


Mathematica Demystified



Demystified Series

Accounting Demystified
Advanced Calculus Demystified
Advanced Physics Demystified
Advanced Statistics Demystified
Algebra Demystified
Alternative Energy Demystified
Anatomy Demystified
Astronomy Demystified
Audio Demystified
Biochemistry Demystified
Biology Demystified
Biotechnology Demystified
Business Calculus Demystified
Business Math Demystified
C++ Demystified
Calculus Demystified
Chemistry Demystified
Circuit Analysis Demystified
College Algebra Demystified
Commodities Demystified
Complex Variables Demystified
Corporate Finance Demystified
Databases Demystified
Diabetes Demystified
Differential Equations Demystified
Digital Electronics Demystified
Discrete Mathematics Demystified
Dosage Calculations Demystified
Earth Science Demystified
Electricity Demystified
Electronics Demystified
Environmental Science Demystified
Everyday Math Demystified
Fertility Demystified
Financial Planning Demystified
Forensics Demystified
French Demystified
Genetics Demystified
Geometry Demystified
German Demystified
Global Warming and Climate Change Demystified
Hedge Funds Demystified
Investing Demystified
Italian Demystified
Japanese Demystified
Java Demystified

JavaScript Demystified
Latin Demystified
Lean Six Sigma Demystified
Linear Algebra Demystified
Macroeconomics Demystified
Management Accounting Demystified
Mathematica Demystified
Math Proofs Demystified
Math Word Problems Demystified
MATLAB R© Demystified
Medical Billing and Coding Demystified
Medical Charting Demystified
Medical-Surgical Nursing Demystified
Medical Terminology Demystified
Meteorology Demystified
Microbiology Demystified
Microeconomics Demystified
Nanotechnology Demystified
Nurse Management Demystified
OOP Demystified
Options Demystified
Organic Chemistry Demystified
Pharmacology Demystified
Physics Demystified
Physiology Demystified
Pre-Algebra Demystified
Precalculus Demystified
Probability Demystified
Project Management Demystified
Psychology Demystified
Quantum Field Theory Demystified
Quantum Mechanics Demystified
Real Estate Math Demystified
Relativity Demystified
Robotics Demystified
Sales Management Demystified
Signals and Systems Demystified
Six Sigma Demystified
Spanish Demystified
SQL Demystified
Statistics Demystified
String Theory Demystified
Technical Analysis Demystified
Technical Math Demystified
Trigonometry Demystified
Vitamins and Minerals Demystified



Mathematica Demystified

Jim Hoste

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto



Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright
Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-159145-4

MHID: 0-07-159145-1

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159144-7, MHID: 0-07-159144-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a 
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please visit the Contact Us page at www.mhprofessional.com.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources believed
to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published
herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this
information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not
attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate 
professional should be sought.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior co
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT-
ED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and
its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy,
error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim
or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com


To Mary, Benjamin, and Graeme



ABOUT THE AUTHOR

Jim Hoste, Ph.D., is a mathematics professor at Pitzer College and has used
Mathematica since its initial release in 1988. He has been an associate editor of the
Journal of Knot Theory and Its Ramifications since 1991 and has authored dozens
of research publications.



CONTENTS

Preface xiii

Acknowledgments xvii

CHAPTER 1 Getting Started 1
1.1 Starting Mathematica 1
1.2 Entering Expressions 1
1.3 Editing Cells 2
1.4 Basic Arithmetic 3
1.5 Using Previous Results 4
1.6 Exact versus Approximate 5
1.7 Using Functions 6
1.8 Using Variables 9
1.9 Using Comments 12
1.10 Suppressing Output 13
1.11 Aborting a Calculation 16
1.12 Lists 17
1.13 Palettes 20
1.14 Saving and Printing Our Work 23
1.15 Getting Help! 23
1.16 Find Out More 25
Quiz 26



viii Mathematica Demystified

CHAPTER 2 Two-Dimensional Graphics 29
2.1 The Plot Function 29
2.2 Resizing Graphics 31
2.3 Graphics Options 33
2.4 Drawing Tools and the Graphic Inspector 40
2.5 Using Epilog 42
2.6 Mouseover Effects---Tooltip 43
2.7 Animation---Using Manipulate 44
2.8 Plotting Points with ListPlot 46
2.9 Curve Fitting 49
2.10 Plotting in Polar Coordinates 52
2.11 Parametric Plots 55
2.12 Drawing Shapes 59
2.13 Saving and Printing Graphics 65
2.14 Find Out More 65
Quiz 66

CHAPTER 3 Getting Help 69
3.1 Syntax Coloring 69
3.2 Delimiter Matching 73
3.3 Setting Preferences 77
3.4 The Help Menu 78
3.5 Writing Good Code 79
3.6 Monitoring Calculations 82
3.7 Getting Out of Trouble 84
3.8 Ask an Expert 84
3.9 Find Out More 85
Quiz 85

CHAPTER 4 Odds and Ends 87
4.1 Transforming Expressions 87
4.2 Replacement Rules 94
4.3 Working with Lists 100
4.4 Sums and Products 106



Contents ix

4.5 Matrices 108
4.6 Find Out More 110
Quiz 110

CHAPTER 5 Functions 113
5.1 Defining Functions 113
5.2 Pure Functions 118
5.3 Elementary Programming 121
5.4 Using Modules 126
5.5 Find Out More 133
Quiz 134

CHAPTER 6 Three-Dimensional Graphics 137
6.1 The Plot3D Function 137
6.2 3D Graphics Options 139
6.3 Surfaces of Revolution 145
6.4 Drawing Contours or Level Sets 148
6.5 Drawing Curves in 3-Space 156
6.6 Drawing Graphics Primitives 159
6.7 Find Out More 163
Quiz 163

CHAPTER 7 Calculus 167
7.1 Limits 167
7.2 One-Sided Limits 171
7.3 Multivariable Limits 173
7.4 Derivatives 177
7.5 Minimum/Maximum Problems 182
7.6 Series 187
7.7 Integration 191
7.8 Antidifferentiation 196
7.9 Applications of Integration 201
7.10 Find Out More 207
Quiz 207



x Mathematica Demystified

CHAPTER 8 Solving Equations 209
8.1 Polynomial Equations 209
8.2 Systems of Polynomial Equations 215
8.3 Systems of Linear Equations 217
8.4 Nonpolynomial Equations 223
8.5 Differential Equations 227
8.6 Find Out More 235
Quiz 235

CHAPTER 9 Working with Data 239
9.1 Country Data 240
9.2 Word Play 248
9.3 Graphs 252
9.4 A Glimpse of Other Data Sets 261
9.5 Find Out More 264
Quiz 264

CHAPTER 10 Dynamical Systems and Fractals 267
10.1 Iterating a Function 268
10.2 Graphical Analysis 271
10.3 The Quadratic Family 276
10.4 Julia Sets 287
10.5 Custom Coloring 295
10.6 Making Movies 297
10.7 The Mandelbrot Set 300
10.8 What Is a Fractal? 304
10.9 Find Out More 305
Quiz 306

CHAPTER 11 Looking Good 307
11.1 Cell Styling 308
11.2 The Option Inspector 310
11.3 Cell Properties 312



Contents xi

11.4 Using Palettes 313
11.5 Cell Grouping 315
11.6 Hyperlinks 318
11.7 Adding Graphics to Notebooks 321
11.8 Creating Slideshows 325
11.9 Find Out More 329
Quiz 330

Final Exam 331

Answers 335

Index 379



This page intentionally left blank 



PREFACE

• What Is Mathematica?
Mathematica is a program for doing mathematics. Using Mathematica it is
easy to

– Make numeric and symbolic calculations

– Simplify complicated mathematical expressions

– Plot the graphs of functions as well as curves and surfaces in 3-space

– Create sophisticated color graphics

– Compute derivatives and integrals

– Solve equations, including differential equations

– Work with large data sets

– Create animations

– Write programs to carry out any algorithm

– Create slideshow presentations

The latest version of Mathematica, Version 7.0, is packed with all sorts of
new capabilities including a dynamic interface that allows the user to inter-
act with graphics, as well as other kinds of output in real time. The new
version of Mathematica is also fast. Many of the underlying routines have
been optimized for greater speed. Whether you are a high school student or a
Ph.D. mathematician, physicist, or engineer, Mathematica is an ideal tool for
meeting your computational needs.

• Who Is This Book for?
This book is intended primarily for Mathematica newcomers—people who
have never used Mathematica, or who have used it very little. We’ll take
you from your very first calculation all the way to plotting beautiful fractals.
The book includes hundreds of examples each with step-by-step explana-
tions. Using this book, you can progress from knowing nothing at all about



xiv Mathematica Demystified

Mathematica to being able to use Mathematica for all of the tasks listed above
and more. Experienced Mathematica users who have yet to learn all the new
features of Versions 6.0 and 7.0 should also find the book helpful.

While we assume you know nothing about Mathematica, we do assume
that you know a little mathematics, at least high school algebra. A high school
student who has yet to learn calculus may find the chapter on calculus a bit
mysterious, but there are plenty of neat things to learn in the other chapters.
College students who are currently taking calculus, linear algebra, or differ-
ential equations can use this book as a companion text, and do your homework
with Mathematica.

In addition to teaching you Mathematica, the examples will introduce you
to some beautiful and exciting mathematics. The book provides glimpses of
some real mathematical gems including a few conjectures that have vexed
mathematicians for hundreds of years. So, you’ll not only learn Mathematica,
but some neat mathematics too!

• What’s in This Book?
Mathematica is huge, really, really big. Any book can cover only a small
fraction of Mathematica. Our goal is to cover enough material so that after
reading this book you can do quite a few things with Mathematica, probably
as much as most people would ever want to do. Plus, you don’t have to read
the whole book. If, for example, you mainly want to use Mathematica to pro-
duce graphics, you can skip the later chapters that don’t deal with graphics.
But perhaps more important than teaching you a specific set of Mathematica
features, we’ll be teaching you how to use the online Mathematica documen-
tation so that you can teach yourself to go beyond the basics of this book.
Each chapter contains a section titled “Find Out More” that will direct you to
guides and tutorials in the Mathematica Documentation Center that elaborate
on the material in that chapter.

For the most part, each chapter deals with a specific topic within Mathe-
matica, for example, three-dimensional graphics, or solving equations. The
one exception is Chapter 10 that instead focuses on a mathematical topic, in
this case, dynamical systems and fractals, and shows how to use Mathematica
to draw beautiful fractals including Julia sets and the famous Mandlebrot set.

With only one exception, the chapters are ordered so that each Mathematica
function is thoroughly explained when it is first introduced and before it is
used in later chapters. Still, it is not necessary to read the chapters in the
given order. However, if you are a complete beginner, you should at least
read Chapters 1 to 5 (or perhaps at least 1 to 4) before skipping around. You
could probably read the chapter on three-dimensional graphics right after
the chapter on two-dimensional graphics, especially if you are willing to
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flip back to earlier sections in the book occasionally to fill in some missing
details. The last chapter will show you how to add text and organize your
Mathematica Notebooks so that they are more than mere scratch sheets for
your calculations. If you are a student who plans to do mathematics homework
with Mathematica, don’t put off reading this chapter!

Each chapter closes with a Quiz, and a Final Exam can be found at the
end of the book. The Quiz and Exam questions vary from fairly easy to quite
challenging. Try to do them yourself before looking at the answers!

Jim Hoste
Claremont, CA

July, 2008
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CHAPTER 1

Getting Started

1.1 Starting Mathematica
When we start Mathematica a fresh window, or notebook, will open. This is where
we will do all of our mathematical calculations and graphics. At the top of the
window we see the title of the window, which initially is “untitled-1.” Later, when
we see how to save our work as a file, we can give a name to the file, and that name
will appear in the title bar of the window.

1.2 Entering Expressions
Let’s do our first calculation! If we type 1+1 and then press Shift+Return (i.e.,
hold down the Shift key and then the Return key)1 Mathematica computes the sum
and places the answer on the next line in the window. This is called evaluating or
entering the expression. The window now contains

1On Mac keyboards, Shift+Return is the same as Enter. With either Windows or Mac OS, using the Return key
will simply move the cursor to the next line, allowing us to type more.
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Example 1.2.1
In[1]:= 1 + 1

Out[1]= 2

Notice that Mathematica has placed “In[1]:=” and “Out[1]=” labels to the
left of 1+1 and 2, respectively. To the right of the input and output, Mathematica
has placed a set of brackets. The two innermost brackets enclose the input and
output, respectively, and the larger bracket groups the input and output together.
Each bracket contains what is known as a cell. All of the calculations that we do in
this notebook will be organized into cells and the brackets that surround the cells
will come in handy for organizing our work. We’ll have a lot more to say about
this in Chap. 11, so don’t worry too much about the brackets now. In fact, until we
get to Chap. 11 we will be omitting the brackets most of the time when we display
Mathematica input and output.

1.3 Editing Cells
Let’s change 1+1 to 1+2. Mathematica supports all the usual mouse-driven text-
editing features of word processors. We can simply use the mouse to place the cursor
in the input cell and edit the entry so that it reads 1+2. To redo the calculation, we
now reenter the cell by once again pressing Shift+Return. The result is

Example 1.3.1
In[2]:= 1 + 2

Out[2]= 3

Notice that the the In and Out labels have changed to “In[2]:=” and
“Out[2]=.” Each time we reevaluate a cell, the numbers in the In and Out labels
will change.

To create a new cell with a new calculation, simply start typing. Mathematica
will place the input in a new cell. When many cells are present we can use the
mouse to place the cursor between existing cells and click the mouse button to
insert a new cell at that location. Notice how the cursor changes from a vertical bar
when located inside a cell, to a horizontal bar when located between cells. With the
cursor between cells, click the mouse button and then start typing. Mathematica
will create a new cell at the desired location.
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Finally, we can also click on the bracket which encloses a cell to select it. After
selecting a cell we can reevaluate it by pressing Shift+Return or treat it just like any
selected item in a text document and cut, copy, or paste as usual. Try deleting an
entire cell by clicking on its bracket and then choosing Edit � Cut from the menu
bar, (or using the equivalent keyboard shortcut).

There are lots of ways that we can change the appearance of cells, changing the
font, fontsize, color, and the like. We’ll explore these topics in Chap. 11.

1.4 Basic Arithmetic
Mathematica can do all the basic operations of addition, subtraction, multiplication,
division, and exponentiation (raising one number to another) which are denoted by
the symbols +, −, ∗, /, and ˆ.2 We can also use parenthesis for grouping as usual.
Here is an example involving the arithmetic operations.

Example 1.4.1
In[3]:= 2*3

Out[3]= 22

4^2+

Here the exponentiation was done first, giving 2*3+16, then the multiplication,
which leads to 6+16, and finally the addition. Mathematica follows the standard
order of operations, first performing all exponentiation (from left to right), then all
multiplications and divisions (again from left to right), and finally, all additions and
subtractions (from left to right). If we want to override these conventions we need
to use parenthesis to group terms.

One nice feature of Mathematica is that of implied multiplication. We do not
need to use the multiplication sign ∗ in order to multiply. Instead, a blank space
between things that can be multiplied (numbers, variables, expressions) will be
treated as multiplication. The blank space can even be omitted if parenthesis are
used to indicate multiplication. If we do leave a blank space for multiplication,
sometimes Mathematica will fill in the space with the multiplication symbol ×.
Basically, we can type calculations pretty much the way we would write them.
Here are several examples, all contained in a single input cell.

2When computers were first introduced, exponentiation was denoted by the “up-arrow” ↑. The shaft of the
arrow was eventually lost and we were left with only the arrowhead.
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Example 1.4.2
In[4]:= 5 6

2 3 4

(2 3 1 5^ 1

6 !

Out[4]= 30

Out[5]= 14

Out[6]= –
1

5

Out[7]= 720

×

– +

+

)

)(

(1 2 3+ / ) ( )––

Here we entered four separate calculations in a single input cell. (This is when
you use the Return key—to type a new line in the input cell.) Notice that each result
is placed in its own output cell. We didn’t use the multiplication sign for 5*6 in the
first calculation and instead left a blank space. After entering the blank space and
the 6, Mathematica inserted the ×. In the second and third calculation, because of
the parenthesis, there is no confusion caused by leaving out the multiplication sign,
so it is easier not to use it. The fourth calculation illustrates the factorial symbol !.
We read 6! as “six factorial” rather than shouting SIX. By definition, n! is the
product of all integers from 1 to n. Thus 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720.

1.5 Using Previous Results
Quite often we will perform a calculation and then want to use the output of this
calculation for our next calculation. We can use the percent symbol, %, to refer to
the output of the previous cell. Here is an example.

Example 1.5.1
In[11]:= 2^5

Out[11]= 32

In[12]:= 100

Out[12]=132

+

Notice that the first cell gave output of 32 and that the next cell added 100 to
this to give 132. In this case the % symbol referred to the previous output. We
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can even use %% to refer to the result before the last result, or even %%% for the
result before that. Sometimes using the % symbol can be quite handy. However, it is
important to remember that % always refers to the last output. This can sometimes
lead to unexpected results! In this book, we will rarely use the % symbol.

1.6 Exact versus Approximate
One of the truly amazing features of Mathematica is that it will work things out
exactly whenever possible. Sometimes this is just what we need, but sometimes it
would be nicer to get an approximate answer. Consider the following example.

Example 1.6.1
In[10]:= 3^20 / 2^21

Out[10]=

3 486 784 401

2 097 152

It’s pretty hard to get a feel for the fraction 3486784401
2097152

and it might be nicer
to approximate it with a decimal representation. We can force Mathematica to do
this in two important ways. The first is to use decimal representations from the
very beginning. If we replace 320 with 3.020 (or 320.0, or even 3.020.0) look what
happens.

Example 1.6.2
In[11]:= 3.0 ^20 / 2^21

Out[11]= 1662.63

Mathematica always views decimal representations as approximations. Thus
Mathematica considers 3.0 to be an approximate number rather than an exact num-
ber. If we ever do a calculation that involves approximate numbers, Mathematica
will give an approximate answer. On the other hand, if we use exact numbers in the
input, Mathematica will do its best to provide exact numbers in the output. Here
are several more examples that illustrate this point.
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Example 1.6.3
In[12]:= 3 / 4

3.0 / 4.0

12 ^ (1 / 2)

12 ^.5

Out[12]=

3

4

Out[13]= 0.75

Out[14]= 2 3

Out[15]= 3.4641

Notice that 12ˆ(1/2) is the square root of 12 and that this is exactly equal to
2
√
3. So Mathematica has not only given us an exact answer, it has also simplified

the input. On the other hand, by replacing the exponent of 1/2 by the “approxi-
mation” of .5 we have forced Mathematica to give us an approximate answer in
decimal form.

The second important way to force Mathematica to give approximate answers
is to use the numeric evaluation function N. We describe this function in the next
section.

1.7 Using Functions
Mathematica has thousands of built-in functions. Fortunately, we only have to know
a few dozen3 of the more important ones to do lots of neat calculations. We will be
introducing the most important and useful functions in this book as we go. The next
example uses the square root function Sqrt and the numeric evaluation function N.

Example 1.7.1
In[16]:= Sqrt[27]

N[Sqrt[27]]

Out[16]= 3 3

Out[17]= 5.19615

3OK, I lied. Knowing a hundred functions would be nice. Actually, memorizing the names of most functions
is not so hard. How hard can it be to remember Cos for cosine, Abs for absolute value, and Total for, well, total?
The real work is going to be remembering the syntax needed to use these functions. A good strategy will be to get
good at using the built-in documentation.
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Here we see the use of the built-in square root function Sqrt. Entering Sqrt[27]
is the same as entering 27ˆ(1/2). In the first computation we entered the number
27 exactly, so obtained an exact answer. In the second calculation we still entered
27 exactly but Mathematica provided an approximate answer. We forced this to
happen by using the numerical evaluation function N. This function will convert
any number into a decimal representation. Many functions in Mathematica have
optional arguments and the numerical evaluation function N is one of them. By
adding the optional argument n, N[x, n] will estimate x with n-digit precision. If
we want to know a certain number of digits in the decimal representation of π ,
for example, we can use N as in the first line of Example 1.7.2.4 Here we use Pi
to stand for π , the ratio of the circumference to the diameter of any circle. Math-
ematica has special symbols for a number of important mathematical constants,
including E, the base of the natural logarithm, and I, the imaginary number whose
square is −1.

Example 1.7.2
In[33]:= N[Pi, 100]

N[Pi / 10, 30]

N[Pi / 10.0, 30]

Out[33]= 3.141592653589793238462643383279502884197169

3993751058209749445923078164062862089986280

34825342117068

Out[34]= 0.314159265358979323846264338328

Out[35]= 0.314159

…
…

The second and third lines of Example 1.7.2 illustrate an important feature of N.
In both cases we have asked Mathematica for 30 digits in the expansion of π /10.
In the first case we get it, but in the second case we do not. This is because in
the second case we have already moved to an approximation by using 10.0 instead
of 10.

Here are some sample calculations involving the constants E and I.

4You may remember that π is an irrational number, one whose decimal representation never ends and never
repeats. Amazingly, in November of 2005, Chao Lu recited the first 67890 digits in the decimal expansion from
memory! Check out http://www.pi-world-ranking-list.com/index.html.

http://www.pi-world-ranking-list.com/index.html
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Example 1.7.3
In[21]:= Sqrt[–16]

N[E, 10]

E^ (I Pi)

Out[21]= 4

Out[22]= 2.718281828

Out[23]= –1

The last calculation is one of the more amazing identities in all of mathematics!
It follows from Euler’s formula5

eiθ = cos θ + i sin θ.

If we substitute θ = π , we obtain eiπ = −1.
In the last computation we tried to take the square root of −16 and Mathematica

responded with the imaginary number 4i . Mathematica is perfectly happy using
complex numbers a + bi where a and b are real numbers and i is the imaginary num-
ber

√−1. The numbers a and b are called the real and imaginary parts of a + bi , re-
spectively. Mathematica has several built-in functions that deal especially with com-
plex numbers. Two of the more important ones are the functions Re and Im which re-
turn the real and imaginary parts, respectively, of a complex number. Another impor-
tant function is the absolute value function Abs which works not only for real num-
bers but for complex numbers too. In the case of a complex number a + bi , its abso-
lute value is defined as

√
a2 + b2. Example 10.3.10 gives a few more calculations.

Example 1.7.4
In[24]:= (2 + 4 I) ( 6 – 3 I)

Re [

[

2

6

+

–

4

3
[ – 23

I

I

]

]

]

Im

Abs

Abs [3 + 4 I]

Out[24]= 24 + 18

Out[25]= 2

5Leonhard Euler (1707–1783) was one of the greatest mathematicians of all time. He published his famous
formula in 1748.
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Example 1.7.4 (Continued)
Out[26]= –3

Out[27]= 23

Out[28]= 5

Mathematica has all the common mathematical functions built-in. These include
the trigonometric functions and their inverses, the hyperbolic trigonometric func-
tions and their inverses, and the logarithm and exponential function. Mathematica
also has many special, more esoteric functions too. In this book we will be primarily
interested in the more common mathematical functions.

There are two very important features of all built-in Mathematica functions.
First, all built-in functions in Mathematica begin with capital letters. Some, like
the inverse cosine, ArcCos, may even have multiple capital letters. Second, square
brackets are always used to surround the input, or arguments, of a function. So we
typeAbs[-12], notAbs(-12), if we want to compute the absolute value of −12.
Moreover, this is the only use of square brackets in Mathematica. (Actually, the
only use of single square brackets. We’ll see shortly that double square brackets,
[[ and ]], are used with lists.) Parentheses, ( and ), are used to group terms in
algebraic expressions. One other set of delimiters that will be extremely important
are the “curly braces,” { and }. These are used to delimit lists, something that we
will be introducing shortly. The three sets of delimiters, [ ], ( ), and { } are used for
functions, algebraic expressions, and lists, respectively, and only for these purposes.
This can be hard to get used to at first, but leads to a great system.

1.8 Using Variables
We may introduce variables and give them values using the equals sign. Here are
some examples.

Example 1.8.1
In[29]:= a = 2

b = 3

a + b

Out[29]= 2

Out[30]= 3

Out[31]= 5
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Now that we have defined a to be equal to 2, it will remain equal to 2 unless
we set it equal to something else, or use the Clear function to clear its value. This
is extremely important and can sometimes lead to a great deal of frustration! If
we forget that we have given a value to a certain variable and then try to use the
variable later as if it had no value, we can run into unexpected results. Example 1.8.2
shows how the Clear function works. Remember that previous to evaluating the
cell, a = 2 and b = 3.

Example 1.8.2
In[32]:= Clear [a]

a + b

Clear [b]

a + b

Out[33]= 3 + a

Out[35]= a + b

Variables that are given values retain those values until we quit Mathematica
or use Clear. It is very important to remember this! Also, once we use Clear the
variable will continue to not have a value until we give it one. Thus, if we reenter
the above cell we will not get the same output! The second time we enter it, both a
and b will have been cleared and we will not get the output of 3 + a. Clear can be
used with a number of options. A useful construction is Clear[“Global`*”] which
will clear everything!

The real power of Mathematica is that it can manipulate abstract expressions
rather than just specific numbers. So we will often use variables that are, well,
variable! That is, they have not been set equal to any specific value. The following
example illustrates this. We’ll talk a lot more about the Expand function in Chap. 4,
but for now you can probably guess what it does.

Example 1.8.3
In[36]:= Expand [ ( x + y) ^10 ]

Out[36]= x10 + 10 x9 y + 45 x8 y2 + 120 x7 y3+

210 x6 y4 + 252 x5 y5 + 210 x4 y6+

120 x3 y7 + 45 x2 y8 + 10 x y9 + y10
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Variables are case sensitive. Thus s and S are two different variables. Exam-
ple 1.8.4 illustrates this point.

Example 1.8.4
In[29]:= a = 2

b = 3

c = 4

s = a + b + c

S

Out[29]= 2

Out[30]= 3

Out[31]= 4

Out[32]= 9

Out[33]= S

Since s (for sum) is the sum of a, b, and c, we see 9 for the fourth output
line. But because S is not the same variable as s, the fifth output line contains the
name of the variable S. This variable has no value since we have not set it equal to
anything.

You can use almost anything as a variable name except that variable names
cannot start with a number. Thus x2 can be used but 2x cannot. Moreover, words or
letters that already have meaning in Mathematica cannot be used. For example, we
cannot use E as a variable name because E is already being used by Mathematica
to stand for the base of the natural logarithm. Other reserved words and letters exist
too. If you try to use one, Mathematica will simply tell you that you are not allowed
to. Here is an example of this.

Example 1.8.5
In[42]:= C = 12

Set::wrsym : Symbol C is Protected. >>

Out[42]= 12

Since C is reserved we cannot use it for a variable, and Mathematica warns
us that this is the case by typing the rather crytptic “Set::wrsym: Symbol C is
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Figure 1.1 Trying to use the reserved word C as a variable causes a warning that leads to
this page in the Help Files.

protected.” Moreover, the double arrowhead, >>, is actually a hyperlink to the
on-line documentation, or Help Files. If we click on this link the window shown in
Fig. 1.1 pops up and explains the warning. We’ll have a lot more to say about the
Help Files as we go, starting a little later in this chapter.

1.9 Using Comments
After we start to do more complicated calculations, our input cells might start to
have dozens of lines. When this happens, it can start to get hard to follow what
is going on. Putting comments in our input cells, especially the more complicated
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input cells, is a great way to document our work. The following example illustrates
the use of comments.

Example 1.9.1
In[43]:= (* distance from sun to earth in meters *)

au = 149 597 870 691

(* speed of light in meters per second *)
c = 299 792 458

(* time for light to reach earth from
sun in seconds *)

N[au / c]

Out[43]= 149 597 870 691

Out[44]= 299 792 458

Out[45]= 499.005

The delimiters (* and *) are used to enclose comments. Anything that appears
between these delimiters is ignored by Mathematica when the cell is evaluated.
Learning to use comments well is a very good programming practice and writing
good code can be a source of great pride. Later we’ll be talking about the Wolfram
Demonstrations Project, a Web site that contains thousands of Mathematica note-
books that you can download for free. This is a great resource and someday you
might find a notebook there that does almost exactly what you want to do. Excit-
edly, you’ll download the notebook, open it up, see a hundred lines of mysterious
code, and. . . What! No Comments! #@!&%* ! Good comments can make your
code much better by making it readable by others (and by yourself after you have
forgotten what you were thinking when you wrote it!).

In addition to comments, we can also add whole paragraphs of text between our
input cells. We’ll be talking about this in Chap. 11.

1.10 Suppressing Output
If we compute something that produces a LOT of output, we may want to hide or
suppress the output just because it takes up so much room.
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Example 1.10.1
In[39]:= (* a very large Mersenne prime *)

x = 24253 – 1
PrimeQ [ x]

Out[39]= 190 797 007 524 439 073 807 468 042 969 529 173 669 …
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

356 994 749 940 177 394 741 882 673 528 979 787 005

053 706 368 049 835 514 900 244 303 495 954 950 709

725 762 186 311 224 148 828 811 920 216 904 542 206

960 744 666 169 364 221 195 289 538 436 845 390 250

168 663 932 838 805 192 055 137 154 390 912 666 527

533 007 309 292 687 539 092 257 043 362 517 857 366

624 699 975 402 375 462 954 490 293 259 233 303 137

330 643 531 556 539 739 921 926 201 438 606 439 020

075 174 723 029 056 838 272 505 051 571 967 594 608

350 063 404 495 977 660 656 269 020 823 960 825 567

012 344 189 908 927 956 646 011 998 057 988 548 630

107 637 380 993 519 826 582 389 781 888 135 705 408

653 045 219 655 801 758 081 251 164 080 554 609 057

468 028 203 308 718 724 654 081 055 323 215 860 189

611 391 296 030 471 108 443 146 745 671 967 766 308

925 858 547 271 507 311 563 765 171 008 318 248 647

110 097 614 890 313 562 856 541 784 154 881 743 146

033 909 602 737 947 385 055 355 960 331 855 614 540

900 081 456 378 659 068 370 317 267 696 980 001 187

750 995 491 090 350 108 417 050 917 991 562 167 972

281 070 161 305 972 518 044 872 048 331 306 383 715

094 854 938 415 738 549 894 606 070 722 584 737 978

176 686 422 134 354 526 989 443 028 353 644 037 187

375 385 397 838 259 511 833 166 416 134 323 695 660

367 676 897 722 287 918 773 420 968 982 326 089 026

150 031 515 424 165 462 111 337 527 431 154 890 666

327 374 921 446 276 833 564 519 776 797 633 875 503

548 665 093 914 556 482 031 482 248 883 127 023 777

039 667 707 976 559 857 333 357 013 727 342 079 099

064 400 455 741 830 654 320 379 350 833 236 245 819

348 824 064 783 585 692 924 881 021 978 332 974 949

906 122 664 421 376 034 687 815 350 484 991
Out[40]= True
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In Example 1.10.1, we compute 24253 − 1 which just so happens is a prime
number!6 Here we have also used the function PrimeQ which will test an integer
for primality.

There are two things we can do. First, we can simply hide the output by double-
clicking on the cell bracket that surrounds both the input and output cells. If we
double-click the bracket again it will redisplay the output. Try it! This way we can
hide the output yet still have access to it if we need it. We won’t be saying much more
about cell brackets until we get to Chap. 11, but until then you should be comfortable
with single-clicking a cell bracket to select that cell, and double-clicking brackets
to hide or unhide large output cells.7

Alternatively, if we follow any calculation with a semicolon, the output from
the calculation will not be displayed at all. For example, the semicolon following
a=5∧100000 below will cause no output to be displayed, even though a will be
given the value of 5100000.

Example 1.10.2
In[38]:= (* semicolons suppress output *)

a = 5^100 000;

Using semicolons also will allow us to place more than one command on the
same line in the input cell. Here is a simple example.

Example 1.10.3
In[34]:=

a = 2; b = 3;

a + b

Out[35]= 5

(* placing multiple commands on one line *)

We could have placed the sum a+b on the same line too, but using two lines
makes for more readable input. Trying to develop good habits in style can be
important as we learn how to do more and more complicated calculations.

Suppose we do a calculation that produces a lot of output and we don’t remember
to, or don’t want to, suppress the output? Fortunately, Mathematica will step in and

6Primes of the form 2n − 1 are known as Mersenne primes after Marin Mersenne who compiled a (partially
correct) list of them in the 17th century. So far, only 46 Mersenne primes have been found, with the largest having
over 12 million digits!

7Double-clicking the bracket of any cell that is part of a larger group of cells will hide all the other cells in the
group. Try it!
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save us from having to look at pages and pages of output. For example, suppose
we compute 123451000000. Here is what happens.

Example 1.10.4
In[36]:=

12345 ^1000000

Out[36]=

A very large output was generated. Here is a sample of it:

124 241 861 881 525 819 349 735 272 741 768 996 …

…
…

…

457 676 520 492 834 280 006 687 987 052 188 200

264 979 <<4091 336>>

935 453 005 290 678 044 687 344 428 392 700 699

560 757 815 476 108 589 791 692 793 369 293 212

890 625

Show Less Show More Show Full Output Set Size Limit...

(* Mathematica abbreviates really large
output *)

The beginning and end of the answer are displayed, with “<<4091336>>”
appearing to indicate that the middle 4091336 digits of the answer are not being
displayed. The number 123451000000 has 4091492 digits and would take a lot of
space to display! We are also given the choice to see more or less of the output.

1.11 Aborting a Calculation
Sometimes we might want to interrupt a calculation. For example, if we unknow-
ingly start a calculation that might take days to finish, we’ll just be waiting and
waiting wondering how long it is going to take! Or, after we learn how to program
in Mathematica, we might accidentally write a program that has a mistake in it that
will cause the computer to run forever without ever completing what we wanted
it to do. Rather than just quitting Mathematica and losing all of our work, we can
usually abort the calculation by choosing Evaluation � Abort Evaluation from
the menu bar.

When Mathematica is doing a calculation it will say “Running . . . ” in the title
bar of the window. If the calculation is really fast you won’t even notice, but if
the calculation lasts for several seconds you will see it. Try computing 510000000.
This calculation should last long enough for you to see the title of your window
change to include “Running . . . .” This would be a great place to use a semicolon to
suppress output! It is also a great place to use the Timing function so that we can
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see how long the calculation takes. The Timing function can be wrapped around
any other calculation. Here is an example.

Example 1.11.1
In[51]:= (* Timing can be wrapped around any

calculation *)
Timing [5^10 000 000;]

Out[51]= {1.17752 , Null }

This calculation took 1.17752 seconds on the authors’ laptop. The “Null” (which
means “nothing”) is present because we used the semicolon to suppress the output.
Notice that the semicolon is inside the last bracket. We have simply taken the
Timing function and wrapped it completely around the calculation that we want to
do. Can you predict what will happen if we enter Timing[5^100000000];?
Try it! In addition to using Timing, we’ll see another way to monitor the speed of
our calculations in Chap. 3.

1.12 Lists
Lists are so important to Mathematica that we need to learn what they are right
away. In Mathematica a list is an ordered set of things delimited by { and } and
separated by commas. Example 1.12.1 gives a few examples.

Example 1.12.1
In[17]:= (* examples of lists *)

a = {1, 2, 3, 4, 5}

days = {"Mon", "Tue", "Wed", "Thur ",

"Fri", "Sat", "Sun"}

B = {{1, 2}, {3, 4}}

Out[17]= {1, 2, 3, 4, 5}

Out[18]= {Mon, Tue, Wed, Thur, Fri, Sat, Sun}

Out[19]= {{1, 2}, {3, 4}}

We have defined three lists and named each with a variable name. The name of
the first list is a. This list has five elements, namely, the integers 1 through 5. The
first element of the list is the number 1, the second element of the list is 2, and so on.
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The second list contains the days of the week which are represented as strings. In
general a string is any amount of text surrounded by quotation marks.8 Finally, the
last example is a list with two elements, each of which is a list itself! The elements
of a list can be anything: numbers, variables, expressions, strings, or even other
lists. The elements of a list do not have to all be the same “kind” of thing. It would
be perfectly OK for a list to contain a number, a string, and perhaps another list.

Many of the functions in Mathematica use lists as one of their arguments. For
example, the Table function, which is used to generate lists, takes two arguments,
the second of which must be a list. Suppose we want to create a list of the squares of
the first 10 integers. These are 12 = 1, 22 = 4, 32 = 9, and so on up to 102 = 100.
Example 1.12.2 shows how to do this.

Example 1.12.2
In[55]:= (* a table of perfect squares *)

Table [ i^2, {i, 1, 10}]

Out[55]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

The Table function takes two arguments. In this case the first argument is the
expression i∧2. The second argument is the list {i,1,10}. What Table does is
create a list by evaluating the expression i∧2 with each value of i running from 1
to 10. The variable i is called the index or counter. It starts at 1 and is increased by
1 at a time until it reaches 10. For each value of i the expression is evaluated and
the result is placed in the list. The argument, {i,1,10}, is extremely common in
Mathematica. We will see arguments of this kind in many of the built-in functions
provided by Mathematica.

Sometimes we may not want the counter to go up in steps of 1. We can change
this by adding an optional stepsize to the indexing list. Example 1.12.3 illustrates
different values for the stepsize. Can you see what is happening?

Example 1.12.3
In[56]:= (* examples of stepsize *)

Table [ i^2, {i, 1, 10, 2}]
Table [ j + 3, {j, 5, 1, –1}]

Out[56]= {1, 9, 25, 49, 81}

Out[57]= {8, 7, 6, 5, 4}

8Quotation marks from another set of delimiters.
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In the first table, the counter i goes up in steps of 2, so that we only list the
squares of the odd integers from 1 to 10. In the second table, the counter j goes
down from 5 to 1 in steps of 1 (or up in steps of −1). The entries of the table, or
list, are the index plus 3 so we obtain 8, 7, 6, 5, and 4.

In general, the indexing argument to the Table command is of the form

{index, lower value, upper value, stepsize}

although variations on this are possible. (For example, we may omit the stepsize in
which case Mathematica will use the default stepsize of 1.) The index starts at the
lower value, increases each time by an amount equal to stepsize, and ends when
it reaches, or surpasses, the upper value. Notice that when we used {i,1,10,2}
the last value of i is 9. The next value would be 11 which is more than 10. So in
this case the index is never actually equal to the upper value, instead it skips over
the upper value.

We’ll be learning a lot more about lists in Chap. 4, but there are a couple of
list related functions that are worth mentioning now. Suppose we want to “access”
a specific element of a list, say the third element. In the days list above, the
third element is “Wed.” The construction is to use the name of the list followed
by double square brackets enclosing the number of the element we want. Thus,
typing days[[3]] gives us the the third element of the list days. The list B
in Example 1.12.1 was actually a list of lists. Hence, entering B[[1]] is the list
{1,2}. If we want to access the second element of the first element ofBwe can type
either B[[1]][[2]] or B[[1,2]]. We illustrate this in the following example.

Example 1.12.4
In[10]:= (* getting elements from a list *)

days [ [ 3] ]
B[ [ 1] ]
B[ [ 1, 2] ]

Out[10]= Wed

Out[11]= {1, 2}

Out[12]= 2

Another useful function for dealing with lists is the length function Length. We
can use this to find out how many elements are in a list. In Example 1.12.5 we
use the Table command to first build a list and then the Length command to see
how long it is. (Of course we knew in advance how long it was—this is just to
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illustrate using Length.) Also, notice that by following the Table command with a
semicolon, Mathematica does not print out the list in an output cell.

Example 1.12.5
In[59]:= cubes = Table [ i^3, {i, 1, 10}] ;

(* Length will give the number of
elements in a list *)

Length [cubes ]

Out[60]= 10

1.13 Palettes
So far we have seen how to enter the square root of 12 in two different ways: as
Sqrt[12] or as 12ˆ(1/2). A third way is to enter is as

√
12 by using the “Basic

Mathematics Input Palette.” If we select Palettes � BasicMathInput from the
menu bar, a window will open from which we may then select various forms of
algebraic expressions, relational symbols, and Greek letters. Figure 1.2 shows what
the Palette looks like. If we click on the square root expression, which is the first
expression in the second row, the square root symbol, √ , will be placed into the
input cell and the cursor will be placed under the square root symbol so that we
can begin typing there. After typing 12 we may press Shift+Return and obtain the
answer. Example 1.13.1 shows how it looks.

Example 1.13.1
In[37]:=

12

Out[37]= 2 3

(* using the square root symbol *)

The BasicMathInput Palette contains a number of templates easily recognized
by the little squares that are present, some of which are black. If you click on a
Palette template it will be inserted in your notebook and whatever you type next will
be inserted in the template at the location of the black square. Pressing the Tab key
will take you to the next square in the template. If you select some expression and
then click on a template in the Palette, whatever you selected will be pasted into the
template at the location of the black square. The black squares are called Selection
Placeholders while the white squares are simply Placeholders. After filling in all
the place holders, type Ctrl+space (the Control key and the spacebar at the same
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Figure 1.2 The Basic Math Input Palette.
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time), or use the right arrow key, to move the cursor to the right of the template if
you wish to keep typing.

If we want to enter
√

12 + √
27 we need to perform the following steps.

1. Select the square root symbol from the Palette.

2. Type 12.

3. Type Ctrl+spacebar.

4. Type +.

5. Select the square root symbol from the Palette again.

6. Type 27 and press Shift+Return.

Using the BasicMathInput Palette can make your Mathematica input cells look
pretty, but this is primarily a typesetting feature. Almost anything that can be done
by using the Palette can also be done without using it! Whether you end up using the
Palette a lot or not is largely a matter of taste. On the other hand, really complicated
expressions can be easier to “see” if they are typeset. So using the Palette to enter
complicated expressions can be quite useful. A few of the templates available in
the Palette can also be inserted by selecting Insert � Typesetting from the menu
bar. Furthermore, these have keyboard shortcuts that make using them a lot faster
than selecting from the Palette. For example, to typeset

√
12 + √

27 using keyboard
shortcuts we would type

Ctrl+2, 1, 2, Ctrl + spacebar9, Ctrl+2, 2, 7

(Here the commas separate the keystrokes—don’t type the commas!)
In addition to the keyboard shortcuts available on the Insert menu, the Greek

letters all have shortcuts too. Typing esc, letter, esc (esc is the Escape key) will
insert the Greek equivalent of letter. Thus esc, a, esc will insert α. Typing esc,
e, esc will insert ε but typing esc, ee, esc will insert , the base of the natural
logarithm. Similarly, typing esc, ii, esc will give the imaginary number . (The
special constant π is typeset with esc, p, esc, not esc, pp, esc. You can’t use π as
a variable name. It has to represent the ratio of the circumference of a circle to its
diameter.)

You’ll need to experiment to see how much use you want to make of the Palette.
Certainly the keyboard shortcuts make using it more palatable! We’ll have more to
say about using Palettes, including making your own custom Palettes, in Chap. 11.

9You may also be able to use the right arrow key.
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1.14 Saving and Printing Our Work
To save our work, we choose File � Save from the menu bar and give the name and
location where the file should be saved. Mathematica files are known as notebooks
and are stored with a “.nb” extension. Notice that after saving the file, the title
appears in the title bar of the window where it used to say “untitled-1.” It is a
good habit to save our work often just in case the computer should crash for some
mysterious reason. This may be a rare occurrence, but when it does happen we
don’t want to lose all our work!

It is possible to have many notebooks open at the same time and switch between
them by using the Window menu. We’ll have a lot more to say about notebooks in
Chap. 11 where we’ll see how to insert text, photos, and all sorts of other materials
into a notebook and organize the whole work into chapters and sections just like a
book.10 Once we have created several notebooks, or downloaded notebooks from
various Web sites, we may open them by selecting File � Open from the menu
bar. Most of the commands in the File or Edit menus will be familiar to anyone
who has worked with other programs such as word processors. Still, some of the
commands are not so obvious and will be covered in this book.

To print a notebook simply choose File � Print. Notice that it is also possible
to print a singe cell, or selection of cells. First click on the cell bracket to select a
cell and then choose File � Print Selection.

1.15 Getting Help!
Mathematica is equipped with a huge collection of files and tutorials that explain
how to use the program. There must be thousands of pages, if not tens of thou-
sands of pages, of documentation. These files can be accessed by choosing Help
� Documentation Center or Help � Virtual Book from the menu bar. We will
generally refer to this reference as the “Help Files” and it is very important for the
Mathematica user to learn how to navigate and use the Help Files.

We have already seen one case of using them. Namely, when we tried to use the
letter C as a variable and Mathematica gave us a warning. In that case, a hyperlink
appeared in our notebook and if we clicked it we were taken to a page in the Help
Files which explained the problem.

Alternatively, if we select Help � Documentation Center, a window will open
with lots of links for us to choose from. At the top of this window is a search field
where we can type a word or phrase we want to find out about. If we type in a

10The people at Wolfram encouraged me to write this book as a Mathematica notebook!
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Figure 1.3 The help page on the Table command.

Mathematica command or function there we can get the documentation for that
function. For example, suppose we type Table into the search field.

Figure 1.3 shows the Help Files page about the Table command. The page
begins by explaining the syntax of the Table command, that is, the different ways
that we can use the command. Notice that six different forms are listed and so far
we have discussed the third and fourth forms. The second form shows that we can
not only omit the stepsize, but also the starting value of the counter. If we do this
Mathematica will assume that the counter should start at 1. The first form of the
command shows that we can even omit the name of the counter! This would be
a fairly uncommon usage of Table, but sometimes it’s just what we need. After
showing the various forms of the Table command, the help page then gives a lot
more information including examples and links to tutorials.

Sometimes we might remember the command we want but not quite remember
how to use it. We can get a quick answer by typing a question mark followed by
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the name of the command directly into a Mathematica cell and evaluating that cell.
Example 1.15.1 shows what happens. We get a description of the syntax and a
hyperlink that will take us to the documentation shown in Fig. 1.3.

Example 1.15.1
In[62]:= (* getting information on a function *)

? Table

Table [expr, {imax}] generates a list of imax copies of expr.

Table [expr, {i, imax}] generates

a list of the values of expr when i runs from 1 to imax.

Table [expr, {i, imin, imax}]

[ {

{

{ } { } ]

{ }}]

}]

starts with i = imin.

Table expr, i, imin, imax, di uses steps di.

Table [

[

expr, i, i1, i2, uses the successive values i1, i2, .

Table expr, i, imin, imax , j, jmin, jmax ,

gives a nested list. The list associated with i is outermost. >>

Another way to reach the documentation page on a specific function, if the
function name appears in our notebook, is to select the function name and then
choose Help � Find Selected Function from the menu bar.

If we can’t remember, or don’t know what function we need, select Help �
Function Navigator from the menu bar. This will bring up a catalog of func-
tions organized in various categories. For example, under Core Language � List
Manipulation � Constructing Lists we’ll find Table (as well as 11 other func-
tions). The Function Navigator is a great place to learn about new functions.
Suppose we are working with lists and need to pick out a certain element from a
list. By browsing the Function Navigator we can see what functions are available
and we might find just what we need.

Finally, the Virtual Book is an excellent resource. It groups together all the guides
and tutorials that are in the Help Files in an organized way. The Help Files are an
indispensable source of information and the Mathematica user needs to learn how
to use this valuable resource. We’ll be offering a guide to the Help Files as we go.

1.16 Find Out More
In this chapter we have learned how to start Mathematica, type some basic com-
mands into a notebook, and save our work. We have seen some of the syntactic fea-
tures of Mathematica such as the fact that all built-in functions start with a capital
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letter, all functions use square brackets to enclose their arguments, and so on. We
have also learned how to access the Help Files, an important source of information.

To find out more about getting started, we recommend you go through a couple
of the Mathematica tutorials that can be found in the Help Files. The following
tutorials and other information should be helpful.

• First Five Minutes with Mathematica—This is a very quick introduction that
shows off a few functions that we’ll be seeing in later chapters. Choose Help
� Documentation Center from the menu bar and look for the link to this
tutorial in the lower right column of the page.

• The Virtual Book—Open the Virtual Book and start perusing it! Take a look
at the Introduction and start reading the entries under Getting Started.

• The Function Navigator—Mathematica has over 2200 built-in functions.
Open the Function Navigator and start looking around in it. You can also
see an alphabetical list of all functions by choosing Help � Documentation
Center and then “Index of Functions” from the lower right column of the
page. Try clicking on one of the functions. It will take you to the Help Files
page for that function.

• Entering Expressions—Start reading Notebooks and Documents � Input
and Output in Documents in the Virtual Book. Don’t skip this one!

• Building Up Calculations Overview—Read the Building Up Calculations
section under Core Language in the Virtual Book.

As you browse through the documentation you will find other links that might
be helpful. Lots of the Help File pages are not going to be of interest now, but will
become useful as you learn more.

Quiz
1. Use Mathematica to compute ( 1

2 + 1
3)

3 exactly.

2. Use Mathematica to compute ( 1
2 + 1

3)
3 and represent the answer in decimal

form.

3. It turns out that the numbers eπ and π e are pretty close to each other. (Here
e is the base of the natural logarithm and π is the ratio of the circumference
of any circle to its diameter.) Without computing them it is not easy to decide
which is bigger. Use Mathematica to find out which number is bigger.
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4. The volume of a ball of radius r is given by V = 4
3πr3 and its surface area

is given by A = 4πr2. The radius of the earth is about 4000 miles. Use
Mathematica to estimate the volume and surface area of the earth.

5. The volume of any cone is one-third the area of the base times the height,
where the height is measured perpendicular to the base. The Great Pyramid
at Cheops has a square base about 230 meters on a side and its height is about
147 meters high. Use Mathematica to compute the volume of the pyramid.

6. Use the Table function to make a list of the cubes of the first 10 integers.

7. The sine function is given by Sin. Use the Table function to make a table of
sin x for every x from 0 to π/2 in increments of π/20. Have the entries in the
table in decimal form.

8. The number e is defined as the limit of (1 + 1/n)n as n approaches in-
finity. Use the Table function to list the value of (1 + 1/n)n for n =
10, 102, 103, . . . , 106. The numbers in this list are getting closer and closer to
e. HINT: Replace n in the expression (1 + 1/n)n with 10k and then let k go
from 1 to 6.

9. The function n!, which is read “n factorial,” is defined to be the product
of all positive integers from 1 to n. Thus 3!= 1 · 2 · 3 = 6, 5!= 1 · 2 · 3 · 4 ·
5 = 120, and the like. To compute n! in Mathematica we may either type
Factorial[n] or n!. Use the Table function to make a list of n! for n = 1 to
n = 20. (Note: It is conventional to define 0! to be 1. Try asking Mathematica
to compute 0!)



This page intentionally left blank 



CHAPTER 2

Two-Dimensional
Graphics

Mathematica can be used to draw beautiful pictures that make it easy to visualize
complicated curves, surfaces, data sets, or other shapes. In this chapter we’ll focus
on two-dimensional graphics. In Chap. 6 we’ll introduce tools to display three-
dimensional objects.

2.1 The Plot Function
One of the most fundamental and useful graphics tools is the Plot function which
can be used to draw the graph of a function. Here is a simple example.

Example 2.1.1
In[74]:= (

[ ] ]{ }[
* )using Plot to graph a function *

Plot Sin x , x, 0, 2 Pi
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Example 2.1.1 (Continued)

1 2 3 4 5 6

–1.0

–0.5

0.5

1.0

Out[74]=

The Plot function takes two arguments. The first is the function that we want
to plot which, in this case, is the sine function Sin[x]. The second argument is the
list {x, 0, 2 Pi} which tells Mathematica to graph sin x from x = 0 to x = 2π .
In other words, this list indicates the domain of the function. The domain list
{x, 0, 2 Pi} is similar to the counter list {k, 1, 10} that we might include as
an argument to the Table function. In both cases we are naming a variable, x
or k, and giving the minimum and maximum values that we want it to vary be-
tween. With the Plot function it is important that the variable we use in the func-
tion matches the one we use in the domain list. If we had entered Plot[Sin[y],
{x, 0, 2 Pi}] it would not work because the two variables (x and y) do not
match.

The first argument to the Plot does not need to be a single function. In fact it can
be a list of functions, in which case Mathematica will superimpose the graphs of
all the functions in the list. Let’s superimpose the graphs of sin x and x2/10. The
next example will do this.

Example 2.1.2
In[76]:= * plotting more than one graph *

Plot Sin x , x^2 10 , x, 0, 2 Pi
( )
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Example 2.1.2 (Continued)

Out[76]=

1 2 3 4 5 6

–1

1
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4

2.2 Resizing Graphics
After using Plot we can resize the graphic using the mouse. First click anywhere
in the graphic. This will display a bounding box surrounding the graphic as shown
in Example 2.2.1. At the corners of the bounding box, and at the midpoints of its
sides are small squares known as handles. If we drag one of the handles with the
mouse the figure will change size. You have to try this yourself to see how it works!

Notice, however, that as you drag the bounding box, the shape of the figure will
remain the same, that is, the ratio of the height to the width of the bounding box
will remain the same. This ratio is called the aspect ratio of the figure. The aspect
ratio remains constant as we drag the handles.

Example 2.2.1
In[1]:= click graph to see the bounding box

Plot Sin x , x, 0, 2 π

Out[1]=
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If instead, we hold down the Shift key as we drag one of the handles then we can
change the aspect ratio. Doing this to Example 2.2.1 allows us to make the figure
wider and shorter as shown in Example 2.2.2.

Example 2.2.2

1 2 3 4 5 6

–1.0

–0.5

0.5

1.0

In[8]:= shift click the bounding box to

stretch it

Plot Sin x , x, 0, 2 Pi

Out[8]=

What happens if we drag the edge of the bounding box and not one of the
handles? This will introduce margins around the figure with a new bounding box
surrounding the original bounding box. By dragging the edge of the smaller box
(not one of its handles), we may drag the smaller bounding box around inside the
larger one to place it anywhere inside the larger box. If we hold down the Shift
key as we do this, the inner box will automatically be centered in the outer box.
To get rid of margins first drag the inner box to one corner of the outer box. Next
resize the outer box to be as small as the inner one. Finally, we can crop a figure by
holding down the Command key as we drag one of the handles.1 You really need
to try all of this yourself. Example 2.2.3 shows the outcome after first introducing
margins and then cropping the inner box.

Example 2.2.3
In[3]:= cropping the graph

Plot Sin x , x, 0, 2 π

Out[3]=

1The Command key is a Mac feature—it does not exist on Windows or Linux machines.
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2.3 Graphics Options
The function Plot can accept several really cool options for making our graphs
look a lot better. Notice that in our very first plot of sin x that the scales on the
horizontal and vertical axes are not the same. That is, 1 vertical unit appears to be
quite a bit longer than 1 horizontal unit. If we want the scales on each axes to appear
to be the same we need to change the aspect ratio of the graph. We could do this
by selecting the graphic and resizing it, but then we would have to “eyeball” it. It
would be difficult to get the two scales to be exactly the same length. On the other
hand, we can use the AspectRatio option to control the aspect ratio exactly. The
next example illustrates this.

In this example we see the basic syntax of a Plot option: the name of the option
followed by the arrow followed by the value of the option. In this case AspectRatio
is the name of the option and Automatic is the value we are giving to this option.
(Note that the arrow is typed into the input cell by typing “->,” a hyphen followed
by the greater than sign. In most cases after typing ->, Mathematica will reset the
arrow nicely. If not, try typing esc, ->, esc.)

Example 2.3.1
In[6]:= controlling the aspect ratio

Plot Sin x , x, 0, 2 Pi ,

AspectRatio Automatic

Out[6]=

1 2 3 4 5 6

–1.0

–0.5

0.5

1.0

By giving the value Automatic to AspectRatio we have forced Mathematica
to produce a picture that has just the right height and width so that the horizontal
and vertical scales each have a unit that is the same length in the picture. In-
stead, we could assign any numerical value to the aspect ratio. For example, if
we used AspectRatio →1 we will get a picture with equal height and width. But
since our picture spans 2π units horizontally and 2 units vertically, we would not
get a picture where 1 unit in each of the two directions would appear to be the
same length. If we didn’t want to use the Automatic value and instead wanted
to provide the value ourselves, we would have to use an aspect ratio of 2/2π in
this case. Using Automatic is nice because if we decide to change the domain to
0 ≤ x ≤ π for example, we don’t have to recompute the aspect ratio in order to
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maintain a horizontal and vertical unit of the same length; Mathematica will do it
for us.

If we don’t mention a graphics option in the Plot function, Mathematica will use
preset default values for each of the options. In the case of AspectRatio the default
value is 1 over the Golden Ratio, or 2/(1 + √

5). Thus the picture will come out as
a Golden Rectangle, a rectangle that has a reputation as being the “most beautiful”
rectangular shape!2

We can control the exact region of the plot by using the option PlotRange →
{{xmin, xmax},{ymin, ymax}}. Using this option will force the plot to extend
horizontally from xmin to xmax and vertically from ymin to ymax. Here is an
example.

Example 2.3.2
In[20]:= using the PlotRange and PlotLabel

options

Plot E^x, x, 1, 10 ,

PlotRange 1, 4 , 0, 10 ,

PlotLabel "The graph of ex."

Out[20]=

–1 0 1 2 3 4

2

4

6

8

10
The graph of ex.

2A Golden Rectangle is a rectangle that has a very specific shape. In particular, it is
not a square and if the rectangle is cut into a square and a smaller rectangle, the smaller
rectangle still has the same shape as the larger one. The smaller rectangle is not as big
as the original rectangle, but its dimensions still have the same ratio, which turns out
to be (1 + √

5)/2, a quantity known as the Golden Ratio. This ratio was know to the
ancient Greeks as the “extreme and mean ratio” and ever since then has generated more
hoopla then almost anything else in mathematics; some of it interesting and some of it
of dubious value. If you Google “golden ratio” you should get half a million hits or so.
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The plot extends horizontally from −1 to 4 and vertically from 0 to 10. Notice
that we have also used the PlotLabel option to label the graph. This example
shows that we can include multiple options—just separate them with commas. The
BasicMathInput Palette was used here to type ex rather than e∧x in the label. We
could also have typed esc, ee, esc, Ctrl+∧, x, Ctrl+space. Finally, note that we have
entered the function ex as E∧x. An alternative way to enter the exponential function
is Exp[x].

There are many times when we may want to override the default values that
Mathematica chooses for a plot. For example, consider the graph of ex in Example
2.3.3. Notice that the intersection of the two axes is not at the point (0, 0). If we
want to force that to be true we can use the option AxesOrigin → {0, 0}. We’ll
leave this for you to try. (We could also force the axes to intersect at some point
other than (0, 0). Try using AxesOrigin → {0, 1} for example.)

Example 2.3.3
The axes do not intersect at 0,0 .

We could change this with the AxesOrigin

option.

Plot E^x, x, 1, 1

Out[22]=

–1.0 –0.5 0.5 1.0
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Another useful graphics option is PlotStyle which allows us to change the way
the actual graph of the function appears. In Example 2.3.4 we have used two different
attributes for the style: Dashed and Thickness. The Thickness attribute takes an
argument which, in this case, we have set to .005. This means that the thickness of
the curve will be .005 times as wide as the figure itself. Thus if we resize the figure
by clicking on it and then dragging the bounding box, the curve will get thicker as
the figure gets wider.
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Example 2.3.4
using the PlotStyle option

Plot 4 x^2, x, 2, 2 ,

PlotStyle Dashed, Thickness .005

–2 –1 1 2
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4

When graphing more than one curve at once it is useful to draw the different
curves in different colors, thicknesses, and so on. Since this book is not printed
in color, let’s graph two functions and have each one have a different thickness.
Example 2.3.5 shows how to do this. Since PlotStyle has two attributes, each a
different thickness, the first attribute is applied to the first graph, and the second
attribute to the second graph. We could do this with three or four or more graphs and
three or four or more attributes. If the number of attributes exceeds the number of
graphs, then the last couple of attributes will simply not be used. If on the other hand,
the number of graphs exceeds the number of attributes, then when Mathematica
runs out of attributes it will simply return to the beginning of the attribute list and
start over.

Sometimes we may want to give several attributes to a single graph when we
are graphing more than one graph. Suppose we want to graph three graphs and

Example 2.3.5
using Thickness with PlotStyle

Plot Sin x , x^2 10 , x, 0, 2 Pi ,

PlotStyle Thickness .02 ,

Thickness .005
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Example 2.3.5 (Continued)

1 2 3 4 5 6
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4

make each a different shade of gray and each a different thickness. Consider
Example 2.3.6.

Here we have graphed three function: sin x, x − x3/3! and x − x3/3! + x5/5!.
If you have had calculus you might recognize the second and third functions as the
Taylor polynomials of degree 3 and 5 for sin x . The two polynomials provide pretty

Example 2.3.6
using GrayLevel with PlotStyle

Plot Sin x , x x^3 3 ,

x x^3 3 x^5 5 , x, 2 Pi, 2 Pi ,

PlotStyle GrayLevel 0 , Thickness .006 ,

GrayLevel .2 , Thickness .004 ,

GrayLevel .5 , Thickness .003

–6 –4 –2 2 4 6

4

2

2

4
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good approximations to sin x for small values of x , so near the origin, the graphs
appear to overlap. Away from the origin we see the graphs start to diverge.

We have given a list of three sets of attributes to PlotStyle, with each set be-
ing a pair: GrayLevel and Thickness. The first pair is {GrayLevel[0], Thick-
ness[.006]}. This causes the first function, sin x , to be graphed in solid black
with a thickness of .006. (A gray level of 0 is black; a gray level of 1 is white.)
The second pair specifies a gray level of .2 and a thickness of .004. The sec-
ond function is the cubic polynomial x − x3/3!. Thus it is drawn slightly lighter
and slightly thinner than the sine curve. Finally, the third function, the fifth de-
gree polynomial, is graphed using the lightest shade of gray and the smallest
thickness.

Another nice thing to do with a graph is to label the axes, which we can do using
the Frame and FrameLabel options. Suppose we want to illustrate the relationship
between the temperature, in degrees Fahrenheit, and the rate at which the snowy tree
cricket chirps. According to an article that appeared in Outside magazine in June,
1995, counting the number of chirps in a 13 second period and then adding 40 gives
a good approximation to the temperature. In Example 2.3.7 we have labeled the
horizontal axis “Chirps in 13 seconds” and the vertical axis “Degrees Fahrenheit.”
Since we might want to actually read the temperature off of the graph for a given
chirp rate, we have also used the GridLines option. LabelStyle is yet another option
and we have used it to make all the labeling bold. This example again illustrates
that we may use as many options as we want—we just need to separate them with
commas.

Example 2.3.7
using GridLines,Frame,

and FrameLabel

Plot x 40, x, 10, 50 ,

PlotLabel

"Temperature vs. Chirp Rate for Snowy

Tree Cricket ",

GridLines Automatic , Frame True,

FrameLabel "Chirps in 13 seconds",

"Degrees Fahrenheit" ,

LabelStyle Bold
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Example 2.3.7 (Continued)

Out[24]=
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Temperature vs. Chirp Rate for Snowy Tree Cricket

Before closing this section we mention one more useful option, Ticks. In each of
our plots Mathematica has placed little tick marks on the axes and labeled them with
values. We can control this ourselves by using Ticks. Example 2.3.8 shows how.

Notice that we have specified two lists of numbers for the Ticks option. The first
is the list {-2 π , -3 π /2, -π , -π /2, π /2, π , 3 π /2, 2 π}, which we generate with
the Table function, and the second is {-1, -.5, .5, 1}. We could have used a Table
function to generate the second list of ticks too, but in this case it seems easier to

Example 2.3.8
In[10]:= using custom tickmarks

Plot Sin x , x, 2 Pi, 2 Pi ,
Ticks Table k 2π , k, 4,4 ,

1, .5, .5, 1

Out[10]=
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just type them out. Mathematica uses the first list as the locations of tick marks
(and tick labels) on the horizontal axis and the second list as the location for tick
marks on the vertical axis.

We have only highlighted a few of the many options that are available with the
Plot function. To see a list of all such options enter Options[Plot]. We can also use
the Options function to see what options are available for Plot3d, ParametricPlot,
and ContourPlot, to name just a few of the other plotting functions that we will be
learning about.

2.4 Drawing Tools and the Graphic Inspector
After drawing a graphic using Plot, we can add additional features to the graph
using the drawing tools. Choosing Graphics � Drawing Tools from the menu bar
will bring up the 2D Drawing palette shown in Fig. 2.1.

The palette contains a number of tools, with the upper-right tool currently se-
lected. (It has a colored box around it to indicate that it is selected.) This tool is the
Select/Move/Resize tool. Suppose we want to insert some text into our figure, per-
haps labeling something in the figure. To do this, first select the figure by clicking
anywhere in it. Next select the Text tool from the 2D Drawing palette. Now position
the mouse in the figure at the place where you want to insert the text, click the
mouse, and start typing the text. After typing the text, press Shift+Return. Doing
this we can label the sine curve with its equation as shown in Example 2.4.1.

Line (l) (s)Segmented Line

(f) Freehand LinePoint (p)

(t) TextTraditionalForm Text (m)

Arrow (a) (g) Polygon

(q) RectangleDisk/Circle (c)

New Graphic/Inset (Ctrl+1) (o) Select/Move/Resize

Graphics Inspector

Figure 2.1 The 2D Drawing palette.
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Example 2.4.1
In[4]:= adding text with the Drawing Tools

y = Sin[x]

1 2 3 4 5 6
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If we want to edit the text, first select it. We can do this by double-clicking on it.
After it is selected it will be surrounded by a bounding box. We could change to a
bigger font, for example, by going to the Format � Size menu and then choosing
a larger point size. Or, after selecting the text, we may want to drag it to a different
location.

By choosing other tools it is possible to draw lines, arrows, circles, rectangles,
and other objects in the figure. You should experiment with the different tools to
see what they can do. There is a also a nice tutorial in the Help Files that we will
direct you to at the end of this chapter.

At the very bottom of the 2D Drawing palette is a button for the “Graphics In-
spector.” Clicking this button will bring up the Graphics Inspector palette shown
in Fig. 2.2. We can use this to change, for example, the color or thickness of a
curve. First double click on the curve to select it. Next adjust the color or thick-
ness using the palette. Using this method has almost exactly the same effect as
using the plot style options Thickness or GrayLevel. The only difference is that
using the Graphics Tools creates a second output cell with the altered drawing.
If we reenter the input cell, the original graphic (without the added features) will
be regenerated. The altered drawing with the added features will remain from
before.

The drawing tools can be used to do some things that would be incredibly difficult
to accomplish with just the Plot options. On the other hand, some effects created
with Plot options cannot be done afterward with the graphics tools. Being able to
use both gives you the most control over your graphics.
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Figure 2.2 The Graphics Inspector palette.

2.5 Using Epilog
Another way to add labels or other graphics objects to a plot, rather than using the
Drawing Tools, is to use Epilog. With the Epilog option we can have Mathematica
add additional graphics objects to a plot after the plot is rendered. (There is a Prolog
too that adds objects before the plot is rendered.) For example, we might want to
label different features within a plot. In Example 2.5.1, we have used Epilog to add
Text objects to the plot after the graphs are plotted.

The Text function takes two arguments. The first is the text string that we want
to insert in the plot. The second is the coordinates of the point where the text should
be centered. The coordinates we gave for “Factory B” are {5, 10} so the center of
this text string is placed at the point (5, 10) in the plot. For the “Factory A” label
we have used the Style function which allowed us to alter the font size by using the
FontSize option. Of course, in this example, we could have easily put in the labels
by using the Drawing Tools, but sometimes using Epilog is a better choice. We’ll
see this in Chaps. 7 and 10 where Epilog is used to add graphical elements that we
could not possibly add with Drawing Tools.
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Example 2.5.1

Out[33]=
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In[33]:=

using Epilog to add labels
Plot 20 Exp .01 t , 12 Exp .03 t ,
t, 0, 40 ,
AxesOrigin 0, 0 ,
Epilog
Text Style "Factory A", FontSize 18 ,
5, 25 ,

Text "Factory B", 5, 10

2.6 Mouseover Effects---Tooltip
An alternative to providing permanent labels in a plot is to use Tooltip to provide
“mouseover” labels. These are labels that will appear only when the mouse is moved
over a certain feature in the plot. In Example 2.6.1 we provide labels for each curve,
but these labels only appear when the mouse pointer is moved over the curve. In this
example, the label for the “Factory B” curve has “popped up” because the cursor
was moved over the curve.

Here we have modified each of the two function that we want to graph with
the Tooltip function. Whereas before we would have simply had the function 20
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Example 2.6.1
In[39]:=

using Tooltip for mouseover effects
Plot 20ExpTooltip .01 t , ,

t, 0, 40 , AxesOrigin 0, 0

"Factory A"

12ExpTooltip .03 t , ,"Factory B"

Out[39]=
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Exp[.01 t] we now have Tooltip[20 Exp[.01 t], “Factory A”]. The Tooltip function
takes two arguments. The first is whatever object we want to label when the mouse
is placed over it and the second argument is the label. So, in this example, when
the mouse is moved over the graph of 20e.01t a label of “Factory A” will appear.
You need to try this yourself! Try it!

2.7 Animation---Using Manipulate
One of the really great improvements in Mathematica versions 6 and 7 is the
capability of interacting with a Mathematica notebook. We have already seen one
example of this with the mouseover effects made possible with the Tooltip function.
The Manipulate function also allows the user to interact with graphics (and other
things too) in a really neat way.

Suppose we want to understand the cubic polynomial x3 + ax + 1, where a is
some constant. In particular, maybe we want to know how the value of a affects
the graph. We could start picking various values for a and then plot the graph for
each value that we have chosen, but a better way is to use Manipulate. Consider
Example 2.7.1. We have taken the Manipulate function and wrapped it around the
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Plot function. In the Plot function we have plotted the function x2 + ax + 4 from
x = −8 to x = 8. We also have included a couple of Plot options: PlotRange and
AspectRatio. The variable of the cubic polynomial is x . But a is a variable too!
We call it a parameter. As we change the parameter we get a different function.
What we really have is a whole family of functions, one for each value of a. The
Manipulate function allows us to dynamically change the parameter a and watch
the graph of the corresponding cubic polynomial change! This book, of course, is
totally static! You have to try this out for yourself with Mathematica!

Example 2.7.1
In[41]:= using Manipulate for animation

Manipulate
Plot x^3 a x 4, x, 8, 8 ,
PlotRange 8, 8 , 100, 100 ,
AspectRatio 1 ,
a, 10, 10

Out[41]=
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Figure 2.3 The expanded slider control.

Notice that the output cell contains the graph of the function together with a
slider control labeled “a”. As we drag the slider control with the mouse we change
the value of a and thus change the function and hence its graph. This is awesome!
The Manipulate function takes two arguments. The first is the object we wish to
manipulate, in this case the Plot which contains the parameter a. (We’ll see later
that we can manipulate other things too, not just plots.) The second argument is the
parameter control list {a, -10, 10}.

Notice that just to the right of the slider control is a small box with a plus sign in
it. If we click this, the slider control expands to show more information and appears
as shown in Fig. 2.3. The value of the parameter a is now displayed as we move
the slider. To the right of this display field, we have six buttons. Clicking the plus
and minus signs will increase or decrease the parameter by one. (But note that by
using the slider you can obtain noninteger values of a.) Clicking the “play” button
between them will cause the parameter to change continuously thus giving us an
animation! Clicking it again will pause the animation. The animation can be sped
up, slowed down, or reversed by using the next three buttons.

There are quite a few additional optional features that can be used with Ma-
nipulate. We’ll introduce more of them later in the book. In the “Find Out More”
section at the end of this chapter we’ll direct you to a nice Mathematica tutorial on
Manipulate.

2.8 Plotting Points with ListPlot
Instead of plotting the graph of a function, we sometimes need to plot a set of
points—perhaps data that was collected in some experiment. For example, returning
to the snowy tree cricket, suppose we have collected the data in Table 2.8.1 by
listening to an actual cricket, measuring the temperature with a thermometer and
also counting the number of chirps in a minute.
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Table 2.8.1 Chirp Data Recorded for a Snowy Tree Cricket

Chirps/minute Temperature

30 46.5
34 47.2
35 47.6
37 48.2
42 49.2
49 50.8
50 50.8
55 52.0
61 53.3

The function ListPlot can now be used to plot this data. Example 2.8.1 shows
how to do this. ListPlot takes many of the same options as Plot and we have also
used the PlotRange, AxesOrigin, and PlotStyle with PointSize options.

Example 2.8.1
plotting datapoints with ListPlot

chirpdata 30, 46.5 , 34, 47.2 , 35, 47.6 ,
37, 48.2 , 42, 49.2 , 49, 50.8 ,
50, 50.8 , 55, 52.0 , 61, 53.3 ;

dataPlot ListPlot chirpdata,
PlotRange 25, 65 , 45, 55 ,
AxesOrigin 25, 45 ,
PlotStyle PointSize .02

Out[17]=
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Table 2.8.2 Population (in millions) for United States,
India, and China

Year USA India China

1970 210.111 549.312 815.999
1975 220.165 613.767 911.658
1980 230.917 688.575 981.072
1985 243.063 771.121 1047.59
1990 256.098 860.195 1128.67
1995 270.245 954.282 1192.37
2000 284.857 1046.24 1247.69
2005 299.846 1134.4 1290.21

Note that we first enter the data into a list called chirpdata. We should think
of this list as a list of points, where, of course, each point is itself a list of two
coordinates: number of chirps per minute and temperature. Next we use ListPlot
to plot the points. Notice that we could have just entered the data into the first
argument of ListPlot and not have taken the trouble to first name it chirpdata.
While this would have worked just fine, it is nicer to name the data and then use the
name as the argument to the plot function. Separating it this way makes it easier to
see what is going on.

A nice option to ListPlot is the Joined option. If we add Joined→True to the list
of options, consecutive points in the plot will be joined together with line segments.
Try it!

ListPlot can be used to plot multiple lists of data simultaneously just as Plot
can be used to graph more than one function at a time. Consider, for example,
the population data, in millions of people, from three different countries over a
35-year period given in Table 2.8.2. In Chap. 9, we’ll see how to use Mathemat-
ica to import this data from the CountryData data set maintained by Wolfram
Research.

Let’s use ListPlot to plot all the data at once. First we need to organize the
data into three lists, one for each country, which we call usData, indiaData, and
chinaData. Then we can use ListPlot to plot the data. The first argument to List-
Plot is the list {usData, indiaData, chinaData}. The remaining arguments are
all options. Notice that we have used the option PlotMarkers→Automatic. This
causes different symbols (circles, squares, and diamonds) to be plotted for each of
the data sets.
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Example 2.8.2
In[67]:= using ListPlot to plot datapoints

usData 1970, 210.111 , 1975, 220.165 ,
1980, 230.917 , 1985, 243.063 ,
1990, 256.097 , 1995, 270.244 ,
2000, 284.857 , 2005, 299.846 ;

chinaData 1970, 815.999 , 1975, 911.657 ,
1980, 981.072 , 1985, 1047.592 ,
1990, 1128.667 , 1995, 1192.374 ,
2000, 1247.685 , 2005, 1290.208 ;

indiaData 1970, 549.312 , 1975, 613.767 ,
1980, 688.575 , 1985, 771.120 ,
1990, 860.195 , 1995, 954.281 ,
2000, 1046.235 , 2005, 1134.403 ;

ListPlot usData, indiaData, chinaData ,
AxesOrigin 1969, 0 ,
PlotRange 1969, 2006 , 0, 1300 ,
PlotMarkers Automatic, Joined True

Out[70]=
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2.9 Curve Fitting
With data sets like those shown in Examples 2.8.1 and 2.8.2 we often want to find
the best fitting curve that approximates the data. Mathematica has a nice function
called Fit that will do just this. In Example 2.9.1, we use Fit to find the best fitting
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line to the snowy tree cricket data. Fit takes three arguments. The first is the list of
data points. Next is a list of functions, in this case the constant function 1 and the
linear function x . The final argument is the independent variable. Using the method
of least squares approximation, Fit will find the best linear combination of these
two functions that fits the data. A linear combination of any set of functions is a
sum of constant multiples of each function. Thus a linear combination of 1 and x
is a function of the form a + bx , where a and b are constants. But this is just the
most general possible linear function! Hence, in this case, Fit is finding the best
fitting line.

In the second part of the example, we use Show to combine, or superimpose, two
different plots. Notice that we named the plot of Example 2.8.1 “dataPlot” and that
we enter that name as an argument to Show here. We’ll be talking more about Show
in Chap. 6, so hold on until then. But, the point is that the linear approximation
clearly fits the data points well.

Example 2.9.1
In[30]:= finding the best line to fit the data

Fit chirpdata, 1, x , x

Out[30]= 39.8931 0.220259 x

In[34]:= using Show to combine plots of the
data and line
Show
dataPlot,
Plot 39.8931 0.220259 x, x, 30, 61

Out[34]=
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Returning to the population data of Example 2.8.2, let’s fit a curve to India’s
population data. From Example 2.8.2, we can see that the rate at which the popu-
lation is growing seems to be increasing. So attempting to fit the data with a line
is not appropriate. In Example 2.9.2 we find the best fitting parabola, or second
degree polynomial, by finding the best linear combination of 1, x , and x2. Again,
we plot the data and the curve separately and then combine them using Show. (We
use semicolons to suppress the first two plots.)

Example 2.9.2
In[77]:= fitting a parabola to the India

population data
Fit indiaData, 1, x, x^2 , x

Out[77]= 306406. 324.522 x 0.08592 x2

In[87]:= plotting the data and the parabola

curvePlot Plot

306406. 324.522 x 0.08592 x2,
x, 1970, 2005

;

dataPlot ListPlot
indiaData,
PlotRange 1970, 2005 , 0, 1300
;

Show dataPlot, curvePlot

Out[89]=
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2.10 Plotting in Polar Coordinates
All of the graphs we have plotted so far have been with respect to the Cartesian
coordinate system, which is just one way to associate coordinates to points in the
plane. Another way is given by the polar coordinate system which still uses just two
coordinates but this time the coordinates are a distance, or radius, r and an angle θ .
Just as with Cartesian coordinates, the system starts with a point of reference with
respect to which the coordinates can then be used to locate points. In this case the
reference is a polar ray which originates at the pole. Once the pole and the polar
ray are given, then a point with coordinates (r, θ) is located by first moving r units
away from the pole along the polar ray and then rotating counterclockwise through
an angle of θ . It is convenient to allow the radius r to be negative, in which case
we first start by marking off the distance in the opposite direction as the polar ray.
We may also allow the angle θ to be negative, in which case we rotate clockwise.
Mathematica has two functions, PolarPlot and ListPolarPlot that are the analogues
of Plot and ListPlot for polar coordinates. Let’s look at some examples.

Example 2.10.1
In[1]:= plotting points in polar coordinates

ListPolarPlot
Pi 4, 1 , Pi 2, .5 , 0, 2.5 ,
3 Pi 4, 1 ,

PlotStyle PointSize .02 ,
AspectRatio Automatic

Out[1]=
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In Example 2.10.1 we simply use ListPolarPlot to plot four points. Mathematica
uses the standard convention of superimposing the polar and Cartesian coordinate
systems so that the polar ray (in the polar system) coincides with the positive
horizontal axis (in the Cartesian system). When using ListPolarPlot the points are
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given with the angular coordinate first and the radial coordinate second. Thus the
first point in the list, (π/4, 1), appears in the upper-right part of the plot. The point
is 1 unit from the pole and rotated π/4 radians away from the polar axis in the
counterclockwise direction. Note that the third point, which has an angle of zero
and a radius of −2.5, is marked off on the negative horizontal axis because the
radius is negative.

In Example 2.10.2, we give a second example of plotting a list of points using
ListPolarPlot. In this case, the points are equally spaced at angles of π/100 but
have radii that depend on the angle.

Example 2.10.2
In[96]:= plotting a set of points in polar

coordinates
ListPolarPlot
Table , Sin π π2 , , 0, 2 , 100

Out[96]=
–0.5 0.5

–0.5

0.5

Of course, these points lie on the curve whose polar equation is given by r =
sin(2θ). To graph this curve we can use PolarPlot as seen in Example 2.10.3.

Just like Plot, we can plot multiple functions at once with PolarPlot as well as
use all the usual options. In Example 2.10.4, we graph two functions at once and
make each curve a different thickness.
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Example 2.10.3
In[98]:= plotting a function in polar coordinates

PolarPlot Sin 2 , , 0, 2 π

Out[98]=
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Example 2.10.4
In[106]:= plotting multiple functions

PolarPlot
Sin 3 , Cos Sin ,
, 0, 2 π ,

PlotStyle Thickness .01 , Thickness .02

Out[106]=

–0.5 0.5 1.0

–1.0

–0.5

0.5

1.0



CHAPTER 2 Two-Dimensional Graphics 55

2.11 Parametric Plots
It is often convenient to describe a curve parametrically in terms of some parameter.
For example, suppose a particle is moving in the plane and at time t is located at
the point (x(t), y(t)). (Here we are using Cartesian coordinates.) We say that the
curve traced out by the particle is described parametrically by the parameter t . A
nice family of curves of this form are the Lissajous curves, where x(t) and y(t) are
given by

x(t) = cos(nx t + φx)

y(t) = cos(nyt + φy).

The integers nx and ny are called the frequencies, and the real numbers φx and
φy are called the phase shifts. In Example 2.11.1, we plot this curve using the
ParametricPlot function.

Example 2.11.1
In[25]:=

ParametricPlot Cos 3 t , Cos 5 t Pi 5 ,
t, 0, 2 Pi

Out[25]=
–1.0 –0.5 0.5 1.0
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plotting a Lissajous curve

ParametricPlot takes two arguments. The first is the list of coordinate functions,
each in term of the parameter, and the second argument is the familiar domain list
for the parameter. As usual, all sorts of options can be added.
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The Lissajous curves are closely related to billiard trajectories. Imagine rolling
a billiard ball on a square billiard table. It will travel in a straight line until it
bounces off a rail, then continue in a straight line until hitting the next rail, and
so on. Suppose the table is one unit long on each side. Let’s introduce Cartesian
coordinates so that the corners of the table are at (0, 0), (1, 0), (1, 1), and (0, 1). If
the ball starts at the point (h, k) and vx and vy are the velocities of the ball in the x
and y directions (and let’s suppose there is no friction, so that these stay constant
and the ball rolls forever), then the position of the ball at time t is given by

(1 − |Mod[vx t + h, 2] − 1|, 1 − |Mod[vyt + k, 2] − 1|)3

Let’s use ParametricPlot to draw the trajectory and Manipulate to vary the
initial position (h, k) as well as the initial velocities vx and vy . The next example
does this. The input cell appears in Example 2.11.2 and the output cell appears in
Example 2.11.3.

Example 2.11.2
billiard trajectories on a square table

Manipulate
plot the path parametrically

ParametricPlot
1 Abs Mod hspeed t pt 1 , 2 1 ,
1 Abs Mod vspeed t pt 2 , 2 1 ,
t, 0, pathLength ,
plot options

PlotRange .01, 1.01 , .01, 1.01 ,
Axes False,
PerformanceGoal "Quality",

use Epilog to draw billiard table
Epilog
Thickness .01 ,
Line

0, 0 , 0, 1 , 1, 1 , 1, 0 , 0, 0

,

3It is an interesting exercise to derive these formulas for the coordinates. Think of tessellating the plane with
an infinite number of billiard tables by starting with the original table and then reflecting it across its sides. In
this “unfolded” world, a billiard trajectory is a straight line given by (vx t + h, vy t + k). Reducing the coordinates
modulo 2 will translate the ball into one of the four tables in [0, 2] × [0, 2], where the absolute value function can
now be used to accomplish the reflection.
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Example 2.11.2 (Continued)
controllers

Style "Speed", 12, Bold ,
hspeed, .2, "Horizontal" , 1, 1 ,
vspeed, .5, "Vertical" , 1, 1 ,

Delimiter,
Style "Initial Position", 12 , Bold ,
pt, .5, .5 , "" , 0, 0 , 1, 1 ,

Delimiter,
Style "Length", 12 , Bold ,
pathLength, 5, "" , .01, 100

The instructions inside the Manipulate function consist of the ParametricPlot
and then the controllers for Manipulate. Let’s see how these work. The first two
arguments to the ParametricPlot function are the coordinates of the point described
in terms of the parameter t , and then the domain list for the parameter. Notice that
the upper limit for t is pathLength which is a parameter that will be a control for
Manipulate.

After the domain list we have four options. The first is the familiar PlotRange,
but notice that we have set the range from just a little under zero to just a lit-
tle over 1 in each direction. Looking ahead to the option Epilog that is used to
plot the edges of the billiard table, we see that by making the plot range a little
oversize we leave room for the thicker edges of the table. We’ll explain the Line
function in the next section. We use Axes→False to turn off the axes. Finally, the
option Performance Goal→ “Quality” is needed to make the plot look good as
the sliders are being moved. Look this option up in the Help Files to learn more
about it.

Moving on to the controllers, we have introduced some neat formatting instruc-
tions as well as a two-dimensional slider to control both coordinates of the initial
position simultaneously. If you haven’t taken the time to look up Manipulate in
the Help Files yet, you are really missing out! There are several more really cool
features that we have yet to discuss. Notice the use of Delimiter to draw the lines
separating the controllers. We have also used text strings to label the controllers,
and further enhanced these strings by using the Style function which allows us to
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Example 2.11.3

Horizontal

Vertical

Out[29]=

change the font face and size. Since we used text strings to label the controllers,
we did not want to use the regular control labels for either of the parameters pt
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or pathLength, so we have included empty strings “” for each of those. The
Manipulate Help page is quite good, so take a look there if this still seems a little
mysterious.

When you play with this example, make sure you take the pathLength up to
its maximum value. With a really long path, and just the right initial velocities,
the trajectory can start to fill up the entire table. Very slight changes in the veloc-
ities can now make a really big difference in the outcome. A really nice feature
of Mathematica is that by holding down the Option key (Macintosh) or Alt key
(Windows), the action of the slider will become more sensitive to the movement
of the mouse. In fact, the motion of the slider will be slowed down by a factor
of 20 compared with the motion of the mouse. If the Shift or Control keys are
also held down (in addition to the Option/Alt key) another factor of 20 for each
additional key can be achieved. Thus, very accurate control of the sliders can be
obtained.

2.12 Drawing Shapes
Instead of drawing the graphs of functions, or plotting points, we can use Mathemat-
ica to plot graphics primitives such as lines, circles, disks, rectangles, or polygons
and, of course, we may use various options to change their appearance.

Suppose, for example, we want to draw a rectangle with vertices at (0, 0),
(2, 0), (2, 3), and (0, 3). Example 2.12.1 will do this.

Here we have used Rectangle[(0, 0),(2, 3)] to create a rectangle with lower-left
corner at (0, 0) and upper-right corner at (2, 3). In general, the syntax for the Rect-
angle function is Rectangle[(xmin, ymin), (xmax , ymax )]. Next we used the Graphics
function to display the graphics object that is given by the Rectangle command.

Example 2.12.1
In[34]:= drawing rectangles

Graphics Rectangle 0, 0 , 2, 3 ,
Axes True, PlotRange 1, 3 , 1, 4
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Example 2.12.1 (Continued)

Out[34]=

–1 1 2 3
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We could have simply used Graphics[Rectangle[(0, 0),(2, 3)]] but instead have
included two options. Without the options we simply would have produced a big
black rectangle and we would not have been able to tell that in fact its corners were
where we wanted them to be. But by adding the options of Axes and PlotRange
we can see that the rectangle is indeed located where we want. The syntax for the
Graphics function is Graphics[primitives, options]. In this example we have only
one primitive, namely, the single rectangle. If we have more primitives we simply
provide them in a list.

In Example 2.12.2, we plot a polygon, circle, disk, and line segment. Notice
that we do not use any options—the only argument to the Graphics function is the
list of the four primitive objects. The syntax for each of these is as follows. For
the polygon, we provide the list of vertices as we travel around the perimeter of
the polygon. For the circle, we provide the center and then the radius, which is the
same as for the disk. The difference between the circle and the disk is that the disk
is filled in. Finally, for a line segment we provide a list of points. In this case we
have provided only two points and they act as the endpoints of the line segment.
But if we had provided a list of more than two points, Mathematica would draw
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a sequence of line segments connecting each of the points in succession. (This is
known as a polygonal path.) We did this in Example 2.11.2 when we drew the edge
of the billiard table using Epilog.

Example 2.12.2
In[35]:= drawing various shapes

Graphics
Polygon 0, 0 , 1, 2 , 3, 4 , 6, 2 ,

0, 0 ,
Circle 4, 5 , 1 ,
Disk 1, 4 , .5 ,
Line 2, 0 , 6, 1

Out[35]=

Let’s introduce some style options to make the plot more colorful! Example
2.12.3 uses a different style option for each of the four objects. The argument to
Graphics is now a list of four items, just as before, but now each item is itself a
list consisting of the object together with a style attribute. Although this book is
not printed in color, you will almost certainly want to use color in your graphics.
Shades of gray can be gotten by using the GrayLevel function already described.
Note that we have used a gray level of 0.5 to fill in the disk. To obtain true colors
we use the RGBColor[r, g, b] function. Each of the parameters, r, g, and b are
numbers between 0 and 1 that indicate how much of red, green, or blue to use. Thus
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using RGBColor[1, 0, 0]4 in this example will produce a red polygon, which of
course will look gray in this book. You need to try it yourself! For the circle we
have introduced dashing and for the line a thickness.

Example 2.12.3
adding color and other options

Graphics
RGBColor 1, 0, 0 ,
Polygon 0, 0 , 1, 2 , 3, 4 , 6, 2 ,

0, 0 ,
Dashing .02 , Circle 4, 5 , 1 ,
GrayLevel .5 , Disk 1, 4 , .5 ,
Thickness .02 , Line 2, 0 , 6, 1

As a final example, we will create our very own Mondrian5 painting by randomly
drawing rectangles of random shapes and color in the plane. In Example 2.12.4, we
have used the Table function to create a list of 400 rectangles that we then plot using

4Many colors can be given by simple names. RGBColor[1, 0, 0] is the same as Red. Look ahead to Chap. 6
for more on color names.

5Piet Mondrian (1872–1944) Dutch painter and member of the De Stijl art movement. See Metamagical Themas
by Douglas R. Hofstadter, page 207, for an interesting comparison of actual Mondrian paintings to computer
generated look-alikes.
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the Graphics function. We have not used any options in the Graphics function. The
trick was using the RandomReal function inside the Rectangle function. Let’s start
with the random function—RandomReal[x] will produce a random real number
between 0 and x . The first thing we do is generate the lower-left corner of each
rectangle randomly by using the point {RandomReal[13], RandomReal[8]}. This
will give a point randomly chosen somewhere inside the rectangle of width 13 and
height 8. The reason for choosing 13 and 8 is because 13/8 is pretty close to the
Golden Ratio!6 Since we want to produce a work of art we may as well choose a
well-proportioned canvas! After we choose the lower-left corner of each rectangle
randomly we then want to choose the upper-right corner randomly too. But if we just
chose a second point at random it might not lie to the right and above the first point
that we chose! We get around this problem by letting x and y equal the coordinates
of the first randomly chosen point. Then to produce the upper-right corner we add
a random amount to both x and y. We don’t want to make the rectangles too big
as then they will overlap and fill up the whole canvas so we use RandomReal[.4]
and RandomReal[.5], respectively, to get the width and height of the rectangle. To
summarize, the line

Rectangle[{x=RandomReal[13], y=RandomReal[8]},

{x+RandomReal[.4], y+RandomReal[.5]}]

creates the random rectangle and we then use the Table function to produce a list of
400 of these. But this is not all, since we want to also color the rectangles randomly
too! So in fact, we are using the Table function to produce a list of pairs with
each pair consisting of a randomly chosen color and a randomly chosen rectangle.
Finally, to choose the color at random we use

RGBColor[RandomReal[ ], RandomReal[ ], RandomReal[ ]]

Here the three parameters r, g, b to the RGBColor function are being chosen at
random by using RandomReal[ ]. We want each parameter to be a real number
between 0 and 1, so we could have used RandomReal[1]. But if the argument to
RandomReal is omitted Mathematica uses a value of 1.

6The Fibonnaci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .. Each number in the sequence is the sum of the
previous two, and we start with zero and one. It turns out that the ratio of any number in the sequence to the
previous number in the sequence converges to the Golden Ratio as we go further out in the sequence!
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Example 2.12.4
In[36]:= creating a random drawing

Graphics
Table

RGBColor RandomReal , RandomReal ,
RandomReal , Rectangle
x RandomReal 13 , y RandomReal 8 ,
x RandomReal .4 , y RandomReal .5

,
i, 1, 400

Out[36]=

You should try making your own modern art by playing around with the number
of rectangles (the 400) and the relative size of the canvas (the 13 and the 8) and
the relative sizes of the rectangles (the .4 and the .5). But beware, each time you
evaluate this cell you will get a new work of art, with your old masterpiece lost
forever!

It turns out that the random number generator used by Mathematica does not
really produce random numbers. In fact, writing a program to produce random
numbers is not really possible. This topic is both mathematically and philosophically
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quite deep—way beyond the scope of this book! But, suffice it to say that each use
of RandomReal will produce a sequence of numbers that depend only on the
initial seed. The command SeedRandom[n] will reset the random generator using
n as a seed. If we want to produce the same Mondrian painting each time we run
Example 2.12.4, we could include SeedRandom[1], for example, as the first line of
code in that example. At the other extreme, SeedRandom[ ] will reset the generator
in an almost unpredictable way, using the time of day and certain attributes from
the current Mathematica session to derive the seed.

2.13 Saving and Printing Graphics
After putting a lot of effort into making a really cool graph of your favorite func-
tion complete with custom labels, coloring, dashing, and so on, you may want to
print it, or save it so that you can paste into some other document or a Web site.
First select the graphic by clicking on it or by clicking on its cell bracket. Next
choose File � Print Selection from the menu bar. Printing with Mathematica is
similar to printing in other applications such as word processors. If you want to
paste the graphic into another document or webpage try using File � Save Selec-
tion As from the File menu. This will allow you to save the graphic in various
formats such as PDF, HTML, JPEG, and the like. Or, after selecting the graphic
you can also select Edit � Copy As from the menu bar and then choose PDF or
PICT. After copying the graphic you can then paste it into some other document.
You’ll have to experiment with your favorite applications to see what works best
for you.

2.14 Find Out More
We have only discussed a few of the many graphics options that are available with
the Plot command. There is a very nice tutorial, “Graphics and Sound,” that you
are urged to go through. Go to the Help Files (Documentation Center) and type
“tutorial/GraphicsAndSoundOverview” in the search field. This should take you
to the tutorial. Several of the Plot options that we did discuss also have additional
optional features that we did not discuss. If you can imagine a way to jazz up your
plot, there is probably an option that will do it! Just dig into the Help Files. The
tutorial is a great place to start. Don’t forget to evaluate Options[Plot] to see all
the options available for Plot.
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There is also a nice tutorial that will introduce you to the 2D Drawing
palette and the Graphics Inspector. Go to the Help Files and type “tutorial/
InteractiveGraphicsOverview” into the search field.

We have only scratched the surface of what Manipulate can do! We’ll be giving
more examples in later chapters, but if you can’t wait to see all the neat features it
has, there is a nice tutorial in the Help Files. Search for “tutorial/Introduction-
ToManipulate” and when you finish with that, check out “tutorial/Advanced-
ManipulateFunctionality.” Alternatively, type ?Manipulate into a Mathematica
notebook, and evaluate the cell. This will lead you into the Help Files.

It is also well worth taking a look at the Help File on Graphics. Go to the Help
Files and search on “ref/Graphics” or enter ?Graphics. The reference contains,
among other things, the complete list of all graphics primitives and the correct
syntax for their use.

Quiz
1. Use the Plot function to graph −x2 + x + 1 from x = −2 to x = 2.

2. Repeat the first exercise, but use the AspectRatio option to make the plot have
the same scale both vertically and horizontally.

3. Use the Plot function to simultaneously graph −x2 + x + 1 and x/2 − 1, again
from x = −2 to x = 2.

4. Repeat the last exercise, but make the two curves different thicknesses, or
colors. Do this in two different ways:

a. Use the Graphics Inspector. First open the the Graphics Inspector by se-
lecting it from the Graphics menu. Next double-click on the graph of the
parabola and modify it by using the controls in the Graphics Inspector.

b. Don’t use the Graphics Inspector. Instead, include a PlotStyle option in the
Plot command.

Which way do you find easier to use?

5. Continuing with the plot of the parabola and the line, use the Drawing Tools
to add some labels to the plot.

6. Use PolarPlot to graph the polar equation r = 1 + cos θ from θ = 0 to θ = 2π .

7. Modify the previous exercise by using Manipulate to graph r = a + cos θ

from θ = 0 to θ = 2π and letting the parameter a range from a = −2 to
a = 2.
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8. Write a Mathematica cell that will draw the following:

Hint: Use Table to create a list of six Rectangles.

9. Repeat the previous exercise but make each of the squares a different color.

10. Use ListPlot to plot 1000 randomly chosen points that all lie inside the square
with vertices (0, 0), (1, 0), (1, 1), and (0, 1).
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CHAPTER 3

Getting Help

In this chapter, we’ll describe ways to avoid making mistakes with Mathematica.
It makes sense to have this chapter early in the book so that you can, well, avoid
making mistakes! On the other hand, in order to understand the examples, you’ll
need to know enough Mathematica to recognize the mistakes! So, try to read this
chapter now—most of it can be read without yet knowing much Mathematica. And
if any of it doesn’t really make sense, just skip it. But, you should definitely come
back and reread this chapter after you have learned more Mathematica. In fact, the
more Mathematica you know, the more you will be able to appreciate this chapter
and pick up some valuable tips for avoiding and correcting syntax errors as well as
learning how to find answers to your Mathematica questions.

3.1 Syntax Coloring
You have probably already noticed that as you type expressions into an input cell,
Mathematica will automatically color different parts of what you type different
colors. This is being done to help you in a couple of important ways. First, it can
help you identify, and avoid, syntax errors. Secondly, it can help you recognize and
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distinguish between variables, indices, and other expressions in ways that ultimately
will help you organize your work.

Of course, this book is not printed in color! So as we look at the examples in this
chapter it is doubly important to try them out yourself since the coloring we will
be discussing will be rendered in shades of gray that may be difficult to see.

Let’s look at a simple example. Suppose you want to create a list of squares and
type the following into an input cell.

Example 3.1.1
syntax coloring helps find errors

Tabel k^2, k, 1, 10

Before you evaluate the cell it will look like it does above, with “Tabel” and
both appearances of “k” in blue.1 Notice also that the comment is colored gray.
Having the comments a different color from the code makes them stand out and
makes reading the code easier. Of course, the word “Tabel” is misspelled and is
therefore unrecognized by Mathematica as a legitimate function. If we evaluate this
cell nothing happens as we can see in the next example.

Example 3.1.2
In[6]:= since Tabel is undefined, nothing happens

Tabel k^2, k, 1, 10

Out[6]= Tabel k2, k, 1, 10

On the other hand, as we’ll see in Chap. 5, there is nothing to keep you from
creating your own function named Tabel in which case Mathematica would not
have any trouble using it. It is worth noting that if you do define a function named
Tabel, then all occurrences of “Tabel” in the notebook will immediately be recolored
black. But, of course, you should not define a function named Tabel for at least
three reasons. First, it’s a good idea to use names that start with a lowercase letter
for the functions you define since all Mathematica defined functions start with a
capital letter. Secondly, “Tabel” is so obviously a misspelling of “Table” that it
would be confusing to name a function “Tabel.” Finally, names of functions should
be as descriptive as possible to make reading the code (by you and by others) easier.
Again, we’ll discuss defining your own functions in Chap. 5.

1We’ll see in Sec. 3.3 how you can change the color to whatever you want.
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“Tabel” is obviously misspelled, but it may be a little less obvious what is wrong
if you type Arcsin[x] instead of ArcSin[x]. So, syntax coloring can help you find
errors and correct them.

Mathematica will automatically color blue any expressions that are not defined.
So in Example 3.1.3, since x and y are symbolic variables that have no values, they
remain colored blue.

Example 3.1.3
In[7]:= variables without values are colored blue

Expand x y ^5

Out[7]= x5 5 x4 y 10 x3 y2 10 x2 y3 5 x y4 y5

If, after we enter the above cell, we give x a value by entering x=2, then the color
of x in the above cell will turn to black. If we later clear the value of x by entering
Clear[x], all occurrences of x will return to blue.

There are a handful of syntax coloring conventions that Mathematica uses. So
far we have seen that undefined expressions (functions, variables, and so on) are
colored blue and comments are colored gray. Another very useful convention is that
Mathematica will highlight missing delimiters. Consider Example 3.1.4, where we
have accidentally left off the closing bracket.

Example 3.1.4
In[10]:=

Notice that the unmatched delimiter, in this case a left bracket, is highlighted
in yellow, a plus sign in a yellow box is located at the right edge of the cell, and
the cell bracket is highlighted in yellow. These highlightings are introduced when
we try to evaluate the cell, and no output cell is produced. If we click on the plus
sign in the yellow box, Mathematica beeps and we get a message that explains the
problem. This is shown in Example 3.1.5.

Example 3.1.5
In[10]:=

Syntax::bktmcp : Expression "Table[k^2, {k, 1, 10}" has no closing "]".

Syntax::sntxi : Incomplete expression; more input is needed.
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Mathematica will also make note of missing arguments. Suppose we want to
make a list of the first 100 prime numbers and type the following into an input cell.

Example 3.1.6
Mathematica prompts for missing arguments

Table Prime i

The function Prime[n] will return the nth prime number. (This is a really cool
function! Try entering Prime[1000000000].) Of course, we have left off the index-
ing list {k, 1, 100} and Mathematica is prompting us for the missing argument by
placing the caret symbol ∧ at the location of the missing argument.

In addition to showing us when arguments are missing, Mathematica will also
let us know if we have entered too many arguments. In Example 3.1.7 the function
Length should take one argument, but we have entered two. Look what happens.

Example 3.1.7
In[3]:= entering too many arguments leads to

a warning
Length dataList, a

Length::argx : Length called with 2 arguments; 1 argument is expected.

Out[3]= LengthLength dataListdataList, aa

Here Mathematica has colored the extra argument and the comma that precedes it
red as well as issued the descriptive warning.

We won’t try to cover every syntax coloring convention, but as a final example,
notice that Mathematica highlights arguments of user defined functions by coloring
them gray and setting them in italics. In Example 3.1.8, we define our own function,
named f, which squares its input and adds one. The argument, x , is colored gray
and italicized.

Example 3.1.8
In[11]:= arguments of user defined functions

are colored and italicized
f x : x^2 1

We will be discussing user defined functions in Chap. 5, so don’t worry now if
this example doesn’t make total sense. The point is that Mathematica is highlighting
the argument of the function to help us see what is going on.
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3.2 Delimiter Matching
As you learn more about Mathematica and start to write more and more complicated
code, it is not hard to have input cells that have dozens of lines. So far we haven’t
looked at any examples that are that complicated, but if you skip ahead in the
book you will find a few pretty hairy-looking input cells! A very common error
is to leave out matching delimiters. Even though Mathematica will try to warn
us by highlighting missing delimiters as described in the previous section, it can
sometimes still be hard to spot the error. A good habit to develop is to type the
matching ending delimiter each time you type the beginning delimiter and then go
back and fill in the missing information between the delimiters. This is especially
helpful if the expression you are typing has many levels of nested delimiters. It is
also pretty easy to do because Mathematica has keyboard shortcuts for inserting
pairs of matching delimiters.

Let’s look at a simple example. Suppose we want to type Table[Prime[k], {k,
1, 100}]. Of course, we could just type this from left to right and because it is not
too long we’d probably be OK. But a good way to type it is as follows.

1. Type Table.

2. Select Insert � Typesetting � Matching[ ] from the menu bar. Actually, we
want to use the keyboard shortcut for this menu item to enter the matching
delimiters. If we actually had to stop typing and go to the menu with the mouse
it wouldn’t be convenient. We now have Table[].

3. Use the left arrow key to move the cursor back so that it is between the
bracket delimiters. Now type Prime[k], from left to right. (We could type
Prime, insert the matching bracket delimiters, and back up to enter the k, but
this is probably not worth it.)

4. Now use the keyboard shortcut to insert the matching delimiters {} (again
available from the Insert menu). We now have Table[Prime[k], {}]. Use
the left arrow key to back up and then type k, 1, 100 to fill in the indexing
list.

This may seem like a lot of trouble but it is actually not that many more key
strokes then typing it from left to right, and doing it this way, we cannot forget to
type closing delimiters that are needed to match opening delimiters. Typing this
way is an excellent habit to develop and will pay off once you start to enter really
big expressions. Again, for this relatively short example, it may not be worth it, but
for longer examples it definitely is. And, if you get in the habit of typing this way,
even short examples will fly off your fingertips.
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Another nice feature for matching delimiters is that an opening delimiter will
flash momentarily when the matching closing delimiter is typed. This feature is
especially useful after you have been making changes to a long input cell with lots
of nested delimiters, have messed it up terribly (often by trying to cut and paste code
from somewhere else) and are searching for the opening delimiter that matches a
given closing delimiter. Just erase the closing delimiter, retype it and look for the
flashing opening delimiter! This is not the best way to go, but sometimes is just
what you need.

A much better way to find matching delimiters, or look for a missing delimiter, is
to use the menu item Edit � Check Balance. If the cursor is placed anywhere in an
input cell (or alternatively, if any portion of an input cell is selected), then Check
Balance will expand the selection outward to cover the nearest pair of matched
bracketing characters. Similar to Check Balance is Extend Selection which ex-
pands the selection outward to highlight the smallest subexpression containing the
selection. Extend Selection can also be found in the Edit menu. Let’s see how
these can be used to find a missing delimiter.

Example 3.2.1 contains code with a missing delimiter. You don’t need to under-
stand what this code does now! We’re just going to use it for this example. It is clear
that there is a mismatched delimiter because Mathematica has highlighted the first
opening bracket and has told us that the expression “has no closing ].” But where
do we need a closing bracket? (Not at the end!)

Example 3.2.1
In[35]:= nv RandomInteger 10000, 10000 , 2 ;

While

Length
pos
Position tempTable

Table nv.data i , i, 1, Length data ,
Max tempTable 1,

nv RandomInteger 10000, 10000 , 2

Syntax ::bktmcp :

Expression "While Length pos Position tempTable 1 , 1 1, nv 1 " has no closing " ".

Syntax ::bktmcp :

Expression "While Length pos Position tempTable 1 , 1 1, nv 1 " has no closing " ".

Syntax ::sntxi : Incomplete expression; more input is needed .

Notice also that the expression nv=RandomInteger[{-10000, 10000},2] (on the
eighth line) and the comma that precedes it is colored red. The last bracket in
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the cell is currently being paired with the opening bracket following Length, and
Mathematica is coloring the subexpression red to indicate that we have too many
arguments for the Length function.

Let’s see how Check Balance or Extend Selection can help us find out where
the missing delimiter belongs.

Once you learn a little more about Mathematica it will be easy to see that there
is nothing wrong with the first line where we randomly define the two-dimensional
vector nv. (Again, don’t worry if this code makes no sense. We only want to use it
to explain what Extend Selection does. We’ll explain all the functions used in this
example later in the book.) Also, the highlighted opening bracket is after the While
function—more evidence that the first line is OK. If we place the cursor somewhere
in the word Table and select Extend Selection we obtain the following:

Selecting Extend Selection again gives

At this point, with the entire table subexpression highlighted, we can see that there
is nothing wrong with this subexpression—no missing delimiter yet. Applying
Extend Selection a third time gives
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OK, we are naming the table tempTable (for temporary table). Still no problem.
Two more time gives:

At this point everything still seems fine. Position is a function that takes two
arguments. The first is a list and the second is an element of the list. So here we are
going to locate within the list tempTable its maximum element and the next thing
we are going to do is name this location pos. If the maximum element appears in
more than one position, then Position will list all the locations where it occurs and
pos will have more than one element. Looking ahead, now we can see the problem!
The Length function takes one argument, a list whose length it returns. The end of
the Length function has to occur before the inequality sign. It doesn’t make any
sense to have an inequality sign as part of the argument to Length. The missing
closing bracket goes right before the inequality sign. With it in that location, the
While function now makes sense. (At least, after we understand what While does!)
What this code does is choose the vector nv at random, use Table to form a list of
the dot products of nv with each element of the list data and then see if this list of
dot products has a unique maximum. If not, nv is chosen at random again and the
process is repeated until the maximum dot product is unique.
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Again, it really doesn’t matter if you understand all the code in this example
at this point. The goal is to see that Extend Selection can be used to repeatedly
expand a subexpression while we are looking for (in this case) a missing delimiter.
(You should try out Check Balance too. It works in a similar, but slightly different
way.) As mentioned in the introduction to this chapter, the more you know about
Mathematica the better able you will be to appreciate this chapter. This last example
using Extend Selection falls into this category. So, if it didn’t make total sense now,
try rereading this part after you have more experience with Mathematica.

3.3 Setting Preferences
The color schemes that Mathematica uses for syntax highlighting as well as other
aspects of the look and feel of your notebooks can be altered in two different ways.
The first is to select Mathematica � Preferences from the menu bar. There are
quite a few parameters that are listed here that you are free to change. You should
take a look and see if there is anything that sounds like it would be useful for you
to change. We’ll mention a few here.

Under “Appearance” and “Syntax Coloring” you’ll see that you can change the
colors that are used to mark local variables, comments, and the various subexpres-
sions that are highlighted when Mathematica issues warnings. If you are red-green
color blind like the author, you may want to switch these defaults to blues and
yellows.2

Another way to change preferences, in ways that can apply to all of your Mathe-
matica notebooks, or just the one you are presently working in, is to select Format
� Option Inspector from the menu bar. For example, suppose you want to change
the “DelimiterFlashTime.” Viewing the options by “Category,” open “Editing Op-
tions,” check “DelimiterFlashTime,” and then select and change 0.3 seconds to say,
0.6 seconds. Another option you might want to change is the default magnification
used in each notebook. Viewing the options “Alphabetically,” for example, check
“Magnification” and then set the value to say, 1.25. You can do this “Globally” so
that all new notebooks will open with a magnification of 125%.

We encourage you to browse through the changes you can make with the Option
Inspector. There may be several items that you would like to customize for your
own use. We’ll be coming back to the Option Inspector in Chap. 11 when we
discuss changing the style of your cells or notebooks.

2Wouldn’t it be cool if Wolfram incorporated two (or more) default coloring schemes into Mathematica so you
could just open the “Preferences” and check “Red-Green Color blind” to get an appropriate selection of colors?
According to the Howard Hughes Medical Institute (http://www.hhmi.org/senses/b130.html), about
7% of men in the United States, or about 10 million men, are red-green color blind. The rate is far less, about
0.4%, in women.

http://www.hhmi.org/senses/b130.html
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3.4 The Help Menu
Under the Help menu are several useful menu items. We have already mentioned the
Documentation Center, Function Navigator, Virtual Book, and Find Selected
Function in Chap. 1. In the Documentation Center you will find thousands of
pages of documentation that we refer to simply as the “Help Files.” The Function
Navigator and Virtual Book lead into the Help Files. The Help Files are an in-
valuable tool that you simply must learn to navigate. We’ll be pointing out useful
guides and tutorials in the Help Files throughout the book.

We also mentioned in Chap. 1 that entering ? followed by the name of a
function, for example ?Plot, will bring up a description of the syntax for that
function, together with a hyperlink that will take you to the relevant page in the
Help Files. This can also be accomplished by using the menu item Help � Find
Selected Function. For example, suppose Plot appears somewhere in our note-
book. If we select the word Plot and then choose Help � Find Selected Function
(or better, use the keyboard shortcut) it will take us to the documentation page for
Plot.

A variation on using ?Table to find out about the Table command, is to use ?Ta*,
where the asterisk acts like a wildcard that can stand for any text. Example 3.4.1
shows what happens if we enter ?Ta*.

Example 3.4.1
In[1]:= ?Ta

System`

Tab TabSpacings TagSetDelayed

TabFilling TabView TagStyle

Table TabViewBox TagUnset

TableAlignments
TabViewBoxOpti

ons Take

TableDepth TagBox TakeWhile

TableDirections TagBoxNote Tally

TableForm TagBoxOptions Tan

TableHeadings TaggingRules Tanh

TableSpacing TagSet TargetFunctions
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We get a list of all functions that begin with the letters Ta. If we further click
on one of the items in the list, it will bring up a brief description together with
a hyperlink to the documentation for that function. At first it might seem that
you already need to know what you are looking for in order to find it, but after
using Mathematica for awhile there will be times when you almost remember
something and this kind of wildcard searching is just what you need to quickly
find it.

The position of the asterisk can be anywhere in the string, and can even be
repeated. Try entering ?*String or ?*String*.

Also in the Help menu are the items Wolfram Website. . . and Demonstra-
tions. . . which, when selected, will take you to those Web sites. At the Wolfram site
you can learn about other Mathematica-related products such as gridMathematica,
webMathematica and WolframWorkbench, an integrated development environment
that can be used to develop your own applications using Mathematica. Most of
this stuff will not be of interest to Mathematica newbies, but you should definitely
take a look at The Mathematica Journal, an online journal with lots of neat articles
about Mathematica.

Much more interesting to the Mathematica novice (but useful for Mathematica
experts too!), is the Wolfram Demonstrations Project which can be reached by
selecting Help � Demonstrations. . . . Here you will find thousands of Mathematica
notebooks, each of which demonstrates something interesting in mathematics or
science. The demonstrations are written by Mathematica users who post them on
the Web site so that they can be shared with others. After you learn how to use
Mathematica, perhaps you will want to submit your own demonstration! This is a
really great resource. By browsing the demonstrations you can often find one that
either does exactly what you want to do, or something similar. You can download
the code and modify it for your own purposes.

3.5 Writing Good Code
One of the absolute best things you can do to help yourself prevent errors, and
find errors when you make them, is develop good habits of style. Using lots of
comments in your code is a very good idea. Not only will it make your code easier
to read by someone else,3 you’ll be amazed at how easy it is to forget what you were
thinking yourself when you revisit some code you wrote even as little as a week or
two ago.

3If you are a college or university student and using Mathematica to write up homework assignments, your
Professors will be thrilled with your liberal use of comments!
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We’ll see in Chap. 11 that it is possible to enter text in text cells as opposed
to the input cells that we have discussed so far. While you may want to use text
cells to describe the calculations you are making in a notebook, they should be
used differently than comments placed in input cells. For example, an advantage of
placing comments inside an input cell versus a separate text cell, is that comments
inside an input cell are not likely to get separated from the cell (if you cut and paste,
for example) and hence lost.

Another extremely useful tool in writing easy to read code, and therefore more
error-free code, is too adopt and consistently use an indentation convention. Con-
sider the code we saw in Example 2.11.2 which will draw billiard trajectories. In
Example 3.5.1 we give the same code, but without comments and without using
any kind of indentation convention. Glance back to Example 2.11.2 and then look
again at Example 3.5.1. Both input cells do the same thing, but clearly the first is
much easier to read and hence to understand! The first example would also be much
easier to troubleshoot if it happened to contain an error.

In Example 2.11.2, and in all the examples of this book, we try to follow (or nearly
follow) the K&R indenting convention introduced by Kernighan and Ritchie in their
classic book The C Programming Language. This convention is quite common
now, not only in C programming, but in other languages too, and it can be used
quite nicely with Mathematica. Of course, if we only have one line of code we
don’t need any indenting conventions: just type the code all on one line. But in
Example 2.11.2 we have many lines of code. The basic convention is to type a
function name, like Manipulate, and its opening delimiter on a single line and then
indent the arguments to the function on subsequent lines. The final closing delimiter
associated to the function is placed on a line by itself at the same indentation
level as the function. In Example 2.11.2 only Manipulate[ and its final closing
] are at the leftmost indentation level. Between these lines are the arguments to
Manipulate. The first argument is ParametricPlot for which the convention is
repeated. We see ParametricPlot[ on one line, then all of its arguments indented
on subsequent lines, and then the final closing bracket to ParametricPlot in a line
by itself at the same indentation level as ParametricPlot. Within ParameticPlot
some of the arguments, like the first one, are too long to fit on one line, so it is split
across two at a natural splitting point. The first three options, PlotRange, Axes,
and PerformanceGoal are each placed on a separate line. The Epilog option is
too long to fit on a single line and is split in an organized way. Notice that Line,
which appears as an element of the Epilog list, is treated with the K&R style:
Line[ is placed on one line, then its argument on an indented line, and finally
the closing bracket to Line on a line by itself at the same indentation level as
Line.
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Compare reading this with Example 3.5.1! The examples clearly speak for
themselves.

Example 3.5.1

Manipulate
(* badly written code! *)

ParametricPlot 1 Abs Mod
hspeed t pt 1 , 2 1 ,

1 Abs Mod vspeed t pt 2 , 2 1 , t, 0,
pathLength , PlotRange .01, 1.01 , .01, 1.01 ,
Axes
False, PerformanceGoal "Quality", Epilog
Thickness .01 , Line 0, 0 , 0, 1 , 1, 1 ,

1, 0 , 0, 0 , Style "Speed", 12, Bold ,
hspeed, .2, "Horizontal" , 1, 1 , vspeed,
.5, "Vertical" , 1, 1 , Delimiter, Style "Initial

Position", 12 , Bold , pt, .5, .5 , "" , 0, 0 ,
1, 1 , Delimiter, Style "Length", 12 , Bold ,
pathLength, 5, "" , .01, 100

Mathematica will not automatically force you to type your code with the K&R
style, but Mathematica does provide automatic indenting when a subexpression is
spread over more than one line. So it is easy to use K&R style with Mathematica.

Of course, the disadvantage of using K&R style is that more lines are needed,
although this is not really much of a disadvantage. Sometimes it is possible to
break with the convention slightly without losing the effectiveness of the style.
For example, we might place p=3;q=5 on a single line rather than p=3 and q=5
on separate lines without losing any readability of the code. In the end you will
develop your own style as you use Mathematica more and more. Looking through
the examples, you’ll notice that the author’s style does not always follow K&R style
exactly. But the point is that developing and using a consistent style is a hallmark
of good programming and can be a source of pride.

In addition to the indenting convention, notice the names of the variables we
used in Example 2.11.2: hspeed and vspeed for the horizontal and vertical speed; t
for time; pt for the initial point; pathLength for the length of the path. You should
choose variable names that are descriptive. Perhaps in this case we should have used
initialPoint instead of pt. Notice also the use of the upper case L in pathLength.
This makes the string easier to parse as two words. Perhaps we should have used
hSpeed and vSpeed. Finally, none of the variables we defined start with uppercase
letters. We leave that convention for Mathematica to use with its built-in functions.
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3.6 Monitoring Calculations
We have already mentioned the Timing function in Chap. 1. We’ll be doing some
very time consuming calculations in Chap. 10 where Timing can be quite useful.

A more dynamic way to see how long a calculation takes is to use ProgressIndi-
cator with the Monitor function. Suppose we want to factor all the integers from
1 to 10 000 000 into their prime factors. Obviously, this might take some time!
Example 3.6.1 will do just this and place the results in a list. Let’s see how it works
and how we can use ProgressIndicator to monitor how the calculation is going.
Consider the following Example 3.6.1.4

Example 3.6.1

The effect of ProgressIndicator is to display a “speedometer bar,” or progress
indicator, that indicates how far along the calculation is while it is in progress. After
the calculation is complete, the progress indicator is no longer displayed. This way
we can see how close we are to being done.

Let’s start with the Table function. We are using this to make the list of factored
integers. The indexing list for Table is {i, 1, 10 000 000} so that our list will have
10 000 000 elements. Furthermore, the ith element will be FactorInteger[i], which
we’ll explain further in a moment. Note that we have placed a semicolon after the
Table function to suppress the output of the list. We really don’t want to print out
a list with 10 000 000 entries!

To understand what FactorInteger does, let’s just factor the first 10 positive
integers. We do this in Example 3.6.2. Notice that we have removed the semicolon
from after the Table function. We’ll talk about Grid in just a moment. The output of

4Warning: If you try to run this example it will take a very long time! Try running it first with the 10 000 000
lowered to 10 000. The point is to have a calculation that takes long enough so that you can watch the progress
indicator.
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Example 3.6.2 looks a little strange but makes sense once we know that FactorIn-
teger[i] returns a list of all prime factors of i together with their multiplicities. Thus
8, which is 23, factors as {{2, 3}}, and 6, which is 2 · 3, factors as {{2, 1}, {3, 1}}. If
we factored 23 · 35 · 17 we would get {{2, 3}, {3, 5}, {17, 1}}.

Example 3.6.2
In[22]:= factoring the first 10 positive integers

Grid
Table
FactorInteger i ,
i, 1, 10

Out[22]=

11, 1
2, 1
3, 1
2, 2
5, 1
2, 1 3, 1
7, 1
2, 3
3, 2
2, 1 5, 1

We don’t need to use Grid here, but it formats the output nicely. In general, Grid
takes a list of lists and prints the elements of each element of the big list on each
line. The last sentence was correct, but probably hard to understand! Try running
this example without Grid, just using the Table function. Now you will see the
list of lists that is produced. Compare this with the output using Grid and you will
see that each line of output in Example 3.6.2 contains the elements of a list that
was itself a single element of the big list. It’s hard to say, but easy to see once you
understand it!

Returning to Example 3.6.1, what we have done is wrap the Monitor function
around the Table function, and we have used ProgressIndicator to produce the
progress indicator that we want. The function ProgressIndicator can be used to
produce a “bar graph” (in the form of a shaded speedometer bar) of any numerical
expression, with a list of the minimum and maximum values given as the second
argument. The Monitor function takes two arguments. The first is the calculation
that we want to monitor, and the second is what we want to display to monitor
the calculation. Instead of using the progress indicator as we did in this example,
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try letting the second argument to Monitor simply be i. In this case the integer i
will be displayed as the calculation takes place. The effect is like looking at a car’s
odometer quickly turning over. Try it!

If we slow a calculation down it can be easier to see whatever it is that we are
monitoring. One of the Quiz questions shows you how to do this with the Pause
function.

3.7 Getting Out of Trouble
Sometimes you’ll do something that seems to really mess up everything. For exam-
ple, you might evaluate a cell and Mathematica just keeps running and running and
clearly something is amiss. As we have already mentioned in Chap. 1, try selecting
Evaluation � Abort Calculation from the menu bar to stop a calculation. Unfor-
tunately, there are times when this will not work. (Sometimes it will work if you
just keep trying it over and over.) If Abort Calculation will not work, you can try
Evaluation � Quit Kernal/Local. The Mathematica Kernal is the mathematical
engine that runs behind the scene, carrying out all of your calculations. Everything
that you see: the notebook, input and output cells, and so on, is the Front End.
Choosing Quit Kernal will stop the kernal dead in its tracks without stopping the
Front End and closing your Notebook. This is a better alternative to just quitting
Mathematica, in which case you will lose any changes made to your notebook since
your last Save. A good habit to develop with Mathematica, as with most computer
applications, is to Save your work regularly.

If you do quit the kernal, it will restart as soon as you evaluate a cell in your
notebook.

Another thing that can go wrong is that you may make a mistake which causes
some variables or functions to be defined in ways that you are not really aware of.
If a function or variable just does not seem to be behaving properly, try using the
Clear function to undefine it and then start over. This can often get you out of a
jam.

3.8 Ask an Expert
Of course, one of the best ways to learn about anything is to learn from an expert.
If you are having a problem with Mathematica that you just can’t figure out, and
you have already spent time searching the Help Files, it’s great to find someone
who knows exactly what to do. If you are a student or professor at a college or
university, see if anyone on the Information Technology staff, or computer lab staff
can help you. Or perhaps your community has a local Mathematica Users Group.



CHAPTER 3 Getting Help 85

The internet is also a great resource. If you Google your Mathematica question you
just might find someone who has posted the answer on a Web site. Finally, as you
peruse the Wolfram Web site you’ll see that they offer courses in Mathematica.
Some are free, online, real-time lectures while others are several-day workshops.

3.9 Find Out More
A couple of guides and tutorials in the Help Files worth taking a look at are

• tutorial/WarningsAndMessages

• tutorial/OptionInspector

Mathematica also includes a debugger that can be found under the Evaluation
menu. As you become more and more expert at Mathematica and start writing more
complicated code, the debugger can be a real life saver. Since most beginners won’t
need it, we won’t talk about it in this book.

Quiz
1. Find the missing delimiter in the following code:

Plot
E^x,
x, 1, 10 ,
PlotRange 1, 4 , 0, 10 ,
PlotLabel "The Graph of ex."

2. Change the default color for comments in all your notebooks to be blue.

3. Rewrite the following code with the K&R indenting scheme. This code will
find all prime numbers from 2 to max by using the famous Sieve of Eratos-
thenes algorithm. The code uses a Do loop which we will be discussing in
Chap. 5, but since the question here is simply to format the code, you don’t
really need to know what a Do loop is yet! (If you prefer to wait and answer
this question, and the next one, after you read Chap. 5, that’s fine.) (* Sieve of
Eratosthenes *) (* initialize the sieve: make a list of the integers from 1
to max *) max = 100; sieve = Table[i, {i, 1, max}]; (* now for each integer
k from 2 to max/2, see if it has been crossed out. If not, cross out all of
its multiples. A number in the list will be “crossed out” if it has been
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replaced with a zero *) Do[ (* see if the number k has been crossed out *)
If[ sieve[[k]] != 0, (* cross out all its multiples *) j = 2; While[ j k <=
max, sieve[[j k]] = 0; j++ ] ] , {k, 2, max/2} ] (* the sieve now contains the
primes and zeroes. Union will remove duplicate zeroes and sort the list.
Drop removes the 0 and 1 that are now the first two elements *) primes =
Drop[Union[sieve], 2]

4. Get the Sieve of Eratosthenes code in the previous example running and use
Monitor with a ProgressIndicator to monitor its progress as it runs. If you
change max to be 1 000 000 the runtime should still be modest.

5. Change Example 3.6.1 as follows: Replace FactorInteger[i] with Pause[1],
replace {i, 1, 10 000 000} with {i,1,10}, and replace ProgressIndica-
tor[i,{1,10000000}] with {i, FactorInteger[i]}. What happens? Look up the
Pause function in the Help Files to see exactly what it does. What happens if
you remove the semicolon after the Table function?



CHAPTER 4

Odds and Ends

Unlike the other chapters in this book, which are all focused on a single topic, this
chapter will introduce a mix of functions that are useful in all sorts of situations.

4.1 Transforming Expressions
Quite often it is useful to put a mathematical expression into a different form.
Perhaps looking at the expression in a different way will lend some critical insight.
Mathematica has several functions that can help us do this. In Example 4.1.1, we
use the Expand function to multiply out a product and name the result poly.

Example 4.1.1
In[15]:= expanding a polynomial

poly Expand 1 x 3 x 2 y

Out[15]= x 3 x2 3 x3 x4 2 y 6 x y 6 x2 y 2 x3 y
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We can perform the opposite of Expand by using the Factor function. In Ex-
ample 4.1.2, we factor poly and get right back to where we started.

Example 4.1.2
In[16]:= factoring a polynomial

Factor poly

Out[16]= 1 x 3 x 2 y

Since poly is a polynomial in both x and y, it might be interesting to write
it as a polynomial in one variable, with coefficients in the other. We can do this
with the Collect function. In general, Collect takes two arguments. The first is the
expression that we want to transform and the second is the variable with respect to
which we want to collect terms.

Example 4.1.3
In[17]:= poly is a polynomial in y with

coefficients in x
Collect poly, y
Collect poly, y, Simplify

Out[17]= x 3 x2 3 x3 x4 2 6 x 6 x2 2 x3 y

Out[18]= x 1 x 3 2 1 x 3 y

In Example 4.1.3, we Collect the terms of poly with respect to y. The polynomial
is linear with respect to y, but the coefficients are themselves polynomials in x . In the
second usage of Collect above, we add the option Simplify which then simplifies
each of the coefficient polynomials, in this case factoring them.

In fact, Simplify is a powerful function its own right and using Simplify will
cause Mathematica to return an expression it is “simplest” form. Unfortunately,
there is no hard and fast rule as to when an expression is in “simplest” form, so
what we get may or may not be the most useful form for whatever it is that we are
trying to do. In the case of poly, the next example shows that Simplify considers
the factored form to be the simplest representation of the expression.

Example 4.1.4
In[19]:= simplifying the polynomial

Simplify poly

Out[19]= 1 x 3 x 2 y
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Notice that poly is divisible by 1 + x . Let’s take a look at the quotient. In
Example 4.1.5, we try to expand the polynomial divided by 1 + x with some rather
unanticipated results.

Example 4.1.5
In[20]:= poly is divisible by 1 x,

but here the numerator is expanded
Expand poly 1 x

Out[20]=
x

1 x
3 x2

1 x
3 x3

1 x
x4

1 x

2 y

1 x

6 x y

1 x

6 x2 y

1 x

2 x3 y

1 x

Expand did not perform the division and expand the quotient! Instead, as it does
with all rational expressions,1 it expanded the numerator and left the denominator
alone. Example 4.1.6 shows how we can actually do the division and then expand
what is left. Both Factor and Simplify will do the same thing in this case, namely,
cancel the common factor of 1 + x . After performing the cancellation we can then
use Expand to multiply out the quotient.

Example 4.1.6
In[21]:= expanding the quotient poly 1 x

Factor poly 1 x
Expand Factor poly 1 x

Out[21]= 1 x 2 x 2 y

Out[22]= x 2 x2 x3 2 y 4 x y 2 x2 y

Another way to do this is to use the Cancel function, which cancels common
factors in quotients. Notice that Cancel returns the expanded quotient, not the
factored quotient, in this case.

Example 4.1.7
In[23]:= using Cancel to express the quotient

Cancel poly 1 x

Out[23]= x 2 x2 x3 2 y 4 x y 2 x2 y

1A rational expression is a quotient of polynomials.



90 Mathematica Demystified

Simplify is aware of all kinds of useful identities that might be used to simplify an
expression. For example, in trigonometry, you probably remember the Pythagorean
Identity, cos2 x + sin2 x = 1, and also remember that there are a whole lot of other
trigonometric identities. These identities can often be used to simplify incredibly
complicated trigonometric expressions. (Conversely, they can be used to horribly
mess up simple expressions!) Look at what a great job Simplify does with the
following trigonometric expressions.

Example 4.1.8
In[1]:= Simplify can use trig identities

Simplify 5 Cos 4 Sin 10 Cos 2 Sin 3 Sin 5

Simplify
3 4 Cos 2 Cos 4

4 1 Cos 2

Out[1]= Sin 5

Out[2]= Sin 2 Tan 2

Playing around with Factor, Expand, Simplify, and Cancel will often change
expressions in ways that are helpful. On the Algebraic Manipulation Palette, pic-
tured in Fig. 4.1, you’ll find quite a few more functions that can be used to manipulate
expressions. When working with expressions that involve trigonometric functions
you will find TrigExpand, TrigFactor, and TrigReduce (in addition to Simplify)
especially useful. You can access the palette from the Palettes menu, and click on
a palette item to save typing it yourself.

Let’s look at a few more of these functions. Suppose we want to simplify

x3 y
4
3

zw5

√
x3w5

y

Example 4.1.9 illustrates what Simplify as well as FullSimplify do to this expres-
sion. Hmmm. . . What they give doesn’t look all that much better than what we
started with. Generally speaking, FullSimplify will do a better job than Simplify
(at the expense of being slower), so if Simplify doesn’t seem to do what you want,
try FullSimplify. But, in this case, it didn’t help.
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Figure 4.1 The Algebraic Manipulation palette contains many functions that can be
used to transform expressions.

Example 4.1.9
In[266]:= trying to simplify an expression

Simplify
x3 y

4
3

z w5
x3 w5

y

FullSimplify
x3 y

4
3

z w5
x3 w5

y

Out[266]=
x6 y1 3

w5 x3

y
z

Out[267]=
x6 y1 3

w5 x3

y
z
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Instead, let’s try PowerExpand. What this function does is expand all powers
of products using the rules of exponents. Perhaps it will be able to combine all the
powers of, for example x, into a single power. In addition to tackling the expression
of Example 4.1.9, we give a couple of other examples below. Well, this looks pretty
good!

Example 4.1.10
In[271]:= PowerExpand will use rules of exponents to

simplify expressions
PowerExpand a b ^c
PowerExpand a^b ^c

PowerExpand
x3 y

4
3

z w5
x3 w5

y

Out[271]= ac bc

Out[272]= ab c

Out[273]=
x9 2 y5 6

w5 2 z

But we need to be careful! In Example 4.1.11, we enter PowerExpand[
√

x2]
and get x. At first this seems like it is correct, and seems much better than what we
get if we enter Simplify[

√
x ], which doesn’t do anything. But, unfortunately, the

output of PowerExpand in this case is not quite correct.

Example 4.1.11
this is not completely correct

PowerExpand x2

Out[274]= x

In[275]:= this is correct

Simplify x2

Out[275]= x2
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If x is a real number,
√

x2 is only x if x ≥ 0. Otherwise it is −x . For example,
if x = −3 then x2 = 9 and

√
x2 = √

9 = 3 which is not x . In general,
√

x2 = |x |,
the absolute value of x .2 (And, if x is a complex number, then even this is not
true.) Luckily, we can let Mathematica know if the variables we are working with
represent positive or negative numbers, (or even real numbers) in which case both
PowerExpand and Simplify can do a better job. In the next Example, we repeat
Example 4.1.11, but use the option Assumptions to indicate the domain of the
variables.

Example 4.1.12
In[276]:= using Assumptions to restrict the domain

of the variable

PowerExpand x2 , Assumptions x Reals

Simplify x2 , Assumptions x Reals

Simplify x2 , Assumptions x 0

Out[276]=
Floor 1

2
Arg x
pp x

Out[277]= Abs x

Out[278]= x

In the first two cases, we use the Assumptions option to tell Mathematica that x
is a real number. The symbol ∈ means “is an element of” and so x ∈ Reals means
that x is a member of the set of real numbers. You can find the ∈ symbol in the
BasicMathInput palette. In the last example, we use the Assumptions option to
declare that x is negative (and hence a real number). Given these assumptions, the
functions now return correct answers.

However, the first answer is a bit cryptic. Given any complex number z, its
argument, or arg z, is the angle through which we must rotate the plane around the
origin to bring z onto the positive real axis. Every complex number z can be written
as z = reiθ = r(cos θ + i sin θ) where r = |z| is the absolute value, or norm, of z
and θ = arg z. A positive real number has an argument of zero, while a negative
real number has an argument of π radians. Thus if x > 0, Floor[ 1

2 − Arg[x]
π

] will be
Floor[ 1

2 ] which is zero. The Floor of a real number x is the largest integer less than

2Remember that
√

x stands for the positive number whose square is x . If we want to represent the negative
number whose square is x , we use −√

x .
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or equal to x. (Related to the Floor function is the Ceiling function—Ceiling[x] is
the smallest integer greater than or equal to x .) Finally, if x > 0, we get e0x = x .
On the other hand, if x < 0, Arg[x] = π and we end up with e−iπ x = −x . So, in
fact, PowerExpand has returned a correct answer, although not as simple as what
Simplify returns.

Trying to manipulate and simplify expressions with the Mathematica functions
given in the AlgebraicManipulation palette is a bit of an art form. You simply need
to start experimenting with these functions until you get the hang of how they work.
Sometimes one of them will do just what you need while others do nothing or make
matters worse. Just keep trying, and keep looking in the Help Files for examples
and advice.

4.2 Replacement Rules
Sometimes we need to substitute something for a variable within a given algebraic
expression. We can do this with Mathematica by using replacement rules. For
example, suppose we are working with the 2-variable polynomial given in the first
section and we want to replace x with 2. One way to do this is to enter x = 2. Now
whenever x is encountered it will be replaced with 2. If we then re-enter poly we’ll
get an expression in y alone obtained by setting x equal to 2. This may be just what
we want, but on the other hand, perhaps we don’t want to permanently set x to
be 2.

An alternative, one that will not permanently assign the value 2 to x , is shown
below. Here we have used the ReplaceAll function by following the expression
with the slash-dot, /. , after which we give the replacement rule.

Example 4.2.1
In[27]:= replacing x with 2 in poly

poly . x 2

Out[27]= 54 54 y

The real power in the slash-dot replacement function lies in the fact that we can
replace one thing with any other thing. In general, if we evaluate expression /. lhs
→ rhs, Mathematica will make one pass through the expression replacing each
occurrence of lhs with rhs.3

3The strings lhs and rhs stand for “left-hand side” and “right-hand side,” respectively.
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We can also replace more than one thing at the same time. In the following
example we replace both x and y in poly. We replace x with a + 1 and y with
b − 2. Note that the replacement rule has become a list of replacement rules, one
for each expression that we wish to replace.

Example 4.2.2
In[29]:= replacing both x and y with other

expressions
poly . x a 1, y b 2

Out[29]= 1 a 3 1 a 2 3 1 a 3

1 a 4 2 2 b 6 1 a 2 b

6 1 a 2 2 b 2 1 a 3 2 b

After the replacement is made, the expression is not simplified in any way, so in
Example 4.2.2 we might want to follow the replacement with Expand or Simplify
or Factor.

Let’s use this to do a real problem. Suppose we want to prove that the polynomial

−829 + 1575y − 1245y2 + 525y3 − 120y4 + 12y5

cannot be factored.4 Of course, we can try to factor it with Mathematica. In Example
4.2.3, we name the polynomial A and then use Factor[A] only to find that it does
not factor.

Example 4.2.3
In[2]:= this polynomial cannot be factored

A 829 1575 y 1245 y2 525 y3 120 y4 12 y5;
Factor A

Out[3]= 829 1575 y 1245 y2 525 y3 120 y4 12 y5

At this point we should truly believe the polynomial is irreducible, that is, cannot
be factored, since Mathematica’s algorithm for factoring polynomials should be
foolproof on only a fifth degree polynomial! But suppose we need to prove it is
irreducible.5 There is a nice test, known as Eisenstein’s criterion, that can sometimes

4Only a mathematician would think this was a “real” problem!
5Again, who but a mathematician would feel the need!
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be used to show that a polynomial is irreducible. It says that if there is a prime number
p that divides all the coefficients of the polynomial except that of the highest degree
term, and furthermore p2 does not divide the constant term, then the polynomial is
irreducible. Let’s try this with A. It would help a lot if we factored the coefficients
of A, which we do in the next example.

Example 4.2.4
In[15]:=

factoring the coefficients of A
cList CoefficientList A, y
FactorInteger cList

Out[15]= 829, 1575, 1245, 525, 120, 12

Out[16]= 1, 1 , 829, 1 , 3, 2 , 5, 2 , 7, 1 ,
1, 1 , 3, 1 , 5, 1 , 83, 1 ,

3, 1 , 5, 2 , 7, 1 ,
1, 1 , 2, 3 , 3, 1 , 5, 1 ,

2, 2 , 3, 1

In Example 4.2.4 we have used CoefficientList[A, y] to form a list of the coef-
ficients which we then name cList. We enter two arguments for CoefficientList:
the polynomial and then the variable of the polynomial. We have already seen
FactorInteger in Chap. 3 in Examples 3.6.1 and 3.6.2. But notice that here we
are applying FactorInteger not to a single integer, but to a whole list of in-
tegers. In this case the function is applied individually to each number in the
list. We say that FactorInteger is a listable function. Most functions in Math-
ematica are listable and we’ll be saying more about this property later in this
chapter.

Returning to Example 4.2.4, we see that the first coefficient, −829, is prime. So
Eisenstein’s criterion does not work. The only prime that we could possibly use is
829, but this prime does not divide any of the other coefficients.

But, all hope is not lost! If we replace y with x + k, where k is some inte-
ger we will get a new polynomial with new coefficients, but the new polynomial
will factor if and only if the original one factors.6 So maybe we can do such a
substitution and obtain a polynomial for which Eisenstein’s criterion works! To
employ this strategy, let’s replace y with x + k for various values of k and see
what we get. In Example 4.2.5, we replace y with x + 1 and factor the coeffi-
cients again. The first coefficient is only divisible by the primes 2 and 41. But, the

6Think about it!
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fourth coefficient, 165, is not divisible by either of these. So, again, the method
fails.

Example 4.2.5
In[21]:= replacing y with x 1

B Expand A . y x 1
FactorInteger CoefficientList B, x

Out[21]= 82 240 x 270 x2 165 x3 60 x4 12 x5

Out[22]= 1, 1 , 2, 1 , 41, 1 ,
2, 4 , 3, 1 , 5, 1 ,
1, 1 , 2, 1 , 3, 3 , 5, 1 ,

3, 1 , 5, 1 , 11, 1 ,
1, 1 , 2, 2 , 3, 1 , 5, 1 ,

2, 2 , 3, 1

Let’s try one more time, but this time, systematically test different values of k.
In Example 4.2.6, we use Table to make a list of polynomials each one obtained
from A by replacing y with x + k, where k runs from −2 to 2. After doing the
replacement we use Expand to multiply out the expression. Finally, we use the
function TableForm to print one polynomial on each line. In general, TableForm
takes a list as its argument and then prints the elements in a nice array.

Example 4.2.6
In[27]:= trying different linear substitutions

TableForm
Table
Expand A . y x k ,
k, 2, 2

Out[27]//TableForm=

15463 17655 x 8235 x2 1965 x3 240 x4 12 x5

4306 6180 x 3660 x2 1125 x3 180 x4 12 x5

829 1575 x 1245 x2 525 x3 120 x4 12 x5

82 240 x 270 x2 165 x3 60 x4 12 x5

5 15 x 15 x2 45 x3 12 x5
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It’s pretty hard to tell if the first two polynomials (where y = x − 2 and y =
x − 1) satisfy Eisenstein’s criterion. We’d have to factor the coefficients to find out.
But looking ahead to the last polynomial, the one with y = x + 2, we can see that
the prime 5 works! It divides every coefficient except 12, and its square, 25, does
not divide the constant term. Hooray! We have shown that the original polynomial
A is irreducible. (And so are all the others in the list.)

The slash-dot replacement function is incredibly useful so it is important to
understand exactly how it works. When we enter expression /. rules, where rules
might be a list of replacement rules, each rule is applied to each part of the expression
until a rule is found that matches. That substitution is made and then the rules are
applied again, in order, to the next part of the expression. So what will happen to
a/.{a→2, a→3}? The rules are contradictory. Should we replace a with 2 or with
3? Since the rules are applied in order, a will be replaced by 2 and the rule a→3 is
never used.

Furthermore, only one pass through the expression is made. Suppose we enter
x+y → {x→y, y→2}. The x will be replaced by y and the y will be replaced with
2 and we will get y+2. This is not the same as x+y/.x→y/.y→2 which will yield 4.
Example 4.2.7 illustrates this.

Example 4.2.7
In[44]:= these substitutions are not the same

x y . x y, y 2
x y . x y . y 2

Out[44]= 2 y

Out[45]= 4

Since only one pass is made through the expression, this provides a very handy
way for swapping variables. In Example 4.2.8 we start with an expression in x and
y and replace it with one where the variables have been traded.

Example 4.2.8
In[47]:= swapping x and y

x Sin x y

x2 y3
. x y, y x

Out[47]=
y Sin x y

x3 y2
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Finally, there may be times when you want to use slash-dot to make a replacement
but you want to make more than one pass through the expression. If we use slash-
slash-dot, //. , Mathematica will keep passing through the expression over and over
again, making substitutions with each pass, until the expression ceases to change.
In Example 4.2.9, we use a replacement rule that will turn any product into a sum
and illustrate what happens if we use slash-dot versus slash-slash-dot.

Example 4.2.9
In[58]:= turning products to sums

a b c . x y x y

a b c . x y x y

Out[58]= a b c

Out[59]= a b c

Notice first the structure of our replacement rule x y →x y. The left-hand side,
x y , is a pattern that, in this case, stands for the product of any two things. In
general, a pattern is any expression that contains underscores, or “blanks.” So x ,
f[x ], a +b are all patterns. Even a single blank all by itself, , is a pattern. In a
pattern, blanks can stand for anything. The difference between x and , is that the
first pattern stands for anything, but we have named the anything x, whereas the
second pattern also stands for anything, but we have not given it a name. By using
x and giving the anything a name, we can then use the name on the right-hand side
of a replacement rule. Thus in our replacement rule, the pattern x y stands for the
product of any two things and furthermore, we have named those two things x and
y so that we can use those names to form the right-hand side of the replacement
rule, namely, x+y. When this replacement rule is applied to an expression using the
slash-dot function, Mathematica looks for subexpressions that match the pattern
of the left-hand side of the replacement rule. When it finds a match it replaces the
subexpression according to the rule.

Next, notice that if we use slash-dot and only make one pass through the expres-
sion we end up with a+b c, whereas if we use slash-slash-dot and repeatedly pass
through the expression until it no longer changes, we obtain a+b+c.

It is quite easy using slash-slash-dot to create an infinite loop, that is, the process
of substitutions will go on forever and never end. If this happens your entire hard
drive will be filled with nonsense and your computer will be ruined! Just kidding—
Mathematica will usually stop the process with a warning. But if not, you can abort
the calculation.
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It is possible to use a replacement rule and specify exactly how many passes
through the expression should be made. In the Quiz, we include a question exploring
this topic.

4.3 Working with Lists
By now it should be obvious that lists are quite important in Mathematica. There
are quite a few functions that can be used to operate on lists and we’ll describe a
handful of them in this section.

We have already seen that if x is the name of a list, then x[[n]] will give the nth
element of the list. A nice variation on this is that x[[-n]] will give the nth element
from the end of the list. Picking out specific elements can also be done with the Part
function, for which the double square bracket notation, [[ ]], is really shorthand. In
Example 4.3.1, we give a couple of examples. We first define a list of even integers
and name it evens. Next we use the Part function (or its abbreviation using double
square brackets) to extract certain elements.

Example 4.3.1
In[36]:= picking certain elements out of a list

evens 0, 2, 4, 6, 8, 10, 12, 14, 16 ;
evens 3
Part evens, 3
evens 2
Part evens, 2

Out[37]= 4

Out[38]= 4

Out[39]= 14

Out[40]= 14

If we want to extract more than a single element from a list we can use the Take
function. The expression Take[evens, n] will give the first n elements of the list.
We can also use -n to return the last n elements. Example 4.3.2 also shows how
replacing n with the list {n, m} will return elements n through m.
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Example 4.3.2
In[19]:= extracting consecutive elements from a list

Take evens, 2
Take evens, 3
Take evens, 2, 4

Out[19]= 0, 2

Out[20]= 12, 14, 16

Out[21]= 2, 4, 6

The opposite of Take is Drop. Using Drop we can take all the elements of a
list except certain elements. We illustrate this in Example 4.3.3. It is important to
realize that Take and Drop do NOT change the value of the list they operate on.
In the above examples, evens is still the same after using Take or Drop. These
functions simply return lists that are extracted from evens while leaving evens
alone. If we wanted to remove a certain element from a list we could use Drop
to do it and then rename the list with the results of Drop. For example, after we
evaluate evens=Drop[evens, 1] the value of evens will be {2, 4, 6, 8, 10, 12, 14},
the initial element of 0 having been dropped.

Example 4.3.3
In[29]:= using Drop to remove elements from a list

evens
Drop evens, 3
Drop evens, 2
Drop evens, 2, 3

Out[29]= 0, 2, 4, 6, 8, 10, 12, 14, 16

Out[30]= 6, 8, 10, 12, 14, 16

Out[31]= 0, 2, 4, 6, 8, 10, 12

Out[32]= 0, 6, 8, 10, 12, 14, 16

You definitely need to look at the Help Files pages for Take and Drop as there
are several variations on the way they can be used that are quite important.

Two other important functions are Sort and Reverse which do the obvious thing
to a list. Example 4.3.4 shows their use. Note that we first use RandomInteger[10]
together with Table to produce a list of 10 randomly chosen integers that each lie
between 0 and 10.
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Example 4.3.4
In[39]:= sorting and reversing a list

myList Table RandomInteger 10 , 10
Sort myList
Reverse Sort myList

Out[39]= 6, 0, 5, 4, 3, 10, 10, 9, 5, 3

Out[40]= 0, 3, 3, 4, 5, 5, 6, 9, 10, 10

Out[41]= 10, 10, 9, 6, 5, 5, 4, 3, 3, 0

If we think of lists as sets, then we might want to find the intersection or union of
two or more sets. In Example 4.3.5, we use the functions Intersection and Union to
do this. Each function takes any number of lists as arguments, separated by commas.
In the fist line, for example, we enter three sets as arguments to Intersection. The
only elements that are common to all three sets are 3 and 4, and thus {3, 4} is
returned. Similarly, Union will give all the elements that appear in at least one of
the sets. So the union of the same three sets is now the integers from 1 to 6. Both
of these functions return their results in sorted order.

Example 4.3.5
In[58]:= Intersection and Union treat lists as sets

Intersection 1, 2, 3, 4 , 2, 3, 4, 5 , 3, 4, 5, 6
Union 1, 2, 3, 4 , 2, 3, 4, 5 , 3, 4, 5, 6
Union 1, 4, 0, 2, 6, 6, 4, 7, 2, 2, 0, 1, 2, 7

Out[58]= 3, 4

Out[59]= 1, 2, 3, 4, 5, 6

Out[60]= 2, 0, 1, 2, 4, 6, 7

A tricky way to use either of these functions is to pass in only one list. In
this case, the list will be returned sorted and with duplicate elements removed.
In the third line above, the input list has 14 elements, but some of them, like
6, are repeated. After applying Union, the duplicates are removed and the list is
sorted.

Let’s look at a useful example. Suppose we are given a list of numbers named
data and we want to remove the two lowest values. If we don’t care about the order
of the elements in the list, a simple solution is shown in Example 4.3.6. We simply
sort the data, and drop the first two elements from the sorted list. Notice that we
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use RandomReal[ ] together with Table to produce a list of randomly chosen real
numbers between 0 and 1. Looking carefully at the first list we see that .00153465
and .0301557 are the two smallest elements and they do not appear in the second
list.

Example 4.3.6
In[3]:= dropping two lowest values from a list

order of list is lost
data Table RandomReal , 10
Drop Sort data , 2

Out[3]= 0.142245, 0.543427, 0.248698,
0.282653, 0.471051, 0.526607, 0.849228,
0.401546, 0.0118537, 0.485391

Out[4]= 0.248698, 0.282653, 0.401546, 0.471051,
0.485391, 0.526607, 0.543427, 0.849228

If we want to drop the two lowest elements from a list but still maintain the order
of the list, the problem is a bit harder. If we sort the list and then drop the lowest
two, how will we be able to put the list back into order? There is a way to do this,
but another strategy would be to never sort the list in the first place. We need to find
the two smallest elements and drop them. The next example solves the problem.

Example 4.3.7
In[5]:= removing the two lowest elements from

a list and maintaining order of list
data Table RandomInteger 10 , 15
minPlaces Position data, Min data
temp Drop data, minPlaces 1
minPlaces Position temp, Min temp
Drop temp, minPlaces 1

Out[5]= 5, 10, 3, 9, 3, 0, 0, 8, 4, 8, 6, 8, 8, 1, 8

Out[6]= 6 , 7

Out[7]= 5, 10, 3, 9, 3, 0, 8, 4, 8, 6, 8, 8, 1, 8

Out[8]= 6

Out[9]= 5, 10, 3, 9, 3, 8, 4, 8, 6, 8, 8, 1, 8
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The key to Example 4.3.7 is to use the Position function. In general, Position[list,
x] will return a list of all the positions in which x occurs. Let’s take a careful
look at Example 4.3.7 to see how it works. We begin by forming a list of 15
randomly chosen integers between 0 and 10. We name this list data. Next we use
Position[data, Min[data]]. Given any list, Min will give the minimum value in
the list, and Max will give the maximum value. So Position[data, Min[data]]
will give a list of all the places the minimum occurs. In this case the minimum
is 0 and appears in positions 6 and 7. Therefore, minPlaces[[1]] will be the first
place where the minimum occurs. Next, Drop[data, minPlaces[[1]]] will remove
the first occurrence of the minimum value. Then, in the next two lines we repeat
the process. We use the name temp to stand for the intermediate list obtained after
we remove one element.

We have already mentioned that most functions in Mathematica are listable.
That is, if we enter a list as an argument to a function, we’ll get back the list
obtained by letting the function act on each element of the original list. For example,
Abs[{x,y,z}] will return {Abs[x], Abs[y], Abs[z]}. We say that the function threads
over the list.

Another way to accomplish the same thing is to use the Map function. In general,
Map[ f, expr] will apply f to the first level of parts in expr. Example 4.3.8 illustrates
the use of Map.

Example 4.3.8
In[136]:= Map applies the function to the

first level of parts in each expression
Map Abs, x, y, z
Map Abs, x, y, z, w
Map Sin, x y x
Map f, x y z

Out[136]= Abs x , Abs y , Abs z

Out[137]= Abs x , Abs y , Abs z , Abs w

Out[138]= Sin x Sin x y

Out[139]= f x f y f z

When expr is a list, its first level of parts are its elements. Thus in the first line
in Example 4.3.8 we get the list {Abs[x], Abs[y], Abz[z]}, the same as what we
would get from Abs[{x, y, z}]. In the second line, Map will give {Abs[x], Abs[y],
Abs[{z, w}]} but since Abs is listable, the final element of the list is rewritten as
{Abs[z], Abs[w]}. On the third line we obtain Sin[x]+Sin[y x] because x and x y
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are the first level of parts of the expression x+x y. Finally, in the last line, the first
level of parts in a product are the factors. Hence f is applied to each of the three
factors.

We’ll see places later in this book where it’s handy to use the Map function.
After we talk about functions in Chap. 5, and especially what are called pure
functions, we’ll see another way to use the Map function. We also need to learn
more about functions before we can understand the Select function. Select is an
absolutely incredible function that can be used to select elements from a list that
satisfy certain properties.

We can also combine lists of the same size with operations that would normally be
used to combine just two numbers (or variables). Because the lists are the same size,
the operation is just applied to corresponding elements. We give a few examples in
Example 4.3.9.

Example 4.3.9
In[51]:= combining lists of the same size

1, 2, 3, 4 0, 0, 1, 2
1, 2, 3, 4 0, 0, 1, 2
a, b, c, d ^ 1, 0, 1, 2
a, b, c e, f, g ^ 2, 2, 2

Out[51]= 1, 2, 2, 6

Out[52]= 0, 0, 3, 8

Out[53]=
1
a
, 1, c, d2

Out[54]=
a

e2
,

b

f2
,

c

g2

In the last example, if the lists were not of the same size, Mathematica would
object and issue a warning. However, if one of the lists is just a single number or
variable, that is a scalar, then the scalar will be treated as a list of the correct size
all of whose elements are the same. We give a few examples of this below. Under-
standing Examples 4.3.9 and 4.3.10 can really streamline how we handle expres-
sions in lots of cases. Notice that in the last line of Example 4.3.9, the exponentiation
has a higher precedence than division, so is done first.
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Example 4.3.10
In[47]:= combining a list with a scalar

a, b, c 3
a, b, c x
a, b, c ^4
a, b, c, d 5

Out[47]= 3 a, 3 b, 3 c

Out[48]= a x, b x, c x

Out[49]= a4, b4, c4

Out[50]=
a
5
,
b
5
,
c
5
,
d
5

There are quite a few other functions that can be applied to lists such as Append,
AppendTo, Flatten, Join, and Partition as well as other interesting ways in which
lists can be combined. Rather than trying to explain all the possibilities here, we’ll
introduce more ways to deal with lists in later sections.

4.4 Sums and Products
Suppose we want to find the sum of the squares of the first 1000 positive integers.
One way to do this would be to place the summands in a list and then use the Total
function. In general, Total takes a list as its argument and will return the sum of all
the elements in the list. Here is an example, where we have used only the first 10
positive integers.

Example 4.4.1
In[149]:= using Total to add the squares of

the first 10 positive integers

squares Table i2, i, 1, 10

Total squares

Out[149]= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

Out[150]= 385
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In the above example, we first formed a list with the summands we wanted to add
and then used Total. If we use Sum instead, we do not need to make the intermediate
step of forming the list of summands. In Example 4.4.2 we recompute the sums of
the squares of the first 10 positive integers using Sum. We provide two arguments
to Sum. The first is the formula for the i th summand of the sum and the second is
the familiar indexing list used to control i , the index of summation. The syntax of
Sum is very much like the syntax of Table, and in fact, using Sum is equivalent to
using Table followed by Total.

Example 4.4.2
In[152]:= using Sum to add the squares of the

first 10 positive integers

Sum i2, i, 1, 10

Out[152]= 385

Of course, if we wanted to add up the squares of the first 10000 positive integers
it would be easier and faster to simply use the closed formula for the sum. You
might remember that there are really neat closed formulas for the sums of the kth
powers of the first n positive integers. Mathematica is aware of these formulas and
can apply them when using Simplify as the next example shows.

Example 4.4.3
In[154]:= Simplify is aware of many summation

formulas

Simplify Sum i2, i, 1, n

Out[154]=
1
6
n 1 n 1 2 n

Finally, there is a function called Product, which works much like Sum except
that it forms the product of the given terms rather than their sum. We close this
section with an example giving the product of the first 10 primes.
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Example 4.4.4
In[160]:= using Product to multiply the first

10 primes together
Product Prime i , i, 1, 10

Out[160]=6469693230

In[161]:= factoring the previous result
FactorInteger

Out[161]= 2, 1 , 3, 1 , 5, 1 , 7, 1 , 11, 1 ,
13, 1 , 17, 1 , 19, 1 , 23, 1 , 29, 1

4.5 Matrices
A matrix is an array of numbers (or other objects) arranged in rows and columns. In
Mathematica matrices are expressed as a list of the rows, each of which, of course,
is a list itself. Thus a matrix is a list of lists. If a matrix has n rows and m columns,
we call it an n by m matrix. The entry in the i th row and j th column is called the
i, j entry. In Example 4.5.1, we define a 3 by 4 matrix as a list of three rows, each
a list of 4 elements. We then use the function MatrixForm to print out the array in
rows and columns. MatrixForm will also enclose the matrix in large parenthesis,
which is common practice for writing matrices.

Example 4.5.1
In[191]:= a matrix is a list of rows

B 1, 2, 3, 4 , a, b, c, d , 0, 0, 1, 0
MatrixForm B

Out[191]= 1, 2, 3, 4 , a, b, c, d , 0, 0, 1, 0

Out[192]//MatrixForm=

1 2 3 4
a b c d
0 0 1 0

We have already seen how to use Table to create lists. In fact, we can use it to
create matrices as seen in Example 4.5.2. All we need to do is give two indexing lists
to Table. The first will control the rows and the second will control the columns.
In Example 4.5.2, the i, j entry is the abstract expression b{i, j}.



CHAPTER 4 Odds and Ends 109

Example 4.5.2
In[17]:= using Table with multiple indexing lists

m Table
b row, column ,

row, 1, 4, 1 , column, 1, 2, 1
;

MatrixForm m
Out[18]//MatrixForm=

b 1,1 b 1,2

b 2,1 b 2,2

b 3,1 b 3,2

b 4,1 b 4,2

Actually, what we have just called a matrix should more properly be called a
two-dimensional matrix. We can extend the notion to any dimension. Going down
a dimension, a one-dimensional matrix is simply a list. Going up a dimension,
a three-dimensional matrix would be a list of two-dimensional matrices, all the
same size (i.e., having the same number of rows and columns). In general, an n-
dimensional matrix is a list of (n − 1)-dimensional matrices, all of the same size.
For two-dimensional matrices we usually won’t mention the dimension and simply
use the word “matrix.”

It is worth noting that we can use Table to create matrices of any dimension. We
simply need to add as many indexing lists as there are dimensions.

Example 4.5.3
In[15]:= multiplying matrices

MatrixForm A 1, 1 , 2, 0 , x, y , a, a
MatrixForm B.A

Out[15]//MatrixForm=

1 1
2 0
x y
a a

Out[16]//MatrixForm=

5 4 a 3 x 1 4 a 3 y
a 2 b a d c x a a d c y
x y

If you have had a course in linear algebra, you know that an n by m matrix can
be multiplied times an m by r matrix. In Example 4.5.3, we define a new matrix A
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and form the product B.A with the matrix of Example 4.5.1. Notice that the period
is used as the symbol for matrix multiplication.

Matrices are very important in many branches of mathematics and Mathematica
has quite a few functions that deal with matrices. We’ll be introducing them as we
go.

4.6 Find Out More
Here are a few nice tutorials from the Help Files that relate to the topics of this
chapter:

• tutorial/TransformingAlgebraicExpressions and tutorial/Simplifying-
AlgebraicExpressions—contain lots of good examples related to simplifying
expressions. (These are both part of the larger tutorial tutorial/Algebraic-
CalculationsOverview.)

• tutorial/ApplyingTransformationRules—a great tutorial about the slash-
dot replacement function. (This tutorial is part of the larger tutorial/
TransformationRulesAndDefinitionsOverview.)

• tutorial/PatternsOverview—excellent discussion of patterns and their use in
replacement rules.

• tutorial/ListsOverview—a comprehensive overview of lists.

• tutorial/ApplyingFunctionsToPartsOfExpressions—a nice discussion on
Map.

Quiz
1. Simplify

√
w3x−2 y5

w5xz3 .

2. Use Simplify to find a formula for the sum of the cubes of the positive integers
from 1 to n.

3. Rewrite sin(4θ) in terms of trigonometric functions of θ alone. (That is, sin θ ,
or cos θ , for example, may appear in the rewritten expression, while tan(2θ) or
cos(3θ) may not.)

4. Simplify −4 sin3 x + 4 cos x sin2 x + 3 sin x − cos x .

5. Use Table and /. to make a list of the polynomials obtained from x5 − 3x2 + 6
by replacing x with x + k for k = −4, −3, . . . , 3, 4.
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6. Let p3(n) be the coefficient of x3 in the polynomial (x2 + x + 1)n . Make a
table of p3(n) for n = 2, 3, . . . , 25.

7. Write replacement rules using patterns that will change log(xy) to log x +
log y and log x

y to log x − log y. Apply the rules to log xyz
w so as to produce

log x + log y + log z − log w .

8. The construction ReplaceRepeated[expression, rules, MaxIterations → k],
will perform the substitution rules on expression a total of k times. Use this,
starting with the expression x, to obtain

1 + 1

1 + 1
1+ 1

1+ 1
x

9. Create a list of 20 randomly chosen real numbers and then figure out how to
remove the smallest and largest numbers, keeping the order of the list otherwise
intact.

10. If data is a list of at least 10 elements, figure out how to trade the fourth and
fifth elements of data.

11. A famous infinite product, discovered in 1665 by the English mathematician
John Wallis, is

π

2
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · ·

Use Product to compute the product of the first 10, 100, and 1000 factors on
the right-hand side of the equation. Do these partial products come close to
π
2 ? What happens, if instead of writing 10, 100, or 1000 as the upper limit of
the indexing list in Product, you write Infinity?
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CHAPTER 5

Functions

Even though Mathematica comes with thousands of predefined functions, it is
extremely important to know how to define our own functions. While a simple
function might be defined in a single line of code, more complicated functions might
take dozens of lines assembled together in a Module. In this chapter we’ll see how
to define our own functions. We’ll also learn the basics of elementary programming
which can be used to turn any mathematical algorithm into a working Mathematica
function.

5.1 Defining Functions
Sometimes we may be using the same function over and over again and it can be
handy to give the function a name. For example, suppose we were computing things
related to home mortgages and repeatedly found ourselves computing the monthly
payment on a loan of $400 000 amortized over 30 years at an annual interest rate
of r . Imagine that we keep changing the interest rate r and have to keep retyping
the formula for the monthly payment. To save on all that typing, we can create our
own function to compute the payment as seen in the following example.
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Example 5.1.1
In[56]:= defining our own function

the monthly payment on a $400000 loan
over 30 years at interest rate r

payment r :
400000 r

12
1 r

12

360

1 r
12

360
1

On the left-hand side of the definition we have named the function payment and
used as its argument the pattern r . (In fact, the entire left-hand side, payment[r ] is
the pattern—but more about that in just a moment.) Because of the use of the blank,
r can stand for anything, and in particular, any interest rate. On the right-hand side
we give the formula for the monthly payment as a function of the interest rate r.
Notice that we do not use a blank on the right-hand side.

Between the two sides of the definition we use not an equals sign, but colon-
equals. The equals sign is actually shorthand for the function Set while the colon-
equals is shorthand for the function SetDelayed. We have already seen the use of
the equals sign many times. Using lhs = rhs will cause rhs to be evaluated and,
forever after, this result will be substituted for lhs wherever it occurs. This is exactly
what we want when we give a variable a value, or name something that we have
created. Using colon-equals almost gives the same thing, but not quite. Instead,
whenever lhs occurs it is replaced by rhs and then it is evaluated. This is a pretty
subtle difference and we’ll give some examples to try and make the distinction
clear. But, generally speaking, you’ll almost always be in good shape if you always
use colon-equals in the functions you define.

Finally, one more point about the function definition. When we define a function
like g[z ]:=z+π , all we are telling Mathematica is to use the replacement rule g[z ]
→ z+π whenever possible. So we see that it is really the entire left-hand side of
the definition that serves as the pattern, not just the argument z .

Having defined the function payment we could use it, for example, to compute
the monthly payments for loans with different interest rates ranging from 5% to
8%. We do this in Example 5.1.2.

Example 5.1.2
In[55]:= loan payments for interest rates

ranging from 5 to 8 percent
Table payment r , r, .05, .08, .005

Out[55]= 2147.29, 2271.16, 2398.2,
2528.27, 2661.21, 2796.86, 2935.06
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Notice that when we use the function payment we do not use the blank after its
argument. Without the blank, payment[r] will match the pattern used to define it
and hence be replaced by the formula for the payment. Also note that we entered the
interest rate of 5% as .05, and that we made the interest rate advance in increments
of half a percent. The monthly payments range from around $2150 to around $2935,
a difference of almost $800. Clearly it pays to shop around for the lowest interest
rate available.

Suppose that after using the payment function for awhile, we find that sometimes
we need to figure the monthly payments for other loan amounts. No problem! We’ll
simply rewrite the function to take two arguments: the interest rate and the loan
amount, or principal. In Example 5.1.3, we have enlarged the pattern on the left-
hand side to include two (named) blanks, one for each argument, and the right-hand
side is a function of both P and r. It doesn’t matter which argument we list first.
But, of course, now that we have made a choice, we need to have the principal first
when we call the function.

Example 5.1.3
In[60]:= defining a function with two arguments

the monthly payment on a 30-year loan
with principal P and interest rate r

payment P , r :
P r

12
1 r

12

360

1 r
12

360
1

Let’s use our function to make a table of monthly payments corresponding to
different initial loan amounts and different interest rates. Example 5.1.4 shows how
to do this. To understand how it works, let’s start with the Table function. Notice
that we are using Table with two indexing lists, one for P and another for r, so that
we create a two-dimensional array of monthly payments. Since the indexing list
for P appears first, rows correspond to the principal and the columns correspond to
the interest rate.

Next, we have used TableForm to print the table in a nice tableaux. Table-
Form is nice to use because it has the option TableHeadings that we have used
here to include the row of interest rates as well as the column of loan amounts.
The vertical and horizontal dividing lines are automatically included when using
TableHeadings. Alternatively, we could have used Grid to layout the table nicely.
Grid can be used to place all kinds of objects in a gridlike format and so is similar
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to TableForm. But Grid is more general in the sense that it can be used to arrange
more complicated objects in sophisticated ways.

Example 5.1.4
In[202]:= making a table of monthly payments for

different interest rates and different loan
amounts
mortgageTable
TableForm
Table
payment P, r ,
P, 300000, 500000, 50000 ,
r, .06, .08, .005
,
TableHeadings
Table P, P, 300, 500, 50 ,
Table r, r, .06, .08, .005

Out[202]//TableForm=

0.06 0.065 0.07 0.075 0.08

300 1798.65 1896.2 1995.91 2097.64 2201.29
350 2098.43 2212.24 2328.56 2447.25 2568.18
400 2398.2 2528.27 2661.21 2796.86 2935.06
450 2697.98 2844.31 2993.86 3146.47 3301.94
500 2997.75 3160.34 3326.51 3496.07 3668.82

If we want to add textual labels to our mortgage payment table it would be hard
to do with TableForm and perhaps easier with Grid. We can also combine the
two functions to build up the final layout. For example, having already named the
layout in Example 5.1.4 mortgageTable, we could now use it as one element in a
grid with the other elements being text labels. In Example 5.1.5, we use Grid to
layout two elements one on top of the other: the text label and the mortgageTable.
Notice the use of Text and Style (described earlier in Chap. 2) to create the
label.

There is a nice guide in the Help Files that describes how to layout tables. We’ll
point you to it in the Getting Help section of this chapter.
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Example 5.1.5
In[203]:= adding a label to the table

label Text
Style
"Mortgage payments per interest rate and
initial loan balance.", 18 ;

Grid label , mortgageTable

Out[204]=

Mortgage payments per interest rate and initial loan balance.
0.06 0.065 0.07 0.075 0.08

300 1798.65 1896.2 1995.91 2097.64 2201.29
350 2098.43 2212.24 2328.56 2447.25 2568.18
400 2398.2 2528.27 2661.21 2796.86 2935.06
450 2697.98 2844.31 2993.86 3146.47 3301.94
500 2997.75 3160.34 3326.51 3496.07 3668.82

As the final example in this section, let’s define a function that will
give the n-th Fibonnaci number. Remember that the Fibonnaci numbers are
0, 1, 2, 3, 5, 8, 13, . . . where each number in the sequence is defined as the sum
of the previous two. Letting the first and second numbers be zero and one respec-
tively gets the ball rolling.1 Defining the nth Fibonnaci number as the sum of the
previous two is an example of a recursive definition; we use the function to define
itself! It’s not quite circular though because we define each number in term of pre-
vious numbers and eventually we bottom out at the first and second number which
have solid, non-recursive definitions. The next example defines the function.

Example 5.1.6
In[37]:= recursive definition of Fibonnaci numbers

fib 0 0;
fib 1 1;
fib n : fib n 1 fib n 2

In[50]:= computing the 30th Fibonnaci number
Timing fib 30

Out[50]= 4.30065, 832040

Notice that we use the ordinary equals sign to define fib[0] and fib[1] and then
the colon-equals sign to define fib[n ] in terms of fib[n − 1] and fib[n − 2]. In the

1Somewhat arbitrarily, we’ll call 0 the 0th Fibonnaci number, 1 the first Fibonnaci number, 2 the second, and
so on.
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second input cell where we compute fib[30] (and time how long it takes) Mathemat-
ica must first replace fib[30] by the expression fib[29]+fib[28] and then evaluate
this expression. But to evaluate fib[29] Mathematica must replace fib[29] with
fib[28]+fib[27] and then evaluate that, and so on. Clearly this mushrooming pro-
cess is going to take a lot of time.2 We’ll see a much faster way to compute fib[30]
a little later in the chapter.

If you think about it, using an equals sign instead of a colon-equals sign in this
example will not work. If we use an equals sign Mathematica will try to evaluate
the right-hand side of the definition and then assign that value to the left-hand side.
But in order to evaluate the right-hand side it needs to know what the definition
is—the one that we are defining right now! Try it out and see what happens.

When we define our own functions we are creating symbols that name the func-
tion and we should follow the same advice that applies to variable names or anything
else that we name. Since all functions in Mathematica start with capital letters a
good practice for us to follow is to create function names that begin with lowercase
letters. Secondly, we should try to use descriptive names. Using fib or even fibon-
naci is much better than just using f. Of course, it is nice to use shorter names, so
we won’t always spell things out completely. Finally, we should avoid names that
are extremely close to existing names.

5.2 Pure Functions
When we define a function such as g[x ]:=x Sin[x] it is usually because we want
to use the function over and over. Defining it this way gives it a name (in this case
g) which makes it easy to refer to.

On the other hand, there are times when we might want to use a function only
once, in which case it might not even be worth naming the function. In this setting
we may want to use pure functions. We’ll give four examples in this section that
use pure functions.

Suppose for example that we want to plot a list of complex numbers in the plane.
Recall that the complex number x + iy corresponds to the point in the plane with
Cartesian coordinates (x, y). If the numbers were given by their coordinates, then
it would be a simple matter to use ListPlot to plot them. So, we need a function that
can take a complex number and turn it into the corresponding pair of coordinates.
If we had a whole list of complex numbers we could use Map to apply this function

2Try entering Trace[fib[3]]. Mathematica will print out all the intermediate steps it follows to compute fib[3].
It shouldn’t be too hard for you to figure out what is going on, but this is getting a little more advanced then we
should be. If you are really interested you can read about Trace in the Help Files. Then enter Trace[fib[10]] to
just get a hint of how many steps need to be carried out to compute fib[30]!
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to every number in the list. There is a simple solution using pure functions that is
shown in Example 5.2.1.

Example 5.2.1
In[212]:= mapping a pure function onto a set of

complex numbers to turn them into points
data Table RandomComplex , 6
Map Re , Im &, data

Out[212]= 0.783791 0.471847 , 0.523661 0.901026 ,
0.73807 0.841179 , 0.889937 0.929982 ,
0.314625 0.147453 , 0.808857 0.894805

Out[213]= 0.783791, 0.471847 , 0.523661, 0.901026 ,
0.73807, 0.841179 , 0.889937, 0.929982 ,
0.314625, 0.147453 , 0.808857, 0.894805

The first thing we do in Example 5.2.1 is create a list of six complex numbers by
using the Table function and the function RandomComplex[ ] which will return a
randomly chosen complex number. We name the list data and it is displayed in the
first output cell. Next we use Map to apply a function to every element of data,
converting each one to a list of its x and y coordinates. The first argument of Map
is the function we want to apply and this is where we hit new territory. Instead of
placing the name of a function here, we just describe the function using the syntax
of pure functions.

Just as we are not going to take the trouble to name this function, we also do
not name its arguments! Instead, the arguments are specified by “slot numbers”
#n. If there is only one argument it is represented by #. But if there are multiple
arguments then #1 will refer to the first, #2 to the second, and so on. The expression
{Re[#], Im[#]} will take the single argument and form a list whose first element is
the real part of the argument and whose second element is the imaginary part of the
argument. This is exactly what we want! Finally, the ampersand, &, is extremely
important. It tells Mathematica that the expression is defining a pure function.

As a second example, suppose we have a data set that consists of a list of elements,
where each element is itself a list of the following items: name, age, and telephone
number. Suppose we want to extract all the ages from the data set. That is, we want
to extract the second element of each element of the big list. Example 5.2.2 does
this by using the pure function #[[2]]&, which returns the second element of the
argument. Example 5.2.2 also illustrates the alternative syntax f/@expr that can be
used instead of Map[expr, f ].
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Example 5.2.2
In[21]:= using a pure function to extract the

ages from the data set
directory

"Alice", 12, 3451231 ,
"Bob", 11, 3456785 ,
"Carol", 14, 3455674 ,
"Dylan", 13, 3452390
;
2 & directory

Out[22]= 12, 11, 14, 13

Of course, there are other ways to accomplish the same thing as Example 5.2.2
without using pure function. We might, for example, use

Table[directory[[k,2]], {k,1,Length[directory]}

But Example 5.2.2 is simpler.
Suppose that we want to sort the entries of directory in order of age. If we

use Sort[directory] the triples will be sorted on their first element. This would
arrange the data alphabetically by name. Fortunately, Sort accepts an option that
allows us to define what it means for one item to be less than another, and Sort
will then use our rule. Example 5.2.3 illustrates this. The sorting rule we provide
is #1[[2]]<#2[[2]]&. Sort uses this rule to compare two items which are referred
to here by their slot numbers #1 and #2. If the second element of the first argument
is less than the second element of the second argument then our rule will evaluate
to True, and Sort will order the two items accordingly.

Example 5.2.3
In[228]:= sorting the directory on age by providing

our own sorting rule to Sort
Sort directory, 1 2 2 2 &

Out[228]= Bob, 11, 5323452 , Alice, 12, 5321234 ,
Dylan, 13, 5321254 , Carol, 14, 5321003

As a final example illustrating the use of pure functions, we describe the Select
function. This function is used to extract elements from a list that meet certain
requirements. For example, suppose we want to extract all the people from the
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directory of Example 5.2.2 who are older than 12. Example 5.2.4 does just what
we want by using the Select function.

Example 5.2.4
In[26]:= selecting all people in directory that

are older than 12
Select directory, 2 12 &

Out[26]= Carol, 14, 3455674 , Dylan, 13, 3452390

In general, Select takes two arguments. The first is the list of data and the second
is a criteria. All data elements that satisfy the criteria are returned. Here we have
used a pure function to express the criteria. If the second entry of an element is
more than 12, the criteria will evaluate to True and the element will be extracted.

There are other ways to do the above examples without using pure functions,
but using pure functions is often quite simple and elegant. So it is definitely worth
understanding pure functions for those occasions when it makes sense to use them.
Finally, a very common error that will almost certainly give you grief, is leaving
off the ampersand in a pure function. Try to watch out for that!

5.3 Elementary Programming
So far we have used Mathematica primarily to perform calculations or produce
neat graphics. But as we try to perform more and more complicated calculations
we will need to write simple programs to carry out whatever algorithm is needed
to complete the calculation. The essence of programming consists of being able to
give the computer a set of instructions to carry out, one after the other, and included
in these, logical instructions that can control the flow of execution, that is, the order
in which the instructions are performed.

One of the simplest and most important constructions that can alter the flow
of execution is the If-Then-Else statement. Every programming language provides
this construction. In Mathematica the If function provides this essential ingredient.
The syntax for the If function is

If[co n d ition, t, f]

When the If function is evaluated, the condition is evaluated to see if it is True or
False. If it is True, then the expression t is returned, otherwise the expression f is
returned. In Example 5.3.1, we define a function named f using If. If the condition
is true, that is x > 0, then the second argument of the If function, namely Sin[x],
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is returned. If it is not the case that x > 0, then 0 is returned. Thus f[x]:=Sin[x] for
positive x and f[x]:=0 otherwise.

Example 5.3.1
In[281]:= using If to define a function

f x : If x 0, Sin x , 0

Here is a second example where the function g[n] defined in Example 5.3.2
returns n/2 if n is even and 3n+1 if n is odd. (We intend to only apply this function
to integers.) The condition uses the Mod function. In general, Mod[x,y] gives the
remainder when x is divided by y. Thus an integer n is even if and only if Mod[n,
2] is zero. Notice that in our condition, or test, we use double equals signs. A single
equals sign is used for assignment: the right-hand side is assigned to the left-hand
side. But a double equals sign is used to describe a symbolic equation. Such an
equation will evaluate to either True or False. Thus, if n is an even integer, the
equation is True and the function returns half of n (which is still an integer since n
is even). If instead, n is an odd integer, the function returns 3n+1.

Example 5.3.2
In[283]:= using If to define a function

g n : If Mod n, 2 0, n 2, 3 n 1

We can also nest If functions to achieve more than a “2-way” branching. Example
5.3.3 defines a function that is 1 to the right of 0, 0 at 0 and −1 to the left of 0. The
first condition is x>0. If this is true, we return 1. But if it is false, we go to a second
If function to further decide if x is negative or zero.

Example 5.3.3
In[284]:= nesting If functions to achieve 3

way branching
h x : If x 0,

1,
If x 0, 1, 0

Mathematica provides several other conditionals, that is, statements that alter
the flow of execution in a program. These include Which, Switch, and PieceWise.
As you learn to program more you’ll want to add these functions to your repertoire,
but as a beginner you should first master the If construction (and the use of nested
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If’s). You can get a lot of milage out of If before it is necessary to use the other
conditionals. The Help Files contains a very nice tutorial about using conditionals
that we’ll point out in the Getting Help section.

In addition to the If-Then-Else construction, loops are essential to any program-
ming language. A loop is a construction that allows for a set of instructions, called
the body of the loop, to be executed over and over. There are two kinds of loops:
definite and indefinite loops. Definite loops are ones where the body of the loop
is executed a definite number of times that is set before the program is executed.
Indefinite loops are ones where the body is repeated an indefinite number of times,
depending on conditions that are not necessarily known in advance. Mathematica
has both kinds of loops. The Do loop is a definite loop and the While loop is an
indefinite loop.

Let’s start with the Do loop. In Example 5.3.4, we use a Do loop to print out
the first five positive integers and their cubes. The Do loop takes two arguments:
the body, which in this case is the single line Print[{i, i3}]; and the control list {i,
1, 5}, which is very much like the indexing list we would use in a Table function.
The variable i is the index, or counter, that controls how many times the body of
the loop is executed. In this case the loop will be repeated 5 times. The first time
the body of the loop is executed the index i is 1, the next time it is 2, and so on until
i reaches 5, at which point the body of the loop is executed for the last time. Thus
the loop will print each of the integers and its cube from 1 to 5 and then stop. This
is a definite loop. It was set up to repeat 5 times. Just as in the Table function, the
index can be given an optional stepsize. Thus if we had used a control list of {i, 1,
5, 2} the loop would have printed the cubes of 1, 3, and 5, skipping the cubes of 2
and 4.

Example 5.3.4
In[287]:= a definite loop that prints our the first

five positive integers and their cubes

Do

Print i, i3 ,

i, 1, 5

1, 1

2, 8

3, 27

4, 64

5, 125
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The body of the loop can contain any number of lines separated by semicolons.
(Separating the lines by semicolons joins them together into one big expression. So
Do still only has two arguments: the expression and then the indexing list.) Let’s
look at a slightly more complicated example that contains three lines of code in the
body.

In Example 5.3.5, we compute the first 31 Fibonnaci numbers by using a Do
loop. We start with the list of the first two Fibonnaci numbers, {0, 1}, and then use
the loop to repeatedly append the next Fibonnaci number to the list. The body of the
loop has three lines. In the first two, we let a and b be the ultimate and penultimate
elements of the list so far. (On the first pass through the loop, a=1 and b=0.) Then in
the third line we use the AppendTo function to append the next Fibonnaci number,
namely the sum a+b, to the list. Then we repeat this for a total of 29 passes through
the loop. We started with two numbers on the list and add 29 more, so we end
with the first 31 Fibonnaci numbers. Compare the time spent in computing the 30th
Fibonnaci number this way with the recursive definition given in Example 5.1.6.

Example 5.3.5
In[297]:= using a Do loop to compute the first 31

Fibonnaci numbers
Timing
fibonnaciNumbers 0, 1 ;
Do
a fibonnaciNumbers 1 ;
b fibonnaciNumbers 2 ;
AppendTo fibonnaciNumbers, a b
, i, 1, 29

fibonnaciNumbers

Out[297]= 0.000373, Null

Out[298]= 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181,
6765, 10946, 17711, 28657, 46368, 75025,
121393, 196418, 317811, 514229, 832040

The second kind of loop is the While loop, which has syntax While[test, body ].
When the loop is executed, the test is evaluated. If it is True, the body of the loop
is executed. The process is then repeated until test is False. If test never becomes
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False the loop will go on forever, what we call an infinite loop. This is an indefinite
loop because the number of passes through the loop is not specified in advance.
Instead, it depends on conditions that (usually) change as the program runs.

In Example 5.3.6, we use a while loop to repeatedly apply the function g defined
in Example 5.3.2 until we reach 1. In this example, we start with k=5. Since 5 is more
than 1, we execute the body of the loop, namely, we rename k to be 3 · 5 + 1 = 16
(since 5 is odd) and print out k. Since k is still bigger than 1 we continue, this time
getting k=8. Now 8 leads to 4 which leads to 2 which leads to 1. When k is 1,the
test is no longer True and the loop is no longer executed.

Example 5.3.6
In[20]:= using a while loop to apply g until we

reach 1
k 5
While
k 1,
k g k ;
Print k

Out[20]= 5

16

8

4

2

1

In this case, starting with 5, we eventually reached 1. If we hadn’t, the loop would
still be running! You should rerun this example with different initial values for k.
(Try k=97.) It turns out that no one has ever found a (positive) starting integer that
did not eventually lead to 1! In fact, this is a pretty famous problem in mathematics
known as the Collatz Conjecture, named after Lothar Collatz who proposed it in
1937. To date, all numbers up to some ridiculously large value have been tested.
The conjecture is that no matter what positive integer we start with, repeatedly
applying the function g will eventually lead to 1. It is probably true, but no one has
found a proof of this!

The If, Do and While functions are tremendously important. While there are
lots of other functions that are quite useful in programming, these three alone allow
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Mathematica programs to be written that can carry out virtually any algorithm.
We’ll be seeing lot of examples in this book of their use.

5.4 Using Modules
Quite often the functions we create for ourselves can be defined in a single line of
code, much like the mortgage payment function in Example 5.1.3. But what if it
will take many steps to define a function? There are two possible ways to proceed.

Let’s start with something simple. Suppose we are given the radius and height
of a right circular cylinder and want to define a function that will return its surface
area. We need to add the area of the circular top and bottom as well as the area of
the sides. Example 5.4.1 shows how to define the function.

Example 5.4.1
In[145]:= this function computes the area of a right

circular cylinder of radius r and height h
area r , h :

baseArea Pi r^2;
lateralArea 2 Pi r h;
2 baseArea lateralArea

Of course, it would be really easy to define this function in one line. (We ask
you how to do it in the Quiz!) But Example 5.4.1 shows how to do it in steps. We
simply separate all the steps with semicolons and contain them all in parenthesis.
Notice that the last “step” is simply the answer. Keep in mind that if we entered
the three steps into an input cell, the last line would be evaluated and printed in the
output cell. Since defining a function is really just providing a replacement rule, the
answer produced by the last line will replace the function, which is exactly what
we want.

Let’s look at a problem where perhaps it is not so easy to define the function
in a single line. Suppose we are given an integer n and want to find the nearest
prime numbers to n: the largest prime less than or equal to n and the smallest prime
greater than or equal to n. To find the larger prime we can start at n and, if it is not
prime, start going up one number at a time until we hit a prime. Similarly, we can
start at n, and if it is not prime, start going down one number at a time until we hit
a prime. The definition is in Example 5.4.2.
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Example 5.4.2
In[154]:= finds the nearest primes to n

nearPrimes n :

k n;
While PrimeQ k False, k ;
bigger k;
k n;
While PrimeQ k False, k ;
smaller k;
smaller, bigger

In[155]:= nearPrimes 20123456

Out[155]= 20123443, 20123479

We begin by letting k be n. We then use a While loop to increase k by one at
a time until we get to a prime. To do this we use the function PrimeQ[k] which
returns True if k is prime and False if k is not prime.3 The test condition for the
While loop is PrimeQ[k]==False. Thus if k is not prime the test condition is true
and we execute the body of the loop. In this case, the body is the single instruction,
k++ which increments k by 1. Thus the loop will keep going as long as k is not
prime and stop when k is prime. If the original number n is prime, the test condition
will be True right away and the body of the loop will never be executed. After
the loop, we save the value of k as bigger. We then repeat the construction to
find the smaller prime, but this time decrementing k. Finally, the last line of the
definition is the output from the function, namely, the list of the smaller and bigger
primes.

In both of the above examples we have introduced variables that are used as
intermediate steps in order to compute the value of the function. In Example 5.4.1,
these were baseArea and lateralArea. In Example 5.4.2, these were k, smaller,
and bigger. These variables are only used in the definition of the function so we
should not give them names that have already been used elsewhere in our notebook.
If we did, we might inadvertently alter the value of a variable that is being used
somewhere else. A nice way to handle this situation is to switch to defining the
function as a module. Think of a module as a more self-contained definition of a

3There are a number of Mathematica functions similar to PrimeQ which test to see if the argument belongs in a
certain set (even numbers, odd numbers, prime numbers, and the like). These functions all end in Q. Try entering
?*Q to find out what they all are.
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function, a kind of “black box” whose inner workings are totally separate from the
rest of the notebook. Everything that takes place inside the module is completely
invisible to the rest of the notebook.

In Example 5.4.3, we rewrite the nearPrimes function using the Module func-
tion. We also simplify things by eliminating k. The structure is nearly the same
as before except that the first argument of Module is a list of the local variables,
that is, those variables that are used only inside the module to help carry out the
calculation. Thus the first argument in our example is {bigger, smaller}.
A comma then separates the first argument from the second argument, which
in this cases consists of five lines separated by semicolons. When expressions
are separated by semicolons they are treated as one big expression. Module al-
ways takes two arguments: the list of local variables and then a single expres-
sion. In practice, this single expression is almost always many lines of code sep-
arated by semicolons. The last line is almost always the output of the function
defined by the module, but it is possible for the output to not be on the last
line.

Example 5.4.3
the nearPrimes function rewritten as a module

nearPrimes n : Module

bigger, smaller ,
bigger n;
While PrimeQ bigger False, bigger ;
smaller n;
While PrimeQ smaller False, smaller ;
smaller, bigger

Notice that the syntax coloring for Example 5.4.2 is different than Example 5.4.3.
In the module example the local variables remain colored gray, further emphasizing
their distinction from variables elsewhere in the notebook. Because local variables
inside a module are kept separate from variables outside the module, it is perfectly
okay to use variable names that might also be used outside the module. They may
have the same name, but they are separate variables.

As a final example, let’s rewrite the Sieve of Eratosthenes given in the Quiz
in Chap. 3 as a function using Module. The code is in Example 5.4.4. Let’s go
through the example and see how it works. We name the function sieve and it has
one argument n. The function is going to return a list of all primes up to n. We use
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Module to define the function and the first argument is the list of local variables.
In this case there are only two, net and j.

Example 5.4.4
In[83]:= Sieve of Eratosthenes

sieve n : Module

net, j ,
initialize the sieve

net Range n ;
for each k from 2 to n 2 see if it is

"crossed out." If not,
cross out all of its multiples
Do
If

see if k has been crossed out
net k 0,

cross out all its multiples
j 2 k;
While j n, net j 0; j k

, k, 2, n 2
;
sort and drop 0 and 1

Drop Union net , 2

The first line initializes net by setting it equal to the list of consecutive integers
from 1 to n. We use the Range function to do this. The next instruction is a Do loop.
The loop is indexed by k which advances from 2 to n/2. When k is 2, we are going
to “strike out” all multiples of 2, except 2 itself. Then when k is 3, we are going
to strike out all multiples of 3, and so on. After we are done striking out all the
multiples of a number, we advance to the first number that has not yet been struck
out. That number must be prime since it is not a multiple of any smaller number.
(If it were, it would have been struck out.) We’ll keep it, but strike out all of its
multiples. When we are done, the numbers that have not been struck out are the
primes.

As the process proceeds, we will strike out a number from the list by replacing
it with a zero. Thus our first line in the body of the Do loop begins If[net[[k]]�=0,
. . . . So, if the condition is True, that means that k is prime and we need to strike
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out all of its multiples. If it is False, then k has been struck out and we can go
onto the next number. The If function makes up the entire body of the Do loop.
If net[[k]] is in fact zero, then nothing happens on this pass through the loop
and we go onto the next value of k. This continues until k is more than n/2. We
can stop at this point since the first multiple of a number more than n/2 is al-
ready bigger than n and so out of the range of the sieve. All that remains is to
see what is done if in fact k is prime. In this case, we execute the While loop.
Before entering the loop we set j=2. While the multiple j k of k is still within the
range of the sieve, we strike it out and go onto the next multiple by increment-
ing j. The construction j+ = k will increment j by k. Using j+ = 1 is equivalent
to j++.

When the Do loop is over, net will contain a zero in the position of every com-
posite number. Only the prime numbers will be left. (Actually, 1 will also be left.)
The function Union[net] will now return the list sorted and free of duplicates.
Thus it will begin {0, 1, 2, 3, 5, 7, . . . }. Using Drop to eliminate the zero and
the one in the first two positions, we are left with all the primes less than or equal
to n.

As a final note on Example 5.4.4, notice that the index k used in the Do loop is
not given in the list of local variables used by the module. Counting indices of this
kind are always local to the function in which they are used, so do not need to be
explicitly declared as local variables.

Before ending the chapter, let’s do one more example. Given a starting integer k,
the Collatz Conjecture says that the sequence of numbers generated by repeatedly
applying the function g defined in Example 5.3.2 will lead to 1. This sequence is
called the orbit of k. We’ll talk more about orbits in Chap. 10.

Example 5.4.5
In[54]:= computing the Collatz orbit of k

k 27;
orbit k ;
While k 1, AppendTo orbit, k g k
orbit
ListPlot orbit,
Joined True,
PlotRange

0, Length orbit , 0, Max orbit
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Example 5.4.5 (Continued)
Out[57]= 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214,

107, 322, 161, 484, 242, 121, 364, 182, 91,
274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593,
1780, 890, 445, 1336, 668, 334, 167, 502, 251,
754, 377, 1132, 566, 283, 850, 425, 1276, 638,
319, 958, 479, 1438, 719, 2158, 1079, 3238,
1619, 4858, 2429, 7288, 3644, 1822, 911, 2734,
1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308,
1154, 577, 1732, 866, 433, 1300, 650, 325, 976,
488, 244, 122, 61, 184, 92, 46, 23, 70, 35,
106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

Out[58]=

0 20 40 60 80 100
0

2000

4000

6000

8000

Example 5.4.5, which is a slight modification of Example 5.3.6, will save the
orbit so that we can plot it using ListPlot. The example follows the orbit of 27. In
the first two lines we set the value of k and initialize orbit to be {k}. We then use a
While loop to repeatedly apply g so long as k>1. We could have used While[k>1,
k=g[k]] to do this, but then there would be no record of the orbit. So, during each
pass through the loop we use AppendTo to append the next step in the orbit to the
list orbit. Notice that we both name k to be the next element of the orbit as well
as append it to the orbit list in a single step. We could just as well have written
While[k>1, k=g[k]; AppendTo[orbit, k]].

The next line, orbit, will cause the orbit to be printed out. We end with ListPlot
which plots the orbit. So far we have used ListPlot by passing in a list of points to
be plotted. Here we have only passed in a list of numbers. If you check the syntax
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of ListPlot you’ll see that in such a case Mathematica will plot points having these
numbers as their y-coordinates, with the x-coordinate for each number being its
place in the list. We use the option Joined → True to connect the points with line
segments. Finally, notice the use of PlotRange and the upper limits in both the
horizontal and vertical direction that will change automatically and remain correct
as we experiment with different values for k.

From the plot, we can see the wild ride taken by the orbit of 27 as it climbs and
falls, eventually ending at 1.

In Example 5.4.6, we use Module to define the function collatzStoppingTime[n]
that will compute the length of the orbit of n.

Example 5.4.6
In[43]:= this function will give the minimum

number of iterations to reach 1 starting
from n
collatzStoppingTime n : Module

k n, count 0 ,
While k 1, k g k ; count ;
count

In[59]:= collatzStoppingTime 27

Out[59]= 111

The heart of the function is the While loop wherein we follow the orbit until we
reach 1. This time however, we want to count how many passes through the loop
are taken. We create a local variable count, set it to 0 before we enter the loop,
increment it each time we pass through the loop, and return it on the last line of
the Module. A nice option when using Module is that we can set the initial values
of local variables as we define them in the first argument of Module. So, we could
have begun the module as

collatzStoppingTime n : Module

k, count ,
k n;
count 0;

but it is simpler to set the initial values of k and count as we list them in the list
of local variables. Notice that we could use this simplification in Example 5.4.3,
setting both bigger and smaller equal to n when they are introduced in the list of
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local variables. We could then eliminate two lines of code from the body of the
loop. Similarly, in Example 5.4.4 we could have initialized net in the list of local
variables. The local variable list would then appear as {net = Range[n], j}.

Notice the use of k to take the place of n right from the begining. It will not work
if we try

In[61]:= collatzStoppingTime n : Module

count 0 ,
While n 1, n g n ; count ;
count

Try it! The problem is with n=g[n]. Since n is the input to the function we can use
it all we want on the right-hand sides of equals signs, but we cannot reset the value
of the input to the function.

In Chap. 10, we’ll introduce the function NestList. This will give a much better
way of following orbits than Examples 5.4.5 or 5.4.6.

5.5 Find Out More
As always, there are lots of pages in the Help Files worth looking at. Here are a
few suggestions.

• tutorial/PatternsOverview—excellent discussion of patterns and their use in
defining functions.

• tutorial/FunctionsAndProgramsOverview—a very nice tutorial on defining
functions.

• tutorial/SettingUpFunctionsWithOptionalArguments—just what it says. It’s
part of the larger tutorial/PatternsOverview.

• guide/LayoutAndTables—a nice guide on laying out tables.

• tutorial/Conditionals—part of the larger tutorial/EvaluationOfExpressions-
Overview, this is a nice tutorial on conditionals, statements that allow branch-
ing in programming.

• tutorial/LoopsAndControlStructures—an excellent discussion of loops. It’s
part of the larger tutorial/EvaluationOfExpressionsOverview.

In addition to the above, there is a nice article in Wikipedia on the Collatz
Conjecture.
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Quiz
1. Define a function (in a single line) that will compute the surface area of a right

circular cylinder of radius r and height h.

2. After using the mortgage payment function defined in Example 5.1.3, you
might decide that the number of months to pay off the loan (currently set to
360) should also be an argument to the function. Rewrite the function to accept
three arguments: the principal P , interest rate r , and the number of months to
pay off the loan, m.

3. Define a function that will take a year such as 2008 and return True if it is a
leap year and False if it is not. (You’ll need to look up the exact definition of
leap years to do this!)

4. Define the function dayCount[day , month , year ], that will return the num-
ber of days from the beginning of that year to, and including, the given date.
For example, dayCount[6, 1, 2007] is 6.

5. Suppose data = {{r1, θ1}, {r2, θ2}, . . . , {rn, θn}}. Write a pure function expr&
so that Map[expr&, data] produces the list {r1 sin θ1, r2 sin θ2, . . . ,

rn sin θn}.
6. Create an input cell whose output cell is the multiplication table for integers 1

through n for any n. The i, j entry in the table should be the product i · j and
the rows and columns should be labeled with the factors i and j .

7. Modify nearPrimes[n] in Example 5.4.3 to return the distance from n to the
nearest prime.

8. Create a function that will take two positive integers n and m as input and
return the list of primes p such that n ≤ p ≤ m. (Hint: Use PrimeQ.)

9. Use a While loop to find the smallest integer n such that collatzStopping-
Time[n] is equal to 200. (Hint: Start at 1 and keep going up until you reach an
integer that has the desired property.)

10. The ancient Babylonians devised the following algorithm for finding the square
root of a. First start with a reasonable guess and call it x0. If x0 really were the
square root of a, then x2

0 = a, or equivalently, x0 = x0
a . But since our guess is

not likely to be the square root of a, the numbers x0 and x0
a will be different.

Hence, let’s use their average as our next guess. This gives

x1 = x0 + a
x0

2

We then repeat the process using x1 to produce x2, and so on, with each suc-
cessive step taking us closer to the square root of a.
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For example, suppose we want to find the square root of 5. If we start
with a guess of x0 = 2, this leads to x1 = (2 + 5/2)/2 = 9/4, which leads
to x2 = (9/4 + 5/(9/4))/2 = (9/4 + 20/9)/2 = 161/72, and so on. This is
already quite close to the square root as (161/72)2 − 5 = 1/5184.

Define a function that will use the Babylonian algorithm to find the square
root of any number. In particular, after entering a and x0 into the function,
continue to calculate successive approximations x0, x1, x2, . . . until x2

i is within
10−5 of a.
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CHAPTER 6

Three-Dimensional
Graphics

In Chap. 2, we saw how to plot a variety of two-dimensional objects. Almost all
of the functions that were discussed there have a version that works similarly for
three-dimensional objects. In this chapter we’ll see how to plot curves and surfaces
in three-dimensional space as well as other kinds of objects.

6.1 The Plot3D Function
Let’s start with the Plot3D function which is the analog of the Plot function. We can
use Plot3D to plot the graph of a two-variable function in three-dimensional space.
Example 6.1.1 shows the graph of the function x2 + y2. The syntax for Plot3D is
very similar to that of its two-dimensional cousin Plot. The first argument is the
function that we want to plot the graph of, in this case x2 + y2. But now there are
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two independent variables, x and y, so the next thing we must tell Mathematica is
the domain of each variable. We do this with the two lists {x, −2, 2} and {y, −2, 2}.
Mathematica draws a picture of the graph in perfect perspective as seen from a
point called the ViewPoint. (Check out ViewPoint in the Help Files. You’ll find
that you can easily change this parameter, and hence the view of the object.) It also
shades the surface and hides parts from view should one part of the surface be in
front of another part.

One of the really neat things about Mathematica is that after the graph of the
surface is drawn we can grab it with the mouse and spin it around! Try moving
the mouse over the graphic. The cursor will turn into a pair of curved arrows each
pointing to the tail of the other. If you hold down the mouse button and drag the
graphic you can rotate the surface in space! If you additionally hold down the
Option or Command key you can zoom in or out. Holding down the Shift key while
dragging allows you to drag the graph without rotating it.

Example 6.1.1
In[1]:= using Plot3D to graph a surface

Plot3D x2 y2 , x, 2, 2 , y, 2, 2

Out[1]=

–2

–1

0

1

2
–2

–1

0

1

2

0
2
4

6

8

Just like Plot, Plot3D will allow us to plot the graph of more than one surface
at once. We simply replace the function we want to plot with a list of functions.
Example 6.1.2 shows the graphs of both x2 + y2 and 4 − x2 simultaneously.
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Example 6.1.2
In[2]:= graphing multiple functions

Plot3D

x2 y2 , 4 x2 , x, 2, 2 , y, 2, 2

Out[2]=

–2
–1

0

1

2
–2

–1

0

1

2

0
2
4
6

8

6.2 3D Graphics Options
We saw in Chap. 2 that we could change the appearance of a graph in all sorts
of ways, either by using plot options or by using the 2D Drawing Tools or 2D
Graphics Inspector. We can change a 3D plot too, but only by using options, there
is no version of the Drawing Tools or Graphics Inspector for 3D. So, we see another
reason to learn to use both plot options as well as the Drawing Tools.

Example 6.2.1
In[3]:= using BoxRatios to control aspect

ratios

Plot3D

x2 y2 , 4 x2 , x, 2, 2 , y, 2, 2 ,

BoxRatios 1, 1, 2
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Example 6.2.1 (Continued)

Out[3]=

–2
–1

0
1

2

–2

–1
0

1
2

0

2

4

6

8

Notice that in both Examples 6.1.1 and 6.1.2 the scale in the vertical direction is
not the same as in the two horizontal directions. This was often true of 2D plots too
and in that case we could adjust the scales by using the AspectRatio option. Since
our plot now represents a three-dimensional object, surrounded by a bounding box,
there are really three separate aspect ratios possible, namely, height to width, height
to length, or length to width. To control these we can use the BoxRatios option.
Suppose we want to make the scales on the three axis in Example 6.1.2 all appear
to be the same length. We can either use the option BoxRatios→Automatic or the
more direct BoxRatios→{1, 1, 2} where we specifically tell Mathematica to make
the bounding box twice as high as it is wide or long. (Since the vertical direction
in the example spans 8 units, from 0 to 8, while each of the horizontal directions
spans 4 units, from −2 to 2, we need the bounding box to be twice as tall as it
is wide.) The first way is nice because it will keep the size of the bounding box
correctly chosen if we should later change the domain of x and y. Example 6.2.1
shows the result.

The surface which we graphed in Example 6.1.1 is called a paraboloid. It can
be obtained as a surface of revolution by rotating a parabola around its axis of
symmetry. We can emphasize this property of the surface if we graph it over a disk
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rather than a square in the x y-plane. To do this we can use the RegionFunction
option. The RegionFunction option will allow us to plot the graph of a function
over any region we specify in the xy-plane. For example, suppose we want to graph
x2 + y2 over the disk of radius 2 centered at the origin. The following example
shows how to do this by using the option RegionFunction→Function[{x, y, z},
x2+y2 <4]. To specify a different region we would just change the part where we
have written x2+y2 <4 and keep everything else the same.1

Example 6.2.2
In[4]:= restricting the domain with

RegionFunction

Plot3D x2 y2, x, 2, 2 , y, 2, 2 ,

BoxRatios Automatic,
RegionFunction

Function x, y, z , x2 y2 4

Out[4]=
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1Remember that the circle of radius r centered at the point (h, k) has equation (x − h)2 + (y − k)2 = r2. Thus
the circle with radius r = 2 and center (h, k) = (0, 0) has equation x2 + y2 = 4. The closed disk of all points
inside the circle together with the circle itself would be given by the inequality x2 + y2 ≤ 4. If we replaced the
less than or equal sign, ≤, with a strictly less than sign, <, we would then have the open disk consisting of only
the points inside the circle.
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There are more than 20 options that can be used with Plot3D. Evaluate Op-
tions[Plot3D] to see what they all are, or take a look at the Help Files under both
Plot3D and Graphics3D. We’ll close this section with two more examples, that
illustrate some of the options.

In Example 6.2.3, we have modified the RegionFunction option in an interesting
way and have also introduced the PlotStyle, BoundaryStyle, and Mesh options.
Starting with RegionFunction, we have replaced x2 + y2 < 4 with x2 + y2 < 4 &&
(x > 0||y > 0) && (1 < z < 2||3 < z < 4). This describes the points to include

Example 6.2.3
In[34]:= using PlotStyle, BoundaryStyle, & Mesh

Plot3D x2 y2, x, 2, 2 , y, 2, 2 ,

BoxRatios Automatic,

RegionFunction Function

x, y, z , x2 y2 4 &&
x 0 y 0 &&
1 z 2 3 z 4

,

PlotStyle Opacity .5 , Blue ,
BoundaryStyle Red, Thickness .01 ,
Mesh None

Out[34]=
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in the plot by using three different conditions combined with the “logical and”
represented by the double ampersands, &&. Mathematica will only plot points
where all three conditions are true. The first condition is the same as what we had
before, namely, x2+y2 <4. But we have added to this the second condition (x>0
|| y>0). This condition also uses a logical operator, the “logical or,” ||. Thus the
second condition asserts that either x > 0 or y > 0 (or both are greater than zero).
This rules out both x and y being negative or zero and hence we do not see any
surface over the “third quadrant” of the xy-plane. Finally, the third condition says
that z must either be between 1 and 2, or be between 3 and 4.2

The PlotStyle option allows us to alter the plot in many ways. In this case,
we have chosen to change the opacity and the color of the plot. The opacity of
the surface is a measure of its transparency, with Opacity[0] being completely
transparent and Opacity[1] be opaque. We have also told Mathematica to color
the surface blue by using the color name Blue (instead of RGBColor[0, 0, 1]).
Mathematica has conveniently provided a handful of named colors:

Red Green Blue Black
White Gray Cyan Magenta
Yellow Brown Orange Pink
Purple LightRed LightGreen LightBlue
LightGray LightCyan LightMagenta LightYellow
LightBrown LightOrange LightPink LightPurple

Each of these has a corresponding RGBColor code, or in the case of Black, White,
Gray, and LightGray, a GrayLevel code. If you want to find out what the code is just
enter a color name into a cell and evaluate it. The output will be the corresponding
color code.

Additionally, we have used BoundaryStyle to change the appearance of the
edge, or boundary, of the surface. In this case, we have colored it Red and given
it a Thickness of .01. Finally, Mesh→None has turned off the gridlines, or mesh,
that is normally drawn on the surface. We can not only turn the mesh on or off, but
also space the mesh lines as we please or color the surface checkerboard fashion
between the mesh lines.

We close this section with one more example that illustrates some neat effects
that can be gotten using plot options. In Example 6.2.4, we have switched to a new
function, x2, as well as thrown in some new plot options. Filling can be used to fill

2If P and Q are “statements,” then the compound statement P && Q (which we read “P and Q”) is true exactly
when both P and Q are true. The compound statement P||Q (which we read “P or Q”) is true exactly then either
P or Q or both are true.
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in the space between the surface and some other place. In this case by specifying
Filling → Bottom Mathematica has filled in the space between the surface and the
bottom of the bounding box. We have also used FillingStyle so that the filling is
Green and has Opacity[.3]. Since the filling is nearly transparent it may be difficult
to see in the figure. (Filling can also be used in two-dimensional plots with Plot.
Try it! Look up Filling in the Help Files to see what values it can take.) You should
try this example and play with the opacity parameter. Interestingly, with an opacity
of zero (transparent) the green disk at the bottom of the bounding box is still shown.
So this is a neat way to color in the domain of the function in the xy-plane.

Example 6.2.4
In[1]:= Filling in below the surface

Plot3D x2, x, 2, 2 , y, 2, 2 ,

BoxRatios Automatic,
RegionFunction

Function x, y, z , x2 y2 4 ,

BoundaryStyle Red, Thickness .01 ,
Filling Bottom,
FillingStyle Green, Opacity .3 ,
Mesh 8,
MeshShading Black, None , None, Black

Out[1]=
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We have also used the Mesh option, together with MeshShading, to color the
surface checkerboard style. The option Mesh→8 tells Mathematica to place 8
mesh lines in each direction. The option MeshShading→{Black, None},{None,
Black}} then causes the spaces between the mesh lines to alternately be colored
Black and None in each of the x and y directions.

There are simply too many plot options to explain them all here. You should look
at the Help Files which are filled with lots and lots of examples. The main thing to
keep in mind is: If you can imagine it, Mathematica can probably do it.

6.3 Surfaces of Revolution
As we already mentioned, the paraboloid of Example 6.1.1 is a surface of revolution
obtained by revolving the graph of x2 around its axis of symmetry. Mathematica
has a built in function, RevolutionPlot3D that will plot surfaces of revolution. In
Example 6.3.1 we revolve the graph of cos x around the z-axis.

Example 6.3.1
In[12]:= graphing a surface of revolution

RevolutionPlot3D Cos x , x, 0, 2 π

Out[12]=
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5
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–1.0
–0.5
0.0
0.5
1.0

In this example the arguments of the RevolutionPlot3D function are the gen-
erating curve Cos[x] and its domain list {x, 0, 2π}, exactly the same arguments
we would use in the Plot function if we wanted to plot the curve z = cos x in
the xz-plane. However, instead of plotting this curve, RevolutionPlot3D spins the
curve around the z-axis and plots the resulting surface. If we wanted to revolve a
different curve around the z-axis we would replace Cos[x] with the new equation
of the generating curve. Of course, all the usual plot options can be used with
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RevolutionPlot3D even though in this example we did not use any. It is also worth
mentioning that RevolutionPlot3D can only be used to spin around the z-axis.

In addition to the list {x, 0, 2π}, which defines the domain of the generating
curve, we may also enter, if we want, the angular domain of the plot. For example,
suppose we only want to spin the generating curve half way around the z-axis. We
simply follow the curves domain with a similar list for the domain of the angle. The
actual variable that we use for the angle can be anything. Example 6.3.2 illustrates
this as well as two useful options for turning off the bounding box and the axes.

Example 6.3.2
In[2]:= restricting the angular domain

RevolutionPlot3D
Cos x , x, 0, 2 , , 0 ππ , ,
Boxed False,
Axes False

Out[2]=

The option Boxed → False causes the bounding box to not be drawn (as opposed
to the default Boxed → True) and the option Axes → False causes the axes, with
tick marks and scales, to not be drawn (as opposed to the default Axes → True).

So far we have seen how to use RevolutionPlot3D by describing the generating
curve as the graph of a function of one variable. But what if the generating curve
is not the graph of a function? For example, suppose we want to revolve a circle
around a line to generate a torus, or doughnut-shaped surface. We cannot describe
the circle as the graph of a function, but we can describe it parametrically, and
fortunately for us, RevolutionPlot3D will accept a description of the generating
curve parametrically too. Consider the circle in the xz-plane centered at (2, 0)

and with radius 1. We can describe its (x, z)-coordinates parametrically as (2 +
cos t, sin t), where the parameter t goes from 0 to 2π . How to revolve this curve
around the z-axis is illustrated in Example 6.3.3.
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Example 6.3.3
In[3]:= describing the generating curve

parametrically
RevolutionPlot3D
2 Cos t , Sin t , t, 0, 2 π

Out[3]=
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0

2
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–0.5
0.0
0.5
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Notice that the first argument of RevolutionPlot3D is a list of functions, and
with the functions Plot or Plot3D we use a list of functions as the first argument
when we want to plot more than one curve or surface simultaneously. So the syntax
of RevolutionPlot3D is slightly different, and the reason is so that we can give the
generating curve parametically if we want to. It is possible to plot more than one
surface of revolution simultaneously and to do so we provide a list of each generating
curve. But now each generating curve must itself be contained in a list. Thus to
spin both z = x2 and z = cos x around the z-axis simultaneously we would write

RevolutionPlot3D[{{x2},{Cos[x]}}, {x, 0, 2π}]

If we want to spin more than one generating curve, and describe one of them
parametrically, then we need to describe all of them parametrically (and have the
same parameter and domain for each). Try evaluating the following:

RevolutionPlot3D[
{{t, t},{t,-2 t},{4+Cos[t], Sin[t]}},
{t, 0, 2 Pi}

]

You should see two cones joined at their vertex surrounded by a torus. Each of
the three generating curves is described parametrically: (t, t) describes a line that
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sweeps out a cone above the xy-plane; (t, −2t) describes a line that sweeps out
a cone below the xy-plane; (4 + cos t, sin t) describes a circle that sweeps out a
torus.

We can make Example 6.3.3 a little more interesting by adding a few options as
the next example shows.

Example 6.3.4
In[4]:= using options to jazz up the plot

RevolutionPlot3D
2 Cos t , Sin t , t, 0, 2 π ,
Boxed False,
Axes False,
Mesh 9,
MeshShading

GrayLevel .9 , None , None, GrayLevel .9

Out[4]=

The option Mesh→9 caused 10 gridlines in each direction to be drawn and
MeshShading→{{GrayLevel[.9], None},{{None, GrayLevel[.9]}} caused the
mesh to be colored checkerboard fashion with squares that alternate from clear to
gray.

6.4 Drawing Contours or Level Sets
There are many different ways that we can try to visualize a function. One way,
which we have already discussed in both this chapter and Chap. 2, is to draw the
graph of the function. Functions like Plot, ParameticPlot, and Plot3D do just that.
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But another way to visualize a function is to draw its contours or level sets. A single
contour, or level set, is a subset of the domain of a function where the function is
constant. In the case of a function of two variables a single contour is typically a
curve in the domain. Weather maps that show air pressure are perhaps a familiar
example. In this case, the contours are also known as “isobars,” since everywhere
along a single contour the pressure is equal. Topographic maps used for hiking and
orienteering also provide a good example. In this case, the contour lines represent
places where altitude above sea level is constant.

We can use Mathematica to draw contour diagrams of functions of both two
and three variables by using the functions ContourPlot and ContourPlot3D. Let’s
start with something simple. Example 6.4.1 shows the contour lines of the function
x2 + y2. We have already seen the graph of this function in Example 6.1.1. It is the
surface of revolution obtained by spinning the graph of z = x2 around the z-axis.
Since it is a surface of revolution its contour lines must be circles!

Example 6.4.1
In[5]:= contours of the paraboloid are circles

ContourPlot x2 y2, x, 2, 2 , y, 2, 2

Out[5]=

–2 –1 0 1 2
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2

In this example we see a set of concentric circles with a coloring scheme that is
dark in the center and becomes progressively lighter as we move out. Each circle
is a contour, or level set. The value of the function is constant along each contour.
A really neat feature of ContourPlot is that Mathematica will display the value of
the function at a specific contour if we move the mouse pointer to that contour. Try
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it! In this case, we can discover that the values of the function at each contour as
we start in the center and move out are 1, 2, 3, 4, 5, 6, and 7. If you are practiced
with topographic maps then it is not hard to imagine the graph of the function. It is
low at the origin and then becomes higher as we move out. Since the contour lines
are not equally spaced we can also tell that the graph is getting steeper as we move
away from the center.

As with every graphics function we have seen so far, we can put in lots of options
to customize the plot. What kinds of things would be worth changing in a contour
plot? It would certainly depend on what you were making the plot for, but at least
two items that might be useful to customize are the domain of the function and the
values of the function where the contours are drawn.

Changing the domain is easy. Of course, when we provide the domain lists
for each of the two variables we are tacitly providing a rectangular domain. In
Example 6.4.1, we let both x and y run from −2 to 2. But we can use the option
RegionFunction to further restrict the domain. Example 6.4.2 illustrates this.

Example 6.4.2
In[6]:= restricting the domain of the plot

ContourPlot x2 y2, x, 2, 2 , y, 2, 2 ,

RegionFunction Function x, y , x2 y2 4

Out[6]=

–2 –1 0 1 2
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To control where Mathematica places the contours we can use the Contours
option. Example 6.4.3 shows the contours of the function x2 − y2 at every integer
from −3 to 3. We have also used the option ContourLabels→Automatic so as to
label each contour with the value of the function there. Mathematica decides where
to place the labels so as to maximize readability. If this were a topographic map, the
experienced hiker could tell that we were looking at a saddle or mountain pass. The
saddle connects two valleys located at the top and bottom of the map (and colored
dark). The saddle is a low point on a ridge that runs from the left to the right sides
of the map.

Example 6.4.3
In[7]:= labeling the contours

ContourPlot x2 y2, x, 3, 3 , y, 3, 3 ,

Contours 3, 2, 1, 0, 1, 2, 3 ,
ContourLabels Automatic

Out[7]=
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If we are given a function of two variables we now have two ways to visualize it.
We can draw its graph, or we can plot its contours. Both can be quite helpful. But
what if we are trying to understand a function of three variables? We can’t draw
its graph as that would require a fourth dimension! But we can draw its contours!
In general, we should expect the contour sets to be surfaces. Again, remember that
contours always lie in the domain of a function. So when we look at the contours of
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a three-variable function we are looking at the domain of the function with specified
sets where the function is constant. Let’s try it out.

Example 6.4.4 uses ContourPlot3D to plot the contours of the function xyz.
We have also used a couple of nice options to modify the plot. We have specified
that the contours should correspond to functional values of −2, −1, 0, 1, and 2 and
have used ContourStyle to control the opacity of each contour surface. Finally,
we have turned the mesh off with Mesh→False. Notice that one of the contours
is the union of the three coordinate planes. In each of these planes at least one of
the coordinates is zero and so the product is zero. Conversely, if xyz = 0 then at
least one of the three variables must be zero. So the union of the three coordinate
planes is the contour corresponding to a functional value of zero. But which of the
contour surfaces describes where the function is 1 or 2?

Example 6.4.4
In[9]:= contours of xyz are surfaces

ContourPlot3D
x y z, x, 2, 2 , y, 2, 2 , z, 2, 2 ,
Contours 2, 1, 0, 1, 2 ,
ContourStyle Opacity .8 ,
Mesh False

Out[9]=

–2
–1

0

1

2

–2

–1

0

1
2

–2

–1

0

1

2



CHAPTER 6 Three-Dimensional Graphics 153

Unlike ContourPlot, ContourPlot3D does not display the value of the function
as we move the mouse over the contours. Nor can we display those values with
ContourLabels which is no longer an allowable option. We’re on our own here
to understand what we are looking at! Example 6.4.5 shows how to plot a single
contour. Notice the use of double equals signs. Remember that a single equals sign
in Mathematica is used for replacement, replacing the value of the variable on the
left with the value of the one on the right, as in a = 3. Two equals signs are used
when we want to test for equality. Example 6.4.5 plots the contour of xyz, where
the value of the function is equal to 1.

Example 6.4.5
In[10]:= graphing a single contour

ContourPlot3D
x y z 1, x, 2, 2 , y, 2, 2 , z, 2, 2 ,
ContourStyle Opacity .8 ,
Mesh False

Out[10]=
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If we want to see different contours corresponding to different values of the
function, we can just repeat this example, replacing xyz == 1 with whatever value
we want. What a great place to use Manipulate! Let’s replace xyz == 1 with
xyz == a and then manipulate the parameter a. This is shown in Example 6.4.6.
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Notice that instead of listing the parameter and its domain as {a, −1, 1}, we have
listed it as {{a, 0}, −1, 1}. This form tells Mathematica that a should vary between
−1 and 1, but that its initial value is set to zero. When the plot is rendered for the
first time, it is done so with a = 0.

Example 6.4.6
In[11]:= animating the contours

Manipulate
ContourPlot3D
x y z a, x, 2, 2 , y, 2, 2 , z, 2, 2 ,
ContourStyle Opacity .8 ,
Mesh False ,
a, 0 , 1, 1

Out[11]=
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Notice that by using ContourPlot3D, we can graph the solution set to any
equation in three variables, even if we cannot conceive of that set as the graph of
a function. For example, consider the sphere with radius 4 and center at the origin
given by x2 + y2 + z2 = 16. This is not the graph of a function, so we could not
plot it with Plot3D, for example. However, it is a single contour of the function
x2 + y2 + z2, namely, the contour where the function is equal to 16. Thus we could
plot it using ContourPlot3D by plotting only the single contour corresponding to
16. Notice that this will work, at least in theory, for any equation in three variables,
for we can always think of such an equation as representing a single contour of
a function in three variables. The same goes for an equation in two variables too,
as we could then use the function ContourPlot. For example, suppose we want to
graph the solution set of the equation xy + x2 − sin y = x3. It would not be easy
to solve this for x in terms of y or for y in terms of x and hence we cannot really
conceive of this as the graph of a function in one variable. But if we rewrite this
as xy + x2 − sin y − x3 = 0, then we see that this is the single contour of the two-
variable function xy + x2 − sin y − x3 corresponding to a functional value of zero.

Example 6.4.7
In[12]:= the solution set of xy x2 Sin y x3

ContourPlot

x y x2 Sin y x3 0,
x, 10, 10 , y, 10, 10 ,
Epilog Table Point 0, k π , k, 3, 3

Out[12]=
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In Example 6.4.7, we use ContourPlot to graph this rather strange curve. Notice
that if x = 0 the equation reduces to − sin y = 0 and so y must be a multiple of π .
So all the points (0, 0), (0,±π), (0, ±2π), and so on, must lie on the curve. In the
plot we have used the Epilog option to plot these points after the graphic has been
rendered. We use Table to first make a list of the points and then plot them with
Epilog. The function Point is a graphics primitive.

6.5 Drawing Curves in 3-Space
Imagine a particle moving through space and tracing out a curve. Its position is a
function of time and hence each of its coordinates, x, y, and z, can be described as
a function of time. This gives us a parametric description of the curve with time
serving at the parameter.

Example 6.5.1
In[13]:= graphing a curve in space

helix ParametricPlot3D
Cos t , Sin t , t , t, 0, 2 π ,
PlotStyle Thickness .02

Out[13]=

–1.0–0.5 0.0 0.5 1.0

–1.0
–0.5

0.0
0.5

1.0

0

2

4

6
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For example, suppose that at time t a particle is located at the point

(x, y, z) = (cos t, sin t, t)

What will be the curve traced out by the particle? We can easily plot this with
Mathematica using ParametricPlot3D as seen in Example 6.5.1.

This curve is called a helix. It winds around the z-axis like the thread on a bolt.
As usual, ParametricPlot3D takes all the standard graphics options and we have
used PlotStyle to thicken up the curve. In fact, the helix lies on a cylinder of radius
1 whose axis is the z-axis. Wouldn’t it be cool to draw in the cylinder too, perhaps
just faintly by using a low opacity? We’ll do this in the next section after we see
how to plot a cylinder.

Let’s look at one more example of a parametric curve. A torus knot is a simple
closed curve that lies on the surface of a torus like that pictured in Example 6.3.3.
By simple we mean that the curve does not intersect itself, and by a closed curve
we mean one that begins and ends as the same point. Thus a simple closed curve
in space is a loop that does not intersect itself. Topologists call such a loop a knot
and a torus knot is just a knot that lies on a torus.3 A torus knot that winds around a
torus p times in the longitudinal direction and q times in the meridional direction
can be parameterized as

x(t) = R cos(pt) + r cos(pt) cos(qt)

y(t) = R sin(pt) + r sin(pt) cos(qt)

z(t) = r sin(qt)

where p and q are relatively prime integers, that is, their greatest common divisor
is 1. Here r is the radius of the circle used to generate the torus as a surface of
revolution, and R is the distance from the center of the generating circle to the
z-axis. Example 6.5.2 shows the torus knot with p = 3 and q = 2. This knot is
called the trefoil knot. Notice that at the beginning of the cell we have given values
to the variables r, R, p, and q. Then when we write the parametric formulas for
the coordinates inside the ParametricPlot3D function we simply use expressions
that contain r, R, p, and q. If we want to change any of the parameters for the knot
we just need to change the values at the beginning and Mathematica does the rest.
This is a good style that you should work to develop. Try this example out and
experiment with the values of the parameters!

3Topology is the branch of mathematics that deals with properties of space and especially how one space can
sit inside another. Knot Theory is the study of how a loop can be placed inside three-dimensional space.
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We have used the PlotStyle option Tube[.01] which is similar to Thickness but
which draws a tube centered on the curve. A nice feature of Tube is that is allows us
to clearly see where the knot crosses over itself. We have also used PlotRegion to
specifically make the bounding box large enough to contain the knot and the tube.
Notice the constant of 1.1 that is multiplied times the PlotRegion dimensions. If
this constant is too small the tube will be clipped off at the faces of the bounding
box. Check this out yourself! Also notice that we have used r and R in the definition
of the plot region so that if we change the value of either parameter in the first two
lines, the plot region will change accordingly.

It is not obvious from the plot that the knot does indeed lie on a torus. It would
be great to draw in the torus too. We’ll do this in the next section!

Example 6.5.2
In[18]:= draws the p,q torus knot

r 1;
R 1.5;
p 2;
q 3;
knot ParametricPlot3D

R Cos p t r Cos p t Cos q t ,
R Sin p t r Sin p t Cos q t ,
r Sin q t ,
t, 0, 2 π ,
PlotRange
1.1 r R, r R , r R, r R , r, r ,
PlotStyle Tube .1

Out[22]=

1.0
0.5
0.0

–0.5
–1.0

–2

–2

0

2

0

2
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6.6 Drawing Graphics Primitives
In the last section, we drew a helix and a torus knot. In both cases it would be nice to
also include the cylinder and torus that the curves lie on. We can do this by drawing
the cylinder or torus separately and combining the plots.

Example 6.6.1
In[34]:= plotting graphics primitives

cyl Graphics3D

Opacity .2 ,
Cylinder 0, 0, 0 , 0, 0, 2 , 1 ,
Red, Thickness .05 ,
Line 0, 0, 0 , 0, 0, 2 π

π

Out[34]=

The cylinder is a graphics primitive much like Line, Rectangle, Polygon, Circle,
and Disk which we already met in Chap. 2. That means we can easily draw a
cylinder using the Graphics3D function which works in a way entirely analogous
to the Graphics function which was explained in Chap. 2. Example 6.6.1 draws the
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cylinder which contains the helix. We have also used the graphics primitive Line
to draw the axis of the cylinder as well as used a couple of options. We have made
the cylinder fairly transparent and also made the axis thicker and Red.

The syntax for Cylinder is

Cylinder[{{x1, y1, z1}, {x2, y2, z2}}, r ]

where r is the radius of the cylinder and (x1, y1, z1) and (x2, y2, z2) are the endpoints
of its axis.

To combine this with the earlier plot of the helix we now use the Show function.
This function will display several graphics simultaneously. Notice that when we
created the first two plots we named then helix and cyl. This allows us to refer to
them by name in the Show function. As usual, we can even add options to Show! In
this case, we have removed the bounding box and the axes. The results are shown
below. We can now clearly see that the helix does indeed lie on the cylinder!

Example 6.6.2
In[35]:= superimposing helix and cylinder

Show
helix, cyl,
Boxed False,
Axes False

Out[35]=
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To insert the torus into our plot of the torus knot we’ll first use RevolutionPlot3D
to plot a torus, name it, and then combine it with the plot of the torus knot using
Show. We do this in Example 6.6.3. Notice that in describing the generating circle
for the surface of revolution, we use the parameters r and R that were already
defined when we drew the torus knot. Secondly, just to save space, we have used
a semicolon to suppress the output of RevolutionPlot3D so we do not see the plot
of the torus. (It is worth pointing out that the author first got everything working
properly and then added the semicolon at the end.) Finally, we display both plots
together using Show.

If you rotate the figure by dragging it with the mouse both the knot and the torus
move together and it is easy to see how the knot lies on the torus and winds around
it 2 times in one direction and 3 times in the other.

Example 6.6.3
In[13]:= superimposing torus and trefoil knot

torus RevolutionPlot3D
R r Cos t , r Sin t , t, 0, 2 π ,
PlotRange
1.1 r R, r R , r R, r R ,

r, r ,
Mesh False,
PlotStyle Opacity .95
;

Show torus, knot

Out[14]=

1.0
0.5
0.0

–0.5
–1.0

–2

0

2
–2

0

2

Using the 3D graphics primitives, it is possible to “build” all sorts of three-
dimensional objects. We close this chapter with a single example that hints at the
possibilities. In Example 6.6.4, we have drawn a “jungle gym” by using spheres and
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cylinders. The Table function is used 4 times to create the list of all the pieces. The
first Table creates a list of all the spheres. Each sphere is centered at a point with
integer coordinates and has a radius of .25. The Table function uses three indices,
i, j , and k each of which ranges from −1 to 1.

Example 6.6.4
In[33]:= a jungle gym built from spheres and

cylinders
Graphics3D

Red,
Table Sphere i, j, k , .25 , i, 1, 1 ,
j, 1, 1 , k, 1, 1 ,

Blue,
Table Cylinder i, j, k , i, j, k 1 ,
.1 , i, 1, 1 , j, 1, 1 , k, 1, 0 ,

Blue,
Table Cylinder i, j, k , i, j 1, k ,
.1 , i, 1, 1 , j, 1, 0 , k, 1, 1 ,

Blue,
Table Cylinder i, j, k , i 1, j, k ,
.1 , i, 1, 0 , j, 1, 1 , k, 1, 1

Out[33]=
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Thus we create a list of 27 spheres. If we want to switch to a different number of
spheres, or change the radius of all the spheres, we need only change the arguments
in the Sphere or Table function.

The cylinders that connect the spheres are defined in three sets. Each set is
parallel to one of the coordinate axes. Can you see how each Table function creates
one set of the cylinders? We have run the cylinders all the way into the center of
each sphere rather than undertaking the more difficult task of ending them at the
surface of the sphere. If you look closely at the graphic you might be able to faintly
make out the cylinders extending inside the spheres.

6.7 Find Out More
We have highlighted Plot3D, RevolutionPlot3D, ParametricPlot3D, Gaphics3D,
ContourPlot, and ContourPlot3D, but there are still more Mathematica functions
that can be used for plotting three-dimensional objects. You might want to look
at SphericalPlot3D or RegionPlot3D. Look these functions up in the Help Files
where you can find out what they do, how to use them, and lots of neat examples.

There are also several very nice tutorials that you should look at. As usual, go to
the Help Files and search on each of the following to find the tutorial:

• tutorial/ThreeDimensionalSurfacePlots

• tutorial/ThreeDimensionalGraphicsPrimitives

• tutorial/DensityAndContourPlots

• tutorial/LightingAndSurfaceProperties

Quiz
1. Use Plot3D to plot the graph of the function cos x + sin y. Let both x and y

run from zero to 4π .

2. Repeat the first plot, but only graph that part of the surface that lies above the
xy-plane. (Hint: Use RegionFunction.)

3. Modify the previous plot still further so that only one “bump” of the surface is
displayed as shown below. Use BoxRatios so that it is drawn with the correct
aspect ratio.
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–2

0

2

0

2

4
0.0
0.5
1.0
1.5
2.0

4. Modify the plot even further so as to cut out a quarter of the bump as shown
below.

–2

0

2
0

2

40.0
0.5
1.0
1.5
2.0

5. Plot the contour lines of cos x + sin y.

6. Create a “torus with square cross section” by using a square as the generating
curve of a surface of revolution.

7. Repeat the previous exercise, but use Manipulate to allow the square to be
rotated around its center. (This is challenging!)

8. Draw a right circular cone whose base is a disk in the xy-plane with radius
1 and center at (0, 0) and whose cone point is located at (0, 0, 5). (Hint: Use
RevolutionPlot3D or RegionPlot3D.)

9. Repeat the previous exercise, but use Manipulate to allow the cone point to
be moved around in space. (Warning: This is hard!)



CHAPTER 6 Three-Dimensional Graphics 165

10. Use ParametricPlot3D to draw Lissajous knots. These are knots of the form

x(t) = cos(nx t + φx)

y(t) = cos(nyt + φy)

z(t) = cos(nzt + φz)

Start with nx = 3, ny = 5, nz = 7, φx = 0, φy = π/4, and φz = π/12. Use the
Tube option to make your plot look really nice!
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CHAPTER 7

Calculus

If mathematics is the language of science, then calculus is a large part of the dic-
tionary. Calculus is exactly what is needed to describe how things change, and
describing how things change is an important way in which scientists use math-
ematics. The authors of the book Calculus in Context1 looked at how scientists
actually use calculus in their work and discovered (not surprisingly) that modeling
with differential equations is one of the primary uses.

Mathematica can be used for all the usual computations involving calculus:
taking limits, finding derivatives, and computing integrals. In this chapter we’ll try
to hit the highlights of these computations. Obviously, this chapter cannot substitute
for a course in calculus. Our goal is to not to teach you calculus (we assume you
already know some, or are currently taking a course), but rather to describe a handful
of useful Mathematica functions.

7.1 Limits
The really big idea of calculus is that of the limit. Once this notion is defined and
understood it leads to the development of both the derivative as well as the integral,
the two pillars of calculus.

1In the humble opinion of the author, this book by J. Callahan, D.A. Cox, K.R. Hoffman, D. O’Shea, H. Pollatsek,
and L. Senechal (Freeman, 1995) is perhaps the most innovative calculus textbook of the late twentieth century.
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Suppose that f (x) is some function of x and we would like to know the behavior
of f (x) as x approaches some specific point, say x0. Of course, the value f (x0) of
f (x) at x0 is important for our understanding of f , but the value of f (x) at x0 may
or may not exist, and even if it does, it might be wholly unrelated to the behavior of
f near x0. The limit of f (x) as x approaches x0 is designed to capture information
about this behavior. However, the limit also may or may not exist, and even if it
does, might be unrelated to the value of f (x) at x0. (Of course, for nice functions,
both the limit of the function and the value of the function will exist at x0 and
furthermore, be equal to each other. In this case, the function is called continuous
at x0. But we are considering the most general possible case here.)

Recall that the limit of f (x) as x approaches x0, should it exist, is the number
L such that the difference between f (x) and L can be made arbitrarily small by
choosing x sufficiently close to, but not equal to, x0. If the limit does exist, and is
equal to L , we’ll write

L = lim
x→x0

f (x)

Let’s look at some examples.
A classic example involves f (x) = sin x/x . Notice that f (x) does not exist at

zero. If we try to substitute zero for x this gives the meaningless expression 0/0.
But, remember that having a value at a point and having a limit at a point can be
entirely different things. Perhaps this function still has a limit as x approaches 0.
Consider the following Mathematica example.

Example 7.1.1
In[35]:= computing Sin x x near zero

f x :
Sin x

x
f 0
N Table f 10^k , k, 0, 5, 1
N Table f 10^k , k, 0, 5, 1

Power::infy : Infinite expression 1
0

encountered.

::indet : Indeterminate expression 0 ComplexInfinity encountered.

Out[36]= Indeterminate

Out[37]= 0.841471, 0.998334, 0.999983, 1., 1., 1.

Out[38]= 0.841471, 0.998334, 0.999983, 1., 1., 1.
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We first define f (x) = sin x/x and then try to evaluate f (0), which fails. Next
we use Table to evaluate f (x) at increasingly smaller positive numbers. Note the
use of the numerical function N and the construction N@Table[]. In general, if f is a
function, then f@expr is equivalent to f [expr]. The values of the function are getting
closer and closer to 1 — eventually so close that Mathematica displays the values
as 1. We repeat the experiment for negative numbers that are approaching zero and,
of course, get the same results since f (−x) = f (x). Based on this experiment it
certainly seems like the limit of f (x) as x approaches zero is 1, and, in fact, it is
well known that this is the case.2

As further evidence of this, let’s plot the graph of f (x).

Example 7.1.2
In[25]:=

Plot Sin x x, x, 3 Pi, 3 Pi ,
PlotRange 3 Pi, 3 Pi , 1, 1

Out[25]=
–5 5

–1.0

–0.5

0.5

1.0

 plotting Sin[x]/x

2It is not too hard to prove this. Let x be a small angle and
consider the circular sector with radius 1 and central angle
x . Triangle OBC has more area then the sector which in
turn has more area then the triangle OAD . This gives the
inequality

tan x

2
>

x

2
>

sin x cos x

2

which can be rewritten as

1

cos x
>

x

sin x
> cos x .

Thus as x approaches 1, x
sin x is trapped between two quan-

tities that are each approaching 1, so must approach 1 itself.

O A B

C
D

x
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Notice that Mathematica makes no objection to drawing the graph even though
the function does not exist at zero. Technically, the graph of f (x) should contain a
“hole” at the point (0, 1), but, of course, this is impossible to discern from the plot.

Finally, it turns out that we can just ask Mathematica directly for the limit! The
function Limit is just what we need and is illustrated in the next example.

Example 7.1.3
In[9]:= finding a limit

Limit Sin x x, x 0

Out[9]= 1

Note that Limit takes two arguments: the expression whose limit we wish to
evaluate as x approaches x0 and then the argument x → x0 to indicate that x
should approach x0. Here are some more examples.

Example 7.1.4
In[16]:= a handful of limits

Limit
x

x
, x Infinity

Limit
Log x

x
, x Infinity

Limit
ax2 b

cx2 d x e
, x Infinity

Limit x x 1 , x Infinity

Limit 1
a

x

x

, x Infinity

Limit
Sin x

x

1

x2

, x 0

Out[16]=

Out[17]= 0

Out[18]=
a
c

Out[19]= 0

Out[20]=
a

Out[21]=
1
1 6
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In Example 7.1.3, we are led to the indeterminant expression 0/0 if we try to
substitute zero for x . Other possible indeterminant expressions are

0 · ∞, ∞ − ∞,
∞
∞ , 1∞, 00, and ∞0

Each of the limits in Example 7.1.4 is associated to one of these indeterminant
forms. Notice that we may take limits as x approaches infinity, and that even if
a limit does not exist it still might make sense to declare the limit to be infin-
ity (or negative infinity). Limit is also capable of dealing with expressions that
have unknown constants and parameters and simply returns an answer that in-
volves the parameters. This is the case in the third and fifth limits in the above
example.

7.2 One-Sided Limits
Consider the graph of f (x) = tan x , whose graph is shown below between −2π

and 2π .
We have plotted the function twice to point out a subtlety that can occur when a

function is not continuous. Notice that in the first plot vertical lines appear at odd
multiples of π/2. These are not part of the graph and should not be present. To
eliminate them we use the Exclusions option in the second plot and specifically
tell Mathematica not to plot anything at points where tan x is undefined. Notice
that we use the Table function to create the list of points to be excluded from the
plot.

What is the limit of tan x as x approaches π/2? In this case, it depends on whether
we approach π/2 from the right or from the left. If we approach from the right the
function approaches negative infinity, but if we approach from the left, the function
approaches positive infinity. Thus different one-sided limits exist at π/2. We can

Example 7.2.1
In[35]:= using exclusion in a plot

Plot Tan x , x, 2 π
π

π π
π

π

π, 2 ,
Ticks Table k 2, k, 4, 4 , None

Plot Tan x , x, 2 , 2 ,
Ticks Table k 2, k, 4, 4 , None ,
Exclusions Table j 2, j, 3, 3, 2
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Example 7.2.1 (Continued)

ππOut[35]=
–2π 2π3π– –π

2
3π
22

π
2

ππ–2π 2π3π– ––π
2

3π
22

π
2

Out[36]=

restrict the Limit function to take only one-sided limits as shown in Example 7.2.2.
To do this, we use the Direction option. Using this option with a value of 1 or −1
will produce one-sided limits from either the left or right side, respectively.

Example 7.2.2
In[37]:= finding one sided limits

Limit Tan x , x 2, Direction 1
Limit Tan x , x 2π

π
, Direction 1

Out[37]=

Out[38]=

Sometimes a function just doesn’t have a limit at a point, even one-sided limits.
A classic example involves the function f (x) = sin(1/x), which has no limit at
zero. The behavior of f (x) near zero is quite interesting, and we plot the graph of
f (x) below.
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Example 7.2.3
In[41]:= a function with no limit at zero

Plot Sin 1 x , x, 1, 1

Out[41]=

–1.0 –0.5 0.5 1.0

–1.0

–0.5

0.5

1.0

As x approaches zero the function oscillates up and down between 1 and −1
with ever increasing frequency and does not approach any limit. What does Limit
give in this case?

Example 7.2.4
In[43]:= there is no limit at zero

Limit Sin 1 x , x 0

Out[43]= Interval 1, 1

As we see in the example, Mathematica can only report that the function stays
trapped in the interval from −1 to 1 as x approaches zero.

7.3 Multivariable Limits
Sometimes we want to find the limit of a function of several variables. For example,
what is

lim
(x,y)→(0,0)

x2 − y2

x2 y4 + x4 y2
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Of course, right away we see that the function is not defined at (0, 0). In fact, it is
not defined on either coordinate axis. To try to see what is going on, we have several
tools at our disposal: we can use Plot3D to visualize the graph of the function, we
can use ContourPlot to also help see what the graph must look like, and we can
also use Limit if we restrict ourselves to approaching (0, 0) along various curves.
Unfortunately, Mathematica does not have any function specifically designed for
computing multivariable limits. Let’s start with Plot3D and ContourPlot.

Example 7.3.1

In[44]:= Plot3D
x2 y2

x2 y4 x4 y2
, x, 1, 1 , y, 1, 1

Out[44]=

–1.0
–0.5

0.0

0.5

1.0
–1.0

–0.5

0.0

0.5

1.0

–200
–100

0
100

200

From the plot we can see that something nasty appears to be happening near
zero! Away from (0, 0), as we approach the x-axis the function appears to be
approaching infinity and as we approach the y-axis the function appears to be
approaching negative infinity. Example 7.3.2 gives us the contour plot.

From the contour plot it appears that the lines y = ±x are contours, or level
curves. Sure enough, if we let y = ±x then the function becomes 0/(2x6) = 0
for all x �= 0. So, if we were to approach (0, 0) along the line y = x or along
the line y = −x , the limit would be zero. But what if we approach (0, 0) along
other lines, say the line y = mx? We can use Limit to do this as the next example
shows.
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Example 7.3.2

In[45]:= ContourPlot
x2 y2

x2 y4 x4 y2
, x, 1, 1 , y, 1, 1

Out[45]=

–1.0 –0.5 0.0 0.5 1.0
–1.0

–0.5

0.0

0.5

1.0

Example 7.3.3
In[47]:= approaching the origin along the line y mx

Limit
x2 y2

x2 y4 x4 y2
. y m x, x 0

Out[47]= DirectedInfinity
Sign 1 m2

Sign m 2 Sign 1 m2

Here we have used the replacement rule /.y → m x to first substitute y = mx
into the expression before taking the limit as x approaches zero. We get a somewhat
strange answer involving DirectedInfinity so we need to know what this function is
in order to understand what we got. If z is a nonzero point in the complex plane, then
DirectedInfinity[z] is best thought of as the point at infinity obtained by starting
at zero and heading off to infinity in the direction of z. Thus DirectedInfinity[1]
is ∞, while DirectedInfinity[−1] is −∞. In this case, we see that the argument
of the DirectedInfinity function is itself a function of the slope m, which makes
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sense. The Sign[x] function is defined to be 1 if x > 0, −1 if x < 0 and 0 if x = 0.
Let’s plot the argument of the DirectedInfinity function.

Example 7.3.4
In[39]:= the argument of DirectedInfinity in Example

7.3.3

Plot
Sign 1 m2

Sign m 2 Sign 1 m2
, m, 3, 3 ,

Exclusions 1, 0, 1 ,
PlotStyle Thick

Out[39]=
–3 –2 –1 1 2 3

–1.0

–0.5

0.5

1.0

We see that if m is between −1 and 1 (and excluding zero), then the limit of
our original function is DirectedInfinity[1] which is infinity. But if |m| > 1 then
the limit is DirectedInfinity[−1] which is negative infinity. And, as we first saw,
if m = ±1 the limit is zero. The upshot of our investigations is that the f (x)

does not have a limit at x approaches (0, 0). If it did have a limit, L , we would
always get L no matter how we approach (0, 0). But what we have discovered is
that approaching (0, 0) along different routes (in this case, straight lines) yields
different limits.

Recall that a function is continuous at a point if it has a value there and a limit
there and the two are equal. Graphically, places where a function is not continuous
show up as breaks or tears in the graph, or places where the graph does not exist.
The function sin(x)/x does not exist at zero so it is not continuous there and its
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graph has a hole in it. The graph of tan x is even worse at the places where tan x
does not exist: instead of having holes, it has huge “jumps” where it instantly jumps
from infinity to negative infinity. Our last example, x2−y2

x2 y4+x4 y2 does not exist at (0, 0)

and so is not continuous there. Its graph is very badly behaved near (0, 0)!

7.4 Derivatives
Given a function f (x) its derivative can be defined as the limit

lim
h→0

f (x + h) − f (x)

h

The derivative can be interpreted as the instantaneous rate of change of f (x). Geo-
metrically, the derivative gives the slope of the line tangent to the graph of f (x). Of
course, as we have seen in the first part of this chapter, limits do not always exist,
so sometimes a function may not be differentiable, that is to say, have a deriva-
tive. Of course, all “nice” functions are differentiable. In particular, all polynomials
are, the exponential and logarithmic functions are and so are all the trigonometric
functions. If we then start combining differentiable functions by adding, subtract-
ing, multiplying, dividing, or composing we will produce differentiable functions,
with some exceptions occurring if we try to do unacceptable things like divide by
zero.

We can take the derivative of a function in Mathematica by using the derivative
function D. For example, suppose that f (x) is the polynomial f (x) = x4 − x3 +
2x + 1. The D function takes two arguments. The first is the function we want
to differentiate and the second is the variable with respect to which we want to
differentiate. Example 7.4.1 illustrates this.

Example 7.4.1
In[48]:= differentiating a polynomial

D x^4 x^3 2 x 1, x

Out[48]= 2 3 x2 4 x3

Of course, differentiating polynomials is pretty easy to do in our head. But
imagine trying to differentiate the function in the next example in your head!
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Example 7.4.2
In[58]:= a complicated derivative

D ArcTan Sin x10 1 x, x

Out[58]=

1
x ArcTan Sin x10

x2
10

1
x x9 Cos x10

1 Sin x10
2

An alternative to using D is to use the “prime” notation for derivatives introduced
by Lagrange.3 Example 7.4.3 illustrates this and also the fact that there appears to be
no limit as to how many primes we can use to denote higher and higher derivatives.
We also plot the function and its first and second derivative.

Example 7.4.3
In[67]:= using the "prime" notation for D

f x : Exp x Sin x

f' x
f'' x
f''' x
f'''' x
f''''' x
Plot f x , f' x , f'' x , x, 3, 1 ,
PlotStyle Thick

Out[68]=
x Cos x

Out[69]=
x Sin x

Out[70]=
x Cos x

Out[71]=
x Sin x

Out[72]=
x Cos x

3Joseph-Louis Lagrange (1736–1813) was an important mathematician. It is he who introduced the notation
f ′(x) (also f ′′(x) etc.) for the derivative of f (x) with respect to x . The purpose of the notation, he says, is to free
the intellect from the false idea of the infinitely small (as Leibniz’s notation dy

dx does not free the intellect), and
to make clear that the derivative is a function just like f (x), and derived from f (x). The term “fonction derivée”
from which the English term “derivative” comes is also due to Lagrange. He first introduced the prime notation in
the 1770s but it was done systematically in his Théorie des fonctions analytiques of 1797.
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Example 7.4.3 (Continued)

Out[73]=

–3 –2 –1 1

–1

1

2

3

The prime notation is handy, but clearly not what we want to use for higher order
derivatives. For anything past the third derivative it is probably better to switch
back to the D function with the optional syntax D[f[x], {x, n}] for taking the nth
derivative. For example, suppose we want to find the first, through fifth derivatives
of tan x . Example 7.4.4 does this. Note that we have used Table to make a table of
the successive derivatives. Each entry in the table is of the form D[Tan[x], {x, n}].
We have also used TableForm with the @ construction to display the elements of
the table nicely.

Example 7.4.4
In[74]:= the first 5 derivatives of Tan x

TableForm Table D Tan x , x, n , n, 0, 5
Out[74]//TableForm=

Tan x

Sec x 2

2 Sec x 2 Tan x

2 Sec x 4 4 Sec x 2 Tan x 2

16 Sec x 4 Tan x 8 Sec x 2 Tan x 3

16 Sec x 6 88 Sec x 4 Tan x 2 16 Sec x 2 Tan x 4

If we want to take partial derivatives of a function of more than one variable, we
simply list the variable that we wish to differentiate with respect to. To take mul-
tiple partial derivatives, simply list the variables in the order of the differentiation.
Example 7.4.5 should make this clear.
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Example 7.4.5
In[75]:= examples of partial derivatives

D Exp 3 x^2 y , x
D Sin x y , x, y
D g x y , y, 2

Out[75]= 6 3 x2 y x

Out[76]= Cos x y x y Sin x y

Out[77]= x2 g x y

Here we have taken the partial derivative of e3x2+y with respect to x , the second
partial derivative of sin(xy), first with respect to x and then with respect to y,
and finally, the second partial derivative of g with respect to y. When taking partial
derivatives Mathematica treats all variables other than the variable of differentiation
as constants. Notice that in the last example the function g was not previously
defined so Mathematica treated it abstractly.

We close this section by pointing out an easy to make error that illustrates some
subtle issues in defining functions as well as a subtle difference between D[f[x], x]
and f ′[x]. Suppose we define a function and then want to name its derivative so
that we can then use the derivative for things, including plotting the graph of the
derivative. Example 7.4.6 does not plot the derivative! But if the second line is
changed to g[x ] := f ′[x] it will plot the derivative! (Try it!!) What is going on
here?

Example 7.4.6
In[39]:= this will NOT plot the derivative

a problem due to delayed definition
f x : x^3

g x : D f x , x

Plot g x , x, 1, 1

General::ivar : –0.999959 is not a valid variable.

General::ivar : –0.959143 is not a valid variable.

General::ivar : –0.918326 is not a valid variable.

General::stop : Further output of General ::ivar will be suppressed during this calculation.
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Example 7.4.6 (Continued)

Out[41]=
–1.0 –0.5 0.5 1.0

–1.0

–0.5

0.5

1.0

The problem above occurs when we try to plot the derivative. Plot attempts to
evaluate the expression g[x] at various points between −1 and 1 so that it can then
plot these values. We defined g using the delayed definition construction (using :=)
rather than an immediate definition construction (using =). Recall that we discussed
the two methods of defining a function in Chap. 5. Since we defined g using delayed
definition, the definition of g as the derivative of f is substituted at the time that g is
called. The upshot of all of this is that when Plot tries to evaluate g at x = −.999959
it substitutes that value into both occurrences of x in D[f[x], x], after which Mathe-
matica is trying to take the derivative of f (−.999959) with respect to the “variable”
−.999959 which, of course, is not a variable. Hence the error message. A similar
problem will happen with the instruction Table[D[f[x], x], {x, 1, 10}]. In this case,
Mathematica will complain that “1 is not a variable,” “2 is not a variable,” and so
on.

There are several ways to solve the problem. The first way is to use imme-
diate, rather than delayed definition when we define g. If we change the second
line to g[x] = D[f[x], x] then the moment that g is defined it will be defined as
3x2 (because this is the derivative of x3 with respect to x). Then when g is eval-
uated by Plot it will be 3x2 that is evaluated, not D[f[x], x]. This is one case
where it make sense to use immediate rather than delayed definition to define a
function.

Another solution is to keep g defined with delayed definition but use a “dummy”
variable when we try to evaluate g in the Plot function. If we change the third line to
Plot[g[t]/.t → x, {x, −1, 1}] it will work. In this case when Plot encounters g[t] it
will substitute D[f[t], t]. This will be computed as 3t2 and then evaluated at various
values of x between −1 and 1 by replacing t with x .
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This is really what is happening if we go with the third solution of defining g
as g[x ] := f ′[x]. This is because Mathematica defines f ′[x] as D[f[t], t]/.t → x.
(We could also define g immediately as g[x ] = f ′[x] and this will work too.)

7.5 Minimum/Maximum Problems
One of the practical applications of calculus is to find maxima and minima. For
example, suppose we want to find the shape of a cylindrical can that contains the
most volume for a given amount of surface area. Suppose the can has a circular
base of radius r and a height of h. Then its volume is V = πr2h (area of the base
times the height) while its surface area is S = 2πr2 + 2πrh (twice the area of
the base plus the area of the sides, which is the circumference times the height).
Keeping S fixed we want to vary r and h so as to obtain the largest volume. The
volume is ostensibly a function of two variables, but because the surface area must
remain constant the two variables are not independent. In fact, we can solve for
one in terms of the other and the surface area S. It is easiest to solve for h in terms
of r and S obtaining h = S

2πr − r . If we now substitute this into the formula for
the volume we obtain V = πr2

(
S

2πr − r
) = Sr

2 − πr3. This is a cubic function of
r and we have plotted its graph in Example 7.5.1. Note that we have let S = 1 in
the plot, which makes sense because we may as well assume there is “one unit” of
area.

We now have the volume as a function of r alone (and the constant S) and we
want to know what value of r makes this as large as possible. Of course, r cannot
be any real number. It makes no sense for r to be negative and it also cannot be
the case that r is too big. For as r gets bigger the area of the top and bottom of the

can alone will soon add up to more than S. In fact, the biggest that r can be is
√

S
2π

at which point the top and bottom will each have area S/2 and there will be no
area left for the sides! At this point the height is zero and so is the volume. In our

graph, the cubic must cross the r -axis at
√

S
2π

=
√

1
2π


 0.398942 since we have
let S = 1 in the plot.

At the other extreme is r = 0, where again we have a volume of zero. In order to
get a can with nonzero volume, we should assume that r lies strictly between zero

and
√

S
2π

. Thus the only portion of the curve that we just plotted that we want to
consider is the portion in the first quadrant where both the radius and the volume
are positive. Looking at the graph, it is clear that it has a unique maximum value
on this domain.

We can find the maximum by using the fact that at the maximum the derivative
is zero, or in graphical terms, the slope is zero, which is to say, the tangent line
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Example 7.5.1
In[40]:= the volume of a can with one unit of

surface area as a function of its radius

Plot
r

2
rπ 3, r, .5, .5

Out[40]=
–0.4 –0.2 0.2 0.4

–0.10

–0.05

0.05

0.10

is horizontal. So, to find the maximum we simply need to compute the derivative
and then find out where the derivative is zero. All of these steps are contained in
Example 7.5.2.

In the first cell, we define the volume and area. Next we use the Solve function
to solve for the height in terms of the radius and the area S and then substitute this
expression of h into the volume formula.4

We then take the derivative of the volume with respect to the radius and simplify
what we get. Finally, we set the derivative equal to zero and solve for the radius,
obtaining two solutions. Only one is positive, so we let r equal that value. Going
back to the area equation, we use Solve again to find the height.

In the last cell, we take the ratio of the height to twice the radius (i.e., the ratio
of the height to the diameter) and get a value of 1. Thus the can with the largest
volume for a given surface area is the can that has the same height as diameter. That
is, a vertical cross containing the axis of the can is a square. Taking a quick look
at all the cans that are in my kitchen pantry I don’t see one can with this shape!
Why aren’t can manufacturers making efficient cans? What other factors in can
manufacturing, packing, shipping, and so on, have we left out that might lead to a
different optimal solution?

4We describe how to use the Solve function in detail in Chap. 8.
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Example 7.5.2
In[20]:= finding max volume of can with surface area S

volume Pi r^2 h
area 2 Pi r^2 2 Pi r h

Out[20]= h π

π

π
π

π

π

π

π

π

π

π

π

π

r2

Out[21]= 2 h r 2 r2

In[22]:= find height in terms of radius
Solve area S, h

Out[22]= h
2 r2 S
2 r

In[23]:= volume . volume in terms of r and S

Out[23]=
1
2
r 2 r2 S

In[24]:= derivative of volume wrt to r
D , r

Out[24]= 2 r2
1
2

2 r2 S

In[25]:= Simplify

Out[25]=
1
2

6 r2 S

In[26]:= find r where slope is zero
Solve 0, r

Out[26]= r
S

6
, r

S

6

In[27]:= r r . 2 use positive answer

Out[27]=
S

6

In[29]:= h h . Solve area S, h find height

Out[29]=
2
3

S

In[30]:= find ratio of height to diameter
h 2 r

Out[30]= 1
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As is often the case, Mathematica has a built in function that is perfect for the
problem we just did! The function FindMaximum will find the maximum of a
function provided that we provide an initial guess that is near where the maximum
occurs. Let’s use FindMaximum to find the maximum of the curve we plotted in
Example 7.5.1. By looking at the graph, we can easily estimate the maximum to be
near x = 0.2 so we will use that as our initial guess. Example 7.5.3 illustrates this,
as well as what happens if we start with other initial guesses. Note that we begin
with Clear[r] because in Example 7.5.2 we gave r the value

√
S/

√
6π and we now

need r to be a variable.

Example 7.5.3
In[41]:= using FindMaximum with different initial

guesses
Clear r

FindMaximum r
2

r 3, r, 0.2

FindMaximum r
2

rπ

π

π

π

3, r, 0

FindMaximum r
2

r 3, r, 1

FindMaximum r
2

r 3, r, 1

Out[42]= 0.0767765, r 0.230329

Out[43]= 0.0767765, r 0.230329

Out[44]= 0.0767765, r 0.230329

FindMaximum::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations.

Out[45]= 6.577266015991333 10313, r 2.75612 10104

To use FindMaximum, we provide two arguments. The first is the function that
we want to maximize. The second is a list of two elements, the first being the
variable and the second being our initial guess. As you can see in the example, if
the initial guess is not close enough to the maximum (as −1 was not in this case),
then the function can fail. When it does work, it returns the maximum value of the
function followed by the point where it occurs.

Mathematica also provides the function FindMinimum which is similar to
FindMaximum but which finds minima instead. Both of these functions will also
work with functions of several variables. They both attempt to find local extrema
(either minima or maxima) near the initial guess provided by the user. Closely re-
lated to these functions are the functions Maximize and Minimize which attempt
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to find global extrema. Moreover, these latter two functions can work symbolically.
All four of these functions can also handle constraints. Let’s see how to redo the
can problem by using constraints.

The volume of the can is given by V = πr2h which, as we already mentioned,
is a function of two variables. Our initial technique for maximizing this was to
recognize that the variables are not independent since the surface area is fixed. This
allowed us to turn the problem into a single-variable problem. But we don’t need to
do this! What we really want to do is maximize the volume subject to the constraint
that the surface area is fixed. Mathematica will let us do this directly as is seen in
the following example. Here we have used FindMaximum as before, but this time
entered as our first argument a list that contains as its first element the function we
want to maximize and as its second element the constraint. For our initial guess we
now provide a list of each variable with its initial guess.

Example 7.5.4
In[46]:= solving the can problem using FindMaximum

with constraint
Clear r, h

volume rπ
π π

2 h;

area 2 r h 2 r2;
FindMaximum volume, area 1 , r, 1 , h, 1

Out[49]= 0.0767765, r 0.230329, h 0.460659

Note that FindMaximum and FindMinimum will not work with symbolic
expressions. So we cannot enter the constraint in the last example as area == S,
where S is an unknown constant. However, Maximize and Minimize can handle
symbolic expressions. Try it out! (Be warned however that the answer Mathematica
gives might be kind of complicated. You may need to dig into the Help Files to see
how to interpret the answer!)

As a final example, suppose we want to find the point on the ellipsoid x2 + 2y2 +
6z2 = 1 that is closest to the point (4, 6, 13). If (x, y, z) is any point in space, we’ll
minimize its distance to (4, 6, 13) subject to the constraint that it lie on the ellipsoid.
Actually, we’ll minimize the square of the distance, which will still find the closest
point, but allow for a slightly simpler function to be minimized. The next example
gives the result, as well as the point on the ellipsoid that is farthest away!

Here the square of the distance from the point (x, y, z) to the point (4, 6, 13) is
given by (x − 4)2 + (y − 6)2 + (z − 13)2. This is the function we want to minimize
(or maximize). The constraint is the fact that (x, y, z) must lie on the ellipsoid, or
in other words, x2 + 2y2 + 6z2 = 1.
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Example 7.5.5
In[50]:= finding the closest and farthest points

on an ellipsoid to 4,6,13

Minimize

x 4.0 2 y 6 2 z 13 2, x2 2 y2 6 z2 1 ,

x, y, z

Maximize

x 4.0 2 y 6 2 z 13 2, x2 2 y2 6 z2 1 ,

x, y, z

Out[50]= 205.694, x 0.474615, y 0.378411, z 0.285292

Out[51]= 237.262,
x 0.541677, y 0.380483, z 0.263645

7.6 Series
Approximating a function by polynomials is quite useful and leads naturally to the
theory of infinite series. Suppose we are considering a function f (x) and would like
to find a polynomial that closely approximates f (x) over some domain. Of course,
if f itself is already a polynomial, then there is not much to do! So we should
be thinking that f is not a polynomial. Perhaps f is a trigonometric function, or
a logarithm or some other interesting function. Finding a polynomial that closely
approximates f will be useful because polynomials are easy to compute and work
with.

What does it mean for a polynomial P(x) to approximate f (x)? It is probably
unrealistic to hope that P will be close to f for all values of x , so we mean that near
some point the two functions are nearly equal. So, let’s pick a point, say x = a,
and try to approximate f near a. Since we want the functions to be nearly the same
near a, it makes sense to demand that P and f are exactly the same at a, that is
P(a) = f (a). This means that the two graphs will intersect at x = a. But we want
the graphs to be nearly the same, so let’s make them tangent to each other at a as
well. This means that P ′(a) = f ′(a). Similarly, we would like the graphs to be
bending the same way at a, so let’s also demand that the second derivatives of P
and f also agree at a. A good idea is to simply decide that P should share the same
value, first derivative, second derivative, third derivative, and so on, with f at a.
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Of course, there is a limit to how long this can go on, because the higher order
derivatives of any polynomial are eventually zero.

Suppose

P(x) = a0 + a1(x − a) + a2(x − a)2 + · · · + an(x − a)n

We have expressed the polynomial as a sum of powers of x − a rather than x . This
is always possible (just think of translating a graph to the right a units) and will
turn out to be useful. It now turns out that the requirement that P and f share the
same values of all their derivatives at a is equivalent to

ai = f (n)(a)/n!

(If we had expressed the polynomial as a sum of powers of x we would not have
gotten such nice formulas for the coefficients.) So really, the polynomial is

P(x) = f (a) + f ′(a)(x − a) + f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n

This polynomial is known as the nth degree Taylor polynomial for f at a.
Let’s see how well this polynomial does in actually approximating a function f .

Remember the successive derivatives of tan x that we compute in Example 7.4.4?
Let’s use these to find the fifth degree Taylor polynomial for tan x near a = 0. The
result is in Example 7.6.1.

In the first line, we compute the fifth degree Taylor polynomial of tan x about zero
and name it poly. In the next line, we graph both functions. Let’s see how the first
line of code works. Basically we have used the Sum function to produce a sum. This

Example 7.6.1
In[52]:= finding the 5th degree Taylor polynomial

for tan x near zero
poly Sum

D Tan x , x, n . x 0 xn n , n, 0, 5

Plot
Tan x , poly , x, 2π π, 2 ,
PlotStyle Thickness .01 , Thickness .005

Out[52]= x
x3

3
2 x5

15



CHAPTER 7 Calculus 189

Example 7.6.1 (Continued)

Out[53]=
–1.5 –1.0 –0.5 0.5 1.0 1.5

–6

–4

–2

2

4

6

function has the same syntax as Table but instead of producing a list as Table would,
it adds all the elements together. To produce the nth summand, we compute the nth
derivative of tan x , evaluate it at zero, and then multiply it times xn/n! We get x +
x3/3 + 2x5/15 and the graph of this function closely approximates tan x near zero.

As you might have guessed, Mathematica has the capability to compute Taylor
polynomials built in! The function Series will do the trick. In Example 7.6.2, we
use Series to compute the 7th degree Taylor polynomial of tan x about zero.

Example 7.6.2
In[88]:= using Series and Normal to find a Taylor

polynomial
Series Tan x , x, 0, 7
Normal Series Tan x , x, 0, 7

Out[88]= x
x3

3
2 x5

15
17 x7

315
O x 8

Out[89]= x
x3

3
2 x5

15
17 x7

315

The Taylor series associated to a function f is the infinite sum

∞∑
i=0

f (i)(a)

i!
(x − a)i

If we take only the first n terms of the series, we obtain the nth degree Taylor poly-
nomial. Since the series is an infinite sum, there are delicate questions surrounding
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its convergence, that is, whether or not for a specific value of x it actually adds up to
a specific number or not.5 We won’t go into this important issue here. The important
piece for us is that Series will give the Taylor polynomial up to a given degree and
then include a final “term” of the form O[x]k to indicate the rest of the series.6 If
we only want the Taylor polynomial, we want to ignore the “O” term and Normal
does this for us. The Normal function is a specialized function that converts a few
“special forms” (with series being one of them) to a “normal” expression.

We close this section with one more example: we plot the first 20 Taylor poly-
nomials for sin x near a = 5π/2. We use Normal and Series to find the Taylor
polynomials as elements of a list created with Table. We call this list polys. Then
we use Plot to plot everything.

Example 7.6.3
In[54]:= Taylor polys for sin x near 5Pi 2

polys
Table Normal Series Sin x , x, 5 2, k ,
k, 0, 20
;

Plot Sin x , polys , x, 0, 5 ,
PlotRange 0, 5 π

π

π

, 2, 2

Out[55]=
2 4 6 8 10 12 14

–2

–1

0

1

2

5As strange as it sounds, you were probably introduced to infinite sums in the 4th or 5th grade! (Although your
teacher didn’t tell you!) Remember when you learned that 1

3 = .333333 . . . with the decimal extending forever
with an infinite number of 3s? This is actually the infinite sum 3

10 + 3
100 + 3

1000 + . . . and amazingly, it adds up
to (or converges to) exactly 1

3 .
6The “O” stands for “order” and this “Big-O” notation is standard fare for representing unknown or unnamed

terms in an expression that have a given order, or degree.
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From the plot we see that the 20th polynomial stays close to sin x for some time.
It is really pretty amazing that only measuring properties of sin x at a single point
(a = 5π/2) is sufficient to build a polynomial that can so closely approximate sin x
at points far from 5π/2.

7.7 Integration
The second pillar of calculus is integration, which you may recall is defined via
Riemann sums. Remember that the Riemann sum of a function f (x) on an interval
(a, b) is defined as follows. First, the interval is subdivided into a finite number of
subintervals. These subintervals do not all need to be the same length, although in
practice it is simplest to adopt this procedure and that is what we will do from now
on. If there are n subintervals then each has length (b − a)/n and we will call this
quantity �x (read “delta x”). Next, we “sample” the function at a point in each
subinterval. This means that we pick a point in each of the subintervals and compute
the value of the function at that point. The sampling set does not have to be chosen in
any particular way. We could even choose randomly in each subinterval. But again,
there are a few standard practices: we could always sample at the left endpoint of
each subinterval, or at the midpoint, or at the right endpoint, for example. Finally,
all the sampled values are added together and the sum is multiplied times �x . This
is called a Reimann sum. There are infinitely many different ways to form the sum,
so what you get definitely depends on how the subintervals and sampling points are
chosen. The big idea now, however, is to try and take the limit of what you get as
the number of subintervals goes to infinity and their individual lengths go to zero.
For “nice” functions this limit will exist and it is called the integral of f (x) from
a to b and is denoted by

∫ b

a
f (x) dx

Reimann sums have a very nice graphical interpretation. Rather than first adding
all the sampled values of the function and then multiplying by �x , we could use the
distributive law to first multiply each sampled value by �x and then add the results.
Each summand can now be thought of as representing the area of a rectangle whose
base is the subinterval and whose height is the value of the function at the sampling
point. Thus the Riemann sum represents an area and clearly this area is close to the
area of the region “under” the graph of f (x) if the number of rectangles is large.

We have included a rather lengthy Mathematica cell in the next example that uses
Manipulate and a few other interesting functions to illustrate Riemann sums. The
point of this example is not to accurately compute Riemann sums—Mathematica
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has built-in functions for that. But rather we want to show how to build fairly
sophisticated Mathematica routines out of the basic functions that we are learning
about. Let’s take a look at the example and see how it works. As usual, you need
to type this in and run it yourself. The Manipulate feature has to be seen in action
to appreciate how it works.

Example 7.7.1 contains the output cell generated by the input cell in Exam-
ple 7.7.2. Let’s begin by looking at the output which shows the graph of a function
together with a collection of rectangles beneath the curve that represent a Riemann
sum. We can vary the number of subintervals in the Riemann sum by using the
slider. We can also choose the sampling method, with left endpoint, midpoint, or
right endpoint sampling available choices as well as a fourth choice, “Trapezoid,”
that we will discuss in a moment. With each choice of sampling method, the Rie-
mann sum is computed and displayed.

The Trapezoid rule is closely related to the Riemann sums that have been de-
scribed so far. Instead of adding the areas of rectangles that are built on the subinter-
vals, we use trapezoids. Choose “Trapezoid” for the sampling method as well as a
fairly small number of subintervals and it should be clear what we mean. It appears
as though the sum of the areas of the trapezoids should do a better job (with the
same number of subintervals) of approximating the area under the graph of f (x)

than any of the other three sampling methods, and this is the motivation behind the
rule. Notice that the sum obtained using the trapezoid rule is just the average of the
left and right-handed Riemann sums! This is because the trapezoid lies “halfway”
between the two rectangles.

Let’s examine the Mathematica code to see how it works. The first line defines
the function that we want to integrate and the interval (a, b). Try changing these
and rerunning the example. The rest of the cell is a giant Manipulate instruction
with two controllers: n and t ype. The number of rectangles is controlled by n and
the sampling method by t ype.

Look at the code for the controllers and understand it before moving your focus
to the body of the Manipulate function. Notice that we let n range from 1 to 100
in steps of 1. It doesn’t really make sense to allow fractional parts of rectangles.
We initialize n to 10 and also label the slider with “No. of Rectangles.” We have
also added an option: Appearance → “Labeled” which causes the value of the
controller to be printed to the right of the slider bar so that we do not have to “open”
the controller to obtain this information. The second controller, t ype, can only
take on a set of four values, so instead of displaying a slider, Mathematica offers
up the four choices as buttons. If you haven’t already checked out the tutorial on
manipulate contained in the Help Files you should do so. There are lots of options
for the controllers.

There are four instructions inside the body of Manipulate. The first computes
�x . The second computes four numbers called w1, w2, w3, and w4 that will be
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Example 7.7.1

Out[323]=

No. Of Rectangles 10

Method Left Middle Right Trapezoid

Reimann Sum 5.72

0.5 1.0 1.5 2.0

1

2

3

4

used to draw the rectangles or trapezoids depending on the choice of method. We’ll
come back to these in a moment. The third instruction computes the Riemann sum,
and finally the fourth instruction lays out the plot and the value of the sum by using
Grid.

Let’s start by seeing how the sum is computed. Of course, it depends on the
choice of sampling method, hence we have used the Switch function. This function
will return different answers depending on different cases. The first argument to
Switch is an expression, in this case type. The remaining arguments now come
in pairs. If type matches the first argument of a pair then the second argument
of that pair is returned. We have four pairs, one for each of the possible value of
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Example 7.7.2
Riemann Sum demonstration
define function and interval

f x : 4 x^2; a 0; b 2 ;

Manipulate
define width of each rectangle

x N b a n ;
get w's used for drawing rectangles

w1, w2, w3, w4 Switch type,
"Left", 1, 0, 1, 0 ,
"Middle", .5, .5, .5, .5 ,
"Right", 0, 1, 0, 1 ,
"Trapezoid", 0, 1, 1, 0 ;
compute Reimann sum according to method

sum Switch type,
"Left", Sum f a i x , i, 0, n 1 x,
"Middle", Sum f a x 2 i x , i, 0, n 1 x,
"Right", Sum f a i x , i, 1, n x,
"Trapezoid",
Sum f a i x f a i 1 x 2, i, 0, n 1 x ;
output layout uses nested grids

Grid Grid "Reimann Sum", Panel sum ,
Plot f x , x, a, b ,
AspectRatio 1, ImageSize 400, 400 ,

use epilog to draw rectangles
Epilog
Table Line

L a i 1 x, 0 ,
R a i x, 0 , R, w1 f L w2 f R ,
L, w3 f L w4 f R ,
L, 0 , i, 1, n

,
grid options

Frame None, Spacings 1, 1 , Alignment Left
,

manipulate controllers
n, 10, "No. Of Rectangles" , 1, 100, 1,
Appearance "Labeled" ,
type, "Left", "Method" ,
"Left", "Middle", "Right", "Trapezoid"
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type. So, for example, if type is “Left,” then Switch will return the left Riemann
sum. Notice how this sum is computed. We use the Sum function to add up all
the sampled values of the function. This sum is then multiplied times �x . Notice
how the sampling points are described as a plus multiples of �x . Notice that the
difference between the Left and Right Riemann sum lies with the upper and lower
limits of summation: 0 and n − 1 versus 1 and n, respectively.

After the Riemann sum is computed, we use Plot to draw the graph of the function
and then the rectangles or trapezoids. We use three options with Plot: AspectRatio,
ImageSize, and Epilog. The first two are used just to make the image look good, but
Epilog is used to add in all the rectangles, or trapezoids, after the graph is plotted.
Recall that Epilog is used to add graphical elements to a plot. In this case, we use
Table to generate a list of the rectangles, or trapezoids, that are then added with
the Epilog option. If we had only been drawing rectangles we could have used the
Rectangle function. But since trapezoids are also a possibility, we simply use the
Line function to draw the perimeter of each quadrilateral. Each quadrilateral has
the same two vertices on the x-axis, but the upper two vertices depend on whether
we are drawing a rectangle or a trapezoid. This is where the w ′s come in. Note
that L and R, which stand for Left and Right, are defined as the x-coordinates of
the two lower vertices of each quadrilateral. The upper two points, which are the
third and fourth vertices used in the Line function then have y-coordinates that are
weighted averages of f[L] and f[R]. If you take a careful look at each of the four
cases you’ll discover that the weights w1, w2, w3, and w4 are just what is needed
to draw the correct shape.

Finally, the results (the plot and the value of the Riemann sum) are layed out
using nested Grid functions. The outermost Grid function lays down two rows.
The top row displays the value of the Riemann sum, and the bottom row displays
the plot. But the top row is itself a Grid of two items arranged in a single row:
the text “Riemann sum,” and the value of the sum. Finally, the sum is displayed in
a Panel just to make it look good. Check out the Help Files to read about Grid,
Panel and the options Frame, Spacings, and Alignment that are all used here.

Now that we really understand what a Riemann sum is, the good news is that
Mathematica will compute Riemann sums with the function NIntegrate. If you
played around with Example 7.7.2, you must have found that

∫ 2
0 4 − x2 dx is about

5.33333. Example 7.7.3 computes this integral using NIntegrate.

Example 7.7.3
using NIntegrate to compute a Riemann sum

NIntegrate 4 x^2, x, 0, 2

Out[7]= 5.33333
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The syntax for NIntegrate is pretty straight forward. The first argument is the
integrand, or function that we want to integrate. Next we have a list declaring the
variable of integration as well as the lower and upper limits of integration.

Here are a couple more examples of integrals computed using NIntegrate.

Example 7.7.4
In[56]:= a handful of integrals

NIntegrate x3 3 x2 x 6, x, 1, 3

NIntegrate Tan x 2, x, 0, 4π

NIntegrate ArcSin 3 x x2 1 , x, 0, .3

NIntegrate Exp x2 , x, 0, 1

NIntegrate 1 x2, x, 1, Infinity

Out[56]= 28.

Out[57]= 0.214602

Out[58]= 0.1414

Out[59]= 0.746824

Out[60]= 1.

Notice that Mathematica can even compute improper integrals with NIntegrate.
Recall that an integral is called improper if either the interval over which we wish to
integrate is infinite, or the function approaches infinity somewhere on the interval
of integration. In our last example, we are asking for all the area under the curve
1/x2 to the right of x = 1. This is an unbounded region and yet it has a finite area
of one unit.

We’ll include more examples, including multiple integrals, after we discuss an-
tidifferentiation in the next section.

7.8 Antidifferentiation
We have seen already that given a function f (x) we can create a new function f ′(x)

by taking its derivative. If we run this process backward, it is called antidifferenti-
ation. The goal now is to find a function with a given derivative. The Fundamental
Theorem of Calculus, which as the name, implies must be pretty significant, re-
lates antidifferentiation to integration in an extremely important way. If f (x) is a
function with antiderivative F(x) (so that F ′(x) = f (x)), then the Fundamental



CHAPTER 7 Calculus 197

Theorem of Calculus states that

∫ b

a
f (x) dx = F(b) − F(a)

This is really a pretty amazing theorem. On the left-hand side, we have the integral
of f (x) over the interval [a, b] which remember is defined as the limit of all possible
Riemann sums as the subdivision of the interval [a, b] grows finer and finer. On the
right-hand side, we have the difference of the values of the antiderivative of f (x)

at the endpoints of the interval. At first glance, it seems totally unlikely that these
things would be related at all!

The Fundamental Theorem is quite useful because it allows us to trade integration
(i.e., computing Riemann sums, and perhaps wondering how accurate our estimate
for the integral is) with antidifferentiation. On the other hand, before you think this
is the death knell for integration, be warned that lots of functions (perhaps most
functions, depending on how you count things) don’t have antiderivatives! We can’t
prove this here, but, for example, there isn’t any function whose derivative is e−x2

.7

Having just said this though, it is true that for lots and lots of simple functions we can
find explicit antiderivatives. Indeed a good portion of any college calculus course
is spent learning “methods of integration,” which in fact are not really integration
methods at all but are really antidifferentiation methods.

Happily, Mathematica can antidifferentiate for us! The function Integrate does
just what we want.8 Example 7.8.1 illustrates the use of Integrate.

Example 7.8.1
In[91]:= finding indefinite and definite integrals

Integrate 4 x^2, x
Integrate 4 x^2, x, 0, 2

Out[91]= 4 x
x3

3

Out[92]=
16
3

7This isn’t quite true. An equivalent form of the Fundamental Theorem asserts that
∫ x

0 e−t2
dt is an antiderivative

of e−x2
. But this antiderivative will be of no real help in evaluating integrals of e−x2

.
8Since Integrate finds antiderivatives, a better name for the function would be AntiDerivative. But it is too

late now to change the longstanding use of “integration” in place of “antidifferentiation.”



198 Mathematica Demystified

We see in this example that Integrate can be used in two fundamentally different
ways. In the first usage, we are finding an antiderivative of 4 − x2. This is also known
as the indefinite integral of 4 − x2 and is often written as

∫
4 − x2 dx . It is easy

to compute the derivative of 4x − x3/3 and see that we get 4 − x2. We could even
ask Mathematica to do this using the differentiation function D.

Recall that by adding a constant to one antiderivative we obtain another an-
tiderivative and that any two antiderivatives are related in this way. So, if we want
to think about all antiderivatives of 4 − x2 we need to add an arbitrary constant of
integration to the single answer Mathematica gave us, obtaining 4x − x3/3 + C ,
where C is any constant.

The second usage of Integrate in this example computes the definite integral∫ 2
0 4 − x2 dx . In this case, it computes the integral by first computing the antideriva-

tive and then using the Fundamental Theorem. Thus we get the exact answer of
16/3. Notice that in Example 7.7.3 the use of NIntegrate with this very same in-
tegral gave us the approximate answer of 5.33333. If you haven’t guessed by now,
the N in NIntegrate stands for numerical. Since Integrate will give exact answers,
why should we ever use NIntegrate? The answer is that for simple integrals we may
never need NIntegrate, but if we run into more complicated integrals, Integrate
might not work for us.

Let’s look at some more examples. Suppose we want to find the area trapped
between the parabola y = 9 − x2 and the line y = 1 + 2x/3. In the next Example
we plot the region, find the endpoints of the interval over which we will integrate,
and perform the integration.

We use Plot to graph both the parabola and the line, but have added the Filling
option to shade in the region. There are several ways to use Filling. For example,
when we only plot the graph of a single function the option Filling → Axis will
fill in between the graph and the horizontal axis. The option value Axis can be
replaced with None, Bottom, or Top. Try these out to see how they work. But if
we plot multiple graphs, we can fill in between any pair. For example, if we plot
three functions at once, the option Filling → {1 → {3}} will fill in between the
first and third function. In Example 7.8.2, if we had used Filling → {1 → {2}} (or
Filling → {2 → {1}}) the area between the two graphs would have been filled in.
However, we only want to fill above the line and below the parabola, so we have
used the form Filling →{1→{{2}, {None, GrayLevel[.7]}}}. With this usage,
the two filling styles, None and GrayLevel[.7] apply to the regions that are below
and above the second function, respectively. Exactly what we want!

After plotting the region, we use Solve9 to find the horizontal endpoints of the
region. Finally, we use Integrate to compute the definite integral. The area of this
region is exactly 292

√
73/81.

9See Chap. 8 for information on using Solve.
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Example 7.8.2
In[61]:= find the shaded area

plot the region

Plot 9 x2, 1
2 x

3
, x, 5, 4 ,

Filling 1 2 , None, GrayLevel .7

find the endpoints
a, b x . Solve 9 x^2 1 2 x 3, x
compute the integral

Integrate 9 x^2 1 2 x 3 , x, a, b

Out[61]=

–4 –2 2 4

–15

–10

–5

5

Out[62]=
1
3

1 73 ,
1
3

1 73

Out[63]=
292 73

81

To close out this section, suppose we want to compute the antiderivative∫
e−x2

dx . Look what happens if we try to use Integrate.

Example 7.8.3
In[64]:= trying to antidifferentiate x2

Integrate Exp x2 , x

Out[64]=
1
2

Erfπ x
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Example 7.8.3 (Continued)
?Erf

Erf z gives the error function erf(z).

Erf z0 , z1 gives the generalized error function erf z1 erf z0 .

If you have never seen the function Erf[x] before you will be wondering what
is going on! Using ?Erf tells us that Erf is the error function. Still not much help,
although now we know the name of the function! If we follow the link into the Help
Files we discover that the definition of this function is

erf(x) = 2√
π

∫ x

0
e−t2

dt

So what we have just found out is that

∫
e−x2

dx = 1

2

√
π erf(x) =

∫ x

0
e−t2

dt

which is just a statement of the Fundamental Theorem of Calculus. We really aren’t
getting anywhere. If we wanted to use this antiderivative to compute the definite
integral

∫ 1
0 e−x2

dx all we would be finding out is that

∫ 1

0
e−x2

dx =
∫ 1

0
e−t2

dt

This is where we really need to use NIntegrate. The next example gives us a
numerical value of the definite integral. Notice the somewhat tricky way of shading
the desired region. We’ve created a second function that agrees with e−x2

outside
of the interval (0, 1), while inside (0, 1) it is zero. We can now use Filling to fill in
between the original function, e−x2

, and this new function.

Example 7.8.4
In[65]:= finding the area of the shaded region

define lower edge of region so we can
use Filling to shade the region
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Example 7.8.4 (Continued)
f x : If x 0 && x 1, 0, Exp x2 ;

Plot Exp x2 , f x , x, 3, 3 ,

Filling 1 2

NIntegrate Exp x^2 , x, 0, 1

Out[65]=

–3 –2 –1 1 2 3

0.2

0.4

0.6

0.8

1.0

Out[66]= 0.746824

7.9 Applications of Integration
Now that we know how to use Integrate and NIntegrate, let’s close out this chapter
by doing a few examples.

Problem 1: Find the total length of the Lissajous knot parameterized by

x(t) = cos(2t)

y(t) = cos(3t + π/4)

z(t) = cos(5t + 2).

The solution is displayed in Example 7.9.1. We begin by defining the curve
parametrically as a position vector, that is, a list of its coordinate functions. Next,
just for fun, we plot the curve. The Tube plot style gives a nice effect. In order to
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Example 7.9.1
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find the length of any parameterized curve, we need to integrate the speed, which
is the length of the velocity vector. So our next step is to differentiate the position
vector, which we do using the “prime” notation for derivative.

Notice that if we differentiate a list of functions, Mathematica simply returns
the list of the derivatives of each function. This is perfect for finding the velocity
vector! Finally, we use NIntegrate to find the length of the curve. Notice that we
use the Norm function to find the length of the velocity vector.

Problem 2: Find the mass of a thin disk of radius 1 whose density r units from the
center is given by δ =

√
1/4 + r2.

Let’s introduce Cartesian coordinates with the disk centered at the origin. The
density at the point (x, y) is now given by δ(x, y) =

√
1/4 + x2 + y2 so that the

disk is denser out by its edge and less dense near the center. We can calculate the
mass as a double integral—we multiply each element of area by its density to get an
element of mass and then sum these over the whole disk. Because of the symmetry
of the disk, we may compute the mass only in the first quadrant and then multiply
by four. We get the following double integral:

4
∫ 1

0

∫ √
1−x2

0

√
1/4 + x2 + y2 dy dx .

Now that we have set up the integral, which is often the hard part, it is a snap to
compute this with Mathematica. Example 7.9.2 gives the result. Notice that when
performing multiple integrals with Integrate we simply follow the integrand (the
function to be integrated) with the limits of integration for each of the variables.
Furthermore, the variables are listed in the opposite order of integration. So here
we have listed the x variable first because we integrate with respect to x last.

Example 7.9.2
In[67]:= finding the mass of a thin unit disk

whose density if Sqrt 1 4 x2 y2

4 Integrate

1

4
x2 y2 , x, 0, 1 , y, 0, 1 x2

Out[67]=
1
12

1 5 5 π
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Probem 3: Find the area of one “leaf” of the curve given in polar coordinates as

r(θ) = sin(3θ)

The curve is pictured in Example 2.10.4. Remember that in polar coordinates
the element of area is given by

d A = r dr dθ

In order to find the area, we need to integrate d A over the region. Example 7.9.3
does this.

Example 7.9.3
In[68]:= finding the area in one leaf of r Sin 3

Integrate r, , 0, 3 , r, 0, Sin 3

Out[68]=
12
π

π

As θ goes from 0 to π/3, 3θ goes from 0 to π , and hence sin(3θ) goes from 0
out to 1 and then back to 0. Thus we trace out one leaf of the curve in the interval
[0, π/3]. So we first integrate with respect to r from the origin out to the curve, and
then with respect to θ from zero to π/3.

Problem 4: Find the center of mass of the homogeneous “ice cream cone” consisting
of a right circular cylinder of height 10 cm and base radius 2 cm, topped with a
hemispherical scoop of ice cream.

Just for fun, let’s draw a picture of the ice cream cone. We do this in Exam-
ple 7.9.4, where we use RevolutionPlot3D to plot the cone and the scoop separately
and then combine the plots using Show. Note that for both the cone and the scoop
we describe the generating curve parametrically.

To make the problem simpler, we’ll assume that the cone and scoop are a solid
object of uniform density, and moreover that the density is equal to 1. By the
symmetry of the object, the center of mass clearly lies on the axis of symmetry.
So we only need to compute the z-coordinate of the center of mass. To do this, we
need to divide the moment with respect to the xy-plane by the mass.

It is easiest to work with cylindrical coordinates. Recall that the element of
volume in cylindrical coordinates is r dr dθ dz and since the density is 1, this is
also the element of mass dm.

We can easily find the total mass by knowing the formulas for the volume of a
cone and the volume of a ball. For a cone, the volume is one-third the area of the
base times the height, and for a ball the volume is four-thirds π times the cube of
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the radius. Rather than working with the specific dimensions of the cone given in
the problem, let’s work more generally and assume the radius of the base of the
cone is R and the height of the cone is H . Example 7.9.5 starts by computing the
mass of the ice cream cone as a function of R and H .

Example 7.9.4
In[69]:= an ice cream cone

the cone
H 5; R 2;
plot1 RevolutionPlot3D t, H t R , t, 0, R ;

the scoop of ice cream
plot2 RevolutionPlot3D

R Cos t , H R Sin t , t, 0, 2π
;
combining the plots

Show plot1, plot2,
ViewPoint 2, 3, 3 4 ,
PlotRange R, R , R, R , 0, H R

Out[71]=

2
1

0 –1
–2

0

2

4

6

210–1–2
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Next we need to find the moment of the ice cream cone with respect to the
xy-plane. We can find the moment of the cone and scoop separately and add the
results. The next part of Example 7.9.5 finds the moment of the cone. To do this,
we must integrate z dm over the solid.

Example 7.9.5
In[81]:= finding center of mass of ice cream cone

mass of cone plus scoop

mass R2 Hπ π

π

π

π

π

π

π

3 4 3 R3 2

moment of cone wrt to xy-plane
momentCone Integrate
z r, z, 0, H , , 0, 2 , r, 0, R z H

moment of scoop wrt to xy-plane

momentScoop Integrate

z r,

z, H, H R , , 0, 2 , r, 0, R2 z H 2

height of center of mass
zbar Simplify momentCone momentScoop mass

Out[81]=
1
3
H R2

2 R3

3

Out[82]=
1
4
H2 R2

Out[83]=
1
12

R3 8 H 3 R

Out[84]=
3 H2 8 H R 3 R2

4 H 8 R

The order of integration is: r , then θ , then z. We first let r go from zero out to
the wall of the cone, then sweep this radial piece once around in the θ direction
to get the moment of a horizontal disk cross section, and finally integrate in the
z-direction to sum the moments of all the disks. A similar calculation is then done
for the moment of the scoop.

Finally, we add the two moments and divide by the mass to get the height of the
center of mass as a function of both R and H . You can check that if we now substitute
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R = 2 and H = 5, we get that the center of mass is at the point (0, 0, 167/36) or
about (0, 0, 4.639). Notice that in this case the center of mass lies inside the cone.
But if we were to increase R relative to H more of the mass would lie in the scoop
and we would expect the center of mass to shift into the interior of the scoop. One
of the Quiz questions asks you to find out what cone angle produces a center of
mass that lies in the base of the cone.

7.10 Find Out More
We have tried to touch on all the basic Mathematica functions that can be used
in typical calculus problems. But, of course, there are still a lot of Mathematica
functions we have not mentioned. The following guides and tutorials are a good
place to begin your exploration of the Help Files. As usual, these will provide more
leads that can take you deeper into the documentation.

• guide/Calculus

• tutorial/ConstrainedOptimizationOverview

• tutorial/MinimizationAndMaximization

• tutorial/SumsAndProducts

• tutorial/SummationOfSeries

Constrained optimization is a huge area of mathematics that we have barely
touched upon. The tutorial mentioned above, ConstrainedOptimizationOverview,
is quite comprehensive and will lead you in quite a few directions, including the
important area of Linear Programming.

While we mentioned Taylor polynomials and the useful Series function, we did
not really discuss infinite sums. Mathematica has a number of functions that can
help you investigate these to determine if they are convergent or not, and if so, what
they add up to. The last two tutorials mentioned above are a good place to start.

Quiz
1. Find the limit of sin x2

x as x → 0.

2. Suppose f (x) = −x3 + x + 1. Compute f ′(1) and determine the equation of
the line tangent to the graph of f (x) at the point (1, f (1)). Plot both f (x) and
the tangent line.

3. Can you repeat the last exercise, but embed it all within Manipulate so that
moving a slider changes the point of tangency between the line and the cubic?
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4. Find the closest point on the hyperbola x2 − y2 = 1 to the point (3, 5).

5. What is the minimum distance between any point on the circle (x − .5)2 +
(y − 1)2 = .25 and any point on the hyperbola x2 − y2 = 1?

6. Plot the circle and hyperbola of the last question and the line segment con-
necting the two point. (Hint: You could use ParametricPlot to plot the hy-
perbola and then Epilog to throw in the circle and the line segment. Note that
(cosh t, sinh t) parameterizes the hyperbola.)

7. Find the area of the bounded region trapped between the graphs of y = ex and
y = 4 − x2.

8. Suppose a thin homogenous metal plate has the shape of the region of the last
question. Find its center of mass.

9. Suppose the axis of two solid right-circular cylinders, each with a radius of
1 unit, meet at a right angle. Find the volume of material that lies in both
cylinders.

10. What value of R makes the formula for the z-coordinate of the center of mass
found in Example 7.9.5 equal to H? (Use Solve to find out.) When R has this
value the center of mass lies in the base of the cone. What is cone angle when
this is true?
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Solving Equations

Many problems in mathematics ultimately boil down to solving an equation, or
system of equations. Mathematica has a variety of tools for solving equations,
which we’ll learn about in this chapter.

8.1 Polynomial Equations
Let’s start by solving a simple quadratic equation, x2 + 3x − 5 = 0. Example 8.1.1
shows how to use the function Solve to do this.

Example 8.1.1
In[1]:= solving a polynomial equation

Solve x2 3 x 5 0, x

Out[1]= x
1
2

3 29 , x
1
2

3 29

Solve takes two arguments. The first is the equation we want to solve and the
second is the variable that we want to solve for. Notice that we have used double
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equal signs in the equation. Recall that a single equal sign is not used to represent
an abstract equation, but rather to replace the left-hand side of the expression with
the right-hand side. For example a=2 assigns the value 2 to the variable a.

Mathematica finds that there are two solutions, that is, values of x that make the
equation true. In general, any number that makes a polynomial zero is called a root
of the polynomial. So in this case, the solutions of the equation are also the roots
of the polynomial x2 + 3x − 5. Instead of just listing the solutions, Mathematica
gives replacement rules of the form {x→x0}, where x0 is a solution to the equation.
It is easy to get from here to a list of just the solutions if that is what we want, but it is
also convenient for some purposes to have the solutions listed as replacement rules.

Example 8.1.2 illustrates using the replacement operator /. to place the solutions
in a list, which we then name roots.

Example 8.1.2
In[2]:= creating a list of the solutions

roots x . Solve x4 2 x3 x 5 0, x

Out[2]=
1
2

1 3 2 19 ,
1
2

1 3 2 19 ,

1
2

1 3 2 19 ,
1
2

1 3 2 19

Notice that in each of the previous examples the number of solutions has always
been equal to the degree of the polynomial. This is an extremely important fact
known as the Fundamental Theorem of Algebra, that is, every polynomial of degree
n has n roots. Remember though that a root might be “repeated,” so that we have
to count the roots with their multiplicities to get a total of n roots. For example, the
10th degree polynomial (x − 1)6(x + 2)4 has only two distinct roots, 1 and −2, but
1 is repeated 6 times, and −2 is repeated 4 times, for a total of 10.

In both of these examples, we have solved a polynomial equation of degree less
than 5. Mathematica can always solve such an equation exactly using radicals,
that is, only using the operations of addition, subtraction, multiplication, division,
and taking roots. But it is a famous consequence of Galois1 theory that this is
not possible in general for polynomial equations of degree 5 or more. It might be
possible in special cases, but no general formula (like the famous quadratic formula
in the degree two case) can exist. So what happens if we try to use Solve for a higher
degree equation?

1Éveriste Galois (1811–1832) is famous for having solved the problem of deciding when a polynomial equation
can be solved by radicals. His work led to what is now called Galois theory, an important branch of algebra. Galois
theory can be used to prove that the famous Greek straightedge-and-compass problems of trisecting the angle,
squaring the circle, and doubling the cube are impossible. Tragically, Galois died in a duel at the age of 20.
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In Example 8.1.3, Mathematica has been unable to find the solutions, or roots,
exactly. It simply lists as the solutions the five roots Root[f, 1], Root[f, 2], Root[f,
2], Root[f, 4], and Root[f, 5], where f is the function 5+#1-2#1∧3+#1∧5&, which
if you look closely, you will see is our original polynomial. (It is written here as a
function rule.)

Example 8.1.3
In[3]:= trying to solve a quintic may not work

Solve x5 2 x3 x 5 0, x

Out[3]= x Root 5 1 2 13 15 &, 1 ,

x Root 5 1 2 13 15 &, 2 ,

x Root 5 1 2 13 15 &, 3 ,

x Root 5 1 2 13 15 &, 4 ,

x Root 5 1 2 13 15 &, 5

Anyway, all of this is of little help if what we want to know are the solutions
to the equation. The problem, of course, is that Mathematica is trying to find the
roots exactly. If we only ask for approximations we can get the solutions by using
the numerical solve function. As the following examples show, we can either call
the numerical solve function directly using NSolve, or continue to use Solve but
switch away from exact numbers for the coefficients.

Example 8.1.4
In[9]:= getting numerical answers by using NSolve,

or Solve with approximate coefficients

NSolve x5 2 x3 x 5 0, x

Solve x5 2.0 x3 x 5 0, x

Out[9]= x 1.65477 , x 0.527822 1.02701 ,
x 0.527822 1.02701 ,
x 1.35521 0.655415 ,
x 1.35521 0.655415

Out[10]= x 1.65477 , x 0.527822 1.02701 ,
x 0.527822 1.02701 ,
x 1.35521 0.655415 ,
x 1.35521 0.655415
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We close this section with a nice little routine to plot the roots of a polynomial
in the complex plane. Let’s look at the example and then see how it works.

Example 8.1.5
In[6]:= a routine to plot the roots of a

polynomial
rootPlot poly : Module roots ,

roots x . NSolve poly 0, x ;
convert list of roots to list of

points and plot them
ListPlot
Re , Im & roots,
PlotStyle PointSize .02 ,
AspectRatio Automatic,
PlotRange 2, 2 , 2, 2 ,
Epilog Circle 0, 0 , 1

In Example 8.1.5, we have used the Module structure with a single local variable,
roots, to define the function rootPlot. The first instruction is

roots=x/.NSolve[poly==0, x]

which uses NSolve to find the roots and then the substitution operator to make a
list of the roots, which we name roots. The next instruction is ListPlot which is
used to plot the roots and which uses a few options. Since ListPlot expects a list
of ordered pairs of real numbers we need to first turn the list of roots (which are
complex numbers) into coordinate pairs. We do this by creating a pure function,
{Re[#], Im[#]}&, that will take a single complex number as input and return the
list of its real and imaginary parts. Just what we need! Next we Map this (using the
/@ construction) onto all the elements in roots, producing a list of points ready for
ListPlot. We then throw in a couple of familiar options, PlotStyle, AspectRatio,
and PlotRange, as well as Epilog to plot the unit circle after the roots are plotted.
Plotting the unit circle is unnecessary, but will be interesting in Example 8.1.6,
where we show rootPlot in action.

It is interesting to vary a single coefficient in a polynomial and watch how the
roots change. We illustrate this in Example 8.1.6 by using Manipulate. Try this
out, and as you play with the value of a, notice that something interesting happens
when a is close to 1.75. Also, notice that when a = 0 the roots all lie on the unit
circle.
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As a passes though 1.75, the three pairs of roots which are lying inside the unit
circle each come together and then separate again. There must be a value of a for
which the polynomial has three repeated roots instead of all 12 roots being distinct.
How can we find the value of a that makes this true? It is an interesting fact that
a polynomial has repeated roots if and only if the polynomial and its derivative
(which is itself a polynomial of one less degree) have a root in common. And there
is a way to decide if two polynomials have a root in common by computing their
resultant.

Example 8.1.6
In[15]:= watching the roots change as we vary a

Manipulate

rootPlot x12 a x 3 1 ,

a, 0 , 4, 4

Out[15]=

a

1.58

–2 –1 1 2

–2

–1

1

2
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If

f (x) = anxn + an−1xn−1 + · · · + a0

g(x) = bm xm + bm−1xm−1 + · · · + b0

are polynomials, with an �= 0 and bm �= 0, and if the roots of f are r1, r2, . . . , rn ,
then the resultant of f and g is defined to be

am
n g(r1)g(r2) . . . g(rn)

Notice that if one of the roots of f is also a root of g then the resultant will be zero.
Conversely, if the resultant is zero, then one of the factors g(ri ) must be zero and
hence ri is a root of g. The upshot of all this is that two polynomials have a root in
common if and only if their resultant is zero. And, lucky for us, Mathematica will
compute the resultant of two polynomials. Example 8.1.7 shows how we can use
the Resultant function to figure out what value of a makes our polynomial have
multiple roots.

Example 8.1.7
In[16]:= finding the value of a that makes p

have multiple roots

p x12 a x3 1;
r Resultant p, D p, x , x

Out[17]= 20736 2187 a4
3

In[18]:= Reduce r 0, a

Out[18]= a
4

33 4
a

4

33 4
a

4

33 4
a

4

33 4

In[21]:= N
4

33 4
, 10

Out[21]= 1.754765351

What we have done here is first find the resultant of the polynomial and its deriva-
tive. The resultant is a function of a since the polynomial and its derivative depend
on a. (If two polynomials have integer coefficients, then their resultant will be an
integer. But if the coefficients of the polynomials involve parameters, then so will
the resultant.) We then use Reduce to find out what value of a makes the resultant
zero. Finally, we use the numerical function N to estimate one of the possibilities.
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It turns out that if a is approximately ±1.754765351 or ±1.754765351i then the
original polynomial x12 + ax3 + 1 will have repeated roots. This is quite close to
the 1.75 that we estimated by using Manipulate.

Reduce is a close relative of Solve. Its primary function is to reduce an equation,
or set of equations, to a simpler form so that solutions to the original set of equations
are described more explicitly. Unlike Solve, Reduce will not produce replacement
rules as output because it returns a set of equations (or logical combinations of
equations ) equivalent to the original set. Reduce often produces output containing
logical connectors such as and (&&) or or (||). In this case, using Reduce is quite
nice in comparison to Solve. Since there are a total of 12 roots, but only four
distinct roots, the list of replacement rules returned by Solve would have been
rather redundant.

The theory of resultants is quite interesting but we will not go into it more in this
book. Check out the Help Files to find out more about the Resultant function.

8.2 Systems of Polynomial Equations
There are many cases where we want to find a solution to several equations simul-
taneously. Mathematica can easily do this too. Suppose, for example, we want to
find out where the line y = x + 2 intersects the parabola y = 16 − x2. We can use
Solve or NSolve to do this. We simply need to replace the equation that we want to
solve with a list of equations. And of course, we need to replace the variable that
we want to solve for with a list of variables. Example 8.2.1 shows how to do this.

Example 8.2.1
In[4]:= solving a system of equations

Solve y x 2, y x^2 16 , x, y

Out[4]= y
1
2

3 57 , x
1
2

1 57 ,

y
1
2

3 57 , x
1
2

1 57

In[5]:= N

Out[5]= y 2.27492, x 4.27492 , y 5.27492, x 3.27492

Notice that immediately after finding the solutions exactly we used N[%] to get
numerical estimates for the solutions.

Since these solutions represent the points where the line and the parabola inter-
sect, let’s graph the curves and try to read the solutions off of the graph. Of course,
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it will not be easy to get very accurate answers this way. But a nice feature of
Mathematica will allow us to read off the coordinates of the mouse as we move it
over the plot. This can be handy for getting a visual handle for what is going on.
Consider the following example.

Example 8.2.2

15

10

5

–5

–4 –2 2 4

In[222]:= (

[

[ [ ] ]

]{{ }}+ +–
* displaying the mouse position dynamically * )

Dynamic

{3.24948, 5.14121}

Plot x x ˆ2 162, , x, –5, 4

Out[222]=

Out[223]=

MousePosition "Graphics"

Here we have plotted the line and the parabola but also included the instruction
Dynamic[MousePosition[“Graphics”]]. This statement causes the coordinates of
the mouse to be displayed whenever the mouse is located inside graphical output. In
this case, moving the mouse cursor to the rightmost point of intersection of the line
and the parabola causes the coordinates {3.24948, 5.14121} to be displayed. As
we move the mouse, these coordinates change continuously. If we move the mouse
outside of the graphic, the coordinates change to None. Try it! Of course, we get a
much more accurate answer by using Solve or NSolve. Still, plotting the functions
can be quite helpful for seeing what is going on and the dynamic mouse position
function is really useful. In fact, we’ll see a great application of it in Chap. 10.

If we had been solving Example 8.2.3 by hand, we probably would have first
eliminated one of the variables, say y, to obtain a single equation in x . We would
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have solved that equation for x and then substituted those solutions back into
one of the original equations to solve for y. We can go through this process with
Mathematica by using the Eliminate function. Let’s see how to do this.

In the first cell of the Example 8.2.3, we have used Eliminate to eliminate the
variable y. Notice that we simply list the two equations and then the variable that we
want to eliminate. We could have just as easily eliminated x rather than y. We then
use NSolve applied to the previous result to solve the single remaining equation for
x . We then substitute these solutions back into the original equation y = x + 2. Here
is an example where we took advantage of NSolve’s output being in the form of sub-
stitution rules to easily substitute the solutions into the original equation. In this ex-
ample, we have twice referred to the previous output by using the % symbol, so keep
in mind that if we rerun the second and third cells in this example (without rerunning
the first cell) it will not run properly since % will not refer to the correct thing.

Example 8.2.3
In[227]:= using Eliminate to solve a pair of equations

Eliminate y x 2, y x^2 16 , y

Out[227]= x x2 14

In[228]:= solving for x
NSolve , x

Out[228]= x 4.27492 , x 3.27492

In[229]:= solving for y
x 2 .

Out[229]= 2.27492, 5.27492

Eliminate can be used in much greater generality. For example, we could elim-
inate three variables from five equations that involve six variables. Read the Help
Files for more information on Eliminate.

8.3 Systems of Linear Equations
Solving systems of linear equations is a major part of linear algebra and is worth
a detour. Suppose we want to solve the system of equations

3x + 2y − z + w = 0

x − 3z = −1

−y + w = 2
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Of course, linear equations are polynomial equations (of degree one) so we could
just proceed as in the last section. We do this in Example 8.3.1.

Example 8.3.1
In[236]:= solving a system of linear equations

Solve 3 x 2 y z w 0, x 3 z 1, y w 2 ,
x, y, z

Out[236]= x
1
8

13 9 w , y 2 w, z
1
8

7 3 w

In this case, notice that the system has more variables (four) than equations
(three). Such a system is called underdetermined and it either has no solutions at all
or it has infinitely many.2 Because there are more variables than equations we have
chosen to solve the system only for three of the variables in terms of the fourth. As
it turns out, there are infinitely many possible solutions, one for each value of w .
Notice that the substitution rules returned by Solve show us this since each variable
is given in terms of w .

While the above example solves our problem, it is better to take the point of
linear algebra and view the system of equations in terms of the following matrix
equation.

⎛
⎝3 2 −1 1

1 0 −3 0
0 −1 0 1

⎞
⎠

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠ =

⎛
⎝ 0

−1
2

⎞
⎠

There are very well-developed methods for solving matrix equations of the form
Ax = b and the Mathematica function LinearSolve is just what we want. Example
8.3.2 shows how to solve this system using LinearSolve. Notice that we first define
the coefficient matrix A and the constant vector b and then call LinearSolve with
the two arguments A and b.

Notice that LinearSolve has given us only one solution whereas Solve gave
infinitely many! (In fact, if you look carefully, LinearSolve has given the single

2If there are more equations than variables, the system is called overdetermined and it may or may not have any
solutions. If the number of equations matches the number of variables, the system is called square.
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Example 8.3.2
In[233]:= solving a system of linear equations

A 3, 2, 1, 1 , 1, 0, 3, 0 , 0, 1, 0, 1
b 0, 1, 2
LinearSolve A, b

Out[233]= 3, 2, 1, 1 , 1, 0, 3, 0 , 0, 1, 0, 1

Out[234]= 0, 1, 2

Out[235]=
13
8
, 2,

7
8
, 0

solution corresponding to w = 0.) What is going on here? The answer lies with the
associated homogeneous system Ax = 0. The set of all solutions to this system is
called the null space of A and obviously includes the zero vector since A0 = 0.
In general, if there are multiple solutions to the original system Ax = b, then they
will differ by something in the null space. Suppose that x1 and x2 solve Ax = b.
Then

A(x1 − x2) = Ax1 − Ax2

= b − b

= 0

so we see that x1 − x2 is in the null space of A. To find all the solutions to Ax = b
using LinearSolve we need to also use the Mathematica function NullSpace to
find the null space of A. We can then take the single solution given by LinearSolve
and add to it any vector in the null space. Let’s see what the null space of A is.

Example 8.3.3
In[237]:= finding the nullspace of the coefficient

matrix A
NullSpace A

Out[237]= 9, 8, 3, 8

Mathematica tells us that the vector (−9, 8, −3, 8) is in the null space. But, of
course, if a vector is in the null space of A, then so is any multiple of it, since
A(cx) = cAx . So, in this case, we see that the null space of A is the line consisting
of all multiples of (−9, 8, −3, 8). It might turn out that a matrix A has a two or
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three or even higher dimensional null space in which case NullSpace will return a
set of linearly independent basis vectors that span the null space. In this case, the
null space will consist of all sums of multiples of these vectors.

Returning to our original problem, we finally see that the set of all solutions
consists of

(13/8, −2, 7/8, 0) + w(−9, 8, −3, 8)

where w is any constant. Of course, this is exactly the same set of solutions that we
found with Solve!

Let’s look at one more example.

Example 8.3.4
In[246]:= solving a square system of equations

A 5, 9, 1, 14 , 1, 1, 1, 2 , 2, 2, 2, 4 ,
3, 5, 1, 8 ;

b 6, 2, 4, 2 ;
NullSpace A
LinearSolve A, b

Out[248]= 1, 1, 0, 1 , 2, 1, 1, 0

Out[249]= 6, 4, 0, 0

In this case, the coefficient matrix is a square 4 by 4 matrix, so we are dealing
with 4 equations in 4 variables. The null space of A is two dimensional, being
spanned by the vectors (1, −1, 0, 1) and (2, 1, 1, 0). Notice that these two vectors
are linearly independent, that is, neither is a multiple of the other, so they really
do span a plane, not a line. Any linear combination of them, that is, a sum of
multiples of them, is in the null space of A and will be sent to zero by A. With
b = (−6, −2, 4, −2), LinearSolve tells us that (−6, −4, 0, 0) is a solution. So
finally, the set of all solutions is the two-dimensional set of vectors

(−6, −2, 4, −2) + x(1,−1, 0, 1) + y(2, 1, 1, 0)

where x and y are any two constants.
In the previous example, we found that the equation Ax = b had infinitely many

solutions. But this does not have to be the case. If we change b just a little bit the
situation can change a lot. Consider the following example.
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Example 8.3.5
In[258]:= change b slightly and there are no solutions

A 5, 9, 1, 14 , 1, 1, 1, 2 , 2, 2, 2, 4 ,
3, 5, 1, 8 ;

b 6, 2, 0, 2 ;
NullSpace A
LinearSolve A, b

Out[260]= 1, 1, 0, 1 , 2, 1, 1, 0

LinearSolve::nosol : Linear equation encountered that has no solution.

Out[261]= LinearSolve 5, 9, 1, 14 , 1, 1, 1, 2 ,
2, 2, 2, 4 , 3, 5, 1, 8 , 6, 2, 0, 2

We now see that there are no solutions at all!
Recall that associated to any square matrix is a number called its determinant.

Mathematica will compute determinants as seen below.

Example 8.3.6
In[262]:= computing the determinant of the coefficient

matrix
Det A

Out[262]= 0

It is not surprising that the determinant of A is zero. In fact, a square matrix has
a trivial null space consisting of only the zero vector if and only if its determinant
is not zero. Since we have already seen that A has a nontrivial null space, it must
be the case that the determinant of A is zero.

Mathematica has lots of functions that are useful in dealing with matrices and
important problems in linear algebra. We’ll close this section by describing just
one more function, the Inverse function. Some, but not all, square matrices have an
inverse matrix. The inverse of a matrix is entirely analogous to the (multiplicative)
inverse of a number. Suppose we wanted to solve the equation

3x = 12

If we multiply both sides of the equation by 1/3 we obtain

x = 4
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and the solution we are looking for. The number 1/3 is the multiplicative inverse
of 3. When we multiply 3 and 1/3 together we obtain 1, which is the multiplicative
identity. The number 1 is called this because it has the property that 1 · x = x · 1 = x
for all numbers x . Wouldn’t it be great if we could solve the matrix equation

Ax = b

in the same way, that is, by multiplying both sides of the equation by the “inverse”
of A.

Continuing with the analogy to numbers, notice that the identity matrix

I =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

⎞
⎟⎟⎟⎠

which consists of all zeroes except for 1’s down the diagonal, plays the role anal-
ogous to the number 1. That it, I x = x for all vectors x . The inverse of the square
matrix A is now defined to be the matrix B such that AB = B A = I . So, the upshot
of all of this is that, if we want to solve Ax = b, where A is square, and IF A has an
inverse, which from now on we will denote A−1, then we can multiply both sides
of the equation by A−1 to get

Ax = b

A−1 Ax = A−1b

I x = A−1b

x = A−1b

and we have solved the equation! The problem is that, not all matrices have inverses!
Only those with nonzero determinant do. However, if A does have an inverse then
we can find it with Mathematica by using the Inverse function. In the following
example we find a few inverses and also try to find an inverse when it does not
exist.

Notice that in the third example the inverse of c does not exist. Mathematica
tells us instead that the matrix is singular which is another word for having zero
determinant, or in other words, not having an inverse. Notice also that in the second
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Example 8.3.7
In[263]:= finding the inverses of a few matrices

a 2, 1 , 3, 4 ;
b 1, 2, 3 , 0, 2, 1 , 0, 2, 0 ;
c 1, 0 , 0, 0 ;
Inverse a
MatrixForm Inverse b
Inverse c

Out[266]=
4
5
,

1
5

,
3
5
,
2
5

Out[267]//MatrixForm=

1 3 4

0 0 1
2

0 1 1

Inverse::sing : Matrix 1, 0 , 0, 0 is singular.

Out[268]= Inverse 1, 0 , 0, 0

example we have used the formatting function MatrixForm in order to display the
inverse of b as a matrix rather than a list of its rows.

8.4 Nonpolynomial Equations
Polynomial equations are really quite special. What if we need to solve equations
like x2 = ex , x = cos x, log x + log 2 = 1/x , or sin 2x + tan x = 2x? These equa-
tions involve exponential, logarithmic, and trigonometric functions, rather than just
polynomials. We can still try to use Solve but let’s see what happens.

In Example 8.4.1, notice that Mathematica issued us warnings with all four
equations. With the first and third equations it still produced some kind of answer,
but for the second and fourth it didn’t come up with anything. It is not because these
equations don’t have any solutions! It’s just that Solve is having a hard time. It turns
out that NSolve doesn’t do much better, although it does give numerical answers
with the first and third equations rather than using the unfamiliar ProductLog3

function.

3Entering ?ProductLog we find that ProductLog[z], by definition, is the number w that satisfies z = wew .
We won’t have anything more to say about this somewhat esoteric function. Consult the Help Files for more
information.
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Example 8.4.1
In[26]:= Solve x^2 Exp x , x

Solve x Cos x , x
Solve Log x Log 2 1 x, x
Solve Sin 2 x Tan x 2 x, x

Inverse functions are being used. Values may be lost for multivalued inverses.

InverseFunction::ifun :

InverseFunction::ifun :

Inverse functions are being used. Values may be lost for multivalued inverses.

Solve:: ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[26]= x 2 ProductLog
1
2

, x 2 ProductLog
1
2

Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non–algebraic way.

Out[27]= Solve x Cos x , x

InverseFunction::ifun :

Inverse functions are being used. Values may be lost for multivalued inverses.

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[28]= x
1

ProductLog 2

Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non–algebraic way.

Out[29]= Solve Sin 2 x Tan x 2 x, x

An alternative to Solve or NSolve that is usually quite successful is the FindRoot
function. But to use it we need to first provide a numerical estimate of the solution.
Let’s consider the first equation, x2 = ex . In the next example we plot the two
curves.

Example 8.4.2
In[269]:= trying to find where x^2 e^x

Plot Exp x , x^2 , x, 1, 1
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Example 8.4.2 (Continued)

Out[269]=

– 1.0 – 0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

The two curves obviously intersect in exactly one point and that point is near
x = −.7. Let’s use FindRoot with an initial guess of −.7.

Example 8.4.3
In[270]:= using FindRoot to solve the equation

FindRoot x^2 Exp x , x, .7

Out[270]= x 0.703467

Notice that FindRoot takes two arguments. The first is the equation that we want
to solve (or a list of equations to solve simultaneously) and the second is a list of
the variable to solve for together with our initial guess. It turns out that for this
particular equation the initial guess does not need to be that close for FindRoot
to find the solution. But this is not always the case. Let’s look at an example that
shows that the outcome can be very sensitive to the initial guess.

Let’s try to solve 1 + x3/100 = x sin x . To get an idea of what is going on
we have graphed both functions in Example 8.4.4. From the graphs we can see
that there are exactly seven solutions. (There cannot be any solutions to the left
or right of what we have graphed.) Looking at the plot, it is clear that the solu-
tions lie near −6, −3, −1, 1, 3, 7, and 8, so let’s use these as initial guesses with
FindRoot. We do this in Example 8.4.5 and find that the solutions are approx-
imately {−6.07699, −2.87281, −1.10446, 1.1244, 2.68051, 6.9627, 8.44329}. So
far so good.
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Example 8.4.4
In[123]:= looking for solutions to 1 x^3 100 x Sin x

Plot x^3 100 1, x Sin x , x, 13, 13

Out[123]=
–10 –5 5 10

–20

–10

10

20

In Example 8.4.5, we Map the pure function FindRoot[1 + x3

100 == Sin[x]]&
onto the list of initial guesses.

Example 8.4.5
In[24]:= finding the solutions to 1 x3 100

x Sin x

FindRoot 1
x3

100
x Sin x , x, &

6, 3, 1, 1, 3, 7, 8

Out[24]= x 6.07699 , x 2.87281 ,
x 1.10446 , x 1.1244 ,
x 2.68051 , x 6.9627 , x 8.44329

Notice in Example 8.4.6, however, that the output of FindRoot can vary radically
with small changes in the initial guess. Here we have used four different initial
guesses. The first and third differ by 0.003 and lead to the same solution, yet in
between these initial values are two others that lead to different solutions! The
problem is not with FindRoot per se, but rather is inherent in this type of problem.
In fact, this type of phenomenon is usually referred to as sensitive dependence to
initial conditions and is a hallmark of dynamical systems which we will discuss in
Chap. 10. The lesson to be learned here is that the initial guess may not lead to
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where you think it will. Fortunately an initial guess that is close to a solution will
often lead to that solution. A little investigation before using FindRoot, like our
plot in Example 8.4.4, can go a long way toward guaranteeing success.

Example 8.4.6
In[25]:= FindRoot is sensitive to initial guess

FindRoot 1
x3

100
x Sin x , x, 4.371

FindRoot 1
x3

100
x Sin x , x, 4.370

FindRoot 1
x3

100
x Sin x , x, 4.369

FindRoot 1
x3

100
x Sin x , x, 4.368

Out[25]= x 1.10446

Out[26]= x 6.9627

Out[27]= x 8.44329

Out[28]= x 1.10446

8.5 Differential Equations
Let’s see how to solve differential equations with Mathematica. Suppose we want
to find all solutions to the equation

y′(x) = 3y(x)

In other words, we are looking for a function whose derivative is equal to 3 times
itself. The following example shows how we can use DSolve to solve this equation.

Example 8.5.1
In[4]:= solving a differential equation with DSolve

DSolve y' x 3 y x , y x , x

Out[4]= y x 3 x C 1
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To use DSolve we need to enter three arguments. The first is the differential
equation that we want to solve, the second is the function we want to solve for, and
finally the third argument is the independent variable. Notice that the answer is given
in the form of a replacement rule. In this case, there are infinitely many solutions to
the differential equation indicated by the fact that the solution contains the arbitrary
constant C[1]. If we want a specific solution to the equation, for example, a solution
for which y(2) = π , then this would determine the constant since we would need
π = y(2) = Ce6, and therefore C = πe−6.

Instead of having to figure out the value of C[1] ourselves, we can have Math-
ematica do it by providing the initial condition (for example, y(2) = π ) from the
beginning. The next example shows how to do this. Notice that we simply replace
the first argument to DSolve with a list containing both the differential equation
and the initial condition.

Example 8.5.2
In[29]:= stipulating an initial condition

DSolve y' x 3 y x , y 2 π

π

, y x , x

Out[29]= y x 6 3 x

Having the output in the form of a replacement rule can be useful if we want
to graph the solution. In Example 8.5.3, we give the name solution to the output
of DSolve and then use the replacement operator to substitute for y[x] in the Plot
function.

On the other hand, there are other operations that would be difficult to accomplish
using the replacement rule that we obtain from DSolve. For example, suppose
that we simply want to verify that the solution is correct. We want to show that
y′(x) = 3y(x) and that y(2) = π . The initial condition can be confirmed without
too much trouble as follows. Notice that we first substitute the solution for y(x)

and then 2 for x .

Example 8.5.3
In[30]:= plotting the solution to the differential

equation
solution DSolve

y' x 3 y x , y π

π

2 , y x , x

Plot y x . solution, x, 0, 1

Out[30]= y x 6 3 x
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Example 8.5.3 (Continued)

Out[31]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

Example 8.5.4

In[32]:= confirming that y 2
y x π

π
. solution . x 2

Out[32]= True

We can verify the differential equation in a similar way, as seen below, but it is
more awkward. Notice that our first attempt is foiled by the fact that the original
output of DSolve is delimited by a pair of curly braces. This is because DSolve
can solve sets of equations that might have multiple solutions and is therefore
designed to return a list of lists. We’ll see examples of this soon. Our second
attempt gets around this problem by taking the first part of the derivative. (We
could also have taken the first part of solution before we differentiated and used
D[y[x]/.solution[[1]], x]==3 y[x]/.solution. Try it!)

Example 8.5.5
In[32]:= trying to confirm that y' x 3 y x

D y x . solution, x 3 y x . solution
D y x . solution, x 1 3 y x . solution

Out[32]= 3 π π6 3 x 3 6 3 x

Out[33]= True

But perhaps more awkward is that we cannot simply write y′[x]/.solution and
instead need to use the D function. This is because the replacement rule can only
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be used to replace the expression y[x] and therefore will not replace the expression
y′[x].

Compare all of this with the following example, where we simply use y as
opposed to y[x] as the second argument to DSolve. Doing this causes DSolve to
return a pure function as the solution and this pure function can be substituted into
expressions like y′[x].

Example 8.5.6
In[33]:= using pure functions

solution DSolve y' x 3 y x , y 2 π

π

, y, x
verifying the differential equation

y' x 3 y x . solution
verifying the initial condition

y 2 Pi . solution

Out[33]= y Function x , 6 3 x

Out[34]= True

Out[35]= True

If we use DSolve to produce a pure function as in the last example, we can
still graph the solution exactly as we did in Example 8.5.3. Try it out for yourself!
Whether it is better to use pure functions or not will depend on what you are trying
to do with the solution. But if you understand the difference between pure and
nonpure functions you shouldn’t have any trouble working with either.

Before leaving the arena of first order equations, let’s look at one more example.
If we do not specify initial conditions then the general solution will involve an
arbitrary constant. In Example 8.5.7, we use Table to create a list of particular
solutions and then plot all of them at once. Notice that this differential equation
produces two different solutions so that the output from DSolve is a list with two
elements. The solutions are nearly the same: a plus sign is switched to a minus sign
to go from the first to the second solution. Also, observe the construction y[x]/. sol
/. C[1]→k in the Table function. We first replace y[x] with the solution and then
replace C[1] with k before letting k run from −10 to 10 in steps of 1. It might seem
that Table[y[x] /. sol, {C[1], -10, 10, 1}] would be simpler, but unfortunately this
will not work. Mathematica complains that “Tag C in C[1] is Protected.” We also
use Tooltip so that as the mouse is moved over different solutions the value of the
constant is displayed.

Mathematica can solve higher order differential equations too. The next example
solves a fairly simple equation.
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Example 8.5.7
In[88]:= plotting different solutions

mouseover displays C 1

sol DSolve y' x x2 y x x y x , y, x

vary C 1 to produce list of solutions
particularSolutions Table

Tooltip y x . sol . C 1 k, k , k, 10, 10
;
plot all solutions in list

Plot particularSolutions, x, 4, 4

Out[88]= y Function x , x x2
2 x3

3
C 1 ,

y Function x , x x2
2 x3

3
C 1

Out[90]=

–4 –2 2 4

–10

–5

5

Example 8.5.8
In[450]:= solving a second order differential equation

DSolve y'' x y x x, y, x

Out[450]= y Function x , x C 1 Cos x C 2 Sin x

Notice that in this example the solution involved two unknown constants, C[1]
and C[2]. If we were to specify initial values for both y and y′ we would get a
specific solution. Example 8.5.9 illustrates this.
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Example 8.5.9
In[104]:= solving a second order differential equation

with initial conditions for both y and y'
DSolve
y'' x y x x, y 0 2, y' 0 0 ,
y, x

Out[104]= y Function x , x 2 Cos x Sin x

We close this section with an example that uses a really cool feature of Manip-
ulate. Suppose we want to solve the system of first order differential equations

x ′(t) = x(t) − 10y(t)

y′(t) = 15x(t) + y(t)

We can do this with DSolve. We simply need to list both differential equations as
the first argument to DSolve. We do this in Example 8.5.10. Notice that the second
argument is also a list—a list of the two unknown functions. We are using x and y
rather than x[t] and y[t] so we will be getting pure functions as answers. The third
argument is the independent variable t .

Example 8.5.10
In[105]:= solving a pair of first order linear

equations simultaneously
solution DSolve

x' t x t 10 y t , y' t 15 x t y t ,
x, y , t

Out[105]= x Function t ,

t C 1 Cos 5 6 t
2
3

t C 2 Sin 5 6 t ,

y Function t , t C 2 Cos 5 6 t

3
2

t C 1 Sin 5 6 t
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Next, let’s plot the solution in the xy-plane. We can use ParametricPlot to
do this. But, of course, we can only plot a specific solution, and so far we have
found the general solution which still contains two arbitrary constants. To plot a
specific solution we could first choose specific values for the constants. Before we
get started, a good question is, How do the constants relate to the initial values x(0)

and y(0)? Example 8.5.11 shows us that these initial values of x and y are simply
equal to the two constants.

Example 8.5.11
In[66]:= finding the initial values in terms of

the constants C 1 and C 2
x 0 , y 0 . solution

Out[66]= C 1 , C 2

So, by varying the constants C[1] and C[2], we will be varying the initial values
x(0) and y(0). Let’s plot the solution and use Manipulate to vary the initial con-
ditions. But instead of using sliders as controllers, wouldn’t it be cool to move the
initial point (x(0), y(0)) around in the xy-plane by using the mouse? We can do this
with the Locator feature of Manipulate! This is a nice feature of Mathematica that
allows us to dynamically interact with graphical output! Example 8.5.12 illustrates
how to do this.

Let’s see how the code works. The body of the Manipulate construction consists
of just one instruction, ParametricPlot, which is then followed by two controllers.
The first is length and the second is pt (which stands for point). The first controller
is realized as a familiar slider. But the second controller is of the Locator type. This
causes a dynamically interactive locator point to appear in the graphic which we
can then drag with the mouse. Locator controls have to be given an initial value,
so the controller definition begins with {pt,{x0, y0}}, where {x0, y0} is the initial
value of pt. In this case, we supply the initial values for the coordinates randomly by
using RandomReal[ ]. The RandomReal[ ] function will return a randomly chosen
real number between 0 and 1. So, the overall effect of the controller definition is to
define the controller pt as a Locator with an initial position that has been chosen
at random.

If we now look at the ParametricPlot function, we can see that the curve to
be plotted is given parametrically by {x(t), y(t)}, where x and y are replaced by
the solution to the differential equation and finally the constants C[1] and C[2] are
replaced with the first and second parts of pt. The domain of the plot is 0 ≤ t ≤
length, where the controller length is initially set to 0.5, but is allowed to run from
0 to 1. You really need to try this out! The effect of moving the initial point with



234 Mathematica Demystified

the mouse is quite dramatic as is changing the length of the trajectory by using the
slider.

Example 8.5.12
In[106]:= using Locator to Manipulate the initial

conditions while plotting the solution
Manipulate
ParametricPlot
x t , y t . solution .
C 1 pt 1 , C 2 pt 2 ,
t, 0, length ,
PlotRange 2, 2 , 2, 2
,

manipulate controllers
length, .5, "Length" , 0, 4 ,
pt, RandomReal , RandomReal , Locator

Out[106]=

Length

–2 –1 1 2

–2

–1

1

2
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A couple of remarks are in order. What happens if you run the length slider
all the way down to zero? Mathematica will object because the domain of the
ParametricPlot will then be from 0 to 0. To avoid this it is handy to set the range of
length to be from 0.001 (or some other small number) to 4. Secondly, you may wish
to experiment with the inclusion of the option PerformanceGoal→“Quality” in
the ParametricPlot function. If length is set to the maximum (especially if that
maximum is increased to 4 or more) and the locator point is moved quickly, the
trajectory is seen to be more polygonal. On the other hand, including the option
slows down the responsiveness of the locator point.

8.6 Find Out More
As usual, we have barely scraped the surface of what Mathematica can do when it
comes to solving equations. To find out more, check out the following items and
tutorials in the Help Files:

• Reduce.

• Eliminate.

• tutorial/SolvingEquations.

• tutorial/EquationsInOneVariable which is a section in the larger tutorial/
ManipulatingEquationsAndInequalitiesOverview.

• tutorial/DSolveOverview. This is a huge overview. Pay special attention to
Working with DSolve—A User’s Guide which is a really nice guide.

• tutorial/DifferentialEquations-Basics.

An entire application for tracing out trajectories of differential equations (similar
to what we did in Example 8.5.12) exists under the name “Equation Trekker”
which is part of a Mathematica package. We have generally avoided discussing
Mathematica packages in this introductory book, but take a look at the tutorial:
EquationTrekker/tutorial/EquationTrekker.

Quiz
1. Solve xy + y − 3 = 2x+y

3x+4 for x in terms of y. Repeat the problem, but solve
for y in terms of x .

2. Find the roots of x4 + 5x3 − x + 6, both exactly and approximately.

3. Plot the roots of x6 + x + 1.
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4. Find the value of a where x6 + ax + 1 has repeated roots. What is the least
number of distinct roots this polynomial can have?

5. Find all solutions to the following system of linear equations.

x − z = 4

2x + y − 3z = 5

6. Find the points where the two curves shown below intersect. The equations of
these curves, in polar coordinates, are

r = 2 sin(3θ) and r = 1 + cos2(3θ)

–2 –1 1 2

–2.0

–1.5

–1.0

–0.5

0.5

1.0

1.5

7. Suppose an object is falling near the surface of the earth and that its height
off the ground at time t is x(t). If there is no air resistance, and assuming that
the acceleration due to gravity is constant at g = 9.8 meters per second per
second, then x satisfies the following differential equation:

x ′′[t] = −g.

Use DSolve to find x(t). If the object is dropped from a height of 1000 meter
above the ground how long will it take to reach the ground?

8. Let’s add in the effect of air resistance to the falling body of the previous
problem. Suppose that as the object falls the drag is proportional to the velocity.
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This gives an upward force of kx ′(t) where k is some negative constant in
addition to the downward force of −mg where m is the mass of the object. We
now have the differential equation

x ′′(t) = k

m
x ′(t) − g

The constant k/m depends on the size and shape of the falling body. For a
skydiver in a spead-eagle position it is about −0.163. If a skydiver jumps out
of a plane 3000 meters above the ground, how long will it take her to fall 1000
meters? (She plans to open her chute about 1500 meters off the ground.)

9. Continuing with the skydiver of the last question, what is her terminal velocity,
that is, the velocity she reaches when the force of drag matches the force of
gravity and she no longer accelerates?

10. Change Example 8.5.12 to include three randomly chosen locator points, each
providing the initial point of a solution, instead of just one. Can you write the
code so it would be trivial to change that to five or ten or twenty points?
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CHAPTER 9

Working with Data

One of the really incredible features of Mathematica is the access it provides to
a number of large data sets. These data sets are stored and regularly updated by
Wolfram Research and available over the internet. Simple Mathematica functions
are provided that can be used to explore and analyze the data. If you take a look
at “guide/DataCollections” in the Help Files you’ll see that included among the
data sets are mathematical data (polyhedra, graphs, knots, and the like), physical
and chemical data (elements, chemicals, isotopes, particles, and the like), coun-
try and city data, financial data (currency, stocks, and the like), and word data
(dictionary, thesaurus, and the like). Using these data sets you can easily render a
three-dimensional plot of your favorite molecule, chart the closing share prices of
the stocks in your retirement portfolio, or build star charts for the night sky at your
location on earth.

In this chapter, we’ll explore two of these data sets: CountryData and WordData.
When working with large data sets of any kind the necessary tasks are usually the
same. We need to import data from some source, select features of the data that
interest us, analyze the data, and usually display the data and our analysis in some
way (graphical, tabular, and so on), often so that we can present our findings to
others.
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9.1 Country Data
Using CountryData we can access all sorts of information on over 200 countries
around the world. Example 9.1.1 shows the basic usage of this function, where
we find out the population, area and GDP (gross domestic product) for Sudan,
Russia, and Chile. CountryData takes two arguments, the first being the name of
the country and the second a property, where both arguments are in quotes.

Example 9.1.1
In[293]:= getting information about countries

CountryData "Sudan", "Population"
CountryData "Russia", "Area"
CountryData "Chile", "GDP"

Out[293]= 4.02185 107

Out[294]= 1.70752 107

Out[295]= 1.45841 1011

An optional third argument of “Units” can be used to determine what units are
being used. In Example 9.1.2, we extract a variety of geographical data about the
United States and display the results in a table. The four properties that we are
interested in are first given in a list. We then map onto this list a pure function
that creates a list of triplets. Each triple contains the property, then the value for
the United States, and then the units that are used. Finally, TableForm is used to
display the output in tabular form.

Example 9.1.2
In[298]:= tabulating some geographical data for the US

TableForm
, CountryData "UnitedStates", ,
CountryData "UnitedStates", , "Units" &
"Area", "CoastlineLength", "HighestPoint",
"LowestPoint"

Out[298]//TableForm=

Area 9.63142 106 SquareKilometers

CoastlineLength 19924. Kilometers

HighestPoint MountMcKinley
6194.

Meters

LowestPoint DeathValley
86. Meters



CHAPTER 9 Working with Data 241

To find out what properties are available, enter CountryData[ “Properties”].
To find out what countries are in the data set, enter CountryData[ ]. In Example
9.1.3, we find the list of properties, but use Take to display only the first twenty.
Try using Length[CountryData[ “Properties”]] to find out how many different
properties there are.

Example 9.1.3
In[304]:= the first 20 properties

Take
CountryData "Properties" ,
20

Out[304]= AdultPopulation, AgriculturalProducts,
AgriculturalValueAdded, Airports,
AlternateNames, AlternateStandardNames,
AMRadioStations, AnnualBirths, AnnualDeaths,
AnnualHIVAIDSDeaths, ArableLandArea,
ArableLandFraction, Area, BirthRateFraction,
BorderingCountries, BordersLengths, BoundaryLength,
CallingCode, CapitalCity, CapitalLocation

In Example 9.1.4, we find the ten most wealthy nations (in terms of GDP). We
could easily change this to give the ten countries with the most people, land area,
and so on, by simply replacing “GDP” with whatever property we want.

Example 9.1.4
In[273]:= finding the 10 countries with highest GDP

richest Take
Sort

, CountryData , "GDP" & CountryData ,
1 2 2 2 &
,
10

Out[273]= UnitedStates, 1.31923 1013 ,

Japan, 4.43499 1012 , Germany, 2.8887 1012 ,

China, 2.66677 1012 , UnitedKingdom, 2.3725 1012 ,

France, 2.23439 1012 ,

Italy, 1.848 1012 , Canada, 1.27063 1012 ,

Spain, 1.22501 1012 , Brazil, 1.0678 1012
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Let’s see how this example works. We begin by using CountryData[ ] to return
the list of countries. We then map a pure function onto this list to create a list of
pairs, where each pair contains the country name and then the GDP. Since we want
the ten wealthiest countries, we need to sort this list of pairs. Thus we use Sort.
But we want to sort on the second element of each pair, so the second argument to
Sort is the pure function 	1[[2]]> 	2[[2]]&. The countries and their GDPs are now
listed in decreasing order of GDP and we use Take to take the first 10 elements of
this list. If we wanted the 10 poorest countries we could either Take the last 10 by
using −10, or we could change the ordering function used in Sort by replacing the
greater than symbol with the less than symbol.

When working with data sets, we often want to display the data in ways that make
it easier to see and comprehend. In Example 9.1.5, we display the data we collected
in the list richest by means of a bar chart. There is a nice function called BarChart
which is just what we need. BarChart is not part of the main Mathematica kernal
but instead is part of an auxiliary package.

In earlier versions of Mathematica many functions were grouped together in
a variety of different packages. Presumably the idea was that the kernal would
contain the most often used core functions and that more infrequently used eso-
teric functions would be in separate packages that could be loaded in and used
as needed. As the development of Mathematica proceeds, more and more of the
packages are being incorporated into the main kernal. For that reason, and be-
cause this book is intended primarily for beginners, we have avoided talking about
packages. But, the BarChart function is so useful that it would be a shame not to
use it!

Example 9.1.5
In[306]:= plotting the GDP of countries

Needs "BarCharts`"
labels
Graphics Text 1 , Scaled 1, 1 , 0, 1.54 ,

0, 1 , ImageSize 20, 80 & richest;
BarChart 2 & richest,
BarLabels labels,
BarGroupSpacing .2,
PlotLabel
"GDP of Ten Richest Countries in US Dollars"
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Example 9.1.5 (Continued)

Out[308]=

U
nitedStates

Japan

G
erm

any

C
hina

U
nitedK

ingdom

France

Italy

C
anada

Spain

B
razil

0

1.2 × 1013

1. × 1013

8. × 1012

6. × 1012

4. × 1012

2. × 1012

GDP of Ten Richest Countries in US Dollars

The first line of Example 9.1.5 is Needs[“BarChart`”] which tells Mathematica
to load the BarChart package, thereby making available all the functions in the pack-
age. We only need to load the package once. Ignore for a moment labels and move
onto BarChart. This function takes one argument, a list of data, and then several
options. The data are the GDP values which we extract from richest by mapping
the pure function 	[[2]]& onto richest. The next three arguments are options to
change the appearance of the chart. BarChart accepts all the same arguments as
Plot, for example, plus some extra ones like BarLabels and BarGroupSpacing.
We use BarLabels to place the country names under the bars. To do this, we first
create a list of the labels which we call labels. This is a little tricky as we want the
labels to appear vertically and we also want to have them line up under the bars.
Basically, we use Text to make the labels, but you need to take a good look at the
Help Files to see how we have used the three optional arguments of Text that follow
the country name. The last one for example, {0,-1}, is used to rotate the text 90
degrees. Just a word of warning: a lot of futzing around with the second and third
arguments to Text (coordinates and offset) was needed to make the labels line up
nicely with the bars.1

1In fact, Manipulate was used to vary the parameter that is now set to 1.54, watching until the alignment of the
labels with the bars looked good.
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Using CountryData we can also draw maps! Cartographic data on each of
the countries is available as well as different map projection schemes such as
Mercator, Mollweide, and Miller Cylindrical to name just three. In Example 9.1.6,
we display the map of Thailand. Here CountryData[“Thailand”,“Polygon”] re-
turns a polygon that forms the outline of the country, which we then display using
Graphics.

Example 9.1.6
In[390]:= displaying the map of a country

Graphics
CountryData "Thailand", "Polygon"

Out[390]=

We can draw the map of a single country, or a list of countries. In Example
9.1.7, we draw a map of all of South America and further use Tooltip to display
data about each country as we move the mouse over the map. In this example,
the mouse is over Uruguay. Instead of having to enter a list with the names of
all the countries of South America, CountryData[“SouthAmerica”] will return
such a list. We then map the pure function Tooltip[CountryData[	, “Polygon”],
label[	]]& onto the list of countries to create the graphics object that we then
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display with Graphics. Try running this example without the first two graphics
parameters, Yellow and EdgeForm[Black]. It will still work but produce a solid
black map of South America.

Example 9.1.7
In[397]:=

Out[397]=

Name: Uruguay

Population: 3.47778 × 106

Density(people/km2): 20
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Recall that Tooltip takes two arguments. The first is the graphics object and the
second is the data that we want to pop up when the cursor is brought over the object.
We have used a separate function, called label to define the data to be shown for
each country. We show this function in Example 9.1.8.

Example 9.1.8
In[398]:= label for South America Tooltip data

label country : Row

CountryData country, "Flag"

, Text Grid

"Name:", country ,

"Population:",
CountryData country, "Population" ,

"Density people km2 :",

Round
CountryData country, "Population"
CountryData country, "Area"

Here we use Row to place the flag and textual data side by side. For the text data
on the right we use Text[Grid[ ]], and, of course, the population and population
density are obtained by using CountryData. We divide the population by the area
to get the number of people per square kilometer and round this quotient off to the
nearest integer using Round.

We close this section by showing how we obtained the population data used in
Example 2.8.2. We begin by getting population data over a range of years as shown
in Example 9.1.9. Notice that the first element of each data point is a time in the
format {year, month, day, hour, minute, second}. In Example 2.8.2, we only want
data at 5-year intervals. It would be nice if CountryData took an optional stepsize
in the year range, but it doesn’t. So, we’ll use Select to pick out years that are
divisible by 5. That will almost create the list we want. But, we only need the year
from each time list, and we want the population in millions. So we map the pure
function {	[[1, 1]], 	[[2]]/10∧6} & onto the list.
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Example 9.1.9
In[82]:= getting data over a range of time

CountryData
"UnitedStates",
"Population", 2000, 2005

Out[82]= 2000, 1, 1, 0, 0, 0 , 2.84857 108 ,

2001, 1, 1, 0, 0, 0 , 2.87837 108 ,

2002, 1, 1, 0, 0, 0 , 2.90832 108 ,

2003, 1, 1, 0, 0, 0 , 2.93837 108 ,

2004, 1, 1, 0, 0, 0 , 2.96844 108 ,

2005, 1, 1, 0, 0, 0 , 2.99846 108

Example 9.1.10
In[85]:= selecting every fifth year and formating

the data
usData 1, 1 , 2 10^6 &
Select
CountryData
"UnitedStates",
"Population", 1970, 2005
,
Mod 1, 1 , 5 0 &

Out[85]= 1970, 210.111 , 1975, 220.165 ,
1980, 230.917 , 1985, 243.063 ,
1990, 256.098 , 1995, 270.245 ,
2000, 284.857 , 2005, 299.846

We have barely scratched the surface of what can be done with CountryData.
You’ll find lots of interesting examples in the Help Files that can lead you deeper
into the data set.
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9.2 Word Play
One of the large data sets available through Mathematica is a dictionary of English
words. In this section, we’ll explore several functions that are provided to make use
of the dictionary.

In Example 9.2.1, we see how to use the function DictionaryLookup to find all
words in the dictionary that begin with the letter “a” and end with the letter “k.”

Example 9.2.1
In[11]:= find all words that start with a and

end with k
a2kWords DictionaryLookup "a" "k"

Out[11]= aardvark, aback, aftershock, airlock, airsick,
alack, almanack, amok, anorak, antiknock,
antitank, apparatchik, applejack, ark,
artwork, ask, asterisk, attack, auk, awestruck

Here we have provided a pattern as the single argument to DictionaryLookup.
The function then finds all words in the dictionary that match the pattern. The three
underscores will match any sequence of zero or more Mathematica expressions.
The double tildes are used to join together successive parts of the pattern.2 Thus
our pattern will match any word that starts with “a,” ends with “k,” and has any
number of letters (including none) in between. Since “ak” is not a word, all the
matches have three or more letters.

If we want to allow only one letter between “a” and “k,” we can use the single
underscore instead of the triple underscore. A single underscore will match only a
single letter. In Example 9.2.2, we illustrate two ways to find all three-letter words
that start with “a” and end with “k.” The first is to use the single underscore pattern
and the second is to use the Select function to extract the three-letter words from
the list of all words that start with “a” and end with “k.” In Example 9.2.1, we
named this list a2kWords. Now we Select from this list using the pure function
StringLength[	]==3 &.

We can even use a pattern which specifies letters to not match. Example 9.2.3
uses Except to find all words that contain a “q” that is not followed by a “u.”

2The double tilde ∼∼ is similar, but not quite the same, as <>, which is used to concatenate strings. If str1 and
str2 are two strings, then str1∼∼str2 and str1<>str2 will both concatenate the two strings. But ∼∼ can be used
in greater generality.
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Example 9.2.2
In[23]:= two ways to find all three-letter words

that start with a and end with k
DictionaryLookup "a" "k"

Select a2kWords, StringLength 3 &

Out[23]= ark, ask, auk

Out[24]= ark, ask, auk

Example 9.2.3
In[5]:= find all words that have a q NOT followed

by a u
DictionaryLookup "q" Except "u"

Out[5]= Chongqing, Iqaluit, Iqbal,
Iraqi, Iraqis, Qiqihar, qwerty, Urumqi

In addition to the single and triple underscore, there is also a double under-
score that can be used to stand for any sequence of one or more Mathematica
expressions. Thus DictionaryLookup[“a”∼∼ ∼∼“k”] and DictionaryLookup
[“a”∼∼ ∼∼“k”] will yield the same results since “ak” is not a word. But using
“o” and “f” instead of “a” and “k” will give different results.

Finding all words that are a certain length and have certain letters in certain
positions is just what we need for the Sunday Crossword Puzzle! In Example 9.2.4,
we give two examples of finding all words that might be needed for “21 Across”
or “52 Down.”

A popular word puzzle that appears in many newspapers requires the player
to unscramble a word. For example, we might need to rearrange the letter of
“toffes” to form a real word. We can easily write a program that will do this! First
we’ll use Permutation to rearrange the letters in all possible ways, and then use
DictionaryLookup to see which of these rearrangements are real words. Example
9.2.5 illustrates the Characters and Permutation functions. The first will convert
a string into a list of its characters, and the second will permute the elements of any
list in all possible ways.

In Example 9.2.6, we continue with the previous example, by first mapping
StringJoin over the list of permuted letters in order to reform them into words,
and then mapping DictionaryLookup over the list of words to see which are in the
dictionary. (Note that the patterns in this case are exact words, with no underscores
of any kind to allow for multiple matches.)



250 Mathematica Demystified

Example 9.2.4
all five-letter words that start with "f"

and end with "nd"
DictionaryLookup "f" "nd"

fiend, found, frond

all words that start "ab" and have five
letters
Select DictionaryLookup "ab" ,

StringLength 5 &

abaci, aback, abaft, abase, abash, abate,
abbes, abbés, abbey, abbot, abeam, abets,
abhor, abide, abler, ables, abode, abort,
about, above, abuse, abuts, abuzz, abyss

Example 9.2.5
In[29]:= splitting a word into its letters

Characters "par"

Out[29]= p, a, r

In[30]:= permuting the letters in all possible
ways

Permutations Characters "par"

Out[30]= p, a, r , p, r, a , a, p, r ,
a, r, p , r, p, a , r, a, p

Example 9.2.6
In[42]:= split a word into its characters,

permute characters in all ways,
rejoin the letters to a string,
then look it up in the dictionary
DictionaryLookup
StringJoin
Permutations Characters "star"

Out[42]= star , , , , , , ,
, , tars , , , , , , ,
, arts , , , , , , rats

A nice thing to do to Example 9.2.6 would be to use Select to save only the
words that occur, throwing out the empty lists. Another nice variation is to use
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Permutations[list, n] which will give all permutations of at most n letters. This
will allow you to find all words that can be made from the given letters, not just
words of the same length.

There is a great deal of information available about the word data set and we
can access this information with the WordData function. Example 9.2.7 shows
a few examples. Using WordData we can find definitions, synonyms, antonyms,
and more for any given word. We can also find phrases that use the word, as seen
in the last cell of Example 9.2.7. To find all the properties that are available in

Example 9.2.7
In[178]:= using WordData to investigate a word

WordData "vault"

Out[178]= vault, Noun, Jump , vault, Noun, Roof ,
vault, Noun, Sepulcher , vault, Noun, Strongroom ,
vault, Verb, Bound , vault, Verb, Overleap

In[151]:= WordData "vault", "PartsOfSpeech"

Out[151]= Noun, Verb

In[152]:= WordData "vault", "Definitions"

Out[152]= vault, Noun, Jump
the act of jumping over an obstacle,
vault, Noun, Roof
an arched brick or stone ceiling or roof,
vault, Noun, Sepulcher
a burial chamber usually underground ,
vault, Noun, Strongroom
a strongroom or compartment often made
of steel for safekeeping of valuables,

vault, Verb, Bound bound vigorously,
vault, Verb, Overleap
jump across or leap over an obstacle

In[158]:= WordData "vault", "Synonyms", "List"

Out[158]= bank vault, burial vault, hurdle, overleap

In[163]:= WordData "vault" , "Lookup"

Out[163]= bank vault, barrel vault, burial vault, fan vaulting,
groined vault, pole vault, pole vaulter,
pole vaulting, ribbed vault, vault, vaulted,
vaulter, vaulting, vaulting horse, vault of heaven
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WordData, enter WordData[All, “Properties”]. The Help Files contain a wealth
of information on WordData and we encourage you to peruse the examples there.

9.3 Graphs
When working with large data sets, we often want to uncover connections among the
data and then somehow display these relationships. Sometimes graphs are just what
we need. Recall that a graph is a set of points called vertices which are connected
by line segments called edges. Typically the vertices will correspond to data points
and the edges to connections between data. In this section, we’ll look at a simple,
but quite interesting, example using the English dictionary mentioned in the last
section. Before we do that, let’s see how to display a graph.

In Example 9.3.1, we have used GraphPlot to display a graph that has six vertices
and seven edges. The main argument to GraphPlot is the list {1 → 2, 2 → 3, 2 →
4, 2 → 5, 5 → 3, 5 → 4, 4 → 6} which indicates that vertex 1 is connected to
vertex 2, that 2 is connected to 3, and so on. We have also used two options with
GraphPlot: VertexLabeling and DirectedEdges. Without the first of these, the
vertices would appear simply as unlabeled points and without the second the edges
would be drawn without arrowheads. Try this example without the options to see
how it looks.

Example 9.3.1
In[180]:= example of graph and GraphPlot

GraphPlot
1 2, 2 3, 2 4, 2 5, 5 3, 5 4, 4 6 ,
VertexLabeling True,
DirectedEdges True

Out[180]=

1

2

3

4

5

6



CHAPTER 9 Working with Data 253

In 1877, Lewis Carroll3 invented a word game that he originally called Word-
Link. The idea is to find a chain of words that connects two given words, with each
word in the chain differing from the words before and after it by a single letter. For
example, we can connect “ape” to “man” with the chain: ape, apt, opt, oat, mat,
man.

Notice that at each step, we change a single letter to go from one word to the
next. It’s fun to pick two words and try to find a chain between them. Can you find
a chain from “good” to “evil”? Is the chain from “ape” to “man” shown above the
shortest chain?

We can form an interesting graph by using the set of all words as vertices and
then connecting two words with an edge if they differ by a single letter change.
Thus the chain from “ape” to “man” becomes an edge path, or more simply a path,
inside this graph. If we construct the graph, there are well-known algorithms that
we can then use to find an edge path from any one vertex to any other (provided
one exists of course). So we’ll be able to write a program that can find word-links
between any two given words!

Let’s focus on three-letter words and form the associated word-link graph. This
is going to be a pretty big graph because there are lots of three-letter words. In the
next example we use DictionaryLookup to find the set of all three-letter words
which we then name wordSet.

Example 9.3.2
In[186]:= get all words with three letters

wordSet Select
DictionaryLookup ,
StringLength 3 &
;

Length wordSet

Out[187]= 923

Using DictionaryLookup without any arguments will return all the words in the
dictionary. We then use Select, together with the StringLength function to select
those words that have length three. Notice that there are 923 three-letter words
in the dictionary. An alternative way to have defined wordSet would have been
wordSet= DictionaryLookup[ ∼∼ ∼∼ ];. This is perhaps simpler, but harder to
change if we want six-letter words instead.

3Lewis Carroll (1832–1898) was the pen name of Charles Dodgson. Best known for writing Alice’s Adventures
in Wonderland and Through the Looking-Glass, Dodgson was an accomplished mathematician and logician.
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The next thing we need to do is find all the edges between the words. For this we’ll
need a test to see if two words are related by a single letter change. Example 9.3.3
shows the module edgeQ4 that will decide if two words differ by a single letter.
We first see if the words have the same length. If not, the function returns False.
If they do have the same length then we begin by splitting each word into a list of
its characters. The characters are then checked one by one to see if they agree or
disagree. When we are done checking, the function returns true if and only if the
number of letter disagreements is exactly one. (Our test is a little inefficient since
it keeps checking letters even after two disagreements have been found. For long
words this could be a real waste of time, but for three- or four-letter words it’s not
a big deal.)

Example 9.3.3
In[193]:= gives True if the two words differ by one letter,

False otherwise
edgeQ word1 , word2 : Module

list1, list2, disagree 0 ,
If StringLength word1 StringLength word2 ,
False,
list1 Characters word1 ;
list2 Characters word2 ;
Do
If list1 i list2 i , disagree ,
i, 1, Length list1

;
If disagree 1, True, False

Now that we can decide if two words should be joined by an edge, we are ready
to build the graph. We’ll consider every possible pair of words, see if they should
be connected by an edge, and if so, record the edge. Example 9.3.4 shows how to
do this. We could use the list wordSet as our list of vertices, but it is convenient to
use the list of consecutive integers 1, 2, 3, . . . as the vertices. The first line defines
the vertex list by using the Range function to create a list of consecutive integers
starting from 1 and containing as many integers as the number of words. Next we
initialize the set edges to be the empty list. As we check each pair of words, if we

4We use a name that ends in Q because Mathematica functions which test a True/False question tend to end in
Q. Try entering ?*Q to see what functions end in Q.
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find a pair that should have an edge between them, we will add that pair to the list
of edges. For example, “bad” and “bar” should be connected by an edge. These are
words 60 and 65, respectively, in the word list, so we add the pair {60, 65} to the
set of edges. Notice how the nested Do loops will run through all possible pairs of
words from wordSet. When we are done there are 5317 edges in the graph. Try
evaluating Take[edges, 100] to look at the first 100 edges in the graph.

Example 9.3.4
In[8]:= build the Word Link graph

vertices Range Length wordSet ;
edges ; initialize edge set to be empty
Do
Do

test each pair of words
If
edgeQ wordSet i , wordSet j ,
AppendTo edges, i, j

, j, i 1, Length wordSet
,
i, 1, Length wordSet 1

Length edges

Out[10]= 5317

Let’s use GraphPlot to view the graph! Since our edges are presently pairs
of vertex numbers, we will need to convert this information to the list of vertex
numbers connected by arrows as in Example 9.3.1. We do this by mapping the pure
function �[[1]] → �[[2]] & onto the list edges as seen in Example 9.3.5.

Whoa! What a mess! But even though there are 5317 edges connecting 923
vertices we can still see some important qualitative features about these words by
looking at the graph. The first thing we see is that the graph is not connected. There
are pairs of vertices that are not connected by any edge path. If we were to start
with such a pair of words we would not be able to connect them by a Word-Link
chain. However, most of the words are in a single connected piece of the graph,
with only a few words lying outside the main piece.

It would be nice to show the word corresponding to each vertex. We can do
this if we map the pure function wordSet[[�[[1]]]] → wordSet[[�[[2]]]] & onto
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the set of edges (and also use the option VertexLabeling → True). This will cre-
ate the list of arrow-pairs using the actual word values rather than just the vertex
numbers. You should try it, but the results are rather disappointing as the labels
all pile up on top of one another. Unfortunately, we can’t just visually inspect this
graph to find Word-Links between different words. It’s just too big and compli-
cated.

To find a shortest path between two words in the Word-Link graph, we need to
remove edges until we obtain a tree which is rooted at one of the words and which
furthermore connects each word to the root word with a minimal length edge path.
A tree is a graph that contains no loops, that is, edge paths that begin and end at
the same vertex without traversing any edge twice. Our graph definitely contains
loops. For example, the sequence “ape,” “apt,” “act,” “ace,” “ape” forms a loop of
four edges that starts and ends at “ape.” In this loop, there is not a unique path from
“act” to “ape”—we can go either via “ace” or via “apt.” But in a tree, it is not hard
to see that there is always a unique edge path from any one vertex to any other
(assuming, of course, that they lie in the same connected piece of the tree). We can
always remove edges from any graph until only a tree remains. We simply need to
break every loop. If we consider only the four words “ape,” “apt,” “act,” and “ace,”
we can break the loop by removing any one of the four edges.

Example 9.3.5
In[222]:= all three-letter words with edges connecting

words that differ by a single letter. We
need to convert our list of edges to the
list of arrow pairs to use Graph Plot

GraphPlot 1 2 & edges

Out[222]=
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What we want to do is first pick some word and designate it as the root. We’ll
then only include enough edges of the Word-Link graph to form a tree. Finally,
we want each edge path in this tree from any word x to the root to be a minimal
length path. There should not be a shorter path between x and the root in the entire
Word-Link graph. For example, in Example 9.3.1, if 1 is the root, we should remove
the edges from 5 to 4 and from 5 to 3. What remains is a tree and the edge paths
from each vertex to vertex 1 that lie in the tree are as short as possible. Notice
that we do not want to keep the edge from 5 to 3 and eliminate the edge from 2
to 3. This would still be a tree, but the path from 1 to 3 in the tree would now
have length 3, which is not as short as the shortest path from 1 to 3 in the original
graph.

We provide a module called spanningTree in Example 9.3.6 that will find the
desired tree once the root vertex is specified. Unfortunately, this is a pretty com-
plicated function! In fact, it is easily the most complicated function in this book.
Rather than explaining how it works,5 let’s just take it for granted and see what we
can do with it.

In Example 9.3.7, we first use the Position function to find the vertex number
corresponding to the word “ape.” We see that it is the 36th word in the list wordSet
and so is vertex number 36. Next we let tree be the output of spanningTree. The
function takes three arguments: the list of vertices, the list of edges, and finally
the number of the vertex that is to serve as the root. Finally, we display the first
20 elements of tree. In general, spanningTree returns a list of triples. Each triple
represents an edge and is of the form {v, d, w} where v is a vertex connected
to vertex w , and d is the distance of vertex v from the root, that is, the number
of edges in the edge path from v to the root. Recall that 36 is the root in this
case. The first 10 edges in tree connect vertices to the root, and so d = 1 for
each of them. However, the 11th edge in tree connects vertex 7 to vertex 6. Since
vertex 6 is connected to the root, vertex 7 is now a distance of two from the
root.

5Here is a brief description for the ambitious reader. We first build a list called neighbors which in the i th
position contains a list of all vertices adjacent (connected by an edge to) vertex number i . We then prepare to
enter a While loop by initializing two sets of vertices: leaves and freeVertices. Initially, leaves consists of the
neighbors of root, and free vertices consists of all vertices except root and leaves. We also initialize the tree,
which starts out as the set of all edges that connect the leaves to the root. Each element of tree is a triple {v, d, w},
where vertex v is connected to vertex w and v is a distance d from the root. In the While loop we repeatedly
do the following: we go through each vertex v in freeVertices, find all its neighbors which are also in the set of
leaves, and, if there are any, we let w be the first such vertex. We then add the edge connecting v to w to the
tree. The distance to v is one more than the distance to w . With each pass through the loop, the set of newly
formed leaves must replace the old set of leaves, and the set of freeVertices must be made smaller. The process
continues until no new leaves are found. In the end, freeVertices will be empty if and only if the original graph is
connected.
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Example 9.3.6
In[12]:= spanningTree vertices , edges , root : Module

neighbors, x, y, freeVertices, leaves, tree,
level 1, continue True, newLeaves, v, W, w ,
neighbors Table , Length vertices ;
Do
x, y edges i ;
AppendTo neighbors x , y ;
AppendTo neighbors y , x ,
i, 1, Length edges
;
neighbors Sort neighbors;
freeVertices Complement vertices, root ;
leaves neighbors root ;
freeVertices Complement freeVertices, leaves ;
tree Table leaves i , 1, root ,

i, 1, Length leaves ;
While continue,
newLeaves ;
Do
v freeVertices i ;
W Intersection neighbors v , leaves ;
If W ,
w W 1 ;
AppendTo newLeaves, v ;
AppendTo tree, v, level 1, w

, i, 1, Length freeVertices
;
If newLeaves ,
freeVertices Complement freeVertices,
newLeaves ;

leaves newLeaves;
level ;
continue True,
continue False

;
tree
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Example 9.3.7
In[13]:= find the vertex number corresponding to ape

Position wordSet, "ape"

Out[13]= 36

In[15]:= use spanningTree to build tree rooted at ape
tree spanningTree vertices, edges, 36 ;

In[18]:= the first 20 elments of tree
Take tree, 20

Out[18]= 6, 1, 36 , 14, 1, 36 , 23, 1, 36 , 37, 1, 36 ,
39, 1, 36 , 48, 1, 36 , 53, 1, 36 , 56, 1, 36 ,
57, 1, 36 , 600, 1, 36 , 7, 2, 6 , 13, 2, 37 ,
15, 2, 14 , 22, 2, 23 , 25, 2, 23 , 26, 2, 23 ,
33, 2, 37 , 38, 2, 39 , 40, 2, 39 , 41, 2, 39

Admittedly, the spanningTree function is a bit complicated. But now that we
have built the tree, let’s use GraphPlot to plot it. It is still pretty big, so let’s only plot
those words that are at most a distance of three from the root. Example 9.3.8 shows
how to do this. Since the second entry in each element of tree is the distance to the
root, we first use Select with the pure function 	[[2]]≤3 & to extract the portion
of the tree with vertices 1, 2, or 3 edges away from the root. We then plot the tree
just as in Example 9.3.5 except that we use the pure function wordSet[[�[[1]]]] →
wordSet[[�[[2]]]] & rather than the pure function �[[1]] → � [[2]] & so that the
words themselves will label the vertices.

In Example 9.3.8, you should be able to make out the path “ape,” “apt,” “opt,”
“oat,” which we can continue to “man” in two more steps. Still, we don’t need
to find paths by visually inspecting the tree! It is now a simple matter to write a
function that will find the path from any word in the tree to the root. We do this in
Example 9.3.9. The function begins by using Select to find the edge in the tree that
starts at the given word. We then find the edge that starts where this edge ends and

Example 9.3.8
In[19]:= plot all vertices that are a distance of 3

or less from the root
GraphPlot
wordSet 1 wordSet 3 &
Select tree, 2 3 & ,
VertexLabeling True
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Example 9.3.8 (Continued)

Out[19]=
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Example 9.3.9
In[35]:= find path in the tree from word to root

path2root tree , word : Module path , edge ,

edge
Select tree, wordSet 1 word & 1 ;
While
edge 2 1,
AppendTo path, wordSet edge 1 ;
edge Select tree, 1 edge 3 & 1 ;
;
Join path,

wordSet edge 1 , wordSet edge 3

In[36]:= find the path from man to ape
path path2root tree, "man"

Out[36]= man, mat, oat, opt, apt, ape
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so on until we reach the edge that ends at the root. (We use the distance element of
each edge to know when to stop.) As we find the edges we append them to path.
When the While loop ends we still need to Join the last two words to the path.
You should know that no safeguarding against entering a word that is not in the tree
takes place! If you enter a word that is not in wordSet, or a word that is in wordSet
but not in the tree (because the original graph was not connected), the program will
fail.

9.4 A Glimpse of Other Data Sets
Mathematica includes far too many large data sets for us to delve into each one.
We close this section with just a hint of what else is available.

Suppose we want to follow the progress of some stocks that we own. In Exam-
ple 9.4.1, we use DateListPlot to plot the closing share price of Apple Computer
since January 1, 2002. Don’t you wish you had bought Apple stock 6 years ago!

Example 9.4.1
In[55]:= plot daily closing price of Apple

Computer stock
DateListPlot
FinancialData "AAPL", "January 1 2002" ,
Joined True

Out[55]=
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Using FinancialData you can find out all sorts of information for publicly traded
companies such as share prices, dividends, market capitalization, price-to-earning
ratios, and so on. We’ll let you read about DateListPlot and FinancialData in the
Help Files.

The data sets, ChemicalData and ElementData, contain a wealth of physical
data. In Example 9.4.2, we find the elements contained in the pain reliever ibuprofen
and we also plot the molecular structure. As with other three-dimensional plots, we
can grab the graphic with the mouse and rotate it. In Example 9.4.3, we find out a
few facts about lead and gold. Again, you should check out the Help Files to see
what else is contained in these two data sets and how you can access the data.

Example 9.4.2
In[3]:= using ChemicalData to find out about Ibuprofen

ChemicalData "Ibuprofen", "ElementTypes"

Out[3]= H, C, O

In[9]:= ChemicalData "Ibuprofen", "MoleculePlot"

Out[9]=



CHAPTER 9 Working with Data 263

Example 9.4.3
In[12]:= using ElementData to find physical

properties of elements
ElementData "Lead", "MeltingPoint"

Out[12]= 327.46

In[11]:= ElementData "Gold", "AtomicWeight"

Out[11]= 196.96655

As a final glimpse of what’s available, we find the fifteen brightest stars as seen
from the earth and then look up their coordinates (right ascension and declination).
Since the position of the sun is not fixed with respect to the distant stars, it does
not have a constant right ascension and declination. Hence the data is reported as
“Missing.” Using these coordinates you could, for example, build your own star
charts for the night sky in your location.

Example 9.4.4
In[19]:= listing the 15 brightest stars

top15 Take AstronomicalData "Star" , 15

Out[19]= Sun, Sirius, Canopus, Arcturus,
RigelKentaurusA, Vega, Capella,
Rigel, Procyon, Achernar, Betelgeuse,
Hadar, Altair, Acrux, Aldebaran

In[20]:= obtaining the coordinates of the
15 brightest stars
AstronomicalData , "RightAscension" ,
AstronomicalData , "Declination" &

top15

Out[20]= Missing Variable , Missing Variable ,
6.75257, 16.7131 , 6.39919, 52.6957 ,
14.2612, 19.1873 , 14.6614, 60.8351 ,
18.6156, 38.783 , 5.27814, 45.999 ,
5.2423, 8.20164 , 7.65515, 5.22751 ,
1.62854, 57.2367 , 5.91952, 7.40704 ,
14.0637, 60.373 , 19.8463, 8.86738 ,
12.4433, 63.0991 , 4.59867, 16.5098
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9.5 Find Out More
Once again, we have covered only the tip of the iceberg. The following guides,
tutorials, and reference pages in the Help Files are definitely worth a look.

• guide/DataCollections—describes the different data sets stored by Wolfram
Research.

• ref/CountryData—lots of info on how to use this data set.

• guide/DataVisualization—useful introduction to all the different ways to dis-
play data.

• BarCharts/guide/BarChartsPackage—you need this to learn how to use Bar-
Chart.

• PieCharts/guide/PieChartsPackage—you need this to learn how to use
PieChart.

• http://en.wikipedia.org/wiki/WordLadder—a nice place to
learn more about Lewis Carroll’s game Word-Link.

Quiz
1. What are the 10 most densely and 10 least densely populated countries?

2. Make a scatter plot of infant mortality rate versus GDP for the countries in the
CountryData data set.

3. Find the population of the world by adding together the population of all
the countries in the CountryData data set. Make a pie chart that displays
population of the 10 largest countries. The pie should have 11 slices: one for
each of the 10 biggest countries and one for “other countries” (all the others
taken together).

4. Make a map of Africa and use Tooltip so that as the mouse is moved over each
country on the map information about that country pops up.

5. How many words are in the Mathematica dictionary?

6. Find all words that start with “b” and end with “w.”

7. The letters of “post” can be rearranged to form six different words. (You can
use Example 9.2.6 to verify this!) Are there any four-letter words whose letters
can be rearranged to form more than six different words?

8. Rework Examples 9.3.2 to 9.3.9 for four-letter words. Find a shortest Word-
Link from “lead” to “gold.”

http://en.wikipedia.org/wiki/WordLadder
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9. Find a shortest Word-Link from “good” to “evil.” (Be careful!)

10. The Collatz function g[n] that we discussed in Chap. 5 gives rise to a graph
with directed edges, where each integer n is connected by an edge to g[n].
Write a program to draw the graph, including all vertices up to a given value.
For example, the graph for all vertices up to eight is shown below.
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CHAPTER 10

Dynamical Systems
and Fractals

In this chapter we are going to learn how to draw beautiful pictures of fractals,
strange sets with some pretty amazing properties. Fractals arise naturally in the
study of dynamical systems so we’ll begin our discussion there. A dynamical system
is simply a system that is changing as opposed to a static system. So everything
from the solar system to the flow of blood in our arteries to the pendulum of a clock
qualifies as a dynamical system. In order to approach the subject mathematically we
usually focus on a single function, or a family of functions, and ask what happens
if we repeatedly apply the same function over and over. This simple setup will lead
us to Julia Sets as well as the famous Mandelbrot Set. Once we see how to draw
these fractals we’ll also learn how to make movies with Mathematica.
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10.1 Iterating a Function
Suppose we start with a function f (x) and create a “feedback loop” by taking
the output of the function and feeding it back in as input. What will happen? For
example, suppose f (x) = x2. If we start with an input of 2 we find that the output
of f is 4 since f squares the input. If we then square 4 we get 16, squaring 16
gives 256, and so on. Starting from the initial value, or initial input of 2, yields the
sequence

2, 4, 16, 256, 65536, . . .

We can think of this as an infinite sequence that goes on without end because there
is no limit to how many times we can keep repeating, or iterating, the function.
Starting with any number x0 the sequence

x0, f (x0), f ( f (x0)), f ( f ( f (x0))), . . .

obtained by continuing to apply the function f is called the orbit of x0 under f .
The word orbit is used to describe the path of a planet as it travels around the

sun, and it makes sense to use the word here for the following reason. Imagine
that we are studying some big complicated system of objects, perhaps the sun and
all the objects that travel around it: the planets, asteroids, comets, and so on. Let’s
assume that if we knew the mass, positions, and velocities of all the objects at a
given moment in time, then we could calculate (at least in theory!) where they
will all be located at the next moment in time. That calculation would presumably
be incredibly complicated and probably take a really long time to carry out, but
imagine that we could do it. Let’s name the function that carries out the calculation
f . So we would measure the state of the solar system at some time (the position
of all the objects and their velocities, etc.), enter that state into the function f , and
get out the next state of the system. If we repeatedly apply f over and over to some
initial state, then the successive states as determined by f would track the future
of the solar system, including the orbits of all objects around the sun. So if we start
with any function f and follow the successive states, or values, of any initial value,
we’ll call that the orbit of the initial value.

Thinking about the solar system suggests a more spatial or geometric viewpoint
rather than a strictly numerical viewpoint and we will be carrying this perspective
throughout the chapter. In particular, it makes sense to refer to numbers as points
because of the one-to-one correspondence between real numbers and points on the
(number) line. So instead of talking about the orbit of a number, we could, and
often will, talk about the orbit of a point.
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Mathematica has a built-in function called NestList that computes the orbit of
an initial number (or point) under any function f . Our first example shows the first
6 elements in the orbit of 2 under the squaring function.

Example 10.1.1
following an orbit of a function

f x : x^2

NestList f, 2, 5

Out[15]= 2, 4, 16, 256, 65536, 4294967296

The first thing we have done in this cell is define the squaring function and name
it f . (Remember that we learned how to define our own functions in Chap. 5.)
Then we use NestList which takes three arguments. The first is the function, in
this case f . The second argument is the initial number, or point, in this case 2, and
the last argument tells Mathematica how far to follow the orbit. In this case we
have entered 5, telling Mathematica to stop after the function has been applied five
times. NestList always includes the initial number as the first element of the list,
so in this case we get a list with six elements.

It should be clear that if we start with any number larger than 1, then its orbit
will go off to infinity. Of course if the number is really close to 1 it might take a lot
more iterations of f before the orbit starts to get big. The next example repeats the
first experiment but with an initial value of 1.000000000001.

Example 10.1.2
In[3]:= following the orbit of 1.000000000001

f x : x^2

NestList f, 1.000000000001, 50

Out[4]= 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1.00001, 1.00002, 1.00003, 1.00007,
1.00013, 1.00027, 1.00054, 1.00107, 1.00215,
1.0043, 1.00863, 1.01733, 1.03496, 1.07114,
1.14735, 1.3164, 1.73291, 3.00299, 9.01797,

81.3237, 6613.54, 4.3739 107, 1.9131 1015,

3.65994 1030, 1.33952 1061, 1.7943 10122,

3.21952 10244, 1.036529965760730 10489
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The first few elements of the orbit are so close to 1 that Mathematica just displays
1, but sure enough, by the time we get to the 50th iterate the number has gotten
huge and clearly the orbit will head off to infinity.

If we start with an initial value of 1 however, then the orbit will not go anywhere!
Since 12 = 1 the orbit will just stay at the number 1. We say that 1 is a fixed point of
f . Are there any other fixed points of f ? We need to solve the equation f (x) = x
to find the fixed points of f . In this case we need to solve x2 = x . This is pretty
simple, but let’s use Mathematica to find the solutions! The next example does
this.

Example 10.1.3
In[5]:= finding the fixed points of f

f x : x^2

Solve f x x, x

Out[6]= x 0 , x 1

We see that f has exactly two fixed points: 0 and 1. These are the only num-
bers that will not change when we square them. So each one has an unchanging
orbit. What do the orbits of all other numbers do? We have seen that the numbers
greater than 1 all behave similarly: their orbits grow without bound and head off
to infinity. It should also be clear that numbers that lie between 0 and 1 have orbits
that go to, or converge to, 0. If we start with .5 for example, NestList gives its
orbit as:

Example 10.1.4
In[7]:= following the orbit of .5

f x : x^2

NestList f, .5, 10

Out[8]= 0.5, 0.25, 0.0625, 0.00390625,

0.0000152588, 2.32831 10 10, 5.42101 10 20,

2.93874 10 39, 8.63617 10 78,

7.45834 10 155, 5.56268464626800 10 309

After only a few iterations the orbit of .5 is incredibly close to 0. Of course it
will never actually reach 0. Only 0 squared is 0, so to end at 0 we would have to
start at 0. But the orbit of .5 does converge to 0; that is, it becomes arbitrarily close
to 0 as we go out farther and farther in the orbit.
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Finally, what about the negative numbers? As soon as we square a negative
number it becomes positive and we have already worked out what the orbit of each
positive number is. So we can summarize what happens to every point as follows:

• Numbers bigger than 1, or smaller than −1, have orbits that go to infinity.

• The number 1 is fixed. The number −1 goes to 1 where it remains.

• Nonzero numbers between −1 and 1 have orbits that converge to 0.

• Zero is fixed.

This example, as simple as it is, exhibits the kinds of orbits that are typical of
many dynamical systems. We see points that there are fixed points (0 and 1) as well
as a point that is eventually fixed, namely −1. (We’ll say that a point is eventually
fixed if its orbit eventually reaches a fixed point.) All the other orbits either converge
to zero or to infinity.

The fixed points of this example are also quite interesting in their behavior. Zero
is a fixed point and, moreover, all points that are really close to zero have orbits
that converge to zero. For this reason we will call zero an attracting fixed point.
On the other hand, even though 1 is fixed, points that are near to 1 have orbits that
go away from 1 and this happens no matter how close we start to 1. So we call 1
a repelling fixed point. Finally, notice that lots of points have orbits that converge
to the attracting fixed point 0. In fact, all points between −1 and 1 have orbits that
converge to 0. So we call the set of all these points the basin of attraction of 0.

At this point we have a complete and total understanding of the dynamics of the
function f (x) = x2; that is to say, we understand completely the orbits of all points
under f . In general, given any function f , this will be our goal. It turns out that
fairly simple looking functions can have some incredibly complicated dynamics.
In fact, if we just add a constant c to the present example and look at the function
f (x) = x2 + c, the dynamics can change considerably!

10.2 Graphical Analysis
If we look at orbits from a graphical point of view, it can really help us understand
the dynamics of a function. With any function f it is always good to first identify
the fixed points, if there are any. These are places where f (x) = x , or graphically,
where the graph of f (x) and the graph of x intersect. For example, suppose we
consider the function f (x) = cos x . Let’s plot the graphs of both cos x and x and
see where they intersect. From the next example we see that they intersect at exactly
one point. Here we have used Plot to graph both functions simultaneously. We can
see from the plot that the fixed point is between .6 and .8, but what is it exactly?
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Example 10.2.1
In[20]:= the graphs of f x and x intersect

at the fixed points of f x
f x : Cos x

Plot f x , x , x, Pi, Pi ,
PlotStyle Red, Blue, Dashing .02 ,
AspectRatio Automatic

Out[21]=
–3 –2 –1 1 2 3

–3

–2

–1

1

2

3

Let’s ask Mathematica to solve the equation cos x = x in order to find the fixed
point. Using FindRoot we obtain the following. (You should try using Solve or
NSolve to see what happens.)

Example 10.2.2
In[11]:= finding the fixed point of Cos x

FindRoot Cos x x, x, .5

Out[11]= x 0.739085

After finding all the fixed points (only one in this case), a good thing to do next is
to decide if the fixed point is repelling, or attracting, or neither. We can experiment
with NestList to follow the orbits of some nearby points. This might provide some
good evidence. Let’s follow the orbit of a point close to the fixed point.
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Example 10.2.3
In[12]:= following the orbit of a point near

the fixed point of Cos x
NestList Cos, .739, 20

Out[12]= 0.739, 0.739142, 0.739047, 0.739111, 0.739068,
0.739097, 0.739077, 0.73909, 0.739082,
0.739088, 0.739083, 0.739086, 0.739084,
0.739086, 0.739085, 0.739085, 0.739085,
0.739085, 0.739085, 0.739085, 0.739085

Here we see that the point .739 has an orbit that apparently converges to the
fixed point. In fact, after a while all the elements of the orbit are listed as .739085.
So they have either landed on the fixed point exactly, or Mathematica is rounding
off here and all these numbers are simply rounding off to the same thing. Looking
at the beginning of the orbit we can also see that the elements of the orbit bounce
back and forth, alternately smaller and then bigger than the fixed point. So, based
on this one example, it certainly looks like the fixed point might be attracting.

We can make this completely clear by a graphical method known as Graphical
Analysis. The idea is to plot the points of an orbit in such a way that we can
see the order of the points and hence see where the orbit is heading. Consider
Example 10.2.4.

We start by defining the function we want to study, in this case cos x . Next we
define the initial point x0 of the orbit, the number n of iterations of f we want to
use, and finally compute the orbit. We use Plot to plot the graphs of both f (x)

and x and we use PlotStyle to make the graph of f red and the graph x both blue
and dashed. So far this should be familiar. But, after the plot has been rendered,
we use Epilog to add in the arrows that you see in the plot. Before we see how
Mathematica does this, let’s understand what we are looking at.

The initial value in this example is .2. To find f (.2) we need to draw a vertical
line at x = .2 and see where it intersects the graph. The height of this intersection
point is f (.2). So what we have done is draw a vertical arrow from the point (.2, .2)

up to the graph at (.2, f (.2)). We then draw a horizontal arrow from there over to
the point ( f (.2), f (.2)). If the orbit is

x0, x1, x2, x3, . . .

where each xi+1 = f (xi ), then we have plotted the points (x0, x0), (x1, x1),

(x2, x2), . . . and connected each consecutive pair of points with arrows that go
from (xi , xi ) to (xi , f (xi )) and then from (xi , f (xi )) to (xi+1, xi+1). This pair of
arrows is just what we need to “see” the action of f .
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Example 10.2.4
In[148]:= basic cell for Graphical Analysis

f x : Cos x the function to study

x0 .2; initial point of orbit
n 3; number of iterations of f
orbit NestList f, x0, n ;
Plot f x , x , x, 0, Pi 2 ,
PlotStyle Red, Blue ,
AspectRatio Automatic,

add arrows that follow orbit
Epilog
Table
Arrow orbit i , orbit i ,

orbit i , orbit i 1 ,
orbit i 1 , orbit i 1 ,

i, 1, n

Out[152]=

0.5 1.0 1.5

0.5

1.0

1.5

Now let’s see how we use Epilog to draw in all the arrows. The Table function
creates a list of Arrow graphics primitives that are then plotted with Epilog. Each
Arrow function uses a pair of consecutive points from orbit to draw two consecutive
arrows. Arrow is just like Line; if we enter a list of points Arrow will connect
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them in succession. We have entered three points into the Arrow function. The first
and last points are on the graph of x while the middle point is on the graph of f (x).

Example 10.2.4 is a cell that we can use over and over for lots of different
functions. We just need to change the function, the initial point, and the number of
iterations we want to plot. However, if we use a large value of n the arrowheads
will tend to clutter up the plot and it may be better to forsake the arrowheads, using
Line instead of Arrow.

From the example it is easy to see what the orbit is doing! It is converging to the
fixed point, but in so doing, it alternates between being larger and smaller than the
fixed point.

What we can also see from graphical analysis is that the nature of a fixed point
p, that is, whether p is attracting or repelling, depends entirely on the slope of f at
the fixed point! To see why the derivative f ′(p), which is the slope of the tangent
line to f at p, determines the attracting or repelling nature of p, imagine that we
have zoomed in really close on the intersection of the graphs of f (x) and x ; so
close that the graph of f (x) appears as a straight line with slope f ′(p). Now if we
were to replace the graph of f (x) with its tangent line at p we wouldn’t be able
to tell the difference! So the nature of the fixed point really only depends on the
slope there. But how does it depend on the slope? Figure 10.1 shows two functions,
each with a fixed point but with slopes of less than 1 and more than 1 at the fixed
point. We have zoomed in so far that each function appears straight and hence is
indistinguishable from its tangent line at the fixed point. In each case we follow the
orbits of two points near the fixed point.

Figure 10.1 A fixed point p of f (x) is attracting if −1 < f ′(p) < 1 and repelling if
f ′(p) < −1 or f ′(p) > 1.
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Clearly if the slope of f at the fixed point is more than 1, then the fixed point
is repelling, while if the slope of f at the fixed point is less than 1, then the fixed
point is attracting. We summarize this in the following important theorem:

Theorem: If p is a fixed point of f , then

• if | f ′(p)| < 1, then p is attracting,

• if | f ′(p)| > 1, then p is repelling, and

• if | f ′(p)| = 1, then p could be attracting, repelling, or neither.

To see that the last statement of the theorem is true requires three different
examples where in each case the slope at the fixed point is 1 or −1 and yet we get
fixed points of different natures. You will be asked to investigate such examples in
the Quiz at the end of this chapter.

10.3 The Quadratic Family
We have already considered the function f (x) = x2 and completely worked out
what happens to the orbit of every point. But what if we add a constant c? What
are the dynamics of the function f (x) = x2 + c where c is any real number? How
does it depend on c? This is a perfect place to use Manipulate. Let’s graph the
function x2 + c with c as a parameter that we can manipulate. As we do this we can
watch the graph move. At first, let’s just focus on the fixed points and their nature.
Example 10.3.1 shows the result, but of course, you need to do this yourself so that
you can manipulate the parameter c. We have set it up so that the initial value of c
is 0.5.

Example 10.3.1
In[15]:= watching the fixed points of f x

x2 c change with c
Manipulate
Plot x^2 c, x , x, 2, 2 ,
AspectRatio Automatic,
PlotStyle Red, Blue, Dashing .02

, c, .5 , 2, .5
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Example 10.3.1 (Continued)

Out[15]=

c

–2 –1 1 2

–2

–1

1

2

3

As we move the slider and vary c, the parabola moves up and down. Clearly if
c is too large, then the parabola lies entirely above the graph of x and hence there
are no fixed points. But if we lower the value of c the parabola will move down and
eventually cross the graph of x . When they first become tangent there is exactly
one fixed point, but as the parabola continues to move down the single fixed point
splits into two fixed points. Let’s find the values of the fixed points as functions of
c. We can use Solve to do this.

Here we first used Solve[x2+c==x, x] to find the roots and then substitution to
form a list of the two roots. We have named the roots p and q. Furthermore, we
see that the roots are equal precisely when c = .25. This is when the parabola is
tangent to the diagonal line y = x and there is only one fixed point. If c > .25 then
the parabola is entirely above the line y = x and p and q become imaginary; there
are no real fixed points. But if c < .25 then there are two real fixed points and p < q.



278 Mathematica Demystified

Example 10.3.2
In[22]:= finding the fixed points of x2 c

p, q x . Solve x2 c x, x

Out[22]=
1
2

1 1 4 c ,
1
2

1 1 4 c

In[24]:= finding out when the fixed points
are equal
Solve p q, c

Out[24]= c
1
4

It is not hard to see that if c > .25, then every orbit goes off to infinity. You
should experiment with Graphical Analysis to convince yourself of this. Just use
Example 10.2.4 with f defined appropriately. So, the case with c > .25 is not that
interesting. Much more interesting dynamics occur when c ≤ .25.

We can see something we haven’t seen before if we let c = −1. Now f (x) =
x2 − 1. Let’s see what the orbit of zero is. We have f (0) = −1 and f (−1) =
1 − 1 = 0. So the orbit of 0 is

0, 1, 0, 1, 0, 1, 0, 1, . . .

The orbit just oscillates back and forth between 0 and 1. We call such an orbit
periodic and say that its period is two since two iterations of the function bring
us back to where we began. We’ll also refer to such an orbit as a 2-cycle and
furthermore, we’ll call both 0 and 1 periodic points or period 2 points.

If we let c = −1.755 something else interesting happens. Let’s look at the orbit
of 0 now. The results are displayed in Example 10.3.3.

Example 10.3.3
In[116]:= f x : x^2 1.755;

NestList f, 0, 29

Out[117]= 0, 1.755, 1.32502, 0.000691251,
1.755, 1.32502, 0.000686806,
1.755, 1.32502, 0.000686863,
1.755, 1.32502, 0.000686862, 1.755,

1.32502, 0.000686862, 1.755, 1.32502,
0.000686862, 1.755, 1.32502, 0.000686862,
1.755, 1.32502, 0.000686862, 1.755,

1.32502, 0.000686862, 1.755, 1.32502
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The orbit appears to be converging to a 3-cycle! Using our basic cell for Graphical
Analysis (Example 10.2.4) gives the following output.

Example 10.3.4

–2 –1 1 2

–2

–1

1

2

   using Graphical Analysis to follow the orbit of
0 when c = –1.755.

Note that the orbit of 0 is not exactly a 3-cycle itself. First of all, it does not return
to 0 exactly. But even if we consider starting at −1.755, two iterations bring us to
0.000691251 and three more iterations bring us to 0.000686806 which is not quite
the same. Still, after 29 iterations Mathematica displays the same three numbers
(after rounding off) over and over.

It turns out that changing the parameter c can introduce periodic cycles of dif-
ferent length. It would be nice to methodically experiment with different values of
c. Let’s have Mathematica vary c automatically and for each value of c follow the
orbit of zero. Since the orbit of zero might converge to a fixed point, or perhaps
to a cycle of some period, it makes sense to follow the orbit for a few thousand
iterations to see where it has ended up. But we certainly don’t want to print out
orbits that are thousands and thousands of iterations long! A nice thing to do would
be to follow an orbit for say 1000 iterations, not printing any of these values, and
then print out the next 10 or 20 iterations. We can do this if we make use of the
Nest function, which is similar to NestList. The function Nest[f, x, n] will simply
return the nth iteration of x under f , as opposed to all the iterates of x up to the
nth one as NestList would do. Consider the following example.
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Example 10.3.5
In[27]:= following the orbit of 0,

ignoring the first 9999 iterates
f x : x^2 .6;

NestList f, Nest f, 0, 10000 , 5

Out[28]= 0.421954, 0.421954, 0.421954,
0.421954, 0.421954, 0.421954

First we define the function as usual, with c = −.6. Then we use NestList to
print out an orbit with 5 iterations. But we are not printing the orbit of 0, instead
we are starting at Nest[f, 0, 10000] which is the 10000-th iteration of 0 under f .
So what this does is skip the first 9999 iterations of the orbit of 0 and then print out
the next 6 elements of the orbit. In this case, with c = −.6, the orbit of 0 seems to
have converged to the fixed point −0.421954.

What we’d like to do now is repeat this experiment but with different values of c
and have Mathematica automatically vary c. We do this in Example 10.3.6, with c

Example 10.3.6
In[9]:= examining the fate of 0 for

different values of c
f x : x^2 c;

Do
tailOfOrbit
NestList f, Nest f, 0, 10000 , 6 ;
Print "c ", c, " ", tailOfOrbit ,
c, .25, 0, .05

c 0.25 0.4999, 0.4999, 0.4999,
0.4999, 0.4999, 0.4999, 0.4999

c 0.2 0.276393, 0.276393, 0.276393,
0.276393, 0.276393, 0.276393, 0.276393

c 0.15 0.183772, 0.183772, 0.183772,
0.183772, 0.183772, 0.183772, 0.183772

c 0.1 0.112702, 0.112702, 0.112702,
0.112702, 0.112702, 0.112702, 0.112702

c 0.05 0.0527864, 0.0527864, 0.0527864,
0.0527864, 0.0527864, 0.0527864, 0.0527864

c 0. 0., 0., 0., 0., 0., 0., 0.
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varying from c = .25 down to c = 0 in steps of .05. For each value of c, we follow
the orbit of 0 for 10000 iterations and then print out 6 more iterations. When we
print, we print the value of c and then the 6 elements of the orbit.

We have done this by using a Do loop. The loop is executed six times, once
for each value of c in the set {.25, .20, .15, .10, .05, 0}. Notice that we define the
function f before the loop and yet c is changing with each pass through the loop.
Since we defined f using SetDelayed as opposed to Set (i.e., := instead of =), the
correct definition of the function is used. If we had used Set instead, it would not
work properly.

Let’s make sure we understand the body of the Do loop. The first line defines
tailOfOrbit as iterates 10000 through 10006 by using both NestList and Nest as
previously described. Finally, we use the Print function to print out the value of c and
the tail end of the orbit of 0. The Print function can take any number of arguments
separated by commas. Each argument is something that will be printed and in this
case is either a text string (any characters delimited by quotes), or a variable.

Our experiment reveals that for these six values of c the orbit of zero seems to be
converging to a fixed point. But that fixed point is changing with c. In fact, the orbit
of zero is converging to the fixed point p = (1 − √

1 − 4c)/2 which we computed
earlier. Apparently this is an attracting fixed point and 0 is in its basin of attraction.
You should convince yourself of this by using Graphical Analysis to follow the
orbit of zero for these values of c.

What happens as we lower c even more? The next example repeats the experiment
but with a different range of c values.

Look carefully at the data! Something quite remarkable happens as c passes
through the value −.75. When c > −.75 the orbit of zero is converging to an
attracting fixed point. But when c < −.75 the orbit of zero now appears to be
converging to a 2-cycle! It turns out that at c = −.75 the attracting fixed point p
transitions from attracting to repelling. Remember our earlier discussion on the
nature of a fixed point as determined by the slope of the function there? Well, when
f (x) = x2 − .75 the fixed point p is equal to −.5 and the slope of f at p equals
−1 since f ′(x) = 2x . When c is above −.75 the absolute value of the slope of f
at c is less than 1. But when c < −.75, the absolute value of the slope of f at p is
more than 1. At c = −.75, the fixed point p turns from attracting to repelling. You
should go back to Example 10.2.4 (and set f (x) = x2 − .75) and use Graphical
Analysis to watch this happen! Repeat the experiment for various values of c just
on either side of −.75. It is easy to see the slope of f at p changing as we vary c.
Even more exciting is the fact that at the very moment p changes from attracting to
repelling, a 2-cycle is born and the orbit of 0 is now attracted to this 2-cycle! Since
we may think of a fixed point as a periodic point of period 1, this change from a
period 1 attractor to a period 2 attractor is called a period doubling bifurcation. We
can see what is going on if we consider the graphs of both f (x) and f ( f (x)).
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Example 10.3.7
examining the fate of 0 for

different values of c
f x : x^2 c;

Do
tailOfOrbit
NestList f, Nest f, 0, 10000 , 6 ;
Print "c ", c, " ", tailOfOrbit ,
c, .7, .8, .025

c 0.7 0.474679, 0.474679, 0.474679,
0.474679, 0.474679, 0.474679, 0.474679

c 0.725 0.487421, 0.487421, 0.487421,
0.487421, 0.487421, 0.487421, 0.487421

c 0.75 0.492909, 0.50704, 0.49291,
0.50704, 0.492911, 0.507039, 0.492911

c 0.775 0.341886, 0.658114, 0.341886,
0.658114, 0.341886, 0.658114, 0.341886

c 0.8 0.276393, 0.723607, 0.276393,
0.723607, 0.276393, 0.723607, 0.276393

Here is an important idea: If P is a period 2 point of f (x), then P is brought
back to itself after two iterations of f and so P is a fixed point of f ( f (x)). So if we
find the fixed points of the function f ( f (x)) we will be finding 2-cylces of f (x).
Or will we? Notice that if a point is fixed by f (x) then it is fixed by f ( f (x)). What
if the only fixed points of f ( f (x)) are just the fixed points of f (x) itself? This can
happen and in this case there simply are no period 2 points of f . But, it might be the
case that f ( f (x)) has fixed points that are not fixed by f (x). These will be genuine
period 2 points of f . Let’s use Mathematica to simultaneously graph both f (x)

and f ( f (x)). The result is pictured in Example 10.3.8, with Manipulate used so
that we can vary c.

The graph of f (x) is the parabola. The graph of f ( f (x)) is the 4-th degree
polynomial that is drawn slightly thicker. The graphs are pictured with c = −.5.
Notice that both f (x) and f ( f (x)) have the same fixed points as they both intersect
the diagonal line y = x at the same two points, p and q, where p is to the left
of q. But what happens as we lower c? The graph of f will move down. What
will happen to the graph of f ( f (x))? You should definitely be trying this out
yourself!
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Example 10.3.8
In[14]:= graphing both f x and f f x

Manipulate
f x : x^2 c;

Plot f x , f f x , x , x, 2, 2 ,
PlotRange 2, 2 , 2, 2 ,
AspectRatio Automatic,
PlotStyle

Red, Thickness .002 ,
Red, Thickness .005 ,
Blue, Dashing .02

, c, 2, .25

Out[14]=

c

0.5

–2 –1 1 2

–2

–1

1

2
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Let’s first think about the slope of f (x) at the two fixed points p and q. In the
following Example 10.3.9 we use Reduce to find out when the slope of f at the
fixed points has absolute value 1 or less. Notice the option Reals that we have used
with Reduce so that Mathematica knows that c is a real parameter. We see that the
slope at q is only ±1 when c = .25. In fact it is obvious from the graph of f (x)

that the slope at q is 1 precisely when c = .25 and more than 1 when c < .25. So
for c < .25, q is always a repelling fixed point.

Example 10.3.9
In[15]:= where are the fixed points attracting?

f x : x^2 c

p, q x . Solve f x x, x ;
Reduce Abs f' p 1, c, Reals
Reduce Abs f' q 1, c, Reals

Out[17]=
3
4

c
1
4

Out[18]= c
1
4

On the other hand, when −.75 < c < .25 the slope of f (x) at p is between
−1 and 1 and so p is an attracting fixed point in this range of c. Looking again at
Example 10.3.8, it should be clear that the slope of f (x) at p is negative and getting
steeper as c decreases. The moment that c = −.75 the slope of f (x) at p hits −1.
Thus at this moment, when c = −.75, the fixed point p turns from attracting to
repelling.

Now let’s turn our attention to the graph of f ( f (x)). As you play with the slider
controlling c in Example 10.3.8 you see that the graph of f ( f (x)) has only two
fixed points if c ≥ −.75. However, as we lower c, the local maxima of f ( f (x)) at
zero moves up and the two local minima of f ( f (x)) move down. When we reach
c = −.75 the slope of f ( f (x)) at p is exactly 1! When c < −.75 the graph of
f ( f (x)) now intersects the diagonal line y = x in four points: the two fixed points
p and q of f , but also two new points. These new points are a 2-cycle. They are
on opposite sides of p and if we raise c back up again to c = −.75 the two points
of the 2-cycle come together at p. Note also that when this 2-cycle is born, the
slope of f ( f (x)) at each point of the 2-cycle is clearly less than 1. Hence these
are both attracting fixed points of f ( f (x)) or equivalently, they form an attracting
2-cycle of f . This explains how the attracting fixed point p of f becomes repelling
and simultaneously gives rise to an attracting 2-cycle as c passes through the value
−.75.
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Perhaps even more exciting is the fact that as c goes even lower the attracting
2-cycle becomes repelling while an attracting 4-cycle is born! See if you can ex-
perimentally find the value of c where this occurs! In fact these period doubling
bifurcations continue with the creation of an 8-cycle and then a 16-cycle and on
and on forever!

We can attempt to capture all of this discussion into a single orbit diagram
which is shown in Example 10.3.10. Let’s understand the diagram and then see
the Mathematica code that was used to plot it. The horizontal axis represents the
constant c and ranges from −2 to .25. For a fixed value of c imagine following
the orbit of zero until it settles down, perhaps at (or, more accurately, near) an
attracting fixed point, or an attracting 2-cycle, and so on. We then plot that point,
or points if the orbit is attracted to a cycle, on the vertical scale. For example, we
have seen that if c = .25 then there is a single attracting fixed point at x = .5. Thus
the point (.25, .5) is plotted in the orbit diagram. We have also seen that as we
lower c toward zero, the fixed point p remains attracting but its value drops toward
zero. Thus the orbit of zero still converges to p, but p itself is getting smaller.
This continues until c reaches −.75 where the period doubling bifurcation occurs.
Hence we see a single curve in the orbit diagram that starts out at the point (.25, .4)

and drops as we move left to c = −.75. Notice in Example 10.3.10 that this curve
appears to pass through the point (0, 0). This makes sense: when c = 0, p = 0 is an
attracting fixed point. When we reach c = −.75, the attracting fixed point becomes
repelling and the attracting 2-cycle is born. Thus our orbit diagram splits into two

Example 10.3.10
the orbit diagram for the family f(x)= x2+ c 

out [188]:=
–2.0 –1.0 –0.5

1

2

–1

–2
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Example 10.3.10 (Continued)
In[23]:= orbit diagram plot

f x : x^2 c; define f

points ; start with empty list
Do

find tail of orbit
tail NestList f, Nest f, 0, 10000 , 100 ;

convert points in orbit to points
in plane
newPoints c, & tail;

add points to cumulative list
points Join points, newPoints
, c, .25, 2, .001

plot all the points in diagram
ListPlot points,
PlotStyle Blue, PointSize .0001

curves. We have seen in Example 10.3.7 that when c = −.8 the attracting 2-cycle
is {−.723607, −.276393}. Thus the points (−.8, −.723607) and (−.8, −276393)

are plotted in the orbit diagram.
The code used to produce the orbit diagram is given above. Let’s see how it

works. There are four instructions: the first defines the function and the second
defines the list points, which starts out empty. The third is a Do loop (to compute
the points of the plot) and the fourth is a ListPlot that plots the points.

The set of points that we are going to plot at the end with the ListPlot function is
named points. The first line defines this variable as a list with no elements. All the
work is in the loop, which is indexed by the parameter c. We let c start at .25 and go
down to −2 in steps of .001. (The first time you run this, choose a smaller stepsize
so that it will not take so long!) For each value of c we execute all the steps in the
body of the loop. First we compute the tail of the orbit, this time ignoring the first
10000 iterations and then saving the next 100 iterations. (If the orbit has fallen into
a 2-cycle then this is highly redundant: we are saving the same two points 50 times
each! But if the orbit has fallen into a 123-cycle for example, we will not even be
recording the entire cycle.) What we want to do with these elements of the orbit is
plot them on the vertical line x = c, so we need to take each point and convert it
into a point in the plane with first coordinate c. We do this by mapping the pure
function (c, #)& onto tail. Having found all the points in this vertical slice of the
orbit diagram, we now want to save them in our big list of points. We do this with
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the Join function which is used to join two or more lists together into a single list.
We replace the list points with this new list which is made of the old points list
together with the newPoints that were generated on this pass through the loop.

The orbit diagram shown in Example 10.3.10 is a truly amazing plot. As we go
from right to left we can see the period doubling bifurcations from 1 to 2, 2 to 4,
and can almost make out the 4 to 8 doubling. The 8 to 16 doubling is too tiny to see,
but if we rerun Example 10.3.10 with c only varying from c = −1.392 down to
c = −1.398 we can bring it into view. We can also see in Example 10.3.10 values
of c that give rise to 3-cycles, or 5-cycles. It is interesting to zoom in on these
regions by rerunning Example 10.3.10 with the appropriate range of c values. We
will not delve deeper into the complexities of the orbit diagram, but encourage you
to explore it more yourself!

10.4 Julia Sets
So far we have considered the quadratic family of functions f (x) = x2 + c, but
only with real numbers. Why not allow complex numbers? If x is any complex
number we can still square it and add c. What happens if we expand our horizons
to complex numbers?

In mathematics it is common to use the letter z for a complex variable and to
additionally write z = x + iy so that x and y represent the real and complex parts
of the variable. Here, of course, i is the imaginary number i = √−1. In order
to understand the orbits of different points under the function f (z) = z2 + c, we
need a couple of important facts about complex numbers. Given a complex number
x = x + iy its magnitude, or absolute value, is given by |z| =

√
z2 + y2, and can be

computed in Mathematica by using the absolute value function Abs. Graphically,
the absolute value of a complex number is simply its distance from the origin. An
extremely important fact about complex numbers is that the absolute value of the
product of two numbers is the product of their absolute values. That is

|zw | = |z||w |

Another important feature of a complex number z is its argument. This is the angle
made by the positive real axis (the x-axis) and the ray made by connecting the
origin to z. In Mathematica we can use Arg[z] to compute the argument of z. If
z = x + iy then tan(arg z) = x/y. Another important property of complex number
is that the argument of the product of two numbers is the sum of the arguments of
the numbers. That is

arg(zw) = arg z + arg w
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Let’s start with c = 0 and use the above facts to understand the dynamics of
f (z) = z2. Clearly 0 and 1 are the only fixed points, just as before when we consid-
ered only real numbers. Because squaring a number will square its absolute value,
we see that all complex numbers with absolute value less than 1 will have orbits
that converge to zero. This is the set of all numbers inside the unit circle centered
at the origin. Furthermore, all numbers located outside the unit circle have absolute
values greater than 1 so their orbits will go off to infinity. What about a number
with absolute value equal to 1? All of its iterates will continue to have absolute
values of 1, so its orbit will stay on the unit circle. However, since arguments add
when we multiply, the orbit will move round and round the unit circle. In fact if we
only consider the unit complex numbers (the ones with absolute values of 1, and
hence lying on the unit circle), the dynamics of f are incredibly complicated!

In general, the Julia Set associated to f (z) = z2 + c is the boundary of the set
of points whose orbits go off to infinity. Thus with c = 0 the points whose orbits
go off to infinity are the points that lie outside the unit circle and the Julia Set is
the unit circle. How does the Julia Set change if we change c and how can we use
Mathematica to draw the Julia Set? What we need to do, for a given value of c, is
to start following the orbits of various points and see which orbits go off to infinity.
This is not that easy since we can only follow an orbit for a few hundred or perhaps
a few thousand iterations. If we stop following an orbit, how will we know if it
is destined to go off to infinity or not? The key ingredient for us is the following
theorem:

Theorem: If |c| ≤ 2 and any element in the orbit of z0 under the function f (z) =
z2 + c has an absolute value greater than 2, then the orbit of z0 will go to infinity.1

So, assuming that |c| ≤ 2, we don’t even need to follow the orbits of points that
lie outside the circle of radius 2 centered at the origin. They already have absolute
values greater than 2, so their orbits go to infinity. On the other hand, if a point is
on or inside the circle of radius 2 we need to follow its orbit to see what it does.
If after following it for a while, the orbit moves outside the circle of radius 2, then
we can stop following it knowing that it is headed for infinity. The problem is with
orbits that we follow for a while and which continue to stay on or inside the circle
of radius 2. Such an orbit either never goes to infinity, or it does but we need to
follow it further to find out.

The following example defines a function called orbitLength which will follow
an orbit for up to 500 iterations but will stop short of that if the orbit ever goes
outside the circle of radius 2. The function then returns the length of the orbit at the
point when it stopped. Thus if the function returns a number less than 500 we know
that the orbit went outside the circle of radius 2 and hence is headed for infinity.

1We will not prove this fact here, but it can be found on page 86 of Chaos, Fractals, and Dynamics by Robert
L. Devaney, Addison-Wesley, 1990.
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Example 10.4.1
In[101]:= follows the orbit of z0 under f z

z^2 c until orbit exceeds 2 in absolute
value OR we hit 500 iterations

orbitLength z0 , c : Module

z N z0 , cc N c , steps 0 ,
While steps 500 && Abs z 2,
z z z cc;
steps
;
steps

Let’s see how orbitLength works. To begin with, orbitLength takes two ar-
guments, z0 and c. We are going to follow the orbit of z0 under the function
f (z) = z2 + c. Next, we use the Module function to define orbitLength. The first
argument to the Module function is the list of local variables and in this case we
define three: cc, z, and steps, all of which are initialized when they are declared.
We really want z0 and c to be decimal approximations rather than exact num-
bers because dealing with exact numbers will be slower. So we use the numerical
function N to immediately convert z0 and c to z and cc, respectively. We do this
only so that we do not have to always remember to input decimal approximations
to orbitLength; if we forget, the function will take care of it for us! The third
local variable is called steps and will be used to count the number of iterations
we take as we follow the orbit. After the declaration of the local variables comes
the instructions that comprise the definition of orbitLength. There are only two: a
While statement and then the output of the function, the variable steps. The While
function provides us with a way to construct indefinite loops as opposed to the
definite loop constructed with the Do function. The syntax of the While function
is While[test, body] and the function works by repeatedly evaluating test and then
body so long as test evaluates to true. In our case what we want to do is follow the
orbit until either the orbit moves outside the circle of radius 2 or we iterate f (z)
500 times. Our test is

steps <500 && Abs[z]<2

We’ll see why this does what we want in just a moment. Before doing that, let’s
move on to the simpler body of the loop which just consists of the two statements

z=z*z+cc;

steps++
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Thus what we are doing in the body of the loop is simply moving z to the next point
in the orbit and incrementing steps by 1. Going back to the test part of the loop,
remember that we want to stop if the orbit moves outside the circle of radius 2. This
explains half of the test condition, namely, Abs[z]<2. So long as this is true we
want to keep on evaluating the body of the loop, that is, continue to follow the orbit.
But we want to stop if we reach the 500-th iterate. This is where steps comes in. We
start out with steps equal to 0 and we increment steps by 1 each time we evaluate
the body of the loop. This is accomplished by using the Increment function ++.
In general, if a is any variable in Mathematica then a++ will increment a by one.
Finally, notice that this truly is an indefinite loop. The number of times the body of
the loop is repeated is not fixed or predetermined. Instead it depends on the input
z0 and c.

To construct the Julia Set for f (z) = z2 + c we simply need to test every point
in the complex plane with orbitLength to see if its orbit goes off to infinity or not.
But wait a minute! There are infinitely many points in the complex plane. How can
we test them all? Obviously we can’t. What we’ll do instead is pick a rectangular
portion of the complex plane and divide it by horizontal and vertical lines into a
collection of smaller rectangles. Then we’ll pick one point in each rectangle, say the
lower left corner, and follow the orbit of that point. This corresponds quite nicely
to the physical reality of our computer screen which is divided in exactly the same
way into tiny picture elements or pixels. The next example defines the function
JuliaData that will do just that.

Example 10.4.2
In[189]:= This function will test each point

on a grid in the given region and return
the orbit length for each point.
JuliaData c ,

xmin , xmax , ymin , ymax ,

xdiv , ydiv :

Table orbitLength x I y, c ,
y, ymax, ymin, ymax ymin ydiv ,
x, xmin, xmax, xmax xmin xdiv

There are four arguments for the function JuliaData. The first is the constant c
which defines the function f (z) = z2 + c which we are studying. Next is the list
{{xmin, xmax}, {ymin, ymax}} which defines the region of the complex plane
that we want to study, namely the rectangle that extends horizontally from xmin to
xmax and vertically from ymin to ymax . The last two arguments are xdiv and ydiv
which are the number of horizontal and vertical divisions of the rectangle. Finally,
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we define JuliaData by simply using the Table function to return the orbitLength
at each point of the grid within the given rectangle. Since we are using two indices
in the Table function, we create a list of lists, or in other words, a matrix. Notice
that if xdiv and ydiv are both 1000, then there will be 1001 × 1001 = 1, 002, 001
points in the grid. JuliaData is going to return a very large matrix! Furthermore,
for each of these points we are going to follow its orbit for up to 500 iterations.
The total number of times that we might compute f (z) is about 500 million! This
computation might take a while!

Notice that the Table function in JuliaData has two indices with the y index
first, counting down from ymax to ymin, and the x index second, counting up from
xmin to xmax . Ordering the indices this way makes the orientation of the entries
in the matrix match their orientation in the plane. That is, the data for the lower
edge of the rectangle is in the last row of the matrix, and the data for the left edge
of the rectangle is in the first column of the matrix. (Experiment with Table[{i,j},
{i,0,2},{j,0,2}] to see how Mathematica orders the table entries.)

The following example shows the output of JuliaData with only 10 divisions
both vertically and horizontally. We have used the function MatrixForm to display
the data as a matrix corresponding to the grid of points in the plane whose orbits
we followed.

Example 10.4.3
In[116]:= MatrixForm

JuliaData 0, 2, 2 , 2, 2 , 10, 10

Out[116]//MatrixForm=

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 2 2 2 1 1 0 0
0 1 1 3 500 500 500 3 1 1 0
0 1 2 500 500 500 500 500 2 1 0
0 1 2 500 500 500 500 500 2 1 0
0 1 2 500 500 500 500 500 2 1 0
0 1 1 3 500 500 500 3 1 1 0
0 0 1 1 2 2 2 1 1 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Looking at the data, we can see that points near the center of the rectangle
have orbits that have not gotten larger than 2 in absolute value after 500 iterations.
These orbits may or may not be headed for infinity. But around the perimeter of the
rectangle we see lots of points whose orbits have gotten bigger than 2 in absolute
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value after only 0, 1, 2, or 3 iterations. The points that are labeled with zeroes
are ones that were already outside the circle of radius 2 to begin with; we didn’t
follow their orbits at all. In this example we have c = 0, so what we are getting
fits perfectly with what we expected. We know the set of points whose orbits go to
infinity are all points outside the unit circle.

We need a way to visualize the output of JuliaData graphically. Fortunately,
Mathematica has just what we need, the ArrayPlot function. Look what ArrayPlot
does with this data in the next example. Each point of the grid where the orbit length
is 500 is colored black and each point whose orbit escapes to infinity is colored
white. In fact, ArrayPlot will use shades of gray for array values between the
minimum, which it colors white, and the maximum, which it colors black, but in
this case the gray level for a value of 1 versus 2 is so close that we cannot tell by
looking at the graphic. As usual, ArrayPlot accepts all the usual options plus some
that are special to it. You should definitely take a look at the Help Files to see what
the possibilities are.

Example 10.4.4
In[119]:=

ArrayPlot
JuliaData 0, 2, 2 , 2, 2 , 10, 10

Out[119]=

using ArrayPlot to graph the data

We have all the tools we need now to really investigate the Julia Sets of f (z) =
z2 + c for lots of different values of c. It turns out that some pretty amazing sets arise
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once we start varying c. (Look ahead at the pictures!) But unfortunately, it can take a
really long time to plot a Julia Set. Lucky for us though, Mathematica can be sped up
considerably under certain circumstances. We need to make orbitLength, the main
time-consuming part of our calculation, run faster and we can do this by compiling
it. In general, Mathematica is not as fast as it could be because its functions can
accept all sorts of types of input: integers, real numbers, complex numbers, lists of
such numbers, matrices, variables, and so on. By telling Mathematica specifically
what to expect as input we can greatly increase the speed of execution, often by a
factor of 10. The following example shows the compiled version of orbitLength. It
is nearly the same as the original orbitLength, except that we have wrapped it with
the Compile function and changed the way that we have indicated the arguments
z0 and c, telling Mathematica specifically to expect complex numbers. Since this
is the only place in this book that we will be using compiled function we won’t
say more about compiling. You can find out more in the Help Files. You should try
plotting a Julia Set with both the uncompiled and compiled version of orbitLength
to see what a difference it makes. Use the Timing function to measure how long
each computation takes.

Example 10.4.5
In[41]:= compiled version of orbitLength

orbitLength Compile
z0, Complex , c, Complex ,

Module
z N z0 , cc N c , steps 0 ,

While steps 500 && Abs z 2,
z z z cc;
steps
;
steps

;

We close this section with a few examples of Julia Sets for different values of c. In
Example 10.4.6 we have set c = 0.360824 + 0.100376i and divided the square into
500 divisions both vertically and horizontally. Whoa! What a complicated picture,
and yet, it has features that seem to repeat over and over on an ever smaller scale.
We could “zoom” in by repeating the experiment with a smaller choice of original
rectangle.
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In Example 10.4.7 we change c to 0.64i and get a picture that again seems to
have repeated features but is otherwise quite different from Example 10.4.6. Try
experimenting with different values of c yourself!

Example 10.4.6
In[191]:=

data JuliaData .360824 .100376 I,
2, 2 , 2, 2 , 500, 500 ;

ArrayPlot data,
DataRange 2, 2 , 2, 2 ,
FrameTicks Automatic

Out[192]=

–2 –1 0 1 2
–2

–1

0

1

2
–2 –1 0 1 2

–2

–1

0

1

2

plotting a Julia Set

Notice the use of the option DataRange in the ArrayPlot function. Using this
option, with a data range that matches the original coordinates of the rectangle,
causes tick marks on the graphics frame to correspond with the actual x- and y-
coordinates in the plane.
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Example 10.4.7
In[195]:=

data JuliaData .64 I, 2, 2 , 2, 2 ,
500, 500 ;

ArrayPlot data,
DataRange 2, 2 , 2, 2 ,
FrameTicks Automatic

Out[196]=

–2 –1 0 1 2
–2

–1

0

1

2
–2 –1 0 1 2

–2

–1

0

1

2

plotting a Julia Set

10.5 Custom Coloring
The default coloring scheme in ArrayPlot is with a gray scale ranging from white
at the minimum values in the array to black at the maximum values. But we can
override this and provide various coloring schemes. Since this book is printed in
black and white you will really need to try these examples yourself! We’ll also look
at a neat black and white coloring.

A nice coloring scheme can be obtained using the function Hue[h,s,b], which
produces a color corresponding to h with a saturation of s and a brightness of b.
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Each of the three parameters should be between 0 and 1, and as h goes from 0 to
1 the color runs through red, yellow, green, cyan, blue, magenta, and back to red
again. Values of s and b outside the range of 0 to 1 are clipped while values of
h outside this range are treated cyclically. ArrayPlot takes the data that we are
trying to plot and rescales all the numbers so as to lie between 0 and 1, with the
minimum value going to 0 and the maximum going to 1. So this is ideally suited
to using the various color functions like RGBColor, GrayLevel, or Hue which all
take arguments in the 0 to 1 range.

Example 10.5.1
In[30]:= drawing a Julia Set with custom

coloring
color1 If 1.0, Black, Hue 50 , 1, 1 &;
data1 JuliaData

1, 2, 2 , 2, 2 , 500, 500
;

ArrayPlot data1,
ColorFunction color1

Out[32]=

In Example 10.5.1 we plot the Julia Set with c = −1 with a custom color function
that we name color1. We want to color the points whose orbits go the full 500
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iterations black, so if the input to color1 is 1.0 we produce an output of black.
Don’t forget that ArrayPlot rescales the data so that the maximum value of 500
will be scaled to 1.0. For the shorter orbits which do not last to 500, we color them
according to how long they are. It turns out that in a typical Julia Set calculation, most
of the orbit lengths which are smaller than 500 are in fact much smaller. So we have
multiplied the input by 50 to “smear out” the whole color range over each “decade”
of orbit lengths. The next step is to include the option ColorFunction→color1 in
the ArrayPlot function. The previous example illustrates this with the Julia Set
given by c = −1. The results in black and white are nowhere near as stunning as
in color. You need to try this out yourself.

There is simply no end to possible coloring schemes and we invite you to try the
following examples:

• color2=If[#==1.0, Black, RGBColor[1-#, 100 #, 30 #1]]&

• color3=If[#==1.0, Black, RGBColor[0, 0, 100 #]]&

• color4=If[ Mod[Floor[500 #], 2]==0, Black, White]&

• color5=If[#==1.0, Black, GrayLevel[30#]]&

10.6 Making Movies
Changing the constant c in the family of functions f (z) = z2 + c has a huge effect
on the Julia Set. Wouldn’t it be cool to make an animation that shows the Julia Set
changing as c changes? We could try to use Manipulate but the results will not be
very good because of the long calculation times needed to plot a Julia Set. Instead
we need to generate the successive frames of the movie and then view them in rapid
succession as an animation. We can do this with ListAnimate. Let’s see how to do
this.

First, we need to generate the frames of the movie. Example 10.6.1 does this and
displays all the frames.

In the first cell we make all the successive frames of the movie and place them in
a list by using the Table function. Our movie will show the Julia Set as the constant
c moves from 0 to .75i . We simply use c as the index for the Table function with a
stepsize of .05i . Of course, to make a “finer” movie that runs “smoother” between
frames we would use a smaller stepsize.

The second cell shows all the frames of the movie at once using the Graphics-
Grid function which takes as its argument an array of graphics objects. So in order
to use GraphicsGrid we need to take the frames that we generated and arrange
them in an array. The function Partition[list, k] will do this by taking the elements
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Example 10.6.1
In[39]:= generating the frames of a movie

frames Table
ArrayPlot
JuliaData c, 2, 2 , 2, 2 , 200, 200
,
c, 0, .75 I, .05 I
;

In[44]:= displaying the frames in a grid
k 5; frames per row
r Mod Length frames , k ;
framesArray Partition frames, k ;
If r 0,
AppendTo framesArray, Take frames, r ;

GraphicsGrid framesArray

Out[47]=

of list and placing them in an array whose rows each have k elements. The problem
with Partition is that if any elements of list are leftover they are simply dropped.
In this case, we generated 16 frames, so if we place them in an array with rows that
are five frames long, there is one frame leftover. We have written the example to
take care of this, letting you choose k to be whatever you want. Note that r, defined
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in the second line, is the number of leftover frames. The third line makes the array,
called framesArray using the Partition function and finally the fourth line tacks
on a final partial line of frames if r is greater than zero.

To play the movie we use ListAnimate as seen in Example 10.6.2.

Example 10.6.2
In[230]:= using ListAnimate to play a list of

frames
ListAnimate frames

Out[230]=

ListAnimate will generate a Manipulate object containing an Animator. The
controls can be used to stop or start the movie, play it faster or slower, and so on.
All the same options available to Manipulate can be used with ListAnimate, with
a few changes and additions. See the Help Files for more information.

If you are using the Mac OS X operating system it is also very easy to export
the movie into a QuickTime movie. First, print all the frames of the movie using
a Do loop as in Example 10.6.3. We have not included the output here because it
will take up a lot of room. You need to do this yourself! Each frame will appear in
its own cell, but the entire set of frames will have a single cell bracket enclosing
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them on the right. (Remember that, for most of the examples in this book, we have
not been displaying the cell brackets.) Use the mouse to click on the cell bracket
which surrounds all the frames of the movie, thereby selecting all of the frames.
(Do not click on the largest possible cell bracket. This will select more than just the
frames of the movie.) Now go to the File menu and select Save Selection As. . . .
A dialog box will come up in which you choose QuickTime as the Format, name
your movie and choose the location for the file as usual.2

Example 10.6.3
In[231]:= print the frames in separate cells in

preparation for exporting the movie
Do
Print frames i ,
i, 1, Length frames

10.7 The Mandelbrot Set
With Julia Sets we fixed the constant c and then looked at the orbits of all points.
To generate the famous Mandelbrot Set, we’ll vary c but only look at the orbit of
one point, namely zero. The process is very similar to before. We’ll take a region of
the complex plane that we want to look at, subdivide it into little pieces, pick one
point from each piece, use that point as c, and then follow the orbit of zero. If the
orbit goes off to infinity the point is not in the Mandelbrot Set; if the orbit of zero
does not go off to infinity, then the point is in the Mandelbrot Set. Example 10.7.1
defines the functions we need to plot the Mandelbrot Set. Let’s look at the code and
then discuss how it works.

The first function, MandelbrotData is similar to JuliaData except that we have
added two features. We still enter the region of the plane that we want to look at, but
instead of entering the number of divisions in both the horizontal and vertical direc-
tions, we now enter only one number of divisions (div ) which is used for the number
of horizontal divisions (xdiv=div). The function then computes the number of ver-
tical divisions with the instruction ydiv=Floor[xdiv (ymax-ymin)/(xmax-xmin)].
We use Floor here in case this quotient is not an integer. We have used a Module
structure just so that we can do this, using xdiv and ydiv as local variables. By only

2We can also use this method to play the movie. After selecting all the frames of the movie, go to the Graphics
menu, choose Rendering and then choose Animate Selected Graphics.
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entering the number of horizontal divisions and letting Mathematica compute the
number of vertical divisions we are now able to freely enter any size region and not
have to worry about the plot coming out with the same scale in each direction.

The second feature of MandelbrotData is that we now output a list of two ele-
ments. The first element in the list is the region description {{xmin, xmax},{ymin,
ymax}} and the second is the matrix of orbit lengths. Keeping the coordinates of
the region and the data for that region together turns out to be handy. Aside from
these two modifications, the guts of MandelbrotData are still very much like that
of JuliaData, namely forming a Table of orbitLength.

Example 10.7.1
functions for drawing the Mandelbrot Set

MandelbrotData
xmin , xmax , ymin , ymax , div :

Module xdiv div,
ydiv
Floor div ymax ymin xmax xmin ,
xmin, xmax , ymin, ymax ,

Table orbitLength 0, x I y ,
y, ymax, ymin, ymax ymin ydiv ,
x, xmin, xmax, xmax xmin xdiv

MandelbrotPlot data , colorfn , xticks ,

yticks :

ArrayPlot data 2 ,
ColorFunction colorfn,
DataRange data 1 ,
FrameTicks

Table N y , y, ymin data 1, 2, 1 ,
ymax data 1, 2, 2 ,
ymax ymin yticks , None ,

Table N x , x, xmin data 1, 1, 1 ,
xmax data 1, 1, 2 ,
xmax xmin xticks , None

The second function, MandelbrotPlot, is basically ArrayPlot but with some
options added. The first option is ColorFunction→colorfn where we have defined
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colorfn to be an argument of MandelbrotPlot. Thus the user needs to enter the
desired coloring function when calling MandelbrotPlot. Any of the coloring func-
tions that we defined in the last section could be used, and we give a few more
suggested coloring schemes later. The second feature of MandelbrotPlot is to use
the region parameters {{xmin, xmax},{ymin, ymax}} to place custom tick marks
around the plot frame. This is done with the FrameTicks→{{left, right},{bottom,
top}} option. Here we have provided lists of numbers for left and bottom (and None
for right and top). This will place tick marks on the left and bottom edges of the
plot at the indicated numbers. We use the Table function to create the lists, where
the number of ticks on each edge are entered as arguments. Notice that the first time
we get the value of data[[1,2,1]], which is ymin, we name it ymin so that we can
use the shorter name ymin the second time we need it, rather than having to type
the longer data[[1,2,1]] again. This is only for convenience.

In the next example we plot the Mandelbrot Set with two different coloring
schemes.

In the first cell of Example 10.7.2 we compute the Mandelbrot data (orbit lengths)
for the region {{−2, 1}, {−1.1, 1.1}} using 1000 subdivisions (in the horizontal
direction). In the second cell we define a custom coloring scheme that we call
grayScheme. Finally, in the third cell we plot the data in two different ways. In
the first plot we have used the coloring function Automatic so that we just use
the default coloring scheme of ArrayPlot. In the second plot we use our own
grayScheme color function.

The last cell also contains Dynamic[MousePosition[“Graphics”]] which cre-
ates the very nice feature of printing the coordinates of the mouse whenever we
move the mouse over a graphics object in the notebook. Try it out! As you move
the mouse around inside the plot of the Mandelbrot Set, the position of the mouse,
relative to the coordinates used to label the plot, are displayed where it initially says
None in the output cell. If we had not used the DataRange option in the ArrayPlot
function, then the coordinates would correspond to the position within the data
array.

Using the mouse to read off coordinates in the plot is really useful for zooming
in on the Mandelbrot Set. For example, it appears as though something interesting
is going on near the point (−1.75, 0). Example 10.7.3 zooms in on this location.

Wow! A whole other miniature copy of the Mandelbrot Set! And could that little
speck in this plot located at about (−1.786, 0) be another, even tinier copy of the
Mandelbrot Set? Check it out!

Other interesting places to look are at (−.776, .125) or (−.162, 1.021). Virtually
anyplace near the boundary of the solid black regions are worth zooming in on.
You’ll be surprised what you find! We won’t do it here, but clearly it would be nice
to make a movie of zooming in on some location. Just follow the examples of the
last section, using Table to create the frames of the animation.
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Example 10.7.2
In[51]:= drawing the Mandelbrot Set with two

different coloring schemes
data MandelbrotData

2, 1 , 1.1, 1.1 , 1000
;

In[52]:= grayScheme
If 1.0, Black, GrayLevel 50 &;

In[56]:= Dynamic MousePosition "Graphics"
MandelbrotPlot data, Automatic, 2, 6
MandelbrotPlot data, grayScheme, 2, 6

Out[56]= None

Out[57]=

–2. –0.5 1.

–2. –0.5 1.

–1.1

–0.733333

–0.366667

0.

0.366667

0.733333

1.1

Out[58]=

–1.1

–0.733333

–0.366667

0.

0.366667

0.733333

1.1



304 Mathematica Demystified

Example 10.7.3
In[59]:= zooming in on the Mandelbrot Set

size .05;
x, y 1.75, 0 ;
data MandelbrotData

x size, x size , y size, y size ,
500
;

MandelbrotPlot data, grayScheme, 5, 5

Out[61]=

–1.8 –1.78 –1.76 –1.74 –1.72 –1.7
–0.05

–0.03

–0.01

0.01

0.03

0.05

10.8 What Is a Fractal?
It is not easy to define what a fractal is and we will not attempt to give a precise
definition. Generally speaking, fractals are sets that tend to have two important
properties. The first is that they are self-similar at all scales. Basically what this
means is that if we zoom in on a fractal it will continue to look essentially the
same, no matter how far we zoom in. Our last example drives home this point about
the Mandelbrot Set. After you spend some time exploring it you will discover that
at every level of magnification there appear copies, or near copies, of the original
set. We see the same phenomenon in the Julia Sets that we looked at. A certain
spiral pattern might seem to always be present, no matter how far in we zoom.
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The second hallmark of fractals is that they have fractional dimension. We are
used to the concept of integral dimension: lines are one-dimensional, planes are
two-dimensional, solids are three-dimensional, and so on. The number of dimen-
sions of an object can be thought of as the number of “independent” directions it
possesses, or equivalently, now many coordinates are needed to locate a point in
it. How could something have a dimension of .562, or

√
2? But this can happen

with Julia Sets! This seems really weird and indeed it is! Since this book is pri-
marily about Mathematica and not about fractals, we are going to have to skip this
rather fascinating topic of fractional dimension. We provide some references for
further reading on fractals in the next section where you can learn more about these
fascinating objects.

Even the Orbit Diagram that we encountered in the last section is a fractal! Notice
that with each period doubling bifurcation, the set splits into two pieces, each of
which bears a strong resemblance to the whole set. It is not exactly a miniature
copy of the original but instead has the same basic shape.

10.9 Find Out More
We have barely scratched the surface of the theory of dynamical systems and
fractals. There are literally hundreds of books on the topic. Three nice books to
look at are

• Chaos: Making a New Science by James Gleick

• The Fractal Geometry of Nature by Benoit B. Mandelbrot

• Chaos, Fractals, and Dynamics by Robert L. Devaney

The first book gives a wonderful introduction to the history of dynamical systems
and chaos theory. The second book is the groundbreaking work of Mandelbrot
himself, and the third book contains nice mathematical investigations that you can
pursue with Mathematica.

There are several nice demonstrations at the Wolfram site that explore Julia Sets
and the Mandelbrot Set. A quick search of the Internet will undoubtedly turn up
additional graphics and applications dealing with these topics.

In this section we discovered that speed of computation can sometimes be very
important. We invite you to check out the tutorial “tutorial/CompilingMathematica
Expressions” that can be found in the Help Files. And of course, looking up the
references in the Help Files to the functions highlighted in this section will lead to
options that we did not discuss as well as related functions.
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Quiz
1. Use the following three examples to conclude that if p is a fixed point of f (x)

and | f ′ (p)| = 1, then p could be attracting, repelling, or neither. Use Graphical
Analysis to decide.

(a) Let f (x) = −x . Show that 0 is a fixed point that is neither attracting nor
repelling. Show that | f ′(0)| = 1.

(b) Let f (x) = tan x . Show that 0 is a repelling fixed point and that | f ′(0)| = 1.

(c) Let f (x) = sin x . Show that 0 is an attracting fixed point and that | f ′(0)| = 1.

2. Repeat Examples 10.3.6 or 10.3.7 to experimentally find the value of c where
the attracting 2-cycle bifurcates to an attracting 4-cycle.

3. Let f (x) = x2 + c. Use Mathematica to algebraically find the fixed points of
f ( f (x)) in terms of c. (Hint: Solve will work just fine.) Next, show that the
slope of f ( f (x)) at either of the period-2 points is 4 + 4c. Conclude that the
attracting period-2 cycle becomes repelling at c = −1.25.

4. Repeat Examples 10.3.6 or 10.3.7 to experimentally find the value of c where
the attracting 4-cycle bifurcates to an attracting 8-cycle.

5. Plot the Julia set corresponding to c = −.1 + .8i . There are two ways to affect
the resolution of the plot. The first is to vary the number of divisions, xdiv
and ydiv , in the horizontal and vertical direction. The second is to reset the
maximum number of iterations in the orbitLength function. Try setting this as
low as 50 or as high as 1000. What happens to your plots? Of course allowing
more iterations as well as more horizontal and vertical divisions can greatly
increase computation times.

6. Make a movie of the changing Julia Set as c moves around the circle of radius
.8 centered at zero. (Hint: Let c = .08eit and then let t run from 0 to 2π in steps
of π/10.)

7. Make a movie of the Mandelbrot Set as you zoom in on a particular point. To
make the frames, include something like Example 10.7.3 in the body of a Do
loop where you let the parameter size act as the counter for the loop.

8. In this entire chapter we have focused on the family of functions f (z) = z2 + c.
What if we switch to f (z) = z3 + c, or perhaps to f (z) = z4 + c? What if
we change away from polynomials altogether and investigate f (z) = sin z, or
perhaps f (z) = ez? Rewrite orbitLength in order to investigate other functions.
However, can we still use the fact that an orbit that makes it outside the disk of
radius 2 is headed for infinity?



CHAPTER 11

Looking Good

Until now we have focused on doing mathematics with Mathematica, either per-
forming calculations or displaying results, textually or graphically. All of this has
been out of context, although we have tried to give examples that relate to problems
that might arise in your actual use of Mathematica. But writing mathematics is
much more than just displaying a bunch of calculations one after the other. Good
mathematical exposition reads much like a good story: there is a beginning, a mid-
dle, an end—even a punch line. Care must be taken to introduce all the right ideas
in just the right order, with unnecessary details left out. And special attention must
often be given to notation, which should be sufficient to describe the objects at
hand, but not so complicated as to overwhelm the reader. In presenting our work,
the right organization and selection of graphics can make the difference between
striking out or hitting a home run.

In this chapter we’ll see how a Mathematica notebook can contain all the elements
needed for a self-contained mathematical exposition. Notebooks can be organized
just as books are, with chapters, sections, and subsections. They can not only
contain the calculations that we have been learning to make, but also text and other
graphics. In addition, hyperlinks can be inserted anywhere in a notebook that can
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lead elsewhere in the same notebook, or to other notebooks or even Web sites.
Finally, notebooks can be used as slideshows for professional presentations.

11.1 Cell Styling
Mathematica provides a number of predefined “styles” that you can use to make
your notebooks look certain ways. When a new notebook is opened the Default
Stylesheet applies. But other styles such as Article, Book, or Report can be chosen
from the Format � Stylesheets menu item. When different styles are chosen, dif-
ferent options will then be available under the Format � Style menu. For example,
with the Default style, the Format � Style menu lists 16 items, including Title,
Subtitle, Subsubtitle, and so on. Try choosing Format � Stylesheets � Book �
Textbook and then look again at the Format � Style menu. You’ll now see a list
of 40 items!

Each cell in a Mathematica notebook has a certain style and you may choose
the style for a given cell from the Format � Style menu. So far we have primarily
discussed Input and Output cells. But to turn your notebook into a beautifully
typeset expository article complete with mathematical calculations, you are going
to want to use Text cells as well as an assortment of Title and Subtitle cells, and
so on.

The style of any existing cell can be changed by selecting the cell (click on its
bracket) and then choosing a style from the Format � Style menu. The default is
the Input style, used for entering mathematical expressions. Before creating a new
Text cell, it is easiest to place the cursor where the cell will go, click the mouse,
use the keyboard shortcuts to select the style, and then start typing. If you forget
and start to type text into an Input cell, you can select the cell when you are done
and change the format.

Suppose we want to create a notebook all about Pythagorean triples, sets of
integers {x, y, z} such that x2 + y2 = z2. To create a nice title for the notebook,
let’s use a Title cell. The result is shown in the next example.

Example 11.1.1
a title cell

It is easy to change the title in a number of ways. In the next example we show
the title after changing the font, the font size, the color, the background color, and
the text alignment (which we changed to Align Center). All of these choices are
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easily found in the Format menu. Simply select the title cell and then select from
the menu. Pretty cool title, eh?

Example 11.1.2
a fancy title cell 

After the title we will want an introductory paragraph. The following example
shows four cells. The first is the Title cell, then a Text cell, then a DisplayFor-
mulaNumbered cell, and finally, another Text cell. For the third cell, we could
have just used a DisplayFormula cell, but as is often the case in mathematical
exposition, we might want to number an equation so that we can refer back to it
later.

Example 11.1.3

There is an important aspect to Example 11.1.3 that is not obvious. Notice
that the mathematical symbols a, b, and c are not in the same font as the text.
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Usually we mix text and formulas in a notebook by placing the different material
in different cells. But it is possible to mix them within the same cell. To embed a
mathematical expression within text, type Ctrl+(to begin the expression and then
Ctrl+) to end it. (We can also end it by using the right arrow key.) When we are
entering the mathematical expression we may use the BasicMathInput Palette or
associated keyboard shortcuts. When the introductory paragraph in Example 11.1.3
was typed, the expressions a, b, and c were inserted this way, and when the formula
a2 + b2 = c2 was typed, the BasicMathInput Palette was used to set the exponents.

After entering the displayed formula, we centered the formula by selecting Text
Alignment � Align Center. We also selected the phrase “Pythagorean Triple” and
reset it in italics. All the usual word processing tools are available.

By using cells with different styles, it is possible to make your notebook as
polished as you like. If you are a college student using Mathematica to write your
homework assignments, your professors will be thrilled! (And you may get a better
grade!)1

11.2 The Option Inspector
We have already seen in Chap. 3 that we can use the Option Inspector to change
a variety of preferences for the notebook. We can also use it to change all sorts of
features related to the style of cells and the notebook as a whole.

Suppose, for example, we want to place a frame around a cell for added emphasis.
Example 11.2.1 shows such an example.

Example 11.2.1

Section 1: Area

π

calculation of area
r 1.234;
A r^2

4.78388

adding a frame around a cell 

1However, your professors will not be thrilled if you type text into input cells! Adding the explanatory text is
great, but make sure it is placed in text cells.
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One way to do this is to first select the cell and then choose Format � Option
Inspector. . . which will open up the Option Inspector. As mentioned in Chap. 3,
the items in the Option Inspector can be displayed in different ways by choosing
“by category” or “alphabetically” from the menu at the top of the Option Inspector.
If we work alphabetically, simply scroll down until you see the option “CellFrame”
which will currently be “False.” Check the checkbox in the “Set” column (the first
column) and then click on the word “False.” This will allow you to edit the field
and change “False” to “True.” After you do this and hit the Return key, the frame
will be inserted around the cell.

If you really want to look under the hood with Mathematica, you’ll love the
Show Expression command that can be found under Cell in the menu bar. In the
following example we have placed a frame around a text cell that contains the text
“Sample text.” The very same cell is also shown after selecting it and then choosing
Cell � Show Expression. With this view we can see the underlying structure of the
cell. Since this is an introductory book, we have not tried to explain this underlying
structure in general. But notice that the cell contains the option CellFrame→True.
An alternative way to place frames around cells is to first use Show Expression,
then add the option CellFrame→True, and finally use Show Expression again to
return to the normal view. You should try experimenting with Show Expression.
Really complicated cells are going to look really complicated when you look at the
underlying structure, but with a little practice you can start to see what is going on.
If you find a cell in someone else’s notebook that does just what you want, and you
don’t know how it works, using Show Expression might be just what you need to
figure it out.

Example 11.2.2
In[1]:= using Show Expression

Cell["Sample text.", "Text",
CellFrame->True,
 CellChangeTimes->{{3.421059489087907*^9, 3.421059494393612*^9}}]

Returning to the Option Inspector, notice that you can choose from Selection,
Selected Notebook, or Global Preferences from the pull-down menu at the top
left. In the case of CellFrame for example, these three choices would put a frame
around the selected cell, every cell in the current notebook, or every cell in all our
notebooks, respectively. (However, some types of cells may have a particular style
that would override the placement of a frame around the cell.)

You should experiment with the different built-in choices of Stylesheets that can
be found under the Format � Stylesheet menu item. For example, try Format �
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Stylesheet � Creative � NaturalColor for a colorful presentation! Finally, it is
possible to create your own Stylesheet for a completely custom style. This topic is
a little beyond what the beginner would want to tackle, but digging into the Help
Files will lead you to the necessary information.

11.3 Cell Properties
In addition to having different styles, cells may have different properties. Select
a cell and then choose Cell � Cell Properties. A list of five different properties,
Open, Editable, Evaluatable, Active, and Initialization Cell will be shown, with
check marks next to those that apply to the selected cell.

The first property is Open. We have already seen that by double-clicking a cell
bracket you can “open” or “close” the cell, thereby showing or hiding its contents.
Usually we would only want to close a cell group, rather than a single cell.

The next property is Editable. By unchecking this property we can make a cell
uneditable, that is, “write-protected.” This may be a good thing to do to cells that
you want to make sure you don’t accidentally change.

While you might want to change the first two properties of some cells you will
probably never want to change whether a cell is Evaluatable or Active. Basically,
you want all Input cells to be Evaluatable and all other cells to not be Evaluatable,
and this is the default. So you never really need to mess with this property. Similarly,
you may never need to change the Active status of a cell.

Typically you may work with a notebook for several hours or days as you develop
it, often over more than one session. Once it is done, you may put it away for months
before you need it again. When you close and reopen a notebook, you will have to
reenter, or reevaluate, all the input cells. You could go through the notebook one
cell at a time entering each one individually. Alternatively, you can select one or
more cells and then choose Evaluate � Evaluate Cells from the menu bar. Better
still, as you write the notebook you can designate a cell as an initialization cell.
To do this, select the cell and then select Cell � Cell Properties � Initialization
Cell from the menu bar. After opening a notebook, choose Evaluate � Evaluate
Initialization Cells, and all the initialization cells will be automatically evaluated.

By now you may have noticed that cells with different styles and properties
have different style cell brackets. You’ll probably get to where you can recognize
whether a cell bracket is open or closed based on the style of the bracket, and this is
pretty useful. You may even learn to distinguish between a few other types of cells
based on the appearance of the bracket. This can’t hurt, but you certainly shouldn’t
feel that you need to learn all the different kinds of cell brackets.
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11.4 Using Palettes
If you really want to make your notebook look good, then you will want to use the
various palettes to typeset mathematical expressions in your input cells as well as
set formulas within text. We have already talked about the BasicMathInput Palette
as well as the AlgebraicManipulation Palette. In addition, you might find some
characters you need on the SpecialCharacters Palette. And of course, the keyboard
shortcuts available for many of the palette items are incredibly useful.

It can be annoying if you find yourself always using the same three or four palette
items, but having to take them from different palettes. A nice solution is to create
your own custom palette! You might even want to create your own custom palette
item. In the next example we create a very simple palette that contains only one
item. When this cell is evaluated, the very tiny palette will appear in the upper right
corner of the screen. Try it!

Example 11.4.1
In[71]:= a simple custom Palette

CreatePalette
PasteButton æ
;

The function CreatePalette either takes a single expression as its argument,
or a list of expressions, and creates a palette with these expressions as items. In
this case we have only the single expression, PasteButton, which creates a button
that will paste something into the notebook at the selection point when the button
is pressed. In this case the special letter æ will be pasted into the notebook. If
anything is selected when the button is pressed, the selection will be replaced by
æ. Otherwise, æ will simply be inserted at the location of the cursor. By the way,
when we typed the input cell of Example 11.4.1 we pulled the æ character off of
the SpecialCharacters Palette!

Since we want some action to take place when we select from the palette, the
argument to CreatePalette is typically either Button or PasteButtton. With the
Button function we can carry out all sorts of operations when the button is pressed,
not just pasting something into the notebook.

The next example is more complicated. We create a palette with four items, each
a PasteButton. The first one will paste the special character Z into the notebook and
is similar to Example 11.4.1. But the next three will paste in a template of a certain
form, with blanks that we can fill in. The first two can be found on the ordinary
MathInput Palette, but the last one is a new, custom palette item. Furthermore, the
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Figure 11.1 A custom palette made with four PasteButtons.

four PasteButtons are the elements of a list that is the single argument of Row.
This will cause the four buttons to be arranged nicely in a row. Finally, while Row
is the single argument of CreatePalette, we follow it with the option WindowTitle
→ “My Palette” in order to place a title on the palette. When this cell is evaluated,
the palette shown in Fig. 11.1 will appear on the screen. (Try replacing Row with
Column. The buttons will be arranged vertically on the palette, but the title is now
too wide to appear.)

Example 11.4.2
In[87]:= creating a custom Palette

CreatePalette

Row

PasteButton ,
PasteButton ,

PasteButton ,

PasteButton
DisplayForm
SubscriptBox , RowBox , ",",

,

WindowTitle "My Palette"

;
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Creating the second, third, and fourth palette items in Example 11.4.2 was a bit
tricky. To type the expression PasteButton[��], first type PasteButton[. Next, go
to the BasicMathInput Palette and select ��. You might think that you could then
finish typing the closing bracket and we would be in good shape. But think about it,
by using the BasicMathInput Palette you simply inserted a template where you were
typing. We still need to “fill in” the template! What we fill it in with are the special
characters \[SelectionPlaceholder] and \[Placeholder]. So, after selecting the
�� template, type “\[SelectionPlaceholder].” This will “fill in” the “base” of the
template with “\[SelectionPlaceholder].” Next, hit the tab key, which will take
you to the second placeholder in the template. Now type “\[Placeholder].” After
this, use the right arrow to leave the template and then type the final square bracket.
Interestingly, after you are done entering this, it does not look like

PasteButton[\[SelectionPlaceholder]\[Placeholder]]

which is what you typed! (And you used the �� template to help you type it.)
Instead, Mathematica turns the special characters into the filled and unfilled squares
as soon as you complete typing them.

Once you understand how to create the second palette item, the third one should
make sense too. The fourth one is slightly more complicated. We want to create the
template ��,� so that we can easily enter something like m1,2. We use Subscript-
Box to create the basic form of the template, but need to wrap DisplayForm around
it to make it look the way it should on the palette. We also use RowBox to lay out
the two placeholders and the comma between them in the subscript. And again,
we type \[SelectionPlaceholder] and \[Placeholder] to create the two different
kinds of placeholders. We’ll let you read about DisplayForm, SubscriptBox, and
RowBox in the Help Files. These functions (as well as making custom palettes!)
are taking us a little far from Mathematica for beginners.

By using the Button function in a palette, you can create palette items that do
all sorts of cool things to whatever you may have selected in the notebook. Take a
look at the Applications section of the CreatePalette Help File page where you
will find code that creates a palette with two buttons labeled “Shout!” and “Quiet.”
Pressing the first button will change selected text to all uppercase and pressing the
second will change it to all lowercase.

11.5 Cell Grouping
By now you have noticed that Mathematica automatically groups cells together in
a hierarchical way. This hierarchy is based upon the styles of the cells. In Exam-
ple 11.5.1 we have used two Title cells, four Section cells, five Subsection cells,
and finally, two Subsubsection cells. Notice that everything following the first
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Title cell (The Main Title) is grouped together, until we get to the second Title cell
(Another Main Title). When the second Title cell is entered, Mathematica auto-
matically starts a new cell group. Until that point, all cells are automatically placed
inside the first cell group. The same is true at each lower level in the hierarchy.

Example 11.5.1
the hierarchy of cell grouping 

A nice outcome of this automatic grouping is that we can close groups of cells
so as to only present the headers of various sections. For example, closing the two
highest level groups of cells results in Example 11.5.2.

Example 11.5.2
displaying only the top level cells 
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It is possible to exercise complete control on how cells are grouped by choos-
ing Cell � Grouping � Manual Grouping (as opposed to Cell � Grouping �
Automatic Grouping). With Manual Grouping chosen, no cells will be automat-
ically grouped together. To group cells you must then select them and choose Cell
� Grouping � Group Cells/Group Together. Cells can also be ungrouped by
choosing Cell � Grouping � Ungroup Cells/Group Normally. In order for this
to work, though, you need to have chosen Cell � Grouping � Manual Grouping.

It is also possible to merge two adjacent cells into a single cell, or to split a cell
apart. To do the former, select the two cells and then choose Cell � Merge Cells.
To split a cell, place the cursor where you want the split to take place, then choose
Cell � Divide Cell.

Most of the time the Automatic Cell Grouping feature is just what you want. But
if you need to change how your cells are grouped, you can take complete control.

Finally, we may wish to number our sections and subsections, and we can have
Mathematica do this automatically. In Example 11.5.3 we have replaced the Title
cells with Chapter 1 and Chapter 2, and the Section cells with Section 1, Section
2, and so on.

Example 11.5.3
using automatic cell numbering 

The neat thing about this is that we did not type “Chapter 1” into the first Title cell!
Instead, we typed “Chapter ” and then chose Insert � Automatic Numbering. . . .
This brought up the dialog box seen in Fig. 11.2, where we then chose “Title” for
the Counter. The really cool feature of choosing Automatic Numbering is that if
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Figure 11.2 Choosing Insert � Automatic Numbering. . . brings up this dialog box.
Using “Title” as the counter will number the insertion according to the current title

number.

we were to rearrange the order of the Chapters (or Sections, Subsections, etc.) by
cutting and pasting, Mathematica would automatically renumber them!

11.6 Hyperlinks
It is possible to insert hyperlinks into a Mathematica notebook that can be used
to jump to a cell anywhere in the same notebook, another Mathematica notebook,
or even any webpage. For example, suppose in our Pythagorean Triples notebook
we want to have a link to the Wikipedia webpage on the subject. The URL of the
webpage is

http : //en.wikipedia.org/wiki/Pythagorean theorem.

To create the link, select the text that will serve as the hyperlink and then choose
Insert � Hyperlink. . . from the menubar. In Example 11.6.1, we have chosen

http://en.wikipedia.org/wiki/Pythagorean_theorem
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Figure 11.3 To add a hyperlink, select the text to serve as the link and then choose
“Hyperlink. . . ” from the “Insert” menu. Then fill in the dialog window

accordingly.

“Wikipedia article.” This will bring up the dialog box shown in Fig. 11.3. Click the
“Other notebook or URL:” button and then enter the URL in the field as shown in
the figure. The text cell with the hyperlink will then appear as in Example 11.6.1.
Note that the hyperlink is given a different color from the ordinary text.

Example 11.6.1
creating a hyperlink
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If instead of jumping to a webpage, we want to jump to another Mathematica
notebook, choose “Current notebook” in the dialog box and then enter the name
of the notebook in the field. The easiest way to do this is to use the “Browse. . . ”
feature, which will allow you to choose the notebook from your computer’s file
system. When you do this you will notice that the complete path name to the
file is used, either in absolute or relative terms. If this last sentence doesn’t make
sense, don’t worry. Just use the “Browse. . . ” feature to select the correct notebook.
Mathematica will insert the correct file name in the field. Clicking the hyperlink
will then open the destination notebook.

Alternatively, we may want a hyperlink that takes us to a specific cell elsewhere
in the same notebook. To do this we need to give a tag to the cell we wish to
jump to. For example, suppose we wanted to include the following sentence in our
“Pythagorean Triples” notebook.

Example 11.6.2
creating a hyperlink

In Example 11.6.2 the text “proof of the Pythagorean Theorem” will be the
hyperlink that takes us to the first cell of Example 11.6.3. We first select the initial
cell in Example 11.6.3, and then choose Cell � Cell Tags � Add/Remove Cell
Tags. . . . This will bring up a dialog box used for editing cell tags. We enter the
name we want to assign to the cell as its tag into the Cell Tag: field and click
Add. In this example, we used the name “proofOfPythagoreanThm” for the tag.
We can now create a hyperlink anywhere else in the notebook that will point to this
cell. As before, select the text that will serve as the link and then choose Insert �
Hyperlink. . . to bring up the hyperlink dialog box. This time choose Cells with
the tag: and then either type the tag name into the field, or select the tag name from
the list of all tag names. Then click OK. Clicking on the hyperlink will now take
us to the tagged cell.

In Example 11.6.3 the tag name appears just above the tagged cell. This is because
we have selected Cell � Cell Tags � Show Cell Tags. This feature can be turned
on or off at any time.

If you are working with a really large notebook, you may want to use hyperlinks
to create a “table of contents” at the beginning of the notebook. Each entry in the
table can be a hyperlink to the corresponding section later in the notebook.
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Example 11.6.3
giving a tag to a cell

11.7 Adding Graphics to Notebooks
In Chaps. 2 and 6 we saw how to use Mathematica to create all sorts of graphical
output. Obviously we could use these graphics to illustrate our notebooks. For
example, the figure in Example 11.6.3 was created with Mathematica. But notice
that we do not display the input cell that created the graphic. We have also discarded
the output cell label “Out[n]=” that originally accompanied the output. To do this
we can create the graphic in another notebook, save only the graphic and then paste
the graphic into the notebook where it will be used. Let’s see how to do this.
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First, in another notebook, we create the graphic with the following input cell.

Example 11.7.1
In[21]:= graphic for proof of Pythagorean Theorem

x, y are coordinates of right
most vertex of inner square

y 1 4; x Sqrt 1 y 1 ^2 ;
Show Graphics

draw outer square
Line 1, 1 , 1, 1 , 1, 1 , 1, 1 ,

1, 1 ,
draw four diagonal lines

Line 1, 1 , x, y ,
Line 1, 1 , y, x ,
Line 1, 1 , x, y ,
Line 1, 1 , y, x ,

place text labels
Style Text "c", 0, 1.1 , 24 ,
Style Text "b", 0, .65 , 24 ,
Style Text "a", .75, .7 , 24

Out[22]=

c

ba

Next, click on the graphic to select it and then choose Edit � Cut, or use
the keyboard equivalent, to copy the graphic. We can then Paste it into any other
notebook at the desired location. If you select the cell bracket rather than the graphic,
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cutting and pasting will include the “Out[n]=” label, which you may not want to
include.

Alternatively, after selecting the graphic we can save it as a file by selecting Edit
� Save Selection As. . . . We’ll see in a moment how to import a graphics file into a
notebook. A third option is to select the graphic and then choose Edit � Copy As
� PDF or Edit � Copy As � PICT to again save the graphic as a file in either PDF
or PICT format. You’ll need to experiment with the different methods and different
graphics formats to see what works best for any specific graphic.

Instead of creating your own graphic with Mathematica, you may want to paste
a graphic obtained from some other source into a Mathematica notebook. In the
following example we first used a screenshot utility to capture the Mathematica
notebook logo and then saved it as a file named “notebookLogo.png.” We then
pasted the graphic into the notebook by selecting Insert � Picture � From File. . . .
Selecting this from the menu bar brings up a file directory from which you can
choose any file. After choosing the desired file and clicking Open, the picture is
pasted into the notebook.

Example 11.7.2
selecting Insert Picture From File...
to insert a picture

We can accomplish the same thing, but with more control, by using the Import
function. The basic syntax for the Import function is Import[“filename.ext”].
Notice that in Example 11.7.3 we have given the complete path name to the file.
We have also used the optional ImageSize to control the size of the image.

Example 11.7.3
In[30]:= importing a graphics file

Import
" Users jhoste Desktop MathDemystified Chapters

LookingGood notebookLogo.png",
ImageSize 50, 50

Out[30]=

In the next example we import a digital photograph saved in the .jpg format and
exert a little more control over its size. The first use of Import uses the optional
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“ImageSize” element and returns the size of the image, in this case {2816, 2112}.
We name the size photoSize. Next, we use Import again, this time with the optional
ImageSize which we set to 15% the size of the photo.

Example 11.7.4
In[3]:=

Out[3]=

In[4]:=

Out[4]=

In addition to importing graphics, Import can be used to import all sorts of data.
Take a look at the Help Files under Import.
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11.8 Creating Slideshows
It is easy to create slideshows using Mathematica. There are a couple of differ-
ent ways to get started, but a nice way is to use the SlideShow Palette seen in
Fig. 11.4. First open a new notebook and then open the Palette by choosing Palettes
� SlideShow from the menu bar. Alternatively, instead of opening a new notebook,
you could choose File � New � SlideShow from the menu bar, rather than File �
New � Notebook. This will open a notebook in the form of a slideshow with three
already existing slide templates that you can then edit. Try it out! This may end up
being your preferred method, but by starting with a new notebook and using the
Palette you won’t need to replace the three existing slides. (Yet another method is
to first open the Palette and then click New Template. This will produce the same
result as File � New � SlideShow.)

Assuming we have started with a brand new notebook and then opened the
SlideShow Palette, click New Slide. This will insert a single slide template as seen
in Fig. 11.5. This slide template contains three cells which are grouped as seen in
the figure. The first cell is a Navigation Bar and the last cell is a Previous/Next

Figure 11.4 The SlideShow Palette can be used to create slideshows.
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Figure 11.5 Clicking New Slide in the SlideShow Palette will paste a slide template into
the notebook.

cell. These can actually be pasted into the notebook individually by selecting from
the Paste. . . menu in the Extras. . . section of the Palette. The middle cell is simply
a Section cell, and of course, it also could have been pasted in individually.

With the first slide template in place, we can then edit the Section cell and add
whatever other cells we want. After finishing the content of the first slide, we can
then click New Slide again to produce the second slide and so on. In Fig. 11.6 we
see the first two slides of a slideshow about Pythagorean Triples. A combination
of Text cells and DisplayFormulaNumbered cells have been used. In some of
the Text cells we have also inserted typeset mathematical content as described in
Sec. 11.1.

After preparing the slides we’ll want to switch the Screen Environment to
SlideShow to view the slides, or to use them in our slide presentation. There are
two ways to do this. The first way is to choose Format � Screen Environment
� SlideShow. The second way is to click SlideShow on the SlideShow Palette.
Clicking SlideShow and Normal on the Palette will take you back and forth between
the SlideShow and Working Screen Environments. Figure 11.7 shows the third
slide of the slideshow with the Screen Environment set to SlideShow. The buttons
at the top of the slide can now be used to go forward or backward one slide at a
time, or to jump all the way to the first or last slide. We can also do this by clicking
the left or right buttons at the bottom of the slide. (These are actually hyperlinks.)
We can also expand the slide to fill the screen by clicking the “full screen” icon at
the top left.

The figure on the third slide was made “on the fly” by first choosing Graphics �
New Graphic to create a “blank picture.” We then selected Graphics � Drawing
Tools to bring up the 2D Drawing Palette. The line tool was used to draw the lines
and the oval/circle tool was used to draw the circle. (Note that holding down the
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Figure 11.6 The first two slides of a slideshow about Pythagorean Triples. The notebook
is seen in ScreenEnviornment � Working format.

Shift key while using these tools will allow only horizontal or vertical lines, and
circles, respectively.) The circle originally appeared as a filled-in disk and the 2D
Graphics Inspector was then used to change the opacity of the interior of the disk.
Finally the “TraditionalForm Text” as opposed to the “Text” tool was used to place
the two labels. If the “Text” tool is used, the letters will not appear when the Screen
Environment is changed from Working to SlideShow.

If we click Table of Contents on the SlideShow Palette, the table of contents
shown in Fig. 11.8 will be generated. When giving the presentation it can be handy
to have the Table of Contents visible on the screen. Not only will the audience have
a sense of where you are in your presentation, it can be used to jump forward or
backward to any slide in the presentation. At the end of the presentation when an
audience member asks you to go back to an earlier slide, this avoids having to go
back through them all one at a time.
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Figure 11.7 The third slide of a slideshow about Pythagorean Triples. The notebook is
seen in ScreenEnvironment � SlideShow format. Clicking the “full screen” icon at the
top left will expand the window to the full computer screen. The navigation buttons at the
top can be used to go forward or backward one slide at a time, or all the way to the first or

last slide.
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Figure 11.8 The Table of Contents for the slideshow. Clicking “Slide n” will move to
that slide.

11.9 Find Out More
By now you have learned that Mathematica is almost infinitely customizable. To
change the look and feel of your notebooks, the following guides and tutorials will
take you beyond the basics. As usual, enter these phrases in the Documentation
Center search field to bring up the desired guide or tutorial.

• guide/NotebookBasics

• guide/CellStylingOptions

• tutorial/OptionsForCells

• guide/AutomaticTextStylingFeatures

• tutorial/StylesAndTheInheritanceOfOptionSettings

• guide/Stylesheets
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Quiz
1. Typeset the text cell shown in the following example. Make sure that the

variables and the equation are all set as in-line formulas so that they appear
correctly.

2. Use the Option Inspector to decorate a text cell with the filled star dingbat as
shown in the following example.

3. Use the Option Inspector to change a cell background color to blue.

4. Use the Option Inspector to place a red cell frame around a single cell.

5. Use the Option Inspector to place red cell frames around all the cells in a
notebook.

6. Create a custom palette with a single PasteButton that allows you to paste the
special character “∞” into your notebook.

7. Create the custom palette shown below that allows you to paste in a 3 × 3
matrix.

8. Create the following text cell with a hyperlink to the United States Track and
Field Web site at http://www.usatf.org/.

9. Use Import to paste a digital photo into a notebook.

10. Make a SlideShow with three slides.

http://www.usatf.org/


Final Exam

1. Name at least four types of delimiters used by Mathematica and describe how
they are used.

2. Name two ways to hide large output cells.

3. What is the difference between
√

3 and
√

3.0?

4. What does N[x] do?

5. What does ?Select do?

6. What does ?*String do?

7. What is /. used for?

8. Explain the difference between := and =.

9. How is the ampersand, &, used?

10. How is the “at” symbol, @, used?

11. What happens if you take the square root of a list of 10 numbers?

12. What is the difference between {1, 2, 3}*{a, b, c} and {1, 2, 3}.{a, b, c}?
13. Plot the graphs of y = x2 and y = 10 − x2 simultaneously.

14. Shade the area trapped between the two curves in the previous question.
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15. Use Manipulate to do the following: Plot the graph of y = x3 − 5x + 1 and
a point P somewhere in the plane that the user can move with the mouse.
As the point is dragged about, plot the lines that pass through P which are
tangent to the curve.

16. Plot the graph of the parabola x = y2, whose axis of symmetry is the horizontal
axis.

17. Plot the surface given by z = x2 − y3 over all points in the xy-plane located
within 1 unit of the origin.

18. Plot the surface of revolution obtained by spinning the curve y = √
x − 1

around the y-axis.

19. Plot the contours of the function f (x) = sin(x2 − y3).

20. Use ContourPlot3D to graph the surface

(
z −

√
x2 + y2 + 1

)
(x2 + y2 + z2 − 9) = 3

21. Use Graphics3D to draw a tetrahedron. Make each edge of the tetrahedron
10 units long. Place a sphere of radius 1 at each vertex, and place a cylinder
of radius 1/2 along each edge.

22. Find the shape of the right circular cone that has the greatest volume for a
given amount of surface area.

23. Find the center of mass of the Great Pyramid at Cheops. (Assume the pyramid
is of uniform density.)

24. A pizza is removed from an oven at 450 degrees Fahrenheit and left to cool
in the kitchen where the air temperature is 72 degrees. After 5 minutes the
pizza has cooled to 300 degrees. Assuming that it cools at a rate proportional
to the difference between its temperature and that of the air, when will it reach
200 degrees?

25. Make a list of the first 1000 prime numbers. Use the Select function to extract
all primes from the list that are congruent to 1 mod 4.

26. Twin primes are primes that differ by 2. For example, 3 and 5 are twin primes
as are 29 and 31. Find the first 100 pairs of twin primes. (It is a famous
unproven conjecture that there are infinitely many pairs of twin primes.)

27. A number is perfect if it is the sum of its proper factors. Six is perfect since
6 = 1 + 2 + 3, but eight is not perfect because 8 �= 1 + 2 + 4. Find the first
four perfect numbers. (Hint: They are all less than 10000.)

28. Use a Do loop to print the first 100 Fibonacci numbers, each on a separate
line.
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29. Use a While loop to keep printing out successive powers of 2 (starting at
21 = 2) until you reach a number bigger than 1000000.

30. Create an animation of a bouncing ball. Assume the ball falls with constant
acceleration due to gravity from a height of 100 ft. Ignore air resistance.
Ignore having the ball deform on impact, and assume that no energy is lost
in the bounce, so that it bounces back as high as it fell. Simplify things by
making the view from the side so that the ball appears as a disk bouncing on
a horizontal line.

31. A palindrome is a word that reads the same forwards as backwards. For
example, “radar” or “toot.” Find all palindromes in the Mathematica provided
dictionary.

32. We often hear that the surface of the earth is 70% water. Use the data in
CountryData to estimate the fraction of the earth’s surface that is covered by
water.

33. Use CountryData to draw a map of Africa. Use Tooltip so that the name of
each country pops up as the mouse is moved over the country.

34. Use CountryData to plot the GDP of the United States over the last 20 years.

35. Use Fit to fit a curve to the data of the last example. Use the fitted curve to
predict the GDP 5 years from now.
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Answers

Quiz 1

1.1
1 2 1 3 ^3

125
216

1.2
1 2 1 3 ^3.0

0.578704

1.3
N E^Pi
N Pi^E

23.1407

22.4592
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1.4
radius of earth in miles

r 4000
volume of earth in cubic miles

V N 4 3 Pi r^3
surface area in square miles

S N 4 Pi r^2

4000

2.68083 1011

2.01062 108

1.5
volume of pyramid of Cheops
base area in square meters

baseArea 230^2
height in meters

height 147
volume in cubic meters

volume 1 3 baseArea height

52900

147

2592100

1.6
Table k^3, k, 1, 10

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000

1.7
Table N Sin x , 10 , x, 0, Pi 2, Pi 20

0, 0.1564344650, 0.3090169944,
0.4539904997, 0.5877852523,
0.7071067812, 0.8090169944, 0.8910065242,
0.9510565163, 0.9876883406, 1.0000000000

Alternatively, Sin is listable  so that we can take Sin of a list and it will 
apply Sin to each element of the list. Notice also using 0.0 to force
approximations.
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Sin Table x, x, 0.0, Pi 2, Pi 20

0., 0.156434, 0.309017,
0.45399, 0.587785, 0.707107, 0.809017,
0.891007, 0.951057, 0.987688, 1.

1.8
Table N 1 1 10^k ^ 10^k , k, 1, 6
N E

2.59374, 2.70481, 2.71692,
2.71815, 2.71827, 2.71828

2.71828

1.9
Table n , n, 0, 20

1, 1, 2, 6, 24, 120, 720,
5040, 40320, 362880, 3628800,
39916800, 479001600, 6227020800,
87178291200, 1307674368000,
20922789888000, 355687428096000,
6402373705728000, 121645100408832000,
2432902008176640000

Quiz 2

2.1

Plot x^2 x 1, x, 2, 2

2.2
Plot x^2 x 1, x, 2, 2 ,
AspectRatio Automatic

2.3

Plot x^2 x 1, x 2 1 , x, 2, 2

2.4
Plot x^2 x 1, x 2 1 , x, 2, 2 ,
PlotStyle Thickness .01 ,
Thickness .03

2.6

PolarPlot 1 Cos , , 0, 2 π
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2.7
Manipulate
PolarPlot a Cos , , 0, 2 π ,
PlotRange 2, 3 , 3, 3 ,
AspectRatio Automatic ,
a, 2, 2

2.8
Graphics
Table
Rectangle i, i , i 1, i 1 ,
i, 0, 5

2.9
Graphics
Table
GrayLevel i 10 ,
Rectangle i, i , i 1, i 1 ,
i, 0, 5

2.10
ListPlot
Table
RandomReal 1, 2 ,
1000
,
AspectRatio Automatic

Quiz 3

3.1
Plot
E^x,
x, 1, 10 ,
PlotRange 1, 4 , 0, 10 ,
PlotLabel "The Graph of ex."
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3.3
Sieve of Eratosthenes
initialize the
sieve:make a list of the integers
from 1 to max

max 100;
sieve Table i, i, 1, max ;
now for each integer k from 2 to
max 2, see if it has been crossed
out. If not,
cross out all of its multiples. A
number in the list will be ''crossed
out'' if it has been replaced with a
zero
Do see if the number k has been
crossed out
If sieve k 0,

cross out all its multiples
j 2;
While
j k max,
sieve j k 0;
j

,
k, 2, max 2

the sieve now contains the primes
and zeroes. Union will remove
duplicate zeroes and sort the
list. Drop removes the 0 and 1 that
are now the first two elements
primes Drop
Union sieve
, 2
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3.5
Monitor
Table
Pause 1 ,
i, 1, 10
;,
i, FactorInteger i

The integers and their prime factorizations are printed at 1 
second intervals. Removing the semicolon causes the table to 
be printed after the calculation is complete. But the table does
not contain anything!

Quiz 4

4.1

PowerExpand
w3 x 2 y5

w5 xz3

y5 2

w x xz3 2

4.2
Simplify Sum i^3, i, 1, n

1
4
n2 1 n 2

4.3
TrigExpand Sin 4

4 Cos 3 Sin 4 Cos Sin 3

4.4

TrigReduce 4 Sin x 3 4 Cos x Sin x 2

3 Sin x Cos x

Cos 3 x Sin 3 x

4.5
Table

Expand x5 3 x2 6 . x x k , k, 4, 4
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4.6
Table

Coefficient x2 x 1
n
, x, 3 ,

n, 2, 25

4.7
Log x y z . Log a b Log a Log b

Log x Log y Log z

Log x y . Log a b Log a Log b

Log x Log y

Combining the rules gives

Log x y z w .
Log x y Log x Log y ,

Log x y Log x Log y

Log w Log x Log y Log z

But note that changing the order does not work right!

Log x y z w .
Log x y Log x Log y ,

Log x y Log x Log y

Log
1
w

Log x Log y Log z

This will work:

Log x y z w .
Log x y Log x Log y ,

Log x y Log x Log y ,

Log 1 b Log 1 Log b

Log w Log x Log y Log z

4.8
ReplaceRepeated x, a 1 1 a,

MaxIterations 4
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4.9
data Table RandomReal , 20
temp Drop
data, Position data, Min data 1

Drop
temp, Position temp, Max temp 1

4.10
data Table RandomInteger 100 , 10
data . data 4 data 5 ,
data 5 data 4

4.11
N Pi 2

1.5708

write product using two factors at
a time

N Product
2 k 2

2 k 1 2 k 1
, k, 1, &

5, 50, 500

1.50109, 1.56304, 1.57001

Product
2 k 2

2 k 1 2 k 1
, k, 1, Infinity

2
π

Quiz 5

5.1

surfaceArea r , h : 2 π πr2 2 r h

5.2

payment P , r , m :
P r

12
1 r

12

m

1 r
12

m
1
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5.3
returns True if leap year,

False otherwise
leap yr : If Mod yr, 400 0,

True,
If Mod yr, 100 0,
False,
If Mod yr, 4 0,
True,
False

5.4
days per months in non-leap years

daysInMonths 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 ;

converts a date to the day in the year
date2day day , month , year :

Total Take daysInMonths, month 1 day
If month 2 && leap year , 1, 0

5.5

Map 1 Sin 2 &, data

5.6
n 8;
title "Multiplication table for 1 to "

ToString n ;
Grid title ,

TableForm
Table i j, i, 1, n , j, 1, n ,
TableHeadings
Table i, i, 1, n ,
Table j, j, 1, n
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5.7
distance from n to nearest prime

distanceToNearestPrime n : Module

bigger n, smaller n ,
While PrimeQ bigger False, bigger ;
While PrimeQ smaller False, smaller ;
Min Abs smaller n , Abs bigger n

5.8
primesInInterval n , m : Module

k n, primes ,
While k m ,
If PrimeQ k , AppendTo primes, k ;
k
;
primes

5.9
n 1;
While collatzStoppingTime n 200, n
n

5.10
babylon a , x0 : Module

x N x0 ,
While Abs x^2 a 1 10^5,
Print x ; optional print
x x a x 2 ;
x

Quiz 6

6.1

Plot3D Cos x Sin y , x, 0, 4 π π, y, 0, 4
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6.2
Plot3D Cos x Sin y ,
x π π π π, , , y, 2, 3 2 ,
RegionFunction Function x, y, z , z 0

6.3
Plot3D Cos x Sin y ,
x π π π π

π π

, , , y, 2, 3 2 ,
RegionFunction Function x, y, z , z 0 ,
BoxRatios 2 , 2 , 2

6.4
Plot3D Cos x Sin y ,
x, , , y, 2, 3 2 ,
RegionFunction
Function x, y, z , z 0 && x 0 y 3 4 ,
BoxRatios 2 , 2 , 2

π π π

π π
π

π

6.5
ContourPlot
Cos x Sin y , x, 0, 4 , y, 0, 4π π

6.6

ParametricPlot
1 2 Abs Mod t, 2 1 ,
1 2 Abs Mod 1 2 t, 2 1 ,
t, 0, 2

The hard part is parameterizing the square. Use the parameterization 
developed for the billiard trajectories of Chap. 2.
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–0.4 –0.2 0.2 0.4

–0.4

–0.2

0.2

0.4

6.7

r 1;

Manipulate

RevolutionPlot3D

r
1

2
Abs 1 Mod t, 2 Cos

1

2
Abs 1 Mod

1

2
t, 2 Sin ,

1

2
Abs 1 Mod

1

2
t, 2 Cos

1

2
Abs 1 Mod t, 2 Sin , t, 0, 2 ,

PerformanceGoal "Quality" ,

, 0, Pi 2

Rotate the original square by an angle of q, then translate it to the right
by r. 
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6.8
RegionPlot3D z 0 && z 5 1 Sqrt x^2 y^2 ,
x, 1, 1 , y, 1, 1 ,
z, 0, 5

6.9

Manipulate
Graphics3D
Table
Line a, b, c , Cos t , Sin t , 0
, t, 0.0, 2 Pi, 2 Pi 50.0
,
PlotRange 2, 2 , 2, 2 , 0, 5
,
a, 2, 2 ,
b, 2, 2 ,
c, 5 , 0, 5

Let the cone point be at (a,b,c). Now draw lots of lines connecting the 
cone point to the circular base of the cone. Use Manipulate to move the 
cone point.

It is possible to describe the points (x,y,z) that lie in the cone with 
inequalities, but RegionPlot3D gives unsatisfactory results.

6.10
ParametricPlot3D
Cos 3 t , Cos 5 t Pi 4 , Cos 7 t Pi 12 ,
t, 0, 2 Pi ,
PlotStyle Tube .03

Quiz 7

7.1

Limit
Sin x2

x
, x 0

0
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7.2

f x : x3 x 1

m f' 1

2

plot curve and tangent line
Plot f x , f 1 m x 1 , x, 1, 2

–1.0 –0.5 0.5 1.0 1.5 2.0

–4

–2

2

4

7.3

f x : x3 x 1;

Manipulate
m f' a ;
Plot f x , f a m x a , x, 2, 2 ,
PlotStyle Black, Blue ,
PlotRange 2, 2 , 2, 2 ,
Epilog
Red, PointSize .015 , Point a, f a

,
a, 0 , 2, 2



Answers 349

7.4
solution N

Minimize x 3 2 y 5 2, x2 y2 1 , x, y

2.25727, x 4.07871, y 3.95422

Plot x2 1 , x2 1 , x, 5, 5 ,

AspectRatio Automatic,
Epilog
PointSize .02 ,
Point 3, 5 ,
Point x, y . solution 2

–4 –2 2 4

–4

–2

2

4
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7.5
x1,y1 is on the circle,

x2,y2 is on the hyperbola

solution N

Minimize x1 x2
2 y1 y2

2,

x1 .5 2 y1 1 2 .25, x2
2 y2

2 1 ,

x1, y1, x2, y2

0.0760671, x1 0.940806,
x2 1.18396, y1 0.764012, y2 0.633839

7.6

ParametricPlot Cosh t , Sinh t , t, 1, 1 ,

PlotRange 0, 2 , 0, 2 ,
AspectRatio Automatic,

Epilog

Circle .5, 1 , .25 ,

Line x1, y1 , x2, y2 . solution 2

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0
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7.7

Plotting the curves reveals that they intersect near –2 and 1.

a x . FindRoot x 4 x2, x, 2

b x . FindRoot x 4 x2, x, 1

1.96464

1.05801

area NIntegrate 4 x2 x, x, a, b

6.42769

7.8
find moment about x axis

mx NIntegrate y, x, a, b , y, x, 4 x2

13.4812

find moment about y axis

my NIntegrate x, x, a, b , y, x, 4 x2

2.65234

find center of mass
X, Y my area, mx area

0.412643, 2.09736

Plot x, 4 x2 , x, a, b ,

AspectRatio Automatic,
Epilog PointSize .02 , Point X, Y
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–2.0 –1.5 –1.0 –0.5 0.5 1.0

1

2

3

4

7.9

Plot3D 1 x2 , x, 0, 2 , y, 0, 2 ,

BoxRatios 2, 2, 1 ,
PlotStyle Opacity .8 ,
RegionFunction
Function x, y, z , y x && x 1 ,
Filling Bottom,
FillingStyle Green, Opacity .6

The hard part is visualizing the solid. Here is 1/16 of the solid.
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0.0
0.5

1.0
1.5

2.0

0.0
0.5

1.0
1.5

2.0

0.0

0.5

1.0

volume

16 Integrate 1 x2 , y, 0, x , x, 0, 1

16
3

7.10

Solve
3 H2 8 H R 3 R2

4 H 8 R
H, R

R
H

3
, R

H

3

ArcTan

H

3

H

6
π
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Quiz 8

8.1

Solve x y y 3
2 x y

3 x 4
, x

x
11 7 y 121 10 y 13 y2

6 y
,

x
11 7 y 121 10 y 13 y2

6 y

Solve x y y 3
2 x y

3 x 4
, y

y
12 11x

7x 3x23

8.2
this will find roots exactly

Solve x4 5 x3 x 6 0, x

approximate the roots

NSolve x4 5 x3 x 6 0, x

x 4.90772 , x 1.24491 ,
x 0.576316 0.80617 ,
x 0.576316 0.80617

8.3
ListPlot

Re , Im & x . NSolve x6 x 1 0, x ,

PlotStyle PointSize .02
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8.4

Resultant x6 a x 1, D x6 a x 1, x , x

46656 3125 a6

Solve 46656 3125 a6 0, a

a
6

55 6
, a

6

55 6
, a

6 1 1 3

55 6
,

a
6 1 1 3

55 6
, a

6 1 2 3

55 6
, a

6 1 2 3

55 6

There are five roots if a is any one of the values above; six otherwise.

8.5

Solve x z 4, 2 x y 3 z 5 , x, y

x 4 z, y 3 z

Since the system is small, it is easiest to use Solve. Here we solve for x
and y in terms of z. There are infinitely many solutions.

8.6

realroots Select
. NSolve 2 Sin 3 1 Cos 3 ^2, ,

Im 0 &

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

1.82062, 1.32097, 0.273776,
0.773422, 2.36817, 2.86782

points 2 Sin 3 Cos , 2 Sin 3 Sin &
realroots

0.361973, 1.41865 , 0.361973, 1.41865 ,
1.40957, 0.395847 , 1.0476, 1.0228 ,
1.0476, 1.0228 , 1.40957, 0.395847

Use NSolve to find roots and Select to get the real roots.

 The points where the two curves intersect are, in Cartesian coordinates,
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PolarPlot 2 Sin 3 , 1 Cos 3 ^2 ,
, 0, 2 π ,

Epilog PointSize .03 ,
Point 1 , 2 & points

–2 –1 1 2

–2.0

–1.5

–1.0

–0.5

0.5

1.0

1.5

Let's plot the curves and the points.

8.7
solution
DSolve x'' t 9.8, x 0 1000, x' 0 0 ,
x, t

x Function t , 1000 4.9 t2

Solve x t 0 . solution, t

t 14.2857 , t 14.2857

Object hits ground when x[t] = 0.
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8.8
solution
DSolve x'' t 0.163 x' t 9.8,
x 0 3000, x' 0 0 , x, t

x Function t , 0.163 t

368.851 3368.85 0.163 t 60.1227 0.163 t t

Solve x t 2000 . solution, t

InverseFunction::ifun :
Inverse functions are being used. Values may be lost for multivalued inverses.

Solve::ifun: Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

t 10.3425 , t 22.6138

x 22.6138 . solution

2000.

Find out when height is 2000 m.

Check that height is 2000 m when t = 22.6138 sec.

8.9

Limit x' t . solution, t Infinity

60.1227

Terminal velocity is limiting velocity.

The terminal velocity is about 60 m/sec downward.

8.10
solution
DSolve x' t x t 10 y t ,
y' t 15 x t y t , x, y , t ;

Manipulate
ParametricPlot
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x t , y t . solution .
C 1 pt1 1 , C 2 pt1 2 ,
x t , y t . solution .
C 1 pt2 1 , C 2 pt2 2 ,
x t , y t . solution .
C 1 pt3 1 , C 2 pt3 2

,
t, 0, length ,
PlotRange 2, 2 , 2, 2
,
controllers
length, .25, "Length" , 0.001, 1 ,
pt1, RandomReal 2 1, RandomReal 2 1 ,
Locator ,
pt2, RandomReal 2 1, RandomReal 2 1 ,
Locator ,
pt3, RandomReal 2 1, RandomReal 2 1 ,
Locator

Quiz 9

9.1
mostDense Take
Sort

,
CountryData , "Population"
CountryData , "Area" & CountryData ,

1 2 2 2 &
,
10

For least dense, change 10 to –10.

9.2
ListPlot
CountryData , "GDP" ,
CountryData , "InfantMortalityFraction" &

CountryData
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9.3
worldPop
Total CountryData , "Population" &
CountryData

the 10 biggest countries
biggest Take
Sort

, CountryData , "Population" &
CountryData ,
1 2 2 2 &
,
10

biggestPop Total 2 & biggest

biggestPlusOther
Join biggest, "Other", worldPop biggestPop

plotting the population of countries
Needs "PieCharts`"
labels
Graphics Text 1 , ImageSize 80, 20 &
biggestPlusOther;

PieChart 2 & biggestPlusOther,
PieLabels labels,
PlotLabel
"Population of the Biggest Countries"

China

India

UnitedStates

Indonesia

Brazil

Pakistan
Bangladesh

Russia
Nigeria

Japan

Other

Population of the Biggest Countries
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9.4
using Tooltip to bring up name of each

country
Graphics
LightGray,
EdgeForm Black ,
Tooltip

CountryData , "Polygon" ,

&
CountryData "Africa"

9.5
Length DictionaryLookup

92518

9.6

DictionaryLookup "b" "w"

9.7

Yes! 
ates, east, eats, etas, sate, seat, teas 

9.8

lead, load, goad, gold

9.9

Happily, there is no path from good to evil! There are no words in the 
Mathematica dictionary which are only one letter change away from evil. 
If we allow the word “eval,” then a Word-Link exists.
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9.10
define Collatz function

g n : If Mod n, 2 0, n 2, 3 n 1

initialize vertices and edges of graph
vertices 1 ;
edges 1 4 ;

consider each integer n from 2 up to
some value
Do
m n;

follow the course of m until we reach
a vertex already in the graph
append m and the edge from m to g m

to the graph as we go
While Intersection m , vertices ,
AppendTo vertices, m ;
AppendTo edges, m g m ;
m g m
;
, n, 2, 8

plot the graph
GraphPlot edges, VertexLabeling True,
DirectedEdges True

Quiz 10

10.1 (a)

f x : x

Abs f' 0

1

–2 –1 1 2

–2

1

2

–1
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10.1 (b)

f x : Tan x

Abs f' 0

1

–1.5 –1.0 –0.5 0.5 1.0 1.5

–4

–2

2

4
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10.1 (c)

f x : Sin x

Abs f' 0

1

–1.5 –1.0 –0.5 0.5 1.0 1.5

–1.5

–1.0

–0.5

0.5

1.0

1.5

10.2

Do
f x : x^2 c;

tailOfOrbit NestList f, Nest f, 0, 10000 ,
8 ;

Print "c ", c, " ", tailOfOrbit ,
c, 1.249, 1.251, .002

c 1.249 0.206399, 1.2064, 0.206399, 1.2064,
0.206399, 1.2064, 0.206399, 1.2064, 0.206399

c 1.251 0.180917, 1.21827, 0.23318, 1.19663,
0.180917, 1.21827, 0.23318, 1.19663, 0.180917

The bifurcation takes place between –1.249 and –1.251.
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10.3
f x : x^2 c

find fixed points of f f x which are
not fixed points of f x
fix1 x . Solve f x x, x ;
fix2 x . Solve f f x x, x ;
fix Complement fix2, fix1

1
2

1 3 4 c ,
1
2

1 3 4 c

find slope of f f x at the period
2 points
Simplify D f f x , x . x & fix

4 1 c , 4 1 c

determine value of c when the slope is 1
Solve 4 1 c 1, c

c
5
4

10.4

Do
f x : x^2 c;

tailOfOrbit NestList f, Nest f, 0, 10000 ,
8 ;

Print "c ", c, " ", tailOfOrbit ,
c, 1.367, 1.369, .002

c 1.367 0.0822364, 1.36024,
0.483245, 1.13347, 0.0822364,
1.36024, 0.483245, 1.13347, 0.0822364

c 1.369 0.0623327, 1.36511,
0.494538, 1.12443, 0.104652,
1.35805, 0.475294, 1.1431, 0.0623327

The bifurcation takes place between c = –1.367 and c = –1.369.
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10.5

In all the following c = –0.1 + 0.8 i and xdiv = ydiv = 1000. In the two
plots, the max number of iterations in orbitLength is 25 and 500, respectively.

–2 –1 0 1 2
–2

–1

0

1

2
–2 –1 0 1 2

–2

–1

–2 –1 0 1 2
–2

–1

0

1

2
–2 –1 0 1 2

–2

–1

0

1

2

0

1

2
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10.6

frames Table
ArrayPlot JuliaData .8 E^ I t ,

2, 2 , 2, 2 , 1000, 1000 ,
DataRange 2, 2 , 2, 2 ,
FrameTicks Automatic
,
t, 0, 2 Pi, Pi 10

 This will make the frames of the movie.

10.7

x, y .1515, 1.025 ;
size k : .9^k;

Do
Print
MandelbrotPlot
MandelbrotData x size k , x size k ,

y size k , y size k , 300 , grayScheme,
5, 5

,
k, 0, 20

Zooming in on the point {x, y} in the Mandelbrot Set. Each frame of the
movie is .9 times the size of the previous frame.
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10.8

Changing the function to f[z] = z4 + c gives the following “Mandelbrot” Set.

–1.5 –0.9 –0.3 0.3 0.9 1.5
–1.5

–0.9

–0.3

0.3

0.9

1.5

Quiz 11

11.6
CreatePalette
PasteButton
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11.7
CreatePalette
PasteButton
DisplayForm
RowBox
" ",
GridBox

, , , , , , , ,
,
" "

,
WindowTitle "Matrix"

Final Exam

1. Parenthesis, ( and ), are used for grouping algebraic expressions, such as
3(x + 1). Square brackets, [ and ], are used to surround the arguments of
functions, such as Range[5]. Double square brackets, [[ and ]], are used to
access the n-th element of a list as in list[[3]]. Braces, { and }, are used to
delimit lists.

2. A semicolon placed after a command will suppress the output from that com-
mand. Double clicking an output cell bracket will hide the cell.

3. The expression
√

3 represents the square root of three exactly. Using
√

3.0
will give a decimal approximation.

4. The numerical function N[expr] will give a numerical approximation of expr.

5. Evaluating ?FunctionName will bring up information about that function with
a hyperlink to the Help Files.
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6. Evaluating ?*String will bring up information on all functions whose names
end in String.

7. Evaluating expr /. lhs → rhs will replace every occurrence of lhs in expr with
rhs.

8. The construction lhs = rhs will immediately replace lhs with the current value
of rhs. The value of lhs is now fixed at this value. Using lhs := rhs instead
will cause lhs, whenever it is used, now or in the future, to be replaced at the
time that it is used by the value of rhs at that time.

9. The ampersand, &, is used in the construction of pure functions. For example
	2 &, defines a pure function that will square its input.

10. The at symbol, @, can be used in at least two different ways. First, we may
replace Function[expr] with Function@expr as in MatrixForm@Table[i+j,
{i, 1, 3}, {j, 1, 3}] instead of MatrixForm[Table[i+j, {i, 1, 3}, {j, 1, 3}]].
Second, Map[function, expr] can be replaced by function/@expr.

11. The square root function (like most Mathematica functions) is listable. The
square root of a list of elements is the list of the square roots of the elements.

12. The first construction, {1, 2, 3}*{a, b, c} will give a list of the products of
the respective elements from each list, namely, {a, 2b, 3c}. This is because
multiplication is listable. In the second construction the dot stands for matrix
multiplication, so this gives

(
1 2 3

) ⎛
⎜⎝

a

b

c

⎞
⎟⎠ = a + 2b + 3c.

13. & 14.
Plot

x2, 10 x2 , x, 3, 3 ,

Filling 1 2 , Yellow, None



370 Mathematica Demystified

15.

f x : x3 5 x 1

Manipulate
find points on curve and eliminate

complex points
solutions Select
x . NSolve
f x pt 2 f' x x pt 1 , x
,

Im 0 &
;
plot curve and use Epilog to put in lines

Plot f x , x, 4, 4 ,
Epilog Line pt, , f & solutions
,
pt, 3, 1 , Locator

16.

ParametricPlot y2, y , y, 4, 4

17.
Plot3D Abs x Abs y , x, 1, 1 , y, 1, 1 ,

RegionFunction Function x, y, z , x2 y2 1

18.

RevolutionPlot3D x 1 , x, 0, 3

19.

ContourPlot Sin x2 y3 , x, 1, 1 , y, 1, 1
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20.
f x , y , z :

z Sqrt 1 x^2 y^2 x^2 y^2 z^2 9
ContourPlot3D
f x, y, z , x, 5, 5 , y, 5, 5 , z, 5, 5 ,
Contours 3

21.
In[58]:= four nice points that are equidistant

apart are 1,0,0 , 0,1,0 , 0,0,1 ,
1,1,1
vertices a 1, 0, 0 , 0, 1, 0 , 0, 0, 1 ,

1, 1, 1 ;
find a so that the distance between two

vertices is 10
Solve Norm vertices 1 vertices 2 10,
a

Out[59]= a 5 2 , a 5 2

In[348]:= set the value of a

a 5 2 ;

In[349]:= create list of edges
use Flatten to remove grouping caused

by Table
edges Flatten

Table vertices i , vertices j ,
i, 1, 3 , j, i 1, 4 ,

1
;

In[350]:= plot the tetrahedron
Graphics3D
Sphere , 1 & vertices,
Cylinder , .25 & edges
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22.

vol 1 3 π

π π
π

π

π

π π

π

r2 h

area r2 r r2 h2

arbitrarily set area to to find shape
of optimal cone
Maximize vol, area , r, h

Out[97]=
1
3
h r2

Out[98]= r2 r h2 r2

Out[99]=

6 2
, r

1
2
, h 2

In[100]:= ratio of height to radius for optimal
cone is

2 1 2

Out[100]= 2 2

23.

In[120]:= assume density d

d

d

is 1 unit
dimensions are in meters
center of mass lies on vertical line

below cone point due to symmetry
1;

s 230;
h 147;

mass 1 3 s2 h

Out[123]= 2592100

In[124]:= similar triangles gives that side length
of horizontal slice at height z is 115 147
147 z
find moment wrt to xy plane by
integrating mass of horizontal slice at
height z times moment arm of z
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dmxy Integrate 115 147 z 147 2 z,

z, 0, 147

Out[124]=
95259675

4

In[125]:= find height of center of mass
zbar N mxy mass

Out[125]= 9.1875

24.
In[126]:= Let T t be temperature of pizza at time

t
solve differential equation with unknown

decay constant
sol DSolve

T' t k T t 72 , T 0 450 , T, t

Out[126]= T Function t , 18 4 21 k t

In[127]:= solve for constant
constant Solve T 5 300 . sol, k 1

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[127]= k
1
5
Log

63
38

In[128]:= knowing constant,
find time when Pizza is 200 degrees
NSolve
T t 200 . sol . constant 1 , t

Out[128]= t 10.7098

25.
primeList Table Prime i , i, 1, 1000 ;
Select primeList, Mod , 4 1 & ;
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26.
twins ;
i 1;
While
Length twins 100,
x, y Prime i , Prime i 1 ;
If
y x 2, AppendTo twins, x, y
;
i

twins

27.
In[144]:= decides if n is a perfect number

perfectQ n : Module

sum 0 ,
find sum of proper divisors

Do If Mod n, k 0, sum k
, k, 1, n 2 ;
sum n

In[153]:= find first four perfect numbers
data ;
n 1;
While Length data 4,
If perfectQ n , AppendTo data, n ;
n

data

Out[156]= 6, 28, 496, 8128

28.
Print a 0
Print b 1
Do
Print c a b ;
a b;
b c,
i, 1, 100
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29.
k 1;

While 2k 106, Print 2k ; k

30.
h t is height of ball at time t

h t : 16 t2 100;

r 2; radius of ball
produce frames of movie

frames Table
Graphics

Thickness .05 , Line 10, 0 , 10, 0 ,
Disk 0, h t r , r ,
PlotRange 10, 10 , 1, 110
,
t, 0, 5 2, .05
;

use ListAnimate to view movie
ListAnimate[
  frames
]

31.
use Select to cull out the palindromes

Select
DictionaryLookup ,
StringJoin Reverse Characters &
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32.
In[250]:= total area of all countries in square km

land
Total CountryData , "Area" & CountryData

Out[250]= 1.35885 108

In[264]:= radius of earth in km
r 6370;

surface area

totalArea N 4 π r2

Out[265]= 5.09904 108

In[263]:= fraction of surface covered by water
1 land totalArea

Out[263]= 0.733508

33.
Graphics
LightBlue,
EdgeForm Black ,
Tooltip

CountryData , "Polygon" ,

&
CountryData "Africa"

34.

gdpData 1, 1 , 2 1012 &

CountryData "UnitedStates",
"GDP", 1988, 2008 ;

gdpPlot ListPlot gdpData,
PlotRange 1988, 2008 , 5, 13 ,
AxesOrigin 1988, 5 ,
PlotLabel
"GDP of USA in trillions of dollars."
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35.
In[330]:= fit parabola to data

poly Fit gdpData, 1, x, x^2 , x
fitPlot Plot poly, x, 1988, 2008 ;
Show gdpPlot, fitPlot

Out[330]= 41722.1 42.2105 x 0.0106771 x2

Out[332]=

1990 1995 2000 2005

6

8

10

12

GDP of USA in trillions of dollars.

In[333]:= projected value of GDP in 2013 in
trillions of dollars
poly . x 2013

Out[333]= 17.8715
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2D Drawing palette, 41
!, Factorial, 4
�=, Unequal, 129
@, function application, 169
#, Slot, 119
%, Out, previous result, 4–5
∧, Power, 3
&, pure function, 118–121
&&, And, 142–143

, Times, 3
(
 . . . 
), comment, 13

, Blank, 99, 114–115
−, Minus, 3
+, Plus, 3
++, Increment, 127, 290
+ =, AddTo, 129–130
=, Set, 9, 114
==, Equal, 209–210
{. . .}, List, 9, 17
[. . .], function application, 2, 9
[[. . .]], Part, 19
| |, Or, 142–143
<, Less, 120
< >, StringJoin
>, Greater, 122
>>, hyperlink, 12
.nb, notebook file extension,

23
′′, string delimiter, 18
?, information escape, 24–25
′, Derivative, 178
/, Divide, 3
/@, Map, 104–105
/., ReplaceAll, 94
//., ReplaceRepeated, 111
:=, SetDelayed, 114
;, CompoundExpression, 15

( ), parenthesis, 3, 9√ , Sqrt , 20, 22

A
Abort Evaluation, 84
aborting calculations, 16–17
absolute value, Abs, 8, 81, 287
Algebraic Manipulation Palette, 90–91
Alignment, 195
Alt key, slider control, 59
And (&&), 142–143
angular domain, 146
Animate Selected Graphics, 300
animation, 44–46, 297
Animator, 299
antidifferentiation, 196–201
Appearance, 192
AppendTo, 124
ArrayPlot, 292
Arrow, 274–275
aspect ratio, 31
AspectRatio, 33, 140, 195
Assumptions, 93
Automatic Cell Grouping, 317
Automatic Numbering, 317
Axes, 57, 60
AxesOrigin, 35, 43–49

B
BarChart, 242
BasicMathInput palette, 20, 21f, 35,

310
billiard trajectories, 56
Blank ( ), 99, 114–115
blank space, 3–4
BoundaryStyle, 143



380 Mathematica Demystified

bounding boxes, 31, 140
Boxed, 146, 148, 160
boxes around cells, CellFrame, 311
BoxRatios, 140
Button, 313, 315

C
calculations

aborting, 16–17
monitoring, 82–84

calculus
antidifferentiation, 196–201
derivatives, 177–182
integration, 191–196
applications of, 201–207
overview, 191–196
Riemann sum demonstration, 191–195
limits

multivariable, 173–177
one-sided, 171–173
overview, 167–171

minimum/maximum problems,
182–187

Taylor series, 188–190
Cancel, 89
Carroll, Lewis, 253
case sensitivity, 10
Ceiling, 94
cells

brackets, 2
editing, 2–3
frames around, CellFrame, 311
grouping, 315–318
Initialization Cell, 312
properties, 312
styling, 308–310
tags, 320

Chao Lu, 7
Characters, 249–250, 254
Check Balance, 74
Circle, 40, 59, 61
Clear, 10, 84
CoefficientList, 96–97
Collatz, Lothar, 125
Collatz Conjecture, 125, 130
Collect, 88
colon-equals sign, 114, 118
colors

ColorFunction, 301–302
Hue, 295–296
RGBColor, 61–64, 143, 296–297
named colors, 143
GrayLevel, 37, 41, 61, 143, 148,

296, 303
custom coloring, 296–297

Column, 314
Command key

cropping figures and, 32
graphs and, 138

comments, 12–13
Compile, 293
Complement, 258
complex numbers, 287–288
concatenating lists, Join, 260
constrained optimization, 186, 207
constraints, 186
constructing Lists, 25
continuous functions, 176
ContourLabels, 151–153
ContourPlot, 149
ContourPlot3D, 149
contours, drawing, 148–156
Contours, 151
ContourStyle, 152–154
Control key, slider control, 59
CreatePalette, 313
curves

drawing in 3D space, 156–158
fitting, 49–51
ParametricPlot, 55–59
ParametricPlot3D, 156–158

custom coloring, 295–297
custom palette, 314f
Cylinder, 159–160

D
D, 177–182
Dashed, 35
DataRange, 294, 301–302
data sets

AstronomicalData, 263
ChemicalData, 262
CountryData, 240–247
ElementData, 262–263
FinancialData, 262
fitting curves to, Fit, 49–51
graphs of, GraphPlot, 252–261
scatter plot of, ListPlot, 46–49
WordData, 251

DataRange, 294
DateListPlot, 261
decimal representations, 5
defining functions, 113–121
definite integrals, 198
definite loops, 123, 289
deleting cells, 3
Delimiter, 57
delimiters

comments, 13
curly braces, 9, 17
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double square brackets, 19
matching, 73–77
parenthesis, 3, 9
quotation marks, 18
square brackets, 2, 9

derivatives, D, 177–182
Det, 221
determinants, Det, 221
Devaney, Robert L., 288n, 305
DictionaryLookup, 248–252
differential equations, 227–235
DirectedEdges, 252
DirectedInfinity, 175
Direction, 172
Disk, 40, 59–62
DisplayForm, 315
DisplayFormula, 309
DisplayFormulaNumbered, 309
Do loop, 123, 281, 286, 289
Documentation Center, 23, 78
Dodgson, Charles, 253n
drawing tools, Graphic Inspector, 40–42
Drop, 101
DSolve, 228–230
Dynamic, 216, 303
dynamical systems, 267–306

E
E, 7
EdgeForm, 245
Edit menu, 23
Editable cell, 312
editing cells, 2–3
Eisenstein’s criterion, 95–96
elements

of lists, Part, 17–18
finding position of, Position, 103–104

Eliminate, 217
entering expressions, 1–2
Entering Expressions tutorial, 26
Epilog, 42–43, 80, 156, 195, 273–274
equals sign, 114, 118, 153
equations, solving

differential, 227–235
linear, 217–223
nonpolynomial, 223–227
polynomial, 209–217

Erf, 200
Euler, Leonhard, 8
Eulers formula, 8
evaluating expressions, 1
Evaluation menu, 85
Except, 248–249
Exclusions, 171
Exp, 35, 43–44

Expand, 10, 87
exponentiation, 3
expressions

entering, 1–2
indeterminant, 171
rational, 89n
transforming, 87–94

Extend Selection, 75
extreme and mean ratio, 34n

F
Factor, 88
Factorial (!), 4
FactorInteger, 82–83, 96
Fibonnaci numbers, 63n, 117, 124
File menu, 23
Filling, 143–144, 198
FillingStyle, 144
FinancialData, 262
Find Selected Function, 25
FindMaximum, 185
FindMinimum, 185
FindRoot, 224–226
Fit, 49–50
Floor, 93–94
FontSize, 42
Format menu, 309
fractals, 304–305
Frame, 38
FrameLabel, 38
FrameTicks, 294–295, 301
FullSimplify, 90
Function Navigator, 25–26, 78
functions

continuous, 176
defining, 113–118
listable, 96, 104
modules and, 126–133
pure functions, 118–121

Fundamental Theorem of Algebra, 210
Fundamental Theorem of Calculus, 196

G
Galois, Everiste, 210
Galois theory, 210
Gleick, James, 305
global extrema, 186
Global Preferences, 311
golden ratio, 34
Golden Rectangle, 34
graphical analysis, 271–276
graphics

adding to notebooks, 321–324
graphics objects
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graphics, graphics objects (Cont.):
Arrow, 274
Circle, 40, 59, 61
Cylinder, 159–160
Disk, 40, 59–62
Line, 40, 61–62
Rectangle, 60
Sphere, 162

importing, Import, 323
three-dimensional

contours, 148–156
curves, 156–158
graphics primitives, 159–163
level sets, 148–156
options, 139–145
Plot3D, 137–139
surfaces of revolution, 145–148

two-dimensional
animation using Manipulate, 44–46
curve fitting, 49–51
drawing shapes, 59–65
drawing tools, 40–42
Epilog, 42–43
Graphic Inspector, 40–42
mouseover effects using Tooltip,

43–44
options, 33–40
parametric plots, 55–59
Plot, 29–31
plotting in polar coordinates, 52–54
plotting points with ListPlot, 46–49

resizing, 31–32
saving and printing, 65

Graphics, 59–60
Graphics Inspector palette, 40–42
graphics primitives, 59, 159–163
Graphics3D, 159
GraphicsGrid, 297
GraphPlot, 252–261
graphs, 138
GrayLevel, 41, 61, 143
Greek letter shortcuts, 22
Grid, 115–116, 195
GridLines, 38

H
handles, of bounding boxes, 31
helix, 157
help

?, Information Escape, 24–25
delimiter matching, 73–77
documentation center, 23
getting out of trouble, 84
Help Files, 12
Help menu, 78–79

hyperlink (>>) to Help Files, 12
monitoring calculations, 82–84
setting preferences, 77
syntax coloring, 69–72

Hue, 295
hyperlinks, 318–326

I
I, 7
identity matrix, 222
If, 121
Im, 8
ImageSize, 195
imaginary numbers

I, 7
imaginary part, Im, 8
real part, Re, 8

Import, 323–324
improper integral, 196
Increment (++), 127, 290
indefinite integrals, 198
indefinite loops, 123, 289
infinite sequences, 268
Infinity (∞), 170–171
initial condition, 228
initial values, 268
Initialization Cell, 312
Insert, 22, 73, 317–318, 323
Integrate, 197–198
integration

applications of, 201–207
Riemann sum demonstration, 191–195

Intersection, 102, 258
Inverse, 221–222
irrational numbers, 7
irreducible polynomials, 95
iterating functions, 268–271

J
Join, 287
Joined, 48
joining strings, StringJoin, 249–250
Julia Sets, 287–295

K
keyboard shortcuts, 22
knots

Lissajous knots, 165
torus knots, 157

L
Label, 246
labels, 243
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LabelStyle, 38
Lagrange, Joseph-Louis, 178n
least squares curve fitting, Fit, 49–50
Length, 19–20, 72, 76
level sets, drawing, 148–156
limits, Limit, 167–177

multivariable, 173–177
one-sided, 171–173
overview, 167–171

Line, 195
linear combination, 50
linear curve fitting, Fit, 49–50
linear equations, systems of, 217–223
linearly independent basis vectors,

220
LinearSolve, 218
links

to notebooks, 318–326
to Web sites, 318–326

Lissajous
curves, 55
knots, 165

listable functions, 96, 104
ListAnimate, 297
ListPlot, 46–49, 286
ListPolarPlot, 52
lists, 17–20, 100–106

adding to, AppendTo, 124, 130
combining

Intersection, 102, 258
Join, 287
Union, 102

deleting from, Drop, 129
extracting elements from

Part ([[. . .]]), 19
Take, 100–101

forming
Range, 129, 133, 255
Table, 24

length of, Length, 19–20
mapping functions onto, Map,

118–119
reordering, Permutation, 249–251
reversing, Reverse, 102
sorting, Sort, 120, 241, 258

local variables, 128
Locator, 233
loops

Do, 123
While, 124

M
Mandelbrot, Benoit B., 305
Mandelbrot Set, 300–304

Manipulate, 44–46, 191–192, 233, 277
Map (/@), 104–105
matrices, 108–110

determinant of, Det, 221
formatting, MatrixForm, 108, 223,

291
forming with Table, 108–109
inverses, Inverse, 222–223
multiplying, 109–110

MatrixForm, 108, 223, 291
Maximize, 185–186
Mersenne, Marin, 15
Mersenne primes, 15
Mesh, 145
MeshShading, 145
Minimize, 185–186
min/max problems, 182–187
Module, 113, 132, 289
modulus, Mod, 122
Mondrian, Piet, 62n
Monitor, 83–84
monitoring calculations, 82–84
mouse

getting position of, 216, 303
mouseover effects, Tooltip, 43–44,

230–231, 244–246
multiple integrals, 203–207
multiplication, Times (
), 3
multivariable limits, 173–177

N
N, 6–7
naming variables, 11
Navigation Bar, 325
Nest, 279
NestList, 133, 269
New Slide, 326f
New Template, 325
NIntegrate, 195–196
nondifferentiable functions, 177
nonpolynomial equations, 223–227
Norm, 203
Normal, 190
notebooks

adding graphics to, 321–324
cell grouping, 315–318
cell properties, 312
cell styling, 308–310
defined, 1, 23
hyperlinks, 318–321
Option Inspector, 310–312
slideshows, 325–329
using palettes, 313–315

NSolve, 211–217
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Null, 17
NullSpace, 219
numeric evaluation function (N), 6–7
numerical solve, NSolve, 211–217

O
one-sided limits, 171–173
Or (| |), 142–143
Opacity, 143, 152, 154
Option Inspector, 77, 310–312
Option key

graphs and, 138
slider control and, 59

order of operations, 3
Out (%), 4

P
π (Pi), 7, 22
palettes, 20–22, 313–315
Panel, 194
parametric plots, 55–59

ParametricPlot, 55, 57, 80, 233
ParametricPlot3D, 157

parenthesis ( ), 3, 9
Part ([[. . .]]), 19
partial derivatives, D, 179–180
Partition, 297
PasteButtons, 313–314
patterns

Blank ( ), 99, 114–115
for strings, 248

Pause, 86
Permutation, 249–251
Pi (π), 7, 22
PieceWise, 122
PieCharts, 264
Placeholders, 20
Plot, 29–31, 40–41, 181, 198, 273
Plot3D, 137–139
PlotLabel, 35
PlotMarkers, 48
PlotRange, 60
PlotRegion, 158
PlotStyle, 35–36, 143, 273
Point, 155–156
points, plotting with ListPlot, 46–49
PointSize, 47, 52
polar coordinates, 52–54
PolarPlot, 52
polygonal paths, 61
polynomial equations

solving, 209–215
systems of, 215–217

Position, 76, 104, 257
PowerExpand, 92
power series, Series, 187–191
previous results (%), 4–5
prime numbers

list of, Prime, 72, 108
testing for, PrimeQ, 15,

127–128
printing

notebooks, 23
graphics, 65
selected cells, PrintSelection, 23

Product, 107
ProductLog, 223n
products, 107–108
programs, 121
ProgressIndicator, 82–83
Prolog, 42
pure functions, 118–121

Q
QuickTime movie, 299–300
Quit Kernal, 84

R
random numbers

RandomComplex, 119
RandomInteger, 74, 101–103
RandomReal, 63, 233
seeds for, SeedRandom, 65

Range, 254
Reals, 284
Rectangle, 59
recursive definitions, 117
Reduce, 214–215
RegionFunction, 141, 150
RegionPlot3D, 163
ReplaceAll (/.), 94
replacement rules, 94–100
ReplaceRepeated (//.), 111
resizing two-dimensional graphics,

31–32
Resultant, 213–214
Reverse, 101
RevolutionPlot3D, 145–146
RGBColor, 61–62, 143
Riemann sums, 191
roots of polynominals, 210
Round, 246
Row, 246, 314
RowBox, 315
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S
Save, 23
saving

graphics, 65
notebooks, 23

scalar product, Dot (.), 109–110
scalars, 105
scales on axes, Ticks, 39
scatter plots, ListPlot, 46–49, 286
Screen Environment, 326–327
Section cells, 315–316
SeedRandom, 65
Select, 105, 120–121, 248, 250
selecting cells, 3
Selection Placeholders, 20
Select/Move/Resize tool, 40
Series, 189
Set, 114
SetDelayed, 114
sets

Complement, 258
element of (∈), 93
Intersection, 102, 258
Union, 102

shapes, drawing, 59–65
Shift key

graphs and, 138
slider control and, 59

Show, 50, 160
Show Expression, 311
Sieve of Eratosthenes, 85–86, 128–130
Sign, 176
Simplify, 88
simplifying expressions

FullSimplify, 90–91
Simplify, 88

singular matrix, 222
slash-dot (/.), ReplaceAll, 99
slash-slash-dot (//.), ReplaceRepeated, 99
slider control, 46f, 59
SlideShow Palette, 325f
slideshows, 325–329
slot (#), 119
Solve, 183
solving equations

differential, 227–235
linear systems, 217–223
nonpolynomial, 223–227
systems of, 215–217

Sort, 101, 120
SpecialCharacters Palette, 313
Sphere, 162
SphericalPlot3D, 163

Sqrt, 6–7, 20
square root (Sqrt), 6–7, 20
stepsizes, 18–19
StringJoin, 249–250
StringLength, 253
strings, 18

concatenating, StringJoin (<>), 249–250
length of, StringLength, 253
separating into characters, Characters, 249–254

Style, 42, 57
SubscriptBox, 315
Subsection cells, 315–316
Subsubsection cells, 315–316
Subtitle cells, 308
Sum, 107, 188, 195
sums, 106–107
suppressing output, 13–16
surfaces

coloring of, Opacity, 143, 152, 154
contour lines of, ContourPlot, 149
grid lines on, Mesh, 145
plotting

ParametricPlot3D, 157
Plot3D, 137–139
RevolutionPlot3D, 145–146

surfaces of revolution, 145–148
Switch, 193
syntax coloring, 69–72

T
Table, 24
TableForm, 97
TableHeadings, 115
Table of Contents, slideshow, 329
tags for cells, 320
Take, 100
Taylor series, Series, 189
text cells, 80, 308
Text, 42, 243
Text objects, 42
Thickness, 35, 41
Ticks, 39
Timing, 16–17, 82, 293
Title cells, 308, 315–316
Tooltip, 43–44, 244–246
torus, 146
torus knots, 157
Total, 106
Trace, 118
transformation rules, 94, 110
TrigExpand, 90
TrigFactor, 90
TrigReduce, 90
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trigonometric identities, 90
Tube, 158

U
underscores, Blank ( ), 248
Union, 102
user-defined functions, 113–121

V
variables

assignment of value, Set, 114
coefficients of, CoefficientList, 96, 97

local, 128
overview, 9–12

VertexLabeling in graphs, 252
Virtual Book, 23, 25–26, 78

W
Which, 122
While loop, 123–125, 127–133, 258–259,

289, 293
Window menu, 23
Wolfram Demonstrations Project, 13
WordData, 251




