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Mathematica By Example bridges the gap that exists between the very elementary
handbooks available on Mathematica and those reference books written for the
advanced Mathematica users. Mathematica By Example is an appropriate reference
for all users of Mathematica and, in particular, for beginning users like students,
instructors, engineers, business people, and other professionals first learning to
use Mathematica. Mathematica By Example introduces the very basic commands
and includes typical examples of applications of these commands. In addition,
the text also includes commands useful in areas such as calculus, linear algebra,
business mathematics, ordinary and partial differential equations, and graphics. In
all cases, however, examples follow the introduction of new commands. Readers
from the most elementary to advanced levels will find that the range of topics
covered addresses their needs.

Taking advantage of Version 5 of Mathematica, Mathematica By Example, Third
Edition, introduces the fundamental concepts of Mathematica to solve typical prob-
lems of interest to students, instructors, and scientists. Other features to help make
Mathematica By Example, Third Edition, as easy to use and as useful as possible in-
clude the following.

1. Version 5 Compatibility. All examples illustrated in Mathematica By
Example, Third Edition, were completed using Version 5 of Mathematica.
Although most computations can continue to be carried out with earlier
versions of Mathematica, like Versions 2, 3, and 4, we have taken advan-
tage of the new features in Version 5 as much as possible.

ix
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2. Applications. New applications, many of which are documented by
references, from a variety of fields, especially biology, physics, and
engineering, are included throughout the text.

3. Detailed Table of Contents. The table of contents includes all chapter,
section, and subsection headings. Along with the comprehensive index,
we hope that users will be able to locate information quickly and easily.

4. Additional Examples. We have considerably expanded the topics in Chap-
ters 1 through 6. The results should be more useful to instructors, students,
business people, engineers, and other professionals using Mathematica on
a variety of platforms. In addition, several sections have been added to
help make locating information easier for the user.

5. Comprehensive Index. In the index, mathematical examples and appli-
cations are listed by topic, or name, as well as commands along with fre-
quently used options: particular mathematical examples as well as
examples illustrating how to use frequently used commands are easy to
locate. In addition, commands in the index are cross-referenced with fre-
quently used options. Functions available in the various packages are
cross-referenced both by package and alphabetically.

6. Included CD. All Mathematica input that appears in Mathematica By
Example, Third Edition, is included on the CD packaged with the text.

We began Mathematica By Example in 1990 and the first edition was published in
1991. Back then, we were on top of the world using Macintosh Ilcx’s with 8 megs
of RAM and 40 meg hard drives. We tried to choose examples that we thought
would be relevant to beginning users — typically in the context of mathematics
encountered in the undergraduate curriculum. Those examples could also be car-
ried out by Mathematica in a timely manner on a computer as powerful as a
Macintosh Ilcx.

Now, we are on top of the world with Power Macintosh G4’s with 768 megs
of RAM and 50 gig hard drives, which will almost certainly be obsolete by the
time you are reading this. The examples presented in Mathematica By Example con-
tinue to be the ones that we think are most similar to the problems encountered by
beginning users and are presented in the context of someone familiar with math-
ematics typically encountered by undergraduates. However, for this third edition
of Mathematica By Example we have taken the opportunity to expand on several
of our favorite examples because the machines now have the speed and power to
explore them in greater detail.

Other improvements to the third edition include:

1. Throughout the text, we have attempted to eliminate redundant examples
and added several interesting ones. The following changes are especially
worth noting.
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(@) In Chapter 2, we have increased the number of parametric and polar
plots in two and three-dimensions. For a sample, see Examples 2.3.8,
2.3.9,23.10,2.3.11,2.3.17, and 2.3.18.

(b) In Chapter 3, Calculus, we have added examples dealing with para-
metric and polar coordinates to every section. Examples 3.2.9, 3.3.9,
and 3.3.10 are new examples worth noting.

(c) Chapter 4, Introduction to Lists and Tables, contains several new ex-
amples illustrating various techniques of how to quickly create plots
of bifurcation diagrams, Julia sets, and the Mandelbrot set. See Ex-
amples 4.1.7, 42.5,42.7,44.6,44.7, 448,449, 4410, 44.11, 44.12,
and 4.4.13.

(d) Several examples illustrating how to graphically determine if a sur-
face is nonorientable have been added to Chapter 5, Matrices and Vec-
tors: Topics from Linear Algebra and Vector Calculus. See Examples
5.5.8 and 5.5.9.

(e) Chapter 6, Applications Related to Ordinary and Partial Differential
Equations, has been completely reorganized. More basic-and more
difficult-examples have been added throughout.

2. We have included references that we find particularly interesting in the
Bibliography, even if they are not specific Mathematica-related texts.
A comprehensive list of Mathematica-related publications can be found
at the Wolfram website.

http://store.wolfram.com/catalog/books/

Finally, we must express our appreciation to those who assisted in this project.
We would like to express appreciation to our editors, Tom Singer, who deserves
special recognition for the thoughtful attention he gave to this third edition, and
Barbara Holland, and our production editor, Brandy Palacios, at Academic Press
for providing a pleasant environment in which to work. The following review-
ers should be acknowledged: William Emerson, Metropolitan State University;
Mariusz Jankowski, University of Southern Maine; Brain Higgins, University of
California, Davis; Alan Shuchat, Wellesley College; Rebecca Hill, Rochester Insti-
tute of Technology; Fred Szabo, Concordia University; Joaquin Carbonara, Buffalo
State University. We would also like to thank Keyword Publishing and Typeset-
ting Services for their work on this project. In addition, Wolfram Research, espe-
cially Misty Mosely, have been most helpful in providing us up-to-date informa-
tion about Mathematica. Finally, we thank those close to us, especially Imogene
Abell, Lori Braselton, Ada Braselton, and Mattie Braselton for enduring with us
the pressures of meeting a deadline and for graciously accepting our demanding

xi



Xii Preface

work schedules. We certainly could not have completed this task without their
care and understanding.

Martha Abell (E-Mail: somatla@gsvms?2.cc.gasou.edu)
James Braselton (E-Mail: jimbrasegsvms?2.cc.gasou.edu)

Statesboro, Georgia
June, 2003



Getting Started

.1 Introduction to Mathematica

Mathematica, first released in 1988 by Wolfram Research, Inc.,

http://www.wolfram.com/,

is a system for doing mathematics on a computer. Mathematica combines symbolic
manipulation, numerical mathematics, outstanding graphics, and a sophisticated
programming language. Because of its versatility, Mathematica has established it-
self as the computer algebra system of choice for many computer users. Among
the over 1,000,000 users of Mathematica, 28% are engineers, 21% are computer sci-
entists, 20% are physical scientists, 12% are mathematical scientists, and 12% are
business, social, and life scientists. Two-thirds of the users are in industry and gov-
ernment with a small (8%) but growing number of student users. However, due to
its special nature and sophistication, beginning users need to be aware of the spe-
cial syntax required to make Mathematica perform in the way intended. You will
find that calculations and sequences of calculations most frequently used by begin-
ning users are discussed in detail along with many typical examples. In addition,
the comprehensive index not only lists a variety of topics but also cross-references
commands with frequently used options. Mathematica By Example serves as a valu-
able tool and reference to the beginning user of Mathematica as well as to the more
sophisticated user, with specialized needs.
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For information, including purchasing information, about Mathematica contact:
Corporate Headquarters:
Wolfram Research, Inc.
100 Trade Center Drive
Champaign, IL 61820
USA
telephone: 217-398-0700
fax: 217-398-0747
email: info@wolfram.com
web: http://www.wolfram.com

Europe:

Wolfram Research Europe Ltd.

10 Blenheim Office Park

Lower Road, Long Hanborough
Oxfordshire OX8 S8LN

UNITED KINGDOM

telephone: +44-(0) 1993-883400

fax: +44-(0) 1993-883800

email: info-europe@wol fram. com

Asia:

Wolfram Research Asia Ltd.

Izumi Building 8F

3-2-15 Misaki-cho

Chiyoda-ku, Tokyo 101

JAPAN

telephone: +81-(0)3-5276-0506

fax: +81-(0)3-5276-0509

email: info-asia@wolfram.com

For information, including purchasing information, about The Mathematica Book
[22] contact:

Wolfram Media, Inc.

100 Trade Center Drive

Champaign, IL 61820,

USA

email: info@wolfram-media.com

web: http://www.wolfram-media.com
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A Note Regarding Different Versions of Mathematica

With the release of Version 5 of Mathematica, many new functions and features
have been added to Mathematica. We encourage users of earlier versions of
Mathematica to update to Version 5 as soon as they can. All examples in Mathematica
By Example, Third Edition, were completed with Version 5. In most cases, the same
results will be obtained if you are using Version 4.0 or later, although the appear-
ance of your results will almost certainly differ from that presented here. Occa-
sionally, however, particular features of Version 5 are used and in those cases,
of course, these features are not available in earlier versions. If you are using an
earlier or later version of Mathematica, your results may not appear in a form
identical to those found in this book: some commands found in Version 5 are not
available in earlier versions of Mathematica; in later versions some commands will
certainly be changed, new commands added, and obsolete commands removed.
For details regarding these changes, please see The Mathematica Book [22]. You can
determine the version of Mathematica you are using during a given Mathematica
session by entering either the command $Version or the command
$VersionNumber. In this text, we assume that Mathematica has been correctly
installed on the computer you are using. If you need to install Mathematica on
your computer, please refer to the documentation that came with the Mathematica
software package.

On-line help for upgrading older versions of Mathematica and installing new
versions of Mathematica is available at the Wolfram Research, Inc. website:

http://www.wolfram.com/.

I.1.1 Getting Started with Mathematica

We begin by introducing the essentials of Mathematica. The examples presented
are taken from algebra, trigonometry, and calculus topics that you are familiar
with to assist you in becoming acquainted with the Mathematica computer algebra
system.

We assume that Mathematica has been correctly installed on the computer you
are using. If you need to install Mathematica on your computer, please refer to the
documentation that came with the Mathematica software package.

Start Mathematica on your computer system. Using Windows or Macintosh
mouse or keyboard commands, activate the Mathematica program by selecting
the Mathematica icon or an existing Mathematica document (or notebook), and
then clicking or double-clicking on the icon.
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If you start Mathematica by selecting the Mathematica icon, a blank untitled
notebook is opened, as illustrated in the following screen shot.

Untitled-1

100% P[ED

When you start typing, the thin black horizontal line near the top of the window

is replaced by what you type.
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OS@=@! Untitled-1

¥hen you start typing,
the horizontal 1line is replaced by vhat you type

4 4
)]

If youtypea command that Hathematica understands,
and then press enter.
Hathematica will evaluate the command

Plot[Exp[-x~2]. {x. -4. 4}] 7]

-Graphics - k1

Once Mathematica has been started, computations can be carried out immedi-
ately. Mathematica commands are typed and the black horizontal line is replaced
by the command, which is then evaluated by pressing Enter. Note that pressing
Enter or Return evaluates commands and pressing Shift-Return yields a new line.
Output is displayed below input. We illustrate some of the typical steps involved
in working with Mathematica in the calculations that follow. In each case, we type
the command and press Enter. Mathematica evaluates the command, displays the
result, and inserts a new horizontal line after the result. For example, typing N[,
then pressing the 7 key on the Basic Input palette, followed by typing ,50] and
pressing the enter key

In[1] := N[nx, 50]

Out [1]= 3.141592653589793238462643383279502884197169399375106
2.09749446

returns a 50-digit approximation of 7. Note that both 7 and Pi represent the math-
ematical constant 7 so entering N [Pi, 50] returns the same result.

The next calculation can then be typed and entered in the same manner as the
first. For example, entering

With some operating
systems, Enter evaluates
commands and Return
yields a new line

The Basic Input palette:

o=o o=o
(ca) | "
e |n|m=|*
w =] ===
=|2]z]=z]e
- IAlviIUIN
alBlvrldle
Clinalelx|A
ulvlElx|e
glrt|é|e|x
glulT|ale
AlEIE|E| N
Iulaii
o




Notice that every
Mathematica command
begins with capital letters and
the argument is enclosed by

square brackets [...].

To type x® in Mathematica,

press the '—l on the

Basic Input palette, type x
in the base position, and then
click (or tab to) the exponent
position and type 3.
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[

i

Vv

Figure 1-1 A two-dimensional plot

Figure 1-2 A three-dimensional plot

In[2] := Plot[{Sin[x], 2Cos[2x]}, {x, 0, 37},
PlotStyle- > {GrayLevel[0], GrayLevel[0.5]}]

graphs the functions y = sinx and y = 2cos2x on the interval [0, 37] shown in
Figure 1-1. Similarly, entering

In[3] := Plot3D[Sin[x + Cos[y]], {x, 0, 4x}, {y, 0, 4x},
PlotPoints- > {30, 30}]

graphs the function z = sin(x + cosy) for 0 = x < 47 and 0 < y < 47 shown in
Figure 1-2.
Notice that all three of the following commands

In[4] := Solve[x’ -2x+1==0]

outa]= {(x~1), {x>Z (-1-V5)}, {x> 2 (-1435)}]
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In[5]:= Solve[x”"3 - 2xx + 1 == 0]

out [5] = 1 1
{{x -> 1}, {x -> - (-1 - sqgrt[5])}, {x -> - (-1 + Sgrt([5])}}
2 2

In[6]:= Solve[x®-2x+1==0]

out [6] = {{xel},{xe% (—1—\/?)},{}(%% (—1+\/§)}}

solve the equation x* — 2x + 1 = 0 for x.

In the first case, the input and output are in StandardForm, in the second case,
the input and output are in InputForm, and in the third case, the input and output
are in TraditionalForm. Move the cursor to the Mathematica menu,

8’ Mathematica File Edit Cell Format Input Kernel Find Window Help

select Cell, and then ConvertTo, as illustrated in the following screen shot.

Kernel

Format Input Find Window Help

Convert To
Display As 3

InputForm
v OutputForm

Default Input FormatType > StandardForm O8N

Default Output FormatType P TraditionalForm 3T

Default Inline FormatType >

1 PostScript

Cell Properties » Bitmap

Cell Grouping > PICT

L Bitmap PICT
Embedded PS PICT
QuickTime

+ Animate Selected Graphics  38Y
Play Sound
Rerender Graphics
Rerender and Save Graphics

Make Standard Size

Cell Size Statistics...

You can change how input and output appear by using ConvertTo or by chang-
ing the default settings. Moreover, you can determine the form of input/output
by looking at the cell bracket that contains the input/output. For example, even
though all three of the following commands look different, all three evaluate

2 .
fo X3 sinx dx.

Integrate[x” 3« Sin[x]. {x. 0. 2«P1}]

n

J: 2’ sin[x]dx
E4

f ¥ sin@) @x

et L4 LA
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A cell bracket like this 1 means the input is in InputForm; the output is in
OutputForm. A cell bracket like this j means the contents of the cell are in

StandardForm. A cell bracket like this g means the contents of the cell are
in TraditionalForm. Throughout Mathematica By Example, Third Edition, we dis-
play input and output using InputForm or StandardForm, unless otherwise stated.

To enter code in StandardForm, we often take advantage of the BasicTypesetting
palette, which is accessed by going to File under the Mathematica menu and then
selecting Palettes

Edit Cell Format Input Kernel Find Window Help
New %N

Open... ®0
Open Recent »
Open Special...

Import... |
Close ®W
Save xS
Save As... O®S

Save As Special... >

BTN OpenauthorTools
senerate Pal - AlgebraicManipulation
€ ate Nole BasicCalculations
= Basicinput
Pr!nlmq Settings >
Print... P " CompleteCharacters
3 " InternationalCharacters

NotebookLauncher
+  SlideShowMaker

followed by BasicTypesetting.

800
alBlxldlel|LIn]|E]|>
tlx|x | |ulv]E x|zl
elo|z|u|é|e|x|¥|uw|=
TlA|OIA|B|II|Z Y |E|E
alelalglollizv|ole
w|?|ele|d|e|n|k|Alx
f|H|L|T|R|C K R|Z|p
l“l.,l“"l.,lﬂlﬁ
o|o
U G CE glili'
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Use the buttons to create templates and enter special characters. Alternatively, you
can find a complete list of typesetting shortcuts in The Mathematica Book,
Appendix 12, Listing of Named Characters [22].

Mathematica sessions are terminated by entering Quit []1 or by selecting Quit
from the File menu, or by using a keyboard shortcut, like command-Q, as with
other applications. They can be saved by referring to Save from the File menu.

Mathematica allows you to save notebooks (as well as combinations of cells) in
a variety of formats, in addition to the standard Mathematica format.

Edit Cell Format Input Kernel Find Window Help

New %N I
Open... %0 i
Open Recent > *
Open Special...
Import...
Close ®'W
Save #®S
Save As... 4%S |
Version 2 Notebook
¢ Text
Cell Expression

Notebook Expression
Package Format

Palettes >

Generate Notebook from Palette
TeX
Printing Settings > HTML
Erint= %P | XML (XHTML+MathML)
! XML (NotebookML)
XML (NotebookML+MathML)

Remark. Input and text regions in notebooks can be edited. Editing input can create
anotebook in which the mathematical output does not make sense in the sequence
it appears. It is also possible to simply go into a notebook and alter input without
doing any recalculation. This also creates misleading notebooks. Hence, common
sense and caution should be used when editing the input regions of notebooks.
Recalculating all commands in the notebook will clarify any confusion.

Preview

In order for the Mathematica user to take full advantage of this powerful software,
an understanding of its syntax is imperative. The goal of Mathematica By Exam-
ple is to introduce the reader to the Mathematica commands and sequences of
commands most frequently used by beginning users. Although all of the rules
of Mathematica syntax are far too numerous to list here, knowledge of the fol-
lowing five rules equips the beginner with the necessary tools to start using the
Mathematica program with little trouble.
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Five Basic Rules of Mathematica Syntax
1. The arguments of all functions (both built-in ones and ones that you de-

fine)are given in brackets [...]. Parentheses (...) are used for group-
ing operations; vectors, matrices, and lists are given in braces { . . . }; and
double square brackets [[...]] are used for indexing lists and tables.

2. Every word of a built-in Mathematica function begins with a capital letter.

3. Multiplication is represented by = or a space between characters. Enter
2*x*y or 2xX vy to evaluate 2xy not 2xy.

4. Powers are denoted by ". Enter (8*x"3) "~ (1/3) to evaluate (8x
813(x*)1/3 = 2x instead of 8x"1/3, which returns 8x/3.

5. Mathematica follows the order of operations exactly. Thus, entering

(1+x) ~1/x returns 2 while (1+x) ~ (1/x) returns (1 +x)"*. Similarly,

X
entering x~3x returns x° - x = x* while entering x~ (3x) returns x**.

Ha

Remark. If you get no response or an incorrect response, you may have en-
tered or executed the command incorrectly. In some cases, the amount of
memory allocated to Mathematica can cause a crash. Like people,
Mathematica is not perfect and errors can occur.

1.2 Loading Packages

Although Mathematica contains many built-in functions, some other functions are
contained in packages that must be loaded separately. A tremendous number of
additional commands are available in various packages that are shipped with each
version of Mathematica. Experienced users can create their own packages; other
packages are available from user groups and MathSource, which electronically dis-
tributes Mathematica-related products. For information about MathSource, visit

http://library.wolfram.com/infocenter/MathSource/

or send the message “help” to mathsourceewri.com. If desired, you can pur-
chase MathSource on a CD directly from Wolfram Research, Inc. or you can access
MathSource from the Wolfram Research World Wide Web site

http://www.wri.comor http://www.wolfram.com.

Descriptions of the various packages shipped with Mathematica are found in the
Help Browser. From the Mathematica menu, select Help followed by Add-Ons...
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Help Browser
Find Selected Function... OXF
Master Index...

Built-in Functions...
Mathematica Book...

Getting Started/Demos...
Add-ons...

Tutorial...

Why the Beep?... C%H
Online Registration...

Startup Palette...

Rebuild Help Index

to see a list of the standard packages.

] 806 Help Browser y
5.0.1 {Go) ( Close ) ( Hide Categories )
S0

| Built-in Functions s The Mathematica Book
| Cetting Started/Demos Other Information Master Index
Wolfram Researc... ¥ g Introduction » @ The Standard Add...
Algebra Packages
Working with Ad__ #|} | Algebra »|LJ Calculus Packages
Calculus »  Discrete Mathema.
Standard Packages »  DiscreteMath »  Graphics and Geo..

MathLink »_ Geometry »._ Linear Algebra Pac...
J/Link » 4 Graphics » 4 Miscellaneous Pac... 4
XML Capabilities » v LinearAlgebra » ¥ Number Theory Pa... 1

m The Standard Add - on Packages

The Mathematica syster contains a large waraber of built - in functions. Most versions of Mamematica also
include a collection of standard add - on packages that define ruany additional functions in areas such as

algebra, caloulus, graphics, discrete and nmerical mathernatios, waraber theory, and statisties. This book
describes those functions.

In addition ¥ the standard add - on packages, there are an iramense number of specialized add - ons available
for Mathematica. Some of these add - ons are distnbuted by Wolfram Research; for a current listing, see our
web site at www wolfram corwproc i or contact Wolfrara Research. Many add - ons are also
available through the Matheratica Information Cender at library. wolfrar cor

Algebra Caleulus

DiscreteMath Geometry

Graphics LinearAlgebra e

Miscellaneous NunberTheory v
\ 100% ﬂ 8 Jais

Information regarding the packages in each category is obtained by selecting the
category from the Help Browser’s menu.

Packages are loaded by entering the command
<<directory‘'packagename’

where directory is the location of the package packagename. Entering the
command <<directory‘'Master' makes all the functions contained in all the
packages in directory available. In this case, each package need not be loaded in-
dividually. For example, to load the package Shapes contained in the Graphics
folder (or directory), we enter <<Graphics'Shapes".

In[7] := << Graphics‘Shapes"®

11
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Figure 1-3 A torus created with Torus

Figure 1-4 A Mobius strip and a sphere

After the Shapes package has been loaded, entering

In[8] := Show[Graphics3D[Torus[1l, 0.5, 30, 30]], Boxed » False]

generates the graph of a torus shown in Figure 1-3. Next, we generate a Mdbius
strip and a sphere and display the two side-by-side using GraphicsArray in
Figure 1-4.

In[9] :=mstrip = Graphics3D[MoebiusStrip[1l, 0.5, 40], Boxed » False];
sph = Graphics3D[Sphere[l, 25, 25], Boxed -» False];
Show[GraphicsArray[ {mstrip, sph}]]

The Shapes package contains definitions of familiar three-dimensional shapes in-

cluding the cone, cylinder, helix, and double helix. In addition, it allows us to per-

form transformations like rotations and translations on three-dimensional graphics
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A Word of Caution

When users take advantage of packages frequently, they often encounter error
messages. One error message that occurs frequently is when a command is en-
tered before the package is loaded. For example, the command GramSchmidt
[{vl,v2,...,vn}] returns an orthonormal set of vectors with the same span
as the vectors vy, vy, ..., v,. Here, we attempt to use the command GramSchmidt,
which is contained in the Orthogonalization package located in the LinearAlge-
bra folder before the package has been loaded. Mathematica does not yet know
the meaning of GramSchmidt so our input is returned.

In[10] := GramSchmidt[{{1,1, 0}, {0,2,1}, {1,0,3}}]
Out [10] = GramSchmidt[{{1,1,0}, {0,2,1},{1,0,3}}]

At this point, we load the Orthogonalization package, which contains the
GramSchmidt command, located in the LinearAlgebra folder. Several error mes-
sages result.

In[11] := << LinearAlgebra‘'Orthogonalization®
GramSchmidt : : shdw : Symbol GramSchmidt appears inmultiple contexts

{LinearAlgebra'Orthogonalization', Global"'};
definitions in context LinearAlgebra'0Orthogonalization®
may shadow or be shadowed by other definitions.

In fact, when we reenter the command, we obtain the same result as that obtained
previously.

In[12] := GramSchmidt[{{1,1,0}, {0,2,1}, {1,0,3}}]
Out [12]= GramSchmidt[{{1,1,0},{0,2,1},{1,0,3}}]

However, after using the command Remove, the command GramSchmidt works
as expected. Alternatively, we can quit Mathematica, restart, load the package, and
then execute the command.

In[13] := Remove[GramSchmidt]

In[14]:= GramSchmidt[{{1,1, 0}, {0,2,1}, {1,0,3}}]
11 1 1 1 1 1 2
= {{ﬁ, NoK o}, {_ﬁ, Nek @}f {%, N 31
Similarly, we can take advantage of other commands contained in the Orthogo-
nalization package like Normalize which normalizes a given vector.

Out [14]

In[15] := Normalize[{1l, 2, 3}]

1 2 3
Out [15] = {\/ﬁl ;/ ﬁ}

13
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1.3 Getting Help from Mathematica

Becoming competent with Mathematica can take a serious investment of time.
Hopefully, messages that result from syntax errors are viewed lightheartedly. Ide-
ally, instead of becoming frustrated, beginning Mathematica users will find it chal-
lenging and fun to locate the source of errors. Frequently, Mathematica’s error
messages indicate where the error(s) has (have) occurred. In this process, it is
natural that you will become more proficient with Mathematica. In addition to
Mathematica’s extensive help facilities, which are described next, a tremendous
amount of information is available for all Mathematica users at the Wolfram Re-
search website

http://www.wolfram.com/.

One way to obtain information about commands and functions, including user-
defined functions, is the command ?. ?object gives a basic description and syn-
tax information of the Mathematica object object. ??object yields detailed
information regarding syntax and options for the object object.

EXAMPLE 1.3.1: Use ? and ?? to obtain information about the com-
mand Plot.

SOLUTION: ?Plot uses basic information about the P1ot function

2Plot 3

Plot[f, {x, xmin, xmax}] generates a plot of f as a ;
function of x from xmin to xwax. Plot[{fl1, £Z, ... } '
{x. xmin, xmsx)}] plots several functions fi. [More.. |

while ? ?Plot includes basic information as well as a list of options and
their default values.
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22 Plot 11

Plot[f, {x. xmin, xmax}] generates a plot of f as a 3
function of x from xmin to xmax. Plot[{f1, £z, ... }.
{x, xmin, xmax}] plots several functions fi. Mare .

Attributes[Plot] = (HoldAll, Protected) 3

Options[Plot] = {AspectRatio— m

Axes —» Automatic, AxesLabel —» None. AxesOrigin— Automatic.
AxesStyle » Automstic, Background - Automatic,

Coloroutput » Automatic, Compiled - True.

DefaultColor » Automatic, DefaultFont:+ $DefaultFont,
DisplayFunction:s $DisplayFunction, Epilog - {},
ForwatType = $ForwatType. Frane — False, FraneLabel — None,
FrameStyle —» Automatic, FrameTicks —» Automatic,

GridLines — None, InageSize - Automatic, MaxBend - 10,
PlotDivision— 30., PlotLabel —+ None, PlotPoints —+ 25,
PlotRange » Automsatic, PlotRegion —» Automstic,

PlotStyle » Automatic, Prolog - {). Rotatelabel -+ True.
TextStyle s $TextStyle. Ticks » Automatic}

Options [object] returns a list of the available options associated with object
along with their current settings. This is quite useful when working with a
Mathematica command such as ParametricPlot which has many options.
Notice that the default value (the value automatically assumed by Mathematica)
for each option is given in the output.

EXAMPLE 1.3.2: Use Options to obtain a list of the options and their
current settings for the command ParametricPlot.

SOLUTION: The command Options [ParametricPlot] listsall the
options and their current settings for the command ParametricPlot.

Options[ParametricPlot]

1
GoldenRatio
AxesLabel - None, AxesOrigin— Automatic,

AxesStyle » Automatic, Background - Automatic,

ColorQutput — Automatic, Compiled - True,

DefaultColor — Automatic, DefanltFont .- $DefaultFont,
DisplayFunction:- $DisplayFunction, Epilog — (}.
FormatType .+ $FormatType, Frane - False, Framelabel — None,
FrameStyle — Automatic, FraneTicks — Automatic,

GridLines —» None, ImageSize —» Automatic, MaxBend —» 10
PlotDivision— 30., PlotLabel — None, PlotPoints = 25,
PlotRange —» Automatic, PlotRegion — Automatic,

PlotStyle —» Automatic, Prolog — {}. RotateLabel = True,

TextStyle = $TextStyle, Ticks - Automatic}

LA

{Aspat:tRatlu-a Axes— Automatic,

As indicated above, ??object or, equivalently, Information [object] yields
the information on the Mathematica object object returned by both ?object
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and Options [object] in addition to a list of attributes of object. Note that
object may be either a user-defined object or a built-in Mathematica object.

EXAMPLE 1.3.3: Use ?? to obtain information about the commands
Solve and Map. Use Information to obtain information about the
command PolynomialLCM.

SOLUTION: We use ?? to obtain information about the commands
Solve and Map including a list of options and their current settings.

22 Solve

Solve[egns, vars] attempts to solve an equation
or set of equations for the wariables wars. Solve|
eqns, vars, elims| sttempts to solve the equations
for wars, eliminating the variables elims. More...

Attributes|Solve] = (Protected}

Options[Solve] = {InverseFunctions —» Autonatic,
IlakeRules - False, lethod - 3, Ilode - Generic, Sort - True,
YerifySolutions - Automatic, WorkingPrecision— =)

292 Hap Ml

Map[f, expr] or £ /@ expr applies £ to each element on the
first level in expr. lap(f. expr. levelspec] applies
f to parts of expr specified by levelspec. More

Attributes(Map] = (Protected)

Options[Map] = {Hesds - False)

Similarly, we use Information to obtain information about the com-
mand PolynomialLCM including a list of options and their current
settings.

Information[PolynomialLCH]

]
PolynomialLCH [polyl, poly2, ] gives
the least common multiple of the polynonials
polyi. PolynomialLCl[polyl. poly2. ... .

Nodulus-»>p] evaluates the LCI modulo the prime p.

Attributes[PolynouiallCH] = (Listable. Protected)

Options [PolynomiallCH] =
{Extension-» None, lModulus - 0, Trig = False}

The command Names ["form"] lists all objects that match the pattern defined
in form. For example, Names ["Plot"] returns Plot, Names ["*Plot"] returns
all objects that end with the string P1ot, Names ["Plot*"] lists all objects that
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begin with the string P1lot, and Names ["*Plot*"] lists all objects that contain
the string Plot. Names ["form", SpellingCorrection->True] finds those
symbols that match the pattern defined in form after a spelling correction.

EXAMPLE 1.3.4: Create a list of all built-in functions beginning with
the string Plot.

SOLUTION: We use Names to find all objects that match the pattern
Plot.

In[16] := Names["Plot"]
Out [16]= {Plot}

Next, we use Names to create a list of all built-in functions beginning
with the string P1ot.

In[17] := Names["Plot % "]
Out [17]= {Plot, Plot3D, Plot3Matrix, PlotDivision, PlotJoined,
PlotLabel, PlotPoints, PlotRange, PlotRegion,

PlotStyle}
u

As indicated above, the ? function can be used in many ways. Entering ?letters*
gives all Mathematica objects that begin with the string letters; ?*letters*
gives all Mathematica objects that contain the string letters; and ?*letters
gives all Mathematica commands that end in the string letters.

EXAMPLE 1.3.5: What are the Mathematica functions that (a) end in
the string Cos; (b) contain the string Sin; and (c) begin with the string
Polynomial?

SOLUTION: Entering

?%Cos b

System®

ArcCos Cos

returns all functions ending with the string Cos, entering
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2 %5in® b
System®
ArcSin SingularityDepth
ArcSinh SingularValueDecomposition
FourierSinTransforn SingularValueList
InclwdeSingularTern SingularVelues

InverseFourierSinTransform Sinh
Sin SinhIntegral
SingleLetterTtalics SinIntegral

returns all functions containing the string Sin, and entering

?Polynomial® 3
System®
PolynomialForm Polynomialllod PolynomislReduce
PolynomialGCD FPolynomialQ PolynomialRemainder

BolymomisllCH EolynomialQuotient Eolynomials

returns all functions that begin with the string Polynomial.
|

Mathematica Help

Additional help features are accessed from the Mathematica menu under Help.
For basic information about Mathematica, go to Help and select Help Browser...

808 Help Browser

(Go) ( Close ) ( Hide Categories )

Add-ons The Mathematica Book
| Getting started/Demos Other Information Master index

Numerical Com... »
Algebraic Comp... ¥
Mathematical Fu... »
Lists and Matrices »
Graphics and So... »

Programming ¥ &
Input and Output_»|¥

(100 & Jalr
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If you are a beginning Mathematica user, you may choose to select Welcome Screen...

Welcome to

» Ten-minute Tutorial What's New in 5
Website Help Browser

 Display Window at Starlup ~_ Close Window

and then select Ten-Minute Tutorial

‘806 =)

e i i iy

Toke a ten-minute tutorial on

MATHEMATICA

"This tutorial is a bref shide-show introduction to Mubiemaltica. It gives you the basics you need to start
hamessing the power of the world's most sophisticated technical computing system

‘You can change the examples in any of the slides, and re-evaluate them in place. Normally changes
you make wall not be saved. Tb save them, explicitly use Save As... in the File menu.

‘The top of each slide has a toolbar with buttons to navigate between slides. After you have closed this
tutorial, you can abways open it again from the Help menu

» Begin Tutorial

100% * & LW

or Help Browser.

19
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‘80686 Help Browser
(&) | Using the Help Browser (Go ) ( Close ) ( Hide Categories )
Built-in Functions Add-ans The Mathematica Book
Other Information Master Index

Getting Started 13
Network SysAdm... »
Using the Help Bro...

Tour of Mathem... »/4
Formula Gallery ¥

m Using the Help Browser

Locking Things Up

« Type a word in the fext field to the right of the Go To button. For instance, if the Built-in Functions radio
‘buton is selected, type the name of a Mathematica object

# Click Go To to see a notebook about the itera in the text field. The notebook appears at the bottora of the

Thelp browser.

» Click the Back button fo see the last notebook that was displayed.

Browsing Different Documents

# Click one of the radio buttons near the top of the browser o show a new set of categories in the left col-

wrmn,

[ 100% ¥ €D

alnl

Jar

To obtain information about a particular Mathematica object or function, open the
Help Browser, type the name of the object, function, or topic and press the Go
button. Alternatively, you can type the name of a function that you wish to obtain
help about, select it, go to Help, and then select Find in Help... as we do here with

the DSolve function.

‘80686 Help Browser
Y fco F N £ Hi fas N
(+) |DSolve { Go ) { Close )} ( Hide Categories }
‘ Getting Started/Demos l Other Information Master Index
Numerical Com... »gn (Alphabetical Listi... Solve
Algebraic Comp... »| |- DSolve
Mathematical Fu... »{1] Basic Algebra »  Equal
Lists and Matrices »|  Formula Manipul... »  ReplaceAll (/.)
Graphics and So... »|  Equation Solving
. Calculus »  Eliminate -
Programming b 4 Polynomial Func... b SolveAlways o
Input and Output » v Reduce b i

DSolve

mDSolve[egn, y. x] solves a differential equation for the function y with independent variable x.

mwDSolvel(egny . egny . ... . {0y . ¥

}. x] solves a list of differential equations.

mDSolve[egn, ¥, (%1 . Xz, ... }] solves a partial differential equation,

mDSolve[egn, y[x] . x] gives solutions for y[ x] rather than for the function y itself.

mExample: DSolve[y'[x] == 2 a x. ¥[x]. x]—{{y[x] sax®+C[1]}}.

= Differential equations must be stated in terns of denvatives such as y' [ x], oblained with D, not total deriva-

tives obtained with Dt.

5.0 The list of equations given to Solve can includs alzebraic ongs that do not involve derivatives.

=50 DSolve generates constants of integration indexed by successive integers. The option GeneratedPa
rameters specifies the function to apply to each index. The default is GeneratedParaneters->C,
which yislds constants of infegration C[ 1], C[ 2], .. .

[ 100% ¥ €3

NEICL

a
v
S
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A typical help window not only contains a detailed description of the command
and its options but also several examples that illustrate the command as well as
hyperlinked cross-references to related commands and The Mathematica Book [22],
which can be accessed by clicking on the appropriate links.

You can also use the Help Browser to access the on-line version of The Mathematica
Book [22]. Here is a portion of Section 3.6.3, Operations on Power Series.

XN Help Browser
‘ 3.6.3 Go ) { Close ) ( Hide Categories
| I

Built-in Functions [ Add-ons [ The Mathematica ook |

Getting Started/Demos [ Other Information { Master index

)
<
|
|

A Practical Intro... »~ Algebraic Manip... »/~ Contents

Principles of Mat... »  Manipulating Eq... *

Advanced Mathe... ¥ m Calculus » mn Making Power Seri...
Series, Limits an... »|| | Advanced Topic:

Formula Gallery  »}}| Linear Algebra »{! | Operations on Pow...

Graphics Gallery » Ny Numerical Opera... » b Advanced Topic: C...

4 Numerical Opera...» & Converting Power .. &
a Ref...»|v alan... »|* Solving Equations I... ¥

m 3.6.3 Operations on Power Series m

Mathematica Allws you 10 perform many operations on power series. In all cases, Mathenatica gives results
only 10 & many terms as can be justified from the accuracy of your input

wHere is 2 power series accurate o fourth order in x

infi= Series[ Exp[x]. {x, 0. 4} | ]
ESE S S s

Outfi}s 14X+ —+ — 4+ — +0[x]
z "% Tz

= When you square he powsr series, you get another power seriss, also accurate 10 fourth onder

Rl X2 1
4x®  2x' s re
Oule 1.2:.2:’.—.7-0[:] =
[T100x | & yalnl

The Master Index contains hyperlinks to all portions of Mathematica help.

XN Help Browser
‘ (&) Differential equations Go ) { Close ) ( Hide Categories
| P S L S s

=/
|
|

Built-in Functions [ Add-ons The Mathematica Baok
Getting Started/Demos [ Other Information

A * g Differential equati... ~
] » & DifferentialD

c »|  \[DifferentialD] m
D »  Differential-algebr.

E ¥ Differentiation

F »|_ Diffraction theory

G b4 diffuse nebulae .
H ¥ ¥ Diffuse prior v
= Built-in Functions

RSolve

HRsSolve

m Standard Packages
Differential equations, nonlinear, Calculus® DSolveIntegrals
numerical solution of, NumericalltathButcher
partial first - onder, Calculus ' DSolveIntegrals

w Calculus WIZ
Differential equation 17. 1. 1
first-onder, 17 2.1
forced second-order. 17,4, 1 .
homogeneous, 17.3 1 v

[T100x | & yaTrl
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Basic Operations on
Numbers, Expressions,
and Functions

Chapter 2 introduces the essential commands of Mathematica. Basic operations on
numbers, expressions, and functions are introduced and discussed.

2.1 Numerical Calculations and Built-In
Functions

2.1.1 Numerical Calculations

The basic arithmetic operations (addition, subtraction, multiplication, division,
and exponentiation) are performed in the natural way with Mathematica. When-
ever possible, Mathematica gives an exact answer and reduces fractions.

1. “aplusb,” a + b, is entered as a+b;

“aminus b,” a — b, is entered as a-b;

3. “a times b,” ab, is entered as either a*b or a b (note the space between
the symbols a and b);

4. “q divided by b,” a/b, is entered as a/b. Executing the command a/b
results in a fraction reduced to lowest terms; and

5. “araised to the bth power,” ab, is entered as a”b.

N
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EXAMPLE 2.1.1: Calculate (a) 121 + 542; (b) 3231 — 9876; (c) (~23)(76);

(d) (22341)(832748)(387281); (e) 43%7; and (f) %

SOLUTION: These calculations are carried out in the following screen
shot. In (f), Mathematica simplifies the quotient because the numerator
and denominator have a common factor of 5. In each case, the input is
typed and then evaluated by pressing Enter.

O0————————— «thplmh————————— 0O

|

il

m Example 1
121 + b42
663
3231 -9876
-6645
-2376
-1748
22341 632746 367261
7205139570198108
467 /31

467
31

12316/ 35

2463
7

e — T T T TS L
L ]

Al g L g LA LA LA Ld Ld Ld LA Ld

-
ST

[100°%  Jiii] |

The term a¥™ = \/a_ = ({/E)n is entered as a” (n/m). For w/m = 1/2, the com-
mand Sgrt [a] can be used instead. Usually, the result is returned in unevaluated
form but N can be used to obtain numerical approximations to virtually any degree
of accuracy. With N [expr, n], Mathematica yields a numerical approximation of
expr to n digits of precision, if possible. At other times, Simplify can be used to
produce the expected results.

Remark. 1f the expression b in a” contains more than one symbol, be sure that the
exponent is included in parentheses. Entering a"n/m computes a"/m = La" while
entering a” (n/m) computes a”™.

EXAMPLE 2.1.2: Compute (a) V27 and (b) V8 = 83,
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SOLUTION: (a) Mathematica automatically simplifies V27 = 3+/3.

In[18] := Sqrt[27]
out[18]= 3 /3

We use N to obtain an approximation of v/27. N [number] and
number/ /N return
In[19] := N[Sqgrt[27]] numerical approximations of
number.

Out [19]= 5.19615
(b) Mathematica automatically simplifies 8%°.

In[20] := 87 (2/3)
Out [20] = 4

|
When computing odd roots of negative numbers, Mathematica’s results are sur-

prising to the novice. Namely, Mathematica returns a complex number. We will
see that this has important consequences when graphing certain functions.

27

1 27\
EXAMPLE 2.1.3: Calculate (a) 3 (—a ) .

)2 and (b) (—a

SOLUTION: (a) Because Mathematica follows the order of operations,
(-27/64) "2/3 first computes (-27/64)? and then divides the result

by 3.
In[21]:= (-27/64)"2/3
Oout [21]= 243
“ © 4096
(b) On the other hand, (-27/64) "~ (2/3) raises —27/64 to the 2/3 power.

Mathematica does not automatically simplify (- g)z/s.
In[22] := (-27/64)"(2/3)

9

Out [22]= — (-1)%/

ut [22] e (-1)
However, when we use N, Mathematica returns the numerical version
f th . . 1 £ 27\2/3
of the principal root o (_@) .
In([23]:= N[(-27/64)"(2/3)]
Out [23]= -0.28125+0.487139 i
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To obtain the result

2
(2 -2 () -2
64) |V 64| \ 4] 16
which would be expected by most algebra and calculus students, we

load the RealOnly package that is contained in the Miscellaneous
directory. Then,

In[24] := <<Miscellaneous'‘'RealOnly"

In[25] := (-27/64)"(2/3)
Out [25] = e

returns the result 9/16.
||

2.1.2 Built-In Constants

Mathematica has built-in definitions of many commonly used constants. In par-
ticular, e ~ 2.71828 is denoted by E, 7 ~ 3.14159 is denoted by Pi, and i = V-1is
denoted by I. Usually, Mathematica performs complex arithmetic automatically.

Other built-in constants include oo, denoted by Infinity, Euler’s constant, y ~
0.577216, denoted by EulerGamma, Catalan’s constant, approximately 0.915966,
denoted by Catalan, and the golden ratio, %(l + \/g) ~ 1.61803, denoted by
GoldenRatio.

EXAMPLE 2.1.4: Entering

In[26] := N[e, 50]
Out [26]= 2.718281828459045235360287471352662497757247093699959
7.496696760000000000000000000000000000000000000000 10°

returns a 50-digit approximation of e. Entering

In[27] := N[mx, 25]
Out [27]= 3.141592653589793238462643

returns a 25-digit approximation of 7. Entering

In([28] := (3+1i)/(4-1)

11 7 1
Out [28]= — +
17 17

performs the division (3 + i)/(4 — i) and writes the result in standard
form.
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2.1.3 Built-In Functions

Mathematica contains numerous mathematical functions.

Functions frequently encountered by beginning users include the exponential
function, Exp [x]; the natural logarithm, Log [x]; the absolute value function,
Abs [x]; the trigonometric functions Sin [x], Cos [x], Tan [x], Sec [x], Csc [x],
and Cot [x]; the inverse trigonometric functions ArcSin[x], ArcCos [x],
ArcTan [x], ArcSec [x], ArcCsc [x], and ArcCot [x]; the hyperbolic trigono-
metric functions Sinh[x], Cosh[x], and Tanh[x]; and their inverses
ArcSinh[x], ArcCosh[x], and ArcTanh [x]. Generally, Mathematica tries to
return an exact value unless otherwise specified with N.

Several examples of the natural logarithm and the exponential functions are
given next. Mathematica often recognizes the properties associated with these
functions and simplifies expressions accordingly.

EXAMPLE 2.1.5: Entering

In[29] := N[Exp[-5]]
Out [29]= 0.00673795

returns an approximation of e = 1/¢°. Entering

In[30] := Log[Exp[3]]
Out [30]= 3

computes In e* = 3. Entering

In[31] := Exp[Log[4]]
Out [31]= 4

computes e"* = 4. Entering

In[32] :=
Oout [32]

Abs|[-7]

s

computes | — 7| = 7. Entering

In[33]:= Abs[(3+21i)/(2-91i)]
Out [33] = il
85

computes |(3 + 2i)/(2 — 9i)|. Entering

In[34] := Sin[x/12]

—l+\5
2 V2

Out [34] =

27

N [number] or
number/ /N return
approximations of number.
Exp [x] computes e*. Enter
E to compute e ~ 2.718.

Log [x] computes Inx. Inx
and ¢ are inverse functions

¥ — x) and

(Ine* =xand e
Mathematica uses these

properties when simplifying
expressions involving these

functions.

Abs [x] returns the
absolute value of x, |x|.
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number/ /N return
approximations of number.

Chapter 2 Basic Operations on Numbers, Expressions, and Functions

computes the exact value of sin(7/12). Although Mathematica cannot
compute the exact value of tan 1000, entering

In([35] := N[Tan[1000]]

Out [35]= 1.47032
returns an approximation of tan 1000. Similarly, entering

In[36] := N[ArcSin[1/3]]
Out [36]= 0.339837

returns an approximation of sin"'(1/3) and entering

In[37] := ArcCos[2/3]//N
Out [37]= 0.841069

returns an approximation of cos™!(2/3).

Mathematica is able to apply many identities that relate the trigonometric and ex-
ponential functions using the functions TrigExpand, TrigFactor, TrigReduce,
TrigToExp, and ExpToTrig.

In[38] := ?TrigExpand

"TrigExpand [expr]expandsouttrigonometric
functionsinexpr."

In[39] := ?TrigFactor

"TrigFactor [expr] factorstrigonometricfunctions
inexpr."

In[40] := ?TrigReduce

"TrigReduce [expr]rewritesproductsandpowers
oftrigonometricfunctionsinexprinterms
oftrigonometricfunctionswithcombinedarguments."

In[41] := 2TrigToExp

"TrigToExp [expr]convertstrigonometricfunctions
inexprtoexponentials."

In[42] := ?ExpToTrig

"ExpToTrig[expr]convertsexponentialsinexpr
totrigonometricfunctions."
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EXAMPLE 2.1.6: Mathematica does not automatically apply the iden-
tity sin® x + cos?x = 1.

In[43] := Cos[x]"2 +Sin[x] "2
Out [43]= Cos[x]? +Sin[x]?
To apply the identity, we use Simplify. Generally,

Simplify [expression] attempts to simplify expression.

In[44] := Simplify[Cos[x] "2 + Sin[x] 2]
Out [44]= 1

Use TrigExpand to multiply expressions or to rewrite trigonometric functions.
In this case, entering

In[45] := TrigExpand[Cos[3x]]
Out [45]= Cos[x]® -3 Cos[x] Sin[x]?

writes cos3x in terms of trigonometric functions with argument x. We use the
TrigReduce function to convert products to sums.

In[46] := TrigReduce[Sin[3x] Cos[4x]]
1
Out [46]= — (-Sin[x] +8in[7 x])
We use TrigExpand to write

In[47] := TrigExpand[Cos[2x]]
Out [47]= Cos[x]?-8in[x]?

in terms of trigonometric functions with argument x. We use ExpToTrig to con-
vert exponential expressions to trigonometric expressions.

In[48] := ExpToTrig[l/2 (Exp[x] + Exp[-x])]
Out [48] = Cosh[x]

Similarly, we use TrigToExp to convert trigonometric expressions to exponen-
tial expressions.

In[49] := TrigToExp[Sin[x]]
1 . .

out [49]= = i “iox_glox

ut [49] > i (e e )

Usually, you can use Simplify to apply elementary identities.

In[50] := Simplify[Tan[x] "2 + 1]
Out [50] = Sec[x]?
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A Word of Caution

Remember that there are certain ambiguities in traditional mathematical notation.
For example, the expression sin® (7/6) is usually interpreted to mean “compute
sin (7/6) and square the result.” That is, sin® (1/6) = [sin (7/6)]*. The symbol sin is
not being squared; the number sin (7/6) is squared. With Mathematica, we must be
especially careful and follow the standard order of operations exactly, especially
when using InputForm. We see that entering

In[51] := Sin[xn/6]"2
1
Out [51] = "
computes sin® (7/6) = [sin (7/6)]> while

In[52] := Sin"2[xn/6]
out [52] = sin?l¢]
raises the symbol Sin to the power 2 [%] Mathematica interprets

In[53] := sin”2(xt/6)

s 2
7msin
out [53] =

to be the product of the symbols sin” and Z. However, using TraditionalForm we
are able to evaluate sin® (7/6) = [sin (7/6)]* with Mathematica using conventional
mathematical notation.

.- gin?(”
In[54] := Sin (6)
1
out [54]= =
4

Be aware, however, that traditional mathematical notation does contain certain
ambiguities and Mathematica may not return the result you expect if you enter in-
put using TraditionalForm unless you are especially careful to follow the standard
order of operations, as the following warning message indicates.

Warning: You are asking Mathematica to interpret
TraditionalForm as input. Only InputForm and
StandardForm provide complete and precise
specifications of Mathematica input.

Mathematica has rules for trying to convert
TraditionalForm input, but ambiguities may arise.

To see how Mathematica will convert your expression,

choose items from the Convert To submenu of the Cell
menu.

 Don't Show Again ) (Cancel) vaalum3
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2.2 Expressions and Functions:
Elementary Algebra

2.2.1 Basic Algebraic Operations on Expressions

Expressions involving unknowns are entered in the same way as numbers.
Mathematica performs standard algebraic operations on mathematical expressions.
For example, the commands

Factor [expression] factors expression;

Expand [expression] multiplies expression;

Together [expression] writes expression as a single fraction; and
Simplify [expression] performs basic algebraic manipulations on
expression and returns the simplest form it finds.

LN =

For basic information about any of these commands (or any other) enter ? command
as we do here for Factor.

?Factor b

Factor [poly] factors a polynomisl over the integers. Factor|
poly. Modulus-»p] factors a polynomial modulo a prime
p. Factor[poly. Extension-»{al. a2, ... }] factors a
polynomial allowing coefficients that are rational
combinations of the algebraic numbers ai. Moe

or access the Help Browser as we do here for Simplify.

8eee Help Browser

Simplify (Go ) [ Close ) ( Hide Categories )

‘Built-in Functions Add-ons The Mathematica Book
Getting Started/Demos Other Information Master Index
Numerical Com... »fm (Alphabetical Listi Expand
Algebraic Comp... ¥ Factor

Mathematical Fu... » Simplify
ReplaceAll (1.)

Basic Algebra
Lists and Matrices | Formula Manipul
Graphics and So... »|  Equation Solving

Calculus
Programming ¥ 4 Polynomial Func..
Input and Output_»|¥

simplify
= 51inplity{expr] performs a sequence of algebraic and other tansformations on expr, and retums the
sizyles! forrm it finds |

wSinplify[eyr. assum] doss simplification using assumptions

= Sinplify tries expanding, factoring and doing many ofher transformations on expressiors, keeping track
of the simplest form obtained.

= The following options can be given.
Assumptions $hssumptions default asswmptions 1o append to assun
ComplexityFunction  Automstic bow o assess the
complexity of each form generated
TimeConstraint 300 for how many seconds o try
0ing any particular mnsfonuaton
[C100% Y| & <l
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When entering expressions, be sure to include a space or * between variables to
denote multiplication.

EXAMPLE 2.2.1: (a) Factor the polynomial 12x?+27xy—84y%. (b) Expand
2

2
the expression (x + y)*(3x — y)>. (c) Write the sum 2 % as a single

fraction.

SOLUTION: The result obtained with Factor indicates that 12x* +
27xy—84y? = 3(4x—Ty)(x+4y). When typing the command, be sure to in-
clude a space, or *, between the x and y terms to denote multiplication.
xy represents an expression while x y or x*y denotes x multiplied
by y.

In[55] := Factor[le2 +27xy - 84y2]
Out [55]= 3 (4x-7Yy) (x+4vY)

We use Expand to compute the product (x +y)*(3x — y)* and Together
2

x : .
to express — — — as a single fraction.
22

In[56] := Expand[(x+y)2 (3x—y)3]
Out [56]= 27x° +27x*y-18x’y* -10x*y’ + 7xy* -y°

2 x?
In[57] := Together[—2 - ?]
x

4 - x*

Out [57] = 3
X

2
Factor [x"2-3] returns To factor an expression like x> -3 = x* - (\/5) = (x - \/5) (x + \/3), use Factor with

2 _ . .
w3 the Extension option.

In[58] := Factor[x"2 - 3, Extension -» {Sqrt[3]}]

Out [58] = —(\/g—x) (\E+x>

Similarly, use Factor with the Extension option to factor expressions like x> +
1=x*-2=x+dx-10.

In[59] := Factor[x"2 +1]
out [59]= 1 +x%?

In[60] := Factor[x"2 + 1, Extension - {I}]
Out [60]= (-1 +x) (1+X)
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Mathematica does not automatically simplify Va2 to the expression x

In[61] := Sqrt[x~2]
out [61]= Vx?

because without restrictions on x, Vx? = |x|. The command PowerExpand [expression]
simplifies expression assuming that all variables are positive.

In[62] := PowerExpand[Sqrt[x~2]]
Out [62]= x

Thus, entering

In[63] := Simplify[Sqrt[a®2b"4]]

Out [63]= Va?b*
returns Va?b* but entering

In[64] := PowerExpand[Sqrt[a"2b"4]]
out [64]= ab’

returns ab’.

In general, a space is not needed between a number and a symbol to denote mul-
tiplication when a symbol follows a number. That is, 3dog means 3 times variable
dog; dog3 is a variable with name dog3. Mathematica interprets 3 dog, dog*3,
and dog 3 as 3 times variable dog. However, when multiplying two variables,
either include a space or * between the variables.

1. cat dog means “variable cat times variable dog.”
2. cat*dog means “variable cat times variable dog.”
3. But, catdog is interpreted as a variable catdog.

The command Apart [expression] computes the partial fraction decomposi-
tion of expression; Cancel [expression] factors the numerator and denom-
inator of expression then reduces expression to lowest terms.

EXAMPLE 2.2.2: (a) Determine the partial fraction decomposition of
1 ¥ -1

m. (b) Slmphfy x2 “ox 1

o 1
G-3)x-1) 20-3) 26-1)
21 =D+ x+l
2-2x+1  (x-12 = x-1

SOLUTION: Apart is used to see that

Then, Cancel is used to find that
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In this calculation, we have assumed that x # 1, an assumption made
by Cancel but not by Simplify.

1

In[65]:= Apart[m]
Out [65] = - =

2 (-3+x%) 2 (-1+x)
In[66] := Cancel[ﬁ]

T x?-2x+1

1+x
Out [66] =

-1+x

In addition, Mathematica has several built-in functions for manipulating parts of
fractions.

1. Numerator [fraction] yields the numerator of fraction.

2. ExpandNumerator [fraction] expands the numerator of fraction.

3. Denominator [fraction] yields the denominator of fraction.

4. ExpandDenominator [fraction] expands the denominator of
fraction.

3 22_ -2

EXAMPLE 2.2.3: Given - —*~~
x3+x23—4x—24

X +2x"—-x-2

dd inator; (b) red _—
and denominator; (b) reduce R —)
CH2r—x=-2

B+ —dx -4

, (a) factor both the numerator
to lowest terms; and (c)

find the partial fraction decomposition of

2
SOLUTION: The numerator of ————— is extracted with
B +xr-4x-4 o
Numerator. We then use Factor together with %, which is used to
refer to the most recent output, to factor the result of executing the
Numerator command.

x3+2x2-x-2
In[67] := Numerator[ﬁ]
X + X° - 4xX -

Out[67]= -2 -x+2x° +%x°
In[68] := Factor[%]
out[68]= (-1+x) (1L+x) (2+x)
Similarly, we use Denominator to extract the denominator of the

fraction. Again, Factor together with % is used to factor the previous
result, which corresponds to the denominator of the fraction.
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. x> +2x%-x-2
In[69] := Denomlnator[Bz—H]
x3 +x% -4x -

Out [69]= -4 -4x+x>+x°

In[70] := Factor[%]

Out [70]= (-2+x) (1+X) (2+X%)
Cancel is used to reduce the fraction to lowest terms.

x3+2x% -x-2
In[7l] = Cancel[m]

-1+

Out [71]=
-2+ X

Finally, Apart is used to find its partial fraction decomposition.

3

x> +2x?-x-2
In[72] := Apart[m]

Out [72]= 1+

-2+x

You can also take advantage of the AlgebraicManipulation palette, which is
accessed by going to File under the Mathematica menu, followed by Palettes, and
then AlgebraicManipulation, to evaluate expressions.

mEdit Cell Format Input Kernel Find Window Help

New 8N
Open... ®O
Open Recent >
Open Special...
Import...
Close ®'W
Save ®S
Save As... O8RS
Save As Special... >
I Revert...
OpenAuthorTools
- -Generate Palette from Selection AlgebraicManipulation
N BasicCalculations
— - Basiclnput
Printing Settings » BasicTypesetting

CompleteCharacters
InternationalCharacters
NotebookLauncher
SlideShowMaker

Print... ®P

35
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Expand [m]
Factor[m]

Together [m]
Apart [m]

Cancel [m]

Simplifv[m]
FullSimplify[m]
TrigExpand [m]
TrigFactor[m]

TrigReduce [m]

ExpToTrig[m]

TrigToExp [m]

PowerExpand [m]

ConplexExpand [m]

2(x = 3)(x+ 1)

EXAMPLE 2.2.4: Simplify 3G+ )
X

+2(x = 3)(x + 3.

SOLUTION: First, we type the expression.

_ayd
w+z(x,3) (x +1)27®
3(x+1)43

Then, select the expression.

2(x-3)2 (x+1)

TG D +2(x-3) (z + 1)2? ]
(x + /

Move the cursor to the palette and click on Simplify. Mathematica
simplifies the expression.

o]
3 (1+ )13



2.2 Expressions and Functions: Elementary Algebra

2.2.2 Naming and Evaluating Expressions

In Mathematica, objects can be named. Naming objects is convenient: we can avoid
typing the same mathematical expression repeatedly (as we did in Example 2.2.3)
and named expressions can be referenced throughout a notebook or Mathematica
session. Every Mathematica object can be named —expressions, functions, graph-
ics, and so on can be named with Mathematica. Objects are named by using a
single equals sign (=).

Because every built-in Mathematica function begins with a capital letter, we
adopt the convention that every mathematical object we name in this text will be-
gin with a lowercase letter. Consequently, we will be certain to avoid any possible
ambiguity with any built-in Mathematica objects.

Expressions are easily evaluated using ReplaceAll, which is abbreviated with
/ . and obtained by typing a backslash (/) followed by a period (.), together with
Rule, which is abbreviated with -> and obtained by typing a forward slash (/)
followed by a greater than sign (>). For example, entering the command

x"2 /. x->3

returns the value of the expression X2 if x = 3. Note, however, this does not assign
the symbol x the value 3: entering x=3 assigns x the value 3.

3 2 2 _ 2
EXAMPLE 2.2.5: Evaluate -~ —* ~“ify=4,x=-3 and x = 2.
B+xt-dx-4

CH2r—x=2

SOLUTION: To avoid retyping Prl_dr_4a

, we define fraction

x3+2x2-x-2
x3+x%2-4x-4
2 -x+2x%+x3

In[73] := fraction =

Out[73]= ————F——
-4 -4x+x%+x3

/. is used to evaluate fraction if x = 4 and then if x = -3.

In[74] := fraction/.x- >4

3
out [74]= 2

In[75] := fraction/.x- >-3

4
Out [75] = T

37

Of course, you can simply
copy and paste this
expression if you neither
want to name it nor retype it.

If you include a semi-colon
(;) at the end of the
command, the resulting
output is suppressed.
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When we try to replace each x in fraction by 2, we see that the result
is undefined: division by 0 is always undefined.

In[76] := fraction/.x-» -2

Power :: infy : Infinite expression % encountered.

o :: indet :

Indeterminate expression 0 ComplexInfinity encountered.
Out [76]= Indeterminate

However, when we use Cancel to first simplify and then use
ReplaceAll to evaluate,

In[77] := fraction2 = Cancel[fraction]
-1+

OQut [77] =
-2+X

In[78] := fraction2/.x-» -2
3
Out [78]= Z

OA2%—x-2 _

we see that the result is 3/4. The result indicates that lim,, » 577757 =

3. We confirm this result with Limit.

In[79] := Limit[fraction, x-» -2]

3
Out [79] = 1

Generally, Limit[f[x],x->a] attempts to compute lim,,, f(x).
The Limit function is discussed in more detail in the next chapter.
|

Two Words of Caution

Be aware that Mathematica does not remember anything defined in a previous
Mathematica session. That is, if you define certain symbols during a Mathematica
session, quit the Mathematica session, and then continue later, the previous sym-
bols must be redefined to be used. When you assign a name to an object that is
similar to a previously defined or built-in function, Mathematica issues an error
message.

function=x"2 j

Possible spelling error: new symbol name "function® is

general:rspelll & j

similar to existing symbol "Function®.

xz ﬂ
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We have adopted the convention that every user-defined object begins with a low-
ercase letter so we know that we have not made an error and the message can
be ignored. Sometimes, however, the message can occur frequently and become
annoying. If desired, the message

General: :spelll:
can be suppressed by entering
Off [General: :spelll].

Generally, Of £ [s: : tag] switches off the message s : : tagso thatitis not printed.
On is used to switch on warning or error messages. Specific messages may be per-
manently turned off by inserting the desired Off commands in the init.m file,
which is contained in the Packages folder (or directory).

2.2.3 Defining and Evaluating Functions

Itis important to remember that functions, expressions, and graphics can be named
anything that is not the name of a built-in Mathematica function or command.
As previously indicated, every built-in Mathematica object begins with a capital
letter so every user-defined function, expression, or other object in this text will
be assigned a name using lowercase letters, exclusively. This way, the possibil-
ity of conflicting with a built-in Mathematica command or function is completely
eliminated. Because definitions of functions and names of objects are frequently
modified, we introduce the command Clear. Clear [expression] clears all
definitions of expression, if any. You can see if a particular symbol has a defini-
tion by entering ?symbol.

In Mathematica, an elementary function of a single variable, y = f(x) = expression
inx, is typically defined using the form

f[x ]=expression in xor f[x ]:=expression in x.

Notice that when you first define a function, you must always enclose the argu-
ment in square brackets ([. . .]) and place an underline (or blank) “_” after the
argument on the left-hand side of the equals sign in the definition of the function.

EXAMPLE 2.2.6: Entering

In[80]:= f[x ] =x/(x"2+1)

Out [80] = ——
fsoi 1+ x?

39
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defines and computes f(x) = x/ (x* + 1). Entering

In[81] := £[3]
Out [81] = 2
10

computes f(3) = 3/ (32 + 1) = 3/10. Entering

In[82] := f[a]

Out [82] =
1+a2

computes f(a) = a/ (a* + 1). Entering

In[83] := £[3 +h]

Out [83] _ 3+h
u =
1+ (3+h)?

computes f(3 +h) = (3 + h)/((3 + h)> + 1). Entering

In[84] := nl = Simplify[ (£[3 +h] - £[31) /h]

8+3h
Out [84]= -
10 (10 + 6 h +h?)

JB+h - fB)
h

computes and simplifies and names the result nl.

Entering
In[85] := n12/.h->0
Out [85]= -—
ut [85] 55

evaluates n1 if 4 = 0. Entering
In[86] := n2 = Together[ (f[a+h] - £[a]) /h]
1-a?-ah
(1+a2?) (L+a%?+2ah+h?)

Out [86] =

computes and simplifies and names the result n2.

) h
Entering
In[87] := n2/.h-0
out [87] 1o
u o %
(1+a2)?

evaluates n2 if 1 = 0.

Often, you will need to evaluate a function for the values in a list,
list ={aj, az as,...,a,}.
Once f(x) has been defined, Map [f, 1ist] returns the list

{f(a)), f(@), f(a3),.... f(an)}
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Also,

1. Table[f [n], {n,n1,n2}] returns the list

{f), flni+ 1), fm +2),..., f(mw)}

2. Table[(n,f[n]), {n,nl,n2}] returns the list of ordered pairs

{(ny, f (), (my + L, f(y + 1), (1 +2, f(n1 +2)),..., (n2, f (n2))}

EXAMPLE 2.2.7: Entering
In[88] := Clear[h]

hlt]= (L+t)"(1/t);

In[89] := h[1]
out [89] = 2

defines h(t) = (1 + t)* and then computes h(1) = 2. Because division
by 0 is always undefined, #(0) is undefined.

In[90] := h[O0]
Power :: infy : Infinite expression % encountered.
o :: indet : Indeterminate expression 1°o"PlexInfinity encountered.

Out [90] = Indeterminate

However, h(z) is defined for all 7 > 0. In the following, we use Random
together with Table to generate 6 random numbers “close” to 0 and
name the resulting list t1. Because we are using Random, your results
will almost certainly differ from those here.

In[91] := t1 = Table[Random[Real, {0, 10" (-n)}]1, {n, 0, 5}]
Out [91]= {0.786833,0.0937732, 0.00653261,
0.000949186, 1.86913 x 1076, 2.32266 % 10’7}

We then use Map to compute A(t) for each of the values in the list t 1.
In[92] := Map[h, t1]

out [92]= {2.09112, 2.60089,2.70946, 2.71699, 2.71828,
2.71828}

In each of these cases, do not forget to include the blank (or underline) (_) on the
left-hand side of the equals sign in the definition of each function. Remember to
always include arguments of functions in square brackets.

4]

The Table function will be
discussed in more detail as
needed.

Random[Real, {a,b}]
returns a random real
number between a and b.
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Including a semi-colon at the
end of a command
suppresses the resulting
output.
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EXAMPLE 2.2.8: Entering

In[93] := Clear[£f]

£[0] =1;

£[1] = 1;

f[n.] :=£f[n-1] + £[n - 2]

defines the recursively-defined function defined by f(0) = 1, f(1) = 1,
and f(n) = f(n—1)+ f(n—2). For example, f2) = f(D+ f(0)=1+1=2;
f(3) = f(2) + f(1) =2+ 1 = 3. We use Table to create a list of ordered
pairs (n, f(n)) forn =0, 1,..., 10.

In[94] := Table[{n, £[n]}, {n, 0, 10}]

Out [94] = {{O/ 1}/ {1, 1}/ {2, 2}/ {3, 3}/ {4, 5}/
{5,8},{6,13}, {7,211}, {8,34}, {9, 55}, {10, 89}}

In the preceding examples, the functions were defined using each of the forms
flx l:=...and £[x_]=.... As a practical matter, when defining “routine”
functions with domains consisting of sets of real numbers and ranges consisting
of sets of real numbers, either form can be used. Defining a function using the
form £ [x_]=. .. instructs Mathematica to define £ and then compute and return
f [x] (immediate assignment); defining a function using the form £ [x_]:=...
instructs Mathematica to define £. In this case, £ [x] is not computed and, thus,
Mathematica returns no output (delayed assignment). The form £[x ]:=...
should be used when Mathematica cannot evaluate £ [x] unless x is a particular
value, as with recursively-defined functions or piecewise-defined functions which
we will discuss shortly.

Generally, if attempting to define a function using the form £ [x ]=... pro-
duces one or more error messages, use the form £ [x_] :=. .. instead.

To define piecewise-defined functions, we use Condition (/ ;).

EXAMPLE 2.2.9: Entering
In[95] := Clear[£f]

f[t.] :=Sin[1/t]/;t >0

1
defines f(¢) = sin " for¢ > 0. Entering
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In[96]:= £[1/(107)]
out [96]= 0

is evaluated because 1/(10 7) > 0. However, both of the following
commands are returned unevaluated. In the first case, —1 is not greater
than 0. In the second case, Mathematica does not know the value of a
so it cannot determine if it is or is not greater than 0.

In[97] := £[-1]
Out [97]= £[-1]

In[98] := f[a]
Out [98]= f[a]

Entering
In[99] := £[t.] :=-t/;t<0

defines f(¢t) = —t for t < 0. Now, the domain of f(¢) is all real numbers.
That is, we have defined the piecewise-defined function

jsinl, t>0
f@®) = t

l—n t=<0
We can now evaluate f(z) for any real number .

In[100]:= £[2/(57m)]1]
out[100]= 1

In[101]:= £[0]
Out[101]= 0

In[102] := £[-10]
Out [102]= 10

However, f(a) still returns unevaluated because Mathematica does
notknow ifa <Qorifa > 0.

In[103]:= f[a]
Out [103]= f[a]

Recursively-defined functions are handled in the same way. The following

example shows how to define a periodic function.

43
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EXAMPLE 2.2.10: Entering
In[104]:= Clear[g]
glx]:=x/;0<x<1
glx]:=1/;1sx<2
glx]:=3-x/;2<x<3
glx] :=g[x-31/;x23

defines the recursively-defined function g(x). For 0 < x < 3, g(x) is
defined by
Ix, O<x<l1
gx) =41, l=x<2

3—-x, 2=<x<3.
For x = 3, g(x) = g(x — 3). Entering

In[105]:= g[7]
Out [105]= 1

computes g(7) = g(4) = g(1) = 1. We use Table to create a list of ordered
pairs (x, g(x)) for 25 equally spaced values of x between 0 and 6.

In[106] := Table[{x, g[x]}, {x, 0,6, 6/24}]

out [106]= {{0, 0}, {2, %}, 2,2},

We will discuss additional ways to define, manipulate, and evaluate functions as
needed. However, Mathematica’s extensive programming language allows a great
deal of flexibility in defining functions, many of which are beyond the scope of
this text. These powerful techniques are discussed in detail in texts like Gaylord,
Kamin, and Wellin’s Introduction to Programming with Mathematica [9], Gray’s Mas-
tering Mathematica: Programming Methods and Applications [12], and Maeder’s The
Mathematica Programmer 1I and Programming in Mathematica [15, 16].
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2.3 Graphing Functions, Expressions, and
Equations

One of the best features of Mathematica is its graphics capabilities. In this section,
we discuss methods of graphing functions, expressions, and equations and several
of the options available to help graph functions.

2.3.1 Functions of a Single Variable
The command
Plot [f[x],{x,a,b}]

graphs the function y = f(x) on the interval [a, b]. Mathematica returns information
about the basic syntax of the P1ot command with ?P1ot or use the Help Browser
to obtain detailed information regarding Plot.

‘866 Help Browser

Plot f{:u\ (" Close

Bullt-in Functions Add-ons
Cetting Started/Demos Other Information

\4 ( Hide Categories \

The Mathematica Book ‘

Master Index 1

Numerical Com... »gm (Alphabetical Listi... Plot
Algebraic Comp... » m ListPlot
Mathematical Fu... »|J] 2D Plots N ParametricPlot
Lists and Matrices »| 3D Plots 3
Graphics and So... »  Contour Plots r

Density Plots >
Programming » 4 Sound Generation » 4
Input and Output » ¥ Combinations L

Plot

wPlot[r. (x. xnin. xnax}] generates a plot of fas a function of x frox xoin to oRrax.
wPlot[{f} . fz. ... ). (x. xmin, xmax}] plots several functions 1 .

wP1lot evaluates its argnments ina non - standard way (ses Section & 4.2). You should nse Evaluste o
evaluate the function to be plotied if this can safely be done before specific nurenical values are supplied.

®wPlot has the same options as Graphics, with the following additions:

Compiled True whether to corpile the function to plot
HMaxBend 10. roaxiraua bend between segraents
PlotDivision 20. Az subdivision factor in sawpling
PlotPoints 25 initial ruraber of saraple points
PlotStyle Automatic graphics directives to r
specify the style for each curve v
100% & pecty e 2y T4l

Remember that every Mathematica object can be assigned a name, including graph-
ics. Show [pl,p2, ..., pn] displays the graphics p1, p2, ..., pn together.
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Figure2-1 y=sinxfor -n<x<2n

EXAMPLE 2.3.1: Graphy = sinx for -7 < x < 2.

SOLUTION: Entering
In[107] := pl =Plot[Sin[x], {x, -7, 271}]

graphs y = sinx for -7 < x < 27 and names the result p1. The plot is
shown in Figure 2-1.
|

EXAMPLE 2.3.2: Graph s(7) for 0 <7 < 5 wheres(r) = 1for0 <t < 1
ands@®)=1+s¢—-1)forr=>1.

SOLUTION: After defining s(¢),
In[108]:= s[t.] :=1/; 0 st <1
s[t.] :=1+s[t-1]/;t21
we use Plot to graph s(r) for 0 <t < 5 in Figure 2-2.
In[109] := Plot[s[t], {t, 0, 5}, AspectRatio - Automatic]

Of course, Figure 2-2 is not completely precise: vertical lines are never
the graphs of functions. In this case, discontinuities occur ats = 1, 2, 3, 4,
and 5. If we were to redraw the figure by hand, we would erase the
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1 2 3 4 5

Figure2-2 s@t)=1+s(t-1),0=<t=<5

vertical line segments, and then for emphasis place open dots at (1, 1),
(2,2), (3,3), (4,4), and (5, 5) and then closed dots at (1, 2), (2,3), (3,4),
4,5), and (5, 6).

|

Entering Options [Plot] lists all Plot options and their default values. The
most frequently used options include PlotStyle, DisplayFunction,
AspectRatio, PlotRange, PlotLabel, and AxesLabel.

1. PlotStyle controls the color and thickness of a plot. PlotStyle->
GrayLevel [w], where 0 < w =< 1 instructs Mathematica to generate
the plot in GrayLevel [w]. GrayLevel [0] corresponds to black and
GrayLevel [1] corresponds to white. Color plots can be generated using
RGBColor. RGBColor [1,0, 0] corresponds to red, RGBColor [0, 1, 0]
corresponds to green, and RGBColor[0,0,1] corresponds to blue.
PlotStyle-s>Dashing[{al,a2,...,an}] indicates that successive
segments be dashed with repeating lengths of a;, a3, ..., a,. The thick-
ness of the plot is controlled with PlotStyle->Thickness [w], where
w is the fraction of the total width of the graphic. For a single plot, the
PlotStyle options are combined with PlotStyle->{{optionl,
option2, ... , optionn}}.

2. A plot is not displayed when the option DisplayFunction->
Identity is included. Including the option DisplayFunction->$
DisplayFunction in Show or Plot commands instructs Mathematica
to display graphics.
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Be sure you have completed
the previous example
immediately before entering
the following commands.
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. The ratio of height to width of a plot is controlled by AspectRatio.

The default is 1/GoldenRatio. Generally, a plot is drawn to scale when
the option AspectRatio->Automatic is included in the Plot or Show
command.

. PlotRange controls the horizontal and vertical axes. PLotRange->{c,d}

specifies that the vertical axis displayed corresponds to the interval ¢ < y <
d while PlotRange->{{a,b}, {c,d}} specifes that the horizontal axis
displayed corresponds to the interval a < x < b and that the vertical axis
displayed corresponds to the interval c <y < d.

. PlotLabel->"titleofplot™" labels the plot titleofplot.
. AxesLabel->{"xaxislabel", "yaxislabel"} labels the x-axis with

xaxislabel and the y-axis with yaxislabel.

EXAMPLE 2.3.3: Graph y = sinx, y = cosx, and y = tanx together with
their inverse functions.

SOLUTION: In p2 and p3, we use Plot to graphy = sin"' xand y = x,
respectively. Neither plot is displayed because we include the option
Display Function->Identity. pl, p2, and p3 are displayed to-
gether with Show in Figure 2-3. The plot is shown to scale; the graph of
y = sinx is in black, y = sin™

! xis in gray, and y = x is dashed.

3 v
2
1

A ) -1 1 2 3

-3

Figure 2-3 y=sinx,y =sin"'x,and y = x
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1

Figure2-4 y=cosx,y=cos™'x,andy =x

In[110] := p2 = Plot[ArcSin[x], {x, -1, 1},
PlotStyle -» GrayLevel[0.3],
DisplayFunction -» Identity]:;

p3 = Plot[x, {x, -7, 27},
PlotStyle » Dashing[{0.01}],
DisplayFunction -» Identity]:;

p4 = Show[pl, p2, p3, PlotRange -» {{-mx, n}, {-m, 7}},
AspectRatio » Automatic]

The command Plot [{f1[x],f2([x],...,fn[x]},{x,a,b}] plots
fikx), o), ..., fulx) together for a < x < b. Simple PlotStyle options
are incorporated with PlotStyle->{optionl,option2, ...,
optionn} where optioni corresponds to the plot of f;(x). Multiple
options are incorporated using PlotStyle->{{optionsl},
{options2}, ..., {optionsn}} where optionsi are the options
corresponding to the plot of f;(x).

In the following, we use Plot to graph y = cosx, y = cos™ x, and
y = x together. Mathematica generates several error messages because
the interval [-7, 7] contains numbers not in the domain of y = cos™! x.
Nevertheless, Mathematica displays the plot correctly in Figure 4-36.

1
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s -3}

1

Figure2-5 y=tanx,y=tan"'x,andy=x

The plot is shown to scale; the graph of y = cosx is in black, y = cos™ x

is in gray, and y = x is dashed.

In[111] := r4 =Plot[{Cos[x], ArcCos[x], x}, {x, -7, 7},
PlotStyle -» {GrayLevel[0], GrayLevel[0.3],
Dashing[{0.01}]1},

PlotRange - {-7, 7}, AspectRatio -» Automatic]

Plot :: plnr : arccos[x] is not a machine - size real number at x =
-3.14159.

Plot :: plnr : arccos[x] is not a machine - size real number at x =
-2.8867.

Plot :: plnr : arccos[x] is not a machine - size real number at x =
-2.60872.

General :: stop : Further output of Plot :: plnr will be suppressed

during this calculation.

We use the same idea to graph y = tanx, y = tan"'x, and y = x in
Figure 2-5.

In[112] := g4 = Plot[{Tan[x], ArcTan[x], x}, {x, -7, 7},
PlotStyle -» {GrayLevel[0], GrayLevel[0.3],
Dashing[{0.01}]},

PlotRange - {-7, 7}, AspectRatio -» Automatic]
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3 3
2 2
Ny -2 -1 1 2 3 —3/—2’—1 1 \2\3 -3 -2 -1 1|2
-1 — 1 I — 1
5 5 5
-3 -3 -3

Figure 2-6 The elementary trigonometric functions and their inverses

Use Show together with GraphicsArray to display graphics in rect-
angular arrays. Entering

In[113] := Show[GraphicsArray[{p4,r4,q4}]]
shows the three plots p4, r4, and g4 in a row as shown in Figure 2-6.

The previous example illustrates the graphical relationship between a function
and its inverse.

EXAMPLE 2.3.4 (Inverse functions): f(x) and g(x) are inverse func-
tions if

f(g() = g(f(x) = x.
If f(x) and g(x) are inverse functions, their graphs are symmetric about
the line y = x. The command

Composition(fl,£f2,£3,...,fn,x]

computes the composition

(fiofao--of) @) = fi (f2(-- (ful0)).

For two functions f(x) and g(x), it is usually easiest to compute the com-
position f(g(x)) with £ [g[x]] or £ [x]//g.
Show that

-1-2x dx -1
d =
-4 +x an 800 X

fx) =

are inverse functions.
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f(x) and g(x) are not
returned because a
semi-colon is included at

the end of each command.
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SOLUTION: After defining f(x) and g(x),

-1-2x
In[114]:= £[x.] = H
-4 +x
4x-1
glx] = i
X+ 2

we compute and simplify the compositions f(g(x)) and g(f(x)). Because
both results are x, f(x) and g(x) are inverse functions.

In[115]:= f[g[x]]
1 _ 2(-14x)
Out [115] = ﬁ

2+x
In[116] := Simplify[£f[g[x]]]
Out [116]= x

In[117] := Simplify[g[f[x]]]

Out[117]= x

To see that the graphs of f(x) and g(x) are symmetric about the line y = x,
we use Plot to graph f(x), g(x), and y = x together in Figure 2-7.

In[118]:= Plot[{£f[x],gl[x], £[g[x]]}, {x, -10,10},
PlotStyle -» {GrayLevel[0], GrayLevel[0.3],
Dashing[{0.01}]}, PlotRange » {-10, 10},
AspectRatio -» Automatic]

In the plot, observe that the graphs of f(x) and g(x) are symmetric about
the line y = x. The plot also illustrates that the domain and range of
a function and its inverse are interchanged: f(x) has domain (—co, 4) U
(4, ) and range (—o0, —2) U (=2, o0); g(x) has domain (—co, =2) U (-2, c0)
and range (—oo, 4) U (4, 0).

H

For repeated compositions of a function with itself, Nest [£, x, n] computes the
composition

(fefefeo-o N =M =[x

n times n times

EXAMPLE 2.3.5: Graph f(x), 1), f2°), ), f*x), and () if
f(x) =sinx for 0 < x < 2.
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Figure 2-7  f(x) in black, g(x) in gray, and y = x dashed

SOLUTION: After defining f(x) = sinx,

In[119] := £[x.] = Sin[x]
Out [119]= Sin[x]

we graph f(x) in p1 with Plot

In[120] := pl =Plot[£f[x], {x, 0, 27},
DisplayFunction -» Identity];

and then illustrate the use of Nest by computing f°(x).

In[121] := Nest[£f, x, 5]
Out [121]= Sin[Sin[Sin[Sin[Sin[x]]]]]

Next, we use Table together with Nest to create the list of functions

{0, 2@, £, £, ).

Because the resulting output is rather long, we include a semi-colon at
the end of the Table command to suppress the resulting output.

In[122] := toplot = Table[Nest[£f, x,n], {n, 10, 50, 10}];

In grays, we compute a list of GrayLevel [i] for five equally spaced
values of i between 0.2 and 0.8. We then graph the functions in toplot

53
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-1t

Figure 2-8  f(x) in black; the graphs of f1°(x), f*(x), £ (x), f*(x), and f>(x) are successively
lighter — the graph of f3(x) is the lightest

on the interval [0, 27] with P1ot. The graphs are shaded according to
grays and named p2. Evaluate [toplot] causes toplot tobe eval-
uated before the P1ot command. It is important: if you do not evaluate
toplot first with Evaluate, Mathematica attempts to plot toplot.
Since toplot is not a function of a single variable, Mathematica gen-
erates error messages and an empty plot. When Mathematica evaluates
toplot first, Mathematica understands that toplot is a list of func-
tions and graphs each as expected.
Finally, we use Show together with the option

DisplayFunction->$DisplayFunction
to display p1 and p2 together in Figure 2-8.
In[123] := grays = Table[GrayLevel[i], {i,0.2,0.8,0.6/4}];
p2 = Plot[Evaluate[toplot], {x, 0, 27},
PlotStyle -» grays,
DisplayFunction -» Identity];

Show[pl, p2, DisplayFunction -» $DisplayFunction]

In the plot, we see that repeatedly composing sine with itself has a flat-
tening effect on y = sinx.
|

The command

ListPlot [{{x1,v1},{x2,v2},...,{xn,yn}}]
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plots the list of points {(xi, y1), (x2, ¥2), ..., (Xs, y)}. The size of the points in the
resulting plot is controlled with the option PlotStyle->PointSize [w], where
w is the fraction of the total width of the graphic. For two-dimensional graphics,
the default value is 0.008.

Remark. The command
ListPlot [{y1l,vy2,..,yn}]

plots the list of points {(1, y1), (2, y2), ..., (1, ya)}.

9 — 2
EXAMPLE 2.3.6: Graphy = ~5—.
e

SOLUTION: We use Plot to generate the basic graph of y shown in
Figure 4-38(a). Observe that Mathematica generates several error mes-
sages, which is because we have instructed Mathematica to plot the
function on an interval that contains numbers not in the domain of the

function. Mathematica’s error
messages do not always mean
In[124]:= pl =Plot[Sqrt[9-x"2]1/(x"2-4), {x,-5,5}] that you have made a mistake
Plot :: plnr : 7“5;’:22 isnot amachine - size real numberat x = -5.. entering a command.
Plot :: plnr : j:{f isnot amachine - sizerealnumberatx = -4.59433.
Plot :: plnr : j:{f isnot amachine - sizereal numberatx = -4.15191.
General :: stop : Further output of Plot :: plnr will be suppressed

during this calculation.

Observe that the domain of y is [-3, =2) U (=2, 2) U (2, 3]. A better graph

of y is obtained by plotting y for -3 < x < 3 and shown in Figure 4-38(b).
We then use the P1otRange option to specify that the displayed horizontal
axis corresponds to =7 < x < 7 and that the displayed vertical axis cor-
responds to -7 < y < 7. The graph is drawn to scale because we include
the option AspectRatio->Automatic. In this case, Mathematica does
not generate any error messages. Mathematica uses a point-plotting
scheme to generate graphs. Coincidentally, Mathematica happens to
not sample x = 2 so does not generate any error messages.

In[125]:= p2 = Plot[Sqrt[9 -x"21/(x"2-4), {x, -3, 3},
PlotRange -» {{-7, 7}, {-7,7}},
AspectRatio » Automatic]

To see the endpoints in the plot, we use ListPlot to plot the points
(=3,0) and (3, 0). The points are slightly enlarged in Figure 4-38(c) be-
cause we increase their size using PointSize.
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10
4
5
2
-3 B = 3 -6 -4 P2 4 6
5 Fw
-4
-10

Figure 2-9 (from left to right) (a)-(d) The four plots p1, p2, p3, and p4 combined into a
single graphic

In[126] := p3 = ListPlot[{{-3,0}, {3,0}},
PlotStyle -» PointSize[0.02]]

Finally, we use Show to display p2 and p3 together in Figure 4-38(d),
where we have labeled the axes using the AxesLabel option.

In[127] := p4 = Show[p2, p3, AxesLabel -» {"x", "y"}]
The sequence of plots shown in Figure 4-38, which combines p1, p2,
p3, and p4 into a single graphic, is generated using Show together with
GraphicsArray.

In[128] := Show[GraphicsArray[{{pl, p2}, {p3,p4}}1]

When graphing functions involving odd roots, Mathematica’s results may be sur-
prising to the beginner. The key is to load the RealOnly package located in the
Miscellaneous folder (or directory) first.

EXAMPLE 2.3.7: Graph y = x'3(x - 2)%3(x + 2.
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SOLUTION: Entering

In[129] := pl = Plot[x" (1/3) (x-2) " (2/3) (x+1) " (4/3), {x,-2,3}]
Plot :: plnr : (-2 +x)2x*? (1 + x)*?isnotamachine-sizerealnumber
atx = -2..

Plot :: plnr : (-2 +x)2/?x*? (1 + x)*?isnotamachine-sizerealnumber
atx = -1.79717.

Plot :: plnr : (-2 +x)22x? (1 + x)*?isnotamachine-sizerealnumber
atx = -1.57596.

General :: stop : Further output of Plot :: plnr will be suppressed
during this calculation.

not only produces many error messages but does not produce the graph
we expect (see Figure 2-10(a)) because many of us consider y = x/3(x —
2)73(x + D3 to be a real-valued function with domain (-0, o). Gener-
ally, Mathematica does return a real number when computing the odd

root of a negative number. For example, x> = —1 has three solutions Solve is discussed in more
detail in the next section.

In[130] := sl =8Solve[x"3 +1==0]
N [number] returns an
approximation of number.

Out [130]= {{x- -1}, {x> (-1)*?}, {x>-(-1)?"?}}

In[131] := N[sl]

out [131]= {{x->-1.}, {x>0.5+0.8660251},
{(x>0.5-0.8660251})}

When computing an odd root of a negative number, Mathematica has
many choices (as illustrated above) and chooses a root with positive
imaginary part—the result is not a real number.

In[132] := N[(-1)"(1/3)]

Out [132]= 0.5+ 0.8660251

0.25 0.5

(b)

Figure 2-10 (a) and (b) Two plots of y = x"3(x — 2)*3(x + 1)¥3
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ParametricPlot has the
same options as P1lot.
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To obtain real values when computing odd roots of negative numbers,
load the RealOnly package that is located in the Miscellaneous folder
or directory.

eoce Help Browser
Miscellaneous "RealOnly * (Go ) ( Close ) ( Hide Categories )

Built-in Functions Add-ons The Mathematica Book
Getting Started/Demos Other Information Master Index

PhysicalConstants

Wolfram Researc... ¥ gy Miscellaneous 3
NumberTheory »  RealOnly

Working with Ad... [} | NumericalMath *»  ResonanceAbsorpt...
Statistics * M) StandardAtmosph...

Standard Packages »  Utilities rm Units

MathLink 4 WorldData

J/Link » 4 Appendix: How ... » 4 WorldNames

XML Capabilities » v Appendix: Funct... » ¥ WorldPlot v

m Miscellaneous~RealOnly"

In high school algebra, exponents and radicals are taught early, but corplesx murabers are usually left to more
advanced courses. Some algebra teachers have asked for a package that would allow them fo avoid complex
nurabers. Mathemanca is flexdble enough to block out imaginary and corplex wurabers ina way that is mathe-
matically correct

Two ideas are implemented in the packsge Rea10nly. Odd 1oots of negative nuribers are defined to be
negative, and calculations with unavoidable corplex numbers are condensed to the symbol Nonreal. This is
done by redefining the built - in fimetions Power and $Post.

= Without Ioading the package. Mathematica calculates a cube root of a negative number o be
conaplex. So no points are plotted for negative values of x and waming, riessages are generated

nli}= Plot[x ~ (1/3). {x. -8. 8}]: ]
Plot::plnr : %' is not & machine-size real mumber at x = -8.. 3 :
[T100% | D J 4>

After the RealOnly package has been loaded, reentering the P1ot com-
mand produces the expected graph. See Figure 2-10(b).

In[133] := <<Miscellaneous‘'RealOnly"

In[134]:= p2 =Plot[x"(1/3) (x-2)"(2/3) (x+1)"(4/3),
{x, -2, 3}]
In[135] := Show[GraphicsArray[{pl, p2}]]

2.3.2 Parametric and Polar Plots in Two Dimensions
To graph the parametric equations x = x(¢), y = y(t),a <t < b, use

ParametricPlot [{x[t],y[t]l},{t,a,b}]
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eee Help Browser
ParametricPiot (Go ) ( Close ) ( Hide Categories )
‘Bulkt-in Functions Add-ons The Mathematica Book
Getting Started/Demos Other Information Master Index
Lists and Matrices ¥ (Alphabetical Listi Plot
Graphics and So... » ListPlot
2D Plots » &/ ParametricPlot
Programming  *|J) 3D Plots
Input and Output + Contour Plots
Notebooks +_ Density Plots

y
»

System Interface  » 4 Sound Generation » 4
¥ Combinations ’

ParametricPlot

aParametricPlot{(f, . f,). (5. tnin. tmax)] produces 3 parametric plot with x and y coordinates f,
and f, generated as a funchion of .

sParametricPlot{((f, . f,). (g, . & ). .. ). {1, main, mnax)] plots several pametric curves

= ParametricPlot evalnales its argurents ina ron - standard way (see Section A.42). You shoukd use
Evaluate to evaluate the function to be plotied if this can safely be done before specific numerical values

are supplisd

® The options that can be given for ParametricPlot am the same as for Plot.
sParametricPlot has the default option setting Axes -> True.

= ParametricPlot rhums a Graphics object

wSee The Mathematica Book: Section 19,10 4

%0 3kers: Comturma ot
[ 1o0% M @& T

and to graph the polar function r = r(0), @ < § < 8, use
PolarPlot [r[theta], {theta,alpha,beta}].

The PolarPlot function is contained in the Graphics package which is
located in the Graphics directory, so load the Graphics package by entering
<<Graphics'Graphics" before using the PolarPlot function.

EXAMPLE 2.3.8 (The Unit Circle): The unit circle is the set of points
(x,y) exactly 1 unit from the origin, (0, 0), and, in rectangular coordi-
nates, has equation x> + y* = 1. The unit circle is the classic example of
a relation that is neither a function of x nor a function of y. The top half
of the unit circle is given by y = V1 — x2 and the bottom half is given by

y=-VI-x2

In[136]:= pl =Plot[{Sqrt[1l-x"2], -Sqrt[1l-x"2]1},
{x,-1,1},
PlotRange -» {{-3/2, 3/2}, {-3/2,3/2}},
AspectRatio -» Automatic,
DisplayFunction -» Identity]:;

Each point (x, y) on the unit circle is a function of the angle, ¢, that sub-
tends the x-axis, which leads to a parametric representation of the unit

. !x = COSt,
circle,

k 0 <t < 27, which we graph with ParametricPlot.
y

sint,
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Figure 2-11 The unit circle generated with Plot, ParametricPlot, and PolarPlot

In[137] := p2 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 27},
PlotRange -» {{-3/2, 3/2}, {-3/2,3/2}},
AspectRatio -» Automatic,
DisplayFunction -» Identity];

Using the change of variables x = rcost and y = rsint to convert from
rectangular to polar coordinates, a polar equation for the unit circle is
r = 1. After loading the Graphics package, we use PolarPlot to graph
r=1

In[138] := << Graphics‘Graphics®

In[139] := p3 = PolarPlot[1l, {t, 0, 27},
PlotRange » {{-3/2, 3/2}, {-3/2,3/2}},
AspectRatio -» Automatic,
DisplayFunction -» Identity]:;

We display p1, p2, and p3 side-by-side using Show together with
GraphicsArray in Figure 2-11. Of course, they all look the same.

In[140] := Show[GraphicsArray[{pl, p2,p3}]1]

EXAMPLE 2.3.9: Graph the parametric equations

X =1+ sin?2¢t,
) —-2r<t<2nm
ly=t+sm3t,

SOLUTION: After definingxand y, we use ParametricPlot to graph
the parametric equations in Figure 2-12.
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Figure 2-12  (x(#), y(t)), —2r <t < 2n

In[141]:= x[t.] =t +Sin[2t];
y[t.] =t +8in[3t];
ParametricPlot]|
{x[tl,y[tl}, {t, -2m, 271},
AspectRatio- >Automatic]

In the following example, the equations involve integrals.

Remark. Topics from calculus are discussed in Chapter 3. For now, we state that
Integrate[£f [x], {x,a,b}] attempts to evaluate fah f(x)dx.

EXAMPLE 2.3.10 (Cornu Spiral): The Cornu spiral (or clothoid) (see [11]

and [20]) has parametric equations

! 1 ! 1
x= f sin(fuz) du and y= f cos(
0 2 0

Graph the Cornu spiral.
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Cornu spiral

Figure 2-13 The Cornu spiral

SOLUTION: We begin by defining x and y. Notice that Mathematica
can evaluate these integrals, even though the results are in terms of
the FresnelS and FresnelC functions, which are defined in terms of
integrals:

; !
FresnelS[t]=fsin(zu2) du and FresnelC[t]:fcos(” 2) du.

—~u
0 2 0 2
In[142]:= x[t.] = Integrate[Sin[u~2/2], {u, 0, t}]
t
Out [142] = \/; FresnelS [ﬁ]
In[143]:= y[t_.] = Integrate[Cos[u”2/2], {u, 0, t}]
t
Out [143] = \/}Fresnelc[ﬁ]
We use ParametricPlot to graph the Cornu spiral in Figure 2-13. The
option AspectRatio->Automatic instructs Mathematica to gener-
ate the plot to scale; PlotLabel->"Cornu spiral" labels the plot.

In[144] := ParametricPlot[{x[t],y[t]}, {t, -10,10},
AspectRatio -» Automatic,
PlotLabel- > "Cornu spiral"]
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Observe that the graph of the polar equation r = f(), @ < 6 < § is the same as the
graph of the parametric equations

x = f(f)cos O and y = f(6)sin 6, a<6=p

so both ParametricPlot and PolarPlot canbe used to graph polar equations.

EXAMPLE 2.3.11: Graph (a) r = sin(86/7), 0 < 6 < 14x; (b) r = 0 cos 6,
~197/2 < 6 < 197/2; (c) (“The Butterfly”) r = ¢ — 2 cos 46 + sin’ (6/12),
0 < 6 < 24r; and (d) (“The Lituus”) r> = 1/6,0.1 < 6 < 10x.

SOLUTION: For (a) and (b) we use ParametricPlot. First define
r and then use ParametricPlot to generate the graph of the po-
lar curve. No graphics are displayed because we include the option
DisplayFunction->Identityineach ParametricPlot command.

In[145] := Clear[r]
r[e.]1 =sin[86/7];
ppl = ParametricPlot[{r[©] Cos[O], r[O] Sin[6]},
{6, 0, 147}, AspectRatio -» Automatic,
DisplayFunction -» Identity]:;

For (b), we use the option PlotRange->{{-30,30},{-30,30}} to
indicate that the range displayed on both the vertical and horizontal
axes corresponds to the interval [-30, 30]. To help assure that the re-
sulting graphic appears “smooth”, we increase the number of points
that Mathematica samples when generating the graph by including the
option PlotPoints->200.

In[146] := Clear[r]
r[6.] =6 Cos[0O];
pp2 = ParametricPlot[{r[6] Cos[6], r[O] Sin[6]},
{6, -19n/2, 197/2},
PlotRange » {{-30, 30}, {-30,30}},
AspectRatio -» Automatic, PlotPoints -» 200,
DisplayFunction -» Identity]:;

For (c) and (d), we use PolarPlot. Using standard mathematical nota- You do not need to reload
tion, we know that sin’ (6/12) = (sin (6/12))°. However, when defining r the Graphics package if you
with Mathematica, be sure you use the form Sin(6/12)"5, not Sin"5[6/12], have already loaded it during

. . . . . . your current Mathematica
which Mathematica will not interpret in the way intended. session.

In[147] := << Graphics‘Graphics*
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In[148] := Clear[r]
r[6.] = Exp[Cos[6]] - 2Cos[40] +Sin[6/12]"5;
pp3 = PolarPlot[r[6], {6, 0, 247},
PlotPoints -» 200,
PlotRange -» {{-4, 5}, {-4.5,4.5}},
AspectRatio » Automatic,
DisplayFunction -» Identity];

For (d), we graph > = 1/6 by graphing r = 1/V@and r = —1/v/6 together
with PolarPlot.

In[149] := Clear[r]

pp4 = PolarPlot[{Sqrt[l/6], -Sqrt[1/6]1}.,
{6,0.1, 107},
AspectRatio -» Automatic,
PlotRange - All,
DisplayFunction -» Identity];

Finally, we use Show together with GraphicsArray to display all four
graphs as a graphics array in Figure 2-14. pp1 and pp2 are shown in the
first row; pp3 and pp4 in the second.

In[150] := Show[GraphicsArray[{{ppl, pPrP2}., {PP3,pPpP4}}]]

2.3.3 Three-Dimensional and Contour Plots; Graphing
Equations

An elementary function of two variables, z = f(x, y) = expressioninxandy, is typi-
cally defined using the form

flx ,y l=expression in x and y.
Once a function has been defined, a basic graph is generated with P1ot3D:
Plot3D[f [x,y], {x,a,b}, {y,c,d}]

graphs f(x,y)fora<x<bandc=<y=d.

For details regarding P1ot3D and its options enter ?Plot3D or ??Plot3D or
access the Help Browser to obtain information about the Plot3D command, as
we do here.
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Figure 2-14 Graphs of four polar equations

eoe Help Browser
(<) [Plot3D {Go ) ( Close ) ( Hide Categories )

Built-in Functions Add-ons The Mathematica Book
| Cetting Started/Demos Other Information Master Index

Algebraic Comp... 2 (Alphabetical Listi... Plot3D
Mathematical Fu... » m ListPlot3D
Lists and Matrices #|1| 2D Plots » &/ ParametricPlot3D
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xandy.
wPLlot3D[ (. ¢). (x. omin, xnax], (y. ymin, ymax}] generates a three - dimensional plot in which the
height of the surface is specified by 7 and the shading is specified by 5.

Plot3D
=PLot3D[f, {x. onin, pnax}. (y. ymin. ymax}| generates a three - dimensional plot of fas a function of

#P1lot 3D evaluates its argurents in a non - standard way (see Section A.4 2). You should use Evaluate to
evaluate the fanction 1o be plotted if this can safely be dome before specific numerical vahues are supplied.

#P1ot3D has the sare options as SurfaceGraphics, with the following additions:

Compiled True ‘whether to corapile the function to plot
PlotPoints 15 ‘the number of
sample points in each direction
.
wP1ot3D has the default option setting Axes -> True. v

[ 1o0% M & e
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Graphs of several level curves of z = f(x, y) are generated with
ContourPlot [f [x,vy], {x,a,b}, {y,c,d}].

For details regarding ContourPlot and its options enter ?ContourPlot or
??ContourPlot or access the Help Browser.

EXAMPLE 2.3.12: Let
x%y

X+ 4y

(a) Calculate f(1, —1). (b) Graph f(x, y) and several contour plots of f(x, y)
on a region containing (0, 0).

S y) =

SOLUTION: After defining f(x, y), we evaluate f(1, -1) = -1/5.

In[151]:= f[x_,y.] =x"2y/(x"4 + 4y"2)
2

out [151]= —— L

xt+4 y?

In[152] := £[1, -1]
Out [152] = —%

Next, we use P1lot3D to graph f(x,y) for -1/2 < x < 1/2 and -1/2 <
y =< 1/2 in Figure 2-15. We illustrate the use of the Axes, Boxed, and
PlotPoints options.

In[153] := Plot3D[f[x,y], {x, -1/2,1/2}, {y, -1/2,1/2},
Axes- >Automatic, Boxed- > False,
PlotPoints- > {50, 50}]

Two contour plots are generated with ContourPlot. The second illus-
trates the use of the PlotPoints, Frame, ContourShading, Axes,
and AxesOrigin options. (See Figure 2-16.)

In[154] := ContourPlot[£f[x,vy], {x,-1/2,1/2},
{y,-1/2,1/2}, PlotPoints- > {50, 50}]

In[155] := ContourPlot[£f[x,y], {x,-1/2,1/2},
{y,-1/2,1/2}, PlotPoints- > {60, 60},
Frame- > False, ContourShading- >
False, Axes- > Automatic,
AxesOrigin- > {0, 0}]
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Figure 2-15 Three-dimensional plot of f(x, y)

Figure 2-16 Two contour plots of f(x, y)

The ViewPoint option can be changed by going to the Mathematica menu, select-
ing Input and then 3D ViewPoint Selector... at which point the following window
appears.

Various perspectives can be adjusted by clicking and dragging the bounding box.
When a satisfactory ViewPoint is found, select Paste and the ViewPoint will be
pasted into the Mathematica notebook at the location of the cursor.
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86 3D ViewPoint Selector

) Cartesian
@ Spherical

{ paste \

[ ’ Defaults )

53.768 |theta
e 298,443 phi
s — 3384 '

(2

(_Cancel ) @

Figure 2-17 shows four different views of the graph of g(x, y) = xsiny + y sinx for
0 < x < 5mand 0 < y < 57. The options AxesLabel, BoxRatios, ViewPoint,
PlotPoints, Shading, and Mesh are also illustrated.

In[156] := Clear[g]
glx_,y.] =x Sin[y] +y Sin[x];

Figure 2-17 Four different plots of g(x, y) = xsiny + ysinx for 0 < x < 57
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In[157]:

pl = Plot3D[g[x,vy], {x, 0, 57}, {y, 0, 57},
PlotPoints -» 60, AxesLabel » {"x", "y", "2z"},
DisplayFunction -» Identity];

In[158]:

Plot3D[g[x,y], {x, 0, 5x}, {y, 0, 57},
PlotPoints - 60,
ViewPoint- > {-2.846, -1.813, 0.245},
Boxed -» False, BoxRatios -» {1, 1,1},

P2

AxesLabel - {lelll “Y"l Ilzll}l
DisplayFunction -» Identity];

In[159]:

Plot3D[g[x,y], {x, 0, 5x}, {y, 0, 57},
PlotPoints - 60,
ViewPoint- > {1.488, -1.515, 2.634},
AxesLabel -» {"x", "y", "z"}, Shading -» False,

p3

DisplayFunction -» Identity];

In[160] := p4 = Plot3D[g[x, y], {x, 0, 5n}, {y, 0, 5x},
PlotPoints -» 60, AxesLabel » {"x", "y",6 "2"},
Mesh » False, BoxRatios -» {2, 2, 3},
ViewPoint- > {-1.736, 1.773, -2.301},

DisplayFunction -» Identity];

In[161] := Show[GraphicsArray[{{pl,p2}, {p3,p4}}1]

ContourPlot is especially useful when graphing equations. The graph of the
equation f(x,y) = C, where C is a constant, is the same as the contour plot of
z = f(x,y) corresponding to C. That is, the graph of f(x,y) = C is the same as the
level curve of z = f(x, y) corresponding to z = C.

EXAMPLE 2.3.13: Graph the unit circle, x* + y* = 1.

SOLUTION: We first graphz = x> +y* for -4 <x <4and -4 <y <4
with P1ot3D in Figure 2-18.

In[162] := Plot3D[x"2+Yy"2, {x, -4, 4}, {y, -4, 4}]

The graph of x> + y* = 1 is the graph of z = x? + y* corresponding to
z = 1. We use ContourPlot together with the Contours option to
graph this equation in Figure 2-19.

In[163] := ContourPlot[x"2+Yy"2, {x,-3/2,3/2},
{y,-3/2,3/2}, Contours- > {1},
ContourShading- > False]
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Figure 2-18 Three-dimensional plot of z = x* + y?

-1.5¢, ‘ ‘ ‘ ‘ ‘ R
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 2-19 The unit circle, x> +y? = 1
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-4 -2 0 2 4

Figure 2-20 Graphsof x> +y* =1,x> +y* =4, and ¥ +y* =9

Multiple graphs can be generated as well. As an illustration, we graph
x*+y* =Cfor C = 1,4,and 9 in Figure 2-20.

In[164] := ContourPlot[x"2+y~2, {x, -4,4}, {y, -4, 4},
Contours- > {1, 4, 9}, ContourShading- > False,
PlotPoints- > {50, 50}]

As an alternative to using ContourPlot to graph equations, you can also use the
ImplicitPlot function which is contained in the ImplicitPlot package located
in the Graphics folder (or directory).

After loading the ImplicitPlot package by entering
<<Graphics'‘ImplicitPlot ", the command

ImplicitPlot [equation, {x,x0,x1}]

graphs the equation, equation, from x = xy to x = x;. (Recall that a double equals
sign (==) must be used to separate the left and right-hand sides of an equation.)
The set of y-values displayed may be specified by entering the command using the
form

ImplicitPlot [equation, {x,x0,x1},{y,y0,vy1}].
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When graphing relatively simple equations, like those solvable using Solve, it
is not necessary to specify the y-values in the ImplicitPlot command. When
Solve cannot solve an equation, it is usually necessary to specify both the x and
y-values. In these cases, ImplicitPlot uses the same method to produce the
graph as ContourPlot. However, ContourPlot may produce better results.

EXAMPLE 2.3.14: Graph the equation y* — 2x* + 2x° —x¥ = 0 for -1.5 =<
x=<1.5.

SOLUTION: After loading the ImplicitPlot package, we define eqg to
be the equation y* — 2x* + 2x% — x® = 0 and then use ImplicitPlot to
graph eq for —1.5 < x < 1.5 in Figure 2-21.

In[165] := << Graphics‘ImplicitPlot"®
In[166] := eq=y* -x*+2x° -x% == 0;
In[167] := ImplicitPlot[eq, {x,-1.5,1.5},

Ticks » {{-1, 1}, {-1,1}}]
| ]

Equations can be plotted together, as with the command Plot, with

ImplicitPlot [{eql,eqg2,...,eqn}, {x,x0,x1}]
or
ImplicitPlot[{eql,eq2,...,eqn}, {x,x0,x1},{y,01,y1}].
1,
_1—

Figure 2-21 Plotofy? - 2x* + 2x* —x¥ =0
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EXAMPLE 2.3.15: Graph the equations x* + y? = 1 and 4x*> - y? = 1 for
-1.5=x=<15.

SOLUTION: We use ImplicitPlot to graph the equations together
on the same axes in Figure 2-22. The graph of x> +y* = 1 is the unit circle
while the graph of 4x> — y* = 1 is a hyperbola.

Figure 2-22 Plots of x* +y*> = l and 4x* —y* = 1
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Also see Example 2.3.19.

Permutations[list]
returns a list of all possible
orderings of the list 1ist.

Chapter 2 Basic Operations on Numbers, Expressions, and Functions

In[168] := ImplicitPlot[{x’+y®==1,4x"-y®==1},
{x,-1.5,1.5}, Ticks » {{-1, 1}, {-1, 1}}]

EXAMPLE 2.3.16 (Conic Sections): A conic section is a graph of the
equation
Ax* + Bxy+Cy* + Dx+ Ey + F = 0.

Except when the conic is degenerate, the conic Ax* + Bxy + Cy* + Dx +
Ey+ F =0isa(an)

1. Ellipse or circle if B> — 4AC < 0;
2. Parabola if B2 — 4AC = 0; or
3. Hyperbola if B> — 4AC > 0.

Graph the conic section ax? + bxy + ¢y* = 1 for -4 < x < 4 and for q, b,
and ¢ equal to all possible combinations of -1, 1, and 2.

SOLUTION: We begin by defining conic to be the equation ax?+bxy+
cy* = 1 and then use Permutations to produce all possible orderings
of the list of numbers {1, 1, 2}, naming the resulting output vals.

In[169] := Clear[a, b, c]
conic=ax’+bxy+cy’ ==1;
In[170] := vals = Permutations[{-1, 1, 2}]

Out[170]= {{-1,1,2},{-1,2,1},{1,-1,2},
{1/ 2/ 71}/ {2/ 71/ 1}/ {2/ 1/ 71}}

Next we define the function p. Given a1, b1, and c1, p defines toplot
to be the equation obtained by replacing 4, b, and c in conic by al,
bl, and c1, respectively. Then, toplot is graphed for -4 < x < 4. p
returns a graphics object which is not displayed because the option
DisplayFunction->Identity is included in the ImplicitPlot
command.

In[171]:= p[{al.,bl_, cl.}] :=Module[{toplot},
toplot = conic/.{a—»al,b-»bl,c-»cl};
ImplicitPlot[toplot, {x, -4, 4},
Ticks -» None, DisplayFunction » Identity]]

We then use Map to compute p for each ordered triple in vals. The
resulting output, named graphs, is a set of six graphics objects.
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Figure 2-23 Plots of six conic sections

In[172] := graphs = Map[p, vals]
Out [172] {-Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-}

Partition is then used to partition graphs into three element sub-
sets. The resulting array of graphics objects named toshow is displayed

with Show and GraphicsArray in Figure 2-23.

In[173] := toshow = Partition[graphs, 3];
Show [GraphicsArray[toshow] ]

2.3.4 Parametric Curves and Surfaces in Space

The command
ParametricPlot3D[{x[t],y[t],z[t]l},{t,a,b}]

x = x(1),

generates the three-dimensional curve I y=y(@#), a=<t=<bandthecommand

z=2z(1),
ParametricPlot3D[{x[u,v],ylu,v],zlu,vl},{u,a,b},{v,c,d}]
x =x(u, v),

plots the surface Jy =yuv), asusbc=<v=d.

z = z(u, v),
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Entering Information[ParametricPlot3D] or ??ParametricPlot3D
returns a description of the ParametricPlot3D command along with a list of
options and their current settings.

EXAMPLE 2.3.17 (Umbilic Torus NC): A parametrization of umbilic
torus NCis given by r(s,#) = x(s, )i+ y(s, )j + 2(s, )k, -m < s <71, - <
t <, where

1 1
X = [7 + cos (§S - Zt) + 2005(55 +t)] sin s
1 1
y=[7+cos(§s—2t)+200s(§s+t)]coss
and
= 'n(l 2t)+2 in(1 +t)
z=-si 3s S 3s .

Graph the torus.

SOLUTION: We define x, y, and z.

In[174]:= x[s_, t_]
yls_, t]
z[s_, t_]

(7 + Cos[1/3s-2t] +2Cos[1/3s +t]) Sin[s];
(7 +Cos[1/3s-2t] +2Cos[1/3s+t]) Cos[s];
Sin[l/3s-2t] +28Sin[l/3s+t];

The torus is then graphed with ParametricPlot3D in Figure 2-24.
We illustrate the use of the PlotPoints option.

In[175] := ParametricPlot3D[{x[s, t],y[s, t], z[s, t]},
{s, -7, n}, {t, -, 7}, PlotPoints- > {40, 40}]

This example is explored in

detail in Sections 82 and |1.4 EXAMPLE 2.3.18 (Gray’s Torus Example): A parametrization of

of Gray’s Modern Differential T . .
Geometry of Curves and an elliptical torus is given by

Surfaces, [11], an x=(a+bcosv)cosu, y=(a+bcosv)sinu, z=csinv
indispensible reference for

those who use Mathematica’s For positive integers p and ¢, the curve with parametrization
graphics extensively.

x=(a+bcosqt)cospt, y=(a+bcosqt)sinpt, z=csingt

winds around the elliptical torus and is called a torus knot.
Plot the torus if a = 8, b = 3, and ¢ = 5 and then graph the torus knots
forp=2andg=5p=1landg=10,and p=2and g = 3.
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Figure 2-24 Umbilic torus

SOLUTION: We begin by defining torus and torusknot.

In[176] := torus[a_,b ,c ][p.,q]l[u,v] :=
{(a+b Cos[u]) Cos[Vv],
(a+b Cos[u]) Sin[v], c Sin[u]}

In[177] := torusknot[a_,b_,c.][p-,qg-][t.] :=
{(a+b Cos[gt]) Cos[pt],
(a+b Cos[gt]) Sin[pt], c Sin[qgt]}

Next, we use ParametricPlot3D to generate all four graphs

In[178] := ppl = ParametricPlot3D[Evaluate[torus[8, 3, 5]
[21 5] [ul V] ] v {ul 0, 27r}l {V/ 0, 27T},
PlotPoints » 60, DisplayFunction -» Identity]:;

In[179] := pp2 = ParametricPlot3D[Evaluate[torusknot
[8,3,51[2,5]1[t]], {t, 0, 3},
PlotPoints -» 200,
DisplayFunction -» Identity]:;

In[180] := pp3 = ParametricPlot3D[Evaluate[torusknot
[(8,3,5][1,10]1[t]], {t,0,3n},
PlotPoints » 200,
DisplayFunction -» Identity]:;

In[181] := pp4 = ParametricPlot3D[Evaluate[torusknot
[8,3,51[2,3]([t]], {t,0,3n},
PlotPoints » 200,
DisplayFunction -» Identity]:;
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107-10

Figure 2-25 (a) An elliptical torus. (b) This knot is also known as the trefoil knot. (c) The
curve generated by torusknot [8,3,5] [2,3] [1,10] is not a knot. (d) The torus knot
withp=2and g =3

and show the result as a GraphicsArray with Show and
GraphicsArray in Figure 2-25. As when plotting lists of functions,
we are careful to evaluate the list of functions to be evaluated in each
ParametricPlot3D first with Evaluate.

In[182] := Show[GraphicsArray[{{ppl, ppP2}, {PP3,pPp4}}]]

EXAMPLE 2.3.19 (Quadric Surfaces): The quadric surfaces are the
three-dimensional objects corresponding to the conic sections in two
Also see Example 2.3.16. dimensions. A quadric surface is a graph of

sz+By2+C12+ny+Exz+Fyz+Gx+Hy+Iz+J=O,

whereA,B,C,D,E, F,G,H, I, and J are constants.
The intersection of a plane and a quadric surface is a conic section.
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Several of the basic quadric surfaces, in standard form, and a parametriza-
tion of the surface are listed in the following table.

Name Parametric Equations

Ellipsoid

2 P g X =acostcosr,

;+ﬁ+§:1 y=bcostsiny, -n/2<t=n/2,-m<r=nm

Z = csint,

Hyperboloid of One Sheet

2 22 X = asectcosr,
?_Fﬁ_?:l y=bsectsinr, -m/2<t<a/2,-m<r=n

z = ctant,

Hyperboloid of Two Sheets
X =asect,

fffff =1 y=btantcosr, -n/2<t<mn/2orn/2<t<

z=ctantsinr,
3n/2, -n<r=<nm

Graph the ellipsoid with equation -x* + 1y* + 2> = 1, the hyperboloid
of one sheet with equation zx* + 1y? — 22 = 1, and the hyperboloid of
two sheets with equation (tx* — 1y* — 22 = 1.

SOLUTION: A parametrization of the ellipsoid with equation x> +
1y* + 22 = 1is given by

x=4costcosr, y=2costsinr, z=sint, -n/2<t=<n/2, -n<r=<m,
which is graphed with ParametricPlot3D.

In[183]:= Clear[x,y, z]
x[t_, r.] =4 Cos[t] Cos[r]:;
y[t.,r.] =2 Cos[t] Sin|[r];
z[t_,r.] =8in[t];
ppl = ParametricPlot3D[{x[t, r], yI[t, xr], z[t, r]},
{t, -n/2,n/2}, {x, -7, 7}, PlotPoints » 30,
DisplayFunction -» Identity];
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(a) (b)

Figure 2-26 (a) Plot of xx? + 1y* + 22 = 1. (b) Plot of (tx* + 1y =22 =1

A parametrization of the hyperboloid of one sheet with equation ;xx* +
1y* =722 = lis given by

x=4sectcosr, y=2sectsinr, z=tant, -n/2<t<n/2, -m<r<m.

Because sect and tant are undefined if t = +71/2, we use
ParametricPlot3D to graph these parametric equations on a subin-
terval of [-n/2, n/2], [-n/3, n/3].

In[184] := Clear[x,y, z]
x[t_, r.] =4 Sec[t] Cos[r]:;
y[t.,r.] =2 Sec[t] Sin|[r];
z[t_, r.] =Tan[t];
pPp2 = ParametricPlot3D[{x[t, r], y[t, r], z[t, ]},
{t, -n/3,n/3}, {xr, -n, }, PlotPoints -» 30,
DisplayFunction -» Identity];

ppl and pp2 are shown together in Figure 2-26 using Show and
GraphicsArray.

In[185] := Show[GraphicsArray[{ppl, pp2}]]

For (c), we take advantage of the ContourPlot3D command, which is
located in the ContourPlot3D package contained in the Graphics folder
(or directory). After the ContourPlot3D package has been loaded by
entering <<Graphics'ContourPlot3D", the command

ContourPlot3DI[f [x,y,z],{x,a,b},{y,c,d},{z,u,v}]

attempts to graph the level surface of w = f(x,y, z) corresponding to
w=0.

After loading the ContourPlot3D package, we use ContourPlot3D
to graph the equation kx>~ ;y*—z2—1 = 0 in Figure 2-27, illustrating the
use of the PlotPoints, Axes, AxesLabel, and BoxRatios options.
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Figure 2-27 Plot of zx* — 1y* — 22 = 1 generated with ContourPlot3D

In[186] := << Graphics‘ContourPlot3D"

In[187] := ContourPlot3D[x"2/16 -y 2/4-2"2-1,
{x, -10, 10}, {y, -8, 8}, {z, -2, 2},
PlotPoints - {8, 8},
Axes -» Automatic, AxesLabel -» {"x",6 "y",6 "z"},
BoxRatios -» {2,1,1}]

2.4 Solving Equations

2.4.1 Exact Solutions of Equations

Mathematica can find exact solutions to many equations and systems of equations,
including exact solutions to polynomial equations of degree four or less. Because
a single equals sign “=" is used to name objects and assign values in Mathematica,
equations in Mathematica are of the form

left-hand side==right-hand side.

The “double-equals” sign “==" between the left-hand side and right-hand side
specifies that the object is an equation. For example, to represent the equation

81
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3x + 7 = 4 in Mathematica, type 3x+7==4. The command Solve [lhs==rhs, x]
solves the equation 1hs = rhs for x. If the only unknown in the equation 1hs =
rhs is x and Mathematica does not need to use inverse functions to solve for x,
the command Solve [lhs==rhs] solves the equation 1hs = rhs for x. Hence,
to solve the equation 3x + 7 = 4, both the commands Solve [3x+7==4]+ and
Solve [3x+7==4,x]+ return the same result.

8oe Help Browser
Solve (Go) { Close ) ( Hide Categories )
Built-in Functions Add-ons The Mathematica Book
Getting Started/Demos Other Information Master Index
Numerical Com... »p (Alphabetical Listi... Solve
Algebraic Comp... » DSolve
Mathematical Fu_.. »{1] Basic Algebra *»  Equal
Lists and Matrices »  Formula Manipul_. »  ReplaceAll (/.)
Graphics and So... | Equation Solving »
Calculus »  Eliminate
Programming b 4 Polynomial Func... »  SolveAlways
Input and Output » ¥ Reduce v
Solve
= Solve[egns, vars] atiempts 1o solve an equation of setof equations for the variables vars.

mSolve[egns, vars. elims| atterapts to solve the equations for vars, eliminating the variables ekms.

w Equations are given in the fora Ihs == rhs
u Simultaneous equations can be corabined either in a List or with £&
m A single variable or a list of variables can be specified
mSolve[egns) tres to solve for all vanables in egne.
= Example: Solve[3x +9==0, x]
= Solve gives solutions in terms of rules of the form x - sol
= When there are several variables, the solution is given in ferms of lists of nales: (X ~> 4, ¥ =>4, , ... )
u Vihen there are several solutions, Solve gives a listof them
[ 100% ¥ & J4Tr

2 -1

EXAMPLE 2.4.1: Solve the equations 3x+7 =4,
x+1=0.

=0,and x° +x% +
r—

SOLUTION: In each case, we use Solve to solve the indicated equa-
tion. Be sure to include the double equals sign “==" between the left
and right-hand sides of each equation. Thus, the result of entering

In[188] := Solve[3x+ 7 == 4]
Out [188]= {{x—>-1}}

means that the solution of 3x+ 7 = 4 is x = —1 and the result of entering

xz—
In[189] := Solve[

x-1
Out[189]= {{x->-1}}

==o]
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2_1
means that the solution of X

= 0is x = —1. On the other hand, the

equation x* +x? +x+ 1 = 0 has two imaginary roots. We see that entering

In[190] := Solve[x3 +x2+x+1l== 0]

Out [190]= {{x-> -1}, {x—> -1}, {x>1}}

yields all three solutions. Thus, the solutions of P +xr+x+1=0are
x = =l and x = +i. Remember that the Mathematica symbol I represents
the complex number i = V-1.In general, Mathematica can find the
exact solutions of any polynomial equation of degree four or less.

|

Observe that the results of a Solve command are a list. Lists and tables are discussed
Mathematica can also solve equations involving more than one variable for one  n more detil in Chapter 4.
variable in terms of other unknowns.

EXAMPLE 2.4.2: (a) Solve the equation v = nr*/h for h. (b) Solve the
equation @’ + b* = ¢? for a.

SOLUTION: These equations involve more than one unknown so we
must specify the variable for which we are solving in the Solve com-
mands. Thus, entering

2
nir

In[191] := Solve|v==——,h

[191] [ o ]

out (191]= {{n> "2 1)

solves the equation v = nr*/h for h. (Be sure to include a space or *
between r and r.) Similarly, entering

In[192] := Solve[az +b? == c?, a]

Out [192] = {{a—>—\/—b2+c2}, {ae\/—b2+c2}}

solves the equation a* + b* = ¢? for a.
|

If Mathematica needs to use inverse functions to solve an equation, you must be
sure to specify the variable(s) for which you want Mathematica to solve.
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EXAMPLE 2.4.3: Find a solution of sin®x — 2sinx — 3 = 0.

SOLUTION: When the command Solve [Sin[x] "2-2Sin[x] -3==0]
is entered, Mathematica solves the equation for Sin [x]. However, when
the command

Solve [Sin[x] "2-2Sin[x] -3==0, x]

is entered, Mathematica attempts to solve the equation for x. In this
case, Mathematica succeeds in finding one solution. In fact, this equa-
tion has infinitely many solutions of the form x = %(41{ - D, k=0, %1,
+2, ...; sinx = 3 has no solutions.

In[193] := Solve[Sin[x]®-2 Sin[x] -3 ==0]
Out [193]= {{Sin[x] » -1}, {Sin[x] > 3}}

In[194] := Solve[sin[x]2 -2 8in[x] -3==0, x]
Solve :: ifun :
Inverse functions are being used by

Solve, so some solutions may not be found.

out [194]= {{x~ -7}, (x> Arcsin(3]}}

The example indicates that it is especially important to be careful when dealing
with equations involving trigonometric functions.

EXAMPLE 2.4.4: Let f(0) = sin20+2cos 6,0 < 6 < 2x. (a) Solve f'(6) = 0.
(b) Graph f(6) and f’(6).

SOLUTION: After defining f(6), we use D to compute f’(f) and then

DI[f [x],x] computes use Solve to solve f/(6) = 0.
f'(x); DIf [x], {x,n}]
computes ) (x). Topics In[195] := £[6.] = Sin[26] + 2 Cos[6O]

from calculus are discussed

in more detail in Chapter 3. Out[195]= 2 Cos[6O] +8in[2 6]
In[196] := df =D[f[6], O]
Out[196]= 2 Cos[2 6] -2 Sin[O]
In[197] := Solve[df == 0, 6]
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Solve :: "ifun" : "Inversefunctionsarebeingused
bySolve, sosomesolutionsmaynotbefound."

Out [197] = {{ee—g}, {9+§}/ {96%}}

Notice that —n1/2 is not between 0 and 2x. Moreover, 7/6 and 57/6 are not
the only solutions of f’(f) = 0 between 0 and 27. Proceeding by hand,
we use the identity cos 26 = 1 — 2 sin* § and factor:

2cos20—-2sinf=0
1-2sin?6—sinf=0
2sin”0+sinf—1=0

2sinf - 1)(sin@+1)=0

so sinf = 172 or sin# = —1. Because we are assuming that 0 < 6 < 27, we
obtain the solutions 6 = 7/6, 57/6, or 37/2. We perform the same steps
with Mathematica.

In[198] := sl = TrigExpand[df]

out [198]= 2 Cos[6]*-2 Sin[6] -2 Sin[6]?
In[199] := s2=81/.Cos[6]"2- >1-Sin[6]"2
Out[199]= -2 Sin[e] -2 sin[e]®+2 (1-sSin[e]?)

In[200] : = Factor[s2]
Out [200]= -2 (1+8in[6]) (-1+2 Sin[6])

Finally, we graph f(6) and f’(¢) with Plot in Figure 2-28. Note that
the plot is drawn to scale because we include the option
AspectRatio->Automatic.

In[201] := Plot[{f[6], df}, {6, 0, 271},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
AspectRatio- > Automatic]

We can also use Solve to find the solutions, if any, of various types of systems of

equations. Entering
Solve[{lhsl==rhsl, lhs2==rhs2}, {x,v}]
solves a system of two equations for x and y while entering

Solve [{lhsl==rhsl,lhs2==rhs2}]

85

expression /. x->y
replaces all occurrences of x

in expression by y.
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N

[y

Figure 2-28 Graphs of f(#) and f'(6)

attempts to solve the system of equations for all unknowns. In general, Solve can
find the solutions to a system of linear equations. In fact, if the systems to be solved
are inconsistent or dependent, Mathematica’s output indicates so.

EXAMPLE 2.4.5: Solve each system:
2x—3y+4z=2 2x—2y—2z=-2
j3x -y=4
(@) ; (b) {3x-2y+2z=0 ; (0)
lx +y=2
x+y—-z=1 -3x+3y-2z=1

-x+y+3z=0 ; and

ym+@—k=4
(d)43x—2y+2z=2
x+3y-3z=-3

SOLUTION: In each case we use Solve to solve the given system. For
(a), the result of entering

In[202] := Solve[{3x-y==4,x+y==2}, {x,v}]

out [202] = {{x»%,y»%}}
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3x—y=
means that the solution of I Y
X+y=

is (x, y) = (372, 172). (b) We can

verify that the results returned by Mathematica are correct. First, we
name the system of equations sys and then use Solve to solve the
system of equations naming the result sols.

In[203] := sys={2x-3y+4z2==2,3x-2y+z==0,
xX+y-z==1};
In[204] := sols = Solve[sys, {x,y,z}]

9 3
Out [204] = {{xﬁllo,yﬁg, ZQE}}

We verify the result by substituting the values obtained with Solve
back into sys with Replaceall (/.).

In[205] := sys /. sols
Out [205]= {{True, True, True}}

J 2x—3y+4z=2
means that the solutionof {3x -2y +z =0 is (x, y, 2) = (7/10, 9/5, 3/2).
x+y—-z=1

(c) When we use Solve to solve this system, Mathematica returns { },
which indicates that the system has no solution; the system is inconsis-
tent.

In[206] := Solve[{2x -2y -2z ==-2,
-X+y+32==0,-3x+3y-2z==1}]
Out [206]= {}

(d) On the other hand, when we use Solve to solve this system,
Mathematica’s result indicates that the system has infinitely many so-
lutions. That is, all ordered triples of the form {(0,z — 1, z)lzreal} are
solutions of the system.

In[207] := Solve[{-2x+ 2y -2z == -2,
3x-2y+2z==2,x+3y-3z==-3}]
Solve :: svars :
Equations may not give solutions

for all "solve" variables.
Out [207]= {{x->0,y—>-1+2}}

We can often use Solve to find solutions of a nonlinear system of equations as
well.
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EXAMPLE 2.4.6: Solve the systems

42 +v2 =4 IL2+L2:]

(@) L;C 4y2 4 and (b) lazx 4 (a, b greater than zero) for
X" +ayt = y = mx

x and y.

SOLUTION: The graphs of the equations are both ellipses. We use
ContourPlot to graph each equation, naming the results cpl and
cp2, respectively, and then use Show to display both graphs together in
Figure 2-29. The solutions of the system correspond to the intersection
points of the two graphs.

In[208] := cpl = ContourPlot[‘lx2 +y> -4,
{x,-3,3},{y,-3,3},
Contours -» {0},
ContourShading -» False,
PlotPoints - 60,
DisplayFunction - Identity] ;

cp2 = ContourPlot [x2 +4y® -4,
{x,-3,3}, {y,-3,3},
Contours -» {0},
ContourShading -» False,
PlotPoints - 60,

DisplayFunction - Identity] ;

Show[cpl, cp2, Frame -» False,
Axes -» Automatic, AxesOrigin - {0, 0},
DisplayFunction -» $DisplayFunction]

Finally, we use Solve to find the solutions of the system.
In[209] := Solve[{4x® +y® == 4, x* + 4y® == 4}]

out [209]= {{x - =,y =},
5 V5
2 2

FY R
2 2

2 2
{xe E,ye—ﬁ}, {xe E,y% E}}

For (b), we also use Solve to find the solutions of the system. However,
because the unknowns in the equations are a, b, m, x, and y, we must

[xo -
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Figure 2-29 Graphs of 4x* + y* =4 and x* + 4y* = 4

specify that we want to solve for x and y in the Solve command.

x2 y.2
In[210] := Solve[{§+ o2 ==1,y == m.x}, {x, y}]

out [210] = {{yaf‘ﬂ'%m,x%,aib}
o e rwer
abm ab }}

{y» , X >
Vb? + a2 m? b? + a2 m?
|

Although Mathematica can find the exact solution to every polynomial equation
of degree four or less, exact solutions to some equations may not be meaningful. In
those cases, Mathematica can provide approximations of the exact solutions using
either the N [expression] or the expression // Ncommands.

EXAMPLE 2.4.7: Approximate the solutions to the equations (a) x* —
2x*> =1 -x;and (b) 1 — x* = x°.

SOLUTION: Each of these is a polynomial equation with degree less
than five so Solve will find the exact solutions of each equation.
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However, the solutions are quite complicated so we use N to obtain
approximate solutions of each equation. For (a), entering

In[211] := N[Solve[x4 -2x?% == l—x]]

out[211]= {{x—-0.182777-0.6333971},
{x->0.182777+0.6333971},
{x—>-1.71064}, {x > 1.34509}}

first finds the exact solutions of the equation x* — 2x* = 1 — x and then
computes approximations of those solutions. The resulting output is
the list of approximate solutions. For (b), entering

In[212] := Solve[l -x?==x3, x]//N

out [212]= {{x - 0.754878},
{x—>-0.877439+0.7448621},
{x—>-0.877439 - 0.7448621}}

first finds the exact solutions of the equation 1 — x> = x* and then com-
putes approximations of those solutions. The resulting output is the list
of approximate solutions.

|

2.4.2 Approximate Solutions of Equations

When solving an equation is either impractical or impossible, Mathematica pro-
vides several functions including FindRoot, NRoots, and NSolve to approxi-
mate solutions of equations. NRoots and NSolve numerically approximate the
roots of any polynomial equation. The command

NRoots [polyl==poly2, x]

approximates the solutions of the polynomial equation polyl==poly2, where
both polyl and poly2 are polynomials in x. The syntax for NSolve is the same
as the syntax of NRoots.

FindRoot attempts to approximate a root to an equation provided that a
“reasonable” guess of the root is given. FindRoot works on functions other than
polynomials. The command

FindRoot [lhs==rhs, {x, firstguess}]

searches for a numerical solution to the equation lhs==rhs, starting with x =
firstguess. To locate more than one root, FindRoot must be used several times.
One way of obtaining firstguess (for real-valued solutions) is to graph both
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lhs and rhs with Plot, find the point(s) of intersection, and estimate the x-
coordinates of the point(s) of intersection. Generally, NRoot s is easier to use than
FindRoot when trying to approximate the roots of a polynomial.

EXAMPLE 2.4.8: Approximate the solutions of
O+xt -4+ 232 -3x-7=0.

SOLUTION: Because x° +x*—4x* +2x> —3x—7 = 0 is a polynomial equa-
tion, we may use NRoot s to approximate the solutions of the equation.
Thus, entering

In[213]:= NRoots[x5 +x*-ax®+2x*-3x-7==0,
x]

x==-2.74463]| |x==-0.880858] |

x==0.41452-1.19996 1] |

X ==0.41452+1.199961||x==1.79645

Out [213] =

approximates the solutions of x* + x* — 4x* + 2x> = 3x = 7 = 0. The symbol
| | appearing in the result represents “or”.
We obtain equivalent results with NSolve.

In[214] := NSolve[x5 +xt-4x®+2x*-3x-7==z0,
x]

Out [214]= {{x—>-2.74463}, {x—>-0.880858},
{x—>0.41452-1.199961},
{x—>0.41452+1.199961}, {x—>1.79645}}

FindRoot may also be used to approximate each root of the equation.
However, to use FindRoot, we must supply an initial approximation
of the solution that we wish to approximate. The real solutions of x° +
x* —4x3 + 2x? - 3x = 7 = 0 correspond to the values of x where the graph
of f(x) = x> +x* —4x3 + 2x? — 3x — 7 intersects the x-axis. We use Plot to
graph f(x) in Figure 2-30.
In[215] := Plot [x5 +x?-ax®+2x?-3x-17,
{x,-3,2}]
We see that the graph intersects the x-axis near x ~ -2.5, -1, and 1.5.

We use these values as initial approximations of each solution. Thus,
entering

In[216] := FindRoot [x5 rxt-ax®+2x*-3x-7==0,

{x,-2.5}]
Out [216]= {x— -2.74463}
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20

10 /
-3 -2 -1 1 2

-10

-20

-30

Figure 2-30 Graph of f(x) =x° +x* = 4x> + 2x* - 3x -7

approximates the solution near —2.5, entering

In[217] := FindRoot [x5 +x'-4x®+2x*-3x-7==0,
{x, -1}]
out [217]= {x - -0.880858}
approximates the solution near —1, and entering

In[218] := FindRoot [x5 rxt-ax®+2x*-3x-7==0,
{x,2}]

out [218]= {x—1.79645}
approximates the solution near 1.5. Note that FindRoot may be used
to approximate complex solutions as well. To obtain initial guesses, ob-
serve that the solutions of f(z) = 0, z = x+iy, x, y real, are the level curves
of w = |f(2)| that are points. In Figure 2-31, we use ContourPlot to
graph various level curves of w = |f(x+iy)|, -2 =x < 2,-2 <y < 2. In the
plot, observe that the two complex solutions occur at x + iy ~ 0.5 £ 1.2i.

In[219] := f[z.] =z° +2* -42>+222-32-7;

In[220] := ContourPlot[Abs[f[x+Iy]], {x,-2,2},
{y, -2, 2}, ContoursShading -» False,
Contours - 60,
PlotPoints -» 200,
Frame -» False, Axes -» Automatic,
AxesOrigin-» {0, 0}]

Thus, entering

In[221] := FindRoot[f[z] ==0, {z, 0.5+ 1.2T}]
Out [221] {z—>0.41452+1.19996 1}
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Figure 2-31 Levelcurvesof w = [f(x+iy)l, 2<x=<2,-2<y<2

approximates the solution near x + iy ~ 0.5 + 1.2i. For polynomials with
real coefficients, complex solutions occur in conjugate pairs so the other

complex solution is approximately 0.41452 — 1.19996i.
|

To approximate points in a two-dimensional graphic, first move the cursor within

the graphics cell and click once. Notice that a box appears around the graph as
shown in the following screen shot.

ece Chap24N1.nb =]
~

. ]

wips £[z_1 =2 +2' -4z 4227 3z-7: 3

= ContourPlot[Abs(f(x+I¥1]. (1. -2. 2). (¥. -Z. 2).
ContourShading - False. Contours — 60,
PlotPoints - 200. Frame - False. Ares —» Automatic.
AzesOrigin - (0. 0)]

oule - ContourGraphics - 3

(0.403,1.2) [ 100% ¥l &
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10

-10

Figure2-32 y=xandy =tanx

Next, press and hold down the command-key. As you move the cursor within the
graphics cell, notice that the thermometer at the bottom of the screen has changed
to ordered pairs approximating the location of the cursor within the graphics cell.

EXAMPLE 2.4.9: Find the first three nonnegative solutions of x = tan x.

SOLUTION: We attempt to solve x = tanx with Solve.

In[222] := Solve[x == Tan[x], x]

Solve :: "tdep" : "Theequationsappeartoinvolve
transcendentalfunctionsofthevariablesin
anessentiallynon - algebraicway."

Out [222] = Solve([x == Tan[x], x]

We next graph y = x and y = tan x together in Figure 2-32.

In[223] := Plot[{x, Tan[x]}, {x, 0, 41},
PlotRange- > {-4rm, 47},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]}]

Remember that vertical lines

are never the graphs of In the graph, we see that x = 0 is a solution. This is confirmed with

functions. In this case, they FindRoot.

represent the vertical

asymptotes at odd multiples In[224] := FindRoot[x == Tan[x], {x, 0}]
of /2.

Out [224]= {x—> 0.}

The second solution is near 4 while the third solution is near 7. Using
FindRoot together with these initial approximations locates the sec-
ond two solutions.



2.4 Solving Equations

In[225] := FindRoot[x == Tan[x], {x, 4}]
Out [225]= {x—4.49341)}

In[226] := FindRoot[x == Tan[x], {x, 7}]
Out [226]= {x— 7.72525}

FindRoot can also be used to approximate solutions to systems of equations.
(Although NRoots can solve a polynomial equation, NRoots cannot be used to
solve a system of polynomial equations.) When approximations of solutions of
systems of equations are desired, use either Solve and N together, when possible,
or FindRoot.

EXAMPLE 2.4.10: Approximate the solutions to the system of equa-
Ix2+4xy+y2 =4

tions .
le2 —dxy+2y* =8

SOLUTION: We begin by using ContourPlot to graph each equa-
tion in Figure 2-33. From the resulting graph, we see that x> +4xy+y* = 4
is a hyperbola, 5x* — 4xy + 2y* = 8 is an ellipse, and there are four solu-
tions to the system of equations.

In[227] := cpl = ContourPlot [x2 +4xy+yi-4,
{x,-4,4}, {y, -4, 4},
Contours » {0}, PlotPoints -» 60,
ContourShading -» False,
DisplayFunction - Identity] ;

cp2 = ContourPlot |:5x2 - 4xy + 2y2 -8,
{x,-4,4}, {y, -4, 4},
Contours -» {0}, PlotPoints -» 60,
ContourStyle- >Dashing[{0.01}],
ContourShading » False,
DisplayFunction - Identity] ;

Show[cpl, cp2, Frame » False,
Axes -» Automatic, AxesOrigin - {0, 0},
DisplayFunction -» $DisplayFunction]

From the graph we see that possible solutions are (0, 2) and (0, -2). In
fact, substitutingx = 0and y = -2 and x = 0 and y = 2 into each equation
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Figure 2-33 Graphs of x* + 4xy + y* = 4 and 5x* — 4xy + 2y* =8

verifies that these points are both exact solutions of the equation. The
remaining two solutions are approximated with FindRoot.

In[228] := FindRoot[{x2 + 4xy +y2 ==4,
5x% - 4xy + 2y° == 8}, {x, 1}, {y., 0.25}]
Out [228]= {x—>1.39262,y > 0.348155}

In[229] := FindRoot[{x2 +4xy +y® == 4,
5x% - 4xy + 2y” == 8}, {x, -1}, {y, -0.25}]
Out [229]= {x—>-1.39262,y > -0.348155}



Calculus

Chapter 3 introduces Mathematica’s built-in calculus commands. The examples
used to illustrate the various commands are similar to examples routinely done in
first-year calculus courses.

3.1 Limits

One of the first topics discussed in calculus is that of limits. Mathematica can be
used to investigate limits graphically and numerically. In addition, the Mathematica
command

Limit [f [x],x->a]

attempts to compute the limit of y = f(x) as x approaches a, lim,_,, f(x), where a
can be a finite number, co (Infinity), or—oco (-Infinity). The arrow “->" is
obtained by typing a minus sign “-” followed by a greater than sign “>".

Remark. To define a function of a single variable, f(x) = expressioninx, enter
f[x_]=expression in x. To generate a basic plot of y = f(x) fora = x < b,
enter Plot [f [x], {x,a,b}].
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Clear [£] clears all prior
definitions of f, if any.
Clearing function definitions
before defining new ones

helps eliminate any possible

confusion and/or ambiguities.

Random[Real, {a,b}]
returns a “random” real
number between a and b.
Because we are generating
“random” numbers, your
results will differ from those
obtained here.

Chapter 3 Calculus

Vs

Figure 3-1 Graph of f(x) = 23 on the interval [-7, 7]

3.1.1 Using Graphs and Tables to Predict Limits

EXAMPLE 3.1.1: Use a graph and table of values to investigate

. sin 3x
lim, o ——

SOLUTION: We clear all prior definitions of f, define f (x) = sin 3x i
x

and then graph y = f(x) on the interval [-x, 7] with P1ot.

In[230] := Clear[f]

f[x_.] = Sin[3x]/x;
Plot[f[x], {x, -7, m}]

From the graph shown in Figure 3-1, we might, correctly, conclude that
lim,_, % = 3. Further evidence that lim,_ % = 3 can be obtained
by computing the values of f(x) for values of x “near” 0. In the follow-
ing, we use Random to define xvals to be a table of 6 “random” real
numbers. The first number in xvals is between —1 and 1, the second

between —1/10 and 1/10, and so on.

In[231] := xvals = Table[Random[Real,
{-1/10"n, 1/10"°n}], {n, 0, 5}1]

Out [231]= {0.244954, 0.0267254,
0.00433248, -0.000864136,
-0.0000995605, 1.83354 10'6}
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We then use Map to compute the value of f(x) for each x in xvals. Map [£, {x1,%x2, ...,xn}]
returns the list
In[232] := Map[£f, xvals] {f ), f2), s fQx0))

Out [232]= {2.73719,2.99679,
2.99992, 3.,
3.,3.}
sin3x _

T =

= 3 but they are

From these values, we might again correctly deduce that lim,_,o
3. Of course, these results do not prove that lim,_,o %3‘
helpful in convincing us that lim,_,o % =3.

|

3.1.2 Computing Limits

Some limits involving rational functions can be computed by factoring the numer-
ator and denominator.

2%% +25x+ 72

EXAMPLE 3.1.2: Compute lim, , o - — =
OMPHE M9 70 470 — 142

SOLUTION: We define fracl to be the rational expression
2x% +25x + 72

72— 47x — 14x2° .
x = =972 by using Replaceall (/.) to evaluate fracl if x = -9/2

but see that it is undefined.

We then attempt to compute the value of fraci if

In[233]:= fracl = (2x"2 +25x+72)/(72-47x-14x"2);
fracl/.x- >-9/2
Power :: "infy" :
"Infiniteexpressionl0 encountered."

o :: "indet" : "Indeterminateexpression0

InterpretationBox[ComplexInfinity;
DirectedInfinity([]]encountered."
Out [233] = Indeterminate

Factoring the numerator and denominator with Factor, Numerator,
and Denominator, we see that

2x% +25x + 72 . x+8)(2x+9) . x+8
im ——————— = _ =
x>-9/2 72 — 47x — 14x2

T B =T (2x+9)  oop 8 —Tx
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The fraction (x + 8)/(8 — 7x) is named frac2 and the limit is evaluated
by computing the value of frac2 if x = —9/2.

In[234] : = Factor[Numerator[fracl]]
out [234]= (8+x) (9+2 x)

In[235] := Factor[Denominator[fracl]]

Out [235]= -(9+2 x) (-8+7 x)

In[236] := frac2 = Simplify[fracl]

8 +Xx
Out [236] =
8-7 x
Simplify [expression]
attempts to simplify In[237] := frac2/.x- >-9/2
expression. 7
Out [237]= —
79

We conclude that
2% +25x+ 72 7

m _—————— = —.
x5 T2 — 4Tx — 1432 79
|
We can also use the Limit command to evaluate frequently encountered limits.

Limit [f [x],x->a]

attempts to compute lim,_,, f(x).
Thus, entering

In[238] := Limit[ (2x"2 + 25x+ 72) /(72 - 47x - 14x"2) , x- > -9/2]
7

Out [238]= —
79

. 2
computes lim,,_o/» S22 = 7/79.

3x2 —7x =20 )
21x2 + 14x - 357

1
— (e) limxeoo e—ZX\/};
X

EXAMPLE 3.1.3: Calculate each limit: (a) lim,,_s/3

3x

®) Timeo 2% (©) Time, (1 ; 1) ; (d) Timog
X X

and (f) lim, .+ (i_ ! )
Inx x-1

SOLUTION: In each case, we use Limit to evaluate the indicated
limit. Entering

In[239] := Limit[(3x"2-7x-20) /(21x"2+14x-35), x- >-5/3]
17
Out [239]= —
[ ] e
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computes
. 3x% = 7x =20 17
lim ————— = —;
x>-5/3 21x2 + 14x - 35 56

and entering

In[240] := Limit[Sin[x]/x, x- >0]
1

Out [240]

computes
sinx
lim — =1
x-0 X
Mathematica represents co by Infinity. Thus, entering
In[241] := Limit[(1+1/x) "x, x- > ]
Out [241]= e

computes

1\*
1im(l+f) =e.

X—00 X

Entering

In[242] := Limit[ (Exp[3x] - 1) /x, x- >0]
Out [242]= 3

computes

Entering

In[243] := Limit[Exp[-2x]Sgrt[x], x- > x]
Out [243]= 0

computes lim,,, e7>*y/x = 0, and entering Because In x is undefined for
x =< 0, a right-hand limit is
In[244] := Limit [l/Log [x] - 1/(x -1),x->1] mathematically necessary,
1 even though Mathematica’s
Out [244]= — Limit function computes

2

the limit correctly without
computes the distinction.

hm(L 1 )_l
wi\lnx x-1) 2

We can often use the Limit command to compute symbolic limits.
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EXAMPLE 3.1.4: If $P is compounded n times per year at an annual
interest rate of r, the value of the account, A, after ¢ years is given by

nt
A=(1+f) .
n

The formula for continuously compounded interest is obtained by taking
the limit of this expression as ¢ — co.

SOLUTION: The formula for continuously compounded interest, A =
Pe", is obtained using Limit.

In[245] := Limit[p(l+r/n) " (n t), n- >»]
Out [245]=e" " p

3.1.3 One-Sided Limits

In some cases, Mathematica can compute certain one-sided limits. The command
Limit [f [x],x->a,Direction->1]

attempts to compute lim,,,- f(x) while
Limit [f [x],x->a,Direction->-1]

attempts to compute lim,,,+ f(x).

EXAMPLE 3.1.5: Compute (a) lim,o+ [x/x; (b) lim,—o- bxl/x; (c) lim,q- e™%;
and (d) lim,o- e~

SOLUTION: Even though lim,_ [x//x does not exist, lim,o+ [x/x = 1
and lim.o- [x/x = -1, as we see using Limit together with the
Direction->1 and Direction->-1 options, respectively.

In[246] := Limit[Abs[x]/x, x- >0]
Out [246]= 1

In[247] := Limit[Abs[x]/x, x- >0, Direction- > -1]
Out [247]= 1
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In[248] := Limit[Abs[x]/x, x- >0, Direction- >1]

out [248]= -1
The Direction->-1 and Direction->1 options are used to calcu-
late the correct values for (c) and (d), respectively. For (c), we have:

In[249] := Limit[1/x, x- > 0]

Out [249] = o

In[250] := Limit[1/x, x- >0, Direction- > -1]

Out [250] =

In[251] := Limit[1/x, x- >0, Direction- >1]

Out [251]= -

Technically, lim, e™*

is incorrect.

does not exist (see Figure 3-2) so the following

In[252] := Limit[Exp[-1/x], x- >0]
Out [252]= 0

However, using Limit together with the Direction option gives the
correct left and right limits.

In[253] := Limit[Exp[-1/x], x- >0, Direction- >1]

out [253] = =

In[254] := Limit[Exp[-1/x], x- >0, Direction- > -1]

out [254]= 0
We confirm these results by graphing y = ¢~* with Plot in Figure 3-2.

In[255] := Plot[Exp[-1/x], {x,-3/2,3/2},
PlotRange- > {{-1, 1}, {0,10}}]

The Limit command together with the Direction->1 and Direction->-1
optionsis a “fragile” command and should be used with caution because its results
are unpredictable, especially for the beginner. It is wise to check or confirm results
using a different technique for nearly all problems faced by the beginner.

103



104 Chapter 3 Calculus

10

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

Figure 3-2 Graph of y = ¢”* on the interval [-3/2, 3/2]

3.2 Differential Calculus

3.2.1 Definition of the Derivative

Definition 1. The derivative of y = f(x) is

r_ ot _ﬂ_- f(-x+h)_f(x)
y=fk= T —},E%ih , (3.1)

provided the limit exists.

The Limit command can be used along with Simplify to compute the deriva-
tive of a function using the definition of the derivative.

EXAMPLE 3.2.1: Use the definition of the derivative to compute the
derivative of (a) f(x) = x + 1/x, (b) g(x) = 1/4/x, and (c) h(x) = sin 2x.

SOLUTION: For (a) and (b), we first define f and g, compute the dif-
ference quotient, (f(x + h) — f(x))/h, simplify the difference quotient with
Simplify, and use Limit to calculate the derivative.

In[256] := £f[x.] =x+1/x%x;
sl= (£[x+h] - £[x])/h

1
h+x

h-1+
X
h

In[257] := 82 = Simplify[sl]
-1+h x+x?

x (h+x)

Out [256] =

out [257] =
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In[258] := Limit[s2, h- >0]
-1 +x?

Out [258] = 3

X
In[259] := g[x.] = 1/Sqrt[x]
sl= (g[lx+h] -g[x])/h

1
Out [259] = —
VX
_1 o, 1
out [259] = —x hx
h
In[260] := s2 = Together([sl]
-+h
out [260]= YEZVB+X
h /x vVh+x
In[261] := Limit[s2, h- >0]
1
Out [261] = Sz

For (c), we define i and then use TrigExpand to simplify the difference
quotient. We use Limit to compute the derivative. The result indicates
that d © (sin2x) = 2 cos 2x.

If the derivative of y = f(x) exists at x = a, a geometric interpretation of f’(a) is that
f'(a) is the slope of the line tangent to the graph of y = f(x) at the point (a, f(a)).
To motivate the definition of the derivative, many calculus texts choose a value
of x, x = a, and then draw the graph of the secant line passing through the points
(a, f(a)) and (a + h, f(a + h)) for “small” values of & to show that as & approaches 0,
the secant line approaches the tangent line. An equation of the secant line passing

In[262] := h[x.] = Sin[2x];
s2 = (h[x+h] -h[x])/h
-Sin[2 x] +Sin[2 (h+x)]
h
In[263] := s2 = TrigExpand[s2]

Out [262] =

Out [263] = %(2 Cos[h] Cos[x]? Sin[h] -2 Cos[x] Sin[x]+

2 Cos[h]? Cos[x] Sin[x]-
2 Cos[x] Sin[h]2 Sin[x]
2

A7)

2 Cos[h] Sin[h] Sin|
In[264] := 83 = Limit[s2, h- >0]
Out [264]= 2 Cos[2 x]

through the points (g, f(a)) and (a + h, f(a + h)) is given by

fla+h) - f(a) fla+h) - f(a)

y=fla)=————""—@k-a) or y="————@-a+fla.

(a+h)—a h
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O=———————————————+<thap2nib————HE
wzl= Do[Plot[{£[x]. ¥[x. 1 /h]}. ]_
{z. -3. 3}. PlotRange —> {-10. 10}].
{h. 1. 10}]
10
Tl
s
2.5
-3 -2 =1 1 2 3
-2.5
-5
-7.5 =
-1 =
EEEIEEEN00% [i] [T~

Figure 3-3 An animation

EXAMPLE 3.2.2: If f(x) = 9 — 4x2, graph f(x) together with the secant
line containing (1, f(1)) and (1 + &, f(1 + h)) for various values of .

SOLUTION: We define f(x) = 9—4x* and y(x, &) to be a function returning
the line containing (1, f(1)) and (1 + &, f(1 + h)).

In[265] := £[x.] =9 - 4x"2;
yIx_,h]=(£[1+h] - £[1])/h(x-1) + £[1];

In the following, we use Do to show the graphs of f(x) and y(x, #) for
h =1,2,...,9. The resulting animation can be played and controlled
from the Mathematica menu. (See Figure 3-3.)

In[266] := Do[Plot[{£f[x],yI[x,1/hl},
{x,-3,3}, PlotRange- > {-10, 10}],
{h,1,10}]

If instead the command is entered as
In[267] := listofgraphics = Table[Plot[{£f[x], y[x, 1/h]l},

{x, -3, 3}, PlotRange- > {-10, 10},
DisplayFunction- > Identity], {h, 1, 10}]

In[268] := toshow = Partition[listofgraphics, 3]

In[269] := Show[GraphicsArray[toshow]]

the result is displayed as a graphics array. (See Figure 3-4.)
|
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323 4 1T\ 3 -3 -2/3 o 1T\ 3 -3 -2/3 5 1T\ 3
-5 -5 -5
-7.5 -7.5 -7.5
-10 -10 -10

Figure 3-4 A graphics array

3.2.2 Calculating Derivatives
The functions D and * are used to differentiate functions. Assuming that y = f(x)
is differentiable,

1. D[£f [x],x] computes and returns f’(x) = d f/dx,

2. £’ [x] computes and returns f’(x) = df/dx,

3. £/ [x] computes and returns [ (x) = d*f/dx*, and

4. D[£ [x], {x,n}] computes and returns f®(x) = d" f/dx".

Mathematica knows the numerous differentiation rules, including the product,
quotient, and chain rules. Thus, entering

In[270] := Clear[£f, g]
D[f[x]glx], x]

out [270]= g[x] f'[x]+£f[x] g [x]
shows us that %( f(x) - g(x) = f'(0)g(x) + f(x)g'(x); entering
In[271] := Together[D[£f[x]/g[x], x]]

glx] £'{x] -f{x] g'[x]

Oout [271] =
" g[x]?
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shows us that %( Fx)/g) = (f (0)gx) — fF(x)g' )/ (g(x))?; and entering
In[272] := D[£[g[x]], x]

Oout [272]= £'[g[x]] g [x]

shows us that L (f (g(x))) = £/ (g(x)) g’ (x).

EXAMPLE 3.2.3: Compute the first and second derivatives of (a) y =
X+ %XS =322, (b) fx) = 4°° - %X“ - 1043, (¢) y = VeX +e2x, and
(d)y=0+1/x)".

SOLUTION: For (a), we use D.

In[273] := D[x"4 +4/3x"3 -3x"2, x]
out [273]= -6 x+4 x*+4 x°

In[274] := D[x"4 +4/3x"3 -3x"2, {x, 2}]
out [274]= -6+8 x+12 x?

For (b), we first define f and then use ' together with Factor to calcu-
late and factor f’(x) and f”(x).

In[275] :

f[x.] =4x"5-5/2x"4-10x"3;
Factor[f' [x]]

Factor[f" [x]]
out [275]= 10 x* (1+x) (-3+2 x)
out[275]= 10 x (-6-3 x+8 x°)

For (c), we use Simplify together with D to calculate and simplify y’
and y”.

In[276] := D[Sqgrt[Exp[2x] + Exp[-2x]], x]

-2 e? *42 2 %
2 Ve?2 x4e2 x

In[277] := D[Sqrt[Exp[2x] + Exp[-2x]], {x,2}]//Simplify

Ve2 x4e2 % (146 e* *+e8 X)

(1+et x)?

Out [276] =

out [277] =

By hand, (d) would require logarithmic differentiation. The second
derivative would be particularly difficult to compute by hand.
Mathematica quickly computes and simplifies each derivative.
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In[278] := Simplify[D[(1+1/x) "%, x]]

(1+i)x (—l+(l+x) Log[1+i])

Oout [278] =

1+x
In[279] := Simplify[D[(1+1/x)"x, {x,2}]]
(1+l>X (—l+x—2 x (1+x) Log[l+i}+x (1+x)2 Log[1+i]2)

X

Out [279] = x (1+x)°2

The command Map [£, 1ist] applies the function £ to each element of the list map and operations on lists

list. Thus, if you are computing the derivatives of a large number of functions, arecd‘“““e: in more decail
. in Chapter 4.

you can use Map together with D. i hepter

Remark. A built-in Mathematica function is threadable if £ [1ist] returns the

same result as Map [£, 1ist]. Many familiar functions like D and Integrate are
threadable.

EXAMPLE 3.2.4: Compute the first and second derivatives of sin x, cos x,

tanx, sin”! x, cos™! x, and tan™! x.

SOLUTION: Notice that lists are contained in braces. Thus, entering

In[280] := Map[DI[#, x]&,
{Sin[x], Cos[x], Tan[x], ArcSin[x], ArcCos[x],
ArcTan[x]}]
out [280]= {Cos[x], -Sin[x], Sec[x]?,
1 1 1

l—le_\/l—x2/ 1+X2}

computes the first derivative of the three trigonometric functions and
their inverses. In this case, we have applied a pure function to the list
of trigonometric functions and their inverses. Given an argument #,
D [#, x] & computes the derivative of # with respect to x. The & symbol
is used to mark the end of a pure function. Similarly, entering

In[281] := Map[D[#, {x, 2}]&,
{Sin[x], Cos[x], Tan[x], ArcSin[x], ArcCos[x],
ArcTan[x]}]

ble

out [281]= {-Sin[x], -Cos[x], 2 Sec[x]? Tan[x],m,
X 2 X

(1-x2)2" (1+x2)2}
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computes the second derivative of the three trigonometric functions
and their inverses. Because D is threadable, the same results are obtained
with

In[282] := D[
{S8in[x], Cos[x], Tan[x], ArcSin[x],
ArcCos|[x], ArcTan[x]},
x]

1 1 1

2 —
I Vioxzl o A1-ox2’ 1+X2}

out [282]= {Cos[x], -Sin[x], Sec[x

In[283]:= D[
{8in[x], Cos[x], Tan[x], ArcSin[x],
ArcCos|[x], ArcTan[x]},
{x, 2}1]

Out [283] = { -8in[x], -Cos[x], 2 Sec[x]? Tan[x],

X 2 X }
(1-x2)2%" (1+x2)?2

3.2.3 Implicit Differentiation

If an equation contains two variables, x and y, implicit differentiation can be carried
out by explicitly declaring y to be a function of x, y = y(x), and using D or by using
the Dt command.

EXAMPLE 3.2.5: Find y’ = dy/dx if (a) cos (¢¥) = x and (b) In (x/y)+5xy =
3y.

SOLUTION: For (a) we illustrate the use of D. Notice that we are care-
ful to specifically indicate that y = y(x). First we differentiate with
respect to x

In[284] := sl =D[Cos[Exp[x yI[x]]] - x, x]

Oout [284] = BoxData (-1-e* Y ginf[e* Y¥I] (y[x]+x v [x]))
and then we solve the resulting equation for y’ = dy/dx with Solve.
In[285] := Solve[sl ==0,y [x]]

Out [285] = BoxData ({{y'[x] = -

e Y¥1 cgele* Y¥I] (1+e* YIX] ginfe* ¥YI¥I] y[x])
X

)
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For (b), we use Dt. When using Dt, we interpret Dt [x] = 1 and Dt [y] =
y' = dy/dx. Thus, entering

In[286] := 82 =Dt[Log[x/y] + 5x y - 3y]

y (Dt[x] _x Dt[y]>
Y y?
Out [286]= 5 y Dt[x]-3 Dt[y]+5 x Dt[y]+
X

In[287] := 83 =s2/.{Dt[x]- >1,Dt[y]- >dydx}

_ dydx x +;) v

y? Y
Out [287]= -3 dydx+5 dydx x+5 y+
X

In[288] := Solve[s3 == 0, dydx]

y (1+5 x vy)
Out [288] = {{dde%*X (-1-3 y+5 x Vy) }}

shows us that if In (x/y) + 5xy = 3y,

,_dy _ (1L+5xy)y
y= dx ~ (5xy—3y—1Ix

3.2.4 Tangent Lines

If f’(a) exists, we interpret f’(a) to be the slope of the line tangent to the graph of
y = f(x) at the point (g, f(a)). An equation of the tangent is given by

y=fl@=f(@x-a or y=f(ax-a +fla)

EXAMPLE 3.2.6: Find an equation of the line tangent to the graph of
fx) = sinx"? + cos"? x

at the point with x-coordinate x = 57/3.

SOLUTION: Because we will be graphing a function involving odd
roots of negative numbers, we begin by loading the RealOnly package
contained in the Miscellaneous folder (or directory). We then define
f(x) and compute f’(x).

In[289] := <<Miscellaneous‘RealOnly"

In[290] := £[x.] = Sin[x~(1/3)] + Cos[x]"(1/3);

In[291] :

£ [x]
Cos [x'?] Sin[x]
3 x2/3 3 Cos[x]%7

Out [291] =
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Then, the slope of the line tangent to the graph of f(x) at the point with
x-coordinate x = 57/3 is

571 1/3
cos [ (%) ]

.
21/3 43 313 (57)2/7

Out [291] =

In[292] := £ [5n/3]1//N
Out [292]= 0.440013

while the y-coordinate of the point is

In[293] := £[5n/3]

57
out [293] = —+Sin[(T)

In[294] := £[5n/3]1//N

Out [294]= 1.78001

Thus, an equation of the line tangent to the graph of f(x) at the point
with x-coordinate x = 57/3 is

y- (\3/15 +sin</%) = (C\%g + \3/51\/5]()“ 531)

as shown in Figure 3-5.

In[295] := pl =Plot[£f[x], {x, 0, 45},
DisplayFunction -» Identity];

ListPlot[{{5n/3, £[5n/3]1}//N},
PlotStyle » PointSize[0.03],
DisplayFunction -» Identity];

p2

Plot[£f' [5n7/3] (x-57n/3) + £[57n/3], {x, 0, 4n},
PlotStyle- > GrayLevel[0.6],
DisplayFunction -» Identity]:;

p3

In[296] := Show[pl, p2, p3, AspectRatio- > Automatic,
DisplayFunction -» $DisplayFunction]

EXAMPLE 3.2.7: Find an equation of the line tangent to the graph of
f(x) =9 — 4x? at the point (1, f(1)).
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Figure 3-5 f(x) = sinx"? + cos"? x together with its tangent at the point (57/3, f (57/3))

10

Figure 3-6  f(x) together with its tangent at (1, f(1))

SOLUTION: After defining f, we see that f(1) =5 and f’(1) = -8

In[297] := £[x.] =9 -4x"2;
£[1]
£[1]

Out [297]= 5

Out [297]= -8

so an equation of the line tangent to y = f(x) at the point (1, 5)isy -5 =
—8(x — 1) or y = —8x + 13. We can visualize the tangent at (1, f(1)) with
Plot. (See Figure 3-6.)

In[298] := Plot[{f[x], £ [1](x-1) + £[1]1}, {x, -3, 3},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
PlotRange- > {-10, 10}]
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I=="=r—— sChap2nb=—"——— =]

in[14= Do[Plot[{f[x]. £'[a] (x -a) + F[al}. {x. -3. 3}.
PlotStyle -» {GrayLevel[0]. GrayLevel[.3]}. PlotRange -» {-10. 10}].
{a. -2. 2. 4/49)]

4
Py
i}

=D

e 1007w [l KD

Figure 3-7 An animation

In addition, we can view a sequence of lines tangent to the graph of a
function for a sequence of x values using Do. In the following, we use
Do to generate graphs of y = f(x) and y = f’(a)(x—a)+ f(a) for 50 equally
spaced values of a between -3 and 3. (See Figure 3-7.)

In[299] := Do[Plot[{f[x], £ [a]l (x-a) + £[a]l}, {x, -3, 3}, }
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
PlotRange- > {-10, 10}], {a, -2, 2, 4/49}]

On the other hand,

In[300] := listofgraphics = Table|[
Plot[{f[x], f'[a]l (x-a) + f[al}, {x, -3, 3},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
PlotRange- > {-10, 10},
DisplayFunction- > Identityl, {a, -2,2,4/8}];
toshow = Partition[listofgraphics, 3];
Show[GraphicsArray[toshow] ]

graphsy = f(x) and y = f'(a)(x —a) + f(a) for nine equally spaced values
of a between —3 and 3 and displays the result as a graphics array. (See
Figure 3-8.)

In the graphs, notice that where the tangent lines have positive slope
(f'(x) > 0), f(x) is increasing while where the tangent lines have nega-
tive slope (f’(x) < 0), f(x) is decreasing.

|
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-3 - 35 1\2 3 -3 -2/-1 ¢ 1\2 3 -3 -2/-1 ¢ 1\2
-5 -5 -5
-7.5 -7.5 -7.5
-10 -10 -10
10 10 10
75 75 7’5
5 5 5
2.5 2.5 2.5

32/ 1 3 32/ T\2 3 32/ 1T\2
-5 -5 -5
-7.5 -7.5 -7.5
-10 -10 -10
Figure 3-8  f(x) together with various tangents

Tangent Lines of Implicit Functions

EXAMPLE 3.2.8: Find equations of the tangent line and normal line to
the graph of x>y — y* = 8 at the point (-3, 1). Find and simplify y” =
d>y/dx>.

SOLUTION: We will evaluate yY = dy/dx if x = -3 and y = 1 to
determine the slope of the tangent line at the point (-3, 1). Note that
we cannot (easily) solve x’y —y* = 8 for y so we use implicit differentia-
tion to find ¥’ = dy/dx:

% Py =)= %(8)
2xy +x%y = 3y*y =0
’ —2xy
Y =2 3y

In[301]:= eq=x"2y-y"3 ==
Out [301]= x*y -y’ ==8

115

By the product and chain
rules,

42y = L+ L) =

2x<_v+x2~£ =2y + X%y,
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In[302] := sl =Dt[eq]
Out [302]= 2xyDt[x] +x°Dt[y] -3y*Dt[y] ==0

In[303]:= s2=s1/.Dt[x] > 1
Oout [303]= 2xy+x’Dt[y] -3y?’Dt[y] ==0

In[304] := 83 = Solve[s2,Dt[y]]
2XY
Lists are discussed in more Notice that s3 is a list. The formula for y’ = dy/dx is the second part of
detail in Chapter 4. the first part of the first part of s3 and extracted from s3 with
In[305]:= s3[[1,1,2]]
2XYy
Out [305] = —m
We then use ReplaceAll (/.) to find that the slope of the tangent at
(-3, 1)is

In[306]:= s3[[1,1,2]]/.{x>-3,y->1}
Out [306]= 1

The slope of the normal is —1/1 = —1. Equations of the tangent and
normal are given by

y=1=1(x+3) and y—1=-1(x+3),

respectively. See Figure 3-9.

In[307] := cpl = ContourPlot[x"2y-y~3 -8, {x,-5,5}, {y,-5,5},
Contours » {0}, ContourShading -» False,
PlotPoints -» 200, DisplayFunction » Identity];

pl = ListPlot[{{-3,1}},
PlotStyle » PointSize[0.03],
DisplayFunction -» Identity];

p2 =Plot[{(x+3)+1,-(x+3) +1}, {x,-5,5},

PlotStyle -» GrayLevel[0.3],
DisplayFunction -» Identity];

Show[cpl, pl, p2, Frame » False, Axes -» Automatic,
AxesOrigin-» {0, 0}, AspectRatio » Automatic,
DisplayFunction -» $DisplayFunction]

To find y” = d*y/dx*, we proceed as follows.

In[308] := s4 =Dt[s3[[1,1,2]]]//Simplify
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Figure 3-9 Graphs of x?y — y* = 8 (in black) and the tangent and normal at (-3, 1) (in gray)

2 (x?+3vy?) (-yDt[x] +xDt[y])
(x2-3y%)”

In[309] := s5=84/.Dt[x] »1/.83[[1]]//Simplify

6y (x*-y?) (x*+3y?%)

(x2-3y?)°

out [308]= -

Out [309] =

The result means that

"o

d’y 6 (xzy - y3) (x2 + 3y2)
T dx? (2 = 3y2)’ '

y
Because x%y — y* = 8, the second derivative is further simplified to
d?y  48(x* +3)?)

T dx? (x2 _ 3y2)3 ’

"o_

Parametric Equations and Polar Coordinates
For the parametric equations {x = f(¢),y = g(t)},t € I,

, _dy dy/dt  g'()

R N T )

and
,  d*y _ddy d/di(dy/dx)

T4 drdx | dwdr
If {x = f(t), y = g()} has a tangent line at the point (f(a), g(a)), parametric equations
of the tangent are given by

x=fla)+1tf(a) and y = gla) +t¢g'(a). (3.2)
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If f'(a), g'(a) # 0, we can eliminate the parameter from (3.2)

x=fl@ _y=g@
f(a) g'(a)

g(@)
@ (x = f(@)

y—gla) =

and obtain an equation of the tangent line in point-slope form.

In[310]:= 1 =Solve[x[a] +t x'[a] == cx, t]

r = Solve[y[a] +t y'[a] ==cy, t]

-cx +x[a]
Out [310]= BoxData ({{t>-———11})
x'[a]
Out [310]= BoxData ({{t » - Y ¥lal .,
v'[a]

EXAMPLE 3.2.9 (The Cycloid): The cycloid has parametric equations

X =1-sint and y=1-cost.

Graph the cycloid together with the line tangent to the graph of the
cycloid at the point (x(a), y(a)) for various values of a between —27 and

4r.

SOLUTION: After defining x and y we use ’ to compute dy/dt and
dx/dt. We then compute dy/dx = (dy/dt)/(dx/dt) and d*y/dx*.

In[311]:=

Out [311]=
out [311]=

Out [311]=

In[312] :=

Out [312]

x[t.] =t-8in[t];
y[t-] =1-Cos[t];
dx =x'[t]

dy =y’ [t]

dydx = dy/dx

1-Cos|[t]

Sin[t]

Sin[t]

1-Cos[t]

dypdt = Simplify[D[dydx, t]]
1

-1+ Cos|[t]
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In[313] := secondderiv = Simplify[dypdt/dx]

1
Out [313]= - —ryy?

We then use ParametricPlot to graph the cycloid for 27 <t < 4x,
naming the resulting graph p1.

In[314] := pl = ParametricPlot[{x[t], y[t]l}, {t, -2mx, 47},
PlotStyle- > {{GrayLevel[0], Thickness[0.01]}},

DisplayFunction- > Identity];

Next, we use Table to define toplot to be 40 tangent lines (3.2) using
equally spaced values of a between —27 and 47. We then graph each
line toplot and name the resulting graph p2. Finally, we show p1
and p2 together with the Show function. The resulting plot is shown to
scale because the lengths of the x and y-axes are equal and we include
the option AspectRatio->1. In the graphs, notice that on intervals
for which dy/dx is defined, dy/dx is a decreasing function and, conse-
quently, d*y/dx* < 0. (See Figure 3-10.)

In[315] := toplot = Table][
{x[a] +t x'[a]l,y[al +t y'[al}, {a, -2, 47, 671/39}];
p2 = ParametricPlot[Evaluate[toplot],
{t,-2,2}, PlotStyle- >GrayLevel[0.5],
DisplayFunction- > Identity];
Show[pl, p2, AspectRatio- >1, PlotRange- > {-3x, 37},
DisplayFunction- > $DisplayFunction]

EXAMPLE 3.2.10 (Orthogonal Curves): Two lines L; and L, with slopes
m; and my, respectively, are orthogonal if their slopes are negative
reciprocals: m; = —1/m;.

Extended to curves, we say that the curves C; and C, are orthogonal
at a point of intersection if their respective tangent lines to the curves
at that point are orthogonal.

Show that the family of curves with equation x* + 2xy — y* = C is
orthogonal to the family of curves with equation y? + 2xy — x> = C.

SOLUTION: We begin by defining eql and eg2 to be the left-hand
sides of the equations x* + 2xy—y? = C and y* + 2xy —x? = C, respectively.

In[316]:= eql=x"2+2x y-Y

~2;
eq2 =y 2+2x y-x"2;
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Figure 3-10 The cycloid with various tangents

We then use Dt to differentiate and Solve to find y’ = dy/dx. Because
the derivatives are negative reciprocals, we conclude that the curves are
orthogonal. We confirm this graphically by graphing several members
of each family with ContourPlot and showing the results together.
(See Figure 3-11.)

In[317] := BoxData({sl =Dt[eql]/.{Dt[x]- >1,Dt[y]- >dydx},
Solve[sl == 0, dydx]})

Out [317]= 2 x+2 dydx x+2 y-2 dydx y
X
Out [317]= {{dydx»—;y}}
X-y
In[318] := BoxData({s2 =Dt[eq2]/.{Dt[x]- >1,Dt[y]- >dydx},
Solve[s2 == 0, dydx]})
Out [318]= -2 x+2 dydx x+2 y+2 dydx y

-X+y
out [318]= {{dydx - - ey 1
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Figure 3-11 x? +2xy —y* = C and y* + 2xy — x* = C for various values of C

In[319] := cpl = ContourPlot[eql, {x, -5, 5}, {y,-5,5},
ContourShading- > False,

ContourStyle- > GrayLevel[0],

Frame- > False, Axes- > Automatic,

AxesOrigin- > {0, 0},

DisplayFunction- > Identity, PlotPoints- >60];
cp2 = ContourPlot[eq2, {x, -5, 5}, {y, -5, 5},

ContourShading- > False,

ContourStyle- > GrayLevel[0.4],

Frame- > False, Axes- >Automatic,

AxesOrigin- > {0, 0},

DisplayFunction- > Identity, PlotPoints- >60];
Show[cpl, cp2, DisplayFunction- > $DisplayFunction]

EXAMPLE 3.2.11 (Theorem 1. The Mean-Value Theorem for Deriva-
tives): If y = f(x) is continuous on [q, b] and differentiable on (a, b) then
there is at least one value of ¢ between a and b for which

f(b) - f(a)
a

- or, equivalently, f) - fa) = ()b - a). (3.3)

fllo) =

Find all number(s) ¢ that satisfy the conclusion of the Mean-Value
Theorem for f(x) = x> — 3x on the interval [0, 7/2].
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SOLUTION: By the power rule, f’(x) = 2x — 3. The slope of the secant
containing (0, f(0)) and (7/2, f(7/2)) is

J/2) - f0) 1

72-0 2
Solving 2x — 3 = 1/2 for x gives us x = 7/4.

In[320] := £[x.] =x"2 -3x

Out [320] = -3 x + x?

In[321] := Solve[f [x] == 0, x]

Out [321] = {{x» %}}

In[322] := Solvel[f [x] == (£[7/2] - £[0]1)/(7/2-0)1

7
out [322]= {{x~ Z}}

x = 7/4 satisfies the conclusion of the Mean-Value Theorem for f(x) =
x? — 3x on the interval [0, 7/2], as shown in Figure 3-12.

In[323]:= pl =Plot[f[x], {x, -2, 4},
DisplayFunction -» Identity];

p2 = Plot[£[x], {x,0,7/2},
PlotStyle -» Thickness[0.02],
DisplayFunction -» Identity];

p3 = ListPlot[{{0, £[01}, {7/4, £[7/41},
{7/2, £[7/21}}.,
PlotStyle » PointSize[0.05],
DisplayFunction -» Identity];

p4 =Plot[{f [7/4] (x-7/4) + £[7/4],
(£[7/2] - £[0])/(7/2 - 0)x},
{x,-2,4}, PlotStyle » {Dashing[{0.01}],
Dashing[{0.02}]},
DisplayFunction -» Identity];

Show|[pl, p2, p3, p4, DisplayFunction -»
$DisplayFunction, AspectRatio -» Automatic]
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Figure 3-12 Graphs of f(x) = x* — 3x, the secant containing (0, f(0)) and (7/2, f(7/2)), and
the tangent at (7/4, f(7/4))

3.2.5 The First Derivative Test and Second Derivative
Test

Examples 3.2.7 and 3.2.9 illustrate the following properties of the first and second
derivative.

Theorem 2. Let y = f(x) be continuous on [a, b] and differentiable on (a, b).

1. If f'(x) = O for all x in (a, b), then f(x) is constant on [a, D].
2. If f'(x) > 0 for all x in (a, b), then f(x) is increasing on [a, b].
3. If f'(x) < 0 for all x in (a, b), then f(x) is decreasing on [a, b].

For the second derivative, we have the following theorem.
Theorem 3. Let y = f(x) have a second derivative on (a, b).

1. If f”(x) > O for all x in (a, b), then the graph of f(x) is concave up on (a, b).
2. If f”(x) < O forall x in (a, b), then the graph of f(x) is concave down on (a, b).

The critical points correspond to those points on the graph of y = f(x) where
the tangent line is horizontal or vertical; the number x = a is a critical number if
f'(@) = 0 or f'(x) does not exist if x = a. The inflection points correspond to those
points on the graph of y = f(x) where the graph of y = f(x) is neither concave up

123
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nor concave down. Theorems 2 and 3 help establish the first derivative test and
second derivative test.

Theorem 4 (First Derivative Test). Let x = a be a critical number of a functiony = f(x)
continuous on an open interval I containing x = a. If f(x) is differentiable on I, except
possibly at x = a, f(a) can be classified as follows.

1. If f'(x) changes from positive to negative at x = a, then f(a) is a relative maxi-
mum.

2. If f’'(x) changes from negative to positive at x = a, then f(a) is a relative mini-
mum.

Theorem 5 (Second Derivative Test). Let x = a be a critical number of a function
y = f(x) and suppose that f"” (x) exists on an open interval containing x = a.

1. If f"(a) < 0, then f(a) is a relative maximum.
2. If f"(a) > 0, then f(a) is a relative minimum.

EXAMPLE 3.2.12: Graph f(x) = 3x° — 5x°.

SOLUTION: We begin by defining f(x) and then computing and fac-
toring f’(x) and f”'(x).

In[324]:= £[x.] =3x"5-5x"3;
dl = Factor[£f [x]]
d2 = Factor[£" [x]]
Out [324]= 15 (-1+x) x* (1+x)

out [324]= 30 x (-1+2 x?)

By inspection, we see that the critical numbers are x = 0, 1, and —1 while
f’x)=0ifx =0, 1/ V2, or —1/4/2. Of course, these values can also be
found with Solve as done next in cns and ins, respectively.

In[325] := cns = Solve[dl == 0]
ins = Solve[d2 == 0]

Out [325]= {{x—> -1}, {x—>0}, {x->0}, {x>1}}
1

b o5
We find the critical and inflection points by using / . (Replace All)to
compute f(x) for each value of x in cns and ins, respectively. The result
means that the critical points are (0, 0), (1, —2) and (-1, 2); the inflection
points are (0, 0), (1/V2, =7v2/8), and (=1/V2, 7\/2/8). We also see that
f”(0) = 0 so Theorem 5 cannot be used to classify f(0).

out [325]= {{x-0}, {x- -
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Figure 3-13  Graphs of | f"(x)V/f"(x) and | f” )V "' (x)

On the other hand, f”(1) = 30 > 0 and f”(-1) = =30 < 0 so by
Theorem 5, f(1) = -2 is a relative minimum and f(-1) = 2 is a relative
maximum.

In[326] := cps = {x, £[x]}/.cns

£ [x]/.cns

ips = {x, £[x]}/.ins
Out [326]= {{-1,2},{0,0},{0,0},{1,-2}}
out [326]= {-30,0,0,30}

7 1 7
out [326]= {{0, 0}, {

1

e e e

We can graphically determine the intervals of increase and decrease by
noting that if f'(x) > 0 (f'(x) < 0), IV f'x) = 1 (f' @V f'(x) = —1).
Similarly, the intervals for which the graph is concave up and con-
cave down can be determined by noting that if f”(x) > 0 (f”(x) < 0),
L7V (x) = 1 (1f” @V f"(x) = —1). We use P1lot to graph |f'(x)//f'(x)
and |f”(x)// " (x) in Figure 3-13.

In[327] := Plot[{Abs[dl]/dl, Abs[d2]/d42}, {x, -2, 2},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
PlotRange- > {-2, 2}]

From the graph, we see that f’(x) > 0 for x in (—co, =1) U (1, c0), f"(x) < 0
for xin (=1, 1), ”(x) > 0 for xin (-1/v/2, 0) U (1/V/2, o), and f”'(x) < 0 for
xin (—co, —1/4/2) U (0, 1/4/2). Thus, the graph of f(x) is

e increasing and concave down for x in (-0, —1),

e decreasing and concave down for x in (-1, -1/ V2),
e decreasing and concave up for x in (-1/ V2,0,

e decreasing and concave down for x in (0, 1V2),
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-2 -1 1 2
-1
-2

-4

Figure 3-14 f(x)for 2<x=<2and 4=<y=<4

e decreasing and concave up for x in (1/v2, 1), and
e increasing and concave up for x in (1, o).

We also see that f(0) = 0 is neither a relative minimum nor maximum.
To see all points of interest, our domain must contain —1 and 1 while our
range must contain —2 and 2. We choose to graph f(x) for -2 < x < 2;
we choose the range displayed to be -4 <y < 4. (See Figure 3-14.)

In[328] := Plot[f[x], {x, -2, 2}, PlotRange- > {-4, 4}]

Remember to be especially careful when working with functions that involve odd
roots.

EXAMPLE 3.2.13: Graph f(x) = (x - 2)*3(x + )3,

SOLUTION: We begin by defining f(x) and then computing and
simplifying f’(x) and f”(x) with * and Simplify.

In[329] := £[x.] = (x-2)"(2/3) (x+1)"~(1/3);
dl = Simplify[f [x]]

d2 = Simplify[£” [x]]
X

(-2 +x)*? (1+x)27
2

(—2+x)%% (1+x)°7

Out [329] =

Out [329]= -
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Figure 3-15 f(x)for 2 <x=<3

By inspection, we see that the critical numbers are x = 0, 2, and -1.
We cannot use Theorem 5 to classify f(2) and f(—1) because f”(x) is
undefined if x = 2 or —1. On the other hand, ”/(0) < 0 so f(0) =2¥3isa
relative maximum. By hand, we make a sign chart to see that the graph
of f(x)is

e increasing and concave up on (—oo, —~1),
e increasing and concave down on (-1, 0),
e decreasing and concave down on (0, 2), and
e increasing and concave down on (2, o).

Hence, f(-1) = 0 is neither a relative minimum nor maximum while
f(2) = 0 is a relative minimum by Theorem 4. To graph f(x), we load
the RealOnly package and then use Plot to graph f(x) for -2 <x < 3
in Figure 3-15.

In[330] := <<Miscellaneous‘'RealOnly"®
f£[0]

Plot[f[x], {x, -2, 3}]
out [330]= 22/

The previous examples illustrate that if x = g is a critical number of f(x) and f’(x)
makes a simple change in sign from positive to negative at x = g, then (a, f(a)) is a
relative maximum. If f’(x) makes a simple change in sign from negative to positive
atx = g, then (a, f(a)) is a relative minimum. Mathematica is especially useful in
investigating interesting functions for which this may not be the case.
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Figure 3-16  f(x) = [xsin(1)]" and f'(x) for -0.1 = x < 0.1

1
X

EXAMPLE 3.2.14: Consider

sz sin? (1) x+0
fx) = lO,x _ O.x

x = 0 is a critical number because f’(x) does not exist if x = 0. (0, 0)
is both a relative and absolute minimum, even though f’(x) does not
make a simple change in sign at x = 0, as illustrated in Figure 3-16.

In[331]:= £[x.] =x"2 Sin[1/x]"2;
f'[x]//Factor

out [331]= -2 sin[] (cos [Z] -x sin[])

In[332] := pl=Plot[£f[x], {x,-0.1,0.1},
DisplayFunction -» Identity];

p2 = Plot[f'[x], {x,-0.1,0.1},
DisplayFunction -» Identity];

Show|[GraphicsArray[{pl, p2}]]

Notice that the derivative “oscillates” infinitely many times near x =
0, so the first derivative test cannot be used to classify (0, 0).

3.2.6 Applied Max/Min Problems

Mathematica can be used to assist in solving maximization/minimization prob-
lems encountered in a differential calculus course.
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EXAMPLE 3.2.15: A woman is located on one side of a body of water
4 miles wide. Her position is directly across from a point on the other
side of the body of water 16 miles from her house, as shown in the
following figure.

16

If she can move across land at a rate of 10 miles per hour and move
over water at a rate of 6 miles per hour, find the least amount of time
for her to reach her house.

SOLUTION: From the figure, we see that the woman will travel from
A to B by land and then from B to D by water. We wish to find the least
time for her to complete the trip.

Let x denote the distance BC, where 0 < x < 16. Then, the distance AB
is given by 16 — x and, by the Pythagorean theorem, the distance BD is
given by V2 + 42. Because rate x time = distance, time = distance/rate.
Thus, the time to travel from A to B is 1—10(16 — x), the time to travel from
BtoDis é\/x2 + 16, and the total time to complete the trip, as a function
of x, is

1 1
time(x) = E(16 -X) + c Vxz+16, 0=<x<16.
We must minimize the function time. First, we define time and then

verify that time has a minimum by graphing time on the interval
[0, 16] in Figure 3-17.
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2 4 6 8 10 12 14 16

Figure 3-17  Plot of rime(x) = 1;(16 = x) + }Vx> +16, 0=<x=<16

In[333] := Clear[time]
16 -x 1
+— Vx2+16;
10 6
Plot[time[x], {x, 0, 16},
PlotRange -» {{0, 16}, {2, 3}}]

time[x_.] =

Next, we compute the derivative of time and find the values of x for
which the derivative is 0 with Solve. The resulting output is named
critnums.

In[334] := Together[time’' [x]]

5x-3416 +x?
30 V16 + x?

Out [334] =
In[335] := critnums = Solve[time’ [x] == 0]
Out [335]= {{x—>3}}

At this point, we can calculate the minimum time by calculating time [3].

In[336] := time[3]
Out [336] 32
u = —

15

Alternatively, we demonstrate how to find the value of time [x] for
the value(s) listed in critnums.

In[337] := time[x]/.x- 3
32

Out [337]= —

ut [ ] s

Regardless, we see that the minimum time to complete the trip is
32/15 hours.
|
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One of the more interesting applied max/min problems is the beam problem. We

present two solutions.

EXAMPLE 3.2.16 (The Beam Problem): Find the exact length of the
longest beam that can be carried around a corner from a hallway 2 feet

wide to a hallway that is 3 feet wide. (See Figure 3-18.)

SOLUTION: We assume that the beam has negligible thickness. Our
first approach is algebraic. Using Figure 3-18, which is generated with

In[338] := pl =Plot[x+2, {x,0, 4},
PlotStyle- > Thickness[0.01],
PlotRange- > {0, 6}]

In[339] := p2 = Graphics[Line[{{1, 0}, {1, £[1]},
{4, £[11}, {4, £[41}, {4, £[41},
{0, £[4]1},{0,0},{1,0}}]1]

In[340] := p3 = Graphics[{Text["3", {0.5,0.2}],
{Text["2", {3.8,4.5}]}}]

In[341] := p4 = Graphics[{Dashing[{0.01, 0.01}],
Line[{{0, £[0]}, {1, £[0]}}]}]

In[342] := p5 = Graphics[{Text["O", {0.5,2.25}],
Text["6", {1.5,3.25}1}]

In[343] := p6 = Graphics[{Text["y", {0.9,2.35}],
Text["x", {2.5,3.25}]}]

In[344] := Show[pl, p2, p3, p4, p5, p6, Axes- >None]

and the Pythagorean theorem, the total length of the beam is
L= \/22—-4-x2+\/y2+32.

By similar triangles,
o

and the length of the beam, L, becomes

36
L(x)=V4+x2+ [9+—2, 0<x< oo
X
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Graphics primitives like
Point, Line, and Text
are discussed in more detail
in Chapter 7.
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Figure 3-18 The length of the beam is found using similar triangles

In[345] := Clear[1]
1[x.] =Sqgrt[272 +x"2] +Sqrt[y"2+372]/.y- >6/x
36 ---
out [345] = f9+ 2 iVaex
x

Observe that the length of the longest beam is obtained by minimizing

We ignore negative values L. (Why7)
because length must be Differentiating gives us
nonnegative.

In[346] := 1'[x]
36 X
OUt [346]= —-—mmn-= + —2in==

\/_9+§§—x3 \a %2
X

and solving L'(x) = 0 for x results in

- - 2
In[347]:= Solve|:—12'\/:1+x2+x‘l ————— == O,x]
Out [347]= {{x— -2I}, {x>2I}, {x— -222313}, (x> 222313}
so x = 23313 5 2.29.

In[348] := N[22/ 3'/3]
Out [348]= 2.28943

In[349] := 1[2° 3]
Out [349]

9+322/3 31/3 + 4+22l/3 32/3



3.2 Differential Calculus

20
17.5

15

10

7.5

5 10 15 20

Figure 3-19 Graph of L(x)

In[350] := 1[2%/*3'?]//FullSimplify
Out [350]= V13 + 922/231/3 4 6 21/2 32/3

In[351]:= N[%]
Out [351]= 7.02348

It follows that the length of the beam is L(2¥3313) = Y9 +3.2%3.31/3 ¢
V&12.273. 373 = \13+9.223 .35 4 6-23- 373 ~ 7.02. See Figure
3-19.

In[352] := Plot[1l[x], {x, 0,20}, PlotRange- > {0, 20},
AspectRatio- > Automatic,
AxesLabel- > {"x", "y"}]

Our second approach uses right triangle trigonometry. In terms of 6, the
length of the beam is given by

L) =2cscH+3secl, 0<0<n/2
Differentiating gives us
L'(0) = —2cscOcotf + 3 secHtanf.

To avoid typing the § symbol, we define L as a function of ¢.

In[353]:= 1[t.] =2 Csc[t] +3 Sec[t]
Out [353]= 2 Csc[t] +3 Sec|[t]

133
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20
15 |

10

10

“15 |

20 L

Figure 3-20 Graph of L(6) and L'(6)

We now solve L’(6) = 0. First multiply through by sin 6 and then by tan 6.

3secHtand = 2csclcotf

2
tan® 0 = 3 cotf

2
3

tan® 6 = =

an 3

2
tanf = [ =.
an 3

In this case, observe that we cannot compute 6 exactly. However, we
do not need to do so. Let 0 < 6 < 7/2 be the unique solution of tan§ =
V2/3. See Figure 3-20. Using the identity tan” 6 + 1 = sec? §, we find that

sec = 4/ 1 + V4/9. Similarly, because cotd = v3/2 and cot> 6 + 1 = csc? 6,
csc = vV3/24/ 1 + V4/9. Hence, the length of the beam is

5[ 3 5[4 5[4
L(G)_z\/; 1+ §+3 1+\/g~7.02.

In[354]:= Plot[{1[t], 1 [t]}, {t,0,n/2},
PlotRange- > {-20, 20},
PlotStyle- > {GrayLevel[0], GrayLevel[0.4]}]
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Figure 3-21 Cross-section of a right circular cone inscribed in a sphere

In the next two examples, the constants do not have specific numerical values.

EXAMPLE 3.2.17: Find the volume of the right circular cylinder of
maximum volume that can be inscribed in a sphere of radius R.

SOLUTION: Try to avoid three-dimensional figures unless they are
absolutely necessary. For this problem, a cross-section of the situation
is sufficient. See Figure 3-21, which is created with

In[355] := pl = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 27},
DisplayFunction -» Identity];

P2 = Graphics|[
{Line[{{0, 1}, {Cos[4n/3],8in[4n/3]},
{Cos[5n/3], Sin[57/31}, {0, 1}}1,
PointSize[0.02], Point[{0, 0}],
Line[{{Cos[4n/3], Sin[47/3]}, {0, 0}, {0,1}}1,
Line[{{0, 0}, {0, Sin[4x/3]1}}1}1:

p3 = Graphics[{Text["R", {-0.256, -0.28}],
Text["R", {-0.04,0.5}],
Text["y", {-0.04, -0.5}],
Text["x", {-0.2,-0.8}1}1:

Show[pl, p2, p3, AspectRatio- >Automatic, Ticks- > None,
Axes- >None, DisplayFunction -» $DisplayFunction]

135
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The volume, V, of a right circular cone with radius r and height 4 is
V = 17r2h. Using the notation in Figure 3-21, the volume is given by

V= %ﬂxz(R +y). (3.4)

However, by the Pythagorean theorem, x* + y* = R* so x> = R* — y* and
equation (3.4) becomes

V= %n-(Rz _yz) R+y) = %H(R3 + Rzy —Ry2 —y3), (3.5)

In[356]:= sl =Expand[(r"2-y"2) (r+y)]
out [356]= r®+riy-ry* -y

where 0 < y < R. V(y) is continuous on [0, R] so it will have a min-
imum and maximum value on this interval. Moreover, the minimum
and maximum values either occur at the endpoints of the interval or
at the critical numbers on the interior of the interval. Differentiating

Remember that R is a equation (3.5) with respect to y gives us
constant.

av 1 1
= —x(R?=2Ry-3y*) = —n(R - 3y)(R +
o 371( y = 3y°) 37r( V(R + )
In[357] := 82 =D[sl, y]

Out [357]

r’-2ry-3y?
and we see that dV/dy = 0if y = JRory = -R.

In[358] : = Factor[s2]
Out [358]= (r-3y) (r+Y)

In[359] := Solve[s2 ==0, y]
r
out[359]= {{y--r}, {y~ 5}}

We ignore y = —R because —R is not in the interval [0, R]. Note that
V(0) = V(R) = 0. The maximum volume of the cone is

V(%R) = %77~ %1@ = Z%mez ~ 1.24R°,
In[360] := 83 =3sl/.y— >r/3//Together
32r
Out [360] = =7
In[361]:= 83 * 1/3 7
out (361]= 221 E
81

In[362] := N[%]
Out [362]= 1.2411271°
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Ly +x2 (D-x)% +Ly?

Ly

Figure 3-22 When the wire is stayed to minimize the length, the result is two similar
triangles

EXAMPLE 3.2.18 (The Stayed-Wire Problem): Two poles D feet apart
with heights L feet and L, feet are to be stayed by a wire as shown
in Figure 3-22. Find the minimum amount of wire required to stay the
poles, as illustrated in Figure 3-22, which is generated with

In[363] := pl = Graphics[Line[{{0, 0}, {0, 4}, {3.5,0},
{91 5-5}1 {91 O}I {Ol 0}}]];

p2 = Graphics|[{Text[L;, {0.2, 2}1,
Text[L,, {8.8,2.75}]1, Text["x", {1.75,0.2}],
Text["x", {1.75,0.2}],

Text [ VL% +x2, {1.75, 2.75}],
Text['\/ (D-x)? + L%, {5.5,2.75}],

Text["D-x", {6.5,0.2}1}]

Show[pl, p2]

SOLUTION: Using the notation in Figure 3-22, the length of the wire,
L,is

L(X)=\/L12+x2+\/L22+(D—x)2, 0<x=<D. (3.6)

In the special case that L; = L, the length of the wire to stay the beams
is minimized when the wire is placed halfway between the two beams,
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at a distance D/2 from each beam. Thus, we assume that the lengths
of the beams are different; we assume that L; < L,, as illustrated in
Figure 3-22. We compute L’(x) and then solve L'(x) = 0.

In[364] :=

Out [364]

In[365] :

Out [365] =

In[366] :=
Oout [366] =

In[367] :=
Out [367]

In[368] :

Out [368] =

In[369] :=
Out [369] =

Clear[1]
1[x. ] =8qgrt[x”2+1172] +Sqgrt[(d-x)"2+1272]

127 + (d-x)2+V11% +x2

1’ [x] //Together

V1274 (d-x)Zx-dV112 +x2 +x V112 + x2
122+ (d-x)2 V112 +x2
1[0]//PowerExpand

11 +Vd2 +122

1[d] //PowerExpand

Vd2 +112+12

1’ [x] //Together

122 + (d—x)zx—d\/llz+X2+x\/112+x2
V12274 (d-x)2/112 + x2

Solve[l [x] == 0, x]

dl1 d1l1
{{X% 11712}’ {X%11+12}}

The result indicates that x = LD/ (L + L,) minimizes L(x). Moreover,
the triangles formed by minimizing L are similar triangles.

In[370] :=

Out [370]

In[371]:

Oout [371]=

a11
11/(7) Simplif
11412/ //Simplify
11 +12

d

da11
12/(d— ) Simplif

11,12/ //Simplify
11 +12

d

3.2.7 Antidifferentiation

3.2.7.1 Antiderivatives
F(x) is an antiderivative of f(x) if F'(x) = f(x). The symbol

ff(x) dx
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means “find all antiderivatives of f(x).” Because all antiderivatives of a given func-
tion differ by a constant, we usually find an antiderivative, F(x), of f(x) and then
write

ff(x)dx =Fkx)+C,
where C represents an arbitrary constant. The command
Integrate [f [x], x]

attempts to find an antiderivative, F(x), of f(x). Mathematica does not include the
“+C” that we include when writing f f)dx = F(x) + C. In the same way as D can
differentiate many functions, Integrate can antidifferentiate many functions.
However, antidifferentiation is a fundamentally difficult procedure so it is not dif-
ficult to find functions f(x) for which the command Integrate [f [x], x] returns
unevaluated.

EXAMPLE 3.2.19: Evaluate each of the following antiderivatives:
L. ’ 2 ¥ —x+2
(a) f;e .dx, (b) fx COS.de, (C) fx \Y 1 +X2 dx, (d) fmdx,
sinx

and (e) f ?dx.

SOLUTION: Entering

In[372] := Integrate[l/x"2 Exp[l/x], x]
out [372]= -e*

shows us that [ Le'"dx = —e!”* + C. Notice that Mathematica does not
automatically include the arbitrary constant, C. When computing sev-
eral antiderivatives, you can use Map to apply Integrate to a list of
antiderivatives. However, because Integrate is threadable,

Map [Integrate [#,x] &, list]

returns the same result as Integrate [1ist, x], which we illustrate
to compute (b), (c), and (d).

In[373] := Integrate[{x"2 Cos[x],x"2 Sqrt[l+x"2],
(x72-x%x+2)/(x"3-x"2+x-1)}, x]
out[373]= {2 x Cos[x] -2 Sin[x]+x’ Sin[x],
5 .
m (E . X7> ~ ArcSinh[x] )
8 4 8
- ArcTan [x] +Log[—l+x]}

139
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For (e), we see that there is not a “closed form” antiderivative of f Sixﬂdx
and the result is given in terms of a definite integral, the sine integral
function: * sin
Si(x) = —dt.
0 t
In[374] := Integrate[Sin[x]/x, x]
Out [374]= SinIntegral [x]

u-Substitutions
Usually, the first antidifferentiation technique discussed is the method of
u-substitution. Suppose that F(x) is an antiderivative of f(x). Given

f f(8() g (x)dx,

we let u = g(x) so that du = g’(x) dx. Then,

ff(g(X))g'(X)dx = ff(u) du=Fu)+C=F(gx)+C,

where F(x) is an antiderivative of f(x). After mastering u-substitutions, the inte-

gration by parts formula,
fudv =uv— fvdu, (3.7)

is introduced.

EXAMPLE 3.2.20: Evaluate [2*V4* - 1dx.

SOLUTION: We use Integrate to evaluate the antiderivative. Notice
that the result is very complicated.

In[375] := Integrate[2”"x Sqrt[4"x-1], x]
21 /-1 4+ 4%
Out [375] = - <2X V1 - 4* Hypergeometric2F1 {
2 Log[2] +Log]|

4]
1 Log[2] Log[2] .
2z [4},1+Log[4],4} Log[4}>/

(V-1+4* Log[2] (2 Log[2] +Log[4]))

2’ Log

Proceeding by hand, we let u = 2*. Then, du = 2* In2 dx or, equivalently,

ﬁdu =2%dx
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In[376] := D[2"x, %]

Out [376]= 2* Log[2]

SO f2x\/4" —ldx = ﬁf\/uz — 1du. We now use Integrate to evalu-
ate f\/u2 —1du

In[377] := sl = Integrate[Sqrt[u”2-1], u]

Oout [377] = % u V-1+u? - % Log [u+‘\/—l +u2]
and then /. (ReplaceAll)/ to replace u with 2*.

In[378]:= 81 /.u->2"x

1
out [378]= 271 /-1 4+ 22 -2 Log [2* + V-1 +22 %]

Clearly, proceeding by hand results in a significantly simpler antideriva-
tive than using Integrate directly.
u

3.3 Integral Calculus

3.3.1 Area

In integral calculus courses, the definite integral is frequently motivated by
investigating the area under the graph of a positive continuous function on a
closed interval. Let y = f(x) be a nonnegative continuous function on an inter-
val [a, b] and let n be a positive integer. If we divide [q, ] into n subintervals of
equal length and let [x;—;, x¢] denote the kth subinterval, the length of each subin-
tervalis (b —a)/n and x; = a + kb%“. The area bounded by the graphs of y = f(x),
X =a, x = b, and the y-axis can be approximated with the sum

n v b _

> w2 (338)
k=1 n

where x* € [x-1, x¢]. Typically, we take x;* = x4-) = a+ (k- 1)”,1;“ (the left endpoint

of the kth subinterval), x;* = x;_ =a + k”n;” (the right endpoint of the kth subinter-

val), or x;* = 1 (i +x) = a + 12k — D=4 (the midpoint of the kth subinterval).
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For these choices of x;*, (3.8) becomes

b;aif(m(k—l)b;a) (3.9)
k=1

b < if(a + kbn;"), and (3.10)
k=1

b;aif(“;(zk—l)b;a), (3.11)
k=1

respectively. If y = f(x) is increasing on [a, b], (3.9) is an under approximation and
(3.10) is an upper approximation: (3.9) corresponds to an approximation of the
area using n inscribed rectangles; (3.10) corresponds to an approximation of the
area using n circumscribed rectangles. If y = f(x) is decreasing on [q, 5], (3.10) is an
under approximation and (3.9) is an upper approximation: (3.10) corresponds to
an approximation of the area using »n inscribed rectangles; (3.9) corresponds to an
approximation of the area using n circumscribed rectangles.

In the following example, we define the functions leftsuml[f [x],a,b,n],
middlesum[f [x],a,b,n], and rightsum[f [x],a,b,n] to compute (3.9),
(3.11), and (3.10), respectively, and leftbox [f [x] ,a,b,n], middlebox [f [x],
a,b,nl, and rightbox[f [x],a,b,n] to generate the corresponding graphs.
After you have defined these functions, you can use them with functions y = f(x)
that you define.

Remark. To define a function of a single variable, f(x) = expressioninx, enter
f[x_]=expression in x. To generate a basic plot of y = f(x) fora < x < b,
enter Plot [f [x], {x,a,b}].

EXAMPLE 3.3.1: Let f(x) = 9 — 4x>. Approximate the area bounded by
the graph of y = f(x), x = 0, x = 3/2, and the y-axis using (a) 100 inscribed
and (b) 100 circumscribed rectangles. (c) What is the exact value of the
area?

SOLUTION: We begin by defining and graphing y = f(x) in
Figure 3-23.

In[379] := £[x.] =9 -4x"2;
Plot[£[x], {x, 0, 3/2}]

The first derivative, f'(x) = —8x is negative on the interval so f(x) is
decreasing on [0, 3/2]. Thus, an approximation of the area using 100
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Figure 3-23  f(x)for 0 <x < 3/2

inscribed rectangles is given by (3.10) while an approximation of the
area using 100 circumscribed rectangles is given by (3.9). After definin-
ing leftsum, right sum, and middlesum, these values are computed
using leftsumand right sum. The use of middlesumis illustrated as

well. Approximations of the sums are obtained with N. N [number] returns a
numerical approximation of
In[380] := leftsum[f_,a_,b_,n_] := Module[{}, number.

(b-a)/n Sum[f/.x->a+ (k-1)(b-2a)/n,
{k,1,n}1];

rightsum[£f_, a_,b_, n_.] :=Module[{},
(b-a)/n Sum[f/.x- >a+k(b-a)/n, {k,1,n}]];

middlesum[f_, a_,b_, n_.] := Module[{},

(b-a)/n Sum[f/.x- >a+1/2(2k-1) (b-a)/n,
{kl 1, n]’]];

In[381]:= 1100 = leftsum[£f[x], 0, 3/2,100]
N[1100]
rl00 = rightsum[£f[x], 0, 3/2, 100]
N[rl00]

ml00 =middlesum[£[x], 0, 3/2, 100]

N[m1l00]
362691
Out [381]= ———
40000
Out [381]= 9.06728
357291
Out [381] =

40000
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It is not important that you
understand the syntax of
these three functions at this
time. Once you have entered
the code, you can use them
to visualize the process for

your own functions, y = f(x).

Chapter 3 Calculus

Out [381]= 8.93228

720009
80000

Out [381]= 9.00011

Out [381] =

Observe that these three values appear to be close to 9. In fact, 9 is the
exact value of the area of the region bounded by y = f(x), x = 0,x = 3/2,
and the y-axis. To help us see why this is true, we define leftbox,
middlebox, and rightbox, and then use these functions to visualize
the situation using n = 4, 16, and 32 rectangles in Figure 3-24.

In[382] := leftbox[f ,a ,b ,n ,opts ] :=
Module[{z, pl, recs, 1s},

z[k.] =a+ (b-a)k/n;

pl = Plot[£f, {x, a, b},
PlotStyle- > {{Thickness[0.01],

GrayLevel[0.3]}},

DisplayFunction- > Identity];

recs = Table[Rectangle[
{z[k-11,0}, {z[k], £/.x- >z[k-11}1, {k, 1,n}];

1ls = Table[Line[{{z[k-1],0}, {z[k-1],
f/.x->z[k-11}, {z[k], £/.x- >z[k-1]},
{z[k],0}}1,{k,1,n}];

Show[Graphics[{GrayLevel[0.8], recs}],
Graphics[ls], pl, opts, Axes- > Automatic,
DisplayFunction- > $DisplayFunction]]

In[383] := rightbox[f ,a ,b_,n ,opts__] :=
Module[{z, pl, recs, 1s},

z[k.] =a+ (b-a)k/n;

pl = Plot[£f, {x, a, b},
PlotStyle- > { {Thickness[0.01],
GrayLevel[0.3]}},
DisplayFunction- > Identity];

recs = Table[Rectangle[
{z[k-11,0}, {z[k], £/.x- >z[k]}], {k, 1,n}];

1ls = Table[Line[{{z[k-1],0}, {z[k-1],
£/.x- >z[k]}, {z[k], £/.x- >z[k]},
{z[k],0}}1,{k,1,n}l;

Show[Graphics[{GrayLevel[0.8], recs}],
Graphics[ls], pl, opts, Axes- > Automatic,
DisplayFunction- > $DisplayFunction]]
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In[384] := middlebox[f ,a ,b_,n_,opts__] :=
Module[{z, pl, recs, 1s},

z[k.]=a+ (b-a)k/n;

pl =Plot[£f, {x, a, b},
PlotStyle- > { {Thickness[0.01],

GrayLevel[0.3]}},

DisplayFunction- > Identity];

recs = Table[Rectangle[{z[k-1],0},
{z[k], £/.x- >1/2(z[k-1]1 +z[k])}]1, {k,1,n}];

1ls = Table[Line[
{{z[k-1],0}, {z[k-1], £/.x- >1/2(z[k-1]+
z[k])}, {z[k], £/.x- >1/2(z[k-1] +z[k])},
{z[k],0}}1,{k,1,n}];

Show[Graphics[{GrayLevel[0.8], recs}],
Graphics[ls], pl, opts, Axes- > Automatic,
DisplayFunction- > $DisplayFunction]]

In[385] := somegraphs = {{leftbox[f[x], 0,3/2, 4,
DisplayFunction- > Identity],
middlebox[£f[x], 0,3/2, 4,
DisplayFunction- > Identity],
rightbox[£f[x], 0,3/2, 4,
DisplayFunction- > Identity]},

{leftbox[f[x], 0,3/2, 16,
DisplayFunction- > Identity],
middlebox[£f[x], 0, 3/2, 16,
DisplayFunction- > Identity],
rightbox[£f[x], 0, 3/2, 16,
DisplayFunction- > Identity]},

{leftbox[f[x], 0, 3/2, 32,
DisplayFunction- > Identity],
middlebox[£f[x], 0, 3/2, 32,
DisplayFunction- > Identity],
rightbox[£f[x], 0, 3/2, 32,
DisplayFunction- > Identity]}};

Show[GraphicsArray[somegraphs]]

Notice that as n increases, the under approximations increase while the
upper approximations decrease.

These graphs help convince us that the limit of the sum as n —» oo of
the areas of the inscribed and circumscribed rectangles is the same. We
compute the exact value of (3.9) with leftsum, evaluate and simplify
the sum with Simplify, and compute the limit as # - co with Limit.
We see that the limit is 9.
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Figure 3-24  f(x) with 4, 16, and 32 rectangles

In[386]:= 1s = leftsum[£f[x], 0, 3/2,n]
1s2 = Simplify[1ls]

Limit[ls2, n- > o]
27 (n—n3—n (l+n) ++n (L+n) (1+2 n))

2 n3

Out [386] =

9 (-1+3 n+4 n?)
4 n?

Oout [386] =
Out [386]= 9

Similar calculations are carried out for (3.10) and again we see that the
limit is 9. We conclude that the exact value of the area is 9.

In[387] := rs =rightsum[£f[x], 0, 3/2, n]
rs2 = Simplify[rs]

Limit[rs2, n- > ®]

27 (-n®*+% n (1+n) (1+2 n)
out [387]= - ( s )
2 n3
9 (-1-3 n+4 n?
out [387] = ( )
4 n?

Out [387]= 9
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For illustrative purposes, we confirm this result with middlesum.
In[388] := ms =middlesum[£f[x], 0, 3/2, n]
ms2 = Simplify[ms]

Limit[ms2, n- > o]
7 (n—4 n’-2n (1+n)+2n (1+n) (1+2 n))

Out [388] = - P
n

9
Out [388]= 9+
8 n
Out [388]= 9

3.3.2 The Definite Integral

In integral calculus courses, we formally learn that the definite integral of the
function y = f(x) fromx =atox =bis

b n
fa ) dx = Ig%;ﬂxﬁ)m, (3.12)

provided that the limit exists. In equation (3.12), P = {a =xp <x] <x < -+ < X, =
b} is a partition of [a, b], |P| is the norm of P,

Pl = max{x; —xx_1lk=1,2,...,n},

Axy = xp — x5, and x* € [xe—, X
The Fundamental Theorem of Calculus provides the fundamental relationship
between differentiation and integration.

Theorem 6 (The Fundamental Theorem of Calculus). Suppose that y = f(x) is
continuous on [a, b].

1. If F(x) = fax f@) dt, then F is an antiderivative of f: F'(x) = f(x).
2. If G is any antiderivative of f, then fab fx)dx = G(b) — G(a).

Mathematica’s Integrate command can compute many definite integrals. The
command

Integrate[f [x], {x,a,b}]

attempts to compute fa b f(x) dx. Because integration is a fundamentally difficult
procedure, it is easy to create integrals for which the exact value cannot be found

147
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explicitly. In those cases, use N to obtain an approximation of its value or obtain a
numerical approximation of the integral directly with

NIntegratel[f[x], {x,a,b}].

EXAMPLE 3.3.2: Evaluate (a) f]4 (x? + 1)/+/xdx; (b) fomxcos x*dx;

(©) foﬂ ¥ sin” 2x dx; (d) fol %e"‘z dx; and (e) f_ Ol Vudu.

SOLUTION: We evaluate (a)-(c) directly with Integrate.

In[389] := Integrate[(x"2+1)/Sqrt[x], {x,1,4}]

72
Out [389]= —
5
In[390] := Integrate[x Cos[x"2], {x,0, Sqrt[n/2]}]
1
Out [390]= —
2
In[391] := Integrate[Exp[2x] Sin[2x] "2, {x, 0, 7}]
Out [391] 1, e
u = —— +
5 5

For (d), the result returned is in terms of the error function, Exf [x],
which is defined by the integral

2 X
Erf[x] = \/;f €7t2 dt.
0

In[392] := Integrate[2/Sqrt[n] Exp[-x"2], {x,0,1}]
Out [392]= Erf[1]

We use N to obtain an approximation of the value of the definite inte-
gral.

In[393] := Integrate[2/Sqrt[n] Exp[-x"2], {x,0,1}]1//N
Out [393]= 0.842701

(e) Recall that Mathematica does not return a real number when we
compute odd roots of negative numbers so the following result would
be surprising to many students in an introductory calculus course

See Chapter 2, Example because it is complex.
2.13.
In[394] := Integrate[u” (1/3), {u, -1, 0}]

3
Oout [394] = n (-1)?
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Therefore, we load the RealOnly package contained in the Miscella-
neous directory so that Mathematica returns the real-valued third root

of u.
In[395] := <<Miscellaneous‘'RealOnly"®
In[396] := Integrate[u” (1/3), {u, -1, 0}]
3
Out [396]= -—
4
|

Improper integrals are computed using Integrate in the same way as other def-
inite integrals.

I
EXAMPLE 3.3.3: Evaluate (a) fol i o) f 2 2y,

1 1 G
00 00 4

()f“’x2+x 6 dx.

SOLUTION: (a) This is an improper integral because the integrand is
discontinuous on the interval [0, 1] but we see that the improper inte-
gral converges to —4.

In[397] := Integrate[Log[x]/Sqrt[x], {x,0,1}]
Out [397]= -4

(b) This is an improper integral because the interval of integration is
infinite but we see that the improper integral converges to 2.

In[398] := Integrate[2/Sqrt[n] Exp[-x"2], {x, -, ®}]
Out [398]= 2

(c) This is an improper integral because the integrand is discontinuous
on the interval of integration and because the interval of integration is
infinite but we see that the improper integral converges to /2.

In[399] := Integrate[l/(x Sqrt[x"2-1]), {x,1, ©}]
Oout [399] = g

(d) As with (c), this is an improper integral because the integrand is
discontinuous on the interval of integration and because the interval
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You do not need to reload
the RealOnly package if you
have already loaded it during
your current Mathematica

session.
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of integration is infinite but we see that the improper integral diverges
to co.

Integrate[1/(x*2+x*4). {x, 0, Infinity}] j

1
Integrate::idiv : Integral of ——— does not converge on {0, =}. j
X2 4

1
— A
L= ]

(e) Recall that Mathematica does not return a real number when we
compute odd roots of negative numbers so the following result would
be surprising to many students in an introductory calculus course
because it contains imaginary numbers.

In[400] := Integrate[l/(x-3)"(2/3), {x,2,4}]
Out [400]= 3 -3 (-1)3

Therefore, we load the RealOnly package contained in the Miscella-
neous directory so that Mathematica returns the real-valued third root
of x - 3.

In[401] := <<Miscellaneous‘RealOnly"

In[402] := Integrate[l/(x-3)"(2/3), {x,2,4}]
Out [402]= 6

(f) In this case, Mathematica warns us that the improper integral
diverges.

51 = Integrate[1/(x*2+x-6). {z. -Infinity. Infinit¥}] j

1
does not converge on f-m, w}.
[N

1
r—dx
e =6+ 34 12

Integrate::idiv : Integral of

To help us understand why the improper integral diverges, we note
that =-'— = 1 (45 - ~3) and

P46 — 5 \x2 x+3
1 101 1 1. (x-2
 dx= | = - dx= -1 +C
fx2+x—6 x fS(x—Z x+3) 75 n(x+3) ¢

In[403] := Integrate[l/(x"2+x-6), x]
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1 1
Out [403] = z Log[-2 + x] - Log[3 + x]

Hence the integral is improper because the interval of integration is
infinite and because the integrand is discontinuous on the interval of
integration so

IOO#d —f41d +f31d
o X2 +x—6 *E o X2+ Xx—6 * 4 X2 +x-6 *
- g 3.13
—d —d .
+j:3x2+x—6 x+£ 2rx-6" (3.13)

+f3 ! d+foo ! d
- dx ———dx
, X2 +x-6 5 X2+x-6

Evaluating each of these integrals,

Integrate[1/(x~2+x-6). 1]

1 1
= Log[-2+x] - = Log[2 +x]
5 5

Integrate[1/(x~2+x-6}. {z. -Infinity, -4}]

1
Inbegratessidiv s Inbegral of ———— does nob converge on f-o, -4},

6 43+
- 1
f Ew
Y

Integrate[1/{x"~2+x-6). {x. -4, -3}]

Integrate::idiv : Integral of ———— does not conwerge om (-4, -3}.
—6 4

3
]
3
]
]
3
]
e ]
3
]
]
3
]
]

Integrate[1/{x~2+x -6}, {x, -3, D}]

Integratessidiv @ Integral of does not conwerge om [-3, 0).

=6+

1
J"’—dx
5 -6 +x+n?

Integrate[1/{x*2+x-6). {x. 0. 2}]

Integrates:idiv @ Integral of — —  does not conwerge om [0, 2}.
—6 43

1
f—mx
o =6 +x+x?

Integrate[1/{x"2+x-6). {x. 2. 3}]

Integrate::idiv : Integral of ——— doss not convergs om {2, 3}.
-6 4%+ xE

]
F;ﬂx j
2 -6+ x+n?
Integrate[1/(x~2+x-6). {x. 3. Infinity}] j

1 ]

Integrate::idiv : Integral of ——— does not converge on {3, =}.
-6+ % + %7

1
J’“—.ﬂx
5 =6 +x+x2

we conclude that the improper integral diverges because at least one of
the improper integrals in (3.13) diverges.
|
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In many cases, Mathematica can help illustrate the steps carried out when com-
puting integrals using standard methods of integration like u-substitutions and
integration by parts.

EXAMPLE 3.3.4: Evaluate (a) [* dxand (b) [ xsin2xdx.

xVinx

31

3
. — 1 e 1 — —
SOLUTION: (a) Weletu = Inx. Then, du = Ldxso || J=dx = |, Fdu =
3 . .
The new lower limit of fl u~2du, which we evaluate with Integrate.
integration is 1 because if
x=e,u=Ine=1.The new In[404] := Integrate[l/Sqrt[u]l, {u, 1, 3}]

upper limit of integration is 3 Out [404]= -2 +2 /3

because if x = €3,

u=lne’ =3. To evaluate (b), we let u = x = du = dx and dv = sin2xdx = v =
1

—3 cos 2x.

In[405] := u=x;

dv = Sin[2x];

In[406] := du =D[x, x]

v = Integrate[Sin[2x], x]
Out [406]= 1

1
Out [406] = -5 Cos[2 x]

In[407] := v du
1
out [407] = -5 Cos[2 x]

The results mean that

/4 1 /4 1 /4
f xsin2xdx = ——xcos Zx] + 7f cos2xdx
0 2 o 2

1 /4
=0+ff cos 2xdx.
2 Jo

The resulting indefinite integral is evaluated with Integrate

In[408] := u v-Integrate[v du, x]
1
Out [408] = -5 x Cos[2 x] +

NI

Sin[2 x]

In[409] := Integrate[x Sin[2x], x]
1
out [409] = 1 (-2 x Cos[2 x] +Sin[2 x])

and the definite integral is evaluated with Integrate.
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Integrate[z Sin[2x]. {x. 0, Pi/4}] j”| H

T ]

3.3.3 Approximating Definite Integrals

Because integration is a fundamentally difficult procedure, Mathematica is unable
to compute a “closed form” of the value of many definite integrals. In these cases,
numerical integration can be used to obtain an approximation of the definite inte-
gral using N together with Integrate or NIntegrate:

NIntegrate[f [x], {x,a,b}]

attempts to approximate fa b fx)dx.

EXAMPLE 3.3.5: Evaluate [V ¢~ cos dx.

SOLUTION: In this case, Mathematica is unable to evaluate the inte-
gral with Integrate.

In[410] := il = Integrate[Exp[-x"2] Cos[x"3],
{x,0,n7(1/3)}]

71/3

Out[4lO]=J e Ccos[x?]dx
0

An approximation is obtained with N.

In[411] := N[il]
Out [411]= 0.701566

Instead of using Integrate followed by N, you can use NIntegrate
to numerically evaluate many integrals.

NIntegrate[f[x], {x,a,b}]
attempts to approximate fa b f(x) dx. Thus, entering

In[412] := NIntegrate[Exp[-x"2] Cos[x"3], {x,0, 7" (1/3)}]
Out [412]= 0.701566

returns the same result as that obtained using Integrate followed
by N.
|
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2 3 4 5

Figure 3-25 f(x)forl<x<5

In some cases, you may wish to investigate particular numerical methods that
can be used to approximate integrals. If needed you can redefine the functions
leftsum, middlesum, and rightsum that were discussed previously. In addi-
tion we define the functions simpson, which implements Simpson’s rule, and
trapezoid, which implements the trapezoidal rule, in the following example
that can be used to investigate approximations of definite integrals using those
numerical methods.

EXAMPLE 3.3.6: Let f(x) = ¢ @37 cos@4=3)_(3q) Graph y = f(x) on the
interval [1, 5]. Use (b) Simpson’s rule with n = 4, (c) the trapezoidal
rule with n = 4, and (d) the midpoint rule with n = 4 to approximate

7 fdx.

SOLUTION: We define f, and then graph y = f(x) on the interval [1, 5]
with Plot in Figure 3-25.

In[413]:= £[x.] = Exp[-(x-3)"2Cos[4(x-3)]];
Plot[£[x], {x, 1, 5}]

After defining simpson and trapezoid,

In[414] := simpson[f_,a_,b_,n_] :=Module[{z, h},
h=(b-a)/n;z[k]=a+h k;f0=£f/.x->2z[0];
fn=f/.x- >z[n];h/3 (£0+ fn)+

h/3 Sum[ (3 + (-1)"(k+1))f /. x->z[k],
{k,1,n-1}]
]
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In[415] := trapezoid[f_ ,a_,b_,n_] :=Module[{z, h},
h=(b-a)/n;z[k.] =a+h k;
f0=f/.x->2[0]; fn=£f/.x- >z[n];

h/2 (£0 + fn) +h Sum[f /. x- >z[k],
{k,1,n-1}]
1

we use these f%nctions and middlesum, which was defined earlier, to
approximate fl f(x) dx using n = 4 rectangles. In each case, N is used to
evaluate the sum.

In[416] := sl = simpson[£f[x], 1,5, 4]
N[s1]
tl = trapezoid[£f[x], 1,5, 4]
N[t1l]
ml =middlesum[£f[x], 1,5, 4]

N[ml]

2 -4 Cos|[8] 1 -Cos[4]
Out [416]= < e +3 (2+8 e )
Out [416]= 6.9865
out [416]= 1+2 e Cos[4] L g4 Cos[8]
Out [416]= 6.63468

_Cos[2] 9 cos[é]

Out [416]= 2 e & +2 e 1
Out [416]= 2.44984

We obtain an accurate approximation of the value of the integral using
NIntegrate.

In[417] := NIntegrate[f[x], {x,1,5}]
Out [417] 3.761

Notice that with n = 4 rectangles, the midpoint rule gives the best
approximation. However, as n increases, Simpson’s rule gives a better
approximation as we see using n = 50 rectangles.

In[418] := simpson[f[x],1,5,50]//N
trapezoid[f[x],1,5,50]//N
middlesum[£f[x], 1,5, 50]//N

Out [418] 3.76445

Out [418]= 3.7913
Out [418]= 3.74623
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Be sure to redefine
middlesum if you have not
already used it during your
current Mathematica session
before executing the
following commands.
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3.3.4 Area

Suppose that y = f(x) and y = g(x) are continuous on [a, b] and that f(x) = g(x) for
a < x < b. The area of the region bounded by the graphs of y = f(x), y = g(x), x = a,
and x = bis

b
A= f L) - g(0] dx. (3.14)

EXAMPLE 3.3.7: Find the area between the graphs of y = sinx and
y = cosx on the interval [0, 27].

SOLUTION: We graph y = sinx and y = cosx on the interval [0, 27] in
Figure 3-26. The graph of y = cos x is gray.

In[419] := Plot[{Sin[x], Cos[x]}, {x, 0, 2n},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
AspectRatio- > Automatic]

To find the upper and lower limits of integration, we must solve the
equation sinx = cos x for x.

In[420] := Solve[Sin[x] == Cos[x], x]

Solve :: "ifun" : "Inversefunctionsarebeingused
bySolve, sosomesolutionsmaynotbefound."

Set :: "write" : "TagPowerinDownValues |
Power]isProtected."

3T s
out [420]= {{x~ 7T}, {x- Z}}
Thus, for 0 < x < 27, sinx = cosx if x = n/4 or x = 57/4. Hence, the area
of the region between the graphs is given by
/4 Sn/4 2
A= f [cos x — sinx] dx + f [sinx — cos x| dx + f [cosx —sinx] dx. (3.15)
0 /4 Sn/4
Notice that if we take advantage of symmetry we can simplify (3.15) to

5n/4
A= 2[ [sinx — cos x] dx. (3.16)
/4
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1
0.5}

-0.5

-1

Figure 3-26 y = sinx and y = cosx on the interval [0, 27]

We evaluate (3.16) with Integrate to see that the area is 4v/2.

In[421] := 2 Integrate[Sin[x] - Cos[x], {x, n/4,57/4}]
out[421]= 4 2

In cases when we cannot calculate the points of intersection of two graphs exactly,
we can frequently use FindRoot to approximate the points of intersection.

EXAMPLE 3.3.8: Let
3
p(x) = ﬁxS 3+ I - 18 + 120+ 1

and
g(x) = —4x> + 28x% — 56x + 32.

Approximate the area of the region bounded by the graphs of y = p(x)
and y = ¢g(x).

SOLUTION: After defining p and g, we graph them on the interval
[—-1, 5] in Figure 3-27 to obtain an initial guess of the intersection points
of the two graphs.

In[422] := p[x.] =3/10x"5-3x"4+11x"3 -18x"2+12x+1;
g[x.] = -4x"3 +28x"2 -56x + 32;
Plot[{p[x], q[x]}, {x,-1,5}, PlotRange- > {-15, 20},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]}]

The x-coordinates of the three intersection points are the solutions of
the equation p(x) = g(x). Although Mathematica can solve this equa-
tion exactly, approximate solutions are more useful for the problem and
obtained with FindRoot.
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20
15

10

-15

Figure 3-27 p and g on the interval [-1, 5]

In[423] := FindRoot[p[x] == g[x], {x, 1}]

FindRoot[p[x] == q[x], {x, 2}]
FindRoot[p[x] == q[x], {x, 4}]
out [423]= {x - 0.772058}
out [423]= {x—-2.29182}

Out [423]= {x— 3.86513}

All three FindRoot commands can be combined together if we use
Map as illustrated next.

In[424] := intpts = Map[FindRoot[p[x] == gq[x],
{x, #}1&, {1, 2, 4}]

Out [424]= {{x—->0.772058}, {x—>2.29182},
{x—>3.86513}}

In[425] := intpts[[1, 1, 2]1]

Out [425]= 0.772058

Using the roots to the equation p(x) = g(x) and the graph we see that
p(x) = g(x) for 0.772 < x < 2.292 and ¢(x) = p(x) for 2.292 < x < 3.865.
Hence, an approximation of the area bounded by p and ¢ is given by
the sum

2.292 3.865
f [p(x) — g(x)] dx + f [g(x) = p(x)] dx.
0.

772 2.292
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These two integrals are computed with NIntegrate

In[426] := intone = NIntegrate[p[x] - q[x].,
{x, intpts[[1, 1, 211, intpts[[2,1, 2]1]1}]

inttwo = NIntegrate[qg[x] - p[x].,
x, intpts[[2, 1, 2]], intpts[[3, 1, 2]]}]
Out [426]= 5.26912

out [426]= 6.92599
and added to see that the area is approximately 12.195.

In[427] := intone + inttwo
Out [427]= 12.1951

Parametric Equations
If the curve, C, defined parametrically by x = x(¢), y = y(t), a < t < bis anonnegative
continuous function of x and x(a) < x(b) the area under the graph of C and above

the x-axis is
x(b) b
f ydx = f y()x' (¢)dk.
x(a) a

EXAMPLE 3.3.9 (The Astroid): Find the area enclosed by the astroid
x=sin’t,y=cos’t,0 <t < 2n.

SOLUTION: We begin by defining x and y and then graphing the
astroid with ParametricPlot in Figure 3-28.

In[428]:= x[t.] =Sin[t] "3;

y[t.] = Cos[t]"3;

ParametricPlot|[
{x[t],y[t]l}, {t, 0, 27}, AspectRatio- >Automatic]

Observe that x(0) = 0 and x(7/2) = 1 and the graph of the astroid in the
first quadrant is given by x = sin*#, y = cos®t, 0 < ¢ =< /2. Hence, the
area of the astroid in the first quadrant is given by

/2 /2
f YO () dt =3 f sin® ¢ cos™* ¢ dt
0 0

and the total area is given by

/2 /2 3
A= 4f yOX' (1) dt = 12f sin’rcos* tdt = P 1.178,
0 0

159

Graphically, y is a function of
X, y = y(x), if the graph of
y = y(x) passes the vertical

line test.
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Figure 3-28 The astroid x = sin*¢, y = cos’t,0 <t < 2x

which is computed with Integrate and then approximated with N.

In[429] := area = 4 Integrate[y[t] x'[t], {t, 0, n/2}]
37T

out [429] = T

In[430] := N[area]
Out [430]= 1.1781

Polar Coordinates

For problems involving “circular symmetry” it is often easier to work in polar
coordinates. The relationship between (x, y) in rectangular coordinates and (r, §) in
polar coordinates is given by

x=rcosf y=rsinf

and

P=xX+y  tanf=">.
X

If r = f(0) is continuous and nonnegative for @ < 6 < g, then the area A of the
region enclosed by the graphs of r = f(6), 0 = @, and 6 = B is

A—l ﬁ[(e)]zde—l ﬁzde
_EL‘ f _Efar ,
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Figure 3-29 The lemniscate

EXAMPLE 3.3.10 (Lemniscate of Bernoulli): The lemniscate of Bernoulli
is given by
2
(xz +y2) -2 (xz _yz)’
where a is a constant. (a) Graph the lemniscate of Bernoulli if a = 2.
(b) Find the area of the region bounded by the lemniscate of Bernoulli.

SOLUTION: This problem is much easier solved in polar coordinates
so we first convert the equation from rectangular to polar coordinates
with Replaceall (/.) and then solve for r with Solve.

In[431]:= lofb= (x"2+y"2)"2==a"2(x"2-y72);
topolar = lofb/.{x- >r Cos[t],y->r Sin[t]}
out [431]= (r* Cos[t]?+r? Sin[t]2)2::
a? (r2 Cos[t]?-r? Sin[t]z)
In[432] := Solve[topolar, r]//Simplify
out [432]= {{r-0}, {r>0}, {r>-a /Cos[2 t]},

{rea Cos|[2 t]}}

These results indicate that an equation of the lemniscate in polar coor-
dinates is 7* = a® cos 26. The graph of the lemniscate is then generated
in Figure 3-29 using PolarPlot, which is contained in the Graphics
package located in the Graphics directory.

In[433] := << Graphics‘Graphics®

PolarPlot[{-2 Sqgrt[Cos[2t]],
2Sgrt[Cos[2t]]}, {t, 0, 27}]

The portion of the lemniscate in quadrant one is obtained by graphing
r=2co0s20,0 <6 < n/4.

In[434] := PolarPlot[2Sqgrt[Cos[2t]], {t, 0, n/4}]
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0.5 1 1.5 2

Figure 3-30 The portion of the lemniscate in quadrant 1

Then, taking advantage of symmetry, the area of the lemniscate is given
by

1 /4 /4 /4
A:Z-ff r2d0:2f r2d9=2f a*cos20d0 = &%,
—n/4 0 0

which we calculate with Integrate.

In[435] := Integrate[2 a”2 Cos[2 t], {t, 0, n/4}]
out [435] = a?

3.3.5 Arc Length

Let y = f(x) be a function for which f’(x) is continuous on an interval [q, b]. Then
the arc length of the graph of y = f(x) from x = a to x = b is given by

L= fuh ,/(jz)z +1dx. (3.17)

The resulting definite integrals used for determining arc length are usually diffi-
cult to compute because they involve a radical. In these situations, Mathematica is
helpful with approximating solutions to these types of problems.

EXAMPLE 3.3.11: Find the length of the graph of

x* 1

= — 4+ —
VTR T4

from (a) x = 1 tox = 2 and from (b) x = -2 tox = —1.
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SOLUTION: With no restrictions on the value of x, Vx22 = |x|. Notice

2
that Mathematica does not automatically algebraically simplify +/ (%) +1
because Mathematica does not know if x is positive or negative.

In[436]:= y[x.] =x"4/8+1/(4x"2);
il = Factor[y'[x] "2 +1]
(1+x2)° (1-%x2+x%)°

4 x6

Out [436] =

In[437] := 12 = PowerExpand[Sqgrt[il]]
(1+x%) (1-x%+x%
2 x3

Out [437] =
. X PowerExpand [expr]
In fact, for (b)r X1s negathe SO simplifies radicals in the
expression expr assuming
2 that all variables are positive.
1 [ (x0+1) 120 +1

2 X T 2 3

Mathematica simplifies

1 (x6+1)2_1x6+1

2 X T2 X3

and correctly evaluates the arc length integral (3.17) for (a).

In[438] := Integrate[Sqrt[y’ [x]"2+1], {x,1,2}]

33
Out [438] = e
For (b), we compute the arc length integral (3.17).

In[439] := Integrate[Sqgrt[y' [x]"2+ 1], {x, -2, -1}]

Out [439] >3
u = —
16

As we expect, both values are the same.
|

Parametric Equations
If the smooth curve, C, defined parametrically by x = x(t), y = y(t), t € [a,b] is Cis smooth if both x'(¢) and

traversed exactly once as ¢ increases from ¢t = a to t = b, the arc length of C is /() are continuous on (a b)
and not simultaneously zero

given by for 1 € (a,b).

(3.18)
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Figure 3-31 x= 2%,y =2r - i

EXAMPLE 3.3.12: Find the length of the graph of x = V22, y = 21 — i,
-2=<t=<?2.

SOLUTION: For illustrative purposes, we graph x = V2%, y = 2 — 113
for -3 <t < 3 (in black) and -2 < ¢ < 2 (in thick black) in Figure 3-31.

In[440] := x[t.] =t"2 Sqrt[2];y[t.] =2t-1/2t"3;
pl = ParametricPlot[{x[t], y[t]},
{t, -3, 3}, DisplayFunction- > Identity];

p2 = ParametricPlot[{x[t], y[t]}, {t, -2, 2},
PlotStyle- > Thickness[0.01],
DisplayFunction- > Identity];

Show[pl, p2, DisplayFunction- >
$DisplayFunction, PlotRange- > All]

Mathematica is able to compute the exact value of the arc length (3.18)
although the result is quite complicated.

In[441] := Factor[x' [t]"2+y [t] 2]

Out [441] = % (4-4 t+3 %) (4+4 t+3 t?)

In[442] := il = Integrate[2 Sqrt[x'[t]"2+y'[t]"2], {t, 0, 2}]
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A more meaningful approximation is obtained with N or using NIntegrate.

1
Out [442]= — (96 3 - (32 i
18

\/6 (1+% (2-4 i +/2)) J1+; (2+4 i 2)

EllipticE[i ArcSinh| % (2+4 1 V2)],

,1+% (2-4 1 \/5)])/((2+4 i \/5)3/2

2+4i\5
Ja (1+3 (2-2 i V2)) \/1:2L (2+4 i V2)

(71+% (2-4 1 +2))) -

(16 i

EllipticF[i ArcSinh[J; (2+4 i \/EH,

—1+% (2-2 1 +2)]

\/6 (1+% (2-4 1 V2)) \/1+; (2+4 1 +2)

32 1

+

BllipticF[i ArcSinh| % (2+4 1 V2)],

71+%(274i 2)])/((2+4i 2)3/2

In[443] := N[il]

out [443]= 13.7099-1.1842410*° 1

In[444] := NIntegrate[2 Sqrt[x'[t] 2+y'[t]"2], {t, 0, 2}]

Out [444]= 13.7099

We conclude that the arc length is approximately 13.71.
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&)

Figure3-32 r=60for0 <6< 10n

Polar Coordinates
If the smooth polar curve C given by r = f(0), a < 6 < § is traversed exactly once
as f increases from « to §, the arc length of C is given by

L= ff ‘/(32)2 + a9 (3.19)

EXAMPLE 3.3.13: Find the length of the graph of r = 6,0 < 6 < 107

SOLUTION: We begin by defining r and then graphing r with PolarPlot
in Figure 3-32.

In[445] := << Graphics‘Graphics®

r[it.] =t¢t;
PolarPlot[r[t], {t, 0, 10x},
AspectRatio- > Automatic]

Using (3.19), the length of the graph of r is given by folOﬂ V1+62d6. The
exact value is computed with Integrate

In[446] := ev = Integrate[Sqrt[r' [t] "2+r[t] 2], {t, 0, 10x}]
1
Out [446]= 5 7 V1+ 100 7T2+§ ArcSinh[10 ]
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and then approximated with N.

In[447] := N[ev]
Out [447]= 495.801

We conclude that the length of the graph is approximately 495.8.
|

3.3.6 Solids of Revolution

Volume

Lety = f(x) be a nonnegative continuous function on [a, b]. The volume of the solid
of revolution obtained by revolving the region bounded by the graphs of y = f(x),
x = a, x = b, and the x-axis about the x-axis is given by

b
V=n f [F(0)]? dx. (3.20)

If 0 < a < b, the volume of the solid of revolution obtained by revolving the region
bounded by the graphs of y = f(x), x = a, x = b, and the x-axis about the y-axis is
given by

b
V= 27rf x f(x)dx. (3.21)

EXAMPLE 3.3.14: Let g(x) = xsin’x. Find the volume of the solid ob-
tained by revolving the region bounded by the graphs of y = g(x), x = 0,
x = 7, and the x-axis about (a) the x-axis; and (b) the y-axis.

SOLUTION: After defining g, we graph g on the interval [0, 7] in Fig-
ure 3-33.

In[448]:= g[x.] =x Sin[x]"2;
Plot[g[x], {x, 0, 7}, AspectRatio- >Automatic]

The volume of the solid obtained by revolving the region about the x-
axis is given by equation (3.20) while the volume of the solid obtained
by revolving the region about the y-axis is given by equation (3.21).
These integrals are computed with Integrate and named xvol and
yvol, respectively. N is used to approximate each volume.

In[449] := xvol = Integrate[n g[x]"2, {x, 0, xt}]

N[xvol]
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0.5 1 1.5 2 2.5 3

Figure 3-33 gx)forO<x=<mn

1
out [449]= —— n (-60 n+32 7°)
256
Out [449]= 9.86295

In[450] := yvol = Integrate[2 7 x g[x], {x, 0, 7}]

N[yvol]

Out [450] = Lo, (-6 m+a )
12

Out [450]= 27.5349

We can use ParametricPlot3D to visualize the resulting solids by
parametrically graphing the equations given by

Jx = rcost
y = rsint
z=g(r)

for r between 0 and n and ¢ between —r and x to visualize the graph
of the solid obtained by revolving the region about the y-axis and by
parametrically graphing the equations given by

Jx =r
y = g(r)cost
lz = g(r)sint

for r between 0 and 7 and ¢ between —r and x to visualize the graph of
the solid obtained by revolving the region about the x-axis. (See Figures
3-34 and 3-35.) In this case, we identify the z-axis as the y-axis. Notice
that we are simply using polar coordinates for the x and y-coordinates,
and the height above the x,y-plane is given by z = g(r) because r is
replacing x in the new coordinate system.
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3

Figure 3-34 g(x) revolved about the x-axis

Figure 3-35 g(x) revolved about the y-axis

In[451] := ParametricPlot3D[{r, g[r] Cos[t], g[r] Sin[t]},
{x,0,n}, {t,0,2x}, PlotPoints- > {30, 30}]

In[452] := ParametricPlot3D[{r Cos[t],r Sin[t], gl[r]l},
{r, 0,7}, {t,0,2n}, PlotPoints- > {30, 30}]



170 Chapter 3 Calculus

2 3 4 5

Figure 3-36 f(x)forl <x=<35

We now demonstrate a volume problem that requires the method of disks.

EXAMPLE 3.3.15: Let f(x) = e~ 3)¢sl4a=31 Approximate the volume
of the solid obtained by revolving the region bounded by the graphs of
y = f(x),x =1, x =5, and the x-axis about the x-axis.

SOLUTION: Proceeding as in the previous example, we first define
and graph f on the interval [1, 5] in Figure 3-36.

In[453]:= £[x.] = Exp[-(x-3)"2 Cos[4(x-3)1]1;
Plot[£f[x], {x, 1,5}, AspectRatio- >Automatic]

In this case, an approximation is desired so we use NIntegrate to
approximate the integral V = fls T[f))? dx.

In[454] := NIntegrate[n £[x]"2, {x,1,5}]
Out [454]= 16.0762

In the same manner as before, ParametricPlot3D can be used to
visualize the resulting solid by graphing the set of equations given
parametrically by

Ix: ,
y = f(r)cost
lz = f(r)sint

for r between 1 and 5 and 7 between 0 and 2. In this case, polar coor-
dinates are used in the y,z-plane with the distance from the x-axis given
by f(x). Because r replaces x in the new coordinate system, f(x) becomes
f(r) in these equations. See Figure 3-37.
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Figure 3-37  f(x) revolved about the x-axis

In[455] := ParametricPlot3D[{r, f[r] Cos[t], £[r] Sin[t]},
{r, 1,5}, {t, 0, 2x}, PlotPoints- > {45, 35}]

Surface Area

Lety = f(x) be a nonnegative function for which f’(x) is continuous on an interval
[a, b]. Then the surface area of the solid of revolution obtained by revolving the
region bounded by the graphs of y = f(x), x = a, x = b, and the x-axis about the

x-axis is given by
b
SA =21 f FOON 1+ [0 dx. (3.22)

EXAMPLE 3.3.16 (Gabriel’s Horn): Gabriel’s horn is the solid of revo-
lution obtained by revolving the area of the region bounded by y = 1/x
and the x-axis for x = 1 about the x-axis. Show that the surface area of
Gabriel’s horn is infinite but that its volume is finite.
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Figure 3-38 A portion of Gabriel’s horn

SOLUTION: After defining f(x) = 1/x, we use ParametricPlot3D
to visualize a portion of Gabriel’s horn in Figure 3-38.

In[456] := £[x.] = 1/x;
ParametricPlot3D[{r, £[r] Cos[t], £[r] Sin[t]},
{r, 1,10}, {t, 0, 27}, PlotPoints- > {40, 40},
ViewPoint- > {-1.509, -2.739, 1.294}]

Using equation (3.22), the surface area of Gabriel’s horn is given by the
improper integral

SA 2ﬂf"°1 1+1d Zﬂlimel 1+1d
= — —dax = — — ax.
1 X .X4 L-oo J1 X x4

In[457] := stepl = Integrate[2 n f[x] Sqrt[l+ £ [x]"2],
{x, 1, capl}]
Integrate :: "gener" : "Unabletocheckconvergence"

out [457]= -n (-~/2 +Arcsinh[1])+

1 capl? ArcSinh[capl?]
1+ — -1+
capl V1 +capl?

In[458] := Limit[stepl, capl- > w]
Out [458] = ©

On the other hand, using equation (3.20) the volume of Gabriel’s horn
is given by the improper integral

* ] , L
SA =2r —zdxzﬂhm —zdx,
1 X X

Lo 1

which converges to .

In[459] := stepl = Integrate[n £[x]"2, {x, 1, capl}]
Out [459] = 7T -

capl
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In[460] := Limit[stepl, capl- > w]
Out [460]= 7

In[461] := Integrate[n £[x]"2, {x,1, ©}]
Out [461]= 7t

3.4 Series

3.4.1 Introduction to Sequences and Series

Sequences and series are usually discussed in the third quarter or second semester
of introductory calculus courses. Most students find that it is one of the most dif-
ficult topics covered in calculus. A sequence is a function with domain consisting
of the positive integers. The terms of the sequence {a,} are a;, az, as, .... The nth
term is a,; the (n + 1)st term is a,,; . If lim,,o, a, = L, we say that {a,} converges to L.
If {a,} does not converge, {a,} diverges. We can sometimes prove that a sequence
converges by applying the following theorem.

Theorem 7. Every bounded monotonic sequence converges.
In particular, Theorem 7 gives us the following special cases.

1. If {a,} has positive terms and is eventually decreasing, {a,} converges.
2. If {a,} has negative terms and is eventually increasing {a,} converges.

After you have defined a sequence, use Table to compute the first few terms of
the sequence.

1. Table[a[n], {n,1,m}] returns the list {a, as, a3, ..., an}.
2. Table[a[n], {n,k,m}] returns {a, a1, Grs2, - .-, am)}-

/1

EXAMPLE 3.4.1: Ifa, = SL', show that lim,_,., a, = 0.
n!

SOLUTION: We remark that the symbol n! in the denominator of a,
represents the factorial sequence:

nl=n-n-1)-n—-2)----- 2-1.

173

A sequence {a,} is
monotonic if {a,} is
increasing (d,+1 = a, for all
n) or decreasing (a,.1 < a,

for all n).
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2.5x10"°
2x10™°
1.5x10™°
1x10"°

5x10°

4 6 8 10

Figure 3-39 The first few terms of a,

We begin by defining a, and then computing the first few terms of the
sequence with Table.

In(462] := a[n.] =50"n/n!;
afewterms = Table[a[n], {n, 1, 10}]

N[afewterms]
62500 781250 7812500 195312500

out [462]= {50, 1250, T S 3 , 5 ,
9765625000 61035156250 3051757812500
63 ! 63 ! 567 !
15258789062500
e

out [462]= {50.,1250.,20833.3,
260417.,2.6041710°,
2.17014107,1.550110°%,
9.6881210%, 5.3822910°,
2.6911410'°)

The first few terms increase in magnitude. In fact, this is further con-
firmed by graphing the first few terms of the sequence with ListPlot
in Figure 3-39. Based on the graph and the values of the first few terms
we might incorrectly conclude that the sequence diverges.

In[463] := ListPlot[afewterms]

However, notice that
50 apy1 50

Ayl = a, = = .
n+1 a, n+1

Because 50/(n + 1) < 1 for n > 49, we conclude that the sequence is
decreasing for n > 49. Because it has positive terms, it is bounded below
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2.5x10%°
2x10°°
1.5x10%°
1x10°°

5x10%°

.
..
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Figure 3-40 The first 75 terms of a,

by 0 so the sequence converges by Theorem 7. Let L = lim,,,, a,,. Then,

lim a,.; = lim a,
n—oo n—-oo N + 1
50
L =lim -L
n-oco N +
L=0.

When we graph a larger number of terms, it is clear that the limit is 0.
(See Figure 3-40.) It is a good exercise to show that for any real value of

. X
x, lim,, — =0.
n!
In[464] := ListPlot[Evaluate[Table[alk], {k, 1, 75}]11]

An infinite series is a series of the form

i a (3.23)

k=1

where {a,} is a sequence. The nth partial sum of (3.23) is
sn:Zak=a1+a2+---+an. (3.24)
k=1

Notice that the partial sums of the series (3.23) form a sequence {s,}. Hence, we
say that the infinite series (3.23) converges to L if the sequence of partial sums {s,}
converges to L and write

Z ay = L.

k=1
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The infinite series (3.23) diverges if the sequence of partial sums diverges. Given
the infinite series (3.23),

sum[a[k], {k,1,n}]

calculates the nth partial sum (3.24). In some cases, if the infinite series (3.23) con-
verges,

Suml[a[k],{k,1,Infinity}]

can compute the value of the infinite sum. You should think of the Sum function
as a “fragile” command and be certain to carefully examine its results.

EXAMPLE 3.4.2: Determine whether each series converges or diverges.
If the series converges, find its sum. (a) Y2, (- D! (b) 32, e (c)

Direo ark.

SOLUTION: For (a), we compute the nth partial sum (3.24) in sn with
Sum.

In[465] := sn=8Sum[ (-1) " (k+1), {k,1,n}]
out [465] = é (1-(-1)")

Notice that the odd partial sums are 1:

1 2n+1+1 1
st = 3 (D7 1) = A+ D =1

while the even partial sums are 0:
Son = 1 (D> +1) = 1(—1 +1)=0.
2 2
We confirm that the limit of the partial sums does not exist with Limit.

Mathematica’s result indicates that it cannot determine the limit.
In[466] := Limit[sn, n- > ]
1
Out [466] = Limit[5 (1-(-1)"),n>x]

However, when we attempt to compute the infinite sum with Sum,
Mathematica is able to determine that the sum diverges.

In[467] := Sum[(-1)"(k+1), {k, 1, o}]

Sum :: "div" : "Sumdoesnotconverge."

out [467] = (-1)k1
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Thus, the series diverges.
For (b), we have a telescoping series. Using partial fractions,

> 2 °°( 1 1 )

21 r—1 r=1

33 3)s
3 2 4 3 5

+( : : )+
n—-1 n+1

we see that the nth partial sum is given by

itz
n-2 n

3 1 1
Sp=————

2 n n+l1

and s, — 3/2 as n - co so the series converges to 3/2:

S 203
2 _ = —.
Le-1" 2

We perform the same steps with Mathematica using Sum, Apart, and

Limit. Apart computes the partial
fraction decomposition of a
In[468]:= sn=8Sum[1/(k-1) -1/(k+1), {k,2,n}] rational expression.
(-1+n) (2+3 n)
2 n (1+n)

Out [468] =

In[469] := Apart[sn]

3 1 1
Out [469]= — - — -
2 n 1l+n
In[470] := Limit[sn, n- > o]
3
Out [470] = 5

(c) A series of the form Y2, ar* is called a geometric series. We compute
the nth partial sum of the geometric series with Sum.

In[471] := sn=Sum[a r"k, {k, 0, n}]
a (-1+1rt®)

-1+r1

Out [471] =

When using Limit to determine the limit of s, as n —» oo, we see that
Mathematica returns the limit unevaluated because Mathematica does
not know the value of r.

In[472] :

Limit[sn, n- > ]
<_1 + rl+n)

-l+r

out [472] = Limit[a ;0> o]
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In fact, the geometric series diverges if || = 1 and converges if |r] < 1.
Observe that if we simply compute the sum with Sum, Mathematica
returns a/(1 — r) which is correct if |r|] < 1 but incorrect if || = 1.

In[473] := Sum[a r "k, {k, 0, »}]
Out [473] = %

However, the result of entering

In[474] := Sum[(-5/3) "k, {k, 0, ®}]

Sum :: "div" : "Sumdoesnotconverge."

- S
out [474] = Z (- 5)
k=0

. . k. o
is correct because the series Y2, (—2)" is geometric with |r| = 5/3 = 1
and, consequently, diverges. Similarly,

In[475]:= sum[9 (1/10) "k, {k, 1, }]
Out [475]= 1

is correct because ;2 9 (%)k is geometric with a = 9/10 and r = 1/10 so
the series converges to

a 9/10 3
1-r 1-1/10

3.4.2 Convergence Tests

Frequently used convergence tests are stated in the following theorems.

Theorem 8 (The Divergence Test). Let ;2 ax be an infinite series. If limy,, a; # 0,
then Y32, ax diverges.

Theorem 9 (The Integral Test). Let ;2 ax be an infinite series with positive terms. If
f(x) is a decreasing continuous function for which f(k) = ay for all k, then Y;2, ar and
flm f(x) dx either both converge or both diverge.

Theorem 10 (The Ratio Test). Let } 72, ai be an infinite series with positive terms and

— T Aje+ 1
let p = limy_,, kel

1. Ifp < 1, Y32, ax converges.
2. Ifp > 1, Y32, ax diverges.
3. If p = 1, the Ratio Test is inconclusive.
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Theorem 11 (The Root Test). Let Y;2, ai be an infinite series with positive terms and
let p = limy_ v/ ar.

1. Ifp < 1, Y52, ax converges.
2. Ifp>1, 32, a diverges.
3. If p = 1, the Root Test is inconclusive.

Theorem 12 (The Limit Comparison Test). Let }.;2, ax and >.;2, by be infinite series
with positive terms and let L = limye 35. If 0 < L < oo, then either both series converge
or both series diverge.

EXAMPLE 3.4.3: Determine whether each series converges or diverges.

. 1\ L 1 ok o (k? . ko\*

(a) 2 (1 + %) 7 (b) 2t kT,} () Xiti ?}(d) Py @) (e) Ziti (m) ;
2Vk+ 1

fye NETE
() 2 Wk + 12k + 1)

SOLUTION: (a) Using Limit, we see that the limit of the termsis e # 0
so the series diverges by the the Divergence Test, Theorem 8.

In[476]:= Limit[(1+1/k) "k, k- > ]
Out [476]= e

It is a very good exercise to show that the limit of the terms of the series

is e by hand. Let L = limyoo (1 + %)k Take the logarithm of each side of
this equation and apply L'Hopital’s rule:

1 k
InL = limln(l + %)

k—o0

InL = limkln(l + %)

k—o0
1
Inf1+ —
Wi+ 1)

InL = lim
k—o0 1
k
1 1
—1
1+ k
InL = lim k]
K2
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Exponentiating yields L = """ = ¢! = e. (b) A series of the form )7, -
is called a p-series. Let f(x) = x”. Then, f(x) is continuous and decreas-
ing forx = 1, f(k) = k™ and

foo xfpdx: IOO, lfp =<1
1 ll/(p—l),ifp> 1

so the p-series converges if p > 1 and diverges if p < 1. If p = 1, the
series Y2, 1 is called the harmonic series.

In[477]:= sl = Integrate[x” (-p), {x, 1, ©}]

1 o
out [477]= If[Re[p] >1, J X Pdx |
-1+p 1
(c) Let f(x) = x-37*. Then, f(k) = k- 3% and f(x) is decreasing for x >
1/1In 3.

In[478]:= £[x.] =x 37 (-x);
Factor[f' [x]]
Out [478]= -37% (-1+x Log[3])

In[479] := Solve[-1+x Log[3] == 0]
1

toara] !

out [479] = {{X_éLog

Using Integrate, we see that the improper integral flm f(x)dx con-
verges.

In[480] := ival = Integrate[f[x], {x, 1, ©}]

N[ival]

1+Log[3]
3 Log[3]?
Out [480]= 0.579592

Out [480] =

Thus, by the Integral Test, Theorem 9, we conclude that the series con-
verges. Note that when applying the Integral Test, if the improper
integral converges its value is not the value of the sum of the series.
In this case, we see that Mathematica is able to evaluate the sum with
Sum and the series converges to 3/4.

In[481] := Sum[k 3~ (-k), {k, 1, ©}]

3
Out [481] = 1
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(d) If a contains factorials, the Ratio Test is a good first test to try. After
defining a; we compute

[(k+ D!]?

fim &0 = gy 2K+ DI
k—oo  ay k—oo (k')2

(2k)!
_ iy & DG+ D 20!
ke k! - k! 2k +2)!
(k+1) o (k+1) 1

=1li = =

n 2k +2)2k+1)  Iom22k+1) 4

Because 1/4 < 1, the series converges by the Ratio Test. We confirm
these results with Mathematica.

Remark. Use FullSimplify instead of Simplify to simplify expres-
sions involving factorials.

In[482] := a[k.] = (k!)"2/(2k)!;
sl = FullSimplify[a[k+ 1] /a[k]]
1+k

Out [482]= ———
[ ] 2+4 k

In[483] := Limit[sl, k- > ]

1
Out [483] = 1

We illustrate that we can approximate the sum using N and Sum as fol-
lows.

In[484] :

ev = Sum[a[k], {k, 1, o}]

% (9+2 V3 n)

Out [484]

In[485] := N[ev]
Out [485]= 0.7364

(e) Because

limk( )k—lim ko1
o V\dk+1) koo dk+1 4 7

the series converges by the Root Test.

In[486]:= alk.] = (k/(4k + 1)) “k;
Limit([a[k] " (1/k), k- > ®]

1
Out [486] = n
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As with (d), we can approximate the sum with N and Sum.
In[487] := ev = Sum[a[k], {k, 1, ©}]

Eza[k}

k=1

In[488] := N[ev]

Out [487]

Out [488]= 0.265757

(f) We use the Limit Comparison Test and compare the series to ;2| % =

Do %, which diverges because it is a p-series with p = 1. Because

2Vk+1
. (Wk+D(@2k+1)
0 < lim _—

k—oco -

k

=l<o

and the harmonic series diverges, the series diverges by the Limit Com-
parison Test.

In[489] := alk.] = (28qrt[k] +1)/((Sqrt[k] +1) (2k+1));
b[k.] = 1/k;
Limit[a[k]/b[k], k- > »]

out [489]= 1

3.4.3 Alternating Series

An alternating series is a series of the form
Z(—l)kak or Z(—l)k”ak (3.25)
k=1 k=1

where {a;} is a sequence with positive terms.

Theorem 13 (Alternating Series Test). If {a} is decreasing and limy,., ar = 0, the
alternating series (3.25) converges.

The alternating series (3.25) converges absolutely if });2, a; converges.
Theorem 14. If the alternating series (3.25) converges absolutely, it converges.

If the alternating series (3.25) converges but does not converge absolutely, we say
that it conditionally converges.
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EXAMPLE 3.4.4: Determine whether each series converges or
diverges. If the series converges, determine whether the convergence

D! o o k+ D!

is conditional or absolute. (a) >,

© s (141,

SOLUTION: (a) Because {1/k} is decreasing and 1/k — 0 as k — oo, the
series converges. The series does not converge absolutely because the

. C o _py 1
harmonic series diverges. Hence, 3¢, ¢ 1,3 L, which is called the alter-
nating harmonic series, converges conditionally. We see that this series
converges to In2 with Sum.

In[490] := a[k.] = (-1) " (k +1) /k;
Sum[a[k], {k, 1, ©}]
out [490] = Log[2]

(b) We test for absolute convergence first using the Ratio Test. Because

((k+ 1)+ 1)!
A )P k+2
T T
4 K1Y

In[491]:= alk.] = (k+1)!/(4"k (k!)"2);
sl =FullSimplify[alk+1]/a[k]]

Limit[sl, k- > ]
2+k

4 (1+k)?

Out [491]= O

Out [491] =

the series converges absolutely by the Ratio Test. Absolute convergence
implies convergence so the series converges. (c) Because limy_,, (1 + %)k =
e, limy_, oo (= 1)k*! (1 + %)k does not exist, so the series diverges by the Di-
vergence Test. We confirm that the limit of the terms is not zero with
Limit.

In[492]:= al[k.] = (-1)"(k+1) (1+1/k)"k;
Su.m[a[k] s {kl 1, m}]
Sum :: "div" : "Sumdoesnotconverge."

out [492]= ) alk]
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In[493] := Limit[a[k], k- > o]
L . 1.
Out [493]= Limit[(-1)"* <1+E> k> o]

3.4.4 Power Series

Let xp be a number. A power series in x — x is a series of the form

00

Z a (x — xo)* . (3.26)

k=0

A fundamental problem is determining the values of x, if any, for which the power
series converges.

Theorem 15. For the power series (3.26), exactly one of the following is true.

1. The power series converges absolutely for all values of x. The interval of conver-
gence is (—oo, 00).

2. There is a positive number r so that the series converges absolutely if xo —r < x <
xo+r. The series may or may not converge at x = xo—r and x = xo+r. The interval
of convergence will be one of (xo —r,xo + 1), [xo —r, x0 + 1), (xo — 1, %0 + 1], or
[xo — 1, x0 + 1].

3. The series converges only if x = xo. The interval of convergence is {xo}.

EXAMPLE 3.4.5: Determine the interval of convergence for each of

(—1)k R _
K (b) ¥, W(X— DY

the following power series. (a) X1~ 2%+ D)

2k
() X 7()6 -4k

\/_

SOLUTION: (a) We test for absolute convergence first using the Ratio
Test. Because

i (_1)k+l

2(k+1)+li
. @K+ D+ D! . 1 2
1 =lim—— ¥ =0<1
s CIf L ; Be 2k D2k +3)
Qk+ D
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In([494]:= a[x, k] = (-1)"k /(2k+1)1x" (2k+1);
sl = FullSimplify[a[x, k+1]/a[x, k]]
Limit[sl, k- > o]
X2
out [494]= -

6+10 k+4 k?
Out [494]= 0

for all values of x, we conclude that the series converges absolutely for
all values of x; the interval of convergence is (—oo, ). In fact, we will
see later that this series converges to sin x:

which means that the partial sums of the series converge to sinx. Graph-
ically, we can visualize this by graphing partial sums of the series to-
gether with the graph of y = sinx. Note that the partial sums of a se-
ries are a recursively defined function: s, = s,-1 + a,, so = ag. We use
this observation to define p to be the nth partial sum of the series. We
use the formp [x_,n ] :=p[x,n]=... sothat Mathematica “remem-
bers” the partial sums computed. That is, once p [x, 3] is computed,
Mathematica need not recompute p [x, 3] when computing p [x, 4].

In[495] := Clear|[p]

plx_, 0] =a[0];
plx.,n] :=p[x,n] =p[x,n-1] +a[x,n]

In[496] := p[x, 2]

3 5

x
Out [496]= X — — + ——
6 120

In Figure 3-41 we graph p,(x) = Y-, (2! together with y = sinx
forn = 1,5, and 10. In the graphs, notice that as n increases, the graphs
of p,(x) more closely resemble the graph of y = sin x.

In[497]:= Plot[{sSin[x],p[x,1],p[x,5],p[x,10]},
{x, -27x, 27t} , PlotRange- > {-7x, 7},
AspectRatio- > Automatic,
PlotStyle- > {GrayLevel[0], GrayLevel[0.3],
Dashing[{0.01}], {GrayLevel[0.3],
Dashing[{0.01}]}}]
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! N N ’ v
af

[

-3 b \

Figure 3-41 y = sinx together with the graphs of p;(x), ps(x), and pio(x)

(b) As in (a), we test for absolute convergence first using the Ratio Test:

h+ DK
””””” (= D™ !0 ifx=1
lim |- 10007 S TR TI L
el R T 1000 |oovifx 1.
1000k

In[498] := a[x.,k.] =k!/1000"k (x-1) k;
sl = FullSimplify([a[x, k +1]/a[x, k]]

Limit[sl, k- > o]

out [498] = (1xk) (-1+x)

Out [498] = Indeterminate

Be careful of your interpretation of the result of the Limit command
because Mathematica does not consider the case x = 1 separately: if
x = 1 the limit is 0. Because 0 < 1 the series converges by the Ratio Test.

The series converges only if x = 1; the interval of convergence is {1}.
You should observe that if you graph several partial sums for “small”
values of n, you might incorrectly conclude that the series converges.
(c) Use the Ratio Test to check absolute convergence first:

! k+1 ' ]I
i"’:::: (.x_4) + i """
| | . k
tim | VAEL | = 11m2\/1|x—4| = 2 — 4l
k—o0 727;()(: _ 4)k k—o0 k +
Vk

By the Ratio Test, the series converges absolutely if 2|x—4| < 1. We solve
this inequality for x with InequalitySolve to see that 2|x — 4| < 1 if
772 <x<9/72.
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In[499] := a[x ,k.] =2"k /Sqrt[k] (x-4)"k;

sl = FullSimplify[Abs[a[x, k+1]/a[x,k]]]

Limit[sl, k- > »]

[ x
Out [499]= 2 Abs| T (-4 +x)]

Out [499]= 2 Abs[-4 +x]

In[500] := << Algebra‘InequalitySolve"

InequalitySolve[2 Abs[x-4] < 1, x]

7 9
Out [500]= — <X < —
2 2

We check x = 7/2 and x = 9/2 separately. If x = 7/2, the series becomes
Z,‘f’zl(—l)k ﬁ, which converges conditionally.

In[501] := Simplify[a[x, k]/.x- >7/2]
(-1)*
Vk

On the other hand, if x = 9/2, the series is > ;7 ﬁ, which diverges. We

Out [501] =

conclude that the interval of convergence is [7/2, 9/2).

In[502] := Simplify[a[x, k]/.x- >9/2]
Out [502] =

.

3.4.5 Taylor and Maclaurin Series

Lety = f(x) be a function with derivatives of all orders at x = xo. The Taylor series
for f(x) about x = xy is

(k)
Z ! ("0) xo)k. (3.27)

The Maclaurin series for f(x) is the Taylor series for f(x) about x = 0. If y = f(x)
has derivatives up to at least order n at x = xo, the nth degree Taylor polynomial
for f(x) about x = x is

n (k)
pu = 3 L0 (3.28)

k!

The nth degree Maclaurin polynomial for f(x) is the nth degree Taylor polyno-
mial for f(x) about x = 0. Generally, finding Taylor and Maclaurin series using the
definition is a tedious task at best.
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EXAMPLE 3.4.6: Find the first few terms of (a) the Maclaurin series
and (b) the Taylor series about x = n/4 for f(x) = tanx.

SOLUTION: (a) After defining f(x) = tanx, we use Table together
with /. and D to compute f®(O)k! fork=0,1,..., 8.

In[503] := £[x.] = Tan[x];
Table[
{k,D[£f[x], {x,k}],D[£[x], {x,k}]/.x- >0},
{k,0,8}]
out [503]= {{0, Tan[x], 0}, {1, sec[x]?, 1},
{2,2 sec[x]® Tan[x], 0},
{3 2 Sec[x]*+4 Sec[x]? Tan[x]2,2},
{4,16 Sec[x]* Tan[x] +8 Sec[x]? Tan[x]?, O},
{5,16 sec[x]®+88 Sec[x]* Tan[x]”+
16 Sec[x]? Tan[x}4,16},
{6,272 Sec[x]® Tan[x]+
416 Sec[x]* Tan[x]®+32 Sec[x]? Tan[x}S,O},
{7,272 sec[x]®+2880 Sec[x]° Tan[x]*+
1824 Sec[x]* Tan[x]*+
64 sec[x]? Tan[x]®, 272},
{8, 7936 sec[x]® Tan[x]+
24576 Sec[x]® Tan[x]>*+
7680 Sec[x]* Tan[x]°+
128 Sec[x]? Tan[x]’, 0}}

Using the values in the table, we apply the definition to see that the
Maclaurin series is

®0 2 17
Zf ()x" fx3+—x5+—x7+...

For (b), we repeat (a) using x = n/4 instead of x = 0

In[504] := £[x.] = Tan[x];
Table[
{k,D[f[x], {x, k}],D[£[x], {x, k}]/.x- >7/4},
{k,0,8}]
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out [504]= {{0, Tan[x], 1}, {1, sec[x]?, 2},
{2, 2 sec[x]? Tan[x], 4},
{3 2 Sec([x]*+4 Sec[x]? Tan[x}2,16},
{4,16 sec[x]* Tan[x] +8 Sec[x]? Tan[x]>, 80},
{5,16 sec[x]®+88 Sec[x]* Tan[x]”+
16 Sec[x]? Tan[x]*, 512},
{6,272 Sec[x]® Tan[x] +416 Sec[x]* Tan[x]’+
32 Sec[x]? Tan[x}5,3904},
{7,272 sec[x]®+2880 Sec[x]® Tan[x]?+
1824 Sec[x]* Tan[x]*+
64 Sec[x]? Tan[x}5,34816},
{8,7936 sec[x]® Tan[x]+
24576 Sec[x]® Tan[x]’+
7680 Sec[x]* Tan[x]’+
128 Sec[x]* Tan[x]’, 354560} }

and then apply the definition to see that the Taylor series about x = 7/4

is

if(k)(x()) (x—xo)kz1+2(x—z)+2(x—z)2+§(x—£)3+

£ k! 4 4) T3\ g
10 64 244
Tl b S )

From the series, we can see various Taylor and Maclaurin polynomials.
For example, the third Maclaurin polynomial is

L 4
p3(x) =x+ gx

and the 4th degree Taylor polynomial about x = 7/4 is

p4(x)=1+2(x—%)+2(x—%)2+§(x—%)3+13—0( —%)4,

| ]
The command
Series [f [x], {x,x0,n}]

computes (3.27) to (at least) order n— 1. Because of the O-term in the result that rep-
resents the terms that are omitted from the power series for f(x) expanded about
the point x = xo, the result of entering a Series command is not a function that
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can be evaluated if x is a particular number. We remove the remainder (O-) term
of the power series Series [f [x], {x,x0,n}] with the command Normal and
can then evaluate the resulting polynomial for particular values of x.

EXAMPLE 3.4.7: Find the first few terms of the Taylor series for f(x)
about x = xy. (a) f(x) = cosx, x = 0; (b) f(x) = 1/x*, x = 1.

SOLUTION: Entering

In[505] := Series[Cos[x], {x, 0, 4}]
2 4

out [505]= 1- — + X +0[x]°®
- 2 24
computes the Maclaurin series to order 4. Entering

In[506] := Series[Cos[x], {x, 0, 14}]

2 X4 X6 XS XlO X12

X
Out [506]= 1- — + — - + - + -
2 24 720 40320 3628800 479001600

X14

— 4+ 0[x]*®
87178291200

computes the Maclaurin series to order 14. In this case, the Maclaurin
series for cos x converges to cos x for all real x. To graphically see this, we
define the function p. Given n, p [n] returns the Maclaurin polynomial
of degree n for cos x.

In[507] := p[n.] := Series[Cos[x], {x, 0, n}]//Normal

In[508] :

pl8]

2 4 6 8

x x x
out [508]= 1- — + — — +
2 24 720 40320

We then graph cos x together with the Maclaurin polynomial of degree
n = 2,4,8, and 16 on the interval [-37/2, 37/2] in Figure 3-42. Notice
that as n increases, the graph of the Maclaurin polynomial more closely
resembles the graph of cosx. We would see the same pattern if we in-
creased the length of the interval and the value of n.

In[509] : = somegraphs = Table[Plot[Evaluate[{Cos[x],
pl2°nl}]1, {x, -37/2,37/2},
PlotRange- > {-3n/2, 3xw/2},
AspectRatio- > Automatic,
PlotStyle- > {GrayLevel[0],
GrayLevel[0.3]},
DisplayFunction- > Identity],

{n,1,4}]
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¢

-2 2
-4 4
4 4
2 2

Figure 3-42 Graphs of y = cosx together with its second, fourth, eighth, and sixteenth
Maclaurin polynomials

Out [509] = BoxData ({-Graphics-, -Graphics-,
-Graphics-, -Graphics-1})

In[510] := toshow = Partition[somegraphs, 2]

Out [510] = BoxData ({{-Graphics-, -Graphics-},
{-Graphics-, -Graphics-}})

In[511] := Show[GraphicsArray[toshow]]

(b) After defining f(x) = 1/x?, we compute the first 10 terms of the
Taylor series for f(x) about x = 1 with Series.

In[512] := £[x.] =1/x"2;
pl0 = Series[£f[x], {x,1,10}]
Out[512]=1-2 (x-1)+3 (x-1)%-4 (x-1)°+
5 (x-1)%-6 (x-1)°+7 (x-1)°-8 (x-1)"+
9 (x-1)%-10 (x-1)7+11 (x-1)+
O[x-1]"
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In this case, the pattern for the series is relatively easy to see: the Taylor
series for f(x) aboutx = 11is

00

D =D+ D - 1)

k=0
This series converges absolutely if

(_1)k+l(k + 2)(X _ 1)k+l

T R+ Do 1

k—o0

=hk-1<1

or 0 < x < 2. The series diverges if x = 0 and x = 2. In this case, the
series converges to f(x) on the interval (0, 2).

In[513]:= a[x_., k] =(-1)"k (k+1) (x-1)"k;
sl = FullSimplify[Abs[a[x, k+1]/a[x, k]]]
(2+k) (-1+x%) ]

Out [513] = Abs[ Tx
N

In[514] := 82 = Limit[sl, k- > »]
Out [514]= Abs[-1 +x]

In[515] := << Algebra‘InequalitySolve"

InequalitySolve[s2 <1, x]
Out [515]= 0 <x <2

To see this, we graph f(x) together with the Taylor polynomial for f(x)
about x = 1 of degree n for large n. Regardless of the size of n, the
graphs of f(x) and the Taylor polynomial closely resemble each other
on the interval (0, 2)—-but not at the endpoints or outside the interval.
(See Figure 3-43.)

In[516] := p[n.] :=Series[f[x], {x,1,n+1}]//Normal

In[517] := Plot[Evaluate[{£f[x],p[16]1}].,
{x, 0,2}, PlotRange- > {-5, 45},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]}]

3.4.6 Taylor’s Theorem

Taylor’s theorem states the relationship between f(x) and the Taylor series for f(x)
about x = xg.
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40

30

20

10

Figure 3-43 Graph of f(x) together with the sixteenth degree Taylor polynomial about
x=1

Theorem 16 (Taylor’s Theorem). Let y = f(x) have (at least) n + 1 derivatives on an
interval I containing x = xo. Then, for every number x € I, there is a number z between x
and xq so that

J&) = pu(x) + Ru(x),

where py,(x) is given by equation (3.28) and

f(’Hl)() n+l1
Ry(x) = (+1)'( —-x)"". (3.29)

EXAMPLE 3.4.8: Use Taylor’s theorem to show that

D"
smx—Z(Zk_’_l)‘ x2H

SOLUTION: Let f(x) = sinx. Then, for each value of x, there is a num-

ber zbetween 0 and x so that sinx = p,(x)+R,(x) where p,(x) = Y}_, ! Mk),(o)xk
and R,(x) = f((;j;gf)x”“. Regardless of the value of n, f"*!(z) is one of
sinz, —sinz, cos z, or — cos z, which are all bounded by 1. Then,

f(n+l)(Z) el
(n+1)!

|sinx — p,(x)| =

|sinx — p,(x)| < m| [+
and — 0 as n — oo for all real values of x.
You should remember that the number z in R,(x) is guaranteed to

exist by Taylor’s theorem. However, from a practical point of view, you
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would rarely (if ever) need to compute the z value for a particular x
value.
For illustrative purposes, we show the difficulties. Suppose we wish
to approximate sin /180 using the Maclaurin polynomial of degree 4,
The Maclaurin polynomial of pax) =x— %x3 , for sin x. The fourth remainder is

degree 4 for sinx is
4 k) (0
Sieo Lt =

1
— 5
0+x+0-x%+ 313 +0-x% Ri(x) = 12OCOSZ)C.

In[518] := £[x.] =8Sin[x];
r5=D[£f[z], {z,5}]/5! x5

s
Out [518] = 120 x> Cos|[z]
If x = 1/180 there is a number z between 0 and 7/180 so that
R(L)‘ LI (L)S
“\180)] = 120 “** 180

<i(i)5~0135><10-10
~120l180) © ’

which shows us that the maximum the error can be is ﬁ (ﬁ)s ~ 0.135%
10710,

In[519] := maxerror =N[1/120 = (x/180) 5]
Out [519]= 1.349610 **

Abstractly, the exact error can be computed. By Taylor’s theorem, z sat-

isfies
T Vs T
Z = 2 Ry =
f(lSO) p4(1so)+ 4(180)
LS I B S ;
1180 T 1807 T 34992000" T 22674816000000" *°*
I T 1 5 o
0= 7 oS Z — Sin ——

1807~ 34992000 ' 22674816000000 180°

We graph the right-hand side of this equation with P1ot in Figure 3-44.
The exact value of z is the z-coordinate of the point where the graph
intersects the z-axis.

In[520] := p4 = Series[£f[x], {x,0,4}]//Normal
3

b'S
Out [520]= x - =
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0.0025 005 0.0075 0.01 0.0125 0.015 0.0175

-2x107%¢

-4x107'®

-6x107*°

Figure 3-44 Finding z

In[521] := exval = Sin[x/180]
p4b =p4/.x- > /180
r5b =r5/.x- >7x/180

s

Out [521]= Sin |——

{ ] {180} s
7 s

Qut [521]= — - ———
1805 34992000

> Cos|z

Out [521] = =]
22674816000000

In[522] := toplot = r5b + p4b - exval;
Plot[toplot, {z, 0, 7r/180}]

We can use FindRoot to approximate z, if we increase the number of
digits carried in floating point calculations with WorkingPrecision.

In[523] := exz = FindRoot[toplot == 0, {z, 0.004},
WorkingPrecision- > 32]
Out [523]= {z—>0.003808614916554160794933316330124}

Alternatively, we can compute the exact value of z with Solve

In[524] := cz = Solve[toplot == 0, z]
Solve :: "ifun" : "Inversefunctionsarebeingused
bySolve, sosomesolutionsmaynotbefound."
out [524]= {{z » - ArcCos
3 .
[648000 (-194400 s+ +34992000 Sin|[Z]) D
il !
{z — ArcCos
648000 (-194400 s+ +34992000 Sin |5

[ - wl) )
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and then approximate the result with N.

In[525] := N[cz]

Out [525]= {{z > -0.00384232},

{z>0.00384232}}

3.4.7 Other Series

In calculus, we learn that the power series f(x) = X ioqar (x — xo)¥ is differentiable
and integrable on its interval of convergence. However, for series that are not
power series this result is not generally true. For example, in more advanced
courses, we learn that the function

flx) = 7% sin (Skx)
k=0
is continuous for all values of x but nowhere differentiable. We can use Mathematica
to help us see why this function is not differentiable. Let

n

fulx) = % sin (3%x).
k=0

Notice that f,(x) is defined recursively by fy(x) = sinxand f,(x) = f,—i (x)+% sin (3"x).
We use Mathematica to recursively define f,(x).

In[526] := £[n.] :=£f[n] = f[n-1] +Sin[3"n x]/2"n;
£[0] =8in[x];

We define f,(x) using the form
fln 1:=f[nl=...

so that Mathematica “remembers” the values it computes. Thus, to compute £ [5],
Mathematica uses the previously computed values, namely £ [4], to compute
£ [5]. Note that we can produce the same results by defining f,(x) with the com-
mand

fln J1:=...
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However, the disadvantage of defining f,(x) in this manner is that Mathematica
does not “remember” the previously computed values and thus takes longer to
compute f,(x) for larger values of n.

Next, we use Table to generate f3(x), fs(x), fo(x), and fi2(x).

In[527] := posums = Table[£f[n], {n, 3, 12, 3}]

out [527] = {Sin[x]+AE Sin[3 x}+E Sin[9 x] + = Sin[27 x],

vk D
I
o @I

Sin[x] + Sin[3 x] + Sin[9 x] + Sin[27 x]+

1
Sin[81 x] +§ Sin[243 x]+

Sin[729 x], Sin[x] + Sin[3 x]+
) 1 . 1 .
Sin[9 x] + - Sin[27 x] + — Sin[81 x]+
8 16
. 1 )
Sin[243 x] +6—4 Sin[729 x]+

Sin[2187 x] +

Sin[6561 x|+

Sin[19683 x], Sin[x] + Sin[3 x]+

N
p NI

Sin[9 x] +

w| R

Sin[27 x] +E Sin[81 x]+

1
— Sin[243 x] +a Sin[729 x]+
1
128
1 Sin[59049 x]

—— sin[19683 x] +
512 1024

Sin[177147 x] Sin[531441 x}}
+
2048 4096

Sin[2187 x] + Sin[6561 x]+

We now graph each of these functions and show the results as a graphics array
with GraphicsArray in Figure 3-45.

In[528] := somegraphs = Map[Plot[#, {x, 0, 37},
DisplayFunction- > Identity] &, posums];
toshow = Partition[somegraphs, 2];
Show[GraphicsArray[toshow] ]

From these graphs, we see that for large values of n, the graph of f,(x), although
actually smooth, appears “jagged” and thus we might suspect that f(x) = lim,«

) = X2 217 sin (3kx) is indeed continuous everywhere but nowhere differen-
tiable.
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0.5 0.5

-0.5 -0.5

0.5 0.5

~0.5 -0.5

Figure 3-45 Approximating a function that is continuous everywhere but nowhere differ-
entiable

3.5 Multi-Variable Calculus

Mathematica is useful in investigating functions involving more than one variable.
In particular, the graphical analysis of functions that depend on two (or more)
variables is enhanced with the help of Mathematica’s graphics capabilities.

3.5.1 Limits of Functions of Two Variables

Mathematica’s graphics and numerical capabilities are helpful in investigating
limits of functions of two variables.

2 _ 2
EXAMPLE 3.5.1: Show that the limit lim(y)-0,0) % does not exist.
Tty

SOLUTION: We begin by defining f(x, y) = f:ﬁ .Next, we use P1lot3D
tographz = f(x,y)for—1/2 <x < 1/2and -1/2 < y < 1/2. ContourPlot
is used to graph several level curves on the same rectangle. (See Figure
3-46.) (To define a function of two variables, f(x, y) = expressioninxand y,

enter f[x ,y ]l=expression in x and y. Plot3DI[f[x,y],
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Figure 3-46 (a) Three-dimensional and (b) contour plots of f(x, y)

{a,x,b}, {y,c,d}] generates a basic graphof z = f(x,y) fora<x < b
andc <y =<d)

In[529]:= f[x_,y.]1=(x"2-y72)/(x"2+y"2);

pl = Plot3D[f[x,y], {x,-0.5,0.5},
{y,-0.5,0.5}, PlotPoints- > {40, 40},
DisplayFunction- > Identity];

p2 = ContourPlot[£f[x, y],
{x,-0.5,0.5}, {y,-0.5,0.5},
PlotPoints- > 40,
ContourShading- > False, Axes- > Automatic,
AxesOrigin- > {0, 0},
DisplayFunction- > Identity];

Show[GraphicsArray[{pl, p2}]]

From the graph of the level curves, we suspect that the limit does not
exist because we see that near (0,0), z = f(x,y) attains many differ-
ent values. We obtain further evidence that the limit does not exist by
computing the value of z = f(x, y) for various points chosen randomly
near (0, 0). We use Table and Random to generate 13 ordered triples
(%, y, f(x, y)) for x and y “close to” 0. Because Random is included in the
calculation, your results will almost certainly be different from those
here. The first column corresponds to the x-coordinate, the second col-
umn the y-coordinate, and the third column the value of z = f(x, y).

In[530] := r[n.] := {Random[Real, {-10"(-n), 10" (-n)}1,

Random[Real, {-10"(-n), 10" (-n)}1}

In[531] := r[1]
Out [531]= {5.25152, 9.37514}
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In[532] := toevaluate = Table[r[n], {n, 1, 15}]

out [532]= {{0.043922, 0.0768676},
{-0.00775639, 0.0039307},
{-0.0000561454,

-0.0000790007},
{0.0000536954, 0.0000373069},
{3.2475210°°, 7.4124310°°},
{1.701051077, -6.6412107"},
{-1.1523110°, -8.6988210 %},
{3.8591410°°, 4.1881410°°},
{-4.0704710°,

7.0624810 1%},
{8.1906810° ', 4.6555110 "},
{1.6758110'2,

-8.2398210 %},
{8.4759310*3,

-8.2378510 %},
{7.2836110 ",

-5.9265810 ™},
{6.23232107'%,

-2.16855107 %%},
{-2.1549310 ¢,

4.8634310'°}))

In[533]:= Map[£[#[[1]], #[[2]]]&, toevaluate]

Out [533]= {-0.507731,
0.591324, -0.328828,
0.348863, -0.677926,
-0.876866, -0.999649,
-0.0816327, -0.501298,
0.511638, -0.920559,
0.0284831, 0.203308,
0.784009, -0.671783}

From the third column, we see that z = f(x,y) does not appear to
approach any particular value for points chosen randomly near (0, 0).

We choose lines of the form In fact, along the line y = mx we see that

y = mx because near (0, 0)

the level curves of z = f(x,) 1 —m?
look like lines of the form f(X, y) = f(X, mx) = PR
y = mx. L+m

Hence as (x,y) - (0,0) along y = mx, f(x,y) = f(x, mx) - i;% Thus,
f(x, y) does not have a limit as (x, y) - (0, 0).
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In[534] := vl = Simplify[£f[x, m x]]
vl /.m- >0
vli/.m- >1

vl /. m->1/2
1-m?

Out [534]= ——
[ ] 1+ m?

Out [534]=1
Out [534]= 0
Out [534] = g
u

In some cases, you can establish that a limit does not exist by converting to polar
coordinates. For example, in polar coordinates, f(x,y) =
rsin) = 2cos2 6 — 1

X2+ "> becomes f(rcos8,

In[535] := Simplify[£f[r Cos[t],r Sin[t]]]

Out [535]= Cos[2 t]

and

o) (00)f(x y)—llmf(rcos8 rsm@)—hchos f—1=2cos?0—1=cos20
Xy—)

depends on 6.

3.5.2 Partial and Directional Derivatives

Partial derivatives of functions of two or more variables are computed with
Mathematica using D. For z = f(x, y),

1. D[f [x,y],x] computes % = filx y),

2. DIf [x,y],y] computes a—f = f(xy),

3. D[f [x,y], {x,n}] computes (,x{,

4. D[f [x,y],y,x] computes j ayax = fo(x y), and
5. DI [x,y], {x,n}, {y,m}] computes 5.

The calculations are carried out similarly for functions of more than two variables.

201
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EXAMPLE 3.5.2: Calculate fi(x,y), f;(x ¥), fuo(x ¥), fix(x ), fu(x ¥), and

S y) if f(x, y) = sinya? +y? + 1.

SOLUTION: After defining f(x, y) = sinyx? +y? + 1,
In[536]:= £[x ,y.] =Sin[Sqrt[x"2+y"2+1]];
we illustrate the use of D to compute the partial derivatives. Entering

In[537] := D[£[x, y], %]
X Cos[m]
V1+x2+y?

computes f,(x, y). Entering

Out [537] =

In[538] := D[f[x,¥y],¥y]
v cOs[m]
V1+x2+y?

computes f,(x, y). Entering

Out [538] =

In[539] := D[f[x,vy],x,y]//Together

-x y Cos [\/l+x2+y2} -xX y VJ1+x?%+y? Sin[w/1+x2+y2]

3/2
)

Out [539] =
(1 +x2%+y?

computes f.(x, y). Entering

In[540] := D[f[x,y].,y,x]//Together

xy Cos[VI+xi+y?] -xy VI+xEry? Sin[I+x ¥

Out [540] = >3/2

(1 +x2+y?
computes f,,(x,y). Remember that under appropriate assumptions,
S y) = fix(x, y). Entering

In[541] := D[f[x,vy]., {x,2}]//Together

out [541] = ;M(Cos [x/l+x2+y2] +y* Cos [xll +x2+y2]—

(1+x2+y2)

x* AJ1+x2+y2 Sin[ﬂl +x2+y2])

computes f,.(x, y). Entering

In[542] := D[f[x,y], {y,2}]//Together

out [542] = ;W(Cos [x/1+x2+y2] +x* Cos [w/l +x2+y2]—

(1 +x2%+y?

v2 oA/l + %2+ y2 Sin[ﬂl +X2+y2])

computes f,,(x, ¥).
|



3.5 Multi-Variable Calculus

The directional derivative of z = f(x, y) in the direction of the unit vector u =
cosf1i+sinfjis
Dy f(x,y) = filx, y)cos 8 + f,(x, y)sin 6,
provided that f(x, ) and f,(x, y) both exist.
If fi(x, y) and f,(x, y) both exist, the gradient of f(x,y) is the vector-valued func-
tion

VL) = filr Wi+ £ 0) = (flx ), (@ 9).

Notice that if u = {cos 8, sin 8),

Dy f(x,y) =Vf(x,y):{(cosb, sinb).

EXAMPLE 3.5.3: Let
flx,y) = 6x%y — 3x* = 2y°.

(a) Find Dy f(x, y) in the direction of v = (3, 4). (b) Compute
1
D(3/5,4/5)f(3 V9 +3V3, 1).

(c) Find an equation of the line tangent to the graph of 6x?y—3x*-2y* = 0

at the point (%\/ 9 +34/3, 1).

SOLUTION: After defining f(x, y) = 6x*y—3x*-2y°, we graph z = f(x, y)
with P1lot 3D in Figure 3-47, illustrating the Plot Point s, PlotRange,
and ViewPoint options.

In[543] := £[x_,y.] =6x"2y-3x"4-2y"3;
Plot3D[£f[x,y], {x, -2, 2},
{y,-2,3}, PlotPoints- >50, PlotRange- >
{{-2,2}, {-2, 3}, {-2, 2}},
BoxRatios- > {1,1,1},
ViewPoint- > {1.887, 2.309, 1.6},
ClipFill- > None]

(a) A unit vector, u, in the same direction as v is

3 4 > <3 4>
u-= y =\= =
V32442 324 42] 1S5S

203

The vectors i and j are
defined by i = (1, 0) and
j=1.

Calculus of vector-valued
functions is discussed in
more detail in Chapter 5.
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Figure 3-47 f(x,y) = 6x?y —3x* -2y’ for -2 <x<2and 2<y=<3
)

In[544] := v={3,4};
u=v/Sqrt[v.v]

out [544] = {% %}
Then, Dy, f(x, y) = ( o), filx, y)> -u, calculated in du.

In[545] := gradf = {D[£f[x,y],x],D[£[x,¥y],y]}

out [545]= {-12 ¥’ +12 x v, 6 x* -6 Y}
In[546] := du = Simplify[grad.u]

_ 12 2 3 2
Out [546]= -~ (-2 %x*+3 x*-3 x y+2 ¥

() Dassasf (%\/9 +34/3, 1) is calculated by evaluating du if
x=1y9+3V3andy=1.
In[547] := dul =du/.{x- >1/3Sqrt[9+3Sqrt[3]],y- >1}//Simplify

out [547] = -% V3 (-2+ 3 (3+\/§))
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(c) The gradient is evaluated if x = %\/ 9+3v3andy=1.

In[548] := nvec =
gradf/.{x- >1/38qrt[9 + 3Sqrt[3]],y- >1}//Simplify

out [548]= { -4 \[3+/3,2 3}

Generally, Vf(x, y) is perpendicular to the level curves of z = f(x, y), so

nvec—vf( \/9+3«/_) <f( Vo +3v31 )Jg( 9+3\/§,1)>

is perpendicular to f(x,y) = 0 at the point (%\/9 +34/3, 1). Thus, an An equation of the line L

containing (xo, o) and

equation of the line tangent to the graph of f(x,y) = 0 at the point perpendicular o 1 = {4, b) s

(%,/9+3\/§’1)is a(e=x0) + b= yo) =
f(; 9+3\/§,1)(x—;\/9+3\/§)+fy(;\/9+3\/_ )(y—l)_

which we solve for y with Solve. We confirm this result by graphing
f(x,y) = 0 using ContourPlot with the Contours->{0} option in
conf and then graphing the tangent line in tanplot. tanplot and
conf are shown together with Show in Figure 3-48.

In[549] : = conf = ContourPlot[
flx,vy]l, {x,-2,2}, {y, -2, 2}, Contours- > {0},
PlotPoints- > 60, ContourShading- > False,
Frame- > False, Axes- > Automatic,
AxesOrigin- > {0, 0},
DisplayFunction- > Identity];

In[550] :

tanline = Solve[nvec[[1l]]
(x-1/38qrt[9 +3Sqrt[3]])+
nvec[[2]](y-1) ==
vl

-2 \/3-4 4/3+4/3 (-2 1/9+3 /3 +x)
- )

In[551] := tanplot = Plot[Evaluate[y/.tanline],
{x, -2, 2}, DisplayFunction- > Identity];

out [550]= {{y - -

Show[conf, tanplot, DisplayFunction- >
$DisplayFunction, PlotRange- > {{-2, 2},
{-2,3}}, AspectRatio- >Automatic]
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-2t

Figure 3-48 Level curves of f(x, y)

EXAMPLE 3.5.4: Let

10

Fny) = (= D - = (—xs + %y - y3) eF - %e*xzf@“ﬂ

Calculate Vf(x, y) and then graph vf(x, y) together with several level
curves of f(x, y).

SOLUTION: Webegin by defining and graphing z = f(x, y) with P1lot3D
in Figure 3-49.

In[552] := £[x_,y.]1 = (y-1)"2Exp[-(x+1)"2-y~2]-
10/3(-x"5+1/5y-y"3) Exp[-x"2 -y~ 2] -
1/9Exp[-x"2- (y+1)"2];
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Figure 3-49 f(x,y)for -3 <x=<3and -3=<y<2

In[553] := Plot3D[f[x,vy], {x,-3,3}, {y,-3,3}, PlotPoints- > 50,
ViewPoint- > {-1.99, 2.033, 1.833},
PlotRange- >All];
conf = ContourPlot[f[x,y], {x, -3, 3},
{y,-3,3}, PlotPoints- >60,
ContourShading- > False,
Frame- > False, Axes- > Automatic,
AxesOrigin- > {0, 0},
DisplayFunction- > Identity];

In the three-dimensional plot, notice that z appears to have six rela-
tive extrema: three relative maxima and three relative minima. We also
graph several level curves of f(x, y) with ContourPlot and name the
resulting graphic conf. The graphic is not displayed because we in-
clude the option DisplayFunction->Identity.

Next we calculate fi(x,y) and f;(x,y) using Simplify and D. The
gradient is the vector-valued function ( Loy, filx, y)).

In[554] := gradf = {D[f[x,y], x],D[£[x,y],y]}//Simplify
2
Out [554] = {5 (e,x2,<1+y)2 R e
9 e’(1+x)2—y2 (1+x) (—1+y)2—
6 e x (5% -y+57y)),

1+x2+y%-2 (1+x+x2+ + 2)
Y Y+y’ (_e2x+9ezy+

o N

e
361+2x+2y+e2x<7l+30 el+2yx5) -
3e2y<6+17 el*zx) vi+9 e ¥ yis

30 el+2 X+2 Yy Y4>}
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Figure 3-50 Contour plot of f(x, y) along with several gradient vectors

To graph the gradient, we use PlotGradientField, which is con-
tained in the PlotField package. We use PlotGradientField to
graph the gradient naming the resulting graphic gradfplot. gradfplot
and conf are displayed together using Show.

In[555] := << Graphics‘PlotField:"

gradfplot = PlotGradientField[f[x, y],
x,-3,3},{y,-3,3},DisplayFunction- > Identity];
Show[conf, gradfplot,
DisplayFunction- > $DisplayFunction]

In the result (see Figure 3-50), notice that the gradient is perpendicular
to the level curves; the gradient is pointing in the direction of maximal
increase of z = f(x, y).

u

Classifying Critical Points

Let z = f(x, y) be a real-valued function of two variables with continuous second-
order partial derivatives. A critical point of z = f(x,y) is a point (xo, yo) in the
interior of the domain of z = f(x, y) for which

fX (x07 yO) = O and .f)’ (_XO, yo) = 0
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Critical points are classified by the Second Derivatives (or Partials) test.

Theorem 17 (Second Derivatives Test). Let (xo, yo) be a critical point of a function
z = f(x,y) of two variables and let

d = fu (X0, Y0) fry (0, ¥0) = [ froy (x0, yo)]2~ (3.30)

1. Ifd > 0 and fi (xo, yo) > 0, then z = f(x, y) has a relative (or local) minimum
at (xo, yo)-

2. Ifd > 0and fi (xo, yo) <O, then z = f(x, y) has a relative (or local) maximum
at (xo, ¥o)-

3. Ifd < 0, then z = f(x, y) has a saddle point at (xo, yo).
4. If d = 0, no conclusion can be drawn and (xo, yo) is called a degenerate critical
point.

EXAMPLE 3.5.5: Find the relative maximum, relative minimum, and
saddle points of f(x,y) = =22 + x* + 3y —y°.

SOLUTION: After defining f(x, y), the critical points are found with
Solve and named critpts.

In[556]:= £[x_,y.] =-2x"2+x"4+3y-y"3;
critpts =
Solve[{D[f[x,y]l,x] ==0,D[£f[x,y],y] ==0}, {x,y}]
Out [556]= {{x>-1,y>-1},{x->-1,y->1},{x->0,y->-1},
{(x->0,y->1}, {x->1,y>-1}, {x>1,y->1}}

We then define dfxx. Given (xo, y9), dfxx (xo, yo) returns the ordered
quadruple xo, yo, equation (3.30) evaluated at (xo, yo), and fix (xo, yo).

In[557] := dfxx[x0_,y0.] =
{x0,y0,D[£[x,y], {x,2}ID[£[x,y], {y,2}]-
D[f[x,y],x,y]"2/.{x- >x0,y- >y0},
D[f[x,y], {x,2}]/.{x- >x0,y- >y0}}
out [557]= {x0,y0, -6 (-4+12 x0°) y0, -4 +12 x0°}

For example,

In[558] := dfxx[0, 1]
out [558]= {0, 1,24, -4}

shows us that a relative maximum occurs at (0, 1). We then use /.
(Replaceall) to substitute the values in each element of critpts
into dfxx.

209
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Figure 3-51 (a) Three-dimensional and (b) contour plots of f(x, y)

In[559] := dfxx[x,y]/.critpts
out [559]= {{-1,-1, 48,8}, {-1,1, -48,8}, {0, -1, -24, -4},
{0,1,24,-4},{1,-1,48,8},{1,1, -48, 8}}

From the result, we see that (0, 1) results in a relative maximum, (0, —1)
results in a saddle, (1, 1) results in a saddle, (1, —1) results in a relative
minimum, (-1, 1) results in a saddle, and (-1, —1) results in a relative
minimum. We confirm these results graphically with a three-dimensional
plot generated with Plot3D and a contour plot generated with
ContourPlot in Figure 3-51.

In[560] := pl =Plot3D[f[x,¥y], {x,-3/2,3/2},{y,-3/2,3/2},
PlotPoints- > 40, DisplayFunction- > Identity];
p2 = ContourPlot[f[x, y],
{x,-3/2,3/2},{y,-3/2,3/2}, PlotPoints- > 40,
ContourShading- > False,
DisplayFunction- > Identity];
Show[GraphicsArray|[{pl, p2}1]]

In the contour plot, notice that near relative extrema, the level curves
look like circles while near saddles they look like hyperbolas.
|

If the Second Derivatives Test fails, graphical analysis is especially useful.

EXAMPLE 3.5.6: Find the relative maximum, relative minimum, and
saddle points of f(x,y) = x* + x2y* + y*.
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SOLUTION: Initially we proceed in the exact same manner as in the
previous example: we define f(x,y) and compute the critical points.
Several complex solutions are returned, which we ignore.

In[561] := £[x_,y.] =x"2+x"2y"2+y"4;
critpts =
Solve[{D[f[x,y],x] ==0,D[f[x,y],y] == 0}, {x,y}]
Out [561] = {{x% 0,y—->0}, {x%—\/g,y%—i}, {x»—\E,y» i},
{xe\/g,y»—i}, {xe\/g,y% i}, {y>0,x->0},
{y->0,x- O}}

We then compute the value of (3.30) at the real critical point, and the
value of fi.(x, y) at this critical point.

In[562] := dfxx[x0_,y0.] =
{x0,y0,D[£f[x,¥y], {x,2}]ID[f[x,¥], {y,2}]-
D[f[x,v],x,y]1"2/.{x->x0,y- >y0},
D[f[x,y], {x,2}]/-{x->x0,y- >y0}}
out [562]= {x0,y0, -16 x0° y0®+ (2+2 y0?) (2 x0®+12 y0?), 1
2+2 yo0?}

In[563] := dfxx[0, 0]
Out [563]= {0,0,0, 2}

The result shows us that the Second Derivatives Test fails at (0, 0).

In[564] := pl = Plot3D[f[x,¥y], {x,-1,1}, {y,-1,1},

PlotPoints- > 40,
DisplayFunction- > Identity,
BoxRatios- > Automatic];

p2 = ContourPlot[£f[x, y], {x, -1, 1},
{y,-1,1}, PlotPoints- > 40, Contours- > 20,
ContourShading- > False,
DisplayFunction- > Identity];

Show[GraphicsArray[{pl, p2}1]]

However, the contour plot of f(x, y) near (0, 0) indicates that an extreme
value occurs at (0, 0). The three-dimensional plot shows that (0, 0) is a
relative minimum. (See Figure 3-52.)

|

Tangent Planes
Let z = f(x,y) be a real-valued function of two variables. If both f; (xy, yo) and
fy (x0, yo) exist, then an equation of the plane tangent to the graph of z = f(x, y) at
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Figure 3-52 (a) Three-dimensional and (b) contour plots of f(x, y)

the point (xo, yo, f (xo, Y0)) is given by
Sx (xo, yo) (x — x0) + fy (X0, Yo) ( = ¥0) — (2 — z0) = 0, (3.31)
where zp = f (xo, o). Solving for z yields the function (of two variables)
Z = fx (X0, yo) (x — x0) + fy (x0, ¥0) (v — yo) + Zo- (3.32)

Symmetric equations of the line perpendicular to the surface z = f(x, y) at the point
(X0, Yo, 20) are given by

X —Xo Y —Yo -2
= = 3.33
S (o, y0)  fy (%0, Yo) -1 (3:33)
and parametric equations are
Ix = X0 + fx (%0, Yo) t
Y =Yo + fy (xo, yo)t (3.34)

=201

The plane tangent to the graph of z = f(x,y) at the point (xo, Yo, f (x0, Yo)) is the
“best” linear approximation of z = f(x, y) near (x,y) = (x, yo) in the same way as
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the line tangent to the graph of y = f(x) at the point (xo, f (xo)) is the “best” linear
approximation of y = f(x) near x = xo.

EXAMPLE 3.5.7: Find an equation of the plane tangent and normal line
to the graph of f(x,y) = 4 — ; (2x? + y?) at the point (1, 2, 5/2).

SOLUTION: We define f(x, y) and compute f(1, 2) and f,(1, 2).

In[565] := £[x_,y.1=4-1/4(2x"2+y"2);
£[1, 2]

dx=D[f[x,y],x]/.{x->1,y->2}

dy =D[f[x,y],y]l/.{x->1,y->2}
out [565] = g
out [565]= -1
out [565]= -1

Using (3.32), an equation of the tangent plane is z = —1(x = 1) = 1(y —
2) + f(1,2). Using (3.34), parametric equations of the normal line are
x=1-ty=2-1t,z= f(1,2) —t. We confirm the result graphically by
graphing f(x, y) together with the tangent plane in p1 using P1ot3D.
We use ParametricPlot3D to graph the normal line in p2 and then
display p1 and p2 together with Show in Figure 3-53.

In[566] := pl=Plot3D[£[x, y]l, {x, -1, 3}, {y, 0, 4},
DisplayFunction- > Identity, PlotPoints- >40];
p2 = Plot3D[dx (x-1) +dy (y-2) +£f[1,2], {x,-1,3},
{y, 0,4}, DisplayFunction- > Identity,
PlotPoints- >30];
p3 = ParametricPlot3D[{1+dx t,2+dy t, £[1, 2] -t},
{t, -4, 4}, DisplayFunction- > Identity];
Show[pl, p2, p3, PlotRange- > {{-1, 3}, {0, 4}, {0, 4}},
BoxRatios- >Automatic,
DisplayFunction- > $DisplayFunction]

Because z = —1(x — 1) — 1(y — 2) + f(1,2) is the “best” linear approx-
imation of f(x, y) near (1,2), the graphs are very similar near (1, 2) as
shown in the three-dimensional plot. We also expect the level curves of
each near (1, 2) to be similar, which is confirmed with ContourPlot in
Figure 3-54.

2]3
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Figure 3-54 Zooming in near (1, 2)

In[567] := p4 = ContourPlot[f[x,¥y], {x,0.75,1.25},

{y,1.75,2.25},
ContourShading- > False,
DisplayFunction- > Identity];

p5 = ContourPlot[dx (x-1) +dy (y-2) + £[1, 2],
{x,0.75,1.25}, {y,1.75, 2.25},
ContourShading- > False,
DisplayFunction- > Identity];

Show[GraphicsArray[{p4, p5}]1]
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Lagrange Multipliers
Certain types of optimization problems can be solved using the method of La-
grange multipliers that is based on the following theorem.

Theorem 18 (Lagrange’s Theorem). Let z = f(x,y) and z = g(x, y) be real-valued
functions with continuous partial derivatives and let z = f(x, y) have an extreme value at
a point (xo, yo) on the smooth constraint curve g(x, y) = 0. If Vg (xo, yo) # 0, then there is
a real number A satisfying

v f (x0, yo) = A V g (X0, yo) - (3.35)

Graphically, the points (xo, yo) at which the extreme values occur correspond to the
points where the level curves of z = f(x, y) are tangent to the graph of g(x, y) = 0.

EXAMPLE 3.5.8: Find the maximum and minimum values of f(x, y) =

xy subject to the constraint Jx* + §y* = 1.

SOLUTION: For this problem, f(x,y) = xy and g(x,y) = 1% + §)* — 1.
Observe that parametric equations for Jx? + §y* = 1 are x = 2cost,
y = 3sint, 0 < t < 27. In Figure 3-55, we use ParametricPlot3D to
parametrically graph g(x,y) = 0 and f(x, y) for x and y-values on the

curve g(x, y) = 0 by graphing
Ix:Zcost Ix=2cost
y = 3sint and y =3sint
z=0 z=x-y=06costsint

for 0 <t < 27. Our goal is to find the minimum and maximum values
in Figure 3-55 and the points at which they occur.

In[568]:= f[x_,y]1=x1vy;
glx_,y.1=x"2/4+y"2/9-1;
In[569] := sl = ParametricPlot3D[{2 Cos[t],3 Sin[t], 0},

{t, 0, 2}, DisplayFunction- > Identity];
s2 = ParametricPlot3D[{2 Cos[t], 3 Sin[t],
6 Cos[t]sSin[t]},
{t, 0, 2}, DisplayFunction- > Identity];
Show[sl, s2, BoxRatios- > Automatic,
DisplayFunction- > $DisplayFunction]

To implement the method of Lagrange multipliers, we compute f,(x, y),
Fy(6 ), 8x(x, y), and gy(x, y) with D.
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Figure 3-55 f(x,y)on gx,y) =0

In[570] := £fx=D[£[x, y], x]
fy =D[£[x,¥], Y]
gx =D[g[x, y], x]
gy =D[glx,y],¥y]
Out [570] =y

Out [570] = x
Out [570] =

Out [570]= ——

NN | X
©

Solve is used to solve the system of equations (3.35):

Jelx y) = Agy(x, y)
Sy y) = Agy(x, y)
gxy) =0

for x, y, and A.
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In[571] := vals = Solve[{fx ==X gx, fy==A gy, g[x,y] ==0},
{x,y,A}]

out [571]= {{1>-3,x>-V2,y-

’

——

2
V2
{A%—3,xe\/§,y+—

{)\»B,X»—\E,y»—

{)\»3,X»\/§,ya%}}

The corresponding values of f(x, y) are found using ReplaceAll (/.).

In[572] := nl={x,y, £[x,y]}/.vals
out (5721 {{ V2, =, -3} V2, - -3}, (-2, -, 3),
(V2. = 3}}

In[573] := N[nl]

out [573]= {{-1.41421,2.12132, -3.},
{1.41421, -2.12132, -3.},
{-1.41421, -2.12132,3.},
{1.41421,2.12132, 3.}}

We conclude that the maximum value f(x, y) subject to the constraint
g(x,y) = 0is 3 and occurs at (\/5 %\/5) and (—\/5 —%\/5) The minimum

value is =3 and occurs at (—\/E %\/E) and (\/5 —%\/E) We graph several
level curves of f(x, y) and the graph of g(x,y) = 0 with ContourPlot
and show the graphs together with Show. The minimum and maximum
values of f(x, y) subject to the constraint g(x, y) = 0 occur at the points
where the level curves of f(x, y) are tangent to the graph of g(x, y) = O as
illustrated in Figure 3-56.

In[574] := cpl = ContourPlot[£f[x,y], {x, -3, 3},

{y,-3,3}, Contours- >30, ContourShading- > False,
PlotPoints- > 40, DisplayFunction- > Identity];

cp2 = ContourPlot[
glx,vyl, {x,-3,3}, {y,-3,3}, Contours- > {0},
ContourShading- > False,
DisplayFunction- > Identity,
ContourStyle- > Thickness[0.01]];

Show|[cpl, cp2, DisplayFunction- > $DisplayFunction]
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N

Figure 3-56 Level curves of f(x, y) together with g(x, y) =0

3.5.3 Iterated Integrals

The Integrate command, used to compute single integrals, is used to compute
iterated integrals. The command

Integrate[f [x,y], {y,c,d}, {x,a,b}]

attempts to compute the iterated integral

d b
f f flx y)dxdy. (3.36)

If Mathematica cannot compute the exact value of the integral, it is returned
unevaluated, in which case numerical results may be more useful. The iterated
integral (3.36) is numerically evaluated with the command N or

NIntegrate[f[x,y],{y.c,d},{x,a,b}]

EXAMPLE 3.5.9: Evaluate each integral: (a) f; flz (2xy* + 3x%y) dxdy; (b)
foz fyf) (3x2 + y3)dx dy; (c) fooo fooo )cye_)‘z_yz dydx; (d) fon fon e dx dy.
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SOLUTION: (a) First, we compute [ [ (2xy* + 3x%y) dxdy with Integrate.
Second, we compute f24 flz (2xy? + 3x%y) dxdy with Integrate.

In[575] := Integrate[2x y 2 +3x"2 vy, vy, x]
X3 2 X2 3
Y . Y

Out [575] =
2 3

In[576] := Integrate[2x y 2 +3x"2 vy, {y, 2,4}, {x,1,2}]
Out [576]= 98

(b) We illustrate the same commands as in (a), except we are integrating
over a nonrectangular region.

In[577] := Integrate[3x"2+y"3, {x,y72, 2y}]
Out [577]= 8 y> +2 y*-y° -y®

In[578] := Integrate[3x"2+y"3,vy, {x,¥"2,2y}]

2y vy

out [578]= 2 y*+

5 6 7

In[579] := Integrate[3x"2+y"3, {y, 0,2}, {x,v"2, 2y}]

1664
out [579] = ——
105

(c) Improper integrals can be handled in the same way as proper inte-

grals.

In[580] := Integrate[x y Exp[-x"2-y"2],x,v]

2 2

1
Out [580] = 7 e ™Y

In[581] := Integrate[x y Exp[-x"2-y"2], {x,0, o},
{y, 0, ©}]
1
Out [581] = Z

(d) In this case, Mathematica cannot evaluate the integral exactly so we
use NIntegrate to obtain an approximation.

In[582] := Integrate[Exp[Sin[x y]],vy,x]
Out [582] = JJ eSintx Yl gxdy

In[583] := NIntegrate[Exp[Sin[x y]], {y, 0, n}, {x,0, m}]
Out [583]= 15.5092
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Area, Volume, and Surface Area

Typical applications of iterated integrals include determining the area of a planar
region, the volume of a region in three-dimensional space, or the surface area of a
region in three-dimensional space. The area of the planar region R is given by

A= f fR dA. (3.37)

If z = f(x, y) has continuous partial derivatives on a closed region R, then the sur-
face area of the portion of the surface that projects onto R is given by

= (L) () +1aa 039

If f(x,y) = g(x, y) on R, the volume of the region between the graphs of f(x, y) and
g, y)is

V= f fR (F(6 ) — g6 y) dA. (3.39)

EXAMPLE 3.5.10: Find the area of the region R bounded by the graphs
ofy=2x>andy = 1 +x%.

SOLUTION: We begin by graphing y = 2x* and y = 1 +x* with P1lot in
Figure 3-57. The x-coordinates of the intersection points are found with

Solve.
In[584] := Plot[{2x"2,1+x"2}, {x, -3/2,3/2},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
AspectRatio- > Automatic]
In[585] := Solve[2x"2 == 1 +x"2]
Out [585]= {{x—-> -1}, {x—>1}}

Using (3.37) and taking advantage of symmetry, the area of R is given

by
1 1+x7
A:ffdA:2ff dy dx,
R 0 2x2

which we compute with Integrate.
In[586] := 2 Integrate[l, {x,0,1}, {y,2x"2,1+x"2}]
4
Out [586] = 3

We conclude that the area of R is 4/3.
| ]
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-1.5 -1 -0.5 0.5 1 1.5

Figure 3-57 y=2x*andy=1+x*for -3/2 <x<3/2

If the problem exhibits “circular symmetry,” changing to polar coordinates is often
useful. If R = {(r,0)|a < r < b,a < 0 < B}, then

B b
fff(x,y)dAzf f f(rcosé, rsinf) rdrdb.
R @ a

EXAMPLE 3.5.11: Find the surface area of the portion of

[ y) =4-x2-y?

that lies above the region R = {(x, y) [ +y* = 1}.
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1.5

Figure 3-58 The portion of the graph of f(x, y) above R

SOLUTION: First, observe that the domain of f(x, y) is

{(x,y)‘—\M—yzsxs\/4—y2,—25ys2}={(r,9)|05rs2,0s9s27r}.

Similarly,

R:{(x,y)l—\ll—yzsxﬁwfl—yz,—lsys1}:{(r,0)|05r51,058527r}.

With this observation, we use ParametricPlot3D to graph f(x, y) in
pl and the portion of the graph of f(x, y) above R in p2 and show the
two graphs together with Show. We wish to find the area of the black
region in Figure 3-58.

In[587]:

flx_,y.] =8qrt[4-x"2-y"2];

In[588] :

pl = ParametricPlot3D[{r Cos[t], r Sin[t],
f[r Cos[t],r Sin[t]]}, {r,0,2}, {t, 0,27},
PlotPoints- > 45, DisplayFunction- > Identity]:;
p2 = ParametricPlot3D|[
{r Cos[t],r Sin[t], £f[r Cos[t],r Sin[t]],
GrayLevel[0.3]}, {r, 0,1}, {t, 0, 25},
PlotPoints- > 45, DisplayFunction- > Identity]:;
Show[pl, p2, DisplayFunction- > $DisplayFunction,
BoxRatios- > Automatic]

We compute fi(x,y), f,(x,y) and \/ [felx, M + [ il y)]2 + 1 with D and
Simplify.
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In[589] := £fx=D[f[x, y], x]

fy =D[£f[x,y]., Y]
Out [589] = - =

V4 - x?% - y?

Y
\Va -x?%-y?

Then, using (3.38), the surface area is given by

= [ () +(Z) 1

out [589]= -

(3.40)

dxdy.

ffﬁm

However, notice that in polar coordinates,
R={r,®)0=<r=<1,0=<6<2r}

so in polar coordinates the surface area is given by

21 1 2
m:f f rdrde,
o Jo V4-r2

In([590] := sl =Simplify[Sqrt[l+£x"2 + £fy~21]
1

-4 + %2 + y?

Out [590]= 2 -

In[591] := 82 = Simplify[sl /.{x- >r Cos[t],y->r Sin[t]}]

1

Out [591] = —
[591] P

which is much easier to evaluate than (3.40). We evaluate the iterated
integral with Integrate

In[592] := 83 = Integrate[r s2, {t, 0, 27}, {r, 0, 1}]
out [592]= 2 (4-2 V3) n
In[593] := N[s3]

Out [593]= 3.36715

and conclude that the surface area is (8 - 4\/5) =~ 3.367.
| ]
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Figure3-59 z=4-x>-y*andz=2-xfor-2<x=<2and 2=<y=<2

EXAMPLE 3.5.12: Find the volume of the region between the graphs
ofz=4-x>-y’andz=2-x.

SOLUTION: We begin by graphing z = 4—x?—y*> and z = 2 - x together
with P1ot3D in Figure 3-59.

In[594]:= pl =Plot3D[4-x"2-y"2, {x, -2, 2}, {y, -2, 2},
PlotPoints- > 40, DisplayFunction- > Identity];
p2 = Plot3D[2 - x, {x, -2, 2}, {y, -2, 2},
PlotPoints- > 40, DisplayFunction- > Identity];
Show[pl, p2, PlotRange- > {{-2, 2}, {-2, 2}, {-2, 4}},
BoxRatios- >Automatic,
DisplayFunction- > $DisplayFunction]
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i
Y,

-2

Figure 3-60 Graphof4-x*-y>=2-x

The region of integration, R, is determined by graphing 4—x?—y* = 2—x
in Figure 3-60.

In[595] := ContourPlot[4-x"2-y"2- (2-x), {x,-2,2},
{y, -2, 2}, Contours- > {0}, ContourShading- > False,
PlotPoints- > 50,
Frame- > False, Axes- > Automatic,
AxesOrigin- > {0, 0}]

Completing the square shows us that

1)? 9
R={(x - = P< =
{(xy) (x 2) +y <4}
1 17 1 17 3
:{(x,y)li—i 9—4y2S)CS§+§ 9—4y2,—§SyS

Thus, using (3.39), the volume of the solid is given by

2

NSO

which we evaluate with Integrate.
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In[596] := il = Integrate[(4-x"2-y"2) - (2 -%),
{y,-3/2,3/2},{x,1/2-1/28qrt[9 - 4y"2],
1/2+1/2 Sqrt[9 -4y~2]}]

1

8
Out [596] =

In[597] := N[il]

Out [597]= 7.95216

We conclude that the volume is %n ~ 7.952.

Triple Iterated Integrals
Triple iterated integrals are calculated in the same manner as double iterated inte-

grals.

EXAMPLE 3.5.13: Evaluate

/4 y YV+2Z
f f f (x + 2z)sinydxdzdy.
0 o Jo

SOLUTION: Entering

In[598] := il = Integrate[ (x+2z) Sin[y]l, {y,0,n/4}, {z,0,v},
{x,0,y+2z}]
17 17 7 17 n? 17 7@

7, N _
V24 A2 32 42 384 42

Out [598] =

calculates the triple integral exactly with Integrate.

An approximation of the exact value is found with N.

In[599] := N[il]

0.157206

Out [599]

We illustrate how triple integrals can be used to find the volume of a solid when
using spherical coordinates.



3.5 Multi-Variable Calculus 227
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coordinates, respectively. The names given fo the variables in spherical coondinates vary in the literature.
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w Here is a sphers of radius 2. 1Us very simple 4o represent in spherical coordinates.

in[4]-SphericalPlot3D[ 2,
{theta, 0, Pi}, {phi, 0, 2Pi}]

v ]

[«I»

Figure 3-61 Mathematica’s help for SphericalPlot3D

EXAMPLE 3.5.14: Find the volume of the torus with equation in spher-
ical coordinates p = sin ¢.

SOLUTION: We proceed by graphing the torus with SphericalPlot3D
in Figure 3-62, which is contained in the ParametricPlot3D package
that is located in the Graphics directory (see Figure 3-61).

In[600] := << Graphics‘ParametricPlot3D"

SphericalPlot3D][
Sin[¢], {¢, 0, 7}, {6, 0, 27}, PlotPoints- > 40]

In general, the volume of the solid region D is given by

I

Thus, the volume of the torus is given by the triple iterated integral

21 T sin ¢
1% =f f f p*sin¢ dp de do,
0 0 0
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Figure 3-62 A graph of the torus

In[601] := il = Integrate[p”2 Sin[¢], {6, 0, 271},
{¢,0, 7}, {p,0,Sin[¢]}]

7.[,2

In[602] := N[il]
Out [602]= 2.4674
which we evaluate with Integrate. We conclude that the volume of

the torus is 7% ~ 2.467.
||



Introduction to Lists and
Tables

Chapter 4 introduces operations on lists and tables. The examples used to illustrate
the various commands in this chapter are taken from calculus, business, dynamical
systems, and engineering applications.

4.1 Lists and List Operations

4.1.1 Defining Lists
A list of n elements is a Mathematica object of the form
list={al,a2,a3,...,an}.

The ith element of the list is extracted from 1ist with 1ist [[1]].

Elements of a list are separated by commas. Lists are always enclosed in braces
{...} and each element of a list may be (almost any) Mathematica object—even
other lists. Because lists are Mathematica objects, they can be named. For easy
reference, we will usually name lists.

Lists can be defined in a variety of ways: they may be completely typed in,
imported from other programs and text files, or they may be created with either the
Table or Array commands. Given a function f(x) and a number n, the command

229
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1. Table[£[i], {i,n}] createsthelist {£[1],...,f[n]l};
Table[f[i],{i,0,n}] createsthelist {£[0],...,£[nl};
3. Table[f[i], {i,n,m}] creates the list

N

{f[n],fln+1],...,£m-1],£[m] };
4. Table[f[i],{i,imin, imax, istep}] creates the list
{f[imin], f [imin+istep], £ [imin+2*step], ..., f[imax]};

and
5. Array[f,n] creates the list {£ [1],...,£f[n]}.

In particular,
Table[f [x], {x,a,b, (b-a)/(n-1) }]
returns a list of f(x) values for n equally spaced values of x between a and b;
Table [{x,f[x]},{x,a,b, (b-a)/(n-1)}]

returns a list of points (x, f(x)) for n equally spaced values of x between a and b.

80@e Help Browser
Table (Go ) { Close ) ( Hide Categories
-in Functions Add-ons The Mathematica Book
| Getting Started/Demos Other Information Master Index
Numerical Comp... » g (Alphabetical Listing) gy List
Algebraic Comp... » Table
Mathematical Fu... {1} List Construction  *|'| Range
Lists and Matrices »  Element Extraction »|}| Array
Graphics and So... ¥ List Testing L3
List Operations *._ Reap
Programming » 4 Structure Manipu... ¥ 4 Sow .
Input and Output » v v v
Table

mTable[expr. (imax}] generates a List of imax copies of expr.
mTable[exr. (3. imax]] genemtes a list of the values of exgr when § runs from 1 fo imax.

|

mTable[exr, (1, bnin, imax) ] starts with 1 = imin.
mTable[exgr, (1. buin, imax. &i)] uses steps a.

wTable[expr, (i, imin, #max), (. jmin, jmax), ... | gives a nested list, The list associated with i is
outermost.

mTable evaluates its arguments ina non - standand way (see Section 4.4.2°
mExample: Toble[£[1]. {i. 4}]—{f[1]. £[2]). £[3). £[4]}

= Table uses the standard 1ca iteration sp

mExample: Table[i-3. {1, 2}, {31, 2}]=—{{0, -1}. {1. 0}}

B RS TITACT = E R

In addition to using Table, lists of numbers can be calculated using Range:

1. Range [n] generates thelist {1,2, ... , n};
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2. Range [n1,n2] generates thelist {n1, nl+1, ... , n2-1, n2};and
3. Range [nl,n2,nstepl] generates the list

{n1, nl+nstep,nl+2*nstep, ... , n2-nstep,n2}.

EXAMPLE 4.1.1: Use Mathematica to generate the list
{1,2,3,4,5,6,7,8,9,10}.

SOLUTION: Generally, a given list can be constructed in several
ways. In fact, each of the following five commands generates the list
{1,2,3,4,5,6,7,8,9,10}.

In[603]:= {1,2,3,4,5,6,7,8,9,10}
Out [603]= {1,2,3,4,5,6,7,8,9,10}

In[604] := Table[i, {i, 10}]
out [604]= {1,2,3,4,5,6,7,8,9,10)}

In[605] := Table[i, {i,1,10}]
out [605]= {1,2,3,4,5,6,7,8,9,10)}

i
In[606] := Table[E, {i, 2, 20, 2}]
out [606]= {1,2,3,4,5,6,7,8,9,10}

In[607] := Range[10]
Out [607]= {1,2,3,4,5,6,7,8,9,10}

EXAMPLE 4.1.2: Use Mathematica to define 1istone to be the list of
numbers {1, 3/2, 2, 5/2,3,7/2, 4}.

SOLUTION: In this case, we generate a list and name the result
listone. As in Example 4.1.1, we illustrate that 1istone can be cre-
ated in several ways.

_ 3 5 7
In[608] := listone = {1, 57 2, 37 3, 27 4}

3 5 7
out [608]= {1, 5025035 4}
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In[609] := listone = Table[i, {i, 1,4, %}]

3 5 7
Qut [609]= {1, =,2, =,3, -, 4
d ] { 2 2 2 }

Last, we define i(n) = 1n+1 and use Array to create the table 1istone.

N8B
+
N[ R
~

In[610]:= i[n.] =

listone = Array[i, 7]

3 5 7
{1/ 5/ 2/ a7 3/ 5/ 4}

Oout [610] >

EXAMPLE 4.1.3: Create a list of the first 25 prime numbers. What is the
fifteenth prime number?

SOLUTION: The command Prime [n] yields the nth prime number.
We use Table to generate a list of the ordered pairs {n, Prime [n] }
forn=1,2,3,...,25.

In[611] := list = Table[{n, Prime[n]}, {n, 1, 25}]

out [611]= {{1,2}, {2,3}, {3,5}, {4, 7}, {5,11}, {6, 13},
(7,17}, {8,19}, {9, 23}, {10, 29}, {11, 31},
{12, 37}, {13, 41}, {14, 43}, {15, 47}, {16, 53},
{17, 59}, {18, 61}, {19, 67}, {20, 71}, {21, 73},
{22, 79}, {23, 83}, {24, 89}, {25, 97}}

The ith element of a list 1ist is extracted from 1ist with 1ist [ [i]].
From the resulting output, we see that the fifteenth prime number is 47.

In[612] := 1ist[[15]]

out [612]= {15, 47}
[ ]

In addition, we can use Table to generate lists consisting of the same or similar
objects.
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EXAMPLE 4.1.4: (a) Generate a list consisting of five copies of the
letter a. (b) Generate a list consisting of ten random integers between
-10 and 10.

SOLUTION: Entering

In[613] := Table[a, {5}]
Out [613]= {a,a,a,a,a}

generates a list consisting of five copies of the letter a. For (b), we use
the command Random to generate the desired list. Because we are using
Random, your results will certainly differ from those obtained here.

In[614] := Table[Random[Integer, {-10, 10}], {10}]
Out[614]= {4,-2,-10,2,10,0,8,7,-3,0}

4.1.2 Plotting Lists of Points

Lists are plotted with ListPlot.

1. ListPlot [{{x1,y1}, {x2,y2},...,{xn,yn}}] plots the list of
points {(x1, y1), (x2, ¥2), ..., (Xn, y»)}. The size of the points in the resulting
plot is controlled with the option PlotStyle->PointSize [w], where
w is the fraction of the total width of the graphic. For two-dimensional
graphics, the default value is 0.008.

2. ListPlot [{yl,y2,..,yn}] plots the list of points {(1, y1), (2, y2), ...,
(1, yn)}-

EXAMPLE 4.1.5: Entering
In[615] := tl = Table[Sin[n], {n, 1, 1000}];
ListPlot[tl]

creates a list consisting of sinn for n = 1, 2, ..., 1000 and then graphs
the list of points (n, sinn) forn =1, 2, ..., 1000. See Figure 4-1.

When a semi-colon is
included at the end of a
command, the resulting
output is suppressed.

233
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R A A T R L R N X A

Figure 4-1 Plot of (n,sinn) forn=1,2,...,1000

EXAMPLE 4.1.6 (The Prime Difference Function and the Prime Num-
ber Theorem): In t1, we use Prime and Table to compute a list of the
first 25, 000 prime numbers.

In[616] := tl = Table[Prime[n], {n, 1, 25000}];

We use Length to verify that t 1 has 25, 000 elements and Short to see
an abbreviated portion of t1.

In[617]:

Length[t1l]
Out [617]

25000

In[618] := Short[tl]

Out[618]= {2,3,5,7,11,13, <«<24988>>, 287059, 287087,
287093, 287099, 287107, 287117}

First [list] returns the You can also use Take to extract elements of lists.
first element of 1ist;
Last [1ist] returns the 1. Take [list,n] returns the first n elements of 1ist;

last element of 1ist. 2. Take [list, -n] returns the last n elements of 1ist; and

3. Take[list, {n,m}] returns the nth through mth elements of 1ist.

In[619] := Take[tl, 5]

out [619]= {2,3,5,7,11}

In[620] := Take[tl, -5]

Out [620]= {287087,287093,287099, 287107, 287117}
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5000 10000 15000 20000 25000

Figure 4-2 A plot of the difference, d,, between successive prime numbers

In[621] := Take[tl, {12501, 12505}]
Out [621]= {134059, 134077, 134081, 134087, 134089}

However, you can use Table together with Part ([ [...]]) to obtain
the same results as those obtained with Take.

In[622] := Table[t1[[i]1], {i, 1, 5}]
Table[t1l[[1i]], {i, 24996, 25000}]

Table[t1[[i]], {i, 12501, 12505}]
out [622]= {2,3,5,7, 11}

Out [622]= {287087, 287093, 287099, 287107, 287117}
Out [622]= {134059, 134077, 134081, 134087, 134089}

In t2, we compute the difference, d,, between the successive prime

numbers in t1. The result is plotted with ListPlot in Figure 4-2. list[[i]] returns the ith
element of 1ist so
In[623] := t2 =Table[t1[[i+1]] -t1[[i]], list[[i+ 1]] - list[[i]]
{i, 1, Length[t1l] - 1}]; computes the difference
between the (i + 1)st and ith
In[624] := Short[t2] elements of 1ist.

out[624]= {1,2,2,4,2,4,2,4,6,2,6,4,2,4, <<24972>,
46,8,6,12,4,44,10,2,28,6,6,8,10}

In[625] := ListPlot[t2, PlotRange -» All]

Let n(n) denote the number of primes less than » and Li(x) denote the
logarithmic integral:

X 1
LogIntegral(x] = Li(x) = f —dt.
0 lnt
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We use Plot to graph Li(x) for 1 < x < 25,000 in p1.
In[626] := pl = Plot[LogIntegral[x], {x, 1, 25000}]
The Prime Number Theorem states that
n(n) ~ Li(n).

(See [20].) In the following, we use Select and Length to define n(n).
Select[list,criterial returns the elements of 1ist for which
criteriais true. Note that #<n is called a pure function: given an
argument #, #<n is true if #<n and false otherwise. The & symbol marks
the end of a pure function. Thus, given n, Select [t1, #<n&] returns
a list of the elements of t1 less than n; Select [t1, #<n&] //Length
returns the number of elements in the list.

In[627] := smallpi[n_] := Select[tl, # <n&]//Length
For example,

In[628] := smallpi[100]

Out [628]= 25

shows us that 7(100) = 25. Note that because t 1 contains the first 25, 000
primes, smallpi [n] is valid for 1 < n < N where n(N) = 25,000. In t3,
we compute n(n) forn =1,2,...,25,000

In[629] := t3 = Table[smallpi[n], {n, 1, 25000}];

In[630] := Short[t3]

Out [630]= {0,0,1,2,2,3,3,4,4,4,4, <<24978>,2762,
2762,2762,2762,2762,2762,2762, 2762,
2762,2762,2762}
and plot the resulting list with ListPlot.
In[631] := p2 = ListPlot[t3, PlotStyle » GrayLevel[0.4]]

pl and p2 are displayed together with Show in Figure 4-3.

In[632] := Show[pl, p2]
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Figure 4-3 Graphs of Li(x) (in black) and 7(n) (in gray)

You can iterate recursively with Table. Both

In[633] := tl = Table[a[i, i1, {j,2,10,2}, {i, 1,5}]
out [633]= {{a[1l,2],al[2,2],al[3,2],al4,2],al[5,2]},

{all,4],a[2,4],a[3,4],a[4,4],a[5,4]},

{a[ 6],al2,6],a[3,6],a[4,6],a[5,6]},
all,8],a[2,8],a[3,8],a[4,8],a[5,8]},

{a[l 107, [ , 107, [3 107, [ ,10],a[5,10]}}

In[634] := Length[tl]
Out [634] =

and

In[635] := t2 = Table[Table[al[i, j1, {i,1,5}1, {j, 2,10, 2}]

out [635]= {{a[l,2],al2,2],a[3,2],al[4,2],al5,2]},
{all,4],a[2,4],a[3,4],al4,4],a[5,4]},
{a[ 6],al2,6],a[3,6],a[4,6],a[5,6]},
all,8],a[2,8],a[3,8],a[4,8],a[5,8]},

{a[ ,10] [ ,10], [3 107, [ ,10],a[5,10]}}

compute tables of g;;. The outermost iterator is evaluated first: in this case, i is
followed by j as in t1 and the result is a list of lists. To eliminate the inner lists
(that is, the braces), use Flatten. Generally, Flatten[list,n] flattens 1ist
(removes braces) to level n.

In[636] := Flatten[tl]

out [636]= {a[l,2],a[2,2],a[3,2],al4,2],a[5,2],al1l,4],
al2,4],a[3,4],a[4,4],a[5,4],a[l,6],a[2,6],
al3,6],al4,6],a[5,6],a[l1,8],a[2,8],
al3,8],al4,8],a[5,8],a[1,10],a[2,10],
al3,10], [ ,10],al[5,10]}

237
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The observation is especially important when graphing lists of points obtained by
Length[list] rewrnsthe iterating Table. For example,

number of elements in 1ist.

In[637] := t1l =Table[{Sin[x+y],Cos[x-¥y]}, {x,1,5}, {y,1,5}]
out [637]= {{{Sin[2], 1}, {Sin[3], Cos[1]}, {Sin[4], Cos[2]},

{Sin[5], Cos[3]}, {Sin[6], Cos[4]}}, {{Sin[3], Cos[1]},
{Sin([4], 1}, {Sin[5], Cos[1]}, {Sin[6], Cos[2]},
{Sin[7], Cos[3]}}, {{Sin[4], Cos[2]}, {Sin[5], Cos[1]},
{Sin[6], 1}, {Sin[7], Cos[1]}, {Sin[8], Cos[2]}},
{{Sin[5], Cos[3]}, {Sin[6], Cos[2]}, {Sin[7], Cos[1]},
{Sin[8], 1}, {Sin[9], Cos[1]}}, {{Sin[6], Cos[4]},
{Sin[7], Cos[3]}, {Sin[8], Cos[2]}, {Sin[9], Cos[1]},
{sin[10], 1}}}

In[638] := Length[tl]
Out [638]= 5

is not a list of 25 points: t1 is a list of 5 lists each consisting of 5 points. £1 has two
levels. For example, the 3rd element of the second level is

In[639] := t1[[3]]

Out [639]= {{Sin[4], Cos[2]}, {Sin[5], Cos[1]}, {Sin[6], 1},
{Sin[7], Cos[1]}, {Sin[8], Cos[2]}}

and the 2nd element of the third level is

In[640]:= t1[[3, 2]]
Out [640]= {Sin[5], Cos[1]}

To flatten t2 to level 1, we enter

In[641] := t2 = Flatten[tl, 1]
Out [641]= {{Sin[2], 1}, {Sin[3], Cos[1l]}, {Sin[4], Cos[2]},

{Sin[5], Cos[3]}, {Sin[6], Cos[4]}, {Sin[3], Cos[1]},
{Sin[4], 1}, {Sin[5], Cos[1]}, {Sin[6], Cos[2]},
{Sin[7], Cos[3]}, {Sin[4], Cos[2]}, {Sin[5], Cos[1]},
{Sin[6], 1}, {Sin[7], Cos[1]}, {Sin[8], Cos[2]},
{Sin[5], Cos[3]}, {Sin[6], Cos[2]}, {Sin[7], Cos[1]},
{sin([8], 1}, {Sin[9], Cos[1]}, {Sin[6], Cos[4]},
{Sin[7], Cos[3]}, {Sin[8], Cos[2]},
[9]

,Cos[1]}, {Sin[10], 1}}

and see the result is a list of points. These are plotted with ListPlot in Fig-
ure 4-4 (a). We also illustrate the use of the PlotStyle, PlotRange, and
AspectRatio options in the ListPlot command.
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In[642] := 1pl = ListPlot[t2, PlotStyle » {PointSize[0.05],
GrayLevel[0.5]}, PlotRange -» {{-3/2, 3/2},
{-3/2,3/2}}, AspectRatio » Automatic]

Increasing the number of points further illustrates the use of Flatten. Entering

In[643] := tl = Table[{Sin[x+y], Cos[x-y]}, {x, 1,125}, {y, 1, 125}];

In[644] := Length[tl]
Out [644]= 125

results in a very long nested list. t1 has 125 elements each of which has
125 elements.

An abbreviated version is viewed with Short. Short [1ist] yields an
abbreviated version of 1ist.

In[645] := Short[tl]

Out [645]= {{{Sin[2], 1}, {Sin[3], Cos[1]}, <<121>,
{8in[125], Cos[123]}, {Sin[126], Cos[124]}},

<<123>>, {<1>1}}

After using Flatten, we see with Length and Short that t2 contains 15,625
points,

In[646] := t2 = Flatten[tl, 1];

In[647]:
Out [647]= 15625

Length[t2]

In[648] := Short[t2]

out [648]= {{Sin[2], 1}, {Sin[3], Cos[1]}, <«<15621>, 1
{Sin[249], Cos[1]}, {Sin[250], 1}}

which are plotted with ListPlot in Figure 4-4 (b).

In[649] := 1lp2 = ListPlot[t2, AspectRatio » Automatic]

In[650] := Show[GraphicsArray[{1lpl, 1p2}]]

Remark. Mathematica is very flexible and most calculations can be carried out in
more than one way. Depending on how you think, some sequences of calcula-
tions may make more sense to you than others, even if they are less efficient than
the most efficient way to perform the desired calculations. Often, the difference in
time required for Mathematica to perform equivalent —but different—calculations
is quite small. For the beginner, we think it is wisest to work with familiar calcula-
tions first and then efficiency.
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EXAMPLE 4.1.7 (Dynamical Systems): A sequence of the form x,.; =
f (x,) is called a dynamical system.

Sometimes, unusual behavior can be observed when working with
dynamical systems. For example, consider the dynamical system with
f) = x+ 2.5x(1 — x) and xo = 1.2. Note that we define x, using the

form x[n ]

:=x[n] =

. so that Mathematica remembers the func-

tional values it computes and thus avoids recomputing functional val-
ues previously computed. This is particularly advantageous when we

Observe that x4

=f ()
can also be computed with
= f" (x0)- In[651]:

Xn+1

compute the value of x, for large values of n.

Clear[£f, x]

flx] :=x+2.5%x(1-x)
x[n.] :=x[n] = £f[x[n-1]]
x[0] =1.2;

In Figure 4-5, we see that the sequence oscillates between 0.6 and 1.2.
We say that the dynamical system has a 2-cycle because the values of
the sequence oscillate between two numbers.

In[652] :

In[653] :

tb = Table[x[n], {n, 1, 200}];

Short[tb, 20]
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1.2
1.1}
50 100 150 200
0.9
0.8;
0.7¢
0.6
Figure 4-5 A 2-cycle
Out [653]= {0.6,1.2,0.6,1.2,0.6,1.2,0.6,1.2,0.6, ’
0.6,1.2,0.6,1.2,0.6,1.2,0.6,1. .6,1.2,
0.6,1.2,0.6,1.2,0.6,1.2,0.6,1. .6,1.2,
0.6,1.2,0.6, <«<134>,1.2,0.6,1. .6,1.2,
0.6,1.2,0.6,1.2,0.6,1.2,0.6,1. .6,1.2,
0.6,1.2,0.6,1.2,0.599999,1.2,0.600001,1.2,
0.599999,1.2,0.600001,1.2,0.599999,
1.2,0.600002,1.2,0.599998,1.2}
In[654] := ListPlot[tb]

In Figure 4-6,
4-cycle.

In[655] :=

In[656] :=

In[657]:

we see that changing xy from 1.2 to 1.201 results in a

Clear|[£f, x]
flx] :=x+2.5%x(1-x)
x[n.] :=x[n] = £f[x[n-1]]

x[0] =1.201;

tb = Table[x[n], {n, 1, 200}];

Short[tb, 20]
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Figure 4-6 A 4-cycle

Out [657]= {0.597497,1.19873, 0.603163,1.20156, 0.596102,
.19801, 0.604957,1.20242, 0.593943,1.19688,
.607777,1.20374, 0.590622, 1.19509, 0.612212,
.20573, 0.585585,1.19227, 0.619168, 1.20867,
.578149,1.18788, 0.629931,1.21273, 0.567781,
.1813, 0.645888, <«<147>,0.701238, 1.225,
.535948,1.15772, 0.701238, 1.225, 0.535948,
.15772,0.701238,1.225, 0.535948, 1.15772,
.701238,1.225,0.535948, 1.15772, 0.701238,
.225,0.535948,1.15772, 0.701238, 1.225,
.535948,1.15772, 0.701238, 1.225}

oOHr oOoOHrHr okHr okr oRr

In[658] := ListPlot[tb]

The calculations indicate that the behavior of the system can change
considerably for small changes in xy. With the following, we adjust the
definition of x so that x depends on xy = c: given ¢, x.(0) = c.

In[659] := Clear[f, x]
E[x.] :=x+2.5%x(1-x)
x[e.][n] :=x[c][n] = £[x[c] [n-1]1]//N
x[c.][0] :=c//N;

In tb, we create a list of lists of the form {x.(n)ln = 100, ..., 150} for
150 equally spaced values of ¢ between 0 and 1.5. Observe that
Mathematica issues several error messages. When a Mathematica cal-
culation is larger than the machine’s precision, we obtain an Overflow[]
warning. In numerical calculations, we interpret Overflow[] to cor-
respond to co.
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In[660] := tb = Table[{c, x[c][n]}, {c,0,1.5,0.01},
{n, 100, 150}];
General :: ovfl : Overflowoccurred in computation.
General :: ovfl : Overflowoccurred in computation.
General :: ovfl : Overflowoccurred in computation.
General :: stop : Further output of General :: ovflwill
be suppresseddurlng this calculation.

We ignore the error messages and use Short to view an abbreviated
form of tb.

In[661] := Short[tb]

out [661]= {{{0,0.},{0,0.},{0,0.},{0,0.},{0,0.},
<«<42>>,{0,0.},{0,0.},{0,0.},{0,0.}}, «<150>}

We then use Flatten to convert tb to a list of points which are
plotted with ListPlot in Figure 4-7 (a). Observe that even though
Mathematica issues several warning messages, Mathematica is able to
generate the plot.

In[662] := tb2 = Flatten[tb, 1];

f1l = ListPlot[tb2]

Graphics :: gptn : Coordinate Overflow|[] in {1.4, Overflow([]}
isnot a floating - point number.

Graphics :: gptn : Coordinate Overflow|[] in {1.4, Overflow([]}
isnot a floating - point number.

Graphics :: gptn : Coordinate Overflow|[] in {1.4, Overflow([]}
isnot a floating - point number.

General :: stop : Further output of Graphics ::
gptn will be suppressed during this calculation.

Another interesting situation occurs if we fix xo and let ¢ vary in f(x) =
x + cx(1 — x).

With the following we set xo = 1.2 and adjust the definition of f so
that f depends on c: f(x) = x + cx(1 —x).

In[663] := Clear[£, x]
flc][x.] :=x+c x(1-x)//N
x[c.][n] :=x[c][n] = £[c] [x[c][n-1]]1//N
x[c]1[0] :=1.2//N;

In tb, we create a list of lists of the form {x.(n)ln = 200, ..., 300} for 350
equally spaced values of ¢ between 0 and 3.5. As before, Mathematica
issues several error messages, which we ignore.
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Figure 4-7 (a) and (b)

In[664] := tb = Table[{c, x[c][n]}, {c, 0,3.5,0.01},
{n, 200, 300}];

General :: ovfl : Overflowoccurred in computation.
General :: ovfl : Overflowoccurred in computation.
General :: ovfl : Overflowoccurred in computation.

General :: stop : Further output of General ::
ovfl will be suppressed during this calculation.

In[665] := Short[tb]
Out [665]= {{{0,1.2},{0,1.2},{0,1.2}, <95>, {0, 1.2},
{0,1.2},{0,1.2}}, <<350>>}

tb is then converted to a list of points with Flatten and the resulting
list is plotted in Figure 4-7 (b) with ListPlot. This plot is called a
bifurcation diagram.

In[666] := tb2 = Flatten[tb, 1];

f2 = ListPlot[tb2, PlotRange » {0, 2}]

Graphics :: gptn : Coordinate Overflow[] in {3.01, Overflow([]}
isnot a floating point number.

Graphics :: gptn : Coordinate Overflow[] in {3.01, Overflow([]}
isnot a floating point number.

Graphics :: gptn : Coordinate Overflow([] in {3.01, Overflow([]}
isnot a floating point number.

General :: stop : FurtheroutputofGraphics :: gptnwillbesuppressed
during this calculation.

In[667] := Show[GraphicsArray[{£f1l, £2}]]

As indicated earlier, elements of lists can be numbers, ordered pairs, functions, and
even other lists. You can also use Mathematica to manipulate lists in numerous
ways. Most importantly, the Map function is used to apply a function to a list:
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Map [f, {x1,x2,...,xn}]
returns the list {f (x;), f (x2), ..., f (x,)}. We will discuss other operations that can A function f is listable if
be performed on lists in the following sections. £llist] and

Map [f, list] are
equivalent.

EXAMPLE 4.1.8 (Hermite Polynomials): The Hermite polynomials,
H,(x), satisfy the differential equation y”’ —2xy’+2ny = 0 and the orthogo-
nality relation f_ O:o H,(0)H,,(x)e™ dx = 6,,,2"n!\/7. The Mathematica com-
mand HermiteH [n, x] yields the Hermite polynomial H,(x). (a) Create
a table of the first five Hermite polynomials. (b) Evaluate each Her-
mite polynomial if x = 1. (c) Compute the derivative of each Hermite
polynomial in the table. (d) Compute an antiderivative of each Her-
mite polynomial in the table. (e) Graph the five Hermite polynomials
on the interval [-1, 1]. (f) Verify that H,(x) satisfies y” —2xy’ +2ny = 0 for
n=12...,5.

SOLUTION: We proceed by using HermiteH together with Table to
define hermitetable to be the list consisting of the first five Hermite
polynomials.

In[668] := hermitetable = Table[HermiteH[n, x], {n, 1, 5}]

out [668]= {2x,-2+4x?, -12x+8%x>,12-48x%+16x*,
120x-160x° +32x°}

We then use ReplaceAll (->) to evaluate each member of
hermitetable if x is replaced by 1.

In[669] := hermitetable/.x-> 1
out [669]= {2,2, -4, -20, -8}

Functions like D and Integrate are listable. Thus, each of the fol-
lowing commands differentiate each element of hermitetable with
respect to x. In the second case, we have used a pure function: given
an argument #, D [#, x] & differentiates # with respect to x. Use the &
symbol to indicate the end of a pure function.

In[670] := D[hermitetable, x]
out [670]= {2,8x, -12+24x%x%, -96x+64x>, 120-480x*+160x"}

In[671] := Map[D[#, x]&, hermitetable]
Out [671]= {2,8x,-12+24%%, -96x+64x>,120-480x%>+160x"*}
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Figure 4-8 Graphs of H,(x) (in black), H,(x), H3(x), Hs(x), and Hs(x) (in light gray)

Similarly, we use Integrate to antidifferentiate each member of
hermitetable with respect to x. Remember that Mathematica does
not automatically include the “+C” that we include when we antidif-
ferentiate.

In[672] := Integrate[hermitetable, x]
x3 5 . ,  l6x®
, -6 X +2x,12x-16 X + e

4
out [672]= {x*, -2 x +

60x%-40x*+

16 x°
}

In[673] := Map[Integrate[#, x]&, hermitetable]

4 x3 2 . , 1lex®
,-6X"+2x,12x-16%X + e

out[673]= {x*, -2 x +

16 x°
60x” -40x* + 1
3

To graph the list hermitetable, we use Plot to plot each function in
the set hermitetable on the interval [-2, 2] in Figure 4-8. Be sure to
When plotting lists of include hermitetable within the Evaluate command as indicated.
functions, evaluate them first In this case, we specify that the displayed y-values correspond to the
with Bvaluate in the interval [-20, 20]. Note how Table and GrayLevel are used to create
a list of GrayLevels in grays. The plots of the Hermite polynomials
are then shaded according to grays. The graph of H,(x) is in black and
successive plots are lighter with the graph of Hs(x) the lightest gray.

Plot command.

In[674] := grays = Table[GrayLevel[i], {i,0,0.6,0.6/4}];

Plot[Evaluate[hermitetable], {x, -1, 1},
PlotStyle -» grays, PlotRange » {-20, 20}]

hermitetable[[n]] returns the nth element of hermitetable,
which corresponds to H,(x). Thus,
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In[675] := verifyde =
Table[D[hermitetable[[n]], {x,2}] - 2x
D[hermitetable[[n]], x] + 2nhermitetable[[n]]//
Simplify, {n, 1, 5}]

out [675]= {0,0,0,0,0}

computes and simplifies H,” — 2xH,” + 2nH, forn = 1,2, ..., 5. We use
Table and Integrate to compute f:o H,l(x)Hm(x)e‘X2 dxforn =1, 2,
...,5andm=1,2,...,5.

In[676] := verifyortho =
Table[Integrate[hermitetable[[n, 2]]
hermitetable[[m, 2]] Exp[-x"2],

{x, -©, ©}]1, {n, 1,5}, {m,1,5}]

Out [676] = {{g 0,61, 0,-120+/n}, {0, 12/, 0, -144 /7, 0},
{6+/m,0,120+/7, 0, -2400+/1},
{0, -144+/n, 0,1728+/7, 0},
{-120+/7, 0, -2400+/7, 0, 48000 +/71} }

To view a table in traditional row-and-column form use TableForm,
as we do here illustrating the use of the TableHeadings option.

In[677] := TableForm[verifyortho,
TableHeadings » {{"m=1", "m=2", "m=3",
"m= 4ll, "m= 5Il},
{lln = lll, Iln = 2", lln = 3Il, Iln = 4Il, lln = 5"}}]

n=1 n=2 n=3 n=4 n=>=5
m:l£ 0 6/ 0 -120+/n
2
Out [677]= m=2 0 12+/1 0 -144+/7 0
m=3 6~/ 0 120+/7r 0 -2400 /7
m=40 ~144+/7 0 1728 /7 0
m=5 -120+/7 0 -2400+/7 0 48000 /7

Be careful when using TableForm: TableForm[table] is no longer
a list and cannot be manipulated like a list.
|
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4.2 Manipulating Lists: More on Part and
Map

Often, Mathematica’s output is given to us as a list that we need to use in subse-
quent calculations. Elements of a list are extracted with Part ([[...11):
list [[i]] returnstheithelementof 1ist;list [[1,7]1] (or1list [[i11[[311)
returns the jth element of the ith element of 1ist, and so on.

EXAMPLE 4.2.1: Let f(x) = 3x* — 8x® — 30x? + 72x. Locate and classify
the critical points of y = f(x).

SOLUTION: We begin by clearing all prior definitions of f and then
defining f. The critical numbers are found by solving the equation
f'(x) = 0. The resulting list is named critnums.

In[678] := Clear[£f]
flx_] = 3x* - 8x> - 30%% + 72x%;

critnums = Solve[f [x] == 0]
out[678]= {{x-> -2}, {x—>1}, {x>3}}

critnums is actually a list of lists. For example, the number -2 is the
second part of the first part of the second part of critnums.

In[679] := critnums[[1]]
Out [679]= {x—> -2}

In[680] := critnums[[1, 1]]
Out [680]= x> -2

In[681] := critnums[[1, 1, 2]]
Out [681]= -2

Similarly, the numbers 1 and 3 are extracted with critnums [[2,1,2]]
and critnums[[3,1,2]], respectively.

In[682] := critnums[[2, 1, 2]]

critnums[[3, 1, 2]]
Out [682]= 1

Out [682]= 3
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Figure 4-9 Graph of f(x) = 3x* — 8x% — 30x% + 72x

We locate and classify the points by evaluating f(x) and f”(x) for each
of the numbers in critnums. £ [x] /.x->a replaces each occurrence
of xin f(x) by a, so entering

In[683]:= {x, £[x], £7[x]}/.critnums

out [683]= {{-2,-152, 180}, {1, 37, -72}, {3, -27, 120}}

replaces each x in the list {x, f(x), f”(x)} by each of the x-values in
critnums.

By the Second Derivative Test, we conclude that y = f(x) has relative
minima at the points (-2, —152) and (3, —27) while f(x) has a relative
maximum at (1, 37). In fact, because lim,_+,, = o0, —152 is the absolute
minimum value of f(x). These results are confirmed by the graph of
y = f(x) in Figure 4-9.

In[684] := Plot[£[x], {x, -4, 4}]
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Map is a very powerful and useful function: Map [£, 1ist] creates a list consisting
of elements obtained by evaluating f for each element of 1ist, provided that
each member of 1ist is an element of the domain of £. Note that if £ is listable,

To determine if £ is listable, f [1ist] produces the same result as Map [f, 1ist].
enter Attributes [f]

EXAMPLE 4.2.2: Entering

In[685] := tl = Table[n, {n, 1, 100}]

out [685]= {1,2,3,4,5,6,7,8,9,10, 11, 12,13, 14, 15, 16,
17,18, 19, 20, 21, 22, 23, 24, 25, 26,27, 28, 29,
30,31, 32,33, 34, 35,36,37, 38,39, 40, 41, 42,
43,44,45,46,47,48,49,50,51, 52,53, 54, 55,
56,57,58,59,60,61,62,63,64,65,66,67,68,
69,70, 71,72,73, 74,75, 76,77, 78,79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100}

computes a list of the first 100 integers and names the result t1. We
then define f(x) = x> and use Map to square each number in t1.

In[686] := f£[x.] =x"2

out [686] = x?

In[687] := Map[£f, t1]

Out [687]= {1,4,9,16,25,36,49,64,81,100, 121, 144, 169,
196, 225, 256, 289, 324,361, 400, 441, 484, 529,
576, 625,676,729, 84,841, 900, 961, 1024, 1089,
1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681,
1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401,
2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249,
3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225,
4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329,
5476, 5625,5776,5929, 6084, 6241, 6400, 6561,
6724 ,6889, 7056, 7225, 7396, 7569, 7744, 7921,
8100, 8281, 8464, 8649, 8836, 8281, 8464, 8649,
8836, 9025, 9216, 9409, 9604, 9801, 10000}
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The same result is accomplished by the pure function that squares its
argument. Note how # denotes the argument of the pure function; the
& symbol marks the end of the pure function.

In[688] := Map[#~2&, t1]

out [688]= {1,4,9,16,25,36,49,64,81,100, 121, 144, 169, 196,
225, 256,289, 324,361,400, 441, 484, 529,576, 625,
676,729, 784,841, 900, 961, 1024, 1089, 1156, 1225,
1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936,
2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809,
2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844,
3969, 4096, 4225, 4356, 4489, 4624,4761, 4900, 5041,
5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400,
6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921,
8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604,
9801, 10000}

On the other hand, entering

In[689] := tl =Table[{a, b}, {a, 1,5}, {b,1,5}]

Out[689]= {{{1,1},{1,2},{1,3},{1,4},{1,5}},
{{2,1}, (2,2}, {2,3}, {2,4}, {2,5}},
({3,121}, (3,2}, (3,3}, {3,4}, {3,5}},
{{4,1},{4,2},{4,3}, {4,4}, {4,5}},
{{5,1}, (5,2}, {5,3}, {5,4}, {5,5}}}

is a list (of length 5) of lists (each of length 5). Use Flatten to obtain a
list of 25 points, which we name t2.

In[690] := t2 = Flatten[tl, 1]

Out[690]= {{1,1},{1,2},{1,3},{1,4},{1,5},{2,1},{2,2},
{2,3},{2,4},{2,5}, (3,1}, {3,2}, {3,3}, {3, 4},
{3,5},{4,1}, {4,2}, {4,3},{4,4}, {4,5}, {5,1},
{5,2},{5,3},{5,4},{5,5}}

f is a function of two variables. Given an ordered pair (x,y), f((x,y))
returns the ordered triple (x, y, x>+ yz).

In[691] := £[{x_, vy }] = {{x, ¥y}, x"2+y"2};

We then use Map to apply f to t2.
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In[692] := Map[£f, t2]

Out[692]= {{{1,1},2}, {{1,2},5}, {{1,3},10}, {{1,4},17},
{{2,4},20}, {{1,5},26}, {{2,1},5}, {{2,2}, 8},
{{2,3},13}, {{2,5},29}, {{3,1},10}, {{3,2},13},
{{3,3},18}, {{3,4},25}, {{3,5},34}, {{4,1},17},
{{4,2},20}, {{4,3},25}, {{4,4},32}, {{4,5}, 41},
{{5,1},26}, {{5,2},29}, {{5,3},34}, {{5,4},41},
{{5,5},50}}

We accomplish the same result with a pure function. Observe how
#[[1]] and #[[2]1] are used to represent the first and second ar-
guments: given a list of length 2, the pure function returns the list of
ordered triples consisting of the first element of the list, the second
element of the list, and the sum of the squares of the first and second
elements.

In[693] := Map[{{#[[11]1,#[[211}, #[[1]11"2+#[[2]]1"2}&, t2]

Out[693]= {{{1,1},2},{{1,2},5}, {{1,3},10}, {{1,4},17},
{{1,5},26}, {{2,1},5}, {{2,2},8}, {{2,3},13},
{{2,4},20}, {{2,5},29}, {{3,1},10}, {{3,2},13},
{{3,3},18}, {{3,4},25}, {{3,5},34}, {{4,1},17},
{{4,2},20}, {{4,3},25}, {{4,4},32}, {{4,5}, 41},
{{5,1},26}, {{5,2},29}, {{5,3},34}, {{5,4}, 41},
{{5,5},50}}

EXAMPLE 4.2.3: Make a table of the values of the trigonometric func-
tions y = sinx, y = cosx, and y = tanx for the principal angles.

SOLUTION: We first construct a list of the principal angles which is
accomplished by defining t1 to be the list consisting of nn/4 for n = 0,
1I,..., 8 and t2 to be the list consisting of nn/6 forn = 0, 1, ..., 12.
The principal angles are obtained by taking the union of t1 and t2.
Union[t1,t2] joins the lists t1 and t2, removes repeated elements,
and sorts the results. If we did not wish to remove repeated elements
and sort the result, the command Join[t1, t2] concatenates the lists
tland t2.

nir
In[694] := tl = Table[T, {n,0,8}];

nrw
t2 = Table[?, {n,0,12}];
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In[695] := prinangles = Union[tl, t2]

ot gt gt 253 353 5t
out[695]= {0, =, =, %, -, =, =, =, n,
6 4 3 2 3 4 6
77 5mx 47;x 35t 57 753 11t
—, =, =, =, =, =, ==, 2n}
6 4 3 2 3 4

We can also use the symbol U, which is obtained by clicking on the
button on the BasicTypesetting palette to represent Union.

In[696] := prinangles = t1Ut2

ot gt gt 2757 353 5t
out[e696]= {0, =, =, >, =, =, =, =, n,
6 4 3 2 3 4 6
77 5mx 4mx 350 57 753 11t
—, =, =, =, =, =, ==, 2n}
6 4 3 2 3 4

Next, we define f(x) to be the function that returns the ordered quadru-
ple (x, sinx, cos x, tanx) and compute the value of f(x) for each number
in prinangles with Map naming the resulting table prinvalues.
prinvalues is not displayed because a semi-colon is included at the
end of the command.

In[697] := Clear[£]

f[x.] = {x, Sin[x], Cos[x], Tan[x]};

In[698] := prinvalues = Map[f, prinangles];

Finally, we use TableFormillustrating the use of the TableHeadings
option to display prinvalues in row-and-column form; the columns
are labeled x, sin x, cos x, and tan x.

In[699] := TableForm|[prinvalues,
TableHeadings -
{None, {"x", "sin(x)", "cos(x)", "tan(x)"}}]
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list so cannot be manipulated
like lists.
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object=name assigns the
object object the name
name.

We can use Map on any list,

including lists of functions
and/or other lists.

Chapter 4 Introduction to Lists and Tables

X sin(x) cos(x) tan(x)
0 0 1 0
Tt 1 \E 1
6 2 2 V3
Tt 1 1 1
4 W2 W2
Tt 3 1
LVER V3
;{ 2 2
3 1 0 ComplexInfinity
27T \B
3 2
37T 1
4 V2
5m 1
6 2
Out [699] = . 0

~
|

)
|
I

o

R EN N
CE - R

1
2
2
V2
4 7t \/E
3 2 2
37 ‘o
ES -1 0 ComplexInfinity
5
st V31 3
3 2 2
K
4 V2 W2
1in 1§31
2 2 \3
27 0 1 0

In the table, note that functions like y = tanx are undefined at certain values of
x.y = tanx is undefined at odd multiples of 7/2 and Mathematica appropriately
returns ComplexInfinity at those values of x for which y = tan x is undefined.

Remark. The result of using TableFormis not a list (or table) and calculations on it
using commands like Map cannot be performed. TableForm helps you see results
in a more readable format. To avoid confusion, do not assign the results of using
TableForm any name: adopting this convention avoids any possible manipula-
tion of TableForm objects.

Lists of functions are graphed with Plot:
Plot [Evaluate[listoffunctions], {x,a,b}]

graphs the list of functions of x, Listoffunctions, fora <x < b.
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o o o o

Figure 4-10 Graphs of J,(x) forn=0,1,2,...,8

EXAMPLE 4.2.4 (Bessel Functions): The Bessel functions of the first
kind, J,(x), are nonsingular solutions of x*y” + xy’ + (x2 - nz)y = 0.

Besseld [n, x] returns J,(x). Graph J,(x) forn=0,1,2,..., 8.

SOLUTION: In t1, we use Table and BesseldJ to create a list of J,(x)
forn=0,1,2,...,8.

In[700] := tl = Table[Besseld[n, x], {n, 0, 8}];

Next, we define a list, named grays, consisting of GrayLevel [1] for
8 equally spaced values of i between 0 and 0.8. We then use Plot to
graph each function in t 1; the graphs in Figure 4-10 are shaded accord-
ing to grays. In the plot, the graph of Jy(x) is black. Subsequent plots
are lighter; the lightest gray is the graph of J;(x).

In[701] := grays = Table[GrayLevel[i], {i,0,0.8,0.8/7}];
Plot[Evaluate[tl], {x, 0, 25}, PlotStyle -» grays]

A different effect is achieved by graphing each function separately. To
do so, we define the function pfunc. Given a function of x, £, pfunc [£]
plots the function for 0 < x < 100. The resulting graphic is not displayed
because the option DisplayFunction->Identityisincluded in the
Plot command. We then use Map to apply pfunc to each element of
t 1. The result is a list of 9 graphics objects, which we name t2. A nice
way to display 9 graphics is as a 3 x 3 array so we use Partition
to convert t2 from a list of length 9 to a list of lists, each with length
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Think of Flatten and
Partition as inverse
functions.

[eNeoNe]

-0.
-0.
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Chapter 4 Introduction to Lists and Tables

Figure 4-11 In the first row, from left to right, graphs of Jy(x), J;(x), and J,(x); in the second
row, from left to right, graphs of J5(x), J4(x), and Js(x); in the third row, from left to right,
graphs of Js(x), J7(x), and Js(x)

3-a3 x3array. Partition[list,n] returns a list of lists obtained
by partitioning 1ist into n-element subsets.

In[702] := pfunc[£f.] :=Plot[£f, {x, 0,100},
DisplayFunction -» Identity];

t2 = Map[pfunc, t1];
t3 = Partition[t2, 3];

Instead of defining pfunc, you can use a pure function instead. The
following accomplishes the same result. We display t3 using Show
together with GraphicsArray in Figure 4-11.

In[703] := t2 =Map[Plot[#, {x, 0,100},
DisplayFunction -» Identity]&, t1];

t3 = Partition[t2, 3];

Show|[GraphicsArray[t3]]



4.2 Manipulating Lists: More on Part and Map 257

EXAMPLE 4.2.5 (Dynamical Systems): Let f.(x) = x> + ¢ and consider
the dynamical system given by xy = 0 and x,+; = f. (x,). Generate a
bifurcation diagram of f,.

SOLUTION: First, recall that Nest [£,x,n] computes the repeated Compare the approach used

composition f"(x). Then, in terms of a composition, here with the approach used
in Example 4.1.7.

Xn+l = fc (xn) = fcn (0) .

We will compute f." (0) for various values of ¢ and “large” values of n
so we begin by defining cvals to be a list of 300 equally spaced values
of ¢ between -2.5 and 1.

In[704] := cvals = Table[c, {¢c,-2.5,1.,3.5/299}];

We then define f.(x) = x> + c. For a given value of ¢, £ [c] is a function
of one variable, x, while the form £ [c_,x_] :=. .. resultsin a function
of two variables.

In[705] := Clear[£]
flel[x.] :=x"2+c¢

To iterate f, for various values of ¢, we define 4. For a given value of ¢,
h(c) returns the list of points {(c, £.'%(0)), (c, £.'°1(0)), ..., (c. £.2°0))}.

In[706] := h[c.] := {Table[{c, Nest[£f[c], 0,n]},
{n, 100, 200}]}

We then use Map to apply / to the list cvals. Observe that Mathematica
generates several error messages when numerical precision is exceeded.
We choose to disregard the error messages.

In[707] := t1l =Map[h, cvals];
General :: ovfl : Overflowoccurred in computation.

General :: ovfl : Overflow occurred in computation.
General :: ovfl : Overflow occurred in computation.
General :: stop : Further output of General ::

ovfl will be suppressed during this calculation.

t1is a list (of length 300) of lists (each of length 101). To obtain a list of
points (or, lists of length 2), we use Flatten. The resulting set of points
is plotted with ListPlot in Figure 4-12. Observe that Mathematica
again displays several error messages, which are not displayed here
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Xc (n), n=100..200
2,

Figure 4-12 Bifurcation diagram of f.

for length considerations, that we ignore: Mathematica only plots the
points with real coordinates and ignores those containing Overflow[].

In[708] := t2 = Flatten[tl, 2];

ListPlot[t2, AxesLabel -» {"c", x.(n), n=100.0.2}]

4.2.1 More on Graphing Lists; Graphing Lists of Points
Using Graphics Primitives

Include the PlotJoined->True optionina List Plot command to connect suc-
cessive points with line segments.

Using graphics primitives like Point and Line gives you even more flexibility.
Point [{x,y}] represents a point at (x, y).

Line [{{x1,y1},{x2,vy2}, ..., {xn,yn}}]

represents a sequence of points (xj, y1), (x2, ¥2), ..., (xn, y») connected with line seg-
ments. A graphics primitive is declared to be a graphics object with Graphics:
Show [Graphics [Point [{x,y}]] displays the point (r,y). The advantage of
using primitives is that each primitive is affected by the options that directly pre-
cede it.
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Table 4-1 Union membership as a percentage of the labor force

Year | Union Membership as a Percentage of the Labor Force
1930 11.6
1935 13.2
1940 26.9
1945 35.5
1950 315
1955 33.2
1960 31.4
1965 28.4
1970 27.3
1975 25.5
1980 21.9
1985 18.0
1990 16.1

EXAMPLE 4.2.6: Table 4-1 shows the percentage of the United States
labor force that belonged to unions during certain years. Graph the data
represented in the table.

SOLUTION: We begin by entering the data represented in the table as

dataunion:

In[709] := dataunion = {{30,11.6}, {35,13.2}, {40, 26.9},
{45, 35.5}, {50, 31.5}, {55, 33.2}, {60, 31.4},
(65, 28.4}, {70, 27.3}, {75, 25.5}, {80, 21.9},
{85,18.}, {90, 16.1}};

the x-coordinate of each point corresponds to the year, where x is the
number of years past 1900, and the y-coordinate of each point corre-
sponds to the percentage of the United States labor force that belonged
to unions in the given year. We then use ListP1lot to graph the set of
points represented in dataunion in 1lpl, 1p2 (illustrating the
PlotStyle option), and 1p3 (illustrating the PlotJoined option).
All three plots are displayed side-by-side in Figure 4-13 using Show
together with GraphicsArray.

In[710] :

1pl = ListPlot[dataunion]

In[711] := 1p2 = ListPlot[dataunion,
PlotStyle » PointSize[0.03]]
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Figure 4-13 Union membership as a percentage of the labor force

In[712] :

1p3 = ListPlot[dataunion, PlotJoined -» True]

In[713]:

Show[GraphicsArray[{1lpl, 1p2, 1p3}]]

An alternative to using ListPlot is to use Show, Graphics, and
Point to view the data represented in dataunion. In the following
command we use Map to apply the function Point to each pair of data
in dataunion. The result is not a graphics object and cannot be dis-
played with Show.

In[714] := dataptsl = Map[Point, dataunion]

out [714]= {Point[{30,11.6}], Point[{35, 13.2}],
Point[{40, 26.9}], Point [{45, 35.5}
{50,31.5}], Point [{55, 33.2}

Point[{60, 31.4}], Point[{65, 28.4}

]

]

]

Point [
[

Point [{70, 27.3} {75, 25.5}
[
[

[
[
, Point [
Point [{80, 21.9) [{85,18.}],
Point[{90, 16.1}
Next,we use Show and Graphics to declare the set of points
Map [Point,dataunion] as graphics objects and display the result-
ing graphics object. The command PointSize [.03] specifies that the
points be displayed as filled circles of radius 0.03 of the displayed graph-

ics object.

In[715] := dpl = Show[Graphics[{PointSize[0.03], dataptsl},
Axes -» Automatic]]

The collection of all commands contained within a Graphics com-
mand is contained in braces { . . . }. Each graphics primitive is affected
by the options like PointSize, GrayLevel (or RGBColor) directly
preceding it. Thus,

In[716] := datapts2 = Map[ {GrayLevel [Random[]],
Point[#] }&, dataunion]
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Out [716]= {{GrayLevel[0.401706]

, Point [{30,11.6}]},

{GrayLevel [0.709086], Point [{35, 13.2}]},
{GrayLevel [0.310305], Point[{40,26.9}]},
{GrayLevel [0.946182], Point [{45, 35.5}]},
{GrayLevel [0.430326], Point[{50, 31.5}]},
{GrayLevel[0.0457745], Point [{55, 33.2}]},
{GrayLevel [0.525196], Point[{60, 31.4}]},
{GrayLevel [0.395095], Point [{65,28.4}]},
{GrayLevel [0.777691], Point [{70, 27.3}]},
{GrayLevel [0.0661548], Point [{75,25.5}]},
{GrayLevel [0.378523], Point[{80,21.9}]},

{GrayLevel [0.0846463], Point[{85, 18.}]},

{GrayLevel [0.519354], Point [{90,16.1}]}}

In[717] := dp2 = Show[Graphics[{PointSize[0.03], datapts2},

Axes -» Automatic]]

displays the points in dataunion in various

shades of gray and

In[718] := datapts3 = Map[{PointSize[Random[Real,
{0.008,0.1}]11, GrayLevel [Random[]],
Point[#] }&, dataunion]

Out [718]= {{PointSize[0.0491743],

GrayLevel [0.469353],

Point [{30,11.6}]}, {PointSize[0.0848502],

GrayLevel [0.563721]

{PointSize[0.0536195],

Point[{40,26.9}]},

{PointSize[0.0856063],

Point[{45,35.5}]},

{PointSize[0.0278527],

Point[{50,31.5}]},

{PointSize[0.0501316],

Point [{55, 33.2}]},

{PointSize[0.0546168],

Point [ {60, 31.4}]},

{PointSize[0.0550828],

Point [{65,28.4}]},

{PointSize[0.0504055],

Point [{70,27.3}]},

{PointSize[0.0187341],

Point [{75,25.5}]}

{PointSize[0.0443193],

Point [{80,21.9}]},

{PointSize[0.0109466],

Point [{85, 18.}]},
{PointSize[0.095145]
Point[{90,16.1}]}}

, Point [{35, 13.2}]},
GrayLevel[0.798519],

GrayLevel[0.196485],

GrayLevel[0.189742],

GrayLevel [0.794779],

GrayLevel [0.879437],

GrayLevel [0.364453],

GrayLevel [0.354242],

GrayLevel[0.586762],

GrayLevel[0.975719],

GrayLevel[0.0674086],

, GrayLevel[0.506366],
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Figure 4-14 Union membership as a percentage of the labor force

In[719] := dp3 = Show[Graphics[{datapts3}, Axes » Automatic]]

shows the points in dataunion in various sizes and in various shades
of gray. We connect successive points with line segments

In[720] := connectpts = Graphics[Line[dataunion]];

In[721] := dp4 = Show[connectpts, dp3, Axes » Automatic]

In[722] := Show[GraphicsArray[{{dpl, dp2}, {dp3,dp4}}]]

and show all four plots in Figure 4-14 using Show and GraphicsArray.

With the speed of today’s computers and the power of Mathematica, it is rela-
tively easy now to carry out many calculations that required supercomputers and
sophisticated programming experience just a few years ago.

EXAMPLE 4.2.7 (Julia Sets): Plot Julia sets for f(z) = Acosz if A = .66i

and A = .665i.
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SOLUTION: The sets are visualized by plotting the points (g, b) for
which |f"(a + bi)| is not large in magnitude so we begin by forming our
complex grid. Using Table and Flatten, we define complexpts to
be a list of 62,500 points of the form a + bi for 250 equally spaced real
values of a between 0 and 8 and 300 equally spaced real values of b
between —4 and 4 and then f(z) = .66icos z.

In[723] := complexpts = Flatten[Table[a+b I,
{a,0.,8.,8/249},{b,-4.,4.,6/249}1,1]1;

In[724] :

Clear|[f]

£f[z.] =0.66I Cos[z]
Out [724]= 0.661 Cos[z]

For a given value of ¢ = a + bi, h(c) returns the ordered triple consisting
of the real part of ¢, the imaginary part of ¢, and the value of f>%(c).

In[725] := h[ec.] := {Re[c], Im[c], Nest[£f, c, 200]}

We then use Map to apply /& to complexpts. Observe that Mathematica
generates several error messages. When machine precision is exceeded,
we obtain an Overflow[] error message; numerical results smaller
than machine precision results in an Underflow [] error message.

In[726] := t1l =Map[h, complexpts]//Chop;

General :: ovfl : Overflow occurred in computation.
General :: ovfl : Overflowoccurred in computation.
General :: ovfl : Overflow occurred in computation.

General :: stop : Further output of General ::

ovfl will be suppressed during this calculation.
General :: unfl : Underflowoccurred in computation.
General :: unfl : Underflowoccurred in computation.
General :: unfl : Underflowoccurred in computation.
General :: stop : Further output of General ::

unfl will be suppressed during this calculation.

We use the error messages to our advantage. In t2, we select those
elements of t1 for which the third coordinate is not Indeterminate,
which corresponds to the ordered triples (a, b, f"(a + bi)) for which
|f"(a + bi)| is not large in magnitude while in t2b, we select those el-
ements of t1 for which the third coordinate is Indeterminate, which
corresponds to the ordered triples (a, b, "(a + bi)) for which |f"(a + bi)|
is large in magnitude.

In[727] := t2 = Select[tl, Not[#[[3]] === Indeterminate] &];

In[728] :

t2b = Select[tl, #[[3]] === Indeterminate&];
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Figure 4-15 Julia set for 0.66i cos z

Lists of ordered pairs (a, b) are obtained in t 3 and t3b by applying pt
to each list, t 2 and t 2b, respectively,

In[729] := pt[{x_,y-,2-}] := {x, v}

In[730] :

t3 = Map[pt, t2];

t3b = Map [pt, t2b];

which are then graphed with List Plot and shown side-by-side in Fig-
ure 4-15 using Show and GraphicsArray. As expected, the images are
inversions of each other.

In[731]:= 1pl = ListPlot[t3, PlotRange » {{0, 8}, {-4, 4}},
AspectRatio » Automatic,
DisplayFunction -» Identity];

1p2 = ListPlot[t3b, PlotRange » {{0, 8}, {-4,4}},
AspectRatio » Automatic,
DisplayFunction -» Identity];

Show[GraphicsArray[{1lpl, 1p2}1]]

Similar error messages are

encountered but we have not . . . . L. . .

included them due to length Changing A from 0.66i to 0.665i results in a surprising difference in the

considerations. plots. We proceed as before but increase the number of sample points
to 120,000. See Figure 4-16.
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In[732] :

In[733]:

In[734]:

In[735] :

In[736] :

In[737]:

In[738] :

In[739]:

In[740] :

In[741] :

Figure 4-16 Julia set for 0.665i cos z

complexpts = Flatten[Table[a+b1I,
{a,-2.,2.,4/399}, {b,0.,2.,2/299}]1,1];

Clear[f]

f[z.] =0.665I Cos[z];

h[c.] := {Re[c], Im[c], Nest[£f, c, 200]}

tl =Map[h, complexpts]//Chop;

t2 = Select[tl, Not[#[[3]] === Indeterminate]&];
t2 = Select[t2, Not[#[[3]] === Overflow[]]&];
t2b = Select[tl, #[[3]] === Indeterminate&];

ptl{x_,y-,z}] := {x, vy}

t3 =Map[pt, t2];

t3b = Map[pt, t2b];

1pl = ListPlot[t3, PlotRange » {{-2, 2}, {0, 2}},
AspectRatio -» Automatic,
DisplayFunction -» Identity]:;

1p2 = ListPlot[t3b, PlotRange » {{-2, 2}, {0, 2}},
AspectRatio » Automatic,

DisplayFunction -» Identity];

Show[GraphicsArray[{1lpl, 1p2}]]

To see detail, we take advantage of pure functions, Map, and graphics
primitives in three different ways. In Figure 4-17, the shading of the
point (a, b) is assigned according to the distance of 2% (a + bi) from the
origin. The color black indicates a distance of zero from the origin; as
the distance increases, the shading of the point becomes lighter.

265
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Figure 4-17 Shaded Julia sets for 0.665i cos z

In[742] := t2p =Map[{#[[111,#[[2]],
Min[Abs[#[[31]]1,3]}&, t2];

t2p2 = Map[{GrayLevel [#[[3]1]/3],
Point [{#[[1]1]1,#[[2]1]1}]1}&, t2p]:

jpl = Show[Graphics[t2p2],
PlotRange » {{-2, 2}, {0, 2}}, AspectRatio» 1]
In[743]:= t2p=Map[{#[[11]1, #[[21].,

Min[Abs[Re[#[[3]1]11],0.25]1}&, t2];

t2p2 = Map[{GrayLevel [#[[3]]/0.25],
Point [{#[[1]1], #[[2]1]1}]}&, t2p];

jp2 = Show[Graphics[t2p2],
PlotRange -» {{-2, 2}, {0, 2}}, AspectRatio» 1]
In[744] := t2p=Map[{#[[11]1, #[[211.

Min[Abs[Im[#[[3]]]1]1,2.5]1}&, t2];

t2p2 = Map[{GrayLevel [#[[3]]/2.5],
Point [{#[[1]1], #[[2]1]1}]1}&, t2p];

jp3 = Show[Graphics[t2p2],
PlotRange -» {{-2, 2}, {0, 2}}, AspectRatio -» 1]

In[745] := Show[GraphicsArray[{jpl, jp2, jp3}11]
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4.2.2 Miscellaneous List Operations

4.2.2.1 Other List Operations
Some other Mathematica commands used with lists include:

1. Append[list, element], which appends element to 1ist;

2. AppendTo[list,element], which appends element to list and
names the result 1ist;

3. Drop [list,n], which returns the list obtained by dropping the first n
elements from 1ist;

4. Drop [list, -n], which returns the list obtained by dropping the last n
elements of 1ist;

5. Drop [list, {n,m}], which returns the list obtained by dropping the nth
through mth elements of 1ist;

6. Drop [list, {n}], which returns the list obtained by dropping the nth
element of 1ist;

7. Prepend [list, element], which prepends element to 1ist; and

8. PrependTo[list,element], which prepends element to list and
names the result 1ist.

4.2.2.2 Alternative Way to Evaluate Lists by Functions
Abbreviations of several of the commands discussed in this section are summa-
rized in the following table.

@@ Apply // (function application) {...} List
/@ Map [[...]1] Part

4.3 Mathematics of Finance

The use of lists and tables is quite useful in economic applications that deal with
interest rates, annuities, and amortization. Mathematica is, therefore, of great use
in these types of problems through its ability to show the results of problems in
tabular form. Also, if a change is made in the problem, Mathematica can easily
recompute the results.
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4.3.1 Compound Interest

A common problem in economics is the determination of the amount of interest
earned from an investment. If P dollars are invested for ¢ years at an annual interest
rate of r% compounded m times per year, the compound amount, A(?), at time 7 is
given by

A(r) = P(l + %)W

If P dollars are invested for ¢ years at an annual interest rate of ¥% compounded
continuously, the compound amount, A(¢), at time ¢ is given by A(r) = Pe™.

EXAMPLE 4.3.1: Suppose $12,500 is invested at an annual rate of 7%
compounded daily. How much money has accumulated and how much
interest has been earned at the end of each five year period for ¢ = 0,
5, 10, 15, 20, 25, 30? How much money has accumulated if interest is
compounded continuously instead of daily?

SOLUTION: Wedefine ac [t] to give the total value of the investment
at the end of 7 years and interest [t] to yield the total amount of
interest earned at the end of 7 years. Then Table and TableForm are
used to produce the table of ordered triples corresponding to the year,
total value of the investment, and total interest earned.

In[746] := Clear[ac, interest]
0.07 365t
acl[t] = 12500(1 + —) ;
365

interest[t_.] = ac[t] - 12500;

In[747] := Table[{t, ac[t], interest[t]}, {t, 0,30,5}1//
TableForm

0 12500 0

5 17737.7 5237.75

10 25170.2 12670.2
Out [747]= 15 35717. 23217.

20 50683.2 38183.2

25 71920.5 59420.5

30 102057. 89556.6

Next, we compute the value of the investment if interest is compounded
continuously.
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In[748] := Clear[ac]

ac[t_] =12500 Exp[0.07¢t];

TableForm[Table[{t, ac[t]}, {t, 0,30,5}]]

0 12500

5 17738.3

10 25171.
Out [748]= 15 35720.6

20 50690.

25 71932.5

30 102077.

\\¢]

The problem can be redefined for arbitrary values of z, P, r, and n as follows.

In[749] := Clear[ac, interest, results]
r\nt
ac[t_,P_,r_,n] = P(l + f) ;
n

interest[t_,P_,r_,n] =ac[t,P,r,n] -P;

results[{tO_,tl_,m},P_,r_,n] :=
Table[{t, ac[t, P, r, n], interest[t, P, r,n]},
{t, t0, tl, m}]//TableForm

Hence, any problem of this type can be worked using these functions.

EXAMPLE 4.3.2: Suppose $10,000 is invested at an interest rate of 12%
compounded daily. Create a table consisting of the total value of the
investment and the interest earned at the end of 0, 5, 10, 15, 20, and 25
years. What is the total value and interest earned on an investment of
$15,000 invested at an interest rate of 15% compounded daily at the end
of 0, 10, 20, and 30 years?

SOLUTION: In this case, we use the function results defined above.
Here, t0=0, t1=25, m=5, P=10000, r=0.12, and n=365.

In[750] := results[{0,25,5},10000,0.12, 365]
0 10000 0

5 18219.4 8219.39

10 33194.6 23194.6

15 60478.6 50478.6

20 110188. 100188.

25 200756. 190756.

Out [750] =
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If the conditions are changed to t 0=0, t1=30,m=10, P=15000,r=0.15,
and n=365, the desired table can be quickly calculated.

In[751] := results[{0, 30,10}, 15000, 0.15, 365]

0 15000 0
out [751] = 10 67204.6 52204 .6
v ~ 20 301097. 286097.

30 1.34901x10° 1.33401 x 10°

4.3.2 Future Value

If R dollars are deposited at the end of each period for n periods in an annuity that
earns interest at a rate of j% per period, the future value of the annuity is

a+pnpr-1
7]_ .

Stuture = R

EXAMPLE 4.3.3: Define a function future that calculates the future
value of an annuity. Compute the future value of an annuity where
$250 is deposited at the end of each month for 60 months at a rate of 7%
per year. Make a table of the future values of the annuity where $150 is
deposited at the end of each month for 127 months at a rate of 8% per
year forr =1,5,9,13,...,21,25.

SOLUTION: After defining future, we use future to calculate that
the future value of an annuity where $250 is deposited at the end of
each month for 60 months at a rate of 7% per year is $17,898.22.

In[752] := Clear[r, n]

r((L+3j)*-1
futurel[r_, j_,n.] = M;
3
0.07
In[753] := future[250, — 512]

Out [753]= 17898.2

For the second problem, we use Table and future to compute the
future values of the annuity where $150 is deposited at the end of each
month for 12t months at a rate of 8% per year fort = 1,5,9, 13, ...,
21, 25. The first column in the following table corresponds to the time



4.3 Mathematics of Finance 271

(in years) and the second column corresponds to the future value of the
annuity.

In[754] := Tabl t, fut 150 9;9§ 12t
n(754] := Table[{t, future[150, *0°, 12¢]},

{t, 1,25, 4}]//Tab1eForm

1 1867.49
5 11021.5
9 23614.
Out [754]= 13 40938.
17 64769.
21 97553.
25 142654.

W O

4.3.3 Annuity Due

If R dollars are deposited at the beginning of each period for n periods with an
interest rate of j% per period, the annuity due is

1 -n+1_1
Sdue=R[( + —1].

J

EXAMPLE 4.3.4: Define a function due that computes the annuity due.
Use due to (a) compute the annuity due of $500 deposited at the begin-
ning of each month at an annual rate of 12% compounded monthly for
three years; and (b) calculate the annuity due of $100k deposited at the
beginning of each month at an annual rate of 9% compounded monthly
for10yearsfork=1,2,3,..., 10.

SOLUTION: In the same manner as the previous example, we first
define due and then use due to compute the annuity due of $500 de-
posited at the beginning of each month at an annual rate of 12%
compounded monthly for three years.

r((1+3)™-1)
]

In[755] :

due[r_, j_,n] = r;

0.12

In[756] := due[500, -, 312]
12

out [756]= 21753.8
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We then use Table and due to calculate the annuity due of $100k
deposited at the beginning of each month at an annual rate of 9% com-
pounded monthly for 10 years for k = 1, 2, 3, ..., 10. The first column
corresponds to the amount deposited each month at an annual rate of
9% compounded monthly and the second column corresponds to the
value of the annuity.

In[757] := Table[{100k, due[100k, %, 1012]},

{k,1,10}]//TableForm
100 19496.6

200 38993.1
300 58489.7
400 77986.3
500 97482.8

Out[7571= ¢40 116979.

700 136476.
800 155973.
900 175469.
1000 1940966.

EXAMPLE 4.3.5: Compare the annuity due on a $100k monthly invest-
ment at an annual rate of 8% compounded monthly for ¢t = 5, 10, 15, 20
andk=1,2,3,4,5.

SOLUTION: We use Table and due to calculate due [100 k,0.08/
12,t 12], corresponding to the annuity due of $100k deposited
monthly at an annual rate of 8% compounded monthly for ¢ years, for
k=1,2,3,4and =5, 10, 15, 20. Notice that the rows correspond to the
annuity due on a $100, $200, $300, $400, and $500 monthly investment
for 5,10, 15, and 20 years, respectively. For example, the annuity due on
$300 deposited monthly at an annual rate of 8% compounded monthly
for 15 years is $104,504.

0.08
In[758] := Table[due[100k, - t12], {k, 1, 5},

{t, 5,20, 5}]//TableForm
7396.67 18416.6 34834.5 59294.7
14793.3 36833.1 69669. 118589.
Out [758] = 22190. 55249.7 104504. 177884.
29586.7 73666.3 139338. 237179.
36983.4 92082.8 174173. 296474.



4.3 Mathematics of Finance

4.3.4 Present Value

Another type of problem deals with determining the amount of money that must
be invested in order to insure a particular return on the investment over a certain
period of time. The present value, P, of an annuity of n payments of R dollars each
at the end of consecutive interest periods with interest compounded at a rate of
Jj% per period is
I-a+pnp™

7 .

P=R

EXAMPLE 4.3.6: Define a function present to compute the present
value of an annuity. (a) Find the amount of money that would have
to be invested at 7 1/2% compounded annually to provide an ordinary
annuity income of $45,000 per year for 40 years; and (b) find the amount
of money that would have to be invested at 8% compounded annually
to provide an ordinary annuity income of $20, 000 + $5000k per year for
35yearsfork =0, 1,2, 3,4, and 5 years.

SOLUTION: In the same manner as in the previous examples, we first
define the function present which calculates the present value of an
annuity. We then use present to calculate the amount of money that
would have to be invested at 7 1/2% compounded annually to provide
an ordinary annuity income of $45,000 per year for 40 years.

rl-(1+3)™
3

In[759] := present[r_, j_,n.] = ;

In[760] := present[45000, 0.075, 40]

Out [760]= 566748.

Also, we use Table to find the amount of money that would have to be
invested at 8% compounded annually to provide an ordinary annuity
income of $20, 000 + $5000k per year for 35 years for k =0, 1, 2, 3, 4, and
5. In the table, the first column corresponds to the annuity income and
the second column corresponds to the present value of the annuity.

In[761] := Table[{20000 + 5000k,
present[20000 + 5000k, 0.08, 35]},
{k,0,5}]//TableForm

273
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20000 2330091.
25000 291364.
30000 349637.
35000 407910.
40000 466183.
45000 524456.

Out [761] =

4.3.5 Deferred Annuities

The present value of a deferred annuity of R dollars per period for n periods
deferred for k periods with an interest rate of j per period is

L=+ -1+ j)*
J J '

Pget =R

EXAMPLE 4.3.7: Define a function def [r,n,k,j] to compute the
value of a deferred annuity where r equals the amount of the deferred
annuity, n equals the number of years in which the annuity is received, k
equals the number of years in which the lump sum investment is made,
and j equals the rate of interest. Use de f to compute the lump sum that
would have to be invested for 30 years at a rate of 15% compounded an-
nually to provide an ordinary annuity income of $35,000 per year for 35
years. How much money would have to be invested at the ages of 25,
35, 45, 55, and 65 at a rate of 8 1/2% compounded annually to provide
an ordinary annuity income of $30,000 per year for 40 years beginning
at age 65?

SOLUTION: As in the previous examples, we first define def and
then use def to compute the lump sum that would have to be invested
for 30 years at a rate of 15% compounded annually to provide an ordi-
nary annuity income of $35,000 per year for 35 years. The function def
that computes the present value of a deferred annuity where r equals
the amount of the deferred annuity, n equals the number of years in
which the annuity is received, k equals the number of years in which
the lump sum investment is made, and j equals the rate of interest is
defined.

In[762] := def[r_,n ,k_,j ] =
(@37 1- @i
r -
;| ]

I
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In[763] := def[35000, 35, 30, 0.15]
3497.58

Out [763]

To answer the second question, we note that the number of years the
annuity is deferred is equal to 65 (the age at retirement) minus the age
at which the money is initially invested and then use Table and def
to compute the amount of money that would have to be invested at
the ages of 25, 35, 45, 55, and 65 at a rate of 8 1/2% compounded an-
nually to provide an ordinary annuity income of $30,000 per year for
40 years beginning at age 65. Note that the first column corresponds to
the current age of the individual, the second column corresponds to the
number of years from retirement, and the third column corresponds to
the present value of the annuity.

In[764] := Table[{k, 65 -k, def[30000, 40, 65-k, 0.085]},
{k, 25, 65,10}]//TableForm

25 40 12988.8
35 30 29367.4
Out [764]= 45 20 66399.2
55 10 150127.
65 0 339436.

4.3.6 Amortization

A loan is amortized if both the principal and interest are paid by a sequence of
equal periodic payments. A loan of P dollars at interest rate j per period may
be amortized in n equal periodic payments of R dollars made at the end of each
period, where

Pj

R= ———.
1-(1+ )™

The function, amort [p, j, nl], defined next determines the monthly payment
needed to amortize a loan of p dollars with an interest rate of j compounded
monthly over n months. A second function, totintpaid[p, j,nl, calculates the
total amount of interest paid to amortize a loan of p dollars with an interest rate of
J% compounded monthly over n months.

pJ

In[765] := amort[p., j.,n.] = ———M;
[765] (p-, ] 1 1-(1+9)"

In[766] := totintpaid[p., j.,n.] =namort[p, j, n] -p;
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EXAMPLE 4.3.8: What is the monthly payment necessary to amortize
a loan of $75,000 with an interest rate of 9.5% compounded monthly
over 20 years?

SOLUTION: The first calculation uses amort to determine the nec-
essary monthly payment to amortize the loan. The second calculation
determines the total amount paid on a loan of $75,000 at a rate of 9.5%
compounded monthly over 20 years while the third shows how much
of this amount was paid towards the interest.

0.095

In[767] := amort[75000, , 240]
Out [767]= 699.098
0.095
In[768] := 240 amort[75000, ,240]
out [768]= 167784.
. . 0.095
In[769] := totintpaid[75000, , 240]

Out [769]= 92783.6

EXAMPLE 4.3.9: What is the monthly payment necessary to amortize
a loan of $80,000 at an annual rate of j% in 20 years for j = §, 8.5, 9, 9.5,
10, and 10.5?

SOLUTION: We use amort to calculate the necessary monthly pay-
ments. The first column corresponds to the annual interest rate and the
second column corresponds to the monthly payment.

: j
In[770] : = Table[{], amort[80000, =, 240]},

{j,0.08,0.105,0.005}]//TableForm

.08 669.152
.085 694.259
.09 719.781
.095 745.705
.1 772.017
.105 798.704

Oout [770] =

O O O O o o
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In many cases, the amount paid towards the principal of the loan and the total
amount that remains to be paid after a certain payment need to be computed. This
is easily accomplished with the functions unpaidbalance and curprinpaid
defined using the function amort [p, j,n] that was previously defined.

In[771] := unpaidbalance[p., j_,n_,m] =
present[amort([p, j,n], j, n-m]
(1-(1+3)""p
1-(1+3)™

out [771]

In[772] := curprinpaid[p., j_-,n_,m] =
p - unpaidbalance[p, j, n, m]
(1-(1+3)""p

out [772]= p - —— T3

EXAMPLE 4.3.10: What is the unpaid balance of the principal at the
end of the fifth year of a loan of $60,000 with an annual interest rate of
8% scheduled to be amortized with monthly payments over a period
of ten years? What is the total interest paid immediately after the 60th
payment?

SOLUTION: We use the functions unpaidbalance and curprinpaid,
defined above, to calculate that of the original $60,000 loan, $24,097.90
has been paid at the end of five years; $35,902.10 is still owed on the
loan.

0.08
In[773] := unpaidbalance[GOOOO, 2 ’ 120, 60]

Out [773]= 35902.1

0.08
In[774] := curprinpaid[60000, 5 120, 60]
Out [774]

24097.9

Mathematica can also be used to determine the total amount of interest paid on a
loan using the following function

In[775] := curintpaid[p-, j-,n_,m] =
mamort[p, j, n] - curprinpaid[p, j, n, m]
(1-(1+3)""p _ jmp
1-(1+3)™ 1-(1+3)™

out [775]= -p +

where curintpaid[p, j,n,m] computes the interest paid on a loan of $p amor-
tized at a rate of j per period over n periods immediately after the mth payment.
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EXAMPLE 4.3.11: What is the total interest paid on a loan of $60,000
with an interest rate of 8% compounded monthly amortized over a
period of ten years (120 months) immediately after the 60th payment?

SOLUTION: Using curintpaid, we see that the total interest paid is
$19,580.10.

08

0.
In[776] := curintpaid[60000,—jE;f,120,60]

Out [776]= 19580.1

Using the functions defined above, amortization tables can be created that show a
breakdown of the payments made on a loan.

EXAMPLE 4.3.12: What is the monthly payment necessary to amor-
tize a loan of $45,000 with an interest rate of 7% compounded monthly
over a period of 15 years (180 months)? What is the total principal and
interest paid after 0, 3, 6,9, 12, and 15 years?

SOLUTION: We first use amort to calculate the monthly payment
necessary to amortize the loan.

0.07

In[777] := amort[45000,—4447,1512]
12

Out [777]= 404.473

Next, we use Table, curprinpaid, and curintpaid to determine
the interest and principal paid at the end of 0, 3, 6, 9, 12, and 15 years.

0.07
In[778] := Table[{t,curprinpaid[45000,—jE;—,1512,12t],

, , 0.07
cur1ntpa1d[45000,—iﬂz—,1512,12t]},

{t,0,15,3}]//TableForm

0. 0.

5668.99 8892.03
12658.4 16463.6
9 21275.9 22407.2
12 31900.6 26343.5
15 45000 27805.1

o W o

out [778] =
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Note that the first column represents the number of years, the second
column represents the principal paid, and the third column represents
the interest paid. Thus, at the end of 12 years, $31,900.60 of the principal
has been paid and $26,343.50 has been paid in interest.

|

Because curintpaid[p, j,n,y] computes the interest paid on a loan of $p amor-
tized at a rate of j per period over n periods immediately after the yth payment,
and curintpaid(p, j,n,y-12] computes the interest paid on a loan of $p amor-
tized at a rate of j per period over n periods immediately after the (y — 12)th pay-
ment,

curintpaidlp,j,n,y]l -curintpaidlp,j,n,y-12]

yields the amount of interest paid on a loan of $p amortized at a rate of j per period
over n periods between the (y — 12)th and yth payment. Consequently, the interest
paid and the amount of principal paid over a year can also be computed.

EXAMPLE 4.3.13: Suppose that a loan of $45,000 with interest rate of
7% compounded monthly is amortized over a period of 15 years (180
months). What is the principal and interest paid during each of the first
five years of the loan?

SOLUTION: We begin by defining the functions annualintpaidand
annualprinpaid that calculate the interest and principal paid during
the yth year on a loan of $p amortized at a rate of j per period over n
periods.

In[779] := annualintpaid[p-, j_,n_,y.] :=
curintpaid[p, j, n,y]-
curintpaid[p, j,n,y-12];

annualprinpaid([p., j-,n_,y.] :=
curprinpaid[p, j, n, y]l-
curprinpaid[p, j,n,y-12];

We then use these functions along with Table to calculate the principal
and interest paid during the first five years of the loan. Note that the
first column represents the number of years the loan has been held, the
second column represents the interest paid on the loan during the year,
and the third column represents the amount of the principal that has
been paid.
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0.07
In[780] := Table[{t, annualintpaid[45000, 2’ 1512,

. . 0.07
12t] , annualprlnpald[45000, 2

1512, 12t]}, {t, 1,5, 1}]//TableForm

1 3094.26 1759.41
2 2967.08 1886.6

3 2830.69 2022.98
4 2684 .45 2169.22
5 2527.64 2326.03

Out [780] =

For example, we see that during the third year of the loan, $2830.69 was
paid in interest and $2022.98 what paid on the principal.
|

4.3.7 More on Financial Planning

We can use many of the functions defined above to help make decisions about
financial planning.

EXAMPLE 4.3.14: Suppose a retiree has $1,200,000. If she can invest
this sum at 7%, compounded annually, what level payment can she
withdraw annually for a period of 40 years?

SOLUTION: The answer to the question is the same as the monthly
payment necessary to amortize a loan of $1,200,000 at a rate of 7% com-
pounded annually over a period of 40 years. Thus, we use amort to see
that she can withdraw $90,011 annually for 40 years.

In[781] := amort[1200000, 0.07, 40]
Out [781]= 90011.

EXAMPLE 4.3.15: Suppose an investor begins investing at a rate of d
dollars per year at an annual rate of j%. Each year the investor increases
the amount invested by i%. How much has the investor accumulated
after m years?
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SOLUTION: The following table illustrates the amount invested each
year and the value of the annual investment after m years.

Year | Rateof | Annual | Amount Value after
Increase | Interest | Invested m Years

0 Jj% d 1+ j%)"d
1 i% j% (1 +i%)d (1 +i%)(1 + j%)"'d
2 i% j% (1 +i%)*d | (1 +i%)*(1 + j%)"2d
3 i% j% (1 +i%)d | (1+i%)>(1 + j%)y"3d
k i% j% (1 +i%)*d | (1 +i%)( + j%)"*d
m i% Jj% (1+i%)"d (1+i%)"d

It follows that the total value of the amount invested for the first k years
after m years is given by:

Year Total Investment
0 (1 + j%)"d
1 (1 + j%)"d + (1 + i%)(1 + j%)"'d
2| (1 + j%)y"d + (1 +i%)(1 + j%)"'d + (1 +i%)*(1 + j%)"2d
3 Y301 +i%)'(1 + j%)""d
k oL +i%)"(1 + j%)""d
m oL+ %) (1 + j%)""d

The command Sum can be used to find a closed form of the sums Y*_,(1+
i%)"(1 + j%)""d and Y,;_o(1 + i%)"(1 + j%)""d. We use Sum to find the
sum Zﬁzo(l +1%)"(1+ j%)""d and name the result closedone. We then
use Factor and PowerExpand to first write closedone as a single
fraction and then factor the numerator.

K
In[782] := closedone = Simplify[z (1+1)* (1 +3)™" d]

n=0

d(l+j)m(—1—j+ (1+i,)k+i (hi)k)

1+J 1+3

Out [782] ; ;
1-7
In[783] := Factor[PowerExpand[closedone]]
d(1+3) " ((1+1)"+1i(1+1) - (1+3) -3 (1+3)")

Oout [783] = - .
1-3

In the same way, Sum is used to find a closed form of },_,(1 + i%)"(1 +
J%)"""d, naming the result closedtwo.

In[784] := closedtwo = Z (L+i)® (1+3)™"d

n=0
a(+3)" (-1-3+ (33)"+3 (55)")
i-]

out [784] =
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In[785] := Factor[PowerExpand[closedtwo]]
d(-(1+1)" -1 (1+D)"+ (1 +PH"+F (1 +3)™
i-3

Out [785]= -

These results are used to define the functions investment [{d, 1,3},
{k,m}] and investmenttot [{d,i,j},m] that return the value of
the investment after k and m years, respectively. In each case, notice that
output cells can be edited like any other input or text cell. Consequently,
we use editing features to copy and paste the result when we define
these functions.

In[786] := investment[{d_, i_, j_-}, {k_, m_}] =
1
-1i+73
(d@a+9=
(1+3-@+D)"(@+3)F-i@1+0)"(1+3)7F));
In[787] := investmenttot[{d_, i_, j_}, m.] =

d(-(1+1)"-1(L+4)"+ (1+3)"+3(1+3)") .

-i+73

Finally, investment and investmenttot are used to illustrate var-
ious financial scenarios. In the first example, investment is used to
compute the value after 25 years of investing $6500 the first year and
then increasing the amount invested 5% per year for 5, 10, 15, 20, and 25
years assuming a 15% rate of interest on the amount invested. The built-
in function AccountingForm is used to convert numbers expressed
in exponential notation to ordinary notation. In the second example,
investmenttot is used to compute the value after 25 years of invest-
ing $6500 the first year and then increasing the amount invested 5%
per year for 25 years assuming various rates of interest. The results are
named scenes and are displayed in AccountingForm.

In[788] := results =
Table[{t, investment[ {6500, 0.05, 0.15},
{t,25}1},
{t,5,25,5}]//TableForm

5 1.03506x10°
10 1.55608 x 10°
15 1.88668 x 10°
20 2.09646 x 10°
25 2.22957 x 10°

Out [788]
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In[789] := TableForm[AccountingForm[results]]
5 1.0350710°
10 1.5560810°
out [789]= 15 1.8866810°
20 2.0964610°
25 2.2295710°

In[790] := scenes =
Table[{i, investmenttot[{6500, 0.05, i}, 25]},
{1,0.08,0.2,0.02}];

AccountingForm[TableForm[scenes]]

0.08 832147.
0.1 1.0871310°
0.12 1.4378410°
Out [790]= 0.14 1.921910°
0.16 2.5916410°
0.18 3.5196710°
0.2 4.8065210°

Another interesting investment problem is discussed in the following example. In
this case, Mathematica is useful in solving a recurrence equation that occurs in the
problem. The command

RSolve [{equations},aln],n]

attempts to solve the recurrence equations equations for the variable a [n] with
no dependenceona[jl,j<n-1.

EXAMPLE 4.3.16: I am 50 years old and I have $500,000 that I can in-
vest at a rate of 7% annually. Furthermore, I wish to receive a payment
of $50,000 the first year. Future annual payments should include cost-
of-living adjustments at a rate of 3% annually. Is $500,000 enough to
guarantee this amount of annual income if I live to be 80 years old?

SOLUTION: Instead of directly solving the above problem, let’s solve
a more general problem. Let a denote the amount invested and p the
first-year payment. Let a, denote the balance of the principal at the end
of year n. Then, the amount of the nth payment, the interest earned on
the principal, the decrease in principal, and the principal balance at the
end of year n are shown in the table for various values of n. Observe

283



284

Chapter 4 Introduction to Lists and Tables

that if (1 + /)" > (1 + j)a,—1, then the procedure terminates and the
amount received in year n is (1 + j)a,-i.

Year | Amount | Interest From Principal
Principal Balance
1 )4 ia p—ia ag=(+ida-p
2 ad+pp iay (I + )p - iay ay={+ia -+ )p
3 (1+))7p ia; (L+))’p —ia a3 = (1+Day = (1+j)°p
4 (1+)°p ias (1+)’p —ias ag = (1 +iaz = (1L+))p
n | A+)"p | dann | (4 ) p—dan | an = +Da = (14 )" p

The recurrence equation a, = (1+i)a,—; —(1+ /)"~ pis solved for a, with
no dependence on a,_;. After clearing several definitions of variable
names, we use RSolve to solve the recurrence equation given above
where the initial balance is represented by amount. Hence, a, is given
by the expression found in bigstep.

In[791] := eql =a[l] == (1 + i) amount - p;
eq2 =a[n] == (1+i)a[n-1] - (L +3)**p;

bigstep = RSolve[{eql, eq2}, a[n], n]

143

1+i)np> }}

out [791]= {{a[n] - (1+1)" (amount i - amount j - p + |

i-3
We then define am [n, amount, i, p, j] to be the explicit solution found
in bigstep. Last we compute am[n, a, i,p, j] which corresponds to

the balance of the principal of a dollars invested under the above con-
ditions at the end of the nth year.

In[792] := am[n_, amount ,i ,p_,3j.] =

_(-1-14) (1+4)"™" (amount i - amountj -p)

i-3
(-1-3) (1+3)*"p
i-3

//Together;

In[793] := am[n, a, i,p, j]
ai(l+1)"-a(1+)"jJ-(1+D)"p+(1+3)"p
-3

out [793] =

To answer the question, we first define annuitytable in the follow-
ing. For given g, i, p, j, and m, annuitytable[a, i, p,j,m] returns
an ordered triple corresponding to the year, amount of income received
in that year, and principal balance at the end of the year for m years.
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In[794] := annuitytable[a_,i ,p_,j-,m] :=
TableForm[
Table[{k, (1+3)*'p, am[k, a,i,p, 31},
{k,1,m}]]

Then we compute annuitytable[500000,.07,50000,.03,15].
In this case, we see that the desired level of income is only guaranteed
for 13 years which corresponds to an age of 63 because the principal
balance is negative after 13 years.

In[795] := annuitytable[500000,0.07, 50000, 0.03, 15]

1 50000 485000.
2 51500. 467450.
3 53045. 447126.
4 54636.4 423789.
5 56275.4 397179.
6 57963.7 367018.
7 59702.6 333006.
Out [795]= 8 61493.7 294823.
9 63338.5 252122.
10 65238.7 204532.
11 67195.8 151653.
12 69211.7 93057.4
13 71288. 28283.4
14 73426.7 -43163.5

15 75629.5 -121814.

An alternative method of defining annuitytable is presented next.
Here we use For and ++

®@06 Untitled-2 =
?R50lve
RSolve[eq, a[n], n] solves a recurrence equation
for a[n]. RSolve[{eqnl, eqnZ, }. {81[n].
azZ[n]. ... }. n] solves a system of recurrence
equations. RSolvel[eqn, a[nl, n2, ... ]. {nl.
na, . }] solves a partial recurrence equation. Mome...

?For

For[start., test. incr, body] executes
start, then repeatedly evaluates body and
incr until test fails to give True. More .

L2 3

X++ increases the value of x
by 1, returning the old value of x. Mome...

[ 100% »| e

»

to define annuitytable so that the procedure terminates when the
principal is negative or after 50 years.
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Clear[annuitytable]

annuitytablef[a_, i ,p_, j-] :=Module[{},
For[k =1,am[k,a,i,p,j] 2 0&&k <50,
k++,
Print[{k, (1+3)*'p, am[k, a,i,p,31}]];
Print[{k, am[k-1,a,i,p,31,0}]]

We see that if the first year payment is $29,000, 3% increases can occur
annually for 30 years.

In[797] :=
{1, 29000,
{2,29870.
{3,30766.
{4,31689.
{5, 32639.
{6,33618.
{7,34627.
{8, 35666.
{9,36736.
{10, 37838

{11, 38973.
{12, 40142.
{13, 41347.
{14, 42587.
{15, 43865.
{16, 45181.
{17, 46536.
{18, 47932.
{19, 49370.
{20, 50851.
{21, 52377.
{22, 53948.
{23, 55567.
{24, 57234.
{25, 58951.
{26, 60719.
{27, 62541.

{28, 64417

{29, 66349.

{30, 68340

{31, 47007.

annuitytable[500000, 0.07, 29000, 0.03]
506000. }
, 511550.}
1,516592.
1,521065.
8, 524900.
9,528024.
5,530358.
3,531816.
3,532307.
.4,531730.
6,529978.
526934.
522472.
516457.
508744.
499175.
487581.
473779.
457573 .
438752.
2,417087.
5,392335.
,364231.}
,332493.}
,296817.}
6,256874.}
1,212314.}
.4,162759.}
9,107802.}
.4,47007.9}
9,0}
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We can also investigate other problems. For example, a 30-year mort-
gage of $80,000 with an annual interest rate of 8.125% requires monthly
payments of approximately $600 ($7200 annually) to amortize the loan
in 30 years. However, using annuitytable, we see that if the amount
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of the payments is increased by 3% each year, the 30-year mortgage is
amortized in 17 years. In the following result, the first column corre-
sponds to the year of the loan, the second column the annual payment,
and the third column the principal balance.

In[798] := annuitytable[80000, 0.08125, 7200, 0.03]
{1, 7200, 79300.}

{2, 7416.,78327.1}
{3,7638.48, 77052.7}
{4,7867.63, 75445.6}
(5, 8103.66, 73471.9}
{6,8346.77, 71094 .7}
{7,8597.18, 68274}
{8,8855.09, 64966.2}
{9,9120.74, 61123.9}
{10, 9394.37, 56695.9}
(11, 9676.2, 51626.2}
{12, 9966.48, 45854 .4}
{13,10265.5, 39314.6}
{14, 10573.4,31935.4}
{15, 10890.6, 23639.5)
{16,11217.4, 14342.9}
{17, 11553.9, 3954.36}
{18, 3954.36, 0}

4.4 Other Applications

We now present several other applications that we find interesting and require
the manipulation of lists. The examples also illustrate (and combine) many of the
skills that were demonstrated in the earlier chapters.

4.4.1 Approximating Lists with Functions

Another interesting application of lists is that of curve-fitting. The commands

1. Fit [data, functionset,variables] fits the list of data points data
using the functions in functionset by the method of least-squares. The
functions in functionset are functions of the variables listed in
variables; and
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2. InterpolatingPolynomial [data, x] fits thelist of n data points data
with an n — 1 degree polynomial in the variable x.

EXAMPLE 4.4.1: Define datalist to be the list of numbers consist-
ing of 1.14479, 1.5767, 2.68572,2.5199, 3.58019, 3.84176, 4.09957, 5.09166,
5.98085, 6.49449, and 6.12113. (a) Find a quadratic approximation of the
points in datalist. (b) Find a fourth degree polynomial approxima-
tion of the points in datalist.

SOLUTION: The approximating function obtained via the least-squares
method with Fit is plotted along with the data points in Figure 4-18.
Notice that many of the data points are not very close to the approx-
imating function. A better approximation is obtained using a polyno-
mial of higher degree (4).

In[799] := Clear[datalist]

datalist = {1.14479, 1.5767, 2.68572,
2.5199, 3.58019, 3.84176,
4.09957, 5.09166, 5.98085, 6.49449,
6.12113};

In[800] := pl = ListPlot[datalist,
DisplayFunction -» Identity];

In[801] := Clear[y]

yIx.] = Fit[datalist, {1, x, x2}, x]
Out [801]= 0.508266 +0.608688x -0.00519281 x>

In[802] := p2 = Plot[y[x], {x, -1, 11},
DisplayFunction -» Identity];

Show[pl, p2, DisplayFunction -»
$DisplayFunction]
In[803] := Clear|[y]
y[x.] = Fit [datalist, {1, x, x2, %3, x4} , x]

Out [803]= -0.54133 +2.02744x - 0.532282x%+
0.0709201x*>-0.00310985 x*

To check its accuracy, the second approximation is graphed simulta-
neously with the data points in Figure 4-19.



4.4 Other Applications 289

2 4 6 8 10

Figure 4-18 The graph of a quadratic fit shown with the data points

Figure 4-19 The graph of a quartic fit shown with the data points
In[804] := p3 = Plot[y[x], {x, -1, 11},
DisplayFunction -» Identity];

Show[pl, p3, DisplayFunction »
$DisplayFunction]

Next, consider a list of data points made up of ordered pairs.

EXAMPLE 4.4.2: Table 4-2 shows the average percentage of petroleum
products imported to the United States for certain years. (a) Graph the
points corresponding to the data in the table and connect the consecu-
tive points with line segments. (b) Use InterpolatingPolynomial
to find a function that approximates the data in the table. (c) Find a
fourth degree polynomial approximation of the data in the table.
(d) Find a trigonometric approximation of the data in the table.
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Year Percent | Year Percent
1973 34.8105 | 1983 28.3107
1974 35.381 | 1984 29.9822
1975 35.8167 | 1985 27.2542
1976  40.6048 | 1986  33.407

1977 47.0132 | 1987 35.4875
1978 42.4577 | 1988 38.1126
1979 43.1319 | 1989  41.57

1980 37.3182 | 1990 42.1533
1981 33.6343 | 1991 39.5108
1982  28.0988

Table 4-2 Petroleum products imported to the United States for certain years

SOLUTION: We begin by defining data to be the set of ordered pairs
represented in the table: the x-coordinate of each point represents the
number of years past 1900 and the y-coordinate represents the percent-
age of petroleum products imported to the United States.

In[805] := data = {{73., 34.8105}, {74., 35.381},

{75., 35.8167}, {76., 40.6048},
{77., 47.0132}, {78., 42.4577},
{79., 43.1319}, {80., 37.3182},
{81., 33.6343}, {82., 28.0988},
{83., 28.3107}, {84., 29.9822},

{85., 27.2542}, {86., 33.407},
{87., 35.4875}, {88., 38.1126},
{89., 41.57}, {90., 42.1533},
{91., 39.5108}};

We use ListPlot to graph the ordered pairs in data. Note that be-
cause the option PlotStyle->PointSize[.03] is included within
the ListPlot command, the points are larger than they would nor-
mally be. We also use ListPlot with the option PlotJoined->True
to graph the set of points data and connect consecutive points with
line segments. Then we use Show to display 1p1 and 1p2 together in
Figure 4-20. Note that in the result, the points are easy to distinguish
because of their larger size.
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Figure 4-20 The points in Table 4-2 connected by line segments

In[806] := 1pl = ListPlot[data,
PlotStyle » PointSize[0.03],
DisplayFunction -» Identity];

1p2 = ListPlot[data, PlotJoined » True,
DisplayFunction -» Identity];

Show[1lpl, 1p2,
DisplayFunction -» $DisplayFunction]

Next, we use InterpolatingPolynomial to find a polynomial ap-
proximation, p, of the data in the table. Note that the result is lengthy, so
Short is used to display an abbreviated form of p. We then graph p and
show the graph of p along with the data in the table for the years cor-
responding to 1971 to 1993 in Figure 4-21. Although the interpolating
polynomial agrees with the data exactly, the interpolating polynomial
oscillates wildly.

In[807] := p = InterpolatingPolynomial [data, x];
Short[p, 3]
Out [807]= 34.8105+
(0.5705+ (-0.0674 + (<<1>>) (-75.+%x)) (-74. +x))
(-73. +x)

In[808] := plotp = Plot[p, {x, 71, 93},
DisplayFunction -» Identity];

Show[plotp, 1pl, PlotRange -» {0, 50},
DisplayFunction -» $DisplayFunction]
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See texts like Abell,
Braselton, and Rafter’s
Statistics with Mathematica [3]
for a more sophisticated
discussion of curve-fitting and
related statistical applications.
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Figure 4-21 Even though interpolating polynomials agree with the data exactly, they may
have extreme oscillations, even for relatively small data sets

To find a polynomial that approximates the data but does not oscillate
wildly, we use Fit. Again, we graph the fit and display the graph of
the fit and the data simultaneously. In this case, the fit does not identi-
cally agree with the data but does not oscillate wildly as illustrated in
Figure 4-22.

In[809] := Clear[p]

p= Fit[data, {l,x, xz,x3,x4},x]
out [809]= -198884. + 9597.83 x—
173.196x% +1.38539x> -0.00414481 x*

In[810] := plotp = Plot[p, {x, 71, 93},
DisplayFunction -» Identity]:;

Show|[plotp, 1pl, PlotRange » {0, 50},
DisplayFunction -» $DisplayFunction]

In addition to curve-fitting with polynomials, Mathematica can also fit
the data with trigonometric functions. In this case, we use Fit to find
an approximation of the data of the form p = ¢| + ¢, sinx + ¢3 sin (x&/2) +
€4 €O8x + ¢s5 cos (x/2). As in the previous two cases, we graph the fit and
display the graph of the fit and the data simultaneously; the results are
shown in Figure 4-23.

In[811] := Clear|[p]

X
p= Fit[data, {1, Sin[x], Sin [5] , Cos[x],

cos [£]}. %]
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Figure 4-22 Even though the fit does not agree with the data exactly, the oscillations seen
in Figure 4-21 do not occur

50
[
@
40 [
()
30
[
20
10
80 85 90

Figure 4-23 You can use Fit to approximate data by a variety of functions

X
Out [811]= 35.4237 +4.25768 Cos [5] - 0.941862 Cos[x]+

X
6.06609 Sin [5} +0.0272062 Sin[x]

In[812] := plotp = Plot[p, {x, 71, 93},
DisplayFunction -» Identity];

Show[plotp, 1pl, PlotRange -» {0, 50},
DisplayFunction -» $DisplayFunction]
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4.4.2 Introduction to Fourier Series

Many problems in applied mathematics are solved through the use of Fourier
series. Mathematica assists in the computation of these series in several ways. Sup-
pose that y = f(x) is defined on —p < x < p. Then the Fourier series for f(x) is

1 - ( nmx i nﬂx)
—ap + a, cos — + b, sin — (4.1)
where
1 P
ao=ff f)dx
P J-p
1 P
ansz feos ™ ax n=1,2... (4.2)
pJp p

1 P
bnsz f(x)sin@dx n=12...
pPJ-p p

The kth term of the Fourier series (4.1) is

a, cos nx + b, sin @. (4.3)
p p

The kth partial sum of the Fourier series (4.1) is

k
1 T T
—ag + Z (a,, cos o + b, sin u) (4.4)
2 n=1 p P
It is a well-known theorem that if y = f(x) is a periodic function with period 2p
and f’(x) is continuous on [-p, p] except at finitely many points, then at each point
x the Fourier series for f(x) converges and

1 = 1
an + Z (a,l cos ? + b, sin ?) =5 (}LIE f@+ leg} f(z)).

n=1

In fact, if the series Y., (la,| + 1b,]) converges, then the Fourier series converges
uniformly on (—oo, c0).

I—x, -1=x<0
EXAMPLE 4.4.3: Let f(x) =41, 0 <x < 1 . Compute and graph the
fx=2),x=1

first few partial sums of the Fourier series for f(x).
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Figure 4-24 Plot of a few periods of f(x)

SOLUTION: We begin by clearing all prior definitions of f. We then
define the piecewise function f(x) and graph f(x) on the interval [-1, 5]
in Figure 4-24.

In[813] := Clear[f]

f[x]:=1/;0=<x<1
flx.] :=-x/;-1<x<0
flx.] :=£f[x-2]/;x21

In[814] := graphf = Plot[£f[x], {x, -1, 5}]

The Fourier series coefficients are computed with the integral formulas

in equation (??). Executing the following commands defines p to be 1,

a[0] to be an approximation of the integral ay = % [ pp f)dx, aln] to

be an approximation of the integral a, = 117 ﬁ ’; f(x)cos ¥ dx, and b [n]
. . . _1(r s NAX
to be an approximation of the integral b, = |, S sin % dx.

In[815] := Clear[a, b, fs, p]
p=1;

NIntegrate[f[x], {x, -p, P}]

alo] = 2L

Out [815]= 0.75
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In[816] := a[n.] :=

NIntegrate[f[x] Cos [“P#] s {x, -p, p}]

L
b[n] :=
NIntegrate[f[x] Sin [“P#] s {x, -p, p}]
L

A table of the coefficients a [1] and b [i] fori=1,2,3,..., 10is gener-
ated with Table and named coeffs. Several error messages are gen-
erated because of the discontinuities but the resulting approximations
are satisfactory for our purposes. The elements in the first column of
the table represent the a;’s and the second column represents the b;’s.
Notice how the elements of the table are extracted using double brack-
ets with coeffs.

In[817] := coeffs = Table[{a[i],b[i]}, {i,1,10}];

NIntegrate :: ncvb :
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections inxnearx = -1..

NIntegrate :: ncvb :
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in xnearx = -1..

NIntegrate :: ncvb :
NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections inxnearx = -1..

General :: stop : Further output of NIntegrate :: ncvb
will be suppressed during this calculation.

NIntegrate :: ploss :

Numerical integration stopping due to loss of
precision. Achieved neither the requested
PrecisionGoal nor AccuracyGoal; suspect one of
the following : highly oscillatory integrand
or the true value of the integral is 0. If
your integrand is oscillatory try using the
option Method- > 0Oscillatory in NIntegrate.
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In[818] := TableForm[coeffs]
-0.202642 0.31831
-3.42608x 10 ' 0.159155
-0.0225158 0.106103
-4.51028x 107 0.0795775
-0.00810569 0.063662

out [618] = -5.0307x10*" 0.0530516
-0.00413556 0.0454728
-1.18178x107*® 0.0397887
-0.00250176 0.0353678
-1.47451 %10 0.031831

The first element of the list is extracted with coeffs [ [1]].

In[819] := coeffs[[1l]]
Out [819]= {-0.202642, 0.31831}

The first element of the second element of coeffs and the second ele-
ment of the third element of coef fs are extracted with coeffs[[2,1]]
and coeffs[[3,2]1], respectively.

In[820] := coeffs[[2,1]]
Out [820]= -3.42608x107%

In[821] := coeffs[[3, 2]]
Out [821]= 0.106103

After the coefficients are calculated, the nth partial sum of the Fourier
series is obtained with Sum. The kth term of the Fourier series, a; cos (kmx)+
by sin (knx), is defined in £s. Hence, the nth partial sum of the series is
given by

ap + Z [ay cos (kmx) + by sin (knx)] = a[0] + Z fs[k, x|,
k=1 k=1

which is defined in fourier using Sum. We illustrate the use of fourier
by finding fourier[2,x] and fourier [3,x].

In[822] := fs[k_,x.] :=coeffs[[k, 1]] Cos[knx]+

coeffs[[k, 2]] Sin[k mx]

Tn[823] := fourier[n_, x.] :=a[0] +Zfs[k,x]

k=1
In[824] := fourier[2, x]

Out [824]= 0.75-0.202642 Cos [nx] -3.42608 x 1077 Cos[2x]+
0.31831 Sin[nx] +0.159155 Sin[2 nx]
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Figure 4-25 The first few terms of a Fourier series for a periodic function plotted with the
function

In[825] : = fourier([3, x]

Out [825]= 0.75-0.202642 Cos[nx] -3.42608x10 ' Cos[2mx]-
0.0225158 Cos[37rx] +0.31831 Sin[rx]+
0.159155 Sin[27x] +0.106103 Sin[3 7 x]

To see how the Fourier series approximates the periodic function, we
plot the function simultaneously with the Fourier approximation for
n = 2 and n = 5. The results are displayed together using
GraphicsArray in Figure 4-25.

In[826] := graphtwo = Plot[fourier[2, x], {x, -1, 5},
PlotStyle -» GrayLevel[0.4],
DisplayFunction -» Identity]:;

bothtwo = Show[graphtwo, graphf];
In[827] := graphfive = Plot[fourier[5, x], {x, -1, 5},

PlotStyle -» GrayLevel[0.4],
DisplayFunction -» Identity];

bothfive = Show[graphfive, graphf];

- Show|[GraphicsArray|[ {bothtwo, bothfive}]]
Application: The One-Dimensional Heat Equation

A typical problem in applied mathematics that involves the use of Fourier series
is that of the one-dimensional heat equation. The boundary value problem that
describes the temperature in a uniform rod with insulated surface is

0? 0
a—);t:a—?,0<x<a,t>0,
u(©0,0) =Ty, t >0, (4.5)

w(a, t) =T, t >0, and
ux,0) = f(x), 0<x<a.
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In this case, the rod has “fixed end temperatures” at x = 0 and x = a. f(x) is the
initial temperature distribution. The solution to the problem is

1 [oe]
u(e 1) = Ty + ~ (T, = To)x+ ) bysin(A,x) e ™4, (4.6)
—d— n=1
v(x)

where 5
A, = nn/a and b, = — f (f(x) = v(x)) sin e dx,
a Jo a

and is obtained through separation of variables techniques. The coefficient b, in
the solution equation (4.6) is the Fourier series coefficient b, of the function f(x) —
v(x), where v(x) is the steady-state temperature.

2
ngzzgl;,0<x<l,t>0,
X
EXAMPLE 4.4.4: Solve M(O, l) - 10’ I/t(l, l) — 10’ t> 0,

u(x, 0) = 10 + 20 sin® 7x.

SOLUTION: In this case, a = 1 and k = 1. The fixed end temperatures
are Ty = T, = 10, and the initial heat distribution is f(x) = 10 + 20 sin® 7x.
The steady-state temperature is v(x) = 10. The function f(x) is defined
and plotted in Figure 4-26. Also, the steady-state temperature, v(x), and
the eigenvalue are defined. Finally, Integrate is used to define a func-
tion that will be used to calculate the coefficients of the solution.

In[828] := Clear[f]
f[x_] :=10+208in[nx]?

Plot[£f[x], {x, 0,1}, PlotRange -» {0, 30}]

In[829] := v[x.] :=10
Aln-] Lo 27
nlj := 2

4 . nrx
b[n.] :=b[n] =J (£0x] -v(x]) sin [~ =]ax
0

Notice that b [n] is defined using the form b [n_] :=b[n] =. .. so that
Mathematica “remembers” the values of b[n] computed and thus
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Figure 4-26 Graph of f(x) = 10 + 20 sin® mx

avoids recomputing previously computed values. In the following ta-
ble, we compute exact and approximate values of b [1], ..., b [10].

In[830] := Table[{n, b[n],b[n]//N}, {n, 1,10}1//

TableForm
5120
1 25.869
63 71
2 0 0.
1024
3 9.87725
3377
4 0 0.
1024 8.35767
Out [830] = > 39 71 -35
6 0 0.
1024
7 15.5214
21 5t
8 0 0.
5120
- -10.6519
153 71
10 0

Let S,, = b,, sin (A,,,x) et Then, the desired solution, u(x, t), is given by

u(x, t) = v(x) + Z Sin-

m=1

Let u(x, t,n) = v(x) + Y _; Swm. Notice that u(x,,n) = u(x,t,n — 1) + S,.
Consequently, approximations of the solution to the heat equation are
obtained recursively taking advantage of Mathematica’s ability to com-
pute recursively. The solution is first defined for n = 1 by u[x, t, 1].
Subsequent partial sums, u [x, t,n], are obtained by adding the nth
term of the series, S, tou [x,t,n-1].
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In[831] := u[x_,t_,1] :=
v[x] +b[1] Sin[A[1] x] Exp [ - A[1]% t]

ulx_,t_,n.] :=
u[x,t,n-1] +b[n] Sin[A[n] x]
Exp [ -[n]? t]

By defining the solution in this manner a table can be created that in-
cludes the partial sums of the solution. In the following table, we com-
pute the first, fourth, and seventh partial sums of the solution to the
problem.

In[832] := Table[u[x, t,n], {n,1,7,3}]

e o
5120 e 15 Sin [ZX]
out [832]= {10+ - ,
JT

n2 . 2 .
5120 e % Sin [Z%] 1024 e i Sin[22%]
10 + + ,

63 71 337t

2 2
5120 e % Sin[ZX] 1024 e "% Sin [22%]
10 + + +

63 71 337t

1024 ¢ 5" sin [322] 1024 e " sin [122] |
+

397 21t

To generate graphics that can be animated, we use a Do loop. The 10th
partial sum of the solution is plotted for# = 0 tot = 1 using a step-size in
t of 1/24. Remember that u[x, t, n] is determined with a Table com-
mand so Evaluate must be used in the Do command so that
Mathematica first computes the solution u and then evaluates u at the
particular values of x. Otherwise, u is recalculated for each value of x.
The plots of the solution obtained can be animated as indicated in the
following screen shot.

In[833]:= Do[Plot[Evaluate[u[x, t,10]1]1, {x,0,1},

PlotR 0,60 €,0,1, =
otRange » {0, 60}1, {t, 0,1, ——}]

Alternatively, we may generate several graphics and display the result-
ing set of graphics as a GraphicsArray. We plot the 10th partial sum
of the solution for r = 0 to r = 1 using a step-size of 1/15. The resulting
16 graphs are named graphs which are then partitioned into four ele-
ment subsets with Partition and named toshow. We then use Show
and GraphicsArray to display toshow in Figure 4-27.



302 Chapter 4 Introduction to Lists and Tables

®06e Chap4d.nb =
T P et [ o [T |- o S I EE L P PRI LT IS S
[ -
k]
1024e” 18 Sin[21Z%] J
—}
21l |
Du[Plut[EvaluatE[u[x, t, 10]]. {x. 0, 1}, 1
1
PlotRange - (0. 60}], {t. 0, 1, K]]
&0
S0
40
30
20
10
0.2 0.4 0.6 0.8 1 il
graphs = |
Table[l'lot[!valuate[u[:. t. 101].
{x. 0, 1}, Ticks - Hone, \
PlotRange — {0, 60}, A
DisplayFunction —» Identity]. v

100% M & Jale

-

Figure 4-27 Temperature distribution in a uniform rod with insulated surface
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In[834] := graphs =
Table[Plot[Evaluate[u[x, t, 1011,
{x, 0,1}, Ticks -» None,
PlotRange -» {0, 60},
DisplayFunction -» Identity],

1
{tl ol 11 E}] 7
toshow = Partition[graphs, 4];

Show[GraphicsArray[toshow] ]

Fourier series and generalized Fourier series arise in too many applications to list.
Examples using them illustrate Mathematica’s power to manipulate lists, symbol-
ics, and graphics.

Application: The Wave Equation on a Circular Plate
The vibrations of a circular plate satisfy the equation
Pw(r, 6,1) 3

DV w(r, 6,1) + phT =q(r,0,1), 4.7)

where v*w = v2v2w and v? is the Laplacian in polar coordinates, which is defined
by
vz:lﬁ(,ﬁ)+l‘ﬁ _ 1o 18
ror\ or)] 12062 o0rr ror r2og*
Assuming no forcing so that g(r, 6,1) = 0 and w(r, 6, 1) = W(r, )", equation (4.7)
can be written as

VW, 0 -BW(r,0) =0, B = w’ph/D. (4.8)

For a clamped plate, the boundary conditions are W(a, ) = 0W(a, 6)/0r = 0 and
after much work (see [10]) the normal modes are found to be

I (ﬁnma) cos nfl

In equation (4.9), Bum = Awn/a where A,,, is the mth solution of

Wonr, 6) = |7 Bt = 2B (ﬁnmr)](sm”e). (4.9)

In(x)-ln/(x) - Jn(x)In/(x) =0, (410)

where J,,(x) is the Bessel function of the first kind of order n and I, (x) is the modified
Bessel function of the first kind of order n, related to J,(x) by i"I,(x) = J,(ix).

303

For a classic approach to the
subject see Graff’s Wave
Motion in Elastic Solids, [10].

See Example 4.2.4.
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Figure 4-28 Plot of I,(x)J,'(x) — J,(x)I,’(x) for n = 0 and 1 in the first row; n = 2 and 3 in the
second row

The Mathematica command Bessell [n, x] returns I,(x).

EXAMPLE 4.4.5: Graph the first few normal modes of the clamped cir-
cular plate.

SOLUTION: We must determine the value of A,,, for several values of
n and m so we begin by defining eqn [n] [x] to be I,(x)J,, (x) = J,(x)I," (x).
The mth solution of equation (4.10) corresponds to the mth zero of the
graph of egn [n] [x] so we graph eqn[n] [x] forn = 0, 1, 2, and 3
with Plot in Figure 4-28.

In[835] := egqn[n_.] [x.] := BesselI[n, x]D[BesselJd[n, x], x]
- Besseld[n, x]D[BesselI[n, x], x]

The result of the Table and Plot command is a list of length four

In[836] := pl = Table[Plot[egn[n] [x], {x, 0, 25},
PlotRange -» {-10, 10},
DisplayFunction -» Identity], {n, 0, 3}]
Out [836]= {-Graphics-, -Graphics-, -Graphics-, -Graphics-}

so we use Partition to create a 2 x 2 array of graphics which is dis-
played using Show and GraphicsArray.

In[837] := p2 = Show[GraphicsArray[Partition[pl, 2]]]
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To determine A,,, we use FindRoot. Recall that to use FindRoot to
solve an equation an initial approximation of the solution must be given.
For example,

In[838] := lambda0l = FindRoot[eqn[0] [x] == 0, {x, 3.04}]
Out [838]= {x—3.19622}

approximates A, the first solution of equation (4.10) if n = 0. However,
the result of FindRoot is a list. The specific value of the solution is the
second part of the first part of the list, lambda01, extracted from the
list with Part ([[...]11]).

In[839] := lambdaO0l1l[[1, 2]]
Out [839]= 3.19622

Thus, We use the graphs in
Figure 4-28 to obtain initial
In[840] := A0s = Map[FindRoot[egn[0] [x] ==0, {x, #}]1[[1, 2]]&, approximations of each
{3.04,6.2,9.36,12.5,15.7}] solution.

out [840]= {3.19622,6.30644, 9.4395,12.5771, 15.7164}

approximates the first five solutions of equation (4.10) if n = 0 and then
returns the specific value of each solution. We use the same steps to
approximate the first five solutions of equation (4.10) if n = 1, 2, and 3.

In[841] := Als = Map[FindRoot[eqgn[1l] [x] ==0, {x, #}]1[[1, 2]]&,
{4.59,7.75,10.9,14.1,17.2}]

Out [841]= {4.6109, 7.79927,10.9581, 14.1086, 17.2557}

In[842] := A2s = Map[FindRoot[egn[2] [x] == 0, {x, #}]1[[1, 2]]&,
{5.78,9.19,12.4,15.5,18.7}]

Out [842]= {5.90568, 9.19688, 12.4022, 15.5795, 18.744}

In[843] := A3s = Map[FindRoot[egn[3] [x] == 0, {x, #}]1[[1, 2]]&,
{7.14,10.5,13.8,17,20.2}]

out [843]= {7.14353,10.5367,13.7951, 17.0053, 20.1923}
All four lists are combined together in As.

In[844] := As = {A0s, Als, A2s, A3s}

Out [844]= {{3.19622,6.30644, 9.4395,12.5771,15.7164},
{4.6109, 7.79927,10.9581, 14.1086, 17.2557},
{5.90568, 9.19688, 12.4022, 15.5795, 18.744},
{7.14353,10.5367,13.7951, 17.0053,20.1923}}

Forn=0,1,2,and3and m = 1, 2, 3, 4, and 5, A, is the mth part of the
(n + Dst part of As.

Observe that the value of a does not affect the shape of the graphs of
the normal modes so we use a = 1 and then define 3,,,,.
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Figure 4-29 The sine part of Ws4(r, 6)

In[845]:= a=1;
In([846]:= B[n_,m.] :=As[[n+1,m]]/a
ws is defined to be the sine part of equation (4.9)

In[847] := ws[n_,m.][r, 0] :=
(Besseld[n, B[n, m] r]
-BesselJd[n, B[n, m] a] /BesselI[n, B[n, m] a]
BesselI[n, B[n,m] r]) Sin[n o]

and wc to be the cosine part.

In[848] := we[n_,m.][r, 0] :=
- (BesselJd[n, B[n, m] r]
BesselJd[n, B[n, m] a] /BesselI[n, B[n,m] a]
BesselI[n, f[n,m] r]) Cos[n@O]

We use ParametricPlot3D to plot ws and wc. For example,

In[849] := ParametricPlot3D[{r Cos[6O],
r Sin[6], ws[3, 4]
[r,©6]1}, {r, 0,1}, {6, -7t, 7}, PlotPoints » 60]

graphs the sine part of Ws4(r, 6) shown in Figure 4-29. We use Table to-
gether with ParametricPlot3D followed by Show and GraphicsArray
to graph the sine part of W,,,(r,6) forn =0, 1,2, and 3 and m = 1, 2, 3,
and 4 shown in Figure 4.30.
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See references like Barnsley’s
Fractals Everywhere [4] or
Devaney and Keen’s Chaos
and Fractals [6] for detailed
discussions regarding many of
the topics briefly described in
this section.

fo(x) = 2 + c is the special
case of p = 2 for

Spe) =xP +c.
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In[850] := ms = Table[ParametricPlot3D[{r Cos[6],
r Sin[6], ws[n, m] [r, 6]}, {r, 0,1}, {6, -7, 7},
DisplayFunction -» Identity, PlotPoints - 30,
BoxRatios -» {1,1,1}], {n, 0,3}, {m, 1, 4}]
Out [850] = {{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-},
{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-},
{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-},
{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-}}

In[851] := Show[GraphicsArray[ms]]

Identical steps are followed to graph the cosine part shown in Fig-
ure 4-31.

In[852] := mc = Table[ParametricPlot3D[{r Cos[6], r Sin[6],
wc[n,m] [r, 6]}, {r, 0,1}, {6, -7, 7},
DisplayFunction -» Identity, PlotPoints —»
30, BoxRatios -» {1,1,1}], {n, 0,3}, {m,1,4}]

Out [852] = {{-Graphics3D-, -Graphics3D-, -Graphics3D-,

-Graphics3D-},
{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-},
{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-},
{-Graphics3D-, -Graphics3D-, -Graphics3D-,
-Graphics3D-}}

In[853] := Show[GraphicsArray[mc]]

4.4.3 The Mandelbrot Set and Julia Sets

In Examples 4.1.7, 4.2.5, and 4.2.7 we illustrated several techniques for plotting
bifurcation diagrams and Julia sets.

Let f.(x) = x> + c. In Example 4.2.5, we generated the c-values when plotting
the bifurcation diagram of f,. Depending upon how you think, some approaches
may be easier to understand than others. With the exception of very serious calcu-
lations, the differences in the time needed to carry out the computations may be
minimal so we encourage you to follow the approach that you understand. Learn
new techniques as needed.
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Figure 4-31 The cosine part of W,,(r,0): n = Oinrow 1, n = 1 in row 2, n = 2 in row 3, and n

(m =1 to 4 from left to right in each row)
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Compare the approach here

with the approach used in EXAMPLE 4.4.6 (Dynamical Systems): For example, entering
Example 4.2.5.

In[854] := Clear[£f, c]
fle][x.] :=x"2+c¢c//N;
defines f.(x) = x> + ¢ so

In[855] := Nest[£f[-1], x, 3]
out [855]= -1.+ (-1.+ (-1. +x2)2)2

computes f_;°(x) and

In[856] := Table[Nest[£f[1/4],0,n], {n, 101, 200}]
Out [856]= {0.490693, 0.490779, 0.490864, 0.490948, 0.49103,

0.49111, 0.491189, 0.491267, 0.491343, 0.491418,
0.491492, 0.491564, 0.491635, 0.491705, 0.491774,
0.491842, 0.491908, 0.491974, 0.492038, 0.492101,
0.492164, 0.492225, 0.492286, 0.492345, 0.492404,
0.492461, 0.492518, 0.492574, 0.492629, 0.492684,
0.492737,0.49279, 0.492842, 0.492893, 0.492944,
0.492994, 0.493043, 0.493091, 0.493139, 0.493186,
0.493232,0.493278, 0.493323, 0.493368, 0.493412,
0.493455, 0.493498, 0.49354, 0.493582, 0.493623,
0.493664, 0.493704, 0.493744,0.493783, 0.493821,
0.49386, 0.493897, 0.493935, 0.493971, 0.494008,
0.494044, 0.494079, 0.494114, 0.494149, 0.494183,
0.494217, 0.49425, 0.494283, 0.494316, 0.494348,
0.49438,0.494412, 0.494443, 0.494474, 0.494505,
0.494535, 0.494565, 0.494594, 0.494623, 0.494652,
0.494681, 0.494709, 0.494737, 0.494765, 0.494792,
0.494819, 0.494846, 0.494873, 0.494899, 0.494925,
0.494951, 0.494976, 0.495002, 0.495027, 0.495051,
0.495076, 0.4951, 0.495124, 0.495148, 0.495171}

returns a list of f1,4"(0) for n = 101, 102, ..., 200. Thus,

In[857] := lgtable = Table[{c, Nest[£f[c], 0, n]},
{c,-2,1/4,9/(4%299)}, {n,101,200}];

In[858] := Length[lgtable]

returns a list of lists of f."(0) for n = 101, 102, ..., 200 for 300 equally
spaced values of ¢ between —2 and 1. The list Igtable is converted to a
list of points with Flatten and plotted with ListPlot. See
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Figure 4-32 Another bifurcation diagram for f,

Figure 4-32 and compare this result to the result obtained in
Example 4.2.5.

In[859]:

toplot = Flatten[lgtable, 1];

In[860] := ListPlot[toplot]

For a given complex number c the Julia set, J., of f.(x) = x% + ¢ is the set of complex
numbers, z = a + bi, a, b real, for which the sequence z, f.(z) = 2+ f(f(2) =

2
(z2 + c) +¢ ..., f"(),...,does not tend to co as n - oo: We use the notation f"(x) to
represent the composition
2 ofo...0
ch{zeClz, Z+c(Z+0) +C,~--—/—>oo}. Foforo N

Using a dynamical system, setting z = zp and computing z,+1 = f. (z,) for large n
can help us determine if z is an element of J. In terms of a composition, computing
f¢"(z) for large n can help us determine if z is an element of J...

As before, all error messages
EXAMPLE 4.4.7 (Julia Sets): Plot the Julia set of f.(x) = x> + cif ¢ = have been deleted.
—-0.122561 + 0.744862i.

SOLUTION: After defining f.(x) = x* + ¢, we use Table together with You do not need to redefine
Nest to compute ordered triples of the form (x,y, f-o.122561+0.744862i" Jelx) if you have already

(x + iy)) for 150 equally spaced values of x between —3/2 and 3/2 and defined i¢ during your

150 equally spaced values of y between —3/2 and 3/2.

current Mathematica session.

In[861] := Clear[£f, c]

flcl[x.] :=x"2+c¢c//N;
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Figure 4-33 Filled Julia set for f.

gl = Table[{x, y, Nest[ £[-0.122561 + 0.744862 1], x+ 1y, 200]},
(x,-3/2,3/2,3/149}, {y., -3/2,3/2,3/149}];

g2 = Flatten[gl, 1];
We remove those elements of g2 for which the third coordinate is Overflow[]
with Select,

In[862] := g3 = Select[g2, Not[#[[3]] === Overflow[]]&];
extract a list of the first two coordinates, (x, y), from the elements of g3,
In[863] := g4 =Map[{#[[1]11, #[[2]]1}&,g31];
and plot the resulting list of points in Figure 4-33 using ListPlot.

In[864] := 1lpl = ListPlot[g4, PlotRange » {{-3/2, 3/2},
{-3/2,3/2}}, AxesLabel -» {"x",
AspectRatio » Automatic]

We can invert the image as well with the following commands. In the
end result, we show the Julia set and its inverted image in Figure 4-34

In[865] := g3b = Select[g2, #[[3]] === Overflow[]&];

In[866] := g4b =Map[{#[[1]1], #[[2]]1}&, g3b];
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Figure 4-34 Filled Julia set for f. on the left; the inverted set on the right

In[867] := 1lp2 = ListPlot[g4b,
PlotRange -» {{-3/2, 3/2}, {-3/2,3/2}},
AxesLabel » {"x", "y"}, AspectRatio » Automatic,
DisplayFunction -» Identity];

j1 = Show[GraphicsArray|[ {1pl, 1p2}]]

Of course, one can consider functions other than f.(x) = x* + ¢ as well as rearrange
the order in which we carry out the computations.

EXAMPLE 4.4.8 (Julia Sets): Plot the Julia set for f(z) = .36¢%.

SOLUTION: For this example, we begin by forming our complex grid
first in complexpts using Table followed by Flatten. The result is
a list of numbers of the form a + bi for 200 equally spaced values of a
between 0 and 5 and 200 equally spaced values of b between —2.5 and
2.5.

In[868] := complexpts = Flatten[Table[a+b1I,
{a,0.,5.,5/199}, {b, -2.5,2.5,5/199}], 1];

After defining f(z), we define h(c). Given c, h(c) returns the ordered
triple (Re(c), Im(c), f*®(c)).

In[869] := Clear[£f]

f[z_.] =0.36 Exp[z]
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As in Examples 4.1.7, 4.2.5,
and 4.2.7 Mathematica
displays several
Ooverflow(] and
Underflow[] error
messages that we are able to
ignore. They are not shown
here for length
considerations.
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Out [869]= 0.36 e*
In[870] := h[c.] := {Re[c], Im[c], Nest[£, c, 200]}

We then apply & to complexpts with Map. We use Chop to replace
numbers very close to 0 with 0.

In[871] := tl =Map[h, complexpts]//Chop;

We then use Select to extract those elements of t1 for which the third
coordinate is not indeterminate (that is, not complex ) in t2 and those
elements for which the third coordinate is indeterminate in t2b.

In[872] :

t2 = Select[tl, Not[#[[3]] === Indeterminate] &];

In[873]:

t2b = Select[tl, #[[3]] === Indeterminate&];

Applying pt to t2 and t2b results in two lists of ordered pairs that are
plotted with ListPlot and shown side-by-side using Show together
with GraphicsArray in Figure 4-35.

In[874] := ptl{x_,y-,2.}] := {x, ¥y}
In[875] := t3 =Map[pt, t2];
t3b = Map[pt, t2b];
In[876] := 1pl = ListPlot[t3, PlotRange -» {{0, 5}, {-2.5,2.5}},
AspectRatio -» Automatic,
DisplayFunction -» Identity];
1p2 = ListPlot[t3b, PlotRange » {{0, 5}, {-2.5,2.5}},
AspectRatio -» Automatic,
DisplayFunction -» Identity];
Show[GraphicsArray[{1lpl, 1p2}]]
|

You have even greater control over your graphics if you use graphics primitives
like Point.

As before, all error n

53

have been deleted.

EXAMPLE 4.4.9 (Julia Sets): Plot the Julia set for f.(z) = 22 — czif ¢ =
0.737369 + 0.67549i.
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Figure 4-35 Two different views of the Julia set of f(z) = .36¢%: on the left, the black points
(a, b) are the points for which f?®(a + bi) is finite; on the right, the black points (a, b) are the
ones for which 2% (a + bi) is not finite

SOLUTION: We proceed as in Example 4.4.7.
In[877] := Clear[£, c]

flc.][z.] :=2"2-cz//N;

In[878] := gl = Table[{x,y, Nest[£[0.737369 +0.675491I],
x+Iy,200]}, {x,-1.2,1.75,2.95/199},
{y,-0.7,1.4,2.1/199}];

g2 = Flatten[gl, 1];
In[879] := g3 = Select[g2, Not[#[[3]] === Overflow[]]&];

After removing the points that result in an Overflow [] error message,
we code the remaining ones according to their distance from the origin.

In[880] :

hi{x.,y-,2.}] :={x,y,Min[Abs[z], 0.5]}
g4 = Map[h, g3];

In[881] := g5 = Table[{PointSize[0.005],
GrayLevel[g4([[i, 3]]1/0.5]1,
Point[{g4[[i,1]1],94[[i,2]1]1}1},
{i, 1, Length[g4]}]1;

The results are shown in Figure 4-36.

315
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’
’
’
’ _1,
’
’
’
’
_2,
.
.
’
’
’ _3,

Figure 4-36 The lightest points (a, b) are the ones for which | f0‘737369+0,67549,-20°(z)| is the

largest
In[882] := Show[Graphics[g5],
PlotRange » {{-1.2,1.75}, {-0.7,1.4}},
AspectRatio -» Automatic]
|

EXAMPLE 4.4.10 (The Ikeda Map): The Ikeda map is defined by
F(x,y) =(y+B(xcost—ysint), B(xsinT + ycos 1)), (4.11)

where 7 = p—a/(1 +x* +y?). If = .9, u = .4, and a = 4.0, plot the basins
of attraction for F if y = .92 and y = 1.0.

SOLUTION: The basins of attraction for F are the set of points (x, y) for
which [|[F"(x, y)|| - oo as n - oo.

After defining f[y][x, y] to be equation (4.11) and then 8 = .9, u = .4,
and @ = 4.0, we use Table followed by Flatten to define pts to be
the list of 40,000 ordered pairs (x, y) for 200 equally spaced values of x
between —2.3 and 1.3 and 200 equally spaced values of y between —2.8
and .8.
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Ely10{x,y}] :={y+B (xCos[u-a/(lL+x"2+y"2)]
-y Sin[pu-a/(1+x72+y72)1),B (x Sin[u
-a/(1+x"2+y"2)] +y Cos[u-a/(L+x"2+y"2)])}

In[883]:

In[884]:= B=0.9; u=0.4;a=4.;

pts = Flatten[Table[{x, y}, {x,-2.3,1.3,3.6/199},
{y,-2.8,0.8,3.6/199}1,11;

In[885] :

In 11, we use Map to compute (x, Yy, F 0,°%(x, y)) for each (x, y) in pts.
In pts2, we use the graphics primitive Point and shade the points
according to the maximum value of |[F?®(x, y)|| - those (x, y) for which
F2(x, y) is closest to the origin are darkest; the point (x, y) is shaded
lighter as the distance of F?(x, y) from the origin increases.

In[886]:= 11 =Map[{#[[1]], #[[2]1], Nest[£[0.92],
{#[[1]]1#[[2]]}/200]}&-1Pts]:’
In[887]:= gl{x-,y-,2z-}] :={x,y,8qrt[z[[1]1]"2+2[[2]]"2]};

12 =Map([g, 11];
In[888] := max1l2 = Table[12[[i,3]], {i, 1, Length[12]}]//Max

Out [888]= 4.33321

In[889] := pts2 = Table[{GrayLevel[l2[[i, 3]]/(max12)],
Point[{12[[i, 1]]1,12[[1i,2]11}]1},
{i, 1, Length[12]}];

In[890] := ikl = Show[Graphics[pts2], AspectRatio - 1]

For y = 1.0, we proceed in the same way.

In[891]:= 11 =Map[{#[[11], #[[2]],Nest[£[1.], {#[[1]1],
#[[2]11},200]1}&, pts];
In[892] := 12 =Map[g, 11];

In[893] := max1l2 = Table[12[[i,3]], {i, 1, Length[12]}]//Max
Out [893]= 4.48421

In[894] := pts2 = Table[{GrayLevel[12[[i, 3]]/max12],
Point[{12[[i,1]1]1,12[[4i,2]1}1},
{i, 1, Length[12]}];

In[895] := ik2 = Show[Graphics[pts2], AspectRatio —» 1]

In[896] := Show[GraphicsArray[{ikl, ik2}]]
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Figure 4-37 Basins of attraction for F if y = .92 (on the left) and y = 1.0 (on the right)

The Mandelbrot set, M, is the set of complex numbers, z = a+bi, a, b real, for which
the sequence z, £:(2) = 2 +2, f. (i) = (2 +2)° + ..., £"(), ..., does not tend to
oo as n — oo:
2 2 2
M = {ZECIZ, Z+z(2+2) +2 -”—/—>oo}.

Using a dynamical system, setting z = z9p and computing z,+1 = f;, (z.) for large n
can help us determine if z is an element of M. In terms of a composition, computing
f."(z) for large n can help us determine if z is an element of M.

As before, all error ir

have been deleted. EXAMPLE 4.4.11 (Mandelbrot Set): Plot the Mandelbrot set.

SOLUTION: We proceed as in Example 4.4.7 except that instead of it-
erating f,(z) for fixed ¢ we iterate f(z).

In[897] := Clear[£, c]
fle][x.] :=x"2+c¢c//N;

In[898] := gl =Table[{x,y,Nest[f[x+Iy],x+Iy,200]},
{x,-3/2,1,5/(2%149)}, {y, -1, 1,2/149}1;

g2 = Flatten[gl, 1];

In[899] := g3 = Select[g2, Not[#[[3]] === Overflow[]]&];

In[900] :

g4 =Map[{#[[1]1], #[[2]1]1}&, g3];
The following gives us the image on the left in Figure 4-38.

In[901] := 1pl = ListPlot[g4, PlotRange » {{-3/2, 1}, {-1, 1}},
Axes - None, AspectRatio -» Automatic,
PlotStyle » PointSize[0.005]]
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3 -6 -4 2 4 6

Figure 4-38 Two different views of the Mandelbrot set: on the left, the black points (a, b)
are the points for which ForniZ®(a + bi) is finite; on the right, the black points (a, b) are the
ones for which f£,.,,,>(a + bi) is not finite

To invert the image, we use the following to obtain the result on the
right in Figure 4-38.

In[902] := g3b = Select[g2, #[[3]] === Overflow[]&];
In[903] := g4b=Map[{#[[1]],#[[2]]}&, g3b];

In[904] := 1lp2 = ListPlot[g4b, PlotRange » {{-3/2, 1}, {-1, 1}},
Axes - None, AspectRatio -» Automatic,
PlotStyle » PointSize[0.005]]

In[905] := ml = Show[GraphicsArray[{1lpl, 1p2}]]

In Example 4.4.11, the Mandelbrot set is obtained (or more precisely, approxi-
mated) by repeatedly composing f.(z) for a grid of z-values and then deleting
those for which the values exceed machine precision. Those values greater than
$MaxNumber resultin an Overflow [] message; computations with Overflow []
result in an Indeterminate message.

We can generalize by considering exponents other than 2 by letting f,,. = x” +c.
The generalized Mandelbrot set, M, is the set of complex numbers, z = a + bi, a, b
real, for which the sequence z, f,.(z) = 2’ + 2, fp. ( fp,z(z)) =@+ +z,..., [,
..., does not tend to co as n - co:

Mpz{zeClz, z”+z(z”+z)p+z, —/—>c>o}
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Using a dynamical system, setting z = zp and computing z,.1 = f, (z,) for large n
can help us determine if z is an element of M,,. In terms of a composition, comput-
ing f,"(z) for large n can help us determine if 7 is an element of M,,.

As before, all error messag

have been omitted. EXAMPLE 4.4.12 (Generalized Mandelbrot Set): After defining f,. =
x’+c, we use Table, Abs, and Nest to compute a list of ordered triples
of the form (x, y, | fy.cxiy'®(x + iy)|) for p-values from 1.625 to 2.625 spaced
by equal values of 1/8 and 200 values of x (y) values equally spaced
between -2 and 2, resulting in 40,000 sample points of the form x + iy.

In[906] := Clear[£f, p]

flp-,c.]1[x.] :=x"p+c//N;

In[907] := gl = Table[{x,y, Abs[Nest[f[p, x+IYy],
x+Iy,10011}//N, {p,1.625,2.625,1/8},
{x,-2.,2.,4/199}, {y, -2.,2.,4/199}1;

In[908] := g2 =Map[Flatten[#, 1]&, gl];

Next, we extract those points for which the third coordinate is
Indeterminate with Select, ordered pairs of the first two coordi-
nates are obtained in g4. The resulting list of points is plotted with
ListPlot in Figure 4-39.

In[909] := g3 = Table[Select[g2[[i]],
Not[#[[3]] === Indeterminate]&],
{i, 1, Length[g2]}];

In[910]:= h[{x_,y-,2-}] :={x,v};

In[911] := g4 =Map[h, g3, {2}1;

In[912] := tl1l = Table[ListPlot[g4[[i]].,
PlotRange -» {{-2, 2}, {-2, 2}},
AspectRatio -» Automatic,

DisplayFunction -» Identity], {i,1, 9}]:
Show|[GraphicsArray[Partition[tl, 3]]]

More detail is observed if you use the graphics primitive Point as
shown in Figure 4-40. In this case, those points (x, y) for which | fp,xﬂ-yloo
(x+1iy)| is small are shaded according to a darker GrayLevel than those
points for which | fp,xﬂ-yloo(x + iy)| is large.

In[913] := h2[{x_,y., z.}] := {GrayLevel[Min[{z, 0.25}1],

Point[{x,¥y}]};
In[914] := g5 =Map[h2, g3, {2}]:
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51152

511.52 511.52

Figure 4-39 The generalized Mandelbrot set for 9 equally spaced values of p between 1.625
and 2.625

In[915] := tl1l = Table[Show[Graphics[g5[[i]]].,
PlotRange -» {{-2, 2}, {-2, 2}},
AspectRatio » Automatic,

DisplayFunction -» Identity], {i,1, 9}]1;
Show[GraphicsArray[Partition[tl, 3]]]

Throughout these examples, we have typically computed the iteration f"(z) for
“large” n like values of n between 100 and 200. To indicate why we have selected
those values of n, we revisit the Mandelbrot set plotted in Example 4.4.11.

321
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Figure4-40 The generalized Mandelbrot set for 9 equally spaced values of p between 1.625
and 2.625 —the points (x, y) for which | fp,“,-yloo(x + iy)| is large are shaded lighter than those
for which |f;, iy ®(x + iy)| is small

As before, all error ir

3

have been deleted. EXAMPLE 4.4.13 (Mandelbrot Set): We proceed in essentially the same
way as in the previous examples. After defining f,. = x” + ¢,

In[916] := Clear[f, p]
flp,cl[x] :=x"p+c//N;

we use Table followed by Map to create a nested list. For eachn = 5, 10,
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15, 25, 50, and 100, a nested list is formed for 200 equally spaced values
of y between —1 and 1 and then 200 equally spaced values of x between
—1.5 and 1. At the bottom level of each nested list, the elements are of

the form (x, v |f2,x+iyn(x + iy)|).

In[917] := gl =Map[Table[{x,y, Abs[Nest[f[2,x+IYy],
x+Iy,#11}//N, {x,-1.5,1.,5/(2%199)},
{y,-1.,1.,2/199}]1¢%&,
{5,10,15,25,50,100}];

For each value of n, the corresponding list of ordered triples
(% 3, |foxeiy"(x + iy)|) is obtained using Flatten.

In[918] := g2 =Map[Flatten[#, 1]&, gl];

We then remove those points for which the third coordinate,
| Frxsiy"(x +iy)|, is Overflow [] (corresponding to o),

In[919] := g3 = Table[Select[g2[[i]], Not[#[[3]] ===
Overflow[]]&], {i, 1, Length[g2]}];

extract (x, y) from the remaining ordered triples,
In[920] := h[{x_,y-,2.}] :={x,v}:
In[921] := g4 =Map[h, g3, {2}]:

and graph the resulting sets of points using ListPlot in Fig-
ure 4-41. As shown in Figure 4-41, we see that Mathematica’s numerical
precision (and consequently decent plots) are obtained when n = 50 or
n = 100.

In[922] := tl = Table[ListPlot[g4[[i]].,
PlotRange -» {{-3/2, 1}, {-1,1}},
AspectRatio » Automatic,
DisplayFunction -» Identity], {i,1,6}];

Show[GraphicsArray[Partition[tl, 3]]]

If instead, we use graphics primitives like Point and then shade
each point (x, y) according to ! foxsiy (X + iy)i detail emerges quickly as
shown in Figure 4-42.

In[923] := h2[{x_,y-, 2_.}] := {GrayLevel[Min[{z, 1}]],
Point[{x,y}]}:
In[924] := g5 =Map[h2, g3, {2}]:

323

Fundamentally, we generated
the previous plots by
exceeding Mathematica’s

numerical precision.
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Figure 4-41 Without shading the points, the effects of iteration are difficult to see until the
number of iterations is “large”

Figure 4-42 Using graphics primitives and shading, we see that we can use a relatively
small number of iterations to visualize the Mandelbrot set

In[925] := tl = Table[Show[Graphics[g5[[i]]].,
PlotRange -» {{-3/2,1}, {-1,1}}.,
AspectRatio » Automatic,
DisplayFunction -» Identity], {i,1,6}];

Show[GraphicsArray[Partition[tl, 3]]]
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Thus, Figures 4-41 and 4-42 indicate that for examples like the ones illustrated
here similar results could have been accomplished using far smaller values of n
than n = 100 or n = 200. With fast machines, the differences in the time needed
to perform the calculations is minimal; n = 100 and » = 200 appear to be a “safe”
large value of n for well-studied examples like these.

Not even 10 years ago calculations like these required the use of a supercom-
puter and sophisticated computer programming. Now, they are accessible to virtu-
ally anyone working on a relatively new machine with just a few lines of
Mathematica code. Quite amazing!
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Matrices and Vectors: Topics
from Linear Algebra and
Vector Calculus

Chapter 5 discusses operations on matrices and vectors, including topics from
linear algebra, linear programming, and vector calculus.

5.1 Nested Lists: Introduction to Matrices,
Vectors, and Matrix Operations

5.1.1 Defining Nested Lists, Matrices, and Vectors

In Mathematica, a matrix is a list of lists where each list represents a row of the
matrix. Therefore, the m x n matrix

is entered with

aA={{al1,a12, ...

a anp
az an
A=lazy axn

am1  dAm2

,aln}, {a21,a22, ..

as
ans
ass

am3

ain
ap
asp

Amn

.,az2n}, ..

.,{aml,am2,...amn}}.

327



328

As when using TableForm,
the result of using
MatrixForm is no longer
a list that can be manipulated
using Mathematica
commands. Use
MatrixForm to view a
matrix in traditional
row-and-column form. Do
not attempt to perform
matrix operations on a
MatrixForm object.

Chapter 5 Matrices and Vectors

aip  apn

For example, to use Mathematica to define m to be the matrix A = ( ) enter

a4z
the command

m={{all,al2}, {a21,a22}}.

The command m=Array [a, {2,2}] produces a result equivalent to this. Once
a matrix A has been entered, it can be viewed in the traditional row-and-column
form using the command MatrixForm[A]. You can quickly construct 2 x 2

matrices by clicking on the 183 button from the BasicTypesetting palette, which
is accessed by going to File under the Mathematica menu, followed by Palettes
and then BasicTypesetting.
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Alternatively, you can construct matrices of any dimension by going to the
Mathematica menu under Input and selecting Create Table/Matrix/Palette...
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The resulting pop-up window allows you to create tables, matrices, and palettes.
To create a matrix, select Matrix, enter the number of rows and columns of the
matrix, and select any other options. Pressing the OK button places the desired

Get Graphics Coordinates...

3D ViewPoint Selector... ORV
Color Selector...

Record Sound...

Get File Path...
Create Table/Matrix/Palette... O8C

Create Button >

Create Hyperlink...

Create Automatic Numbering Object...
Create Value Display Object...

Convert Automatic Objects to Literal
Copy Input from Above ;|L
Copy Output from Above ORL

matrix at the position of the cursor in the Mathematica notebook.

~ Create
8 Table (plain GridBox) Number of rows: |3
O Matrix
O Palette Number of columns: |3
Options
__| Draw lines between rows CIFill with: 0

] Draw lines between columns
| Draw frame

O
o/

_| Fill diagonal: |1

Cancel @

ap dpiz aps

EXAMPLE 5.1.1: Use Mathematica to define the matrices|a», a»n axn

and (

by
by,

bi»
b

b3
b3

asy  dszxp  ass

bis
by )
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SOLUTION: In this case, both Tablela;j, {i,1,3},{j,1,3}] and
Array [a, {3, 3}] produce equivalent results when we definematrixa
to be the matrix

The commands MatrixForm or TableForm are used to display the
results in traditional matrix form.

In[926] := Clear[a, b, matrixa, matrixb]
General :: spelll :
Possible spelling error : new symbol name \"
matrixb\" is similar to existing symbol \"
matrixa\".

In[927] := matrixa = Table[a;, j, {i,1,3}, {j,1,3}]
Out [927]= {{ai,1,a1,2, 31,3},

{@z2,1, 82,2, 82,3}, {@3,1, 83,2, 23,3} }

In[928] := MatrixForm[matrixa]

a1 ai,2 ai,s
Out [928]= |az,1 az,> az,3
dz, 1 as,2 as,s

In[929] := matrixa = Array[a, {3, 3}]

out [929]= {{a[l,1],all,2],all,3]},
{al2,1],al[2,2],al2,3]},
{a[3,1],a[3,2],a[3,3]}}

In[930] := MatrixForm[matrixa]

all, 1] all, 2] all, 3]
al2,1] af[2,2] al2,3]
al3,1] a3, 2] al3, 3]

Out [930]

We may also use Mathematica to define non-square matrices.

In[931] := matrixb = Array[b, {2, 4}]

out [931]= {{b[1,1],b[1,2],b[1,3],b[1,4]},
{b[2,1],b[2,2],b[2,3],b[2,4]}}

In[932] := MatrixForm[matrixb]
b[1,1] Db[1l,2] Db[1, 3]

out [932] = (b[2,1] b[2,2] b[2,3]

Equivalent results would have been obtained by entering
Table[bi,j) {1r 1! 2}’ {J; 1» 4}]
|
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More generally the commands Table[f[i,j],{i,imax},{j,jmax}] and
Array [f, {imax, jmax}] yield nested lists corresponding to the imax X jmax
matrix

£, 1) f(1,2) (1, jmax)
f (2_, 1) S (2, 2) f2 jmaX)
f(im.ax, 1) f(im'ax, 2) f(imax', jmax)

Table [f[i,3],{i,imin, imax, istep}, {j,jmin, jmax, jstep}] returns
the list of lists

{{flimin, jmin], £ [imin, jmin+jstepl, ..., f[imin, jmax]},
{f[imin+istep,jmin], ..., f[imin+istep, jmax] },
., {f[imax, jminl, ..., £ [imax, jmax] }}

and the command

Table[f[i,5,k,...],{i,imin, imax,istep}, {j,jmin, jmax, jstep},
{k,kmin, kmax, kstep}, ...]

calculates a nested list; the list associated with i is outermost. If i step is omitted,
the stepsize is one.

EXAMPLE 5.1.2: Define C to be the 3 x 4 matrix (c,-j), where ¢;;, the
entry in the ith row and jth column of C, is the numerical value of
cos (j2 — %) sin (2 = j2).

SOLUTION: After clearing all prior definitions of ¢, if any, we define
c[i,3] to be the numerical value of cos(j* - i)sin (i’ - j*) and then
use Array to compute the 3 x 4 matrix matrixc.

In[933] := Clear[c, matrixc]

cli_, j-] =N[cCos [3®-i®] sin [i® - §7]]
General :: spell :
Possible spelling error : new symbol name \"
matrixc\" is similar to existing symbols
{matrixa, matrixb} .
out [933]= Cos[i?®-1.3?%] Sin[i*-1. 3?]

In[934] := matrixc = Array|[c, {3, 4}]

Out [934]= {{0.,0.139708, 0.143952, 0.494016},
{-0.139708, 0., 0.272011, 0.452789},
{-0.143952, -0.272011, 0., -0.495304}}
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In[935] := MatrixForm[matrixc]
0. 0.139708 0.143952 0.494016
Out [935] = -0.139708 0. 0.272011 0.452789
-0.143952 -0.272011 0. -0.495304

1 0 O
EXAMPLE 5.1.3: Define the matrixI;=|0 1 0}
0O 0 1

SOLUTION: The matrix I3 is the 3 x 3 identity matrix. Generally, the
n X n matrix with 1’s on the diagonal and 0’s elsewhere is the n x n
identity matrix. The command IdentityMatrix[n] returnsthenxn
identity matrix.

In[936] := IdentityMatrix[3]
OUt[936]= {{l, O/ O}, {O/ l/ O}, {O/ O/ l}}

The same result is obtained by going to Input under the Mathematica
menu and selecting Create Table/Matrix/Palette... We then check
Matrix, Fill with: 0 and Fill diagonal: 1.

Create

: Table (plain GridBox) Number of rows: |2

® Matrix

O Palette Number of columns: |3
Options

| Draw lines between rows ™ Fill with: 0

[ Draw lines between columns
) Draw frame # Fill diagonal: 1

<)

Pressing the OK button inserts the 3 x 3 identity matrix at the location
of the cursor.

1 0 0
In[937] := (o 1 o)
0o 0 1
out [937]= {{1,0,0},{0,1,0},{0,0,1}}
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In Mathematica, a vector is a list of numbers and, thus, is entered in the same man-

ner as lists. For example, to use Mathematica to define the row vector vectorv

to be (v, Vo V3) enter vectorv={vl,v2,v3}. Similarly, to define the column
Vi

vector vectorv to be |, | enter vectorv={v1l,v2,v3} or vectorv={{vl},

{v2}, {v3}}.

o
For a 2 x 1 vector, you can use the button on the Basic Typesetting palette.
Generally, with Mathematica you do not need to distinguish between row and
column vectors: Mathematica performs computations with vectors and matrices
correctly as long as the computations are well-defined.

V3

—4
EXAMPLE 5.1.4: Define the vector w = | -5 |, vectorv to be the vector
2
(i w2 v3 w)and zerovec tobethevector(0 0 0 0 0)

SOLUTION: To define w, we enter

In[938] := w= {-4,-5,2}
Out [938]= {-4,-5,2}

or

In[939] := w= {{-4}, {-5}, {2}};
MatrixForm[w]

—4
out [939] = (75)
2

To define vectorv, we use Array.

In[940] := vectorv = Array|[v, 4]
Out [940]= {v[1],v[2],Vv[3],VvI[4]}
Equivalent results would have been obtained by entering

Table[v, {i, 1, 4}]. To define zerovec, we use Table.

In[941] := zerovec = Table[0, {5}]
Out [941]= {0,0,0,0,0}

The same result is obtained by going to Input under the Mathematica
menu and selecting Create Table/Matrix/Palette...
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between row and column
vectors. Provided that
computations are
well-defined, Mathematica
carries them out correctly.
Mathematica warns of any
ambiguities when they
(rarely) occur.
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In[942]:= (0 0 0 0 0)
Out [942]= {{0,0,0,0,0}}

5.1.2 Extracting Elements of Matrices

For the 2 x 2 matrix m = {{ay 1, a1 2}, {az 1, a2 }} defined earlier, m[[1]] yields the
first element of matrix m which is the list {a; ;, a; 5} or the first row of m;; m[ [2, 1] ]
yields the first element of the second element of matrix m which is a, ;. In general,
if misanix jmatrix, m[[1,j]] or Part [m, i, j] returns the unique element in
the ith row and jth column of m. More specifically, m[ [i,3]] yields the jth part
of the ith part of m; 1ist [[i]] or Part [1list,i] yields the ith part of 1ist;
list[[i,j]] orPart[list,i,J] yields the jth part of the ith part of list, and

SO on.
10 -6 -9
EXAMPLE 5.1.5: Define mb to be the matrix 6 -5 -7
-10 9 12

(a) Extract the third row of mb. (b) Extract the element in the first row
and third column of mb. (c) Display mb in traditional matrix form.

SOLUTION: Webegin by definingmb. mb [ [1, 1] yields the (unique)
number in the ith row and jth column of mb. Observe how various
components of mb (rows and elements) can be extracted and how mb
is placed in MatrixForm.

In[943]:

mb = {{10, -6, -9}, {6, -5, -7},
{-10,9,12}};

In[944] := MatrixForm[mb]
10 -6 -9
( 6 -5 —7)

-10 9 12

Out [944]
In[945] := mb[[3]]
Out [945]= {-10, 9,12}

In[946] := mb[[1, 3]]
out [946]= -9
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If m is a matrix, the ith row of m is extracted with m[[i]]. The command
Transpose [m] yields the transpose of the matrix m, the matrix obtained by
interchanging the rows and columns of m. We extract columns of m by computing
Transpose [m] and then using Part to extract rows from the transpose. Namely,
if m is a matrix, Transpose [m] [ [1]] extracts the ith row from the transpose of
m which is the same as the ith column of m.

EXAMPLE 5.1.6: Extract the second and third columns from A if A =

0o -2 2
-1 1 -3
2 -4 1

SOLUTION: We first define matrixa and then use Transpose to
compute the transpose of matrixa, naming the result ta, and then
displaying ta in MatrixForm.

In[947] := matrixa = {{0, -2, 2}, {-1,1, -3},
{2,-4,1}};

In[948] := ta = Transpose[matrixa];

MatrixForm[ta]

0 -1 2
Out [948] = (—2 1 —4)
2 -3 1

Next, we extract the second column of matrixa using Transpose
together with Part ([[...]]). Because we have already defined ta
to be the transpose of matrixa, entering ta[[2]] would produce
the same result.

In[949] := Transpose[matrixa] [[2]]

out [949]= {-2,1, -4}

To extract the third column, we take advantage of the fact that we have
already defined ta to be the transpose of matrixa. Entering
Transpose [matrixal [ [3]] produces the same result.
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In[950] := ta[[3]]
Out [950]= {2, -3,1}

Other commands that can be used to manipulate matrices are included in the
Matrix Manipulation package that is contained in the Linear Algebra folder (or

directory).

6 O 6 Help Browser

LinearAlgebra "MatrixManipulatic { Go ) { Close ) [ Hide Categories )

Built-in Functions Add-ons The Mathematica Book

Getting Started/Demos Other Information Master Index

Wolfram Research... » g Introduction v FourierTrig
GaussianElimination
Working with Add... »[| Algebra || MatrixManipulation
Calculus ¥ Orthogonalization

Standard Packages »  DiscreteMath »  Tridiagonal
MathLink ¥ Geometry »
J/Link » 4 Graphics b
XML Capabilities b v LinearAlgebra by

0

m LinearAlgebra™MatrixManipulation™

This packags includes fanctions for corposing and separating matrices using rows, cobuans, and subratrices. Allof
the definitions involve simple combinations of built - in functions. Also included ars fanctions for constructing a

variety of special matrices.
AppendColumns| my . iz . 1 join the colurans in matrices my , mz . ..
AppendRows[my . mz, ... |  jointhe rows in matrices zty , mz . ...

BlockIatrix[ biocks |  join ows and colurans of subrmatrices in
blocks to form a new matrix

Funcsons for combining matices

= This loads the package
inll]= << LinearAlgebra MatrizNanipulation® ]

mDefine a2 x2 mafrix.

nRl=a = {{all, ai2}. {a21, a22}}: HatrixForm[a] ]
Dutf2]iMatizFomn=
[511 312)
a2l a2z
.
w Defing a second matrix ]
[ To0x & jaTv

After this package has been loaded,

In[951]:

= << LinearAlgebra‘MatrixManipulation®

we can use commands like TakeColumns and TakeRows to extract columns and
rows from a given matrix. For example, entering

In[952] :

out [952]

= TakeColumns[matrixa, {2}]//MatrixForm
-2
1
-4

extracts the second column of the matrix A defined in the previous example and
displays the result in Mat rixForm while entering
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In[953] : = TakeColumns[matrixa, {2, 3}]//

MatrixForm
-2 2

Out [953] = ( 1 -3
-4 1

extracts the second and third columns of A and displays the resultin Mat rixForm.

5.1.3 Basic Computations with Matrices

Mathematica performs all of the usual operations on matrices. Matrix addition
(A + B), scalar multiplication (kA), matrix multiplication (when defined) (AB),
and combinations of these operations are all possible. The transpose of A, A’,
is obtained by interchanging the rows and columns of A and is computed with
the command Transpose [A]. If A is a square matrix, the determinant of A is
obtained with Det [A].

If A and B are nxn matrices satisfying AB = BA = I, where I is the nxn matrix
with 1’s on the diagonal and 0’s elsewhere (the n x n identity matrix), B is called
the inverse of A and is denoted by A~'. If the inverse of a matrix A exists, the

b
inverse is found with Inverse [A]. Thus, assuming that (a d) has an inverse
(&
(ad — be # 0), the inverse is
In[954] := Inverse[{{a, b}, {c,d}}]

d b c a

out[954]= ({ ——— ———<{- T3 5o 23/)

3 -4 5 10 -6 -9
EXAMPLE 5.1.7: Let A = |8 0 -3|land B =] 6 =5 -7
5 2 1 -10 9 12

Compute
(a) A + B; (b) B — 4A; (c) the inverse of AB; (d) the transpose of
(A -2B)B; and (e) det A = |A|.

SOLUTION: We enter ma (corresponding to A) and mb (corresponding
to B) as nested lists where each element corresponds to a row of the
matrix. We suppress the output by ending each command with a semi-
colon.
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In([955] := ma = {{3, -4, 5}, {8,0, -3}, {5,2,1}};
mb = {{10, -6, -9}, {6, -5, -7},
{-10,9,12}};
Entering

In[956] := ma + mb//MatrixForm
13 -10 -4
14 -5 -10
-5 11 13

Out [956]

adds matrix ma to mb and expresses the result in traditional matrix
form. Entering

In[957] := mb - 4ma//MatrixForm

-2 10 -29
Out [957]= |-26 -5 5
-30 1 8

subtracts four times matrix ma from mb and expresses the result in
traditional matrix form. Entering

In[958] := Inverse[ma.mb]//MatrixForm

59 53 167
380 190 380
223 92 979
Out [958] = |-—— - -
570 95 570
49 18 187
114 19 114
Matrix products, when computes the inverse of the matrix product AB. Similarly, entering

defined, are computed by
placing a period (.) between

In[959] := Transpose[ (ma - 2mb) .mb] //MatrixForm

-352  -90 384
Oout [959] = 269 73 =277
373 98 -389

the matrices being multiplied.
Note that a period is also
used to compute the dot
product of two vectors,
when the dot product is

defined. computes the transpose of (A — 2B) B and entering
In[960] := Det[ma]
out [960] = 190

computes the determinant of ma.
B
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-1 -5 -5 -4
EXAMPLE 5.1.8: Compute AB and BAif A =|{-3 5 3 -2
-4 4 2 -3

1 -2
—4 3
B = .
and 4 4
-5 -3

SOLUTION: Because A is a 3 X 4 matrix and B is a 4 x 2 matrix, AB
is defined and is a 3 x 2 matrix. We define matrixa and matrixb with
the following commands.

w W R
wn
w
!

)

In[961] := matrixa = (—

4 2 -3
(1 -2)
) -4 3
In[962] := matrixb = 4 _4| 7
-5 -3

We then compute the product, naming the result ab, and display ab in
MatrixForm.

In[963] := ab =matrixa.matrixb;

MatrixForm[ab]

19 19
Out [963] = (,1 15)
3 21

However, the matrix product BA is not defined and Mathematica
produces error messages when we attempt to compute it.

In[964] := matrixb.matrixa
Dot :: dotsh :

Tensors {{1, -2}, {-4, 3}, {4, -4}, {-5, -3}}

and {{-1, -5, -5, -4}, {-3, 5,3, -2},
{-4,4,2,-3}}have incompatible shapes.
Out [964]= {{1, -2}, {-4,3}, {4, -4}, {-5,-3}}.
{{-1, -5, -5, -4},
{-3,5,3,-2},{-4,4,2,-3}}
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that you can fill in.
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Special attention must be given to the notation that must be used in taking the
product of a square matrix with itself. The following example illustrates
how Mathematica interprets the expression (matrixb)“n. The command
(matrixb) “n raises each element of the matrix matrixb to the nth power. The
command MatrixPower is used to compute powers of matrices.

-2 3 0

-2 0 1 3 ) 3
EXAMPLE 5.1.9: Let B = 1 4 -6 s/ (a) Compute B* and B-.

4 8 11 -4

(b) Cube each entry of B.

SOLUTION: After defining B, we compute B?. The same results would
have been obtained by entering MatrixPower [matrixb, 2].

In[965] := matrixb = {{-2, 3, 4,0}, {-2,0,1, 3},
{-1,4,-6,5},{4,8,11, -4}};

In[966] : = MatrixForm[matrixb.matrixb]
-6 10 -29 29
Oout [966] = 5 22 19 7

20 13 91 -38
-51 24 -86 95

Next, we use MatrixPower to compute B3. The same results would
be obtained by entering matrixb.matrixb.matrixb.

In[967] := MatrixForm[MatrixPower [matrixb, 3]]

137 98 479 -231
-121 65 -109 189
-309 120 -871 646
520 263 1381 -738

Out [967] =

Last, we cube each entry of B with ~.

In[968] := MatrixForm [matrixb3 ]

-8 27 64 0
_8 0 1 27
Out[968]= | | ¢4  _316 125

64 512 1331 -64
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If |A| # 0, the inverse of A can be computed using the formula

1
A= A9 5.1
[A] 6D
where A“ is the transpose of the cofactor matrix.
If A has an inverse, reducing the matrix (A|I) to reduced row echelon form
results in (IIA™!). This method is often easier to implement than (5.1).

2 =2 1
EXAMPLE 5.1.10: Calculate A”'ifA=|0 -2 2|
-2 -1 -1
1 0 O
SOLUTION: After defining AandI=|0 1 0| we compute |A| =
0 0 1

12, so A~! exists.

In[969] := << LinearAlgebra‘MatrixManipulation®';
capa = {{2,-2,1}, {0,-2,2}, {-2,-1,-1}};
i3 ={{1,0,0},{0,1,0},{0,0,1}};

In[970] := Det[capa]
Out [970]= 12

We use AppendRows to form the matrix (A|I)

In[971] := ai3 = AppendRows [capa, i3];
MatrixForm[ai3]

2 -2 1 1 0 0
0 -2 2 0O 1 0
-2 -1 -1 0 0 1

Out [971]

and then use RowReduce to reduce (A[I) to row echelon form.

In[972] := RowReduce[ai3]

1 1 1 1 1
{0005, - -2k {1,050, -2},

Out [972]

173 -1/4 -1/6
The result indicates that A~' = [-1/3 0 —-1/3|. We check this
-1/3 172 -1/3
result with Inverse.
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The cofactor matrix, A€,
of A is the matrix obtained
by replacing each element of
A by its cofactor.

AppendRows is contained
in the MatrixManipulation
package that is located in the
LinearAlgebra folder (or
directory).

RowReduce [A] reduces A
to reduced row echelon
form.
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In[973] := Inverse[capal]

out [973] = {{% —i, —%}, {-3.0 -2} {-

5.1.4 Basic Computations with Vectors

5.1.4.1 Basic Operations on Vectors
Computations with vectors are performed in the same way as computations with
matrices.

0 3
EXAMPLE 5.1.11: Letv = ? and w = 2 . (a) Calculate v — 2w and
2 -2

v - w. (b) Find a unit vector with the same direction as v and a unit
vector with the same direction as w.

SOLUTION: We begin by defining v and w and then compute v — 2w

and v - w.
In[974] := v={0,5,1,2};
w={3,0,4,-2};
In[975] := v - 2w

Out [975]= {-6,5,-7, 6}

In[976] := v.w

Out [976]= 0

The norm of the vector v =| " | is

Vn

vl = V2 + 022 442 = V.
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If k is a scalar, the direction of kv is the same as the direction of v. Thus,

. 1 L
if v is a nonzero vector, the vector ﬂv has the same direction as v
v
1

1
—v| = —Ilvll =1, —v is a unit vector. We define the
[IwvIl [IvIl [IvIl

function norm which, given a vector v, computes llvil. We then compute

and because

1
TETA calling the result uv, and Wi The results correspond to unit

vectors with the same direction as v and w, respectively.

In[977] := norm[v.] := V.V
v
In[978] := = —
norm([v]

Out [978] = A 1/

In[979] : = norm[uv]

Out [979] =
In[980] := ———
norm[w]
oc[%o]{3 0, = 2}
u = -
V29 29" A29
|
5.1.4.2 Basic Operations on Vectors in 3-Space Vector calculus is discussed
We review the elementary properties of vectors in 3-space. Let in Section 5.5.
u = (uy, up, u3) = wil + unj + usk
and
v = (v, v, v3) = vii + »j + vk
be vectors in space. In space, the standard unit
vectors are i = (1,0,0),
1. uand v are equal if and only if their components are equal: §=(0.1,0),and k = (0,0, 1.
With the exception of the
U=V S u =v, Uy =y, and Uz = v3. cross product, the vector

operations discussed here
. are performed in the same
2. The length (or norm) of u is P )
way for vectors in the plane
as they are in space. In the
lall = A [ Lt12 + u22 + M32. plane, the standard unit

vectors are i = (1, 0) and

3. If ¢ is a scalar (number), J=<0.1)

cu = {cuy, cuy, Cuz).
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A unit vector is a vector
with length 1.
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4. The sum of u and v is defined to be the vector
u+v=_{u +vy,uy+vyu;+vs).

5. If u # 0, a unit vector with the same direction as u is

1 1

4= —
lhuall Vur? + up? + uz?

(uy, U, uz).

6. uand v are parallel if there is a scalar ¢ so that u = ¢v.
7. The dot product of u and v is

u-v =upvy +uxvy + uszvs.

If 6 is the angle between u and v,

u-v

lall vl

Consequently, u and v are orthogonal if u- v = 0.
8. The cross product of u and v is

i j k
uxv=iu u U3
Vi V2 V3

(uzv3 — uzv2)i— (uyvs — uzvi) j + (uvz2 — uzv) k.

You should verify that u- (ux v) = 0and v - (ux v) = 0. Hence, u X v is
orthogonal to both u and v.

Topics from linear algebra (including determinants) are discussed in more
detail in the next sections. For now, we illustrate several of the basic operations
listed above. In Mathematica, many vector calculations take advantage of func-
tions contained in the VectorAnalysis package located in the Calculus directory.
Use Mathematica’s help facility to obtain general help regarding the VectorAnal-
ysis package.
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6 O 6 Help Browser

e e STTEE—————
_Go } { Close ) [ Hide Categories )

Calculus "VectorAnalysis *

Built-in Functions ons The Mathematica Book
Getting Started/Demos. Other Information Master Index

Wolfram Research bm Introduction bm DSolvelntegrals

FourierTransform

Working with Add... »{}| Algebra » 1) Integration
Calculus b Pade

Standard Packages »  DiscreteMath »  VariationalMethods

MathLink * . Geometry » _ VectorAnalysis

J/Link » 4 Graphics e

XML Capabilities b ¥ LinearAlgebra L4

0

m Calculus™ VectorAnalysis™

£ three - dirmensional coordinate system assigns three nurabers o each pointin space. In defining a coordinate systerm,
you have to make a choice about what to measure and how o measure it. Frequently, physical pecial
symmetries or structures that make a particular coordinate system especially useful. In a matheratically elsgant solu-
tion 10 problems related to these systers, often the main step is choosing the correct coordinates

£ variety of 9ol for doing, caloulus in various fhues - dimensional coordinate systeras are provided in this packags.
Becauss a given syrbolic 0T nueric expression can mean differsnt things in different coordinate systers, Mathemaz-
ica st know what coordinate systern you are using and what the coordinate variables are. The initial default coordi-
rate system is Cartesian with coordinate variables Xx, Yy, and 2z, If you frequently work in another systern, it
Iy be useful fo change the defaull to that system using SetCoordinates.

CoordinateSystem the name of the default coordinate system
Coordinates ] give the default variables in the default coondinate system
Coordinates| coordsys ] give the default variables in the coordinate system coordrys
SetCoordinates| coordsys ] setthe default coordinate system to be
coordsys with default variables
SetCoordinates [ coordsys [ vars |]  set the defanlt coordinate syster to be.
coordsys with vaziables vars

Coondinate systems and coordinate wadables.
= This loads the package

[ 100% ¥ & yaiv

EXAMPLE 5.1.12: Let u = (3,4,1) and v = (-4, 3, -2). Calculate (a)
u-v, (b)uxv, (c) llull, and (d) lIvll. (e) Find the angle between u and v.
(f) Find unit vectors with the same direction as u, v, and u X v.

SOLUTION: After loading the VectorAnalysis package, we define
u=(3,4,1)and v = (-4, 3, —2). Notice that to define u = (uy, u», uz) with
Mathematica, we use the form

u={ul,u2,u3}.
Similarly, to define
We illustrate the use of Dot Product and CrossProduct, both of which u = (uy, up), we use the
are contained in the VectorAnalysis package, to calculate (a)—(d). form u={u1, u2}.

Remark. Generally, u. v returns the same result as Dot Product [u, b].
In[981] := << Calculus‘VectorAnalysis"®

In[982] := u={3,4,1};

{_41 31 _2};

<
Il
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In[983] := udv = DotProduct[u, v]
Out [983]= -2

In[984] := ucv = CrossProduct[u, v]
out [984]= {-11, 2,25}

In[985] := v =8qrt[u.u]
Out [985] = /26

In[986] := nv = Sqgrt[v.v]
Out [986]= 29

We use the formula 6 = cos™! ( T ) to find the angle f between uand v.

In[987] := ArcCos[u.v/(v nv)]

N[%]

2
out [987] = ArcCos | - 557]

out [987]= 1.6437
Unit vectors with the same direction as u, v, and u x v are found next.

In[988] := normu = u/v
normv = v/nv

nucrossv = ucv/Sqrt[ucv.ucv]

2 1

7’f}

3

rrr
11&

We can graphically conflrm that these three vectors are orthogonal by
graphing all three vectors with the ListPlotVectorField3D func-
tion, which is contained in the P1otField3D package. After loading
the PlotField3D package, the command

3
Out [988] = {—%,2

out [988]= { -

out [988]= { -

ListPlotVectorField3D[listofvectors]

graphs the list of vectors listofvectors. Each element of 1istof
vectorsisoftheform {{ul,u2,u3}, {vi,v2,v3}} where (u;, us, u3)
and (vy, v, v3) are the initial and terminal points of each vector. We show
the vectors in Figure 5-1.
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Figure 5-1 Orthogonal vectors

In[989] := << Graphics‘PlotField3D"

In[990] := ListPlotVectorField3D[{{{0, 0, 0}, normu},
{{0,0,0}, normv}, {{0,0, 0}, nucrossv}},
VectorHeads- > True]

In the plot, the vectors do appear to be orthogonal as expected.
|

With the exception of the cross product, the calculations described above can also
be performed on vectors in the plane.

EXAMPLE 5.1.13: If u and v are nonzero vectors, the projection of u
onto v is

. u-v
roj.u = —=V.
PIOL U= 01

Find proj uif u = (-1,4) and v = (2, 6).
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Figure 5-2 Projection of a vector

SOLUTION: We define u = (—1,4) and v = (2, 6) and then compute

proj, u.

In[991]:= u={-1,4};
v={2,6};
projvu=u.v v/v.v

out [991]= {==, 22}

10 10
Finally, we graph u, v, and proj,u together using Arrow and Show in
Figure 5-2.

In[992] := << Graphics‘Arrow"'

In[993] := ?Arrow

"Arrow[start, finish, (opts)]isagraphics
primitiverepresentinganarrowstartingat
startandendingatfinish."
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In[994] := pl = Show[Graphics]|[
{Arrow[{0, 0}, ul, Arrow[{0, 0}, v],
Thickness[0.03], Arrow[{0, 0}, projvu,
HeadScaling- >Relative]l]}],
Axes- >Automatic, AspectRatio- > Automatic,
DisplayFunction- > Identity];

In[995] := p2 = Show[Graphics[{Arrow[{0, 0}, u],
Arrow[{0, 0}, v], Thickness[0.03],
Arrow[{0, 0}, projvu,
HeadScaling- > Relative],
GrayLevel[0.4], Arrow[projvu, u,
HeadScaling- > Relative]}],
Axes- >Automatic, AspectRatio- > Automatic,
DisplayFunction- > Identity];

In[996] := Show[GraphicsArray[{pl, p2}]]

In the graph, notice that u = proj, u + (u - proj, u) and the vector u -
proj, u is perpendicular to v.
|

5.2 Linear Systems of Equations

5.2.1 Calculating Solutions of Linear Systems of
Equations

To solve the system of linear equations Ax = b, where A is the coefficient matrix,
b is the known vector and x is the unknown vector, we often proceed as follows:
if A~! exists, then AA™'x = A"'bsox = A~ 'b.

30 2)(x 3
EXAMPLE 5.2.1: Solve the matrix equation|-3 2 2||y|=|-1]|
2 -3 3)\z 4

x 3 0 2 3

SOLUTION: The solution is given by |y| =|-3 2 2| |-1| We
z 2 -3 3 4

349
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proceed by defining matrixa and b and then using Inverse to calcu-
late Inverse [matrixal .b naming the resulting output {x,y, z}.

In[997] := matrixa = {{3,0, 2}, {-3,2, 2},
{2,-3,3}};
b= {3, —1, 4};
In[998] := {x,y, 2} = Inverse[matrixa] .b
out [998]= {==, -, 22}
~ 237 23723
We verify that the result is the desired solution by calculating
3
matrixa.{x,y,z}. Because the result of this procedure is | -1, we
4
x 13/23
conclude that the solution to the systemis |y | = [ -7/23|.
z 15/23

In[999] := matrixa.{x,y, 2}
Oout [999]= {3, -1, 4}

We note that this matrix equation is equivalent to the system of equa-

tions
3x+2z=3
“3x+2y+2z=-1,
2x-3y+3z=4

which we are able to solve with Solve.

In[1000] := Clear([x,y, z]

sys =
Thread[matrixa.{x,y, z} == {3, -1, 4}]

out [1000]= {3x+2z==3,
-3x+2y+2z==-1,2x-3y+3z==4}
In[1001] := Solve[sys]
out [1001] = {{Xel—?’ N l}}
N 23”7 23' Y7 23

Mathematica offers several commands for solving systems of linear equations,
however, that do not depend on the computation of the inverse of A. The com-
mand

Solve[{egnl,eqgn2, ...,eqnm}, {varl,var2,...,varn}]
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solves an m X n system of linear equations (m equations and » unknown vari-
ables). Note that both the equations as well as the variables are entered as lists.
If one wishes to solve for all variables that appear in a system, the command
Solve[{egnl,eqn2, ...eqnn}] attempts to solve eqnl, egn2, ..., eqnn for all
variables that appear in them. (Remember that a double equals sign (==) must be
placed between the left and right-hand sides of each equation.)

Ix -2y+z=-4
EXAMPLE 5.2.2: Solve the system ¢3x+2y—z=18 for x, y, and z.
—x+3y+5z=0

SOLUTION: In this case, entering either

Solve [{x-2y+z==-4,3X+2y-2z==8, -X+3y+52==0}]
or

Solve [{x-2y+z,3x+2y-2z, -x+3y+5z}=={-4,8,0}]
gives the same result.

In[1002] := Solve[{x-2y+2==-4,3x+2y-2z==8,

-x+3y+5z==0}, {x,v,2}]
out[1002]= {{x->1,y—>2,z->-1}}

Another way to solve systems of equations is based on the matrix form
of the system of equations, Ax = b. This system of equations is equiv-
alent to the matrix equation

I -2 1)(x -4

[O¥]
[\
|
—_

<
Il
oo

The matrix of coefficients in the previous example is entered as matrixa
along with the vector of right-hand side values vectorb. After defin-
ing the vector of variables, vectorx, the system Ax = b is solved
explicitly with the command Solve.

In[1003] := matrixa = {{1,-2,1}, {3,2, -1},
{-1,3,5}}; vectorb={-4,8,0};
vectorx = {x1, yl, z1};

351
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In[1004] := Solve[matrixa.vectorx == vectorb,
vectorx]
Out[1004]= {{x1->1,y1->2,z1->-1}}

In addition to using Solve to solve a system of linear equations, the command
LinearSolve [A, b]

calculates the solution vector x of the system Ax = b. LinearSolve generally

solves a system more quickly than does Solve as we see from the comments in
the Help Browser.

ece Help Browser
LinearSolve Go Close Hide Categories
lt-in Fu Add-ons The Mathematica Book
Getting Started/Demos Other Information Master Index
Numerical Compu... » g Element Extraction » LinearSolve
Algebraic Comput... ¥[!| List Testing »_ NullSpace
Mathematical Fun... »{3] List Operations *¥| RowReduce m
Lists and Matrices »  Structure Manipul... |}| Minors
Graphics and Sound »
. Vector Operations »N§ MatrixPower
Programming » . 4 MatrixExp .
Input and Qutput  » v Matrix Operations » ¥ Outer v

Linearsolve

sLinearSolve[m, ¥] finds an x which solves the matrix equation m . x==¥%,

®5.0 LinearSolve works on both nurmerical and symbolic marices, as well as SparseArray objects
® The angument b can be either a vector o1 a matrix.

& The watrix 7 can be SQUATE OF rectangular

» For underdetennined systers, LingarSolve will retum one of the possible solutions: Solve will retum a general
solution.

= For sparse systems of linear equations, it will usually be ruch more efficient i use Solve than LinearSolve.

=If you need o solve the same approximate numerical linear syster rany fimes, it is uswally more efficient 10 use
LUDecomposition and LUBackSubstitution

sLinearSolve[m, b, Modulus ->n) fakes the matrix equation to be moduls n

sLinearSolve[m, b, BeroTest -= tes1] evaluates sesal m[ [4, j]] ] to deterinine whether raatrix slsments are
2210, The default setting is ZeroTest > (#==06).

& Hethod option can also be given, Settings for exact and symbolic matrices include "CofactorExpansion”,
*DivisionFresRowReduction” and "OnestepRovReduction” . Setings for approxirat nuasrical

mafrices include “Cholesky®. and for sparse amays “HMultifrontal® and "Krylov". The default setting of
Automatic switcthes between these methods depending on the matrix given

= See The Mathematica Sook: Section3.7.8 a

= Implementation Notes: see section 9.4, A9.4and .94 Y
[ 100% ¥

2x—4y+z=-1
EXAMPLE 5.2.3: Solve the system {3x+y—2z=3 . Verify that the

—Sx+y-2z=4
result returned satisfies the system.
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SOLUTION: To solve the system using Solve, we define egs to be
the set of three equations to be solved and vars to be the variables x,
¥, and z and then use Solve to solve the set of equations egs for the
variables in vars. The resulting output is named sols.

In[1005]:= eqs = {2x-4y+2==-1,3x+y-2z==3,
-5x+y-2z==4};vars = {x,Y, 2};

sols = Solve[egs, vars]
15 51

1
out [1005] = {{xe—g,ye—gl z%_ﬁ}}

To verify that the result given in sols is the desired solution, we replace
each occurrence of x, y, and z in egs by the values found in sols
using ReplaceAll (/.). Because the result indicates each of the three
equations is satisfied, we conclude that the values given in sols are
the components of the desired solution.

In[1006] := eqgs /. sols
Out [1006]= {{True, True, True}}

To solve the system using LinearSolve, we note that the system is

2 -4 1)\(x -1
equivalent to the matrix equation | 3 1 -2}yl = | 3 |, define

=5 1 =2)\z 4
matrixa and vectorb, and use LinearSolve to solve this matrix

equation.

In[1007] := matrixa = {{2, -4,1}, {3,1, -2},
{-5,1,-2}};

vectorb = {-1, 3, 4};

solvector =
LinearSolve[matrixa, vectorb]
1 15 51 }

out [1007]= { - 5 "5e’ a8

To verify that the results are correct, we computematrixa.solvector.

-1
Because the result is | 3 |, we conclude that the solution to the system
4
x -1/8
is|y|=]-15/36|

z -51/28

353
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In[1008] := matrixa.solvector

Out [1008]= {-1,3, 4}

EXAMPLE 5.2.4: Solve the system of equations
Adx; +5x, —5x3 —8x4 —2x5 =5

Tx1 + 2x7 — 10x3 — x4 — 6x5 = —4

6x1 + 2x0 + 10x3 — 10x4 + Tx5 = —7.

—8x1 —xp —4x3+3x5 =5

8x1 —Txy —3x3+ 10x4 + S5x5 =7

SOLUTION: We solve the system in two ways. First, we use Solve to
solve the system. Note that in this case, we enter the equations in the

form

set of left-hand sides==set of right-hand sides.

In[1009] := Solve[

{4x[1] +5x[2] -5x[3] -8x[4] -2x[5],
7x[1] +2x[2] -10x[3] -x[4] -6x[5],
6x[1] +2x[2] +10x[3] -10x[4]+

7x[5],-8x[1] -x[2] -4x[3] +3x[5],
8x[1] -7x[2] -3x[3] +10x[4]+
5x[51} == {5, -4,-7,5,7}]

out [1009] = {{x[1] - 22>
- 6626 "
113174 7457
x[2] > , X - - ,
9939 9939
38523 49327
x[4] > Sx[5] » ———1}}
6626 9939

We also use LinearSolve after defining matrixaand t2. As expected,
in each case, the results are the same.
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In[1010] := Clear[matrixal]

matrixa = {{4,5, -5, -8, -2},
{7,2,-10, -1, -6},
{6,2,10,-10,7},

{-8,-1,-4,0,3},
{8,-7,-3,10,5}};

t2={5,-4,-7,5,7};

In[1011] := LinearSolve[matrixa, t2]
1245 113174 7457 38523 49327
out [1011]= { }

6626 ° 9939 ' 9939’ 6626 ' 9939

5.2.2 Gauss-Jordan Elimination

Given the matrix equation Ax = b, where

ayy  ap - ap x| by

ay  ap o @ X2 by
A=|" : ) o, x =" and b=|""|,

aml am e Amn Xn bm

the m X n matrix A is called the coefficient matrix for the matrix equation Ax = b
and the m x (n + 1) matrix

ayr  ap ay, by
a  axn ay, by
aml am e Amn bm

is called the augmented (or associated) matrix for the matrix equation. We may
enter the augmented matrix associated with a linear system of equations directly
or we can use commands contained in the package MatrixManipulation con-
tained in the Linear Algebra folder (or directory) to help us construct the aug-
mented matrix.

j 2x+y—-2x=4
EXAMPLE 5.2.5: Solve the system {2x -4y -2z = -4  using Gauss—
x—4y-2z=3

Jordan elimination.
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SOLUTION: The system is equivalent to the matrix equation

-2 1 =2\(x 4
2 -4 2|ly|=|-4]|
1 -4 2J\z 3

The augmented matrix associated with this system is

2 1 -2 4
2 -4 -2 -4
1 -4 -2 3

which we construct using the command AppendRows contained in
the MatrixManipulation package. We proceed by loading the
MatrixManipulation package, defining matrixa and b, and then using
AppendRows to construct the augmented matrix which we name augm
and display in MatrixForm.

In[1012] :

<< LinearAlgebra‘MatrixManipulation®

In[1013]:= matrixa = {{-2,1, -2}, {2, -4, -2},
{1, -4,-2}};

b= ({4}, {-4}, {3}}:

In[1014] := augm = AppendRows [matrixa, b];

MatrixForm[augm]
-2 1 -2 4
Out [1014]= 2 -4 -2 -4

1 -4 -2 3

We calculate the solution by row-reducing augm using the built-in com-
mand RowReduce. Generally, RowReduce [A] reduces A to reduced
row echelon form.

In[1015] := RowReduce[augm] //MatrixForm
1 0 0 -7

0 1 0 74)

0 0 1 3

Out [1015]

From this result, we see that the solution is

X -7
y|=|-4|.
z 3
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We verify this by replacing each occurrence of x, y, and z on the left-
hand side of the equations by -7, —4, and 3, respectively, and not-
ing that the components of the result are equal to the right-hand side of
each equation.

In[1016] := Clear([x,y, z]

{-2x+y-2z,2%x-4y-22z,
x-4y-22}/.{x>-7,y->-4,z->3}
out [1016]= {4, -4, 3}

EXAMPLE 5.2.6: Solve

-3x+2y—-2z=-10
3x—-y+2z=17
2x—-y+z=6.

-3 2 -2 -10
SOLUTION: The associated matrix is A = (3 -1 2 7\

2 -1 1 6
defined in capa, and then displayed in traditional row-and-column
form with MatrixForm.

In[1017]:

Clear [capal

In[1018] := capa = {{-3,2,-2,-10}, {3,-1,2,7},
{2,-1,1, 6}}; MatrixForm[capa]
-3 2 -2 -10
out[1018]= |3 -1 2 7
2 -1 1 6

We eliminate methodically. First, we multiply row 1 by —1/3 so that the
first entry in the first column is 1.

In[1019] := capa = {-1/3capa[[1]], capa[[2]],capa[[3]1]}
out[1019]= {{1 2z E} {3,-1,2,7},{2,-1,1,6}}
- 7 3/ 3/ 3 ’ 7 ’ ’ 7 ’ 7 7
We now eliminate below. First, we multiply row 1 by -3 and add it to

row 2 and then we multiply row 1 by -2 and add it to row 3.
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In[1020] := capa = {capa[[1l]], -3capa[[1l]] +capal[[2]],

-2capa[[1]] +capa[[3]]}
out (10201= {{1,-2,2,2%} 10,1,0,-3}, {0, =, -2, -2}}
3737 3 3737 3
Observe that the first nonzero entry in the second row is 1. We eliminate

below this entry by adding —1/3 times row 2 to row 3.

In[1021] := capa = {capal[[1l]], capa[[2]].,
-1/3 capal[[2]] +capa[[3]]}
2 2 10 11
Out [1021] = {{1,75,5,?}, {0,1,0, -3}, {o,o,fg,g}}

We multiply the third row by -3 so that the first nonzero entry is 1.

In[1022] := capa = {capal[[1]],capal[[2]], -3capal[[3]1]}

MatrixForm[capa]

out [1022]= {{1 2 2 B} {0,1,0,-3},{0,0,1,-1}}
- 7 3/3/ 3 7 7 7 7 7 7 7 7
2 "2 10
1 -2z ==
out[1022]= |, £ 3 3
o o 1 -1

This matrix is equivalent to the system

2 10
x—§y+§z=?
y=-3

z=-1,

which shows us that the solutionisx =2,y =-3,z=—1.

Working backwards confirms this. Multiplying row 2 by 2/3 and
adding to row 1 and then multiplying row 3 by -2/3 and adding to
row 1 results in

In[1023] := capa = {2/3 capa[[2]] +capa[[1l]], capa[[2]].,
capal[[3]]}; capa = {-2/3 capal[[3]] +capal[l]],
capa[[2]], capa[[3]]}; MatrixForm[capa]

1 0 0 2

0 1 0 -3

0 0 1 -1

Out [1023]=

which is equivalent to the systemx =2,y = -3,z =-1.
Equivalent results are obtained with RowReduce.

In[1024] := capa={{-3,2,-2,-10}, {3,-1,2,7},
{2,-1,1, 6}}; capa = RowReduce[capa]

MatrixForm[capa]
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Oout [1024]= {{1,0,0,2},{0,1,0,-3},{0,0,1,-1}}
1 0 0 2

Out [1024] = (o 1 0 —3)
0 0 1 -1

Finally, we confirm the result directly with Solve.

In[1025]:= Solve[{-3x+2y -2z ==-10,3x-y+2z==7, 2x -
y+z==6}]
Out [1025]= {{x->2,y—>-3,z->-1}}

EXAMPLE 5.2.7: Solve
—3x1 + ZX2 + SX3 =-12
3)61 — X2 —4)63 =9

2)(1 — X2 — 3X3 =17

-3 2 5 -12
SOLUTION: The associated matrixisA =3 -1 -4 9 |, which
2 -1 -3 7
is reduced to row echelon form with RowReduce.

In[1026] := capa={{-3,2,5,-12}, {3, -1, -4, 9},
{2,-1,-3,7}}; rrcapa = RowReduce[capa];
MatrixForm[rrcapa]

1 0 -1 2

Out [1026]= [0 1 1 -3
0 O 0 0

The result shows that the original system is equivalent to

X —x3=2 x1=2+x3
or
Xo+x3=-3 Xo=-3-—1x3

so xj3 is free. That is, for any real number 7, a solution to the system is

X1 2+t 2 1
x|=1-3-t|=|-3|+¢t|-1].
X3 t 0 1

The system has infinitely many solutions.

359
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Equivalent results are obtained with Solve.

In[1027] := Solve[{-3x1 + 2x2 + 5x3 == -12, 3x1 -x2-4x3 ==09,
2x1 -x2 -3x3 ==7}]
Solve :: "svars" : "Equationsmaynotgivesolutions

forall&olvetvariables."
Out [1027]= {{x1->2+x3,%x2->-3-%x3}}

In[1028] := Solve[{-3x1 +2x2 + 5x3 == -12,
3x1 -x2-4x3==9,2x1-x2-3x3==7},
{x1, x2}]

Out [1028]= {{x1->2+x3,x2>-3-x3}}

EXAMPLE 5.2.8: Solve
=3x1 +2x, + 5x3 = —14
3x1 —xp —4x3 =11

2)(] — X2 —3X3 = 8.

-3 2 5 -14
SOLUTION: The associated matrixisA =|3 -1 -4 11 |, which
2 -1 -3 8
is reduced to row echelon form with RowReduce.

In[1029] := capa = {{-3, 2,5, -14}, {3, -1, -4, 11},
{2, -1, -3, 8}}; RowReduce[capa] //MatrixForm
1 0 -1 0
Out [1029] = (0 1 1 O)
0 0 0 1

The result shows that the original system is equivalent to

x1—x3:O
Xy +x3=0
0=1

Of course, 0 is not equal to 1: the last equation is false. The system has
no solutions.

We check the calculation with Solve. In this case, the results indicate
that Solve cannot find any solutions to the system.
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In[1030] := Solve[{-3x1 +2x2 + 5x3 == -14, 3x1 - x2 - 4x3 ==11,
2x1 - x2 - 3x3 == 8}]
Out [1030]= {}
Generally, if Mathematica returns nothing, the result means either that
there is no solution or that Mathematica cannot solve the problem. In
such a situation, we must always check using another method.
|

EXAMPLE 5.2.9: The nullspace of A is the set of solutions to the system
3211 =2
3312 -1
of equations Ax = 0. Find the nullspaceof A=|2 2 1 1 -1}
-1 -10-10
5 42 2 -3

SOLUTION: Observe that row reducing (A|0) is equivalent to row
reducing A. After defining A, we use RowReduce to row reduce A.

In[1031] := capa={{3,2,1,1,-2},{3,3,1,2,-1},
{2,2,1,1,-1},{-1,-1,0,-1,0},

{5,4,2,2,-3}}; RowReduce[capa] //MatrixForm
1 0 0 0 -1
0 1 0 1 1
Out [1031]= |0 0 1 -1 -1
0 0 0 0 0
0 0 0 0 0

The result indicates that the solutions of Ax = 0 are

X1 t 0 1
X2 —s—t -1 -1

x=|xz|=|s+t|=s|1[+£] 1]
X4 s 1 0
X5 t 0 1

where s and 7 are any real numbers. The dimension of the nullspace, the
nullity, is 2; a basis for the nullspace is

0 1
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You can use the command NullSpace [A] to find a basis of the nullspace
of a matrix A directly.

In[1032] := NullSpace[capal]
Out[1032]= {{1,-1,1,0,1},{0,-1,1,1,0}}

5.3 Selected Topics from Linear Algebra

5.3.1 Fundamental Subspaces Associated with Matrices

Let A = (a;;) be an n X m matrix with entry a;; in the ith row and jth column. The
row space of A, row(A), is the spanning set of the rows of A; the column space
of A, col(A), is the spanning set of the columns of A. If A is any matrix, then the
dimension of the column space of A is equal to the dimension of the row space of
A. The dimension of the row space (column space) of a matrix A is called the rank
of A. The nullspace of A is the set of solutions to the system of equations Ax = 0.
The nullspace of A is a subspace and its dimension is called the nullity of A. The
rank of A is equal to the number of nonzero rows in the row echelon form of A,
the nullity of A is equal to the number of zero rows in the row echelon form of A.
Thus, if A is a square matrix, the sum of the rank of A and the nullity of A is equal
to the number of rows (columns) of A.

1. NullSpace [A] returns a list of vectors which form a basis for the
nullspace (or kernel) of the matrix A.
2. RowReduce [A] yields the reduced row echelon form of the matrix A.

EXAMPLE 5.3.1: Place the matrix

-1 -1 2 0 -1
-2 2 0 0o -2
A=|2 -1 -1 0 1
-1 -1 1 2 2
1 -2 2 -2 0

in reduced row echelon form. What is the rank of A? Find a basis for
the nullspace of A.
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SOLUTION: We begin by defining the matrix matrixa. Then, RowReduce
is used to place matrixa in reduced row echelon form.

In[1033] := matrixa = {{-1,-1,2,0, -1}, {-2,2,0,0, -2},
{2,-1,-1,0,1},{-1,-1,1,2,2},
{11 _21 21 _21 0}};

In[1034] := RowReduce[matrixa]//MatrixForm

1 0 o0 -2 0
o 1 0o -2 O
Out[1034]= |0 0 1 -2 O
0 0 O 0 1
0 0 O 0 0

Because the row-reduced form of mat rixa contains four nonzero rows,
the rank of A is 4 and thus the nullity is 1. We obtain a basis for the
nullspace with NullSpace.

In[1035] := NullSpace[matrixa]
out [1035]= {{2,2,2,1,0}}
As expected, because the nullity is 1, a basis for the nullspace contains

one vector.
||

EXAMPLE 5.3.2: Find a basis for the column space of

1 -2 2 1 =2
1 1 2 -2 =2
B=|1 0o 0 2 -1
0 0 0 -2 0
-2 1 0 1 2

SOLUTION: A basis for the column space of B is the same as a basis
for the row space of the transpose of B. We begin by defining matrixb
and then using Transpose to compute the transpose of matrixb,
naming the resulting output tb.

In[1036] := matrixb = {{1,-2,2,1,-2},{1,1,2,-2,-2},
{1,0,0,2,-1},{0,0,0,-2,0},
{_21 11 ol 11 2}};
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In[1037]:

tb = Transpose[matrixb]

Out[1037]= {{1,1,1,0,-2},{-2,1,0,0,1},{2,2,0,0,0},
{1/ ’2/ 2/ ’2/ 1}/ {72/ ’2/ 71/ O/ 2}}

Next, we use RowReduce to row reduce tb and name the result rrtb.
A basis for the column space consists of the first four elements of rrtb.

We also use Transpose to show that the first four elements of rrtb are
the same as the first four columns of the transpose of rrtb. Thus, the
jth column of a matrix A can be extracted from A with Transpose
[A][[311.

In[1038] := rrtb = RowReduce[tb];

Transpose[rrtb]//MatrixForm

1 0 0 0 o0
0 1 0 0 o0
out [1038] = 0 0 1 0 0
0 0 0 1 0
1 1
-= - -2 -3 0
3 3

We extract the first four elements of rrtb with Take. The results
correspond to a basis for the column space of B.

In[1039] := Take[rrtb, 4]
out [1039]= {{1,0,0,0 3} {0,1,0,0 3}
u = 10,0,0,-77,10,1,0,0, 7f,

{O/ O/ 1/ O/ 72}/ {O/ O/ O/ l/ 73}}

5.3.2 The Gram-Schmidt Process

A set of vectors {vy, vy, ..., v,} is orthonormal means that ||v;|| = 1 for all values
of iand v;-v; = 0 fori # j. Given a set of linearly independent vectors § =
{vi, V2, ..., v,}, the set of all linear combinations of the elements of S, V = spanS,
is a vector space. Note that if S is an orthonormal set and u € span, then u =
(u-v))vy+(u-vy) vy + -+ (u- v, v, Thus, we may easily express u as a linear
combination of the vectors in S. Consequently, if we are given any vector space, V,
it is frequently convenient to be able to find an orthonormal basis of V. We may
use the Gram-Schmidt process to find an orthonormal basis of the vector space
V =span {vy, vp,..., v,}.
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We summarize the algorithm of the Gram-Schmidt process so that given a set of

n linearly independent vectors § = {vi, v,..., v,,}, where V = span {vy, va,..., vy},
we can construct a set of orthonormal vectors {uj, up,..., u,} so that
V =span{uy, uy,..., u,}.

1
1. Letu; = nv;
A%
2. Compute proj,,,v2 = (u; - v) Uy, va — projy,,, v, and let

1 .
W=7 (Vz - PTOJ[ul;Vz)-
[[v2 = projiu, va|
Then, span {uy, u,} = span {vy, v} and span {u;, uy, vs,..., v,}
=span {vy, Vi,..., Vp};

3. Generally, for 3 < i < n, compute

.....

u; = . (proj{ul,uz ,,,,, llnlvl)
”projlu],uz ..... u,} i|

Then, span {u;, w, ..., u;} = span {vy, vo,..., v;} and

p P

span {uy, U, ..., W, Vitl,..., V) =span {Vy, V2, V3,..., V,};
and

4. Because span {uy, uy, ..., u,} = span {vy, v,..., v,} and {uy, up, ..., w,}is

an orthonormal set, {u;, uy, ..., u,} is an orthonormal basis of V.

The Gram-Schmidt procedure is well-suited to computer arithmetic. The follow-
ing code performs each step of the Gram-Schmidt process on a set of n linearly
independent vectors {vi, vi,..., v,}. At the completion of each step of the
procedure, gramschmidt [vecs] prints the list of vectors corresponding to



366 Chapter 5 Matrices and Vectors

{u;, wy, ..., u;, Viy1, ..., v,}and returns the list of vectors {u;, u,, ..., u,}. Note how
comments are inserted into the code using (*. . . *).

In[1040] := gramschmidt[vecs_] :=
Module [ {n, proj, u, capw},

(#n represents the number of
vectors in the list vecsx)

n = Length[vecs];

(*proj[v, capw] computes the
projection of vonto capwx)

proj[v., capw.] :=

Length[capw]
capw[[i]].vcapw[[i]];

i=1
u[l] = vecs[[1]] ;
\/vecs[[1]].vecs[[1]]
capw = {};
ufi.] :=u[i] = Module[{stepone} ,
stepone =
vecs[[i]] - proj[vecs[[i]], capw];
Together|
stepone .
\/stepone.stepone:| ] !
Do[
uli];

AppendTo[capw, ul[i]]:;
Print[Join[capw, Drop[vecs, i]]],
{i,1,n-1}]1;

ul[n];

AppendTo[capw, u[n]] ]

EXAMPLE 5.3.3: Use the Gram-Schmidt process to transform the basis

-2 0 1
S = j -1 -1 3 l of R3 into an orthonormal basis.

> >

l—2) (2) (=)

SOLUTION: We proceed by defining v1, v2, and v3 to be the vec-
tors in the basis S and using gramschmidt [{v1,v2,v3}] to find an
orthonormal basis.
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In[1041]:= v1l={-2,-1,-2};
v2 ={0,-1,2};
v3={1,3,-2};

gramschmidt[{vl, v2, v3}]
1,10, -1,2}, {1, 3, -2}}
bo{-3 -3, %) 1,3, 23}
2 1 2 1 2 2 2 2 1
Out [1041] = {{7?75,—?}, {’3"5'5}'{’5'?3}}
On the first line of output, the result {u,, v», v3} is given; {u;, wp, v3}

appears on the second line; {u;, u, uz} follows on the third.
|

EXAMPLE 5.3.4: Compute an orthonormal basis for the subspace of R*

2\ (-4 1

4 4 . .
spanned by the vectors a3l and 4l Also, verify that the basis

1 2 -1

vectors are orthogonal and have norm 1.

SOLUTION: With gramschmidt, we compute the orthonormal basis
vectors. Note that Mathematica names oset the last result returned
by gramschmidt. The orthogonality of these vectors is then verified.
Notice that Together is used to simplify the result in the case of
oset [[2]] .o0set [[3]]. The norm of each vector is then found to
be 1.

In[1042] := oset = gramschmidt|[
{{2,4,4,1},{-4,1,-3,2},{1,4,4,-1}}]
2 4 4 1
U o 7
{-4,1,-3,2},{1,4,4, -1}
2 4 4 1

U = = =

2 93 55 | 2
{-60 , , - 44 ¥
16909 /33818 ° +/33818 16909

{1,4,4,-1}}
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Out [1042]=
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{{ 2 4 4 1

7 T e

2 93 55 | 2
{—60 ’ / , 44 }’
16909 " +/33818° /33818 16909

(- 449 268 156 798 1
\/934565 /934565 /934565 /934565

The three vectors are extracted with oset using oset [ [1]],0set [[2]],

and oset [ [3]].

In[1043]:=

Out [1043] =
Oout [1043] =

Out [1043]=

In[1044]:=

oset[[1l]].oset[[2]]
oset[[1l]] .oset[[3]]

oset[[2]] .oset[[3]]
0
0

0

Sgrt[oset[[1]] .oset[[1]]]

Sgrt[oset[[2]] .0oset[[2]]]
Sgrt[oset[[3]].oset[[3]]]
Out [1044]= 1
Out [1044]= 1

Out [1044]= 1

The package Orthogonalization in the LinearAlgebra folder (or directory)
contains several useful commands.

1. GramSchmidt [{v1,v2,...}] returns an orthonormal set of vectors
given the set of vectors {vy, v, ..., v,}. Note that this command does not
illustrate each step of the Gram-Schmidt procedure as the gramschmidt
function defined above.

2. Normalize [v] returns e given the nonzero vector v.
v
3. Projection[vl,v2] returns the projection of v; onto vy: proj,,v; =
Vi-Vy

2
[[vall
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8006 Help Browser
3 LinearAlgebra "Orthegonalization, | Go\‘ { Close ) ( Hide Categories )
Built-in Functions Add-ons The Mathematica Book
Getting Started/Demos Other Information Master index
Wolfram Research... » gy Introduction » my FourierTrig
GaussianElimination
Working with Add. . ||| Algebra L] MatrixManipulation
Calculus »  Orthogonalization
Standard Packages »  DiscreteMath b Tridiagonal
MathLink b Ceometry ]
J/Link » & Graphics b A
XML Capabilities » v LinearAlgebra LI
m LinearAlgebra™ Orthogonalization™ m

For most purposes, the most converndent type of basis for a vector space is orthonoral (e, the vectors are unit length
and are pairwise orthogonal). The Gram - Schrnidi procedure fakes an arbitrary basis and generates an orthonormal
one. It does this by sequentially processing the list of vectors and generating a vector perpendicular to the previous
veciors in the list. For the process to succeed in producing, an orthonornmal set, the given vectors must be linearly inde-
pendent. The function GranSchumidt assures that this is the case. If the given vectors are not linearly independent,
indeternminate or zero vectors may be produced. The Householder method of orthogonalization is restricted to
numeETic roattices and a dot irmer product, but is numerically stable, undike GranSchmidt, which way have problems
with vectors that are nearly linearly dependent.

GramnSchmidt[{wv . v2. ... }] generate an orthonormmal set from the given list of real vectors
Normalize|[ véct ] normalize véct
Projection( vest; . vecl | give the orthogonal projection of vect; onto vecls

\ector o perations using the usual inner product
m This loads the package.

In[l]= <<LinearAlgebra Orthogonalization” :I

m This applies the Gram = Schumidt provedwe o the given listof tuee - dimensional wclors

nRl= {wl, w2, w3} = GramSchmidt[ »
1{3.4.2}. (2.5.2}. {1.2.6}}]

100% M & yalr

Thus, after loading the Orthogonalization package
In[1045] := << LinearAlgebra‘'‘Orthogonalization®
the command

In[1046] := GramSchmidt[{{2, 4, 4,1}, {-4,1, -3, 2},
{11 41 41 _1}}]

out [1046]= {{ 2 . . . }
C V37 VBT V3T 3T
{ 2 93 55 L. 2 |
; 16909 /33818~ +/33818° 16909 "
449 268 156 798
{ H

/934565 /934565 /934565 /934565
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2
4
returns an orthonormal basis for the subspace of R* spanned by the vectors n

1

-4 1

1 4

, and . The command
-3 4
2 -1

In[1047] := Normal:.ze[{z 4,4, 1}]
4 4

T T

out [1047]= {

finds a unit vector with the same direction as the vector v = | |. Entering

— AN

In[1048]:= Projection[{2,4,4,1}, {-4,1,-3,2}]
out (10487= {22, - L, 1 2%y
u R i
15 15 5 15
-4

finds the projection of v =| |ontow =

2
4
4 -3
1 2

5.3.3 Linear Transformations

A function T : R" — R™ is a linear transformation means that T satisfies the
properties T(u+v) = T(u) + T (v) and T (cu) = cT (u) for all vectors u and v
in R"” and all real numbers c. Let T : R" — R™ be a linear transformation and

suppose T (e;) = vy, T (e2) = va,..., T (e,) = v, where {ej, e, ..., ,} represents the
standard basis of R" and vy, v,, ..., v, are (column) vectors in R”. The associated
matrix of T is the m X n matrix A = (v1 vy - vn):
X1 X1 X1
ifx = x2 T (x) = 2 :Ax:(v1 Vy e v,,) 2
xl’l xn xn

Moreover, if A is any m X n matrix, then A is the associated matrix of the linear
transformation defined by T (x) = Ax. In fact, a linear transformation T is com-
pletely determined by its action on any basis.
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The kernel of the linear transformation 7, ker (T), is the set of all vectors x in R”
such that T (x) = 0: ker (T') = {x € R"|T (x) = 0}. The kernel of T is a subspace of R".
Because T (x) = Ax for all x in R, ker (T) = {x € R"|IT (x) =0} = {x € R"|[Ax =0}
so the kernel of T is the same as the nullspace of A.

EXAMPLE 5.3.5: Let T : R’ — R? be the linear transformation
0o -3 -1 -3 -1

definedby T (x)=(-3 3 -3 -3 -1|x.(a)Calculate a basis for
2 2 -1 1 2

the kernel of the linear transformation. (b) Determine which of the vec-

4 1
2 2
tors| O |and |-1|is in the kernel of T.
0 -2
-6 3

SOLUTION: We begin by defining matrixa to be the matrix A =
0o -3 -1 -3 -1
-3 3 -3 -3 -1|and then defining t. A basis for the kernel of
2 2 -1 1 2

T is the same as a basis for the nullspace of A found with NullSpace.

In[1049] := Clear[t, x, matrixa]
matrixa = {{0, -3, -1, -3, -1},
{-3,3,-3,-3,-1},{2,2,-1,1,2}};
t[x.] =matrixa.x;
In[1050] := NullSpace[matrixa]
out [1050]= {{-2,-1,0,0,3},{-6,-8,-15,13,0}}
4
2
Because | 0 | is a linear combination of the vectors that form a basis
0
-6
4 1
2 2
for the kernel, | 0 | is in the kernel while [ -1 | is not. These results are
0 -2

-6 3
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verified more easily by evaluating t for each vector.

In[1051]:= t[{4,2,0,0,-6}]
Out [1051]= {0, 0,0}

In[1052] := t[{1,2,-1,-2,3}]
Oout [1052]= {-2,9, 11}

Application: Rotations
Let x = (x1
X2

given by r = Vx;2 + x,2 and ¢ = tan"! (xo/x;) so that x; = rcos¢ and x, = rsing.

) be a vector in R? and 6 an angle. Then, there are numbers r and ¢

When we rotate x = (xl) = (r o ¢) through the angle 6, we obtain the vector x’ =

X2 rsin ¢
rcos (6 + ¢)
(r sin (6 + ¢)
and cos (0 + ¢) = cosfcos ¢ F sin fsin ¢ we rewrite

, (r cos (0 + ¢)) _ (r cos §cos ¢ — rsin@sin ¢) _ (cos 6 —sin 6’) (r cos ¢)

- rsin (0 + ¢) rsinfcos ¢ + rsin ¢ cos f sinf  cosf |J\rsing
_[cos@ —sinb) (x|
“\sind  cosf J\xn)°

Thus, the vector x’ is obtained from x by computing (

). Using the trigonometric identities sin (6 + ¢) = sinfcos ¢ + sin ¢ cos §

Csi)jg —C(s)lsn:) x. Generally,

if f represents an angle, the linear transformation 7 : R? — R? defined by T (x) =

(C?S 6 —sin 9) x is called the rotation of R? through the angle §. We write code to
sinf  cos@

rotate a polygon through an angle 6. The procedure rotate uses a list of n points

and the rotation matrix defined in r to produce a new list of points that are joined

using the Line graphics directive. Entering

Line [{{x1,y1}, {x2,vy2},...,{xn,yn}}]

represents the graphics primitive for a line in two dimensions that connects the
points listed in { {x1,y1}, {x2,y2}, ..., {xn,yn}}. Entering

Show [Graphics [Line [{{x1,v1}, {x2,y2},...,{xn,yn}}11]

displays the line. This rotation can be determined for one value of 6. However, a
more interesting result is obtained by creating a list of rotations for a sequence of
angles and then displaying the graphics objects. This is done for 6 = 0 to 6 = 7/2
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using increments of 7/16. Hence, a list of nine graphs is given for the square with
vertices (-1, 1), (1, 1), (1, =1), and (-1, —1) and displayed in Figure 5-3.

Cos[6] -sin[e6])
In[1053]:= r[6.] = (Sin[e] Cos[6] ),
In[1054] := rotate[pts_, angle_] := Module[{newpts},

newpts =

Table[r[angle] .pts[[1i]].,

{i, 1, Length[pts]}];

newpts = AppendTo [newpts, newpts[[1]]];
figure = Line[newpts];
Show[Graphics[figure],

AspectRatio-» 1,

PlotRange » {{-1.5,1.5}, {-1.5,1.5}},

DisplayFunction -» Identity]]

In[1055] := graphs =

Table[
rotate[{{-1, 1}, {1, 1}, {1, -1}, {-1, -1}},
e1. e, 0, " T,
]’{,,2,16]'

array = Partition[graphs, 3];

Show|[GraphicsArray[array]]

5.3.4 Eigenvalues and Eigenvectors

Let A be an n X n matrix. A is an eigenvalue of A if there is a nonzero vector, v,
called an eigenvector, satisfying

Av = Av. (5.2)
We find the eigenvalues of A by solving the characteristic polynomial
[A-AI=0 (5.3)

for A. Once we find the eigenvalues, the corresponding eigenvectors are found by
solving
(A-ADv=0 (54)

for v.
If A is a square matrix,

Eigenvalues [A]
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Figure 5-3 A rotated square

finds the eigenvalues of A,
Eigenvectors [A]
finds the eigenvectors, and
Eigensystem[A]
finds the eigenvalues and corresponding eigenvectors.
CharacteristicPolynomial [A, lambdal

finds the characteristic polynomial of A as a function of A.



5.3 Selected Topics from Linear Algebra 375

EXAMPLE 5.3.6: Find the eigenvalues and corresponding eigenvectors
for each of the following matrices. (a) A = (_3 _23), (b) A = (i _31),

2
01 1

@A=|1 0 1,(d)A=(__lg4 _12/4).
110

SOLUTION: (a) We begin by finding the eigenvalues. Solving

-3-A 2

'A_M'ZI 2 —3-2

‘=7LZ+6)L+5=0

givesus A} = —5and A, = 1.
Observe that the same results are obtained using
CharacteristicPolynomial and Eigenvalues.

In[1056] := capa={{-3,2}, {2, -3}};
CharacteristicPolynomial [capa, A] //Factor

el = Eigenvalues|[capal]
Out [1056]= (1+A) (5+2A)

Out [1056]= {-5, -1}

We now find the corresponding eigenvectors. Let v; = (?
1

) be an eigen-
vector corresponding to 4, then

2ol -0
CA6)-0)
-0

That is, x; + y; = 0 or x; = —y;. Hence, for any value of y; # 0,

-

is an eigenvector corresponding to A;. Of course, this represents
infinitely many vectors. But, they are all linearly dependent. Choos-

which row reduces to

ing y; = 1 yields v = (_11) Note that you might have chosen y; = -1
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and obtained v; = (_11) However, both of our results are “correct”
because these vectors are linearly dependent.
Similarly, letting v, = (iz) be an eigenvector corresponding to A, we
2
solve (A — 1, ) vy =0:
-2 2\[x 0 I -1\(x 0
= or = .
2 -2 Y2 0 0 0 Y2 0

Thus, x, — y, = 0 or x, = y,. Hence, for any value of y, # 0,
be) » 1
Vy = = =
’ (yz) (yz) 2 (1)

. . . . . 1
is an eigenvector corresponding to A,. Choosing y; = 1 yields v, = ( 1).
We confirm these results using RowReduce.

In[1057]:= i2 = {{1, 0}, {0, 1}};
evl =capa-el[[1l]] i2

out [1057]= {{2,2}, {2,2}}

In[1058] := RowReduce[evl]

out [1058]= {{1,1},{0,0}}

In[1059] := ev2 =capa-el[[2]] i2

RowReduce[ev2]
Out [1059]= {{-2,2}, {2, -2}}

Out [1059]= {{1,-1},{0,0}}
We obtain the same results using Eigenvectors and Eigensystem.

In[1060] := Eigenvectors[capal]

Eigensystem[capa]
Out [1060]= {{-1,1},{1,1}}

Out [1060]= {{-5, -1}, {{-1,1},{1,1}}}

(b) In this case, we see that A = 2 has multiplicity 2. There is only one

linearly independent eigenvector, v = ( |

), corresponding to A.

In[1061] := capa = {{1, -1}, {1, 3}};
Factor[CharacteristicPolynomial [capa, A]]

Eigenvectors|[capal]

Eigensystem[capa]



5.3 Selected Topics from Linear Algebra

Out [1061]= (-2+ )72
out[1061]= {{-1,1}, {0,0}}
Out[106l]= {{2/ 2}/ {{711 1}/ {O/ O}}}

1
(c) The eigenvalue A; = 2 has corresponding eigenvector v; = |1}|.
1
The eigenvalue 1,3 = —1 has multiplicity 2. In this case, there are two
linearly independent eigenvectors corresponding to this eigenvalue:
-1 -1
vo=|0landvg =] 1
1 0

In[1062] := capa= {{0,1,1},{1,0,1},{1,1,0}};

Factor[CharacteristicPolynomial [capa, A]]
Eigenvectors[capa]

Eigensystem[capa]
out[1062]= - (-2+2A) (1+1)?
Oout [1062]= {{-1,0,1},{-1,1,0},{1,1,1}}
out[1062]= {{-1,-1,2},{{-1,0,1},{-1,1,0},{1,1,1}}}

(d) In this case, the eigenvalues 1;, = —1 + 4i are complex conjugates.

+
(1) . .
i are complex conjugates as

2 -
. 0
We see that the eigenvectors vy, = ( ) + 0

well.

In[1063]:= capa = {{-1/4,2}, {-8,-1/4}};
Eigenvectors[capal]

Eigensystem[capa]
Out [1063]= {{i,2}, {-1,2}}

Out [1063] = {{—%—4 i,—£+4 i}, {{i, 2}, {-i,2}}}

5.3.5 Jordan Canonical Form

LLj=i+1 . . .1
Let N, = (n,- j) = J=t represent a k X k matrix with the indicated

lO, otherwise
elements. The k X k Jordan block matrix is given by B(A) = AI + N where A is
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a constant:
0O 1 0 0 A1 0 0
0 0 1 0 0 A 1 0
N,=|: : and BQ)=2AL+N;=|: : .
o o0 o0 - 1 0 0 O 1
o o0 o0 --- 0 0 0 O A

Ai=j
Hence, B(1) can be defined as B(A) = (bi j) = I I, j=i+1 .AJordan matrix has

0, otherwise

the form
B 0 - 0
5o () Bz:(/\) ()

where the entries B;(A), j = 1,2,..., nrepresent Jordan block matrices.

Suppose that A is an n xn matrix. Then there is an invertible n x n matrix C such
that C™' AC = J where J is a Jordan matrix with the eigenvalues of A as diagonal
elements. The matrix J is called the Jordan canonical form of J. The command

JordanDecomposition [m]

yields a list of matrices {s, j} such thatm=s.j.Inverse [s] and j is the Jordan
canonical form of the matrix m.

For a given matrix A, the unique monic polynomial ¢ of least degree satisfying
q(A) = 0is called the minimal polynomial of A. Let p denote the characteristic
polynomial of A. Because p(A) = 0, it follows that ¢ divides p. We can use the
Jordan canonical form of a matrix to determine its minimal polynomial.

2 9 -9
EXAMPLE 5.3.7: Find the Jordan canonical form,J5,of A=|0 8 -6]|.
0o 9 -7

SOLUTION: After definingmatrixa, we use JordanDecomposition
to find the Jordan canonical form of a and name the resulting output ja.

In[1064] := matrixa = {{2,9, -9}, {0,8,-6},{0,9,-7}};

ja = JordanDecomposition[matrixal]
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Out[1064]= {{{3,0,1},{2,1,0},{3,1,0}},
{{-1,0,0},{0,2,0},{0,0,2}}}

The Jordan matrix corresponds to the second element of ja extracted
with ja[[2]] and displayed in MatrixForm.

In[1065] := ja[[2]]//MatrixForm

-1 0 O
Out [1065] = (O 2 0 )
0 0o 2

We also verify that the matrices ja[[1]1] and ja [ [2]] satisfy
matrixa=jal[[1l]].jal[2]].Inverse[jal[1l]l]].

In[1066]:= ja[[1]].jal[2]].Inverse[ja[[1]]]
Out [1066]= {{2,9,-9},{0,8,-6},{0,9,-7}}

Next, we use CharacteristicPolynomial to find the characteris-
tic polynomial of matrixa and then verify that matrixa satisfies its
characteristic polynomial.

In[1067] := p = CharacteristicPolynomial [matrixa, x]

Out [1067]= -4 +3x*-%>

In[1068] := -4 IdentityMatrix[3]+
3 MatrixPower [matrixa, 2] -
MatrixPower [matrixa, 3]

Out [1068]= {{0,0,0}, {0,0,0}, {0,0,0}}

From the Jordan form, we see that the minimal polynomial of A is (x +
1)(x—2). We define the minimal polynomial to be g and then verify that
matrixa satisfies its minimal polynomial.

In[1069] := gq=Expand[(x+1) (x-2)]
out [1069]= -2 - x + x>

In[1070] := -2 IdentityMatrix[3] - matrixa+
MatrixPower [matrixa, 2]
Out[1070]= {{0,0,0}, {0,0,0},{0,0,0}}

As expected, g divides p.

In[1071] := Cancel[p/q]
Out [1071]= 2-X
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EXAMPLE 5.3.8: If A = _3 _33 , find the characteristic

and minimal polynomials of A.

SOLUTION: Asin the previous example, we first define mat rixa and
then use JordanDecomposition to find the Jordan canonical form
of A.

In[1072] := matrixa = {{3,8,6, -1}, {-3,2,0, 3},
{31 —31 —11 _3]’1 {41 81 61 _2}};
ja = JordanDecomposition[matrixal]

1
out [1072]= {{(3,-1,1, 0}, {-1,-1,0, 2},

{o0,2,0, —%} {4,0,1,0}}, {{-1,0,0,0},

{O/ 71/ O/ O}, {O/ O/ 2/ 1}/ {O/ O/ O/ 2}}}

The Jordan canonical form of A is the second element of ja, extracted
with ja [[2]] and displayed in MatrixForm.

In[1073] := ja[[2]]//MatrixForm
-1 0 0 0

0 -1 0 O
Out [1073]= 0 0 2 1
0 0 0 2

From this result, we see that the minimal polynomial of A is (x + 1)(x —
2)>. We define g to be the minimal polynomial of A and then verify that
matrixa satisfies g.

In[1074] := q=Expand[(x-2)? (x+1)]
Out [1074]= 4-3x°*+x°

In[1075] := 4 IdentityMatrix[4]-
3 MatrixPower [matrixa, 2]+
MatrixPower [matrixa, 3]
out [1075]= {{0,0,0,0}, {0,0,0,0},
{0,0,0,0},{0,0,0,0}}

The characteristic polynomial is obtained next and named p. As
expected, g divides p, verified with Cancel.
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In[1076] := p = CharacteristicPolynomial [matrixa, x]

out [1076]= 4+4x-3%x*-2x>+x’

In[1077] := Cancel[p/q]
Out [1077]= 1+X

5.3.6 The QR Method

The conjugate transpose (or Hermitian adjoint matrix) of the m X n complex ma-
trix A which is denoted by A* is the transpose of the complex conjugate of A.
Symbolically, we have A* = (A). A complex matrix A is unitary if A* = A"
Given a matrix A, there is a unitary matrix Q and an upper triangular matrix R
such that A = QR. The product matrix QR is called the QR factorization of A.
The command

QRDecomposition [N [m] ]

determines the QR decomposition of the matrix m by returning the list {g, r},
where g is an orthogonal matrix, r is an upper triangular matrix and
m=Transpose [q] . r.

4 -1
EXAMPLE 5.3.9: Find the QR factorization of the matrix A = |-1 4
1 1

A= =

SOLUTION: We define matrixa and then use QRDecomposition
to find the QR decomposition of matrixa, naming the resulting out-
put grm.

In[1078] := matrixa = {{4,-1,1}, {-1,4,1},{1,1,4}};

In[1079] :

Out [1079]= {{{-0.942809, 0.235702, -0.235702},
{-0.142134, -0.92387, -0.355335},
{-0.301511, -0.301511, 0.904534}},
{{-4.24264,1.64992, -1.64992},
{0.,-3.90868, -2.48734}, {0.,0.,3.01511}}}

grm = QRDecomposition[N[matrixa]]
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The first matrix in grm s extracted with grm [ [1] ] and the second with
grm[[2]].

In[1080] := qrm[[1]]//MatrixForm

-0.942809 0.235702 -0.235702
Out [1080] = (70.142134 -0.92387 70.355335)
-0.301511 -0.301511 0.904534

In[1081] := gqrm[[2]]//MatrixForm

-4.24264 1.64992 -1.64992
Out [1081]= ( 0. -3.90868 —2.48734)
0. 0. 3.01511

We verify that the results returned are the QR decomposition of A.

In[1082] := Transpose[qrm[[1]]].qrm[[2]]//MatrixForm

4. -1. 1.
Out [1082]= |[-1. 4. 1.
1. 1. 4.

One of the most efficient and most widely used methods for numerically calculat-
ing the eigenvalues of a matrix is the QR Method. Given a matrix A, then there
is a Hermitian matrix Q and an upper triangular matrix R such that A = QR. If
we define a sequence of matrices A; = A, factored as A; = QR;; A, = R;Q;,
factored as A, = R,Qy; Az = R,Qy, factored as A, = R3Qj3; and in general,
Ay = Rit1Qus1, k = 1,2, ... then the sequence {A,} converges to a triangular
matrix with the eigenvalues of A along the diagonal or to a nearly triangular ma-
trix from which the eigenvalues of A can be calculated rather easily.

4 -1 1
EXAMPLE 5.3.10: Consider the 3 x 3 matrix A = |[-1 4 1|
1 1 4

Approximate the eigenvalues of A with the QR Method.

SOLUTION: We define the sequence a and gr recursively. We define a
using the form aln ]:=alnl=... and gr using the form
gr(n_]:=qr[n]=... so that Mathematica “remembers” the values
of a and gr computed, and thus Mathematica avoids recomputing val-
ues previously computed. This is of particular advantage when
computing a [n] and gr [n] for large values of n.
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In[1083] := matrixa= {{4,-1,1},{-1,4,1},{1,1,4}};
a[l] = N[matrixa];
gr[1l] = QRDecomposition[a[l]]:
In[1084]:= a[n.] :=

a[n] =qr[n-1][[2]].
Transpose[qgr[n-1][[1]]];

gr[n_] :=gr[n] = QRDecomposition[a[n]];

We illustrate a [n] and gr [n] by computing gr [9] and a [10]. Note
that computing a [10] requires the computation of gr [9]. From the
results, we suspect that the eigenvalues of A are 5 and 2.

In[1085]:= qr[9]
Out [1085]= {{{-1.,2.23173x107,-0.000278046},
{—8.92692><1078,—l.,—0.000481589},
{-0.000278046, -0.000481589, 1.}},
{{-5.,1.56221x10°, -0.00194632},
{0.,-5.,-0.00337112}, {0.,0.,2.}}}
In[1086] := a[10]//MatrixForm
5. -1.78538x 10" -0.000556091
out [1086]= |-1.78538x10" 5. -0.000963178
-0.000556091 -0.000963178 2.

Next, we compute a [n] for n = 5, 10, and 15, displaying the result in
TableForm. We obtain further evidence that the eigenvalues of A are

5 and 2.
In[1087] := Table[a[n]//MatrixForm, {n, 5, 15,5}1//
TableForm
4.99902 -0.001701 0.0542614
(—0.001701 4.99706 0.0939219)
0.0542614 0.0939219 2.00393
5. -1.78538x 107 -0.000556091
Out [1087] = (—1.78538><10’7 5. —0.000963178)
-0.000556091 -0.000963178 2.
5. -1.87212x 10" 5.69438x10°
(—1.87213><1o*11 5. 9.86295><1o%)
5.69438 x10°° 9.86295x10°° 2.

We verify that the eigenvalues of A are indeed 5 and 2 with Eigenvalues.

In[1088] := Eigenvalues[matrixa]
out[1088]= {2,5,5}
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5.4 Maxima and Minima Using Linear
Programming

5.4.1 The Standard Form of a Linear Programming
Problem

We call the linear programming problem of the following form the standard form
of the linear programming problem:

Minimize Z = c;x| + coxp + -+ - + ¢, subject to the restrictions

function
Janxl +apxy +---+agpmx, = b]

ar x|y +axpnxy +---+ayx, = b2

Lzmlxl + Xy + 0+ ApXn = by

andx; =20,x,=0,...,x, = 0.

(5.5)
The command
ConstrainedMin [function, {inequalities}, {variables}]

solves the standard form of the linear programming problem. Similarly, the com-
mand

ConstrainedMax [function, {inequalities}, {variables}]

solves the linear programming problem: Maximize Z = ¢ x| + ¢c2xp + - - + ¢4Xp, SUb-

function
ject to the restrictions

Jauxl +apxy +---+apx, = by

ar1Xy + axpxy + -+ ayx, = b

lamlxl + ApaXy + + 0+ ApnXn = by,

andx; 20,x=0,...,x,=0.
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EXAMPLE 5.4.1: Maximize Z (x;, x, x3) = 4x; — 3x; + 2x3 subject to the
constraints 3x; — 5x; + 2x3 < 60, x; —x2 + 2x3 < 10, x; + x, — x3 < 20, and
X1, X2, x3 all nonnegative.

SOLUTION: In order to solve a linear programming problem with
Mathematica, the variables {x1,x2,x3} and objective function
z [x1,x2,x3] are first defined. In an effort to limit the amount of typ-
ing required to complete the problem, the set of inequalities is assigned
the name inegs while the set of variables is called vars. The symbol
“<=", obtained by typing the “<” key and then the “=" key, represents
“less than or equal to” and is used in inegs. Hence, the maximization

problem is solved with the command

ConstrainedMax [z [x1,x2,x3],inegs,vars].

In[1089] := Clear([x1l, x2, x3, z, inegs, vars]
vars = {x1, x2, x3};

z[x1_,x2_,x3_] = 4x1 - 3x2 + 2x3;

In[1090] := inegs = {3x1-5x2+x3 <60,x1-x2+2x3<10,

x1l +x2 -x3<20};

In[1091] := ConstrainedMax[z[x1l, x2, x3], inegs,
vars]
Out [1091]= {45, {x1>15,%x2->5,x3>0}}

The solution gives the maximum value of z subject to the given con-
straints as well as the values of x1, x2, and x3 that maximize z. Thus,
we see that the maximum value of Zis 45if x; = 15, x, = 5, and x3 = 0.
|

We demonstrate the use of ConstrainedMin in the following example.

EXAMPLE 5.4.2: Minimize Z(x, y, z) = 4x — 3y + 2z subject to the con-
straints 3x — 5y +z < 60, x —y+2z < 10, x+y—z < 20,and x, y, z all
nonnegative.

SOLUTION: After clearing all previously used names of functions and
variable values, the variables, objective function, and set of constraints
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for this problem are defined and entered as they were in the first exam-
ple. By using

ConstrainedMin [z [x1,x2,x3], inegs, vars]

the minimum value of the objective function is obtained as well as the
variable values that give this minimum.

In[1092] := Clear[x1l, x2, x3, z, ineqgs, vars]
vars = {x1, x2, x3};

z[x1_,x2_,x3_] = 4x1 - 3x2 + 2x3;

In[1093]:= ineqgqs = {3x1-5x2+x3<60,x1-x2+2x3<10,
x1+x2-x3<20};
In[1094] := ConstrainedMin[z[x1, x2, x3], ineqgs,

vars]

Out [1094]= {-90, {x1->0,x2->50,x3>30}}

We conclude that the minimum value is =90 and occurs if x; = 0, x, =
50, and x3 = 30.
|

5.4.2 The Dual Problem

Given the standard form of the linear programming problem in equations (5.5),
the dual problem is as follows: “Maximize Y = )}, b;y, subject to the constraints
Yitiaiyi <cjforj=1,2,...,nandy; = 0Ofori = 1, 2,..., m.” Similarly, for the
problem: “Maximize Z = }7}_, c;x; subject to the constraints }}_; a;;x; < b; fori =1,
2,...,mandx; = 0for j =1,2,...,n” the dual problem is as follows: “Minimize
Y = ), biy; subject to the constraints )i, a;jy; = ¢jfor j=1,2,...,nand y; = 0
fori=1,2,..., m.”

EXAMPLE 5.4.3: Maximize Z = 6x + 8y subject to the constraints 5x +
2y <20,x+2y <10,x = 0,and y = 0. State the dual problem and find its
solution.
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SOLUTION: First, the original (or primal) problem is solved. The ob-
jective function for this problem is represented by zx. Finally, the set of
inequalities for the primal is defined to be inegsx. Using the command

ConstrainedMax [zx, ineqgsx, {x[1],x[2]}],

the maximum value of zx is found to be 45.

In[1095] := Clear|[zx, zy, X, Yy, valsx, valsy, ineqgsx,
inegsy]
In[1096]:= zx=6x[1] +8x[2];

inegsx = {5x[1] +2x[2] <20, x[1] +2x[2] < 10};

In[1097] := ConstrainedMax[zx, ineqgsx, {x[1], x[2]}]
15

5
out [1097]= {45, {x[1] > > x[2] > ?}}

Because in this problem we have ¢; = 6, ¢c; = 8, by = 20, and b, = 10,
the dual problem is as follows: Minimize Z = 20y; + 10y, subject to the
constraints 5y; + y» = 6, 2y; + 2y, = 8, y; = 0, and y, = 0. The dual is
solved in a similar fashion by defining the objective function zy and
the collection of inequalities inegsy. The minimum value obtained by
zy subject to the constraints inegsy is 45, which agrees with the result
of the primal and is found with

ConstrainedMin [zy, ineqgsy, {y[1],y[2]}].

In[1098]:= zy=20y[1] +10y[2];
inegsy = {5y[1] +y[2] 26, 2y[1] +2y[2] 2 8};

In[1099] := ConstrainedMin|[zy, inegsy, {y[1],yI[2]}]
1 7
{es, {v(11 > 2, v(21 > S }}

Out [1099]

Of course, linear programming models can involve numerous variables. Consider
the following: given the standard form linear programming problem in equations

X1 by
b .
(5.5), letx = x:z , b = :2 ,Cc = (c1 cy - c,,), and A denote the m x n matrix
xn bﬂl
ag apn Ain

@ amrw azz,, . Then the standard form of the linear programming

Am1 Am2 T Amn
problem is equivalent to finding the vector x that maximizes Z = c - x subject
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to the restrictions Ax = band x; = 0, x, = 0, ..., x, = 0. The dual problem is:
“Minimize Y = y-b wherey = (yl ya oo ym) subject to the restrictions yA < ¢
(componentwise) and y; =0,y, =0,...,y, =0.”

The command

LinearProgramming[c, A, bl

finds the vector x that minimizes the quantity Z=c.x subject to the restrictions
A.x>=b and x>=0. LinearProgramming does not yield the minimum value of
Z as did ConstrainedMin and ConstrainedMax and the value must be deter-
mined from the resulting vector.

EXAMPLE 5.4.4: Maximize Z = 5x; — 7x, + 7x3 + 5x4 + 6x5 subject to the
constraints 2x; + 3x, + 3x3 + 2x4 + 2x5 = 10, 6x1 + S5xp + 4x3 + x4 + 4x5 = 30,
—3)61 - 2)62 - 3)63 —4X4 = —5, —X] — X2 — X4 = —10, and X = Ofori= 1, 2, 3,
4, and 5. State the dual problem. What is its solution?

» 10
" 30
SOLUTION: For this problem, x = |x;| b=| "o }ec=(5 -7 7 5 )
H -10
X5

2 3 3 2
6 5 4 1
-3 -2 -3 -4
-1 -1 0O -1 0
and then matrix A is entered and named matrixa.

and A = . First, the vectors c and b are entered

S~ N

In[1100] := Clear[matrixa, x,y, c, bl
c¢={5,-7,7,5,6};b={10,30, -5, -10};

matrixa = {{2,3,3,2,2},{6,5,4,1,4},
{_31 _21 _31 _41 0}1 {_11 _ll ol _11 0}};

Next, we use Array[x,5] to create the list of five elements
{x[1]1,x[2],...,x[5]} named xvec. The command Table [x[i],
{i, 1, 5}] returns the same list. These variables must be defined before
attempting to solve this linear programming problem.

In[1101] := xvec = Array|[x, 5]
Out[1101]= {x[1],x[2],x[3],x[4],x[5]}
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After entering the objective function coefficients with the vector c, the
matrix of coefficients from the inequalities with mat rixa, and the right-
hand side values found in b; the problem is solved with

LinearProgramming [c, matrixa, b].

The solution is called xvec. Hence, the maximum value of the objective
function is obtained by evaluating the objective function at the variable
values that yield a maximum. Because these values are found in xvec,
the maximum is determined with the dot product of the vector ¢ and
the vector xvec. (Recall that this product is entered as c.xvec.) This
value is found to be 35/4.

In[1102] := xvec = LinearProgramming[c, matrixa, b]
35

out [1102] = {o ,0,0, 8}

In[1103]:= c.xvec

Out [1103]= %

Because the dual of the problem is “Minimize the number Y=y .Db sub-
ject to the restrictions y.A<c and y>0,” we use Mathematica to calcu-
latey.band y.A. Alist of the dual variables {y [1] ,y[2],v[3],v[4]}
is created with Array [y, 4]. This list includes four elements because
there are four constraints in the original problem. The objective func-
tion of the dual problem is, therefore, found with yvec.b, and the left-
hand sides of the set of inequalities are given with yvec.matrixa.

In[1104]:= yvec = Arrayly, 4]

Out [1104]= {y[1],vy[2],yI[3],vI[4]}

In[1105]:= yvec.b

Out [1105]= 10y[1] +30y[2] -5y[3] -10y[4]

In[1106] := yvec.matrixa

out [1106] = {2y[ ]+6y[2] -3yI[3] -yI[4],
y[1] +5y([2] -2y[3] -v[4],
y[1l] +4y[2] -3y[3],
1

y[1]l +y[2] -4y[3] -vy[4],2y[1] +4vy[2]}
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Hence, we may state the dual problem as:

Minimize ¥ = 10y; + 30y, — 5y3 — 10y4 subject to the constraints
2y1 406y, = 3y3 =y <5

3y1+5y2 = 2y3 —ya < -7

3y; +4y, —3y3 =7

2y1+y2—4y3 =y <5

2y +4y, <6

andy;>0fori=1,2,3,and 4.
]

Application: A Transportation Problem

A certain company has two factories, F1 and F2, each producing two products, P1
and P2, that are to be shipped to three distribution centers, D1, D2, and D3. The
following table illustrates the cost associated with shipping each product from
the factory to the distribution center, the minimum number of each product each
distribution center needs, and the maximum output of each factory. How much
of each product should be shipped from each plant to each distribution center to
minimize the total shipping costs?

F1/P1 | F1/P2 | F2/P1 | F2/P2 | Minimum
D1/P1 $0.75 $0.80 500
D1/P2 $0.50 $0.40 400
D2/P1 $1.00 $0.90 300
D2/P2 $0.75 $1.20 500
D3/P1 $0.90 $0.85 700
D3/P2 $0.80 $0.95 300
Maximum Output | 1000 400 800 900

SOLUTION: Let x; denote the number of units of P1 shipped from
F1 to D1; x, the number of units of P2 shipped from F1 to D1; x; the
number of units of P1 shipped from F1 to D2; x4 the number of units of
P2 shipped from F1 to D2; x5 the number of units of P1 shipped from
F1 to D3; x¢ the number of units of P2 shipped from F1 to D3; x; the
number of units of P1 shipped from F2 to D1; xg the number of units of
P2 shipped from F2 to D1; xy the number of units of P1 shipped from
F2 to D2; xj9 the number of units of P2 shipped from F2 to D2; x;; the
number of units of P1 shipped from F2 to D3; and x;, the number of
units of P2 shipped from F2 to D3.
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Then, it is necessary to minimize the number

Z =.75x1 +.5xp + x3 +.75x4 + .9x5 + .8x¢ + .8x7

+ .4xg + .9x9 + 1.2x19 + .85x11 +.95x12

subject to the constraints x; + x3 + x5 < 1000, x» + x4 + x5 < 400, x7 +
X9 + x11 < 800, xg + x10 + x12 < 900, x; + x7 = 500, x3 + x9 = 500,
X5 + X711 = 700, X2 + Xg = 400, X4 + X190 = 500, X6 + X1 = 300, and Xi
nonnegative for i = 1,2, ..., 12. In order to solve this linear program-
ming problem, the objective function which computes the total cost,
the 12 variables, and the set of inequalities must be entered. The coeffi-
cients of the objective function are given in the vector c. Using the com-
mand Array [x,12] illustrated in the previous example to define the
list of 12 variables {x[1] ,x[2],...,x[12]}, the objective function
is given by the product z=xvec.c, where xvec is the name assigned
to the list of variables.

In[1107] := Clear[xvec, z, constraints, vars, c]

c¢={0.75,0.5,1,0.75,0.9,0.8,0.8,
0.4,0.9,1.2,0.85,0.95};

In[1108] := xvec = Array[x, 12]
,x[4],x[5]

Out[1108]= {x[1],x[2],x[3] ’ ’
[9],x[10], x[11], x[12]}

x[7],x[8],x

In[1109] := z = xvec.cC

Oout [1109]= 0.75x[1] +0.5x[2]
0.9x[5] +0.8x%[6
0.9x[9] +1.2x[1

+x[3]+0.75x[4]+
]+0.8x[7]+0.4x[8]+
0] +0.85x[11] +0.95x[12]

The set of constraints are then entered and named constraints for
easier use. Therefore, the minimum cost and the value of each variable
which yields this minimum cost are found with the command

ConstrainedMin [z, constraints, xvec].

In[1110] := constraints = {x[1] +x[3] +x[5] <1000,
x[2] +x[4] +x[6] <400,
x[7] +x[9] +x[11] < 800,
x[8] +x[10] +x[12] <900, x[1] +x[7] 2500,
x[3] +x[9] 2300, x[5] +x[11] =700,
x[2] +x[8] 2400, x[4] +x[10] >500,
x[6] +x[12] >300};
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In[1111] := values = ConstrainedMin[z, constraints, xvec]
Out[1111]= {2115., {x[1] »500.,%x[2] »0.,x[3]~>0.,
x[4] - 400.,x[5] -200.,x[6] >0.,
x[7] »>0.,x[8] »400.,x[9] »300.,
x[10] »100.,x[11] -500.,x[12] -300.}}

Notice that values is a list consisting of two elements: the minimum
value of the cost function, 2115, and the list of the variable values
{x[1]1->500,x[2]->0, ...}.Hence, the minimum cost is obtained
with the command values [[1]] and the list of variable values that
yield the minimum cost is extracted with values [ [2]].

In[1112] := values[[1]]
Out [1112]= 2115.

In[1113]:= values[[2]]

Out[1113]= {x[1] »500.,x[2] »0.,x%x[3]~>0.,
x[4] »>400.,x[5] »200.,%x[6] >0.,

x[7] -0.,x[8] -400.,x[9] - 300.,

x[10] - 100.,x[11] -»500.,x[12] »300.}
Using these extraction techniques, the number of units produced by
each factory can be computed. Because x; denotes the number of units
of P1 shipped from F1 to D1, x3 the number of units of P1 shipped
from F1 to D2, and x5 the number of units of P1 shipped from F1 to
D3, the total number of units of Product 1 produced by Factory 1 is
given by the command x [1]+x[3]1+x[5] /. values[[2]] which
evaluates this sum at the values of x [1], x [3], and x [5] given in the

list values[[2]].

In[1114]:= x[1] +x[3] +x[5] /. values[[2]]
Out [1114]= 700.

Also, the number of units of Products 1 and 2 received by each distribu-
tion center can be computed. The command =xI[3]+x[9] /.
values[[2]] gives the total amount of P1 received at D1 because
x [3] =amount of P1 received by D2 from F1 and x[9]= amount of
P1 received by D2 from F2. Notice that this amount is the minimum
number of units (300) of P1 requested by D1.

In[1115]:= x[3] +x[9] /. values[[2]]
Out [1115]= 300.

The number of units of each product that each factory produces can be
calculated and the amount of P1 and P2 received at each distribution
center is calculated in a similar manner.
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In[1116]:= {x[1] +x[3] +x[5], x[2] +x[4] +x[6],
x[7] +x[9] +x[11],
x[8] +x[10] +x[12], x[1] +x[7].,
x[3] +x[9],x[5] +x[11], x[2] +x[8],
x[4] +x[10], x[6] +x[12]} /.
values[[2]]//TableForm

700.
400.
800.
800.
500.
300.
700.
400.
500.
300.

Out[1116]=

From these results, we see that F1 produces 700 units of P1, F1 produces
400 units of P2, F2 produces 800 units of P1, F2 produces 800 units of
P2, and each distribution center receives exactly the minimum number
of each product it requests.

|

5.5 Selected Topics from Vector Calculus

. Basic operations on two and
5.5.1 Vector-Valued Functions three-dimensional vectors
are discussed in Section

. . . . 5.142.
We now turn our attention to vector-valued functions. In particular, we consider

vector-valued functions of the following forms.

Plane curves: r(t) = x(0)i + y(@)j (5.6)

Space curves: r(t) = x()i + y@)j + z()k (5.7)

Parametric surfaces: r(s, t) = x(s, i + y(s, 1)j + z(s, )k (5.8)
Vector fields in the plane: F(x, y) = P(x, Vi + O(x, y)j (5.9)

Vector fields in space: F(x,y,2) = P(x,y, 2)i + O(x, y, 2)j + R(x, y, 2k  (5.10)

For the vector-valued functions (5.6) and (5.7), differentiation and integration are
carried out term-by-term, provided that all the terms are differentiable and inte-
grable. Suppose that C is a smooth curve defined by r(¢), a <t < b.
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It is a good exercise to show
that the curvature of a circle
of radius ris 1/r.
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1. If r'(r) # O, the unit tangent vector, T(¢), is

'@
Tl

T()

2. If T'(t) + 0, the principal unit normal vector, N(z), is

T
N@ = @l

3. The arc length function, s(¢), is
3
s(t) = f e’ (w)ll du.

In particular, the length of C on the interval [a, b] is fa b I’ (2)Il dt.
4. The curvature, «, of C is

IOl a@)-N@) '@ x e’ @)l
K= el vz e (@)l

>

where v(¢) = r'(t) and a@t) = r”’ (¥).

EXAMPLE 5.5.1 (Folium of Descartes): Consider the folium of Descartes,

3at - 3ar? |
O a2
1+ 1+t3‘]

r(t) =

fort # —1,if a = 1. (a) Find r'(¢), "’ (¢) and fr(t)dt. (b) Find T(¢) and
N(). (c) Find the curvature, «. (d) Find the length of the loop of the
folium.

SOLUTION: (a) After defining r(t),

In[1117]:= r[t.]1={3 a t/(1+t"3),3 a t72/(1+t"3)};
a=1;

we compute r’'(f) and f r(t)dt with *, ' ' and Integrate, respectively.
We name r’(¢) dr, r”’(¢r) dr2, and f r(t)dt ir.

In[1118]:= dr = Simplify[r'[t]]
dr2 = Simplify[r”[t]]

ir = Integrate[r[t], t]
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_ 3 _ 3
Out[lllB]:{3 6 t 3t (2+t)}

(1L+t3)2 (1+t3)?
18 t2 (-2+t%) 6 (1-7 t3+t°
out[1118]= { ( : ), el . )
(L +t3) (L+t3)
-1+2 t
out [1118]= {\/3 ArcTan | | -Logl[1+t]+

V3

% Log [1-t+t?], Log [1+t”]}

(b) Mathematica does not automatically make assumptions regarding
the value of ¢, so it does not algebraically simplify Ilr’()ll as we might

typically do unless we use PowerExpand PowerExpand [Sqrt [x2]]
returns x.

In[1119] := nr = PowerExpand[Sqrt[dr.dr]//Simplify]
3/1+4 £2-4 £3-4 £t5+4 t6+t8
(1+1t3)°?

out [1119]=

The unit tangent vector, T(¢) is formed in ut.

In[1120] := ut =1/nr dr//Simplify
1-2 t3
out [1120]= { /
V1+4 £2-4 t3-4 t5+4 t6+t8
t (-2+t3) }

Vi+4 t2-4 t3-4 t5+4 t6+t8

We perform the same steps to compute the unit normal vector, N(¢). In
particular, note that dutb = I'T"(?)I.

In[1121] := dut =D[ut, t]//Simplify
2t (-2+t3) (1+t%)?
out[1121]= { 375
(1+4 t2-4 t3>-4 t>+4 t°+t8)
2 (-1+3 t®+2 t9)
- 3/2}

(1+4 t2-4 t>-4 t5+4 t6+t8)
In[1122] := duta = dut.dut//Simplify
4 (1+t3)?

out [1122] = .
(1+4 t2-4 £3-4 t5+4 t6+1t?)

In[1123] := dutb = PowerExpand[Sqrt[duta]]
2 (1+t%)?

Out [1123] =
1+4 t2-4 t3-4 t5+4 t6+¢t8
In[1124] := nt = 1/dutb dut//Simplify
t (-2+t?)
out[1124]= { ,
V1+4 t2-4 t3-4 t5+4 t6+¢t8
1-2 t3 }

V1+4 t2-4 £3 -4 t5+4 t6+t8
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The radius of the osculating
circle is 1/k; the position
vector of the center is
r+ —N.

K

Graphics [Circle [{x0,

yo}, rllisa
two-dimensional graphics
object that represents a
circle of radius r centered at
the point (xp, yo). Use Show
to display the graph.
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1T ()1l

(c) We use the formula « = )

In[1125] := curvature = Simplify[dutb/nr]
2 (1+t3)?

Out [1125] =
(1+4 t2-4 t3-4 t5+4 t6+1t8)°2

We graphically illustrate the unit tangent and normal vectors at r(1) =
(3/2, 3/2). First, we compute the unit tangent and normal vectors if t = 1
using /..

In[1126]:= utl=ut/.t->1
out [1126] = {_‘ji, ii}
V2' /2
In[1127] := ntl=nt/.t->1
out [1127] = {—795— —iiﬂ
V2' A2

We then compute the curvature if 7 = 1 in smallk. The center of the
osculating circle at r(1) is found in x0 and y0.

In[1128] := smallk = curvature/.t- >1
N[smallk]
N[1l/smallk]

x0

r[t][[1]] -dr.dr
r[[2]]1/(dr[[1]1]dr2[[2]]-
dr2[[1]]1dr[[2]]1)/.t- >1

y0o=r[t][[2]]-
r.dr dr[[2]]1/(dr[[1]1]1dr2[[2]]-
dr2[[1]]dr[[2]])/-t
->1
8 V2

out [1128] = 3
Out [1128]= 3.77124
Out [1128]= 0.265165

21
Out[1128]= —
16
21
Out[1128]= —
16

We now load the Arrow package and graph r(r) with ParametricPlot.
The unit tangent and normal vectors at r(1) are graphed with arrow in
al and a2. The osculating circle at r(1) is graphed with Circle in c1.
All four graphs are displayed together with Show in Figure 5-4.

to determine the curvature in curvature.



5.5 Selected Topics from Vector Calculus

-2

Figure 5-4 The folium with an osculating circle

In[1129] := << Graphics‘Arrow"®

In[1130] := pl = ParametricPlot[Evaluate[r[t]],
{t,-100, 100}, PlotRange- > {{-2, 3}, {-2,3}},
PlotPoints- >200, AspectRatio- >1,
DisplayFunction- > Identity];
p2 = Show[Graphics[{Circle[{x0, y0}, 1/smallk],

Arrow[r[1l], r[1l] +utl],
Arrow[r[1l], r[1l] +ntl]}],
DisplayFunction- > Identity];
Show[pl, p2, DisplayFunction- > $DisplayFunction]

(d) The loop is formed by graphing r(¢) for ¢ = 0. Hence, the length of
the loop is given by the improper integral fow llr ()l dt, which we com-
pute with NIntegrate.

In[1131] := NIntegrate[nr, {t, 0, ®}]

Out [1131]= 4.91749

397
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Recall that the gradient of z = f(x,y) is the vector-valued function Vf(x,y) =
(felx, y), fy(x,y)). Similarly, we define the gradient of w = f(x, y, 2) to be

0 4]
VI Y, 2) = (&3, 2, fi06 3, 2), fulx 3, 2)) = il + %J + a%k (5.11)

A vector field F is conservative if there is a function f, called a potential func-
tion, satisfying vf = F. In the special case that F(x,y) = P(x, )i + O(x, y)j, F is
conservative if and only if

oP 00

dy  ox
The divergence of the vector field F(x, y, z) = P(x, y, 2)i + O(x, ¥, 2)j + R(x, y, 2)k is the

scalar field
oP OQ OR
F=v-F=—_— 12
div Ep (9y o (5.12)
The Div command, which is contained in the VectorAnalysis package, can be
used to find the divergence of a vector field:

Div[{P(x,v,2),Q(x,v,2z) ,R(X,y,2)},Cartesian(x,y, z]]

computes the divergence of F(x, y, z) = P(x, y, 2)i + O(x, ¥, 2)j + R(x, y, 2k. The lapla-
cian of the scalar field w = f(x, y, z) is defined to be

62f Pf Pf

div(vf)=v-(Vf) = vf_ ay +6z

=Af. (5.13)
In the same way that Div computes the divergence of a vector field, Laplacian,
which is also contained in the VectorAnalysis package, computes the laplacian
of a scalar field.

The curl of the vector field F(x, y,z) = P(x, y, 2)i + Q(x, ¥, 2)j + R(x, y, 2)k is

curl F(x,y,2) = VX F(x y,2)

i j k
_| 2 o 2
| o o o (5.14)

P(x,y,2) QX2 RXxY2)
(aR 8Q) (aR aP) +(8Q 8P)k.

ady 0z

ox 0z

ox Oy

If F(x,y,2) = P(xy 21 + Qx,y,2)j + R(x, y, 2k, F is conservative if and only if
curl F(x, y, z) = 0, in which case F is said to be irrotational.
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EXAMPLE 5.5.2: Determine if
F(x,y) = (1 - 2x2)ye_x2_y2i + (1 - 2y2)xe_x2_y2j

is conservative. If F is conservative find a potential function for F.

SOLUTION: We define P(x,y) = (1-2x%)ye™ ™" and Q)
(1 - 2y2)xe‘x2‘y2. Then we use D and Simplify to see that Py(x, )
0,(x, y). Hence, F is conservative.

In[1132]:= plx.,y.]1=(1-2x"2)y Exp[-x"2-y"2];

qlx_,y1=(1-2y"2)x Exp[-x"2-y"2];

In[1133]:= Simplify[D[p[x,y].,y]l]

Simplify[D[qg[x, y], x]1]
out[1133]= e* ¥ (-1+2 x*) (-1+2 y?)
out[1133]= e* ¥ (-1+2 x*) (-1+2 y?)

We use Integrate to find f satisfying vf = F.

In[1134]:= il = Integrate[p[x, y], x] +g[y]
out[1134]= e ¥ x y+gly]

In[1135]:= Solve[D[il, y] ==q[x,y], g [yl]
Out [1135]= BoxData({{g [y] - 0}})

Therefore, g(y) = C, where Cis an arbitrary constant. Letting C = 0 gives
us the following potential function.

In[1136]:= £=1il/.g[yl- >0
out [1136]= e X x y

Remember that the vectors F are perpendicular to the level curves of f.
To see this, we normalize F in uv.

In[1137]:= uv = {p[x,y],qlx,y1}/
Sart[{p[x,yl,alx,y1}.{plx, ¥l ,qlx,¥1}1//
Simplify

2

e ™Y (L14+2 x%) vy

out [1137]= { -

Jez (x2+y2> (y2+4 x* y2+x? (1-8 y2+4 y*))

2

e ™Y x (~1+2 y?) }

\/e2 (X2+y2> (y?2+4 x* y2+x% (1-8 y2+4 y*))
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o

-1.5 -1 -0.5 0 0.5

VN
1
Figure 5-5 The vectors F are perpendicular to the level curves of f

We then graph several level curves of f in cp with ContourPlot and
several vectors of uv with PlotVectorField, which is contained in
the PlotField package, in fp. We show the graphs together with
Show in Figure 5-5.

In[1138] := << Graphics‘'PlotField:

cp = ContourPlot[£f, {x, -3/2,3/2}, {y,-3/2,3/2},
ontours- > 15, ContourShading- > False,
PlotPoints- >60,D
isplayFunction- > Identity]:

In[1139] := fp = PlotVectorField[uv, {x, -3/2,3/2},
{y,-3/2,3/2},DisplayFunction- > Identity];

Power :: "infy" :

"InfiniteexpressionlOencountered."
Power :: "infy" :
"InfiniteexpressionlOencountered."

In[1140] := Show[cp, fp,
DisplayFunction- > $DisplayFunction]

Note that we can use PlotGradientField, which is contained in
the PlotField package, to graph several vectors of v f. However, the
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vectors are scaled and it can be difficult to see that the vectors are per-
pendicular to the level curves of f. The advantage of proceeding this
way is that by graphing unit vectors, it is easier to see that the vectors
are perpendicular to the level curves of f in the resulting plot.

|

EXAMPLE 5.5.3: (a) Show that
F(x,y,2) = —100% + (32° - 10x%y)j + 9yz’k

is irrotational. (b) Find f satisfying vf = F. (c) Compute div F and v*f.

SOLUTION: (a) After defining F(x, y, z), we use Curl, which is con-
tained in the VectorAnalysis package, to see that curl F(x, y, z) = 0.

In[1141] := << Calculus‘VectorAnalysis"®

In[1142] := BoxData({Clear[£f],
flx,y,z]={-10x y°2,
3z73-10x"2 y,9 v z "2}})

Out [1142] = {—10 bid y2,—1o x2 y+3 z3, 9 v 22}

In[1143]:= Curl[f[x,y, 2]]

Out [1143]= {0,0,0}

(b) We then use Integrate to find w = f(x, y, z) satisfying vf = F.

In[1144]:= il = Integrate[f[x,y, z]1[[1]],x] +gly, z]
out [1144]= -5 x* y* +gly, z]

In[1145]:= i2 =D[il, y]
Out [1145]= BoxData (-10 x? y+g*% [y, z])

In[1146] := BoxData(Solve[i2 == f[x,vy, z]1[[2]11, 9™ % [y, z]1)
out [1146]= BoxData ({{g™*? [y, z] -3 2°}})

In[1147]:= i3 = Integrate[3z"3, y] +h[z]
Out[1147]= 3 y 2z’ +h[z]

In[1148]:= i4=1il1/.g[y, z]- >1i3
Out [1148]= -5 x* y*+3 y z°>+h[z]

In[1149] := Solve[D[i4, z] == £[x,y,2][[3]]]
Out [1149]= BoxData({{h'[z] - 0}})
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With h(z) = C and C = 0 we have f(x, y, z) = —=5x%y* + 3yz°.
In[1150] := 1f = -5 x2 y2 +3 y z3;

vf is orthogonal to the level surfaces of f. To illustrate this, we use
ContourPlot3D, which is contained in the ContourPlot3D pack-
age, to graph the level surface of w = f(x,,2) corresponding to w =
—1for -2 < x <2, -2 <y=<2and -2 < z < 2 in pf. We then
use PlotGradientField3D, whichis contained in the PlotField3D
package, to graph several vectors in the gradient field of f over the
same domain in gradf. The two plots are shown together with Show
in Figure 5-6. In the plot, notice that the vectors appear to be perpen-
dicular to the surface.

In[1151] := << Graphics‘'PlotField3D"

<< Graphics‘ContourPlot3D"

In[1152] := pf = ContourPlot3D[1f, {x, -2, 2}, {y, -2, 2},
{z,-2,2}, PlotPoints- > {5, 7},
DisplayFunction- > Identity];

In[1153]:= gf = PlotGradientField3D[1lf, {x, -2, 2},
{YI _21 2}1 {zl _21 2}1
DisplayFunction- > Identity];

In[1154] := Show[pf, gf,
DisplayFunction- > $DisplayFunction]

For (c), we take advantage of Div and Laplacian. As expected, the
results are the same.

In[1155]:
Out [1155]= -10 x*-10 y*+18 y =z

Div[f[x,y, z], Cartesian[x,y, z]]

In[1156] := Laplacian[lf, Cartesian[x,y, z]]
Out [1156]= -10 x*-10 y*+18 y =z

5.5.2 Line Integrals

If F is continuous on the smooth curve C with parametrization r(¢), a < t < b, the

line integral of F on C is
b
fF -dr = f F.r'@)dt (5.15)
C a
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Figure 5-6 Vv f is orthogonal to the level surfaces of f

If F is conservative and C is piecewise smooth, line integrals can be evaluated
using the Fundamental Theorem of Line Integrals.

Theorem 19 (Fundamental Theorem of Line Integrals). If F is conservative and the
curve C defined by r(t), a < t < b is piecewise smooth,

f F-dr = £ (b)) - f (¥(@)) (5.16)
C

where F = vf.

EXAMPLE 5.5.4: Find fc F-dr where F(x, y) = (¢ — ye ™) i+(e™ —xe™)j
and C is defined by r(f) = costi+1In(2t/n) j, n/2 <t < 4.
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We assume that the symbol
§ means to evaluate the
integral in the positive (or
counter-clockwise) direction.
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SOLUTION: We see that F' is conservative with D and find that f(x, y) =
xe™ + ye™ satisfies Vf = F with Integrate.

In[1157]:= £[x_,y-] = {Exp[-y] -y Exp[-x],
Exp[-x] -x Exp[-y]l};r[t.] = {Cos[t],
Log[2t/7]};

In[1158] := BoxData ({D[£f[x,y][[1]1],y]//Simplify,

D[f[x,y]1[[2]1],x]//Simplify })
Out [1158]= -e*-e™¥

Out [1158]= -e™*-e™¥

In[1159] := 1f = Integrate[f[x, y][[1]], x]
Out [1159]= e x+e ™ vy

Hence, using (5.16),

f Fodr = (v +ye )T 2302 é ~ 0.890.

c x=0,y=0 e

In[1160] := xr[t.] =Cos[t];
yr[t.] =Log[2 t/x];
{xr[n/2],yrln/2]}

{xr[4n], yr[4r]}
Out [1160]= {0, 0}
Out [1160]= {1, Log[8]}

In[1161] := Simplify[lf/.{x->1,y- >Log[8]}]

N[%]
out [1161] = %AFEfgigl

e
Out [1161]= 0.889984

If C is a piecewise smooth simple closed curve and P(x, y) and Q(x, y) have continu-
ous partial derivatives, Green’s Theorem relates the line integral
9§C (P(x, y)dx + Q(x, y) dy) to a double integral.

Theorem 20 (Green’s Theorem). Let C be a piecewise smooth simple closed curve in
the plane and R the region bounded by C. If P(x,y) and Q(x, y) have continuous partial

derivatives on R,
0 oP
56 (P(x, y)dx + Qs ) dy) = f f (222 aa (5.17)
C R ox 6)7
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Figure5-7 y=x’andy=+/x,0=<x=<1

EXAMPLE 5.5.5: Evaluate

95(6’" - siny) dx + (cosx - e_y) dy
c

where C is the boundary of the region between y = x* and x = y*.

SOLUTION: After defining P(x,y) = e™* —siny and Q(x, y) = cosx —e™,
we use Plot to determine the region R bounded by C in Figure 5-7.

In[1162]:= p[x.,y-] =Exp[-x] - Sin[y]:;
q[x_,y-] =Cos[x] -Exp[-y];
Plot[{x"2, Sqrt[x]}, {x,0,1.1},
PlotStyle- > {GrayLevel[0], GrayLevel[0.3]},
AspectRatio- > Automatic]
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Using equation (5.17),

gg( '—smy)dx—i-(cosx—e dy = ff(()fQ_c’LP dA

:f (cosy — sinx) dA
R

L~
= f f (cosy — sinx) dydx,
0 Jx?

In[1163] := dqdp = Simplify[D[q[x,y],x] -D[p[x,v],v]ll

Out [1163]= Cos[y] - Sin[x]
which we evaluate with Integrate.

In[1164] := Integrate[dqdp, {x, 0,1}, {y,x"2, Sqrt([x]}]

N[%]

Out [1164]= 2\/; Fresnelc[\/;] f Fresnels[\/z}
2 Tt 2 Tt

+4 Sin[1]

Out[1164]= 0.151091

Notice that the result is given in terms of the FresnelS and FresnelC
functions, which are defined by

FresnelS[x]:f sin(ztz) dt and FresnelC[x]:f cos(ztz) dr.
0 2 0 2

A more meaningful approximation is obtained with N. We conclude

that
L~
ff (cosy —sinx) dydx ~ 0.151.
0 Ji?
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5.5.3 Surface Integrals

Let S be the graph of z = f(x,y) (y = h(x, 2), x = k(3, 2)) and let R, (R, R,;) be the
projection of S onto the xy (xz, yz) plane. Then,

f fs ¢00 3, 9 dS = f fR g(x,y,f(x,y))\/ o P + [ [ +1d4  (5.18)

- f f g 00 hx, 2, )\ [ D1 + [ P + 1dA (5.19)
R-\'Z

= f f g (k(y, 2),y, z)\/ [k, z)]2+[kz(y, D + 1dA. (5.20)
Ry

If S is defined parametrically by

r(s, 1) = x(s, )i+ y(s,)j + z(s, )k, (5,t) €R

f f g0y, 2)dS = f f ¢ (x5, 1) [Irs X 1,]| dA (5.21)
S R

_Ox, Oy, 0z _Ox, Oy, 0z
= Bs1+(9s']+6sk and r; = 6!1+Bt‘]+6tk’

the formula

where

rS
is also useful.

Theorem 21 (The Divergence Theorem). Let Q be any domain with the property that
each line through any interior point of the domain cuts the boundary in exactly two points,
and such that the boundary S is a piecewise smooth closed, oriented surface with unit
normal n. If F is a vector field that has continuous partial derivatives on Q, then

ffodeV=ffQdidevszSF.ndS 522)

In (5.22), f J; F - ndS is called the outward flux of the vector field F across the
surface S. If S is a portion of the level curve g(x,y) = C for some g, then a unit
normal vector n may be taken to be either

n= 8 or n=-—%
v gll v gl
If S is defined parametrically by
r(s, 1) =x(s,Di+y(s,0)j +z(s, )k, (5,1) € R,

a unit normal vector to the surface is
r, X1,

llrg X 1l

407

For our purposes, a surface
is oriented if it has two
distinct sides.
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Div is contained in the
VectorAnalysis
package. You do not need to
reload the
VectorAnalysis package
if you have already loaded it
during your current
Mathematica session.

Chapter 5 Matrices and Vectors

and (5.22) becomes

ffF-ndS:ffF-(rsxr,)dA.
s R

EXAMPLE 5.5.6: Find the outward flux of the vector field
F(x,y,2) = (xz +xy2°) i + (xy + X°yz) j + (yz + 0°2) k

through the surface of the cube cut from the first octant by the planes
x=1,y=1,andz=1.

SOLUTION: By the Divergence theorem,

ff F.ndAszf v Fdv.
cube surface cube interior

Hence, without the Divergence theorem, calculating the outward flux
would require six separate integrals, corresponding to the six faces of
the cube. After defining F, we compute Vv - F with Div.

In[1165] := << Calculus‘VectorAnalysis"®

In[1166]:= f[x ,y ,z]={x2+xy 272, x y+x 2y 2,y 2
+x yv°2 z};

In[1167] := divEf =Div[f[x,y, z], Cartesian[x,y, z]]
Out [1167]= X+y+X V2 +2+%X° z+y 2°

The outward flux is then given by

1 1 1
fff v.deszfv.Fdzdydx=z,
cube interior 0 0 0

which we compute with Integrate.

In[1168] := Integrate[divE, {z,0,1}, {y, 0,1}, {x,0,1}]
Out [1168]= 2

Theorem 22 (Stokes” Theorem). Let S be an oriented surface with finite surface area,
unit normal n, and boundary C. Let F be a continuous vector field defined on S such that
the components of ¥ have continuous partial derivatives at each nonboundary point of S.

SEFJI‘: ffcurlF.ndS. (5.23)
C s
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In other words, the surface integral of the normal component of the curl of F taken
over § equals the line integral of the tangential component of the field taken over
C.In particular, if F = P(x, y, 2)i + Q(x, y, 2)j + R(x, y, 2)k, then

f (P(x, y, 2)dx + Q(x, v, 2)dy + R(x, y, 2)dz) = f f curl F - ndsS.
c s

EXAMPLE 5.5.7: Verify Stokes’ theorem for the vector field
Fx, 2 = (x2 —y)i+(y2 —z)j +(x+zz)k

and § the portion of the paraboloid z = f(x, y) =9 - (x2 + yz), z=0.

SOLUTION: After loading the VectorAnalysis package, we define
F and f. The curl of F is computed with Curl in curlF.

In[1169] := << Calculus‘VectorAnalysis"®

In[1170] :

capf[x,y.,z]l={x"2-y,y"'2-2,x+272};
flx,y.1=9-(x"2+y"2);
In[1171] := curlcapf = Curl[capf[x,y, z],

Cartesian[x, y, z]]
Out [1171]= {1,-1,1}

Next, we define the function A(x, y,z) = z — f(x, ¥). A normal vector to

the surface is given by VA. A unit normal vector, n, is then given by
vh

n=—,
v All

In[1172] := BoxData({h[x_,y_,z.] =z - f[x, y], normtosurf =
Grad[h[x,y, z], Cartesian[x, vy, z]]})
Out [1172]= -9+x*+y* +z

out[1172]= {2 x,2 vy, 1}

which is computed in un.

In[1173]:= un = Simplify
[normtosurf/Sqrt [normtosurf.normtosurf] ]
2 x 2y

Jiva x2+4 y2 AJ1+4a x2+4 y*
1

Vi+a x2+4 y2 )
The dot product curl F - n is computed in g.

out [1173]= {

In[1174] := g=Simplify[curlcapf.un]
1+2 x-2 vy

V1+4 x%2+4 y?

Out [1174]=
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In this example, R, the Using the surface integral evaluation formula (5.18),

projection of f(x, y) onto the

xy-plane, is the region

somtestygsmgnotne [ [curl Fonds = [ [ g fos y))\/ 1o P + [ ] + 1dA
S R

circle x*> +y* = 9.

S :
= f . f e 8 S U WP+ [£0s ]+ 1dydx

9—x2

= Or,
which we compute with Integrate.

In[1175] := tointegrate = Simplify[(g/.z- > £[x,y])*
Sqrt[D[f[x,y],x]"2+D[f[x,¥vy],y] 2+1]]
Out [1175]= 1+2 x-2 vy

In[1176] := il = Integrate[tointegrate, {x, -3, 3},
{y,-Sqrt[9-x"2], Sqrt[9-x"2]}]
Out[1176]= 9
To verify Stokes’ theorem, we must compute the associated line inte-
gral. Notice that the boundary of z = f(x,y) = 9 — 2 +y),z=0,is
the circle x*> + y* = 9 with parametrization x = 3cost, y = 3sint, z = 0,
0 <t < 2n. This parametrization is substituted into F(x, y, z) and named
pvE.

In[1177] := pvE =capf[3Cos[t], 3Sin[t], 0]
out[1177]= {9 Cos[t]?-3 Sin[t], 9 Sin[t]?, 3 Cos[t]}

To evaluate the line integral along the circle, we next define the
parametrization of the circle and calculate dr. The dot product of pvf
and dr represents the integrand of the line integral.

In[1178] := r[t.] = {3Cos[t],3Sin[t], 0};
dr =r'[t]
{-3 Sin[t],3 Cos[t], 0}

Out [1178]
In[1179] := tointegrate = pvf.dr;

As before with x and y, we instruct Mathematica to assume that ¢ is real,
compute the dot product of pvf and dr, and evaluate the line integral
with Integrate.

In[1180] := Integrate[tointegrate, {t, 0, 27}]
Out [1180]= 9 7

As expected, the result is 9.
|
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5.5.4 A Note on Nonorientability

Suppose that S is the surface determined by

r(s, 1) = x(s, )i+ y(s,1)j + z(s, )k, (5,t) €R

and let " o
ry XTIy ry Xr;

_ o T Xrm 5.24
% e, X ol T e Xl (5.24)

where 0. 0 0 0 0 0

x. dy. 0z x, dy. 0z

= 21+ 25+ %k and = Zi+ 25+ %
g 6s1+ 6s'1+65 and t 6t1+ 6t‘]+ ot

if llrg X r;ll # 0. If n is defined, n is orthogonal (or perpendicular) to S. We state
three familiar definitions of orientable.

e S is orientable if S has a unit normal vector field, n, that varies continu-
ously between any two points (x, yo, zo) and (x1, y1, z1) on S. (See [7].)

e S is orientable if S has a continuous unit normal vector field, n. (See [7]
and [19].)

e S is orientable if a unit vector n can be defined at every nonboundary
point of S in such a way that the normal vectors vary continuously over
the surface S. (See [14].)

A path is order preserving if our chosen orientation is preserved as we move along
the path.
Thus, a surface like a torus is orientable.

EXAMPLE 5.5.8 (The Torus): Using the standard parametrization of
the torus, we use ParametricPlot3D to plot the torus if ¢ = 3 and
a = 1 in Figure 5-8.

In[1181] := Clear([r]

c=3;
a=1;

x[s_, t.] = (c+a Cos[s]) Cos[t];
yls_, t] = (c+a Cos[s]) Sin[t];

z[s_.,t.] =a Sin[s];

ris_, t.] = {x[s,t],yls, t]l,z[s, t]};

411

See “When is a surface not
orientable?” by Braselton,
Abell, and Braselton [5] for a
detailed discussion regarding
the examples in this section.

Also see Example 2.3.18.
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Figure 5-8 A torus

In[1182] := threedplt = ParametricPlot3D[r([s, t],
{s, -7, n}, {t, -, r}, Compiled- > False,
PlotPoints- > {30, 30}, AspectRatio- >1,
LightSources -» {{{1.,0.,1.},

GrayLevel[0.3]}, {{1.,1.,1.},

GrayLevel[0.5]}, {{0.,1.,1.},
GrayLevel[0.4]}}, PlotRange- > {{-4, 4},
{-4, 4}, {-1,1}}, BoxRatios- > {4, 4, 1},
AxesLabel- > {"x", "y",6 "z"}]

0
To plot a normal vector field on the torus, we compute a—r(s, 1),
A

In[1183]:= rs=D[r[s, t], s]

Out [1183]= {-Cos[t] Sin[s], -Sin[s] Sin[t], Cos[s]}
0
and Er(s,t).

In[1184]:= rt=D[r[s, t], t]

Out [1184]= {-(3 +Cos[s]) Sin[t], (3 +Cos[sg]) Cos[t], 0}

0 0
The cross product gr(s, 1) X % is formed in rscrossrt.
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In[1185] := rscrossrt = Cross[rs, rt]//Simplify

Out [1185]= {-Cos[s] (3 +Cos[s]) Cos|[t],
-Cos[s] (3+Cos[s]) Sin[t],
-(3+Cos[s]) Sin[s]}

In[1186] := Sqrt[rscrossrt.rscrossrt]//FullSimplify

Out [1186]= +/ (3 +Cos[s])?

Using equation (5.24), we define un: given s and 7, un[s, t] returns a
unit normal to the torus.

In[1187] := Clear[un]un[s_, t_] =
-rscrossrt/Sqrt[rscrossrt.rscrossrt]//
PowerExpand//FullSimplify
Cos s 3+ Cos|s Cos|[t

Out[1187]={ [s] (3+ [s]) [ ]/

(3+Cos[s])?
Cos[s] (3 +Cos[s]) Sin[t]

V(3 +Cos[s])?

(3+Cos[s]) Sin[s] }
(3 +Cos[s])?

In[1188] := Map[PowerExpand, un[s, t]]

Out [1188]= {Cos[s] Cos[t], Cos[s] Sin[t], Sin[s]}

In[1189] := r[s, t]

Out [1189]= {(3+Cos[s]) Cos[t], (3+Cos[s]) Sin[t], Sin[s]}

In[1190] := un[s, t]
Cos[s] (3+Cos[s]) Cos|[t]

(3 +Cos[s])? ’

Cos[s] (3 +Cos[s]) Sin[t]

(3+Cos[s])?
(3 +Cos[s]) Sin[s] }

(3+Cos[s])?

out [1190]= {

To plot the normal vector field on the torus, we take advantage of the
command ListPlotVectorField3D, which is contained in the Plot-
Field3D package that is located in the Graphics folder (or directory).See
Figure 5-9.
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‘8080 Help Browser

Craphics "PlotField3D " ( Go ) ( Close } { Hide Categories )

Built-in Functions Add-ons The Mathematica Book

Getting Started/Demos Other Information Master Index

Wolfram Research._.. » g Introduction ¥y PlotField
PlotField3D
Working with Add... »|}| Algebra rU | Polyhedra
Calculus » Shapes

Standard Packages *  DiscreteMath » Spline m
MathLink » Geometry »_ SurfaceOfRevolution
J/Link » & Graphics » & ThreeScript .
XML Capabilities b ¥ LinearAlgebra + v Common v
Outi)= - Graphics3D - 3]

A variable range specification of fhe form {x. xmin, wnax, dx) adjusts the evaluation grid by specifying step sizes of
dxinthe x direction. An analogous specification in the y and z ranges will adjust the evaluation grid in those directions
You can also adjust the svaluation grid by setting the PlotPoint s option

ListPlotVectorField3D|[ {{ plot a list of vectors based at the given points
oy .oven ) (@, vedz). )]

Wector field plots fom lists.

= This gives an array of random veclors.

npl= array = Flatten[
Table[ {{i. j. k}.

{Random[Real. {-1. 1}].
Random[Real, {-1. 1}].
Random[Real. {-1. 1}]}}.

{i. 7). (3. 7). k. 7}). 2]

= This displays the veclors.

inpl= ListPlotVectorField3D[array]

]
e, [k
i ww)‘é"‘ -

In[1191] := << Graphics‘'PlotField3D"

v

In[1192] :

Clear[vecs]

vecs =
Flatten[Table[{r[s, t],un[s, t]},
{s, -7, n, 2n/14}, {t, -x, 7, 27/29}], 11;

In[1193] := pp2 = ListPlotVectorField3D[vecs,
VectorHeads- > True]

We use Show (illustrating the use of the ViewPoint option) together
with GraphicsArray to see the vector field on the torus together from
various angles in Figure 5-10. Regardless of the viewing angle, the fig-
ure looks the same; the torus is orientable.

In[1194] := gl = Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-5, 5}, {-5, 5}, {-2, 2}},
BoxRatios- > {4, 4,1},
AxesLabel- > {"x", "y",6 "z"},
ViewPoint- > {2.729, -0., 2.}]
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Figure 5-9

In[1195] :

In[1196] :

In[1197]:

In[1198] :

In[1199] :

In[1200] :

g2

g3

g4

g5

g6

Unit normal vector field on a torus

Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-5, 5}, {-5,5}, {-2, 2}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x", "y",6 "z"},
ViewPoint- > {1.365, -2.364, 2.}]

Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-5,5}, {-5, 5}, {-2, 2}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x", "y",6 "z"},
ViewPoint- > {-1.365, -2.364, 2.}]

Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-5, 5}, {-5, 5}, {-2, 2}},
BoxRatios- > {4, 4, 1},

AxesLabel- > {"x", "y",6 "2"},
ViewPoint- > {-2.729, 0., 2.}]

Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-5, 5}, {-5, 5}, {-2, 2}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x",6 "y",6 "z"},
ViewPoint- > {-1.365, 2.364, 2.}]

Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-5, 5}, {-5,5}, {-2, 2}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x",6 "y", "z"},
ViewPoint- > {1.365, 2.364, 2.}]

Show[GraphicsArray[{{gl, g2}, {g3, g4},

{g5,g6}}]11

415
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Figure 5-10 The torus is orientable
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If a 2-manifold, S, has an order reversing path (or not order preserving path), S is
nonorientable (or not orientable).

Determining whether a given surface S is orientable or not may be a difficult
problem.

EXAMPLE 5.5.9 (The Mobius Strip): The Mobius strip is frequently
cited as an examp of a nonorientable surface with boundary: it has
one side and is physically easy to construct by hand by half twisting
and taping (or pasting) together the ends of a piece of paper (for exam-
ple, see [5],[7], [14], and [19]). A parametrization of the Mobius strip is
r(s, 1) = x(s, )i + y(s,1)j + 2(s, )k, -1 < s < 1, -1 <t <, where

1 1 .
X = [c + 5COS (EI)] cost, y= [c + 5COS (Et)] sint, and
1
Z = ssin (Et)’ (5.25)

and we assume that ¢ > 1. In Figure 5-11, we graph the Mobius strip
using ¢ = 3.

In[1201] := ¢ = 3;
x[s_, t.] = (c+s Cos[t/2]) Cos[t];
yls_, t] = (c+s Cos[t/2]) Sin[t];
z[s ,t]=s Sin[t/2];

r[s_, t.] = {x[s, t],y[s, t],z[s, t]};

In[1202] := threedpl = ParametricPlot3D[r[s, t], {s,-1,1},
{t, -n, n}, Compiled- > False,
PlotPoints- > {30, 30}, AspectRatio- >1,
LightSources » {{{1.,0.,1.},
GrayLevel[0.4]}, {{1.,1.,1.},
GrayLevel[0.6]},

{{0.,1.,1.}, GrayLevel[0.5]}},

PlotRange- > {{-4, 4}, {-4, 4}, {-1,1}},
BoxRatios- > {4, 4,1},
AxesLabel- > {"x", "y",6 "z"}]

Although it is relatively easy to see in the plot that the Mobius strip has
only one side, the fact that a unit vector, n, normal to the Mobius strip
at a point P reverses its direction as n moves around the strip to P is not
obvious to the novice.
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Figure 5-11 Parametric plot of equations (5.25) if c = 3

rXr,
[esxr ||

With Mathematica, we compute ||r; X r;|| and n =

In[1203]:= rs =D[r[s, t], s]

out [1203]= { Cos [g} Cos[t], Cos [%] Sin[t],sin[g]}

rt =D[r[s, t], t]

In[1204] :=

Out [1204] = {—%s Cos[t] Sin {g] - (3 +s Cos [g” Sin[t],
(3+s Cos [f]) Cos[t] - — s Sin [E} Sin[t],
1 t 2
ES COS{E]}

In[1205] := rscrossrt = Cross[rs, rt]//Simplify

Out [1205] = {—E (—s Cos [g} +6 Cos[t] +s Cos [7]) Sin [E} ,

6 C £ 2s C t 6 C 3
<—s— os[g}— s Cos[t] + 05[7]+

|
)

sCOS[2t}),COS[; (3+SC°S[§])}

In[1206] := Sqrt[rscrossrt.rscrossrt]//FullSimplify

2

t 1
+6 s Cos [5] +Esz Cos|[t]

3s
Out [1206] = \/9 +
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In[1207] := Clear[un]

un[s_, t_] = rscrossrt/Sqrt
[rscrossrt.rscrossrt]//FullSimplify

s sinft] - Cos[t] (6 Sin[%] +s Sin[t])

out [1207]= {

7

\/36+3sz+24s Cos [%] +28? Cos[t]

3 Cos [%] -3 Cos [%] +8 (Cos[t] +8in[t]?)

\/36+352+24SCOS[§]+252 Cos[t] '
s+ 6 Cos [%} +s Cos[t]

J36+3s2+24scos[§]+2schsn1

Consider the path C given by r(0, 7), -7 < t < & that begins and ends at
(=3,0,0). On C, n(0, 1) is given by

In[1208] := un[0, t]

Out [1208]

{—Cos[t] Sin[g},% (—3 Cos[g}r

3t t
3 Cos [7]), Cos [EH
Att = —m, n(0, —n) = (1, 0,0), while atr = 7, n(0, 1) = (-1, 0, 0).
In[1209] := [0, -]

r[0, ]
Out [1209]= {-3,0,0}

Out [1209]= {-3,0,0}

As n moves along C from r(0, —r) to r(0, ), the orientation of n reverses,
as shown in Figure 5-12.

In[1210] := << Graphics‘PlotField3D"‘;

vecs = Table[{r[0, t],un[O0, t]},
{t, -7, 7, 27t/59}];

pp2 = ListPlotVectorField3D[vecs,
VectorHeads- > True,
DisplayFunction- > Identity];

In[1211] := Show[threedp2, pp2,
ViewPoint- > {-2.093, 2.124, 1.6},
AxesLabel- > {"x",6 "y",6 "z"},
Boxed- > False,
DisplayFunction- > $DisplayFunction]

419
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An animation is particularly
striking.
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Figure 5-12 Parametric plot of equations (5.25) if c = 3

Several different views of Figure 5-12 on the Mdbius strip shown in
Figure 5-11 are shown in Figure 5-13. C is an orientation reversing path
and we can conclude that the Mdbius strip is not orientable.

In[1212] := gl = Show[threedpl, threedp2, pp2,
ViewPoint- > {2.729, -0., 2.},
AxesLabel- > {"x", "y",6 "z"},6 Boxed- > False]

In[1213]:= g2 = Show[threedpl, threedp2, pp2,
ViewPoint- > {1.365, -2.364, 2.},
AxesLabel- > {"x", "y", "z"}, Boxed- > False]

In[1214] := g3 = Show[threedpl, threedp2, pp2,
ViewPoint- > {-1.365, -2.364, 2.},
AxesLabel- > {"x", "y",6 "z"},6 Boxed- > False]

In[1215] := g4 = Show[threedpl, threedp2, pp2,
ViewPoint- > {-2.729, 0., 2.},
AxesLabel- > {"x", "y", "z"}, Boxed- > False]
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Figure 5-13 Different views of a Mdbius strip with an orientation reversing path
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In[1216] := g5 = Show[threedpl, threedp2, pp2,
ViewPoint- > {-1.365, 2.364, 2.},
AxesLabel- > {"x", "y",6 "z"},6 Boxed- > False]
In[1217] := g6 = Show[threedpl, threedp2, pp2,

ViewPoint- > {1.365, 2.364, 2.},
AxesLabel- > {"x", "y",6 "z"},6 Boxed- > False]

In[1218] := Show[GraphicsArray[{{gl, g2}, {g3, g4},
{g5,g96}}11]

EXAMPLE 5.5.10 (The Klein Bottle): The Klein bottle is an interesting
surface with neither an inside nor an outside, which indicates to us that
it is not orientable. In Figure 5-14 (a) we show the “usual” immersion
of the Klein bottle. Although the Klein bottle does not intersect itself, it
is not possible to visualize it in Euclidean 3-space without it doing so.
Visualizations of 2-manifolds like the Klein bottle’s “usual” rendering
in Euclidean 3-space are called immersions. (See [11]for a nontechnical
discussion of immersions.)

In[1219] := r=4(1-1/2Cos[u]);

x1l[u_,v.] =6(1+Sin[u]) Cos[u]
+r Cos[u] Cos[v];

x2[u_, v_]

6 (1 +Sin[u]) Cos[u] +r Cos[v+7];

yl[u_,v.] =16 Sin[u] +r Sin[u] Cos[Vv];

y2[u_,v.] =16 Sin[u];

z[u_,v.] =r Sin[v];

In[1220] := kbla = ParametricPlot3D[{x1l[s, t], yl[s, t],
z[s, t]}, {s,0,7x}, {t,0,2n},
Compiled- > False, PlotPoints- > {30, 30},
AspectRatio- >1, LightSources -»
{{{1.,0.,1.}, GrayLevel[0.3]}, {{1.,1.,1.},
GrayLevel[0.5]},
{{0.,1.,1.}, GrayLevel[0.4]}},
AxesLabel- > {"x",6 "y",6 "z"}]
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In[1221] := kblb = ParametricPlot3D[{x1l[s, t],yl[s, t],
z[s, t]l}, {s, m, 2nt}, {t, 0, 27},
Compiled- > False, PlotPoints- > {30, 30},
AspectRatio- >1,
LightSources -» {{{1.,0.,1.},
GrayLevel[0.3]}, {{1.,1.,1.},
GrayLevel[0.5]},
{{0.,1.,1.}, GrayLevel[0.4]}},
AxesLabel- > {"x",6 "y",6 "z"}]

In[1222] := kbl = Show[kbla, kblb]

Figure 5-14 (b) shows the Figure-8 immersion of the Klein bottle. Notice
that it is not easy to see that the Klein bottle has neither an inside nor
an outside in Figure (5.14).

In[1223] := Clear([x,y,z,r,a]

x[u,v.] = (a+Cos[u/2] Sin[v]
-8in[u/2] Sin[2v]) Cos[u];

y[u., v.] = (a+Cos[u/2] Sin[v]
-sin[u/2] Sin[2v]) Sin[u];

z[u_, v_.] =Sin[u/2] Sin[v] + Cos[u/2] Sin[2V];

rliu.,v.] = {x[u,v],y[u,v], z[u,v]};

In[1224]:= r[s, t]
s s
out [1224]= {cCos[s] (a+Cos [5] Sin[t] —Sin[g] sin[2t]),
s S
Sin[s] <a+Cos [5] Sin[t] —Sin[g} Sin[2t}),

Sin [; Sin[t] + Cos [2] sin[2t])

In[1225] := a=3;
x[u_,v.] = (a+Cos[u/2] Sin[v]
-8in[u/2] Sin[2v]) Cos[u];
y[u,v.] = (a+Cos[u/2] Sin[v]
-Sin[u/2] Sin[2v]) Sin[u];
z[u_,v.] =8in[u/2] Sin[v] + Cos[u/2] Sin[2Vv];
rlu,v.] = {x[u,v],ylu,v], z[u, v]};

423
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Figure 5-14 Two different immersions of the Klein bottle: (a) the “usual” immersion;
(b) the Figure-8 immersion

In[1226] := kb2 = ParametricPlot3D[r([s, t], {s, -m, t},
{t, -m, 7}, Compiled- > False,
PlotPoints- > {30, 30}, AspectRatio- >1,
LightSources -» {{{1.,0.,1.},
GrayLevel[0.31}, {{1.,1.,1.},
GrayLevel[0.5]},
{{0.,1.,1.}, GrayLevel[0.4]}},
AxesLabel- > {"x",6 "y",6 "z"},
PlotRange- > {{-6,6}, {-6,6}, {-2,2}},
BoxRatios- > {4, 4, 1}]

In[1227] := Show[GraphicsArray|[{kbl, kb2}]]

In fact, to many readers it may not be clear whether the Klein bottle is
orientable or nonorientable, especially when we compare the graph to
the graphs of the Mobius strip and torus in the previous examples.

A parametrization of the Figure-8 immersion of the Klein bottle (see
[20]) is r(s, 1) = x(s, )i + y(s, )] + z(s, )k, -1 < s < 7, = <t <, where

1 1
X = [c + cos (fs) sint — sin (fs) sin Zt] COS s,
2 2
1) . (1 . .
y= [c + cos (fs) sint — sin (fs) sin Zt] sin s,
2 2 (5.26)
and

1 1
z= sin(is) sint + cos (ES) sin 2¢.

The plot in Figure 5-14 (b) uses equation (5.26) if ¢ = 3.
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Using (5.24), let
I, X,
n=———.
llrg X rll
Let C be the path given by
r(t,t) =x(t, i+ yt, )j+zt, )k, -n<t<n (5.27)

that begins and ends at r(—n, —m) = r(r, 71) = (=3,0,0) and where the
components are given by (5.26). The components of r and n are com-
puted with Mathematica. The final calculations are quite lengthy so we
suppress the output of the last few by placing a semicolon (;) at the
end of those commands.

In[1228] := rs =D[r[s, t], s]

out [1228]= { Cos[s] (—% Sin[g} Sin[t]

2 cos [2] si 2t]) - si (3+cos [2] sin[t
-3 os[z} in[2t]) -sin[s] (3 + os[z] in[t]
sin[2] si 2t]), si ( 1 5in[2] sinft
- 1n[2] in| 1), Sin[s] -3 11’1{2} in[t]
Y cos[2] sinf2t]) +C (3+cos[2] sin[t
-3 os[g} in| })+ os[s] + os[g] in[t]
sin[2] s 2t]) e 1 sin[t
- 1n[5] in[ ] 'S OS[E} in[t]
2 sin[2] si 2t]}
-3 1n[2} in|[ ]
In[1229] := rt =D[r[s, t], t]
1229]= {cos[s] (Cos [Z] Cos[t] -2 Cos[2t] Sin[Z])
out [ > Sl
s s
(Cos [5] Cos[t] -2 Cos[2t] Sin[g}) Sin[s],
s . s
2 Cos [5] Cos[2t] +Cos[t] Sln[g}}
In[1230] := rscrossrt = Cross[rs, rt];
In[1231] := normcross = Sqrt[rscrossrt.rscrossrt];
In[1232] := Clear[un]
un[s_, t_.] = -rscrossrt/Sqrt

[rscrossrt.rscrossrt]

V5’ V5
so as n moves along C from r(-x, —7) to r(r, ), the orientation of n

reverses. Several different views of the orientation reversing path on
the Klein bottle shown in Figure 5-14 (b) are shown in Figure 5-15.

Att = —n, n(-n, —-n) = <% 0, %), while att = 7, n(n, ) = <—i 0, —i>
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Figure 5-15 Different views of the Figure-8 immersion of the Klein bottle with an orienta-
tion reversing path
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In[1233] := 11 = Table[r[s, s], {8, -x, 7w, 27/179}]1;

In[1234] := threedp2 = Show[Graphics3D[{Thickness[0.02],
GrayLevel[0.6], Line[11]}],
Axes- > Automatic,
PlotRange- > {{-4, 4}, {-4,4}, {-4,4}},
BoxRatios- > {4,4,1},
AspectRatio- >1,
DisplayFunction- > Identity];

In[1235] := << Graphics‘PlotField3D"‘;

vecs = Table[{r[s, s],un[s, s]},
{s,-m, 7, 27/59}1;

pp2 = ListPlotVectorField3D[vecs,
VectorHeads- > True,
DisplayFunction- > Identity];

In[1236] := pp3 = Show[threedp2, pp2,
AxesLabel- > {llxll , llyll , Ilzll}’
Boxed- > False,
DisplayFunction- > $DisplayFunction]

In[1237] := gl = Show[kb2, threedp2, pp2,

AspectRatio- >1,

PlotRange- > {{-6, 6}, {-6, 6}, {-2, 2}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x", "y",6 "z"},
ViewPoint- > {2.729, -0., 2.}]

Show[kb2, threedp2, pp2, AspectRatio- > 1,
PlotRange- > {{-6,6}, {-6,6}, {-2,2}},
BoxRatios- > {4, 4, 1},

AxesLabel- > {"x", "y",6 "z"},
ViewPoint- > {1.365, -2.364, 2.}]

In[1238] := g2

In[1239] := g3 = Show[kb2, threedp2, pp2, AspectRatio- >1,
PlotRange- > {{-6,6}, {-6,6}, {-6,6}},
BoxRatios- > {4, 4, 1},

AxesLabel- > {"x", "y",6 "2"},

ViewPoint- > {-1.365, -2.364, 2.}]

In[1240] := g4

Show[kb2, threedp2, pp2, AspectRatio- >1,
PlotRange- > {{-6,6}, {-6,6}, {-6,6}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x", "y",6 "2"},
ViewPoint- > {-2.729, 0., 2.}]
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In[1241]: Show[threedplt, pp2, AspectRatio- >1,
PlotRange- > {{-6,6}, {-6,6}, {-6,6}},
BoxRatios- > {4, 4,1},

AxesLabel- > {"x", "y",6 "z"},

ViewPoint- > {-1.365, 2.364, 2.}]

g5

In[1242]: Show[kb2, pp3, AspectRatio- > 1,
PlotRange- > {{-6,6}, {-6,6}, {-2,2}},
BoxRatios- > {4,4, 1},

AxesLabel- > {"x",6 "y",6 "z"},

ViewPoint- > {1.365, 2.364, 2.}]

g6

In[1243] := Show[GraphicsArray[{{gl, g2}, {g3, g4},
{g5,g6}}11]

C is an orientation reversing path and we can conclude that the Klein
bottle is not orientable.




Applications Related to
Ordinary and Partial
Differential Equations

Chapter 6 discusses Mathematica’s differential equations commands. The exam-
ples used to illustrate the various commands are similar to examples routinely
done in a one or two-semester differential equations course.

6.1 First-Order Differential Equations

6.1.1 Separable Equations

Because they are solved by integrating, separable differential equations are usually
the first introduced in the introductory differential equations course.

Definition 2 (Separable Differential Equation). A differential equation of the form
Jdy = gt)dt (6.1)

is called a first-order separable differential equation.

We solve separable differential equations by integrating.

Remark. The command
DSolve [y’ [t]l==f[t,y[t]],yI[t], t]

attempts to solve y’ = dy/dt = f(t, y) for y.

For more detailed

discussions regarding
Mathematica and differential
equations see references like
Abell and Braselton’s
Differential Equations with
Mathematica, [1].
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8ce Help Browser
=3 e e e
DSolve { Go ) { Close Hide Categories
Add-ons I The Mathematica Book ‘
Getting Started/Demos | Other Information | Master Index ‘

Numerical Compu.. @y (Alphabetical Listing)  Solve
Algebraic Comput... » DSolve
Mathematical Fun... 3] Basic Algebra »  Equal
Lists and Matrices »  Formula Manipula__ »  ReplaceAll (1)
Graphics and Sound »|  Equation Solving 3

. Calculus »  Eliminate -
Programming ¥4 Poly Functi... »  SolveAlways .
Input and Output  » v Reduce v

DSolve

wDSolve[egn, y. x] solves a differential equation for the function y, with independent variable x
wDSolve[{eqn, . eqry . ... ). (¥ .+ ¥z . ... }. X] solves alist of differential equations.

aDSolve[egn. y. (%1 . Xz . ... }] solves a partial differential equation.

wDSolve[egn, y{x] . x] gives solutions for y[ x] rather than for the function y itself.

wExample: DSolve[y' [x] == 2 a x. ¥[x]. x]—={{y[x]=»a ¥ +CI1]})
= Differential equations rust be stated in terms of derivatives such as y' [ x]. obtained with D, not total derivatives
obtained with Dt

5.0 The list of equations given 1o DSolve can inchude algebraic onss that do not involve derivatives.

50 DSolve generates constants of integration indexed by successive integers. The option GeneratedParame
ters specifies the funchion 1 apply 1o each index. The default s GeneratedParameters->C. which yields
constants of integration C[ 1].C[ 2],

sGeneratedParameters->(lodulel (C}, C]&) guarantees that the constants of intsgration are unique, even
across different invocations of DSo1ve

= For partial differential equations, DSolve generates arbitrary functions C[n][ .. |
= Boundary conditions can be specified by giving equations suchas y' [ 0] == b.

= Solutions given by D501ve sometimes include intsgrals that cannot be carried out explicitly by Integrate -
Duraray variablés with local names are used in such intsgrals s

SR T bk e —

EXAMPLE 6.1.1: Solve each of the following equations: (a) y’ —y? sint =
0; (b) y' = ay(1 - +y), K, @ > 0 constant.

SOLUTION: (a) The equation is separable:

1
—dy = sint dt
y

1
—dy

sint dt

=—cost+C

< | =

1
cost+C’

We check our result with DSolve.

In[1244] := sola =DSolve[y' [t]-y[t] "28in[t] ==0, y[t], t]

1
out [1244]= {{y[t] > WH
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Figure 6-1 Several solutions of y’ — y*sint = 0

Observe that the result is given as a list. The formula for the solution is
the second part of the first part of the first part of sola.

In[1245] := sola[[1,1,2]]

Out [1245] = -
-C[1l] +Cos[t]

We then graph the solution for various values of C with Plot in Fig-
ure 6-1.

In[1246] := toplota = Table[sola[[1,1,2]]/.C[1]- >-1i,

{i,2,10}]
out [1246] = { 1 , 1 1 1 expression /. x->y
2+Cos[t]  3+Cos[t] 4+Cos[t] 5+Cos[t]’ replaces all occurrences of x
1 1 1 1 in expression by y.
6+Cos[t] 7+Cos[t] 8+Cos[t] 9+Cos[t]’ Table [alkl, {k,n,m}]
1 generates the list a,, a,41,
- - ceey Aty e
10 + Cos[t] }
In[1247] := Plot[Evaluate[toplota], {t, 0, 27}, To graph the list of functions

list fora < x < b, enter

PlotRange- > {0, 1}, AxesOrigin- > {0, 0}] Plot [Bvaluate [1ist] , {x,a,b}
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(b) After separating variables, we use partial fractions to integrate:

1
, 1- —
Y “y( Ky)

V' y=ar

S S

ay (1~ &)

111

L)

aly K-y

1
5(lnlyl—ln|K—yI) =C +t
y

:C at
K-y ¢
_ CKe"
Y= Cer — 1

We check the calculations with Mathematica. First, we use Apart to

ay(l - &y)
In[1248] := sl =Apart[l/(ay (1-1/k y)).,vl
1

1
Out [1248]= — - —————
y o (-k+y) «a

find the partial fraction decomposition of

Then, we use Integrate to check the integration.

In[1249] := s2 = Integrate[sl, y]
Log[y] Log[-k+vV]
a a

Out [1249]=

Last, we use use Solve to solve é (Inlyl = In|K — y|) = ct for y.

In[1250] := Solve[s2==c+t,y]
ec+t o k

out [1250]= {{y~> ———c <)}

We can use DSolve to find a general solution of the equation

In[1251] := solb =DSolve[y' [t] ==a y[t] (1-1/k y[t]),
y[tl, t]
t o k

out [1251]= {{y[t] - etea,m}}

as well as find the solution that satisfies the initial condition y(0) = yy.

In[1252] := solc =DSolve[{y [t] == y[t] (1- yIt]).,
y[0] ==y0},y[t], t]
et yo }}

Out [1252] = t _—
ut ] {{Y[}%l—y0+et yO0

The equation y’ = a/y(l - %y) is called the logistic equation (or Ver-
hulst equation) and is used to model the size of a population that is
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Figure 6-2 A typical direction field for the logistic equation

not allowed to grow in an unbounded manner. Assuming that y(0) > 0,
then all solutions of the equation have the property that lim,_,, y(t) = K.

To see this, we set @ = K = 1 and use PlotVectorField, which
is contained in the PlotField package that is located in the Graphics
directory to graph the direction field associated with the equation in

Figure 6-2.

006 Help Browser
T B ' 4 N N F Wide Catennriec M
Graphics “PlotField Go Close Hide Categories
Built-in Functions Add-ons The Mathematica Book

Getting Started/Demos Other Information Master Index

Wolfram Research... » g Introduction » mpy PlotField
PlotField3D
Working with Add... »||| Algebra vl Polyhedra
Calculus »  Shapes

Standard Packages DiscreteMath » Spline m
MathLink */_ Geometry ¥ SurfaceOfRevolution
J/Link * 4 Graphics » 4 ThreeScript £
XML Capabilities b ¥ LinearAlgebra * v Common x
m Graphics™PlotField™ m

Anything that assigns 3 magnitde and direction at each point gives a vector field. Exaraples includs the electrorag-
netic field and the velocity fisld of a fluid. Any ordinary differential squation can be used o defing a vector fisld. Thess
wector fields can be visualized by drawing armows representing the vectors. The direction of the arrow s equal o the
direction of the vector field at s base point. The magnitude of the armow is proportional to the magnitude of the vector
field.

This packags plots two - dimensional vector fislds, For vector field plots in thres dimensions, use the packags
Graphics PlotField3D"

PlotVectorField[(7,. f, }. {x.
amin, wmax). (y. ymin. ymax})
PlotGradientField|[ f. {x.

xmin, omax}, {y. ymin, ymax} )

PlotHamiltonianField[ f, (x.
xmin, xmax}, {y. ymin, ymax}]

plot the vector fild given by the
vector - valued function in the range specifisd
plot the gradient vector field of the scalar - valued function 1

plot the Hamilionian vecior field of the scalar - valued function 7

Floting vector fields in two dimensions.

® This loads the paclmge.

[} <<Graphics'PlotField"

= The two components ffﬂ'ﬁgghﬁf@m 2iven by sin(x) and cos(vl, X

In[1253] := << Graphics‘PlotField"‘;

pvf = PlotVectorField[{1l,y(1-y)}., {t, 0,5},
{y,0,5/2}, HeadLength- >0, Axes- >Automatic]

The property is more easily seen when we graph various solutions
along with the direction field as done next in Figure 6-3.
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1 2 3 4 5

Figure 6-3 A typical direction field for the logistic equation along with several solutions

In[1254] := toplot = Table[solc[[1,1,2]]/.y0->1i/5,{i,1,12}];
sols = Plot[Evaluate[toplot],
{t, 0,5}, DisplayFunction- > Identity];
Show[pvE, sols]

6.1.2 Linear Equations

Definition 3 (First-Order Linear Equation). A differential equation of the form

d
al(od—f +ao()y = (), 6.2)

where ay(t) is not identically the zero function, is a first-order linear differential
equation.

Assuming that a;(¢) is not identically the zero function, dividing equation (6.2) by
a;(t) gives us the standard form of the first-order linear equation:

dy
— =q(t). 6.3
5 TPy =40 (6.3)
If g(¢) is identically the zero function, we say that the equation is homogeneous.
The corresponding homogeneous equation of equation (6.3) is

dy

I + pt)y =0. (6.4)
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Observe that equation (6.4) is separable:

dy
— +pt)y=0
7 p®)y

1
—dy = -p@t)dt
y

Inly| = —fp(t)dt+C
y = Ce [P0,

Notice that any constant multiple of a solution to a linear homogeneous equation
is also a solution. Now suppose that y is any solution of equation (6.3) and y, is a
particular solution of equation (6.3). Then,

v =yp) + 2@ (y =) = + pO)y = (v, + pt)yp)
=q(t) —q@)=0.

Thus, y - y, is a solution to the corresponding homogeneous equation of equation
(6.3). Hence,

y=yp = Ce IO

y= Ce_fp(t)dt +¥p

Y=Yt Yp
where y;, = Ce /P04 Thatis, a general solution of equation (6.3) is

)’ZYh"‘)’p,

where y, is a particular solution to the nonhomogeneous equation and yj is a gen-
eral solution to the corresponding homogeneous equation. Thus, to solve equation
(6.3), we need to first find a general solution to the corresponding homogeneous
equation, y,, which we can accomplish through separation of variables, and then
find a particular solution, y,, to the nonhomogeneous equation.

If y;, is a solution to the corresponding homogeneous equation of equation (6.3)
then for any constant C, Cyj, is also a solution to the corresponding homogeneous
equation. Hence, it is impossible to find a particular solution to equation (6.3) of
this form. Instead, we search for a particular solution of the form y, = u(t)y,, where
u(t) is not a constant function. Assuming that a particular solution, y,, to equation
(6.3) has the form y, = u(t)ys, differentiating gives us

Yp' = wyn+ uyy’
and substituting into equation (6.3) results in

yp' + p)y, = u'yp +uyy” + p(Ouy, = q(@).

435

A particular solution is a
specific solution to the
equation that does not
contain any arbitrary
constants.
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yi s a solution to the Because uyy’ + p(t)uyy = uyy" + p()ys] = u- 0 = 0, we obtain
corresponding homogeneous
equation so y;’ + p(t)y, = 0. u'yh =4q(1)
, 1
w = —q(t)
Yh

W = efp(t)dtq(t)
U= f el POy gy

SO
Yp = u(t)y, = Ce™ I PO f el PO (1) ar.

Because we can include an arbitrary constant of integration when evaluating
f el Pt Y44ty dt, it follows that we can write a general solution of equation (6.3)
as

y= e_fp(’)d’fefpmd’q(t) dt. (6.5)

Alternatively, multiplying equation (6.3) by the integrating factor u(r) = el PO
gives us the same result:

d
efp(z)dzd% +p(t)ef1’(’)“”y _ q(,)efp(z)dr
d ( [pwyd ) _ oo [ pde
= (el roy) = qe
efl’(”d’y:fq(z)eff’(”"’dt

y= e Jrod fq(t)ef”(’)dtdt.

Thus, first-order linear equations can always be solved, although the resulting
integrals may be difficult or impossible to evaluate exactly.
Mathematica is able to solve the general form of the first-order equation, the

initial-value problem y’ + p(t)y = q(t), ¥(0) = yo,

In[1255] := DSolvel[y' [t] +p[tly[t] ==q[t],y[t], t]

out [1255] = {{y[t] 4)e*JOtP[DSolve‘t]dlDSolve‘t cr1] +efjotP[DSolve‘t]dlDSolve‘t

t DSolve't \ \
J’ el p(DSolvertjdbSolve’t yIpgh)yvet]dDSolve® t} }
0

In[1256] := DSolve[{y [t] +p[t]ly[t] ==q[t],y[0] ==y0},yI[t], t]
out [1256] = {{y[t] A)efjop[DSolve‘t]dDSolve‘t (y0+

t DSolve't
J eh p[psolvettjdbsolve’ ypgolve ' t]dDSolve® t) }}
0
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as well as the corresponding homogeneous equation,

In[1257] := DSolvel[y' [t] +p[t]ly[t] ==0,y[t], t]
out [1257] {{y[t] N e’fo p[DSolve't]dDSolve t cl1] }}

In[1258] := DSolve[{y’[it:] +pl[tly[t] ==0,y[0] ==y0},y[t], t]
out [1258]= {{y[t] N e—fo p[DSolve't]dDSolve't yo}}

although the results contain unevaluated integrals.

EXAMPLE 6.1.2 (Exponential Growth): Let y = y(¢) denote the size of

a population at time r. If y grows at a rate proportional to the amount
present, y satisfies

i ay, (6.6)
where « is the growth constant. If y(0) = yo, using equation (6.5) results

iny = ype®. We use DSolve to confirm this result.

In[1259] := DSolve[{y' [t] ==a y[t],y[0] ==y0},vy[t], t]
out [1259]= {{y[t] »e® * y0}}

dy/dt = k(y — ys) models
Newton’s Law of Cooling: the

EXAMPLE 6.1.3: Solve each of the following equations: (a) dy/dt
k(y=ys), ¥0) = yo, k and y, constant (b) y' — 2ty = (c) 1y’ =y
4t cos 4t — sin 4t

rate at which the

temperature, y(t), changes in

a heating/cooling body is
proportional to the
SOLUTION: By hand, we rewrite the equation and obtain difference between the
temperature of the body and
the constant temperature, y;,

y
E - ky = —kys. of the surroundings.

A general solution of the corresponding homogeneous equation

dy
— —ky=0
dt 4

is y, = M. Because k and —ky; are constants, we suppose that a particu-
lar solution of the nonhomogeneous equation, y,, has the form y, = 4,
where A is a constant.

Assuming that y, = A, we have y}, = 0 and substitution into the This will turn out to be a

nonhomogeneous equation gives us lucky guess. If there is not a
solution of this form, we
dyp would not find one of this

dt —KYyp = -KA = —kys SO A= Vs form.
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Figure 6-4 The temperature of the body approaches the temperature of its surroundings

Thus, a general solution is y = y;, +y, = Ce!’ + y,. Applying the initial
condition y(0) = y, results in y = y, + (yo — ys)e’.

We obtain the same result with DSolve. We graph the solution satis-
fing y(0) = 75 assuming that k£ = —1/2 and y, = 300 in Figure 6-4. Notice
that y(r) > y;ast - oo.

In[1260] := sola =DSolve[{y [t] ==k (y[t] -ys),
y[0] ==y0},y[t], t]
out [1260]= {{y[t] »e* & (yo-ys) +ys}}

In[1261] := tp =sola[[1l,1,2]]/.{k->-1/2,ys- >300,
y0- >75}; Plot[tp, {t, 0, 10}]

(b) The equation is in standard form and we identify p(r) = —2¢. Then,
the integrating factor is u(t) = e PO = Multiplying the equation
by the integrating factor, u(t), results in

d
e_tz(y' —2ty) = te™” or — (ye_tz) =te .

Integrating gives us

1 1
ye ! = —Ee*’z +C or y=-3 +Ce".

We confirm the result with DSolve.

In[1262] := DSolvely’ [t] -2t y[t] ==t, y[t], t]
1 2
out [1262]= {{y[t] - -5 ve” c[11}}
(c) In standard form, the equation is y' — y/t = (4tcos4t — sin4t)/t so
p(t) = —1/t. The integrating factor is u(t) = el P0dt _ =t _ 1/ and
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multiplying the equation by the integrating factor and then integrating

gives us
1d 1 1
?di); — z72y = t—2(4t cos 4t — sin4t)
d (1 1
o (;y = 72(4t cos 4t — sin4t)
1 sin 4¢
Zy= +C
ty t
y = sin4t + Ct,

1 .
where we use the Integrate function to evaluate f t—2(4t cos4t—sindt)dt =

sin 4t
+C.
In[1263] := Integrate[(4 t Cos[4t] -Sin[4t])/t"2, t]
Sin[4 t]
Out [1263] = f

We confirm this result with DSolve.

In[1264] := sol =DSolve[y [t] -y[t]/t== (4 t Cos[4t]
-S8in[4t])/t, y[t], t]
Oout[1264]= {{y[t] >t C[1] +Sin[4 t]}}

In the general solution, observe that every solution satisfies y(0) = 0.
That is, the initial-value problem

d 1 1

d% -y = s(rcosdr —sind,  y(0)=0
has infinitely many solutions. We see this in the plot of several solutions
that is generated with Plot in Figure 6-5.

In[1265] := toplot = Table[sol[[1,1,2]]/.C[1]->1i,
{i,-5,5}1;
Plot[Evaluate[toplot], {t, -2x, 27},
PlotRange- > {-2m, 27t} , AspectRatio- > 1]

6.1.2.1 Application: Free-Falling Bodies

The motion of objects can be determined through the solution of first-order initial-
value problems. We begin by explaining some of the theory that is needed to set
up the differential equation that models the situation.
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Figure 6-5 Every solution satisfies y(0) = 0

Newton’s Second Law of Motion: The rate at which the momen-
tum of a body changes with respect to time is equal to the resul-
tant force acting on the body.

Because the body’s momentum is defined as the product of its mass and velocity,
this statement is modeled as

%(mV)=F,

where m and v represent the body’s mass and velocity, respectively, and F is the
sum of the forces (the resultant force) acting on the body. Because m is constant,
differentiation leads to the well-known equation

mﬂ =F

da

If the body is subjected only to the force due to gravity, then its velocity is deter-
mined by solving the differential equation

m® —mg or

ar "8 ar %
where g = 32ft/s? (English system) and g = 9.8m/s? (metric system). This differen-
tial equation is applicable only when the resistive force due to the medium (such
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as air resistance) is ignored. If this offsetting resistance is considered, we must dis-
cuss all of the forces acting on the object. Mathematically, we write the equation

as
dv

m— =
dt
where the direction of motion is taken to be the positive direction. Because air
resistance acts against the object as it falls and g acts in the same direction of the
motion, we state the differential equation in the form

Z (forces acting on the object)

d d
md—‘; =mg + (—Fg) or md—: =mg — Iy,

where Fy represents this resistive force. Note that down is assumed to be the posi-
tive direction. The resistive force is typically proportional to the body’s velocity, v,
or the square of its velocity, v2. Hence, the differential equation is linear or nonlin-
ear based on the resistance of the medium taken into account.

EXAMPLE 6.1.4: An object of mass m = 1 is dropped from a height of
50 feet above the surface of a small pond. While the object is in the air,
the force due to air resistance is v. However, when the object is in the
pond, it is subjected to a buoyancy force equivalent to 6v. Determine
how much time is required for the object to reach a depth of 25 feet in
the pond.

SOLUTION: This problem must be broken into two parts: an initial-
value problem for the object above the pond, and an initial-value prob-
lem for the object below the surface of the pond. The initial-value
problem above the pond’s surface is found to be

dv/dt =32 —-v
lv(O) =0.

However, to define the initial-value problem to find the velocity of the
object beneath the pond’s surface, the velocity of the object when it
reaches the surface must be known. Hence, the velocity of the object
above the surface must be determined by solving the initial-value prob-
lem above. The equation dv/dt = 32 — v is separable and solved with
DSolvein dl.

In[1266] := Clear|[v, y]

dl = DSolve[{v/ [t] ==32-v[t], v[0] == 0},
v[t], t]
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Figure 6-6 The object has traveled 50 feet when t ~ 2.5

out [1266]= {{v[t] »32e* (-1+e")}}

In order to find the velocity when the object hits the pond’s surface we
must know the time at which the distance traveled by the object (or the
displacement of the object) is 50. Thus, we must find the displacement
function, which is done by integrating the velocity function obtaining
s(t) = 32e¢™" + 32t — 32.

In[1267] := pl =DSolve[{y [t] == e ® (-32+32e%),y[0] == 0},
ylt], t]
Oout[1267]= {{y[t] »32e " (1-e“+e“t)}}

The displacement function is graphed with Plot in Figure 6-6. The
value of ¢ at which the object has traveled 50 feet is needed. This time
appears to be approximately 2.5 seconds.

In[1268] := Plot[{e™® (32-32e*+32e*t), 50}, {t, 0,5},
PlotStyle -» {GrayLevel[0], GrayLevel[0.5]}]

A more accurate value of the time at which the object hits the surface
is found using FindRoot. In this case, we obtain t ~ 2.47864. The
velocity at this time is then determined by substitution into the velocity
function resulting in 1(2.47864) ~ 29.3166. Note that this value is the
initial velocity of the object when it hits the surface of the pond.

In[1269] := tl1 = FindRoot[p1[[1,1,2]] == 50, {t, 2.5}]
Out [1269]= {t ->2.47864}

In[1270] := vl =d1[[1,1,2]] /. tl
Out [1270]= 29.3166
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Figure 6-7 After approximately 4 seconds, the object is 25 feet below the surface of the

pond
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Thus, the initial-value problem that determines the velocity of the object
beneath the surface of the pond is given by

dv/dt =32 - 6v
lv(O) = 29.3166.

The solution of this initial-value problem is v(t) = & + 23.9833¢™ and
integrating to obtain the displacement function (the initial displace-
ment is 0) we obtain s(t) = 3.99722 — 3.99722¢7% + ?t. These steps are
carried out in d2 and p2.

In[1271] := d2 =DSolve[{Vv'[t] ==32-6Vv[t], v[0] ==Vv1},
vit], t]
Out [1271]= {{v[t] »e®" (23.9832+5.33333e°")}}

In[1272] := p2 =DSolve[{y’ [t] ==d2[[1,1,2]],y[0] ==0},
yltl, t]
{{y[t] -2.71828°° % (-3.99721+
3.997212.71828°% " +5.333332.71828°% “t)}}

Out [1272]

This displacement function is then plotted in Figure 6-7 to determine
when the object is 25 feet beneath the surface of the pond. This time
appears to be near 4 seconds.

In[1273] := Plot[{p2[[1,1,2]],25},{t,0,5},
PlotStyle » {GrayLevel[0], GrayLevel[0.5]}]

A more accurate approximation of the time at which the object is 25
feet beneath the pond’s surface is obtained with FindRoot. In this
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case, we obtain ¢ ~ 3.93802. Finally, the time required for the object
to reach the pond’s surface is added to the time needed for it to travel
25 feet beneath the surface to see that approximately 6.41667 seconds
are required for the object to travel from a height of 50 feet above the
pond to a depth of 25 feet below the surface.

In[1274] := t2 = FindRoot[p2[[1, 1, 2]1] == 25, {t, 4}]
out [1274]= {t ->3.93802}

In[1275] := t1[[1,2]] +t2[[1, 2]]
out [1275]= 6.41667

6.1.3 Nonlinear Equations

Mathematica can solve a variety of nonlinear first-order equations that are typi-
cally encountered in the introductory differential equations course.

EXAMPLE 6.1.5: Solve each: (a) (cosx + 2xe’) dx + (siny + x’¢” — 1) dy =
0; (b) (y2 + 2xy) dx — x*dy = 0.

SOLUTION: (a) Notice that (cosx + 2xe*)dx + (siny + x%¢’ — 1)dy = 0
can be written as dy/dx = — (cos x + 2xe”)/ (sinx +x2e — 1). The equation
is an example of an exact equation. A theorem tells us that the equation

M(x, y)dx + N(x, y)dy =0

is exact if and only if IM/dy = ON/0x.

In[1276] := m=Cos[x] +2 x Expl[y]:
n=Sin[y] +x"2Exp[y] - 1;
D[m, y]

D[n, x]
out [1276]= 2 e¥ x

out [1276]= 2 e¥ x

We solve exact equations by integrating. Let F(x, y) = C satisfy (y cosx+
2xe”)dx + (siny +x%e — 1) dy = 0. Then,

F(x,y) = f(cosx +2xe")dx = sinx + x°¢” + g(y),
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where g(y) is a function of y.

In[1277] := £f1 = Integrate[m, x]
out [1277]= &Y x* +Sin[x]

We next find that g’(y) = siny — 1 so g(y) = —cosy — y. Hence, a general
solution of the equation is

sinx + x%¢’ —cosy —y = C.
In[1278] := £2 =D[£f1, y]
Out [1278]= e¥ x°

In[1279] :
out [1279]

£f3 = Solve[f2 +c ==n, c]

{{c>-1+8Sin([y]}}

In[1280] := Integrate[£3[[1,1,2]],v]
Out [1280]= -y -Cos|[y]

We confirm this result with DSolve. Notice that Mathematica warns
us that it cannot solve for y explicitly and returns the same implicit
solution obtained by us.

In[1281] := mf =m/.y- >y[x];
nf=n/.y- >yl[x];
sol = DSolve[mf + nf y'[x] == 0, y[x], x]

Solve :: "tdep" : "Theequationsappeartoinvolve
transcendentalfunctionsofthevariablesin
anessentiallynon - algebraicway."

out [1281]= Solve|e’™ x*-Cos[y[x]] +8in[x] -y[x] ==C[1],

{y[=]}]

Graphs of several solutions using the values of C generated in cvals
are graphed with ContourPlot in Figure 6-8.

In[1282] := sol[[1, 1]1]

out [1282]= e¥¥ x? _Cos[y[x]] +Sin[x] - y[x]

In[1283]:= sol2 =s0l[[1,1]1]/.y[x]->Yy
out [1283]= &Y x* -y - Cos[y] +8in[x]

In[1284] := cvals = Table[sol2/.{x- >-3x/2,y- >1},
{i, 0, 6x, 67/24}1//
N
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-

2.5 5 7.5

Figure 6-8 Graphs of several solutions of (cosx + 2xe’) dx + (siny + x*¢" — 1)dy = 0

Oout [1284]= {22.2066,
48.2128,106.254,
233.647,512.735,
1124.85, 2468.28,
5416.56,11885.2,
26074.5,57196.7,
125457.,275169.,
603531.,1.3237210°,
2.903310°, 6.3677610°,
1.39663107,3.0632107,
6.71846107,1.4735510°%,
3.231910°%, 7.0884710°%,
1.554710°,3.4098910°}

In[1285] := ContourPlot[sol2, {x, -3x, 3n}, {y, 0, 67},
ContourShading- > False, Frame- > False,
Axes- >Automatic, AxesOrigin- > {0, 0},
Contours- >cvals, PlotPoints- >60]

(b) We can write (y* + 2xy) dx — x*dy = 0 as dy/dx = (y* + 2xy)/x*. A first-
order equation is homogeneous if it can be written in the form

dy y)
— =F|(=Z].
dx (x
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Homogeneous equations are reduced to separable equations with either
the substitution y = ux or x = vy. In this case, we have that dy/dx =

(/%) + 2(3/x) so the equation is homogeneous.
Lety = ux. Then, dy = udx+x du. Substituting into (y* + 2xy) dx—x?dy =
0 and separating gives us

(y2 + 2xy) dx—x*dy=0
(u2x2 + 2ux2) dx — x2(u dx+xdu) =0
(u2 + 2u)dx —(udx+xdu)=0
(u2 + u)dx =xdu
1
u(m+1)

1
u=—dx
X

Integrating the left and right-hand sides of this equation with Integrate,

In[1286] := Integrate[l/(u(u+1)), u]
Out [1286]= Log[u] -Log[1l+u]

In[1287] := Integrate[l/x, x]
Out [1287]= Log[x]

exponentiating, resubstituting u = y/x, and solving for y gives us

Inlu| —Inlu+ 1] =Inlx| + C

<

=Cx
u+1
Y
X
=Cx
Y
X
: Cx?
YT e

In[1288] := Solve[(y/x)/(y/x+1) ==cx,vy]

cx’®
out [1288]= {{y->-———}}

We confirm this result with DSolve and then graph several solutions
with Plot in Figure 6-9.

In[1289] := sol =DSolve[y[x] "2+2x y[x]-x"2y [x] == 0, y[x], x]

x% C[1]
)

out [1289]= {{y[x] A e
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Y/

Figure 6-9 Graphs of several solutions of (y* + 2xy) dx — x’dy = 0

In[1290] := toplot = Table[sol[[1,1,2]]/.C[1]->1i,
{i,-5,5}1;
Plot[Evaluate[toplot], {x, -5, 5}, PlotRange- >
{-5, 5}, AspectRatio- > Automatic]

6.1.4 Numerical Methods

If numerical results are desired, use NDSolve:
NDSolve [{y’ [t]==f[t,y[t]],y[t0]l==y0},y[t],{t,a,b}]

attempts to generate a numerical solution of

Idy/dt =, y)
l)’ (fo) = yo

valid fora <t < b.
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EXAMPLE 6.1.6: Consider

dy _

i (t2 - yz) siny, y(0) = —1.

(a) Determine y(1). (b) Graph y(r), -1 <t < 10.

SOLUTION: We first remark that DSolve can neither exactly solve the
differential equation y’ = (2 — y?)sin y nor find the solution that satisfies

¥0) = ~1.

In[1291]:= sol =DSolvel[y'[t] == (t"2-y[t]"2) Sin[t],

ylt]l, t]

Out [1291]= BoxData (DSolve[y [t] ==Sin[t] (t*-vy[t]?),

y[t],t])

In[1292] := sol =DSolve[{y' [t] == (£"2-y[t]"2) Sin[t],

y[0] ==y0}, y[t], t]

Oout [1292] = BoxData (DSolve[{y' [t] == Sin[t] (t?-

y[0] ==y0},yI[t], t])
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Figure 6-10  Graph of the solution to y’ = (1> — y?)siny, y(0) = -1

However, we obtain a numerical solution valid for 0 < ¢ < 1000 using
the NDSolve function.

In[1293] := sol =NDSolve[{y [t] == (£"2-y[t]"2) Sin[y[t]],
y[0] == -1}, y[t], {t,0,1000}]
Out [1293]= BoxData ({{y[t] -» InterpolatingFunction
[{{0.,1000.}}, " <>"][t]}})

Entering sol /.t->1 evaluates the numerical solution if r = 1.

In[1294] := sol /.t->1
Out [1294]= {{y[1l] - -0.766014}}

The result means that y(1) » —.766. We use the P1ot command to graph
the solution for 0 < ¢ < 10 in Figure 6-10.

In[1295] := Plot[Evaluate[y[t]/.sol], {t, 0,10}]

EXAMPLE 6.1.7 (Logistic Equation with Predation): Incorporating pre-

1
dation into the logistic equation, y’ = ay (1 ~% y), results in

dy 1
2 oay(1-—y|-P
o cvy( Ky) ),
where P(y) is a function of y describing the rate of predation. A typical
choice for P is P(y) = ay*/(b*> + y*) because P(0) = 0 and P is bounded
above: lim,_,, P(y) < oo.



6.1 First-Order Differential Equations 451

Remark. Of course, if lim,. y(f) = Y, then lim,,., P(y) = aY*/(b* + Y?).
Generally, however, lim,,., P(y) # a because lim,. y(t) < K # oo, for
some K = 0, in the predation situation.

Ifa =1,a =5, and b = 2, graph the direction field associated with
the equation as well as various solutions if (a) K = 19 and (b) K = 20.

SOLUTION: (a) We define egn [k] to be
dy _ (1 _1 )_ 5
a UK iy

In[1296] := << Graphics‘'PlotField:

In[1297] := eqnl[k. ] =y’ [t] ==y[t] (1 -1/k y[t])
-5y[t]1"2/(4+yI[t]"2);

We use PlotVectorField to graph the direction field in Figure 6-11 (a)
and then the direction field along with the solutions that satisfy y(0) =
.5,¥(0) =.2, and y(0) = 4 in Figure 6-11 (b).

In[1298] := pvEl9 = PlotVectorField[{1l,y(1-1/19 y)-
5y"2/(4+y"2)}, {t, 0,10}, {y, 0,6},
Axes- > Automatic, HeadLength- >0,
DisplayFunction- > Identity];

In[1299] := nl = NDSolve[{egn[19],y[0] == 0.5}, y[t],

{t,0,10}];

n2 = NDSolve[{eqgn[19], y[0] ==2},yI[t],
{t,0,10}];

n3 = NDSolve[{eqgn[19], y[0] ==4},yI[t],
{t,0,10}1;

In[1300] := solplot = Plot[Evaluate[y[t]/.{nl,n2,n3}],
{t, 0,10}, PlotStyle- > Thickness[0.01],
DisplayFunction- > Identity];

The same results can be obtained using Map.

In[1301] := numsols = Map [NDSolve[
{eqn[19],y[0] ==#},y[t], {t,0,10}]&,
{0.5,2,4}1;
solplot = Plot [Evaluate[y[t]/.numsols],
{t, 0,10}, PlotStyle- > Thickness[0.01],
DisplayFunction- > Identity];

In[1302] := Show[GraphicsArray[{pv£fl9, Show[pvEfl9, solplot]}]]
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Figure 6-11 (a) Direction field and (b) direction field with three solutions

In the plot, notice that all nontrivial solutions appear to approach an
equilibrium solution. We determine the equilibrium solution by solving

y'=0
In[1303] := eqn[19][[2]]
_ y[t] 5 yltl®
out [1303]= (1-* =) YItl - e

In[1304] := Solve[egn[19.][[2]] ==0,y[t]]

Out [1304]= {{y[t] - 0.}, {y[t] - 0.923351},
{y[t] -9.03832-0.785875 i},
{y[t] -9.03832+0.785875 i}}

to see that it is y ~ 0.923.
(b) We carry out similar steps for (b). First, we graph the direction
field with PlotVectorField in Figure 6-12.

In[1305] := pvE20 = PlotVectorField[{1l,y(1-1/20 y) -5y"2/
(4+y~2)},{t, 0,10}, {y, 0,20}, Axes- >
Automatic, HeadLength- >0,
AspectRatio- >1/GoldenRatio];

We then use Map together with NDSolve to numerically find the solu-
tion satisfying y(0) = .5i, fori = 1, 2, ..., 40 and name the resulting list
numsols. The functions contained in numsols are graphed with P1lot
in solplot.

In[1306] := numsols = Map [NDSolve[{eqn[20], y[0] == #}, y[t],
{t,0,10}]&, Table[0.5i, {i,1,40}]1;
solplot = Plot[Evaluate[y[t]/.numsols], {t, 0,10},
PlotStyle- > Thickness[0.005],
DisplayFunction- > Identity];
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Figure 6-12 Direction field

Figure 6-13 Direction field with several solutions

Last, we display the direction field along with the solution graphs in
solplot using Show in Figure 6-13.

In[1307] := Show[pv£20, solplot]

Notice that there are three nontrivial equilibrium solutions that are found
by solving y" = 0.

In[1308] := Solvel[eqn[20.]1[[2]] ==0,y[t]]

out [1308]= {{y[t] - 0.}, {y[t] »0.926741},
{y[t] » 7.38645},
{y[t] »11.6868}}

In this case, y = .926 and y ~ 11.687 are stable while y ~ 7.386 is
unstable.
|
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A particular solution, y,, is a
solution that does not
contain any arbitrary
constants.
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6.2 Second-Order Linear Equations

We now present a concise discussion of second-order linear equations, which are
extensively discussed in the introductory differential equations course.

6.2.1 Basic Theory

The general form of the second-order linear equation is

d? d
azmd—t{ + al(t)d—f +ao)y = ), 6.7)

where a,(t) is not identically the zero function.
The standard form of the second-order linear equation (6.7) is

dzy

d
et p(r)d—f +q()y = f(). 6.8)

The corresponding homogeneous equation of equation (6.8) is

dy dy
Tt p(t)a +4q@)y = 0. (6.9)

A general solution of equation (6.9) is y = c1y1 + ¢c2y> where

1. y; and y, are solutions of equation (6.9), and
2. yi and y; are linearly independent.

If y; and y, are solutions of equation (6.9), then y; and y, are linearly independent
if and only if the Wronskian,

V1

2| = yiv2 =1’y (6.10)

w s =
({y1, y21) v/

is not the zero function. If y; and y, are linearly independent solutions of equa-
tion (6.9), we call the set S = {y;, y»} a fundamental set of solutions for equation
(6.9).

Let y be a general solution of equation (6.8) and y, be a particular solution of
equation (6.8). It follows that y — y, is a solution of equation (6.9) soy —y, = y;
where yj, is a general solution of equation (6.9). Hence, y = y; + y,. That is, to solve
the nonhomogeneous equation, we need a general solution, yj, of the correspond-
ing homogeneous equation and a particular solution, y,, of the nonhomogeneous
equation.
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6.2.2 Constant Coefficients

Suppose that the coefficient functions of equation (6.7) are constants: a,(t) = a,
a(t) = b, and ap(t) = ¢ and that f(¢) is identically the zero function. In this case,
equation (6.7) becomes

ay” +by +cy=0. (6.11)

Now suppose thaty = ¥, k constant, is a solution of equation (6.11). Then, y’ = ke’
and y” = k*¢". Substitution into equation (6.11) then gives us

ay” + by’ +cy = ak®e" + bke"' + ce
= " (ak® + bk + ¢) = 0.
Because €/ # 0, the solutions of equation (6.11) are determined by the solutions of
ak* + bk + ¢ =0, (6.12)
called the characteristic equation of equation (6.11).

Theorem 23. Let k; and k, be the solutions of equation (6.12).

1. If ky # ky are real and distinct, two linearly independent solutions of equation
(6.11) are y; = €41 and y, = €'; a general solution of equation (6.11) is

y = clek‘t + czekzt.

kit

2. If ki = ky, two linearly independent solutions of equation (6.11) are y, = " and

y2 = tehi!; a general solution of equation (6.11) is
y=c1eh + cptel.

3. Ifki» = a +Bi, B # 0, two linearly independent solutions of equation (6.11) are
y1 = e cos Bt and y, = e sinft; a general solution of equation (6.11) is

y = e” (¢ cos Bt + ¢ sinfit).

EXAMPLE 6.2.1: Solve each of the following equations: (a) 6y” +y' -2y =
0;(b)y" +2y +y=0;(c) 16y” + 8y + 145y = 0.

SOLUTION: (a) The characteristic equation is 6k* +k—2 = (3k +2)(2k —
1) = 0 with solutions k = -2/3 and k = 1/2. We check with either
Factor or Solve.
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In[1309] := Factor[6k™2 +k - 2]

Solve[6k™2 +k -2 == 0]
Out [1309]= (-1+2 k) (2+3 k)

out [1309]= {{k - 72} = %}}

Then, a fundamental set of solutions is {¢72"%, ¢”?} and a general solu-
tion is
2173

y=cie + cpe”?.

Of course, we obtain the same result with DSolve.

In[1310] := DSolve[6y” [t] +y [t] -2y[t] ==0, y[t], t]
out[1310]= {{y[t] »e?® ¥ c[1] +e"? C[2]}}

(b) The characteristic equation is k* + 2k + 1 = (k + 1)*> = 0 with solution
k = —1, which has multiplicity two, so a fundamental set of solutions is
{e‘t, te”! } and a general solution is

y=cie’ +cate™.

We check the calculation in the same way as in (a).

In[1311] := Factor[k™2 + 2k + 1]
Solvel[k™2 +2k+1 ==0]

DSolve[y”[t] +2y'[t] +y[t] ==0, y[t], t]
Out [1311]= (1+k)?
out [1311]= {{k->-1}, {k>-1}}
Out [1311]= {{y[t] »e® C[1]+e " t C[2]}}

(c) The characteristic equation is 16k* + 8k + 145 = 0 with solutions
ki = —3 + 3i so a fundamental set of solutions is {e"/ 4 cos 3t, e 4 sin 3t}
and a general solution is

y =e"*(c;cos3t + cysin3t).

The calculation is verified in the same way as in (a) and (b).

In[1312] := Factor[1l6k™2 + 8k + 145, GaussianIntegers- >
True]
Solve[l6k”™2 + 8k + 145 == 0]

DSolve[l6y” [t] + 8y’ [t] + 145y[t] ==0, y[t], t]
Out[1312]= ((1-12 i) +4 k) ((1+12 i) +4 k)
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1 : 1 ,
out [1312] = {{ke—z—:’» i}, {ka—z+3 it}
out [1312]= {{y[t] »e** C[2] Cos[3 t]-e** C[1] Sin[3 t]}}

EXAMPLE 6.2.2: Solve

2
649 162

dy
1025y = =1, =(0) = 3.
=5 L +1025y=0,50) =1, —(0) =3

SOLUTION: A general solution of 64y” + 16y’ + 1025y = 0is y =
e 8 (| sin4t + ¢, cos 4t).

In[1313] := gensol = DSolve[64y” [t] + 16y [t] + 1025y[t] == 0,
ylt]l, t]

out [1313]= {{y[t] »e ™ C[2] Cos[4 t]-e*® C[1]
sinf4 t]}}

Applying y(0) = 1 shows us that ¢; = 1.

In[1314] := el =y[t]/.gensol[[1]]/.t->0
out [1314]= C[2]

Computing y’
In[1315] := D[y[t]/.gensol[[1]], t]
Out [1315]= -4 e *® C[1] Cos[4 t] 7% e ®® C[2] Cos[4 t]

1
+3 e ®® C[1] sin[4 t] -4 e® C[2] Sin[4 t]

and then y'(0), shows us that —4¢; — gc; =3.

In[1316] := e2 =D[y[t]/.gensol[[1]],t]/.t->0

Out [1316]= -4 C[1] - c[;]

Solving for ¢; and ¢; with Solve shows us that ¢; = -25/32and ¢; = 1.

In[1317] := cvals = Solve[{el ==1, e2 == 3}]
25
out[1317]= {{c[1] > -5 cr2] »1}}

Thus, y = 8 (=2 sin4t + cos 4), which we graph with Plot in Fig-
ure 6-14.

In[1318]:= sol =y[t]/.gensol[[1]]/.cvals[[1]]
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Figure 6-14 The solution to the initial-value problem tends to 0 as t — co

Out [1318]= e */® Cos[4 t] +% e ™® gin[4 t]
In[1319] := Plot[sol, {t, 0, 8x}]
We verify the calculation with DSolve.
In[1320] := DSolve[{64y” [t] + 16y  [t] + 1025y [t] == 0,
y[0] ==1,y'[0] == 2}, Y[t1]7, t]
out [1320]= {{y[t] »e™® (cCos[4 t] +3, Sin[4 £])}}

Application: Harmonic Motion

Suppose that a mass is attached to an elastic spring that is suspended from a rigid
support such as a ceiling. According to Hooke’s law, the spring exerts a restoring
force in the upward direction that is proportional to the displacement of the spring.

Hooke’s Law: F = ks, where k > 0 is the constant of proportional-
ity or spring constant, and s is the displacement of the spring.

Using Hooke’s law and assuming that x(¢) represents the displacement of the mass
from the equilibrium position at time 7, we obtain the initial-value problem

dx
[x0) = o, Z0) = 5.

Note that the initial conditions give the initial displacement and velocity, respec-
tively. This differential equation disregards all retarding forces acting on the motion
of the mass and a more realistic model which takes these forces into account
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is needed. Studies in mechanics reveal that resistive forces due to damping are
proportional to a power of the velocity of the motion. Hence, Fr = cdx/dt or
Fr = ¢ (dx/dt)’, where ¢ > 0, are typically used to represent the damping force.
Then, we have the following initial-value problem assuming that Fy = ¢ dx/dr:

d*x  dx
Idt2+ d+kx_0

dx
|0 =a. T =

Problems of this type are characterized by the value of ¢* — 4mk as follows.

1. ¢*—4mk > 0. This situation is said to be overdamped because the damping
coefficient ¢ is large in comparison to the spring constant k.

2. ¢ — 4mk = 0. This situation is described as critically damped because
the resulting motion is oscillatory with a slight decrease in the damping
coefficient c.

3. ¢* = 4mk < 0. This situation is called underdamped because the damping
coefficient ¢ is small in comparison with the spring constant k.

EXAMPLE 6.2.3: Classify the following differential equations as over-
damped, underdamped, or critically damped. Also, solve the corre-
sponding initial-value problem using the given initial conditions and
investigate the behavior of the solutions.

2
@) Q 8? +16x = 0 subject to x(0) = 0 and 9(0) -1
d2
(b) — e Sd— + 4x = 0 subject to x(0) = 1 and —(0) =1;and
© %2 dx dx e 20 subject to 2(0) = 0and ) = 1
az " dr - Vs T

SOLUTION: For (a), we identify m = 1, ¢ = 8, and k = 16 so that
c*—4mk = 0, which means that the differential equation x” +8x"+ 16x = 0
is critically damped. After defining de1, we solve the equation subject
to the initial conditions and name the resulting output sol1. We then
graph the solution shown in Figure 6-15 by selecting and copying the
result given in soll to the subsequent Plot command. If you prefer
working with InputForm, the formula for the solution to the initial-
value problem is extracted from soll with sol1[[1,1,2]]. Thus,
entering Plot [sol[[1,1,2]1]1,{t,0,4}] displays the same graph
as that obtained with the following P1ot command. Note that replacing
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1 2 3 4
Figure 6-15 Critically damped motion

soll[[1,1,2]] with Evaluate[x[t]/.soll] in the Plot com-
mand also produces the same result.

In[1321] := Clear[del, x, t]

del =x""[t] +8x'[t] +16x[t] ==0;
soll = DSolve[{del, x[0] == 0, x'[0] == 1},
x[t], t]

Out [1321]= {{x[t] »e*“t}}
In[1322] := Plot[e™*¢t, {t, 0, 4}]

For (b), we proceed in the same manner. We identify m = 1, ¢ = 5,
and k = 4 so that ¢ — 4mk = 9 and the equation x” + 5x’ + 4x = 0 is
overdamped. We then define de?2 to be the equation and the solution to
the initial-value problem obtained with DSolve, sol2 and then graph
x(t) on the interval [0, 4] in Figure 6-16.

In[1323] := Clear[de2, x, t]

de2 =x""[t] +5x'[t] +4x[t] ==0;
sol2 = DSolve[{de2, x[0] ==1,x'[0] ==1},
x[t], t]

1
out [1323]= {{x[t] 5 e (-2+5¢€’%) }}
In[1324]:= Plot[sol2[[1,1,2]],{t,0,4}]

For (c), we proceed in the same manner as in (a) and (b) to show that
the equation is underdamped because the value of ¢* — 4mk is —63. See
Figure 6-17.
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1 2 3 4
Figure 6-16 Overdamped motion

0.2

0.1
0.05

-0.05
-0.1

Figure 6-17 Underdamped motion

In[1325] := Clear[de3, x, t]

de3 =x""[t] +x'[t] +16x[t] ==0;
sol3 = DSolve[{de3, x[0] == 0, x"[0] == 1},
x[t], t]

2e %2 gin [32&}

iy

out [1325]= {{x[t] -

In[1326] := Plot[sol3[[1,1,2]],{t,0,4}]
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No element of Fj is
contained in S and no
element of F; is contained
inS.
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6.2.3 Undetermined Coefficients

If equation (6.7) has constant coefficients and f(¢) is a product of terms ¢*, ¥, «
constant, cos B, and/or sin S, § constant, undetermined coefficients can often be used
to find a particular solution of equation (6.7). The key to implementing the method
is to judiciously choose the correct form of y,.

Assume that a general solution, yj, of the corresponding homogeneous equation
has been found and that each term of f(¢) has the form

t"e® cos Bt or " sin Bt.
For each term of f(r), write down the associated set
F = {t”e‘” cos B, 1" sin Br, "~ e cos Bt, 1" Le™ sinfr, . . ., e cos B, e sinf3t, }

If any element of F is a solution to the corresponding homogeneous equation, mul-
tiply each element of F by ", where m is the smallest positive integer so that none
of the elements of " F are solutions to the corresponding homogeneous equation.
A particular solution will be a linear combination of the functions in all the F’s.

EXAMPLE 6.2.4: Solve

d2
4—y—y:t—2—500st—e

—t/2
dr?

SOLUTION: The corresponding homogeneous equation is 4y” —y = 0
with general solution y;, = cje™?

In[1327] := DSolve[4y” [t] -y[t] ==0, y[t], t]
out [1327]= {{y[t] »e ™ c[1] +e"? C[2]}}

A fundamental set of solutions for the corresponding homogeneous
equation is § = {e? ¢”}. The associated set of functions for 1 — 2 is
F, = {1, t}, the associated set of functions for —5cost is F> = {cost, sint},
and the associated set of functions for —e™? is F; = {¢/?}. Note that
™% is an element of S so we multiply F; by ¢ resulting in tF; = {re"?}.
Then, we search for a particular solution of the form

yp =A+Bt +Ccost + Dsint + Ete™?,

where A, B, C, D, and E are constants to be determined.
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In[1328] := yp[t.] =a+b t+c Cos[t]+d Sin[t]+e t Exp[-t/2]
Out [1328]= a+b t+e e¥? t+c Cos[t] +d Sin[t]

Computing y,, and y,
In[1329] := dyp =yp' [t]
d2yp = yp"' [t]
Out [1329]= b+e e’t/Z-% e e t+d Cos[t]-c Sin[t]
Out [1329] = -e e’t/2+£ e e®? t-c Cos[t] -4 Sin[t]

and substituting into the nonhomogeneous equation results in

—A—Bt —5Ccost —5Dsint —4Ee™* =t -2 — 5cost — e 2.

In[1330]:= eqn=4 yp” ' [t]-yp[t] == t-2-5Cos[t]-Exp[-t/2]
Out [1330]= -a-b t-e e ™2 t-c Cos[t] -d Sin[t]

-t/2

1
+4<—ee +Zee’t/2 t-c Cos[t] -d Sin[t])::

—2-e¥? 4+t -5 Cos[t]
Equating coefficients results in
-A=-2 -B=1 -5C=-5 -5D=0 —-4F = -1
soA=2,B=-1,C=1,D=0,and E = 1/4.

In[1331] := cvals = Solve[{-a==-2,-b==1, -5c==-5,-5d==0,
-4e == -1}]

1
out [1331] {{a+2,b+—l,C%l,d+O,e+Z}}

. . 3 R
yp is then given by y, = 2 — ¢ + cost + zte™

In[1332]:= ypl[t]/.cvals[[1]]
Out [1332] = 2—t+% e ™2 t 4 cCos[t]

and a general solution is given by

_ 1 _
Yy=Yn+y,=cie t/2+cze’/2+2—t+cost+zte 2,

Note that —A — Bt — 5Ccost — 5Dsint —4Ee™? =t —2 — Scost — e is
true for all values of . Evaluating for five different values of 7 gives us
five equations that we then solve for A, B, C, D, and E, resulting in the
same solutions as already obtained.
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In[1333]:= el =eqn/.t- >0

Out [1333]= -a-c+4 (-c-e) ==-8

In[1334] := e2 =eqn/.t- >7/2
e3=eqn/.t- >
e4 —eqn/.t->1
e5=eqn/.t- >2

b

Out [1334] = —a—d—T
1 1
Z e e’ n+4 (—d—e ety 2 e et 7T) ==
2 8

b
—2-eVh o
2

1
Out[1334]= -a+c-b n-e e’™? n+4 (c—e e’”/2+z e e/? 7T> ==

3-e24x

Out [1334]= —a—b—%—c Cos[1]
d SinJ[1l 4 ( 3 Cc 1 d SinJ[1l )
- + - - - ==
in[1] PR c Cos[1] in[1]
—1—i—5 Cos[1]
e
Out [1334]= -a-2 b-—-c Cos[2]
-d sin[2] +4 (-——-c Cos[2] -d Sin[2]) ==
e

1
-— -5 Cos[2]
e

In[1335]:= Solve[{el, e2,e3,e4,e5},{a,b,c,d,e}]//Simplify

1
out [1335]= {{d>0,b>-1,a>2,c>1,e->-}}
4
Last, we check our calculation with DSolve and simplify.

In[1336] := sol2 =DSolve[4y” ' [t] -y[t] ==t -2-5Cos[t]
-Exp[-t/2]1,y[t], t]

out [1336]= {{y[t] »e ™ c[1] +e** C[2]

1
y (e’t/z—z t+2 Cos[t] -4 Sin[t})
+e 2 (2 et? 4

4
+e*2 ginft
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In[1337] := Simplify[sol2]
1
out [1337]= {{y[t] > e (1+8 e+t -4 e t+4 C[1]

+4 e c[2]) +Cos[t]}}

EXAMPLE 6.2.5: Solve y” + 4y = cos2¢t, y(0) = 0, y’(0) = 0.

SOLUTION: A general solution of the corresponding homogeneous
equation is y, = ¢ cos 21 + ¢; sin 2z. For this equation, F = {cos 2z, sin 21}.
Because elements of F are solutions to the corresponding homogeneous
equation, we multiply each element of F by ¢ resulting in tF' = {t cos 2t,
t sin 2t}. Therefore, we assume that a particular solution has the form

yp = At cos 2t + Bt sin2t,

where A and B are constants to be determined. Proceeding in the same
manner as before, we compute y), and y;

In[1338]:= yp[t.] =a t Cos[2t] +b t Sin[2 t]:
yp'[t]

yp” [t]
Out [1338]= a Cos[2 t] +2 b t Cos[2 t] +b Sin[2 t]
-2 at Sin[2 t]
Out [1338]= 4 b Cos[2 t] -4 a t Cos[2 t] -4 a Sin[2 t]
-4 bt Sin[2 t]

and then substitute into the nonhomogeneous equation.

In[1339]:= egqn=yp” ' [t] + 4yp[t] == Cos[2t]

Out [1339]= 4 b Cos[2 t]-4 a t Cos[2 t]-4 a Sin[2 t]
-4 bt Sin[2 t]+4 (a t Cos[2 t]
+b t Sin[2 t]) ==Cos[2 t]

Equating coefficients readily yields A = 0 and B = 1/4. Alternatively,
remember that —4Asin2t + 4Bcos2t = cos 2t is true for all values of .
Evaluating for two values of ¢ and then solving for A and B gives the
same result.

In[1340] := el =eqn/.t- >0
e2 =eqn/.t- >n/4

cvals = Solve[{el, e2}]
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Figure 6-18 The forcing function causes the solution to become unbounded as r —» o

Out [1340]= 4 b ==

Out [1340]= -4 a ==

out [1340]= {{a>0,b~ 3}}
4

It follows that y, = 1rsin2f and y = ¢| cos 2¢ + ¢, sin 2t + 1 sin2z.

In[1341] := yp[t]/.cvals[[1]]
Out [1341]= % t Sin[2 t]

In[1342] := y[t_.] =cl Cos[2t]+c2 Sin[2t]+1/4 t Sin[2t]

Out [1342]= cl Cos[2 t] +c2 Sin[2 t] +% t Sin[2 t]
Applying the initial conditions

In[1343]:= y'[t]

1
Out [1343]= 2 c2 Cos[2 t] +§ t Cos[2 t]
1
+Z Sin[2 t] -2 ¢l Sin[2 t]

In[1344] := cvals = Solve[{y[0] == 0, y'[0] == 0}]
Out [1344]= {{c1>0,c2-0}}

results in y = 17 sin 2, which we graph with P1lot in Figure 6-18.

In[1345]:= y[t]/.cvals[[1]]
Out [1345] = z t sin[2 t]

In[1346] := Plot[Evaluate[y[t]/.cvals[[1]]], {t, 0, 167x}]

We verify the calculation with DSolve.
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In[1347] := Clear|y]

DSolve[y” [t] + 4y[t] == Cos[2t],
y[0] ==0,y'[0] == 0}, y[t], t]

out [1347]= {{y[t] %% t sin[2 t]}}

6.2.4 Variation of Parameters

Let S = {y1, 2} be a fundamental set of solutions for equation (6.9). To solve the
nonhomogeneous equation (6.8), we need to find a particular solution, y, of equa-
tion (6.8). We search for a particular solution of the form

Yp = wr(@Oy1(t) + uz()y2(2), (6.13)
where u; and u, are functions of ¢. Differentiating equation (6.13) gives us
yp =’ yr+uy) +wyr +uny).
Assuming that
yiuy" +yupy’ =0 (6.14)

results in y,” = u1y1” + upy,’. Computing the second derivative then yields
}’p" =u'y1" +uyt” +uw' v+ upyy”.
Substituting y,, y,’, and y,” into equation (6.8) and using the facts that
w (W +py’+gy)=0 and w ()" +py) +qy)=0

(because y; and y, are solutions to the corresponding homogeneous equation)
results in
d*y,
dr?

dy ’ ’ 144 ’ 7 " ’ ’
+ PO+ qyp = w1y + po) () + w0y

+q(t) (uiy1 + uzy2) (6.15)

=yi'w’ +y'u = f(@).
Observe that equation (6.14) and equation (6.15) form a system of two linear equa-
tions in the unknowns u;” and u,’:
yiuy" + yaur" =0

o, L, (6.16)
yi'ur” +y2'uy” = f(1).
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A particular solution, y,,, is a
solution that does not
contain any arbitrary
constants.

Observe that it is pointless
to search for solutions of the
formy, = ciy1 + cay> where
¢ and ¢, are constants
because for every choice of
C1 and C2, C1Y1 +C2)2 isa
solution to the
corresponding homogeneous
equation.
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Applying Cramer’s Rule gives us

0 Y2 |y1 0
t ! ! t
w’ = fO ¥ pofo 4y = D for _ yl(l‘)f(l‘)y 6.17)
yoo»n W(S) i W W(S)
i’ oy ity
where W(S) is the Wronskian, W(S) = ;l, ;2, . After integrating to obtain u; and
1 2

up, we form y, and then a general solution, y = y;, + y,.

EXAMPLE 6.2.6: Solve y” + 9y = sec 3¢, y(0) =0,y’(0) =0,0 <t < n/6.

SOLUTION: The corresponding homogeneous equation is y” + 9y = 0
with general solution y, = ¢ cos3f + ¢; sin3z. Then, a fundamental set

of solutions is S = {cos 37, sin 3t} and W(S) = 3, as we see using Det, and
Simplify.

In[1348] := £s = {Cos[3t], Sin[3t]};
wm = {fs,D[fs, t]};
wm//MatrixForm

wd = Simplify[Det [wm] ]

~ Cos[3 t] Sin[3 t]
Out [1348] = -3 s8in[3 t] 3 Cos[3 t]
Out [1348]= 3

We use equation (6.17) to find u; = § Incos3r and u, = }1.
In[1349] := ul = Integrate[-Sin[3t] Sec[3t]/3, t]

u2 = Integrate[Cos[3t] Sec[3t]/3, t]

Out [1349] = Log[Cos[3 t]]

Out [1349] =

W|rwo|Rr

It follows that a particular solution of the nonhomogeneous equation is
Yp = gcos3t Incos3r + 31sin 3t and a general solution is y = y; + y, =
c1cos3t + ¢psin 3t + % cos 3t Incos 3¢ + %t sin 3¢.

In[1350] := yp=ul Cos[3t] +u2 Sin[3t]

1 1
Out [1350] = 35 Cos[3 t] Log[Cos[3 t]] +§ t Sin[3 t]
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Figure 6-19 The domain of the solution is —1/6 < t < 7/6

Identical results are obtained using DSolve. The negative sign in the
output does not affect the
result because C[1] is

In[1351] := DSolve[y ' [t] +9y[t] == Sec[3t], yI[t], t] arbitrary.
out[1351]= {{y[t] »C[2] Cos[3 t]
1
+ 5 Cos[3 t] Log[Cos[3 t]]

1 ¢ sin[3 t]-c[1] s 3 t]}}
+3 in[ ] -C[1] Sin] ]

Applying the initial conditions gives us ¢; = ¢; = 0 so we conclude that
the solution to the initial value problem is y = § cos 3¢ Incos 3¢+ 47 sin 3r.

In[1352] := sol =DSolve[{y” [t] + 9y[t] == Sec[3t],y[0] ==0,
y'[0] == 0}, y[t], t]

out [1352] = {{y[t]4>% (Cos[3 t] Log[Cos[3 t]]

+3 t sin[3 t])}}
We graph the solution with P1ot in Figure 6-19.

In[1353] := Plot[Evaluate[y[t]/.s0ol], {t, 0, n/6}]
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6.3 Higher-Order Linear Equations

6.3.1 Basic Theory

The standard form of the nth-order linear equation is

n n—1

y
+ a,_ () ——
dim T 1()dz"-1

d
4o+ al(z‘)d—i} + ao(t)y = f(t)

The corresponding homogeneous equation of equation (6.18) is

n n—1

y
+ an l‘
d[” ! ( )

dtn—l

d
bt al(t)d%j + a(t)y = 0.

Let yi, y2, ..., y» be n solutions of equation (6.19). The set S = {y1, y,...

linearly independent if and only if the Wronskian,

M Y2 Y3 e Yn
'’ ¥y A
yll/ y2l/ y3ll L ynll
W(S) =
n®? »® yP yn?
TR P2 € P

(6.18)

(6.19)

, ¥} is

(6.20)

is not identically the zero function. S is linearly dependent if S is not linearly

independent.

If yi, y2, ..., yn are n linearly independent solutions of equation (6.19), we say
that S = {y1, y2, ..., ¥} is a fundamental set for equation (6.19) and a general solu-

tion of equation (6.19) is y = c1y1 + cay2 + ¢3y3 + -+ + CuYn-

A general solution of equation (6.18) is y = y; + y, where y, is a general solu-
tion of the corresponding homogeneous equation and y, is a particular solution of

equation (6.18).

6.3.2 Constant Coefficients

If
dny dn—ly dy
+ a,- +ota—+ =0
dt" a V1 @ dt doy

has real constant coefficients, we assume that y = ¢ and find that k satisfies the

characteristic equation

K'+ap K"+ +ak+ag =0.

(6.21)
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If a solution k of equation (6.21) has multiplicity m, m linearly independent solu-
tions corresponding to k are

e ek,

If a solution k = a + i, B # 0, of equation (6.21) has multiplicity m, 2m linearly
independent solutions corresponding to k = @ + §i (and k = & — Bi) are

€™ cos fBt, ™ sin Bt, te® cos Bt, te™ sinfx, . .., " e cos Bt, "' e sin .

EXAMPLE 6.3.1: Solve 12y’ —5y” — 6y’ —y = 0.

SOLUTION: The characteristic equation is
1263 = 5k* =6k —1=(k-1)GBk+ 1) (@k+1)=0
with solutions k; = —1/3, k, = —1/4, and k3 = 1.

In[1354] := Factor[1l2k"3 -5k"2 -6k -1]
Out [1354]= (-1+k) (1+3 k) (1+4 k)

Thus, three linearly independent solutions of the equation are y; = e,

y2 = ¢4, and y; = ¢; a general solution is y = cje™3 + cpe™* + c3¢'. We
check with DSolve.

In[1355] := DSolve[l2y” [t]-5y” [t]-6y [t]-y[t] ==0,y[t], t]
out [1355]= {{y[t] »e ™ c[1] +e¥* Cc[2] +e" C[3]}}

EXAMPLE 6.3.2: Solve y” + 4y’ =0, y(0) = 0, y'(0) = 1, y"(0) = —1.

SOLUTION: The characteristic equation is k> + 4k = k(k*> + 4) = 0 with
solutions k; = 0 and ky 3 = +2i that are found with Solve.

In[1356] := Solve[k™3 +4k == 0]
out [1356]= {{k >0}, (k> -2 i}, {k>2 i}}

Three linearly independent solutions of the equation are y; = 1, y, =
cos2t, and y; = sin2z. A general solution is y = ¢| + ¢ sin2¢ + ¢3 cos 2t.

471

Factor [expression]
attempts to factor
expression.

Enter ?Solve to obtain
basic help regarding the
Solve function.
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Figure 6-20 Graphofy = - + 1sin2s + | cos2s

In[1357] := gensol = DSolvel[y” ' [t] +4y [t] ==0,y[t], t]
out [1357]= {{y[t] »C[3] +% C[1] Cos[2 t] +% cl2]
Sin[2 t]}}
Application of the initial conditions shows us that ¢; = —1/4, ¢, = 172,
and ¢3 = 1/4 so the solution to the initial-value problem is y = -1 +

1sin2s + § cos 2t. We verify the computation with DSolve and graph
the result with P1ot in Figure 6-20.

In[1358] := el =y[t]/.gensol[[1]]/.t->0
cl1]

Oout [1358] = 5

+C[3]
In[1359] := e2 =D[y[t]/.gensol[[1]],t]/.t->0
e3 =D[y[t]/.gensol[[1]], {t, 2}]/.t->0

out [1359]= C[2]
out [1359]= -2 C[1]

In[1360] := cvals = Solve[{el==0,e2==1, e3 ==-1}]
out[1360]= {{c[1] > 3, Cc[2] -1, C[3] 9—3}}

2 4
In[1361] := partsol = DSolve[

{y”[t] +4y'[t] ==0,y[0] ==0,y'[0] ==1,
y”’[0] == -1}, y[t], t]

out[1361]= {{y[t 2.2 cospz e sinf2 t]}}
u = v }e—4+4 os [ ]+ in[ ]

N |-

In[1362] := Plot[Evaluate[y[t]/.partsol], {t, 0, 2x},
AspectRatio- >Automatic]

EXAMPLE 6.3.3: Find a differential equation with general solution y =

-2t/3 —2t/3 +C3t2€72t/3

cre +cote +C4 COSE+Cs SINt+cCgt COSE+cCyt Sinf+cgt? cost+

cot? sint.
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SOLUTION: A linear homogeneous differential equation with constant
coefficients that has this general solution has fundamental set of solu-
tions

S = {e‘Z’/3, te 23 12723 cost, sint, t cost, t sint, t> cost, t> sin t} .

Hence, in the characteristic equation k = —2/3 has multiplicity 3 while
k = +i has multiplicity 3. The characteristic equation is

62

1 17
30 0% s §k4

2 3
27 (k + g) k=i k+i® =k +2° + ?k7 57
4 8

26
+5K+ K+ k+ —,
9 3 27

where we use Mathematica to compute the multiplication with Expand.

In[1363] := Expand[27(k+2/3) "3 (k"2 +1) 73]
out [1363]= 8+36 k+78 k?®+135 k®+186 k*+189 k°
+170 k®+117 k7 +54 k®+27 K°

Thus, a differential equation obtained after dividing by 27 with the in-
dicated general solution is
9 8 7 6 5 4
dy &y 1Bdy 10dy .dy 62dy
ar®  dr®  3.di’ 27 dt®  dr® 9 drt
dy 26d% N 4dy 8

+—=y=0

57 — 7
St o T 3a Ty

6.3.3 Undetermined Coefficients

For higher-order linear equations with constant coefficients, the method of unde-
termined coefficients is the same as for second-order equations discussed in Sec-
tion 6.2.3 , provided that the forcing function involves appropriate terms.

EXAMPLE 6.3.4: Solve

d3 2
dy 24y 145dy
dr3  3dr? 9 dt

_ dy d2y
t = 1 —_— = 2 _— = —1
e, y0) =1, I 0) =2 i 0)
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7 2.

SOLUTION: The corresponding homogeneous equation, y”" + 5y +
12y’ = 0, has general solution y, = ¢| + (c2 sin4t + c3cos4r) e and a
fundamental set of solutions for the corresponding homogeneous equa-
tionis S = {1, ™3 cos4t, e sin 4t}.

In[1364] := DSolvel[y”’[t] +2/3y"[t] +145/9y' [t] == 0,
yltl, t]1//Simplify
_ 3 -t/3
out [1364]= {{y[t] »C[3] + s ©
((12 C[1] -C[2]) Cos[4 t]+ (C[1]

+12 C[2]) sin[4 t])}}

For e, the associated set of functions is F = {e" } Because no element
of F is an element of S, we assume that y, = Ae™, where A is a constant
to be determined. After defining y,, we compute the necessary deriva-
tives

In[1365]:= yp[t.] =a Exp[-t];
yp'[t]

yp'[t]
yp'[t]
Out [1365]= -a e*©

out [1365]= a e "
out [1365]= -a e *

and substitute into the nonhomogeneous equation.

In[1366]:= eqn=yp" ' [t]1+2/3yp” ' [t]+145/9yp’'[t] == Exp[-t]

148
Out [1366] = e aet==et

Equating coefficients and solving for A gives us A = -9/148 so y, =
—I%Se" and a general solution is y = y, + y,.
Remark. SolveAlways [equation,variable] attempts to solve

equation so that it is true for all values of variable.

In[1367] := SolveAlways[eqn, t]

9
out [1367]= {{a=-——}}
We verify the result with DSolve.

In[1368] := gensol =DSolve[y” [t] +2/3y"[t]
+145/9y'[t] == Exp[-t], y[t], t]
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9 eft,(i,% i> e(,;,4 i
148 145 145

9 31
7(556471160

out [1368]= {{y[t] - -

) ldes) e cr2] +cr31}}

To obtain a real-valued solution, we use ComplexExpand:

In[1369] := ?ComplexExpand

"ComplexExpand [expr]expandsexprassuming
thatallvariablesarereal .ComplexExpand |
expr, x1, x2, ...]expandsexprassuming
thatvariablesmatchinganyofthexiarecomplex."

In[1370] := sl = ComplexExpand[y[t]/.gensol[[1]]]

Out [1370] o e’ C[3] (= 338 i) /3 ©0[1] Cos[4 t]
u = - + - e (o]
148 145 145
(447 ) et C[2] Cos[4 t]
29 1160
36 -t/3 .
—_— e C[1 Sin[4 t
(l 145) (1] [4 t]
( ) e 3 C[2] sin[4 t]
1160 290
In[1371] := tl = Coefficient[sl, Exp[-t/3] Cos[4t]]
out [1371]= 2,3 i) cl1] <4£L, 3 1 ) cr2]
= - + - -
145 145 290 1160
In[1372] := t2 = Coefficient[sl, Exp[-t/3] Sin[4t]]
out [1372]= (o ii) (1] - (= + 2 i) cr2]
= + - +
145 145 1160 290
In[1373] := t3 =C[3]
out [1373]= C[3]

In[1374] := Clear[cl, c2, c3]

s2 = Solve[{tl ==cl, t2 ==c2, t3 ==c3}, {C[1],
c[2],C[3]}]

1 . .
out [1374]= {{c[1] - (78—72 i) (c1+1i c2),cl2] -

(—16—7é§£) (c1-1i c2),C[3] »c3}}

The result indicates that the form returned by DSolve is equivalent to

In[1375]:= 83 =81/.82[[1]]//Simplify
-t

9 e “t/3 “t/3 .
Out [1375]= c3- 118 +cl e Cos[4 t]+c2 e Sin[4 t]

To apply the initial conditions, we compute y(0) = 1, y’(0) = 2, and
y’'(0) = -
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In[1376] := el = (83/.t- >0) ==
e2 = (D[e83,t]/.t->0) ==
e3 = (D[e3, {t,2}]/.t->0) == -1
9
Out [1376]= - +cl+c3 ==
148
9 cl
Out[1376]= —— - — +4 C2 ==
148 3
9 143 cl 8 c2
Out [1376]= —~—— - — - ==-1
148 9 3

and solve for c;, ¢y, and cs.

In[1377] := cvals = Solve[{el, e2, e3}]
471 20729 157}}

- ,C2 > ,C3 > —
21460 42920 145

out [1377]= {{c1-

The solution of the initial-value problem is obtained by substituting
these values into the general solution.

In[1378]:= 83/.cvals[[1]]
157 9 et 471 e%? Cos[4 t]

145 148 21460
20729 e *? 8in[4 t]
+

42920

out [1378] =

We check by using DSolve to solve the initial-value problem and graph
the result with Plot in Figure 6-21.

In[1379] := sol =DSolve[{y” [t] +2/3y" [t]
+145/9y’'[t] == Exp[-t],

y[0] ==1,y'[0] ==2,y"[0] == -1}, yI[t],
t]
out [1379] = {{y[t}4>351479 e’ ~ 471
145 148 42920
20729 i) (-2-a 1) ¢
85840

471 20729 i (,;+4 i)t
_<42920 " Tg5840 ) et 1

In[1380] := realsol = ComplexExpand[y[t]/.s0ol[[1]]]
157 9 e 471 e*? Cos[4 t]

Out [1380]= —— - -
145 148 21460
20729 et? Sin[4 t]
+
42920
In[1381] := Plot[realsol, {t, 0, 27},

AspectRatio- > Automatic]
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s
=
g

Figure 6-21 The solution of the equation that satisfies y(0) = 1, y’(0) = 2, and y”(0) = -1

EXAMPLE 6.3.5: Solve

8 7 6 5 4
dy Tdy 73dy 229dy 801dy
a8 2dt7 2 dtb 2 ds 2 dt*

d3y dzy dy —t .

SOLUTION: Solving the characteristic equation

In[1382] := Solvel[k™8 +7/2k"7 +73/2k"6 +229/2k"5+
801/2k™4 + 976k"3 + 1168k"2 + 640k + 128 ==
0]
1
out [1382]= {{k- -1}, {k-> -1}, {k> -1}, {ke—g}, {(k>-4 i},
{(k>-4 i}, (k>4 i}, (k>4 i}}

shows us that the solutions are k; = —1/2, k, = —1 with multiplicity 3,
and k3 4 = +4i, each with multiplicity 2. A fundamental set of solutions
for the corresponding homogeneous equation is

S={e"? e te”, e, cosdt, t cos 41, sin4t,  sin 4}
A general solution of the corresponding homogeneous equation is

yp=cie ™ + (cz + o3t + C4t2) e+ (cs5 + ct) sin 4t + (cg + cgt) cos 4t.

In[1383] := gensol = DSolve[D[y[t], {t,8}] +7/2D[y[t]., {t, 7}]
+73/2D[y[t], {t, 6}] +229/2D[y[t], {t, 5}]
+801/2D[y[t], {t, 4}] +976D[y[t], {t, 3}]
+1168D[y[t], {t, 2}] + 640D[y[t], t]
+128y[t] ==0,y[t], t]

out[1383]= {{y[t] »e™ C[1]+e " t C[2] +e© t* C[3]
+e %2 C[4] +C[6] Cos[4 t]
+t C[8] Cos[4 t]-C[5] Sin[4 t]
-t C[7] sin[4 t]}}

The associated set of functions for re™ is Fy = {e™, ¢™'}. We multiply F
by ", where n is the smallest nonnegative integer so that no element of

477
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t"Fy is an element of S: 13F, = {136", tte! } The associated set of func-
tions for sin4t is F, = {cos4t,sin4t}. We multiply F, by ", where n is
the smallest nonnegative integer so that no element of "F; is an ele-
ment of S: 1?F, = {t2 cos 4t, 12 sin 4t}. The associated set of functions for ¢
is i35 = {1, t}. No element of F; is an element of S.

Thus, we search for a particular solution of the form

Vp = ABe™ + Aotte™ + Ast? cos 4t + Aut’ sindt + As + Agt,

where the A; are constants to be determined.
After defining y,, we compute the necessary derivatives

Remark. We have used Table twice for typesetting purposes. You can
compute the derivatives using Table [{n,D[yp[t],{t,n}1},{n,1,8}].

In[1384] := yp[t.] =a[l]t"3Exp[-t] +a[2]t 4Exp[-t]+
a[3]t"2Cos[4t] +a[4]t"28in[4t] +a[5] +a[6]t
Out[1384]= e t*® a[1] +e* t* a[2] +a[5] +t a[6]
+t? a[3] Cos[4 t]+t? a[4] Sin[4 t]
In[1385] := Table[{n,D[yp[t], {t,n}]1}, {n, 1, 4}]
out [1385]= {{1,3 e t* a[1] -e® t* a[1] +4 e t’ a[2]
—e " t* a[2]+a[6]+2 t a[3] Cos[4 t]
+4 t? a[4] Cos[4 t] -4 t? a[3] Sin[4 t]
+2 t a[4] sin[4 t]},
{2,6 et af[l]-6 e t? a[1]+e " t* a[1]
+12 e ® t? a[2]-8 et £ a[2] +e " t* a[2]
+2 a[3] Cos[4 t]-16 t? a[3] Cos[4 t]
+16 t a[4] Cos[4 t]-16 t a[3] Sin[4 t]
+2 af4] sin[4 t]-16 t* a[4] Sin[4 t]},
{3.6 et [ 1-18 e® t a[1]+9 e ® t% a[1]
—e” afl]+24 e t a[2]-36 e* t? a[2]
+12 e’t t® a[2] -e* t* a[2]
-96 t a[3] Cos[4 t] +24 a[4] Cos[4 t]
-64 t? a[4] Cos[4 t]-24 a[3] Sin[4 t]
+64 t? a[3] Sin[4 t]
-96 t a[41 sinf[4 t]},

{4,-24 e® a[1]+36 e" t a[1]-12 e© t* a[1]
+et afl] +24 e af[2]-96 e* t a[2]
+72 et t? a[2]-16 e* £ a[2]
+e " t* a[2] -192 a[3] Cos[4 t]
+256 t? a[3] Cos[4 t]-512 t a[4] Cos[4 t]

[3
+512 t a[3] Sin[4 t] -192 al[4] Sin[4 t]
+256 t* a[4] Sin[4 t]}}



6.3 Higher-Order Linear Equations 479

In[1386] := Table[{n, D[yp[t], {t,n}1}, {n, 5, 8}]

out[1386]= {{5,60 e® a[1]-60 e t a[1] +15 e " t* a[1]
—e™™ t? a[1] -120 e" a[2] +240 e " t a[2]
-120 e " t? a[2] +20 e " t® a[2] -e " t* a[2]
+2560 t a[3] Cos[4 t] -1280 a[4] Cos[4 t]
+1024 t? a[4] Cos[4 t] +1280 a[3] Sin[4 t]
-1024 t* a[3] Sin[4 t] +2560 t a[4] Sin[4 t]},
{6,—120 e af[1]+90 e* t a[1]-18 e " t? a[1]
+e " t® a[l1]+360 e a[2] -480 e t a[2]
+180 e t? a[2]-24 e* t® a[2]+e* t* a[2]
+7680 a[3] Cos[4 t] -4096 t® a[3] Cos[4 t]
+12288 t a[4] Cos[4 t] -12288 t a[3] Sin[4 t]
+7680 a[4] Sin[4 t] -4096 t* a[4] Sin[4 t]},
{7,210 et af[l]-126 e t a[1]+21 e* t? a[1]
—e " t® a[1] -840 e a[2] +840 e t a[2]
-252 e t? a[2]+28 e t® a[2] -e* t* a[2]
-57344 t a[3] Cos[4 t] +43008 a[4] Cos[4 t]
-16384 t? a[4] Cos[4 t] -43008 a[3] Sin[4 t]
+16384 t” a[3] Sin[4 t]-57344 t a[4] Sin[4 t]},
{8,-336 e a[1]+
168 e t a[1]-24 e " t? a[1]+e* t? a[1]
+1680 e a[2] -1344 e * t a[2]
+336 e t? a[2]-32 e " t? a[2]+e " t* a[2]
-229376 a[3] Cos[4 t] +65536 t% a[3] Cos[4 t]
-262144 t a[4] Cos[4 t]
+262144 t a[3] Sin[4 t] -229376 al[4] Sin[4 t]
+65536 t* a[4] Sin[4 t]}}

and substitute into the nonhomogeneous equation, naming the result
eqgn. At this point we can either equate coefficients and solve for A; or
use the fact that eqgn is true for all values of ¢.

In[1387]:= eqn=D[yp[t], {t, 8}] +7/2D[yp[t], {t, 7}]
+73/2D[yp[t], {t, 6}] +229/2D[yp[t],
{t,5}] +801/2D[yp[t], {t, 4}] +976D[yp[t],
{t,3}] +1168D[yp[t], {t, 2}]
+640D[yp[t], t] + 128yp[t] ==
t Exp[-t] +Sin[4t] +t//
Simplify
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Out [1387]= e (-867 a[l] +7752 a[2] - 3468 t a[2]
+128 +e" a[5] +640 e a[6] +128 e t a[6])
-64 (369 a[3] -428 a[4]) Cos[4 t]
-64 (428 a[3] +369 al4]) Sin[4 t] ==
t+e™ t+8in[4 t]

We substitute in six values of ¢

In[1388] := sysofeqgs = Table[eqn/.t- >n//N, {n, 0, 5}]

Out [1388]= {-867. a[l.]+

7752. a[2.]-
64. (369. a[3.]-
428. af4.])+
128. a[5.]+
640. a[6.] == 0,
41.8332 (369. a[3.]-
428. af4.])+
48.4354 (428. a[3.]+
369. af4.])+

0.367879 (-867. a[l.]+
4284. af2.]+
347.94 a[5.]+
2087.64 a[6.]) ==

0.611077,
9.312 (369. a[3.]-
428. af4.])-
63.3189 (428. a[3.]+
369. al[4.])+

0.135335 (-867. a[l.]+
816. a[2.]+
945.799 a[5.]+
6620.59 a[6.]) ==

3.26003,
-54.0067 (369. a[3.]-

428. af4.])+

34.3407 (428. a[3.]+
369. af4.])+

0.0497871 (-867. a[l.]-

2652. af2.]+
2570.95 a[5.]+
20567.6 a[6.]) ==

2.61279,
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out [1388]= 61.2902 (369. a[3.]-
428. af4.])+
18.4258 (428. a[3.]+

]
369. af4.])+
0.0183156 (-867. a[l.]-
6120. a[2.]
6988.56 a[5.]+
62897.1 a[6.])
3.78536,
-26.1173 (369. a|
428. al4.
58.4285 (428.
369. al4.
0.00673795
(-867. a[l.]-
9588. af2.]
18996.9 a[5.]+
189969. a[6.])
5.94663)}

+

3.]-
1)-
a[3.]+
]

)+

+

and then solve for A;.

In[1389] := coeffs =

Solve[sysofegs, {a[l.],a[2.],a[3.],a[4.],a[5.],al[6.

Out [1389]= {{a[l.] »-0.00257819,
af2.] »-0.000288351,
a[3.] >-0.0000209413,
al4.] »-0.0000180545,
a[5.] »-0.0390625,
a[6.] >0.0078125}}

yp is obtained by substituting the values for A; into y, and a general
solution is y = y, + y,. DSolve is able to find an exact solution.

In[1390] := gensol = DSolve[D[y[t], {t, 8}] +7/2D[y[t], {t, 7}]
+73/2D[y[t], {t, 6}] +229/2D[y[t], {t, 5}]
+801/2D[y[t], {t,4}] +976D[y[t], {t, 3}]
+1168D[y[t], {t, 2}] + 640D[y[t], t] + 128y[t] ==
t Exp[-t] +Sin[4t] +t,y[t],t]l//
Simplify

131
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5 2924806 e * t 86016 et t

Out [1390] = tl s - —————— + —— -
el 128 24137569 128 1419857
1270 e™® t? 38 e* t* e t* |
- - - +e - C[1]
83521 14739 3468
+e "t C[2]

+e® t2 C[3] +e 2 Cl4]

9041976373 107 t2
+ - +C[6]
199643253056000 5109520
1568449
+t (-—————+cC[8])) Cos[4 t]
45168156800
( 13794625331 20406 t
+ +
798573012224000 352876225
369 t° c[s] -t C[7])sin[4 t]}}
-— - - in
20438080

Variation of Parameters

In the same way as with second-order equations, we assume that a particular
solution of the nth-order linear equation (6.18) has the form y, = u1(*)y1 + u2(t)y> +
-+ + u,(t)y,, where S = {y1, y2,..., ¥} is a fundamental set of solutions to the corre-
sponding homogeneous equation (6.19). With the assumptions

v =y +yaud + e+, =0

yp" = yl,ull +y2'142/ +-e +ynlun, =0

(6.22)
yp(n—l) — yl(n—2)ulr + yz(n—Z)u2/ +oeee y”(n—Z)Mn/ — O
we obtain the equation
" + 3"y 4y, = f(0). (6.23)

Equations (6.22) and (6.23) form a system of » linear equations in the unknowns
u’, ), ..., u,’. Applying Cramer’s Rule,

,_ WS

up = s

W(S)

(6.24)

where W(S) is given by equation (6.20) and W;(S) is the determinant of the matrix
obtained by replacing the ith column of

Y1 Y2 Yn 0
v’ ! . V' 0

7Dy by, (7D f(@)
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EXAMPLE 6.3.6: Solve y® + 4y’ = sec2t.

SOLUTION: A general solution of the corresponding homogeneous
equation is y, = ¢j +c¢; cos 2t + 3 sin 2t; a fundamental set is § = {1, cos 2z,
sin 2t} with Wronskian W(S) = 8.

In[1391] := yh =DSolvel[y” ' [t] +4y'[t] ==0, y[t], t]

out [1391]= {{y[t] >cC[3 1 c[1] cos(2 t]+1 c[2] sin[2 t 1
u = (y[t] = C[3]+Z C[1] Cos[2 t]+= C[2] Sin[2 t]

In[1392]:= s ={1,Cos[2t], Sin[2t]};
ws = {s,D[s, t],D[s, {t,2}1};:
MatrixForm[ws]
1 Cos[2 t] Sin[2 t]
out[1392]= |0 -2 Sin[2 t] 2 Cos[2 t]
0 -4 Cos[2 t] -4 Sin[2 t]
In[1393] := dws = Simplify[Det[ws]]

Out [1393]= 8

Using variation of parameters to find a particular solution of the non-
homogeneous equation, we let y; = 1, y, = cos2¢, and y; = sin2¢ and
assume that a particular solution has the form y, = uiy; + u2y» + usys.
Using the variation of parameters formula, we obtain

1 0 cos 2t sin 2¢ 1
up = 3 0 -2sin2t  2cos2t|= —sec2t sO uj = 3 In|sec 2¢ + tan 2t],
sec2t —4cos2t —4sin2t
| 1 0 sin 2¢ |
M’2=§ 0 0 2cos2t|=—-- SO uzz—zt,
0 sec2t —4sin2t
and
1 1 cos 2t 0 |
uy = 3 0 —2sin2¢ 0 |=—--tan2t so uz= gln|C0821|,
0 —4cos2t sec2t

where we use Det and Integrate to evaluate the determinants and
integrals. In the case of u;, the output given by Mathematica looks
different than the result we obtained by hand but using properties of
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logarithms (In(a/b) = Ina — Inb) and trigonometric identities (cos®x +
sin’ 2 x —sin®x = cos 2x, and the reciprocal
identities) shows us that

x = 1, sin2x = 2sinxcosx, cos

cost + sint
Inj—

1 . .
— (In|cost +sint| —In|cost + sint|) = -
8 cost — sint

cost +sint cost + sint
cost —sint cost + sint

—_
=

cos?t + 2 costsint + sin’ ¢

—_
=

0| — 00| = 0| = 00| =— 00| =

cos? f — sin’ ¢
1 + sin 2¢ 1
cos 2t

—_
=

1 sin 2¢ ‘
+
cos2t  cos2t

= 3 n
= — In|sec 2t + tan 2¢|

so the results obtained by hand and with Mathematica are the same.

In[1394]:= ulp=1/8
Det[{{0, Cos[2t], Sin[2t]},
{0, -28in[2t], 2Cos[2t]},
{Sec[2t], -4Cos[2t], -4Sin[2t]}}]1//
Simplify

1
Out [1394]= + Sec[2 t]

In[1395] := Integrate[ulp, t]

Out [1395] = f% Log[Cos[t}—Sin[t}]+% Log[Cos[t]+Sin[t]]

In[1396] := u2p = Simplify[1/8 Det[{{1l, 0, Sin[2t]},
{0,0,2Cos[2t]}, {0, Sec[2t],
~45in[2£]}}1]

1
Out [1396]= -

4
In[1397] := Integrate[u2p, t]
Out [1397]= —Z
In[1398] := u3p = Simplify[1/8 Det[{{1, Cos[2t], 0},

{0, -2sin[2t], 0},
{0, -4Cos[2t], Sec[2t]}}]]

1
Out [1398] = 2 Tan[2 t]

In[1399] := Integrate[u3p, t]
1
Out [1399] = s Log[Cos[2 t]]
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Thus, a particular solution of the nonhomogeneous equation is

1 1 1
=3 In|sec 2t + tan 2¢t| - ZtcosZt +3 In | cos 2t| sin 2¢

and a general solution is y = y; + y,. We verify that the calculations
using DSolve return an equivalent solution.

In[1400] := gensol =
DSolve[y”'[t] + 4y’ [t] == Sec[2t], y[t], t1//
Simplify
out [1400]= {{y[t] %% (8 C[3]-2 (t-2 C[1]) Cos[2 t]
-Log[Cos[t] -Sin[t]] + Log[Cos[t]
+8in[t]] + (4 C[2]
+Log[Cos[2 t]]) Sin[2 t])}}

6.3.4 Laplace Transform Methods

The method of Laplace transforms can be useful when the forcing function is
piecewise-defined or periodic.

Definition 4 (Laplace Transform and Inverse Laplace Transform). Let y = f(r) be
a function defined on the interval [0, o). The Laplace transform of is the function (of s)

Fo = Lo = [ e (6.25)

0
provided the improper integral exists. f(t) is the inverse Laplace transform of F(s)
means that L{f(t)} = F(s) and we write L~ {F(s)} = ().

1. LaplaceTransform[f [t],t,s] computes L{f(t)} = F(s).
2. InverseLaplaceTransform[F[s],t,s] computes LYHF@$)) = f(0).

IO, t<0
3. UnitStep [t] returns U(t) =
Ll, t=0.

Typically, when we use Laplace transforms to solve a differential equation for a
function y(r), we will compute the Laplace transform of each term of the differen-
tial equation, solve the resulting algebraic equation for the Laplace transform of
@), L{y@®)} = Y(s), and finally determine y(r) by computing the inverse Laplace
transform of Y(s), £~' (Y (s)} = y(¢).
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Figure 6-22 Plotof f(t)for0 <t <5

I1,05z<1

EXAMPLE 6.3.7: Lety = f(¢) be defined recursively by f(r) = l - )
-1, 1=<t<

and f(t) = f(t —2)if t = 2. Solve y” + 4y’ + 20y = f(?).

SOLUTION: We begin by defining and graphing y = f(r) for0 <7 <5
in Figure 6-22.

In[1401] := Clear[£f, g, u,yl, y2, sol]
f[t] :=1/;0=<t<1
flt] :=-1/;1<t=<2
f[t.] :=£f[t-2]1/;t>2
Plot[f[t], {t, 0,5},
Ticks » {Automatic, {-2,-1,0,1,2}},

PlotRange -» {-2, 2}]

We then define 1hs to be the left-hand side of the equation y” + 4y" +
20y = f(@),

In[1402] := Clear|[y, x, lhs, stepone, steptwo]
lhs =y’ [t] +4y' [t] +20y[t];

and compute the Laplace transform of 1hs with LaplaceTransform,
naming the result stepone.
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In[1403] := stepone = LaplaceTransform[lhs, t, s]

Out [1403]= 20 LaplaceTransform[y[t], t, s]
+s? LaplaceTransform[y[t], t, s]
+4 (s LaplaceTransform[y[t], t,s] -y[0])

-sy[0] -y'[0]

Let 1r denote the Laplace transform of the right-hand side of the equa-
tion, f(z). We now solve the equation 201y + 4sly + 521y — 4y(0) — sy(0) —
¥'(0) = Ir for 1y and name the resulting output steptwo.

In[1404] := steptwo = Solve[stepone == 1r,
LaplaceTransform[y[t], t, s]]
out [1404]= {{LaplaceTransform[y[t] ,t,8] >

lr+4y[0] +sy[0] +y'[0] }}
20 +4 s+ g2

In[1405] := stepthree = ExpandNumerator [
steptwo[[1,1,2]], 1r]
lr+4y[0] +sy[0] +y' [0O]

Out [1405] =
d ] 20+ 4 s+ s?

To find y(¢), we must compute the inverse Laplace transform of L {y(1)};
the formula for which is explicitly obtained from steptwo with
steptwo[[1,1,2]]. First, we rewrite : L{y(#)}. Then,

e L{f®)} 4y(0) + sy(0) + y'(0)
=1L {s2+4s+20+ 2+ 4s 120 }

P L{f®)} _1 [4¥(0) + sy(0) + y'(0)

=L {s2+4s+20}+£{ 2 + 45 + 20 }

Completing the square yields s* + 45 + 20 = (s + 2)> + 16. Because

b s—a
—1 _ o at _: —1 _
L {m} —etsmbt and .E {m}—etcosbt,
the inverse Laplace transform of
4y(0) + sy(0) +y'(0) _ s+2 y'(0) + 2y(0) 4

=y(0)

2+ 45 120 Gr22+8 T 4 (+2r+d

is

y(0)e™ cos 4t + 1 in4t,
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which is defined as y;(r). We perform these steps with Mathematica

by first using InverseLaplaceTransform to calculate

£ {4y(0) +5y(0) +y'(0)
s2+4s+20

}, naming the result stepfour.

In[1406] := stepfour = InverseLaplaceTransform[
_-4Y[0] -syl[0] -y'[0]
20 +4 s + s?

.8, t]

out[1406]= -Zie **HVE (((-2+41i)+ (2+41) ) y[0]

z
8 .
+(-1+e* ) y'[0])
To see that this is a real-valued function, we use ComplexExpand to-
gether with Simplify.

In[1407] := stepfive = ComplexExpand[stepfour]//Simplify

1
Out [1407] = Ze*“ (4 Cos[4t]y[0]+Sin[4t] (2y[0] +Y [0]))

Because y’(0) is assumed to be a real number, the imaginary part of y’(0)
is 0; the real part of y'(0) is y’(0).

In[1408] := yl[t.] =
stepfive/.{Im[y’ [0]] » 0, Re[y' [0]]1 -y [01}//
Simplify

Out [1408] = ze’” (4 Cos[4t]y[0] +Sin[4t] (2y[0]+Y [0]))

Lif0)}

7+ 45+ 20 Ve begin by

To compute the inverse Laplace transform of

computing 1r = L{f(#)}. Let U,(t) = Il’ = a' Then, U, (1) = Ut — a) =

lO, t<a
UnitStep[t — a].
.1 . jl, O0<r<l1 .
The periodic function f(r) = and f(t) = f(t — 2) if
-1, 1=<t<?2

t = 2 can be written in terms of step functions as

J@) = Uo@) = 22U\ (t) + 2U (1) = 2U5(1t) + 2U4(02) — . ..
=UH-2Ut - 1) +2U(t —2) = 2U(t - 3) + 22Ut - 4) —. ..

= UL +2 Z(—D”fu(t —n).
n=1
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1
The Laplace transform of U, (1) = U(t—a) is ;e“” and the Laplace trans-
form of f(O)U,() = fOOUE — a) is e"*F(s), where F(s) is the Laplace
transform of f(z). Then,

lr=—-—-—-e€¢"4+—-e " ——¢e " +...
1 ) ) )
=*(1—26_3+2€_23—2€_33+...)
Ky

and

1r B 1
2 +4s+20 s(s2+4s+20)

(1 — 2 +2e7F — 27 4. )

—ns
e

" 5(?2 +4s+20) +2;(_1) s(22 +4s+20)

1 1 1 1 1
B - -1 — ~ 2
ecause G T 20~ dprri et {s(s2+4s+20)} b 3¢
sin4e da, computed and defined to be the function g(z).

t
1
In[1409]:= g[t.] =J 2 Exp[-2a] Sin[4 a]da
0
1 -2t 2t :
Out [1409] = —Ee (-2e“"+2 Cos[4t] +Sin[4t])

Alternatively, we can use InverseLaplaceTransform to obtain the
same result.

In[1410]:= g[t.] = InverseLaplaceTransform[
1

_— -, 8, t
s (s2+48+20) ]

1 ) )
Out [1410] = 30 (4_ (2+1i) e 240 E_ (2 4) e(—mu)t)

—ns

e
5 (52 + 4s + 20)
Laplace transform of

Then, £™! {2(—1)” } = 2(-1)"g(t—n)U(t—n) and the inverse

e—ns

s(s2 +4s+20) +2nZ::‘(_1) s(s2 +4s+20)
is

ya() = g(0) +2 3 (=1)"gle = MU — ).

n=1
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It then follows that

(@) = y1(8) + y2(2)

Y'(0) +2y(0) o

7 sindt + 2 Z(—l)”g(r - n)U(t - n),

n=1

= y(0)e ¥ cos 4t +

where g(1) = 55 — 3oe 2 cos 4t — Jse™ sin4r.

To graph the solution for various initial conditions on the interval
[0, 5], we define y,(t) = g(t)+2 Y>_,(—=1)"g(t —n)U(t —n), sol,and inits.
(Note that we can graph the solution for various initial conditions on

the interval [0, m] by defining y,(r) = g(t) + 2 3o, (=1)"g(t — m)U(t — n).)

5
Tn[1411]:= y2[t.] :=g[t]+2 Z (-1)®g[t-n] UnitStep[t-n]

n=1

In[1412] := sol[t.] :=y1l[t] +y2[t]

In[1413]:= inits = {-1/2,0,1/2};

We then create a table of graphs of sol [t] on the interval [0, 5] corre-
sponding to replacing y(0) and y’(0) by the values —1/2, 0, and 1/2 and
then displaying the resulting graphics array in Figure 6-23.

In[1414] := graphs =
Table[
Plot[
sol[t]/.{y[0] » inits[[i]],
y'[0] » inits[[]j]1]}, {t, 0,5},
DisplayFunction -» Identity], {i, 1, 3},
{j,1,3}]; Show[GraphicsArray[graphs]]

Application: The Convolution Theorem

Sometimes we are required to determine the inverse Laplace transform of a prod-
uct of two functions. Just as in differential and integral calculus when the deriva-
tive and integral of a product of two functions did not produce the product of the
derivatives and integrals, respectively, neither does the inverse Laplace transform
of the product yield the product of the inverse Laplace transforms. The Convolution
Theorem tells us how to compute the inverse Laplace transform of a product of two
functions.
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111
oo O
G
'_I
w
ul
[
oo O
O
[}
w
Ul
[
oo O
(O8N el e
'_\
w
Ul

0 0p2 002
08 091 091
06 0% 0%9

-0 -0.0 -0.0

Figure 6-23 Solutions to a differential equation with a piecewise-defined periodic forcing
function

Theorem 24 (The Convolution Theorem). Suppose that f(t) and g(t) are piecewise
continuous on [0, co) and both are of exponential order. Further, suppose that the Laplace
transform of f(¢) is F(s) and that of g(t) is G(s). Then,
!
LTHF®GE)) = LTHLIf =00} = f f&=v)g(v)dv. (6.26)
0

Note that (f = ) (¢) = jg St —v)g(v)dv is called the convolution integral.

EXAMPLE 6.3.8 (L-R-C Circuits): The initial-value problem used to
determine the charge ¢(¢) on the capacitor in an L-R—C circuit is

LY9 + R + Lo = f(r)
2O =0, Z©O =0

where L denotes inductance, dQ/dt = 1, I(t) current, R resistance,
C capacitance, and E(t) voltage supply. Because dQ/dt = I, this differen-
tial equation can be represented as

dl

1 t
L= +RI+— | I =EQ®).
o TR+ - fo W) du = E(t)

Note also that the initial condition Q(0) = 0 is satisfied because Q(0) =
é foo I(w)du = 0. The condition dQ/dt(0) = 0 is replaced by I(0) = 0. (a)
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We use lowercase letters to
avoid any possible ambiguity
with built-in Mathematica

functions, like E and I.

Chapter 6 Differential Equations

Solve this integrodifferential equation, an equation that involves a deriva-
tive as well as an integral of the unknown function, by using the Con-

volution theorem. (b) Consider this example with constant values L =
int, 0 <t <n/2 .
C=R=1and E(t) = - & . Determine /(¢) and graph the
lO, t=n/2

solution.

SOLUTION: We proceed as in the case of a differential equation by
taking the Laplace transform of both sides of the equation. The Con-
volution theorem, equation (6.26), is used in determining the Laplace
transform of the integral with

t
L{f I(u)du} =L{1=I0)) = L} L{UI@®)} = %L{I(Z)}-
0
Therefore, application of the Laplace transform yields

11
LsL{I(t)} — LIO) + RL{I()} + E;L{I(r)} =L{E®)}.
Because 1(0) = 0, we have LsL{I(1)} + RL{I{®)} + %%L{I(r)} = L{E@®)}.
Simplifying and solving for L {I(¢)} results in L{I()} = Lc(;;f{%
In[1415] := Clear[i]

LaplaceTransform[li'[t] +ri[t], t, s]
Out [1415]= r LaplaceTransform[i[t], t, s]
+1 (-1[0] + sLaplaceTransform[i[t], t, s])

1la;
In[1416] := Solve [1 slapi +rlapi +

i
L lape, lapi]
s

) clape s
out[1416]= {{lapi > m}}

_ CsL{E@®)}

_ 1

so that I(t) = L {LCs2 ~RCs 1 1}. For (b), we note that
sint, 0 <t <n/2 . .

E@) = can be written as E(r) = sint (U(t) — U(t — n/2)).
LO, t=n/2

We define and plot the forcing function E(r) on the interval [0, ] in Fig-
ure 6-24.

In[1417] := e[t.] :=Sin[t] (UnitStep[t] - UnitStep|t - g])

pl = Plot[e[t], {t, 0, w}]
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0.5 1 1.5 2 2.5 3

Figure 6-24 Plot of E(t) = sint (U(t) — U(t — 1/2))

Next, we compute the Laplace transform of L{E(t)} with
LaplaceTransform. We call this result 1cape.

In[1418] := lcape = LaplaceTransform[e[t], t, s]
1 e’% s

Out [1418] -
1+82 1+82

Using the general formula obtained for the Laplace transform of I(z),
we note that the denominator of this expression is given by s* + 5 + 1
which is entered as denom. Hence, the Laplace transform of I(¢), called
lcapi, is given by the ratio s 1cape/denom.

In[1419] := denom=s®+s+1;

In[1420] := lcapi = s 1lcape/denom;

lcapi = Simplify[lcapi]

s-e 7 g2
Out [1420] =

l+s+282+83+sgt

We determine /(t) with InverseLaplaceTransform.

In[1421]:= i[t.] = InverselaplaceTransform[lcapi, s, t]
Out [1421]= Sin[t] 2et” Sin[@}
u = Sin -
A3
! 1 L (z_¢ 1 T
(singe1+ et ) (L3 con 23 (4]

V3 sin[ZV3 (-2 +t)])) onitstep| - 2 +t]

This solution is plotted in p2 (in black) and displayed with the forc-
ing function (in gray) in Figure 6-25. Notice the effect that the forcing
function has on the solution to the differential equation.
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1,
0.8
0.6
0.4y
0.2
L / L .
2 4 6 8 10
-0.2¢

Figure 6-25 I(z) (in black) and E(¢) (in gray)

In[1422] := p2 =Plot[i[t], {t, 0,10},
DisplayFunction -» Identity];
Show[pl, p2, PlotRange -» All,
DisplayFunction -» $DisplayFunction]

In this case, we see that we can use DSolve to solve the initial value
problem

IQ” +Q +q=E@)
le =0, 00 =0

as well. However, the result is very lengthy so only a portion is dis-
played here using Short.

In[1423] := sol =
DSolve[{q”[t] +q'[t] +q[t] ==e[t],
q[0] ==0,q'[0] ==0}, q[t], t];

In[1424] := Short[sol]

8 e (<«<1>)
— s

out[1424]= {{q[t] >

3 <<4>
We see that this result is a real-valued function using ComplexExpand

followed by Simplify.

In[1425] := q[t.] = ComplexExpand[sol[[1,1,2]]1//
Simplify
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Figure 6-26  Q(#) (in black) and I(r) = Q’(¢) (in gray)

Out [1425] = % e t/?
(—I%cet/2 Cos[t] + 3 Cos [\/Et} +\/§Sin{\gt])

UnitStep[t]

+(3 cos[t] -2V3 el 29 gin[Z+/3 (r-2¢t)
4
JT
UnitStep[—5+t})

We use this result to graph Q(t) and I(r) = Q’(¢) in Figure 6-26.

In[1426] := Plot[{q[t].,qa [t]}, {t, 0,10},
PlotStyle -» {GrayLevel[0], GrayLevel[0.5]}]

Application: The Dirac Delta Function
Let 6 (r - 7p) denote the (generalized) function with the two properties

1. 6(t —19) =0ifr # 1ty and
2. [T o@—1t)dt =1

which is called the Dirac delta function and is quite useful in the definition of im-
pulse forcing functions that arise in some differential equations. The Laplace trans-
form of §(r —1y) is L{6(t —tg)} = e . The Mathematica function DiracDelta
represents the ¢ distribution.

In[1427] := LaplaceTransform[DiracDelta[t - t0], t,
s]
out [1427]= e 5*°
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Ix” +X +x = 8t + UG - 27)
lx(O) =0, xX0)=0

EXAMPLE 6.3.9: Solve

SOLUTION: We define eq to be the equation x” +x" +x = §(t) + U(t —2n)
and then use LaplaceTransform to compute the Laplace transform
of eq, naming the resulting output 1eq. The symbol LaplaceTransform
[x[t],t,s] represents the Laplace transform of x [t]. We then apply
the initial conditions x(0) = 0 and x’(0) = 0 to Leq and name the result-
ing output ics.

In[1428] := Clear[x, eq]

eq=x"[t] +x' [t] +x[t] ==
DiracDelta[t] + UnitStep[t -2 7];

leq = LaplaceTransform[eq, t, s]

LaplaceTransform[x[t], t, s]

+s LaplaceTransform[x[t], t, s]

Out [1428]

+s? LaplaceTransform[x[t], t, s]

(e—ZITs

-x[0] -sx[0] -x"[0] ==1+

s
In[1429] := ics = leq/.{x[0] - 0,x"[0] - 0}

Out [1429] = LaplaceTransform[x[t], t, s]
+s LaplaceTransform[x[t], t, s]

e—ZITs

+s’ LaplaceTransform[x[t], t, s] == 1+
s

Next, we use Solve to solve the equation ics for the Laplace trans-
form of x(¢). The expression for the Laplace transform is extracted from
lapx with lapx[[1,1,2]].

In[1430] := lapx =
Solve[ics, LaplaceTransform[x[t], t, s]]
Out [1430] = {{LaplaceTransform[x[t} ,t,s] >

=)

To find x(t), we must compute the inverse Laplace transform of the
Laplace transform of L{x(#)} obtained in lapx. We use Inverse
LaplaceTransform to compute the inverse Laplace transform of
lapx[[1,1,2]] and name the resulting function x [t].

e—Zﬁs (1 +(e2rrs

s (1+s+8?)

In[1431]:= x[t.] = InverseLaplaceTransform|[
lapx[[1,1,2]],s,t]
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\&~ 10 15 20 25

Figure 6-27 Plot of x(¢) on the interval [0, 87]

2e %2 gin [%]
\3

+§ (3-e"% (3 COS[%ﬁpz;ut)]

Out [1431]=

1
+4/3 sin [5 \3 (-27m+t) } >) UnitStep[-27m+t]
To see that this is a real-valued function, we use ComplexExpand fol-
lowed by Simplify.

In[1432]:= x[t_.] = ComplexExpand[x[t]]//Simplify

2\/5 et Sin[\/gt}

2

1 .
Out [1432] = ge

e (3 e -3 ¢" Cos [%\E(—zrwt}}
3e" Sin{%\/g(—27r+t)]) UnitStep[—27r+t])

We use Plot to graph the solution on the interval [0, 87] in Figure 6-27.
In[1433] := Plot[x[t], {t, 0, 8 n}]

Finally, we note that DSolve is able to solve the initial value problem
directly as well. The result is very lengthy so only an abbreviated por-
tion is displayed here using Short.

In[1434] := Clear[x]

sol =
DSolve[
{x""[t] +x [t] +x[t] ==
DiracDelta[t] + UnitStep[t -2 7],
x[0] == 0, x'[0] == 0}, x[t], t];
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In[1435] := Short[sol, 2]
4e? («<1>>) }}

(—31'1+\/§) (3]'1+\E

As before, we see that the result is a real-valued function using ComplexExpand

out[1435]= {{x[t] >

followed by Simplify.
In[1436] := ComplexExpand[sol([[1,1,2]]]//Simplify

—2\/5 et Sin[\/gt}
3t

3
+2+/3 Vet sin [?] UnitStep[t]+

1 -t
Out [1436]= S e

+(3e"-3e Vet Cos[%\/g@ﬂ—t)]

1
/3 e Vet sin[E\/E (27-t)]) UnitStep[-27+t]

6.3.5 Nonlinear Higher-Order Equations
Generally, rigorous results regarding nonlinear equations are very difficult to ob-
tain. In some cases, analysis is best carried out numerically and/or graphically.

In other situations, rewriting the equation as a system can be of benefit, which is
discussed in the next section. (See Examples 6.4.5, 6.4.4, and 6.4.7.)

6.4 Systems of Equations

6.4.1 Linear Systems

We now consider first-order linear systems of differential equations:

X' = A0OX + F(@), (6.27)
where
x1(1) an@) ap@) ... ap®) fi@®
X(1) = xz:(t) COAQ) = a21:(t) a22:(t) ag,é(t) . and F() = fz;(t) .

Xn (t) Aanl (t) an2(t) “ee ann(t) fn(t)
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6.4.1.1 Homogeneous Linear Systems
The corresponding homogeneous system of equation (6.27) is

X’ = AX. (6.28)

In the same way as with the previously discussed linear equations, a general
solution of equation (6.27) is X = X, + X, where X, is a general solution of equa-
tion (6.28) and X, is a particular solution of the nonhomogeneous system equation
(6.27).

If ®,, ®,, ..., ®, are n linearly independent solutions of equation (6.28), a
general solution of equation (6.28) is

C1
X=c® +08 + - +6,8,= (B @ 3,)|7|=®cC,
Cn
where

C1

2
®=(® @ ®,) and C=|,
Cn

® is called a fundamental matrix for equation (6.28). If ® is a fundamental matrix
for equation (6.28), &' = A® or ' - AP = 0.

A(t) constant
Suppose that A() = A has constant real entries. Let A be an eigenvalue of A with
corresponding eigenvector v. Then, ve" is a solution of X’ = AX.

If A = a +Bi, B # 0, is an eigenvalue of A and has corresponding eigenvector
v = a + bi, two linearly independent solutions of X’ = AX are

e" (acos Bt — b sinft) and e” (asinft + bcosft). (6.29)

EXAMPLE 6.4.1: Solve each of the following systems.

. (-172 =173 j X =1y dx/dt = —1x +2y
() X' = ( )X; 013, 7 © o
—1/3 —1/2 ty = —gx ldy/dt = —8x — Zy'

SOLUTION: (a) With Eigensystem, we see that the eigenvalues and
-172 -1/3

eigenvectors of A = (_1/3 12

) are A; = —1/6 and A, = —5/6 and

499

A particular solution to a
system of ordinary
differential equations is a set
of functions that satisfy the
system but do not contain
any arbitrary constants. That
is, a particular solution to a
system is a set of specific
functions, containing no
arbitrary constants, that satisfy
the system.
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-1 1 .
vy = ( | ) and v, = ( 1), respectively.

In[1437] := capa= {{-1/2, -1/3}, {-1/3, -1/2}};

Eigensystem[capa]
5 1
out [1437]= {{ - o —g}, {{1,1}, {-1,1}}}

Then X, = (_11) e%and X, = (1) €76 are two linearly independent

_1/6 ,=51/6
. .. e e C1
solutions of the system so a general solutionis X = _ _ ;
e o5\ ¢y

o /6 pS1/6
a fundamental matrixis® = _ . < (|
e e
We use DSolve to find a general solution of the system by entering

In[1438] := gensol =DSolve[{x'[t] == -1/2x[t] -1/3y[t].,
y'[t] == -1/3x[t] - 1/2y[t]}, {x[t],y[t]},
t]
out[1438]= {{x[t] »e® ¢ c[1] -e*® C[2],y[t] »
e® Y cl1]+e ¥ cl2]}}

We graph the direction field with PlotVectorField, which is con-
tained in the PlotField package located in the Graphics directory, in
Figure 6-28.

Remark. After you have loaded the PlotField package,
PlotVectorField[{f[x,v],glx,y]},{x,a,b},{y,c,d}]

generates a basic direction field for the system {x" = f(x, y), ¥’ = g(x, »)}
fora<sx<bandc=<y=d.

In[1439] := << Graphics‘PlotField"®

In[1440] :

pvE = PlotVectorField[{-1/2x-1/3y, -1/3x-1/2y},
{x,-1,1}, {y,-1,1}, Axes- >Automatic]

Several solutions are also graphed with ParametricPlot and shown
together with the direction field in Figure 6-29.

In[1441] := initsol =DSolve[{x'[t] == -1/2x[t] -1/3y[t],
y'[t] == -1/3x[t] -1/2y[t], x[0] ==x0, y[0] ==
y0}, {x[t], y[tl}, t]

1 1

out [1441]= {{x[t] »-e® /° (5 (-x0 - y0) + > e® *° (-x0+y0)),
t 5 /8 -x0 +y0

y[t] »e (2 e (-x0+vy0) + 5

E 2 t/3 x0+y0)}}
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Figure 6-28 Direction field for X’ = AX

In[1442] := t1l = Table[ParametricPlot][
Evaluate[{x[t],y[t]}/.initsol/.{x0- >1,y0- >i}],
{t, 0,15}, DisplayFunction- > Identity,
PlotStyle- >GrayLevel[0.3]], {i,-1,1,2/8}];
t2 = Table[ParametricPlot|
Evaluate[{x[t], y[t]}/.initsol/.{x0- >-1,y0- >1i}],
{t, 0,15}, DisplayFunction- > Identity,
PlotStyle- >GrayLevel[0.3]], {i,-1,1,2/8}]1;
t3 = Table[ParametricPlot[
Evaluate[{x[t],y[t]}/.initsol/.{x0- >i, y0- >1}],
{t, 0,15}, DisplayFunction- > Identity,
PlotStyle- >GrayLevel[0.3]], {i,-1,1,2/8}];
t4 = Table[ParametricPlot[
Evaluate[{x[t],y[t]}/.initsol/.{x0- >1i, y0- >-1}],
{t, 0,15}, DisplayFunction- > Identity,
PlotStyle- >GrayLevel[0.3]], {i,-1,1,2/8}];

In[1443] := Show[tl, t2, t3, t4,

pvf, DisplayFunction- > $DisplayFunction,
AspectRatio- > Automatic]
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Figure 6-29 Direction field for X’ = AX along with various solution curves

(b) In matrix form the system is equivalent to the system X’ = (_ ;) /3 162) X

As in (a), we use Eigensystem to see that the eigenvalues and eigen-

0 1/2 1 0.
vectors of A = (—1/8 0 )are Aip=0= zand Vip = (O) + (1/2)1.

In[1444]:= capa= {{0,1/2},{-1/8,0}};
Eigensystem[capa]

out [1444]= {{ - '} {{2 4,1}, (-2 i,1}}}

u:\n—'-
N

Two linearly independent solutions are then X = ((1)) cos 1t — ( 1(/)2) sin 41 =

1 1
cos4t) _(1). , (O) 1 _( n it
LY Jand X, = sin ;¢ + cos;t = |, ]

(—2 sin 31 0] 4 172 4 5 cos ¥

1

.. cos t sin i
eral solution is X = ¢ X + o X, = | LA or x =
—5 sin t 5 COs 3t
c1cos it +cysin it and y = —¢; 4 sin 7 + Les cos 4t.

t) and a gen-
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As before, we use DSolve to find a general solution.

In[1445] := gensol =DSolve[{x [t] ==1/2y[t], Yy [t] ==
-1/8x[t]}, {x[t],y[t]}, t]

t .t
out [1445]= {{x[t] > -2 C[1] cOs[Zj +2 C[2] sln[z},
y(t] > C[2] Cos[2]+c[1] Sin[z]}}

Initial-value problems for systems are solved in the same way as for
other equations. For example, entering

In[1446] := partsol =DSolve[{x' [t] == 1/2y[t],

y'[t] == -1/8x[t], x[0] ==1,
y[0] == -1}, {x[t], y[tl},
t]
out [1446]= {{x[t] > -2 (7% cos [—] +sin[-]),
t, 1 t
y[t] » -Cos [Z} -5 Sln[ZH}

finds the solution that satisfies x(0) = 1 and y(0) = —1.
We graph x(t) and y(¢) together as well as parametrically with Plot
and ParametricPlot, respectively, in Figure 6-30.

In[1447] := pl = Plot[Evaluate[{x[t],y[t]}/.partsol], {t, 0, 8x},
PlotStyle- > {GrayLevel[0], GrayLevel[0.4]},
DisplayFunction- > Identity];

p2 = ParametricPlot [
Evaluate[{x[t], y[t]}/.partsol], {t, 0, 8x},
DisplayFunction- > Identity,
AspectRatio- > Automatic];
Show|[GraphicsArray[{pl, p2}]]

We can also use PlotVectorField and ParametricPlot to graph
the direction field and/or various solutions as we do next in Fig-
ure 6-31.

In[1448] := pvf = PlotVectorField[{l1/2y, -1/8x}, {x, -2, 2},

{y, -1, 1}, DisplayFunction- > Identity];

In[1449] := initsol =DSolve[{x'[t] == 1/2y[t],
y'[t] == -1/8x[t], x[0] ==x0, y[0] ==y0},
{x[t],y[t]l}, t]

{{x[t]e—z (—% x0 Cos[z]—yo Sin[z]),

Out [1449]

v[t] »yo0 Cos[z}—% %0 Sin[%”}
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Figure 6-31 Notice that all nontrivial solutions are periodic

tl = Table[ParametricPlot|[
Evaluate[{x[t], y[t]}/.initsol/

.A{x0->1i,y0->1}1],
{t, 0, 87}, DisplayFunction- > Identity,

PlotStyle- >GrayLevel[0.3]],
{i,0,1,1/8}1;

In[1450] :=

Show[tl, pvf, DisplayFunction- >

In[1451]:=
$DisplayFunction, AspectRatio- > Automatic]

(¢) In matrix form, the system is equivalent to the system

_1
X' = (_g _21 ) X. The eigenvalues and corresponding eigenvectors
i
of A = - 2 are found tobe 11, = -1 +4iand v, = 0 4 (1 i
-3 -1 S 27 12) o

with Eigensystem.
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In[1452] := capa = {{-1/4,2}, {-8,-1/4}};
Eigensystem[capa]

1 1 _ . .
Out [1452] = {{7274 i i}, {{i, 2}, {-i,2)}}

A general solution is then

X = C]X] +C2X2

1 0) . 1) . 0
=cre* ((0) cos4t — (2) sin 4t) + et ((0) sin4t + (2) cos 4t)
R cos 4t sindt \|  _,4( cosdt sindt \(c
-¢ [Cl (—2 sin 4t) e (2 cos 4t)] - ¢ (—2 sindt  2cos4t)\c,

or x = e*(c;cosdt +cysindt) and y = e* (2c, cos 4t — 2c; sindt). We
confirm this result using DSolve.

In[1453] := gensol = DSolve[

{x'[t] =

y' [t] ==

out[1453]= {{x[t] >cC[2] (- 1

2

=-1/4x[t] +2y[t],
-8x[t] - 1/4Y.[t] Y, {x[t],y[t]l}, t]

iCos[(4+i) t] .
+2 i cosn[(7+4 i) t]+2 sin[(a+3) €]

—% i sinh[(%+4 i) t])

+C[1] (7% cos [(4+>) t]
-5 cosh[(7+4 i) t] - i sin[(a+]) t]
+2 sinn[(+a i) ¢]),

yiel »c2] (Cos[(a+7) t] +cosn[( +4 i) t]

i sin[(a+5) ¢] -simn[(3 4 1) €])
(1] (-1 Cos[(a+,) t]+i Cosn[(F+4 1) t]
csin[(a+ 1) €] -5 simn[ (34 1) €])}]

In[1454] := gensol[[1,1, 2]]
1, i 1, 1 .
out [1454]= C[2] (—5 i COS[(4+Z) t]+5 i cOsh[(Z+4 i) ]

2 sin[(a+) £] -1 4 simn[(F+4 1) t])
+C[1] (—% COS[(4+4E> t}—% Cosh[(z+4 i) t]

7% i Sin[(4+4i> t]+§ Sinh[(%*‘l i> t])
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In[1455] :=
Out [1455] =

In[1456] :=

In[1457] :=
Out [1457] =

In[1458] :

Chapter 6 Differential Equations

ComplexExpand[gensol[[1,1,2]]]//Simplify
(C[1] Cos[4 t]

-C[2] Sin[4 t]) (—Cosh[z}ﬁ-sinh{Z])
(C[1] Cos[4 t]-C[2] Sin[4 t]) (-e **)

ComplexExpand[gensol[[1, 2,2]]]//Simplify
2 (C[2] Cos[4 t]

+C[1] sin[4 t]) (cOsh[Z} _sinh[z])

2 (C[2] Cos[4 t]+C[1] Sin[4 t]) (e **)

In this case, we obtained the real form of the solution by selecting the
portion of the expression that we wanted to write in terms of exponen-

tial functions

gensol[[1. 1. 21]
clz] [-;licﬁs[[q»,

cl] [-;lcQs[[-u

ComplexExpand[gensol[[1. 1. 2]]] // Simplify

Iy o) Zrcomn[[2ean) ) Zoin|(s+ Z) o] - Lrsimn][ 2 aar)])

J ¢] - 2 conn (2

: sx)e] - Zassn[(se Z) e s Dowm[(2 1 a5)])

A L4 a L4
——

Expand[m]
Factor[m]
Together[m]
Lpart[m]
Cancel [m]
Simpli £y [m]
FullSimpli £y [m]
TrigExpand[m]

TrigFactor[m]

TrigReduce [H]

ExpToTrig[m]
TrigToExp [m]
FPowerExpand[m]

ComplexExpand [ m]
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to obtain the result.

ComplexExpand[gensol[[1. 2. 2]]1] // Simplify j

2 (C[2] Cos[4 t] +C[1] Sin[4 t]) (chh[;] -s:mh[%]]

L
La

2 (C[2] Cos[4t] +C[1] Sin[4 t]) (E*)

We use PlotVectorField and ParametricPlot to graph the direc-
tion field associated with the system along with various solutions in

Figure 6-32.
In[1459] := pvEf = PlotVectorField[{1l/4x + 2y, -8x - 1/4y},
{x,-1,1}, {y,-1,1}, Axes- >Automatic,
DisplayFunction- > Identity];
In[1460] := initsol =DSolve[{x'[t] == -1/4x[t] + 2y[t],
y'[t] == -8x[t] - 1/4y[t],
x[0] ==x0,y[0] ==y0}, {x[t], y[t]}, t]
t
out [1460]= {{x[t] »x0 Cos[4 t] Cosh[z]

1OChtS'4t 0 ¢C 4tS'ht
+5 v os [Z} in|[ ] -x os [ ] in [Z]

L 0 Sin[4 t] Sinh £
-3 v in| ] in [Z},

1 t
v[it] »2 (5 y0 Cos[4 t] Cosh[z}

t , _ t
-x0 cOsh[Z} Sin[4 t] - = y0 Cos[4 t] Slnh[z]

— NP

+x0 Sin[4 t] sinh[Z})}

In[1461] := tl = Table[ParametricPlot[
Evaluate[{x[t], y[t]}/.initsol/
.{x0->1,y0->1i}],
{t, 0,15}, DisplayFunction- > Identity,
PlotStyle- > GrayLevel[0.3]],
{i,-1,1,2/8}1;

In[1462] := Show[tl, pvf, DisplayFunction- >
$DisplayFunction, PlotRange- > {{-1, 1}, {-1,1}},

AspectRatio- > Automatic]

Last, we illustrate how to solve an initial-value problem and graph the
resulting solutions by finding the solution that satisfies the initial con-
ditions x(0) = 100 and y(0) = 10 and then graphing the results with
Plot and ParametricPlot in Figure 6-33.
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- 4 a4 4 a a—

e - - - - -

Figure 6-32 Various solutions and direction field associated with the system

In[1463] := partsol =DSolve[{x'[t] == -1/4x[t] +2y[t],
y' [t] == -8x[t] -1/4y[t], x[0] == 100,
y[0] ==10}, {x[t],y[t]}, t]

out[1463]= {{x[t] 100 Cos[4 t] Cosh £
u = x[t] » os | ] os [4}
5 Cosh[Z] sin[4 t]-100 Cos[4 t] Sinh[=
+ os [Z] in| ] - os | ] in [Z]
. , t
-5 sSin[4 t] slnh[z],
t
ylt] »2 (5 Cos[4 t] Cosh[z]

t , , t
-100 Cosh|[—] Sin[4 t]-5 Cos[4 t] Sinh[—]
4 4
t
+100 Sin[4 t] Sinh|—
(4 €] [z
In[1464] := pl = Plot[Evaluate[{x[t],y[t]}/.partsol], {t, 0,20},
PlotStyle- > {GrayLevel[0], GrayLevel[0.4]},
DisplayFunction- > Identity, PlotRange- >All];
p2 = ParametricPlot[
Evaluate[{x[t],y[t]}/.partsol], {t, 0,20},
DisplayFunction- > Identity,
AspectRatio- >Automatic];
Show|[GraphicsArray[{pl, p2}]]
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Figure 6-33 (a) Graph of x(¢) and y(¢). (b) Parametric plot of x(¢) versus y(¢). (For help with
Show and GraphicsArray use the Help Browser)

Application: The Double Pendulum
The motion of a double pendulum is modeled by the system of differential equa-

tions
2

,d*0, d*6,
(my +mp) 1 . +m211127 +(my+my) 11861 =0
,d*0 2
Lmzlz di 22 +mplil,—— ar + m212g92 =0

using the approximation sin# ~ 6 for small displacements. 6, represents the dis-
placement of the upper pendulum and 6, that of the lower pendulum. Also, m; and
my represent the mass attached to the upper and lower pendulums, respectively,
while the length of each is given by /; and /,.

EXAMPLE 6.4.2: Suppose that m; = 3, m, = 1, and each pendulum has
length 16. If 6,(0) = 1, 6,"(0) = 0, 6,(0) = —1, and 6,’(0) = 0, solve the
double pendulum problem using g = 32. Plot the solution.

SOLUTION: In this case, the system to be solved is

dGl d’*6,

4162571 1627+4 16320, = 0
P d%
l162dz2 1625 + 16320, =0,

which we simplify to obtain

2 2
14‘2[921 d 92 +86,=0
d%0, d291
+ 20, =
l az Tgp T¥=0

509
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The Laplace transform of
y=f@is F(s) = L{f0)} =
e @yt

Chapter 6 Differential Equations

In the following code, we let x(¢) and y(¢) represent 6,(t) and 6,(¢),
respectively. First, we use DSolve to solve the initial-value problem.

In[1465] := sol =
DSolve[{4x"'[t] +y ' [t] +8x[t] ==0,
x[t] +y [t] +2y[t] ==0,x[0] ==1,
x'[0] ==1,y[0] ==0,y'[0] == -1},
{x[t]l,ylt]l}, t]

out [1465]= {{x[t 2 (4 cosf2t
u = x[ }98( os | ]

+4 Cos [2\/—;] +3 sin[2t] +\ESin[%]),

yit] e% (—4 Cos[2t] +4 Cos[

=]
\/>
-3 Sin[2t] +\Esin[%])}}

t
3

To solve the initial-value problem using traditional methods, we use
the method of Laplace transforms. To do so, we define sys to be the sys-

tem of equations and use LaplaceTransform to compute the Laplace
transform of each equation.

6 O 6 Help Browser
f A 4 Y £ Hide Categories )
LaplaceTransform _ Go ) [ Close ) [ Hide Categories
- Add-ons The Mathematica Book
Getting Started/Demos Other Information Master Index

Numerical Compu.. (Alphabetical Listing) LaplaceTransform

»
Algebraic Comput... » FourierTransform

Mathematical Fun... »

»

»

Basic Algebra »  FourierSinTransform
Lists and Matrices Formula Manipula... ¥ FourierCosTransform ()
Graphics and Sound Equation Solving  *  ZTransform
. Calculus 3 -
Programming » 4 Polynomial Functi... » InverseLaplaceTrans.. 4

Input and Output __ »|v InverseFourierTrans... v

LaplaceTransform

sLaplaceTranstorn[ ey, 1, 7] gives the Laplace transforn of expr.

sLaplaceTranstorn[enr, (4. % . ... }. (f1. &z . ... }] gives the multidimensional Laplace transforra of
exr.

 The Laplace transforn of a fanction 7(1) is defined to be [ ) e dis.

= The lower limit of the integgal is effectively taken to be 0. 50 that the Laplace transform of the Dirac delta function
511) 15 equal fo 1.

= Assunptions and other options to Integrate can also be given in LaplaceTransforn
aInTraditionalFornm LaplaceTranstorn is outputusing £

u See The Mathematica Book. Section 1.5.11 and Section3 5. 11.

= Seealso: InverselaplaceTransform FourierTransform ZTransform Integrate

¥ Further Examples

[ 100x ¥ & j4Tw
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In[1466] :

stepl = LaplaceTransform[sys, t, s]

Out [1466]= {8 LaplaceTransform[x[t], t, s]
+s? LaplaceTransform[y[t], t, s] -sy[0]
+4 (s?LaplaceTransform[x[t], t, s]
-sx[0] -x'[0]) -y'[0] ==0,
s? LaplaceTransform([x[t], t, s]
+2 LaplaceTransform[y[t], t, s]
+s? LaplaceTransform[y[t], t, s]
-sx[0] -sy[0] -x'[0] -y'[0] == 0}

Next, we apply the initial conditions and solve the resulting system of
equations for L{60,(t)} = X(s) and L{6:()} = Y (s).

In[1467] := step2 =
stepl /. {x[0]->1,x[0]->1,y[0]->0,
y'[0]->-1}
Out [1467]= {1+ 8 LaplaceTransform[x[t], t, s]

+4 (-1 - s+ s? LaplaceTransform[x[t], t, s])
+s? LaplaceTransform[y[t], t, s] == 0,

-s + s?LaplaceTransform[x[t], t, s]

+2 LaplaceTransform[y[t], t, s]

+s? LaplaceTransform[y[t], t, s] == 0}

In[1468] := step3 = Solve[step2,
{ LaplaceTransform[x[t], t, s],
LaplaceTransform[y[t], t, s]}]
Out [1468]= {{LaplaceTransform[x[t] ,t,8] >
-6-8s-3s?-3¢°
16 +16 s + 3 g

’

LaplaceTransform[y[t], t, s] 8s+3s” 1}
aplaceTransform ,t, 8]l 5 - —mm——
P Y 16 + 16 82 + 3 s¢

InverseLaplaceTransformis then used to find 6,(¢) and 6,(¢). f() is the inverse Laplace
transform of F(s) if

L{f(t)} = F(s); we write
In[1469] := x[t_.] = InverseLaplaceTransform[ 1 F©) = £,

-6-8s-3s2-3g3
16 + 16s2 + 3s*

,s,t]

Out [1469]

© |

4 Cos[2t] +4 Cos | +3 sin[2t] +/3 Sin |

N
p
_

2t
2t
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(@) (b)

Figure 6-34 (a) 6,(t) (in black) and 6,(¢) (in gray) as functions of r. (b) Parametric plot of
6,(¢) versus 6,(¢)

In[1470]:= y[t.] = InverseLaplaceTransform[

-8s +3s?

-——, 8, t
16 + 16s2 + 3s* ]

Out [1470]= -Cos[2t] + Cos [2\/—;}

]

V3

2 Cos[t] Sin[t] + E\Es,in[
2 4

These two functions are graphed together in Figure 6-34 (a) and para-
metrically in Figure 6-34 (b).

Plot[{x[t],y[t]l}, {t, 0,20},
PlotStyle- > {GrayLevel[0], GrayLevel[0.5]}]

In[1471] :

In[1472] := ParametricPlot[{x[t],y[t]}, {t, 0,20},
PlotRange- > {{-5/2,5/2}, {-5/2,5/2}},
AspectRatio- >1]

We can illustrate the motion of the pendulum as follows. First, we
define the function pen2.
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In[1473] := Clear[pen2]

pen2[t_, lenl , len2 ] :=Module[{ptl, pt2},

ptl = {1en1 Cos [37" +x[t]],

lenl Sin [3771' +x[t]]};
pt2 =

{lenl Cos [37” +x[t]] + len2 Cos [32—7T +y[t]],
lenl Sin[3—7r+x[t]]+
2

) 3
len2 Sin [7 +y[t] ] };
Show|[

Graphics[{Line[{{0, 0}, ptl}],
PointSize[0.05], Point[ptl],
Line[{ptl, pt2}], PointSize[0.05],
Point[pt2]}], Axes » Automatic,

Ticks -» None, AxesStyle -» GrayLevel[0.5],

PlotRange -» {{-32, 32}, {-34,0}},

DisplayFunction -» Identity] ]

Next, we define tvals to be a list of sixteen evenly spaced numbers
between 0 and 10. Map is then used to apply pen2 to the list of numbers
in tvals. The resulting set of graphics is partitioned into four element
subsets and displayed using Show and GraphicsArray in Figure 6-35.

In[1474] := tvals = Table[t, {t, 0,10, ~2}];
n ;= Tvals = Ta e[,{, s ,15}]:

In[1475] := graphs = Map[pen2[#, 16, 16]&, tvals];

In[1476] := toshow = Partition[graphs, 4];

In[1477] := Show[GraphicsArray[toshow]]

If the option DisplayFunction->Identity is omitted from the def-
inition of pen2, we can use a Do loop to generate a set of graphics that
can then be animated.
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Figure 6-35 The double pendulum for 16 equally spaced values of ¢ between 0 and 10

In[1478] := Clear[pen2]

pen2[t_, lenl_, len2_] := Module [ {ptl, pt2},

3
ptl = {lenl Cos [7 +x[t]],

lenl Sin [37” +x[t]]};
Pt2=

{lenl Cos [37” +x[t]] + len2 Cos [? +y[t]],
lenl Sin [3;" +x[t]]+
2

len2 Sin [% +y[t]]};

Show [

Graphics[{Line[{{0, 0}, pt1l}],
PointSize[0.05], Point[ptl],
Line[{ptl, pt2}], PointSize[0.05],
Point[pt2]}], Axes » Automatic,

Ticks -» None, AxesStyle -» GrayLevel[0.5],

PlotRange - {{-32, 32}, {-34, 0}}1]
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We show one frame from the animation that results from the Do loop

In[1479] := D 2[t, 16,16 t,0,10 10
n ;= Do[pen2[t, 16, 161, {£, 0, 10, - }]

in the following screen shot.

‘@06 Chapéd.nb =
el e e e T o T

pt2 =
3 [t]]

+X +

2

3

4

3

2

3

2

{1eniCos|

len2Cos| +¥Itl].

leni Sin| +X[t1] +

len2 Sin|

+¥It1]}:

Show[

Graphics[{Line[{{0. 0}. pti1}].
PointS5Size[.06]. Point[ptl].
Line[{pti. pt2}]. Point5ize[. 05].
Point[ptZ2]}]. Azes » Automatic.

Ticks -+ None. AresS5Style » GrayLevel[.5].

PlotRange - {{-32. 32}. {-34. 0}}1]

10 7

Do[pen2[t. 16. 16]. {t. 0. 10, E}] ]
']
100% M sy

6.4.2 Nonhomogeneous Linear Systems

Generally, the method of undetermined coefficients is difficult to implement for
nonhomogeneous linear systems as the choice for the particular solution must be
very carefully made. Variation of parameters is implemented in much the same
way as for first-order linear equations.

Let X, be a general solution to the corresponding homogeneous system of equa-
tion (6.27), X a general solution of equation (6.27), and X, a particular solution of
equation (6.27). It then follows that X — X, is a solution to the corresponding ho-
mogeneous system so X — X, = X, and, consequently, X = X, + X,,. A particular
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solution of equation (6.27) is found in much the same way as with first-order lin-
ear equations. Let @ be a fundamental matrix for the corresponding homogeneous
system. We assume that a particular solution has the form X, = ®U(¢). Differenti-
ating X, gives us

X, =®'U+@U".

Substituting into equation (6.27) results in

PU+PU =APU+F

dU =F
U =%"'F
U= fquth,

where we have used the fact that ' U - A®U = (&' — AP) U = 0. It follows that
X,=® f & 'Far. (6.30)

A general solution is then

X =X, +X,

=dC + @qu‘th

:@(C+f<I»’Ith)='I>f<I”1th,

where we have incorporated the constant vector C into the indefinite integral
[®'Fadr

EXAMPLE 6.4.3: Solve the initial-value problem

, (1 -1 tcos 3t (1
X_(lo —1)X (tsint+tcos3t)’ X(O)_(—l)'

Remark. In traditional form, the system is equivalent to

X' =x—-y—tcos3t
) x(0) =1, y(0) = —1.
ly’ = 10x — y —t sint — t cos 3¢,
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SOLUTION: The corresponding homogeneous system is X), = ( b= 1) X

10 -1
. S 1 1
The eigenvalues and corresponding eigenvectors of A = ( 0 - 1) are

Aip =#3iand vy, = (110) + (_03) i, respectively.

In[1480] := capa = {{1, -1}, {10, -1}};
Eigensystem[capa]
out [1480]= {{-3 1,3 i}, {{1-3 1,10}, {1+3 i,10}}}

.. in 3¢ 3t .
A fundamental matrix is ® = | . s cos . with
sin3r —3cos3r cos3t+ 3sin3t
1 . 1
inverse -1 = 51095 3¢ + sin 3¢t ]3 (.zos 3t .
—3 sin 3t + cos 3t 3 sin 3t

In[1481] := fm= {{Sin[3t], Sin[3t] -3 Cos[3t]},
{Cos[3t], Cos[3t] +3Sin[3t]}};
fminv = Inverse[fm] //Simplify

1 ) 1 .
Out [1481] = Hg Cos[3 t] +Sin[3 t], Cos[3 t] - Sin[3 t1},
1 1,
{—5 Cos[3 t], 7 Sin[3 t]}}

We now compute ®~'F(r)

In[1482] := ft = {-t Cos[3t], -t Sin[t] -t Cos[3t]}:;
stepl = fminv.ft

out [1482]= {(-t Cos[3 t] -t Sin[t]) (Cos[3 t] 7§ sin[3 t])
-t Cos[3 t] (% Cos[3 t] +Sin[3 t]),
% t Cos[3 t]2+§ (-t Cos[3 t] -t sin[t]) Sin[3 t]}

and [ ®~'F()dr.
In[1483] := step2 = Integrate[stepl, t]
1
Out [1483] = {@ (-288 t?+36 Cos[2 t]-216 t Cos[2 t]

-9 Cos[4 t] +108 t Cos[4 t] -16 Cos[6 t]
+48 t Cos[6 t] +108 Sin[2 t]+72 t Sin[2 t]

-27 Sin[4 t] -36 t Sin[4 t] -8 Sin[6 t]
-96 t sin[6 t]),

1

Sea (72 £*-36 Cos[2 t]+9 Cos[4 t]+4 Cos[6 t]
+24 t Cos[6 t]-72 t Sin[2 t] +36 t Sin[4 t]
-4 sinf6 t]+24 t sinfe t])}
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A general solution of the nonhomogeneous system is then
®([®'F(r)dt + C).

In[1484] := Simplify[fm.step2]

1
Out [1484] = {288 (27 cos[t] -4 ((1+6 t+18 t?) Cos[3 t]
+27 t Sin[t] -Sin[3 t] +6 t Sin[3 t]
+18 t* sin[3 t])),
1 2
—— (-36 t Cos[t]-4 (1-6 t+18 t”) Cos[3 t]
288
~45 Sin[t] -4 Sin[3 t]-24 t Sin[3 t]
+72 t* Sin[3 t])}

It is easiest to use DSolve to solve the initial-value problem directly as
we do next.

In[1485] := check =DSolve[{x [t] ==x[t] -y[t] -t Cos[3t],
y'[t] == 10x[t] -y[t] -t Sin[t] -t Cos[3t],
x[0] ==1,y[0] == -1}, {x[t],y[t]}, t]
General :: "spelll" : "Possiblespellingerror :

newsymbolname¢heckis similar
toexistingsymbolCheck=:"
1
out [1485]= {{x[t] > 58
-72 t? Cos[3 t] +36 t Sin[t]
+192 Sin[3 t]-24 t Sin[3 t]),
1
yle]l - o (-9 cos[t]-36 t Cos[t]
-279 Cos[3 t] -72 t Cos[3 t]
-72 t? Cos[3 t] -45 Sin[t]
+36 t Sin[t] +1107 Sin[3 t]

-24 t sSin[3 t]-216 t* Sin[3 t])}}

(-9 cos[t]+297 Cos[3 t]

After using ?Evaluate to obtain basic information regarding the

Evaluate function, the solutions are graphed with Plot and
ParametricPlot in Figure 6-36.
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400

200

-200

-400

(@)

Figure 6-36  (a) Graph of x(¢) (in black) and y(¢) (in gray) . (b) Parametric plot of x(¢) versus
w0

In[1486] := ?Evaluate

"Evaluate [expr]causesexprtobeevaluatedeven
ifitappearsastheargumentofafunction
whoseattributesspecifythatitshouldbe
heldunevaluated."

In[1487] := pl = Plot[Evaluate[{x[t],

y[tl}/.check], {t, 0, 8n},
PlotStyle- > {GrayLevel[0], GrayLevel[0.4]},
DisplayFunction- > Identity];

p2 = ParametricPlot[
Evaluate[{x[t],y[t]}/.check], {t, 0, 8x},
DisplayFunction- > Identity,
AspectRatio- > Automatic];

Show[GraphicsArray[{pl, p2}]1]

6.4.3 Nonlinear Systems

Nonlinear systems of differential equations arise in numerous situations. Rigorous
analysis of the behavior of solutions to nonlinear systems is usually very difficult,
if not impossible.

To generate numerical solutions of equations, use NDSolve.
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Also see Example 6.4.7.
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eoe Help Browser
NDSolve {GoY [ Close ) ( Hide Categories )
Buili-in Functions Add-ons The Mathematica. Book
Getting Staned/Demos Other Information Master index
Numerical Compu... ¥ (Alphabetical Listing) fmn Solve
Algebraic Comput... ¥ Nsolve
Mathematical Fun.... »|{) Numerical Evaluat... »|}| NDSa!
Lists and Matrices  # Equation Solving  #% FindRoot
Graphics and Sound ¥ Sums and Products ¥
Integration y
Programming » 4 Optimization ’e
Input and Output v Data Manipulation » v
HDSolve
aiDSolvel ey . (x. wwn. woax) | tution eqns for
it fumchion  wifh he tndependent varisble % in the rage vmin b Emax
WNDSOLve[aqny. y. (X, ¥, Xmax), {1, MU, DRAY) ] fsdt 3 numerical soluon © e pArtAl differenial
qutions egry.
aKDSOLve[eqn. 1y . ¥ - .- ). (3. omin, omax)| fids mamerical soluons for the functons ¥
HDSolve giws results in s of InterpolatingFunct1on objsct.
aNDSolvelagy. yial., (x. wmin, wnax)] giws soluiors for y{ ] mafher fhan for the fusetion y el
= Differental i 25 y' [ 2], obained with D, not ol deriatives
obiained wih Dt.
HDSo1ve solmes a wide rargs of equaons, ons
fusetions y, singe wriable % In p:

eqUAMions fey Taay d#pénd On FOTE Than 01 FATADIE

= The differeniial equaions wust confain enough txdial of bondary conditions ta detemmize the solubions for the 3,
eampieely

‘= Inital and boundary conditions ars fypically sted in forma y{ & | == co. ¥ [ %0 | == oo, #%c. but may consistof
‘0 Comprakd eqUARIRS

Periodic be specified wsing Y % == yix |

®The noint 1o fhat annears in the is hemAsrr eanditions reed ot e in fhe ranes mein dn meax oo which the T
foox ST e

EXAMPLE 6.4.4 (Van-der-Pol’s equation): Van-der-Pol’s Equation x”+
u (x2 - 1)x’ +x = 0 can be written as the system

/

X

y

RN (6.31)

’

y

If p = 2/3, x(0) = 1, and y(0) = 0, (a) find x(1) and y(1). (b) Graph the
solution that satisfies these initial conditions.

SOLUTION: We use NDSolve together to solve equation (6.31) with

1 = 2/3 subject to x(0) = 1 and y(0) = 0. We name the resulting numerical
solution numsol.

In[1488] := numsol = NDSolve[{x'[t] ==y[t],
y'[t] == -x[t] -2/3 (x[t]"2-1)y[t],x[0] ==1,
y[0] == 0}, {x[t],y[t]}, {t,0,30}]
Out [1488]= BoxData ({{x[t] - InterpolatingFunction|[{{0., 30.}},
"<>"][t],y[t] » InterpolatingFunction[{{0., 30.}},
"<>"][t]}})

We evaluate numsol if t = 1 to see that x(1) ~ .5128 and y(1) ~ —.9692.

In[1489] := {x[t],y[t]}/.numsol/.t->1
Out [1489]

{{0.512849, -0.969199} }
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Figure 6-37 (a) x(t) and y(¢) . (b) A three-dimensional plot. (c) x(¢) versus y(¢) . (d) x(¢) versus
y(@) for 20 <t < 30

Plot, ParametricPlot,and ParametricPlot3D are used to graph
x(t) and y(¢) together in Figure 6-37 (a); a three-dimensional plot, (¢, x(¢), y(t))
is shown in Figure 6-37 (b); a parametric plot is shown in Figure 6-37 (c);
and the limit cycle is shown more clearly in Figure 6-37 (d) by graphing
the solution for 20 < r < 30.

In[1490] := pl = Plot[Evaluate[{x[t],y[t]}/.numsol], {t, 0, 15},
PlotStyle- > {GrayLevel[0], GrayLevel[0.4]},
DisplayFunction- > Identity];

p2 = ParametricPlot3D[Evaluate[{t, x[t],
y[t]l}/.numsol], {t, 0, 15},
DisplayFunction- > Identity];

p3 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol],
{t, 0,15}, AspectRatio- > Automatic,
DisplayFunction- > Identity];

p4 = ParametricPlot[Evaluate[{x[t], y[t]}/.numsol],
{t, 20,30}, AspectRatio- >Automatic,
DisplayFunction- > Identity];

Show[GraphicsArray[{{pl, p2}, {pP3,pP4}}]1]
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An autonomous system
does not explicitly depend on
the independent variable, 7.
That is, if you write the
system omitting all
arguments, the independent
variable (typically ) does not
appear.

An equilibrium (or rest) point, E = (x;*, x2*, ...
of the system

Chapter 6 Differential Equations

Linearization
Consider the autonomous system of the form

xi' = fi(xn X2, .., x)

XQ/ = f2 ()C],Xz, N ,x,,)

X' = fu (X, X2, Xn).

f] (xl,X2, .. .,Xn) = 0

HLGLx,..0x,)=0

fn(xl’xzr“'y-xn) = 0

The Jacobian of equation (6.32) is

oh O ofi
ox) ox, ax,
oL Ofp af
Jx,x0 ..., %) = 0):61 0):62 a):g,, .
Ofu  Ofu fy
ox; oxy e

(6.32)

, x,*), of equation (6.32) is a solution

(6.33)

The rest point, E, is locally stable if and only if all the eigenvalues of J(E) have
negative real part. If E is not locally stable, E is unstable.
Van-der-Pol’s equationDuffing’s Equation

EXAMPLE 6.4.5 (Van-der-Pol’s equation): Consider the forced pendu-
lum equation with damping,

X" +kx' + wsinx = F().

Recall the Maclaurin series for sinx: sinx = x— 3,03+ x> = .x"+. ... Using
sinx ~ x, equation (6.34) reduces to the linear equation x” + kx’ + wx =
F(1).

On the other hand, using the approximation sinx ~ x— ;x*, we obtain
X"+ k' + w(x - £x°) = F(t). Adjusting the coefficients of x and x* and
assuming that F(¢) = F cos wt gives us Duffing’s equation:

X" +kx' +cx +ex® = Fcoswt,

where k and c are positive constants.

(6.34)

(6.35)
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Lety = x’. Then,y’ = x” = F cos wt—kx’—cx—ex’ = F cos wt—ky—cx—ex’

and we can write equation (6.35) as the system

X =y
3 (6.36)
y = Fcoswt — ky — cx — ex’.
Assuming that F = 0 results in the autonomous system
X =
Y . (6.37)
Y = —cx —ex’ —ky.
The rest points of system equation (6.37) are found by solving
X =0
y =—cx—ex’ —ky,=0
resulting in Ey = (0, 0).
In[1491] := Solve[{y==0,-c x -€ x"3-k y==0}, {x,v}]
NG
out [1491]= {{y-0,x-0}, {y>0,x-- 7e },
{y -0,x- 1\/%/5 } }
We find the Jacobian of equation (6.37) in s1, evaluate the Jacobian

at Eo,

In[1492]:= 81 ={{0,1}, {-c -3e x"2, -k}};
s2=81/.x->0
Out [1492]= {{0, 1}, {-c, -k}}

and then compute the eigenvalues with Eigenvalues.

In[1493] := 83 = Eigenvalues[s2]

out [1493] = {g (-k-V-4 c+k2),% (-k+V-4 c+k2)}

Because k and c are positive, k> — 4c < k* so the real part of each
eigenvalue is always negative if k> — 4c # 0. Thus, Ej is locally stable.
For the autonomous system

X = f(xy)

(6.38)
Y =g y),

Bendixson’s theorem states that if f,(x, )+ g,(x, y) is a continuous func-
tion that is either always positive or always negative in a particular

523
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region R of the plane, then system (6.38) has no limit cycles in R. For
equation (6.37) we have

d d 3 _
a(y)+d—y(—cx—ex —ky)— k,

which is always negative. Hence, equation (6.37) has no limit cycles and
it follows that E, is globally, asymptotically stable.

In[1494] := D[y, x] +D[-c x -€ x"3-k y,vy]
Out [1494]= -k

We use PlotVectorField and ParametricPlot toillustrate two
situations that occur. In Figure 6-38 (a), weusec =1, e = 1/2, and k = 3.
In this case, E, is a stable node. On the other hand, in Figure 6-38 (b), we
use ¢ = 10, € = 1/2, and k = 3. In this case, Ey is a stable spiral.

In[1495] := << Graphics‘PlotField‘

pvEl = PlotVectorField[{y, -x-1/2x"3 - 3y},
{x,-2.5,2.5}, {y,-2.5,2.5},
DisplayFunction- > Identity];

In[1496] := numgraph[init_, c_, opts___] := Module[ {numsol},
numsol = NDSolve[{x'[t] ==y[t],
y'[t] == -c x[t] -1/2x[t]"3 -3y[t],
x[0] == init[[1]],y[0] ==init[[2]]},
{x[t],y[t]l}, {t,0,10}]:
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol],
{t, 0,10}, opts,
DisplayFunction- > Identity]]

In[1497] := il = Table[numgraph[{2.5,1i}, 1],
{i,-2.5,2.5,1/2}];
i2 = Table[numgraph[{-2.5,1i}, 1],
{i, -2.5,2.5,1/2}1;
i3 = Table[numgraph[{i, 2.5}, 1],
{i, -2.5,2.5,1/2}]1;
i4 = Table[numgraph[{i, -2.5}, 1],
{i,-2.5,2.5,1/2}];

In[1498] := ¢l = Show[il, i2, i3, i4,
pvfl, PlotRange- > {{-2.5, 2.5}, {-2.5,2.5}},
AspectRatio- > Automatic];

In[1499] := pvE2 = PlotVectorField[{y, -10x-1/2x"3 - 3y},

{x,-2.5,2.5},{y,-2.5,2.5},
DisplayFunction- > Identity];
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e
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T T .

(@) (b)
Figure 6-38 (a) The origin is a stable node . (b) The origin is a stable spiral

In[1500] := il = Table[numgraph[{2.5, i}, 10],
{i,-2.5,2.5,1/2}];
i2 = Table[numgraph[{-2.5, 1}, 10],
{i,-2.5,2.5,1/2}];
i3 = Table[numgraph[{i, 2.5}, 10],
{i,-2.5,2.5,1/2}];
i4 = Table[numgraph[{i, -2.5}, 10],
{i,-2.5,2.5,1/2}];

In[1501] := ¢2 = Show[il, i2, i3, i4,
pvf2, PlotRange- > {{-2.5, 2.5}, {-2.5,2.5}},

AspectRatio- > Automatic];

In[1502] := Show[GraphicsArray[{cl, c2}]]

EXAMPLE 6.4.6 (Predator-Prey): The predator—prey equations take the

form
d
d—}: = ax — bxy
dy
=~ dxv —
dr Xy —cy

where q, b, ¢, and d are positive constants. x represents the size of the
prey population at time 7 while y represents the size of the predator
population at time ¢. We use Solve to calculate the rest points. In this
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case, there is one boundary rest point, Ey = (0, 0) and one interior rest
point, £, = (¢/d, a/b).

In[1503] := rps = Solve[{a x-b x y==0,
dxy -cy==0},{x,vy}]

(e} a
out [1503]= {{x-0,y -0}, {Xﬁa,yﬁg}}

The Jacobian is then found using D.

In[1504] := jac={{D[a x-b x y,x],D[a x-b x y,¥v]},
{P[dxy -cvy,x],D[dxy -cy,yl}}:
MatrixForm[jac]
a-by -b x )

out [1504]= (4 v csdx

Ey is unstable because one eigenvalue of J(Ey) is positive. For the
linearized system, E| is a center because the eigenvalues of J(E;) are
complex conjugates.

In[1505] := Eigenvalues[jac/.rps[[2]]]
out [1505]= { -1 +/a /e, i +/a /c}

In fact, E; is a center for the nonlinear system as illustrated in Fig-
ure 6-39, where we haveused a = 1,5 =2, ¢ =2,and d = 1. Notice that
there are multiple limit cycles around E; = (1/2, 1/2).

In[1506] := BoxData({<< Graphics‘'PlotField",
pvE = PlotVectorField[{x-2x y, 2x Y-V},
{xl 01 2}1 {Yl ol 2}1
DisplayFunction- > Identity]; })

In[1507] := numgraph[init_, opts___] := Module[ {numsol},
numsol = NDSolve[{x'[t] ==x[t] - 2x[t]y[t].,
y'[t] ==2x[t]y[t] -y[t],
x[0] ==init[[1]],y[0] ==init[[2]]},
{x[t],y[t]}, {t,0,50}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol],
{t, 0,10}, opts,
DisplayFunction- > Identity]]

In[1508] := il = Table[numgraph[{i, i}], {i,3/20,1/2,1/20}];
Show([il, pvf, DisplayFunction- >
$DisplayFunction,

PlotRange- > {{0, 2}, {0, 2}},
AspectRatio- >Automatic]

In this model, a stable interior rest state is not possible.
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Figure 6-39 Multiple limit cycles about the interior rest point

The complexity of the behavior of solutions to the system increases
based on the assumptions made. Typical assumptions include adding
satiation terms for the predator (y) and/or limiting the growth of the
prey (x). The standard predator—prey equations of Kolmogorov type,

, ( 1) mxy
X =ax|l - =x|-
K a+x

=)
= -5,
Y ya+x

incorporate both of these assumptions.

We use Solve to find the three rest points of system (6.39). Let Ey =

(0,0) and E; = (k, 0) denote the two boundary rest points, and let E,
represent the interior rest point.

(6.39)

In[1509] := rps = Solve[{a x (1-1/k x) -m x y/(a+x) ==0,
y (m x/(a+x)-s) ==0}, {x,v}]
out [1509]= {{x-0,y-0}, {y>0,x-k},

a (-km+a s+k s) o a s
{ o k (m-s)? 'X%_—m+s}}

The Jacobian, J, is calculated next in s1.
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In[1510] := 81l = {{D[a x (1-1/k x) -m x y/(a+x),x],
Dla x (1-1/k x) -m x yv/(a+x),v]},
{Dly (m x/(a+x)-s),x],
D[y (m x/(a+x)-8),yl1}};
MatrixForm[sl]

mxy my x o (l x> m x
- 2 — - - — 04 —
2
out [1510] = (a+XE arx ko > k aix
T ozt -S +
(a+x)? a+x a+x

Because J(Ey) has one positive eigenvalue, E; is unstable.
In[1511]:= e0=81/.rps[[1]]:
MatrixForm[eO]
eigs0 = Eigenvalues[e0]

%)

out [1511]= (3 .

Out [1511]= {-s, a}
The stability of E; is determined by the sign of m — s — am/(a + k).
In[1512] := el =81/.rps[[2]];

MatrixForm[el]

eigsl = Eigenvalues[el]

k m
—a _
out [1512] = LRSS
0 -8
a+k

k m
out [1512] = {m -s, -af

The eigenvalues of J(E;) are quite complicated.

In[1513] := e2=81/.rps[[3]1];
MatrixForm[e2]

eigs2 = Eigenvalues[e2]
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a s a a’ms (-k m+a s+k s) o
+

Out [1513] = 2
k (-m+s) k (m-s)2 (-m+s) (a—_amfs)
am (-km+a s+k s) o
+
k (m-s)? (a- %)
a s ams
+(1+7)
k (-m+s) (-m+s) (a-2%)
a (-k m+a s+k s) a2 ns ztoas | «Q
(-m+s) (a— e~ ) s
k (m-s)?
ams
8- a s
(-m+s) (a- %)
1
Out [1513] = {—(—s (a m-k m+a s+k s) a-
2km (m-s)

\/<—4 km (m-s) s

(k m>-ams-2 kms+a s?+k SZ) o+

s’ (am-k m+a s+k s)? O(2>>,

1
—(—s (a m-k m+a s+k s) o+
2km (m-s)

\/(—4 km (m-s) s

(k m>-ams-2 kms+a s’+k 32) o+

s’ (am-k m+a s+k s)? az))}

Instead of using the eigenvalues, we compute the characteristic poly-
nomial of J(E»), pA) = A% + c1A + cp, and examine the coefficients.
Notice that ¢; is always positive.

In[1514] := cpe2 = CharacteristicPolynomial[e2, 1] //Simplify
asoa (m (-s+A)+s (s+A))
km (m-8)
+k (m-8) (-s a (s+A) +m (s a+A?))
km (m-s8)

Out [1514]=

In[1515]:= c0 =cpe2/.A- >0//Simplify
s (k (m-s)-a s) a

Out [1515] =
k m

In[1516] := ¢l = Coefficient[cpe2, 1] //Simplify

out [1516]= = (k (-m+s)+a (m+s)) «a

km (m-s)

In[1517] := c¢2 = Coefficient[cpe2, A"2]//Simplify
OQut [1517]= 1
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On the other hand, ¢y and m—s—am/(a+k) have the same sign because

In[1518] :=
Out [1518]=

c0/eigsl[[1]]//Simplify
(a+k) s a

km

is always positive. In particular, if m — s — am/(a + k) < 0, E; is stable.
Because cy is negative, by Descartes’ rule of signs, it follows that p(d)
will have one positive root and hence E, will be unstable.

On the other hand, if m — s — am/(a + k) > 0 so that E| is unstable, E,
may be either stable or unstable. To illustrate these two possibilities let
a =K =m=1and a = 1/10. We recalculate.

In[1519] :=

In[1520] :

Out [1520] =

In[1521] :=

out [1521] =

In[1522] : =

Out [1522] =

In[1523] :=

Out [1523]

In[1524] :
Out [1524] =

In[1525] :
Out [1525]

a=1;k=1;m=1;a=1/10;

rps = Solve[{a x (1-1/k x) -m x y/(a+x) ==0,
y (m x/(a+x)-s) ==0}, {x,y}]
{{Xeo,yeo},{yeo,xel},
10-11 s s
- 7, X - }}
100 (-1+s) 10 (-1+s)

{v

sl={{D[a x (1-1/k x) -m x y/(a+x),x],
Dla x (1-1/k x) -m x y/(a+x),yl},
{Dly (m x/(a+x)-s),x],
D[y (m x/(a+x)-58),v1}};
MatrixForm[sl]

e2=s8l/.rps[[31];

cpe2 = CharacteristicPolynomial[e2, A]//Simplify

-11 s®+s? (21-11 A) -10 A% +s (-10+9 A+10 A?)
10 (-1+8)

c0 =cpe2/.A- >0//Simplify
11 s?
10
cl = Coefficient[cpe2, A]//Simplify
(9-11 s) s
10 (-1+s)

s -

c2 = Coefficient[cpe2, A"2]//Simplify
1

Using InequalitySolve, we see that

1. ¢, c1, and ¢; are positive if 9/11 < s < 10/11, and
2. ¢p and ¢, are positive and c; is negative if 0 < s < 9/11.
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In[1526] := << Algebra‘InequalitySolve"®

InequalitySolve[c0 >0 && cl >0, s]

9 10
Out [1526]= — <S8 < —
11 11

In[1527] := InequalitySolve[c0 >0 && cl <0, s]
9

Out [1527]= 0 <8 < —
11

In the first situation, E, is stable; in the second E, is unstable.

Using s = 19/22, we graph the direction field associated with the
system as well as various solutions in Figure 6-40. In the plot, notice
that all nontrivial solutions approach E, ~ (.63,.27); E, is stable — a
situation that cannot occur with the standard predator-prey equations.

In[1528] := rps/.s- >19/22//N

Out [1528]= {{x—>0,y—>0},{y->0,x->1.},
{y—0.268889, x> 0.633333}}

In[1529] := << Graphics‘'PlotField:

pvE = PlotVectorField[a x (1-1/k x) -m x y/(a+x)
y (m x/(a+x)-19/22)}, {x, 0,1}, {y, 0,1},
DisplayFunction- > Identity];

In[1530] := numgraph[init_, s_, opts___] := Module[ {numsol},
numsol = NDSolve[{x' [t] == a x[t]
(1-1/k x[t]) -m x[t] y[t]/(a+x[t]),
Yy It] ==y[t] (m x[t]/(a+x[t])-s),
x[0] == init[[1]],y[0] ==init[[2]]},
{x[t]l,y[t]l}, {t,0,50}];
ParametricPlot[Evaluate[{x[t], y[t]}/.numsol],
{t, 0,50}, opts, DisplayFunction- > Identity]]

In[1531]:= il = Table[numgraph[{1,i}, 19/22], {i,0,1,1/10}];
i2 = Table[numgraph[{i, 1}, 19/22], {i,0,1,1/10}];
Show[il, i2, pvE,
DisplayFunction- > $DisplayFunction,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio- > Automatic]

On the other hand, using s = 8/11 (so that E, is unstable) in Fig-
ure 6-41 we see that all nontrivial solutions appear to approach a limit
cycle.

In[1532] := rps/.s- >8/11//N

Out [1532]= {{x->0,y—>0},{y->0,x->1.},
{y—>0.268889,x->0.266667}}
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Also see Example 6.4.4.
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Figure 6-40 s =19/22

In[1533] := il = Table[numgraph[{1l, i}, 8/11], {i,0,1,1/10}];
i2 = Table[numgraph[{i, 1}, 8/11], {i, 0,1, 1/10}1;

pl = Show[il, i2, pvE,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio- >Automatic,
DisplayFunction- > $DisplayFunction]

The limit cycle is shown more clearly in Figure 6-42.

In[1534] := numgraph[{0.759, 0.262},
8/11, DisplayFunction- > $DisplayFunction,
PlotRange- > {{0, 1}, {0, 1}},
AspectRatio- >Automatic]

EXAMPLE 6.4.7 (Van-der-Pol’s equation): In Example 6.4.4 we saw
that Van-der-Pol’s equation x” + u(x* — 1)x’ + x = 0 is equivalent to

X =
the system I Y )

ly’ :p(l - X )y—x
NDSolve to approximate the solutions to this nonlinear system, and
plot the phase plane.

. Classify the equilibrium points, use
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yS s s A « « = - - - -
¥ .~ 4 a - - - - - - -
0.6 f
» s 4 - -« - - - - -
> A A a - - - - - -
Y » » A a4 a - - - = -
o4 ff
4 ’ » » #+ 4 4 a - - - -
| 4 ’ ’ yF v 4 A - <« - = =
ol y v 4 a ~ - N . - -
\ AN ~ - - - - - - - - N -
A - - - - - - - - - P

Figure 6-41 s =8/11

0.2 0.4 0.6

Figure 6-42 A better view of the limit cycle without the direction field
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SOLUTION: We find the equilibrium points by solving I y=0

l,u(] —x2)y—x =0
From the first equation, we see that y = 0. Then, substitution of y = 0
into the second equation yields x = 0. Therefore, the only equilibrium
point is (0, 0). The Jacobian matrix for this system is

0 1
J(.X, y) = (—l _ 2,uxy —u (x2 _ l))

The eigenvalues of J(0,0) are A1, = I (u = V2 - 4).

In[1535] := Clear|[£f, g]
flx,y1=y;
glx,yl=-x-u(x*-1)y;

In(1536] = jac= (SLEBX/ Y1, =] DIELx y1, 31 ),

Dlglx,yl,x] DIlglx,y],vyl

In[1537] := jac /. {x->0,y- >0}//Eigenvalues

out [1537] = {% (1 -+f-2+02), (u+m)}

Notice that if 4 > 2, then both eigenvalues are positive and real. Hence,
we classify (0, 0) as an unstable node. On the other hand, if 0 < u < 2,
then the eigenvalues are a complex conjugate pair with a positive real
part. Hence, (0, 0) is an unstable spiral. (We omit the case 1 = 2 because
the eigenvalues are repeated.)

We now show several curves in the phase plane that begin at various
points for various values of p. First, we define the function sol, which
given y, xo, and yo, generates a numerical solution to the initial-value
problem

NP

h
y=pu(l-x)y-x
lx(O) = x0, ¥(0) = yo

and then parametrically graphs the result for 0 < ¢ < 20.
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In[1538] := Clear[sol]

sol[u_, {x0_,y0.},0opts__] :=
Module [ {egone, eqtwo, solt},
eqgone = x'[t] == y[t];
eqtwo =y’ [t] ==p (1-x[t]?) y[t] -x[t];
solt = NDSolve[ {egone, egqtwo, x[0] == %0,
y[0] ==y0}, {x[t],y[t]l}, {t,0,20}];
ParametricPlot[{x[t], y[t]}/.solt,

{t, 0,20}, Compiled -» False, opts] ]

We then use Table and Union to generate a list of ordered pairs
initconds that will correspond to the initial conditions in the initial-
value problem.

In[1539] := initcondsl = Table[{0.1]Cos[t], 0.1Sin[t]},
{t,0,2n,27/9}];

initconds2 = Table[{-5, i}, {i, -5,5,10/9}];
initconds3 = Table[{5, i}, {i, -5,5,10/9}1;
initconds4 = Table[{i, 5}, {i, -5,5,10/9}];

initconds5 = Table[{i, -5}, {i,-5,5,10/9}]1;

In[1540] := initconds = initcondsl U initconds2U

initconds3 Uinitconds4 U initcondss5;

We then use Map to apply sol to the list of ordered pairsin initconds
for u = 1/2.

In[1541] := somegraphsl =
Map [
sol[1/2, #, DisplayFunction- > Identity]&,
initconds];

In[1542] := phasel = Show[somegraphsl,
PlotRange- > {{-5,5}, {-5,5}},
AspectRatio- >1, Ticks- > {{-4, 4}, {-4,4}}1;

Similarly, we use Map to apply sol to the list of ordered pairsin initconds
foru =1,3/2,and 3.
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In[1543] := somegraphs2 =
Map[sol[1l, #, DisplayFunction- > Identity] &,
initconds];

In[1544] : = phase2 = Show[somegraphs2,
PlotRange- > {{-5, 5}, {-5,5}},
AspectRatio- >1, Ticks- > {{-4, 4}, {-4,4}}1;

In[1545] := somegraphs3 =
Map [
sol[3/2, #, DisplayFunction- > Identity]&,
initconds];

In[1546] := phase3 = Show[somegraphs3,
PlotRange- > {{-5, 5}, {-5,5}},
AspectRatio- >1, Ticks- > {{-4, 4}, {-4,4}}]1:

In[1547] := somegraphs4 =
Map[sol[3, #, DisplayFunction- > Identity] &,
initconds];

In[1548] := phase4 = Show[somegraphs3,
PlotRange- > {{-5, 5}, {-5,5}},
AspectRatio- >1, Ticks- > {{-4, 4}, {-4,4}}]1;

We now show all four graphs together in Figure 6-43. In each figure, we
see that all of the curves approach a curve called a limit cycle. Physically,
the fact that the system has a limit cycle indicates that for all oscilla-
tions, the motion eventually becomes periodic, which is represented by
a closed curve in the phase plane.

In[1549] := Show[GraphicsArray|[
{{phasel, phase2}, {phase3, phase4}}]]

On the other hand, in Figure 6-43 we graph the solutions that satisfy the
initial conditions x(0) = 1 and y(0) = 0 parametrically and individually
for various values of u. Notice that for small values of u the system
more closely approximates that of the harmonic oscillator because the
damping coefficient is small. The curves are more circular than those
for larger values of .
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In[1550] := Clear([x, vy, t, s]
graph[u_.] := Module[{nu.msol, PP, PXY}.,

numsol =
NDSolve[{x’[t] ==y[t],
y'[t] ==u (1-x[t]®) y[t] -x[t], x[0] == 1,

y[0] == 0}, {x[t], y[t]l}, {t,0,20}];

pp = ParametricPlot[{x[t], y[t]}/.numsol,
{t, 0,20}, Compiled -» False,
PlotRange -» {{-5, 5}, {-5,5}},
AspectRatio-» 1, Ticks » {{-4,4}, {-4,4}},
DisplayFunction -» Identity]:;

pxy = Plot[Evaluate[{x[t], y[t]}/.numsol],
{t, 0,20},
PlotStyle » {GrayLevel[O0],

GrayLevel[0.5]}, PlotRange » {-5, 5},

AspectRatio-» 1,
Ticks- > {{5, 10, 15}, {-4, 4}},
DisplayFunction -» Identity]:;

GraphicsArray[{pxy, pp}]]

In[1551] := graphs = Table[graph[i], {i,0.25,3,2.75/9}];

In[1552] := toshow = Partition[graphs, 2];

Show|[GraphicsArray[toshow] ]

6.5 Some Partial Differential Equations

6.5.1 The One-Dimensional Wave Equation

Suppose that we pluck a string (like a guitar or violin string) of length p and con-
stant mass density that is fixed at each end. A question that we might ask is: What
is the position of the string at a particular instance of time? We answer this ques-
tion by modeling the physical situation with a partial differential equation, namely
the wave equation in one spatial variable:

200U Ou

C @ = ﬁ or Czuxx = Uy. (6'40)
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Figure 6-44 The solutions to the Van-der-Pol equation satisfying x(0) = 1 and y(0) = 0 individually
(x in black and y in gray) for various values of u
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Ais a constant.

Chapter 6 Differential Equations

In equation (6.40), ¢> = T/p, where T is the tension of the string and p is the con-
stant mass of the string per unit length. The solution u(x, r) represents the displace-
ment of the string from the x-axis at time . To determine # we must describe the
boundary and initial conditions that model the physical situation. At the ends of
the string, the displacement from the x-axis is fixed at zero, so we use the homo-
geneous boundary conditions u(0, 1) = u(p, t) = 0 for t > 0. The motion of the string
also depends on the displacement and the velocity at each point of the string at
t = 0. If the initial displacement is given by f(x) and the initial velocity by g(x), we
have the initial conditions u(x, 0) = f(x) and u,(x, 0) = g(x) for 0 < x < p. There-
fore, we determine the displacement of the string with the initial-boundary value
problem

u S u
20U _ O
IC a2 g V<x<p1>0
u(0,1) = u(p,t)=0,t>0 (6.41)
lu(x’ 0) = f(x), us(x,0) =gx), 0 <x < p.

This problem is solved through separation of variables by assuming that u(x, t) =
X (x)T(¢). Substitution into equation (6.40) yields
EX'T=XT"  or =1 -y
X 3T

so we obtain the two second-order ordinary differential equations X"’ +AX = 0 and
T +c*AT = 0. At this point, we solve the equation that involves the homogeneous
boundary conditions. The boundary conditions in terms of u(x,1) = X(x)T'(¢t) are
u(0,1) = X(0)T(t) = 0 and u(p, t) = X(p)T(t) = 0, so we have X(0) = 0 and X(p) = 0.
Therefore, we determine X (x) by solving the eigenvalue problem

X"+AX=0,0<x<p
|X(0) = X(p) = 0.

The eigenvalues of this problem are A, = (n1/ p?,n=1,3,... with corresponding
eigenfunctions X,(x) = sin (nax/ p?,n=1,3,....Next, we solve the equation 7" +
c*A,T = 0. A general solution is

. t . t
T,(t) = a, cos (cv /lnt) + b, sin (c A,lt) = a, cos % + b, sin %,

where the coefficients a, and b, must be determined. Putting this information to-
gether, we obtain

p

b

cnnt . cnmt\ . nmx
u,(x, t) = (a,cos—— + b, sin —— | s
p p
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so by the Principle of Superposition, we have

00

nm) . nax
p

cnnt . C
u(x, t) = Z a, cos —— + b, sin —— | sin
e 4 4

Applying the initial displacement u(x, 0) = f(x) yields

00

u(x, 0) = Z a,, sin ”pﬂ = f(x),

n=1

s0 a, is the Fourier sine series coefficient for f(x), which is given by

2 [P
an:fff(x)sin@dx, n=12,....
P Jo p

In order to determine b,, we must use the initial velocity. Therefore, we compute

ou . cnmw . cnmt cnmw cnmt\ . nax
—(x, 1) = Z —a,— sin —— + b,—— cos —— | sin —.
ot p p p p

n=1

Then,

ou O . NAX
5(}5, 0) = ;bn7 sin 7 =g(x)

so b, % represents the Fourier sine series coefficient for g(x) which means that

P
b= | eysindx, n=12,....
0 p

Iunzun, O0<x<1,t>0
EXAMPLE 6.5.1: Solve su(0,1) = u(1,1) =0, >0

u(x,0) =sinnx, u,(x,0)=3x+1,0<x< 1.

SOLUTION: The initial displacement and velocity functions are de-
fined first.

In[1553] := £[x.] =8Sin[nx];
glx]=3x+1;

Next, the functions to determine the coefficients a, and b, in the series
approximation of the solution u(x, t) are defined. Here, p = c = 1.

1
In[1554]:= a; =2 j f[x] Sin[nx]dx
0
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Notice that we define
uapprox [n] so that
Mathematica “remembers”
the terms uapprox that are
computed. That is,
Mathematica does not need
to recompute

uapprox [n-1] to
compute uapprox [n]
provided that

uapprox [n-1] has already
been computed.
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1

Out [1554]

1
In[1555] : = an_=2-J- f[x] Sin[nnx]dx
0

2 Sin[nt
Out [1555] = AAAAA%AAL
JT—n=Jt

1
2 gl[x] Sin[nnx]dx
= ‘[° //Simplify
nrw

2nm-8ns Cos[nsm] +6 Sin[nrr]

In[1556] := by

Out [1556] =

n3 3

Because n represents an integer, these results indicate that a, = 0 for all
n = 2. We use Table to calculate the first ten values of b,,.

In[1557] := Table[{n, b,, b,//N}, {n, 1, 10}]//TableForm

10
1 —_— 1.01321
7-(2
3
2 - -0.151982
2 772
10
3 0.112579
9 12
3
4 - -0.0379954
8 512
2
5 0.0405285
5 72
Out [1557] =
6 - -0.0168869
6 T2
10
7 _— 0.0206778
49 12
3
8 - -0.00949886
32 512
10
9 0.0125088
81 2
10 - -0.00607927
50 72

In[1558] := Clear[u, uapprox]

The function u defined next computes the nth term in the series expan-
sion. Thus, uapprox determines the approximation of order k by sum-
ming the first k terms of the expansion, as illustrated with approx [10].

In[1559] := u[n_.] =b, Sin[nxt] Sin[nnx];

In[1560] : = uapprox[k_] :=uapprox[k] = uapprox[k-1] +u[k];
uapprox|[0] = Cos[nt] Sin[nx];

In[1561] := uapprox[10]
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Out [1561]= Cos[rt] Sin[rx]

10 Sin(rrt] Sin(nx] 3 Sin[2sst] Sin[2x]
i T2 - 2 712

10 Sin[3srt] Sin[3 x] 3 8inf[4rt] Sin[4 x]
B 9 2 - 8 2

2 Sin[57t] Sin[57x] Sin[6st] Sin[6 mx]
i 5 72 h 6 712

10 Sin[7t] Sin[77tx] 3 Sin[8xmt] Sin[8 x|
! 49 2 - 32712

10 Sin[97t] Sin[97rx] 3 Sin[l0st] Sin[1l0x]
! 81 12 - 50 72

To illustrate the motion of the string, we graph uapprox[10], the
tenth partial sum of the series, on the interval [0, 1] for 16 equally spaced
values of t between 0 and 2 in Figure 6-45.

In[1562] := somegraphs =
Table[Plot[Evaluate[uapprox[lO] 1, {x,0,1},

DisplayFunction -» Identity,
PlotRange » {-3/2, 3/2},

Tick 0,1 1,1 t,0,2 2 ;
icks -» {{0, 1}, {-1, }}],{ .0, ,E}],

toshow = Partition[somegraphs, 4];

Show [GraphicsArray[toshow] ]

If instead we wished to see the motion of the string , we can use a Do
loop to generate many graphs and animate the result. We show a frame
from the resulting animation.

In[1563] := Do[Plot[Evaluate[uapprox[lO] 1, {x,0,1},
PlotRange » {-3/2, 3/2},

Tick 0,1 1,1 t,0,2 2 ;
ic S—){{ ’ }I{_ ’ }}]I{ ’ 7 IE}]I

DnIPlnt[Ivaluata[uapprnx[ll]]], {x. 0, 1}.
PlotRange - {-3 /2, 3/2}.

Tick 0,1 1.1 too. 2 2]
icks - ({0, 1), {-1. 1D1. {t. 0. 2. = ]]:

543



544

Chapter 6 Differential Equations

1 1 1 1
1 1 1 1

-1 -1 -1 -1

1 1 1 1
1 1 1 \/fl.

-1 -1 -1 -1

1 1 1 1

-1 -1 -1 -1

1 1 1 1
1 1 1 1

-1 -1 -1 -1

Figure 6-45 The motion of the spring for 16 equally spaced values of ¢ between 0 and 2

6.5.2 The Two-Dimensional Wave Equation

One of the more interesting problems involving two spatial dimensions (x and y) is
the wave equation. The two-dimensional wave equation in a circular region which
is radially symmetric (not dependent on #) with boundary and initial conditions is
expressed in polar coordinates as

u  10u o%u
2 -
Jc (6r2+r6r)_ at2,0<r<,o,t>0

u(,t) =0, [u(0,1)] < oo, t >0
lu(r, 0) = f(r), %(r, 0)=¢gr), 0<r<p.

Notice that the boundary condition u (p,#) = 0 indicates that u is fixed at zero
around the boundary; the condition [u(0,7)] < oo indicates that the solution is
bounded at the center of the circular region. Like the wave equation discussed
previously, this problem is typically solved through separation of variables by as-
suming a solution of the form u(r, t) = F(r)G(t). Applying separation of variables
yields the solution

ur, 1) = Z (A, cos ck,t + By, sin ck,t) Jo (k,r),

n=1
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where A, = ca,/p, and the coefficients A, and B, are found through application of
the initial displacement and velocity functions. With

u(r, 0) = " Aulo (kar) = £(7)
n=1

and the orthogonality conditions of the Bessel functions, we find that

n

[ty dr 2 0 )
= fop”[fo U2 dr = U @] j(; rfrJokyr)y dr,n=1, 2, ....

Similarly, because
ou = )
—(r,0) = Z (—ck,A,, sin ck,t + ck, B, cos ck,t) Jy (k,r)
ot g

we have

e

(1, 0) = 3" chuByJo (k) = (1),

n=1

Therefore,

_ RWrenhterydr 2
ek [ o (kar)P dr cky L1 (@)

n

0
P f rg(ndo (kyr) dr, n=1,2, ...
0

As a practical matter, in nearly all cases, these formulas are difficult to evaluate.

Pu 10u u
Ja,‘z+ra}"_61‘2,0<r<l,t>0
EXAMPLE 6.5.2: Solve 3 y(1,1) = 0, [u(0,7)| < o0, t > 0

u(r,0) =r(r—-1), %(r, 0)=sinar, 0 <r<1.

SOLUTION: In this case, p = 1, f(r) = r(r — 1), and g(r) = sinnr. To cal-
culate the coefficients, we will need to have approximations of the zeros
of the Bessel functions, so we load the BesselZeros package, which is
contained in the NumericalMath folder (or directory) and define «, to
be the nth zero of y = Jy(x).

545

a, represents the nth zero of
the Bessel function of the
first kind of order zero.
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BesselJPrineYJYPrimeZeros| give alistof n zeros of K(x) ¥ (Ax) =5 (A x) ¥, (x) a
nx, lambda, n) ¥

[ 100% | & . ’ Jaln

<< NumericalMath‘'BesselZeros"

In[1564] :
In[1565] := a, :=a, = BesselJdZeros[0, {n,n}][[1]]

Next, we define the constants p and ¢ and the functions f(r) = r(r — 1),
g(r) = sinzr, and k, = a,/p.

In[1566]:= ¢c=1;

p=1;
flr]l=r(r-1);
glr.] =Sin[nrx];
kn :=k, = an;

The formulas for the coefficients A, and B, are then defined so that
an approximate solution may be determined. (We use lowercase let-
ters to avoid any possible ambiguity with built-in Mathematica func-
tions.) Note that we use NIntegrate to approximate the coefficients
and avoid the difficulties in integration associated with the presence of
the Bessel function of order zero.
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In[1567] := a, :=
a, = (2 NIntegrate[r £[r] BesselJ[0, k, r],
{r,0,p}])/Besseld[1, a,]?;
In[1568] := by :=
b, = (2 NIntegrate[rg[r] Besseld[0, k, r],

{x,0,p}1)/(ckaBesseld[1, a,1?)

We now compute the first ten values of A, and B,,. Because a and b are
defined using the form a, :=a, =... and b,_:= b, = ..., Mathematica
remembers these values for later use.

In[1569] := Table[{n, a,, by}, {n,1,10}]//TableForm

1 1 0.52118

2 0.208466 -0.145776

3 0.00763767 -0.0134216

4 0.0383536 -0.00832269

5 0.00534454 -0.00250503
Out [1569] = 6 0.0150378 -0.00208315

7 0.00334937 -0.000882012

8 0.00786698 -0.000814719

9 0.00225748 -0.000410202

10 0.00479521 -0.000399219

The nth term of the series solution is defined in u. Then, an approx-
imate solution is obtained in uapprox by summing the first ten terms

of u.
In[1570] := u[n_, r_, t.] := (ayp Cos[ck,t] +b, Sin[ck, t])
Besseld[0, k, r]:;
10
In[1571] := uapprox[r_,t_]=‘z:u[n,r,t];

n=1

We graph uapprox for several values of  in Figure 6-46.

In[1572] : = somegraphs =
Table[ParametricPlotBD[
{r Cos[®O], r Sin[6], uapprox[r, t]}, {r, 0, 1},
{6, -7, n}, Boxed -» False,
PlotRange -» {-1.25, 1.25},
BoxRatios -» {1,1, 1},
Ticks » {{-1, 1}, {-1,1}, {-1,1}},

1.5
DisplayFunction -» Identity], {t, 0,1.5, 8 }] H

toshow = Partition[somegraphs, 3];

Show [GraphicsArray[toshow] ]
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Figure 6-46 The drumhead for nine equally spaced values of t between 0 and 1.5

In order to actually watch the drumhead move, we can use a Do loop
to generate several graphs and animate the result. Be aware, however,
that generating many three-dimensional graphics and then animating
the results uses a great deal of memory and can take considerable time,
even on a relatively powerful computer. We show one frame from the
animation that results from the following Do loop.
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In[1573] := Do[ParametricPlot3D[
{r Cos[®O], r Sin[6], uapprox[r, t]}, {r, 0,1},
{6, -7, n}, Boxed -» False,
PlotRange » {-1.25, 1.25}, BoxRatios-» {1,1, 1},
Ticks » {{-1, 1}, {-1,1}, {-1,1}}1,

1.5
{t, 0, 1.5, E}];

e0ce Chap6e.nb

1= . el ] 14 e P

™ G

=GraphicsArray =

Do[ParametricPlot3D[
{rCos[e]. r Sin[e]. uwapprox[r. t]}. {r. 0. 1}.
{e. -, x}. Boxed — False.
PlotRange — {-1.25, 1.25}.
BoxRatios — {1. 1. 1}.
Ticks — {{-1. 1}. {-1_ 1} {-1. 1}}].

= Example 3 j] .
100% M & ale
|

If the displacement of the drumhead is not radially symmetric, the problem that
describes the displacement of a circular membrane in its general case is

2, 1 1 6% 2
2(614 ou 3“)_3”0<r<p,—n<9<ﬂ,l>0

a2 "o TRee)” e
u, 6,1) =0, u(0,6,1)l <oco, -r<f=<mt>0

u(r 7 1) = u(r, 1, 8), L m 1) = P —m ), 0<r<p t>0
o 30
u

u(r, 6,0) = f(r, 9), E(r, 1,0 =gr0),0<r<p —m<O<m

(6.42)
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Using separation of variables and assuming that u(r, 6, 1) = R(t)H(0)T (t), we obtain
that a general solution is given by

u(r, 6,0) = > aondo Aonr) 08 Monct) + " Gpndin (An) €08 (m6) €0 (Act) +

n mn

D b Q) sin (m6) €08 nct) + - Agulo (Aour) sin Agnert) +

m,n n

Z Apund M) cOS () 5in (A1) +

mn

D Bl r) sin () sin Aunc)

mn

where J,, represents the mth Bessel function of the first kind, a,,, denotes the nth
zero of the Bessel function y = J,,(x), and A, = ama/p. The coefficients are given by
the following formulas.

_ 027r fop f(r, 0)Jo (Ag,r) rdrd6 ) O2ﬂ fop £ 00y (o) 05 () dr
> I 1o Qour)V? rdr hmn = 7 7 U Qo) P rdr
o O Q) s rdrds [ (7 st 60 )
" 7 Jy U Qo) rdr " 2mdoen I 1o Qour))* rdr
A, = 027r fop 8(r, 0)J, (A1) cos (m6) r dr d6 B, - 02” fop 8(r, 0)J (Anr) sin (m) r dr d6

T [} [ Q)] 7 dr A [} [ Q)] 7 dr

a2 e T Roe
O<r<l, —-7n<l0<mt>0
u(1,0,t) =0, [u0,0,t) < oo, —-n<0=<mt>0

Pu 1ou 1 0%u 8 u
102 — =—,

EXAMPLE 6.5.3: Solve { (. z 1) = u(r. - 1), %(n — %(r, .

O<r<1,t>0
u(r, 6,0) = cos (nr/2) sin 6,

0
6—?(;’,71,0) =(r—-1Dcos(n/2),0<r<1, -n<l<nm
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SOLUTION: To calculate the coefficients, we will need to have approx-
imations of the zeros of the Bessel functions, so we load the BesselZe-
ros package, which is contained in the NumericalMath folder (or di-
rectory) and define @,,, to be the nth zero of y = J,,(x). We illustrate the
use of ay, by using it to compute the first five zeros of y = Jy(x).

In[1574] := << NumericalMath‘'BesselZeros"®
In[1575] := Qu ,n. := Op,n, = BesselJdJZeros[m, {n,n}][[1]]

In[1576] :

Table[ag,n, {n, 1, 5}]

Out [1576]= {2.40483,5.52008, 8.65373, 11.7915, 14.9309}
The appropriate parameter values as well as the initial condition func-
tions are defined as follows. Notice that the functions describing the
initial displacement and velocity are defined as the product of func-

tions. This enables the subsequent calculations to be carried out using
NIntegrate.

In[1577] := Clear|[a, £, £1, £2,g1, g2, A, c, g, capa, capb, b]
c=10;
p=1;
£f1[r.] = Cos [%r]'

f2[6_.] =sin[6];
flr_,6.] := £[r, 0] = £1[r] £2[6];

gl[r.] =r-1;
2[6.] = Cos ["—6] ;
g2[e.] = 5 1i
glr_,6.] :=glr,0] =gllr] g2[6];
The coefficients ay, are determined with the function a.

In[1578] : = Clear[al]
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In[1579] := a[n.] :=
a[n] =N[

(NIntegrate[fl[r] BesselJ[0, ao,n,r] T,
{r,0,p}] NIntegrate[£f2[t], {t, 0, 27}])/
(27r NIntegrate [r BesselJ[0, ag,, r] 2,

{r,0,0}])]:

Hence, as represents a table of the first five values of ay,. Chop is used
to round off very small numbers to zero.

In[1580] := as = Table[a[n]//Chop, {n, 1, 5}]
Out [1580]= {0,0,0,0,0)}

Because the denominator of each integral formula used to find a,,, and
by, is the same, the function bjmn which computes this value is defined
next. A table of nine values of this coefficient is then determined.

In[1581] := bjmn[m_,n_] :=
bjmn[m, n] =
N[NIntegrate [r BesselJd[m, ay,, r] 2, {r, 0, p}] ]

Table[Chop[bjmn[m, n]], {m, 1, 3}, {n, 1, 3}]
Out [1581]= {{0.0811076, 0.0450347, 0.0311763},
{0.0576874, 0.0368243, 0.0270149},
{0.0444835, 0.0311044, 0.0238229}}

We also note that in evaluating the numerators of a,,, and b,,, we must
compute fop rf1(")J (@mnr) dr. This integral is defined in £bjmn and the
corresponding values are found forn=1,2,3and m = 1,2, 3.

In[1582] := Clear[fbjmn]

fbjmn[m ,n_] :=
fbjmn[m, n] =
N[NIntegrate[fl[r] BesselJd[m, ay,,r] T,
{r,0,p}]1]

Table[Chop[fbjmn[m, n]], {m, 1, 3}, {n, 1, 3}]
Out [1582]= {{0.103574, 0.020514, 0.0103984},
{0.0790948, 0.0275564, 0.0150381},
{0.0628926, 0.0290764, 0.0171999}}

The formula to compute a,,, is then defined and uses the information
calculated in £bjmn and bjmn. As in the previous calculation, the coef-
ficient values forn =1,2,3 and m = 1, 2, 3 are determined.
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In[1583]:= a[m_,n.] :=
a[m, n] =
N[
(fbjmn[m, n] NIntegrate[£f2[t] Cos[mt],
{t,0,2n}])/(sxbjmn[m, n])]1;

Table[Chop[a[m, n]], {m, 1,3}, {n, 1, 3}]
Out [1583]= {{0,0,0}, {0,0,0},{0,0,0}}

A similar formula is then defined for the computation of b,,.

In[1584] := b[m_,n.] :=
b[m, n] =
N[
(fbjmn[m, n] NIntegrate[£f2[t] Sin[mt],
{t,0,2n}])/(rbjmn[m, n])];

Table[Chop[b[m, n]], {m, 1,3}, {n, 1, 3}]
Out [1584]= {{1.277,0.455514, 0.333537}, {0, 0,0}, {0,0,0}}

Note that defining the coefficients in this manner a[m ,n ]:=
alm,n]=...andb[m _,n ]:=b[m,n]=... sothat Mathematica “re-
members” previously computed values which reduces computation time.
The values of Ay, are found similarly to those of ag,. After defining the
function capa to calculate these coefficients, a table of values is then
found.

In[1585] := capaln_] :
capal[n]
N[
(NIntegrate[gl[r] BesselJ[0, ap,nr] r, {r, 0, p}]
NIntegrate[g2[t], {t, 0, 2x}])/
(27rc ag,n, NIntegrate [r BesselJ[0, ag,n r] 2,

{r,0,0}])]:

Table[Chop[capa[n]], {n, 1, 6}]
out [1585]= {0.00142231, 0.0000542518, 0.0000267596,
6.41976x10°,4.95843x10°°,1.88585x%x10 ¢}

The value of the integral of the component of g, g1, which depends on
r and the appropriate Bessel functions, is defined as gbjmn.

In[1586] := gbjmn[m_,n_] :=gbjmn[m, n] = NIntegrate[gl[r]=*
Besseld[m, Oy, r]r, {r, 0,p}]//N

Table[gbjmn[m, n] //Chop, {m, 1, 3}, {n, 1, 3}]
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Out [1586]= {{-0.0743906, -0.019491, -0.00989293},
{-0.0554379, -0.0227976, -0.013039},
{-0.0433614, -0.0226777, -0.0141684}}

Then, A, is found by taking the product of integrals, gbjmn depending
on r and one depending on 6. A table of coefficient values is generated
in this case as well.

In[1587] := capa[m_,n.] :=
capa[m, n] =
N[
(gbjmn[m, n] NIntegrate[g2[t] Cos[mt],
{t,0,27}])/(wog,ncbjmn[m, n])];

Table[Chop[capa[m,n]], {m, 1,3}, {n, 1, 3}]

Out [1587]= {{0.0035096, 0.000904517, 0.000457326},
{-0.00262692, -0.00103252, -0.000583116},
{-0.000503187, -0.000246002, -0.000150499}}

Similarly, the B,,, are determined.

In[1588] := capb[m_,n.] :=
capb[m, n] =
NI
(gbjmn[m, n] NIntegrate[g2[t] Sin[mt],
{t,0,2n}])/(an,ncbjmn[m, n])];

Table[Chop[capb[m, n]], {m, 1,3}, {n, 1, 3}]

Out [1588]= {{0.00987945, 0.00254619, 0.00128736},
{-0.0147894, -0.00581305, -0.00328291},
{-0.00424938, -0.00207747, -0.00127095}}

Now that the necessary coefficients have been found, we construct an
approximate solution to the wave equation by using our results. In the
following, terml represents those terms of the expansion involving aq,,
term2 those terms involving a,,,, term3 those involving b,,,, term4
those involving Ag,, term5 those involving A,,,, and termé those in-
volving By,.
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In[1589] := Clear[terml, term2, term3, term4, term5, termé6]

terml[r_, t_,n_] :=
a[n] BesselJ[0, ag,n r] Cos[ag,nct];

term2[r_ ,t ,6_,m ,n] :=
a[m, n] Besseld[m, a,,, r] Cos[mO] Cos[ay,,ct];

term3[r_,t ,6_,m ,n] :=
b[m, n] BesselJ[m, ap,, r] Sin[m6] Cos[ay,ct];

term4[r ,t ,n] :=
capa[n] BesselJ[0, ag,n r] Sin[ag,nct];

term5[r_,t_,6_,m ,n] :=
capa[m, n] BesselJ[m, an,, ¥] Cos[mO] Sin[an,,ct];

term6[r_,t ,6_,m ,n] :=
capb[m, n] BesselJ[m, an,, r] Sin[m6] Sin[an,,ct];

Therefore, our approximate solution is given as the sum of these terms
as computed in u.

In[1590] : = Clear[u]

ulr_, t_, th.] :=
3

iterml[r, t,n] + Ziterm2 [r,t, th, m, n]+

n=1 m=1 n=1
3 5
Z term3[r, t, th, m, n] + Z term4[r, t, n]+

n=1 n=1

N

n
ay

m:
3 3
ZZtermS [r,t,th, m, n]+
m=1 n=1
3
ZtermG [r,t, th, m, n];

n=1

N

[0
fa

m:

uc = Compile[{r, t, th}, u[r, t, th]]

Out [1590] = CompiledFunction[{r, t, th},ul[r, t, th],
-CompiledCode-]

The solution is compiled in uc. The command Compile is used to com-
pile functions. Compile returns a CompiledFunction which repre-
sents the compiled code. Generally, compiled functions take less time to
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perform computations than uncompiled functions, although compiled
functions can only be evaluated for numerical arguments.

Next, we define the function tplot which uses ParametricPlot3D
to produce the graph of the solution for a particular value of 7. Note that
the x and y coordinates are given in terms of polar coordinates.

In[1591] := Clear|[tplot]

tplot[t.] := ParametricPlot3D|[
{r Cos[O], r Sin[6], uc[r, t, 061}, {r, 0,1},
{6, -7, n}, PlotPoints » {20, 20},
BoxRatios -» {1, 1, 1}, Shading » False,
Axes -» False, Boxed » False,
DisplayFunction -» Identity]

A table of nine plots for nine equally spaced values of ¢ from ¢ = 0 to
t = 1 using increments of 1/8 is then generated. This table of graphs is
displayed as a graphics array in Figure 6-47.

In[1592] : = somegraphs = Table[tplot[t], {t,0,1,1/8}];
toshow = Partition[somegraphs, 3];

Show[GraphicsArray[toshow] ]

Of course, we can generate many graphs with a Do loop and animate
the result as in the previous example. Be aware, however, that gener-
ating many three-dimensional graphics and then animating the results
uses a great deal of memory and can take considerable time, even on a
relatively powerful computer.

|

6.5.3 Other Partial Differential Equations

A partial differential equation of the form
a(x, y, u)@ +b(x, y, u)@ = Oc(x, y, u) (6.43)
ox dy

is called a first-order, quasi-linear partial differential equation. In the case when
c(x, y, u) =, equation (6.43) is homogeneous; if a and b are independent of u, equa-
tion (6.43) is almost linear; and when c¢(x, y, u) can be written in the form c(x, y, u) =
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Figure 6-47 The drumhead for nine equally spaced values of  from¢ =0tor =1

d(x, y)u + s(x, y), equation (6.43) is linear. Quasi-linear partial differential equations
can frequently be solved using the method of characteristics.

EXAMPLE 6.5.4: Use the method of characteristics to solve the initial

—3xtu, + u; = xt
value problem! el = X

ku(x, 0) =x
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SOLUTION: For this problem, the characteristic system is

Ox/0r = =3xt, x(0,8)=s
ot/or =1, t(0,5)=0
ou/dr = xt, u(0, s) = s.

We begin by using DSolve to solve dt/0r = 1,1(0,5) =0

In[1593] := d1 =DSolve[{D[t[r], r] ==1, t[0] ==0}, t[r], r]
Out [1593]= {{t[r] - r}}

and obtain ¢t = r. Thus, 0x/dr = —3xr, x(0, s) = s which we solve next
In[1594] := d2 =DSolve[{D[x[r], r] == -3x[r] ¥, x[0] == s},
x[r], r]
out [1594]= {{x[r] - e % st}
and obtain x = se™3/2. Substituting r = t and x = se>"/? into dw/dr = xt,

u(0, s) = s and using DSolve to solve the resulting equation yields the
following result, named d3.

In[1595] := d3 = DSolve[{D[ulr], r] == et sr,u[0] == s},

u[r],r]

Out [1595] = {{u[r] %%e'% (71+4e%) s}}

To find u(x, ), we must solve the system of equations

=

l ¥ = se=32

for r and s. Substituting r = ¢ into x = se””2 and solving for s yields

s = xe’’/2. Thus, the solution is given by replacing the values ob-
tained above in the solution obtained in d3. We do this below by using
ReplaceAll (/.)toreplace each occurrence of rand sind3 [ [1,1,2]1],
the solution obtained in d3, by the values r = 7 and s = xe/2. The
resulting output represents the solution to the initial value problem.

In[1596] := d3[[1,1,2]] /. {r->t,s->x Exp[3/2t"2]}//
Simplify
1 32
Out [1596] = 5 (—1+4e 2 )X

In this example, DSolve can also solve this first-order partial differen-
tial equation.
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Next, we use DSolve to find a general solution of —3xtu, + u, = xt
and name the resulting output gensol.

In[1597] := gensol =
DSolve[-3xtD[u[x, t],x] +D[u[x, t], t] ==x¢t,
ulx, t], {x, t}]

1 1
out [1597] {{u[x,t]—95—(—x+3C[1][g(3t2+2Log[x])])}}

The output

2
out [1597]= C[1]] - 3t

- Log [x] |

represents an arbitrary function of =312 — Inx. The explicit solution is
extracted from gensol with gensol[[1,1,2]], the same way that
results are extracted from the output of DSolve commands involving
ordinary differential equations.

In[1598] := gensol[[1, 1, 2]]
1 1 2
3 (-x+3cC[1] [E (3t%+2 Log[x])])

out [1598]

To find the solution that satisfies u(x, 0) = x we replace each occurrence
of ¢ in the solution by 0.

In[1599] := gensol[[1,1,2]]/.t->0

1 Log[x]
Out [1599] = (—x4—3C[1][4—§44ﬁ>

Thus, we must find a function f(x) so that
1
—Ex + f(nx) =x

f(nx) = %x.
Certainly f() = %e" satisfies the above criteria. We define f(r) = %e"
and then compute f (Inx) to verify that f (Inx) = %x.

In[1600] := Clear[£]
flt] =4 Exp[-t]/3;

£[-Log[x]]

4 x
Out [1600] = 3

Thus, the solution to the initial value problem is given by —1x+f (-3¢* - Inx)
which is computed and named sol. Of course, the result returned is the
same as that obtained previously.
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3 t2
2

X
In[1601] := sol:Simplify[—§+f[— -Log[x]]]

2

1 3t2
Out [1601] = 3 -l+4e 2 | X

Last, we use P1lot3D to graph sol on the rectangle [0, 20] x [-2,2] in
Figure 6-48. The option C1ipFill->None is used to indicate that por-
tions of the resulting surface which extend past the bounding box are
not shown: nothing is shown where the surface is clipped.

In[1602] := Plot3D[sol, {x, 0,20}, {t, -2, 2},
PlotRange -» {0, 30}, PlotPoints - 30,
ClipFill - None, Shading - False]
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unit tangent 394
Verhulst equation 432
Viewpoint 414
Volume 220

of solid of revolution 167

w
Wave equation
on circular plate 303
one-dimensional 538
two-dimensional 544
Welcome Screen 19
WorkingPrecision 195
Wronskian 454, 470
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