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Preface

Mathematica By Example bridges the gap which exists between the very elementary
handbooks available on Mathematica and those reference books written for the advanced
Mathematica users. This book is an extension of a manuscript which was developed to
quickly introduce enough Mathematica commands to a group of students at Georgia
Southern University so that they could apply Mathematica towards the solution of
nonlinear ordinary differential equations. In addition to these most basic commands, these
students were exposed to the vast uses of lists in Mathematica. Having worked through
this material, these students were successfully able to take advantage of the capabilities of
Mathematica in solving problems of interest to the class.

Mathematica By Example is an appropriate reference book for all users of Mathematica
and, in particular, for beginning users like students, instructors, engineers, business
people, and other professionals first learning to use Mathematica. Mathematica By Example
introduces the very basic commands and includes typical examples of applications of these
commands. In addition, the text also includes commands useful in areas such as calculus,
linear algebra, business mathematics, ordinary and partial differential equations, and
graphics. In all cases, however, examples follow the introduction of new commands.
Readers from the most elementary to advanced levels will find that the range of topics
covered will address their needs.

Some of the changes in the revised edition include:

1. Table of contents. The table of contents includes all chapters, section headings,
and sub-section headings. Along with the index, we hope that users will be
able to locate information quickly and easily.

2. Additional examples. We have considerably expanded the topics in Chapters 1
through 6. The results should be more useful to instructors, students, business
people, engineers, and other professionals using Mathematica on a variety of
platforms. In addition, several sections have been added to help make locating
information easier for the user.

Xi



Xii Preface

3. Index. The index to the text is substantially more comprehensive than that in
the first edition. Consequently, mathematical examples of commands and
elementary sequences of commands will be easier to locate. In addition,
commands listed in the index are cross-referenced with frequently used
options. Functions contained in packages are cross-referenced both by package
and alphabetically.

Of course, appreciation must be expressed to those who assisted in this project. Most
importantly, we would like to thank our assistant, Lori Braselton, for typing, running, and
verifying a substantial portion of the code that appears in the text in addition to proof-
reading a large portion of the text. We would also like to thank Professor William F. Ames
for suggesting that we publish our work and for helping to contact the appropriate people
at Academic Press. We would like to express appreciation to our editor, Charles B. Glaser,
and our production manager, Brian Miller, for providing a pleasant environment in which
to work. Finally, we would like to thank those close to us for enduring with us the
pressures of meeting a deadline and for graciously accepting our demanding work
schedules. We certainly could not have completed this task without their care and
understanding.

M. L. Abell
J. P. Braselton

Statesboro, Georgia
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Getting Started

1.1 Introduction to Mathematica

Mathematica, first released in 1988 by Wolfram Research, Inc,, is a system for doing math-
ematics on a computer. It combines symbolic manipulation, numerical mathematics, out-
standing graphics, and a sophisticated programming language. Because of its versatility,
Mathematica has established itself as the computer algebra system of choice for many
computer users. Among the over 100,000 users of Mathematica, 28% are engineers, 21% are
computer scientists, 20% are physical scientists, 12% are mathematical scientists, and 12%
are business, social, and life scientists. Two-thirds of the users are in industry and gov-
ernment with a small (8%) but growing number of student users. However, due to its spe-
cial nature and sophistication, beginning users need to be aware of the special syntax re-
quired to make Mathematica perform in the way intended.

The purpose of this text is to serve as a guide to beginning users of Mathematica and
users who do not intend to take advantage of the more specialized applications of
Mathematica. The reader will find that calculations and sequences of calculations most
frequently used by beginning users are discussed in detail along with many typical exam-
ples. In addition, the comprehensive index not only lists a variety of topics but also cross-
references commands with frequently used options. We hope that Mathematica By Example
will serve as a valuable tool to the beginning user of Mathematica.
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A Note Regarding Different Versions
of Mathematica

For the most part, Mathematica By Example was created with Version 2.2 of Mathematica.
With the release of Version 2.0 of Mathematica, several commands from earlier versions of
Mathematica have been made obsolete. In addition, Version 2.0 incorporates many
features not available in Version 1.2. Version 2.2 contains even more features than Version
2.0. If you are using an earlier or later version of Mathematica, your results may not appear
in a form identical to those in this text. Similarly, the physical appearance of results may
not be identical on all computer platforms.

You can determine the version of Mathematica you are using during a given
Mathematica session by entering either the command $vVersion or the command
$VersionNumber.

1.2 Getting Started
with Mathematica

After the Mathematica program has been properly installed, a user can access
Mathematica. If you are using a text-based interface (like UNIX), Mathematica is started
with the operating system command math. If you are using a notebook interface (like
Macintosh, Windows, or NeXT), Mathematica is started by selecting the Mathematica icon
and double-clicking or selecting the Mathematica icon and selecting Open from the File
menu.

Once Mathematica has been started, computations can be carried out immediately.
Mathematica commands are typed to the right of the prompt and then evaluated by
pressing ENTER. Generally, when a semicolon is placed at the end of the command, the
resulting output is not displayed. Note that pressing ENTER evaluates commands and
pressing RETURN yields a new line. Output is displayed below input. We illustrate some
of the typical steps involved in working with Mathematica in the calculations below. In
each case, we type the command and press ENTER. Mathematica evaluates the command,
displays the result, and inserts a new prompt. For example, entering

N{Pi,50]
3.14159265358979323846264338327950288419716939937511

returns a 50-digit approximation of .
The next calculation can then be typed and entered in the same manner as the first. For
example, entering
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Solve [x"3-2x+1==0]

-1 -~ Sqgrt[5] -1 + Sgrt[5]
{{x -=> 1}, {x => ———————m—mmm oo AX -2 e +}

solves the equation x*-2x+1=0 for x. Subsequent calculations are entered in the same
way. For example, entering

Plot [{Sin[x],2 Cos[2x]},{x,0,3Pi}]

2

LAY

graphs the functions sinx and 2cos2x on the interval [0,3x]. Similarly, entering

Plot3D [Sin[x+Cos(y]],{x,0,4Pi},{y,0,4Pi},Ticks->None,6 Boxed->False,
Axes->None,PlotPoints->25]

graphs the function sin(x +cosy) on the rectangle [0,4x|x[0,4x].

Notice that every Mathematica command begins with capital letters and the argument
is enclosed by square brackets "[...]".

Mathematica sessions are terminated by entering Quit[ ]. On several platforms with
notebook interfaces (like Macintosh, Windows, and NeXT), Mathematica sessions are
ended by selecting Quit from the File menu, or by using the keyboard shortcut 380Q, as
with other applications. They can be saved by referring to S from the File menu.

On these platforms, input and text regions in notebook interfaces can be edited. Editing

input can create a notebook in which the mathematical output does not make sense in the
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sequence it appears. It is also possible to simply go into a notebook and alter input without
doing any recalculation. This also creates misleading notebooks. Hence, common sense
and caution should be used when editing the input regions of notebooks. Recalculating all
commands in the notebook will clarify any confusion.

Preview

In order for the Mathematica user to take full advantage of the capabilities of this software,
an understanding of its syntax is imperative. The goal of Mathematica By Example is to
introduce the reader to the Mathematica commands and sequences of commands most
frequently used by beginning users. Although all of the rules of Mathematica syntax are
far too numerous to list here, knowledge of the following five rules equips the beginner
with the necessary tools to start using the Mathematica program with little trouble.

Five Basic Rules of Mathematica Syntax

1. The arguments of functions are given in brackets [ ... ] parentheses (...)
are used for grouping operations; vectors, matrices, and lists are given in
braces {...}; and double square brackets [[ . . . ] ]are used for indexing lists
and tables.

2. The names of built-in functions have their first letters capitalized; if a name
consists of two or more words, the first letter of each word is capitalized.

3. Multiplication is represented by a space or *.

Powers are denoted by a .

5. If you get no response or an incorrect response, you may have entered or
executed the command incorrectly. In some cases, the amount of memory
allocated to Mathematica can cause a crash; like people, Mathematica is not
perfect and some errors can occur.

-

1.3 Loading Packages

Although Mathematica contains many built-in functions, some other functions are
contained in packages which must be loaded separately. A tremendous number of
additional commands are available in various packages which are shipped with each
version of Mathematica. Experienced users can create their own packages; other packages
are available from user groups and MathSource, which electronically distributes
Mathematica-related products. For information about MathSource, send the message
"help” to mathsource@wri.com. On a computer with a notebook interface, the folder
containing the packages shipped with Mathematica is shown below. Descriptions of the
various packages shipped with Mathematica are contained in the Technical Report: Guide to
Standard Mathematica Packages published by and available from Wolfram Research, Inc.


mailto:mathsource@wri.com
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=] Packages EEEI
16 items 56 MB in disk 20.8 MB available
=i
Calewlus DiscreteMath Exsmples Geometry

[ R Y B

Lineardlgebrs  Miscellaneous NumberTheory Numericallath

® o O

init.m BtantUp Sratistics Urilities

I,

Program mingExsm ples

=l =

Ikl

Packages are loaded by entering the command <<directory packagename™ where
directory is the location of the package packagename. Entering the command
<<directory Master  makes all the functions contained in all the packages in
directory available. In this case, each package need not be loaded individually. For
example, to load the package SymbolicSum contained in the Algebra folder (or directory),
we enter

<<Algebra” SymbolicSum"”

In addition to defining the function SymbolicSum, this package enhances the capabilities
of the built-in Sum function. For example, after the package SymbolicSum has been
loaded, entering

Sum[k~3,{k,1,n}]

computes a closed form of the sum Zk3 . The same results are obtained by entering
k=1

SymbolicSum[k"3,{k,1,n}]
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After loading the package SymbolicSum we are able to compute the partial sums of a

k o
geometric series like ZBL and Zsi as illustrated below. Infinity represents .

n=1 n=1
Sum{ (1/3)"n,{n,1,k}]

1k
1-1()

Sum[(1/3)"n,{n,1, Infinity }]

2
Exact values of many series studied in standard calculus courses can be computed

. . . - 1 . .
explicitly like ZH' as shown below. The symbol E in the resulting output represents the
k=0
mathematical constant e~2.71828. The symbol !, also represented by Factorial,

represents the factorial function: nl=ne(n—1)e(n-2)e...3e2e1.
Sum[1/k! ,{k,0,Infinity}]

E

Two Words of Caution

When users take advantage of packages frequently, they often encounter the error
messages discussed here. For example, suppose we have loaded the package
Trigonometry contained in the Algebra folder by entering

<<Algebra  Trigonometry"

We can then use the command TrigReduce contained in the Trigonometry package
which applied multiple angle identities (like sin{x#y)=sinxcosy*sinycosx and
cos(x +y)=cosxcosy Fsinxsiny) to an expression to simplify an expression like cos(2x-y), as
illustrated below.

TrigReduce [Cos[2x-y]]

2
(-1 + 2 Cos[x] ) Cos[y] + 2 Cos[x] Sin[x] Sin[y]

If, during the same Mathematica work session, we attempt to reload the Trigonometry
package, we obtain several error messages as shown below.
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<<Algebra” Trigonometry"

SetDelayed::write:

Tag TrigCanonical in TrigCanonicall[e_] is Protected.
SetDelayed::write: Tag TrigExpand in TrigExpand[___] is Protected.
SetDelayed::write: Tag TrigExpand in TrigExpand[e_] is Protected.
General::stop:

Further output of SetDelayed::write

will be suppressed during this calculation.
Set::wrsym: Symbol TrigFactorRel is Protected.
Set::wrsym: Symbol TrigFactorRel is Protected.

These error messages may be ignored as the functions contained in the package
Trigonometry work in the same way as they did before reloading the package. For
example, below we use TrigFactor to write sin3x-sinx as a product of trigonometric
functions.

TrigFactor [Sin{3x]-Sin[x]]
2 Cos[2 x] Sin[x])

Another error message that occurs frequently is when a command is entered before the
package is loaded. For example, the command GramSchmidt[ {vl,v2,...,vn}]
returns an orthonormal set of vectors with the same span as the vectors v,,v,,...,v, . Below,
we attempt to use the command GramSchmidt, contained in the Orthogon-alization
package located in the LinearAlgebra folder before the package has been loaded. Since
Mathematica does now know the meaning of GramSchmidt, our input is returned.

GramSchmidt[{{1,1,0},{0,2,1},{1,0,3}}]
GramSchmidt([{{1, 1, 0}, {0, 2, 1}, {1, 0, 3}}]

At this point, we load the Orthogonalization package, which contains the GramSchmidt
command, located in the LinearAlgebra folder. Several error messages result.

<<LinearAlgebra Orthogonalization™

GramSchmidt: :shdw:
Warning: Symbol GramSchmidt appears in multiple contexts
{LinearAlgebra“Orthogonalization™, Global~}; definitions in
context LinearAlgebra”Orthogonalization®
may shadow or be shadowed by other definitions.

In fact, when we reenter the command, we obtain the same result as obtained above.
GramSchmidt[{{1,1,0},{0,2,1},{1,0,3}}]
GramSchmidt([{{1, 1, 0}, {0, 2, 1}, {1, 0, 3}}1]

However, after using the command Remove, the command GramSchmidt works as
expected. Alternatively, we can quit Mathematica, restart, load the package, and then
execute the command.



Remove[GramSchmidt]

GramSchmidt
1 1 1 1 1
{{--————- P T P I e e ¢ TTTEETE Y
Sqrt[2] Sqrt[2] Sqrt{3] Sqrt[3] Sqrt[3]
1 1 2
{-=----- o= (o= ). Sqrt(-1}}
Sqrt[6] Sqrt([6] 3

| Getting Started

Similarly, we can take advantage of other commands contained in the Orthogonalization

package like Normalize which normalizes a given vector.

Normalize[{1,2,3}]
1 2 3
{-————===- , Sqre(-], —------- }
Sqrt(14] 7 Sqrt[14]

[.4 Getting Help from Mathematica

Help Commands

Becoming competent with Mathematica can take a serious investment of time. Hopefully,
messages that result from syntax errors are viewed lightheartedly. Ideally, instead of
becoming frustrated, beginning Mathematica users will find it challenging and fun to
locate the source of errors. Frequently, Mathematica's error messages indicate where the
error(s) has (have) occurred. In this process, it is natural that one will become more

proficient with Mathematica .

One way to obtain information about commands and functions, including user-defined
functions, is the command ?. ?object gives information on the Mathematica object

object.

PolynomialDivision.

EXAMPLE: Use ? to obtain information about the command

SOLUTION:

?PolynomialDivision

PolynomialDivision[p, g, x] gives a list of
the quotient and remainder obtained by
division of the polynomials p and g in x.
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Below, we illustrate PolynomialDivision by computing the quotient and
remainder obtained by dividing x*+1by x-1.

PolynomialDivision [x"3+1,x-1,x]

2
{1 +x+x, 2}

The result means that (x-1)(x2+x+1)+2=x3+1 which is verified below with
Expand.

Expand [ (1+x+x"2) (x-1)+2]
3

1+ x

Another way to obtain information on Mathematica commands is the command
Options.Options[object] returns a list of the available options associated with
object along with their current settings. This is quite useful when working with a
Mathematica command such as ParametricPlot which has many options. Notice that
the default value (the value automatically assumed by Mathematica ) for each option is
given in the output.

EXAMPLE: Use Options to obtain a list of the options and their current settings
for the command ParametricPlot.

SOLUTION: The command Options[ParametricPlot] lists all the options
and their current settings for the command ParametricPlot.

Options[ParametricPlot]

{AspectRatio => —~-c—ecemeaaa , Axes -> Automatic,
GoldenRatio

AxesLabel -> None, AxesOrigin -> Automatic,

AxesStyle -> Automatic, Background -> Automatic,

ColorOutput -> Automatic, Compiled -> True,

DefaultColor -> Automatic, Epilog -> {},

Frame -> False, Framelabel -> None,

FrameStyle -> Automatic, FrameTicks -> Automatic,

GridLines -> None, MaxBend -> 10.,

PlotDivision -> 20., PlotLabel -> None,

PlotPoints -> 25, PlotRange -> Automatic,

PlotRegion -> Automatic, PlotStyle -> Automatic,

Prolog -> {}, RotateLabel -> True,

Ticks -> Automatic, DefaultFont :> $DefaultFont,

DisplayFunction :> $DisplayFunction}
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??object or, equivalently, Information[object] yields the information on the
Mathematica object object returned by both ?object and Options[object] in addition
to a list of attributes of object. Note that object may either be a user-defined object or a
built-in Mathematica object.

EXAMPLE: Use ?? to obtain information about the command Map. Use
Information to obtain information about the command PolynomialLCM.

SOLUTION: Below we use ?? to obtain information about the commands Solve
and Map, including a list of options and their current settings.

??Solve

Solve{egns, vars] attempts to solve an equation or
set of equations for the variables vars. Any
variable in eqns but not vars is regarded as a
parameter. Solve[eqns] treats all variables
encountered as vars above. Solve[eqns, vars,
elims] attempts to solve the equations for vars,
eliminating the variables elims.

Attributes[Solve] = {Protected}

Options{Sclve] =
{InverseFunctions -> Automatic,
MakeRules -> False, Method -> 3, Mode -> Generic,
Sort -> True, VerifySolutions -> Automatic,
WorkingPrecision -> Infinity}

??Map

Map[f, expr] or £ /@ expr applies f to each element
on the first level in expr. Map[f, expr,
levelspec] applies f to parts of expr specified
by levelspec.

Attributes[Map] = {Protected}

Options[Map] = {Heads -> False}

Similarly, we use Information to obtain information about the command
PolynomialLCM including a list of options and their current settings.

Information[PolynomialLCM]

PolynomialLCM[polyl, poly2, ...] gives the
least common multiple of the polynomials
pelyl, poly2, ... . PolynomialLCM[polyl,
poly2, ..., Modulus->p] gives the LCM
modulo the prime p.
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Attributes[PolynomialLCM] =
{Listable, Protected}

Options{PolynomialLCM] =
{Modulus -> 0, Trig -> False}

The command Names|[ " form" ] lists all objects which match the pattern defined in
form. For example, Names [ "Plot" ] returns Plot, Names[ "*Plot" ] returns all objects
that end with the string P1lot, and Names [ "Plot*" ] lists all objects that begin with the
string Plot, and Names [ "*Plot*"] lists all objects which contain the string Plot.
Names[ "form",SpellingCorrection->True] finds those symbols which match the
pattern defined in form after a spelling correction.

EXAMPLE: Create a list of all built-in functions beginning with the string Plot.

SOLUTION: Below, we use Names to find all object which match the pattern
Plot.

Names["Plot"]
{Plot}

Next, we use Names to create a list of all built-in functions beginning with the
string Plot.

Names["Plot*"]

{Plot, PlotColor, PlotDivision, PlotJoined,
PlotLabel, PlotPoints, PlotRange, PlotRegion,

PlotStyle, Plot3D, Plot3Matrix}
n

The command ? can be used in several other ways. Entering

?letters* gives all Mathematica commands which begin with the string
letters;

?*letters* gives all Mathematica commands that contain the string letters;
and

?*letters gives all Mathematica commands which end in the string letters.
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EXAMPLE: What are the Mathematica functions that (a) end in the string Cos; (b)
contain the string Sin; and (c) begin with the string Polynomial?

SOLUTION: Entering

?*Cos

ArcCos Cos

yields all functions that end with the string Cos, entering

?2*8Sin¥*
ArcSin Singularvalues
ArcSinh Sinh
IncludeSingularTerm SinhIntegral
Sin SinIntegral
SingularityDepth

returns all functions containing the string Sin, and entering

?Polynomial*
PolynomialDivision PolynomialQ
PolynomialGCD PolynomialQuotient
PolynomialLCM PolynomialRemainder
PolynomialMod

returns all functions that begin with the string Polynomial.
u

Mathematica Help

On some platforms with a notebook interface (like Macintosh, Windows, and NeXT),
additional help features are accessed from the Mathmematica Menu. For example, if the
user wishes to use a command which begins with Polynomial, but does not remember
the rest of the command, help can be obtained in the following manner.
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" & File Edit cen Graph Ffind [ENIEY style Window Help 1 Type the word Poly—

EN==—————— Gettinglelp =————=—115 nomial,
I 2. Move the cursor to the
PolynomiaDivision Action heading and use
;gimm%g‘l the mouse to obtain the
gg}mﬁgwﬁm Action submenu,
PolynomialRemainder 3. Choose Caoamplete

Selection from the

submenu (This causes a

list of commands which

11007 v [ ] begin with Polynomial
to be displayed),

4. Move the cursor to the
desired command in the
list and click. In this
particular case, we select
PolynomialDivision.
The selected command is

E0=————— Geltingelp === then completed on the

PolynomialDivisio ﬁ
oiyn o — ] screen.

&€ File Edit Cell Graph Find RAction Style Window Help

=l

In addition to helping you complete commands, Mathematica can also complete a given
command with its typical syntax. For example, to find the typical syntax of the command
PolynomialDivision,

(1) Type the command PolynomialDivision, (2) Move the cursor to the Action
heading and use the mouse to obtain the Rction submenu, and (3) Choose Make
Template from the submenu. The results are shown below. At this point, you can select
each argument and replace them with the values you wish.
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% File Edit Cell Graph Find HAction Style Window Help

S === Gettinglelp ==——————(=
PolynomialDivision( JFEES it
—
=
=

Additional features available to those working with notebook interfaces include the
Help heading of the Mathematica menu. Under the Help heading of the Mathematica
menu, we have Open Function Browser... Find in Function Browser..., Why
the Beep?..., Getting Started..., Shortcuts..,, and Help Pointer.

Moving the cursor to the Help heading and using the mouse to select Getting
Started yields the following window.

% File Edit Cell Graph Find RAction Style Window Help

Getting Help In Mathematica

To learn the basics of using A&itemsiics, read the
"Getting Started with Mlhemsdicsd’ section below.

To get help about a menu commar®@, press Command- ? and
then select the command from the menu.

To get help about a dialog box, click the Help button in the
dialog box.

To get help about an object on the screen (2.4, the scroll
bar), press Command- ? and then click the object.

To get help about a Medheneiics 1anguage command, type a

question mark followed by the command name
{ ? commena) into a new cell, then evaluate it by pressing |

k

This document provides a variety of basic information about Mathematica.
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& File Edit Celt Graph Find Action Style Window Help

Getting Started with Matrematica

Evaluating Expressions

To evaluate an expression, type in the expression, then
press Shift- Returnor Enter. {If thisis the first
expression you have evaulated, it will take a while to
start the Mthemstics kernel.)

To change or re-evaluate an expression that is alreadyin
your Notebook, click it and edit

in the normal Macintosh way. Press Shift-Returnor
Enter to re-evaluate it. The answer will replace the old
answer, directly below the input expression.

L Note: |t is not necessary to select the whole expression

K

Moving the cursor to the Help heading and using the mouse to select Shortcuts
yields the following window which describes keyboard shortcuts to several of the
commands available from the Mathematica menu.

& File Edit Cell Graph Find Action Style Window Help

HMathematica Shortcuts

(For information about these functions, see the relevant
meny and dialog box help messages.)

Evaluate an expression: Shift-Return or Enter.
Evaluate in Dialog: Shift-Option-Return. (Interrupts
current calculation and eval uates selected cells, then

continues).

Open or close a group of cells: Double-click the
group bracket.

Crop {clip) a graphic: Command-drag the graphic’s
bounding box handle.

k

The selection Help Pointer can be used to obtain information about particular regions
in a notebook. In the following example, we use Help Pointer to obtain information about
a graphics cell.
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& File Edit Cell Graph Find HfAction Style Window Help

In this case, we have used

£l = Gettinghelp S—————
gt B B B B B TI61 the Plot3D command to
~] = = ; .
ey 8&5& = graph sin(x+cosy) on the
poal i) - |l | rectangle [0,4n]x[0,4x].

Plot3D[Sin[ x+Cos[¥]].{x.0.4Pi}. (y.0. 4Pi}.
Ticks->None, Boxed->False,
Axes->None,
PlotPointa->25]

e

e

& File Edit Cell Graph Find Action Style Window Help

We then move the cursor to

=00 E Geltinglielp i ee——— |5
ILALI LR B B B B ]'{r}; the Help heading and use the
aut 8e®& - mouse to select Help
(Local) in/51):= _ _ 1] Painter. Note that the cursor
Plot3D[ Sin[ x+Cos[y]].{x.0,4Pi}, {y.0 4Pi},
Ticks->None, Boxed->False, ; becomes a question mark.
Axes->None,

PlotPoints->256]

el

" & File Edit Cell Graph Find Action Style Window Help

GettingHelp
Bt Py e B i ian, By ity

We then move the cursor to
the Help heading and use the
mouse to select Why the

Why the Beep?

Mathematics could nol understand the Beep?. Mathematica displays
expression you tried to evaluate. It left the e . .
insertion bar at the place where it got the followmg window.
confused

(Local) Out{31/4
-SurfaceGy
(Locsl) inf34) =
Plot[x"24
Syntax  bH_

"{x,-2,2" must be followed by "] not 7] J]

k
=
[100% 5] - [
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Why the Beep?... can help explain why Mathematica "beeps" at certain times or

under certain conditions.

% File Edit Cell Graph Find Action Style Window Help

Bet“ng"elp ﬁg;l
ey i s By ey ey B W B 1 [N

8==

(Lacsl? Outf 31/ = ]
-SurfaceGraphics-
Plot[x~2/(1+x~2, {x,-2,2] 1
[
[— Loz ~K[ =&
& File Edit Cell Graph Find Action Style Window Help

sN==—————— GeltingHelp oo 15|

I"'_.hl.|21|\i3,1.l“111 .|.Eﬁ.t.|i}_
(Locsl) Outf51]=
-SurfaceGraphics- J
(lacall) inf 34/ = 7
Plot[x~2/(1+x~2, {x.-2.3)
Syntax bktmch
*{x.-2,2" must be followed by "}". not "]" _D
—
|----I “Tio0% w0 ] | EEE

This plot command

contains two errors.

When we press ENTER,
Mathematica "beeps" and dis-
plays an error message.
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" & File Edit Cell Graph Find Action Style Window Help

I Getting Started

We then move the cursor to

GettingHelp
3

Why the Beep?

the Help heading and use the
mouse to select Why the
Beep?. Mathematica displays
the following window.

Mathematica could not understand the ™ ok |
expression you tried to evaluate. It left the kg)
insertion bar at the place where it got
confused.
(Local) Qutf 31
-SurfaceGy
Locsl) inf 34/ =]
Plot[x*2
Syntax: :bK
"{x.-2. must be followed by ;. not "™ 1T
=k
2]
[100% Q] o
& File Edit Cell Graph Find Rction Style Window Help

Correcting the command

-Graphica-

GettingHelp ;
— . F T h and pressing ENTER results
= . x?
, hd in the graph of on the
tlecsl) tnf 34 = :| 1+x2
Plot[x*2/(1+x°2) {x.-2.2 .
e ' ; interval [-2,2].
0.8
0.6
0.4
0.2
-2 -1 1 2 J
rLersl) Gut{ 34f=
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Open Function Browser... contains descriptions of all Mathematica commands. As
the commands are arranged by topic, the Function Browser is an excellent way to
become familiar with Mathematica commands. Moving the cursor to Help and selecting
Open Function Browser... yields the following window.

[} Function Browser
@ Built-in Functions (O Packages (O Loaded Packages Updatle

Numericel Computation  MJCr 1] utd
Algebraic Computationp| |
Mathematical Functions
Lists and Matrices
Graphics and Sound
Programming [3] [
kg
—1
=
Options:  (inspel Dptinn)
£
] [Paste Template] {Evaluate Templatj

In this case, we select Lists and Matrices, then List Construction, and
DiagonalMatrix. Mathematica displays a brief description of the command
DiagonalMatrix as shown below.

0 Function Browser

@® Built-in Functions (O Packages O Loaded Packages dpdata
Numerical Computation tio %
Algebraic Computation

Mathematical Functions
Liztz and Hatrces
Graphics and Sound

Pragramming

DiagonalMatrix[iist] gives a matrix with the elements of list on the leading |13
diagonal, and O elsewhere.

Options:  (Tmsect Bptisa)[DiagonalMatrix(EERH
5]
5l (Paste Template] (Evaluate Template]
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If we then replace list with a list of numbers and press Evaluate Template,
Mathematica inserts the command into the active notebook and evaluates the command.

0] Function Browset

@ Built-in Functions (O Packages (O Loaded Packages tipdate
Numerical Computation 3l List 140!
Algebraic Computationh fement Extraction »

Mathematical Functions ist Testing >
Lizts and Matrices ist Operations 4
Graphics and Sound » tructure Manipulation®

Programming p|Matrix Operations

DiagonalMatrix{list] gives a matrix with the elements of list on the leading [{3}
diaganal, and O elsewhere. ’—

40 Chagqonaliatr:

©]

Options:  [insert Botion)DiagonalMatrixit1,2,3,4,5))

<Gl I

[Paste Template) (Evaluate Template)

We can also use the Function Browser to obtain information about commands
contained in a notebook. For example, in the following notebook, we highlight the
command ParametricPlot3D

Untitied-1
[ParametricPlot 3D

]

<]

ku‘l""" 1100% w|G[ ]
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and then move the cursor to Help and select Find in Function Browser...
result is displayed below.

d Function Browser

@ Built-in Functions O Packages (O Loaded Packages Update
Numerical Computation  M[{} 2D Plots »[{+P10t3D k%
Algebraic Computationp ListPlot3D

Mathematical Functions
Lists and Matrices

Contour Plots
Density Plots
Sound Generation

Combinations

Programming Yo 1] I
ParametricP1ot3Dl{fx, fy, fz}, {t, tmin, tmax}] produces a three-dimensional |3
space curve parameterized by a variable t which runs from tmin to tmax.
ParametricP1ot3D[{fx, fy, fz}, {t, tmin, tmax}, {u, umin, umax}] produces a
three-dimensional surface parametrized by t and u. ParametricP1ot3D[{fx, fy,
fz, s}, ...] shades the plot according to the color specification s.

ParametricP1ot3Dl{{fx, fy, fz}, {gx, gy, g2}, ..}, ..] plots several objects
together.

<l

Options:  ({nsert Bptiva)lparametricP1ot3D(ER, fy, f2), (t, tmin, tmax)]

AmbientLight >
AspectRatio

Axes 3 (Help )(Paste Template ) (Evaluate Template)

21
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HAPIE

Mathematical Operations
on Numbers, Expressions,
and Functions

Chapter 2 introduces the essential commands of Mathematica. Basic operations on
numbers, expressions, and functions are introduced and discussed.

2.1 Numerical Calculations and
Built-in Functions

Numerical Calculations
The basic arithmetic operations (addition, subtraction, multiplication, and division) are

performed in the natural way with Mathematica . Whenever possible, Mathematica gives
an exact answer and reduces fractions:

23
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"a plus b" is entered as a+b;

"a minus b" is entered as a-b;

"a times b" is entered as either a*b or a b (note the space between a and b); and

"a divided by b" is entered as a/b. Executing the command a/b results in a
reduced fraction.

EXAMPLE: Compute (a) 121+542; (b) 3231-9876; (c) -23e76;

(d) 22361832748 387281; and (e) %

SOLUTION: In each case, we use Mathematica to perform the indicated
operation. To execute a command, press ENTER or, equivalently, Shift-RETURN.
In general, the RETURN key gives a new line; the ENTER key evaluates a
Mathematica command.

(a)
121+452
573
(b)
3231-9876
-6645

(d) Note that a * represents multiplication. However, a space between two
expressions on the same line of input also denotes multiplication as shown in (e).

-23*76
-1748

22361 832748 387281
7211589719761868

(f) The symbol / denotes division. Generally, Mathematica expresses fractions in
reduced form and not in decimal form, unless a decimal form is requested.

467/31

467

31
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In the same manner as arithmetic operations are entered,

av, "a raised to the bth power," is entered as a”b.
Ja=a2 is computed by entering either a” (1/2) or sqrt[a]; Ya=avs is
computed by entering a” (1/3).

In each of these cases, note that the exponent is included in parentheses. In cases where
the exponent consists of more than one symbol, be sure to include the entire exponent in
parentheses to avoid possible errors.

Whenever possible, Mathematica returns exact values. To obtain approximations of
exact values, use N. N{expression] returns an approximation of expression;
N[expression,n] returns an approximation of expression accurate to n digits, if
possible. Notice that the arguments of the commands Sqrt and N are contained in
brackets ([ . . . ]). In fact, arguments of all functions are always contained in brackets

(C---1

EXAMPLE: Calculate (a) (—5)121 and (b) 5vs.

SOLUTION: For (a), we enter the command (-5) “121. Note that the symbol \ is
used to indicate that the resulting output continues onto the next line.

(-5)~121
-376158192263132002549995691911118616\

9019729781670680068828005460090935\
230255126953125

On the other hand, using N to evaluate this expression yields the result in scientific
notation.

N[ (-5)"121)

84
~-3.76158 10

For (b), we see that Mathematica returns 5/° as the exact simplified form of 5/° is
5179,

5%(1/9)

1/9
5

However, we may approximate 5!/° using N.
N[5"(1/9)]

1.19581
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EXAMPLE: Calculate 233 .

SOLUTION: We use the command Sqrt to calculate 233 . However, since /233
is the simplified form of 233, the result returned is Sqrt[233].

Sqrt[233]
Sqrt[233]

However, including / /N after the command yields an approximation of v233 . The
same results are obtained with N{Sqrt[233]].

sqrt[233])//N

15.2643
|

When computing odd roots of negative numbers, Mathematica results are surprising to

the novice. Namely, Mathematica returns a complex number. We will see that this has
important consequence when graphing certain functions.

EXAMPLE: Calculate ¥-3 =(-3)"".

SOLUTION: When entering (-3) "~ (1/3), Mathematica returns an exact value of
%/3 - (‘-3)1/3
(-3)7(1/3)

1/3 1/3
(-1) 3

When we include //N at the end of the command, an approximation is returned.
We see that the resulting expression contains a term with an I. The symbol I

represents the imaginary number i =+v-1.
(-3)"(1/3)//n
0.721125 + 1.24902 I

Note that in order to calculate 3-3 =(-3)"°, we must be sure to include the

(-3)

parentheses around the term 1/3. If we don't, Mathematica computes == -1.

(-3)~1/3

-1
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Built-in Constants

Mathematica has built-in definitions of many commonly used constants. Frequently used

constants include 7 =3.14159, denoted by Pi, ¢=2.71828, denoted by E, and i=+-1,
denoted by I. Other built-in constants include «, denoted by Infinity, Euler's constant,
y=0.577216, denoted by EulerGamma, Catalan's constant, approximately 0.915966,

denoted by Catalan, and the golden ratio, %(1+«/§ ) ~1.61803, denoted by GoldenRatio.

In the previous examples, we see that Mathematica gives an exact answer whenever
possible. For a variety of reasons, however, numerical approximations of results are often
either more meaningful or more desirable. The command used to obtain a numerical
approximation of the number a, is N[a] or, equivalently, a // N. The command to obtain

a numerical approximation of a to n digits of precisionis N[a,n].
For example, entering

N(E,50]

2.718281828459045235360287471\
3526624977572470937

produces a 50-digit approximation of e. Entering
E*(-5)

=5
E

computes e = L while entering
es
E"(-5)//N
0.00673795
. . 1 .
computes an approximation of e = = Entering
N[Pi,25]
3.1415926535897932384626434
computes a 25-digit approximation of n. Entering
Sqrt[-9]
31
computes -9 =iv9 =3i. Entering

(1-1)*4

-4
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expands (1-i)' and entering

(3+1)/(4-I)
11 71
_—  ——
17 17

. e 34
simplifies ymr

Built-in Functions

Mathematica recognizes numerous built-in functions. These include the exponential
function, Exp[x]; the absolute value function, Abs[x]; the trigonometric functions
Sin[x], Cos[x], Tan[x], Sec[x], Csc[x], and Cot[x]; and the inverse trigonometric
functions ArcCos[x],ArcSin[x], ArcTan[x],ArcSec[x],ArcCsc[x], and
ArcCot[x]. Notice that each of these functions is capitalized and uses square brackets.
Entering Exp{x] produces the same results as entering E"x. Entering Log[x] returns the
natural logarithm of x; entering Log [ n, x] returns the logarithm of x to base n.

(Note that the inverse trigonometric functions include two capital letters! If both of
these requirements are not met, then Mathematica will not recognize the built-in function
and undesirable results will be obtained.)

The Absolute Value, Exponential and

Logarithmic Functions

Calculations involving the functions Abs[x], Exp[x], and Log[x] appear in the
following examples. Notice that in order to obtain a numerical value of Exp[x], a
numerical approximation must be requested by either the command N[Exp([x]] or
Exp({x]//N. Otherwise, the exact value is given which, in many cases, is not as useful as
the numerical approximation.

EXAMPLE: Approximate e = L and graph e+ on the interval [-2,2].
es

SOLUTION: We see that entering
Exp[-5]

-5
E

yields the exact value of e = is while entering
e
Exp[-5]1//N

0.00673795
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yields an approximation. The same result would have been obtained if
N[Exp[-51]] had been entered. P1lot is used to graph e* on the interval [-2,2].

Plot[Exp[x],{x,-2,2}]

[ IS B B B |

’_lﬂ_/

-2 -1 1 2 W

In addition to real numbers, the function Abs [x] can be used to find the absolute value

of the complex number a+bI, where Abs[a+bI]=Sqrt[a”2+b"2].
For example, entering

Abs[-5]
5
computes |-5/=5 and entering
Abs[14]
14
returns {14|=14 while entering
Abs[3-41]
5
computes [3-4i=+/32+42 =5 and entering

Abs|[ (3+2I)/(2-91I)]

13
Sqrt[--])

85

returns 3+21, = E.
2-9i 85
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EXAMPLE: Graph |x| on the interval [-5,5].

SOLUTION: Plot is used to graph the function Abs[x].

Plot[Abs[x],{x,-5,5}]

-4 -2 2 4 [ |

Log[x] computes the natural logarithm of x, which is usually denoted by Inx or
log, x. Thus, entering

Log[E]
1
returns 1; entering
Log[E"3]
3
returns 3; and entering
Exp[Log[Pi]]
Pi

returns 7.
The Log function is also used to calculate logarithms with base other than e. Log[a,b]

computes log b= E—Z . Therefore, entering

Log[3,9]
2
returns 2 and entering
Log[2,10]
Log[10]

Logf2]
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returns 11n_120 . An approximation to 10 digits of accuracy is obtained below with N.
n

N[Log[2,10],10]

3.321928095

EXAMPLE: Graph Inx on the interval [0.001,5].

SOLUTION: Below we use Plot to graph Inx on the interval [0.001,5].

Plot[Log[x],{x,.001,5}]

./i”f

—
8]

Trigonometric Functions

Examples of typical operations involving the trigonometric functions Sin[x ], Cos[x],
and Tan[x] are given below. (Although not illustrated in the following examples, the
functions Sec[x], Csc[x], and Cot[x] are used similarly.) Notice that Mathematica
yields the exact value for trigonometric functions of some angles, while a numerical
approximation must be requested for others.

EXAMPLE: Calculate cos[EJ, sin(ﬁj, tan(?’—n), Cos(lj' COS(EJ’ and sin(—g—nj.
4 3 4 12 5 8
SOLUTION:
Cos|[Pi/4]

Sqrt(2]



32 2 Mathematical Operations on Numbers, Expressions, and Functions

Sin[Pi/3]
Sqrt(3]
Tan[3 Pi/4]
-1
Cos[Pi/12]
1 + Sqrt[3]
2 sare21

Even though Mathematica returns the exact value of cos(%), N can be used to obtain an
approximation as shown below.

N[Cos[Pi/12]]
0.965926
However, Mathematica does not return a numerical value for cos(g)
Cos[Pi/5]
Pi
Cos[--]
5
so we use N to obtain an approximation.
N[Cos[Pi/5]]
0.809017
Similarly, we use N to compute an approximation of sin(—%).
sin[-9 Pi/8)
9 Pi

~-Sin[~----)
8

0.382683
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EXAMPLE: Graph sinx, cosx, and tanx.

SOLUTION: In each case, we use Plot to graph the indicated function.

Plot[Cos[x],{x,-2Pi,2Pi}]

-1

Plot([Sin[x]), {x,~-2Pi,2Pi}]

-6 -4 -2 2 4

Plot[Tan[x]),{x,-Pi,Pi}]

40

J i J

-3 -2 -1 1 2 3
-20

-40 .

Inverse Trigonometric Functions
Commands involving the inverse trigonometric functions are similar to those

demonstrated in the earlier section on trigonometric functions. Again, note the two capital
letters in each of the inverse trigonometric functions. The (built-in) inverse trigonometric

functions are:



34 2 Mathematical Operations on Numbers, Expressions, and Functions

ArcCos[x] ArcCoth[x] ArcSec[x] ArcSinh[x]
ArcCosh[x] ArcCsc[x] ArcSech[x] ArcTan{x]
ArcCot[x] ArcCsch[x] ArcSin[x] ArcTanh[x]

When particular values are well-known, Mathematica returns them. For example,
entering

ArcCos[1/2]
Pi
3
1 =« .
returns cos-! 273 ; entering

ArcSin[-1]

returns sin-'(-1)= —g ; and entering
ArcTan[1]

Pi

4

n . . . .
returns tan-'1==". In most instances, however, approximation must be computed with N.
For example, entering

ArcSin[1/3]1//N
0.339837
returns an approximation of sin-' % ; entering
N{ArcCos[2/3]]
0.841069
returns an approximation of cos! % ; and entering
ArcTan[100}//N
1.5608

returns an approximation of tan-100.
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EXAMPLE: Graph sin-'x, cos'x, and tan-x.

SOLUTION: In each case, we use Plot to graph the indicated function.

Plot{ArcSin[x],{x,-1,1}]

Plot[ArcCos([x], {x,~1,1}]

-1 a 0

-

Plot[ArcTan([x], {x,-25,25}]

10 20

The hyperbolic trigonometric functions and their inverses are computed in the same
way as those above. N is used to obtain an approximation, when necessary.
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EXAMPLE: Compute sinh0, sinh5, cosh(n4), cosh(-5), tanh(In5), and tanhl.
Graph each of the functions sinhx , coshx, and tanhx.

SOLUTION: We first compute the indicated values.

Sinh[0]

0
Sinh[5]

Sinh[5]
Sinh([S5]//N

74.2032
Cosh[0]

1
Cosh[Log[4]]

17

;_
Cosh[-5]

Cosh[5]
N[Cosh[-5]1]

74.2099
Tanh[Log[5]]

12

13
Tanh[1]

Tanh[1]

Tanh({1]//N

0.761594
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Next, we use Plot to graph each function.
Plot[Sinh[x],{x,-10,10}]
1500

1000

500

-500

-1000

-1500

Plot[Cosh[x],{x,-10,10}]

3500
3000
2500
2000
1500
1000

-10 -3 S 10

Plot(Tanh[x], {x,-10,10}]

-10 -5 S 10

37
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The next example illustrates the inverse hyperbolic trigonometric functions.

EXAMPLE: Calculate sinh'5, cosh16, and tanh*l(—%]. Graph each of the

functions sinh-'x, cosh-'x, and tanh-tx.

SOLUTION: We proceed as in the previous example: first we compute the
indicated values and then graph each function.

ArcSinh(5]
ArcSinh[5]
ArcSinh[5]//N
2.31244
ArcCosh[6]
ArcCosh[6]
N[ArcCosh[6]]
2.47789
ArcTanh[-1/2]
1
-ArcTanh[-]
2
ArcTanh[-1/2]//N
-0.54925

Plot[ArcSinh[x], {x, -10,10}]

-10 -3 S 10

-2

-3
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Plot[ArcCosh[x], {x,1,10}]

2 4 6 8 10

Plot[ArcTanh[x], {x,~0.999,0.999}]

A Word of Caution

As stated above, every built-in Mathematica object begins with a capital letter and
arguments of functions are always contained in brackets. If capital letters are not used or
brackets are omitted, errors result. For example, entering

sin(pi/2)
General::spelll:

Possible spelling error: new symbol name "sin"
is similar to existing symbol "Sin".

returns nonsense as parentheses are used instead of brackets, sin is used instead of Sin,
and pi is used instead of Pi.
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2.2 Expressions and Functions

Basic Algebraic Operations on Expressions

Expressions involving unknowns are entered in the same way as numbers. Mathematica
performs standard algebraic operations on mathematical expressions. For example, the
command

Factor[expression] factors expression;
Expand[expression] multiplies expression; and
Together[expression] writes expression as a single fraction.

When entering expressions, be sure to include a space or * between variables to denote
multiplication.

EXAMPLE: (a) Factor the polynomial 12x?+27xy -84y2. (b) Expand the expression

(x+y)'(3x-y)". (c) Write the sum % - %Z as a single fraction.
X

SOLUTION: The first command below, with Factor, indicates that

12x2 +27xy —84y? = 3(x + 4y )(4x ~7y)..

When entering the Factor command, be sure to include a space, or *, between
the x and y terms to denote multiplication. xy represents an expression while x y
or x*y denotes x multiplied by y. The second, with Expand, computes the

product (x+y)’(3x—y)’, and the third, with Together, expresses %—%2 as a
single fraction.
Factor[12x"2+27 x y-84y"2]
3 (-x-4y) (-4x+7Yy)
Expand[ (x+y)"2 (3x-y)"3]

5 4 3 2 2 3 4 5
27 x +27x y-18x y -10x y +7xy -y

Together{2/x"2 - x"2/2]
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In general, a space is not needed between a number and a symbol to denote
multiplication. That is, 3dog means "3 times variable dog!]"; Mathematica interprets 3
dog the same way. However, when denoting multiplication of two variables, either
include a space or *:

cat dog means "variable cat times variable dog",
cat*dog means "variable cat times variable dog", but
catdog is interpreted as a variable catdog.

The command Apart[expression] computes the partial fraction decomposition of
expression; Cancel[expression] factors the numerator and denominator of
expression then reduces expression to lowest terms.

EXAMPLE: (a) Determine the partial fraction decomposition of the rational

function m (b) Simplify the expression x2i22_x1+ o
SOLUTION: Apart is used below to show that
1 1 1

(x=3)(x-1) 2(x-3) 2(x-1)°

Then, cancel is used to find that

-1 _(x-D)x+1) _x+1
x-2x+1 (x-1)"  x-1’

Apart[1/((x-3)(x-1))]
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Naming and Evaluating Expressions

In Mathematica, mathematical objects can be named. Naming objects is convenient: we can
avoid typing the same mathematical expression repeatedly and named expressions can be
referenced throughout a notebook or Mathematica session.

Since every built-in Mathematica function begins with a capital letter, we will adopt the
convention that every mathematical object we name will begin with a lower case letter.
Consequently, we will be certain to avoid any possible ambiguity with a built-in
Mathematica object. An expression is named by using a single equals sign (=).

Be aware that Mathematica does not remember anything defined in a previous
Mathematica session. That is, if you define certain symbols during a Mathematica session,
quit the Mathematica session, and then continue later, the previous symbols must be
redefined to be used.

Expressions can be evaluated easily. To evaluate an expression, we introduce the
command /. . The command /. means "replace by". For example, entering the command

x"2 /. x -> 3

returns the value of the expression x2 when x =3. Note, however, this does not assign the
symbol x the value 3. The symbol "->" is obtained by typing a minus sign (-) followed by
a greater than sign (>).

The following example illustrates how to name an expression. In addition, Mathematica
has several built-in functions for manipulating fractions:

Numerator[fraction] yields the numerator of a fraction;
ExpandNumerator[fraction] expands the numerator of fraction;
Denominator|[fraction] yields the denominator of a fraction;
ExpandDenominator[fraction] expands the denominator of fraction;
and

ExpandAll[fraction] expands both the numerator and denominator of
fraction.

The naming of expressions makes the numerator and denominator easier to use in the
following examples.



2.2 Expressions and Functions 43

ﬂ-x—_%, (a) factor both the
x3+x2-4x-4

numerator and denominator; (b) evaluate the numerator when x=2, evaluate the
x34+2x2—x-2
x3+x2-4x-4

EXAMPLE: Given the rational expression

denominator when x=3; (c) reduce to lowest terms; (d) evaluate

3 2y
XH2-x-2 when x=4 and when x=-3; and (e) find the partial fraction
x3+x2—4x-4

x3+2x2-x-2

decomposition of .
X +x2-4x-4

SOLUTION: To avoid retyping (x"3+2x"2-x-2)/(x"3+x"2-4x-4), we define
fraction to be

X3 +2x2-x-2
X +x2-4x—4

fraction=(x"3+2x"2-x-2)/(x"3+x"2-4x-4)

-4 - 4 x+x +x

The numerator of fraction is extracted with Numerator and named num for

later use. We then use Factor to factor num and use /. to evaluate num when
x=2.

num=Numerator [fraction]

2 3
-2 -xXx+2x +x

Factor[num]

(-1 + x) (1 + x) (2 + x)
num /. x->2

12

Similarly, we use Denominator to extract the denominator of fraction and
name the resulting output den for later use. Again, Factor is used to factor den
and /. is used to evaluate den when x=3.



44 2 Mathematical Operations on Numbers, Expressions, and Functions

den=Denominator[fraction]

2 3
-4 - 4 x+x +x

Factor[den]

(-2 + x) (1 + x) (2 + x)
den /. x->3

20

Mathematica can also evaluate and perform standard algebraic operations on
named expressions. Cancel is used to reduce fraction to lowest terms.

Cancel[fraction]

/. isused to evaluate fraction when x=4 and when x=-3.
fraction /. x->4
2
fraction /. x->-3

4

5
Finally, Apart is used to find the partial fraction decomposition of fraction.

Apart[fraction]

Every Mathematica object can be named; even graphics and functions can be named
with Mathematica.

A Word of Caution

When you assign a name to an object that is similar to a previously defined or built-in
function, Mathematica issues an error message like that shown below.



2.2 Expressions and Functions 45

function=x"2

General::spelll:
Possible spelling error: new symbol name "function"
is similar to existing symbol "Function".
2
X

Since we have adopted the convention that every user-defined function begin with a lower
case letter, we know that we have not made an error and the message can be ignored.
Sometimes, however, the message can occur frequently and become annoying. If desired,
the message

General::spelll:

can be suppressed by entering

Off[General::spelllj}.

Generally, Of f [ s: : tag] switches off the message s: : tag so that it is not printed. On is
used to switch on warning or error messages. Specific messages may be permanently
turned off by inserting the desired Of f commands in the init.m file which is contained in
the Packages folder (or directory).

Defining and Evaluating Functions

It is important to remember that functions, expressions, and graphics can be named
anything that is not the name of a built-in Mathematica function or command. Since every
built-in Mathematica function begins with a capital letter, every user-defined function or
expression in this text will be defined using lower case letters. This way, the possibility of
conflicting with a built-in Mathematica command or function is completely eliminated.
Also, since definitions of functions are frequently modified, we introduce the command
Clear.Clear[expression] clears all definitions of expression. You can see if a
particular symbol has a definition by entering ?symbol. Consequently, we are certain to
avoid any ambiguity when we create a new definition of a function. When you first define
a function, you must always enclose the argument in square brackets ([ . . . 1) and place
an underline (or blank) "_" after the argument on the left-hand side of the equals sign in
the definition of the function.
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EXAMPLE: Define f(x)=x2, g(x)=+/x, and h(x)=x+sinx.

SOLUTION: We first use Clear to clear all prior definitions of {, g, and h, if any,
and then enter the definition of each function. Entering £ [x_]=x"2 defines and
computes f(x)=x2.

Clear([f,qg,h]
£[x_1=x"2

2
X

Similarly, entering g[x_]1=8qrt[x] defines and computes g(x)= Jx.
g[x_]=8Sqrt[x]
sqrt[x]

However, entering h[x_ ] :=x+Sin[x] simply defines h(x)=x+sinx; h[x] is not
computed so Mathematica does not return any output.

h{x_]:=x+Sin[x]
We may see the definition of h, however, by entering ?h.

?h

Global™h

h{x ] := x + Sin[x]
In each of the above cases, don't forget to include the underline (_) on the left-
hand side of the equals sign in the definition of each function. Remember to
always include arguments of functions in square brackets. B

In the preceding examples, functions were defined using each of the forms
f{x_1:=...and f[x_]=.... As a practical matter, when defining "routine" functions
with domains consisting of sets of real numbers and ranges consisting of sets of real
numbers, either form can be used. Defining a function using the form f[x_]=...
instructs Mathematica to define £ and then compute and return f[x] (immediate
assignment); defining a function using the form £ X _]:=... instructs Mathematica to
define £. In this case, £[x] is not computed and, thus, Mathematica returns no output
(delayed assignment). The form £[x_]:=. .. should be used when £[x] does not make
sense unless x is a particular value.

Generally, if attempting to define a function using the form £[x_]=. .. produces one
or more error messages, use the form £[x_]:=. .. instead.

When you evaluate a function, type functionname[point] ENTER. Notice that
functions can be evaluated for any real number (in the function's domain).
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EXAMPLE: Using the definitions of f, g, and h, from above, compute {(2), g(4),
and h(r/2).

SOLUTION:
£[2]
4
gl4]
2
h{Pi/2)

Pi
14 —

Moreover, Mathematica can symbolically evaluate and manipulate many functions.

EXAMPLE: Using the definitions of f, from above, (a) calculate f(a—b?);

(b) calculate and expand f(a-b?); (c) compute f(th)_M ; and (d) compute and

simplify i(’ﬁ%ﬂ

SOLUTION: We evaluate functions when the argument consists of symbols other
than numbers in the same way as we evaluate functions when the argument
consists of numbers in the functions” domain. Note that when evaluating functions
when the argument consists of symbols other than numbers, errors are returned if
the function does not make sense for non-numerical arguments.

Entering

fla-b"2]

22
(a - b))

calculates f(a-b?); entering

Expand[{f{a-b~2]]
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computes and expands f(a-b?); entering

(f[x+h]-f[x])/h

(x+h)-f(x),

computes, but does not simplify, f p ; and entering
Simplify({ (f[x+h]-£f[{x])/h]
h + 2 x

computes and simplifies w n

Many different types of functions can be defined using Mathematica. Examples
illustrating how to define a function of two variables and vector-valued functions are
illustrated below. Additional ways of defining functions will be discussed, as needed,
throughout the text.

EXAMPLE: Define f(x,y)=1-sin(x2+y2). Calculate f(1,2), j(Z«/E%«/E), £(0,a), and

flaz~b2, b2 —a2).

SOLUTION: After clearing all prior definitions of f, we define f. Note that since f
is a function of two variables, an underline (or blank) " " is placed after each
argument on the left-hand side (but not on the right-hand side) of the definition of
the function. Thus, entering £[x_,y_]=1-Sin[x"2+y"2] defines
f(x,y)=1-sin(x? + y2) and then computes and returns f(x,y).

Clear[f}
flx_,y_]1=1-Sin[x"2+y"2]}

2 2
1 - Sin[x + vy ]
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We then evaluate £(1,2) by entering:
£[1,2]
1 - sin[5]
Note that /. can also be used to evaluate f(1,2). Namely, entering
fix,y] /. x->1 /. y->2
or

f(x,y] /. {x->1,y->2}

both produce the same result. Similarly, entering

£f[2 Sqrt[Pi],3/2 Sqrt[Pi]]

Sqrt[2]

computes f(Z\/E %\/E ) In the same manner as above, entering

flx,y] /. {x->2Sqrt[Pi},y->3/2 Sqrt(Pi}}
yields the same result. In this case, we can evaluate f for non-numerical
arguments. Entering
f[0,a]

2
1 - Sinfa ]

computes f(0,4) and entering
f[a~2-b"2,b"2-a"2]

2 2 2 2 2 2
l - Sinf{(a -b ) + (-a + b ) 1}

computes f(az-b?,b2—a2).

49

EXAMPLE: Define g to be the vector-valued function g(x)=(x?,1-x2). Calculate
£(1) and g(sinb).

SOLUTION: We remark that Mathematica uses braces "{. . .}" to denote vectors,
lists, and sets. These topics are discussed in more detail in Chapters 4 and 5. Since
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g is a function of a single variable, we define g in the same manner as defining
functions of a single variable, discussed above. As before, be sure to place an
underline (or blank) "_" after the argument on the left-hand side of the definition
of the function (but not on the right-hand side). Thus, entering g{x_]1={x"2,1-
x2} defines 80 =(**1=%") and then computes and returns g(x).

Clear[g]
gix_]1={x"2,1-x"2}

2 2
{x, 1 ~-x1}

We then compute g(1) and g(sinb).
gli]
{1, 0}
g[Sin[b]}

2 2
{sin[b]} , 1 - sinfb] }

In each case, note that entering g[x} /. x->1and g[x] /. x->Sin[b]
produce the same result. B

Our last example illustrates how to define a vector-valued function of two variables.

EXAMPLE: Define h to be the vector-valued function of two variables
h(x,y)= <cos(x2 - y2),sin(x2 - y? )>
Calculate h(1,2), k(r,—n), and h(cos(a2),cos(1-az)).

SOLUTION: Proceeding as in the previous example, we first clear all prior
definitions of h and then define h. Note that Mathematica returns h(x,y).

Clear([h]
hix_,y_]={Cos[x"2-y"2],Sin(y"2-x"2]}

2 2 2 2
{Cos[x -y ), -8in[x -y ]}

Next, we calculate h(1,2), h(r,—n), and h(cos(a2),cos(1-a2)).
h(1,2)

{Cos[3], Sin(3]}
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h{Pi,-Pi]
{1, 0}
h[Cos[a"2],Cos[1-a"2]]

2 2
{Cos[Cos[a ]

2
Cos[l - a ] 1,

2 2
-Sin[Cosfa ] -

2 2
Cos[l - a ] }}

Additional Ways to Evaluate Functions
and Expressions

Once f has been properly defined, not only can a function f[x] be evaluated by
computing f[a] where a is either a real number in the domain of £ or an expression,
functions and expressions can be evaluated using the command /.. In general, to
evaluate the function f£[x] when x is replaced by expression, the following two
commands are equivalent and yield the same output:

1. f[expression] replaceseach variable in f by expression; and
2. £[x] /. x-> expression replaces each variable x in £[x] by
expression.

This is illustrated in the following example.

EXAMPLE: Evaluate f(1) and ¢(1,2) if
f(x)=x2 and

8(x,y)= <sin(x2 —y2),cos{y? — x2)> .

SOLUTION: After clearing all prior definitions of f and g, we define f and g. Note
that since we use := to define the functions, f(x) and g(x,y) are not computed and
returned.
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Clear(f,qg]
fx_):=x"2
glx_,y_):={Sin[x"2-y"2],Cos[y"2-x"2]}
We note that entering
£11]
1
and
gl1,2]
{-Sin[3], Cos[31]}
produces the same results as entering each of the following commands.
fix] /. x->1
1
glx,y}] /. x->1 /. y->2
{-8in[3], Cos[3}]}
glx,y) /. {x->1,y->2}

{-8in[3], Cos[3]}

Composition of Functions

Mathematica can easily perform the calculation £{g[x]]. However, when composing
several different functions or repeatedly composing a function with itself, two additional
commands are provided.

Composition[fl, £2, £3, . . . ,fn][x] computes the composition

(oo £ )= A (£ ).
Nest[f, x, n] computes the composition (fofo...of)(x)=f(f--f(x)), where f is

a function, n is a positive integer, and x is an expression.

Mathematica displays output for EACH command as it is generated unless a semi colon
(;) is included at the end of the command. Thus, in the following example, the formulas
for £[x], g[x], and h[x] are not displayed since a semi colon is placed at the end of each
command.
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EXAMPLE: Let f(x)=x2+x, g(x)=x*+1, and k(x)=sinx+cosx. Compute
@ (eg=sls) ®) (o=l ©  (eR(Z)-A{Z))
(d) f(sinx); (e) (fok)(x) = f(k(x)); and (f) f(sin(x+iy)),‘

SOLUTION: We begin by clearing all prior definitions of f, g, and k, if any, and
then defining f, g, and k.

Clear{f,g,h]
flx_]=x"2+x;
glx_]1=x"3+1;
k{x _]=Sin[x]+Cos[x];

For (a), we note that entering £[g[x] ] and Composition[£,g][x] produce the
same result. The results are not simplified.

flg[x]}]

3 32
1+x + (1 +x)

Composition[£f,g][x]

3 32
1 +x + (1 +x)

For (b), we use Composition to compute (gof)(x—l)z(g(f(x—l))). The same
results would be obtained with g[f[x-1]].

Composition[g,£f][x-1]

2 3
1+ (-1 4+ (-1 + x) + x)

For (c), we use Composition along with Simplify to compute

o+ (51-043)

Composition[f,k][Pi/3]//Simplify
3
- + Sqrt[3]
2
For (d), we use the built-in function Sin to compute f(sinx).

Composition{f,Sin][x]

2
Sin(x] + Sin[x]
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For (e), we use Composition to compute (fok)(x)=f(k(x)} and name the resulting
output expl. To simplify exp1l, we use Expand along with the option Trig-
>True. The effect of the option Trig->True is to eliminate powers of sines and
cosines in trigonometric expressions.

expl=Composition[f,k][x]

2
Cos[x] + Sin[x] + (Cos[x] + Sin[x])

Expand([expl,Trig->True]
1 + Cos[x] + Sin[x] + Sin[2 x]

For (f), we use Composition to compute f(sin(x+iy)) and name the resulting
output exp2. We then rewrite expl in terms of its real and imaginary parts with
ComplexExpand. If expression is a Mathematica expression in terms of x+I y,
the command ComplexExpand[expression] rewrites expression in terms
of its real and imaginary components, assuming that x and y are both real.

exp2=Composition[f,Sin][x+I y]

2
Sin[x + I y] + Sin{x + I y]

ComplexExpand[exp2]

2 2 2 2
Cosh[y] Sin{x] + Cosh[y] Sin[x] - Cos[x] Sinh[y] +

I (Cos[x] Sinh[y] + 2 Cos[x] Cosh([y] Sin[x] Sinh{y})
|

The next example illustrates the use of Nest.

EXAMPLE: Let f(x)=x?+x as in the previous example. Compute:
@) (fofef)(x) :f(f(f(x))), and (b) #(x)= sin(sin(sin(sin(sin(sinx))))).

SOLUTION: For (a), we use Nest and name the resulting output exp3. Entering
fLE£[£[x]]] produces the same results. Since exp3 is not simplified, we use
Expand to simplify exp3.

exp3=Nest[f,x,3]

2 2 2 2 222
X+ x +(x+x) + (x+x + (x+x))
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Expand[exp3]

2 3 4 5 6 7
XxX+3x +6x +9x +10x +8x +4x +x

We define the function #(x)= sin(sin(sin(sin(sin(sinx))))) with Nest.

tix_]=Nest(Sin,x,6]

Sin[Sin(Sin([Sin[Sin[Sin[x]]]]]]

We can compare the graphs of t(x) and sinx by graphing them on the same axes.
Below, we use Plot to graph each function. The graph of sinx is dashed.
Graphing functions and expressions is discussed in more detail in the next section.

Plot[{Sin[x],t[x]},{x,0,4Pi}, PlotStyle->{Dashing[{.01}],GrayLevel[0]}]

1 7N 2N
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I \ / \
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A Word of Caution

As stated above, we have adopted the convention that the name of every user-defined
object will begin with lower case letters. If you don't follow this convention and
accidentally attempt to define a function that has the same name as a built-in function,
errors result as indicated below. If you use capital letters when defining functions, be

careful!
Sin[x_]:=Cos[x]

SetDelayed::write: Tag Sin in Sin[x_] is Protected.
$Failed
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2.3 Graphing Functions,
Expressions, and Equations
One of the best features of Mathematica is its graphics capabilities. In this section, we

discuss methods of graphing functions, expressions and equations and several of the
options available to help graph functions.

Graphing Functions of a Single Variable

The command used to graph real-valued functions of a single variable is Plot. The form
of the command to graph the function £[x] on the domain [a,b] is

Plot[f[x],{x,a,b}].

Mathematica returns information about the basic syntax of the Plot command with
?Plot.

?Plot
Plot(f, {x, xmin, xmax}] generates a plot of f as a function of x
from xmin to xmax. Plotf[{fl, £2, ...}, {X, xmin, xmax}] plots

several functions fi.

In the following examples, we illustrate the P1lot function.

EXAMPLE: Let f(x)=4x*+6x2-9x+2, g(x)=12x2+12x-9, and h(x)=24x+12.
Graph f(x) on the interval [-3,2].

SOLUTION: After clearing all prior definitions of f, g, and h, if any, we define f, g,
and h, and then use Plot to graph f on the interval [-3,2].

Clear([f,qg,h]
fx_]1=4x"3+6x"2-9x+2;
g[x_]=12x"2+12x-9;
h{x_1=24x+12;
Plot[f[x],{x,-3,2}]
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To plot the graph of f[x] in various shades of gray or colors, the command is
Plot[f[x],{x,a,b},PlotStyle->GrayLevel[w]],

where w is a number between 0 and 1. PlotStyle->GrayLevel[ 0] represents black;
PlotStyle->GrayLevel[ 1] represents a white graph. If a color monitor is being used,
the command is

Plot[f[x],{x,a,b},PlotStyle->RGBColor[r,g,bll],

where 1, g, and b are numbers between 0 and 1. RGBColor[1,0,0] represents red,

RGBColor[0,1,0] represents green, and RGBColor([0,0, 1] represents blue.
Remember that the results of entering a Plot command are Mathematica objects and,
consequently, can be named for later use. A dashed graph can be generated by using the option

PlotStyle->Dashing[{nl,n2,...}],

where n1, n2, ... are numbers.

Graphs of functions, like expressions, can be named. This is particularly useful when
one needs to refer to the graph of particular functions repeatedly or to display several
graphs on the same axes.

The command used to display several graphs on the same axes is Show. To show two
graphs named graphl and graph2, the command entered is Show[graphl, graph2].

EXAMPLE: Show the graphs of f, g, and h, defined in the previous example, on
the same axes.

SOLUTION: Below, we graph g on the interval [-3,2]. We use PlotStyle and
Dashing so that the graph of g is dashed. The resulting output is named plotg.
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plotg=Plot[g[x],{x,-3,2},PlotStyle->Dashing[{.01}]]

€0
\‘ 5 O II

40
30 ;

\ 20
10

Next, we graph f and h, in gray, on the interval [-3,2], naming the results plot£f
and ploth. In each case, the option

DisplayFunction->Identity

is used to indicate that the graphics objects generated are not displayed. These
graphs, along with plotg, are shown simultaneously by using the Show
command together with the option

DisplayFunction->$DisplayFunction

which instructs Mathematica to display the resulting graphics objects. Note that no
graphs would be displayed if the DisplayFunction->$DisplayFunction
option were omitted from the following Show command:

plotf=Plot[f[x],{x,-3,2},DisplayFunction->Identity];
ploth=Plot[h[x],{x,-3,2},PlotStyle->GrayLevel[.3],
DisplayFunction->Identity];
Show[plotf,plotg,ploth,DisplayFunction->$DisplayFunction]
N 60
. 40
20

A complete list of the available options along with their current settings is obtained by
entering the command Options[Plot] as indicated below. The commands Plot and
Show have many options. To implement the various options, the form of the command
Plotis
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Plot[f[x],{x,a,b},options];

the form of the command Show is

Show[graphs, options].

Several of these options are discussed below.

Options [Plot]

{AspectRatio -> ————wu_—— , Axes -> Automatic, AxesLabel -> None,
GoldenRatio

AxesOrigin -> Automatic, AxesStyle -> Automatic,
Background -> Automatic, ColorOutput -> Automatic,
Compiled -> True, DefaultColor -> Automatic, Epilog -> {},
Frame -> False, FrameLabel -> None, FrameStyle -> Automatic,
FrameTicks -> Automatic, GridLines -> None, MaxBend -> 10.,
PlotDivision ~> 20., PlotLabel -> None, PlotPoints -> 25,
PlotRange -> Automatic, PlotRegion -> Automatic,
PlotStyle -> Automatic, Prolog -> {}, RotateLabel -> True,
Ticks -> Automatic, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

Other Available Options
Additional Plot options include:

1.

4.

AspectRatio->number
This makes the ratio of the length of the x-axis to the y-axis number. The
default value is 1/GoldenRatio. GoldenRatio is a built-in Mathematica

constant (like E and Pi) which represents the golden ratio, (1 ++/5 ) /2~1.61803.

Frame->True

This draws a frame around the graph; the default value is False—no frame is
drawn.

Ticks->None or Ticks->{{x-axis ticks},{y-axis ticks}}

This specifies that either no tick marks be placed on either axis or tick marks be
placed on the x-axis at x-axis ticks and on the y-axis at y-axis ticks.
AxesLabel->{"x-axis label","y-axis label"}

This labels the x-axis x-axis label and the y-axis y-axis label. For
example, the command

Plot[f[x], {x,xmin,xmax,AxesLabel->{"jane","mary"}]

graphs the function £[x] on the interval [xmin,xmax]; and labels the x-axis
jane and the y-axis mary. The default for the option is that no labels are
shown.
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5. PlotLabel->{"name"}
This centers name above the graph. The default for the option is that the graph
is not labeled.

6. AxesOrigin->{x-coordinate,y-coordinate}
This option specifies that the x-axis and y-axis intersect at the point
(xcoordinate,ycoordinate). The option Axes->False specifies that the
graph is to be drawn without axes.

7. PlotRange->{y-minimum, y-maximum}
This option specifies the range displayed on the final graph to be the interval
[y-minimum,y-maximum]; PlotRange->All attempts to show the entire
graph. PlotRange->{ {xmin, xmax}, {ymin,ymax}} shows the graph on
the rectangle [ xmin, xmax] ¥ [ymin,ymax].

8. GridLines
GridLines->Rutomatic specifies that grid lines on the resulting graph are
drawn automatically, GridLines->{None,Automatic} specifies that only
horizontal gridlines be displayed, and GridLines->{{1,2,3},None} gives
vertical gridlines at x =1, 2, and 3.

Graphing Several Functions

The Plot command can also be used to graph several functions simultaneously. To
display the graphs of the functions £[{x ], g[x], and h[x] on the domain [a,b] on the same
axes, enter commands of the form Plot[{f[x],g[x],h[x]},{x,a,b},options].
This command can be generalized to include more than three functions.

EXAMPLE: Graph the functions sinx, sin2x, and sin% on the interval [0,47].
Display all three graphs on the same axes.

SOLUTION: We use Plot to graph the functions on the interval [0,4n]. The
option PlotStyle is used to display the graph of sinx in black, sin2x in gray,

and sin-;c- dashed; P1lotRange is used to specify that the y-values displayed

correspond to the interval [—g%} ; and Ticks is used to specify that the tick

marks placed on the x-axis are chosen automatically while those placed on the y-
axis are placed at -1 and 1.

Plot[{Sin[x],Sin[2x],Sin[x/2]},{x,0,4Pi},
PlotStyle->{GrayLevel{0O] ,GraylLevel[.3],Dashing[{.01}]},
PlotRange->{-3/2,3/2},Ticks->{Automatic, {-1,1}}]
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Instead of plotting several graphs simultaneously with Plot, each graph may be
generated individually and named and then the resulting graphs can be displayed
together with Show.

EXAMPLE: Sketch the graph of the circle x2-4x+y2-2y=4.

SOLUTION: We find the center and radius of the circle x2-4x+y?-2y=4 by
completing the square and obtain the equation (x-2)’ +(y—-1)° =32. Thus, the center

is (2,1) and the radius is 3. Solving this equation for y results in y = 19— (x-2)" .
Thus, a function describing the top half of the circle is given by
y,(x)=1+,/9~(x~2)", while a function describing the bottom half is given by

y,(x)=1-9-(x-2)" . Below, we define y1 and y2 to be the functions describing

the top and bottom half of the circle, respectively. We then use Plot to graph y1
and y2 on the interval [-1,5], naming the resulting graphs p1 and p2, respectively.
Neither graph is displayed since the option DisplayFunction->Identity is
included. We then use Show to display both graphs together. Since Mathematica's
default AspectRatio is 1/GoldenRatio, the resulting displayed graphics object
does not look like a circle.

Clear|[yl, y2]

yl=1+Sqrt[9-(x-2)"2];

y2=1-Sqrt[9-(x-2)"2];
pl=Plot(yl,{x,-1,5},DisplayFunction->Identity];
p2=Plot(y2,{x,-1,5},DisplayFunction->Identity];
Show[pl,p2,DisplayFunction->$DisplayFunction]
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However, when we include the option AspectRatio->1, the resulting graph looks
like a circle.

Show|[pl,p2,AspectRatio->1,DisplayFunction->$DisplayFunction])

4

Piecewise-Defined Functions

Piecewise-defined functions may also be defined and graphed with Mathematica. In the
following example, f(x) is defined in two "pieces”. Notice that Condition (/;) designates
the definition of f(x) for different domain values.

Note that <= represents a < symbol; >= represents a > symbol.

EXAMPLE: If f(x)= {_3(;2+—111";.‘xx2<00, graph f on the interval [-2,2].




2.3 Graphing Functions, Expressions, and Equations 63

SOLUTION: Entering f[x_]:=x"2+1 /; x>=0 defines f(x)=x2+1ifx20 and
entering f[x_]:=-x"2-1 /; x<0 defines f(x)=-x?-1if x<0. In this case, we
must use := when defining f, because £ [x} does not make sense unless x is a
particular number. After defining f, we use Plot to graph f on the interval [-2,2].

Clear|f]
£[x_]:=x"2+1 /; x>=0
fx_]:=-x"2-1 /; x<0
Plot[f[x],{x,-2,2}]

Functions can be defined recursively. For example, if the function £[x] is defined on
the interval [a,b], then £ can be defined for x > b with f[x_]:=f[x-(b-a)] /; x>b.
Functions of this type are useful in the study of Fourier series.

xif 0<x<1
EXAMPLE: Let g(x) be the periodic extension of the function f(x)={ 1if1<x<2
3-xif2<x<3

Graph g on the interval [0,12].

SOLUTION: We proceed as in the previous example. Entering
glx_J]:=x /; 0<=x<1 defines g(x)=xif0<x<1, entering g[x_]:=1 /;
1<=x<2 defines g(x)=1if1<x<2, and entering g[x_]:=3-x /; 2<=x<3 defines
g(x)=3-xif 2<x<3. For x>3, we define g(x)=g(x-3). We then use Plot along
with the PlotRange and Ticks option to graph g on the interval [0,12]. As in the
previous example, we must use := when defining g as g[x] does not make sense
unless x is a particular number.
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Clear|[g]

glx_]:=x /; 0<=x<1

glx_]:=1 /; 1l<=x<2

glx_]:=3-x /; 2<=x<3

glx_]:=g[x-3] /; x>=3

Plot{[g[x],{x,0,12}, PlotRange->{0,2}, Ticks->{Automatic, {1,2}}]

2

Graphs of Parametric Functions
in Two Dimensions

The function ParametricPlot is used to graph parametric curves in two dimensions.
The command

ParametricPlot[{x[t],y[t]},{t,tmin, tmax}]

plots the curve given by x=x[t] and y=y[t] from t=tmin to t=tmax.
ParametricPlot has the same options as Plot.

EXAMPLE: Use ParametricPlot to graph the circle x2 —4x+y? -2y =4.

SOLUTION: In the previous example, we saw the equation x2-4x+y2-2y=4 is
equivalent to the equation (x-2)°+(y—1)'=32. Thus, the center of the circle
x?—4x+y?-2y=4is (2,1) and the radius is 3. Parametric equations of the circle are

given by {’;Z%:ggﬁf; 0<t<2n. Below, we use ParametricPlot along with the
option AspectRatio->1 to graph the circle.

ParametricPlot[ {2+3Cos[t],1+3Sin[t]},{t,0,2Pi},AspectRatio->1]
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Arrays of graphics objects can be displayed with the command GraphicsArray as
illustrated in the following example.

EXAMPLE: For a<b, the Prolate Cycloid is the graph of the parametric equations

3at
. X =
{J;Z’;t:: Csérsltt . The Folium of Descartes has parametrization ) 13“; tt; . Graph the

y =
1+8
Prolate Cycloid and the Folium of Descartes for a=1 and b=2.

SOLUTION: After clearing all prior definitions of x and y, if any, we define x and
y and then use ParametricPlot to graph the Prolate Cycloid, naming the
resulting graphics object ppl. Note that pp1 is not displayed since the option
DisplayFunction->Identity is included.

Clear([x,y]

x[t_]=t-28in[t];

y[t_]1=1-2Cos[t];

ppl=ParametricPlot[{x{t],y[t]},{t,0,8Pi},
PlotRange->{-3/2,5} ,DisplayFunction->Identity];

Similarly, we use ParametricPlot to graph the Folium of Descartes, naming the
resulting graphics object pp2.

Clear({x,yl]

x{t_]=3t/(1+t"3);

yit_1=3t"2/(1+£"3);

pp2=ParametricPlot[{x(t],y([t]},{t,~10,10},PlotRange->{{-4,5},{-4,5}},
AspectRatio->1,DisplayFunction->Identity];

The set of graphics {ppl,pp2} can be displayed together, but not on the same
axes, with the command GraphicsArray as shown below.
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Show[GraphicsArray|[ {ppl,pp2}]]
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Three-Dimensional Graphics

As was mentioned in Chapter 1, functions of more than one variable can be defined with
Mathematica . Of particular interest are functions of two variables. The command which
plots the graph of the function f(x,y) on the rectangle [xmin,xmax] x [ymin,ymax] is

Plot3D(f[x,y],{X,xmin,xmax}, {y,ymin,ymax}]

EXAMPLE: Let f(x,y)=x>—4x+y>-2y+5. Graph f on the rectangle [0,4]x[-13].

SOLUTION: After clearing all prior definitions of {, if any, we define f and then
use P1lot3D to graph f on the rectangle [0,4]x[-1,3].

Clear[f]
flx_,y _1=x"2-4x+y"2-2y+5;
Pl°t3D[f[xIY]I{xlol4}l{YI_ll3}]

Information about the P1ot3D command, including a brief explanation of the syntax
along with a list of the associated options and their current settings is obtained with
??Plot3D or, equivalently, Information[Plot3D].
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??Plot3D

Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a
three-dimensional plot of f as a function of x and y. Plot3D[({f,
s}, {x, xmin, xmax}, {y, ymin, ymax}] generates a
three-dimensional plot in which the height of the surface is
specified by £, and the shading is specified by s.

Attributes[Plot3D] = {HoldAll, Protected}

Options([Plot3D] =
{AmbientLight -> GrayLevel[0], AspectRatio -> Automatic,
Axes -> True, AxesEdge -> Automatic, AxesLabel -> None,
AxesStyle -> Automatic, Background -> Automatic, Boxed -> True,
BoxRatios -> {1, 1, 0.4}, BoxStyle -> Automatic,
ClipFill -> Automatic, ColorFunction -> Automatic,
ColorOutput -> Automatic, Compiled -> True,
DefaultColor -> Automatic, Epilog -> {}, FaceGrids -> None,
HiddenSurface -> True, Lighting -> True,
LightSources ->

{{{1., 0., 1.}, RGBColor[l, 0, 0]},

{{1., 1., 1.}, RGBColor(0O, 1, 0]},

{{0., 1., 1.}, RGBColor[O, 0O, 1]}}, Mesh -> True,
MeshStyle -> Automatic, PlotLabel -> None, PlotPoints -> 15,
PlotRange -> Automatic, PlotRegion -> Automatic,

Plot3Matrix -> Automatic, Prolog -> {}, Shading -> True,
SphericalRegion -> False, Ticks -> Automatic,

ViewCenter -> Automatic, ViewPoint -> {1.3, -2.4, 2.},
Viewvertical -> {0., 0., 1.}, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

On several platforms, the option ViewPoint can be changed by going to the Mathematica
menu, selecting Action, then Prepare Input, and then 30 UViewPoint Selector... at
which point the following window appears.

[ 3D liewPoint Selector

2

O Spherical
@ Cartesian
Cancel

Paste

Defaults

LS

2,000 [z2(\2)
0.010 |x (\x)
-2723 |y (\y)

ViewPaint->{\x, \y, \z}

1: DiewPoint->{\x, \y, \2) v
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Various perspectives can be adjusted by scrolling as indicated above. When a
satisfactory ViewPoint is found, select Paste and the ViewPoint will be pasted into the
Mathematica notebook at the location of the cursor.

Several of these options are illustrated in the following examples.

EXAMPLE: Graph f(x,y)=x?—-4x+y?-2y+5 on the rectangle [0,4]x[-1,3].

SOLUTION: Unlike the previous example, we take advantage of ViewPoint and
BoxRatios to adjust the point from which the graphics object is viewed and the
ratios of the side lengths of the bounding box in the resulting graph.

Clear[f])

fix_,y_]=x"2-4x+y"2-2y+5;

Plot3D[f([x,y],{x,0,4},{y,-1,3},BoxRatios->{1,1,3},
ViewPoint->{3.752, 2.219, 1.137}]

In the following example, we illustrate the PlotPoints and Shading options.

EXAMPLE: If g(x,y)=xsiny+ysinx, graph g on the rectangle [0,57]x[0,5x].

SOLUTION: We first use Plot3D to graph g. The resulting graph appears
"choppy."

Clear(q]
glx_,y_l=x Sin([y]+y Sin[x];
Plot3Dp[g[x,y],{x,0,5Pi}, {y,0,5Pi}]
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The option PlotPoints->n causes Mathematica to evaluate the function at n*2 points
when plotting the graph. These n"2 points are called sample points. In the command

Plot3D[f[x,Y],{X,xmin,xmax},{y,ymin,ymax}, PlotPoints->n], the
sample points are obtained by dividing each interval [xmin,xmax] and [ymin,ymax] into n
subintervals. If different numbers are to be used in the two directions, then

PlotPoints->{nx,ny}

is used. Hence, a larger value of n (or nx and ny) yields a smoother graph. The option

Shading->False

causes Mathematica to not shade squares in the graph. Below, we use the options
PlotPoints->30 and Shading->False to indicate that 30 points be selected in the
direction of both the x and the y-coordinates, for a total of 900 sample points, and that the
resulting graph is not shaded. The resulting graph is smoother than the first.

Plot3D[g[x,y],{x,0,5Pi},{y,0,5Pi},PlotPoints->30,Shading->False]
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Graphing Level Curves of Functions
of Two Variables

The level curves of the function f(x,y) are curves in the xy-plane which satisfy the equation
f(x,y)=c where c is a constant. Mathematica graphs several of the level curves of the
function f(x,y) with the command

ContourPlot{f[x,y],{xX,xmin, xmax}, {y,ymin,ymax}].

Information[ContourPlot] or 2?2ContourPlot yields the basic syntax of the
ContourPlot command along with a list of the options for ContourPlot and their
current settings.

??ContourPlot

ContourPlot([f, {x, xmin, xmax}, {y, ymin, ymax}] generates a contour
plot of f as a function of x and y.
Attributes{ContourPlot] = {HoldAll, Protected}

Options[ContourPlot] =
{AspectRatio -> 1, Axes -> False, AxesLabel -> None,
AxesOrigin -> Automatic, AxesStyle -> Automatic,
Background -> Automatic, ColorFunction -> Automatic,
ColorOutput -> Automatic, Compiled -> True, ContourLines -> True,
Contours -> 10, ContourShading -> True, ContourSmoothing -> True,
ContourStyle -> Automatic, DefaultColor -> Automatic,
Epilog -> {}, Frame -> True, FramelLabel -> None,
FrameStyle -> Automatic, FrameTicks -> Automatic,
PlotLabel -> None, PlotPoints -> 15, PlotRange -> Automatic,
PlotRegion -> Automatic, Prolog -> {}, RotateLabel -> True,
Ticks -> Automatic, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

All contour plots are shaded unless the Contourshading->False option is employed.
The option Contours->k instructs Mathematica to use k contour levels.

EXAMPLE: Sketch several level curves of g(x,y)=xsiny+ysinx on the rectangle
[0,57]x[0,57].

SOLUTION: The three-dimensional plot of this function was given in the
previous example. Contour levels represent intersections of planes of the form
g(x,y) = constant with the surface shown in the previous example. Below we use
ContourPlot to generate various level curves of g. The option
PlotPoints->30 is included so that 30 sample points in the x and y directions
are used to create the plot.
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Clear(g]
glx_,y_]=x Sin[y]+y Sin[x];
ContourPlot([g[x,y],{x,0,5Pi}, {y,0,5Pi},PlotPoints->30]

D 2.5 5 1.5 1012.% 15

Next, we generate a similar graph except that the option Contours->20 specifies that
20 contours be included in the contour plot, Contourshading->False specifies that the
resulting contour plot not be shaded, Axes->Automatic specifies that the resulting
graph have axes, Frame->False specifies that the resulting contour plot not be enclosed
in a frame, AxesOrigin->{0, 0} specifies that the axes intersect at the point (0,0), and
the option PlotPoints->60 specifies that 60 sample points in the x and y directions are
used to create the plot.

ContourPlot[g[x,y],{x,0,5Pi}, {y,0,5Pi},Contours->20,
ContourShading->False,Axes->Automatic,Frame->False,
AxesOrigin->{0,0},PlotPoints->60]

15|
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In the previous examples, Mathematica has selected the contour levels. However, these
values can be chosen by the user with the Contours->valuelist option. This particular
feature is helpful in graphing equations.

EXAMPLE: (a) Graph several level curves of f(x,y)=x2-4x+y2-2y+5 on the
rectangle [-2,6]x[-3,5]. (b) Graph the circle x2-4x+y2-2y+5=9.

SOLUTION: After defining f, we use ContourPlot along with the option
ContoursShading to graph several level curves of f on the rectangle [-2,6]x[-3,5].

Clear(f)
flx_,y 1=x"2-4x+y"2-2y+5;
ContourPlot(f[x,y],{x,-2,6},{y,-3,5},ContourShading->False]

To graph the circle x2-4x+y2-2y+5=9, which is the same as the circle

(x-2) +(y-1)'=32 considered in previous examples, we note that the graph of
x2—4x+y?-2y+5=9 is the level curve of f(x,y) corresponding to 9. Below, we use
ContourPlot to graph this particular curve by including the option Contours->{9}
which specifies that the contour corresponding to 9 be graphed. If, for example, the option
Contours->{4,9,16,25} had been included, then the contours corresponding to 4, 9,
16, and 25 would be graphed.
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ContourPlot[£f([x,y],{x,-2,6},{y,-3,5},Contours->{9},
Frame->False,Axes->Automatic,AxesOrigin->{0,0},
PlotPoints->30,ContourShading->False]

ContourPlot can also help us investigate the behavior of some functions near
particular points.

EXAMPLE: Graph h and several level curves of h on the rectangle [-2,2]x[-2,2] if
H(x,y)= 2L

x2+y2'

SOLUTION: In the following graphs, Mathematica does not compute h[0,0]
and thus no error messages are generated even though h is undefined when x=0
and y=0. In the following code, we use P1ot3D to graph h, naming the resulting
graph ploth, and ContourPlot to graph several level curves of h, naming the
resulting graph cph. Neither graph is displayed since the option
DisplayFunction->Identity is included in each command. We then use
GraphicsArray to display the set of graphs {ploth,cph}.

Clear[h]

hix_,y_]=(x"2-y"2)/(x"2+y"2);

ploth=Plot3D(h[x,y],{x,-2,2},{y,-2,2},PlotPoints->25,
Shading->False,DisplayFunction->Identity];

cph=ContourPlot[h(x,y], {x,-2,2},{y,-2,2},Frame->False,
Axes->Automatic,AxesOrigin->{0,0},PlotRange->{~-1,1},
ContourShading->False,DisplayFunction->Identity];

Show[GraphicsArray|[ {ploth,cph}]]
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-2 -

-2

From the graph on the left, we see that h behaves strangely near (0,0). In fact, if h
had been graphed on a different rectangle, Mathematica may have sampled (0,0)
and subsequently displayed an error message. In any case, the resulting graph
would be sufficiently accurate for our purposes. From the graph on the right, we
see that all contours are approaching (0,0). In fact, near (0,0), h attains every value
between —1 and 1 and in calculus we show that (x,x})iir(}),o)h(x’ y) does not exist. B

Graphing Parametric Curves and
Surfaces in Space

ParametricPlot3D is used to graph parametric curves and surfaces in space. The
command

ParametricPlot3D{{x[t],y[t],2z[t]}},{t,tmin,tmax}]

generates the three-dimensional curve defined by x=x[t], y=y[t], and z=z[t] for
t=tmin to t=tmax and the command

ParametricPlot3D[ {x[u,Vv],y[u,v],2[u,V]},

{u,umin,umax}, {v,vmin, vmax} ]

plots the surface defined by x=x[u,v], y=y[u,v], and z=z[u,Vv] for umin<u<umax
and vmin<v<vmax.

The command Information[ParametricPlot3D] or ??ParametricPlot3D
returns a description of the ParametricPlot3D command along with a list of options
and their current settings.
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??ParametricPlot3D

ParametricPlot3D[ {fx, fy, £z}, {t, tmin, tmax}] produces a
three-dimensional space curve parameterized by a variable t which
runs from tmin to tmax. ParametricPlot3D[{fx, fy, fz}, {t, tmin,
tmax}, {u, umin, umax}] produces a three-dimensional surface
parametrized by t and u. ParametricPlot3D[{fx, fy, fz, s}, ...]
shades the plot according to the color specification s.
ParametricPlot3D[ {{fx, fy, £z}, {9x, gy, 92}, ...}, ...] plots
several objects together.

Attributes[ParametricPlot3D] = {HoldAll, Protected}

Options[ParametricPlot3D] =
{AmbientLight -> GrayLevel[0.], AspectRatio -> Automatic,
Axes -> True, AxesEdge -> Automatic, AxesLabel -> None,
AxesStyle -> Automatic, Background -> Automatic, Boxed -> True,
BoxRatios -> Automatic, BoxStyle -> Automatic,
ColorQutput -> Automatic, Compiled -> True,
DefaultColor -> Automatic, Epilog -> {}, FaceGrids -> None,
Lighting -> True, LightSources ->
{{{1., 0., 1.}, RGBColor[l, 0, 0]},

{{1., 1., 1.}, RGBColor[0, 1, 0]},

{{0., 1., 1.}, RGBColor[0, 0, 1}}}, PlotLabel -> None,
PlotPoints -> Automatic, PlotRange -> Automatic,
PlotRegion -> Automatic, Plot3Matrix -> Automatic,
PolygonIntersections -> True, Prolog -> {}, RenderAll -> True,
Shading -> True, SphericalRegion -> False, Ticks -> Automatic,
ViewCenter -> Automatic, ViewPoint -> {1.3, -2.4, 2.},
Viewvertical -> {0., 0., 1.}, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

The following examples illustrate the ParametricPlot3D command along with several
frequently used options.

X =cos2t x =tcos2t
EXAMPLE: Compare the graphs of <y =sin2t,0<t<8xn and {y=tsin2t, 0<t<8x.
z=4t/5 z=t/5
SOLUTION: In ppl we graph
X = cos2t

y=sin2t,0<t<8n
z=t/5
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and in pp2 we graph

x =tcos2t
y=tsin2t, 0<t<8m.
z=t/5

In each case, the option PlotPoints->120 is used to increase the number of
sample points to assure smooth graphs and the option Ticks->None specifies
that the resulting graphs are to be displayed without tick marks. Neither graph is
displayed since the option DisplayFunction->Identity is included. The set
of graphs {pp1,pp2} is displayed side-by-side with GraphicsArray.
ppl=ParametricPlot3D[{Cos(2t],Sin[2t],t/5},(t,0,8Pi},
PlotPoints->120,Ticks->None,DisplayFunction->Identity];
pp2=ParametricPlot3D[{t Cos[2t],t Sin[2t],t/5},{t,0,8Pi},
PlotPoints->120,Ticks->None,DisplayFunction->Identity];
Show[GraphicsArray[{ppl,pp2}]]
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The intersection of a plane and a surface is called the trace of the surface. We can use
ParametricPlot3D to help us visualize the traces of some surfaces.

EXAMPLE: Let g(x,y)=cos(x+siny). Sketch a graph of the intersection of the
graph of g with the plane (a) x=5;(b) y=6;(c) x=y;and (d) y=4n-x.

SOLUTION: We begin by using P1ot 3D to graph g on the rectangle [0,4r]x[0,4x].

Clear[g]
glx_,y_l=Cos[x+Sin[y]];
Plot3D[g[x,Y],{x,0,4Pi},{y,0,4Pi},PlotPoints->25]
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For (a), the intersection of the plane x=>5 and the xy-plane is the line x=5 which has
parametrization

The intersection of the plane x=5 and the graph of g is the set of points on the graph of g
above the line x =5 which has parametrization

x
y
z=g

x=5 X
y=t and { y
z=0 z=g

are graphed below using ParametricPlot3D for 0<t<4rn in ppl and pp2, respectively.
Similarly, for (b), the intersection of the plane y=6 and the xy-plane is the line y=6 with
parametrization

and the intersection of the plane y=6 and the graph of g is the set of points on the graph
of g above the line y =6 which has parametrization

N =
(LTI
S~

n

—

no
Ul o~

The lines

nn
O~

—_—

H

NS =
I
[ e
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These two curves are graphed in pp3 and pp4. Finally, Show is used to display the graphs
of ppl, pp2, pp3, and pp4.

ppl=ParametricPlot3D[{5,t,0},{t,0,4Pi},DisplayFunction->Identity];
pp2=ParametricPlot3D[{5,t,qg[5,t]},{t,0,4Pi},DisplayFunction->Identity];
pp3=ParametricPlot3D[{t,5,0},{t,0,4Pi},DisplayFunction->Identity];
pp4=ParametricPlot3D[{t,6,g[t,6]},{t,0,4Pi},DisplayFunction->ldentity];
Show[ppl,pp2,pp3,pp4,DisplayFunction->$DisplayFunction]

oo

For (c) and (d) we proceed in the same manner as in (a) and (b). The line of intersection of
the plane x =y with the xy-plane is the line x =y with parametrization

’

I

t
t
0

N =

the intersection of the plane x =y with g has parametrization

t
t

||<><

z=g(41)

—

8

ParametricPlot3D is used to graph these two curves in pp5 and pp6. Similarly, the line
of intersection of the plane y=4n-x with the xy-plane is the line y=4n-x with
parametrization
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x=t
y=4n—t;
z=0

the intersection of the plane y =4n-x with g has parametrization

These two curves are graphed with ParametricPlot3D in pp7 and pp8. Show is used to
display all four graphs.

pp5=ParametricPlot3D[{t,t,0},{t,0,4Pi} DisplayFunction->Identity];
pp6=ParametricPlot3D[{t,t,g[t,t]},{t,0,4Pi}, DisplayFunction->Identity];
pp7=ParametricPlot3D[ {t,4Pi-t,0},{t,0,4Pi},
DisplayFunction->Identity];
pp8=ParametricPlot3D[{t,4Pi-t,g[t,4Pi-t]}, {t,0,4Pi},
DisplayFunction->Identity];
show[pp5,pp6,pp7,pp8,DisplayFunction->$DisplayFunction]

Looco™

In Chapter 3, we will use the Method of Lagrange Multipliers to solve some problems
of the form "find the minimum and maximum values of f(x,y) subject to the constraint
8(x,y)=c. To see that the maximum and minimum values subject to the constraint exist,
we can graph f(x,y) for points (x,y) on the graph of g(x,y)=c if we know a parametrization
of the equation g(x,y)=c with ParametricPlot3D.
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EXAMPLE: Sketch the graph of f(x,y) for points (x,y) on the circle x2+y2=1 if
flx,y)=x>sin4y + y> cos3x.

SOLUTION: A parametrization of the circle x? +y? =1 is given by

X =cost
y=sint, 0<t<2m.
z=0

Thus, a graph of f(x,y) for points (x,y) on the circle is obtained by graphing

x =cost
y=sint ,0<t<2m.

z= f(cost, sint)

We use ParametricPlot3D to graph each of these curves in pp3 and pp4. We
use Show to show the graphs pp3 and pp4 together, naming the resulting graph
pp5. Note that the results of the Show command are not displayed since pp3 is not
displayed and the option DisplayFunction->$DisplayFunction is not
included in the Show command. We also use Plot3D to graph
f(x,y)=x3sin4y + y*cos3x on the rectangle [-1.5,1.5]x[-1.5,1.5], naming the resulting
graph pp6. Finally, we use GraphicsArray to display the set of graphs pp5 and
ppb.

Clear|[f]
f(x_,y_]=x"3 Sin[4y]+y"2 Cos{[3x];
pp3=ParametricPlot3D[ {Cos[t],Sin[t],0},{t,0,2Pi},
DisplayFunction->Identity];
pp4=ParametricPlot3D[{Cos[t],Sin[t],f[Cos[t],Sin[t]]},
{t,0,2Pi},DisplayFunction->Identity];
pp5=Show([pp3,pp4];
pp6=Plot3D[f[x,y],{x,-1.5,1.5},{y,-1.5,1.5},
PlotPoints->20,DisplayFunction->Identity];
Show[GraphicsArray[ {pp5,pp6}11]
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ParametricPlot3D can also be used to graph parametric equations of surfaces..

81

EXAMPLE: The quadric surfaces are the three-dimensional objects corresponding
to the conic sections in two dimensions. A quadric surface is a graph of

Ax?+By?+Cz?+Dxy+Exz+Fyz+Gx+Hy+1z+]=0.

The intersection of a plane and a quadric surface is a conic section. Several of the
basic quadric surfaces, in standard form, and a parametrization of the surface are
listed in the following table.

2 2
Use ParametricPlot3D to graph the ellipsoid with equation ;C—6+y4—+z2 =1 and

2

the hyperboloid of one sheet with equation IYE e s 1.

Name Parametric Equations
Ellipsoid
ﬁ+,yi+_zi:1 x = acos(t)cos(r)
a b y = beos(t)sin(r),
z=csin(t)

n i
——<t<=and-n<r<m.
2 2

Hyperboloid of One Sheet

Xy oz 4 x = asec(t)cos(r)
a2 b2 y =bsec(t)sin(r),
z=ctan(t)

—£<t<£and—n£r5n.
2 2
Hyperboloid of Two Sheets
x_Z__yi__z_Zzl x = asec(?t)
a2 b 2 y =btan(t)cos(r),
z = ctan(t)sin(r)

—£<t<£und—n£r£n or —E<t<§£.
2 2 2 2
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SOLUTION: A parametrization of the ellipsoid with equation %+y£+22 =1 is
given by

x =4costcosr 1r
y=2costsinr, ——<t<—and-m<r<m,
z=sint 2 2

which is graphed below with ParametricPlot3D.

Clear(x,y,z]

x[t_,r_]=4Cos(t]Cos[r];

y[t_,r_]=2Cos[t]Sin[r];

z[t_,r_]=Sin[t];
ParametricPlot3D[{x[t,r],y[t,r]},z[t,r]},{t,-Pi/2,Pi/2},{r,-Pi,Pi}])

2 2
A parametrization of the hyperboloid of one sheet with equation %1_%_ z22=11s
given by
x =4sectcosr

; T
y=2sectsinr, ——<t<—and-mn<r<m.
z =tant

Since sect and tant are undefined when = ilzt—, we use ParametricPlot3D to

graph these parametric equations on a subinterval of [—E,E}, [—E E}.

272 3'3
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Clear([x,y,z)

x[t_,r_]=4Sec(t]Cos[r];

ylt_,r_]=2Sec[t]Sin[r];

z[t_,r_]=Tan|[t];
ParametricPlot3D[{x[t,r],y[t,r],z[t,r]},{t,~-Pi/3,Pi/3},{r,-Pi,Pi}]

A Word of Caution

If we enter a PLlot command before defining a function as in the following, errors result

Plot[g[x],{x,0,1}]

Plot::plnr:
is not
Plot::plnr:
is not
Plot::plnr:
is not

CompiledFunction[ {x}, <<1>>, -CompiledCode-][x]
a machine-size real number at x = 0..
CompiledFunction[ {x}, <<1>>, -CompiledCode-][x]
a machine-size real number at x = 0.0416667.
CompiledFunction| {x}, <<1>>, -CompiledCode-][x]
a machine-size real number at x = 0.0833333.

General::stop:
Further output of Plot::plnr
will be suppressed during this calculation.

0.8

0.6

0.2

0.2 0.4 0.6 o.e 1

In this case, g has not been defined. Defining g to be a real-valued function defined on
the interval [0,1] and reentering the command eliminates the error messages.
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2.4 Exact and Approximate
Solutions of Equations

Exact Solutions of Equations

Mathematica can find exact solutions of many equations. For example, Mathematica can
find exact solutions to systems of equations and exact solutions to polynomial equations of
degree four or less. Since a single equals sign "=" is used to name objects and assign values
in Mathematica, equations in Mathematica are of the form

left-hand side==right-hand side.

The double equals sign "==" between the left-hand side and right-hand side specifies that
the object is an equation. For example, to represent the equation 3x+7=4 in Mathematica,
type 3x+7==4. The command Solve[lhs==rhs, x] solves the equation Lhs=rhs for x.
If the only unknown in the equation 1hs=rhs is x and Mathematica does not need to use
inverse functions to solve for x, then the command Solve[lhs==rhs] solves the
equation lhs=rhs for x. Hence, to solve the equation 3x+7=4, both the command
Solve([3x+7==4] and Solve( 3x+7==4,x] produce the same result.

x2-1

EXAMPLE: Solve the equations 3x+7=4, 7= 0,and x*+x2+x+1=0.

X~

SOLUTION: In each case, we use Solve to solve the indicated equation. Be sure
to include the double equals sign "==" between the left- and right-hand sides of
each equation. Thus, the result of entering

Solve[3x+7==4]
{{x -> -1}}
means that the solution of 3x+7=4 is x=-1 and the result of entering
Solve[ (x"2-1)/(x-1)==0]

{{x => -1}}

x2-1

means that the solution of =0 is x=-1. On the other hand, the equation

x—
x?+x?+x+1=0 has two imaginary roots. We see that entering

Solve[x"3+x"2+x+1==0]

{{x -> =1}, {x -> -I}, {x -> I}}
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yields all three solutions. Thus, the solutions of x*+x2+x+1=0 are x=-1 and x=+i.
Remember that the Mathematica symbol I represents the complex number i =+/~1 . In general,
Mathematica will find the exact roots of any polynomial equation of degree four or less. B

As stated above, the exception to the above rule is when using the command Solve to
find solutions of equations where inverse functions must be used.

EXAMPLE: Find a solution of sinzx-2sinx-3=0.

SOLUTION: When the command Solve[Sin[x]"2-2Sin[x]-3==0] is
entered, Mathematica solves the equation for Sin[x). However, when the
command

Solve[Sin[x]"2-2Sin[x]-3==0,x]
is entered, Mathematica attempts to solve the equation for x. In this case,
Mathematica succeeds in finding one solution.
Solve[Sin[x]"2-28Sin[x]-3==0]
{{sin[x] -> -1}, {Sin[x] -> 3}}
Solve[Sin[x]"“2-28Sin[x]-3==0,x]
Solve::ifun:
Warning: Inverse functions

are being used by Solve,
so some solutions may not

be found.
-Pi
{{x -> ---}, {x -> ArcSin[3}}}
2

We can also use Solve to find the solutions, if any, of various types of systems of
equations. Entering

Solve[{lhsl=rhsl,lhs2==rhs2}, {x,y}]
solves a system of two equations for x and y, while entering
Solve[ {lhsl==rhsl,lhs2==rhs2}]

attempts to solve the system of equations for all unknowns. In general, Solve can find the
solutions to a system of linear equations. In fact, if the systems to be solved are
inconsistent or dependent, Mathematica 's output will tell you so.
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3y—y=4 2x—3y+4z=2
EXAMPLE: Solve each system: (a) {x+ y_ 9 and (b) < 3x-2y+z=0.
y= x+y—z=1

SOLUTION: In each case we use Solve to solve the given system. For (a), the
result of entering
Solve[ {3x-y==4,x+y==2}, {x,Y}]
3 1
(x => -, y => -}}
2 2

means that the solution of
3x-y=4 (31
{x+y=2 s (x’y)_(??)'

For (b), the result of entering
Solve[ {2x-3y+4z==2,3x-2y+z==0, x+y-z==1} ,{x,y,2}]
7 9 3
{x => ==, ¥y => -, 2 => -}}
10 5 2
means that the solution of
2x-3y+4z=2
3x-2y+z=0 is (x,y,z)=(1,-9—,§) .
x+y-z=1
|

Our next example illustrates how to use Solve to find the solutions of a nonlinear

system of equations.

x2 2

EXAMPLE: Solve the systems (a) {if:li z Zi and (b) { o +z;=l (a, b greater

y=mx

than zero) for x and y.

SOLUTION: We note that the graphs of the equations 4x2+y2=4 and x2+4y2=4
are both ellipses. We use ContourPlot to graph each equation, naming the
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results cpl and cp2, respectively, and then use Show to show both graphs
simultaneously. The solutions of the system

4x2+y2=4
x2+4y2=4

correspond to the intersection points of the two graphs.

cpl=ContourPlot[4x"2+y~2-4,{x,-3,3},{y,-3,3},Contours->{0},
ContourShading->False,PlotPoints->50,DisplayFunction->Identity];

cp2=ContourPlot[x"2+4y"~2-4, {x,-3,3},{y,-3,3},Contouxrs->{0},
ContourShading->False,PlotPoints->50,DisplayFunction->Identity];

Show[cpl,cp2,Frame->False,Axes->Automatic,AxesOrigin~>{0,0},
DisplayFunction->$DisplayFunction]

Finally, we use Solve to find the solutions of the system.

Solve[ {4x"2+y~2==4,x"2+4y"2==4}]

-2 -2
{{x =2 - ! Y =-> ——————- }I
Sqrt(5] sqrt([5]
-2 2
{X > ———==—- ) Yy =% - Y
Sqgrt([5] sqrt([5]
2 -2
{X => —=-eeen )Y => mmmmmes b
sqrt(5] Sqrt([5]
2 2
{Xx => ——-—=—- y Yy > —mm—= 1}

Sqrt(5] Sqrt[5]
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For (b), we also use Solve to find the solutions of the system. However, since the
unknowns in the equations are a, b, m, x, and y, we must specify that we want to
solve for x and y in the Solve command.

Solve[{x"2/a"2+y"2/b"2==1,y==m x},{x,Y}]

abm

e s
2 2 2

Sqgqrt(b + a m ]

ab

e G )}
2 2 2

Sqrt[b + a m ]

Sgrt[b + a m ]

Sqrt(b + a m ]
[ |

Although Mathematica can find the exact solution to every polynomial equation of
degree four or less, exact solutions to some equations that Mathematica can solve may not
be meaningful. In those cases, Mathematica can provide approximations of the exact
solutions using either the N[expression] or the expression // N command.

EXAMPLE: Approximate the solutions of the equations (a) x*-2x2=1-x; and (b)
1-x2=x3.

SOLUTION: Since each of these is a polynomial equation with degree less than
five, Solve will find the exact solution of each equation. However, since the
solutions are quite complicated, we use N to obtain approximate solutions of each
equation.

For (a), entering
N[Solve[x"4-2x"2==1-x]])
{{x —>

0.182777 - 0.633397 1},
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{x ->
0.182777 + 0.633397 I},

{x -> -1.71064},

{x -> 1.34509}}

first finds the exact solutions of the equation x*-2x2=1-x and then computes
approximations of those solutions. The resulting output is the list of approximate
solutions.

For (b), entering
Solve[1l-x"2==x"3,x]//N
{{x -> 0.754878},
{x ->
-0.877439 + 0.744862 I},
{x ->
-0.877439 - 0.744862 I}}

first finds the exact solutions of the equation 1-x2=x* and then computes
approximations of those solutions. The resulting output is the list of approximate
solutions. @

Mathematica can also solve equations involving more than one variable for one variable
in terms of other unknowns.

EXAMPLE: (a) Solve the equation v= nTrz for h. (b) Solve the equation a2 +b2 =c?

for c.

SOLUTION: Since these equations involve more than one unknown, we must
specify the variable for which we are solving. Thus, entering

Solve[v==Pi r"2/h,h]
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2
solves the equation v= RTT for h. Note that if we had wanted to solve for r instead,
then we would have entered Solve[v==Pi r"2h,r]. Similarly, entering
Solve[a”“2+b"2==c"2,a]

2 2
{{a -> -8grt{-b + ¢ 1]},

2 2
{a -> Sqrt[-b + ¢ ]1}}

solves the equation a2+b2=c? fora. B

Numerical Approximation of Solutions
of Equations

When solving an equation is either impractical or impossible, Mathematica provides
several functions to approximate roots of equations. Some of these commands include
FindRoot and NRoots.

NRoots numerically approximates the roots of any polynomial equation. The
command NRoots[polyl==poly2,x] approximates the solutions of the polynomial
equation polyl==poly2, where both poly1l and poly2 are polynomials in x.

FindRoot attempts to approximate a root to an equation provided that a "reasonable”
guess of the root is given. The command FindRoot[lhs==rhs, {x,firstguess}]
searches for a numerical solution to the equation lhs==rhs, starting with
x=firstguess. One way of obtaining firstguess is to graph both 1hs and rhs with
Plot, find the point(s) of intersection, and estimate the x-coordinates of the point(s) of
intersection. Thus, FindRoot works on functions other than polynomials. Moreover, to
locate more than one root, FindRoot must be used several times. NRoots is easier to use
when trying to approximate the roots of a polynomial.

EXAMPLE: Approximate the solutions of x5+x¢ —4x*+2x2-3x~7=0.

SOLUTION: Since x5+x*—4x3+2x2-3x—7=0 is a polynomial equation, we may
use NRoots to approximate the solutions of the equation. Thus, entering

NRoots [x"5+x"4~4x"3+2x"2-3x-7==0,x]
x == -2.74463 ||
x == -0.880858 }|

x == 0.41452 - 1.19996 I ||
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»
il
L}

0.41452 + 1.19996 I ||

X 1.79645

approximates the solutions of x5+x*-4x3+2x2-3x-7=0.

FindRoot may also be used to approximate each root of the equation. However,
to use FindRoot, we must supply an approximation of the solution. Note that the
solutions of x5+x*—4x3+2x2—-3x-7=0 correspond to the values of x where the
graph of x5+x4—4x3+2x?-3x -7 intersects the x-axis. Below we use Plot to graph
XS+ x4—4x3+2x2-3x-7.

Plot[x"5+x"4-4x"3+2x"2-3x-7,{x,-3,2}]

20

[~

-3 -2 -1 ~—-~___\j__)»,///
10

Note that the graph intersects the x-axis when x=-25, x=-1, and when x~15.
We use these values as initial approximations of each solution. Thus, entering

FindRoot [x"5+x"4-4x"3+2x"2-3x-7, {x,-2.5}]
{x -> -2.74463)
approximates the solution near —2.5, entering
FindRoot[x"5+x"4-4x"3+2x"2-3x-7, {x,-1}]
{x -> -0.880858}
approximates the solution near -1, and entering
FindRoot[x"5+x"4-4x"3+2x"2-3x-7,{%x,2}]
{x -> 1.79645)
approximates the solution near 1.5.

Note that FindRoot may be used to approximate complex solutions as well.
Thus, entering

FindRoot[x"5+x"4-4x"3+2x"2-3x-7, {x, .5+1I}]
{x => 0.41452 + 1.19996 I}

approximates the solution near 0.5+i. Of course, finding an initial estimation of a
complex root may be difficult. B

91
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EXAMPLE: Approximate the positive solutions of the equation cosx~x=0.

SOLUTION: In order to approximate the roots of the equation cosx-x=0,
FindRoot must be used since cosx—x=0 is not a polynomial equation. Note that
since cosx <1 for all values of x, cosx <x when x>1. Thus, all positive solutions of
the equation cosx—x =0, if any, must be contained in the interval [0,1]. Therefore,
to obtain initial approximations of the solution(s) of cosx-x=0, we graph cosx-x
on the interval [0,1].

Clear[f]
fx_)=Cos[x]-x
Plot[f([x],{x,0,1}]

-x + Cos[x]

0.8
0.6
0.4
0.2

0.2 0.4 0.6 \ 1
-0.2}
-0.4

Notice that cosx—x=0 near 0.7. Thus, we use 0.7 as our initial approximation in
the FindRoot command below.

FindRoot [f[x])==0, {x,.7}]

{x -> 0.739085}
|

FindRoot can also be used to approximate solutions to systems of equations. Although
NRoots can solve a polynomial equation, NRoots cannot be used to solve a system of
polynomial equations. When approximations of solutions of systems of equations are
desired, use either Solve and N together, when possible, or FindRoot.

EXAMPLE: Approximate the solutions to the system of equations

xX2+dxy+y?=4
5x2—4xy+2y? =8’
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SOLUTION: We begin by using ContourPlot to graph each equation. From the
resulting graph, we see that x2+4xy+y?=4 is a hyperbola, 5x2-4xy+2y>=8 is an
ellipse, and there are four solutions to the system of equations.

cpl=ContourPlot[x"2+4x y+y~2-4,6{x,-4,4},{y,-4,4},
Contours->{0},PlotPoints->50,
ContourShading->False,DisplayFunction->Identity];

cp2=ContourPlot[5x"2-4x y+2y~2-8,{x,-4,4},{y,-4,4},
Contours->{0},PlotPoints->50,
ContourShading->False,DisplayFunction->Identity];

Show[cpl,cp2,Frame->False, Axes->Automatic,
AxesOrigin->{0,0},DisplayFunction->$DisplayFunction]

4

-4 -2 2 4

-4

From the graph we see that possible solutions are (0,2) and (0,-2). In fact,
substituting x=0 and y=-2 and x=0 and y=2 into each equation verifies that these
points are both exact solutions of the equation. The remaining two solutions are
estimated with FindRoot.

FindRoot [ {x"2+4x y+y~2==4,5x"2-4x y+2y~2==8},{x,1},{y,-25}]
{x -> 1.39262, y -> 0.348155}

FindRoot[ {x"2+4x y+y~2==4,5x"2-4x y+2y~2==8},{x,~1},{y,-.25}]
{x -> -1.39262, y -> -0.348155}

In addition to the commands FindRoot and NRoots, NSolve can also be used to
approximate roots of some equations.

EXAMPLE: If n(x)=x>-8x2+19x-12 and k(x):%x2 —x—%, approximate the

solutions of the equation h(x)=k(x) using NRoots and NSolve.
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SOLUTION: After clearing all prior definitions of h and k, if any, we use NRoots
to approximate the solutions of the equation.

Clear[h, k]
h[x_]=XA3—8xA2+19x-12
k{x_]=1/2x"2-x-1/8
NRoots[h[x]==k[x], x]
2 3
-12 + 19 x - 8 x + x
2
1 X
(=) - x + --
8 2
x == 0.904363 ||

x == 2.66088 || x == 4.93476
As expected, the same results are obtained with NSolve.
NSolve[h[x]==k[x],x]
{{x -> 0.904363},
{x -> 2.66088},

{x -> 4.93476}} W

Application: Intersection Points of Graphs
of Functions

In several later examples, we will need to locate the intersection points of graphs of
functions. Here we discuss several methods to locate the intersection points of graphs of
functions.

EXAMPLE: If h(x)=x"-8x2+19x-12 and k(x)= %xZ —x— %, find the x-coordinates

of the points where the graphs of h and k intersect.

SOLUTION: Notice that the x-coordinates of the intersection points satisfy the
equation h(x)=k(x). Consequently, to locate the intersection points, it is sufficient
to solve the equation h(x)=k(x). Although this step is not necessary to solve the
problem, we first graph h and k and notice that h and k intersect three times.

Clear[h, k]

h[x_]=x"3-8x"2+19x-12;

kix_]=1/2x"2-x-1/8;
Plot[{h[x],k[x]},{x,0,7},PlotStyle->{GrayLevel (0] ,GrayLevel[.5]}]
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N B O

-2
-4

Since h(x)=k(x) is a polynomial equation of degree three, Mathematica can
compute exact values of all three roots. However, the roots are complicated so we
approximate the solutions. Moreover, since h(x)=k(x) is a polynomial equation we
use the command NRoots[h[x]==k[x],x]. Using NSolve[h[x]==k[x],Xx],
instead, produces the same result.

NRoots [h[x]==k[x],x]
x == 0.904363 ||
X == 2.66088 || x == 4.93476

In the following example, the exact solutions of the equation h(x)=k(x) are
computed with the command Solve[h[x]==k([x]] and named exactsols.
Note that since a semicolon ";" is included at the end of the command,
Mathematica suppresses the resulting output (it is very long!). However, an

abbreviated three-line portion of exactsols is displayed using Short.

exactsols=Solve[h[x]==k[x]];
Short[exactsols, 3]

17 98 2
{{x->=--4+ - ——_——————— — — - — —_ — — +
6 1/3
3 (9664 + 192 I Sqrt[49755])

1/3
(9664 + 192 I Sqrt[49755])
————————————————————————————— Yo {<<1>>},

17 (1 + I sqgrt[3)) <<1>>
{X => == + <<K1I>> = e }}
6 1/3
48 2

Notice that the resulting solution is expressed as a list. Lists are discussed in detail
in Chapters 4 and 5. We can obtain particular solutions using Part "[[...]]" In
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general, the command Solve([lhs==rhs][[1]] (as illustrated below) yields the
first element of the list of solutions, Solve[lhs==rhs][[2]] yields the second
element of the list of solutions, and Solve[lhs==rhs)[[j]] yields the jth
element of the list of solutions.

Solve[h[x}==k[x]][[1]]
17 1/3
{x => == + (98 2 ) /

6

(3 Power([9664 +
192 T Sqrt[49755],
1/3]) +

Power[9664 +

192 I Sqrt[49755], 1/3]

1/3
/ (24 2 )y

In other cases, when exact solutions cannot be obtained and the equation to be solved is
not a polynomial equation, we use FindRoot to estimate the intersection points.

EXAMPLE: Locate the points where the graphs of f(x)=et:/¢" cos(i) and
n

glx)= % +sinx3/2 intersect.

SOLUTION: Notice that the x-coordinates of the intersection points satisfy the
equation f(x)=g(x). Consequently, to locate the intersection points, it is sufficient to
solve the equation f(x)=g(x). Since this problem does not involve polynomials, we
must first graph f and g and notice that they intersect twice. On a color monitor,
the graph of f would be in red and the graph of g would be in blue.

Clear{f,q]

f[x_]=Exp[-(x/4)"2] Cos[(x/Pi)];

glx_}=8in[x"(3/2)]1+5/4;
Plot[{f[x],g[x]},{x,0,5},PlotStyle->{RGBColor[1,0,0]),RGBColor([0,0,1]}]
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Mathematica cannot solve f(x)=g(x) exactly. Since f(x)=g(x) is not a polynomial
equation, the command NRoots cannot be used to numerically approximate the
roots. However, we can use the command FindRoot to approximate each root
provided we have a "good" initial approximation of the root. To obtain a "good"
initial approximation of each root on a computer with a notebook interface we
proceed as follows.

[J==————— IntersectionPoints =———=5) 1. The result of defining
fiag{; f;ﬂ/; E 7f/'-; : & and then graphing f and
£[x_]=Exp[-(x/4)"2] Cos[(x/Pi)}]: g is shown to the left on

a computer with a

g[x_]=Sin[ x~(3/2)]+5/4;
Plot[{f[x].gl[x]}.{x.0.5},
notebook interface.

PlotStyle->»{RGBColor[1.0.0].
RGBColor[0.0.1]}]

To approximate the points of
intersection, first move the
cursor within the graphics cell
and click once. Notice that a
box appears around the graph
as shown in the figure below.

""""

("Ll Qulf 20/ =
~-Graphics-

{—-' T 1100% w]&
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IntersectionPoints

{eoceld inf t 2=
Clear[f.g]
flx_]=Exp[-(x/4)"2] Cos[ (2/Pi)]:
glx_]=5in[ x~(3/2)]+5/4;
Plot[ {f[x].g[x]}.{x.0.5},
PlotStyle->{RGBColor[1.0,0].
RGBColor[0,0.1]}]

e \ / \

(Locsl) Gutl 20/ =
-Graphics-

{252, 0.465}

[100% w[@[ ]

el

Sl IntersectionPoints

rLocald inf t 7f =
Clear[f.g}
f[x_ )=Exp[-{x/4)"2] Cos[(x/Pi)]:
glx_J)=5in[x~(3/2)]+b74:;
Plot[ {f[x].g[x]}.{x.0.5}.
PlotStyle->{RGBColor[1.0,0].
RGBColor[0.0.1]}]

A \ /R

{Lacal) Qutf 2o/ =
-Graphics-

{2.99,0.332}

loo% w[a[]

Tola

2. Next, press and hold
down the 8-key; as you
move the cursor within
the graphics cell, notice
that the thermometer at
the bottom of the screen
has changed to ordered
pairs approximating the
location of the cursor
within the graphics cell.

When the cursor is placed
over the point of intersection,
the corresponding coordinates
are displayed in the lower left-
hand corner of the screen.

3. Similarly, an approxi-
mation of the second
intersection point is
obtained by placing the
cursor over the point of
intersection.

We then use FindRoot twice to compute an approximation of each solution:

FindRoot [f[x]==g[x], {x,2.52}]

{x -> 2.54105}
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£[2.54105]//N
0.461103
FindRoot [£[x]==g[x],{x,2.99}]
{x -> 2.9746}
£(2.9746]1//N

0.336066

We conclude that one intersection point is approximately (2.54105,0.461103) and the
other intersection point is approximately (2.9746,0.336066). Bl
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Calculus

Chapter 3 introduces Mathematica's built-in calculus commands. The examples used to
illustrate the various commands are similar to examples routinely done in first-year
calculus courses.

3.1 Computing Limits

One of the first topics discussed in calculus is that of limits. Mathematica can be used to
investigate limits graphically and numerically. In addition, Mathematica uses the
command

Limit[expression,x->a]
to find the limit of expression as x approaches the value a, where a can be a finite

number, positive infinity (Infinity), or negative infinity (-Infinity). The "->" is
obtained by typing a minus sign "-" followed by a greater than sign ">".

EXAMPLE: Use a graph and table of values to investigate lim sindx

X

101
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SOLUTION: Below, we use Clear to clear all prior definitions of f, define

flx)= sin3x , and then graph f on the interval [-r,n].
X
Clear[f]

f[x_]=8Sin(3x]/x;
Plot[f[x],{x,-Pi,Pi}]

RN

LN

1\/ 3

o

3 A\\J/l

From the graph, we might, correctly, conclude that lim SIN3Y _ 3. Further evidence
that lim SN3Y _ 3 can be obtained by computing the values of f(x) for values of x
X X

"near” 0. In the following we define xvals to be a table of 5 "random" real
numbers. Note that the first number in xvals is between —1 and 1, the second

between L and i, and so on.
10 10

xvals=Table[Random[Real, {-10"(-n),10"(-n)}],{n,0,5}]
{0.371263, 0.0587702, -0.00452615, 0.0000945869,

-6
0.0000788866, -5.81236 10 }

We then use Map to compute the value of f(x) for each x in xvals:
fvals=Map[f, xvals]
{2.41709, 2.98448, 2.99991, 3., 3., 3.}

The x-values along with the corresponding y-values are shown in TableForm,
below:

pairs=Table[ {xvals[[i]],fvals[[i]]},{1,1,6}];

TableForm(pairs]
0.371263 2.41709
0.0587702 2.98448
-0.00452615 2,99991

0.0000945869 3.

0.0000788866 3.
-6

-5.81236 10 3.



3.1 Computing Limits 103

From the table of values, above, we might again correctly deduce that
. sin3x
lim

-0 X

=3. Of course, these results do not prove that lim SIN3Y _ 3 put they are
X x

sin3x

helpful in convincing us that lim
X X

=3.0

Computing Limits

Some limits involving rational functions can be computed by factoring the numerator and
denominator.

2
EXAMPLE: Compute lim A Dx72
51272~ 47x — 14x2

2
SOLUTION: Below we define frac1l to be the rational expression 22+ 2xHT2
72 - 47x — 14x2
2
We then attempt to compute the value of 2X1 X472

when x=—2 but this
72 —47x —~14x2 2

value is undefined.
fracl=(2x"2+25x+72)/(72-47x-14x"2)

2
72 + 25 x + 2 x

72 - 47 x - 14 x

fracl /. x->-9/2

1
Power::infy: Infinite expression - encountered.
0
Infinity::indet:
Indeterminate expression 0 ComplexInfinity
encountered.
Indeterminate

Factoring the numerator and denominator below with Factor, Numerator, and
Denominator, we see that

2x2+25x+72 . (x+8)(2x+9) . x+8
im ————————= lim = lim .
91272 ~47x ~14x2  =9/2(8-7x)(2x+9) =-9/28-T7x
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The fraction is named frac2 and the limit is evaluated by computing the

value of frac2 when x=—%.

Factor[Numerator|fracl]]
Factor[Denominator[fracl]]

(8 + x) (9 + 2 x)
(8 ~ 7 x) (9 + 2 x)

frac2=Factor[fracl]

frac2/. x->-9/2

7

79

2
We conclude that lim - t20X*+72 _ 7
9272 —47x-14x* 79

We can also use the command Limit to evaluate frequently encountered limits as
illustrated in the following example.

EXAMPLE: Calculate the indicated limits.

x2-7x-20 sinx

(a) lim —é——————————, (b) lim ;
~-5/32]x24+14x-35 =0 x
2 - 2 3
(©) lim 50x +95x+24; and (d) lim 1+4x-16x2 —64x .
xovee DOx2 +77x +72 o 20x2+13x+2

SOLUTION: In each case, we use Limit to evaluate the indicated limit. Entering
Limit[(3x°2-7x-20)/(21x"2+14x-35) ,%x->-5/3]

17

56

. 3x2-7x-20 17 . .
computes lim —————=—; entering
—~-5/321x2+14x-35 56

Limit[Sin([x]/x,x->0]

1
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. sinx .
computes lim——=1; entering
-0 x

Limit[ (50x"2+95%+24)/(20x"2+77x+72) ,x->Infinity]

5

2

. 50x2+95x+24 5 .
computes lim—————— ==; and entering

x4 20x2 + 772472 2
Limit[ (1+4x-16x"2-64x%"3)/(20x"2+13x+2),x->-Infinity]
Infinity

. 1+4x-16x2 —64x°
computes lim =
= 20x2+13x+2

+oo. @l

In differential calculus, we learn that the derivative of f at x is given by

f'(x) = IJIEI_——f(x-Fh}z_f(x) ’

-

provided the limit exists. The Limit command can also be used along with Simplify to
assist in determining the derivative of a function by using the definition of the derivative.
This is illustrated in the following example. (This example also shows that an expression
can be assigned any name, as long as that name is not a built-in Mathematica function or
constant. Remember: Since every built-in Mathematica object begins with a capital letter,
we have adopted the convention that all user-defined objects will be named using
lowercase letters.)

EXAMPLE: Compute and simplify (a) —g(x—leﬂ and (b) l,in(}—‘g%g(—x) if

g(x)=x3-3x2+x+1.

SOLUTION: After defining g, we compute and simplify Mz_‘gﬁ, naming the
result quog.

Clear|[g]
glx_]1=x"3-3x"2+x+1

2 3
1 +x~3x +x
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quog=Simplify[(g{x+h}-g[x])/h]

2 2
1-3h+h -6x+3hx+3x

g(x+h)-g(x)

. . The result, g’(x), is named dg.

Next, we use Limit to compute lhin;l

dg=Limit [quog, h->0]

2
1 -6x+3x

Last, we use Plot to graph g(x) and g’(x). The graph of dg (g’(x)) is dashed; the
graph of g(x) is in black.

Plot[{g[x],dg},{x,-1,3},PlotStyle->{GrayLevel[0],Dashing[{.01,.01}]}]

-4 .

The next example illustrates how several Mathematica commands can be combined in a
single statement to obtain the desired result.

EXAMPLE: Compute and simplify (a) _f(x_+}%:_f(_xl and (b) lhliroxw if

S
f(x)—\/; Vx

SOLUTION: Below we define f. In this case, we define f by entering
f{x_]=1/Sqgrt[x]1+Sqrt[x]. However, entering £[x_]1=x"(-1/2)+x"(1/2)
would yield the same result, but in this case we must be particularly careful to
enclose parentheses around the exponents. For example, entering x*-1/2 returns
1

—x-1 :-1_¢x—1/2 =—.

2 2x Jx
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f[x_)=1/8qrt[x]+sqrt([x]

——————— + Sqgrt[x]
Sqrt[x]

Then, proceeding in the same manner as in the previous example, we define quof

o be JHH= 1)

. Together is used to express the result as a combined fraction.

quof=Together[ (f[x+h]-£[x])/h]

3/2
(Sgrt[x] + h Sqgrt[x] + x - Sqrt[h + x] -

x Sqrt[h + x]) / (h Sqrt(x] Sgrt[h + x])

Limit is used to compute f/(x)= lim@]ijﬂ and the result is named df.

h—>0

df=Limit [quof,h->0]

Note that the square brackets must be properly nested in order to correctly
perform the combined operations.

Last, we use Plot to graph f(x) and f/(x)(df). To see that f has a minimum when
x=1, we use the option PlotRange->{-8, 8} to indicate that the range displayed
corresponds to the interval [-8,8].

Since division by 0 is undefined, Mathematica produces several error messages
because the Plot command instructs Mathematica to graph the functions on an
interval containing 0. We do not display all the error messages generated here.
Nevertheless, the resulting graphs are displayed correctly. The graph of f(x) is in
black and the graph of f(x)(df) is dashed.

Plot[{f[x],df}, {x,0,3),PlotRange->{-8,8},
PlotStyle->{GraylLevel[0] ,Dashing{{.01,.01}]1}]

Power::infy: Infinite expression -------- encountered.
Sqrt([0.]

Power::infy: Infinite expression —---—--- encountered.
Sqrt[0.]
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B R O W

-2 ia
-4 K
-6

-8

One-Sided Limits

In some cases, Mathematica can compute certain one-sided limits. The command

Limit[f[x],x~>a,Direction->1]

attempts to compute lim f(x) while

Limit[f[x],x->a,Direction->-1]

attempts to compute lim f(x).

EXAMPLE: Compute (a) lirgll and (b) lirg11.
-0 x -0t x

SOLUTION: Entering

Limit[1/x,x->0,Direction->1]

-Infinity
.1 .
computes lim—=—- and entering
x=0" x

Limit[1/x,x->0,Direction->-1}

Infinity

.1
computes lim —=+e. M
x>0+ x

However, even with this option, Mathematica cannot compute many familiar one-sided

H=1 and limm=—1. But, Mathematica is unable to compute
x

limits. For example, lim
x—0+ =00 x

either of these limits:
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Limit[Abs[x]/x,x~->0,Direction->1]
Limit[(Abs(x]/x,x->0,Direction->-1}

Abs[x]
Limit[===-== , X => 0, Direction -> 1]
X
Abs[x]
Limit[-===—= , X => 0, Direction -> -1)
X

A Word of Caution

Results obtained with Limit should be questioned. In some cases, Mathematica returns
surprising, or even incorrect, results. For example, Mathematica can compute lim xe~ =0

Limit[{x Exp{-x],x->Infinity]
0
but cannot compute lim x%-= =0.
Limit[x"5 Exp[-x],x->Infinity]

5
x
Limit[--, x =-> Infinity]
X
E

Similarly, Mathematica cannot compute more difficult limits like lim e—x' =0.

X+ xl
Limit[Exp[x]/x!,x->Infinity]

Series::esss:
Essential singularity encountered in
1 3
Gamma[~- + 1 + O[x] 1.
bS
X
E
Limit[--, x -> Infinity]
X!

In these particular cases, the command NLimit contained in the package NLimit which is
located in the NumericalMath folder (or directory) can be used to compute the limits.

After loading the NLimit package, we use NLimit to calculate each limit. In each case, we
interpret the results to mean that the value of each limit is 0.
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<<NumericalMath NLimit"
NLimit[Exp[x]/x!,x->Infinity]

0.
NLimit[x"5 Exp[-x],x->Infinity)

-19
1.35525 10

3.2 Differential Calculus

Calculating Derivatives of Functions
and Expressions

If we are given a differentiable function f(x), Mathematica can compute the derivative of
f(x) in at least two ways once f(x) has been properly defined using Mathematica.

1. The command £' [ x] computes the derivative of £ [x] with respect to x.

2. The command D[ £[x ], x] computes the derivative of £ [x] with respect to x.

3. The command D[ £[x],{%,n}] computes the nth derivative of £[x] with
respect to x.

4. The command D[expression, variable] computes the derivative of
expression with respect to variable.

5. The command D[expression, {variable,n}] computes the nth derivative
of expression with respect to variable.

Other ways Mathematica can compute derivatives of functions and expressions are
discussed in Section 3.6.

EXAMPLE: Calculate the indicated derivatives:
d d, . .\
(a) E(2x2—7x—4), (b) E(smx),

d 2 2 d{x2+2x+1
© L+ eesy); @ E(ﬁj
(e) f(x) if f(x)=x%2; and
(f) g'(x) if g(x)=xtan 1 x

SOLUTION: For (a)-(d), we use D to compute the derivative of the indicated
expression. Generally, the results from D are not expressed in simplified form.
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(a)
D[2x"2-7x~-4,Xx]
-7 + 4 x
(b)
D[Sin[x],x]
Cos[x]
(c)
D[ (3x+4)"2(x+5)"2,x]

2 2
6 (5 +x) (4+3x)+2(5+x) (4+3x)

(d)
D[ (x"2+2x+1)/(x"2+3x),x]

2
(3 +2x) (1 +2x+x) 2 + 2 x

(3 x +x) 3 x + x

For (e) and (f), we first clear all prior definitions of f and g, define f and g, and then
compute the indicated derivatives.

Clear|f,g]
f[x_]=x"3 Exp[-2x];
g[x_]=x ArcTan[x];

£'[x]
2 3
3 x 2 x
2 x 2 x
E E
D[f[x],x]
2 3
3 x 2 x
2 x 2 x
E E
g'[x]
b4

—————— + ArcTan(x]
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Dig[x],x]

—————— + ArcTan[x]

Note that the results using D and ' are the same, as should be expected. B

Mathematica knows the familiar rules of differentiation like the product rule, quotient
rule, and chain rule. After clearing all prior definitions of f and g, below, we compute the
derivative of f(x)g(x), f(x)/ g(x), and f(g(x)). Note that we use Together to see the familiar
form of the quotient rule.

Clear(f,q]
D[f[x] g[x],x]

glx]l £'[x] + £[x] g'[x]
Together [D[£[x]/g[x],x]]

glx1 £'[x] - £{x] g'[x]

DIfig[x]],x]

£rigix1] g'(x]

The next example illustrates how to compute higher order derivatives.

EXAMPLE: Compute the indicated derivatives.
(a) i(x“ —2x3—=36x2 +162x +24);
dx?

(b) %(J{2 +2cosx);
(c) h”(x) if h(x)=(2x+1)(3x2—4x+2); and

sin-1x

(d) F7(x) if fix) =2

_xz_
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SOLUTION: For (a) and (b) we use D to compute the desired derivative.
(a)
D[(x"4-2x"3-36x"2+162x+24, {x,2}]

2
-72 - 12 x + 12 x

(b)
D[x"2+2Cos[x], {x,3}]
2 Sin([x]

For (c) and (d), we first clear all prior definition of h and f and then use ' ' and
' 1, respectively, to compute the desired derivatives.

Clear([h, f]

hix_]=(2x+1) (3x"2-4x+2);
f[x_]=Arcsin[x]/(x"2-1);
h''[x]

6 (1L +2x) +4 (-4 + 6 x)

We use Together to simplify f”(x) as the output obtained when entering
f£'''[x] isverylong.

Together[£f'''[x]]

2 4 2
(-7 - 19 x + 26 x - 24 x Sgrt[l - x ] ArcSin(x] -

3 2
24 x Sqrt[l - x ] ArcSin[x}) /

2 2 4
(Sgrt(l - x ] (-1 + x ) )

Note that using D in the same manner as in (a) and (b) would have produced the
same results. B
Tangent Lines

If f is a function for which f(x,) exists, then f/(x,) is the slope of the line tangent to the
graph of f at the point (xo, f(xo)). An equation of the line tangent to the graph of f at the

point (xo, fx, )), in point-slope form, is given by

y—f(xo) =f'(x0)(x—x0) '
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while a function of x, which can be graphed by Mathematica, is given by

y =f’(x0)(x—x0)+f(x0) :

EXAMPLE: Find an equation of the line tangent to the graph of
f(x)=2x3+3x2-12x+7 when x=-1.

SOLUTION: After clearing all prior definitions of f, we define f and then compute
f(x)-

Clear(f]

fx_]=2x"3+3x"2-12x+7;

£ [x)

2
-12 + 6 x + 6 x

The slope of the line tangent to the graph of f when x=-11is f/(-1).
£10-1]
-12
Finally, to find an equation of the desired tangent line, we must compute the value
of f(-1).
£[-1]
20
Thus, in point-slope form, an equation of the line tangent to the graph of f when
x=-1is

y—-20=-12(x~(-1)).

We graph f along with the tangent line below.

plotf=Plot[£f[x],{x,-4,3},DisplayFunction->Identity];
plotl=Plot[f'[-1] (x+1)+20,{x,~4,3},DisplayFunction->Identity];
Show[plotf,plotl,DisplayFunction->$DisplayFunction]
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40

20

-4 -3 -2 -1
-20

Note that the option DisplayFunction->Identity is used to prevent
plotf, the graph of f, and plotl, the graph of the tangent line, from
being displayed immediately while in the Show command,
DisplayFunction->$DisplayFunction is used so that the graphs are
displayed. W

///

We can also use Mathematica to locate the values of x for which the line tangent to the
graph of a particular function has certain properties. For example, the values of x for
which the line tangent to the graph of f at the point (x,f(x)) is horizontal are the solutions of
the equation f’(x)=0.

EXAMPLE: Find the values of x for which the line tangent to the graph of
h(x)=

2 .
x_x;_-i is horizontal.

SOLUTION: As in the previous examples, we begin by clearing all prior
definitions of h and then define h and compute #'. Together is used so that ' is
expressed as a single fraction.

Clearfh]
h[x_]=(x"2-x+4)/(x-1);
Together[h'[x]]

(-1 + x)

The values of x for which the tangent line is horizontal are the solutions of the
equation #'(x)=0. We can compute these numbers by either factoring the
numerator of k' or using Solve.
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Factor[h'[x]]

(-3 + x) (1 + x)

(-1 + x)
Solve[h’ [x]==0]
{{x => -1}, {x -> 3}}

We conclude that the line tangent to the graph of h is horizontal when *=-1 and
x=3. These results are confirmed by examining the graph of h shown below.

Plot[h[x],{x,-4,6}]

Locating Critical Points
and Inflection Points

Since derivatives of functions are expressions, algebraic procedures can be performed on
them. Hence, in addition to finding the zeros of a function, f, Mathematica can also be used
to locate the critical points and inflection points of f. The critical points correspond to
those points on the graph of f where the tangent line is horizontal or vertical; the inflection
points correspond to those points on the graph of f where the graph of f is neither concave
up nor concave down.

EXAMPLE: Find the critical points and inflection points of f(x) if

() f(x)=(1+5%-3x7)(x7 +x-2) and (b) f(x)= (;:52) '

SOLUTION: For (a), we first clear all prior definitions of f, define f, and then
compute f* and f”, naming the results df and ddf, respectively.
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Clear[f]
flx_1=(1+5x-3x"2) (x"2+x-2);
daf=f"'[x]
ddf=f"'"'[x]
2 2
(1 +2x) (1 +5x-3x)+(5-262%x) (-2+x+x)

2
2 (5-6x) (1 +2x)+2(1+5x-3x) -
2
6 (-2 + x + x)

Next, we must solve the equations f’(x)=0 and f”(x)=0. We first try to factor f’
and f”.

Factor[df]
Factor([ddf]

2
3 (-3 +2x) (1-2x-2%x)
12 (1 - x) (2 + 3 x)

From the above, we see that one solution of f(x)=01is x= %, while the other two
solutions are the two solutions of the equation 1-2x—-2x2=0. On the other hand,

we see that the two solutions of f”(x)=0 are x=1and x= —%. To obtain the exact

solutions of the equation f’(x) =0, we use Solve. When representing an equation
with Mathematica, be sure to include the double equals (==) between the left- and
right-hand side of the equation. The resulting list is named critnums, and
approximations of the solutions are obtained with N.

critnums=Solve [df==0]

Nicritnums]

3 -2 - 2 sqrt[3] -2 + 2 5qrt[3]
{{x->-} {x->»——-cmmn D R }}
2 4 4

{{x -> 1.5}, {x -> -1.36603}, {x -> 0.366025}}

The critical points and inflection points are then obtained by evaluating f when

eo3 o2 2B g 2203
2 4 4

and when x=1and x= —% , respectively.
{3/2,£(3/2])

{(-2-2Sqrt[3])/4,Simplify[f[(-2-2Sqrt[3])/4]]}
{(-2+25qrt[3])/4,Simplify[£[ (-2+2Sqrt[3])/4]11}

{1,£{1]}

(-2/3,£[-2/3]}
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3 49
{_l --}
2 16
-2 - 2 Sqgrt[3] 27
{~mmme e , -— + 6 Sqrt[3]}
4 4
-2 + 2 Sqrt[3] 27
I , —= - 6 Sqgrt(3]}
4 4
{1, 0}
2 220
(_(-)I -—=}
3 27

Thus, the critical points are

[3 9), [_22_@347_6@ d[_z_fﬁ_izm]

2716 4

while the inflection points are

2 220

(1,0) and (—5,7) .

For (b), we again first clear all prior definitions of f, define f, and then compute
and simplify f” and f”.

Clear[f]
£[x_]=(x+2)/(x+5)"2;
Together[f'[x]]
Together[f''[x]]

(5 + x)

In each case, we can see that the solution of f/(x)=0 is x=1 while the solution of
f”(x) =0 is x=4. Below, we calculate f(1) and £(4).

fi1]
fr4]
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We conclude that the only critical point of f is (1%) and the only inflection point
is (4,1). n
27

Using Derivatives to Graph Functions

Mathematica is of great use in graphing functions. Unfortunately, if we have no idea of
how the graph of a function ought to look or desire to see particular features of the graph,
"randomly" choosing an interval on which to graph a particular function yields
unsatisfactory results. In these cases, information supplied by the derivative can help us
locate an interval on which the graph of f will show the features we wish to see. In
particular, the first and second derivatives of a function give us the following information:

a. The values of x for which f is increasing are the same as the values of x for
which £ is positive.

b. The values of x for which f is decreasing are the same as the values of x for
which f’ is negative.

c¢. The values of x for which f is concave up are the same as the values of x for
which f” is positive.

d. The values of x for which f is concave down are the same as the values of x for
which f” is negative.

EXAMPLE: Graph f(x)=x*+2x3-72x?+70x+24.

SOLUTION: We proceed by clearing all prior definition of f, defining f, and
computing f" and f”.

Clear|[f]
fx_)=x"4+2x"3-72x"2+70x+24;
£'(x]

£r(x]

2 3

70 - 144 x + 6 x + 4 x
2
~144 + 12 x + 12 x
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To solve the equations f'(x)=0 and f”(x)=0, we use Solve.

Solve[f'[x]==0]
Solve[f''[x]==0]
1
{{x => -7}, {x -> -}, {x -> 5}}
2
{{x -> -4}, {x -> 3}}

Since the solutions of these polynomial equations are rational numbers, we could
have used Factor to factor f’ and f” and, consequently, determine the solutions
of the equations f(x)=0 and f”(x)=0. Below, we graph f on an interval
containing -7, 1/2, and 5, and graph f” on an interval containing —4 and 3. The
results are displayed as a graphics array.

pdf=Plot[f'[x],{x,-8,6)},DisplayFunction->Identity];
pddf=Plot[£f''{[x],{x,-5,4},DisplayFunction->Identity];
Show[GraphicsArray|[ {pdf,pdd£f}]]

.
frai

100
-400

From the graphs, we see that f’ is positive when —7<x<%orx>5 and f' is

negative when x<-7or % <x <5, while f” is positive when x<-4orx>3 and f” is

negative when -4 <x<3. Thus, f is decreasing and concave up when x<-7, f is
increasing and concave down when -7 <x<—4, f is increasing and concave down

when -4<x< %, f is decreasing and concave down when %< x <3, f is decreasing

and concave up when 3<x<5, and f is increasing and concave up when x>5.
Below, we graph f.

Plot(f(x],{x,~-9,7}]

'

N
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Since f is a polynomial of degree 4, we know that for "large" values of x, the graph
of f looks like the graph of x* because.

f(x):x“(l+g 72 E+2—4),
x xz x3 xt
and for "large" values of x, 1+E—2+E+§ is close to 1. However, when we

x x* x* xt
graph f on a large interval, we do not see the subintervals on which f is increasing
or decreasing and concave up or concave down.

Plot[f[x],{x,~100,100}]

-100 -50 50 100 W

In our next example, we graph a function with a vertical tangent.

EXAMPLE: Graph h(x)=(x-7)¥x-3.

SOLUTION: As in the previous examples, we first clear all prior definitions of h,
define h, and then compute h’(x). Be particularly careful when defining h to
include the parentheses around the exponent. Entering h[x_]=(x-7) (x-3)"1/3

defines h(x) to be ()C—_Z(i:&—) #(x-7Rx-3.

Clearfh]
hix_]1=(x-7)(x-3)"(1/3)
h'[x]
Together[h'[x]]
1/3
(-7 + x) (-3 + x)
-7 + x 1/3
————————————— + (-3 + x)
2/3
3 (-3 + x)
4 (-4 + x)
2/3
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From the simplified form of h’(x), we see that the critical numbers are x=4 and
x=3. Note that x=3 is a critical number, because h(3) exists and #’(x) is not defined
when x=3. Thus, h has a vertical tangent when x=3. We compute the values of x
for which #”(x)=0 in the same manner.

Together[h' ' [x]]

4 (-1 + x)

9 (-3 + x)

We see that #”(x)=0 when x=1. Of course, since h’(x) does not exist when x=3,
neither does h”(x). Constructing a sign chart for both #’(x) and h”(x), or using an
equivalent method, we see that h’(x) is positive when x >4 and is negative when
x<4 as long as x =3, while h”(x) is positive when x <1orx>3 and negative when
1<x<3. Thus, h is decreasing and concave up when x <1, decreasing and concave
down when 1<x<3, decreasing and concave up when 3<x<4, and increasing
and concave up when x> 4.

Graphing h with Mathematica requires several steps. To understand why, we note
that if x is negative, then Mathematica does not return a real number when
computing ¥x . We illustrate this below with 1.

(-1)"(1/3)

1/3
(-1)

N[(-1)7(1/3)]
0.5 + 0.866025 I

The symbol I represents the (complex) number i=+-1. Because Mathematica
does not return real numbers, we are unable to graph h in the usual manner.

Instead, we note that when x<3, the unique real number %/x-3 satisfying
(%/x——?;)3 =x-3 also satisfies Vx—3 = —m . Thus, we redefine h as a piecewise-
defined function and graph h as indicated below.

Clear[h}]

hix_]:=(x-7)(x-3)"(1/3) /; x>=3

hix_]:=-(x-7)Abs[x-3]"(1/3) /; x<3
Plot[h[x], {x,-3,8}]


file:///lx-3
file:////lx-3

3.2 Differential Calculus i23

Graphing Functions and Derivatives

Because f’(x) is a function of x, f’(x) can be graphed. The following example shows how
to compute the derivative of a function and then plot the original function and its
derivative simultaneously.

, . x
EXAMPLE: Graph f and f’ if f(x)= =1

SOLUTION: After clearing all prior definitions of f and defining f(x)= ZLH, we
x

compute f’.

Clear[f]
fix_]=x/(x"2+1);
Together[f'[x]]

(1 + x)

By examining the result, we can see that f(x)=0 when x=1 and when x=-1.
Thus, we graph f and f on an interval containing these values, so we see the
maximum and minimum values of f. Below, we use Plot to graph f and f* on the
interval [-5,5]. The graph of f is in black; the graph of f* is dashed.

Plot[{f[x]},£f'[x]},{x,-5,5},PlotStyle->{GrayLevel[0],Dashing[{.01,.01}]}]
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Instead of graphing f and f’ simultaneously, we can also graph each separately and
then show the results together with Show or as a graphics array with GraphicsArray.

EXAMPLE: Graph f and £’ if f(x)=(x-3)}3/(x-8)’ .

SOLUTION: Proceeding in the same manner as in the previous example, we first
Clear[f]

clear all prior definitions of f, define f, and then compute f’.

flx_]=(x-3)(x-8)"(2/3);
£'[x]

2/3
(-8 + x)

3 (-8 + x)

To identify the zeros of f’, we use Together to express the above results as a
Together[f'[x]]

single fraction. We could also use Solve to solve the equation f/(x)=0

3 (-8 + x)

From the above, we see that f/(x)=0 when x=6. Thus, we will graph both f and ¢’
on an interval containing 6.

We have seen that when x is negative, Mathematica does not return a real number
when entering x~ (1/3). However,

2/3
and

fley=(x-3R (x—8)2 =(x-3)x-§|
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PPN -8y o>
)= 2226 :
3x-8 _g(x_6)|x_s|*”3forx<8

Thus, to graph f and f’, we redefine them as follows. Note that df corresponds to
f

Clear|[f]

£[x_]=(x-3)Abs[x-8]"(2/3);

df(x_]:=5/3(x-6)(x-8)"(-1/3) /; x>8

df(x_]:=-5/3(x-6)Abs[x-8]"(~1/3) /; x<8

Next, we graph f and f’, naming the results pf and pdf, respectively. In each case,
the option DisplayFunction->Identity is included so that the resulting
graphics are not displayed. If this option had not been included, both results
would have been displayed.

pf=Plot[£f[x],{x,0,13},PlotRange->{-15,15},DisplayFunction->Identity];
pdf=Plot[df{x], {x,0,13},PlotRange->{~-15,15},
PlotStyle->Dashing[{.01,.01}),DisplayFunction->Identity];

The results can be displayed simultaneously with Show:
Show|[pf,pdf,DisplayFunction->$§DisplayFunction]

15

10

S5 - ) s

-5

-10

-15

or, they can be displayed separately, but as a single graphics object, with
GraphicsArray.

Show[GraphicsArray|[ {pf,pdf}]]
15
10

15

10 }
-5 4 6 81012 -5
-10 -10
-15 -15
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Approximations with FindRoot

In many cases, finding exact values of the zeros of the derivative of a function may be
difficult. However, we may use FindRoot to approximate the zeros of the derivative of
many functions.

EXAMPLE: Let w(x)=2sin2 2x+gxcos2(§) on (0,m). Approximate the values of x

for which the line tangent to the graph of w is horizontal.

SOLUTION: We begin by clearing all prior definitions of w, defining w, and then
graphing w on the interval [0,n]. From the graph, we see that the tangent line is
horizontal at three points.

Clear|[w]
w[x_]=28in[2x]"2+5/2x Cos[x/2]"2;
Plot{w[x],{x,0,Pi}]

- N R W W

To approximate the values of x for which the tangent line is horizontal, we will use
FindRoot which requires an initial approximation. To obtain reasonable
approximations to use in the FindRoot commands later, we graph w’(x).

Plot[w'[x], {x,0,Pi}]

-

D

0 1 1 2 2 3
-2

-4
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After using the graph of w’(x) to find the initial guesses, the x-values such that
w’(x)=0 can be approximated using FindRoot. These three calculations are given
below using initial guesses x=0.863, x=1.63, x=2.25, the values where w’(x) appears

to cross the x-axis.
FindRoot [w' [x]==0, {x,0.863}]

FindRoot[w' [x]==0,{x,1.63}]
FindRoot[w'[x]==0,{x,2.25}]

{x -> 0.864194}
{x -> 1.62391}
{x -> 2.24489}

a
When dealing with polynomial equations, NRoots can be used to solve polynomial

equations.
EXAMPLE: Approximate the values of x for which the line tangent to the graph of

plx)==x6-2x5 —2?5354 +60x3 —150x2 —180x — 25

is horizontal.
SOLUTION: For this example, we begin by clearing all prior definitions of p,
defining p, and then graphing p and p’ on the interval [-6,6]. The graph of p’ is

dashed.

Clear[p]
pPlx_]1=1/2x"6-2x"5-25/2x"4+60x"3-150x"2~180x-25;
Plot[{p[x],p'[X]},{x,-6,6)},PlotStyle->{GrayLevel{0],Dashing[{.01}]}]

5000

Next, we use NRoots to find the values of x for which p’(x)=0. Those values that

contain I are imaginary values which we ignore.



128 3 Calculus

NRoots[p' [x]==0,x]
x == -4.44315 || x == -0.459096 ||
x == 1.55293 - 1.82277 I ||
x == 1.55293 + 1.82277 I || x == 5.12971

Thus, we conclude that approximations of the values of x for which the line
tangent to the graph of p at the point (x,f(x)) is horizontal are —4.44315, —0.459096,
and 5.12971. 1

Application: Rolle's Theorem and
The Mean-Value Theorem

Let f be a continuous function on [a,b] and differentiable on (a,b).

Rolle's Theorem says that if f(a)=f(b)=0, then there is at least one value of cin (a,b)
satisfying f’(c)=0.

The Mean-Value Theorem says that there is at least one value of ¢ in (a,b)

satisfying f'(c)= W.

EXAMPLE: Verify that f(x) satisfies the hypotheses of Rolle's Theorem on the
interval [-3,2] if f(x)=x*-7x+6 and find all values of c on the interval [-3,2] that
satisfy the conclusion of the theorem.

SOLUTION: Since f is a polynomial function, f is differentiable for all real
numbers and, in particular, on the interval (-3,2). We first define f and compute
f(-3) and f(2).

Clear(f]
f[x_]=x"3-Tx+6
£[-3]
£[2]

3

6 - 7 x + X
0
0

Since both values are 0, we know that there is at least one value of c in the interval
[-3,2] for which f’(c)=0. Next, we graph f on an interval containing the interval
[-3,2]. From the graph, we see that we should be able to find at least two values of
¢ for which f(c)=0.
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Plot[£f[x],{x,-4,3}]

Y

-4 3 -2 -1 1 2 3

-10

-30

Computing f’(x) and solving the equation f’(x)=0 yields the desired values.
£'(x]

2
-7 + 3 x

Solve[f'[x]==0]

7 7
{{x -> -Sqrt(-1}, {x -> Sqgrt[-]}}
3 3

We conclude that the values of ¢ for which f’(c)=0 are c= t\/g .l

Generally, verifying Rolle's Theorem and the Mean-Value Theorem for particular
functions is difficult, as the resulting equations that need to be solved are either very
difficult or even impossible to solve. In these cases, FindRoot can be helpful in
approximating solutions of equations; NRoots can be used when dealing with polynomial
equations.

EXAMPLE: Approximate the values of ¢ that satisfy the conclusion of the Mean-
cos3x

on the interval [0, =].
x2+1

Value Theorem for f(x)=

SOLUTION: We begin by defining and graphing f on the interval [0,n]. We name
the graph of f plotf for later use.

Clear[f]
f(x_]=Cos{3x1/(x"2+1);
plotf=Plot[f[x],{x,0,Pi}]
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=]
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1
o
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0 1 2 2 s—
-0.4

We must find the values of ¢ in (0,n) that satisfy the equation f'(c)=
f(m)-£(0)

f(m)=£(0)
n-0

Below we compute and name the number avg.

avg=(£[Pi}-£[0])/(Pi-0)//N

-0.347594

f(m)-£(0)

n-0
and avg on the interval [0,1] shows that there are 4 values of c satisfying the
conclusion of the Mean-Value Theorem. We use FindRoot to approximate these
values and name the results c1, ¢2, ¢3, and ¢4, respectively.

Solve cannot be used to solve the equation f/(c)= . But, graphing f'(x)

Plot[{f'[x],avg},{x,0,Pi}]

-2

-2

cl=FindRoot[f'[x]==avg, {x,.03}}
{x -> 0.0317021}
c2=FindRoot [f' [x]==avg, {x,.869}]
{x -> 0.875621}
c3=FindRoot[f'[x]==avg, {x,2.25}]
{x -> 2.26848}
c4=FindRoot[f'[x]==avg,{x,2.71}]

{x -> 2.67683}
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These numbers represent the values of ¢ for which the slope of the line tangent to
the graph of f at (c,f(c)) is the same as the slope of the line passing through (0,£(0)
and (r,f(n)). Below, we define secline to be the line segment with endpoints
(0,£(0)) and (m,f(n)), p1 to be a graph of the line tangent to the graph of f at the
point (.8756,£(.8756)), and p2 to be a graph of the line tangent to the graph of f at
the point (2.6768,£(2.6768)). All three graphs along with plotf are shown together.
Note that all three lines are parallel.

secline=Graphics([Line[{{0,£[0]}, {(Pi,£[P1i]}}]];

pl=Plot[f'[.8756] (x~.8756)+f[.8756]),{x,0,Pi},DisplayFunction->Identity];

p2=Plot[f'[2.6768](x-2.6768)+f[2.6768],{x,0,Pi},
DisplayFunction->Identity];

Show[plotf,secline,pl,p2,DisplayFunction->$DisplayFunction]

1

0

o

Application: Graphing Functions
and Tangent Lines

If f is a differentiable function, then the graph of the function y = f(x )(x-x,)+f(x,) is the
line tangent to the graph of f at the point (xo, f(xo)). Often, we wish to graph both f and the

line tangent to the graph of f at the point (xo, f(xo)) for many values of x,. Mathematica's

animation capabilities can be used to animate the resulting set of graphics.

EXAMPLE: Let f(x)=xsinx. Graph f along with various tangent lines on the
interval [0,4x].

SOLUTION: We begin by clearing all prior definitions of f, defining f, and then
graphing f on the interval [0,4n]. The graph of f, named plotf, is not displayed
because the option DisplayFunction->Identity is included. Also, the option
PlotRange->{-12,12} is included to assure that the coordinates on the y-axis
correspond to [-12,12]. We can use Show to display plotf.
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Clear(f]

f[x_]=x Sin[x];

plotf=Plot[f[x],{x,0,4Pi}, PlotRange->{-12,12},
DisplayFunction->Identity];

Show[plotf,DisplayFunction->$DisplayFunction]

-5

-10

Since we will be graphing the tangent line for various values of x, we define the
function t1 below. The function t1 is defined using Module because t1 performs
several operations. First, the variables 1 and p1 are declared local to the procedure
t1. This means that if 1 and p1l have other (global) values, changes in the value of
1 and p1l within the procedure t1 do not affect their (global) values. Then, for a
given value of x0, t1 first defines 1 to be the function £' [x0] (x-x0)+£[x0],
corresponding to the function with graph tangent to the graph of f at the point

(xo, f(xo)), and pl to be the graph of 1 on the interval [0,47]. Note that p1 is not

displayed since the option DisplayFunction->Identity is included.
Moreover, including the option PlotRange->{-12,12} assures that the y-range
displayed is the same as the y-range displayed in plotf£. Finally, t1 shows the
graph of plotf and pl. Note that the graphs are not actually displayed because
the option DisplayFunction->$DisplayFunction is not included in the
Show command.

t1[x0_] :=Module[{1,pl},
1=£f'[x0] (x-x0)+£[x0];
pl=Plot(l, {x,0,4Pi}, PlotRange->{-12,12},
DisplayFunction->Identity];
Show([plotf,pl}
1

However, if we do include DisplayFunction->$DisplayFunction, the
resulting graph is displayed. Below, we display a graph of f along with the line
tangent to the graph of f at the point (5,£(5)).
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Show[tl[5),DisplayFunction->$§DisplayFunction]

-5

-10

We may use a Do loop to generate several graphs. The results can then be
animated. The following shows the resulting animation on a computer with a
notebook interface.

EN=————— Tangentlines ==F—=————-"V1|
o

(Lol inf 28/ =
Dol
Show[ t1[n].
PisplayFunction->$DisplayFunction].
{n.0.4Pi, 4Pi/24}])

From (Local ) inf28/=

10

a

EERIWIEAI100% v ]G]

Alternatively, we can use Table to create a table of several graphs and display the
result as a graphics array. In the following commands, graphs is defined to be a
table consisting of t1[n] for 8 equally spaced values of n between 0 and 4n.
graphs is a set consisting of eight graphics objects. Then, Partition is used to
partition graphs into a set consisting of two sets each containing four graphics
objects. The result is a 2x4 array of graphics cells named toshow displayed with
GraphicsArray. Note that the option Ticks->None is included so that the axes
are shown without tick marks.

graphs=Table[Show[tl[n],Ticks->None],{n,0,4Pi, 4Pi/7}];
toshow=Partitionf{graphs,4];
Show[GraphicsArray[toshow] ]
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RAIRAIRRIEA
Ay R Y

Remember that each time Mathematica generates a plot, unless otherwise instructed to
do so, Mathematica selects a range for the displayed graphics object. Consequently, when
generating graphics for an animation, be sure to specify the range displayed with
PlotRange. Otherwise, the resulting animation may appear "choppy."

Application: Maxima and Minima

Mathematica can be used to solve maximization/minimization problems. An example of
this type of problem is as follows :

EXAMPLE: A farmer has 100 feet of fencing to construct four dog kennels by first
constructing a fence around a rectangular region, and then dividing that region
into four smaller regions by placing fences parallel to one of the sides. What
dimensions will maximize the total area?

SOLUTION: First, let y denote the length across the top and bottom of the
rectangular region and let x denote the vertical length. A figure describing this
situation is shown below.

¥

Then, since 100 feet of fencing are used, a relationship between x and y is given by
the equation: 2y +5x=100.

100 —5x

Solving this equation for y, we obtain y = which is shown below.
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Solve[2y+5x==100,y]

Since the area of a rectangle is area=xy, the function to be maximized is

100~ 5x
i

, 0<x<20.
2

area(x)=x

After defining area, the value of x which maximizes the area is found by finding
the critical value and observing the graph of area[x].

area[x_]=x(100-5x)/2;
Plot[area[x], {x,0,20}]

250
200
150
100

S0

S 10 15 20
Solve[area'[x]==0]
{{x -> 10}}
Thus, we see the value of x that maximizes area is 10. To find the other dimension,
we evaluate y= 100-5% o\ hen x=10.

(100-5x%)/2 /. x->10

25

Thus, dimensions that maximize the area are 10x25.

The next problem is slightly different.

EXAMPLE: A woman is located on one side of a body of water 4 miles wide. Her
position is directly across from a point on the other side of the body of water 16
miles from her house. If she can move across land at a rate of 10 miles per hour
and move over water at a rate of 6 miles per hour, find the least amount of time for
her to reach her house.
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SOLUTION: The figure below illustrates the situation described in the problem.

CW&
D

16

Y Y Y Y Y Y Y s Y aTa

A 4

From the figure, we see that the woman will travel from A to B by land and then
from B to D by water. We wish to find the least time for her to complete the trip.

Let x denote the distance BC, where 0<x<16. Then, the distance AB is given by
16-x and, by the Pythagorean theorem, the distance BD is given by

. . . . distance
Jx2+42 =x2+16. Since ratextime = distance, time= e
rate

. Thus, the time to

— - 2
travel from A to B is 16-x , the time to travel from B to D is %16 , and the total

time to complete the trip, as a function of x, is

16 —x + Vxt+16

, 0<x<16.
10 6

time(x) =

We must minimize the function time. Below, we use Mathematica to define time.
To verify that t ime has a minimum, we graph time on the interval [0,16].

Clear[time]
time[x_)=(16-x)/10+Sqrt[x"2+16]/6;
Plot[time[x],{x,0,16},PlotRange->{{0,16},{2,3}}]



3.2 Differential Calculus 137

2 4 6 8 10 12 14 16

Next, we compute the derivative of time and find the values of x for which the
derivative is 0 with Solve. The resulting output is named critnums.

Together[time'[x]]

2
5 x - 3 8qrt{l6 + x ]

30 Sqgrt[l6 + x ]
critnums=Solve [time' [x]==0]

{{x -> 3}}

At this point, we can calculate the minimum time by calculating time[3].
Alternatively, we also demonstrate how to find the value of time[x] for the
value(s) listed in critnums.

time[3]
time[{x] /. critnums({1]]

32

15
32

15
Thus, we see that the minimum time to complete the trip is 32/15 hours.
||

Our final two examples illustrates Mathematica's ability to symbolically manipulate
algebraic expressions.

EXAMPLE: Let f(x)=mx+b and (x,,y,) be any point not on the graph of f. Find

the value of x for which the distance from (xo, yo) to (x,f(x)) is a minimum.
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SOLUTION: The distance between two points (x,,y,) and (x,,y,) is given by

distance((xl,yl ),(xz,yz))(xz,yz) = \/(Xz —x1)2 +(y2 ‘%)2 .

In order to determine the value of x which minimizes the distance between (x,,y,)
and (x, f(x)), a function which determines this distance must first be defined. This
is accomplished by defining the function distance by entering

distance( {x1_,yl_},{x2_,y2_}]

which gives the distance between any two points (x,y,) and (x,,,). Then the
particular distance function for this problem is obtained by substituting the
appropriate points (x,,y,) and (x,f(x)) into distance and naming the resulting
output tominimize. Note that minimizing the square of tominimize produces
the same results as minimizing tominimize. The value of x that minimizes this
function is obtained in the usual manner. (Notice how naming the distance
function expression simplifies the solution of the problem.)

Clear(f,a,m,b,x0,y0,x1,y1,x2,y2]

distance({x1_,yl_},{x2_,y2_}]=Sqrt((x2-x1)"2+(y2~yl)"2]

f{x_]=m x+b

2 2

Sqrtf(-x1 + x2) + (-yl + y2) ]
b+ mx

tominimize=distance[ {x0,y0}, {x,£[x]}]

2 2
Sqrt[(x - x0) + (b +m x - y0) ]
To find the minimum, we first compute the derivative of tominimize, name
the result dtm, and then use Solve to find the values of x for which the derivative
is 0.
dtm=D[tominimize,x]//Simplify
2

bm+ x+m x - x0 - m y0

Sqrtf{(x - x0) + (b + m x - y0) ]
val=Solve[Numerator[dtm]==0,x]
bm-x0 -my0

{{x => =(m=mmmmmmmmmmme- )
2

1 +n

The value of x that minimizes dtm is extracted from val below and named
xcoord.

xcoord=val{{1,1,2]]
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bm- x0 -my0
el G )
2

1 +m

We then compute and simplify the value of f(x) for the number xcoord and name
the result ycoord. Thus, (xcoord,ycoord) is the point on the graph of f closest
to (x,,y,). The minimum distance is then computed using distance.

ycoord=f[xcoord] // Simplify

2
b+mx0+m y0

distance( {x0,y0}, {xcoord, ycoord}]//Simplify

2
(-b - m x0 + y0)

Thus, the point on the graph of f(x)=mx+b closest to (x,,y,) is

my, +x,—bm m?y +mx +b
mr+1 m2+1
and the minimum distance is

(yo —mx, —b)2 _ lyo —-mx, —b[ .
m2+1 Jmi+1l

The next example is a familiar exercise to students in introductory differential calculus
courses.

EXAMPLE: Find the dimensions of the cone of minimum volume that can be
inscribed about a sphere of radius R.

SOLUTION: Let r and h denote the radius and height, respectively, of the right
circular cone of base radius r and height h circumscribed about the sphere of
radius R. Then a cross section of the solid containing a diameter of the base of the
cone is shown in the figure below.
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h
PAR
kY
A T F by ¢
Right circular cone circumscribed Cross section of a right circular cone
about a sphere. circumscribed about a sphere

From the figure, notice that triangle BOD is similar to triangle BAF. Moreover,
BO=h-R, OD=R, and AF=r and, by the Pythagorean Theorem, r2+h2 = BA? so that

h—R ~ri+h?
r

BA=+r2+h2. Consequently, —— . Below, we use Mathematica to solve

R
this equation for h in terms of r. Note our convention to use capr to represent R
in the equation.

Clear[h,capr,r]
Solve[ (h-capr)/capr==Sqrt[r~2+h"~2]/r, h]

2
-2 capr r
{¢h => 0}, {h => ———mmmmme .
2 2

capr -~ r

2
The volume of the cone is given by V = %nﬂh and substituting h= 22’ 22 yields V,

r -—

as a function of r,

2nRrt
D5

2nRr*
3(r2—R?)
the values of r for which capv equals 0. Note that r can be neither 0 nor -R+2.

Below we define capv to be V(r)= . Then, we differentiate capv and find
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capv[r_]=2 Pi capr r"4/(3(r"2-capr”2))

4
2 capr Pi r

capv'[r]//Together
3 3 5

4 (-2 capr Pir + capr Pir )

critnums=Solve [capv'[r]==0,r]
{{r -> 0}, {r -> 0}, {xr -> 0}, {r -> -(Sqrt{2] capr)},
{r -> Sqrt[2) capr}}

The value Ry2 is extracted from critnums with critnums{[5,1,2]].
Extracting data from lists is discussed in more detail in Chapters 4 and 5.

critnums[[5,1,2]]
Sqrt[2] capr
To see that r = R\2 yields the desired minimum, we evaluate V”(r) when r= RV2 .
capv''[capr Sqrt[2]]

32 capr Pi

Since the value of V”(r) when r=RV2 is positive, we conclude that r = R2 yields
the minimum volume, computed below.

capv[capr Sqrt[2]]

We conclude that the minimum volume is V(R\/i ) = gan* and the cone has radius

2r2R

r2_R2

r=R+2 and height h= =4R. N
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3.3 Implicit Differentiation

Computing Derivatives of Implicit Functions

If equation is an equation with variables x and y, Mathematica computes the implicit
derivative of equation with the command Dt[equation,x], where equation is
differentiated with respect to the variable x.

The expression Dt [y, x] encountered when using implicit differentiation represents

the derivative of y with respect to x, dy/dx . (Hence, Dt [x,y] represents dx/dy.)

The built-in command Dt is versatile. Although here Dt is used to perform implicit
differentiation, Dt [expression,variable] computes the total derivative:
d(expresssion)

- ; and Dt [expression] computes the total differential d(expression).
dvariable

The following examples demonstrate the use of the implicit differentiation command,
Dt[equation, x] and show how this command can be used with Solve to obtain the
desired derivative in a single command.

EXAMPLE: Find an equation of the line tangent to the graph of
2x2=2xy+y*+x+2y+1=0

at the points (—%,—lj and (—%,—4).

SOLUTION: The slope of the lines tangent to the graph of
2x2-2xy+y?+x+2y+1=0 at the points [—%,—1) and (—%,—4) is obtained by

evaluating the derivative of this equation at each of these points. To find the
derivative, we use implicit differentiation.

After clearing all prior definitions of eq, we define eq to be the equation
2x2 -2xy+y*+x+2y+1=0.

Don't forget to include the space between the x and y to denote multiplication and
the double equals sign (==) between the left- and right-hand sides of the equation.
Note that the left-hand side of eq is extracted from eq witheq[{171].

eq=2x"2-2x y+y 2+x+2y+l==

2 2
l1+x+2x +2y-2xy+y =0
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eq[[1]]

2 2
l1+x+2x +2y-2xy+y
The graph of eq corresponds to the level curve of 2x2-2xy+y2+x+2y+1 with
2x2-2xy+y2+x+2y+1=0. Thus, we can use ContourPlot to generate this
particular level curve.

In the following command, eq{[1]] is enclosed in Evaluate. This ensures
that Mathematica computes eq{ [1] ] before sampling points. This is important:
if Evaluate is not included, error messages occur. The option
Contours->{0} is included so that Mathematica only graphs the level
curve of 2x2 =2xy+y?+x+2y+1 with 2x2-2xy+y? +x+2y+1=0;
ContourShading->False specifies that the resulting graph not be shaded;
PlotPoints->50 helps assure that the resulting graph is smooth;
Frame->False specifies that no frame is to be displayed around the resulting
graphics object; Axes->Automatic specifies that the resulting graphics object be
displayed with axes; and AxesOrigin->{0,0} specifies that the axes intersect at
the point (0,0).

grapheq=ContourPlot{Evaluate[eq{[1]}]],{x,-6,1},{y,-6,1},
Contours->{0},ContourShading->False, PlotPoints->50,
Frame->False,Axes->Automatic,AxesOrigin->{0,0}]

We see that the graph of 2x2—2xy+y?+x+2y+1=0 is an ellipse. Next, we use Dt to
implicitly differentiate the equation with respect to x. The result is named deriv.
We then use Solve to solve the equation deriv for Dt[y,x] and name the
result imderiv.
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deriv=Dt[eq, x]
1 +4x-~-2y+ 2Dt[y, x] -
2 x Dt[y, x) + 2 y Dtly, x] ==
imderiv=Solve[deriv,Dt[y,x]]

-(1 +4x-21y)
{{Dt[y, X] -> =——~——mmmmmme—— 1}
2 (1 - x +y)

The derivative of 2x2-2xy+y2+x+2y+1=0 is dy 1A=y qp expression is
dx  2(1-x+y)

extracted from imderiv with imderiv([[1,1,2]]. Extracting data from lists is
discussed in more detail in Chapters 4 and 5.

imderiv({1,1,2]]
-(1 +4 x - 2Yy)

2 (1 -x+y)

To find the slope of each tangent line, we evaluate dy 1+dx-2y

=—————"L at each point.
dx  2(1-x+y) pot

Below, we calculate the value of imderiv[[1,1,2]] at the points (—%,—1) and

(—%,—4), naming the results m1 and m2, respectively. Note that in each case, the
slope of the tangent line is 1.

ml=imderiv{{[1,1,2]] /. {x->-3/2,y->-1}
m2=imderiv({1,1,21] /. {x->-3/2,y->-4}

1
1

To visualize the tangent line at these points, we graph the tangent lines
simultaneously and name the result plotlines. Note that plotlines is not
displayed since we include the option DisplayFunction->Identity. To see
each particular point, we use Graphics, Point, and PointSize to represent the

points (—%,—1) and (—%,—4) as graphics objects. Finally, Show is used to show
graphegq, generated above, plotlines, and points, simultaneously.

plotlines=Plot([{ml(x+3/2)-1,m2(x+3/2)-4},{x,-6,1},
DisplayFunction->Identity];

points=Graphics[{PointSize[.03],Point[{-3/2,-1}],Point[{~-3/2,-4}]}];

Show[grapheq,points,plotlines, PlotRange->{{-6,1},{-6,1}}]
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In the next example, we implicitly differentiate an equation in which the right-hand side
is not zero.

EXAMPLE: Find 4= if cos(x +siny)=siny.
X

SOLUTION: As in the preceding example, we begin by clearing all prior
definitions of eq and defining eq to be the equation cos(x +siny)=siny.

Clear[eq]
eq=Cos[x+Sin[y]]==Sin{y]

Cos[x + Sin[y]] == Sin[y]
Next, we use Dt to compute the derivative of eq with respect to x. The result is

named deriv. Remember that the symbol Dt [y, x ] represents y’'= Z—y
X

deriv=Dt[eq, x]
-((1 + Cos(y] Dtly, x])
Sin[x + Sin[y]l]) == Cos[y] Dtly, Xx]
Finally, we use Solve to solve deriv for Dt [y, x]. The result means that

, _dy _ sin(x +siny)
~dx  -cosy-cosysin(x+siny)

¥
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Solve({deriv,Dt|y,x]]

{{Dtly, x] ->

Sin[x + Sin[y]]
-Cos[y] - Cosly] Sinfx + Sin[y])

Finally, we use ContourPlot to graph the equation cos(x+siny)=siny. First, we
rewrite this equation in the form cos(x+siny)-siny=0. The graph of
cos(x +siny)—siny =0 is the same as the level curve of cos(x+siny)-siny
corresponding to 0. Thus, we proceed in the exact same manner as in the previous
example. The displayed graph corresponds to the graph of cos(x+siny)=siny on
the interval |4, 4=].

ContourPlot[Cos[x+Sin[y]]-Sin[y], {x,-4Pi,4Pi}, {y,-4Pi, 4Pi},
Contours->{0},PlotPoints->70,ContourShading->False,
Frame->False, Axes~>Automatic,AxesOrigin->{0,0}}

~/ \\/1 ) t
>5P
2

Other Methods to Compute Derivatives
of Implicit Functions

i

N/

;
2

Implicit derivatives can also be computed with D if y is declared to be a function of x. For
example, to implicitly differentiate (x +y2)2 =a?(x2-y2) (the Lemniscate of Bernoulli),
where a is a constant, we define eq to be

Clear{a,x,y,eq]
eq=(x"2+y[x]"2)"2==a"2(x"2-y(x]"2)

2 2 2 2 2 2
(x +y[x] ) ==a (x -ylx])

and then use D to differentiate eq with respect to x, naming the result deriv.
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deriv=D[eq, x]

2 2
2 (x +ylx) ) (2 x+ 2y[x] y[x]) ==

2
a (2 x -2 y[x] y'(x])

Finally, we use Solve to solve deriv fory' {x].

Solve[deriv,y'[x]]

{{y'[x] ->

a y[x] + 2 x y[x] + 2 y[x]

Other Methods to Graph Equations

As we have seen, ContourPlot can be used to graph many equations by including the
appropriate options in the ContourPlot command. Some equations may also be graphed
with the command ImplicitPlot. ImplicitPlot is not a built-in Mathematica
function and is contained in the package ImplicitPlot located in the Graphics folder (or
directory).

The most basic form of the syntax for the command ImplicitPlot is

ImplicitPlotjequation, {x,xmin,xmax}].
The set of y-values displayed can also be specified by entering the command in the form
ImplicitPlot[eguation, {X,xmin,xmax},{y,ymin,ymax}].

Be sure to always include the double-equals sign between the right- and left-hand side of
equations.

EXAMPLE: Graph (x2+32)’ = a(x2 - y?) when a=2.

SOLUTION: In this case, we first load the package ImplicitPlot. After the package
is loaded, we may use the command ImplicitPlot.

<<Graphics  ImplicitPlot"
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Next, we define a=2 and use ImplicitPlot to graph the equation for x-values in
[-3,3]. Note that the actual interval displayed corresponds to [-2,2].

a=2;

ImplicitPlot[(x"2+y"2)"2==a”2(x"2-y"2),{x,~3,3}]

The command ImplicitPlot works best with equations that are (easily) solvable.
Notice that the command

ImplicitPlot[y"“2==x Cos[x y),{x,-3Pi,3Pi}]

Solve: :tdep:
The equations appear to involve transcendental functions
of the variables in an essentially non-algebraic way.
Solve::tdep:
The equations appear to involve transcendental functions
of the variables in an essentially non-algebraic way.
ImplicitPlot::epfail:

2
Equation y == x Cos[x y]
could not be solved for points to plot.
2
ImplicitPlot(y == x Cos[x y], {x, -3 Pi, 3 Pi}]

produces several error messages and cannot graph the equation y? = xcos(xy). On the other
hand, entering

ImplicitPlot[y~2==x Cos[x y],{x,-3Pi,3Pi},{y,~Pi,Pi},PlotPoints->50]

== e —

produces the desired graph. ContourPlot is used with equal success to generate the
same graph.
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ContourPlot[y“2-x Cos[x y],{x,-3Pi,3Pi},{y,-Pi,Pi},
PlotPoints->50,Contours->{0},ContourShading~->False,
Frame->False,Axes->Automatic,AxesOrigin->{0,0}]
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3.4 Integral Calculus

Estimating Areas

In integral calculus courses, the definite integral is frequently motivated by investigating
the area under the graph of a positive continuous function on a closed interval.
Let y=f(x) be a positive continuous function on an interval [4,b] and let n be a positive

integer. If we divide {4,b] into n equal subintervals and let [xH,xk] denote the kth

subinterval, xk=a+kb;a and the width of each subinterval is EZE, Then, the area
n n

bounded by the graphs of y = f(x), x=a, x=b, and the y-axis can be approximated with the
sums

b-a b
5, = T“Z‘ flx,,) and s, = T“Z flx)-

k=1

In the case when f is increasing on [4,b], S, is an under approximation and S, is an

upper approximation. S, corresponds to an approximation of the area using n inscribed

rectangles; S corresponds to an approximation of the area using n circumscribed

right

rectangles. When f is decreasing on [4,b], S_, is an under approximation and S, an

left
corresponds to an approximation of the area using n inscribed

right

upper approximation. S,

rectangles; S corresponds to an approximation of the area using n circumscribed
rectangles.
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Our first example illustrates the case when f is increasing.

EXAMPLE: Let f(x)=1+12x-x2. Approximate the area bounded by the graph of
f(x), the y-axis, x=2, and x=5 using (a) 100 inscribed and (b) 100 circumscribed
rectangles. (c) What is the exact value of the area?

SOLUTION: We begin by defining and graphing f.

Clear[f]
fx_]=1+12x-x"2;
Plot[{£f{x],{x,-1,13}]

30
20

10

2468101)&\
-70

Since f/(x)=2(6-x) is positive on the interval [2,5], f is increasing on [2,5]. Thus,
an approximation of the area using 100 inscribed rectangles is given by

3
100

99
Z /(2+k%), while an approximation of the area using 100 circumscribed
k=0

100
rectangles is given by %2 /(2+k%). Each of these numbers, along with a
k=1

corresponding approximation, is computed below with Sum. The symbol %
represents Out. N[ % ] returns a numerical approximation of the previous output.

3/100 Sum[f[2+k 3/100),{k,0,99}]

1795491

N[%]
89.7745
3/100 Sum({£[2+i 3/100],{i,1,100}]

1804491
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N[%]

90.2245

More generally, below we define the functions 1a and ra, which compute the
b-ax b-a¥x .
sums S, = T; flx.)and s = —n-; f(x,), respectively.

la(f_,{a_,b_},n_):=(b-a)/n Sum[f[a+k (b-a)/n],{k,0,n-1}]//N;
ra[f_,{a_,b_},n_]:=(b-a)/n Sum[f[a+k (b-a)/n],{k,1,n}])//N;

-1

We then use la and ra to compute g2“/‘(2+ki) and EElj(2+k—3—) for
n = 100 n & 100

n=2,4,8,24,..,2 =512. Note that the under approximations computed with la
and the over approximations computed with ra appear to be getting closer
together.

approxes=Table[{2"n,la[f,{2,5},2"n],ra[f,{2,5},2"n]1},{n,1,9}];
TableForm{approxes, TableHeadings->{None, {"n", "Lower" , "Upper"}}]

Lower Upper

77.625 100.125
84.0937 95.3437
8 87.1172 92.7422
16 88.5762 91.3887
32 89.2925 90.6987
64 89.6473 90.3505
128 89.8239 90.1755
256 89.912 90.0878
512 89.956 90.0439

w3

n—oe 41

n-1 "
In fact, limiz flx,)= Iiméz f(x,.,), and this number is the exact value of the area
en k=0 k=1

bounded by the graphs of y=f(x), the y-axis, x=2, and x=5. To help us see why
this is true, we define the function rleft which, given £, a, b, and n, graphs f on
the interval [4,b] and then shows the graph of f along with n rectangles, where the

kth rectangle has vertices (x,,,0), (x,.,.f(x..)), (x.f(x.)) and (x,0). Since the

function f(x)=1+12x-x? on the interval [2,5] is increasing, in this case, these

rectangles are inscribed rectangles. The commands used in defining the function
rleft are discussed in later chapters.

rleft{f_,{a_,b_},n_]:=Module({recs,plotf,x,pts},
x[k_]=atk (b-a)/n;
recs=Table[Rectanglef {x[k],0}, {x[k-1],f[x[k-1]11}],
{k,1,n}};
pts=Table[Point[{x{k],fix[k}}}],{k,0,n-1}];
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plotf=Plot{f[x],{x,a,b},DisplayFunction->Identity];
gl=Show|[Graphics| {GrayLevel[.8],recs}],
DisplayFunction->Identity];
g2=Show[Graphics[ {PointSize[.02],pts}],
DisplayFunction->Identity};
Show[gl,g2,plotf,Axes->Automatic]
1

We then use rleft to show the graph of f on the interval [2,5] with 22
inscribed rectangles for i=0, 1, 2, 3. First, we use Table to generate the graphs.

graphs=Table[rleft(f,{2,5},2*2"1i],{i,0,3}]
{-Graphics-, -Graphics-, -Graphics-, -Graphics-}

We then partition the set of four graphics objects, graphs, into two element
subsets with Partition.

toshow=Partition[graphs, 2]
{{-Graphics-~, -Graphics-}, {-Graphics-, -Graphics-}}

Finally, we display the 2x2 array of graphics objects, toshow, with Show and
GraphicsArray.

Show|[GraphicsArray[toshow]]
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Similarly, we define rright, which, given £, a, b, and n, graphs f on the interval
[2,b] and then shows the graph of f along with n rectangles, where the kth
rectangle has vertices (x,,,0), (x_.f(x)), (x.f(x)), and (x,,0). Since the function

f(x)=1+12x-x? on the interval [2,5] is increasing, in this case, these rectangles are
circumscribed rectangles. Note that rleft and rright could be combined into a
single function by using an If statement.
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rright[f_,{a_,b_},n_]:=Module[ {recs,plotf,x,pts},
x[k_]=a+k (b-a)/n;
recs=Table[Rectangle[{x[k-1],0}, {xik],£ix[k]1}1,
{k,1,n}];
pts=Table[Point[{x(k],f[x(k]]1}],{k,1,n}];
plotf=Plot[f[x],{x,a,b},DisplayFunction->Identity];
gl=Show[Graphics[ {GrayLevel[.8],recs}],
DisplayFunction->Identity];
g2=Show[Graphics[ {PointSize[.02],pts}],
DisplayFunction->Identity];
Show([gl,g2,plotf, Axes->Automatic]
1

Then, in the exact same manner as with rleft above, we use rright to show the
graph of f on the interval [2,5] with 22/ circumscribed rectangles for i=0,1, 2, 3.

graphs=Table(rright[f,6 {2,5},2*2"i],{i,0,3}};
toshow=Partition[graphs,2];
Show[GraphicsArray|[toshow] ]

L

The graphs above help convince us that the limit of the sum of the areas of the

inscribed and circumscribed rectangles is the same. In fact, for any positive integer
n-1

n, the sum of the areas of the inscribed rectangles is given by iz f (2+k§J and
n pary n

the sum of the areas of the circumscribed rectangles is given by Ez f (2+k§].
n oy n

Closed forms of these sums can be computed with Sum after the SymbolicSum
package, located in the Algebra folder (or directory), is loaded. Below, we load
the SymbolicSum package and then use Sum to calculate closed forms for each of
these sums, naming the resulting output 1left and right, respectively.
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<<AlgebraSymbolicSum”
left=3/n Sum[f[2+3k/n],{k,0,n-1}]1//Simplify

2
9 (-1 -5mn+ 20 n)

right=3/n Sum[f[2+3k/n],{k,1,n}]//Simplify

2
9 (-1 +5n+ 20 n)

We then use Limit to compute the limit as n— « of both left and right. The
results, as expected, are the same.

Limit{left,n->Infinity]

Limit[right,n->Infinity])

90
90

We conclude that the area is 90. B

In our next example we examine a function that is decreasing on the interval under
consideration. Be sure the functions la, ra, rright, and rleft from the previous
example have been defined and the package SymbolicSum has been loaded before
carrying out the subsequent calculations.

EXAMPLE: Approximate the area bounded by the graphs of y = f(x), the y-axis,
x=1, and x=3 using 2, 4, 8, 16, 32, 64, 128, 256, and 512 (a) circumscribed and
(b) inscribed rectangles if f(x)=2x>-9x2+30. (c) What is the exact value of the
area?

SOLUTION: As in the previous example, we begin by defining and graphing f.

Clear{f]
f[x_]=2x"3-9x"2+30;
Plot{f(x],{x,-1,4}]
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Then, we use the functions la and ra to approximate the area for the indicated
numbers of circumscribed and inscribed rectangles. In this case, because f is
decreasing on the interval [1,3], 1a yields an upper approximation, while ra
yields a lower approximation.

approxes=Table|[{2°n,la[f,{1,3},2"n),ra(f,{1,3},2"n}},{n,1,9}];
TableForm[approxes, TableHeadings->{None, {"n", "Upper", "Lower"}}]

> NS

[=-]

16
32
64
128
256
512

Upper
33.
27.25
24,5625
23.2656
22.6289
22.3135
22.1565
22.0782
22.0391

Lower
13.
17.25
19.5625
20.7656
21.3789
21.6885
21.844
21.9219
21.961

We also use the functions rleft and rright, defined in the previous example, to

visualize various circumscribed and inscribed rectangles.

toshow=Partition[graphs,2];

Show[GraphicsArray[toshow] ]
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graphs=Table[rright[f,6 {1,3},2*2"1],{i,0,3}]);
toshow=Partition[graphs,2];
Show|[GraphicsArray[toshow] )

For any positive integer n, the sum of the areas of the circumscribed rectangles is
-1

given by gz /(1+k3) and the sum of the areas of the inscribed rectangles is
n pory n

given by EZ f(l+k£). Closed forms of these sums can be computed with Sum
n ot n

after the SymbolicSum package, located in the Algebra folder (or directory), has
been loaded.

left=2/n Sum[f[1+2k/n],{k,0,n-1}]//Simplify

4 20
22 + == + —-=
2 n

n

right=2/n Sum{f{1+2k/n],{k,1,n}]//Simplify

4 20
22 4 - - ==
2 n

n

To find the exact area, we use Limit to compute the limit as n— « of both left
and right. The area is 22.

Limit[left,n->Infinity]
Limit[right,n->Infinity]

22
22
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Computing Definite and
Indefinite Integrals

The built-in command Integrate can be used to find antiderivatives of some functions
and evaluate some definite integrals.

The command Integrate[f[x],x] attempts to compute Jf(x)dx, while the

command Integrate[f[x],{x,a,b}] attempts to compute the definite integral
b
jf(x)dx. The command Integrate[expression,variable] instructs Mathematica to

try to integrate expression with respect to variable. Each of the following examples
illustrates typical commands used to compute indefinite integrals.

EXAMPLE: Compute each of the following indefinite integrals.
(a) v|.x2(l—x3)5dx; (b) Je-Zx sin3xdx;

2 par 1o . . xX?-4x
(c) J.x tanlx; (d) If(x)dx if f(x)—-————xz_

; and
2x-3
(e) j sy if g(y)=y>(Iny)’.

SOLUTION: For (a), (b), and (c), we use Integrate directly. Entering
Integrate[x"2(1-x"3)"5,x]

3 6 9 12 15 18
X 5 x 10 x 5 x b4 b4

R O $ e = —em

3 6 9 6 3 18
computes sz (1-x3)’dx ; entering
Integrate[Exp[-2x]Sin[3x],x]
-3 Ccos[3 x] 2 Sin[3 x]

computes j ersin3xdx; and entering
Integrate[x”2 ArcTan{x],x]

2 3 2
-X X ArcTan[x] Log{l + x ]

computes J.xz tan-'x.
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For (d) and (e), we first define f and g and then use Integrate.

Clear[f])
f{x_]=(x"2-4x)/(x"2-2x-3);
Integrate[f[x], x]

3 Log[-3 + x] 5 Log[l + x]

Clearfg]
aly_1=y"3 Log[y]1"2;
Integrateg[y],y]

4 4 4 2
Yy y Logly] y Logly]

Generally, Mathematica can compute antiderivatives of most functions
encountered in an introductory integral calculus course. ll

Since integration is a difficult procedure, it is relatively easy to make up integrals that
Mathematica cannot calculate. Nevertheless, Mathematica can calculate a wide variety of
integrals.

EXAMPLE: Calculate (a) J.sinxlnxdx,' (b) J.;

sin2x+2

dx; and (c) '[ dx.

sinx +2

SOLUTION: Mathematica can compute (a) and (b), but not (c).
Integrate[Sin{x] Log[x],x]
CosIntegral[x]) - Cos[x] Log[x]

The function CosIntegral[x], appearing in the result above, represents the
cosine integral function, Ci(z), where

Ci(z):-J COStdt=y+1nz+J'C°S:‘1dt.
z 0

t

Here, y represents Euler's constant which is approximately 0.577216. Note that
Mathematica has a built-in definition of Euler's constant, EulerGamma.

Integrate[1l/(Sin[x]"2+2),x]
3
ArcTan[Sqrt[-] Tan[x]]

Sqre(6]
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Integrate[x/(Sin[x]+2),x]

Integrate[~———------—- , X1
2 + Sin{x]
|
Definite integrals are also computed with Integrate. In general, the command

Integrate[expression, {variable,lowerlimit,upperlimit}]

integrates expression with respect to variable and evaluates from lowerlimit to
upperlimit as illustrated in the following example.

EXAMPLE: Calculate each definite integral.

(a) Jl.(x—xz)dx; (b) j.sinxdx;

(c) J‘\/4—x2dx; (d) Jf(x)dx, if f(x)=x%;and

(e) J.g(x)dx, if g(x)=e?sin?2x.

-

SOLUTION: For (a), (b), and (c), we use Integrate to evaluate each definite
integral.

Integrate[x-x"2,{x,0,1}]

1

6
Integrate[Sin[x],{x,0,Pi}]

2
Integrate[Sqrt[4-x"2],{x,1,2}]

-Sqrt{3] 2 Pi

________ 4 m—m——

2 3

On the other hand, for (d) and (e), we clear all prior definitions of f and g, define f
and g, and then use Integrate to compute the indicated definite integral.

Clear[f]
f(x_]1=x"3 Exp[-4x];
Integrate(£f{x],{x,1,2}]
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128 E 128 E

Clearjg}
glx_]=Exp[2x] Sin[2x]"2;
Integrate[g[x], {x,-Pi, 2Pi}]

When the command Integrate[f[x], {Xx,xXmin,xmax} ] is entered, Mathematica
computes an antiderivative F of £, when possible, and computes F[xmax]-F[xmin].
Nevertheless, Mathematica does not apply the Fundamental Theorem of Calculus since
Mathematica does not verify that £ is continuous on the interval [xmin,xmax]. In cases
when f is not continuous on [xmin,xmax], errors often occur. Consequently, before
believing the results presented by Mathematica, be sure the results that Mathematica gives
you are reasonable.

1
EXAMPLE: Calculate '[ ldx,
X

SOLUTION: Below we use Integrate to attempt to calculate the definite
integral.

Integrate[1l/x,{x,-1,1}]}
-I Pi

-Log[-1]
-I Pi

Since the function 1 is not continuous when x=0, we cannot use the Fundamental
X

1
Theorem of Calculus to calculate this integral. In fact, the integral Jldx does not
X
-1

exist.
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Approximating Definite Integrals

When an exact value of a definite integral is either unnecessary or impossible to compute,
Mathematica can frequently compute approximations of definite integrals with
NIntegrate,

NIntegrate[expression, {variable,lowerlimit,upperlimit}],

which numerically integrates expression with respect to variable and evaluates from
lowerlimit to upperlimit.

The command NIntegrate is useful when an anti-derivative of expression
cannot be (easily) found and expression is fairly smooth on the interval
[lowerlimit, upperlimit] Also, in those cases in which an anti-derivative can be
determined, the value of the definite integral can usually be computed more quickly by an
approximation with NIntegrate rather than Integrate.

EXAMPLE: Compute both exact and approximate values of J. “4x2

SOLUTION: Integrate is used to compute the exact value of the integral;
NIntegrate is used to compute an approximation of the integral.

Integrate[Sqrt[4x~2-9]/x"3,{x,4,10}]

Sqrt{55] Sgrt[391)

32 200
3 3
2 ArcTan[-------- ] 2 ArcTan[---—--—---- ]
Sqrt(55] Sart([391]
3 3

NIntegrate[Sqrt[4x"2-9)/x"3, {x,4,10}]
0.288773
The approximation obtained with NIntegrate is computed much more quickly

than the exact value computed with Integrate. B

In many cases, Mathematica can compute approximate values of definite integrals it
cannot compute exactly.
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in
EXAMPLE: Approximate J'e,,.z cosx3dx .

4

SOLUTION: We first graph e-? cosx® on the interval [0,]. Note that the graph is
relatively smooth so that the chances of NIntegrate producing a reasonable
approximation of the integral are good.

Plot[Exp[-x"2] Cos[x"3],{x,0,Pi},PlotRange->All]

0.6
0.4

0.2

Next, we try to use Integrate to evaluate the integral but are unsuccessful. In
this particular case, the Mathematica kernel ran out of memory and quit.

Integrate[{Exp[-x"2] Cos{[x"3],{x,0,Pi~(1/3)}]
General::intinit: Loading integration packages -- please wait.
Finally, we use NIntegrate to approximate the integral.
NIntegrate[Exp[-x"2] Cos[x"3],{x,0,Pi"(1/3)}]

0.701566

Application: Area Between Curves

A type of problem which incorporates the commands Integrate and NIntegrate is
that of finding the area between curves. These problems also use several other
Mathematica commands (Plot, NRoots, FindRoot, Solve,...) which were introduced
earlier in the text.

EXAMPLE: Find the area between the graphs of y=sinx and y=cosx on the
interval [0,2x].
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SOLUTION: Below, we graph y=sinx and y=cosx on the interval [0,2x]. The
graph of y=cosx is dashed.

Plot[{Sin[x],Cos[x]},{x,0,2Pi}, PlotStyle->{GrayLevel[0] ,Dashing({{.01}]}]

1p-o -

-1

To find the upper and lower limits of integration, we must solve the equation
sinx = cosx for x. We see that Solve is unable to solve this equation. However, we

see that sinx=cosx on the interval [0,2n] when x =% and when x= —54£ Note that

FindRoot can be used to approximate these numbers, but the resulting area
computed would not be exact.

Solve[Sin[x]==Cos[x],x]

Solve::tdep:

The equations appear to involve
transcendental functions of the
variables in an essentially
non-algebraic way.

Solve[Sin[x] == Cos[x], X]

Sin[Pi/4]==Cos[Pi/4]
Sin[S5Pi/4)==Cos[5Pi/4]

True
True

Thus, the desired area is given by

n/4 5n/4 2n
Area= J.(cosx —sinx)dx + '[(sinx —cosx)dx + J.(cosx —sinx)dx

0 n/4 5n/4

which is computed below.

Integrate[Cos[x]-Sin[x],{x,0,Pi/4}]+
Integrate[Sin[x]-Cos[x],{x,Pi/4,5Pi/4}]+
Integrate[Cos[x]-Sin[x],{x,5Pi/4,2Pi}}

4 sqrt[2]
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Thus, the desired areais 42 .1

In cases when we cannot calculate the points of intersection of two graphs exactly, we
can frequently use NRoots or FindRoot to estimate the points of intersection.

EXAMPLE: Let
plx)= %XS —3x1+11x3 - 18x2 +12x +1

and
qx)=—4x3 +28x2 - 56x + 32.

Approximate the area of the region bounded by the graphs of p and q.

SOLUTION: Mathematica is quite helpful in problems of this type. We can
observe the region whose area we are seeking using the Plot command, and we
can locate the points of intersection with one of the commands used in solving
equations (NRoots, FindRoot, Solve, or NSolve). These steps are carried out
below. After defining p and g, we graph p and q (the graph of q is dashed) and
then use NRoots to find the x-coordinates of the points of intersection, naming the
resulting output intpts.

Clear([p,ql

plx_1=3/10x"5-3x"4+11x"3-18x"2+12x+1;

q[x_]=-4x"3+28x"2-56x+32;
Plot[{p[x],q[x]},{x,-1,5},PlotStyle->{GrayLevel [0],Dashing[{.01}]}]

intpts=NRoots[p[x]==q[x],x]
x == 0.772058 |] x == 1.5355 - 3.57094 I ||

1.5355 + 3.57094 I || x == 2.29182 ||

X

I
]

X 3.86513

Two of the solutions listed contain an imaginary part. We can ignore these
solutions. The real solutions are extracted from intpts and named x1, x2, and
x3, respectively.
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xl=intpts([1,2]]

x2=intpts|[4,2]]

x3=intpts[[5,2]]
0.772058
2.29182
3.86513

Using the roots to the equation p(x) = q(x) found above, the graph shows that

p(x) > q(x) between x=0.772058 and x=2.29182 ; and
q(x) > p(x) between x=2.29182 and x=3.86513.

Hence, an approximation of the area bounded by p(x) and q(x) is given by the

integral

J'Z(;Ez)- q(x))dx + J.s(i]sf:) - p(x))dx .

0.772058 2.29182

This integral is computed below with both Integrate and NIntegrate. In
either case, the result is the same.

12.1951
NIntegrate[p[x]-q[x],{x,x1,x2}]+NIntegrate[qg[x]-p[x], {x,x2,x3}]
12.1951

Next, consider a problem which involves functions which are not polynomials.

EXAMPLE: Let
f(x) = e~(172)2 cos RX and g(x) = 4COS(X - 2)

on the interval [0,4]. Approximate the area of the region bounded by the graphs of
fand g.

SOLUTION: Since these functions are not polynomials, FindRoot must be used
to approximate the x-coordinates of the points of intersection. Recall that
FindRoot depends on an initial guess of the root. Therefore, the first step towards
solving this problem is to graph the functions f and g and estimate the x-
coordinates of the points of intersection.

Clear(f,qg]

f(x_)=Exp[~(x-2)"2Cos{Pi x]];

glx_]=4Cos[x-2];
Plot[{f[x],g[x]},{x,0,4},PlotStyle->{GrayLevel [0] ,Dashing[{.01}]}]
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Once the initial guesses have been determined, FindRoot is used to approximate
the solutions to the equation f(x) = g(x), and the area is approximated with
NIntegrate. Below, we use FindRoot to approximate the x-coordinate of each
intersection point. The results are named fr1 and f£r2, respectively. The values
are then extracted from fr1 and fr2 and named x1 and x2, respectively.

fri=FindRoot [f[x]==g[x],{x,1.06}]
fr2=FindRoot{f[x]==g[x], {x,2.93}]

{x -> 1.06258}
{x -> 2.93742}

x1=£frl[[1,2]]
x2=£fr2[[1,2])]

1.06258
2.93742

2.937
Thus, the area is approximated by the integral J (8(x)- f(x))dx which is computed
1.023
below with NIntegrate.
NIntegrate[g[x]-f[x],{x,x1,x2}]

4,17413

Application: Arc Length

Let f(x) be a function for which f'(x) is continuous on an interval [a,b]. Then the arc length
of the graph of f from (a,f(a)) to (b,f(b)) is given by

Length = j.w/1+(f’(x))2 dx .
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The resulting definite integrals used for determining arc length are usually difficult
to compute since they involve a radical. Because the built-in command

b
NIntegrate[f[x], {x,a,b}] numerically approximates the integral J f(x)dx, Mathe—

matica is very helpful with approximating solutions to these types of problems.

EXAMPLE: Let f(x)=sin(x +xsinx). Approximate the arc length of the graph of f
from (0,£(0)) to (2m,£(2x)).

SOLUTION: We begin by defining and graphing f on the interval [0,2n].

Clear(f]
f[x_)=Sin[x+x Sin[x]];
Plot[£[x], {x,0,2Pi}]

1

=1

o

-1

In order to evaluate the arc length formula, we first compute the derivative of f(x)
2n

and then approximate J-1{1+( £(x))’ dx with NIntegrate.
0

£'[x]

Cos[x + x Sin[x]] (1 + x Cos[x] + Sin[x])
NIntegrate[Sqrt[1+f'[x]"2],{x,0,2Pi}]

12.0564

Thus, an approximation of the arc length is 12.0564. B

Application: Volume of
Solids of Revolution

Mathematica can be used to solve volume problems as well. Let f be a non-negative
continuous function on [a,b] where both a and b are greater than zero. Then the volume of
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the solid of revolution obtained by revolving the region bounded by the graphs of y=f(x),
x=a,x=b, and the x-axis about the x-axis is given by

V= J‘n(f(x))zdx )

The volume of the solid of revolution obtained by revolving the region bounded by the
graphs of y=f(x), x=a, x=b, and the x-axis about the y-axis is given by

V= j?.nxf(x)dx .

EXAMPLE: Let g(x)=xsin?(x). Find the volume of the solid obtained by revolving
the region bounded by the graphs of y=g(x), x=0, x=n, and the x-axis about (a) the
x-axis; and (b) the y-axis.

SOLUTION: In this case, after defining g, we graph g on the interval [0,%] and
then use Integrate to compute the volume of each solid. The volume of the

solid obtained by revolving the region about the x-axis is given by V = In( g(x)) dx,
0
while the volume of the solid obtained by revolving the region about the y-axis is
given by V=J-27tx g(x)dx. These integrals are computed below and named xvol
0

and yvol, respectively. N is used to approximate each volume.

Clear(q]
glx_]=x Sin[x]"2;
Plot[g[x],{x,0,Pi}]

1.75
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xvol=Integrate{Pi g[x]"2,{x,0,Pi}]

2 4
-60 Pi + 32 Pi

N[xvol]

9.86295
yvol=Integrate[2 Pi x g[x],{x,0,Pi}]

2 4

N[yvol]

27.5349

We can use ParametricPlot3D to visualize the resulting solids by
x=rcos(t)
parametrically graphing the equations given by {y=rsin(t) for r between 0 and ©
z=g(r)
and t between —n and = to visualize the graph of the solid obtained by revolving
the region about the y-axis, or by parametrically graphing the equations given by

x=r
y = g(r)cos(t) for r between 0 and & and t between —1t and = to visualize the graph
z = g(r)sin(f)
of the solid obtained by revolving the region about the x-axis. In this case, we
identify the z-axis as the y-axis. Notice that we are simply using polar coordinates
for the x- and y-coordinates, and the height above the x,y-plane is given by g(r)
since r is replacing x in the new coordinate system. .

x[x_,t_]}=r Cos[t];

ylr_,t_]=r Sin[t];

z[r_,t_]=g[r];

ParametricPlot3D([ {x[r,t],y[r,t]},z[r,t]},{xr,0,Pi},{t,~Pi,Pi}]
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Clear([x,y,z]

x[r_,t ]=r;

ylr_,t_l=g[r] Cos[t];

z[r_,t_)=glr] Sin[t];

ParametricPlot3D[ {x[r,t],y[r,t],2[r,t]},{r,0,Pi},{t,-Pi, Pi}]

3 n

We now demonstrate a volume problem for which we cannot use Integrate to
calculate an exact value of the volume. Instead, we use NIntegrate to approximate the
volume.

EXAMPLE: Let f(x)=e (3 «s(s=-3), Approximate the volume of the solid obtained
by revolving the region bounded by the graphs of y=f(x), x=1, x=5, and the x-axis
about the y-axis.

SOLUTION: Proceeding as in the previous example, we first define and graph f
on the interval [1,5].
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Clear[f}
fIx_]=Exp[-(x-3)"2 Cos[4(x-3)]];
Plot(f([x],{x,1,5}]

2 3 4 5
In this case, an approximation is desired so we use NIntegrate to approximate
5

the integral vV = In( f(x))2 dx.

NIntegrate[Pi f[x]"2,{x,1,5}]

16.0762

In the same manner as before, ParametricPlot3D can be used to visualize the
resulting solid by graphing the set of equations given parametrically by

x=r
y = f(r)cos(t)
z = f(r)sin(t)

for r between 1 and 5 and t between 0 and 2. In this case, polar coordinates are
used in the y,z-plane with the distance from the x-axis given by f(x). Because r
replaces x in the new coordinate system, f(x) becomes f(r) in the equations given
above.

Clear([x,y,z]

x[r_,t_]=r;

ylr_,t_]1=f[r] Cos[t];

z[r_,t_1=f[r] Sin[t];

ParametricPlot3D[ {x[r,t],y[r,t]),z[r,t]},{xr,1,5},{t,-Pi,Pi}]
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Application: The Mean-VYalue Theorem
for Integrals

Another application of integrals involves the Mean-Value Theorem for Integrals. The
Mean-Value Theorem for Integrals states that if f is continuous on [a,b] then there is at

b
least one number ¢ between a and b satisfying I f(x)dx = f(c)(b—-a).

EXAMPLE: Find all values of c satisfying the conclusion of the Mean-Value
theorem for integrals for the function f(x)=x2-3x+4 on the interval [2,6].

SOLUTION: After defining f, we compute J. f(x)dx and name the resulting output

6

val. We then solve the equation | f(x)dx=f(x) (6-2) for x and name the resultin
q g

2
output exvals. To determine which of the numbers in the list exvals is
contained in the interval [2,6] we use N to compute an approximation of each
number in exvals. We conclude that the only value of c satisfying the conclusion

V3091

6

of the Mean-Value theorem is %+
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Clear[f]
flx_]1=x"2-3x+4;
val=Integrate[f[x],{x,2,6}]
112
3
exvals=Solve[val==£f[x] (6-2)]

9 - 8qgrt[273] 9 + Sqrt([273]

N[exvals]

{{x -> -1.25379}, {x -> 4.25379}}

A Word of Caution

When using commands like Integrate and D, be sure to include the correct number of
arguments. For example, entering

Integrate[Sin[x]+Cos[x]]

Integrate::argmu:
Integrate called with 1 argument; 2
or more arguments are expected.
Integrate(Cos[x] + Sin[x]]
results in an error message because there are not enough arguments in the command.
Entering the command Integrate[Sin[x]+Cos[x],x] computes I(sinx + cosx)dx.

3.5 Series

Introduction to Series

Sequences and series are usually discussed in the third quarter or second semester of
introductory calculus courses. The first topic addressed in these courses usually is
determining whether a sequence or series converges or diverges. Mathematica can help
determine the answer to these questions in some problems either graphically or explicitly.



174 3 Calculus

1

EXAMPLE: Find the sum of each of the following series: (a) 2—— ;
et 4n? + 81+ 3

= Nad 3»1/2
(b) x%; and (c) )

SOLUTION: Since we will be computing infinite sums, we begin by
loading the package SymbolicSum contained in the Algebra folder
. c 1

d t . W t _
(or directory). We compute ;4n2+8n+3
{n,1,Infinity}]. The same results are obtained by entering
SymbolicSum[1l/(4n"2+8n+3), {n,1l,Infinity}].

by entering Sum[1/(4n"2+8n+3),

<<Algebra” SymbolicSum”
Sum{1/(4n"2+8n+3),{n,1,Infinity}]

1

6

Similarly, we use Sum, or SymbolicSum, to compute Zx“ . The result is valid for
k=1

|x]<1.

sum[x"(3k),{k,1,Infinity}]

3n/2
5n :

In the same manner as in the previous two examples, Sum calculates z
n=1

Sum(3”°(n/2)/5"n,{n,1,Infinity}]

Sqrt[3)

5 - Sqgrt[3]

EXAMPLE: Determine whether or not the series ZEkI: converges.
k=1
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2
SOLUTION: We use the Integral test to determine whether or not the series 2% converges.
k=1

We begin by calculating the integral J‘”%dk with Integrate and naming the resulting
1

output expl. We then use Simplify to simplify expl and name the resulting output exp2.
expl=Integrate[k/2"k, {k,1,n}]

-2 1 =2 n
Log{ 2] + —————— -Log[2] - m—————

exp2=Simplify[expl]

n n
-2 +2 + 2 Log[2] - 2 n Log[2]

2 2 Log[2]

Next, we must calculate lim ~k7dk . We first try using Limit but are unsuccessful.

e Jy 2
Limit[exp2,n->Infinity]

Infinity::indet:
Indeterminate expression -2 + -Infinity + Infinity + Infinity
encountered.
Infinity::indet:
Indeterminate expression -2 + -Infinity + Infinity + Infinity
encountered.
Infinity::indet:
Indeterminate expression -2 + -Infinity + Infinity + Infinity
encountered.
General::stop:
Further output of Infinity::indet
will be suppressed during this calculation.
n n
-2+ 2 + 2 Log{2] - 2 n Log{2]
Limit[-=-—mm e , n => Infinity]

2 2 Log[2]

Since we are unsuccessful with Limit, we load the package NLimit contained in
the NumericalMath folder (or directory) and then attempt to use the command
NLimit but are again unsuccessful.

<<NumericalMath NLimit"
NLimit[exp2,n->Infinity]
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NLimit::noise:

Cannot recognize a limiting value. This may be due to noise
resulting from roundoff errors in which case higher
WorkingPrecision, fewer Terms, or a different Scale might help.

n n
-2 +2 + 2 Log[2] - 2 n Log[2]
NLimit[~—-——— e , n -> Infinity]

2 2 Log[2]
However, we are able to use Integrate to calculate the improper integral

J. %dk as shown below. Thus, by the Integral test, we conclude that the series
1

Ok

Z— converges.

k=1 2

Integrate(k/2"k, {k,1,Infinity}])

-2 1
Log[2] + =—-—---

Since the series converges, we know that the limit of the partial sums is the value

of the series. Below, we use Sum to approximate the value of the series by
1000

computing ZE.
k=1

Sum[k/2"k, (k,1,1000}]//N
2,

In fact, after loading the SymbolicSum package contained in the Algebra folder
. ok
(or directory), we are able to compute the exact value of ZE'
k=1
<<Algebra”SymbolicSum”
sum{k/2"k,{k,1,Infinity}]

2

EXAMPLE: Determine whether or not the series E —10'" converges.
n
n=1
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SOLUTION: After clearing all prior definitions of a, if any, we define 4 = g and
n

then use Table to calculate a,4,,...,4,, a,,, naming the resulting set of numbers

vals. These numbers are then graphs with ListPlot.

Clear(a]
a[n_]=10"n/n!;
vals=Table[a[n],{n,1,25}];
ListPlot[vals]
2500
2000
1500
1000

500

S 10 13 20 25

To determine whether or not the series converges, we use the Ratio test. First, we

a - . a
compute L and then attempt to use Limit to calculate lim— but are
a

e g
" n

unsuccessful.

a[n+l]/a[n]

(1 + n)!
Limit[a[n+l]/a[n],n->Infinity]

Series::esss:
1 3
Essential singularity encountered in Gamma[- + 1 + O[n] ].
n
Series::esss:
1 3
Essential singularity encountered in Gamma[- + 2 + O[n] ].
n
Series::esss:
1 3
Essential singularity encountered in Gamma[- + 1 + O[n] ].
n
General::stop:
Further output of Series::esss
will be suppressed during this calculation.
10 n!
Limit[-—=—==== , n => Infinity]
(1 + n)!
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Since Limit is unsuccessful, we load the package NLimit, as in the preceding

example, and then attempt to use NLimit to calculate lim 21 In this case, we

noe g

interpret the result to be the same as 0. Thus, by the Ratio test, we conclude that

. o 107
the series E —- converges.
n.
n=1

<<NumericalMath  NLimit"

NLimit[a[n+1]/a[n],n->Infinity]

-6

-1.59203 10
Alternatively, we load the package CombinatorialSimplification contained in the
DiscreteMath folder (or directory) which contains elementary rules for
simplifying expressions involving factorials and similar expressions. After loading

1
% is simplified to

101 and we see that

. a
the package, the expression —1 =
a n+

"

1
lim Ay =lim 10n! =lim 10

—=0.
ft—yoo a" n—oe (n + 1)] noe 3741

Thus, by the Ratio test, the series converges.

<<DiscreteMath CombinatorialSimplification”
a[n+l]/a(n]

In fact, after loading the SymbolicSum, Mathematica can compute the exact value
of the series with Sum, or SymbolicSum, as shown below.

<<AlgebraSymbolicSum”
sSum[10"n/n!,{n,1,Infinity}]

10

-1 + E

In addition to the above examples, which are similar to those discussed in introductory
calculus courses, Mathematica can also help determine the solution of more difficult
probiems.
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EXAMPLE: Determine whether or not the series Z Sl:k .
k=1

sink

SOLUTION: We begin by defining a4, = and then using Table to compute a

list of the values a,,4a,,4,,...,4,,, a,,,

We then use ListPlot to graph the list of numbers nums.

naming the resulting list of numbers nums.

Clear[a]

alk_]=Sin[k]/k;

nums=Table(a[k], {k,1,1000}];

ListPlot [nums,Axes->None,Frame->True}

0.006
0.004
0.002
-0.002

-0.004/ -
-0.006|

0 200 400 600 8001000

Although the graph is not helpful in determining whether or not the series
-, 1000 .
ZSIZk converges, we compute ZSIZk with sum. At this point, we might

k=1 k=1
conclude that the series converges. However, we must be careful about any

"

conclusions, as the partial sums, l, of the series 1 are relatively small for
P P p y
k=1 k=1

"large" values of n, like 7n=1000, even though the series 2% diverges.

k=1
sum[Sin[k]/k, {k,1,1000}]//N
1.07069

However, after loading the package SymbolicSum, we are able to compute the
exact value of the series.

<<Algebra”SymbolicSum"
val=Sum(Sin[k]/k,{k,1,Infinity}]

I -I I
- (-Log[(l - E ] + Log[l - E ])
2
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To see that this is a real number, we use ComplexExpand and ?ArcTan.

val2=ComplexExpand[val]

-ArcTan[l - Cos[l], -Sin[l]] + ArcTan[l - Cos[l], Sin[l]]

?ArcTan
ArcTan(z] gives the inverse tangent of z. ArcTan([x, y)] gives the
inverse tangent of y/x where x and y are real, taking into
account which quadrant the point (x, y) is in.
A numerical approximation of the result given above is obtained with N.

N[val2]

1.0708

Determining the Interval of Convergence
of a Power Series

After discussing sequences and series, the next topic addressed in these courses is usually

power series. Given a power series Zanx" , a fundamental problem is finding the interval
n=0
of convergence of the given power series.

1

(-5)

EXAMPLE: Find the interval of convergence of each series: (a) z x2+1; and
n=0

(b) Z Sl PO\

n+2

SOLUTION: For (a), we proceed using the Root test. The Root test says that if

Za is a series with positive terms and ¢=1limz/a_, then
n n—es n

i. the series converges if /<1,
ii. divergesif ¢>1; and
iii. no conclusion can be drawn if /=1
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We begin by defining a to be ;n x2z+ and then computing and simplifying

i ;)n x2+1 Note that Simplify does not simplify the expression "\/(;)"7 as

desired so we use PowerExpand to simplify the resulting powers. We name the
resulting output stepone.

Clear([a]
a[n_]=x"(2n+1)/(-5)"n;
a[n]”~(1/n)//Simplify

stepone=PowerExpand[a[n]”~(1/n))//Simplify

2 + 1/n
-X

We then compute the limit of stepone as n approaches infinity. This is the same

as computing
lim , 1 —x2ml = lim_—lxzx‘/" .
Ny (_5) no« §

Limit[stepone,n->Infinity]

2
-X

5

The result means that Z LR converges absolutely when L 12/<1. We solve
n=0

(-5)"

this inequality below:
Solve[x"2/5==1,x])

{{x => -Sqrt[5]}, {x -> Sqrt([5]}}

Plot[{1,x"2/5},{x,-3,3}]
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-3 -2 -1 1 2 3

We conclude that 2

n=0 (_5)n

x2+ converges when x=-5 and x= J5 separately. We first

x>+ converges absolutely when —5<x<+5. We

. . N
investigate if .

20
substitute x=—-5 in ap. The resulting alternating series diverges, since the ap
which results does not approach zero as n approaches infinity.

PowerExpand[a[n] /. x->-Sqrt[5]}//Simplify

1/2 + n
5
n
(=3)
We conclude that the interval of convergence of the series Z ( El_)) x2=1 is the open
n=0 a

interval (_\/E A5 )

For (b), we use the Ratio test. The Ratio test says that if Zan is a series with

positive terms and ¢ =lim %1 then

noe g
"

i. the series converges if ¢<1;
ii. divergesif ¢>1;and
iii. no conclusion can be drawnif ¢=1.



3.5 Series 183

2n
In the same manner as above, we begin by defining ap, to be %(x -3)". We then
n

a

compute and simplify —2, naming the resulting output stepone,

a

n

Clear({a]
a[n_)=4"(2n) (x-3)"n/(n+2);
stepone=a[n+l]/a[n]//Simplify

16 (2 + n) (-3 + x)

L +§ (x - 3), naming the resulting output steptwo.

and then compute lim16 N
n—ye n

steptwo=Limit[stepone,n->Infinity]

16 (-3 + x)

- 2n
The result means that z 4 (x=3)" converges absolutely when [16x-48/<1. We
n=0

- 11+ 2

solve this inequality below and then test to see if the series converges when x = ;1—7
and x= illg separately.
rp=Solve[steptwo==1,x]
lp=Solve[steptwo==-1,x]
49
{{x => —-}}
16
47
{{x => —-}}
16

a[n] /. rp[[1]]
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. = (-1)" . . N .
Since ) converges by the alternating series test and L diverges by the
n+2 5 y & n+2 & Y
n=0

n=0
basic comparison test, we conclude that the interval of convergence of the series

Y2 a3y is [5,4—9).1
n+2 16 16

n=0

Computing Power Series

Recall that the power series expansion of a function f(x) about the point x=a is given by the
expression

iﬂ%fa)(x—a)" .

Mathematica computes the power series expansion of a function f(x) about the point x = a
up to order n with the command

Series[f[x],{x,a,n}].

The symbol O[x-a]” (n+1) appearing in the output that results from the

Series[f[x],{x,a,n}] command represents the terms that are omitted from the

power series for f expanded about the point x=a. The O-term is removed from the output of

the Series command with the Normal command; the result is a polynomial function.
Several familiar power series are computed below using this command.

EXAMPLE: Find the first few terms of the power series for the given function
about the indicated point:

(a) cosx about x=0; (b) er about x=0;

(c) sinx about x=n;and (d) Inx about x=1.

SOLUTION: Entering
Series([Cos[x],{x,0,6}]
2 4 6
X X X 7

1 - == 4 == = —=— + 0O[x]
2 24 720

computes the terms of the power series for cosx about x =0 to order 6; entering
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Series([Exp[x],{x,0,7}]
2 3 4 s 6 7
X X X X X X 8
1+ X+ ——+ == + == + o + o= + ——— + O[X]
2 6 24 120 720 5040
computes the terms of the powers series for e about x =0 to order 7; entering

Series[Sin[x}, {x,Pi,5}]
—(-Pi + X) # —mmmmmmeem o +
6

O[-Pi + x]

computes the terms of the power series for sinx about x=n to order 5; and

entering
2 3 4
(-1 + x) (-1 + x) (-1 + x)
(-1 + X) = == + e s +
2 3 4
5 6 7
(-1 + x) (-1 + x) (-1 + x)
___________________ F e —
5 6 7
8
(-1 + x) 9

computes the terms of the power series for Inx about x=1to order 8. W

Mathematica can also compute the general formula for the power series expansion of a
function y(x). The results of entering the following commands

Series[y[x],{x,0,3}]
yI0] + ¥'[0] X + ———ommee e + e + 0[x]
Series([y[x],{x,a,3}]

y''(a] (-a + x)
y{a] + y'[a] (-a + %) + —-————mmmmmmm e +
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are the power series for y(x) about x=0 and x=a to order 3, respectively.

Note that the result of entering a Series command is not a function that
can be evaluated when x is a number. However, we can remove the remainder term
of the power series Series[f[x],{x,a,n}] with the command
Normal[Series[f[x],{x,a,n}]] and evaluate the resulting polynomial. Hence, with
the Normal command, a polynomial is obtained. This polynomial serves as an
approximation to the function f(x). These ideas are illustrated below.

EXAMPLE: Find the fifth degree Maclaurin polynomial of f(x)=tan-1x. Compare
the graphs of f(x)=tanx and the polynomial.

SOLUTION: If f is a function with n derivatives at 0, then the nth degree
Maclaurin polynomial of f is

v [40)
sz .

k=0

Below, we define serl to be the power series expansion for the function
f(x)=tan ! x about x=0 to order 5. To illustrate that the resulting output is not a
function, we attempt to evaluate ser1l when x=1. Note the error messages that
occur.

serl=Series[ArcTan([x], {x,0,5}]

3 5
X b 6
X = == + —— + 0O[x%]
3 5

serl /. x->2

SeriesData::ssdn:
Attempt to evaluate a series at the number 2;

returning Indeterminate.
Indeterminate

However, we can use Normal to remove the O-term which represents the omitted
higher-order terms of the series. Below, we use Normal and name the resulting
output poly. Note that poly is an expression which can be evaluated for
particular numbers. In fact, poly represents the fifth degree Maclaurin
polynomial of f(x)=tan-x.
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poly=Normal[serl]

3 5
X X

X = == + —
3 5

poly /. x->2

86

15

Finally, we use Plot to compare the graphs of poly and f(x)=tan-'x. The graph
of f(x)=tan'x is dashed and the graph of poly is in black. Note that poly
appears to approximate f well on an interval containing 0.

Plot[ {ArcTan([x],poly},{x,-3/2,3/2},
PlotStyle->{Dashing{{.01}],GrayLevel{0]}]

We can also use Series to compute Taylor polynomials. If f is a function with n
derivatives at x=a, then the nth degree Taylor polynomial of f at x=a is

EXAMPLE: Find the 8th degree Taylor polynomial of f(x) about x=1 if
f(x)=e--1*=1?  Compare the graphs of the polynomial and f.

SOLUTION: After clearing all prior definitions of f, we define and graph f naming
the result plotf. Note that plotf is not displayed since the option
DisplayFunction->Identity is included. The option AxesOrigin->{0,0}
assures that the axes in the plot intersect at the point (0,0); the option
PlotStyle->Dashing[ {.01}] assures that the resulting displayed graph is
dashed.
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Clear[f]

fix_]=Exp[-(x-1)"2(x+1)"2];

plotf=Plot[f[x]},{x,~-1.75,1.75},PlotStyle->Dashing[{.01}},
AxesOrigin->{0,0},DisplayFunction->Identity];

Next, we define ser to be the power series of f about x=1 to order 8. We then
remove the O-term from ser with Normal and name the resulting polynomial
poly. poly represents the 8th degree Taylor polynomial of f(x) about x=1.

ser=Series[f[x],{x,1,8}]

2 3 4
1 -4 (-1+x) -4 (-1+3x) +7(-1+x) +
6
5 4 (-1 + x) 7
16 (=1 + X) + —mm————e e - 28 (-1 + x) -
3
8
173 (-1 + x) 9

poly=Normal([ser]

2 3 4
1 -4 (=1+x) -4 (-1+x) +7 (-1 +x) +

6
5 4 (-1 + x) 7
16 (-1 + x) + ——————c———— - 28 (-1 + x) -
3

173 (-1 + x)

Next, we graph poly and name the resulting graph plotpoly. plotf and
plotpoly are displayed together with Show. Note that if the option

DisplayFunction->$DisplayFunction

had not been included in the Show command, the graphs would not have been
displayed.
plotpoly=Plot([poly, {x,-1.75,1.75},DisplayFunction->Identity];

Show[plotf, plotpoly,PlotRange->{-2,3/2},
DisplayFunction->$DisplayFunction]
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Application: Approximating the Remainder

Let f have (at least) n+1 derivatives in an interval containing a. Taylor's Theorem says that
if x is any number in the interval, then

flx)= Z‘;ﬂ%ga)(x_u)* +%+:(T")"!)(x_a)m ,

nth degree Taylor nth remainder
polynomial of f
atx=a.

where z is between a and x. We may use Taylor's Theorem to estimate the error involved
when using a Taylor polynomial to approximate a given function.

EXAMPLE: Find an upper bound on the error when using the 4th degree
Maclaurin polynomial of f(x) to approximate f(x) on the interval [0,1/2] if

f(x)=%+l. What is an upper bound on the error when using the 10th degree
X

Maclaurin polynomial to approximate f(x) on the interval [0,1/2]?

SOLUTION: We proceed by clearing all prior definitions of £, defining {, and then
graphing f.

Clear([f]

fix_]l=x/(x"2+1);

Plot[£[x],{x,-4,4}]

-4 -2 2 4
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Since we will be computing several Maclaurin polynomials for f, we define mp to
compute the nth Maclaurin polynomial of f. We then use mp to compute the 4th
degree Maclaurin polynomial of f.

mp[n_]:=Normal[Series[£[x],{x,0,n}]]

mp[4]

3
X - X

Since we will examine the (n+1)st derivative when estimating an upper bound on
the error, we next define d to compute the (n+1)st derivative of f and then replace
the x's by z's. We then compute d[4].

d[n_]:=(D[f[x],{x%,n+1}] /. x->z)//Simplify
d[4]
2 4 6
120 (1 - 152z + 152 =~z )

To estimate the maximum value of d[ 4] on the interval [0,1/2], we graph d[4].
We see that the maximum value of d[ 4] on the interval [0,1/2] is 120, which
occurs when z=0.

Plot{d[4],{z,0,2}]

100
73

25

0 1 1 2
=23
=50

Next, we define r to compute the nth remainder and compute r[4].

r(n_]:=d[n] x"(n+l1)/(n+1l)!//Simplify
r(4]

(1L + 2 )

Since we know that the maximum value of d[ 4] on [1,1/2] is 120, it follows that
the maximum possible value of r[ 4] for any value of x in the interval [0,1/2] is
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5
1—22(1] -1 0.03125.
120\ 2 32

Below, we use Plot to graph both f and the 4th degree Maclaurin polynomial on
the interval [0,1/2]. Be sure to include the command Evaluate so thatmp[4] is
computed immediately; otherwise, error messages result.

Plot[Evaluate[{f[x] ,mp{4]}],{x,0,1/2},
PlotStyle->{Dashing[{.01}],GrayLevel([0]}]

We proceed in the same manner in estimating an upper bound on the error when
using the 10th degree Maclaurin polynomial. First, we compute the 11th derivative
of f and then graph this function on the interval [0,1/2].

d[10]

2 4 6
(39916800 (-1 + 66 z -~ 495 2z + 924 z -

8 10 12 2 12
495 z + 66 2z -z ))/ (L +2z)

Plot[d[10],{z,0,1}]

Next, computing the 10th remainder, we have:

r[10]

11 2 4 6 8
(X (-1 + 663z - 495z + 924 z - 495 z +

10 12 2 12
66 z -z ))/ (1 +2z)
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4x107

Thus, the maximum possible error is T

1 n
(E) =0.000489299.

4 1077/11! (1/2)"11//N

0.000489299

In the graph below, we see that the graphs of f and the 10th Maclaurin polynomial
are virtually identical on the interval [0,1/2].

Plot[Evaluate[{f[x],mp[10]}],{x,0,1/2},
PlotStyle->{Dashing[{.01}],GrayLevel[0]}]

0.4
0.3

0.2

Application: Series Solutions to
Differential Equations

Power series can be used to find series solutions of some differential equations. This topic
is discussed in further detail in section 7.3.

EXAMPLE: Use power series to approximate a function y(x) that satisfies the
differential equation 4y”+4y’+37y =0 and the initial conditions y(0)=y’(0)=2.

SOLUTION: Let y(x)= Zanx" be a function that satisfies the differential equation

n=0
and initial conditions. Below, after clearing all prior definitions of y, we define
sery to be the power series expansion of y about x=0 to order 10.

Clear[y]
sery=Series[y[x],{x,0,10}]

y[0] + y'[0] X + ———c—men F ommmmmemee- +
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(4) 4 (5) 5 (6) 6
y [01 x y [0] x y (0] «x
—————————— B et L e i
24 120 720
(7) 7 (8) 8 (9) 9
y [0] x y [0] x y [0] x
—————————— B T S
5040 40320 362880
(10) 10
y [0] x 11
------------ + O[x]
3628800

193

Since we must have the condition that y(0)=y’(0)=2, we replace the symbols y(0)

and y’(0) by 2 in sery and name the resulting output sersol.

sersol=sery /. {y[0]->2,y'[0]->2}

2 (3) 3 (4) 4

40320 362880 3628800

sersol must satisfy the differential equation 4y”+4y’+37y =0. Therefore, we
substitute sersol into the equation 4y”+4y’+37y=0 and name the resulting

output eq.

eq=4D[sersol, {x,2}]+4D[sersol,x]+37sersol==

(3)
(82 + 4 y''[0]) + (74 + 4 y''{0] + 4y [0])

37 vy [0} (3) (4)
X + (=—m—m———- +2y [0] + 2y [01)
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(4) (5) (6)
3 37y (0] y [0) vy
X o+ (mmm—————— + mm———— 4 m—————
24 6
(5) (6) (7)
37y (0) y (0] y [0)
(———————--- + e + m—————— )
120 30 30
(6) (7) (8)
37y [0} Yy {0] Yy [0]
(=== + e +omemmeee )
720 180 180
(7) (8) (9)
37y [0] 'y [(0) y [0]
(=== + mm———m— - )
5040 1260 1260
(8) (9) (10)
37y [0] y [0] y (0]
(====-=-=- + oo + e )
40320 10080 10080
== 0

3 Calculus

At this point, we note that two power series are equal, if and only if all their
coefficients are exactly the same. When we equate the coefficients on the left-hand
side of eq with those on the right (namely, 0), we obtain a system of linear
equations. This system of linear equations is obtained below with

LogicalExpand and named lineqgs.

lineqs=LogicalExpand[eq]

82 + 4 y''[0] == 0 &&
(3)
74 + 4 y''[0] +4y [0] == 0 &&
37 y''(0) (3) (4)
--------- +2y [0]+2y (0] ==0 &&
2



3.5 Series

-t —————— + ——————- == 0 &&
1260 1260
(9) (10)
37y [0) y [0]1 ¥y [0]
- F m—————— + e == 0
10080 10080

195

We then use Solve to solve this system for the unknowns and name the resulting

output roots.

roots=Solve[lineqgs]

(10)
{{y [0]
(9)

Yy [0])
(3)

y [0]
(5)

y (0]
(7)

Yy [0]

The values obtained above are then substituted into our series solution, sersol.

28969841
-> = (mmmmmme- )
512
5439299 41
-> —(mmm-oe- Yo Y01 => —(=-),
128 2
(4) 1501
-> 2, Y [0] =2 ——==,
8
1649 (6) 48941
=> —(===-), ¥ (0] > —(----- e
8 32
54977 (8) 1371001
-> e A (0 13}
16 128

sersol /. roots[[1l]]

41 x b'e 1501 x 1649 x
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6 7 8
48941 x 54977 x 1371001 x
________ F et e =
23040 80640 5160960
9 10
5439299 x 28969841 x 11
----------------------- + 0[x]
46448640 1857945600

Since this series cannot be evaluated for real numbers, we remove the O-term with
Normal and name the result poly. This is our approximate solution of the
equation.

poly=Normal[sersol /. roots[[1]]]

2 3 4 5
41 x X 1501 x 1649 x
2+ 2 X - =-—— + —- F e — e -
4 3 192 960
6 7 8
48941 x 54977 x 1371001 x
________ + mmm— e + ek cE———— -
23040 80640 5160960
9 10

5439299 x 28969841 x

46448640 1857945600

We then graph poly on the interval [0,n] and name the resulting graph papprox
for later use.

papprox=Plot|[poly, {x,0,Pi}]

-5

-10

-15

In this case, we can also use DSolve to find an exact solution of the equation,
naming the result sol. We will discuss this topic in more detail in Chapter 7.

Clear|y]
sol=DSolve[{4y''[x]+4y’'[x]+37y[x])}==0,y[0]==2,y'[0}==2},¥y[x],x]
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2 Cos[3 x] Sin[3 x)
{{y[x] -> ———————-—- + emmm——m }}

The exact solution is graphed below and named pexact.
pexact=Plot[y{x] /. sol,{x,0,2Pi}]
2

1

1

o

4 S 6

\ A
¥

To compare the approximate solution with the exact solution, we use Show to
show both graphs simultaneously.

1

Show[pexact, papprox]

»

LN e
1t /2 "4 5 &

Alternatively, if we let y(x)= Zanx" , computing y’° and y” results in

n=0

yx)= ina"x"*l = 2(n+ Da_, x
pry ,,

and

¥ (x)= Zn (n-=1a xm2= i(n +2)(n+1)a_,x".

n=0 n=0

Substituting into the equation 4y”+ 4y’ + 37y =0 yields

4(2(n +2)(n+1)a_ x ] + 4[2(;1 +1)a_ x } + 37[2 anx"J =0,

n=0 n=0 n=0
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Simplifying and equating coefficients we obtain

~4(n+1)a_ 37 -4(n-1)a_ -
a.,= (n+1)a,., =37, or, equivalently, a = An—1)a,.,~57a,, .
" 4(n+2)(n+1) " 4n(n-1)

These coefficients may then be calculated with Mathematica. In the following we
define a[{ 0] and a[ 1] using the initial conditions specified in the problem. We

then define a[n] to be the coefficient of x™ in y(x):Zanx" using the formula
n=0

obtained above. Note that a is defined to remember the values it computes. We

then compute the values of a[n] for values of n from 0 to 30 in steps of 3. Of

course, these are the same as those found previously.

a[0]=2;

a[l]=2;

a[n_]:=a[n]=(-4(n-1)a{n-1]-37a[n-2])/(4n (n-1));
Table[{n,a[n]},{n,0,30,3}]

1 48941
{{01 2}1 {31 =} (61 -(----- )},
3 23040
5439299 150988501
{91 el ))l {121 _________ Y.
46448640 980995276800
145836290927
{151 ________________ }I
5356234211328000
117187844492359
{18: ———————————————— }I

839171926357180416000

131470113409897
{211 el e Y},
1575668699371835228160000
362762759591677421
{24, —(mmmmmmmmmmmmmm e )}
273931496124561380364779520000
78035955515313060037
{27, =(=mmmmmmm oo )}

45671228691367496141317865472000000
{30,
81930307485915574145659

142406544757979162368320409970933760000000 M
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Other Series

In calculus, we show that if f(x):Zc”x" is a power series with radius of convergence
n=0
r>0, then f is differentiable and integrable on its interval of convergence. However, if

f is not a power series, this result is not true in general. For example, the
. N 3nx) . . . .
function f(x)= Z%ﬁ is continuous for all values of x but nowhere differentiable. We

n
n=0

can use Mathematica to help us see why this function is not differentiable. Let

k
3 . . .
fx)= Z—C%x—) Below, we use Mathematica to recursively define fy.
n=0
Clear[f]
f[0]=Cos[x];
£k_]:=f[k]=£[k-1]+Cos[3"k x]/2"k

We define f using the form f{k_]:=f[k]=... so that Mathematica "remembers" the
values it computes. Thus, to compute £ [ 5], Mathematica uses the previously computed
values, namely £[ 4], to compute £[5].

Note that we can produce the same results by defining f with the command

flk_):=Sum[Cos[3"n x]/2"n,{n,0,k}].

The disadvantage of defining f in this manner is that Mathematica does not "remember"
the previously computed values and thus takes longer to compute £[k] for larger values
of k.

Next, we use Table to generate £[3], £[6], £[9], and £[12], naming the result
tograph and then display tograph, in TableForm.

tograph=Table[f[n],{n,3,12,3}];
TableForm[tograph]

Cos[3 x] Cos[9 x] Cos{27 x]

Cos[x] + ——===—=—== t om——————— + o
2 4 8
Cos[3 x] Cos{9 x] Cos{27 x]
Cos[x] + —===e—0—o + mm—————— + e +
2 4 8

Cos[81 x] Cos[243 x] Cos[729 x}

16 32 64



200 3 Calculus

Cos[81 x} Cos[243 x] Cos[729 x]
- + + -+
16 32 64

Cos[2187 x} Cos{6561 x] Cos[19683 x]

——————————— + ——— +
128 256 512
Cos[3 x] Cos[9 x] Cos[27 x]
Cos[X] + —————=~- + ———————— + mmm————e +
2 4 8

Cos[81 x] Cos[243 x] Cos[729 x]

Cos[2187 x] Cos[6561 x}] Cos[19683 x]
___________ + ——- + +
128 256 512

Cos[59049 x]) Cos[177147 x] Cos[531441 x}

Finally, we use Table and Plot to graph each of the functions in tograph and name the
resulting set of four graphs graphs. Note that tograph{[i]] corresponds to the ith
element of tograph; tograph[ [1]] is the first function in tograph, corresponding to

cosx+lc053x +%cos9x+%cosz7x. Be sure to include the command Evaluate within the

Plot command and be sure to nest square brackets correctly. To compare the graphs we
use Partition to partition graphs into a set consisting of two sets of two graphs and
name the result toshow. Last, GraphicsArray is used to show the set of graphs toshow.

graphs=Table[Plot [Evaluate[tograph[[i]]],{x,0,3Pi)},
DisplayFunction->Identity], {i,1,4}];

toshow=Partition[graphs,2];

Show[GraphicsArray[toshow]]

2
1

] |

_ 6 _ 6
] !
2
1

2
1

1 6 1 6
-2 -2

From the graphs above, we see that for large values of k, the graph of f,(x), although
actually smooth, appears "jagged”, and thus we might suspect that f(x) is indeed
continuous everywhere but nowhere differentiable.
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3.6 Multivariable Calculus

Limits of Functions of Two Variables

One of the first topics discussed in mulivariable calculus courses is limits of functions of
two variables. Mathematica's graphics and numerical capabilities are helpful in
investigating these problems.

EXAMPLE: Show that the limit lim —Y— does not exist.
(xy)=(0.0) x2 + y2

SOLUTION: We begin by clearing all prior definitions of £, if any, and defining

flx,y)= x::-yyl . Next, we use P1ot 3D to graph f on the rectangle [-2,2]x[-2,2] and
ContourPlot to graph several level curves on the same rectangle. Note that the
point (0,0) is not in the domain of f and if Mathematica computes £[0, 0] while
generating either graph, several error messages will result but the graphs will be
displayed correctly.

Clear([f]

f[x_,y_l=x y/(x"2+y"2);

pl=Plot3D[f[x,y],{x,-2,2},{y,~2,2},DisplayFunction->Identity)

cl=ContourPlot(f(x,y],{x,-2,2},{y,-2,2),ContourShading->False,
Axes->Automatic, AxesOrigin->{0,0)},DisplayFunction->Identity];

Show[GraphicsArray([{pl,cl}]]

-2 IEEERAR
-2 -1 0 1 2

From the graphs above, we see that f behaves strangely near (0,0). In fact, from the
graph of the level curves, we see that near (0,0), f attains many different values.
We can obtain further evidence that the limit does not exist by computing the
value of f for various points chosen randomly near (0,0). Below, we use Table,
Random, and Real to generate 10 ordered pairs near (0,0) and name the result
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pts. Note that since Random is included in the calculation, your results will
almost certainly be different from those here. Tables and lists are discussed in
more detail in Chapters 4 and 5.

pts=Table[Random[Real, {-10"-1,10"-i}],{i,1,10},{2}}

{{0.0407686, -0.0753765}, {-0.00335464, 0.00237699},

{0.000961185, 0.000332866}, {-0.0000963083, 0.0000547618},

-6 -6 -7 -7
{4.94446 10 , -2.24515 10 }, {-3.88716 10 , 2.84132 10 },

-8 -8 -9 -9
{6.52111 10 , 1.04603 10 }, {5.04186 10 , 4.23245 10 },

-10 -10 -11 -11
{9.69119 10 , 7.635 10 }, {-5.37026 10 , -4.85893 10 }}

Next, we define a function g, which given x and y, returns x, y, and f(x,y). We then
use Map to compute the value of g for each point in pts and display the result in
TableForm. Note that the first column corresponds to the x-coordinate, the
second column the y-coordinate, and the third column the value of f(x,y).

gl{x_,y_}1={x,y,f[x,¥]}

{x, Y, ——————- }

Map[g,pts]//TableForm

0.0407686 -0.0753765 -0.418453

-0.00335464 0.00237699 -0.471728

0.000961185 0.000332866 0.30%223

-0.0000963083 0.0000547618 -0.429685
-6 -6

4.94446 10 -2.24515 10 -0.376455
-7 -7

-3.88716 10 2.84132 10 -0.47641
-8 -8

6.52111 10 1.04603 10 0.156383
-9 -9

5.04186 10 4.23245 10 0.492441
-10 -10

9.69119 10 7.635 10 0.486112
-11 -11

-5.37026 10 -4.85893 10 0.497508

From the third column, we see that f does not appear to approach any particular
value for points chosen randomly near (0,0). In fact, along the line y=x we see
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that f(x,y)= f(x,x):%, while along the line y=-x, f(x,y)= f(x,—x):—%. Thus, f
does not have a limit as (x,y)—(0,0).

Simplify[f[x,x]]

2
Simplify[f[x,-x]]
1

(=)
2

Partial Differentiation
Partial derivatives can be calculated with Mathematica using the command
D(f[(x,y],variable],

where £[x,y] is differentiated with respect to variable.

Second order derivatives can be found using D[ f[x,y],variablel,variable2],
where £[x,y] is differentiated first with respect to variable2 and then with respect to
variablel.

EXAMPLE: Calculate i, i, of of , and the value of Pf when x=ZX and
n Y wy o yon 2
y=1if f(x,y)=sinxy.

SOLUTION: After defining f, we graph f on the rectangle [-r,n]x[-n,%]. The
option PlotPoints->20 is included in the Plot3D command to help assure that
the resulting displayed graph is smooth.

Clear[f]
f[x_,y_]=Sin[x y]

Sin[x yl

Plot3D[f([(x,y],{x,-Pi,Pi},{y,-Pi,Pi}, PlotPoints->20]
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Next, we use D to compute the indicated partial derivatives. Entering
DIf[x,¥],%]
y Cos[x y]

computes % , entering

DLf[x,¥],¥]

x Cos[x Y]

oF

computes EY and entering

Df[x,y],x%,Y]
Cos[x y] - x y Sin[x y]

of

computes oy Similarly, entering

dyx=D[f[x,y],y,X]
Cos[(x y] - x y Sin[x y])

»f

computes FYe and names the resulting output dyx. Note that

f

Below, we calculate the value of il when x=2 and y=1.
dyok 2

f _9f
oxdy  ox

dyx /. {x->Pi/2,y->1}
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Higher order derivatives with respect to the same variable can be determined with the
command D[f[x,y],{variable,n}]. This command computes the nth partial
derivative of f with respect to variable.

EXAMPLE: Calculate % and % if h(x,y)=3xieyr .

SOLUTION: Proceeding as in the previous example, we first define and graph h
and then use D to calculate the indicated partial derivatives.

Clear[h]
hix_,y_)}=(x"2+y~2)"(1/3);
Plot3D[h([x,y],{x,-2,2},{Y,-2,2}]

Entering

hxx=D[h[x,¥],{x,2}]

dh . :
computes e and names the resulting output hxx. We can display hxx as a
single fraction with Together.

Together [hxx]
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Similarly, entering

Together([D[h([x,¥],{Y¥,2}]]

2
computes % and combines the result into a single fraction. B

Other Methods of Computing Derivatives

The command Derivative can also be used to compute derivatives of functions. For
example, if £[x] is a function of a single variable, the command Derivative[l][f][a]
computes the derivative of f with respect to x and evaluates the result by replacing x by a;
the command

Derivative[n][f][a]

computes the nth derivative of f with respect to x and evaluates the result by replacing x
by a. Similarly, if £[x,y] is a function of two variables, the command

Derivative[l,0](f][a,b]

computes the partial derivative of f with respect to x and evaluates the result by replacing
x by a and y by b; the command Derivative[0,1]1[(f][a,b] computes the partial
derivative of f with respect to y and evaluates the result by replacing x by a and y by b;
and the command Derivative[n,m][£][a,b] computes the nth partial derivative of f
with respect to x and then the mth partial derivative of f with respect to y and evaluates
the result by replacing x by a and y by b.

EXAMPLE: If g(x,y)=e-[*+)/5(cos2x +sinzy), calculate i(x,y), ' (x,y), and

ox oxdy
9’ (E z)
a2 \3'6)
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SOLUTION: Below, we define and graph g on the rectangle [-r, n]x[-n,x].

Clear([g]
glx_,y_]=Exp[-(x"2+y"2)/8]1*(Cos[x]"2+Sin[y]"2);
Plot3D(g[x,y],{x,-Pi, Pi},{y,-Pi,Pi},PlotPoints~>25]

y

Lie D

1)
0.5

I
~
-2

After defining g, we illustrate that Derivative([1,0]{g][x,y] and
D[g[x,y],x] both produce the same result.

gx=Derivative([1l,0][g][x,¥]

2 2
(-x -y )/8
-2 E Cos[x] Sin[x] -
2 2
(-x -y )/8 2 2
E x (Cos[x] + Sin[y] )
4
Dlglx,y],x]
2 2
(-x -y )/8
-2 E Cos[x] Sin[x] -
2 2
(-x -y )/8 2 2
E X (Cos[x] + Sin[y] )
4

Similarly Derivative[l,1][g][x%x,y] and Derivative[g[X,y],X,¥]
produce the same result:
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gxy=Derivative({l,1][g]l[x%,y]

E x y (Cos[x] + Sin[y] )

E x y (Cos[x] + Sin[y] )

g (1t n)
Last, t =,=.
ast, we compute oy \ 36

Derivative[l,2]([g)[Pi/3,Pi/6]

Sqrt[3] 7 Pi

(5 Pi )/288 (5 Pi )/288
128 Sqrt[3] E 13824 E

3 Calculus
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Note that when we can use Derivative to evaluate the derivative of a function
for a particular number or point in a single command. On the other hand, using D,
we must first compute the derivative and then evaluate the result at the desired
number or point. B

Application: Classifying Critical Points

Mathematica can be used to assist in determining certain properties of functions of more
than one variable. Just as we found critical points of single variable functions in an earlier
example, we can perform a similar task in the case of multivariable functions. We begin
with the following. Let f be a real-valued function of two variables with continuous

second-order partial derivatives. A critical point of f is a point (xo,yo) in the interior of the

domain of f for which f (x,,y,)= %(xo,yo) =0 and f(x,y,)= =0. Critical points are

%(xmyo)

classified by the Second Derivatives Test which is stated below. Let f (x, y):%(x,y),

fy(x,y)=%(x,y), f.(xy)= f(x y), f,(xy)= 8yf(x y), and f, (x,y)= gy(x,y).
Second Derivatives Test for Extrema

Let (x,,y,) be a critical point of a function f of two variables and let

Bl ) b )

a. if D(f,(x,¥,))>0 and £ (x,,y,)>0, then f has a relative minimum at (x,,y,);

(
b. if D(f,(xo,yo) >0 and f,(x,,y,) <0, then f has a relative maximum at (x,,y,);
(

d. if D(f,(x,y,

critical poin

c. if D(f, xn,yo))<0 then f has a saddle at (x,,y,); and
)) 0, no conclusion can be drawn and (x,,y,) is called a degenerate
t.
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We show how Mathematica can be used to locate and classify the critical points of a
function of two variables in the following example.

EXAMPLE: Locate and classify all the critical points of the function
fx,y)=-120x3 — 30x4 + 18x5 + 5x¢ + 30xy?2.

SOLUTION: After clearing all prior definitions of f, we define {. Be sure to include
the space between the x and y " 2 to denote multiplication.

Clear[f]
f[x_,y_}=-120x"3-30x"4+18x"5+5x"6+30x y"2

3 4 5 6 2
-120 x - 30x +18x +5x + 30 xy

The critical points of f correspond to the solutions of the system of equations

g—(x,y):o

%(x,y)=o'

In order to find the critical points of f(x,y), the partial derivatives f, (x, y) and
fy(x,y) are calculated and set equal to zero. These steps are shown below. We
then locate the critical points by solving the system of equations

f.(x,y)=0
f,xy)=0

with Solve and naming the resulting list of numbers critpts.

dfx=D[£[x,y],x]
dafy=D(f[x,y],¥Y]

2 3 4 5 2
-360 x - 120 x + 90 x + 30 x + 30y
60 x y
critpts=Solve[ {dfx==0,dfy==0}]
{{Y => Or X => —3}1 {Y -> OI X -> _2}1
{Y -> 0l X => O}I {Y -> OI X -> 0}!

(Y -> 0! X => 0}1 (Y -> 0! X => O}I

{y => 0, x -> 2}}
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Next, we define dfxx, dfyy, and dfxy to be f(x,y), fyy(x,y), and fxy(x,y),
respectively:

dfxx=D{f[x,y],{x,2}]
dfyy=D[£[x,¥],{¥,2}]
dfxy=D{f[x,y],x%,Y]
2 3 4
-720 x - 360 x + 360 x + 150 x

60 x
60 y

and discriminant to be (fn(x,y))(fyy(x,y))_(fxy(ny)z.

discriminant=dfxx dfyy-dfxy~2;

In order to classify the critical points, we need to evaluate dfxx and
discriminant for each critical point. Below, we evaluate df£xx and
discriminant when x=-2 and y=0.

{dfxx,discriminant} /. {x->-2,y->0}
{-480, 57600}

Since dfxx is negative and discriminant is positive, the f has a relative
maximum at (-2,0). Below, we define data to be the ordered quadruple
{x,y,dfxx,discriminant} and evaluate data for each set of ordered pairs in
critpts. In addition, we use TableForm and TableHeadings to display the
result in row-and-column form with columns labeled x, y, dfxx, and
discriminant.

data={x,y,dfxx,discriminant};
TableForm[data /. critpts,
TableHeadings->{None, {"x","y","dfxx", "discriminant"}}]

X y dfxx discriminant
-3 0 1350 -243000

-2 0 -480 57600

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2 0 2400 288000

By the Second Derivatives test we conclude that (0,0) is a degenerate critical point,
f has a relative minimum at (2,0), (-3,0) is a saddle, and f has a relative maximum
at (-2,0).
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Application: Tangent Planes

Mathematica can be used to determine the equation of the plane tangent to a three-
dimensional surface at a particular point as well as to graph this plane simultaneously

with the surface. Let f be a real-valued function of two variables. If both f, (xo, yo) and

f,(x,,y,) exist, then an equation of the plane tangent to the graph of f at the point
(xo,yo,f(xo,yo)) is given by

fx(xo,yo)(x—x0)+fy(x0,y0)(y—y0)—(z—zo) =0.
Solving for z yields the function (of two variables)
z =f;(xo’yo)(x_x0)+fy(x0’y0)(y_y0)+zo N

We demonstrate the usefulness of Mathematica in finding and graphing the tangent plane
in the example below.

EXAMPLE: Find an equation of the plane tangent to the graph of
k(x,y) = e-(2+42)/8(cos? x +sin? y)

when x=-1 and y=2.

SOLUTION: We begin by defining and graphing k on the rectangle [-5,5]x[-=, x].
The resulting graphics object is named plotk.
Clear[k]

k[x_,y_)=Exp[-(x"2+y~2)/8] (Cos[x]"2+Sin[y]"2);
plotk=Plot3D[k[x,y],{%x,-5,5},{y,-Pi,Pi},PlotPoints->30]
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To find an equation of the tangent plane, we must compute the partial derivatives

g—k and _85 and evaluate each when x=-1 and y=2. Below, we calculate
X y
dk

(-1,2) and 3—1((—1,2), naming the resulting output kx and ky, respectively. In
X y
each case, N is used to obtain an approximation of the result.

kx:D[k[x:Y]rx] /. {x—>'1lY">2}

N(kx]
ky=D[k[x,y]l,y] /. {x->-1,y->2}
N[ky]
2 2
2 Cos[1l] Sinf1l] Cos[l] + Sin[2)
_______________ b
5/8 5/8
E 4 E
0.636418
2 2

2 Cos[2] Sin[2] Cos[1l] + Sin{2]

-0.704499
Hence, the tangent plane is defined by the function z=kx(x +1)+ky(y—2)+k(-1,2).

Below, we define and graph z on the rectangle [-5,5]x[~x,n]. Note that plotz is
not displayed because the option DisplayFunction~>Identity is included.
Last, we use Show to display both plotk and plotz.

z=kx(x+1)+ky(y-2)+k[-1,2];
plotz=Plot3D[z,{x,-5,5},{y,-Pi,Pi},DisplayFunction->Identity];
Show[plotk,plotz,PlotRange->{0,2},DisplayFunction->$DisplayFunction]
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Application: The Method of
Lagrange Multipliers

Certain types of optimization problems can be solved using the method of Lagrange
multipliers which is based on the following theorem:

Lagrange's theorem: Let f(x,y) and g(x,y) be real-valued functions with continuous
partial derivatives and let f have an extreme value at a point (x,, y,) on the smooth

constraint curve g(x,y)=c. If g (x,y,)#0 and g (x,y,)#0, then there is a real

number A satisfying ﬁ(xo,yo) = /lg‘,(xo,yu) and fv(xo,yo) = /lgy(xo,yo).

The points (x,,y,) at which the extreme values occur correspond to the points where the
level curves of f(x,y) are tangent to the graph of g(x,y)=c.

EXAMPLE: Find the maximum and minimum values of f(x,y)=x?+4y? subject to
the constraint x2+4y? =1.

SOLUTION: We can graph f(x,y)=x2+4y> on the ellipse x2+4y2=1 using
ParametricPlot3D. A parametrization of x2+4y2 =1 is given by

x(t)= cost
sint 0<t<2x.
y(f) = ,0st<2n
2
To graph this equation in space, we set the z-coordinate equal to 0.

ppl=ParametricPlot3D[{Cos([t],Sin[t]/2,0},{t,0,2Pi}]
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To graph f(x,y)=x?+4y* on the ellipse x?+4y> =1, we first define f and then use
ParametricPlot3D to graph the set of points

x(t) = cost
(t)= sint
y 2

sint
t)= t,——
z(t) f(cos > )

To see the graph of f on the ellipse, we use Show to display ppl and pp2
simultaneously.

Clear[f]

f(x_,y_1=x"2+4y"3;

pp2=ParametricPlot3D[{Cos[t],Sin[t]/2,f[Cos[t],Sin[t]/2]},{t,0,2Pi},
DisplayFunction->Identity];

Show[ppl,pp2,BoxRatios->{1,1,1},DisplayFunction->$DisplayFunction]

From the graphs above, we see that f(x,y)=x>+4y* attains a minimum and
maximum on the ellipse x2+4y2=1. The minimum and maximum values occur at
the points where the level curves of f are tangent to the graph of x?+4y2=1. We
can see these points using ContourPlot. To graph the equation x*+4y2 =1, we
first define g(x,y)=x?+4y?-1. Then, the graph of x2+4y>=1 is the graph of the
level curve of g corresponding to 0. Below, we use ContourPlot to graph this
level curve and name the resulting graphics object cp1.

glx_,y_]=x"2+4y"2-1;

cpl=ContourPlot[g[x,y]),{x,-2,2},{y,-2,2},
Contours->{0},PlotPoints->30,ContourShading->False,
Frame->False, Axes->Automatic,AxesOrigin->{0,0}]
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-2 -

5]

A
\/

Next, we use ContourPlot to graph several level curves of f and name the
resulting graphics object cp2. The graphs cpl and cp2 are shown together with
Show.

cp2=ContourPlot[f[x,y}, {x,-2,2},{y,-2,2},
PlotPoints->30,Contours->10,ContourShading->False,
PlotRange->{-2,2},Frame->False, Axes->Automatic,
AxesOrigin->{0,0},DisplayFunction->Identity];

Show[cpl,cp2,DisplayFunction->$DisplayFunction]

y =

In order to find the points at which the minimum and maximum values are
located, the first order derivatives (with respect to x and y) of f and g are
computed so that Lagrange's Theorem can be applied. We then define eql, eq2,

and eq3 to be the equations representing % = l%, %z l%, and g(x,y)=0,
respectively. (The lambda in Lagrange's Theorem is represented in the calculations
below as lambda.)
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dfx=D[f[x,y],x];
dfy=D[£[x,y],Y]}
dgx=D[g[x,¥],X];
dgy=D[g[x,¥],¥]}
eql=dfx==lambda dgx;
eq2=dfy==lambda dgy;
eq3=g(x,y]==0;

The values of x, y, and lambda which satisfy the system of three equations in
Lagrange's Theorem are determined using Solve and the resulting output is
named extpoints. The solutions of this system are ordered triples (x,y,
lambda). The values of x and y in each ordered triple represent the point at which
f may have a maximum or minimum value.

extpoints=Solve[{eql,eq2,eq3},{x,y,lambda}]
3 1
{{lambda -> -(-), x -> 0, y -> -(-)},
4 2
1
{lambda -> -, x -> 0, y -> -},
4 2
{lambda -> 1, x -> -1, y -> 0},

{lambda -> 1, x -> 1, y -> 0},

-1 2
{lambda -> 1, x -> -- Sqrt[7], y -> -},

3 3

I 2
{lambda -> 1, x -> - Sgrt(7], y -> -}}

3 3

Thus, the maximum and minimum values of f are found by substituting these
points back into the function f(x,y) and comparing the resulting values of f. We

may evaluate each point directly as we have done below to compute f(O,—%).

£[0,-1/2]

1
-(-)
2
However, we may also compute all four values with a singe command. Below, we
compute f(x,y) for each value in the table extpoints. We use TableForm and
TableHeadings to display the result in row-and-column form. The columns are
labeled x, y, and f[x,¥y].

217
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TableForm[{x,y,f{x,v]} /. extpoints,
TableHeadings->{None, {"x","y","f[x,y]"}}]

X Y fix,y]
1 1

(=) -(-)

0 2 2
1 1

0 2 2

-1 0 1

1 0 1

-I 2 11

—— 8qrt[7] - -

3 3 27

I 2 11

- 8qrt[7] - ——

3 3 27

Thus, we see that maximum values of 1 occur at (-1,0) and (1,0); a minimum value
of —% occurs at (O,-%). The imaginary results, containing the symbol I which

represents i =+/—1, are ignored. B

Double Integrals

The command Integrate, used to compute single integrals, is used to compute iterated
integrals. The command which computes the iterated integral

J”]J.yjlf(x, y)dydx

p¥Yo
is
Integrate{f{x,y],{x,x0,%x1},{y,y0,y1}]

and the definite integral J.X]J.yfl(x, y)dydx is numerically evaluated with the command

xgYyg

NIntegrate[f(x,y]),{x,x0,x1},{y,y0,¥1}].

The first variable given (in this case, x), corresponds to the outermost integral and
integration with respect to this variable is done last. Also, the inner limits of integration (in
this case, y0 and y1) can be functions of the outermost variable.
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2 JV
EXAMPLE: Evaluate each of the integrals: (a) ” xy2dxdy; (b) jjxyzdxdy; and (c)
11-y

ml6m/2

(y sin(x)— xsin(y))dy dx.

0 0

SOLUTION: In each case we use Integrate. Entering

Integrate[x y"2,y,x]

computes ijyde dy, entering

Integrate[x y*2,{y,1,2},{x,1-y,Sqrt(y]}]

2y
computes J- Ixyzdx dy, and entering

11-y
Integrate[y Sin[x]-x Sin[y]),{x,0,Pi/6},{y,0,Pi/2})

2 2
-Pi Sqrt{3] Pi

n/6n/2
computes J. J(ysin(x)—xsin(y))dydx. |

L]

When Integrate produces an exact value of an integral but an approximation is
desired, N can be used to compute an approximation of the result. On the other hand, in
cases when the double integral cannot be computed exactly, or when a numerical
approximation is desired instead of an exact result, the command

NIntegrate[f(x,y],{X,xmin,xmax}, {y,ymin,ymax}]

can frequently be used to quickly calculate a numerical approximation of the integral.
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Jal
EXAMPLE: Find both an exact and approximate value of J‘J‘cos(x2 —y2)dydx .

a0

SOLUTION: In this case, Integrate produces an exact value of the integral
which we name value.

value=Integrate[Cos[x"2-y"2],{x,0,Sqrt[Pi]},{y,0,8qrt[Pi]}]

2
(P1i (FresnelC[Sgrt{2})] +

2
FresnelS{Sqgrt[2}] )) / 2

The symbols FresnelC and Fresnels represent the Fresnel integrals C(x) and
S(x), respectively.

?FresnelC
?FresnelsS
FresnelC[ x] gives the Fresnel integral C[x]
= Integrate[Cos[Pi t"2/2], {t, 0, x}].
FresnelS[x] gives the Fresnel integral S[x]
= Integrate([Sin(Pi t"2/2], {t, 0, x}].

An approximation of value is then obtained with N. Note that the result is an
approximation of .

N[value]

3.14159 B

11
EXAMPLE: Approximate the value of J-J‘sin(exy)dy dx.
00

SOLUTION: In this case, Integrate does not produce a result as indicated
below.

Integrate[Sin[Exp[x y]],{x,0,1},{y,0,1}]
General::intinit:
Loading integration packages -- please
wait.
However, NIntegrate quickly approximates the integral.
NIntegrate[Sin[Exp[x y]],{x,0,1},{y,0,1}]

0.917402 W
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Application: Yolume

A typical application of iterated integrals is determining the volume of a region in three-
dimensional space. We illustrate the solution of a problem of this type in the following
example.

EXAMPLE: Find the volume of the region between the graphs of
q(x,y) = cos(x? +y2) and w(x,y)=3-x2-y* on the domain [-1,1]x[-1,1].

SOLUTION: After defining q and w, the region can be viewed using
Mathematica's P1ot 3D command.

Clear([q,wW]

q[x_,y_)=Exp[-x"2]Cos[x"2+y"2];

wix_,y_1=3-x"2-y"2;
pa=Plot3D[q(x,Y],{x,-1,1},{y,-1,1},DisplayFunction->Identity];
pw=Plot3D[w[x,y},{x,-1,1},{y,-1,1},DisplayFunction->Identity]);
Show([pq,pw,DisplayFunction->$DisplayFunction]

In this case, we see that q and w do not intersect on the rectangle. However, to
compute the volume of the region we must know which function is larger on the
interval. We proceed by graphing q and w on the interval [-3,3]x[-3,3] to observe
that the graphs do intersect and computing q(0,0) and w(0,0).
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pq2=Plot3D[q([x,¥],{x,-3,3},{y,-3,3},DisplayFunction->Identity];
pw2=Plot3D[w[x,y),{x,-3,3},{y,-3,3},DisplayFunction->Identity];
Show[pq2,pw2,DisplayFunction->$DisplayFunction]

w[0,0]
q[0,0]

3
1

Since w(0,0) is greater than q(0,0), we conclude that w is larger than q on the
rectangle [-1,1]x[-1,1}. Thus, the region is bounded above by w(x,y) and below by

q(x,y)so that the volume is given by the double integral Jj(w(x, y)-g(x, y))dA

[-11]p]-1,3]

1 1
which is equivalent to the iterated integral J J(w(x, y)—q(x,y))dydx. We then use
“14d-1
1 1
NIntegrate to approximate the integral I J(w(x, y)—q(x,y))dydx .
—1d-1

V°1ume=NIntegrate[w[le] -q[x,y]1., {xl_ll 1}, {Yl_ll 1}]

7.02707
]

In the example below, the surfaces intersect. Hence, we must determine the region of
integration.

EXAMPLE: Find the volume of the solid bounded by the graphs of f(x,y)=1-x-y
and g(x,y)=2-x2-y2.

SOLUTION: After defining f and g, we use Plot3D to graph each function and
then use Show to observe that the graphs intersect.
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Clear(f,g}

flx_,y_1=1-x-y;

glx_,y_)l=2-x"2-y"2;

plotf=Plot3D[f[x,y]),{%x,-3/2,2},{y,-3/2,2},DisplayFunction~>Identity];

plotg=Plot3D[g(x,y],{x,-3/2,2},{y,-3/2,2},DisplayFunction->Identity];

Show[plotf, plotg,ViewPoint->{0.010, -2.723, 2,000},
DisplayFunction->$DisplayFunction)

From the graph, we see that the region is bounded above by the paraboloid and
below by the plane. In this case, we note that the graphs of f(x,y)=1-x-y and
g{x,y)=2—-x2—y? intersect when f(x,y)=g(x,y), which is equivalent to the equation
1-x-y=2-x2-y2. Simplifying and completing the square yields

xi—x+yr—y=(x=1/2 +(y-1/2) =({372)

so that the graph of the intersection is a circle with center (1/2,1/2) and radius
\3/2. To graph this equation, we note that the graph of the f(x,y)=g(x,y) is the
graph of the level curve of f(x,y)-g(x,y) corresponding to 0. Below, we use
ContourPlot to graph the circle f(x,y)= g(x,y).
ContourPlot(f[x,y]l-g9[x,y¥],{x,-3/2,2},{y,-3/2,2},
Contours->{0},ContourShading->False, PlotPoints->30,
Frame->False, Axes->Automatic,AxesOrigin->{0,0}]



224 3 Calculus

Let R denote the interior and boundary of the circle:
r={(x,v): (x-1/2) +(y-1/2) <3/2].

Then the volume of the region bounded by the graphs of f and g is given by the
double integral ”(g(x,y)— f(x,y))dA since g is the larger of the two functions over

R
R, as shown in the graph above. To rewrite this double integral as an iterated
integral, we first use Solve to solve the equation 1-x—y=2-x2-y? for y and
name the resulting output intpts. These numbers represent the upper and lower
limit of integration with respect to y and are extracted from intpts with
yl=intpts[[1l,1,2]] and y2=intpts[[2,1,2]], respectively. Extracting
data from lists is discussed in more detail in Chapters 4 and 5. Note that an
alternate method of solution can be performed in the same way by solving the
equation for x. Note that the result of entering intpts[[1,1,2]] and

1++5+4x—4x2 and

intpts[[2,1,2]] corresponds to the equations y= 3

1-+5+4x—4x?

2

intpts=Solve[f[x,y]==g[x,Y],Y]

{{y ->
2

1 - Sqrt(l - 4 (-1 - x + x )]

{y ->


file:///-x-y
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yl=intptsf[1,1,2)]]
y2=intpts{[2,1,2]]

2
1 - Sgrt(l - 4 (-1 - x + x )]

225

Then, to find the upper and lower limits of integration with respect to x we solve
the equation 5+4x-4x2=0. We illustrate how the expression 5+4x-4x? is
extracted from y2 with [[...]]. We name the resulting solutions xvals.
Extracting elements from lists is discussed in more detail in Chapters 4 and 5.

¥2[[2]1

2
1 + sqrt[l - 4 (-1 - x + x }]

y2(12,2]]

2
Sqrt[l - 4 (-1 - x + x )]

¥2[[2,2,1]]

2
1 -4 (-1-x+x)

xvals=Solve([y2[[2,2,1]]==0]

4 - 4 Sqgrt[6]

Note that entering xvals[[1,1,2]] yields

1++6

yields 5

1-6
2

, while xvals{[2,1,2]]
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x1l=xvals{[1,1,2]]
x2=xvals[[2,1,2]]

4 - 4 Sqrt([6]

Then, the volume is given by the iterated integral

1+w> /2‘[ l+\’5+4x 4x2 /2

(8(x, )= flx,y))dy dx

ﬂ(g(x Y- flx, ) dA - j

’6 /2 J[1-v5+4x- 4x2 /2

which is evaluated below in volume. Note that we do not need to retype the limits
of integration since they have been named x1, x2, ¢, and y2 in previous
calculations. We also obtain an approximation of volume with N.

volume=Integrate[g[x,y]-£[x,y], {x,x1,x2},{y,¥1,yY2}]

9 Pi

8
Nivolume]

3.53429

Triple Integrals

Triple iterated integrals are calculated in the same manner as double iterated integrals. The
commands

Integrate(f[(x,y,21,{2,20,21},{y,y0,y1},{x,x0,x1}]
and
NIntegrate[f[x,y,Zz],{2,20,21},{y,y0,y1},{x,x0,x1}]

attempt to evaluate and numerically evaluate, respectively, the triple iterated integral

J:Z‘J'O.[Uf(x y,z)dxdydz.
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EXAMPLE: Evaluate J' j J' e (2y - 2)dydzdsx.

SOLUTION: Entering

IntEgrate[Explzx] (2Y-2) I{xlol3)’l {z,1,x}, {y,z-x,2+x}]

8
computes J J. J‘e“ 2y —z)dydzdx . B
1 Jz-x

We illustrate how triple integrals can be used to find the volume of a solid when using
spherical coordinates.

EXAMPLE: Find the volume of the torus with equation in spherical coordinates
p=>5sinf.

SOLUTION: In general, the volume of the solid region D is given by J:UldV. We
D

proceed by graphing the torus. Since the equation of the torus is given in spherical
coordinates we will use the command SphericalPlot3D to graph the torus. The
command SphericalPlot3D is not a built-in command but is contained in the
package ParametricPlot3D. Thus, we first load the package ParametricPlot3D
located in the Graphics folder (or directory) and then use SphericalPlot3D to
graph p=>5sin.

<<Graphics ParametricPlot3D”
SphericalPlot3D[5 Sin[theta], {theta,0,Pi}, {phi,0,2Pi},
ViewPoint->{4.000, 0.540, 2.000}]
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In the graph, we see that the volume of the torus is the volume of the set points
with spherical coordinates (p,¢,6) satisfying 0<¢<2n, 0<0<n, and 0<p<5sinf.
2n e @5sinf
Thus, the volume is given by the triple integral ”I 1dV:J p2sinBdpd6de,
D

0 0 V0

evaluated below.

Integrate[r~2 Sin[theta], {phi,0,2Pi}, {theta,0,Pi},{r,0,5S8in[theta]}]

Thus, the volume of torus is %nz. ]

Higher-Order Integrals

Higher order iterated integrals are computed in the same manner as double and triple
iterated integrals.

1 px pxty mx+y+z
EXAMPLE: Evaluate I j j VJ'xyzwdwdzdydx .
040 J0

0

SOLUTION: Entering
Integrate[x y z w, {x,0,1},{y,0,x}, {z,0,x+y},{w,0,x+y+z}]
731

1920

1 px mx+y mx+y+z
computes J;J; '[] J.xyzwdwdzdydx .0

0



CHAPIE

Introduction to Lists
and Tables

Chapter 4 introduces elementary operations on lists and tables. Chapter 4 is a prerequisite
for Chapter 5 which discusses nested lists and tables in detail. The examples used to
illustrate the various commands in this chapter are taken from calculus, business, and
engineering applications.

4.1 Defining Lists

A list is a Mathematica object of the form
{element[[1]], element[[2]], . . . ,element([[n-1]], element[[n]]},

where element[[i]] is the ith element of the list. Elements of a list are separated by
commas. Notice that lists are always enclosed in braces {. . .} and each element of a list
may be (almost any) Mathematica object; even other lists. Since lists are Mathematica
objects, they can be named. For easy reference, we will usually name lists.

Lists may be defined in a variety of ways. Lists may be completely typed in or they may
be created with either the Table or Array commands. Given a function £ and a number
n, the command

229
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Table[f[i],{i,n} creates the list consistingof {£{1],...,f[n];
Table(f[1i],{i,0,n}] creates the list consisting of {£[0],...,£[n]};
Table[£f{1i]),{i,n,m}] createsthelist {£[(n],f[n+1],...,f[m-1],£f[m]};
Table[f{i],{i,imin,imax,istep}] creates the list
{f[imin],f[imin+istep], f(imin+2step],...,f[imax]}; and
Array[f,n] createsthelist {£[{1],...,£[n]}.

In addition to the above, lists of numbers can be calculated using Range:

Range(n] genenﬁesﬂwlmt {1,2, ... , n};

Range[nl,n2] generatesthelist {nl, nl+l, ... , n2-1, n2}; and
Range{nl,n2,nstep] genenﬂesthelmt

{nl, nl+nstep,nl+2nstep, ... , n2-nstep,n2}.

EXAMPLE: Use Mathematica to generate the list {1,2,3,4,5,6,7,8,9,10}.

SOLUTION: Generally, a list can be constructed in several ways. In fact, each of
the following five commands generates the list {1,2,3,4,5,6,7,8,9,10}.

{1,2,3,4,5,6,7,8,9,10}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1I 2’ 3! 4’ 5’ 6[ 7l 8’ 9’ 10}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Table([i/2,{i,2,20,2}]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Range[10]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

EXAMPLE: Use Mathematica to define 1istone to be the list of numbers
consisting of 1,3/2,2,5/2,3,7/2, and 4.

SOLUTION: In this case, we generate a table and name the resulting output
listone. As in the previous example, we illustrate that 1istone can be created
in several ways.
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listone={1,3/2,2,5/2,3,7/2,4}

3 5 7

Last, we define i(n) = §+% and use Array to create the table 1istone.

i[n_}=n/2+1/2;
listone=Array[i,7]

In the following example, we define a list consisting of ordered pairs.

EXAMPLE: Create a list of the first 25 prime numbers. What is the fifteenth prime
number?

SOLUTION: The built-in function Prime[n] yields the nth prime number.
Below, we use Table to generate a list of the ordered pairs {n,Prime[n]} for
n=1,2,3, ..., 25.

Table{{n,Prime[n]},{n,1,25}]
{{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13},
{7, 17}, {8, 19}, {9, 23}, {10, 29}, {11, 31},
{12, 37}, {13, 41}, {14, 43}, {15, 47}, {16, 53},
{17, 59}, {18, 61}, {19, 67}, {20, 71}, {21, 73},
{22, 79}, {23, 83}, {24, 89}, {25, 97}}

From the resulting output, we see that the fifteenth prime number is 47. B

EXAMPLE: The Fibonacci numbers are defined by the recursive relationship
f0)=1, f()=1, and f(n)=f(n-1)+f(n-2).

Create a list, fiblist, consisting of the first 10 Fibonacci numbers.
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SOLUTION: We begin by defining f. Note that we define f using the form
f[n_l:=f[n]=... so that Mathematica remembers the functional values it
computes and thus avoids recomputing functional values previously computed.
This is particularly advantageous if we were to compute the value of f for large
values of n. We then use Table to compute a list consisting of the values of f for
n=0, 1, ..., 9. The resulting list is a list of the first ten Fibonacci numbers.

Clear|f]

£[0]=1;

£[1]=1;
f[n_]:=f[n]=£f[n-1]+£f[n-2)
Table(£[n],{n,0,9}]

{1, 1, 2, 3, 5,8, 13, 21, 34, 553 M

In addition, we can use Table to generate lists consisting of the same or similar objects.

EXAMPLE: (a) Generate a list consisting of five copies of the letter a. (b) Generate
a table consisting of ten random integers between —10 and 10.

SOLUTION: Entering
Table[a, {5}]
( a ’ a r a I a r a }

generates a table consisting of five copies of the letter a. For (b), we use the
command Random to generate the desired table.

Table[Random[ Integer, {-10,10}]1,{10}]
{Ol '51 ‘81 6, 2/ Or _31 7r 91 _7} .
As indicated above, elements of lists can be numbers, ordered pairs, functions, and even

other lists. For example, Mathematica has built-in definitions of many commonly used
special functions. Consequently, lists of special functions can be quickly created.

EXAMPLE: The Mathematica function Cyclotomic[n,x] produces the

cyclotomic polynomial of order n, C (x)= H(x—e“"” "), where the product ranges
k

over integer values of k which are relatively prime to n. The cyclotomic

polynomials are irreducible over the integers. Create a table of the first ten

cyclotomic polynomials and name the resulting table polys.
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SOLUTION: Mathematica will display a list, like other output, on successive lines
which may sometimes be difficult to read or interpret. The commands TableForm
and MatrixForm are used to display lists in traditional row / column form. In the
following, we first define polys to be a table consisting of the first ten cyclotomic
polynomials. Note that the resulting output is not displayed because a semi-colon
is included at the end of the command. We then use TableForm to display each of
the ten polynomials in polys on successive lines.

polys=Table[Cyclotomic([n,x],{n,1,10}];

TableForm[polys]

-1 + x
1 + x

1 +x + x

1 + x

1 + x
3 [
1 +x + x
2 3 4
1 -x+x -x +x [ ]

The following example shows that a variety of operations can be performed on lists. We
will discuss other operations that can be performed on lists in the following sections.

EXAMPLE: The Hermite polynomials, H (x), satisfy the differential equation
y”-2xy’ +2ny=0. The Mathematica command HermiteH[n, x] yields the
Hermite polynomial Hp(x). (a) Create a table of the first five Hermite polynomials;
(b) evaluate each Hermite polynomial when x=1 and then compute the value of
each Hermite polynomial for j=1, 6/5, 7/5, ..., 2; (c) compute the derivative of each
Hermite polynomial in the table; and (d) graph the five Hermite polynomials on
the interval [-2,2].

SOLUTION: We proceed by defining hermitetable to be the table consisting of
the first five Hermite polynomials.

hermitetable=Table{HermiteH[n,x],{n,1,5}]

2 3 2 4

{2 x, -2 +4x, -12x+8x, 12 - 48 x + 16 x ,
3 5
120 x - 160 x + 32 x }
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We then use -> to evaluate each member of hermitetable when x is replaced
by 1.

hermitetable /. x->1
{2, 2, -4, -20, -8}

For (b), we use Table and N to evaluate the ordered pair {i,hermitetable /
. x->i} fori=1, 6/5,7/5, ..., 2. Note that the elements of the resulting list are
also lists.

Table[N[{i,hermitetable /. x->i}],{i,1,2,1/5}]

({l., {2., 2., -4., -20., -8.}},
{1.2, {2.4, 3.76, -0.576, -23.9424, -52.8538}},
(1.4, {2.8, 5.84, 5.152, -20.6144, -98.9363}},
(1.6, {3.2, 8.24, 13.568, -6.0224, -127.816}},
(1.8, {3.6, 10.96, 25.056, 24.4416, -112.458}},
(2., {4., 14., 40., 76., -16.}}}

In the same manner as when a built-in function is applied to a list of numbers, a
built-in function applied to a list of functions results in each member of the list
being evaluated by the given function. Therefore, we use D to compute the
derivative of each term of hermitetable. Note that int could be used in the
same manner to integrate each term of a table or list. .

D[hermitetable, x]

2 3
{2, 8 x, -12 + 24 x , -96 x + 64 x ,

2 4
120 - 480 x + 160 x }

To graph the list hermitetable, we use Plot to plot each function in the set
hermitetable on the interval [-2,2]. Be sure to include hermitetable within
the Evaluate command as indicated below. In this case, we specify that the
displayed y-values consist of the interval [-50,50].

Plot[Evaluate[hermitetable], {x,-2,2},PlotRange->{-50,50}]
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In the above example, applying D to the list hermitetable produces the list obtained
from hermitetable by computing the derivative of each element of hermitetable
with respect to x. If f is a function and f[1ist] returns

{£(list({1]]},E[1ist[(2]1}],...,£(1ist[[n]]]},

where list={1list[[1]],1ist[[2]],...,1list[[n]]}, then f is listable. Many
built-in Mathematica functions, like D, are listable. To see if a built-in function function
is listable, enter the command Attributes[function];if Listable appears in the
resulting list, the function function is listable.

A Word of Caution

As indicated above, when graphing a lists of functions 1ist, the list must be included in
the command using Evaluate([list] or errors result as indicated below.

funs={x,x"2,x"3};
Plot[funs, {x,-1,1}]

Plot::plnr: CompiledFunction[{x}, funs, -CompiledCode-][Xx]
is not a machine-size real number at x = -1,.
Plot::plnr: CompiledFunction[{x}, funs, -CompiledCode-][xXx]
is not a machine-size real number at x = -0.916667.
Plot::plnr: CompiledFunction|{x}, funs, -CompiledCode-][x]
is not a machine-size real number at x = -0.833333.
General::stop:
Further output of Plot::plnr
will be suppressed during this calculation.

1
0.8
0.6

0.4

0.2 0.4 0.6 0.8 1

Entering the command Plot[Evaluate[funs], {x,-1,1}] graphs the functions x,
x2, and x* on the interval [-1,1].
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4.2 Operations on Lists

Extracting Elements of Lists

Individual elements of lists are obtained using double-square brackets [[...]] or Part.
For example if table is a list, then entering table[[2]] or Part[table, 2] returns the
second element of the list table. The jth element (or part) of table is extracted with
table[[j]] or Part[table, j]. Several elements can be extracted with Take. The first
and last elements of table are extracted with First[table] and Last[table],
respectively. The number of elements in a list table is obtained by entering the command
Length[table].

EXAMPLE: A table corresponding to approximations of the first eight zeros of the
Bessel function of the first kind of order zero, ] (x), is listed below. Use
Mathematica to define this list to be zeros. Then, (a) determine the number of
elements in zeros; (b) extract the third and fifth elements of zeros; (c) extract the
fourth and sixth elements of zeros; (d) extract lists consisting of the first three
elements of zeros, the fourth through sixth elements of zeros, and the last two
elements of zeros; and (e) determine the location of the element 18.071.

24048 55201 86537 11.792 14931 18.071 21.212 24.352

SOLUTION: We first define zeros to be the table of numbers listed above.
zeros={2.4048,5.5201,8.6537,11.792,14.931,18.071,21.212,24.352}
{2.4048, 5.5201, 8.6537, 11.792, 14.931, 18.071, 21.212, 24.352)
The number of elements in the list zeros is obtained below with Length.
Length[zeros]

8

The first and last elements of zeros are extracted with First and Last,
respectively.

First[zeros]
Last[zeros]

2.4048

24.352

The third and seventh elements of zeros are extracted from zeros using double
square brackets [ [ ... ]] and Part, respectively.
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zeros[[3]]
8.6537
Part[zeros,7]

21.212

Below, we use Part to extract the fourth and sixth elements of zeros

simultaneously.

Part{zeros, {4,6}]

{11.792, 18.071}

We use Take to extract the first three elements of zeros, the fourth through sixth
elements of zeros, and the last two elements of zeros below.

Take[zeros, 3]
Take[zeros,{4,6}]
Take[zeros,-2]

{2.4048, 5.5201, 8.6537}
{11.792, 14.931, 18.071}
{21.212, 24.352}

Last, we use Position to determine that the element 18.071 occurs in the sixth
position of zeros.

Position[zeros,18.071]

{{6}}
]

Often, Mathematica's output is given to us as a list which we desire to use in subsequent
calculations.

EXAMPLE: Let f(x)=3x*-8x3-30x2+72x. Locate and classify the critical points of
f.

SOLUTION: We begin by clearing all prior definitions of f and then defining f.
Since f is a polynomial, the critical numbers are found by solving the equation
f'(x)=0. The resulting list is named critnums.

Clear([f]
f[x_]1=3x"4-8x"3-30x"2+72x;
critnums=Solve[f' [x]==0]

{{x -> _2)1 {x -> 1}! {x -> 3}}
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Note that critnums is actually a list of lists. For example, the number -2 is the
second part of the first part of the second part of critnums as illustrated below.

critnums([[1]]

{x -> -2}
critnums([1,1]]

X -> =2
critnums[[1,1,2]]

-2

Similarly, the numbers 1 and 3 are extracted with critnums{[2,1,2]] and
critnums{[3,1,2]], respectively.

critnums{[2,1,2]]

critnums[[3,1,2]]

1
3

We locate and classify the points by evaluating f and f” for each of the numbers in
critnums.

{x,f[x],£''[x]} /. critnums
{{-2, -152, 180}, {1, 37, =72}, {3, -27, 120}}

By the Second Derivative Test, we conclude that the points (-2,-152) and (3,-27)
are relative minima while (1,37) is a relative maximum. In fact, since liT flx)=+eo,

~152 is the absolute minimum of f. These results are confirmed by the graph of f
shown below.

Plot[£f[x],{x,-4,4}]
300

200

100

-100
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EXAMPLE: Compute a 101-digit approximation of n. How many times does each
digit occur in the approximation? What is the 66th digit to the right of the decimal
place?

SOLUTION: The command RealDigits[x] yields a list of the decimal digits of
x along with the number of digits to the left of the decimal; the command
IntegerDigits[n] yields a list of the digits of the integer n. Below, we use
RealDigits and N to compute a 101-digit approximation of  and then convert
the approximation to a list of the decimal digits in the approximation. The
resulting list is named digits.

digits=RealDigits|{N[Pi,101]]

0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9,
8, 6,2,8,0,3,4,8,2,5 3,4,2,1,1,7,
0, 6, 8, 0}, 1}

Below we use Length to see that digits has two elements. The first element,
extracted with digits[[1]], consists of the list of the 101 digits in the
approximation of ® and the second element, extracted with digits[[2]],is1
which means there is only one digit (namely 3) to the left of the decimal.

Length[digits]
2

digits[[1]]
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The command Count [list,pattern] returns the number of elements in 1ist
which match the form defined by pattern. Thus, Count{digits[[1]],1]
yields the number of elements in digits[[1]], corresponding to the digits in the
101-digit approximation of m, of form i. Below we use Table together with Count
to count the number of occurrences 0of 0,1, 2,3, ..., 9indigits[[1]]. The result
is expressed in TableForm.

Table[{i,Count [digits[[1]],i}},{i,0,9}])//TableForm

0 9
1 8
2 12
3 12
4 10
5 8
6 9
7 7
8 13
9 13

Thus, we see that there are nine 0's, eight 1's, and so on, in the 101-digit
approximation of m. The 66th digit to the right of the decimal in the approximation
of m is the 67th element of digits[[1]] extracted below with
digits[[1,67]]1. Both the commands Part[digits,1,67] and
Part{digits([[1]],67] would return the same result.

digits[[1,67]]
7

Thus, the 66th digit to the right of the decimal in the approximation of mis 7. W

Graphing Lists of Points and Lists of Functions
If list={1list[[1]],1ist[[2]]),..-,1list[[n]]} is alist of numbers,
ListPlot[list]

plots the points (1,1ist[[1]]), (21ist[[2]]), .., (nlist[[n]]). In general, the
command ListPlot has the same options as the command Plot which can be viewed by
entering the command Options[ListPlot].

Often it is desirable to suppress the output of lists, particularly when long lists are used.
In general, a semi-colon ";" placed at the end of a command suppresses the resulting
output. When dealing with a long Mathematica object expression, another useful
Mathematica command is Short[expression]. This command produces an
abbreviated, one-line output of expression.If 1ist is a table, the command
Short[1list] produces a one-line output of list. If n is a positive integer greater than
one, Short[list,n] produces an abbreviated n-line output of 1ist. This abbreviated
list includes an element of the form << n >>, which indicates the number of elements of the

list that are omitted in the abbreviated output.
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EXAMPLE: Graph the set of points (x,sinx) for x=1, 2, 3, ...,1000.

SOLUTION: We first use Table and N to create a table of approximations of sinx
for x=1, 2, 3, ..., 1000 and name the resulting table sinvals. Note that sinvals is
not displayed since a semi-colon is placed at the end of the command. However,
we do view portions of the list sinvals with Short.

sinvals=Table[N[Sin[x]],{x,1,1000}];
Short{sinvals]

{0.841471, 0.909297, 0.14112, <<996>>, 0.82688}
Short[sinvals, 3]

{0.841471, 0.909297, 0.14112, -0.756802, -0.958924,

-0.279415, 0.656987, <<989>>, <<8>>7, -0.855473,

-0.0264608, 0.82688}

Then, we use ListPlot[sinvals] to graph the set of points (x,sinx) for
x=12,...,1000.

ListPlot[sinvals]

Both tables of numbers, points, and functions can be graphed. In the following example,
we illustrate another method to graph a set of points.

EXAMPLE: In the following, the percentage of the United States labor force which
belonged to unions during certain years is displayed. Graph the data represented
in the table.
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F Year Union Membership
as a Percentage of
the Labor Force
1930 11.6
o 1935 13.2
1940 26.9
1945 355
1950 315
1955 33.2
1960 314
1965 28.4Aﬁ
1970 73
1975 255
1980 219
1985 18.0
1990 16.1 |

Source: The World Almanac and Book of Facts, 1993.

SOLUTION: We begin by entering the data represented in the table as
dataunion: the x-coordinate of each point corresponds to the year, where x is the
number of years past 1900, and the y-coordinate of each point corresponds to the
percentage of the United States labor force which belonged to unions in the given
year and then using ListPlot to graph the set of points represented in
dataunion.

dataunion={{30,11.6},{35,13.2},(40,26.9},{45,35.5}, {50,31.5}, {55,33.2},
{60,31.4},{65,28.4}),{70,27.3},{75,25.5},{80,21.9},{85,18.0},
{90,16.1}};

ListPlot [dataunion]
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35
30
23

20

40 S0 60 70 80 90

An alternative to using ListP1lot is to use Show, Graphics, and Point to view
the data represented in dataunion. The point (x,y,) is represented with
Point[ {x0,y0}]. This object is then declared to be a graphics object with
Graphics[{Point[{x0,y01}]] and displayed with
Show[Graphics[Point[{x0,y0}]11]]. In the following command we use Map
to apply the function Point to each pair of data in dataunion. The result is not a
graphics object and cannot be displayed with Show.

Map[Point,dataunion]

{Point[{30, 11.6}], Point{{35, 13.2}], Point[{40, 26.9}],
Point[ {45, 35.5}], Point[{50, 31.5}], Point[{55, 33.2}],

Point([ {60, 31.4}], Point[{65, 28.4}], Point[{70, 27.3}1,
Point[{75, 25.5}], Point[{80, 21.9}), Point[{85, 18.}],

Point[{90, 16.1}]}

Next, we use Show and Graphics to declare the set of points
Map[Point,dataunion] as graphics objects and display the resulting graphics
object. Note that the collection of all commands contained within the Graphics
command are contained in braces {}. The command PointSize[.03] specifies
that all Points be displayed as circles of radius 0.03 of the final displayed
graphics object. The option Axes->Automatic instructs Mathematica to display
the resulting graphics object with an axes.

datapts=Show[Graphics[ {PointSize[.03] ,Map[Point,dataunion]}],
Axes->Automatic]

35 L
30
25 ®

20




244 4 {ntroduction to Lists and Tables

Tables of functions are graphed with Plot.

EXAMPLE: The Laguerre polynomials, L:(x), satisfy the ordinary differential
equation xy”+(a+1-x)y’+ny=0. The built-in function LaguerreL[n,a,x]
represents the Laguerre polynomial Lt (x). Graph the Laguerre polynomials (a)
Io(x) for n=1,2,...,5;and (b) Li(x) for n=1,2,..., 5.

SOLUTION: For (a), we use Table and Laguerrel to generate a table consisting
of I9(x) for n=1,2,...,5 and name the resulting output 1polysl.

lpolysl=Table[LaguerreL[n,0,x],{n,1,5}]

2 2 3
2 -4 x+x 6 - 18 x+9 x -x
{l—xl __________ [ 2 ’
2 6
2 3 4

120 - 600 x + 600 x - 200 x + 25 x - X

Next, P1lot is used to graph the set of functions 1polys1 on the interval [0,15].
Notice that within the Plot command, 1polys1 is enclosed by the command
Evaluate.Evaluate[lpolysl] allows the elements of 1polys1l to be
evaluated for the values of x on [0,15] instead of recreating the table for each value
of x.

Plot[Evaluate[lpolysl],{x,0,15}]

fu
ur O

6X 8 [10 12} 14

-10
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For (b), we use Table and Laguerrel to generate a table consisting of Li(x) for
n=1,2,...,5 and name the resulting table 1polys2. We also use Table to
generate a table of various GrayLevels which we will use to help distinguish our
graphs in the final displayed graphics object.
lpolys2=Table[LaguerreL([4,n,x],{n,1,5}];
grays=Table[GrayLevel[i],{i,0,.4,.1}]

{GrayLevel[0], GrayLevel[0.1], GrayLevel[0.2], GrayLevel([0.3],
GrayLevel[0.4]}

Next, we use Plot to graph the functions in 1polys2. Each element of 1polys2
is graphed on the interval [0,15] according to the GrayLevel specified in grays.
Thus, the first function is graphed in GrayLevel[ 0], corresponding to black, and
the fifth function is graphed in GrayLevel[0.4], corresponding to the lightest
gray in the displayed graphics object.

Plot(Evaluate[lpolys2],{x,0,15},PlotStyle->grays]

Evaluation of Lists by Functions

Another helpful command is Map[ £, 1ist] which creates a list consisting of elements
obtained by evaluating £ for each element of 1ist, provided that each member of 1ist is
an element of the domain of £. Note that if £ is listable, £[ 1ist ] produces the same result
asMap[f,list].

To avoid errors, be sure to check that each element of 1ist is in the domain of £ prior
to executing the command Map([f,list].

EXAMPLE: Create a table, named oddints, consisting of the first 25 odd
integers. Square each number in oddints.
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SOLUTION: We begin by using Table to create a table of the first 25 odd
integers and name the resulting table oddints.

oddints=Table[2i-1,{i,1,25}]
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29,
31, 33, 35, 37, 39, 41, 43, 45, 47, 49}
Next, we define f(x)=x? and use Map to compute f(x) for each x in oddints.

flx_]1=x"2;
Map[ f,oddints]

{1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529,
625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681,

1849, 2025, 2209, 2401}

Note that since f is Listable, f[oddints] produces the same results as
Map([f,oddints].

f[oddints]
{1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529,

625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681,

1849, 2025, 2209, 2401}
]

We can use Map on any list, including lists of functions.

EXAMPLE: The Legendre polynomials, P (x), are solutions of the ordinary
differential equation (1-x2)y”-2xy’+n(n+1)y=0. The built-in function
LegendreP[n, x] represents the Legendre polynomial P (x). Verify that P (x)
satisfies (1-x?)y” -2xy’+n(n+1)y=0 forn=1, 2, ..., 5.

SOLUTION: Below, we use Table to define legendrepolys to be the list
consisting of the ordered pairs (n, P (x)) forn=1,2, ..., 5.

legendrepolys=Table{ {n,LegendreP[n,x)},{n,1,5}]

({ll X}, {21 ________ Y {31 ________ }
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2 4 3 5
3 -30x + 35x 15 x - 70 x + 63 x

Next, we define the function f which given an ordered pair (n,y) computes and
simplifies (1-x2)y” -2xy’+n(n+1)y=0.

Clear[f]
f{{n_,y_}1:=Simplify({(1-x"2)D(y,{x,2}]1-2x D[y, x]+n(n+l)y]

Last, we use Map to compute the value of f for each of the ordered pairs in
legendrepolys. As expected, the resulting output is a list of five 0's.

Map|[f,legendrepolys]

{0, 0, 0, o, 0oy M

EXAMPLE: Compute a table of the values of the trigonometric functions sinx,
cosx, and tanx for the principal angles.

SOLUTION: We first construct a table of the principal angles which is
accomplished by defining t1 to be the table consisting of % for n=0,1,...,8 and

t2 to be the table consisting of 1613 for n=0,1,...,12. The principal angles are

obtained by taking the union of t1 and t2. Note that Union[t1,t2] joins the
lists t1 and t2, removes repeated elements, and sorts the results. If we did not
wish to remove repeated elements and sort the result, the command
Join[tl,+t2] concatenates the lists t1 and t2.

tl=Table{n Pi/4,{n,0,8}];
t2=Table[n Pi/6,{n,0,12}];
prinangles=Union[tl, t2]
Pi Pi Pi Pi 2 Pi 3 Pi 5 Pi 7 Pi 5 Pi
{0, STy TTe¢ TTy TTy TTTTy TTTT TTTTy Pi, =TT TTTTy

6 4 3 2 3 4 6 6 4

4 Pi 3Pi 5Pi 7Pi 11 Pi
TTTRy TTTTy TTTTy TETmsy mmems , 2 Pi}

3 2 3 4 6

Next, we define f(x) to be the function which returns the ordered quadruple
(x,sinx,cosx, tanx) and compute the value of f for each number in prinangles
with Map naming the resulting table prinvalues. Note that prinvalues is not
displayed since a semi-colon is included at the end of the command.

247
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Clear[f]
f[x_]={x,Sin[x],Cos[x],Tan[x]}

{x, Sin[x], Cos[x], Tan[x]}
prinvalues=Map|[f,prinangles];

Finally, we use TableForm and TableHeadings to display prinvalues in
row-and-column form; the columns are labeled x, sinx, cosx, and tanx.

TableForm[prinvalues,

TableHeadings->{None, {"x","sin(x)","cos(x)","tan(x)"}}]

X sin(x) cos (X) tan(x)
0 0 1

Pi 1 Sqrt[3] 1

6 2 2 Sqrt([3]
Pi 1 1

4 sgrt([2]) Sqgrt[2] 1

Pi sqrt([3] 1

3 2 2 Sqrt (3]
Pi

2 1 0 ComplexInfinity
2 Pi Sqrt[3] 1

——em omeeee- -(-)

3 2 2 -8qgrt[3]
3 Pi 1 1
e - (mmmmmee )

4 Sqrt(2] Sqrt([2] -1
5 Pi 1 -sqrt[3] 1
- = e = (—mmmeem )

6 2 2 Sqrt([3]
Pi 0 -1 0
7 Pi 1 -Sqrt[3] 1
- -(_) _______________

6 2 2 sqrt(3)

5 Pi 1 1
-—-= (== ) m(mmm———- )

4 Sqgrt[2] Sqrt([2] 1
4 Pi -Sqgrt[3] 1
e -(-)

3 2 2 Sqrt[3]

3 Pi

2 -1 0 ComplexInfinity
5 Pi ~-5qrt[3] 1

3 2 2 -Sqrt[3]
7 Pi 1 1

—_—— _( _______ ) _______
4 sqrt[2] sqrt[2] -1
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11 Pi 1 Sqrti{3] 1
————— -(-) ——————- -(======-)
6 2 2 Sqrt[3]
2 Pi 0 1 0 [ |

Evaluation of Parts of Lists by Functions

Parts of lists may be evaluated by functions with the command MapAt:
MapAt[f,list,j] applies f to the jth part of 1ist and returns the list

{list{[11),..., ist{[J11],£[1ist{ (3], ist[[J+1]]),..., ist[[n]]};

similarly MapAt[f list,{j1,j2,...jk}] applies f to list[[j1,j2,...,jk]].

EXAMPLE: Generate a table of 10 random numbers between -5 and 5 and name
the resulting table nums. (a) Reduce the third number in nums modulo 1.
(b) Reduce all the numbers in nums modulo 1.

SOLUTION: We use Table and Random to generate a table of ten random
numbers between -5 and 5 and name the result nums. Note that because the
command Random is used, when you enter the following calculations, your results
will most certainly be different from those here.

nums=Table[Random[Real, {-5,5}], {10}1]
{4.78995, 0.619918, -1.83003, 0.409594, -1.11787,
1.92788, 3.09407, 1.31449, 3.4408, 2.4368})

The command Mod[a,b] represents the remainder generated by a/b which is
known as a modulo b or a mod b. We define g(x) to reduce x modulo 1 and use
MapAt to reduce the third number in nums modulo 1.

g{x_]:=Mod[x,1]
MapAt[g,nums, 3]

{4.78995, 0.619918, 0.169971, 0.409594, -1.11787,
1.92788, 3.09407, 1.31449, 3.4408, 2.4368)
To reduce all the numbers in nums modulo 1, we use Map.
Map|[g,nums]
{0.789948, 0.619918, 0.169971, 0.409594, 0.882131,

0.927875, 0.094066, 0.314495, 0.440797, 0.436799) M
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Other List Operations

A specific operation can be applied to the elements of a list through the command
Apply[operation, list]. Of course, in order to use this command, the given
operation must be defined for the elements of 1ist.

For example, if numbers is a list of real numbers, then the command
Apply[Plus,numbers) adds together all the elements of numbers while
Apply[Times,numbers] multiplies together all the elements of numbers.

EXAMPLE: Define list to be a list of the first 100 positive integers. Compute the
sum and product of the elements of 1ist.

SOLUTION: We use Range to define 1ist to be a list of the first 100 positive
integers. Then, Apply, Plus, and Times are used to compute the sum and
product of the members of list.

list=Range[100];
Apply[Plus,list]

5050
Apply(Times,list]
9332621544394415268169923885626670049071596826438162\
14685929638952175999932299156089414639761565182862\
53697920827223758251185210916864000000000000000000\
000000

In this example, Sum and Product can also be used to compute the sum and
product, respectively.

Sum[i,{i,1,100}]
5050
Product[i, {i,1,100}]
933262154439441526816992388562667004907159682643816\
2146859296389521759999322991560894146397615651828\
6253697920827223758251185210916864000000000000000\
000000000

Some other Mathematica commands used with lists are:
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Append(list,element], whichappends element tolist;
AppendTo[list,element], whichappends element to list and names the result
list;

Drop[list,n], which returns the list obtained by dropping the first n elements from list;
Drop[list,-n], which returns the list obtained by dropping the last n elements of list;
Drop[list, {n,m}], which returns the list obtained by dropping the nth through mth
elements of list;

Drop[list, {n}], which returns the list obtained by dropping the nth element of list;
Prepend[list,element], whichprepends element to list; and
PrependTo{list,element], which prepends element to list and names the result
list.

Alternative Way to Evaluate Lists by Functions

Abbreviations of several of the commands discussed in this section are summarized below
and illustrated in the following example.

@e Apply // (function {...} List
application)
/@ Map [[...]] Part

EXAMPLE: Define polys to be the set of polynomials consisting of 15x2—6x-9,
4x2-39x+56, 14x2+24x-8, and 8x2-17x-21. (a) Factor each polynomial in
polys. (b) Find the sum of the polynomials in polys.

SOLUTION: After defining polys, we use Map, //, and /@ to factor the list of
polynomials polys.

Clear[polys,x]
polys={15x"2-6x-9,4x"2-39%x+56,14x"2+24x-8,8x"2-17x-21};
Map{Factor,polys]

{3 (-1 + x) (3 +5 x), (-8 + x) (-7 + 4 x),

2 (24 %) (=2 + 7 x), (=3 +x) (7 + 8 x)}
polys//Factor

{3 (-1 + %) (3+5x), (-8 +x) (-7 + 4 x),

2 (2 + %) (=2 +7x), (-3 +x) (7 + 8 x)}
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Factor/@polys
{3 (-1 +x) (3 +5%x), (-8+x) (-7 + 4 x),
2 (2 +x) (-2 +7X), (-3 +x) (7 +8Xx)}

For (b), we find the sum using @@ instead of Apply.
Plus @@; polys

2
18 -38 x+41x

4.3 Mathematics of Finance

The use of lists and tables are quite useful in economic applications which deal with
interest rates, annuities, and amortization. Mathematica is, therefore, of great use in these
types of problems through its ability to show the results of problems in tabular form. Also,
if a change is made in the problem, Mathematica can easily recompute the results.

Application: Compound Interest

A common problem in economics is the determination of the amount of interest earned
from an investment. If P dollars are invested for t years at an annual interest rate of 1%
compounded m times per year, the compound amount, A(t), at time t is given by

A(t) = P(1+l)m i
m

If P dollars are invested for t years at an annual interest rate of r% compounded
continuously, the compound amount, A(t), at time t is given by A(t)= Pem.

A specific example is shown below where the amount of money accrued at time t
represents the sum of the original investment and the amount of interest earned on that
investment at time t.

EXAMPLE: Suppose $12,500 is invested at an annual rate of 7% compounded
daily. How much money has accumulated and how much interest has been earned
at the end of each five year period for t = 0, 5, 10, 15, 20, 25, 30? How much money
has accumulated if interest is compounded continuously instead of daily?

SOLUTION: Below, we define ac[t] to give the total value of the investment at
the end of t years and interest[t] to yield the total amount of interest earned at
the end of t years. Then Table and TableForm are used to produce the table of
ordered triples corresponding to the year, total value of the investment, and total
interest earned.
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Clear[ac, interest]

ac[t_]=12500 (1+0.07/365)"(365 t);
interest(t_]=ac[t]-12500;
Table[{t,ac[t],interest[t]},{t,0,30,5}]//TableForm

0 12500 0

5 17737.7 5237.75
10 25170.2 12670.2
15 35717. 23217.
20 50683.2 38183.2
25 71920.5 59420.5
30 102057. 89556.6

The value of the investment if interest is compounded continuously is shown
below.

Clear[ac]
ac[t_]=12500 Exp[.07 t];
Table[{t,ac[t]},{t,0,30,5}]//TableForm

0 12500

5 17738.3
10 25171.9
15 35720.6

20 50690.
25 71932.5
30 102077.

The problem can be redefined for arbitrary values of t, P, r, and n as follows :

Clear[ac, interest,results]

ac{t_,P_,r_,n_]=P (l+r/n)"(n t);

interest[t_,P_,r_,n_]=ac[t,P,r,n]-P;

results[{t0_,tl_,m },P ,r ,n_]:=
Table[{t,ac[t,P,r,n],interest[t,P,r,n]},{t,t0,t1,m}}//TableForm

Hence, any problem of this type can be worked using the functions defined above.

EXAMPLE: Suppose $10,000 is invested at an interest rate of 12% compounded
daily. Create a table consisting of the total value of the investment and the interest
earned at the end of 0, 5, 10, 15, 20, and 25 years. What is the total value and
interest earned on an investment of $15,000 invested at an interest rate of 15%
compounded daily at the end of 0, 10, 20, and 30 years?

SOLUTION: In this case, we use the function results defined above. Here,
£0=0, £1=25, m=5, P=10000, r=.12, and n=365:
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results|{0,25,5},10000,0.12,365]

0
5
10
15
20
25

10000 0

18219.4 8219.39
33194.6 23194.6
60478.6 50478.6
110188. 100188.
200756. 190756.

Notice that if the conditions are changed to t0=0, £1=30, m=10, P=15000, r=.15,
and n=365, the desired table can be quickly calculated:

results[{0,30,10},15000,0.15,365]

0
10
20

30

15000 0
67204.6 52204.6
301097. 286097.
6 6
1.34901 10 1.33401 10 u

Application: Future Value

If R dollars are deposited at the end of each period for n periods in an annuity that earns
interest at a rate of j% per period, the future value of the annuity is given by:

5, g1
Sfuture ]

EXAMPLE: Define a function future which calculates the future value of an
annuity. Compute the future value of an annuity where $250 is deposited at the
end of each month for 60 months at a rate of 7% per year. Make a table of the
future values of the annuity where $150 is deposited at the end of each month for
12t months at a rate of 8% per year for t=1, 5,9, 13, ..., 21, 25.

SOLUTION: After defining future, we use future to calculate that the future
value of an annuity where $250 is deposited at the end of each month for 60
months at a rate of 7% per year is $17898.22.

Clear{r,n}
future[r_,j_,n_l=r ((1+j)"n-1)/j

n

(-1 +(1L+3))r
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future[250,0.07/12,5 12]

17898.2

For the second problem, we use Table and future to compute the future values
of the annuity where $150 is deposited at the end of each month for 12t months at
a rate of 8% per year for t=1, 5, 9, 13, ..., 21, 25. Hence, the first column in the table
below corresponds to the time (in years) and the second column corresponds to
the future value of the annuity.

Table[{t,future[150,0.08/12,12 t]},{t,1,25,4})//TableForm

1 1867.49
5 11021.5
9 23614.4
13 40938.1
17 64769.6
21 97553.8
25 142654.

Application: Annuity Due

Another type of annuity is as follows. If R dollars are deposited at the beginning of each
period for n periods with an interest rate of j% per period, the annuity due is given by:

A+l —]
Sm=R[(l+—]),———l .
j

EXAMPLE: Define a function due that computes the annuity due. Use due to (a)
compute the annuity due of $500 deposited at the beginning of each month at an
annual rate of 12% compounded monthly for three years; and (b) calculate the
annuity due of $100k deposited at the beginning of each month at an annual rate
of 9% compounded monthly for 10 years for k=1, 2, 3, ..., 10.

SOLUTION: In the same manner as the previous example, we first define due and
then use due to compute the annuity due of $500 deposited at the beginning of
each month at an annual rate of 12% compounded monthly for three years.

due[r_,j_,n_]=r(((1+j)"(n+1)-1)/j)-r

1 +n
(-1 + (1 + 3) 3
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due(500,0.12/12,3 12}

21753.8

We then use Table and due to calculate the annuity due of $100k deposited at the
beginning of each month at an annual rate of 9% compounded monthly for 10
years for k=1, 2, 3, ... ,10. Notice that the first column corresponds to the amount
deposited each month at an annual rate of 9% compounded monthly and the
second column corresponds to the value of the annuity.

Table[ {100 k,due[100 k,0.09/12,10 12]},{k,1,10}])//TableForm

100 19496.6
200 38993.1
300 58489.7
400 77986.3
500 97482.8
600 116979.
700 136476.
800 155973.
900 175469.
1000 194966.

We solve a similar problem below.

EXAMPLE: Compare the annuity due on $100k monthly investment at an annual
rate of 8% compounded monthly for t=5, 10, 15, 20 and k=1, 2, 3, 4, 5.

SOLUTION: We use Table and due to calculate due[100 k,0.08/12,t 12],
corresponding to the annuity due of $100k deposited monthly at an annual rate of
8% compounded monthly for t years, for k=1, 2, 3, 4, and t=5, 10, 15, and 20. Notice
that the rows correspond to the annuity due on $100, $200, $300, $400, and $500
monthly investment for 5, 10, 15, and 20 years, respectively. For example, the
annuity due on $300 deposited monthly at an annual rate of 8% compounded
monthly for 15 years is $104,504.

Table[due[100 k,0.08/12,t 12],{k,1,5},{t,5,20,5}]//TableForm

7396.67 18416.6 34834.5 59294.7
14793.3 36833.1 69669. 118589.
22190. 55249.7 104504. 177884.
29586.7 73666.3 139338. 237179.
36983.4 92082.8 174173. 296474.
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Application: Present Value

Yet another type of problem deals with determining the amount of money which must be
invested in order to insure a particular return on the investment over a certain period of
time. This is given with the following. The present value, P, of an annuity of n payments
of R dollars each at the end of consecutive interest periods with interest compounded at a
rate of interest j% per period is given by:

1-(1+j)"
—

P=R

EXAMPLE: Define a function present to compute the present value of an
annuity. (a) Find the amount of money that would have to be invested at 7 1/2%
compounded annually to provide an ordinary annuity income of $45,000 per year
for 40 years; and (b) find the amount of money that would have to be invested at
8% compounded annually to provide an ordinary annuity income of
$20000+$5000k per year for 35 years for k=0, 1, 2, 3, 4, and 5 years.

SOLUTION: In the same manner as in the previous examples, we first define the
function present which calculates the present value of an annuity. We then use
present to calculate the amount of money that would have to be invested at 7
1/2% compounded annually to provide an ordinary annuity income of $45,000 per
year for 40 years.

present(r_,j_,n_J=r ((1~(1+j)"(-n))/j)
-n

(1 -(1+3) )r

present[45000,0.075,40]

566748.

Also, we use Table to find the amount of money that would have to be invested
at 8% compounded annually to provide an ordinary annuity income of
$20000+$5000k per year for 35 years for k=0, 1, 2, 3, 4, and 5. Notice that the first
column corresponds to the annuity income and the second column corresponds to
the present value of the annuity.

Table[ {20000+5000k, present[20000+5000 k, 0.08,35]},(k,0,5}]//TableForm
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20000 233091.
25000 291364.
30000  349637.
35000  407910.
40000 466183,
45000 524456. W

Application: Deferred Annuities

Deferred annuities can also be considered. The present value of a deferred annuity of R
dollars per period for n periods deferred for k periods with interest rate j per period is

given by:

1-(1+) ™ 1-(145)"
i j '

P =R

def

EXAMPLE: Define a function def[r,n,k,j], which computes the value of a
deferred annuity where r equals the amount of the deferred annuity, n equals the
number of years in which the annuity is received, k equals the number of years in
which the lump sum investment is made, and j equals the rate of interest. Use def
to compute the lump sum that would have to be invested for 30 years at a rate of
15% compounded annually to provide an ordinary annuity income of $35,000 per
year for 35 years. How much money would have to be invested at the ages of 25,
35, 45, 55, and 65 at a rate of 8 1/2% compounded annually to provide an ordinary
annuity income of $30,000 per year for 40 years beginning at age 65?

SOLUTION: As in the previous examples, we first define def and then use def to
compute the lump sum that would have to be invested for 30 years at a rate of 15%
compounded annually to provide an ordinary annuity income of $35,000 per year
for 35 years. The function which computes the present value of a deferred annuity
is given below where

r = the amount of the deferred annuity,

n= the number of years in which in annuity is received,

k = the number of years in which the lump sum investment is made, and
j = the interest rate.

def{r_,n_,k_,j_l=r ((1-(1+j)"(-(n+k)))/j-(1-(1+j)"(-k))/J)

-k -k - n
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def[35000,35,30,0.15]

3497.58

To answer the second question, we note that the number of years the annuity is
deferred is equal to 65 (the age at retirement) minus the age at which the money is
initially invested, and then use Table and def to compute the amount of money
would have to be invested at the ages of 25, 35, 45, 55, and 65 at a rate of 8 1/2%
compounded annually to provide an ordinary annuity income of $30,000 per year
for 40 years beginning at age 65. Note that the first column corresponds to the
current age of the individual, the second column corresponds to the number of
years from retirement, and the third column corresponds to the present value of

the annuity.

Table[ {k,65-k,def[30000,40,65-k,0.085]}, {k,25,65,10}] //TableForm

25
35
45
55
65

40
30
20
10
0

12988.8
29367.4
66399.2
150127.
339436.

Application: Amortization

A loan is amortized if both the principal and interest are paid by a sequence of equal
periodic payments. A loan of P dollars at interest rate j per period may be amortized in n
equal periodic payments of R dollars made at the end of each period, where

pj
Ree -2
1-(1+j)"

The function, amort[p, j,n}], defined below determines the monthly payment needed to
amortize a loan of p dollars with an interest rate of §% compounded monthly over n
months. A second function, totintpaid[p, j,n], calculates the total amount of interest
paid to amortize a loan of p dollars with an interest rate of % compounded monthly over

n months.

amort[p_,j_,n_]1=(p j)/(1-(1+j)"(-n))

1-(1+39)

totintpaid[p_,j_,n_]= n amort[p,j,n]-p
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EXAMPLE: What is the monthly payment necessary to amortize a loan of $75,000
with interest 9.5% compounded monthly over 20 years?

SOLUTION: The first calculation below uses amort to determine the necessary
monthly payment to amortize the loan. The second calculation determines the
total amount paid on a loan of $75,000 at a rate of 9.5% compounded monthly over
twenty years, while the third shows how much of this amount was paid towards
the interest.

amort[75000,0.095/12,20 12]
699.098

240 amort[75000,0.095/12,240)
167784.

totintpaid[75000,0.095/12,240]

92783.6 M

EXAMPLE: What is the monthly payment necessary to amortize a loan of $80,000
at an annual rate of j% in twenty years for j=8,8.5, 9, 9.5, 10, and 10.5?

SOLUTION: Below, we use amort to calculate the necessary monthly payments.
The first column corresponds to the annual interest rate and the second column
corresponds to the monthly payment.

Table( {j,amort[80000,§/12,20 121},{j,0.08,0.105,0.005}]//TableForm

0.08 669.152
0.085  694.259
0.09 719.781
0.095  745.705
0.1 772.017
0.105 798.704 W

In many cases, the amount paid towards the principal of the loan and the total amount
which remains to be paid after a certain payment need to be computed. This is easily
accomplished with the functions unpaidbalance and curprinpaid defined below
using the function amort(p, j,n] that was previously defined:
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unpaidbalance(p_,j_,n_,m_j=present{amort{p,j,n],j,n-m]

1 - (1 +3)
curprinpaid(p_,j_,n_,m_]=p-unpaidbalance[p,j,n,m]
m-n

(1 - (1 +3) ) P

p - - - - -

-n
1 -¢(1+ 3)
Note that Mathematica does not retain definitions of functions from previous Mathematica
sessions. This means that in order to use a function definition from a previous
Mathematica session, the definition must be re-entered.

EXAMPLE: What is the unpaid balance of the principal at the end of the fifth year
of a loan of $60,000 with an annual interest rate of 8% scheduled to be amortized
with monthly payments over a period of ten years? What is the total interest paid
immediately after the 60th payment?

SOLUTION: We use the functions unpaidbalance and curprinpaid, defined
above, to calculate that of the original $60,000 loan, $24,097.90 has been paid at the
end of five years; $35,902.10 is still owed on the loan.

unpaidbalance[60000,0.08/12,120,60]

35902.1
curprinpaid[60000,0.08/12,120,60]

24097.9

Mathematica can also be used to determine the total amount of interest paid on a loan
using the following function
curintpaid[p_,j_,n_,m_]=m amort[p,j,n]-curprinpaid[p,j,n,m]
m-n
(1 - (1+3) ) P jmp
1 - (1 +3) 1 - (1 +3)

where curintpaid(p, j,n,m] computes the interest paid on a loan of $p amortized at a
rate of j per period over n periods immediately after the mth payment.
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EXAMPLE: What is the total interest paid on a loan of $60,000 with an interest
rate of 8% compounded monthly amortized over a period of ten years (120
months) immediately after the 60th payment?

SOLUTION: Using curintpaid, we see that the total interest paid is $19,580.10.
curintpaid[60000,0.08/12,120,60]

19580.1 W

Using the functions defined above, amortization tables can be created which show a
breakdown of the payments made on a loan. An example is given below.

EXAMPLE: What is the monthly payment necessary to amortize a loan of $45,000
with interest rate of 7% compounded monthly over a period of 15 years (180
months)? What is the total principal and interest paid after 0, 3, 6, 9, 12, and 15
years?

SOLUTION: We first use amort to calculate the monthly payment necessary to
amortize the loan.

amort[45000,0.07/12,15 12]

404.473

Next, we use Table, curprinpaid, and curintpaid to determine the interest
and principal paid at the end of 0, 3, 6, 9, 12, and 15 years.

Table[ {t,curprinpaid[45000,0.07/12,15 12,12 t],
curintpaid[45000,0.07/12,15 12,12 t]},{t,0,15,3}]//TableForm

0 0. 0.

3 5668.99 8892.03
6 12658.4 16463.6
9 21275.9 22407.2
12 31900.6 26343.5
15 45000 27805.1

Note that the first column represents the number of years, the second column
represents the principal paid, and the third column represents the interest paid.
Thus, at the end of twelve years, $31,900.60 of the principal has been paid and
$26,343.50 has been paid in interest. B

Since curintpaidip, j,n,y] computes the interest paid on a loan of $p amortized at
a rate of j per period over n periods immediately after the yth payment, and
curintpaid[p,j,n,y-12) computes the interest paid on a loan of $p amortized at a
rate of j per period over n periods immediately after the (y-12)th payment,

curintpaid(p,j,n,y]-curintpaid[p,j,n,y-12]
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yields the amount of interest paid on a loan of $p amortized at a rate of j per period over n
periods between the (y~12)th and yth payment. Consequently, the interest paid and the
amount of principal paid over a year can also be computed.

EXAMPLE: Suppose that a loan of $45,000 with interest rate of 7% compounded
monthly is amortized over a period of 15 years (180 months)? What is the principal
and interest paid during each of the first five years of the loan?

SOLUTION: We begin by defining the functions annualintpaid and
annualprinpaid which calculate the interest and principal paid during the yth
year on a loan of $p amortized at a rate of j per period over n periods.

annualintpaid{(p_,j_,n_,y_}:=curintpaid[p,j,n,y]l-curintpaid(p,j,n,y-12];
annualprinpaid(p_,j_,n_,y_} :=curprinpaid(p,j,n,y]-
curprinpaid(p,j,n,y-12];

We then use these functions along with Table to calculate the principal and
interest paid during the first five years of the loan. Note that the first column
represents the number of years the loan has been held, the second column
represents the interest paid on the loan during the year, and the third column
represents the amount of the principal that has been paid.

Table[ {t,annualintpaid[45000,0.07/12, 15 12,12 t],
annualprinpaid[45000,0.07/12,15 12,12 t}},{t,1,5,1}])//TableForm

3094.26 1759.41
2967.08 1886.6

2830.69 2022.98
2684.45 2169.22
2527.64 2326.03

U W N

For example, we see that during the third year of the loan, $2830.69 was paid in
interest and $2022.98 was paid on the principal. B

Application: Financial Planning

We can use many of the functions defined above to help make decisions about financial
planning.

EXAMPLE: Suppose a retiree has $1,200,000. If she can invest this sum at 7%,
compounded annually, what level payment can she withdraw annually for a
period of forty years?
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SOLUTION: The answer to the question is the same as the monthly payment
necessary to amortize a loan of $1,200,000 at a rate of 7% compounded annually
over a period of forty years. Thus, we use amort to see that she can withdraw
$90,011 annually for forty years.

amort[1200000, .07,40]

90011.

EXAMPLE: Suppose an investor begins investing at a rate of d dollars per year at
an annual rate of j%. Each year the investor increases the amount invested by i%.
How much has the investor accumulated after m years?

SOLUTION: The following table illustrates the amount invested each year and the
value of the annual investment after m years.

Year Rate of Annual Amount Value after m
Increase | Interest Invested Years

0 j% d (1+7%)"d

1 i% i% (1+i%)d (1+i%)(1+j%)"d

2 i% j% (1+i%)’d (1+i%) (1+ %) d |
3 i% i% (1+i%)’d (1+i%) (1+ j%)"d

k 1% j% (1+i%)'d (1+i%)"(1+j%)" " d

m i% j% (1+i%)"d (1+i%)"d |

It follows that the total value of the amount invested for the first k years after m
years is given by:
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Year Total Investment
0 (1+j%)"d
1 (1+j%)"d+(1+i%)(1+ j%)""d
2 (14 %) d + (1+i%)(1+ %)™ d + (1+ %) (1+ %) d
3 2 m-n
N 1+ %) (1+ %) d
n=0
k &
N (i) (14 %) d
m N m-n
N (i) (1+ %)

265

The package SymbolicSum.m, contained in the Algebra folder (or directory),
contains the command SymbolicSum which can be used to find a closed form of

k

the sums 2(1+i%)"(1+ j%)""d and 2(1+i%)"(1+ j%)""d. Below, we first load the

n=0

package SymbolicSum and then use SymbolicSum to find the sum
k

Z(l+i%)"(1+j%)m'"d and name the result closedone. We then use Factor and

n=0

Together to first write closedone as a single fraction and then factor the

numerator.

<<Algebra” SymbolicSum"

closedone=SymbolicSum|[ (1+i)*n (1+j)"(m-n) d,{n,0,k}]//Simplify

-k +m
(d (1 + 3)

k k
((L + i)y + i (1 + i)y -

k k
(1 +3) -3+ 3 N\

/(i -9

Factor[Together[closedone]]
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-k +m
(d (1 +3)
k k
(-(1 +1i) -1 (1 +1i)y +
k k

(1 +3) +3(1+3) )N\
/(=1 + 3J)

In the exact same manner as above, SymbolicSum is used to find a closed form of

Z(1+i%)"(l+ j%)""d, naming the result closedtwo. In this case, however, the
n=0
final result is displayed in a print cell in input form with the command

Print[InputForm[%]]. Remember that the symbol % refers to the previous
output.

closedtwo=SymbolicSum{ (1+i)"n (1+j)"(m-n) 4,{n,0,m}]

m m
(d ((1L +1i) +1i (1 + 1) -

m m
(1 +3) = 3(1+3) M\

/i -9
Factor[Together[closedtwo]]

m m
(d (-(1 + i) - i (1 + i) +

m m
(L +3) +3 (1 +3) )\

/ (=i + 3J)
Print[InputForm[%]]
(d*(=(1 + 1)"™m = i*(1 + i)"m + (1 + J)"'m + F*(1 + 3)"'m))/(-1i + J)

The above results are wused to define the functions
investment{{d,i,j},{k,m}] and investmenttot([{d,i,j},m] which
return the value of the investment after k and m years, respectively. In the second
case, notice that print cells can be edited like any other input or text cell.
Consequently, we use notebook editing features to copy and paste the above result
when we define the function investmenttot.

investment[{d_,i_,3j_},{k_,m_}]=(d*(1+3j) " (~k+m)* ((1+i) "k+tix
(1+i) "k=(1+j) "k-3*(1+3) "k)) /(i-J)
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-k + m
(d (1 + 3)

k k
((1 +1i) +1i (1 +1i) -

k k
(1 +3) -3 (L+3) )N
/(1 -3)
investmenttot[{d_,i_,j_},m_J=(d*(-(1+i) " m-i*(1+i) "m+(1+j) "m+
3*(1+3)"m)) / (-i+3)

m m
(d (-(1 +1i) -1i (1 + i) +

m m
(1 +3) +3 (1 +3) )N

/ (-1 + 3J)

Finally, investment and investmenttot are used to illustrate various financial
scenarios. In the first example, investment is used to compute the value after
twenty-five years of investing $6500 the first year and then increasing the amount
invested 5% per year for 5, 10, 15, 20, and 25 years assuming a 15% rate of interest
on the amount invested. The built-in function AccountingFormis used to
convert numbers expressed in exponential notation to ordinary notation. In the
second example, investmenttot is used to compute the value after twenty-five
years of investing $6500 the first year and then increasing the amount invested 5%
per year for 25 years assuming various rates of interest. The results are displayed
in AccountingForm.

results=Table[ {t,investment[{6500,0.05,0.15},{t,25}]},
{t,5,25,5}]//TableForm

6
5 1.03506 10
6
10 1.55608 10
6
15 1.88668 10
6
20 2.09646 10
6

25 2.22957 10
TableForm[AccountingForm[results]]

5 1035065.
10 1556078.
15 1886680.
20 2096460.
25 2229573.
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scenes=Table[ {i,investmenttot[ {6500,0.05,i},25]},{i,0.08,0.20,0.02});

AccountingForm|[TableForm|[scenes] ]

.08
.1

.12
.14
.16
.18
.2

[~ 3= M= NN

832147.

1087126.
1437837.
1921899.
2591636.
3519665.
4806524.

Another interesting investment problem is discussed in the following example. In this
case, Mathematica is useful in solving a recurrence equation which occurs in the problem.
The command used to solve equations of this type is RSolve. In general,

RSolve[ {equations},a[n],n]

attempts to solve the recurrence equations equations for the variable a[n] with no
dependence on n. Note that the command RSolve is contained in the package RSolve
located in the DiscreteMath folder (or directory) so it must first be loaded before using.
We illustrate the use of this command in the following example.

EXAMPLE: I am fifty years old and I have $500,000 which I can invest at a rate of
7% annually. Furthermore, I wish to receive a payment of $50,000 the first year.
Future annual payments should include cost-of-living adjustments at a rate of 3%
annually. Is $500,000 enough to guarantee this amount of annual income if I live to
be eighty- years old?

SOLUTION: Instead of directly solving the above problem, let's solve a more
general problem. Let a denote the amount invested and p the first-year payment.
Let ap denote the balance of the principal at the end of year n. Then, the amount of
the nth payment, the interest earned on the principal, the decrease in principal,
and the principal balance at the end of year n is shown in the table for various

values of n. Observe that if (1+;)" p>(1+/)a,

the amount received in year nis (1+j)a,_,.

then the procedure terminates and
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Year Amount | Interest | From Principal Principal Balance
1 P ia p—ia a, =(1+i)a—p
2 (1ejp | (1+j)p-ia a,=(1+i)a,~(1+])p
3 (1+jfp |22 (1+])p-ia, a, =(1+i)a, ~(1+j)'p
4 (1+jyp |13 (1+)) p—ia, a,=(1+i)a, -(1+j)'p
N )T | e (1+)) "p—ia,, a,=(1+i)a,,~(1+))"p

The recurrence equation a =(1+i)a_ —(1+j)" p is solved for a, with no
dependence on a,_, with Mathematica below. After clearing several definitions of
variable names, we use RSolve to solve the recurrence equation given above
where the initial balance is represented by amount. Hence, a, is given by the
expression found in bigstep.

<<DiscreteMath RSolve~
eql=a[l]==(1l+i)amount-p;
eq2=a[n]==(1+i)a[n-1]-(1+j) " (n-1)p;
bigstep=RSolve[{eql,eq2},a[n],n]

-1 +n
(-1 - 3) (1 + 3) p
{{a[n] => ={====mmcmommmeemmmeeeeen ) +

i-j
-1 +n
((-1 - i) (1 + i)

(-(amount i) + amount j + p)) / (i - j)}}

We then define am[n,amount,i,p,j] to be the explicit solution found in
bigstep, extracted from bigstep with bigstep[([1,1,2]]. Last we compute
am[n,a,i,p,j) which corresponds to the balance of the principal of a dollars
invested under the above conditions at the end of the nth year.

am[n_,amount_,i ,p ,j_]=bigstep[[l,1,2]]//Together;
am[n,a,i,p,j]

n n n
(-(ai(l+1i)y ) +a(l+1i) j+(1+1i) p -

n
(1 +3) p) / (-1i+3)
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To answer the question, we first define annuitytable in the following. For given
a, i, p, j and m, annuitytable[a,i,p,J,m] returns an ordered triple
corresponding to the year, amount of income received in that year, and principal

balance at the end of the year for m years.

annuitytable[a ,i_,p_,j_,m_]:=Table[{k, (1+j)" (k-1) p,

am[klalilplj])l {k,l,m}]//TableForm

Then we compute annuitytable[500000,.07,50000,.03,15]. In this case,
we see that the desired level of income is only guaranteed for thirteen years which
corresponds to an age of 67 since the principal balance is negative after thirteen

years.

annuitytable[500000,.07,50000,.03,15]

0~ O U bW N

{X=}

10
11
12
13
14
15

50000
51500.
53045.
54636.3
56275.4
57963.7
59702.
61493.
63338.
65238.7
67195.8
69211.7
71288.
73426.7
75629.5

v~

485000.
467450.
447126.
423789.
397179.
367018.
333006.
294823.
252122.
204532.
151653.
93057.4
28283.4

-43163.5

~121814.

An alternative method of defining annuitytable is presented below. In this
case, the procedure terminates when the principal is negative or after fifty years.

Clear[annuitytable]

annuitytable[a_,i_,p_,j_]:=Module[{},

For[k=1l,am[k,a,i,p,j]>=0 && k<=50,k++,
Print([{k,(1+j)"(k-1) p,am[k,a,i,p,j1}1];

Print[{k,am[k-1,a,i,p,j]1,0}]

|

We see that if the first year payment is $29,000, 3% increases can occur annually
for thirty years:

annuitytable[500000,.07,29000,.03]

{1,
{2,
{3,
{4,
{5,
{6,
{7,

29000, 5
29870.,

30766.1,
31689.1,
32639.8,
33618.9,
34627.5,

06000.}
511550.}

516592.}
521065.}
524900.}
528024.)
530358}
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{8, 35666.3, 531816.}
{9, 36736.3, 532307.}
{10, 37838.4, 531730.}
{11, 38973.6, 529978.}
(12, 40142.8, 526934.})
{13, 41347.1, 522472.}
{14, 42587.5, 516457.}
{15, 43865.1, 508744.}
{16, 45181.8, 499175.}
{17, 46536.5, 487581.}
{18, 47932.6, 473779.}
{19, 49370.6, 457573.}
{20, 50851.7, 438752.}
{21, 52377.2, 417087.}
{22, 53948.5, 329335.}
{23, 55567., 364231.}
{24, 57234., 332493..}
{25, 58951., 296817.}
{26, 60719.6, 256874.}
{27, 62541.1, 212314.}
{28, 64417.4, 162759.}
{29, 66349.9, 107802.}
{30, 68340.4, 47007.9}
{31, 47007.9, 0}

We can also investigate certain other problems. For example, a thirty-year
mortgage of $80,000 with an annual interest rate of 8.125% requires monthly
payments of approximately $600 ($7,200 annually) to amortize the loan in 30 years.
However, using annuitytable, we see that if the amount of the payments is
increased by 3% each year, the thirty-year mortgage is amortized in 17 years. In
the following result, the first column corresponds to the year of the loan, the
second column the annual payment, and the third column the principal balance.

annuitytable[80000,.08125,7200,.03)

{1, 7200, 79300.}
{2, 7416., 78327.1}

{3, 7638.48, 77052.7}

{4, 7867.63, 75445.6}

{5, 8103.66, 73471.9}

{6, B8346.77, 71094.7}

{7, 8597.18, 68274.}

{8, 8855.09, 64966.2}

{9, 9120.74, 61123.9}

{10, 9394.37, 56695.9}

{11, 9676.2, 51626.2}

{12, 9966.48, 45854.4}

{13, 10265.5, 39314.6}

{14, 10573.4, 31935.4}

{15, 10890.6, 23639.5}

{16, 11217.4, 14342.9}

{17, 11553.9, 3954.36}

{18, 3954.36, 0} |
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4.4 Other Applications

We now discuss several other interesting applications that require the manipulation of
lists.

Application: Secant Lines, Tangent Lines,

and Animations

flx+h)-f(x)
I

In differential calculus, we learn that f/(x)=lim , provided this limit exists. One

way we may interpret f/(a) is as the limitas #—0 of the slopes of the secant lines passing
through (a,f(a)) and (a+h, f(a+h)). Given a differentiable function f and a number a, we
can use Mathematica to graph f and the secant line passing through (s,f(a)) and

(a+h, fla+h)) for various values of h and animate the result or display the result as a
graphics array.

EXAMPLE: Let f(x)=x3—%x2 +—2§x—§. Graph f and the secant line passing

through (1, £(1)) and (1+h, f(1+h)) for various values of h.

SOLUTION: We begin by defining and graphing f. We use the option Ticks to
place to place tick marks corresponding to 1, 2, and 3 on the x-axis and ~1, 1, and 2
on the y-axis. The option PlotRange->{-1.5,2} specifies that the range
displayed consists of the y-values between —1.5 and 2.

Clear[f]
flx_]1=x"3-9/2x"2+23/4x-15/8;
plotf=Plot{f[x],{x,0,3},PlotRange->{-1.5,2},Ticks->{Range[3],{-1,1,2}}]

2

-1
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An equation of the line passing through the points (a,f(a)) and (a+h,f(a+h)) is

flath)-f(a)
h
corresponding to the secant line passing through these points.

given by y= (x—a)+ f(a). Next, we define secant to be the function

secant[a_,h ]:=(f{a+h]-f[a])/h(x-a)+f[a];

Since we will be graphing the secant line for a=1 and various values of h, we
define the function secgraph which, given h,

1. graphs the secant line passing through (1, £(1)) and (1+h, f(1+h)) and names the
resulting graphics object s1;

2. generates the points (1,(1)) and (1+h,f(1+h)), declares them to be graphics
objects, and names them points; and

3. shows sl, points, and plotf.

Note that s1 and points are variables that are local to the function secgraph.
The result of entering secgraph[h] for a particular value of h can be displayed
by entering

Show[secgraph{h],DisplayFunction->$DisplayFunction].

Clear[secgraph,points]
secgraphf[h ]:=Module[{sl,points},
sl=Plot[secant[1l,h], {x,0,3},
DisplayFunction->Identity];
points=Graphics| {
PointSize[.02],
Point[{1,£[1]}],Point[{1+h,f[1+h]}1}];
Show[sl,plotf,points,PlotRange->{-1.5,2},
Ticks->{Range[3],{-1,1,2}}]
)
To generate graphics that can be animated, we use a Do loop. The syntax of the
Mathematica command Do is similar to the syntax of the command Table. The
command Do[statement(i],{i,istart,istop,istep} ] instructs
Mathematica to execute statement[1i] for values of i beginning with istart
and continuing through istop in increments of istep.

The following two windows show the results of entering the command:
Do[Show[secgraph[h],DisplayFunction->$DisplayFunction],{h,2,.2,-.3}]

To animate graphics, select the cells of the graphics to be animated as shown
below.
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File Edit Cell Graph Find Action Style Window Help

E[I===—=—== Secant and Tangent Lines E_—Egl
Do[ Shovw[ secgraph(h].
DisplayFunction->$DisplayFunction],
th.2..2,.-.3}]

L)

-

<
AR 1007 v | o

k

Then, go to Graph on the Mathematica menu and select Animate Selected
Graphics or press 38y.

File Edit Cell Graph Find fction Style Window Help

SJ=————=—= secant and Tangent Lines ==——ou115|
Do[ Shovw[ secgraph[h] . }

DisplayFunction->$DisplayFunction].
{h.2..2.-.3}]

[ N3

-

i

EEEImIEEN00% v]o] T

h

The six buttons in the lower left-hand corner of the window control the animation.
From left to right, the buttons

run the animation backward,;
run the animation cyclically;
run the animation forward;
pause the animation;

slow the animation; and
speed up the animation.
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Animations may also be controlled by selecting Animation... under 6raph on
the Mathematica menu.

An alternative approach is to generate the desired graphs and display the result as
a graphics array. In the following, we use Table to generate secgraph([h] for
values of h from 1.7 to .2 in steps of —.3. The resulting list of six graphics objects is
named graphs.

graphs=Table[secgraph[h],{h,1.7,.2,-.3}]
{-Graphics-,-Graphics-,-Graphics-,-Graphics-,-Graphics-, -Graphics-}

We then use Partition to partition the set of six graphs in graphs into two sets
of three graphs named toshow and use GraphicsArray to display toshow.

toshow=Partition[graphs, 3]
{{-Graphics-, -Graphics-, -Graphics-},
{-Graphics-, -Graphics-, -Graphics-}}

Show[GraphicsArray[toshow] ]

2
- I/t 72 é
2 2 2
1 1 1 ;
-1 1 NI alf 12
Similarly, we may also graph the line tangent to the graph of f at the point (a, f(a)) for
many values of a and animate the result or display the results as a graphics array.

EXAMPLE: Let f(x)=x3—%x2 +%x—§. Graph f and the tangent line passing

through (a, f(a)) for various values of a.

SOLUTION: If f(x) is differentiable when x =4, the line tangent to the graph of f
at the point (g, f(a)} is given by y = f/(a)(x-a)+ f(a). Below, we define tangent[a]
to be a function corresponding to the line tangent to the graph of f at the point
(2. f(a)) and define tangraph which, given a,

1. graphs the tangent line passing through (4,f(4)) and names the resulting
graphics object t1;
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2. generates the point (a,f(a)) declares it to be graphics objects, and names it
point; and

3. shows t1, point, and plotf. Note that plotf was generated in the previous
example.

Note that t1 and point are variables that are local to the function tangraph. The
result of entering tangraph[a] for a particular value of a can be displayed by
entering

Show|[tangraph[h] ,DisplayFunction->$DisplayFunction].

tangent[a_]:=f'[a](x-a)+f[a];
tangraph[a_]:=Module[{tl,point},
tl=Plot[tangent[a], {x,0,3},
DisplayFunction->Identity];
point=Graphics{ {
PointSize[.02],Point[{a,f[a]l}]}];
Show([tl,plotf,point,PlotRange->{-1.5,2},
Ticks->{Range([3],{-1,1,2}}]
|

As in the preceding example, we can use a Do loop to generate a set of graphics
objects which can be animated. The results of entering the following command are
shown below.

Do[Show[tangraph[a],DisplayFunction->$DisplayFunction], {a,.25,2.75,.25}]

File Edit Cell Graph Find Action Style Window Help

E0=———== Secant and Tangent Lines ===
Do[ Show[ tangraph[a]. 7l
DisplayFunction->$DisplayFunction].
{a..25.2.75,.25}]

[ )

-

-

[T

EEFEA1100%2_v[a] ]
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Alternatively, we can use Table and Partition to generate a table of graphics
object, partition the result into an array of graphics objects, and use
GraphicsArray to display the results.

graphs=Table[tangraph({a],{a,.25,2.75,.5}];
toshow=Partition[graphs,3];
Show[GraphicsArray[toshow]]

2 2
1
1 2 3 1 2 3 4 1 2

2 2
1 1 1
-1- 1 _1- 3 _t 1 2/ 3
Application: Approximating Lists
with Functions

Another interesting application of lists is that of curve fitting. The command

Fit[data, functionset, variables] fits the list of data points data using the
functions in functionset by the method of least-squares. The functions in
functionset are functions of the variables listed in variables; and
InterpolatingPolynomial[data,x] fits the list of data points data with an n-1
degree polynomial in the variable x.

An example is shown below which gives a quadratic fit to the data points in datalist.

EXAMPLE: Define datalist to be the list of numbers consisting of 1.14479,
1.5767, 2.68572,2.5199, 3.58019, 3.84176, 4.09957, 5.09166, 5.98085,6.49449, and
6.12113. (a) Find a quadratic approximation of the points in datalist. (b) Find a
fourth degree polynomial approximation of the points in datalist.

SOLUTION: The approximating function obtained above via the least-squares
method can be plotted along with the data points. This is demonstrated below.
Notice that many of the data points are not very close to the approximating
function. Hence, a better approximation is obtained below using a polynomial of
higher degree (4).
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Clear[datalist]

datalist={1.14479, 1.5767, 2.68572,2.5199, 3.58019, 3.84176,
4.09957, 5.09166, 5.98085,6.49449, 6.12113};

pl=ListPlot[datalist,DisplayFunction->Identity];

Clear({y]

y[x_]=Fit[datalist, {1,x,x"2},x]

2
0.508266 + 0.608688 x - 0.00519281 x

p2=Plot[y[x],{x,-1,11},DisplayFunction->Identity];
Show[pl,p2,DisplayFunction->$DisplayFunction]

Clear|y]
y[x_]=Fit[datalist, {1,x,x"2,x"3,x"4},x]

2
-0.54133 + 2.02744 x - 0.532282 x +

3 4
0.0709201 x - 0.00310985 x

To check its accuracy, this second approximation is simultaneously with the data
points.

p3=Plot[y([x],{x,-1,11},DisplayFunction->Identity];
Show([pl,p3,DisplayFunction->$DisplayFunction]

Next, consider a list of data points made up of ordered pairs.
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the data in the table.

EXAMPLE: The following table shows the average percentage of petroleum
products imported to the United States for certain years. (a) Graph the points
corresponding to the data in the table and connect the consecutive points with line
segments. (b) Use InterpolatingPolynomial to find a function which
approximates the data in the table. (c) Find a fourth degree polynomial
approximation of the data in the table. (d) Find a trigonometric approximation of

Year | Percent
1973 | 34.8105
1974 | 35.381
1975 | 35.8167
1976 | 40.6048
1977 | 47.0132
1978 | 42.4577
1979 | 43.1319
1980 |37.3182
1981 | 33.6343
1982 | 28.0988
1983 | 28.3107
1984 | 29.9822
1985 | 27.2542
1986 | 33.407
1987 | 35.4875
1988 | 38.1126
1989 | 41.57
1990 | 42.1533
1991 | 39.5108

Source: The World Almanac and Book of Facts, 1993.
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SOLUTION: We begin by defining data to be the set of ordered pairs represented
in the table: the x-coordinate of each point represents the number of years past
1900 and the y-coordinate represents the percentage of petroleum products
imported to the United States.

data={{73., 34.8105}, {74., 35.381}, {75., 35.8167}, {76., 40.6048},
(77., 47.0132), {78., 42.4577}, {79., 43.1319}, (80., 37.3182},
(81., 33.6343), {82., 28.0988), {83., 28.3107}, {(84., 29.9822},
(85., 27.2542}, {86., 33.407}, {87., 35.4875), (88., 38.1126},
{89., 41.57}, {90., 42.1533}, {91., 39.5108}};

Next, we use Graphics, Map, and Point to convert each of the ordered pairs in
data to points and declare the result to be a graphics object named ps. Note that
since PointSize[.03] isincluded within the Graphics command, the points
will be larger than they would be if ListPlot had been used to graph the points.
We also use ListPlot with the option PlotJoined->True to graph the set of
points data and connect consecutive points with line segments. Then we use
Show to display ps and 1pdata simultaneously. Note that in the result, the points
are easy to distinguish because of their larger size.
ps=Graphics([{PointSize[.03],Map[Point, data]}];
lpdata=ListPlot[data,PlotJoined->True,DisplayFunction->Identity];
Show[lpdata,ps,DisplayFunction->$DisplayFunction]

45

40

77 80 W 87 90

Next, we use InterpolatingPolynomial to find a polynomial approximation,
p, of the data in the table. Note that the result is lengthy, so Short is used to
display an abbreviated form of p. We then graph p and show the graph of p along
with the data in the table for the years corresponding to 1971 to 1993. Although the
interpolating polynomial agrees with the data exactly, the interpolating
polynomial oscillates wildly.
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p=InterpolatingPolynomial [data,x];
Short[p, 3]

34.8105 + (0.5705 + (-0.0674 +
(0.747867 + <<1>>) (-75. + X)) (-74. + x})
(-73. + x)

plotp=Plot[p, {x,71,93},DisplayFunction->Identity];
Show[plotp, ps, PlotRange->{0,50},DisplayFunction->$DisplayFunction]

5
4
99
310

210

8-
.4

1j0

75 80 85 90

To find a polynomial which approximates the data but does not oscillate wildly,
we use Fit. Again, we graph the fit and display the graph of the fit and the data
simultaneously. In this case, the fit does not identically agree with the data and
does not oscillate wildly.

Clear{p]
p=Fit[data, {1,x,x"2,x"3,x"4},x]

2 3
-198884. + 9597.83 x - 173.196 x + 1.38539 x -

4
0.00414481 x

plotp=Plot([p, {x,71,93},DisplayFunction->Identity];
Show[plotp,ps,PlotRange->{0,50},DisplayFunction->$DisplayFunction]

50

75 80 85 90
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In addition to curve fitting with polynomials, Mathematica can also fit data with
trigonometric functions. In this case, we use Fit to find an approximation of the

. X X . .
data of the form p=c +¢,sinx+c, sin +¢,cosx+¢,C087 . As in the previous two

cases, we graph the fit and display the graph of the fit and the data
simultaneously.

Clear[p]
p=Fit[data, {1,Sin[x],Sin[x/2],Cos[x],Cos[x/2]},x]

X
35.4237 + 4.25768 Cos[-] - 0.941862 Cos[x] +
2

X
6.06609 Sin[-] + 0.0272062 Sin([x]
2

plotp=Plot[p, {x,71,93),DisplayFunction->Identity];
Show[plotp,ps,PlotRange->{0,50},DisplayFunction->$DisplayFunction}]

50,
40(\"/'\
[ )

30 <

20

10

75 80 85 90
|

Mathematica supplies several packages which can be used to fit data using different
techniques. We illustrate the command NonlinearFit in the following example.

EXAMPLE: The interest paid on the public debt of the United States of America
as a percentage of Federal expenditures for selected years is shown in the
following table. (a) Find a fifth degree polynomial approximation of the data in
ax+ax+a,

the table. (b) Find an approximation of the data of the form h(x)=-2"——2—2,
bx?+b,x+b,
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Interest Paid as a
Percentage of
Federal
Year Expenditures
1930 0
1940 10.5
1945 4.1
1950 13.4
1955 94
1960 10.0
1965 9.6
1970 99
1975 9.8
1980 12.7
1985 18.9
1990 211

Source: The World Almanac and Book of Facts, 1993

SOLUTION: Proceeding as in the previous example, we define data to be the set
of ordered pairs represented in the table: the x-coordinate of each point represents
the number of years past 1900 and the y-coordinate represents the interest paid on
the public debt of the Untied States as a percentage of Federal expenditures. We
also use Graphics, Map, and Point to convert each of the ordered pairs in data
to points and declare the result to be a graphics object named pts. Note that since
PointSize[.03] is included within the Graphics command, the points will be
larger than they would be if ListPlot had been used to graph the points.

Clear{data]

data={{30,0},{40,10.5},{45,4.1},(50,13.4},{55,9.4},
{60,10.0},{65,9.6},{70,9.9},(75,9.8},{80,12.7},
{85,18.9},{90,21.1}};

pts=Graphics{{PointSize[.03]),Map[Point,data]}];
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Next, we use Fit to find a fifth degree polynomial approximation of the data in
data. We graph the approximation and name the result p1 and then display both
pl and pts simultaneously, naming the result p2. Note that p2 is not displayed
since p1 is not displayed.

Clear[f]
f{x_}=Fit[data, {1,x,x"2,x"3,x"4,x"5},x]

2
30.8223 - 6.35418 x + 0.340698 x -~

3 4 -7 5
0.00726226 x + 0.0000681248 x - 2.32417 10 X

pl=Plot[f[x],{x,0,90},DisplayFunction->Identity];
p2=Show([pl,pts];

To find a nonlinear fit of the data, we use the command NonlinearFit which is
contained in the package NonlinearFit located in the Statistics folder (or
directory). Since NonlinearFit is not a built-in command, we first load the
package NonlinearFit and then use NonlinearFit to find values of 4, a,, a,, b,,

2+a,x+ . .
e S approximates the data in the table and name
bx?+b,x+b

3

by, and b, so that h(x)=
the resulting list vals.

<<Statistics NonLinearFit~
Clear(h]
vals=NonlinearFit[data,
(al x"“2+a2 x+a3)/(bl x"2+b2 x+b3),x,{al,a2,a3,bl,b2,b3}])

NonlinearFit::lmpnocon:
Warning: The values of the parameters given to
NonlinearFit do not appear to have converged.
The returned value may not be at the minimum.
{al -> -2.60692, a2 -> 476.384, a3 -> -11947.2,

bl -> -0.69463, b2 -> 93.2257, b3 -> -2312.4}

ax:+ax+a,
bx2+bx+b,
above, we graph the approximation and name the result p3 and then display both
p3 and pts simultaneously, naming the result p4. Last, we use GraphicsArray

to show both p2 and p4. In spite of the error messages obtained above, h appears
to approximate the data in the table relatively well.

We then substitute the values obtained in vals into A(x)= . As in the

h(x_]=(al x"2+a2 x+a3)/(bl x"2+b2 x+b3) /. vals;
p3=Plotfh[x], {x,0,90},DisplayFunction->Identity];
p4=Show([p3,pts];

Show|[GraphicsArray( {p2,p4}]1}
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Application: Introduction to Fourier Series

Many problems in applied mathematics are solved through the use of Fourier series.
Mathematica assists in the computation of these series in several ways. First, we restate the

following standard definitions.
The Fourier series of a periodic function f(x) with period 2L is the trigonometric series

o Zfnc{ (]

n=1

)dx and b, =—J.f(x)sm(n:xjdx.

nux\| .
1s
=)

where 4 =—Jf(x)dx a =~If(x)cos(

The kth term of the Fourier series 4, + E{an cos(%) +b, sin(
n=1

(knx) . (knx)
a, cos| —— |+b, sin .
L L

The kth partial sum of the Fourier series a, + Z[an cos(-n:—x) +b, sin(%fﬂ is

n=1

B

It is a well-known theorem that if f(x) is a periodic function with period 2L and f(x) is
continuous on [-L,L] except at finitely many points, then at each point x the Fourier series
corresponding to f converges and

a0+2-a cos(nn J+b (n‘n:x)] lef(y)+lef(y).
L L

2

n=1 L

In fact, if the series iﬂa‘ +[p,|) converges, then the Fourier series

n=1

oSl )]

n=1 L

converges uniformly on R.
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1if0<x<1
EXAMPLE: Let f(x)={-xif~1<x<0. Compute and graph the first few partial

flx=2)ifx>1

sums of the Fourier series for f.

SOLUTION: We begin by clearing all prior definitions of f. We then define the
piecewise function f and graph f on the interval [-1,5].

Clear[f]

f[x_]:=1 /; O<=x<=1

fx_]:=-x /; -1<=x<0

fix_):=£[x-2] /; x>1

graphf=Plot([f[x],{x,-1,5}])

1

0.8
.6

-1 1 2 3 4 5
The Fourier series coefficients are computed with the integral formulas given

earlier. Executing the commands

L=1;
a[0]=1/(2L) NIntegrate[f(x],{Xx,-L,L}]

L
defines L to be 1 and a[ 0] to be an approximation of the integral % I flx)dx.
-1

Executing the commands

a[n_]:=1/L NIntegrate[f[x] Cos[n Pi x/LJ],{x,-L,L}]
b[n_]:=1/L NIntegrate[f[x] Sin[n Pi x/L],{x,-L,L}]
. . . . 1t nmx
defines a[n] to be an approximation of the integral T f(x)cos - dx and b[n]
-L
. . . 1t . ( nmx
to be an approximation of the integral T f(x)sin e dx .
-L
Clear{a,b,fs,L]
L=1;
a[0]1=1/(2L) NIntegrate[f[x],{x,-L,L}]

0.75

a[n_]:=1/L NIntegrate[f[x] Cos[n*Pi x/L],{x,-L,L}]
bfn_]:=1/L NIntegrate[f[x] Sin[n*Pi x/L], {x,-L,L}]
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A table containing the coefficients a[i] and b[i] fori=1, 2, 3,.., 10 is created
and named coeffs. Several error messages are generated because of the
discontinuities but the resulting approximations are satisfactory for our purposes.
The elements in the first column of the table represent the aj's and the second
column represents the b;'s . Notice how the elements of the table are extracted
using double brackets with coeffs.

coeffs=Table([{a[i1],b[i]},{1,2,10}];

NIntegrate::ncvb:
NIntegrate failed to converge to
prescribed accuracy after 7
recursive bisections in x near x = -1..
NIntegrate::ncvb:
NIntegrate failed to converge to
prescribed accuracy after 7

recursive bisections in x near x = -1..
TableForm[coeffs]
-0.202642 0.31831
=20
1.01644 10 0.159155
-0.0225158 0.106103
=20
2.95932 10 0.0795775
-0.00810569 0.063662
-20
-3.17637 10 0.0530516
-0.00413556 0.0454873
=20
5.84453 10 0.0397887
-0.203173 0.0357218
-20
7.48565 10 0.031831

The first element of the list is extracted with coeffs[[1]]:
coeffs{[1]]
{-0.202642, 0.31831}

The first element of the second element of coeffs and the second element of the
third element of coeffs are extracted with coeffs[[2,1]] and
coeffs[[3,2]], respectively.

coeffs[[2,1]]

-20
1.01644 10

coeffs[[3,2]]

0.106103
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Once the coefficients are calculated, the nth partial sum of the Fourier series is
obtained with Sum. The kth term of the Fourier series, ay cos(knx) + b sin(knx), is
defined in fs below. Hence, the nth partial sum of the series is given by

gl

a0+zak cos(kmx)+b, sin(km):a[0]+2fs[k,x]

k=1 k=1

which is defined in fourier using Sum. We illustrate the use of fourier by
finding fourier[2,x] and fourier|3,x].

fs[k_,x_):=coeffs([k,1]] Cos[k Pi x]+coeffs[[k,2]] Sin[k Pi x]
fourierfn_,x_]:=a[0]+Sum[£fs[k,x],{k,1,n}]

fourier[2,x]
0.75 - 0.202642 Cos[Pi x] +

-20
1.01644 10 Cos[2 Pi x] +

0.31831 Sin[Pi x] +
0.159155 Sin[2 Pi x]
fourier[3,x]
0.75 - 0.202642 Cos[Pi x] +

=20
1.01644 10 Cos{2 Pi x] -

0.0225158 Cos[3 Pi x] +
0.31831 Sin{Pi x] +
0.159155 Sin[2 Pi x] +
0.106103 Sin[3 Pi x)

To see how the Fourier series approximates the periodic function, we plot the
function simultaneously with the Fourier approximation for n=2 and n=5. The
results are displayed together using GraphicsArray.

graphtwo=Plot[fourier{2,x],{x,~-1,5},PlotStyle->GrayLevel[0.2],
DisplayFunction->Identity];

bothtwo=Show|[graphtwo,graphf];

graphfive=Plot[fourier[5,x},{x,~1,5},PlotStyle->GrayLevel[0.2],
DisplayFunction->Identity];

bothfive=show[graphfive,graphf];

Show[GraphicsArray|[ {bothtwo,bothfive}]]
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The package FourierTransform in the Calculus folder (or directory) contains several
commands, such as FourierTrigSeries, FourierSinSeriesCoefficient,
FourierCosSeriesCoefficient, and NFourierTrigSeries, which can be used to

compute exact or approximate Fourier series of some functions.

Application: The One-Dimensional
Heat Equation

A typical problem in applied mathematics which involves the use of Fourier series is that
of the one-dimensional heat equation. This initial value problem which describes the
temperature in a uniform rod with insulated surface is given by:

1. k%=%,0<x<a,t>0;

ii.  u(0,£)=Tp, t0;

iii. u(a,t)=T,, t>0; and

iv. u(x,0)=f(x), O<x<a.

The solution to the problem is

u(x,t)=T, + %x(Ta - TO)+ ib” sin(/lnx)e*%zxkf

n=1 ,
ovix)

where 4 =% and b =EJ.( f(x)—v(x))sin(n—nx)dx, and is obtained through separation of
a a a
0

variables techniques. The coefficient by in the solution, u(x,t), is the Fourier series
coefficient by, of the function f(x)-v(x), where v(x) is the steady-state temperature.

EXAMPLE: Consider the heat equation with k=1 and initial temperature
distribution f(x)=—(x —1)cos(nx). The steady-state temperature for this problem is

v(x)=1-x, and the eigenvalue, Ay, is given by % Approximate the solution u(x,t)

using these conditions.
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SOLUTION: The function f is defined and plotted below. Also, the steady-state
temperature, v(x), and the eigenvalue are defined. Finally, Integrate is used to
define a function which will be used to calculate the coefficients of the solution.

Clear([f]
f[x_1:=-(x-1) Cos{Pi x]
Plot[f[x],{x,0,4}]

2

1

1 \\\il// 3 4
-1

-2

-3

vix_]:=1-x
lambda[n_]:=n Pi/4
b[n_]:=b[n]=Integrate[ (f[x]-v[x])*Sin[n Pi x/4],{x,0,4}]

Notice that b[n] is defined using b[n_]:=b[n]=... so that Mathematica
"remembers" the values of b[n} computed and thus avoids recomputing
previously computed values. In the following table, we compute exact and
approximate valuesof b[1], ..., b[10].

Table({n,b[n],b{n]//N},{n,1,10}]//TableForm

1 15 Pi 2.71624

2 3 Pi -3.39531

3 21 Pi 1.94017

-3
4 Pi -0.95493
-128
5 45 Pi -0.905415
32
6 15 Pi 0.679061
-128

7 231 Pi -0.17638
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8 3 Pi 0.212207

9 585 Pi -0.0696473

10 105 Pi 0.0970087

Let S =b, sin(lmx)e~i%1'. Then, the desired solution u(x,t) is given by

u(x, t)=v(x)+ 25

m=1

m

Let u(x,t,n):v(x)+25m. Notice that u(x,tn)=u(x,t,n-1)+S,. Consequently,
m=1

approximations of the solution to the heat equation are obtained recursively taking
advantage of Mathematica's ability to compute recursively. The solution is first
defined forn =1by u[x,t, 1]. Subsequent partial sums, uf{x, t,n], are obtained

by adding the nth term of the series, S =b sin(A x)e-%, tou[x,t,n=-1].
y g =0, .

u[x_,t_,1]:=v[x]+b[1] Sin[lambda[l]*x]Exp[-lambda[l]"2 t]
ul{x_,t_,n_]:=u[x,t,n-1]+b[n]*Sin[lambda[n] x] Exp[-lambda[n]”2 t]

By defining the solution in this manner a table can be created which includes the
partial sums of the solution. In the following table, we compute the first, fourth,
and seventh partial sums of the solution to the problem.

Table[u[x,t,n],{n,1,7,3}]//TableForm

Pi x
128 Sin[----]
4
] = X + e
2
(Pi t)/16
15 E Pi
Pi x Pi x
128 Sin[----] 32 Sin[----)
4 2
l = X 4 mcmrmmmmmrme e e e +
2 2
(Pi t)/16 (Pi t)/4
15 E Pi 3 E P1i
3 Pi x
128 sin[-——--- ]
4 3 Sin{Pi x]
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(9 Pi t)/16 Pi t
21 E Pi E Pi
Pi x Pi x
128 Sin[----] 32 sin[~---]
4 2
l] - X + et & e +
2 2
(Pi t)/16 (PL t)/4
15 E Pi 3 E Pi
3 Pi x
128 Sin[—=----- ]
4 3 Sin[Pi x]
2 2
(9 Pi t)/16 Pi t
21 E Pi E Pi
5 P1 x 3 Pix
128 sin[--——-- ] 32 Ssin[--=---- ]
4 2
____________________ d e, —— ————— -
2 2
(25 Pi t)/16 (9 Pi t)/4
45 E Pi 15 E P1i
7 Pi x
128 Sinf---=-- ]
4
2
(49 Pi t)/16
231 E Pi

To generate graphics which can be animated, we use a Do loop. The 10th partial
sum of the solution is plotted below for t = 0 to t = 3 using a step-size in t of 3/20.
Remember that u[x,t,n] is determined with a Table command. Therefore,
Evaluate must be used in the Do command below so that Mathematica first
computes the solution u and then evaluates u at the particular values of x.
Otherwise, u is recalculated for each value of x. The plots of the solution obtained
above can be animated as indicated in the following window.
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[J===== One-Dimensional Heat Equation

(Local) inft 7f-=

Do[Plot[Evaluate[u[x.t.10]1].{x.0.4}.
PlotRange->{-4.7}].{t.0.3,6/20}]

ol

~2

-4

EERW&A100% va[ T
x

Do[Plot[Evaluate[u[x,t,10}]},{x,0,4},PlotRange->{-4,7}],{t,0,3,6/20}]

Alternatively, we may generate several graphics and display the resulting set of
graphics as a GraphicsArray. Below, we plot the 10th partial sum of the solution
for t = 0 to t = 3 using a step-size in t of 3/8. The resulting nine graphs are named
graphs which are then partitioned into three element subsets with Partition
and named toshow. We then use Show and GraphicsArray to display toshow.

graphs=Table[Plot[Evaluate(u[x,t,10]],{x,0,4},Ticks->None,
PlotRange->{-4,6.5},DisplayFunction->Identity],{t,0,3,3/8}];

toshow=Partition[graphs,3];

Show[GraphicsArray[toshow] ]

S
™ =
—ihq_\_‘_‘_‘\




CHAPIE

Nested Lists:
Matrices and Vectors

Chapter 5 discusses operations on matrices and vectors, including vector calculus and
systems of equations. Several linear programming examples are discussed. Applications
discussed in this chapter include linear programming, and vector calculus.

295
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5.1 Nested Lists: Introduction
to Matrices, Vectors, and
Matrix Operations

Defining Nested Lists: Matrices and Vectors

Matrix algebra can be performed with Mathematica. Before introducing the operations
involved in matrix algebra, the method by which a matrix is entered must first be
discussed. In Mathematica, a matrix is simply a list of lists where each list represents a row
of the matrix. Therefore, the m x n matrix

n G Ay Ay,

I
——
R}
~—
Il
=
=
=

n MmO 2,
m) m2 m3 o mn

is entered in the following manner:

A={{a[1’1]’a[1’2]’""a[l'n]}l{a[2’1]la[2’2]l'"’a[zfn]}l"'l
{a[m,1]),a[m,2],...,a[m,n]}}.

4

For example, to use Mathematica to define m to be the matrix ( 1 Z”] enter the command

21 22

m={{afl,1],a[1,2]},{al2,1],a[2,2]}},

wherea([1,1]1=a,,a[1,2]=4,,a[2,1]=4,,and a[2,2]=a,,.

Another way to create a matrix is to use the command Array. The command
m=Array[a, {2,2}] produces the same result as above. Once a matrix has been entered,
it can be placed in the usual form (with rows and columns) using the command
MatrixForm[A].

The following examples illustrate the definition of a 3 x 3 matrix and of a 2 x 4 matrix.

31 1132 a33
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SOLUTION: In this case, both Table{a[i,3j],{i,1,3},{j,1,3}] and
Array([a, {3,3}] produce the same result. Below, we use each to define
matrixa to be the matrix

The commands MatrixForm or TableFormare used to display the results in
traditional matrix form.

Clear[a,b,matrixa,matrixb]
matrixa=Table[a[i,j],{i,1,3},{j,1,3}]

{{all, 1], afl, 2], a(l, 31},
{a{2, 11, a[2, 2], a[2, 31},
{a[3, 1], a[3, 2], a[3, 3]}}
MatrixForm[matrixa]
a[l, 1} afl, 2] a[l, 3]
a[2, 1] af[2, 2] a[2, 3]
a[3, 1] al[3, 2] a[3, 3]
matrixa=Array([a, {3,3}]
{{a[1, 1), a1, 2j, arl, 31},
{a[(2, 1], al2, 2], a[2, 3]},
{a[3, 1], a[3, 2], a[3, 3]}}
MatrixForm[matrixa]
a[l, 1) afl, 2] a[l, 3]
a(2, 1] al[2, 2] a[2, 3}
al(3, 1] a(3, 2] af3, 3]

We may also use Mathematica to define non-square matrices as indicated below.
The same results would have been obtained by entering
Table[b[i,j],{i,1,2},{j,1,4}].

matrixb=Array[b, {2,4}]
{{b[1, 1], b{1l, 21, b1, 3], b[l, 4]},
{b[2, 1], b[2, 2], b[2, 3], b[2, 4]}}
MatrixForm[matrixb]

b[l, 1] bf1l, 21 b[l, 3] b[l, 4]
b[2, 11 b2, 21 b[2, 3] b2, 437 N



298 5 Nested Lists: Matrices and Vectors

More generally the commands Table(f([i,]j],{i,imax}, {j,jmax}] and
Array[f, {imax, jmax}] yield nested lists corresponding to the imax X jmax matrix

o f2) e f(Limax)
N ) - e
f(imax,1) f(imé:lx, 2) - f(imax.,jmax)

Table [f[i,j],{i,imin,imax,istep}, {j,jmin, jmax, jstep}] calculates the
list of lists

{{f[imin, jmin], f[imin, jmin+jstep]),...,
f{imin, jmax]}, {f[imin+istep, jmin],...,f[imin+istep, jmax]}
seeer{f[imax, jmin], ..., f[imax, jmax]}},

and the command

Table(f[i,]j,k,...],{i,imin,imax,istep}, {j,jmin, jmax, jstep},
{k,kmin, kmax,kstep},...]

calculates a nested list; the list associated with i is outermost. If istep is omitted, the
stepsizeis one.

EXAMPLE: Define C to be the 3 x 4 matrix (c”), where Cij, the entry in the ith row

and jth column of C, is the numerical value of cos(j2 -2)sin(i2 - j2).

SOLUTION: After clearing all prior definitions of c, if any, we define (i, ;) to be

the numerical value of c(i, j}= cos(j2 —i?)sin(i2 - j2) and then use Array to compute
the 3x4 matrix matrixc.

Clear[c,matrixc]
cli_,j_J=N[Cos[j"2-i"2]1*Sin[i"2-j"2]]

2 2
Cos[i - 1. j ]

2 2
Sin[i - 1. j ]

matrixc=Array[c,{3,4}]
{{0., 0.139708, 0.143952, 0.494016},
{-0.139708, 0., 0.272011, 0.452789},

{-0.143952, -0.272011, 0., -0.495304}}
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MatrixForm[matrixc]

0. 0.139708 0.143952 0.494016
-0.139708 0. 0.272011 0.452789
-0.143952 -0.272011 0. -0.495304

1 0 0
EXAMPLE: Define the matrix [0 1 OJ.
0 01

SOLUTION: The matrix
1 00
010
0 0 1

is the 3x3 identity matrix. The command IdentityMatrix[n] returns the
nxn identity matrix.

IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, O, 1}}

EXAMPLE: Generate a 2x3 where the entries are randomly chosen integers
between —4 and 4.

SOLUTION: Below, we use Table, Random, and Integer to generate the matrix.
If you enter the following command, your results will almost certainly be different

than the results shown here.

b=Table[Random[Integer, {-4,4}]1,{2},{(3}];

MatrixForm(b]
-4 -2 -2
2 -1 -1

In Mathematica, a vector is a list of numbers and, thus, is entered in the same manner as
lists. For example, to use Mathematica to define the row vector vectorv tobe (v, v, v,)
enter vectorv={v[1],v[2],Vv[3]}. Similarly, to define the column vector vectorv to
be
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enter vectorv={v[1],v[2],v[3]}. Mathematica does not distinguish between row
and column vectors. Nevertheless, Mathematica performs computations with vectors and
matrices correctly as long as the computations are well-defined.

—4
EXAMPLE: Define w to be the vector [—5], vectorv to be the vector
2

(v, v, v, v,),and zerovec tobe the vector (0 0 0 0 0).

SOLUTION: To define w, we enter:
w={-4,-5,2}
{-4, -5, 2}
Similarly, to define vectorv, we enter:
vectorv=Array|[v, 4]
{vil], vi2], v[3], v(4]}

The same results as above would have been obtained by entering
Table[v[i],{i,1,4}]. Last to define zerovec, we enter:

zerovec=Table[0, {5}]

Extracting Elements of Matrices

For the 2 x 2 matrix m={{a[l,1],a[1,2]},{a[2,1],a[2,2}}} defined earlier,
m{[1]] yields the first element of matrix m which is the list {a[1,1],a[1,2]};
m[[2,1]] yields the first element of the second element of matrix m whichisa{2,1].In
general, if m is an m X n matrix, m[ [1,j]] yields the unique element in the ith row and
jth column. More specifically, m[ [i,3]] yields the jth part of the ith part of m.
Generally, 1ist[[i]] or Part[list,i] yields the ith part of 1ist; list[[i,j]]or
Part[list,i,j] yields the jth part of the ith part of 1ist, and so on.
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10 -6 -9
EXAMPLE: Define mb to be the matrix [ 6 -5 —7]. (a) Extract the third row of
-10 9 12

mb. (b) Extract the element in the first row and third column of mb. (c) Display mb
in traditional matrix form.

SOLUTION: We begin by defining mb. mb{ {i,j]] yields the (unique) number in
the ith row and jth column of mb. Observe how various components of mb (rows
and elements) can be extracted and how mb is placed in MatrixForm.

mb:{{lol-sl_g)l{61—57_7)1{-1079I12}}

{{101 '61 _9}1 {61 -5, '7}1 {_101 9! 12}}

MatrixForm[mb]
10 -6 -9
6 =5 -7
-10 9 12
mb{[3]]

{~10, 9, 12}
mb([[1,3]]

-9 [ |

In the previous example, we saw that the third row of mb is extracted withmb[[3]].
More generally, if m is a matrix, the ith row of m is extracted with m[ [ 1] ]. The command
Transpose[m] yields the transpose of the matrix m, obtained by interchanging the rows
and columns of m. We can use Transpose to extract a column from a matrix m by
extracting rows from the transpose. Namely, if m is a matrix, Transpose[m][[i]]
extracts the ith row from the transpose of m which is the same as the ith column of m.

0 =2 2
EXAMPLE: Extract the second and third columns from A if A= [—l 1 3].
2 41

SOLUTION: We first define matrixa and then use Transpose to compute the
transpose of matrixa, naming the result ta, and then displaying ta in
MatrixForm.
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matrixa:{{ol_zlz}l{_1111—3}I{2I_4I1}};

ta=Transpose[matrixa];

MatrixForm([ta]
0 -1 2
-2 1 -4
2 =3 1

Next, we extract the second column of matrixa using Transpose. Since we have
already defined ta to be the transpose of matrixa, entering ta[[2]] would
produce the same result.

Transpose[matrixa][[2]]
{_21 ll _4}

To extract the third column, we take advantage of the fact that we have
already defined ta to be the transpose of matrixa. Entering
Transpose[matrixa][[3]] would produce the same result.

ta[[3])

{21 —31 1}
]

Once a matrix or array has been defined, we may use it in subsequent calculations.

EXAMPLE: The following table contains approximations of the first eight zeros
for the Bessel functions of the first kind, J (x), of order n=0, 1, 2, ..., 6. (a) List
approximations of the first eight zeros of the Bessel function of the first kind of
order 1. (b) What is an approximation of the fourth zero of the Bessel function of
the first kind of order 2 and an approximation of the third zero of the Bessel
function of the first kind of order 2? (c) Define a function alpha which, given n
and m, returns an approximation of the mth zero of the Bessel function of the first
kind of order n. (d) Use alpha to obtain an approximation of the third zero of the
Bessel function of the first kind of order 0 and the third zero of the Bessel function
of the first kind of order 5.
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| 2 3 4 5 6 7 8

Jo(x) 2.4048 | 5.5201 | 8.6537 | 11.792 | 14.931 | 18.071 | 21.212 | 24.352

J,(x) 3.8317 | 7.0156 | 10.173 | 13.324 | 16.471 | 19.616 | 22.760 | 25.904

I, {x) 51356 | 8.4172 [ 11.620 | 14.796 | 17.960 | 21.117 | 24.270 | 27.421

J.(x) 6.3802 | 9.7610 | 13.015 | 16.223 | 19.409 | 22.583 | 25.748 | 28.908

], (%) 7.5883 | 11.065 | 14.373 | 17.616 | 20.827 | 24.019 | 27.199 | 30.371

Jo(x) 87715 | 12.339 | 15.700 | 18.980 | 22.218 | 25.430 | 28.627 | 31.812

J(x) 9.9361 | 13.589 | 17.004 | 20.321 | 23.586 | 26.820 { 30.034 | 33.233

SOLUTION: We begin by defining zeros to be the array of numbers in the table
above.

zeros={{2.4048,5.5201,8.6537,11.792,14.931,18.071,21.212,24.352},
{3.8317,7.0156,10.173,13.324,16.471,19.616,22.760,25.904},
{5.1356,8.4172,11.620,14.796,17.960,21.117,24.270,27.421},
{6.3802,9.7610,13.015,16.223,19.409,22.583,25.748,28.908},
{7.5883,11.065,14.373,17.616,20.827,24.019,27.199,30.371),
{8.7715,12.339,15.700,18.980,22.218,25.430,28.627,31.812},
{9.9361,13.589,17.004,20.321,23.586,26.820,30.034,33.233}};

The second element of zeros, corresponding to approximations of the first eight
zeros of the Bessel function of the first kind, J{(x), is extracted with zeros[[2]].

zeros([[2]]
{3.8317, 7.0156, 10.173, 13.324, 16.471, 19.616, 22.76, 25.904}

An approximation of the fourth zero of the Bessel function of the first kind of
order 2 is the fourth element of the third element of zeros.

zeros[[3,4]]
14.796

On the other hand, the third zero of the Bessel function of the first kind of order 3
is the third element of the fourth element of zeros, extracted below with Part.
The same result would be obtained by entering zeros[[4,3]].

Part[zeros,4,3]

13.015
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Below we define the function alpha. Given n and m, alpha[n,m] returns an
approximation of the mth zero of the Bessel function of the first kind of order n.
We use alpha to obtain an approximation of the third zero of the Bessel function
of the first kind of order 0 and the third zero of the Bessel function of the first kind

of order 5.

alpha[n_,m_]:=zeros[[n+l,m]]
alpha([0,3]

8.6537
alpha[5,3]

15.7

Basic Computations with
Matrices and Vectors

Mathematica performs all of the usual operations on matrices. Matrix addition (A+B),
scalar multiplication (kA) , matrix multiplication, when defined, (A.B), and combinations
of these operations are all possible. The transpose of A is obtained by interchanging the
rows and columns of A and is found with the built-in command Transpose[A]. IfAis
a square matrix, the determinant of A is obtained with Det[A].

If A and B are n x n matrices satisfying AB = BA = I, then B is called the inverse of A
and is denoted by A~ The inverse of a matrix A, provided it exists, is found with the
command Inverse[A].

3 4 5
EXAMPLE: Define ma to be the matrix (8 0 —3] and mb to be the matrix
5 2 1
10 -6 -9
6 —5 -7|. Compute (a) ma+mb; (b) mb—4ma; (c) the inverse of maemb; (d) the
-10 9 12
3 4 5 3 4 5
transpose of (ma—2mb)emb;and (e) det{8 0 -3|=[8 0 -3
5 2 1 5 2 1

SOLUTION: As described above, we enter ma and mb as nested lists where each
element corresponds to a row of the matrix:

ma={{3,-4,5},{8,0,-3},{5,2,1}};
mb:{{lol_sl-g}l{GI_SI-7}I{-1019112})
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Entering

ma+mb//TableForm

13 -10 -4
14 -5 -10
-5 11 13

adds matrix ma to mb and expresses the result in traditional matrix form. Entering

mb-4 ma//TableForm

-2 10 -29
-26 -5 5
-30 1 8

subtracts four times matrix ma from mb and expresses the result in traditional
matrix form. Entering

Inverse[ma.mb]//TableForm

59 53 167
--- - =)
380 190 380
223 92 979
“(===)  =(--) -
570 95 570
49 18 187
--- -- -(==-)
114 19 114

computes the inverse of maemb. Similarly, entering
Transpose[ (ma-2 mb).mb]//TableForm
-352  -90 384
269 73 =277
373 98 -389
computes the transpose of (ma—-2mb)emb and entering
Det[ma]
190
computes the determinant of ma. B

As indicated in the previous example, matrix products, when defined, are computed
with .. Note that . is also used to compute the dot product of two vectors, when defined.
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1 5 5 4 L7
EXAMPLE: Compute AeB and BeA if A=|-3 5 3 -2jand B=|, |
4 4 2 -3 53

SOLUTION: Since A is a 3 x4 matrix and Bisa4 x 2matrix, AeB is defined and
is a 3x2 matrix. Below we first define matrixa and matrixb, then compute the
product, naming the result ab, and display ab inMatrixForm.

matrixa={{-1, -5, -5, -4}, {-3, 5, 3, -2}, {-4, 4, 2, -3}};
matrixb={{1, -2}, {-4, 3}, {4, -4}, {-5, -3}};
ab=matrixa.matrixb;

MatrixForm[ab]
19 19
-1 15
3 21

However, the matrix product Be A is not defined and Mathematica produces error
messages when we attempt to compute Be 4.

matrixb.matrixa

Dot::dotsh: Tensors {{1, -2}, {-4, 3}, {4, -4}, {-5, -3}} and
{{_ll _51 _51 '4}1 {'31 5! 3! '2}1 ('41 4! 2! ‘3}}
have incompatible shapes.

{{ll —2}1 {—41 3}! {41 '4}1 (_51 '3}} .

{{'11 _51 _51 -4}1 {‘31 51 3! '2}1 {_4r 41 21 _3)}
]

Computations with vectors are performed in the same way.

0 3
EXAMPLE: Let v= ‘;’ and w= 2 . (a) Calculate v—-2w and vew (b) Find a unit
2 -2

vector with same direction as v and a unit vector with the same direction as w.

SOLUTION: We begin by defining v and w and then compute v—2w and vew

v={0,5,1,2};
w=(3lol4l_2};

v-2w

{_61 51 _71 6}
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The norm of a vector

vl
v= 22 is Wﬂ=1Wf+v§+“.+v§=Vvov
v

If k is a scalar, the direction of kv is the same as the direction of v. Thus, if z is a
v
ol

=||_1""U“=1/ "—U” is a unit vector. Below, we define the function norm which,
v 0

nonzero vector, the vector has the same direction as v, and since

a
i
2 and . The results correspond to
i e

unit vectors with the same direction as v and w, respectively.

given v, computes [o|. We then compute

norm[v_]:=Sqrt[v.v]

uv=v/norm[v]

5 1 2
{0, Sgrt[-], ---—---- , Sqrt[--1}
6 sqrt[30]) 15
normfuv]
1
w/norm[w]
3 4 -2
{ _______ r 0! _______ ¢ TTTTETEEE }
Sqrt[29] Sqrt[(29] sqrtr29] W

Special attention must be given to the notation which must be used in taking the
product of a matrix with itself. The following example illustrates how Mathematica
interprets the expression (matrixb)~3. The command (matrixb) "3 cubes each
element of the matrix matrixb. The built-in command MatrixPower may be used to
compute powers of matrices.

-2 3 4 0
EXAMPLE: Let B= :% 2 —16 g . (a) Compute B2 and B:. (b) Cube each entry
4 8§ 11 -4

of B.
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SOLUTION: After defining B, we compute B2. The same results would have been
obtained by entering MatrixPower[B,2].

matrixb={{-2,3,4,0},{-2,0,1,3},{-1,4,-6,5},{4,8,11,-4}};
matrixb.matrixb//MatrixForm

-6 10 =29 29
15 22 19 -7
20 13 91 -38
=51 24 -86 95

Next, we use MatrixPower to compute B*. The same results would be obtained
by entering matrixb.matrixb.matrixb.

MatrixPower [matrixb,3]//MatrixForm

137 98 479 =231
=121 65 -109 189
-309 120 -871 646

520 263 1381 -738
Last, we cube each entry of B with ".

matrixb”3//MatrixForm

-8 27 64 0
-8 0 1 27
-1 64 -216 125
64 512 1331 -64

5.2 Linear Systems of Equations

Calculating Solutions of Linear Systems
of Equations
To solve the system of linear equations Ax=b, where A is the coefficient matrix, b is the

known vector, and x is the unknown vector, we proceed in the usual manner: if A1 exists,
then A1Ax=A-bso x=A"b

2 3 3)z) |4

3 0 2)«x 3
EXAMPLE: Solve the matrix equation | -3 2 2|y |[=]|-1|.
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SOLUTION: The solution is given by

x) (3 0 2)(3

yl=|-3 2 2| |-1].

z 2 -3 3)\4
We proceed by defining matrixa and b and then using Inverse to calculate
Inverse[matrixa].b, naming the resulting output {x,y,z}.

matrixa={{3,0,2},{-3,2,2},{2,-3,3}};
b={3l-ll4};

{x,Y,z}=Inverse[matrixa}.b

13 7 15
{-=1 =(==), ==}
23 23 23

We verify that the results are the desired solution by calculating
matrixa.{x,y,z}. Because the result is

)

we conclude that the solution to the system is

[x] [13/23]
y|=|-7/23]|.
> 115/23

matrixa.{x,y,z}

(31 -ll 4}
u

Mathematica offers several commands for solving systems of linear equations, however,
which do not depend on the computation of the inverse of A. These commands are
discussed in the following examples.

The command

Solve[ {eqnl,eqn2,...,eqnn}, {varl,var2,...,varn}]

solves an n X n system of linear equations (n equations and n unknown variables). Note
that both the equations as well as the variables are entered as lists. If one wishes to solve
for all variables that appear in a system, the command Solve[ {egnl,eqgn2,...eqgnn}]
attempts to solve eqnl, egn2, ..., egnn for all variables that appear in them. (Remember
that a double equals sign (==) must be used in each equation.)
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x-2y+z=—4
EXAMPLE: Solve the system of three equations | 3x+2y-z=8 forx, y, and z.
-x+3y+5z=0

SOLUTION: In this case, entering either
Solve[ {x-2y+z==-4,3x+2y==8,-x+3y+52==0}]
or
solve[ {x-2y+z,3x+2y,-x+3y+52}=={-4,8,0}]
yield the same result.
Solve|[ {x-2y+z==-4,3x+2y-z==8,-x+3y+52==0}, {x,y,2}]
{x > 1, vy ->2, z -> -1}}

Remark: Be sure to include the double equals signs between the left- and right-
hand sides of each equation.

Another way to solve systems of equations is based on the matrix form of the
system of equations, Ax=b. This system of equations is equivalent to the matrix

equation
1 -2 1\x -4
3 2 -1|y|=|8|.
-1 3 5)2 0

The matrix of coefficients in the previous example is entered as matrixa along
with the vector of right-hand side values vectorb . After defining the vector of
variables, vectorx, the system Ax=b is solved explicitly with the command
Solve.

matrixa={{1,-2,1},{3,2,-1},(-1,3,5}};
vectorb={-4,8,0};
vectorx={x1l,yl,zl}

{x1l, yl, zl}
Solve[matrixa.vectorx==vectorb,vectorx]

{(4x1 -> 1, yl -=> 2, zl -> -1}}
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In addition to using Solve to solve a system of linear equations, the command

LinearSolve[A,b]

calculates the solution x of the system Ax=b. LinearSolve generally solves a system
more quickly than does Solve.

2x—-4y+z=-1
EXAMPLE: Solve the system { 3x+y-2z=3. Verify that the results returned
-Sx+y—-2z=4

satisfy the system.

SOLUTION: To solve the system using Solve, we define eqgs to be the set of
three equations to be solved and vars to be the variables x, y, and z and then use
Solve to solve the set of equations eqgs for the variables in vars. The resulting
output is named sols.

eqs={2x-4y+z==-1,3x+y-2z2==3,-5x+y-2z2==4};
vars={x,y,2};
sols=Solve[eqgs,vars]

1 15 51
Hx => =(=), ¥y => (==}, 2 => -(--)}}
8 56 28

To verify that the results given in sols are the desired solutions, we replace each
occurrence of x, y, and z in eqs by the values found in sols. Since the results
indicate each of the three equations is satisfied, we conclude that the values given
in sols are the desired solutions.

eqs /. sols

{{True, True, True}}

To solve the system using LinearSolve, we note that the system is equivalent to

the matrix equation
2 4 1\x) (1
3 1 2|yl=|3],
5 1 =203 |4

define matrixa and vectorb, and use LinearSolve to solve this matrix
equation.
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matrixa={{2,-4,1},{3,1,-2},{-5,1,-2}};
vectorb={-1,3,4};
solvector=LinearSolve[matrixa,vectorb]

1 15 51

{=(=)r =(==)s =(--)}
8 56 28

To verify that the results are correct, we compute matrixa.solvector. Since the
result is

we conclude that the solution to the system is
x -1/8
y|=|-15/36].
z -51/28
matrixa.solvector

(-1, 3, 4y N

4x, +5x, ~5x, ~8x, —-2x, =5
7x,+2x,-10x, —x, —6x, =4
EXAMPLE: Solve the system of equations {6x, +2x, +10x, -10x, +7x,=-7.
-8x,—x,—4x,+3x,=5
8x, ~7x,—3x,+10x, +5x,=7

SOLUTION: We solve the system in two ways. First, we use Solve to solve the
system. Note that in this case, we enter the equations in the form
set of left-hand sides==set of right-hand sides.

Solve[{4x[1]+5x[2]-5x[3]-8x[4]-2x[5],7x[1]+2x[2]-10x[3]-x[4]-6x[5],
6x[1]+2x[2]+10x[3]-10x[4]+7x[5],-8x[1]-x[2]-4x[3]+3x[5],
8x[1]-7x[2]-3x[3)+10x[4]+5x[5])}==(5,-4,-7,5,7}]

38523 1245
(x(4] => ----- , X[1] => —-—-,
6626 6626
113174 7457
x[2] -> ----—- » X[3] => —(----),
9939 9939
49327
X[5] -> ---—- }}
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We also use LinearSolve after defining matrixa and t2. As expected, in each
case, the results are the same.

Clear{matrixa]

matrixa={{4,5,-5,-8,-2},¢(7,2,-10,-1,-6},{6,2,10,-10,7}%,
{-8,-1,-4,0,3},(8,-7,-3,10,5})};

t2={5,-4,-7,5,7};

LinearSolve[matrixa,t2]

1245 113174 7457 38523 49327

{-—==y ------ A e . - }
6626 9939 9939 6626 9939

Gauss-Jordan Elimination

Given the matrix equation Ax=b, where

1 alZ 1n x] b]
A= azl agz 2n X = xz b = b'z
: : ' ': . . and .

aml amZ umn ! xn ! bm !

the m X n matrix A is called the coefficient matrix for the matrix equation Ax=b and the
mx(n+1) matrix

a, 4, 4, b,
(Ale)=| % % % b
aml amZ . amn bm

is called the augmented matrix for the matrix equation.

We may enter the augmented matrix associated with a linear system of equations
directly or we can use the package MatrixManipulation contained in the LinearAlgebra
folder (or directory) to help us construct the augmented matrix.

2x+y-2z=4
EXAMPLE: Solve the system {2x — 4y — 2z = —4 using Gauss-Jordan elimination.
x—4y—-2z=3
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SOLUTION: The system is equivalent to the matrix equation

eIt

The augmented matrix associated with this system is

-2 1 =24
2 4 -2-4
1 -4 =23
which we construct using the command AppendRows contained in the
MatrixManipulation package. We proceed by loading the MatrixManipulation

package, defining matrixa and b, and then using AppendRows to construct the
augmented matrix which we name augm and display in MatrixForm.

<<LinearAlgebra MatrixManipulation”

matrixa={{-2,1,-2},{2,-4,-2},{1,-4,-2}};
b={{4},{-4},{3}};

augm=AppendRows [matrixa,b];
MatrixForm[augm]

-2 1 -2 4
2 -4 =2 -4
1 -4 -2 3

We calculate the solution by row-reducing augm using the built-in command
RowReduce.

RowReduce[augm] //MatrixForm

From the result above, we see that the solution is

i)

We verify this below by replacing each occurrence of x, y, and z on the left-hand
side of equation by -7, —4, and 3, respectively, and noting that the results are equal
to the right-hand side of each equation.
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Clear([x,y,z]
{-2x+y-2z,2x-4y-22z,x-4y-22} /. {x->-7,y->-4,z2->3}

{41 ‘41 3}

1 -3 4« -3
EXAMPLE: Solve the system [4 0 —l][y]z[?:] using Gauss-Jordan
2 -3 3)\z 4

elimination.

SOLUTION: The augmented matrix associated with this system is
1 -3 —4{-3

4 0 -3 |,
4

2 -3 3
defined below as aug. We then proceed as in the previous example by using
RowReduce to row-reduce the augmented matrix.

aug={{1,-3,-4,-3},{4,0,-1,3},{2,-3,-3,4}};
RowReduce{aug]

({ll OI OI 2}! {ol 11 OI ‘5}1 {Or or 11 5)}

From the results, we see that the desired solution is

)

which is verified below.

Clear([x,y,z]
eql=x-3y-4z+3==0;
eq2=4x-z-3==0;
eq3=2x-3y-3z-4==0;

x=2;y=-5;2=5;
{eql,eq2,eq3}

{True,True,True} MM
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5.3 Selected Topics from
Linear Algebra

Fundamental Subspaces Associated
with Matrices

Let A denote the n X m matrix

a, a4, - a4,
A= = 7
a a e a

nl n2 nm

The row space of A, row(A), is the spanning set of the rows of A; the column space of A,
col(A), is the spanning set of the columns of A. If A is any matrix, then the dimension of
the column space of A is equal to the dimension of the row space of A. The dimension of
the row space (column space) of a matrix A is called the rank of A. The nullspace of A is
the set of solutions to the system of equations Ax=0. The nullspace of A is a subspace and
its dimension is called the nullity of A. In the same manner as the rank of A is equal to the
number of non-zero rows in the row-echelon form of A, the nullity of A is equal to the
number of zero rows in the row-echelon form of A. Thus, if A is a square matrix, the sum
of the rank of A and the nullity of A is equal to the number of rows (columns) of A.
The built-in commands

NullSpace[m] returns a list of vectors which form a basis for the nullspace (or
kernel) of the matrix m; and
RowReduce[m] yields the reduced row echelon form of the matrix m.

Below, we show how Mathematica can be used to determine the column space, rank,
null space, and nullity of matrices.

-1 -1 2 0 -1
-2 2 0 0 =2

EXAMPLE: Place the matrix A=| 2 -1 =1 0 1 | in reduced row echelon
-1 -1 1 2 2

1 -2 2 =2 0
form. What is the rank of A? Find a basis for the nullspace of A.
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SOLUTION: We begin by defining the matrix matrixa. Then, RowReduce is
used to place matrixa in reduced row echelon form.

matrixa={{—1,—1,2,0,—1},(—2,2,0,0,-2),(2,-1,-1,0,1),{-1,-1,1,2,2),
{11‘2121'210}};

RowReduce[matrixa]//MatrixForm

1 0 0 -2 0
0 1 0 -2 0
0 0 1 -2 0
0 0 0 0 1
0 0 0 0 0

Since the row-reduced form of matrixa contains four nonzero rows, the rank of
A is 4 and thus the nullity is 1. We obtain a basis for the nullspace with
NullSpace.

NullSpace[matrixa}

|
1 22 1 =2
T 1 2 -2 2
EXAMPLE: Find a basis for the column spaceof B=| 1 0 0 2 -1|.
0 0 0 -2 0
-2 1 0 1 2

SOLUTION: A basis for the column space of B is the same as a basis for the row
space of the transpose of B. We begin by defining matrixb and then using
Transpose to compute the transpose of matrixb, naming the resulting output
tb.

matrixb:({ll'zlzllr'z}r{111l21‘2l'2}l(llororzl‘l}l{ororol'zro}l
(_zlllolllz}};
tb=Transpose[matrixb]
{{11 11 1! 01 '2}1 ‘('21 1! OI 01 l}l {21 2: 01 OI o}r
{ll —21 2, -2, 1)! {'21 _21 _ll 0! 2}}

Next, we use RowReduce to row reduce tb and name the result rrtb. A basis for
the column space consists of the first four elements of rrtb. We also use
Transpose to show that the first four elements of rrtb are the same as the first
four columns of the transpose of rrtb. Thus, the jth column of a matrix m can be
extracted from m with Transpose[m][[]j]].
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rrtb=RowReduce[tb];
Transpose[rrtb]//MatrixForm

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1
-(=) -
3 3 -2 -3 0

We extract the first four elements of rrtb with Take. The results correspond to a
basis for the column space of B.

Take[rrtb, 4]
1 1

({11 0! 01 Ol _(‘)}r {or 11 01 Ol _}I {OI 0! 1! Ol '2}1
3 3

(0, 0/ 0! ll '3}} II

0 2 21 1
0 -1 11 2/

EXAMPLE: Find a basis for the nullspace of C= [—1 3 33 -1

SOLUTION: After defining matrixc, we use NullSpace to calculate a basis for
the nullspace of C.

matrixc:{{olzl-zllll}l{_113I_3I3I_1}I{ol_llllllz}};
NullSpace[matrixc]

{{'151 11 Or _51 3}! {Or 1! 1/ 0! 0}}

The Gram-Schmidt Process

A set of vectors {v,,v,,...,v,} is orthonormal means that l]v.-”=1 for all values of i and
v,ev =0 for i#j. Given a set of linearly independent vectors {vl,vz,...,v"}, the set of all
linear combinations of the elements of {v,,v,,...,v,}, V=span{v,,v,,...,v,} is a vector space.
Note that if {u,u,..,u} is an orthonormal set and vespan{u,u, .., u}, then

v=(veu,)u,+(vew,)u,+...+(veu Ju . Thus, we may easily express v as a linear combination
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of the vectors in {ul, Uy, ..., u} Consequently, if we are given any vector space, V, it is
frequently convenient to be able to find an orthonormal basis of V. We may use the Gram-
Schmidt process to find an orthonormal basis of the vector space V =span{v,,v,,...,v,}.

We summarize the algorithm of the Gram-Schmidt Process below.

1. Let u1="&—;
Z]]

Y= pmj{ul}vz

2. Compute proj, v, = (ul ovz)ul, U, = PrOjj,\Vs s and let u, = . Then,

v, —proj{“l}v2
span{ul, uz} = span{v], vz} and span{ul, Uy Uyyonn,y v”} = span{vl, Uy Vysenny v”},‘
3. Generally, for 3<i<n, compute
proj{ull w2y 1)U = (ul v, )u1 + (u2 . vi)u2 +...+ (u,.f1 .7, )uH,

v, _proj{ul,uz,...,ui;l}vr

. Then,

v, and let u =

0, proj

w1}

span{ul, Uy, ..., u‘} = span{vl, Uy, v,} and

span{ul, Uy U Ty vn} = span{v], 0, Uy v"},‘ and

4. Since span{ul,uz,...,u”}zspan{vl,vz,...,v”} and {ul,uz,...,u”} is an

orthonormal set, {”1/ Uy, ..., u"} is an orthonormal basis of span{vl, Ve, v}
The Gram-Schmidt procedure is well-suited to computer arithmetic. The following code
performs each step of the Gram-Schmidt Process on a set of n linearly independent vectors

{v,,v,,....v,}. At the completion of each step of the procedure, gramschmidt[vecs]

prints the list of vectors corresponding to {u,,u,,...,u,v,_,...,v,} and returns the list of

i+17°7 T

vectors {ul,uz,...,un}. Note how comments are inserted into the code using (*...*).

gramschmidt[vecs_]:=
Module[ {n,proj,u,capw},
(*n represents the number of vectors in the
list vecs¥)

n=Length[vecs];
(*proj[v,capw] computes the projection of v
onto capw?*)
proj[v_,capw_]:=
Sum[ (capw{[i]].v)capw[[i]],{i,1,Length[capw]}];

ufl]=vecs([[1l]]/Sqrt[vecs[[1l]].vecs[[1]]];

capw={};
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ufi_J:=u[i]=
Module[ {stepone},
stepone=vecs([i]]-proj[vecs[[i]],capw];
stepone/Sqrt|[stepone.stepone]//Together
Vi

Do[
uli];
AppendTo[capw,u[i]];
Print[Join[capw,Drop[vecs, i]]]
+{i,1,n-1}1;

ufn];

AppendTo[capw,u[n]]
1

EXAMPLE: Use the Gram-Schmidt process to transform the basis

-2 0 1
{[—]J, (——21][ 3 } of %3 into an orthonormal basis.
-2 -2

SOLUTION: We proceed by defining v1, v2, and v3 to be the vectors in the basis

36

and using gramschmidt [ {v1,v2,v3}] to find an orthonormal basis.

vi={-2,-1,-2};
v2={0,-1,2};
v3=(1,3,~2};
gramschmidt[{vl,v2,v3}]

2 1 2
{{‘(‘)r _(_)I _<'))r (ol 'lr 2}1 (11 3! '2}}
3 3 3
2 1 2 1 2 2
{{-(=)y =(=)e =)}y {-(=)s =(=), =}, {1, 3, -2}}
3 3 3 3 3 3
2 1 2 1 2 2 2 2 1
{{-(=)r =(=)r =(=)}s {=(=)r =(=)r =} {~(=)) =+ -}}
3 3 3 3 3 3 3 3 3
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EXAMPLE: Compute an orthonormal basis for the subspace of ®* spanned by the

2 —4 1
vectors i , _13 , and i . Also, verify that the basis vectors are orthogonal and
1 2 -1

have norm 1.

SOLUTION: With gramschmidt below, we compute the orthonormal basis
vectors. The orthogonality of these vectors is then verified. Notice that Together
must be used to simplify the result in the case of oset[[2]].0set[[3]]. The
norm of each vector is then found to be 1.

oset=gramschmidt[{{2,4,4,1},{-4,1,-3,2},(1,4,4,-1}}]

{{-——-~—- 1 TTTEEEE g T [ Y, {_41 1, -3, 23,
Sqrt[37]) Sqrt(37] Sqrt[37] Sqrt[37)

2 4 4 1
{{ _______ r TTETTTEEES [ [ },
Sqrt[37]) Sqrt[37] Sqrt[37] Sqrt([37)
32 93 =55
{'15 Sqrt[ ----- 1y ——m————- g TTTTTEEEETS ’

16909 Sqrt[33818]1 Sqgrt[33818]

32
11 Sqgrtf{----- 1}, {1, 4, 4, -1}}
16909
2 4 4 1
{{ ________ ¢ TTETEEET § TTETE s ¢ TTETEETT }I
Sqrt[37] Sqrt[37] Sqrt[37] Sqgrt[37]
32 93 -55
{_15 Sqrt[ ————— 1y === ¢ TTTTTTEETTE 14

16909 Sqrt[33818] Sqrt[33818]

11 Sqrt[ """ 1}, {--———-- ¢ TTTTEEET e ’
16909 Sqrt[934565] Sqrt[934565])

Sqrt[934565] Sqrt{934565]

The three vectors are extracted with oset with oset[[1]],0set[[2]], and
oset[[31]].
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oset[[l]].oset[[2]]

oset[[1l])].oset[[3]]
0
0

oset[[2]].oset[[3]]//Together
0

Sqrtfoset[[1l]].0set[[1l]]]

Sqrt[oset[[2])].0oset[[2]]]

Sqrt[oset[[3]].0set[[3]1]]
1

1
1 0

The package Orthogonalization in the LinearAlgebra folder (or directory) contains
several useful commands which include

GramSchmidt[{v1,v2,...}] returns an orthonormal set of vectors given the
set of vectors {vl,vz,...}. Note that this command does not illustrate each step of
the Gram-Schmidt procedure as the gramschmidt function defined above;

: [
Normalize[v1l] returns "—1|— given the nonzero vector v; and
vl
. . L. . v, 0,
Projection[vl,v2] returns the projection of v, onto v,: proj,, v, = Il ”2 v,.
vz

Linear Transformations

A function T:RM">R™M is a linear transformation means that T satisfies the properties
T(u+v)=T(u)+T() and T{(cu)=cT(u) for all vectors u and v in K™ and all real numbers c. Let
T:RN"—-RM be a linear transformation and suppose T(e;)=v;, T(e;)=v,, ... T(e,)=v,, where
{e1, e, ... ,e,)} represents the standard basis of R™ and vy, vy, ..., v,, are (column) vectors in

RM. The associated matrix of T is the m X n matrix A=(v, v, - v,):
xl xl xl
if x= le , T(x)=T x:Z =Ax=(v, o, v,) *2
X x x

n n n

Moreover, if A is any mxn matrix, then A is the associated matrix of the linear
transformation defined by T(x)=Ax. In fact, a linear transformation T is completely
determined by its action on any basis.

The kernel of the linear transformation T, ker(T), is the set of all vectors x in R such
that T(x)=0: ker(T)={xe R™: T(x)=0}. The kernel of T is a subspace of R™. Since T(x)=Ax for
all x in RN, ker(T)={xe R™: T(x)=0}={xe R™: Ax=0} so the kernel of T is the same as the
nullspace of A.



5.3 Selected Topics from Linear Algebra 323

EXAMPLE: Let T:%5—>%* be the linear transformation defined by

0 3 -1 3 -1
T(x):(—3 3 -3 -3 —1}(. (a) Calculate a basis for the kernel of the linear
2

2 -1 1 2
4 1
2 2
transformation. (b) Determine which of the vectors | 0 | and | -1 is in the kernel
-2
-6 3

of T.

SOLUTION: We begin by defining matrixa to be the matrix

0 -3 -1 -3 -1
-3 3 3 -3 -1
2 2 -1 1 2

and then defining t. A basis for the kernel of T is the same as a basis for the

nullspace of
0 3 -1 3 -1
3 3 3 3 -1
2 2 -1 1 2

found with NullSpace.

Clear([t matrixa]
matrixa={{0,-3,-1,-3,-1},{-3,3,-3,-3,-1},{2,2,-1,1,2}};
t[x_]=matrixa.x;
NullSpace[matrixal]

{{—21 '11 ol OI 3}! {_61 —81 '151 13/ 0}}

Since

i
ACON&

is a linear combination of the vectors which form a basis for the kernel,
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is in the kernel while

-1
-2

is not. These results are verified below by evaluating t for each vector.
t[{4,2,0,0,-6}]
{0, 0, 0}
t[{1,2,-1,-2,3}]

{-2, 9, 11y B

Application: Rotations

Let xz(il) be a vector in % and 6 an angle. Then, there are numbers r and ¢ given by
2

x .
r=x2+x2 and ¢ =tan" x—’ so that x, =rcos¢ and x, =rsing. When we rotate

1
(%) _(rcos¢
x= x,) \rsing
through the angle 6, we obtain the vector

@[rcos(9+¢)),

rsin(6+¢)
as illustrated in the following diagram.

y-axis

A

7 cos(6+¢)
xX= (r sin(0+9)

=(2)-(56

‘*’ >

x-axis
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Using the trigonometric identities
sin(0+¢)=sinfcosptsingcosd and cos(6+¢)=cos@cos¢FsinOsing

we rewrite

e [rcos(()ﬂb)) B (rcosecosd)— rsinesinq))

rsin(9+¢) “\rsinBcos¢ +rsingcosO
_(cos@ —sin@)rcos¢)_ (cosf -—sin@Y x;
“\sin® cosO ) rsing ) \sinf cos8 | x, |
Thus, the vector x' is obtained from x by computing

cos8@ —sinf
sin@ cos8 | °

Generally, if 0 represents an angle, the linear transformation T: %2 — R defined by

_(cos@ —sin@
T(x)"(sinﬂ cosf )x
is called the rotation of %2 through the angle 6.
Below, we write code to rotate a polygon through an angle 6. The procedure rotate
uses a list of n points and the rotation matrix defined in r to produce a new list of points
which are joined using the Line graphics directive. Entering

Line[ {{x1,y1},{x2,y2},...,{%xn,yn}}]

represents the graphics primitive for a line in two dimensions which connects the points
listed in {{x1,y1},{x2,¥2},...,{xn,yn}}. Entering

Show[Graphics[Line[ {{x1,y1},{x2,y2},...,{xn,yn}}1]]

displays the line. This rotation can be determined for one value of t (which represents the
angle 8). However, a more interesting result is obtained by creating a list of rotations for a
sequence of angles and then displaying the graphics objects. This is done below for 8=0 to

0 =§ using increments of % Hence, a list of nine graphs is given for the square with
vertices (-1,1), (1,1), (1, -1), and (-1,-1).

r[theta_]={{Cos[theta],-Sin[theta]}, {Sin[theta],Cos[theta]}}
rotate[pts_,angle_]:=
Module( {newpts},
newpts=Table[r[angle] .pts[[i]]),{i,1,Length[pts]}};
newpts=AppendTo[newpts,newpts[{1]]1];
figure=Line[newpts];
Show([Graphics [figure] ,AspectRatio->1,
PlotRange->{{-1.5,1.5},{-1.5,1.5}},
DisplayFunction->Identity]
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graphs=Table[rotate[{{-1,1},{1,1},{1,-1},{-1,-1}},t],{t,0,Pi/2,Pi/16}]);
array=Partition[graphs,3];
Show[GraphicsArray[array]]

Eigenvalues and Eigenvectors

Let A be an n X n matrix with real components. Then the number A is called an eigenvalue
of A if there is a nonzero vector v which satisfies Av=Av. This nonzero vector is called the
eigenvector of A which corresponds to L. The characteristic matrix of A is the matrix A—
AL, where I represents the identity matrix. The eigenvalues are roots of the characteristic
equation |A —Al|=0 which may have at most n real distinct roots; it may also have
repeated roots and roots which are complex conjugates. The equation p(A)=|A - Al| is
called the characteristic polynomial. After obtaining the eigenvalues, the corresponding
eigenvectors are found by substituting the eigenvalues into the homogeneous system of
equations (A — AI)v =0 and solving for v. Mathematica contains several commands that
can be used to determine the characteristic matrix, characteristic polynomial, eigenvalues,
and eigenvectors of an n x n matrix. We begin by discussing commands for determining
the characteristic matrix and characteristic polynomial below.
The command

CharacteristicPolynomial[m,x] gives the characteristic polynomial of m as
a polynomial in x.

Eigenvalues[m] gives a list of the eigenvalues of the square matrix m;
Eigenvectors[m] gives a list of the eigenvectors of the square matrix m; and
Eigensystem[m] gives a list of the eigenvalues and corresponding eigenvectors
of the square matrix m.
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Several examples are shown below.

4 -3 4
EXAMPLE: If A=[ 1 -3 1], find the characteristic polynomial of A (with
-1 -1 5

respect to the variable x).

SOLUTI'ON: We begin by defining matrixa. We then compute the characteristic
polynomial by computing the determinant of A-xI, where I represents the 3 x3
identity matrix, with Det and then directly computing the characteristic
polynomial with CharacteristicPolynomial. Note that
IdentityMatrix[n] returns the n x nidentity matrix.

Clear[matrixal

matrixa={{4,-3,4},{1,-3,1},{-1,-1,5}};

Det[matrixa -x IdentityMatrix[3]]

2 3
-54 - x + 6 x -X

p=CharacteristicPolynomial[matrixa, x]

2 3
54 -x+6x -x B

5 2/3 1 -4/3 -4 -4/3
0 -1/6 -2 -1/6 7 23/6

EXAMPLE: (a) If A=| 4/ 2 '11/24 5(/)2 _11/24 _13 _31/ /42 , find the eigenvalues
0 -1 0 0 4 1

-1 1/6 -1 1/6 2 19/6

—

1 5 1
and eigenvectors of A. (b) If B=[—3 6 —6], find both exact and approximate
-4 1 7

values for the eigenvalues of B.

SOLUTION: In each case, we may calculate the eigenvalues by finding the
characteristic polynomial of each matrix and then finding the zeros of each
characteristic polynomial. For (a), we first define matrixa and then use
Eigenvalues and Eigenvectors to find the eigenvalues and eigenvectors.
matrixa={{5,2/3,1,-4/3,-4,-4/3},{0,-1/6,-2,-1/6,7,23/6},
(-1/2,-1/4,5/2,-1/4,1,3/4},{4,1/2,0,1/2,-3,-1/2},
{0,-1,0,0,4,1},{-1,1/6,-1,1/6,2,19/6}};
Eigenvalues[matrixa])

{2, 2, 2, 3, 3, 3}
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Eigenvectors[matrixa]
1 1
{{_(_)I -11 _(_)I ol _1I l)l {OI 0! 01 OI 0! 0)’1
2 2

{OI ol 0! OI 0l O}I {OI 1’ 2I _ll 1! o}l {Ol OI 0I 0’ ol O}I

For (b), we first define matrixb and then use Eigenvalues to find the exact

eigenvalues of the matrix.

matrixb={{1,5,1},{-3,6,-6},{-4,1,7}};
Eigenvalues[matrixb]

3 (3346 + 6 Sqrt[320457])

1/3
(3346 + 6 SqQrt([320457])

1/3
32
1/3
14 22 2 (1 + I Sqrt(31)
—_——  f e, m— e ———— e ———— -
3 1/3
3 (3346 + 6 Sqrt[320457])
1/3
(1 - I Sqrt([3]) (3346 + 6 Sqrt[320457])
1/3
6 2
1/3
14 22 2 (1 - I Sqrt[3])
e 4t e e -
3 1/3
3 (3346 + 6 Sqrt([320457])
1/3

(1 + I sqrt(3]) (3346 + 6 Sqrt[320457])
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From the lengthy results obtained above, we see that approximate values may be
more meaningful. To obtain numerical approximations, we use N as shown below.

Eigenvalues{N[matrixb]]

{8.68668, 2.65666 + 5.17562 I, 2.65666 - 5.17562 I}
]

The next example illustrates how Eigensystem can be used to find both the
eigenvalues and corresponding eigenvectors simultaneously.

EXAMPLE: Find the eigenvalues and corresponding eigenvectors of B= (g _42)

SOLUTION: Below, we define matrixb and then use Eigensystemto compute
the eigenvalues and corresponding eigenvectors and name the resulting output
eigsb.

matriXb=((ol4}l{21'2}};

eigsb=Eigensystem[matrixb]

{{'41 2}! {{'11 1}! (21 1}}}

The eigenvalues correspond to the first element of eigsb while the corresponding
eigenvectors are given in the second part of eigsb, extracted below with
eigsb[[1]] and eigsb[[2]], respectively.

eigsb[[1]]
eigsb[[2]]

{‘41 2}
{{_ll 1}1 {21 1}}

Finally, we verify that the numbers and vectors given in eigsb are eigenvalues

and corresponding eigenvectors. Below, we first verify that B(—ll)z—zl(_ll) and
. 2 2
then verify that B(l) = 2(1).

matrixb.eigsb[[2,1]]==eigsb{[1,1]] eigsb[[2,1]]
True
matrixb.eigsb[([{2,2]}]==eigsb[[1,2]] eigsb[[2,2]]

True
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Sometimes the matrix in which each element is numerically approximated is more
useful than the matrix in its original form. This is obtained below for the matrix matrixa
with N[matrixa].

3 -5 4
EXAMPLE: If A= [—5 6 3 ], approximate the eigenvalues and corresponding
-3 2 2

eigenvectors of A.

SOLUTION: We first define matrixa and then use Eigensystem and N to
approximate the eigenvalues and corresponding eigenvectors of the matrix,
naming the resulting output eigs.

matrixa={{3,-5,-4},{-5,6,3},{-3,2,-2}};
eigs=Eigensystem[N[matrixa])

{{10.9879, -3.77071, -0.217222},
{{-0.601654, 0.756787, 0.255509},

{0.505049, -0.00654559, 0.863066}),
{0.651499, 0.68315, -0.329933}}}

As in the previous example, the first part of eigs corresponds to the eigenvalues
of the matrix while the second part corresponds to the eigenvectors. These are
extracted from eigs with eigs[[1]] and eigs[[2]].

eigs[[1]]
{10.9879, -3.77071, -0.217222})
eigs[[2]]
{{-0.601654, 0.756787, 0.255509},
{0.505049, -0.00654559, 0.863066},
{0.651499, 0.68315, -0.329933}}

Below we verify that these results are indeed approximations of the eigenvalues
and corresponding eigenvectors of the matrix.

matrixa.eigs[[2,1]]
{-6.61094, 8.31552, 2.80752}
eigs[[1,1]] eigs[[2,1]]

{-6.61094, 8.31552, 2.80752}
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The results obtained above appear to be the same. However, when we verify that
the second element of each list is an eigenvalue and corresponding eigenvector,
our subtraction does not result in zero. In fact, entering

matrixa.eigs{[2,2]]}==eigs[[1,2]] eigs[[2,2]]
yields False.
verify2=matrixa.eigs[[2,2]]-eigs[[1,2]] eigs[[2,2]]

-19 -19 -19
{-4.33681 10 ; 9.723%94 10 , 4.33681 10 }

However, these numbers are very "small" and can assume that they are 0. We use
the command Chop to replace these "small" numbers by 0.

Chop[verify2]
{0, 0, 0}

Finally, we verify that the third element of each list is an eigenvalue and
corresponding eigenvector.

verify3=Chop[matrixa.eigs[[2,3]]-eigs[[1,3]] eigs[[2,3]]]

{0, 0, 0}

Jordan Canonical Form

I,j=i+1
Let Ny = (ni j) ={ ! represent a k x k matrix with indicated elements. The k x k
Jordan block matrix is given by B(A)=AI + Nx where A is a constant. Hence, these
matrices are defined by the following matrices.

0, otherwise

01 0..0 10 00
001 ..0 0 A0 -« 00
|l : and B(A)=AI+Ny = P

Ng=: : - ; ) 0 0 0 - A1
000 .. 1 000 -0

>

Hence, B(A) can be defined as
Ayi=]
B(A) =(by) = 1,j=i +1

0, otherwise *
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A Jordan matrix has the form

B ©¢ - 0

0 B}) - 0
I=1 o :

0 0 - BN

where the entries B; (7») ,j=1,2,...,n represent Jordan block matrices. Suppose that A is an

n x n matrix. Then there is an invertible n x n matrix C such that C"'AC=1J where Jisa
Jordan matrix with the eigenvalues of A as diagonal elements. The matrix J is called the
Jordan canonical form of A.

The command

JordanDecomposition[m] yields a list of matrices {s, j} such that
m=s.j.inverse[s] and j is the Jordan canonical form of the matrix m.

For a given matrix A, the unique monic polynomial p of least degree satisfying p(A)=0
is called the minimal polynomial of A. Let q denote the characteristic polynomial of A.
Since q(A)=0, it follows that p divides q. We can use the Jordan canonical form of a matrix
to determine its minimal polynomial. We illustrate the procedures necessary to accomplish
this in the example below.

29 -9
EXAMPLE: Find the Jordan canonical form, J5, of A= [0 8 —6}
09 -7

SOLUTION: After defining matrixa, we use JordanDecomposition to find
the Jordan canonical form of A and name the resulting output ja.

matrixa={{2,9,~-9},{0,8,-6},{0,9,-7}};
ja=JordanDecomposition[matrixa]

{{{3, 0, 1}, {2, 1, 0}, {3, 1, 0}},
((_ll 0, 0}! {OI 2! O}I {01 ol 2}})’

The Jordan matrix corresponds to the second element of ja extracted below with
ja[[2]] and displayed in MatrixForm.

ja[[2]]1//MatrixForm

-1 0 0
0 2 0
0 0 2
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We also verify that the matrices ja[[1]] and ja[[2]] satisfy
matrixa=ja[{l]].Jja[[2]].Inverse{ja[{1]]].

jaf[1l1].jaf(2)].Inverse[ja[[1]]]
{{21 91 ‘9}1 {01 8, ‘6}1 {OI 9! _7}}

Next, we use CharacteristicPolynomial to find the characteristic
polynomial of matrixa and then verify that matrixa satisfies its characteristic
polynomial.

p=CharacteristicPolynomial[matrixa, x]

2 3
-4 + 3 x -x

-4 IdentityMatrix[3]+3 MatrixPower[matrixa,2]-MatrixPower[matrixa,3]

{{0, o, 0}, {0, 0, 0}, {O, O, 0}}

From the Jordan form, we see that the minimal polynomial of A is (x +1)(x —2).
Below, we define the minimal polynomial to be q and then verify that matrixa
satisfies its minimal polynomial.

gq=Expand[ (x+1) (x-2)]

2
-2 - x + x

-2 IdentityMatrix[3]-matrixa+MatrixPower[matrixa,2]

{{0, 0, 0}, {0, 0, 0}, {0, O, 0}}

As expected, q divides p as verified below.

Cancel[p/q]
2 -x N
3 8 6 -1
EXAMPLE: Let A= _33 _23 _01 _33 . Find the characteristic and minimal
4 8 6 2
polynomials of A.

SOLUTION: As in the previous example, we first define matrixa and then use
JordanDecomposition to find the Jordan canonical form of A.

matrixa={{3,8,6,-1},{-3,2,0,3},{3,-3,-1,-3},{4,8,6,-2}};
ja=JordanDecomposition[matrixa]
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1 1
{{{31 —ll 1! 0}! {-ll -11 0! _}I (ol 21 OI _(_)}I {41 OI 1! 0}}!
2 2

{{-1, o, 0, 0}, {0, -1, 0, 0}, {0, O, 2, 1}, {0, O, O, 2}}}

The Jordan canonical form of A is the second element of ja, extracted below and
displayed in MatrixForm.

ja[[2]]1//MatrixForm

-1 0 0 0
0 -1 0 0
0 0 2 1
0 0 0 2

From the result above, we see that the minimal polynomial of A is (x+1)(x-2).
Below, we define g to be the minimal polynomial of A and then verify that

matrixa satisfies q.
q=Expand|[ (x-2)"2(x+1)]

2 3
4 - 3 x + x

4 IdentityMatrix[4]-3MatrixPower|[matrixa,2]+MatrixPower[matrixa,3]
{{OI 0’ ol 0}’ {0, 0’ ol 0}’ {OI OI OI O}I {OI 0’ OI 0}}

The characteristic polynomial is obtained below and named p. As expected, q
divides p, verified below with Cancel.

p=CharacteristicPolynomial[matrixa,x]

2 3 4
4 + 4x-3x -2x +x

Cancel[p/q]

1 + x

The QR Method

The conjugate transpose (or Hermitian adjoint matrix) of the m X n complex matrix A
which is denoted by A’ is the transpose of the complex conjugate of A. Symbolically, we

have A" = (Z )T. An n x n complex matrix A is unitary if A*=A-. Given a matrix A, there is

a unitary matrix Q and an upper triangular matrix R such that A=QR. The matrices Q and
R form the QR factorization of A.
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The command QRDecomposition[N[m]] determines the QR decomposition of the
matrix m by returning the list {q, r}, where q is an orthogonal matrix, r is an upper
triangular matrix and m=Transpose[q].r.

4 -1 1
EXAMPLE: Find the QR factorization of the matrix A= [—1 4 1).
1 1 4

SOLUTION: We define matrixa and then use QRDecomposition to find the
QR decomposition of matrixa, naming the resulting output qrm.

matrixa:{(4,—1,1},(—1,4,1),{1,1,4));
qrm=QRDecomposition[N[matrixa]]

{{{-0.942809, 0.235702, -0.235702},
{-0.142134, -0.92387, -0.355335},
{0.301511, 0.301511, -0.904534}},
{{-4.24264, 1.64992, -1.64992}, {0, -3.90868, -2.48734},
{0, 0, -3.01511}}}

The first matrix in gqrm is extracted with qrm[[1]] and the second with
qrm[[2]].

qrm[[1]]//MatrixForm

-0.942809 0.235702 -0.235702
-0.142134 -0.92387 -0.355335
0.301511 0.301511 -0.904534

qrm([[2]]//MatrixForm

-4.24264 1.64992 -1.64992
0 -3.90868 -2.48734
0 0 -3.01511

Below, we verify that the results returned are the QR Decomposition of A.
Transpose{qrm([[1]]}.qrm[[2]]//MatrixForm

4. -1. 1.
-1. 4. 1.
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One of the most efficient and most widely used methods for numerically calculating the
eigenvalues of a matrix is the QR Method. Given a matrix A, then there is a Hermitian
matrix Q and an upper triangular matrix R such that A = QR. If we define a sequence of
matrices

Al = A’ Am = QmRm’ Am+l = RQO’ m= 1’ 2' !
then the sequence {A} converges to a triangular matrix with the eigenvalues of A along

the diagonal or to a nearly triangular matrix from which the eigenvalues of A can be
calculated rather easily.

4 -1 1
EXAMPLE: Consider the 3 x 3 matrix Az(—l 4 1]. Approximate the
1 1 4

eigenvalues of A with the QR Method.

SOLUTION: We define the sequence a and qr recursively. Note that we define a
using the form a[n_]:=a[n]=... and gr using the form gr[n_]:=qr[n]=...
so that Mathematica "remembers” the values of a and qr computed, and thus
Mathematica avoids recomputing values previously computed. This is of
particular advantage when computing a[n] and gr[n] for large values of n.

matrixa:{{4l-1l1}l(_1l4l1}l(llll4});
a[l]=N[matrixa];

qr[1])=QRDecomposition[a[l]];

a{n_]:=a[n]=qr[n-1][[2]}-Transpose[qr(n-1][(1]1]];
gr[n_] :=gqr[n]=QRDecomposition[a[n]];

Below, we illustrate a[n] and gr[n] by computing qr[9] and a[10]. Note that
computing a[10] requires the computation of gr[9]. From the results, we
suspect that the eigenvalues of A are 5 and 2.

qr[9]

-7
{{{-1., 2.23173 10 , -0.000278046},

-8
{-8.92692 10 , -1., -0.000481589},

{0.000278046, 0.000481589, -1.}},

-6
{{-5., 1.56221 10 , -0.00194632}, {0, -5., -0.00337112},

{0, 0, -2.})}
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a[10]//MatrixForm

-7

5, -1.78538 10 0.000556091
-7

-1.78538 10 5. 0.000963178

0.000556091 0.000963178 2,

Next, we compute a[n] for n=5, 10, and 15, displaying the result in TableForm.
We obtain further evidence that the eigenvalues of A are 5 and 2.

Table[a[n]}//MatrixForm, {n,5,15,5}]//TableForm

4,99902 -0.001701 0.0542614
-0.001701  4.99706 0.0939219
0.0542614 0.0939219  2.00393
-7
5, -1.78538 10 0.000556091
-7
-1.78538 10 5. 0.000963178
0.000556091 0.000963178 2.
-11 -6
5. -1.87211 10 5.69438 10
-11 -6
-1.87211 10 5. 9.86295 10
-6 -6
5.69438 10 9.86295 10 2.

We verify that the eigenvalues of A are indeed 5 and 2 with Eigenvalues.

Eigenvalues[matrixa]

{2, 5, 5}

5.4 Maxima and Minima Using
Linear Programming

The Standard Form of a Linear
Programming Problem

We call the linear programming problem of the form: Minimize Z=cx +c,x,+...+¢cx,,

Sfunction

subject to the restrictions
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a.x, +a,x, +...+a x 2b

n"n

Ay Hlp¥y ot X, zb, ,and x,20, x,20,.., x 20

"

a, x,+a x,+..+a x 2b
m2™2

m1™] mn”n m

the standard form of the linear programming problem. The command

ConstrainedMin[ function, {inequalities}, {variables}]

solves the standard form of the linear programming problem.
Similarly, the command

ConstrainedMax [ function, {inequalities}, {variables}]

solves the linear programming problem: Maximize Z=cx, +c,x,+...+¢,x, subject to the

function

restrictions

ax ta,x,+..+a x 2b
DXy Xyt t i, X, 2b, ,and x, 20, x,20,.., x, 20.

n

a x +a x +..+a x 2b

miT1 m272 mn”n m

EXAMPLE: Maximize Z(x,x,x)=4x,-3x,+2x, subject to the constraints
3x,~5x,+2x, <60, x, —x,+2x,<10, x, +x,—x, <20, and x1, X2, x3 all non-negative.

SOLUTION: In order to solve a linear programming problem with Mathematica,
the variables {x1,x2,x3} and objective function z[x1,x2,x3] are first defined.
In an effort to limit the amount of typing required to complete the problem, the set
of inequalities is assigned the name inegs while the set of variables is called
vars. Notice that the symbol "<=", obtained by typing the "<" key and then the "="
key, represents "less than or equal to" and is used in inegs. Hence, the
maximization problem is solved with the command
ConstrainedMax[z[x1,x2,x3],ineqgs,vars].

Clear([x1,x2,x3,z,ineqs,vars]
vars={xl,x2,x3};
z[xl_,xZ_,x3_]=4x1—3x2+2x3

4 x1 - 3 x2 + 2 x3

ineqs={3x1-5x2+x3 <=60,x1-x2+2x3 <=10,x1+x2-x3 <=20};

ConstrainedMax([z[x1,x2,x3],ineqgs, vars]

{45, {x1 -> 15, x2 -> 5, x3 -> 0}}
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The solution gives the maximum value of z subject to the given constraints, as
well as the values of x1, x2, and, x3 which maximize z. Thus, we see that the
maximum value of z is 45 when x, =15, x,=5,and x,=0. 1

We demonstrate the use of ConstrainedMin in the example below.

EXAMPLE: Minimize Z(x,y,z)=4x-3y+2z subject to the constraints
3x-5y+2z<60, x-y+22z<10, x+y-2<20, and X, y, and z, all non-negative.

SOLUTION: After clearing all previously used names of functions and variable
values, the variables, objective function, and set of constraints for this problem are
defined and entered as they were in the first example. By using

ConstrainedMin[z[x1,x2,x3],ineqgs,vars)

the minimum value of the objective function is obtained as well as the variable
values which give this minimum.

Clear([x1,x2,x3,z,ineqs,vars]
vars={x1,x2,x3};
z[x1_,x2_ ,x3_]=4x1-3x2+2x3;

ineqs={3x1-5x2+x3 <= 60,x1-x2+2x3 <=10,x1+x2-x3 <=20};
ConstrainedMin[z[x1l,x2,x3],ineqs,vars]
{-90, {x1 -> 0, x2 -> 50, x3 -> 30}}

We conclude that the minimum value is -90 and occurs when x, =0, x, =50, and
x,=30.0

The Dual Problem

Given the standard form of the linear programming problem: Minimize Z = Zc/.xl. subject
j=1

to the constraints Zaﬁx}. 2b fori=1, 2, ..., mand x,20 for j=1, 2, ..., n, the dual problem
j=1
is: Maximize Y = Zbiy,. subject to the constraints zuuyi <¢; forj=1,2,..,nand y, >0 for

i=1 i=1

i=1, 2, ..., m. Similarly, for the problem: Maximize Z= Zc}xi subject to the constraints
j=1
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Z“i/xi <b, fori=1, 2, ..., m and x,20 for j=1, 2, ..., n, the dual problem is: Minimize

j=1

Y= Zbi% subject to the constraints Zauy, >, forj=1,2,..,nand y,20 fori=1,2, ..., m.
i=1 i=1

EXAMPLE: Maximize Z =6x+8y subject to the constraints 5x+2y <20, x+2y<10,
x20, and y>0. State the dual problem and find its solution.

SOLUTION: First, the original (primal) problem is solved. The objective function
for this problem is represented by zx. Finally, the set of inequalities for the primal
is defined to be ineqsx. Using the command

ConstrainedMax[zx,ineqgsx, {x[1},x[2]}],

the maximum value of zx is found to be 45.
Clear[2x,2yY,Xx,yY,valsx,valsy, ineqsx, inegsy]
2x=6x[1]+8x[2];
ineqsx={5x[1]+2x[2]<=20,x[1]+2x[2]<=10}

{5 x[1] + 2 x[2] <= 20,
X[1] + 2 x[2] <= 10}
ConstrainedMax[zx,ineqgsx, {x[1],x[2]}]

5 15
{45, {x[1] -> -, x[2] -> --}}
2 4
Because in this problem we have ¢ =6, ¢, =8, b =20, and b, =10, the dual problem
is: Minimize Z =20y, +10y, subject to the constraints 5y, +y, 26, 2y, +2y, 28, y, 20,
and y,20. The dual is solved in a similar fashion by defining the objective
function zy and the collection of inequalities inegsy. The minimum value
obtained by zy subject to the constraints inegsy is 45 which agrees with the
result of the primal and is found with

ConstrainedMin([zy,ineqgsy,{y[1l] , y{21}].

zy=20y[1]+10y[2];
ineqsy={5y[1]+y(2]>=6,2y[1]+2y[2]>=8}

{5 y[1] + y[2] >= 6,

2 y{1] + 2 y[2] >= 8}
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ConstrainedMin[zy,inegsy, {y[11,Y[2]}]

1 7
{45, {y[1] -> -, y[2] -> -}}
2 2

Of course, linear programming models can involve numerous variables. Consider the
following: Given the standard form linear programming problem: Minimize
Z=cx, +c,x,+...+¢,x,, subject to the restrictions

Sfunction

a,x, +a,x,+...+a,x 2b

a,X, +a,X, +....+a2"xn b,

T ,and x, 20, x,20,.., x, 20.

a x +a x +..+a x 2b
m272

ml1™1 mn”n m

Let
xl bl
X b
x=|"21, b=|"21, c=(cl c, - c”),
x b'

and A denote the m x n matrix

21 n T %

ml umz o amn

Then the standard form of the linear programming problem is equivalent to finding the
vector x that maximizes Z=cex subject to the restrictions Aex2b and x>0. The dual
problem of: Maximize the number Z=cex subject to the restrictions Aex>b and x>0 is:
Minimize the number Y =y b subject to the restrictions yeA<c and y=>0.

The command LinearProgramming[c,A,b] finds the vector x which minimizes the
quantity Z=c . x subject to the restrictions A.x > b and x > 0. This command does not yield
the minimum value of Z as did ConstrainedMin and ConstrainedMax and the value
must be determined from the resulting vector.

EXAMPLE: Maximize Z=5x -7x,+7x,+5x,+6x, subject to the
constraints 2x, +3x,+3x, +2x, +2x, 210, 6x, +5x, +4dx, +x, +4x, 230,
-3x,-2x,-3x,—4x,2-5, —-x,—-x,~x,2-10, and x, >0 fori=1, 2, 3, 4, and 5. State the
dual problem. What is its solution?
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SOLUTION: For this problem,

xl
x 10
’ 30
x=\x|, b=| 5|, ¢=(5 7 7 5 ¢6),
X -10
xS
and
2 3 3 2 2
4-16 5 4 1 4
13 2 3 4 0
-1 -1 0 -10

First, the vectors ¢ and b are entered and then matrix A is entered and named
matrixa.

Clear[matrixa,x,y,c,b]

c={%,-7,7,5,6};

b={10,30,-5,-10};
matrixa={{2,3,3,2,2},{6,5,4,1,4},{-3,-2,-3,-4,0},{-1,-1,0,-1,0}};

Next, we use Array([x,5] to create the list of 5 elements
{x[11,%x[2],...,%X[5]} named xvec. The command Table[x[i],{i,1,5}]
returns the same list. These variables must be defined before attempting to solve
this linear programming problem.

xvec=Array[x,5]
{x[(1}, x[2], x[3]1, x[4], x[5]}

After entering the objective function coefficients with the vector ¢ , the matrix of
coefficients from the inequalities with matrixa , and the right-hand side values
found in b, the problem is solved with

LinearProgramming{c,matrixa,b].

The solution is called xvec . Hence, the maximum value of the objective function
is obtained by evaluating the objective function at the variable values which yield
a maximum. Since these values are found in xvec , the maximum is determined
with the product of the vector ¢ and the vector xvec . (Recall that this product is
entered as c.xvec.) This value is found to be 35/4 .

xvec=LinearProgramming[c,matrixa,b]

35
{OI s 0, 0, ~--}
2 8
C.Xxvec
35
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Because the dual of the problem is Minimize the number Y=y .b subject to the
restrictions y.A<c and y > 0, we use Mathematica to calculate y.b and y . A:

Remark: Notice that Mathematica does NOT make a distinction between row
and column vectors; it interprets the vector correctly and consequently performs
the calculation properly.

A list of the dual variables {y[1]1,y[21.,v(31,v[4]1} is created with
Array([y,4] . This list includes 4 elements because there are four constraints in
the original problem. The objective function of the dual problem is, therefore,
found with yvec.b, and the left-hand sides of the set of inequalities are given
with yvec.matrixa.

yvec=Array[y, 4]

{y[1], y[2], y[3], y[4]1}

yvec.b

10 y[1) + 30 y[2] - 5 y(3] - 10 y[4]

yvec.matrizxa
{2 y[1] + 6 y[2] - 3 y[3] - y[4),
3 yf1) + 5 y(2] - 2 y[3] - y[4],
3 y[1} + 4 y[2] - 3 y[3],
2 y(1] + y[2] - 4 y[3] - y[4], 2 y[1] + 4 y[2]}
Hence, we may state the dual problem as follows:

Minimize Y =10y, +30y, -5y, — 10y, subject to the constraints
2y1 +6y2 _3]/3 —Y <5,

3y, +5y,-2y, -y, <7,

3y1 + 4y2 - 3y3 <7,

2_1/1 +Y, _4y3 —Y, <5,

2y, +4y,<6,andy 20 fori=1,2,3,and 4. B

Application: A Transportation Problem

A certain company has two factories, F1 and F2, each producing two products, P1 and P2,
that are to be shipped to three distribution centers, D1, D2, and D3. The following table
illustrates the cost associated with shipping each product from the factory to the
distribution center, the minimum number of each product each distribution center needs,
and the maximum output of each factory. How much of each product should be shipped
from each plant to each distribution center to minimize the total shipping costs?
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FI/PI FI/P2 F2/PI F2/P2 | Minimum
DI/PI $0.75 $0.80 500
D1/P2 $0.50 $0.40 400
D2/PI $1.00 $0.90 300
D2/P2 $0.75 $1.20 500
D3/P1 $0.90 $0.85 700
D3/P2 $0.80 $0.95 300

Maximum 1000 400 800 900

Output

SOLUTION: Let x1 denote the number of units of P1 shipped from F1 to D1; x
the number of units of P2 shipped from F1 to D1; x3 the number of units of P1
shipped from F1 to D2; x4 the number of units of P2 shipped from F1 to D2; x5 the
number of units of P1 shipped from F1 to D3; x¢ the number of units of P2 shipped
from F1 to D3; x7 the number of units of P1 shipped from F2 to D1; xg the number
of units of P2 shipped from F2 to D1; xg the number of units of P1 shipped from F2
to D2; x1¢ the number of units of P2 shipped from F2 to D2; x17 the number of
units of P1 shipped from F2 to D3; and x12 the number of units of P2 shipped from
F2 to D3.

Then, it is necessary to minimize the number
Z=.75x,+.5x, +x, +.75x, +9x, + 8Bx +.8x, +.4x, +9x,+1.2x  +.85x +.95x,

subject to the constraints x +x,+x <1000, x,+x,+x, <400, x,+x +x, <800,

m =

2500,

X, +x,+x,<900, x +x,2500, x,+x 2300, x,+x,2700, x,+x,2400, x,+x 2

12 — 1n=
x, +x, 2300, and x; non-negative fori=1,2, ..., 12.

In order to solve this linear programming problem, the objective function which
computes the total cost, the 12 variables, and set of inequalities must be entered.
The coefficients of the objective function are given in the vector c. Using the
command Array[x,12] illustrated in the previous example to define the list of
12 variables {x[1]1,%x[2],...,%[12]}, the objective function is given by the
product z=xvec.c, where xvec is the name assigned to the list of variables.

Clear[xvec,z,constraints,vars,c]
c¢={0.75, 0.5, 1, 0.75, 0.9, 0.8, 0.8, 0.4, 0.9, 1.2, 0.85, 0.95};

xvec=Array[x,12]

{x{1], x[2], %x[3], x{4]1, x[5], x(6], x[7]), x[8],
x[91, x[10], x[11), x[12]}



5.4 Maxima and Minima Using Linear Programming 345

z=xvec.c
0.75 x{1] + 0.5 x[2] + x[3] + 0.75 x[4] +
0.9 x[5] + 0.8 x[6] + 0.8 x[7] + 0.4 x(8) +
0.9 x[9] + 1.2 x[10] + 0.85 x[11] + 0.95 x[12]

The set of constraints is then entered and named constraints for easier use.
Therefore, the minimum cost and the value of each variable which yields this
minimum cost are found with the command

ConstrainedMin[z,constraints,xvec].

constraints={x[1]+x[3]+x[5]<=1000,x[2]+x[{4]+x[6]<=400,
X[7)1+x[9]+x[11]<=800,x[8]+x[10]+x[12] <=900,

x{1)+x[7)>=500, x[3]+x[9]>=300,x[5]+x[11]>=700, x[2]+x[8]>=400,
x(4]1+x[10]1>500, x[6]+x[12]>300};

values=ConstrainedMin[z,constraints, xvec]
{2115, {x[1} -> 500, x[2] -> O, x[3] -> O,
x[4] -> 400, x[5] -> 200, x[6] -> 0, x[7] -> O,
x[8] -> 400, x[9] -> 300, x[10] -> 100,
x[11] -> 500, x[12] -> 300}}

Notice that values is a list made up of two elements, the minimum value of the
cost function, 2115, and the list of the variable values {x[1]->500,x[2]->0,
...} . Hence, the minimum cost is obtained with the command values[[1]]
and the list of variable values which yield the minimum cost is extracted with
values[[2]].

values[[1]]
2115
values[[2]]

{x[1] -> 500, x[2] -> 0, x[3] -> 0, x[4] -> 400,

x[5] -> 200, x[6] -> 0, x[7] -> 0, x[8] -> 400,
x[9] -> 300, x[10] -> 100, x[11] -> 500,
x[12] -> 300}

Using these extraction techniques, the number of units produced by each factory
can be computed. Since x1 denotes the number of units of P1 shipped from F1 to
D1, x3 the number of units of P1 shipped from F1 to D2, and x5 the number of
units of P1 shipped from F1 to D3, the total number of units of Product 1 produced
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by Factory 1 is given by the command x[1]+x[31+x[5] /. values[[2]],
which evaluates this sum at the values of x[1], x[3], and x[5] given in the list
values([2]].

x[1]+x[3]+x[5] /. values[[2]]
700

Also, the number of units of Products 1 and 2 received by each distribution center
can be computed. The command x[3]+x[9] /. values[[2]] gives the total
amount of Product 1 received at Dist 1 because

x[ 3 ]= amount of Product 1 received by Dist 2 from F1 and
x[ 9 1= amount of Product 1 received by Dist 2 from F2.

Notice that this amount is the minimum number of units (300) of Product 1
requested by Dist 1.

x[3]+x[9] /. values[[2]]
300

The number of units of each product that each factory produces can be calculated,
and the amount of Products 1 and 2 received at each distribution center are
calculated in a similar manner and illustrated below.

{x[1]+x[3]+x[5],x[2]+x[4}+x[6] ,x[T7]+x[9]1+x[11],
x[8)+x[10]+x[12]),x[1]1+x[7]), x[3]+x[9],x[5]+x[11l], x[2]+x[8],
x[4]+x[10], x[6]+x[12]} /. values[[2])//TableForm

700
400
800
800
500
300
700
400
500
300

From the results above, we see that factory 1 produces 700 units of Product 1,
factory 1 produces 400 units of Product 2, factory 2 produces 800 units of Product
1, factory 2 produces 800 units of product 2, and each distribution center receives
exactly the minimum number of each product it requests.

|
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5.5 Vector Calculus

Definitions and Notation

The terminology and notation used in Mathematica By Example is standard. Nevertheless,
we review basic definitions briefly.

A scalar field is a function with domain a set of ordered triples and range a subset of
the real numbers:

f:U—>V isascalar field means Uc R and VcR.

The gradient of the scalar field f is defined to be the vector

graaf =i+ T <§fx Z i> (5.5, £).

where i=(1,0,0), j=(0,1,0), and k=(0,0,1).
A vector field f is a vector-valued function:

f:V->U, UcR: and V c K is a vector field means that f can be written in the form

fxy.2)=f(xy.2)i+filxy.2i+ f(xy 2k = (£ (xv.2) £(x. v, 2) fi(x.y.2))

for each (x,y,z) in the domain of f.

A conservative vector field f is a vector field that is the gradient of a scalar field: f is a
conservative vector field means that there is a scalar field g satisfying f=V:g. In this case,
g is usually called a potential function for f.

The divergence of the vector field f is defined to be the scalar

div f =div f(x,y,2)= div<f](x,y,z),fz(x,y,z),fz(x,y,z)>

A )
x &

The laplacian of the scalar field f is defined to be div(grad f)):

laplacian(f)=V2f = Af = fo gyf (;z{ fotfa L

For three-dimensional vector analysis, the package VectorAnalysis contains the
commands Grad, Div, Curl, and Laplacian, which we use to compute the gradient and
divergence of vector fields and curl and laplacian of scalar fields.

Be sure to load the package VectorAnalysis, contained in the Calculus folder (or
directory) by entering <<Calculus'VectorAnalysis' prior to using these functions.
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Because Mathematica recognizes Cartesian [x,y,z],Cylindrical[r,phi,z],
and Spherical[r,theta,phi] coordinates, and because the operations discussed in
this section differ in the various coordinate systems, the desired coordinate system must be
indicated. This is accomplished with

SetCoordinates[System],

where System is usually either Cartesian, Cylindrical, or Spherical .

However, the available coordinate systems are: Cartesian, Cylindrical,
Spherical, Parabolic, ParabolicCylinder, ProlateEllipsoidal,
EllipticCylinder, OblateEllipsoidal, Toroidal, Elliptic, and
Bipolar.

In addition to the above commands, others included in the VectorAnalysis package
include CoordinatesToCartesian[point,system] which gives the Cartesian
coordinates of point when point is given in the coordinate system system,
CoordinatesFromCartesian[point,system] which gives coordinates in the
coordinate system system when point is given in Cartesian coordinates,
DotProduct(u,v,system] which computes the dot product of u and v in the
coordinate system system, CrossProduct [u, v] which computes the cross product of u
and v in the coordinate system system, and ScalarTripleProduct[u,v,w,system]
which computes the scalar triple product of u, v, and w in the coordinate system system.
Other interesting commands include ArcLengthFactor, JacobianMatrix, and
JacobianDeterminant. For a comprehensive discussion of the commands contained in
the package VectorAnalysis see the Technical Report: Guide to Standard Mathematica Packages
published by Wolfram Research, Inc.

EXAMPLE: Let f(x,y,z)=cos(xyz). Compute Vf, V2f, and div(Vf).

SOLUTION: After loading the package VectorAnalysis, we enter
SetCoordinates[Cartesian] to specify that our calculations will be using
Cartesian coordinates. We then use Grad, Laplacian, and Div to compute Vf,

V2f, and div(Vf).
<<Calculus‘VectorAnalysis’

SetCoordinates[Cartesian];

Clear|[f]
f(x_,y_,z_]=Cos[x y z];

gradientf[x_,y ,z_]=Grad[f[x,y,z]]

{-(y z Sin[x y z]), -(x z Sin[x y z]), -(Xx y Sin(x y z])}
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Laplacian([f{x,y,z]]

2 2 2 2 2 2
-(x y Cos[xy z]) -x 2 Cos{xyz] -y 2 Cos[xy 2]

Div[gradientf([x,y,z]]

2 2 2 2 2 2
-(x y Cos(xy 2z]) -x 2z Cos[xyz] -y 2z Cos[xy 2]

If S is the graph of f(x,y) and g(x,y,z)=z-f(x,y), then the gradient Vg(x,y,z) is a normal
vector to the graph of g(x,y,z)=0. At the point (x,y,z), a unit normal vector, n, can be
obtained via:

Ve(r,y,2) _ fEWi-fyjtk R ACAIRTACANRY
| \}(ﬂ(x,y))2+(fy(x,y))2+l \ﬂﬁ(x,y))2+()fy(x,y))2+1.

n=l

lVg(x, Y,2)

The curl of the vector field f is defined to be the vector field:
curlf=curlf(x,y,2)= curl(fl(x,y,z),fz(x,y, z),fa(x,y,z)>
TERANCRANE A

) & &)\ o

i j ok

9 2 a
—detl & 2 2|
Ox W x

L h 4

EXAMPLE: Let f(x,y,z)=xyi+xyz?j—exk={xy,xyz?,—ex). Compute curlf, divf,
laplacian(div f), and grad(laplacian(div f)) = gmd(VZ(div f ))

SOLUTION: The first step towards solving this problem is to enter the unit
vectors in cartesian coordinates i={1,0,0}, j={0,1,0}, and k={0,0,1}. The
vector-valued function £[x,y,z] can then be defined using these three unit

vectors as follows:
f(x_,y_,z_]=x y i+x 2z"2 y j-Exp[2z] k
(remembering to place appropriate spaces between variables for multiplication).

Alternatively, we could define f by entering
fix_,y_,2z_1={x y,x 2”2 y,-Exp[2z]}.
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Be sure to load the package VectorAnalysis, as done below, if you have not
already loaded it during your current Mathematica session.

Notice that the coordinate system has not been set in this problem. However, the
correct system can be indicated in each command. For example, the curl of f in
Cartesian coordinates is determined with

Curl(f[x,y,2z],Cartesian].

The curl could similarly be obtained in the other systems by replacing Cartesian
with Cylindrical, Spherical, or one of the other available coordinate
systems, in the command above.

<<Calculus‘VectorAnalysis’

Clear[i,j, k]
i={1,0,0};
3={0,1,0};
k={0,0,1};

Clear[f]
fix_ ,y ,z_ l=xy i+x z42 y j-Expl2z] k;

Next we use Curl to compute the curl of the vector-valued function f.
curlf[x ,y ,z_]=Curl[f[x,y,z],Cartesian]

2
{-2xyz 0, -x+yz}

As was the case with computing the curl of {, the divergence of f can be calculated
in Cartesian coordinates with

Div[f[x,y,2],Cartesian]].

Again, since the divergence is a function of (x,y,z), it is named divf[x,y,z] for
later use. The Laplacian of the divergence of f is computed with

Laplacian[divf([x,y,2z],Cartesian]].

This function is called ladivf[x,y,z] so that grad(laplacian(div f))= grad(VZ(div f))
can be found with
Grad[ladivf[x,y,z],Cartesian]].
divf[x_,y_,z_]=Div[f(x,y,z],Cartesian]

2 z 2
-2 E +y +x 2
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ladivf[x_,y ,z_]=Laplacian[divf[x,y,z],Cartesian]

Grad[ladivf[x,y,z],Cartesian]

2 2z
{2, 0, -16 E }

We demonstrate the computation of a unit normal vector in the example below.

EXAMPLE: Let w(x,y) = cos(4x2 +9y2). Let n(x,y) denote a unit vector normal to the
graph of w at the point (x,y,w(x,y)). Find a formula for n.

SOLUTION: In order to visualize the unit normal vector at points (x,y,w(x,y)) to
the surface w(x,y), this function is plotted below using several of the options
available with Plot3D. The option Boxed->False specifies that the
Graphics3D object be displayed without a bounding box, while the option
PlotPoints->35 specifies that the number of sample points used consist of 35
along the x-axis and 35 along the y-axis, for a total of 35x35=1225 sample points
used in the generation of the graph. The options Axes->Automatic and
Shading->False indicate that Mathematica is to automatically place axes in the
final displayed graph and the results will not be shaded.

Clear[w]
wix_,y_]=Cos[4x"2+9y"2];

plotw=Plot3D([w[x,y],{x,-1,1},{(y,-1,1},Boxed->False, Axes->Automatic,
PlotPoints->35, Shading->False]
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The equation z=wu(x,y) is written as z-w(x,y)=0. The left-hand side of this
equation is a function of x, y, and z and is defined as wz[x_,y_,2z_]1=z-w[x,y].
Since the partial derivative of wz with respect to z is —1, the gradient of wz is a
function of x and y only. Hence, the gradient of wz is named gw[x_,y ] and is
computed with Grad[wz([x,y,z],Cartesian]. The length of the gradient of wz
which is necessary in determining the unit normal vector is the square root of the
dot product of the gradient of wz with itself. This product is computed with

gw[x,y]l.gwlx,y].
wz[x_,y_,z_}=z-w[x,y]

2 2
z - Cos[4 x + 9y ]

gw[x_,y_l=Grad[wz[x,y,z],Cartesian]

2 2 2 2
{8 x Sin[4 x + 9y ], 18 y Sin[4 x + 9y ], 1}

gw[x,y]l.gw[x,y]

2 2 22 2 2 22
1+ 64 x Sinfd x + 9y ] + 324y Sin[d x + 9y ]

Therefore, the unit normal vector is the gradient of g, gw[x,y], divided by the
Ve(x,y,2)
Vg, y.z)|
function of the variables x and y since the unit normal vector differs from point to
point on the surface. Hence, this vector is assigned the name normalw[x,y] so
that the unit vector at any point (x,y,w(x,y)) can be easily determined by

evaluating normalw[x,y] at any point (x,y).

square root of gw[x,y].gw[x,y], as shown below. This is also a

normalw[x_,y_ }=gw[x,yl/Sqrt{gw[x,y].gw[x,¥]]

2 2
{(8 x Sin[4 x + 9y 1) /

2 2 22
Sgrtfl + 64 x Sin[4 x + 9y ] +

2 2 22
324y Sin[4 x +9y 11,

2 2
(18 y Sin[4 x + 9y 1) /

2 2 22
Sqrt[l + 64 x Sin[4 x + 9y ] +

2 2 22
324 y Sin[4 x +9vyv 11,



5.5 Vector Calculus 353

2 2 2 2
1 / sqrtf[l + 64 x Sin[4 x + 9y ] +

2 2 22
324y Sin[4 x + 9y ] 1}

We can graph various normal vectors with the command PlotVectorField3D
which is contained in the package PlotField3D located in the Graphics folder (or
directory). After loading the PlotField3D package, we graph normalw([x,y] in
the cube given by [-1,1]x[-1,1]x[-1,1] and name the resulting graph plotn. We
then use Show to display plotw and plotn together.

<<Graphics ‘PlotField3D’
plotn=PlotVectorField3D[normalw[x,y], {x,-1,1},{y,-1,1},{z,-1,1}]

Show[plotw,plotn]
0.5 A
) lp’,"‘c Y
—O.? NI
i
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Similarly, we may graph the gradient vector field of the scalar function wz with
the command PlotGradientField3D, also contained in the PlotField3D
package. In the following command, we include the option VectorHeads->True
so we can see the direction of the resulting arrows.

PlotGradientField3D[wz[x,y,z],{x,-1,1},{y,-1,1},{=z,-1,1},
VectorHeads->True]

Application: Green’s Theorem

Green’s Theorem: Let C be a piecewise smooth simple closed curve and let R be the region
consisting of C and its interior. If f and g are functions that are continuous and have
continuous first partial derivatives throughout an open region D containing R, then

i(m(x,y)dx +n(x, y)dy)= ”'R(@ - %]dA .

EXAMPLE: Use Green's Theorem to evaluate §(x+ev’.v )dx +(2y +cos(x))dy, where C

C
is the boundary of the region enclosed by the parabolas y=x? and x=y2.

SOLUTION: To calculate the limits of integration, we use Mathematica to graph
the functions x? and +x . Note that the two functions intersect at the points (0,0)
and (1,1).
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Plot[{x"2,8qrt[x]},{x,0,1.2}]

1.4
1.2

1
0.8
0.6
0.4
0.2

0.2 0.4 0.6 6.8 1 1.2

In this example, m(x,y)=x+edv and n(x,y)= 2y +cos(x). Therefore, applying Green's
theorem,

i(x +e¥ )dx +(2y + cos(x))dy = im(x, y)dx+n(x,y)dy
- ”R[%—%jm - jI[%—%]dydx.

Next, we will use Mathematica to define m(x,y), n(x,y), and to compute gnx—,

7

&y

1 yx
and Jj(%—%)dydx. First, the functions m(x,y), and n(x,y) are defined. Recall
0 x2

that in computing the partial derivatives, the variable of differentiation must be
specified. These partial derivatives are calculated in nx and my, respectively.
Integrate cannot be used to find an exact value of this integral (as shown in our
final calculation) so we approximate it with NIntegrate.

Clear[m,n]
mix_,y_]=x+Exp(Sqrt[y]];
n[x_,y_J}=2y+Cos[x];

nx=D[n(x,y],x]
-Sin[x]
my=D[m[x,Y],¥]

Sqrtly]

2 Sqrtly]
NIntegrate[nx-my, {x,0,1},{y,x"2,Sqrt[x]}]

-0.676441
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Integrate[nx-my, {x,0,1},{y,x"2,Sqrt([x]}]

General::intinit:

Loading integration packages -- please wait.
Pi 2
-26 + 8 E + 2 Cos[l] ~ Sgrt[--] FresnelC[Sqrt[--]] +
2 Pi
2
Sqrt[x ]
IntegratelE , {x, 0, 1}] + 2 Sin[1]

Application: The Divergence Theorem

The Divergence Theorem: Let Q be any domain with the property that each straight line
through any interior point of the domain cuts the boundary in exactly two points, and
such that the boundary S is a piecewise smooth closed, oriented surface with unit outer
normal n. If f is a vector field that has continuous partial derivatives on Q, then

”;fonds - J'_”Qdivfdv - ,WQV°de _

J- fendS is called the outward flux of the vector field f across the surface S. If S is a
S

portion of the level curve g(x,y)=c for some g, then a unit normal vector n may be taken to
V& orp=Y8
vl ™"l

Recall the following formulas for the evaluations of surface integrals: Let S be the graph
of z=f(x,y) (y=h(x,z) or x=k(y,z)) and let Rxy (Ryz or Ryz) be the projection of S on the xy-
(xz- or yz-) plane. Then,

be either n=

,”RX glx.y.f (x'y))\/(ﬂ(%y))z+(fy(x, y))2+1dA
_[J;g(x,y,z)ds = .UR ~g(x,h(x,z) z \/(h (x, z)) +(h.(x, z)) +1dA.
J‘L.g(k(y,z),y, \/(k (%2)) +(k(y,2)) +1dA
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EXAMPLE: Use the Divergence Theorem to compute the outward flux of the field

vf(x,y,2)= <xy +Xx2yz, yz+ xy2z, X2 + xyzz>

through the surface of the cube cut from the first octant by the planes x=2, y=2,
and z=2.

SOLUTION: By the Divergence Theorem, J:[ of endA= J‘J.J.Vo vfdV . Notice that

Cube Surface Cube Interior

without the Divergence theorem, calculating J:[ of endA would require six
Cube Surface

separate integrals. However, with the Divergence Theorem, calculating the flux
can be accomplished by integrating the divergence. Because we need the
command Div, we load the VectorAnalysis package. The vector field is defined
in vf as a list of three elements, the x, y, and z components, so that the divergence
can be determined in divvf. The divergence is then integrated over the cube [0,2]
x [0,2] x [0,2] to yield a value of 72.

<<Calculus‘VectorAnalysis’
vi[(x_,y_,z_]={x y+x"2 z y,y 2+x y°2 2z, x z+x y z"2}

2 2
{(Xy+x yez,yz+xy 2z,

2
Xz +XxXxy 2z}

divvf(x_,y ,z_)=Div[vf[x,y,z],Cartesian]
x+y+2+6xyz2

Integrate[divvf[x,y,z],{x,0,2},{y,0,2},{z,0,2}]
72

In the same manner as in the previous example, we can use the command
PlotVectorField3D contained in the PlotField3D package to graph the vector
field vf. After loading the PlotField3D package, we graph v£ in the cube
[0,2]x[0,2]x][0,2].
<<Graphics’/PlotField3D’
PlotVectorField3D([vf[x,y,z],{x%,0,2},{y,0,2},{z,0,2},VectorHeads->True]
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Application: Stoke’s Theorem

Stoke’s Theorem: Let S be an oriented surface with finite surface area, unit normal n, and
boundary C. Let F be a continuous vector field defined on S such that the component
functions of F have continuous partial derivatives at each non-boundary point of S. Then,

§F edr= J_[(C”rl f)endS. In other words, the surface integral of the normal component of the
C S
curl of F taken over S equals the line integral of the tangential component of the field taken

over C: ffFons = H(curlf)-nds. In particular, if F=(M,N,P)=Mi+N j+Pk, then
C S

J.M(x, y,z)dx+N(x,y,z)dy + P(x,y,z)dz = J‘J.(curlff)o ndsS.

EXAMPLE: Verify Stoke's Theorem for the vector field
vf(x,y,z)=(y2—z,z2+x,x2—y) and S the paraboloid z=f(x,y)=4—(x2+y2),
z non-negative.

SOLUTION: Since we must show §vf odr= _U(curl of)endS, we must compute curl
(o s

vE, n, J‘J.(curl of)ends, r, dr, and §vf «dr. We begin by loading the VectorAnalysis
S C

package and defining the vector field vf and the function f. The curl of vf is then
computed in curlvf. The function h(x,y,z)= z—f(x,y), which will be used in the
computation of the unit normal vector, is also defined. Hence, the normal vector to
the surface is given by Vh ,which is found below in normal.
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<<Calculus‘VectorAnalysis*

Clear|[vf,f,h,normal,un,g,curlvf, n)
vE[x_,y_,z_]1={y"2-z,2"2+x,x"2-¥};
flx_,y_1=4-(x"2+y"2);

curlvf[x_,y_,z_]=Curl[vf[x,y,z],Cartesian]
{-1 -22, -1 -2x,1-2y%y}
hix_,y_,z_]1=z-f[x,y]

2 2
-4 + x +y + z

normal[x_,y_,z_]=Grad[h[x,y,z],Cartesian]

{2 x, 2y, 1}

. . Vh 1
Since normal is a normal vector to the surface, — normall[x,y,z]

Vh“:"normal[x,y,zm

represents

a unit normal vector. This vector is found below in un. Recall that

”normal[x,y,zﬂk:Jnormal[x,y,z]-normal[x,y,z].

Note that normal([x,y,z] is a list (of three elements) and
normal[x,y,z])[[1i]] yields the ith element of the list normal(x,y,z].
Therefore,

| |normal[x,y,z]]|| is given by the command
Sqrt[Sum( (normal(x,y,z][[1]])"2,{i,1,3}]}).
Thus, an alternative approach is to define un by entering:

un(x_,y_,z_J}=normal[x,y,z]/Sqrt|

Sum[(normal[leIZ][[i]])Azl{irll3}]]

In order to easily use the surface integral evaluation formula, define g[x,y, 2] to
be the dot product of curlvf[x,y,z] andun([x,y,2].

un[x_,y_,z_]=normal[x,y,z]/Sqrt[normal[x,y,z].normal[x,y,z]]

Sqgrt[l + 4 x + 4 y ]
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Sqrt{l + 4 x + 4 y ]
g[x_,y_,z_]=Together[curlvf[x,y,z].un[x,y,2]]

1-2x-4y-4xy-4xz2

Sqgrt[l + 4 x + 4 y ]

By the surface integral evaluation formula,

J](curl ofJendS = J.jg(x,y, z)dS= ‘”g(x,y,f(x,y))\/(ﬂ(x,y))z + (fy(x,y))2 +1dA,

s

where R is the projection of f(x,y) on the xy-plane. Hence, in this example, R is the
region bounded by the graph of the circle x2 +y? = 4. Thus,

”g(x’y’f(x'y))\/(ﬂ(x/y))z +(fv(x,y))2 +1dA=

L,‘M - 8(xy.flx, .‘/))\/(ﬂ(x/y))z+(fy(x,y))2+1dA.

—Va-x2

This surface integral is computed below to yield a value of 4r.
function=g([x,y,£f(x,y]] Sqart[(D(f(x,¥],x])"2+(D[£[x,¥],y])"2+1]
1 -2x-4y-4xy-

2 2
4 x(4-x -v)

Integrate[ function, {x,-2,2},{y,-Sqrt[4-x"2],Sqrt[4-x"2]}]
4 Pi

Notice that the integral

Uwig (e y A ))\/(ﬁ(x/}/))2+(fy(x,y))2+1dA

—V4-x2

can be easily evaluated using polar coordinates. To do so, replace each occurrence

of xand y in g(x,y, flx, y))\/( f.(x, y))Z +( £, (x,y))2 +1 by rcost and rsint, respectively.
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function=g(x,y,f[x,y]] Sqrt((D[f[x,¥},x])"2+(D(£f[x,y],¥])"2+1] /.
{x->r Cos[t],y->r Sin[t]}

1 - 2 r Cos{t] - 4 r Sin[t] -

2
4 r Cos[t] Sin[t] -

2 2
4 r Cos[t] (4 - r Cos[t] -

2 2
r sin{t] )

We then simplify function with Expand using the option Trig->True which
applies basic trigonometric identities to attempt to simplify function. The
expression in polarfunction is then integrated over the circular region
R:0<r<2,0<t<2r to yield the value of 4% which was obtained in the integral in

Cartesian coordinates above.
polarfunction=Expand[function, Trig->True]

3
1 - 18 r Cos[t] + 4 r Cos[t] -

2
4 r Sin[t] - 2 r Sin[2 t]

Integrate[polarfunction r,{r,0,2},{t,0,2Pi}]
4 Pi
Now, to verify Stoke's Theorem, we must compute the associated line integral. We
begin by noticing that the boundary of z=f(x,y)=4 - (x2 + yz), 220 is the circle
x2 +y2 =4 which has parameterization x=2*Cos[s], y=2*Sin[s], and z=0
for 0<s <2m. This parameterization is substituted into vf and named pv£ below.
In order to evaluate the line integral along the circle, we must define the

parameterization of the circle, r[s], and calculate r’ [ s ]. The dot product of pv£
and r’ [ s] represents the integrand of the line integral.

pvi=vi[x,y,z] /. {x->2 Cos[s]),y->2 Sin[s],z->0}

2
{4 Sin[s] , 2 Cos{s],

2
4 Cos[s] - 2 Sin{s]}

r(s_]={2 Cos[s],2 Sin[s},0}

{2 Cos[s], 2 Sin[s], 0}
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r’[s]
{-2 Sin{s], 2 Cos[s], 0}
pvi.r’[s]

2 3
4 Cos[s] - 8 Sin[s]

The resulting expression is then integrated along the circle to yield a value of 4,
which verifies Stoke's Theorem.

Integrate[pvf.r’'([s],{s,0,2Pi}]

4 Pi



CHAPTER

Applications Related
to Ordinary and
Partial Differential
Equations

Mathematica can perform calculations necessary when computing solutions of various
differential equations and, in some cases, can be used to find the exact solution of certain
differential equations using the built-in command DSolve. In addition, Mathematica
contains the command NDSolve which can be used to obtain numerical solutions of other
differential equations. The purpose of Chapter 6 is to illustrate various computations
Mathematica can perform when solving differential equations. Applications discussed in
this chapter include the Falling Bodies Problem, Spring Problems, Classification of
Equilibrium Points, and the Wave Equation.

363
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6.1 First-Order Ordinary
Differential Equations

Separable Differential Equations

A differential equation that can be written in the form g(y)y@ f(x) is called a separable

differential equation. Rewriting g(y)y@& f(x) in the form g(y)gll:f(x) yields
X

g(y)dy = f(x)dx so that I gy)dy = j f(x)dx+C, where C represents an arbitrary constant. An

equation of this type is solved with Mathematica in the following example.

EXAMPLE: Solve the initial value problems y cos(x)dx —(1+y?)dy =0,y(0)=1.

SOLUTION: We first try to solve the equation with DSolve by defining the
equation and then entering the command DSolve[eq,y[x],x] which attempts
to solve the equation eq for y[x].

eq=y'[x]==y[x] Cos[x]/(l+y[x]"2);
DSolve[eq,y[x],x]

Solve::tdep: The equations appear to involve transcendental functions of

the variables in an essentially non-algebraic way.
Solve::tdep: The equations appear to involve transcendental functions of

the variables in an essentially non-algebraic way.

Solve[Log[y[x]] - Sin[x] + —-—-—--- == C[1], y[x]]

However, in this case, DSolve is unable to solve this nonlinear equation so we

1+y2

rewrite the equation in the form cos(x)dx = dy . To solve the equation, we must

integrate both the left- and right-hand sides, which we do below with Integrate,
naming the resulting output 1hs and rhs, respectively.

lhs=Integrate[Cos[x], x]
rhs=Integrate[ (1+y"2)/y,y]

Sin[x]
2
Yy

-- + Log[y]
2



6.1 First-Order Ordinary Differential Equations 365

Therefore, a general solution to the equation is sinx+C, = 1n|y|+% y?. Below, we use

h s ~ 2 for various values of C, by observi
ContourPlot to graph sinx+C, = ln‘y|+5 y? for various values of C, by observing
that the level curves of sinx—lnlyl+%y2 correspond to the graph of
sinx+C, =Infy|+ %yz for various values of C,.

ContourPlot(lhs-rhs, {x,0,10},{y,0,10},ContourShading->False,
Frame->False,Axes->Automatic,AxesOrigin->{0,0}]

10

By substituting y(0)=1 into this equation, we find that C ==, so the implicit

1
2
. . . . 1 1
solution is given by sinx + 5= Infy|+ 5 y2.
gensol=1lhs==rhs+c

2

y
Sin[x] == ¢ + -- + Log[y]
2

initeq=gensol /. {x->0,y->1}

1
0 ==-+c
2
Solve[initeq]
1
{{c => =(=)}}
2
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Homogeneous Differential Equations

A differential equation that can be written in the form M(x,y)dx+N(x,y)dy=0 where
M(tx, ty)zt"M(x, y) and N(tx,ty)=#N(x,y) is called a homogeneous differential equation
(of degree n). This type of equation can be solved with the help of Mathematica as
illustrated in the following example.

EXAMPLE: Solve the equation (x2—y2)dx+xydy =0.

SOLUTION: Proceeding as in the previous example, we first define eq to be the
equation (x2-y?)dx+xydy =0, and then we attempt to use DSolve to solve the

equation.

Clear[eq]

eq=x y y'[x]==(y[x]"2-x"2);

DSolveleq,y([x],x]

2 2
DSolve[x y y'[x] == -x + y[x] , y[x], x]

Since DSolve is unsuccessful, let M(xy)=x2-y? and N(x,y)=xy. Then,
Mtx, ty) = t®M(x,y) and Ntx,ty)=tN(x,y), which means that (x2 - yz)dx +xydy=0 is
a homogeneous equation of degree 2.

Clear[m,n,x,y]

mix_,y_)=x"2-y"2;

n[x_,y_l=x y;

m[t x,t y]//Factor

nft x,t y]//Factor

2

t (x-y) (x+y)
2

t xvy

Assume x=vy. Then, dx=vdy+ydv, and directly substituting into the equation
and simplifying yields y2v?dy +y3(v2 - 1)dv =0.
legone=m[x,y) Dt[x]+n[x,y] Dt([y]

2 2
(x -y ) Dt[x] + x y Dt[y]
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x=v y;
leqtwo=leqone//ExpandAll

3 2 3 3 2
-(y Dt(v]) + v y Dt[v] + v y Dt(y]

leqthree=Collect({leqtwo, {Dt[v],Dt[y]}]

3 2 3 3 2
(-.y +v y ) Dt[v] + v y Dtly]
Dividing this equation by y%? yields the separable differential equation
dy +(1)2—1)dv
y vl

=0.

leqfour=Cancel [Apart[leqthree/(y"3 v~3)]]

2
(-1 + v ) Dt[v] Dt(y]

We solve this equation by rewriting it in the form

d_y= (1-v2)dv =(i—1Jdv
Y v

v v
and integrating each side with Integrate. Note how [[...]] and Take are
used to extract the terms to be integrated.

leqfour([1,1]]

-3
v

legfour[[1,2]]

2
-1 + v

Take[leqfour([[1]1],2]

leqfour[[(2,1]]
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first=Integrate[Take[leqfour[[1l]],2],V]

1
-——- + Log[V]
2
2v

second=Integrate[leqfour([[2,1]],Y]

Log(y]
This yields

Myz:%—Mv+Cl
v

which can be simplified as In(vy)= ——‘;Z +C,, s0
\%

vy=Ce?2/*?, where C=e% .

Since x=vy, v= x, resubstituting into the above equation yields
y
x = Ce-% x2

as a general solution of the equation (x2-y?)dx+xydy=0. Of course, the same

results are obtained by substituting v== into first.

(x
X
y
Clear(x,v,vy]

first /. v->x/y

2
Y X
---- + Log[-]

2 b
2 X
To graph x=Ce»¥* for various values of C, we note that the graph of x=Ce#%
for various values of C is the same as the level curves of xe»*»> which we graph
with ContourPlot. We graph the level curves of xex*<* corresponding to the C-
values defined in vals, which is specified in the ContourPlot command with

Contours->vals. Including the option PlotPoints->60 increases the number
of points sampled and, thus, helps assure that the resulting graphs are smooth.
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vals=Table([i,{i,.5,5.5,.5}]
{0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5}

ContourPlot[x Exp[2y~2/x"2),{x,.01,6},{y,-3,3},
ContourShading->False,Frame->False,Contours->vals,
PlotPoints->60,Axes->Automatic, AxesOrigin->{0,0}]

-2

-2
|

Exact Equations

A differential equation that can be written in the form M(x,y)dx+N(x,y)dy=0 where

oN oM
ox

Fw is called an exact differential equation. If M(x,y)dx+N(x,y)dy =0 is exact, there is

a function F such that the total differential of F, dF, satisfies the equation
df =M(x, y)dx + N(x,y)dy = 0. The solution of the exact differential equation is F(x,y)=c where
cis a constant. The method by which F(x,y) is determined with Mathematica is illustrated

in the following example.

EXAMPLE: Find a general solution of the equation

(—1+esvy +ycos(x y))dx +(1+evvx+xcos(x y))dy =0.

SOLUTION: We begin by defining m(xy)=-1+exvy+ycos(xy),

n(x,y)=1+exwx+xcos(xy) ,and then trying to use DSolve to solve the equation.
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Clear[m,n]

m(x_,y_l=-1+Exp[x yly +y Cos[x y];

n(x_,y_]=1+Exp[x ylx +x Cos(x v];

equation=DSolve[m[x,y[x]]+n[x,y[x]]*Y'[x]==0,y([x],x]
Solve::tdep:

The equations appear to
involve transcendental
functions of the
variables in an
essentially non-algebraic
way.

X y[x]
Solve[E - x +

Sin(x y[x]] + y[x] == C[1]

¢ Y[x]]
Since DSolve is unsuccessful, we verify that %:% and consequently the
equation must be exact.

D(m[x,y],y]==D[n[x,y],x]
True

We then use Integrate to compute J m(x,y)dx and name the resulting output
stepone.

stepone=Integrate[m[x,y], x]

Xy
E - x + Sin[x y]

The result means that the desired solution is of the form esv —x+sin(xy)+g(y).
Therefore, we define steptwo to be the partial derivative of stepone+g[y] with
respecttoy.

steptwo=D[stepone+g[y],y]

Xy
E X + x Cos[xXx y] + g'[Y]

Since —a—(stepone+ glyl)=n(x,y), we use the Solve command to find the value of
8'(v)-
stepthree=Solve[steptwo==n[x,¥],9'[Y]]

{{g'ly] -> 1}}
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Therefore, g(y)=y+c and a general solution of the equation is ew - x+y+sin(xy)=c.
stepfour=Integrate[g’'[y] /. stepthree[[l]],Y]

y

solution=stepone+stepfour

Xy
E - x +y + Sin[x y]

In this case, we can graph various solutions with the command ContourPlot by
observing that level curves of the function ew —x+y+sin(xy) correspond to the
graphs of ew —x+y+sin(xy)=c for various values of c. As in the previous example,
including the option PlotPoints->30 increases the number of points sampled
and, consequently, helps to assure that the resulting graphs are smooth. The
option Contours->20 instructs Mathematica to graph 20 contours, while the
option PlotRange->{-10,10} specifies that the level curves correspond to c-
values between —10 and 10.

ContourPlot[solution, {x,-Pi,Pi}, {y,-Pi,Pi},Contours->20,PlotPoints->30,
PlotRange->{-10,10},ContourShading->False]

-3 -2 -1 0 1 2 3

Linear Equations

A differential equation that can be written in the form Z—y = p(x)y = q(x)is called a first-order
X

linear differential equation. If Z—Z:p(x)y:q(x), then multiplying by e[s»# results in
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e_[rw\‘ Z—Z+e_[vmd*p(x)y = ej'rmff-‘q(x). The term e_[rmdx is called the integrating factor. Applying

the product rule and Fundamental Theorem of Calculus yields

d;dx(gjp(x)dt y) = e'[p(x)dx ZZ + ejp(x)d,p(x)y

so the equation

eJ‘}’(x)dx ZZ + eIp(x)de(x)y = ejp(x)dxq(x)

is equivalent to the equation

—dé;(ejﬂ(x)dx y) = ejp(x)d:(q(x) .

Integrating, we obtain eJ.v“)d-'y = J.efﬂ(x)dxq(x)dx. Dividing by efpmd* results in the solution
y= e*J'p(X)d.r Jef”‘”"*q(x)dx
Mathematica's DSolve command can solve most first-order linear differential equations

without having to calculate the integrating factor and following the procedure described
above. We show this in the following example.

EXAMPLE: Find the general solution of xgl+ 3y =xsin(x). Graph the solution for
X
the values of c=—6, -4, -2, 0, 2, 4, and 6.

SOLUTION: In this case, we are able to use DSolve to directly solve the equation.
Note that the resulting output is named sol.

sol=DSolve[x y'[x]+3y[x]==x Sin[x],y[x],x]

3 2
C[1] 6 x Cos[x] - x Cos[x] - 6 Sin[x] + 3 x Sin[x]
{{y[x] -> ==== + - e e }}
3 3
x X

We extract the explicit solution from sol with so1[[1,1,2]] below.
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sol[[1,1,2]]

3 2
Cc(1] 6 x Cos[x] - x Cos[x] - 6 Sin[x] + 3 x Sin[x]
e o e
3 3
X X

To graph the solution for the indicated values of ¢, we use Evaluate and Table.
The command

Table[sol[[1,1,2]] /. C[1]->i,{i,-6,6,2}]

generates a table of the functions to be graphed. Be sure to include the Table
command in the Evaluate command so that Mathematica first computes the
table and then graphs each function in the table.

Plot[Evaluate[Table[sol([1,1,2]] /. C[1]->i,{i,-6,6,2}]],
{x,.01,3/2Pi},PlotRange->{-5,5}]

-2

-4

The effects of various forcing functions f(x) in the equation ¥+a(x)y:f(x) are
X

demonstrated in the example below.

EXAMPLE: Compare the solutions of %+ y = f(x) subject to y(0)=0 where f(x)=x,
X

sinx, cosx, e¥, e-*, e-*sinx, xcosx, and xe—~.

SOLUTION: To compute each solution, the table funs is first defined and then
the Table and DSolve commands are used to find the solution of each of the
eight equations. The command

DSolve[{y'[x]+y[x]==funs([i]],y[0]==0},y[x],x]
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solves the differential equation y’+y=funs[[i]], where funs[[1i]] is the ith
element of funs, subject to the initial condition y(0)=0. The result of the Table
command is named sols which we display in a two-line abbreviated form with
Short.

funs={x,Sin[x],Cos[x],Exp[x] ,Exp[-x],Sin[x])Exp[-x],x Cos[x],x Exp[-x]};
sols=Table[DSolve[{y'[x]+y[x]==funs[[i]],y[0]==0},y[x],x],{i,1,8}];

Short[sols, 2]
X 1 -Cos[x] + Sin[x]
{{{y[x] => -1 + E  + x}}, {{Y¥[X] => —=== + ——-mmmmmm o Y},
X 2
2 E

2

-1 x
{({Y[X] => —=== + <<1>>}}, <<4>>, {{y[X] -> ----}}}

X b
2 E 2 E

Observe that the first element of sols is the list {y[x]->-1+E-=+x} which can be
obtained with the command sols[[1]]. To evaluate the expression -1+E-= +x
for explicit values of x, we must either reenter the expression or extract it from
sols. One way of extracting the expression -1+E-~+x from the list sols is to
enter

y[x] /. sols[(1]1],

which replaces y[x ] by the expression —-1+E-* +x, or to enter sols[[1,1,2]].

To graph each of the explicit solutions in sols, we must extract the explicit
solutions. One way of extracting the solutions is to create a table of values of y[x]
where y[x] is replaced by the rule in the ith element of sols as done in the
following command. The resulting list of functions is named toplot for future
use and displayed in an abbreviated two-line form with Short. Alternatively, the
table can be created by entering the command
Table[sols{[i,1,2]],{i,1,8}].

toplot=Table[y[x] /. sols[{i,1]],{i,1,8}];
Short{toplot,2]

-X 1 ~Cos[x] + Sin[x] -1 Cos[x] + Sin[x]
{-1 + E + X, ==== + m—mm—mmm—— ;) ==== + e ,
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x Cos[x] + <<1>> + x Sin[x] X

To graph each of the functions in toplot, we define g[i] which graphs the ith
element of toplot on the interval [-x,2xn]. Note that the results of g are not
displayed since the option DisplayFunction->Identity isincluded. We then
use g to graph each function in toplot on the interval [-n,2n] and partition the
resulting set of eight graphics into two element subsets with Partition. The
resulting eight graphics objects are displayed as a graphics array for easy
comparison.

gl[i_]:=Plot(toplot[[i]}],{x,-Pi,2Pi},DisplayFunction->Identity];
graphs=Partition[Table[g[i],{i,1,8}],2];
Show|[GraphicsArray([graphs])
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Numerical Solutions of First-Order
Ordinary Differential Equations

Numerical approximations of solutions to differential equations can be obtained with
NDSolve. This command is particularly useful when working with nonlinear equations
for which DSolve is unable to find an explicit solution. This command is entered in the
form

NDSolve[ {deq,ics}, fun, {var,varmin,varmax}],
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where deq is solved for fun and the solution is valid over the interval [varmin,varmax].
In some cases, the interval on which the solution is valid is smaller than the interval
requested. Note that the number of initial conditions in ics must equal the order of the
differential equation indicated in deq. In order to illustrate the command NDSolve, we
consider the nonlinear equations below.

EXAMPLE: Graph the solution of Z—y:sin(zx— y) subject the initial condition
X

¥(0)=05 on the interval [0,15].

SOLUTION: First, we define eq to be the equation Z—yz sin(2x-y) and then use
x

NDSolve to approximate the solution of eq subject to the initial condition
y(0)=05, naming the resulting output sol. The resulting output is an
InterpolatingFunction which represents an approximate function obtained
through interpolation. This solution is extracted from sol with sol[[1,1,2]].
The interval {0., 15.} is the range of values over which the approximation is
valid.

Clear[x,yl]
eq=y' [x]==8Sin[2x-y[x]];
sol=NDSolve([{eq,y([0]==.5},¥[x],{x,0,15})

{{y[x] -> InterpolatingFunction[{0., 15.}, <>][X]}}

We then graph the solution by replacing y[x] by the result obtained in sol. The
same result is obtained if y[x] /. solisreplacedbysol([[1,1,2]].

Plot[y[x] /. sol,{x,0,15}]

S

2 4 6 8 10 12 14 B

We can also use NDSolve to generate approximations of solutions to a differential
equation under changing initial conditions.
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EXAMPLE: Graph the solution of y’=sin(xy) subject to the initial condition y(0)=i
on the interval [0,7] for i=0.5,1.0,1.5,2.0, and 2.5.

SOLUTION: We begin by defining eq to be the equation y’=sinxy. We then
define sol[1i] to return the approximate function obtained from

NDSolve([{eq,y(0]==1i},y[x],{x,0,7}].

Clear[x,y,sol]

eq=y' [x]==8Sin[x y[x]];

solii_]:=Module[{sol},
sol=NDSolve[{eq,y[0]==i},y[x]),{x,0,7}];
sol[[1,1,2]]]

Next, we define toplot to be a table consisting of sol[i] for
1=05,1.0,1.5,2.0, and 2.5. We display an abbreviated form of toplot with Short to
show that the list toplot consists of InterpolatingFunctions. Finally, Plot
is used to graph the functions in toplot on the interval [0,7].

toplot=Table[sol{i],{i,.5,2.5,.5}];
Short[toplot]

{InterpolatingFunction({0., 7.}, <>][x], <<4>>}

Plot[Evaluate[toplot], {x,0,7}]

Application: Population Growth
and the Logistic Equation

The logistic equation (or Verhulst equation), first introduced by the Belgian
mathematician Pierre Verhulst to study population growth, is the equation

y'(t)=(r—ay(O)y(t),
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where r and a are constants, subject to the condition ¥(0)=y,. This equation can be written
as %z(r—ay)yzry—ayz where the term (-y?) represents an inhibitive factor or "death

rate." Hence, the population under these assumptions is not allowed to grow out of control
as it is in some other models like the Malthus model. Also, the population does not grow
or decay constantly.

The logistic equation is separable, and, thus, can be solved by separation of variables.
We proceed by using DSolve to find a general solution of the equation:

Clear[logistic,y]
logistic=y'[t]==(r-a y[t])y[t];
sol=DSolve[logistic,y[t],t]

{({Y[t] => =mmmmmmmmmmmeee Yo {Y[E] -> 0}}
a E + r C[1]

We see that the function y=0 is a (trivial) solution to the equation. We are only interested in
the first solution which we extract from sol with so1[[1,1,2]].

sol[[1,1,2]]

a E + r C[1]
Applying the initial condition y(0) =y to solve for C[1], we find that

cval=Solve[Evaluate[sol[[1,1,2]] /. t->0]==y0,C[1]]

({C11] => ——————-- 1}

and evaluating sol[[1,1,2]] for the value obtained above yields the solution which we
define as y. We define y as a function of t, y0, r, and a so that we can refer to this solution
in other problems without solving the differential equation again.

yit_,v0_,r_,a ]=sol[{1,1,2]] /. cval[[1l]]//Together
rt

E r y0

r - ayd + aE yO0

The solution can also be written as
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ry o

y= ay, +(r~ayn)e*" )

Notice that limy(t)= L
o0 a

EXAMPLE: Use the logistic equation to approximate the population of the United
States using r=0.03, 2=0.0001, and yg = 5.3. Compare this result with the actual
census values given in the table below. Use the model obtained to predict the
population of the United States in the year 2000.

Year (t) Population Year (t) Population

(in millions) (in millions)

1800 (0) 5.30 1900 (100) 76.21

1810 (10) 7.24 1910 (110) 92.23

1820 (20) 9.64 1920 (120) 106.02

1830 (30) 12.68 1930 (130) 123.20

1840 (40) 17.06 1940 (140) 132.16

1850 (50) 23.19 1950 (150) 151.33

1860 (60) 31.44 1960 (160) 179.32

1870 (70) 38.56 1970 (170) 203.30

1880 (80) 50.19 1980 (180) 226.54

1890 (90) 62.98 1990 (190) 248.71

Source: The World Almanac and Book of Facts, 1993

SOLUTION: We substitute the indicated values of r, a, and yg into
Yo

ay, +(r——ay0)e-"

States at time t, where t represents the number of years since 1800,

0.03¢5.3 _ 0.159
0.0001¢5.3+(0.03-0.000105.3)e-  0.00053+0.02947¢-0% *

y= to obtain the approximation of the population of the United

y(t)=

We compare the approximation of the population of the United States given by the
approximation y(t) with the actual population obtained from census figures. First,
we enter the data represented in the table as data and then graph the points in
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data using Graphics, Map, and Point, naming the resulting graphics object
dots. We then graph y[t,5.3,.03,.0001] for the years corresponding to 1800
to 2000 and name the resulting graph ploty. Finally, Show is used to display
dots and ploty together.

data={{0,5.30},{10,7.24},{20,9.64},{30,12.68},{40,17.06},
{50,23.19},{60,31.44},(70,38.56}, {80,50.19}, {90,62.98},
{100,76.21},{110,92.23},{120,106.02}, {130,123.20},
{140,132.16},{150,151.33},{160,179.32},{170,203.30},
{180,226.54},{190,248.71}};

dots=Graphics|[{PointSize[.015] ,Map[Point,data]}];
ploty=Plot[y[t,5.3,.03,.0001],{t,0,200},DisplayFunction->Identity];
Show[ploty,dots,DisplayFunction->$DisplayFunction]

2501

200

150

100

S50

50 100 150 200

We can also compare the data by making a table of the year, actual population,
and population predicted by y[t,5.3,.03,.0001].

Table[{data[[i,1]]+1800,data[[i,2]],y{data[[i,1]],5.3,.03,.0001]},
{i,1,20}]//TableForm

1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990

5.3
7.24
9.64
12.68
17.06
23.19
31.44
38.56
50.19
62.98
76.21
92.23
106.02
123.2
132.16
151.33
179.32
203.3
226.54
248.71

5.3
7.1103
9.51898
12.7082
16.9038
22.3766
29.437
38.417
49.6339
63.3328
79.6105
98.3335
119.081
141.141
163.594
185.448
205.817
224.047
239.782
252.941
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To predict the population of the United States in the year 2000 with this model, we
evaluate

¥[200,5.3,.03,.0001]

263.66

Thus, we predict that the population will be approximately 263.66 million in the
year 2000. Note that projections of the population of the United States in the year
2000 made by the Bureau of the Census range from 259.57 million to 278.23
million. W

Application: Newton's Law of Cooling

Newton's Law of Cooling states that the rate at which the temperature T(t) changes in a
cooling body is proportional to the difference between the temperature of the body and the
constant temperature Tg of the surrounding medium. This situation is represented as the

first-order initial value problem Lji—f=k(T—Ts) subject to T(0)=T,, where Ty is the initial

temperature of the body and k is the constant of proportionality. We solve a problem
involving Newton's law of cooling in the following example.

EXAMPLE: A pie is removed from a 350° oven. In 15 minutes, the pie has a
temperature of 150°. Determine the time required to cool the pie to a temperature
of 80° so that it may be eaten.

SOLUTION: Newton's Law of Cooling states that an object of higher temperature
than its environment cools at a rate that is proportional to the difference in

temperature: Z—f: k(A-T), where k is a positive constant, A is the surrounding

temperature, and T is the temperature of the object. The general solution, which
depends on the parameters of the problem, is determined. Here, the resulting
function is called temp, the surrounding temperature temps, the initial
temperature temp0, and the constant of proportionality k. The solution based on
the data indicated in this example is then easily found.

del=DSolve[{tp'[t])==~k (tp[t]-tempS),tp[0]==tempO},tp[t],t])
{{tpit] ->

-tempS + temp0



382 6 Applications Related to Ordinary and Partial Differential Equations

temp[tempS ,temp0_,k_,t_ ]=del[[1,1,2]]

-tempS + temp0

The solution using the parameter values needed for this problem is given below.

temp([75,350,k,15}

Since the constant k is unknown, it is determined below with Solve and called k1
for convenience. (Note that FindRoot could have been used to determine the
constant of proportionality above instead of Solve, in order to avoid the warning
messages which result with Solve.) In this case, only a portion of the result from
the Solve command is displayed.

kl=Solve[temp|75,350,k,15]==150,k]//N

Solve::ifun:

Warning: Inverse functions
are being used by Solve,
so some solutions may not
be found.

{{k => 0.0866189},

This number is extracted in the usual manner so that it can be used to determine
the time at which the pie reaches its desired temperature.

kl[i1,1,2]]
0.0866189

This is accomplished with FindRoot by, first, plotting the solution to obtain an
estimate of the time at which the temperature is 80 degrees and then, using this
initial approximation with FindRoot. Since the value of the function seems to
equal 80 near t = 40, the initial guess of 40 is used to achieve the more accurate
value of t = 46.264.
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Plot[temp[75,350,k1[[1,1,2]],t],{t,0,50}]
350
300
250
200
150

100

10 20 30 40 S0
FindRoot [temp[75,350,k1[[1,1,2]],t]==80,{t,40}]

{t -> 46.264) W

Application: Free-Falling Bodies

The motion of objects can be determined through the solution of a first-order equation.
We begin by explaining some of the theory which is needed to set up the differential
equation that models the situation.

Newton’s Second Law of Motion: The rate at which the momentum of a body
changes with respect to time is equal to the resultant force acting on the body.

Because the body’s momentum is defined as the product of its mass and velocity, this

statement is modeled as

%(mv)=F

where m and v represent the body’s mass and velocity, respectively, and F is the sum of
the forces acting on the body. Because m is constant, differentiation leads to the well-

known equation

dv
m— =F.
dt

If the body is subjected to the force due to gravity, then its velocity is determined by
solving the differential equation

mi =mg or & g
dt dt
where g =32 ft/ s2 (English system) and 9.8 m/ s? (metric system).

This differential equation is applicable only when the resistive force due to the medium
(such as air resistance) is ignored. If this offsetting resistance is considered, we must
discuss all of the forces acting on the object. Mathematically, we write the equation as
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dv . .
m—r= Z(forces acting on the object)

where the direction of motion is taken to be the positive direction.

We use a force diagram to set up the differential equation which models the situation.
Because air resistance acts against the object as it falls and g acts in the same direction of
the motion, we state the initial value problem in the form given below.

dv dv
mE= mg+(—FR) or mﬁzmg—FR

where FR represents this resistive force. Note that down is assumed to be the positive
direction. The resistive force is typically proportional to the body’s velocity (v) or the
square of its velocity (v?). Hence, the differential equation is linear or nonlinear based on
the resistance of the medium taken into account.

negative direction

F
R

object

24

positive direction

Force Diagram

EXAMPLE: An object of mass m = 1 is dropped from a height of 50 feet above the
surface of a small pond. While the object is in the air, the force due to air
resistance is v. However, when the object is in the pond, it is subjected to a
buoyancy force equivalent to 6v. Determine how much time is required for the
object to reach a depth of 25 feet in the pond.

SOLUTION: This problem must be broken into two parts: an initial value problem
for the object above the pond, and an initial value problem for the object below the
surface of the pond. Using techniques discussed in previous examples, the initial
value problem above the pond'’s surface is found to be

d—v=32—v, 20)=0.
dt
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However, to define the initial value problem to find the velocity of the object
beneath the pond’s surface, the velocity of the object when it reaches the surface
must be known. Hence, the velocity of the object above the surface must be

determined by solving the initial value problem above. The equation % =32-vis
separable and solved with DSolve in d1.

Clear([v,y]
dl=DSolve[{v'[t]==32-v[t],v[0]==0},v[t],t]
32
{{v{t] -> 32 - --}}

t
E

In order to find the velocity when the object hits the pond’s surface we must know
the time at which the position of the object is 0. Thus, we must find the position
function, which is done by integrating the velocity function, obtaining
y(t)=32e-t +32t - 32.

pl=DSolve({{y'(t]==d1[[1,1,2]],y[0]==0},y[t],t]

32

{{y[t] -> =32 + -- + 32 t}}
t
E

The position function is graphed below The value of t at which the object has
traveled 50 feet is needed. This time appears to be approximately 2.5 seconds.

Plot[{pl[[1,1,2]],50},(t,0,5}]

120
100
80

60

40

20
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A more accurate value of the time at which the object hits the surface is found
using FindRoot. In this case, we obtain t~2.47864. The velocity at this time is
then determined by substitution into the velocity function resulting in
v(2.47864) = 29.3166. Note that this value is the initial velocity of the object when it
hits the surface of the pond.

t1=FindRoot{pl[[1,1,2]]1==50,{t,2.5}]

{t -> 2.47864}
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vli=d1l{{1,1,2]] /. t1
29.3166
Thus, the initial value problem which determines the velocity of the object beneath

the surface of the pond is given by % =32-60, v(0)=29.3166. The solution of this
initial value problem is o(t)= %+23.9833e4, and integrating to obtain the position

function (the initial position is 0), we obtain y(t)=3.99722 - 3.99722¢-: +1?6t. These
steps are carried out in d2 and p2 below.
d2=DSolve[{v'[t]==32-6v[t],v[0]==v1},v[t],t]
16  23.9832
(V] => —= + —mmmeee b
3 6 t
p2=DSolve[{y'[t]==d2[[1,1,2])],y(0]==0},y[t],t]
3.99721 16 t
{{ylt] => 3.99721 - —=eeee-o + —--—=}}

6 t 3
E

This position function is then plotted to determine when the object is 25 feet
beneath the surface of the pond. This time appears to be near 4 seconds.

Plot[{p2((1,1,2]],25},{t,0,5}]

30

25

20

15

A more accurate approximation of the time at which the object is 25 feet beneath
the pond’s surface is obtained with FindRoot. In this case, we obtain # =~ 3.93802.
Finally, the time required for the object to reach the pond’s surface is added to the
time needed for it to travel 25 feet beneath the surface, to see that approximately
6.41667 seconds are required for the object to travel from a height of 50 feet above
the pond to a depth of 25 feet below the surface.
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t2=FindRoot[p2[[1,1,2]]==25,{t,4}]
{t -> 3.93802}
t1[[1,2]1+t2[[1,2])]

6.41667

6.2 Higher-Order Ordinary
Differential Equations

An ordinary differential equation of the form

n

Z a, (x)y®(x)=a, (x)ym(x}+a,_ (X)yeD(x)+...+a,x)y’(x)+ a Ay (x)=£(x)

k=0

is called an nth order ordinary linear differential equation. If f(x) is identically the zero
function, the equation is said to be homogeneous; if f(x) is not the zero function, the
equation is said to be nonhomogeneous; and if the functions a;(x), i=0, 1, 2, ... , n are

constants, the equation is said to have constant coefficients.
Let f1(x), fo(x), f3(x), ..., f5_1(x), and f,(x) be a set of n functions at least n—1 times

differentiable. S is linearly dependent on an interval I means that there are constants c,,

c,,...,c, not all zero, so that c.f.(x)=0 for every value of x in the interval I. S is linearl
2 n kJ Kk y y
k=1

independent means that S is not linearly dependent. The Wronskian of S, denoted by
W(S)= W(fl(x), £(x), £,), ..., £ (%), fn(x)), is the determinant

fi(x) L) - f)
we=| M AW
D) L) e £

The following theorem can help us determine if a set of functions is either linearly
dependent or linearly independent.

Theorem: Let f1(x), f5(x), f3(x), ..., f;,_1(x), and f,(x) be a set of n functions at least
n—1 times differentiable. If W(S)# 0 for at least one value of x in the interval I, S is
linearly independent.
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Application of this theorem with the help of Mathematica is illustrated in the example
below.

EXAMPLE: Show that S={ex,xer, x%} is linearly independent.

SOLUTION: The Wronskian of S is

d d xZ er gx xex x2ex
W(S)= a—(e‘) y (xer) —(x2er)[=ler (x+Dex  (x2+2x)er |.
dazc szc a2 e (x+2)er (x2+4x+2)er
(e¥) (xer) ——(x%)
dx? dx? dx?

We compute this below with Mathematica by defining caps to be the list of
functions consisting of er, xer; and x2ev; and matrix to be the matrix

' x2er

d v _d— X i X
E(e ) dx(xe ) dx(xze ) |-
&,

2

d
) ) e

We then use Det to compute the determinant of matrix.

caps={Exp[x],x Exp{x],x"2 Exp[x]};

matrix={caps,D[caps,x],D[caps,{x,2}]};
TableForm{matrix]

b4 X x 2
E E x E x
X X X X X 2
E E + E x 2 E x+E X
b4 X X X X x 2
E 2E +E x 2 E +4E x+E X
Det[matrix]
3 x
2 E

Since the Wronskian is 2e3 #0, the set of functions is linearly independent. Bl

An alternative approach, which will allow us to quickly compute the Wronskian of
other sets of functions, begins by defining the function wronskian. The command

wronskian is defined to compute the Wronskian of a list of functions in the variable x.
wronksian[list] computes the Wronskian of the list 1ist by:
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@ N

Defining the variables n, r, and matrix local to the procedure wronskian;

Defining n to be the number of elements of 1ist;
Defining r[1] to be the 1 x n matrix 1ist. Note that r[ 1] corresponds to the

vector ( fix) f,x) - f (x)), which corresponds to the top row of the matrix
fi(x) L) - fix)
0w

7

) £ )

Defining r[k] to be the derivative of r[k-1].r[k] corresponds to the kth
row of the matrix

fx)  flx) - f(X)
w0

£ £ e )

7

Defining matrix to be the matrix

ey £l e f(x)
O

ﬁ(n-i)(x) fz(n-i)(x) j:,("_b(x)

; and

Computing and returning the determinant of matrix corresponding to the
Wronskian of 1ist.

We define this function below.

wronskian[list_]:=Module[{n,r,matrix},

n=Length[list];

r{l]=list;
r[k_]:=r(k]=D[(r[k-1],x];
matrix=Table[r{i],{i,1,n}];
Det[matrix]];

EXAMPLE: Determine if the set of functions {cosx,cos2x,cos3x,cos4x} is linearly
independent.

SOLUTION: We use wronskian, defined above, to compute the Wronskian of
the set of functions.
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trigex=wronskian( {Cos[x],Cos[2x],Cos[3x],Cos[4x]}]
-42 Cos[3 x] Cos[4 x] Sin[x]) Sin{2 x] +
288 Cos[2 x] Cos[4 x] Sin[x] Sin[3 x] -
450 Cos[x] Cos[4 x] Sin[2 x] Sin[3 x] -
300 Cos{2 x] Cos[3 x)] Sin[x] Sinf4 x] +
768 Cos[x] Cos[3 x] Sin[2 x] Sin[4 x] -
252 Cos[x] Cos[2 x] Sin[3 x] Sin(4 x]
To see that this is not the zero function, we use Simplify to simplify trigex.
Simplify[trigex]

6
96 (18 + 16 Cos[2 x] + Cos[4 x]) Sin[x]

The output above is not the zero function since it is not zero when x =§ as shown

below.
trigex /. x->Pi/2

288
|

Aset 5= {fl(x), £, £,(x), ..., £ _,(x), fn(x)} of n linearly independent non-trivial solutions of
the nth order linear homogeneous equation

a (x)y®0)+a_ 0)ye-D(x)+...+a,(x)y®(x)+a,(x)=0

is called a fundamental set of solutions of the equation. Observe that if $={f(x)}" is a
fundamental set of solutions of

n

Z a,()y®(x)=a, (x)y™()+a_, (x)ye-D(x)+...+a,(x)y"(x)+a (x)y(x)=0

i=0

and {Ci}; is a set of n numbers, then f(x)=2cifi(x) is also a solution of Zai(x)y@(x):O.
i=1 i=0

The following two theorems tell us that under reasonable conditions the nth-order

homogeneous equation a (x)y®(x)+a_ (x)ye{x)+...+a (X)y?(x)+a,(x)=0 has a

fundamental set of n solutions.
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Theorem: If aj(x) is continuous on an open interval I for i=0, 1, ..., n, then the nth-

order linear homogeneous equation Zai(x)yh)(x)zo has a fundamental set of
i=0
solutions on I.

Theorem: Any set of n+1 solutions of the nth-order linear homogeneous equation

Zai(x)y(”(x) =0 is linearly dependent.

i=0
If s ={f[(x)}:':1 is a fundamental set of solutions of the nth-order linear homogeneous

equation Zai(x)y@(x): 0, then a general solution of the equation is f(x)= ZCifi(x), where

i=0 i=l

{c}" is a set of n arbitrary constants.
1Ji=1

The equation
n
am"+a m*l+...+am+a,= E amk=0
n n-1 1 0 k
k=0

is called the characteristic equation of the nth-order homogeneous linear differential

equation with constant coefficients a y®(x)+a,_ y®(x)+...+a,y'(x)+ay(x)= Zakyﬂd(x) =0.
k=0

The general solutions of the nth-order homogeneous linear differential equation with

constant coefficients are determined by the solutions of its characteristic equation.

The Homogeneous Second-Order
Equation with Constant Coefficients

Let ay”+by +cy=0 be a homogeneous second-order equation with constant coefficients,
and let mj and my be the solutions of the characteristic equation am? +bm+c=0.

(a) If m #m, and both mj and m are real, a general solution of ay”+by +cy =0 is

(H)=cemt +cem!;
y 1 2

(b) If m,=m, and both mj and m; are real, a general solution of ay”+by’+cy=0 is

y(t)=cemt +c,femt; and
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() If m=a+if, f#0,and m = m_z, a general solution of ay”+by +cy=0 is
y(t)=ce* cos Bt+c,exsinft.
In (c) above, m, is the complex conjugate of m,: m, =a—if=a+if.
Mathematica is useful in solving these equations and plotting the corresponding
solutions.

EXAMPLE: Find the solution of each problem:
(a)3y”+2y’ -5y =0;
(b) 2y” +5y’+5y =0 subject to the initial conditions y(0)=0 and y’(0)= % ; and

(c) y”+4y’ +4y =0 subject to the initial conditions y(0)=0 and y’(0)= —%.

SOLUTION: In each case, DSolve is used to find an exact solution. For (a), we
have:

solution=DSolve[3y''[x]+2y'[x]-5y[x]==0,y[%x],x]

C[1) X
{({y[x] => ——=---—- +E C[2]}}

When DSolve is used to solve (b), the resulting solution is expressed as a complex
exponential. To see that the solution is real, we use ComplexExpand.

solution=DSolve[{2y''[x]+5y' [x]+5y[x]==0,y[0]==0,y'[0]==1/2},¥(%x],x]

{{ylx] ->
((=5 - I Sqrt[15]) x)/4
IE
Sqrt[15]
((-5 + I sqrt(1l5]) x)/4
IE

Sqrt([15]

Notice that solution is a nested list. solution[[1,1,2]] yields the second
element of the first element of the first element of solution. In other words,
solution[[1,1,2]] yields the expression corresponding to the desired
solution. ComplexExpand is used to expand solution{[1,1,2]] assuming
that x is real. The result is clearly a real-valued function.
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simp=solution{[1,1,2]]//ComplexExpand
Sqrt[15]) x

(5 x)/4
Sqrt[15] E

Finally, the solution is graphed on the interval {-n/2,n].

Plot[simp, {x,-Pi/2,Pi}]

Similarly DSolve successfully solves (c).
solution=DSolve({y''[x]+4y'[x]+4y[x]==0,y[0]==1,y'[0]==-1/2},¥[%],x]

-2 x 3 x
{{y[x] -> E + e 13

The result is then graphed on the interval [-1,1]. Note that the command
Plot[solution[[1,1,2]1],{x,-1,1}] would produce the same result.

Plot[y[x]/.solution, {x,-1,1}]
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In the same manner as in the case for a second-order homogeneous equation with real
constant coefficients, a general solution is also determined by the solutions of the
characteristic equation. Instead of stating an exact rule for the numerous situations
encountered, we illustrate how a general solution is found in the following examples.

The command DSolve can be used to solve nth-order linear homogeneous differential
equations with constant coefficients as long as n is smaller than 5. In cases when the roots
of the characteristic equation are symbolically complicated, approximations of the roots of
the characteristic equation can be computed with the commands Solve or NRoots.

EXAMPLE: Find a general solution of 9y® —6y” +46y” —6y’+37y =0.

SOLUTION: The characteristic equation of 9y®-6y” +46y”-6y'+37y=0 is
9x4 —6x3 +46x2 —6x +37 =0, solved below with Solve.

Solve[9x"4-6x"3+46x"2-6x+37==0]

1 1
({x => -I}, {x => I}, {x => - = 2 I}, {x => - + 2 I}}
3 3

Since the solutions of the characteristic equation are x=#+i and x= % +2i, a general

solution of the equation is given by y=c, cosx+c,sinx+e/3(c, cos2x +c,sin2x). Since
the order of the equation is 4, which is smaller than 5, DSolve can also be used to
find a general solution. Below, we first define eq to be the equation
9y® —6y” +46y” -6y’ +37y =0, and then use DSolve to find a general solution of
eq, naming the resulting output sol.

Clear[eq,sol]
eq=9D[y[x],{x,4}1-6D[y[x],{x,3}]1+46y' ' [x]-6y' [x]+37y[x]==0;
sol=DSolve[eq,y[x],x]

x/3
{{y[x] -> C[2] Cos[x] + E C[4] Cos[2 X] - C[1] Sin[x] -

x/3
E  C[3] sin[2 x]}}

Note that the explicit form of the solution is extracted from sol with
sol[[1,1,2]]. To graph the solution for various values of the constants, we
define tograph to be the table of functions obtained by replacing each occurrence
of C[1],C[2],C[3],and C[4] insol[[1,1,2]] byij k and m, respectively,
for i=0 and 1, j=—1 and 0, k=0 and 1, and m=-1 and 0. The result of the Table
command is a 2x2x2x2-dimensional array so Flatten is used to remove
parentheses from the result of the Table command. Thus, tograph is a 1-
dimensional array consisting of 16 functions.
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tograph=Table[sol[[1,1,2]] /. {C[1l]->i,C[2]->),C[3]->k,C[4]->m},
{iloll}l{jl_llo}l(klol 1),{m,-1,0}]//Flatten;
Length[tograph]

16

395

To avoid having messy graphs, we graph the first eight functions in tograph by
defining first to be the first eight functions in tograph. Similarly, we graph the
second eight by defining second to be the last eight functions in tograph. Both

first and second are displayed in an abbreviated one-line form with Short.

first=Take[tograph,8];
Short[first]
second=Take[tograph,-8];

Short[second]
x/3 x/3
{-Cos{x] - E Cos[2 x], =-<<1>>, <<5>>, ~(E Sin{2 x1})}
x/3
{-Cos[x] - E Cos[2 X] - Sin[x], <<6>>, -<<1>> + <<1>>}

pl=Plot[Evaluate[first], {x,0,2Pi}]

p2=Plot[Evaluate[second], {x,0,2Pi}]
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Nonhomogeneous Equations with Constant
Coefficients: Variation of Parameters

Let p(x), q(x), and f(x) be continuous on an interval I. The associated homogeneous
equation of y”(x)+p(x)y’(x)+g(x)y(x) = f(x) is y”(x)+p(x)y’(x)+g(x)y(x)=0. Let y1(x) and y2(x)
form a fundamental set of solutions for the associated homogeneous equation of

" , _ _ -y, (x)f(x)
y7(x)+ p(x)y () + glx )y (x) = f(x). Let ul(x)—J‘yl(x)y;(x)_y;(x)yz(x)
y,(x) f(x)

“= [ty
Y () +p(x)y’'(x)+g(x)y(x) = f(x), and a general solution is y(x)=c,y,(x)+ czyz(x)+yp(x).

and

dx. Then, y,(x)= ¥, (), (x)+y,(x)u,(x) is a particular solution of

We show how Mathematica can be used to assist in the Method of Variation of
Parameters in the example below.

EXAMPLE: Solve y” +4y’+13y = xcos?3x.

SOLUTION: The associated homogenous equation of the equation
y”+4y’ +13y=xcos23x is y”+4y +13y=0, which has characteristic equation
m2+4m+13=0. Since the symbols y1, y2, yc, yp, ul, and u2 will be used in
constructing the solution, all prior definitions are first cleared and then the
characteristic equation is solved for m:

Clear[yl,y2,yc,yp,yY,ul,u2, f]
Solve[m"2+4m+13==0]

{{m -> -2 - 3 I}, {m -> =2 + 3 I}}
Since the solutions of the characteristic equation are -2-3i and -2+3i, a
fundamental set of solutions of y”+4y’+13y=0 is {e= cos3x,e-**sin3x}. Therefore,

we define f(x)=xcos?3x, y,(x)=e?rcos3x, and y,(x)=e 2 sin3x:

£f{x_]=x Cos[3x]"2;
yl[x_]=Exp[-2x]Cos[3x];
y2[x_]=Exp[-2x]Sin[3x];

y, () y,(x)
y,(x) y;(x)

and wronskian = =3e4r,

wronskian=Det [{{yl[x],y2[x]},D[{yl[x],y2[x]},x]}}])//Simplify

3

4 x
E
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To find a particular solution of y”+4y +13y=xcos?3x, we first define
-y, (%) f(x)

ulprime= -
wronskian

ulprime=-y2[x] f[x)/wronskian

2 x 2
-(E x Cos[3 x] Sin[3 x])

20080

and then compute uy(x) = julprime dx = -
wronskian

ul[x_]=Integrate[ulprime, x]

2 x 2 x
(-86700 E Cos(3 x] + 281775 E x Cos[3 x] -

2 x 2 x
6084 E Cos[9 x] + 129285 E x Cos[9 x] -

2 x 2 x
36125 E Sin[3 x] - 187850 E X Sin[3 x) -

2 x 2 x
13013 E Sin[9 x] - 28730 E X Sin[9 x]) / 14652300

y () fx)

Similarly, we define u2prime= e
wronskian

u2prime=yl[x] f[x]/wronskian

2 X 3
E x Cos[3 x]
3
X X
and then compute u,(x)= JuZprime dx = L()f(—')dx.
wronskian
u2[x_]=Integrate[u2prime, x]
2 x 2 X

(108375 E Cos[3 x] + 563550 E x Cos[3 x] +

2 x 2 x
13013 E Cos[9 x] + 28730 E x Cos[9 x]) -

2 x 2 x
260100 E Sin[3 x] + 845325 E x Sin[3 x] -

2 x 2 x
6084 E Sinf[9 x) + 129285 E X Sin[9 x]) / 14652300
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Then a particular solution of y”+4y +13y=xcos?3x is given by
y,(x) =y, (Du, (x)+y,(x)u,(x):

YP(x_]=yl{xJulfx]+y2[x]u2[x]

2 x 2 x
(Cos[3 x] (-86700 E Cos[3 x] + 281775 E x Cos[3 x] -

2 x 2 x
6084 E Cos[9 x] + 129285 E X Cos[9 x] -

2 x 2 x
36125 E Sin[3 x] - 187850 E x Sin[3 x] -

2 x 2 x
13013 E Sin[9 x] - 28730 E x 8in[9 x1)) /

2 x
(14652300 E ) + (Sin[3 x]

2 x 2 x
(108375 E Cos[3 x] + 563550 E x Cos[3 x] +

2 x 2 x
13013 E Cos[9 x] + 28730 E x Cos[9 x] -

2 x 2 x
260100 E Sinf3 x] + 845325 E x Sin[3 x] -

2 x 2 x
6084 E Sin[9 x] + 129285 E x Sin[9 x])) /

2 x
(14652300 E )

and a complimentary solution of y”+4y’+13y =0 is given by y (x)=cy,(x)+c,y,(x):
yc[x_]l=cl yl[x]+c2 y2[x]

cl Cos[3 x] c2 Sin[3 x]

so a general solution of y”+4y’+13y = xcos?3x is given by y(x)=y (x)+y,(x).

ylx_]l=yc[x]+yplx]

cl Cos[3 x] c2 Sin(3 x]
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2 x 2 x
(Cos[3 x] (-86700 E Cos[3 x] + 281775 E x Cos[3 x] -

2 x 2 x
6084 E Cos[9 x] + 129285 E x Cos[9 x] -

2 x 2 x
36125 E Sin[3 x] - 187850 E x Sin(3 x] -

2 x 2 x
13013 E Sin[9 x] - 28730 E x Sin[9 x1)) /

2 x
(14652300 E ) + (Sin[3 x]

2 x 2 x
(108375 E Cos[3 x] + 563550 E x Cos{3 x] +

2 x 2 x
13013 E Cos[9 x] + 28730 E x Cos[9 x] -

2 x 2 x
260100 E Sin[3 x] + 845325 E x Sin[3 x] -~

2 x 2 x
6084 E Sin[9 x] + 129285 E X Sin{9 x1)) /

2 x
(14652300 E )

In order to graph various solutions corresponding to different values of ¢; and ¢y,
we first create a table of functions tograph which we display in an abbreviated
six-line form with Short:

tograph=Table[y[x], {c1,-5,5,5},({c2,-4,4,2}];
Short[tograph, 6]

-5 Cos[3 x] 4 Sin[3 x]
{{====mmmmmmm = o + <<1>> +

(Sin[3 x] (108375 E Cos[3 x] +

2 x 2 x
563550 E X Cos[3 x] + 13013 E Cos[9 x] +

2 x 2 x
28730 E x Cos[9 x] - 260100 E Sin[3 x] +

2 x 2 x
845325 E x Sin{3 x) - 6084 E Sin[9 x] +
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2 x 2 X
129285 E X Sin[9 x]1)) / (14652300 E }, <<4>>3\

, <<1>>, {<<5>>}}
and then graph the table tograph on the interval [-1,1]:

Plot[Evaluate[tograph], {x,-1,1},PlotRange->{-20,20},PlotPoints->100]

DSolve can frequently be used to find solutions of equations that can be solved using
the method of Variation of Parameters.

EXAMPLE: Solve y”-2y'+y=¢xInx,x>0.

SOLUTION: We use DSolve to find a general solution of the equation, naming
the resulting output sol. The explicit form of the solution is extracted from sol
with sol[[1,1,2]].

sol=DSolve[y' ' [x]-2y'[x]+y[x)==Exp[x]Log[x],y[x],x]

x 2 x 2
-3 E x X X E x Log[x]

H{y[x] -> -=—————- +E C[1] +E X C[2] + =mmec—mmmm—m 3}

To graph the solution for various values of the constants, we define tograph to be
the table obtained by replacing each occurrence of C[1] and C[2] in
sol[[1,1,2]] byiandj, respectively, for i=—3, -2, and -1 and j=1 and 2.

tograph=Table[solf[1,1,2]] /. {C[l]->i,C[2]->F},{i,-3,-1},{3,1,2}]1;

We then use Plot to graph the functions in tograph. Note that the solutions
obtained are only valid for x>0; thus we obtain several error messages, since we
request that the solutions be graphed on the interval [0,5]. Nevertheless, the
resulting graphs are displayed correctly.
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Plot[Evaluate[tograph], {x,0,5}]

Infinity::indet:
0. 1. (-Infinity)
Indeterminate expression ——————me-e——mmeo encountered.

80
60
40
20
] 3 4 S
-20

Cauchy-Euler Equations

-
o
o

A Cauchy-Euler differential equation is a differential equation of the form

a xry®(x)+a,_xolyeD(x)+.. +axy(x)+a,y(x)=glx),

where {ai}i":o is a collection of constants.

Let ax2y”+bxy +cy=0 be the general second-order homogeneous Cauchy-Euler
equation. The equation am(m—1)+bm+c =0 is called the auxiliary equation of the Cauchy-
Euler equation of order two. The solutions of the auxiliary equation completely determine
the general solution of the homogeneous Cauchy-Euler equation of order two. Let m; and
my denote the two solutions of the equation am(m-1)+bm+c=0, which is obtained by
assuming solutions of the form y=x™, x >0.

(a) If m #m, are real, then a general solution of ax2y”+bxy +cy=0 is
y=cxm+c,xm;
(b) If m, =m,, then a general solution of ax2y”+bxy’ +cy=0 is

y=cxm +c,xmIn(x); and

() If m=m,=a+ipB, B=0, then a general solution of ax2y”+bxy +cy=0 is

y= xa[c1 cos(BIn(x)) +c, sin(ﬂln(x))] .
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The auxiliary equation of higher-order Cauchy-Euler equations is defined in the same way,
and solutions of higher-order homogeneous Cauchy-Euler equations are determined in the
same manner as solutions of second-order homogeneous differential equations with
constant coefficients. Note that in some cases the method of variation of parameters can be
used to solve nonhomogeneous Cauchy-Euler equations. Below, we solve a third-order
homogeneous Cauchy-Euler equation.

EXAMPLE: Solve x3y” +16x2y” +79xy’+125y =0.

SOLUTION: We proceed by defining eq to be the equation
Xy +16x2y” +79xy +125y =0

and then using DSolve to find a general solution of the equation, naming the
resulting output sol.

Clear(x,y,eq]
eq=x"3 y'''[x]+16x"2 y''[x]}+79x y'[x]+125y[x]==0;
sol=DSolve[eq,y({x], X]

C[l] C{3] Cos[3 Log[x]]) C[2] Sin[3 Log[x]]
{{yIX] -> === + e mmem & e 1}
5 4 4
X X X

To graph the solution for various values of the constants, we define tograph to be
the set of functions obtained by replacing each occurrence of C[1],C[2], and
C[3]insol[[1,1,2]] byl j andk, respectively, for i=—1 and i, j=0 and 4, and
k=—4 and 0. The resulting eight functions are graphed with Plot on the interval
[0.25,1.5]. The option PlotRange->{{0,3/2},{-20,20}} specifies that the
resulting graph be displayed with x-coordinates corresponding to the interval

[O, %] and y-coordinates corresponding to the interval [-20,20].

tograph=Table{sol[[1,1,2]} /. {C[1}->i,C[2]->),C[3]->k},
{i,-1,1,2},{3,0,4,4},{k,-4,0,4}];
Plot[Evaluate[tograph], {x,.25,1.5},PlotRange->{{0,3/2},{-20,20}}]

20[
15
10
5
0
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-10
-13

-20
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We may also solve this equation by traditional methods. If we assume that
y(x)=x=, then the value of eq becomes:
y(x_]=x"m;

eq

m m m m
125 x + 79 mx + 16 (-1l +m)mx + (-2 +m) (-1l +m)mx ==20

We can solve this equation directly or we can divide the left-hand side of the
equation by x» and factor the result. We interpret the resulting output to mean
that the auxiliary equation of x%y”+16x2y”+79xy’+125y=0 is

(m+5)(m2+8m+25)=0.
eq[[1]]/x"m//Cancel//Factor

2
(5 +m) (25 + 8 m + m )

We may use Solve to solve the auxiliary equation. Solving eq for m results in:

Solve[eq,m]

Solve::ifun: Warning: Inverse functions are being used by Solve, so
some solutions may not be found.
{{m -> -5}, {m => -4 - 3 I}, {m -> -4 + 3 I}, {m -> -Infinity}}

Since we are only interested in the real and complex solutions, we conclude that
the solutions of the auxiliary equation are m=-5 and m=-4%3i. Thus, a general

solution of the equation is given by y=cx=+ x-‘*(c2 cos(3Inx)+¢,sin(3In x)) [ |

Application: Harmonic Motion

Suppose that a mass is attached to an elastic spring which is suspended from a rigid
support such as a ceiling. According to Hooke's law, the spring exerts a restoring force in
the upward direction which is proportional to the displacement of the spring.
Mathematically, this is stated as follows:

Hooke’s law: F=ks, where k>0 is the constant of proportionality or spring
constant, and s is the displacement of the spring.

Using this law and assuming that x(t) represents the position of the mass, we obtain the
2
initial value problem m%+kx =0 subject to x(0)=caand x’(0)=B. Note that the initial

conditions give the initial position and velocity, respectively. The solution, x(t), to this
problem represents the position of the mass at time t. This differential equation disregards
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all retarding forces acting on the motion of the mass, and a more realistic model which
takes these forces into account is needed. Studies in mechanics reveal that resistive forces

due to damping are proportional to a power of the velocity of the motion. Hence, F, = L

2
or F, = c(%) , where ¢>0, are typically used to represent the damping force. Then, we have

the following initial value problem, assuming that F, = c%: m%+c%+kx =0 subject to
x(0)= o and x'(0)= . Problems of this type are characterized by the value of ¢?-4mk as

follows:

(a) c2-4mk>0. This situation is said to be overdamped since the damping
coefficient c is large in comparison with the spring constant k.

(b) c¢z-4mk=0. This situation is described as critically damped since the resulting
motion is oscillatory with a slight decrease in the damping coefficient c.

() c2—4mk<0. This situation is called underdamped because the damping
coefficient ¢ is small in comparison with the spring constant k.

Mathematica can be used to investigate the solutions of various problems involving
harmonic motion as illustrated in the example below.

EXAMPLE: Classify the following differential equations as overdamped,
underdamped, or critically damped. Also, solve the corresponding initial value
problem using the given initial conditions, and investigate the behavior of the

solutions.
(a) Z%+ 8%+ 16x =0 subject to x(0)=0 and x’(0)=1;
(b) %% + 5% +4x =0 subject to x(0)=1 and x(0)=1; and

(c) %+ % +16x =0 subject to x(0)=0 and x’(0)=1.




6.2 Higher-Order Ordinary Differential Equations

SOLUTION: For (a), we identify m=1, c=8, and k=16 so that c¢? -4mk=0, which
fj;t—f + 8% +16x =0 is critically damped. After
defining de1l, we solve the equation subject to the initial conditions and name the
resulting output sol1l. We then graph the solution, extracted from soll with
soll[[1,1,2]], on the interval [0,4]. Note that replacing sol1([1,1,2]] with

x[t] /. sollinthe Plot command produces the same results.

means that the differential equation

Clear([del, x,t]
del=x''"[t]+8x’'[t]+16x[t]==0;
soll=DSolve{ {del,x[0]==0,x’'{0]==1},x[t],t]
t
{({x[t] -> ——=-}}

4 t
E

Plot[soll{[1,1,2]],{t,0,4}]

1 2 3 4

For (b), we proceed in the same manner. We identify m=1, ¢=5, and k=4 so that
2

2 —4mk=9, and the equation %+5%+ 4x=0 is overdamped. We then define de2

to be the equation and the solution of the equation obtained with DSolve, sol2,

and then graph x(t) on the interval [0,4].

Clear([de2,x,t]
de2=x''[t}+5x'[t]+4x[t]==0;
sol2=DSolve[{de2,x[0]==1,x"[0]==1},x[t],t]

{{x{t] -> -————- + ———-}}

Plot[sol2[[1,1,2]],{t,0,4}]

405
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0.8

0.6

1 2 3 4

For (c), we proceed in the same manner as in (a) and (b) to show that the equation
is underdamped because the value of ¢z - 4mkis -63.

Clear[de3,x,t]
deld=x’'[t]+x'[t]+16x[t]==0;
sol3=DSolve[{de3,x[0]==0,x'[0]==1},x[t],t]

I ((-1 - 31 Sqrt[7]) t)/2 I ((-1 + 3 I Sart[7]) t)/2
({R[E] => mmmmmm oo e 1)
Sqrt([7] Sqrt([7]
Plot[sol3{[1,1,2)],{t,0,4}]

Plot::plnr: CompiledFunction[{t}, <<1>>, -CompiledCode-}[t]
is not a machine-size real number at t = 0..

0.2

AR
1 2\/ 4

Numerical Solutions of Higher-Order Ordinary
Differential Equations

As in the case with first-order ordinary differential equations, numerical approximations
of solutions to higher-order differential equations can also be obtained with NDSolve.
This command is particularly useful when working with nonlinear equations for which
DSolve is unable to find an explicit solution. In order to illustrate the command NDSolve
for higher-order ordinary differential equations, we consider the nonlinear pendulum
equation below.
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Application: The Simple Pendulum

Another situation which leads to a second-order ordinary differential equation is that of
the simple pendulum. In this case, a mass m is attached to the end of a rod of length L
which is suspended from a rigid support. Because the motion is best described in terms of
the angular displacement 6, we let 6=0 correspond to the rod hanging vertically. The
objective is to find the motion of the mass as a function of 8, an initial position, and an
initial velocity. Assuming that the pendulum is allowed to rotate without friction, the only
force acting on the pendulum is that of gravity. Newton's second law and the relationship
s=L0 are used to establish the following initial value problem which models this situation:

2
L‘;—t?+ gsin(8)=0 subject to the initial conditions 6(0)=6, and 6'(0)=v,. Notice that this
differential equation is nonlinear. However, this nonlinear equation can be approximated
by making use of the power series expansion of sin(6) given by:
S (—1) 920 B 9 65

NN T VN
sin6)= 2,531y 3" sl

+---. Hence, for small displacements, we have the

n=0
2,
approximation sin(@) = 6. Therefore, the initial value problem becomes L%t—?— +g6=0 subject

to 6(0)=6, and 6’(0)=v,. Notice that this problem is linear and can easily be solved. Suppose
that the pendulum undergoes a damping force which is proportional to the instantaneous

velocity. Then, the force due to damping is given as F, = —bL;—(:. Incorporating this force

into the sum of the forces acting on the pendulum, we have L%?— +bii—?+ gsin(6)=0 subject

to 6(0)=6,and 6'(0)=v,. We now investigate the properties of this nonlinear differential
equation.

EXAMPLE: Use NDSolve to investigate the solutions to the damped pendulum

2,
problem % + 0.50%? +sin(6) =0 subject to the initial conditions 6(0)=6, and 6'(0)=1v,

using the following initial conditions:

(a) 6(0)=iand ’(0)=0 fori=-1,-0.5,0.5, and 1;

(b) 6(0)=0and ’(0)=i fori=-2,-1,1, and 2;

(c) 6(0)=1and 6(0)=1, 6(0)=1and 6’(0)=-1, 6(0)=-1and 6’(0)=1, and
6(0)=—1and 6’(0)=-1;

(d) 6(0)=1and 6’(0)=2, 6(0)=1and 8’(0)=3, 6(0)=-1and 6’(0)=4, and
0(0)=-1and 0’(0)=5; and

(e) 6(0)=-1and 6’(0)=2, 6(0)=~1and 0’(0)=3, 6(0)=1and 6’(0)=—-4, and
6(0)=14and 6’(0)=-5.
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SOLUTION: Notice that, in this case, the damping coefficient is relatively small
compared to the other coefficients. The differential equation is defined below as
eq. To make the calculations in solving the problem easier, we define the function
s[i,3], which uses NDSolve to solve the initial value problem with initial
position i and initial velocity j. The solution is extracted from s[i,j] with

sf{i,31001,1,2]].

Clear[eq,s]
eq=x''[t]+0.5 x'[t]+8in[x[t]]==

Sin{x[t]] + 0.5 x'{t] + x''[t] == 0
s[i_,j_]:=NDSolve[{eq,x[0]==i,x'[0]==j},x[t],{t,0,15}];

For (a), the function s is used with the values of initial positive given in tablel
below and j=0 to generate a list of four interpolating functions.

tablel={-1,-0.5,0.5,1};
solsl=Table[s[tablel[[i]],0]1((1,1,2]],{i,1,4}]

{InterpolatingFunction[{0., 15.}, <>][t],
InterpolatingFunction[{0., 15.}, <>][t],
InterpolatingFunction{{0., 15.}, <>][t],
InterpolatingFunction[{0., 15.}, <>][t]}

These four solutions are graphed below in one.

one=Plot[Evaluate[solsl], {t,0,15}]

1

12 14

-1

Next, a list of solutions is found with s using i=0 and values of initial velocity
given in table2. These functions are then graphed in two.



6.2 Higher-Order Ordinary Differential Equations

409

table2={-2,-1,1,2};
sols2=Table[s[0,table2{[i]]])[[1,1,2]]),{i,1,4}]};
two=Plot [Evaluate[sols2],{t,0,15}]

1

0
-1
-1

For (c), (d), and (e), we proceed in the same manner as in (a) and (b).

table3={{1,1},{1,-1},{-1,1},{-1,-1}};
sols3=Table[s[table3[[i,1]],table3[[i,2]11([([1,1,2])],{(i,1,4}]
three=Plot[Evaluate[sols3], {t,0,15}]

table4={{1,2},{(1,3},{-1,4},{-1,5}};
sols4=Table[s[table4[[i,1]],table4[[4i,2])]]([[1,1,2]],{1,1,4}];
four=Plot[Evaluate[sols4], {t,0,15}]

T

| 2 4Ns6-"8 10 12 14
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table5={{-1,2},{-1,3},{1,-4},{1,-5}};
sols5=Table[s[table5[[i,1]],table5[[i,2]]]1(([1,1,2]]1,{i,1,4}]
five=Plot [Evaluate[sols5], {t,0,15}]

2 4 10 12 14

Finally, all five of the plots obtained above are displayed together.

six=Show([one, two, three, four, five]

These solutions are also displayed in the form of a GraphicsArray.

Show[GraphicsArray[ { {one,two}, {three, four}, {five,six}}]]

1
0 ]
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6.3 Power Series Solutions of
Ordinary Differential Equations

Power Series Solutions about Ordinary Points

Mathematica can also be used to help construct power series solutions of ordinary
differential equations. This topic was discussed briefly in section 3.5.

Let a,(x)y"(x)+a,(x)y’'(x)+a,(x)y(x)=0 and let p(x)=M and q(x):M

a,(x) a,(x)’
a,(x)y"(x}+a (x)y'(x)+a (x)y(x)=0 is equivalent to y”(x)+ p(x)y’(x)+g(x)y(x)=0. A number xg
is an ordinary point means that both p(x) and q(x) are analytic at xg. If xg is not an
ordinary point, then xq is called a singular point.

Then,

EXAMPLE: Solve the equation y”-2xy’+2e4y =0 subject to the initial conditions
y(0)=12 and y’(0)=0.

SOLUTION: We begin by defining 1hs to be the left-hand side of the equation
y”-2xy’+2e4y=0 and then defining serleft to be the power series for 1hs
about x=0.

Clear{x,y,lhs,serleft,eqs,roots,sol]
lhs=y’'’[x]-2 x y’'[x]+2 4y([x];
serleft=Series[lhs, {x,0,6}]

(3)
(8 y[0] + y''[0}) + (6 y'[0] +y [0]) x +

(4) (3) (5)

(2 y'7[0) + —=———=~ ) X+ (m—mm——- o ) X +
2 3 6
(6) 4 (5) (7)
y [0} x -y [0] y [0] 5
—————————— + (———==—— + ——————-) x +
24 60 120
(6) (8)
4 (0] y (0] 6 7
(———----- + ) X+ 0O[x]
180 720

Since the coefficient of x' must be 0 for all values of i, we use LogicalExpand to
equate the coefficients of serleft and 0, the right-hand side of the equation, and
name the resulting system of equations egs.
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eqs=LogicalExpand[serleft==0]

(3)
8 y[0] + y’'{0] == 0 && 6 y'(0] +y [0] == 0 &&
(4)
Yy (0]
2 y''[0] ¥ ——————— == 0 §&&
2
(3) (5) (6)
y 01 y [0} y [0]
------- + cemmeme == () §& —mee——— == ) &&
3 6 24
(5) (7) (6) (8)
-y [01] y [0] -y 01 vy (0]
________ 4 mmmeeem == () §& —mm——m—em e ==
60 120 180 720

The command Table[D[y[x]), {x,i}},{i,2,8}] /. x->0] generates the list
consisting of y”(0), y”(0), ..., y®(0). We then solve egs for y”(0), y(0), ..., y®(0).
The result, named roots, is in terms of y(0) and y’(0).

roots=Solve[eqs,Evaluate[Table[D[y[x],{x,i}),{i,2,8}) /. x->0]]

(4) (7)
{{y [0] -> 32 y[0), ¥ [0] -> 24 y'[0],

(8)
y [0] -> 0, y''[0] -> -8 y[0],

(3) (5)
y (0] ->-6y'[0), ¥y [0} ->12y'[0],

(6)
y [0] -> 0}}

The solution is obtained by computing the power series for y(x) about x=0 and
then replacing each unknown by the values obtained in roots. The resulting
series is named sol.

sol=Series{y[x],{x,0,5}]) /. roots[[1]]

2 3 4y(0] x
y(0] + y'[0] x - 4 y[0] x - y'(0] X + —=--=---- +

y 0] x 6
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We then compute the value of sol when y(0)=12 and y’(0)=0. The same result is
obtained with HermiteH[ 4, x].

y[0]1=12;
y'[0]=0;
sol

2 4 6
12 - 48 x + 16 x + O[x]

HermiteH[4,x]

2 4
12 - 48 x + 16 x

In fact, the Hermite polynomials, H (x), are solutions of the ordinary differential

n

equation y”-2xy +2ny=0. The command HermiteH[n,x] yields the Hermite
polynomial H (x). The following commands compute a table of the first five
Hermite polynomials, name the resulting table ths, display ths in TableForm,
and then graph each function in ths on the interval [—4,4].

ths=Table[HermiteH[n,x],{n,1,5}1;
TableForm[ths]

2 x
2
-2 + 4 x
3
-12 x + 8 x
2 4
12 - 48 x + 16 x
5
120 x - 160 x + 32 x

Plot[Evaluate[ths], {x,-4,4}]
150

100

50

-4 4

-100

-150

In the next example, we construct a power series solution of an equation which cannot
be solved with DSolve.
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EXAMPLE: Find a power series solution of y”+f(x)y’+y=cosx, where

sinx .
fx)=9"x fx=0 subject to the initial conditions y(0)=1 and y’(0)=-1. Graph the
1ifx=0

ninth Maclaurin polynomial of the power series solution to the problem.

SOLUTION: We begin by trying unsuccessfully to use DSolve to solve the
equation. Because DSolve does not solve the equation, we then define 1hs to be
the left-hand side of the equation, and rhs to be the right-hand side.

DSolve[y’‘[x]+Sin[x]/x y’[x]+Y[x]==Cos[x],y([x], x]
Sin(x] y'[x]

DSolve(y[X] + ————————mmme + y'’[x] == Cos[x], yI[x], x]

lhs=y’’[x]+Sin[x]}/x y’[x]+Y[x];

rhs=Cos[x];
We then use Series to compute the power series expansion of 1hs about x=0
and name the resulting output ser. Note that even though % is undefined
when x=0, Mathematica is able to compute the correct series expansion.
ser=Series{lhs, {x,0,7}]
(y[0] + y'[0] + y""[0]) +

(3)
(y'[0) +y"7[0] +y [0]) x+

(3) (4)
-y’[0] y’’(0] 'y (0} 'y [0] 2
(==~=—= t e + mm———— + —————— ) X+
6 2 2 2
(3) (4) (5)
-y''foy 'y [0}y 'y [0y y (o] 3
(m——===- + ——————— t —m———— + ——————— )y X+
6 6 6 6
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(====== 4 e = e [ + mmem——— +
5040 240 144 720 720
(8) (4) (6)
y [0] 6 -y’’[0y 'y (01 'y [0]
——————— ) X + (mmmmmem e - e 4
720 5040 720 720
(7) (8) (9)
y [0} y (01 y [0] 7 8
------- + —mmmmmm + mmem——) x  + O[x]
5040 5040 5040

We then apply the initial conditions y(0)=1 and y’(0)=-1 by replacing each
occurrence of y[0] and y’ [0] in ser by 1 and -1, respectively, naming the
resulting output serone.

serone=ser /. {y[0]->1,y’'[0]->-1}

(3)
y [0l + (-1 +y'[0] +y [0]) x+

(3) (4)
1 y'[01 'y [0] 'y (0] 2

[ 4 e 4 mmmmee + mmme—m ) x +
6 6 6 6
(3) (4) (5) (6)
1 y (0] y (01 vy (01 vy (01 4
(=(-=-=) = —==———- +o—me—- R + oo ) x o+
120 12 24 24 24

(==—=m= = ————_———— + e + ~—————— + om—————— )y x  +
120 36 120 120 120
(3) (5) (6) (7)
1 y (0] Yy [0] y [0] y (01
(——-— R + mm—————— + —m———— +
5040 240 144 720 720
(8) (4) (6)
y [01] 6 -y’'(0] 'y [0] 'y (0]
——————— ) X+ (memmemm b e e e 4
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5040 5040 5040

In the same manner as above, we define sertwo to be the power series of cosx
about x=0.

sertwo=Series[Cos[x],{x,0,7}]

2 4 6
X X X 8
1 - —= + —= = ——— + 0[X]
2 24 720

Since two power series are equal if and only if their corresponding coefficients are
equal, LogicalExpand is used to equate the coefficients of the series serone and
sertwo. The resulting system of equations is named equations

equations=LogicalExpand[serone==sertwo]

(3)
-1 + y*’[0]) == 0 && -1 + y''[0] + ¥y [0] == 0 &&
(3) (4)
2 y'(0] 'y (01 'y [0]
- 4 ————— + —————— 4 —mme—— == 0 &&
3 2 2 2
(3) (4) (5)
-y’ '[0] y [0] y [0] vy [0)
------- + emmmmme + mmmmeee e == (0 &&
6 6 6 6
(3) (4) (5) (6)
1 y (01 'y (01 y [0] 'y [0O]
—{==) = —————- + ——————— + —m—m——— + ——e-eee == 0 &&
20 12 24 24 24
(4) (5) (6) (7)
y''[o1 'y (6} 'y (01 y (0] y [0}
-------------- + mmemme e 4 mmeeem == 0 &&
120 36 120 120 120
(3) (5) (6) (7)

1 y [0] Y [0] y [0) ¥y [0]
_——t e = mmm———m 4 e L p—— +
630 240 144 720 720

(8) (4) (6)
y [0] -y’’'{0)] 'y (0} 'y [0]
—————— == 0 && —m————— 2 +
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5040 5040 5040

Then, equations is solved for the unknowns and the resulting solution list is
named roots.

roots=Solve[equations]

(9) 358  (8) 1741 (7) 554
{{y (0] -> -=-, v [0] => ===, ¥y [0] => =(-—-),
105 63 45
(5) 10 (6) 1 (3)
Yy (0] -> --, vy [0}y => -, v (0] -> o0,
3 5
(4) 7
y [0] ->-(=), y''[0] -> 1}}
3

To display the first few terms of the series, we first compute the power series for
y(x) about x=0 and name the resulting series sery, and then replace y(0) by 1
y’(0) by -1, and the remaining unknowns by the values specified in roots. The
resulting series is converted to a normal expression with Normal, and the
resulting output is named solapprox.

sery=Series[y[x],{x,0,9}];
solapprox=Normal[sery] /. {y[0]->1,y’'[0]->-1} /.roots[[1]]

2 4 5 6 7 8
X 7 x X X 277 x 1741 x
l = X 4 == = ;e + ==+ mmmm = mm—eee + mm————— +
2 72 36 3600 113400 2540160
9
179 x
19051200

Finally, we graph solapprox on the interval [0,3].

pone=Plot(solapprox, {x,0,3}]

0.8}
0.6

0.4

0.2
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Power Series Solutions about
Regular Singular Points

Let xp be a singular point of y”(x)+p(x)y’(x)+q(x)y(x)=0. xq is a regular singular point

means that both (x-x )p(x) and (x —xq )zq(x) are analytic at x=x,. If xg is not a regular

singular point, xg is called an irregular singular point.
Let x=0 be a regular singular point of the equation y”(x)+ p(x)y’(x)+4(x)y(x)=0. Then, xp(x)

is analytic at x=0, so p(x}= z;)”x"*l and xzq(x) is analytic at x=0, so q(x)=2qnx"*2. If we

#=0 n=0

assume there is a constant r so that y(x):xVZa”x" is a solution of
n=0

y"(x)+p(x)y’(x) +q(x)y(x)=0, substituting this solution into the equation and equating
coefficients results in the equation r2+(p,~1)r+q, =0. This equation is called the indicial
equation of the problem. The solutions of the problem are determined by the solutions of

the indicial equation. Let r = %(1—;?0 +/1-2p, +p2-44, ) and 7, = %(1—;}0 —-1-2p, +p2-44, )
be the two solutions of the indicial equation. If r;—r, is not an integer, then there are two

linearly independent solutions of the problem of the form yl(x)zx'lzalnx" and
n=0

y(x)=xn Za%x”. If rj—1, is a non-zero integer, then there are two linearly independent

n=0

solutions of the form y (x)=x» Zamx" and y,(x)=cy,(x)Inx+xn Zamx" If ry—1, is zero, then

n=0 n=0

there are two linearly independent solutions of the problem of the form y,(x)= xflzalnx"
n=0

and y,(x)=y,(x)In(x)+xn Zamx”. In any case, if y1(x) is a solution of the problem, a second
=0

linearly independent solution is given by y,(x)= yl(x)J.f—j(W;%dx.
h\x

EXAMPLE: Find a general solution of y” - (52— - 1Jy’ + (% + x)y =0.
x x
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SOLUTION: We identify p(x)=;—2+1 and q(x)=§4—2+x so that the indicial
X X

equation is r2 + (%2 - 1)r +% =0. In this case, factoring yields the equation

r2—§r+é:(r—éj[r—lj=0
3 9 3 3

so that the solutions of the indicial equation are r, :% and r, =% and 7,-r,=1.

Since the roots of the indicial equation differ by an integer, we search for one
solution of the form

yl(x) — Zananm

n=0
and another linearly independent solution of the form

yz(x): C]/l(x)lnx+2bnxn+l/3 )

n=0

where c is a constant that may be zero. Let y (x)= Za"x"ﬂH. Then,
n=0

yi(x)= Zan(n + %)x"”“ and y{x)= Zan(n + %)(n + %Jx"-w .
n=0

n=0

Substituting y;(x) into the equation and simplifying yields

oo o

N 4
Za"n(n +Dxn2/3 4 Zan(n + 3 x4 Z“anx"*”3 =0.
n=0

n=0 n=0
Expanding and reindexing produces

(Zal +§ao)xl/3 +(6a2 +%al )x‘*“ +

Z[(n +4)(n+3)a, .+ (n + %Ojaw +a, ]x"*m =0.

n=0

Because the coefficient of x*-2/3 must be 0 for all values of i,
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2a1+§a0 =0

6az+§a1 =0

(n+4)n+3)a, ., + (n + ?)um +a,=0forn=0,...

We then use Mathematica to find the values of a,. With the following command,
we solve for aj in terms of aj and name the resulting output al.

Clear[a,b,al,a2,as,bl, b2,bs,c]
al=Solve[2a[1]+4/3a[0]==0,a[1]]

{{ar1) -> —--—--- }}

Similarly, we solve for a, in terms of a; and then replace a; by the value obtained
inal:

a2=Solve(6a[2]+7/3a[l]==0,a[2]]

-7 a[l)
{{a[2] -> ------- 1}
18
a2 /. al[[1l]]
7 a[0]
{{a[2] -> ---—-~ +}
27

Finally, we solve (n+4)(n+3)a, ,+ (n + ?)a +a,=0 for g _,, naming the resulting

n+2 1+37

output an3, and then replace each occurrence of nin an3 by n-3.
an3=Solve| (n+4) (n+3)a[n+3)+(n+10/3)a[n+2]+a[n)==0,a[n+3]]
-(3 a[n] + 10 a[2 + n] + 3 n a[2 + n])
{{a[3 + n] -> —-—ommmmm e e }}
3 (3 +n) (4 +n)

an3 /. n->n-3//ExpandAll

-3 a[-3 + n) al-1 + nj 3 n af-1 + nj
{{a[n] -> ---—----—-—- - —m——————me - —ee——————— }}
2 2 2
3n+3n 3n+3n 3n+3n
-3a_,—a _ —3na

2l Let

The result means that for n23, a =
" 3n2+3n
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y,(x)=cy,(x)Inx+ anx"““ = clnxz a x4 anx”””

n=0 n=0 n=0

be a second linearly independent solution of the equation. Then,

y;(x)= annxml/S +cy1’lnx+2b"(n+%)xn-2/a

n=0 n=0

and

yAx)= zmn(" + %Jx’**m +ey/Inx + an(n + %)(n - %)x““ ;
n=0

n=0

Substituting into the equation and simplifying yields

Zn(n -1 x5+ Z[C(?ﬂ;— D) a + 3n3+ ! bn}x"-2/3 +
n=0

n=0

E ca xml3 4 E bxn+4/3 =0.
H H

n=0 n=0

Expanding and reindexing results in

(:;—ao +%b0]x>2/3 +

(sz +%a1 +§b +Ca0)x1/3 +

1

Z[(n+3)(n+2)b LHBn5), ST, +Ca,1+1+bn]x'”“3=0-

n+3 3 n+2 3 n+2

n=0

Because the coefficient of x-2/3 is 0 for all values of i,

%Cao +%b0 =0

2b, +%a] +-;£bl+ca0 =0

(n+3)n+2)b +3(3n+5)u +3n+7b +ca,  +b =0forn=0,...

n+3 3 n+2 3 n+2 n+1

421

In the same manner as above, we solve for by in terms of a; and name the resulting

output b0.
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Clear(a,b]
bO=Solve[-c/3a[0]+1/3b[0]==0,b{0]]

{{b[0] -> c a[0]}}
Similarly, we solve for b, in terms of aj, ag, and by. (bq is arbitrary.)
b2=Solve[2b[2]+2c/3a[1]+4/3b[1])+c a[0]==0,b[2]]
-3 ¢ a[0] - 2 ¢ a[l] - 4 b[1]
{{D[2] => mmmmmmmmmmm e }}
Finally, we solve

+3(3n+5) 3n+7b vea +h =0

n+3 3 n+2 3 n+2

(n+3)n+2)b

for b, ,, naming the resulting output bn3, and then replace each occurrence of n in
bn3 by n-3.

bn3=Solve[ (n+3) (n+2)b[n+3}+3(3n+5)/3a[n+2]+
(3n+7)/3b[n+2]+c a[n+1l]+b[n]==0,b[n+3])

{{b[3 + n] ->
-(3 ¢ a[l + n] + 15 a[2 + n] + 9 n a{2 + n] + 3 b[n] +
7 b{(2 + n}] + 3 nb(2+mn])/ (3 (2+mn) (3+n))}}
bn=bn3 /.n->n-3//ExpandAll

-3 ¢ a[-2 + n] 12 a[-1 + n] 9 n a[-1 + n)
{{b[n] => —=mmmmmmmmeme T e EE T -

-3n+3n -3 n+3n -3 n+3n

3 b[-3 + n] 2 b[-1 + n] 3 n b[-1 + n]

-3n+ 3n -3n+3n -3 n+3n

The result means that for #23,
b = -3ca _,+12a_ -9na _ —3b  +2b _ -3nb .
" 3n2-3n

Because we have computed recurrence relations that yield the value of a,, and by,
for all values of n, we may construct our solutions y1(x) and y5(x).

In the following commands, we define ag=1, aj=—-2/3, a,=7/27, and then a, as
above and then compute a table of values of a, for n=0, 1, 2, ..., 10, name the
resulting table as, and display as in TableForm. Note that a is defined using the
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form a[n_J]:=a[n]=... so that Mathematica "remembers" the values of a[n]
computed and thus avoids recomputing values previously computed. This is
particularly advantageous and time-saving when computing a[n] (and,
subsequently, b[n}) for large values of n.

Clear[a,b]

a[0]=1;

afl}=-2/3;

a[21=7/27;

a[n_]:=a[n]=(~3a[n-3]-a[n-1]1-3n a[n-1})/(3n+3n"2)
as=Table[{n,a[n]},{n,0,10}];

TableForm[as]
0 1
2
-(=)
1 3
7
2 27
151
=(--=)
3 972
3907
4 58320
3371
e )
5 164025
561971

6 82668600
57955759
R )
7 27776649600
3161469847
8 5999756313600
1075908049
~ (=== )
9 8264970432000
4169289225091

10 133644571885440000

In this case, we let c=1, by=1, by=1, and b, and bn’ as above, then compute a table
of values of b, for n=0, 1, 2, ..., 10, name the resulting table bs, and display bs in
TableForm.



424 6 Applications Related to Ordinary and Partial Differential Equations

b[0]=1;

b[1]=1;

b[2]=-(3a[0]+2a[1]+4b[1])/6;

b[n_]:=b[n]=(-3 a[n-2]+12a[n-1]-9n a[n-1]-
3b[n-3]+2b[n-1]-3n b[n-1])/(3n"2-3n)

bs=Table({n,b[n]},{n,0,10}];

TableForm[bs]
0 1
1 1
17
=(=-)
2 18
31
3 324
163
- (===-)
4 5832
84679

5 3499200

3509
- (mmmmmm )
6 26244000
109479869
= (mmmmmmmmee- )
7 69441624000
4644389783

8 11666192832000
2775418878709

Tt )
9 15119385910272000
94843769731

10 1388515032576000

We then compute the first eleven terms of the series for y;(x) and name the
resulting function ylapprox:

ylapprox[x_]=Sum[a[n]x"(n+4/3),{n,0,10}]

7/3 10/3 13/3 16/3
4/3 2 x 7 x 151 x 3907 x
X [, P + mmmmm -
3 27 972 58320
19/3 22/3 25/3
3371 x 561971 x 57955759 x
---------- e

164025 82668600 27776649600
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28/3 31/3 34/3
3161469847 x 1075908049 x 4169289225091 x

5999756313600 8264970432000 133644571885440000

and compute the first eleven terms of the series for y5(x) and name the result
y2approx.

y2approx[x_]=ylapprox[x] Log[x]+Sum[b[n]x"(n+1/3),{n,0,10}]

7/3 10/3 13/3
1/3 4/3 17 x 31 x 163 x

16/3 19/3 22/3
84679 x 3509 x 109479869 x

3499200 26244000 69441624000

25/3 28/3
4644389783 x 2775418878709 x

11666192832000 15119385910272000

31/3 7/3 10/3
94843769731 x 4/3 2 x 7 X

1388515032576000 3 27

13/3 16/3 19/3 22/3
151 x 3907 x 3371 x 561971 x

972 58320 164025 82668600

25/3 28/3 31/3
57955759 x 3161469847 x 1075908049 x

27776649600 5999756313600 8264970432000

34/3
4169289225091 x

——————————————————— )} Log([x]
133644571885440000

We then graph both ylapprox and y2approx on [0,1] and display the two
graphs as a graphics array. Note that several error messages are generated when
Mathematica graphs y2approx, due to the logarithm term, but the resulting
graphs are displayed correctly.

pyl=Plot[ylapprox[x],{x,0,1},DisplayFunction->Identity];
py2=Plot[y2approx[x],{x,0,1},DisplayFunction->Identity};
Show[GraphicsArray({pyl,py2}]]
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Infinity::indet:
Indeterminate expression 0. (-Infinity) encountered.
Infinity::indet:
Indeterminate expression 0. (-Infinity) encountered.
Plot::plnr: CompiledFunction({x}, <<1>>, -CompiledCode-]
[<<1>>] is not a machine-size real number at x = 0..

0.5 1
0.4 0.8
0.3 0.6
0.2 0.4
0.1 0.2
0.20.40.60.8 1 0.20.40.60.8 1

6.4 Using the Laplace Transform to
Solve Ordinary Differential
Equations

Definition of the Laplace Transform

Let f(t) be a function defined on the interval [0,+c). The Laplace transform of f(t) is the
function (of s)

L)) = fessiorat,

0

provided the integral exists.
f(t) is the inverse Laplace transform of F(s) means that L{f}(s)=F(s) and we write

L{F(s)}(H) = £(t).

Commands which can be used to compute Laplace transforms and inverse Laplace
transforms are located in the LaplaceTransform package contained in the Calculus folder
(or directory). The command InverseLaplaceTransform[f[s],s,t] computes the
inverse Laplace transform of f[s] and the result is a function of t, while
LaplaceTransform[g[t],t,s] yields the Laplace transform of g[t] as a function of s.
Several examples are given below.

EXAMPLE: Find the Laplace transform of (a) f(t)=#; (b) f(t)=sinat; and (c)
f(t)=cosat.
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SOLUTION: For (b) and (c¢) we will use the command LaplaceTransform
contained in the LaplaceTransform package so we begin by loading the
LaplaceTransform package. For (a), we use the definition of the Laplace

A
transform and compute J‘t3e*»"dt, naming the resulting output stepone.
0

<<Calculus‘LaplaceTransform’
stepone=Integratef[t”3 Exp[-s t],{t,0,A}]

Then, the Laplace transform of f(t)=t3is

A
lim | £3¢-#tdt = limstepone

Ao o A

_54

eas 4

=lim

A—oo

(—65*1 —6As?-3A22-A3s1 6 ) 6

For (b) and (c) we use the command LaplaceTransform.

LaplaceTransform[Sin[a t],t,s]

In this case, we see that LaplaceTransform is successful and that the Laplace

transform of f(t)=sinat is Za while the Laplace transform of f(t)=cosat is
a

+s2”
s
a+s?

Although LaplaceTransform can be used to compute the Laplace transform of many
"standard” functions, in other cases it is best to proceed directly and use Mathematica to
perform the calculations necessary in computing the Laplace transform of a function.
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EXAMPLE: Find the Laplace transform of the function f defined by

1-t,if0<t<1 . 1. . .
fHy= { f(t—l{) ifes1- Hence, f represents the periodic extension of the function 1-t#

on [0,1].

SOLUTION: In this case, we illustrate how to use Mathematica to define and

graph a piecewise defined function. We begin by defining and graphing the
. 1-t,if 0<t<1

function f(t)_{f(t—l), Fi>1

Clear[f]

f[x_]:=l-x /; O<=x<=l

£fx_):=£f[x-1] /; x>1

Plot[£f[x],{x,0,5},PlotRange->{0,3/2},Ticks->{Automatic, {0,.5,1,1.5}}]

1

0 1 2 3 4 3

The Laplace transform of the periodic function f with period P is given by

P

J'e-sff(t)dt .

0

1
1-—e-5s

L{f}s)=

j e~ f(t)dt. With the

0

Therefore, the Laplace transform of f is given by T

following commands, we compute and simplify J.(l— He-stdt .
0

stepone=Integrate{ (l-t)Exp[-s t],{t,0,1}]
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steptwo=Together[stepone]

We then compute steptwo and name the result 1£. Therefore, the Laplace

_e—s
1—es+ses

1f=1/(1-Exp[-s]) steptwo//Simplify

transform of f(t) is

The following example illustrates how to wuse the command
InverseLaplaceTransform to compute the inverse Laplace transform of some
functions.

4
s2+16°

EXAMPLE: Find the inverse Laplace transform of

SOLUTION: After loading the package LaplaceTransform, we use

InverseLaplaceTransformto see that the inverse Laplace transform of — "
st +

is sin4t.

<<Calculus‘LaplaceTransform’
InverselLaplaceTransform[4/(8"2+16),s,t]

sin[4 t]
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Solving Ordinary Differential Equations
with the Laplace Transform

Laplace transforms can be used to solve a variety of differential equations. Typically, when
we use Laplace transforms to solve a differential equation for a function y, we will
compute the Laplace transform of each term of the equation, solve the resulting equation
for the Laplace transform of y, L{y}, and finally determine y by computing the inverse
Laplace transform of L{y}. This step-by-step procedure can be carried out with
Mathematica as illustrated in the example below.

EXAMPLE: Let {(t) be defined recursively by f(t) ={_11 z{f()lssttzlz and f(t)=f(t-2) if

t22.Solve y”+4y’+20y = f(x).

SOLUTION: We begin by defining and graphing f and u where u(t)= {é;ffi i(()) and

then displaying the resulting graphs as a graphics array.

Clear[f,g,u,yl,y2,s0l]

£{t_]:=1 /; 0<=t<l

fit_l:=-1 /; 1l<=t<=2

flt_1:=£[t-2) /; t>2

uft_J]:=1 /; t>=0

uft_]:=0 /; t<0

plotf=Plot[f[t],{t,0,5}, Ticks->{Automatic, {-2,-1,0,1,2}},
PlotRange->{-2,2},DisplayFunction->Identity];

plotu=Plot{u(t],{t,-2,2},AxesOrigin->{0,0},
Ticks->{Automatic, {-2,-1,0,1,2}},
PlotRange->{-2,2},DisplayFunction~>Identity];

Show[GraphicsArray[{plotf,plotu}]]

We then define 1hs to be the left-hand side of the equation y” +4y’+20y = f(t).

Clear([y,x,lhs,stepone,steptwo]
lhs=y''[(t]+4y'[t]+20y[t]

20 y(t] + 4 y'[t] + y''[t]
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Let 1y denote the Laplace transform of y. Then, the Laplace transform of y’ is
sly-y(0), and the Laplace transform of y” is s2ly-sy(0)-y’(0). These
relationships are defined below in laplacerule. In the second command,
laplacerule is applied to 1hs, and the simplified result is named stepone.

laplacerule={y[t]->ly,y’'[t]->s 1ly-y[0],y’ '[t]->s"2 ly-s y[0]-y'[0]};
stepone=lhs /. laplacerule//Simplify

2
20ly + 4 s ly + s 1ly - 4 y[0) - s y[0] - y'[0]

Let 1r denote the Laplace transform of the right-hand side of the equation, f(t). We
then solve the equation 201y +4sly +s2ly —4y(0)-sy(0)-y’(0)=1r for 1y and name
the resulting output steptwo.

steptwo=Solve[stepone==1r, ly]

lr + 4 y[0] + s y[0] + y'[0]
Hly > ————mmmmmmmmmmm o }}

20 + 4 s + s

To compute y, we must compute the inverse Laplace transform of 1y which is
explicitly obtained from steptwo with steptwo[[1,1,2]]. We begin by
collecting those terms which contain 1r and name the resulting output
stepthree.

stepthree=Collect{steptwo[[1,1,2}],1r]

20+ 4 s + s 20+ 4 s + s 20 + 4 s + s 20+ 4 s + s

Since the first term of stepthree is the only term containing 1r, we drop the first
term from stepthree and name the result stepfour.

stepfour=Drop [stepthree, 1]

20 + 4 s + s 20 + 4 s + s 20+ 4 s + s

Completing the square yields s? +4s+20=(s+2) +16. Because the inverse Laplace
s—a

transform of — 2 is evsinbt and the inverse Laplace transform of m
s—a) +

2
(s—a) +b?
is ev cosbt, the inverse Laplace transform of
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4y(0)+sy(0)+y’(0) ~y(0) s+2 y'(0)+2y(0) 4

tepf =
O T 45420 (s+2) +4° 4 (2

is y(0)e2 cos4t +Mz-z' sin4t which is defined below as y,(t).

y1l[t_]=(4 Cos[4t] y[0]+2 Sin[4t] y[0]+Sin{4t] y'([0])/(4 Exp[2t])

4 Cos[4 t) y[0] + 2 Sin[4 t] y[0] + Sin[4 t] y'[0]

1r

To compute the inverse Laplace transform of ————
s2+4s+20

, we begin by computing

lr. Let u(t):{(l)lgc:i’; Then, wu(t)=u(t-a). The periodic function

1Lif0<t<1 . . . .
fH)= {—1,{/‘1 <1< and f(t)=f(t-2) if +=2 can be written in terms of step functions

as
Fx)=uy(£)— 2u,t+2u,(£) - 2u, () + 2u,(t) - ...
=u(t)—2u(t— 1)+ 2u(t - 2) - 2u(t - 3)+ 2u(t - 4) ...

=u(t)+ 22(—1)" u(t —n).

n=1

In general, the Laplace transform of u (t)=u(t-a) is e—_si and the Laplace transform

of f(t-a)u(t)=f(t—a)u(t—a) is e=F(s), where F(s) is the Laplace transform of f(t).
Then,

1r=L{f}(s)=%—2?+ZL:—2

e-3s

+...
B

= 1(1 — 2 +2¢2 =203 4. )
s
and

1lr _ 1
s2+4s+20  s(s?+4s+20)

(1-2e-s+2e2 = 2¢3 +...)

1 " e-rs
=12 -1y ———.
s(s? +4s+20) " z( ) s(s2 +4s+20)

n=1
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In the following command we extract from stepthree and name the

s2+45+20
result stepfive.

stepfive=stepthree[[1]]

We then use Cancel to obtain the expression and name it stepsix.

s(s? +4s+20)

stepsix=Cancel[l/(s 1lr) stepfive]

s (20 + 4 s + 8 )

1 1 4
$2+45+20 4 (s+2) +42

Because the inverse Laplace transform of

.1 . . . t .
is Ze—z' sin4t, the inverse Laplace transform of ] is J‘%e‘“’ sindada,
0

s(s2 +4s+20
computed below and defined to be the function g(t).

g[t_]l=Integrate[l/4Exp[-2a]Sin[4a],{a,0,t}]

-2 Cos[4 t] Sin[4 t]

n e-ns
2(-1) ——-or
( )s(sz+4s+20)
is  2(-1)'g(t-nJu(t-n) and the inverse Laplace transform of

Then, the inverse Laplace transform of

1 . e : _ TP
m+22(—1) m 1S yz(t)—g(t)‘l'ZZ( 1) g(t n)u(t n). It then

n=1 n=1

follows that
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y(B) =y, (t)+y,(t)

=y(0)e2 cos 4t +

LELBC rsinars 423 (st =),

where g(t)=l—ie-2'cos4t—ie~2' sin4t.
20 20 40

To graph the solution for various initial conditions on the interval [0,5], we define
5-

yz(t)=g(t)+22(—1)"g(t—n)u(t—n), sol, and inits. Note that we can graph the
n=1

solution for various initial conditions on the interval [0,m] by defining

n

¥t =g +2) (-1 g(t=npu(t-n).
n=1
Y2[t_]:=g[t]+2 Sum[(-1)"n*g(t-n]u[t-n],{n,1,5}]
sol[t_]:=yl[t]+y2[t]
inits={-1/2,0,1/2};

We then create a table of graphs of sol[t] on the interval [0,5] corresponding to
replacing y(0) and y’(0) by the values —1/2, 0, and 1/2 and then displaying the
resulting graphics array.

graphs=Table[Plot[sol[t] /. {y[0]->inits[[i]],
y'[0]->inits[[j]]1},{t,0,5},DisplayFunction->Identity}],
{i,1,3},{j.1,3}1//Flatten;

array=Partition{graphs,3];

Show[GraphicsArray|[array]]

0.1 N\ 0.y ~ ,~ 0.1
0.10/1F 3 5 0. 14[1F 3 5 —0.1][ 1M 34 5
~0.2 -0 -0.2
-0:3 -0:3 -0.3
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Application: The Convolution Theorem

In many cases, we are required to determine the inverse Laplace transform of a product of
two functions. Just as in differential and integral calculus, when the derivative and integral
of a product of two functions did not produce the product of the derivatives and integrals,
respectively, neither did the inverse Laplace transform of the product yield the product of
the inverse Laplace transforms. The Convolution Theorem tells us how to compute the
inverse Laplace transform of a product of two functions.

The Convolution Theorem: Suppose that f(t) and g(t) are piecewise continuous on
[0,4+00) and both are of exponential order. Further, suppose that the Laplace
transform of f(t) is F(s) and that of g(t) is G(s). Then,

L-l{F(s)G(s)} = L-I{L{( *g)(t)}} =(f*gkt) = Jf(t -v)g(v)dv.

Note that (f*g)(t)= J f(t—v)g(v)dv is called the convolution integral.
0

We show how Mathematica can be used to apply the Convolution Theorem in the
example below.

EXAMPLE: The differential equation used to determine the charge q(t) on the

capacitor in an L-R-C circuit is Eﬂ+Rﬂ+ ! g=0(t), g(0)=0,4(0)=0, where L

e dt C
denotes inductance (The bar is used so that it will not be confused with the

notation for Laplace transforms.), % =i, i(t) current, R resistance, C capacitance,

and v(t) voltage supply. Since % =i, this differential equation can be represented

as E%+Ri+—é—ji(u)du =u(t). Note also that the initial condition q(0)=0 is satisfied
0

Q
since g(0)= %Ji(u)du =0. The condition ¢(0)=0 is replaced by i(0)=0. (a) Solve this

0
integrodifferential equation, an equation which involves a derivative as well as
an integral of the unknown function, by using the Convolution Theorem. (b)

Consider this example with constant values L=C=R=1 and

'U(t): {Sin(t)/ 1f0 <t< 7;/2

0ift>n/2 - Determine i(t) and graph the solution.
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SOLUTION: We proceed as in the case of a differential equation by taking the
Laplace transform of both sides of the equation. The Convolution Theorem is used
in determining the Laplace transform of the integral as follows:

L{j.i(u)du}z L{(1+ i)} = L{}L{i()} = I(S)

0

where I(s) denotes the Laplace transform of i(t). Therefore, application of the
Laplace transform yields

1 I(s)

Lsl(s)- sz(O)+RI(s)+ =V(s),

where V(s) denotes the Laplace transform of v(t). Since i(0)=0, we have
LsI(s)+RI(s)+ L @
_ (S)

LCs2+RCs+1

=V(s). Simplifying and solving for I(s) results in

and, hence,

I(s)=

i(t):L—1{=—V(—s)—~}.
LCs2+RCs+1

sin(f), if 0<t<m/2

oift>n/2  an be written as »(t)= sin(t)u[g—t),

For (b), we note that v(t):{

where u(t)= { g“i <0 We first define the unit step function, u, and then define and

plot the forcing function f on the interval [0,x].

Clear[u,f]
<<Calculus‘LaplaceTransform’
uft_,a_]1:=0 /; t<a

uft_,a_}:=1 /; t>=a
£[t_]:=Sin[t]*(u[t,0]-u[t,Pi/2])
pl=Plot[f[t],{t,0,Pi}]
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Next, we define 1lpt and invlpt.lpt[g[t],a] computes
L{g(tyu(t —a)} =e-=L{g(t +a)}, the Laplace transform of functions involving unit step

functions, while invlpt[G[s],a] computes L{e==G(s)}=g(t-a)u(t-a), the
inverse Laplace transform of functions involving exponential functions.

lpt{g_,a_]:=Exp[-a s]*LaplaceTransform(g /.t->t+a,t,s}
invlpt[lpg_,a_]:=(InverseLaplaceTransform[lpg,s,t]/.t->t-a)*u[t, a]

We, therefore, compute the Laplace transform of v(t) using a combination of
LaplaceTransformand lpt (since g[ 1, t]=1). We call this result capv.

capv=LaplaceTransform{Sin[t],t,s]-1pt[Sin[t],Pi/2]

2 (Pi s)/2 2
1 +s E (1 + s )

Using the general formula obtained for the Laplace transform of i(t), we note that
the denominator of this expression is given by sz +s+1, which is entered as denom
below. Hence, the Laplace transform of i, called capi, is given below by the ratio
capv/denom.

denom=s"2+s+1;
capi=capv/denom;
soll=Simplify({capi]

(Pi s8)/2

(P1i s)/2 2 3 4
E (l+s+2s +s + s)

Simplifying the expression given above in sol1, we notice that one component
involves e-=/2. Hence, we employ the user-defined function invlpt to determine
the inverse Laplace transform of this part of soll and use
InverseLaplaceTransformto determine that of the rest of it. The solution
which results is defined as i.

i[t_]=InverselaplaceTransform[l/(1l+s+25"2+s"3+s5"4),s,t]-
invlpt[s/(1+s+25"2+s"3+s"4),Pi/2}

Sqrt[3] t Sqrt(3] t
Cos[-———=--—— ] Sin[-—=-====—- ]
2 2
—Cos[t] + ————m—mmm O -
t/2 t/2

E Sqrt[3] E
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-Pi
Sqrt[(3] (--- + t)
(Pi/2 - t)/2 2
2 E Sin[----—————e - |
2
(-Cos[t] - == e )
sqrt(3]
Pi
uft, --]
2

This solution is plotted below in p2 and displayed with the forcing function in the
plot which follows. Notice the effect that the forcing function has on the solution
to the differential equation.

p2=Plot{i[t],{t,0,10},DisplayFunction->Identity];
Show[pl,p2,PlotRange->All,DisplayFunction->$DisplayFunction]
1
0.8
0.6

0.4

Application: The Dirac Delta Function

Let 8 denote the function with the two properties (i) 6(t—t0)=0ift¢t0; and (ii)

Jé(t—to)dtzl. The function §(t-t,) is known as the Dirac delta function and is quite

useful in the definition of impulse forcing functions which arise in some differential
equations. The Laplace transform of §(t-t,) is L{(S(t-to)}ze-s'o. Mathematica contains a
definition of the Dirac delta function, DiracDelta, which is contained in the package
DiracDelta located in the Calculus folder (or directory). We illustrate how problems
involving the Dirac delta function can be solved through the use of Mathematica and
Laplace transforms in the following example.

EXAMPLE: Find the solution to the initial value problem x”+x’+x = 8(t)+u(t-2r),

1if t>0

x(0)=0 and x’(0)=0, where u(t)= {0 ift<0°




6.4 Using the Laplace Transform to Solve Ordinary Differential Equations 439

SOLUTION: After loading the packages LaplaceTransformand DiracDelta,
we define eq to be the left-hand side of the equation x”+x"+x=§(t)+u(t-2n) and
then use LaplaceTransform to compute the Laplace transform of eq, naming
the resulting output leq. Note that the symbol LaplaceTransform{x[t],t,s]
represents the Laplace transform of x. We then apply the initial conditions x(0)=0
and x’(0)=0, to 1leq and name the resulting output ics.

<<Calculus‘LaplaceTransform’
<<Calculus’DiracDelta’
Clear[x,eq]
eg=x'"'[t]+x’'[t]+x[t];
leg=LaplaceTransform[eq,t,s]

LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] +

2
s LaplaceTransform[x[t], t, s] - x[0] - s x[0] - x'[0]

ics=leq /. {x[0]->0,x'[0]->0}
LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] +

2
s LaplaceTransform{x[t], t, s]

In addition to containing the command DiracDelta, the package DiracDelta also

contains the command UnitStep, which represents the unit step function:
ft2

UnitStep([t]= {(l)z‘i;?) In rhs, we use LaplaceTransform, DiracDelta, and

UnitStep to compute the Laplace transform of the right-hand side of the

equation x”+x’+x = 8(t)+u(f - 2x).

rhs=LaplaceTransform[DiracDelta[t]-UnitStep([t-2Pi],t,s]

Next, we use Solve to solve the equation ics=rhs for the Laplace transform of x.
The expression for the Laplace transform is extracted from soln with
soln([1,1,2}].

soln=Solve[ics==rhs,LaplaceTransform[x{t],t,s)]

2 Pi s
1 -E s
{{LaplaceTransform[x[t], t, S] -> —(-———=——cmmmmmma )}}
2 Pi s 2
E s (lL+s+s)
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To find x, we must compute the inverse Laplace transform of the Laplace
transform of x obtained above. Below, we use InverseLaplaceTransformto
compute the inverse Laplace transform of soln{[1,1,2]] and name the
resulting function x.

x[t_]=InverseLaplaceTransform[soln[[1l,1,2]],s,¢t]
sqrt[3] t
---------------- - UnitStep[-2 Pi + t] +
t/2

Sqrt{3] E

Pi - t/2 Sqrt[3} (-2 Pi + t)

Sqgrt[3]

Pi - t/2 sqrt[3] (-2 Pi + t)

—————————————————————————————————— ) UnitStep([-2 Pi + t]
Sqrt[3]

Finally, we use Plot to graph the solution on the interval [0,8x].

Plot([x[t],{t,0,8Pi}]

0
0.25

~0.25

-0.73
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6.5 Systems of Ordinary
Differential Equations

Homogeneous Linear Systems
with Constant Coefficients

Let
a, a4, - a,
A= B2 My
aul anZ o umx

be an n x n real matrix and let {1}  be the eigenvalues and {v,}' the corresponding
eigenvectors of A. The general solution of the system X'(t)= AX(t) is determined by the

eigenvalues of A. If the eigenvalues {/lk}::1 are distinct and real, then a general solution of
X'(t)=AX(t) is

n
X(t)=cveht +c,v el +.. 4 v ekt = E cv.eit,
" n 1 1

i=1

If the eigenvalues {4 =a, +p,i} , where B #0, are complex and the corresponding

k=1
eigenvectors {Vk}::1 are distinct, then a general solution of X'(t)=AX(¢) is

= Aqt A3t Ant Ast At
X(t)=c,w, et +c,w el +c,w el +c, W ehl 4. +c, W el +

2m+l " 2m+l

C, W €Mt +e, v ehwal+ . +cV e, where
w, = —;—[v +V,cos(Bt) + é[vi -v,]sin(B¢) and
wlz=é[v,—v_i]cos(ﬁit)—%[v,+x7i]sin(ﬁ,.t). Mathematica can solve many systems of

differential equations.
In order to solve the 2 x 2 system with constant coefficients,

o +b
—:ax

I y
dy

— =CX +
" dy

we enter the command

DSolve[{x'[t]==a x[t]+b y[t],y’'[t]==c x[t]+d y[t]},{x[t],y[t]},t]
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We illustrate how systems can be solved with Mathematica through the use of eigenvalues
as well as DSolve in the examples below.

-y
EXAMPLE: Solve the system of equations

X

gleea|s

SOLUTION: We begin by finding the eigenvalues and associated eigenvectors of

the matrix of coefficients Az(_o1 _01) with Eigensystem. This gives us 4, =-1

and 2, =1. An eigenvector corresponding to 4, =-1is given by v, = G), while that

corresponding to A,=1 is v2=(_11). Therefore, a general solution is

LFalipreed

Eigensystem[{{0,-1},{-1,0}}]

{{_ll 1}: {{11 1}/ {‘11 l}}}

We can graph the solutions for various values of the constants ¢; and c;. Notice
that x and y both depend on the variable t where x(t) represents the x-coordinate
at a particular time t and y(t) represents the y-coordinate at a particular time t.
Hence, we can plot these solutions parametrically in the xy-plane. (This type of
graph is known as the phase plane of the system of equations.) First, the solutions
are defined as x and y using the formula obtained above. Several members of the
family of solutions are created in fncarray by substituting the values -6, —4, -2,
0, 2, 4, and 6 for the constants c1 and c2. Note that fncarrayisa 7x7x2. We
then use Flatten to remove all but the innermost set of braces naming the result
tograph. tograph consists of 49 sets of functions which are then plotted with
ParametricPlot in graphone and displayed in an abbreviated form with
Short.

x[t_]:=cl Exp[-t]+c2 Exp[t]

y[t_]l:=cl Exp[-t]- c2 Exp[t]

fncarray=Table [ {x[t],Y[t]}/.{cl->i,c2->j},({i,-6,6,2},{j,-6,6,2}];
tograph=Flatten[fncarray,1];

Short[tograph]
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graphone=ParametricPlot[Evaluate[tograph], {t,-2,2},
PlotRange->{{-15,15},{-15,15}}]

-6 t -6 t 6
{{-- - 6E , ——+ 6 E }, <<47>>, {-—— + <<1>>, <<1>>}}

E E E

1
<

»
;

—

In order to determine the direction associated with these solutions, we consider
the direction field (i.e., the collection of vectors which represent the tangent line at
points on the solutions. Note that the slope of these tangent lines is given by

Y
ﬁil_i_ cx+dy
dx  dx " ax+by
t

Q€

=

at each point (x,y)). The direction fields are graphed with the command
PlotVectorField located in the PlotField package contained in the Graphics
folder (or directory). Finally, the direction field is displayed with the solutions to
illustrate the associated motion. Notice that when the associated direction field is
plotted, solutions near the line in the direction of the eigenvector corresponding
the positive eigenvalue move away from the equilibrium point. On the other hand,
solutions near the line in the direction of the eigenvector corresponding to the
negative eigenvalue move towards the equilibrium point.

<<Graphics ‘PlotField’
graphtwo=PlotVectorField{ {-y,-x}, (x,-15,15},{y,-15,15},

DisplayFunction->Identity];
Show[graphone,graphtwo}]
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[

L8 y
EXAMPLE: Find a general solution of the system of equations g;

a

SOLUTION: The matrix of coefficients is defined in mat below, and the
eigenvalues and eigenvectors determined with Eigensystem. The result means

that the eigenvalues are A=#i and the eigenvectors are v, =G) and v, =(_1i).

Hence, the solution in given in x and y (in terms of sines and cosines). Note that
the exponential function is not included because the eigenvalues are imaginary
with no real part. A collection of solutions is created in fncarray by substituting
values of -6, -4,-2, 0, 2, 4, and 6 for the arbitrary constants c1 and c2. A
shortened list of these solutions is then displayed with Short.

mat:{{oll}l{_llo});
Eigensystem[mat]

({-II I}I ({Ir l)l {-II 1}}}

x[t_]:=-cl Sin[t]+c2 Cos[t]

y[t_]:=cl Cos[t]+c2 Sin[t]

fncarray=Table [{x[t],y[t]}/.{cl->i,c2->j},{i,~-6,6,2},{j,-6,6,2}];
tograph=Flatten|fncarray,1];

Short[tograph]

{{-6 Cos[t] + 6 Sin[t], -6 <<1>> + <<1>>}, <<48>>}

ParametricPlot is used to graph the phase plane in graphthree. In order to
determine the direction associated with the motion of these curves as t increases,
we plot the direction field in graphd£. This vector is then displayed with the
family of solutions to show that the motion is clockwise. Because these solutions
remain at a constant distance from the origin, we say that the point (0,0) is a
center.
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graphthree=ParametricPlot{Evaluate[tograph],{t,-1,1},
PlotRange->{{-10,10},{-10,10}}, AspectRatio->1,
DisplayFunction->Identity];

<<Graphics PlotField"

graphdf=PlotVectorField({y,~x}, {x,-10,10},{y,-10,10},
DisplayFunction->Identity];

Show[graphthree,graphdf,DisplayFunction->$DisplayFunction]

.\\\\\-...149_

We now illustrate how DSolve can be used to solve systems of differential equations.

"=-bx+3y

EXAMPLE: Find a general solution of {;, - 22-10"

SOLUTION: After clearing all prior definitions of x, y, and sol, we use DSolve
x'=-5x+3y
y' =-2x-10"
expressions for x(t) and y(t) are extracted from sol with sol{[1,1,2]] and
sol[[1,2,2]], respectively.

to find a general solution of { naming the resulting output sol. The

Clear[x,y,sol]
sol=DSolve[{x'[t]==-5x[t]+3y([t],y ' [t]==-2x[t]-10¥(t]},{x[t],y[t]},t]

=2 3 -3 3
{{x[t] -> (-=—- + --—-) C[1] + (---- + —-——=) C[2],
8 t 7t 8 t 7t
E E E E
2 2 3 2
ylt] -> (-=-- - -——- ) CL11 + (==-- = -——- ) C[2]}}
8 t 7t 8 t 7t
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To graph the solution for various values of C[1] and C[ 2], we define funs to be
the table of functions obtained by replacing each occurrence of C[1] and C[2] in
{sol[[1,1,2]],s01[[1,2,2]1}, corresponding to the pair of functions
(x(t),y(t)), by i and j for i=—6, -3, 0, 3, and 6 and j=—6, -3, 0, 3, and 6. Note that
funs is a 5x5x2 array. In order to graph this list of functions, with
ParametricPlot, we must convert funs to an array consisting of ordered pairs
of functions, which we accomplish with Flatten, naming the resulting output
toplot. The list toplot consists of 25 pairs of functions which are then graphed
with ParametricPlot in pptwo. We also use the command PlotVectorField
to graph the associated direction fields in graph4. Show is used to display both
pptwo and graph4 together.

funs=Table[{sol[[1,1,2]],s01[[1,2,2]]} /.
{¢c[11->i,c(21->j},{1,-6,6,3},{j,-6,6,3}1;

toplot=Flatten{funs, 1]};

Length[toplot]

25

<<Graphics PlotField"

pptwo=ParametricPlot[Evaluate[toplot], {t,-2,1},
Compiled->False,PlotRange->{{-10,10},{-10,10}},
DisplayFunction->Identity];

graph4=PlotVectorField[ {-5x+3y,-2x-10y}, {x,-10,10},{y,-10,10},
DisplayFunction->Identity];

Show[pptwo,graph4,DisplayFunction->$DisplayFunction]

Variation of Parameters

We now consider nonhomogeneous systems of equations of the form X’=AX+F(t). Recall
that the solution to the corresponding homogeneous system of equations X’=AX can be
represented in terms of the fundamental matrix ®(t) and the n x 1 constant vector C with
X=®(t)C. Hence, by assuming a particular solution to the nonhomogeneous system of the
form Xp=@(t)U(t), where U(t) is a vector of the form
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u,(t)
= %-0]
u ()

we find that a particular solution is given by X, = o(t) I @-1(1)F(t)dt . Hence a general solution
is determined with

X = ®(1)C +q>(t)J' O-1(E)F(H)dt .

In addition to determining the solution of differential equations, Mathematica can also be
used to plot the solutions. In the following example, we illustrate how this is
accomplished.

xX—y=et

EXAMPLE: Solve {y, 45242y =sin(3t

) subject to the initial conditions x(0)=x, and

¥(0)=y,. Graph the solution for various initial conditions.

X-y=et

¥’ +5x+2y =sin(3t) subject to

SOLUTION: We use DSolve to solve the equation {

the initial conditions x(0)=x, and y(0)=y,, naming the resulting output sol. The

expressions for x(t) and y(t) are extracted from sol with sol[[1,1,2]] and
sol[[1,2,2]], respectively.

Clear([x,y,x0,y0,t,s0l]
sol=DSolve[{x'[t]-y[t]==Exp[~t),y’'[t])+5x[t]+2y[t]==Sin[3t],
y[0]==y0,x{0]==x0}, {x[t],y[t]}, t]

1 5 I (-1 -2 1) t
{{X[£] -> === + (=== + -—-) E
t 104 104
4 B

(7 I+ (11 + 3 I) x0 + (1 + 5 I) y0) +

1 51 (-1+2T71)t
(=(===) - ==-) E
104 104

3 Cos[3 t] Sin[3 t]
(7 + (3 + 11 I) X0 + (5 + I) y0) = —mm—mmmmmm = cmmee e .
26 13
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-5 3 111 (-1 -21I)t
YIt] => ==== + (=(-==) - -===) E
t 104 104
4 E

(7 T+ (11 + 3 I) x0 + (1 +5 I) y0) +
11 31 (-1+21I)t

(=== + ===) E (7 + (3 + 11 I) x0 + (5 + I) y0) -
104 104

3 Cos([3 t] 9 Sin[3 t]

To see that the expressions obtained above are real, we proceed by defining x
andy.

Clear[x,y]
x[t_,x0_,y0_J}=sol[[1,1,2]];
Y[t_rxo_ryo_]=s°l[[11212]];

Note that when we evaluate x and y, as illustrated below, an imaginary
component, although 0, is given in the resulting output.

{x[-4,.5,.5],y[.5,.5,.5]}
{0.788798 + 0. I, -0.751764 + 0. I}
These 0-valued imaginary components are removed with Chop.
Chop[ {x[.4,.5,.5],y[.5,.5,.51}]
{0.788798, -0.751764}

We will graph the solution for the initial conditions given in orderedpairs,
below.

orderedpairs=Flatten[Table([{i,j},(i,-1,1,2/3},{j,-1,1,2/3}],1]

1 1 1 1 1
{{_11 '1}1 {_11 -(_)}I {‘11 _}I {_11 1}1 {_(_)r _l}l {-(-)I _(_))I
3 3 3 3 3
1 1 1 1 1 1 1 1 1
{_(_)r -} {‘(')r 1}1 {- '1}1 {-+ =(=)}s {-/ =} {- 1}1
3 3 3 3 3 3 3 3 3
1 1

{11 _1}1 {11 _(_)}r {ll _}r {1/ 1}}
3 3
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Next, we define solgraph, which given a and b, graphs the parametric equations
Chop[{x[t,a,b],y[t,a,b]} for 0<t<7. This corresponds to graphing the
xX-y=e!

Y +5x+2y = sin(3t) subject to the initial conditions x(0)=a

solution of the equation {

and y(0)=b. Note that the results of solgraph are not displayed. We then use
Map to compute solgraph for each of the ordered pairs in orderedpairs. The
resulting set of sixteen graphs is partitioned into four-graph subsets with
Partition, naming the resulting array toshow. The array toshow is displayed
with Sshow and GraphicsArray.

solgraph{{a_,b_}]:=
ParametricPlot[Chop[{x[t,a,b),y[t,a,b]l}],
{t,0,7},Ticks->None,Compiled->False,DisplayFunction->Identity]
graphs=Map[solgraph,orderedpairs];
toshow=Partition[graphs,4];
Show[GraphicsArray[toshow]]

VG,
VALV,

700
MSEC

Nonlinear Systems, Linearization, and
Classification of Equilibrium Points

An equilibrium point (xo,yu) of the system of differential equations

)

p
~=g(xy)
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f(xo,yO)ZO

8%y %,)=0
x’ = Ax, in which the matrix of coefficients A has eigenvalues 4, and 1,, the equilibrium
point (0,0) is classified according to the following criteria.

is a point which satisfies . For the 2 x 2 system of linear differential equations

Eigenvalues: Classification:
Real: A, <A, <0 Stable Node
Real: 4, <0<, Saddle
Real: 0<A <A, Unstable Node
Complex: A, =1, =a+ i, 20, a<0 Stable Spiral
Complex: 4, =4, =a+pi, 20, a>0 Unstable Spiral
Complex: A, =4, =a+pi, f#0, 0=0 Center

The general form of the autonomous system (in which there is no dependence on t) is

dx _

d—t-f(xfy)
dy )
—=8lxy)

Approximate solutions to problems of this type can be found by considering the linearized
system about each equilibrium point (x,y,), which in this case satisfy

{ Fxor v, ) =0,8(x,. v, )= 0} . This linearized system is given by

d

d—): :f;(xo'yo)x+ﬁ/(x0’y0)y+(fl

d s
d-z = g\'(xofyo)x+gy(x0’y0)y+(f2

(xo,yo), and

¥l
Q¥

(xo’yo)’ gx(xofyo): (xo'yo)/ gy(xﬂlyﬂ):

&l

where f,(x,y,) =L (x, 1.}, £, (5009,) =

¢, ¢, are constants.
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Note that

g.(xy) g,(xy)

I(xfy)=[f’(x'y) fy<x,y>]

is known as the Jacobian matrix. Hence, the linearized system can be written as

dx

E — fx(xo’yo) fy(xofyo) X=X, _ X—x,
Lcii_z [gx(xl)’yt)) gy(xo,yo) (y_y")—](xo,yo)(y_yo}

Numerical Solutions of Systems of
Ordinary Differential Equations

451

Mathematica's NDSolve command can be used to approximate the solution of many
nonlinear systems of differential equations. The correct number of initial conditions must

be supplied within the NDSolve command.
This command is entered in the form

NDSolve[ {desys, ics}, funs, {var,varmin,varmax}],

where the equations desys subject to the initial conditions ics are solved for the
functions funs and the solution is requested to be valid over the interval

[varmin,varmax]. Each component of the result is given in the form

InterpolatingFunction({varmin,varmax},<>].

In the following example, we illustrate the use of this command to solve a first-order

system of nonlinear differential equations.

Application: Predator—Prey

EXAMPLE: The Lotka-Volterra system (Predator-Prey model) is the system

{x’:alx—azxy
y/=‘b1y+bzx.'/’

the Lotka-Volterra equations.

where aj, ap, by, and by are constants. Find and classify the equilibrium points of
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SOLUTION: We begin by defining eqonerhs and eqtworhs to be 4 x—a,xy and
ax-—axy=0

-by+b,xy, respectively, and then solving the system of equations {—bly +bxy=0

for x and y to locate the equilibrium points.

Clear[a,b,x,y]
egonerhs=a[l]x-a[2]x y;
eqtworhs=-b[1l]y+b[2]x y;
cps=Solve|[ {eqonerhs==0,eqtworhs==0}, {x,y}]
b1} a[l]
{{x =>0, ¥y -=> 0}, {Xx -> =——==, y => —=—=}}
b[2] af2)

To classify the equilibrium points, we first define 1inmatrix to be the matrix

d d
E( 1x—azxy) @(alx—azxy)

d d
b)) by bxy)

and display linmatrixin MatrixForm.

linmatrix={{D[eqonerhs,x],D[eqonerhs,y]},{D[eqtworhs,x],D[eqtworhs,y]}};

MatrixForm[linmatrix]

a[l] -y af2] -(x a[2])
y b[2] -b[1] + x b[2]

. . b
We then compute the value of linmatrix when x= El_ and y=—-L:
2 aZ

linmatrix /. cps[[2]] // MatrixForm
a[2]) b[1]
0 b[2]

a[l] b{2]

and then compute the eigenvalues. Since the eigenvalues are complex conjugates
iy . b .
with the real part equal to 0, we conclude that the equilibrium point [b—‘,ﬂj is a
2 az

center.
linmatrix /. cps[([2]]) // Eigenvalues

{-1 sqgrtfafl]] Sqrt{b[l]}, I Sqrt{a[l]] Sqrt{b{1l]]}
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Similarly we compute the value of 1inmatrix when x=0 and y=0:

linmatrix /. cps[[1]] // MatrixForm

a[l] 0
0 -b[1]

and then compute the eigenvalues. Since the eigenvalues are real and have
opposite signs, we conclude that the equilibrium point (0,0) is a saddle.

linmatrix /. cps[[1]) // Eigenvalues

{a[1l}, -b[1]}

Unsuccessfully, we attempt to use DSolve to solve the system in the special case
when a;=2, ay=1, b1 =3, and b,=1:

Clear[x,y,eqone,eqtwo]
eqone=x'[t]==2 x[t]-x[t] y[t];
eqtwo=y ' [t]==-3y[t]+x[t]y[t];
DSolve|[ {eqone,eqtwo}, {x[t],y[t]},t]

DsSolve[{x'[t] == 2 x[t] - x[t] y[t],
y'lt] == -3 y[t] + x[t] y[t]}, {x[t], yl[t]}, t]

However, we are able to use NDSolve to solve the system when x(0)=1 and y(0)=1
for 0<t<3.

solone=NDSolve|[ {egqone,eqtwo,x[0]==1,y[0]==1}, {x[t],y[t]},{t,0,3}]
{{x{t}] -> InterpolatingFunction{[{0., 3.}, <>}[t],
y[t] -> InterpolatingFunction[{0., 3.}, <>][t]}}

We then use ParametricPlot to graph the solution, solone, obtained above.
Note that the resulting error message indicates that the functions to be graphed
cannot be compiled, which normally results in faster computations. In this case,
the functions are not compiled and still graphed.

ParametricPlot [{x([t],y[t]} /. solone,{t,0,3}]

ParametricPlot: :ppcom:
Function {x[t], y[t]} /. solone
cannot be compiled; plotting will proceed with the
uncompiled function.
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1 2 3 4 5 6 7

We define a function sol to graph various numerical solutions of the system
above.

Clear([sol]}
sol[s_]:=Module[{solt,y,x,t,eqone,eqtwo},
eqgone=x'[t]==2 x[t]-x[t]) y[t];
eqtwo=y’ [t]==-3y(t]+x[t]y[t];
solt=NDSolve[ {eqone,eqtwo,x[0])==3s,y[0]==25s},
{x[t],y[t]},{t,0,4}]);
ParametricPlot[{x[t],y[t]} /. solt,{t,0,4},Compiled->False,
DisplayFunction->Identity]
1

We plot the solution with sol for values of t from t = 1/8 to t = 7/8 using
increments of 3/40

graphs=Table[sol[t],{t,1/8,7/8,3/40}];

and display these graphs below. Notice that all of the solutions oscillate about the
center. These solutions reveal the relationship between the two populations: prey,
x(t), and predator, y(t). As we follow one cycle counterclockwise beginning, for
example, near the point (2,0), we notice that as x(t) increases, then y(t) increases
until y(t) becomes overpopulated. Then, since the prey population is too small to
supply the predator population, y(t) decreases which leads to an increase in the
population of x(t). Since the number of predators becomes too small to control the
number in the prey population, x(t) becomes overpopulated and the cycle repeats
itself.

Show[graphs, PlotRange->All,DisplayFunction->$DisplayFunction]
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In fact, we can view these changes by graphing x(t) and y(t). Below, we use
NDSolve to approximate the solution to the problem for 0<t<10. We then graph
x(t) and y(t) with Plot, naming the results plotx and ploty, respectively, and
graph (x(t),y(t)) with ParametricPlot, naming the result param. Last, we use
Show and GraphicsArray to display all three graphs.

sol=NDSolve[ {eqone,eqtwo,x[0]==1,y[0]==1}, {x[t],y[t])},{t,0,10}]
{{x[t] -> InterpolatingFunction[{0., 10.}, <>][t],
y[t] -> InterpolatingFunction[{0., 10.}, <>][t]}}

plotx=Plot[x(t] /. sol,{t,0,10},DisplayFunction->Identity]};

ploty=Plot[y[t] /. sol,{t,0,10},DisplayFunction->Identity];

param=ParametricPlot[{x[t],y[t}} /. sol,{t,0,10},
DisplayFunction->Identity];

Show[GraphicsArray|{ {plotx,ploty,param}]]

g 5 5
5 4 4
4 3 3
2 2 2
1 1 1
2 4 6 8 10 2 4 6 8 10 12345%867 [}

Next, we consider the solution of a second-order nonlinear equation by transforming
the equation into the corresponding system of equations. We then use NDSolve to
approximate the solutions to this system

EXAMPLE: The Van-der-Pol equation x”+u(x2-1)x’+x=0 is equivalent to the

system { =y
y y =p(l-x)y—x

approximate the solutions to this nonlinear system, and plot the phase plane.

Classify the equilibrium points, use NDSolve to

SOLUTION: We find the equilibrium point of this well-known system below in
roots. The associated linear system is then entered as Linmatrix.

roots=Solve[{y==0 mu(1l-x"2)y-x==0}, {x,y}]
{{y -=> 0, x —> 0}}

linmatrix={{0,1},{-2mu x y-1,mu(l-x"2)}};
MatrixForm[linmatrix]

0 1
2
=1 -2muxy mu (1 - x )
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The eigenvalues of the linearized system at the equilibrium point (0,0) are given
below.

linmatrix /. roots[[1]] // Eigenvalues

2 2
mu - Sqrt[{-4 + mu ] mu + Sqrt(-4 + mu ]

+ fy2 —
Notice that these eigenvalues simplify to A= %, which are:

(a) both positive, real if u>2 since u?-4>0.Hence, (0,0) is an unstable node.

(b) complex conjugates with positive real part if 0<u<2. Hence, (0,0) is an
unstable spiral. (Note that p is assumed positive since Van der Pol's equation
came about from the study of nonlinear damping. Therefore, u represents the
damping coefficient in spring-mass systems. We disregard the case with p=2
since it results in a repeated eigenvalue.)

We now employ NDSolve to determine and plot solutions which correspond to
Van der Pol’s equation with p=1. This means that the equilibrium point (0,0} is an
unstable focus according to our classification above. The two equations are
defined in eqone and eqtwo and then used with NDSolve to determine the
solution to the initial value problem x[ 0 ]=0 on the interval [0,10].

eqone=x’[t]==y[t];

eqtwo=y ' {t]==(1-x[t]"2)y[t]-x[t];

solone=NDSolve[ {eqone,eqtwo,x[0]==1,y[0]==1}, {x[t],y[t]},{t,0,10}]

{{x[t] -> InterpolatingFunction{{0., 10.}, <>][t],
y[t] -> InterpolatingFunction[{0., 10.}, <>][t1}}
The approximate solution is then plotted with ParametricPlot below.
ParametricPlot[{x[t],y[t]} /. solone,{t,0,10}]
ParametricPlot: :ppcom:
Function {x[t], y[t]} /. solone

cannot be compiled; plotting will proceed with the
uncompiled function.

I




6.5 Systems of Ordinary Differential Equations 457

We now attempt to plot the phase plane associated with Van der Pol’s equation.
This is done in a manner similar to the previous example by defining a function
sol which, given s, numerically approximates the solution using the initial

conditions x(O):icoss and y(0)= 2illsins and plots the solution parametrically
over the interval [0,10].

Clear[sol,eqone,eqtwo,x,y,t]
sol[s_]:=Module[ {solt,x,y,t,eqone, eqtwo},
eqone=x’[t]==y[t];
eqtwo=y’ [t]==(1-x[t]1"2)y[t]}-x[t];
solt=NDSolve|[ {eqone, eqtwo,
x[0]==s/24 Cos[s],y[0]==s/24 Sin[s]},
{x[t],y[t]},{t,0,20}};
ParametricPlot [ {x[t],y{t]} /. solt,{t,0,10},
Compiled->False,DisplayFunction->Identity}
]

Lo . 1
A table of solutions is produced in graphs below fors =1/4 to s=8rn - 7 using
increments of (8n—1/4)/15.
graphs=Table[sol[t],{t,1/4,8Pi, (8Pi-1/4)/15}];

The solutions which were found are then shown simultaneously to reveal the
phase plane. Notice that the solutions seem to approach a closed path as the
variable t increases. (Recall that (0,0) is an unstable spiral, so the solutions are
directed away from the origin.) This closed path is called a limit cycle because all
solutions approach it as t increases.

Show[graphs, PlotRange->All,DisplayFunction->$DisplayFunction]
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Application: The Double Pendulum

EXAMPLE: The motion of a double pendulum is modeled by the following
system of equations using the approximation sin = 6 for small displacements:

’

(ml + mz)flzei' + mzflfzeg + (ml + m2)€1g91 =0
mﬂ%ﬁ% + mzflfzef + mzfzgez =0

where 9 represents the displacement of the upper pendulum, and 6, that of the
lower pendulum. Also, mj and my represent the mass attached to the upper and
lower pendulums, respectively, while the length of each is given by ¢; and ¢5.
Suppose that m; =3, my=1, and each pendulum has length 16. If 6,(0) = 1,
071(0)=0, 6,(0)=-1, and 65(0)=0, then solve the double pendulum problem
using g = 32. Also, plot the solution.

SOLUTION: Application of the system of equations given above yields the
following system of second order equations

4(16)% 87 +(16)% 05 +4(16)(32)8; =0,
(16)% 05 +(16)% 8] +(16)(32) 6, =0,
01(0)=1, 8{(0)=0, 8,(0)=1, 65(0) =0.

For convenience, we refer to 61 as x and 6; as y in the commands below. We
define the left-hand sides of the equations in eql and eq2 as well as the
transformation rules in rule.

Clear[x,rule,eql,eq2]
<<Calculus‘LaplaceTransform’

eql=4 16"2x’''[t]+16"2 y’''[t]+64 32x[t];
eq2=16"2 y’''[t]+16"2 x''[t]+16 32 y[t];

rule={x[t]->1x,x'[t]->s 1lx-x[0],x'’'[t]->s"2 lx-s x[0]-x'[0],
yit]->1ly,y'[t]->s ly-y[0],y’'[t]->s"2 ly-s y[0]-y'[0]};

The Laplace transform is applied below in egs.
egs={eql,eq2} /. rule

2
{2048 1x + 1024 (1lx s - s x[0] - x'[0]) +

2
256 (ly s - s y[0] - y'[0]),
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2
512 1y + 256 (lx s =~ s x[0] - x'[0]) +

2
256 (ly s - s y[0] - y'{0])}

Since the system is homogeneous, each of the components of egs is equated to
zero and the Laplace transform of x and y, 1x and 1y, are found.

sols=Solve[eqs=={0,0}, {1x,1y}]

2 2
{{1lx => ((2 + s ) (s (-4 s x[0] - s y[0] - 4 x'[0] -

2
y'I0]) -4 (2 +s)

(=(s x[0]) - s y[0] - x'[0] - y'[01))) /

2 2 4
(s (-16 - 16 s - 3 s )) -

-(s x[0]) - s y[0] - x'[0] - y'[0]

2
ly -=> -((s (-4 s x[0] - s y[0] - 4 x'[0] - y'[0]) -

2
4 (2 +s ) (-(s x[{0]) - s y[0] - x"[0] - y'[0])) /

2 4
(-16 - 16 s -3 s ))}}

Below, the initial conditions are applied.
conds=sols /. {x[0]->1,y[0]->-1,x’'[0]->0,y'[0]->0}

2 3
-3 s (2 +s) 3 s

InverseLaplaceTransform is used to obtain the formulas for x and y. These
are given below.

x[t_]=InverseLaplaceTransform[conds{[1,1,2]],s,t]



460 6 Applications Related to Ordinary and Partial Differential Equations

y(t_]=InverseLaplaceTransform[conds[[1,2,2]],s,t]

The position functions are then plotted with the dashed curve representing the
second spring and the darker curve the first spring.

Plot[{x{t],y[t]},{t,0,10},PlotStyle->{GrayLevel[0],Dashing[{.01}]}]

2 S

We can generate the graphics far more easily viewing the motion of the double
pendulum. We do this by defining the function pen2, which depends on the time
t as well as the length of the two pendulums, 1lenl and len2, below. Since the
angles are measured from the vertical axis, polar coordinates with the reference
angle at 3n/2 are used. In this function, pt1 represents the position of the mass
attached to the end of the first pendulum and pt2 that of the mass at the end of

the second spring. pen2 uses Line to produce the graphics of the lines joining the
points representing the masses.

Clear{pen2]
pen2{t_,lenl ,len2_]:=Module[{ptl,pt2},
ptl={lenl Cos[3Pi/2+x[t]],
lenl Sin[3Pi/2+x[t]]};
pt2={lenl Cos[3Pi/2+x[t]]+len2 Cos[3Pi/2+y[t]],
lenl Sin[3Pi/2+x[t]]+1len2 Sin(3Pi/2+y[t]]};
Show([Graphics|[{
Line[{{0,0},ptl}],
PointSize[.05],Point[ptl],
Line[{ptl,pt2}],
PointSize[.05] ,Point[pt2]}
1,

Axes->Automatic,Ticks->None,
PlotRange->{{~32,32},{-32,0}},
DisplayFunction->Identity]
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Below, we generate the graphics of the pendulum for t =0 to t =8 using increments
of one. These graphics are partitioned into groups of three and displayed as a
graphics array. In the same manner as in the previous examples, an alternative to
producing an array of graphics cells is to use the command
Do[pen2[t,1,6,16],{t,0,8}] and then animate the resulting graphics cells.

graphs=Table[pen2[t,16,16],{t,0,8}]};
groups=Partition[graphs,3];

N 4 B
|

6.6 Some Partial Differential
Equations

Show[GraphicsArray[groups]]

The One-Dimensional Wave Equation

Suppose that we pluck a string, like a guitar or violin string, of length a and constant mass
density that is fixed at each end. What is the position of the string at a particular instance
of time? The problem of determining the position of a string of length a and mass density ¢
is modeled by the following initial-boundary value problem where f(x) and g(x) in (iii)
represent the initial position and velocity functions, respectively. The boundary conditions

in (ii) represent the fixed ends of the string at x=0 and x=a.
. B
(1) CZ$=¥,O<x<a,t>0,
(i) u(0,8)=0, u(a,t)=0,t=>0; and

(ifi) u(x,0)= f(x), % =g(x),0<x<a

t=0
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This problem is typically solved through separation of variables by assuming a solution of
the form u(x,t)=X(x)T(t). Substituting this solution into the partial differential equation (i),
we obtain ¢2X”T = XT”. Dividing by XT yields })(( =X __% where % is the constant of

c?T

separation. Hence, we have the two ordinary differential equations X”+AX=0 and
T”+2cT=0. The boundary conditions in (ii) correspond to X(0)=X(a)=0. The
X"+ 2X=0

X(0)= X(a)=0 is an eigenvalue problem with

corresponding boundary value problem {

eigenvalues 2, =" and corresponding eigenfunctions X, (x)=sin(2 x)= sm( ) for n=1,
a a

2, ... . Similarly, the solutions to T”+4c:T=0 are T (t)=a, sin(/lnct)+bn cos(l”ct), so the
solutions of this problem are
u,(x,t)=X ()T (t)
= (a” sin(/lnct) +b, cos(/lnct)) sin(/lnx)

( . (nm:t) (mrct)) . (nn:x]
=|a,sin| — |+b cosj —— | |sin| — |.
a a a

Therefore, the linear combination of these solutions is also a solution. This gives us

u(x, )= i[an sin(nTm) +b, cos( m:Ct ))Sin[%x—) :

n=1

Application of the initial position function gives us u(x,0)= z b sm( j f(x). Use of the
1

orthogonality conditions yields bnzg_’.n f(x)sin(—@)dx. In order to apply the initial
aJo a
velocity, we first differentiate u(x,t) with respect to t:

wien=3 oz a5l )

n=1

Therefore, we have u(x,0)= Za —sm(na ) g(x), which through the use of the

n=1

orthogonality condition yields a ==—— J. g(x)sm( )dx

We show how Mathematica is used to solve this problem in the following example.
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EXAMPLE: Solve the wave equation with c=1 and a=1 subject to the indicated
initial conditions:
, U Ju i
(@) $=b—tz—,0<x<l,t>0,
(i) u(0,¢)=0, u(a,t)=0,t20; and

(iif) u(x,0)=sin(mx), % =3x+1,0<x<1.
t=0

SOLUTION: The appropriate parameters and initial conditions are entered below.

Clear[alpha, beta]
a=1;

c=1;
f[x_]:=8in[Pi x};
glx_]=3x+1;

Next, the functions to determine the coefficients o, and B, in the series
approximation of the solution u(x,t) are defined in alpha and beta. alpha and
beta are defined using the form alpha[n_J}:=alpha[n}=... and
beta[n_]:=beta[n]=..., respectively, so that Mathematica "remembers" the
values of alpha[n]) and beta[n] computed and thus avoids recomputing
previously computed values. The use of NIntegrate in these functions causes
the calculations to be performed more quickly in most cases.

alphafn_]:=alphafn]=2/(n Pi c)*
NIntegrate[g[x]Sin[n Pi x/a],{x,0,a}]//N//Chop;
beta[n_}:=b[n])=2/a*NIntegrate[f[x]Sin[n Pi x/a],{x,0,a}]//Chop;

A table of the first five o, and §, is found below.

Table[{n,alpha[n],beta[n]},{n,1,5}]//TableForm

1.01321
-0.151982

1

2

3 0.112579
4 -0.0379954
5 0.0405285

O OO O

The function u defined below represents the nth term in the series expansion.
Hence, unapprox determines the approximation of order five by summing the
first five terms of the expansion.
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u[x_,t_,n_]:=(alpha[n]Sin[n Pi c t/al+
beta[n]Cos[n Pi ¢ t/a])Sin[n Pi x/a];
unapprox[x_,t_]=Sum([u[x,t, k], {k,1,5}]

(1. Cos[Pi t] + 1.01321 Sin[Pi t]) Sin[Pi x] -
0.151982 Sin[2 Pi t] Sin[2 Pi x] +
0.112579 sin[3 Pi t] Sin[3 Pi x] -
0.0379954 Sin[4 Pi t] Sin[4 Pi x] +

0.0405285 Sin[5 Pi t] Sin[5 Pi x|

In the graphs below, unapprox is graphed over the interval [0,2] (in x) for values
of t from t=0 to t=2 using increments of 2/19. This produces a list of 20 plots which
is partitioned into groups of four in garray and viewed as a graphics array. These
plots can be displayed via a Do command so that the resulting graphs may be
animated to see the motion of the string.

graphs=Table[Plot[unapprox[x,t],{x,0,1},PlotRange->{-1.5,1.5},
Ticks->None,DisplayFunction->Identity),{t,0,2,2/19}];

garray=Partition[graphs,4];

Show[GraphicsArray[garray]]

—+
—

Beginning users of Mathematica quickly notice that in order to use results from a
previous Mathematica session, they must first be re-calculated. The purpose of the
following example is to illustrate how results can be saved for future use.
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Application: Zeros of the Bessel Functions

EXAMPLE: Since the zeros of the Bessel functions play an important role in the
generalized Fourier series involving Bessel functions, use Mathematica to
approximate the first eight zeros of the Bessel functions of the first kind, Ju(x), of
ordern=0,1, 2, ..., 5.

SOLUTION: The Bessel function of the first kind of order n, Ju(x), is represented
by BesselJ[n,x]. Below, we graph the Bessel functions of the first kind of
order n for n=0, 1, ..., 5 on the interval [0,33] and display the resulting six graphs
as a GraphicsArray.

graphs=Table[Plot[BesselJ[n,x], {x,0,33},
DisplayFunction->Identity),{n,0,5});

array=Partition[graphs,3];

Show[GraphicsArray[array]]
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In order to approximate the zeros of the Bessel functions we will use the command
FindRoot. Recall that FindRoot [equation, {x,a}] attempts to locate an
approximation of the solution to equation, which represents an equation in x,
near x=a. We use the above graphs to determine initial approximations of the
zeros to be approximated. For example, the zeros of the Bessel function of order
zero appear to occur at x=2.5, 5.5, 8.7, 11.8, 15.1, 18.1, 21.2, and 24.4. These values
are entered in the list az which is used with FindRoot in a[0] to supply the
initial guess for each of the first eight zeros. A similar list of approximate zeros is
given for each function. In general, a[i] is a list of approximations of the first
eight zeros of the Bessel function of the first kind of order i.
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azero={2.5, 5.5, 8.7, 11.8, 15.1, 18.1, 21.2, 24.4};
a[0]=Table[FindRoot [BesselJ[0,x]==0, {x,azero[[1]]}],{1i,1,8}];
aone={4, 7, 10, 13.2, 16.4, 19.6, 22.6, 26};
a[l}=Table[FindRoot[BesselJ[1l,x]==0,{x,aone[[i])])}],{i,1,8}}];
atwo={5.2, 8.4, 11.8, 14.7, 18, 21.1, 24.4, 27.4};
a[2)=Table[FindRoot[BesselJ[2,x]==0,{x,atwo[[i]]}],{i,1,8}];
athree={6.5, 10, 13, 16.2, 19.4, 22.5, 25.8, 29};
a[3]=Table[FindRoot[BesselJ[3,x]==0,{x,athree[[i]]}],{i,1,8}];
afour={7.6, 11.1, 14.5, 17.7, 20.9, 24.1, 27.3, 30.5};
a[4]=Table[FindRoot[BesselJ[4,x]==0,{x,afour[[i]]}],{i,1,8}];
afive={8.9, 12.4, 15.6, 19.1, 22.3, 25.5, 28.7, 31.9};
a[5)=Table[FindRoot[BesselJ[5,x]==0,{x,afive[[i]]}],{i,1,8}];
asix={10, 13.5, 17.2, 20, 23.6, 26.9, 30, 33.3};
a[6]=Table[{FindRoot[BesselJ[6,x]==0, {x,asix[[i]])}],{i,1,8}];

After these lists are obtained, they are combined to form the single list zeros of
which is viewed in TableForm.

zeros=Table(a[i]([[j,1,2]1],{i,0,6},{j,1,8}];

TableForm[zeros]

2.40483 5.52008 8.65373 11.7915 14.9309 18.0711
21.2116 24.3525

3.83171 7.01559 10.1735 13.3237 16.4706 19.6159
22.7601 25.9037

5.13562 8.41724 11.6198 14.796 17.9598 21.117
24.2701 27.4206

6.38016 9.76102 13.0152 16.2235 19.4094 22.5827
25.7482 28.9084

7.58834 11.0647 14.3725 17.616 20.8269 24.019
27.1991 30.371

8.77148 12.3386 15.7002 18.9801 22.2178 25.4303
28.6266 31.8117

9.93611 13.5893 17.0038 20.3208 23.5861 26.8202
30.0337 33.233

We then save this table of numbers, for later use, and name the resulting file
besseltable. In doing so, these time-consuming calculations may be avoided
each time the list of zeros is needed. Instead, the file besseltable may be easily
read. The symbol >>, representing the built-in function Put, is used to write the
table zeros to the file besseltable.

zeros>>besseltable

If the calculations have just been completed, the «,, which are necessary in the
calculation of the series coefficients of the eigenfunction expansion are defined in
the following way.

alpha[i_,j_]:=zeros[[i+l,]]]
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However, if the zero must first be read in from besseltable, the following
command must be performed.

getzeros=ReadList["besseltable"];
alpha[i_,j_]:=getzeros[[1]][[i+1,]]]
|

Application: The Two-Dimensional
Wave Equation

One of the more interesting problems involving two spatial dimensions (x and y) is the
wave equation. The two-dimensional wave equation in a circular region which is radially
symmetric (not depending on 6) with boundary and initial conditions is expressed in polar
coordinates as

) i23: (B_E_'_lau) O0<r<R,t>0;

ror

(i) u(R, )=0,t>0;

(i) [u(0, t)
(iv) u(r,0)=f(r),0<r<R; and

(#ii) %(r,O) =¢(r), 0<r<R

Notice that with the boundary conditions like those in the wave equation discussed above,
this problem is typically solved through separation of variables by assuming a solution of
the form u(r,t)=R(r)T(t). Applying separation of variables yields the solution

u(r,t)= i(an cos(/lnt) +b, sin(/lnt))]()(knr),

n=1

where

A, =%a0n, k, =%0€0,,, a, = 2n7ch' g(x)sm( )dx and b ——J- f(x)sm( )dx

(a,, represents the nth zero of the Bessel function of the first kind of order zero). As a
practical matter, in nearly all cases these formulas are difficult to evaluate.

EXAMPLE: Solve the wave equation with c=1 and R=1 with initial position
f(r)=r(r-1) and initial velocity g{r)=sin(nr).
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SOLUTION: We, first, read in the table of zeros of the Bessel functions which was
created earlier in besseltable and call this table getzeros. We then define the
function alphal i, j] which represents the jth zero of the Bessel function of the
first kind of order 1i.

getzeros=ReadList [ "besseltable"];
alpha[i_,j_]:=getzeros[[1]][[i+1,]]]

Next, we enter the appropriate radius in capr, parameter ¢, and initial position
and velocity functions, £ and g.

Clear{a,b,k,lambda,um,unapprox, capr,c,f,qg]
capr=1;

c=1;

flr_]:=r(r-1);

glr_]=Sin[Pi r];

We define the formula for k,F%%, below. The eigenvalue &;%a%:ckn is

defined in lambda. The formulas for the coefficients 4, and b, which were
derived above, are then defined in a and b so that an approximate solution may be
determined. Note that we use NIntegrate in order to avoid the difficulties in
integration associated with the presence of the Bessel functions of order zero. In
addition, a and b are defined using the forms a[n_]:=a[nj=... and
b[n_]:=b[n]=... so that Mathematica "remembers" the values of a[n] and
b[n] computed and thus avoids recomputing previously computed values.

k[n_):=alpha[0,n]/capr

lambda[n_]:=c/capr alpha[0,n]

a[n_):=a[n]=2/(capr"2 BesselJ[1l,alpha[0,n]]"2)*
NIntegrate[r f[r]BesselJ[O0,k[n]r],{r,0,capr}];

b[n_]:=b[n]=2/(c capr alpha([0,n]*
BesselJ[1,alpha{0,n]]"2)*
NIntegrate[r g[r]BesselJ[0,k[n]r],{r,0,capr});

Below, we compute the first six values of 4, and b, .

Table[{n,a[n],b[n]},{n,1,6}]//TableForm

1 -0.323503 0.52118

2 0.208466 -0.145776

3 0.00763767 -0.0134216
4  0.0383536 -0.00832269
5  0.00534454 -0.00250503
6 0.0150378 -0.00208315

The nth term of the series solution is defined in u below.

ufn_,r_ ,t_]:=(a[n]Cos[lambda[n] t]+
b[n]Sin{lambda[n] t])*BesselJ[0,k[n] r]
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Thus, an approximate solution is obtained in uapprox by summing the first six
terms of u given above.

unapprox[r_,t_]=Sum[u(m,r,t],{m,1,6}]

BesselJ[0, 2.40482555769557879 r]
(-0.323503 Cos[2.40482555769557879 t] +
0.52118 Sin[2.40482555769557879 t]) +
BesselJ[0, 5.520078110286310648 rj
(0.208466 Cos[5.520078110286310648 t] -
0.145776 Sin[5.520078110286310648 t]) +
BesselJ[0, 8.653727912911012217 r]
(0.00763767 Cos[8.653727912911012217 t] -
0.0134216 Sin[8.653727912911012217 t]) +
BesselJ[0, 11.79153443901383635 r]
(0.0383536 Cos[11.79153443901383635 t] -
0.00832269 Sin[11.79153443901383635 t]) +
BesselJ[0, 14.93091770848778431 r]
(0.00534454 Cos[14.93091770848778431 t] -
0.00250503 Sin[14.93091770848778431 t]) +
BesselJ[0, 18.07106396791092254 r]
(0.0150378 Cos[18.07106396791092254 t] -
0.00208315 Sin[18.07106396791092254 t])

Since the function is independent of the angular coordinate 8, we can plot this
function over the interval [0,1] to yield a side view of half of the circular region.
This is accomplished in graphs below by plotting uapprox for values of t from
t=0 to t=2 using increments of 2/15. The list of graphics which results is then
partitioned into groups of four and displayed as a graphics array. A similar list of
graphics, can be generated with a Do command by entering

Do[Plot[unapprox[r,t],{r,0,1},Ticks->{{0,.5,1},None},
PlotRange->{-1,1}1,{t,0,2,2/15}]

so that the resulting list may be animated to show the motion of the waves on the
circular region.

graphs=Table[Plot[unapprox[r,t],{r,0,1},Ticks->{{0,.5,1},None},
PlotRange->{-1,1},DisplayFunction->Identity],{t,0,2,2/15}];

array=Partition[graphs,64];

Show[GraphicsArray[array]]
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The problem that describes the displacement of a circular membrane in its general case
is:

314) la—u _l&-ul O<r<a, —mw<@<m;

L 10
@) == r=—1+ =
ror\ or) r2df> c? of?
(i) u(a,0,t)=0, 0<t, —m<O<m;
(iit) ]u(O,H,t)l bounded, 0<t, —n<O<m;
() u(r,—mt)=u(r,m,t), O<r<a, 0<4;
ou

(v) %(r,_n,t):%(r,n,t), O<r<a, O<t;

(vi) u(r,0,0)=f(r,0), O<r<a, —n<O<m and

(vit) %(r,(),o):g(r,e), O<r<a, —m<O<Tm.

Using separation of variables, we obtain that the general solution is given by

u(r,0,t)= Z a,, I, (A, r)cos (4, ct )+ Z a,J,(A,,r) cos(mb)cos(A, ct)

" nii

+z b, S (A7) sin(m®)cos(A,, ct)+ ZA“” J, (/10” r)sin(4,,ct)

mou

+Z AT, (/lmn r) cos(m@)sin (Am”ct) + Z B, J, (/'Lm” r) sin(m#)sin (/l"mct),

m,n ", n

where | represents the mth Bessel function of the first kind, 1, represents the
nth zero of J , and the coefficients are given by:



6.6 Some Partial Differential Equations 471

‘rn }r 0)],(A,, r)rdrde J‘Z’t ”fr 8)],(4,,r)cos(mO)rdrdo
On 4 a 2 Y
ZnJ [] rdr nJ.O []m(/l"m r)] rdr
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We show how Mathematica is used to solve and visualize this problem in the example
below.

EXAMPLE: Solve the circular membrane problem with radius a=1, ¢=10, initial
position function

100010 (0)=cof T | sinc),

and initial velocity function

8(6)=5,0)8.(0)= (r-1cos ).

SOLUTION: The table of zeros which were found earlier and saved as
besseltable are read in and called getzeros. A function alpha is then defined
so that these zeros of the Bessel functions of the first kind can be more easily
obtained from the list.

getzeros=ReadList["besseltable"];
alphal[i_,j_):=getzeros[[1]][[i+1,]]]

The appropriate parameter values as well as the initial condition functions are
defined below. Notice that the functions describing the initial position and velocity
are defined as the product of functions. This enables the calculations to be carried
out in the manner which follows.
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Clear(a,f,fl,£f2,91,92,A,c,g,capa,capb,b]
c=10;

A=1;

fl[r_]:=Cos[Pi/(2r)];

f2[theta ]=Sin[theta];
f[r_,theta_]:=f[r,theta]=fl(r]*f2[theta];
gl[r_]:=r-1;

g2[theta_]=Cos[Pi/2 theta];
g[r_,theta_]:=g[r,theta]=gl[r]*g2[theta];

The coefficients 4, are determined with the function a below.

a[n_]:=a[n]=(NIntegrate[fl[r]*BesselJ[0,alpha[0,n]r]r,{r,0,A}]*
NIntegrate[f2[t],{t,0,2Pi}])/
(2Pi NIntegrate[r*BesselJ[0,alpha[O,n]r]"2,{r,0,A}])//N;

Hence, as represents a table of the first five values of 4, . Chop is used to round
off very small numbers to zero.

as=Table[a[n]//Chop,{n,1,5}]

{0, 0, 0, 0, 0}

Because the denominator of each integral formula used to find a,, and b, is the

same, the function bjmn which computes this value is defined below. A table of
nine values of this coefficient is then determined.

bjmn[m_,n_}:=bjmn[m,n)=NIntegrate{r*BesselJ[m,alpha[m,n]r]"2,{r,0,A}]//N
Table[bjmn[m,n])//Chop,{m,1,3},{n,1,3}]

{{0.0811076, 0.0450347, 0.0311763},
{0.0576874, 0.0368243, 0.0270149},
{0.0444835, 0.0311044, 0.0238229}}

Because the initial position function f is defined as the product of a function £1 of r
and a function £2 of 8, we determine the value of the integral of the product of £1
and the appropriate Bessel function in fbjmn and create a table of values.

Clear[fbjmn]

fbjmn[(m ,n_]:=fbjmn[m,n]}=NIntegrate[fl[r]*
BesselJ[m,alpha[m,n]r]r,{r,0,A}]//N

Table[fbjmn[m,n]//Chop,{m,1,3},{n,1,3}]

{{-0.0959003, 0.0269499, 0.0268211},
{-0.0866504, 0.000300172, 0.0235597},
{-0.0755676, -0.0165966, 0.0139515}}

The values of fbjmn and bjmn which were found with the Table commands
above are used to determine 4, below
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a[m_,n_]:=a[m,n]=(fbjmn[m,n] *NIntegrate[f2[t]*
Cos[m t],{t,0,2Pi}])/(Pi bjmn[m,n])//N;
Table[a[m,n]//Chop,{m,1,3},{n,1,3}]

{{0, 0, 0}, {0, O, 0}, {0, O, O}}

as well as the values of b . Note that defining the coefficients in this manner

mn

(a[m_,n_]:=a[m,n]=... and b[m _,n_J]:=b[m,n]=...)

cuts down on unnecessary computation time.

b[m_,n_]:=b[m,n]=(fbjmn[m,n] *NIntegrate[f2[t]*
Sinfm t],{t,0,2Pi}})/(Pi bjmn[m,n])//N;
Table[b[m,n]//Chop, {m,1,3},{n,1,3}]

{{-1.18238, 0.598424, 0.860306}, {0, 0, 0}, {0, O, 0}}

The values of A, are found similar to those of 4 . After defining the function
capa to calculate these coefficients, a table of values is then found.

capa[n_]:=capan]=(NIntegrate[gl[r]*BesselJ[0,alpha(0,n]r]r,{r,0,A}]*
NIntegrate[g2[t],{t,0,2Pi}])/(2Pi c alpha[O,n}]*
NIntegrate[r*BesselJ[0,alpha[O,n]r]"2,{r,0,A}})//N;
Table[capa[n]//Chop,{n,1,6}]

-6
{0.00142231, 0.0000542518, 0.0000267596, 6.41976 10
-6 -6
4.95843 10 , 1.88585 10 }

The value of the integral of the component of g, g1, which depends on r and the
appropriate Bessel functions, is defined as gbjmn below.

gbjmn(m_,n_]:=gbjmn[m,n]=NIntegrate[gl[r]*
BesselJ[m,alpha[m,n]r]r,{r,0,A}}//N
Table[gbjmn[m,n]//Chop,{m,1,3},{n,1,3}]

{{-0.0743906, -0.019491, -0.00989293},
{-0.0554379, -0.0227976, -0.013039},
{-0.0433614, -0.0226777, -0.0141684}}

Then, A, is found by taking the product of integrals, gbjmn depending on r and
one depending on 8. A table of coefficient values is generated in this case as well.

capa[m_,n_]:=capa[m,n]=(gbjmn[m,n]*NIntegrate[g2[t]Cos[m t],{t,0,2Pi}])/
(Pi alpham,n] ¢ bjmn[m,n])//N;
Table[capa[m,n]//Chop,{m,1,3},{n,1,3}]



474 6 Applications Related to Ordinary and Partial Differential Equations

{{0.0035096, 0.000904517, 0.000457326},
{-0.00262692, -0.00103252, -0.000583116},
{-0.000503187, -0.000246002, -0.000150499}}

Similarly, the B, are determined.

capb[m_,n_]:=capb[m,n]=(gbjmn[m,n] *NIntegrate[g2(t]Sin[m t],{t,0,2Pi}])/
(Pi alpha[m,n] ¢ bjmn[m,n])//N;
Table[capb[m,n]//Chop,{m,1,3},{n,1,3}]

{{0.00987945, 0.00254619, 0.00128736},
{-0.0147894, -0.00581305, -0.00328291},
{-0.00424938, -0.00207747, -0.00127095}}

Now that the necessary coefficients have been found, we must construct the
approximate solution to the wave equation by using our results. Below, terml
represents those terms of the expansion involving ag,, term2 those terms
involving an,, term3 those involving b;,,, term4 those involving Ag,, term5
those involving A ,, and termé those involving B, .

Clear[terml,term2,term3,termé4,term5,termé]
terml[r_,t ,n_]:=a[n]*BesselJ[0,alpha[0,n]r}*Cos[alpha[0,n] c t];
term2[r_,t ,th_,m ,n ]:=a[m,n]*BesselJ[m,alpha[m,n]r]*

Cos[m th]*Cos[alpha[m,n] c t];
term3[r_,t_,th_,m ,n_]:=b[m,n]*BesselJ[m,alpha[m,n]r]*

Sin[m th]*Cos[alpha[m,n] ¢ t];
term4[r ,t_,n_]:=capa[n]*BesselJ[0,alpha[0,n]r]*Sin[alpha[0,n] c t];
term5[r_,t_,th_,m ,n_]:=capa[m,n]*

BesselJ[m,alpha[m,n]r]*Cos[m th]*Sin[alpha[m,n] c t];
term6[r_,t_,th_,m ,n_]:=capb[m,n]*

BesselJ[m,alpha[m,n]r]*Sin[m th]*Sinfalpha[m,n] c t];

Therefore, the solution is given as the sum of these terms as computed in u below.

Clear|[u]

ufr_,t_,th_]:=
Sum[terml[r,t,n],{n,1,5}]+
Sum[term2[r,t,th,m,n],{m,1,3},{n,1,3}])+
Sum[term3[r,t,th,m,n},{m,1,3},{n,1,3}1+
Sum[termé4[r,t,n],{n,1,5}]+
Sum[term5[r,t,th,m,n],{m,1,3},{n,1,3}1+
Sum[term6[r,t,th,m,n],{m,1,3},{n,1,3}];

The solution is compiled below in uc. The command Compileis used to compile
functions. Compile returns a CompiledFunction which represents the
compiled code. Generally, compiled functions take less time to perform
computations than uncompiled functions although compiled functions can only be
evaluated for numerical arguments.
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uc=Compile{ {r,t,th},u{r,t,th]]
CompiledFunction{{r, t, th}, u[r, t, th], -CompiledCode-]

and then plotted below with the function tplot, which uses
ParametricPlot3D to produce the graph of the solution for a particular value of
t. Note that th represents the angle 8 and that the x and y coordinates are given in
terms of polar coordinates.

Clear[tplot]

tplot{t_):=ParametricPlot3D[{r Cos[th],r Sin[th],uc(r, t, th]},
{r,0,1},{th,-Pi,Pi},PlotPoints->{20,20},BoxRatios->{1,1,1},
Shading->False,Axes->False,Boxed~>False,
DisplayFunction->Identity]

A table of two plots for t=1/3 and t=2/3 is produced in graphs below. This table of
graphs is displayed as a graphics array.

graphs=Table[tplot[t],{t,1/3,2/3,1/3}];
Show|[GraphicsArray[graphs]]

The graphs obtained by modifying the initial condition functions to

Clearfa,f,fl1,£f2,91,92,A,c,g,capa,capb,b}
c=10;

A=1;

fl[r_]:=Cos[Pi/2 r];
f2[theta_]=Sin[theta]+theta;
f[r_,theta_]:=f[r,theta]l=fl[r]*£f2[theta];
gl[r_]:=r-1;

g2[theta_]=Cos[Pi/2 theta];
g[r_,theta_]:=g[r,theta]=gl[r]*g2[theta];

are shown below.

graphs=Table[tplot([t],{t,1/3,2/3,1/3}];
Show[GraphicsArray[graphs]]
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Other Partial Differential Equations

A partial differential equation of the form

a(x,y,u)%w(x,y,u)% =c(x,y,u)

is called a first-order, quasi-linear partial differential equation. In the case when
c(x,y,u)=0, the equation is homogeneous; when a and b are independent of u, the
equation is almost linear; and when c(x,y,u) can be written in the form

clx,y,u)=d(x, y)u+s(x,y)

the equation is linear.

Quasi-linear partial differential equations can frequently be solved using the Method of
Characteristics. After the package PDSolvel, contained in the Calculus folder (or
directory), is loaded the capabilities of DSolve are enhanced so that DSolve can solve
some first-order partial differential equations, as illustrated in the following example.

EXAMPLE: Use the method of characteristics to solve the initial-value problem

=3xtu_+u, = xt, u(x,0)=x.

SOLUTION: For this problem, the characteristic system is

= —3xt, x(0,8)=s

#0,s)=0

Yy Y|y Y®
H

=xt, u(0,s)=s.
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We begin by using DSolve to solve % =1,#0,s)=0

dl=DSolve[{D[t[r],r]==1,t[0]==0},t[r],r]
{{t[r] => r}}

and obtain t=r. Thus, % =-3xr, x(0,s)=s which we solve below and obtain

d2=DSolve[{D[x[r],r]==-3 x[r] r,x[0]==s},x(r],r]

{{X[¥] => —=mmmmmmm }}

(3 r)/2
E

x=se¥?/2_ Substituting t=r and x=se?**/2 into %zxt, u(0,s)=s. and using
DSolve to solve the resulting equation yields the following result, named d3.

d3=DSolve[{D[u[r],r]==Exp[-3/2 x¥"2] s r,u[0]==s},u[r],r]}

{{ur] => === = ———me e }}

(3 r)/2
3 E

To find u(x,t), we must solve the system of equations
{ t=r
x=se¥?/2

for r and s. Substituting r =t into x =se-**/2and solving for s yields s=xe**/2. Thus,
the solution is given by replacing the values obtained above in the solution
obtained in d3. We do this below by using /. to replace each occurrence of r and s
ind3[[1,1,2]], the solution obtained in d3, by the values r=¢ and s=xe¥*/2.
The resulting output represents the solution to the initial value problem.

da3([1,1,2]] /. {r->t,s->x Exp[3/2 t"2]}

2
(3t )/2

In this example, DSolve can also solve this first-order partial differential equation
after the PDSolvel package has been loaded. We begin by loading the PDSolvel
package located in the Calculus folder (or directory).
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<<Calculus ‘PDSolvel’

Next, we use DSolve to find a general solution of -3xtu_+u, =xt and name the
resulting output gensol.

gensol=DSolve[-3x t D[u[x,t],x]+D[u[x,t],t]==x t,
ufx,t], {x,t}]

2
-X -3t
{{u[x, t] => -- + C[1][-~~-- - Log[x]1}}
3 2
The output
2
-3t
Criif--—--- - Log[x]1}}

2
represents an arbitrary function of —%tz —Inx.

The explicit solution is extracted from gensol with gensol([[1,1,2]], the same
way that results are extracted from the output of DSolve commands involving
ordinary differential equations.
gensol[[1,1,2]]
2

-X -3t

-+ C1)[-—=-~ - Log[x]]

3 2

To find the solution that satisfies u(x,0)=x we replace each occurrence of t in the
solution by 0.

gensol[[1,1,2]] /. t->0
-x
-- + C[1l][-Log[x]]
3

Thus, we must find a function f so that

—§+f(lnx)= x
f(lnx)=3—2x.

Certainly f(r):%e* satisfies the above criteria. Below, we define f(r)=§e‘f and

then compute f(Inx) to verify that f(Inx)= 37x
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Clear([f]
f[t_]=4 Exp[~-t]/3;
f[-Log([x]}

4 x

3

Thus, the solution to the initial value problem is given by —§+ /(—%tz -In x) which

is computed below and named sol. Of course, the result returned is the same as
that obtained above.

sol=-x/3+£[-3t"2/2-Log[x]]//8implify

2
(3 t)/2

Last, we use Plot 3D to graph sol on the rectangle [0,20]x[-2,2]. The option

ClipFill->None
is used to indicate that portions of the resulting surface which extend past the
bounding box are not shown; nothing is shown where the surface is clipped.

Plot3D[sol, {x,0,20},({t,-2,2},PlotRange->{0, 30},
PlotPoints->30,ClipFill->None,Shading->False]

»‘\

q&wumnn




HAPTER

Some Graphics
Packages

Chapter 7 discusses some of the more frequently used commands contained in various
graphics packages available with Mathematica. Most of the packages presented here have
not been previously discussed in Mathematica By Example. On a computer with a notebook
interface, the folder containing the various graphics packages is shown below.

481
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7 Some Graphics Packages
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7.1 ComplexMap

A problem of interest in complex analysis is finding the image of a complex-valued
function f(z). The package ComplexMap provides several commands which are useful in
solving problems of this type. The command
CartesianMap{f[z],{{x0,x1},{y0,y1l}]
gives the image of £[ z] using Cartesian coordinate grid lines over the rectangular region
[Jco,xl]x[yﬂ,yl]:{x+iy:xU <x<x.,Y, SySyl}.
This is illustrated below with the functions id[z]=z and £[z]=(2-1)/(2+1).

EXAMPLE: Graph the image of the region R={x+iy:0<x<2,0<y<2} by the

mapping f(z)= z-1 .

z+1

SOLUTION: After loading the package ComplexMap, we define f. The command
CartesianMap([£f, {0,2},{0,2},DisplayFunction->Identity]

graphs, but does not display, the image of R by the mapping f. Since id[z] is the
identity map, each point in the domain is mapped to itself. Hence, the Cartesian
grid, called cmid, is unchanged upon application of id[z]. (This region can
therefore be viewed as the domain of £[z].) The second graph, emf, illustrates the
effects that £ [ z ] has on the points in cmid. The two graphics objects, cmid and
cmf, are viewed in a single graphics cell with
Show[GraphicsArray[ {cmid,cmf} ]. This gives the usual manner in which
the domain and image of a function are illustrated.


http://Anim.AJtion.rn

7.1 Complex Math 483

<<Graphics ComplexMap"~

id[z_]=z;

flz_]=(z-1)/(z+1);

cmid=CartesianMap(id, {0,2},{0,2},DisplayFunction->Identity]);

cmf=CartesianMap([f, {0,2},{0,2},DisplayFunction->Identity];
Show[GraphicsArray;[{cmid,cmf}]] Show:GraphicsArray;

In addition to Cartesian coordinates, polar coordinates can also be used. This is done
with
PolarMap[f[z],{r0,rl}, {thetaO,thetal}],
which produces the image of £{z] over the circular region R bounded by limits placed on
the polar coordinates r and 6: R= {re*‘ﬂ i, <r<r,6,<0< 91} .
The following problem is worked in a method similar to that of the previous problem
involving Cartesian coordinates.

EXAMPLE: Graph the image of R={re®:0<r<2,0<6<2n} by the mapping

h(z)=sinz.

SOLUTION: The identity map, id[ z =2, is used to produce the polar grid, called
pmid, to be viewed as the domain of the function h{z]. The image of h, named
pmh, is then determined with PolarMap and two graphs are displayed side-by-
side with Show and GraphicsArray.

id[z_]=z;

h[{z_]=8in[z];

pmid=PolarMap(id, {0,2},{0,2Pi},Ticks->None,DisplayFunction->Identity];
pmh=PolarMap(h, {0,2},{0,2Pi},Ticks->None,DisplayFunction->Identity];
Show({GraphicsArray[ {pmid,pmh}]]
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The following example illustrates both CartesianMap and PolarMap.

EXAMPLE: Graph the image of R ={x+iy:0<x<n,-2<y<2} by the mapping
w(z)=cos3z-sin2z and the image of R, ={re#:0<r<1,0<6<2r} by the mapping

z-2
m@)_Zz—ll

SOLUTION: The domain and image of w are called cmid and cmw, respectively,
while those of m are named pmid and pmm. These graphics objects are shown in
the appropriate order with the command

Show|[GraphicsArray|[{{cmid,cmw}, {pmid, pmm}},AspectRatio->1].
(Notice the grouping of {domain, image} within the Graphicsarray.)

w[z_]=Cos[3z]-Sin(2z];

m(z_]=(2-2)/(2z-1);

cmid=CartesianMap([id, {0,Pi,Pi/10},{-2,2,2/5},Ticks->None,
DisplayFunction->Identity];

cmw=CartesianMap[w, {0,Pi,Pi/10},{-2,2,2/5},Ticks->None,
DisplayFunction->Identity];

pmid=PolarMap[id, {0,1,1/10},{0,2Pi},Ticks->None,
DisplayFunction->Identity];

pmm=PolarMap[m, {0,1,1/10},{0,2Pi},Ticks->None,
DisplayFunction->Identity];

Show[GraphicsArray|[ {{cmid,cmw}, {pmid,pmm}}]]

1
Power::infy: Infinite expression - encountered.
0
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7.2 ContourPlot3D

The package ContourPlot3D contains the command ContourPlot 3D which can be used
to graph level curves of functions of three variables and equations in three variables. The

command
ContourPlot3D{f[x,y,2]},{X,xmin, xmax}, {y,ymin,ymax}, {z, zmin, zmax} ]
graphs £[x,y,2z]=0 in the parallelepiped [xmin,xmax]x|[ymin,ymax]x|[zmin,zmax]; the

command

ContourPlot3D[f[x,y,2], {X,xmin,xmax}, {y,ymin,ymax}, {2z, zmin, zmax},
Contours->{cl,c2,...}]

graphs flx,y,zl1=cl,f[x,y,2z]=c2, .. in the parallelepiped
[xmin,xmax|x[ymin,ymax]x[zmin,zmax].

EXAMPLE: Graph the equation —x2 —2y? + 22 - 4yz=10.
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SOLUTION: The graph of the equation —x2-2y2+22-4yz=10 is the graph of the
level surface of —x?-2y2+z2-4yz-10 corresponding to 0. Below we use

ContourPlot3D to graph this equation in the region [-6,6]x[-6,6]x[-6,6].

<<Graphics ContourPlot3D"

ContourPlot3D[-x"2-2y"2+z"2-4y z—10,{x,-6,6},{y,—6,6},{z,—6,6}]

In addition to graphing equations, we can graph level surfaces of functions of three
variables.

EXAMPLE: Sketch the level curves of w=x2+z2~y? corresponding to 0, 1, and -1.

SOLUTION: We use ContourPlot3D to graph the level surfaces corresponding
to 0, 1, and -1, naming the results cp1l, cp2, and cp3, respectively. The resulting
three graphs are displayed as a GraphicsArray.

cpl=ContourPlot3D[x"2+2"2-y"2,({x,-2,2},{y,-2,2},{2,-2,2},
DisplayFunction->Identity];
cp2=ContourPlot3D[x"2+2"2-y"2,{x,-2,2},{y,-2,2},{2z,-2,2},
Contours->{1.},
DisplayFunction->Identity];
cp3=ContourPlot3D(x"2+z"2-y"2, {x,-2,2},{y,-2,2},{z,-2,2},
Contours->{-1.},
DisplayFunction->Identity];
Show|[GraphicsArray[ {cpl,cp2,cp3}]]
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1.3 Graphics

Graphing in Polar Coordinates

Loading the Graphics package enables the user to take advantage of several commands
which will improve the graphing capabilities previously available. The first command
discussed below, PolarPlot, allows for the graphing of functions given in polar
coordinates (r,8). This command is entered as

PolarPlot[ function[var], {var,varl,var2},options}],

where var represents the angular coordinate 6 and var varies from varl to var2. This
command produces the graph of the function r=function[var].

EXAMPLE: Find the area of the region between the inner and outer loops of the
limacon r=1+2sint.

SOLUTION: We begin by defining r=1+2sint and then using the commands
PolarPlot and Plot to graph r in both polar and rectangular coordinates. The
polar graph is on the left; the rectangular graph is on the right.

r(t_]=1+28in(t];
ppl=PolarPlot[1+2Sin[t],{t,0,2Pi},Ticks->{{-1,1},(1,2,3}},
DisplayFunction->Identity];
p2=Plot|[r([t],{t,-Pi/6,2Pi} ,DisplayFunction->Identity];
Show[GraphicsArray|[{ppl,p2}]]
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The area of the outer loop of the limacon is given by

7r/6 7n/6
L (t)) dt = lj (1+2sint)’dt,

2 -n/6 2 /6

computed below with Integrate and named outer.
outer=1/2Integrate[r{t]"2,{t,-Pi/6,7Pi/6}]
3 Sqrt[3) + 4 Pi
The area of the inner loop of the limacon is given by
1 iin/6 2 1 11n/6

r(t)) dt

2 7r/6 2 7r/6

(1+2sint)’dt,

computed below with Integrate and named inner.

inner=1/2Integrate[r[t]"2,{t,7Pi/6,11Pi/6}]

-3 Sqrt[3] + 2 Pi

2

Thus, the desired area is given by subtracting inner from outer as done below.

area=outer-inner

3 Sgrt[3] - 2 Pi 3 sqrt(3] + 4 Pi

simplify[area]
area//N

3 Sqrt[3] + Pi
8.33775

PolarPlot, in the same way as commands like Plot and ParametricPlot, will
graph several curves. Entering

PolarPlot[{rl[theta],r2(theta],...},{theta,thetal,thetal}]

graphs the curves 7,(6),7,(), ... in polar coordinates for 6, <6<86,.

EXAMPLE: Find the area inside the graph of r=1 and outside the graph of
r=cos3t.
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SOLUTION: Below, we use PolarPlot and Plot to graph the curves r=1 and
r=cos3t in both polar and rectangular coordinates.

Clear|r}

r(t_]=Cos([3t];

pp3=PolarPlot[{1,r[t)},{t,0,2Pi},Ticks->{{-1,1},{-1,1}},
DisplayFunction->Identity];

p4=Plot[{1,r[t]},{t,-Pi/6,2Pi}, Ticks->{Automatic, {-1,1}},
DisplayFunction->Identity}];

Show|[GraphicsArray|[ {pp3,p4}]]

| AW
WY

The area of the unit circle is m, while the area of the three-leafed rose is given by

/6 /6
3 r(t))zdtz EJ‘COSZ\?Dtdt
2 /6 2 -n/6

/6

x/6
because the area of one leaf is given by %J' (r(t))zdt=%jcos2 3tdt. These values
-n/6 -n/6

are computed below in circle and rose, respectively. The desired area is then
given by subtracting the area of the three-leafed rose from the area of the circle.

circle=Pi

rose=3/2 Integrate[r[t]"2,{t,-Pi/6,Pi/6}}//Together
area=circle-rose//Together

N[area]

Pi
Pi
4
3 Pi
4
2.35619
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Creating Charts

Bar graphs can be drawn with BarChart[1list]. For each number in list, Mathematica
draws a rectangle of that height. These rectangles are drawn in order from left to right. The
position of the element is given beneath each rectangle.

EXAMPLE: Energy consumption (in quadrillion Btu) by end-use sector for
selected years is shown in the following table. Create a bar chart representing this

data.
Year Residential and Industrial Transportation
Commercial
1975 24.143 31.528 18.605
1980 25.653 30.609 19.695
1985 26.682 27.200 20.067
1990 28.857 29.904 25.528

Source: The World Almanac and Book of Facts, 1993

SOLUTION: We first define the lists res, ind, and tra, representing the energy
consumption of residential and commercial users, industrial users, and
transportation users, respectively. We then use BarChart to create a bar chart
representing the data. The option

BarStyle->{GrayLevel[.2],GrayLevel[.4],GrayLevel[.6]}

indicates that the bars corresponding to the first set of data, res, are graphed in
dark gray, those corresponding the second set, ind, are displayed somewhat
lighter, and those corresponding to the third set, tra, are the lightest. The option

BarLabels->{"1975","1980","1985","1990"}

indicates that the bars are to be labeled 1975, 1980, 1985, and 1990, corresponding
to the years given in the table.

<<Graphics”Graphics™

res={24.143,25.653,26.682,28.857};
ind={31.528,30.609,27.200,29.904};
tra={18.605,19.695,20.067,25.528};

BarChart[res,ind, tra,
BarStyle->{GrayLevel[.2],GrayLevel[.4],GrayLevel[.6]},
BarLabels->{"1975","1980","1985","1990"}]
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Pie charts are created by making use of the PieChart[list] command found in the
Graphics package.

EXAMPLE: According to the Department of the Treasury, major outlays of
Federal expenditures as a percentage of the Federal budget in fiscal year 1990 are
shown in the following table. Make a pie chart representing this data.

Purpose Percent of Budget

Social programs 12%

Law enforcement and general government 2%

Social security, Medicare, and other 31%
retirement

Defense, veterans, and foreign affairs 27%

Net interest on the debt 14%
Physical, human, and community 14%
development

SOLUTION: We first define data to be the list of numbers corresponding to that
given in the table. We then use PieChart to construct three pie charts
representing the data, pc1, pc2, and pc3, and display all three with Show and
GraphicsArray. In pc2, the option

PieExploded->All

indicates that the pie chart be "exploded"” while in pc3 the option

PieExploded->{2,.3}
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indicates that only the second wedge be removed a distance of approximately 0.3
units out of the pie.

data={12,2,31,27,14,14};

pcl=PieChart{data,DisplayFunction->Identity];
pc2=PieChart[data,PieExploded->All,DisplayFunction->Identity];
pc3=PieChart{data,PieExploded->{2,.3},DisplayFunction->Identity];
Show[GraphicsArray|[ {pcl,pc2,pc3}])

1.4 ImplicitPlot

This package includes the command

ImplicitPlot[equation, {x,xmin, xmax}]

which graphs the implicit equation, equation, from x=xmin to x=xmax. The set of y-
values displayed may be specified by entering the command

ImplicitPlot[equation, {x,xmin,xmax},{y,ymin,ymax}].

When graphing relatively simple equations, like those solvable using Solve, it is not
necessary to specify the y-values in the ImplicitPlot command. When Solve cannot
solve an equation, it is usually necessary to specify both the x- and y-values. In these cases,
ImplicitPlot uses the same method to produce the graph as ContourPlot. However,
ContourPlot may produce better results.

EXAMPLE: Graph the equation y2 - 2x*+2x¢-x* =0 for -1.5sx<15.

SOLUTION: After loading the ImplicitPlot package, we define eq to be the
equation y2-2x4+2x¢-x8=0 and then use ImplicitPlot to graph eq for
-1.5<x<15.

<<Graphics ImplicitPlot”
eq=y"2-x"4+2x"6-x"8==0;
ImplicitPlotfeq, {x,~1.5,1.5},Ticks->{{-1,1},{-1,1}}]
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-1 -

Implicit equations can be plotted simultaneously, as with the command Plot, with
ImplicitPlot[{eql,eq2,...,eqn}, {X,xmin,xmax}]
and
ImplicitPlotf{{eql,eq2,...,eqn}, {xX,xmin,xmax}, {ymin,ymax}].

This is shown below. Recall that a double equals sign (==) must be used to separate the left
and right-hand sides with each equation.

EXAMPLE: Graph the equations x?+y?=1and 4x2-y2=1for -15<x<15.

SOLUTION: Below we use ImplicitPlot to graph the equations together on
the same axes. The graph of x2 +y? =1 is the circle, while the graph of 4x2-y2=1is

the hyperbola.

ImplicitPlot[{x"2+y~2==1,4x"2-y"2==1},{x,-1.5,1.5},
Ticks->{{-1,1},{-1,1}}]

ImplicitPlot can be used to graph conic sections.
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EXAMPLE: A conic section is a graph of the equation

Ax?+Bxy+Cy2+Dx+Ey+F=0.
Except when the conic is degenerate, the conic Ax?+Bxy+Cy2+Dx+Ey+F=0isa
(a) Ellipse or circle if B2—4AC<0;
(b) Parabola if B2-4AC=0;or
(c) Hyperbola if B2 —4AC > 0.

Graph the conic section ax2+bxy+cy2=1 for -4<x<4 for a, b, and c equal to all
possible combinations of -1, 1, and 2.

SOLUTION: We begin by defining conic to be the equation ax2+bxy+cy? =1 and
then use Permutations to produce all possible orderings of the list of numbers
{-1,1,2}, naming the resulting output vals.

Clear{a,b,c]
conic=a x"2+b x y+c y"2==1;

vals=Permutations[{-1,1,2}]
{{—11 1! 2)! {_ll 21 l}l {lr '11 2}! {ll 21 "1)1
{21 -1, 1}1 {2, 1, '1}}

Next we define the function p. Given al, b1, and c1, p defines toplot to be the
equation obtained by replacing a, b, and c inconic by al,bl, and cl,
respectively. Then, toplot is graphed for -4<x<4. p returns a Graphics object,
which is not displayed, because the option DisplayFunction->Identity is
included.

pl{al_,bl_,cl_}]:=Module|{toplot},
toplot=conic /. {a->al,b->bl,c->cl};
ImplicitPlot[toplot, {x,-4,4},Ticks->None,
DisplayFunction->Identity]
]

We then use Map to compute p for each ordered triple in vals. The resulting
output, named graphs, is a set of six graphics objects.
graphs=Map(p,vals]
{-Graphics-, -Graphics-, -Graphics-, -Graphics-,

~Graphics-, -Graphics-}
Partition is then used to partition graphs into three element subsets. The
resulting 2x3 array of graphics objects named toshow is displayed with Show
and GraphicsArray.
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toshow=Partition[graphs,3];
Show[GraphicsArray[toshow]]
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1.5 MultipleListPlot and Graphics3D

The packages MultipleListPlot and Graphics3D contain several commands for graphing
lists and manipulating graphics objects.
In the package MultipleListPlot, the function MultipleListPlot with syntax

MultipleListPlot[listl,list2,...]

graphs the lists 1ist1l, list2, ... on the same graph.
In the package Graphics3D, the function

BarChart3D[{listl,1ist2, ...}]

makes a three-dimensional bar chart using the heights givenin 1istl, list2, ...

EXAMPLE: In Section 7.2, we defined the lists res, ind, and tra, representing
the energy consumption of residential and commercial users, industrial users, and
transportation users, respectively, for certain years. Create both a two- and three-
dimensional plot representing this data.

SOLUTION: After loading the MultipleListPlot package, we redefine the lists
res, ind, and tra. We then use MultipleListPlot to graph these lists in m1
and m2. In m2, the option PlotJoined->True causes consecutive points to be
connected with line segments.

<<Graphics MultipleListPlot”
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res={24.143,25.653,26.682,28.857};
ind={31.528,30.609,27.200,29.904};
tra={18.605,19.695,20.067,25.528};

ml=MultipleListPlot[res,ind,tra,DisplayFunction->Identity];
m2=MultipleListPlot[res,ind, tra,PlotJoined->True,

DisplayFunction->Identity];
Show|[GraphicsArray[{ml,m2})]

“1.502.533.54 500533 .54

Next, we load the package Graphics3D and use BarChart3D to construct a three-
dimensional bar chart representing the data.
<<Graphics Graphics3D"

BarChart3D[ {res, ind, tra}]

R R

7.6 PlotField and PlotField3D

The package PlotField contains the commands PlotVectorField and
PlotGradientField, which are useful in many areas of physics and engineering. The

command

PlotVectorField[vector(x,y], {x,xmin, xmax}, {y,ymin, ymax}]
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graphs the vector field given by the vector-valued function, vector([x,y]. This is

illustrated below.

EXAMPLE: Graph the vector field given by the vector-valued function
(y,(1-x?)y - x) on the rectangle [-2,2]x[-4,4].

SOLUTION: After loading the PlotField package, we use PlotVectorField to
graph the vector field. The option

ScaleFunction->(2#&)
instructs Mathematica to draw each vector at twice its true magnitude.
<<Graphics PlotField"

PlotVectorField[{y, (1-x"2)y-x},{x,-2,2},{y,-4,4},
ScaleFunction->(2#&) ,AspectRatio->1]
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The command
PlotGradientField{function[x,y], {xX,xmin, xmax}, {y,ymin, ymax}]

graphs the gradient field of the function, function([x,y]. This is done by first
computing the gradient of function[x,y] (which yields a vector field) and then plotting

the gradient.
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EXAMPLE: Graph the gradient field of (=xy-x on the rectangle [-2,2]x[-4,4].
y

SOLUTION: In spite of the error messages, which are not all displayed here,
generated when Mathematica samples points with the y-coordinate equal to zero,
the graph produced with PlotGradientField is correct.

PlotGradientField[ ((1-x"2)y-x)/y,{x,-2,2},{y,~4,4)},AspectRatio->1]

1
Power::infy: Infinite expression - encountered.
0
1
Power::infy: Infinite expression - encountered.
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Vector fields can be plotted in three dimensions as well. The commands needed to plot
these fields are found in the PlotField3D package. The syntax for the
PlotGradientField3D and PlotVectorField3D commands are similar to those used
in the two-dimensional cases discussed above with the addition of a z-component.

Vectors with heads are displayed in the final graphics object when the option

VectorHeads->True

is included.

EXAMPLE: Graph the vector field (-11x+4y+6z,10x—4y+5z,5x+8y—6z) on the
parallelepiped [1,3]x[0,6]x[1,5].
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SOLUTION: We use PlotVectorField3D to graph the vector field on
[1,3]x[0,6]x[1,5]. The vectors are drawn with arrows since the option

VectorHeads->True
is included.

<<Graphics PlotField3D"
PlotVectorField3D[{-11x+4y+6z,10x-4y+5z,5x+8y-6z},
{x,1,3},{y,0,6},{z,1,5},VectorHeads->True]

Our last example illustrates the use of PlotGradientField3D.

EXAMPLE: Graph the gradient field of

x2+y2+z-4 on the cube
[-2,2]%[-2,2]%[-2,2].

SOLUTION: PlotGradientField3D is used to first compute the gradient of
x2+y2+z-4 and then graph the resulting vector field on the cube
[-2,2]x[-2,2]x[-2,2].

PlotGradientField3D[x"2+y"~2+2-4,{x,-2,2},{y,-2,2},{z,-2,2},
VectorHeads->True]



500 7 Some Graphics Packages

1.7 Polyhedra and Shapes

Pictures of polyhedra can be produced with Polyhedra. Many geometrical properties of
polyhedra are stored in this package, so some pictures can be obtained by specifying a
desired polyhedra with Show[Polyhedron({shape]]. Stored polyhedra include the
icosahedron, dodecahedron, octahedron, cube, and tetrahedron, shape is one of the
following: Icosahedron, Dodecahedron, Octahedron, Cube, or Tetrahedron . If
unspecified, the center is taken to be (0,0,0).

EXAMPLE: Display a cube with center (0,0,0).

SOLUTION: A cube centered at the origin in produced below.

<<Graphics Polyhedra”
Show{Polyhedron[Cube]]
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Several polyhedra can be shown simultaneously and, thus, complicated three-
dimensional objects can be constructed. However, another command which involves more
options must first be introduced. Three-dimensional graphics objects are created but not
displayed with

Graphics3D([shape[ {x0,y0,z0},scale]]

where shape is the desired shape from the list of stored polyhedra: Icosahedron,
Dodecahedron, Octahedron, Cube, and Tetrahedron. {x0,y0,2z0} represents the
center, and scale adjusts the size. The default value of scale is 1, so scale >1 produces
a larger polyhedron and scale <1, a smaller one.

EXAMPLE: Display a dodecahedron, octahedron, and tetrahedron in the same
graph.

SOLUTION: The first command below creates and stores (as £ig1) the graphics
of a dodecahedron centered at the origin, using scale = 1/2. Because Show is not
used, the picture is not displayed. Next, the graphics of an octahedron centered at
{Cos[Pi/3],S8in[Pi/3],0} and scale = 1/3 is created and stored as £ig2.
Also, a tetrahedron with center {Cos[2Pi/3],Sin[2Pi/3],1/3} and scale =
1/4 is stored as £ig3. Because the graphics of each polyhedra was named, they
can be shown simultaneously with Show[ figl,fig2,fig3,Boxed->False].

figl=Graphics3D[Dodecahedron{{0,0,0},1/2]];
fig2=Graphics3D{Octahedron| {Cos[Pi/3],8in[Pi/3],0},1/3]]);
fig3=Graphics3D[Tetrahedron( (Cos[2Pi/3],Sin[2Pi/3],1/3},1/4]];
Show[figl,6fig2,fig3,Boxed->False]
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Another command available in Polyhedra is

Stellate[Polyhedron[shape],ratio]

where shape is again one of the following: Icosahedron, Dodecahedron,
Octahedron, Cube, or Tetrahedron. This takes the symbolic representation of the
polyhedron and represents it as a stellated polyhedron. (Each face is replaced by a stellate.)

EXAMPLE: Use Stellate to create a stellated dodecahedron for various ratios.

SOLUTION: We define the function a so that given i, a[i] generates the
graphics object Stellate[Polyhedron[Dodecahedron],i], then shows the
object without a box. Note that the result of a[i] is a graphics object that is not
displayed because the option DisplayFunction->Identity isincluded. We
then use Table to generate a[i] for i-values ranging from 0.25 to 2 in steps of
1.75/8. The resulting set of nine graphics objects, moreshapes, is partitioned into
three element subsets with Partition and the resulting 3x3 array of graphics
objects is displayed with Show and GraphicsArray. Notice how the pictures
change with i. If i <1, the object is concave. If i >1, the object is convex.

The graphics generated by the Do loop

Do[Show[ali],
DisplayFunction->$DisplayFunction], {i,.25,2,1.75/24}]

can be animated to observe the changes which take place as i changes.

Clear[a]
a[i_]:=Show[Stellate(Polyhedron[Dodecahedron],i},
Boxed->False,DisplayFunction->Identity];
moreshapes=Table[a[i],{i,.25,2,1.75/8}];
toshow=Partition[moreshapes,3];
Show[GraphicsArray[toshow] ]
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Shapes contains commands which produce the graphics of many shapes commonly
used in mathematics. As with the all graphics objects, different shapes may be combined
and shown simultaneously to create more complicated objects.

lustrated first below is

MoebiusStrip[outerradius,innerradius,n]

where innerradius and outerradius are the inner and outer radii, respectively, and
the Moebius strip is approximated using 2n polygons. (MoebiusStrip actually produces
a list of polygons which are displayed with Show and Graphics3D.)

EXAMPLE: Generate a Moebius strip with inner radius 2 and outer radius 4.

SOLUTION: We use the command MoebiusStrip[4,2,30] to generate the
Moebius strip with inner radius 2 and outer radius 4 with 60 polygons. The list of
polygons created with MoebiusStrip is visualized with Show and Graphics3D.

<<Graphics” Shapes™
Show|[Graphics3D[MoebiusStrip([4,2,30]]]
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Another shape which can be approximated in this package is that of a torus. This is
accomplished with

Torus[outerradius, innerradius,m,n)

where m times n polygons are used to approximate the shape of the torus.

EXAMPLE: Generate a torus with inner radius 0.5 and outer radius 1.

SOLUTION: A torus of inner radius .5 and outer radius 1 is approximated with
300 polygons and called torusone. To show that torusone is a list of polygons,
we use Short to display an abbreviated two-line form of torusone. We then
display torusone with Show[Graphics3D[torusone}].

torusone=Torus [1,.5,20,15];
Short[torusone, 2]

{Polygon[{{1.38547, 0.450168, 0.203368}, <<2>>,
{1.17855, 0.85627, 0.203368}}], <<299>>}

Show[Graphics3D[torusone]]
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The command Sphere[r,m,n] produces an approximation of a sphere of radius r

using m times n polygons.

Several other commands are available for visualizing the lists of polygons produced by
the commands found in Shapes. The command WireFrame[polygonlist] replaces
each polygon in polygonlist by closed lines, so the shape resembles that of a wire frame

when visualized.

EXAMPLE: Show a sphere of radius 1 surrounded by a sphere of radius 2.

SOLUTION: The approximation of a sphere of radius 1 is obtained below using
225 polygons; the resulting Graphics3D object is named sphereone. A list of
144 polygons is used to approximate a sphere of radius 2; the resulting graphics
object is named spheretwo. WireFrame is then applied to the Graphics3D
object spheretwo and the result is named wiretwo. The shapes sphereone and
wiretwo are viewed simultaneously using the command Show. (The Show option,
Boxed->False, causes no box to be drawn around the sphere.)

sphereone=Graphics3D[Sphere[1,15,15]];
spheretwo=Graphics3D[Sphere([2,12,12]];
wiretwo=WireFrame[spheretwo];
Show([sphereone,wiretwo, Boxed->False]

Another shape that can be graphed with Shapes is Helix[r,h,m,n], which
approximates a helix with half height h and m turns usingm * n (where n =20r) polygons.
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EXAMPLE: Generate a helix with half height 3 and 5 turns.

SOLUTION: Shown below is a helix of half height 3 with 5 turns. The list of
polygons which approximate the helix is found in helixtwo; Show[helixtwo]
displays the helix.

helixtwo=Graphics3D[Helix[2,3,5,40]]);
Show[helixtwo]

Shapes also contains several commands to manipulate shapes. For example,
RotateShape[shape,xrotate,yrotate,zrotate] causes shape to be rotated

xrotate units about the x-axis, yrotate units about the y-axis, and zrotate units

about the z-axis.

EXAMPLE: Rotate the helix generated in the previous example about the z-axis.

SOLUTION: Below, we redefine helixtwo and then use Table to generate the
graphics objects

RotateShape[helixtwo,0,0,n Pi/6]

for n from 0 to 12 in steps of 12/8. The resulting list of nine graphs is named
graphs and then partitioned into three-element subsets with Partition. The
resulting 3x3 array of graphics cells is displayed with Show and
GraphicsArray.
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helixtwo=Graphics3D[Helix[2,3,5,40]1];
graphs=Table[RotateShape[helixtwo,0,0,n Pi/6],{n,0,12,12/8}]};
toshow=Partition[graphs,3];

Show[GraphicsArray[toshow]]

The Do loop

Do[Show[RotateShape[helixtwo,0,0,n Pi/6]],{n,0,12}]

produces 13 graphics cells which can be animated to view the rotation of the helix
about the z-axis. B

Closely related to RotateShape is the command

TranslateShape [ shape, {x0,y0,20}]

which translates shape x0 units along the x-axis, y0 units along the y-axis, and z0 units
along the z-axis.

EXAMPLE: Generate an animation in which one sphere is revolving about
another.

SOLUTION: Below we define sphereone and spheretwo to be spheres of radii
1.5 and 0.5, respectively. For sphereone, we use 144 polygons; since spheretwo
is smaller, we use a small number, 64.



508 7 Some Graphics Packages

sphereone=Graphics3D{Sphere[1.5,12,12}};
spheretwo=Graphics3D[Sphere[.5,8,8]];

Next we define tr. Given t, tr[t] yields the Graphics3D object obtained by
translating spheretwo 2.5cost units along the x-axis, 2.5sint units along the y-
axis, and 0.75+0.25sint units along the z-axis. m is defined to show both
sphereone and tr[t]. Note that the result of entering m[ t ] is not displayed
since the option DisplayFunction->Identity isincluded.

tr(t_]:=TranslateShape[spheretwo,{2.5Cos[t],2.5Sin[t],.75+.258in[2t]}]
m[t_] :=Show[ {sphereone, tr[t]}, Boxed->False,DisplayFunction->Identity]

A set of nine graphs is then generated with Table and partitioned in the three
element subsets with Partition. The resulting 3 x 3 array of graphics cells,
toshow, is displayed with Show and GraphicsArray.

graphs=Table[m[t), {t,0,2Pi,2Pi/8}];
toshow=Partition[graphs,3];
Show{GraphicsArray{toshow}]]

The Do loop

Do[Show[m[t],
DisplayFunction->$DisplayFunction], {t,0,2Pi,2Pi/14}]]

generates 15 graphics objects which can be animated.
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: (ou), 150, 266,270, 271 190, 198, 199, 232, 247, 249, 253, 263, 270, 273,
26 (nd), 194, 270, 412 276, 286, 288, 290, 291, 304, 307, 319, 320, 325,
 (Dorivatise) 110,111, 113, 119 336, 375, 377, 389, 408, 423, 424, 428, 430, 436,
S 442, 444, 454, 457, 460, 463, 466468, 471-475
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{...},4 50,52, 229-231, 234, 238, 248, 256, 278, 280,
283, 290, 296, 297, 300, 303, 304, 309, 312, 317,
323, 325-328, 332, 337, 349, 357, 359, 463, 468

A

Abbreviated output (Short), 95, 240, 241, 374, 377,
395, 399, 504
Abs, 29
Absolute value (Abs), 29
complex number, 29
AccountingForm, 267, 268
Adding elements to lists, 251, 325
Algebra
see SymbolicSum
see Trigonometry
Amortization, 259
Animation, 133, 273, 276, 292, 461, 464, 469, 502, 507,
508
Annuity due, 255
Apart, 41, 44, 367
Append, 251
AppendRows, 314
AppendTo, 251, 320, 325
Applied maxima and minima, 134-141
Apply (€@), 250-252
Approximating
arc length, 166
area, 149-156, 162-166
eigenvalues, 330
QR Method 336, 337
eigenvectors, 330
integrals (NIntegrate) 161, 162
double, 219, 220
triple, 226
numbers (N), 25-27
solutions of a polynomial equation (NRoots), 88,
89,90, 91
solutions to a system of differential equations
(NDSolve), 451-457
solutions of a system of equations (FindRoot),
92
solutions of an equation (FindRoot), 88-99
solutions of an ordinary differential equation
(NDSolve), 375-377, 406410
volume of solid of revolution, 167-172
Arc length, 166
ArcCos, 28, 34, 35
ArcCosh, 34, 38, 39
ArcCot, 28, 34
ArcCoth, 34
ArcCsc, 28, 34
ArcLengthFactor, 348
ArcSec, 28
ArcSech, 34
ArcSin, 28, 34, 35
ArcSinh, 34, 38

Index

ArcTan, 28, 34, 35, 180
ArcTanh, 34, 38
Area, 162-164
approximating, 149-156, 162-166
polar coordinates, 487489
Arithmetic calculations, 23-26
Array, 230, 231
Arrays, 229-235
defining, 230, 296-300
extracting elements of (Part), 236-240, 300-304
computations with, 304-308
AspectRatio, 59, 60, 62, 64, 497, 498
Associated matrix of a linear transformation, 322
Augmented matrix, 313
Automatic, 60, 64, 149, 153, 428, 430
Autonomous system, 450
Auxiliary equation, 391, 401, 402
Axes, 59, 71, 73, 87, 93, 143, 146, 149, 153, 201, 215,
216, 223, 243, 351, 365, 369, 460, 475
AxesLabel, 59
AxesOrigin, 60, 71, 73, 87, 93, 143, 146, 149, 188, 201,
215, 216, 223, 365, 369

Bar charts, 490, 491, 495
BarChart,
BarLabels, 490
BarStyle, 490"
BarChart3D, 495, 496
BarLabels, 490
BarStyle, 490
Bessel function of the first kind (BesselJ), 472-474
graphing, 465
zeros of, 236, 466468, 471
BessellJ, 465, 466, 468, 472474
Bipolar, 348
Boxed, 351, 475, 501, 502, 505, 508
BoxRatios, 67,475

C

Calculus

see DiracDelta

see FourierTransform

see LaplaceTransform

see PDSolvel

see VectorAnalysis
Cancel, 41, 44, 334, 367, 403, 433
Cartesian, 348, 351
CartesianMap, 482484
Catalan, 27
Cauchy-Euler equation, 401

auxiliary equation, 401, 402
Center, 444, 450
Chain rule, 112
Characteristic

equation, 326, 391
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matrix, 326

polynomial, 326, 327, 333, 334

value, 326
CharacteristicPolynomial, 326, 327
Charts

bar, 490, 491, 495

pie, 491, 492
Chop, 331, 448, 472, 473
Circumscribed rectangles, 149, 153
Clear, 45, 46, 63-65
ClipFill, 479
Coefficient matrix, 308, 313
Collect, 367, 431
Column

space, 316, 317

vector, 299, 300
CombinatorialSimplification

Factorial (!), 6,109,177, 178, 190
Compile, 474, 475
Compiled, 449, 453, 454, 456, 457
CompiledFunction, 475
Complete Selection, 13
Complex conjugate, 392
Complex-valued function

image, 482484
ComplexExpand, 54, 180, 393
ComplexMap

CartesianMap, 482-484

PolarMap, 482-484
Composition, 52-54
Composition of functions

Composition, 52-54

Nest, 52, 54, 55
Compound interest, 252-254
Concave

down, 119

up, 119
Condition (/.), 62-64, 122, 125, 286, 428, 430, 436
Conic sections

circle, 61, 64, 493

ellipse, 494, 495

graphing, 61, 64, 493495

hyperbola, 493495

parabola, 494, 495
Conjugate transpose, 334
Conservative vector field, 347

potential function, 347
Constants

Catalan, 27

E, 27

EulerGamma, 27

GoldenRatio, 27

1,27

Infinity, 6,27, 101, 108, 154, 156, 174-179, 181,

183

Pi, 27
ConstrainedMax, 338, 340
ConstrainedMin, 338, 339, 341, 345
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ContourPlot
Axes, 71, 73, 143, 146, 149, 201, 216, 223, 365, 369
AxesOrigin, 71, 73, 143, 146, 149, 201, 216, 223,
365, 369
Contours, 71, 73, 87, 93, 143, 146, 149, 216, 223,
369, 371
ContourShading, 71, 72, 73, 87, 93, 143, 146,
149, 201,216, 223, 365, 369, 371
DisplayFunction, 73, 87, 93, 201, 216
Frame, 71, 73, 143, 146, 149, 216, 223, 365, 369
options, 70
PlotPoints, 71, 73, 87, 93, 143, 146, 149, 216,
223, 369, 371
PlotRange, 73, 216, 371
ContourPlot3D, 485, 486
Contours, 485
ContourPlot3D
ContourPlot3D, 485, 486
Contours, 71, 72, 87, 93, 143, 146, 149, 216, 223, 369,
371, 485
ContourShading, 71, 72, 74, 87, 93, 143, 146, 149,
201, 216, 223, 365, 369, 371
Convolution
integral, 435
theorem, 435
CoordinatesFromCartesian, 348
CoordinatesToCartesian, 348
Cos, 12, 28, 31-33, 248
Cosh, 36, 37
CosIntegral, 158
Cot, 28
Count, 240
Critical points, 116, 210
classification, 209, 237, 238
degenerate, 209, 211
maximum, 209, 211
minimum, 209, 211
saddle, 209, 211
CrossProduct, 348
Csc, 28
Cube, 500
Curl, 347, 349, 350
Curve-fitting, 277-285
Cyclotomic, 232, 233
Cyclotomic polynomials, 232
Cylindrical, 348

D

D, 110-113, 138, 147, 190, 193, 204-208, 210, 211, 213,
217, 234, 247, 370, 388, 389, 394, 396
Dashing, 55, 58, 60, 106, 108, 124, 125, 127, 163, 164,
166, 188, 191, 192
Decreasing, 119
Deferred annuity, 258, 259
Defining
arrays, 296-300
functions
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piecewise-defined, 62-64, 122, 125, 286, 428,
430, 436

recursively defined, 63, 64, 198, 199, 232,
286, 336, 423, 424, 428, 430

of a single variable, 4547

of two variables, 48

vector-valued, 49, 50

which remember the values computed, 198,
199, 232, 290, 320, 336, 423, 424, 468,
472474

lists, 229-233

Laplace transform, 426440, 458-461

linear, 371, 387
nonhomogeneous, 387, 396

numerical solution (NDSolve), 375-377, 406-

410, 451457

partial, 289-293, 461464, 467-479
power series solution, 192-198, 411426

second-order

constant coefficients, 192, 391-393

system, 441461
autonomous, 450

matrices, 296-300
tables, 296-300
vectors, 300

numerical solution (NDSolve), 451-457
variation of parameters, 446449
variation of parameters, 396-401

Degenerate critical point, 209

Delayed evaluation (:=), 46, 52, 55, 63, 64, 122, 125,
151, 153, 190, 198, 199, 232, 247, 249, 253, 263,
270, 273, 276, 286, 288, 290, 291, 304, 307, 319,
320, 325, 336, 375, 377, 389, 408, 423, 424, 428,
430, 436, 442, 444, 454, 457, 460, 463, 466468,
471475

Denominator, 42, 44, 104

Derivative, 206-209

Derivative

applied maxima and minima, 134-141

DiracDelta, 438, 439
DiracDelta
DiracDelta, 438, 439
UnitStep, 439
Dirac delta function, 438
Direction, 108
DiscreteMath

see CombinatorialSimplification

see RSolve

DisplayFunction, 58, 61, 62, 65, 73, 76, 78-80, 87,
93, 114, 120, 125, 131, 132, 133, 144, 188, 201,

calculating, 110-112

chain rule, 112

critical point, 116, 209-211

definition, 105, 106, 272

graphing, 123-125, 131-134

higher-order, 112, 113

implicit function, 142-147
tangent line, 144

inflection point, 116

Mean-Value theorem, 128

partial, 203, 204, 207
higher-order, 205, 206, 208

product rule, 112

quotient rule, 112

Rolle's theorem, 128

tangent line, 113, 114
horizontal, 115, 126, 127

216, 273, 276, 278, 280-282, 284, 288, 293, 325,
380, 438, 443, 445, 446, 449, 454, 455, 457, 460,
464, 465, 469, 475, 483, 484, 486, 487, 489, 494,
496, 502, 508

Displaying several graphs, 58, 60-62, 65, 66, 73, 74,
106, 114, 123-125, 144, 145, 272-277, 325, 326,
484, 485, 489, 494, 495, 501-503, 505, 507, 508

Distance formula, 138

Div, 347, 349, 350, 357

Divergence, 347

Divergence theorem, 356

Do, 133, 273, 276, 292, 320, 469, 502, 507, 508

Dodecahedron, 500-502

Dot (.), 304-310, 312, 319, 322, 325, 329, 330, 362

Dot product, 305, 306

DotProduct, 348

Double integral, 218-220

Det, 304, 305, 327, 389, 396
Determinant, 304
DiagonalMatrix, 19,20
Difference quotient, 105, 106, 272
Differential equations

approximating (NIntegrate), 219, 220

polar coordinates, 360-362
volume, 221-226
Double pendulum, 458461
Drop, 251, 320, 431

Cauchy-Euler, 401
constant coefficients, 387, 391

characteristic equation, 391
first-order

exact, 369

homogeneous, 366

linear, 371

separable, 364
fundamental set of solutions, 390
general solution, 391
homogeneous, 387, 390, 391, 394

DSolve, 196, 373, 374, 378, 385, 386, 392-394, 400, 402,
405, 406, 441, 445, 447, 477, 478
Dual problem, 339, 340

E, 6,27
Eigensystem, 326, 329, 330, 442, 444
Eigenvalues, 326-331, 334-337, 442, 444, 452, 453,
456
approximating, 329, 330
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QR Method, 334-337
Eigenvectors, 326, 329, 330
approximating, 330
Ellipse, 494, 495
Ellipsoid, 81, 82
Elliptic, 348
EllipticCylinder, 348
ENTER, 2, 24
Equations
approximating solutions of, 88-99
see Differential equations
graphing, 64, 65, 73, 81-83, 147-149, 485487,
492495,
integrodifferential, 448
literal, 89, 140
matrix, 308-315
parametric
defining, 65, 66, 81-83, 168-172
graphing, 65, 66, 74, 76, 81-83, 168-172
polynomial, 88-91
recurrence, 269
solutions of, 84-88
system of, 85-88, 308-315
trigonometric, 85, 92
Equilibrium point, 450
center, 444, 450
saddle, 450
stable node, 450
stable spiral, 450
unstable node, 450
unstable spiral, 450
EulerGamma, 27
Evaluate, 143, 191, 192, 200, 234, 235, 245, 293, 373,
377, 395, 400402, 408-410, 413
Evaluating functions, 25, 28, 31, 39, 45-52
Exact differential equation, 369
Exp, 28, 29
Expand, 9, 40, 47, 54, 334
Trig, 54, 361
ExpandAll, 42, 367, 420, 422
ExpandDenominator, 42
ExpandNumerator, 42
Extracting elements
from lists, 236-240
from matrices, 300-304
from tables, 300-304

F

Factor, 40, 43, 104, 116, 117, 251, 265, 266, 366, 403
Factorial (1), 6,109,177, 178, 190
Factoring expressions, 40
Fibonacci numbers, 231, 232
FindRoot, 90-93, 98, 99, 127, 166, 383, 466
First, 236
First-order differential equation
exact, 369
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homogeneous, 366
linear, 371
separable, 364
Fit, 277, 278, 281, 282, 284
Flatten, 395, 434, 442, 444, 446, 448
Folium of Descartes, 65
Fourier series, 285
kth term, 285
partial sum, 285
FourierCosSeriesCoefficient, 289
FourierSinSeriesCoefficient, 289
FourierTransform
FourierCosSeriesCoefficient, 289
FourierSinSeriesCoefficient, 289
FourierTrigSeries, 289
NFourierTrigSeries, 289
FourierTrigSeries, 289
Fractions
partial fraction decomposition, 41, 44, 367
simplifying, 24, 40, 41, 43, 44, 48, 103-107, 359,
360, 392, 393
Frame, 59, 71, 73, 87, 93, 143, 146, 149, 216, 223, 365,
369
Free-falling bodies, 383-387
FresnelC, 220
Fresnels, 220
Functions
composing
Composition, 52-54
Nest, 52, 54, 55
concave
down, 119
up, 119
decreasing, 119
evaluating, 25, 28, 31, 39, 45-52
increasing, 119
linearly
dependent, 387
independent, 387
of a single variable
defining, 4547
graphing, 56-64
of two variables
defining, 48
graphing, 6669
parametric
defining, 65, 66, 81-83, 168-172
graphing, 65, 66, 74, 76, 81-83, 168-172
piecewise-defined, 62-64, 122, 125, 286, 428, 430,
436
recursively defined, 63, 64, 198, 199, 232, 286, 336,
423, 424, 428, 430
vector-valued, 49, 50
which remember the values computed, 198, 199,
232, 290, 320, 336, 423, 424, 468, 472-474
Function Browser, 19-21
Fundamental set of solutions, 390
Future value, 254
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G

Gauss—Jordan elimination, 313-315
General solution, 391
Geometric series, 6, 174
Getting Started, 14
GoldenRatio, 27, 59, 61
Grad, 347, 348, 351, 352, 359
Gradient, 347, 349, 497, 499
Gram-Schmidt process, 318-322
GramSchmidt, 7, 8, 322
Graphics
Line, 131, 460
Point, 144, 243, 280, 283, 460
PointSize, 144, 243, 280, 283, 460
Graphics
’ BarChart, 490, 491
PieChart, 491, 492
PolarPlot, 487489
Graphics
see ComplexMap
see ContourPlot3D
see Graphics3D
see ImplicitPlot
see MultipleListPlot
see ParametricPlot3D
see PlotField
see PlotField3D
see Polyhedra
see Shapes
two-dimensional
see ParametricPlot
see Plot
see ContourPlot
three-dimensional
see ParametricPlot3D
’ see Plot3D
Graphics3D
BarChart3D, 495, 496
Graphics3D, 501, 503-508
GraphicsArray, 66, 73, 76, 80, 120, 124, 133, 152,
153, 155, 201, 277, 284, 293, 326, 375, 410, 434,
449, 455, 461, 475, 483, 484, 486, 489, 492, 495,
496, 502, 507, 508
GrayLevel, 55, 57, 58, 60, 94, 106, 107, 123, 127, 152,
153, 163, 164, 165, 187, 188, 191, 245, 460
Green's theorem, 354-356
GridLines, 60

H

Harmonic motion, 413

Heat equation, 289-293

Helix, 506

Help, 8-21
?, 8,11, 12, 46, 56, 180, 220
?? (Information), 10, 67, 70, 75
Complete Selection, 13
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Function Browser, 19-21
Getting Started, 14
Help Pointer, 15
Information (2?), 10, 67, 70, 75
Make Template, 13
Names, 11
Options, 9, 10, 59
Shortcuts, 14, 15
Why the Beep?, 1618
Help Pointer, 15
Hermite polynomials, 233, 234, 413
HermiteH, 233, 234, 413

Index

Higher-order derivatives, 112, 113, 205, 206, 208
Homogeneous differential equation, 366, 387, 390, 391,

394
Hooke's law, 403
Hyperbola, 493-495
Hyperbolic functions
Cosh, 36,37
inverse
ArcCosh, 34, 38, 39
ArcCoth, 34
ArcSech, 34
ArcSinh, 38
ArcTanh, 38, 39
Sinh, 36, 37
Tanh, 36, 37
Hyperboloid
of one sheet, 81
of two sheets, 81
graphing, 82, 83

1,27
Icosahedron, 500
Identity, 58
Identity matrix, 299
IdentityMatrix, 299, 333
If,152
Implicit differentiation, 142-147
tangent line 144
ImplicitPlot, 147, 148, 492495
PlotPoints, 148
Ticks, 493, 494
ImplicitPlot
ImplicitPlot, 147, 148, 492495
Improper integral, 175, 176
Increasing function, 119

Infinity, 6,27, 101, 108, 154, 156, 174-179, 181, 183

Inflection point, 116
Information (2?), 10, 67, 70, 75
InputForm, 266

Inscribed rectangles, 149, 150-152
Inserting comments into code, 319
Integer, 232

Integral

approximating, 161, 162, 219, 220, 226
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arc length, 166
area, 162-164, 487489
convolution, 435
definite, 158-160
double, 218-220
approximating, 216
polar coordinates, 360-362
volume, 221-226
improper, 175, 176
indefinite, 157, 158
Mean-Value theorem, 172
polar coordinates, 360-362, 487489
triple, 226, 228
volume, 227, 228
volume of solids of revolution, 167-172
Integral test, 176
Integrate, 157-163, 169, 173, 175, 176, 218-220,
226-228, 290, 356, 357, 360-362, 364, 368, 370,
371, 397, 433, 488, 489
Integrodifferential equation, 435
Interest, 252-254
InterpolatingFunction, 376, 377, 408, 451,
453-457
InterpolatingPolynomial, 277, 281
Intersection points of graphs, 94-99
Interval of convergence, 180-184
Inverse, 304, 305, 309
Inverse Laplace transform, 426, 429
InverseLaplaceTransform, 426, 429, 437, 440,
459, 460
Irregular singular point, 418

J
Jacobian matrix, 451
JacobianDeterminant, 348
JacobianMatrix, 348
Join, 247, 320

Jordan
block 331
canonical form 332
matrix 331
JordanDecomposition, 332, 333
K
Kernel, 322
L

L-R-C circuit, 435438

Labeling columns of a table, 218, 248
Lagrange multipliers, 79, 80, 214-218
Lagrange's theorem, 214

Laguerre polynomials, 244
Laguerrel, 244

Laplace transform, 426-429
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inverse, 429
of a periodic function, 428
solving differential equations, 430-440, 458461
LaplaceTransform
InverseLaplaceTransform, 426, 429, 437,
440, 459, 460
LaplaceTransform, 426, 427, 437, 439
Laplacian, 347, 349-351
Last, 236
Legendre polynomials, 246, 247
LegendreP, 246, 247
Lemniscate of Bernoulli, 146
Level curves
graphing, 7074, 485-487
Limit, 101, 104-109
Direction, 108
Limit cycle, 457
Limits
computing, 101, 103-107,
estimating, 101-103, 201, 202
infinite, 102, 105, 108
numerical, 109, 110
of functions of two variables, 201-203
one-sided, 108
Line, 131, 460
Line continuation (\), 25, 250
Linear differential equation, 371, 387
first-order, 371
Linear equations, 84
system of, 86, 308-315
Linear programming, 337-346
dual problem, 339, 340
standard form, 337, 338
Linear transformation, 322
associated matrix, 322
kernel, 322
rotation, 324-326
LinearAlgebra
see MatrixManipulation
see Orthogonalization
Linearly
dependent, 387
independent, 387
LinearProgramming, 341, 342
LinearSolve, 311-313
Listable, 245, 246
ListPlot, 177, 179, 240, 241, 243, 278
PlotJoined, 280
Lists
adding elements to, 251
defining, 229-233
displaying, 240, 241
dropping elements from, 251
evaluating each element by a function, 237, 238,
245-249, 251, 252
extracting elements of (Part), 236-240
first part (First), 236
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graphing, 240244
joining, 247
last part (Last), 236
number of elements in (Length), 236
of functions, 232-234, 244, 245
graphing, 234, 235, 244, 245
of random numbers, 232
of the same object, 232
product of numbers in, 250
sum of numbers in, 250-252
Literal equations, 89, 140
Loading packages, 4-7
Master, 5
Local maximum, 209
Local minimum, 209
Log, 28, 30, 31
LogicalExpand, 194, 412, 416
Logistic equation, 377-381
Lotka-Volterra, 451-455

M

Maclaurin polynomial, 186, 189
Make Template, 13
Map (/@), 10, 102, 202, 243, 246-249, 251, 280, 283, 380,
449, 494
MapAt, 249
Master, 5
Matrix
augmented, 313
characteristic, 326
equation, 326, 391
polynomial, 326, 327, 333, 334
coefficient, 308, 313
column space, 316, 317
conjugate transpose, 334
defining, 296-300
determinant, 304
eigenvalues, 326-331, 334-337, 442, 444, 452, 453,
456
approximating, 329, 330
QR Method, 334-337
eigenvectors, 326, 329, 330
approximating, 330
equations, 308-315
extracting parts, 300-304
identity, 299, 333
inverse, 304, 305, 309
Jacobian, 451
Jordan, 339
block, 331
canonical form, 332
nullity, 316
nullspace, 316, 317, 318, 323
polynomial
minimal, 332
powers of, 307, 308, 333, 334

Index

product, 304-306
random entries, 202, 299
rank, 316, 317
row echelon form, 314, 317
row space, 316
transpose, 302, 304
unitary, 334
MatrixForm, 296, 297, 299, 301, 302, 306, 308, 314,
317, 318, 453, 455
MatrixManipulation
AppendRows, 314
MatrixPower, 307, 308, 333, 334
Maxima, 134, 135, 210, 211, 216, 217
Mean-Value theorem for
derivatives, 128
integrals, 172
Method of Lagrange Multipliers, 79, 214-218
Minima, 135-141, 210, 211, 216, 217
Minimal polynomial, 332
Mod, 249
Module, 132, 151, 153, 270, 273, 276, 319, 320, 325, 454,
457, 460, 494
MoebiusStrip, 503
MultipleListPlot, 496
PlotJoined, 496
MultipleListPlot
MultipleListPlot, 496

N

N, 2, 25-28, 32, 34, 36, 38, 88, 89, 117, 122, 150, 169, 173,
179, 213, 220, 226, 241, 329, 330, 335, 336, 472,
473, 488
Names, 11
Natural logarithm (Log), 28, 30, 31
NDSolve, 375-377, 406, 408
InterpolatingFunction, 376, 377, 408, 451,
453-457
Negative numbers
odd roots, 26, 122, 124
Nest, 52, 54, 55
Newton's
Law of Cooling, 381
Second Law of Motion, 383
NFourierTrigSeries, 289
NIntegrate, 165-167, 171, 218, 220, 222, 226, 286,
355, 463, 468, 472-474
NLimit, 109, 110, 175, 178
NLimit,
NLimit, 109, 110, 175, 178
Node
stable, 450
unstable, 450
Nonhomogeneous differential equation, 387, 396
Nonlinear differential equations
numerical solutions, 375-377, 406410, 451457
NonlinearFit, 284
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NonlinearFit
NonlinearFit, 284
Norm, 307
Normal, 186-188, 190, 196, 417
Normalize, 8, 322
NRoots, 90, 94, 95, 128, 164
NSolve, 93,94
Nullity, 316
Nullspace, 316, 317, 318, 323
Numerator, 42, 43, 104
Numerical approximations
see Approximating
NumericalMath
see NLimit

o

0, 184-186
OblateEllipsoidal, 348
Octahedron, 500, 501
Odd roots of negative numbers, 26, 122, 124
Off, 45
On, 45
Operations on expressions
Apart, 41, 44, 367
Cancel, 41, 44, 334, 367, 403, 433
Denominator, 42, 44, 104
Expand, 9, 40, 47, 54, 334, 361
ExpandAll, 42, 367, 420, 422
ExpandDenominator, 42
ExpandNumerator, 42
Factor, 40, 43, 104, 116, 117, 251, 265, 266, 366,
403
Numerator, 42, 43, 104
Together, 41, 107, 112, 113, 115, 118, 121-124,
137, 141, 205, 265, 266, 320, 360, 378, 429,
489
Options, 9, 10, 59
Ordinary point, 411
Orthogonalization
GramSchmidt, 7, 8, 322
Normalize, 9, 322
Projection, 322
Orthonormal vectors, 318, 319
out (%), 150, 266, 270, 271
Output
abbreviated (Short), 95, 240, 241, 374, 377, 395,
399, 504
saving for future use, 479
suppressing (; ), 95, 233, 240, 241, 374, 377, 395,
399, 504
Qutward flux, 356

P

Packages
loading, 4-8
error messages, 68
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Parabola, 494, 495
Parabolic, 348
ParabolicCylinder, 348
Parametric equations, 65, 66, 81-83, 168-172
graphing, 65, 66, 74-76, 81-83, 168-172
ParametricPlot, 64, 65, 453, 456
AspectRatio, 64, 65, 445
Compiled, 446, 449, 454, 457
DisplayFunction, 65, 445, 446, 449, 454, 455,
457
Evaluate, 443, 445, 446
options, 9
PlotRange, 65, 443, 445, 446
Ticks, 449
ParametricPlot3D, 9, 74, 82, 83, 169, 170, 171, 214
Axes, 475
Boxed, 475
BoxRatios, 475
DisplayFunction, 76, 78-80, 215, 475
options, 75
PlotPoints, 76,475
Shading, 475
Ticks, 76
ParametricPlot3D
SphericalPlot3D, 227
Part ([[...11]), 4, 95, 102, 137, 138, 141, 144, 165,
224-226, 236-238, 251, 300-304, 376, 378, 380,
382, 385-387, 393, 405, 406, 408, 409, 452,
459461, 466468
Partial derivative, 203, 204, 207
higher-order, 205, 206, 208
Partial differential equations, 289-293, 461-464,
467-479
Partial fraction decomposition (Apart), 41, 44, 367
Partial sums of a series (Sum), 150-156, 176, 179,
184-189
Partition, 133, 152, 153, 155, 156, 200, 275, 277, 293,
326, 375, 449, 461, 464, 469, 495, 502, 507, 508
PDSolvel
DSolve, 477
Pendulum, 407410, 458461
Permutations, 494
Phase plane, 442
Pi (m), 27
Pie charts, 491, 492
Piecewise-defined function, 62-64, 122, 125, 286, 428,
430, 436
PieChart, 491, 492
PieExploded, 491, 492
Plane
tangent, 212, 213
Plot, 3, 17, 29-31, 33, 35, 37, 38, 39, 56, 63, 91, 92, 102,
120-122, 126, 129, 130, 135, 150, 154, 167, 168,
171, 181, 189-191, 196, 197, 238, 286, 290, 355,
376, 383, 385, 386, 393, 405, 406, 417, 436, 440
AspectRatio, 59
AxesLabel, 59
AxesOrigin, 60, 188
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DisplayFunction, 61, 114, 125, 131, 132, 144,
152, 188, 200, 273, 276, 278, 281, 282, 284,
288, 293, 375, 380, 425, 430, 434, 438, 455,
464, 465, 469
Evaluate, 191, 192, 200, 234, 244, 245, 292, 293,
373, 377, 395, 400402, 408410, 413
Frame, 59
GridLines, 60
options, 59
PlotLabel, 60
PlotRange, 60, 64, 94, 96, 107, 125, 132, 136, 162,
234, 272, 292, 293, 373, 402, 428, 430, 464,
469
PlotStyle, 55, 58, 60, 106, 107, 123, 125, 127,
163-165, 187, 191, 192, 245, 288, 460
Ticks, 59, 60, 64, 272, 293, 428, 430, 464, 469
Plot3D, 66, 68, 205
Axes, 3, 16, 351
Boxed, 3, 16, 351
BoxRatios, 68
ClipFill, 479
DisplayFunction, 80, 201, 213, 221-223
options, 67
PlotPoints, 3, 16, 69, 76, 80, 203, 207, 212, 351,
479
PlotRange, 479
Shading, 69, 351, 479
Ticks, 3,16
ViewPoint, 68
PlotField
PlotGradientField, 497, 498
PlotVectorField, 443, 445, 446
AspectRatio, 497
ScaleFunction, 497
PlotField3D
PlotGradientField3D, 354, 499
PlotVectorField3D, 353, 357
VectorHeads, 354, 357, 499
PlotGradientField, 497, 498
PlotGradientField3D, 354, 499
PlotJoined, 280, 496
PlotLabel, 59
PlotPoints, 3, 16, 69, 71, 73, 76, 80, 87, 93, 143, 146,
148, 149, 203, 207, 212, 216, 223, 351, 369, 371,
475, 479
PlotRange, 60, 64, 65, 73, 94, 96, 107, 125, 132, 136,
144, 162, 188, 213, 216, 234, 272, 273, 276, 281,
282, 292, 293, 325, 371, 373, 402, 428, 430, 438,
443, 445, 446, 454, 457, 460, 464, 469, 479,
PlotStyle, 55, 58, 60, 106, 107, 123, 125, 127,
163-165, 187, 191, 192, 245, 288, 460
PlotVectorField3D, 353, 357
AspectRatio, 357
PlotVectorField3p, 353, 357
VectorHeads, 357
Plus (+), 24, 250-252
Point, 144, 151, 243, 273, 276, 280, 283, 380, 460
Points

Index

equilibrium, 450
of intersection, 94-99
ordinary, 411
singular, 411
irregular, 418
regular, 418
PointSize, 144, 152, 243, 273, 276, 280, 283, 380, 460
Polar coordinates
area, 487489
double integral, 360-362
graphing, 487489
PolarMap, 482484
PolarPlot, 487-489
DisplayFunction, 487, 489
Ticks, 489
Polyhedra
Cube, 500
Dodecahedron, 500, 501
Icosahedron, 500
Octahedron, 500, 501
Polyhedron, 500, 502
Stellate, 502
Tetrahedron, 500, 501
Polyhedron, 500, 502
Polynomials
characteristic, 326, 327, 333, 334
cyclotomic, 232
Hermite, 233, 234, 413
Laguerre, 244
Legendre, 246, 247
Maclaurin, 186, 189
minimal, 332
Taylor, 188
PolynomialDivision, 8,9
PolynomialLcChM, 10
Population growth, 377-381
Position, 237
Potential function, 347
Power series
computing (Series), 184-189
differential equation, 192-198, 411426
Integral test,
interval of convergence, 180
Ratio test, 182
Root test, 180
PowerExpand, 181, 182
Predator—Prey, 451-455
Prepend, 251
PrependTo, 251
Present value, 257
Prime, 231
Prime numbers (Prime), 231
Principal values of trigonometric functions, 247-249
Print, 266, 320
Product, 250
Product of numbers in a list, 250
Product rule, 112
Projection, 319
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ProlateCycloid, 348
ProlateEllipsoidal, 348
Put (>>), 466

Q

OR factorization, 334

OR Method, 334-337
QRDecomposition, 335, 336
Quadric surfaces, 81-83, 485487
Quit, 3

Quotient rule, 112

Random, 102, 202, 232, 249, 299
Range, 230, 250, 272, 273, 276
Rank, 316
Ratio test, 182
ReadList, 467, 468, 471
Real, 102, 202, 249
RealDigits, 239
Rectangle, 151, 153
Rectangles
circumscribed, 149, 153
inscribed, 149, 150~-152
Recurrence equations (RSolve), 269
Recursively defined function, 63, 64, 198, 199, 232, 286,
336, 423, 424, 428, 430
Regular singular point, 418
Remove, 7, 8
Replacenll (/.), 42, 43, 44, 49, 51, 52, 135, 137, 144,
182, 183, 190, 193, 195-197, 211, 213, 218, 234,
238, 284, 361, 368, 371, 374, 376, 378, 386, 390,
400, 402, 412, 415, 417, 420, 422, 431, 434, 437,
439, 444, 446, 452-457, 458, 459, 477
RGBColor, 57
Rolle’s theorem, 128
Root test, 180
RotateShape, 506, 507
Rotations, 324-326
Row echelon form, 314, 317
Row space, 316
Row vector, 299, 300
RowReduce, 314, 316, 317, 318
RSolve
RSolve, 268, 269
RSolve, 268, 269
Rule (->), 42, 43, 44, 49, 51, 52, 135, 137, 144, 182, 211,
218, 234, 361, 431, 434, 437, 439, 444, 446,
458-460, 477

S

Saddle, 209, 211
Saving results for future use, 466
Scalar field, 347
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gradient, 347
laplacian, 347
ScalarTripleProduct, 348
ScaleFunction, 497
Sec, 28
Secant lines, 272-275
Second derivatives test, 209
Second-order homogeneous differential equation with
constant coefficients, 192, 391-393
Separable differential equation, 364
Separation of variables, 462, 467
Series, 184-188, 190, 192, 411, 412, 414, 416, 417
Set (=), 42, 43, 45, 46, 48, 50, 53, 56, 58, 61, 65, 66, 68,
73, 82, 169, 202, 232, 469
SetCoordinates, 348
SetDelayed (:=), 46, 52, 55, 63, 64, 122, 125, 151, 153,
190, 198, 199, 232, 247, 249, 253, 263, 270, 273,
276, 286, 288, 290, 291, 304, 307, 319, 320, 325,
336, 375, 377, 389, 408, 423, 424, 428, 430, 436,
442, 444, 454, 457, 460, 463, 466468, 471-475
Sets
see Arrays
see Lists
see Matrix
Shading, 69, 351, 475, 479
Shapes
Helix, 506
MoebiusStrip, 503
RotateShape, 506, 507
Sphere, 505, 508
Torus, 504
TranslateShape, 507, 508
WireFrame, 505
Short, 95, 240, 241, 374, 377, 395, 399, 504
Shortcuts, 15
Show, 80, 132, 197, 284, 288, 353, 410, 443
AspectRatio, 62, 325
Axes, 87, 93, 152, 153, 243, 460
AxesOrigin, 87,93
Boxed, 501, 502, 505
BoxRatios, 215
DisplayFunction, 61, 62, 78, 79, 87, 93, 114,
125, 131-133, 152, 153, 188, 213, 215, 216,
221-223, 273, 276, 278, 280-282, 325, 380,
438, 445, 446, 454, 457, 460, 502
Frame, 87,93
Graphics, 144, 152, 153, 243, 273, 276, 280, 325,
380, 460
Graphics3D, 503, 504-506
GraphicsArray, 66, 76, 80, 125, 133, 152, 153,
155, 156, 200, 201, 275, 277, 284, 288, 293,
326, 375, 410, 425, 430, 434, 449, 455, 461,
464, 465, 469, 475, 483, 484, 486, 487, 489,
492, 495, 502, 507, 508
PlotRange, 144, 188, 213, 273, 276, 281, 282, 325,
438, 454, 457, 460
Polyhedron, 500
Stellate, 502
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Ticks, 133, 273, 276, 460
ViewPoint, 223
Simplify, 48, 53,106, 117, 138, 139, 154, 175, 181-
183, 190, 203, 247, 265, 396, 429, 431, 488
Simplifying expressions, 6, 24, 40-44, 48, 53, 54,
103-107, 359, 360, 361, 392, 393
Sin, 3,12, 28, 31-33, 246, 248
Singular point, 411, 418
Sinh, 36, 37
Solids of revolution, 167-173
Solve, 3, 10, 84-90, 95, 96, 116, 117, 120, 129, 135, 138,
140, 146, 147, 163, 173, 181, 183, 195, 210, 217,
224, 225, 237, 309-312, 365, 378, 382, 394, 396,
403, 412, 417, 420, 422, 431, 439, 452, 459
Solving equations, 84-99
literal, 89, 140
matrix, 308-315
polynomial, 88-91
recurrence, 269
systems, 85-88, 308-315
trigonometric, 85, 92
Spelling errors, 45
SpellingCorrection, 11
Sphere, 505, 508
Spherical, 348
SphericalPlot3D, 227
Spiral
stable, 450
unstable, 450
sqrt, 25, 26
Stable node, 450
Stable spiral, 450
Statistics
see NonlinearFit
Stellate, 502
Stoke's theorem, 358--362
Sum, 5, 6, 150, 151, 153, 154, 156, 174, 176, 178, 179, 199,
250, 359, 424, 425, 464, 469, 474
Suppressing output (;), 95, 233, 240, 241, 374, 377, 395,
399, 504
Surface integrals, 356
SymbolicSum, 5
SymbolicSum
sum, 5, 6, 154, 156, 176, 178, 179
SymbolicSum, 5
System of
differential equations, 441461
equations, 85-88, 308-315

T

Table, 151-153, 155, 156, 177, 179, 198-200, 202,
230-234, 240, 241, 244-247, 249, 253, 255-257,
259, 260, 262, 263, 267, 268, 270, 275, 277, 293,
297-300, 326, 337, 375, 377, 380, 395, 399, 400,
402, 408410, 413, 423, 424, 434, 442, 444, 446,

Index

448, 457, 461, 463-466, 468, 469, 472-475, 502,
507, 508
TableForm, 202, 233, 240, 253, 255-257, 259, 260, 262,
263, 267, 268, 270, 305, 337, 346, 380, 413, 423,
424, 463, 466, 468
TableHeadings, 151, 155, 211, 218, 248
TableHeadings, 151, 155, 215, 211, 218, 248
Tables
see Arrays
see Lists
see Matrix
Take, 242, 324, 376, 404
Tan, 31-33
Tangent
lines, 113, 114, 144
horizontal, 115, 126, 127
plane, 212, 213
Tanh, 36, 37
Taylor polynomial, 188
Taylor's theorem, 189
Tetrahedron, 500, 501
Ticks, 3, 16, 59, 60, 64, 76, 133, 272, 273, 276, 293, 428,
430, 449, 460, 464, 469, 489, 493, 494
Automatic, 60
Times (*), 4, 11, 24, 40, 41
Together, 40, 107, 112, 113, 115, 118, 121-124, 137,
141, 205, 265, 266, 320, 360, 378, 429, 489
Toroidal, 348
Torus, 504
Trace, 76-79
TranslateShape, 507, 508
Transpose, 304, 305, 317, 318, 335, 336
Trig, 54, 361
TrigFactor, 7
Trigonometric
equations, 85, 92
expressions, 6, 7, 53, 54, 361
functions
Cos, 12, 28, 31-33, 248
inverse
ArcTan, 28, 34, 35, 180
ArcCos, 28, 34, 35
ArcCot, 28, 34
ArcCsc, 28, 34
ArcSec, 28
ArcSin, 28, 34, 35
principal values, 247-249
sin, 3,12, 28, 31-33, 246, 248
Tan, 31-33
Trigonometry
TrigFactor,7
TrigReduce, 6
TrigReduce, 6
Triple integral, 226-228
volume, 227, 228
True, 59
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Union, 247
Unit vector, 307
normal, 351-354
Unitary matrix, 334
UnitStep, 439
Unstable
node, 450
spiral, 450

v

Van-der-Pol equation, 455457
Variation of parameters, 396401, 446449
Vectors
defining, 300
dot product (.), 305, 306
gradient, 347, 349, 497, 499
norm, 307
orthonormal, 318, 319
unit, 307
unit normal, 351-354
zero, 300
VectorAnalysis
ArcLengthFactor, 348
Cartesian, 348, 351
CoordinatesFromCartesian, 348
CoordinatesToCartesian, 348
CrossProduct, 348
Curl, 347, 349, 350
Cylindrical, 348
Div, 347, 349, 350, 357
DotProduct, 348
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Grad, 347, 348, 351, 352, 359
JacobianDeterminant, 348
JacobianMatrix, 348
Laplacian, 347, 349-351
ScalarTripleProduct, 348
SetCoordinates, 348
Spherical, 348
Vector field, 347
conservative, 347
potential, 347
curl, 349
divergence, 347
graphing, 353, 354, 357, 497-500
Vector-valued functions, 49, 50, 349, 350, 357-362
VectorHeads, 354, 357, 499
Verhulst equation, 377-381
ViewPoint, 68,223
Volume
double integral, 221-226
solids of revolution, 167-173
triple integral 231

w

Wave equation, 461464
two-dimensional, 467-476

Why the Beep?, 16-18

WireFrame, 505

Wronskian, 387, 380, 396

y 4

Zero vector, 300
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