of approximate zeros is 
given for each function. In general, a [ i ] is a list of approximations of the first 
eight zeros of the Bessel function of the first kind of order i. 

file:///f/f/f/f'
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azero={2.5, 5.5, 8.7, 11.8, 15.1, 18.1, 21.2, 24.4}; 

a[0]=Table[FindRoot[BesselJ[0,x]==0,{x,azero[[i]]}]f{1,1,8}]; 

aone={4, 7, 10, 13.2, 16.4, 19.6, 22.6, 26}; 

a[l]=Table[FindRoot[BesselJ[l,x]==0,{x,aone[[i]]}],{i,l,8}]; 

atwo={5.2, 8.4, 11.8, 14.7, 18, 21.1, 24.4, 27.4}; 

a[2]=Table[FindRoot[BesselJ[2,x]==0,{x,atwo[[i]]}],{i,l,8}] ; 

athree={6.5, 10, 13, 16.2, 19.4, 22.5, 25.8, 29}; 

a[3]=Table[FindRoot[BesselJ[3,x]==0,{x,athree[[i]]}],{i,l,8}] ; 

afour={7.6, 11.1, 14.5, 17.7, 20.9, 24.1, 27.3, 30.5}; 

a[4]=Table[FindRoot[BesselJ[4,x]==0,{x,afour[[i]]}],{i,l,8}] ; 

afive={8.9, 12.4, 15.6, 19.1, 22.3, 25.5, 28.7, 31.9}; 

a[5]=Table[FindRoot[BesselJ[5,x]==0,{x,afive[[i]]}],{i,l,8}]; 

asix={10, 13.5, 17.2, 20, 23.6, 26.9, 30, 33.3}; 

a[6]=Table[FindRoot[BesselJ[6,x]==0,{x,asix[[i]]}],{i,l,8}]; 

After these lists are obtained, they are combined to form the single list zeros of 
which is viewed in TableForm. 

z e r o s = T a b l e [ a [ i ] [ [ j , l , 2 ] ] , { i , 0 , 6 } , { j , l , 8 } ] ; 
TableForm[zeros] 

2.40483 
21, 

3.83171 
22, 

5.13562 
24, 

6.38016 
25, 

7.58834 
27. 

8.77148 
28. 

9.93611 
30. 

5.52008 
.2116 24, 
7.01559 

.7601 25, 
8.41724 

.2701 27, 
9.76102 

.7482 28, 
11.0647 

.1991 30, 
12.3386 

.6266 31, 
13.5893 

.0337 33, 

8.65373 
.3525 
10.1735 

.9037 
11.6198 

.4206 
13.0152 

.9084 
14.3725 

.371 
15.7002 

.8117 
17.0038 

.233 

11, 

13, 

14, 

16. 

17. 

18. 

20. 

.7915 

.3237 

.796 

.2235 

.616 

.9801 

.3208 

14, 

16, 

17, 

19. 

20. 

22. 

23. 

.9309 

.4706 

.9598 

.4094 

.8269 

.2178 

.5861 

18, 

19, 

21. 

22. 

24. 

25. 

26. 

.0711 

.6159 

.117 

.5827 

.019 

.4303 

.8202 

We then save this table of numbers, for later use, and name the resulting file 
b e s s e l t a b l e . In doing so, these time-consuming calculations may be avoided 
each time the list of zeros is needed. Instead, the file b e s s e l t a b l e may be easily 
read. The symbol » , representing the built-in function Pu t , is used to write the 
table z e r o s to the file b e s s e l t a b l e . 

zeros»besseltable 

If the calculations have just been completed, the amn which are necessary in the 
calculation of the series coefficients of the eigenfunction expansion are defined in 
the following way. 

a l p h a [ i _ , j _ ] : = z e r o s [ [ i + 1 , j ] ] 
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However, if the zero must first be read in from b e s s e l t a b l e , the following 
command must be performed. 

getzeros=ReadList["besseltable"]; 

alpha[i_,j_]:=getzeros[[11][[i+1,j]] 

Application: The Two-Dimensional 
Wave Equation 

One of the more interesting problems involving two spatial dimensions (x and y) is the 
wave equation. The two-dimensional wave equation in a circular region which is radially 
symmetric (not depending on Θ) with boundary and initial conditions is expressed in polar 
coordinates as 

,.v d2u (B2u 1 du\ . r> x n 
(t) = c2\ + —— ,0<r<R, f >0; 

à2 [or2 rdr) 

(ii) u(R,t) = 0,t>0; 

(in) \u(0,t)\bounded,t>0; 

(iv) u(r,0) = f(r),0<r<R;and 
(iii)^(r,0) = g{r),0<r<R. 

at 

Notice that with the boundary conditions like those in the wave equation discussed above, 
this problem is typically solved through separation of variables by assuming a solution of 
the form u(r,t)=R(r)T(t). Applying separation of variables yields the solution 

u(r, t) = ]T (a t cos{Xnt) + bn sin(XHt))j0(kar), 
M =l 

where 

- c . 1 IriTtc Γ / λ . ίητΐχλ, Λ , 2 f" x . (ηπχλ, 
λ =—αη , k =—αη , a e(x)sin lax and b =—\ f(x)sm\ \dx 

n R u" " R u" a Jo V « J " aJo \ a J 

(a0n represents the nth zero of the Bessel function of the first kind of order zero). As a 
practical matter, in nearly all cases these formulas are difficult to evaluate. 

EXAMPLE: Solve the wave equation with c=l and R=l with initial position 
y(r) = r(r -1) and initial velocity g(r) = sin(Tur). 
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SOLUTION: We, first, read in the table of zeros of the Bessel functions which was 
created earlier in b e s s e l t a b l e and call this table g e t z e r o s . We then define the 
function a l p h a [ i , j ] which represents the j th zero of the Bessel function of the 
first kind of order i . 

getzeros=ReadList["besseltable"]; 

alpha[i_,j_j :=getzeros[[1]][[i+1,j]] 

Next, we enter the appropriate radius in c a p r , parameter c, and initial position 
and velocity functions, f and g. 

Clear[a,b,k,lambda,urn,unapprox,capr, c, f, g ] 

capr=l; 

c=l; 

f[r_]:=r(r-l); 

g[r_]=Sin[Pi r]; 

1 c 
We define the formula for k =—an below. The eigenvalue A =— an =ck is 
defined in l a m b d a . The formulas for the coefficients a and b , which were 
derived above, are then defined in a and b so that an approximate solution may be 
determined. Note that we use N I n t e g r a t e in order to avoid the difficulties in 
integration associated with the presence of the Bessel functions of order zero. In 
addition, a and b are defined using the forms a[n__] : = a [ n ] = . . . and 
b [ n_ ] : =b [ n ] = . . . so that Mathematica "remembers" the values of a [ n ] and 
b [ n ] computed and thus avoids recomputing previously computed values. 

k[n_]:=alpha[0,n]/capr 
lambda[n_]:=c/capr alpha[0,n] 
a[n_]:=a[n]=2/(capr^2 Besse lJ[ l ,a lpha[Ο,η]] Λ 2)* 

NIntegrate[r f [ r ] B e s s e l J [ 0 , k [ n ] r ] , { r , 0 , c a p r } ] ; 
b[n_]:=b[n]=2/(c capr alpha[0,n]* 

BesselJ[1,alpha[Ο,η]]Λ2)* 
NIntegrate[r g [ r ] B e s s e l J [ 0 , k [ n ] r ] , { r , 0 , c a p r } ] ; 

Below, we compute the first six values of an and bn . 

Table[{n ,a[n] ,b[n]} , {n , l ,6} ] / /TableForm 

1 -0.323503 0.52118 
2 0.208466 -0.145776 
3 0.00763767 -0.0134216 
4 0.0383536 -0.00832269 
5 0.00534454 -0.00250503 
6 0.0150378 -0.00208315 

The nth term of the series solution is defined in u below. 

u[n_,r_,t_]:=(a[n]Cos[lambda[n] t]+ 

b[n]Sin[lambda[n] t])*BesselJ[0,k[n] r] 
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Thus, an approximate solution is obtained in u a p p r o x by summing the first six 
terms of u given above. 

unapprox[r_,t_]=Sum[u[m,r,t] , {m, 1,6}] 

BesselJ[0, 2.40482555769557879 r] 
(-0.323503 Cos[2.40482555769557879 t] + 
0.52118 Sin[2.40482555769557879 t]) + 

BesselJ[0, 5.520078110286310648 r] 
(0.208466 Cos[5.520078110286310648 t] -
0.145776 Sin[5.520078110286310648 t]) + 

BesselJ[0, 8.653727912911012217 r] 
(0.00763767 Cos[8.653727912911012217 t] -
0.0134216 Sin[8.653727912911012217 t]) + 

BesselJ[0, 11.79153443901383635 r] 
(0.0383536 Cos[11.79153443901383635 t] -
0.00832269 Sin[11.79153443901383635 t]) + 

BesselJ[0, 14.93091770848778431 r] 
(0.00534454 Cos[14.93091770848778431 t] -
0.00250503 Sin[14.93091770848778431 t]) + 

BesselJ[0, 18.07106396791092254 r] 
(0.0150378 Cos[18.07106396791092254 t] -
0.00208315 Sin[18.07106396791092254 t]) 

Since the function is independent of the angular coordinate Θ, we can plot this 
function over the interval [0,1] to yield a side view of half of the circular region. 
This is accomplished in g r a p h s below by plotting u a p p r o x for values of t from 
t=0 to t=2 using increments of 2/15. The list of graphics which results is then 
partitioned into groups of four and displayed as a graphics array. A similar list of 
graphics, can be generated with a Do command by entering 

Do[Plot[unapprox[r,t],{r,0,1},Ticks->{{0,.5,1},None}, 
PlotRange->{-l,l}],{t,0,2,2/15}] 

so that the resulting list may be animated to show the motion of the waves on the 
circular region. 

graphs=Table[Plot[unapprox[r,t],{r,0,1},Ticks->{{0,.5,1},None}, 

PlotRange->{-l,l},DisplayFunction->Identity],{t,0,2,2/15}]; 

array=Partition[graphs,4]; 

Show[GraphicsArray[array]] 
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The problem that describes the displacement of a circular membrane in its general case 
is: 

,.. 1 d ( du\ 1 d2u 1 d2u . 
0) - — r~^r \ + — ^— = ς—/ 0<r<a, -π<θ<π; 

r dr{ dr) r2 ΒΘ2 c2 dt2 

(ii) ιι(α,θ,ή = 0, 0<t, -π<θ<π; 

(Hi) \ιι(0,θ,ή\ bounded, 0<t, -π<θ<π; 

(iv) u(r,-K,t) = u(r,n,t), 0<r<a, 0<t; 

(Ό) àL(rr-nft)=àL(r,n,t), 0<r<a, 0<f; 
dOK } 3ΘΚ } 

(vi) w(r,0,O) = /(r,0), 0<r<a, -π<θ<π;αηά 

(vii) — (r,0,O) = g(r,0), 0<r<a, -π<θ<π. 
dt 

Using separation of variables, we obtain that the general solution is given by 

u(r,e,t) = Yfl0(i /0(A0II r)cos(A0ficf) + Y ajm(ABJH r) cos(m0)cos(AHHcf ) 

+5Λ„/„, (A„„,r) sin(m0)cos(Ainiici) + ]TΛ0„ h (Ao„ 0 s i n ( V ' ) 

+ Y A / (A r)cos(m0)sin(A cf) + Y ß / (A r) sin(m0)sin(A cil 
^ ^ ^ m»-' in \ inn / \ / \ mn / ^ ^ mn' m \ tun ) \ / \ mn / 

where ]m represents the mth Bessel function of the first kind, Xmn represents the 
nth zero of Jm, and the coefficients are given by: 
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Γ \f(r'e)h{K r)rdrde Γ Ù(r'e)L{* r)cos{me)rdrde 
a _ JO JO n ___Jo___ . 

On *a , 2 ' rnn pa 2 

^llhiKjpdr π|[/„,(Α r)]rdr 

Γ i/(r'ö)^(A-r)s in(mö)r i i r i iö Γ r?(r'e)^K-r)r irde 
L _ Jo Jo ^ _ Jo Jo 

*[[hKrPdr ' "" 2^0„c£[/0(A0„r)]2rrfr ' 

Γ \"g(r,0)Jm^mnr)cos(me)rdrde 
A =^-*2 , and 

^m„cjJ/m(Am„r)frdr 
Jo 

pin pa 

B = 
\Ί"8(^)]„{ληηή5ϊη(ηιθ)τάτάθ 

Jo Jo 

iUK4 π λ Η \JJX_r)]2rdr 

We show how Mathematica is used to solve and visualize this problem in the example 
below. 

EXAMPLE: Solve the circular membrane problem with radius a=l, 
position function 

and initial velocity 

/M= 

function 

^(r)/2(0) = (œs(! ) j s in(0) , 

= A2(0) = ('--l)œs(f). 

c=10, initial 

SOLUTION: The table of zeros which were found earlier and saved as 
b e s s e l t a b l e are read in and called g e t z e r o s . A function a l p h a is then defined 
so that these zeros of the Bessel functions of the first kind can be more easily 
obtained from the list. 

getzeros=ReadList["besseltable"]; 

alpha[i__,j_J :=getzeros[[1]][[i+1,j]] 

The appropriate parameter values as well as the initial condition functions are 
defined below. Notice that the functions describing the initial position and velocity 
are defined as the product of functions. This enables the calculations to be carried 
out in the manner which follows. 
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Clear[a,f,fl,f2,gl,g2,A,c,g,capa,capb,b] 

c=10; 

A=l; 

fl[r_] :=Cos[Pi/(2r)]; 

f2[theta_]=Sin[theta]; 

f[r_,theta_]:=f[r,theta]=fl[r]*f2[theta]; 

gl[rj:=r-l; 

g2[theta_]=Cos[Pi/2 theta]; 

g[r_,theta_]:=g[r,theta]=gl[r]*g2[theta]; 

The coefficients aQu are determined with the function a below. 

a[ n_J:=a[n] = (NIntegrate[ f1[r]*Besse lJ[0 ,a lpha[0 ,n]r]r , {r ,0 ,A}]* 

N I n t e g r a t e [ f 2 [ t ] , { t , 0 , 2 P i } ] ) / 

(2Pi NIntegrate [r*Besse lJ [0 ,a lpha[0 ,n]rp2 , {r ,0 ,A}] ) / /N; 

Hence, a s represents a table of the first five values of a0n. Chop is used to round 
off very small numbers to zero. 

as=Table[a[n]//Chop,{n,1,5}] 

{0, 0, 0, 0, 0} 

Because the denominator of each integral formula used to find a and b is the 
O mu mn 

same, the function bjmn which computes this value is defined below. A table of 
nine values of this coefficient is then determined. 

bjmn[m_,n_] : =bjmn[m,n]=NIntegrate[r*BesselJ[m,alpha[m,n]r] Λ2, {r,0,A}] //N 

Table[bjmn[m,n]//Chop,{m,l,3},{n,l,3}] 

{{0.0811076, 0.0450347, 0.0311763}, 
{0.0576874, 0.0368243, 0.0270149}, 
{0.0444835, 0.0311044, 0.0238229}} 

Because the initial position function f is defined as the product of a function f 1 of r 
and a function f 2 of Θ, we determine the value of the integral of the product of f 1 
and the appropriate Bessel function in f b jmn and create a table of values. 

Clear[fbjmn] 

fbjmn[m_,n_]:=fbjmn[m,n]=NIntegrate[f1[r]* 

BesselJ[m,alpha[m,n]r]r,{r,0,A}]//N 

Table[fbjmn[m,n]//Chop,{m,l,3},{n,l,3}] 

{{-0.0959003, 0.0269499, 0.0268211}, 
{-0.0866504, 0.000300172, 0.0235597}, 
{-0.0755676, -0.0165966, 0.0139515}} 

The values of f b jmn and bjmn which were found with the T a b l e commands 
above are used to determine a below 
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a[m_,n_] :=a[m,n] = (fbjmn[m,n] *NIntegrate[f2 [t] * 

Cos[m t],{t,0,2Pi}])/(Pi bjmn[m,n])//N; 

Table[a[m,n]//Chop,{m,l,3},{n,l,3}] 

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}} 

as well as the values of bmn. Note that defining the coefficients in this manner 

(a[m__,n_] : = a [ m , n ] = . . . and b[m__,n_] :=b [m,n ] = . . . ) 

cuts down on unnecessary computation time. 

b[m_,n_]:=b[m,n]=(fbjmn[m,n]*NIntegrate[f2[t]* 

Sin[m t],{t,0,2Pi}])/(Pi bjmn[m,n])//N; 

Table[b[m,n]//Chop,{m,l,3},{n/l,3}] 

{{-1.18238, 0.598424, 0.860306}, {0, 0, 0}, {0, 0, 0}} 

The values of A0n are found similar to those of a0n. After defining the function 
c a p a to calculate these coefficients, a table of values is then found. 

capa[n_J :=capa[n] = (NIntegrate[gl[r]*BesselJ[0,alpha[0,n]r]r,{r,0,A}]* 

NIntegrate[g2[t],{t,0,2Pi}])/(2Pi c alpha[0,n]* 

NIntegrate[r*BesselJ[0,alpha[0,n]rp2,{r,0,A}])//N; 

Table[capa[n]//Chop,{n,1,6}] 

-6 
{0.00142231, 0.0000542518, 0.0000267596, 6.41976 10 , 

-6 -6 
4.95843 10 , 1.88585 10 } 

The value of the integral of the component of g, g l , which depends on r and the 
appropriate Bessel functions, is defined as gb jmn below. 

gbjmn[m_,n_]:=gbjmn[m,n]=NIntegrate[gl[r]* 

BesselJ[m,alpha[m,n]r]r,{r,0,A}]//N 

Table[gbjmn[m,n]//Chop,{m,l,3},{n,l,3}] 

{{-0.0743906, -0.019491, -0.00989293}, 
{-0.0554379, -0.0227976, -0.013039}, 
{-0.0433614, -0.0226777, -0.0141684}} 

Then, Amn is found by taking the product of integrals, gb jmn depending on r and 
one depending on Θ. A table of coefficient values is generated in this case as well. 

capa[m_,n_]:=capa[m,n]=(gbjmn[m,n]*NIntegrate[g2[t]Cos[m t],{t,0,2Pi}])/ 

(Pi alpha[m,n] c bjmn[m,n])//N; 

Table[capa[m,n]//Chop,{m,1,3},{n,1,3}] 
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{{0.0035096, 0.000904517, 0.000457326}, 

{-0.00262692, -0.00103252, -0.000583116}, 
{-0.000503187, -0.000246002, -0.000150499}} 

Similarly, the B are determined. 

capb[m_,n_]:=capb[m/n]=(gbjmn[m,n]*NIntegrate[g2[t]Sin[m t],{t,0,2Pi}])/ 

(Pi alpha[m,n] c bjmn[m,n])//N; 

Table[capb[m,n]//Chop,{m,l,3},{n,l,3}] 

{{0.00987945, 0.00254619, 0.00128736}, 
{-0.0147894, -0.00581305, -0.00328291}, 
{-0.00424938, -0.00207747, -0.00127095}} 

Now that the necessary coefficients have been found, we must construct the 
approximate solution to the wave equation by using our results. Below, t e r m l 
represents those terms of the expansion involving aQn/ t e r m 2 those terms 
involving am n , t e r m 3 those involving b m n , t e rm4 those involving AQn, t e rm5 
those involving A m n , and t e rm6 those involving B m n . 

Clear[terml,term2,term3,term4,term5,term6] 

terml [r_,t_,n__] :=a[n] *BesselJ[0,alpha[0,n]r] *Cos[alpha[0,n] c t] ; 

term2[r_,t_,th_,m_,n__] :=a[m,n] *BesselJ[m,alpha[m,n]r] * 

Cos[m th]*Cos[alpha[m,n] c t]; 

term3[r_,t_,th__,m_,n_] :=b[m,n] *BesselJ[m, alpha[m,n]r] * 

Sin[m th]*Cos[alpha[m,n] c t]; 

term4[r_,t__,n_]:=capa[n]*BesselJ[0,alpha[0,n]r]*Sin[alpha[0,n] c t]; 

term5[r__,t_,th_,m_,n_] :=capa[m,n] * 

BesselJ[m,alpha[m,n]r]*Cos[m th]*Sin[alpha[m,n] c t]; 

term6[r_,t__,th_,m_,n__] :=capb[m,n] * 

BesselJ[m,alpha[m,n]r]*Sin[m th]*Sin[alpha[m,n] c t]; 

Therefore, the solution is given as the sum of these terms as computed in u below. 

Clear[u] 

u[r_,t_,th_] : = 

Sum[terml[r,t,n], { n, 1,5 } ] + 

Sum[term2[r,t,th,m,n],{m,l,3},{n,l,3}]+ 

Sum[term3[r,t,th,m/n],{m,l,3},{n,l,3}]+ 

Sum[term4[r,t,n],{n,l,5}]+ 

Sum[term5[r,t,th,m,n],{m,1,3},{n,1,3}]+ 

Sum[term6[r,t,th,m,n],{m,l,3},{n,1,3}]; 

The solution is compiled below in uc. The command Compi le is used to compile 
functions. C o m p i l e returns a C o m p i l e d F u n c t i o n which represents the 
compiled code. Generally, compiled functions take less time to perform 
computations than uncompiled functions although compiled functions can only be 
evaluated for numerical arguments. 
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uc=Compile[{r,t,th},u[r,t,th]] 

CompiledFunction[{r, t, th}, u[r, t, th], -CompiledCode-] 

and then p lo t ted below wi th the function t p l o t , which uses 
P a r a m e t r i c P l o t 3 D to produce the graph of the solution for a particular value of 
t. Note that t h represents the angle Θ and that the x and y coordinates are given in 
terms of polar coordinates. 

Clear[tplot] 

tplot[t_]:=ParametricPlot3D[{r Cos[th],r Sinfth],uc[r,t,th]}, 

{r,0,l},{th,-Pi,Pi},PlotPoints->{20,20},BoxRatios->{l,l,l}, 

Shading->False,Axes->False,Boxed->False, 

DisplayFunction->Identity] 

A table of two plots for t=l /3 and t=2/3 is produced in graphs below. This table of 
graphs is displayed as a graphics array. 

graphs=Table[tplot[t],{t,1/3,2/3,1/3}]; 

Show[GraphicsArray[graphs]] 

The graphs obtained by modifying the initial condition functions to 

Clear[a,f,f1,f2,gl,g2,A,c,g,capa,capb,b] 

c=10; 

A=l; 

fl[r_]:=Cos[Pi/2 r]; 

f2[theta_]=Sin[theta]+theta; 

f[r_,theta_J :=f[r,theta]=fl[r]*f2[theta]; 

gl[r_]:=r-l; 

g2[theta_]=Cos[Pi/2 theta]; 

g[r_,theta__] : =g[r, theta] =gl [r] *g2 [theta] ; 

are shown below. 

graphs=Table[tplot[t],{t,1/3,2/3,1/3}]; 

Show[GraphicsArray[graphs]] 
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Other Partial Differential Equations 

A partial differential equation of the form 

/ \ du i / \du / \ 
a(x, y,u)— + b(x, y,u)— = c(x, y, u) 

dx dy 

is called a first-order, quasi-linear partial differential equation. In the case when 
c(x,y,u) = 0, the equation is homogeneous; when a and b are independent of u, the 
equation is almost linear; and when c(x,y,u) can be written in the form 

c(x, y,u) = d{x, y)u + s(x, y) 

the equation is linear. 
Quasi-linear partial differential equations can frequently be solved using the Method of 

Characteristics. After the package PDSolvel , contained in the Calculus folder (or 
directory), is loaded the capabilities of DSolve are enhanced so that DSolve can solve 
some first-order partial differential equations, as illustrated in the following example. 

EXAMPLE: Use the method of characteristics to solve the initial-value problem 

-3xtu +u=xt,u(x,0) = x. 

SOLUTION: For this problem, the characteristic system is 

— = -3xt, 
or 
dt_ 
dr 
du 

x(0,s) = s 

= 1/ i(0/s) = 0 

= xt, u(0,s) = s. 
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We begin by using DSolve to solve — = 1, t(0,s) = 0 
dr 

dl=DSolve [ {D[ t [r ] , r ]== l , t [0 ]==0} , t [ r ] , r ] 

{ { t [ r ] -> r}} 

and obtain t = r. Thus, — = -3xr, x(0,s) = s which we solve below and obtain 
dr 

d2=DSolve[{D[x[r],r]==-3 x[r] r,x[0]==s},x[r],r] 

s 
{{x[r] -> >} 

2 

(3 r )/2 
E 

rhl 
x = se-3r2/2. Substituting t = r and x = se~3r2/2 into — = xt,u(0,s) = s. and using 

BY 

DSolve to solve the resulting equation yields the following result, named d3. 

d3=DSolve[{D[u[r],r]==Exp[-3/2 rA2] s r,u[0]==s},u[r],r] 

4 s s 
{{u[r] -> }} 

3 2 
(3 r )/2 

3 E 

To find u(x,t), we must solve the system of equations 

t = r 
x = se-^2'2 

for r and s. Substituting r = t into x = se3r2/2and solving for s yields s = xe3r2/2. Thus, 
the solution is given by replacing the values obtained above in the solution 
obtained in d3. We do this below by using / . to replace each occurrence of r and s 
in d3 [ [ 1 , 1 , 2 ] ] , the solution obtained in d3 , by the values r = t and s = xe3r2/2. 
The resulting output represents the solution to the initial value problem. 

d 3 [ [ l , l , 2 ] ] / . {r ->t , s ->x Exp[3/2 t ^ ] } 

2 
(3 t )/2 

-x 4 E x 
— + 
3 3 

In this example, DSolve can also solve this first-order partial differential equation 
after the PDSolvel package has been loaded. We begin by loading the PDSolvel 
package located in the Calculus folder (or directory). 
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«Calculus ' PDSolvel ' 

Next, we use D S o l v e to find a general solution of -3xtux+ut =xt and name the 
resulting output g e n s o l . 

gensol=DSolve[-3x t D[u[x,t],x]+D[u[x,t],t]==x t, 

u[x,t],{x,t}] 

2 
-x -3 t 

{ { u [ x , t ] - > — + C [ l ] [ L o g [ x ] ] } } 
3 2 

The output 

2 
- 3 t 

C [ l ] [ L o g [ x ] ] } } 
2 

3 
represents an arbitrary function of —t2 - lnx . 

The explicit solution is extracted from g e n s o l with g e n s o l [ [ 1 , 1 , 2 ] ] , the same 
way that results are extracted from the output of DSolve commands involving 
ordinary differential equations. 

g e n s o l [ [ l , l , 2 ] ] 

2 
- x - 3 t 
— + C [ l ] [ L o g [ x ] ] 
3 2 

To find the solution that satisfies u(x,0) = x we replace each occurrence of t in the 
solution by 0. 

g e n s o l [ [ 1 , 1 , 2 ] ] / . t - > 0 

- x 
— + C [ l ] [ - L o g [ x ] ] 
3 

Thus, we must find a function f so that 

-f+/(M=* 

4 4 
Certainly f(r) = —e~l satisfies the above criteria. Below, we define f(r) = -e-f and 

3x then compute /(lnx) to verify that f(\nx) = — . 
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Clear[f] 
f [ t_]=4 Exp[ - t ] /3 ; 
f [ -Log[x]] 

4 x 

Thus, the solution to the initial value problem is given by —+/1 —t2 - lnx which 

is computed below and named s o l . Of course, the result returned is the same as 
that obtained above. 

so l=-x /3+f[ -3t"2/2-Log[x] ] / /S impl i fy 

(3 t )/2 
(-1 + 4 E ) x 

Last, we use P lo t 3D to graph s o l on the rectangle [0,20]x[-2,2]. The option 

ClipFill->None 

is used to indicate that portions of the resulting surface which extend past the 
bounding box are not shown; nothing is shown where the surface is clipped. 

Plot3D[sol,{x,0,20},{t,-2,2},PlotRange->{0,30}, 

PlotPoints->30,ClipFill->None,Shading->False] 



Some Graphies 
Packages 

Chapter 7 discusses some of the more frequently used commands contained in various 
graphics packages available with Mathematica. Most of the packages presented here have 
not been previously discussed in Mathematica By Example. On a computer with a notebook 
interface, the folder containing the various graphics packages is shown below. 

481 

cm 
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Graphics 
22 items 56 MB in disk 20.8 MB Ävaikhle 

Anim.AJtion.rn ArçColors.m Arrow.m Colors .i 
CD 

K> 

Common ComplexMap.m 

CoDtowPlot3D.m FilledPlot.m Graphics .m Gr&phics3D.i 

Implicit Plot m Legtnd.i Master.B MultipleListPlot.i 

Param«trwPlo<3D.m 

Spline.] 

PlotFwld.m PlctFwLiSD m Polyhedra.m Shapes.i 

SwfaceOfRevoMion.m ThreeScript.i 

M 
o 
a 

7. / ComplexMap 

A problem of interest in complex analysis is finding the image of a complex-valued 
function f(z). The package ComplexMap provides several commands which are useful in 
solving problems of this type. The command 

CartesianMap[f[z] ,{{xO,xl},{yO,y1}] 

gives the image of f [ z ] using Cartesian coordinate grid lines over the rectangular region 

This is illustrated below with the functions i d [ z ] =z and f [ z ] = ( z - l ) / ( z + l ) . 

EXAMPLE: Graph the image of the region R = {x + iy:0<x<2,0<y<2} by the 

manning f(z) = . mapping f(z) = ^-—. 

SOLUTION: After loading the package ComplexMap, we define f. The command 

CartesianMap[f,{0,2},{0,2},DisplayFunction->Identity] 

graphs, but does not display, the image of R by the mapping f. Since i d [ z ] is the 
identity map, each point in the domain is mapped to itself. Hence, the Cartesian 
grid, called cmid , is unchanged upon application of i d [ z ] . (This region can 
therefore be viewed as the domain of f [ z ].) The second graph, cmf, illustrates the 
effects that f [ z ] has on the points in cmid. The two graphics objects, cmid and 
c m f , a r e v i e w e d in a s i n g l e g r a p h i c s cel l w i t h 
Show[Graph ic sAr ray [ {cmidf cmf } ] . This gives the usual manner in which 
the domain and image of a function are illustrated. 

http://Anim.AJtion.rn
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«Graphics * ComplexMap^ 

id[z_]=z; 

f[z_]=(z-l)/(z+l); 

cmid=CartesianMap[id,{0,2},{0,2},DisplayFunction->Identity]; 

cmf=CartesianMap[f,{0,2},{0,2},DisplayFunction->Identity]; 

Show[GraphicsArray;[{cmid,cmf}]] Show:GraphicsArray; 

2 

1 

1 

0 

-1 -0 .75 0 -0.25 

In addition to Cartesian coordinates, polar coordinates can also be used. This is done 
with 

PolarMap[f[z],{r0,rl},{thetaO,thetal}], 

which produces the image of f [ z ] over the circular region R bounded by limits placed on 
the polar coordinates r and Θ: R = [rew : r0 < r < rx,eQ < Θ < 0 j . 

The following problem is worked in a method similar to that of the previous problem 
involving Cartesian coordinates. 

EXAMPLE: Graph the image of R = {rete :0<r<2,Ο<0<2π} by the mapping 
h(z) = sin z. 

SOLUTION: The identity map, i d [ z ] =z, is used to produce the polar grid, called 
pmid, to be viewed as the domain of the function h [ z ] . The image of h, named 
pmh, is then determined with P o l a r M a p and two graphs are displayed side-by-
side with Show and G r a p h i c s A r r a y . 

id[z_]=z; 

h[z__]=Sin[z] ; 

pmid=PolarMap[id,{0,2},{0,2Pi},Ticks->None,DisplayFunction->Identity]; 

pmh=PolarMap[h,{0,2},{0,2Pi},Ticks->None,DisplayFunction->Identity]; 

Show[GraphicsArray[{pmid,pmh}]] 



484 7 Some Graphics Packages 

The following example illustrates both C a r t e s i a n M a p and PolarMap. 

EXAMPLE: Graph the image of Rl={x + iy:0<x<n,-2<y<2] by the mapping 
= cos3z-sin2z and the image of R2 =[re,e :0<r<l ,Ο<0<2π} by the mapping w(z) = ( 

m(z) = 2-2 
2ζ-Γ 

SOLUTION: The domain and image of w are called cmid and cmw, respectively, 
while those of m are named pmid and pmm. These graphics objects are shown in 
the appropriate order with the command 

Show[GraphicsArray[{{cmid ,cmw} , {pmid ,pmm}} ,Aspec tRat io -> l ] . 

(Notice the grouping of {domain, image} within the Graph i c sAr ray . ) 

w [ z _ ] = C o s [ 3 z ] - S i n [ 2 z ] ; 

m [ z _ ] = ( z - 2 ) / ( 2 z - l ) ; 

cmid=CartesianMap[id,{0,Pi,Pi/10},{-2,2,2/5},Ticks->None, 

DisplayFunction->Identity]; 

cmw=CartesianMap[w,{0,Pi,Pi/10},{-2,2,2/5},Ticks->None, 

DisplayFunction->Identity]; 

pmid=PolarMap[id,{0,l,l/10},{0,2Pi},Ticks->None, 

DisplayFunction->Identity]; 

pmm=PolarMap[m,{0,1,1/10},{0,2Pi},Ticks->None, 

DisplayFunction->Identity]; 

Show[GraphicsArray[{{cmid,cmw},{pmid,pmm}}]] 

Power::infy: Infinite expression - encountered. 
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7.2 ContourPlot3D 

The package ContourPlot3D contains the command ContourPlot3D which can be used 
to graph level curves of functions of three variables and equations in three variables. The 
command 

ContourPlot3D[f[x,y,z],{x,xmin,xmax},{y,ymin,ymax},{z,zmin,zmax}] 

graphs f [ x , y , z ] = 0 in the parallelepiped [xmin,xmax]x[ymin,ymax]x[zmin,zmax]; the 
command 

ContourPlot3D[f[x,y,z] ,{x,xmin,xmax},{y,ymin,ymax}, {z,zmin,zmax}, 
C o n t o u r s - > { c l , c 2 , . . . } ] 

graphs f [ x , y , z ] = c l , f [ x , y , z ] = c 2 , ... in the parallelepiped 
[xmin, xmax] x [ymin, ymax] x [zmin, zmax]. 

EXAMPLE: Graph the equation -x2 -ly1 +z2-4yz = 10. 
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SOLUTION: The graph of the equation -x2 - 2y2 + z2 - \yz = 10 is the graph of the 
level surface of -x 2 -2y 2 +z 2 -4yz-10 corresponding to 0. Below we use 
C o n t o u r P l o t 3 D to graph this equation in the region [-6,6] x [-6,6]x[-6,6]. 

«Graphics ContourPlot3D^ 

ContourPlot3D[-x"2-2y"2+z"2-4y z-10,{x,-6,6},{y,-6,é},{ζ,-6,6}] 

In addition to graphing equations, we can graph level surfaces of functions of three 
variables. 

EXAMPLE: Sketch the level curves of w = x2 +z2 -y2 corresponding to 0,1, and - 1 . 

SOLUTION: We use C o n t o u r P l o t 3 D to graph the level surfaces corresponding 
to 0, 1, and - 1 , naming the results c p l , cp2 , and cp3 , respectively. The resulting 
three graphs are displayed as a G r a p h i c s Ar r ay . 

cpl=ContourPlot3D[xA2+zA2-y^2,{x,-2,2},{y,-2,2},{z,-2,2}, 

DisplayFunction->Identity]; 

cp2=ContourPlot3D[χΛ2+ζ Λ2-γΛ2, {x, -2,2 } , {y, -2,2} , {z, -2,2} , 

Contours->{1.}, 

DisplayFunction->Identity]; 

cp3=ContourPlot3D[x^2+z~2-y*2,{x,-2,2},{y,-2,2},{z,-2,2}, 

Contours->{-l.}, 

DisplayFunction->Identity]; 

Show[6raphicsArray[{cpl,cp2,cp3}]] 
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7.3 Graphics 
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Graphing in Polar Coordinates 
Loading the Graphics package enables the user to take advantage of several commands 
which will improve the graphing capabilities previously available. The first command 
discussed below, P o l a r P l o t , allows for the graphing of functions given in polar 
coordinates (r,0). This command is entered as 

PolarPlot[function[var],{var,varl,var2},options], 

where var represents the angular coordinate Θ and v a r varies from v a r l to var2 . This 
command produces the graph of the function r= f u n c t i o n [ var ] . 

EXAMPLE: Find the area of the region between the inner and outer loops of the 
limaçon r = l + 2sin£. 

SOLUTION: We begin by defining r = l + 2sin£ and then using the commands 
P o l a r P l o t and P l o t to graph r in both polar and rectangular coordinates. The 
polar graph is on the left; the rectangular graph is on the right. 

r[t_]=l+2Sin[t]; 

ppl=PolarPlot[l+2Sin[t],{t,0,2Pi},Ticks->{{-l,1},{1,2,3}}, 

DisplayFunction->Identity]; 

p2=Plot[r[t],{t,-Pi/6,2Pi},DisplayFunction->Identity]; 

Show[GraphicsArray[{ppl,p2}]] 
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The area of the outer loop of the limaçon is given by 
/·7π/6 ,, -| f7n/6 

2. 

1 f»7n/6 - -l /·7π/6 

i f (r(0)Ä = -if (1 + 23ίηί)2Λ, 
2J-ji/6 2J-TC/6 

computed below with I n t e g r a t e and named outer . 

o u t e r = l / 2 I n t e g r a t e [ r [ t p 2 , { t , - P i / 6 , 7 P i / 6 } ] 

3 Sqr t [3] + 4 Pi 

2 

The area of the inner loop of the limaçon is given by 
Λ fllJi/6 - Λ f l lji /6 

\\ (Κ0)Λ = | ί (l + 2sini)2di, 

computed below with I n t e g r a t e and named inner . 

i n n e r = l / 2 I n t e g r a t e [ r [ t ] " 2 / { t , 7 P i / 6 , l l P i / 6 } ] 

-3 Sqr t [3] + 2 Pi 

2 

Thus, the desired area is given by subtracting inner from ou te r as done below. 

area-outer-inner 

3 Sqrt[3] - 2 Pi 3 Sqrt[3] + 4 Pi 
+ 

2 2 

Simplify[area] 

area//N 

3 Sqrt[3] + Pi 
8.33775 

■ 

P o l a r P l o t , in the same way as commands like P l o t and Paramet r i cP lo t , will 
graph several curves. Entering 

P o l a r P l o t [ { r 1 [ t h e t a ] , r 2 [ t h e t a ] , . . . } , { t h e t a , t h e t a O , t h e t a l } ] 

graphs the curves ^(0), r2(0),... in polar coordinates for 0O < 0 < 01. 

EXAMPLE: Find the area inside the graph of r = l and outside the graph of 
r = cos3i. 
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SOLUTION: Below, we use P o l a r P l o t and P l o t to graph the curves r = \ and 
r = cos3f in both polar and rectangular coordinates. 

Clear[r] 

r[t_]=Cos[3t]; 

pp3=PolarPlot[{l,r[t]},{t,0,2Pi},Ticks->{{-l,l},{-l,l}}, 

DisplayFunction->Identity]; 

p4=Plot[{l,r[t]},{t,-Pi/6,2Pi},Ticks->{Automatic,{-1,1}}, 

DisplayFunction->Identity]; 

Show[GraphicsArray[{pp3,p4}]] 

The area of the unit circle is π, while the area of the three-leafed rose is given by 

o /·π/6 o /»π/6 

f f {r{t))dtMcos^tdt 

because the area of one leaf is given by - (r(t)) dt = -\ cos23tdt. These values 

are computed below in c i r c l e and r o s e , respectively. The desired area is then 
given by subtracting the area of the three-leafed rose from the area of the circle. 

circle=Pi 

rose=3/2 Integrate[r[t]A2,{t,-Pi/6,Pi/6}]//Together 

area=circle-rose//Together 

N[area] 

Pi 
Pi 

4 
3 Pi 

4 
2.35619 
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Creating Charts 

Bar graphs can be drawn with B a r C h a r t [ l i s t ] . For each number in list, Mathematica 
draws a rectangle of that height. These rectangles are drawn in order from left to right. The 
position of the element is given beneath each rectangle. 

EXAMPLE: Energy consumption (in quadrillion Btu) by end-use sector for 
selected years is shown in the following table. Create a bar chart representing this 
data. 

Year 

1975 

1980 

1985 

1990 

Residential and 
Commercial 

24.143 

25.653 

26.682 

28.857 

Industrial 

31.528 

30.609 

27.200 

29.904 

Transportation 

18.605 

19.695 

20.067 

25.528 

Source: The World Almanac and Book of Facts, 1993 

SOLUTION: We first define the lists r e s , i nd , and t r a , representing the energy 
consumption of residential and commercial users, industrial users, and 
transportation users, respectively. We then use B a r C h a r t to create a bar chart 
representing the data. The option 

BarStyle->{GrayLevel[.2],GrayLevel[.4],GrayLevel[.6]} 

indicates that the bars corresponding to the first set of data, r e s , are graphed in 
dark gray, those corresponding the second set, i n d , are displayed somewhat 
lighter, and those corresponding to the third set, t r a , are the lightest. The option 

BarLabels->{"1975","1980","1985","1990"} 

indicates that the bars are to be labeled 1975, 1980, 1985, and 1990, corresponding 
to the years given in the table. 

« G r a p h i c s " Graphics " 

r e s = { 2 4 . 1 4 3 , 2 5 . 6 5 3 , 2 6 . 6 8 2 , 2 8 . 8 5 7 } ; 

i n d = { 3 1 . 5 2 8 , 3 0 . 6 0 9 , 2 7 . 2 0 0 , 2 9 . 9 0 4 } ; 

t r a = { 1 8 . 6 0 5 , 1 9 . 6 9 5 , 2 0 . 0 6 7 , 2 5 . 5 2 8 } ; 

BarChart[res,ind,tra, 

BarStyle->{GrayLevel[.2],GrayLevel[.4],GrayLevel[.6] }, 

BarLabels->{"1975","1980","1985","1990"}] 
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1975 1980 1985 1990 

Pie charts are created by making use of the P i e C h a r t [ l i s t ] command found in the 
Graphics package. 

EXAMPLE: According to the Department of the Treasury, major outlays of 
Federal expenditures as a percentage of the Federal budget in fiscal year 1990 are 
shown in the following table. Make a pie chart representing this data. 

Purpose 

Social programs 

Law enforcement and general government 

Social security, Medicare, and other 
retirement 

Defense, veterans, and foreign affairs 

Net interest on the debt 

Physical , h u m a n , and communi ty 
development 

Percent of Budget 

12% 

2% 

31% 

27% 

14% 

14% 

SOLUTION: We first define d a t a to be the list of numbers corresponding to that 
given in the table. We then use P i e C h a r t to construct three pie charts 
representing the data, p e l , p c 2 , and p c 3 , and display all three with Show and 
G r a p h i c s Ar r a y . In pc2, the option 

PieExploded->All 

indicates that the pie chart be "exploded" while in pc3 the option 

PieExploded->{2,.3} 
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indicates that only the second wedge be removed a distance of approximately 0.3 
units out of the pie. 

data={12,2,31,27,14,14}; 

pcl=PieChart[data,DisplayFunction->Identity]; 

pc2=PieChart[data,PieExploded->All,DisplayFunction->Identity]; 

pc3=PieChart[data,PieExploded->{2,.3},DisplayFunction->Identity]; 

Show[GraphicsArray[{pel,pc2,pc3}]] 

7.4 ImplicitPlot 
■ /^ftS , / i R ^% <χ,^ ;s 

This package includes the command 

ImplicitPlot[equation,{x,xmin,xmax}] 

which graphs the implicit equation, e q u a t i o n , from x=xmin to x=xmax. The set of y-
values displayed may be specified by entering the command 

ImplicitPlot[equation,{x,xmin,xmax},{y,ymin,ymax}]. 

When graphing relatively simple equations, like those solvable using S o l v e , it is not 
necessary to specify the y-values in the I m p l i c i t P l o t command. When S o l v e cannot 
solve an equation, it is usually necessary to specify both the x- and y-values. In these cases, 
I m p l i c i t P l o t uses the same method to produce the graph as C o n t o u r P l o t . However, 
Con tour P l o t may produce better results. 

EXAMPLE: Graph the equation y2 -2x4 + 2x6 -x 8 = 0 for -1.5<*<1.5. 

SOLUTION: After loading the ImplicitPlot package, we define e q to be the 
equation y2-2x4+2xe-x8 =0 and then use I m p l i c i t P l o t to graph e q for 
-1.5<*<1.5. 

«Graphics" ImplicitPlot" 

eq=yÄ2-x"4+2x~6-x/s8==0; 

ImplicitPlot[eq,{x,-1.5,1.5},Ticks->{{-1,1},{-1,1}}] 
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Implicit equations can be plotted simultaneously, as with the command P l o t , with 

ImplicitPlot[{eql,eq2,...,eqn},{x,xmin,xmax}] 

and 

ImplicitPlot[{eql,eq2,...,eqn},{x,xmin,xmax},{ymin,ymax}]. 

This is shown below. Recall that a double equals sign (==) must be used to separate the left 
and right-hand sides with each equation. 

EXAMPLE: Graph the equations x2+y2=l and Ax2 -y2 = 1 for -1.5 < x < 1.5. 

SOLUTION: Below we use I m p l i c i t P l o t to graph the equations together on 
the same axes. The graph of x2 +y2 = 1 is the circle, while the graph of Ax2 -y2 -1 is 
the hyperbola. 

ImplicitPlot[{χΛ2+γΛ2==1,4χΛ2-γΛ2==1},{x,-1.5,1·5}, 

Ticks->{{-l,l},{-l/l}}] 

I m p l i c i t P l o t can be used to graph conic sections. 
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EXAMPLE: A conic section is a graph of the equation 

Ax2 + Bxy + Cy2+Dx + Ey + F = 0. 

Except when the conic is degenerate, the conic Ax2 + Bxy + Cy2 

(a) Ellipse or circle if B2 - 4AC < 0; 

(b) Parabola if B2 - AAC = 0 ; or 

(c) Hyperbola if B2 - 4AC > 0. 

Graph the conic section ax2 + bxy + cy2 = l for -4 < x < 4 for a, 
possible combinations of - 1 , 1 , and 2. 

+ Dx + Ey 

b, and c 

+ F = 0 

equal 

is a 

to all 

SOLUTION: We begin by defining c o n i c to be the equation ax2+bxy + cy2 = 1 and 
then use P e r m u t a t i o n s to produce all possible orderings of the list of numbers 
{-1,1,2}, naming the resulting output v a i s . 

Clear[a,b,c] 

conic=a x^2+b x y+c γΛ2==1; 

vals=Permutations[{-1,1,2}] 

{{-1, 1, 2}, {-1, 2, 1}, {1, -1, 2}, {1, 2, -1}, 

{2, -1, 1}, {2, 1, -1}} 

Next we define the function p. Given a l , b l , and c l , p defines t o p l o t to be the 
equation obtained by replacing a, b , and c in c o n i c by a l , b l , and c l , 
respectively. Then, t o p l o t is graphed for -4 < x < 4. p returns a G r a p h i c s object, 
which is not displayed, because the option D i s p l a y F u n c t i o n - > I d e n t i t y is 
included. 

p[{al_,bl_,cl_}]:=Module[{toplot}, 

toplot=conic /. {a->al,b->bl,c->cl}; 

ImplicitPlot[toplot,{x,-4,4},Ticks->None, 

DisplayFunction->Identity] 

] 

We then use Map to compute p for each ordered triple in v a i s . The resulting 
output, named g r a p h s , is a set of six graphics objects. 

graphs=Map[p,vais] 

{-Graphics-, -Graphics-, -Graphics-, -Graphics-, 

-Graphics-, -Graphics-} 

P a r t i t i o n is then used to partition graphs into three element subsets. The 
resulting 2x3 array of graphics objects named t o s h o w is displayed with Show 
and G r a p h i c s A r r a y . 
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toshow=Partition[graphs, 3 ] ; 

Show[GraphicsArray[toshow]] 

7.5 MultipleListPlot and Graphics3D 
■ » » f w e 

The packages MultipleListPlot and Graphics3D contain several commands for graphing 
lists and manipulating graphics objects. 

In the package MultipleListPlot, the function M u l t i p l e L i s t P l o t with syntax 

M u l t i p l e L i s t P l o t [ l i s t l , l i s t 2 , . . . ] 

graphs the lists l i s t l , l i s t 2 , . . . o n the same graph. 
In the package Graphics3D, the function 

BarChart3D[{listl,list2, ...}] 

makes a three-dimensional bar chart using the heights given in l i s t l , l i s t 2 , . . . . 

EXAMPLE: In Section 7.2, we defined the lists r e s , i n d , and t r a , representing 
the energy consumption of residential and commercial users, industrial users, and 
transportation users, respectively, for certain years. Create both a two- and three-
dimensional plot representing this data. 

SOLUTION: After loading the MultipleListPlot package, we redefine the lists 
r e s , i n d , and t r a . We then use M u l t i p l e L i s t P l o t to graph these lists in ml 
and m2. In m2, the option P l o t J o i n e d - > T r u e causes consecutive points to be 
connected with line segments. 

«Graphics*MultipleListPlot " 
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res={24.143,25.653/26.682,28.857}; 

ind={31.528,30.609,27.200,29.904}; 

tra={18.605,19.695,20.067,25.528}; 

ml=MultipleListPlot[res,ind,tra,DisplayFunction->Identity]; 

m2=MultipleListPlot[res,ind,tra,PlotJoined->True, 

DisplayFunction->Identity]; 

Show[GraphicsArray[{ml,m2}]] 

1. 522 . 533 . 54 

Next, we load the package Graphics3D and use BarChar t3D to construct a three-
dimensional bar chart representing the data. 

«Graphics " Graphics3D" 

BarChart3D[{res,ind,tra}] 

7.6 PlotField and PlotField3D 
* « t * * > '^>< V>M<»$> i &&*<:< ^?<Α>^>¥'. 

The package P l o t F i e l d contains the commands P l o t V e c t o r F i e l d and 
P l o t G r a d i e n t F i e l d , which are useful in many areas of physics and engineering. The 
command 

PlotVectorField[vector[x,y],{x,xmin,xmax},{y,ymin,ymax}] 
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graphs the vector field given by the vector-valued function, v e c t o r [ x , y ] . This is 
illustrated below. 

EXAMPLE: Graph the vector field given by the vector-valued function 
(y, (1 - x2 )y - x) on the rectangle [-2,2] x [-4,4]. 

SOLUTION: After loading the PlotField package, we use P l o t V e c t o r F i e l d to 
graph the vector field. The option 

ScaleFunction->(2#&) 

instructs Mathematica to draw each vector at twice its true magnitude. 

«Graphics" PlotField" 

PlotVectorField[{y,(l-xA2)y-x},{x,_2,2},{y,-4,4}, 

ScaleFunction->(2#&),AspectRatio->l] 

■ * è * * * * * - - « « « * 
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The command 

PlotGradientField[function[x,y],{x,xmin,xmax},{y,ymin,ymax}] 

graphs the gradient field of the function, f u n c t i o n [ x , y ] . This is done by first 
computing the gradient of f u n c t i o n [ x , y ] (which yields a vector field) and then plotting 
the gradient. 
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EXAMPLE: Graph the gradient field of ^ ^ on the rectangle [-2,2]x[-4,4]. 
y 

SOLUTION: In spite of the error messages, which are not all displayed here, 
generated when Mathematica samples points with the y-coordinate equal to zero, 
the graph produced with P l o t G r a d i e n t F i e l d is correct. 

PlotGradientField[((1-χΛ2)y-x)/y,{x,-2,2},{y,-4,4},AspectRatio->l] 

1 
Power::infy: Infinite expression - encountered. 

0 
1 

Power::infy: Infinite expression - encountered. 
0 

^ V* ^ Nfc ■ 

Vector fields can be plotted in three dimensions as well. The commands needed to plot 
these fields are found in the P l o t F i e l d 3 D package. The syntax for the 
P l o t G r a d i e n t F i e l d 3 D and P l o t V e c t o r F i e l d 3 D commands are similar to those used 
in the two-dimensional cases discussed above with the addition of a z-component. 

Vectors with heads are displayed in the final graphics object when the option 

VectorHeads->True 

is included. 

EXAMPLE: Graph the vector field (-ll* + 4y + 6z,10*-4y + 5z,5* + 8y-6z) on the 
parallelepiped [1,3] x [0,6] x [l, 5]. 
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SOLUTION: We use P l o t V e c t o r F i e l d 3 D to graph the vector field on 
[l,3]x[0,6]x[l,5]. The vectors are drawn with arrows since the option 

VectorHeads->True 

is included. 

«Graphics PlotField3D^ 

PlotVectorField3D[{-llx+4y+6z,10x-4y+5z,5x+8y-6z}, 

{x,l,3},{γ,0,6},{z,l,5},VectorHeads->True] 

Our last example illustrates the use of P l o t G r a d i e n t F i e l d 3 D . 

EXAMPLE: Graph the g rad ien t field of x2 + y 2 +z -4 on the cube 
[-2,2] x [-2,2] x [-2,2]. 

SOLUTION: P l o t G r a d i e n t F i e l d 3 D is used to first compute the gradient of 
x2+y2 + z - 4 and then graph the result ing vector field on the cube 
[-2,2] x [-2,2] x [-2,2]. 

PlotGradientField3D[x~2+y"2+z-4,{χ,-2,2},{y,-2,2},{ζ,-2,2}, 

VectorHeads->True] 
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7.7 Polyhedra and Shapes 

Pictures of polyhedra can be produced with Polyhedra. Many geometrical properties of 
polyhedra are stored in this package, so some pictures can be obtained by specifying a 
desired polyhedra with S h o w [ P o l y h e d r o n [ s h a p e ] ] . Stored polyhedra include the 
icosahedron, dodecahedron, octahedron, cube, and tetrahedron, s h a p e is one of the 
following: I c o s a h e d r o n , Dodecahed ron , O c t a h e d r o n , Cube, or T e t r a h e d r o n . If 
unspecified, the center is taken to be (0,0,0). 

EXAMPLE: Display a cube with center (0,0,0). 

SOLUTION: A cube centered at the origin in produced below. 

«Graphics " Polyhedra " 

Show[Polyhedron[Cube]] 
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Several polyhedra can be shown simultaneously and, thus, complicated three-
dimensional objects can be constructed. However, another command which involves more 
options must first be introduced. Three-dimensional graphics objects are created but not 
displayed with 

Graphics3D[shape[{x0,y0,z0},scale]] 

where s h a p e is the desired s h a p e from the list of stored polyhedra: I c o s a h e d r o n , 
Dodecahed ron , O c t a h e d r o n , Cube, and T e t r a h e d r o n . { x 0 , y O , z0} represents the 
center, and s c a l e adjusts the size. The default value of s c a l e is 1, so s c a l e >1 produces 
a larger polyhedron and s c a l e <1, a smaller one. 

EXAMPLE: Display a dodecahedron, octahedron, and tetrahedron in the same 
graph. 

SOLUTION: The first command below creates and stores (as f i g l ) the graphics 
of a dodecahedron centered at the origin, using scale = 1/2. Because Show is not 
used, the picture is not displayed. Next, the graphics of an octahedron centered at 
{Cos [ P i / 3 ] , S i n [ P i / 3 ] , 0 } and scale = 1/3 is created and stored as f i g 2 . 
Also, a tetrahedron with center { C o s [ 2 P i / 3 ] , S i n [2 P i / 3 ] , 1/3} and scale = 
1/4 is stored as f i g 3 . Because the graphics of each polyhedra was named, they 
can be shown simultaneously with Show[ f i g l , f i g 2 , f i g 3 , B o x e d - > F a l s e ] . 

figl=Graphics3D[Dodecahedron[{0,0,0},1/2]]; 

fig2=Graphics3D[Octahedron[{Cos[Pi/3],Sin[Pi/3],0},l/3]]; 

fig3=Graphics3D[Tetrahedron[{Cos[2Pi/3],Sin[2Pi/3],1/3},1/4]] ; 

Show[figl,fig2,fig3,Boxed->False] 

■ 
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Another command available in Polyhedra is 

Stellate[Polyhedron[shape],ratio] 

where s h a p e is again one of the following: I c o s a h e d r o n , Dodecahedron, 
O c t a h e d r o n , Cube, or T e t r a h e d r o n . This takes the symbolic representation of the 
polyhedron and represents it as a stellated polyhedron. (Each face is replaced by a stellate.) 

EXAMPLE: Use S t e l l a t e to create a stellated dodecahedron for various ratios. 

SOLUTION: We define the function a so that given i , a [ i ] generates the 
graphics object S t e l l a t e [ P o l y h e d r o n [ D o d e c a h e d r o n ] , i ] , then shows the 
object without a box. Note that the result of a [ i ] is a graphics object that is not 
displayed because the option D i s p l a y F u n c t i o n - > I d e n t i t y is included. We 
then use T a b l e to generate a [ i ] for i-values ranging from 0.25 to 2 in steps of 
1.75/8. The resulting set of nine graphics objects, m o r e s h a p e s , is partitioned into 
three element subsets with P a r t i t i o n and the resulting 3x3 array of graphics 
objects is displayed with Show and G r a p h i c s A r r a y . Notice how the pictures 
change with i. If i <1, the object is concave. If i >1, the object is convex. 

The graphics generated by the Do loop 

Do[Show[a[i], 
DisplayFunction->$DisplayFunction],{i,.25,2,1.75/24}] 

can be animated to observe the changes which take place as i changes. 

Clear[a] 

a[i_]:=Show[Stellate[Polyhedron[Dodecahedron],i], 

Boxed->False,DisplayFunction->Identity]; 

moreshapes=Table[a[i],{i,.25,2,1.75/8}]; 

toshow=Partition[moreshapes,3]; 

Show[GraphicsArray[toshow]] 
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Shapes contains commands which produce the graphics of many shapes commonly 
used in mathematics. As with the all graphics objects, different shapes may be combined 
and shown simultaneously to create more complicated objects. 

Illustrated first below is 

MoebiusStrip[outerradius,innerradius,n] 

where i n n e r r a d i u s and o u t e r r a d i u s are the inner and outer radii, respectively, and 
the Moebius strip is approximated using 2n polygons. ( M o e b i u s S t r i p actually produces 
a list of polygons which are displayed with Show and G r a p h i c s 3D.) 

EXAMPLE: Generate a Moebius strip with inner radius 2 and outer radius 4. 

SOLUTION: We use the command M o e b i u s S t r i p [ 4 , 2 , 3 0 ] to generate the 
Moebius strip with inner radius 2 and outer radius 4 with 60 polygons. The list of 
polygons created with M o e b i u s S t r i p is visualized with Show and G r a p h i c s 3D. 

«Graphics " Shapes " 
Show[Graphics3D[MoebiusStrip[4,2,30]]] 
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Another shape which can be approximated in this package is that of a torus. This is 
accomplished with 

Torus[outerradius,innerradius,m,n] 

where m times n polygons are used to approximate the shape of the torus. 

EXAMPLE: Generate a torus with inner radius 0.5 and outer radius 1. 

SOLUTION: A torus of inner radius .5 and outer radius 1 is approximated with 
300 polygons and called t o r u s o n e . To show that t o r u s o n e is a list of polygons, 
we use S h o r t to display an abbreviated two-line form of t o r u s o n e . We then 
display t o r u s o n e with Show[Graphics3D[ t o r u s o n e ] ] . 

torusone=Torus[1,.5,20,15]; 

Short[torusone,2] 

{Polygon[{{l.38547, 0.450168, 0.203368}, « 2 » , 

{1.17855, 0.85627, 0.203368}}], « 2 9 9 » } 

Show[Graphics3D[torusone]] 

504 
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The command S p h e r e [ r , m , n ] produces an approximation of a sphere of radius r 
using m times n polygons. 

Several other commands are available for visualizing the lists of polygons produced by 
the commands found in Shapes. The command W i r e F r a m e [ p o l y g o n l i s t ] replaces 
each polygon in p o l y g o n l i s t by closed lines, so the shape resembles that of a wire frame 
when visualized. 

EXAMPLE: Show a sphere of radius 1 surrounded by a sphere of radius 2. 

SOLUTION: The approximation of a sphere of radius 1 is obtained below using 
225 polygons; the resulting G r a p h i c s 3 D object is named s p h e r e o n e . A list of 
144 polygons is used to approximate a sphere of radius 2; the resulting graphics 
object is named s p h e r e t w o . Wi reFrame is then applied to the G r a p h i c s 3 D 
object s p h e r e t w o and the result is named w i r e t w o . The shapes s p h e r e o n e and 
w i r e t w o are viewed simultaneously using the command Show. (The Show option, 
B o x e d - > F a l s e , causes no box to be drawn around the sphere.) 

sphereone=Graphics3D[Sphere[1,15,15]]; 

spheretwo=Graphics3D[Sphere[2,12,12]]; 

wiretwo=WireFrame[spheretwo]; 

Show[sphereone,wiretwo,Boxed->False] 

Another shape that can be graphed with S h a p e s is H e l i x [ r , h , m , n ] , which 
approximates a helix with half height h and m turns using m * n (where n =20r) polygons. 
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EXAMPLE: Generate a helix with half height 3 and 5 turns. 

SOLUTION: Shown below is a helix of half height 3 with 5 turns. The list of 
polygons which approximate the helix is found in h e l i x t w o ; S h o w [ h e l i x t w o ] 
displays the helix. 

helixtwo=Graphics3D[Helix[2,3,5,40]]; 

Show[helixtwo] 

Shapes also contains several commands to manipulate shapes. For example, 
R o t a t e S h a p e [ s h a p e , x r o t a t e , y r o t a t e , z r o t a t e ] causes s h a p e to be rotated 
x r o t a t e units about the x-axis, y r o t a t e units about the y-axis, and z r o t a t e units 
about the z-axis. 

EXAMPLE: Rotate the helix generated in the previous example about the z-axis. 

SOLUTION: Below, we redefine h e l i x t w o and then use T a b l e to generate the 
graphics objects 

RotateShape[helixtwo,0,0,n Pi/6] 

for n from 0 to 12 in steps of 12/8. The resulting list of nine graphs is named 
g r a p h s and then partitioned into three-element subsets with P a r t i t i o n . The 
resulting 3x3 array of graphics cells is displayed with S h o w and 
G r a p h i c s A r r a y . 

506 
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helixtwo=Graphics3D[Helix[2,3,5,40]]? 

graphs=Table[RotateShape[helixtwo,0,0,n Pi/6],{n,0,12,12/8}]; 

toshow=Partition[graphs,3]; 

Show[6raphicsArray[toshow]] 

The Do loop 

D o [ S h o w [ R o t a t e S h a p e [ h e l i x t w o , 0 , 0 , n P i / 6 ] ] , { n , 0 , 1 2 } ] 

produces 13 graphics cells which can be animated to view the rotation of the helix 
about the z-axis. ■ 

Closely related to R o t a t e S h a p e is the command 

T r a n s l a t e S h a p e [ s h a p e , { x O , y O , z O } ] 

which translates s h a p e xO units along the x-axis, yO units along the y-axis, and zO units 
along the z-axis. 

EXAMPLE: Generate an animation in which one sphere is revolving about 
another. 

SOLUTION: Below we define s p h e r e o n e and s p h e r e t w o to be spheres of radii 
1.5 and 0.5, respectively. For s p h e r e o n e , we use 144 polygons; since s p h e r e t w o 
is smaller, we use a small number, 64. 
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sphereone=Graphics3D[Sphere[1.5,12,12]]; 

spheretwo=Graphics3D[Sphere[.5,8,8]]; 

Next we define t r . Given t , t r [ t ] yields the G r a p h i c s 3 D object obtained by 
translating s p h e r e t w o 2.5cosf units along the x-axis, 2.5sinf units along the y-
axis, and 0.75 + 0.25sint units along the z-axis. m is defined to show both 
s p h e r e o n e and t r [ t ] . Note that the result of entering m[ t ] is not displayed 
since the option D i s p l a y F u n c t i o n - > I d e n t i t y is included. 

tr[t_]:=TranslateShape[spheretwo,{2.5Cos[t],2.5Sin[t],.75+.25Sin[2t]}] 

m[t_]:=Show[{sphereone,tr[t]},Boxed->False,DisplayFunction->Identity] 

A set of nine graphs is then generated with T a b l e and partitioned in the three 
element subsets with P a r t i t i o n . The resulting 3 x 3 array of graphics cells, 
toshow, is displayed with Show and G r a p h i c s A r r a y . 

graphs=Table[m[t],{t,0,2Pi,2Pi/8}]; 

toshow=Partition[graphs,3]; 

Show[GraphicsArray[toshow]] 

The Do loop 

Do[Show[m[t], 
DisplayFunction->$DisplayFunction],{t,0,2Pi,2Pi/14}]] 

generates 15 graphics objects which can be animated. I 
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eigenvalues, 330 

QR Method 336, 337 
eigenvectors, 330 
integrals ( N I n t e g r a t e ) 161,162 

double, 219, 220 
triple, 226 

numbers (N), 25-27 
solutions of a polynomial equation (NRoots), 88, 

89, 90, 91 
solutions to a system of differential equations 
(NDSolve), 451-457 
solutions of a system of equations (FindRoot) , 

92 
solutions of an equation (FindRoot) , 88-99 
solutions of an ordinary differential equation 
(NDSolve), 375-377, 406-410 
volume of solid of revolution, 167-172 

Arc length, 166 
ArcCos, 28, 34, 35 
ArcCosh, 34, 38, 39 
ArcCot, 28, 34 
ArcCoth, 34 
ArcCsc, 28, 34 
A r c L e n g t h F a c t o r , 348 
ArcSec, 28 
ArcSech, 34 
ArcSin , 28, 34, 35 
ArcSinh , 34, 38 

ArcTan, 28, 34, 35,180 
ArcTanh, 34, 38 
Area, 162-164 

approximating, 149-156,162-166 
polar coordinates, 487-489 

Arithmetic calculations, 23-26 
Array , 230, 231 
Arrays, 229-235 

defining, 230, 296-300 
extracting elements of (Par t ) , 236-240, 300-304 
computations with, 304-308 

A s p e c t R a t i o , 59, 60, 62, 64, 497, 498 
Associated matrix of a linear transformation, 322 
Augmented matrix, 313 
Au tomat i c , 60, 64,149,153, 428, 430 
Autonomous system, 450 
Auxiliary equation, 391, 401, 402 
Axes, 59, 71, 73, 87, 93, 143, 146, 149, 153, 201, 215, 

216, 223, 243, 351, 365, 369, 460, 475 
AxesLabel , 59 
A x e s O r i g i n , 60, 71, 73, 87, 93,143,146,149,188, 201, 

215, 216, 223, 365, 369 

B 
Bar charts, 490, 491, 495 
B a r C h a r t , 

B a r L a b e l s , 490 
B a r S t y l e , 490 ' 

BarChar t3D, 495, 496 
B a r L a b e l s , 490 
B a r S t y l e , 4 9 0 
Bessel function of the first kind ( B e s s e l J), 472-474 

graphing, 465 
zeros of, 236, 466-468, 471 

B e s s e l J , 465, 466, 468, 472-474 
B i p o l a r , 348 
Boxed, 351, 475, 501, 502, 505, 508 
BoxRat ios , 67, 475 

c 
Calculus 

see DiracDelta 
see FourierTransf orm 
see LaplaceTransform 
see PDSolvel 
see VectorAnalysis 

Cance l , 41, 44, 334, 367, 403, 433 
C a r t e s i a n , 348, 351 
C a r t e s i a n M a p , 482-484 
C a t a l a n , 27 
Cauchy-Euler equation, 401 

auxiliary equation, 401, 402 
Center, 444, 450 
Chain rule, 112 
Characteristic 

equation, 326, 391 
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matrix, 326 
polynomial, 326, 327, 333, 334 
value, 326 

C h a r a c t e r i s t i c P o l y n o m i a l , 326, 327 
Charts 

bar, 490, 491, 495 
pie, 491, 492 

Chop, 331, 448, 472, 473 
Circumscribed rectangles, 149,153 
C l e a r , 45, 46, 63-65 
C l i p F i l l , 4 7 9 
Coefficient matrix, 308, 313 
C o l l e c t , 367, 431 
Column 

space, 316, 317 
vector, 299, 300 

CombinatorialSimplification 
F a c t o r i a l ( ! ), 6,109,177,178,190 

Compile, 474, 475 
Compiled, 449, 453, 454, 456, 457 
Compi l edFunc t ion , 475 
Complete Selection, 13 
Complex conjugate, 392 
Complex-valued function 

image, 482-484 
ComplexExpand, 54,180, 393 
ComplexMap 

C a r t e s i a n M a p , 482-484 
PolarMap, 482-484 

Compos i t ion , 52-54 
Composition of functions 

Compos i t i on , 52-54 
Nest , 52, 54, 55 

Compound interest, 252-254 
Concave 

down, 119 
up, 119 

Condition ( / .), 62-64,122,125, 286, 428, 430, 436 
Conic sections 

circle, 61, 64, 493 
ellipse, 494, 495 
graphing, 61, 64, 493-495 
hyperbola, 493-495 
parabola, 494, 495 

Conjugate transpose, 334 
Conservative vector field, 347 

potential function, 347 
Constants 

C a t a l a n , 27 
E,27 
EulerGamma, 27 
GoldenRatio, 27 
1,27 
Infinity, 6, 27,101,108,154,156,174-179, 181, 

183 
Pi, 27 

ConstrainedMax, 338, 340 
ConstrainedMin, 338, 339, 341, 345 

ContourPlot 
Axes, 71, 73,143,146,149, 201, 216, 223, 365, 369 
AxesOr ig in , 71, 73, 143, 146, 149, 201, 216, 223, 

365, 369 
C o n t o u r s , 71, 73, 87, 93,143,146,149, 216, 223, 

369, 371 
C o n t o u r S h a d i n g , 71, 72, 73, 87, 93,143,146, 

149, 201,216, 223, 365, 369, 371 
D i s p l a y F u n c t i o n , 73, 87, 93, 201, 216 
Frame, 71, 73,143,146,149, 216, 223, 365, 369 
options, 70 
P l o t P o i n t s , 71, 73, 87, 93,143,146,149, 216, 

223, 369, 371 
P lo tRange , 73, 216, 371 

C o n t o u r P l o t 3 D , 485, 486 
C o n t o u r s , 485 

ContourPlot3D 
C o n t o u r P l o t 3 D , 485, 486 

C o n t o u r s , 71, 72, 87, 93, 143, 146, 149, 216, 223, 369, 
371, 485 

C o n t o u r S h a d i n g , 71, 72, 74, 87, 93, 143, 146, 149, 
201, 216, 223, 365, 369, 371 

Convolution 
integral, 435 
theorem, 435 

C o o r d i n a t e s F r o m C a r t e s i a n , 348 
C o o r d i n a t e s T o C a r t e s i a n , 348 
Cos, 12, 28, 31-33, 248 
Cosh, 36, 37 
C o s l n t e g r a l , 158 
Cot, 28 
Count, 240 
Critical points, 116, 210 

classification, 209, 237, 238 
degenerate, 209, 211 
maximum, 209, 211 
minimum, 209, 211 
saddle, 209, 211 

C r o s s P r o d u c t , 348 
Csc, 28 
Cube, 500 
Cur l , 347, 349, 350 
Curve-fitting, 277-285 
Cyc lo tomic , 232, 233 
Cyclotomic polynomials, 232 
C y l i n d r i c a l , 348 

D 
D, 110-113, 138, 147, 190, 193, 204-208, 210, 211, 213, 

217, 234, 247, 370, 388, 389, 394, 396 
Dash ing , 55, 58, 60, 106, 108, 124, 125, 127, 163, 164, 

166,188,191,192 
Decreasing, 119 
Deferred annuity, 258, 259 
Defining 

arrays, 296-300 
functions 
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piecewise-defined, 62-64,122,125, 286, 428, 
430, 436 

recursively defined, 63, 64, 198, 199, 232, 
286, 336, 423, 424, 428, 430 

of a single variable, 45-47 
of two variables, 48 
vector-valued, 49, 50 
which remember the values computed, 198, 

199, 232, 290, 320, 336, 423, 424, 468, 
472^74 

lists, 229-233 
matrices, 296-300 
tables, 296-300 
vectors, 300 

Degenerate critical point, 209 
Delayed evaluation (:=), 46, 52, 55, 63, 64, 122, 125, 

151, 153, 190, 198, 199, 232, 247, 249, 253, 263, 
270, 273, 276, 286, 288, 290, 291, 304, 307, 319, 
320, 325, 336, 375, 377, 389, 408, 423, 424, 428, 
430, 436, 442, 444, 454, 457, 460, 463, 466-468, 
471-175 

Denominator , 42, 44,104 
D e r i v a t i v e , 206-209 
Derivative 

applied maxima and minima, 134-141 
calculating, 110-112 
chain rule, 112 
critical point, 116, 209-211 
definition, 105,106, 272 
graphing, 123-125,131-134 
higher-order, 112,113 
implicit function, 142-147 

tangent line, 144 
inflection point, 116 
Mean-Value theorem, 128 
partial, 203, 204, 207 

higher-order, 205, 206, 208 
product rule, 112 
quotient rule, 112 
Rolle's theorem, 128 
tangent line, 113,114 

horizontal, 115, 126,127 
Det, 304, 305, 327, 389, 396 
Determinant, 304 
D i a g o n a l M a t r i x , 19, 20 
Difference quotient, 105,106, 272 
Differential equations 

Cauchy-Euler, 401 
constant coefficients, 387, 391 

characteristic equation, 391 
first-order 

exact, 369 
homogeneous, 366 
linear, 371 
separable, 364 

fundamental set of solutions, 390 
general solution, 391 
homogeneous, 387, 390, 391, 394 

Laplace transform, 426-440, 458-461 
linear, 371, 387 
nonhomogeneous, 387, 396 
numerical solution (NDSolve), 375-377, 406-

410, 451-457 
partial, 289-293, 461^64, 467-479 
power series solution, 192-198, 411-426 
second-order 

constant coefficients, 192, 391-393 
system, 441-461 

autonomous, 450 
numerical solution (NDSolve), 451-457 
variation of parameters, 446-449 

variation of parameters, 396-401 
D i r a c D e l t a , 438, 439 
DiracDelta 

D i r a c D e l t a , 438, 439 
U n i t S t e p , 439 

Dirac delta function, 438 
D i r e c t i o n , 108 
DiscreteMath 

see CombinatorialSimplification 
see RSolve 

D i s p l a y F u n c t i o n , 58, 61, 62, 65, 73, 76, 78-80, 87, 
93, 114, 120, 125, 131, 132, 133, 144, 188, 201, 
216, 273, 276, 278, 280-282, 284, 288, 293, 325, 
380, 438, 443, 445, 446, 449, 454, 455, 457, 460, 
464, 465, 469, 475, 483, 484, 486, 487, 489, 494, 
496, 502, 508 

Displaying several graphs, 58, 60-62, 65, 66, 73, 74, 
106, 114, 123-125, 144, 145, 272-277, 325, 326, 
484, 485, 489, 494, 495, 501-503, 505, 507, 508 

Distance formula, 138 
Div, 347, 349, 350, 357 
Divergence, 347 
Divergence theorem, 356 
Do, 133, 273, 276, 292, 320, 469, 502, 507, 508 
Dodecahedron, 500-502 
Dot (. ), 304-310, 312, 319, 322, 325, 329, 330, 362 
Dot product, 305, 306 
Do tP roduc t , 348 
Double integral, 218-220 

approximating ( N I n t e g r a t e ) , 219, 220 
polar coordinates, 360-362 
volume, 221-226 

Double pendulum, 458-461 
Drop, 251, 320, 431 
DSolve, 196, 373, 374, 378, 385, 386, 392-394, 400, 402, 

405, 406, 441, 445, 447, 477, 478 
Dual problem, 339, 340 

E 
E, 6, 27 
E igensys t em, 326, 329, 330, 442, 444 
E i g e n v a l u e s , 326-331, 334-337, 442, 444, 452, 453, 

456 
approximating, 329, 330 
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QR Method, 334-337 
E i g e n v e c t o r s , 326, 329, 330 

approximating, 330 
Ellipse, 494, 495 
Ellipsoid, 81, 82 
E l l i p t i c , 348 
E l l i p t i c C y l i n d e r , 348 
ENTER, 2, 24 
Equations 

approximating solutions of, 88-99 
see Differential equations 
graphing, 64, 65, 73, 81-83,147-149, 485-487, 

492-495, 
integrodifferential, 448 
literal, 89,140 
matrix, 308-315 
parametric 

defining, 65, 66, 81-83,168-172 
graphing, 65, 66, 74, 76, 81-83,168-172 

polynomial, 88-91 
recurrence, 269 
solutions of, 84-88 
system of, 85-88, 308-315 
trigonometric, 85, 92 

Equilibrium point, 450 
center, 444, 450 
saddle, 450 
stable node, 450 
stable spiral, 450 
unstable node, 450 
unstable spiral, 450 

EulerGamma, 27 
E v a l u a t e , 143, 191, 192, 200, 234, 235, 245, 293, 373, 

377, 395, 400-402, 408-410, 413 
Evaluating functions, 25, 28, 31, 39, 45-52 
Exact differential equation, 369 
Exp, 28, 29 
Expand, 9, 40, 47, 54, 334 

T r i g , 54, 361 
ExpandAll , 42, 367, 420, 422 
ExpandDenominator , 42 
ExpandNumerator , 42 
Extracting elements 

from lists, 236-240 
from matrices, 300-304 
from tables, 300-304 

F 
F a c t o r , 40, 43,104,116,117, 251, 265, 266, 366, 403 
F a c t o r i a l ( ! ), 6,109,177,178,190 
Factoring expressions, 40 
Fibonacci numbers, 231, 232 
F indRoot , 90-93, 98, 99,127,166, 383, 466 
F i r s t , 236 
First-order differential equation 

exact, 369 

homogeneous, 366 
linear, 371 
separable, 364 

F i t , 277, 278, 281, 282, 284 
F l a t t e n , 395, 434, 442, 444, 446, 448 
Folium of Descartes, 65 
Fourier series, 285 

kth term, 285 
partial sum, 285 

F o u r i e r C o s S e r i e s C o e f f i c i e n t , 289 
F o u r i e r S i n S e r i e s C o e f f i c i e n t , 289 
FourierTransform 

F o u r i e r C o s S e r i e s C o e f f i c i e n t , 289 
F o u r i e r S i n S e r i e s C o e f f i c i e n t , 289 
F o u r i e r T r i g S e r i e s , 289 
N F o u r i e r T r i g S e r i e s , 289 

F o u r i e r T r i g S e r i e s , 289 
Fractions 

partial fraction decomposition, 41, 44, 367 
simplifying, 24, 40, 41, 43, 44, 48,103-107, 359, 

360, 392, 393 
Frame, 59, 71, 73, 87, 93, 143, 146, 149, 216, 223, 365, 

369 
Free-falling bodies, 383-387 
F r e s n e l C , 220 
F r e s n e l S , 2 2 0 
Functions 

composing 
Compos i t i on , 52-54 
Nest , 52, 54, 55 

concave 
down, 119 
up, 119 

decreasing, 119 
evaluating, 25, 28, 31, 39, 45-52 
increasing, 119 
linearly 

dependent, 387 
independent, 387 

of a single variable 
defining, 45-47 
graphing, 56-64 

of two variables 
defining, 48 
graphing, 66-69 

parametric 
defining, 65, 66, 81-83,168-172 
graphing, 65, 66, 74, 76, 81-83,168-172 

piecewise-defined, 62-64,122,125, 286, 428, 430, 
436 

recursively defined, 63, 64,198,199, 232, 286, 336, 
423, 424, 428, 430 

vector-valued, 49, 50 
which remember the values computed, 198,199, 

232, 290, 320, 336, 423, 424, 468, 472^174 
Function Browser, 19-21 
Fundamental set of solutions, 390 
Future value, 254 
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G 
Gauss-Jordan elimination, 313-315 
General solution, 391 
Geometric series, 6,174 
Getting Started, 14 
Go ldenRa t io , 27, 59, 61 
Grad, 347, 348, 351, 352, 359 
Gradient, 347, 349, 497, 499 
Gram-Schmidt process, 318-322 
GramSchmidt, 7, 8, 322 
G r a p h i c s 

Line , 131, 460 
P o i n t , 144, 243, 280, 283, 460 
P o i n t S i z e , 144, 243, 280, 283, 460 

Graphics 
B a r C h a r t , 490, 491 
P i e C h a r t , 491, 492 
P o l a r P l o t , 487-489 

Graphics 
see ComplexMap 
see ContourPlot3D 
see Graphics3D 
see ImplicitPlot 
see MultipleListPlot 
see ParametricPlot3D 
see PlotField 
see PlotField3D 
see Polyhedra 
see Shapes 
two-dimensional 

see P a r a m e t r i c P l o t 
see P l o t 
see C o n t o u r P l o t 

three-dimensional 
see P a r a m e t r i c P l o t 3 D 
see P lo t3D 

Graphics3D 
BarChart3D, 495, 496 

Graphics3D, 501, 503-508 
G r a p h i c s A r r a y , 66, 73, 76, 80, 120, 124, 133, 152, 

153, 155, 201, 277, 284, 293, 326, 375, 410, 434, 
449, 455, 461, 475, 483, 484, 486, 489, 492, 495, 
496, 502, 507, 508 

GrayLevel , 55, 57, 58, 60, 94, 106, 107, 123, 127, 152, 
153,163,164,165,187,188,191, 245, 460 

Green's theorem, 354-356 
G r i d L i n e s , 60 

H 
Harmonic motion, 413 
Heat equation, 289-293 
He l ix , 506 
Help, 8-21 

?, 8,11,12, 46, 56,180, 220 
?? ( i n f o r m a t i o n ) , 10, 67, 70, 75 
Complete Selection, 13 

Index 

Function Browser, 19-21 
Getting Started, 14 
Help Pointer, 15 
I n f o r m a t i o n (??), 10, 67, 70, 75 
Make Template, 13 
Names, 11 
O p t i o n s , 9,10, 59 
Shortcuts, 14,15 
Why the Beep?, 16-18 

Help Pointer, 15 
Hermite polynomials, 233, 234, 413 
HermiteH, 233, 234, 413 
Higher-order derivatives, 112,113, 205, 206, 208 
Homogeneous differential equation, 366, 387, 390, 391, 

394 
Hooke's law, 403 
Hyperbola, 493-495 
Hyperbolic functions 

Cosh, 36, 37 
inverse 

ArcCosh, 34, 38, 39 
ArcCoth, 34 
ArcSech, 34 
ArcSinh , 38 
ArcTanh, 38, 39 

Sinh, 36, 37 
Tanh, 36, 37 

Hyperboloid 
of one sheet, 81 
of two sheets, 81 
graphing, 82, 83 

I 
1,27 
Icosahedron, 500 
Identity, 58 
Identity matrix, 299 
I d e n t i t y M a t r i x , 299, 333 
If, 152 
Implicit differentiation, 142-147 

tangent line 144 
I m p l i c i t P l o t , 147,148, 492-495 

P l o t P o i n t s , 148 
T i c k s , 493, 494 

ImplicitPlot 
I m p l i c i t P l o t , 147,148, 492-495 

Improper integral, 175,176 
Increasing function, 119 
I n f i n i t y , 6, 27,101,108,154,156,174-179,181,183 
Inflection point, 116 
I n f o r m a t i o n (??), 10, 67, 70, 75 
InputForm, 266 
Inscribed rectangles, 149,150-152 
Inserting comments into code, 319 
I n t e g e r , 232 
Integral 

approximating, 161,162, 219, 220, 226 
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arc length, 166 
area, 162-164, 487-189 
convolution, 435 
definite, 158-160 
double, 218-220 

approximating, 216 
polar coordinates, 360-362 
volume, 221-226 

improper, 175,176 
indefinite, 157,158 
Mean-Value theorem, 172 
polar coordinates, 360-362, 487-489 
triple, 226, 228 

volume, 227, 228 
volume of solids of revolution, 167-172 

Integral test, 176 
I n t e g r a t e , 157-163, 169, 173, 175, 176, 218-220, 

226-228, 290, 356, 357, 360-362, 364, 368, 370, 
371, 397, 433, 488, 489 

Integrodifferential equation, 435 
Interest, 252-254 
I n t e r p o l a t i n g F u n c t i o n , 376, 377, 408, 451, 

453-457 
I n t e r p o l a t i n g P o l y n o m i a l , 277, 281 
Intersection points of graphs, 94-99 
Interval of convergence, 180-184 
I n v e r s e , 304, 305, 309 
Inverse Laplace transform, 426, 429 
I n v e r s e L a p l a c e T r a n s f o r m , 426, 429, 437, 440, 

459, 460 
Irregular singular point, 418 

J 
Jacobian matrix, 451 
J a c o b i a n D e t e r m i n a n t , 348 
J a c o b i a n M a t r i x , 348 
J o i n , 247, 320 
Jordan 

block 331 
canonical form 332 
matrix 331 

J o r d a n D e c o m p o s i t i o n , 332, 333 

K 
Kernel, 322 

L 
L-R-C circuit, 435-438 
Labeling columns of a table, 218, 248 
Lagrange multipliers, 79, 80, 214-218 
Lagrange's theorem, 214 
Laguerre polynomials, 244 
LaguerreL, 244 
Laplace transform, 426-429 
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inverse, 429 
of a periodic function, 428 
solving differential equations, 430-440, 458-461 

LaplaceTransform 
I n v e r s e L a p l a c e T r a n s f o r m , 426, 429, 437, 

440, 459, 460 
L a p l a c e T r a n s f o r m , 426, 427, 437, 439 

L a p l a c i a n , 347, 349-351 
Las t , 236 
Legendre polynomials, 246, 247 
LegendreP, 246, 247 
Lemniscate of Bernoulli, 146 
Level curves 

graphing, 70-74, 485-487 
L i m i t , 101,104-109 

D i r e c t i o n , 108 
Limit cycle, 457 
Limits 

computing, 101,103-107, 
estimating, 101-103, 201, 202 
infinite, 102,105,108 
numerical, 109,110 
of functions of two variables, 201-203 
one-sided, 108 

Line , 131, 460 
Line continuation (\), 25, 250 
Linear differential equation, 371, 387 

first-order, 371 
Linear equations, 84 

system of, 86, 308-315 
Linear programming, 337-346 

dual problem, 339, 340 
standard form, 337, 338 

Linear transformation, 322 
associated matrix, 322 
kernel, 322 
rotation, 324-326 

Linear Algebra 
see MatrixManipulation 
see Orthogonalization 

Linearly 
dependent, 387 
independent, 387 

L inea rP rog ramming , 341, 342 
L i n e a r S o l v e , 311-313 
L i s t a b l e , 245, 246 
L i s t P l o t , 177,179, 240, 241, 243, 278 

P l o t J o i n e d , 280 
Lists 

adding elements to, 251 
defining, 229-233 
displaying, 240, 241 
dropping elements from, 251 
evaluating each element by a function, 237, 238, 

245-249, 251, 252 
extracting elements of (Pa r t ) , 236-240 
first part ( F i r s t ) , 236 
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graphing, 240-244 
joining, 247 
last part (Last) , 236 
number of elements in (Length), 236 
of functions, 232-234, 244, 245 

graphing, 234, 235, 244, 245 
of random numbers, 232 
of the same object, 232 
product of numbers in, 250 
sum of numbers in, 250-252 

Literal equations, 89,140 
Loading packages, 4-7 

Master, 5 
Local maximum, 209 
Local minimum, 209 
Log, 28, 30, 31 
Log ica lExpand , 194, 412, 416 
Logistic equation, 377-381 
Lotka-Volterra, 451-455 

M 
Maclaurin polynomial, 186,189 
Make Template, 13 
Map (/§), 10,102, 202, 243, 246-249, 251, 280, 283, 380, 

449, 494 
MapAt, 249 
Master, 5 
Matrix 

augmented, 313 
characteristic, 326 

equation, 326, 391 
polynomial, 326, 327, 333, 334 

coefficient, 308, 313 
column space, 316, 317 
conjugate transpose, 334 
defining, 296-300 
determinant, 304 
eigenvalues, 326-331, 334-337, 442, 444, 452, 453, 

456 
approximating, 329, 330 

QR Method, 334-337 
eigenvectors, 326, 329, 330 

approximating, 330 
equations, 308-315 
extracting parts, 300-304 
identity, 299, 333 
inverse, 304, 305, 309 
Jacobian, 451 
Jordan, 339 

block, 331 
canonical form, 332 

nullity, 316 
nullspace, 316, 317, 318, 323 
polynomial 

minimal, 332 
powers of, 307, 308, 333, 334 

product, 304-306 
random entries, 202, 299 
rank, 316, 317 
row echelon form, 314, 317 
row space, 316 
transpose, 302, 304 
unitary, 334 

M a t r i x F o r m , 296, 297, 299, 301, 302, 306, 308, 314, 
317, 318, 453, 455 

MatrixManipulation 
AppendRows, 314 

Matr ixPower , 307, 308, 333, 334 
Maxima, 134,135, 210, 211, 216, 217 
Mean-Value theorem for 

derivatives, 128 
integrals, 172 

Method of Lagrange Multipliers, 79, 214-218 
Minima, 135-141, 210, 211, 216, 217 
Minimal polynomial, 332 
Mod, 249 
Module, 132,151,153, 270, 273, 276, 319, 320, 325, 454, 

457, 460, 494 
M o e b i u s S t r i p , 503 
M u l t i p l e L i s t P l o t , 496 

P l o t J o i n e d , 496 
MultipleListPlot 

M u l t i p l e L i s t P l o t , 496 

N 
N, 2, 25-28, 32, 34, 36, 38, 88, 89,117,122,150,169,173, 

179, 213, 220, 226, 241, 329, 330, 335, 336, 472, 
473, 488 

Names, 11 
Natural logarithm (Log), 28, 30, 31 
NDSolve, 375-377, 406, 408 

I n t e r p o l a t i n g F u n c t i o n , 376, 377, 408, 451, 
453-457 

Negative numbers 
odd roots, 26,122, 124 

Nest, 52, 54, 55 
Newton's 

Law of Cooling, 381 
Second Law of Motion, 383 

N F o u r i e r T r i g S e r i e s , 289 
N I n t e g r a t e , 165-167, 171, 218, 220, 222, 226, 286, 

355, 463, 468, 472-174 
NLimit , 109,110,175,178 

NLimit, 
NLimit, 109,110,175,178 

Node 
stable, 450 
unstable, 450 

Nonhomogeneous differential equation, 387, 396 
Nonlinear differential equations 

numerical solutions, 375-377, 406-410, 451-157 
N o n l i n e a r F i t , 284 
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NonlinearFit 
N o n l i n e a r F i t , 284 

Norm, 307 
Normal, 186-188,190,196, 417 
Normal ize , 8, 322 
NRoots, 90, 94, 95,128,164 
NSolve, 93, 94 
Nullity, 316 
N u l l s p a c e , 316, 317, 318, 323 
Numerator , 42, 43,104 
Numerical approximations 

see Approximating 
NumericalMath 

see NLimit 

o 
0,184-186 
OblateEllipsoidal, 348 
Octahedron, 500, 501 
Odd roots of negative numbers, 26,122,124 
Off, 45 
On, 45 
Operations on expressions 

Apart, 41, 44, 367 
Cancel, 41, 44, 334, 367, 403, 433 
Denominator, 42, 44,104 
Expand, 9, 40, 47, 54, 334, 361 
ExpandAll, 42, 367, 420, 422 
ExpandDenominator, 42 
ExpandNumerator, 42 
Factor, 40, 43,104,116,117, 251, 265, 266, 366, 

403 
Numerator , 42, 43,104 
T o g e t h e r , 41,107,112,113,115,118,121-124, 

137,141, 205, 265, 266, 320, 360, 378, 429, 
489 

O p t i o n s , 9,10, 59 
Ordinary point, 411 
Orthogonalization 

GramSchmidt, 7, 8, 322 
Normal i ze , 9, 322 
P r o j e c t i o n , 322 

Orthonormal vectors, 318, 319 
Out (%), 150,266,270,271 
Output 

abbreviated (Shor t ) , 95, 240, 241, 374, 377, 395, 
399, 504 

saving for future use, 479 
suppressing ( ; ), 95, 233, 240, 241, 374, 377, 395, 

399, 504 
Outward flux, 356 

p 
Packages 

loading, 4—8 
error messages, 6-8 

Parabola, 494, 495 
Parabolic, 348 
ParabolicCylinder, 348 
Parametric equations, 65, 66, 81-83,168-172 

graphing, 65, 66, 74-76, 81-83,168-172 
P a r a m e t r i c P l o t , 64, 65, 453, 456 

A s p e c t R a t i o , 64, 65, 445 
Compiled, 446, 449, 454, 457 
D i s p l a y F u n c t i o n , 65, 445, 446, 449, 454, 455, 

457 
E v a l u a t e , 443, 445, 446 
options, 9 
PlotRange, 65, 443, 445, 446 
Ticks, 449 

ParametricPlot3D, 9, 74, 82, 83,169,170,171, 214 
Axes, 475 
Boxed, 475 
BoxRatios, 475 
DisplayFunction, 76, 78-80, 215, 475 
options, 75 
PlotPoints, 76, 475 
Shading, 475 
T i c k s , 76 

ParametricPlot3D 
S p h e r i c a l P l o t 3 D , 227 

P a r t ( [ [ . . . ] ] ) , 4, 95, 102, 137, 138, 141, 144, 165, 
224-226, 236-238, 251, 300-304, 376, 378, 380, 
382, 385-387, 393, 405, 406, 408, 409, 452, 
459-461, 466-468 

Partial derivative, 203, 204, 207 
higher-order, 205, 206, 208 

Partial differential equations, 289-293, 461-464, 
467-479 

Partial fraction decomposition (Apart) , 41, 44, 367 
Partial sums of a series (Sum), 150-156,176,179, 

184-189 
P a r t i t i o n , 133,152,153,155,156, 200, 275, 277, 293, 

326, 375, 449, 461, 464, 469, 495, 502, 507, 508 
PDSolvel 

DSolve, 477 
Pendulum, 407-410, 458^61 
P e r m u t a t i o n s , 494 
Phase plane, 442 
P i (π), 27 
Pie charts, 491, 492 
Piecewise-defined function, 62-64,122,125, 286, 428, 

430, 436 
P i e C h a r t , 491, 492 

P i e E x p l o d e d , 491, 492 
Plane 

tangent, 212, 213 
P l o t , 3,17, 29-31, 33, 35, 37, 38, 39, 56, 63, 91, 92,102, 

120-122,126,129,130,135,150,154,167,168, 
171,181,189-191,196,197, 238, 286, 290, 355, 
376, 383, 385, 386, 393, 405, 406, 417, 436, 440 

A s p e c t R a t i o , 59 
AxesLabel , 59 
A x e s O r i g i n , 60, 188 
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D i s p l a y F u n c t i o n , 61,114,125, 131,132,144, 
152,188, 200, 273, 276, 278, 281, 282, 284, 
288, 293, 375, 380, 425, 430, 434, 438, 455, 
464, 465, 469 

E v a l u a t e , 191,192, 200, 234, 244, 245, 292, 293, 
373, 377, 395, 400-402, 408-410, 413 

Frame, 59 
G r i d L i n e s , 60 
options, 59 
P l o t L a b e l , 60 
P lo tRange , 60, 64, 94, 96,107,125,132, 136, 162, 

234, 272, 292, 293, 373, 402, 428, 430, 464, 
469 

P l o t S t y l e , 55, 58, 60, 106, 107, 123, 125, 127, 
163-165,187,191,192, 245, 288, 460 

T i c k s , 59, 60, 64, 272, 293, 428, 430, 464, 469 
P lo t3D, 66, 68, 205 

Axes, 3,16, 351 
Boxed, 3,16, 351 
BoxRat ios , 68 
C l i p F i l l , 479 
D i s p l a y F u n c t i o n , 80, 201, 213, 221-223 
options, 67 
P l o t P o i n t s , 3,16, 69, 76, 80, 203, 207, 212, 351, 

479 
P lo tRange , 479 
Shad ing , 69, 351, 479 
T i c k s , 3,16 
Viewpoin t , 68 

PlotField 
P l o t G r a d i e n t F i e l d , 497, 498 
P l o t V e c t o r F i e l d , 443, 445, 446 

A s p e c t R a t i o , 497 
S c a l e F u n c t i o n , 497 

PlotField3D 
P l o t G r a d i e n t F i e l d 3 D , 354, 499 
P l o t V e c t o r F i e l d 3 D , 353, 357 
Vec to rHeads , 354, 357, 499 

P l o t G r a d i e n t F i e l d , 497, 498 
P l o t G r a d i e n t F i e l d 3 D , 354, 499 
P l o t J o i n e d , 280, 496 
P l o t L a b e l , 59 
P l o t P o i n t s , 3,16, 69, 71, 73, 76, 80, 87, 93,143,146, 

148,149, 203, 207, 212, 216, 223, 351, 369, 371, 
475, 479 

P lo tRange , 60, 64, 65, 73, 94, 96, 107, 125, 132, 136, 
144, 162, 188, 213, 216, 234, 272, 273, 276, 281, 
282, 292, 293, 325, 371, 373, 402, 428, 430, 438, 
443, 445, 446, 454, 457, 460, 464, 469, 479, 

P l o t S t y l e , 55, 58, 60,106,107,123,125,127, 
163-165,187,191,192, 245, 288, 460 

P l o t V e c t o r F i e l d 3 D , 353, 357 
A s p e c t R a t i o , 357 

P l o t V e c t o r F i e l d 3 D , 353, 357 
Vec to rHeads , 357 

P l u s (+), 24, 250-252 
P o i n t , 144, 151, 243, 273, 276, 280, 283, 380, 460 
Points 

equilibrium, 450 
of intersection, 94-99 
ordinary, 411 
singular, 411 

irregular, 418 
regular, 418 

P o i n t S i z e , 144,152, 243, 273, 276, 280, 283, 380, 460 
Polar coordinates 

area, 487-489 
double integral, 360-362 
graphing, 487-489 

PolarMap, 482-484 
P o l a r P l o t , 487-489 

D i s p l a y F u n c t i o n , 487, 489 
T i c k s , 489 

Polyhedra 
Cube, 500 
Dodecahedron, 500, 501 
Icosahedron, 500 
Octahedron, 500, 501 
Polyhedron, 500, 502 
Stellate,502 
Tetrahedron, 500, 501 

Polyhedron, 500, 502 
Polynomials 

characteristic, 326, 327, 333, 334 
cyclotomic, 232 
Hermite, 233, 234, 413 
Laguerre, 244 
Legendre, 246, 247 
Maclaurin, 186,189 
minimal, 332 
Taylor, 188 

P o l y n o m i a l D i v i s i o n , 8, 9 
PolynomialLCM, 10 
Population growth, 377-381 
P o s i t i o n , 237 
Potential function, 347 
Power series 

computing ( S e r i e s ) , 184-189 
differential equation, 192-198, 411-426 
Integral test, 
interval of convergence, 180 
Ratio test, 182 
Root test, 180 

PowerExpand, 181,182 
Predator-Prey, 451^55 
Prepend , 251 
PrependTo, 251 
Present value, 257 
Pr ime, 231 
Prime numbers (Prime), 231 
Principal values of trigonometric functions, 247-249 
P r i n t , 266, 320 
P r o d u c t , 250 
Product of numbers in a list, 250 
Product rule, 112 
Projection, 319 
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ProlateCycloid,348 
ProlateEllipsoidal, 348 
Put (»), 466 

Q 
QR factorization, 334 
QR Method, 334-337 
QRDecomposit ion, 335, 336 
Quadric surfaces, 81-83, 485-487 
Quit, 3 
Quotient rule, 112 

R 
Random, 102, 202, 232, 249, 299 
Range, 230, 250, 272, 273, 276 
Rank, 316 
Ratio test, 182 
R e a d L i s t , 467, 468, 471 
Real , 102, 202, 249 
RealDigits, 239 
Rectangle, 151,153 
Rectangles 

circumscribed, 149,153 
inscribed, 149,150-152 

Recurrence equations (RSolve), 269 
Recursively defined function, 63, 64,198,199, 232, 286, 

336, 423, 424, 428, 430 
Regular singular point, 418 
Remove, 7, 8 
ReplaceAll (/ . ), 42, 43, 44, 49, 51, 52, 135, 137, 144, 

182, 183, 190, 193, 195-197, 211, 213, 218, 234, 
238, 284, 361, 368, 371, 374, 376, 378, 386, 390, 
400, 402, 412, 415, 417, 420, 422, 431, 434, 437, 
439, 444, 446, 452-457, 458, 459, 477 

RGBColor, 57 
Rolle's theorem, 128 
Root test, 180 
R o t a t e S h a p e , 506, 507 
Rotations, 324-326 
Row echelon form, 314, 317 
Row space, 316 
Row vector, 299, 300 
RowReduce, 314, 316, 317, 318 
RSolve 

RSolve, 268, 269 
RSolve, 268, 269 
Ru le (->), 42, 43, 44, 49, 51, 52, 135, 137,144, 182, 211, 

218, 234, 361, 431, 434, 437, 439, 444, 446, 
458^60, 477 

S 
Saddle, 209, 211 
Saving results for future use, 466 
Scalar field, 347 

gradient, 347 
laplacian, 347 

S c a l a r T r i p l e P r o d u c t , 3 4 8 
S c a l e F u n c t i o n , 4 9 7 
Sec, 28 
Secant lines, 272-275 
Second derivatives test, 209 
Second-order homogeneous differential equation with 

constant coefficients, 192, 391-393 
Separable differential equation, 364 
Separation of variables, 462, 467 
S e r i e s , 184-188,190,192, 411, 412, 414, 416, 417 
S e t (=), 42, 43, 45, 46, 48, 50, 53, 56, 58, 61, 65, 66, 68, 

73, 82,169, 202, 232, 469 
S e t C o o r d i n a t e s , 348 
S e t D e l a y e d ( : =), 46, 52, 55, 63, 64,122,125,151,153, 

190, 198, 199, 232, 247, 249, 253, 263, 270, 273, 
276, 286, 288, 290, 291, 304, 307, 319, 320, 325, 
336, 375, 377, 389, 408, 423, 424, 428, 430, 436, 
442, 444, 454, 457, 460, 463, 466-468, 471^75 

Sets 
see Arrays 
see Lists 
see Matrix 

Shad ing , 69, 351, 475, 479 
Shapes 

H e l i x , 506 
M o e b i u s S t r i p , 503 
R o t a t e S h a p e , 506, 507 
Sphe re , 505, 508 
Torus , 504 
T r a n s l a t e S h a p e , 507, 508 
WireFrame, 505 

S h o r t , 95, 240, 241, 374, 377, 395, 399, 504 
Shortcuts, 15 
Show, 80,132,197, 284, 288, 353, 410, 443 

A s p e c t R a t i o , 62, 325 
Axes, 87, 93,152,153, 243, 460 
A x e s O r i g i n , 87, 93 
Boxed, 501, 502, 505 
BoxRat ios , 215 
D i s p l a y F u n c t i o n , 61, 62, 78, 79, 87, 93, 114, 

125, 131-133, 152, 153, 188, 213, 215, 216, 
221-223, 273, 276, 278, 280-282, 325, 380, 
438, 445, 446, 454, 457, 460, 502 

Frame, 87, 93 
G r a p h i c s , 144,152,153, 243, 273, 276, 280, 325, 

380, 460 
Graphics3D, 503, 504-506 
G r a p h i c s A r r a y , 66, 76, 80, 125, 133, 152, 153, 

155, 156, 200, 201, 275, 277, 284, 288, 293, 
326, 375, 410, 425, 430, 434, 449, 455, 461, 
464, 465, 469, 475, 483, 484, 486, 487, 489, 
492, 495, 502, 507, 508 

P lo tRange , 144, 188, 213, 273, 276, 281, 282, 325, 
438, 454, 457, 460 

P o l y h e d r o n , 500 
S t e l l a t e , 502 
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Ticks, 133, 273, 276, 460 
Viewpoint, 223 

Simplify, 48, 53,106,117,138,139,154,175,181-
183,190, 203, 247, 265, 396, 429, 431, 488 

Simplifying expressions, 6, 24, 40-44, 48, 53, 54, 
103-107, 359, 360, 361, 392, 393 

Sin, 3,12, 28, 31-33, 246, 248 
Singular point, 411, 418 
Sinh, 36, 37 
Solids of revolution, 167-173 
So lve , 3,10, 84-90, 95, 96,116,117,120,129,135,138, 

140, 146, 147, 163, 173, 181, 183, 195, 210, 217, 
224, 225, 237, 309-312, 365, 378, 382, 394, 396, 
403, 412, 417, 420, 422, 431, 439, 452, 459 

Solving equations, 84-99 
literal, 89,140 
matrix, 308-315 
polynomial, 88-91 
recurrence, 269 
systems, 85-88, 308-315 
trigonometric, 85, 92 

Spelling errors, 45 
S p e l l i n g C o r r e c t i o n , 11 
Sphere , 505, 508 
S p h e r i c a l , 348 
S p h e r i c a l P l o t 3 D , 227 
Spiral 

stable, 450 
unstable, 450 

Sq r t , 25, 26 
Stable node, 450 
Stable spiral, 450 
Statistics 

see NonlinearFit 
S t e l l a t e , 502 
Stoke's theorem, 358-362 
Sum, 5, 6,150,151,153,154,156,174,176,178,179,199, 

250, 359, 424, 425, 464, 469, 474 
Suppressing output ( ; ), 95, 233, 240, 241, 374, 377, 395, 

399, 504 
Surface integrals, 356 
Symbol ic Sum, 5 
SymbolicSum 

Sum, 5, 6,154,156,176,178,179 
SymbolicSum, 5 

System of 
differential equations, 441-461 
equations, 85-88, 308-315 

T 
T a b l e , 151-153, 155, 156, 177, 179, 198-200, 202, 

230-234, 240, 241, 244-247, 249, 253, 255-257, 
259, 260, 262, 263, 267, 268, 270, 275, 277, 293, 
297-300, 326, 337, 375, 377, 380, 395, 399, 400, 
402, 408-410, 413, 423, 424, 434, 442, 444, 446, 

448, 457, 461, 463-466, 468, 469, 472-475, 502, 
507, 508 

TableForm, 202, 233, 240, 253, 255-257, 259, 260, 262, 
263, 267, 268, 270, 305, 337, 346, 380, 413, 423, 
424, 463, 466, 468 

T a b l e H e a d i n g s , 151,155, 211, 218, 248 
T a b l e H e a d i n g s , 151,155, 215, 211, 218, 248 
Tables 

see Arrays 
see Lists 
see Matrix 

Take, 242, 324, 376, 404 
Tan, 31-33 
Tangent 

lines, 113,114,144 
horizontal, 115,126,127 

plane, 212, 213 
Tanh, 36, 37 
Taylor polynomial, 188 
Taylor's theorem, 189 
T e t r a h e d r o n , 500, 501 
T i c k s , 3,16, 59, 60, 64, 76,133, 272, 273, 276, 293, 428, 

430, 449, 460, 464, 469, 489, 493, 494 
Au tomat i c , 60 

Times(*) ,4 ,11 , 24, 40, 41 
T o g e t h e r , 40,107,112,113,115,118,121-124,137, 

141, 205, 265, 266, 320, 360, 378, 429, 489 
T o r o i d a l , 348 
Torus , 504 
Trace, 76-79 
T r a n s l a t e S h a p e , 507, 508 
T r a n s p o s e , 304, 305, 317, 318, 335, 336 
T r i g , 54, 361 
T r i g F a c t o r , 7 
Trigonometric 

equations, 85, 92 
expressions, 6, 7, 53, 54, 361 
functions 

Cos, 12, 28, 31-33, 248 
inverse 

ArcTan, 28, 34, 35,180 
ArcCos, 28, 34, 35 
ArcCot, 28, 34 
ArcCsc, 28, 34 
ArcSec, 28 
Arc S in , 28, 34, 35 

principal values, 247-249 
Sin, 3,12, 28, 31-33, 246, 248 
Tan, 31-33 

Trigonometry 
T r i g F a c t o r , 7 
Tr igReduce , 6 

T r igReduce , 6 
Triple integral, 226-228 

volume, 227, 228 
True, 59 
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u 
Union, 247 
Unit vector, 307 

normal, 351-354 
Unitary matrix, 334 
U n i t S t e p , 439 
Unstable 

node, 450 
spiral, 450 

v 
Van-der-Pol equation, 455-457 
Variation of parameters, 396-401, 446-449 
Vectors 

defining, 300 
dot product ( . ), 305, 306 
gradient, 347, 349, 497, 499 
norm, 307 
orthonormal, 318, 319 
unit, 307 
unit normal, 351-354 
zero, 300 

VectorAnalysis 
ArcLengthFactor, 348 
Cartesian, 348, 351 
CoordinatesFromCartesian, 348 
CoordinatesToCartesian, 348 
CrossProduct, 348 
Curl, 347, 349, 350 
C y l i n d r i c a l , 348 
Div, 347, 349, 350, 357 
Do tP roduc t , 348 

W&Q?*« *$&- >,--*'■> , '"W K , 

Grad, 347, 348, 351, 352, 359 
J a c o b i a n D e t e r m i n a n t , 348 
J a c o b i a n M a t r i x , 348 
L a p l a c i a n , 347, 349-351 
S c a l a r T r i p l e P r o d u c t , 348 
S e t C o o r d i n a t e s , 348 
S p h e r i c a l , 348 

Vector field, 347 
conservative, 347 

potential, 347 
curl, 349 
divergence, 347 
graphing, 353, 354, 357, 497-500 

Vector-valued functions, 49, 50, 349, 350, 357-362 
Vec to rHeads , 354, 357, 499 
Verhulst equation, 377-381 
Viewpoin t , 68, 223 
Volume 

double integral, 221-226 
solids of revolution, 167-173 
triple integral 231 

w 
Wave equation, 461-464 

two-dimensional, 467-476 
Why the Beep?, 16-18 
WireFrame, 505 
Wronskian, 387, 380, 396 

Z 
Zero vector, 300 
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