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Preface
Mathematica by Example bridges the gap that exists between the very

elementary handbooks available on Mathematica and those reference books

written for the advanced Mathematica users. This book is an appropriate ref-

erence for all users of Mathematica and, in particular, for beginning users

such as students, instructors, engineers, businesspeople, and other profes-

sionals first learning to use Mathematica. This book introduces the very

basic commands and includes typical examples of applications of these com-

mands. In addition, the text also includes commands useful in areas such as

calculus, linear algebra, business mathematics, ordinary and partial differen-

tial equations, and graphics. In all cases, however, examples follow the intro-

duction of new commands. Readers from the most elementary to advanced

levels will find that the range of topics covered addresses their needs.

Taking advantage of Version 6 of Mathematica, Mathematica by Exam-
ple, Fourth Edition, introduces the fundamental concepts of Mathematica

to solve typical problems of interest to students, instructors, and scientists.

The fourth edition is an extensive revision of the text. Features that make

this edition easy to use as a reference and as useful as possible for the

beginner include the following:

1. Version 6 compatibility. All examples illustrated in this book were

completed using Version 6 of Mathematica. Although many com-

putations can continue to be carried out with earlier versions of

Mathematica, we have taken advantage of the new features in Version

6 as much as possible.

2. Applications. New applications, many of which are documented by

references from a variety of fields, especially biology, physics, and

engineering, are included throughout the text.

3. Detailed table of contents. The table of contents includes all chap-

ter, section, and subsection headings. Along with the comprehensive

index, we hope that users will be able to locate information quickly

and easily.

4. Additional examples. We have considerably expanded the topics

throughout the book. The results should be more useful to instruc-

tors, students, businesspeople, engineers, and other professionals

using Mathematica on a variety of platforms. In addition, several

sections have been added to make it easier for the user to locate

information. ix
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5. Comprehensive index. In the index, mathematical examples and

applications are listed by topic or name, and commands along with

frequently used options are also listed. Particular mathematical exam-

ples as well as examples illustrating how to use frequently used

commands are easy to locate. In addition, commands in the index

are cross-referenced with frequently used options. Functions avail-

able in the various packages are cross-referenced both by package and

alphabetically.

6. CD included. All Mathematica code that appears in this edition is

included on the CD packaged with the text.

7. Exercises at the end of each chapter. Each chapter of this edition

concludes with a section of exercises that range from easy to difficult.

We began Mathematica by Example in 1990 and the first edition was

published in 1991. Back then, we were on top of the world using Macin-

tosh IIcx’s with 8 megs of RAM and 40-meg hard drives. We tried to choose

examples that we thought would be relevant to beginning users—typically

in the context of mathematics encountered in the undergraduate curricu-

lum. Those examples could also be carried out by Mathematica in a timely

manner on a computer as powerful as a Macintosh IIcx.

Now, we are on the top of the world with iMacs with dual Intel pro-

cessors complete with 2 gigs of RAM and 250-gig hard drives, which will

almost certainly be obsolete by the time you read this. The examples pre-

sented in this book continue to be the ones that we think are most similar

to the problems encountered by beginning users and are presented in the

context of someone familiar with mathematics typically encountered by

undergraduates. However, for this edition of Mathematica by Example, we

have taken the opportunity to expand on several of our favorite examples

because the machines now have the speed and power to explore them in

greater detail.

Other improvements to the fourth edition include the following:

1. Throughout the text, we have attempted to eliminate redundant

examples and added several interesting ones. The following changes

are especially worth noting:

(a) In Chapter 2, we have increased the number of parametric and

polar plots in two and three dimensions. For a sample, see

Examples 2.3.17, 2.3.18, 2.3.21, and 2.3.23.

(b) In Chapter 3, we have improved many examples by adding addi-

tional graphics that capitalize on Mathematica’s enhanced three-

dimensional graphics capabilities. See especially Example 3.3.15.
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(c) Chapter 4 contains several examples illustrating various tech-

niques for quickly creating plots of bifurcation diagrams, Julia

sets, and the Mandelbrot set.

(d) The graphics discussion in Chapter 5 has been increased consi-

derably with the addition of Section 5.6, Matrices and Graphs,

and the improvement of many of the examples regarding curves

and surfaces in space. We have also added a brief discussion

regarding the Frenet frame field and curvature and torsion of

curves in space. See Examples 5.5.11 and 5.5.12.

(e) In Chapter 6, we have taken advantage of the new Manipulate
function to illustrate a variety of situations and expand on

many examples throughout the chapter. For example, see Exam-

ple 6.2.5 for a comparison of solutions of nonlinear equations to

their corresponding linear approximations.

2. We have included references that we find particularly interesting in

the Bibliography, even if they are not specific Mathematica-related

texts. A comprehensive list of Mathematica-related publications can

be found on the Wolfram website:

http://store.wolfram.com/catalog/books

Also, be sure to investigate, use, and support Wolfram’s MathWorld,

which is simply an amazing web resource for mathematics, Mathe-

matica, and other information.

Finally, we express our appreciation to those who assisted in this project.

We express appreciation to our editor, Lauren Schultz, our production editor,

Mara Vos-Sarmiento, and our project manager, Phil Bugeau, at Elsevier for

providing a pleasant environment in which to work. In addition, Wolfram

Research, especially Maryka Baraka, has been most helpful in providing us

up-to-date information about Mathematica. Finally, we thank those close

to us, especially Imogene Abell, Lori Braselton, Ada Braselton, and Mattie

Braselton, for enduring with us the pressures of meeting a deadline and for

graciously accepting our demanding work schedules. We certainly could not

have completed this task without their care and understanding.

Martha Abell

(email: martha@georgiasouthern.edu)

James Braselton

(email: jbraselton@georgiasouthern.edu)

Statesboro, Georgia
December 2007
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1CHAPTER

Getting Started

1.1 INTRODUCTION TO MATHEMATICA
Mathematica, first released in 1988 by Wolfram Research, Inc. http://www
.wolfram.com/, is a system for doing mathematics on a computer. Mathemat-

ica combines symbolic manipulation, numerical mathematics, outstanding

graphics, and a sophisticated programming language. Because of its versa-

tility, Mathematica has established itself as the computer algebra system of

choice for many computer users. Among the more than 1 million users

of Mathematica, 28% are engineers, 21% are computer scientists, 20% are

physical scientists, 12% are mathematical scientists, and 12% are business,

social, and life scientists. Two-thirds of the users are in industry and gov-

ernment, and there are a small (8%) but growing number of student users.

However, due to its special nature and sophistication, beginning users need

to be aware of the special syntax required to make Mathematica perform

in the way intended. You will find that calculations and sequences of cal-

culations most frequently used by beginning users are discussed in detail

along with many typical examples. In addition, the comprehensive index

not only lists a variety of topics but also cross-references commands with

frequently used options. Mathematica by Example serves as a valuable tool

and reference to the beginning user of Mathematica as well as to the more

sophisticated user, with specialized needs.

For information, including purchasing information, about Mathematica,

contact:

Corporate Headquarters:
Wolfram Research, Inc.

100 Trade Center Drive

Champaign, IL 61820

USA

telephone: 217-398-0700

fax: 217-398-0747

email: info@wolfram.com
website: http://www.wolfram.com 1
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Europe:
Wolfram Research Europe Ltd.

10 Blenheim Office Park

Lower Road, Long Hanborough

Oxfordshire OX8 8LN

United Kingdom

telephone: +44-(0) 1993-883400

fax: +44-(0) 1993-883800

email: info-europe@wolfram.com

Asia:
Wolfram Research Asia Ltd.

Izumi Building 8F

3-2-15 Misaki-cho

Chiyoda-ku, Tokyo 101

Japan

telephone: +81-(0)3-5276-0506

fax: +81-(0)3-5276-0509

email: info-asia@wolfram.com

A Note Regarding Different Versions of Mathematica

With the release of Version 6 of Mathematica, many new functions and

features have been added to Mathematica. We encourage users of earlier

versions of Mathematica to update to Version 6 as soon as possible. All

examples in Mathematica by Example, fourth edition, were completed

with Version 6. In most cases, the same results will be obtained if you

are using Version 5.0 or later, although the appearance of your results

will almost certainly differ from that presented here. However, particu-

lar features of Version 6 are used, and in those cases, of course, these

features are not available in earlier versions. If you are using an earlier

or later version of Mathematica, your results may not appear in a form

identical to those found in this book: Some commands in Version 5 are

not available in earlier versions of Mathematica; in later versions, some

commands will certainly be changed, new commands added, and obso-

lete commands removed. For details regarding these changes, please refer

to the Documentation Center. You can determine the version of Math-

ematica you are using during a given Mathematica session by entering

either the command $Version or the command $VersionNumber. In this

text, we assume that Mathematica has been correctly installed on the com-

puter you are using. If you need to install Mathematica on your computer,

please refer to the documentation that came with the Mathematica software

package.
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On-line help for upgrading older versions of Mathematica and installing

new versions is available at the Wolfram Research, website http://www
.wolfram.com/.

Details regarding what is different in Mathematica 6 from previous

versions of Mathematica can be found at

http://www.wolfram.com/products/mathematica/newin6

Also, when you go to the Documentation Center (under Help in the

Mathematica menu) you can choose New in 6 to see the major differences.

In addition, the upper right-hand corner of the main help page for each

function will tell you if it is new in Version 6 ( ) or has been updated

in Version 6 ( ).

1.1.1 Getting Started with Mathematica

We begin by introducing the essentials of Mathematica. The examples pre-

sented are taken from algebra, trigonometry, and calculus topics that you

are familiar with to assist you in becoming acquainted with the Mathematica

computer algebra system.

We assume that Mathematica has been correctly installed on the

computer you are using. If you need to install Mathematica on your com-

puter, please refer to the documentation that came with the Mathematica

software package.

Start Mathematica on your computer system. Using Windows or

Macintosh mouse or keyboard commands, activate the Mathematica
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program by selecting the Mathematica icon or an existing Mathematica

document (or notebook) and then clicking or double-clicking on the icon.

If you start Mathematica by selecting the Mathematica icon, a blank

untitled notebook is opened, as illustrated in the following screen shot,

along with the Startup Palette.

When you start typing, the thin black horizontal line near the top of the

window is replaced by what you type.



1.1 Introduction to Mathematica 5

With some operating

systems, Enter
evaluates commands

and Return yields a

new line.

Once Mathematica has been started, computations can be carried out

immediately. Mathematica commands are typed and the black horizontal

line is replaced by the command, which is then evaluated by pressing

Enter. Note that pressing Enter or Return evaluates commands and press-

ing Shift-Return yields a new line. Output is displayed below input. We

illustrate some of the typical steps involved in working with Mathematica

in the calculations that follow. In each case, we type the command and

press Enter. Mathematica evaluates the command, displays the result, and

inserts a new horizontal line after the result. For example, typing N[, then

pressing the � key on the Basic Math Input palette, followed by typing,

50] and pressing the enter key
The Basic MathInput
palette:

N[p, 50]

3.1415926535897932384626433832795028841971693993751

returns a 50-digit approximation of �. Note that both � and Pi represent

the mathematical constant �, so entering N[Pi, 50] returns the same result.

For basic computations, enter them into Mathematica in the same way as

you would with most scientific calculators.

The next calculation can then be typed and entered in the same manner

as the first. For example, entering

Plot[{Sin[x], 2Cos[2x]}, {x, 0, 3p},
PlotStyle→ {GrayLevel[0], GrayLevel[0.5]}]

graphs the functions y = sin x and y = 2 cos 2x and on the interval [0, 3�]

shown in Figure 1.1.

2 4 6 8

�2

�1

1

2

FIGURE 1.1

A two-dimensional plot
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With Mathematica 6, you can easily add explanation to the graphic. Go

to Graphics in the main menu, followed by Drawings Tools. You can use

the Drawing Tools palette to quickly enhance a graphic.

In this case we select the Arrow button to add two arrows

and then the A button

to add some text to help identify each plot. The various elements

can be modified by clicking on them and moving and/or typing as

needed.

With Mathematica 6, you can use Manipulate to illustrate how changing

various parameters affects a given function or functions. With the following
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command, we illustrate how a and b affect the period of sine and cosine

and c affects the amplitude of cosine:

Manipulate[Plot[{Sin[2Pi/ax], cCos[2Pi/bx]}, {x, 0, 4p},
PlotStyle→ {GrayLevel[0], GrayLevel[.5]}, PlotRange→ { – 4p/2, 4p/2},

AspectRatio→1], {{a, 2Pi, “Period for Sine”}, .1, 4},
{{b, 2Pi, “Period for Cosine”}, .1, 5},

{{c, 2Pi, “Amplitude for Cosine”}, .1, 5}]

Period for Sine

Period for Cosine

Amplitude for Cosine

2 4 6 8 10 12

26

24

22

2

4

6

Use the slide bars to adjust the values of the parameters or click on

the + button to expand the options to enter values explicitly or generate

an animation.
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Period for Sine

3.305

Period for Cosine

1.22

Amplitude for Cosine

3.46

2 4 6 8 10 12

22

24

26

2

4

6

Use Plot3D to generate basic three-dimensional plots. Entering

Plot3D[Sin[x + Cos[y]], {x, 0, 4p}, {y, 0, 4p}, Ticks→None,
Boxed→False, Axes→None]

graphs the function z = sin(x + cos y) for 0 ≤ x ≤ 4� and 0 ≤ y ≤ 4� shown

in Figure 1.2. To view the image from different angles, use the mouse to

select the graphic and then drag to the desired angle.

Notice that every

Mathematica

command begins with

capital letters and the

argument is enclosed

by square

brackets [ . . . ].
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FIGURE 1.2

A three-dimensional plot

Notice that all three of the following commands

To type x
3

in

Mathematica, press

the on the

Basic Math Input
palette, type x in the

base position, and

then click (or tab to)

the exponent position

and type 3. Use the

esc key, tab button, or

mouse to help you

place or remove the

cursor from its

current location.

solve the equation x3 − 3x + 1 = 0 for x.
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In the first case, the input and output are in StandardForm; in the sec-

ond case, the input and output are in InputForm; and in the third case, the

input and output are in TraditionalForm. Move the cursor to the Mathe-

matica menu,

select Cell, and then ConvertTo, as illustrated in the following screen shot:

You can change how input and output appear by using ConvertTo or

by changing the default settings. Moreover, you can determine the form of

input/output by looking at the cell bracket that contains the input/output.

For example, even though all three of the following commands look differ-

ent, all three evaluate
∫2�

0
x3

sin x dx:

In the first calculation, the input is in InputForm and the output

in OutputForm; in the second, the input and output are in Standard-
Form; and in the third, the input and output are in TraditionalForm.

Throughout Mathematica by Example, fourth edition, we display input

and output using InputForm (for input) or StandardForm (for output),

unless otherwise stated.
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To enter code in StandardForm, we often take advantage of the Basic
Math Input palette, which is accessed by going to Palettes under the

Mathematica menu and then selecting BasicMathInput. See Figure 1.3.

Use the buttons to create templates and enter special characters. Alter-

natively, you can access a complete list of typesetting shortcuts from

Mathematica help at guide/MathematicalTypesetting in the Documentation
Center.

Mathematica sessions are terminated by entering Quit[ ] or by select-

ing Quit from the File menu, or by using a keyboard shortcut, such as

command-Q, as with other applications. They can be saved by referring

to Save from the File menu.

Mathematica allows you to save notebooks (as well as combinations

of cells) in a variety of formats, in addition to the standard Mathematica

format.

FIGURE 1.3

Mathematica 6 palettes
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Remark 1.1 Input and text regions in notebooks can be edited. Editing input can create a

notebook in which the mathematical output does not make sense in the sequence

it appears. It is also possible to simply go into a notebook and alter input without

doing any recalculation. This also creates misleading notebooks. Hence, common

sense and caution should be used when editing the input regions of notebooks.

Recalculating all commands in the notebook will clarify any confusion.
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Preview

In order for the Mathematica user to take full advantage of this powerful

software, an understanding of its syntax is imperative. The goal of Math-
ematica by Example is to introduce the reader to the Mathematica com-

mands and sequences of commands most frequently used by beginning

users. Although the rules of Mathematica syntax are far too numerous to

list here, knowledge of the following five rules equips the beginner with the

necessary tools to start using the Mathematica program with little trouble.

Five Basic Rules of Mathematica Syntax

1. The arguments of all functions (both built-in ones and ones that you

define) are given in brackets [. . .]. Parentheses (. . .) are used for

grouping operations; vectors, matrices, and lists are given in braces

{. . .}; and double square brackets [[. . .]] are used for indexing lists

and tables.

2. Every word of a built-in Mathematica function begins with a capital

letter.

3. Multiplication is represented by a ∗ or space between characters.

Enter 2∗x∗y or 2x y to evaluate 2xy not 2xy.

4. Powers are denoted by a
∧
. Enter (8∗x^3)^(1/3) to evaluate (8x3

)
1/3

=

8
1/3

(x3
)
1/3

= 2x instead of 8x^1/3, which returns 8x/3.

5. Mathematica follows the order of operations exactly. Thus, enter-

ing (1 + x)^1/x returns
(1+x)

1

x , whereas (1 + x)^(1/x) returns (1 + x)
1/x

.

Similarly, entering x^3x returns x3 · x = x4
, whereas entering x^(3x)

returns x3x
.

Remark 1.2 If you get no response or an incorrect response, you may have entered or executed

the command incorrectly. In some cases, the amount of memory allocated to

Mathematica can cause a crash. Like people, Mathematica is not perfect and

errors can occur.

1.2 LOADING PACKAGES
Although Mathematica contains many built-in functions, some other func-

tions are contained in packages that must be loaded separately. Experienced

users can create their own packages; other packages are available from

user groups and MathSource, which electronically distributes Mathematica-

related products. For information about MathSource, visit

http://library.wolfram.com/infocenter/MathSource
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or send the message “help” to mathsource@wri.com. If desired, you can

purchase MathSource on a CD directly from Wolfram Research, or you can

access MathSource from the Wolfram Research website.

With Mathematica 6, many packages included with previous versions of

Mathematica have been made obsolete because their functionality has been

incorporated into Mathematica, combined into a new package, or elimi-

nated altogether. In addition to MathSource, you should also think about

investigating Wolfram’s MathWorld website.

.1.2.1 Packages Included with Older Versions of
Mathematica

Packages are loaded by entering the command <<directory`packagename`,
Needs[directory`packagename`], <<packagename` or Needs[packagename`],
where directory is the location of the package packagename. Entering

the command <<directory`Master` makes all the functions contained in all

the packages in directory available. In this case, each package need not

be loaded individually.
Over time, Wolfram

Research expects that

packages will become

obsolete and that

Mathematica will

automatically load

functions that are

needed at startup

or when called.

For most teachers and students, a function like f (x) = (x − 1)
1/3

(x + 1)
2/3

is a real-valued function for all values of x. Nevertheless, when we ask

Mathematica to plot the function with Plot,

Plot[(x – 1)∧ (1 / 3)(x + 1)∧ (2 / 3), {x, – 2, 2}, PlotStyle→GrayLevel[0]]

we see in Figure 1.4 that Mathematica does not compute real values for x
values between −1 and 1 because complex roots are selected by Mathe-

matica for the x values between −1 and 1, which is where the values of

f (x) are negative.

Generally, when Mathematica computes the odd root of a negative num-

ber, it returns a complex number. (Note that % refers to the previous

22 21 1 2

21.5

21.0

20.5

0.5

1.0

1.5

2.0

FIGURE 1.4

When computing odd roots of negative numbers, Mathematica returns complex values



1.2 Loading Packages 15

output; N[x] returns a numerical approximation of x, and Abs[x] returns

the absolute value of the number x.)

( – 8)∧ (1/3)

2( – 1)1/3

N[%]

1. + 1.73205i

Abs[%]

2.

To instruct Mathematica to select the real third root, we load the

RealOnly package that is contained in the Miscellenous directory. Note

that the RealOnly package has been included with many versions of Mathe-

matica but not included with Mathematica 6. If you need to obtain the

RealOnly package, you need to download it from the Wolfram website.

After loading the package, when we reenter the Plot command, Mathemat-

ica generates the expected plot, which is shown in Figure 1.5.

<< Miscellaneous`RealOnly`
Plot[(x – 1)∧ (1/3)(x + 1)∧ (2/3), {x, – 2, 2}, PlotStyle→GrayLevel[0]]

1.2.2 Loading New Packages

One new package included with Mathematica 6 is VectorFieldPlots, which

replaces several packages in previous versions of Mathematica.
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22 21 1 2
x

21.5

21.0

20.5

0.5

1.0

1.5

2.0

y

FIGURE 1.5

We see the real values of f(x) for −1 < x < 1 after loading the RealOnly package

Example 1.2.1 The differential equation dy/dx = cos(y/x) is a first-order homogeneous
differential equation. Using DSolve, we see that the solution contains an integral

that does not have a known closed form. The result returned by DSolve indicates
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that the integral curves for the differential equation satisfy the equation contained

within the brackets in the output:

DSolve[y′[x] == Cos[y[x]/x], y[x], x]

Solve::tdep: The equations appear to involve the variables to be solved

for in an essentially nonalgebraic way. 〉〉

Solve

[∫ y[x]

x

1

1

−Cos[K[1]] + K[1]
dK[1] == C[1] − Log[x], y[x]

]

For a differential equation like this, even the function g(x, y) =
∫ y/x

1

1

t − cos t
dt +

ln | x | is difficult to evaluate for particular values of x and y, so generating a plot of

the level curves of g(x, y) = C (the integral curves for the differential equation) for

various values of C is challenging.

To see how the solutions of the differential equation behave, we plot a

direction field or slope field for the equation. For this equation, the slope of

a solution at (x, y) satisfies dy/dx = cos(y/x). A direction field for the equation is

generated by selecting a grid of (x, y) points and then plotting line segments at

those points with slope dy/dx = cos(y/x). With Mathematica, we can do so with

the VectorFieldPlot function that is contained in the VectorFieldPlots package.

First, we load the package with

<< VectorFieldPlots`;

Now that the package has been loaded, you can can use ? or Options to

obtain information about the commands contained in the package. Finally, we

generate a slope field for the equation with

p1 = VectorFieldPlot[{1, f[x, y]}, {x, – 2Pi, 2Pi}, {y, – 2Pi, 2Pi},
PlotPoints→25];

Show[p1, Axes→Automatic, AxesOrigin→ {0, 0}]

Note that Mathematica returns several error messages due to the division by

0 in the y/x term that are not displayed here. The plot is displayed in Figure 1.6.

From the slope field, we see that solutions of the differential equation can behave

quite strangely near x = 0.

1.3 GETTING HELP FROM MATHEMATICA
Becoming competent with Mathematica can take a serious investment of

time. Hopefully, messages that result from syntax errors are viewed light-

heartedly. Ideally, instead of becoming frustrated, beginning Mathematica

users will find it challenging and fun to locate the source of errors. Fre-

quently, Mathematica’s error messages indicate where the error(s) has

occurred. In this process, it is natural that you will become more proficient
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FIGURE 1.6

Numerically solving a differential equation such as dy / dc = cos(y / x) is difficult. To

help us understand how the solutions behave, we use a slope field

with Mathematica. In addition to Mathematica’s extensive help facililities,

which are described next, a tremendous amount of information is available

for all Mathematica users at the Wolfram Research website. Not only can

you get significant Mathematica help at the Wolfram website but also you

can access outstanding mathematical resources at Wolfram’s MathWorld

resource,

http://mathworld.wolfram.com

One way to obtain information about Mathematica commands and func-

tions, including user-defined functions, is the command ?. ?object gives

a basic description and syntax information of the Mathematica object object.
??object yields detailed information regarding syntax and options for the

object object. Equivalently, Information[object] yields the information on the

Mathematica object object returned by both ?object and Options[object] in

addition to a list of attributes of object. Note that object may either be

a user-defined object or a built-in Mathematica object.
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Example 1.3.1 Use ? and ?? to obtain information about the command Plot.

Solution ?Plot uses basic information about the Plot function,

whereas ??Plot includes basic information as well as a list of options and their

default values.

If you click on the >> button, Mathematica returns its extensive description of

the function. Notice that the updated button in Version 6 ( ) shows that

Plot has been updated. Click on Show Changes and then More Information to

see the changes in Version 6.

Options[object] returns a list of the available options associated with

objects along with their current settings. This is quite useful when work-

ing with a Mathematica command such as ParametricPlot, which has many

options. Notice that the default value (the value automatically assumed by

Mathematica) for each option is given in the output.



20 CHAPTER 1 Getting Started

Example 1.3.2 Use Options to obtain a list of the options and their current settings for the

command ParametricPlot.

Solution The command Options [ParametricPlot] lists all the options and their current

settings for the command ParametricPlot.
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The command Names["form"] lists all objects that match the pattern defined

in form. For example, Names ["Plot"] returns Plot, Names["∗Plot"] returns all

objects that end with the string Plot, Names["Plot∗"] lists all objects that begin

with the string Plot, and Names["∗Plot∗"] lists all objects that contain the string

Plot. Names["form",SpellingCorrection->True] finds those symbols that match the

pattern defined in form after a spelling correction.

Example 1.3.3 Create a list of all built-in functions beginning with the string Plot.

Solution We use Names to find all objects that match the pattern Plot.

Next, we use Names to create a list of all built-in functions beginning with the

string Plot.

In the following, after using ? to learn about the new Mathematica 6 func-

tion ColorData we illustrate its use with a Plot command. We first go to the

Mathematica menu

and select Palettes, followed by ColorSchemes.
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We are given a variety of choices, which are illustrated throughout

Mathematica by Example.Remember that on a

computer running

Mathematica, these

graphics will appear

in color rather than

in black-and-white as

seen in this text.

We then use the help facilities description of the ColorData function

to help us generate a plot of y = sin x on the interval [0, 2�] in deep red

on our computer. (Of course, the plot is dark gray in a black-and-white text

such as this).

As we have illustrated, the ? function can be used in many ways. Enter-

ing ?letters∗ gives all Mathematica objects that begin with the string letters;

?∗letters∗ gives all Mathematica objects that contain the string letters; and

?∗letters gives all Mathematica commands that end in the string letters.

Example 1.3.4 What are the Mathematica functions that (a) end in the string Cos, (b) contain the

string Sin, and (c) begin with the string Polynomial?
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Solution Entering

returns all functions ending with the string Cos, entering

returns all functions containing the string Sin, and entering

returns all functions that begin with the string Polynomial.
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Mathematica Help

Additional help features are accessed from the Mathematica menu under

Help. For basic information about Mathematica, go to the Mathematica

menu, followed by Help

and select Documentation Center.
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If you are a beginning Mathematica user, you may choose to select First
Five Minutes with Mathematica.

To obtain information about a particular Mathematica object or function,

open the Documentation Center, type the name of the object, func-

tion, or topic, and press the Go (>>) button as we have done here with

ExampleData. A typical help window contains not only a detailed descrip-

tion of the command and its options but also hyperlinked cross-references

to related commands and can be accessed by clicking on the appropriate

links.
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You can also use the Documentation Center to search for help

regarding a particular topic. In this case, we enter color schemes in the

top line of the Documentation Center and then click on the >> button

(or press Enter) to see all the on-line help regarding “color schemes.”

Clicking on the topic will take you to the documentation for the topic.

Here is what we see when we select ColorDataFunction:
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As you become more proficient with Mathematica, you will want to learn

to take advantage of its extensive capabilities.

Remember that Mathematica contains thousands of functions to perform

many tasks. If you wish to perform a task that is not discussed here, go

to the Documentation Center and type a few words related to what you

want to do.

Example 1.3.5 In this example, we investigate digit operations. Mathematica by Example, fourth

edition, has a copyright in 2008, which has four digits.

IntegerDigits[2008]

{2,0,0,8}
As a string, the number is

IntegerString[2008]

2008

In base 2, the copyright year is

IntegerString[2008, 2]

11111011000

On the other hand, with Roman numerals the copyright year is

IntegerString[2008, "Roman"]

MMVIII
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1.4 EXERCISES
1. Generate the same plot of f (x) = (x − 1)

1/3
(x + 1)

2/3
as that shown

after loading the RealOnly package without loading the RealOnly
package. Hint: Abs[x] returns the absolute value of the real number x.

2. After using the Documentation Center to obtain help regarding

the function Plot, describe the use of the Plot function.

3. Use Mathematica help and the Documentation Center to describe

the ExampleData function. Use ExampleData to generate the plot of

the torus shown in Figure 1.7.

4. Use ? to determine the value of the Golden Ratio, GoldenRatio.

5. Determine the proper syntax for evaluating limx→�/2 sin x and eval-

uate the limit.

6. Load the VectorFieldPlot package. Use Options to learn about the

options associated with VectorFieldPlot. Describe the use of three of

those options. Your description should contain sufficient detail so

that it is readily understandable by an intelligent classmate.

7. Find the graphing options available with Plot3D and ParametricPlot3D.

8. Determine the Mathematica objects that contain the string

“gamma.”

9. Do any Mathematica objects begin with the letter “z”? Do any end

with “z”?

10. What Mathematica function is used to represent the inverse tangent

function?

11. Create a list of all Mathematica objects.

FIGURE 1.7

A plot of a torus generated with ExampleData
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12. Visit MathWorld at http://mathworld.wolfram.com. Use RandomInteger
to generate a random integer n between 1 and 11. Visit the

nth mathematical topic in the subject list. Then, randomly visit

a subtopic followed by another subtopic. From the list of topics,

choose one that sounds interesting but that you know nothing

about. Follow the link and learn about the topic. Write a brief

(one-page) report on your findings.
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2
CHAPTER

Basic Operations on Numbers,
Expressions, and Functions

Chapter 2 introduces the essential commands of Mathematica. Basic

operations on numbers, expressions, and functions are introduced and

discussed.

2.1 NUMERICAL CALCULATIONS AND BUILT-IN
FUNCTIONS

2.1.1 Numerical Calculations

The basic arithmetic operations (addition, subtraction, multiplication, divi-

sion, and exponentiation) are performed in the natural way with Mathema-

tica. Whenever possible, Mathematica gives an exact answer and reduces

fractions.

1. “a plus b,” a + b, is entered as a + b;

2. “a minus b,” a − b, is entered as a – b;

3. “a times b,” ab, is entered as either a*b or a b (note the space

between the symbols a and b);

4. “a divided by b,” a/b, is entered as a/b. Executing the command a/b
results in a fraction reduced to lowest terms; and

5. “a raised to the bth power,” ab
, is entered as a^b.

Example 2.1.1 Calculate (a) 121 + 542; (b) 3231− 9876; (c) (−23)( 76); (d) (22341)(832748)(387281);

and (e)
467

31
.

31



32 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

Solution These calculations are carried out in the following screen shot. In each case,

the input is typed and then evaluated by pressing Enter. In the last case, the

Basic Math template is used to enter the fraction.

The term an/m
=

m
√

an =
(

m
√

a
)n

is entered as a^(n/m). For n/m = 1/2, the

command Sqrt[a] can be used instead. Usually, the result is returned in

unevaluated form but N can be used to obtain numerical approxima-

tions to virtually any degree of accuracy. With N[expr, n], Mathematica

yields a numerical approximation of expr to n digits of precision, if

possible. At other times, Simplify can be used to produce the expected

results.

Remark 2.1 If the expression b in ab
contains more than one symbol, be sure that the expo-

nent is included in parentheses. Entering a^n/m computes an
/m = 1

m an
, whereas

entering a^(n/m) computes an/m
.

Example 2.1.2 Compute (a)
√

27 and (b)
3
√

82 = 8
2/3

.

Solution (a) Mathematica automatically simplifies
√

27 = 3
√

3. We use N to obtain an

approximation of
√

27. (b) Mathematica automatically simplifies 8
2/3

.
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When computing odd roots of negative numbers, Mathematica’s results are

surprising to the novice. Namely, Mathematica returns a complex number.

We will see that this has important consequences when graphing certain

functions.

N[number] and

number//N return

numerical approxi-

mations of number.

Example 2.1.3 Calculate (a)
1

3

(
−27

64

)2

and (b)

(
−27

64

)2/3

.

Solution (a) Because Mathematica follows the order of operations, (-27/64)^2/3 first com-

putes (−27/64)
2

and then divides the result by 3.

(b) On the other hand, (-27/64)^(2/3) raises −27/64 to the 2/3 power. Mathematica

does not automatically simplify
(− 27

64

)2/3
.

However, when we use N, Mathematica returns the numerical version of the

principal root of
(− 27

64

)2/3
.

To obtain the result

(
−27

64

)2/3

=

(
3

√
−27

64

)2

=

(
−3

4

)2

=
9

16
,
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which would be expected by most algebra and calculus students, we first square

−27/64 and then take the third root.

Alternatively, download the RealOnly package from the Wolfram website.

Then,

returns the result 9/16.

2.1.2 Built-in Constants

Mathematica has built-in definitions of nearly all commonly used mathe-

matical constants and functions. To list a few, e ≈ 2.71828 is denoted by

E, � ≈ 3.14159 is denoted by Pi, and i =
√−1 is denoted by I. Usually,

Mathematica performs complex arithmetic automatically.

Other built-in constants include ∞; denoted by Infinity; Euler’s constant,

� ≈ 0.577216, denoted by EulerGamma; Catalan’s constant, approximately

0.915966, denoted by Catalan; and the golden ratio, 1

2

(
1 +

√
5
)

≈ 1.61803,

denoted by GoldenRatio.
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Example 2.1.4 Entering

N[E, 50]
2.7182818284590452353602874713526624977572470937000

returns a 50-digit approximation of e. Entering

N[p, 25]
3.141592653589793238462643

returns a 25-digit approximation of �. Entering

3 + I

4 – I
11

17
+

7i

17

performs the division (3 + i )/(4 − i) and writes the result in standard form.

2.1.3 Built-in Functions

Functions frequently encountered by beginning users include the expo-

nential function, Exp[x]; the natural logarithm, Log[x]; the absolute value

function, Abs[x]; the trigonometric functions Sin[x], Cos[x], Tan[x], Sec[x],
Csc[x], and Cot[x]; the inverse trigonometric functions ArcSin[x], ArcCos[x],
ArcTan[x], ArcSec[x], ArcCsc[x], and ArcCot[x]; the hyperbolic trigonometric

functions Sinh[x], Cosh[x], and Tanh[x]; and their inverses ArcSinh[x],
ArcCosh[x], and ArcTanh[x]. Generally, Mathematica tries to return an exact

value unless otherwise specified with N.

Several examples of the natural logarithm and the exponential functions

are given next. Mathematica often recognizes the properties associated with

these functions and simplifies expressions accordingly.

Example 2.1.5 Entering

Exp[ – 5]//N
0.00673795

returns an approximation of e−5
= 1/e5

. Entering

N[number] or

number//N returns

approximations of

number.

Exp[x] computes ex
.

Enter E to compute

e ≈ 2.718.

Log[E3]
3

computes ln e3
= 3. Entering
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Log[x] computes ln x.

ln x and ex
are inverse

functions ( ln ex
= x

and eln x
= x) and

Mathematica uses

these properties

when simplifying

expressions involving

these functions.

Exp[Log[p]]

�

computes eln �
= �. Entering

Abs[ – 5]

5

computes | −5 |= 5. Entering

Abs[x] returns the

absolute value of

x, | x |.
Abs

[ 3 + 2I
2 – 9I

]
√

13

85

computes |(3 + 2i )/(2 − 9i )|. Entering

Cos
[ p

12

]
1 +

√
3

2
√

2

N
[
Cos

[ p
12

]]
0.965926

computes the exact value of cos(�/12) and then an approximation. Although

Mathematica cannot compute the exact value of tan 1000, entering

N[number] and

number//N return

approximations of

number.

N[ Tan[1000]]

1.47032

returns an approximation of tan 1000. Similarly, entering

N[ArcSin[1/3]]

0.339837

returns an approximation of sin
−1

(1/3), and entering

ArcCos[2/3]//N

0.841069

returns an approximation of cos
−1

(2/3).

Mathematica is able to apply many identities that relate the trigonometric

and exponential functions using the functions TrigExpand, TrigFactor,
TrigReduce, TrigToExp, and ExpToTrig.
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Many of the algebraic

manipulation

commands can

be accessed from

the Algebraic-
Manipulation palette.

Example 2.1.6 Mathematica does not automatically apply the identity sin
2 x + cos

2 x = 1.

Cos[x]∧2 + Sin[x]∧2
Cos[x]2 + Sin[x]2

To apply the identity, we use Simplify. Generally, Simplify[expression] attempts to

simplify expression.

Simplify[Cos[x]∧2 + Sin[x]∧2]
1

Use TrigExpand to multiply expressions or to rewrite trigonometric functions. In

this case, entering

TrigExpand[Cos[3x]]
Cos[x]3 – 3Cos[x]Sin[x]2

writes cos 3x in terms of trigonometric functions with argument x. We use the

TrigReduce function to convert products to sums.

TrigReduce[Sin[3x]Cos[4x]]
1

2
( – Sin[x] + Sin[7x])

We use TrigExpand to write

TrigExpand[Cos[2x]]
Cos[x]2 – Sin[x]2

in terms of trigonometric functions with argument x. We use ExpToTrig to convert

exponential expressions to trigonometric expressions.
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ExpToTrig[1/2(Exp[x] + Exp[ – x])]
Cosh[x]

Similarly, we use TrigToExp to convert trigonometric expressions to exponential

expressions.

TrigToExp[Sin[x]]
1

2
ie – ix – 1

2
ie ix

Usually, you can use Simplify to apply elementary identities.

Simplify[ Tan[x]∧2 + 1]
Sec[x]2

A Word of Caution

Remember that there are certain ambiguities in traditional mathematical

notation. For example, the expression sin
2
(
�/6

)
is usually interpreted

to mean “compute sin
(
�/6

)
and square the result.” That is, sin

2
(
�/6

)
=[

sin
(
�/6

)]2
. The symbol sin is not being squared; the number sin

(
�/6

)
is

squared. With Mathematica, we must be especially careful and follow the

standard order of operations exactly, especially when using InputForm.

We see that entering

computes sin
2
(
�/6

)
=
[
sin

(
�/6

)]2
, whereas

raises the symbol Sin to the power 2
[

�
6

]
. Mathematica interprets

to be the product of the symbols sin2
and �/6. However, using Tradition-

alForm we are able to evaluate sin
2
(
�/6

)
=
[
sin

(
�/6

)]2
with Mathematica

using conventional mathematical notation.
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Times

Power

Plus

a b

2

Power

Plus

c d

3

Power

Plus

x y Times

21 z

21

FIGURE 2.1

Visualizing the order in which Mathematica carries out a sequence of operations

Be aware, however, that traditional mathematical notation does contain

certain ambiguities and Mathematica may not return the result you expect

if you enter input using TraditionalForm unless you are especially careful

to follow the standard order of operations, as the following warning message

indicates.

Example 2.1.7 As stated, Mathematica follows the order of operations exactly. To see how Math-

ematica performs a calculation, TreeForm presents the sequence graphically.

For example, for the calculation
(a + b)

2
(c + d )

3

x + y− z , TreeForm gives us the results shown
in Figure 2.1.

Clear[a, b, c, d, x, y, z]
TreeForm[(a + b)∧2(c + d )∧3/(x + y – z)]

2.2 EXPRESSIONS AND FUNCTIONS: ELEMENTARY
ALGEBRA

2.2.1 Basic Algebraic Operations on Expressions

Expressions involving unknowns are entered in the same way as num-

bers. Mathematica performs standard algebraic operations on mathematical

expressions. For example, the commands

1. Factor[expression] factors expression;

2. Expand[expression] multiplies expression;
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3. Together[expression] writes expression as a single fraction; and

4. Simplify[expression] performs basic algebraic manipulations on

expression and returns the simplest form it finds.

For basic information about any of these commands (or any other), enter

?command as we do here for Factor,

or access the Help Browser as we do here for Factor.

When entering expressions, be sure to include a space or * between

variables to denote multiplication.

Example 2.2.1 (a) Factor the polynomial 12x2
+ 27xy − 84y2

. (b) Expand the expression (x + y)
2

(3x − y)
3
. (c) Write the sum

2

x2
− x2

2
as a single fraction.
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Solution The result obtained with Factor indicates that 12 x2
+ 27xy − 84y2

= 3(4x − 7y)

(x + 4y). When typing the command, be sure to include a space, or *, between

the x and y terms to denote multiplication. xy represents an expression, whereas

x y or x*y denotes x multiplied by y.

Factor
[
12x2 + 27xy – 84y2]

3(4x – 7y)(x + 4y)

We use Expand to compute the product (x + y)
2
(3x − y)

3
and Together to express

2

x2
− x2

2
as a single fraction.

Expand
[
(x + y)2(3x – y)3

]
27x5 + 27x4y – 18x3y2 – 10x2y3 + 7xy4 – y5

Together
[

2
x2 – x2

2

]
4 – x4

2x2

To factor an expression such as x2 − 3 = x2 − (√
3
)2

=
(
x −√

3
) (

x +
√

3
)
,

use Factor with the Extension option.

Factor[x^2 - 3] returns

x2 − 3.

Factor[x∧2 – 3, Extension→ {Sqrt[3]}]
–
(√

3 – x
)(√

3 + x
)

Similarly, use Factor with the Extension option to factor expressions such as

x2
+ 1 = x2 − i2

= (x + i )(x − i ).

Factor[x∧2 + 1]
1 + x2

Factor[x∧2 + 1, Extension→ {I}]
( – i + x)(i + x)

Mathematica does not automatically simplify
√

x2 to the expression x

Sqrt[x∧2]√
x2

because without restrictions on x,
√

x2 = |x|. The command PowerExpand
[expression] simplifies expression assuming that all variables are positive.

Alternatively, you can use Assumptions to tell Mathematica to assume that

x > 0.

PowerExpand[Sqrt[x∧2]]
x

Simplify[Sqrt[x∧2], Assumptions→ x>0]
x
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Thus, entering

Simplify[Sqrt[a∧2b∧4]]√
a2b4

returns
√

a2b4, but entering

PowerExpand[Sqrt[a∧2b∧4]]
ab2

Simplify[Sqrt[a∧2b∧4], Assumptions→
{a > 0, b > 0}]

ab2

returns ab2
.

In general, a space is not needed between a number and a symbol to

denote multiplication when a symbol follows a number. That is, 3dog means

“3 times variable dog,” dog3 is a variable with name dog3. Mathematica

interprets 3 dog, dog*3, and dog 3 as “3 times variable dog.” However,

when multiplying two variables, either include a space or * between the

variables.

1. cat dog means “variable cat times variable dog.”

2. cat*dog means “variable cat times variable dog.”

3. But, catdog is interpreted as a variable catdog.

The command Apart[expression] computes the partial fraction decomposi-

tion of expression; Cancel[expression] factors the numerator and denomina-

tor of expression and then reduces expression to lowest terms.

Example 2.2.2 (a) Determine the partial fraction decomposition of
1

(x − 3)(x − 1)
. (b) Simplify

x2 − 1

x2 − 2x + 1
.

Solution Apart is used to see that
1

(x − 3)(x − 1)
=

1

2(x − 3)
− 1

2(x − 1)
. Then, Cancel is

used to find that
x2 − 1

x2 − 2x + 1
=

(x − 1)(x + 1)

(x − 1)2
=

x + 1

x − 1
. In this calculation, we have

assumed that x �= 1, an assumption made by Cancel but not by Simplify.

Apart
[

1
(x – 3)(x – 1)

]
1

2( – 3 + x)
– 1

2( – 1 + x)

Cancel
[

x2 – 1
x2 – 2x+1

]
1 + x

– 1 + x
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In addition, Mathematica has several built-in functions for manipulating

parts of fractions.

1. Numerator[fraction] yields the numerator of fraction.

2. ExpandNumerator[fraction] expands the numerator of fraction.

3. Denominator[fraction] yields the denominator of fraction.

4. ExpandDenominator[fraction] expands the denominator of fraction.

Example 2.2.3 Given
x3

+ 2x2 − x − 2

x3 + x2 − 4x − 4
, (a) factor both the numerator and denominator; (b) reduce

x3
+ 2x2 − x − 2

x3 + x2 − 4x − 4
to lowest terms; and (c) find the partial fraction decomposition of

x3
+ 2x2 − x − 2

x3 + x2 − 4x − 4
.

Solution The numerator of
x3

+ 2x2 − x − 2

x3 + x2 − 4x − 4
is extracted with Numerator. We then use

Factor together with %, which is used to refer to the most recent output, to

factor the result of executing the Numerator command.

Numerator
[

x3 + 2x2 – x – 2
x3 + x2 – 4x – 4

]
– 2 – x + 2x2 + x3

Factor[%]

( – 1 + x)(1 + x)(2 + x)

Similarly, we use Denominator to extract the denominator of the fraction. Again,

Factor together with % is used to factor the previous result, which corresponds

to the denominator of the fraction.

Denominator
[

x3 + 2x2 – x – 2
x3 + x2 – 4x – 4

]
– 4 – 4x + x2 + x3

Factor[%]

( – 2 + x)(1 + x)(2 + x)

Cancel is used to reduce the fraction to lowest terms.

Cancel
[

x3 + 2x2 – x – 2
x3 + x2 – 4x – 4

]
– 1 + x

– 2 + x

Finally, Apart is used to find its partial fraction decomposition.

Apart
[

x3 + 2x2 – x – 2
x3 + x2 – 4x – 4

]
1 + 1

– 2 + x
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You can also take advantage of the AlgebraicManipulation palette, which

is accessed by going to Palettes under the Mathematica menu, followed by

AlgebraicManipulation, to evaluate expressions.

Example 2.2.4 Simplify
2(x − 3)

2
(x + 1)

3(x + 1)4/3
+ 2(x − 3)(x + 1)

2/3
.

Solution First, we type the expression.

Then, select the expression.

Move the cursor to the palette and click on Simplify. Mathematica simplifies the

expression.

2.2.2 Naming and Evaluating Expressions

In Mathematica, objects can be named. Naming objects is convenient:

We can avoid typing the same mathematical expression repeatedly (as we

did in Example 2.2.3) and named expressions can be referenced through-

out a notebook or Mathematica session. Every Mathematica object can be

named—expressions, functions, graphics, and so on can be named with

Mathematica. Objects are named by using a single equals sign (=).

Because every built-in Mathematica function begins with a capital letter,

we adopt the convention that every mathematical object we name in this

text will begin with a lowercase letter. Consequently, we will be certain to

avoid any possible ambiguity with any built-in Mathematica objects.

With Mathematica 6, the default option is to display known objects

in black and unknown objects in blue. Thus, in the following screen

shot,
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Fraction, x, y, apart, pi, e, and E are in blue; Apart, 2, Pi, �, 7, Plot, Expand,

Cancel, and E are in black.

To automatically update named variables, Dynamic[x] returns the current

value of x.

Thus, Dynamic[x] returns dog.

However, when we enter x = 7 afterwards, Dynamic[x] is automatically

updated to the new value of x.

Expressions are easily evaluated using ReplaceAll, which is abbreviated

with /. and obtained by typing a backslash ( / ) followed by a period (.),
together with Rule, which is abbreviated with -> and obtained by typing a

forward slash ( / ) followed by a greater than sign (>). For example, entering

the command

x∧2/ . x –> 3

returns the value of the expression x2
if x = 3. Note, however, that this

does not assign the symbol x the value 3: entering x = 3 assigns x the

value 3.

Example 2.2.5 Evaluate
x3

+ 2x2 − x − 2

x3 + x2 − 4x − 4
if x = 4, x = −3, and x = 2.
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Solution To avoid retyping
x3

+ 2x2 − x − 2

x3 + x2 − 4x − 4
, we define fraction to be

x3
+ 2x2 − x − 2

x3 + x2 − 4x − 4
.

fraction = x3 + 2x2 – x – 2
x3 + x2 – 4x – 4

– 2 – x + 2x2 + x3

– 4 – 4x + x2 + x3

/. is used to evaluate fraction if x = 4 and then if x = −3.

Of course, you can

simply copy and paste

this expression if you

neither want to name

it nor retype it.

If you include a

semicolon (;) at the

end of the command,

the resulting output is

suppressed.

fraction/.x –> 4
3

2

fraction/.x –> – 3
4

5

When we try to replace each x in fraction by 2, we see that the result is undefined:

division by 0 is always undefined.

However, when we use Cancel to first simplify and then use ReplaceAll to evaluate,

we see that the result is 3/4. The result indicates that limx→−2
x3

+ 2x2−x−2

x3 + x2−4x−4
= 3

4
.

We confirm this result with Limit.

Generally, Limit[f[x], x->a] attempts to compute limx→a f(x). The Limit function is

discussed in more detail in the next chapter.
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2.2.3 Defining and Evaluating Functions

It is important to remember that functions, expressions, and graphics can

be named anything that is not the name of a built-in Mathematica function

or command. As previously indicated, every built-in Mathematica object

begins with a capital letter so every user-defined function, expression, or

other object in this text will be assigned a name using lowercase letters

exclusively. This way, the possibility of conflicting with a built-in Mathe-

matica command or function is completely eliminated. Because definitions

of functions and names of objects are frequently modified, we introduce

the command Clear. Clear[expression] clears all definitions of expression, if

any. You can see if a particular symbol has a definition by entering ?symbol.
In Mathematica, an elementary function of a single variable, y = f(x) =

expression in x, is typically defined using the form

f[x–] = expression in x or f[x–] := expression in x.

Notice that when you first define a function, you must always enclose the

argument in square brackets ([...]) and place an underline (or blank) “_”

after the argument on the left-hand side of the equals sign in the definition

of the function.

Example 2.2.6 Entering

f[x–] = x/(x∧2 + 1)
x

1 + x2

defines and computes f(x) = x/
(
x2

+ 1
)
. Entering

f[3]
3

10

computes f(3) = 3/
(
3

2
+ 1

)
= 3/10. Entering

f[a]
a

1 + a2

computes f(a) = a/
(
a2

+ 1
)
. Entering

f[3 + h]
3 + h

1 + (3 + h)2

computes f(3 + h) = (3 + h)/
(
(3 + h)

2
+ 1

)
. Entering

n1 = Simplify[(f[3 + h] – f[3])/h]

– 8 + 3h

10(10 + 6h + h2)
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computes and simplifies
f(3 + h) − f(3)

h
and names the result n1. Entering

n1/.h→0

– 2

25

evaluates n1 if h = 0. Entering

n2 = Together[(f[a + h] – f[a])/h]
1 – a2 – ah

(1 + a2)(1 + a2 + 2ah + h2)

computes and simplifies
f(a + h) − f(a)

h
and names the result n2. Entering

n2/.h→0
1 – a2

(1 + a2)
2

evaluates n2 if h = 0.

Often, you will need to evaluate a function for the values in a list,

list = {a1, a2, a3, …, an} .

Once f (x) has been defined, Map [f,list] returns the list{
f
(
a1

)
, f

(
a2

)
, f

(
a3

)
, . . . , f

(
an

)}
.

Also,
The Table function

will be discussed in

more detail as needed.

1. Table [f[n], {n, n1, n2}] returns the list{
f
(
n1

)
, f

(
n1 + 1

)
, f

(
n1 + 2

)
, . . . , f

(
n2

)}
.

2. Table [{n, f[n]},{n, n1, n2}] returns the list of ordered pairs{(
n1, f

(
n1

))
,
(
n1 + 1, f

(
n1 + 1

))
,
(
n1 + 2, f

(
n1 + 2

))
, . . . ,

(
n2, f

(
n2

))}
.

Example 2.2.7 Entering

Clear[h]
h[t–] = (1 + t)∧(1/t);
h[1]
2

defines h(t) = (1 + t)1/t
and then computes h(1) = 2. Because division by 0 is

always undefined, h(0) is undefined.
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However, h(t) is defined for all t > 0. In the following, we use RandomReal together

with Table to generate six random numbers “close” to 0 and name the resulting

list t1. Because we are using RandomReal, your results will almost certainly differ

from those here.

RandomReal[{a, b}]
returns a random

real number bet-

ween a and b;

RandomReal[{a, b}, n]
returns n random real

numbers between a
and b.

t1 = Table[RandomReal[{0, 10 – n}], {n, 0, 5}]
{0.457711, 0.0446146, 0.00848021,

0.000465453, 0.0000566835, 1.6690247776250502∗∧– 6}
We then use Map to compute h(t) for each of the values in the list t1.

Map[h, t1]
{2.27817, 2.66002, 2.70684, 2.71765, 2.7182, 2.71828}

From the result, we might correctly deduce that limt→0+ (1 + t)1/t
= e.

In each of these cases, do not forget to include the blank (or underline)

( _ ) on the left-hand side of the equals sign in the definition of each

function. Remember to always include arguments of functions in square

brackets.

Example 2.2.8 Entering

Including a semicolon

at the end of a

command suppresses

the resulting output.

Clear[f]
f[0] = 1;
f[1] = 1;
f[n–] := f[n – 1] + f[n – 2]

defines the recursively defined function defined by f (0) = 1, f (1) = 1, and f (n) =

f (n − 1) + f (n − 2). For example, f (2) = f (1) + f (0) = 1 + 1 = 2; f (3) = f (2) + f (1) =

2 + 1 = 3. We use Table to create a list of ordered pairs (n, f(n)) for n = 0,1,

. . . , 10.
The fn we have

defined here

returns the

Fibonacci number
Fn. Fibonacci[n]
also returns the nth

Fibonacci number.

Table[{n, f[n]}, {n, 0, 10}]
{{0, 1}, {1, 1}, {2, 2}, {3, 3}, {4, 5},

{5, 8}, {6, 13}, {7, 21}, {8, 34}, {9, 55}, {10, 89}}

In the preceding examples, the functions were defined using each of the

forms f[x ] := . . . and f[x ] = . . . . As a practical matter, when defining “rou-

tine” functions with domains consisting of sets of real numbers and ranges

consisting of sets of real numbers, either form can be used. Defining a

function using the form f[x ] = . . . instructs Mathematica to define f and then

compute and return f[x] (immediate assignment); defining a function

using the form f[x ] := . . . instructs Mathematica to define f. In this case,

f[x] is not computed and, thus, Mathematica returns no output (delayed
assignment). The form f[x ] := . . . should be used when Mathematica can-

not evaluate f[x] unless x is a particular value, as with recursively defined

functions or piecewise-defined functions, which we will discuss soon.
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Generally, if attempting to define a function using the form f[x ] = . . .
produces one or more error messages, use the form f[x ] := . . . instead.

To define piecewise-defined functions, we usually use Condition (/;) as

illustrated in the following example. In simple situations, we take advantage

of Piecewise.

Example 2.2.9 Entering

Clear[f]
f[t–] := Sin[1/t]/; t > 0

defines f (t) = sin(1/t) for t > 0. Entering

f[1/(10Pi)]
0

is evaluated because 1/(10 �) > 0. However, both of the following commands are

returned unevaluated. In the first case, −1 is not greater than 0( f (t) is not defined

for t ≤ 0). In the second case, Mathematica does not know the value of a so it

cannot determine if it is or is not greater than 0.

f[ – 1]
f[ – 1]
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f[a]
f[a]

Entering

f[t–] := – t/; t≤ 0

defines f (t) = −t for t ≤ 0. Now, the domain of f (t) is all real numbers. That is, we

have defined the piecewise-defined function

f (t) =

{
sin(1 / t), t > 0

−t, t ≤ 0
.

We can now evaluate f (t) for any real number t.

f[2/(5Pi)]
1

f[0]
0

f[ – 10]
10

However, f (a) still returns unevaluated because Mathematica does not know if

a ≤ 0 or if a > 0.

f[a]
f[a]

Recursively defined functions are handled in the same way. The following

example shows how to define a periodic function.

Example 2.2.10 Entering

Clear[g]
g[x–] := x/; 0≤ x < 1
g[x–] := 1/;1≤ x < 2
g[x–] := 3 – x/;2≤ x < 3
g[x–] := g[x – 3]/;x≥ 3

defines the recursively defined function g(x). For 0 ≤ x < 3, g(x) is defined by

g(x) =

⎧⎪⎨
⎪⎩

x, 0 ≤ x < 1

1, 1 ≤ x < 2

3 − x, 2 ≤ x < 3.
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For x ≥ 3, g(x) = g(x − 3). Entering

g[7]

1

computes g(7) = g(4) = g(1) = 1. We use Table to create a list of ordered pairs

(x, g(x)) for 25 equally spaced values of x between 0 and 6.

Table[{x, g[x]}, {x, 0, 6, 6/24}]{{0, 0},{ 1

4
, 1

4

}
,
{

1

2
, 1

2

}
,
{

3

4
, 3

4

}
, {1, 1},

{
5

4
, 1
}

,{
3

2
, 1
}

,
{

7

4
, 1
}

, {2, 1},{ 9

4
, 3

4

}
,
{

5

2
, 1

2

}
,
{

11

4
, 1

4

}
, {3, 0},{

13

4
, 1

4

}
,
{

7

2
, 1

2

}
,
{

15

4
, 3

4

}
, {4, 1},{ 17

4
, 1
}

,
{

9

2
, 1
}

,{
19

4
, 1
}

, {5, 1},{ 21

4
, 3

4

}
,
{

11

2
, 1

2

}
,
{

23

4
, 1

4
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We will discuss additional ways to define, manipulate, and evaluate func-

tions as needed. However, Mathematica’s extensive programming language

allows a great deal of flexibility in defining functions, many of which are

beyond the scope of this text. These powerful techniques are discussed

in detail in texts such as Gaylord, Kamin, and Wellin’s Introduction to
Programming with Mathematica [9], Gray’s Mastering Mathematica: Pro-
gramming Methods and Applications [12], and Maeder’s The Mathematica
Programmer II and Programming in Mathematica [15, 16].

2.3 GRAPHING FUNCTIONS, EXPRESSIONS, AND
EQUATIONS

One of the best features of Mathematica is its graphics capabilities. In this sec-

tion, we discuss methods of graphing functions, expressions, and equations

and several of the options available to help graph functions.

2.3.1 Functions of a Single Variable

The commands

Plot[f[x], {x, a, b}] and Plot [f[x], {x, a, x1, x2, . . ., xn, b}]

graph the function y = f (x) on the intervals [a, b] and [a, x1) ∪ (x1, x2)

∪ . . . ∪ (xn, b], respectively. Mathematica returns information about the

basic syntax of the Plot command with ?Plot or use the Documentation
Center to obtain detailed information regarding Plot.
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Remember that every Mathematica object can be assigned a name, including

graphics. Show[p1,p2, . . . , pn] displays the graphics p1, p2, . . . , pn together.

Example 2.3.1 Graph y = sin x for −� ≤ x ≤ 2�.

Solution Entering

p1 = Plot[Sin[x], {x, – Pi, 2Pi}]

graphs y = sin x for −� ≤ x ≤ 2� and names the result p1. The plot is shown in

Figure 2.2(a). With

p1b = Plot[Cos[x], {x, – 2Pi, 2Pi},
ColorFunction→ “ValentineTones”,

PlotStyle→Thickness[.025]]

we create a slightly thicker plot of y = cos x and shade the plot using the

ValentineTones color gradient. See Figure 2.2(b).

Show[p1,p2, . . . , pn] shows the graphics p1, . . . , pn. You can also use Show
to rerender graphics. Using Show with the Epilog option together with Inset, we

place a small version of the cosine plot in the sine plot. See Figure 2.2(c).

p1c = Show[p1,
Epilog→ Inset[p1b, {Pi/2, – 1/2}, Automatic, 5]]
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FIGURE 2.2

(a) y = sin x for −� ≤ x ≤ 2�. (b) A “reddish” plot of y = cos x for −2� ≤ x ≤ 2�.

(c) Combining two graphics with Epilog and Inset

Multiple graphics can be shown in rows, columns, or grids using GraphicsRow,

GraphicsColumn, or GraphicsGrid, respectively. Thus,

Show[GraphicsRow[{p1, p1b, p1c}]]

generates Figure 2.2.

Be careful when graphing functions with discontinuities. Often, Mathe-

matica will catch discontinuities. In other cases, it does not and you might

need to use the Exclusions option to generate a more accurate plot.

Example 2.3.2 Graph s(t) for 0 ≤ t ≤ 5, where s(t) = 1 for 0 ≤ t < 1 and s(t) = 1 + s(t − 1) for t ≥ 1.

Solution After defining s(t),

s[t–] := 1/;0≤ t < 1
s[t–] := 1 + s[t – 1]/;t≥ 1

we use Plot to graph s(t) for 0 ≤ t ≤ 5 in Figure 2.3(a).

p1 = Plot[s[t], {t, 0, 5}, AspectRatio→Automatic]

Of course, Figure 2.3(a) is not completely precise: Vertical lines are never the

graphs of functions. In this case, discontinuities occur at t = 1, 2, 3, 4, and 5.

If we were to redraw the figure by hand, we would erase the vertical line segments

and then for emphasis place open dots at (1, 1), (2, 2), (3, 3), (4, 4), and (5, 5)

and then closed dots at (1, 2), (2, 3), (3, 4), (4, 5), and (5, 6). In cases like this

in which Plot does not automatically detect discontinuities, you can specify them

with Exclusions. See Figure 2.3(b).

p2 = Plot[s[t], {t, 0, 5}, Exclusions→ {1, 2, 3, 4}]
Show[GraphicsRow[{p1, p2}]]

To fine-tune graphics, use the Drawing Tools and Graphics Inspector
palettes, which are accessed under Graphics in the menu. In this case, we add

the closed dots at the left endpoints.
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FIGURE 2.3

(a) s(t) = 1 + s(t − 1), 0 ≤ t ≤ 5. (b) Catching the discontinuities

Entering Options[Plot] lists all Plot options and their default values.

The most frequently used options include PlotStyle, DisplayFunction,

AspectRatio, PlotRange, PlotLabel, and AxesLabel.

1. PlotStyle controls the color and thickness of a plot. PlotStyle->
GrayLevel[w], where 0 ≤ w ≤ 1, instructs Mathematica to generate

the plot in GrayLevel[w]. GrayLevel[0] corresponds to black and

GrayLevel[1] corresponds to white. Color plots can be generated using

RGBColor. RGBColor[1,0,0] corresponds to red, RGBColor[0,1,0] cor-

responds to green, and RGBColor[0,0,1] corresponds to blue. You

can also use any of the named colors listed on the Color Schemes
palette.

PlotStyle->Dashing[a1,a2, …, an] indicates that successive segments

be dashed with repeating lengths of a1, a2, . . . , an. The thick-

ness of the plot is controlled with PlotStyle->Thickness[w], where

w is the fraction of the total width of the graphic. For a single

plot, the PlotStyle options are combined with PlotStyle->{{option1,
option2, . . . , optionn}}.
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2. A plot is not displayed when the option DisplayFunction->
Identity is included or when a semicolon (;) is included at the

end of the command. Including the option DisplayFunction->$

DisplayFunction in Show or Plot commands instructs Mathematica to

display graphics.

3. The ratio of height to width of a plot is controlled by AspectRatio.

The default is 1/GoldenRatio. Generally, a plot is drawn to scale when

the option AspectRatio->Automatic is included in the Plot or Show
command.

4. PlotRange controls the horizontal and vertical axes. PlotRange->{c,d}
specifies that the vertical axis displayed corresponds to the interval

c ≤ y ≤ d, whereas PlotRange->{{a,b},{c,d}} specifes that the horizon-

tal axis displayed corresponds to the interval a ≤ x ≤ b and that the

vertical axis displayed corresponds to the interval c ≤ y ≤ d.

5. PlotLabel->"titleofplot" labels the plot titleofplot.
6. AxesLabel->{"xaxislabel","yaxislabel"} labels the x-axis with xaxislabel

and the y-axis with yaxislabel.

Example 2.3.3 Graph y = sin x, y = cos x, and y = tan x together with their inverse functions.

Solution In p2 and p3, we use Plot to graph y = sin
−1 x and y = x, respectively. Neither plot

is displayed because we include a semicolon at the end of the Plot commands.

p1, p2, and p3 are displayed together with Show in Figure 2.4. The plot is shown

to scale; the graph of y = sin x is in black, y = sin
−1 x is in gray, and y = x is

dashed.

Be sure you have

completed the

previous example

immediately before

entering the

following commands.
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FIGURE 2.4

y = sin x, y = sin
−1 x, and y = x
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p2 = Plot[ArcSin[x], {x, – 1, 1}, PlotStyle→GrayLevel[.3]];
p3 = Plot[x, {x, – Pi, 2Pi}, PlotStyle→Dashing[{ . 01}]];
p4 = Show[p1, p2, p3, PlotRange→ {{ – Pi, Pi}, { – Pi, Pi}}, AspectRatio→

Automatic]

The command Plot[{f1[x],f2[x],. . .,fn[x]},{x,a,b}] plots f1(x), f2(x), . . . , fn(x) together

for a ≤ x ≤ b. Simple PlotStyle options are incorporated with PlotStyle->{option1,
option2, . . ., optionn}, where optioni corresponds to the plot of fi(x). Multiple

options are incorporated using PlotStyle->{{options1}, {options2}, . . ., {optionsn}},
where optionsi are the options corresponding to the plot of fi(x).

In the following, we use Plot to graph y = cos x, y = cos
−1 x, and y = x together.

The plot in Figure 2.5 is shown to scale; the graph of y = cos x is in black,

y = cos
−1 x is in gray, and y = x is dashed.

r4 = Plot[{Cos[x], ArcCos[x], x}, {x, – Pi, Pi},
PlotStyle→ {GrayLevel[0],

GrayLevel[.3], Dashing[{ . 01}]},
PlotRange→ { – Pi, Pi}, AspectRatio→Automatic]

We use the same idea to graph y = tan x, y = tan
−1 x, and y = x in Figure 2.6

q4 = Plot[{Tan[x], ArcTan[x], x}, {x, – Pi, Pi},
PlotStyle→ {GrayLevel[0],

GrayLevel[.3], Dashing[{ . 01}]},
PlotRange→ { – Pi, Pi}, AspectRatio→Automatic]
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FIGURE 2.5

y = cos x, y = cos
−1 x, and y = x
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y = tan x, y = tan
−1 x, and y = x

23 22 21 1 2 3

23

22

21

1

2

3

23 22 21 1 2 3

23

22

21

1

2

3

23 22 21 1 2 3

23

22

21

1

2

3

FIGURE 2.7

The elementary trigonometric functions and their inverses

Use Show together with GraphicsRow to display graphics in rectangular arrays.

Entering

Show[GraphicsRow[{p4, r4, q4}]]

shows the three plots p4, r4, and q4 in a row as shown in Figure 2.7.

The previous example illustrates the graphical relationship between a

function and its inverse.

Example 2.3.4 (Inverse Functions). f (x) and g(x) are inverse functions if

f (g(x)) = g( f(x)) = x.

If f (x) and g(x) are inverse functions, their graphs are symmetric about the line

y = x. The command

Composition[f1,f2,f3,…,fn,x]
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computes the composition

(
f1 ◦ f2 ◦ · · · ◦ fn

)
(x) = f1

(
f2

(· · · ( fn(x)
)))

.

For two functions f (x) and g(x), it is usually easiest to compute the composition

f (g(x)) with f[g[x]] or f[x]//g.

Show that

f(x) =
−1 − 2x

−4 + x
and g(x) =

4x − 1

x + 2

are inverse functions.

Solution After defining f(x) and g(x),

f(x) and g(x) are not

returned because a

semicolon is included

at the end of each

command.

f[x–] = – 1 – 2x
– 4 + x ;

g[x–] = 4x – 1
x + 2

;

we compute and simplify the compositions f (g(x)) and g( f (x)). Because both

results are x, f (x) and g (x) are inverse functions.

f[g[x]]

– 1 –
2( – 1 + 4x)

2 + x

– 4 + – 1 + 4x
2 + x

Simplify[f[g[x]]]
x

Simplify[g[f[x]]]
x

To see that the graphs of f(x) and g(x) are symmetric about the line y = x, we use

Plot to graph f(x), g(x), and y = x together in Figure 2.8. Because Tooltip is being

applied to the set of functions being plotted, you can identify each curve by sliding

the cursor over the curve: when the cursor is placed over a curve, Mathematica

displays its definition.

Plot[Tooltip[{f[x], g[x], f[g[x]]}], {x, – 10, 10},
PlotStyle→ {GrayLevel[0], GrayLevel[.3],

Dashing[{ . 01}]}, PlotRange→ { – 10, 10},
AspectRatio→Automatic]

In the plot, observe that the graphs of f (x) and g (x) are symmetric about the

line y = x. The plot also illustrates that the domain and range of a function

and its inverse are interchanged: f (x) has domain (−∞, 4) ∪ (4,∞) and range

(−∞,−2) ∪ (−2,∞); g (x) has domain (−∞,−2) ∪ (−2,∞) and range (−∞, 4) ∪
(4,∞).
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FIGURE 2.8

f(x) in black, g(x) in gray, and y = x dashed

For repeated compositions of a function with itself, Nest[f,x,n] computes the

composition (
f ◦ f ◦ f ◦ · · · ◦ f

)︸ ︷︷ ︸
n times

(x) =
(

f
(

f
(

f · · · )))︸ ︷︷ ︸
n times

(x) = f n(x).

Example 2.3.5 Graph f (x), f 10
(x), f 20

(x), f 30
(x), f 40

(x), and f 50
(x) if f (x) = sin x for 0 ≤ x ≤ 2�.

Solution After defining f (x) = sin x,

f[x–] = Sin[x]
Sin[x]

we graph f (x) in p1 with Plot

p1 = Plot[f[x], {x, 0, 2Pi}];

and then illustrate the use of Nest by computing f 5
(x).

Nest[f, x, 5]
Sin[Sin[Sin[Sin[Sin[x]]]]]

Next, we use Table together with Nest to create the list of functions

{
f 10(x), f 20(x), f 30(x), f 40(x), f 50(x)

}
.
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FIGURE 2.9

f (x) in black; the graphs of f 10
(x), f 20

(x), f 30
(x), f 40

(x), and f 50
(x) are successively

lighter—the graph of f 50
(x) is the lightest

Because the resulting output is rather long, we include a semicolon at the end of

the Table command to suppress the resulting output.
Table[f[i],{i,a,b,istep}]
computes f (i) for i
values from a to b
using increments of

istep.

toplot = Table[Nest[f, x, n], {n, 10, 50, 10}];

We then graph the functions in toplot on the interval [0, 2�] with Plot, applying

the Tooltip function to the list being plotted so they can easily be identified. Last,

we use Show to display p1 and p2 together in Figure 2.9.

p2 = Plot[Tooltip[toplot], {x, 0, 2Pi}];
Show[p1, p2]

In the plot, we see that repeatedly composing sine with itself has a flattening effect

on y = sin x.

The command

ListPlot[{{x1, y1}, {x2, y2}, . . ., {xn, yn}}]

plots the list of points
{(

x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xn, yn

)}
. The size of

the points in the resulting plot is controlled with the option

PlotStyle->PointSize[w], where w is the fraction of the total width of the

graphic. For two-dimensional graphics, the default value is 0.008.

Remark 2.2 The command

ListPlot[y1, y2, …, yn]

plots the list of points
{(

1, y1

)
,
(
2, y2

)
, . . . ,

(
n, yn

)}
.
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Example 2.3.6 Graph y =

√
9 − x2

x2 − 4
.

Solution We use Plot to generate the basic graph of y shown in Figure 2.10(a).

p1 = Plot[Sqrt[9 – x∧2]/(x∧2 – 4), {x, – 5, 5}]

Observe that the domain of y is [−3,−2) ∪ (−2, 2) ∪ (2, 3]. A better graph of y is

obtained by plotting y for −3 ≤ x ≤ 3 and shown in Figure 2.10(b). We then use

the PlotRange option to specify that the displayed horizontal axis corresponds to

−7 ≤ x ≤ 7 and that the displayed vertical axis corresponds to −7 ≤ y ≤ 7. The

graph is drawn to scale because we include the option AspectRatio->Automatic.

In this case, Mathematica does not generate any error messages. Mathematica

uses a point-plotting scheme to generate graphs. Coincidentally, Mathematica does

not sample x = ±2 and thus does not generate any error messages.

p2 = Plot[Sqrt[9 – x∧2]/(x∧2 – 4), {x, – 5, 5}, PlotRange→ {{ – 7, 7}, { – 7, 7}},
AspectRatio→Automatic]

To see the endpoints in the plot, we use ListPlot to plot the points (−3, 0) and

(3, 0). The points are slightly enlarged in Figure 2.10(c) because we increase their

size using PointSize.
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FIGURE 2.10

The four plots p1, p2, p3, and p4 combined into a single graphic
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p3 = ListPlot[{{ – 3, 0}, {3, 0}}, PlotStyle→PointSize[.02]]

Finally, we use Show to display p2 and p3 together in Figure 2.10(d), where we

have labeled the axes using the AxesLabel option.

p4 = Show[p2, p3, AxesLabel→ {“x”, “y”}]

The sequence of plots shown in Figure 2.10, which combines p1, p2, p3, and p4
into a single graphic, is generated using Show together with GraphicsGrid.

Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]]

When graphing functions involving odd roots, Mathematica’s results may

be surprising to the beginner. The key is to load the RealOnly package

located at the Wolfram website first or remember that Mathematica follows

the order of operations exactly and understand that without restrictions on

x,
√

x2 = | x |.

Example 2.3.7 Graph y = x1/3
(x − 2)

2/3
(x + 1)

4/3
.

Solution Entering

p1 = Plot[x∧(1/3)(x – 2)∧(2/3)(x + 1)∧(4/3),
{x, – 3, 5}, PlotRange→ { – 4, 4},

AspectRatio→Automatic]

not does not produce the graph we expect (see Figure 2.11(a)) because many

of us consider y = x1/3
(x − 2)

2/3
(x + 1)

4/3
to be a real-valued function with domain

(−∞,∞). Generally, Mathematica does return a real number when computing the

odd root of a negative number. For example, x3
= −1 has three solutions:
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Three plots of y = x1/3
(x − 2)

2/3
(x + 1)

4/3
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s1 = Solve[x∧3 + 1==0]
{{x → – 1}, {x → ( – 1)1/3}, {x → – ( – 1)2/3}}

N[s1]
{{x → – 1.}, {x → 0.5 + 0.866025i}, {x → 0.5 – 0.866025i}}

When computing an odd root of a negative number, Mathematica has many

choices (as illustrated above) and chooses a root with positive imaginary part—the

result is not a real number.

Solve is discussed in

more detail in the

next section.

N[number] returns an

approximation of

number.

( – 1)∧(1/3)//N
0.5 + 0.866025i

To obtain real values when computing odd roots of negative numbers, first

let sign(x) =

{
x / | x |, if x �= 0,

0, if x = 0
. Sign[x] returns sign(x). Then, for the reduced

fraction n / m with m odd, xn/m
=

{
sign(x) | x |n/m

, if n is odd

| x |n/m
, if n is even

. See Figure 2.11(b).

p2 = Plot[Sign[x]Abs[x]∧(1/3)Abs[x – 2]∧(2/3)Abs[x + 1]∧(4/3),
{x, – 3, 5}, PlotRange→ { – 4, 4}, AspectRatio→Automatic]

Alternatively, load the RealOnly package that is located in the Miscellaneous
folder or directory if you have an older version of Mathematica or that can be

downloaded from the Wolfram website if you only have version 6 or later.

After the RealOnly package has been loaded, reentering the Plot command

produces the expected graph. See Figure 2.11c.

<< Miscellaneous`RealOnly`
p3 = Plot[x∧(1/3)(x – 2)∧(2/3)(x + 1)∧(4/3), {x, – 3, 5},

PlotRange→ { – 4, 4}, AspectRatio→Automatic]
Show[GraphicsRow[{p1, p2, p3}]]
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(a) Contour plot of f(x, y), (b) 3D plot of f(x, y)

A comprehensive discussion of Mathematica’s extensive graphics capa-

bilities cannot be reasonably covered in a single text, so our approach is to

address issues that might be of interest or present a different point of view

to the novice. In the previous example, we saw that x3
+ 1 = 0 has three

solutions, two of which are complex. To visualize this graphically, observe

that the zeros of z3
+ 1 = 0 are the level curves of f(x, y) = |(x + iy)

3
+ 1| (x,

y real) corresponding to 0. In a plot of f(x, y), the solutions are the zeros.

Soon, we will discuss ContourPlot and Plot3D. For now, we remark that

cp1 = ContourPlot[Abs[(x + Iy)∧3 + 1], {x, – 2, 1}, {y, – 3/2, 3/2},
Contours→30, Axes→True]

p13d = Plot3D[Abs[(x + Iy)∧3 + 1], {x, – 2, 1}, {y, – 3/2, 3/2},
Axes→True, PlotRange→ {0, 15}, MeshFunctions – >{#3&}, Mesh→35]

Show[GraphicsRow[{cp1, p13d}]]

generates several level curves of f(x, y) (Figure 2.12(a)) and a three-

dimensional (3D) plot of f(x, y) (Figure 2.12(b)) that help us see the zeros of

the original equation. In the 3D plot, note how we use the MeshFunctions
option to generate contours.

2.3.2 Parametric and Polar Plots in Two Dimensions

To graph the parametric equations x = x(t), y = y(t), a ≤ t ≤ b, useParametricPlot has

the same options as

Plot. ParametricPlot[{x[t], y[t]}, {t, a, b}]
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and to graph the polar function r = r(�), � ≤ � ≤ �, use

PolarPlot[r[theta], {theta, alpha, beta}].

Example 2.3.8 (The Unit Circle). The unit circle is the set of points (x, y) exactly 1 unit from

the origin, (0, 0), and, in rectangular coordinates, has equation x2
+ y2

= 1. The

unit circle is the classic example of a relation that is neither a function of x nor a

function of y. The top half of the unit circle is given by y =
√

1 − x2 and the bottom

half is given by y = −√1 − x2.

p1 = Plot[{Sqrt[1 – x∧2], – Sqrt[1 – x∧2]}, {x, – 1, 1},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},

AspectRatio→Automatic];

Each point (x, y) on the unit circle is a function of the angle, t, that subtends

the x-axis, which leads to a parametric representation of the unit circle,{
x = cos t,

y = sin t,
0 ≤ t ≤ 2�, which we graph with ParametricPlot.

p2 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2Pi},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},

AspectRatio→Automatic];

Using the change of variables x = r cos t and y = r sin t to convert from rectangular

to polar coordinates, a polar equation for the unit circle is r = 1. We use PolarPlot

to graph r = 1.

p3 = PolarPlot[1, {t, 0, 2Pi},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},

AspectRatio→Automatic];
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FIGURE 2.13

The unit circle generated with Plot, ParametricPlot, and PolarPlot

We display p1, p2, and p3 side-by-side using Show together with GraphicsRow in

Figure 2.13. Of course, they all look the same.

Show[GraphicsRow[{p1, p2, p3}]]

Example 2.3.9 Graph the parametric equations{
x = t + sin 2t,

y = t + sin 3t,
− 2� ≤ t ≤ 2�.

Solution After defining x and y, we use ParametricPlot to graph the parametric equations

in Figure 2.14(a).

x[t–] = t + Sin[2t];
y[t–] = t + Sin[3t];
p1 = ParametricPlot[{x[t], y[t]}, {t, – 2Pi, 2Pi},

AspectRatio→Automatic]

In Figure 2.14(b), we illustrate how to use the PlotStyle option to increase the thick-

ness of the plot. Color is introduced using ColorFunction together with ColorData.

We choose to use the SolarColors gradient to produce our plot.

x[t–] = t + Sin[2t];
y[t–] = t + Sin[3t];
p2 = ParametricPlot[{x[t], y[t]}, {t, – 2Pi, 2Pi}, PlotStyle→Thickness[.02],

AspectRatio→Automatic, ColorFunction→ (ColorData
[“SolarColors”][#3]&)]

ParametricPlot can also be used to parametrically plot a region. In Figure 2.14(c),

we plot (r2x(t), r2y(t)) for −2� ≤ t ≤ 2� and 0 ≤ r ≤ 2.

x[t–] = t + Sin[2t];
y[t–] = t + Sin[3t];
p3 = ParametricPlot[r∧2{x[t], y[t]}, {t, – 2Pi, 2Pi}, {r, 0, 2},
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(a) (x(t), y(t)), −2� ≤ t ≤ 2�, (b) Adding some color and increasing the thickness,

(c) Adding a second parameter

AspectRatio→Automatic, ColorFunction→ (ColorData
[“SolarColors”][#3]&)]

Show[GraphicsRow[{p1, p2, p3}]]

In the following example, the equations involve integrals.

Remark 2.3 Topics from calculus are discussed in Chapter 3. For now, we state that

Integrate[f[x],{x,a,b}] attempts to evaluate
∫b

a f(x) dx.

Example 2.3.10 (Cornu Spiral). The Cornu spiral (or clothoid) (see [11] and [20]) has parametric

equations

x =

∫ t

0

sin

(
1

2
u2

)
du and y =

∫ t

0

cos

(
1

2
u2

)
du.

Graph the Cornu spiral.

Solution We begin by defining x and y. Notice that Mathematica can evaluate these integrals,

even though the results are in terms of the FresnelS and FresnelC functions, which

are defined in terms of integrals:

FresnelS[t] =

∫ t

0

sin

(�

2
u2
)

du and FresnelC[t] =

∫ t

0

cos

(�

2
u2
)

du.

x[t–] = Integrate[Sin[u∧2/2], {u, 0, t}]
√

�FresnelS
[

t√
�

]
y[t–] = Integrate[Cos[u∧2/2], {u, 0, t}]
√

�FresnelC
[

t√
�

]
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The Cornu spiral

We use ParametricPlot to graph the Cornu spiral in Figure 2.15. The option

AspectRatio->Automatic instructs Mathematica to generate the plot to scale;

PlotLabel->"Cornu spiral" labels the plot.

ParametricPlot[{x[t], y[t]}, {t, – 10, 10}, AspectRatio→Automatic,
PlotStyle→Thickness[.01], PlotLabel –>“Cornuspiral”,

Frame→True, FrameLabel→ {x, y},
ColorFunction→ (ColorData[“SouthwestColors”][#1]&)]

Observe that the graph of the polar equation r = f(�), � ≤ � ≤ � is the same

as the graph of the parametric equations

x = f(�) cos � and y = f(�) sin �, � ≤ � ≤ �

so both ParametricPlot and PolarPlot can be used to graph polar

equations.

Example 2.3.11 Graph (a) r = sin (8�/7), 0 ≤ � ≤ 14�; (b) r = � cos �, −19� / 2 ≤ � ≤ 19� / 2; (c)

(“The Butterfly”) r = ecos � − 2 cos 4� + sin
5

(�/12), 0 ≤ � ≤ 24�; and (d) (“The Lituus”)

r2
= 1/�, 0.1 ≤ � ≤ 10�.
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Solution For (a) and (b) we use ParametricPlot. First define r and then use ParametricPlot
to generate the graph of the polar curve. No graphics are displayed because we

place a semicolon at the end of each command.

Clear[r]

r[u–] = Sin[8u/7];

pp1 = ParametricPlot[{r[u]Cos[u], r[u]Sin[u]},

{u, 0, 14Pi}, AspectRatio→Automatic];

For (b), we use the option PlotRange->{{-30,30},{-30,30}} to indicate that the

range displayed on both vertical and horizontal axes corresponds to the inter-

val [−30, 30]. To help (a) ensure that the resulting graphic appears “smooth,” we

increase the number of points that Mathematica samples when generating the

graph by including the option PlotPoints->200.

Clear[r]

r[u–] = uCos[u];

pp2 = ParametricPlot[{r[u]Cos[u], r[u]Sin[u]},

{u, – 19p/2, 19p/2}, PlotRange→ {{ – 30, 30}, { – 30, 30}},

AspectRatio→Automatic, PlotPoints→200];

For (c) and (d), we use PolarPlot. Using standard mathematical notation, we know

that sin
5

(�/12) = (sin (�/12))
5
. However, when defining r with Mathematica, be sure

you use the form Sin(�/12)ˆ5, not Sinˆ5[�/12], which Mathematica will not interpret

in the way intended.

Clear[r]

r[u–] = Exp[Cos[u]] – 2Cos[4u] + Sin[u/12]∧5;

pp3 = PolarPlot[r[u], {u, 0, 24p}, PlotPoints→200,

PlotRange→ {{ – 4, 5}, { – 4.5, 4.5}},

AspectRatio→Automatic];

Clear[r]

pp4 = PolarPlot[{Sqrt[1/u], – Sqrt[1/u]}, {u, .1, 10p},

AspectRatio→Automatic, PlotRange→All];

Finally, we use Show together with GraphicsGrid to display all four graphs as a

graphics array in Figure 2.16. pp1 and pp2 are shown in the first row and pp3
and pp4 are shown in the second.

Show[GraphicsGrid[{{pp1, pp2}, {pp3, pp4}}]]
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Graphs of four polar equations

2.3.3 Three-Dimensional and Contour Plots: Graphing
Equations

An elementary function of two variables, z = f(x, y) = expression in x and y,

is typically defined using the form

f[x–, y–] = expression in x and y.

For delayed evaluation, use f[x ,y ]:=. . . rather than f[x ,y ]=. . . (immediate

evaluation). Once a function has been defined, a basic graph is generated

with Plot3D:

Plot3D[f[x, y], {x, a, b}, {y, c, d}]

graphs f(x, y) for a ≤ x ≤ b and c ≤ y ≤ d.

For details regarding Plot3D and its options, enter ?Plot3D or ??Plot3D or

access the Documentation Center to obtain information about the Plot3D
command, as we do here.

Graphs of several level curves of z = f(x, y) are generated with

ContourPlot[f[x, y], {x, a, b}, {y, c, d}].

A density plot of z = f(x, y) is generated with

DensityPlot[f[x, y], {x, a, b}, {y, c, d}].
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For details regarding ContourPlot (DensityPlot) and its options, enter

?ContourPlot (?DensityPlot) or ??ContourPlot (??DensityPlot) or access the

Documentation Center.
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Example 2.3.12 Let f(x, y) =
x2y

x4 + 4y2
. (a) Calculate f(1,−1). (b) Graph f(x, y) and several contour

plots of f(x, y) on a region containing (0, 0).

Solution After defining f(x, y), we evaluate f(1,−1) = −1/5.

Clear[f]
f[x–, y–] = x∧2y/(x∧4 + 4y∧2)

x2y

x4 + 4y2

f[1, 1]
– 1

5

Next, we use Plot3D to graph f(x, y) for −1/2 ≤ x ≤ 1/2 and −1/2 ≤ y ≤ 1/2 in

Figure 2.17. We illustrate the use of the Axes, Boxed, PlotPoints, MeshFunctions,

PlotStyle, and ColorFunction options.

p1 = Plot3D[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
Axes→Automatic, Boxed→False, PlotPoints→50]

Use MeshFunctions to modify the standard rectangular grid. In Figure 2.17(b), we

use the level curves of the function for the grid.
To adjust the viewing

angle of three-

dimensional graphics,

select the graphic and

drag to the desired

viewing angle.

p2 = Plot3D[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
Axes→Automatic, Boxed→False, MeshFunctions –>{#3&},

PlotPoints→50]

We use the GrayTones color gradient to shade the graph (Figure 2.17(c))

p3 = Plot3D[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
Axes→Automatic, Boxed→False, MeshFunctions –>{#3&},

PlotPoints→50, ColorFunction –>(ColorData[“GrayTones”][#3]&)]

Use Opacity to make a “clear” plot (Figure 2.17(d)). We use Show together with

GraphicsGrid to display all four plots together in Figure 2.17.

p4 = Plot3D[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
Axes→Automatic, Boxed→False, MeshFunctions –>{#3&},

PlotPoints→50, ColorFunction –>(ColorData[“GrayTones”][#3]&),
PlotStyle→Opacity[.3]]

Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]]

Four contour plots are generated with ContourPlot. The second through fourth

illustrate the use of the PlotPoints, Frame, ContourShading, Axes, AxesOrigin,

ColorFunction, and Contours options (see Figure 2.18).

cp1 = ContourPlot[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
PlotPoints→50]

cp2 = ContourPlot[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
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FIGURE 2.17

Three-dimensional plot of f(x, y): Upper left is the basic plot generated with Plot3D;
in upper right, we use contour lines to determine the mesh; in lower left, we use
the GrayTones color gradient to shade the plot; in lower right, we create a
transparent plot with Opacity

Axes→Automatic, PlotPoints→50,
ColorFunction –>ColorData[“GrayTones”]]

cp3 = ContourPlot[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
Axes→Automatic, PlotPoints→50, Contours→30,

ContourShading→False, Frame→False,
Axes→Automatic, AxesOrigin→ {0, 0}]

cp4 = ContourPlot[f[x, y], {x, – 1/2, 1/2}, {y, – 1/2, 1/2},
Axes→Automatic, PlotPoints→50, Contours→30,

Frame→False, ColorFunction→ “CandyColors”,
Axes→Automatic, AxesOrigin→ {0, 0}]

Show[GraphicsGrid[{{cp1, cp2}, {cp3, cp4}}]]

Figure 2.18 shows the graphics array generated with the previous commands. With

Mathematica 6, if you want to adjust your array, drag and move the objects within

the graphic.
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With Mathematica 6, you can adjust the viewing angle of a 3D graphic by

selecting the graphic and dragging it to the desired position.

Manually, use the ViewPoint option.
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Four contour plots of f(x, y): upper left, the basic plot generated by ContourPlot;
upper right, introduce a coloring function; lower left, eliminate the coloring function

and increase the number of contours; lower right, add color and increase the number

of contours

Figure 2.19 shows four different views of the graph of g(x, y) = x sin y +

y sin x for 0 ≤ x ≤ 5� and 0 ≤ y ≤ 5�. The options AxesLabel, BoxRatios,

ViewPoint, PlotPoints, Shading, and Mesh are also illustrated.

Clear[g]
g[x–, y–] = x Sin[y] + y Sin[x];
p1 = Plot3D[g[x, y], {x, 0, 5Pi}, {y, 0, 5Pi},

PlotPoints→60, AxesLabel→ {“x”, “y”, “z”}];
p2 = Plot3D[g[x, y], {x, 0, 5Pi}, {y, 0, 5Pi},

PlotPoints→60, ViewPoint –>{ – 2.846, – 1.813, 0.245},
Boxed→False, BoxRatios→ {1, 1, 1},
AxesLabel→ {“x”, “y”, “z”}];
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p3 = Plot3D[g[x, y], {x, 0, 5p}, {y, 0, 5p},
PlotPoints→60, ViewPoint→ {1.488, – 1.515, 2.634},

AxesLabel→ {“x”, “y”, “z”}, ColorFunction→ (White&)];
p4 = Plot3D[g[x, y], {x, 0, 5Pi}, {y, 0, 5Pi},

PlotPoints→60, AxesLabel→ {“x”, “y”, “z”},
Mesh→False, BoxRatios→ {2, 2, 3},
ViewPoint –>{ – 1.736, 1.773, – 2.301}];

Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]]

ContourPlot is especially useful when graphing equations. The graph of the

equation f(x, y) = C, where C is a constant, is the same as the contour plot

of z = f(x, y) corresponding to C. That is, the graph of f(x, y) = C is the

same as the level curve of z = f(x, y) corresponding to z = C.

Example 2.3.13 Graph the unit circle, x2
+ y2

= 1.

Solution We first graph z = x2
+ y2

for −4 ≤ x ≤ 4 and −4 ≤ y ≤ 4 with Plot3D in Figure

2.20(a).

p1 = Plot[{Sqrt[1 – x∧2], – Sqrt[1 – x∧2]}, {x, – 1, 1},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},

AspectRatio→Automatic];
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Four different plots of g(x, y) = x sin y + y sin x for 0 ≤ x ≤ 5�

The graph of x2
+ y2

= 1 is the graph of z = x2
+ y2

corresponding to z = 1 as well

as the graph of (cos t, sin t) for 0 ≤ t ≤ 2�. We use ParametricPlot to graph these

parametric equations in Figure 2.20.

p2 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2Pi},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},

AspectRatio→Automatic];

For the unit circle, it is probably easiest to convert to polar coordinates and use

PolarPlot.
When converting

from rectangular to

polar coordinates,

use x = r cos � and

y = r sin �.

p3 = PolarPlot[1, {t, 0, 2Pi},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},

AspectRatio→Automatic];
Show[GraphicsRow[{p1, p2, p3}]]
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Three different ways of generating plots of the unit circle—all plots are the same in

the end

Use ContourPlot to graph equations of the form f(x, y) = g(x, y) with

ContourPlot[f[x,y]==g[x,y],{x,a,b},{y,c,d}].

Example 2.3.14 Graph the equation y2 − 2x4
+ 2x6 − x8

= 0 for −1.5 ≤ x ≤ 1.5.

Solution We define lhseq to be the left-hand side of the equation y2 − 2x4
+ 2x6 − x8

= 0

and then use ContourPlot to graph eq for −1.5 ≤ x ≤ 1.5 in Figure 2.21.

Clear[x, y]
lhseq = y∧2 – x∧4 + 2x∧6 – x∧8;
cp1 = ContourPlot[lhseq==0, {x, – 2, 2}, {y, – 2, 2},

AspectRatio→Automatic]
cp2 = ContourPlot[lhseq==0, {x, – 2, 2}, {y, – 2, 2},

AspectRatio→Automatic, Frame→False,
Axes→Automatic, AxesLabel→ {x, y}]

Show[GraphicsRow[{cp1, cp2}]]

Equations can be plotted together, as with the commands Plot and Plot3D,

with

ContourPlot[{eq1, eq2, …, eqn}, {x, a, b}, {y, c, d}].

Example 2.3.15 Graph the equations x2
+ y2

= 1 and 4x2 − y2
= 1 for −1.5 ≤ x ≤ 1.5.

Solution We use ContourPlot to graph the equations together on the same axes in

Figure 2.22. The graph of x2
+ y2

= 1 is the unit circle, whereas the graph of

4x2 − y2
= 1 is a hyperbola.

cp1 = ContourPlot[{x∧2 + y∧2==1, 4x∧2 – y∧2==1},
{x, – 3/2, 3/2}, {y, – 3/2, 3/2}, Frame→False,

Axes→Automatic]
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Two plots of y2 − 2x4
+ 2x6 − x8
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Plots of x2
+ y2

= 1 and 4x2 − y2
= 1
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Example 2.3.16 (Conic Sections). A conic section is a graph of the equation

Also see Example

2.3.19.
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

Except when the conic is degenerate, the conic Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

is a (an)

1. Ellipse or circle if B2 − 4AC < 0;

2. Parabola if B2 − 4AC = 0; or

3. Hyperbola if B2 − 4AC > 0.

Graph the conic section ax2
+ bxy + cy2

= 1 for −4 ≤ x ≤ 4 and for a, b, and c

equal to all possible combinations of −1, 1, and 2.

Solution We begin by defining conic to be the equation ax2
+ bxy + cy2

= 1 and then use

Permutations to produce all possible orderings of the list of numbers {−1, 1, 2},
naming the resulting output vals.

Permutations[list]
returns a list of all

possible orderings of

the list list.

Clear[a, b, c, x, y, p]
conic = ax∧2 + bxy + cy∧2==1;

vals = Permutations[{ – 1, 1, 2}]
{{ – 1, 1, 2}, { – 1, 2, 1}, {1, – 1, 2},

{1, 2, – 1}, {2, – 1, 1}, {2, 1, – 1}}
Next we define the function p. Given a1, b1, and c1, p defines toplot to be the

equation obtained by replacing a, b, and c in conic by a1, b1, and c1, respectively.

Then, toplot is graphed for −4 ≤ x ≤ 4. p returns a graphics object.

Clear[p]
p[{a1–, b1–, c1–}] := Module[{toplot},

toplot = Evaluate[conic/ . {a→a1, b→b1, c→c1}];
ContourPlot[Evaluate[toplot],
{x, – 5, 5}, {y, – 5, 5}, Frame→False,

Axes→Automatic, Ticks→None]
]

We then use Map to compute p for each ordered triple in vals. The resulting

output, named graphs, is a set of six graphics objects.

graphs = Map[p, vals];

Partition is then used to partition graphs into three element subsets. The resulting

array of graphics objects named toshow is displayed with Show and GraphicsGrid
in Figure 2.23.

Show[GraphicsGrid[Partition[graphs, 3]]]
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FIGURE 2.23

Plots of six conic sections

2.3.4 Parametric Curves and Surfaces in Space

The command

ParametricPlot3D[{x[t], y[t], z[t]}, {t, a, b}]

generates the three-dimensional curve

⎧⎪⎨
⎪⎩

x = x(t),

y = y(t),

z = z(t),

a ≤ t ≤ b, and the

command

ParametricPlot3D[{x[u, v], y[u, v], z[u, v]}, {u, a, b}, {v, c, d}]

plots the surface

⎧⎪⎨
⎪⎩

x = x(u, v),

y = y(u, v),

z = z(u, v),

a ≤ u ≤ b, c ≤ v ≤ d.

Entering Information[ParametricPlot3D] or ??ParametricPlot3D returns a des-

cription of the ParametricPlot3D command along with a list of options and

their current settings.

Example 2.3.17 (Umbilic Torus NC). A parametrization of umbilic torus NC is given by r(s, t) =

x(s, t)i + y(s, t)j + z(s, t)k, −� ≤ s ≤ �, −� ≤ t ≤ �, where

x =

[
7 + cos

(
1

3
s − 2t

)
+ 2 cos

(
1

3
s + t

)]
sin s

y =

[
7 + cos

(
1

3
s − 2t

)
+ 2 cos

(
1

3
s + t

)]
cos s
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and

z = sin

(
1

3
s − 2t

)
+ 2 sin

(
1

3
s + t

)
.

Graph the torus.

Solution We define x, y, and z.

c = 3;
a = 1;
x[s–, t–] = (7 + Cos[s/3 – 2t] + 2Cos[s/3 + t])Sin[s];
y[s–, t–] = (7 + Cos[s/3 – 2t] + 2Cos[s/3 + t])Cos[s];
z[s–, t–] = Sin[s/3 – 2t] + 2Sin[s/3 + t];
r[s–, t–] = {x[s, t], y[s, t], z[s, t]};

The torus is then graphed with ParametricPlot3D, DensityPlot, and ContourPlot in

Figure 2.24. In the plots, we illustrate the Mesh, MeshFunctions, PlotPoints, and

PlotRange options. All four plots are shown together with Show and GraphicsGrid.

Notice that DensityPlot and ContourPlot yield very similar results: A basic density

plot is like a basic contour plot without the contour lines.

threedp1uta = ParametricPlot3D[r[s, t], {s, – Pi, Pi},
{t, – Pi, Pi}, PlotPoints –>{30, 30},

AspectRatio –>1, AxesLabel –>{“x”, “y”, “z”},
PlotRange –>{{ – 12, 12}, { – 12, 12}, { – 3, 3}},
BoxRatios –>{4, 4, 1}, Mesh→False, PlotStyle→Opacity[.9]]

threedp1utb = ParametricPlot3D[r[s, t], {s, – Pi, Pi},
{t, – Pi, Pi}, PlotPoints –>{50, 50},

AspectRatio –>1, AxesLabel –>{“x”, “y”, “z”},
PlotRange –>{{ – 12, 12}, { – 12, 12}, { – 3, 3}},
BoxRatios –>{4, 4, 1},
MeshFunctions –>{#3&}, Mesh→10]

threedp1utc = DensityPlot[r[s, t], {s, – Pi, Pi},
{t, – Pi, Pi}, PlotPoints –>{100, 100},

AspectRatio –>1,
MeshFunctions –>{#3&}, Mesh→10]

threedp1utd = ContourPlot[r[s, t], {s, – Pi, Pi},
{t, – Pi, Pi}, PlotPoints –>{100, 100},

AspectRatio –>1,
MeshFunctions –>{#3&}, Mesh→10]

Show[GraphicsGrid[{{threedp1uta, threedp1utb},
{threedp1utc, threedp1utd}}]]



84 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

�10
�5

0
5

10

x
�10

�5

0

5

10

y

�2
0
2

z

�10
�5

0
5

10

x
�10

�5

0

5

10

y

�2
0
2

z

�3 �2 �1 0 1 2 3 �3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

�3

�2

�1

0

1

2

3

FIGURE 2.24

On the top row, two plots of umbilic torus; on the bottom, comparing a density plot

(left) to a contour plot (right)

Example 2.3.18 (Gray’s Torus Example). A parametrization of an elliptical torus is given by

This example is

explored in detail in

Sections 8.2 and

11.4 of Gray’s

Modern Differential
Geometry of Curves
and Surfaces [11],

an indispensible

reference for

those who use

Mathematica’s

graphics extensively.

x = (a + b cos v) cos u, y = (a + b cos v) sin u, z = c sin v

For positive integers p and q, the curve with parametrization

x =
(
a + b cos qt

)
cos pt, y =

(
a + b cos qt

)
sin pt, z = c sin qt

winds around the elliptical torus and is called a torus knot.
Plot the torus if a = 8, b = 3, and c = 5 and then graph the torus knots for

p = 2 and q = 5, p = 1 and q = 10, and p = 2 and q = 3.
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Solution We begin by defining torus and torusknot.

torus[a–, b–, c–][p–, q–][u–, v–] :=
{(a + b Cos[u])Cos[v], (a + b Cos[u])Sin[v], c Sin[u]}

torusknot[a–, b–, c–][p–, q–][t–] :=
{(a + b Cos[qt])Cos[pt], (a + b Cos[qt])Sin[pt], cSin[qt]}

Next, we use ParametricPlot3D to generate all four graphs

pp1 = ParametricPlot3D[Evaluate[torus[8, 3, 5][2, 5][u, v]],
{u, 0, 2Pi}, {v, 0, 2Pi}, PlotPoints→60];

pp2 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 5][t]],
{t, 0, 3Pi}, PlotPoints→200];

pp3 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][1, 10][t]],
{t, 0, 3Pi}, PlotPoints→200];

pp4 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 3][t]],
{t, 0, 3Pi}, PlotPoints→200];

and show the result as a graphics array with Show and GraphicsGrid in Figure 2.25.

Show[GraphicsGrid[{{pp1, pp2}, {pp3, pp4}}]]
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FIGURE 2.25

(a) An elliptical torus. (b) This knot is also known as the trefoil knot. (c) The curve

generated by torusknot[8,3,5][2,3][1,10] is not a knot. (d) The torus knot with p = 2

and q = 3



86 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

If we take advantage of a few options, such as eliminating the mesh (Mesh->False)

and increasing the opacity (PlotStyle->Opacity[.4]), we can produce a graphic of

the knot on the torus. After using the PlotStyle option together with Opacity, we

produce a nearly transparent torus. Then, each knot is plotted. To ensure smooth

plots, we increase the number of points plotted with PlotPoints and also increase

the thickness of the curve with Thickness.

pp1 = ParametricPlot3D[Evaluate[torus[8, 3, 5][2, 5][u, v]],
{u, 0, 2Pi}, {v, 0, 2Pi}, PlotPoints→60,

Mesh→False, PlotStyle→Opacity[.4],
ColorFunction→ “AlpineColors”];

pp2 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 5][t]],
{t, 0, 3Pi}, PlotPoints→200, PlotStyle→ {{Thickness[.01]}}];

pp3 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][1, 10][t]],
{t, 0, 3Pi}, PlotPoints→200, PlotStyle→ {{Thickness[.01]}}];

pp4 = ParametricPlot3D[Evaluate[torusknot[8, 3, 5][2, 3][t]],
{t, 0, 3Pi}, PlotPoints→200, PlotStyle→ {{Thickness[.01]}}];

We use Show twice together with GraphicsRow to first display the torus with each

knot and then display all three graphics side-by-side in Figure 2.26.

Show[GraphicsRow[{Show[{pp1, pp2}], Show[{pp1, pp3}], Show[{pp1, pp4}]}]]

Example 2.3.19 (Quadric Surfaces). The quadric surfaces are the three-dimensional objects

corresponding to the conic sections in two dimensions. A quadric surface is

a graph of
Also see Example

2.3.16.

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,

where A–J are constants.

The intersection of a plane and a quadric surface is a conic section.

Several of the basic quadric surfaces, in standard form, and a parametrization

of the surface are listed in the following table.
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FIGURE 2.26

The knots in Figure 2.25 on the torus
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Name Parametric Equations

Ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

⎧⎪⎪⎨
⎪⎪⎩

x = a cos t cos r,

y = b cos t sin r,

z = c sin t,

−�/2 ≤ t ≤ �/2, −� ≤ r ≤ �

Hyperboloid of One Sheet

x2

a2
+

y2

b2
− z2

c2
= 1

⎧⎪⎪⎨
⎪⎪⎩

x = a sec t cos r,

y = b sec t sin r,

z = c tan t,

−�/2 < t < �/2, −� ≤ r ≤ �

Hyperboloid of Two Sheets

x2

a2
− y2

b2
− z2

c2
= 1

⎧⎪⎪⎨
⎪⎪⎩

x = a sec t,

y = b tan t cos r, −�/2 < t < �/2 or

z = c tan t sin r, �/2 < t < 3�/2, −� ≤ r ≤ �

Graph the ellipsoid with equation 1

16
x2

+ 1

4
y2

+ z2
= 1, the hyperboloid of one sheet

with equation 1

16
x2

+ 1

4
y2 − z2

= 1, and the hyperboloid of two sheets with equation

1

16
x2 − 1

4
y2 − z2

= 1.

Solution A parametrization of the ellipsoid with equation 1

16
x2

+ 1

4
y2

+ z2
= 1 is given by

x = 4 cos t cos r, y = 2 cos t sin r, z = sin t, −�/2 ≤ t ≤ �/2, −� ≤ r ≤ �,

which is graphed with ParametricPlot3D.

Clear[x, y, z]
x[t–, r–] = 4Cos[t]Cos[r];
y[t–, r–] = 2Cos[t]Sin[r];
z[t–, r–] = Sin[t];
pp1 = ParametricPlot3D[{x[t, r], y[t, r], z[t, r]}, {t, – Pi/2, Pi/2},

{r, – Pi, Pi}, PlotPoints→30];

A parametrization of the hyperboloid of one sheet with equation 1

16
x2

+ 1

4
y2 − z2

= 1

is given by

x = 4 sec t cos r, y = 2 sec t sin r, z = tan t, −�/2 < t < �/2, −� ≤ r ≤ �.

Because sec t and tan t are undefined if t = ±�/2, we use ParametricPlot3D to graph

these parametric equations on a subinterval of [−�/2, �/2], [−�/3, �/3].

Clear[x, y, z]
x[t–, r–] = 4Sec[t]Cos[r];
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y[t–, r–] = 2Sec[t]Sin[r];
z[t–, r–] = Tan[t];
pp2 = ParametricPlot3D[{x[t, r], y[t, r], z[t, r]}, {t, – Pi/3, Pi/3},

{r, – Pi, Pi}, PlotPoints→30];

pp1 and pp2 are shown together in Figure 2.27 using Show and GraphicsRow.

Show[GraphicsRow[{pp1,pp2}]]

For (c), we take advantage of the ContourPlot3D function:

ContourPlot3D[f[x, y, z], {x, a, b}, {y, c, d}, {z, u, v}]

graphs several level surfaces of w = f(x, y, z).

We use ContourPlot3D to graph the equation 1

16
x2 − 1

4
y2 − z2 − 1 = 0 in Figure

2.28(a), illustrating the use of the PlotPoints, Axes, AxesLabel, and BoxRatios
options. In Figure 2.28(b), several level surfaces are drawn that illustrate the use

of the Opacity function with the ContourStyle and Mesh options.

cp3d1 = ContourPlot3D[x∧2/16 – y∧2/4 – z∧2 – 1==0,
{x, – 10, 10}, {y, – 8, 8}, {z, – 2, 2},

PlotPoints→ {8, 8, 8}, Axes→Automatic,
AxesLabel→ {“x”, “y”, “z”}, BoxRatios→ {2, 1, 1}]
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(a) Plot of 1
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(a) Plot of 1

16
x2 − 1

4
y2 − z2

= 1 generated with ContourPlot3D. (b) Several level
surfaces of f(x, y, z) = 1
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cp3d2 = ContourPlot3D[x∧2/16 – y∧2/4 – z∧2 – 1,
{x, – 10, 10}, {y, – 8, 8},

{z, – 2, 2}, PlotPoints→ {8, 8, 8}, Axes→Automatic,
AxesLabel→ {“x”, “y”, “z”},
BoxRatios→ {2, 1, 1}, Mesh→False,

ContourStyle→Opacity[.5]]
Show[GraphicsRow[{cp3d1, cp3d2}]]

ContourPlot3D is especially useful in plotting equations involving three vari-

ables x, y, and z for which it is difficult to solve for one variable as a

function of the other two.

Example 2.3.20 (Cross-Cap). The Cross-Cap has equation

4x2
(
x2 + y2 + z2 + z

)
+ y2

(
y2 + z2 − 1

)
= 0.

We ContourPlot3D to generate the plot of the cross-cap shown in Figure 2.29.

ContourPlot3D[4x∧2(x∧2 + y∧2 + z∧2 + z) +
y∧2(y∧2 + z∧2 – 1)==0, {x, – 1, 1}, {y, – 1, 1},

{z, – 1, 1}, Mesh→False, Boxed→False,
Axes→None, ColorFunction→ (ColorData[“BrightBands”][#3]&),

ContourStyle→Opacity[.8]]

FIGURE 2.29

The Cross-Cap
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Example 2.3.21 A homotopy from the Roman surface to the Boy surface is given by

If f and g are

functions from X to

Y, a homotopy from

f to g is a continuous

function H from

X × [0, 1] to Y
satisfying H(x, 0) =

f(x) and H(x, 1) = g(x).

x(u, v) =

√
2 cos(2u) cos

2 v + cos u sin(2v)

2 − �
√

2 sin(3u) sin(2v)
,

y(u, v) =

√
2 sin(2u) cos

2 v + sin u sin(2v)

2 − �
√

2 sin(3u) sin(2v)
, and

z(u, v) =
3 cos

2 v

2 − �
√

2 sin(3u) sin(2v)
.

Here, � = 0 gives the Roman surface and � = 1 gives the Boy surface.Tables and lists are

discussed in more

detail in Chapters 4

and 5.

To see the homotopy we first define x, y, and z.

x[�–][u–, v–] = (Sqrt[2]Cos[2u]Cos[v]∧2 + Cos[u]Sin[2v])/
(2 – � Sqrt[2]Sin[3u]Sin[2v]);

y[�–][u–, v–] = (Sqrt[2]Sin[2u]Cos[v]∧2 + Sin[u]Sin[2v])/
(2 – � Sqrt[2]Sin[3u]Sin[2v]);

z[�–][u–, v–] = 3Cos[v]∧2/
(2 – � Sqrt[2]Sin[3u]Sin[2v]);

We then use Table together with ParametricPlot3D to parametrically plot x, y, and

z, 0 ≤ u ≤ 2�, 0 ≤ v ≤ 2� for nine equally spaced values of � between 0 and 1.

Note that if the semicolon is omitted at the end of the command, the nine plots

are displayed.

smalltable = Table[ParametricPlot3D[
{x[�][u, v], y[�][u, v], z[�][u, v]},

{u, 0, 2Pi}, {v, 0, 2Pi}, Boxed→False, Axes→None,
PlotRange→ {{ – 2, 5/2}, { – 2, 2}, {0, 7/2}}],

{�, 0, 1, 1/8}];

We then use Partition to partition smalltable into three element subsets. The

resulting 3 × 3 array of graphics is shown as a grid with Show together with

GraphicsGrid in Figure 2.30.
To adjust the viewing

angles of three-

dimensional plots,

select the graphic and

drag to the desired

viewing angle.

Show[GraphicsGrid[Partition[smalltable, 3]]]

Another way of seeing the transformation is to use Manipulate. Manipulate is very

powerful.
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FIGURE 2.30

Seeing the Roman surface continuously transform to the Boy surface

In its most basic form, Manipulate[f[x],{x,a,b}] creates an interactive display of f(x)

for x values from a to b. Because the previous commands depended only on �,

we combine the commands into a single Manipulate object that depends on �.

Manipulate[
Clear[x, y, z];
x[�–][u–, v–] = (Sqrt[2]Cos[2u]Cos[v]∧2 + Cos[u]Sin[2v]) /

(2 – �Sqrt[2]Sin[3u]Sin[2v]);
y[�–][u–, v–] = (Sqrt[2]Sin[2u]Cos[v]∧2 + Sin[u]Sin[2v]) /

(2 – �Sqrt[2]Sin[3u]Sin[2v]);
z[�–][u–, v–] = 3Cos[v]∧2 /

(2 – �Sqrt[2]Sin[3u]Sin[2v]);
ParametricPlot3D[

{x[�][u, v], y[�][u, v], z[�][u, v]},
{u, 0, 2Pi}, {v, 0, 2Pi}, PlotPoints→50,

Boxed→False, Axes→None,
PlotRange→ {{ – 2.5, 2.5}, { – 2.5, 2.5}, {0, 3.5}}],

{�, 0, 1}]

Several images from the result are shown in Figure 2.31.

Manipulation of graphics is discussed in more detail in Chapter 5. Here, we

simply illustrate a few quick ways to manipulate a basic jpeg that illustrates

a few of the features of Mathematica 6.
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FIGURE 2.31

With Manipulate we can create an animation of the transformation of the Roman

surface to the Boy surface or inspect the plot for various values of �

Example 2.3.22 We use Import to import a few graphics into Mathematica. The four graphs are

displayed in a row using Show and GraphicsRow in Figure 2.32.

p1 = Import[“house1.jpg”];
p2 = Import[“house2.jpg”];
p3 = Import[“county1.jpg”];
p4 = Import[“county2.jpg”];
Show[GraphicsRow[{p1, p2, p3, p4}]]

The underlying structure of a jpeg is contained in the first element of the first part

of the graphic. Part and manipulation of matrices is discussed in more detail in
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FIGURE 2.32

Importing elementary graphics into Mathematica

FIGURE 2.33

Visualizing data with ArrayPlot may not produce results identical to the original

without additional adjustments

Chapter 5. Regardless, you should be able to import your jpeg into Mathematica

and adjust the following code to achieve your desired results.

With just the basic data, ArrayPlot does not reproduce the imported graphics as

we see in Figure 2.33.

Show[GraphicsRow[
Map[ArrayPlot[Reverse[#[[1, 1]]]]&, {p1, p2, p3, p4}]]]

However, with some manipulation, you can reveal interesting detail. First, we use

ReliefPlot to help us see the terrain of the image.

q1 = Flatten[p1[[1, 1]], 1];
q1b = Table[q1[[i, 1]], {i, 1, Length[q1]}];
q1c = Partition[q1b, Length[p1[[1, 1, 1]]]];

r1 = ReliefPlot[q1c, ColorFunction→ “GreenBrownTerrain”]

A different view is obtained by choosing a different ColorFunction.

q2 = Flatten[p2[[1, 1]], 1];
q2b = Table[q2[[i, 2]], {i, 1, Length[q2]}];
q2c = Partition[q2b, Length[p2[[1, 1, 1]]]];

r2 = ReliefPlot[q2c, ColorFunction→ “GrayTones”]

ReliefPlot and ArrayPlot return similar graphics. Here are two images of Southeast

Georgia generated with ArrayPlot.
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q3 = Flatten[p3[[1, 1]], 1];
q3b = Table[q3[[i, 1]], {i, 1, Length[q3]}];
q3c = Partition[q3b, Length[p3[[1, 1, 1]]]];

r3 = ArrayPlot[Reverse[q3c], ColorFunction→ “FallColors”]

q4 = Flatten[p4[[1, 1]], 1];
q4b = Table[q4[[i, 1]], {i, 1, Length[q4]}];
q4c = Partition[q4b, Length[p4[[1, 1, 1]]]];

r4 = ArrayPlot[Reverse[q4c], ColorFunction→ “StarryNightColors”]

All four images are displayed together using Show with GraphicsGrid in Figure 2.34.

Show[GraphicsGrid[{{r1, r2}, {r3, r4}}]]

2.3.5 Miscellaneous Comments
Be sure to take

advantage of

MathWorld for a

huge number of

resources related to

graphics and

Mathematica.

Clearly, Mathematica’s graphics capabilities are extensive and volumes
could be written about them. You can see many commands that we have

FIGURE 2.34

Using ReliefPlot and ArrayPlot to adjust elementary graphics
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not discussed here by using ? to see those commands that contain the

string Plot.

You can obtain detailed information regarding any of these commands from

the Documentation Center by clicking on the command’s name.

For now, we briefly mention a few of the ones not discussed previously.

To plot lists of numbers or lists of ordered pairs, use ListPlot, which is

discussed in Chapter 4. For matrices and other arrays, use MatrixPlot or

ArrayPlot.

Example 2.3.23 (Cellular Automaton). Very loosely speaking, a cellular automaton is a dis-

crete function that assigns values to subsequent rows based on the values of

the cells in the previous row(s). For a concise discussion of cellular automa-

ton, refer to Weisstein,1 CellularAutomatan is a powerful command that allows

you to investigate (quite complicated) cellular automaton. In its simplest form,

CellularAutomaton[rule, initialvalues, n] returns the first n generations of the

cellular automaton following the specified rule and having the indicated initial values.

The simplest cellular automaton are called elementary cellular automaton.2

Based on basic counting principals, there are 256 elementary cellular automatons.

They are cataloged by number. With

1
Weisstein, Eric W., “Cellular Automaton.” From MathWorld—A Wolfram Web Resource,

http://mathworld.wolfram.com/CellularAutomaton.html.
2

Weisstein, Eric W., “Elementary Cellular Automaton.” From MathWorld—A Wolfram Web
Resource, http://mathworld.wolfram.com/ElementaryCellularAutomaton.html.
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CellularAutomaton[146, {{1}, 0}, 5]
{{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1}}
we calculate the first five generations of the elementary cellular automaton with a 1

at position 0 on generation 0 using Rule 146. To calculate the first 100 generations,

we use CellularAutomaton[146, 1,0, 100]+. The resulting array is rather large, so

we use ArrayPlot to visualize it in Figure 2.35(a). Using our color scheme, the cells

with value 1 are shaded red and those with 0 are light green.

a1 = ArrayPlot[CellularAutomaton[146, {{1}, 0}, 100],
ColorFunction→ “NeonColors”, AspectRatio→1]

In this case, the grid is initially spaced so that positions 1, 11, 21, 31, and 41

have the value 1. The first three generations using Rule 146 are calculated.

CellularAutomaton[146,
{SparseArray[{1→1, 11→1, 21→1, 31→1, 41→1}], 0}, 3]

{{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

{0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,

0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0},

{0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0},

{1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1}}
How the situation evolves over 100 generations is more easily seen using ArrayPlot.
See Figure 2.35(b).

a2 = ArrayPlot[CellularAutomaton[146,
{SparseArray[{1→1, 11→1, 21→1, 31→1, 41→1}], 0}, 100],

ColorFunction→ “NeonColors”, AspectRatio→1]
Show[GraphicsRow[{a1, a2}]]

Of the 256 elementary cellular automaton, many are equivalent. To see that

some of them are equivalant, we create a plot of the 256 elementary cellular

automaton for 50 generations as done with Rule 146. All 256 plots are shown

on the left in Figure 2.36(a). With Union, we remove and sort the ones that are

identically equal. Those are shown on the right in Figure 2.36(b).

t1 = Table[ArrayPlot[CellularAutomaton[i, {{1}, 0}, 50]],
{i, 0, 255}];

t2 = Partition[t1, 16];
p1 = Show[GraphicsGrid[t2]];
t3 = Union[t1];
t4 = Partition[t3, 12];
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a b

FIGURE 2.35

The evolution of two cellular automaton evolving according to Rule 146

a b

FIGURE 2.36

(a) The first 50 generations for the 256 elementary cellular automaton. (b) Removal of

the identical ones

p2 = Show[GraphicsGrid[t4]];
Show[GraphicsRow[{p1, p2}]]

To see the plots together with the rule number, use Table. Each order pair

returned consists of the rule number and the 50 generation plot. To display the

ordered pairs in an organized fashion, we use Grid. Of course, the result is quite

large, so just a portion of the actual grid is displayed in Figure 2.37.

t5 = Table[{i, ArrayPlot[CellularAutomaton[i, {{1}, 0}, 50]]},
{i, 0, 255}];
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FIGURE 2.37

Seeing the automaton together with its rule number

t6 = Partition[t5, 16];
Grid[t6]

Note that MatrixPlot and ArrayPlot are discussed in more detail in Chapter 5.

For graphs of the form points or nodes connected by edges (graph the-

ory), you can use GraphPlot to help investigate some problems. For trees,

use TreePlot.
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Example 2.3.24 Graceful graphs do not have multiple edges or loops.

We generate O with GraphPlot and display the result in Figure 2.38(a).

gp1 = GraphPlot[{{0 –>12, “12”}, {12 –>1, “11”}, {1 –>0, “1”}, {0 –>9, “9”},
{1 –>9, “8”}, {1 –>6, “5”}, {12 –>6, “6”}, {2→12, “10”},

{0 –>2, “2”}, 6 –>9, 9→10, 10→6},
VertexLabeling→True, AspectRatio→1]

C4 is shown in Figure 2.38(b).

gp2 = GraphPlot[{0→4, 4→2, 2→3, 3→0}, DirectedEdges→True,
VertexLabeling→True, AspectRatio→1]
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FIGURE 2.38

(a) O. (b) C4
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FIGURE 2.39

Using TreePlot instead of GraphPlot
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Replacing GraphPlot with TreePlot gives us Figure 2.39.

tp1 = TreePlot[{{0 –>12, “12”}, {12 –>1, “11”}, {1 –>0, “1”}, {0 –>9, “9”},
{1 –>9, “8”}, {1 –>6, “5”}, {12 –>6, “6”}, {2→12, “10”},

{0 –>2, “2”}, 6 –>9, 9→10, 10→6},
VertexLabeling→True, AspectRatio→1]

tp2 = TreePlot[{0→4, 4→2, 2→3, 3→0}, DirectedEdges→True,
VertexLabeling→True, AspectRatio→1]

2.4 SOLVING EQUATIONS

2.4.1 Exact Solutions of Equations

Mathematica can find exact solutions to many equations and systems of

equations, including exact solutions to polynomial equations of degree four

or less. Because a single equals sign “=” is used to name objects and assign

values in Mathematica, equations in Mathematica are of the form

left – hand side==right – hand side.

The “double-equals” sign “==” between the left-hand side and right-hand

side specifies that the object is an equation. For example, to represent

the equation 3x + 7 = 4 in Mathematica, type 3x+7==4. The command

Solve[lhs==rhs,x] solves the equation lhs = rhs for x. If the only unknown in

the equation lhs = rhs is x and Mathematica does not need to use inverse

functions to solve for x, the command Solve[lhs==rhs] solves the equation

lhs = rhs for x. Hence, to solve the equation 3x + 7 = 4, both the commands

Solve[3x+7==4] and Solve[3x+7==4, x] return the same result.



2.4 Solving Equations 101

Example 2.4.1 Solve the equations 3x + 7 = 4, (x2 − 1)/(x − 1) = 0 and x3
+ x2

+ x + 1 = 0.

Solution In each case, we use Solve to solve the indicated equation. Be sure to include the

double equals sign “==” between the left- and right-hand sides of each equation.

Thus, the result of entering

Solve[3x + 7==4]
{{x → – 1}}

means that the solution of 3x + 7 = 4 is x = 1, and the result of entering

Solve
[

x2 – 1
x – 1 ==0

]
{{x → – 1}}

means that the solution of
x2 − 1

x − 1
= 0 is x = −1. On the other hand, the equation

x3
+ x2

+ x + 1 = 0 has two imaginary roots. We see that entering

Solve
[
x3 + x2 + x + 1==0

]
{{x → – 1}, {x → – i}, {x → i}}

yields all three solutions. Thus, the solutions of x3
+ x2

+ x + 1 = 0 are x = −1 and

x = ±i. Remember that the Mathematica symbol I represents the complex number

i =
√−1. In general, Mathematica can find the exact solutions of any polynomial

equation of degree four or less.

Observe that the results of a Solve command are a list.Lists and tables are

discussed in more

detail in Chapters 4

and 5.

Mathematica can also solve equations involving more than one variable

for one variable (literal equations) in terms of other unknowns.

Example 2.4.2 (a) Solve the equation v = �r2
/h for h. (b) Solve the equation a2

+ b2
= c2

for a.

Solution These equations involve more than one unknown, so we must specify the variable

for which we are solving in the Solve commands. Thus, entering

Solve[v==Pi r∧2/h, h]
{{h → �r2

v
}}

solves the equation v = �r2
/h for h. (Be sure to include a space or * between �

and r.) Similarly, entering

Solve[a∧2 + b∧2==c∧2, a]{{
a → –

√
– b2 + c2

}
,
{

a →
√

– b2 + c2

}}
solves the equation a2

+ b2
= c2

for a.
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If Mathematica needs to use inverse functions to solve an equation, you must

be sure to specify the variable(s) for which you want Mathematica to solve.

Example 2.4.3 Find a solution of sin
2 x − 2 sin x − 3 = 0.

Solution When the command Solve[Sin[x]^2-2Sin[x]-3==0] is entered, Mathematica solves

the equation for Sin[x]. However, when the command

Solve[Sin[x]∧ 2 – 2Sin[x] – 3==0, x]

is entered, Mathematica attempts to solve the equation for x. In this case,

Mathematica succeeds in finding one solution.

Solve
[
Sin[x]2 – 2Sin[x] – 3==0

]
{{Sin[x] → – 1}, {Sin[x] → 3}}

In fact, this equation has infinitely many solutions of the form x = 1

2
(4k − 1)�,

k = 0,±1,±2, . . . ; sin x = 3 has no solutions.

The example indicates that it is especially important to be careful when

dealing with equations involving trigonometric functions.

Example 2.4.4 Let f(�) = sin 2� + 2 cos �, 0 ≤ � ≤ 2�. (a) Solve f ′(�) = 0. (b) Graph f(�) and f ′(�).

Solution After defining f(�), we use D to compute f ′(�) and then use Solve to solve f ′(�) = 0.

D[f[x],x] computes

f ′(x); D[f[x],{x,n}]
computes f (n)

(x).

Topics from calculus

are discussed in more

detail in Chapter 3.

f[u–] = Sin[2u] + 2Cos[u];
df = f′[u]
2Cos[2�] – 2Sin[�]

Notice that −�/2 is not between 0 and 2�. Moreover, �/6 and 5�/6 are not the

only solutions of f ′(�) = 0 between 0 and 2�. Proceeding by hand, we use the

identity cos 2� = 1 − 2 sin
2

� and factor
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2 cos 2� − 2 sin � = 0

1 − 2 sin2 � − sin � = 0

2 sin2 � + sin � − 1 = 0

(2 sin � − 1)(sin � + 1) = 0

so sin � = 1/2 or sin � = −1. Because we are assuming that 0 ≤ � ≤ 2�, we

obtain the solutions � = �/6, 5�/6, or 3�/2. We perform the same steps with

Mathematica.

s1 = TrigExpand[df]

expression /. x->y
replaces all

occurrences of x in

expression by y.

2Cos[�]2 – 2Sin[�] – 2Sin[�]2

s2 = s1/.Cos[u]∧2→1 – Sin[u]∧2
– 2Sin[�] – 2Sin[�]2 + 2

(
1 – Sin[�]2

)
Factor[s2]
– 2(1 + Sin[�])( – 1 + 2Sin[�])

Finally, we graph f (�) and f ′(�) with Plot in Figure 2.40. Note that the plot is drawn

to scale because we include the option AspectRatio->Automatic.

p1 = Plot[{f[u], df}, {u, 0, 2p}, AspectRatio→Automatic]

1 2 3 4 5 6
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23
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21

1

2

FIGURE 2.40

Graphs of f (�) and f ′(�)
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We can also use Solve to find the solutions, if any, of various types of

systems of equations. Entering

Solve[{lhs1==rhs1, lhs2==rhs2}, {x, y}]

solves a system of two equations for x and y, whereas entering

Solve[{lhs1==rhs1, lhs2==rhs2}]

attempts to solve the system of equations for all unknowns. In general,

Solve can find the solutions to a system of linear equations. In fact, if the

systems to be solved are inconsistent or dependent, Mathematica’s output

indicates so.

Example 2.4.5 Solve each system:

(a)

{
3x − y = 4

x + y = 2
; (b)

⎧⎪⎨
⎪⎩

2x − 3y + 4z = 2

3x − 2y + z = 0

x + y − z = 1

; (c)

⎧⎪⎨
⎪⎩

2x − 2y − 2z = −2

−x + y + 3z = 0

−3x + 3y − 2z = 1

; and

(d)

⎧⎪⎨
⎪⎩
−2x + 2y − 2z = −2

3x − 2y + 2z = 2

x + 3y − 3z = −3

.

Solution In each case, we use Solve to solve the given system. For (a), the result of

entering

Solve[{3x – y==4, x + y==2}, {x, y}]{{
x → 3

2
, y → 1

2

}}
means that the solution of

{
3x − y = 4

x + y = 2
is (x, y) = (3/2, 1/2), which is the

point of intersection of the lines with equations 3x − y = 4 and x + y = 2. See

Figure 2.41(a).

cp1 = ContourPlot[{3x – y==4, x + y==2},
{x, – 1, 2}, {y, – 1, 2}, Frame→False,

Axes→Automatic, AxesOrigin→ {0, 0},
AxesLabel→ {x, y}] .1 in

(b) We can verify that the results returned by Mathematica are correct. First, we

name the system of equations sys and then use Solve to solve the system of

equations naming the result sols.

sys = {2x – 3y + 4z==2, 3x – 2y + z==0,
x + y – z==1};

sols = Solve[sys, {x, y, z}]{{
x → 7

10
, y → 9

5
, z → 3

2

}}
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FIGURE 2.41

(a) Two intersecting lines. (b) Three planes that intersect in a single point. (c) These

three planes have no point in common. (d) The intersection of these three planes

is a line

We verify the result by substituting the values obtained with Solve back into sys
with ReplaceAll (/.).

sys/.sols

{{True, True, True}}

means that the solution of

⎧⎪⎪⎨
⎪⎪⎩

2x − 3y + 4z = 2

3x − 2y + z = 0

x + y − z = 1

is (x, y, z) = (7/10, 9/5, 3/2), which

is the point of intersection of the planes with equations 2x − 3y + 4z = 2, 3x − 2y +

z = 0, x + y − z = 1. See Figure 2.41(b).

cp2a = ContourPlot3D[{2x – 3y + 4z==2, 3x – 2y + z==0,

x + y – z==1}, {x, – 3, 3},

{y, – 3, 3}, {z, – 3, 3}]
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To better see the intersection point, click within the graphic and then drag to an

appropriate viewing angle.

(c) When we use Solve to solve this system, Mathematica returns {}, which

indicates that the system has no solution; the system is inconsistent.

Solve[{2x – 2y – 2z== – 2, – x + y + 3z==0,

– 3x + 3y – 2z==1}]

{}

To see that the planes with equations 2x − 2y − 2z = −2, −x + y + 3z = 0 and

−3x + 3y − 2z = 1 have no points in common, graph them within Figure 2.41(c).

cp3a = ContourPlot3D[{2x – 2y – 2z== – 2,

– x + y + 3z==0, – 3x + 3y – 2z==1}, {x, – 2, 2},

{y, – 2, 2}, {z, – 2, 2}]

To better see that the planes do not intersect, we click and drag the graphic to

an appropriate viewing angle.
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(d) On the other hand, when we use Solve to solve this system, Mathematica's

result indicates that the system has infinitely many solutions. That is, all ordered

triples of the form {(0, z − 1, z)|z real} are solutions of the system.

We see that the intersection of the three planes is a line with ContourPlot3D. See

Figure 2.41(d).

cp3a = ContourPlot3D[{2x – 2y – 2z== – 2,
3x – 2y + 2z==2, x + 3y – 3z== – 3}, {x, – 2, 2},

{y, – 2, 2}, {z, – 2, 2}]
Show[GraphicsGrid[{{cp1, cp2a}, {cp3a, cp4a}}]]

We can often use Solve to find solutions of a nonlinear system of equations

as well.
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Example 2.4.6 Solve the systems

(a)

{
4x2

+ y2
= 4

x2
+ 4y2

= 4
and (b)

{
1

a2 x2
+ 1

b2 y2
= 1

y = mx
(a, b greater than zero) for x and y.

Solution The graphs of the equations are both ellipses. We use ContourPlot to graph

each equation, naming the results cp1 and cp2, respectively, and then use Show
to display both graphs together in Figure 2.42(a). The solutions of the system

correspond to the intersection points of the two graphs. Alternatively, the solutions

of the system correspond to the intersection points of the level curves of f (x, y) =

4x2
+ y2 − 4 and g(x, y) = x2

+ 4y2 − 4 corresponding to 0. See Figure 2.42(b).

cp1 = ContourPlot
[
4x2 + y2 – 4, {x, – 3, 3}, {y, – 3, 3}, Contours→ {0},

ContourShading→False, PlotPoints→60 ] ;
cp2 = ContourPlot

[
x2 + 4y2 – 4, {x, – 3, 3}, {y, – 3, 3}, Contours→ {0},

ContourShading→False, PlotPoints→60 ] ;
cp3 = Show[cp1, cp2, Frame→False, Axes→Automatic, AxesOrigin→ {0, 0}]
cp4 = Plot3D

[
{4x2 + y2 – 4, x2 + 4y2 – 4}, {x, – 10, 10},

{y, – 10, 10}, BoxRatios→ {1, 1, 1}, MeshFunctions –>{#3&},
ColorFunction→ (ColorData[“Rainbow”][#3]&),

PlotStyle→ {Opacity[.4], Opacity[.8]} ]
Show[GraphicsRow[{cp3, cp4}]]

Finally, we use Solve to find the solutions of the system.

Solve
[
{4x2 + y2==4, x2 + 4y2==4}

]{{
x→ – 2√

5
, y→ – 2√

5

}
,
{

x→ – 2√
5
, y→ 2√

5

}
,{

x→ 2√
5
, y→ – 2√

5

}
,
{

x→ 2√
5
, y→ 2√

5

}}

a b

FIGURE 2.42

(a) Graphs of 4x2
+ y2

= 4 and x2
+ 4y2

= 4. (b) Three-dimensional plots of f(x, y) and

g(x, y) together with their level curves shown as contours
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For (b), we also use Solve to find the solutions of the system. However, because

the unknowns in the equations are a, b, m, x, and y, we must specify that we

want to solve for x and y in the Solve command.

Solve
[
{ x2

a2 + y2

b2 ==1, y==mx}, {x, y}
]

{{
y→ – abm√

b2+a2m2
, x→ – ab√

b2+a2m2

}
,{

y→ abm√
b2+a2m2

, x→ ab√
b2+a2m2

}}

Although Mathematica can find the exact solution to every polynomial equa-

tion of degree four or less, exact solutions to some equations may not be

meaningful. In those cases, Mathematica can provide approximations of

the exact solutions using either the N[expression] or the expression // N
commands.

Example 2.4.7 Approximate the solutions to the equations (a) x4 − 2x2
= 1 − x; and (b) 1 − x2

= x3
.

Solution Each of these is a polynomial equation with degree less than five so Solve will

find the exact solutions of each equation. However, the solutions are quite com-

plicated, so we use N to obtain approximate solutions of each equation. For (a),

entering

N
[
Solve

[
x4 – 2x2==1 – x

]]
{{x→0.182777 – 0.633397i}, {x→0.182777 + 0.633397i},

{x→ – 1.71064}, {x→1.34509}}
{{x→0.182777 – 0.633397i},

{x→0.182777 + 0.633397i}, {x→ – 1.71064}, {x→1.34509}}

first finds the exact solutions of the equation x4 − 2x2
= 1 − x and then computes

approximations of those solutions. The resulting output is the list of approximate

solutions. For (b), entering

Solve
[
1 – x2==x3, x

]
//N

{{x→0.754878}, {x→ – 0.877439 + 0.744862i},

{x→ – 0.877439 – 0.744862i}}
{{x→0.754878}, {x→ – 0.877439 + 0.744862i},

{x→ – 0.877439 – 0.744862i}}

first finds the exact solutions of the equation 1 − x2
= x3

and then computes

approximations of those solutions. The resulting output is the list of approximate

solutions.
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2.4.2 Approximate Solutions of Equations

When solving an equation is either impractical or impossible, Mathemat-

ica provides several functions, including FindRoot, NRoots, and NSolve,

to approximate solutions of equations. NRoots and NSolve numeri-

cally approximate the roots of any polynomial equation. The command

NRoots[poly1{==}poly2, x] approximates the solutions of the polynomial

equation poly1{==}poly2, where both poly1 and poly2 are polynomials in

x. The syntax for NSolve is the same as the syntax of NRoots.

FindRoot attempts to approximate a root to an equation provided that a

“reasonable” guess of the root is given. FindRoot works on functions other

than polynomials. The command

FindRoot[lhs==rhs, {x, firstguess}]

searches for a numerical solution to the equation lhs==rhs, starting with

x =firstguess. To locate more than one root, FindRoot must be used sev-

eral times. One way of obtaining firstguess (for real-valued solutions) is to

graph both lhs and rhs with Plot, find the point(s) of intersection, and esti-

mate the x-coordinates of the point(s) of intersection. Generally, NRoots
is easier to use than FindRoot when trying to approximate the roots of a

polynomial.

Example 2.4.8 Approximate the solutions of x5
+ x4 − 4x3

+ 2x2 − 3x − 7 = 0.

Solution Because x5
+ x4 − 4x3

+ 2x2 − 3x − 7 = 0 is a polynomial equation, we may use

NRoots to approximate the solutions of the equation. Thus, entering

NRoots
[
x5 + x4 – 4x3 + 2x2 – 3x – 7==0, x

]
x== – 2.74463‖x== – 0.880858‖x==0.41452 – 1.19996i‖x==0.41452+

1.19996i‖x==1.79645

x== – 2.74463‖x== – 0.880858‖x==0.41452 – 1.19996i‖
x==0.41452 + 1.19996i‖x==1.79645

approximates the solutions of x5
+ x4 − 4x3

+ 2x2 − 3x − 7 = 0. The symbol ||
appearing in the result represents “or.”

We obtain equivalent results with NSolve.

NSolve
[
x5 + x4 – 4x3 + 2x2 – 3x – 7==0, x

]
{{x→ – 2.74463}, {x→ – 0.880858}, {x→0.41452 – 1.19996i},

{x→0.41452 + 1.19996i}, {x→1.79645}}
{{x→ – 2.74463}, {x→ – 0.880858}, {x→0.41452 – 1.19996i},

{x→0.41452 + 1.19996i}, {x→1.79645}}
FindRoot may also be used to approximate each root of the equation. However, to

use FindRoot, we must supply an initial approximation of the solution that we wish

to approximate. The real solutions of x5
+ x4 − 4x3

+ 2x2 − 3x − 7 = 0 correspond
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Graph of f (x) = x5
+ x4 − 4x3

+ 2x2 − 3x − 7

to the values of x where the graph of f (x) = x5
+ x4 − 4x3

+ 2x2 − 3x − 7 intersects

the x-axis. We use Plot to graph f (x) in Figure 2.43.

Plot
[
x5 + x4 – 4x3 + 2x2 – 3x – 7, {x, – 3, 2}

]
We see that the graph intersects the x-axis near x ≈ − 2.5, −1, and 1.5. We use

these values as initial approximations of each solution. Thus, entering

FindRoot
[
x5 + x4 – 4x3 + 2x2 – 3x – 7==0, {x, – 2.5}

]
{x→ – 2.74463}

approximates the solution near −2.5, entering

FindRoot
[
x5 + x4 – 4x3 + 2x2 – 3x – 7==0, {x, – 1}

]
{x→ – 0.880858}

approximates the solution near −1, and entering

FindRoot
[
x5 + x4 – 4x3 + 2x2 – 3x – 7==0, {x, 2}

]
{x→1.79645}

approximates the solution near 1.5. Note that FindRoot may be used to approxi-

mate complex solutions as well. To obtain initial guesses, observe that the solutions

of f (z) = 0, z = x + iy, x, y real, are the level curves of w = | f (z)| that are points. In

Figure 2.44, we use ContourPlot to graph various level curves of w = | f (x + iy)|,
−2 ≤ x ≤ 2, −2 ≤ y ≤ 2. In the plot, observe that the two complex solutions occur

at x ± iy ≈ 0.5 ± 1.2i.

f[z–] = z5 + z4 – 4z3 + 2z2 – 3z – 7;
ContourPlot[Abs[f[x + Iy]], {x, – 2, 2}, {y, – 2, 2},

ContourShading→False, Contours→60,
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FIGURE 2.44

Level curves of w = | f (x + iy)|, −2 ≤ x ≤ 2, −2 ≤ y ≤ 2

PlotPoints→200, Frame→False, Axes→Automatic,
AxesOrigin→ {0, 0}]

Thus, entering

FindRoot[x5 + x4 – 4x3 + 2x2 – 3x – 7==0, {x, 0.5 + I}]
{x→0.41452 + 1.19996i}

approximates the solution near x + iy ≈ 0.5 + 1.2i. For polynomials with real coeffi-

cients, complex solutions occur in conjugate pairs so the other complex solution

is approximately 0.41452 − 1.19996i.

Example 2.4.9 Find the first three nonnegative solutions of x = tan x.

Solution We attempt to solve x = tan x with Solve.
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y = x and y = tan x

We next graph y = x and y = tan x together in Figure 2.45.

Plot[Tooltip[{x, Tan[x]}], {x, 0, 4Pi},
PlotRange→ { – 4Pi, 4Pi}]

Remember that

vertical lines are never

the graphs of

functions. In this case,

they represent the

vertical asymptotes at

odd multiples of �/2.

In the graph, we see that x = 0 is a solution. This is confirmed with FindRoot.

FindRoot[x==Tan[x], {x, 0}]
{x→0.}

The second solution is near 4, whereas the third solution is near 7. Using FindRoot
together with these initial approximations locates the second two solutions.

FindRoot[x==Tan[x], {x, 4}]
{x→4.49341}
FindRoot[x==Tan[x], {x, 7}]
{x→7.72525}

FindRoot can also be used to approximate solutions to systems of equations.

(Although NRoots can solve a polynomial equation, NRoots cannot be used

to solve a system of polynomial equations.) When approximations of solu-

tions of systems of equations are desired, use either Solve and N together,

when possible, or FindRoot.

Example 2.4.10 Approximate the solutions to the system of equations

{
x2

+ 4xy + y2
= 4

5x2 − 4xy + 2y2
= 8

.

Solution We begin by using ContourPlot to graph each equation in Figure 2.46. From the

resulting graph, we see that x2
+ 4xy + y2

= 4 is a hyperbola, 5x2 − 4xy + 2y2
= 8

is an ellipse, and there are four solutions to the system of equations.



114 CHAPTER 2 Basic Operations on Numbers, Expressions, and Functions

24 22 2 4

24

22

2

4

FIGURE 2.46

Graphs of x2
+ 4xy + y2

= 4 and 5x2 − 4xy + 2y2
= 8

cp1 = ContourPlot[x2 + 4xy + y2 – 4==0, {x, – 4, 4}, {y, – 4, 4},
PlotPoints→60, ContourShading→False];

cp2 = ContourPlot[5x2 – 4xy + 2y2 – 8==0, {x, – 4, 4},
{y, – 4, 4}, PlotPoints→60, ContourStyle –>Dashing[{0.01}],

ContourShading→False];
Show[cp1, cp2, Frame→False, Axes→Automatic,

AxesOrigin→ {0, 0}]

From the graph we see that possible solutions are (0, 2) and (0,−2). In fact,

substituting x = 0 and y = −2 and x = 0 and y = 2 into each equation verifies that

these points are both exact solutions of the equation. The remaining two solutions

are approximated with FindRoot.

FindRoot
[
{x2 + 4xy + y2==4, 5x2 – 4xy + 2y2==8} ,

{x, 1}, {y, 0.25}
]

{x→1.39262, y→0.348155}
FindRoot

[
{x2 + 4xy + y2==4, 5x2 – 4xy + 2y2==8},

{x, – 1}, {y, – 0.25}
]

{x→ – 1.39262, y→ – 0.348155}
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2.5 EXERCISES
1. Evaluate the following:

(a) 432 + 701

(b) 251 × 8197

(c)
√

116281

(d) 3
√

157464

(e) 679/42

(f) sin(�/12)

(g) cos(11�/12)

(h)

∣∣∣∣ 2 + i

5 − 3i

∣∣∣∣
2. Solve x3 − 8x2

+ 19x − 12 = 1

2
x2 − x − 1

8
. Confirm your result graphi-

cally.

3. Solve −3x2
+ 12x − 5 = 2x2 − 4x − 3. Confirm your result graphically.

4. Find a 10-digit approximation of Euler’s constant, denoted by EulerGamma.

5. Use TrigExpand to write sin 5x in terms of sin x and cos x.

6. Use ExpToTrig to rewrite ex − e−x
.

7. Use TrigToExp to rewrite cos it.
8. Factor 15x5

+ 73x4 − 621x3 − 297x2
+ 2486x + 504 to find the zeros of

this polynomial. Compare these results with those obtained using Solve,

FindRoot, or NRoots.

9. Use PowerExpand to simplify
√

a4b6c−8. Compare this result with that

obtained using Simplify and explain the difference.

10. Solve exp(−(x/4)
2
) cos(x/�) = sin(x3/2

) + 5

4
. Confirm your result graph-

ically.

11. Graph the cross-cap, 4x2
(

x2
+ y2

+ z2
+ z

)
+ y2

(
y2

+ z2 − 1

)
, by graph-

ing it as functions of (a) y and z, (b) x and y, and (c) x and z.

12. Determine the partial fraction decomposition of the following.

(a)
6x − 18

x2 − 2x − 8

(b) 4
2x2

+ x + 28

x3 − 4x2 + 16x − 64

(c)
17x2

+ 2x

x4 + 5x2 + 4

13. Let f (x) =

⎧⎪⎨
⎪⎩
−x, x ≤ −1

sin �x, −1 < x ≤ 1.
1

2
x2

, x > 1

Plot f (x) and f ′(x) on the interval

[−5, 5].
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14. Plot cos 2x and 2 sin x on −� ≤ x ≤ �. Use FindRoot to determine

where the two curves intersect on [−�, �].

15. Consider Example 2.3.5 using f (x) = cos x with n = 2, 4, . . . , 12.

Describe the graph of f n
(x) as n increases.

16. Graph the tooth surface, which is defined by the equation x4
+ y4

+

z4 − (x2
+ y2

+ z2
) = 0.

17. Find a 20-digit approximation of Catalan’s constant, denoted by Catalan.

18. Use ParametricPlot to graph (a) x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ 2� and

(b) x = t cos t/2, y = t sin t/2, 0 ≤ t ≤ 12�.

19. Use PolarPlot to graph (a) r = 2 cos �, 0 ≤ � ≤ � and (b) r = cos 2�, 0 ≤
� ≤ 2�.

20. Use PolarPlot to investigate the differences in the graph of r = cos n�
and r = sin n� for n an odd or even integer. Question: What happens

when n is a noninteger rational number?

21. Graph the level curves of the following: (a) f (x, y) = x2 − y2
, (b)

f (x, y) = sin(xy), and (c) f (x, y) = x cos y.

22. Graph the function f (x, y) = sin

(
x2

+ y2
)

. Use the Interactive 3D con-

trol to rotate the graph in order to investigate the level curves of the

function. Compare your findings to those obtained with ContourPlot.
23. A parametrization (X, Y, Z ) of Boy’s surface is given by

X = g1/g Y = g2/g Z = g3/g,

where g1 = −3

2
Im

(
z(1 − z4

)

z6 +
√

5z3 − 1

)
, g2 = −3

2
Re

(
z(1 + z4

)

z6 +
√

5z3 − 1

)
,

g3 = Im

(
1 + z6

z6 +
√

5z3 − 1

)
− 1

2
, and g = g1

2
+ g2

2
+ g3

2
. The complex

number z = a + bi satisfies |z| ≤ 1. Plot Boy’s surface. (See Figure 2.47.)

FIGURE 2.47

Boy’s surface



3CHAPTER

Calculus

Chapter 3 introduces Mathematica’s built-in calculus functions. The exam-

ples used to illustrate the various functions are similar to examples typically

seen in a traditional calculus sequence. If you have trouble typing com-

mands correctly, use the buttons on the BasicMathInput palette to help

you create templates in standard mathematical notation that you can

evaluate.

3.1 LIMITS AND CONTINUITY
One of the first topics discussed in calculus is that of limits. Mathematica

can be used to investigate limits graphically and numerically. In addition,

the Mathematica command Limit[f[x], x->a] attempts to compute the limit of

y = f(x) as x approaches a, limx→a f(x), where a can be a finite number, ∞
(Infinity), or−∞ (−Infinity). The arrow “->” is obtained by typing a minus

sign “−” followed by a greater than sign “>”.

Clear[f] clears all prior

definitions of f, if any.

Clearing function

definitions before

defining new ones

helps eliminate any

possible confusion

and/or ambiguities.

Remark 3.1 To define a function of a single variable, f (x) = expression in x, enter f[x ] =
expression in x. To generate a basic plot of y = f (x) for a ≤ x ≤ b, enter Plot[f[x],
{x, a, b}].

3.1.1 Using Graphs and Tables to Predict Limits

Example 3.1.1 Use a graph and table of values to investigate limx→0

sin 3x

x
.

Solution We clear all prior definitions of f, define f (x) = (sin 3x) /x, and then graph y = f (x)

on the interval [−�, �] with Plot. 117
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FIGURE 3.1

Graph of f (x) = (sin 3x)/x on the interval [−�, �]

Clear[f]

f[x–] = Sin[3x]
x ;

Plot[f[x], {x, –p,p}]

From the graph shown in Figure 3.1, we might, correctly, conclude that

limx→0

sin 3x

x
= 3. Further evidence that limx→0

sin 3x

x
= 3 can be obtained by com-

puting the values of f (x) for values of x “near” x = 0. In the following, we use

RandomReal to define xvals to be a table of six “random” real numbers. The first

number in xvals is between −1 and 1, the second between −1/10 and 1/10, and

so on.

RandomReal[{a,b}]
returns a “random”

real number between

a and b. Because we

are generating

“random” numbers,

your results will differ

from those obtained

here.

xvals = Table [RandomReal [{ – 10 – n, 10 – n}], {n, 0, 5}]
0.424046, – 0.0850248, . . .

Map[f,{x1,x2,…,xn}]
returns the list

{f (x1), f (x2), …, f (xn)}.

We then use Map to compute the value of f (x) for each x in xvals. We use

Table to display the results in tabular form. Generally, list[[i]] returns the ith ele-

ment of list while Table[f[i],{i,start,finish,stepsize}] computes each value of f (i)

from start to finish in increments of stepsize. TableForm attempts to display

a table form in a standard format such as the row-and-column format that

follows.

fvals = Map[f, xvals]
{2.25384, 2.96757, 2.99995, 3., 3., 3.

pairs = Table[{xvals[[i]], fvals[[i]]}, {i, 1, 6}];
TableForm[pairs]
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0.424046 2.25384

−0.0850248 2.96757

0.00334803 2.99995

0.0000981987 3.

0.0000376656 3.

−2.914605226592692`∧− 6 3.

From these values, we might again correctly deduce that limx→0

sin 3x

x
= 3. Of

course, these results do not prove that limx→0

sin 3x

x
= 3, but they are helpful in

convincing us that limx→0

sin 3x

x
= 3.

For piecewise-defined functions, you can either use Mathematica’s con-
ditional command (/;) to define the piecewise-defined function or use

Piecewise.

Example 3.1.2 If h(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2
+ x, if x ≤ 0

1 − x, if 0 < x < 3

2x2 − 15x + 25, if 3 ≤ x ≤ 5

15 − 2x, if x > 5

, compute the following limits:

(a) limx→0 h(x), (b) limx→3 h(x), (c) limx→5 h(x).

Solution We use Mathematica's conditional command, /;, to define h. We must use delayed

evaluation (:=) because h(x) cannot be computed unless Mathematica is given a

particular value of x. The first line of the following defines h(x) to be x2
+ x for

x ≤ 0, the second line defines h(x) to be 1 − x for 0 < x < 3, and so on. In the

Plot command, {x, -2, 0, 3, 5, 6} instructs Mathematica to graph the function

on [−2, 0], then [0, 3], then [3, 5], and finally [5, 6]. Notice that Mathematica acci-

dentally connects (0, 0) to (0, 1) and then (5, 0) to (5, 5). (See Figure 3.2(a)). The

delayed evaluation is also incompatible with Mathematica's Limit function.
The plots p1 and p2
are not displayed

because a semicolon is

included at the end of

each Plot command.

Clear[h]
h[x–] := x∧2 + x/;x≤ 0
h[x–] := 1 – x/;0 < x < 3
h[x–] := 2x∧2 – 15x + 25/;3≤ x≤ 5
h[x–] := 15 – 2x/;x > 5
p1 = Plot[h[x], {x, – 2, 0, 3, 5, 6}];

To avoid these problems, we redefine h using Mathematica’s Piecewise function

as follows:

Clear[h]
h[x–] := Piecewise[{{x∧2 + x, x < 0}, {1 – x, 0 < x < 3}, {2x∧2 – 15x + 25,

3<=x≤ 5}, {15 – 2x, x > 5}}];
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FIGURE 3.2

(a) Plot does not catch the breaks in the piecewise defined function. (b) If you use

Piecewise, Plot can catch jumps.

p2 = Plot[h[x], {x, – 2, 0, 3, 5, 6}, PlotRange→All];
Show[GraphicsRow[{p1, p2}]]

Notice that when we execute the Plot command, Mathematica “catches” the

breaks between (0, 0) and (0, 1) and then (5, 0) and (5, 5) shown in Figure 3.2(b).

From Figure 3.2, we see that limx→0 h(x) does not exist, limx→3 h(x) = −2, and

limx→5 h(x) does not exist.

When limits exist, you can often use Limit[f[x], x->a] (where a may be

±Infinity) to compute limx→a f(x). Thus, for the previous example we see

that

Limit[h[x], x→3]
– 2

is correct. On the other hand,

Limit[h[x], x→5]
5

is incorrect. We check by computing the right-hand limit, limx→5+ h(x),

using the Direction->−1 option in the Limit command and then the left limit,

limx→5− h(x), using the Direction->1 in the Limit command.

Limit[h[x], x→5, Direction→1]
0

Limit[h[x], x→5, Direction→ – 1]
5

We follow the same procedure for x = 0

Limit[h[x], x→0]
1
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Limit[h[x], x→0, Direction→1]
0

Limit[h[x], x→0, Direction→ – 1]
1

3.1.2 Computing Limits

Some limits involving rational functions can be computed by factoring the

numerator and denominator.

Example 3.1.3 Compute limx→−9/2

2x2
+ 25x + 72

72 − 47x − 14x2
.

Solution We define frac1 to be the rational expression
2x2

+ 25x + 72

72 − 47x − 14x2
. We then attempt

to compute the value of frac1 if x = −9/2 by using ReplaceAll (/.) to evaluate frac1
if x = −9/2 but see that it is undefined.

Factoring the numerator and denominator with Factor, Numerator, and

Denominator, we see that

lim
x→−9/2

2x2
+ 25x + 72

72 − 47x − 14x2
= lim

x→−9/2

(x + 8) (2x + 9)

(8 − 7x) (2x + 9)
= lim

x→−9/2

x + 8

8 − 7x
.

The fraction (x + 8)/(8 − 7x) is named frac2 and the limit is evaluated by computing

the value of frac2 if x = −9/2,

Factor[Numerator[frac1]]
Factor[Denominator[frac1]]
(8 + x)(9 + 2x)

– (9 + 2x)( – 8 + 7x)

frac2 = Cancel[frac1]
– 8 – x

– 8 + 7x

frac2/.x→ –9
2

7

79

or by using the Limit function on the original fraction.

Limit[frac1, x→ – 9/2]
7

79
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We conclude that

lim
x→−9/2

2x2
+ 25x + 72

72 − 47x − 14x2
=

7

79
.

As stated previously, Limit[f[x], x->a] attempts to compute limx→a f(x),

Limit[f[x], x->a,Direction->1] attempts to compute limx→a− f(x), and Limit[f[x],
x->a, Direction->−1] attempts to compute limx→a+ f(x). Generally, a can be

a number, ±Infinity (±∞), or another symbol.

Thus, entering

Limit
[

3x2 – 7x – 20
21x2+14x – 35

, x→ – 5
3

]
17

56

computes limx→−9/2
2x2

+25x+72

72−47x−14x2 = 7/79.

Example 3.1.4 Calculate each limit: (a) limx→−5/3

3x2 − 7x − 20

21x2 + 14x − 35
; (b) limx→0

sin x

x
; (c) limx→∞(

1 +
z

x

)x

; (d) limx→0

e3x − 1

x
; (e) limx→∞ e−2x√x; and ( f ) limx→1+

(
1

ln x
− 1

x − 1

)
.

Solution In each case, we use Limit to evaluate the indicated limit. Entering

Limit
[

3x2 – 7x – 20
21x2+14x – 35

, x→ – 5
3

]
17

56

computes limx→−5/3

3x2 − 7x − 20

21x2 + 14x − 35
= 17

56
, and entering

Limit
[

Sin[x]
x , x→0

]
1

computes limx→0

sin x

x
= 1. Mathematica represents ∞ by Infinity. Thus, entering

Limit[(1 + z/x)∧x, x→ Infinity]
ez

computes limx→∞
(

1 +
z

x

)x

= ez
. Entering

Limit[(Exp[3x] – 1)/x, x→0]
3

computes limx→0

e3x − 1

x
= 3. Entering

Limit[Exp[ – 2x]Sqrt[x], x→ Infinity]
0

computes limx→∞ e−2x√x = 0, and entering
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Limit[1/Log[x] – 1/(x – 1), x→1, Direction→ – 1]
1

2

computes limx→1+

(
1

ln x − 1

x−1

)
= 1

2
.

Because ln x is

undefined for x ≤ 0,

a right-hand limit is

mathematically

necessary, even

though Mathematica’s

Limit function

computes the limit

correctly without the

distinction.

3.1.3 One-Sided Limits

As illustrated previously, Mathematica can compute certain one-sided limits.

The command Limit[f[x], x->a, Direction->1] attempts to compute limx→a− f(x),

where as Limit[f[x], x->a, Direction->−1] attempts to compute limx→a+ f(x).

Example 3.1.5 Compute (a) limx→0+ |x|/x; (b) limx→0− |x|/x; (c) limx→0+ e−1/x
; and (d) limx→0− e−1/x

.

Solution Even though limx→0 |x|/x does not exist, limx→0+ |x|/x = 1 and limx→0− |x|/x = −1,

as we see using Limit together with the Direction->1 and Direction->−1 options,

respectively.

Limit
[

Abs[x]
x , x→0, Direction→1

]
Limit

[
Abs[x]

x , x→0, Direction→ – 1
]

– 1

1

The Direction->−1 and Direction->1 options are used to calculate the correct

values for (c) and (d), respectively. For (c), we have

Limit
[ 1

x , x→0, Direction→ – 1
]

∞
Technically, limx→0 e−1/x

does not exist (see Figure 3.3(a)), so the following is

incorrect.

Limit[Exp[ – 1/x], x→0]
0
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FIGURE 3.3

(a) Graph of y = e−1/x
. (b) Graph of y = e−1/x2
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However, using Limit together with the Direction option gives the correct left and

right limits.

Limit[Exp[ – 1/x], x→0, Direction→1]
∞
Limit[Exp[ – 1/x], x→0, Direction→ – 1]
0

We confirm these results by graphing y = e−1/x
with Plot in Figure 3.3(a). In (b),

we also show the graph of y = e−1/x2

in Figure 3.3(b), which is discussed in the

exercises.

p1 = Plot[Exp[ – 1/x], {x, – 5, 5}];
p2 = Plot[Exp[ – 1/x∧2], {x, – 5, 5}];
Show[GraphicsRow[{p1, p2}]]

The Limit command together and its options (Direction->1 and Direction->−1)

are “fragile” and should be used with caution because the results are unpre-

dictable. It is wise to check or confirm results using a different technique

for nearly all problems encountered.

3.1.4 Continuity

Definition 1. The function y = f(x) is continuous at x = a if

1. limx→a f(x) exists;
2. f (a) exists; and
3. limx→a f(x) = f (a).

Note that the third item in the definition means that both (1) and

(2) are satisfied. However, if either (1) or (2) is not satisfied, the function is

not continuous at the number in question. The function y = f(x) is continu-
ous on the open interval I if f(x) is continuous at each number a contained in

the interval I. Loosely speaking, the “standard” set of functions (polynomials,

rational, trigonometric, etc.) are continuous on their domains.

Be careful with regard

to this. For example,

since limx→0−
√

x does

not exist, many would

say that f (x) =
√

x is

right continuous
at x = 0.

Example 3.1.6 For what value(s) of x, if any, are each of the following functions continu-

ous? (a) f (x) = x3 − 8x; (b) f (x) = sin 2x; (c) f (x) = (x − 1)/(x + 1); and (d) f (x) =√
(x − 1)/(x + 1).

Solution (a) Polynomial functions are continuous for all real numbers. In interval notation,

f (x) is continuous on (−∞,∞). (b) Because the sine function is continuous for all

real numbers, f (x) = sin 2x is continuous for all real numbers. In interval notation,

f (x) is continuous on (−∞,∞). (c) The rational function f (x) = (x − 1)/(x + 1) is

continuous for all x �= −1. In interval notation, f (x) is continuous on (−∞,−1) ∪
(−1,∞). (d) f (x) =

√
(x − 1)/(x + 1) is continuous if the radicand is nonnegative. In



3.1 Limits and Continuity 125

24 22 2 4

230

220

210

10

20

30

24 22 2 4

21.0

20.5

0.5

1.0

24 22 2 4

22

2

4

24 22 2 4

0.5

1.0

1.5

2.0

2.5

3.0

FIGURE 3.4

Polynomials, trigonometric, rational, and root functions are usually continuous on their

domains

interval notation, f (x) is strictly continuous on (−∞,−1) ∪ (1,∞) but some might

say that f (x) is continuous on (−∞,−1) ∪ [1,∞), where it is understood that f (x) is

right continuous at x = 1. We see this by graphing each function with the following

commands. See Figure 3.4. Note that in p3, the vertical line is not a part of the

graph of the function—it is a vertical asymptote. If you were to redraw the figure

by hand, the vertical line would not be a part of the graph.

p1 = Plot[x∧3 – 8x, {x, – 5, 5}];
p2 = Plot[Sin[2x], {x, – 5, 5}];
p3 = Plot[((x – 1)/(x + 1)), {x, – 5, 5}];
p4 = Plot[Sqrt[(x – 1)/(x + 1)], {x, – 5, 5}];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]]

Computers are finite state machines, so handling “interesting” func-

tions can be problematic, especially when one must distinguish between

rational and irrational numbers. We assume that if x = p/q is a rational
number ( p and q integers), p/q is a reduced fraction. One way of tack-

ling these sorts of problems is to view rational numbers as ordered pairs,

{a, b}. If a and b are integers, Mathematica automatically reduces a/b
so Denominator[a/b] or a/b//Denominator returns the denominator of the

reduced fraction; Numerator[a/b] or a/b//Numerator returns the numerator

of the reduced fraction. If you want to see the points (x, f(x)) for which x
is rational, we use ListPlot.
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Example 3.1.7 Let f (x) =

{
1/q, if x = p/q is rational

0, if x is irrational
.

Create a representative graph of f (x).

Solution You cannot see points: The measure of the rational numbers is 0, and the measure

of the irrational numbers is the continuum, C. A true graph of f (x) would look

like the graph of y = 0. In the context of the example, we want to see how the

graph of f (x) looks for rational values of x. We use a few points to illustrate the

technique by using Table and Flatten to generate a set of ordered pairs.

Flatten[list,n] flattens

list to level n.

In Mathematica, an

ordered pair (a, b) is

represented by {a, b}.

t1 = Flatten[Table[{n, m}, {n, 1, 5}, {m, 1, 5}], 1]
{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 1}, {2, 2},

{2, 3}, {2, 4}, {2, 5}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 1},

{4, 2}, {4, 3}, {4, 4}, {4, 5}, {5, 1},

{5, 2}, {5, 3}, {5, 4}, {5, 5}}
Next, we defined a function f. Assuming that a and b are integers, given

an ordered pair {a, b}, f
({a, b}) returns the point {a/b, 1/ (Reduced denominator

of a/b)}
f[{a–, b–}] := {a/b, 1/(a/b//Denominator)}

We use Map to compute the value of f for each ordered pair in t1. The resulting

list is named t2.

t2 = Map[f, t1]
{{1, 1}, { 1

2
, 1

2
}, { 1

3
, 1

3
}, { 1

4
, 1

4
}, { 1

5
, 1

5
}, {2, 1}, {1, 1},

{ 2

3
, 1

3
}, { 1

2
, 1

2
}, { 2

5
, 1

5
}, {3, 1}, { 3

2
, 1

2
}, {1, 1},

{ 3

4
, 1

4
}, { 3

5
, 1

5
}, {4, 1}, {2, 1}, { 4

3
, 1

3
}, {1, 1},

{ 4

5
, 1

5
}, {5, 1}, { 5

2
, 1

2
}, { 5

3
, 1

3
}, { 5

4
, 1

4
}, {1, 1}}

Notice that t2 contains duplicate entries. We can remove them using Flatten,

but doing so does not affect the plot shown in Figure 3.5(a).

p1 = ListPlot[t2, PlotRange→ {{0, 3}, {0, 1}}, AspectRatio→1];

To generate a “prettier” plot, we repeat the procedure using more points. After

entering each command, the results are not displayed because we include a

semicolon (;) at the end of each. See Figure 3.5(b).

t3 = Flatten[Table[{n, m}, {n, 1, 300}, {m, 1, 200}], 1];
t4 = Map[f, t3];
p2 = ListPlot[t4, PlotRange→ {{0, 3}, {0, 1}}, AspectRatio→1];

This function is interesting because it is continuous at the irrationals and

discontinuous at the rationals.

We can consider other functions in similar contexts. In the following, the

y-coordinate is the numerator rather than the denominator. See Figure 3.5(c).
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FIGURE 3.5

(a) After step 1. (b) After step 2. (c) Examining the numerator rather than the

denominator. (d) The sine of the numerator

Clear[f]
f[{a–, b–}] := {a/b, a/b//Numerator};
t3 = Flatten[Table[{n, m}, {n, 1, 100}, {m, 1, 100}], 1];
t4 = Map[f, t3];
p3 = ListPlot[t4, PlotRange→ {{0, 100}, {0, 100}}, AspectRatio→1];

With Mathematica, we can modify commands to investigate how changing

parameters affect a given situation. In the following, we compute the sine of p if

x = p/q. See Figure 3.5(d).

Clear[f]
f[{a–, b–}] := {a/b, Sin[(a/b//Numerator)]};
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t5 = Flatten[Table[{n, m}, {n, 1, 300}, {m, 1, 200}], 1];
t6 = Map[f, t5];
p4 = ListPlot[t6, PlotRange→ {{0, 3}, {0, 1}}, AspectRatio→1];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]]

3.2 DIFFERENTIAL CALCULUS

3.2.1 Definition of the Derivative
Definition 2. The derivative of y = f (x) is

y′ = f ′(x) =
dy

dx
= lim

h→0

f (x + h) − f (x)

h
, (3.1)

provided the limit exists.

Assuming that (a, f (a)) and (a + h, f (a + h)) exist, the line with equation

y =
f (a + h) − f (a)

h
(x − a) + f (a) is the secant containing the two points.

Assuming the derivative exists, as h approaches 0, the secants approach

the tangent. Hence, if the limit exists, the derivative gives us the slope of

a function at that particular value of x.

The Limit command can be used along with Simplify to compute the

derivative of a function using the definition of the derivative.

Example 3.2.1 Use the definition of the derivative to compute the derivative of (a) f (x) = x + 1/x

and (b) g (x) = 1/
√

x.

Solution For (a), we first define f, compute the difference quotient,
(

f (x + h) − f (x)
)
, simplify

the difference quotient with Simplify, and use Limit to calculate the derivative.

f[x–] = x + 1/x;
step1 = ( f[x + h] – f[x])/h
step2 = Simplify[step1]
Limit[step2, h→0]

h – 1
x

+ 1
h + x

h

– 1 + hx + x2

x(h + x)

1 – 1

x2

For (b), we use the same approach as in (a) but use Together rather than Simplify
to reduce the complex fraction.

step1 = (g[x + h] – g[x])/h
step2 = Together[step1]
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Limit[step2, h→0]

– 1√
x

+ 1√
h + x

h√
x –

√
h + x

h
√

x
√

h + x

– 1

2x3/2

If the derivative of y = f (x) exists at x = a, a geometric interpretation of

f ′(a) is that f ′(a) is the slope of the line tangent to the graph of y = f (x)

at the point (a, f (a)).

To motivate the definition of the derivative, many calculus texts choose

a value of x, x = a, and then draw the graph of the secant line passing

through the points (a, f (a)) and (a + h, f (a + h)) for “small” values of h to

show that as h approaches 0, the secant line approaches the tangent line.

An equation of the secant line passing through the points (a, f (a)) and

(a + h, f (a + h)) is given by

y − f (a) =
f (a + h) − f (a)

(a + h) − a
(x − a) or y =

f (a + h) − f (a)

h
(x − a) + f (a).

Example 3.2.2 If f (x) = x2 − 4x, graph f (x) together with the secant line containing (1, f (1)) and

(1 + h, f (1 + h)) for various values of h.

Solution We begin by considering a particular h value. We choose h = 0.4. We then define

f (x) = x2 − 4x. In p1, we graph f (x) in black on the interval [−1, 5], in p2 we

place a blue point at (1, f (1)) and a green point at (1.4, f (1.4), in p3 we graph

the tangent to y = f (x) at (1, f (1)) in red, in p4 we graph the secant containing

(1, f (1)) and (1.4, f (1.4) in purple, and finally we show all four graphics together

with Show in Figure 3.6.
Remember that when

a semicolon is placed

at the end of a

command, the

resulting output is not

displayed. The names

of the colors that

Mathematica knows

are listed in the

ColorSchemes
palette followed by

“Known” and then

“System.”

f[x–] = x∧2 – 4x;
p1 = Plot[f[x], {x, –1, 5}, PlotStyle→Black];
p2 = Graphics[{PointSize[.03], Blue, Point[{1, f[1]}],

Green, Point[{1 + .4, f[1 + .4]}]}];
p3 = Plot[f′[1](x – 1) + f[1], {x, –1, 5}, PlotStyle→Red];
p4 = Plot[( f[1 + .4] – f[1])/ . 4(x – 1) + f[1], {x, –1, 5},

PlotStyle→Purple];
Show[p1, p2, p3, p4, PlotRange→ {{ –1, 5}, { –6, 6}},

AspectRatio→1]]

We now generalize the previous set of commands for arbitrary h �= 0 values.

g(h) shows plots of y = x2 − 4x, the tangent at (1, f (1)), and the secant containing

(1, f (1)) and (1 + h, f (1 + h)).

Clear[f, g];
f[x–] = x∧2 – 4x;
g[h–] := Module[{p1, p2, p3, p4},
p1 = Plot[f[x], {x, – 1, 5}, PlotStyle→Black];
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FIGURE 3.6

Plots of y = x2 − 4x, the tangent at (1, f (1)), and the secant containing (1, f (1)) and

(1 + h, f (1 + h)) if h = 0.4

p2 = Graphics[{PointSize[.03], Blue, Point[{1, f[1]}],
Green, Point[{1 + h, f[1 + h]}]}];

p3 = Plot[f ′[1](x – 1) + f[1], {x, –1, 5}, PlotStyle→Red];
p4 = Plot[( f[1 + h] – f[1])/h(x – 1) + f[1], {x, –1, 5},

PlotStyle→Purple];
Show[p1, p2, p3, p4, PlotRange→ {{ – 1, 5}, { – 6, 6}}, AspectRatio→1]]

Table[f[x],{x,start,stop,stepsize}] creates a table of f (x) values beginning

with start and ending with stop using increments of stepsize. Given a table,

Partition[table,n] partitions the table into n element subgroups. Thus, if a table, t1,
has nine elements, Partition[t1, 3] creates a 3 × 3 grid; three sets of three elements

each.

Using Table followed by GraphicsGrid, we can create a table of graphics for

various values of h like that shown in Figure 3.7. With Table, the dimensions of the

grid displayed on your computer are based on the size of the active Mathematica

window. To control the dimensions of the grid, we use GraphicsGrid together with

Partition and Show.

t1 = Table[g[k], {k, 1, .0001, – (1 –.0001)/8}]
Show[GraphicsGrid[Partition[t1, 3]]]

Do works in the same way as Table. Rather than creating a table (or list), Do
performs the action repeatedly. Thus, you can use Do to create an animation of

the secants approaching the tangent.
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FIGURE 3.7

Plots of y = x2 − 4x, the tangent at (1, f (1)), and the secant containing (1, f (1)) and

(1 + h, f (1 + h)) for various values of h

Thus, entering computes g(k) and displays the result for 100 equally spaced

values of k starting with k = 1 and ending with k = 0.0001. To animate the results,

select the graphics as indicated. Go to the Mathematica menu, select Graphics
followed by Rendering and then Animate Selected Graphics
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or use a keyboard shortcut to animate the graphics. After animating the selec-

tion, you can control the animation (speed, direction, and so on) with the buttons

displayed in the lower left-hand corner of the Mathematica

notebook.

Keyboard shortcuts

are usually operating

system dependent.

With Mathematica 6, you can use Manipulate to help generate animations and

images that you can adjust based on changing parameter values.

To illustrate how to do so, we begin by redefining f and then defining m(a, h).

Given a and h values, m(a, h) plots f (x) for −10 ≤ x ≤ 10 (p1), plots a blue

point (a, f (a)) and a green point at (a + h, f (a + h)) (p2), plots f ′(a)(x − a) + f (a)

(the tangent to the graph of f (x) at (a, f (a))) for −1 ≤ x ≤ 5 in red (p3), the

secant containing (a, f (a)) and (a + h, f (a + h)) for −10 ≤ x ≤ 10 in purple (p4),

and finally displays all four graphics together with Show. Using PlotRange, we

indicate that the horizontal axis displays x values between −10 and 10, at the

vertical axis displays y values between −10 and 10; AspectRatio->1 means that

the ratio of the lengths of the x to y axes is 1. Thus, the plot scaling is correct.

Note that when we use Module to define m, p1, p2, p3, and p4 are local to the

function m. This means that if you have such objects defined elsewhere in your

Mathematica notebook, those objects are not affected when you compute m.

Clear[m, f ];
f[x–] = x∧2 – 4x;
m[a–, h–] := Module[{p1, p2, p3, p4},

p1 = Plot[f[x], {x, – 10, 10}, PlotStyle→Black];
p2 = Graphics[{PointSize[.03], Blue, Point[{a, f[a]}],

Green, Point[{a + h, f[a + h]}]}];
p3 = Plot[f ′[a](x – a) + f[a], {x, – 1, 5}, PlotStyle→Red];
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p4 = Plot[( f[a + h] – f[a])/h(x – a) + f[a], {x, – 10, 10},
PlotStyle→Purple];

Show[p1, p2, p3, p4, PlotRange→ {{ – 10, 10}, { – 10, 10}},
AspectRatio→1]]

Now we use Manipulate to create a “mini” program. The sliders (centered at

a = 0 and h = 0.5 with a range from −10 to 10 and −1 to 1, respectively) allow

you to see how changing a and h affects the plot. See Figure 3.8.

Manipulate[m[a, h], {{a, 0}, – 10, 10}, {{h, .5}, – 1, 1}]

Figure 3.8 illustrates the special case in which f (x) = x2 − 4x. To illustrate the

same concept using a “standard” set of functions (polynomials, rational, root, and

trig), we first define the functions

quad[x–] = (x + 2)∧2 – 2;
cubic[x–] = – 1/10x(x∧2 – 25);
rational[x–] = 50/((x + 5)(x – 5));
root[x–] = 3Sqrt[x + 5];
sin[x–] = 5Sin[x];

and then we adjust m by defining a few of these “standard” and then defining

the function mmore. mmore performs the same actions as m but does so for the

a
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FIGURE 3.8

With Manipulate, we can perform animations and see how a function changes

depending on parameter values
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function selected. We then use Manipulate to create an object that shows the

secant (in purple), the tangent (in red) for the selected function, a value, and h

value. See Figure 3.9.

Clear[mmore];
mmore[f–, a–, h–] := Module[{p1, p2, p3, p4},

p1 = Plot[f[x], {x, – 10, 10}, PlotStyle→Black];
p2 = Graphics[{PointSize[.03], Blue, Point[{a, f[a]}],

Green, Point[{a + h, f[a + h]}]}];
p3 = Plot[f ′[a](x – a) + f[a], {x, – 10, 10}, PlotStyle→Red];
p4 = Plot[( f[a + h] – f[a])/h(x – a) + f[a], {x, – 10, 10},

PlotStyle→Purple];
Show[p1, p2, p3, p4, PlotRange→ {{ – 10, 10}, { – 10, 10}},

AspectRatio→1]]

Manipulate[mmore[f, a, h], {{f, quad},
{quad, cubic, rational, root, sin }},

{{a, 0}, – 10, 10}, {{h, 1}, – 2, 2}]

FIGURE 3.9

With this Manipulate object, we see how various functions, a values, and h values

affect the secant to y = f (x) passing through (a, f (a)) and (a + h, f (a + h)) and the

tangent to y = f (x) at (a, f (a))
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3.2.2 Calculating Derivatives

The functions D and
′

are used to differentiate functions. Assuming that

y = f (x) is differentiable,

1. D[f[x],x] computes and returns f ′(x) = df/dx,

2. f'[x] computes and returns f ′(x) = df/dx,

3. f''[x] computes and returns f (2)
(x) = d2f (x)/dx2

, and

4. D[f[x],x,n] computes and returns f (n)
(x) = dnf (x)/dxn

.

5. You can use the button located on the BasicMathInput palette

to create templates to compute derivatives.

Figure 3.10 illustrates various ways of computing derivatives using the
′

symbol, D, and the � symbol.

Mathematica knows the numerous differentiation rules, including the prod-

uct, quotient, and chain rules. Thus, entering

Clear[f, g]
D[f[x]g[x], x]
g[x]f′[x] + f[x]g′[x]

shows us that
d

dx
( f (x) · g(x)) = f ′(x)g(x) + f (x)g′(x); entering

Together[D[f[x]/g[x], x]]
g[x]f ′[x] – f[x]g′[x]

g[x]2

D[f[g[x]], x]

Throughout the text,

input is in bold and

output is not; output

follows input.

shows us that
d

dx
( f (x)/g(x)) = ( f ′(x)g(x) − f (x)g′(x))/(g(x))

2
; and entering

FIGURE 3.10

You can use
′
, D, and � to compute derivatives of functions
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D[f[g[x]], x]
f ′[g[x]]g′[x]

shows us that
d

dx
( f (g(x))) = f ′(g(x))g′(x).

Example 3.2.3 Compute the first and second derivatives of (a) y = x4
+

4

3
x3 − 3x2

, (b) f (x) = 4x5 −
5

2
x4 − 10x3

, (c) y =
√

e2x + e−2x, and (d) y = (1 + 1/x)
x
.

Solution For (a), we use D.

D[x∧4 + 4/3x∧3 – 3x∧2, {x, 2}]
– 6 + 8x + 12x2

For (b), we first define f and then use
′

together with Factor to calculate and factor

f ′(x) and f ′′(x).

f[x–] = 4x∧5 – 5/2x∧4 – 10x∧3;
Factor[f ′[x]]
10x2(1 + x)( – 3 + 2x)

Factor[f ′′[x]]
10x

(
– 6 – 3x + 8x2

)
For (c), we use Simplify together with D to calculate and simplify y′

and y′′
.

D[Sqrt[Exp[2x] + Exp[ – 2x]], {x, 2}]//Simplify√
e – 2x + e2x(1 + 6e4x + e8x)

(1 + e4x)
2

By hand, (d) would require logarithmic differentiation. The second derivative would

be particularly difficult to compute by hand. Mathematica quickly computes and

simplifies each derivative.

Simplify[D[(1 + 1/x)∧x, x]]
(1 + 1

x )
x
( – 1 + (1 + x)Log[1 + 1

x ])
1 + x

Simplify[D[(1 + 1/x)∧x, {x, 2}]]
(1+ 1

x )
x
(

– 1 + x – 2x(1 + x)Log[1 + 1
x ]+x(1 + x)2Log[1 + 1

x ]
2
)

x(1 + x)2

The command Map[f,list] applies the function f to each element of the

list list. Thus, if you are computing the derivatives of a large number of

functions, you can use Map together with D.

Map and operations

on lists are discussed

in more detail in

Chapter 4.

Remark 3.2 A built-in Mathematica function is threadable if f[list] returns the same result as

Map[f,list]. Many familiar functions such as D and Integrate are threadable.
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Example 3.2.4 Compute the first and second derivatives of sin x, cos x, tan x, sin
−1 x, cos

−1 x,

and tan
−1 x.

Solution Notice that lists are contained in braces. Thus, entering

Map[D[#, x]&, {Sin[x], Cos[x], Tan[x],

ArcSin[x], ArcCos[x], ArcTan[x]}]{
Cos[x], – Sin[x], Sec[x]2, 1√

1 – x2
, – 1√

1 – x2
, 1

1 + x2

}
computes the first derivative of the three trigonometric functions and their inverses.

In this case, we have applied a pure function to the list of trigonometric functions

and their inverses. Given an argument #, D[#,x]& computes the derivative of # with

respect to x. The & symbol is used to mark the end of a pure function. Similarly,

entering

Map[D[#, {x, 2}]&, {Sin[x], Cos[x], Tan[x],

ArcSin[x], ArcCos[x], ArcTan[x]}]{
– Sin[x], – Cos[x], 2Sec[x]2Tan[x], x

(1 – x2)
3/2

, – x

(1 – x2)
3/2

, – 2x

(1 + x2)
2

}
computes the second derivative of the three trigonometric functions and their

inverses. Because D is threadable, the same results are obtained with the following

commands:

D[{Sin[x], Cos[x], Tan[x],

ArcSin[x], ArcCos[x], ArcTan[x]}, x]{
Cos[x], – Sin[x], Sec[x]2, 1√

1 – x2
, – 1√

1 – x2
, 1

1 + x2

}
D[{Sin[x], Cos[x], Tan[x],

ArcSin[x], ArcCos[x], ArcTan[x]}, {x, 2}]{
– Sin[x], – Cos[x], 2Sec[x]2Tan[x], x

(1 – x2)
3/2

, – x

(1 – x2)
3/2

, – 2x

(1 + x2)
2

}

With DynamicModule, we create a simple dynamic that lets you compute the

first and second derivatives of basic functions and plot them on a standard

viewing window, [− − 5, 5] × [−5, 5]. The layout of Figure 3.11 is primarily

determined by Panel, Column, and Grid.

Panel[DynamicModule[{f = x∧2},
Column[{InputField[Dynamic[f]], Grid[{{“FirstDerivative”,
Panel[Dynamic[D[f, x]//Simplify]]},

{“SecondDerivative”, Panel[Dynamic[D[f, {x, 2}]//Simplify]]}}],
Dynamic[Plot[Evaluate[Tooltip[{f, D[f, x], D[f, {x, 2}]}]],

{x, – 5, 5}, PlotRange→ { – 5, 5},
AspectRatio→Automatic]]}]], ImageSize→ {300, 300}]
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FIGURE 3.11

Seeing the relationship between the first and second derivative of a function and the

original function

3.2.3 Implicit Differentiation

If an equation contains two variables, x and y, implicit differentiation can

be carried out by explicitly declaring y to be a function of x, y = y(x), and

using D or by using the Dt command.

Example 3.2.5 Find y′
= dy/dx if (a) cos

(
exy)

= x and (b) ln
(
x/y

)
+ 5xy = 3y.

Solution For (a) we illustrate the use of D. Notice that we are careful to specifically indicate

that y = y(x). First we differentiate with respect to x.

Clear[x, y]

s1 = D[Cos[Exp[xy[x]]] – x, x]
– 1 – exy[x]Sin

[
exy[x]

] (
y[x] + xy′[x]

)
and then we solve the resulting equation for y′

= dy/dx with Solve.

Solve[s1==0, y′[x]]{{
y′[x] → –

e – xy[x]Csc
[
exy[x]

](
1 + exy[x]Sin

[
exy[x]

]
y[x]

)
x

}}

For (b), we use Dt. When using Dt, we interpret Dt[x]= 1 and Dt[y]= y′
= dy/dx.

Thus, entering

s2 = Dt[Log[x/y] + 5xy – 3y]

5yDt[x] – 3Dt[y] + 5xDt[y] +
y

(
Dt[x]

y
–

xDt[y]

y2

)
x

s3 = s2/.{Dt[x]→1, Dt[y]→dydx}

– 3dydx + 5dydxx + 5y +

(
–

dydxx

y2
+ 1

y

)
y

x
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FIGURE 3.12

On the left, cos
(
exy)

= x for −2 ≤ x ≤ 2 and −4 ≤ y ≤ 4; on the right, ln
(
x/y

)
+ 5xy =

3y for 0.01 ≤ x ≤ 3 and 0.01 ≤ y ≤ 3.

and solving for dydx with Solve

Solve[s3==0, dydx]{{
dydx → –

y(1 + 5xy)

x( – 1 – 3y + 5xy)

}}
shows us that if ln

(
x/y

)
+ 5xy = 3y, y′

=
dy

dx
= − (1 + 5xy)y

(5xy − 3y − 1)x
.

To graph each equation, we use ContourPlot. Generally, given an equation of

the form f (x, y) = g(x, y), the command

ContourPlot[f[x, y]==g[x, y], {x, a, b}, {y, c, d}]

attempts to plot the graph of f (x, y) = g(x, y) on the rectangle [a, b] × [c, d]. Using

Show together with GraphicsRow, we show the two graphs side-by-side in

Figure 3.12.

cp1 = ContourPlot[Cos[Exp[xy]]==x, {x, – 2, 2}, {y, – 4, 4}, PlotPoints→120,
Frame→False, Axes→Automatic, AxesOrigin→ {0, 0}];

cp2 = ContourPlot[Log[x/y] + 5xy==3y, {x, .01, 3}, {y, .01, 3},
PlotPoints→120,

Frame→False, Axes→Automatic, AxesOrigin→ {0, 0}];
Show[GraphicsRow[{cp1, cp2}]]

3.2.4 Tangent Lines

If f ′(a) exists, a typical interpretation of f ′(a) is that f ′(a) is the slope of

the line tangent to the graph of y = f (x) at the point (a, f (a)). In this case,

an equation of the tangent is given by

y − f (a) = f ′(a)(x − a) or y = f ′(a)(x − a) + f (a).
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Example 3.2.6 Find an equation of the line tangent to the graph of f (x) = sin x1/3
+ cos

1/3 x at the

point with x-coordinate x = 5�/3.

If this package was

not included with

your version of

Mathematica, you

may want to

download it from

the Wolfram website.

Solution Because we will be graphing a function involving odd roots of negative numbers,

we begin by loading the RealOnly package contained in the Miscellaneous folder

(or directory). We then define f (x) and compute f ′(x).

<< Miscellaneous`RealOnly`
f[x–] = Sin[x∧(1/3)] + Cos[x]∧(1/3);
f′[x]
Cos

[
x1/3

]
3x2/3

− Sin[x]

3Cos[x]2/3

Then, the slope of the line tangent to the graph of f (x) at the point with

x-coordinate x = 5�/3 is

f ′[5Pi/3]

1

21/3
√

3
+

Cos
[
( 5�

3 )
1/3

]
31/3(5�)2/3

f ′[5Pi/3]//N
0.440013

while the y-coordinate of the point is

f[5Pi/3]
1

21/3
+ Sin

[(
5�
3

)1/3
]

f[5Pi/3]//N
1.78001

Thus, an equation of the line tangent to the graph of f (x) at the point with

x-coordinate x = 5�/3 is

y −
(

1

3
√

2
+ sin

3
√

5�/3

)
=

(
cos

3
√

5�/3

3
√

3
3
√

25�2
+

1

3
√

2
√

3

)(
x − 5�

3

)
,

as shown in Figure 3.13.

p1 = Plot[f[x], {x, 0, 4Pi}, PlotStyle→Black];
p2 = ListPlot[{{5Pi/3, f[5Pi/3]}//N}, PlotStyle→PointSize[.03]];

2 4 6 8 10 12

0.5
1.0
1.5
2.0

FIGURE 3.13

f (x) = sin x1/3
+ cos

1/3 x together with its tangent at the point
(
5�/3, f (5�/3)

)
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p3 = Plot[f ′[5Pi/3](x – 5Pi/3) + f[5Pi/3], {x, 0, 4Pi},
PlotStyle –>GrayLevel[.6]];

Show[p1, p2, p3, AspectRatio –>Automatic,
DisplayFunction→$DisplayFunction]

Tangent Lines of Implicit Functions

Example 3.2.7 Find equations of the tangent line and normal line to the graph of x2y − y3
= 8 at

the point (−3, 1). Find and simplify y′′
= d2y/dx2

.

Solution We evaluate y′
= dy/dx if x = −3 and y = 1 to determine the slope of the tangent

line at the point (−3, 1). Note that we cannot (easily) solve x2y − y3
= 8 for y, so

we use implicit differentiation to find y′
= dy/dx:By the product and

chain rules, d
dx (x2y) =

d
dx (x2

)y + x2 d
dx (y) =

2x · y + x2 · dy
dx =

2xy + x2y′
.

d

dx

(
x2y − y3

)
=

d

dx
(8)

2xy + x2y′ − 3y2y′ = 0

y′ =
−2xy

x2 − 3y2
.

eq = x∧2y – y∧3==8
x2y – y3==8

s1 = Dt[eq]
2xyDt[x] + x2Dt[y] – 3y2Dt[y]==0

s2 = s1/.Dt[x]→1
2xy + x2Dt[y] – 3y2Dt[y]==0

s3 = Solve[s2, Dt[y]]{{
Dt[y] → –

2xy

x2 – 3y2

}}
Lists are discussed in

more detail in

Chapter 4.

Notice that s3 is a list. The formula for y′
= dy/dx is the second part of the first

part of the first part of s3 and extracted from s3 with

s3[[1,1,2]]
–

2xy

x2 – 3y2

We then use ReplaceAll (/.) to find that the slope of the tangent at (−3, 1) is

s3[[1, 1, 2]]/.{x→ – 3, y→1}
1

The slope of the normal is −1/1 = −1. Equations of the tangent and normal are

given by

y − 1 = 1(x + 3) and y − 1 = −1(x + 3),
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FIGURE 3.14

Graphs of x2y − y3
= 8 (in black) and the tangent and normal at (−3, 1) (in gray)

respectively. See Figure 3.14.

cp1 = ContourPlot[x∧2y – y∧3 – 8, {x, – 5, 5}, {y, – 5, 5}, Contours→ {0},
ContourShading→False, PlotPoints→200];

p1 = ListPlot[{{ – 3, 1}}, PlotStyle→PointSize[.03]];
p2 = Plot[{(x + 3) + 1, – (x + 3) + 1}, {x, – 5, 5}, PlotStyle→Gray];
Show[cp1, p1, p2, Frame→False, Axes→Automatic,

AxesOrigin→ {0, 0}, AspectRatio→Automatic,
DisplayFunction→$DisplayFunction]

To find y′′
= d2y/dx2

, we proceed as follows:

s4 = Dt[s3[[1, 1, 2]]]//Simplify

–
2(x2 + 3y2)( – yDt[x] + xDt[y])

(x2 – 3y2)
2

s5 = s4/.Dt[x]→1/.s3[[1]]//Simplify
6y(x2 – y2)(x2 + 3y2)

(x2 – 3y2)
3

The result means that

y′′ =
d2y

dx2
=

6
(
x2y − y3

) (
x2

+ 3y2
)

(
x2 − 3y2

)3
.

Because x2y − y3
= 8, the second derivative is further simplified to

y′′ =
d2y

dx2
=

48
(
x2

+ 3y2
)

(
x2 − 3y2

)3
.
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Parametric Equations and Polar Coordinates

For the parametric equations {x = f (t), y = g(t)}, t ∈ I,

y′ =
dy

dx
=

dy/dt

dx/dt
=

g′
(t)

f ′(t)

and

y′′ =
d2y

dx2
=

d

dx

dy

dx
=

d/dt(dy/dx)

dx/dt
.

If {x = f (t), y = g(t)} has a tangent line at the point ( f (a), g(a)), parametric

equations of the tangent are given by

x = f (a) + tf ′(a) and y = g(a) + tg′(a). (3.2)

If f ′(a), g′(a) �= 0, we can eliminate the parameter from (3.2)

x − f (a)

f ′(a)
=

y − g(a)

g′(a)

y − g(a) =
g′

(a)

f ′(a)
(x − f (a))

and obtain an equation of the tangent line in point-slope form.

l = Solve[x[a] + tx′[a]==cx, t]
r = Solve[y[a] + ty′[a]==cy, t]{{

t → cx−x[a]

x′ [a]

}}
{{

t → cy – y[a]

y′ [a]

}}

Example 3.2.8 (The Cycloid). The cycloid has parametric equations

x = t − sin t and y = 1 − cos t.

Graph the cycloid together with the line tangent to the graph of the cycloid at the

point (x(a), y(a)) for various values of a between −2� and 4�.

Solution After defining x and y, we use
′

to compute dy/dt and dx/dt. We then compute

dy/dx = (dy/dt)/(dx/dt) and d2y/dx2
.

x[t–] = t – Sin[t];
y[t–] = 1 – Cos[t];
dx = x′[t]
dy = y′[t]
dydx = dy/dx
1 – Cos[t]

Sin[t]
Sin[t]

1 – Cos[t]
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dypdt = Simplify[D[dydx, t]]
1

– 1 + Cos[t]

secondderiv = Simplify[dypdt/dx]
– 1

( – 1 + Cos[t])2

We then use ParametricPlot to graph the cycloid for −2� ≤ t ≤ 4�, naming the

resulting graph p1.

p1 = ParametricPlot[{x[t], y[t]}, {t, – 2Pi, 4Pi},
PlotStyle→ {{Black, Thickness[.01]}}];

Next, we use Table to define toplot to be 40 tangent lines (3.2) using equally

spaced values of a between −2� and 4�. We then graph each line toplot and

name the resulting graph p2. Finally, we show p1 and p2 together with the Show
function. The resulting plot is shown to scale because the lengths of the x- and

y-axes are equal and we include the option AspectRatio->1. In the graphs, notice

that on intervals for which dy/dx is defined, dy/dx is a decreasing function and,

consequently, d2y/dx2 < 0. (See Figure 3.15.)

toplot = Table[{x[a] + tx′[a], y[a] + ty′[a]}, {a, – 2Pi, 4Pi, 6Pi/39}];
p2 = ParametricPlot[Evaluate[toplot], {t, – 2, 2}, PlotStyle→Gray];
Show[p1, p2, AspectRatio→1, PlotRange→ { – 3Pi, 3Pi}]

25 5 10

25

5

FIGURE 3.15

The cycloid with various tangents
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FIGURE 3.16

Using Manipulate you can animate the tangents

With Manipulate, you can animate the the tangents. (See Figure 3.16.)

Manipulate[x[t–] = t – Sin[t]; y[t–] = 1 – Cos[t];
y[t–] = Module[{p1, p2}, p1 = ParametricPlot[{x[t], y[t]}, {t, – 2Pi, 4Pi},
PlotStyle→ {{Black, Thickness[.01]}}];

p2 = ParametricPlot[{x[a] + tx′[a], y[a] + ty′[a]}, {t, – 2, 2},
PlotStyle→Gray];

Show[p1, p2, AspectRatio→1, PlotRange→ {{ – 2Pi, 4Pi}, { – 3Pi, 3Pi}}]],
{{a, 1}, – 2Pi, 4Pi}]

Example 3.2.9 (Orthogonal Curves). Two lines L1 and L2 with slopes m1 and m2, respectively,

are orthogonal if their slopes are negative reciprocals: m1 = −1/m2.

Extended to curves, we say that the curves C1 and C2 are orthogonal at

a point of intersection if their respective tangent lines to the curves at that point

are orthogonal.

Show that the family of curves with equation x2
+ 2xy − y2

= C is orthogonal to

the family of curves with equation y2
+ 2xy − x2

= C.

Solution We begin by defining eq1 and eq2 to be equations x2
+ 2xy − y2

= C and y2
+ 2xy −

x2
= C, respectively. Then, use Dt to differentiate and Solve to find y′

= dy/dx.

eq1 = x2 + 2xy – y2==c;
eq2 = y2 + 2xy – x2==c;
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FIGURE 3.17

x2
+ 2xy − y2

= C and y2
+ 2xy − x2

= C for various values of C

Simplify[Solve[Dt[eq1, x], Dt[y, x]]/.Dt[c, x]→0]{{
Dt[y, x] → –

x + y

x – y

}}
Simplify[Solve[Dt[eq2, x], Dt[y, x]]/.Dt[c, x]→0]{{

Dt[y, x] → x – y

x + y

}}
Because the derivatives are negative reciprocals, we conclude that the curves are

orthogonal. We confirm this graphically by graphing several members of each family

with ContourPlot and showing the results together. (See Figure 3.17.)

cp1 = ContourPlot[x2 + 2xy – y2, {x, – 5, 5}, {y, – 5, 5},
ContourShading→False];

cp2 = ContourPlot
[
y2 + 2xy – x2, {x, – 5, 5}, {y, – 5, 5},

ContourShading→False,
ContourStyle →Dashing[{0.01}]] ;

Show[cp1, cp2, Frame→False, Axes→Automatic,
AxesOrigin→ {0, 0}]

Theorem 1. (The Mean-Value Theorem for Derivatives) If y = f (x)

is continuous on [a, b] and differentiable on (a, b), then there is at least
one value of c between a and b for which

f ′(c) =
f (b) − f (a)

b − a
or, equivalently, f (b) − f (a) = f ′(c)(b − a). (3.3)

Example 3.2.10 Find all number(s) c that satisfy the conclusion of the mean-value theorem for

f (x) = x2 − 3x on the interval [0, 7/2].
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Solution By the power rule, f ′(x) = 2x − 3. The slope of the secant containing (0, f (0)) and

(7/2, f (7/2)) is

f (7/2) − f (0)

7/2 − 0
=

1

2
.

Solving 2x − 3 = 1/2 for x gives us x = 7/4.

f[x–] = x∧2 – 3x
– 3x + x2

Solve[f′[x]==0, x]{{
x → 3

2

}}
Solve[f′[x]==( f[7/2] – f[0])/(7/2 – 0)]{{

x → 7

4

}}
x = 7/4 satisfies the conclusion of the mean-value theorem for f (x) = x2 − 3x on

the interval [0, 7/2], as shown in Figure 3.18.

p1 = Plot[f[x], {x, – 1, 4}];
p2 = Plot[f[x], {x, 0, 7/2}, PlotStyle→Thickness[.02]];
p3 = ListPlot[{{0, f[0]}, {7/4, f[7/4]}, {7/2, f[7/2]}},

PlotStyle→PointSize[.05]];
p4 = Plot[{f ′[7/4](x – 7/4) + f[7/4], ( f[7/2] – f[0])/(7/2 – 0)x + f[0]},

{x, – 2, 4}, PlotStyle→ {Dashing[{ . 01}], Dashing[{ . 02}]}];
Show[p1, p2, p3, p4, DisplayFunction→$DisplayFunction,

AspectRatio→Automatic, PlotRange→ { – 3, 3}]

1 2 3 4

1

2

3

FIGURE 3.18

Graphs of f (x) = x2 − 3x, the secant containing (0, f (0)) and (7/2, f (7/2)), and the

tangent at (7/4, f (7/4))
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3.2.5 The First Derivative Test and Second
Derivative Test

Examples 3.2.11 and 3.2.12 illustrate the following properties of the first

and second derivative.

Theorem 2. Let y = f (x) be continuous on [a, b] and differentiable on
(a, b).

1. If f ′(x) = 0 for all x in (a, b), then f (x) is constant on [a, b].
2. If f ′(x) > 0 for all x in (a, b), then f (x) is increasing on [a, b].
3. If f ′(x) < 0 for all x in (a, b), then f (x) is decreasing on [a, b].

For the second derivative, we have the following theorem.

Theorem 3. Let y = f (x) have a second derivative on (a, b).

1. If f ′′(x) > 0 for all x in (a, b), then the graph of f (x) is concave up
on (a, b).

2. If f ′′(x) < 0 for all x in (a, b), then the graph of f (x) is concave
down on (a, b).

The critical points correspond to those points on the graph of y = f (x)

where the tangent line is horizontal or vertical; the number x = a is a cri-
tical number if f ′(a) = 0 or f ′(x) does not exist if x = a. The inflec-
tion points correspond to those points on the graph of y = f (x) where

the graph of y = f (x) is neither concave up nor concave down. Theo-

rems 2 and 3 help establish the first derivative test and second derivative

test.

Theorem 4. (First Derivative Test) Let x = a be a critical number of
a function y = f (x) continuous on an open interval I containing x = a. If
f (x) is differentiable on I, except possibly at x = a, f (a) can be classified
as follows.

1. If f ′(x) changes from positive to negative at x = a, then f (a) is a
relative maximum.

2. If f ′(x) changes from negative to positive at x = a, then f (a) is a
relative minimum.

Theorem 5. (Second Derivative Test) Let x = a be a critical number
of a function y = f (x) and suppose that f ′′(x) exists on an open interval
containing x = a.

1. If f ′′(a) < 0, then f (a) is a relative maximum.
2. If f ′′(a) > 0, then f (a) is a relative minimum.
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Example 3.2.11 Graph f (x) = 3x5 − 5x3
.

Solution We begin by defining f (x) and then computing and factoring f ′(x) and f ′′(x).

f[x–] = 3x∧5 – 5x∧3;
d1 = Factor[f′[x]]
d2 = Factor[f′′[x]]
15( – 1 + x)x2(1 + x)

30x
(

– 1 + 2x2
)

By inspection, we see that the critical numbers are x = 0, 1, and −1 while f ′′(x) = 0

if x = 0, 1/
√

2, or −1/
√

2. Of course, these values can also be found with Solve
as done next in cns and ins, respectively.

cns = Solve[d1==0]
ins = Solve[d2==0]
{{x → – 1}, {x → 0}, {x → 0}, {x → 1}}{
{x → 0},

{
x → – 1√

2

}
,
{

x → 1√
2

}}
We find the critical and inflection points by using /. (Replace All) to compute f (x)

for each value of x in cns and ins, respectively. The result means that the critical

points are (0, 0), (1,−2) and (−1, 2); the inflection points are (0, 0), (1/
√

2,−7
√

2/8),

and (−1/
√

2, 7
√

2/8). We also see that f ′′(0) = 0, so Theorem 5 cannot be used

to classify f (0). On the other hand, f ′′(1) = 30 > 0, and f ′′(−1) = −30 < 0, so by

Theorem 5, f (1) = −2 is a relative minimum and f (−1) = 2 is a relative maximum.

cps = {x, f[x]}/.cns
{{ – 1, 2}, {0, 0}, {0, 0}, {1, – 2}}
f′′[x]/.cns
{ – 30, 0, 0, 30}
ips={x,f[x]}/.ins{
{0, 0},

{
– 1√

2
, 7

4
√

2

}
,
{

1√
2
, – 7

4
√

2

}}
We can graphically determine the intervals of increase and decrease by noting that

if f ′(x) > 0 ( f ′(x) < 0), a| f ′(x)|/f ′(x) = a (a| f ′(x)|/f ′(x) = −a). Similarly, the intervals

for which the graph is concave up and concave down can be determined by

noting that if f ′′(x) > 0 ( f ′′(x) < 0), a| f ′′(x)|/f ′′(x) = a (a| f ′′(x)|/f ′′(x) = −a). We use

Plot to graph | f ′(x)|/f ′(x) and 2| f ′′(x)|/f ′′(x) (different values are used so we can

differentiate between the two plots) in Figure 3.19.

Plot[{Abs[d1]/d1, 2Abs[d2]/d2}, {x, – 2, 2}, PlotRange→ { – 3, 3}]

From the graph, we see that f ′(x) > 0 for x in (−∞,−1) ∪ (1,∞), f ′(x) < 0 for

x in (−1, 1), f ′′(x) > 0 for x in (−1/
√

2, 0) ∪ (1/
√

2,∞), and f ′′(x) < 0 for x in

(−∞,−1/
√

2) ∪ (0, 1/
√

2). Thus, the graph of f (x) is

� increasing and concave down for x in (−∞,−1),

� decreasing and concave down for x in (−1,−1/
√

2),
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1 2
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FIGURE 3.19

Graphs of | f ′(x)|/f ′(x) and 2| f ′′(x)|/f ′′(x)
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FIGURE 3.20

f (x) for −2 ≤ x ≤ 2 and −4 ≤ y ≤ 4

� decreasing and concave up for x in (−1/
√

2, 0),

� decreasing and concave down for x in (0, 1
√

2),

� decreasing and concave up for x in (1/
√

2, 1), and

� increasing and concave up for x in (1,∞).

We also see that f (0) = 0 is neither a relative minimum nor maximum. To see

all points of interest, our domain must contain −1 and 1 while our range must

contain −2 and 2. We choose to graph f (x) for −2 ≤ x ≤ 2; we choose the range

displayed to be −4 ≤ y ≤ 4. (See Figure 3.20.)

Plot[f[x], {x, – 2, 2}, PlotRange→ { – 4, 4}]

Remember to be especially careful when working with functions that

involve odd roots.
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Example 3.2.12 Graph f (x) = (x − 2)
2/3

(x + 1)
1/3

.

Solution We begin by defining f (x) and then computing and simplifying f ′(x) and f ′′(x)

with
′

and Simplify.

Clear[f]
f[x–] = (x – 2)∧(2/3)(x + 1)∧(1/3);
d1 = Simplify[f′[x]]
d2 = Simplify[f′′[x]]

x

(−2 + x)1/3(1 + x)2/3

– 2

( – 2 + x)4/3(1 + x)5/3

By inspection, we see that the critical numbers are x = 0, 2, and −1. We cannot

use Theorem 5 to classify f (2) and f (−1) because f ′′(x) is undefined if x = 2 or

−1. On the other hand, f ′′(0) < 0, so f (0) = 2
2/3

is a relative maximum. By hand,

we make a sign chart to see that the graph of f (x) is

� increasing and concave up on (−∞,−1),

� increasing and concave down on (−1, 0),

� decreasing and concave down on (0, 2), and

� increasing and concave down on (2,∞).

Hence, f (−1) = 0 is neither a relative minimum nor maximum, whereas f (2) = 0 is

a relative minimum by Theorem 4. To graph f (x), we load the RealOnly package

and then use Plot to graph f (x) for −2 ≤ x ≤ 3 in Figure 3.21.

<< Miscellaneous`RealOnly`
f[0]
Plot[f[x], {x, – 2, 3}]
22/3

2122 1 2 3

22

21

1

FIGURE 3.21

f (x) for −2 ≤ x ≤ 3
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The previous examples illustrate that if x = a is a critical number of f (x)

and f ′(x) makes a simple change in sign from positive to negative at x = a,

then (a, f (a)) is a relative maximum. If f ′(x) makes a simple change in sign

from negative to positive at x = a, then (a, f (a)) is a relative minimum.

Mathematica is especially useful in investigating interesting functions for

which this may not be the case.

Example 3.2.13 Consider

f (x) =

⎧⎪⎨
⎪⎩

x2
sin

2

(
1

x

)
, x �= 0

0, x = 0.

x = 0 is a critical number because f ′(x) does not exist if x = 0. The point (0, 0)

is both a relative and absolute minimum, even though f ′(x) does not make a

simple change in sign at x = 0, as illustrated in Figure 3.22.

f[x–] =
(
xSin

[ 1
x

])2
;

f′[x]//Factor

– 2Sin
[

1

x

] (
Cos

[
1

x

]
– xSin

[
1

x

])
p1 = Plot[f[x], {x, – 0.1, 0.1}];
p2 = Plot [f ′[x], {x, – 0.1, 0.1}] ;
Show[GraphicsRow[{p1, p2}]]

Notice that the derivative “oscillates” infinitely many times near x = 0, so the

first derivative test cannot be used to classify (0, 0).

The functions Maximize and Minimize can be used to assist with

finding extreme values. For a function of a single variable Maximize[f[x], x]
(Minimize[f[x], x]) attempts to find the maximum (minimum) values of f (x);

20.10 20.05 0.05 0.10

0.002

0.004

0.006

0.008

20.10 20.05 0.05

21.0

20.5

0.5

1.0

FIGURE 3.22

f (x) =
[
x sin

(
1

x

)]2
and f ′(x) for −0.1 ≤ x ≤ 0.1
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Maximize[f[x],a<=x<=b,x] (Minimize[f[x],a<=x<=b,x]) attempts to find the maxi-

mum (minimum) values of f (x) on [a, b].

Example 3.2.14 Consider f (x) = 1

10

(−12x + 3x2
+ 2x3

)
. After defining f (x), we plot f (x) and f ′(x)

together in Figure 3.23.

f[x–] = 1/10
(

– 12x + 3x2 + 2x3) ;
Plot[Tooltip[{f[x], f′[x]}], {x, – 4, 4}, PlotRange→ { – 4, 4},
AspectRatio→Automatic]

With Maximize, we see that f (x) does not have a maximum on its domain.

However, when we restrict the interval to −3 ≤ x ≤ 2, Maximize finds the relative

maximum at x = −2.

�4 �2 2 4

�4

�2

2

4

FIGURE 3.23

f (x) has one relative maximum and one relative minimum but no absolute extreme

values
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Similarly, with Minimize we see that the f (x) does not have a minimum value

on its domain but find the relative minimum when we restrict the interval to

−3 ≤ x ≤ 2.

However, with Solve, we easily find the two zeros of f ′(x) that we see in Figure 3.23.

Solve[f′[x]==0, x]
{{x → – 2}, {x → 1}}

When using Maximize or Minimize you should verify your results using

another method.

Example 3.2.15 The function f (x) = x/(x2
+ 1) is continuous on (−∞,∞) and limx→±∞ f (x) = 0.

Thus, f (x) has an absolute minimum and maximum value on its domain. In this

case,

gives us the absolute maximum and minimum values of f (x) and the x-values

where they occur. On the other hand, f (x) = x4 − x2
is continuous on (−∞,∞) and

limx→±∞ f (x) = ∞. Thus, f (x) has an absolute minimum on its domain. Because

the derivative of a fourth-degree polynomial is a third-degree polynomial, we know

that f ′(x) has three zeros, two of which probably correspond to relative minimums.

Because the graph of f (x) is symmetric with respect to the y-axis, we further

suspect that the absolute minimum is obtained twice—at each relative minimum.

Maximize and Minimize give us the following results.

A polynomial of

degree n has n
zeros (counting

multiplicity).
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Note that the result returned by Maximize is correct. Similarly, the result returned

by Minimize is correct, but a complete answer would indicate that the absolute

minimum value occurs at both x = −1/
√

2 and x = 1/
√

2.

Example 3.2.16 The function f (x) = (x + 1)
2
/(x − 2) has a vertical asymptote at x = 2. From the

derivative,

f[x–] = (x + 1)∧2/(x – 2);
d1 = Simplify[f′[x]]
cns = Solve[f′[x]==0]
– 5 – 4x + x2

( – 2 + x)2

{{x → – 1}, {x → 5}}
f[x]/.cns
{0,12}

we find two critical numbers, one of which is a relative maximum and one is a

relative minimum. See Figure 3.24.

Plot[Tooltip[{f[x], f′[x]}], {x, – 6, 10}]

On the other hand, Maximize and Minimize return confusing results because the

function is undefined if x = 2. The function has relative extreme values but not

absolute extreme values.

25 5 10

10

20

30

220

210

FIGURE 3.24

A function for which a relative minimum has a function value greater than the function

value of a relative maximum
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For periodic functions, such as sine and cosine, Maximize and Minimize
generally do not indicate all extreme values.

Maximize[Sin[x], x]{
1,
{

x → �
2

}}
Maximize[Cos[x], x]
{1, {x → 0}}

3.2.6 Applied Max/Min Problems

Mathematica can be used to assist in solving maximization/minimization

problems encountered in a differential calculus course.

Example 3.2.17 A woman is located on one side of a body of water 4 miles wide. Her position is

directly across from a point on the other side of the body of water 16 miles from

her house, as shown in the following figure.

If she can move across land at a rate of 10 miles per hour and move over

water at a rate of 6 miles per hour, find the least amount of time for her to reach

her house.

Solution From the figure, we see that the woman will travel from A to B by land and then

from B to D by water. We wish to find the least time for her to complete the trip.

Let x denote the distance BC, where 0 ≤ x ≤ 16. Then, the distance AB is

given by 16 − x and, by the Pythagorean theorem, the distance BD is given by√
x2 + 42. Because rate × time = distance, time = distance / rate. Thus, the time to

travel from A to B is 1

10
(16 − x), the time to travel from B to D is 1

6

√
x2 + 16, and

the total time to complete the trip, as a function of x, is

time(x) =
1

10
(16 − x) +

1

6

√
x2 + 16, 0 ≤ x ≤ 16.



3.2 Differential Calculus 157
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FIGURE 3.25

Plot of time(x) = 1

10
(16 − x) + 1

6

√
x2 + 16, 0 ≤ x ≤ 16

We must minimize the function time. First, we define time and then verify that time
has a minimum by graphing time on the interval [0, 16] in Figure 3.25.

Clear[time]

time[x–] = 16 – x
10

+ 1
6

√
x2 + 16;

Plot[time[x], {x, 0, 16}, PlotRange→ {{0, 16}, {2, 3}}]

Next, we compute the derivative of time and find the values of x for which

the derivative is 0 with Solve. The resulting output is named critnums using

ReplaceAll (\.).

Together
[
time′[x]

]
5x – 3

√
16+x2

30

√
16+x2

critnums = Solve
[
time′[x]==0

]
{{x → 3}}

At this point, we can calculate the minimum time by calculating time[3].

time[3]
32

15

Alternatively, we demonstrate how to find the value of time[x] for the value(s) listed

in critnums.

time[x]/.x→3
32

15

Regardless, we see that the minimum time to complete the trip is 32/15 hours.
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One of the more interesting applied max/min problems is the beam
problem. We present two solutions.

Example 3.2.18 (The Beam Problem). Find the exact length of the longest beam that can be

carried around a corner from a hallway 2 feet wide to a hallway that is 3 feet wide.

(See Figure 3.26.)

Solution We assume that the beam has negligible thickness. Our first approach is algebraic.

Using Figure 3.26, which is generated with

Graphics primitives

such as Point, Line,

and Text are discussed

in more detail in

Chapter 7.

f[x–] = x + 2;
p1 = Plot[f[x], {x, 0, 4}, PlotStyle –>Thickness[.01], PlotRange –>{0, 6}];

p2 =
Graphics[Line[{{1, 0}, {1, f[1]}, {4, f[1]}, {4, f[4]}, {4, f[4]},

{0, f[4]},
{0, 0}, {1, 0}}]];

p3 = Graphics[{Text[“2”, { . 5, .2}], {Text[“3”, {3.8, 4.5}]}}];
p4 = Graphics[{Dashing[{0.01, 0.01}], Line[{{0, f[0]}, {1, f[0]}}]}];
p5 = Graphics[{Text[“�”, { . 5, 2.25}], Text[“�”, {1.5, 3.25}]}];
p6 = Graphics[{Text[“x”, { . 9, 2.35}], Text[“y”, {2.5, 3.25}]}];
Show[p1, p2, p3, p4, p5, p6, Axes->None]

and the Pythagorean theorem, the total length of the beam is

L =
√

22 + x2 +
√

y2 + 32.

By similar triangles,

y

3
=

2

x
so y =

6

x

2

3

x

y

�

�

FIGURE 3.26

The length of the beam is found using similar triangles
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and the length of the beam, L, becomes

L(x) =
√

4 + x2 +

√
9 +

36

x2
, 0 < x < ∞.

Observe that the length of the longest beam is obtained by minimizing L. (Why?)
We ignore negative

and imaginary values

because length must

be a nonnegative real

number.

Clear[l];
l[x–] = Sqrt[2∧2 + x∧2] + Sqrt[y∧2 + 3∧2]/.y –>6/x√

9 + 36

x2 +
√

4 + x2

We use two different methods to solve L′
(x) = 0. Differentiating

l′[x]
– 36√

9 + 36

x2
x3

+ x√
4 + x2

Solve
[

– 12
√

4 + x2 + x4
√

4+x2

x2 ==0, x
]

{{x → – 2i}, {x → 2i}, {x → – 22/331/3}, {x → 22/331/3}}
p1 = x∧8(9 + 36/x∧2) – 1296(4 + x∧2)//Expand//Factor
9
(
4 + x2

) (
– 12 + x3

) (
12 + x3

)
and solving L′

(x) = 0 gives us

Solve[p1==0, x]
{{x → – 2i}, {x → 2i},{x → – ( – 3)1/322/3

}
,
{

x → ( – 3)1/322/3
}

,{
x → – ( – 2)2/331/3

}
,

N
[
22/331/3]

2.28943

l
[
22/331/3]

√
9 + 322/331/3 +

√
4 + 221/332/3

N[%]
7.02348

It follows that the length of the beam is L
(
2

2/3
3

1/3
)

=
√

9 + 3 · 22/3 · 31/3 +√
4 + 2 · 21/3 · 32/3 =

√
13 + 9 · 22/3 · 31/3 + 6 · 21/3 · 32/3 ≈ 7.02. (See Figure 3.27).

Plot[l[x], {x, 0, 20}, PlotRange –>{0, 20}, AspectRatio –>Automatic,
AxesLabel –>{“x”, “y”}]

Our second approach uses right triangle trigonometry. In terms of �, the length of

the beam is given by

L (�) = 2 csc � + 3 sec �, 0 < � < �/2.

Differentiating gives us

L′ (�) = −2 csc � cot � + 3 sec � tan �.
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10

15

20
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FIGURE 3.27

Graph of L(x)

To avoid typing the � symbol, we define L as a function of t.

Clear[l]
l[t–] = 2Csc[t] + 3Sec[t]
2Csc[t] + 3Sec[t]

We now solve L′
(�) = 0. First, multiply through by sin � and then by tan �.

3 sec � tan � = 2 csc � cot �

tan2 � =
2

3
cot �

tan3 � =
2

3

tan � =
3

√
2

3
.

In this case, observe that we cannot compute � exactly. However, we do not

need to do so. Let 0 < � < �/2 be the unique solution of tan � =
3
√

2/3. See

Figure 3.28. Using the identity tan
2

� + 1 = sec
2

�, we find that sec � =

√
1 +

3
√

4/9.

Similarly, because cot � =
3
√

3/2 and cot
2

� + 1 = csc
2

�, csc � =
3
√

3/2

√
1 +

3
√

4/9.

Hence, the length of the beam is
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FIGURE 3.28

Graph of L(�) and L′
(�)

L(�) = 2
3

√
3

2

√
1 +

3

√
4

9
+ 3

√
1 +

3

√
4

9
≈ 7.02.

When you use Tooltip,

scrolling the cursor

over the plot will

identify the plot for

you.

Plot[Tooltip[{l[t], l′[t]}], {t, 0, Pi/2}, PlotRange –>{ – 20, 20},
PlotStyle –>{Black, Gray}]

In the next two examples, the constants do not have specific numerical

values.

Example 3.2.19 Find the volume of the right circular cone of maximum volume that can be inscribed

in a sphere of radius R.

Solution Try to avoid three-dimensional figures unless they are absolutely necessary. For this

problem, a cross section of the situation is sufficient. See Figure 3.29, which is

created with

p1 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2Pi}];
p2 =
Graphics[

{Line[{{0, 1}, {Cos[4Pi/3], Sin[4Pi/3]}, {Cos[5Pi/3], Sin[5Pi/3]},
{0, 1}}], PointSize[.02], Point[{0, 0}],

Line[{{Cos[4Pi/3], Sin[4Pi/3]}, {0, 0}, {0, 1}}],
Line[{{0, 0}, {0, Sin[4Pi/3]}}]}];

p3 = Graphics[{Text[“R”, { –.256, –.28}], Text[“R”, { –.04, .5}],
Text[“y”, { –.04, –.5}], Text[“x”, { –.2, –.8}]}];

Show[p1, p2, p3, AspectRatio –>Automatic, Ticks –>None, Axes –>None]
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x

FIGURE 3.29

Cross section of a right circular cone inscribed in a sphere

The volume, V, of a right circular cone with radius r and height h is V = 1

3
�r2h.

Using the notation in Figure 3.29, the volume is given by

V =
1

3
�x2(R + y). (3.4)

However, by the Pythagorean theorem, x2
+ y2

= R2
so x2

= R2 − y2
and equation

3.4 becomes

V =
1

3
�
(
R2 − y2

)
(R + y) =

1

3
�
(
R3 + R2y − Ry2 − y3

)
, (3.5)

s1 = Expand[(r∧2 – y∧2)(r + y)]
r3 + r2y – ry2 – y3

Remember that R is

a constant.

where 0 ≤ y ≤ R. V(y) is continuous on [0, R], so it will have minimum and max-

imum values on this interval. Moreover, the minimum and maximum values occur

either at the endpoints of the interval or at the critical numbers on the interior of

the interval. Differentiating equation (3.5) with respect to y gives us

dV

dy
=

1

3
�
(
R2 − 2Ry − 3y2

)
=

1

3
�(R − 3y)(R + y)

s2 = D[s1, y]
r2 – 2ry – 3y2

and we see that dV/dy = 0 if y = 1

3
R or y = −R.

Factor[s2]
(r – 3y)(r + y)

Solve[s2==0, y]{{y → – r},
{

y → r

3

}}
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We ignore y = −R because −R is not in the interval [0, R]. Note that V(0) =

V(R) = 0. The maximum volume of the cone is

V

(
1

3
R

)
=

1

3
� · 32

27
R3 =

32

81
�R2 ≈ 1.24R3.

s3=s1/.y – >r/3//Together
32r3

27

s3*1/3Pi
32�r3

81

N[%]
1.24112r3

Example 3.2.20 (The Stayed-Wire Problem). Two poles D feet apart with heights L1 feet and

L2 feet are to be stayed by a wire as shown in Figure 3.30. Find the minimum

amount of wire required to stay the poles, as illustrated in Figure 3.30, which is

generated with

p1 = Graphics[Line[{{0, 0}, {0, 4}, {3.5, 0}, {9, 5.5}, {9, 0}, {0, 0}}]];
p2 = Graphics[{Text[“L1”, { . 2, 2}], Text[“L2”, {8.8, 2.75}],

Text[“x”, {1.75, .2}], Text[“x”, {1.75, .2}],

L1

L1
21 x2 (D 2 x)21 L2

2
L2

x D 2 x

FIGURE 3.30

When the wire is stayed to minimize the length, the result is two similar triangles
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Text
[
“
√

L1
2 + x2”, {1.75, 2.75}

]
, Text

[
“
√

(D – x)2 + L2
2”, {5.5, 2.75}

]
,

Text[“D – x”, {6.5, .2}]}];
Show[p1, p2]

Solution Using the notation in Figure 3.30, the length of the wire, L, is

L(x) =

√
L1

2 + x2 +

√
L2

2 + (D − x)2, 0 ≤ x ≤ D. (3.6)

In the special case that L1 = L2, the length of the wire to stay the beams is mini-

mized when the wire is placed halfway between the two beams, at a distance D/2

from each beam. Thus, we assume that the lengths of the beams are different;

we assume that L1 < L2, as illustrated in Figure 3.30. We compute L′
(x) and then

solve L′
(x) = 0.

PowerExpand[expr]

expands out all

products and powers

assuming the variables

are real and positive.

That is, with

PowerExpand we

obtain that
√

x2 = x
rather than

√
x2 = |x|.

Clear[l]
l[x–] = Sqrt[x∧2 + l1∧2] + Sqrt[(d – x)∧2 + l2∧2]√

l22 + (d – x)2 +
√

l12 + x2

l′[x]//Together
– d

√
l12 + x2 + x

√
l12 + x2 + x

√
d2 + l22 – 2dx + x2√

l12 + x2
√

d2 + l22 – 2dx + x2

l[0]//PowerExpand
l1 +

√
d2 + l22

l[d]//PowerExpand√
d2 + l12 + l2

Solve[l′[x]==0, x]{{
x → dl1

l1 – l2

}
,
{

x → dl1

l1 + l2

}}
The result indicates that x = L1D/

(
L1 + L2

)
minimizes L(x). (Note that we ignore

the other value because L1 − L2 < 0.) Moreover, the triangles formed by minimizing

L are similar triangles.

l1
/( dl1

l1 + l2

)
//Simplify

l1 + l2

d

l2
/(

d – dl1
l1 + l2

)
//Simplify

l1 + l2

d

3.2.7 Antidifferentiation

Antiderivatives

f (x) is an antiderivative of f (x) if F ′
(x) = f (x). The symbol∫

f (x) dx
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means “find all antiderivatives of f (x).” Because all antiderivatives of a given

function differ by a constant, we usually find an antiderivative, f (x), of f (x)

and then write ∫
f (x) dx = F (x) + C,

where C represents an arbitrary constant. The command

Integrate[f[x],x]

attempts to find an antiderivative, F (x), of f (x). Instead of using Integrate,

you might prefer to use the button on the BasicMathInput palette to

help you evaluate antiderivatives. Mathematica does not include the “+C”

that we include when writing
∫

f (x) dx = f (x) + C. In the same way as D can

differentiate many functions, Integrate can antidifferentiate many functions.

However, antidifferentiation is a fundamentally difficult procedure so it is

not difficult to find functions f (x) for which the command Integrate[f[x],x]
returns unevaluated.

Example 3.2.21 Evaluate each of the following antiderivatives: (a)
∫ 1

x2
e1/xdx, (b)

∫
x2

cos x dx,

(c)
∫

x2
√

1 + x2 dx, (d)
∫ x2 − x + 2

x3 − x2 + x − 1
dx, and (e)

∫ sin x

x
dx.

Solution Entering

Integrate[1/x∧2 Exp[1/x], x]

– e
1
x

shows us that
∫

1

x2 e1/xdx = −e1/x
+ C. To use the button, first click on the

button, fill in the blanks, and press Enter.

Notice that Mathematica does not automatically include the arbitrary constant, C.

When computing several antiderivatives, you can use Map to apply Integrate to a

list of antiderivatives. However, because Integrate is threadable,

Map[Integrate[#, x]&, list]

returns the same result as Integrate[list, x], which we illustrate to compute (b), (c),

and (d).
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Integrate[{x∧2Cos[x], x∧2Sqrt[1 + x∧2],
(x∧2 – x + 2)/(x∧3 – x∧2 + x – 1)}, x]{

2xCos[x] +
(

– 2 + x2
)

Sin[x], 1

8

(√
1 + x2

(
x + 2x3

)
– ArcSinh[x]

)
,

– ArcTan[x] + Log[ – 1 + x]}

For (e), we see that there is not a “closed form” antiderivative of
∫ sin x

x
dx and the

result is given in terms of a definite integral, the sine integral function:

Si(x) =

∫ x

0

sin t

t
dt.

Integrate[Sin[x]/x,x]
SinIntegral[x]

u-Substitutions

Usually, the first antidifferentiation technique discussed is the method of

u-substitution. Suppose that f (x) is an antiderivative of f (x). Given∫
f
(
g(x)

)
g′(x) dx,

we let u = g(x) so that du = g′(x) dx. Then,∫
f
(
g(x)

)
g′(x) dx =

∫
f (u) du = F (u) + C = F

(
g(x)

)
+ C,

where F (x) is an antiderivative of f (x). After mastering u-substitutions, the

integration by parts formula,∫
u dv = uv −

∫
v du, (3.7)

is introduced.

Example 3.2.22 Evaluate
∫

2
x√

4x − 1 dx.

Solution We use Integrate to evaluate the antiderivative. Notice that the result is very

complicated.

Integrate[2∧x Sqrt[4∧x – 1], x]
(2

x (
21+2xLog[2] – Log[4] –

√
1 – 4xHypergeometric2F1

[
1

2
,

Log[2]

Log[4]
,

Log[8]

Log[4]
, 4x

]
Log[4]))

/(√
– 1 + 4xLog[2]Log[16]

)
Proceeding by hand, we let u = 2

x
. Then, du = 2

x
ln 2 dx or, equivalently,

1

ln 2
du = 2

x dx
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D[2∧x, x]
2xLog[2]

so
∫

2
x√

4x − 1 dx =
1

ln 2

∫ √
u2 − 1 du. We now use Integrate to evaluate∫ √

u2 − 1 du

s1 = Integrate[Sqrt[u∧2 – 1], u]
1

2
u
√

– 1 + u2 – 1

2
Log

[
u +

√
– 1 + u2

]
and then /. (ReplaceAll)/ to replace u with 2

x
.

s1/.u→2∧x
2 – 1+x

√
– 1 + 22x – 1

2
Log

[
2x +

√
– 1 + 22x

]
Clearly, proceeding by hand results in a significantly simpler antiderivative than

using Integrate directly.

As we did with derivatives, with DynamicModule, we create a simple

dynamic that lets you compute the derivative and antiderivative of basic

functions and plot them on a standard viewing window, [− − 5, 5] × [−5, 5].

The layout of Figure 3.31 is primarily determined by Panel, Column, and

Grid.

Panel[DynamicModule[{f = x∧2},
Column[{InputField[Dynamic[f]], Grid[{{“FirstDerivative”,

Panel[Dynamic[D[f, x]//Simplify]]},
{“Antiderivative”,

Panel[Dynamic[Integrate[f, x]//Simplify]]}}],
Dynamic[Plot[Evaluate[Tooltip[{f, D[f, x],

Integrate[f, x]}]], {x, – 5, 5}, PlotRange→ { – 5, 5},
AspectRatio→Automatic]]}]], ImageSize→ {300, 300}]

FIGURE 3.31

Seeing the relationship between the derivative and antiderivative of a function and the

original function
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3.3 INTEGRAL CALCULUS

3.3.1 Area
In integral calculus courses, the definite integral is frequently motivated by

investigating the area under the graph of a positive continuous function

on a closed interval. Let y = f (x) be a nonnegative continuous function

on an interval [a, b] and let n be a positive integer. If we divide [a, b]

into n subintervals of equal length and let
[
xk−1, xk

]
denote the kth subin-

terval, the length of each subinterval is (b − a)/n and xk = a + k b−a
n . The

area bounded by the graphs of y = f (x), x = a, x = b, and the y-axis can be

approximated with the sum

n∑
k=1

f
(
xk

∗) b − a

n
, (3.8)

where xk
∗ ∈ [xk−1, xk]. Typically, we take xk

∗
= xk−1 = a + (k − 1) b−a

n (the

left endpoint of the kth subinterval), xk
∗

= xk−1 = a + k b−a
n (the right end-

point of the kth subinterval), or xk
∗

= 1

2

(
xk−1 + xk

)
= a + 1

2
(2k − 1) b−a

n (the

midpoint of the kth subinterval). For these choices of xk
∗
, (3.8) becomes

b − a

n

n∑
k=1

f

(
a + (k − 1)

b − a

n

)
(3.9)

b − a

n

n∑
k=1

f

(
a + k

b − a

n

)
, and (3.10)

b − a

n

n∑
k=1

f

(
a +

1

2
(2k − 1)

b − a

n

)
, (3.11)

respectively. If y = f (x) is increasing on [a, b], (3.9) is an under approx-

imation and (3.10) is an upper approximation: (3.9) corresponds to an

approximation of the area using n inscribed rectangles; (3.10) corresponds

to an approximation of the area using n circumscribed rectangles. If y =

f (x) is decreasing on [a, b], (3.10) is an under approximation and (3.9) is

an upper approximation: (3.10) corresponds to an approximation of the

area using n inscribed rectangles; (3.9) corresponds to an approximation

of the area using n circumscribed rectangles.

In the following example, we define the functions leftsum[f[x],a,b,n],
middlesum[f[x],a,b,n], and rightsum[f[x],a,b,n] to compute (3.9), (3.11),

and (3.10), respectively, and leftbox[f[x],a,b,n], middlebox[f[x],a,b,n], and

rightbox[f[x],a,b,n] to generate the corresponding graphs. After you have

defined these functions, you can use them with functions y = f (x) that you

define.
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Remark 3.3 To define a function of a single variable, f (x) = expression in x, enter

f[x_]=expression in x. To generate a basic plot of y = f (x) for a ≤ x ≤ b, enter

Plot[f[x],{x,a,b}].

Example 3.3.1 Let f (x) = 9 − 4x2
. Approximate the area bounded by the graph of y = f (x),

x = 0, x = 3/2, and the y-axis using (a) 100 inscribed and (b) 100 circumscribed

rectangles. (c) What is the exact value of the area?

Solution We begin by defining and graphing y = f (x) in Figure 3.32.

f[x–] = 9 – 4x∧2;
Plot[f[x], {x, 0, 3/2}]

The first derivative, f ′
(x) = −8x, is negative on the interval, so f (x) is decreasing

on [0, 3/2]. Thus, an approximation of the area using 100 inscribed rectangles is

given by (3.10) whereas an approximation of the area using 100 circumscribed

rectangles is given by (3.9). After definining leftsum, rightsum, and middlesum,

these values are computed using leftsum and rightsum. The use of middlesum is

illustrated as well. Approximations of the sums are obtained with N.
N[number] returns

a numerical

approximation of

number.

leftsum[f–, a–, b–, n–] := Module[{ },
(b – a)/n Sum[f/.x –>a + (k – 1)(b – a)/n, {k, 1, n}]];

rightsum[f–, a–, b–, n–] := Module[{ },
(b – a)/n Sum[f/.x –>a + k(b – a)/n, {k, 1, n}]];

middlesum[f–, a–, b–, n–] := Module[{ },
(b – a)/n Sum[f/.x –>a + 1/2(2k – 1)(b – a)/n, {k, 1, n}]];

0.2 0.4 0.6 0.8 1.0 1.2 1.4

2

4

6

8

FIGURE 3.32

f (x) for 0 ≤ x ≤ 3/2
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l100 = leftsum[f[x], 0, 3/2, 100]
N[%]
r100 = rightsum[f[x], 0, 3/2, 100]
N[%]
m100 = middlesum[f[x], 0, 3/2, 100]
N[%]
362691

40000

9.06728
357291

40000

8.93228
720009

80000

9.00011

Observe that these three values appear to be close to 9. In fact, 9 is the exact

value of the area of the region bounded by y = f (x), x = 0, x = 3/2, and the y-

axis. To help us see why this is true, we define leftbox, middlebox, and rightbox
and then use these functions to visualize the situation using n = 4, 16, and 32

rectangles in Figure 3.33.
It is not important

that you understand

the syntax of these

three functions at this

time. Once you have

entered the code, you

can use them to

visualize the process

for your own

functions, y = f (x).

leftbox[f–, a–, b–, n–, opts–––] := Module[{z, p1, recs, ls},
z[k–] = a + (b – a)k/n;
p1 = Plot[f, {x, a, b}, PlotRange→All,

PlotStyle –>{{Thickness[.01], GrayLevel[.3]}},
DisplayFunction –>Identity];

recs = Table[Rectangle[{z[k – 1], 0}, {z[k], f/.x –>z[k – 1]}], {k, 1, n}];
ls =

Table[Line[{{z[k – 1], 0}, {z[k – 1], f/.x –> z[k – 1]},
{z[k], f/.x –> z[k – 1]},
{z[k], 0}}], {k, 1, n}];

Show[Graphics[{GrayLevel[.8], recs}], Graphics[ls], p1, opts,
Axes –>Automatic, AspectRatio→1,

DisplayFunction – > $DisplayFunction]]

rightbox[f–, a–, b–, n–, opts–––] := Module[{z, p1, recs, ls},
z[k–] = a + (b – a)k/n;
p1 = Plot[f, {x, a, b}, PlotRange→All,

PlotStyle –> {{Thickness[.01], GrayLevel[.3]}},
DisplayFunction –> Identity];

recs = Table[Rectangle[{z[k – 1], 0}, {z[k], f/.x –> z[k]}],
{k, 1, n}];

ls =
Table[Line[{{z[k – 1], 0}, {z[k – 1], f/.x –> z[k]}, {z[k], f/.x –> z[k]},
{z[k], 0}}], {k, 1, n}];

Show[Graphics[{GrayLevel[.8], recs}], Graphics[ls], p1, opts,
Axes –> Automatic, AspectRatio→1,

DisplayFunction –> $DisplayFunction]]
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FIGURE 3.33

f (x) with 4, 16, and 32 rectangles

middlebox[f–, a–, b–, n–, opts–––] := Module[{z, p1, recs, ls},
z[k–] = a + (b – a)k/n;
p1 = Plot[f, {x, a, b}, PlotRange→All,

PlotStyle –> {{Thickness[.01], GrayLevel[.3]}},
DisplayFunction –> Identity];

recs = Table[Rectangle[{z[k – 1], 0}, {z[k], f/.x –> 1/2(z[k – 1] + z[k])}],
{k, 1, n}];

ls = Table[Line[{{z[k – 1], 0}, {z[k – 1], f/.x –> 1/2(z[k – 1] + z[k])},
{z[k], f/.x –> 1/2(z[k – 1] + z[k])}, {z[k], 0}}], {k, 1, n}];

Show[Graphics[{GrayLevel[.8], recs}], Graphics[ls], p1, opts,
Axes –> Automatic, AspectRatio→1,
DisplayFunction –> $DisplayFunction]]
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somegraphs = {{leftbox
[
f[x], 0, 3

2
, 4, DisplayFunction→ Identity

]
,

middlebox
[
f[x], 0, 3

2
, 4, DisplayFunction→ Identity

]
,

rightbox
[
f[x], 0, 3

2
, 4, DisplayFunction→ Identity

]
},

{leftbox
[
f[x], 0, 3

2
, 16, DisplayFunction→ Identity

]
,

middlebox
[
f[x], 0, 3

2
, 16, DisplayFunction→ Identity

]
,

rightbox
[
f[x], 0, 3

2
, 16, DisplayFunction→ Identity

]
},

{leftbox
[
f[x], 0, 3

2
, 32, DisplayFunction→ Identity

]
,

middlebox
[
f[x], 0, 3

2
, 32, DisplayFunction→ Identity

]
,

rightbox
[
f[x], 0, 3

2
, 32, DisplayFunction→ Identity

]
}};

Show[GraphicsGrid[somegraphs]]

Notice that as n increases, the under approximations increase while the upper

approximations decrease.

These graphs help convince us that the limit of the sum as n → ∞ of the

areas of the inscribed and circumscribed rectangles is the same. We compute the

exact value of Eq. (3.9) with leftsum, evaluate and simplify the sum with Simplify,

and compute the limit as n → ∞ with Limit. We see that the limit is 9.

ls = leftsum[f[x], 0, 3/2, n]
ls2 = Simplify[ls]
Limit[ls2, n –> Infinity]
9(1 + n)( – 1 + 4n)

4n2

9(1 + n)( – 1 + 4n)

4n2

9

Similar calculations are carried out for (3.10) and again we see that the limit is 9.

We conclude that the exact value of the area is 9.

rs = rightsum[f[x], 0, 3/2, n]
rs2 = Simplify[rs]
Limit[rs2, n –> Infinity]
9( – 1 + n)(1 + 4n)

4n2

9( – 1 + n)(1 + 4n)

4n2

9

For illustrative purposes, we confirm this result with middlesum.

ms = middlesum[f[x], 0, 3/2, n]
ms2 = Simplify[ms]
Limit[ms2, n –> Infinity]
9(1+8n2)

8n2

9 + 9

8n2

9

As illustrated previously, with Manipulate, you can experiment with different

functions and different n values. First, we define a set of “typical” functions.
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quad[x–] = 100 – x∧2;
cubic[x–] = 4/9 x∧3 – 49/9x∧2 + 100;
rational[x–] = 100/(x∧2 + 1);
root[x–] = Sqrt[10 – x];
sin[x–] = 75Sin[Pi x/5];

Next, we use Manipulate to create an object that allows us to experiment with how

“typical” functions react to changes in n using left, middle, and right-hand endpoint

approximations for computations of Riemann sums. In the resulting Manipulate
object, n = 4 rectangles is the default; you can choose n-values from 0 to 100.

The value of the corresponding Riemann sum is shown below the graphic. See

Figure 3.34.
How does the

Manipulate object

change if you remove

Transpose from the

command?

Manipulate[Show[GraphicsGrid[{{leftbox[f[x], 0, 10, n],
Graphics[{Inset[leftsum[f[x], 0, 10, n]//N, {0, 0}]}]},

{middlebox[f[x], 0, 10, n],
Graphics[{Inset[middlesum[f[x], 0, 10, n]//N, {0, 0}]}]},

FIGURE 3.34

With Manipulate, we can investigate Riemann sum approximations and their graphical

representations for various functions
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{rightbox[f[x], 0, 10, n],
Graphics[{Inset[rightsum[f[x], 0, 10, n] / /N, {0, 0}]}]}}//
Transpose]], {{f, quad}, {quad, cubic, rational, root, sin }},

{{n, 4}, 0, 100, 1}]

3.3.2 The Definite Integral
In integral calculus courses, we formally learn that the definite integral
of the function y = f (x) from x = a to x = b is∫ b

a

f (x) dx = lim
|P|→0

n∑
k=1

f
(
xk

∗)�xk, (3.12)

provided that the limit exists. In equation (3.12), P = {a = x0 < x1 < x2 <
… < xn = b} is a partition of [a, b], |P | is the norm of P,

|P | = max{xk − xk−1|k = 1, 2, . . . , n},

�xk = xk − xk−1, and xk
∗ ∈ [

xk−1, xk

]
.

The Fundamental Theorem of Calculus provides the fundamental

relationship between differentiation and integration.

Theorem 6. (The Fundamental Theorem of Calculus). Suppose that
y = f (x) is continuous on [a, b].

1. If f (x) =
∫ x
a f (t) dt, then F is an antiderivative of f: F′

(x) = f (x).

2. If G is any antiderivative of f, then
∫b
a f (x) dx = G(b) − G(a).

Mathematica’s Integrate command can compute many definite integrals. The

command

Integrate[f[x],{x,a,b}]

attempts to compute
∫b
a f (x) dx. Because integration is a fundamentally dif-

ficult procedure, it is easy to create integrals for which the exact value

cannot be found explicitly. In those cases, use N to obtain an approxima-

tion of its value or obtain a numerical approximation of the integral directly

with

NIntegrate[f[x],{x,a,b}]

In the same way as you use the button to compute antiderivatives, you

can use the button to compute definite integrals. If the result returned

is unevaluated, use N to obtain a numerical approximation of the value of

the integral or use NIntegrate.
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Example 3.3.2 Evaluate (a)
∫ 4

1

(
x2

+ 1
)

/
√

x dx; (b)
∫√�/2

0
x cos x2 dx; (c)

∫�

0
e2x

sin
2

2x dx;

(d)
∫ 1

0

2√
�

e−x2

dx; and (e)
∫ 0

−1

3
√

u du.

Solution We evaluate (a)–(c) directly with Integrate.

Integrate[(x∧2 + 1)/Sqrt[x], {x, 1, 4}]
72

5

Integrate[x Cos[x∧2], {x, 0, Sqrt[Pi/2]}]
1

2

Integrate[Exp[2x]Sin[2x]∧2,{x,0,Pi}]
1

5

(
– 1 + e2�)

For (d), the result returned is in terms of the error function, Erf[x], which is

defined by the integral

Erf[x] =
2√
�

∫ x

0

e−t2 dt.

Integrate[2/Sqrt[Pi]Exp[ – x∧2], {x, 0, 1}]
Erf[1]

We use N to obtain an approximation of the value of the definite integral.

Integrate[2/Sqrt[Pi]Exp[ – x∧2], {x, 0, 1}]//N
0.842701

(e) Recall that Mathematica does not return a real number when we compute odd

roots of negative numbers, so the following result would be surprising to many

students in an introductory calculus course because it is complex.

See Chapter 2,

Example 2.1.3. Integrate[u∧(1/3), {u, – 1, 0}]
3

4
( – 1)1/3

Therefore, we load the RealOnly package contained in the Miscellaneous
directory so that Mathematica returns the real-valued third root of u.

<< Miscellaneous`RealOnly`
Integrate[u∧(1/3), {u, – 1, 0}]
– 3

4

Improper integrals are computed using Integrate in the same way as other

definite integrals.
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Example 3.3.3 Evaluate (a)
∫ 1

0

ln x√
x

dx; (b)
∫∞
−∞

2√
�

e−x2

dx; (c)
∫∞

1

1

x
√

x2 − 1
dx; (d)

∫∞
0

1

x2 + x4
dx;

(e)
∫ 4

2

1

3
√

(x − 3)2

dx; and (f)
∫∞
−∞

1

x2 + x − 6
dx.

Solution (a) This is an improper integral because the integrand is discontinuous on the

interval [0, 1] but we see that the improper integral converges to −4.

Integrate[Log[x]/Sqrt[x], {x, 0, 1}]
– 4

(b) This is an improper integral because the interval of integration is infinite but we

see that the improper integral converges to 2.

Integrate[2/Sqrt[Pi]Exp[ – x∧2], {x, – Infinity, Infinity}]
2

(c) This is an improper integral because the integrand is discontinuous on the

interval of integration and because the interval of integration is infinite but we see

that the improper integral converges to �/2.

Integrate[1/(x , Sqrt[x∧2 – 1]), {x, 1, Infinity}]
�
2

(d) As with (c), this is an improper integral because the integrand is discontinuous

on the interval of integration and because the interval of integration is infinite but

we see that the improper integral diverges to ∞.

(e) Recall that Mathematica does not return a real number when we compute

odd roots of negative numbers, so the following result would be surprising to

many students in an introductory calculus course because it contains imaginary

numbers.

Integrate[1/(x – 3)∧(2/3), {x, 2, 4}]
3 – 3( – 1)1/3

Therefore, we load the RealOnly package contained in the Miscellaneous
directory so that Mathematica returns the real-valued third root of x − 3.

You do not need to

reload the RealOnly
package if you have

already loaded it

during your current
Mathematica session.
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<< Miscellaneous`RealOnly`
Integrate[1/(x – 3)∧(2/3), {x, 2, 4}]
6

(f) In this case, Mathematica warns us that the improper integral diverges.

To help us understand why the improper integral diverges, we note that

1

x2 + x − 6
=

1

5

(
1

x − 2
− 1

x + 3

)
and

∫
1

x2 + x − 6
dx =

∫
1

5

(
1

x − 2
− 1

x + 3

)
dx =

1

5
ln

(
x − 2

x + 3

)
+ C.

Integrate[1/(x∧2 + x – 6), x]
1

5
Log[ – 2 + x] – 1

5
Log[3 + x]

Hence, the integral is improper because the interval of integration is infinite and

because the integrand is discontinuous on the interval of integration so
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∫∞

−∞

1

x2 + x − 6
dx =

∫−4

−∞

1

x2 + x − 6
dx +

∫−3

−4

1

x2 + x − 6
dx

+

∫ 0

−3

1

x2 + x − 6
dx +

∫ 2

0

1

x2 + x − 6
dx (3.13)

+

∫ 3

2

1

x2 + x − 6
dx +

∫∞

3

1

x2 + x − 6
dx.

Evaluating each of these integrals,

we conclude that the improper integral diverges because at least one of the

improper integrals in (3.13) diverges.

In many cases, Mathematica can help illustrate the steps carried out

when computing integrals using standard methods of integration such as

u-substitutions and integration by parts.

Example 3.3.4 Evaluate (a)
∫ e3

e

1

x
√

ln x
dx and (b)

∫�/4

0
x sin 2x dx.

Solution (a) We let u = ln x. Then, du = 1/x dx so
∫ e3

e

1

x
√

ln x
dx =

∫ 3

1

1√
u

du =
∫ 3

1
u−1/2du,

which we evaluate with Integrate.

Integrate[1/Sqrt[u], {u, 1, 3}]

2
(

– 1 +
√

3
)
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To evaluate (b), we let u = x ⇒ du = dx and dv = sin 2x dx ⇒ v = − 1

2
cos 2x.The new lower limit

of integration is 1

because if x = e,

u = ln e = 1. The

new upper limit of

integration is 3

because if x = e3
,

u = ln e3
= 3.

u = x;
dv = Sin[2x];
du = D[x, x]
v = Integrate[Sin[2x], x]
1
– 1

2
Cos[2x]

The results mean that∫�/4

0

x sin 2x dx = −1

2
x cos 2x

]�/4

0

+
1

2

∫�/4

0

cos 2x dx

= 0 +
1

2

∫�/4

0

cos 2x dx.

The resulting indefinite integral is evaluated with Integrate.

Integrate[x Sin[2x], x]
– 1

2
xCos[2x] + 1

4
Sin[2x]

Alternatively, we can illustrate the integration by parts calculation.

u = x;
dv = Sin[2x];
du = D[x, x]
v = Integrate[Sin[2x], x]
1

– 1

2
Cos[2x]

uv – Integrate[v du, x]
– 1

2
xCos[2x] + 1

4
Sin[2x]

We use Integrate to evaluate the definite integral.

Integrate[x Sin[2x], {x, 0, Pi/4}]
1

4

3.3.3 Approximating Definite Integrals

Because integration is a fundamentally difficult procedure, Mathematica is

unable to compute a “closed form” of the value of many definite integrals. In

these cases, numerical integration can be used to obtain an approximation

of the definite integral using N together with Integrate or NIntegrate:

NIntegrate[f[x],{x,a,b}]

attempts to approximate
∫b
a f (x) dx.
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Example 3.3.5 Evaluate
∫ 3√�

0
e−x2

cos x3 dx.

Solution In this case, Mathematica is unable to evaluate the integral with Integrate.

We use the

button to complete

the Integrate
command.

i1 = ∫ �1/3

0
Exp[ – x2]Cos[x3]dx∫�1/3

0
e – x2

Cos
[
x3
]

dx

An approximation is obtained with N.

N[i1]
0.701566

Instead of using Integrate followed by N, you can use NIntegrate to numerically

evaluate the integral.

NIntegrate[Exp[ – x2]Cos[x3], {x, 0,p1/3}]
0.701566

returns the same result as that obtained using Integrate followed by N.

In some cases, you may wish to investigate particular numerical methods

that can be used to approximate integrals. To implement numerical meth-

ods such as Simpson’s rule or the trapezoidal rule, redefine the func-

tion leftsum (middlesum or rightsum) discussed previously to perform the

calculation for the desired method.

3.3.4 Area
Suppose that y = f (x) and y = g(x) are continuous on [a, b] and that f (x) ≥
g(x) for a ≤ x ≤ b. The area of the region bounded by the graphs of y =

f (x), y = g(x), x = a, and x = b is

A =

∫ b

a

[
f (x) − g(x)

]
dx. (3.14)

Example 3.3.6 Find the area between the graphs of y = sin x and y = cos x on the interval [0, 2�].

Solution We graph y = sin x and y = cos x on the interval [0, 2�] in Figure 3.35 with Plot. The

graph of y = cos x is dashed. Observe that including the option Filling->{1->{2}}
fills the region between the two plots.

Plot[{Sin[x], Cos[x]}, {x,0,2p}, PlotStyle → {Black, Dashing[{0.01}]},
Filling → {1 → {2}}, AspectRatio → Automatic]

To find the upper and lower limits of integration, we must solve the equation

sin x = cos x for x.

We display a portion of

Mathematica’s error

message because it

indicates that Mathema-

tica cannot find all

solutions of the

equation. In this case,

sin x = cos x has

infinitely many solutions.
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FIGURE 3.35

y = sin x and y = cos x on the interval [0, 2�].

For us the solutions of interest are valid for 0 ≤ x ≤ 2�, which are x = �/4 and

x = 5�/4. We check that these are valid solutions of sin x = cos x with ==; in each

case the returned result is True.

Sin [p4 ]==Cos [p4 ]

Sin [ 5p
4 ]==Cos [ 5p

4 ]
True

True

Hence, the area of the region between the graphs is given by

A =

∫�/4

0

[cos x − sin x] dx +

∫ 5�/4

�/4

[sin x − cos x] dx +

∫ 2�

5�/4

[cos x − sin x] dx. (3.15)

Notice that if we take advantage of symmetry we can simplify (3.15) to

A = 2

∫ 5�/4

�/4

[sin x − cos x] dx. (3.16)

We evaluate (3.16) with Integrate to see that the area of the region between the

two graphs is 4
√

2.

∫
p
4

0
(Cos[x] – Sin[x]) dx + ∫

5p
4
p
4

(Sin[x] – Cos[x]) dx + ∫ 2p
5p
4

(Cos[x] – Sin[x]) dx

4
√

2
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In cases in which we cannot calculate the points of intersection of two

graphs exactly, we can frequently use FindRoot to approximate the points

of intersection.

Example 3.3.7 Let

p(x) =
3

10
x5 − 3x4 + 11x3 − 18x2 + 12x + 1

and

q(x) = −4x3 + 28x2 − 56x + 32.

Approximate the area of the region bounded by the graphs of y = p(x) and y = q(x).

Solution After defining p and q, we graph them on the interval [−1, 5] in Figure 3.36 to

obtain an initial guess of the intersection points of the two graphs.
When you use Tooltip,

you can slide your

cursor over a plot and

the function being

graphed is displayed.

Clear[p,q]
p[x–] = 3x5

10
– 3x4 + 11x3 – 18x2 + 12x + 1;

q[x–] = – 4x3 + 28x2 – 56x + 32;
Plot[ Tooltip[{p[x], q[x]}], {x, – 1, 5}, PlotStyle→ {Black, Gray}]

The x-coordinates of the three intersection points are the solutions of the equation

p(x) = q(x). Although Mathematica can solve this equation exactly, approximate

solutions are more useful for the problem and obtained with NSolve.

Clear[p,q]
p[x–] = 3x5

10
– 3x4 + 11x3 – 18x2 + 12x + 1;

q[x–] = – 4x3 + 28x2 – 56x + 32;
Plot[ Tooltip[{p[x], q[x]}], {x, – 1, 5}, PlotStyle→ {Black, Gray}]

21 1 2 3 4 5

220

210

10

20

30

FIGURE 3.36

p and q on the interval [−1, 5].
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intpts = NRoots[p[x]==q[x], x]
x==0.772058‖x==1.5355 – 3.57094i‖x==1.5355 + 3.57094i‖

x==2.29182‖x==3.86513

The numbers are extracted from the list with Part ([[...]]). For example, 0.772058

is the second part of the first part of intpts. Counting from left to right, 2.29182 is

the second part of the fourth part of intpts.

x1 = intpts[[1, 2]]
x2 = intpts[[4, 2]]
x3 = intpts[[5, 2]]
0.772058

2.29182

3.86513

Using the roots to the equation p(x) = q(x) and the graph we see that p(x) ≥
q(x) for 0.772 ≤ x ≤ 2.292 and q(x) ≥ p(x) for 2.292 ≤ x ≤ 3.865. Hence, an

approximation of the area bounded by p and q is given by the sum∫ 2.292

0.772

[
p(x) − q(x)

]
dx +

∫ 3.865

2.292

[
q(x) − p(x)

]
dx.

These two integrals are computed with Integrate and NIntegrate. As expected,

the two values are the same.

∫ x2
x1

(p[x] – q[x]) dx + ∫ x3
x2

(q[x] – p[x]) dx
12.1951

NIntegrate[p[x] – q[x], {x, x1, x2}] + NIntegrate[q[x] – p[x], {x, x2, x3}]
12.1951

We conclude that the area is approximately 12.195.

Parametric Equations

If the curve, C, defined parametrically by x = x(t), y = y(t), a ≤ t ≤ b is a

nonnegative continuous function of x and x(a) < x(b), the area under the

graph of C and above the x-axis is

Graphically, y is a

function of x,

y = y(x), if the graph

of y = y(x) passes

the vertical line test. ∫ x(b)

x(a)

y dx =

∫ b

a

y(t)x′(t)dt.

Example 3.3.8 (The Astroid). Find the area enclosed by the astroid x = sin
3 t, y = cos

3 t,

0 ≤ t ≤ 2�.

Solution We begin by defining x and y and then graphing the astroid with ParametricPlot
in Figure 3.37.

x[t–] = Sin[t]∧3;
y[t–] = Cos[t]∧3;
ParametricPlot[{x[t], y[t]}, {t, 0, 2Pi}, AspectRatio –>Automatic]
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FIGURE 3.37

The astroid x = sin
3 t, y = cos

3 t, 0 ≤ t ≤ 2�.

Observe that x(0) = 0 and x(�/2) = 1, and the graph of the astroid in the first quad-

rant is given by x = sin
3 t, y = cos

3 t, 0 ≤ t ≤ �/2. Hence, the area of the astroid in

the first quadrant is given by

∫�/2

0

y(t)x′(t) dt = 3

∫�/2

0

sin2 t cos4 t dt

and the total area is given by

A = 4

∫�/2

0

y(t)x′(t) dt = 12

∫�/2

0

sin2 t cos4 t dt =
3

8
� ≈ 1.178,

which is computed with Integrate and then approximated with N.

area = 4Integrate[y[t]x′[t], {t, 0, Pi/2}]
3�
8

N[area]
1.1781
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Polar Coordinates

For problems involving “circular symmetry,” it is often easier to work in

polar coordinates. The relationship between (x, y) in rectangular coordi-

nates and (r, �) in polar coordinates is given by

x = r cos � y = r sin �

and

r2 = x2 + y2 tan � =
y

x
.

If r = f (�) is continuous and nonnegative for � ≤ � ≤ �, then the area A
of the region enclosed by the graphs of r = f (�), � = �, and � = � is

A =
1

2

∫�

�

[
f
(
�
)]2

d� =
1

2

∫�

�

r2 d�.

Example 3.3.9 (Lemniscate of Bernoulli). The lemniscate of Bernoulli is given by(
x2 + y2

)2
= a2

(
x2 − y2

)
,

where a is a constant. (a) Graph the lemniscate of Bernoulli if a = 2. (b) Find the

area of the region bounded by the lemniscate of Bernoulli.

Solution This problem is much easier solved in polar coordinates, so we first convert the

equation from rectangular to polar coordinates with ReplaceAll ( /.) and then solve

for r with Solve.

lofb = (x∧2 + y∧2)∧2==a∧2(x∧2 – y∧2);
topolar = lofb/.{x –>rCos[t], y –>rSin[t]}
(r2Cos[t]2 + r2Sin[t]2)2==a2(r2Cos[t]2 – r2Sin[t]2)

Solve[topolar, r]//Simplify{
{r → 0}, {r → 0},

{
r → –

√
a2Cos[2t]

}
,
{

r →
√

a2Cos[2t]
}}

These results indicate that an equation of the lemniscate in polar coordinates is

r2
= a2

cos 2�. The graph of the lemniscate is then generated in Figure 3.38 (top)

using PolarPlot. The portion of the lemniscate in quadrant one is obtained by

graphing r = 2 cos 2�, 0 ≤ � ≤ �/4.

p1 = PolarPlot[{ – 2Sqrt[Cos[2t]], 2Sqrt[Cos[2t]]}, {t, 0, 2Pi}];
p2 = PolarPlot[2Sqrt[Cos[2t]], {t, 0, Pi/4}];
Show[GraphicsColumn[{p1, p2}]]

Then, taking advantage of symmetry, the area of the lemniscate is given by

A = 2 · 1

2

∫�/4

−�/4

r2 d� = 2

∫�/4

0

r2 d� = 2

∫�/4

0

a2 cos 2� d� = a2,
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FIGURE 3.38

(Top) The lemniscate. (Bottom) The portion of the lemniscate in quadrant 1

which we calculate with Integrate.

Integrate[2a∧2 Cos[2t], {t, 0, Pi/4}]
a2

3.3.5 Arc Length
Let y = f (x) be a function for which f ′(x) is continuous on an interval

[a, b]. Then the arc length of the graph of y = f (x) from x = a to x = b is

given by

L =

∫ b

a

√(
dy

dx

)2

+ 1 dx. (3.17)

The resulting definite integrals used for determining arc length are usu-

ally difficult to compute because they involve a radical. In these situations,

Mathematica is helpful with approximating solutions to these types of

problems.
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Example 3.3.10 Find the length of the graph of y =
x4

8
+

1

4x2
from (a) x = 1 to x = 2 and from

(b) x = −2 to x = −1.

Solution With no restrictions on the value of x,
√

x2 = | x |. Generally, Mathematica does not

automatically algebraically simplify

√(
dy/dx

)2
+ 1 because Mathematica does not

know if x is positive or negative.

y[x–] = x∧4/8 + 1/(4x∧2);
i1 = Factor[y′[x]∧2 + 1]
(1 + x2)

2
(1 – x2 + x4)

2

4x6

i2 = PowerExpand[Sqrt[i1]]
(1 + x2)(1 – x2 + x4)

2x3

PowerExpand[expr]
simplifies radicals in

the expression expr
assuming that all

variables are positive.

In fact, for (b), x is negative so
1

2

√(
x6

+ 1
)2

x6
= −1

2

x6
+ 1

x3
. Mathematica simplifies

1

2

√(
x6

+ 1
)2

x6
=

1

2

x6
+ 1

x3
and correctly evaluates the arc length integral (3.17)

for (a).

Integrate[Sqrt[y′[x]∧2 + 1], {x, 1, 2}]
33

16

For (b), we compute the arc length integral (3.17).

Integrate[Sqrt[y′[x]∧2 + 1], {x, – 2, – 1}]
33

16

As we expect, both values are the same.

Parametric Equations

If the smooth curve, C, defined parametrically by x = x(t), y = y(t), t ∈ [a, b]

is traversed exactly once as t increases from t = a to t = b, the arc length

of C is given by

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (3.18)

C is smooth if both

x′
(t) and y′

(t) are

continuous on (a, b)

and not simultane-

ously zero for

t ∈ (a, b).

Example 3.3.11 Find the length of the graph of x =
√

2t2
, y = 2t − 1

2
t3

, −2 ≤ t ≤ 2.

Solution For illustrative purposes, we graph x =
√

2t2
, y = 2t − 1

2
t3

for −3 ≤ t ≤ 3 and

−2 ≤ t ≤ 2 (thickened) in Figure 3.39.

x[t–] = t∧2 Sqrt[2]; y[t–] = 2t – 1/2t∧3;
p1 = ParametricPlot[{x[t], y[t]}, {t, – 3, 3}];
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FIGURE 3.39

x =
√

2t2
, y = 2t − 1

2
t3

p2 = ParametricPlot[{x[t], y[t]}, {t, – 2, 2}, PlotStyle –>Thickness[.01]];
Show[p1, p2, PlotRange –>All]

Mathematica is able to compute the exact value of the arc length (3.18), although

the result is quite complicated. For length considerations, the result of entering the

i1 command is not displayed here.

Factor[x′[t]∧2 + y′[t]∧2]
1

4

(
4 – 4t + 3t2

) (
4 + 4t + 3t2

)
i1 = Integrate[2 Sqrt[x′[t]∧2 + y′[t]∧2], {t, 0, 2}]

A more meaningful approximation is obtained with N or using NIntegrate.

N[i1]
13.7099 + 0.i

NIntegrate[2Sqrt[x′[t]∧2 + y′[t]∧2], {t, 0, 2}]
13.7099

We conclude that the arc length is approximately 13.71.
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Polar Coordinates

If the smooth polar curve C given by r = f(�), � ≤ � ≤ � is traversed exactly

once as � increases from � to �, the arc length of C is given by

L =

∫�

�

√(
dr

d�

)2

+ r2 d� (3.19)

Example 3.3.12 Find the length of the graph of r = �, 0 ≤ � ≤ 10�.

Solution We begin by defining r and then graphing r with PolarPlot in Figure 3.40.

r[t–] = t;
PolarPlot[r[t], {t, 0, 10Pi}, AspectRatio –>Automatic]

Using (3.19), the length of the graph of r is given by
∫ 10�

0

√
1 + �2 d�. The exact

value is computed with Integrate

ev = Integrate[Sqrt[r′[t]∧2 + r[t]∧2], {t, 0, 10Pi}]
5�

√
1 + 100�2 + 1

2
ArcSinh[10�]

and then approximated with N.

220 210 10 20 30

230

220

210

10

20

FIGURE 3.40

r = � for 0 ≤ � ≤ 10�
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N[ev]
495.801

We conclude that the length of the graph is approximately 495.8.

3.3.6 Solids of Revolution

Volume

Let y = f (x) be a nonnegative continuous function on [a, b]. The volume
of the solid of revolution obtained by revolving the region bounded by the

graphs of y = f (x), x = a, x = b, and the x-axis about the x-axis is given by

V = �

∫ b

a

[
f (x)

]2
dx. (3.20)

If 0 ≤ a < b, the volume of the solid of revolution obtained by revolving

the region bounded by the graphs of y = f (x), x = a, x = b, and the x-axis

about the y-axis is given by

V = 2�

∫ b

a

x f (x) dx. (3.21)

Example 3.3.13 Let g(x) = x sin
2 x. Find the volume of the solid obtained by revolving the region

bounded by the graphs of y = g(x), x = 0, x = �, and the x-axis about (a) the x-axis

and (b) the y-axis.

Solution After defining g, we graph g on the interval [0, �] in Figure 3.41(a).

With Mathematica 6,

for three-dimensional

graphics, you can

adjust the viewpoint

by clicking on the

three-dimensional

graphics object and

dragging to the

desired viewing

angle.

g[x–] = xSin[x]∧2;
p1 = Plot[g[x], {x, 0, Pi}, AspectRatio –>Automatic];
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FIGURE 3.41

(a) g(x) for 0 ≤ x ≤ �. (b) g(x) revolved about the x-axis. (c) g(x) revolved about the

y-axis
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The volume of the solid obtained by revolving the region about the x-axis is given

by (3.20), whereas the volume of the solid obtained by revolving the region about

the y-axis is given by (3.21). These integrals are computed with Integrate and

named xvol and yvol, respectively. We use N to approximate each volume.

xvol = Integrate[Pi g[x]∧2, {x, 0, Pi}]
N[xvol]
1

64
�2

(
– 15 + 8�2

)
9.86295

yvol = Integrate[2 Pi x g[x], {x, 0, Pi}]
N[yvol]
1

6
�2

(
– 3 + 2�2

)
27.5349

We can use ParametricPlot3D to visualize the resulting solids by parametrically

graphing the equations given by

⎧⎪⎨
⎪⎩

x = r cos t

y = r sin t

z = g(r)

for r between 0 and � and t between −� and � to visualize the graph of the solid

obtained by revolving the region about the y-axis and by parametrically graphing

the equations given by ⎧⎪⎨
⎪⎩

x = r

y = g(r) cos t

z = g(r) sin t

for r between 0 and � and t between −� and � to visualize the graph of the

solid obtained by revolving the region about the x-axis. (See Figures 3.41(b) and

3.41(c).) In this case, we identify the z-axis as the y-axis. Notice that we are

simply using polar coordinates for the x- and y-coordinates, and the height above

the x,y-plane is given by z = g(r) because r is replacing x in the new coordinate

system.

p2 = ParametricPlot3D[{r, g[r]Cos[t], g[r]Sin[t]}, {r, 0, Pi},
{t, 0, 2Pi}, PlotPoints –> {30, 30}];

p3 = ParametricPlot3D[{r Cos[t], r Sin[t], g[r]}, {r, 0, Pi}, {t, 0, 2Pi},
PlotPoints –> {30, 30}];

p1, p2, and p3 are shown together side-by-side in Figure 3.41 using Show
together with GraphicsRow.

Show[GraphicsRow[{p1, p2, p3}]]

We now demonstrate a volume problem that requires the method of disks.
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Example 3.3.14 Let f (x) = e−(x−3)
2

cos[4(x−3)]. Approximate the volume of the solid obtained by

revolving the region bounded by the graphs of y = f (x), x = 1, x = 5, and the

x-axis about the x-axis.

Solution Proceeding as in the previous example, we first define and graph f on the interval

[1, 5] in Figure 3.42(a).

f[x–] = Exp[ – (x – 3)∧2Cos[4(x – 3)]];
p1 = Plot[f[x], {x, 1, 5}, AspectRatio –>Automatic];

In this case, an approximation is desired so we use NIntegrate to approximate the

integral V =
∫ 5

1
�
[

f (x)
]2

dx.

NIntegrate[Pi f[x]∧2, {x, 1, 5}]
16.0762

In the same manner as before, ParametricPlot3D can be used to visualize the

resulting solid by graphing the set of equations given parametrically by⎧⎪⎨
⎪⎩

x = r

y = f (r) cos t

z = f (r) sin t

for r between 1 and 5 and t between 0 and 2�. In this case, polar coordinates

are used in the y, z-plane, with the distance from the x-axis given by f (x). Because

r replaces x in the new coordinate system, f (x) becomes f (r) in these equations.

See Figure 3.42(b).
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FIGURE 3.42

(a) f (x) for 1 ≤ x ≤ 5. (b) f (x) revolved about the x-axis
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p2 = ParametricPlot3D[{r, f[r]Cos[t], f[r]Sin[t]}, {r, 1, 5},
{t, 0, 2Pi}, PlotPoints –>{45, 35}];

Show[GraphicsRow[{p1, p2}]]

When revolving a curve about the y-axis, you can use RevolutionPlot3D
rather than the parametrization given previously.

Example 3.3.15 Let f (x) = exp
(−2(x − 2)

2
)

+ exp
(−(x − 4)

2
)

for 0 ≤ x ≤ 6. Find the minimum and

maximum values of f (x) on [0, 6].

Solution (a) Although Maximize and Minimize cannot find the exact maximum and minimum

values, using N or NMaximize and NMinimize gives accurate approximations.
NMaximize and

NMinimize work in

the same way as

Maximize and

Minimize but return

approximations

rather than exact

results.

f[x–] = Exp[ – 2(x – 2)∧2] + Exp[ – (x – 4)∧2];
Maximize[f[x], x]
Maximize

[
e – ( – 4+x)2 + e – 2( – 2+x)2 , x

]
Maximize[f[x], x]//N
{1.01903, {x → 2.01962}}
NMaximize[{f[x], 0≤ x≤ 6}, x]
{1.00034, {x → 3.99864}}
Minimize[{f[x], 0≤ x≤ 6}, x]
Minimize

[{
e – ( – 4+x)2 + e – 2( – 2+x)2 , 0 ≤ x ≤ 6

}
, x
]

Minimize[{f[x], 0≤ x≤ 6}, x]//N
{0.495486, {x → 2.92167}}
NMinimize[{f[x], 0≤ x≤ 6}, x]//N
{0.495486, {x → 2.92167}}

We double check these results by graphing f (x) and f ′
(x) in Figure 3.43 and then

using FindRoot to approximate the critical numbers.
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FIGURE 3.43

We use the graph of f ′(x) to help us estimate the initial values to approximate the

critical numbers with FindRoot
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pf1 = Plot[f[x], {x, 0, 6}]
pf2 = Plot[Tooltip[{f[x], f′[x]}], {x, 0, 6}]
Show[GraphicsRow[{pf1, pf2}]]
Map[FindRoot[f′[x]==0, {x, #1}]&, {2, 3, 4}]
{{x → 2.01962}, {x → 2.92167}, {x → 3.99864}}
(b) Mathematica finds the exact volume of the solids although the results are

expressed in terms of the Error function, Erf.

Integrate[Pi x f[x], {x, 0, 6}]
1

4e32 �
(

– 1 + 2e16 + e24 – 2e28 + 2e32
√

� (4Erf[2] + 4Erf[4]

+
√

2
(
Erf

[
2
√

2
]

+ Erf
[
4
√

2
])))

NIntegrate[Pi x f[x], {x, 0, 6}]
30.0673

Integrate[Pi f[x]∧2, {x, 0, 6}]
1

12e8/3
�3/2

(
3e8/3

(
Erf[4] + Erf[8] +

√
2
(
Erf

[
2
√

2
]

+ Erf
[
4
√

2
]))

+ 4
√

3
(
Erf

[
8√
3

]
+ Erf

[
10√

3

]))
NIntegrate[Pi f[x]∧2, {x, 0, 6}]
7.1682

To visualize the solid revolved about the y-axis, we use RevolutionPlot3D in p1.

We generate the curve in p2, a set of axes, and a representative “slice” of the

curve. See Figure 3.44(a). Next, we show the solid together with a representative

shell. See Figure 3.44(b).

p1 = RevolutionPlot3D[f[x], {x, 1, 5},
BoxRatios→ {2, 2, 1}, PlotRange→ {{ – 5, 5}, { – 5, 5}, {0, 5/4}},

Mesh→None, PlotStyle→Opacity[.4],
ColorFunction→ “LightTemperatureMap”];

p2 = ParametricPlot3D[{x, 0, Exp[ – 2(x – 2)∧2] + Exp[ – (x – 4)∧2]},
{x, 1, 5}, {t, 0, 2Pi},

a b c

FIGURE 3.44

(a) The solid. (b) The solid with a “typical” shell. (c) Several shells
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PlotStyle→Thickness[.05], BoxRatios→ {2, 2, 1},
Axes→Automatic, Boxed→False];

p3 = ParametricPlot3D[{x, 0, 0}, {x, – 5, 5}, {t, 0, 2Pi},
PlotStyle→ {Gray, Thickness[.075]}, BoxRatios→ {2, 2, 1},

Axes→Automatic, Boxed→False];
p4 = ParametricPlot3D[{0, 0, x}, {x, 0, 5/4}, {t, 0, 2Pi},

PlotStyle→ {Gray, Thickness[.1]}, BoxRatios→ {2, 2, 1},
Axes→Automatic, Boxed→False];

p5 = Graphics3D[{Gray, Thickness[.01], Line[{{3.6, 0, 0},
{3.6, 0, Exp[ – 2(3.6 – 2)∧2] + Exp[ – (3.6 – 4)∧2]}}]}];

p6 = ParametricPlot3D[{3.6Cos[t], 3.6Sin[t], z}, {t, 0, 2Pi},
{z, 0, Exp[ – 2(3.6 – 2)∧2] + Exp[ – (3.6 – 4)∧2]}, Mesh→None,

PlotStyle→Opacity[.8], ColorFunction→ “TemperatureMap”];
g1 = Show[p1, p2, p3, p4, p5, Boxed→False, Axes→None]
g2 = Show[p1, p2, p3, p4, p5, p6, Boxed→False, Axes→None]

Finally, we show the solid together with several shells in Figure 3.44(c).

p7 = Table[ParametricPlot3D[{sp[[i]]Cos[t], sp[[i]]Sin[t], z},
{t, 0, 2Pi},
{z, 0, Exp[ – 2(sp[[i]] – 2)∧2] + Exp[ – (sp[[i]] – 4)∧2]},

Mesh→None,
PlotStyle→Opacity[.8],
ColorFunction→ “TemperatureMap”], {i, 1, Length[sp]}];

g3 = Show[p1, p2, p3, p4, p5, p7, Boxed→False, Axes→None]
Show[GraphicsRow[{g1, g2, g3}]]

With a Do loop you can generate an animation of the process.
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For revolving f (x) about the x-axis, we proceed in much the same way. First,

we plot f (x) with a set of axes in space.

f[x–] = Exp[ – 2(x – 2)∧2] + Exp[ – (x – 4)∧2];
p1 = ParametricPlot3D[{x, 0, f[x]}, {x, 0, 6}, PlotStyle→ {Thick, Black},

PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}}, BoxRatios→ {1, 1, 1}];
p1b = ParametricPlot3D[{x, 0, – f[x]}, {x, 0, 6}, PlotStyle→ {Thick, Black},

PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}}, BoxRatios→ {1, 1, 1}];
p2 = ParametricPlot3D[{x, 0, 0}, {x, 0, 6}, {t, 0, 2Pi},

PlotStyle→ {Gray, Thickness[.075]},
PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}}, BoxRatios→ {1, 1, 1}];

p3 = ParametricPlot3D[{0, 0, x}, {x, – 3/2, 3/2}, {t, 0, 2Pi},
PlotStyle→ {Gray, Thickness[.1]},

PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}}, BoxRatios→ {1, 1, 1}];
Show[p1, p1b, p2, p3]

Next, we generate a basic plot of the solid in p4 and then a set of disks inside

the solid in t3d.

p4 = ParametricPlot3D[{r, f[r]Cos[t], f[r]Sin[t]},
{r, 0, 6}, {t, 0, 2Pi}, PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}},

BoxRatios→ {1, 1, 1}]
t3d = Table[ParametricPlot3D[{x, rf[x]Cos[t], rf[x]Sin[t]}, {r, 0, 1},

{t, 0, 2Pi}, PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}},
BoxRatios→ {1, 1, 1}, ColorFunction→ “TemperatureMap”, Mesh→5],

{x, 0, 6, 6/14}];

Two variations of the solid are plotted in p5 and p6. In each case, we use

MeshFunctions to have the contour lines (mesh) correspond to f (x) values rather

than the rectangular default mesh. In p6 the solid is made transparent with the

Opacity option.

p5 = ParametricPlot3D[{r, f[r]Cos[t], f[r]Sin[t]},
{r, 0, 6}, {t, 0, 2Pi}, PlotRange→ {{0, 6}, { – 3/2, 3/2}, { – 3/2, 3/2}},
BoxRatios→ {1, 1, 1}, MeshFunctions –>{#1&}, Mesh→60]

p6 = ParametricPlot3D[{r, f[r]Cos[t], f[r]Sin[t]},
{r, 0, 6}, {t, 0, 2Pi}, PlotRange→ {{0, 6}, { – 3/2, 3/2},

{ – 3/2, 3/2}},
BoxRatios→ {1, 1, 1}, MeshFunctions –>{#1&}, Mesh→25,

PlotStyle→Opacity[.2],
MeshStyle→ {Gray, Thick}];

Show[p1, p1b, p2, p3, p6, t3d]

Several combinations of the images are shown in Figures 3.45 and 3.46.
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FIGURE 3.45

(a) Seeing f (x) on the solid. (b) Disks in the solid

FIGURE 3.46

(a) f (x) in space. (b) The basic solid. (c) Contours based on f (x) values. (d) Seeing

f (x) on the solid

a b

0
2

4
6

�1
0

1

�1

0

1

0

2
4

6

�1
0

1

�1

0

1



198 CHAPTER 3 Calculus

Show[GraphicsRow[{Show[p1, p1b, p2, p3, p6],
Show[p1, p1b, p2, p3, p6, t3d]}]]

Show[GraphicsGrid[{{Show[p1, p1b, p2, p3], p4},
{p5, Show[p1, p1b, p2, p3, p6]}}]]

To help identify regions, RegionPlot[constraints,{x,a,b},{y,a,b}] attempts

to shade the region in the rectangle [a, b] × [c, d] that satisfies the con-

straints in constraints.

Example 3.3.16 Let g(x) =
√

x, h(x) = x2
, and R be the region bounded by the graphs of g(x) and

h(x). Find the volume of the solid obtained by revolving R about (a) the x-axis and

(b) the y-axis.

Solution We illustrate the use of RegionPlot to help us see R. See Figure 3.47.

g[x–] = Sqrt[x];
h[x–] = x∧2;
p1a = Plot[{Sqrt[x], x∧2}, {x, 0, 2},

PlotRange→ {{0, 2}, {0, 2}}, AspectRatio→Automatic]
p1b = RegionPlot[x∧2≤ y≤Sqrt[x], {x, 0, 2}, {y, 0, 2}]
Show[{p1a, p1b}]
Show[GraphicsRow[{p1a, p1b, Show[{p1a, p1b}]}]]

We plot the solids with ParametricPlot3D and contour lines along the function

values using the MeshFunctions option in Figure 3.48.

p4 = ParametricPlot3D[{{r, g[r]Cos[t], g[r]Sin[t]},
{r, h[r]Cos[t], h[r]Sin[t]}},

{r, 0, 1}, {t, 0, 2Pi}, PlotRange→ {{0, 3/2}, { – 5/4, 5/4}, { – 5/4, 5/4}},
BoxRatios→ {1, 1, 1}, MeshFunctions –>{#1&}]

0.0 0.5 1.0

a b c

1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

FIGURE 3.47

(a) Graphs of f (x) and g(x). (b) The region in [0, 2] × [0, 2] for which x2 ≤ y ≤ √
x.

(c) The two plots displayed together
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a b
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FIGURE 3.48

(a) The solid formed by revolving R about the x-axis. (b) The solid formed by

revolving R about the y-axis

p5 = ParametricPlot3D[{{rCos[t], rSin[t], g[r]},
{rCos[t], rSin[t], h[r]}},

{r, 0, 1}, {t, 0, 2Pi}, PlotRange→ {{ – 5/4, 5/4}, { – 5/4, 5/4}, { – 1/4, 9/4}},
BoxRatios→ {1, 1, 1}, MeshFunctions –>{#1&}]

Show[GraphicsRow[{p4, p5}]]

The volume of each solid is then found with Integrate and approximated with N.

Integrate[Pi(g[x]∧2 – h[x]∧2), {x, 0, 1}]
3�
10

N[%]
0.942478

Integrate[Pix(g[x] – h[x]), {x, 0, 1}]
3�
20

N[%]
0.471239

Surface Area

Let y = f (x) be a nonnegative function for which f ′
(x) is continuous on an

interval [a, b]. Then the surface area of the solid of revolution obtained

by revolving the region bounded by the graphs of y = f (x), x = a, x = b,

and the x-axis about the x-axis is given by

SA = 2�

∫ b

a

f (x)

√
1 +

[
f
′
(x)

]2
dx. (3.22)
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Example 3.3.17 (Gabriel's Horn). Gabriel’s horn is the solid of revolution obtained by revolving the

area of the region bounded by y = 1/x and the x-axis for x ≥ 1 about the x-axis. Show

that the surface area of Gabriel's horn is infinite but that its volume is finite.

Solution After defining f (x) = 1/x, we use ParametricPlot3D to visualize a portion of

Gabriel's horn in Figure 3.49.

f[x–] = 1/x;
ParametricPlot3D[{r, f[r]Cos[t], f[r]Sin[t]}, {r, 1, 10}, {t, 0, 2Pi},

PlotPoints –>{40, 40}, ViewPoint –>{ – 1.509, – 2.739, 1.294}]

Using Eq. (3.22), the surface area of Gabriel's horn is given by the improper integral

SA = 2�

∫∞

1

1

x

√
1 +

1

x4
dx = 2� lim

L→∞

∫ L

1

1

x

√
1 +

1

x4
dx.

step1 = Integrate[2Pi f[x]Sqrt[1 + f′[x]∧2], {x, 1, capl}]

2�If
[

Im[capl]2

( – 1+Re[capl])2
≤ 1&&(Re[capl] ≥ 0‖Im[capl] �= 0),

1

2

(√
2 – ArcSinh[1]

)
+

√
1+ 1

capl4

(
–
√

1+capl4+capl2ArcSinh[capl2]
)

2
√

1+capl4
,

Integrate

[√
1+ 1

x4

x
, {x, 1, capl},

Assumptions →!
(

Im[capl]2

( – 1+Re[capl])2
≤ 1&&(Re[capl] ≥ 0‖Im[capl] �= 0)

)]]
Limit[step1, capl –>Infinity]
∞

On the other hand, using Eq. (3.20) the volume of Gabriel's horn is given by the

improper integral

V = 2�

∫∞

1

1

x2
dx = � lim

L→∞

∫ L

1

1

x2
dx,

which converges to �.

FIGURE 3.49

A portion of Gabriel's horn
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step1 = Integrate[Pi f[x]∧2, {x, 1, capl}]

�If
[
Re[capl] ≥ 0‖Im[capl] �= 0, 1 – 1

capl
,

Integrate
[

1

x2 , {x, 1, capl}, Assumptions →!(Re[capl] ≥ 0‖Im[capl] �= 0)
]]

Limit[step1, capl –>Infinity]
�

Integrate[Pi f[x]∧2, {x, 1, Infinity}]
�

3.4 SERIES

3.4.1 Introduction to Sequences and Series

Sequences and series are usually discussed in the third quarter or second

semester of introductory calculus courses. Most students find that it is one

of the most difficult topics covered in calculus. A sequence is a function

with domain consisting of the positive integers. The terms of the sequence

{an} are a1, a2, a3, . . . . The nth term is an; the (n + 1)st term is an+1. If

limn→∞ an = L, we say that {an} converges to L. If {an} does not converge,

{an} diverges. We can sometimes prove that a sequence converges by

applying the following theorem.

Theorem 7. Every bounded monotonic sequence converges.

A sequence {an} is

monotonic if {an} is

increasing (an+1 ≥ an

for all n) or

decreasing (an+1 ≤ an

for all n).

In particular, Theorem 7 gives us the following special cases.

1. If {an} has positive terms and is eventually decreasing, {an}
converges.

2. If {an} has negative terms and is eventually increasing {an} converges.

After you have defined a sequence, use Table to compute the first few terms

of the sequence.

1. Table[a[n],{n,1,m}] returns the list {a1, a2, a3, . . . , am}.
2. Table[a[n],{n,k,m}] returns {ak, ak+1, ak+2, . . . , am}.

Example 3.4.1 If an =
50

n

n!
, show that limn→∞ an = 0.

Remark 3.4 An extensive database of integer sequences can be found at the On Line Encyclopedia
of Integer Sequences,

http://www.research.att.com/~njas/sequences/Seis.html
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Solution We remark that the symbol n! in the denominator of an represents the

factorial sequence:

n! = n · (n − 1) · (n − 2) · · · · · 2 · 1.

We begin by defining an and then computing the first few terms of the sequence

with Table.

a[n–] := 50∧n/n!;
afewterms = Table[a[n], {n, 1, 10}]{

50, 1250, 62500

3
, 781250

3
, 7812500

3
, 195312500

9
, 9765625000

63
,

61035156250

63
, 3051757812500

567
, 15258789062500

567

}
N[afewterms]
{50., 1250., 20833.3, 260417., 2.60417 × 106, 2.17014 × 107,

1.5501 × 108, 9.68812 × 108, 5.38229 × 109, 2.69114 × 1010}
The first few terms increase in magnitude. In fact, this is further confirmed by

graphing the first few terms of the sequence with ListPlot in Figure 3.50(a). Based

on the graph and the values of the first few terms we might incorrectly conclude

that the sequence diverges.

p1 = ListPlot[afewterms];

However, notice that an+1 =
50

n + 1
an⇒

an+1

an

=
50

n + 1
. Because 50/(n + 1) < 1 for

n > 49, we conclude that the sequence is decreasing for n > 49. Because it has

positive terms, it is bounded below by 0 so the sequence converges by Theorem 7.

Let L = limn→∞ an. Then,

lim
n→∞

an+1 = lim
n→∞

50

n + 1
an

L = lim
n→∞

50

n + 1
· L

L = 0.

2 4 6 8 10

2.3109

4.3109

6.3109

8.3109

1.31010

10 20 30 40 50 60 70

5.31019

1.31020

1.531020

2.31020

2.531020

a b

FIGURE 3.50

(a) The first few terms of an (b) The first 75 terms of an
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When we graph a larger number of terms, it is clear that the limit is 0. (See Figure

3.50(b).) It is a good exercise to show that for any real value of x, limn→∞
xn

n!
= 0.

p2 = ListPlot[Evaluate[ Table[a[k], {k, 1, 75}]]];
Show[GraphicsRow[{p1, p2}]]

An infinite series is a series of the form

∞∑
k=1

ak, (3.23)

where {an} is a sequence. The nth partial sum of (3.23) is

sn =

n∑
k=1

ak = a1 + a2 + · · · + an. (3.24)

Notice that the partial sums of the series (3.23) form a sequence {sn}.
Hence, we say that the infinite series (3.23) converges to L if the sequence

of partial sums {sn} converges to L and write

∞∑
k=1

ak = L.

The infinite series (3.23) diverges if the sequence of partial sums diverges.

Given the infinite series (3.23),

Sum[a[k], {k, 1, n}]

calculates the nth partial sum (3.24). In some cases, if the infinite series

(3.23) converges,

Sum[a[k], {k, 1, Infinity}]

can compute the value of the infinite sum. In addition to using Sum to

compute finitie and infinite sums, you can use the button on the Basic-
MathInput palette to calculate sums. You should think of the Sum function

as a “fragile” command and be certain to carefully examine its results.

Example 3.4.2 Determine whether each series converges or diverges. If the series converges, find

its sum. (a)
∑∞

k=1
(−1)

k+1
; (b)

∑∞
k=2

2

k2 − 1
(c)

∑∞
k=0

ark
.

Solution For (a), we compute the nth partial sum (3.24) in sn with Sum.

sn = Sum[( – 1)∧(k + 1), {k, 1, n}]
1

2

(
1 – ( – 1)n

)
Notice that the odd partial sums are 1: s2n+1 = 1

2

(
(−1)

2n+1+1
+ 1

)
= 1

2
(1 + 1) = 1,

whereas the even partial sums are 0: s2n = 1

2

(
(−1)

2n+1
+ 1

)
= 1

2
(−1 + 1) = 0. We
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confirm that the limit of the partial sums does not exist with Limit. Mathematica's

result indicates that it cannot determine the limit. The series diverges.

Limit[sn, n→ Infinity]
1

2

(
1 – e2iInterval[{0,�}]

)
Similarly, when we attempt to compute the infinite sum with Sum, Mathematica

is able to determine that the partial sums diverge, which means that the infinite

series diverges.

Sum[( – 1)∧(k + 1), {k, 1, Infinity}]
Sum::div : Sum does not converge.〉〉∑∞

k=1
( – 1)1+k

For (b), we have a telescoping series. Using partial fractions,

∞∑
k=2

2

k2 − 1
=

∞∑
k=2

(
1

k − 1
− 1

k + 1

)

=

(
1 − 1

3

)
+

(
1

2
− 1

4

)
+

(
1

3
− 1

5

)
+ · · · +

(
1

n − 2
− 1

n

)

+

(
1

n − 1
− 1

n + 1

)
+ · · · ,

we see that the nth partial sum is given by

sn =
3

2
− 1

n
− 1

n + 1

and sn → 3/2 as n → ∞ so the series converges to 3/2:

∞∑
k=2

2

k2 − 1
=

3

2
.

We perform the same steps with Mathematica using Sum, Apart, and Limit.
Apart computes the

partial fraction

decomposition of a

rational expression.

sn = Sum[1/(k – 1) – 1/(k + 1), {k, 2, n}]
( – 1+n)(2+3n)

2n(1+n)

Apart[sn]
3

2
– 1

n
– 1

1+n

Limit[sn, n→ Infinity]
3

2

(c) A series of the form
∑∞

k=0
ark

is called a geometric series. We compute the

nth partial sum of the geometric series with Sum.

sn = Sum[ar∧k, {k, 0, n}]
a( – 1+r1+n)

– 1+r
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When using Limit to determine the limit of sn as n → ∞, we see that Mathematica

returns the limit unevaluated because Mathematica does not know the value of r.

Limit[sn, n→ Infinity]

Limit

[
a( – 1+r1+n)

– 1+r
, n → ∞

]
In fact, the geometric series diverges if |r| ≥ 1 and converges if |r| < 1. Observe that

if we simply compute the sum with Sum, Mathematica returns a/(1 − r), which is

correct if |r| < 1 but incorrect if |r| ≥ 1.

Sum[ar∧k, {k, 0, Infinity}]
a

1 – r

However, the result of entering

Sum[( – 5/3)∧k, {k, 0, Infinity}]

Sum::div : Sumdoesnotconverge.〉〉∑∞
k=0

(
– 5

3

)k

is correct because the series
∑∞

k=0

(− 5

3

)k
is geometric with |r| = 5/3 ≥ 1 and,

consequently, diverges. Similarly,

Sum[9(1/10)∧k, {k, 1, Infinity}]

1

is correct because
∑∞

k=1
9
(

1

10

)k
is geometric with a = 9/10 and r = 1/10 so the

series converges to
a

1 − r
=

9/10

1 − 1/10
= 1.

3.4.2 Convergence Tests

Frequently used convergence tests are stated in the following theorems.

Theorem 8 (The Divergence Test). Let
∑∞

k=1
ak be an infinite series.

If limk→∞ ak �= 0, then
∑∞

k=1
ak diverges.

Theorem 9 (The Integral Test). Let
∑∞

k=1
ak be an infinite series with

positive terms. If f (x) is a decreasing continuous function for which f (k) =

ak for all k, then
∑∞

k=1
ak and

∫∞
1

f (x) dx either both converge or both
diverge.

Theorem 10 (The Ratio Test). Let
∑∞

k=1
ak be an infinite series with

positive terms and let � = limk→∞
ak+1

ak
.

1. If � < 1,
∑∞

k=1
ak converges.

2. If � > 1,
∑∞

k=1
ak diverges.

3. If � = 1, the ratio test is inconclusive.
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Theorem 11 (The Root Test). Let
∑∞

k=1
ak be an infinite series with

positive terms and let � = limk→∞ k
√

ak.

1. If � < 1,
∑∞

k=1
ak converges.

2. If � > 1,
∑∞

k=1
ak diverges.

3. If � = 1, the root test is inconclusive.

Theorem 12 (The Limit Comparison Test). Let
∑∞

k=1
ak and

∑∞
k=1

bk

be infinite series with positive terms and let L = limk→∞
ak

bk
. If 0 < L < ∞,

then either both series converge or both series diverge.

Example 3.4.3 Determine whether each series converges or diverges. (a)
∑∞

k=1

(
1 +

1

k

)k

;

(b)
∑∞

k=1

1

kp
; (c)

∑∞
k=1

k

3k
; (d)

∑∞
k=1

(k!)
2

(2k)!
; (e)

∑∞
k=1

(
k

4k + 1

)k

; and

(f)
∑∞

k=1

2
√

k + 1

(
√

k + 1)(2k + 1)
.

Solution (a) Using Limit, we see that the limit of the terms is e �= 0 so the series diverges

by the the divergence test, Theorem 8.

Limit[(1 + 1/k)∧k, k→ Infinity]
e

It is a very good exercise to show that the limit of the terms of the series is e by

hand. Let L = limk→∞ (1 + 1/k)
k
. Take the logarithm of each side of this equation

and apply L'Hôpital's rule:

ln L = lim
k→∞

ln

(
1 +

1

k

)k

ln L = lim
k→∞

k ln

(
1 +

1

k

)

ln L = lim
k→∞

ln

(
1 +

1

k

)
1

k

ln L = lim
k→∞

1

1 +
1

k

· − 1

k2

− 1

k2

ln L = 1.

Exponentiating yields L = eln L
= e1

= e. (b) A series of the form
∑∞

k=1

1

kp
(p > 0) is

called a p-series. Let f (x) = x−p
. Then, f (x) is continuous and decreasing for

x ≥ 1, f, (k) = k−p
and
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∫∞

1

x−pdx =

{
∞, if p ≤ 1

1/(p − 1), if p > 1

so the p-series converges if p > 1 and diverges if p ≤ 1. If p = 1, the series
∑∞

k=1

1

k
is called the harmonic series.

s1 = Integrate[x∧( – p), {x, 1, Infinity}]

If
[
Re[p] > 1, 1

−1+p , Integrate
[
x−p

, {x, 1,∞} , Assumptions → Re[p] ≤ 1
] ]

(c) Let f (x) = x · 3−x
. Then, f (k) = k · 3−k

and f (x) is decreasing for x > 1/ ln 3.

f[x–] = x3∧( – x);

Factor[f′[x]]
– 3 – x( – 1 + xLog[3])

Solve[ – 1 + xLog[3]==0, x]{{
x → 1

Log[3]

}}
Using Integrate, we see that the improper integral

∫∞
1

f (x) dx converges.

ival = Integrate[f[x], {x, 1, Infinity}]
N[ival]
1+Log[3]

3Log[3]2

0.579592

Thus, by the integral test, Theorem 9, we conclude that the series

converges. Note that when applying the integral test, if the improper

integral converges, its value is not the value of the sum of the series. In this

case, we see that Mathematica is able to evaluate the sum with Sum and the

series converges to 3/4.

Sum[k3∧( – k), {k, 1, Infinity}]
3

4

(d) If ak contains factorial functions, the ratio test is a good first test to try. After

defining ak we compute

lim
k→∞

ak+1

ak

= lim
k→∞

[(k + 1)!]
2

[2(k + 1)]

(k!)
2

(2k)!

= lim
k→∞

(k + 1)! · (k + 1)!

k! · k!

(2k)!

(2k + 2)!

= lim
k→∞

(k + 1)
2

(2k + 2)(2k + 1)
= lim

k→∞
(k + 1)

2(2k + 1)
=

1

4
.

Because 1/4 < 1, the series converges by the ratio test. We confirm these results

with Mathematica.
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Remark 3.5 Use FullSimplify instead of Simplify to simplify expressions involving factorials.

a[k–] = (k!)∧2/(2k)!;
s1 = FullSimplify[a[k + 1]/a[k]]
1+k

2+4k

Limit[s1, k→ Infinity]
1

4

We illustrate that we can evaluate the sum using Sum and approximate it with N
as follows.

ev = Sum[a[k], {k, 1, Infinity}]
1

27

(
9 + 2

√
3�

)
N[ev]
0.7364

(e) Because

lim
k→∞

k

√(
k

4k + 1

)k

= lim
k→∞

k

4k + 1
=

1

4
< 1,

the series converges by the root test.

a[k–] = (k/(4k + 1))∧k;
Limit[a[k]∧(1/k), k→ Infinity]
1

4

As with (d), we can approximate the sum with N and Sum.

ev = Sum[a[k], {k, 1, Infinity}]∑∞
k=1

(
k

1+4k

)k

N[ev]
0.265757

(f) We use the limit comparison test and compare the series to
∑∞

k=1

√
k

k
√

k
=
∑∞

k=1
1

k ,

which diverges because it is a p-series with p = 1. Because

0 < lim
k→∞

2
√

k+1

(
√

k+1)(2k+1)

1

k

= 1 < ∞

and the harmonic series diverges, the series diverges by the limit comparison test.

a[k–] = (2Sqrt[k] + 1)/((Sqrt[k] + 1)(2k + 1));
b[k–] = 1/k;
Limit[a[k]/b[k], k→ Infinity]
1
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3.4.3 Alternating Series
An alternating series is a series of the form

∞∑
k=1

(−1)kak or

∞∑
k=1

(−1)k+1ak (3.25)

where {ak} is a sequence with positive terms.

Theorem 13 (Alternating Series Test). If {ak} is decreasing and
limk→∞ ak = 0, the alternating series (3.25) converges.

The alternating series (3.25) converges absolutely if
∑∞

k=1
ak converges.

Theorem 14. If the alternating series (3.25) converges absolutely, it
converges.

If the alternating series (3.25) converges but does not converge absolutely,

we say that it conditionally converges.

Example 3.4.4 Determine whether each series converges or diverges. If the series converges,

determine whether the convergence is conditional or absolute. (a)
∑∞

k=1

(−1)
k+1

k
;

(b)
∑∞

k=1
(−1)

k+1 (k + 1)!

4k(k!)2
; and (c)

∑∞
k=1

(−1)
k+1

(
1 +

1

k

)k

.

Solution (a) Because {1/k} is decreasing and 1/k → 0 as k → ∞, the series converges.

The series does not converge absolutely because the harmonic series diverges.

Hence,
∑∞

k=1

(−1)
k+1

k , which is called the alternating harmonic series, converges

conditionally. We see that this series converges to ln 2 with Sum.

a[k–] = ( – 1)∧(k + 1)/k;
Sum[a[k], {k, 1, Infinity}]
Log[2]

(b) We test for absolute convergence first using the ratio test. Because

lim
k→∞

((k + 1) + 1)!

4k+1[(k + 1)!]2

(k + 1)!

4k(k!)2

= lim
k→∞

k + 2

4(k + 1)2
= 0 < 1,

a[k–] = (k + 1)!/(4∧k(k!)∧2);
s1 = FullSimplify[a[k + 1]/a[k]]
Limit[s1, k→ Infinity]

2+k

4(1+k)2

0

the series converges absolutely by the ratio test. Absolute convergence

implies convergence so the series converges. (c) Because limk→∞
(
1 + 1

k

)k
= e,
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limk→∞(−1)
k+1

(
1 + 1

k

)k
does not exist, so the series diverges by the divergence

test. We confirm that the limit of the terms is not zero with Limit.

Sum[( – 1)∧(k + 1)a[k], {k, 1, Infinity}]
– 3+4e1/4

4e1/4

a[k–] = ( – 1)∧(k + 1)(1 + 1/k)∧k;
Sum[a[k], {k, 1, Infinity}]
Sum::div : Sum does not converge.〉〉∑∞

k=1
( – 1)1+k

(
1 + 1

k

)k

Limit[a[k], k→ Infinity]
– e2iInterval[{0,�}]

3.4.4 Power Series
Let x0 be a number. A power series in x − x0 is a series of the form

∞∑
k=0

ak

(
x − x0

)k
. (3.26)

A fundamental problem is determining the values of x, if any, for which the

power series converges, the interval of convergence.

Theorem 15. For the power series (3.26), exactly one of the following
is true.

1. The power series converges absolutely for all values of x. The
interval of convergence is (−∞,∞).

2. There is a positive number r so that the series converges absolutely
if x0 − r < x < x0 + r. The series may or may not converge at x =

x0 − r and x = x0 + r. The interval of convergence will be one of(
x0 − r, x0 + r

)
,
[
x0 − r, x0 + r

)
,
(
x0 − r, x0 + r

]
, or

[
x0 − r, x0 + r

]
.

3. The series converges only if x = x0. The interval of convergence
is {x0}.

Example 3.4.5 Determine the interval of convergence for each of the following power series.

(a)
∑∞

k=0

(−1)
k

(2k + 1)!
x2k+1

; (b)
∑∞

k=0

k!

1000k
(x − 1)

k
; and (c)

∑∞
k=1

2
k

√
k

(x − 4)
k
.

Solution (a) We test for absolute convergence first using the ratio test. Because

lim
k→∞

∣∣∣∣∣∣∣∣
(−1)

k+1

(2(k + 1) + 1)!
x2(k+1)+1

(−1)
k

(2k + 1)!
x2k+1

∣∣∣∣∣∣∣∣ = lim
k→∞

1

2(k + 1)(2k + 3)
x2 = 0 < 1
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a[x–, k–] = ( – 1)∧k/(2k + 1)!x∧(2k + 1);
s1 = FullSimplify[a[x, k + 1]/a[x, k]]
Limit[s1, k→ Infinity]

– x2

6+10k+4k2

0

for all values of x, we conclude that the series converges absolutely for all values

of x; the interval of convergence is (−∞,∞). In fact, we will see later that this

series converges to sin x:

sin x =

∞∑
k=0

(−1)
k+1

(2k + 1)!
x2k+1 = x − 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + …,

which means that the partial sums of the series converge to sin x. Graphically, we

can visualize this by graphing partial sums of the series together with the graph of

y = sin x. Note that the partial sums of a series are a recursively defined function:

sn = sn−1 + an, s0 = a0. We use this observation to define p to be the nth partial sum

of the series. We use the form p[x ,n ]:=p[x,n]=... so that Mathematica remembers

the partial sums computed. That is, once p[x,3] is computed, Mathematica need

not recompute p[x,3] when computing p[x,4].

In Figure 3.51 (top) we graph pn(x) =
∑n

k=0

(−1)
k

(2k+1)!
x2k+1

together with y = sin x for

n = 1, 5, and 10. In the graphs, notice that as n increases, the graphs of pn(x)

more closely resemble the graph of y = sin x.
When you use

Tooltip, placing the

cursor over the plot

shows you the

function being

plotted.

Clear[p]
p[x–, 0] = a[x, 0];
p[x–, n–] := p[x, n] = p[x, n – 1] + a[x, n]
p[x, 2]

x – x3

6
+ x5

120

p1 = Plot[Tooltip[{Sin[x], p[x, 1], p[x, 5], p[x, 10]}],
{x, – 2Pi, 2Pi}, PlotRange→ { – Pi, Pi}, AspectRatio→Automatic];

We use Manipulate to investigate how n affects the situation with

p2 = Manipulate[Plot[Tooltip[{Sin[x], p[x, n]}],
{x, – 4Pi, 4Pi}, PlotRange→ { – Pi, Pi}, AspectRatio→Automatic],

{{n, 5}, 1, 25, 1}];
Show[GraphicsColumn[{p1, p2}]]

(b) As in (a), we test for absolute convergence first using the ratio test:

lim
k→∞

∣∣∣∣∣∣∣
(k + 1)k!

1000k+1
(x − 1)

k+1

k!

1000k
(x − 1)k

∣∣∣∣∣∣∣ =
1

1000
(k + 1)| x − 1| =

{
0, if x = 1

∞, if x �= 1.

a[x–, k–] = k!/1000∧k(x – 1)∧k;
s1 = FullSimplify[a[x, k + 1]/a[x, k]]
Limit[s1, k→ Infinity]
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FIGURE 3.51

(Top) y = sin x together with the graphs of p1(x), p5(x), and p10(x). (Bottom) Using

Manipulate to investigate the situation

(1+k)( – 1+x)

1000

( – 1 + x)∞
Be careful of your interpretation of the result of the Limit command because Mathe-

matica does not consider the case x = 1 separately: If x = 1, the limit is 0. Because

0 < 1, the series converges by the ratio test.

The series converges only if x = 1; the interval of convergence is {1}. You

should observe that if you graph several partial sums for “small” values of n, you

might incorrectly conclude that the series converges.

(c) Use the ratio test to check absolute convergence first:

lim
k→∞

∣∣∣∣∣∣∣∣∣
2

k+1

√
k + 1

(x − 4)
k+1

2
k

√
k

(x − 4)k

∣∣∣∣∣∣∣∣∣
= lim

k→∞
2

√
k

k + 1
|x − 4| = 2|x − 4|.

By the ratio test, the series converges absolutely if 2|x − 4| < 1. We solve this

inequality for x with Reduce to see that 2|x − 4| < 1 if 7/2 < x < 9/2.

Clear[a, s1, k]
a[x–, k–] = 2∧k/Sqrt[k](x – 4)∧k;
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s1 = Simplify[Abs[a[x, k + 1]/a[x, k]]]
Limit[s1, k→ Infinity]

2Abs

[√
k

1+k
( – 4 + x)

]
2Abs[ – 4 + x]

Reduce[2Abs[x – 4] < 1, x]
7

2
< Re[x] < 9

2
&& – 1

2

√
– 63 + 32Re[x] – 4Re[x]2 < Im[x] <

1

2

√
– 63 + 32Re[x] – 4Re[x]2

From the output, we see that for real values of x, the inequality is satisfied for 7/2 <

x < 9/2. We check x = 7/2 and x = 9/2 separately. If x = 7/2, the series becomes∑∞
k=1

(−1)
k 1√

k
, which converges conditionally.

Simplify[a[x, k]/.x→7/2]
( – 1)k√

k

On the other hand, if x = 9/2,

Simplify[a[x, k]/.x→9/2]
1√
k

the series is
∑∞

k=1

1√
k

, which diverges. We conclude that the interval of convergence

is [7/2, 9/2).

3.4.5 Taylor and Maclaurin Series
Let y = f (x) be a function with derivatives of all orders at x = x0. The

Taylor series for f (x) about x = x0 is

∞∑
k=0

f (k)
(
x0

)
k!

(
x − x0

)k
. (3.27)

The Maclaurin series for f (x) is the Taylor series for f (x) about x = 0. If

y = f (x) has derivatives up to at least order n at x = x0, the nth degree

Taylor polynomial for f (x) about x = x0 is

pn(x) =

n∑
k=0

f (k)
(
x0

)
k!

(
x − x0

)k
. (3.28)

The nth degree Maclaurin polynomial for f (x) is the nth degree Taylor

polynomial for f (x) about x = 0. Generally, finding Taylor and Maclaurin

series using the definition is a tedious task at best.

Example 3.4.6 Find the first few terms of (a) the Maclaurin series and (b) the Taylor series about

x = �/4 for f (x) = tan x.
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Solution (a) After defining f (x) = tan x, we use Table together with /. and D to compute

f (k)
(0)/k! for k = 0, 1, …, 8.

Use Short to obtain

an abbreviated result.

Many terms will be

missing, but with

Short, you will see

the beginning and

end of your result.

f[x–] = Tan[x];
t1 = Table[{k, D[f[x], {x, k}], D[f[x], {x, k}]/.x→0}, {k, 0, 8}];
Short[t1]{{0, Tan[x], 0}, 〈〈7〉〉,{8, 7936Sec[x]8Tan[x] + 〈〈1〉〉 + 〈〈1〉〉

+128〈〈1〉〉2Tan[x]7, 0
}}

To see these results in tabular form, enter

t1//TableForm

For length considerations, the resulting output is not shown here. Another way of

approaching the problem is to use Manipulate. See Figures 3.52 and 3.53.

Manipulate[{k, D[f[x], {x, k}]//FullSimplify, D[f[x], {x, k}]/.x→0,
D[f[x], {x, k}]/.x→0//N}, {{k, 5}, 0, 25, 1}]

Using the values in the table or from the Manipulate object, we apply the definition

to see that the Maclaurin series is

∞∑
k=0

f (k)
(0)

k!
x k = x +

1

3
x3 +

2

15
x5 +

17

315
x7 + …

For (b), we repeat (a) using x = �/4 instead of x = 0

Manipulate[{k, D[f[x], {x, k}]//FullSimplify, D[f[x], {x, k}]/.x→Pi/4,
D[f[x], {x, k}]/.x→Pi/4//N}, {{k, 1}, 0, 25, 1}]

and then apply the definition to see that the Taylor series about x = �/4 is

k
k

15

v22
(22237694087361311387598411Cos[2x]2102776998928Cos[4x]115041229521Cos[6x]2
848090912Cos[8x]113824739 Cos[10x]232752Cos[12x]Cos[14x])
Sec [x]16,1903757312,1.90376109}

FIGURE 3.52

With Manipulate, we can adjust the function and function values

FIGURE 3.53

We use Manipulate to investigate series for the tangent function
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∞∑
k=0

f (k)
(
x0

)
k!

(
x − x0

)k
= 1 + 2

(
x − �

4

)
+ 2

(
x − �

4

)2

+
8

3

(
x − �

4

)3

+

10

3

(
x − �

4

)4

+
64

15

(
x − �

4

)5

+
244

45

(
x − �

4

)6

+ …

From the series, we can see various Taylor and Maclaurin polynomials. For

example, the third Maclaurin polynomial is

p3(x) = x +
1

3
x3

and the fourth degree Taylor polynomial about x = �/4 is

p4(x) = 1 + 2

(
x − �

4

)
+ 2

(
x − �

4

)2

+
8

3

(
x − �

4

)3

+
10

3

(
x − �

4

)4

.

The command Series[f[x],{x,x0,n}] computes (3.27) to (at least) order n − 1.

Because of the O-term in the result that represents the terms that are omit-

ted from the power series for f (x) expanded about the point x = x0, the

result of entering a Series command is not a function that can be evalu-

ated if x is a particular number. We remove the remainder (O-) term of the

power series Series[f[x],{x,x0,n}] with the command Normal and can then

evaluate the resulting polynomial for particular values of x.

Example 3.4.7 Find the first few terms of the Taylor series for f (x) about x = x0. (a) f (x) = cos x,

x = 0; (b) f (x) = 1/x2
, x = 1.

Solution Entering

Series[Cos[x], {x, 0, 4}]

1 – x2

2
+ x4

24
+ O[x]5

computes the Maclaurin series to order 4. Entering

Series[Cos[x], {x, 0, 14}]

1 – x2

2
+ x4

24
– x6

720
+ x8

40320
– x10

3628800
+ x12

479001600
– x14

87178291200
+ O[x]15

computes the Maclaurin series to order 14. In this case, the Maclaurin series

for cos x converges to cos x for all real x. To graphically see this, we define the

function p. Given n, p[n] returns the Maclaurin polynomial of degree n for cos x.

p[n–] := Series[Cos[x], {x, 0, n}]//Normal
p[3]

1 – x2

2

We then graph cos x together with the Maclaurin polynomial of degree n = 2, 4, 8,

and 16 on the interval [−3�/2, 3�/2] in Figure 3.54. Notice that as n increases,

the graph of the Maclaurin polynomial more closely resembles the graph of cos x.
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n 2 4 8 16 32 64

24 22 2 4

24

22

2

4

n 2 4 8 16 32 64

24 22 2 4

24

22

2

4

FIGURE 3.54

Using Manipulate to investigate graphs of y = cos x together with plots of several of

its Maclaurin polynomials

We would see the same pattern if we increased the length of the interval and the

value of n.

Manipulate[Plot[Evaluate[Tooltip[{Cos[x], p[n]}]],
{x, – 3Pi/2, 3Pi/2}, PlotRange→ {{ – 3Pi/2, 3Pi/2}, { – 3Pi/2, 3Pi/2}},

AspectRatio→Automatic],
{{n, 4}, {2, 4, 8, 16, 32, 64}, ControlType→Setter}]

(b) After defining f (x) = 1/x2
, we compute the first 10 terms of the Taylor series

for f (x) about x = 1 with Series.

f[x–] = 1/x∧2;
p10 = Series[f[x], {x, 1, 10}]
1 – 2(x – 1) + 3(x – 1)2 – 4(x – 1)3 + 5(x – 1)4 – 6(x – 1)5 + 7(x – 1)6 – 8(x – 1)7

+ 9(x – 1)8 – 10(x – 1)9 + 11(x – 1)10 + O[x – 1]11

1 – 2(x – 1) + 3(x – 1)2 – 4(x – 1)3 + 5(x – 1)4 – 6(x – 1)5 + 7(x – 1)6 – 8(x – 1)7

+ 9(x – 1)8 – 10(x – 1)9 + 11(x – 1)10 + O[x – 1]11

In this case, the pattern for the series is relatively easy to see: The Taylor series

for f (x) about x = 1 is
∞∑

k=0

(−1)k(k + 1)(x − 1)k.

This series converges absolutely if

lim
k→∞

∣∣∣∣∣ (−1)
k+1

(k + 2)(x − 1)
k+1

(−1)k(k + 1)(x − 1)k

∣∣∣∣∣ = |x − 1| < 1
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or 0 < x < 2. The series diverges if x = 0 and x = 2. In this case, the series

converges to f (x) on the interval (0, 2).

a[x–, k–] = ( – 1)∧k(k + 1)(x – 1)∧k;
s1 = FullSimplify[Abs[a[x, k + 1]/a[x, k]]]
Abs

[
(2+k)( – 1+x)

1+k

]
s2 = Limit[s1, k→ Infinity]
Abs[ – 1 + x]

Reduce[s2 < 1, x]
0 < Re[x] < 2&& –

√
2Re[x] – Re[x]2 < Im[x] <

√
2Re[x] – Re[x]2

To see this, we use Manipulate graph f (x) together with the Taylor polynomial

for f (x) about x = 1 of degree n for large n. Regardless of the size of n, the

graphs of f (x) and the Taylor polynomial closely resemble each other on the interval

(0, 2) — but not at the endpoints or outside the interval. (See Figure 3.55.)

p[n–] := Series[f[x], {x, 1, n}]//Normal

Manipulate[Plot[Evaluate[Tooltip[{f[x], p[n]}]],
{x, 0, 3}, PlotRange→ {{0, 3}, { – 3/2, 3/2}}, AspectRatio→Automatic],
{{n, 10}, {5, 10, 15, 25, 30, 35, 40, 45, 50, 55, 60}, ControlType→Setter}]

3.4.6 Taylor’s Theorem

Taylor’s theorem states the relationship between f (x) and the Taylor series

for f (x) about x = x0.

FIGURE 3.55

Graphs of f (x) together with the various Taylor polynomials about x = 1
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Theorem 16 (Taylor’s Theorem). Let y = f (x) have (at least) n + 1

derivatives on an interval I containing x = x0. Then, for every number
x ∈ I, there is a number z between x and x0 so that

f (x) = pn(x) + Rn(x),

where pn(x) is given by equation (3.28) and

Rn(x) =
f (n+1)

(z)

(n + 1)!

(
x − x0

)n+1
. (3.29)

Example 3.4.8 Use Taylor's theorem to show that

sin x =

∞∑
k=0

(−1)
k

(2k + 1)!
x2k+1

Solution Let f (x) = sin x. Then, for each value of x, there is a number z between 0 and

x so that sin x = pn(x) + Rn(x), where pn(x) =
∑n

k=0

f (k)
(0)

k!
xk

and Rn(x) =
f (n+1)

(z)

(n+1)!
xn+1

.

Regardless of the value of n, f (n+1)
(z) is one of sin z, − sin z, cos z, or − cos z,

which are all bounded by 1. Then,

|sin x − pn(x)| =

∣∣∣∣∣ f (n+1)
(z)

(n + 1)!
xn+1

∣∣∣∣∣
|sin x − pn(x)| ≤ 1

(n + 1)!
|x|n+1

and xn
/n! → 0 as n → ∞ for all real values of x.

You should remember that the number z in Rn(x) is guaranteed to exist by

Taylor's theorem. However, from a practical standpoint, you would rarely (if ever)

need to compute the z value for a particular x value.

The Maclaurin

polynomial of degree

4 for sin x is∑4

k=0

f(k)
(0)

k!
x4

= 0 + x +

0 · x2
+ −1

3!
x3

+ 0 · x4
.

For illustrative purposes, we show the difficulties. Suppose we wish to approx-

imate sin �/180 using the Maclaurin polynomial of degree 4, p4(x) = x − 1

6
x3

, for

sin x. The fourth remainder is R4(x) =
1

120
cos z x5

.

Clear[f]
f[x–] = Sin[x];
r5 = D[f[z], {z, 5}]/5!x∧5

1

120
x5Cos[z]

If x = �/180, there is a number z between 0 and �/180 so that∣∣∣R4

( �

180

)∣∣∣ =
1

120
cos z

( �

180

)5

≤ 1

120

( �

180

)5

≈ 0.135 × 10−10,

which shows us that the maximum the error can be is 1

120

( �
180

)5 ≈ 0.135 × 10
−10

.
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maxerror = N[1/120*(Pi/180)∧5]
1.349601623163255`∗∧– 11

Abstractly, the exact error can be computed. By Taylor's theorem, z satisfies

f
( �

180

)
= p4

( �

180

)
+ R4

( �

180

)
sin

�

180
=

1

180
� − 1

34992000
�3 +

1

22674816000000
�5 cos z

0 =
1

180
� − 1

34992000
�3 +

1

22674816000000
�5 cos z − sin

�

180
.

We graph the right-hand side of this equation with Plot in Figure 3.56. The exact

value of z is the z-coordinate of the point where the graph intersects the z-axis.

p4 = Series[f[x], {x, 0, 4}]//Normal

x – x3

6

exval = Sin[Pi/180]
p4b = p4/.x→Pi/180
r5b = r5/.x→Pi/180

Sin
[ �

180

]
�

180
– �3

34992000

�5Cos[z]

22674816000000

toplot = r5b + p4b – exval;
Plot[toplot, {z, 0, Pi/180}]

We can use FindRoot to approximate z, if we increase the number of digits carried

in floating point calculations with WorkingPrecision.

exz = FindRoot[toplot==0, {z, 0, .004}, WorkingPrecision→32]
{z → 0.0038086149165541606417429516417308}

0.005 0.010 0.015

25.310216

21.310215

21.5310215

22.310215

FIGURE 3.56

Finding z
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Alternatively, we can compute the exact value of z with Solve

cz = Solve[toplot==0, z]
Because Mathematica

uses inverse functions

in this calculation, it

issues several warning

messages that we have

omitted for length

considerations.

{{
z → ArcCos

[
648000( – 194400�+�3+34992000Sin[ �

180 ])
�5

]}
,{

z → ArcCos

[
648000( – 194400�+�3+34992000Sin[ �

180 ])
�5

]}}
and then approximate the result with N.

N[cz]
{{z → – 0.00384232}, {z → 0.00384232}}

3.4.7 Other Series
In calculus, we learn that the power series f (x) =

∑∞
k=0

ak

(
x − x0

)k
is

differentiable and integrable on its interval of convergence. However, for

series, that are not power series, this result is not generally true. For

example, in more advanced courses, we learn that the function

f (x) =

∞∑
k=0

1

2k
sin

(
3kx

)
is continuous for all values of x but nowhere differentiable. We can use

Mathematica to help us see why this function is not differentiable. Let

fn(x) =

n∑
k=0

1

2k
sin

(
3kx

)
.

Notice that fn(x) is defined recursively by f0(x) = sin x and fn(x) = fn−1(x) +
1

2n sin
(
3

nx
)
. We use Mathematica to recursively define fn(x).

Clear[f]
f[0] = Sin[x];

f[k–] := f[k] = f[k – 1] +
Sin

[
3kx

]
2k

We define fn(x) using the form

f[n–] := f[n] = …

so that Mathematica “remembers” the values it computes. Thus, to com-

pute f[5], Mathematica uses the previously computed values, namely f[4], to

compute f[5]. Note that we can produce the same results by defining fn(x)

with the command

f[n ] := . . .

However, the disadvantage of defining fn(x) in this manner is that Mathe-

matica does not “remember” the previously computed values and thus takes

longer to compute fn(x) for larger values of n.
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FIGURE 3.57

Approximating a function that is continuous everywhere but nowhere differentiable

Next, we use Table to generate f3(x), f6(x), f9(x), and f12(x).

tograph = Table[f[n], {n, 3, 12, 3}];

We now graph each of these functions and show the results as a graph-

ics array with GraphicsGrid in Figure 3.57. (Note that you do not need to

include the option DisplayFunction->Identity to suppress the resulting output

unless you forget to include the semicolon at the end of the command.)

graphs = Table[Plot[Evaluate[tograph[[i]]], {x, 0, 3p},
DisplayFunction→ Identity], {i, 1, 4}];

toshow = Partition[graphs, 2];
Show[GraphicsGrid[toshow]]

From these graphs, we see that for large values of n, the graph of fn(x),

although actually smooth, appears “jagged” and thus we might suspect that

f (x) = limn→∞ fn(x) =
∑∞

k=0
1

2k sin

(
3

kx
)

is indeed continuous everywhere

but nowhere differentiable.

3.5 MULTIVARIABLE CALCULUS
Mathematica is useful in investigating functions involving more than one

variable. In particular, the graphical analysis of functions that depend

on two (or more) variables is enhanced with the help of Mathematica’s

graphics capabilities.
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3.5.1 Limits of Functions of Two Variables

Mathematica’s graphics and numerical capabilities are helpful in investigat-

ing limits of functions of two variables.

Example 3.5.1 Show that the limit lim(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.

Solution We begin by defining f (x, y) =
(
x2 − y2

)
/
(
x2

+ y2
)
. Next, we use Plot3D to graph

z = f (x, y) for −1/2 ≤ x ≤ 1/2 and −1/2 ≤ y ≤ 1/2. ContourPlot is used to graph

several level curves on the same rectangle. (See Figure 3.58.) (To define a function

of two variables, f (x, y) = expression in x and y, enter f[x ,y ] = expression in x
and y. Plot3D[f[x,y], {a,x,b},{y,c,d}] generates a basic graph of z = f (x, y) for

a ≤ x ≤ b and c ≤ y ≤ d)

Clear[f]
f[x–, y–] = (x∧2 – y∧2)/(x∧2 + y∧2);
p1 = Plot3D[f[x, y], {x, – 2, 2}, {y, – 2, 2}, PlotPoints→40];
c1 = ContourPlot[f[x, y], {x, – 2, 2}, {y, – 2, 2}, ContourShading→False,

Axes→Automatic, AxesOrigin→ {0, 0}, PlotPoints→60, Contours→20];
Show[GraphicsRow[{p1, c1}]]

When you slide the

cursor over the

contours in the

contour plot, the

contour values are

displayed.

From the graph of the level curves, we suspect that the limit does not exist because

we see that near (0, 0), z = f (x, y) attains many different values. We obtain further

evidence that the limit does not exist by computing the value of z = f (x, y) for various

points chosen randomly near (0, 0). We use Table and RandomReal to generate

10 ordered pairs
(
x, y

)
for x and y “close to” 0. Because RandomReal is included

in the calculation, your results will almost certainly be different from those here.

FIGURE 3.58

(a) Three-dimensional and (b) contour plots of f (x, y)
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pts = Table[RandomReal[{ – 10 – i, 10 – i}], {i, 1, 10}, {2}]
{{0.08560753251471961, – 0.06804168963904592},
{0.004371826092799417, 0.005941850437676466},

{ – 0.0009189852964073855, 0.00090260881737971},

{ – 0.00006532557511289984, 0.00006629693177194204},

{ – 9.419651789936537∗∧– 6, – 1.2215350865693182∗∧– 6},

{ – 5.743976531479158∗∧– 7, 5.766874942905546∗∧– 7},

{ – 7.626065924242957∗∧– 8, 5.4979380353427926∗∧– 8},

{ – 8.100264683497016∗∧– 10, – 3.253471996451157∗∧– 9},

{5.270631463415014∗∧– 12, 7.862252513620563∗∧– 10},

{ – 3.633733884546907∗∧– 11, – 3.351445796649152∗∧– 11}}
Next, we define a function g that given an ordered pair (x, y) ({x,y} in Mathematica),

g((x, y)) returns the ordered triple (x, y, f (x, y)) (x,y,f[x,y] in Mathematica).

g[{x–, y–}] = {x, y, f[x, y]}{
x, y,

x2 – y2

x2+y2

}
We then use Map to apply g to the list pts.

Map[g, pts]//TableForm
0.0856075 – 0.0680417 0.225699

0.00437183 0.00594185 – 0.297559

– 0.000918985 0.000902609 0.0179789

– 0.0000653256 0.0000662969 – 0.0147589

– 9.419651789936537
′∗∧– 6 – 1.2215350865693182

′∗∧– 6 0.966923

– 5.743976531479158
′∗∧– 7 5.766874942905546

′∗∧– 7 – 0.00397856

– 7.626065924242957
′∗∧– 8 5.4979380353427926

′∗∧– 8 0.316002

– 8.100264683497016
′∗∧– 10 – 3.253471996451157

′∗∧– 9 – 0.883261

5.270631463415014
′∗∧– 12 7.862252513620563

′∗∧– 10 – 0.99991

– 3.633733884546907
′∗∧– 11 – 3.351445796649152

′∗∧– 11 0.0806931

From the third column, we see that z = f (x, y) does not appear to approach any

particular value for points chosen randomly near (0, 0). In fact, along the line y =

mx we see that f (x, y) = f (x, mx) =
(
1 − m2

)
/
(
1 + m2

)
. Hence, as

(
x, y

) → (0, 0)

along y = mx, f (x, y) = f (x, mx) → 1−m2

1+m2 . Thus, f (x, y) does not have a limit as(
x, y

) → (0, 0).

We choose lines of

the form y = mx
because near (0, 0)

the level curves of

z = f (x, y) look like

lines of the form

y = mx.

v1 = Simplify[f[x, mx]]
1 – m2

1+m2

v1/.m→0
v1/.m→1
v1/.m→1/2
1

0
3

5
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In some cases, you can establish that a limit does not exist by converting

to polar coordinates. For example, in polar coordinates, f (x, y) =
x2−y2

x2+y2

becomes f (r cos �, r sin �) = 2 cos
2

� − 1

Simplify[f[rCos[t], rSin[t]]]
Cos[2t]

and

lim
(x,y)→(0,0)

f (x, y) = lim
r→0

f (r cos �, r sin �) = lim
r→0

2 cos2 � − 1 = 2 cos2 � − 1 = cos 2�

depends on �.

3.5.2 Partial and Directional Derivatives

Partial derivatives of functions of two or more variables are computed with

Mathematica using D. For z = f (x, y),

1. D[f[x,y],x] computes
�f
�x = fx(x, y),

2. D[f[x,y],y] computes
�f
�y = fy(x, y),

3. D[f[x,y],{x,n}] computes
�

nf
�xn ,

4. D[f[x,y],y,x] computes
�

2f
�y�x = fxy(x, y), and

5. D[f[x,y],{x,n},{y,m}] computes
�

n+mf
�nx�my .

6. You can use the button located on the BasicMathInput palette

to create templates to compute partial derivatives.

The calculations are carried out similarly for functions of more than two

variables.

Example 3.5.2 Calculate fx(x, y), fy(x, y), fxy(x, y), fyx(x, y), fxx(x, y), and fyy(x, y) if f (x, y) =

sin
√

x2 + y2 + 1.

Solution After defining f (x, y) = sin
√

x2 + y2 + 1,

f[x–, y–] = Sin[Sqrt[x∧2 + y∧2 + 1]];

we illustrate the use of D to compute the partial derivatives. Entering

D[f[x, y], x]
xCos

[√
1+x2+y2

]
√

1+x2+y2

computes fx(x, y). Entering

D[f[x, y], y]
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yCos
[√

1+x2+y2
]

√
1+x2+y2

computes fy(x, y). Entering

D[f[x, y], x, y]//Together

– xyCos
[√

1+x2+y2
]

– xy
√

1+x2+y2Sin
[√

1+x2+y2
]

(1+x2+y2)3/2

computes fyx(x, y). Entering

D[f[x, y], y, x]//Together
– xyCos

[√
1+x2+y2

]
– xy

√
1+x2+y2Sin

[√
1+x2+y2

]
(1+x2+y2)

3/2

computes fxy(x, y). Remember that under appropriate assumptions, fxy(x, y) =

fyx(x, y). Entering

D[f[x, y], {x, 2}]//Together
Cos

[√
1+x2+y2

]
+y2Cos

[√
1+x2+y2

]
– x2

√
1+x2+y2Sin

[√
1+x2+y2

]
(1+x2+y2)

3/2

computes fxx(x, y). Entering

D[f[x, y], {y, 2}]//Together
Cos

[√
1+x2+y2

]
+x2Cos

[√
1+x2+y2

]
−y2

√
1+x2+y2Sin

[√
1+x2+y2

]
(1+x2+y2)

3/2

computes fyy(x, y).

The directional derivative of z = f (x, y) in the direction of the unit vector

u = cos � i + sin � j is

Du f (x, y) = fx(x, y) cos � + fy(x, y) sin �,

provided that fx(x, y) and fy(x, y) both exist.The vectors i and j
are defined by

i = 〈1, 0〉 and j = 〈0, 1〉.
If fx(x, y) and fy(x, y) both exist, the gradient of f (x, y) is the vector-

valued function

Calculus of

vector-valued

functions is discussed

in more detail in

Chapter 5.

� f (x, y) = fx(x, y)i + fy(x, y)j =
〈

fx(x, y), fy(x, y)
〉

.

Notice that if u = 〈cos �, sin �〉,
Du f (x, y) = � f (x, y) · 〈cos �, sin �〉 .

Example 3.5.3 Let f (x, y) = 6x2y − 3x4 − 2y3
. (a) Find Du f (x, y) in the direction of v = 〈3, 4〉.

(b) Compute D〈3/5,4/5〉 f

(
1

3

√
9 + 3

√
3, 1

)
. (c) Find an equation of the line tangent

to the graph of 6x2y − 3x4 − 2y3
= 0 at the point

(
1

3

√
9 + 3

√
3, 1

)
.

Solution After defining f (x, y) = 6x2y − 3x4 − 2y3
, we graph z = f (x, y) with Plot3D in

Figure 3.59, illustrating the PlotPoints, PlotRange, and ViewPoint options.
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FIGURE 3.59

f (x, y) = 6x2y − 3x4 − 2y3
for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 3

f[x–, y–] = 6x∧2y – 3x∧4 – 2y∧3;
Plot3D[f[x, y], {x, – 2, 2}, {y, – 2, 3}, PlotPoints→50,

PlotRange→ {{ – 2, 2}, { – 2, 3}, { – 2, 2}},
BoxRatios→ {1, 1, 1}, ViewPoint→ {1.887, 2.309, 1.6},

ClippingStyle→None]

(a) A unit vector, u, in the same direction as v is

u =

〈
3√

32 + 42
,

4√
32 + 42

〉
=

〈
3

5
,

4

5

〉
.

v = {3, 4};
u = v/Sqrt[v . v]{

3

5
, 4

5

}
Then, Du f (x, y) =

〈
fx(x, y), fy(x, y)

〉 · u, calculated in du.

gradf = {D[f[x, y], x], D[f[x, y], y]}{
– 12x3 + 12xy, 6x2 – 6y2

}
du = Simplify[gradf . u]
– 12

5

(
– 2x2 + 3x3 – 3xy + 2y2

)
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(b) D〈3/5,4/5〉 f
(

1

3

√
9 + 3

√
3, 1

)
is calculated by evaluating du if x = 1

3

√
9 + 3

√
3 and

y = 1.

du1 = du/.{x→1/3Sqrt[9 + 3Sqrt[3]], y→1}//Simplify
4

5

(
2
√

3 – 3
√

3 +
√

3
)

(c) The gradient is evaluated if x = 1

3

√
9 + 3

√
3 and y = 1.

nvec = gradf/.{x→1/3Sqrt[9 + 3Sqrt[3]], y→1}//Simplify{
– 4

√
3 +

√
3, 2

√
3
}

Generally, � f (x, y) is perpendicular to the level curves of z = f (x, y), so

nvec = � f

(
1

3

√
9 + 3

√
3, 1

)
=

〈
fx

(
1

3

√
9 + 3

√
3, 1

)
, fy

(
1

3

√
9 + 3

√
3, 1

)〉

An equation of the

line L containing(
x0, y0

)
and

perpendicular to

n = 〈a, b〉 is

a
(
x − x0

)
+

b
(
y − y0

)
= 0.

is perpendicular to f (x, y) = 0 at the point
(

1

3

√
9 + 3

√
3, 1

)
. Thus, an equation of

the line tangent to the graph of f (x, y) = 0 at the point
(

1

3

√
9 + 3

√
3, 1

)
is

fx

(
1

3

√
9 + 3

√
3, 1

)(
x − 1

3

√
9 + 3

√
3

)
+ fy

(
1

3

√
9 + 3

√
3, 1

)(
y − 1

)
= 0,

which we solve for y with Solve. We confirm this result by graphing f (x, y) = 0

using ContourPlot in conf and then graphing the tangent line in tanplot. tanplot
and conf are shown together with Show in Figure 3.60.

conf = ContourPlot[f[x, y]==0, {x, – 2, 2}, {y, – 2, 2}, PlotPoints→60,
ContourShading→False, Frame→False, Axes→Automatic,

AxesOrigin→ {0, 0}];
tanline = Solve[nvec[[1]](x – 1/3Sqrt[9 + 3Sqrt[3]]) + nvec[[2]]( y – 1)==0,

y]{{
y → –

2+
√

3 – 2

√
3+

√
3x√

3

}}
Evaluate[y[x]/.tanline[[1]]](

–
2+

√
3 – 2

√
3+

√
3x√

3

)
[x]

tanplot = Plot[Evaluate[y/.tanline], {x, – 2, 2}];
Show[conf, tanplot, PlotRange→ {{ – 2, 2}, { – 2, 3}}, AspectRatio→
Automatic]

More generally, we use ContourPlot together with the PlotGradientField function,

which is contained in the VectorFieldPlots package, to illustrate that the gradient

vectors are perpendicular to the level curves of z = f (x, y) in Figure 3.61.
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Level curve of f (x, y) together with a tangent line
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FIGURE 3.61

(a) Level curves of z = f (x, y). (b) Gradient field of z = f (x, y). (c) The gradient

together with several level curves
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Example 3.5.4 Let

f (x, y) = ( y − 1)2e−(x+1)
2−y2 − 10

3

(
−x5 +

1

5
y − y3

)
e−x2−y2 − 1

9
e−x2−( y+1)

2

.

Calculate � f (x, y) and then graph � f (x, y) together with several level curves of

f (x, y).

Solution We begin by defining and graphing z = f (x, y) with Plot3D in Figure 3.62(a).

Clear[f]
f[x–, y–] = ( y – 1)∧2Exp[ – (x + 1)∧2 – y∧2] –

10/3( – x∧5 + 1/5y – y∧3)Exp[ – x∧2 – y∧2] –
1/9Exp[ – x∧2 – ( y + 1)∧2];

p1 = Plot3D[f[x, y], {x, – 3, 3}, {y, – 3, 3},
ViewPoint→ { – 1.99, 2.033, 1.833},

PlotRange→All];
conf = ContourPlot[f[x, y], {x, – 3, 3}, {y, – 3, 3},

PlotPoints→60, Contours→30, ContourShading→False,
Frame→False, Axes→Automatic,
AxesOrigin→ {0, 0}];

In the three-dimensional plot, notice that z appears to have six relative extrema:

three relative maxima and three relative minima. We also graph several level curves

of f (x, y) with ContourPlot and name the resulting graphic conf.
Next we calculate fx(x, y) and fy(x, y) using Simplify and D. The gradient is the

vector-valued function
〈

fx(x, y), fy(x, y)
〉

.

gradf = {D[f[x, y], x], D[f[x, y], y]}//Simplify{
– 2

9
e – 2x – x2 – (1+y)2(

– e2xx + 9e2y(1 + x)( – 1 + y)2 + 3e1+2x+2yx
(

– 25x3 + 10x5 – 2y + 10y3
))

,

– 2

9
e – 2x – x2 – (1+y)2(

– e2x(1 + y) + 9e2y
(
1 – 2y2 + y3

)
+ e1+2x+2y

(
3 + 30x5y – 51y2 + 30y4

))}
To graph the gradient, we use PlotGradientField, which is contained in the

VectorFieldPlots package. We use PlotGradientField to graph the gradient, nam-

ing the resulting graphic gradfplot. gradfplot and conf are displayed together using

Show in Figure 3.62(b).
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FIGURE 3.62

(a) f (x, y) for −3 ≤ x ≤ 3 and −3 ≤ y ≤ 2. (b) Contour plot of f (x, y) along with

several gradient vectors

<< VectorFieldPlots`;
gradfplot = PlotGradientField[f[x, y], {x, – 3, 3},

{y, – 3, 3}];
Show[GraphicsRow[{p1, Show[conf, gradfplot]}]]

In the result (see Figure 3.62(b)), notice that the gradient is perpendicular to the level

curves; the gradient is pointing in the direction of maximal increase of z = f (x, y).

Classifying Critical Points

Let z = f (x, y) be a real-valued function of two variables with continuous

second-order partial derivatives. A critical point of z = f (x, y) is a point(
x0, y0

)
in the interior of the domain of z = f (x, y) for which

fx

(
x0, y0

)
= 0 and fy

(
x0, y0

)
= 0.

Critical points are classified by the second derivatives (or partials) test.

Theorem 17 (Second Derivatives Test). Let
(
x0, y0

)
be a critical point

of a function z = f (x, y) of two variables and let

d = fxx

(
x0, y0

)
fyy

(
x0, y0

) − [
fxy

(
x0, y0

)]2
. (3.30)

1. If d > 0 and fxx

(
x0, y0

)
> 0, then z = f (x, y) has a relative (or

local) minimum at
(
x0, y0

)
.

2. If d > 0 and fxx

(
x0, y0

)
< 0, then z = f (x, y) has a relative (or

local) maximum at
(
x0, y0

)
.
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3. If d < 0, then z = f (x, y) has a saddle point at
(
x0, y0

)
.

4. If d = 0, no conclusion can be drawn and
(
x0, y0

)
is called a

degenerate critical point.

Example 3.5.5 Find the relative maximum, relative minimum, and saddle points of f (x, y) = −2x2
+

x4
+ 3y − y3

.

Solution After defining f (x, y), the critical points are found with Solve and named critpts.

f[x–, y–] = – 2x∧2 + x∧4 + 3y – y∧3;
critpts = Solve[{D[f[x, y], x]==0, D[f[x, y], y]==0}, {x, y}]
{{x → – 1, y → – 1}, {x → – 1, y → 1}, {x → 0, y → – 1},

{x → 0, y → 1}, {x → 1, y → – 1}, {x → 1, y → 1}}
We then define dfxx. Given

(
x0, y0

)
, dfxx

(
x0, y0

)
returns the ordered quadruple

x0, y0, equation (3.30) evaluated at
(
x0, y0

)
, and fxx

(
x0, y0

)
.

dfxx[x0–, y0–] = {x0, y0,
D[f[x, y], {x, 2}]D[f[x, y], {y, 2}] – D[f[x, y], x, y]∧2/.

{x→ x0, y→ y0}, D[f[x, y], {x, 2}]/.{x→ x0, y→ y0}}

{x0, y0,−6
(−4 + 12x02

)
y0,−4 + 12x02}

For example,

dfxx[0, 1]
{0, 1, 24, – 4}

shows us that a relative maximum occurs at (0, 1). We then use /. (ReplaceAll) to

substitute the values in each element of critpts into dfxx.

dfxx[x, y]/.critpts//TableForm
– 1 – 1 48 8

– 1 1 – 48 8

0 – 1 – 24 – 4

0 1 24 – 4

1 – 1 48 8

1 1 – 48 8

From the result, we see that (0, 1) results in a relative maximum, (0,−1) results in a

saddle, (1, 1) results in a saddle, (1,−1) results in a relative minimum, (−1, 1) results

in a saddle, and (−1,−1) results in a relative minimum. We confirm these results

graphically with a three-dimensional plot generated with Plot3D and a contour plot

generated with ContourPlot in Figure 3.63.

p1 = Plot3D[f[x, y], {x, – 3/2, 3/2}, {y, – 3/2, 3/2}, PlotPoints→40];
p2 = ContourPlot[f[x, y], {x, – 3/2, 3/2}, {y, – 3/2, 3/2},

PlotPoints→40, ContourShading→False, Contours→20];
Show[GraphicsRow[{p1, p2}]]
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FIGURE 3.63

(a) Three-dimensional and (b) contour plots of f (x, y)

In the contour plot, notice that near relative extrema, the level curves look like

circles, whereas near saddles they look like hyperbolas.

If the second derivatives test fails, graphical analysis is especially useful.

Example 3.5.6 Find the relative maximum, relative minimum, and saddle points of f (x, y) = x2
+

x2y2
+ y4

.

Solution Initially we proceed in the exact same manner as in the previous example: We define

f (x, y) and compute the critical points. Several complex solutions are returned,

which we ignore.

f[x–, y–] = x∧2 + x∧2y∧2 + y∧4;
critpts = Solve[{D[f[x, y], x]==0, D[f[x, y], y]==0}, {x, y}]{
{x → 0, y → 0},

{
x → –

√
2, y → – i

}
,
{

x → –
√

2, y → i
}

,{
x →

√
2, y → – i

}
,
{

x →
√

2, y → i
}

, {y → 0, x → 0}, {y → 0, x → 0}
}

We then compute the value of (3.30) at the real critical point, and the value of

fxx(x, y) at this critical point.

dfxx[x0–, y0–] = {x0, y0,
D[f[x, y], {x, 2}]D[f[x, y], {y, 2}] – D[f[x, y], x, y]∧2/.

{x→ x0, y→ y0}, D[f[x, y], {x, 2}]/.{x→ x0, y→ y0}}{
x0, y0, – 16x02y02 +

(
2 + 2y02

) (
2x02 + 12y02

)
, 2 + 2y02

}
dfxx[0, 0]
{0, 0, 0, 2}

The result shows us that the second derivatives test fails at (0, 0).
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p1 = Plot3D[f[x, y], {x, – 1, 1}, {y, – 1, 1}, BoxRatios→Automatic];
p2 = ContourPlot[f[x, y], {x, – 1, 1}, {y, – 1, 1}, PlotPoints→40,
Contours→20, ContourShading→False];
Show[GraphicsRow[{p1, p2}]]

However, the contour plot of f (x, y) near (0, 0) indicates that an extreme value

occurs at (0, 0). The three-dimensional plot shows that (0, 0) is a relative minimum.

(See Figure 3.64.)

Tangent Planes

Let z = f (x, y) be a real-valued function of two variables. If both fx

(
x0, y0

)
and fy

(
x0, y0

)
exist, then an equation of the plane tangent to the graph of

z = f (x, y) at the point
(
x0, y0, f

(
x0, y0

))
is given by

fx

(
x0, y0

) (
x − x0

)
+ fy

(
x0, y0

) (
y − y0

) − (
z − z0

)
= 0, (3.31)

where z0 = f
(
x0, y0

)
. Solving for z yields the function (of two variables)

z = fx

(
x0, y0

) (
x − x0

)
+ fy

(
x0, y0

) (
y − y0

)
+ z0. (3.32)

Symmetric equations of the line perpendicular to the surface z = f (x, y) at

the point
(
x0, y0, z0

)
are given by

x − x0

fx

(
x0, y0

) =
y − y0

fy

(
x0, y0

) =
z − z0

−1
(3.33)
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20.5

1.0

0.5

0.0

0.5

3

2

0.5 0.0 0.5 1.0

1

21.0

21.01.0
20.5

20.5
0.0

0

a b

FIGURE 3.64

(a) Three-dimensional and (b) contour plots of f (x, y)
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and parametric equations are

⎧⎪⎨
⎪⎩

x = x0 + fx

(
x0, y0

)
t

y = y0 + fy

(
x0, y0

)
t

z = z0 − t.

(3.34)

The plane tangent to the graph of z = f (x, y) at the point
(
x0, y0, f

(
x0, y0

))
is the “best” linear approximation of z = f (x, y) near (x, y) =

(
x0, y0

)
in

the same way as the line tangent to the graph of y = f (x) at the point(
x0, f

(
x0

))
is the “best” linear approximation of y = f (x) near x = x0.

Example 3.5.7 Find an equation of the plane tangent and normal line to the graph of f (x, y) =

4 − 1

4

(
2x2

+ y2
)

at the point (1, 2, 5/2).

Solution We define f (x, y) and compute fx(1, 2) and fy(1, 2).

f[x–, y–] = 4 – 1/4(2x∧2 + y∧2);
f[1, 2]
dx = D[f[x, y], x]/.{x→1, y→2}
dy = D[f[x, y], y]/.{x→1, y→2}
5

2

– 1

– 1

Using (3.32), an equation of the tangent plane is z = −1(x − 1) − 1( y − 2) + f (1, 2).

Using (3.34), parametric equations of the normal line are x = 1 − t, y = 2 − t, z =

f (1, 2) − t. We confirm the result graphically by graphing f (x, y) together with the

tangent plane in p1 using Plot3D. We use ParametricPlot3D to graph the normal

line in p2 and then display p1 and p2 together with Show in Figure 3.65.

p1 = Plot3D[f[x, y], {x, – 1, 3}, {y, 0, 4}];
p2 = Plot3D[dx (x – 1) + dy ( y – 2) + f[1, 2], {x, – 1, 3}, {y, 0, 4}];
p3 = ParametricPlot3D[{1 + dx t, 2 + dy t, f[1, 2] – t}, {t, – 4, 4}];
Show[p1, p2, p3, PlotRange→ {{ – 1, 3}, {0, 4}, {0, 4}},

BoxRatios→Automatic]

Because z = −1(x − 1) − 1( y − 2) + f (1, 2) is the “best” linear approximation of

f (x, y) near (1, 2), the graphs are very similar near (1, 2) as shown in the three-

dimensional plot. We also expect the level curves of each near (1, 2) to be similar,

which is confirmed with ContourPlot in Figure 3.66.

p4 = ContourPlot[f[x, y], {x, 0.75, 1.25}, {y, 1.75, 2.25}];
p5 = ContourPlot[dx(x – 1) + dy( y – 2) + f[1, 2], {x, 0.75, 1.25},

{y, 1.75, 2.25}];
Show[GraphicsRow[{p4, p5}]]
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FIGURE 3.65

Graph of f (x, y) with a tangent plane and normal line
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FIGURE 3.66

Zooming in near (1, 2)

Lagrange Multipliers

Certain types of optimization problems can be solved using the method of

Lagrange multipliers that is based on the following theorem.
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Theorem 18 (Lagrange’s Theorem). Let z = f (x, y) and z = g(x, y)

be real-valued functions with continuous partial derivatives and let
z = f (x, y) have an extreme value at a point

(
x0, y0

)
on the smooth con-

straint curve g(x, y) = 0. If �g
(
x0, y0

) �= 0, then there is a real number �
satisfying

� f
(
x0, y0

)
= � � g

(
x0, y0

)
. (3.35)

Graphically, the points
(
x0, y0

)
at which the extreme values occur corre-

spond to the points where the level curves of z = f (x, y) are tangent to the

graph of g(x, y) = 0.

Example 3.5.8 Find the maximum and minimum values of f (x, y) = xy subject to the constraint
1

4
x2

+ 1

9
y2

= 1.

Solution For this problem, f (x, y) = xy and g(x, y) = 1

4
x2

+ 1

9
y2 − 1. Observe that parametric

equations for 1

4
x2

+ 1

9
y2

= 1 are x = 2 cos t, y = 3 sin t, 0 ≤ t ≤ 2�. In Figure 3.67(a),

we use ParametricPlot3D to parametrically graph g(x, y) = 0 and f (x, y) for x- and

y-values on the curve g(x, y) = 0 by graphing⎧⎪⎨
⎪⎩

x = 2 cos t

y = 3 sin t

z = 0

and

⎧⎪⎨
⎪⎩

x = 2 cos t

y = 3 sin t

z = x · y = 6 cos t sin t

for 0 ≤ t ≤ 2�. Our goal is to find the minimum and maximum values in Figure

3.67(a) and the points at which they occur.

a b

FIGURE 3.67

(a) f (x, y) on g(x, y) = 0. (b) Level curves of f (x, y) together with g(x, y) = 0
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f[x–, y–] = xy;
g[x–, y–] = x∧2/4 + y∧2/9 – 1;
s1 = ParametricPlot3D[{2Cos[t], 3Sin[t], 0}, {t, 0, 2Pi}];
s2 = ParametricPlot3D[{2Cos[t], 3Sin[t], 6Cos[t]Sin[t]}, {t, 0, 2Pi}];
plot1 = Show[s1, s2, BoxRatios→Automatic, PlotRange→All];

To implement the method of Lagrange multipliers, we compute fx(x, y), fy(x, y),

gx(x, y), and gy(x, y) with D.

fx = D[f[x, y], x]
fy = D[f[x, y], y]
gx = D[g[x, y], x]
gy = D[g[x, y], y]
y

x
x
2

2y

9

Solve is used to solve the system of equations (3.35):

fx(x, y) = �gx(x, y)

fy(x, y) = �gy(x, y)

g(x, y) = 0

for x, y, and �.

vals = Solve[{fx==�gx, fy==�gy, g[x, y]==0}, {x, y, �}]{{
� → – 3, x → –

√
2, y → 3√

2

}
,
{

� → – 3, x →
√

2, y → – 3√
2

}
,{

� → 3, x → –
√

2, y → – 3√
2

}
,
{

� → 3, x →
√

2, y → 3√
2

}}
The corresponding values of f (x, y) are found using ReplaceAll (/.).

n1 = {x, y, f[x, y]}/.vals//TableForm

–
√

2 3√
2

– 3√
2 – 3√

2
– 3

–
√

2 – 3√
2

3√
2 3√

2
3

N[n1]
– 1.41421 2.12132 – 3.

1.41421 – 2.12132 – 3.

– 1.41421 – 2.12132 3.

1.41421 2.12132 3.

We conclude that the maximum value f (x, y) subject to the constraint g(x, y) = 0

is 3 and occurs at
(√

2, 3

2

√
2

)
and

(
−√2,− 3

2

√
2

)
. The minimum value is −3 and
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occurs at
(
−√2, 3

2

√
2

)
and

(√
2,− 3

2

√
2

)
. We graph several level curves of f (x, y)

and the graph of g(x, y) = 0 with ContourPlot and show the graphs together with

Show. The minimum and maximum values of f (x, y) subject to the constraint

g(x, y) = 0 occur at the points where the level curves of f (x, y) are tangent to the

graph of g(x, y) = 0 as illustrated in Figure 3.67(b).

<< “VectorFieldPlots`”; gradfplot = PlotGradientField[f[x, y], {x, – 3, 3},
{y, – 3, 3}];

cp1 = ContourPlot[f[x, y], {x, – 3, 3}, {y, – 3, 3}, Contours –>30,
ContourShading –>False, PlotPoints –>40];

cp2 = ContourPlot[g[x, y]==0, {x, – 3, 3}, {y, – 3, 3},
ContourStyle –>Thickness[0.01],

ContourShading –>False];
plot2 = Show[cp1, cp2, gradfplot];
Show[GraphicsRow[{plot1, plot2}]]

Observe that the maximum and minimum values occur where the gradient vec-

tors of z = f (x, y) are parallel to the gradient vectors of z = g(x, y) on the equation

g(x, y) = 0.

3.5.3 Iterated Integrals

The Integrate command, used to compute single integrals, is used to compute

iterated integrals. The command

Integrate[f[x, y], {y, c, d}, {x, a, b}]

attempts to compute the iterated integral

∫ d

c

∫ b

a

f (x, y) dx dy. (3.36)

If Mathematica cannot compute the exact value of the integral, it is returned

unevaluated, in which case numerical results may be more useful. The

iterated integral (3.36) is numerically evaluated with the command N or

NIntegrate[f[x, y], {y, c, d}, {x, a, b}]

Example 3.5.9 Evaluate each integral: (a)
∫ 4

2

∫ 2

1

(
2xy2

+ 3x2y
)

dx dy; (b)
∫ 2

0

∫ 2y

y2

(
3x2

+ y3
)

dx dy;

(c)
∫∞

0

∫∞
0

xye−x2−y2

dy dx; and (d)
∫�

0

∫�
0

esin xydx dy.

Solution (a) First, we compute
∫∫ (

2xy2
+ 3x2y

)
dx dy with Integrate. Second, we compute∫ 4

2

∫ 2

1

(
2xy2

+ 3x2y
)

dx dy with Integrate.

Integrate[2xy∧2 + 3x∧2y, y, x]
1
6
x2y2(3x + 2y)
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Integrate[2xy∧2 + 3x∧2y, {y, 2, 4}, {x, 1, 2}]
98

(b) We illustrate the same commands as in (a), except we are integrating over a

nonrectangular region.

Integrate[3x∧2 + y∧3, {x, y∧2, 2y}]

8y3 + 2y4 – y5 – y6

Integrate[3x∧2 + y∧3, y, {x, y∧2, 2y}]

2y4 +
2y5

5
–

y6

6
–

y7

7

Integrate[3x∧2 + y∧3, {y, 0, 2}, {x, y∧2, 2y}]
1664

105

(c) Improper integrals can be handled in the same way as proper integrals.

Integrate[xyExp[ – x∧2 – y∧2], x, y]
1

4
e – x2 – y2

Integrate[xyExp[ – x∧2 – y∧2], {x, 0, Infinity}, {y, 0, Infinity}]
1

4

(d) In this case, Mathematica cannot evaluate the integral exactly so we use

NIntegrate to obtain an approximation.

Integrate[Exp[Sin[xy]], y, x]∫ ∫
eSin[xy]dxdy

NIntegrate[Exp[Sin[xy]], {y, 0, Pi}, {x, 0, Pi}]
15.5092

Area, Volume, and Surface Area

Typical applications of iterated integrals include determining the area of a

planar region, the volume of a region in three-dimensional space, or the

surface area of a region in three-dimensional space. The area of the planar

region R is given by

A =

∫ ∫
R

dA. (3.37)

If z = f (x, y) has continuous partial derivatives on a closed region R, then

the surface area of the portion of the surface that projects onto R is given by

SA =

∫ ∫
R

√(
�f

�x

)2

+

(
�f

�y

)2

+ 1 dA. (3.38)

If f (x, y) ≥ g(x, y) on R, the volume of the region between the graphs of

f (x, y) and g(x, y) is

V =

∫ ∫
R

(
f (x, y) − g(x, y)

)
dA. (3.39)
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Example 3.5.10 Find the area of the region R bounded by the graphs of y = 2x2
and y = 1 + x2

.

Solution We begin by graphing y = 2x2
and y = 1 + x2

with Plot in Figure 3.68. The

x-coordinates of the intersection points are found with Solve.

Plot[Tooltip[{2x∧2, 1 + x∧2}], {x, – 3/2, 3/2}]
Solve[2x∧2==1 + x∧2]

{{x → – 1}, {x → 1}}
Using (3.37) and taking advantage of symmetry, the area of R is given by

A =

∫ ∫
R

dA = 2

∫ 1

0

∫ 1+x2

2x2

dy dx,

which we compute with Integrate.

2 Integrate[1, {x, 0, 1}, {y, 2x∧2, 1 + x∧2}]
4

3

We conclude that the area of R is 4/3.

If the problem exhibits “circular symmetry,” changing to polar coordinates

is often useful. If R = {(r, �) |a ≤ r ≤ b, � ≤ � ≤ �}, then

∫ ∫
R

f (x, y) dA =

∫�

�

∫ b

a

f (r cos �, r sin �) r dr d�.

0.5 1.0 1.5

1

2

3

4

FIGURE 3.68

y = 2x2
and y = 1 + x2

for −3/2 ≤ x ≤ 3/2
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Example 3.5.11 Find the surface area of the portion of

f (x, y) =

√
4 − x2 − y2

that lies above the region R =
{

(x, y)
∣∣x2

+ y2 ≤ 1
}

.

Solution First, observe that the domain of f (x, y) is

{
(x, y)

∣∣∣∣−√4 − y2 ≤ x ≤
√

4 − y2,−2 ≤ y ≤ 2

}
= {(r, �) |0 ≤ r ≤ 2, 0 ≤ � ≤ 2�} .

Similarly,

R =

{
(x, y)

∣∣∣−√1 − y2 ≤ x ≤
√

1 − y2,−1 ≤ y ≤ 1

}
= {(r, �) |0 ≤ r ≤ 1, 0 ≤ � ≤ 2�}.

With this observation, we use ParametricPlot3D to graph f (x, y) in p1 and the

portion of the graph of f (x, y) above R in p2 and show the two graphs together

with Show. We wish to find the area of the black region in Figure 3.69.

f[x–, y–] = Sqrt[4 – x∧2 – y∧2];
p1 = ParametricPlot3D[{r Cos[t], r Sin[t], f[r Cos[t], r Sin[t]]}, {r, 0, 2},

{t, 0, 2Pi}, PlotPoints→45, ColorFunction→ “LightTerrain”];
p2 = ParametricPlot3D[{r Cos[t], r Sin[t], f[r Cos[t], r Sin[t]]}, {r, 0, 1},

FIGURE 3.69

The portion of the graph of f (x, y) above R

0
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{t, 0, 2Pi}, PlotPoints→45, ColorFunction→ “DarkTerrain”];
Show[p1, p2, BoxRatios→Automatic]

We compute fx(x, y), fy(x, y) and

√[
fx(x, y)

]2
+
[
fy(x, y)

]2
+ 1 with D and Simplify.

fx = D[f[x, y], x]
fy = D[f[x, y], y]

– x√
4 – x2 – y2

–
y√

4 – x2 – y2

s1 = Simplify[Sqrt[1 + fx∧2 + fy∧2]]

2
√

– 1

– 4+x2+y2

Then, using (3.38), the surface area is given by

SA =

∫ ∫
R

√(
�f

�x

)2

+

(
�f

�y

)2

+ 1 dA

=

∫ ∫
R

2√
4 − x2 − y2

dA (3.40)

=

∫ 1

−1

∫√1−y2

−
√

1−y2

2√
4 − x2 − y2

dx dy.

However, notice that in polar coordinates,

R = {(r, �)|0 ≤ r ≤ 1, 0 ≤ � ≤ 2�},

so in polar coordinates the surface area is given by

SA =

∫ 2�

0

∫ 1

0

2√
4 − r2

r dr d�,

s2 = Simplify[s1/.{x→ r Cos[t], y→ r Sin[t]}]

2

√
1

4 – r2

which is much easier to evaluate than (3.40). We evaluate the iterated integral with

Integrate

s3 = Integrate[r s2, {t, 0, 2Pi}, {r, 0, 1}]

– 4
(

– 2 +
√

3
)

�

N[s3]

3.36715

and conclude that the surface area is
(
8 − 4

√
3
)

� ≈ 3.367.
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Example 3.5.12 Find the volume of the region between the graphs of z = 4 − x2 − y2
and z = 2 − x.

Solution We begin by graphing z = 4 − x2 − y2
and z = 2 − x together with Plot3D in

Figure 3.70(a).

p1 = Plot3D[{4 – x∧2 – y∧2, 2 – x}, {x, – 2, 2}, {y, – 2, 2},
PlotRange→ {{ – 2, 2}, { – 2, 2}, { – 2, 4}}, BoxRatios→Automatic];

The region of integration, R, is determined by graphing 4 − x2 − y2
= 2 − x in

Figure 3.70(b).

p2 = ContourPlot[4 – x∧2 – y∧2 – (2 – x)==0, {x, – 2, 2}, {y, – 2, 2},
PlotPoints→50, Frame→False, Axes→Automatic,

AxesOrigin→ {0, 0}];
Show[GraphicsRow[{p1, p2}]]

Another way to see the situation illustrated in Figure 3.70 is to use RegionPlot3D,

which works in the same way as RegionPlot but in three dimensions.

Completing the square shows us that

R =

{
(x, y)

∣∣∣∣∣
(

x − 1

2

)2

+ y2 ≤ 9

4

}

=

{
(x, y)

∣∣∣∣1

2
− 1

2

√
9 − 4y2 ≤ x ≤ 1

2
+

1

2

√
9 − 4y2,−3

2
≤ y ≤ 3

2

}
.

0 1
20

1
2 22

22

22

21

21

0

2

4

22

22

21

21

1

1

2

a b

FIGURE 3.70

(a) z = 4 − x2 − y2
and z = 2 − x for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. (b) Graph of

4 − x2 − y2
= 2 − x
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Thus, using (3.39), the volume of the solid is given by

V =

∫ ∫
R

[(
4 − x2 − y2

) − (2 − x)
]

dA

=

∫ 3
2

− 3
2

∫ 1
2

+ 1
2

√
9−4y2

1
2
− 1

2

√
9−4y2

[(
4 − x2 − y2

) − (2 − x)
]

dx dy,

which we evaluate with Integrate.

i1 = Integrate[(4 – x∧2 – y∧2) – (2 – x), {y, – 3/2, 3/2},
{x, 1/2 – 1/2Sqrt[9 – 4y∧2], 1/2 + 1/2Sqrt[9 – 4y∧2]}]

81�
32

N[i1]

7.95216

We conclude that the volume is 81

32
� ≈ 7.952.

Triple Iterated Integrals

Triple iterated integrals are calculated in the same manner as double iterated

integrals.



3.5 Multivariable Calculus 245

Example 3.5.13 Evaluate ∫�/4

0

∫ y

0

∫ y+z

0

(x + 2z) sin y dx dz dy.

Solution Entering

i1 = Integrate[(x + 2z)Sin[y], {y, 0, Pi/4}, {z, 0, y}, {x, 0, y + z}]

–
17(384 – 96� – 12�2+�3)

384
√

2

calculates the triple integral exactly with Integrate.

An approximation of the exact value is found with N.

N[i1]
0.157206

We illustrate how triple integrals can be used to find the volume of a solid

when using spherical coordinates.

Example 3.5.14 Find the volume of the torus with equation in spherical coordinates � = sin 	.

Solution We proceed by graphing the torus with SphericalPlot3D in Figure 3.72 (see

Figure 3.71 for the help feature associated with this command).

SphericalPlot3D[Sin[Phi], {Phi, 0, Pi}, {theta, 0, 2Pi}, PlotPoints→40]

FIGURE 3.71

Mathematica's help for SphericalPlot3D
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FIGURE 3.72

A graph of the torus

In general, the volume of the solid region D is given by

V =

∫∫∫
D

dV.

Thus, the volume of the torus is given by the triple iterated integral

V =

∫ 2�

0

∫�

0

∫ sin 	

0

�2 sin 	 d� d	 d�,

i1 = Integrate[rho∧2 Sin[phi], {theta, 0, 2Pi},
{phi, 0, Pi}, {rho, 0, Sin[phi]}]

�2

4

N[i1]
2.4674

which we evaluate with Integrate. We conclude that the volume of the torus is
1

4
�

2 ≈ 2.467.

3.6 EXERCISES
1. If $P is compounded n times per year at an annual interest rate of r,

the value of the account, A, after t years is given by

A =

(
1 +

r

n

)nt

.

The formula for continuously compounded interest is obtained by

finding the limit of this expression as t → ∞. Find the limit.
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2. Let f (x) =

{
ax4

+ bx3
+ cx2

+ 8, if x ≤ z

ax3
+ bx2 + cx + 4, if x > z

.

(a) If z = 2, find a, b, and c so that f (x), f ′(x), and f ′′
(x) are continuous

for all real numbers.

(b) For what values of z, if any, are there no values a, b, and c so that

f (x), f ′(x), and f ′′
(x) are continuous for all real numbers?

3. Use Mathematica to generate a representative plot of each of the fol-

lowing functions. Note: If x = p/q is rational, p/q is assumed to be a

reduced fraction.

(a) f (x) =

{
ln p, if x = p/q is rational;

0, if x is irrational

(b) f (x) =

{
cos q, if x = p/q is rational;

0, if x is irrational

(c) f (x) =

{
1/p, if x = p/q is rational;

0, if x is irrational

(d) Challenge: Determine the value(s) of x, if any, for which each of

these functions are continuous.

4. For f (x) =

{
e−1/x2

, if x �= 0

0, if x = 0
, provide a convincing argument that

f (n)
(0) = 0 for all n. (Refer to Figure 3.3(b).)

5. Refer to Example 3.1.2. For what values of x, if any, is the function not

continuous? Not differentiable?

6. (a) Find an equation of the line tangent to the graph of f (x) = 9 − 4x2

at the point (1, f (1)). (b) Use Do to generate graphs of y = f (x) and

y = f ′(a)(x − a) + f (a) for 50 equally spaced values of a between −3

and 3. (c) Use Table to create a similar plot for 9 equally spaced values

of a between −3 and 3 and display the result as a graphics array.

7. Let f (x) = mx + b and (x0, y0) be a point not on the graph of f (x). Find

the point on the graph of f (x) that is closest to (x0, y0).

8. If f (x) = cos(3x)/(x2
+ 1) on [0, �], find the value(s) of c that satisfies

that conclusion of the mean-value theorem for derivatives. Confirm

your results graphically.

9. Sketch f (x) = x4 − x2
. In your plot, label relative and absolute extreme

values as well as points of inflection. Tip: A good plot indicates both

the local and the global behavior of the function.

10. Use Maximize or Minimize to verify each of the results obtained in the

examples in Applied Max/Min Problems, Section 3.2.6.
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11. (a) Find dy/dx if cos(x + sin y) = sin y. (b) Graph the equation for

−4� ≤ x ≤ 4� and −4� ≤ y ≤ 4�. (c) Find a point on the graph at

which there are two tangents and then find equations of both tangents.

(d) Illustrate that your final result is correct.

12. Find the ratio of the volume of the right circular cone of largest volume

that can be circumscribed about a sphere of radius R to the volume

of the right circular cone of largest volume that can be inscribed in a

sphere of radius R.

13. Plot f (x) = x(x − 1)
1/3

(x − 2)
2/3

without loading the RealOnly package.

Calculate and then plot f ′(x) and f ′′
(x) as well. Hint: Use Abs.

14. Calculate (a)
∫ 1

sin2 x + 2
dx and (b)

∫
x2

tan
−1 x dx. In each case, check

that your answer is correct by computing the antiderivative by hand.

15. Refer to Figure 3.30. Create a Manipulate object that can be used to

illustrate how the lengths of the stayed wires change as D, L1, and L2

change. Use [0, 100] for each range. For the initial values set D = 50,

L1 = 20, and L2 = 60.

16. Let f (x) = ax2
+ c. For x = x0, let L(x0) denote the line perpendicular

to the tangent at (x0, f (x0)) and let d denote the length of the line

segment formed by the intersection L(x0) and f (x). Find x0 so that d is

minimized. What is the measure of the angle formed by the intersection

of the two lines for which d is minimized?

17. (a) Define functions simpson, which implements Simpson’s rule, and

trapezoid, which implements the trapezoidal rule by adjusting the func-

tion leftsum (middlesum or rightsum) discussed previously to perform

the calculation for the desired method. (b) Let f (x) = e−(x−3)
2

cos(4(x−3))
.

(i) Graph y = f (x) on the interval [1, 5]. Use (ii) Simpson’s rule with

n = 4, (iii) the trapezoidal rule with n = 4, and (iv) the midpoint rule

with n = 4 to approximate
∫5

1
f (x) dx.

18. If p(x) = 3

10
x5 − 3x4

+ 11x3 − 18x2
+ 12x + 1 and q(x) = −4x3

+ 28x2 −
56x + 32, find the solutions of p(x) = q(x) using FindRoot. Challenge:
Use Map together with FindRoot to perform the operation in a single

command.

19. Let f (x) = exp

(
−(x − 2)

2
cos �x

)
and g(x) = 4 cos(x − 2). (a) Find the

area of the region bounded by the graphs of the two functions. (b) Find

the volume of the solid obtained by revolving the region bounded by

the graphs of the two functions about the x-axis. (c) Find the volume

of the solid obtained by revolving the region bounded by the graphs of

the two functions about the y-axis. (d) Generate plots illustrating the

area and the two solids. Hint: Use FindRoot.
20. Let R denote the region in the first quadrant bounded by the graphs

of y = xn
and x = yn

. (a) Find the area of R. (b) Find the volume of the
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solid obtained by revolving R about the x-axis. (c) Find the volume of

the solid obtained by revolving R about the y-axis.

21. Calculate (a)
∫n

1
k 2

−k dk, (b) limn→∞
∫n

1
k 2

−k dk, and (c)
∫∞

1
k 2

−k dk.

22. Show that
∑∞

k=1

50
k

k!
converges and find its sum.

23. Find
∑∞

k=1
x3k

. What is the interval of convergence for this series?

24. Evaluate
∑∞

n=1

3
n/2

5n
. Confirm your result by showing that the series

converges and finding its sum by hand.

25. (a) Plot (k, ak) for k = 1, 2, …, 2000 if ak =
sin k

k
. (b) Find

∑∞
k=1

sin k

k
.

Challenge: Prove that the infinite series converges. (c) Plot (k, ak)

for k = 1, 2, …, 2000 if ak =
sin k

k2
. (d) Prove that the infinite series

converges. Challenge: Find
∑∞

k=1

sin k

k2
. (See Figure 3.73(a).)

26. Let f (x) = exp

(
−(x − 1)

2
(x + 1)

2
)

. (a) Graph f (x) together with its

8th degree Taylor polynomial expanded about x = 1 on the interval

[−1.75, 1.75]. (b) What is the interval of convergence for the Taylor

series about x = 1 for this function? (c) Can you use a Taylor poly-

nomial expanded about x = 1 for this function to approximate f (0)?

Explain. (See Figure 3.73(b).)

27. Find the length of the graph of f (x) = sin (x + x sin x) from x = 0 to

x = 2�.

28. Determine lim(x,y)→(0,0) xy/(x2
+ y2

). If the limit does not exist, confirm

your results graphically.

See Chapter 5 for

more discussion

regarding curvature.

29. Minimal surfaces have “zero mean curvature.” Minimal surfaces

that are parametrically defined by x = u, y = v, z = f (u, v) satisfy

0 500 1000 1500 2000

20.003
20.002
20.001

0.000
0.001
0.002
0.003

21.5

22.0

21.5

21.0 20.5 0.5 1.0

21.0

20.5

0.5

1.0

1.5

a b

FIGURE 3.73

(a) The first 2000 terms of an interesting sequence. (b) What is the radius of the

interval of convergence?
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Lagrange’s equation,

(
1 + fv

2
)

fuu − 2fufvfuv +

(
1 + fu

2
)

fvv = 0. Plot

Enneper’s minimal surface, x = u − 1

3
u3

+ uv2
, y = v − 1

3
v3

+ u2v,

z = u2 − v2
, and show that the equations satisfy Lagrange’s equation.

30. Let g(x, y) = exp

(
− 1

8

(
x2

+ y2
) (

cos
2 x + sin

2 y
))

. (a) Graph g(x, y)

using your favorite color scheme from the Color Schemes palette for

−� ≤ x ≤ � and −� ≤ y ≤ �. (b) Compute and simplify fx, fy, fxy, fxx,

and fyy using D and Simplify. (c) Use Mathematica help to determine

the functionality of Derivative and then use Derivative to recalculate the

partials.

31. Find and classify the critical points of f (x, y) = −120x3 − 30x4
+ 18x5

+

5x6
+ 30xy2

. Confirm your results with three-dimensional and contour

plots with a gradient plot.

32. Find equations of the tangent plane and normal line to f (x, y) =

4

(
x2

+ y2
+ 1

)−1

at (1/2, 1, f (1/2, 1)). Confirm your results graphically.

(See Figure 3.74(a).)

33. Find the minimum and maximum values of f (x, y) = x2
+ 4y3

subject to

x2
+ 4y2

= 1. Confirm your results graphically. (See Figure 3.74(b).)

34. Evaluate
∫2

1

∫√y
1−y xy2 dy dx.

35. Evaluate
∫√�

0

∫√�

0
cos

(
x2 − y2

)
dy dx. Determine the meaning of the

functions FresnelC and FresnelS.

FIGURE 3.74

(a) Tangent plane. (b) Lagrange multipliers



4CHAPTER

Introduction to Lists and Tables

Chapter 4 introduces operations on lists and tables. The examples used to

illustrate the various commands in this chapter are taken from calculus,

business, dynamical systems, and engineering applications.

4.1 LISTS AND LIST OPERATIONS

4.1.1 Defining Lists

A list of n elements is a Mathematica object of the form

list = {a1, a2, a3, … , an}

The ith element of the list is extracted from list with list[[i]] or Part[list,i].
Elements of a list are separated by commas. Lists are always enclosed

in braces {. . .} and each element of a list may be (almost any) Mathematica

object—even other lists. Because lists are Mathematica objects, they can be

named. For easy reference, we will usually name lists.

Lists can be defined in a variety of ways: They may be completely typed

in, imported from other programs and text files, or they may be created

with either the Table or Array commands. Given a function f (x) and a

number n, the commandTable and Manipulate
have nearly identical

syntax. With Manipu-
late, you can create

an interactive dynamic

application; Table
returns nonadjustable

results.

1. Table[f[i],{i,n}] creates the list {f[1], ... ,f[n]};
2. Table[f[i],{i,0,n}] creates the list {f[0], ... ,f[n]};
3. Table[f[i],{i,n,m}] creates the list

{f[n], f[n + 1], … , f[m – 1], f[m]};

4. Table[f[i],{i,imin,imax,istep}] creates the list

{f[imin], f[imin + istep], f[imin + 2*step], … , f[imax]};

and 251
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5. Array[f,n] creates the list {f[1], ... ,f[n]}.
In particular,

Table[f[x], {x, a, b, (b – a)/(n – 1)}]

returns a list of f (x) values for n equally spaced values of x between

a and b;

Table[{x, f[x]}, {x, a, b, (b – a)/(n – 1)}]

returns a list of points (x, f (x)) for n equally spaced values of x between

a and b.

In addition to using Table, lists of numbers can be calculated using

Range:

1. Range[n] generates the list {1,2, . . . ,n};
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2. Range[n1,n2] generates the list {n1,n1+1, . . . ,n2-1,n2}; and

3. Range[n1,n2,nstep] generates the list

{n1, n1 + nstep, n1 + 2*nstep, … , n2 – nstep, n2}

.
Example 4.1.1 Use Mathematica to generate the list {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Solution Generally, a given list can be constructed in several ways. In fact, each of the

following five commands generates the list {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Table[i, {i, 10}]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Table[i, {i, 1, 10}]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Table

[ i
2
, {i, 2, 20, 2}

]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Range[10]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Example 4.1.2 Use Mathematica to define listone to be the list of numbers {1, 3/2, 2, 5/2, 3,

7/2, 4}.
Solution In this case, we generate a list and name the result listone. As in Example 4.1.1,

we illustrate that listone can be created in several ways.

listone = {1, 3
2
, 2, 5

2
, 3, 7

2
, 4}

{1, 3

2
, 2, 5

2
, 3, 7

2
, 4}

listone = Table[i, {i, 1, 4, 1
2
}]

{1, 3

2
, 2, 5

2
, 3, 7

2
, 4}

Last, we define i(n) = 1

2
n + 1

2
and use Array to create the table listone.

i[n–] = n
2

+ 1
2
;

listone = Array[i, 7]

{1, 3

2
, 2, 5

2
, 3, 7

2
, 4}

Example 4.1.3 Create a list of the first 25 prime numbers. What is the 15th prime number?

Solution The command Prime[n] yields the nth prime number. We use Table to generate a

list of the ordered pairs {n,Prime[n]} for n = 1, 2, 3, …, 25 and name the resulting list
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list. We then use Short to obtain an abbreviated portion of list. Generally, Short
returns the first and last few elements of a list. The number of omitted terms

between the first few and last few is indicated with <<n>>. In this case, we see

that 17 terms are omitted.

list = Table[{n, Prime[n]}, {n, 1, 25}];
Short[list]
{{1, 2}, {2, 3}, {3, 5}, {4, 7},

〈〈17〉〉, {22, 79}, {23, 83}, {24, 89}, {25, 97}}
The ith element of a list list is extracted from list with list[[i]] or Part[list,i]. From

the resulting output, we see that the 15th prime number is 47.

list[[15]]
{15, 47}
Part[list, 15]
{15, 47}

You can use the Manipulate function in nearly the exact same way as the

Table function. With Manipulate, the result is an interactive dynamic object

that can be saved as an application that can be run outside of Mathematica.

With

we let i and i/2 vary continuously for 1 ≤ i ≤ 10. By making the stepsize

be 1, integer values of i are only allowed.

With the following Manipulate command, you can see n and the nth prime

number for 1 ≤ n ≤ 1000000.
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In addition, we can use Table to generate lists consisting of the same or

similar objects.

Example 4.1.4 (a) Generate a list consisting of five copies of the letter a. (b) Generate a list

consisting of 10 random integers between −10 and 10 and then a list of 10 random

real numbers between −10 and 10.

Solution Entering

Table[a, {5}]
{a, a, a, a, a}

generates a list consisting of five copies of the letter a. For (b), we use the com-

mands RandomInteger and RandomReal to generate the desired lists. Because

we are using RandomInteger and RandomReal, your results will certainly differ

from those obtained here.

RandomInteger[{ – 10, 10}, 10]
{3, – 5, 5, – 8, 0, – 2, – 2, 2, 7, 9}
RandomReal[{ – 10, 10}, 10]
{ – 3.42641, 4.76027, – 3.49249, – 9.11795, 3.72502, 7.39518,

– 6.84238, – 7.85735, 4.94279, – 9.4021}

As illustrated previously, Manipulate works in much the same way as Table
but allows you to interactively see how adjusting parameters affects a given

situation.

Example 4.1.5 In polar coordinates, the graphs of r = sin n� and r = cos n� are n-leaved roses

if n is odd and 2n-leaved roses if n is even. If n is even, the area of the graph

enclosed by the 2n roses is A = 1

2

∫ 2�
0

r2 d� = �/2. If n is odd, the area of the graph

enclosed by the n roses is A = 1

2

∫ 2�
0

r2 d� = �/4.

To see this with Mathematica, we can use Table. (See Figure 4.1.) (Note that

If[condition,f,g] returns f if condition is True and g if it is not.)

Clear[n, x];
t1 = Table[{
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FIGURE 4.1

You can use Table to see that the area of the roses depends only on whether n is
odd or even

If[Mod[n/2, 1] === 0, Integrate[Sin[nx]∧2, {x, 0, 2Pi}]/2,
Integrate[Sin[nx]∧2, {x, 0, Pi}]/2],
PolarPlot[Sin[nx], {x, 0, 2Pi}],

If[Mod[n/2, 1] === 0, Integrate[Cos[nx]∧2, {x, 0, 2Pi}]/2,
Integrate[Cos[nx]∧2, {x, 0, Pi}]/2],
PolarPlot[Cos[nx], {x, 0, 2Pi}]}, {n, 1, 5}];
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TableForm[t1,
TableHeadings→ {Table[n, {n, 1, 5}],

{“n”, “Area(Sine)”, “SinePlot”, “Area(Cosine)”, “CosinePlot”}}]

Alternatively, you can use Manipulate. (See Figure 4.2.)

Clear[n, x];
Manipulate[{n,

If[Mod[n/2, 1] === 0, Integrate[Sin[nx]∧2, {x, 0, 2Pi}]/2,
Integrate[Sin[nx]∧2, {x, 0, Pi}]/2],
PolarPlot[Sin[nx], {x, 0, 2Pi}],

If[Mod[n/2, 1] === 0, Integrate[Cos[nx]∧2, {x, 0, 2Pi}]/2,
Integrate[Cos[nx]∧2, {x, 0, Pi}]/2],
PolarPlot[Cos[nx], {x, 0, 2Pi}]}, {{n, 5}, 1, 100, 1}]

FIGURE 4.2

With Manipulate you can see that the area alternates from �/2 to �/4 as n
alternates from even to odd



258 CHAPTER 4 Introduction to Lists and Tables

4.1.2 Plotting Lists of Points

Lists are plotted with ListPlot.

1. ListPlot[{{x1,y1},{x2,y2},...,{xn,yn}}] plots the list of points
{(

x1, y1

)
,(

x2, y2

)
, …,

(
xn, yn

)}
. The size of the points in the resulting plot

is controlled with the option PlotStyle->PointSize[w], where w is

the fraction of the total width of the graphic. For two-dimensional

graphics, the default value is 0.008.

2. ListPlot[{y1,y2,..,yn}] plots the list of points
{(

1, y1

)
,
(
2, y2

)
, …,(

n, yn

)}
.

To connect the consecutive points with line segments, use the option

Joined->True.

Example 4.1.6 Entering

When a semicolon is

included at the end

of a command, the

resulting output is

suppressed.

t1 = Table[Sin[n], {n, 1, 1000}];
ListPlot[t1]

creates a list consisting of sin n for n = 1, 2,…,1000 and then graphs the list of

points (n, sin n) for n = 1, 2,…,1000. See Figure 4.3.

Example 4.1.7 (The Prime Difference Function and the Prime Number Theorem).
In t1, we use Prime and Table to compute a list of the first 25,000 prime numbers.

t1 = Table[Prime[n], {n, 1,25000}];

200 400 600 800 1000

21.0

20.5

0.5

1.0

FIGURE 4.3

Plot of (n, sin n) for n = 1, 2, … , 1000
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We use Length to verify that t1 has 25,000 elements and Short to see an

abbreviated portion of t1.

Length[t1]
25000

Short[t1]
{2, 3, 5, 7, 11, 13, 17, 19, 〈〈24984〉〉, 287047,

287057, 287059, 287087, 287093, 287099, 287107, 287117}
You can also use Take to extract elements of lists.

First[list] returns the

first element of list;
Last[list] returns the

last element of list.

1. Take[list,n] returns the first n elements of list;
2. Take[list,-n] returns the last n elements of list; and

3. Take[list,{n,m}] returns the nth through mth elements of list.

Take[t1, 5]
{2, 3, 5, 7, 11}
Take[t1, – 5]
{287087, 287093, 287099, 287107, 287117}
Take[t1, {12501, 12505}]
{134059, 134077, 134081, 134087, 134089}

Working in almost the same way as Take, Span (; ;) selects elements of lists:

list[[n;;m returns the n through mth elements of list.

Span is new in

Mathematica 6 but

works in almost the

same way as Take.

Example 4.1.8 Here are the first few terms of sequence A073184,1 the number of cube free

divisors of n:

ashortlist = {1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6,
2, 4, 4, 3, 2, 6, 2, 6, 4, 4, 2, 6,

3, 4, 3, 6, 2, 8, 2, 3, 4, 4, 4};

With ;; (Span), we select the second through eighth elements of ashortlist.

ashortlist[[2; ; 8]]
{2, 2, 3, 2, 4, 2, 3}

The same results are obtained with Take.

Take[ashortlist, {2, 8}]
{2, 2, 3, 2, 4, 2, 3}

You can count the number of elements of a list with Length.

Length[ashortlist]
35

1
Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, www.research.att.com/

njas/sequences, 2007.
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With Tally, we count the number of occurrences of each digit in the list. Thus,

Tally[ashortlist]
{{1, 1}, {2, 11}, {3, 7}, {4, 10}, {6, 5}, {8, 1}}

shows us that there are eleven 2's, ten 4's, and so on.

However, you can use Table together with Part ([[...]]) to obtain the same results

as those obtained with Take or Span.

Table[t1[[i]], {i, 1, 5}]
Table[t1[[i]], {i, 24996, 25000}]
Table[t1[[i]], {i, 12501, 12505}]
{2, 3, 5, 7, 11}
{287087, 287093, 287099, 287107, 287117}
{134059, 134077, 134081, 134087, 134089}

In t2, we compute the difference, dn, between the successive prime numbers in

t1. The result is plotted with ListPlot in Figure 4.4.list[[i]] returns the ith
element of list so

list[[i+1]] − list[[i]]
computes the

difference between

the (i + 1)st and ith
elements of list.

t2 = Table[t1[[i + 1]] – t1[[i]], {i, 1, Length[t1] – 1}];
Short[t2]
{1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 〈〈24967〉〉,
28, 14, 54, 46, 8, 6, 12, 4, 44, 10, 2, 28, 6, 6, 8, 10}
ListPlot[t2, PlotRange→All]
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FIGURE 4.4

A plot of the difference, dn, between successive prime numbers
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Let �(n) denote the number of primes less than n and Li(x) denote the

logarithmic integral:

LogIntegral[x] = Li(x) =

∫ x

0

1

ln t
dt.

We use Plot to graph Li(x) for 1 ≤ x ≤ 25,000 in p1.Remember that p1 is

not displayed because

a semicolon is

included at the end of

the Plot command.

p1 = Plot[LogIntegral[x], {x, 1, 2500}];

The prime number theorem states that

�(n) s Li(n).

(See [20].) In the following, we use Select and Length to define �(n).

Select[list,criteria] returns the elements of list for which criteria is true. Note

that #<n is called a pure function: Given an argument #, #<n is true if #<n
and false otherwise. The & symbol marks the end of a pure function. Thus,

given n, Select[t1,#<n&] returns a list of the elements of t1 less than n;

Select[t1,#<n&]//Length returns the number of elements in the list.

smallpi[n–] := Select[t1, # < n&] / /Length

For example,

smallpi[100]
25

shows us that �(100) = 25. Note that because t1 contains the first 25,000 primes,

smallpi[n] is valid for 1 ≤ n ≤ N, where �(N) = 25,000. In t3, we compute �(n) for

n = 1, 2, …, 25,000

t3 = Table[smallpi[n], {n, 1, 2500}];
Short[t3]
{0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 〈〈2475〉〉,
367, 367, 367, 367, 367, 367, 367, 367, 367, 367, 367, 367}

and plot the resulting list with ListPlot.

p2 = ListPlot[t3, PlotStyle→GrayLevel[0.4]]

p1 and p2 are displayed together with Show in Figure 4.5.

Show[p1, p2]

You can iterate recursively with Table. Both

t1 = Table[a[i, j], { j, 2, 10, 2}, {i, 1, 5}]
{{a[1, 2], a[2, 2], a[3, 2], a[4, 2], a[5, 2]},

{a[1, 4], a[2, 4], a[3, 4], a[4, 4], a[5, 4]}, {a[1, 6], a[2, 6], a[3, 6], a[4, 6], a[5, 6]},

{a[1, 8], a[2, 8], a[3, 8], a[4, 8], a[5, 8]}, {a[1, 10], a[2, 10], a[3, 10],

a[4, 10], a[5, 10]}}
Length[t1]
5
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FIGURE 4.5

Graphs of Li(x) (in black) and �(n) (in gray)

and

t2 = Table[Table[a[i, j], {i, 1, 5}], {j, 2, 10, 2}]
{{a[1, 2], a[2, 2], a[3, 2], a[4, 2], a[5, 2]}, {a[1, 4], a[2, 4], a[3, 4], a[4, 4], a[5, 4]},

{a[1, 6], a[2, 6], a[3, 6], a[4, 6], a[5, 6]}, {a[1, 8], a[2, 8], a[3, 8], a[4, 8], a[5, 8]},

{a[1, 10], a[2, 10], a[3, 10], a[4, 10], a[5, 10]}}
compute tables of aij. The outermost iterator is evaluated first: In this case,

i is followed by j as in t1 and the result is a list of lists. To eliminate the

inner lists (that is, the braces), use Flatten. Generally, Flatten[list,n] flattens

list (removes braces) to level n.

Flatten[t1]
{a[1, 2], a[2, 2], a[3, 2], a[4, 2], a[5, 2], a[1, 4], a[2, 4], a[3, 4], a[4, 4],

a[5, 4], a[1, 6], a[2, 6], a[3, 6], a[4, 6], a[5, 6], a[1, 8], a[2, 8], a[3, 8], a[4, 8], a[5, 8],

a[1, 10], a[2, 10], a[3, 10], a[4, 10], a[5, 10]}
The observation is especially important when graphing lists of points

obtained by iterating Table. For example,
Length[list] returns

the number of

elements in list.
t1 = Table[{Sin[x + y], Cos[x – y]}, {x, 1, 5}, {y, 1, 5}]
{{{Sin[2], 1},{Sin[3], Cos[1]},{Sin[4], Cos[2]},{Sin[5], Cos[3]},{Sin[6], Cos[4]}},

{{Sin[3], Cos[1]}, {Sin[4], 1}, {Sin[5], Cos[1]}, {Sin[6], Cos[2]}, {Sin[7], Cos[3]}},

{{Sin[4], Cos[2]}, {Sin[5], Cos[1]}, {Sin[6], 1}, {Sin[7], Cos[1]}, {Sin[8], Cos[2]}},

{{Sin[5], Cos[3]}, {Sin[6], Cos[2]}, {Sin[7], Cos[1]}, {Sin[8], 1}, {Sin[9], Cos[1]}},

{{Sin[6],Cos[4]},{Sin[7],Cos[3]},{Sin[8],Cos[2]},{Sin[9],Cos[1]},{Sin[10],1}}}
Length[t1]
5
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is not a list of 25 points: t1 is a list of 5 lists each consisting of 5 points. t1
has two levels. For example, the third element of the second level is

t1[[3]]
{{Sin[4], Cos[2]}, {Sin[5], Cos[1]}, {Sin[6], 1}, {Sin[7], Cos[1]}, {Sin[8], Cos[2]}}

and the second element of the third level (or the second part of the third

part) is

t1[[3, 2]]
{Sin[5], Cos[1]}

To flatten t2 to level 1, we use Flatten.

t2 = Flatten[t1, 1];

The resulting list of ordered pairs (in Mathematica, {x,y} corresponds to

(x, y)) is not displayed because a semicolon is placed at the end of the

Flatten command. These are plotted with ListPlot in Figure 4.6(a). We also

illustrate the use of the PlotStyle, PlotRange, and AspectRatio options in

the ListPlot command.

lp1 = ListPlot[t2, PlotStyle→ {PointSize[.05], GrayLevel[.5]},
PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}}, AspectRatio→Automatic];

Increasing the number of points further illustrates the use of Flatten.

Entering

t1 = Table[{Sin[x + y], Cos[x – y]}, {x, 1, 125}, {y, 1, 125}];
Length[t1]
125
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FIGURE 4.6

(a) and (b)
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results in a very long nested list. t1 has 125 elements, each of which has

125 elements.

An abbreviated version is viewed with Short.
Short[list] yields an

abbreviated version

of list.

Short[t1]
{{{Sin[2], 1}, {Sin[3], Cos[1]}, 〈〈121〉〉,
{Sin[125], Cos[123]}, {Sin[126], Cos[124]}}, 〈〈124〉〉}

After using Flatten, we see with Length and Short that t2 contains 15,625

points,

t2 = Flatten[t1, 1];
Length[t2]
15625

Short[t2]
{{Sin[2], 1}, {Sin[3], Cos[1]}, 〈〈15621〉〉, {Sin[249], Cos[1]}, {Sin[250], 1}}

which are plotted with ListPlot in Figure 4.6(b).

lp2 = ListPlot[t2, AspectRatio→Automatic];
Show[GraphicsRow[{lp1, lp2}]]
Show[GraphicsRow[{lp1, lp2}]]

Remark 4.1 Mathematica is very flexible and most calculations can be carried out in more than

one way. Depending on how you think, some sequences of calculations may make

more sense to you than others, even if they are less efficient than the most efficient

way to perform the desired calculations. Often, the difference in time required for

Mathematica to perform equivalent—but different—calculations is quite small. For

the beginner, we think it is wisest to work with familiar calculations first and then

efficiency.

Example 4.1.9 (Dynamical Systems). A sequence of the form xn+1 = f
(
xn

)
is called a dynami-

cal system.
Sometimes, unusual behavior can be observed when working with dynam-

ical systems. For example, consider the dynamical system with f(x) = x + 2.5x

(1 − x) and x0 = 1.2. Note that we define xn using the form x[n ] := x[n] = ...
so that Mathematica “remembers” the functional values it computes and thus

avoids recomputing functional values previously computed. This is particularly

advantageous when we compute the value of xn for large values of n.Observe that

xn+1 = f
(
xn

)
can also

be computed with

xn+1 = f n(x0

)
.

Clear[f, x]
f[x–] := x + 2.5x(1 – x)
x[n–] := x[n] = f[x[n – 1]]
x[0] = 1.2;
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(a) A 2-cycle. (b) A 4-cycle

In Figure 4.7(a), we see that the sequence xn oscillates between the numbers

0.6 and 1.2. We say that the dynamical system has a 2-cycle because the values

of the sequence oscillate between two numbers.

tb = Table[x[n], {n, 1, 200}]; ListPlot[tb]

In Figure 4.7(b), we see that changing x0 from 1.2 to 1.201 results in a 4-cycle.

Clear[f, x]
f[x–] := x + 2.5x(1 – x)
x[n–] := x[n] = f[x[n – 1]]
x[0] = 1.201;
tb = Table[x[n], {n, 1, 200}];
ListPlot[tb]

The calculations indicate that the behavior of the system can change considerably

for small changes in x0. With the following, we adjust the definition of x so that x

depends on x0 = c: Given c, xc(0) = c.

Clear[f, x]
f[x–] := x + 2.5x(1 – x)
x[c–][n–] := x[c][n] = f[x[c][n – 1]]//N
x[c–][0] := c//N;

In tb, we create a list of lists of the form {xc(n)|n = 100, …, 150} for 150 equally

spaced values of c between 0 and 1.5. Observe that Mathematica issues several

error messages. When a Mathematica calculation is larger than the machine's

precision, we obtain an Overflow warning. In numerical calculations, we interpret

Overflow to correspond to ∞.

tb = Table[{c, x[c][n]}, {c, 0, 1.5, .01}, {n, 100, 150}];
General::ovfl : Overflow occurred in computation. 〉〉
General::ovfl : Overflow occurred in computation. 〉〉
General::ovfl : Overflow occurred in computation. 〉〉
General::stop : Further output of General::ovfl will be suppressed during this

calculation. 〉〉
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We ignore the error messages and use Short to view an abbreviated form of tb.Short[expr] prints an

abbreviated form

of expr. Short[tb]
{{{0., 0.}, {0., 0.}, {0., 0.}, 〈〈45〉〉, {0., 0.}, {0., 0.}, {0., 0.}}, 〈〈149〉〉, {〈〈1〉〉}}

We then use Flatten to convert tb to a list of points that are plotted with ListPlot
in Figure 4.8(a).

tb2 = Flatten[tb, 1];
f1 = ListPlot[tb2];

Another interesting situation occurs if we fix x0 and let c vary in f (x) = x + cx(1 − x).

With the following, we set x0 = 1.2 and adjust the definition of f so that f

depends on c: f (x) = x + cx(1 − x).

Clear[f, x]
f[c–][x–] := x + cx(1 – x)//N
x[c–][n–] := x[c][n] = f[c][x[c][n – 1]]//N
x[c–][0] := 1.2//N;

In tb, we create a list of lists of the form {xc(n)|n = 200, …, 300} for 350 equally

spaced values of c between 0 and 3.5. As before, Mathematica issues several

error messages, which we ignore and which are not displayed here due to length

considerations.

tb = Table[{c, x[c][n]}, {c, 0, 3.5, .01}, {n, 200, 300}];
Short[tb]
{{{0., 1.2}, {0., 1.2}, {0., 1.2}, 〈〈95〉〉, {0., 1.2}, {0., 1.2}, {0., 1.2}}, 〈〈350〉〉}

tb is then converted to a list of points with Flatten and the resulting list is plotted

in Figure 4.8(b) with ListPlot. This plot is called a bifurcation diagram.

tb2 = Flatten[tb, 1];
f2 = ListPlot[tb2, PlotRange→ {0, 2}]
Show[GraphicsRow[{f1, f2}]]
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As indicated previously, elements of lists can be numbers, ordered pairs,

functions, and even other lists. You can also use Mathematica to mani-

pulate lists in numerous ways. Most important, the Map function is used

to apply a function to a list: Map[f,{x1,x2, . . . ,xn}] returns the list { f (x1),

f (x2), …, f (xn)}. We discuss other operations that can be performed on lists

in the following sections.

A function f is

listable if f[list] and

Map[f,list] return the

same results.

Example 4.1.10 (Hermite Polynomials). The Hermite polynomials, Hn(x), satisfy the differential

equation y′′ − 2xy′
+ 2ny = 0 and the orthogonality relation

∫∞
−∞ Hn(x)Hm(x)e−x2

dx =


mn2
nn!

√
�. The Mathematica command HermiteH[n,x] yields the Hermite polyno-

mial Hn(x). (a) Create a table of the first five Hermite polynomials. (b) Evaluate each

Hermite polynomial if x = 1. (c) Compute the derivative of each Hermite polynomial

in the table. (d) Compute an antiderivative of each Hermite polynomial in the table.

(e) Graph the five Hermite polynomials on the interval [−1, 1]. (f) Verify that Hn(x)

satisfies y′′ − 2xy′
+ 2ny = 0 for n = 1, 2, …, 5 (

′
denotes d/dx).

Solution We proceed by using HermiteH together with Table to define hermitetable to be

the list consisting of the first five Hermite polynomials.

hermitetable = Table[HermiteH[n, x], {n, 1, 5}]{
2x, – 2 + 4x2, – 12x + 8x3, 12 – 48x2 + 16x4, 120x – 160x3 + 32x5

}
We then use ReplaceAll (->) to evaluate each member of hermitetable if x is

replaced by 1.

hermitetable/.x→1
{2, 2, – 4, – 20, – 8}

Functions such as D and Integrate are listable. Thus, each of the following com-

mands differentiates each element of hermitetable with respect to x. In the second

case, we have used a pure function: Given an argument #, D[#,x]& differentiates

# with respect to x. Use the & symbol to indicate the end of a pure function.

D[hermitetable, x]{
2, 8x, – 12 + 24x2, – 96x + 64x3, 120 – 480x2 + 160x4

}
Map[D[#, x]&, hermitetable]{

2, 8x, – 12 + 24x2, – 96x + 64x3, 120 – 480x2 + 160x4
}

Similarly, we use Integrate to antidifferentiate each member of hermitetable with

respect to x. Remember that Mathematica does not automatically include the “+C”

that we include when we antidifferentiate.

Integrate[hermitetable, x]{
x2, – 2x + 4x3

3
, – 6x2 + 2x4, 12x – 16x3 + 16x5

5
, 60x2 – 40x4 + 16x6

3

}
Map[Integrate[#, x]&, hermitetable]{

x2, – 2x + 4x3

3
, – 6x2 + 2x4, 12x – 16x3 + 16x5

5
, 60x2 – 40x4 + 16x6

3

}
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Graphs of H1(x), H2(x), H3(x), H4(x), and H5(x)

To graph the list hermitetable, we use Plot to plot each function in the set

hermitetable on the interval [−2, 2] in Figure 4.9. In this case, we specify that

the displayed y-values correspond to the interval [−20, 20]. Because we apply

Tooltip to the set of functions being plotted, you can identify each curve by mov-

ing the cursor and placing it over each curve to see which function is being

plotted.

Plot[Tooltip[hermitetable], {x, – 1, 1}, PlotRange→ { – 20, 20}]

hermitetable[[n]] returns the nth element of hermitetable, which corresponds to

Hn(x). Thus,

verifyde =
Table[D[hermitetable[[n]], {x, 2}] – 2x D[hermitetable[[n]], x]+

2n hermitetable[[n]]//Simplify, {n, 1, 5}]
{0, 0, 0, 0, 0}

computes and simplifies Hn
′′ − 2xHn

′
+ 2nHn for n = 1, 2, … , 5. We use Table and

Integrate to compute
∫∞
−∞ Hn(x)Hm(x)e−x2

dx for n = 1, 2, … , 5 and m = 1, 2, … , 5.

verifyortho =
Table[Integrate[hermitetable[[n, 2]]hermitetable[[m, 2]]

Exp[ – x∧2], {x, – Infinity, Infinity}], {n, 1, 5}, {m, 1, 5}]{{√
�

2
, 0, 6

√
�, 0, – 120

√
�
}

,
{

0, 12
√

�, 0, – 144
√

�, 0
}

,{
6
√

�, 0, 120
√

�, 0, – 2400
√

�
}

,
{

0, – 144
√

�, 0, 1728
√

�, 0
}

,{
– 120

√
�, 0, – 2400

√
�, 0, 48000

√
�
}}

To view a table in traditional row-and-column form use TableForm, as we do here

illustrating the use of the TableHeadings option.
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TableForm[verifyortho,
TableHeadings→ {{“m = 1”, “m = 2”, “m = 3”, “m = 4”, “m = 5”},
{“n = 1”, “n = 2”, “n = 3”, “n = 4”, “n = 5”}}]

n = 1 n = 2 n = 3 n = 4 n = 5

m = 1
√

�
2

0 6
√

� 0 – 120
√

�

m = 2 0 12
√

� 0 – 144
√

� 0

m = 3 6
√

� 0 120
√

� 0 – 2400
√

�

m = 4 0 – 144
√

� 0 1728
√

� 0

m = 5 – 120
√

� 0 – 2400
√

� 0 48000
√

�

Be careful when using TableForm: TableForm[table] is no longer a list and cannot

be manipulated like a list.

4.2 MANIPULATING LISTS: MORE ON PART AND MAP

Often, Mathematica’s output is given to us as a list that we need to use in

subsequent calculations. Elements of a list are extracted with Part ([[. . .]]):
list[[i]] returns the ith element of list, list[[i,j]] (or list[[i]][[j]]) returns the jth
element of the ith element of list, and so on.

Example 4.2.1 Let f (x) = 3x4 − 8x3 − 30x2
+ 72x. Locate and classify the critical points of y = f (x).

Solution We begin by clearing all prior definitions of f and then defining f. The critical

numbers are found by solving the equation f ′(x) = 0. The resulting list is named

critnums.

Clear[f]
f[x–] = 3x4 – 8x3 – 30x2 + 72x;
critnums = Solve[f′[x]==0]
{{x → – 2}, {x → 1}, {x → 3}}

critnums is actually a list of lists. For example, the number −2 is the second part

of the first part of the second part of critnums.

critnums[[1]]
{x → – 2}
critnums[[1, 1]]
x → – 2

critnums[[1, 1, 2]]
– 2
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Similarly, the numbers 1 and 3 are extracted with critnums[[2,1,2]] and

critnums[[3,1,2]], respectively.

critnums[[2, 1, 2]]
critnums[[3, 1, 2]]
1

3

We locate and classify the points by evaluating f (x) and f ′′(x) for each of the

numbers in critnums. f[x]/.x->a replaces each occurrence of x in f (x) by a, so

entering{
{x, f[x], f′′[x]

}
}/.critnums

{{ – 2, – 152, 180}, {1, 37, – 72}, {3, – 27, 120}}
replaces each x in the list {x, f (x), f ′′(x)} by each of the x-values in critnums.

By the second derivative test, we conclude that y = f (x) has relative minima

at the points (−2,−152) and (3,−27), whereas f (x) has a relative maximum at

(1, 37). In fact, because limx→±∞ = ∞, −152 is the absolute minimum value of

f (x). These results are confirmed by the graph of y = f (x) in Figure 4.10.

When you plot lists

of functions and

apply Tooltip to the

list being plotted,

you can identify

each curve by sliding

the cursor over the

curve. When the

cursor is on a curve,

the definition of the

curve being plotted

is displayed.

Plot[Tooltip[{f[x], f′[x], f′′[x]}], {x, – 4, 4}]

Map is a very powerful and useful function: Map[f,list] creates a list consist-

ing of elements obtained by evaluating f for each element of list, provided

that each member of list is an element of the domain of f. Note that if f is

listable, f[list] produces the same result as Map[f,list].
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FIGURE 4.10

Graph of f (x) = 3x4 − 8x3 − 30x2
+ 72x, f ′(x), and f ′′(x)
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Example 4.2.2 Entering

t1 = Table[n, {n, 1, 100}];
t1b = Partition[t1, 10];
TableForm[t1b]

To determine if f is

listable, enter

Attributes[f].

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

computes a list of the first 100 integers and names the result t1. To see t1, we

use Partition to partition t1 in 10 element subsets; the results are displayed in a

standard row-and-column form with TableForm. We then define f (x) = x2
and use

Map to square each number in t1.

f[x–] = x∧2,
t2 = Map[f, t1];
t2b = Partition[t2, 10];
TableForm[t2b]

1 4 9 16 25 36 49 64 81 100

121 144 169 196 225 256 289 324 361 400

441 484 529 576 625 676 729 784 841 900

961 1024 1089 1156 1225 1296 1369 1444 1521 1600

1681 1764 1849 1936 2025 2116 2209 2304 2401 2500

2601 2704 2809 2916 3025 3136 3249 3364 3481 3600

3721 3844 3969 4096 4225 4356 4489 4624 4761 4900

5041 5184 5329 5476 5625 5776 5929 6084 6241 6400

6561 6724 6889 7056 7225 7396 7569 7744 7921 8100

8281 8464 8649 8836 9025 9216 9409 9604 9801 10000

The same result is accomplished by the pure function that squares its argument.

Note how # denotes the argument of the pure function; the & symbol marks the

end of the pure function.
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t3 = Map[#∧2&, t1];
t3b = Partition[t3, 10];
TableForm[t3b]

1 4 9 16 25 36 49 64 81 100

121 144 169 196 225 256 289 324 361 400

441 484 529 576 625 676 729 784 841 900

961 1024 1089 1156 1225 1296 1369 1444 1521 1600

1681 1764 1849 1936 2025 2116 2209 2304 2401 2500

2601 2704 2809 2916 3025 3136 3249 3364 3481 3600

3721 3844 3969 4096 4225 4356 4489 4624 4761 4900

5041 5184 5329 5476 5625 5776 5929 6084 6241 6400

6561 6724 6889 7056 7225 7396 7569 7744 7921 8100

8281 8464 8649 8836 9025 9216 9409 9604 9801 10000

On the other hand, entering

t1 = Table[{a, b}, {a, 1, 5}, {b, 1, 5}];
Short[t1]
{{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}}, 〈〈4〉〉}

is a list (of length 5) of lists (each of length 5). Use Flatten to obtain a list of 25

points, which we name t2.

t2 = Flatten[t1, 1];
Short[t2]
{{1, 1}, {1, 2}, {1, 3}, {1, 4}, 〈〈17〉〉, {5, 2}, {5, 3}, {5, 4}, {5, 5}}

We then use Map to apply f to t2.

f[{x–, y–}] = {{x, y}, x∧2 + y∧2};
t3 = Map[f, t2];
Short[t3]
{{{1, 1}, 2}, {{1, 2}, 5}, {{1, 3}, 10}, 〈〈20〉〉, {{5, 4}, 41}, {{5, 5}, 50}}

We accomplish the same result with a pure function. Observe how #[[1]] and #[[2]]
are used to represent the first and second arguments: Given a list of length 2,

the pure function returns the list of ordered pairs consisting of the first element of

the list, the second element of the list (as an ordered pair), and the sum of the

squares of the first and second elements (of the first ordered pair).

t3b = Map[{{#[[1]], #[[2]]}, #[[1]]∧2 + #[[2]]∧2}&, t2];
Short[t3b]
{{{1, 1}, 2}, {{1, 2}, 5}, {{1, 3}, 10}, 〈〈20〉〉, {{5, 4}, 41}, {{5, 5}, 50}}

Example 4.2.3 Make a table of the values of the trigonometric functions y = sin x, y = cos x, and

y = tan x for the principal angles.
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Solution We first construct a list of the principal angles, which is accomplished by defining

t1 to be the list consisting of n�/4 for n = 0, 1, … , 8 and t2 to be the list consisting

of n�/6 for n = 0, 1, …, 12. The principal angles are obtained by taking the union

of t1 and t2. Union[t1,t2] joins the lists t1 and t2, removes repeated elements,

and sorts the results. If we did not wish to remove repeated elements and sort

the result, the command Join[t1,t2] concatenates the lists t1 and t2.

t1 = Table
[ np

4 , {n, 0, 8}
]
;

t2 = Table
[ np

6
, {n, 0, 12}

]
;

prinangles = Union[t1, t2]{
0, �

6
, �

4
, �

3
, �

2
, 2�

3
, 3�

4
, 5�

6
, �, 7�

6
, 5�

4
, 4�

3
, 3�

2
, 5�

3
, 7�

4
, 11�

6
, 2�

}
We can also use the symbol ∪, which is obtained by clicking on the button

on the BasicMathInput palette to represent Union.

The BasicMathInput
palette:

prinangles = t1∪ t2{
0, �

6
, �

4
, �

3
, �

2
, 2�

3
, 3�

4
, 5�

6
, �, 7�

6
, 5�

4
, 4�

3
, 3�

2
, 5�

3
, 7�

4
, 11�

6
, 2�

}
Next, we define f (x) to be the function that returns the ordered quadruple

(x, sin x, cos x, tan x) and compute the value of f (x) for each number in prinangles
with Map naming the resulting table prinvalues. prinvalues is not displayed

because a semicolon is included at the end of the command.

Clear[f]
f[x–] = {x, Sin[x], Cos[x], Tan[x]};

prinvalues = Map[f, prinangles];

Remember that the

result of using

TableForm is not a

list, so it cannot be

manipulated like lists.

Finally, we use TableForm illustrating the use of the TableHeadings option to dis-

play prinvalues in row-and-column form; the columns are labeled x, sin x, cos x,

and tan x.

TableForm[prinvalues,
TableHeadings→ {None, {“x”, “sin(x)”, “cos(x)”, “tan(x)”}}]

x sin(x) cos(x) tan(x)

0 0 1 0

�
6

1

2

√
3

2

1√
3

�
4

1√
2

1√
2

1

�
3

√
3

2

1

2

√
3

�
2

1 0 ComplexInfinity

2�
3

√
3

2
– 1

2
–
√

3

3�
4

1√
2

– 1√
2

– 1

5�
6

1

2
–

√
3

2
– 1√

3

� 0 – 1 0
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7�
6

– 1

2
–

√
3

2

1√
3

5�
4

– 1√
2

– 1√
2

1

4�
3

–
√

3

2
– 1

2

√
3

3�
2

– 1 0 ComplexInfinity

5�
3

–
√

3

2

1

2
–
√

3

7�
4

– 1√
2

1√
2

– 1

11�
6

– 1

2

√
3

2
– 1√

3

2� 0 1 0

In the table, note that y = tan x is undefined at odd multiples of �/2 and

Mathematica appropriately returns ComplexInfinity at those values of x for

which y = tan x is undefined.

Remark 4.2 The result of using TableForm is not a list (or table) and calculations on it using

commands such as Map cannot be performed. TableForm helps you see results

in a more readable format. To avoid confusion, do not assign the results of using

TableForm any name: Adopting this convention avoids any possible attempted

manipulation of TableForm objects.

object=name assigns

the object object the

name name.

We can use Map on

any list, including

lists of functions

and/or other lists.

Lists of functions are graphed with Plot: Plot[listoffunctions,{x,a,b}]
graphs the list of functions of x, listoffunctions, for a ≤ x ≤ b. If the com-

mand is entered as Plot[Tooltip[listoffunctions],{x,a,b}], you can identify

the curves in the plot by moving the cursor over the curves in the graphic.

Example 4.2.4 (Bessel Functions). The Bessel functions of the first kind, Jn(x), are non-

singular solutions of x2y′′
+ xy′

+
(
x2 − n2

)
y = 0. BesselJ[n,x] returns Jn(x). Graph

Jn(x) for n = 0, 1, 2, … , 8.

Solution In t1, we use Table and BesselJ to create a list of Jn(x) for n = 0, 1, 2, … , 8.

t1 = Table[BesselJ[n, x], {n, 0, 8}];

We then use Plot to graph each function in t1 in Figure 4.11. You can identify

each curve by sliding the cursor over each.

Plot[Tooltip[t1], {x, 0, 25}]

A different effect is achieved by graphing each function separately. To do so,

we define the function pfunc. Given a function of x, f, pfunc[f] plots the func-

tion for 0 ≤ x ≤ 100. The resulting graphic is not displayed because the option

DisplayFunction->Identity is included in the Plot command. We then use Map to

apply pfunc to each element of t1. The result is a list of nine graphics objects,

which we name t2. A good way to display nine graphics is as a 3 × 3 array, so we

use Partition to convert t2 from a list of length 9 to a list of lists, each with length
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FIGURE 4.11

Graphs of Jn(x) for n = 0, 1, 2, … , 8
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FIGURE 4.12

In the first row, from left to right, graphs of J0(x), J1(x), and J2(x); in the second row,

from left to right, graphs of J3(x), J4(x), and J5(x); in the third row, from left to right,

graphs of J6(x), J7(x), and J8(x)

3 – a 3 × 3 array. Partition[list,n] returns a list of lists obtained by partitioning list
into n-element subsets.Think of Flatten and

Partition as inverse

functions.
pfunc[f–] := Plot[f, {x, 0, 100}];
t2 = Map[pfunc, t1];
t3 = Partition[t2, 3];

Instead of defining pfunc, you can use a pure function. The following accom-

plishes the same result. We display t3 using Show together with GraphicsGrid in

Figure 4.12.
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t2 = (Plot[#1, {x, 0, 100}, DisplayFunction→ Identity]&)/@t1;
t3 = Partition[t2, 3];
Show[GraphicsGrid[t3]]

Example 4.2.5 (Dynamical Systems). Let fc(x) = x2
+ c and consider the dynamical system given

by x0 = 0 and xn+1 = fc

(
xn

)
. Generate a bifurcation diagram of fc.

Compare the

approach used

here with the

approach used in

Example 4.1.9.

Solution First, recall that Nest[f,x,n] computes the repeated composition f n
(x). Then, in

terms of a composition,

xn+1 = fc

(
xn

)
= fc

n (0) .

We will compute fc
n

(0) for various values of c and “large” values of n so we begin

by defining cvals to be a list of 300 equally spaced values of c between −2.5

and 1.

cvals = Table[c, {c, – 2.5, 1., 3.5/299}];

We then define fc(x) = x2
+ c. For a given value of c, f[c] is a function of one

variable, x, whereas the form f[c ][x ] := ... results in a function of two variables

that we think of as an indexed function that might be represented using traditional

mathematical notation as fc(x).

Clear[f]
f[c–][x–] := x∧2 + c

To iterate fc for various values of c, we define h. For a given value of c, h(c) returns

the list of points
{(

c, fc
100

(0)
)
,
(
c, fc

101
(0)

)
, …,

(
c, fc

200
(0)

)}
.

h[c–] := {Table[{c, Nest[f[c], 0, n]}, {n, 100, 200}]}

We then use Map to apply h to the list cvals. Observe that Mathematica gener-

ates several error messages when numerical precision is exceeded. We choose to

disregard the error messages.

t1 = Map[h, cvals];

t1 is a list (of length 300) of lists (each of length 101). To obtain a list of points (or,

lists of length 2), we use Flatten. The resulting set of points is plotted with ListPlot
in Figure 4.13. Observe that Mathematica again displays several error messages,

which are not displayed here for length considerations, that we ignore: Mathematica

only plots the points with real coordinates and ignores those containing Overflow[ ].

t2 = Flatten[t1, 2];
ListPlot[t2, AxesLabel→ {“c”, “xc(n), n = 100 . .200”}]
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FIGURE 4.13

Bifurcation diagram of fc

4.2.1 More on Graphing Lists: Graphing Lists of Points
Using Graphics Primitives

Include the PlotJoined->True option in a ListPlot command to connect

successive points with line segments.

Using graphics primitives such as Point and Line gives you even more

flexibility. Point[{x,y}] represents a point at (x, y).

Line[{{x1, y1}, {x2, y2}, … , {xn, yn}}]

represents a sequence of points
(
x1, y1

)
,
(
x2, y2

)
, … ,

(
xn, yn

)
connected

with line segments. A graphics primitive is declared to be a graphics object

with Graphics: Show[Graphics[Point[x,y]] displaying the point (x, y). The

advantage of using primitives is that each primitive is affected by the

options that directly precede it.

Example 4.2.6 Table 4.1 shows the percentage of the U.S. labor force that belonged to unions

during certain years. Graph the data represented in the table.

Solution We begin by entering the data represented in the table as dataunion:

dataunion = {{30, 11.6}, {35, 13.2}, {40, 26.9}, {45, 35.5},
{50, 31.5}, {55, 33.2}, {60, 31.4}, {65, 28.4}, {70, 27.3},

{75, 25.5}, {80, 21.9}, {85, 18.0}, {90, 16.1}};

the x-coordinate of each point corresponds to the year, where x is the number of

years past 1900, and the y-coordinate of each point corresponds to the percentage

of the U.S. labor force that belonged to unions in the given year. We then use

ListPlot to graph the set of points represented in dataunion in lp1, lp2 (illustrating
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Table 4.1 Union membership

as a percentage of the labor

force

Year Percent

1930 11.6

1935 13.2

1940 26.9

1945 35.5

1950 31.5

1955 33.2

1960 31.4

1965 28.4

1970 27.3

1975 25.5

1980 21.9

1985 18.0

1990 16.1
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FIGURE 4.14

Union membership as a percentage of the labor force

the PlotStyle option), and lp3 (illustrating the PlotJoined option). All three plots are

displayed side-by-side in Figure 4.14 using Show together with GraphicsRow.

lp1 = ListPlot[dataunion];
lp2 = ListPlot[dataunion, PlotStyle→PointSize[0.03]];
lp3 = ListPlot[dataunion, Joined→True];
Show[GraphicsRow[{lp1, lp2, lp3}]]

An alternative to using ListPlot is to use Show, Graphics, and Point to view the

data represented in dataunion. In the following command we use Map to apply

the function Point to each pair of data in dataunion. The result is not a graphics

object and cannot be displayed with Show.

datapts1 = Map[Point, dataunion];
Short[datapts1]
{Point[{30, 11.6}], Point[{35, 13.2}], 〈〈10〉〉, Point[{90, 16.1}]}

Next, we use Show and Graphics to declare the set of points Map[Point,
dataunion] as graphics objects and name the resulting graphics object dp1. The
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image is not displayed because a semicolon is included at the end of the com-

mand. The PointSize[.03] command specifies that the points be displayed as filled

circles of radius 0.03% of the displayed graphics object.

dp1 = Show[Graphics[{PointSize[0.03], datapts1},
Axes→Automatic]];

The collection of all commands contained within a Graphics command is contained

in braces {...}. Each graphics primitive is affected by the options such as PointSize,

GrayLevel (or RGBColor) directly preceding it. Thus,

datapts2 = ({GrayLevel[RandomReal[]], Point[#1]}&)/@dataunion;
Short[datapts2]
{{GrayLevel[0.827228], Point[{30, 11.6}]}, 〈〈11〉〉, 〈〈1〉〉}
dp2 = Show[Graphics[{PointSize[0.03], datapts2},

Axes→Automatic]];

displays the points in dataunion in various shades of gray in a graphic named

dp2, and

datapts3 = ({PointSize[RandomReal[{“0.008”, “0.1”}]],
GrayLevel[RandomReal[]], Point[#1]}&)/@dataunion;

dp3 = Show[Graphics[{datapts3}, Axes→Automatic]];

shows the points in dataunion in various sizes and in various shades of gray in a

graphic named dp3. We connect successive points with line segments

connectpts = Graphics[Line[dataunion]];
dp4 = Show[connectpts, dp3, Axes→Automatic];

and show all four plots in Figure 4.15 using Show and GraphicsGrid.

Show[GraphicsGrid[{{dp1, dp2}, {dp3, dp4}}]]

With the speed of today’s computers and the power of Mathematica, it is

relatively easy to carry out many calculations that required supercomputers

and sophisticated programming experience just a few years ago.

Example 4.2.7 (Julia Sets). Plot Julia sets for f (z) = � cos z if � = .66i and � = .665i.

Solution The sets are visualized by plotting the points (a, b) for which | f n
(a + bi)| is not

large in magnitude so we begin by forming our complex grid. Using Table and

Flatten, we define complexpts to be a list of 62,500 points of the form a + bi for

250 equally spaced real values of a between 0 and 8 and 300 equally spaced real

values of b between −4 and 4 and then f (z) = .66i cos z.

complexpts =
Flatten[Table[a + bI, {a, 0., 8., 8/249}, {b, – 4., 4., 6/249}], 1];
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Union membership as a percentage of the labor force

Clear[f]
f[z–] = .66ICos[z]
0.66iCos[z]

For a given value of c = a + bi, h(c) returns the ordered triple consisting of the real

part of c, the imaginary part of c, and the value of f 200
(c).

h[c–] := {Re[c], Im[c], Nest[f, c, 200]}

We then use Map to apply h to complexpts. Observe that Mathematica gener-

ates several error messages. When machine precision is exceeded, we obtain an

Overflow[ ] error message; numerical result smaller than machine precision results

in an Underflow[ ] error message. Error messages can be machine specific, so if

you do not get any, do not worry. For length considerations, we do not show any

that we obtained here.

t1 = Map[h, complexpts]//Chop;

We use the error messages to our advantage. In t2, we select those elements of

t1 for which the third coordinate is not Indeterminate, which corresponds to the

ordered triples
(
a, b, f n

(a + bi)
)

for which | f n
(a + bi)| is not large in magnitude,

whereas in t2b, we select those elements of t1 for which the third coordinate is

Indeterminate, which corresponds to the ordered triples
(
a, b, f n

(a + bi)
)

for which

| f n
(a + bi)| is large in magnitude.

t2 = Select[t1, Not[#[[3]] === Indeterminate]&];
t2b = Select[t1, #[[3]] === Indeterminate&];
pt[{x–, y–, z–}] := {x, y}
t3 = Map[pt, t2];
t3b = Map[pt, t2b];

which are then graphed with ListPlot and shown side-by-side in Figure 4.16 using

Show and GraphicsRow. As expected, the images are inversions of each other.
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Julia set for 0.66i cos z
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Julia set for 0.665i cos z

lp1 = ListPlot[t3, PlotRange→ {{0, 8}, { – 4, 4}},
AspectRatio→Automatic, DisplayFunction→ Identity];

lp2 = ListPlot[t3b, PlotRange→ {{0, 8}, { – 4, 4}},
AspectRatio→Automatic, DisplayFunction→ Identity];

Show[GraphicsRow[{lp1, lp2}]]
We encountered

similar error messages

as before but we have

not included them

due to length

considerations.

Changing � from 0.66i to 0.665i results in a surprising difference in the plots. We

proceed as before but increase the number of sample points to 120,000. See

Figure 4.17.

complexpts = Flatten[Table[a + bI, {a, – 2., 2., 4/399}, {b, 0., 2., 2/299}], 1]
Clear[f];
f[z–] = .665 I Cos[z]
h[c–] := {Re[c], Im[c], Nest[f, c, 200]}
t1 = Map[h, complexpts] / /Chop;
t2 = Select[t1, Not[#[[3]] === Indeterminate]&];
t2 = Select[t2, Not[#[[3]] === Overflow[]]&];
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FIGURE 4.18

Shaded Julia sets for 0.665i cos z

t2b = Select[t1, #[[3]] === Indeterminate&];
pt[{x–, y–, z–}] := {x, y}

t3 = Map[pt, t2];
t3b = Map[pt, t2b];

lp1 = ListPlot[t3, PlotRange→ {{ – 2, 2}, {0, 2}}, AspectRatio→Automatic,
DisplayFunction→ Identity];

lp2 = ListPlot[t3b, PlotRange→ {{ – 2, 2}, {0, 2}}, AspectRatio→Automatic,
DisplayFunction→ Identity];

Show[GraphicsRow[{lp1, lp2}]]

To see detail, we take advantage of pure functions, Map, and graphics primitives

in three different ways. In Figure 4.18, the shading of the point (a, b) is assigned

according to the distance of f 200
(a + bi) from the origin. The color black indicates

a distance of zero from the origin; as the distance increases, the shading of the

point becomes lighter.

t2p = Map[{#[[1]], #[[2]], Min[Abs[#[[3]]], 3]}&, t2];
t2p2 = Map[{GrayLevel[#[[3]]/3], Point[{#[[1]], #[[2]]}]}&,

t2p];
jp1 = Show[Graphics[t2p2], PlotRange→ {{ – 2, 2}, {0, 2}},

AspectRatio→1];

t2p = Map[{#[[1]], #[[2]], Min[Abs[Re[#[[3]]]], .25]}&, t2];
t2p2 = Map[{GrayLevel[#[[3]] / .25], Point[{#[[1]], #[[2]]}]}&,

t2p];
jp2 = Show[Graphics[t2p2], PlotRange→ {{ – 2, 2}, {0, 2}}, AspectRatio→1];

t2p = Map[{#[[1]], #[[2]], Min[Abs[Im[#[[3]]]], 2.5]}&, t2];
t2p2 = Map[{GrayLevel[#[[3]]/2.5], Point[{#[[1]], #[[2]]}]}&,
t2p];
jp3 = Show[Graphics[t2p2], PlotRange→ {{ – 2, 2}, {0, 2}}, AspectRatio→1];

Show[GraphicsRow[{jp1, jp2, jp3}]]
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4.2.2 Miscellaneous List Operations

Other List Operations

Some other Mathematica commands used with lists include

1. Append[list,element], which appends element to list;
2. AppendTo[list,element], which appends element to list and names the

result list;
3. Drop[list,n], which returns the list obtained by dropping the first n ele-

ments from list;
4. Drop[list,-n], which returns the list obtained by dropping the last n ele-

ments of list;
5. Drop[list,{n,m}], which returns the list obtained by dropping the nth

through mth elements of list;
6. Drop[list,{n}], which returns the list obtained by dropping the nth

element of list;
7. Prepend[list,element], which prepends element to list; and

8. PrependTo[list,element], which prepends element to list and names the

result list.

Alternative Way to Evaluate Lists by Functions

Abbreviations of several of the commands discussed in this section are

summarized in the following table:

/@/@ Apply // (function application) {...}
@ Map [[...]] Part

4.3 OTHER APPLICATIONS
We now present several other applications that we find interesting and that

require the manipulation of lists. The examples also illustrate (and combine)

many of the techniques that were demonstrated in the previous chapters.

4.3.1 Approximating Lists with Functions

Another interesting application of lists is that of curve fitting. The com-

mands

1. Fit[data,functionset,variables] fits the list of data points data using

the functions in functionset by the method of least squares. The

functions in functionset are functions of the variables listed in

variables; and
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2. InterpolatingPolynomial[data,x] fits the list of n data points data with

an n − 1 degree polynomial in the variable x.

Example 4.3.1 Define datalist to be the list of numbers consisting of 1.14479, 1.5767, 2.68572,

2.5199, 3.58019, 3.84176, 4.09957, 5.09166, 5.98085, 6.49449, and 6.12113.

(a) Find a quadratic approximation of the points in datalist. (b) Find a fourth-degree

polynomial approximation of the points in datalist.

Solution The approximating function obtained via the least squares method with Fit is plotted

along with the data points in Figure 4.19. Notice that many of the data points are

not very close to the approximating function. A better approximation is obtained

using a polynomial of higher degree (4).

Clear[datalist]
datalist = {1.14479, 1.5767, 2.68572, 2.5199, 3.58019, 3.84176,

00094.09957, 5.09166, 5.98085, 6.49449, 6.12113};
p1 = ListPlot[datalist];
Clear[y]
y[x–] = Fit[datalist, {1, x, x2}, x]
0.508266 + 0.608688x – 0.00519281x2

p2 = Plot[y[x], {x, – 1, 11}];
pa = Show[p1, p2];
Clear[y]
y[x–] = Fit[datalist, {1, x, x2, x3, x4}, x]
– 0.54133 + 2 . 02744x – 0.532282x2 + 0.0709201x3 – 0.00310985x4

p3 = Plot[y[x], {x, – 1, 11}];
pb = Show[p1, p3];
Show[GraphicsRow[{pa, pb}]]
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FIGURE 4.19

(a) The graph of a quadratic fit shown with the data points. (b) The graph of a quartic

fit shown with the data points
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Table 4.2 Petroleum products imported to the

United States for certain years

Year Percent Year Percent

1973 34.8105 1983 28.3107

1974 35.381 1984 29.9822

1975 35.8167 1985 27.2542

1976 40.6048 1986 33.407

1977 47.0132 1987 35.4875

1978 42.4577 1988 38.1126

1979 43.1319 1989 41.57

1980 37.3182 1990 42.1533

1981 33.6343 1991 39.5108

1982 28.0988

To check its accuracy, the second approximation is graphed simultaneously

with the data points in Figure 4.19(b).

Remember that when

a semicolon is placed

at the end of the

command, the

resulting output is

not displayed by

Mathematica. Next, consider a list of data points made up of ordered pairs.

Example 4.3.2 Table 4.2 shows the average percentage of petroleum products imported to the

United States for certain years. (a) Graph the points corresponding to the data in

the table and connect the consecutive points with line segments. (b) Use Inter-
polatingPolynomial to find a function that approximates the data in the table.

(c) Find a fourth-degree polynomial approximation of the data in the table. (d) Find

a trigonometric approximation of the data in the table.

Solution We begin by defining data to be the set of ordered pairs represented in the table:

The x-coordinate of each point represents the number of years past 1900, and

the y-coordinate represents the percentage of petroleum products imported to the

United States.

data = {{73., 34.8105}, {74., 35.381}, {75., 35.8167},
{76., 40.6048}, {77., 47.0132}, {78., 42.4577},
{79., 43.1319}, {80., 37.3182}, {81., 33.6343},
{82., 28.0988}, {83., 28.3107}, {84., 29.9822},
{85., 27.2542}, {86., 33.407}, {87., 35.4875},
{88., 38.1126}, {89., 41.57}, {90., 42.1533}, {91., 39.5108}};

We use ListPlot to graph the ordered pairs in data. Note that because the option

PlotStyle->PointSize[0.03] is included within the ListPlot command, the points

are larger than they would normally be. We also use ListPlot with the option

PlotJoined->True to graph the set of points data and connect consecutive points

with line segments. Then we use Show to display lp1 and lp2 together in
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The points in Table 4.2 connected by line segments

Figure 4.20. Note that in the result, the points are easy to distinguish because

of their larger size.

lp1 = ListPlot[data, PlotStyle→PointSize[0.03]];
lp2 = ListPlot[data, Joined→True];
Show[lp1, lp2]

Next, we use InterpolatingPolynomial to find a polynomial approximation, p, of

the data in the table. Note that the result is lengthy, so Short is used to display an

abbreviated form of p. We then graph p and show the graph of p along with the

data in the table for the years corresponding to 1971 to 1993 in Figure 4.21(a).

Although the interpolating polynomial agrees with the data exactly, the interpolating

polynomial oscillates wildly.

p = InterpolatingPolynomial[data, x];
Short[p, 3]
39.5108 + (0.261128 + (0.111875 + (〈〈1〉〉)( – 82. + x))( – 73. + x))( – 91. + x)

plotp = Plot[p, {x, 71, 93}];
pa = Show[plotp, lp1, PlotRange→ {0, 50}];

To find a polynomial that approximates the data but does not oscillate wildly, we

use Fit. Again, we graph the fit and display the graph of the fit and the data

simultaneously. In this case, the fit does not identically agree with the data but

does not oscillate wildly as illustrated in Figure 4.21(b).

Clear[p]
p = Fit[data, {1, x, x2, x3, x4}, x]
– 198884. + 9597.83x – 173.196x2 + 1.38539x3 – 0.00414481x4

plotp = Plot[p, {x, 71, 93}];
pb = Show[plotp, lp1, PlotRange→ {0, 50}]
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FIGURE 4.21

(a) Although interpolating polynomials agree with the data exactly, they may have

extreme oscillations, even for relatively small data sets. (b) Although the fit does not

agree with the data exactly, the oscillations seen in (a) do not occur. (c) You can use

Fit to approximate data by a variety of functions

In addition to curve fitting with polynomials, Mathematica can also fit the data

with trigonometric functions. In this case, we use Fit to find an approximation of

the data of the form p = c1 + c2 sin x + c3 sin (x/2) + c4 cos x + c5 cos (x/2). As in the

previous two cases, we graph the fit and display the graph of the fit and the data

simultaneously; the results are shown in Figure 4.21(c).

Clear[p]
p = Fit[data, {1, Sin[x], Sin[ x

2
], Cos[x], Cos[ x

2
]}, x]

35.4237 + 4.25768Cos[ x

2
] – 0.941862Cos[x] + 6.06609Sin[ x

2
] + 0.0272062Sin[x]

plotp = Plot[p, {x, 71, 93}];
pc = Show[plotp, lp1, PlotRange→ {0, 50}];
Show[GraphicsRow[{pa, pb, pc}]]

See texts such as

Abell, Braselton, and

Rafter’s Statistics with
Mathematica [3] for a

more sophisticated

discussion of curve

fitting and related

statistical applications.

4.3.2 Introduction to Fourier Series
Many problems in applied mathematics are solved through the use of

Fourier series. Mathematica assists in the computation of these series in sev-

eral ways. Suppose that y = f (x) is defined on −p < x < p. Then the Fourier

series for f (x) is

1

2
a0 +

∞∑
n=1

(
an cos

n�x

p
+ bn sin

n�x

p

)
(4.1)

where

a0 =
1

p

∫ p

−p

f (x) dx

an =
1

p

∫ p

−p

f (x) cos
n�x

p
dx n = 1, 2 … (4.2)

bn =
1

p

∫ p

−p

f (x) sin
n�x

p
dx n = 1, 2 …

The kth term of the Fourier series (4.1) is

an cos
n�x

p
+ bn sin

n�x

p
. (4.3)
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The kth partial sum of the Fourier series (4.1) is

1

2
a0 +

k∑
n=1

(
an cos

n�x

p
+ bn sin

n�x

p

)
. (4.4)

It is a well-known theorem that if y = f (x) is a periodic function with period

2p and f ′(x) is continuous on [−p, p] except at finitely many points, then

at each point x the Fourier series for f (x) converges and

1

2
a0 +

∞∑
n=1

(
an cos

n�x

p
+ bn sin

n�x

p

)
=

1

2

(
lim

z→x+
f (z) + lim

z→x−
f (z)

)
.

In fact, if the series
∑∞

n=1

(|an| + |bn|
)

converges, then the Fourier series

converges uniformly on (−∞,∞).

Example 4.3.3 Let f (x) =

⎧⎪⎪⎨
⎪⎪⎩
−x, −1 ≤ x < 0

1, 0 ≤ x < 1

f (x − 2), x ≥ 1

. Compute and graph the first few partial sums of the

Fourier series for f (x).

Solution We begin by clearing all prior definitions of f. We then define the piecewise function

f (x) and graph f (x) on the interval [−1, 5] in Figure 4.22.

Clear[f]
f[x–] := 1/;0≤ x < 1
f[x–] := – x/; – 1≤ x < 0
f[x–] := f[x – 2]/;x≥ 1
graphf = Plot[f[x], {x, – 1, 5}]
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FIGURE 4.22

Plot of a few periods of f (x)
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The Fourier series coefficients are computed with the integral formulas in

equation (4.2). Executing the following commands defines p to be 1, a[0] to be an

approximation of the integral a0 = 1

p

∫ p

−p f (x) dx, a[n] to be an approximation of the

integral an = 1

p

∫ p

−p f (x) cos n�x
p dx, and b[n] to be an approximation of the integral

bn = 1

p

∫ p

−p f (x) sin n�x
p dx.

Clear[a, b, fs, L]
L = 1;

a[0] =
NIntegrate

[
f[x], {x, – L,L}

]
2L

0.75

a[n–] :=
NIntegrate

[
f[x]Cos

[
npx

L

]
, {x, – L,L}

]
L

b[n–] :=
NIntegrate

[
f[x]Sin

[
npx

L

]
, {x, – L,L}

]
L

A table of the coefficients a[i] and b[i] for i = 1, 2, 3, …, 10 is generated with Table
and named coeffs. Several error messages (which are not displayed here for length

considerations) are generated because of the discontinuities, but the resulting approx-

imations are satisfactory for our purposes. The elements in the first column of the table

represent the ai's and those in the second column represents the bi's. Notice how

the elements of the table are extracted using double brackets with coeffs.

coeffs = Table[{a[i], b[i]}, {i, 1, 10}];
TableForm[coeffs]

– 0.202642 0.31831

0. 0 . 159155

– 0.0225158 0.106103

0. 0 . 0795775

– 0.00810569 0.063662

0. 0 . 0530516

– 0.00413556 0.0454728

0. 0 . 0397887

– 0.00250176 0.0353678

– 1.0668549377257364′∗∧– 16 0.031831

The first element of the list is extracted with coeffs[[1]].

coeffs[[1]]
{ – 0.202642, 0.31831}

The first element of the second element of coeffs and the second element

of the third element of coeffs are extracted with coeffs[[2,1]] and coeffs[[3,2]],
respectively.

coeffs[[2, 1]]
0.

coeffs[[3, 2]]
0.106103
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FIGURE 4.23

The first few terms of a Fourier series for a periodic function plotted with the function

After the coefficients are calculated, the nth partial sum of the Fourier series is

obtained with Sum. The kth term of the Fourier series, ak cos (k�x) + bk sin (k�x),

is defined in fs. Hence, the nth partial sum of the series is given by

a0 +

n∑
k=1

[
ak cos (k�x) + bk sin (k�x)

]
= a[0] +

n∑
k=1

fs[k, x],

which is defined in fourier using Sum. We illustrate the use of fourier by finding

fourier[2,x] and fourier[3,x].

fs[k–, x–] := coeffs[[k, 1]]Cos[kpx] + coeffs[[k, 2]]Sin[kpx]
fourier[n–, x–] := a[0] +

∑n
k=1

fs[k, x]
fourier[2, x]
0.75 – 0.202642Cos[�x] + 0.Cos[2�x] + 0.31831Sin[�x] + 0.159155Sin[2�x]

fourier[3, x]
0.75 – 0.202642Cos[�x] + 0.Cos[2�x] – 0.0225158 Cos[3�x] + 0.31831Sin[�x]

+0.159155Sin[2�x] + 0.106103Sin[3�x]

To see how the Fourier series approximates the periodic function, we plot the

function simultaneously with the Fourier approximation for n = 2 and n = 5. The

results are displayed together using GraphicsArray in Figure 4.23.

graphtwo = Plot[fourier[2, x], {x, – 1, 5}, PlotStyle→GrayLevel[0 . 4]];
bothtwo = Show[graphtwo, graphf];
graphfive = Plot[fourier[5, x], {x, – 1, 5}, PlotStyle→GrayLevel[0 . 4]];
bothfive = Show[graphfive, graphf];
Show[GraphicsRow[{bothtwo, bothfive}]]

Application: The One-Dimensional Heat Equation

A typical problem in applied mathematics that involves the use of Fourier

series is that of the one-dimensional heat equation. The boundary value
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problem that describes the temperature in a uniform rod with insulated

surface is

k
�2u

�x2
=

�u

�t
, 0 < x < a, t > 0,

u(0, t) = T0, t > 0, (4.5)

u(a, t) = Ta, t > 0, and

u(x, 0) = f(x), 0 < x < a.

In this case, the rod has “fixed end temperatures” at x = 0, and x = a and

f(x) is the initial temperature distribution. The solution to the problem is

u(x, t) = T0 +
1

a

(
Ta − T0

)
x︸ ︷︷ ︸

v(x)

+

∞∑
n=1

bn sin
(
�nx

)
e−�

2
nkt, (4.6)

where

�n = n�/a and bn =
2

a

∫a

0

(
f(x) − v(x)

)
sin

n�x

a
dx,

and is obtained through separation of variables techniques. The coefficient

bn in the solution equation (4.6) is the Fourier series coefficient bn of the

function f(x) − v(x), where v(x) is the steady-state temperature.

Example 4.3.4

Solve

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
2u

�x2
=

�u

�t
, 0 < x < 1, t > 0,

u(0, t) = 10, u(1, t) = 10, t > 0,

u(x, 0) = 10 + 20 sin
2

�x.

Solution In this case, a = 1 and k = 1. The fixed end temperatures are T0 = Ta = 10, and

the initial heat distribution is f(x) = 10 + 20 sin
2

�x. The steady-state temperature is

v(x) = 10. The function f(x) is defined and plotted in Figure 4.24. Also, the steady-

state temperature, v(x), and the eigenvalue are defined. Finally, Integrate is used

to define a function that will be used to calculate the coefficients of the solution.

Clear[f]
f[x–] := 10 + 20Sin[px]2

Plot[f[x]; {x, 0, 1}, PlotRange→ {0, 30}]

v[x–] := 10
lambda[n–] := np

4

b[n–] := b[n] =
∫4

0 (f[x] v[x])Sin
{

[ npx
4

}
]dx

Notice that b[n] is defined using the form b[n ] := b[n] = . . . so that Mathematica

“remembers” the values of b[n] computed and thus avoids recomputing previously

computed values. In the following table, we compute exact and approximate values

of b[1],. . . ,b[10].
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FIGURE 4.24

Graph of f(x) = 10 + 20 sin
2 �x

Table[{n, b[n], b[n]//N}, {n, 1, 10}]//TableForm

1 5120

63� 25.869

2 0 0.

3 1024

33� 9.87725

4 0 0.

5 1024

39� 8.35767

6 0 0.

7 1024

21� 15.5214

8 0 0.

9 – 5120

153� – 10.6519

10 0 0.

Let Sm = bm sin
(
�mx

)
e−�2

mt
. Then, the desired solution, u(x, t), is given by

u(x, t) = v(x) +

∞∑
m=1

Sm.

Let u(x, t, n) = v(x) +
∑n

m=1
Sm. Notice that u(x, t, n) = u(x, t, n − 1) + Sn. Conse-

quently, approximations of the solution to the heat equation are obtained recursively

taking advantage of Mathematica's ability to compute recursively. The solution is

first defined for n = 1 by u[x,t,1]. Subsequent partial sums, u[x,t,n], are obtained

by adding the nth term of the series, Sn, to u[x,t,n-1].

u[x–, t–, 1] := v[x] + b[1]Sin[lambda[1]x]Exp[ – lambda[1]2t]
u[x–, t–, n–] := u[x, t, n – 1] + b[n]Sin[lambda[n]x]Exp[ – lambda[n]2t]

By defining the solution in this manner, a table can be created that includes the

partial sums of the solution. In the following table, we compute the first, fourth,

and seventh partial sums of the solution to the problem.

Table[u[x, t, n], {n, 1, 7, 3}];
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To generate graphics that can be animated, we use a Do loop. The 10th partial

sum of the solution is plotted for t = 0 to t = 1 using a step-size in t of 1/24.

Remember that u[x,t,n] is determined with a Table command, so Evaluate must

be used in the Do command so that Mathematica first computes the solution u

and then evaluates u at the particular values of x. Otherwise, u is recalculated for

each value of x. The plots of the solution obtained can be animated as indicated

in the following screen shot.

Do[Print[Plot[Evaluate[u[x, t, 10]], {x, 0, 1}, PlotRange→ {0, 60}]],
{t, 0, 1, 1

24
}]

Alternatively, we may generate several graphics and display the resulting set of

graphics as a GraphicsArray. We plot the 10th partial sum of the solution for

t = 0 to t = 1 using a step-size of 1/15. The resulting 16 graphs are named

graphs, which are then partitioned into four element subsets with Partition and

named toshow. We then use Show and GraphicsGrid to display toshow in

Figure 4.25.

graphs = Table[Plot[Evaluate[u[x, t, 10]], {x, 0, 1}, Ticks→None,
PlotRange→ {0, 60}, DisplayFunction→ Identity], {t, 0, 1, 1

15 }];
toshow = Partition[graphs, 4];
Show[GraphicsGrid[toshow]]

Fourier series and generalized Fourier series arise in too many applications

to list. Examples using them illustrate Mathematica’s power to manipulate

lists, symbolics, and graphics.
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FIGURE 4.25

Temperature distribution in a uniform rod with insulated surface

Application: The Wave Equation on a Circular PlateFor a classic ap-

proach to the subject,

see Graff ’s Wave
Motion in Elastic
Solids, [10].

The vibrations of a circular plate satisfy the equation

D �4 w(r, �, t) + �h
�2w(r, �, t)

�t2
= q(r, �, t), (4.7)

where �4w = �2 �2 w and �2
is the Laplacian in polar coordinates,

which is defined by

�2 =
1

r

�
�r

(
r

�
�r

)
+

1

r2

�2

��2
=

�2

�r2
+

1

r

�
�r

+
1

r2

�2

��2
.

Assuming no forcing so that q(r, �, t) = 0 and w(r, �, t) = W(r, �)e−i�t
,

equation (4.7) can be written as

�4W(r, �) − �4W(r, �) = 0, �4 = �2�h/D. (4.8)

For a clamped plate, the boundary conditions are W(a, �) = �W(a, �)/�r = 0,

and after much work (see [10]) the normal modes are found to be

Wnm(r, �) =

[
Jn

(
�nmr

) − Jn

(
�nma

)
In

(
�nma

) In

(
�nmr

)](
sin n�
cos n�

)
. (4.9)

In equation (4.9), �nm = �nm/a, where �nm is the mth solution of

In(x)Jn
′(x) − Jn(x)In

′(x) = 0, (4.10)
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FIGURE 4.26

Plot of In(x)Jn
′
(x) − Jn(x)In

′
(x) for n = 0 and 1 in the first row and n = 2 and 3 in the

second row

where Jn(x) is the Bessel function of the first kind of order n and In(x)

is the modified Bessel function of the first kind of order n, related to

Jn(x) by inIn(x) = Jn(ix).

See Example 4.2.4.

The Mathematica command BesselI[n,x] returns In(x).

Example 4.3.5 Graph the first few normal modes of the clamped circular plate.

Solution We must determine the value of �nm for several values of n and m, so we begin by

defining eqn[n][x] to be In(x)Jn
′
(x) − Jn(x)In

′
(x). The mth solution of equation (4.10)

corresponds to the mth zero of the graph of eqn[n][x], so we graph eqn[n][x] for

n = 0, 1, 2, and 3 with Plot in Figure 4.26.

eqn[n–][x–]:=BesselI[n, x]D[BesselJ[n, x], x] – BesselJ[n, x]D[BesselI[n, x], x]

The result of the Table and Plot command is a list of length four, which is verified

with Length[p1].

p1 = Table[Plot[Evaluate[eqn[n][x]], {x, 0, 25}, PlotRange→ { – 10, 10}], {n, 0, 3}];

so we use Partition to create a 2 × 2 array of graphics that is displayed using

Show and GraphicsGrid.

p2 = Show[GraphicsGrid[Partition[p1, 2]]]
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To determine �nm, we use FindRoot. Recall that to use FindRoot to solve an

equation, an initial approximation of the solution must be given. For example,

l01 = FindRoot[eqn[0][x] == 0, {x, 3.04}]
{x → 3.19622}

approximates �01, the first solution of equation (4.10) if n = 0. However, the result

of FindRoot is a list. The specific value of the solution is the second part of the

first part of the list, lambda01, extracted from the list with Part ([[...]]).

l01[[1, 2]]
3.19622

Thus,
We use the graphs in

Figure 4.26 to obtain

initial approximations

of each solution.

�0s = Map[FindRoot[eqn[0][x] == 0, {x, #}][[1, 2]]&,
{3.04, 6.2, 9.36, 12.5, 15.7}]

{3.19622, 6.30644, 9.4395, 12.5771, 15.7164}

approximates the first five solutions of equation (4.10) if n = 0 and then returns the

specific value of each solution. We use the same steps to approximate the first

five solutions of equation (4.10) if n = 1, 2, and 3.

�1s = Map[FindRoot[eqn[1][x] == 0, {x, #}][[1, 2]]&,
{4.59, 7.75, 10.9, 14.1, 17.2}]

{4.6109, 7.79927, 10.9581, 14.1086, 17.2557}
�2s = Map[FindRoot[eqn[2][x] == 0, {x, #}][[1, 2]]&,

{5.78, 9.19, 12.4, 15.5, 18.7}]
{5.90568, 9.19688, 12.4022, 15.5795, 18.744}
�3s = Map[FindRoot[eqn[3][x] == 0, {x, #}][[1, 2]]&,

{7.14, 10.5, 13.8, 17, 20.2}]
{7.14353, 10.5367, 13.7951, 17.0053, 20.1923}

All four lists are combined together in �s.

�s = {�0s, �1s, �2s, �3s};
Short[�s]
{{3.19622, 6.30644, 〈〈18〉〉, 12.5771, 15.7164}, 〈〈2〉〉, {〈〈1〉〉}}

For n = 0, 1, 2, and 3 and m = 1, 2, 3, 4, and 5, �nm is the mth part of the

(n + 1)st part of �s.

Observe that the value of a does not affect the shape of the graphs of the

normal modes, so we use a = 1 and then define �nm.

a = 1;
�[n–, m–] := �s[[n + 1, m]]/a
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ws is defined to be the sine part of equation (4.9)

ws[n–, m–][r–, �–]:=
(BesselJ[n, �[n, m]r] – BesselJ[n, �[n, m]a]/BesselI[n, �[n, m]a]

BesselI[n, �[n, m]r])Sin[n�]

and wc to be the cosine part.

wc[n–, m–][r–, �–]:=
(BesselJ[n, �[n, m]r] – BesselJ[n, �[n, m]a]/BesselI[n, �[n, m]a]

BesselI[n, �[n, m]r])Cos[n�]

We use ParametricPlot3D to plot ws and wc. For example,

ParametricPlot3D[{rCos[�], rSin[�], ws[3, 4][r, �]}, {r, 0, 1}, {�, – Pi, Pi},
PlotPoints→60]

graphs the sine part of W34(r, �) shown in Figure 4.27. We use Table together with

ParametricPlot3D followed by Show and GraphicsGrid to graph the sine part of

Wnm(r, �) for n = 0, 1, 2, and 3 and m = 1, 2, 3, and 4 shown in Figure 4.28.

ms = Table[ParametricPlot3D[{rCos[�], rSin[�], ws[n, m][r, �]},
{r, 0, 1}, {�, – Pi, Pi},

DisplayFunction→ Identity, PlotPoints→30, BoxRatios→ {1, 1, 1}],
{n, 0, 3}, {m, 1, 4}];

Show[GraphicsGrid[ms]]

FIGURE 4.27

The sine part of W34(r, �)
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FIGURE 4.28

The sine part of Wnm(r, �): n = 0 in row 1, n = 1 in row 2, n = 2 in row 3, and n = 3

in row 4 (m = 1 to 4 from left to right in each row)

Identical steps are followed to graph the cosine part shown in Figure 4.29.

mc = Table[ParametricPlot3D[{rCos[�], rSin[�], wc[n, m][r, �]},
{r, 0, 1}, {�, – Pi, Pi},

DisplayFunction→ Identity, PlotPoints→30, BoxRatios→ {1, 1, 1}],
{n, 0, 3}, {m, 1, 4}];

Show[GraphicsGrid[mc]]
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FIGURE 4.29

The cosine part of Wnm(r, �): n = 0 in row 1, n = 1 in row 2, n = 2 in row 3, and

n = 3 in row 4 (m = 1 to 4 from left to right in each row)

4.3.3 The Mandelbrot Set and Julia Sets

See references such as

Barnsley’s Fractals
Everywhere [4] or

Devaney and Keen’s

Chaos and
Fractals [6] for

detailed discussions

regarding many of the

topics briefly des-

cribed in this section.

In Examples 4.1.9, 4.2.5, and 4.2.7 we illustrated several techniques for

plotting bifurcation diagrams and Julia sets.

Let fc(x) = x2
+ c. In Example 4.2.5, we generated the c-values when

plotting the bifurcation diagram of fc. Depending on how you think, some

approaches may be easier to understand than others. With the exception

of very serious calculations, the differences in the time needed to carry

out the computations may be minimal, so we encourage you to follow the

approach that you understand. Learn new techniques as needed.

fc(x) = x2
+ c is the

special case of p = 2

for fp,c(x) = xp
+ c.
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Example 4.3.6 (Dynamical Systems). For example, entering

Compare the approach

here with the

approach used in

Example 4.2.5.

Clear[f, h]
f[c–][x–] := x∧ 2 + c//N;

defines fc(x) = x2
+ c, so

Nest[f[ – 1], x, 3]

– 1. +
(

– 1. +
(

– 1. + x2
)2
)2

computes f−1

3
(x) = ( f−1 ◦ f−1 ◦ f−1)(x) and

Table[Nest[f[1/4], 0, n], {n, 101, 200}]//Short
{0.490693, 0.490779, 〈〈96〉〉, 0.495148, 0.495171}

returns a list of f1/4

n
(0) for n = 101, 102, …, 200. Thus,

lgtable = Table[{c, Nest[f[c], 0, n]},
{c, – 2, 1/4, 9/(4 ∗ 299)}, {n, 101, 200}];
Length[lgtable]
300

returns a list of lists of fc
n
(0) for n = 101, 102, … , 200 for 300 equally spaced values

of c between −2 and 1. The list lgtable is converted to a list of points with Flatten
and plotted with ListPlot. See Figure 4.30 and compare this result to the result

obtained in Example 4.2.5.

toplot = Flatten[lgtable, 1];
ListPlot[toplot]

For a given complex number c, the Julia set, Jc, of fc(x) = x2
+ c is the set of

complex numbers, z = a + bi, a, b real, for which the sequence z, fc(z) = z2
+ c,

Out[176]5
22.0 21.5 21.0 20.5

22

21

1

2

FIGURE 4.30

Another bifurcation diagram for fc
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fc

(
fc(z)

)
=
(
z2

+ c
)2

+ c, …, fc
n
(z), …, does not tend to ∞ as n → ∞:

We use the notation

f n
(x) to represent the

composition(
f ◦ f ◦ · · · ◦ f

)︸ ︷︷ ︸
n

(x). Jc =

{
z ∈ C| z, z2 + c

(
z2 + c

)2
+ c, … 9 ∞

}
.

Using a dynamical system, setting z = z0 and computing zn+1 = fc

(
zn

)
for large n

can help us determine if z is an element of Jc. In terms of a composition, computing

fc
n
(z) for large n can help us determine if z is an element of Jc.

Example 4.3.7 (Julia Sets). Plot the Julia set of fc(x) = x2
+ c if c = −0.122561 + 0.744862i.

As before, all error

messages have been

deleted.

Solution After defining fc(x) = x2
+ c, we use Table together with Nest to compute ordered

triples of the form
(
x, y, f−0.122561+0.744862i

200
(x + iy)

)
for 150 equally spaced values

of x between −3/2 and 3/2 and 150 equally spaced values of y between −3/2

and 3/2.

You do not need to

redefine fc(x) if you

have already defined it

during your current

Mathematica session.

Clear[f, h]
f[c–][x–] := x∧ 2 + c//N;
g1 = Table[{x, y, Nest[f[ – 0 . 12256117 + .74486177I], x + Iy, 200]},
{x, – 3/2, 3/2, 3/149}, {y, – 3/2, 3/2, 3/149}];
g2 = Flatten[g1, 1];

We remove those elements of g2 for which the third coordinate is Overflow[ ] with

Select,

g3 = Select[g2, Not[#[[3]] === Overflow[ ]]&];

extract a list of the first two coordinates, (x, y), from the elements of g3,

g4 = Map[{#[[1]], #[[2]]}&, g3];

and plot the resulting list of points in Figure 4.31 using ListPlot.

lp1 = ListPlot[g4, PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},
AxesLabel→ {“x”, “y”}, AspectRatio→Automatic]

We can invert the image as well with the following commands. In the end result,

we show the Julia set and its inverted image in Figure 4.32

g3b = Select[g2, #[[3]]===Overflow[ ]&];
g4b = Map[{#[[1]], #[[2]]}&, g3b];
lp2 = ListPlot[g4b, PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},
AxesLabel→ {“x”, “y”}, AspectRatio→Automatic,

DisplayFunction→ Identity];
j1 = Show[GraphicsRow[{lp1, lp2}]]
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FIGURE 4.31

Filled Julia set for fc
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FIGURE 4.32

Filled Julia set for fc on the left; the inverted set on the right

Of course, one can consider functions other than fc(x) = x2
+ c as well as

rearrange the order in which we carry out the computations. You have

even greater control over your graphics if you use graphics primitives such

as Point.
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Example 4.3.8 (Julia Sets). Plot the Julia set for fc(z) = z2 − cz if c = 0.737369 + 0.67549i.

As before, all error

messages have been

deleted.

Solution We initially proceed as in Example 4.3.7.

Clear[f, h]
f[c–][x–] := x∧ 2 – cx//N;
g1 = Table[{x, y, Nest[f[0 . 737369 + 0 . 67549I], x + Iy, 200]},
{x, – 3/2, 3/2, 3/149}, {y, – 3/2, 3/2, 3/149}];
g2 = Flatten[g1, 1];
g3 = Select[g2, Not[#[[3]] === Overflow[]]&];

After removing the points that result in an Overflow[ ] error message, we code the

remaining ones according to their distance from the origin.

h[{x–, y–, z–}] := {x, y, Min[Abs[z], 0.5]}
g4 = Map[h, g3];

g5 = Table[{PointSize[0.005], GrayLevel[g4[[i, 3]]/0.5],
Point[{g4[[i, 1]], g4[[i, 2]]}]}, {i, 1, Length[g4]}];

The results are shown in Figure 4.33.

lp1 = ListPlot[g4, PlotRange→ {{ – 3/2, 3/2}, { – 3/2, 3/2}},
AxesLabel→ {“x”, “y”}, AspectRatio→Automatic]

Show[Graphics[g5], PlotRange – >{{ – 1.2, 1.75}, { – 0.7, 1.4}},
AspectRatio→Automatic]
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FIGURE 4.33

(a) The Julia set. (b) The lightest points (a, b) are the ones for which∣∣∣f0.737369+0.67549i
200

(z)

∣∣∣ is the largest
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Example 4.3.9 (The Ikeda Map). The Ikeda map is defined by

F(x, y) =
〈

� + �
(
x cos  − y sin 

)
, �

(
x sin  + y cos 

)〉
, (4.11)

where  = � − �/
(
1 + x2

+ y2
)
. If � = 0.9, � = 0.4, and � = 4.0, plot the basins of

attraction for F if � = 0.92 and � = 1.0.

Solution The basins of attraction for F are the set of points (x, y) for which ‖Fn
(x, y)‖ 9 ∞

as n → ∞.

After defining f[�][x, y] to be equation (4.11) and then � = 0.9, � = 0.4, and

� = 4.0, we use Table followed by Flatten to define pts to be the list of 40,000

ordered pairs (x, y) for 200 equally spaced values of x between −2.3 and 1.3 and

200 equally spaced values of y between −2.8 and 0.8.

f[�–][{x–, y–}] := {� + �(xCos[� – �/(1 + x∧ 2 + y∧ 2)] – y
Sin[ � – �/(1 + x∧ 2 + y∧ 2)]), � (xSin[� – �/(1 + x∧ 2 + y∧ 2)] + y
Cos[ � – �/(1 + x∧ 2 + y∧ 2)])}

� = 0.9; � = 0.4; � = 4.0;
pts = Flatten[ Table[{x, y}, {x, – 2.3, 1.3, 3.6/199}, {y, – 2.8, 0.8, 3.6/199}], 1];

In l1, we use Map to compute
(
x, y, F.92

200
(x, y)

)
for each (x, y) in pts. In pts2, we

use the graphics primitive Point and shade the points according to the maximum

value of
∥∥F200

(x, y)
∥∥—those (x, y) for which F

200
(x, y) is closest to the origin are

darkest; the point (x, y) is shaded lighter as the distance of F
200

(x, y) from the

origin increases. (See Figure 4.34(a).)

l1 = Map[{#[[1]], #[[2]], Nest[f[.92], {#[[1]], #[[2]]}, 200]}&, pts];
g[{x–, y–, z–}] := {x, y, Sqrt[z[[1]]∧ 2 + z[[2]]∧ 2]};
l2 = Map[g, l1];
maxl2 = Table[l2[[i, 3]], {i, 1, Length[l2]}]//Max
4.33321

pts2 = Table[{GrayLevel[l2[[i, 3]]/(maxl2)], Point[{l2[[i, 1]], l2[[i, 2]]}]},
{i, 1, Length[l2]}];

ik1 = Show[Graphics[pts2], AspectRatio→1];

For � = 1.0, we proceed in the same way. The final results are shown in Figure

4.34(b).

l1 = Map[{#[[1]], #[[2]], Nest[f[1.0], {#[[1]], #[[2]]}, 200]}&, pts];
l2 = Map[g, l1];
maxl2 = Table[l2[[i, 3]], {i, 1, Length[l2]}]//Max
4.48421

pts2 = Table[{GrayLevel[l2[[i, 3]]/maxl2], Point[{l2[[i, 1]], l2[[i, 2]]}]},
{i, 1, Length[l2]}];

ik2 = Show[Graphics[pts2], AspectRatio→1]
Show[GraphicsRow[{ik1, ik2}]]
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a b

FIGURE 4.34

Basins of attraction for F if (a) � = 0.92 and (b) � = 1.0

The Mandelbrot set, M, is the set of complex numbers, z = a + bi, a, b

real, for which the sequence z, fz(z) = z2
+ z, fz

(
fz(z)

)
=

(
z2

+ z
)2

+

z, …, fz
n
(z), …, does not tend to ∞ as n → ∞:

M =

{
z ∈ C|z, z2 + z

(
z2 + z

)2
+ z, … 9 ∞

}
.

Using a dynamical system, setting z = z0 and computing zn+1 = fz0

(
zn

)
for

large n can help us determine if z is an element of M. In terms of a com-

position, computing fz
n
(z) for large n can help us determine if z is an

element of M.

Example 4.3.10 (Mandelbrot Set). Plot the Mandelbrot set.

As before, all error

messages have been

deleted.

Solution We proceed as in Example 4.3.7 except that instead of iterating fc(z) for fixed c,

we iterate fz(z).

As with the previous

examples, all

Overflow[...] messages

have been deleted.

Clear[f, h]
f[c–][x–] := x∧ 2 + c//N;
g1 = Table[{x, y, Nest[f[x + Iy], x + Iy, 200]},
{x, – 3/2, 1, 5/(2 ∗ 149)}, {y, – 1, 1, 2/149}];
g2 = Flatten[g1, 1];
Take[g2, 5]
g3 = Select[g2, Not[#[[3]]===Overflow[ ]]&];
g4 = Map[{#[[1]], #[[2]]}&, g3];

The following gives us the image in Figure 4.35(a).

lp1 = ListPlot[g4, PlotRange→ {{ – 3/2, 1}, { – 1, 1}}, Axes→None,
AspectRatio→Automatic, PlotStyle→PointSize[.005]];
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a b

FIGURE 4.35

Two different views of the Mandelbrot set: in (a), the black points (a, b) are the points

for which fa+bi
200

(a + bi) is finite; in (b), the black points (a, b) are the ones for which

fa+bi
200

(a + bi) is not finite

To invert the image, we use the following to obtain the result in Figure 4.35(b).

g3b = Select[g2, #[[3]]===Overflow[ ]&];
g4b = Map[{#[[1]], #[[2]]}&, g3b];
lp2 = ListPlot[g4b, PlotRange→ {{ – 3/2, 1}, { – 1, 1}},

Axes→None, AspectRatio→Automatic, PlotStyle→PointSize[.005]];
m1 = Show[GraphicsRow[{lp1, lp2}]]

In Example 4.3.10, the Mandelbrot set is obtained (or, more precisely,

approximated) by repeatedly composing fz(z) for a grid of z-values and

then deleting those for which the values exceed machine precision. Those

values greater than $MaxNumber result in an Overflow[ ] message; computa-

tions with Overflow[ ] result in an Indeterminate message.

We can generalize by considering exponents other than 2 by letting

fp,c = x p
+ c. The generalized Mandelbrot set, Mp, is the set of com-

plex numbers, z = a + bi, a, b real, for which the sequence z, fp,z(z) =

z p
+ z, fp,z

(
fp,z(z)

)
=
(
zp

+ z
)p

+ z, …, fp,z
n
(z), …, does not tend to ∞ as

n → ∞:

Mp =

{
z ∈ C|z, z p + z

(
z p + z

)p
+ z, … 9 ∞

}
.

Using a dynamical system, setting z = z0 and computing zn+1 = fp

(
zn

)
for

large n can help us determine if z is an element of Mp. In terms of a

composition, computing fp
n
(z) for large n can help us determine if z is an

element of Mp.
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Example 4.3.11 (Generalized Mandelbrot Set). After defining fp,c = xp
+ c, we use Table, Abs,

and Nest to compute a list of ordered triples of the form
(
x, y,

∣∣fp,x+iy
100

(x + iy)
∣∣)

for p-values from 1.625 to 2.625 spaced by equal values of 1/8 and 200 values of

x(y) values equally spaced between −2 and 2, resulting in 40,000 sample points

of the form x + iy.

As with the previous

examples, all error

messages have been

omitted.

Clear[f, p]
f[p–, c–][x–]:=x∧ p + c//N;
g1 =
Map[Table[{x, y, Abs[Nest[f[2, x + Iy], x + Iy, #]]}//N,

{x, – 1.5, 1., 5/(2 ∗ 199)}, {y, – 1., 1., 2/199}]&, {5, 10, 15, 25, 50, 100}];
g2 = Map[Flatten[#, 1]&, g1];

Next, we extract those points for which the third coordinate is Indeterminate
with Select; ordered pairs of the first two coordinates are obtained in g4. The

resulting list of points is plotted with ListPlot in Figure 4.36.

g3 = Table[Select[g2[[i]], Not[#[[3]]===Overflow[]]&], {i, 1, Length[g2]}];
h[{x–, y–, z–}]:={x, y};
g4 = Map[h, g3, {2}];
t1 = Table[ListPlot[g4[[i]], PlotRange→ {{ – 3

2
, 1}, { – 1, 1}},

AspectRatio→Automatic, DisplayFunction→ Identity], {i, 1, 6}];
Show[GraphicsGrid[Partition[t1, 3]]]

More detail is observed if you use the graphics primitive Point as shown

in Figure 4.37. In this case, those points (x, y) for which | fp,x+iy
100

(x + iy)| is

small are shaded according to a darker GrayLevel than those points for which∣∣fp,x+iy
100

(x + iy)
∣∣ is large.

h2[{x–, y–, z–}]:={GrayLevel[Min[{z, 1}]], Point[{x, y}]};
g5 = Map[h2, g3, {2}];
t1 = Table[Show[Graphics[g5[[i]]], PlotRange→ {{ – 3

2
, 1}, { – 1, 1}},

AspectRatio→Automatic, DisplayFunction→ Identity], {i, 1, 6}];
Show[GraphicsGrid[Partition[t1, 3]]]

Throughout these examples, we have typically computed the iteration f n
(z)

for “large” n, such as values of n between 100 and 200. To indicate why

we have selected those values of n, we revisit the Mandelbrot set plotted

in Example 4.3.10.

Example 4.3.12 (Mandelbrot Set). We proceed in essentially the same way as in the previous

examples. After defining fp,c = xp
+ c,As before, all error

messages have been

deleted. Clear[f, p]
f[p–, c–][x–]:=x∧ p + c//N;
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FIGURE 4.36

The generalized Mandelbrot set for nine equally spaced values of p between 1.625

and 2.625

we use Table followed by Map to create a nested list. For each n = 5, 10, 15, 25,

50, and 100, a nested list is formed for 200 equally spaced values of y between −1

and 1 and then 200 equally spaced values of x between −1.5 and 1. At the bottom

level of each nested list, the elements are of the form
(
x, y,

∣∣f2,x+iy
n
(x + iy)

∣∣).
g1 =
Map[Table[{x, y, Abs[Nest[f[2, x + Iy], x + Iy, #]]}//N,

{x, – 1.5, 1., 5/(2 ∗ 199)}, {y, – 1., 1., 2/199}]&,
{5, 10, 15, 25, 50, 100}];
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FIGURE 4.37

The generalized Mandelbrot set for nine equally spaced values of p between 1.625

and 2.625—the points (x, y) for which

∣∣∣fp, x+iy
100

(x + iy)

∣∣∣ is large are shaded lighter

than those for which

∣∣∣fp, x+iy
100

(x + iy)

∣∣∣ is small

For each value of n, the corresponding list of ordered triples
(
x, y,

∣∣f2,x+iy
n

(x + iy)|) is obtained using Flatten.

g2 = Map[Flatten[#, 1]&, g1];

We then remove those points for which the third coordinate,
∣∣f2,x+iy

n
(x + iy)

∣∣,

is Overflow[ ] (corresponding to ∞),

g3 = Table[Select[g2[[i]], Not[#[[3]]===Overflow[]]&], {i, 1, Length[g2]}];
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FIGURE 4.38

Without shading the points, the effects of iteration are difficult to see until the number

of iterations is “large”

extract (x, y) from the remaining ordered triples,

h[{x–, y–, z–}] := {x, y};
g4 = Map[h, g3, {2}];

and graph the resulting sets of points using ListPlot in Figure 4.38. As shown

in Figure 4.38, we see that Mathematica's numerical precision (and consequently

decent plots) is obtained when n = 50 or n = 100.

Fundamentally, we

generated the pre-

vious plots by

exceeding

Mathematica’s

numerical precision.

t1 = Table[ListPlot[g4[[i]], PlotRange→ {{ – 3
2
, 1}, { – 1, 1}},

AspectRatio→Automatic, DisplayFunction→ Identity], {i, 1, 6}];
Show[GraphicsGrid[Partition[t1, 3]]]

If instead, we use graphics primitives such as Point and then shade each point

(x, y) according to
∣∣f2,x+iy

n
(x + iy)

∣∣, detail emerges quickly, as shown in Figure 4.39.

h2[{x–, y–, z–}]:={GrayLevel[Min[{z, 1}]], Point[{x, y}]};
g5 = Map[h2, g3, {2}];
t1 = Table[Show[Graphics[g5[[i]]], PlotRange→ {{ – 3

2
, 1}, { – 1, 1}},

AspectRatio→Automatic, DisplayFunction→ Identity], {i, 1, 6}];
Show[GraphicsGrid[Partition[t1, 3]]]

Thus, Figures 4.38 and 4.39 indicate that for examples such as these illus-

trated here, similar results could have been accomplished using far smaller

values of n than n = 100 or n = 200. With fast machines, the differences

in the time needed to perform the calculations is minimal; n = 100 and

n = 200 appear to be a “safe” large value of n for well-studied examples

such as these.
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FIGURE 4.39

Using graphics primitives and shading, we see that we can use a relatively small

number of iterations to visualize the Mandelbrot set

4.4 EXERCISES
1. Use Mathematica help to determine the functionality of Chop.

2. Define zeros to be the list of numbers 2.4048, 5.5201, 8.6537, 11.792,

14.931, 18.071, 21.212, 24.352. Use [[...]], Part, First, Last, and/or Take
to extract the following from the list zeros. (a) The first and last

elements, (b) the fourth through sixth elements, (c) the first three

elements, and the last two elements. (d) Use Position to determine if

and/or where 18.071 occurs in the list.

3. The Fibonacci sequence is defined by f0 = 1, f1 = 1, and fn = fn−1 +

fn−2. (a) Define a Fibonacci function fn = f(n) that “remembers” the

values computed. (b) Use your Fibonacci function to compute the

first 15 values of the Fibonacci sequence. (c) Check that your results

are correct by using Table and Fibonacci to compute the first 15 values

of the Fibonacci sequence.

4. (Mathematics of Finance)

(a) (Compound Interest) A common problem in economics is the

determination of the amount of interest earned from an invest-

ment. If P dollars are invested for t years at an annual interest rate

of r % compounded m times per year, the compound amount,
A(t), at time t is given by

A(t) = P
(

1 +
r

m

)mt

.
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If P dollars are invested for t years at an annual interest rate

of r % compounded continuously, the compound amount, A(t), at

time t is given by A(t) = Pemt
.

Suppose $12,500 is invested at an annual rate of 7% com-

pounded daily. How much money has accumulated and how

much interest has been earned at the end of each 5-year period

for t = 0, 5, 10, 15, 20, 25, 30? How much money has accumu-

lated if interest is compounded continuously instead of daily?

(b) Suppose $10,000 is invested at an interest rate of 12% com-

pounded daily. Create a table consisting of the total value of the

investment and the interest earned at the end of 0, 5, 10, 15, 20,

and 25 years.

What is the total value and interest earned on an investment

of $15,000 invested at an interest rate of 15% compounded daily

at the end of 0, 10, 20, and 30 years?

(c) (Future Value) If R dollars are deposited at the end of each per-

iod for n periods in an annuity that earns interest at a rate of j %

per period, the future value of the annuity is

Sfuture = R
(1 + j)n − 1

j
.

Define a function future that calculates the future value of an

annuity. Compute the future value of an annuity where $250 is

deposited at the end of each month for 60 months at a rate of 7%

per year. Make a table of the future values of the annuity where

$150 is deposited at the end of each month for 12t months at a

rate of 8% per year for t = 1, 5, 9, 13, …, 21, 25.

(d) (Annuity Due) If R dollars are deposited at the beginning of

each period for n periods with an interest rate of j % per period,

the annuity due is

Sdue = R

[
(1 + j)n+1 − 1

j
− 1

]
.

Define a function due that computes the annuity due. Use due to

(a) compute the annuity due of $500 deposited at the beginning

of each month at an annual rate of 12% compounded monthly for

3 years, and (b) calculate the annuity due of $100k deposited at

the beginning of each month at an annual rate of 9% compounded

monthly for 10 years for k = 1, 2, 3, … , 10.

Compare the annuity due on a $100k monthly investment at

an annual rate of 8% compounded monthly for t = 5, 10, 15, 20

and k = 1, 2, 3, 4, 5.

(e) (Present Value) Another type of problem deals with determining

the amount of money that must be invested in order to ensure a
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particular return on the investment over a certain period of time.

The present value, P, of an annuity of n payments of R dol-

lars each at the end of consecutive interest periods with interest

compounded at a rate of j % per period is

P = R
1 − (1 + j)−n

j
.

Define a function present to compute the present value of

an annuity. (a) Find the amount of money that would have to

be invested at 7 1/2% compounded annually to provide an ordi-

nary annuity income of $45,000 per year for 40 years; and (b)

find the amount of money that would have to be invested at 8%

compounded annually to provide an ordinary annuity income of

$20, 000 + $5000k per year for 35 years for k = 0, 1, 2, 3, 4, and

5 years.

(f) (Deferred Annuities) The present value of a deferred annuity
of R dollars per period for n periods deferred for k periods with

an interest rate of j per period is

Pdef = R

[
1 − (1 + j)−(n+k)

j
− 1 − (1 + j)−k

j

]
.

Define a function def[r, n, k, j] to compute the value of a

deferred annuity where r equals the amount of the deferred annu-

ity, n equals the number of years in which the annuity is received,

k equals the number of years in which the lump sum investment

is made, and j equals the rate of interest. Use def to compute

the lump sum that would have to be invested for 30 years at a

rate of 15% compounded annually to provide an ordinary annu-

ity income of $35,000 per year for 35 years. How much money

would have to be invested at the ages of 25, 35, 45, 55, and 65

at a rate of 8 1/2% compounded annually to provide an ordinary

annuity income of $30,000 per year for 40 years beginning at

age 65?

(g) (Amortization) A loan is amortized if both the principal and

interest are paid by a sequence of equal periodic payments. A

loan of P dollars at interest rate j per period may be amortized in

n equal periodic payments of R dollars made at the end of each

period, where

R =
Pj

1 − (1 + j)−n
.

What is the monthly payment necessary to amortize a loan of

$75,000 with an interest rate of 9.5% compounded monthly over

20 years?
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What is the monthly payment necessary to amortize a loan of

$80,000 at an annual rate of j % in 20 years for j = 8, 8.5, 9, 9.5,

10, and 10.5?

In many cases, the amount paid toward the principal of the loan

and the total amount that remains to be paid after a certain

payment need to be computed.

What is the unpaid balance of the principal at the end of the

fifth year of a loan of $60,000 with an annual interest rate of 8%

scheduled to be amortized with monthly payments over a period

of 10 years? What is the total interest paid immediately after the

60th payment?

(h) What is the total interest paid on a loan of $60,000 with an inter-

est rate of 8% compounded monthly amortized over a period of

10 years (120 months) immediately after the 60th payment?

(i) What is the monthly payment necessary to amortize a loan of

$45,000 with an interest rate of 7% compounded monthly over a

period of 15 years (180 months)? What is the total principal and

interest paid after 0, 3, 6, 9, 12, and 15 years?

(j) Suppose that a loan of $45,000 with interest rate of 7% com-

pounded monthly is amortized over a period of 15 years (180

months). What is the principal and interest paid during each of

the first 5 years of the loan?

(k) Challenge: Suppose a retiree has $1,200,000. If she can invest

this sum at 7%, compounded annually, what level payment can

she withdraw annually for a period of 40 years?

(l) Challenge: Suppose an investor begins investing at a rate of d
dollars per year at an annual rate of j %. Each year the investor

increases the amount invested by i %. How much has the investor

accumulated after m years?

(m) Another interesting investment problem is discussed in the fol-

lowing exercise. In this case, Mathematica is useful in solving a

recurrence equation that occurs in the problem. The command

RSolve[{equations},a[n],n]

attempts to solve the recurrence equations equations for the

variable a[n] with no dependence on a[j], j ≤ n − 1.

I am 50 years old and I have $500,000 that I can invest at

a rate of 7% annually. Furthermore, I wish to receive a payment

of $50,000 the first year. Future annual payments should include

cost-of-living adjustments at a rate of 3% annually. Is $500,000

enough to guarantee this amount of annual income if I live to be

80 years old?
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(n) A 30-year mortgage of $80,000 with an annual interest rate

of 8.125% requires monthly payments of approximately $600

($7200 annually) to amortize the loan in 30 years. However, using

annuitytable, show that if the amount of the payments is increased

by 3% each year, the 30-year mortgage is amortized in 17 years.

5. Define list to be a list of the first 100 positive integers. (a) Find

the sum of the first 100 positive integers using Apply together with

Plus. (b) Find the product of the first 100 positive integers using

Apply and Product. (c) Describe the functionality of Apply. What is an

abbreviated form?

6. Use RealDigits to find the first 101 digits in the decimal expansion

of �. Use Table together with Count to determine the number of

occurrences of each digit (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). Challenge:
Repeat the exercise for a greater number of digits. Can you make

a reasonable conclusion about the occurrence of each digit in the

decimal expansion of �?

7. Recall that a sequence of the form xn+1 = f
(
xn

)
is called a dynamical

system.

(a) Using f(x) = x2
with x1 = a, determine if xn+1 = f

(
xn

)
has a limit

if a = 1, a = 1.05, and a = 0.95.

This dynamical system is said to have a fixed point at x if

f(x) = x.

To find the fixed points xn+1 = f
(
xn

)
with f(x) = x2

, we solve

x2
= x or x2 − x = 0 with solutions and x = 0 and x = 1. In simple

terms, a fixed point is called stable if a sequence that starts close

to the fixed point has the fixed point as a limit. Otherwise, the

fixed point is called unstable.

(b) Would you classify x = 1 as stable or unstable? Would you classify

x = 0 as stable or unstable? Briefly explain.

(c) Consider xn+1 = f
(
xn

)
with f(x) = 2x(1 − x).

i. Find the two fixed points.

ii. Let x1 = 0.25. Does the sequence xn+1 = f
(
xn

)
converge in

this case? If so, what is the limit?

iii. Let x1 = 0.75. Does the sequence xn+1 = f
(
xn

)
converge in

this case? If so, what is the limit?

iv. Select any value of x1 between 0 and 1. Does this choice

affect the limit?

v. Classify the two fixed points as stable or unstable.

(d) Sometimes, unusual behavior can be observed when working

with dynamical systems. For example, consider the dynamical
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system with f(x) = x + 2.5x(1 − x) and x1 = 1.2. We see that the

sequence oscillates between 0.6 and 1.2. We say that the dynam-

ical system has a 2-cycle because the values of the sequence

oscillate between two numbers.

(e) Describe the behavior of xn+1 = f
(
xn

)
if f(x) = x + 2.5x(1 − x)

and x1 = 1.201. Do you see a cycle? If so, how many numbers.

What are these numbers? Does a small change in the initial value

of the sequence affect the resulting values of the sequence based

on the results of this problem and the previous example?

(f) Describe the behavior of xn+1 = f
(
xn

)
if f(x) = x + 2.5x(1 − x)

and x1 = 1.3. Do you see a cycle? If so, how many numbers.

What are these numbers?

(g) Describe the behavior of xn+1 = f
(
xn

)
if f(x) = x + 2.5x(1 − x)

and x1 = 1.2. If the values do not seem to approach a single value

or a cycle of several values, we say that the dynamical system is

chaotic. Does this system appear to be chaotic?

In addition to your explanations, turn in the graphs obtained

with plot for each problem.

8. Plot the Julia set for f(z) = .36ez
. Hint: Use the rectangle a + bi for

0 ≤ a ≤ 5 and −2.5 ≤ b ≤ 2.5.



5
CHAPTER

Matrices and Vectors: Topics
from Linear Algebra and

Vector Calculus

Chapter 5 discusses operations on matrices and vectors, including topics

from linear algebra, linear programming, and vector calculus.

5.1 NESTED LISTS: INTRODUCTION TO MATRICES,
VECTORS, AND MATRIX OPERATIONS

5.1.1 Defining Nested Lists, Matrices, and Vectors
In Mathematica, a matrix is a list of lists where each list represents a row

of the matrix. Therefore, the m × n matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

.

.

.
.
.
.

.

.

.
.
.
.

am1 am2 am3 · · · amn

⎞
⎟⎟⎟⎟⎟⎠

is entered with

A = {{a11, a12, . . . , a1n}, {a21, a22, . . . , a2n}, . . . , {am1, am2, . . . amn}}

For example, to use Mathematica to define m to be the matrix A =(
a11 a12

a21 a22

)
, enter the command

m = {{a11, a12}, {a21, a22}}

The command m=Array[a,{2,2}] produces a result equivalent to this. Once

a matrix A has been entered, it can be viewed in the traditional

317
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row-and-column form using the command MatrixForm[A]. You can quickly

construct 2 × 2 matrices by clicking on the button from the Basic-
MathInput palette, which is accessed by going to Palettes followed by

BasicMathInput.
Alternatively, you can construct matrices of any dimension by going to

the Mathematica menu under Input and selecting Create Table/Matrix/
Palette...

As when using

TableForm, the result

of using MatrixForm
is no longer a list

that can be

manipulated using

Mathematica

commands. Use

MatrixForm to

view a matrix in

traditional

row-and-column

form. Do not attempt

to perform matrix

operations on a

MatrixForm object.

The resulting pop-up window allows you to create tables, matrices, and

palettes. To create a matrix, select Matrix, enter the number of rows and

columns of the matrix, and select any other options. Pressing the OK button

places the desired matrix at the position of the cursor in the Mathematica

notebook.
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Example 5.1.1 Use Mathematica to define the matrices

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ and

(
b11 b12 b13 b14

b21 b22 b23 b24

)
.

Solution In this case, both Table[ai,j, {i, 1, 3},{j, 1, 3}] and Array[a,{3,3}] produce equivalent

results when we define matrixa to be the matrix

⎛
⎝a11 a12 a13

a22 a22 a23

a31 a32 a33

⎞
⎠ .

The commands MatrixForm or TableForm are used to display the results in

traditional matrix form.

Clear[a, b, matrixa, matrixb]
matrixa = Table[ai, j, {i, 1, 3}, { j, 1, 3}]

{{a1,1, a1,2, a1,3} , {a2,1, a2,2, a2,3} , {a3,1, a3,2, a3,3}}
MatrixForm[matrixa]⎛
⎝ a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎞
⎠

matrixa = Array[a, {3, 3}]

{{a[1, 1], a[1, 2], a[1, 3]},

{a[2, 1], a[2, 2], a[2, 3]}, {a[3, 1], a[3, 2], a[3, 3]}}
MatrixForm[matrixa]⎛
⎝ a[1, 1] a[1, 2] a[1, 3]

a[2, 1] a[2, 2] a[2, 3]

a[3, 1] a[3, 2] a[3, 3]

⎞
⎠

We may also use Mathematica to define non-square matrices.

matrixb = Array[b, {2, 4}]

{{b[1, 1], b[1, 2], b[1, 3], b[1, 4]},{b[2, 1], b[2, 2], b[2, 3], b[2, 4]}}
MatrixForm[matrixb](

b[1, 1] b[1, 2] b[1, 3] b[1, 4]

b[2, 1] b[2, 2] b[2, 3] b[2, 4]

)
Equivalent results would have been obtained by entering Table

[
bi,j,{i,1,2}, {j,1,4}].
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More generally, the commands Table[f[i, j],{i, imax},{j, jmax}] and Array [f, {imax,
jmax}] yield nested lists corresponding to the imax× jmax matrix

⎛
⎜⎜⎜⎝

f(1, 1) f(1, 2) · · · f(1, jmax)

f(2, 1) f(2, 2) · · · f(2, jmax)

.

.

.
.
.
.

.

.

.
.
.
.

f(imax, 1) f(imax, 2) · · · f(imax, jmax)

⎞
⎟⎟⎟⎠ .

Table[f[i,j],{i,imin,imax,istep},{j,jmin,jmax,jstep}] returns the list of lists

{{f[imin, jmin], f[imin, jmin + jstep],. . . , f[imin, jmax]},
{f[imin + istep, jmin],. . . ,f[imin + istep, jmax]},

. . . ,{f[imax, jmin],. . . ,f[imax, jmax]}}

and the command

Table[f[i, j, k, . . . ],{i, imin, imax, istep}, {j, jmin, jmax, jstep},
{k, kmin, kmax, kstep},. . . ]

calculates a nested list; the list associated with i is outermost. If istep is

omitted, the step size is one.

Example 5.1.2 Define C to be the 3 × 4 matrix
(
cij

)
, where cij, the entry in the ith row and jth

column of C, is the numerical value of cos
(

j2 − i2
)

sin
(
i2 − j2

)
.

Solution After clearing all prior definitions of c, if any, we define c[i,j] to be the numerical

value of cos
(

j2 − i2
)

sin
(
i2 − j2

)
and then use Array to compute the 3 × 4 matrix

matrixc.

Clear[c,matrixc]
c[i–, j–] = N[Cos[ j2 – i2]Sin[i2 – j2]]

Cos [i2 – 1. j2] Sin [i2 – 1. j2]

matrixc = Array[c, {3, 4}]

{{0., 0.139708, 0.143952, 0.494016},

{ – 0.139708, 0., 0.272011, 0.452789},

{ – 0.143952, – 0.272011, 0., – 0.495304}}

MatrixForm[matrixc]⎛
⎝ 0. 0.139708 0.143952 0.494016

– 0.139708 0. 0.272011 0.452789

– 0.143952 – 0.272011 0. – 0.495304

⎞
⎠

Example 5.1.3 Define the matrix I3 =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠.
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Solution The matrix I3 is the 3 × 3 identity matrix. Generally, the n × n matrix with 1’s

on the diagonal and 0’s elsewhere is the n × n identity matrix. The command

IdentityMatrix[n] returns the n × n identity matrix.

IdentityMatrix[3]
{{1,0,0}, {0,1,0}, {0,0,1}}

The same result is obtained by going to Insert under the Mathematica menu and

selecting Table/Matrix/ followed by New. . . . We then check Matrix, Fill with: 0

and Fill diagonal: 1.

Pressing the OK button inserts the 3 × 3 identity matrix at the location of the

cursor.⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

In Mathematica, a vector is a list of numbers and, thus, is entered in

the same manner as lists. For example, to use Mathematica to define the

row vector vectorv to be
(
v1 v2 v3

)
, enter vectorv={v1,v2,v3}. Similarly, to

define the column vector vectorv to be

⎛
⎝v1

v2

v3

⎞
⎠ , enter vectorv={v1,v2,v3} or

vectorv={{v1},{v2},{v3}}.

With Mathematica,

you do not need to

distinguish between

row and column

vectors. Provided that

computations are

well-defined,

Mathematica carries

them out correctly.

Mathematica warns of

any ambiguities when

they (rarely) occur.

Generally, with Mathematica you do not need to distinguish between row

and column vectors: Mathematica usually performs computations with

vectors and matrices correctly as long as the computations are well-defined.

Example 5.1.4 Define the vector w =

⎛
⎝−4

−5

2

⎞
⎠, vectorv to be the vector

(
v1 v2 v3 v4

)
and zerovec

to be the vector
(
0 0 0 0 0

)
.
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Solution To define w, we enter

w = { – 4, – 5, 2}
{ – 4, – 5, 2}

or

w = {{ – 4}, { – 5}, {2}};
MatrixForm[w]⎛
⎝ – 4

– 5

2

⎞
⎠

To define vectorv, we use Array.

vectorv = Array[v, 4]
{v[1], v[2], v[3], v[4]}

Equivalent results would have been obtained by entering Table[vi,{i,1,4}]. To define

zerovec, we use Table.

zerovec = Table[0, {5}]
{0, 0, 0, 0, 0}

The same result is obtained by going to Insert under the Mathematica menu and

selecting Table/Matrix to create the zero vector.

(0 0 0 0 0)

{{0, 0, 0, 0, 0}}

5.1.2 Extracting Elements of Matrices

For the 2 × 2 matrix m = {{a1,1, a1,2}, {a2,1, a2,2}} defined previously, m[[1]]
yields the first element of matrix m which is the list {a1,1, a1,2} or the first

row of m; m[[2,1]] yields the first element of the second element of matrix

m which is a2,1. In general, if m is an i × j matrix, m[[i,j]] or Part[m,i,j] returns

the unique element in the ith row and jth column of m. Specifically, m[[i,j]]
yields the jth part of the ith part of m; list[[i]] or Part[list,i] yields the ith
part of list; list[[i,j]] or Part[list,i,j] yields the jth part of the ith part of list,

and so on.

Example 5.1.5 Define mb to be the matrix

⎛
⎝ 10 −6 −9

6 −5 −7

−10 9 12

⎞
⎠. (a) Extract the third row of mb.

(b) Extract the element in the first row and third column of mb. (c) Display mb in

traditional matrix form.
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Solution We begin by defining mb. mb[[i,j]] yields the (unique) number in the i th row and

j th column of mb. Observe how various components of mb (rows and elements)

can be extracted and how mb is placed in MatrixForm.

mb = {{10, – 6, – 9}, {6, – 5, – 7}, { – 10, 9, 12}};
MatrixForm[mb]⎛
⎝ 10 – 6 – 9

6 – 5 – 7

– 10 9 12

⎞
⎠

mb[[3]]
{ – 10, 9, 12}
mb[[1, 3]]
– 9

If m is a matrix, the ith row of m is extracted with m[[i]]. The command

Transpose[m] yields the transpose of the matrix m, the matrix obtained by

interchanging the rows and columns of m. We extract columns of m by

computing Transpose[m] and then using Part to extract rows from the trans-

pose. Namely, if m is a matrix, Transpose[m][[i]] extracts the ith row from

the transpose of m which is the same as the ith column of m.

Alternatively, if A is n × m (rows × columns), the ith column of A is

the vector that consists of the ith part of each row of the matrix, so given

an i-value Table[A[[j,i]],{j,1,n}] returns the ith column of A.

Example 5.1.6 Extract the second and third columns from A =

⎛
⎝ 0 −2 2

−1 1 −3

2 −4 1

⎞
⎠.

Solution We first define matrixa and then use Transpose to compute the transpose of

matrixa, naming the result ta, and then displaying ta in MatrixForm.

matrixa = {{0, – 2, 2}, { – 1, 1, – 3}, {2, – 4, 1}};
MatrixForm[matrixa]⎛
⎝ 0 – 2 2

– 1 1 – 3

2 – 4 1

⎞
⎠

ta = Transpose[matrixa]
MatrixForm[ta]

{{0, – 1, 2}, { – 2, 1, – 4}, {2, – 3, 1}}⎛
⎝ 0 – 1 2

– 2 1 – 4

2 – 3 1

⎞
⎠
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Next, we extract the second column of matrixa using Transpose together with

Part ([[...]]). Because we have already defined ta to be the transpose of matrixa,

entering ta[[2]] would produce the same result.

Transpose[matrixa][[2]]

{ – 2, 1, – 4}

To extract the third column, we take advantage of the fact that we have

already defined ta to be the transpose of matrixa. Entering Transpose[matrixa][[3]]
produces the same result.

ta[[3]]

{2, – 3, 1}
You can also use Take to extract elements of lists and matrices. Entering

Take[matrixa, 2]
Take[matrixa, 2]//MatrixForm

{{0, – 2, 2}, { – 1, 1, – 3}}(
0 – 2 2

– 1 1 – 3

)

returns the first two rows of matrixa because the first two parts of matrixa are the

lists corresponding to those rows. Similarly,

Take[matrixa, {2}]
Take[matrixa, {2}]//MatrixForm

{{ – 1, 1, – 3}}
( – 1 1 – 3 )

returns the second row, whereas

Take[matrixa, {2, 3}]
Take[matrixa, {2, 3}]//MatrixForm

{{ – 1, 1, – 3}, {2, – 4, 1}}(
– 1 1 – 3

2 – 4 1

)
returns the second and third rows.

The example illustrates that Take[list,n] returns the first n elements of

list; Take[list,{n}] returns the nth element of list; Take[list,{n1, n2, ...}] returns

the n1st, n2nd,... elements of list; and so on.
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5.1.3 Basic Computations with Matrices

Mathematica performs all of the usual operations on matrices. Matrix

addition (A + B), scalar multiplication (kA), matrix multiplication (when

defined) (AB), and combinations of these operations are all possible. The

transpose of A, At
, is obtained by interchanging the rows and columns

of A and is computed with the command Transpose[A]. If A is a square

matrix, the determinant of A is obtained with Det[A].
If A and B are n × n matrices satisfying AB = BA = I, where I is the

n × n matrix with 1’s on the diagonal and 0’s elsewhere (the n × n identity

matrix), B is called the inverse of A and is denoted by A−1
. If the inverse

of a matrix A exists, the inverse is found with Inverse[A]. Thus, assuming

that

(
a b
c d

)
has an inverse (ad − bc �= 0), the inverse is

Inverse[{{a, b}, {c, d}}]{{
d

– bc+ad
, – b

– bc+ad

}
,
{

– c

– bc+ad
, a

– bc+ad

}}

Example 5.1.7 Let A =

⎛
⎝3 −4 5

8 0 −3

5 2 1

⎞
⎠ and B =

⎛
⎝ 10 −6 −9

6 −5 −7

−10 9 12

⎞
⎠. Compute (a) A + B; (b) B − 4A;

(c) the inverse of AB; (d) the transpose of (A − 2B) B; and (e) det A = |A|.
Solution We enter ma (corresponding to A) and mb (corresponding to B) as nested lists,

where each element corresponds to a row of the matrix. We suppress the output

by ending each command with a semicolon.

ma = {{3, – 4, 5}, {8, 0, – 3}, {5, 2, 1}};
mb = {{10, – 6, – 9}, {6, – 5, – 7}, { – 10, 9, 12}};

Entering

ma + mb//MatrixForm⎛
⎝ 13 – 10 – 4

14 – 5 – 10

– 5 11 13

⎞
⎠

adds matrix ma to mb and expresses the result in traditional matrix form.

Entering

mb – 4ma//MatrixForm⎛
⎝ – 2 10 – 29

– 26 – 5 5

– 30 1 8

⎞
⎠
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subtracts four times matrix ma from mb and expresses the result in traditional

matrix form. Entering

Inverse[ma ·mb]//MatrixForm⎛
⎜⎝

59

380

53

190
– 167

380

– 223

570
– 92

95

979

570

49

114

18

19
– 187

114

⎞
⎟⎠

computes the inverse of the matrix product AB. Similarly, enteringMatrix products,

when defined, are

computed by placing

a period (.) between

the matrices being

multiplied. Note that

a period is also used

to compute the dot

product of two

vectors, when the dot

product is defined.

Transpose[(ma – 2mb) ·mb]//MatrixForm⎛
⎝ – 352 – 90 384

269 73 – 277

373 98 – 389

⎞
⎠

computes the transpose of (A − 2B) B, and entering

Det[ma]
190

computes the determinant of A.

Example 5.1.8 Compute AB and BA if A =

⎛
⎝−1 −5 −5 −4

−3 5 3 −2

−4 4 2 −3

⎞
⎠ and B =

⎛
⎜⎜⎝

1 −2

−4 3

4 −4

−5 −3

⎞
⎟⎟⎠.

Solution Because A is a 3 × 4 matrix and B is a 4 × 2 matrix, AB is defined and is a 3 × 2

matrix. We define matrixa and matrixb with the following commands.
Remember that you

can also define

matrices by going to

Insert under the

Mathematica menu

and selecting

Table/Matrix. After

entering the desired

number of rows and

columns and pressing

the OK button, a

matrix template is

placed at the location

of the cursor that you

can fill in.

matrixa =

⎛
⎝ – 1 – 5 – 5 – 4

– 3 5 3 – 2
– 4 4 2 – 3

⎞
⎠ ;

matrixb =

⎛
⎜⎜⎝

1 – 2
– 4 3

4 – 4
– 5 – 3

⎞
⎟⎟⎠ ;

We then compute the product, naming the result ab, and display ab in MatrixForm.

ab = matrixa.matrixb;
MatrixForm[ab]⎛
⎝ 19 19

– 1 15

3 21

⎞
⎠
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However, the matrix product BA is not defined and Mathematica produces error

messages when we attempt to compute it.

Special attention must be given to the notation that must be used in

taking the product of a square matrix with itself. The following exam-

ple illustrates how Mathematica interprets the expression (matrixb)^n. The

command (matrixb)^n raises each element of the matrix matrixb to the

nth power. The command MatrixPower is used to compute powers of

matrices.

Example 5.1.9 Let B =

⎛
⎜⎜⎝
−2 3 4 0

−2 0 1 3

−1 4 −6 5

4 8 11 −4

⎞
⎟⎟⎠. (a) Compute B2

and B
3
. (b) Cube each entry of B.

Solution After defining B, we compute B
2
. The same results would have been obtained by

entering MatrixPower[matrixb,2].

matrixb = {{ – 2, 3, 4, 0}, { – 2, 0, 1, 3}, { – 1, 4, – 6, 5},
{4, 8, 11, – 4}};
MatrixForm[matrixb . matrixb]⎛
⎜⎜⎝

– 6 10 – 29 29

15 22 19 – 7

20 13 91 – 38

– 51 24 – 86 95

⎞
⎟⎟⎠
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Next, we use MatrixPower to compute B
3
. The same results would be obtained

by entering matrixb.matrixb.matrixb.

MatrixForm[MatrixPower[matrixb, 3]]⎛
⎜⎜⎝

137 98 479 −231

– 121 65 – 109 189

– 309 120 – 871 646

520 263 1381 – 738

⎞
⎟⎟⎠

Last, we cube each entry of B with ^.

MatrixForm[matrixb3]⎛
⎜⎜⎝

– 8 27 64 0

– 8 0 1 27

– 1 64 – 216 125

64 512 1331 – 64

⎞
⎟⎟⎠

If |A| �= 0, the inverse of A can be computed using the formula

A−1 =
1

|A|A
a, (5.1)

where Aa
is the transpose of the cofactor matrix.

The cofactor
matrix, A

c
, of A is

the matrix obtained

by replacing each

element of A by its

cofactor.

If A has an inverse, reducing the matrix (A|I) to reduced row echelon

form results in (I|A−1
). This method is often easier to implement than (5.1).

Example 5.1.10 Calculate A
−1

if A =

⎛
⎝ 2 −2 1

0 −2 2

−2 −1 −1

⎞
⎠.

Solution After defining A and I =

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠, we compute |A| = 12, so A

−1
exists.

capa = {{2, – 2, 1}, {0, – 2, 2}, { – 2, – 1, – 1}}
i3 = IdentityMatrix[3]

{{2, – 2, 1}, {0, – 2, 2}, { – 2, – 1, – 1}}
{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}
Det[capa]
12

Join[a,b,n] concatenates lists a and b at level n. For matrices the level one

objects (capa[[i]]) are the rows; the level two objects (capa[[i,j]]) are the entries.

Thus, Join[capa,i3] returns the matrix

(
A

I

)
, whereas Join[capa,i3,2] forms the

matrix (A|I).
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ai3 = Join[capa, i3, 2]
{{2, – 2, 1, 1, 0, 0}, {0, – 2, 2, 0, 1, 0},

{ – 2, – 1, – 1, 0, 0, 1}}
MatrixForm[ai3]⎛
⎝ 2 – 2 1 1 0 0

0 – 2 2 0 1 0

– 2 – 1 – 1 0 0 1

⎞
⎠

We then use RowReduce to reduce (A|I) to row echelon form.RowReduce[A]
reduces A to

reduced
row echelon
form.

rrai3 = RowReduce[ai3]{{
1, 0, 0, 1

3
, – 1

4
, – 1

6

}
,

{
0, 1, 0, – 1

3
, 0, – 1

3

}
,
{

0, 0, 1, – 1

3
, 1

2
, – 1

3

}}
MatrixForm[rrai3]⎛
⎜⎝ 1 0 0 1

3
– 1

4
– 1

6

0 1 0 – 1

3
0 – 1

3

0 0 1 – 1

3

1

2
– 1

3

⎞
⎟⎠

The result indicates that A
−1

=

⎛
⎝ 1 / 3 −1 / 4 −1 / 6

−1 / 3 0 −1 / 3

−1 / 3 1 / 2 −1 / 3

⎞
⎠.

5.1.4 Basic Computations with Vectors

Basic Operations on Vectors

Computations with vectors are performed in the same way as computations

with matrices.

Example 5.1.11 Let v =

⎛
⎜⎜⎝

0

5

1

2

⎞
⎟⎟⎠ and w =

⎛
⎜⎜⎝

3

0

4

−2

⎞
⎟⎟⎠. (a) Calculate v − 2w and v ·w. (b) Find a unit vector

with the same direction as v and a unit vector with the same direction as w.

Solution We begin by defining v and w and then compute v − 2w and v ·w.

v = {0, 5, 1, 2};
w = {3, 0, 4, – 2};
v – 2w
{ – 6, 5, – 7, 6}
v ·w
0
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The norm of the vector v =

⎛
⎜⎜⎜⎜⎝

v1

v2

...

vn

⎞
⎟⎟⎟⎟⎠ is

‖v‖ =

√
v2

1 + v2
2 + · · · + v2

n =
√

v · v.

The command Norm[v] returns the norm of the vector v.

If k is a scalar, the direction of kv is the same as the direction of v. Thus, if v

is a nonzero vector, the vector
1

‖v‖v has the same direction as v and because∥∥∥∥ 1

‖v‖v
∥∥∥∥ =

1

‖v‖ ‖v‖ = 1,
1

‖v‖v is a unit vector. First, we compute ‖v‖ with Norm.

We then compute
1

‖v‖v, calling the result uv, and
1

‖w‖w. The results correspond

to unit vectors with the same direction as v and w, respectively.

Norm[v]√
30

uv = v
Norm[v]{

0,

√
5

6
, 1√

30
,

√
2

15

}
Norm[uv]
1

w
Norm[w]{

3√
29

, 0, 4√
29

, – 2√
29

}

Basic Operations on Vectors in 3-Space

We review the elementary properties of vectors in 3-space. Let

u = 〈u1, u2, u3〉 = u1i + u2j + u3k

and

v = 〈v1, v2, v3〉 = v1i + v2j + v3k

Vector calculus is

discussed in

Section 5.5.

be vectors in space.

1. u and v are equal if and only if their components are equal:

u = v ⇔ u1 = v1, u2 = v2, and u3 = v3.
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2. The length (or norm) of u is

‖u‖ =

√
u2

1 + u2
2 + u2

3.

3. If c is a scalar (number),

cu = 〈cu1, cu2, cu3〉 .

In space, the

standard unit
vectors are

i = 〈1, 0, 0〉,
j = 〈0, 1, 0〉, and

k = 〈0, 0, 1〉. With the

exception of the

cross product,

the vector operations

discussed here are

performed in the

same way for vectors

in the plane as they

are in space. In the

plane, the

standard unit
vectors are i = 〈1, 0〉
and j = 〈0, 1〉.

4. The sum of u and v is defined to be the vector

u + v = 〈u1 + v1, u2 + v2, u3 + v3〉 .

5. If u �= 0, a unit vector with the same direction as u is

1

‖u‖u =
1√

u2
1 + u2

2 + u2
3

〈u1, u2, u3〉 .

6. u and v are parallel if there is a scalar c so that u = cv.

A unit vector is a

vector with length 1.

7. The dot product of u and v is

u · v = u1v1 + u2v2 + u3v3.

If � is the angle between u and v,

cos � =
u · v

‖u‖ ‖v‖ .

Consequently, u and v are orthogonal if u · v = 0.

8. The cross product of u and v is

u × v =

∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
=
(
u2v3 − u3v2

)
i − (

u1v3 − u3v1

)
j +

(
u1v2 − u2v1

)
k.

You should verify that u · (u × v) = 0 and v · (u × v) = 0. Hence, u ×
v is orthogonal to both u and v.

Topics from linear algebra (including determinants) are discussed in more

detail in the next sections. For now, we illustrate several of the basic
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operations listed previously: u.v and Dot[u,v] compute u · v; Cross[u,v]
computes u × v.

Example 5.1.12 Let u = 〈3, 4, 1〉 and v = 〈−4, 3,−2〉. Calculate (a) u · v, (b) u × v, (c) ‖u‖, and (d)

‖v‖. (e) Find the angle between u and v. (f) Find unit vectors with the same

direction as u, v, and u × v.

Solution We begin by defining u = 〈3, 4, 1〉 and v = 〈−4, 3,−2〉. Notice that to define

u = 〈u1, u2, u3〉 with Mathematica, we use the form

u = {u1, u2, u3}
Similarly, to define

u = 〈u1, u2〉, we use

the form u = {u1,u2}.
We illustrate the use of Dot and Cross to calculate (a)–(d).

u = {3, 4, 1};
v = { – 4, 3, – 2};
udv = Dot[u, v]
– 2

u · v
– 2

ucv = Cross[u, v]
{ – 11, 2, 25}
nu = Norm[u]√

26

nv = Sqrt[v · v]√
29

We use the formula � = cos
−1
(

u·v
‖u‖ ‖v‖

)
to find the angle � between u and v.

ArcCos[u · v/(nu nv)]
N[%]

ArcCos

[
–

√
2

377

]
1.6437

Unit vectors with the same direction as u, v, and u × v are found next.

normu = u/nu
normv = v/nv{

3√
26

, 2

√
2

13
, 1√

26

}
{

– 4√
29

, 3√
29

, – 2√
29

}
nucrossv = ucv/Norm[ucv]{

– 11

5
√

30
,

√
2
15

5
,

√
5

6

}
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FIGURE 5.1

Orthogonal vectors

We can graphically confirm that these three vectors are orthogonal by graphing all

three vectors with the ListVectorFieldPlot3D function, which is contained in the

VectorFieldPlots package. After loading the ListVectorFieldPlot3D package, the

command

ListVectorFieldPlot3D[listofvectors]

graphs the list of vectors listofvectors. Each element of listofvectors is of the form

{{u1,u2,u3},{v1,v2,v3}}, where (u1, u2, u3) and (v1, v2, v3) are the initial and terminal

points of each vector. We show the vectors in Figure 5.1.

Needs[“VectorFieldPlots”]
ListVectorFieldPlot3D[{{{0, 0, 0}, normu},

{{0, 0, 0}, normv}, {{0, 0, 0}, nucrossv}},
VectorHeads→True]

In the plot, the vectors do appear to be orthogonal as expected.

With the exception of the cross product, the calculations described

previously can also be performed on vectors in the plane.
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Example 5.1.13 If u and v are nonzero vectors, the projection of u onto v is

projvu =
u · v
‖v‖2

v.

Find projvu if u = 〈−1, 4〉 and v = 〈2, 6〉.
Solution First, we define u = 〈−1, 4〉 and v = 〈2, 6〉 and then compute projvu.

u = { – 1, 4};
v = {2, 6};
projvu = u · v v/v · v{

11

10
, 33

10

}
Next, we graph u, v, and projvu together using Arrow, Show, and GraphicsRow
in Figure 5.2.

p1 = Show[Graphics[{Arrowheads[Medium], Arrow[{{0, 0}, u}],
Arrow[{{0, 0}, v}],
Thickness[.05], Arrow[{{0, 0}, projvu}]}],
Axes→Automatic, AspectRatio→Automatic];

p2 = Show[Graphics[{Arrowheads[Medium], Arrow[{{0, 0}, u}],

21.0 0.5 1.0 1.5 2.0

1

2

3

4

5

6

21.0 0.5 1.0 1.5 2.0

1

2

3

4

5

6

FIGURE 5.2

Projection of a vector
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FIGURE 5.3

Using Manipulate to visualize the projection of one vector onto another

Arrow[{{0, 0}, v}],
Thickness[.03], Arrow[{{0, 0}, projvu}], GrayLevel[.4],
Arrowheads[Large], Arrow[{projvu, u}]}],
Axes→Automatic, AspectRatio→Automatic];

Show[GraphicsRow[{p1, p2}]]

In the graph, notice that u = projvu +
(
u − projvu

)
and the vector u − projvu is

perpendicular to v.

With the following, we use Manipulate to generalize the example. See

Figure 5.3.

Clear[u, v, projvu, p1, p2];
Manipulate[
projvu = u.vv/v.v;
Show[Graphics[{Arrowheads[Medium], Arrow[{{0, 0}, u}],

Arrow[{{0, 0}, v}],
Thickness[.005], Arrow[{{0, 0}, projvu}], GrayLevel[.4],
Arrowheads[Large], Arrow[{projvu, u}]}],
Axes→Automatic, PlotRange→ {{ – 3, 3}, {0, 6}},
AspectRatio→Automatic, Ticks→None], {{u, { – 2, 3}}, Locator},

{{v, {2, 5}}, Locator}]

If you only need to display a two-dimensional array in row-and-column

form, it is easier to use Grid rather than Table together with TableForm or

MatrixForm.
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For a list of all the options associated with Grid, enter Options[Grid].

Thus,

p0 = Grid[{{a, b, c}, {d, e}, {f}}, Frame→All]

creates a basic grid. The first row consists of the entries a, b, and c; the

second row d and e; and the third row f. See Figure 5.4.

You can create quite complex arrays with Grid. For example, elements

of grids can be any Mathematica object, including grids.

In the following, we use ExampleData to generate several typical Math-

ematica objects.StringTake[string,n]
returns the first n
characters of the

string string.

p1 = ExampleData[{“AerialImage”, “Earth”}];
p2 = StringTake[ExampleData[{“Text”, “GettysburgAddress”}], 100];
p3 = ExampleData[{“Geometry3D”, “KleinBottle”}];
p4 = ExampleData[{“Texture”, “Bubbles3”}]; .1in
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a b c

d e

f

FIGURE 5.4

A basic grid

FIGURE 5.5

Very basic grids can appear to be quite complicated

Using our first grid, the previous data, and a few more strings, we create

a more sophisticated grid in Figure 5.5.

g1 = Grid[{{xyx, Grid[{{p1, p2}, {p3, p4}}]}, {x + y – z, p0}}, Frame→All]

5.2 LINEAR SYSTEMS OF EQUATIONS

5.2.1 Calculating Solutions of Linear Systems of
Equations

To solve the system of linear equations Ax = b, where A is the coefficient

matrix, b is the known vector, and x is the unknown vector, we often

proceed as follows: If A−1
exists, then AA−1x = A−1b so x = A−1b.
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Mathematica offers several commands for solving systems of linear equa-

tions, however, that do not depend on the computation of the inverse of

A. The command

Solve[{eqn1, eqn2, . . . , eqnm}, {var1, var2, . . . , varn}]

solves an m × n system of linear equations (m equations and n unknown

variables). Note that both the equations and the variables are entered as

lists. If one wishes to solve for all variables that appear in a system, the com-

mand Solve[{eqn1, eqn2, . . . , eqnn}] attempts to solve eqn1, eqn2, . . . , eqnn for

all variables that appear in them. (Remember that a double equals sign (==)

must be placed between the left- and right-hand sides of each equation.)

Example 5.2.1 Solve the matrix equation

⎛
⎝ 3 0 2

−3 2 2

2 −3 3

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 3

−1

4

⎞
⎠.

Solution The solution is given by

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ 3 0 2

−3 2 2

2 −3 3

⎞
⎠

−1 ⎛
⎝ 3

−1

4

⎞
⎠. We proceed by defining

matrixa and b and then using Inverse to calculate Inverse[matrixa].b, naming the

resulting output {x,y,z}.

matrixa = {{3, 0, 2}, { – 3, 2, 2}, {2, – 3, 3}};
b = {3, – 1, 4};
{x, y, z} = Inverse[matrixa].b{

13
23

, – 7

23
, 15

23

}
We verify that the result is the desired solution by calculating matrixa.{x,y,z}.

Because the result of this procedure is

⎛
⎝ 3

−1

4

⎞
⎠, we conclude that the solution

to the system is

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝13/23

−7/23

15/23

⎞
⎠.

matrixa.{x, y, z}
{3, – 1, 4}

We note that this matrix equation is equivalent to the system of equations

3x + 2z = 3

−3x + 2y + 2z = −1

2x − 3y + 3z = 4

,

which we are able to solve with Solve. (Note that Thread[{f1, f2, ...} = {g1, g2, ...}]
returns the system of equations {f1==g1, f2==g2, ...}.)
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Clear[x, y, z]
sys = Thread[matrixa . {x, y, z}=={3, – 1, 4}]

{3x + 2z==3, – 3x + 2y + 2z== – 1, 2x – 3y + 3z==4}
Solve[sys]{{

x → 13

23
, z → 15

23
, y → – 7

23

}}

In addition to using Solve to solve a system of linear equations, the

command

LinearSolve[A,b]

calculates the solution vector x of the system Ax = b. LinearSolve generally

solves a system more quickly than does Solve, as we see from the comments

in the Documentation Center.

Example 5.2.2 Solve the system

⎧⎪⎪⎨
⎪⎪⎩

x − 2y + z = −4

3x + 2y − z = 8

−x + 3y + 5z = 0

for x, y, and z.
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Solution In this case, entering either

Solve[{x – 2y + z== – 4, 3x + 2y – z==8, – x + 3y + 5z==0}]

or

Solve[{x – 2y + z, 3x + 2y – z, – x + 3y + 5z}=={ – 4, 8, 0}]

gives the same result.

Solve[{x – 2y + z== – 4, 3x + 2y – z==8, – x + 3y + 5z==0}, {x, y, z}]

{{x → 1, y → 2, z → – 1}}
Another way to solve systems of equations is based on the matrix form of the

system of equations, Ax = b. This system of equations is equivalent to the matrix

equation ⎛
⎝ 1 −2 1

3 2 −1

−1 3 5

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝−4

8

0

⎞
⎠ .

The matrix of coefficients in the previous example is entered as matrixa along

with the vector of right-hand side values vectorb. After defining the vector of

variables, vectorx, the system Ax = b is solved explicitly with the command

Solve.

matrixa = {{1, – 2, 1}, {3, 2, – 1}, { – 1, 3, 5}};
vectorb = { – 4, 8, 0};
vectorx = {x1, y1, z1};
Solve[matrixa.vectorx==vectorb, vectorx]
{{x1 → 1, y1 → 2, z1 → – 1}}
LinearSolve[matrixa, vectorb]
{1, 2, – 1}

Example 5.2.3 Solve the system

⎧⎪⎪⎨
⎪⎪⎩

2x − 4y + z = −1

3x + y − 2z = 3

−5x + y − 2z = 4

. Verify that the result returned satisfies the

system.

Solution To solve the system using Solve, we define eqs to be the set of three equations

to be solved and vars to be the variables x, y, and z and then use Solve to solve

the set of equations eqs for the variables in vars. The resulting output is named

sols.

eqs = {2x – 4y + z== – 1, 3x + y – 2z==3, – 5x + y – 2z==4}; vars = {x, y, z};
sols = Solve[eqs, vars]
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{{
x → – 1

8
, y → – 15

56
, z → – 51

28

}}
To verify that the result given in sols is the desired solution, we replace each

occurrence of x, y, and z in eqs by the values found in sols using ReplaceAll
(/.). Because the result indicates each of the three equations is satisfied, we

conclude that the values given in sols are the components of the desired

solution.

eqs/.sols

{{True, True, True}}

To solve the system using LinearSolve, we note that the system is equivalent

to the matrix equation

⎛
⎝ 2 −4 1

3 1 −2

−5 1 −2

⎞
⎠
⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝−1

3

4

⎞
⎠, define matrixa and vectorb,

and use LinearSolve to solve this matrix equation.

matrixa = {{2, – 4, 1}, {3, 1, – 2}, { – 5, 1, – 2}};
vectorb = { – 1, 3, 4};
solvector = LinearSolve[matrixa, vectorb]

{ – 1
8
, – 15

56
, – 51

28
}

To verify that the results are correct, we compute matrixa.solvector. Because the

result is

⎛
⎝−1

3

4

⎞
⎠, we conclude that the solution to the system is

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝ − 1/8

−15/36

−51/28

⎞
⎠.

matrixa.solvector

{ – 1, 3, 4}

The command LinearSolve[A] returns a function that when given a vector b solves

the equation Ax = b: LinearSolve[A][b] returns x.

LinearSolve[matrixa]

LinearSolveFunction[{3, 3}, <>]

LinearSolve[matrixa][{ – 1, 3, 4}]{
– 1

8
, – 15

56
, – 51

28

}

Enter indexed variables such x1, x2, . . . , xn as x[1], x[2], . . . , x[n]. If you

need to include the entire list, Table[x[i],{i,1,n}] usually produces the desired

result(s).
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Example 5.2.4 Solve the system of equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4x1 + 5x2 − 5x3 − 8x4 − 2x5 = 5

7x1 + 2x2 − 10x3 − x4 − 6x5 = −4

6x1 + 2x2 + 10x3 − 10x4 + 7x5 = −7.

−8x1 − x2 − 4x3 + 3x5 = 5

8x1 − 7x2 − 3x3 + 10x4 + 5x5 = 7

Solution We solve the system in two ways. First, we use Solve to solve the system. Note

that in this case, we enter the equations in the form

set of left – hand sides==set of right – hand sides

.Solve[{4x[1] + 5x[2] – 5x[3] – 8x[4] – 2x[5],
7x[1] + 2x[2] – 10x[3] – x[4] – 6x[5],

6x[1] + 2x[2] + 10x[3] – 10x[4] + 7x[5],
– 8x[1] – x[2] – 4x[3] + 3x[5],
8x[1] – 7x[2] – 3x[3] + 10x[4] + 5x[5]}=={5, – 4, – 7, 5, 7}]{{

x[1] → 1245

6626
, x[2] → 113174

9939
, x[3] → – 7457

9939
, x[4] → 38523

6626
, x[5] → 49327

9939

}}
We also use LinearSolve after defining matrixa and t2. As expected, in each case,

the results are the same.

Clear[matrixa]
matrixa = {{4, 5, – 5, – 8, – 2}, {7, 2, – 10, – 1, – 6}, {6, 2, 10, – 10, 7},
{ – 8, – 1, – 4, 0, 3}, {8, – 7, – 3, 10, 5}};
t2 = {5, – 4, – 7, 5, 7};
LinearSolve[matrixa, t2]{

1245

6626
, 113174

9939
, – 7457

9939
, 38523

6626
, 49327

9939

}

5.2.2 Gauss–Jordan Elimination
Given the matrix equation Ax = b, where

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎝

x1

x2

.

.

.

xn

⎞
⎟⎟⎟⎠ , and b =

⎛
⎜⎜⎜⎝

b1

b2

.

.

.

bm

⎞
⎟⎟⎟⎠ ,

the m × n matrix A is called the coefficient matrix for the matrix

equation Ax = b, and the m × (n + 1) matrix⎛
⎜⎜⎜⎝

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

am1 am2 · · · amn bm

⎞
⎟⎟⎟⎠
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is called the augmented (or associated) matrix for the matrix equation.

We may enter the augmented matrix associated with a linear system of equa-

tions directly or we can use commands such as Join to help us construct the

augmented matrix. For example, if A and B are rectangular matrices that

have the same number of columns, Join[A,B] returns

(
A
B

)
. On the other

hand, if A and B are rectangular matrices that have the same number of

rows, Join[A,B,2] returns the concatenated matrix
(
A B

)
.

Example 5.2.5 Solve the system

⎧⎪⎪⎨
⎪⎪⎩
−2x + y − 2x = 4

2x − 4y − 2z = −4

x − 4y − 2z = 3

using Gauss–Jordan elimination.

Solution The system is equivalent to the matrix equation⎛
⎝−2 1 −2

2 −4 −2

1 −4 −2

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ 4

−4

3

⎞
⎠ .

The augmented matrix associated with this system is⎛
⎝−2 1 −2 4

2 −4 −2 −4

1 −4 −2 3

⎞
⎠ ,

which we construct using the command Join.

matrixa = {{ – 2, 1, – 2}, {2, – 4, – 2}, {1, – 4, – 2}};
b = {{4}, { – 4}, {3}};
augm = Join[matrixa, b, 2];
MatrixForm[augm]⎛
⎝ – 2 1 – 2 4

2 – 4 – 2 – 4

1 – 4 – 2 3

⎞
⎠

We calculate the solution by row-reducing augm using RowReduce. Generally,

RowReduce[A] reduces A to reduced row echelon form.

RowReduce[augm]//MatrixForm⎛
⎝ 1 0 0 – 7

0 1 0 – 4

0 0 1 3

⎞
⎠

From this result, we see that the solution is⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝−7

−4

3

⎞
⎠ .
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We verify this by replacing each occurrence of x, y, and z on the left-hand side

of the equations by −7, −4, and 3, respectively, and noting that the components

of the result are equal to the right-hand side of each equation.

Clear[x, y, z]
{ – 2x + y – 2z, 2x – 4y – 2z, x – 4y – 2z}/.{x→ – 7, y→ – 4, z→3}
{4, – 4, 3}

In the following example, we carry out the steps of the row reduction

process.

Example 5.2.6 Solve

−3x + 2y − 2z = −10

3x − y + 2z = 7

2x − y + z = 6.

Solution The associated matrix is A =

⎛
⎝−3 2 −2 −10

3 −1 2 7

2 −1 1 6

⎞
⎠, defined in capa and then

displayed in traditional row-and-column form with MatrixForm.

Clear[capa]
capa = {{ – 3, 2, – 2, – 10}, {3, – 1, 2, 7}, {2, – 1, 1, 6}};
MatrixForm[capa]⎛
⎝ – 3 2 – 2 – 10

3 – 1 2 7

2 – 1 1 6

⎞
⎠

We eliminate methodically. First, we multiply row 1 by −1/3 so that the first entry

in the first column is 1.

capa = { – 1/3capa[[1]], capa[[2]], capa[[3]]}{{1, – 2

3
, 2

3
, 10

3
}, {3, – 1, 2, 7}, {2, – 1, 1, 6}}

We now eliminate below. First, we multiply row 1 by −3 and add it to row 2 and

then we multiply row 1 by −2 and add it to row 3.

capa = {capa[[1]], – 3capa[[1]] + capa[[2]],
– 2capa[[1]] + capa[[3]]}{{1, – 2

3
, 2

3
, 10

3
}, {0, 1, 0, – 3}, {0, 1

3
, – 1

3
, – 2

3
}}

Observe that the first nonzero entry in the second row is 1. We eliminate below

this entry by adding −1/3 times row 2 to row 3.

capa = {capa[[1]], capa[[2]],
– 1/3capa[[2]] + capa[[3]]}
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{{1, – 2

3
, 2

3
, 10

3
}, {0, 1, 0, – 3}, {0, 0, – 1

3
, 1

3
}}

We multiply the third row by −3 so that the first nonzero entry is 1.

capa = {capa[[1]], capa[[2]], – 3capa[[3]]}{{1, – 2

3
, 2

3
, 10

3
}, {0, 1, 0, – 3}, {0, 0, 1, – 1}}

This matrix is equivalent to the system

x − 2

3
y +

2

3
z =

10

3

y = −3

z = −1,

which shows us that the solution is x = 2, y = −3, z = −1.

Working backwards confirms this. Multiplying row 2 by 2/3 and adding to row

1 and then multiplying row 3 by −2/3 and adding to row 1 results in

capa = {2/3capa[[2]] + capa[[1]], capa[[2]],
capa[[3]]}

capa = { – 2/3capa[[3]] + capa[[1]], capa[[2]],
capa[[3]]}

MatrixForm[capa]

{{1, 0, 2

3
, 4

3
}, {0, 1, 0, – 3}, {0, 0, 1, – 1}}
{{1, 0, 0, 2}, {0, 1, 0, – 3}, {0, 0, 1, – 1}}⎛

⎝ 1 0 0 2

0 1 0 −3

0 0 1 −1

⎞
⎠

which is equivalent to the system x = 2, y = −3, z = −1.

Equivalent results are obtained with RowReduce.

capa = {{ – 3, 2, – 2, – 10}, {3, – 1, 2, 7}, {2, – 1, 1, 6}};
capa = RowReduce[capa]
MatrixForm[capa]

{{1, 0, 0, 2}, {0, 1, 0, – 3}, {0, 0, 1, – 1}}⎛
⎝ 1 0 0 2

0 1 0 – 3

0 0 1 – 1

⎞
⎠

Finally, we confirm the result directly with Solve.

Solve[{ – 3x + 2y – 2z== – 10,
3x – y + 2z==7, 2x – y + z==6}]

{{x → 2, y → – 3, z → – 1}}
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Example 5.2.7 Solve

−3x1 + 2x2 + 5x3 = −12

3x1 − x2 − 4x3 = 9

2x1 − x2 − 3x3 = 7.

Solution The associated matrix is A =

⎛
⎝−3 2 5 −12

3 −1 −4 9

2 −1 −3 7

⎞
⎠, which is reduced to row echelon

form with RowReduce.

capa = {{ – 3, 2, 5, – 12}, {3, – 1, – 4, 9}, {2, – 1, – 3, 7}};
rrcapa = RowReduce[capa];
MatrixForm[rrcapa]⎛
⎝ 1 0 – 1 2

0 1 1 – 3

0 0 0 0

⎞
⎠

The result shows that the original system is equivalent to

x1 − x3 = 2

x2 + x3 = −3
or

x1 = 2 + x3

x2 = −3 − x3

so x3 is free. That is, for any real number t, a solution to the system is

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 2 + t
−3 − t

t

⎞
⎠ =

⎛
⎝ 2

−3

0

⎞
⎠ + t

⎛
⎝ 1

−1

1

⎞
⎠ .

The system has infinitely many solutions.

Equivalent results are obtained with Solve.

Example 5.2.8 Solve

−3x1 + 2x2 + 5x3 = −14

3x1 − x2 − 4x3 = 11

2x1 − x2 − 3x3 = 8.
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Solution The associated matrix is A =

⎛
⎝−3 2 5 −14

3 −1 −4 11

2 −1 −3 8

⎞
⎠, which is reduced to row

echelon form with RowReduce.

Clear[x]
capa = {{ – 3, 2, 5, – 14}, {3, – 1, – 4, 11}, {2, – 1, – 3, 8}};
rrcapa = RowReduce[capa];
MatrixForm[rrcapa]⎛
⎝ 1 0 −1 0

0 1 1 0

0 0 0 1

⎞
⎠

The result shows that the original system is equivalent to

x1 − x3 = 0

x2 + x3 = 0

0 = 1.

Of course, 0 is not equal to 1: The last equation is false. The system has no

solutions.

We check the calculation with Solve. In this case, the results indicate that

Solve cannot find any solutions to the system.

Solve[{ – 3x[1] + 2x[2] + 5x[3]== – 14,
3x[1] – x[2] – 4x[3]==11, 2x[1] – x[2] – 3x[3]==8}]
{}

Generally, if Mathematica returns nothing, the result means either that there is no

solution or that Mathematica cannot solve the problem. In such a situation, we

must always check using another method.

Example 5.2.9 The nullspace of A is the set of solutions to the system of equations Ax = 0.

Find the nullspace of A =

⎛
⎜⎜⎜⎜⎝

3 2 1 1 −2

3 3 1 2 −1

2 2 1 1 −1

−1 −1 0 −1 0

5 4 2 2 −3

⎞
⎟⎟⎟⎟⎠.

Solution Observe that row reducing (A|0) is equivalent to row reducing A. After defining

A, we use RowReduce to row reduce A.

capa = {{3, 2, 1, 1, – 2}, {3, 3, 1, 2, – 1},
{2, 2, 1, 1, – 1}, { – 1, – 1, 0, – 1, 0},
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{5, 4, 2, 2, – 3}};
RowReduce[capa]//MatrixForm⎛
⎜⎜⎜⎜⎝

1 0 0 0 – 1

0 1 0 1 1

0 0 1 – 1 – 1

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

The result indicates that the solutions of Ax = 0 are

x =

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

t
−s − t
s + t

s
t

⎞
⎟⎟⎟⎟⎠ = s

⎛
⎜⎜⎜⎜⎝

0

−1

1

1

0

⎞
⎟⎟⎟⎟⎠ + t

⎛
⎜⎜⎜⎜⎝

1

−1

1

0

1

⎞
⎟⎟⎟⎟⎠ ,

where s and t are any real numbers. The dimension of the nullspace, the nullity,

is 2; a basis for the nullspace is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0

−1

1

1

0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1

−1

1

0

1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

You can use the command NullSpace[A] to find a basis of the nullspace of a

matrix A directly.

NullSpace[capa]
{{1, – 1, 1, 0, 1}, {0, – 1, 1, 1, 0}}

A is singular because |A| = 0.

Det[capa]
0

Do not use LinearSolve on singular matrices,

because the results returned may not be (completely) correct.
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LinearSolve[capa, {0, 0, 0, 0, 0}]
{0, 0, 0, 0, 0}

5.3 SELECTED TOPICS FROM LINEAR ALGEBRA

5.3.1 Fundamental Subspaces Associated with
Matrices

Let A =
(
aij

)
be an n × m matrix with entry aij in the ith row and jth

column. The row space of A, row(A), is the spanning set of the rows of

A; the column space of A, col(A), is the spanning set of the columns

of A. If A is any matrix, then the dimension of the column space of A
is equal to the dimension of the row space of A. The dimension of the

row space (column space) of a matrix A is called the rank of A. The

nullspace of A is the set of solutions to the system of equations Ax = 0.

The nullspace of A is a subspace and its dimension is called the nullity
of A. The rank of A is equal to the number of nonzero rows in the row

echelon form of A, and the nullity of A is equal to the number of zero

rows in the row echelon form of A. Thus, if A is a square matrix, the

sum of the rank of A and the nullity of A is equal to the number of rows

(columns) of A.

1. NullSpace[A] returns a list of vectors that form a basis for the nullspace

(or kernel) of the matrix A.

2. RowReduce[A] yields the reduced row echelon form of the matrix A.

Example 5.3.1 Place the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝
−1 −1 2 0 −1

−2 2 0 0 −2

2 −1 −1 0 1

−1 −1 1 2 2

1 −2 2 −2 0

⎞
⎟⎟⎟⎟⎟⎠

in reduced row echelon form. What is the rank of A? Find a basis for the nullspace

of A.

Solution We begin by defining the matrix matrixa. Then, RowReduce is used to place

matrixa in reduced row echelon form.
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capa = {{ – 1, – 1, 2, 0, – 1}, { – 2, 2, 0, 0, – 2},
{2, – 1, – 1, 0, 1}, { – 1, – 1, 1, 2, 2},
{1, – 2, 2, – 2, 0}};
RowReduce[capa]//MatrixForm⎛
⎜⎜⎜⎜⎝

1 0 0 – 2 0

0 1 0 – 2 0

0 0 1 – 2 0

0 0 0 0 1

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Because the row-reduced form of matrixa contains four nonzero rows, the rank of

A is 4 and thus the nullity is 1. We obtain a basis for the nullspace with NullSpace.

NullSpace[capa]
{{2, 2, 2, 1, 0}}

As expected, because the nullity is 1, a basis for the nullspace contains one

vector.

Example 5.3.2 Find a basis for the column space of

B =

⎛
⎜⎜⎜⎜⎝

1 −2 2 1 −2

1 1 2 −2 −2

1 0 0 2 −1

0 0 0 −2 0

−2 1 0 1 2

⎞
⎟⎟⎟⎟⎠ .

Solution A basis for the column space of B is the same as a basis for the row space of

the transpose of B. We begin by defining matrixb and then using Transpose to

compute the transpose of matrixb, naming the resulting output tb.

matrixb = {{1, – 2, 2, 1, – 2}, {1, 1, 2, – 2, – 2},
{1, 0, 0, 2, – 1}, {0, 0, 0, – 2, 0},

{ – 2, 1, 0, 1, 2}};
tb = Transpose[matrixb]
{{1, 1, 1, 0, – 2}, { – 2, 1, 0, 0, 1},

{2, 2, 0, 0, 0}, {1, – 2, 2, – 2, 1}, { – 2, – 2, – 1, 0, 2}}
Next, we use RowReduce to row reduce tb and name the result rrtb. A basis for

the column space consists of the first four elements of rrtb. We also use Transpose
to show that the first four elements of rrtb are the same as the first four columns

of the transpose of rrtb. Thus, the jth column of a matrix A can be extracted from

A with Transpose [A][[ j ]].

rrtb = RowReduce[tb];
Transpose[rrtb]//MatrixForm
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⎛
⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

– 1

3

1

3
– 2 – 3 0

⎞
⎟⎟⎟⎟⎠

We extract the first four elements of rrtb with Take. The results correspond to a

basis for the column space of B.

Take[rrtb, 4]

{{1, 0, 0, 0, – 1

3
}, {0, 1, 0, 0, 1

3
}, {0, 0, 1, 0, – 2}, {0, 0, 0, 1, – 3}}

5.3.2 The Gram–Schmidt Process

A set of vectors {v1, v2, . . . , vn} is orthonormal means that ‖vi‖ = 1 for

all values of i and vi · vj = 0 for i �= j. Given a set of linearly indepen-

dent vectors S = {v1, v2, . . . , vn}, the set of all linear combinations of the

elements of S, V = span S, is a vector space. Note that if S is an orthonor-

mal set and u ∈ span S, then u =
(
u · v1

)
v1 +

(
u · v2

)
v2 + · · · + (

u · vn

)
vn.

Thus, we may easily express u as a linear combination of the vectors in

S. Consequently, if we are given any vector space, V, it is frequently con-

venient to be able to find an orthonormal basis of V. We may use the

Gram–Schmidt process to find an orthonormal basis of the vector space

V = span {v1, v2, . . . , vn}.
We summarize the algorithm of the Gram–Schmidt process so that

given a set of n linearly independent vectors S = {v1, v2, . . . , vn}, where

V = span {v1, v2, . . . , vn}, we can construct a set of orthonormal vectors

{u1, u2, . . . , un} so that V = span {u1, u2, . . . , un}.

1. Let u1 =
1

‖v‖v;

2. Compute proj{u1}v2 =
(
u1 · v2

)
u1, v2 − proj{u1}v2, and let

u2 =
1∥∥∥v2 − proj{u1}v2

∥∥∥
(
v2 − proj{u1}v2

)
.

Then, span {u1, u2} = span {v1, v2} and span {u1, u2, v3, . . . , vn} =

span {v1, v1, . . . , vn};
3. Generally, for 3 ≤ i ≤ n, compute

proj{u1,u2, . . . ,un}vi =
(
u1 · vi

)
u1 +

(
u2 · vi

)
u2 + . . . +

(
ui−1 · vi

)
ui−1,
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vi − proj{u1,u2, . . . ,un}vi, and let

u1 =
1∥∥∥proj{u1,u2, . . . ,un}vi

∣∣∣
(

proj{u1,u2, . . . ,un}vi

)
.

Then, span {u1, u2, . . . , ui} = span {v1, v2, . . . , vi} and

span {u1, u2, . . . , ui, vi+1, . . . , vn} = span {v1, v2, v3, . . . , vn} ;

and

4. Because span {u1, u2, . . . , un} = span {v1, v2, . . . , vn} and {u1, u2,

. . . , un} is an orthonormal set, {u1, u2, . . . , un} is an orthonormal

basis of V.

The Gram–Schmidt procedure is well-suited to computer arithmetic. The

following code performs each step of the Gram–Schmidt process on a set

of n linearly independent vectors {v1, v1, . . . , vn}. At the completion of

each step of the procedure, gramschmidt[vecs] prints the list of vectors

corresponding to {u1, u2, . . . , ui, vi+1, . . . , vn} and returns the list of vec-

tors {u1, u2, . . . , un}. Note how comments are inserted into the code using

(*...*).

gramschmidt[vecs–] := Module[{n, proj, u, capw},
(*n represents the number of vectors in
the listvecs*)
n = Length[vecs];
(*proj[v, capw] computes the projection
of v onto capw*)
proj[v–, capw–] :=∑Length[capw]

i=1
capw[[i]].v capw[[i]];

u[1] = vecs[[1]]√
vecs[[1]].vecs[[1]]

;

capw = {};
u[i–] := u[i] = Module[{stepone},

stepone = vecs[[i]] – proj[vecs[[i]], capw];

Together
[

stepone√
stepone.stepone

]]
;

Do[
u[i];
AppendTo[capw, u[i]];
Print[Join[capw, Drop[vecs, i]]], {i, 1, n – 1}];
u[n];
AppendTo[capw, u[n]]]
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Example 5.3.3 Use the Gram–Schmidt process to transform the basis S =

⎧⎨
⎩
⎛
⎝−2

−1

−2

⎞
⎠,

⎛
⎝ 0

−1

2

⎞
⎠,

⎛
⎝ 1

3

−2

⎞
⎠
⎫⎬
⎭

of R
3

into an orthonormal basis.

Solution We proceed by defining v1, v2, and v3 to be the vectors in the basis S and using

gramschmidt[{v1,v2,v3}] to find an orthonormal basis.

v1 = { – 2, – 1, – 2};
v2 = {0, – 1, 2};
v3 = {1, 3, – 2};
gramschmidt[{v1, v2, v3}]

{{ – 2
3
, – 1

3
, – 2

3
}, {0, – 1, 2}, {1, 3, – 2}}

{{ – 2

3
, – 1

3
, – 2

3
}, { – 1

3
, – 2

3
, 2

3
}, {1, 3,−2}}

{{ – 2

3
, – 1

3
, – 2

3
}, { – 1

3
, – 2

3
, 2

3
}, { – 2

3
, 2

3
, 1

3
}}

On the first line of output, the result {u1, v2, v3} is given; {u1, u2, v3} appears on

the second line; {u1, u2, u3} follows on the third.

Example 5.3.4 Compute an orthonormal basis for the subspace of R
4

spanned by the vectors⎛
⎜⎜⎝

2

4

4

1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
−4

1

−3

2

⎞
⎟⎟⎠, and

⎛
⎜⎜⎝

1

4

4

−1

⎞
⎟⎟⎠. Also, verify that the basis vectors are orthogonal and

have norm 1.

Solution With gramschmidt, we compute the orthonormal basis vectors. Note that Mathe-

matica names oset the last result returned by gramschmidt. The orthogonality of

these vectors is then verified. Notice that Together is used to simplify the result in

the case of oset[[2]].oset[[3]]. The norm of each vector is then found to be 1.

oset = gramschmidt[{{2, 4, 4, 1}, { – 4, 1, – 3, 2}, {1, 4, 4, – 1}}]{{
2√
37

, 4√
37

, 4√
37

, 1√
37

}
, { – 4, 1, – 3, 2} , {1, 4, 4, – 1}

}
{{

2√
37

, 4√
37

, 4√
37

, 1√
37

}
,{

– 60

√
2

16909
, 93√

33818
, – 55√

33818
, 44

√
2

16909

}
, {1, 4, 4, – 1}

}
{{

2√
37

, 4√
37

, 4√
37

, 1√
37

}
,{

– 60

√
2

16909
, 93√

33818
, – 55√

33818
, 44

√
2

16909

}
,{

– 449√
934565

, 268√
934565

, 156√
934565

, – 798√
934565

}}
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The three vectors are extracted with oset using oset[[1]], oset[[2]], and

oset[[3]].

oset[[1]].oset[[2]]
oset[[1]].oset[[3]]
oset[[2]].oset[[3]]
0

0

0

Sqrt[oset[[1]].oset[[1]]]
Sqrt[oset[[2]].oset[[2]]]
Sqrt[oset[[3]].oset[[3]]]
1

1

1

Mathematica contains functions that perform most of the operations

discussed here.

1. Orthogonalize[{v1, v2, ...},Method->GramSchmidt] returns an ortho-

normal set of vectors given the set of vectors {v1, v2, . . . , vn}.
Note that this command does not illustrate each step of the

Gram–Schmidt procedure as the gramschmidt function defined

previously.

2. Normalize[v] returns
1

‖v‖v given the nonzero vector v.

3. Projection[v1,v2] returns the projection of v1 onto v2: projv2
v1 =

v1 · v2

‖v2‖2
v2.

Thus,



5.3 Selected Topics from Linear Algebra 355

returns an orthonormal basis for the subspace of R4
spanned by the vectors⎛

⎜⎝
2

4

4

1

⎞
⎟⎠,

⎛
⎜⎝
−4

1

−3

2

⎞
⎟⎠, and

⎛
⎜⎝

1

4

4

−1

⎞
⎟⎠. The command

Normalize[{2, 4, 4, 1}]{
2√
37

, 4√
37

, 4√
37

, 1√
37

}

finds a unit vector with the same direction as the vector v =

⎛
⎜⎝

2

4

4

1

⎞
⎟⎠. Entering

Projection[{2, 4, 4, 1}, { – 4, 1, – 3, 2}]{
28

15
, – 7

15
, 7

5
, – 14

15

}

finds the projection of v =

⎛
⎜⎝

2

4

4

1

⎞
⎟⎠ onto w =

⎛
⎜⎝
−4

1

−3

2

⎞
⎟⎠.

5.3.3 Linear Transformations
A function T : Rn −→ Rm

is a linear transformation means that T satis-

fies the properties T (u + v) = T (u) + T (v) and T (cu) = cT (u) for all vectors

u and v in Rn
and all real numbers c. Let T : Rn −→ Rm

be a linear trans-

formation and suppose T
(
e1

)
= v1, T

(
e2

)
= v2, . . . , T

(
en

)
= vn, where

{e1, e2, . . . , en} represents the standard basis of Rn
and v1, v2, . . . , vn are

(column) vectors in Rm
. The associated matrix of T is the m × n matrix

A =
(
v1 v2 · · · vn

)
:

If x =

⎛
⎜⎜⎜⎝

x1

x2

.

.

.

xn

⎞
⎟⎟⎟⎠ , T (x) = T

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

x1

x2

.

.

.

xn

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ = Ax =

(
v1 v2 · · · vn

)
⎛
⎜⎜⎜⎝

x1

x2

.

.

.

xn

⎞
⎟⎟⎟⎠ .

Moreover, if A is any m × n matrix, then A is the associated matrix of the

linear transformation defined by T (x) = Ax. In fact, a linear transformation

T is completely determined by its action on any basis.

The kernel of the linear transformation T, ker (T ), is the set of all vec-

tors x in Rn
such that T (x) = 0: ker (T) = {x ∈ Rn|T (x) = 0}. The kernel

of T is a subspace of Rn
. Because T (x) = Ax for all x in Rn

, ker (T ) =

{x ∈ Rn|T (x) = 0} = {x ∈ Rn|Ax = 0} so the kernel of T is the same as the

nullspace of A.
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Example 5.3.5 Let T : R
5 −→ R

3
be the linear transformation defined by T (x) =⎛

⎝ 0 −3 −1 −3 −1

−3 3 −3 −3 −1

2 2 −1 1 2

⎞
⎠x. (a) Calculate a basis for the kernel of the linear trans-

formation. (b) Determine which of the vectors

⎛
⎜⎜⎜⎜⎝

4

2

0

0

−6

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

1

2

−1

−2

3

⎞
⎟⎟⎟⎟⎠ is in the

kernel of T.

Solution We begin by defining matrixa to be the matrix A =

⎛
⎝ 0 −3 −1 −3 −1

−3 3 −3 −3 −1

2 2 −1 1 2

⎞
⎠ and

then defining t. A basis for the kernel of T is the same as a basis for the nullspace

of A found with NullSpace.

Clear[t, x, matrixa]
matrixa = {{0, – 3, – 1, – 3, – 1}, { – 3, 3, – 3, – 3, – 1},

{2, 2, – 1, 1, 2}};
t[x–] = matrixa.x;
NullSpace[matrixa]
{{ – 2, – 1, 0, 0, 3}, { – 6, – 8, – 15, 13, 0}}

Because

⎛
⎜⎜⎜⎜⎝

4

2

0

0

−6

⎞
⎟⎟⎟⎟⎠ is a linear combination of the vectors that form a basis for the

kernel,

⎛
⎜⎜⎜⎜⎝

4

2

0

0

−6

⎞
⎟⎟⎟⎟⎠ is in the kernel, whereas

⎛
⎜⎜⎜⎜⎝

1

2

−1

−2

3

⎞
⎟⎟⎟⎟⎠ is not. These results are verified by

evaluating t for each vector.

t[{4, 2, 0, 0, – 6}]

{0, 0, 0}
t[{1, 2, – 1, – 2, 3}]

{ – 2, 9, 11}

Application: Rotations

Let x =

(
x1

x2

)
be a vector in R2

and � an angle. Then, there are numbers

r and � given by r =
√

x1
2 + x2

2 and � = tan
−1

(
x2/x1

)
so that x1 = r cos �
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and x2 = r sin �. When we rotate x =

(
x1

x2

)
=

(
r cos �
r sin �

)
through the angle

�, we obtain the vector x′
=

(
r cos

(
� + �

)
r sin

(
� + �

)). Using the trigonometric iden-

tities sin
(
� ± �

)
= sin � cos � ± sin � cos � and cos

(
� ± �

)
= cos � cos � ∓

sin � sin �, we rewrite

x′ =

(
r cos

(
� + �

)
r sin

(
� + �

)) =

(
r cos � cos � − r sin � sin �
r sin � cos � + r sin � cos �

)
=

(
cos � −sin �
sin � cos �

)(
r cos �
r sin �

)

=

(
cos � −sin �
sin � cos �

)(
x1

x2

)
.

Thus, the vector x′
is obtained from x by computing

(
cos � −sin �
sin � cos �

)
x.

Generally, if � represents an angle, the linear transformation T : R2 −→ R2

defined by T (x) =

(
cos � − sin �
sin � cos �

)
x is called the rotation of R2 through

the angle �. We write code to rotate a polygon through an angle �. The

procedure rotate uses a list of n points and the rotation matrix defined in

r to produce a new list of points that are joined using the Line graphics

directive. Entering

Line[{{x1, y1}, {x2, y2}, . . ., {xn, yn}}]

represents the graphics primitive for a line in two dimensions that connects

the points listed in {{x1, y1}, {x2, y2}, ..., {xn, yn}}. Entering

Show[Graphics[Line[{{x1, y1}, {x2, y2}, . . ., {xn, yn}}]]]

displays the line. This rotation can be determined for one value of �. How-

ever, a more interesting result is obtained by creating a list of rotations for

a sequence of angles and then displaying the graphics objects. This is done

for � = 0 to � = �/2 using increments of �/16. Hence, a list of nine graphs

is given for the square with vertices (−1, 1), (1, 1), (1,−1), and (−1,−1)

and displayed in Figure 5.6.

r[�–] =
(

Cos[�] – Sin[�]
Sin[�] Cos[�]

)
;

rotate[pts–, angle–] := Module[{newpts},
newpts = Table[r[angle].pts[[i]], {i, 1, Length[pts]}];
newpts = AppendTo[newpts, newpts[[1]]];
figure = Line[newpts];
Show[Graphics[figure], AspectRatio→1,

PlotRange→ {{ – 1.5, 1.5}, { – 1.5, 1.5}},
DisplayFunction→ Identity]]
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FIGURE 5.6

A rotated square

graphs = Table[rotate[{{ – 1, 1}, {1, 1}, {1, – 1}, { – 1, – 1}}, t],
{t, 0, p

2
, p

16
}]; array = Partition[graphs, 3];

Show[GraphicsGrid[array]]

5.3.4 Eigenvalues and Eigenvectors

Let A be an n × n matrix. � is an eigenvalue of A if there is a nonzero
vector, v, called an eigenvector, satisfying Av = �v. We find the eigen-

values of A by solving the characteristic polynomial |A − �I| = 0 for �.

Once we find the eigenvalues, the corresponding eigenvectors are found

by solving (A − �I) v = 0 for v.

If A is n × n, Eigenvalues[A] finds the eigenvalues of A, Eigenvectors[A]
finds the eigenvectors, and Eigensystem[A] finds the eigenvalues and corre-

sponding eigenvectors. CharacteristicPolynomial[A,lambda] finds the charac-

teristic polynomial of A as a function of �.

Example 5.3.6 Find the eigenvalues and corresponding eigenvectors for each of the following

matrices: (a) A =

(−3 2

2 −3

)
, (b) A =

(
1 −1

1 3

)
, (c) A =

⎛
⎝0 1 1

1 0 1

1 1 0

⎞
⎠, and (d) A =

(−1/4 2

− 8 −1/4

)
.
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Solution (a) We begin by finding the eigenvalues. Solving

|A − �I| =

∣∣∣∣−3 − � 2

2 −3 − �

∣∣∣∣ = �2 + 6� + 5 = 0

gives us �1 = −5 and �2 = −1.

Observe that the same results are obtained using CharacteristicPolynomial
and Eigenvalues.

capa = {{ – 3, 2}, {2, – 3}};
CharacteristicPolynomial[capa, �]
5 + 6� + �2

e1 = Eigenvalues[capa]
{ – 5, – 1}

We now find the corresponding eigenvectors. Let v1 =

(
x1

y1

)
be an eigenvector

corresponding to �1; then (
A − �1I

)
v1 = 0[(−3 2

2 −3

)
− (−5)

(
1 0

0 1

)](
x1

y1

)
=

(
0

0

)
(

2 2

2 2

)(
x1

y1

)
=

(
0

0

)
,

which row reduces to (
1 1

0 0

)(
x1

y1

)
=

(
0

0

)
.

That is, x1 + y1 = 0 or x1 = −y1. Hence, for any value of y1 �= 0,

v1 =

(
x1

y1

)
=

(−y1

y1

)
= y1

(−1

1

)

is an eigenvector corresponding to �1. Of course, this represents infinitely many

vectors. However, they are all linearly dependent. Choosing y1 = 1 yields v1 =(−1

1

)
. Note that you might have chosen y1 = −1 and obtained v1 =

(
1

−1

)
.

However, both of our results are “correct” because these vectors are linearly

dependent.

Similarly, letting v2 =

(
x2

y2

)
be an eigenvector corresponding to �2, we solve(

A − �2I
)
v1 = 0:

(−2 2

2 −2

)(
x2

y2

)
=

(
0

0

)
or

(
1 −1

0 0

)(
x2

y2

)
=

(
0

0

)
.
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Thus, x2 − y2 = 0 or x2 = y2. Hence, for any value of y2 �= 0,

v2 =

(
x2

y2

)
=

(
y2

y2

)
= y2

(
1

1

)

is an eigenvector corresponding to �2. Choosing y2 = 1 yields v2 =

(
1

1

)
. We

confirm these results using RowReduce.

i2 = IdentityMatrix[2];
ev1 = capa – e1[[1]] i2
{{2, 2}, {2, 2}}
RowReduce[ev1]
{{1, 1}, {0, 0}}
ev2 = capa – e1[[2]] i2;
RowReduce[ev2]
{{1, – 1}, {0, 0}}

We obtain the same results using Eigenvectors and Eigensystem.

Eigenvectors[capa]
Eigensystem[capa]
{{ – 1, 1}, {1, 1}}
{{ – 5, – 1}, {{ – 1, 1}, {1, 1}}}

(b) In this case, we see that � = 2 has multiplicity 2. There is only one linearly

independent eigenvector, v =

(−1

1

)
, corresponding to �.

capa = {{1, – 1}, {1, 3}};
Factor[CharacteristicPolynomial[capa, �]]
Eigenvectors[capa]
Eigensystem[capa]
( – 2 + �)2

{{ – 1, 1}, {0, 0}}
{{2, 2}, {{ – 1, 1}, {0, 0}}}

(c) The eigenvalue �1 = 2 has corresponding eigenvector v1 =

⎛
⎝1

1

1

⎞
⎠. The eigen-

value �2,3 = −1 has multiplicity 2. In this case, there are two linearly independent

eigenvectors corresponding to this eigenvalue: v2 =

⎛
⎝−1

0

1

⎞
⎠ and v3 =

⎛
⎝−1

1

0

⎞
⎠.

capa = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}};
Factor[CharacteristicPolynomial[capa, �]]
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Eigenvectors[capa]
Eigensystem[capa]
– ( – 2 + �)(1 + �)2

{{1, 1, 1}, { – 1, 0, 1}, { – 1, 1, 0}}
{{2, – 1, – 1}, {{1, 1, 1}, { – 1, 0, 1}, { – 1, 1, 0}}}

(d) In this case, the eigenvalues �1,2 = − 1

4
± 4i are complex conjugates. We see

that the eigenvectors v1,2 =

(
0

2

)
±
(

1

0

)
i are complex conjugates as well.

capa = {{ – 1/4, 2}, { – 8, – 1/4}};
Factor[CharacteristicPolynomial[capa, �],

GaussianIntegers→True]
Eigenvectors[capa]
Eigensystem[capa]
1
16

((1 – 16i) + 4�)((1 + 16i) + 4�)

{{ – i

2
, 1}, { i

2
, 1}}

{{ – 1

4
+ 4i, – 1

4
– 4i}, {{ – i

2
, 1}, { i

2
, 1}}}

5.3.5 Jordan Canonical Form

Let Nk =
(
nij

)
=

{
1, j = i + 1

0, otherwise
represent a k × k matrix with the indi-

cated elements. The k × k Jordan block matrix is given by B(�) = �I +

Nk, where � is a constant:

Nk =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · 1

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ and B(�) = �I + Nk =

⎛
⎜⎜⎜⎜⎜⎝

� 1 0 · · · 0

0 � 1 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · 1

0 0 0 · · · �

⎞
⎟⎟⎟⎟⎟⎠ .

Hence, B(�) can be defined as B(�) =
(
bij

)
=

⎧⎪⎨
⎪⎩

�, i = j

1, j = i + 1

0, otherwise

. A Jordan

matrix has the form

J =

⎛
⎜⎜⎜⎝

B1(�) 0 · · · 0

0 B2(�) · · · 0

.

.

.
.
.
.

.

.

.

0 0 · · · Bn(�)

⎞
⎟⎟⎟⎠ ,

where the entries Bj(�), j = 1, 2, . . . , n represent Jordan block matrices.
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Suppose that A is an n × n matrix. Then there is an invertible n × n
matrix C such that C−1AC = J, where J is a Jordan matrix with the

eigenvalues of A as diagonal elements. The matrix J is called the Jordan
canonical form of J. The command

JordanDecomposition[m]

yields a list of matrices {s,j} such that m = s.j.Inverse[s] and j is the Jordan

canonical form of the matrix m.

For a given matrix A, the unique monic polynomial q of least degree

satisfying q (A) = 0 is called the minimal polynomial of A. Let p denote

the characteristic polynomial of A. Because p (A) = 0, it follows that q
divides p. We can use the Jordan canonical form of a matrix to determine

its minimal polynomial.

Example 5.3.7 Find the Jordan canonical form, JA, of A =

⎛
⎝2 9 −9

0 8 −6

0 9 −7

⎞
⎠.

Solution After defining matrixa, we use JordanDecomposition to find the Jordan canonical

form of a and name the resulting output ja.

matrixa = {{2, 9, – 9}, {0, 8, – 6}, {0, 9, – 7}};
ja = JordanDecomposition[matrixa]
{{{3, 0, 1}, {2, 1, 0}, {3, 1, 0}},

{{ – 1, 0, 0}, {0, 2, 0}, {0, 0, 2}}}
The Jordan matrix corresponds to the second element of ja extracted with ja[[2]]
and displayed in MatrixForm.

ja[[2]]//MatrixForm⎛
⎝ – 1 0 0

0 2 0

0 0 2

⎞
⎠

We also verify that the matrices ja[[1]] and ja[[2]] satisfy

matrixa = ja[[1]].ja[[2]].Inverse[ja[[1]]].

ja[[1]].ja[[2]].Inverse[ja[[1]]]
{{2, 9, – 9}, {0, 8, – 6}, {0, 9, – 7}}

Next, we use CharacteristicPolynomial to find the characteristic polynomial of

matrixa and then verify that matrixa satisfies its characteristic polynomial.

p = CharacteristicPolynomial[matrixa, x]
– 4 + 3x2 – x3
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– 4IdentityMatrix[3] + 3MatrixPower[matrixa, 2] –
MatrixPower[matrixa, 3]

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
From the Jordan form, we see that the minimal polynomial of A is (x + 1)(x − 2).

We define the minimal polynomial to be q and then verify that matrixa satisfies its

minimal polynomial.

q = Expand[(x + 1)(x – 2)]
– 2 – x + x2

– 2 IdentityMatrix[3] – matrixa + MatrixPower[matrixa, 2]
{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

As expected, q divides p.

Cancel[p/q]
2 – x

Example 5.3.8 If A =

⎛
⎜⎜⎝

3 8 6 −1

−3 2 0 3

3 −3 −1 −3

4 8 6 −2

⎞
⎟⎟⎠, find the characteristic and minimal polynomials of A.

Solution As in the previous example, we first define matrixa and then use

JordanDecomposition to find the Jordan canonical form of A.

matrixa = {{3, 8, 6, – 1}, { – 3, 2, 0, 3}, {3, – 3, – 1, – 3},
{4, 8, 6, – 2}}; ja = JordanDecomposition[matrixa]

{{{3, – 1, 1, 0}, { – 1, – 1, 0, 1

2
},

{0, 2, 0, – 1

2
}, {4, 0, 1, 0}},

{{ – 1, 0, 0, 0}, {0, – 1, 0, 0}, {0, 0, 2, 1}, {0, 0, 0, 2}}}
The Jordan canonical form of A is the second element of ja, extracted with ja[[2]]
and displayed in MatrixForm.

ja[[2]]//MatrixForm⎛
⎜⎜⎝

– 1 0 0 0

0 – 1 0 0

0 0 2 1

0 0 0 2

⎞
⎟⎟⎠

From this result, we see that the minimal polynomial of A is (x + 1)(x − 2)
2
.

We define q to be the minimal polynomial of A and then verify that matrixa
satisfies q.
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q = Expand[(x – 2)2(x + 1)]
4 – 3x2 + x3

4 IdentityMatrix[4] – 3MatrixPower[matrixa, 2] +
MatrixPower[matrixa, 3]

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}
The characteristic polynomial is obtained next and named p. As expected, q divides

p, verified with Cancel.

p = CharacteristicPolynomial[matrixa, x]
4 + 4x – 3x2 – 2x3 + x4

Cancel[p/q]
1 + x

5.3.6 The QR Method

The conjugate transpose (or Hermitian adjoint matrix) of the m × n
complex matrix A which is denoted by A∗

is the transpose of the complex

conjugate of A. Symbolically, we have A∗
= (A)

t
. A complex matrix A is

unitary if A∗
= A−1

. Given a matrix A, there is a unitary matrix Q and an

upper triangular matrix R such that A = QR. The product matrix QR is

called the QR factorization of A. The command

QRDecomposition[N[m]]

determines the QR decomposition of the matrix m by returning the list

{q,r}, where q is an orthogonal matrix, r is an upper triangular matrix, and

m=Transpose[q].r.

Example 5.3.9 Find the QR factorization of the matrix A =

⎛
⎝ 4 −1 1

−1 4 1

1 1 4

⎞
⎠.

Solution We define matrixa and then use QRDecomposition to find the QR decomposition

of matrixa, naming the resulting output qrm.

matrixa = {{4, – 1, 1}, { – 1, 4, 1}, {1, 1, 4}};
qrm = QRDecomposition[N[matrixa]]

{{{ – 0.942809, 0.235702, – 0.235702},

{ – 0.142134, – 0.92387, – 0.355335},

{ – 0.301511, – 0.301511, 0.904534}},

{{ – 4.24264, 1.64992, – 1.64992},

{0., – 3.90868, – 2.48734}, {0., 0., 3.01511}}}
The first matrix in qrm is extracted with qrm[[1]] and the second with qrm[[2]].
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qrm[[1]]//MatrixForm⎛
⎝ – 0.942809 0.235702 – 0.235702

– 0.142134 – 0.92387 – 0.355335

– 0.301511 – 0.301511 0.904534

⎞
⎠

qrm[[2]]//MatrixForm⎛
⎝ – 4.24264 1.64992 – 1.64992

0. – 3.90868 – 2.48734

0. 0. 3.01511

⎞
⎠

We verify that the results returned are the QR decomposition of A.

Transpose[qrm[[1]]].qrm[[2]]//MatrixForm⎛
⎝ 4. – 1. 1.

– 1. 4. 1.

1. 1. 4.

⎞
⎠

One of the most efficient and most widely used methods for numerically

calculating the eigenvalues of a matrix is the QR method. Given a matrix A,

there is a Hermitian matrix Q and an upper triangular matrix R such that

A = QR. If we define a sequence of matrices A1 = A, factored as A1 =

Q1R1; A2 = R1Q1, factored as A2 = R2Q2; A3 = R2Q2, factored as A2 =

R3Q3; and in general, Ak = Rk+1Qk+1, k = 1, 2, . . . , then the sequence

{An} converges to a triangular matrix with the eigenvalues of A along the

diagonal or to a nearly triangular matrix from which the eigenvalues of A
can be calculated rather easily.

Example 5.3.10 Consider the 3 × 3 matrix A =

⎛
⎝ 4 −1 1

−1 4 1

1 1 4

⎞
⎠. Approximate the eigenvalues of A

with the QR method.

Solution We define the sequence a and qr recursively. We define a using the form

a[n_] := a[n] = ... and qr using the form qr[n_] := qr[n] = ... so that Mathe-

matica “remembers” the values of a and qr computed, and thus Mathematica

avoids recomputing values previously computed. This is of particular advantage

when computing a[n] and qr[n] for large values of n.

matrixa = {{4, – 1, 1}, { – 1, 4, 1}, {1, 1, 4}};
a[1] = N[matrixa];
qr[1] = QRDecomposition[a[1]];

a[n–] := a[n] = qr[n – 1][[2]].Transpose[qr[n – 1][[1]]];
qr[n–] := qr[n] = QRDecomposition[a[n]];
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We illustrate a[n] and qr[n] by computing qr[9] and a[10]. Note that computing

a[10] requires the computation of qr[9]. From the results, we suspect that the

eigenvalues of A are 5 and 2.

qr[9];
a[10]//MatrixForm⎛

⎝ 5. – 1.7853841942690367`∗∧ – 7 – 0.000556091

– 1.7853841949997794`∗∧ – 7 5. – 0.000963178

– 0.000556091 – 0.000963178 2.

⎞
⎠

Next, we compute a[n] for n = 5, 10, and 15, displaying the result in TableForm.

We obtain further evidence that the eigenvalues of A are 5 and 2.

Table[a[n]//MatrixForm, {n, 5, 15, 5}]//TableForm
4.99902 – 0.001701 0.0542614

– 0.001701 4.99706 0.0939219

0.0542614 0.0939219 2.00393

5. – 1.7853841942690367`∗∧ − 7 – 0.000556091

– 1.7853841949997794`∗∧ − 7 5. – 0.000963178

– 0.000556091 – 0.000963178 2.

5. – 1.872117829091164`∗∧ – 11 5.694375936943897`∗∧ – 6

– 1.8721251221839952`∗∧ – 11 5. 9.862948440894718`∗∧ – 6

5.69437593740387`∗∧ – 6 9.862948440910032`∗∧ – 6 2.

We verify that the eigenvalues of A are indeed 5 and 2 with Eigenvalues.

Eigenvalues[matrixa]
{5, 5, 2}

5.4 MAXIMA AND MINIMA USING LINEAR PROGRAMMING

5.4.1 The Standard Form of a Linear Programming
Problem

We call the linear programming problem of the following form the stan-
dard form of the linear programming problem:

Minimize Z = c1x1 + c2x2 + · · · + cnxn︸ ︷︷ ︸
function

, subject to the restrictions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

.

.

.

am1x1 + am2x2 + · · · + amnxn ≤ bm

(5.2)

and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.
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The command

Minimize[{function, inequalities}, {variables}]

solves the standard form of the linear programming problem. Similarly, the

command

Maximize[{function, inequalities}, {variables}]

solves the linear programming problem: Maximize Z = c1x1 + c2x2 + · · · + cnxn︸ ︷︷ ︸
function

,

subject to the restrictions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

.

.

.

am1x1 + am2x2 + · · · + amnxn ≤ bm

and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

Example 5.4.1 Maximize Z
(
x1, x2, x3

)
= 4x1 − 3x2 + 2x3 subject to the constraints 3x1 − 5x2 +

2x3 ≤ 60, x1 − x2 + 2x3 ≤ 10, x1 + x2 − x3 ≤ 20, and x1, x2, x3 all nonnegative.

Solution In order to solve a linear programming problem with Mathematica, the variables

{x1,x2,x3} and objective function z[x1,x2,x3] are first defined. In an effort to limit

the amount of typing required to complete the problem, the set of inequalities is

assigned the name ineqs while the set of variables is called vars. The symbol

“<=”, obtained by typing the “<” key and then the “=” key, represents “less than

or equal to” and is used in ineqs. Hence, the maximization problem is solved with

the command

Maximize[{z[x1, x2, x3], ineqs}, vars].

Clear[x1, x2, x3, z, ineqs, vars]
vars = {x1, x2, x3};
z[x1–, x2–, x3–] = 4x1 – 3x2 + 2x3;
ineqs = {3x1 – 5x2 + x3≤ 60, x1 – x2 + 2x3≤ 10, x1 + x2 – x3≤ 20,

x1≥ 0, x2≥ 0, x3≥ 0};
Maximize[{z[x1, x2, x3], ineqs}, vars]
{45, {x1 → 15, x2 → 5, x3 → 0}}

The solution gives the maximum value of z subject to the given constraints as well

as the values of x1, x2, and x3 that maximize z. Thus, we see that the maximum

value of Z is 45 if x1 = 15, x2 = 5, and x3 = 0.
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We demonstrate the use of Minimize in the following example.

Example 5.4.2 Minimize Z(x, y, z) = 4x − 3y + 2z subject to the constraints 3x − 5y + z ≤ 60,

x − y + 2z ≤ 10, x + y − z ≤ 20, and x, y, z all nonnegative.

Solution After clearing all previously used names of functions and variable values, the vari-

ables, objective function, and set of constraints for this problem are defined and

entered as they were in the first example. By using Minimize, the minimum value

of the objective function is obtained as well as the variable values that give this

minimum.

Clear[x1, x2, x3, z, ineqs, vars]
vars = {x1, x2, x3};
z[x1–, x2–, x3–] = 4x1 – 3x2 + 2x3;
ineqs = {3x1 – 5x2 + x3≤ 60, x1 – x2 + 2x3≤ 10, x1 + x2 – x3≤ 20,

x1≥ 0, x2≥ 0, x3≥ 0};
Minimize[{z[x1, x2, x3], ineqs}, vars]
{ – 90, {x1 → 0, x2 → 50, x3 → 30}}

We conclude that the minimum value is −90 and occurs if x1 = 0, x2 = 50, and

x3 = 30.

5.4.2 The Dual Problem

Given the standard form of the linear programming problem in equations

(5.4.1), the dual problem is as follows: “Maximize Y =
∑m

i=1
biyy subject

to the constraints
∑m

i=1
aijyi ≤ cij for j = 1, 2, . . . , n and yi ≥ 0 for i = 1, 2,

. . . , m.” Similarly, for the problem, “Maximize Z =
∑n

j=1
cjxj subject to the

constraints
∑n

j=1
aijxj ≤ bj for i = 1, 2, . . . , m and xj ≥ 0 for j = 1, 2, . . . ,

n,” the dual problem is as follows: “Minimize Y =
∑m

i=1
biyi subject to the

constraints
∑m

i=1
aijyi ≥ cj for j = 1, 2, . . . , n and yi ≥ 0 for i = 1, 2, . . . , m.”

Example 5.4.3 Maximize Z = 6x + 8y subject to the constraints 5x + 2y ≤ 20, x + 2y ≤ 10, x ≥ 0,

and y ≥ 0. State the dual problem and find its solution.

Solution First, the original (or primal ) problem is solved. The objective function for this

problem is represented by zx. Finally, the set of inequalities for the primal is defined

to be ineqsx. Using the command

Maximize[{zx, ineqsx}, {x[1], x[2]}]

the maximum value of zx is found to be 45.

Clear[zx, zy, x, y, valsx, valsy, ineqsx, ineqsy]
zx = 6x[1] + 8x[2];
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ineqsx = {5x[1] + 2x[2]≤ 20, x[1] + 2x[2]≤ 10, x[1]≥ 0,
x[2]≥ 0};

Maximize[{zx, ineqsx}, {x[1], x[2]}]

{45, {x[1] → 5

2
, x[2] → 15

4
}}

Because in this problem we have c1 = 6, c2 = 8, b1 = 20, and b2 = 10, the dual

problem is as follows: Minimize Z = 20y1 + 10y2 subject to the constraints 5y1 +

y2 ≥ 6, 2y1 + 2y2 ≥ 8, y1 ≥ 0, and y2 ≥ 0. The dual is solved in a similar manner

by defining the objective function zy and the collection of inequalities ineqsy. The

minimum value obtained by zy subject to the constraints ineqsy is 45, which agrees

with the result of the primal and is found with

Minimize[{zy, ineqsy}, {y[1], y[2]}]

zy = 20y[1] + 10y[2];
ineqsy = {5y[1] + y[2]≥ 6, 2y[1] + 2y[2]≥ 8,

y[1]≥ 0, y[2]≥ 0};
Minimize[{zy, ineqsy}, {y[1], y[2]}]
{45, {y[1] → 1

2
, y[2] → 7

2
}}

Of course, linear programming models can involve numerous variables.

Consider the following: Given the standard form linear programming prob-

lem in equations (5.4.1), let x =

⎛
⎜⎜⎜⎝

x1

x2

...

xn

⎞
⎟⎟⎟⎠, b =

⎛
⎜⎜⎜⎝

b1

b2

...

bm

⎞
⎟⎟⎟⎠, c =

(
c1 c2 · · · cn

)
,

and A denote the m × n matrix A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠. Then the stan-

dard form of the linear programming problem is equivalent to finding the

vector x that maximizes Z = c · x subject to the restrictions Ax ≥ b and

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0. The dual problem is “Minimize Y = y · b where

y =
(
y1 y2 · · · ym

)
subject to the restrictions yA ≤ c (componentwise) and

y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0.”

The command

LinearProgramming[c, A, b]

finds the vector x that minimizes the quantity Z=c.x subject to the restric-

tions A.x>=b and x>=0. LinearProgramming does not yield the minimum

value of Z as did Minimize and Maximize, and the value must be determined

from the resulting vector.
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Example 5.4.4 Maximize Z = 5x1 − 7x2 + 7x3 + 5x4 + 6x5 subject to the constraints 2x1 + 3x2 +

3x3 + 2x4 + 2x5 ≥ 10, 6x1 + 5x2 + 4x3 + x4 + 4x5 ≥ 30, −3x1 − 2x2 − 3x3 − 4x4 ≥ −5,

−x1 − x2 − x4 ≥ −10, and x1 ≥ 0 for i = 1, 2, 3, 4, and 5. State the dual problem.

What is its solution?

Solution For this problem, x =

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎠, b =

⎛
⎜⎜⎝

10

30

− 5

−10

⎞
⎟⎟⎠, c =

(
5 −7 7 5 6

)
, and

A =

⎛
⎜⎜⎝

2 3 3 2 2

6 5 4 1 4

−3 −2 −3 −4 0

−1 −1 0 −1 0

⎞
⎟⎟⎠. First, the vectors c and b are entered and then matrix

A is entered and named matrixa.

Clear[matrixa, x, y, c, b]
c = {5, – 7, 7, 5, 6}; b = {10, 30, – 5, – 10};
matrixa = {{2, 3, 3, 2, 2}, {6, 5, 4, 1, 4},

{ – 3, – 2, – 3, – 4, 0}, { – 1, – 1, 0, – 1, 0}};

Next, we use Array[x,5] to create the list of five elements {x[1], x[2], ..., x[5]} named

xvec. The command Table[x[i], {i,1,5}] returns the same list. These variables must

be defined before attempting to solve this linear programming problem.

xvec = Array[x, 5]
{x[1], x[2], x[3], x[4], x[5]}

After entering the objective function coefficients with the vector c, the matrix of

coefficients from the inequalities with matrixa, and the right-hand side values found

in b, the problem is solved with

LinearProgramming[c, matrixa, b]

The solution is called xvec. Hence, the maximum value of the objective function

is obtained by evaluating the objective function at the variable values that yield a

maximum. Because these values are found in xvec, the maximum is determined

with the dot product of the vector c and the vector xvec. (Recall that this product

is entered as c.xvec.) This value is found to be 35/4.

xvec = LinearProgramming[c, matrixa, b]
{0, 5

2
, 0, 0, 35

8
}

c.xvec
35

4

Because the dual of the problem is “Minimize the number Y=y.b subject to the

restrictions y.A<c and y>0,” we use Mathematica to calculate y.b and y.A. A list

of the dual variables {y[1],y[2],y[3],y[4]} is created with Array[y,4]. This list includes
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four elements because there are four constraints in the original problem. The objec-

tive function of the dual problem is therefore found with yvec.b, and the left-hand

sides of the set of inequalities are given with yvec.matrixa.

yvec = Array[y, 4]
{y[1], y[2], y[3], y[4]}
yvec.b
10y[1] + 30y[2] − 5y[3] − 10y[4]

yvec.matrixa
{2y[1] + 6y[2] − 3y[3] − y[4],

3y[1] + 5y[2] − 2y[3] − y[4],

3y[1] + 4y[2] − 3y[3],

2y[1] + y[2] − 4y[3] − y[4],

2y[1] + 4y[2]}
Hence, we may state the dual problem as follows:

Minimize Y = 10y1 + 30y2 − 5y3 − 10y4 subject to the constraints⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2y1 + 6y2 − 3y3 − y4 ≤ 5

3y1 + 5y2 − 2y3 − y4 ≤ −7

3y1 + 4y2 − 3y3 ≤ 7

2y1 + y2 − 4y3 − y4 ≤ 5

2y1 + 4y2 ≤ 6

and yi ≥ 0 for i = 1, 2, 3, and 4.

Application: A Transportation Problem

A certain company has two factories, F1 and F2, each producing two prod-

ucts, P1 and P2, that are to be shipped to three distribution centers, D1,

D2, and D3. The following table illustrates the cost associated with ship-

ping each product from the factory to the distribution center, the minimum

number of each product each distribution center needs, and the maximum

output of each factory. How much of each product should be shipped

from each plant to each distribution center to minimize the total shipping

costs?

Solution Let x1 denote the number of units of P1 shipped from F1 to D1; x2 the number

of units of P2 shipped from F1 to D1; x3 the number of units of P1 shipped from

F1 to D2; x4 the number of units of P2 shipped from F1 to D2; x5 the number

of units of P1 shipped from F1 to D3; x6 the number of units of P2 shipped from

F1 to D3; x7 the number of units of P1 shipped from F2 to D1; x8 the number

of units of P2 shipped from F2 to D1; x9 the number of units of P1 shipped from

F2 to D2; x10 the number of units of P2 shipped from F2 to D2; x11 the number
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F1/P1 F1/P2 F2/P1 F2/P2 Minimum

D1/P1 $0.75 $0.80 500

D1/P2 $0.50 $0.40 400

D2/P1 $1.00 $0.90 300

D2/P2 $0.75 $1.20 500

D3/P1 $0.90 $0.85 700

D3/P2 $0.80 $0.95 300

Maximum output 1000 400 800 900

of units of P1 shipped from F2 to D3; and x12 the number of units of P2 shipped

from F2 to D3.

Then, it is necessary to minimize the number

Z = .75x1 + .5x2 + x3 + .75x4 + .9x5 + .8x6 + .8x7

+ .4x8 + .9x9 + 1.2x10 + .85x11 + .95x12

subject to the constraints x1 + x3 + x5 ≤ 1000, x2 + x4 + x6 ≤ 400, x7 + x9 + x11 ≤
800, x8 + x10 + x12 ≤ 900, x1 + x7 ≥ 500, x3 + x9 ≥ 500, x5 + x11 ≥ 700, x2 + x8 ≥
400, x4 + x10 ≥ 500, x6 + x12 ≥ 300, and xi nonnegative for i = 1, 2, . . . , 12. In

order to solve this linear programming problem, the objective function which com-

putes the total cost, the 12 variables, and the set of inequalities must be entered.

The coefficients of the objective function are given in the vector c. Using the com-

mand Array[x,12] illustrated in the previous example to define the list of 12 variables

{x[1], x[2], ..., x[12]}, the objective function is given by the product z=xvec.c, where

xvec is the name assigned to the list of variables.

Clear[xvec, z, constraints, vars, c]
c = {0.75, 0.5, 1, 0.75, 0.9, 0.8, 0.8, 0.4, 0.9, 1.2,

0.85, 0.95};
xvec = Array[x, 12]

{x[1], x[2], x[3], x[4], x[5], x[6],

x[7], x[8], x[9], x[10], x[11], x[12]}
z = xvec.c

0.75x[1] + 0.5x[2] + x[3] + 0.75x[4] +

0.9x[5] + 0.8x[6] + 0.8x[7] + 0.4x[8] +

0.9x[9] + 1.2x[10] + 0.85x[11] + 0.95x[12]



5.4 Maxima and Minima Using Linear Programming 373

The set of constraints are then entered and named constraints for easier use.

Therefore, the minimum cost and the value of each variable that yields this minimum

cost are found with the command

Minimize[{z,constraints},xvec]

constraints = {x[1] + x[3] + x[5]≤ 1000, x[2] + x[4] + x[6]≤ 400,
x[7] + x[9] + x[11]≤ 800, x[8] + x[10] + x[12]≤ 900,
x[1] + x[7]≥ 500, x[3] + x[9]≥ 300, x[5] + x[11]≥ 700,
x[2] + x[8]≥ 400, x[4] + x[10] > 500, x[6] + x[12] > 300,

x[1]≥ 0, x[2]≥ 0, x[3]≥ 0, x[4]≥ 0,
x[5]≥ 0, x[6]≥ 0, x[7]≥ 0, x[8]≥ 0,
x[9]≥ 0, x[10]≥ 0, x[11]≥ 0, x[12]≥ 0};

values = Minimize[{z, constraints}, xvec]
{2115., {x[1] → 500., x[2] → 0., x[3] → 0., x[4] → 400.,

x[5] → 200., x[6] → 0., x[7] → 0., x[8] → 400.,

x[9] → 300., x[10] → 100., x[11] → 500., x[12] → 300.}}
Notice that values is a list consisting of two elements: the minimum

value of the cost function, 2115, and the list of the variable values

{x[1]->500, x[2]->0, ...}. Hence, the minimum cost is obtained with the command

values[[1]] and the list of variable values that yield the minimum cost is extracted

with values[[2]].

values[[1]]
2115.

values[[2]]
{x[1] → 500., x[2] → 0., x[3] → 0., x[4] → 400.,

x[5] → 200., x[6] → 0., x[7] → 0., x[8] → 400.,

x[9] → 300., x[10] → 100., x[11] → 500., x[12] → 300.}
Using these extraction techniques, the number of units produced by each factory

can be computed. Because x1 denotes the number of units of P1 shipped from

F1 to D1, x3 the number of units of P1 shipped from F1 to D2, and x5 the number

of units of P1 shipped from F1 to D3, the total number of units of Product 1

produced by Factory 1 is given by the command x[1] + x[3] + x[5] /. values[[2]],
which evaluates this sum at the values of x[1], x[3], and x[5] given in the list

values[[2]].

x[1] + x[3] + x[5]/.values[[2]]
700.

Also, the number of units of Products 1 and 2 received by each distribution center

can be computed. The command x[3] + x[9] //values[[2]] gives the total amount of

P1 received at D2 because x[3] = amount of P1 received by D2 from F1 and x[9] =

amount of P1 received by D2 from F2. Notice that this amount is the minimum

number of units (300) of P1 requested by D2.
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x[3] + x[9]/.values[[2]]
300.

The number of units of each product that each factory produces can be calculated,

and the amount of P1 and P2 received at each distribution center is calculated in

a similar manner.

{x[1] + x[3] + x[5], x[2] + x[4] + x[6], x[7] + x[9] + x[11],
x[8] + x[10] + x[12], x[1] + x[7], x[3] + x[9],
x[5] + x[11], x[2] + x[8],

x[4] + x[10], x[6] + x[12]}/.values[[2]]//
TableForm

700.

400.

800.

800.

500.

300.

700.

400.

500.

300.

From these results, we see that F1 produces 700 units of P1, F1 produces 400

units of P2, F2 produces 800 units of P1, F2 produces 800 units of P2, and

each distribution center receives exactly the minimum number of each product it

requests.

5.5 SELECTED TOPICS FROM VECTOR CALCULUS

5.5.1 Vector-Valued Functions
Basic operations on

two- and

three-dimensional

vectors are discussed

in Section 5.1.4.

We now turn our attention to vector-valued functions. In particular, we

consider vector-valued functions of the following forms.

Plane curves: r(t) = x(t)i + y(t)j (5.3)

Space curves: r(t) = x(t)i + y(t)j + z(t)k (5.4)

Parametric surfaces: r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k (5.5)

Vector fields in the plane: F(x, y) = P(x, y)i + Q(x, y)j (5.6)

Vector fields in space: F(x, y, z) = P(x, y, z)i

+ Q(x, y, z)j + R(x, y, z)k (5.7)
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For the vector-valued functions (5.3) and (5.4), differentiation and inte-

gration are carried out term-by-term, provided that all the terms are

differentiable and integrable. Suppose that C is a smooth curve defined

by r(t), a ≤ t ≤ b.
In 2-space, i =< 1, 0 >
and j =< 0, 1 >. In

3-space, i =< 1, 0, 0 >,

j =< 0, 1, 0 >, and

k =< 0, 0, 1 >.

1. If r′(t) �= 0, the unit tangent vector, T(t), is T(t) =
r′(t)
‖r′(t)‖ .

2. If T′
(t) �= 0, the principal unit normal vector, N(t), is N(t) =

T′
(t)

‖T′(t)‖ .

3. The arc length function, s(t), is s(t) =
∫ t
a ‖r′(u)‖ du. In particular,

the length of C on the interval [a, b] is
∫b
a ‖r′(t)‖dt.

4. The curvature, 	, of C is

	 =
‖T′

(t)‖
‖r′(t)‖ =

a(t) ·N(t)

‖v(t)‖2
=

‖r′(t) × r
′′
(t)‖

‖r′(t)‖3
,

where v(t) = r′(t) and a(t) = r′′(t).

It is a good exercise

to show that the

curvature of a circle

of radius r is 1/r.

Example 5.5.1 (Folium of Descartes). Consider the folium of Descartes,

r(t) =
3at

1 + t3
i +

3at2

1 + t3
j

for t �= −1, if a = 1. (a) Find r
′
(t), r

′′
(t), and

∫
r(t) dt. (b) Find T(t) and N(t).

(c) Find the curvature, 	. (d) Find the length of the loop of the folium.

Solution (a) After defining r(t),

r[t –] = {3a t/(1 + t∧ 3), 3a t∧ 2/(1 + t∧ 3)};
a = 1;

we compute r
′
(t) and

∫
r(t) dt with ', '' and Integrate, respectively. We name r

′
(t)

dr, r
′′
(t) dr2, and

∫
r(t) dt ir.

dr = Simplify[r′[t]]
dr2 = Simplify[r′′[t]]
ir = Integrate[r[t], t]{

3 – 6t3

(1 + t3)
2 , –

3t( – 2 + t3)

(1 + t3)
2

}
{

18t2( – 2 + t3)

(1 + t3)
3 ,

6(1 – 7t3 + t6)

(1 + t3)
3

}
{

3

(
ArcTan

[
– 1+2t√

3

]
√

3
– 1

3
Log[1 + t] + 1

6
Log

[
1 – t + t2

])

Log
[
1 + t3

]}
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(b) Mathematica does not automatically make assumptions regarding the value of

t, so it does not algebraically simplify ‖r′(t)‖ as we might typically do unless we

use PowerExpand

nr = PowerExpand[Sqrt[dr.dr]//Simplify]
3

√
1+4t2 – 4t3 – 4t5+4t6+t8

(1+t3)
2

The unit tangent vector, T(t), is formed in ut.

ut = dr/nr//Simplify

PowerExpand
[Sqrt[xˆ2]] returns x.

{
1 – 2t3√

1 + 4t2 – 4t3 – 4t5 + 4t6 + t8
,

–
t( – 2 + t3)√

1 + 4t2 – 4t3−4t5 + 4t6 + t8

}
We perform the same steps to compute the unit normal vector, N(t). In particular,

note that dutb = ‖T′
(t)‖.

dut = D[ut, t]//Simplify{
2t( – 2 – 3t3 + t9)

(1 + 4t2 – 4t3 – 4t5 + 4t6 + t8)
3/2

,

2 – 6t6 – 4t9

(1 + 4t2 – 4t3 – 4t5 + 4t6 + t8)
3/2

}
duta = dut . dut//Simplify

4(1 + t3)
4

(1+4t2 – 4t3 – 4t5+4t6+t8)
2

dutb = PowerExpand[Sqrt[duta]]

2(1+t3)
2

1+4t2 – 4t3 – 4t5+4t6+t8

nt = dut/dutb//Simplify{
t( – 2+t3)√

1+4t2 – 4t3 – 4t5+4t6+t8
,

1 – 2t3√
1+4t2 – 4t3 – 4t5+4t6+t8

}

(c) We use the formula 	 =
‖T′

(t)‖
‖r′(t)‖ to determine the curvature in curvature.

curvature = Simplify[dutb/nr]

2(1+t3)
4

3(1+4t2 – 4t3 – 4t5+4t6+t8)
3/2

We graphically illustrate the unit tangent and normal vectors at r(1) = 〈3/2, 3/2〉.
First, we compute the unit tangent and normal vectors if t = 1 using /. (ReplaceAll).

ut1 = ut/.t→1
nt1 = nt/.t→1
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{
– 1√

2
, 1√

2

}
{

– 1√
2
, – 1√

2

}
We then compute the curvature if t = 1 in smallk. The center of the osculating

circle at r(1) is found in x0 and y0.
The radius of the

osculating circle is

1/	; the position

vector of the center is

r +
1

	
N

smallk = curvature/.t→1
N[smallk]
x0 = (r[t] + 1 / curvaturent/.t →1)[[1]]
y0 = (r[t] + 1 / curvaturent/.t →1)[[2]]
8
√

2

3

3.77124
21

16

21

16

We now graph r(t) with ParametricPlot. The unit tangent and normal vectors at

r(1) are graphed with Arrow in a1 and a2. The osculating circle at r(1) is graphed

with Circle in c1. All four graphs are displayed together with Show in Figure 5.7.

Graphics[Circle[{x0, y0},
r]] is a two-dimensional

graphics object that

represents a circle of

radius r centered at

the point (x0, y0). Use

Show to display the

graph. p1 = ParametricPlot[r[t], {t, – 100, 100},
PlotRange→ {{ – 2, 3}, { – 2, 3}}, AspectRatio→1];

22 21 1 2 3

22

21

1

2

3

FIGURE 5.7

The folium with an osculating circle
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p2 = Graphics[{Circle[{x0, y0}, 1/smallk],
Arrow[{r[1], r[1] + ut1}], Arrow[{r[1], r[1] + nt1}]}];

Show[p1, p2]

(d) The loop is formed by graphing r(t) for t ≥ 0. Hence, the length of the loop is

given by the improper integral
∫∞

0
‖r(t)‖dt, which we compute with NIntegrate.

NIntegrate[nr,{t,0,Infinity}]
4.91749

In the example, we computed the curvature at t = 1. Of course, we could choose

other t values. With Manipulate,

Manipulate[
r[t –] = {3t/(1 + t∧ 3), 3t∧2/(1 + t∧3)};
dr = Simplify[r′[t]];
dr2 = Simplify[r′′[t]];
ir = Integrate[r[t], t];
nr = PowerExpand[Sqrt[dr . dr]//Simplify];
ut = dr/nr//Simplify;
dut = D[ut, t]//Simplify;
duta = dut.dut//Simplify;
dutb = PowerExpand[Sqrt[duta]];
nt = dut/dutb//Simplify;
curvature = Simplify[dutb/nr];
ut1 = ut/.t→ t0;
nt1 = nt/.t→ t0;
smallk = curvature/.t→ t0;
x0 = (r[t] + 1/curvaturent/.t→ t0) [[1]];
y0 = (r[t] + 1/curvaturent/.t→ t0) [[2]];
p1 = ParametricPlot[r[t], {t, – 10, 10},

PlotRange→ {{ – 2, 3}, { – 2, 3}}, AspectRatio→1, PlotPoints→200];
p2 = Graphics[{Circle[{x0, y0}, 1/smallk],

Arrow[{r[t0], r[t0] + ut1}], Arrow[{r[t0], r[t0] + nt1}]}];
Show[p1, p2], {{t0, 1}, – 5, 10}]

we can see the osculating circle at various values of y0 �= −1. See Figure 5.8(a).

Of course, this particular choice of using the folium to illustrate the procedure

could be modified as well. With

Manipulate[
folium[t –] = {3t/(1 + t∧3), 3t∧2/(1 + t∧3)};
cycloid[t –] = {1/(2Pi)(t – Sin[t]), (1 – Cos[t])/(2Pi)};
rose[t –] = {3/2Cos[2t]Cos[t], 3/2Cos[2t]Sin[t]};
squiggle[t –] = {Cos[t] – Sin[2t], Sin[2t] + Cos[5t]};
cornu[t –] = {2.5FresnelC[t], 2.5FresnelS[t]};
lissajous[t –] = {2Cos[t], Sin[2t]};
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22 21 1 2 3
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21

1

2
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t0 r folium

23 22 21 1 2 3
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1
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3

t0

a b

FIGURE 5.8

(a) Using Manipulate to see the osculating circle at various values of t0. (b) The
osculating circle for various r(t) and t0

evolute[t –] = {Cos[t]∧3, 2Sin[t]∧3};
dr = Simplify[r′[t]];
dr2 = Simplify[r′′[t]];
ir = Integrate[r[t], t];
nr = PowerExpand[Sqrt[dr . dr]//Simplify];
ut = dr/nr//Simplify;
dut = D[ut, t]//Simplify;
duta = dut . dut//Simplify;
dutb = PowerExpand[Sqrt[duta]];
nt = dut/dutb//Simplify;
curvature = Simplify[dutb/nr];
ut1 = ut/.t→ t0;
nt1 = nt/.t→ t0;
smallk = curvature/.t→ t0;
x0 = (r[t] + 1/curvaturent/.t→ t0) [[1]];
y0 = (r[t] + 1/curvaturent/.t→ t0) [[2]];
p1 = ParametricPlot[r[t], {t, – 10, 10},

PlotRange→ {{ – 3, 3}, { – 3, 3}}, AspectRatio→1, PlotPoints→200];
p2 = Graphics[{Circle[{x0, y0}, 1/smallk],

Arrow [{r [t0] , r [t0] + ut1}] , Arrow [{r [t0] , r [t0] + nt1}] }] ;
Show[p1, p2], {{r, folium},

{folium, cycloid, rose, squiggle, cornu, lissajous, evolute}},
{{t0, 3/2}, – 5, 10}]
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we allow not only t0 but also r(t) to vary. Note that the resulting Manipulate object

is quite slow on all except the fastest computers. See Figure 5.8(b).

Recall that the gradient of z = f(x, y) is the vector-valued function �f(x, y) =〈
fx(x, y), fy(x, y)

〉
. Similarly, we define the gradient of w = f(x, y, z) to be

�f(x, y, z) =
〈

fx(x, y, z), fy(x, y, z), fz(x, y, z)
〉

=

f


x
i +


f


y
j +


f


z
k. (5.8)

A vector field F is conservative if there is a function f, called a potential
function, satisfying �f = F. In the special case that F(x, y) = P(x, y)i + Q(x, y)j,

F is conservative if and only if


P


y
=


Q


x
.

The divergence of the vector field F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k is

the scalar field

divF = � ·F =

P


x
+


Q


y
+


R


z
. (5.9)

The Div command, which is contained in the VectorAnalysis package, can be

used to find the divergence of a vector field:

Div[{P(x,y,z),Q(x,y,z),R(x,y,z)},Cartesian[x,y,z]]

computes the divergence of F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. The

laplacian of the scalar field w = f(x, y, z) is defined to be

div
(�f

)
= � · (�f

)
= �2f =



2f


x2
+



2f


y2
+



2f


z2
= �f. (5.10)

In the same way that Div computes the divergence of a vector field, Laplacian,

which is also contained in the VectorAnalysis package, computes the laplacian of

a scalar field.

The curl of the vector field F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k is

curlF(x, y, z) = �×F(x, y, z)

=

∣∣∣∣∣∣
i j k



x




y




z

P(x, y, z) Q(x, y, z) R(x, y, z)

∣∣∣∣∣∣
=

(

R


y
− 
Q


z

)
i −

(

R


x
− 
P


z

)
j +

(

Q


x
− 
P


y

)
k. (5.11)

If F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k, F is conservative if and only if

curlF(x, y, z) = 0, in which case F is said to be irrotational.
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Example 5.5.2 Determine if

F(x, y) =
(
1 − 2x2

)
ye−x2−y2

i +
(
1 − 2y2

)
xe−x2−y2

j

is conservative. If F is conservative, find a potential function for F.

Solution We define P(x, y) =
(
1 − 2x2

)
ye−x2−y2

and Q(x, y) =
(
1 − 2y2

)
xe−x2−y2

. Then we use

D and Simplify to see that Py(x, y) = Qx(x, y). Hence, F is conservative.

p[x –, y –] = (1 – 2x∧2)y Exp[ – x∧2 – y∧2];
q[x –, y –] = (1 – 2y∧2)x Exp[ – x∧2 – y∧2];
Simplify[D[p[x, y], y]]
Simplify[D[q[x, y], x]]

e – x2 – y2 (
– 1 + 2x2

) (
– 1 + 2y2

)
e – x2 – y2 (

– 1 + 2x2
) (

– 1 + 2y2
)

We use Integrate to find f satisfying �f = F.

i1 = Integrate[p[x, y], x] + g[y]
e – x2 – y2

xy + g[y]

Solve[D[i1, y]==q[x, y], g′[y]]
{{g′[y] → 0}}

Therefore, g(y) = C, where C is an arbitrary constant. Letting C = 0 gives us the

following potential function.

f = i1/.g[y] – >0

e−x2−y2

xy

Remember that the vectors F are perpendicular to the level curves of f. To see

this, we normalize F in uv.

uv = {p[x, y], q[x, y]}/
Sqrt[{p[x, y], q[x, y]} . {p[x, y], q[x, y]}]//Simplify{

e – x2 – y2(
y – 2x2y

)
√

e
– 2(x2+y2)(y2+4x4y2+x2(1 – 8y2+4y4))

,

e – x2 – y2(
x – 2xy2

)
√

e
– 2(x2+y2)(y2+4x4y2+x2(1 – 8y2+4y4))

}

We then graph several level curves of f in cp1 and cp2 with ContourPlot and sev-

eral vectors of uv with VectorFieldPlot, which is contained in the VectorFieldPlots
package, in fp. We show the graphs together with Show in Figure 5.9.

<<“VectorFieldPlots`”
cp1 = ContourPlot[f, {x, – 3

2
, 3

2
}, {y, – 3

2
, 3

2
}, Contours→15,

ContourShading→False, PlotPoints→60];
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FIGURE 5.9

Two different views illustrating that the vectors F are perpendicular to the level curves

of f

cp2 = ContourPlot[f, {x, – 3
2
, 3

2
}, {y, – 3

2
, 3

2
}, Contours→20,

PlotPoints→60];
fp = VectorFieldPlot[uv, {x, – 3/2, 3/2}, {y, – 3/2, 3/2}];
Show[GraphicsRow[{Show[cp1, fp], Show[cp2, fp]}]]

Note that we can use GradientFieldPlot3D, which is contained in the

VectorFieldPlots package, to graph several vectors of �f. However, the vectors

are scaled and it can be difficult to see that the vectors are perpendicular to the

level curves of f. The advantage of proceeding this way is that by graphing unit

vectors, it is easier to see that the vectors are perpendicular to the level curves of

f in the resulting plot.

Example 5.5.3 (a) Show that

F(x, y, z) = −10xy2i +
(
3z3 − 10x2y

)
j + 9yz2k

is irrotational. (b) Find f satisfying �f = F. (c) Compute div F and �2f.

Solution (a) After defining F(x, y, z), we use Curl, which is contained in the VectorAnalysis
package, to see that curl F(x, y, z) = 0.

Needs[“VectorAnalysis`”]
Clear[f, x, y, z]
f[x –, y –, z –] = { – 10xy∧2, 3z∧3 – 10x∧2y, 9yz∧2}{−10xy2,−10x2y + 3z3, 9yz2

}
Curl[f[x, y, z]]

{0, 0, 0}
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(b) We then use Integrate to find w = f(x, y, z) satisfying �f = F.

i1 = Integrate[f[x, y, z][[1]], x] + g[y, z]
– 5x2y2 + g[y, z]

i2 = D[i1, y]
– 10x2y + g(1,0)[y, z]

Solve[i2==f[x, y, z][[2]], g(1,0)[y, z]]{{
g(1,0)[y, z] → 3z3

}}
i3 = Integrate[3z∧3, y] + h[z]

3yz3 + h[z]

i4 = i1/.g[y, z] – >i3

– 5x2y2 + 3yz3 + h[z]

Solve[D[i4, z]==f[x, y, z][[3]]]

{{h′[z] → 0}}
With h(z) = C and C = 0, we have f(x, y, z) = −5x2y2

+ 3yz3
.

lf = – 5x2y2 + 3yz3;

�f is orthogonal to the level surfaces of f. To illustrate this, we use ContourPlot3D
to graph several level surfaces of w = f(x, y, z) for −10 ≤ x ≤ 10, −10 ≤ y ≤ 10,

and −10 ≤ z ≤ 10 in pf. We then use GradientFieldPlot3D, which is contained in

the VectorFieldPlots package, to graph several vectors in the gradient field of f

over the same domain in gradf. The two plots are shown together with Show in

Figure 5.10. In the plot, notice that the vectors appear to be perpendicular to the

surface.

pf1=ContourPlot3D[lf == –5, {x, –10,10}, {y, –10,10},
{z, –10,10}, PlotPoints→40];

pf2=ContourPlot3D[lf ==10,{x, –10,10}, {y, –10,10},
{z, –10,10}, PlotPoints→40, Mesh→None,

ContourStyle→Directive[Red,Opacity[0.8],
Specularity[White,10]]];

pf3=ContourPlot3D[lf==100, {x, –10,10}, {y, –10,10},
{z, –10,10}, Mesh→None,

ContourStyle→Directive[Red,Opacity[0.5]],
PlotPoints→40];

pf4=ContourPlot3D[lf, {x, –10,10}, {y, –10,10}, {z, –10,10},
PlotPoints→50, Mesh→None,

ContourStyle→Directive[Purple,Opacity[0.3],
Specularity[White,30]]];

Needs[“VectorFieldPlots`”]
gf = GradientFieldPlot3D[lf, {x, –10, 10}, {y, –10, 10},
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FIGURE 5.10

�f is orthogonal to the level surfaces of f

{z, –10, 10}, PlotPoints→15];
Show[GraphicsGrid[{{Show[pf1, gf], Show[pf2, gf]},

{Show[pf3, gf], Show[pf4, gf]}}]]

For (c), we take advantage of Div and Laplacian. As expected, the results are the

same.

5.5.2 Line Integrals
If F is continuous on the smooth curve C with parametrization r(t), a ≤ t ≤ b, the

line integral of F on C is ∫
C

F · dr =

∫ b

a

F · r′(t) dt. (5.12)

If F is conservative and C is piecewise smooth, line integrals can be evaluated

using the fundamental theorem of line integrals.

Theorem 19 (Fundamental Theorem of Line Integrals). If F is conservative
and the curve C defined by r(t), a ≤ t ≤ b is piecewise smooth,∫

C

F · dr = f (r(b)) − f (r(a)) , (5.13)

where F = �f.
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Example 5.5.4 Find
∫

C F · dr, where F(x, y) =
(
e−y − ye−x)

i +
(
e−x − xe−y)

j and C is defined by

r(t) = cos t i + ln (2t/�) j, �/2 ≤ t ≤ 4�.

Solution We see that F is conservative with D and find that f(x, y) = xe−y
+ ye−x

satisfies

�f = F with Integrate.

f[x –,y –] = {Exp[ –y] –y Exp[ –x],Exp[ –x] –x Exp[ –y]};
r[t ] = {Cos[t],Log[2t/Pi]};
D[f[x,y][[1]],y]//Simplify
D[f[x,y][[2]],x]//Simplify

– e – x – e – y

– e – x – e – y

lf = Integrate[f[x,y][[1]],x]
e−yx + e – xy

Hence, using (5.13),

∫
C

F · dr =
(
xe−y + ye−x

)]x=1,y=ln 8

x=0,y=0
=

3 ln 2

e
+

1

8
≈ 0.890.

xr[t –] = Cos[t];
yr[t –] = Log[2t/Pi];
{xr[Pi/2], yr[Pi/2]}
{xr[4Pi], yr[4Pi]}
{0,0}
{1,Log[8]}
Simplify[lf/.{x –>1, y –>Log[8]}]
N[%]
1

8
+

Log[8]

e

0.889984

We assume that the

symbol
∮

means to

evaluate the integral in

the positive (or

counterclockwise)

direction.

If C is a piecewise smooth simple closed curve and P(x, y) and Q(x, y)

have continuous partial derivatives, Green’s theorem relates the line integral∮
C

(
P(x, y) dx + Q(x, y) dy

)
to a double integral.

Theorem 1 (Green’s Theorem). Let C be a piecewise smooth simple closed
curve in the plane and R the region bounded by C. If P(x, y) and Q(x, y) have
continuous partial derivatives on R,

∮
C

(
P(x, y) dx + Q(x, y) dy

)
=

∫∫
R

(

Q


x
− 
P


y

)
dA. (5.14)
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Example 5.5.5 Evaluate

∮
C

(
e−x − sin y

)
dx +

(
cos x − e−y

)
dy,

where C is the boundary of the region between y = x2
and x = y2

.

Solution After defining P(x, y) = e−x − sin y and Q(x, y) = cos x − e−y
, we use Plot to deter-

mine the region R bounded by C in Figure 5.11.

p[x –,y –] = Exp[ –x] –Sin[y];
q[x –,y –] = Cos[x] –Exp[ –y];
Plot[{x∧2, Sqrt[x]}, {x, 0, 1.1},

PlotStyle –>{GrayLevel[0],GrayLevel[.3]},
AspectRatio –>Automatic]

1.2

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

FIGURE 5.11

y = x2
and y =

√
x, 0 ≤ x ≤ 1
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Using equation (5.14),∮
C

(
e−x − sin y

)
dx +

(
cos x − e−y

)
dy =

∫∫
R

(

Q


x
− 
P


y

)
dA

=

∫∫
R

(
cos y − sin x

)
dA

=

∫ 1

0

∫√
x

x2

(
cos y − sin x

)
dy dx,

dqdp = Simplify[D[q[x, y], x] – D[p[x, y], y]]
Cos[y] – Sin[x]

which we evaluate with Integrate.

Integrate[dqdp, {x, 0, 1}, {y, x∧2, Sqrt[x]}]
N[%]

1

2

(
– 4 –

√
2�

(
FresnelC

[√
2

�

]
+ FresnelS

[√
2

�

])
+ 8Sin[1]

)
0.151091

Notice that the result is given in terms of the FresnelS and FresnelC functions,

which are defined by

FresnelS[x] =

∫ x

0

sin

(�

2
t2
)

dt and FresnelC[x] =

∫ x

0

cos

(�

2
t2
)

dt.

A more meaningful approximation is obtained with N. We conclude that

∫ 1

0

∫√
x

x2

(
cos y − sin x

)
dy dx ≈ 0.151.

5.5.3 Surface Integrals

Let S be the graph of z = f(x, y) ( y = h(x, z), x = k( y, z)) and let Rxy (Rxz, Ryz) be

the projection of S onto the xy (xz, yz) plane. Then,∫∫
S

g(x, y, z) dS =

∫∫
Rxy

g
(
x, y, f(x, y)

)√[
fx(x, y)

]2
+
[

fy(x, y)
]2

+ 1 dA (5.15)

=

∫∫
Rxz

g (x, h(x, z), z)

√[
hx(x, z)

]2
+
[
hz(x, z)

]2
+ 1 dA (5.16)

=

∫∫
Ryz

g
(
k( y, z), y, z

)√[
ky( y, z)

]2
+
[
kz( y, z)

]2
+ 1 dA. (5.17)

If S is defined parametrically by

r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, (s, t) ∈ R,
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the formula ∫∫
S

g(x, y, z) dS =

∫∫
R

g (r(s, t)) ‖rs × rt‖ dA, (5.18)

where

rs =

x


s
i +


y


s
j +


z


s
k and rt =


x


t
i +


y


t
j +


z


t
k,

is also useful.

For our purposes, a

surface is oriented
if it has two distinct

sides.

Theorem 2 (The Divergence Theorem). Let Q be any domain with the prop-
erty that each line through any interior point of the domain cuts the boundary
in exactly two points, and such that the boundary S is a piecewise smooth closed,
oriented surface with unit normal n. If F is a vector field that has continuous
partial derivatives on Q, then∫∫∫

Q

� ·FdV =

∫∫∫
Q

divFdV =

∫∫
S

F · ndS. (5.19)

In (5.19),
∫∫

S F · ndS is called the outward flux of the vector field F across the

surface S. If S is a portion of the level curve g(x, y) = C for some g, then a unit

normal vector n may be taken to be either

n =
�g

‖ � g‖ or n = − �g

‖ � g‖ .

If S is defined parametrically by

r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, (s, t) ∈ R,

a unit normal vector to the surface is n =
rs × rt

‖rs × rt‖
and (5.19) becomes

∫∫
S F · ndS =∫∫

R F · (rs × rt

)
dA.

Example 5.5.6 Find the outward flux of the vector field

F(x, y, z) =
(
xz + xyz2

)
i +

(
xy + x2yz

)
j +

(
yz + xy2z

)
k

through the surface of the cube cut from the first octant by the planes x = 1, y = 1,

and z = 1.

Solution By the divergence theorem,∫∫
cube surface

F · ndA =

∫∫∫
cube interior

� ·FdV.
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Hence, without the divergence theorem, calculating the outward flux would require

six separate integrals, corresponding to the six faces of the cube. After defining

F, we compute � ·F with Div.Div is contained in

the VectorAnalysis
package. You do not

need to reload the

VectorAnalysis
package if you have

already loaded it

during your current
Mathematica session.

Needs[“VectorAnalysis`”]
f[x –, y –, z –] = {xz + xyz∧2, xy + x∧2yz, yz + xy∧2z};
divf = Div[f[x, y, z], Cartesian[x, y, z]]
x + y + xy2 + z + x2z + yz2

The outward flux is then given by∫∫∫
cube interior

� ·FdV =

∫ 1

0

∫ 1

0

∫ 1

0

� ·Fdz dy dx = 2,

which we compute with Integrate.

Integrate[divf, {z, 0, 1}, {y, 0, 1}, {x, 0, 1}]
2

Theorem 3 (Stokes’ Theorem). Let S be an oriented surface with finite sur-
face area, unit normal n, and boundary C. Let F be a continuous vector field
defined on S such that the components of F have continuous partial derivatives
at each nonboundary point of S. Then,∮

C

F · dr =

∫∫
S

curl F · ndS. (5.20)

In other words, the surface integral of the normal component of the curl of F
taken over S equals the line integral of the tangential component of the field taken

over C. In particular, if F = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k, then∫
C

(
P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz

)
=

∫∫
S

curl F · ndS.

Example 5.5.7 Verify Stokes' theorem for the vector field

F(x, y, z) =
(
x2 − y

)
i +

(
y2 − z

)
j +

(
x + z2

)
k

and S the portion of the paraboloid z = f(x, y) = 9 − (
x2

+ y2
)
, z ≥ 0.

Solution After loading the VectorAnalysis package, we define F and f. The curl of F is

computed with Curl in curlF.

Needs[“VectorAnalysis`”]
capf[x –, y –, z –] = {x∧2 – y, y∧2 – z, x + z∧2};
f[x –, y –] = 9 – (x∧2 + y∧2);
curlcapf = Curl[capf[x, y, z], Cartesian[x, y, z]]
{1, – 1, 1}
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Next, we define the function h(x, y, z) = z − f(x, y). A normal vector to the surface

is given by �h. A unit normal vector, n, is then given by n =
�h

‖ � h‖ , which is

computed in un.

h[x –, y –, z –] = z – f[x, y]
normtosurf = Grad[h[x, y, z], Cartesian[x, y, z]]
– 9 + x2 + y2 + z

{2x, 2y, 1}
un = Simplify[normtosurf/Sqrt[normtosurf . normtosurf]]{

2x√
1+4x2+4y2

,
2y√

1+4x2+4y2
, 1√

1+4x2+4y2

}
The dot product curl F · n is computed in g.

g = Simplify[curlcapf . un]
1+2x−2y√
1+4x2+4y2

Using the surface integral evaluation formula (5.15),

∫∫
S

curl F · ndS =

∫∫
R

g
(
x, y, f(x, y)

)√[
fx(x, y)

]2
+
[

fy(x, y)
]2

+ 1 dA

=

∫ 3

−3

∫√9−x2

−
√

9−x2

g
(
x, y, f(x, y)

)√[
fx(x, y)

]2
+
[

fy(x, y)
]2

+ 1 dy dx

= 9�,

In this example, R,

the projection of

f(x, y) onto the

xy-plane, is the region

bounded by the graph

of the circle

x2
+ y2

= 9.

which we compute with Integrate.

tointegrate =
Simplify[(g/.z –>f[x, y]) ∗
Sqrt[D[f[x, y], x]∧2 + D[f[x, y], y]∧2 + 1]]
1 + 2x – 2y

i1 = Integrate[tointegrate, {x, – 3, 3},
{y, – Sqrt[9 x∧2], Sqrt[9 – x∧2]}]

9p

To verify Stokes' theorem, we must compute the associated line integral. Notice

that the boundary of z = f(x, y) = 9 − (x2
+ y2

), z = 0, is the circle x2
+ y2

= 9 with

parametrization x = 3 cos t, y = 3 sin t, z = 0, 0 ≤ t ≤ 2�. This parametrization is

substituted into F(x, y, z) and named pvf.

pvf = capf[3Cos[t], 3Sin[t], 0]

{9Cos[t]2 – 3Sin[t], 9Sin[t]2, 3Cos[t]}
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To evaluate the line integral along the circle, we next define the parametrization of

the circle and calculate dr. The dot product of pvf and dr represents the integrand

of the line integral.

r[t –] = {3Cos[t], 3Sin[t], 0};
dr = r′[t]
{ – 3Sin[t], 3Cos[t], 0}
tointegrate = pvf . dr;

As before with x and y, we instruct Mathematica to assume that t is real, compute

the dot product of pvf and dr, and evaluate the line integral with Integrate.

Integrate[tointegrate, {t, 0, 2Pi}]
9�

As expected, the result is 9�.

5.5.4 A Note on Nonorientability
See “When is a surface

not orientable?” by

Braselton, Abell, and

Braselton [5] for a

detailed discussion

regarding the

examples in this

section.

Suppose that S is the surface determined by

r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, (s, t) ∈ R

and let

n =
rs × rt

‖rs × rt‖
or n = − rs × rt

‖rs × rt‖
, (5.21)

where

rs =

x


s
i +


y


s
j +


z


s
k and rt =


x


t
i +


y


t
j +


z


t
k,

if ‖rs × rt‖ �= 0. If n is defined, n is orthogonal (or perpendicular) to S. We state

three familiar definitions of orientable.

� S is orientable if S has a unit normal vector field, n, that varies continuously

between any two points
(
x0, y0, z0

)
and

(
x1, y1, z1

)
on S. (See [7].)

� S is orientable if S has a continuous unit normal vector field, n. (See [7]

and [19].)

� S is orientable if a unit vector n can be defined at every nonboundary

point of S in such a way that the normal vectors vary continuously over the

surface S. (See [14].)

A path is order preserving if our chosen orientation is preserved as we move

along the path.

Thus, a surface such as a torus is orientable.
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Example 5.5.8 (The Torus). Using the standard parametrization of the torus, we use

ParametricPlot3D to plot the torus if c = 3 and a = 1 in Figure 5.12.
Also see

Example 2.3.18. Clear[r, c, a, x, y, z, r]
c = 3;
a = 1;
x[s –, t –] = (c + aCos[s])Cos[t];
y[s –, t –] = (c + aCos[s])Sin[t];
z[s –, t –] = aSin[s];
r[s –, t –] = {x[s, t], y[s, t], z[s, t]};
threedp1t = ParametricPlot3D[r[s, t], {s, – Pi, Pi},

{t, – Pi, Pi}, PlotPoints –>{30, 30}, AspectRatio –>1,
PlotRange –>{{ – 4, 4}, { – 4, 4}, { – 1, 1}},

BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ColorFunction→ “FruitPunchColors”, PlotStyle→Opacity[.3]]

To plot a normal vector field on the torus, we compute




s
r(s, t),

rs = D[r[s, t], s]
{ – Cos[t]Sin[s], – Sin[s]Sin[t], Cos[s]}

y
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FIGURE 5.12

A torus
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and




t
r(s, t).

rt = D[r[s, t], t]
{ – (3 + Cos[s])Sin[t], (3 + Cos[s])Cos[t], 0}

The cross product




s
r(s, t) × 



t
is formed in rscrossrt.

rscrossrt = Cross[rs, rt]//Simplify

{ – Cos[s](3 + Cos[s])Cos[t],

– Cos[s](3 + Cos[s])Sin[t], – (3 + Cos[s])Sin[s]}
Sqrt[rscrossrt . rscrossrt]//FullSimplify√

(3 + Cos[s])2

Using equation (5.24), we define un: Given s and t, un[s,t] returns a unit normal

to the torus.

Clear[un]
un[s –, t –] =

– rscrossrt/Sqrt[rscrossrt .
rscrossrt]//PowerExpand//FullSimplify{

Cos[s](3 + Cos[s])Cos[t]√
(3 + Cos[s])2

,

Cos[s](3 + Cos[s])Sin[t]√
(3 + Cos[s])2

,
(3 + Cos[s])Sin[s]√

(3 + Cos[s])2

}
Map[PowerExpand, un[s, t]]
{Cos[s]Cos[t], Cos[s]Sin[t], Sin[s]}
r[s, t]
{(3 + Cos[s])Cos[t],

(3 + Cos[s])Sin[t], Sin[s]}
un[s, t]{

Cos[s](3 + Cos[s])Cos[t]√
(3 + Cos[s])2

,

Cos[s](3 + Cos[s])Sin[t]√
(3 + Cos[s])2

,
(3 + Cos[s])Sin[s]√

(3 + Cos[s])2

}
To plot the normal vector field on the torus, we take advantage of the command

ListVectorFieldPlot3D, which is contained in the VectorFieldPlots package. See

Figure 5.13.

<<“VectorFieldPlots`”
Clear[vecs]
vecs = Flatten[Table[{r[s, t], un[s, t]},

{s, – Pi, Pi, 2Pi/14}, {t, – Pi, Pi, 2Pi/29}], 1];
pp2 = ListVectorFieldPlot3D[vecs, VectorHeads→True]
Show[threedp1t, pp2, AspectRatio –>1,
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FIGURE 5.13

Unit normal vector field on a torus

PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},
BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”}]

We use Show (illustrating the use of the ViewPoint option) together with

GraphicsArray to see the vector field on the torus together from various angles in

Figure 5.14. Regardless of the viewing angle, the figure looks the same; the torus

is orientable.

g1 = Show[threedp1t, pp2, AspectRatio –>1,
PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},

BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ViewPoint –>{2.729, – 0.000, 2.000}];

g2 = Show[threedp1t, pp2, AspectRatio –>1,
PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},

BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ViewPoint –>{1.365, – 2.364, 2.000}];

g3 = Show[threedp1t, pp2, AspectRatio –>1,
PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},

BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ViewPoint –>{ – 1.365, – 2.364, 2.000}];

g4 = Show[threedp1t, pp2, AspectRatio –>1,
PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},

BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ViewPoint –>{ – 2.729, 0.000, 2.000}];

g5 = Show[threedp1t, pp2, AspectRatio –>1,
PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},
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FIGURE 5.14

The torus is orientable
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BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ViewPoint –>{ – 1.365, 2.364, 2.000}];

g6 = Show[threedp1t, pp2, AspectRatio –>1,
PlotRange –>{{ – 5, 5}, { – 5, 5}, { – 2, 2}},

BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},
ViewPoint –>{1.365, 2.364, 2.000}];

Show[GraphicsGrid[{{g1, g2}, {g3, g4}, {g5, g6}}]]

If a 2-manifold, S, has an order reversing path (or not order preserving path),

S is nonorientable (or not orientable).

Determining whether a given surface S is orientable or not may be a difficult

problem.

Example 5.5.9 (The Möbius Strip). The Möbius strip is frequently cited as an example of a

nonorientable surface with boundary: It has one side and is physically easy to

construct by hand by half twisting and taping (or pasting) together the ends of a

piece of paper (for example, see [5], [7], [14], and [19]). A parametrization of the

Möbius strip is r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, −1 ≤ s ≤ 1, −� ≤ t ≤ �, where

x =

[
c + s cos

(
1

2
t

)]
cos t, y =

[
c + s cos

(
1

2
t

)]
sin t, and

z = s sin

(
1

2
t

)
, (5.22)

and we assume that c > 1. In Figure 5.15, we graph the Möbius strip using c = 3.

c = 3;
x[s –, t –] = (c + sCos[t/2])Cos[t];
y[s –, t –] = (c + sCos[t/2])Sin[t];
z[s –, t –] = sSin[t/2];
r[s –, t –] = {x[s, t], y[s, t], z[s, t]};
threedp1 = ParametricPlot3D[r[s, t], {s, – 1, 1},

{t, – Pi, Pi}, PlotPoints –>{30, 30},
AspectRatio –>1, PlotRange→

{{ – 4, 4}, { – 4, 4}, { – 1, 1}}, BoxRatios –>{4, 4, 1},
AxesLabel –>{“x”, “y”, “z”}, ColorFunction→ “NeonColors”,
Mesh→False, PlotStyle→Opacity[.8]]

Although it is relatively easy to see in the plot that the Möbius strip has only one

side, the fact that a unit vector, n, normal to the Möbius strip at a point P reverses

its direction as n moves around the strip to P is not obvious to the novice.

With Mathematica, we compute ‖rs × rt‖ and n =
rs×rt
‖rs×rt‖ .

rs = D[r[s,t],s]{
Cos

[
t

2

]
Cos[t], Cos

[
t

2

]
Sin[t], Sin

[
t

2

]}
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FIGURE 5.15

Parametric plot of equations (5.22) if c = 3

rt = D[r[s, t], t]{
– 1

2
sCos[t]Sin

[
t

2

]− (
3 + sCos

[
t

2

])
Sin[t],(

3 + sCos
[

t

2

])
Cos[t] − 1

2
sSin

[
t

2

]
Sin[t],

1

2
sCos

[
t

2

]}
rscrossrt = Cross[rs, rt]//Simplify{− 1

2

(−sCos
[

t

2

]
+ 6Cos[t]+

sCos
[

3t

2

])
Sin

[
t

2

]
,

1

4

(−s − 6Cos
[

t

2

]− 2sCos[t]+

6Cos
[

3t

2

]
+ sCos[2t]

)
,

Cos
[

t

2

] (
3 + sCos

[
t

2

])}
Sqrt[rscrossrt . rscrossrt]//FullSimplify√

9 + 3s2

4
+ 6sCos

[
t

2

]
+ 1

2
s2Cos[t]

Clear[un]
un[s , t ] =

rscrossrt/Sqrt[rscrossrt . rscrossrt]//FullSimplify{
sSin[t] – Cos[t](6Sin[ t

2 ] + sSin[t])√
36 + 3s2+24sCos[ t

2 ] + 2s2Cos[t]
,
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–
3Cos[ t

2 ] – 3Cos[ 3t
2 ] + s(Cos[t] + Sin[t]2)√

36 + 3s2 + 24sCos[ t
2 ] + 2s2Cos[t]

,

s + 6Cos[ t
2 ]+sCos[t]√

36+3s2 + 24sCos[ t
2 ] + 2s2Cos[t]

}
Consider the path C given by r(0, t), −� ≤ t ≤ � that begins and ends at 〈−3, 0, 0〉.
On C, n(0, t) is given by

un[0, t]{
– Cos[t]Sin

[
t

2

]
, 1

6

(
– 3Cos

[
t

2

]
+ 3Cos

[
3t

2

])
, Cos

[
t

2

]}
At t = −�, n(0,−�) = 〈1, 0, 0〉, whereas at t = �, n(0, �) = 〈−1, 0, 0〉.

r[0, – Pi]
r[0, Pi]
{ – 3, 0, 0}
{± 3, 0, 0}

As n moves along C from r(0,−�) to r(0, �), the orientation of n reverses, as

shown in Figure 5.16.

l1 = Table[r[0, t], {t, – Pi, Pi, 2Pi/179}];
threedp2 = Show[Graphics3D[{Thickness[.02],

GrayLevel[.6], Line[l1]}], Axes –>Automatic,
PlotRange –>{{ – 4, 4}, { – 4, 4}, { – 1, 1}},

BoxRatios –>{4, 4, 1}, AspectRatio –>1];
<< “VectorFieldPlots`”;
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FIGURE 5.16

Parametric plot of equations (5.22) if c = 3
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vecs = Table[{r[0, t], un[0, t]}, {t, –p,p, 2p
59

}];
pp2 = ListVectorFieldPlot3D[vecs, VectorHeads→True];
Show[threedp2, pp2, ViewPoint→

{ – 2.093, 2.124, 1.600}, AxesLabel –>{“x”, “y”, “z”},
Boxed –>False, DisplayFunction –>$DisplayFunction]

Several different views of Figure 5.16 on the Möbius strip shown in Figure 5.15

are shown in Figure 5.17. C is an orientation reversing path and we can conclude

that the Möbius strip is not orientable.An animation is

particularly striking. g1 = Show[threedp1, threedp2, pp2,
ViewPoint –>{2.729, – 0.000, 2.000},

AxesLabel –>{“x”, “y”, “z”}, Boxed –>False];
g2 = Show[threedp1, threedp2, pp2,

ViewPoint –>{1.365, – 2.364, 2.000},
AxesLabel –>{“x”, “y”, “z”}, Boxed –>False];

g3 = Show[threedp1, threedp2, pp2,
ViewPoint –>{ – 1.365, – 2.364, 2.000},

AxesLabel –>{“x”, “y”, “z”}, Boxed –>False];
g4 = Show[threedp1, threedp2, pp2,

ViewPoint –>{ – 2.729, 0.000, 2.000},
AxesLabel –>{“x”, “y”, “z”}, Boxed –>False];

g5 = Show[threedp1, threedp2, pp2,
ViewPoint –>{ – 1.365, 2.364, 2.000},

AxesLabel –>{“x”, “y”, “z”}, Boxed –>False];
g6 = Show[threedp1, threedp2, pp2,

ViewPoint –>{1.365, 2.364, 2.000},
AxesLabel –>{“x”, “y”, “z”}, Boxed –>False];

Show[GraphicsGrid[{{g1, g2}, {g3, g4}, {g5, g6}}]]

Example 5.5.10 The Klein bottle is an interesting surface with neither an inside nor an outside,

which indicates to us that it is not orientable. In Figure 5.18(a) we show the “usual”

immersion of the Klein bottle. Although the Klein bottle does not intersect itself, it is

not possible to visualize it in Euclidean 3-space without it doing so. Visualizations

of 2-manifolds such as the Klein bottle's “usual” rendering in Euclidean 3-space

are called immersions. (See [11] for a nontechnical discussion of immersions.)

r = 4(1 – 1/2Cos[u]);
x1[u –, v –] = 6(1 + Sin[u])Cos[u] + rCos[u]Cos[v];
x2[u –, v –] = 6(1 + Sin[u])Cos[u] + rCos[v + Pi];
y1[u –, v –] = 16Sin[u] + rSin[u]Cos[v];
y2[u –, v –] = 16Sin[u];
z[u –, v –] = rSin[v];
kb1a = ParametricPlot3D[{x1[s, t], y1[s, t], z[s, t]},

{s, 0, Pi}, {t, 0, 2Pi}, PlotPoints –>{30, 30},
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FIGURE 5.17

Different views of a Möbius strip with an orientation reversing path

AspectRatio –>1, AxesLabel –>{“x”, “y”, “z”},
Mesh→False, PlotStyle→Opacity[.8]];

kb1b = ParametricPlot3D[{x1[s, t], y1[s, t], z[s, t]},
{s, Pi, 2Pi}, {t, 0, 2Pi}, PlotPoints –>{30, 30},
AspectRatio –>1, AxesLabel –>{“x”, “y”, “z”},

Mesh→False, PlotStyle→Opacity[.8]]
kb1 = Show[kb1a, kb1b, PlotRange→ {{ – 20, 20}, { – 20, 20}, { – 20, 20}}]
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Two different immersions of the Klein bottle: (a) the “usual” immersion; (b) the figure-8

immersion

Figure 5.18(b) shows the figure-8 immersion of the Klein bottle. Notice that it

is not easy to see that the Klein bottle has neither an inside nor an outside in

Figure 5.14.

a = 3;
x[u –, v –] = (a + Cos[u/2]Sin[v] – Sin[u/2]Sin[2v])Cos[u];
y[u –, v –] = (a + Cos[u/2]Sin[v] – Sin[u/2]Sin[2v])Sin[u];
z[u –, v –] = Sin[u/2]Sin[v] + Cos[u/2]Sin[2v];
r[u –, v –] = {x[u, v], y[u, v], z[u, v]};

ParametricPlot3D[r[t, t], {t, 0, 2Pi}]

kb2 = ParametricPlot3D[r[s, t], {s, – Pi, Pi}, {t, – Pi, Pi},
PlotPoints –>{30, 30}, AspectRatio –>1,
AxesLabel –>{“x”, “y”, “z”},

PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 2, 2}}, BoxRatios –>{4, 4, 1},
ColorFunction→ “SunsetColors”, Mesh→False,

PlotStyle→Opacity[.4]]
Show[GraphicsRow[{kb1, kb2}]]

In fact, to many readers it may not be clear whether the Klein bottle is orientable or

nonorientable, especially when we compare the graph to the graphs of the Möbius

strip and torus in the previous examples.

A parametrization of the figure-8 immersion of the Klein bottle (see [20]) is

r(s, t) = x(s, t)i + y(s, t)j + z(s, t)k, −� ≤ s ≤ �, −� ≤ t ≤ �, where

x =

[
c + cos

(
1

2
s

)
sin t − sin

(
1

2
s

)
sin 2t

]
cos s,

y =

[
c + cos

(
1

2
s

)
sin t − sin

(
1

2
s

)
sin 2t

]
sin s, (5.23)
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and

z = sin

(
1

2
s

)
sin t + cos

(
1

2
s

)
sin 2t.

The plot in Figure 5.18(b) uses equation (5.23) if c = 3.

Using (5.21), let

n =
rs × rt

‖rs × rt‖
.

Let C be the path given by

r(t, t) = x(t, t)i + y(t, t)j + z(t, t)k, −� ≤ t ≤ � (5.24)

that begins and ends at r(−�,−�) = r(�, �) = 〈−3, 0, 0〉 and where the compo-

nents are given by (5.23). The components of r and n are computed with

Mathematica. The final calculations are quite lengthy, so we suppress the output

of the last few by placing a semicolon (;) at the end of those commands.

rs = D[r[s, t], s]//Simplify
{ – 1

2
Cos[s](Sin[ s

2
]Sin[t] + Cos[ s

2
]Sin[2t]) +

Sin[s]( – 3 – Cos[ s

2
]Sin[t] + Sin[ s

2
]Sin[2t]),

– 1

2
Sin[s](Sin[ s

2
]Sin[t] + Cos[ s

2
]Sin[2t]) +

Cos[s](3 + Cos[ s

2
]Sin[t] − Sin[ s

2
]Sin[2t]),

1

2
(Cos[ s

2
] – 2Cos[t]Sin[ s

2
])Sin[t]}

rt = D[r[s, t], t]//Simplify
{Cos[s](Cos[ s

2
]Cos[t] – 2Cos[2t]Sin[ s

2
]),

(Cos[ s

2
]Cos[t] – 2Cos[2t]Sin[ s

2
])Sin[s],

2Cos[ s

2
]Cos[2t] + Cos[t]Sin[ s

2
]}

rscrossrt = Cross[rs, rt];
normcross = Sqrt[rscrossrt . rscrossrt];
Clear[un]
un[s , t ] = – rscrossrt / Sqrt[rscrossrt . rscrossrt];

At t =−�, n(−�,−�) =

〈
1√
5
, 0, 2√

5

〉
, whereas at t = �, n(�, �) =

〈
− 1√

5
, 0,− 2√

5

〉
so

as n moves along C from r(−�,−�) to r(�, �), the orientation of n reverses.

Several different views of the orientation reversing path on the Klein bottle shown

in Figure 5.18(b) are shown in Figure 5.19.

l1 = Table[r[s, s], {s, – Pi, Pi, 2Pi/179}];
threedp2 = Show[Graphics3D[{Thickness[.02],

GrayLevel[.6], Line[l1]}], Axes –>Automatic,
PlotRange –>{{ – 4, 4}, { – 4, 4}, { – 4, 4}},

BoxRatios –>{4, 4, 1}, AspectRatio –>1];
<< “VectorFieldPlots′”;
vecs = Table[{r[s, s], un[s, s]}, {s, –p,p, 2p

59
}];
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Different views of the figure-8 immersion of the Klein bottle with an orientation

reversing path
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pp2 = ListVectorFieldPlot3D[vecs, VectorHeads→True];
pp3 = Show[threedp2, pp2,

AxesLabel –>{“x”, “y”, “z”},
Boxed –>False, PlotRange→ {{ – 5, 5},

{ – 5, 5}, { – 5, 5}}]
g1 = Show[kb2, threedp2, pp2, AspectRatio –>1,

PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 2, 2}},
BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},

ViewPoint –>{2.729, – 0.000, 2.000}]
g2 = Show[kb2, threedp2, pp2,

AspectRatio –>1,
PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 2, 2}},

BoxRatios –>{4, 4, 1},
AxesLabel –>{“x”, “y”, “z”},

ViewPoint –>{1.365, – 2.364, 2.000}]
g3 = Show[kb2, threedp2, pp2, AspectRatio –>1,

PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 6, 6}},
BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},

ViewPoint –>{ – 1.365, – 2.364, 2.000}]
g4 = Show[kb2, threedp2, pp2, AspectRatio –>1,

PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 6, 6}},
BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},

ViewPoint –>{ – 2.729, 0.000, 2.000}]
g5 = Show[threedp1t, pp2, AspectRatio –>1,

PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 6, 6}},
BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},

ViewPoint –>{ – 1.365, 2.364, 2.000}]
g6 = Show[kb2, pp3, AspectRatio –>1,

PlotRange –>{{ – 6, 6}, { – 6, 6}, { – 2, 2}},
BoxRatios –>{4, 4, 1}, AxesLabel –>{“x”, “y”, “z”},

ViewPoint –>{1.365, 2.364, 2.000}]
Show[GraphicsGrid[{{g1, g2}, {g3, g4}, {g5, g6}}]]

C is an orientation reversing path and we can conclude that the Klein bottle is not

orientable.

5.5.5 More on Tangents, Normals, and Curvature in R3

Previously, we discussed the unit tangent and normal vectors and curva-

ture for a vector-valued function � : (a, b) → R2
. These concepts can be

extended to curves and surfaces in space.

These concepts are

presented beautifully
and extensively for the

Mathematica user in

Modern Differential
Geometry of Curves
and Surfaces with
Mathematica, third

edition, by Alfred

Gray, Elsa Abbena,

and Simon Salamon.

Our treatment just

touches on a few of

the topics discussed

by Gray et al and

updates some of

their wonderful and

elegant work to

Mathematica 6.

For � : (a, b) → R3
, the Frenet frame field is the ordered triple

{T, N, B}, where T is the unit tangent vector field, N is the unit
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normal vector field, and B is the unit binormal vector field. Each

of these vectors has norm 1 and each is orthogonal to the other (the dot

product of one with another is 0) and the Frenet formulas are satisfied:

T′
= 	N, N′

= −	T + �B, B′
= −�N. � is the torsion of the curve �; 	 is

the curvature. For the curve � : (a, b) → R3
, formulas for these quantities

are given by

For many good

reasons, sometimes

the “Frenet formulas”

are also called the

“Frenet–Serret

formulas.”
T =

�′

||�′|| , N = B ×T, B =
�′ × �′′

||�′ × �′′|| ,
(5.25)

	 =
||�′ × �′′||
||�′||3 , � =

�′ × �′′ · �′′′

||�′ × �′′||2 .

We adjust Gray’s routines slightly for Mathematica 6. Here is the unit

tangent vector:

tangent[� –][t ]:=D[�[tt], tt]/FullSimplify[Norm[D[�[tt], tt]],
Assumptions→ tt∈Reals]/.tt→ t

Similarly, the binormal is defined with

binormal[� –][t ]:=FullSimplify[
Cross[D[�[tt], tt], D[�[tt], {tt, 2}]]]/

FullSimplify[Norm[Cross[D[�[tt], tt], D[�[tt], {tt, 2}]]],
Assumptions→ tt∈Reals]/.tt→ t

so the unit normal is defined with

normal[� –][t –]:=Cross[binormal[�][t], tangent[�][t]];

Notice how we use Assumptions to instruct Mathematica to assume that the

domain of � consists of real numbers. In the same manner, we define the

curvature and torsion.

curve2[� –][t –]:=Simplify[Norm[Cross[D[�[tt], tt],
D[�[tt], {tt, 2}]]]/

Norm[D[�[tt], tt]]∧3,
Assumptions→ tt∈Reals]/.tt→ t;

torsion2[� –][t –]:=Simplify[Cross[D[�[tt], tt],
D[�[tt], {tt, 2}]] . D[�[tt], {tt, 3}]/

Norm[Cross[D[�[tt], tt], D[�[tt], {tt, 2}]]]∧2,
Assumptions→ tt∈Reals]/.tt→ t;

In even the simplest situations, these calculations are quite complicated.

Graphically seeing the results may be more meaningful that the explicit

formulas.
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FIGURE 5.20

The curvature and torsion for a spherical spiral

Example 5.5.11 Consider the spherical spiral given by �(t) = 〈8 cos 3t cos 2t, 8 sin 3t cos 2t, 8 sin 2t〉.
The curvature and torsion for the curve are graphed with Plot and shown in

Figure 5.20.

<< VectorFieldPlots`;
�[t –] = {8Cos[3t]Cos[2t], 8Sin[3t]Cos[2t], 8Sin[2t]}
{8Cos[2t]Cos[3t], 8Cos[2t]Sin[3t], 8Sin[2t]}
Plot[Tooltip[{curve2[�][t], torsion2[�][t]}], {t, 0, 2Pi},

PlotStyle→ {Black, Gray}]

We now compute T, B, and N. For length considerations, we display an

abbreviated portion of B with Short.

tangent[�][t]
binormal[�][t]
normal[�][t]//Short{

– 16Cos[3t]Sin[2t] – 24Cos[2t]Sin[3t]

4
√

34 + 18Cos[4t]
,

24Cos[2t]Cos[3t] – 16Sin[2t]Sin[3t]

4
√

34 + 18Cos[4t]
,

4Cos[2t]√
34 + 18Cos[4t]

}
{

2( – 3Sin[t] + 34Sin[3t] + 15Sin[7t])√
21886 + 12456Cos[4t] + 810Cos[8t]

,

–
2(3Cos[t] + 34Cos[3t] + 15Cos[7t])√
21886 + 12456Cos[4t] + 810Cos[8t]

,

6(21 + 5Cos[4t])√
21886 + 12456Cos[4t] + 810Cos[8t]

}
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{
〈〈7〉〉+

〈〈1〉〉
〈〈1〉〉 +

120〈〈2〉〉Sin[3t]√
34 + 18Cos[〈〈1〉〉]√1

, 〈〈1〉〉, 〈〈1〉〉
}

It is difficult to see how these complicated formulas relate to this spherical spiral. To

help us understand what they mean, we first plot the spiral with ParametricPlot3D.

See Figure 5.21(a).

p1 = ParametricPlot3D[�[t], {t, 0, 2Pi},
PlotRange→ {{ – 8.5, 8.5}, { – 8.5, 8.5}, { – 8.5, 8.5}},

PlotStyle→ {{Gray, Thick}}]

Next, we use Table to compute lists of two ordered triples. For each list,

the first ordered triple consists of �(t) and the second the value of T(�(t))

(B(�(t)), N(�(t))). These ordered triples that correspond to vectors are plotted

with ListVectorFieldPlot3D, which is contained in the VectorFieldPlots package,

in Figure 5.21(b).

ts = Table[{�[t], tangent[�][t]}//N, {t, 0, 2Pi, 2Pi/99}];
bs = Table[{�[t], binormal[�][t]}//N, {t, 0, 2Pi, 2Pi/99}];
ns = Table[{�[t], normal[�][t]}//N, {t, 0, 2Pi, 2Pi/99}];

ysplot = ListVectorFieldPlot3D[ts, VectorHeads→True];
bsplot = ListVectorFieldPlot3D[bs, VectorHeads→True];
nsplot = ListVectorFieldPlot3D[ns, VectorHeads→True];
p2 = Show[ysplot, bsplot, nsplot]

For a good view of p1 and p2, display them together with Show. See

Figure 5.21(c).

Show[p1, p2]Show[GraphicsRow[{p1, p2, Show[p1, p2]}]]

The previous example illustrates that capturing the depth of three-

dimensional curves by projections into two dimensions can be difficult.

Sometimes taking advantage of three-dimensional surface plots can help.
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FIGURE 5.21

(a) The spherical spiral. (b) Various T, N, and B for the spherical spiral. (c) The

spherical spiral with various T, N, and B shown together
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For a basic space curve, tubecurve places a “tube” of radius r around the

space curve.

Clear[tubecurve]
tubecurve[� –][r –][t –, � –] = �[t] +

r(Cos[�]normal[�][t] + Sin[�]binormal[�][t])

r
(

Cos[�]
�′ [t]×�′′ [t]

Norm[�′ [t]×�′′ [t]] × �′ [t]
Norm[�′ [t]] +

�′ [t]×�′′ [t]Sin[�]

Norm[�′ [t]×�′′ [t]]

)
+ �[t]

To illustrate the utility, we redefine torusknot that was presented in

Chapter 2.
The results displayed

in the text are in

black-and-white and

do not reflect the

stunning color images

generated by these

commands.

torusknot[a –, b –, c –][p –, q –][t –]:=
{(a + b Cos[q t])Cos[p t], (a + b Cos[q t])Sin[p t],

c Sin[qt]}

Example 5.5.12 For the knot torusknot}[8,3,5][2,5] we plot the curvature and torsion with

Plot.
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FIGURE 5.22

(a) A basic plot of a curve in 3-space. (b) Placing a “tube” around the curve
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We generate a basic plot of this torus knot in 3-space with ParametricPlot3D.

See Figure 5.22(a).

ParametricPlot3D[torusknot[8, 3, 5][2, 5][t], {t, 0, 3Pi}]

Using tubeplot, we place a “tube” around the knot. See Figure 5.22(b).

p1 = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 5]][1 . 3][t, �],
{t, 0, 2Pi}, {�, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.5],

PlotPoints→ {40, 40}]

A more interesting graphic is obtained by placing a transparent tube around the curve

and then creating a thicker version of the curve.

As before, we use tangent, normal, and binormal to create a vector field on the

curve.
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A striking graph is generated by showing the three graphs together.
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FIGURE 5.23

(a) A “tubed” knot. (b) A thick knot. (c) A knot within a tube around it. (d) A knot

within a tube illustrating the Frenet field

Alternatively, display the results as an array with GraphicsGrid. See

Figure 5.23.

Example 5.5.13 The Trefoil knot is the special case of torusknot[8,3,5][2,3]][t]. We use Plot to

graph its curvature and torsion in Figure 5.24. Because we have used Tooltip, you

can identify each plot by moving the cursor over the curve in Figure 5.24.

Plot[Tooltip[{curve2[torusknot[8, 3, 5][2, 3]][t],
torsion2[torusknot[8, 3, 5][2, 3]][t]}], {t, 0, 2Pi}, PlotRange→All]

Next, we generate a thickened version of the Trefoil knot.

p1 = ParametricPlot3D[torusknot[8, 3, 5][2, 3][t], {t, 0, 2Pi},
PlotStyle→ {Black, Thick}]

Three different tube plots of the Trefoil knot are generated. In p2, the result is a

basic plot. In p2b, the plot is shaded accoring to the Rainbow color gradient.
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FIGURE 5.24

The curvature and torsion for the Trefoil knot

a b c

FIGURE 5.25

(a) The Trefoil knot with a tube around it. (b) Changing the color of the tube.

(c) Coloring the knot according to its curvature

In p2c, the plot is shaded according to the knots curvature. The knot together

with the three surfaces are shown in Figure 5.25.

p2 = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 3]][1.3][t, �],
{t, 0, 2Pi}, {�, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.5],

PlotPoints→ {40, 40}]
p2b = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 3]][1.3][t, �],

{t, 0, 2Pi}, {�, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.5],
PlotPoints→ {40, 40}, ColorFunction –>ColorData[“Rainbow”]]

p2c = ParametricPlot3D[tubecurve[torusknot[8, 3, 5][2, 3]][1.3][t, �],
{t, 0, 2Pi}, {�, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.5],

PlotPoints→ {40, 40}, ColorFunction→
(ColorData[“BrightBands”][curve2[torusknot[8, 3, 5][2, 3]][#1]]&)]

ba1 = Show[p2, p1, Boxed→False, Axes→None]
ba2 = Show[p2b, p1, Boxed→False, Axes→None]
ba3 = Show[p2c, p1, Boxed→False, Axes→None]
Show[GraphicsRow[{ba1, ba2, ba3}]]
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For surfaces in R3
, extending and stating these definitions pre-

cisely becomes even more complicated. First, define the vector triple

product (xyz), where x =

⎛
⎝x1

x2

x3

⎞
⎠, y =

⎛
⎝y1

y2

y3

⎞
⎠, and z =

⎛
⎝z1

z2

z3

⎞
⎠, by (xyz) =∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣. We assume that � = �(u, v) is a vector-valued function with

domain contained in a “nice” region U ⊂ R2
and range in R3

. The

Gaussian curvature, K, and the mean curvature, H, under reasonable

conditions, are given by the formulas

K =

(
�uu�u�v

) (
�vv�u�v

) − (
�uv�u�v

)2(
||�u||2||�v||2 −

(
�u · �v

)2
)2

and (5.26)

H =

(
�uu�u�v

) ||�v||2 − 2
(
�uv�u�v

) (
�u · �v

)
+
(
�vv�u�v

) ||�u||2

2

(
||�u||2||�v||2 −

(
�u · �v

)2
)3/2

.

For the parametrically defined surface � = �(u, v), the unit normal

field, U, is U =
�u × �v

||�u × �v||
. Observe that the expressions that result from

explicitly computing U, K, and H are almost always so complicated that

they are impossible to understand.

After defining vtp to return the vector triple product of three vectors,

we define gaussianc and meanc to compute K and H for a parametrically

defined surface �(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.

vtp[x –, y –, z –]:=Det[{{x[[1]], x[[2]], x[[3]]},
{y[[1]], y[[2]], y[[3]]}, {z[[1]], z[[2]], z[[3]]}}]

gaussianc[� –][u –, v –]:=
Module[{lu, lv, vtp},
vtp[x –, y –, z –]:=Det[{{x[[1]], x[[2]], x[[3]]},

{y[[1]], y[[2]], y[[3]]}, {z[[1]], z[[2]], z[[3]]}}];
(vtp[D[�[lu, lv], {lu, 2}], D[�[lu, lv], lu], D[�[lu, lv], lv]]

vtp[D[�[lu, lv], {lv, 2}], D[�[lu, lv], lu], D[�[lu, lv], lv]] –
vtp[D[�[lu, lv], lu, lv], D[�[lu, lv], lu], D[�[lu, lv], lv]]∧ 2) /

(Norm[D[�[lu, lv], lu]]∧ 2Norm[D[�[lu, lv], lv]]∧ 2 –
(D[�[lu, lv], lu] . D[�[lu, lv], lv])∧ 2)∧ 2/.

{lu→u, lv→ v}//PowerExpand//Simplify
]
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meanc[� –][u –, v –]:=
Module[{lu, lv, vtp},
vtp[x –, y –, z –]:=Det[{{x[[1]], x[[2]], x[[3]]},

{y[[1]], y[[2]], y[[3]]}, {z[[1]], z[[2]], z[[3]]}}];
(vtp[D[�[lu, lv], {lu, 2}], D[�[lu, lv], lu], D[�[lu, lv], lv]]

Norm[D[�[lu, lv], lv]]∧ 2 –
2vtp[D[�[lu, lv], lu, lv], D[�[lu, lv], lu], D[�[lu, lv], lv]]

(D[�[lu, lv], lu] . D[�[lu, lv], lv]) +
vtp[D[�[lu, lv], {lv, 2}], D[�[lu, lv], lu], D[�[lu, lv], lv]]

Norm[D[�[lu, lv], lu]]∧ 2) /
(2(Norm[D[�[lu, lv], lu]]∧ 2Norm[D[�[lu, lv], lv]]∧ 2 –

(D[�[lu, lv], lu] . D[�[lu, lv], lv])∧ 2)∧ (3/2))/.
{lu→u, lv→ v}//PowerExpand//Simplify

]

Example 5.5.14 We illustrate the commands with the torus, first discussed in Chapter 2, and

ParametricPlot3D. For convenience, we redefine torus.

torus[a –, b –, c –][p –, q –][u –, v –]:={(a + bCos[u])
Cos[v], (a + b Cos[u])Sin[v], c Sin[u]}

In pp1, we generate a basic plot of the torus. The shading is changed in pp2. In

pp3 the surface is shaded according to its Gaussian curvature, whereas in pp4
the surface is shaded according to its mean curvature. All four plots are shown

together in Figure 5.26.

pp1 = ParametricPlot3D[Evaluate[torus[8, 3, 5][2, 5][u, v]], {u, 0, 2Pi},
{v, 0, 2Pi}, PlotPoints→60]

pp2 = ParametricPlot3D[torus[8, 3, 5][2, 5][u, v],
{u, 0, 2Pi}, {v, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.75],
PlotPoints→ {25, 25}, ColorFunction→
ColorData[“MintColors”]]
pp3 = ParametricPlot3D[torus[8, 3, 5][2, 5][u, v],
{u, 0, 2Pi}, {v, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.5],
PlotPoints→ {25, 25}, ColorFunction→
(ColorData[“MintColors”][gaussianc[torus[8, 3, 5][2, 5]]

[#1, #2]//N//Chop]&)]
pp4 = ParametricPlot3D[torus[8, 3, 5][2, 5][u, v],

{u, 0, 2Pi}, {v, 0, 2Pi}, Mesh→False, PlotStyle→Opacity[.5],
PlotPoints→ {25, 25}, ColorFunction→
(ColorData[“MintColors”][meanc[torus[8, 3, 5][2, 5]]

[#1, #2]//N//Chop]&)]
Show[GraphicsGrid[{{pp1, pp2}, {pp3, pp4}}]]
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FIGURE 5.26

(a) A basic torus. (b) Changing the coloring of the torus. (c) Shading according to

Gaussian curvature. (d) Shading according to mean curvature

5.6 MATRICES AND GRAPHICS
Mathematica contains several functions that allow you to represent matrices

graphically. These commands are analogous to the corresponding ones for

dealing with lists (such as ListPlot) or functions (such as Plot, Plot3D, and

ContourPlot).

1. MatrixPlot[A] generates a grid with the same dimensions as A. The

cells are shaded according to the entries of A. The default is in color.

2. ArrayPlot[A] generates a grid with the same dimensions as A. The cells

are shaded according to the entries of A. The default is in black and

white.

3. ListContourPlot[A] generates a contour plot using the entries of A as

the height values.

4. ReliefPlot[A] generates a relief plot using the entries of A as the height

values.
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Observe that ArrayPlot and MatrixPlot are virtually interchangeable. How-

ever, the entries of ArrayPlot need not be numbers. If Mathematica cannot

determine how to shade a cell, the default is to shade it in a dark maroon

color. Although these functions generate graphics that depend on the

entries of the matrix, loosely speaking we will use phrases such as “we

use MatrixPlot to plot A” and “we use ArrayPlot to graph A” to describe

the graphic that results from applying one of these functions to an array.

Because the figures in

the text are in black

and white, refer to the

CD that accompanies

the text to see the

images in color.

For example, consider the arrays A =

⎛
⎝ 1 0 .3

.4 .5 .1

.2 .3 0

⎞
⎠, B =

⎛
⎝ 1 0

0 1 0

.1 .2 .3

⎞
⎠, and

C =

( (
1 0 0

) (
0 1 0

)(
.3 .4 .5

) (
.1 .2 .3

)).

In the first command, Mathematica shades all the cells according to

its GrayLevel value. However, in the second and third commands, Math-

ematica cannot shade the cells in the second row and all the cells,

respectively, because ordered triples cannot be evaluated by GrayLevel.
However, RGBColor evaluates ordered triples so Mathematica shades the

cells in Figure 5.27(c) according to their RGBColor value.

ap1 = ArrayPlot[{{1, 0, .3}, {.4, .5, .1}, {.2, .3, 0}}];
ap2 = ArrayPlot[{{1, 0}, {{.3, .4, .5}, {.1, .2, .3}}}];
ap3 = ArrayPlot[{{{1, 0, 0}, {0, 1, 0}}, {{.3, .4, .5},

{.1, .2, .3}}}];
ap4 = ArrayPlot[{{{1, 0, 0}, {0, 1, 0}}, {{.3, .4, .5},

{.1, .2, .3}}},
ColorFunction→RGBColor];

Show[GraphicsRow[{ap1, ap2, ap3, ap4}]]

MatrixPlot is unable to graphically represent B or C. However, coloring

is automatic with MatrixPlot. See Figure 5.28.

a b c d

FIGURE 5.27

(a) Mathematica shades all cells according to their heights. (b) Mathematica does not

know how to shade the cells in the second row. (c) Mathematica cannot shade any

of the cells. (d) Mathematica shades all four cells using RGBColor



5.6 Matrices and Graphics 417

1 2 3

1 2 3

1

2

3

1

2

3

1 2 3

1 2 3

1

2

3

1

2

3

FIGURE 5.28

By default, MatrixPlot uses a color scheme. Use ColorFunction to change the
colors
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FIGURE 5.29

A comparison of how red, green, and blue affect RGBColor[r,g,b]

mp1 = MatrixPlot[{{1, 0, .3}, {.4, .5, .1}, {.2, .3, 0}}];
mp2 = MatrixPlot[{{1, 0, .3}, {.4, .5, .1}, {.2, .3, 0}},

ColorFunction→ “PlumColors”];
Show[GraphicsRow[{mp1, mp2}]]

If you need to adjust the color of a graphic, usually you can use the

ColorSchemes palette to select an appropriate gradient or color function.

In other situations, you might wish to create your own using Blend. To use

Blend, you might need to know how various RGBColors or CMYKColors vary

as the variables affecting the color change.

ArrayPlot can help us see the variability in the colors. With the following,

we see how RGBColor[r,g,b] affects color for b = 0, g = 0, and then r = 0.

The results are shown together in Figure 5.29. The figure can help us select

appropriate values to generate our own color blending function using Blend
rather than relying on Mathematica’s built-in color schemes and gradients.

In these calculations,

t1 is a 256 × 256 array

for which each entry

is an ordered triple. In

the first t1, the

ordered triple has the

form (r, g, 0), in the

second the form

(r, 0, b), and so on.

t1 = Table[{r, g, 0}//N, {r, 0, 255}, {g, 0, 255}];
redgreen = ArrayPlot[t1, Axes→Automatic, AxesOrigin→ {0, 0},
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FrameTicks→Automatic, FrameLabel→ {red, green},
LabelStyle→Medium, ColorFunction→RGBColor];

t2 = Table[{r, 0, b}//N, {r, 0, 255}, {b, 0, 255}];
redblue = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {red, blue},
LabelStyle→Medium, ColorFunction→RGBColor];

t2 = Table[{0, g, b}//N, {g, 0, 255}, {b, 0, 255}];
greenblue = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {green, blue},
LabelStyle→Medium, ColorFunction→RGBColor];

s1 = Show[GraphicsRow[{redgreen, redblue, greenblue}]]

We modify the calculation slightly to see how CMYKColor varies as we

adjust two parameters. Keep in mind that each t2 is a 256 × 256 array.

Each entry of t2 is an ordered quadruple, which is illustrated in the first

calculation, in which we use Part to take the fifth element of the eighth

part of t2. (See Figure 5.30.)

t2 = Table[{c, m, 0, 0}//N, {c, 0, 255}, {m, 0, 255}];
t2[[8, 5]]
{7., 4., 0., 0 . }
cmplot = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {c, m},
LabelStyle→Medium, ColorFunction→CMYKColor];

t2 = Table[{c, 0, y, 0}//N, {c, 0, 255}, {y, 0, 255}];

100 200

100

200

100 200

100

200

m

c

100 200

100

200

100 200

100

200

y

c

100 200

100

200

100 200

100

200

k

c

100 200

100

200

100 200

100

200

y

m

100 200

100

200

100 200

100

200

k

m

100 200

100

200

100 200

100

200

k

y

FIGURE 5.30

A comparison of how c, m, y, and k affect CMYKColor[c,m,y,k]
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cyplot = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},
FrameTicks→Automatic, FrameLabel→ {c, y},

LabelStyle→Medium, ColorFunction→CMYKColor];
t2 = Table[{c, 0, 0, k}//N, {c, 0, 255}, {k, 0, 255}];
ckplot = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {c, k},
LabelStyle→Medium, ColorFunction→CMYKColor];

t2 = Table[{0, m, y, 0}//N, {m, 0, 255}, {y, 0, 255}];
myplot = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {m, y},
LabelStyle→Medium, ColorFunction→CMYKColor];

t2 = Table[{0, m, 0, k}//N, {m, 0, 255}, {k, 0, 255}];
mkplot = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {m, k},
LabelStyle→Medium, ColorFunction→CMYKColor];

t2 = Table[{0, 0, y, k}//N, {y, 0, 255}, {k, 0, 255}];
ykplot = ArrayPlot[t2, Axes→Automatic, AxesOrigin→ {0, 0},

FrameTicks→Automatic, FrameLabel→ {y, k},
LabelStyle→Medium, ColorFunction→CMYKColor];

Show[GraphicsGrid[{{cmplot, cyplot, ckplot}, {myplot, mkplot, ykplot}}]]

You can load files into Mathematica with Import. Generally, the underly-

ing structure of the loaded file is relatively easy to understand. Be careful

when you import data into Mathematica. We recommend that you use

ExampleData to investigate your routines before finalizing them. Although

importing external files into Mathematica is easy, understanding the under-

lying structure of the imported data may take some time but may be

necessary to produce the results you desire.

We illustrate a few of the subtle differences that can be encountered

with several color and black-and-white gifs and jpegs.

Using Import, we import a graphic of the primary author into Math-

ematica. The result is shown in Figure 5.31(a).

p1 = Import[“martha01sa . gif”]

With Length, we see that p1 has four elements. We can examine the entries

with Part.

Length[p1]
4

With p1[[1]], we select the first part of p1. When large output is the result

of a calculation, Mathematica warns you before displaying it. (Note that

Short[p1[[1]]] returns a similar result.)
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The result helps us understand the structure of p1 and p1[[1]], which is

another list. The second element of p1 tells us the size of the image.

p1[[2]]
ImageSize → {216, 288}

The third and fourth elements tell us how the image is to be plotted—its

plot range and background.

p1[[3]]
PlotRange → {{0, 216}, {0, 288}}
p1[[4]]
Background → None

The data determining the image is contained in p1[[1,1]], which is a 288 ×
216 matrix. To see so, first enter p1[[1,1]]

and then click on Show More twice.

To determine the dimensions of the matrix use Length.

We now use ArrayPlot to graph p1[[1,1]]. ArrayPlot goes from up (first row)

to down (last row), so our initial image (Figure 5.31(b)) is a reverse of the

original.

g1a = ArrayPlot[p1[[1, 1]]]

We use Reverse to correct the situation (Figure 5.31(c)). Generally,

Reverse[{a1, a2, ..., an}] returns the list {an, ..., a2, a1}; the reverse of the

original list.

g1b = ArrayPlot[Reverse[p1[[1, 1]]]]
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Now that we have oriented the image in the way we want, we appy a color

function to it by applying one of the built-in color gradients to the list. We

choose Pastel.

g2a = ArrayPlot[Reverse[p1[[1, 1]]], ColorFunction→ “Pastel”]

The results are shown side-by-side in Figure 5.31. Printed on a color printer,

the results are amazing.

Show[GraphicsRow[{p1, g1a, g1b, g2a}]]

a b c d

FIGURE 5.31

(a) The original. (b) Applying ArrayPlot to the original data points. (c) Reorienting the
image. (d) Applying a color function to the data points
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Use Inset to place one graphic within another

Now that we understand how to manipulate the gif image, we can be cre-

ative. In the following, the image is scaled so that the width of the image

is 70 pixels (because of ImageSize->70). We then display the small image

with another graphic. Using Inset, we put Martha next to a sine graph that

is plotted using the same coloring gradient. See Figure 5.32.

g1 = ArrayPlot[p1[[1, 1]], ColorFunction→ “BrightBands”,
ImageSize→70];

p2 = Plot[Sin[x], {x, 0, 2Pi}, Epilog –>Inset[g1, {3Pi/2, 1/2}],
ColorFunction→ “BrightBands”, PlotStyle→Thickness[.05]]

An alternative way to visualize the data is to use ListContourPlot. To

ensure that the aspect ratio of the original image is preserved, include

the AspectRatio->Automatic option in the ListContourPlot command. (See

Figure 5.33)

glp1 = ListContourPlot[p1[[1, 1]], AspectRatio→Automatic];
g1p2 = ListContourPlot[p1[[1, 1]],ColorFunction→ “Pastel”,

AspectRatio→Automatic]
g1p3 = ListContourPlot[p1[[1, 1]],ColorFunction→ “GrayTones”,

AspectRatio→Automatic]
Show[GraphicsRow[{glp1, g1p2, g1p3}]]

The underlying format of each structure ( jpeg, gif, etc.) is different. With

p1 = Import[“jim01a.jpg”];
Length[p1]

3
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FIGURE 5.33

Using ListContourPlot rather than ArrayPlot

we import a jpeg of the second author of the text into Mathematica and

name the result p1. Length shows us that p1 is a list with three elements.

(See Figure 5.34)

The first part of p1, obtained with p1[[1]], is quite long.

By clicking on Show More we see that p1[[1]] is an array of ordered triples.

The other parts of p1 are not as long. They specify the style of the image.

p1[[1, 2]]
{{0, 0}, {216, 288}}
p1[[1, 3]]
{0, 255}
p1[[1, 4]]



424 CHAPTER 5 Matrices and Vectors

a b c

FIGURE 5.34

(a) An upside down scary Jim. (b) Correct side up but still scary. (c) Color applied but

a bit less scary

ColorFunction → RGBColor

p1[[2]]
ImageSize → {216, 288}
p1[[3]]
PlotRange → {{0, 216}, {0, 288}}

For the color jpeg, the first element of the first component is the data array

that determines the image.

Short[p1[[1,1]]]
{{{54, 113, 109}, {52, 111, 107}, {49, 108, 104}, {55, 110, 107},

〈〈209〉〉, {78, 114, 126}, {64, 106, 105}, {65, 108, 101}}, 〈〈287〉〉}
However, as before, the image generated with ArrayPlot is upside down—

and the coloring is off.

j1a = ArrayPlot[p1[[1, 1]]]

To invert the image, we use Reverse. As stated previously, Reverse[list]
reverses the entries of list.

j1b = ArrayPlot[Reverse[p1[[1, 1]]]]

To correct the color, we tell Mathematica to use the RGBColor function.

j1c = ArrayPlot[Reverse[p1[[1, 1]]], ColorFunction→RGBColor]
Show[GraphicsRow[{ j1a, j1b, j1c}]]

To apply your own color function, you need to manipulate the data. For

this image, viewing it as a matrix, it has 288 rows and 216 columns.
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Length[p1[[1,1]]]
288

Length[p1[[1,1,1]]]
216

Each entry of the matrix p1[[1,1]] is an ordered triple. To apply a color

function to the ordered triple, we can proceed in a variety of ways. One

approach is to convert the matrix to a list of ordered triples.

p2 = Flatten[p1[[1, 1]], 1];
Short[p2]

{{54, 113, 109}, {52, 111, 107}, {49, 108, 104}, {55, 110, 107},

〈〈62200〉〉, {63, 67, 96}, {41, 45, 74}, {40, 45, 74}, {37, 42, 71}}

p2 is a list of ordered triples. Our function, h, adds the last two elements of

each triple and divides by two. We apply h to p2 with Map and name the

result p3. We convert p3 back to a 288 × 216 array using Partition. We use

ArrayPlot to visualize the result. In this case, the gray level used to shade

each cell is scaled by the corresponding entry of p4.

h[{x –, y –, z –}] = (y + z)/2;
p3 = Map[h, p2];
p4 = Partition[p3, 216];
j2a = ArrayPlot[Reverse[p4]];

The built-in color gradients (refer to the ColorSchemes palette) are

functions of a single variable. Thus,

j2b = ArrayPlot[Reverse[p4],ColorFunction→ “SolarColors”]

applies the SolarColors function to the array (Figure 5.35(b)) whereas,

j2c = ArrayPlot[Reverse[p4],ColorFunction→ “DarkBands”]

applies DarkBands to the array (Figure 5.35(c)).

Show[GraphicsRow[{j2a, j2b, j2c}]]

The structure of a black-and-white jpeg differs from that of a color one. To

see so, we import a very old picture of the second author of this text, and

name the result p1. With Length, we see that p1 has three parts

Length[p1]
3
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a b c

FIGURE 5.35

Manipulating a color jpeg with ColorFunction

p1[[1]] is also a list.

The data defining the graphic is contained in the list p1[[1,1]], which is a

600 × 428 array/matrix. The other parts of p1 describe the remaining parts

of the graphic.
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FIGURE 5.36

Using ListContourPlot along with various options to graphically represent a matrix

p1[[1,1]]
p1[[2]]
ImageSize → {428, 600}
p1[[3]]
PlotRange → {{0, 428}, {0, 600}}

In Figure 5.36, we illustrate the use of ListContourPlot along with various

options.

g1 = ListContourPlot[p1[[1, 1]], AspectRatio→Automatic]
g2 = ListContourPlot[p1[[1, 1]],

AspectRatio→ Automatic,ColorFunction→ “ThermometerColors”]
g3 = ListContourPlot[p1[[1, 1]], AspectRatio→Automatic,

ColorFunction→ “DarkBands”]
g4 = ListContourPlot[p1[[1, 1]], AspectRatio→Automatic,

ColorFunction→ “SolarColors”]
Show[GraphicsGrid[{{g1, g2}, {g3, g4}}]]

Figure 5.37 shows variations obtained with ReliefPlot and ListContourPlot.

g2 = ReliefPlot[p1[[1, 1]], AspectRatio→Automatic,
ColorFunction→ “GrayTones”,FrameTicks→ None];

g3 = ListContourPlot[p1[[1, 1]], AspectRatio→Automatic,
ColorFunction→ “GrayTones”,FrameTicks→ None];

g4 = ListContourPlot[p1[[1, 1]], AspectRatio→Automatic,
ContourStyle→Black, ContourShading→False,

FrameTicks→None];
Show[GraphicsRow[{g2, g3, g4}]]

ReliefPlot can help add insight to images, especially when they have geo-

graphical or biological meaning. For example, this jpeg shows the beginning

of a biological process of a cell.

p1 = Import[“071105fertx2c.jpg”];
Show[p1, ImageSize→Small]
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FIGURE 5.37

Manipulating an image with ListContourPlot and ReliefPlot

With Length, we see that p1[[1,1]] is a 500 × 400 array.

Length[p1[[1,1]]]
500

Length[p1[[1,1,1]]]
400

Viewing p1[[1,1]] as a 500 × 400 array, each entry is 1 × 3 array/vector. To

easily apply a function, f, that assigns a number to each ordered triple, we

use Flatten to convert the nested list/array p1[[1,1]] to a list of ordered triples

in p2.

p2 = Flatten[p1[[1, 1]], 1];
Short[p2]
Length[p2]
{{194, 215, 158}, {189, 208, 144},

〈〈199996〉〉, {137, 66, 46}, {139, 68, 48}}
200000
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FIGURE 5.38

Using ReliefPlot, ListContourPlot, and ListDensityPlot along with various options to
graphically represent a matrix

To apply our own color function to this data set, we convert the ordered

triples to some other form. For illustrative purposes, we convert each

ordered triple (x, y, z) in p2 to the number x + y2
. The result is converted

back to a 500 × 400 array, with Partition in p3.

f[y –]:=y[[1]] + y[[2]]∧ 2
p3 = Partition[Map[f, p2], 400];
Length[p3]
500

We then use ReliefPlot, ListContourPlot, and ListDensityPlot along with

various options to graph the result in Figure 5.38.

g1 = ReliefPlot[p3, AspectRatio→Automatic,
ColorFunction → “DarkRainbow”];
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g2 = ReliefPlot[p3, AspectRatio→Automatic,
ColorFunction → “NeonColors”,Ticks → None,

Axes→None, FrameTicks→None]
g3 = ListContourPlot[p3, AspectRatio→Automatic,

ColorFunction → “NeonColors”,Ticks → None,
Axes→None, FrameTicks→None]

g4 = ListDensityPlot[p3, AspectRatio→Automatic,
ColorFunction→ “NeonColors”, Ticks→None,

Axes→None, FrameTicks→None]

5.7 EXERCISES
1. Solve −3y− z− 3w =−1, −3x + 3y− 3z− 3w =−1, 2x + 2y− z + w = 2.

2. Find the eigenvalues and eigenvectors of each matrix. Verify that your

results are correct. (a) B =

(
0 4

2 −2

)
, (b) A =

⎛
⎝ 3 5 −4

−5 6 3

−3 2 −2

⎞
⎠, and (c)

A =

⎛
⎜⎜⎜⎜⎜⎝

5 2/3 1 −4/3 −4 −4/3

0 −1/6 −2 −1/6 7 23/6

−1/2 −1/4 5/2 −1/4 1 3/4

4 1/2 0 1/2 −3 −1/2

0 −1 0 0 4 1

−1 1/6 −1 1/6 2 19/6

⎞
⎟⎟⎟⎟⎟⎠ Comment: In some cases,

numerical results (use N) may be more meaningful than the exact

ones.

3. For each of the following matrices, find the eigenvalues, eigenvectors,

characteristic polynomial, and minimal polynomial:

(a) A =

⎛
⎜⎝
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎠, (b) B =

⎛
⎜⎝
−3 −2 −2 −4

2 1 2 4

2 2 1 4

−1 −1 −1 −3

⎞
⎟⎠,

(c) C =

⎛
⎜⎝
−3 −1 5 −5

−6 −9 10 −15

6 8 −11 15

8 10 −14 19

⎞
⎟⎠, and (d) D =

⎛
⎜⎝
−3 0 1 −1

−1 −1 0 −1

−3 1 1 −1

0 1 0 −1

⎞
⎟⎠.

4. Let Jn(�) denote the n × n matrix with �’s down the diagonal,

0’s below, and 1’s to the right of each � (for example, J3(�) =⎛
⎝� 1 0

0 � 1

0 0 �

⎞
⎠), and let J =

(
Jn(�1) 0

0 Jm(�2)

)
denote the (n + m) × (n + m)
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matrix with “blocks” Jn and Jm and 0’s elsewhere (for example,

(
J2(�1) 0

0 J3(�2)

)
=

⎛
⎜⎜⎜⎝

�1 1 0 0 0

0 �1 0 0 0

0 0 �2 1 0

0 0 0 �2 1

0 0 0 0 �2

⎞
⎟⎟⎟⎠). Find the eigenvalues, eigen-

vectors, characteristic polynomial, and minimal polynomial of J. Illus-

trate your results with examples.

5. Find the unit normals to w = cos(4x2
+ 9y2

). Illustrate the result graph-

ically.

6. Evaluate
∮

C

(
e
√

y
+ x

)
dx +

(
2y + cos x

)
dy, where C is the boundary of

the region between y = x2
and x = y2

.

7. Find the outward flux of the vector field

F(x, y, z) =
(
xy + x2yz

)
i +

(
yz + xy2z

)
j +

(
xz + xyz2

)
k

through the surface of the cube cut from the first octant by the planes

x = 2, y = 2, and z = 2.

8. Verify Stokes’ theorem for the vector field

F(x, y, z) =
(
y2 − z

)
i +

(
x + z2

)
j +

(
x2 − y

)
k

and S the portion of the paraboloid z = f(x, y) = 4 − (x2
+ y2

), z ≥ 0.

9. The Fibonacci numbers satisfy the recurrence relation Fn = Fn−2 +

Fn−1, where F1 = F2 = 1. Provide a convincing argument that

∣∣∣∣∣∣∣∣∣
Fn+1 Fn+2 . . . Fn+k

Fn+k+1 Fn+k+2 . . . Fn+2k
...

...
...

...

Fn+k(k−1)+1 Fn+k(k−1)+2 . . . Fn+k2

∣∣∣∣∣∣∣∣∣
= 0.

Suggestion: Use Fibonacci.

10. The Boy surface has parametrization

x(s, t) =

√
2 cos

2 t cos 2s + cos s sin 2t

2 −√
2 sin 3s sin 2t

y(s, t) =

√
2 cos

2 t cos 2s + cos s sin 2t

2 −√
2 sin 3s sin 2t

z(s, t) =
3 cos

2 t

2 −√
2 sin 3s sin 2t
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On the left, umbilic torus; on the right Boy surface

and the umbilic torus has parametrization

x(s, t) = (7 + cos(s/3 − 2t) + 2 cos(s/3 + t)) sin s

y(s, t) = (7 + cos(s/3 − 2t) + 2 cos(s/3 + t)) cos s

z(s, t) = sin(s/3 − 2t) + 2 sin(s/3 + t).

See Figure 5.39. Determine if either of these surfaces is orientable.

11. Using 0’s for dots and 1’s for dashes and omitting spaces and punctu-

ation, the following phrases are translated to Morse code as follows:

“S.O.S” becomes 0, 0, 0, 1, 1, 1, 0, 0, 0; “Save our souls” becomes 0, 0,

0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1,

0, 0, 0, 0, 0; “Mathematica is terrific” becomes 1, 1, 0, 1, 1, 0, 0, 0, 0,

0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0; “Can I borrow the car” becomes 1, 0, 1, 0,

0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0,

0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0; “Are aliens on earth” becomes 0, 1,

0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,

1, 0, 1, 0, 0, 0, 0; and “Work harder” becomes 0, 1, 1, 1, 1, 1, 0, 1, 0,

1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0. Represent this array

graphically using (at least) three different methods. Challenge: Write a

function symboltomorse that converts strings of letters to Morse code.

Translate your favorite five quotes into Morse code and represent the

result graphically.

12. A given curvature function determines a plane curve: The curve C
parametrized by arc length with curvature 	(s) has parametrization

r(s) = 〈x(s), y(s)〉, where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx/ds = cos �

dy/ds = sin �

d�/ds = 	

x(a) = c, y(a) = d, �(0) = �0

. (5.27)
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You can often use NDSolve to solve system (5.27). Plot the curve

C for which 	(s) = e−s
+ es

for −5 ≤ s ≤ 5 if x(0) = y(0) = �(0) = 0.

Hint:

Repeat the exercise given the following curvature functions (all for

−40 ≤ s ≤ 40): 	(s) = s + sin s, 	(s) = sJ1(s), 	(s) = sJ2(s), 	(s) = s sin

sin(s), 	(s) = s sin
2

sin(s), and 	(s) = |s sin sin(s)|. See Figure 5.40.

13. Consider placing a tube around a curve (refer to tubeplot) but letting

the radius change:

21.0 20.5 0.5 1.0
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FIGURE 5.40

You can generate stunning curves by specifying a curvature function
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seashell[� ][r ][t , � ]:=�[t] +
rt(Cos[�]normal[�][t] + Sin[�]binormal[�][t])

(a) Use seashell with �(t) = 〈t, t cos 2t, t sin 2t〉 to create Figure 5.41.

(b) Illustrate the curve with its Frenet frame field.
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FIGURE 5.41

(a) A winding curve. (b) A seashell. (c) A winding curve in a seashell



6
CHAPTER

Applications Related to Ordinary
and Partial Differential

Equations

For more detailed

discussions regarding

Mathematica and

differential equations,

see references such as

Abell and Braselton’s

Differential Equations
with Mathematica [1].

Chapter 6 discusses Mathematica’s differential equations commands. The

examples used to illustrate the various commands are similar to examples

routinely done in a one- or two-semester differential equations course.

6.1 FIRST-ORDER DIFFERENTIAL EQUATIONS

6.1.1 Separable Equations

Because they are solved by integrating, separable differential equations

are usually the first introduced in the introductory differential equations

course.

Definition 1 (Separable Differential Equation). A differential equa-
tion of the form

f ( y) dy = g(t) dt (6.1)

is called a first-order separable differential equation.

We solve separable differential equations by integrating.

Remark 6.1 The command

DSolve[y′[t]==f[t, y[t]], y[t], t]

attempts to solve y′
= dy/dt = f (t, y) for y.

435
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Example 6.1.1 Solve each of the following equations: (a) y′ − y2
sin t = 0; (b) y′

= �y

(
1 − 1

K
y

)
,

K, � > 0 constant.

Solution (a) The equation is separable so we separate and then integrate:

1

y2
dy = sin t dt∫

1

y2
dy =

∫
sin t dt

−1

y
= − cos t + C

y =
1

cos t + C
.

We check our result with DSolve.

sola = DSolve[y′[t] – y[t]∧2Sin[t]==0, y[t], t]{{
y[t] → 1

– C[1] + Cos[t]

}}
Observe that the result is given as a list. The formula for the solution is the second

part of the first part of the first part of sola.

sola[[1, 1, 2]]
1

– C[1] + Cos[t]
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Several solutions of y′ − y2
sin t = 0

We then graph the solution for various values of C with Plot in Figure 6.1.

toplota = Table[sola[[1, 1, 2]]/.C[1]→ – i, {i, 2, 10}]{
1

2 + Cos[t]
, 1

3 + Cos[t]
, 1

4 + Cos[t]
, 1

5 + Cos[t]
, 1

6 + Cos[t]
, 1

7 + Cos[t]
, 1

8 + Cos[t]
, 1

9 + Cos[t]
, 1

10 + Cos[t]

}
Plot[Tooltip[toplota], {t, 0, 2Pi}, PlotRange→ {0, 1},

AxesOrigin→ {0, 0}]
expression /. x->y
replaces all

occurrences of x in

expression by y.

Table[a[k],{k,n,m}]
generates the list an,
an+1,…, am−1, am.

To graph the list of

functions {list} for

a ≤ x ≤ b, enter

Plot[list,{x,a,b}].

(b) After separating variables, we use partial fractions to integrate:

y′ = �y

(
1 − 1

K
y

)
1

�y
(
1 − 1

K y
)dy = dt

1

�

(
1

y
+

1

K − y

)
= dt

1

�

(
ln |y| − ln |K − y|) = C1 + t

y

K − y
= Ce�t

y =
CKe�t

Ce�t − 1
.

We check the calculations with Mathematica. First, we use Apart to find the partial

fraction decomposition of
1

�y

(
1 − 1

K
y

) .

s1 = Apart[1/(� y(1 – 1/k y)), y]
1

y� – 1

( – k + y)�
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Then, we use Integrate to check the integration.

s2 = Integrate[s1, y]

k
(

Log[y]

k� − Log[−k + y]

k�

)
Last, we use Solve to solve 1

�

(
ln |y| − ln |K − y|) = ct for y.

Solve[s2==c + t, y]{{
y → ec� + t�k

– 1 + ec� + t�

}}
We can use DSolve to find a general solution of the equation

solb = DSolve[y′[t]==�y[t](1 – 1/ky[t]), y[t], t]{{
y[t] → et� + kC[1]k

– 1 + et� + kC[1]

}}
as well as find the solution that satisfies the initial condition y(0) = y0, although

Mathematica generates several error messages because inverse functions are

being used so the resulting solution set may not be complete.

solc = DSolve[{y′[t]==�y[t](1 – 1/ky[t]), y[0]==y0}, y[t], t]

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not

be found; use Reduce for complete solution information.〉〉
{{

y[t] → et�ky0

k − y0 + et�y0

}}

The equation y′
= �y

(
1 − 1

K y
)

is called the logistic equation (or Verhulst
equation) and is used to model the size of a population that is not allowed to

grow in an unbounded manner. Assuming that y(0) > 0, then all solutions of the

equation have the property that limt→∞ y(t) = K.

To see this, we set � = K = 1 and use VectorFieldPlot, which is contained in

the VectorFieldPlots package, to graph the direction field associated with the

equation in Figure 6.2.

Needs[“VectorFieldPlots`”]
pvf1 = Show[VectorFieldPlot[{1, y(1 – y)}, {t, 0, 5}, {y, 0, 5/2},

ScaleFunction→ (1&)], Axes→Automatic, AxesOrigin→ {0, 0}];

The property is more easily seen when we graph various solutions along with the

direction field as done next in Figure 6.2.

toplot = Table[solc[[1, 1, 2]]/.{�→1, k→1, y0→ i/5}, {i, 1, 12}];
sols = Plot[toplot, {t, 0, 5}, PlotStyle→GrayLevel[0], PlotRange→All];
pvf2 = Show[pvf1, sols];
Show[GraphicsColumn[{pvf1, pvf2}]]
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FIGURE 6.2

(Top) A typical direction field for the logistic equation. (Bottom) A typical direction field

for the logistic equation along with several solutions
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When Mathematica encounters inverse functions, it might choose the

incorrect branch to form a continuous solution to an initial-value problem.

Example 6.1.2 Solve dy/dt = sin t cos y, y(1) = 3.

Solution When we use DSolve to solve the equation and the initial-value problem, Mathe-

matica warns us that inverse functions are being used.

From the direction field, we see that the solution satisfying y(1) = 3 is continuous

for (at least) 0 ≤ t ≤ 4�. However, the explicit solution returned by DSolve is not

the solution that is continuous on [0, 4�]. See Figure 6.3(a).

Needs[“VectorFieldPlots`”]
pvf1 = Show[VectorFieldPlot[{1, Sin[t]Cos[y]}, {t, 0, 4Pi}, {y, – 2Pi, 2Pi},

ScaleFunction→ (1&), PlotPoints→25], Axes→Automatic,
AxesOrigin→ {0, 0}];

psol1 = Plot[y[t]/.sol1, {t, 0, 4Pi},
PlotStyle→ {{GrayLevel[.5], Thickness[.01]}}];

discont = Show[pvf1, psol1]

To see the continuous solution, we use NDSolve to generate a numerical

solution to the initial value problem. If possible,

NDSolve[{y′[t]==f[t,y[t]],y[t0]=y0},y[t],{t,a,b}]
attempts to numerically solve y′

= f (t, y), y(t0) = y0 for a ≤ t ≤ b.

NDSolve is discussed

in more detail later in

the chapter.

sol2 = NDSolve[{y′[t]==Sin[t]Cos[y[t]], y[1]==3}, y[t], {t, 0, 4Pi}]
{{y[t] → InterpolatingFunction[{{0., 12.5664}}, <>][t]}}

In Figure 6.3(b), we see that the result returned by NDSolve is continuous on

[0, 4�].

psol2 = Plot[y[t]/.sol2, {t, 0, 4Pi},
PlotStyle→ {{GrayLevel[.5], Thickness[.01]}}];

cont = Show[pvf1, psol2]
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FIGURE 6.3

(a) The solution returned by DSolve is discontinuous on [0, 4�]. (b) We use NDSolve
to find the continuous solution of the initial-value problem
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Visualizing how changing t0 and y0 affects the solution that satisfies y(t0) = y0

With Manipulate, you can see how varying the initial conditions affects the solution.

See Figure 6.4. When you drag the locator points, the solution changes accordingly.

Manipulate[
sol1 = NDSolve[{y′[t]==Sin[t]Cos[y[t]], y[pt[[1, 1]]]==pt[[1, 2]]},

y[t], {t, 0, 4Pi}];
psol1 = Plot[y[t]/.sol1, {t, 0, 4Pi},

PlotStyle→ {{GrayLevel[.7], Thickness[.01]}}];
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sol2 = NDSolve[{y′[t]==Sin[t]Cos[y[t]], y[pt[[2, 1]]]==pt[[2, 2]]},
y[t], {t, 0, 4Pi}];

psol2 = Plot[y[t]/.sol2, {t, 0, 4Pi},
PlotStyle→ {{GrayLevel[.7], Dashing[{0.02}], Thickness[.01]}}];

sol3 = NDSolve[{y′[t]==Sin[t]Cos[y[t]], y[pt[[3, 1]]]==pt[[3, 2]]}, y[t],
{t, 0, 4Pi}];

psol3 = Plot[y[t]/.sol3, {t, 0, 4Pi},
PlotStyle→ {{GrayLevel[.4], Thickness[.01]}}];

initialpt = Graphics[Point[{pt}], PlotRange→ {{0, 4Pi}, { – 2Pi, 2Pi}}];
Show[pvf1, psol1, psol2, psol3, initialpt, Axes→Automatic,

PlotRange→ {{0, 4Pi}, { – 2Pi, 2Pi}}, AspectRatio→Automatic],
{{pt, {{0, 0}, {2Pi, Pi}, {2Pi, – Pi}}}, Locator}
]

6.1.2 Linear Equations
Definition 2 (First-Order Linear Equation). A differential equation
of the form

a1(t)
dy

dt
+ a0(t)y = f (t), (6.2)

where a1(t) is not identically the zero function, is a first-order linear
differential equation.

Assuming that a1(t) is not identically the zero function, dividing equa-

tion (6.2) by a1(t) gives us the standard form of the first-order linear

equation:

dy

dt
+ p(t)y = q(t). (6.3)

If q(t) is identically the zero function, we say that the equation is homoge-
neous. The corresponding homogeneous equation of equation (6.3) is

dy

dt
+ p(t)y = 0. (6.4)

Observe that equation (6.4) is separable:

dy

dt
+ p(t)y = 0

1

y
dy = −p(t) dt

ln | y | = −
∫

p(t) dt + C

y = Ce−
∫

p(t) dt.
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Notice that any constant multiple of a solution to a linear homogeneous

equation is also a solution. Now suppose that y is any solution of

equation (6.3) and yp is a particular solution of equation (6.3). Then,A particular solution
is a specific solution

to the equation that

does not contain any

arbitrary constants.

(
y − yp

)′
+ p(t)

(
y − yp

)
= y′ + p(t)y − (yp

′ + p(t)yp

)
= q(t) − q(t) = 0.

Thus, y − yp is a solution to the corresponding homogeneous equation of

equation (6.3). Hence,

y − yp = Ce−
∫

p(t) dt

y = Ce−
∫

p(t) dt + yp

y = yh + yp,

where yh = Ce−
∫

p(t) dt
. That is, a general solution of equation (6.3) is y =

yh + yp, where yp is a particular solution to the nonhomogeneous equation

and yh is a general solution to the corresponding homogeneous equation.

Thus, to solve equation (6.3), we need to first find a general solution

to the corresponding homogeneous equation, yh, which we can accom-

plish through separation of variables, and then find a particular solution,

yp, to the nonhomogeneous equation.

If yh is a solution to the corresponding homogeneous equation of

equation (6.3), then for any constant C, Cyh is also a solution to the cor-

responding homogeneous equation. Therefore, it is impossible to find a

particular solution to equation (6.3) of this form. Instead, we search for

a particular solution of the form yp = u(t)yh, where u(t) is not a constant

function. Assuming that a particular solution, yp, to equation (6.3) has the

form yp = u(t)yh, differentiating gives us yp
′

= u′yh + uyh
′

and substituting

into equation (6.3) results in

yp
′ + p(t)yp = u′yh + uyh

′ + p(t)uyh = q(t).

Because uyh
′
+ p(t)uyh = u

[
yh

′
+ p(t)yh

]
= u · 0 = 0, we obtain

u′yh = q(t)

u′ =
1

yh

q(t)

u′ = e
∫

p(t) dtq(t)

u =

∫
e
∫

p(t) dtq(t) dt

yh is a solution to

the corresponding

homogeneous

equation, so

yh
′
+ p(t)yh = 0.

so

yp = u(t) yh = Ce−
∫

p(t) dt

∫
e
∫

p(t) dtq(t) dt.
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Because we can include an arbitrary constant of integration when evalua-

ting
∫

e
∫

p(t) dtq(t) dt, it follows that we can write a general solution of

equation (6.3) as

y = e−
∫

p(t) dt

∫
e
∫

p(t) dtq(t) dt. (6.5)

Alternatively, multiplying equation (6.3) by the integrating factor �(t) =

e
∫

p(t) dt
gives us the same result:

e
∫

p(t) dt dy

dt
+ p(t)e

∫
p(t) dty = q(t)e

∫
p(t) dt

d

dt

(
e
∫

p(t) dty
)

= q(t)e
∫

p(t) dt

e
∫

p(t) dty =

∫
q(t)e

∫
p(t) dtdt

y = e−
∫

p(t) dt

∫
q(t)e

∫
p(t) dtdt.

Thus, first-order linear equations can always be solved, although the

resulting integrals may be difficult or impossible to evaluate exactly.

Mathematica is able to solve the general form of the first-order equation,

the initial-value problem y′ + p(t)y = q(t), y(0) = y0,

as well as the corresponding homogeneous equation,

although the results contain unevaluated integrals.
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Example 6.1.3 (Exponential Growth). Let y = y (t) denote the size of a population at time t. If

y grows at a rate proportional to the amount present, y satisfies

dy

dt
= �y, (6.6)

where � is the growth constant. If y(0) = y0, using equation (6.5) results in

y = y0e�t
. We use DSolve to confirm this result.

DSolve[{y′[t]==� y[t], y[0]==y0}, y[t], t]{{
y[t] → et�y0

}}

dy/dt = k
(
y − ys

)
models Newtons law
of cooling: The rate

at which the

temperature, y(t),
changes in a

heating/cooling body

is proportional to the

difference between

the temperature of the

body and the constant

temperature, ys, of the

surroundings.

Example 6.1.4 Solve each of the following equations: (a) dy/dt = k
(

y − ys

)
, y(0) = y0, k and ys

constant; (b) y′ − 2ty = t (c) ty′ − y = 4t cos 4t − sin 4t.

Solution (a) By hand, we rewrite the equation and obtain y′ − ky = −kys. A general solution

of the corresponding homogeneous equation y′ − ky = 0 is yh = ekt
. Because k and

−kys are constants, we suppose that a particular solution of the nonhomogeneous

equation, yp, has the form yp = A, where A is a constant.

This will turn out to

be a lucky guess. If

there is not a solution

of this form, we

would not find one of

this form.

Assuming that yp = A, we have y′
p = 0, and substitution into the nonhomo-

geneous equation gives us

yp
′ − kyp = −KA = −kys so A = ys.

Thus, a general solution is y = yh + yp = Cekt
+ ys. Applying the initial condition

y(0) = y0 results in y = ys + (y0 − ys)e
kt

.

We obtain the same result with DSolve. We graph the solution satisfying

y(0) = 75 assuming that k = −1/2 and ys = 300 in Figure 6.5. Notice that y(t) → ys

as t → ∞.

sola = DSolve[{y′[t]==k(y[t] – ys), y[0]==y0}, y[t], t]{{
y[t] → ekty0 + ys – ektys

}}
Plot[y[t]/.sola/.{k→ – 1/2, ys→300, y0→75}, {t, 0, 10}]

(b) The equation is in standard form and we identify p(t) = −2t. Then, the integrating

factor is �(t) = e
∫

p(t) dt
= e−t2

. Multiplying the equation by the integrating factor, �(t),
results in

e−t2 ( y′ − 2ty) = te−t2 or
d

dt

(
ye−t2

)
= te−t2 .

Integrating gives us ye−t2
= − 1

2
e−t2

+ C or y = − 1

2
+ Cet2

. We confirm the result with

DSolve.

DSolve[y′[t] – 2ty[t]==t, y[t], t]{{
y[t] → – 1

2
+ et2 C[1]

}}
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The temperature of the body approaches the temperature of its surroundings

(c) In standard form, the equation is y′ − y/t = (4t cos 4t − sin 4t)/t so p(t) = −1/t.

The integrating factor is �(t) = e
∫

p(t) dt
= e− ln t

= 1/t, and multiplying the equation by

the integrating factor and then integrating gives us

1

t

dy

dt
− 1

t2
y =

1

t2
(4t cos 4t − sin 4t)

d

dt

(
1

t
y

)
=

1

t2
(4t cos 4t − sin 4t)

1

t
y =

sin 4t

t
+ C

y = sin 4t + Ct,

where we use the Integrate function to evaluate

∫
1

t2
(4t cos 4t − sin 4t) dt =

sin 4t

t
+ C.

Integrate[(4tCos[4t] – Sin[4t])/t∧2, t]
Sin[4t]

t

We confirm this result with DSolve.

sol = DSolve[y′[t] – y[t]/t==
(4tCos[4t] – Sin[4t])/t, y[t], t]

{{y[t] → tC[1] + Sin[4t]}}
In the general solution, observe that every solution satisfies y(0) = 0. That is, the

initial-value problem

dy

dt
− 1

t
y =

1

t2
(4t cos 4t − sin 4t), y(0) = 0

has infinitely many solutions. We see this in the plot of several solutions that is

generated with Plot in Figure 6.6.
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Every solution satisfies y(0) = 0

toplot = Table[sol/.C[1]→ i, {i, – 5, 5}];
Plot[y[t]/.toplot, {t, – 2Pi, 2Pi}, PlotRange→ { – 2Pi, 2Pi},

PlotStyle→GrayLevel[0], AspectRatio→Automatic]

Application: Free-Falling Bodies

The motion of objects can be determined through the solution of first-order

initial-value problems. We begin by explaining some of the theory that is

needed to set up the differential equation that models the situation.

Newton’s Second Law of Motion: The rate at which the momentum
of a body changes with respect to time is equal to the resultant force
acting on the body.

Because the body’s momentum is defined as the product of its mass and

velocity, this statement is modeled as

d

dt
(mv) = F,

where m and v represent the body’s mass and velocity, respectively, and

F is the sum of the forces (the resultant force) acting on the body. Because

m is constant, differentiation leads to the well-known equation

m
dv

dt
= F.

If the body is subjected only to the force due to gravity, then its velocity is

determined by solving the differential equation

m
dv

dt
= mg or

dv

dt
= g,
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where g = 32ft/s
2

(English system) and g = 9.8m/s
2

(metric system). This

differential equation is applicable only when the resistive force due to

the medium (such as air resistance) is ignored. If this offsetting resistance

is considered, we must discuss all of the forces acting on the object.

Mathematically, we write the equation as

m
dv

dt
=
∑(

forces acting on the object
)
,

where the direction of motion is taken to be the positive direction. Because

air resistance acts against the object as it falls and g acts in the same

direction of the motion, we state the differential equation in the form

m
dv

dt
= mg +

(−FR

)
or m

dv

dt
= mg − FR,

where FR represents this resistive force. Note that down is assumed to be

the positive direction. The resistive force is typically proportional to the

body’s velocity, v, or the square of its velocity, v2
. Hence, the differential

equation is linear or nonlinear based on the resistance of the medium taken

into account.

Example 6.1.5 An object of mass m = 1 is dropped from a height of 50 feet above the surface

of a small pond. While the object is in the air, the force due to air resistance

is v. However, when the object is in the pond, it is subjected to a buoyancy force

equivalent to 6v. Determine how much time is required for the object to reach a

depth of 25 feet in the pond.

Solution This problem must be broken into two parts: an initial-value problem for the object

above the pond and an initial-value problem for the object below the surface of

the pond. The initial-value problem above the pond’s surface is found to be

{
dv/dt = 32 − v

v(0) = 0.

However, to define the initial-value problem to find the velocity of the object beneath

the pond’s surface, the velocity of the object when it reaches the surface must be

known. Hence, the velocity of the object above the surface must be determined by

solving the initial-value problem above. The equation dv/dt = 32 − v is separable

and solved with DSolve in d1.

Clear[v, y]
d1 = DSolve[{v′[t]==32 – v[t], v[0]==0}, v[t], t]{{

v[t] → 32e – t
(

– 1 + et
)}}

In order to find the velocity when the object hits the pond’s surface, we must

know the time at which the distance traveled by the object (or the displacement
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FIGURE 6.7

(a) The object has traveled 50 feet when t ≈ 2.5. (b) After approximately 4 seconds,

the object is 25 feet below the surface of the pond

of the object) is 50. Thus, we must find the displacement function, which is done

by integrating the velocity function obtaining s(t) = 32e−t
+ 32t − 32.

p1 = DSolve[{y′[t]==v[t]/.d1, y[0]==0}, y[t], t]{{
y[t] → 32e – t

(
1 – et + ett

)}}
The displacement function is graphed with Plot in Figure 6.7(a). The value of t

at which the object has traveled 50 feet is needed. This time appears to be

approximately 2.5 seconds.

Plot[{y[t]/.p1, 50}, {t, 0, 5}]

A more accurate value of the time at which the object hits the surface is

found using FindRoot. In this case, we obtain t ≈ 2.47864. The velocity at this

time is then determined by substitution into the velocity function resulting in

v(2.47864) ≈ 29.3166. Note that this value is the initial velocity of the object when

it hits the surface of the pond.

t1 = FindRoot[Evaluate[y[t]/.p1]==50, {t, 2.5}]
{t → 2.47864}
v1 = d1/.t1
{{v[2.47864] → 29.3166}}

Thus, the initial-value problem that determines the velocity of the object beneath

the surface of the pond is given by{
dv/dt = 32 − 6v

v(0) = 29.3166.

The solution of this initial-value problem is v(t) = 16

3
+ 23.9833e−t

, and integrating

to obtain the displacement function (the initial displacement is 0) we obtain s(t) =

3.99722 − 3.99722e−6t
+ 16

3
t. These steps are carried out in d2 and p2.
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d2 = DSolve[{v′[t]==32 – 6v[t], v[0]==v1[[1, 1, 2]]}, v[t], t]{{
v[t] → e – 6t

(
23.9832 + 5.33333e6t

)}}
p2 = DSolve[{y′[t]==v[t]/.d2, y[0]==0}, y[t], t]
{{y[t] → e – 6.t

(
– 3.99721 + 3.99721e6.t + 5.33333e6.tt

)}}
This displacement function is then plotted in Figure 6.7(b) to determine when the

object is 25 feet beneath the surface of the pond. This time appears to be near 4

seconds.

Plot[{y[t]/.p2, 25}, {t, 0, 5}]

A more accurate approximation of the time at which the object is 25 feet beneath

the pond’s surface is obtained with FindRoot. In this case, we obtain t ≈ 3.93802.

Finally, the time required for the object to reach the pond’s surface is added to the

time needed for it to travel 25 feet beneath the surface to see that approximately

6.41667 seconds are required for the object to travel from a height of 50 feet

above the pond to a depth of 25 feet below the surface.

t2 = FindRoot[Evaluate[y[t]/.p2]==25, {t, 4}]
{t → 3.93802}
t1[[1, 2]] + t2[[1, 2]]
6.41667

6.1.3 Nonlinear Equations

Mathematica can solve a variety of nonlinear first-order equations that are

typically encountered in the introductory differential equations course.

Example 6.1.6 Solve each: (a)
(
cos x + 2xey)dx +

(
sin y + x2ey − 1

)
dy = 0; (b)

(
y2

+ 2xy
)

dx − x2dy = 0.

Solution (a) Notice that
(
cos x + 2xey)dx +

(
sin y + x2ey − 1

)
dy = 0 can be written as

dy/dx = − (cos x + 2xey)
/
(
sin x + x2ey − 1

)
. The equation is an example of an exact

equation. A theorem tells us that the equation

M(x, y)dx + N(x, y)dy = 0

is exact if and only if �M/�y = �N/�x.

m = Cos[x] + 2x Exp[y];
n = Sin[y] + x∧2 Exp[y] – 1;
D[m, y]
D[n, x]
2eyx

2eyx
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We solve exact equations by integrating. Let F(x, y) = C satisfy (y cos x + 2xey
)

dx +
(
sin y + x2ey − 1

)
dy = 0. Then,

F(x, y) =

∫ (
cos x + 2xey

)
dx = sin x + x2ey + g(y),

where g( y) is a function of y.

f1 = Integrate[m, x]
eyx2 + Sin[x]

We next find that g′
( y) = sin y − 1 so g( y) = − cos y − y. Hence, a general solution

of the equation is

sin x + x2ey − cos y − y = C.

f2 = D[f1, y]
eyx2

f3 = Solve[f2 + c==n, c]
{{c → – 1 + Sin[y]}}
Integrate[f3[[1, 1, 2]], y]
−y − Cos[y]

We confirm this result with DSolve. Notice that Mathematica warns us that

it cannot solve for y explicitly and returns the same implicit solution obtained

by us.

mf = m/.y→ y[x];
nf = n/.y→ y[x];
sol = DSolve[mf + nf y′[x]==0, y[x], x]
Solve::tdep : The equations appear to involve the variables to be solved for in

an essentially non-algebraic way.〉〉
Solve

[
ey[x]x2 – Cos[y[x]] + Sin[x] − y[x]==C[1], y[x]

]
Graphs of several solutions using the values of C generated in cvals are graphed

with ContourPlot in Figure 6.8.

sol2 = sol[[1, 1]]/.y[x]→ y
eyx2 – y – Cos[y] + Sin[x]

cvals = Table[sol2/.{x→ – 3Pi/2, y→ i}, {i, 0, 6Pi, 6Pi/24}];
ContourPlot[sol2, {x, – 3Pi, 3Pi}, {y, 0, 6Pi}, Contours→cvals,

ContourShading→False, Axes→Automatic, Frame→False,
AxesOrigin→ {0, 0}, ContourStyle→GrayLevel[0]]

(b) We can write
(
y2

+ 2xy
)

dx − x2dy = 0 as dy/dx =
(
y2

+ 2xy
)
/x2

. A first-order

equation is homogeneous if it can be written in the form dy/dx = F
(
y/x
)
. Homo-

geneous equations are reduced to separable equations with either the substitution

y = ux or x = vy. In this case, we have that dy/dx = (y/x)
2

+ 2(y/x), so the equation

is homogeneous.
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(a) Graphs of several solutions of
(

cos x + 2xey)dx +

(
sin y + x2ey − 1

)
dy = 0. (b)

Graphs of several solutions of
(

y2
+ 2xy

)
dx − x2dy = 0

Let y = ux. Then, dy = u dx + x du. Substituting into
(
y2

+ 2xy
)

dx − x2dy = 0

and separating gives us (
y2 + 2xy

)
dx − x2dy = 0(

u2x2 + 2ux2
)

dx − x2(u dx + x du) = 0(
u2 + 2u

)
dx − (u dx + x du) = 0(

u2 + u
)

dx = x du

1

u (u + 1)
du =

1

x
dx.

Integrating the left- and right-hand sides of this equation with Integrate,

Integrate[1/(u(u + 1)), u]
Log[u] – Log[1 + u]

Integrate[1/x, x]
Log[x]

exponentiating, resubstituting u = y/x, and solving for y gives us

ln |u| − ln |u + 1| = ln |x| + C
u

u + 1
= Cx

y

x
y

x
+ 1

= Cx

y =
Cx2

1 − Cx
.
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sol1 = Solve[(y/x)/(y/x + 1)==cx, y]{{
y → – cx2

– 1 + cx

}}
We confirm this result with DSolve and then graph several solutions with Plot in

Figure 6.8(b).

sol2 = DSolve[y[x]∧2 + 2x y[x] – x∧2 y′[x]==0, y[x], x]{{
y[x] → – x2

x – C[1]

}}
toplot = Table[sol2[[1, 1, 2]]/.C[1]→ i, {i, – 5, 5}];
Plot[Tooltip[toplot], {x, – 5, 5}, PlotRange→ { – 5, 5},

AspectRatio→Automatic]

6.1.4 Numerical Methods

If numerical results are desired, use NDSolve:

NDSolve[{y′[t]==f[t, y[t]], y[t0]==y0}, y[t], {t, a, b}]

attempts to generate a numerical solution of dy/dt = f (t, y), y
(
t0

)
= y0, valid

for a ≤ t ≤ b.
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Example 6.1.7 Consider dy/dt =
(
t2 − y2

)
sin y, y(0) = −1. (a) Determine y(1). (b) Graph y(t),

−1 ≤ t ≤ 10.

Solution We first remark that DSolve can neither exactly solve the differential equation y′
=(

t2 − y2
)

sin y nor find the solution that satisfies y(0) = −1.

However, we obtain a numerical solution valid for 0 ≤ t ≤ 1000 using the NDSolve
function.

sol = NDSolve[{y′[t]==(t∧2 – y[t]∧2)Sin[y[t]], y[0]== – 1}, y[t],
{t, – 1, 10}]

{{y[t] → InterpolatingFunction[{{ – 1., 10.}}, <>][t]}}

Entering sol /.t->1 evaluates the numerical solution if t = 1.

sol/.t→1
{{y[1] → – 0.766013}}

The result means that y(1) ≈ − 0.766. We use the Plot command to graph the

solution for 0 ≤ t ≤ 10 in Figure 6.9.

Plot[y[t]/.sol, {t, – 1, 10}]

Example 6.1.8 (Logistic Equation with Predation). Incorporating predation into the logistic

equation, y′
= �y

(
1 − 1

K
y

)
, results in

dy

dt
= �y

(
1 − 1

K
y

)
− P(y), where P( y) is

a function of y describing the rate of predation. A typical choice for P is P( y) =

ay2
/(b2

+ y2
) because P(0) = 0 and P is bounded above: limt→∞ P( y) < ∞.

Remark 6.2 Of course, if limt→∞ y(t) = Y, then limt→∞ P(y) = aY2
/(b2

+ Y2
). Generally, however,

limt→∞ P( y) �= a because limt→∞ y(t) ≤ K �= ∞, for some K ≥ 0, in the predation

situation.

If � = 1, a = 5, and b = 2, graph the direction field associated with the equation

as well as various solutions if (a) K = 19 and (b) K = 20.
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Graph of the solution to y′ =

(
t2 − y2

)
sin y, y(0) = −1

Solution (a) We define eqn[k] to be
dy

dt
= y

(
1 − 1

K
y

)
− 5y2

4 + y2
.

Needs[“VectorFieldPlots`”]
eqn[k–] = y′[t]==y[t](1 – y[t]/k) – 5y[t]∧2/(4 + y[t]∧2);

We use VectorPlotField to graph the direction field in Figure 6.10(a) and then

the direction field along with the solutions that satisfy y(0) = 0.5, y(0) = 0.2, and

y(0) = 4 in Figure 6.10(b).

pvf19 = Show[VectorFieldPlot[{1, y(1 – 1/19y) – 5y∧2/(4 + y∧2)}, {t, 0, 10},
{y, 0, 6}, ScaleFunction→ (1&), PlotPoints→25],

Axes→Automatic, AxesOrigin→ {0, 0}];
numsols = Map[NDSolve[{eqn[19], y[0]==#}, y[t], {t, 0, 10}]&,

{0.5, 2, 4}];
solplot = Plot[y[t]/.numsols, {t, 0, 10}, PlotRange→All,

PlotStyle→ {{GrayLevel[.4], Thickness[.01]}}];
Show[GraphicsRow[{pvf19, Show[pvf19, solplot]}]]

In the plot, notice that all nontrivial solutions appear to approach an equilibrium

solution. We determine the equilibrium solution by solving y′
= 0

eqn[19][[2]](
1 –

y[t]

19

)
y[t] –

5y[t]2

4 + y[t]2
.
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(a) Direction field and (b) direction field with three solutions
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(a) Direction field and (b) direction field with several solutions

Solve[eqn[19.][[2]]==0, y[t]]
{{y[t] –> 0.}, {y[t] –> 0.923351}, {y[t] –> 9.03832 − 0.785875 I},

{y[t] –> 9.03832 + 0.785875 I}}}
to see that it is y ≈ 0.923.

(b) We carry out similar steps for (b). First, we graph the direction field with

PlotVectorField in Figure 6.11(a).

pvf20 = Show[VectorFieldPlot[{1, y(1 – 1/20y) – 5y∧2/(4 + y∧2)}, {t, 0, 10},
{y, 0, 20}, ScaleFunction → (1&), PlotPoints →25],

Axes →Automatic, AxesOrigin → {0, 0},
AspectRatio →1/GoldenRatio];

We then use Map together with NDSolve to numerically find the solution satisfying

y(0) = 0.5i, for i = 1, 2,…,40 and name the resulting list numsols. The functions

contained in numsols are graphed with Plot in solplot.

numsols = Map[NDSolve[{eqn[20], y[0]==#}, y[t], {t, 0, 10}]&,
Table[0.5i, {i, 1, 40}]];

solplot = Plot[y[t]/.numsols, {t, 0, 10}, PlotRange → All,
PlotStyle → {{GrayLevel[.4], Thickness[.005]}}];
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Last, we display the direction field along with the solution graphs in solplot using

Show in Figure 6.11(b).

Show[GraphicsRow[{pvf20, Show[pvf20, solplot]}]]

Notice that there are three nontrivial equilibrium solutions that are found by solving

y′
= 0.

Solve[eqn[20.][[2]]==0, y[t], t]
{{y[t] → 0.}, {y[t] → 0.926741}, {y[t] → 7.38645}, {y[t] → 11.6868}}

In this case, y ≈ 0.926 and y ≈ 11.687 are stable, whereas y ≈ 7.386 is unstable.

6.2 SECOND-ORDER LINEAR EQUATIONS
We now present a concise discussion of second-order linear equations,

which are extensively discussed in the introductory differential equations

course.

6.2.1 Basic Theory
The general form of the second-order linear equation is

a2(t)
d2y

dt2
+ a1(t)

dy

dt
+ a0(t)y = f (t), (6.7)

where a2(t) is not identically the zero function.

The standard form of the second-order linear equation (6.7) is

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = f (t). (6.8)

The corresponding homogeneous equation of equation (6.8) is

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = 0. (6.9)

A general solution of equation (6.9) is y = c1 y1 + c2 y2, where

1. y1 and y2 are solutions of equation (6.9), and

2. y1 and y2 are linearly independent.

If y1 and y2 are solutions of equation (6.9), then y1 and y2 are linearly
independent if and only if the Wronskian,

W
({y1, y2}

)
=

∣∣∣∣∣y1 y2

y1

′ y2

′

∣∣∣∣∣ = y1y2
′ − y1

′y2, (6.10)

is not the zero function. If y1 and y2 are linearly independent solutions of

equation (6.9), we call the set S = {y1, y2} a fundamental set of solutions
for equation (6.9).
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Let y be a general solution of equation (6.8) and yp be a particular

solution of equation (6.8). It follows that y − yp is a solution of equation

(6.9), so y − yp = yh, where yh is a general solution of equation (6.9). Hence,

y = yh + yp. That is, to solve the nonhomogeneous equation, we need a

general solution, yh, of the corresponding homogeneous equation and a

particular solution, yp, of the nonhomogeneous equation.

A particular solution,

yp, is a solution that

does not contain any

arbitrary constants.

6.2.2 Constant Coefficients
Suppose that the coefficient functions of equation (6.7) are constants:

a2(t) = a, a1(t) = b, and a0(t) = c, and that f(t) is identically the zero

function. In this case, equation (6.7) becomes

ay′′ + by′ + cy = 0. (6.11)

Now suppose that y = ekt
, k constant, is a solution of equation (6.11). Then,

y′ = kekt
and y′′ = k2ekt

. Substitution into equation (6.11) then gives us

ay′′ + by′ + cy = ak2ekt + bkekt + cekt

= ekt
(
ak2 + bk + c

)
= 0.

Because ekt �= 0, the solutions of equation (6.11) are determined by the

solutions of

ak2 + bk + c = 0, (6.12)

called the characteristic equation of equation (6.11).

Theorem 1. Let k1 and k2 be the solutions of equation (6.12).

1. If k1 �= k2 are real and distinct, two linearly independent solutions
of equation (6.11) are y1 = ek1t and y2 = ek2t; a general solution of
equation (6.11) is

y = c1ek1t + c2ek2t.

2. If k1 = k2, two linearly independent solutions of equation (6.11) are
y1 = ek1t and y2 = tek1t; a general solution of equation (6.11) is

y = c1ek1t + c2tek1t.

3. If k1,2 = � ± �i, � �= 0, two linearly independent solutions of equa-

tion (6.11) are y1 = e�t
cos �t and y2 = e�t

sin �t; a general solution of
equation (6.11) is

y = e�t
(
c1 cos �t + c2 sin �t

)
.
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Example 6.2.1 Solve each of the following equations: (a) 6y′′
+ y′ − 2y = 0; (b) y′′

+ 2y′
+ y = 0;

(c) 16y′′
+ 8y′

+ 145y = 0.

Solution (a) The characteristic equation is 6k2
+ k − 2 = (3k + 2)(2k − 1) = 0 with solutions

k = −2/3 and k = 1/2. We check with either Factor or Solve.

Factor[6k∧2 + k – 2]
( – 1 + 2k)(2 + 3k)

Solve[6k∧2 + k – 2==0]{{
k → – 2

3

}
,
{

k → 1

2

}}
Then, a fundamental set of solutions is

{
e−2t/3

, et/2}
and a general solution is

y = c1e−2t/3 + c2et/2.

Of course, we obtain the same result with DSolve.

Clear[y]
DSolve[6y′′[t] + y′[t] – 2y[t]==0, y[t], t]{{

y[t] → e – 2t/3C[1] + et/2C[2]
}}

(b) The characteristic equation is k2
+ 2k + 1 = (k + 1)

2
= 0 with solution k = −1,

which has multiplicity two, so a fundamental set of solutions is
{

e−t
, te−t}

and a

general solution is

y = c1e−t + c2te−t.

We check the calculation in the same way as in (a).

Factor[k∧2 + 2k + 1]
Solve[k∧2 + 2k + 1==0]
DSolve[y′′[t] + 2y′[t] + y[t]==0, y[t], t]
(1 + k)2

{{k → – 1}, {k → −1}}
{{y[t] → e – tC[1] + e – ttC[2]}}

(c) The characteristic equation is 16k2
+ 8k + 145 = 0 with solutions k1,2 = − 1

4
±

3i, so a fundamental set of solutions is
{

e−t/4
cos 3t, e−t/4

sin 3t
}

and a general

solution is

y = e−t/4
(
c1 cos 3t + c2 sin 3t

)
.
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The calculation is verified in the same way as in (a) and (b).

Factor[16k∧2 + 8k + 145, GaussianIntegers→True]
((1 – 12i) + 4k)((1 + 12i) + 4k)

Solve[16k∧2 + 8k + 145==0]{{
k → – 1

4
– 3i
}

,
{

k → – 1

4
+ 3i
}}

DSolve[16y′′[t] + 8y′[t] + 145y[t]==0, y[t], t]{{
y[t] → e – t/4C[2]Cos[3t] + e – t/4C[1]Sin[3t]

}}

Example 6.2.2 Solve 64
d2y

dt2
+ 16

dy

dt
+ 1025y = 0, y(0) = 1,

dy

dt
(0) = 3.

Solution A general solution of 64y′′
+ 16y′

+ 1025y = 0 is y = e−t/8 (c1 sin 4t + c2 cos 4t
)
.

gensol = DSolve[64y′′[t] + 16y′[t] + 1025y[t]==0, y[t], t]{{
y[t] → e – t/8C[2]Cos[4t] + e – t/8C[1]Sin[4t]

}}
Applying y(0) = 1 shows us that c2 = 1.

e1 = gensol[[1, 1, 2]]/.t→0
C[2]

Computing y′

D[y[t]/.gensol[[1]], t]
4e – t/8C[1]Cos[4t] – 1

8
e – t/8C[2]Cos[4t] – 1

8
e – t/8C[1]Sin[4t] – 4e – t/8C[2]Sin[4t]

and then y′
(0), shows us that −4c1 − 1

8
c2 = 3.

e2 = D[y[t]/.gensol[[1]], t]/.t→0
4C[1] –

C[2]

8

Solving for c1 and c2 with Solve shows us that c1 = −25/32 and c1 = 1.

cvals = Solve[{e1==1, e2==3}]{{
C[1] → 25

32
, C[2] → 1

}}
Thus, y = e−t/8 (−25

32
sin 4t + cos 4t

)
, which we graph with Plot in Figure 6.12.

sol = y[t]/.gensol[[1]]/.cvals[[1]]
e – t/8Cos[4t] + 25

32
e – t/8Sin[4t]

Plot[sol, {t, 0, 8Pi}]
We verify the calculation with DSolve.

DSolve[{64y′′[t] + 16y′[t] + 1025y[t]==0, y[0]==1, y′[0]==3}, y[t], t]{{
y[t] → 1

32
e – t/8(32Cos[4t] + 25Sin[4t])

}}
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The solution to the initial-value problem tends to 0 as t → ∞

Application: Harmonic Motion

Suppose that a mass is attached to an elastic spring that is suspended from

a rigid support such as a ceiling. According to Hooke’s law, the spring

exerts a restoring force in the upward direction that is proportional to the

displacement of the spring.

Hooke’s Law: F = ks, where k > 0 is the constant of proportionality
or spring constant, and s is the displacement of the spring.

Using Hooke’s law and assuming that x(t) represents the displacement of

the mass from the equilibrium position at time t, we obtain the initial-value

problem

m
d2x

dt2
+ kx = 0, x(0) = �,

dx

dt
(0) = �.

Note that the initial conditions give the initial displacement and velocity,

respectively. This differential equation disregards all retarding forces acting

on the motion of the mass and a more realistic model that takes these

forces into account is needed. Studies in mechanics reveal that resistive

forces due to damping are proportional to a power of the velocity of the

motion. Hence, FR = a dx/dt or FR = a (dx/dt)3
, where a > 0, are typically

used to represent the damping force. Then, we have the following initial-

value problem assuming that FR = a dx/dt:

m
d2x

dt2
+ a

dx

dt
+ kx = 0, x(0) = �,

dx

dt
(0) = �.
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Problems of this type are characterized by the value of a2 − 4mk as

follows:

1. a2 − 4mk > 0. This situation is said to be overdamped because the

damping coefficient a is large in comparison to the spring constant k.

2. a2 − 4mk = 0. This situation is described as critically damped
because the resulting motion is oscillatory with a slight decrease in

the damping coefficient a.

3. a2 − 4mk < 0. This situation is called underdamped because the

damping coefficient a is small in comparison with the spring con-

stant k.

Example 6.2.3 Classify the following differential equations as overdamped, underdamped, or crit-

ically damped. Also, solve the corresponding initial-value problem using the given

initial conditions and investigate the behavior of the solutions.

(a)
d2x

dt2
+ 8

dx

dt
+ 16x = 0 subject to x(0) = 0 and

dx

dt
(0) = 1;

(b)
d2x

dt2
+ 5

dx

dt
+ 4x = 0 subject to x(0) = 1 and

dx

dt
(0) = 1; and

(c)
d2x

dt2
+

dx

dt
+ 16x = 0 subject to x(0) = 0 and

dx

dt
(0) = 1.

Solution For (a), we identify m = 1, a = 8, and k = 16 so that a2 − 4mk = 0, which means

that the differential equation x′′
+ 8x′

+ 16x = 0 is critically damped. After defining

de1, we solve the equation subject to the initial conditions and name the resulting

output sol1. We then graph the solution shown in Figure 6.13(a).

Clear[de1, x, t]
de1 = x′′[t] + 8x′[t] + 16x[t]==0;
sol1 = DSolve [{de1, x[0]==0, x′[0]==1}, x[t], t]{{

x[t] → e – 4tt
}}

p1 = Plot[sol1[[1, 1, 2]], {t, 0, 4}]

For (b), we proceed in the same manner. We identify m = 1, a = 5, and k = 4

so that a2 − 4mk = 9 and the equation x′′
+ 5x′

+ 4x = 0 is overdamped. We then
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FIGURE 6.13

(a) Critically damped motion. (b) Overdamped motion. (c) Underdamped motion
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define de2 to be the equation and the solution to the initial-value problem obtained

with DSolve, sol2, and then graph x(t) on the interval [0, 4] in Figure 6.13(b).

Clear[de2, x, t]
de2 = x′′[t] + 5x′[t] + 4x[t]==0;
sol2 = DSolve [{de2, x[0]==1, x′[0]==1}, x[t], t]
{{x[t] → 1

3
e – 4t

(
– 2 + 5e3t

)}}
p2 = Plot[sol2[[1, 1, 2]], {t, 0, 4}]

For (c), we proceed in the same manner as in (a) and (b) to show that the equation

is underdamped because the value of a2 − 4mk is −63. See Figure 6.13(c).

You can also use Manipulate to help you visualize harmonic motion. With

Manipulate[
sol = DSolve[{mx′′[t] + ax′[t] + kx[t]==0, x[0]==0, x′[0]==1}, x[t], t];
Plot[x[t]/.sol, {t, 0, 5}, PlotRange→ { – 1/2, 1/2}, AspectRatio→1],

{{m, 1}, 0, 5}, {{a, 8}, 0, 15, 1}, {{k, 16}, 0, 20, 1}]

we generate a Manipulate object that lets us investigate harmonic motion

for various values of m, a, and k if the initial position is zero (x(0) = 0)

and the initial velocity is one (x′
(0) = 1). See Figure 6.14. (Note that m is

centered at 1, a at 8, and k at 16.)
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FIGURE 6.14

Using Manipulate to investigate harmonic motion
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6.2.3 Undetermined Coefficients

If equation (6.7) has constant coefficients and f(t) is a product of terms

tn
, e�t

, � constant, cos �t, and/or sin �t, � constant, undetermined coef-
ficients can often be used to find a particular solution of equation (6.7).

The key to implementing the method is to judiciously choose the correct

form of yp.

Assume that a general solution, yh, of the corresponding homogeneous

equation has been found and that each term of f(t) has the form

t ne�t cos �t or t ne�t sin �t.

For each term of f(t), write down the associated set

F =
{

t ne�t cos �t, t ne�t sin �t, tn−1e�t cos �t, tn−1e�t sin �t, …, e�t cos �t, e�t sin �t,
}
.

If any element of F is a solution to the corresponding homogeneous equa-

tion, multiply each element of F by tm, where m is the smallest positive

integer so that none of the elements of tmF are solutions to the corre-

sponding homogeneous equation. A particular solution will be a linear

combination of the functions in all the F ’s.

Example 6.2.4 Solve 4
d2y

dt2
− y = t − 2 − 5 cos t − e−t/2

.

Solution The corresponding homogeneous equation is 4y′′ − y = 0 with general solution

yh = c1e−t/2
+ c2et/2

.

DSolve[4y′′[t] – y[t]==0, y[t], t]{{
y[t] → et/2C[1] + e – t/2C[2]

}}
A fundamental set of solutions for the corresponding homogeneous equation is

S =
{

e−t/2
, et/2}

. The associated set of functions for t − 2 is F1 = {1, t}, the associated

set of functions for −5 cos t is F2 = {cos t, sin t}, and the associated set of functions

for −e−t/2
is F3 =

{
e−t/2}

. Note that e−t/2
is an element of S so we multiply F3 by t

resulting in tF3 =
{

te−t/2}
. Then, we search for a particular solution of the form

No element of F1 is

contained in S and

no element of F2 is

contained in S.
yp = A + Bt + C cos t + D sin t + Ete−t/2,

where A, B, C, D, and E are constants to be determined.We do not use capital

letters so as to avoid

any confusion with

built-in Mathematica

commands.

yp[t–] = a + bt + c Cos[t] + d Sin[t] + et Exp[ – t/2]
a + b t + ee – t/2t + c Cos[t] + d Sin[t]

Computing y′
p and y′′

p

dyp = yp′[t]
b + e e – t/2 – 1

2
e e – t/2t + d Cos[t] – c Sin[t]

d2yp=yp′′[t]
– e e – t/2 + 1

4
e e – t/2t – c Cos[t] – d Sin[t]
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and substituting into the nonhomogeneous equation results in

−A − Bt − 5C cos t − 5D sin t − 4Ee−t/2 = t − 2 − 5 cos t − e−t/2.

eqn = 4yp′′[t] – yp[t]==t – 2 – 5Cos[t] – Exp[ – t/2]

– a – bt – ee – t/2t – cCos[t] – dSin[t] + 4
(

– ee – t/2 + 1

4
ee – t/2t – cCos[t] – dSin[t]

)
==

−2 − e−t/2 + t − 5Cos[t]

Equating coefficients results in

−A = −2 − B = 1 − 5C = −5 − 5D = 0 − 4E = −1

so A = 2, B = −1, C = 1, D = 0, and E = 1/4.

cvals = Solve[{ – a== – 2, – b==1, – 5c== – 5, – 5d==0, – 4e== – 1}]{{
a → 2, b → – 1, c → 1, d → 0, e → 1

4

}}
yp is then given by yp = 2 − t + cos t + 1

4
te−t/2

yp[t]/.cvals[[1]]

2 – t + 1

4
e – t/2t + Cos[t]

and a general solution is given by

y = yh + yp = c1e−t/2 + c2et/2 + 2 − t + cos t +
1

4
te−t/2.

Note that −A − Bt − 5C cos t − 5D sin t − 4Ee−t/2
= t − 2 − 5 cos t − e−t/2

is true for all

values of t. Evaluating for five different values of t gives us five equations that we

then solve for A, B, C, D, and E, resulting in the same solutions as already obtained.

e1 = eqn/.t→0
– a – c + 4( – c – e)== – 8

e2 = eqn/.t→1;
e3 = eqn/.t→2;
e4 = eqn/.t→3;
e5 = eqn/.t→4;
Solve[{e1, e2, e3, e4, e5}]//Simplify{{

b → – 1, d → 0, a → 2, c → 1, e → 1
4

}}
Last, we check our calculation with DSolve and Simplify.

DSolve[4y′′[t] – y[t]==t – 2 – 5Cos[t] – Exp[ – t/2], y[t], t]//Simplify{{
y[t] → 1

4
e – t/2

(
1 – 4et/2( – 2 + t) + t + 4etC[1] + 4C[2] + 4et/2Cos[t]

)}}
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Example 6.2.5 Solve y′′
+ 4y = cos 2t, y(0) = 0, y′

(0) = 0.

Solution A general solution of the corresponding homogeneous equation is yh = c1 cos 2t + c2

sin 2t. For this equation, F = {cos 2t, sin 2t}. Because elements of F are solutions

to the corresponding homogeneous equation, we multiply each element of F by t

resulting in tF = {t cos 2t, t sin 2t}. Therefore, we assume that a particular solution

has the form

yp = At cos 2t + Bt sin 2t,

where A and B are constants to be determined. Proceeding in the same manner

as before, we compute y′
p and y′′

p

yp[t–] = a tCos[2t] + b tSin[2t]
yp′[t]
yp′′[t]
a t Cos[2t] + b t Sin[2t]

a Cos[2t] + 2b tCos[2t] + b Sin[2t] – 2a t Sin[2t]

4b Cos[2t] – 4a t Cos[2t] – 4a Sin[2t] – 4bt Sin[2t]

and then substitute into the nonhomogeneous equation.

eqn = yp′′[t] + 4yp[t]==Cos[2t]
4b Cos[2t] – 4a t Cos[2t] – 4a Sin[2t] – 4b t Sin[2t] + 4(a t Cos[2t] + b t Sin[2t])

==Cos[2t]

Equating coefficients readily yields A = 0 and B = 1/4. Alternatively, remember that

−4A sin 2t + 4B cos 2t = cos 2t is true for all values of t. Evaluating for two values of

t and then solving for A and B gives the same result.

e1 = eqn/.t→0
e2 = eqn/.t→1
cvals = Solve[{e1, e2}]
4b==1

– 4a Cos[2] + 4b Cos[2] – 4a Sin[2] – 4b Sin[2] + 4(a Cos[2] + b Sin[2])==Cos[2]{{
a → 0, b → 1

4

}}
It follows that yp = 1

4
t sin 2t and y = c1 cos 2t + c2 sin 2t + 1

4
t sin 2t.

yp[t]/.cvals[[1]]
1

4
tSin[2t]

y[t–] = c1Cos[2t] + c2Sin[2t] + 1/4tSin[2t]
c1 Cos[2t] + c2 Sin[2t] + 1

4
t Sin[2t]
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The forcing function causes the solution to become unbounded as t → ∞

Applying the initial conditions after finding y′

y′[t]
2c2 Cos[2t] + 1

2
t Cos[2t] + 1

4
Sin[2t] – 2c1Sin[2t]

cvals = Solve[{y[0]==0, y′[0]==0}]
{{c1 → 0, c2 → 0}}

results in y = 1

4
t sin 2t, which we graph with Plot in Figure 6.15.

y[t]/.cvals[[1]]
1

4
tSin[2t]

Plot[y[t]/.cvals, {t, 0, 16Pi}]

We verify the calculation with DSolve.

Clear[y]
DSolve[{y′′[t] + 4y[t]==Cos[2t], y[0]==0, y′[0]==0},
y[t], t]//Simplify{{

y[t] → 1

4
tSin[2t]

}}

Use Manipulate to help you see how changing parameter values and

equations affect a system. With

Manipulate[
sol1 = DSolve[{mx′′[t] + ax′[t] + kx[t]==�Cos[�t], x[0]==0, x′[0]==0}, x[t], t];
sol2 = NDSolve[{mx′′[t] + ax′[t] + k Sin[x[t]]==�Cos[�t], x[0]==0, x′[0]==0},

x[t], {t, 0, 50}];



468 CHAPTER 6 Differential Equations

m

a

k

v

G

24

22

24

22

2

4

10 20 30 40 50 10 20 30 40 50

2

4

24

22

24

22

2

4

10 20 30 40 50 10 20 30 40 50

2

4

m

a

k

v

G

FIGURE 6.16

Comparing solutions of nonlinear initial-value problems to their corresponding linear

approximations

p1 = Plot[x[t]/.sol1, {t, 0, 50}, PlotRange→ { – 5, 5}, AspectRatio→1];
p2 = Plot[x[t]/.sol2, {t, 0, 50}, PlotRange→ { – 5, 5}, AspectRatio→1];
Show[GraphicsRow[{p1, p2}]], {{m, 1}, 0, 5}, {{a, 0}, 0, 15, 1}, {{k, 4}, 0, 20, 1},

{{�, 2}, 0, 20, 1}, {{�, 1}, 0, 10, 1}]

we can compare the solution of mx′′
+ ax′

+ kx = � cos �t, x(0) = 0,

x′
(0) = 0 to the solution of mx′′

+ ax′
+ k sin x = � cos �t, x(0) = 0, x′

(0) = 0

for various values of m, a, k, �, and �. See Figure 6.16.

Example 6.2.6 (Hearing Beats and Resonance). In order to hear beats and resonance, we

solve the initial-value problem

x′′ + �2x = F cos �t, x(0) = �, x′(0) = �, (6.13)

for each of the following parameter values: (a) �
2

= 6000
2
, � = 5991.62, F = 2; and

(b) �
2

= 6000
2
, � = 6000, F = 2.

First, we define the function sol which, when given the parameters, solves the

initial-value problem (6.13).

Clear[x, t, f, sol]
sol[�–, �–, f–]:=DSolve[{
x′′[t] + �∧2x[t]==fCos[ �t], x[0]==0, x′[0]==0},
x[t], t][[1, 1, 2]]
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Thus, our solution for (a) is obtained by entering

a = sol[6000, 5991.62, 2]
– 0.0000199025Cos[6000.t] + 0.0000198886Cos[8.38t]Cos[6000.t] +

1.389859474088294`∗∧– 8Cos[6000.t]Cos[11991.6t] +

0.0000198886Sin[8.38t]Sin[6000.t] +

1.389859474088294`∗∧– 8Sin[6000.t]Sin[11991.6t]

To hear the function we use Play in the same way that we use Plot to see

functions.

The values of a correspond to the amplitude of the sound as a function of

time. See Figure 6.17(a).

Play[a, {t, 0, 6}]

Similarly, the solution for (b) is obtained by entering

b = sol[6000., 6000., 2]//Chop

– 2.777`∗∧– 8 Cos[6000.t]+2.777`∗∧– 8 Cos[6000.t]3+

0.000166667 t Sin[6000.t]+1.3889`∗∧– 8 Sin[6000.t] Sin[12000.t]

We hear resonance with Play. See Figure 6.17(b).

Play[b, {t, 0, 6}]



470 CHAPTER 6 Differential Equations
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FIGURE 6.17

Hearing and seeing beats and resonance: (a) Beats (b) Resonance

6.2.4 Variation of Parameters

Let S = {y1, y2} be a fundamental set of solutions for equation (6.9). To solve

the nonhomogeneous equation (6.8), we need to find a particular solution,

yp of equation (6.8). We search for a particular solution of the form

A particular solution,

yp, is a solution that

does not contain any

arbitrary constants.

yp = u1(t)y1(t) + u2(t)y2(t), (6.14)

where u1 and u2 are functions of t. Differentiating equation (6.14) gives usObserve that it is

pointless to search

for solutions of the

form yp = c1y1 + c2y2,

where c1 and c2 are

constants, because for

every choice of c1

and c2, c1y1 + c2y2

is a solution to the

corresponding

homogeneous

equation.

yp
′ = u1

′y1 + u1 y1
′ + u2

′y2 + u2 y2
′.

Assuming that

y1u1
′ + y2u2

′ = 0 (6.15)

results in yp
′

= u1 y1

′
+ u2 y2

′
. Computing the second derivative then yields

yp
′′ = u1

′y1
′ + u1y1

′′ + u2
′y2

′ + u2 y2
′′.

Substituting yp, yp
′
, and yp

′′
into equation (6.8) and using the facts that

u1

(
y1

′′ + p y1
′ + q y1

)
= 0 and u2

(
y2

′′ + p y2
′ + q y2

)
= 0

(because y1 and y2 are solutions to the corresponding homogeneous

equation) results in

d2yp

dt2
+ p(t)

dyp

dt
+ q(t)yp = u1

′y1
′ + u1y1

′′ + u2
′y2

′ + u2 y2
′′ + p(t)

(
u1 y1

′ + u2y2
′)

+ q(t)
(
u1 y1 + u2 y2

)
= y1

′u1
′ + y2

′u2
′ = f (t). (6.16)

Observe that equation (6.15) and equation (6.16) form a system of two

linear equations in the unknowns u1

′
and u2

′
:

y1u1
′ + y2u2

′ = 0

y1
′u1

′ + y2
′u2

′ = f (t). (6.17)
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Applying Cramer’s Rule gives us

u1
′ =

∣∣∣∣ 0 y2

f (t) y2

′

∣∣∣∣∣∣∣∣y1 y2

y1

′ y2

′

∣∣∣∣
= −y2(t)f (t)

W(S)
and u2

′ =

∣∣∣∣y1 0

y1

′ f (t)

∣∣∣∣∣∣∣∣y1 y2

y1

′ y2

′

∣∣∣∣
=

y1(t)f (t)

W(S)
, (6.18)

where W(S) is the Wronskian, W(S) =

∣∣∣∣y1 y2

y1

′ y2

′

∣∣∣∣. After integrating to obtain

u1 and u2, we form yp and then a general solution, y = yh + yp.

Example 6.2.7 Solve y′′
+ 9y = sec 3t, y(0) = 0, y′

(0) = 0, 0 ≤ t < �/6.

Solution The corresponding homogeneous equation is y′′
+ 9y = 0 with general solution yh =

c1 cos 3t + c2 sin 3t. Then, a fundamental set of solutions is S = {cos 3t, sin 3t} and

W(S) = 3, as we see using Det, and Simplify.

fs = {Cos[3t], Sin[3t]};
wm = {fs, D[fs, t]};
wm//MatrixForm
wd = Det[wm]//Simplify(

Cos[3t] Sin[3t]

– 3Sin[3t] 3Cos[3t]

)
3

We use equation (6.18) to find u1 = 1

9
ln cos 3t and u2 = 1

3
t.

u1 = Integrate[ – Sin[3t]Sec[3t]/3, t]
u2 = Integrate[Cos[3t]Sec[3t]/3, t]
1

9
Log[Cos[3t]]

t

3

It follows that a particular solution of the nonhomogeneous equation is yp =
1

9
cos 3t ln cos 3t + 1

3
t sin 3t and a general solution is y = yh + yp = c1 cos 3t +

c2 sin 3t + 1

9
cos 3t ln cos 3t + 1

3
t sin 3t.

Absolute value is

not needed in the

antiderivatives because

we are restricting the

domain to 0 ≤ t < �/6

and cos t > 0 on this

interval.

yp = u1Cos[3t] + u2Sin[3t]
1

9
Cos[3t]Log[Cos[3t]] + 1

3
tSin[3t]

Identical results are obtained using DSolve.
The negative sign in

the output does not

affect the result

because C[1] is

arbitrary.

DSolve[y′′[t] + 9y[t]==Sec[3t], y[t], t]
{{y[t] → C[1]Cos[3t] + C[2]Sin[3t]+

1

9
(Cos[3t]Log[Cos[3t]] + 3tSin[3t])

}}
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The domain of the solution is 0 ≤ t < �/6

Applying the initial conditions gives us c1 = c2 = 0, so we conclude that the solution

to the initial-value problem is y = 1

9
cos 3t ln cos 3t + 1

3
t sin 3t.

sol = DSolve[{y′′[t] + 9y[t]==Sec[3t], y[0]==0, y′[0]==0}, y[t], t]{{
y[t] → 1

9
(Cos[3t]Log[Cos[3t]] + 3tSin[3t])

}}
We graph the solution with Plot in Figure 6.18.

Plot[y[t]/.sol, {t, 0, Pi/6}]

6.3 HIGHER-ORDER LINEAR EQUATIONS

6.3.1 Basic Theory
The standard form of the nth-order linear equation is

dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · · + a1(t)

dy

dt
+ a0(t)y = f (t). (6.19)

The corresponding homogeneous equation of equation (6.19) is

dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · · + a1(t)

dy

dt
+ a0(t)y = 0. (6.20)
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Let y1, y2, … , yn be n solutions of equation (6.20). The set S = {y1, y2, … , yn}
is linearly independent if and only if the Wronskian,

W(S) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 … yn

y1

′ y2

′ y3

′
… yn

′

y1

′′ y2

′′ y3

′′
… yn

′′

y1

(3) y2

(3) y3

(3)
… yn

(3)

.

.

.
.
.
.

.

.

. …
.
.
.

y1

(n−1) y2

(n−1) y3

(n−1)
… yn

(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.21)

is not identically the zero function. S is linearly dependent if S is not

linearly independent.

If y1, y2, …, yn are n linearly independent solutions of equation (6.20),

we say that S = {y1, y2, …, yn} is a fundamental set for equation (6.20),

and a general solution of equation (6.20) is y = c1 y1 + c2 y2 + c3 y3 + · · · +
cn yn.

A general solution of equation (6.19) is y = yh + yp, where yh is a

general solution of the corresponding homogeneous equation and yp is a

particular solution of equation (6.19).

6.3.2 Constant Coefficients
If

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = 0

has real constant coefficients, we assume that y = ekt
and find that k satisfies

the characteristic equation

kn + an−1kn−1 + · · · + a1k + a0 = 0. (6.22)

If a solution k of equation (6.22) has multiplicity m, m linearly independent

solutions corresponding to k are

ekt, tekt, …, tm−1ekt.

If a solution k = � + �i, � �= 0, of equation (6.22) has multiplicity m, 2m
linearly independent solutions corresponding to k = � + �i (and k = � − �i)
are

e�t cos �t, e�t sin �t, te�t cos �t, te�t sin �t, …, tm−1e�t cos �t, tm−1e�t sin �t.

Example 6.3.1 Solve 12y′′′ − 5y′′ − 6y′ − y = 0.

Solution The characteristic equation is

12k3 − 5k2 − 6k − 1 = (k − 1) (3k + 1)
(
4k + 1

)
= 0
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with solutions k1 = −1/3, k2 = −1/4, and k3 = 1.Factor[expression]
attempts to factor

expression.
Factor[12k∧3 – 5k∧2 – 6k – 1]
( – 1 + k)(1 + 3k)(1 + 4k)

Thus, three linearly independent solutions of the equation are y1 = e−t/3
, y2 = e−t/4

,

and y3 = et
; a general solution is y = c1e−t/3

+ c2e−t/4
+ c3et

. We check with DSolve.

Clear[y]
DSolve[12y”’[t] – 5y”[t] – 6y′[t] – y[t]==0, y[t], t]
{{y[t] → e – t/4C[1] + e – t/3C[2] + etC[3]}}

Example 6.3.2 Solve y′′′
+ 4y′

= 0, y(0) = 0, y′
(0) = 1, y′′

(0) = −1.

Solution The characteristic equation is k3
+ 4k = k(k2

+ 4) = 0 with solutions k1 = 0 and

k2,3 = ±2i that are found with Solve.
Enter ?Solve to obtain

basic help regarding

the Solve function.
Solve[k∧3 + 4k==0]
{{k → 0}, {k → – 2i}, {k → 2i}}

Three linearly independent solutions of the equation are y1 = 1, y2 = cos 2t, and

y3 = sin 2t. A general solution is y = c1 + c2 sin 2t + c3 cos 2t.

gensol = DSolve[y”’[t] + 4y′[t]==0, y[t], t]{{
y[t] → C[3] – 1

2
C[2]Cos[2t] + 1

2
C[1]Sin[2t]

}}
Application of the initial conditions shows us that c1 = −1/4, c2 = 1/2, and c3 = 1/4,

so the solution to the initial-value problem is y = − 1

4
+ 1

2
sin 2t + 1

4
cos 2t. We verify

the computation with DSolve and graph the result with Plot in Figure 6.19.

e1 = y[t]/.gensol[[1]]/.t→0
–

C[2]

2
+ C[3]

e2 = D[y[t]/.gensol[[1]], t]/.t→0
e3 = D[y[t]/.gensol[[1]], {t, 2}]/.t→0
C[1]

2C[2]

cvals = Solve[{e1==0, e2==1, e3== – 1}]{{
C[1] → 1, C[2] → – 1

2
, C[3] → – 1

4

}}
Clear[y]
partsol = DSolve[{y”’[t] + 4y′[t]==0, y[0]==0,

y′[0]==1, y”[0]== – 1}, y[t], t]{{
y[t] → 1

4
( – 1 + Cos[2t] + 2Sin[2t])

}}
Plot[y[t]/.partsol, {t, 0, 2Pi}, AspectRatio→Automatic]
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Graph of y = − 1

4
+ 1

2
sin 2t + 1

4
cos 2t

Example 6.3.3 Find a differential equation with general solution y = c1e−2t/3
+ c2te−2t/3

+ c3t2e−2t/3
+

c4 cos t + c5 sin t + c6t cos t + c7t sin t + c8t 2
cos t + c9t2

sin t.

Solution A linear homogeneous differential equation with constant coefficients that has this

general solution has fundamental set of solutions

S =
{

e−2t/3, te−2t/3, t2e−2t/3, cos t, sin t, t cos t, t sin t, t2 cos t, t2 sin t
}

.

Hence, in the characteristic equation k = −2/3 has multiplicity 3, whereas k = ±i
has multiplicity 3. The characteristic equation is

27

(
k +

2

3

)3

(k − i)3(k + i)3 = k9 + 2k8 +
13

3
k7 +

170

27
k6 + 7k5 +

62

9
k4

+ 5k3 +
26

9
k2 +

4

3
k +

8

27
,

where we use Mathematica to compute the multiplication with Expand.

Expand[27(k + 2/3)∧3(k∧2 + 1)∧3]
8 + 36k + 78k2 + 135k3 + 186k4 + 189k5+

170k6 + 117k7 + 54k8 + 27k9

Thus, a differential equation obtained after dividing by 27 with the indicated general

solution is

d9y

dt9
+ 2

d8y

dt8
+

13

3

d7y

dt7
+

170

27

d6y

dt6
+ 7

d5y

dt5
+

62

9

d4y

dt4

+ 5
d3y

dt3
+

26

9

d2y

dt2
+

4

3

dy

dt
+

8

27
y = 0.

6.3.3 Undetermined Coefficients

For higher-order linear equations with constant coefficients, the method of

undetermined coefficients is the same as for second-order equations dis-

cussed in Section 6.2.3, provided that the forcing function involves the

terms discussed in Section 6.2.3.
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Example 6.3.4 Solve
d3y

dt3
+

2

3

d2y

dt2
+

145

9

dy

dt
= e−t

, y(0) = 1,
dy

dt
(0) = 2,

d2y

dt2
(0) = −1.

Solution The corresponding homogeneous equation, y′′′
+ 2

3
y′′

+ 145

9
y′

= 0, has general solu-

tion yh = c1 +
(
c2 sin 4t + c3 cos 4t

)
e−t/3

and a fundamental set of solutions for the

corresponding homogeneous equation is S =
{

1, e−t/3
cos 4t, e−t/3

sin 4t
}

.

DSolve[y′′′[t] + 2/3y′′[t] + 145/9y′[t]==0,
y[t], t]{{

y[t] → C[3] – 3

145
e – t/3

((12C[1] + C[2])Cos[4t] + (C[1] – 12C[2])Sin[4t])}}

For e−t
, the associated set of functions is F =

{
e−t}

. Because no element of F is an

element of S, we assume that yp = Ae−t
, where A is a constant to be determined.

After defining yp, we compute the necessary derivatives

Clear[yp]
yp[t–] = aExp[ – t];
yp′[t]
yp′′[t]
yp′′′[t]
– ae – t

ae – t

– ae – t

and substitute into the nonhomogeneous equation.

eqn = yp′′′[t] + 2/3yp′′[t] + 145/9yp′[t]==Exp[ – t]
– 148

9
ae – t==e – t

Equating coefficients and solving for A gives us A = −9/148 so yp = − 9

148
e−t

and a

general solution is y = yh + yp.

Remark 6.3 SolveAlways[equation,variable] attempts to solve an equation so that it is true for

all values of variable.

SolveAlways[eqn, t]{{
a → – 9

148

}}
We verify the result with DSolve.

gensol = DSolve[y′′′[t] + 2/3y′′[t] +
145/9y′[t]==Exp[ – t], y[t], t]//FullSimplify{{

y[t] → – 9e – t

148
+ C[3] – 3

145
e – t/3((12C[1] + C[2])Cos[4t]+

(C[1] – 12C[2])Sin[4t])}}



6.3 Higher-Order Linear Equations 477

1 2 3 4 5 6

1.0
1.1
1.2
1.3
1.4

FIGURE 6.20

The solution of the equation that satisfies y(0) = 1, y′(0) = 2, and y′′(0) = −1

To obtain a real-valued solution, we use ComplexExpand. If you are using a ver-

sion of Mathematica older than version 6, you might receive a complex valued

function rather than the real-valued function that we obtained. In those cases,

ComplexExpand can help you rewrite your complex solution as a real-valued

solution.

To apply the initial conditions, we compute y(0) = 1, y′
(0) = 2, and y′′

(0) = −1

and solve for c1, c2, and c3. The solution of the initial-value problem is obtained by

substituting these values into the general solution, and then we graph the result

with Plot in Figure 6.20.

initsol = DSolve[{y′′′[t] + 2/3y′′[t] +
145/9y′[t]==Exp[ – t], y[0]==1, y′[0]==2, y′′[0]== – 1},
y[t], t]//FullSimplify{{

y[t] → e – t
(

– 2610 + 46472et + e2t/3( – 942Cos[4t] + 20729Sin[4t])
)

42920

}}

Plot[y[t]/.initsol, {t, 0, 2Pi}, AspectRatio→Automatic]

Example 6.3.5 Solve

d 8y

dt 8
+

7

2

d 7y

dt 7
+

73

2

d 6y

dt 6
+

229

2

d 5y

dt 5
+

801

2

d 4y

dt 4
+

976
d 3y

dt 3
+ 1168

d 2y

dt 2
+ 640

dy

dt
+ 128y = te−t + sin 4t + t.

Solution Solving the characteristic equation

Solve[k∧8 + 7/2k∧7 + 73/2k∧6 + 229/2k∧5 +
801/2k∧4 + 976k∧3 + 1168k∧2 + 640k + 128==0]{{k → – 1}, {k → – 1}, {k → – 1},

{
k → – 1

2

}
,

{k → – 4i}, {k → – 4i}, {k → 4i}, {k → 4i}}
shows us that the solutions are k1 = −1/2, k2 = −1 with multiplicity 3, and k3,4 =

±4i, each with multiplicity 2. A fundamental set of solutions for the corresponding

homogeneous equation is

S =
{

e−t/2, e−t, te−t, t2e−t, cos 4t, t cos 4t, sin 4t, t sin 4t
}

.
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A general solution of the corresponding homogeneous equation is

yh = c1e−t/2 +
(
c2 + c3t + c4t2

)
e−t +

(
c5 + c7t

)
sin 4t +

(
c6 + c8t

)
cos 4t.

gensol = DSolve[D[y[t], {t, 8}] + 7/2D[y[t], {t, 7}] +
73/2D[y[t], {t, 6}] + 229/2D[y[t], {t, 5}] +

801/2D[y[t], {t, 4}] + 976y′′′[t] + 1168y′′[t] +
640y′[t] + 128y[t]==0, y[t], t]{{

y[t] → e – t/2C[5] + e – tC[6] + e – ttC[7] + e – tt2C[8]+

C[1]Cos[4t] + tC[2]Cos[4t] + C[3]Sin[4t] + tC[4]Sin[4t]}}
The associated set of functions for te−t

is F1 =
{

e−t
, te−t}

. We multiply F1 by

tn
, where n is the smallest nonnegative integer so that no element of tnF1 is

an element of S: t3F1 = {t3e−t
, t4e−t}. The associated set of functions for sin 4t is

F2 = {cos 4t, sin 4t}. We multiply F2 by tn
, where n is the smallest nonnegative inte-

ger so that no element of tnF2 is an element of S: t2F2 =
{

t2
cos 4t, t2

sin 4t
}

. The

associated set of functions for t is F3 = {1, t}. No element of F3 is an element of S.

Thus, we search for a particular solution of the form

yp = A1t3e−t + A2t4e−t + A3t2 cos 4t + A4t2 sin 4t + A5 + A6t,

where the Ai are constants to be determined.

After defining yp,

yp[t–] = a[1]t∧3Exp[ – t] + a[2]t∧4Exp[ – t] +
a[3]t∧2Cos[4t] + a[4]t∧2Sin[4t] + a[5] + a[6]t;

we substitute into the nonhomogeneous equation, naming the result eqn. At this

point we can either equate coefficients and solve for Ai or use the fact that eqn
is true for all values of t.

eqn = D[yp[t], {t, 8}] + 7/2D[yp[t], {t, 7}] +
73/2D[yp[t], {t, 6}] + 229/2D[yp[t], {t, 5}] +

801/2D[yp[t], {t, 4}] + 976yp′′′[t] + 1168yp′′[t] +
640yp′[t] + 128yp[t]==tExp[ – t] + Sin[4t] + t//Simplify

e – t
(

– 867a[1] + 7752a[2] – 3468ta[2] + 128eta[5]+

640eta[6] + 128etta[6] – 64et(369a[3] – 428a[4])Cos[4t] –

64et(428a[3] + 369a[4])Sin[4t]
)

==t + e – tt + Sin[4t]

We substitute in six values of t

sysofeqs = Table[eqn/.t→n//N, {n, 0, 5}];

and then solve for Ai.

coeffs = Solve[sysofeqs, {a[1.], a[2.], a[3.], a[4.], a[5.], a[6.]}]
{{a[1.] → – 0.00257819, a[2.] → – 0.000288351, a[3.] → – 0.0000209413,

a[4.] → – 0.0000180545, a[5.] → – 0.0390625, a[6.] → 0.0078125}}
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yp is obtained by substituting the values for Ai into yp and a general solution is

y = yh + yp. DSolve is able to find an exact solution.

gensol = DSolve[D[y[t], {t, 8}] + 7/2D[y[t], {t, 7}] +
73/2D[y[t], {t, 6}] + 229/2D[y[t], {t, 5}] +

801/2D[y[t], {t, 4}] + 976y′′′[t] + 1168y′′[t] +
640y′[t] + 128y[t]==tExp[ – t] + Sin[4t] + t, y[t], t]//Simplify{{

y[t] → 1

40727223623424000
e – t(

4394000
(
72412707et( – 5 + t) + 9268826496et/2C[5] – 32(35097672+

746776t3 + 83521t4 – 289650828C[6] – 204t( – 86016 + 1419857C[7]) –

3468t2( – 1270 + 83521C[8])
))

–

204et
(

– 9041976373 + 4180789600t2 – 199643253056000C[1] –

4420t( – 1568449 + 45168156800C[2]))Cos[4t] –

51et
(

– 13794625331 + 14417863200t2 – 798573012224000C[3] –

2263040t(20406 + 352876225C[4]))Sin[4t])}}

Variation of Parameters

In the same way as with second-order equations, we assume that a par-

ticular solution of the nth-order linear equation (6.19) has the form yp =

u1(t)y1 + u2(t)y2 + · · · + un(t)yn, where S = {y1, y2,…, yn} is a fundamental

set of solutions to the corresponding homogeneous equation (6.20). With

the assumptions

yp
′ = y1u1

′ + y2u2
′ + · · · + ynun

′ = 0

yp
′′ = y1

′u1
′ + y2

′u2
′ + · · · + yn

′un
′ = 0

.

.

. (6.23)

yp
(n−1) = y1

(n−2)u1
′ + y2

(n−2)u2
′ + · · · + yn

(n−2)un
′ = 0,

we obtain the equation

y1
(n−1)u1

′ + y2
(n−1)u2

′ + · · · + yn
(n−1)un

′ = f (t). (6.24)

Equations (6.23) and (6.24) form a system of n linear equations in the

unknowns u1

′
, u2

′
, …, un

′
. Applying Cramer’s rule,

ui
′ =

Wi(S)

W(S)
, (6.25)

where W(S) is given by equation (6.21) and Wi(S) is the determinant of the

matrix obtained by replacing the ith column of⎛
⎜⎜⎜⎝

y1 y2 … yn

y1

′ y2

′
… yn

′

.

.

.
.
.
. …

.

.

.

y1

(n−1) y2

(n−1)
… yn

(n−1)

⎞
⎟⎟⎟⎠ by

⎛
⎜⎜⎜⎝

0

0

.

.

.

f (t)

⎞
⎟⎟⎟⎠ .
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Example 6.3.6 Solve y(3)
+ 4y′

= sec 2t.

Solution A general solution of the corresponding homogeneous equation is yh = c1 +

c2 cos 2t + c3 sin 2t; a fundamental set is S = {1, cos 2t, sin 2t} with Wronskian

W(S) = 8.

yh = DSolve[y′′′[t] + 4y′[t]==0, y[t], t]{{
y[t] → C[3] – 1

2
C[2]Cos[2t] + 1

2
C[1]Sin[2t]

}}
s = {1, Cos[2t], Sin[2t]};
ws = {s, D[s, t], D[s, {t, 2}]};
MatrixForm[ws]⎛
⎝ 1 Cos[2t] Sin[2t]

0 – 2Sin[2t] 2Cos[2t]

0 – 4Cos[2t] – 4Sin[2t]

⎞
⎠

dws = Simplify[Det[ws]]
8

Using variation of parameters to find a particular solution of the nonhomogeneous

equation, we let y1 = 1, y2 = cos 2t, and y3 = sin 2t and assume that a particular

solution has the form yp = u1y1 + u2y2 + u3y3. Using the variation of parameters

formula, we obtain

u′
1 =

1

8

∣∣∣∣∣∣
0 cos 2t sin 2t
0 −2 sin 2t 2 cos 2t

sec 2t −4 cos 2t −4 sin 2t

∣∣∣∣∣∣ =
1

4
sec 2t so u1 =

1

8
ln | sec 2t + tan 2t|,

u′
2 =

1

8

∣∣∣∣∣∣
1 0 sin 2t
0 0 2 cos 2t
0 sec 2t −4 sin 2t

∣∣∣∣∣∣ = −1

4
so u2 = −1

4
t,

and

u′
3 =

1

8

∣∣∣∣∣∣
1 cos 2t 0

0 −2 sin 2t 0

0 −4 cos 2t sec 2t

∣∣∣∣∣∣ = −1

2
tan 2t so u3 =

1

8
ln | cos 2t|,

where we use Det and Integrate to evaluate the determinants and integrals. In

the case of u1, the output given by Mathematica looks different than the result we

obtained by hand, but differentiating the difference between the two results yields

0, so the results obtained by hand and with Mathematica are the same.

u1p = 1/8Det[{{0, Cos[2t], Sin[2t]}, {0, – 2Sin[2t], 2Cos[2t]},
{Sec[2t], – 4Cos[2t], – 4Sin[2t]}}]//Simplify

1

4
Sec[2t]

u1 = Integrate[u1p, t]
1

4
ArcTanh[Tan[t]]

s1 = D[u1 – 1/8Log[Sec[2t] + Tan[2t]], t]
Sec[t]2

4(1 – Tan[t]2)
–

2Sec[2t]2 + 2Sec[2t]Tan[2t]

8(Sec[2t] + Tan[2t])



6.3 Higher-Order Linear Equations 481

Simplify[s1]
0

u2p = 1/8Det[{{1, 0, Sin[2t]}, {0, 0, 2Cos[2t]},
{0, Sec[2t], – 4Sin[2t]}}]//Simplify

– 1

4

u2 = Integrate[u2p, t]
– t

4

u3p = 1/8Det[{{1, Cos[2t], 0}, {0, – 2Sin[2t], 0},
{0, – 4Cos[2t], Sec[2t]}}]//Simplify

– 1

4
Tan[2t]

u3 = Integrate[u3p, t]
1

8
Log[Cos[2t]]

Thus, a particular solution of the nonhomogeneous equation is

yp =
1

8
ln | sec 2t + tan 2t| − 1

4
t cos 2t +

1

8
ln | cos 2t| sin 2t

and a general solution is y = yh + yp. We verify that the calculations using DSolve
return an equivalent solution.

gensol = DSolve[y′′′[t] + 4y’[t]==Sec[2t], y[t], t]//Simplify{{
y[t] → 1

8
(2ArcTanh[Tan[t]] + 8C[3] –

8C[2]Cos[t]2 – 2tCos[2t] + 4C[1]Sin[2t] + Log[Cos[2t]]Sin[2t]
)}}

6.3.4 Laplace Transform Methods

The method of Laplace transforms can be useful when the forcing function

is piecewise-defined or periodic.

Definition 3 (Laplace Transform and Inverse Laplace Transform).
Let y = f (t) be a function defined on the interval [0,∞). The Laplace
transform is the function (of s)

F(s) = L { f (t)} =

∫∞
0

e−stf (t) dt, (6.26)

provided the improper integral exists. f (t) is the inverse Laplace trans-
form of F(s) means that L { f (t)} = F(s) and we write L−1 {F(s)} = f (t).

1. LaplaceTransform[f[t],t,s] computes L { f (t)} = F(s).
2. InverseLaplaceTransform[F[s],t,s] computes L−1 {F(s)} = f (t).

3. UnitStep[t] returns U(t) =

{
0, t < 0

1, t ≥ 0.
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Typically, when we use Laplace transforms to solve a differential equation

for a function y(t), we will compute the Laplace transform of each term

of the differential equation, solve the resulting algebraic equation for the

Laplace transform of y(t), L {y(t)} = Y(s), and, finally, determine y(t) by

computing the inverse Laplace transform of Y(s), L−1 {Y(s)} = y(t).

Example 6.3.7 Let y = f (t) be defined recursively by f (t) =

{
1, 0 ≤ t < 1

−1, 1 ≤ t < 2
and f (t) = f (t − 2) if

t ≥ 2. Solve y′′
+ 4y′

+ 20y = f (t).

Solution We begin by defining and graphing y = f (t) for 0 ≤ t ≤ 5 in Figure 6.21.

Clear[f, g, u, y1, y2, sol]
f[t–]:=1/;0≤ t < 1
f[t–]:= – 1/;1≤ t≤ 2
f[t–]:=f[t – 2]/;t > 2
Plot[f[t], {t, 0, 5}, Ticks→ {Automatic, { – 2, – 1, 0, 1, 2}},

PlotRange→ { – 2, 2}]

We then define lhs to be the left-hand side of the equation y′′
+ 4y′

+ 20y = f (t),

Clear[y, x, lhs, stepone, steptwo]
lhs = y′′[t] + 4y′[t] + 20y[t];

1 2 3 4 5

22

21

1

2

FIGURE 6.21

Plot of f (t) for 0 ≤ t ≤ 5
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and compute the Laplace transform of lhs with LaplaceTransform, naming the

result stepone.

stepone = LaplaceTransform[lhs, t, s]
20LaplaceTransform[y[t], t, s] + s2LaplaceTransform[y[t], t, s] +

(4(s LaplaceTransform[y[t], t, s] – y[0]) – sy[0] – y′[0]

Let lr denote the Laplace transform of the right-hand side of the equation, f (t). We

now solve the equation 20ly + 4sly + s2ly−4y(0) − sy(0) − y′
(0) = lr for ly and name

the resulting output steptwo.

steptwo = Solve[stepone==lr, LaplaceTransform[y[t], t, s]]{{
LaplaceTransform[y[t], t, s] → lr + 4y[0] + sy[0] + y′ [0]

20 + 4s + s2

}}
stepthree = ExpandNumerator[steptwo[[1, 1, 2]], 1r]
lr + 4y[0] + sy[0] + y′ [0]

20 + 4s + s2

To find y(t), we must compute the inverse Laplace transform of L {y(t)}; the formula

for which is explicitly obtained from steptwo with steptwo[[1,1,2]]. First, we rewrite :

L {y(t)}. Then,

y(t) = L−1

{ L { f (t)}
s2 + 4s + 20

+
4y(0) + sy(0) + y′

(0)

s2 + 4s + 20

}

= L−1

{ L { f (t)}
s2 + 4s + 20

}
+ L−1

{
4y(0) + sy(0) + y′

(0)

s2 + 4s + 20

}
.

Completing the square yields s2
+ 4s + 20 = (s + 2)

2
+ 16. Because

L−1

{
b

(s − a)2 + b2

}
= eat sin bt and L−1

{
s − a

(s − a)2 + b2

}
= eat cos bt,

the inverse Laplace transform of

4y(0) + sy(0) + y′
(0)

s2 + 4s + 20
= y(0)

s + 2

(s + 2)2 + 42
+

y′
(0) + 2y(0)

4

4

(s + 2)2 + 42

is

y(0)e−2t cos 4t +
y′

(0) + 2y(0)

4
e−2t sin 4t,

which is defined as y1(t). We perform these steps with Mathematica

by first using InverseLaplaceTransform to calculate L−1

{
4y(0) + sy(0) + y′

(0)

s2 + 4s + 20

}
,

naming the result stepfour.

stepfour = InverseLaplaceTransform
[

– – 4y[0] – sy[0] – y′[0]

20 + 4s + s2 , s, t
]

– 1

8
ie( – 2 – 4i)t

(
( – 2 + 4i)y[0] + (2 + 4i)e8ity[0] – y′[0] + e8ity′[0]

)
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To see that this is a real-valued function, we use ComplexExpand together with

Simplify.

stepfive = ComplexExpand[stepfour]//Simplify
1

4
e – 2t

(
4Cos[4t]y[0] + Sin[4t]

(
2y[0] + y′[0]

))
If the result in stepfive is given in terms of real and imaginary parts of y(0) and

y′
(0), because y′

(0) is assumed to be a real number, the imaginary part of y′
(0)

is 0; the real part of y′
(0) is y′

(0).

y1[t–] = stepfive/.{Im[y′[0]]→0, Re[y′[0]]→ y′[0]}//Simplify
1

4
e – 2t

(
4Cos[4t]y[0] + Sin[4t]

(
2y[0] + y′[0]

))
To compute the inverse Laplace transform of

L { f (t)}
s2 + 4s + 20

, we begin by computing

lr = L { f (t)}. Let Ua(t) =

{
1, t ≥ a

0, t < a
. Then, Ua(t) = U(t − a) = UnitStep[t-a].

The periodic function f (t) =

{
1, 0 ≤ t < 1

−1, 1 ≤ t < 2
and f (t) = f (t − 2) if t ≥ 2 can be

written in terms of step functions as

f (t) = U0(t) − 2U1(t) + 2U2(t) − 2U3(t) + 2U4(t) − …

= U(t) − 2U(t − 1) + 2U(t − 2) − 2U(t − 3) + 2U(t − 4) − …

= U(t) + 2

∞∑
n=1

(−1)nU(t − n).

The Laplace transform of Ua(t) = U(t − a) is
1

s
e−as

and the Laplace transform of

f (t)Ua(t) = f (t)U(t − a) is e−asF(s), where F(s) is the Laplace transform of f (t). Then,

lr =
1

s
− 2

s
e−s +

2

s
e−2s − 2

s
e−3s + · · ·

=
1

s

(
1 − 2e−s + 2e−2s − 2e−3s + · · · )

and

lr
s2 + 4s + 20

=
1

s
(
s2 + 4s + 20

) (1 − 2e−s + 2e−2s − 2e−3s + · · · )

=
1

s
(
s2 + 4s + 20

) + 2

∞∑
n=1

(−1)n e−ns

s
(
s2 + 4s + 20

) .

Because
1

s2 + 4s + 20
=

1

4

1

(s + 2)2 + 42
, L−1

{
1

s
(
s2 + 4s + 20

)
}

=
∫ t

0

1

4
e−2�

sin 4� d�, computed and defined to be the function g(t).

g[t–] = ∫ t
0

1
4 Exp[ – 2�]Sin[4�] d�

1

40

(
2 – e – 2t

(2Cos[4t] + Sin[4t])
)
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Alternatively, we can use InverseLaplaceTransform to obtain the same result.

g[t–] = InverseLaplaceTransform
[

1
s(s2+4s+20)

, s, t
]

//ExpToTrig//

Simplify
1

80
(4 + (2Cos[4t] + Sin[4t])( – 2Cosh[2t] + 2Sinh[2t]))

Then, L−1

{
2(−1)

n e−ns

s
(
s2 + 4s + 20

)
}

= 2(−1)
ng(t − n)U(t − n) and the inverse

Laplace transform of

1

s
(
s2 + 4s + 20

) + 2

∞∑
n=1

(−1)n e−ns

s
(
s2 + 4s + 20

)

is

y2(t) = g(t) + 2

∞∑
n=1

(−1)ng(t − n)U(t − n).

It then follows that

y(t) = y1(t) + y2(t)

= y(0)e−2t cos 4t +
y′

(0) + 2y(0)

4
e−2t sin 4t + 2

∞∑
n=1

(−1)ng(t − n)U(t − n),

where g(t) = 1

20
− 1

20
e−2t

cos 4t − 1

40
e−2t

sin 4t.

To graph the solution for various initial conditions on the interval [0, 5], we

define y2(t) = g(t) + 2
∑5

n=1
(−1)

ng(t − n)U(t − n), sol, and inits. (Note that we can

graph the solution for various initial conditions on the interval [0, m] by defining

y2(t) = g(t) + 2
∑m

n=1
(−1)

ng(t − n)U(t − n).)

y2[t–]:=g[t] + 2
∑5

n=1
( – 1)ng[t – n]UnitStep[t – n]

Clear[sol]
sol[t–]:=y1[t] + y2[t]
inits = { – 1/2, 0, 1/2};

We then create a table of graphs of sol[t] on the interval [0, 5] corresponding to

replacing y(0) and y′
(0) by the values −1/2, 0, and 1/2 and then displaying the

resulting graphics array in Figure 6.22.

graphs = Table[Plot[sol[t]/.{y[0]→ inits[[i]], y′[0]→ inits[[j]]},
{t, 0, 5}, DisplayFunction→ Identity], {i, 1, 3}, {j, 1, 3}];

Show[GraphicsGrid[graphs]]
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1 2 3 4 5

20.3

20.2

20.1

0.1

1 2 3 4 5

20.3

20.2

20.1

0.1

1 2 3 4 5

20.3

20.2

20.1

0.1

1 2 3 4 5

20.06
20.04

0.02
0.04
0.06

1 2 3 4 5

20.06
20.04

0.02
0.04
0.06

1 2 3 4 5

20.05

0.05

1 2 3 4 5

0.05
0.10
0.15
0.20
0.25

1 2 3 4 5

0.05
0.10
0.15
0.20
0.25

1 2 3 4 5

0.05
0.10
0.15
0.20
0.25

FIGURE 6.22

Solutions to a differential equation with a piecewise-defined periodic forcing function

Application: The Convolution Theorem

Sometimes we are required to determine the inverse Laplace transform of a

product of two functions. Just as in differential and integral calculus when

the derivative and integral of a product of two functions did not produce

the product of the derivatives and integrals, respectively, neither does the

inverse Laplace transform of the product yield the product of the inverse

Laplace transforms. The convolution theorem tells us how to compute the

inverse Laplace transform of a product of two functions.

Theorem 2 (The Convolution Theorem). Suppose that f (t) and g(t)
are piecewise continuous on [0,∞) and both are of exponential order.
Furthermore, suppose that the Laplace transform of f (t) is F(s) and that
of g(t) is G(s). Then,

L−1 {F(s)G(s)} = L−1
{L{(f ∗ g

)
(t)
}}

=

∫ t

0

f (t − ν)g(ν) dν. (6.27)

Note that
(
f ∗ g
)

(t) =
∫ t

0
f (t − ν)g(ν) dν is called the convolution

integral.

Example 6.3.8 (L–R–C Circuits). The initial-value problem used to determine the charge q(t) on

the capacitor in an L–R–C circuit is

L
d2Q

dt2
+ R

dQ

dt
+

1

C
Q = f (t), Q(0) = 0,

dQ

dt
(0) = 0,
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where L denotes inductance, dQ/dt = I, I(t) current, R resistance, C capacitance,

and E(t) voltage supply. Because dQ/dt = I, this differential equation can be

represented as

L
dI

dt
+ RI +

1

C

∫ t

0

I(u) du = E(t).

Note also that the initial condition Q(0) = 0 is satisfied because Q(0) = 1

C

∫ 0

0
I(u)

du = 0. The condition dQ/dt(0) = 0 is replaced by I(0) = 0. (a) Solve this integro-

differential equation, an equation that involves a derivative as well as an integral of

the unknown function, by using the convolution theorem. (b) Consider this example

with constant values L = C = R = 1 and E(t) =

{
sin t, 0 ≤ t < �/2

0, t ≥ �/2
. Determine I(t)

and graph the solution.

Solution We proceed as in the case of a differential equation by taking the Laplace transform

of both sides of the equation. The convolution theorem, equation (6.27), is used

in determining the Laplace transform of the integral with

L
{∫ t

0

I(u) du

}
= L {1 ∗ I(t)} = L {1} L {I(t)} =

1

s
L {I(t)} .

Therefore, application of the Laplace transform yields

LsL {I(t)} − LI(0) + RL {I(t)} +
1

C

1

s
L {I(t)} = L {E(t)} .

Because I(0) = 0, we have LsL {I(t)} + RL {I(t)} + 1

C

1

s
L {I(t)} = L {E(t)}. Simplifying

and solving for L {I(t)} results in L {I(t)} =
CsL {E(t)}

LCs2 + RCs + 1

Clear[i]
LaplaceTransform[l i′[t] + r i[t], t, s]

r LaplaceTransform[i[t], t, s] +

l( – i[0] + s LaplaceTransform[i[t], t, s])

Solve
[
l s lapi + rlapi + lapi

cs ==lape, lapi
]

{{
lapi → clapes

1+crs+cls2

}}
We use lowercase

letters to avoid any

possible ambiguity

with built-in

Mathematica

functions, such as

E and I.

so that I(t) = L−1

{
CsL {E(t)}

LCs2 + RCs + 1

}
. In the Solve command we use lapi to

denote L {I(t)} and lape to denote L {E(t)}. For (b), we note that E(t) ={
sin t, 0 ≤ t < �/2

0, t ≥ �/2
can be written as E(t) = sin t

(U(t) − U(t − �/2)
)
. We define

and plot the forcing function E(t) on the interval [0, �] in Figure 6.23(a).
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FIGURE 6.23

(a) Plot of E(t) = sin t
(U(t) − U(t − �/2)

)
. (b) I(t) (in black) and E(t) (in gray)

e[t–]:=Sin[t]
(
UnitStep[t] – UnitStep

[
t – p

2

])
p1 = Plot[e[t], {t, 0,p}]

Next, we compute the Laplace transform of L {E(t)} with LaplaceTransform. We

call this result lcape.

lcape = LaplaceTransform[e[t], t, s]
1

1 + s2 – e
– �s

2 s

1 + s2

Using the general formula obtained for the Laplace transform of I(t), we note

that the denominator of this expression is given by s2
+ s + 1, which is entered as

denom. Hence, the Laplace transform of I(t), called lcapi, is given by the ratio

s lcape/denom.

denom = s2 + s + 1;
lcapi = s lcape/denom;
lcapi = Simplify[lcapi]

s – e
– �s

2 s2

1 + s + 2s2 + s3 + s4

We determine I(t) with InverseLaplaceTransform. Note that HeavisideTheta[x] is

defined by �(x) =

{
0, if x < 0

1, if x > 0
.

i[t–] = InverseLaplaceTransform[lcapi, s, t]
Sin[t] – HeavisideTheta

[
– �

2
+ t
](

– 1

3
e

1
4

(� – 2t)
(

3Cos
[

1

4

√
3(� – 2t)

]
+
√

3Sin
[

1

4

√
3(� – 2t)

])
+ Sin[t]

)
–

2e – t/2Sin
[√

3t
2

]
√

3

This solution is plotted in p2 (in black) and displayed with the forcing function

(in gray) in Figure 6.23(b). Notice the effect that the forcing function has on the

solution to the differential equation.
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p2 = Plot[i[t], {t, 0, 10}, DisplayFunction→ Identity];
Show[p1, p2, PlotRange→All, DisplayFunction→$DisplayFunction]
Show[GraphicsRow[{p1, p2}]]

In this case, we see that we can use DSolve to solve the initial-value problem

Q′′ + Q′ + Q = E(t), Q(0) = 0, Q′(0) = 0

as well. However, the result is very lengthy, so only a portion is displayed here

using Short.

sol = DSolve [{q′′[t] + q′[t] + q[t]==e[t], q[0]==0, q′[0]==0}, q[t], t] ;
Short[sol]{{

q[t] → e – t/2(〈〈1〉〉)
3(〈〈1〉〉2+〈〈1〉〉2)

+ UnitStep
[

�
2

– t
]

(〈〈1〉〉)
}}

We see that this result is a real-valued function using ComplexExpand followed

by Simplify.

q[t–] = ComplexExpand[sol[[1, 1, 2]]]//Simplify⎧⎨
⎩

1

3
e – t

√
et

(
3Cos

[√
3t

2

]
+
√

3
(

– 2e�/4Sin
[

1

4

√
3(� – 2t)

]
+ Sin

[√
3t

2

]))
2t > �

1

3
e – t
(

– 3etCos[t] +
√

et

(
3Cos

[√
3t

2

]
+
√

3Sin
[√

3t

2

]))
0 ≤ t ≤ �

2

We use this result to graph Q(t) and I(t) = Q′
(t) in Figure 6.24.

Plot[{q[t], q′[t]}, {t, 0, 10},
PlotStyle→ {GrayLevel[0], GrayLevel[0.5]}]

2 4 6 8 10

20.2

0.2

0.4

FIGURE 6.24

Q(t) (in black) and I(t) = Q′
(t) (in gray)
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Application: The Dirac Delta Function

Let 

(
t − t0

)
denote the (generalized) function with the two properties

1. 

(
t − t0

)
= 0 if t �= t0 and

2.
∫∞
−∞ 


(
t − t0

)
dt = 1

which is called the Dirac delta function and is quite useful in the

definition of impulse forcing functions that arise in some differential equa-

tions. The Laplace transform of 

(
t − t0

)
is L{


(
t − t0

)}
= e−st0 . The

Mathematica function DiracDelta represents the 
 distribution.

LaplaceTransform[DiracDelta[t – t0], t, s]
e – st0HeavisideTheta[t0]

Example 6.3.9 Solve

{
x′′

+ x′
+ x = 
(t) + U(t − 2�)

x(0) = 0, x′
(0) = 0

.

Solution We define eq to be the equation x′′
+ x′

+ x = 
(t) + U(t − 2�) and then use

LaplaceTransform to compute the Laplace transform of eq, naming the resulting

output leq. The symbol LaplaceTransform [x[t],t,s] represents the Laplace trans-

form of x[t]. We then apply the initial conditions x(0) = 0 and x′
(0) = 0 to leq and

name the resulting output ics.

Clear[x, eq]
eq = x′′[t] + x′[t] + x[t]==DiracDelta[t] + UnitStep[t – 2p];
leq = LaplaceTransform[eq, t, s]

LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] +

s2LaplaceTransform[x[t], t, s] − x[0] − sx[0] − x′[0]==1 + e−2�s

s

ics = leq/.{x[0]→0, x′[0]→0}
LaplaceTransform[x[t], t, s] + s LaplaceTransform[x[t], t, s] +

s2LaplaceTransform[x[t], t, s]==1 + e−2�s

s

Next, we use Solve to solve the equation ics for the Laplace transform of x(t).

The expression for the Laplace transform is extracted from lapx with lapx[[1,1,2]].

lapx = Solve[ics, LaplaceTransform[x[t], t, s]]{{
LaplaceTransform[x[t], t, s] → e – 2�s(1 + e2�ss)

s(1 + s + s2)

}}

To find x(t), we must compute the inverse Laplace transform of the Laplace trans-

form of L {x(t)} obtained in lapx. We use InverseLaplaceTransform to compute

the inverse Laplace transform of lapx[[1,1,2]] and name the resulting function x[t].

x[t–] = InverseLaplaceTransform[lapx[[1, 1, 2]], s, t]
2e – t/2Sin

[√
3t

2

]
√

3
+ 1

3
HeavisideTheta[ – 2� + t]
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(
3 – e� – t

2

(
3Cos

[
1

2

√
3( – 2� + t)

]
+
√

3Sin
[

1

2

√
3( – 2� + t)

]))
If necessary, to see that this is a real-valued function, we use ComplexExpand
followed by Simplify. If needed, we see that the result is a real-valued function

using ComplexExpand followed by Simplify.

x[t–] = ComplexExpand[x[t]]//Simplify
1

3
e – t
(

2
√

3
√

etSin
[√

3t

2

]
+ et/2HeavisideTheta[ – 2� + t](

3et/2 – 3e�Cos
[

1

2

√
3( – 2� + t)

]
–
√

3e�Sin
[

1

2

√
3( – 2� + t)

]))

We use Plot to graph the solution on the interval [0, 8�] in Figure 6.25.

Plot[x[t], {t, 0, 8p}]

Finally, we note that DSolve is able to solve the initial-value problem directly as

well. The result is very lengthy, so only an abbreviated portion is displayed here

using Short.

Clear[x]
sol = DSolve[{x′′[t] + x′[t] + x[t]==DiracDelta[t] + UnitStep[t – 2p],
x[0]==0, x′[0]==0}, x[t], t];
Short[sol, 2]{{

x[t] → e – t/2(〈〈1〉〉)
3
(

Cos[
√

3�]
2
+ Sin[〈〈1〉〉]2

) +

⎛
⎝ –

2〈〈1〉〉〈〈1〉〉Sin

[ 〈〈1〉〉
2

]
√

3
–

e〈〈1〉〉〈〈1〉〉
3(〈〈1〉〉)

⎞
⎠ 〈〈8〉〉 [〈〈1〉〉]

}}
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FIGURE 6.25

Plot of x(t) on the interval [0, 8�]
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6.3.5 Nonlinear Higher-Order Equations

Generally, rigorous results regarding nonlinear equations are very difficult

to obtain. In some cases, analysis is best carried out numerically and/or

graphically. In other situations, rewriting the equation as a system can be

of benefit, which is discussed in the next section. (See Examples 6.4.5,

6.4.6, and 6.4.8.)

6.4 SYSTEMS OF EQUATIONS

6.4.1 Linear Systems

We now consider first-order linear systems of differential equations:

X′ = A(t)X + F(t), (6.28)

where

X(t) =

⎛
⎜⎜⎜⎝

x1(t)
x2(t)

.

.

.

xn(t)

⎞
⎟⎟⎟⎠ , A(t) =

⎛
⎜⎜⎜⎝

a11(t) a12(t) … a1n(t)
a21(t) a22(t) … a2n(t)

.

.

.
.
.
. …

.

.

.

an1(t) an2(t) … ann(t)

⎞
⎟⎟⎟⎠ , and F(t) =

⎛
⎜⎜⎜⎝

f1(t)
f2(t)

.

.

.

fn(t)

⎞
⎟⎟⎟⎠ .

Homogeneous Linear Systems

The corresponding homogeneous system of equation (6.28) is

X′ = AX. (6.29)

In the same way as with the previously discussed linear equations, a

general solution of equation (6.28) is X = Xh + Xp, where Xh is a gen-
eral solution of equation (6.29) and Xp is a particular solution of the

nonhomogeneous system equation (6.28).A particular
solution to a

system of ordinary

differential equations

is a set of functions

that satisfy the

system but do not

contain any arbitrary

constants. That is, a

particular solution to

a system is a set of

specific functions,

containing no
arbitrary constants,
that satisfy the

system.

If F1, F2, …, Fn are n linearly independent solutions of equation (6.29),

a general solution of equation (6.29) is

X = c1F1 + c2F2 + · · · + cnFn =
(
F1 F2 · · · Fn

)
⎛
⎜⎜⎜⎝

c1

c2

.

.

.

cn

⎞
⎟⎟⎟⎠ = FC,

where

F =
(
F1 F2 … Fn

)
and C =

⎛
⎜⎜⎜⎝

c1

c2

.

.

.

cn

⎞
⎟⎟⎟⎠ .
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F is called a fundamental matrix for equation (6.29). If F is a fundamen-

tal matrix for equation (6.29), F′
= AF or F′ − AF = 0.

A(t) constant

Suppose that A(t) = A has constant real entries. Let � be an eigenvalue of

A with corresponding eigenvector v. Then, ve�t
is a solution of X′

= AX.

If � = � + �i, � �= 0, is an eigenvalue of A and has corresponding

eigenvector v = a + bi, two linearly independent solutions of X′
= AX

are

e�t
(
a cos �t − b sin �t

)
and e�t

(
a sin �t + b cos �t

)
. (6.30)

Example 6.4.1 Solve each of the following systems:

(a) X
′

=

(−1/2 −1/3

−1/3 −1/2

)
X; (b)

{
x′

= 1

2
y

y′
= − 1

8
x

; (c)

{
dx/dt = − 1

4
x + 2y

dy/dt = −8x − 1

4
y.

Solution (a) With Eigensystem, we see that the eigenvalues and eigenvectors of A =(−1/2 −1/3

−1/3 −1/2

)
are �1 = −1/6 and �2 = −5/6 and v1 =

(−1

1

)
and v2 =

(
1

1

)
,

respectively.

capa = {{ – 1/2, – 1/3}, { – 1/3, – 1/2}};
Eigensystem[capa]{{ – 5

6
, – 1

6
}, {{1, 1}, { – 1, 1}}}

Then X1 =

(−1

1

)
e−t/6

and X2 =

(
1

1

)
e−5t/6

are two linearly independent solutions

of the system, so a general solution is X =

(
−e−t/6 e−5t/6

e−t/6 e−5t/6

)(
c1

c2

)
; a fundamental

matrix is F =

(
−e−t/6 e−5t/6

e−t/6 e−5t/6

)
.

We use DSolve to find a general solution of the system by entering

Clear[x, y]
gensol = DSolve[{x′[t]== – 1/2x[t] – 1/3y[t],
y′[t]== – 1/3x[t] – 1/2y[t]}, {x[t], y[t]}, t]{{

x[t] → 1

2
e – 5t/6

(
1 + e2t/3

)
C[1] – 1

2
e – 5t/6

(
– 1 + e2t/3

)
C[2],

y[t] → – 1

2
e – 5t/6

(
– 1 + e2t/3

)
C[1] + 1

2
e – 5t/6

(
1 + e2t/3

)
C[2]
}}

We graph the direction field with VectorFieldPlot, which is contained in the

VectorFieldPlots, in Figure 6.26.
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FIGURE 6.26

Direction field for X
′

= AX

Remark 6.4 After you have loaded the VectorFieldPlots package,

VectorFieldPlot[{f[x, y], g[x, y]}, {x, a, b}, {y, c, d}]

generates a basic direction field for the system {x′
= f (x, y), y′

= g(x, y)} for a ≤
x ≤ b and c ≤ y ≤ d.

<< “VectorFieldPlots`”
pvf = Show[VectorFieldPlot[{ – 1/2x – 1/3y, – 1/3x – 1/2y},

{x, – 1, 1}, {y, – 1, 1}, ScaleFunction→ (1&)],
Axes→Automatic]

Several solutions are also graphed with ParametricPlot and shown together with

the direction field in Figure 6.27. To do so, we first solve the system if x(0) = x0

and y(0) = y0.
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FIGURE 6.27

Direction field for X
′

= AX along with various solution curves

initsol = DSolve[{x′[t]== – 1/2x[t] – 1/3y[t],
y′[t]== – 1/3x[t] – 1/2y[t], x[0]==x0, y[0]==y0}, {x[t], y[t]}, t]{{
x[t] → 1

2
e – 5t/6

(
x0 + e2t/3x0 + y0 – e2t/3y0

)
,

y[t] → – 1

2
e – 5t/6

(
– x0 + e2t/3x0 – y0 – e2t/3y0

)}}
Given an ordered pair, solplot parametrically graphs the solution satisfying x(0) = x0

and y(0) = y0 for 0 ≤ t ≤ 15.

solplot[pair– ]:=
ParametricPlot[

Evaluate[{x[t], y[t]}/.initsol/.{x0→pair[[1]], y0→pair[[2]]}],
{t, 0, 15}, PlotStyle→ {{Black, Thickness[.005]}}]
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We then define a list of ordered pairs with Table followed by Flatten

Clear[i, j]
orderedpairs = Flatten[Table[{i, j}, {i, – 1, 1, 1/4}, {j, – 1, 1, 1/4}], 1];
Short[orderedpairs]{{ – 1, – 1},

{
– 1, – 3

4

}
,
{

– 1, – 1

2

}
, 〈〈75〉〉,{1, 1

2

}
,
{

1, 3

4

}
, {1, 1}}

and use Map to apply solplot to orderedpairs.

toshow = Map[solplot, orderedpairs];

The resulting list of graphics objects is displayed together with Show. See

Figure 6.27.

Show[toshow, pvf, PlotRange→ {{ – 1, 1}, { – 1, 1}}]

(b) In matrix form the system is equivalent to the system X
′

=

(
0 1/2

−1/8 0

)
X.

As in (a), we use Eigensystem to see that the eigenvalues and eigenvectors of

A =

(
0 1/2

−1/8 0

)
are �1,2 = 0 ± 1

4
i and v1,2 =

(
1

0

)
±
(

0

1/2

)
i.

capa = {{0, 1/2}, { – 1/8, 0}};
Eigensystem[capa]{{

i

4
, – i

4

}
, {{ – 2i, 1}, {2i, 1}}}

Two linearly independent solutions are then X1 =

(
1

0

)
cos 1

4
t −
(

0

1/2

)
sin 1

4
t =(

cos 1

4
t

− 1

2
sin 1

4
t

)
and X2 =

(
1

0

)
sin 1

4
t +

(
0

1/2

)
cos 1

4
t =

(
sin 1

4
t

1

2
cos 1

4
t

)
, and a general

solution is X = c1X1 + c2X2 =

(
cos 1

4
t sin 1

4
t

− 1

2
sin 1

4
t 1

2
cos 1

4
t

)(
c1

c2

)
or x = c1 cos 1

4
t + c2 sin 1

4
t

and y = −c1
1

2
sin 1

4
t + 1

2
c2 cos 1

4
t.

As before, we use DSolve to find a general solution.

Clear[x, y]
gensol = DSolve[{x′[t]==1/2y[t], y′[t]== – 1/8x[t]},
{x[t], y[t]}, t]{{

x[t] → C[1]Cos
[

t

4

]
+ 2C[2]Sin

[
t

4

]
,

y[t] → C[2]Cos
[

t

4

]
– 1

2
C[1]Sin

[
t

4

]}}
Initial-value problems for systems are solved in the same way as for other

equations. For example, entering

partsol = DSolve[{x′[t]==1/2y[t], y′[t]== – 1/8x[t],
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x[0]==1, y[0]== – 1},
{x[t], y[t]}, t]{{

x[t] → Cos
[

t

4

]
– 2Sin

[
t

4

]
, y[t] → 1

2

(
– 2Cos

[
t

4

]
– Sin

[
t

4

])}}
finds the solution that satisfies x(0) = 1 and y(0) = −1.

We graph x(t) and y(t) together as well as parametrically with Plot and

ParametricPlot, respectively, in Figure 6.28.

p1 = Plot[{x[t], y[t]}/.partsol, {t, 0, 8Pi}];
p2 = ParametricPlot[{x[t], y[t]}/.partsol, {t, 0, 8Pi},

AspectRatio→Automatic];
Show[GraphicsRow[{p1, p2}]]

We can also use VectorFieldPlot and ParametricPlot to graph the direction

field and/or various solutions as we do next with Manipulate. In this case,

Manipulate is used to graph the solution passing through the locator point. As

you move the point with the cursor, the corresponding solution is plotted. See

Figure 6.29.

Clear[pvf, sol, p1];
Manipulate[
<< “VectorFieldPlots`”;
Module[{pvf, sol, p1},
pvf = Show[VectorFieldPlot[{1/2y, – 1/8x},

{x, – 2, 2}, {y, – 1, 1}, ScaleFunction→ (1&)],
Axes→Automatic];

sol = DSolve[{x′[t]==1/2y[t], y′[t]== – 1/8x[t],
x[0]==pt[[1]], y[0]==pt[[2]]},

{x[t], y[t]}, t];
p1 = ParametricPlot[{x[t], y[t]}/.sol, {t, 0, 8Pi},

PlotStyle→Thickness[.01]];
Show[p1, pvf, PlotRange→ {{ – 2, 2}, { – 1, 1}},

AspectRatio→1]], {{pt, {1, .5}}, Locator}]
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FIGURE 6.28

(a) Graph of x(t) and y(t). (b) Parametric plot of x(t) versus y(t)
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FIGURE 6.29

With Manipulate, notice that all nontrivial solutions are periodic

(c) In matrix form, the system is equivalent to the system X
′

=

(− 1

4
2

−8 − 1

4

)
X.

The eigenvalues and corresponding eigenvectors of A =

(− 1

4
2

−8 − 1

4

)
are found to

be �1,2 = − 1

4
± 4i and v1,2 =

(
0

2

)
±
(

1

0

)
i with Eigensystem.

capa = {{ – 1/4, 2}, { – 8, – 1/4}};
Eigensystem[capa]{{

– 1

4
+ 4i, – 1

4
– 4i
}

,
{{

– i

2
, 1
}

,
{

i

2
, 1
}}}

A general solution is then

X = c1X1 + c2X2

= c1e−t/4

((
1

0

)
cos 4t −

(
0

2

)
sin 4t

)
+ c2e−t/4

((
1

0

)
sin 4t +

(
0

2

)
cos 4t

)

= e−t/4

[
c1

(
cos 4t

−2 sin 4t

)
+ c2

(
sin 4t

2 cos 4t

)]
= e−t/4

(
cos 4t sin 4t

−2 sin 4t 2 cos 4t

)(
c1

c2

)

or x = e−t/4 (c1 cos 4t + c2 sin 4t
)

and y = e−t/4 (
2c2 cos 4t − 2c1 sin 4t

)
. We confirm

this result using DSolve.

gensol = DSolve[{x′[t]== – 1/4x[t] + 2y[t],
y′[t]== – 8x[t] – 1/4y[t]}, {x[t], y[t]}, t]{{

x[t] → e – t/4C[1]Cos[4t] + 1

2
e – t/4C[2]Sin[4t],

y[t] → e – t/4C[2]Cos[4t] – 2e – t/4C[1]Sin[4t]
}}
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FIGURE 6.30

Various solutions and direction field associated with the system

We use VectorFieldPlot and ParametricPlot to graph the direction field associated

with the system along with various solutions in Figure 6.30.

Clear[x, y]
initsol = DSolve[{x′[t]== – 1/4x[t] + 2y[t],

y′[t]== – 8x[t] – 1/4y[t], x[0]==x0, y[0]==y0},
{x[t], y[t]}, t]{{

x[t] → 1

2
e – t/4(2x0Cos[4t] + y0Sin[4t]),

y[t] → e – t/4(y0Cos[4t] – 2x0Sin[4t])
}}

t1 = Table[ParametricPlot[{x[t], y[t]}/.initsol/.
{x0→1, y0→ i}, {t, 0, 15}, PlotStyle→Gray],

{i, – 1, 1, 2/8}];
pvf = Show[VectorFieldPlot[{ – 1/4x + 2y, – 8x – 1/4y},

{x, – 1, 1}, {y, – 1, 1}, ScaleFunction→ (1&)],
Axes→Automatic];
Show[t1, pvf, PlotRange→ {{ – 1, 1}, { – 1, 1}},
AspectRatio→Automatic]

Last, we illustrate how to solve an initial-value problem and graph the resulting solu-

tions by finding the solution that satisfies the initial conditions x(0) = 100 and y(0) = 10

and then graphing the results with Plot and ParametricPlot in Figure 6.31.
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FIGURE 6.31

(a) Graph of x(t) and y(t). (b) Parametric plot of x(t) versus y(t) (for help with Show
and GraphicsRow use the Documentation Center)

Clear[x, y]
partsol = DSolve[{x′[t]== – 1/4x[t] + 2y[t],

y′[t]== – 8x[t] – 1/4y[t], x[0]==100, y[0]==10},
{x[t], y[t]}, t]{{

x[t] → 5e – t/4(20Cos[4t] + Sin[4t]), y[t] → 10e – t/4(Cos[4t] – 20Sin[4t])
}}

p1 = Plot[{x[t], y[t]}/.partsol, {t, 0, 20}, PlotRange→All];
p2 = ParametricPlot[{x[t], y[t]}/.partsol, {t, 0, 20},

AspectRatio→Automatic];
Show[GraphicsRow[{p1, p2}]]

Application: The Double Pendulum

The motion of a double pendulum is modeled by the system of differential

equations

⎧⎪⎪⎨
⎪⎪⎩
(
m1 + m2

)
l1

2 d2�1

dt2
+ m2l1l2

d2�2

dt2
+
(
m1 + m2

)
l1g�1 = 0

m2l2
2 d2�2

dt2
+ m2l1l2

d2�1

dt2
+ m2l2g�2 = 0
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using the approximation sin � ≈ � for small displacements. �1 represents

the displacement of the upper pendulum and �2 that of the lower pen-

dulum. Also, m1 and m2 represent the mass attached to the upper and

lower pendulums, respectively, whereas the length of each is given by l1
and l2.

Example 6.4.2 Suppose that m1 = 3, m2 = 1, and each pendulum has length 16. If �1(0) = 1,

�1

′
(0) = 0, �2(0) = −1, and �2

′
(0) = 0, solve the double pendulum problem using

g = 32. Plot the solution.

Solution In this case, the system to be solved is

⎧⎪⎪⎨
⎪⎪⎩

4 · 16
2 d2

�1

dt2
+ 16

2 d2
�2

dt2
+ 4 · 16 · 32�1 = 0

16
2 d2

�2

dt2
+ 16

2 d2
�1

dt2
+ 16 · 32�2 = 0,

which we simplify to obtain

⎧⎪⎪⎨
⎪⎪⎩

4
d2

�1

dt2
+

d2
�2

dt2
+ 8�1 = 0

d2
�2

dt2
+

d2
�1

dt2
+ 2�2 = 0.

In the following code, we let x(t) and y(t) represent �1(t) and �2(t), respectively.

First, we use DSolve to solve the initial-value problem.

sol = DSolve[{4x′′[t] + y′′[t] + 8x[t]==0, x′′[t] + y′′[t] + 2y[t]==0,
x[0]==1, x′[0]==1, y[0]==0, y′[0]== – 1}, {x[t], y[t]}, t]{{

x[t] → 1

8

(
4Cos[2t] + 4Cos

[
2t√

3

]
+ 3Sin[2t] +

√
3Sin

[
2t√

3

])
,

y[t] → 1

4

(
– 4Cos[2t] + 4Cos

[
2t√

3

]
– 3Sin[2t] +

√
3Sin

[
2t√

3

])}}

To solve the initial-value problem using traditional methods, we use the method of

Laplace transforms. To do so, we define sys to be the system of equations and

use LaplaceTransform to compute the Laplace transform of each equation.

The Laplace
transform of y = f (t)
is F(s) = L{ f (t)} =∫∞

0
e−stf (t) dt. step1 = LaplaceTransform[sys, t, s]

{8LaplaceTransform[x[t], t, s] +

s2LaplaceTransform[y[t], t, s] – sy[0] +

4
(
s2LaplaceTransform[x[t], t, s] – sx[0] – x′[0]

)
– y′[0]==0,

s2LaplaceTransform[x[t], t, s] +

2LaplaceTransform[y[t], t, s] +

s2LaplaceTransform[y[t], t, s] – sx[0] –

sy[0] – x′[0] – y′[0]==0}
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Next, we apply the initial conditions and solve the resulting system of equations

for L {�1(t)} = X(s) and L {�2(t)} = Y(s).

step2 = step1/.{x[0] –> 1, x′[0] –> 1, y[0] –> 0, y′[0] –> – 1}
{1 + 8LaplaceTransform[x[t], t, s] +

4
(

– 1 – s + s2LaplaceTransform[x[t], t, s]
)

+

s2LaplaceTransform[y[t], t, s]==0,

– s + s2LaplaceTransform[x[t], t, s] +

2LaplaceTransform[y[t], t, s] +

s2LaplaceTransform[y[t], t, s]==0}
step3 =

Solve[step2, {LaplaceTransform[x[t], t, s],
LaplaceTransform[y[t], t, s]}]{{

LaplaceTransform[x[t], t, s] → – – 6 – 8s – 3s2 – 3s3

16 + 16s2 + 3s4 ,

LaplaceTransform[y[t], t, s] → – – 8s + 3s2

16 + 16s2 + 3s4

}}
InverseLaplaceTransform is then used to find �1(t) and �2(t).

f (t) is the inverse
Laplace transform
of F(s) if L {f (t)} =

F(s); we write

L−1 {F(s)} = f (t).

x[t–] = InverseLaplaceTransform
[

– – 6 – 8s – 3s2 – 3s3

16+16s2 +3s4 , s, t
]

1

8

(
4Cos[2t] + 4Cos

[
2t√

3

]
+ 3Sin[2t] +

√
3Sin

[
2t√

3

])
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y[t–] = InverseLaplaceTransform
[

– – 8s + 3s2

16+16s2 +3s4 , s, t
]

1

4

(
– 4Cos[2t] + 4Cos

[
2t√

3

]
– 3Sin[2t] +

√
3Sin

[
2t√

3

])
These two functions are graphed together in Figure 6.32(a) and parametrically in

Figure 6.32(b).

p1 = Plot[{x[t], y[t]}, {t, 0, 20},
PlotStyle –> {GrayLevel[0], GrayLevel[0.5]}]

p2 = ParametricPlot[{x[t], y[t]}, {t, 0, 20},
PlotRange –> {{ – 5/2, 5/2}, { – 5/2, 5/2}}, AspectRatio –> 1]

Show[GraphicsRow[{p1, p2}]]

We can illustrate the motion of the pendulum as follows. First, we define the

function pen2.

Clear[pen2]
pen2[t–, len1–, len2–]:=Module[{pt1, pt2},

pt1 =
{

len1 Cos
[ 3p

2
+ x[t]

]
, len1 Sin

[ 3p
2

+ x[t]
]}

;

pt2 =
{

len1 Cos
[ 3p

2
+ x[t]

]
+ len2 Cos

[ 3p
2

+ y[t]
]

,

len1Sin
[ 3p

2
+ x[t]

]
+ len2Sin

[ 3p
2

+ y[t]
]}

;

Show[Graphics[{Line[{{0, 0}, pt1}], PointSize[.05], Point[pt1],
Line[{pt1, pt2}], PointSize[.05], Point[pt2]}], Axes→Automatic,

Ticks→None, AxesStyle→GrayLevel[.5],
PlotRange→ {{ – 32, 32}, { – 34, 0}},
DisplayFunction→ Identity]]

Next, we define tvals to be a list of 16 evenly spaced numbers between 0 and

10. Map is then used to apply pen2 to the list of numbers in tvals. The resulting
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FIGURE 6.32

(a) �1(t) (in black) and �2(t) (in gray) as functions of t. (b) Parametric plot of �1(t)
versus �2(t)
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FIGURE 6.33

The double pendulum for 16 equally spaced values of t between 0 and 10

set of graphics is partitioned into four element subsets and displayed using Show
and GraphicsGrid in Figure 6.33.

tvals = Table
[
t,
{

t, 0, 10, 10
15

}]
;

graphs = Map[pen2[#, 16, 16]&, tvals];
toshow = Partition[graphs, 4];
Show[GraphicsGrid[toshow]]

If the option DisplayFunction->Identity is omitted from the definition of pen2, we

can use a Do loop together with Print to generate a set of graphics that can then

be animated.

Clear[pen2]
pen2[t–, len1–, len2–]:=Module[{pt1, pt2},

pt1 =
{

len1Cos
[ 3p

2
+ x[t]

]
, len1Sin

[ 3p
2

+ x[t]
]}

;

pt2 =
{

len1Cos
[ 3p

2
+ x[t]

]
+ len2Cos

[ 3p
2

+ y[t]
]

,

len1Sin
[ 3p

2
+ x[t]

]
+ len2Sin

[ 3p
2

+ y[t]
]}

;

Show[Graphics[{Line[{{0, 0}, pt1}], PointSize[.05], Point[pt1],
Line[{pt1, pt2}], PointSize[.05], Point[pt2]}], Axes→Automatic,
Ticks→None, AxesStyle→GrayLevel[.5],
PlotRange→ {{ – 32, 32}, { – 34, 0}}]]

We show one frame from the animation that results from the Do loop

Do
[
Print[pen2[t, 16, 16]],

{
t, 0, 10, 10

59

}]
in the following screen shot.
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Alternatively, you can use Manipulate

Clear[pen2]
Manipulate[

x[t–] = 1
8

(
4Cos[2t] + 4Cos

[
2t√

3

]
+ 3Sin[2t] +

√
3Sin

[
2t√

3

])
;

y[t–] = 1
4

(
– 4Cos[2t] + 4Cos

[
2t√

3

]
– 3Sin[2t] +

√
3Sin

[
2t√

3

])
;

pen2[t–, len1–, len2–]:=Module[{pt1, pt2},
pt1 =

{
len1Cos

[ 3p
2

+ x[t]
]
, len1Sin[ 3p

2
+ x[t]]

}
;

pt2 =
{

len1Cos
[ 3p

2
+ x[t]

]
+ len2Cos

[ 3p
2

+ y[t]
]

,

len1Sin
[ 3p

2
+ x[t]

]
+ len2Sin

[ 3p
2

+ y[t]
]}

;

Show[Graphics[{Line[{{0, 0}, pt1}], PointSize[.05], Point[pt1],
Line[{pt1, pt2}], PointSize[.05], Point[pt2]}], Axes→Automatic,
Ticks→None, AxesStyle→GrayLevel[.5], AspectRatio→1,
PlotRange→ {{ – 32, 32}, { – 34, 0}}]];

pen2[t, 16, 16], {{t, 0}, 0, 6}]

to generate a nearly identical animation as shown in Figure 6.34.

6.4.2 Nonhomogeneous Linear Systems

Generally, the method of undetermined coefficients is difficult to imple-

ment for nonhomogeneous linear systems because the choice for the

particular solution must be very carefully made. Variation of parameters

is implemented in much the same way as for first-order linear equations.
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t t

FIGURE 6.34

Two frames from a Manipulate animation of a double pendulum

Let Xh be a general solution to the corresponding homogeneous sys-

tem of equation (6.28), X a general solution of equation (6.28), and Xp

a particular solution of equation (6.28). It then follows that X − Xp is

a solution to the corresponding homogeneous system so X − Xp = Xh

and, consequently, X = Xh + Xp. A particular solution of equation (6.28)

is found in much the same way as with first-order linear equations. Let F
be a fundamental matrix for the corresponding homogeneous system. We

assume that a particular solution has the form Xp = FU(t). Differentiating

Xp gives us

Xp
′

= F′
U + FU′.

Substituting into equation (6.28) results in

F′
U + FU′ = AFU + F

FU′ = F

U′ = F−1
F

U =

∫
F−1

Fdt,

where we have used the fact that F′U − AFU =
(
F′ − AF

)
U = 0. It

follows that

Xp = F
∫
F−1

Fdt. (6.31)

A general solution is then

X = Xh + Xp

= FC + F
∫
F−1

Fdt
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= F
(
C +

∫
F−1

Fdt

)
= F
∫
F−1

Fdt,

where we have incorporated the constant vector C into the indefinite

integral
∫
F−1F dt.

Example 6.4.3 Solve the initial-value problem

X′ =

(
1 −1

10 −1

)
X −

(
t cos 3t

t sin t + t cos 3t

)
, X(0) =

(
1

−1

)
.

Remark 6.5 In traditional form, the system is equivalent to{
x′

= x − y − t cos 3t

y′
= 10x − y − t sin t − t cos 3t,

x(0) = 1, y(0) = −1.

Solution The corresponding homogeneous system is X
′
h =

(
1 −1

10 −1

)
Xh. The eigenval-

ues and corresponding eigenvectors of A =

(
1 −1

10 −1

)
are �1,2 = ±3i and v1,2 =(

1

10

)
±
(−3

0

)
i, respectively.

capa = {{1, – 1}, {10, – 1}};
Eigensystem[capa]{{3i,−3i},

{{
1
10

+ 3i

10
, 1
}

,
{

1

10
− 3i

10
, 1
}}}

A fundamental matrix is F =

(
sin 3t cos 3t

sin 3t − 3 cos 3t cos 3t + 3 sin 3t

)
with inverse F−1

=(
1

3
cos 3t + sin 3t − 1

3
cos 3t

− 1

3
sin 3t + cos 3t 1

3
sin 3t

)
.

fm = {{Sin[3t], Sin[3t] – 3Cos[3t]}, {Cos[3t], Cos[3t] + 3Sin[3t]}};
fminv = Inverse[fm]//Simplify{{

1

3
Cos[3t] + Sin[3t], Cos[3t] – 1

3
Sin[3t]

}
,
{

– 1

3
Cos[3t], 1

3
Sin[3t]

}}
We now compute F−1

F(t)

ft = { – tCos[3t], – tSin[t] – tCos[3t]};
step1 = fminv.ft{

( – tCos[3t] – tSin[t])
(
Cos[3t] – 1

3
Sin[3t]

)
–

tCos[3t]
(

1

3
Cos[3t] + Sin[3t]

)
,

1

3
tCos[3t]2 + 1

3
( – tCos[3t] – tSin[t])Sin[3t]

}
and

∫
F−1

F(t) dt.
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step2 = Integrate[step1, t]

{ – t2

3
+ 1

24
Cos[2t] – 1

4
tCos[2t] – 1

96
Cos[4t] + 1

8
tCos[4t] –

1

54
Cos[6t] + 1

18
tCos[6t] + 1

8
Sin[2t] + 1

12
tSin[2t] –

1

32
Sin[4t] – 1

24
tSin[4t] – 1

108
Sin[6t] – 1

9
tSin[6t],

t2

12
– 1

24
Cos[2t] + 1

96
Cos[4t] + 1

216
Cos[6t] + 1

36
tCos[6t] –

1

12
tSin[2t] + 1

24
tSin[4t] – 1

216
Sin[6t] + 1

36
tSin[6t]}

A general solution of the nonhomogeneous system is then F
(∫

F−1
F(t) dt + C

)
.

Simplify[fm . step2]

{ 1

288
(27Cos[t] –

4((1 + 6t + 18t2)Cos[3t] + 27tSin[t] + ( – 1 + 6t + 18t2)Sin[3t])),

1

288
( – 36tCos[t] – 4(1 – 6t + 18t2)Cos[3t] –

45Sin[t] – 4Sin[3t] – 24tSin[3t] + 72t2Sin[3t])}
It is easiest to use DSolve to solve the initial-value problem directly as we do next.

check = DSolve[{x′[t]==x[t] – y[t] – tCos[3t], y′[t]==
10x[t] – y[t] – tSin[t] – tCos[3t], x[0]==1, y[0]== – 1},
{x[t], y[t]}, t]

{{x[t] → 1

288

(301Cos[3t] – 72t2Cos[3t] – 12Cos[2t]Cos[3t]

+ 3Cos[3t]Cos[4t] – 4Cos[3t]Cos[6t] – 24tCos[3t]Sin[2t]

+ 192Sin[3t] + 24tCos[2t]Sin[3t] – 12tCos[4t]Sin[3t]

+ 24tCos[6t]Sin[3t] – 12Sin[2t]Sin[3t] + 12tCos[3t]Sin[4t]

+ 3Sin[3t]Sin[4t] – 24tCos[3t]Sin[6t] – 4Sin[3t]Sin[6t]),

y[t] → 1

288
( – 275Cos[3t] – 72t2Cos[3t]

– 12Cos[2t]Cos[3t] – 72tCos[2t]Cos[3t]

+ 3Cos[3t]Cos[4t] + 36tCos[3t]Cos[4t] – 4Cos[3t]Cos[6t]

– 72tCos[3t]Cos[6t] + 36Cos[3t]Sin[2t] – 24tCos[3t]Sin[2t]

+ 1095Sin[3t] – 216t2Sin[3t] – 36Cos[2t]Sin[3t]

+ 24tCos[2t]Sin[3t] + 9Cos[4t]Sin[3t] – 12tCos[4t]Sin[3t]

– 12Cos[6t]Sin[3t] + 24tCos[6t]Sin[3t] – 12Sin[2t]Sin[3t]

– 72tSin[2t]Sin[3t] – 9Cos[3t]Sin[4t] + 12tCos[3t]Sin[4t]

+ 3Sin[3t]Sin[4t] + 36tSin[3t]Sin[4t] + 12Cos[3t]Sin[6t]

– 24tCos[3t]Sin[6t] – 4Sin[3t]Sin[6t] – 72tSin[3t]Sin[6t])}}
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FIGURE 6.35

(a) Graph of x(t) (in black) and y(t) (in gray). (b) Parametric plot of x(t) versus y(t)

The solutions are graphed with Plot and ParametricPlot in Figure 6.35.

p1 = Plot[{x[t], y[t]}/.check, {t, 0, 8p}, PlotRange→All];
p2 = ParametricPlot[Evaluate[{x[t], y[t]}/.check], {t, 0, 8p},

AspectRatio→Automatic];
Show[GraphicsRow[{p1, p2}]]

In the case that A is constant, X′
= AX is called an autonomous sys-

tem and the only equilibrium (rest point) solution is the zero solution:

X = 0. The stability of the solution is determined by the eigenvalues of A.

If all the eigenvalues of A have negative real part, then X = 0 is globally
asymptotically stable because limt→0 X(t) = 0 for all solutions. If not all

the eigenvalues of A have negative real part, then X = 0 is unstable.

For the 2 × 2 system, X′
=

(
a b
c d

)
X or, equivalently, x′

= ax + by, y′ =

cx + dy, the stability of (0, 0) is easily seen by examining the direction field
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for the system. If all vectors lead to the origin, it is stable; if they do not,

it is not.

Example 6.4.4 The eigenvalues of

(−� �

−� 0

)
are �1,2 = 1

2

(
−a ±√

a2 − 4b2

)
. (See the exercises.)

Thus, (0, 0) is globally asymptotically stable for the system X
′

=

(−� �

−� 0

)
X.

With Manipulate, you can investigate the various situations. In the following,

we can vary � and � and then plot the solution passing through each locator

point. Several results are shown in Figure 6.36.

Manipulate[
Needs[“VectorFieldPlots`”];
sol1 = DSolve[{x′[t]== – �x[t] + �y[t], y′[t]== – �x[t],

x[0]==init1[[1]], y[0]==init1[[2]]}, {x[t], y[t]}, t];
sol2 = DSolve[{x′[t]== – �x[t] + �y[t], y′[t]== – �x[t], x[0]==init2[[1]],

y[0]==init2[[2]]}, {x[t], y[t]}, t];
psol1 = ParametricPlot[{x[t], y[t]}/.sol1, {t, – 20, 20},

PlotStyle→ {{GrayLevel[.3], Thickness[.01]}}, PlotPoints→200];
psol2 = ParametricPlot[{x[t], y[t]}/.sol2, {t, – 20, 20},

PlotStyle→ {{GrayLevel[.6], Thickness[.01]}}, PlotPoints→200];
p1 = Show[{VectorFieldPlot[{ – �x + �y, – �x}, {x, – 1, 1}, {y, – 1, 1},

ScaleFunction→ (1&)], psol1, psol2},
Axes→Automatic, AxesOrigin→ {0, 0}, PlotRange→ {{ – 1, 1}, { – 1, 1}},

AspectRatio→Automatic],
{{�, 1}, – 2.5, 5}, {{�, 2}, – 2 . 5, 5}, {{init1, {.5, .5}}, Locator},

{{init2, { – .5, – .5}}, Locator}]
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FIGURE 6.36

As we vary � and � and change the initial conditions, the system behaves differently.

(a) A stable spiral. (b) A center. (c) An unstable spiral
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6.4.3 Nonlinear Systems

Nonlinear systems of differential equations arise in numerous situations.

Rigorous analysis of the behavior of solutions to nonlinear systems is usually

very difficult, if not impossible.

To generate numerical solutions of equations, use NDSolve.

Also see Example

6.4.8.

Example 6.4.5 (Van der Pol’s equation). Van der Pol’s equation, x′′
+ �
(
x2 − 1

)
x′

+ x = 0

can be written as the system

x′ = y

y′ = −x − �
(
x2 − 1

)
y. (6.32)

If � = 2/3, x(0) = 1, and y(0) = 0, (a) find x(1) and y(1). (b) Graph the solution that

satisfies these initial conditions.

Solution We use NDSolve together to solve equation (6.32) with � = 2/3 subject to x(0) = 1

and y(0) = 0. We name the resulting numerical solution numsol.

numsol = NDSolve[{x′[t]==y[t], y′[t]== – x[t] – 2/3(x[t]∧2 – 1)y[t], x[0]==1,
y[0]==0}, {x[t], y[t]}, {t, 0, 30}]

{{x[t] → InterpolatingFunction[{{0., 30.}}, <>][t],
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We evaluate numsol if t = 1 to see that x(1) ≈ 0.5128 and y(1) ≈ – 0.9692.

y[t] → InterpolatingFunction[{{0., 30.}}, <>][t]}}
{x[t], y[t]}/.numsol/.t->1

{{0.512848, – 0.969204}}
Plot, ParametricPlot, and ParametricPlot3D are used to graph x(t) and

y(t) together in Figure 6.37(a); a three-dimensional plot, (t, x(t), y(t)), is shown

in Figure 6.37(b); a parametric plot is shown in Figure 6.37(c); and the limit
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2

a b

c d

FIGURE 6.37

(a) x(t) and y(t). (b) A three-dimensional plot. (c) x(t) versus y(t). (d) x(t) versus y(t)
for 20 ≤ t ≤ 30
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cycle is shown more clearly in Figure 6.37(d) by graphing the solution for

20 ≤ t ≤ 30.

p1 = Plot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15}];
p2 = ParametricPlot3D[Evaluate[{t, x[t], y[t]}/.numsol], {t, 0, 15}];
p3 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15},

AspectRatio→Automatic];
p4 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 20, 30},

AspectRatio→Automatic];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]]

To avoid conflicts with

the variables in the

Manipulate, consider

quitting Mathematica,

restarting, and

then entering the

Manipulate command

in a new notebook.

To consider other � values, decide on a � range, combine the previous

commands, replace 2/3 with �, and use Manipulate. See Figure 6.38.

Manipulate[
numsol = NDSolve[{x′[t]==y[t], y′[t]== – x[t] – �(x[t]∧2 – 1)y[t],

x[0]==1, y[0]==0}, {x[t], y[t]}, {t, 0, 30}];
p1 = Plot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15},

PlotRange→All, AspectRatio→1];
p2 = ParametricPlot3D[Evaluate[{t, x[t], y[t]}/.numsol], {t, 0, 15},

BoxRatios→ {4, 1, 1}];
p3 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 15},

AspectRatio→1, PlotRange→All];
p4 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 20, 30},

AspectRatio→1, PlotRange→All];
Show[GraphicsGrid[{{p1, p2}, {p3, p4}}]], {{�, 1}, 0, 3}]
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Plots of solutions of Van der Pol’s equation for various values of �
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Linearization

An autonomous
system does not

explicitly depend on

the independent

variable, t. That is, if

you write the system

omitting all arguments,

the independent

variable (typically t)
does not appear.

Consider the autonomous system of the form

x1
′ = f1

(
x1, x2,…, xn

)
x2

′ = f2

(
x1, x2,…, xn

)
.
.
. (6.33)

xn
′ = fn

(
x1, x2,…, xn

)
.

An equilibrium (or rest) point, E =
(
x1

∗
, x2

∗
,…, xn

∗)
, of equation (6.33)

is a solution of the system

f1

(
x1, x2,…, xn

)
= 0

f2

(
x1, x2,…, xn

)
= 0

.

.

. (6.34)

fn

(
x1, x2,…, xn

)
= 0.

The Jacobian of equation (6.33) is

J
(
x1, x2,…, xn

)
=

⎛
⎜⎜⎜⎝

�f1
�x1

�f1
�x2

…
�f1
�xn

�f2
�x1

�f2
�x2

…
�f2
�xn

.

.

.
.
.
. …

.

.

.
�fn
�x1

�fn
�x2

…
�fn
�xn

⎞
⎟⎟⎟⎠ .

The rest point, E, is locally stable if and only if all the eigenvalues of J(E)

have negative real part. If E is not locally stable, E is unstable.

Establishing global

stability of an

equilibrium point

for a nonlinear system

is significantly more

difficult than

establishing global

stability of an

equilibrium point

(E = (0, 0)) for a linear

autonomous system.

Example 6.4.6 (Duffing’s Equation). Consider the forced pendulum equation with damping,

x ′′ + kx ′ + � sin x = F(t). (6.35)

Recall the Maclaurin series for sin x: sin x = x − 1

3!
x3

+ 1

5!
x5 − 1

7!
x7

+…. Using

sin x ≈ x, equation (6.35) reduces to the linear equation x′′
+ kx′

+ �x = F(t).
On the other hand, using the approximation sin x ≈ x − 1

6
x3

, we obtain x′′
+

kx′
+ �
(
x − 1

6
x3
)

= F(t). Adjusting the coefficients of x and x3
and assuming that

F(t) = F cos �t gives us Duffing’s equation:

x ′′ + kx ′ + cx + �x3 = F cos �t, (6.36)

where k and c are positive constants.
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Let y = x′
. Then, y′

= x′′
= F cos �t − kx′ − cx − �x3

= F cos �t − ky − cx − �x3

and we can write equation (6.36) as the system

x ′ = y

y ′ = F cos �t − ky − cx − �x3. (6.37)

Assuming that F = 0 results in the autonomous system

x ′ = y

y ′ = −cx − �x3 − ky. (6.38)

The rest points of system equation (6.38) are found by solving

x ′ = 0

y ′ = −cx − �x3 − ky, = 0,

resulting in E0 = (0, 0).

Solve[{y==0, – cx – 	x∧3 – ky==0}, {x, y}]{
{y → 0, x → 0},

{
y → 0, x → –

i
√

c√
�

}
,
{

y → 0, x → i
√

c√
�

}}
We find the Jacobian of equation (6.38) in s1, evaluate the Jacobian at E0,

s1 = {{0, 1}, { – c – 3	x∧2, – k}};
s2 = s1/.x->0

{{0, 1}, { – c, – k}}
and then compute the eigenvalues with Eigenvalues.

s3 = Eigenvalues[s2]{
1

2

(
– k –

√
– 4c + k2

)
, 1

2

(
– k +

√
– 4c + k2

)}
Because k and c are positive, k2 − 4c < k2

, so the real part of each eigenvalue

is always negative if k2 − 4c �= 0. Thus, E0 is locally stable.

For the autonomous system

x ′ = f (x, y)

y ′ = g(x, y), (6.39)

Bendixson’s theorem states that if fx(x, y) + gy(x, y) is a continuous function that

is either always positive or always negative in a particular region R of the plane,

then system (6.39) has no limit cycles in R. For equation (6.38), we have

d

dx

(
y
)

+
d

dy

(−cx − �x3 − ky
)

= −k,

which is always negative. Hence, equation (6.38) has no limit cycles and it follows

that E0 is globally, asymptotically stable.
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D[y, x] + D[ – cx – 	x∧3 – ky, y]

– k

We use VectorFieldPlot and ParametricPlot to illustrate two situations that

occur. In Figure 6.39(a), we use c = 1, � = 1/2, and k = 3. In this case, E0 is a

stable node. On the other hand, in Figure 6.39(b), we use c = 10, � = 1/2, and

k = 3. In this case, E0 is a stable spiral.

Needs[“VectorFieldPlots`”];

pvf1 = VectorFieldPlots`VectorFieldPlot
[{

y, – x – x3

2
– 3y}, {x, – 2.5, 2.5

}
,

{y, – 2.5, 2.5}];
numgraph[init–, c–, opts–––]:=Module[{numsol},

numsol = NDSolve[{x′[t]==y[t], y′[t]== – cx[t] – 1/2x[t]∧3 – 3y[t],
x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, 0, 10}];

ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 10},
opts, DisplayFunction->Identity]]

i1 = Table[numgraph[{2.5, i}, 1], {i, – 2.5, 2.5, 1/2}];
i2 = Table[numgraph[{ – 2.5, i}, 1], {i, – 2.5, 2.5, 1/2}];
i3 = Table[numgraph[{i, 2.5}, 1], {i, – 2.5, 2.5, 1/2}];
i4 = Table[numgraph[{i, – 2.5}, 1], {i, – 2.5, 2.5, 1/2}];
c1 = Show[i1, i2, i3, i4, pvf1, PlotRange→ {{ – 2.5, 2.5}, { – 2.5, 2.5}},

AspectRatio→Automatic]

pvf2 = VectorFieldPlots`VectorFieldPlot
[{

y, – 10x – x3

2
– 3y

}
, {x, – 2.5, 2.5},

{y, – 2.5, 2.5}];
i1 = Table[numgraph[{2.5, i}, 10], {i, – 2.5, 2.5, 1/2}];
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FIGURE 6.39

(a) The origin is a stable node. (b) The origin is a stable spiral
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i2 = Table[numgraph[{ – 2.5, i}, 10], {i, – 2.5, 2.5, 1/2}];
i3 = Table[numgraph[{i, 2.5}, 10], {i, – 2.5, 2.5, 1/2}];
i4 = Table[numgraph[{i, – 2.5}, 10], {i, – 2.5, 2.5, 1/2}];
c2 = Show[i1, i2, i3, i4, pvf2, PlotRange→ {{ – 2.5, 2.5}, { – 2.5, 2.5}},

AspectRatio→Automatic]
Show[GraphicsRow[{c1, c2}]]

To experiment with different parameter values, use Manipulate. In the following,

we investigate how varying c from 0 to 10 affects the solutions of Duffing’s equation.

See Figure 6.40.

Clear[pvf, i1, i2, i3, i4];
Manipulate[
Needs[“VectorFieldPlots`”];
numgraph[init–, c–, opts–––]:=Module[{numsol},
numsol = NDSolve[{x′[t]==y[t], y′[t]== – cx[t] – 1/2x[t]∧3 – 3y[t],

x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, 0, 10}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 10},

opts, DisplayFunction->Identity]];

pvf = VectorFieldPlots`VectorFieldPlot
[{

y, – cx – x3

2
– 3y

}
, {x, – 2.5, 2.5},

{y, – 2.5, 2.5}];
i1 = Table[numgraph[{2.5, i}, c], {i, – 2.5, 2.5, 1/2}];
i2 = Table[numgraph[{ – 2.5, i}, c], {i, – 2.5, 2.5, 1/2}];
i3 = Table[numgraph[{i, 2.5}, c], {i, – 2.5, 2.5, 1/2}];
i4 = Table[numgraph[{i, – 2.5}, c], {i, – 2.5, 2.5, 1/2}];
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FIGURE 6.40

Allowing c to vary in Duffing’s equation
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Show[i1, i2, i3, i4, pvf, PlotRange→ {{ – 2.5, 2.5}, { – 2.5, 2.5}},
AspectRatio→Automatic], {{c, 1}, 0, 10}]

Example 6.4.7 (Predator–Prey). One form of the predator–prey is

There are many
other predator–prey

models.

dx

dt
= ax − bxy

dy

dt
= dxy − cy,

where a, b, c, and d are positive constants. x represents the size of the prey

population at time t, whereas y represents the size of the predator population

at time t. We use Solve to calculate the rest points. In this case, there is one

boundary rest point, E0 = (0, 0), and one interior rest point, E1 = (c/d, a/b).

rps = Solve[{ax – bxy==0, dxy – cy==0}, {x, y}]{{x → 0, y → 0},
{

x → c

d
, y → a

b

}}
The Jacobian is then found using D.

jac = {{D[ax – bxy, x], D[ax – bxy, y]}, {D[dxy – cy, x], D[dxy – cy, y]}};
MatrixForm[jac](

a − by −bx

dy −c + dx

)

E0 is unstable because one eigenvalue of J(E0) is positive. For the linearized

system, E1 is a center because the eigenvalues of J(E1) are complex conjugates.

Eigenvalues[jac/.rps[[2]]]{
– i
√

a
√

c, i
√

a
√

c
}

In fact, E1 is a center for the nonlinear system as illustrated in Figure 6.41,

where we have used a = 1, b = 2, c = 2, and d = 1. Notice that there are multiple

limit cycles around E1 = (1/2, 1/2).

Needs[“VectorFieldPlots`”];
pvf = VectorFieldPlot[{x – 2xy, 2xy – y}, {x, 0, 2},

{y, 0, 2}, PlotPoints→30];
numgraph[init–, opts–––]:=Module[{numsol},
numsol = NDSolve[{x′[t]==x[t] – 2x[t]y[t], y′[t]==2x[t]y[t] – y[t],

x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, 0, 50}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 10},

PlotStyle→ {{Thickness[.01]}},
opts]]

i1 = Table[numgraph[{i, i}], {i, 3/20, 1/2, 1/20}];
Show[i1, pvf, DisplayFunction->$DisplayFunction, PlotRange->{{0, 2}, {0, 2}},

AspectRatio->Automatic]
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FIGURE 6.41

Multiple limit cycles about the interior rest point

As illustrated previously, if you want to play around with the system, use

Manipulate. In this case, we allow a, b, c, and d to vary. The solution plotted

is the one that passes through the locator point. See Figure 6.42.

Manipulate[
Needs[“VectorFieldPlots`”];
pvf = VectorFieldPlot[{ax – bxy, dxy – cy}, {x, 0, 5},

{y, 0, 5}, PlotPoints→20];
numsol = NDSolve[{x′[t]==ax[t] – bx[t]y[t], y′[t]==dx[t]y[t] – cy[t],

x[0]==init[[1]], y[0]==init[[2]]}, {x[t], y[t]}, {t, 0, 25}];
p1 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 25},

PlotStyle→ {{Thickness[.01]}}];
Show[p1, pvf, PlotRange->{{0, 5}, {0, 5}}, AspectRatio→1,

AxesOrigin→ {0, 0}],
{{a, 1}, 0, 5}, {{b, 2}, 0, 5}, {{c, 1}, 0, 5}, {{d, 2}, 0, 5},

{{init, {1, 1}}, Locator}]
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FIGURE 6.42

Multiple limit cycles about the interior rest point

In this model, a stable interior rest state is not possible.

The complexity of the behavior of solutions to the system increases based on

the assumptions made. Typical assumptions include adding satiation terms for the

predator (y) and/or limiting the growth of the prey (x). The standard predator–prey
equations of Kolmogorov type,

x ′ = �x

(
1 − 1

K
x

)
− mxy

a + x

y ′ = y
( mx

a + x
− s
)

, (6.40)

incorporate both of these assumptions.

We use Solve to find the three rest points of system (6.40). Let E0 = (0, 0) and

E1 = (k, 0) denote the two boundary rest points, and let E2 represent the interior

rest point.

rps = Solve[{�x(1 – 1/kx) – mxy/(a + x)==0, y(mx/(a + x) – s)==0}, {x, y}]{
{x → 0, y → 0}, {y → 0, x → k},

{
y → (akm – a2s – aks)�

k(m – s)2
, x → – as

– m+s

}}

The Jacobian, J, is calculated next in s1.

s1 = {{D[�x(1 – 1/kx) – mxy/(a + x), x], D[�x(1 – 1/kx) – mxy/(a + x), y]},
{D[y(mx/(a + x) – s), x], D[y(mx/(a + x) – s), y]}};
MatrixForm[s1]
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( mxy

(a+x)2
–

my

a+x
– x�

k
+
(
1 – x

k

)
� – mx

a+x(
– mx

(a+x)2
+ m

a+x

)
y – s + mx

a+x

)

Because J(E0) has one positive eigenvalue, E0 is unstable.

e0 = s1/.rps[[1]];
MatrixForm[e0]
eigs0 = Eigenvalues[e0](

� 0

0 – s

)
{ – s, �}
The stability of E1 is determined by the sign of m − s − am/(a + k).

e1 = s1/.rps[[2]];
MatrixForm[e1]
eigs1 = Eigenvalues[e1](

– � – km

a + k

0 km

a + k
– s

)
{

km

a + k
– s, – �

}
The eigenvalues of J(E2) are quite complicated.

e2 = s1/.rps[[3]];
MatrixForm[e2]
eigs2 = Eigenvalues[e2]⎛

⎜⎜⎜⎝
as�

k( – m+s)
–

ams(akm – a2s – aks)�

k(m – s)2( – m+s)(a – as
– m+s )

2 –
m(akm – a2s – aks)�

k(m – s)2(a – as
– m+s )

+
(

1 + as

k( – m+s)

)
� ams

( – m+s)(a – as
– m+s )

(akm – a2s – aks)

⎛
⎝ ams

( – m+s)(a – as
– m+s )

2
+ m

a – as
– m+s

⎞
⎠�

k(m – s)2
– s – ams

( – m+s)(a – as
– m+s )

⎞
⎟⎟⎟⎠

{
1

2( – km2+kms)

(
ams� – kms� + as2� + ks2� –

√((
– ams� + kms� – as2� – ks2�

)2
– 4
(

– km2 + kms
) (

– km2s� + ams2� + 2kms2� – as3� – ks3�
)))

, 1

2( – km2+kms)(
ams� – kms� + as2� + ks2� +

√((
– ams� + kms� – as2� – ks2�

)2
– 4
(

– km2 + kms
) (

– km2s� + ams2� + 2kms2� – as3� – ks3�
)))}

Instead of using the eigenvalues, we compute the characteristic polynomial of

J(E2), p(�) = c2�
2

+ c1� + c0, and examine the coefficients. Notice that c2 is always

positive.

cpe2 = CharacteristicPolynomial[e2, �]//Simplify
as�(m( – s + �) + s(s + �))+k(m – s)( – s�(s + �) + m(s� + �2))

km(m – s)
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c0 = cpe2/.�->0//Simplify
s(k(m – s) – as)�

km

c1 = Coefficient[cpe2, �]//Simplify
s(k( – m + s)+a(m + s))�

km(m – s)

c2 = Coefficient[cpe2, �∧2]//Simplify

1

On the other hand, c0 and m − s − am/(a + k) have the same sign because

c0/eigs1[[1]]//Simplify
(a + k)s�

km

is always positive. In particular, if m − s − am/(a + k) < 0, E1 is stable. Because c0

is negative, by Descartes' rule of signs, it follows that p(�) will have one positive

root and hence E2 will be unstable.

On the other hand, if m − s − am/(a + k) > 0 so that E1 is unstable, E2 may be

either stable or unstable. To illustrate these two possibilities, let � = K = m = 1 and

a = 1/10. We recalculate.

� = 1; k = 1; m = 1; a = 1/10;
rps = Solve[{�x(1 – 1/kx) – mxy/(a + x)==0, y(mx/(a + x) – s)==0}, {x, y}]{
{x → 0, y → 0}, {y → 0, x → 1},

{
y → 10 – 11s

100( – 1+s)2
, x → – s

10( – 1+s)

}}
s1 = {{D[�x(1 – 1/kx) – mxy/(a + x), x], D[�x(1 – 1/kx) – mxy/(a + x), y]},

{D[y(mx/(a + x) – s), x], D[y(mx/(a + x) – s), y]}};
MatrixForm[s1]⎛
⎜⎝

1 – 2x +
xy

( 1
10

+x)
2 –

y
1
10

+x
– x

1
10

+x(
– x

( 1
10

+x)
2 + 1

1
10

+x

)
y – s + x

1
10

+x

⎞
⎟⎠

e2 = s1/.rps[[3]];
cpe2 = CharacteristicPolynomial[e2, �]//Simplify

– 11s3 + s2(21 – 11�) – 10�2+s( – 10 + 9� + 10�2)
10( – 1 + s)

c0 = cpe2/. �->0//Simplify

s – 11s2

10

c1 = Coefficient[cpe2, �]//Simplify
(9 – 11s)s

10( – 1 + s)

c2 = Coefficient[cpe2, �∧2]//Simplify

1

Using Reduce, we see that
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1. c0, c1, and c2 are positive if 9/11 < s < 10/11, and

2. c0 and c2 are positive and c1 is negative if 0 < s < 9/11.

Reduce[c0 > 0&&c1 > 0, s]
9

11
< s < 10

11

Reduce[c0 > 0&&c1 < 0, s]
0 < s < 9

11

In the first situation, E2 is stable; in the second, E2 is unstable.

Using s = 19/22, we graph the direction field associated with the system as well

as various solutions in Figure 6.43(a). In the plot, notice that all nontrivial solutions

approach E2 ≈ (0.63, 0.27); E2 is stable—a situation that cannot occur with the

standard predator–prey equations.

rps/.s->19/22//N
{{x → 0., y → 0.}, {y → 0., x → 1.}, {y → 0.268889, x → 0.633333}}
Needs[“VectorFieldPlots`”]
Clear[pvf, numgraph, i1, i2]

pvf = VectorFieldPlot
[{

�x
(
1 – x

k

)
– mxy

a+x , y
( mx

a+x – 19
22

) }
, {x, 0, 1},

{y, 0, 1}, PlotPoints→30 ] ;
numgraph[init–, s–, opts–]:=Module[{numsol},
numsol = NDSolve[{x′[t]==�x[t](1 – 1/kx[t]) – mx[t]y[t]/(a + x[t]),

y′[t]==y[t](mx[t]/(a + x[t]) – s), x[0]==init[[1]], y[0]==init[[2]]},
{x[t], y[t]}, {t, 0, 50}];

ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 50},
PlotStyle→Thickness[.01], opts]]

i1 = Table[numgraph[{1, i}, 19/22], {i, 0, 1, 1/10}];
i2 = Table[numgraph[{i, 1}, 19/22], {i, 0, 1, 1/10}];
Show[i1, i2, pvf, PlotRange-> {{0, 1}, {0, 1}}, AspectRatio->Automatic]
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FIGURE 6.43

(a) s = 19/22. (b) s = 8/11. (c) A better view of the limit cycle without the direction field
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On the other hand, using s = 8/11 (so that E2 is unstable) in Figure 6.43(b), we see

that all nontrivial solutions appear to approach a limit cycle.

rps/.s->8/11//N

{{x → 0., y → 0.}, {y → 0., x → 1.}, {y → 0.268889, x → 0.266667}}
i1 = Table[numgraph[{1, i}, 8/11], {i, 0, 1, 1/10}];
i2 = Table[numgraph[{i, 1}, 8/11], {i, 0, 1, 1/10}];
p1 = Show[i1, i2, pvf, PlotRange-> {{0, 1}, {0, 1}}, AspectRatio->Automatic]

The limit cycle is shown more clearly in Figure 6.43(c).

numgraph[{ . 759, .262}, 8/11, PlotRange->{{0, 1}, {0, 1}},
AspectRatio->Automatic]

As we have seen in similar situations, these commands can be collected into a

single Manipulate command to investigate the situation. See Figure 6.44.

Clear[pvf, numgraph, i1, i2, �, k, m]
Manipulate[
Needs[“VectorFieldPlots`”];
pvf = VectorFieldPlot

[
{�x

(
1 – x

k

)
– mxy

a+x , y
( mx

a+x – s
)

}, {x, 0, 1},
{y, 0, 1}, PlotPoints→20

]
;

numgraph[init–, s–]:=Module[{numsol},

Out[8]5
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FIGURE 6.44

Using Manipulate to investigate the standard predator–prey equations of Komogorov

type
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numsol = NDSolve[{x′[t]==�x[t](1 – 1/kx[t]) – mx[t]y[t]/(a + x[t]),
y′[t]==y[t](mx[t]/(a + x[t]) – s), x[0]==init[[1]],
y[0]==init[[2]]},
{x[t], y[t]}, {t, 0, 50}];

ParametricPlot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 50},
PlotPoints→200,
PlotStyle→Thickness[.01]]];

i1 = Table[numgraph[{1, i}, s], {i, 0, 1, 1/10}];
i2 = Table[numgraph[{i, 1}, s], {i, 0, 1, 1/10}];
Show[i1, i2, pvf, PlotRange-> {{0, 1}, {0, 1}}, AspectRatio->Automatic],

{{�, 1}, 0, 5}, {{k, 1}, 0, 5}, {{m, 1}, 0, 5}, {{a, 1/10}, 0, 1},
{{s, 8/11}, 0, 5}]

Also see Example

6.4.5.

Example 6.4.8 (Van der Pol’s equation). In Example 6.4.5, we saw that Van der Pol’s equa-

tion, x′′
+ �
(
x2 − 1

)
x′

+ x = 0, is equivalent to the system

{
x′

= y

y′
= �
(
1 − x2

)
y − x

.

Classify the equilibrium points, use NDSolve to approximate the solutions to this

nonlinear system, and plot the phase plane.

Solution We find the equilibrium points by solving

{
y = 0

�
(
1 − x2

)
y − x = 0

. From the first

equation, we see that y = 0. Then, substitution of y = 0 into the second equation

yields x = 0. Therefore, the only equilibrium point is (0, 0). The Jacobian matrix for

this system is

J(x, y) =

(
0 1

−1 − 2�xy −�
(
x2 − 1

)) .

The eigenvalues of J(0, 0) are �1,2 = 1

2

(
� ±
√

�2 − 4

)
.

Clear[f, g]
f[x–, y–] = y;
g[x–, y–] = – x – �

(
x2 – 1

)
y;

jac =
(

D[f[x, y], x] D[f[x, y], y]
D[g[x, y], x] D[g[x, y], y]

)
;

jac/.{x – >0, y – >0}//Eigenvalues{
1

2

(
� –
√

– 4 + �2

)
, 1

2

(
� +
√

– 4 + �2

)}
Notice that if � > 2, then both eigenvalues are positive and real. Hence, we

classify (0, 0) as an unstable node. On the other hand, if 0 < � < 2, then the

eigenvalues are a complex conjugate pair with a positive real part. Hence, (0, 0)

is an unstable spiral. (We omit the case � = 2 because the eigenvalues are

repeated.)
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We now show several curves in the phase plane that begin at various points

for various values of �. First, we define the function sol, which given �, x0, and

y0, generates a numerical solution to the initial-value problem⎧⎪⎨
⎪⎩

x′
= y

y′
= �
(
1 − x2

)
y − x

x(0) = x0 , y(0) = y0,

and then parametrically graphs the result for 0 ≤ t ≤ 20.

Clear[sol]
sol[�–, {x0–, y0–}, opts–]:=
Module[{eqone, eqtwo, solt}, eqone = x′[t]==y[t];

eqtwo = y′[t]==�
(
1 – x[t]2) y[t] – x[t];

solt = NDSolve[{eqone, eqtwo, x[0]==x0, y[0]==y0}, {x[t], y[t]},
{t, 0, 20}];

ParametricPlot[{x[t], y[t]}/.solt, {t, 0, 20}, opts]]

We then use Table and Union to generate a list of ordered pairs initconds that

will correspond to the initial conditions in the initial-value problem.

initconds1 = Table[{0.1Cos[t], 0.1Sin[t]}, {t, 0, 2p, 2p/9}];
initconds2 = Table[{ – 5, i}, {i, – 5, 5, 10/9}];
initconds3 = Table[{5, i}, {i, – 5, 5, 10/9}];
initconds4 = Table[{i, 5}, {i, – 5, 5, 10/9}];
initconds5 = Table[{i, – 5}, {i, – 5, 5, 10/9}];
initconds = initconds1∪ initconds2∪ initconds3∪ initconds4∪ initconds5;

Last, we use Map to apply sol to the list of ordered pairs in initconds for � = 1/2.

somegraphs1 = Map[sol[1/2, #, DisplayFunction->Identity]&, initconds];
phase1 = Show[somegraphs1, PlotRange→ {{ – 5, 5}, { – 5, 5}},

AspectRatio→1, Ticks→ {{ – 4, 4}, { – 4, 4}}]

Similarly, we use Map to apply sol to the list of ordered pairs in initconds for

� = 1, 3/2, and 3.

somegraphs2 = Map[sol[1, #, DisplayFunction->Identity]&, initconds];
phase2 = Show[somegraphs2, PlotRange→ {{ – 5, 5}, { – 5, 5}},

AspectRatio→1, Ticks→ {{ – 4, 4}, { – 4, 4}}]
somegraphs3 = Map[sol[3/2, #, DisplayFunction->Identity]&, initconds];
phase3 = Show[somegraphs3, PlotRange→ {{ – 5, 5}, { – 5, 5}},

AspectRatio→1, Ticks→ {{ – 4, 4}, { – 4, 4}}]
somegraphs4 = Map[sol[3, #, DisplayFunction->Identity]&, initconds];
phase4 = Show[somegraphs3, PlotRange→ {{ – 5, 5}, { – 5, 5}},

AspectRatio→1, Ticks→ {{ – 4, 4}, { – 4, 4}}]
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FIGURE 6.45

Solutions to the Van der Pol equation for various values of �

All four graphs are shown together in Figure 6.45. In each figure, we see that all

of the curves approach a curve called a limit cycle. Physically, the fact that the

system has a limit cycle indicates that for all oscillations, the motion eventually

becomes periodic, which is represented by a closed curve in the phase plane.

Show[GraphicsGrid[{{phase1, phase2}, {phase3, phase4}}]]

On the other hand, in Figure 6.46 we graph the solutions that satisfy the initial

conditions x(0) = 1 and y(0) = 0 parametrically and individually for various values

of �. Notice that for small values of � the system more closely approximates that

of the harmonic oscillator because the damping coefficient is small. The curves are

more circular than those for larger values of �.
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FIGURE 6.46

The solutions to the Van der Pol equation satisfying x(0) = 1 and y(0) = 0 individually

(x in black and y in gray) for various values of �
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Clear[x, y, t, s]
graph[�–]:=Module[{numsol, pp, pxy},

numsol = NDSolve[{x′[t]==y[t], y′[t]==�(1 – x[t]2)y[t] – x[t],
x[0]==1, y[0]==0}, {x[t], y[t]}, {t, 0, 20}];

pp = ParametricPlot[{x[t], y[t]}/.numsol, {t, 0, 20},
PlotRange→ {{ – 5, 5}, { – 5, 5}}, AspectRatio→1,
Ticks→ {{ – 4, 4}, { – 4, 4}}, DisplayFunction→ Identity];

pxy = Plot[Evaluate[{x[t], y[t]}/.numsol], {t, 0, 20},
PlotStyle→ {GrayLevel[0], GrayLevel[“0.5”]}, PlotRange→ { – 5, 5},

AspectRatio→1, Ticks→ {{5, 10, 15}, { – 4, 4}},
DisplayFunction→ Identity];

GraphicsRow[{pxy, pp}]]
graphs = Table[graph[i], {i, 0 . 25, 3, 2 . 75/9}];
toshow = Partition[graphs, 2];
Show[GraphicsGrid[toshow]]

An alternative to comparing the graphics together is to use Manipulate to

create an animation of how the � values affect the solutions of the equation. See

Figure 6.47.

Manipulate[
sol[�–, {x0–, y0–}, opts–]:=

Module[{eqone, eqtwo, solt}, eqone = x′[t]==y[t];
eqtwo = y′[t]==�(1 – x[t]2)y[t] – x[t];

solt = NDSolve[{eqone, eqtwo, x[0]==x0, y[0]==y0}, {x[t], y[t]}, {t, 0, 20}];

Out[1]=
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FIGURE 6.47

Varying � in the Van der Pol equation with Manipulate
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ParametricPlot[{x[t], y[t]}/.solt, {t, 0, 20}, PlotPoints→200]];
initconds1 = Table[{0.1Cos[t], 0.1Sin[t]}, {t, 0, 2p, 2p/9}];
initconds2 = Table[{ – 5, i}, {i, – 5, 5, 10/9}];
initconds3 = Table[{5, i}, {i, – 5, 5, 10/9}];
initconds4 = Table[{i, 5}, {i, – 5, 5, 10/9}];
initconds5 = Table[{i, – 5}, {i, – 5, 5, 10/9}];
initconds = initconds1∪ initconds2∪ initconds3∪ initconds4∪ initconds5;
somegraphs1 = Map[sol[�, #, DisplayFunction->Identity]&, initconds];
phase1 = Show[somegraphs1, PlotRange→ {{ – 5, 5}, { – 5, 5}},

AspectRatio→1, Ticks→ {{ – 4, 4}, { – 4, 4}}], {{�, 3}, 0, 6}]

Although linearization can help you determine local behavior near rest

points, the long-term behavior of solutions to nonlinear systems can be

quite complicated, even for deceptively simple looking systems.

See texts such as

Jordan and Smith’s

Nonlinear Ordinary
Differential
Equations [23] for

discussions of ways

to analyze systems

such as the R
..
ossler

attractor and the

Lorenz equations.

Example 6.4.9 (Lorenz Equations). The Lorenz equations are

⎧⎪⎨
⎪⎩

dx/dt = a(y − x)

dy/dt = bx − y − xz

dz/dt = xy − cz

.

Graph the solutions to the Lorenz equations if a = 7, b = 27.2, and c = 3 if the

initial conditions are x(0) = 3, y(0) = 4, and z(0) = 2.

Solution So that you can experiment with different parameters and initial conditions, we use

Manipulate to solve the Lorenz system using initial conditions x(0) = x0, y(0) = y0,

and z(0) = z0 for 950 ≤ t ≤ 1000; generate parametric plots of x versus y, y versus

z, x versus z, and x versus y versus z; and display the four resulting plots as a

graphics array.

Because the behavior of solutions can be quite intricate, we include the option

MaxSteps->Infinity in the NDSolve command to help Mathematica capture the

oscillatory behavior in the long-term solution. See Figure 6.48.

On the other hand, if you define lorenzsol separately,

Clear[x, y, z, lorenzsol]
lorenzsol[a–, b–, c–][{x0–, y0–, z0–}, ts–:{t, 0, 1000},

opts–]:=Module[{numsol},
numsol =

NDSolve[{x′[t]== – ax[t] + ay[t],
y′[t]==bx[t] – y[t] – x[t]z[t],
z′[t]==x[t]y[t] – cz[t], x[0]==x0,
y[0]==y0, z[0]==z0}, {x[t], y[t], z[t]},

ts, MaxSteps→ Infinity]
]
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FIGURE 6.48

Comparing a chaotic solution to a non-chaotic solution with Manipulate

we can then use lorenzplot to generate a numerical solution for our parameter

values and initial conditions.

n2 = lorenzsol[7, 27.2, 3][{3, 4, 2}];
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FIGURE 6.49

(a) Plots of x(t) (in black), y(t) (in gray), and z(t) (dashed) for 0 ≤ t ≤ 25. (b) Plots of

x(t) (in black), y(t) (in gray), and z(t) (dashed) for 950 ≤ t ≤ 1000

We generate a short-term plot of the solution in Figure 6.49(a) and a long-term

plot in Figure 6.49(b).

pp1 = Plot[Evaluate[{x[t], y[t], z[t]}/.n2], {t, 0, 25},
PlotStyle→ {GrayLevel[0], GrayLevel[.3], Dashing[{0.01}]},

PlotPoints→1000];

pp2 = Plot[Evaluate[{x[t], y[t], z[t]}/.n2], {t, 950, 1000},
PlotStyle→ {GrayLevel[0], GrayLevel[.3], Dashing[{0.01}]},

PlotPoints→1000];

Show[GraphicsRow[{pp1, pp2}]]

6.5 SOME PARTIAL DIFFERENTIAL EQUATIONS

6.5.1 The One-Dimensional Wave Equation

Suppose that we pluck a string (such as a guitar or violin string) of length

p and constant mass density that is fixed at each end. A question that we

might ask is: What is the position of the string at a particular instance

of time? We answer this question by modeling the physical situation with

a partial differential equation, namely the wave equation in one spatial

variable:

c2 �2u

�x 2
=

�2u

�t 2
or c 2uxx = utt. (6.41)

In equation (6.41), c2
= T/�, where T is the tension of the string and � is the

constant mass of the string per unit length. The solution u(x, t) represents

the displacement of the string from the x-axis at time t. To determine u, we

must describe the boundary and initial conditions that model the physical

situation. At the ends of the string, the displacement from the x-axis is fixed at

zero, so we use the homogeneous boundary conditions u(0, t) = u( p, t) = 0
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for t > 0. The motion of the string also depends on the displacement and

the velocity at each point of the string at t = 0. If the initial displacement is

given by f (x) and the initial velocity by g(x), we have the initial conditions

u(x, 0) = f (x) and ut(x, 0) = g(x) for 0 ≤ x ≤ p. Therefore, we determine the

displacement of the string with the initial boundary value problem⎧⎪⎪⎨
⎪⎪⎩

c 2 �2u

�x 2
=

�2u

�t 2
, 0 < x < p, t > 0

u(0, t) = u(p, t) = 0, t > 0

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < p.

(6.42)

This problem is solved through separation of variables by assuming that

u(x, t) = X(x)T(t). Substitution into equation (6.41) yields

� is a constant.
c 2X ′′T = XT ′′ or

X ′′

X
=

T ′′

c 2T
= −�,

so we obtain the two second-order ordinary differential equations X ′′
+

�X = 0 and T ′′
+ c2

�T = 0. At this point, we solve the equation that involves

the homogeneous boundary conditions. The boundary conditions in terms

of u(x, t) = X(x)T(t) are u(0, t) = X(0)T(t) = 0 and u( p, t) = X( p)T(t) = 0, so

we have X(0) = 0 and X(p) = 0. Therefore, we determine X(x) by solving

the eigenvalue problem {
X ′′

+ �X = 0, 0 < x < p

X(0) = X(p) = 0.

The eigenvalues of this problem are �n =
(
n�/p

)2
, n = 1,3,… with corre-

sponding eigenfunctions Xn(x) = sin
(
n�x/p

)2
, n = 1,3,…. Next, we solve

the equation T′′
+ c2

�nT = 0. A general solution is

Tn(t) = an cos

(
c
√

�nt

)
+ bn sin

(
c
√

�nt

)
= an cos

cn�t

p
+ bn sin

cn�t

p
,

where the coefficients an and bn must be determined. Putting this infor-

mation together, we obtain

un(x, t) =

(
an cos

cn�t

p
+ bn sin

cn�t

p

)
sin

n�x

p
,

so by the principle of superposition, we have

u(x, t) =

∞∑
n=1

(
an cos

cn�t

p
+ bn sin

cn�t

p

)
sin

n�x

p
.

Applying the initial displacement u(x, 0) = f (x) yields

u(x, 0) =

∞∑
n=1

an sin
n�x

p
= f (x),
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so an is the Fourier sine series coefficient for f (x), which is given by

an =
2

p

∫ p

0

f (x) sin
n�x

p
dx, n = 1, 2 , ….

In order to determine bn, we must use the initial velocity. Therefore, we

compute

�u

�t
(x, t) =

∞∑
n=1

(
−an

cn�
p

sin
cn�t

p
+ bn

cn�
p

cos
cn�t

p

)
sin

n�x

p
.

Then,

�u

�t
(x, 0) =

∞∑
n=1

bn

cn�
p

sin
n�x

p
= g(x)

so bn
cn�
p represents the Fourier sine series coefficient for g(x), which means

that

bn =
p

cn�

∫ p

0

g(x) sin
n�x

p
dx, n = 1, 2 , ….

Example 6.5.1 Solve

⎧⎪⎪⎨
⎪⎪⎩

uxx = utt, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = sin �x, ut(x, 0) = 3x + 1, 0 < x < 1.

Solution The initial displacement and velocity functions are defined first.

f[x–] = Sin[px];
g[x–] = 3x + 1;

Next, the functions to determine the coefficients an and bn in the series approxi-

mation of the solution u(x, t) are defined. Here, p = c = 1.

a1 = 2∫ 1
0
f[x]Sin[px] dx

1

an– = 2∫ 1
0
f[x]Sin[npx]dx

2Sin[n�]

� – n2�

bn– =
2∫ 1

0g[x]Sin[npx]dx

np //Simplify

2n� – 8n�Cos[n�]+6Sin[n�]

n3�3

Because n represents an integer, these results indicate that an = 0 for all n ≥ 2,

which we confirm with Simplify together with the Assumptions by instructing

Mathematica to assume that n is an integer.

Simplify
[

2Sin[np]

p – n2p
, Assumptions→Element[n, Integers]

]
0
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Simplify
[

2np – 8npCos[np]+6Sin[np]

n3p3 ,

Assumptions→Element[n, Integers]
]

2 – 8( – 1)n

n2�2

We use Table to calculate the first 10 values of bn.

Table[{n, bn, bn//N}, {n, 1, 10}] //TableForm

1 10

�2 1.01321

2 – 3

2�2 – 0.151982

3 10

9�2 0.112579

4 – 3

8�2 – 0.0379954

5 2

5�2 0.0405285

6 – 1

6�2 – 0.0168869

7 10

49�2 0.0206778

8 – 3

32�2 – 0.00949886

9 10

81�2 0.0125088

10 – 3

50�2 – 0.00607927

Notice that we define

uapprox[n] so that

Mathematica

“remembers” the

terms uapprox that are

computed. That is,

Mathematica does not

need to recompute

uapprox[n—1] to

compute uapprox[n]
provided that

uapprox[n—1] has

already been

computed.

The function u defined next computes the nth term in the series expansion. Thus,

uapprox determines the approximation of order k by summing the first k terms of

the expansion, as illustrated with approx[10].

Clear[u, uapprox]
u[n–] = bnSin[npt]Sin[npx];
uapprox[k–]:=uapprox[k] = uapprox[k – 1] + u[k];
uapprox[0] = Cos[pt]Sin[px];
uapprox[10]

Cos[�t]Sin[�x] +
10Sin[�t]Sin[�x]

�2 –
3Sin[2�t]Sin[2�x]

2�2 +

10Sin[3�t]Sin[3�x]

9�2 –
3Sin[4�t]Sin[4�x]

8�2 +

2Sin[5�t]Sin[5�x]

5�2 –
Sin[6�t]Sin[6�x]

6�2 +

10Sin[7�t]Sin[7�x]

49�2 –
3Sin[8�t]Sin[8�x]

32�2 +

10Sin[9�t]Sin[9�x]

81�2 –
3Sin[10�t]Sin[10�x]

50�2

To illustrate the motion of the string, we graph uapprox[10], the 10th partial sum

of the series, on the interval [0, 1] for 16 equally spaced values of t between 0

and 2 in Figure 6.50.

somegraphs = Table[Plot[Evaluate[uapprox[10]], {x, 0, 1},
DisplayFunction→ Identity, PlotRange→ { – 3

2
, 3

2
},

Ticks→ {{0, 1}, { – 1, 1}}], {t, 0, 2, 2
15 }

]
;

toshow = Partition[somegraphs, 4];
Show[GraphicsGrid[toshow]]
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FIGURE 6.50

The motion of the string for 16 equally spaced values of t between 0 and 2

If instead we wished to see the motion of the string, we can use a Do loop
together with Print to generate many graphs and animate the result. We show a

frame from the resulting animation.

Do[Plot[Evaluate[uapprox[10]], {x, 0, 1},
PlotRange→ { – 3/2, 3/2}, Ticks→ {{0, 1}, { – 1, 1}}]//
Print, {t, 0, 2, 2

59
}
]

;

Finally, we remark that DSolve can find D’Alembert’s solution to the wave

equation.

Clear[u, c]
DSolve[c∧2 D[u[x, t], {x, 2}]==D[u[x, t], {t, 2}],
u[x, t], {x, t}]



6.5 Some Partial Differential Equations 537

{{
u[x, t] → C[1]

[
t –

√
c2x

c2

]
+ C[2]

[
t +

√
c2x

c2

]}}

DSolve
[
c2�{x,2}u[x, t]==�{t,2}u[x, t], u[x, t], {x, t}

]
{{

u[x, t] → C[1]

[
t –

√
c2x

c2

]
+ C[2]

[
t +

√
c2x

c2

]}}

6.5.2 The Two-Dimensional Wave Equation
One of the more interesting problems involving two spatial dimensions (x
and y) is the wave equation. The two-dimensional wave equation in a cir-

cular region that is radially symmetric (not dependent on �) with boundary

and initial conditions is expressed in polar coordinates as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c2

(
�2u

�r2
+

1

r

�u

�r

)
=

�2u

�t2
, 0 < r < �, t > 0

u(�, t) = 0, |u(0, t)| < ∞, t > 0

u(r, 0) = f (r),
�u

�t
(r, 0) = g(r), 0 < r < �.

Notice that the boundary condition u(�, t) = 0 indicates that u is fixed at

zero around the boundary; the condition |u(0, t)| < ∞ indicates that the

solution is bounded at the center of the circular region. Like the wave

equation discussed previously, this problem is typically solved through sepa-

ration of variables by assuming a solution of the form u(r, t) = F(r)G(t).
Applying separation of variables yields the solution

u(r, t) =

∞∑
n=1

(
An cos cknt + Bn sin cknt

)
J0

(
knr
)

,

�n represents the nth

zero of the Bessel

function of the first

kind of order zero.

where �n = c�n/�, and the coefficients An and Bn are found through

application of the initial displacement and velocity functions. With

u(r, 0) =

∞∑
n=1

An J0

(
knr
)

= f (r)

and the orthogonality conditions of the Bessel functions, we find that

An =

∫ �

0
rf (r) J0

(
knr
)

dr∫ �

0
r
[

J0

(
knr
)]2

dr
=

2[
J1

(
�n

)]2
∫ �

0

rf (r) J0

(
knr
)

dr, n = 1, 2, ….

Similarly, because

�u

�t
(r, 0) =

∞∑
n=1

(−cknAn sin cknt + cknBn cos cknt
)

J0

(
knr
)

,
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we have

ut(r, 0) =

∞∑
n=1

ckn Bn J0

(
knr
)

= g(r).

Therefore,

Bn =

∫ �

0
rg(r) J0

(
knr
)

dr

ckn

∫ �

0
r
[

J0

(
knr
)]2

dr
=

2

ckn

[
J1

(
�n

)]2
∫ �

0

rg(r) J0

(
knr
)

dr, n = 1, 2, ….

As a practical matter, in nearly all cases, these formulas are difficult to

evaluate.

Example 6.5.2

Solve

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
2u

�r2
+

1

r

�u

�r
=

�
2u

�t2
, 0 < r < 1, t > 0

u(1, t) = 0, |u(0, t)| < ∞, t > 0

u(r, 0) = r(r − 1),
�u

�t
(r, 0) = sin �r, 0 < r < 1.

Solution In this case, � = 1, f (r) = r (r − 1), and g(r) = sin �r. The command BesselJZero[n,k]
represents the kth zero of the Bessel function Jk(x). To obtain an approximation of

the number, use N.
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�n– :=Evaluate[BesselJZero[0, n]//N]

Next, we define the constants � and c and the functions f (r) = r (r − 1), g(r) =

sin �r, and kn = �n/�.

c = 1;

 = 1;
f[r–] = r(r – 1);
g[r–] = Sin[pr];
kn– :=kn = �n


 ;

The formulas for the coefficients An and Bn are then defined so that an approxi-

mate solution may be determined. (We use lowercase letters to avoid any possible

ambiguity with built-in Mathematica functions.) Note that we use NIntegrate to

approximate the coefficients and avoid the difficulties in integration associated with

the presence of the Bessel function of order zero.

an– :=an = (2NIntegrate [rf[r]BesselJ [0, knr] , {r, 0, 
}])
/

BesselJ [1, �n] 2;
bn– :=bn = (2NIntegrate [rg[r]BesselJ [0, knr] , {r, 0, 
}])

/(
c kn BesselJ [1, �n] 2)

We now compute the first 10 values of An and Bn. Because a and b are defined

using the form an:=ax=… and bn:=bx=…, Mathematica remembers these values

for later use.

Table [{n, an, bn}, {n, 1, 10}] //TableForm

1 – 0.323503 0.52118

2 0.208466 – 0.145776

3 0.00763767 – 0.0134216

4 0.0383536 – 0.00832269

5 0.00534454 – 0.00250503

6 0.0150378 – 0.00208315

7 0.00334937 – 0.000882012

8 0.00786698 – 0.000814719

9 0.00225748 – 0.000410202

10 0.00479521 – 0.000399219

The nth term of the series solution is defined in u. Then, an approximate solution

is obtained in uapprox by summing the first 10 terms of u.

u[n–, r–, t–]:=(anCos [cknt] + bnSin [cknt]) BesselJ [0, knr] ;
uapprox[r–, t–] =

∑10
n=1

u[n, r, t];

We graph uapprox for several values of t in Figure 6.51.

somegraphs =
Table[ParametricPlot3D[{rCos[�], rSin[�], uapprox[r, t]},
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FIGURE 6.51

The drumhead for nine equally spaced values of t between 0 and 1.5

{r, 0, 1}, {�, –p,p}, Boxed→False,
PlotRange→ { – 1.25, 1.25}, BoxRatios→ {1, 1, 1},
Ticks→ {{ – 1, 1}, { – 1, 1}, { – 1, 1}}], {t, 0, 1.5, 1.5

8
}
]

;
toshow = Partition[somegraphs, 3];
Show[GraphicsGrid[toshow]]

In order to actually watch the drumhead move, we can use a Do loop to generate

several graphs and animate the result. Be aware, however, that generating many

three-dimensional graphics and then animating the results uses a great deal of

memory and can take considerable time, even on a relatively powerful computer.

We show one frame from the animation that results from the following Do loop.

Do[ParametricPlot3D[{rCos[�], rSin[�], uapprox[r, t]},
{r, 0, 1}, {�, –p,p}, Boxed→False,

PlotRange→ { – 1.25, 1.25}, BoxRatios→ {1, 1, 1},
Ticks→ {{ – 1, 1}, { – 1, 1}, { – 1, 1}}]//Print,
{t, 0, 1.5, 1.5

15 }
]

;

If the displacement of the drumhead is not radially symmetric, the prob-

lem that describes the displacement of a circular membrane in its general
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case is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c2

(
�2u

�r2
+

1

r

�u

�r
+

1

r2

�2u

��2

)
=

�2u

�t2
, 0 < r < �, −� < � < �, t > 0

u(�, �, t) = 0, |u(0, �, t)| < ∞, −� ≤ � ≤ �, t > 0

u(r, �, t) = u(r,−�, t),
�u

��
(r, �, t) =

�u

��
(r,−�, t), 0 < r < �, t > 0

u(r, �, 0) = f (r, �),
�u

�t
(r, �, 0) = g(r, �), 0 < r < �, −� < � < �.

(6.43)

Using separation of variables and assuming that u(r, �, t) = R(t)H(�)T(t), we

obtain that a general solution is given by

u(r, �, t) =
∑

n

a0n J0

(
�0nr
)

cos
(
�0nct

)
+
∑
m,n

amn Jm

(
�mnr

)
cos
(
m�
)

cos
(
�mnct

)
+
∑
m,n

bmn Jm

(
�mnr

)
sin
(
m�
)

cos
(
�mnct

)
+
∑

n

A0n J0

(
�0nr
)

sin
(
�0nct

)
+
∑
m,n

Amn Jm

(
�mnr

)
cos
(
m�
)

sin
(
�mnct

)
+
∑
m,n

Bmn Jm

(
�mnr

)
sin
(
m�
)

sin
(
�mnct

)
,

where Jm represents the mth Bessel function of the first kind, �mn denotes

the nth zero of the Bessel function y = Jm(x), and �mn = �mn/�. The
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coefficients are given by the following formulas:

a0n =

∫ 2�

0

∫ �

0
f (r, �) J0

(
�0nr
)

r dr d�

2�
∫ �

0

[
J0

(
�0nr
)]2

r dr

amn =

∫ 2�

0

∫ �

0
f (r, �) Jm

(
�mnr

)
cos
(
m�
)

r dr d�

�
∫ �

0

[
Jm

(
�mnr

)]2
r dr

bmn =

∫ 2�

0

∫ �

0
f (r, �) Jm

(
�mnr

)
sin
(
m�
)

r dr d�

�
∫ �

0

[
Jm

(
�mnr

)]2
r dr

A0n =

∫ 2�

0

∫ �

0
g (r, �) J0

(
�0nr
)

r dr d�

2��0nc�
∫ �

0

[
J0

(
�0nr
)]2

r dr

Amn =

∫ 2�

0

∫ �

0
g (r, �) Jm

(
�mnr

)
cos
(
m�
)

r dr d�

��mnc
∫ �

0

[
Jm

(
�mnr

)]2
r dr

Bmn =

∫ 2�

0

∫ �

0
g(r, �) Jm

(
�mnr

)
sin
(
m�
)

r dr d�

��mnc
∫ �

0

[
Jm

(
�mnr

)]2
r dr

Example 6.5.3

Solve

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10
2

(
�

2u

�r2
+

1

r

�u

�r
+

1

r2

�
2u

��2

)
=

�
2u

�t2
,

0 < r < 1, −� < � < �, t > 0

u(1, �, t) = 0, |u(0, �, t)| < ∞, −� ≤ � ≤ �, t > 0

u(r, �, t) = u(r,−�, t),
�u

��
(r, �, t) =

�u

��
(r,−�, t).

0 < r < 1, t > 0

u(r, �, 0) = cos (�r/2) sin �,

�u

�t
(r, �, 0) = (r − 1) cos (��/2), 0 < r < 1, −� < � < �

Solution To calculate the coefficients, we will need to have approximations of the zeros of

the Bessel functions, so we use BesselJZero together with N and Evaluate to

define �mn to be an approximation of the nth zero of y = Jm(x). We illustrate the

use of �mn by using it to compute the first five zeros of y = J0(x).

�m–, n–:=�m,n = Evaluate[BesselJZero[m, n]//N]
Table

[
�0,n, {n, 1, 5}

]
{2.40483, 5.52008, 8.65373, 11.7915, 14.9309}

The appropriate parameter values as well as the initial condition functions are

defined as follows. Notice that the functions describing the initial displacement
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and velocity are defined as the product of functions. This enables the subsequent

calculations to be carried out using NIntegrate.

Clear[a, f, f1, f2, g1, g2, A, c, g, capa, capb, b]
c = 10;

 = 1;
f1[r–] = Cos

[pr
2

]
;

f2[�–] = Sin[�];
f[r–, �–]:=f[r, �] = f1[r]f2[�];
g1[r–] = r – 1;
g2[�–] – Cos

[p�
2

]
;

g[r–, �–]:=g[r, �] = g1[r]g2[�];

The coefficients a0n are determined with the function a.

Clear[a]
a[n–]:=a[n] =

N[ (
NIntegrate

[
f1[r]BesselJ

[
0, �0,nr

]
r, {r, 0, 
}

]
NIntegrate[f2[t], {t, 0, 2p}])/(

2pNIntegrate
[
rBesselJ

[
0, �0,nr

] 2, {r, 0, 
}
])]

;

Hence, as represents a table of the first five values of a0n. Chop is used to round

off very small numbers to zero.

as = Table[a[n]//Chop, {n, 1, 5}]
{0.0, 0, 0, 0}

Because the denominator of each integral formula used to find amn and bmn is

the same, the function bjmn which computes this value is defined next. A table of

nine values of this coefficient is then determined.

bjmn[m–, n–]:=
bjmn[m, n] = N

[
NIntegrate

[
rBesselJ [m, �m,nr] 2, {r, 0, 
}

]]
Table[Chop[bjmn[m, n]], {m, 1, 3}, {n, 1, 3}]

{{0.0811076, 0.0450347, 0.0311763},

{0.0576874, 0.0368243, 0.0270149},

{0.0444835, 0.0311044, 0.0238229}}
We also note that in evaluating the numerators of amn and bmn we must compute∫ �

0
rf1(r) Jm

(
�mnr

)
dr. This integral is defined in fbjmn and the corresponding values

are found for n = 1, 2, 3 and m = 1, 2, 3.

Clear[fbjmn]
fbjmn[m–, n–]:=fbjmn[m, n] =
N [NIntegrate [f1[r]BesselJ [m, �m,nr] r, {r, 0, 
}]]
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Table[Chop[fbjmn[m, n]], {m, 1, 3}, {n, 1, 3}]
{{0.103574, 0.020514, 0.0103984},

{0.0790948, 0.0275564, 0.0150381},

{0.0628926, 0.0290764, 0.0171999}}
The formula to compute amn is then defined and uses the information calculated

in fbjmn and bjmn. As in the previous calculation, the coefficient values for n = 1,

2, 3 and m = 1, 2, 3 are determined.

a[m–, n–]:=
a[m, n] =
N[(fbjmn[m, n]NIntegrate[f2[t]Cos[mt], {t, 0, 2p}])/

(pbjmn[m, n])];
Table[Chop[a[m, n]], {m, 1, 3}, {n, 1, 3}]

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
A similar formula is then defined for the computation of bmn.

b[m–, n–]:=b[m, n] =
N[(fbjmn[m, n]NIntegrate[f2[t]Sin[mt], {t, 0, 2p}])/
(pbjmn[m, n])];

Table[Chop[b[m, n]], {m, 1, 3}, {n, 1, 3}]

{{1.277, 0.455514, 0.333537}, {0, 0, 0}, {0, 0, 0}}
Note that defining the coefficients in this manner a[m_,n_]:= a[m,n]=... and

b[m_,n_]:=b[m,n]=... so that Mathematica “remembers” previously computed val-

ues, which reduces computation time. The values of A0n are found similarly to

those of a0n. After defining the function capa to calculate these coefficients, a

table of values is then found.

capa[n–]:=capa[n] =
N
[(

NIntegrate
[
g1[r]BesselJ

[
0, �0,nr

]
r, {r, 0, 
}

]
NIntegrate[g2[t], {t, 0, 2p}])/(

2pc�0,nNIntegrate
[
rBesselJ

[
0, �0,nr

] 2, {r, 0, 
}
])]

;
Table[Chop[capa[n]], {n, 1, 6}]

{0.00142231, 0.0000542518, 0.0000267596, 6.419764234815093`
∗∧

– 6,

4.958428464118819`
∗∧

– 6, 1.8858472721004333`∗∧– 6}
The value of the integral of the component of g, g1, which depends on r and the

appropriate Bessel functions, is defined as gbjmn.

gbjmn[m–, n–]:=gbjmn[m, n] = NIntegrate[g1[r]*
BesselJ [m, �m,nr] r, {r, 0, 
}] //N

Table[gbjmn[m, n]//Chop, {m, 1, 3}, {n, 1, 3}]

{{ – 0.0743906, – 0.019491, – 0.00989293},

{ – 0.0554379, – 0.0227976, – 0.013039},

{ – 0.0433614, – 0.0226777, – 0.0141684}}
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Then, Amn is found by taking the product of integrals, gbjmn depending on r and

one depending on �. A table of coefficient values is generated in this case as well.

capa[m–, n–]:=capa[m, n] =
N[(gbjmn[m, n]NIntegrate[g2[t]Cos[mt], {t, 0, 2p}])/

(p�m,ncbjmn[m, n])] ;
Table[Chop[capa[m, n]], {m, 1, 3}, {n, 1, 3}]

{{0.0035096,0.000904517,0.000457326},

{ – 0.00262692, – 0.00103252, – 0.000583116},

{ – 0.000503187, – 0.000246002, – 0.000150499}}
Similarly, the Bmn are determined.

capb[m–, n–]:=capb[m, n] =
N[(gbjmn[m, n]NIntegrate[g2[t]Sin[mt], {t, 0, 2p}])/

(p�m,ncbjmn[m, n])] ;
Table[Chop[capb[m, n]], {m, 1, 3}, {n, 1, 3}]

{{0.00987945, 0.00254619, 0.00128736},

{ – 0.0147894, – 0.00581305, – 0.00328291},

{ – 0.00424938, – 0.00207747, – 0.00127095}}
Now that the necessary coefficients have been found, we construct an approxi-

mate solution to the wave equation by using our results. In the following, term1
represents those terms of the expansion involving a0n, term2 those terms involving

amn, term3 those involving bmn, term4 those involving A0n, term5 those involving

Amn, and term6 those involving Bmn.

Clear[term1, term2, term3, term4, term5, term6]
term1[r–, t–, n–]:=a[n]BesselJ

[
0, �0,nr

]
Cos

[
�0,nct

]
;

term2[r–, t–, �–, m–, n–]:=
a[m, n]BesselJ [m, �m,nr] Cos[m�]Cos [�m,nct];

term3[r–, t–, �–, m–, n–]:=
b[m, n]BesselJ [m, �m,nr] Sin[m�]Cos [�m,nct];

term4[r–, t–, n–]:=capa[n]BesselJ
[
0, �0,nr

]
Sin

[
�0,nct

]
;

term5[r–, t–, �–, m–, n–]:=
capa[m, n]BesselJ [m, �m,nr] Cos[m�]Sin [�m,nct];

term6[r–, t–, �–, m–, n–]:=
capb[m, n]BesselJ [m, �m,nr] Sin[m�]Sin [�m,nct];

Therefore, our approximate solution is given as the sum of these terms as

computed in u.

Clear[u]
u[r–, t–, th–]:=

∑5
n=1

term1[r, t, n] +
∑3

m=1

∑3
n=1

term2[r, t, th, m, n]
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+
∑3

m=1

∑3
n=1

term3[r, t, th, m, n] +
∑5

n=1
term4[r, t, n]

+
∑3

m=1

∑3
n=1

term5[r, t, th, m, n] +
∑3

m=1

∑3
n=1

term6[r, t, th, m, n];
uc = Compile[{r, t, th}, u[r, t, th]]

CompiledFunction[{r, t, th}, u[r, t, th], -CompiledCode-]

The solution is compiled in uc. The command Compile is used to compile func-

tions. Compile returns a CompiledFunction that represents the compiled code.

Generally, compiled functions take less time to perform computations than uncom-

piled functions, although compiled functions can only be evaluated for numerical

arguments.

Next, we define the function tplot, which uses ParametricPlot3D to produce

the graph of the solution for a particular value of t. Note that the x and y

coordinates are given in terms of polar coordinates.

Clear[tplot]
tplot[t–]:=ParametricPlot3D[{rCos[�], rSin[�], uc[r, t, �]},

{r, 0, 1}, {�, –p,p}, PlotPoints→ {20, 20},
BoxRatios→ {1, 1, 1}, Axes→False, Boxed→False]

A table of nine plots for nine equally spaced values of t from t = 0 to t = 1 using

increments of 1/8 is then generated. This table of graphs is displayed as a graphics

array in Figure 6.52.

FIGURE 6.52

The drumhead for nine equally spaced values of t from t = 0 to t = 1
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somegraphs = Table
[
tplot[t], {t, 0, 1, 1

8
}
]

;
toshow = Partition[somegraphs, 3];
Show[GraphicsGrid[toshow]]

Of course, we can generate many graphs with a Do loop and animate the result

as in the previous example. Be aware, however, that generating many three-

dimensional graphics and then animating the results uses a great deal of memory

and can take considerable time, even on a relatively powerful computer.

6.5.3 Other Partial Differential Equations
A partial differential equation of the form

a(x, y, u)
�u

�x
+ b(x, y, u)

�u

�y
= 0c(x, y, u) (6.44)

is called a first-order, quasilinear partial differential equation. In the

case in which c(x, y, u) = 0, equation (6.44) is homogeneous; if a and b
are independent of u, equation (6.44) is almost linear; and when c(x, y, u)

can be written in the form c(x, y, u) = d(x, y)u + s(x, y), equation (6.44) is

linear. Quasilinear partial differential equations can frequently be solved

using the method of characteristics.

Example 6.5.4 Use the method of characteristics to solve the initial-value problem{
−3xtux + ut = xt

u(x, 0) = x.

Solution For this problem, the characteristic system is

�x/�r = −3xt, x(0, s) = s

�t/�r = 1, t(0, s) = 0

�u/�r = xt, u(0, s) = s.

We begin by using DSolve to solve �t/�r = 1, t(0, s) = 0

d1 = DSolve[{D[t[r], r]==1, t[0]==0}, t[r], r]
{{t[r] → r}}

and obtain t = r. Thus, �x/�r = −3xr, x(0, s) = s, which we solve next

d2 = DSolve[{D[x[r], r]== – 3x[r]r, x[0]==s}, x[r], r]{{
x[r] → e – 3r2

2 s

}}

and obtain x = se−3r2
/2

. Substituting r = t and x = se−3r2
/2

into �u/�r = xt, u(0, s) =

s and using DSolve to solve the resulting equation yields the following result,

named d3.
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d3 = DSolve
[
{D[u[r], r]==E – 3r2

2 sr, u[0]==s}, u[r], r
]

{{
u[r] → 1

3
e – 3r2

2

(
– 1 + 4e

3r2

2

)
s

}}

To find u(x, t), we must solve the system of equations{
t = r

x = se−3r2
/2

for r and s. Substituting r = t into x = se−3r2
/2

and solving for s yields s = xe3t2
/2.

Thus, the solution is given by replacing the values obtained previously in the solu-

tion obtained in d3. We do this below by using ReplaceAll (/.) to replace each

occurrence of r and s in d3[[1,1,2]], the solution obtained in d3, by the values

r = t and s = xe3t2
/2. The resulting output represents the solution to the initial-value

problem.

d3[[1, 1, 2]]/.{r – >t, s – >x Exp[3/2t∧2]}//Simplify
1

3

(
– 1 + 4e

3t2

2

)
x

In this example, DSolve can also solve this first-order partial differential equation.

Next, we use DSolve to find a general solution of −3xtux + ut = xt and name

the resulting output gensol.

gensol = DSolve[ – 3xtD[u[x, t], x] + D[u[x, t], t]==xt,
u[x, t], {x, t}]{{

u[x, t] → 1

3

(
– x + 3C[1]

[
1

6

(
3t2 + 2Log[x]

)])}}
The output

C[1]
[

– 3t2

2
– Log[x]

]
represents an arbitrary function of − 3

2
t2 − ln x. The explicit solution is extracted

from gensol with gensol[[1,1,2]], the same way that results are extracted from the

output of DSolve commands involving ordinary differential equations.

gensol[[1, 1, 2]]
1

3

(
– x + 3C[1]

[
1

6

(
3t2 + 2Log[x]

)])
To find the solution that satisfies u(x, 0) = x, we replace each occurrence of t in

the solution by 0.

gensol[[1, 1, 2]]/.t – >0
1

3

(
– x + 3C[1]

[
Log[x]

3

])
Thus, we must find a function f (x) so that

−1

2
x + f (ln x) = x

f (ln x) =
3

2
x.
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Certainly f (t) = 4

3
e−t

satisfies the previous criteria. We define f (t) = 4

3
e−t

and then

compute f (ln x) to verify that f (ln x) = 3

2
x.

Clear[f]
f[t–] = 4Exp[ – t]/3;
f[ – Log[x]]
4x

3

Thus, the solution to the initial-value problem is given by − 1

3
x + f

(− 3

2
t2 − ln x

)
,

which is computed and named sol. Of course, the result returned is the same as

that obtained previously.

sol = Simplify
[

– x
3

+ f
[

– 3t2

2
– Log[x]

]]
1

3

(
– 1 + 4e

3t2

2

)
x

Last, we use Plot3D to graph sol on the rectangle [0, 20] × [−2, 2] in Figure 6.53.

Plot3D[sol, {x, 0, 20}, {t, – 2, 2}, PlotRange→ {0, 30},
PlotPoints→30, ClippingStyle→None]
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FIGURE 6.53

Plot of u(x, t) = 1

3
x
(

4e3t2
/2 − 1

)
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6.6 EXERCISES

1. (a) Solve

(
1 + y2

)
y′ = y cos x. (b) Explain the functionality of

ProductLog. (c) Show that an implicit solution of the equation is 1

2
y2

+

ln |y| = sin x + C. (d) Use ContourPlot to graph various solutions on the

rectangle [0, 10] × [0, 10].

2. Solve xy y′ = y2 − x2
and graph several integral curves of the equation.

(See Figure 6.54(a).)

3. Solve (−1 + yexy
+ y cos xy) dx + (1 + xexy

+ x cos xy) dy = 0 and graph

several integral curves of the equation. (See Figure 6.54(b).)

4. Solve y′ = sin(2x − y), y(0) = 0.5. What is the value of y(1)? Graph for

0 ≤ x ≤ 15.

5. Graph the solution of y′ = sin(ty), y(0) = j on [0, 7] for j = 0.5, 1, … , 2.5.

6. Create a Manipulate object that lets you compare the solution of x′′
+

ax′
+ sin x = 0 to x′′

+ ax′
+ x = 0.

7. Solve each of the following differential equations or initial-value prob-

lems by hand and then verify your results with Mathematica.

(a) 2y′′ + 5y′ + 5y = 0, y(0) = 0, y′(0) = 1/2

(b) y′′ + 4y′ + 13y = t cos
2

3t

a b

dc

FIGURE 6.54

(a) Integral curves of xy y′ = y2 − x2
. (b) Integral curves of (−1 + yexy

+ y cos xy)

dx + (1 + xexy
+ x cos xy) dy = 0. (c) The solution of an initial-value problem.

(d) Solutions to several initial-value problems
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(c) y′′ − 2y′ + y = et
ln t

(d) t3y′′′ + 16t2y′′ + 79ty′ + 125y = 0

8. Two lines, l1 and l2, with slopes m1 and m2, respectively, are ortho-
gonal (or perpendicular) if their slopes satisfy the relationship m1 =

−1/m2. Two curves, C1 and C2, are orthogonal (or perpendicular)

at a point if their respective tangent lines to the curves at that point

are perpendicular. Now we want to determine the set of orthogonal

curves to a given family of curves. We refer to this set of orthogonal

curves as the family of orthogonal trajectories. Suppose that a fam-

ily of curves is defined as F(x, y) = C and that the slope of the tangent

line at any point on these curves is dy/dx = f (x, y). Then, the slope of

the tangent line on the orthogonal trajectory is dy/dx = −1/f (x, y) so

the family of orthogonal trajectories is found by solving the first-order

equation dy/dx = −1/f (x, y).

(a) Determine the family of orthogonal trajectories to the family

of curves y = cx2
. Confirm your result graphically by graphing

members of both families of curves on the same axes.

(b) Determine the orthogonal trajectories of the family of curves given

by y2 − 2cx = c2
. Graph several members of both families of curves

on the same set of axes. Why are these two families of curves said

to be self-orthogonal?

9. If we are given a family of curves that satisfies the differential equation

dy/dx = f (x, y) and we want to find a family of curves that inter-

sects this family at a constant angle �, we must solve the differential

equation

dy

dx
=

f (x, y) ± tan �

1 ∓ f (x, y) tan �
.

Find a family of curves that intersects the family of curves x2
+ y2

= c2
at

an angle of �/6. Confirm your result graphically by graphing members

of both families of curves on the same axes.

10. Find a linear differential equation with general solution y = c1 cos t +

c2 sin t + et/3
(c3 cos 2t + c4 sin 2t) + 1

2
t sin t.

11. Solve each system and graph various solutions together with the direc-

tion field: (a) X′
=

(
0 −1

−1 0

)
X, (b) X′

=

(
0 1

−1 0

)
X, and (c) x′

=

−5x + 3y, y′ = −2x − 10y
12. Solve x′ − y = e−t

, y′ + 5x + 2y = sin 3t, x(0) = x0, y(0) = y0. Parametri-

cally graph the solution for (x0, y0) = (i, j), where i, j take on four

equally spaced values between −1 and 1.
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13. Solve X′
=

(−� �
−� 0

)
X if the eigenvalues of the coefficient matrix are

(a) real and distinct, (b) real and equal, and (c) complex conjugates.

Hint: Both DSolve and Assumptions might be helpful.

14. Under certain assumptions, the FitzHugh–Nagumo equation that

arises in the study of the impulses in a nerve fiber can be written

as the system of ordinary differential equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dV/d� = W

dW/d� = F(V) + R − uW

dR/d� =
�
u

(bR − V − a)

V(0) = v0, W(0) = W0, R(0) = R0

,

where F(V) = 1

3
V3 − V. (a) Graph the solution to the FitzHugh–Nagumo

equation that satisfies the initial conditions V(0) = 1, W(0) = 0, and

R(0) = 1 if � = 0.08, a = 0.7, b = 0, and u = 1. (b) Graph the solution

that satisfies the initial conditions V(0) = 1, W(0) = 0.5, and R(0) = 0.5

if � = 0.08, a = 0.7, b = 0.8, and u = 0.6.

15. (Controlling the Spread of a Disease).

Sources: Herbert W.

Hethcote, “Three

basic epidemiological

models,” Applied
Mathematical
Ecology, edited by

Simon A. Levin,

Thomas G. Hallan, and

Louis J. Gross,

Springer-Verlag (1989),

pp. 119–143; Roy M.

Anderson and Robert

M. May, “Directly

transmitted infectious

diseases: Control by

vaccination,” Science,

Volume 215, (February

26, 1982), pp.

1053–1060; and J. D.

Murray, Mathematical
Biology, Springer-

Verlag (1990), pp.

611–618.

If a person becomes immune to a disease after recovering from

it and births and deaths in the population are not taken into

account, then the percentage (or proportion) of persons suscep-

tible to becoming infected with the disease, S(t), the percentage of

people in the population infected with the disease, I(t), and the

percentage of the population recovered and immune to the disease,

R(t), can be modeled by the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S ′
= −�SI

I ′ = �SI − �I

R ′
= �I

S(0) = S0, I(0) = I0, R(0) = 0

. (6.45)

Because S(t) + I(t) + R(t) = 1, once we know S(t) and I(t), we can

compute R(t) with R(t) = 1 − S(t) − I(t). This model is called an SIR
model without vital dynamics because once a person has had the

disease, the person becomes immune to the disease, and because

births and deaths are not taken into consideration. This model might

be used to model diseases that are epidemic to a population—

those diseases that persist in a population for short periods of time

(less than 1 year). Such diseases typically include influenza, measles,

rubella, and chickenpox.

If S0 < �/�, I ′(0) = �S0I0 − �I0 < �
�

�
I0 − �I0 = 0. Thus, the rate of

infection immediately begins to decrease; the disease dies out. On
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the other hand, if S0 > �/�, I ′(0) > �S0I0 − �I0 > 0, so the rate of

infection first increases; an epidemic results.

Although we cannot find explicit formulas for S, I, and R as functions

of t, we can, for example, solve for I in terms of S.

(a) Solve the equation
dI

dS
= − (�S − �)I

�SI
= −1 +

�

S
, � = �/�.

When diseases persist in a population for long periods of time, births

and deaths must be taken into consideration. If a person becomes

immune to a disease after recovering from it and births and deaths in

the population are taken into account, then the percentage of per-

sons susceptible to becoming infected with the disease, S(t), and the

percentage of people in the population infected with the disease,

I(t), can be modeled by the system

⎧⎪⎨
⎪⎩

S ′
= −�SI + � − �S

I ′ = �SI − �I − �I

S(0) = S0, I(0) = I0

.

This model is called an SIR model with vital dynamics because

once a person has had the disease, the person becomes immune to

the disease, and because births and deaths are taken into considera-

tion. This model might be used to model diseases that are endemic
to a population—those diseases that persist in a population for long

periods of time (10 or 20 years). Smallpox is an example of a disease

that was endemic until it was eliminated in 1977.

(b) Find and classify the equilibrium points of this system.

Because S(t) + I(t) + R(t) = 1, it follows that S(t) + I(t) ≤ 1. The fol-

lowing table shows the average infectious period, 1/�, �, and typical

contact numbers, �, for several diseases during certain epidemics.

Disease 1/� � �

Measles 6.5 0.153846 14.9667

Chickenpox 10.5 0.0952381 11.3

Mumps 19 0.0526316 8.1

Scarlet fever 17.5 0.0571429 8.5

Let us assume that the average lifetime, 1/�, is 70 years so that

� = 0.0142857.

For each of the diseases listed in the previous table, we use the

formula � = �/(� + �) to calculate the daily contact rate �.
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Disease �

Measles 2.51638

Chickenpox 1.23762

Mumps 0.54203

Scarlet fever 0.607143

Diseases such as those listed here can be controlled once an

effective and inexpensive vaccine has been developed. Since it is vir-

tually impossible to vaccinate everybody against a disease, we want

to know what percentage of a population needs to be vaccinated to

eliminate a disease. A population of people has herd immunity to

a disease if enough people are immune to the disease so that if it

is introduced into the population, it will not spread throughout the

population. In order to have herd immunity, an infected person must

infect less than one uninfected person during the time the person

is infectious. Thus, we must have

�S < 1.

Since I + S + R = 1, when I = 0 we have that S = 1 − R and, conse-

quently, herd immunity is achieved when

�(1 − R) < 1

� − �R < 1

−�R < 1 − �

R >
� − 1

�
= 1 − 1

�
.

(c) For each of the diseases listed previously, create a table that esti-

mates the minimum percentage of a population that needs to be

vaccinated to achieve herd immunity.

(d) Using the values in the previous tables, for each disease graph the

direction field and several solutions

{
S = S(t)

I = I(t)
parametrically.

16. The R..ossler attractor is the system

See texts such as

Jordan and Smith’s

Nonlinear Ordinary
Differential Equations
[23] for discussions of

ways to analyze

systems such as the

R
..
ossler attractor and

the Lorenz equations.

⎧⎪⎨
⎪⎩

x′
= −y − z

y′
= x + ay

z′
= bx − cz + xz

.

Observe that this system is nonlinear because of the product of the

x and z terms in the z′ equation.
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If a = 0.4, b = 0.3, x0 = 1, y0 = 0.4, and z(0) = 0.7, how does the

value of c affect solutions to the initial-value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
= −y − z

y′
= x + ay

z′
= bx − cz + xz

x(0) = x0, y(0) = y0, z(0) = z0

?

Suggestion: Use Manipulate.

17. Challenge: Using the linear approximation sin � = � for small dis-

placements, derive the equations for a triple pendulum if theta1

represents the displacement of the upper pendulum (with mass

m1 and length l1), theta2 represents the displacement of the upper

pendulum (with mass m2 and length l2), and theta3 represents the

displacement of the upper pendulum (with mass m3 and length l3).

Using g = 32, illustrate the solution graphically if m1 = 3, m2 = 2,

and m3 = 1, l1 = 16, l2 = 8, l3 = 16, �1(0) = 0, �
′
1(0) = 1, �2(0) = 0,

�
′
2(0) = 0, �3(0) = 0, and �

′
3(0) = −1.
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364, 521–522
Circular plate, 294
Clear[f], 117–119, 127, 135, 138,

151, 218, 229, 269, 273,
280, 288

Clothoid, 68
CMYKColor, 417–418
Coefficient matrix, 342
Cofactor matrix, 328
ColorData, 22, 67
ColorFunction, 67, 69, 73–74, 93,

96, 194, 425–426, 429
ColorSchemes, 22, 55, 129, 250,

417, 425
Column, 137, 167
Column space, 349–351
Compile, 546
CompileFunction, 546
ComplexExpand, 484, 489, 491
Compound interest, 246, 311–312
Conditional command, 119

Conditional convergence, 209
Conic section, 81
Conjugate transpose, 364
Conservative vector field, 380–381
Constant coefficients

nth-order differential equations,
473–475

second-order differential

equations, 458–464
Constants, 34–35
constraints, 198
Continuity, 124–128
Continuum, 126
ContourPlot, 65, 71–73, 76, 79,

104, 108, 111, 113, 116, 139,
222, 227, 229, 231–234, 238,
381–383, 415, 451

ContourPlot3D, 88–89, 105–106
Contours, 73
ContourShading, 73, 111, 142, 451
ContourStyle, 89
Convergence

sequence, 201
series, 203–204, 209
tests, 205–207

ConvertTo, 10
Convolution integral, 486
Convolution theorem, 486–487
Cornu spiral, 68
Cosh[x], 35
Cos[x], 35–36
Cot[x], 35
Cramer’s Rule, 471
Create Table/Matrix Palette, 318
Critical number, 148
Critical points, 148, 230–231
Critically damped, 462
Cross product, 331
Cross-Cap, 89
Csc[x], 35
Curl, 382, 389
Curl

vector field, 380
Curvature, 375
Cycloid, 143–145

D
D, 102, 135–138, 224–225, 229,

267, 381
DarkBands, 425
Deferred annuity, 313 559
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Definite integral, 174–180
Degenerate critical point, 231
Denominator[fraction], 43, 121, 125
DensityPlot, 71–72
Derivatives

antiderivatives, 164–166
calculation, 135–138
definition, 128–134
first derivative test, 148–156
mean-value theorem, 146–147
multivariable partial and

directional derivatives, 224–233
second derivative test, 148–156

Det, 471
Differential equations

first-order differential equations

linear differential equations,
442–450
nonlinear differential equations,
450–453
numerical solutions, 453–457
separable differential equations,
435–442

nth-order differential equations

constant coefficients, 473–475
Laplace transform, 481–491
nonlinear higher-order

equations, 492
theory, 472–473
undetermined coefficients,
475–481

partial differential equations

first-order quasilinear partial

differential equation, 547–549
one-dimensional wave

equation, 532–537
two-dimensional wave

equation, 537–547
second-order differential

equations

constant coefficients, 458–464
theory, 457–458
undetermined coefficients,
464–470
variation of parameters,
470–472

systems of differential equations

homogeneous linear systems,
492–505
nonhomogeneous linear

systems, 505–532
Differentiation, see also Derivatives

antidifferentiation

antiderivatives, 164–166
u-substitution, 166–167

implicit differentiation, 138–139

maximization/minimization

problems, 156–164
tangent lines, 139–147

Dirac delta function, 490
Direction, 120, 122–124
Direction field, 17
Directional derivative, 225–229
Directory, 14
Disease control, 552
DisplayFunction, 56, 142
Div, 380
Divergence

sequence, 201
series, 203–204, 209
test, 205
vector field, 380

Divergence theorem, 388–389
Do, 195, 293, 504, 536, 540, 547
Documentation Center, 2–3, 11,

24–28, 52, 71–72, 95, 339
Dot product, 331
Double pendulum, 500–505, 555
Drawing Tools, 6, 54
Drop, 283
DSolve, 16–17, 435–436, 440–441,

445–446, 448–451, 453, 459–460,
464–465, 471, 474, 476, 478,
481, 489, 495–496, 498–499,
501, 508, 537, 547–548, 552

Dt, 138
Dual problem, 368–369
Duffing’s equation, 614–515
Dynamical system, 264–266, 276,

300–301, 315–316
Dynamic[x], 45, 167

E
e, 35
Eigenvalues, 358–361, 366, 430,

518, 521
Eigenvectors, 358–361, 430
Eigenystem, 360–361, 493, 496,

498, 507
Elementary cellular automaton, 95

Ellipse, 81
Ellipsoid, 87
Elliptical torus, 84–86
Endemic disease, 553
Enneper’s minimal surface, 250
Enter, 5, 26, 32
Epidemic, 552
Equation solutions

approximate solutions, 110–114
exact solutions, 100–109

Equilibrium point, 514
EulerGamma, 34, 115
Evaluate, 542
Exact differential equation, 450–451

Exact solutions, 100–109
ExampleData, 419
ExpandDenominator[fraction], 43
Expand[expression], 39, 41,

162, 363
ExpandNumerator[fraction], 43,

483
Exponential growth, 445
Expressions

algebraic operations, 39–44
defining and evaluating, 47–52
naming and evaluating, 44–46

ExpToTrig, 115
Exp[x], 35–36

F
Factor, 459–460, 476
Factor[expression], 39–41, 103,

121, 136, 162, 207, 360–361
Factorial sequence, 202
Falling bodies, 447–448
Family of orthogonal trajectories,

551
Fibonacci numbers, 431
Fibonacci sequence, 311
Filling, 180
Finance, 311–315
FindRoot, 110–116, 193, 219, 248,

296, 449–450
First derivative test, 148–156
First Five Minutes with

Mathematica, 25
firstguess, 110
First-order differential equations

linear differential equations,
442–450

nonlinear differential equations,
450–453

numerical solutions, 453–457
separable differential equations,

435–442
First-order quasilinear partial

differential equation, 547–549
Fit, 283–284, 286–287
FitzHugh–Nagumo equation, 552
Fixed point, 315
Flatten, 126, 262–264, 266, 272,

279, 304, 425, 428, 496
Fobonacci number, 49
Folium of descartes, 375–380
Fourier series

defining, 287
kth partial sum, 288
kth term, 287
one-dimensional heat equation,

290–294
partial sums, 288–290
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wave equation on circular plate,
294–299

Fraction, 46
Frame, 73–74
Frenet formulas, 405
Frenet frame field, 404
FresnelC, 250, 387
FresnelS, 250, 387
FullSimplify, 208, 217
Fundamental matrix, 493
Fundamental set, 457, 473
Fundamental theorem of calculus,

174
Fundamental theorem of line

integrals, 384
Future value, 312
fvals, 118
f[x_], 47, 50–51, 147, 169

G
Gabriel’s horn, 200–201
Gaussian curvature, 413–414
Gauss–Jordan elimination, 342–349
General form

second-order linear differential

equation, 457
General solution, 473, 492
Generalized Mandelbrot set,

306–307
Globally asymptotically stable

solution, 509
Go, 25
GoldenRatio, 34
Graceful graph, 98
Gradient, 225, 380
GradientFieldPlot3D, 382–383
Gram–Schmidt process, 351–355
Graphics, 6, 54, 131, 278–279, 377
GraphicsArray, 293
GraphicsGrid, 70, 73, 81, 90, 293,

297, 411
Graphics Inspector, 54
GraphicsRow, 86, 88, 130, 139,

278, 280, 304, 334, 421
Graphing

cellular automaton, 95–100
functions of single variable, 52–65
parametric and polar plots, 65–70
parametric curves and surfaces

in space, 82–94
three-dimensional and contour

plots, 71–82
GraphPlot, 98–99
graphs, 81
GrayLevel, 57, 279, 416
Gray’s torus, 84–86
GrayTones, 73–74
Green’s theorem, 385

Grid, 137, 167, 335–337
Growth constant, 445

H
Harmonic motion, 461–463
Harmonic series, 207
Hearing beats and resonance,

468–469
Help, 24
Help Browser, 40
Herd immunity, 554
Hermite polynomial, 267–269
Hermitian adjoint matrix, 364
Homogeneous linear differential

equation, 442–443
Homogeneous linear systems

differential equations, 492–505
Homogeneous nonlinear differential

equation, 451
Homogeneous nth-order linear

differential equation, 472
Homotopy, 90
Hooke’s Law, 461
Hyperbola, 79, 81
Hyperboloid

one sheet, 87
two sheets, 87

I
Identity matrix, 321
IE, 34
ihseq, 79
Ikeda map, 304–305
ImageSize, 427
Implicit differentiation, 138–139
Implicit functions

tangent lines, 141–142
Import, 92, 419
Indeterminate coordinate, 280
Infinite series, 203
Infinity, 34, 117, 122
-Infinity, 117
Inflection points, 148
Information, 82
Input, 318
InputForm, 10, 38
Insert, 321
Inset, 422
Integrals

arc length, 186–190
area, 168–174, 180–186
definite integral, 174–180
iterated integrals, 238–246
solids of revolution, 190–201
vector calculus

line integrals, 384–387
surface integrals, 387–391

Integrate, 68, 165–167, 174–179,
181, 183–184, 186–188, 191,
194, 199, 201, 238–239, 242,
244, 267, 291, 375, 383, 385,
389–391, 437, 446, 451–452, 481

Integration by parts formula, 166
Integrating factor, 444
InterpolatingPolynomial, 286
Interval of convergence, 210
Inverse, 325–326, 338
Inverse functions, 58
Inverse Laplace transform, 481, 485
InverseLaplaceTransform, 481,

483, 485, 488, 490, 502–503
Irrotational vector field, 380
Iterated integrals, 238–246

J
Jacobian, 514, 520
Join, 328–329, 343
JordanDecomposition, 362–363
Jordan matrix, 361–362
Julia set, 279–282, 299–303, 316

K
Kernel

linear transformation, 355
Klein bottle

orientability, 399–404
Kolmogorov predator–prey

equations, 520

L
Lagrange multiplier, 235, 237
Lagrange’s equation, 250
Lagrange’s theorem, 236
Laplace transform, 481–491
LaplaceTransform, 481, 483,

487–488, 490, 501–502
Laplacian in polar coordinates, 294
Laplacian of scalar field, 380
leftbox, 168, 170
leftsum, 168–170, 172, 180, 248
Lemniscate of Bernoulli, 185–186
Length, 259, 262, 264, 300, 419,

425, 428
Limit, 46, 117, 119–123, 128–129,

201, 204–206, 208–210
Limit comparison test, 206
Limits

computation, 121–123
continuity, 124–128
functions of two variables,

222–224
graphs and tables in prediction,

117–121
one-sided limits, 123–124
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Line, 158, 277, 357
Linear differential equations, 442–450
Linear programming

dual problem, 368–371
stand form of problem, 366–368
transportation example, 371–374

Linear systems of equations

Gauss–Jordan elimination,
342–349

solutions, 337–342
Linear transformations, 355–358
Linearly independent differential

equations, 457, 473
LinearProgramming, 369–370
LinearSolve, 339–342
Line integrals, 384–387
List, 101, 141

curve fitting, 283–287
defining, 251–257
graphing, 277–282
manipulation, 269–277
miscellaneous operations, 283
nested list, see Matrix; Vector

plotting lists of points, 258–269
list, 118, 135, 254, 259–260, 269,

315, 322
ListContour, 415
ListContourPlot, 422–423, 427–430
ListDensityPlot, 429–430
ListPlot, 61–63, 125–126, 202, 258,

263–264, 266, 278, 280–281,
285–286, 300, 415

ListVectorFieldPlot3D, 333
Locally stable rest point, 514
Logarithmic integral, 261
Logistic equation, 438
Logistic equation with predation,

454–457
Log[x], 35–36
Lorenz equations, 530–532
L–R–C circuit, 486–487

M
Mandelbrot set, 299, 305–311
Manipulate, 6–7, 90–92, 132–134,

145, 172–173, 214, 216–217,
248, 251, 257, 335, 378–379,
441, 463, 467, 497–498,
505–506, 510, 513, 519, 524,
529–530, 550, 555

Map, 49, 81, 118, 126, 136–137,
165, 223–224, 248, 267,
270–272, 274–276, 278,
280–282, 304, 308–309, 393,
456, 496, 504, 526

Mathematica

information and help resources,
1–2, 17–27

launching, 3–4
package loading, 13–17
syntax rules, 13
user characteristics, 1
version differences, 2–3

MathSource, 13–14
MathWorld, 14, 18, 29, 94
Matrix

computations, 325–329
defining, 317–321
element extraction, 322–324
fundamental subspaces, 349–350
graphical representation, 415–430
Jordan matrix, 361–362

Matrix, 318, 321
MatrixForm, 319–320, 323–329, 335,

343–346, 365–366, 480, 521–522
MatrixPlot, 98, 415–417
MatrixPower, 327
Maximization/minimization problems,

156–164
Maximize, 152–156, 193, 247,

369–370
Mclaurin polynomial, 213, 215
Mclaurin series, 213–215
Mean curvature, 413
Mean-value theorem

derivatives, 146–147
Mesh, 76–77, 194
MeshFunctions, 65, 83, 196
middlebox, 168, 171, 173
middlesum, 168–170, 172–173, 180,

248
Minimal surface, 249–250
Minimize, 152–156, 193, 247,

367–369, 373
Miscellaneous, 15
Möbius strip

orientability, 396–399
Module, 132
Monotonic sequence, 201
More Information, 19
Multivariable calculus

iterated integrals, 238–246
limits of functions of two

variables, 222–224
partial and directional derivatives,

224–233

N
Names["form"], 21
NDSolve, 433, 440, 453–454, 511,

525, 530
Nest, 60, 276, 300–301
Nested list, see Matrix; Vector

Newton’s Second Law, 447–448
NIntegrate, 174, 179–180, 183, 188,

192, 194, 238–239, 378, 543

NMaximize, 193
NMinimize, 193
Nonhomogeneous linear systems

differential equations, 505–532
Nonlinear differential equations,

450–453
Nonlinear higher-order differential

equations, 492
Norm

integral, 174
Normal modes, 294
Normalize, 354–355
Norm[v], 330
NRoots, 110, 113, 183
NSolve, 110, 182
Nullity, 348–349
Nullspace, 347–350, 356
Numerator[fraction], 43, 121, 125
Numerical calculations, 31–34
N[%], 199
N[area], 184
N[expression], 109, 113, 159, 207
N[number], 33, 35–36, 538

O
Object, 17
On Line Encyclopedia of Integer

Sequences, 201
One-dimensional heat equation,

290–294
One-dimensional wave equation,

532–537
One-sided limits, 123–124
Opacity, 73–74, 86
Options, 17
Options[object], 17–18
Order preserving path, 391
Orientable surface, 391–404
Oriented surface, 388
Orthogonal curves, 145–146
Orthogonal lines, 551
Orthogonalize, 354
Orthonormal vectors, 351
OutputForm, 10
Outward flux

vector field, 388–389
Overdamped, 462
Overflow error, 280, 305–306

P
Packagename, 14
Packages, 13
Palettes, 11, 22, 44, 318
Panel, 137, 167
Parabola, 81
Parallel vectors, 331



Index 563

Parametric equations

arc length, 187
area, 183
tangent lines, 143–145

ParametricPlot, 20–21, 65–67,
69–70, 78, 116, 144–145, 161,
183, 188, 377, 494, 497, 509,
512–513, 516, 522

ParametricPlot3D, 82, 87–88, 90,
191, 196, 198–200, 234,
236–237, 241, 297, 512–513, 546

Part, 254, 322, 418–419
Partial derivative, 224–225
Partial differential equations

first-order quasilinear partial

differential equation, 547–549
one-dimensional wave equation,

532–537
two-dimensional wave equation,

537–547
Particular solution, 443, 492
Partition, 90, 130, 271–272,

275–276, 293, 429, 504
Pendulum equation with damping,

514
Permutations, 81
�, 35
Piecewise, 119
Play, 49
Plot, 5, 14, 21, 52–54, 57, 62, 64,

79, 103, 120, 149–150, 156, 180,
240, 261, 268, 274, 415,
449–450, 472, 477, 489, 512–513

Plot3D, 8, 65, 71, 77, 79, 222, 226,
229, 234, 243, 415, 549

PlotGradientField, 227, 229
PlotJoined, 278, 285
PlotLabel, 56, 69, 73
PlotPoints, 70, 73, 76–77, 88, 112,

200
PlotRange, 56–57, 62, 70, 83, 132,

149, 196, 226, 377, 394, 396
PlotStyle, 7, 14, 55, 57, 67, 69, 73,

86, 144, 195–196, 278, 285
PlotVectorField, 456
Plus, 315
Point, 158, 277, 279, 302
PointSize, 62, 280, 285
PolarPlot, 65–66, 69–70, 78, 116,

185, 189
Potential function, 380
Power series, 210–213
PowerExpand, 41–42, 115, 164,

187, 376
Predator–prey equations, 518–525
Prepend, 283
PrependTo, 283
Present value, 312–13

Prime, 253, 258
Prime number theorem, 261
Principal unit normal vector, 375
Product, 315
Projection

vectors, 334, 354–355

Q
QEDecomposition, 364–365
Quadric surface, 86–89
Quit, 11
Quit[ ], 11

R
RandomInteger, 255
RandomReal, 49, 118, 222–223, 255
Range, 252–253
Rank, 349
Ratio test, 205, 210
RealDigits, 315
RealOnly, 15–16, 28, 34, 63–64,

140, 151, 175–177, 248
Reduce, 213, 217, 522
RegionPlot, 198, 243
RegionPlot3D, 243
Relative maximum, 148, 230–232
Relative minimum, 148, 230–232
ReliefPlot, 93, 415, 427–430
Rendering, 131
ReplaceAll, 46, 106, 121, 149, 185,

376
Rest point, 514
Return, 5
RevolutionPlot3D, 194
RGBColor, 279, 416–417, 424
Right continuous, 124
rightbox, 168, 170
rightsum, 168–170, 172, 174, 180,

248
Roman surface, 90–92
Root test, 206
Rössler attractor, 554–555
Row space, 349
RowReduce, 329, 343, 346–350
RSolve, 314

S
Saddle point, 231–232
Save, 11
seashell, 434
Second derivative test, 148–156, 230
Second-order differential equations

constant coefficients, 458–464
theory, 457–458
undetermined coefficients,

464–470
variation of parameters, 470–472

Sec[x], 35

Self-orthogonal curves, 551
Separable differential equations,

435–442
Sequence, 201–202
Series, 215–217
Series

alternating series, 209–210
convergence tests, 205–207
harmonic series, 207
infinite series, 203
Mclaurin series, 213–215
power series, 210–213
Taylor series, 213–217
Taylor’s theorem, 217–220

Shading, 76–77
Short, 259, 264, 266, 296, 428
Show, 53–54, 57–58, 63, 70, 73, 86,

88, 92–94, 130, 185, 278–281,
293, 297, 334–335, 357–358, 527

Show Changes, 19
Show More, 420, 423
Sign[x], 64
Simplify, 32, 37–38, 40–42, 59, 128,

136, 146, 164, 213, 223, 229,
242, 375–376, 381, 385, 387,
471, 478, 480–481, 484–485,
488, 491, 508, 522, 534, 535

Sine integral function, 166
Sinh[x], 35
Sin[x], 35
SIR model

with vital dynamics, 553
without vital dynamics, 552–553

Slope field, 17
Smooth curve, 187–189
SolarColors, 425
Solids of revolution

surface area, 199–201
volume, 190–199

Solve, 100–103, 106, 108–109, 112,
138–139, 147, 149, 154, 157,
207, 237, 240, 338–340, 346–347

Solve, 437, 451, 453, 457, 459–460,
476–477, 487, 490, 515, 520,
522

SolveAlways, 476
SphericalPlot3D, 245–246
Stable fixed point, 315
Standard form

first-order linear differential

equation, 442
nth-order linear differential

equation, 472
second-order linear differential

equation, 457
StandardForm, 10–11
Standard unit vectors, 331
Startup Palette, 64
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Stayed-wire problem, 163–164
Steady-state temperature, 291
Stokes’ theorem, 389
Sum, 204–205, 207, 209–210
Surface area

iterated integrals, 239, 241–242
solids of revolution, 199–201

Surface integrals, 387–391
Surface orientability, 391–404
Syntax rules, 13
Systems of differential equations

homogeneous linear systems,
492–505

nonhomogeneous linear systems,
505–532

T
Table, 48–49, 52, 60–61, 90, 97,

118, 126, 130, 195–196, 202,
272–273, 214, 222–223,
251–253, 255, 257, 260, 262,
265, 267–268, 279, 292–293,
298, 301, 304, 308–310,
319–320, 323, 485, 496,
516–517, 526, 535, 539, 544–545

TableForm, 268–269, 271–274, 289,
292, 335

TableHeadings, 268–269, 273
Take, 259, 324, 351
Talley, 260
Tangent lines, 139–147
Tangent plane, 233–234
Tanh[x], 35
Tan[x], 35
Taylor polynomial, 213, 215
Taylor series, 213–217
Taylor’s theorem, 217–220
Text, 158, 163–164
Thickness, 86
Thread, 338–339, 348–349
Threadable functions, 136
time, 157

Together[expression], 40–41, 157,
353

Tooltip, 61, 161, 182, 211, 270
Tooth surface, 116
toplot, 61, 81, 144, 219, 300
Torsion, 405
Torus

curvature, 414–415
knot, 84–85, 408–409
orientability, 392–398
volume by iterated integral,

245–246
toshow, 293
TraditionalForm, 10, 38–39
Transpose, 323–324, 350, 365
trapezoid, 248
TreeForm, 39
TreePlot, 98–100
Trefoil knot, 411–414
TrigExpand, 37, 103, 115
TrigReduce, 37
TrigToExp, 38
Triple iterated integrals, 244–246
tubeplot, 409
Two-dimensional wave equation,

537–547

U
Umbilic torus, 82–83, 432
Underdamped, 462
Underflow error, 280
Undetermined coefficients

nth-order differential equations,
475–481

second-order differential

equations, 464–470
Union, 96, 526
Unit binormal vector field, 405
Unit circle, 66, 77–79

Unit normal field, 413
Unit normal vector field, 404–405
Unit tangent vector, 375
Unit tangent vector field, 404–407

Unitary matrix, 364
Unstable fixed point, 315
Unstable node, 525
Unstable rest point, 514
Unstable spiral, 525
u-substitution, 166–167

V
Van der Pol’s equation, 511,

525–530
Vector

calculus

line integrals, 384–387
nonorientability, 391–404
surface integrals, 387–391
tangents, normals, and

curvature in R3, 404–415
vector-valued functions,
374–384

computations

basic operations, 329–330
projection, 334–337
vectors in 3-space, 330–333

defining, 321–322
Vector triple product, 413
VectorAnalysis, 380, 382, 389
VectorFieldPlot, 381, 438, 494,

516–519
VectorFieldPlots, 15–17, 28, 227,

229–230, 381–383, 393
Verhuist equation, 438
$VersionNumber, 2
VertexLabeling, 100
ViewPoint, 76–77
Volume

iterated integrals, 239, 243–244
solids of revolution, 190–199

W
Wave equation on circular plate,

294–299
Wronskian, 457, 473, 480
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