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Preface

Introduction
If you were stranded on a desert island with only your laptop (and presumably a large 
solar panel), what software would you want to have with you? For me the answer 
definitely includes the latest version of Wolfram Mathematica. Whether you are a 
scientist, engineer, or mathematician, a Wall Street quant, a statistician or program-
mer, or even an artist or musician, you will be a better one if you have this tool at your 
disposal. Of course, having a tool and knowing how to use it well are quite different 
things. That is why I wrote the Mathematica Cookbook. 

I am a big fan of O’Reilly cookbooks, as these books are designed to help you solve 
real-world problems. Mathematica is an ideal candidate for a cookbook because it 
is so vast, deep, and full of traps for the novice. I was ecstatic to learn that O’Reilly 
was looking to publish a Mathematica cookbook and even more excited when I was 
chosen to be its author. I have been a user of Mathematica since version 3.0. Although 
that was over 13 years ago, I still remember the frustration of trying to solve prob-
lems in this system. I don’t mean this in a derogatory way. The frustration a newbie 
experiences when trying to learn Mathematica comes from the knowledge that you 
are sitting in front of a highly advanced computational platform that eventually will 
magnify your productivity tenfold—if you can only wrap your mind around its unfa-
miliar idioms. If you are a new (or even not-so-new) user of Mathematica today, you 
are simultaneously in a better and a much worse position than I was with version 3.0. 
You are in a better position because Mathematica 7.0 is vastly more powerful than 3.0 
was back then. Not only has the number of available functions doubled, but Math-
ematica has fundamental new capabilities including dynamic interactivity, curated 
data sources, parallel processing, image processing, and much more. You are in a 
worse position because there is much more to learn! 

As Mathematica grows, it remains largely unchanged in its core principles. This book 
is designed to help you master those core principles by presenting Mathematica in 
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the context of real-world problems. However, my goal is not just to show you how to 
solve problems in Mathematica, but to show you how to do so in a way that plays to 
Mathematica’s strengths. This means there is an emphasis on symbolic, functional, 
and pattern-based styles of programming. Mathematica is a multi-paradigm pro-
gramming language; you can easily write code in it that a Fortran or C programmer 
would have little trouble following. However, the procedural style that this entails is 
not likely to give you good performance. More importantly, it will often cause you to 
write more code than necessary and spend more time adapting that code to future 
problems. Stephen Wolfram has said that a correct Mathematica program is often a 
short Mathematica program. There is much truth to this. The truth comes from the 
idea that good Mathematica programs leverage the capabilities of the vast built-in 
library of both general-purpose and highly specialized functions. Programming in 
Mathematica is a search for the right combination of primitives. My hope is that this 
cookbook will play a role as your guide.

MathematicaCookbook�com
One risk of authoring a cookbook is that it is almost inevitable that something some-
one finds important will be left out. With Mathematica, this risk is a certainty be-
cause even as I wrote the book, Mathematica’s capabilities grew. However, even if you 
drew a line at, say, version 6.0, you would find that there are still many topics that I 
do not cover in the book, for various reasons. To remedy this and to create a living 
resource that I hope the Mathematica community will help nourish, I am launching 
http://mathematicacookbook.com. Here you will find recipes that did not make it into 
this book, and more importantly, you will be able rate recipes, contribute your own, 
or provide alternative implementations to those found in the book or on the site.

Structure of This Book
The Mathematica Cookbook is not necessarily meant to be read from start to finish 
like a conventional book (although you are certainly welcome to do so!). Having said 
that, the chapters are organized in a purposeful way. Chapters 1 through 8 present 
general techniques that all users of Mathematica should know. These chapters are 
largely self-contained, but sometimes it is necessary to use features in one chapter 
that are covered more deeply in another. Cross-references within each recipe should 
prevent you from getting stuck. However, keep in mind that a cookbook is not the 
same as a tutorial, and you should also make frequent use of the Mathematica refer-
ence, tutorials, and guides that are integrated into Mathematica’s help system. Chap-
ters 9 through 14 cover specific domains of Mathematica application. If you are the 

http://mathematicacookbook.com
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type of person who learns best by examples from your area of expertise, you will ben-
efit from seeing the techniques of the first chapters leveraged in problems related to 
physics, engineering, calculus, statistics, music, finance, and more. Finally, Chapters 
15 through 19 cover important techniques, extensions, and tools that make Math-
ematica unrivaled as a technical software development tool. 

Chapter 1 covers numerics. For the most part, Mathematica simply does the right 
thing when computing numeric results, as you would expect. In pure mathematics, 
numbers are formal objects that are well behaved, but when you represent numbers 
in a finite discrete device like a computer, often you will need to understand issues of 
precision and accuracy in order to get reasonable results on certain classes of prob-
lems. Further, numbers have different representations in Mathematica (Integers, Ra-
tionals, Complex, and some exotic types like Intervals). Then there is an issue of input 
and presentation: Mathematica supports different base representations and different 
display formats. This chapter has recipes that cover all these issues, and it is wise to 
have some familiarity with them before using any of the numeric algorithms.

Functional programming is a style of Mathematica development that most seasoned 
users prefer. Chapter 2 dives deeply into functional programming, Mathematica style. 
Because Mathematica was designed to support multiple development paradigms, its 
functional programming abilities are not as pure as languages like Haskell. This is ac-
tually a big plus, because if you are using Mathematica chances are you are solving a 
problem, and it’s the solution rather than the aesthetics that is foremost in your mind. 
Mathematica programmers prefer the functional style because it leads to efficient 
programs. It also leads to elegant programs. In the context of programming, elegant 
means the combination of brevity, power, and clarity. There is an amazing sense of 
intellectual satisfaction that comes from finding a concise functional solution, and 
this feeling creates the positive feedback that will draw you into Mathematica. How-
ever, this style is often mysterious to people who come to Mathematica from other 
languages like Fortran, C, Mathlab, or Microsoft Excel. I think this chapter will help 
you discover the rewards of the functional style.

Chapter 3 presents Mathematica data structures, which are largely built on the foun-
dation of lists. From lists, Mathematica derives matrices and higher order tensors, 
sparse matrices, and more. Knowing how to manipulate these structures is essential 
for almost any application of Mathematica. This is obvious if you are doing linear 
algebra, but list processing is integral to almost every facet of use. This chapter also 
shows how to implement other types of data structures, such as a dictionary that 
leverages the fast associative look-up that is part of Mathematica’s evaluation engine. 

Pattern-based programming revolves around pattern matching and transformation. 
Chapter 4 introduces Mathematica’s rich pattern-based techniques. Patterns are not 
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a feature of most mainstream languages, but they are tremendously powerful and 
essential if you hope to accomplish anything nontrivial in Mathematica. Of all the 
techniques at your disposal, pattern matching and replacement is the one most likely 
to yield the “wow” reaction you get when you see a seemingly simple looking piece of 
code do something not so simple. To whet your appetite, here is one of my favorites. 

Chapter  1  covers  numerics.  For  the  most  part,  Mathematica  simply  does  the  right
thing  when  computing  numeric  results  as  you  would  expect.  In  pure  mathematics
numbers are formal objects that are well behaved but when you represent numbers
in a finite discrete device like a computer you will often need to understand issues of
precision and accuracy in order to get reasonable results on certain classes of prob-
lems. Further, numbers have different representations in Mathematica (Integers, Ra-
tionals, Complex and some exotic types like Intervals). Then there is an issue of in-
put and presentation. Mathematica supports different base representations and differ-
ent display formats. This chapter has recipes that cover all these issues and it is wise
to have some familiarity with them before using any of the numeric algorithms.

Functional programming is a style of Mathematica development that most seasoned
users  prefer.  Chapter  2  dives  deeply  into  Functional  Programming,  Mathematica
style.  Because  Mathematica  was  designed  to  support  multiple  development
paradigms,  its  functional  programming  abilities  are  not  as  pure  as  languages  like
Haskell. This is actually a big plus because if you are using Mathematica chance are
you are solving a problem and its the solution rather than the aesthetics that are fore-
most in your mind. Mathematica programmers prefer the functional style because it
leads to efficient programs. It also leads to elegant programs. In the context of pro-
gramming,  elegant  means  the  combination  of  brevity,  power  and  clarity.  There  is
amazing  sense  of  intellectual  satisfaction  that  come  form  finding  a  concise  func-
tional solution and this feeling creates the positive feedback that will draw you into
Mathematica. However, this style is often mysterious to people who come to Mathe-
matica  from  other  languages  like  Fortran,  C,  Mathlab  or  Microsoft  Excel.  I  think
this chapter will help you discover the rewards of the functional style.

Chapter 3 presents Mathematica data structures which are largely built on the foun-
dation  of  lists.  From  lists,  Mathematica  derives  matrices  and  higher  order  tensors,
sparse matrices, and more. Knowing how to manipulate these structures is essential
for almost any application of Mathematica. This is obvious if you are doing linear al-
gebra  but  list  processing  is  integral  to  almost  every  facet  of  use.  This  chapter  also
shows  how  to  implement  other  types  of  data  structures  such  as  a  Dictionary  that
leverages  the  fast  associative  look-up  that  is  part  of  Mathematica's  evaluation  en-
gine. 

Pattern-based  programming  revolves  around  pattern  matching  and  transformation.
Chapter 4  introduces the Mathematica's  rich Pattern based techniques.  Patterns are
not a feature must mainstream languages but is tremendously powerful and a must
know technique if you hope to accomplish anything non-trivial in Mathematica. Of
all  the  techniques  at  your  disposal,  pattern-matching  and  replacement  is  the  one
that is the most likely to yield the "wow" reaction you get when you see a seemingly
simple  looking  piece  of  code  do  something  not  so  simple.  To  whet  your  appetite,
here is one of my favorites. 

In[190]:= runEncode@l_ListD := Map@8Ò, 1< & , lD êê.

8head___, 8x_, n_<, 8x_, m_<, tail___< ß 8head, 8x, n + m<, tail<

In  this  little  diddy  by  Frank  Zizza  (which  won a  programming  contest  at  the  1990
Wolfram  conference)  the  goal  is  to  take  a  list  and  return  the  list  in  run  length  en-
coded form. Don't worry if this code seems cryptic; it won't after you have recipes from chapters 2 and 4

under  your  belt.  For example, input {1, 1, 2, 2, 2, 1, 3, 3, 3, 3}  should produce
{{1, 2}, {2, 3}, {1, 1}, {3, 4}}

In[191]:= runEncode@81, 1, 2, 2, 2, 1, 3, 3, 3, 3<D

Out[191]= 881, 2<, 82, 3<, 81, 1<, 83, 4<<

Although you can create small solutions to this problem in languages like Python or
Ruby,  I  find  this  solution  compelling  because  it  contains  no  explicit  looping  con-
struct  and,  once  you  learn  to  read  it,  contains  a  very  explicit  and  statement  of  the
problem. 

Chapter 5  covers string manipulation which is more important than you might first
guess for a language that is primarily associated with numeric and symbolic mathe-
matics. Mathematica has a rich set of string manipulation primitives that include all
the typical  functions you expect (StringLength,  StringReplace,  StringInsert  and so
forth) plus an extension of its pattern language specifically designed for strings and
including regular expression based transformations. 
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Chapter 5  covers string manipulation which is more important than you might first
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Although you can create small solutions to this problem in languages like Python or 
Ruby, I find this solution compelling because it contains no explicit looping construct 
and, once you learn to read it, contains a very explicit statement of the problem. 

Chapter 5 covers string manipulation, which is more important than you might think 
for a language that is primarily associated with numeric and symbolic mathematics. 
Mathematica has a rich set of string manipulation primitives that include all the typi-
cal functions you expect (StringLength, StringReplace, StringInsert, and so forth), 
plus an extension of its pattern language specifically designed for strings and includ-
ing regular expression-based transformations. 

The next two chapters explore one of Mathematica’s best capabilities, integrated graph-
ics. Chapter 6 dives into two-dimensional plots and graphics. There are many packages 
that let you create plots, but few are so seamlessly integrated into the same development 
environment where you write code. This integration is an amazing productivity tool. 
I frequently find myself using Plot and other graphing functions simply as a means 
to help me understand an equation or algorithm I am developing and not necessarily 
because I am creating a presentation to be viewed by others. The fact that functions 
like Plot, ListPlot, and ParametricPlot give good results with little effort means they 
can become part of your day-to-day interaction with Mathematica. But if you need pro-
fessionally designed graphics for an important paper or presentation, you will not be 
disappointed, because there are options to customize every aspect of the presentation. 

Chapter 7 builds on the preceding chapter by moving into the more sexy domain of 
3D graphics and plots. Plotting in 3D provides you with additional visualization and 
interaction capabilities. All 3D graphics can be rotated, panned, and zoomed inter-
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actively. There are also many sophisticated options that let you adjust every aspect 
of the plot, including shading, mesh, coloring, camera angles, how light reflects off 
the surface, and so on. Not every user will want to tweak all of these settings, but if 
you are a graphic artist or aficionado you will have a lot of fun once you master all 
the options. This chapter will give you a leg up on this important dimension of Math-
ematica’s power.

Chapter 8, the first of the special-purpose chapters, covers image processing. Native 
image processing functions were added in Mathematica 7.0, and you can have quite a 
bit of fun transforming images programmatically as you do by hand with software such 
as Photoshop. This chapter also shows some advanced image-processing techniques 
for which I wrote a large part of the algorithms in Mathematica rather than relying on 
the built-in functions. This provides readers who are interested in image processing 
with a guide to approaching image algorithm development in Mathematica, and also 
provides some deeper insight for those who know little about these algorithms

Chapter 9 will give you respite from all the eye-candy by providing some ear-candy. 
You may not know it, but Mathematica is quite the musician, and I was happy to have 
John Kiehl, a professional musician and recording studio owner, write this chapter for 
you. Mathematica can turn functions into sound to play notes, chords, and electronic 
versions of a variety of musical instruments. Further, it can import MIDI files and oth-
er audio formats. You can even perform various operations on sound such as Fourier 
transforms. There really are few limits, and John is an experienced guide who provides 
lots of recipes for the musically inclined to expand upon and the not-so-musically in-
clined to educate themselves with (or just play with for fun). This chapter is available for 
your immediate listening pleasure at http://www.oreilly.com/catalog/9780596521004.

Chapter 10 returns to more mathematical fare by exploring Mathematica’s formidable 
abilities in symbolic math. This chapter focuses on algebraic manipulation and solu-
tions to equations. Many of the recipes show techniques for massaging results pro-
duced by Mathematica into equivalent but sometimes more desirable forms.

Symbolic and numerical calculus is what most people think about when they think 
about Mathematica, and Chapter 11 dives into Mathematica’s formidable (many say 
unrivaled) capabilities in this domain. Here you will see recipes related to computing 
limits, derivatives, integrals, vector calculus, and the solutions to differential equa-
tions. The chapter also covers the increasingly important domain of discrete calculus, 
including sums, products, and difference equations. 

There is high probability that the average technical person will need to do some sta-
tistics! Puns aside, Chapter 12 has recipes that will help you get a handle on Math-
ematica’s formidable statistical capabilities, which rival those of specialized stats 

http://www.oreilly.com/catalog/9780596521004
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packages. This chapter has recipes for common statistical measures, probability dis-
tributions, data fitting, interpolation, and more sophisticated tools like ANOVA. It 
also introduces stochastic simulation.

Chapter 13 enters the realm of applied math by showcasing physics and engineering. 
These domains are extremely broad, so rather than attempting to cover a large swath, 
I cherry pick recipes that show applications of the mathematical tools discussed in 
preceding chapters. I also include recipes that demonstrate general techniques for 
organizing programs that have many variables. In addition, this chapter shows how 
educators and others can draw on Mathematica’s access to curated data related to 
physics, chemistry, and biology.

Chapter 14 jumps bravely into the risky business of numerical finance. The goal of 
this chapter is to show quants and others interested in mathematical finance how 
to leverage Mathematica’s strengths in applying common financial algorithms. This 
chapter presents problems of mild to moderate sophistication so that the illustration 
of Mathematica techniques is not lost in the complexity of modern computational 
finance. A large part of this chapter is the result of the efforts of Andreas Lauschke, 
who is expert in both computational finance and Mathematica. 

Version 6.0 brought new excitement to the Mathematica world with the addition of dy-
namic interactivity. For the first time a Mathematica user had the capability to create 
notebook output that changed in response to changes in underlying variables. In many 
ways this ability parallels the new types of dynamic web pages that emerged around the 
same time (so-called Web 2.0)—but I digress. Chapter 15 introduces the primitives un-
derlying this new dynamic interactivity. Amazingly, there are just three main ingredients 
to this capability: Manipulate, Dynamic and DynamicModule. As with many of Mathematica’s 
advanced features, you will master the easy use cases immediately, because the primi-
tives just do the right thing. More advanced application will require some steep learning, 
but this chapter has many recipes that will help you get there. For your immediate grati-
fication, this chapter is available at http://www.oreilly.com/catalog/9780596521004.

Computers with multiple cores (processing elements) are commonplace; there is a 
good chance you own a computer with at least two cores, and if you bought one re-
cently, perhaps even four or more. My Mac Pro has eight. Mathematica stays ahead 
of this trend by bundling Parallel Processing with version 7.0. Chapter 16 contains 
recipes that show you how to use these features. Mathematica makes it easy to add 
parallelism to your programs, but this does not mean your algorithms will run four 
times faster if you have four processors. To get any speed increase at all, you need to 
understand how the parallel primitives work and how they can be tuned. The recipes 
in this chapter show you how to configure parallelism, parallelize existing serial pro-
grams, and also implement more sophisticated parallel techniques like Map-Reduce 
and parallel pipelines.

http://www.oreilly.com/catalog/9780596521004
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As powerful as Mathematica is, there are times when you need something else. Chap-
ter 17 will show you how to interface Mathematica with other languages and pro-
grams. Here, programmers will learn how to integrate code written in C, Java, and 
.NET languages. This chapter also has recipes for integrating Mathematica with da-
tabase systems and third-party tools like spreadsheets.

Chapter 18, “Tricks of the Trade,” includes material that every Mathematica user 
should know but that did not quite fit anywhere else in the book. Here I introduce 
recipes on performance, packaging, stylesheets, and other important techniques.

Last but by no means least, you will want to know how to debug your way out of 
those nasty situations where you just can’t figure out why you are getting strange er-
ror messages or bizarre results. Chapter 19 presents debugging techniques and, pos-
sibly more important, unit testing techniques. An important part of this chapter is 
Wolfram Workbench, the alternative development environment based on Eclipse (an 
open source IDE designed to be customizable to different languages).
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Conventions Used in This Book
The following typographical conventions are used in this book :

Italic
 Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
  Used for program listings, as well as within paragraphs to refer to program ele-

ments such as variable or function names, databases, data types, environment 
variables, statements, and keywords.

Constant width bold
 Shows commands or other text that should be typed literally by the user.

Constant width italic
  Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

  This icon signifies a tip, suggestion, or general note.

 This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in 
this book in your programs and documentation. You do not need to contact us for 
permission unless you’re reproducing a significant portion of the code. For example, 
writing a program that uses several chunks of code from this book does not require 
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does 
not require permission. Answering a question by citing this book and quoting example 
code does not require permission. Incorporating a significant amount of example 
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the 
title, author, publisher, and ISBN. For example: “Mathematica Cookbook by Salvatore 
Mangano. Copyright 2010 O’Reilly Media, Inc., 978-0-596-52099-1.”
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If you feel your use of code examples falls outside fair use or the permission given 
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
Safari Books Online is an on-demand digital library that lets you 
easily search over 7,500 technology and creative reference books 
and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library 
online. Read books on your cell phone and mobile devices. Access new titles be-
fore they are available for print, and get exclusive access to manuscripts in devel-
opment and post feedback for the authors. Copy and paste code samples, organize 
your favorites, download chapters, bookmark key sections, create notes, print out 
pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To 
have full digital access to this book and others on similar topics from O’Reilly and 
other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher: 

O’Reilly Media, Inc.
1005 Gravenstein Highway North 
North Sebastopol, CA 95472 
800-998-9938 (in the United States or Canada) 
707-829-0515 (international or local) 
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional 
information. You can access this page at: 

http://www.oreilly.com/catalog/9780596521004 

To comment or ask technical questions about this book, send email to: 

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the 
O’Reilly Network, see our web site at:

http://www.oreilly.com
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CHAPTER 1

Numerics

Jenny I’ve got your number
I need to make you mine

Jenny don’t change your number
Eight six seven five three oh nine
Eight six seven five three oh nine
Eight six seven five three oh nine
Eight six seven five three oh nine

Tommy Tutone, “867-5309/Jenny”

1.0 Introduction
Numerical Types
Mathematics is  a huge, almost all-encompassing subject,  and the average layperson
often  fails  to  appreciate  the  types  of  exotic  objects  that  are  in  the  mathematician’s
domain.  Yet  every  person  on  the  street  perceives  math  is  about  numbers.  So  even
though numbers only scratch the surface of math and Mathematica, it  makes sense
to begin with their representation.

Mathematica  supports  four  numerical  types:  Integer,  Rational,  Real,  and Complex.  In
the following examples we use Mathematica’s comment notation (*comment*).

1        (*The integer one*)

1 / 2    (*The rational one half*)

1.2 ^ 8  (*The real 1.2 x 10^8*)

3 + 2 I  (*The complex number 3+2i*)

There  is  no  need  to  take  my  word  that  these  expressions  have  the  specified  types.
You  can  ask  Mathematica  to  tell  you  using  the  function  Head[],  which  returns  the
head of an expression (i.e., head of a list). 

In[2]:= Head@1D

Out[2]= Integer

1



In[3]:= Head@1ê2D

Out[3]= Rational

In[4]:= Head@1.2 ^ 8D

Out[4]= Real

In[5]:= Head@3 + 2 ID

Out[5]= Complex

Although Mathematica does not internally store numbers as lists, it provides the illu-
sion  that  a  number  has  a  head  indicating  its  type.  This  is  consistent  with  the  fact
that  everything  in  Mathematica  is  an  expression  and  every  expression  must  have  a
head. It is also common for Mathematica to use the head to indicate type when con-
structing more complex objects. See Recipe 1.5, for example. If you are confused by
this,  for  now,  just  think  of  Head  as  returning  a  type  name  when  presented  with  an
atomic expression (expressions that can’t be divided into subexpressions).  

Exact and Approximate Results
Mathematica is unique in comparison to most mathematical tools and programming
languages  in  that  it  will  usually  produce  exact  results  unless  you  tell  it  otherwise.
The following examples show the difference between exact and approximate results.
Recipes 1.1 and 1.2 show you how to make Mathematica use the appropriate form.

Exact results are displayed in their entirety when possible or symbolically when full
display would be impossible due to the infinity of the exact representation.

In[6]:= 3 ^ 1000

Out[6]= 1322070819480806636890455259752144365965422032752148167664920368226Ö

828597346704899540778313850608061963909777696872582355950954582100Ö

618911865342725257953674027620225198320803878014774228964841274390Ö

400117588618041128947815623094438061566173054086674490506178125480Ö

344405547054397038895817465368254916136220830268563778582290228416Ö

398307887896918556404084898937609373242171846359938695516765018940Ö

588109060426089671438864102814350385648747165832010614366132173102Ö

768902855220001

In[7]:= Sqrt@2D

Out[7]= 2

Approximate numeric results are represented in machine precision floating point by
default.  On  most  modern  computers,  this  means  double-precision  floating-point
numbers, which contain a total of 64 binary bits, typically yielding 16 decimal digits
of mantissa. You can also specify numbers with greater than machine precision (see
Recipe 1.1) but there is a performance cost: Mathematica must switch from the na-
tive hardware-based floating-point algorithms to software-based ones.
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Approximate numeric results are represented in machine precision floating point by
default.  On  most  modern  computers,  this  means  double-precision  floating-point
numbers, which contain a total of 64 binary bits, typically yielding 16 decimal digits
of mantissa. You can also specify numbers with greater than machine precision (see
Recipe 1.1) but there is a performance cost: Mathematica must switch from the na-
tive hardware-based floating-point algorithms to software-based ones.

In[8]:= 3. ^ 1000

Out[8]= 1.322070819480807µ10477

In[9]:= Sqrt@2.D

Out[9]= 1.41421

By adding a decimal point to a number, you force Mathematica to treat it as approxi-
mate.  These  approximate  numbers  will  be  machine  precision  by  default,  but  there
are  several  ways  to  force  higher  precision.  Recipes  1.1  and  1.2  in  this  chapter  will
elaborate on these differences.

Numerical Expressions
The previous examples show simple numerical  expressions.  In practice,  Mathemat-
ica follows general  mathematical  notation,  but in many cases this  means that  there
are  multiple  ways  to  express  the  same  thing.  Let’s  consider  each  of  the  com-
mon  operations that  arise  in algebra.  There are several  ways to express  multiplica-
tion,  division,  and other  arithmetic  operations.  A single  space  between expressions
(e.g.,  variables,  numbers)  implies  multiplication,  as  is  the  typical  convention
among  mathematicians.  You  can  evaluate  typeset  mathematics  using  special  sym-
bols, such as ×. You can also use Full Form (e.g., Plus, Times, Divide), but for arith-
metic this is unnecessarily verbose.

In[10]:= 9 + 8

Out[10]= 17

In[11]:= Plus@9, 8D

Out[11]= 17

In[12]:= 9 µ 8

Out[12]= 72

In[13]:= a = 9; b = 8;

a b
Out[14]= 72

In[15]:= Times@9, 8D

Out[15]= 72

In[16]:= 8ê9

Out[16]=
8

9
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In[17]:=
8

9

Out[17]=
8

9

In[18]:= Divide@8, 9D

Out[18]=
8

9

The various representations are known as “forms” in Mathematica (e.g.,  InputForm,
OutputForm, TraditionalForm, etc.). Recipe 1.7 shows you how to control what form
is used for output of results. Controlling what form is used for input is a function of
using  the  various  features  of  the  Mathematica  frontend  (palettes,  shortcut  keys,
etc.). This book will not discuss the use of the frontend, since its main focus is pro-
gramming,  and  there  are  numerous  other  resources  (the  best  being  the  integrated
help system) for mastering the frontend. 

Numerical Approximations
Mathematica is famous for its symbolic abilities; however, when it comes to numeri-
cal methods it is also no slouch! The core functions for numerical solutions are NSum,
NProduct, NSolve, NIntegrate, and NDSolve. These are covered in Chapters 10 and 12.

1.1 Controlling Precision and Accuracy
Problem
You want numerical results that are to a specified numerical precision and accuracy.

Solution
Use N[]  to convert from exact to approximate form while controlling precision and
accuracy to the desired amount. 

In[19]:= N@1ê5D

Out[19]= 0.2
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You can explicitly specify the precision as a second argument to N[].

In[20]:= N@1ê17, 10D

Out[20]= 0.05882352941

You can also explicitly specify both the precision and accuracy, but this is less com-
mon. You might do this to guarantee a fixed number of decimal places independent
of the size of the actual number. 

In[21]:= NA817, 1ê17<, 9Infinity, 10=E

Out[21]= 817.000000000, 0.0588235294<

To drive this point home, I ask you to consider the following. The first column uses
fixed precision, whereas the second uses infinite precision and fixed accuracy.

In[22]:= TableAWith A8x = 10^n + 1ê17<, 9N@x, 10D, NAx, 9Infinity, 10=E=E,

8n, 0, 5<E êê TableForm
Out[22]//TableForm=

1.058823529 1.058823529

10.05882353 10.058823529

100.0588235 100.058823529

1000.058824 1000.058823529

10000.05882 10000.0588235294

100000.0588 100000.0588235294

Discussion
For most purposes, treat precision as the total number of digits in the decimal repre-
sentation of a number and accuracy as the total number of digits after the decimal.
As  such,  precision  is  a  measure  of  relative  uncertainty  (given  a  precision  p  a  larger
number will have more uncertainty than a smaller number). Accuracy is an absolute
measure  of  uncertainty  because  the  number  of  places  after  the  decimal  is  indepen-
dent of  the magnitude of  the number.  Typically you only need to control  precision
in most applications. 

There are two common syntaxes for using N[].  You already saw the functional
syntax in the solution section. The second uses Mathematica’s postfix notation. See
the  sidebar  “Mathematica  Expressions”  on  page  6  for  a  discussion  of  postfix  and
other notations.

In[29]:= Sqrt@2D êê N

Out[29]= 1.41421
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Mathematica Expressions
Mathematica contains quite a bit of syntactic sugar that gives users the flexibility to enter
expressions in a variety of ways. Developers of traditional languages (C+, Java, Ruby, etc.)
are  not  typically  used  to  this  much  flexibility.  The  flexibility  stems  partly  from
mathematics itself, which often provides many notations to express the same concepts. It
also  derives  from Mathematica’s  aim to  be  a  platform for  publishing  mathematical
ideas as much as a computer-aided mathematics tool and programming language.

At this point in the book, I do not go over all possible ways Mathematica can display
input  and  output.  Rather,  I  introduce  the  reader  to  four  basic  syntaxes  for
Mathematica expressions. This was a point of confusion for me when I first learned
Mathematica, so I believe it is best to attend to it now.
Functional notation

This  is  the  most  common  notation.  When  we  use  N[value,precision],  we  are
using the functional notation for N.

Infix notation
Infix notation is most common for operators such as +, -, *, etc. However, infix
notation can be used for any function f by using the syntax ~f~.

Postfix notation
Some operators,  like !  for  Factorial[],  use postfix  notation,  but  as  we already
saw with N, postfix notation can be generally applied for function f using //f. 

Prefix notation
Some  operators,  like  -  (unary  Minus),  use  prefix  notation,  but  there  is  also  a
general way to use prefix notation for any function f using the syntax f@.

Here  are  some  examples  using  N.  Notice  that  when  you  use  prefix  or  postfix  and
need to supply an argument, you must use Mathematica’s syntax for pure functions
where  #  is  used as  a  placeholder  for  the  input  and &  is  added as  a  postfix  operator
alias for Function[]. 

N@1ê2, 10D H*Function*L
0.5000000000

1ê2 ~N~ 10 H*Infix*L
0.5000000000

1ê2 êê N H*Postfix*L
0.5

1ê2 êê N@Ò, 10D & H*Postfix with argument*L
0.5000000000

Nü1ê2 H*Prefix*L
0.5

N@Ò, 10D &ü1ë 2 H*Prefix with argument*L
0.5000000000
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It is common to use this notation to force Mathematica to convert an exact or sym-
bolic  result  to  an  approximate  result  as  the  last  step  in  a  computation.  When  you
use postfix notation, you can explicitly specify the precision, but it is a bit awkward.

In[30]:= Sqrt@2D êê N@Ò, 10D &

Out[30]= 1.414213562

When  you  don’t  specify  precision,  Mathematica  uses  MachinePrecision,  which  is  a
built-in  symbol  that  denotes  the  precision  native  to  your  computer’s  floating-point
capabilities.  The  numerical  value  of  MachinePrecision  is  stored  in  a  variable
$MachinePrecision.

In[31]:= $MachinePrecision

Out[31]= 15.9546

There is another notation that is less common but you may come across it in Mathe-
matica  output.  If  a  literal  number  is  displayed with  a  trailing  `  (backtick)  followed
optionally by a number, this indicates the number is either in machine precision or
is in the precision specified by the number following the backtick.

In[32]:= 20` H*20 in machine precision*L

Out[32]= 20.

In[33]:= 20`20 H*20 with high precision of 20 digits*L

Out[33]= 20.000000000000000000

In a complex expression with a lot of high-precision numbers, you can avoid specify-
ing each precision individually by using SetPrecision[].

In[34]:= SetPrecision@20. + 1ê3 * 12.3 ê 37.8 + Pi, 20D

H*All numbers will be set to a precision of 20.*L
Out[34]= 23.250058262055400604

You  may  find  it  surprising  that  $MachinePrecision  is  not  an  integer.
The  reason  stems  from  the  formal  definition  of  precision,  which  is
derived from considering a number x  and its uncertainty dx  and using
the expression - Log[10, dx/x]. Accuracy is defined as - Log[10, dx]. 
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If you have an expression and need to know the precision or accuracy, you can use
the following functions.

In[35]:= Precision@2.D

Out[35]= MachinePrecision

In[36]:= Precision@2`20D

Out[36]= 20.

Exact results have infinite precision.

In[37]:= Precision@Sqrt@2DD

Out[37]= ¶

In[38]:= Precision@Sqrt@2.DD

Out[38]= MachinePrecision

In[39]:= Accuracy@2.D

Out[39]= 15.6536

You are not guaranteed the accuracy you specify if the precision is too small.

In[40]:= Accuracy@N@30, 820, 20<DD

Out[40]= 18.5229

With enough precision, however, you will get accuracy.

In[41]:= Accuracy@N@30, 830, 20<DD

Out[41]= 20.

And precision can even be specified as infinite!

In[42]:= AccuracyANA30, 9Infinity, 20=EE

Out[42]= 20.

Mathematica also defines two internal variables: $MinPrecision, whose default value
is minus infinity, and $MaxPrecision, whose default value is plus infinity.  

In[43]:= 9$MinPrecision, $MaxPrecision=

Out[43]= 80, ¶<

You can control precision within a complex calculation (without using N[] on every
intermediate  result)  by  changing  these  values;  however,  you  should  only  do  so
within a Block (a local context). For example, compare the difference between a cal-
culation  with  automatic  precision  for  intermediate  results  to  the  same  calculation
with  fixed  precision  (obtained  by  making  $MinPrecision  ==  $MaxPrecision).
Note  that  we  must  still  start  out  the  calculation  with  base  values  of  at  least
$MinPrecision,  otherwise  the  value  will  revert  to  the  lowest  precision,  as  explained
in Recipe 1.2. 
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You can control precision within a complex calculation (without using N[] on every
intermediate  result)  by  changing  these  values;  however,  you  should  only  do  so
within a Block (a local context). For example, compare the difference between a cal-
culation  with  automatic  precision  for  intermediate  results  to  the  same  calculation
with  fixed  precision  (obtained  by  making  $MinPrecision  ==  $MaxPrecision).
Note  that  we  must  still  start  out  the  calculation  with  base  values  of  at  least
$MinPrecision,  otherwise  the  value  will  revert  to  the  lowest  precision,  as  explained
in Recipe 1.2. 

In[44]:= SetPrecision@H1 + Exp@Sqrt@2D + Sqrt@3DDL ê 2^25, 32D

Out[44]= 7.226780742612584668840452114476µ10-7

In[45]:= BlockA9$MinPrecision = 32, $MaxPrecision = 32=,

SetPrecision@H1 + Exp@Sqrt@2D + Sqrt@3DDLê2^25, 32DE

Out[45]= 7.2267807426125846688404521144759µ10-7

However,  unless  you  have  a  very  specific  reason  to  control  precision  yourself,  it  is
generally best to let Mathematica automatically handle this for you. 

See Also
The Wolfram documentation for N[] is here: http://bit.ly/XVe2E.

Discussions  of  precision  and  accuracy  can  be  found  at  http://bit.ly/15qq2N  and
http://bit.ly/icrh1. 

The most thorough discussions of precision and accuracy in Mathematica can be found in
Chapter  8  of  An  Introduction  to  Programming  with  Mathematica  (Cambridge  University
Press) and The Mathematica GuideBook for Numerics (Springer). 

A  nice  essay  by  David  Goldberg  called  “What  Every  Computer  Scientist  Should
Know About Floating-Point Arithmetic” can be found at http://bit.ly/1EJ23y. 

1.2 Mixing Different Numerical Types
Problem
You  need  to  predict  what  Mathematica  will  do  with  expressions  containing  mixed
types and representations. 

Solution
The general rule of thumb is that the least precise type will determine the type of the result. 

Mixing exact values and symbols

When  expressions  containing  exact  numeric  values  (integers  and  rationals)  are
mixed with symbols, Mathematica will keep all results in the most general form, pos-
sibly reducing rationals to integers but leaving symbolic values in symbolic form.
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In[46]:= H2 PiLê3 + Piê3

Out[46]= p

In[47]:= Sqrt@Sin@2 Pi ED ê 1ê2 E^2D

Out[47]= ‰
1

2
Sin@2 ‰ pD

Mixing exact values and approximate values

When  an  approximate  value  is  used  in  an  otherwise  symbolic  expression,  it  forces
Mathematica to convert to approximate values.

In[48]:= H2.0 PiLê3 + Piê3

Out[48]= 3.14159

In[49]:= 1. + H2 PiLê3 + Piê3

Out[49]= 4.14159

Mixing values of different precision and accuracy

When you mix values of different precision and accuracy, the lower precision and ac-
curacy  will  determine  the  result.  For  multiplication,  the  precision  of  the  result  will
be exactly the minimum of the precision of each term, whereas the accuracy will be
somewhat less. 

In[50]:= x = N@Sqrt@2D, 30D * N@Sqrt@3D, 10D

Out[50]= 2.449489743

In[51]:= Precision@xD

Out[51]= 10.

In[52]:= Accuracy@xD

Out[52]= 9.61092

For addition, the accuracy of the result will be exactly the minimum of the accuracy
of each term; the precision will be somewhat more. 

In[53]:= x = NASqrt@5D, 9Infinity, 30=E + NASqrt@7D, 9Infinity, 10=E

Out[53]= 4.8818192886

In[54]:= Precision@xD

Out[54]= 10.6886

In[55]:= Accuracy@xD

Out[55]= 10.
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Discussion
 When mixing exact values with inexact values, it is possible to gain precision. 

In[56]:= Precision@N@Sqrt@2D, 20DD

Out[56]= 20.

In[57]:= Precision@2 + N@Sqrt@2D, 20DD

Out[57]= 20.3828

The gain in precision will be greater when the magnitude of the exact number domi-
nates that of the inexact number, as we see in this generated table.

In[2]:= TableFormATable@

82^n + N@Sqrt@2D, 20D, Precision@2^n + N@Sqrt@2D, 20DD<, 8n, 0, 10<D,

TableHeadings Ø 8None, 8"Result", "Precision"<< E

Out[2]//TableForm=

Result Precision

2.4142135623730950488 20.2323

3.4142135623730950488 20.3828

5.4142135623730950488 20.583

9.4142135623730950488 20.8233

17.4142135623730950488 21.0904

33.4142135623730950488 21.3734

65.4142135623730950488 21.6652

129.4142135623730950488 21.9615

257.4142135623730950488 22.2601

513.4142135623730950488 22.56

1025.4142135623730950488 22.8604

See Also
The  most  thorough  discussions  of  Mathematica’s  numerical  rules  can  be  found  in
Chapter 8 of An Introduction to Programming with Mathematica and The Mathemat-
ica GuideBook for Numerics.  
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1.3 Representing Numbers in Other Bases
Problem
Your application calls for a different numerical base than 10. 

Solution
Mathematica uses notation of the form base^^digits to represent numbers in differ-
ent bases. There must not be any internal whitespace in this representation.

In[59]:= 2^^101 H*Binary*L

Out[59]= 5

In[60]:= 16^^FFFF H*Hexidecimal*L

Out[60]= 65535

Discussion
In addition to expressing numbers in other bases, you can convert numbers to other
bases with BaseForm[digits, base].  The base must be an integer between 2 and 36
when using either ^^ or BaseForm[]. Mathematica uses the letters a through z to repre-
sent digits higher than 10. 

In[61]:= BaseForm@2^^1010101, 16D

Out[61]//BaseForm=

5516

If you do math in another base, the output will still default to decimal, but you can
use BaseForm to convert the output of a function to hex.

In[62]:= 16^^A0 + 16^^0F êê BaseForm@Ò, 16D &
Out[62]//BaseForm=

af16

In[63]:= HashA"Hello, my name is Sal", "MD5"E êê BaseForm@Ò, 16D &
Out[63]//BaseForm=

a275144453239f0279228469f229688116

You can also convert real and complex numbers to other bases.

In[64]:= 123.777 êê BaseForm@Ò, 16D &

Out[64]//BaseForm=
7b.c6f16
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In[65]:= 12.1 + 67.2 I êê BaseForm@Ò, 16D &

Out[65]//BaseForm=
c.199a16 + 43.33316 Â

See Also
Recipe 1.5 shows how to extract digits of a number in alternate bases. 

1.4 Extracting the Digits of a Number
Problem
You want to extract the individual digits of a number to manipulate them individually.

Solution
The functions IntegerDigits[] and RealDigits[] make this task easy.

IntegerDigits[]  returns  a  list  of  digits  in  base  10.  See  the  “Discussion”  section,
next, for additional options.

In[66]:= IntegerDigits@12345D

Out[66]= 81, 2, 3, 4, 5<

RealDigits[]  returns  a  two-item  list  with  the  first  item  being  the  digits  in  base  10
and the second being the position of the decimal point. See the “Discussion” section
for additional options. First consider the digits display with N[] alone.

In[67]:= N@1ê31D

Out[67]= 0.0322581

Notice  how RealDigits[]  automatically  extracts  more  precision to  return the  num-
ber of digits necessary to get to the point at which they begin to repeat in the deci-
mal expansion. 

In[68]:= RealDigits@N@1ê31D, 10D

Out[68]= 883, 2, 2, 5, 8, 0, 6, 4, 5, 1, 6, 1, 2, 9, 0, 3<, -1<

Discussion
Both RealDigits[] and IntegerDigits[] take the desired base and the number of de-
sired digits (length) as optional second and third arguments, respectively.

In[69]:= 12!

Out[69]= 479001600
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In[70]:= IntegerDigits@12!, 10, 5D

Out[70]= 80, 1, 6, 0, 0<

In[71]:= 12! êê BaseForm@Ò, 16D & H*Consider 12! in base 16.*L

Out[71]//BaseForm=
1c8cfc0016

In[72]:= IntegerDigits@12!, 16D H*Notice how IntegerDigits

with base 16 gives the digit values in base 10.*L

Out[72]= 81, 12, 8, 12, 15, 12, 0, 0<

In[73]:= IntegerDigits@12!, 16D êê BaseForm@Ò, 16D &

H*But you can easily force them to base 16.*L
Out[73]//BaseForm=

8116, c16, 816, c16, f16, c16, 016, 016<

RealDigits  can take an additional fourth argument that specifies where in the deci-
mal expansion to start. If b is the base, then the fourth argument n means to start the
counting at the coefficient signified by b^n. The following examples should clarify.

In[74]:= N@Pi, 10D H*Pi to 10 digits of precision.*L

Out[74]= 3.141592654

In[75]:= RealDigits@Pi, 10, 3D

H*Extract first three digits. Decimal place is indicated as 1.*L

Out[75]= 883, 1, 4<, 1<

Start at 10^-2 = 0.01, or the second digit after the decimal.

In[76]:= RealDigits@Pi, 10, 3, -2D

H*Extract third to fifth digit. Decimal place is indicated as -2.*L

Out[76]= 884, 1, 5<, -1<

Start at 10^-5 = 0.00001, or the fifth digit after the decimal.

In[77]:= RealDigits@Pi, 10, 3, -5D

Out[77]= 889, 2, 6<, -4<

In[78]:= N@Pi, 10D êê BaseForm@Ò, 2D &

Out[78]//BaseForm=

11.00100100001111110110101010001002

Here we get the digits of pi in base 2.

In[79]:= RealDigits@Pi, 2, 5, -2D

Out[79]= 880, 1, 0, 0, 1<, -1<

Here is an interesting application in which IntegerDigits is combined with the
Tuples function and a  bit  of  pattern matching to  get  all  n  digits  without  calling
IntegerDigits[]  more than once.  We used Short  to elide the full  list.  (Short  places
<<n>> in the output to indicate n missing items.)
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Here is an interesting application in which IntegerDigits is combined with the
Tuples function and a  bit  of  pattern matching to  get  all  n  digits  without  calling
IntegerDigits[]  more than once.  We used Short  to elide the full  list.  (Short  places
<<n>> in the output to indicate n missing items.)

In[80]:= TuplesAIntegerDigits@43210D, 4E êê Short@Ò, 4D &

Out[80]//Short=
884, 4, 4, 4<, 84, 4, 4, 3<, 84, 4, 4, 2<, 84, 4, 4, 1<, 84, 4, 4, 0<, 84, 4, 3, 4<,

84, 4, 3, 3<, 84, 4, 3, 2<, 84, 4, 3, 1<, 84, 4, 3, 0<, 84, 4, 2, 4<,

84, 4, 2, 3<, 84, 4, 2, 2<, 84, 4, 2, 1<, 84, 4, 2, 0<, 84, 4, 1, 4<,

84, 4, 1, 3<, 84, 4, 1, 2<, 84, 4, 1, 1<, 84, 4, 1, 0<, 84, 4, 0, 4<,

84, 4, 0, 3<, 84, 4, 0, 2<,á579à, 80, 0, 4, 2<, 80, 0, 4, 1<, 80, 0, 4, 0<,

80, 0, 3, 4<, 80, 0, 3, 3<, 80, 0, 3, 2<, 80, 0, 3, 1<, 80, 0, 3, 0<,

80, 0, 2, 4<, 80, 0, 2, 3<, 80, 0, 2, 2<, 80, 0, 2, 1<, 80, 0, 2, 0<,

80, 0, 1, 4<, 80, 0, 1, 3<, 80, 0, 1, 2<, 80, 0, 1, 1<, 80, 0, 1, 0<,

80, 0, 0, 4<, 80, 0, 0, 3<, 80, 0, 0, 2<, 80, 0, 0, 1<, 80, 0, 0, 0<<

If you do not want the cases with leading zeros, you can use DeleteCases as follows.

In[81]:= DeleteCasesATuplesAIntegerDigits@43210D, 4E,

8z__ ê; z == 0, n__<E êê Short@Ò, 4D &
Out[81]//Short=

884, 4, 4, 4<, 84, 4, 4, 3<, 84, 4, 4, 2<, 84, 4, 4, 1<, 84, 4, 4, 0<, 84, 4, 3, 4<,

84, 4, 3, 3<, 84, 4, 3, 2<, 84, 4, 3, 1<, 84, 4, 3, 0<, 84, 4, 2, 4<,

84, 4, 2, 3<, 84, 4, 2, 2<, 84, 4, 2, 1<, 84, 4, 2, 0<, 84, 4, 1, 4<,

84, 4, 1, 3<, 84, 4, 1, 2<, 84, 4, 1, 1<, 84, 4, 1, 0<, 84, 4, 0, 4<,

84, 4, 0, 3<, 84, 4, 0, 2<,á454à, 81, 0, 4, 2<, 81, 0, 4, 1<, 81, 0, 4, 0<,

81, 0, 3, 4<, 81, 0, 3, 3<, 81, 0, 3, 2<, 81, 0, 3, 1<, 81, 0, 3, 0<,

81, 0, 2, 4<, 81, 0, 2, 3<, 81, 0, 2, 2<, 81, 0, 2, 1<, 81, 0, 2, 0<,

81, 0, 1, 4<, 81, 0, 1, 3<, 81, 0, 1, 2<, 81, 0, 1, 1<, 81, 0, 1, 0<,

81, 0, 0, 4<, 81, 0, 0, 3<, 81, 0, 0, 2<, 81, 0, 0, 1<, 81, 0, 0, 0<<

The inverse of IntegerDigits[] is FromDigits[].  

In[82]:= FromDigitsAIntegerDigits@987654321DE

Out[82]= 987654321

In[83]:= FromDigitsAIntegerDigits@987654321, 2D, 2E H*Base 2*L

Out[83]= 987654321

FromDigits[] has the added capability of converting strings and roman numerals.

In[84]:= FromDigits@"4750"D + 1

Out[84]= 4751

In[85]:= FromDigits@"MMXIX", "Roman"D - 10

Out[85]= 2009
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IntegerString[]  is  used to convert  back to string form. I  use InputForm  only so the
quotes are displayed.

In[86]:= IntegerString@4750D êê InputForm

Out[86]//InputForm=
"4750"

In[87]:= IntegerString@2009, "Roman"D êê InputForm
Out[87]//InputForm=

"MMIX"

1.5 Working with Intervals
Problem
You  need  to  compute  with  data  subject  to  measurement  errors  and  you  need  the
greatest possible estimate on the final error.

Solution
As an alternative to doing math directly on numbers, Mathematica allows you to do
math on intervals that define the uncertainty in a value. 

In[88]:= ClearAerror1, error2, mass, velocity, kineticEnergyE;

error1 = 0.01; error2 = 0.005;

mass = Interval@81.10 - error1, 1.10 + error1<D;

velocity = Interval@87.50 - error2, 7.50 + error2<D;

kineticEnergy = 1ê2 mass velocity ^ 2

Out[92]= Interval@830.6154, 31.2604<D

By representing them as intervals, we express the idea that there are some known er-
rors in the measurement of the value of mass and velocity. We would like to under-
stand what that means in terms of the value we compute for kinetic energy. 

You can see that the resulting error range is magnified by the combination of each er-
ror and the squaring.

In[93]:= Subtract üü kineticEnergy@@1DD êê

Abs H*This computes the size of the interval.*L
Out[93]= 0.645
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If there were only a single interval of uncertainty, the range would be smaller.

In[94]:= ClearAerror1, mass, velocity, kineticEnergyE;

error1 = 0.01;

mass = Interval@81.10 - error1, 1.10 + error1<D;

velocity = 7.5;

kineticEnergy = 1ê2 mass velocity^2

Out[98]= Interval@830.6562, 31.2188<D

In[99]:= Subtract üü kineticEnergy@@1DD êê Abs

Out[99]= 0.5625

Discussion
Intervals  are  objects  with  head  Interval  and  a  sequence  of  one  or  more  lists  that
represent  segments  of  the  interval.  Typically  there  is  one  list,  but  non-overlapping
intervals can be expressed using two or more lists.

In[100]:= Interval@81, 2<D

Out[100]= Interval@81, 2<D

In[101]:= Interval@81, 2<, 83, 4<D

Out[101]= Interval@81, 2<, 83, 4<D

Intervals will automatically reorder themselves so that the least value is first.

In[102]:= Interval@82, 1<D

Out[102]= Interval@81, 2<D

In[103]:= Interval@84, 3<, 82, 1<D

Out[103]= Interval@81, 2<, 83, 4<D

Naturally, the standard mathematical operations for scalars work on intervals as well.

In[104]:= Interval@81, 2<D + Interval@83, 4<D

Out[104]= Interval@84, 6<D

In[105]:= Interval@81, 2<D Interval@83, 4<D H*Implied multiplication*L

Out[105]= Interval@83, 8<D

In[106]:= Interval@81, 2<D ê Interval@83, 4<D

Out[106]= IntervalC;
1

4
,
2

3
?G

In[107]:= Sqrt@Interval@81.0, 2.0<DD

Out[107]= Interval@81., 1.41421<D

1.5 Working with Intervals | 17



There  are  also  functions  specifically  for  working  with  intervals.  IntervalUnion[]
gives the interval representing set of all points of the input intervals. IntervalInter-
section[]  gives  the  interval  in  common  among  the  inputs  and  IntervalMemberQ[]
tests if a value belongs to an interval.

There are some cases in which Mathematica functions can return intervals. Consider
the problem of finding the limit of an oscillating function at a critical value.  

In[108]:= Clear@xD;

LimitASin@xD + 1ê2 Cos@xD, x Ø InfinityE

Out[109]= IntervalC;-
3

2
,
3

2
?G

In[110]:= Limit@2 Sin@1êxD + 1ê2 Cos@xD, x Ø 0D

Out[110]= IntervalC;-
3

2
,
5

2
?G

See Also
Papers and FAQs (as well  as a movie) related to the theory of interval math can be
found at http://bit.ly/lbXoE.

1.6 Converting Between Numerical Types
Problem
You have a number of one type and need it represented in another type. 

Solution
Conversion from rational to integer happens automatically, when possible.

In[111]:= Head@4ê2D

Out[111]= Integer

Conversion  of  rational  to  integer  can  be  forced  by  using  Floor[],  Ceiling[],  and
Round[]. (Numbers of the form x.5 are rounded toward the nearest even integer.)

In[112]:= Floor@5ê2D

Out[112]= 2

In[113]:= Ceiling@5ê2D

Out[113]= 3
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In[114]:= Round@5ê2D

Out[114]= 2

In[115]:= Round@7ê2D

Out[115]= 4

We already saw in Recipe 1.1 how N[] can be used to convert exact values and sym-
bolic  constants  to  approximate  real  numbers.  Rationalize[]  is  how  you  convert
from approximate values to exact.

In[116]:= Rationalize@3.14159D

Out[116]=
314159

100000

The single  argument  version  of  Rationalize  will  only  succeed  if  a  sufficiently  close
(see “Discussion” section, next) rational number exists.

In[117]:= Rationalize@3.1415927D

Out[117]= 3.14159

You  can  provide  a  second  argument  specifying  your  tolerance  for  error,  in  which
case the operation will always succeed.

In[118]:= Rationalize@3.1415927, 10^-8D

Out[118]=
121033

38526

And you can force an exact rational by indicating a maximum error of zero.

In[119]:= Rationalize@3.1415927, 0D

Out[119]=
31415927

10000000

Discussion
On  the  surface,  the  solutions  here  are  rather  simple.  In  day-to-day  usage,  numeric
conversion  will  not  present  many  challenges.  However,  there  are  subtle  issues  and
interesting theory underlying the apparent simplicity. Let’s consider rounding. Sup-
pose  you  need  to  round a  set  of  numbers,  but  the  numbers  still  must  satisfy  some
constraint  after  the  rounding.  Consider  percentages  or  probabilities.  One  would
want percentages to still add to 100 and probabilities to still sum to 1. Another con-
text is in statistics, where we want to round while preserving certain statistical
properties,  such as  the variance.  Various forms of  stochastic  rounding can be used
in these cases.  One form of  stochastic  rounding that  gives  good results  is  the unbi-
ased rounding rule.  According to this rule,  a number of the form x.v  is  rounded up

with  the  probability  v/10  and  rounded  down  with probability  (10-v)/10.  So,  for
example, 10.5 would have equal probability of going to 10 as to 11, whereas 10.85 would
have probability of 0.85 of rounding up and 0.15 of rounding down.1.6 Converting Between Numerical Types | 19



with  the  probability  v/10  and  rounded  down  with probability  (10-v)/10.  So,  for
example, 10.5 would have equal probability of going to 10 as to 11, whereas 10.85 would
have probability of 0.85 of rounding up and 0.15 of rounding down.

In[120]:= UnbiasedRound@x_D := Block@8whole = Floor@xD, v<,

v = 10 * Hx - wholeL; whole + Floor@ vê10 + RandomReal@DDD

In[121]:= Table@UnbiasedRound@10.5D, 820<D

Out[121]= 811, 11, 10, 11, 10, 10, 10, 11, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 11, 11<

In[122]:= Table@UnbiasedRound@10.1D, 820<D

Out[122]= 810, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 11, 10, 10, 10<

In[123]:= Table@UnbiasedRound@10.8D, 820<D

Out[123]= 811, 11, 11, 10, 11, 11, 11, 11, 11, 10, 11, 10, 11, 11, 10, 11, 11, 11, 11, 11<

The main disadvantage of stochastic rounding is that the results are not repeatable.

See Also
An Examination of the Effects of Rounding on the Quality and Confidentiality of Tabu-
lar Data by Lawrence H. Cox and Jay J. Kim (http://bit.ly/I7JdA).

1.7 Displaying Numbers in Alternate Forms
Problem
You don’t like the format that Mathematica chooses to display a particular numeri-
cal result.

Solution
Use  one  of  the  alternative  forms:  AccountingForm,  EngineeringForm,  NumberForm,
PaddedForm,  and ScientificForm.  The default form is usually the most compact way
to represent the number, but if you are outputting values that have specific user ex-
pectations or if you are trying to convey a specific accuracy, you may want to force a
different form.

In[124]:= number = 3.50 * 1000000

Out[124]= 3.5µ106

Accounting  form  does  not  use  scientific  notation  and  shows  negative  numbers  in
parentheses. Here it is traditional to use the form as a postfix (//) operation.
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In[125]:= number êê AccountingForm

Out[125]//AccountingForm=
3500000.

In[126]:= -number êê AccountingForm
Out[126]//AccountingForm=

H3500000.L

Alternatively, NumberForm  allows you to control the digits of precision and the num-
ber of digits after the decimal.

In[127]:= NumberForm@number, 86, 4<D
Out[127]//NumberForm=

3.5000µ106

Discussion
Forms have an extensive set of options to provide fine-grained control over the out-
put. Here I use AccountingForm to display a column of numbers. DigitBlock specifies
the grouping factor and NumberPadding  allows control  of  the characters used to pad
out the display on the left (shown here as spaces) and right (shown as zeros).

In[128]:= AccountingFormAColumn@8100000.00, 1000000.00, 10000000.00<D,

89, 1<, DigitBlock Ø 3, NumberPadding Ø 8" ", "0"<E
Out[128]//AccountingForm=

100,000.00

1,000,000.00

10,000,000.00

Contrast this to AccountingForm without the options.

In[129]:= AccountingForm@Column@8100000.00, 1000000.00, 10000000.00<DD
Out[129]//AccountingForm=

100000.

1000000.

10000000.

PaddedForm is convenient when all you want to do is pad out a number with specific
characters on the left and right. This is often a useful operation prior to conversion
to a string to generate fixed-length identifiers. 

In[130]:= PaddedFormA10, 8, NumberPadding Ø 8"0", ""<E
Out[130]//PaddedForm=

000000010
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In[131]:= id = ToStringAPaddedFormA10, 8, NumberPadding Ø 8"0", ""<EE

Out[131]= 000000010

EngineeringForm  forces exponents in multiples of  three,  provided an exponent of at
least three is required. 

In[132]:= 810.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0< êê EngineeringForm

Out[132]//EngineeringForm=

910., 100., 1.µ103, 10.µ103, 100.µ103, 1.µ106=

ScientificForm always shows numbers with one digit before the decimal and adjusts
the exponent accordingly.

In[133]:= 810.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0< êê ScientificForm
Out[133]//ScientificForm=

91.µ101, 1.µ102, 1.µ103, 1.µ104, 1.µ105, 1.µ106=

You can use the option NumberFormat to get precise control of the display. NumberFor-
mat specifies a function (see Chapter 2 for details) that accepts up to three arguments
for the mantissa, base, and exponent. Here is an example that displays numbers like
a calculator might. Here, the function uses Row to format the mantissa and exponent
(it ignores the base).

In[134]:= ScientificForm@1.77 µ 10^5, NumberFormat Ø HRow@8Ò1, "E", Ò3<D &LD

Out[134]//ScientificForm=

1.77E5

See Also
You can find information and examples on all  these forms and their  options in the
Wolfram documentation under tutorial/OutputFormatsForNumbers.
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CHAPTER 2

Functional Programming

A man builds a city
With banks and cathedrals

A man melts the sand so he can
See the world outside

(You’re gonna meet her there)
A man makes a car

(She’s your destination)
And builds a road to run them on

(Gotta get to her)
 A man dreams of leaving

(She’s imagination)
But he always stays behind

And these are the days
When our work has come asunder

And these are the days
When we look for something other

U2, “Lemon”

2.0 Introduction
Functional Programming
Many books on Mathematica tout its capabilities as a multiparadigm language.
Although it’s true that Mathematica supports procedural, recursive, rule-based, func-
tional, and even object-oriented styles (to some degree), I believe it is the functional
and rule-based styles that are most important to master. Some gurus may go a step
further and say that if you do not master the functional style then you are not really
programming  in  Mathematica  and  your  programs  will  have  a  far  greater  chance  of
being inefficient and clumsy. I won’t be so dogmatic, but until you are an expert it’s

best to stick with an approach that many Mathematica experts prefer. A practi-
cal  reason to  learn the  functional  style  is  that  most  of  the  recipes  in  this  book
use either functional or rule-based styles and sometimes mixtures of both. This chap-
ter  is  intended  as  a  kind  of  decoder  key  for  readers  who  want  to  master  the  func-
tional  style  and  get  a  deeper  understanding  of  the  solutions  throughout  this  book.
There are also a few recipes at the end of the chapter that are not about functional
programming proper, but rather techniques specific to Mathematica that allow you
to create flexible functions. These techniques are also used throughout later recipes
in the book.
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best to stick with an approach that many Mathematica experts prefer. A practi-
cal  reason to  learn the  functional  style  is  that  most  of  the  recipes  in  this  book
use either functional or rule-based styles and sometimes mixtures of both. This chap-
ter  is  intended  as  a  kind  of  decoder  key  for  readers  who  want  to  master  the  func-
tional  style  and  get  a  deeper  understanding  of  the  solutions  throughout  this  book.
There are also a few recipes at the end of the chapter that are not about functional
programming proper, but rather techniques specific to Mathematica that allow you
to create flexible functions. These techniques are also used throughout later recipes
in the book.

The hallmark of the functional style is, of course, functions. Every high-level programming
language has functions,  but  what makes a  language functional  is  that  functions are first-
class entities (however, see the sidebar “What Is a Functional Programming Language . . .”
on page 31 for more subtle points). This means you can write higher-order functions
that  take  other  functions  as  arguments  and  return  functions  as  values.  Another
important  feature  of  functional  languages  is  that  they  provide  a  syntactic  method of
whipping up anonymous functions on the fly. These nameless functions are often re-
ferred to as “lambda functions,” although Mathematica calls them pure functions.

Unless  you  are  already  a  convert  to  functional  programming,  why  a  functional  ap-
proach  is  considered  superior  may  not  be  obvious  to  you.  A  general  consensus
among software developers is that given two correct solutions to a problem, the sim-
pler solution is the superior one. Simplicity is sometimes difficult to define, but one
metric  has  to  do with  the  length  of  the  solution in  lines  of  code.  You will  find,  al-
most without exception, that a high-quality functional solution will be more concise
than a high-quality procedural solution. This stems partly from the fact that looping
constructs disappear (become implicit) in a functional solution. In a procedural pro-
gram, code must express the loop, which also introduces auxiliary index variables. 

Functional programs are often faster, but there are probably exceptions. Ignoring the
fact  that  Mathematica  has  a  built-in  function,  Total,  for  a  moment,  let’s  contrast  a
procedural and functional program to sum an array of 100,000 random values.

In[1]:= array = RandomReal@8-1, 1<, 100000D;

In[2]:= H*Procedural solution using For loop*L

Isum = 0 ;

DoAsum += array@@iDD, 9i, 1, LengthAarrayE=E;

sumM êê Timing

Out[2]= 80.21406, 90.6229<

In[3]:= H*Functional solution using Fold*L

FoldAPlus, 0, arrayE êê Timing

Out[3]= 80.008291, 90.6229<
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As  you  can  see,  the  functional  solution  was  about  an  order  of  magnitude  faster.
Clearly the functional solution is shorter, so that is an added bonus. Of course, one
of  the  tricks  to  creating  the  shortest  and  the  fastest  programs  is  exploiting  special
functions when they exist. In this case, Total is the way to go!

In[4]:= TotalAarrayE êê Timing

Out[4]= 80.000193, 90.6229<

If  you come from a procedural  background, you may find that style more comfort-
able. However, when you begin to write more complex code, the procedural style be-
gins  to  be a  liability  from a complexity  and performance point  of  view.  This  is  not
just a case of shorter being sweeter. In a very large program, it is common to intro-
duce  a  large  number  of  index  and  scratch  variables  when  programming  procedu-
rally.  Every  variable  you  introduce  becomes  a  variable  whose  meaning  must  be
tracked. I wish I had a dollar for every bug caused by a change to code that used in-
dex variable i  when j  was intended! It should come as no surprise that eliminating
these scratch variables will result in code that is much faster. In fact, in a typical pro-
cedural language like C, it is only through the efforts of a complex optimizing com-
piler that these variables disappear into machine registers so that maximum speed is
obtained. In an interpreted language like Mathematica, these variables are not opti-
mized away and, hence, incur a significant overhead each time they appear. By adopt-
ing a functional approach, you get almost the equivalent of optimized machine code
with the pleasure of interactive development.

There are a lot more theoretical reasons for adopting a functional approach. Some in-
volve the ability to prove programs correct or the ability to introduce concurrency. I
will  not  make those  arguments  here  because  they usually  have only  marginal  value
for practical,  everyday development and they hinge on a language being purer than
Mathematica.  Readers  who  have  interest  in  learning  more  should  refer  to  some  of
the excellent resources listed in the “See Also” section on page 30.

The Elements of Functional Programming
Many functional  programming  languages  share  core  primitive  functions  that  act  as
the  building  blocks  of  more  sophisticated  functions  and  algorithms.  The  names  of
these primitives vary from language to language, and each language provides its own
twists.  However,  when  you  learn  the  set  of  primitives  of  one  functional  language,
you will have an easier time reading and porting code to other functional languages. 
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Table 2-1. Primary functional programming primitives

Function Operator Description

Map@f, exprD êü Return the list that results 

from executing the function f 

on each element of an expr

Apply@f, exprD üü Return the result of 

replacing the head of a list 

with function f

Apply@f, expr, 81<D üüü Applies f a level 1 inside 

list. In other words,replace 

the head of all elements.

Fold@f, x, 8a1, a2, a3, ...<D NëA If list has length 0,return 

x,otherwise return 
fAfAf@x, a1D, a2E, a3E…

FoldList@f, x,

8a1, a2, a3, ...<D

NëA Return the list 
9x, f@x, a1D, fAf@x, a1D, a2E, …=

Nest@f, expr, nD NëA Return the result of 

fAfAfA... f@exprD...EEE (i.e. f 

applied n times)

NestList@f, expr, nD NëA Return the list 

9x, f@exprD, fAf@exprDE, ...= 

where f repeats up to n times

In the Mathematica documentation, you will  see the verb apply  (in its
various tenses) used in at least two senses. One is in the technical sense
of  the  function  Apply[f,expr]  (i.e.,  change  the  head  of  expr  to  f)  and
the  other  in  the  sense  of  invoking  a  function  on  one  or  more
arguments  (as  in  “applied”  in  the  definition  of  Nest[],  “gives  an
expression with f applied n times to expr”). Clearly, changing the head
of the expression n times would be no different from changing it once,
so it  should be unambiguous in most cases.  See Recipe 2.1 for syntax
variations of the latter sense of function application.

There  are  other  important  Mathematica  functions  related  to  functional  program-
ming,  but  you should  commit  to  memory  the  functions  in  Table  2-1,  because  they
arise  repeatedly.  You  should  especially  get  used  to  the  operator  notations  for
Map (/@) and Apply (@@) because they arise frequently (not only in this book but in
others  and  in  sample  code  you  will  find  online).  If  you  are  unfamiliar  with
these  functions,  it  is  worthwhile  to  experiment  a  bit.  One important  exercise  is  to
use each function with a symbol that is not defined and a list of varying structure so
you can see the effects from a structural point of view. For example, pay close atten-
tion to the difference between /@ and @@@. Each iterates the function across the list,
but the results are quite different. 

26 | Chapter 2: Functional Programming



There  are  other  important  Mathematica  functions  related  to  functional  program-
ming,  but  you should  commit  to  memory  the  functions  in  Table  2-1,  because  they
arise  repeatedly.  You  should  especially  get  used  to  the  operator  notations  for
Map (/@) and Apply (@@) because they arise frequently (not only in this book but in
others  and  in  sample  code  you  will  find  online).  If  you  are  unfamiliar  with
these  functions,  it  is  worthwhile  to  experiment  a  bit.  One important  exercise  is  to
use each function with a symbol that is not defined and a list of varying structure so
you can see the effects from a structural point of view. For example, pay close atten-
tion to the difference between /@ and @@@. Each iterates the function across the list,
but the results are quite different. 

In  this  code,  zz  is  purposefully  undefined  so  you  can  visualize  the
effect of the operators. The ability of Mathematica to handle undefined
symbols  without  throwing  errors  is  both  a  source  of  power  and  a
source of frustration to the uninitiated.

In[5]:= zz êü 81, 81<, 81, 2<<

Out[5]= 8zz@1D, zz@81<D, zz@81, 2<D<

In[6]:= zz üü 81, 81<, 81, 2<<

Out[6]= zz@1, 81<, 81, 2<D

In[7]:= zz üüü 81, 81<, 81, 2<<

Out[7]= 81, zz@1D, zz@1, 2D<

In[8]:= Fold@zz, 0, 81, 81<, 81, 2<<D

Out[8]= zz@zz@zz@0, 1D, 81<D, 81, 2<D

In[9]:= FoldList@zz, 0, 81, 81<, 81, 2<<D

Out[9]= 80, zz@0, 1D, zz@zz@0, 1D, 81<D,

zz@zz@zz@0, 1D, 81<D, 81, 2<D<

In[10]:= Nest@zz, 81, 81<, 81, 2<<, 3D

Out[10]= zz@zz@zz@81, 81<, 81, 2<<DDD

In[11]:= NestList@zz, 81, 81<, 81, 2<<, 3D

Out[11]= 881, 81<, 81, 2<<, zz@81, 81<, 81, 2<<D,

zz@zz@81, 81<, 81, 2<<DD,

zz@zz@zz@81, 81<, 81, 2<<DDD<

DownValues and UpValues 
Mathematica  has  a  flexible  facility  for  associating  symbols  and  their  definitions.
Most of the time you need not be concerned with these low-level details,  but some
advanced  Mathematica  techniques  discussed  in  this  chapter  and  elsewhere  in  the
book require you to have some basic understanding. When you define functions of
the form f[args] := definition or f[args] = definition you create downvalues for the
symbol f. You can inspect these values using the function DownValues[f].
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In[12]:= ClearAll@fD

f@0D := 1

f@1D := 1

fAn_IntegerE := n * f@n - 1D

In[16]:= DownValues@fD

Out[16]= 9HoldPattern@f@0DD ß 1, HoldPattern@f@1DD ß 1,

HoldPatternAfAn_IntegerEE ß n f@n - 1D=

The results are shown as a list of patterns in held form (see Recipe 4.8). The order of
the definitions returned by DownValues is the order in which Mathematica will search for a
matching pattern when it needs to evaluate an expression containing f. Mathematica has a
general  rule  of  ordering  more  specific  definitions  before  more  general  ones;  when
there are ties, it uses the order in which the user typed them. In rare cases, you may
need to redefine the ordering by assigning a new order to DownValues[f]. 

In[17]:= H*This reassignment won't affect usage of f,

but illustrates the technique.*L

DownValues@fD = DownValues@fD@@82, 1, 3<DD
Out[17]= 9HoldPattern@f@1DD ß 1, HoldPattern@f@0DD ß 1,

HoldPatternAfAn_IntegerEE ß n f@n - 1D=

There are some situations in which you would like to give new meaning to functions
native to Mathematica. These situations arise when you introduce new types of ob-
jects.  For  example,  imagine  Mathematica  did  not  already  have  a  package  that  sup-
ported quaternions (a kind of noncommutative generalization of complex numbers)
and you wanted to develop your own. Clearly you would want to use standard math-
ematical notation, but this would amount to defining new downvalues for the built-
in Mathematica functions Plus, Times, etc. 

Unprotect[Plus,Times]

Plus[quaternion[a1_,b1_,c1_,d1_], quaternion[a2_,b2_,c2_,d2_]] := ...

Times[quaternion[a1_,b1_,c1_,d1_], quaternion[a2_,b2_,c2_,d2_]] := ...

Protect[Plus,Times]

If  quaternion  math  were  very  common,  this  might  be  a  valid  approach.  However,
Mathematica provides a convenient way to associate the definitions of  these opera-
tions  with  the  quaternion  rather  than  with  the  operations.  These  associations  are
called UpValues, and there are two syntax variations for defining them. The first uses
operations called UpSet  (^=)  and UpSetDelayed  (^:=),  which are analogous to Set  (=)
and SetDelayed (:=) but create upvalues rather than downvalues. 

Plus[quaternion[a1_,b1_,c1_,d1_], quaternion[a2_,b2_,c2_,d2_]] ^:= ...

Times[quaternion[a1_,b1_,c1_,d1_], quaternion[a2_,b2_,c2_,d2_]] ^:= ...

The alternate  syntax is  a  bit  more verbose but  is  useful  in  situations  in  which  the
symbol the upvalue should be associated with is  ambiguous. For example,  imagine
you  want  to  define  addition  of  a  complex  number  and  a  quaternion.  You  can  use
TagSet  or  TagSetDelayed  to indicate that  the operation is  an upvalue for  quaternion
rather than Complex.28 | Chapter 2: Functional Programming



The alternate  syntax is  a  bit  more verbose but  is  useful  in  situations  in  which  the
symbol the upvalue should be associated with is  ambiguous. For example,  imagine
you  want  to  define  addition  of  a  complex  number  and  a  quaternion.  You  can  use
TagSet  or  TagSetDelayed  to indicate that  the operation is  an upvalue for  quaternion
rather than Complex.

quaternion /: Plus[Complex[r_, im_], quaternion[a1_,b1_,c1_,d1_]] := ...

quaternion /: Times[Complex[r_, im_], quaternion[a1_,b1_,c1_,d1_]] := ...

Upvalues  solve  two  problems.  First,  they  eliminate  the  need  to  unprotect  native
Mathematica symbols. Second, they avoid bogging down Mathematica by forcing it
to consider custom definitions every time it encounters common functions like Plus
and  Times.  (Mathematica  aways  uses  custom  definitions  before  built-in  ones.)  By
associating the operations with the new types (in this case quaternion), Mathematica
need only consider these operations in expression where quaternion appears. If both
upvalues  and  downvalues  are  present,  upvalues  have  precedence,  but  this  is  some-
thing you should avoid.

Function Attributes
Mathematica will modulate the behavior of functions based on a set of predefined
attributes,  which users  should already be familiar  with as  those often required
to  achieve  proper  results  in  users’  own  functions.  The functions  Attributes[f],
SetAttributes[f,attr],  and  ClearAttributes[f,attr]  are  used  to  query,  set,  and
clear attributes from functions. In the following subsections, I’ll review the most im-
portant attributes. Refer to the Mathematica documentation for attributes to review
the complete list.

Attributes  must  be  assigned  to  symbols  before  functions  are  defined
for the symbols.

Orderless

This tells Mathematica that the function is commutative.  When Mathematica encounters
this function, it will reorder arguments into canonical order (sorted in ascending or-
der). Orderless also influences pattern matching (see Recipe 4.1) since Mathematica
will consider reordering when attempting to match.
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Flat

Use  Flat  to  tell  Mathematica  that  nested  applications  of  the  function
(f[f[x,y],z])  can  be  flattened  out  (f[x,y,z]).  In  mathematics,  flat  functions  are
called associative. 

Listable

It  is  often  convenient  to  define  functions  that  automatically  map  across  lists.  See
Recipe 2.3 for more information.

HoldFirst

Mathematica defines a function Hold which prevents its argument from being evalu-
ated. The attribute HoldFirst allows you to give this feature to the first argument of
a function. All remaining arguments will behave normally.

HoldRest

This  is  the  opposite  of  HoldFirst;  the  first  argument  is  evaluated  normally,  but  all
remaining arguments are kept in unevaluated form.

HoldAll

All arguments of the function are kept unevaluated. This is equivalent to using both
HoldFirst and HoldRest.

See Also
An excellent animated introduction to the core Mathematica functions can be found
at http://bit.ly/3cuB4B.

See  guide/FunctionalProgramming  in  the  documentation  for  an  overview  of  Mathe-
matica’s functional programming primitives.

A  classic  paper  on  the  benefits  of  functional  programming  is  Why  Functional  Pro-
gramming Matters by John Hughes (http://bit.ly/4mRBYO).

Another  classic  is  A Tutorial  on the  Universality  and Expressiveness  of  Fold  by Gra-
ham Hutton (PDF available at http://bit.ly/ZYDiH).

Further  discussion  of  upvalues  and  downvalues  can  be  found  at  tutorial/TheStandard-
EvaluationProcedure  and  tutorial/AssociatingDefinitionsWithDifferentSymbols  in  the
documentation.
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What Is a Functional Programming Language and 
How Functional Is Mathematica?

Anyone who has spent time in mail groups frequented by programmers knows they
like to argue. One of the favorite arguments centers around the “best programming
language.”  Derivatives  include  “what  language  is  the  most  [insert  characteristic
here]” arguments.  For  example,  what  language is  the most  “object-oriented,” “self-
documenting,” or in our case, “functional.” The problem is that such characteristics
rarely have an objective,  a  priori  definition;  rather,  their  definitions emerged out of
research  in  actual  language  use.  Since  each  researcher  is  interested  in  different
features, the definitions become fuzzy. It is thus difficult to give a precise definition
of  “functional”  with  which  every  computer  scientist  and  programmer  will  agree.
However, to help you discover more on your own, I provide some generally agreed-
on features that are important to the theory of functional programming and discuss
Mathematica’s support for these features. The usefulness of features rather than the
cachet  of  labels  (like  “functional”)  is  likely  the  primary  concern  of  readers  of
cookbooks!

All  functional  languages emphasize the evaluation of  expressions to produce values
rather  than  commands  or  statements  that  are  executed  for  their  side  effects.
Consider the language C, which has functions but also other statements (for, if-then-
else,  while,  goto,  etc.)  that  execute  without  producing  a  return  value  (although
values may be computed and stored in variables as side effects of these statements).
In  a  functional  language,  all  constructs,  even  conditional  logic  constructs  and
looping constructs, are executed to compute some value, and they should generally
be executed only for the value and not for other side effects. Most of Mathematica’s
functions produce a value, but there are exceptions, and these exceptions can lead to
problems.  The  obvious  example  of  this  is  the  “function”  Do[].  If  Do[]  appears  in  a
context where a value is expected, it will evaluate to null. Since no one needs to set
up a loop to produce null, it is clear that Do[] exists for producing some side effect.
Thus Do[] is certainly not functional. Even expressions that produce values can have
side effects in Mathematica, which leads to the next consideration.

Functional languages that are, by design, free of side effects are called pure functional
languages.  One  hallmark  of  a  pure  functional  language  is  single-assignment,  where  a
variable  within  a  given  scope  can  only  get  a  value  once.  Examples  include  Haskell  and
Erlang, but not Mathematica, because in most cases, a variable  can be reassigned (one
exception is variables introduced by With[]). If you make a concerted effort to avoid
multiple  assignment,  you  will  be  rewarded  with  programs  that  are  often  easier  to
debug; in this book, I’ll  often ignore this advice if it results in a simpler example of
the particular recipe in question.
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Another feature is  the so-called  lambda function  or anonymous function. There is  a
rich mathematical theory called lambda calculus  that underlies this idea, but from a
practical  point  of  view,  whipping  up  a  function  on  the  fly  is  a  very  nice  thing  in  a
language  centered  around  functions.  Whenever  you  write  something  like  {#1+#2}&
(i.e.,  an  anonymous  function  that  takes  two  arguments  and  produces  a  list
containing their sum), you are using Mathematica’s syntax for a lambda function or,
in Mathematica speak, a Function[].

Functional languages are also distinguished as being strict versus nonstrict. In a strict
language,  arguments  to  functions  are  evaluated  immediately,  whereas  nonstrict
languages  use  lazy  evaluation  to  evaluate  expressions  passed  as  arguments  only
when those  values  are  needed.  Mathematica  is  generally  a  strict  language and does
not  provide  for  automatic  lazy  evaluation.  However,  some  nonstrictness  exists  by
the availability of Hold and the attributes HoldAll, HoldFirst, and HoldRest. These are
not the same as lazy evaluation: they allow expressions to be passed in unevaluated
form, but the programmer largely controls whether a held expression gets evaluated
(e.g., by using ReleaseHold[] in the case of an explicit Hold[]).

Another rather technical feature of modern functional languages is their support for
currying. This is a feature that applies a function to multiple arguments individually.
For example, a function of two arguments, A and B, is applied to A, returning a new
function  that  is  then  applied  to  B  to  return  a  value.  This  definition  can  clearly  be
extended  to  functions  that  take  any  number  of  arguments.  Some  languages  that
explicitly  support  currying  are  Haskell  and  ML.  You  will  not  find  references  to
currying in Mathematica documentation, but the feature is essentially present, and I
discuss it in Recipe 2.15. 

Finally, modern functional languages often support closures  (a function executed in
an environment that can access previously bound local values) and continuations (a
value representing the rest  of  a computation that can be completed later).  Closures
are discussed in Recipe 2.14.

2.1 Mapping Functions with More Than 
One Argument
Problem
You  need  to  map  a  function  over  a  list  containing  sublists  whose  values  are  argu-
ments to the function. 
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Solution
Use a Map-Apply idiom. A very simple example of this problem is when you want to
sum the sublists.

In[18]:= MapAIApply@Plus, ÒDM &, 881, 2, 3<, 84, 5, 6, 7, 8<, 89, 10, 11, 12<<E

Out[18]= 86, 30, 42<

This can be abbreviated to:

In[19]:= Plus üü Ò & êü 881, 2, 3<, 84, 5, 6, 7, 8<, 89, 10, 11, 12<<

Out[19]= 86, 30, 42<

Discussion
Although  the  solution  seems  very  simple,  this  problem  arises  quite  frequently  in
more complicated guises,  and you should learn to recognize it  by studying some of
the following more interesting examples.

Consider a structure representing an order for some product with the form order[sku,
qty,price].  Now  imagine  you  have  a  list  of  such  orders  along  with  a  function  for
computing the total  cost of an order.  Given a list  of orders,  you want to produce a
list  of  their  costs.  The  situation  is  a  bit  tricky  because  our  function  does  not  care
about the sku, and rather than a list of lists we have a list of order[]. Even with these
differences you still have the same basic problem. Recall that Apply does not necessar-
ily require an expression whose head is List; it will work just as well with any head,
such as  order.  Also,  using compOrderTotCost  we can easily  preprocess  each order to
extract just the elements needed.

In[20]:= compOrderTotCostAqty_, price_E := qty * price

MapAIApply@compOrderTotCost, Rest@ÒDDM &, 8order@"sku1", 10 , 4.98D,

order@"sku2", 1 , 17.99D, order@"sku3", 12, 0.25D<E

Out[21]= 849.8, 17.99, 3.<

This solution is still a bit contrived because both qty and price within order were
adjacent at the end of order, so Rest made it easy to grab the needed values. The
real world is rarely that accommodating. Let’s complicate the situation a bit by intro-
ducing  another  element  to  order  that  represents  a  discount  percent:  order[sku,
disc%,qty,price].  Here you use Apply  with a function that  takes slot  specifications
(#n) to pick out the proper arguments. The convention is that #n stands for the nth
argument and # by itself is short for #1.
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In[22]:= compDiscOrderTotCostAqty_, price_, disc_E :=

qty * price * H1.0 - discê100.0L

MapAIApply@compDiscOrderTotCost@Ò3, Ò4, Ò2D &, ÒDM &,

8order@"sku1", 5, 10 , 4.98D,

order@"sku2", 0, 1 , 17.99D, order@"sku3", 15, 12, 0.25D<E

Out[23]= 847.31, 17.99, 2.55<

There is another version of Apply that takes a level specification as a third argument.
If we use this version, we can often get the same effect without explicitly using Map. 

In[24]:= Apply@Plus@ÒÒD &, 881, 2, 3<, 84, 5, 6, 7, 8<, 89, 10, 11, 12<<, 81<D

Out[24]= 86, 30, 42<

Here we apply Plus using level specification {1} that restricts Apply to level one only.
This uses ## (slot sequence) to pick up all elements at this level. There is also a short-
cut operator, @@@, for this case of applying a function to only level one. In this case,
you can also dispense with ## to create a very concise expression.

In[25]:= Plus üüü 881, 2, 3<, 84, 5, 6, 7, 8<, 89, 10, 11, 12<<

Out[25]= 86, 30, 42<

You will  need  slot  sequence  if  you  want  to  pass  other  arguments  in.  For  example,
consider the following variations.

In[26]:= Plus@1, ÒÒD & üüü 881, 2, 3<, 84, 5, 6, 7, 8<, 89, 10, 11, 12<<

Out[26]= 87, 31, 43<

This says to produce the sum of each list and add in the element (hence, you use the
second element twice in the sum).

In[27]:= Plus@Ò2, ÒÒD & üüü 881, 2, 3<, 84, 5, 6, 7, 8<, 89, 10, 11, 12<<

Out[27]= 88, 35, 52<

This leads to a simplified version of the discounted order example. 

In[28]:= compDiscOrderTotCost@ Ò3, Ò4, Ò2D & üüü 8order@"sku1", 5, 10 , 4.98D,

order@"sku2", 0, 1 , 17.99D, order@"sku3", 15, 12, 0.25D<
Out[28]= 847.31, 17.99, 2.55<

If the lists are more deeply nested, you can use larger level specifications to get the re-
sult you want. Imagine the order being nested in an extra structure called envelope.

In[29]:= Apply@compDiscOrderTotCost@ Ò3, Ò4, Ò2D &,

8envelope@1, order@"sku1", 5, 10 , 4.98DD,

envelope@2, order@"sku2", 0, 1 , 17.99DD,

envelope@3, order@"sku3", 15, 12, 0.25DD<, 82<D
Out[29]= 8envelope@1, 47.31D, envelope@2, 17.99D, envelope@3, 2.55D<

The same result is obtained using Map-Apply because Map takes level specifications as
well.
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The same result is obtained using Map-Apply because Map takes level specifications as
well.

In[30]:= MapAIApply@compDiscOrderTotCost@ Ò3, Ò4, Ò2D &, ÒDM &,

8envelope@1, order@"sku1", 5, 10 , 4.98DD,

envelope@2, order@"sku2", 0, 1 , 17.99DD,

envelope@3, order@"sku3", 15, 12, 0.25DD<, 82<E

Out[30]= 8envelope@1, 47.31D, envelope@2, 17.99D, envelope@3, 2.55D<

Of course, you probably want to discard the envelope. This can be done with a part
specification [[All,2]], which means all parts at the first level but only the second ele-
ment of each of these parts.

In[31]:= MapAIApply@compDiscOrderTotCost@ Ò3, Ò4, Ò2D &, ÒDM &,

8envelope@1, order@"sku1", 5, 10 , 4.98DD,

envelope@2, order@"sku2", 0, 1 , 17.99DD,

envelope@3, order@"sku3", 15, 12, 0.25DD<, 82<E@@All, 2DD

Out[31]= 847.31, 17.99, 2.55<

The  following  does  the  same  thing  using  only  Map,  Apply,  and  a  prefix  form of  Map
that brings the level  specification closer.  There are a lot of  #  symbols flying around
here, and one of the challenges of reading code like this is keeping track of the fact
that # is different in each function. I don’t necessarily recommend writing code this
way if  you want others to understand it,  but you will  see code like this and should
be able to read it. 

In[32]:= Part@Ò, 2D & êü

Map@compDiscOrderTotCost@ Ò3, Ò4, Ò2D & üü Ò &, Ò, 82<D &ü

8envelope@1, order@"sku1", 5, 10 , 4.98DD,

envelope@2, order@"sku2", 0, 1 , 17.99DD,

envelope@3, order@"sku3", 15, 12, 0.25DD<
Out[32]= 847.31, 17.99, 2.55<

With  some  practice,  this  expression  translates  rather  easily  to  English  as  “take  the
second element of each element produced by applying compDiscOrderTotCost at level
two over the list of enveloped orders.”

See Also
Slots  (#)  and  slot  sequences  (##)  are  discussed  in  tutorial/PureFunctions  in
the documentation.
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2.2 Holding Arbitrary Arguments
Problem
You want to create a function that holds arguments in different combinations than
provided by HoldFirst and HoldRest.

Solution
Use Hold in the argument list. Here I create a function called arrayAssign whose ob-
jective is  to accept a symbol that is  associated with a list,  an index (or Span),  and a
second symbol associated with another list.  The result  is  the assignment of  the ele-
ments of array2 to array1 that are specified by index. For this to work, arguments a
and b must remain held but aIndex should not.

In[33]:= array1 = Table@0, 810<D; array2 = Table@1, 810<D;

arrayAssignAHoldAa_SymbolE, aIndex_, HoldAb_SymbolE, bIndex_E :=

Module@8<,

a@@aIndexDD = b@@bIndexDD;

a@@aIndexDDD

H*Assign elements 2 through 3 in array 2 to array 1.*L

arrayAssignAHoldAarray1E, 2 ;; 3, HoldAarray2E, 1E;

array1

Out[36]= 80, 1, 1, 0, 0, 0, 0, 0, 0, 0<

Discussion
The attributes HoldFirst, HoldRest, and HoldAll fill the most common needs for creat-
ing functions that don’t evaluate their arguments. However, if your function is more
naturally  implemented  by  keeping  other  combinations  of  variables  unevaluated,
then you can use Hold directly. Of course, you need to use Hold at the point of call,
but by also putting Hold in the arguments of the implementation, you ensure the func-
tion  will  only  match  if  the  Holds  are  in  place  on  the  call  and  you  also  unwrap  the
hold contents immediately without causing evaluation.

See Also
The attributes HoldFirst, HoldRest, and HoldAll are explained in the “Introduction”
on page 30.
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2.3 Creating Functions That Automatically Map 
Over Lists
Problem
You want to write functions that act as if they are being called Map[f, list].

Solution
A Mathematica attribute called Listable  indicates a function that should automati-
cally be threaded over lists that appear as its arguments. 

In[37]:= SetAttributesAmyListableFunc, ListableE

myListableFunc@x_D := x + 1

myListableFunc@81, 2, 3, 4<D

Out[39]= 82, 3, 4, 5<

Discussion
Log and D are examples of built-in Mathematica functions that are listable. Listability
also works for operators used in prefix, infix, and postfix notation.

In[40]:= 810, 20, 30<^83, 2, 1<

Out[40]= 81000, 400, 30<

In[41]:= 81ê2, 1ê3, 1ê5, Sqrt@2D< êê N

Out[41]= 80.5, 0.333333, 0.2, 1.41421<

Listable  has  a  performance  advantage  over  the  explicit  use  of  Map,  so  is  recom-
mended if the function will often be applied to vectors and matrices.

In[42]:= TimingALog@RandomReal@81, 1000<, 1000000DDE@@1DD

Out[42]= 0.057073

In[43]:= TimingAMapALog, RandomReal@81, 1000<, 1000000DEE@@1DD

Out[43]= 0.14031
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2.4 Mapping Multiple Functions in a Single Pass
Problem
You want to map several functions over elements of a list in a single pass.

Solution
There is no need to make multiple passes over a list when using Map[]. In this example we
compute a table that relates each number to its square and cube in a single pass.

In[44]:= 8Ò, Ò^2, Ò^3< & êü 81, 7, 3, 8, 5, 9, 6, 4, 2< êê TableForm

Out[44]//TableForm=
1 1 1

7 49 343

3 9 27

8 64 512

5 25 125

9 81 729

6 36 216

4 16 64

2 4 8

Here we map several  functions over a  generated list  and add the individual  results;
structurally, this is the same solution. 

In[45]:= Sin@ÒD^2 + Ò Cos@2 ÒD & êü Table@N@1êi PiD, 8i, 16, 1, -1<D

Out[45]= 80.219464, 0.23456, 0.251693, 0.271252, 0.293712, 0.319635, 0.349652, 0.384378,

0.424127, 0.468077, 0.511799, 0.539653, 0.5, 0.226401, -0.570796, 3.14159<

Here, since Table is already being used, it would be easier to write Table[With[{p =
N[1/i Pi]}, Sin[p]^2 + p Cos[2 p]], {i, 16, 1, -1}], but that misses the point.
I am using Table because I need a list, but imagine the list was a given. Map applies to cases
for which you are given a list  and need to create a new list,  whereas Table  is  better
used when you are generating the list on the fly.

Discussion
Once you become comfortable with functional programming, you will find all sorts
of really nice applications of this general pattern. Here is a slick little demonstration bor-
rowed from the Mathematica documentation for visually identifying the first 100 primes.
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In[46]:= GridAPartitionAIf@PrimeQ@ÒD, Framed@ÒD, ÒD & êü Range@100D, 20EE

Out[46]=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

In the following, I apply the technique twice to create a presentation that shows the
first 12 regular polygons, with the number of sides and the interior angles in degrees
displayed in the center. 

In[47]:= angles = Table@i 2 Piên, 8n, 3, 14<, 8i, 0, n - 1< D;

GraphicsA9EdgeForm@8Thin, Black<D,

FaceForm@WhiteD, Polygon@ÒD, InsetA9Length@ÒD,

IPi - VectorAngle@Ò@@1DD, Ò@@2DDDMë Degree=E=E & êü

MapAN@8Sin@ÒD, Cos@ÒD<D &, angles, 82<E êê

Partition@Ò, 4D & êê GraphicsGridAÒ, Frame Ø All, ImageSize Ø 500E &

Out[47]=

83, 60.< 84, 90.< 85, 108.< 86, 120.<

87, 128.571< 88, 135.< 89, 140.< 810, 144.<

811, 147.273< 812, 150.< 813, 152.308< 814, 154.286<

The first step is to generate a list of lists using Table. The innermost list (rows below)
contains n  equally  spaced angles about a circle where n  varies  between 3 and 14.  We
can see this by inspecting angles in tabular form. Here, using Map is superior to Table
if you want to use the computed table of angles in further steps in the computation.
In my case, I just want to display them.
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The first step is to generate a list of lists using Table. The innermost list (rows below)
contains n  equally  spaced angles about a circle where n  varies  between 3 and 14.  We
can see this by inspecting angles in tabular form. Here, using Map is superior to Table
if you want to use the computed table of angles in further steps in the computation.
In my case, I just want to display them.

In[48]:= TableFormAangles, TableSpacing Ø 81, 2<E

Out[48]//TableForm=
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Since Polygon requires points, I compute them by mapping the Sin and Cos functions
in parallel over each sublist by giving a level specification of {2} to Map. I show only
the first three results below for sake of space.

In[49]:= Map@N@8Sin@ÒD, Cos@ÒD<D &,

Table@i 2 Piên, 8n, 3, 14<, 8i, 0, n - 1< D, 82<D@@1 ;; 3DD êê Column

Out[49]=

880., 1.<, 80.866025, -0.5<, 8-0.866025, -0.5<<

880., 1.<, 81., 0.<, 80., -1.<, 8-1., 0.<<

880., 1.<, 80.951057, 0.309017<, 80.587785, -0.809017<,

8-0.587785, -0.809017<, 8-0.951057, 0.309017<<

The next pass uses the technique to create both the polygon and the inset with the
number  of  sides  and  the  interior  angles.  The  use  of  Partition  and  GraphicsGrid  is
solely for formatting purposes.
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See Also
See Recipe 2.5 for a variation of Map called MapIndexed that gives you the position of
an element as a second argument.

2.5 Keeping Track of the Index of Each Item 
As You Map
Problem
You want to apply a function over a  list  as  with Map  (/@),  but the function requires
the position of the item in the list in addition to its value.

Solution
Use  MapIndexed  instead  of  Map.  Keep  in  mind  that  MapIndexed  wraps  the  index  in  a
list,  so  a  common  idiom  is  to  use  First[#2]  to  access  the  index  directly.  To  show
this, I first use an undefined function ff before showing a more useful application. 

In[50]:= Clear@ffD;

MapIndexed@ff@Ò1, First@Ò2DD &, 8a, b, c, d, e<D
Out[51]= 8ff@a, 1D, ff@b, 2D, ff@c, 3D, ff@d, 4D, ff@e, 5D<

Imagine  you  want  to  raise  the  elements  of  a  list  to  a  power  based  on  its  position.
You could not easily do this with Map, but MapIndex makes it trivial.

In[52]:= MapIndexed@Ò1^First@Ò2D &, 82, 0, 7, 3<D

Out[52]= 82, 0, 343, 81<

This  is  not  so  contrived  if  you  consider  the  problem  of  converting  a  list  to  a
polynomial.

In[53]:= Plus üü MapIndexed@Ò1 x^First@Ò2D &, 82, 0, 7, 3<D

Out[53]= 2 x + 7 x3 + 3 x4

Discussion
Although MapIndexed is used less frequently than Map, it is a godsend when you need
it,  since  it  avoids  the need to return to  a  procedural  style  when you want  the posi-
tion. I think you might agree the following procedural implementation is a bit uglier.
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In[54]:= BlockA9poly = 0,

list = 82, 0, 7, 3<=,

DoA

poly = poly + list@@iDD x^i,

9i, 1, Length@listD=

E;

polyE

Out[54]= 2 x + 7 x3 + 3 x4

You may find it  curious that MapIndexed  wraps the position in a list,  forcing you to
use  First  to  extract  the  index.  There  is  a  good  reason  for  this  convention:  MapIn-
dexed easily generalizes to nested lists such as matrices where the position has multi-
ple  parts.  Here  we  use  a  variant  of  MapIndexed  that  takes  a  level  specification  as  a
third  argument  indicating  the  function  ff  should  map  over  the  items  at  level  two.
Here two integers are required to specify the position; thus, the list convention
immediately makes sense.

In[55]:= MapIndexedAff@Ò1, Ò2D &, 98a, b, c<, 8d, e, f<, 9g, h, i==, 82<E

Out[55]= 98ff@a, 81, 1<D, ff@b, 81, 2<D, ff@c, 81, 3<D<,

8ff@d, 82, 1<D, ff@e, 82, 2<D, ff@f, 82, 3<D<,

9ffAg, 83, 1<E, ff@h, 83, 2<D, ff@i, 83, 3<D==

As an application, consider a function for reading the positions of pieces on a chess-
board.  The  board  is  a  matrix  with  empty  spaces  designated  by  0  and  pieces  desig-
nated by letters with subscripts B for black and W for white. We implement a func-
tion  piecePos  that  can  convert  a  piece  and  its  position  into  a  description  that  uses
algebraic chess notation.
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In[56]:= Clear@piecePosD

chessboard = 8

80, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0<,

8NB, PW, NW, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0<,

80, 0, QW, 0, 0, 0, 0, 0<,

8KB, 0, 0, 0, 0, 0, 0, 0<

<;

toColor@BD = "Black";

toColor@WD = "White";

toPosA9x_, y_=E :=

ModuleA9file = 9"a", "b", "c", "d", "e", "f", "g", "h"==,

fileAAyEE <> ToString@xDE

piecePosAPc_, pos_E := 8toColor@cD, " Pawn ", toPos@posD<

piecePosANc_, pos_E := 9toColor@cD, " Knight ", toPos@posD=

piecePosABc_, pos_E := 8toColor@cD, " Bishop ", toPos@posD<

piecePosARc_, pos_E := 8toColor@cD, " Rook ", toPos@posD<

piecePosAQc_, pos_E := 8toColor@cD, " Queen ", toPos@posD<

piecePosAKc_, pos_E := 9toColor@cD, " King ", toPos@posD=

piecePos@0, _D := Sequence@D

MapIndexed will allow us to use piecePos to describe the whole board. Here, piecePos
converts an empty space to any empty sequence, which Mathematica will automati-
cally remove for us. Flatten is used to collapse unneeded nesting inherited from the
chessboard’s representation as a list of lists.

In[68]:= Flatten@MapIndexed@piecePos, chessboard, 82<D, 1D

Out[68]= 99Black, Knight , a5=, 8White, Pawn , b5<,

9White, Knight , c5=, 8White, Queen , c7<, 9Black, King , a8==

2.6 Mapping a Function over a Moving Sublist
Problem
You  have  a  list  and  wish  to  apply  some  operation  over  a  moving  window  of  fixed
size over that list.
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Solution
Ignoring  available  special  functions  of  Mathematica  for  a  moment,  you  can  attack
this  problem  head-on  by  using  Table  in  conjunction  with  a  Part  and  Span  (i.e.,
[[start;;end]]) to create the moving window (sublist)  and Apply  the desired func-
tion to each sublist. For example, use Mean if you want a moving average.

In[69]:= array = RandomReal@80, 10<, 20D ;

In[70]:= TableAMean üü 9array@@i ;; i + 4DD=, 8i, 1, 16<E

Out[70]= 83.13108, 3.27291, 4.31676, 5.41289, 5.98751, 5.6219, 5.8349, 5.52834,

5.87892, 4.7862, 5.5245, 5.36589, 4.35811, 4.09389, 4.66446, 3.87226<

Here is a variation using Take.

In[71]:= TableAMean üü 9TakeAarray, 8i, i + 4<E=, 8i, 1, 16<E

Out[71]= 83.13108, 3.27291, 4.31676, 5.41289, 5.98751, 5.6219, 5.8349, 5.52834,

5.87892, 4.7862, 5.5245, 5.36589, 4.35811, 4.09389, 4.66446, 3.87226<

A nonmathematical example uses the same technique to create successive pairs.

In[72]:= TableAList üü array@@i ;; i + 1DD, 8i, 1, 16<E

Out[72]= 885.14848, 4.21272<, 84.21272, 0.968604<,

80.968604, 2.94497<, 82.94497, 2.38062<, 82.38062, 5.85762<,

85.85762, 9.43197<, 89.43197, 6.44928<, 86.44928, 5.81804<,

85.81804, 0.552592<, 80.552592, 6.92264<,

86.92264, 7.89915<, 87.89915, 8.20219<, 88.20219, 0.354432<,

80.354432, 4.24409<, 84.24409, 6.12958<, 86.12958, 2.86026<<

Discussion
The solution illustrates the basic idea, but it is not very general because the function
and window size are hard coded. You can generalize the solution like this:

In[73]:= moving@f_, expr_, n_D := ModuleA9len = Length@exprD, windowEnd =,

windowEnd = Min@n, lenD - 1;

TableAApply@f, 8expr@@i ;; i + windowEndDD<D, 8i, 1, len - windowEnd<EE

Note that there is a built-in function, MovingAverage, that computes both simple and
weighted  moving  averages.  There  is  also  a  MovingMedian.  You  should  use  these  in-
stead of the solution given here if they are appropriate for what you need to compute.

Two special functions in Mathematica, ListConvolve and ListCorrelate, present the most
general way to perform computations on sublists. These functions contain a myriad
of variations, but it is well worth the added effort to familiarize yourself with them. I
will present only ListConvolve because anything you can compute with one you can
compute  with  the  other,  and  the  choice  is  just  a  matter  of  fit  for  the  specific  problem.
Let’s ease in slowly by using ListConvolve to implement a moving average.
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In[74]:= movingAvg@list_, n_D := ListConvolve@Table@1ên, 8n<D, listD

In[75]:= movingAvgAarray, 5E

Out[75]= 83.13108, 3.27291, 4.31676, 5.41289, 5.98751, 5.6219, 5.8349, 5.52834,

5.87892, 4.7862, 5.5245, 5.36589, 4.35811, 4.09389, 4.66446, 3.87226<

The first argument to ListConvolve is called the kernel. It is a list that defines a set of
values  that  determines  the  length  of  the  sublists  and  factors  by  which  to  multiply
each element in the sublist. After the multiplication, each sublist is summed. This is
shown more easily using symbols.

In[76]:= ListConvolve@81, 1<, 8a, b, c, d, e<D

Out[76]= 8a + b, b + c, c + d, d + e<

Here I use a simple kernel {1,1},  which implies sublists will be size 2 and each ele-
ment will  simply be itself  (because 1 is  the identity).  This  yields a  list  of  successive
sums. In the moving average, the kernel was simply 1/n  repeated n  times since this
results in the mean.

In[77]:= ListConvolve@81, 1<ê2, 8a, b, c, d, e<D

Out[77]= :
a

2
+

b

2
,
b

2
+

c

2
,
c

2
+

d

2
,
d

2
+

e

2
>

It’s  easy  to  see  how  using  an  appropriate  kernel  gives  a  weighted  moving  average,
but I won’t continue in this vein, because my goal is to demonstrate the generality of
ListConvolve and, as I already said, MovingAverage does the trick. 

The first bit of generality comes from Mathematica adding a third argument to List-
Convolve that can be an integer k or a list {kL,kR}. Since using just k is equivalent to
using {k,k}, I’ll only discuss the later case. It is best to start with some examples.

In[78]:= ListConvolve@81, 1<, 8a, b, c, d, e<, 81, 1<D

Out[78]= 8a + e, a + b, b + c, c + d, d + e<

In[79]:= ListConvolve@81, 1<, 8a, b, c, d, e<, 81, -1<D

Out[79]= 8a + e, a + b, b + c, c + d, d + e, a + e<

Hopefully you can guess the meaning of {kL,kR}; kL tells ListConvolve how much to
overhang the kernel on the left of the list, and kR tells it how much to overhang the
kernel on the right.  Hence, it  tells  ListConvolve  to treat the list  as circular.  The de-
fault value is {-1,1}, which means no overhang on either side. 

Sometimes you do not want to treat the lists as circular, but rather as padded; hence,
ListConvolve takes a fourth argument that specifies the padding. 

In[80]:= ListConvolve@81, 1<, 8a, b, c, d, e<, 81, -1<, 1D

Out[80]= 81 + a, a + b, b + c, c + d, d + e, 1 + e<

I’ve  rushed  through  these  features  a  bit  because  the  Mathematica  documentation
can fill  you in on the details  and because my real  goal  is  to arrive at  the version of
ListConvolve that takes a fifth and sixth argument. This takes us back to the theme
of this recipe, which is the idea of mapping arbitrary functions over moving sublists.
Thus  far,  ListConvolve  has  been  about  mapping  a  very  specific  function,  Plus,
across  a  sublist  defined by  a  kernel,  which defines  both  the  length  of  the  sub-
list  (matches length of  kernel)  and a set  of  weights to Times  the individual  ele-
ments  (the  elements  of  the  kernel).  The  fifth  argument  allows  you  to  replace
Times  with an arbitrary function, and the sixth argument allows you to replace
Plus with an arbitrary function.
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I’ve  rushed  through  these  features  a  bit  because  the  Mathematica  documentation
can fill  you in on the details  and because my real  goal  is  to arrive at  the version of
ListConvolve that takes a fifth and sixth argument. This takes us back to the theme
of this recipe, which is the idea of mapping arbitrary functions over moving sublists.
Thus  far,  ListConvolve  has  been  about  mapping  a  very  specific  function,  Plus,
across  a  sublist  defined by  a  kernel,  which defines  both  the  length  of  the  sub-
list  (matches length of  kernel)  and a set  of  weights to Times  the individual  ele-
ments  (the  elements  of  the  kernel).  The  fifth  argument  allows  you  to  replace
Times  with an arbitrary function, and the sixth argument allows you to replace
Plus with an arbitrary function.

Here  is  the  pair  extraction  function  from the  solution  implemented  using  ListCon-
volve,  shown here but using strings to emphasize that we don’t necessarily need to
do  math.  I  replace  Times  with  the  function  #2&,  which  simply  ignores  the  element
from the kernel, and I replace Plus with List because that will form the pairs.

In[81]:= list = 9"foo", "bar", "baz", "bing"=;

ListConvolve@81, 1<, list, 8-1, 1<, 8<, Ò2 &, ListD
Out[82]= 98foo, bar<, 8bar, baz<, 9baz, bing==

But  sometimes  you can make nice  use  of  the  kernel  even in  nonmathematical  con-
texts.  Here  we  hyphenate  pairs  using  StringJoin  with  input  kernel  strings  {"-",""}
(consider that "" is the identity for string concatenation).

In[83]:= ListConvolveA8"-", ""<, list, 8-1, 1<, 8<, StringJoin, StringJoinE

Out[83]= 9foo-bar, bar-baz, baz-bing=

Let’s  consider  another  application.  You  have  a  list  of  points  and  want  to  compute
the distances between successive pairs. This introduces a new wrinkle because the in-
put list is two levels deep. ListConvolve assumes you want to do a two-dimensional
convolution  and  will  complain  that  the  kernel  does  not  have  the  same  rank  as  the
list. Luckily, you can tell ListConvolve to remain on the first level by specifying a fi-
nal (seventh) argument.

In[84]:= points = RandomReal@8-1, 1<, 820, 2<D;

ListConvolve@81, 1<, points, 8-1, 1<, 8<, Ò2 &, EuclideanDistance, 1D
Out[85]= 81.49112, 0.764671, 0.789573, 0.941825, 0.933473, 1.05501,

1.21181, 0.827185, 1.25728, 0.365742, 0.62815, 1.88344, 0.741821,

1.13765, 0.719799, 0.643237, 1.60263, 0.93153, 1.33332<

Taking three points at a time, you can compute the area of successive triangles and
draw them as well!
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In[86]:= triareaA9xA_, yA_=, 9xB_, yB_=, 9xC_, yC_=E :=

AbsAIxB*yA - xA*yBM + IxC*yB - xB*yCM + IxA*yC - xC*yAMEë 2

ListConvolve@81, 1, 1<, points, 8-1, 1<, 8<, Ò2 &, triarea, 1D
Out[87]= 80.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,

0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,

0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845<

In[88]:= ListConvolveA81, 1, 1<, points,

8-1, 1<, 8<, Ò2 &, Polygon@8ÒÒ<D &, 1E êê GraphicsA

9EdgeForm@BlackD, FaceForm@WhiteD, Opacity@0.5D, Ò=, ImageSize Ø SmallE &

Out[88]=

There is something a bit awkward about ListConvolve use cases where we essentially
ignore the kernel. Readers familiar with the function Partition will immediately see
a much shorter variation.

In[89]:= triarea üüü Partition@ points, 3, 1D

Out[89]= 80.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,

0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,

0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845<

Partition  and ListConvolve  have many similar features, and with a bit  of program-
ming,  you  can  implement  ListConvolve  in  terms  of  Partition  and  vice  versa.  The
one observation I  can make in favor of  ListConvolve  is  that it  does the partitioning
and function application in one fell swoop. This inspires the following compromise.

In[90]:= partitionApply@func_, list_, n_D :=

ListConvolveAArray@1 &, nD, list, 8-1, 1<, 8<, Ò2 &, func, 1E
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Above,  Array  is  used to generate  a  kernel  of  the required size  where 1&  is  the func-
tion that always returns 1.  

In[91]:= partitionApply@triarea, points, 3D

Out[91]= 80.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,

0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,

0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845<

But, lo and behold, the function we are looking for is actually buried inside the De-
veloper` package! It’s called Developer`PartitionMap.

In[92]:= Developer`PartitionMap@triarea üü Ò &, points, 3, 1D

Out[92]= 80.549352, 0.064558, 0.31907, 0.228057, 0.308535, 0.561063,

0.0457104, 0.126488, 0.164337, 0.104572, 0.107751, 0.581687,

0.333659, 0.408676, 0.220177, 0.457996, 0.679265, 0.550845<

See Also
I  highly recommend reviewing the documentation for Partition,  ListConvolve,  and
ListCorrelate  in  succession  to  get  insight  into  their  relationships.  I  spent  a  lot  of
time  in  my early  Mathematica  experience  understanding  how to  use  Partition  but
viewing ListConvolve and ListCorrelate as mysterious. If you find a need to use Par-
tition in one of its advanced forms, you might be working on a problem where List-
Convolve or ListCorrelate applies.

ListConvolve  and  ListCorrelate  are  frequently  used  in  image-processing  applica-
tions. See Recipe 8.5. Also see Recipe 2.12, in which I use it for a traveling salesper-
son problem.

2.7 Using Prefix and Postfix Notation 
to Produce More Readable Code
Problem
A complicated piece  of  functional  code  can become deeply  nested  and,  as  a  result,
hard to read. You want to collapse some of these levels of nesting without introduc-
ing intermediate variables.  Of course,  readability  is  in the eye of  the beholder,  so a
closely related problem is making sure you can understand this style when you see it
in the wild.
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Solution
Many  Mathematica  veterans  prefer  a  functional  style  of  programming  that  makes
liberal  use  of  prefix  notation,  which  uses  the  @  symbol  to  compose  functions,  and
postfix  notation,  which  uses  //.  Let’s  consider  a  simple  program  that  looks  for
primes of the form 2n ± 1 up to some limiting value of nmax.

In[93]:= somePrimes@nmax_D :=

Select@Union@Flatten@Table@82^n - 1, 2^n + 1<, 8n, 0, nmax<DDD, PrimeQD;

somePrimes@

5D
Out[94]= 82, 3, 5, 7, 17, 31<

As a first step, you can eliminate some levels of nesting by using @.

In[95]:= somePrimes@nmax_D :=

Select@UnionüFlattenüTable@82^n - 1, 2^n + 1<, 8n, 0, nmax<D, PrimeQD

somePrimes@5D
Out[96]= 82, 3, 5, 7, 17, 31<

You can further emphasize that this program is about finding primes by using func-
tional composition with Select. This brings the PrimeQ test to the front.

In[97]:= somePrimes@nmax_D := Select@Ò, PrimeQD & ü

UnionüFlattenüTable@82^n - 1, 2^n + 1<, 8n, 0, nmax<D

somePrimes@

5D
Out[98]= 82, 3, 5, 7, 17, 31<

The use of postfix is perfectly valid on the left-hand side, although you are less likely
to see this style widely used.

In[99]:= somePrimesünmax_ :=

Select@Ò, PrimeQD & ü UnionüFlattenüTable@82^n - 1, 2^n + 1<, 8n, 0, nmax<D

A functional purist might go further and make somePrimes a pure function, but most
would  agree  this  goes  way  too  far  in  this  instance!  Still,  you  should  know  how  to
read  code  like  this,  because  you  will  come  across  it,  and  there  are  cases  where  it
makes sense.

In[100]:= Clear@somePrimesD;

somePrimes = HSelect@Ò, PrimeQD & ü

UnionüFlattenüTable@82^n - 1, 2^n + 1<, 8n, 0, Ò<DL &;

somePrimes@

5D
Out[102]= 82, 3, 5, 7, 17, 31<
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Discussion
The uninitiated could make an argument that the first form of somePrimes was more
understandable  to  them than any of  the  later  ones.  First,  let  me  say  that  there  is
no reward in heaven for coding in a specific style, so don’t feel the need to conform
to a particular fashion. Your programs won’t run faster just because you use a terser
syntax. Having said that, I now defend the merits of this particular style. Let me re-
peat the version that I think strikes the right balance.

In[103]:= Clear@somePrimesD;

somePrimes@nmax_D :=

Select@Ò, PrimeQD & ü UnionüFlattenüTable@82^n - 1, 2^n + 1<, 8n, 0, nmax<D

First,  use  of  symbols  like  @  should  not  be  a  real  barrier.  After  all,  such  symbolic
forms of expression are pervasive. Every first grader knows what 1 + 1 or $15 means. Sym-
bolic operators are not inherently mysterious after you are exposed to them. 

However, the primary goal and claim is readability. This expression can be read as “select
the primes of the union of the flattening of the table of pairs {2^n-1, 2^n+1} with n ranging
from 0 to nmax”. As I stated in the solution, the most relevant aspect of this program is that
it selects primes. Having a language that gives you the freedom to express programs in a
way that emphasizes their function is really quite liberating in my opinion. 

The flip side of emphasis by pushing functions forward is deemphasis by pushing an-
cillary detail toward the end. This is one of the roles of postfix //. Common uses include
formatting and timing. Here the main idea is taking the last value of somePrime[500].
The fact that you are interested in the timing is likely an afterthought, and you may
delete that at some point. Placing it at the end makes it easy to remove.

In[105]:= LastüsomePrimes@500D êê Timing

Out[105]= 80.113328, 170141183460469231731687303715884105727<

Likewise,  formatting  is  a  convention  that  does  not  change  meaning,  so  most  users
tag formatting directives at the end.

In[106]:= 10.00 + 12.77 - 36.00 - 42.01 êê AccountingForm
Out[106]//AccountingForm=

H55.24L

Note that @ has high precedence and associates to the right, whereas // has low prece-
dence and associates  to  the left.  The precedence is  suggested by the way the front-
end typesets expressions with @  containing no space to suggest tight binding, while
// expressions are spaced out to suggest loose binding and lower precedence. 

In[107]:= aübüc êê füd êê e

Out[107]= e@f@dD@a@b@cDDDD

It’s worth mentioning that Postfix and Prefix will convert standard functional form
to the shortened versions.
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It’s worth mentioning that Postfix and Prefix will convert standard functional form
to the shortened versions.

In[108]:= Prefix@f@1DD

Out[108]= Prefix@1D

In[109]:= Postfix@f@1DD

Out[109]= Postfix@1D

See Also
Additional  perspectives  on  this  notation  can  be  found  in  the  essay  The  Con-
cepts and Confusions of  Prefix,  Infix,  Postfix and Fully Nested Notations  by Xah Lee
at http://bit.ly/t6GoC.

Readers  interested  in  functional  programming  styles  should  google  the  term  Point-
free  to  learn  how  the  ideas  discussed  here  manifest  themselves  in  other  languages,
such as Haskell.

2.8 Defining Indexed Functions
Problem
You want to define a family of functions differentiated by an index or indices.

Solution
Use indexed heads or subscripts.

In[110]:= ClearAll@fD ;

f@1DAx_, y_E := 0.5 * Ix + yM

f@2DAx_, y_E := 0.5 * Ix - yM

f@3DAx_, y_E := 0.5 * Iy - xM

In[114]:= TableAfARandomInteger@81, 3<DE@3, 2D, 8i, 6<E

Out[114]= 82.5, -0.5, -0.5, -0.5, 2.5, 0.5<

The mathematician in you might prefer using subscripts instead.

In[115]:= ClearAll@fD ;

f1Ax_, y_E := 0.5 * Ix + yM

f2Ax_, y_E := 0.5 * Ix - yM

f3Ax_, y_E := 0.5 * Iy - xM

In[119]:= fRandomInteger@81,3<D@3, 2D

Out[119]= 0.5

Discussion
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Discussion
In Stan Wagon’s Mathematica in Action (W.H. Freeman), there is a study of iterated
function  systems  that  are  nicely  expressed  in  terms  of  indexed  functions.  This  is  a
variation  of  his  code  that  takes  advantage  of  the  new  RandomChoice  function  in
Mathematica 6. The fernlike structure emerges out of a nonuniform distribution of
function selections.

In[120]:= ClearAll@fD

f@1DA9x_, y_=E := DotA880.85, 0.04<, 8-0.04, 0.85<<, 9x, y=E + 80, 1.6<

f@2DA9x_, y_=E := DotA88-0.15, 0.28<, 80.26, 0.24<<, 9x, y=E + 80, 0.44<

f@3DA9x_, y_=E := DotA880.2, -0.26<, 80.23, 0.22<<, 9x, y=E + 80, 1.6<

f@4DA9x_, y_=E := DotA880.0, 0.0<, 80.0, 0.16<<, 9x, y=E

ff@p_D := f@RandomChoice@885, 7, 7, 1< Ø 81, 2, 3, 4<DD@pD

fern@n_D :=

GraphicsA8AbsolutePointSize@0.5D, Point êü NestList@ff, 80, 0<, nD<,

PlotRange Ø 88-3, 3<, 8-1, 11<<, AspectRatio Ø 0.83, ImageSize Ø SmallE

In[127]:= fern@10000D

Out[127]=

You  are  not  restricted  to  indexing  functions  by  integers.  Here  are  some  variations
that are possible.

In[128]:= g@1, 1DAx_, y_E := x + 2 y

g@weirdDAx_, y_E := ExpASin@xD TanAyEE

g@1 + 2 ID := x + 2 y I
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2.9 Understanding the Use of Fold As an 
Alternative to Recursion
Problem
You want to understand and create programs that use Fold[] as an alternative to ex-
plicit recursion.

Solution
Consider the following simple recursive definition for a summation function.

In[131]:= mySum@8<D := 0

mySum@l_D := First@lD + mySum@Rest@lDD

In[133]:= mySum@81, 2, 3, 4, 5<D

Out[133]= 15

This  function  can  easily  be  translated  to  a  nonrecursive  implementation  that  uses
Fold[].

In[134]:= mySum2@l_D := Fold@Ò1 + Ò2 &, 0, lD

In[135]:= mySum@81, 2, 3, 4, 5<D

Out[135]= 15

Discussion
The function Fold[f, x, {a1,a2,...,aN}]  computes  f[f[f[x,a1],a2],...,aN].  It  is
a simple enough definition to understand, but it is not always clear to the uniniti-
ated when such a function might be useful. It turns out that there is a relation-
ship between Fold and certain common kinds of recursive functions. Consider the
following abstract recursive structure.

g[{}] = x

g[l_] = f[First[l], g[Rest[l]] 

When a function g has this recursive structure in terms of another function f, then it can
easily be translated into a nonrecursive function using Fold, provided f is associative. If f is
not associative, then you may need to reverse the list l before passing to Fold.

g[l_] = Fold[f[#1,#2]&,x,l]

Here is  an example that shows that the functionality of  Map  can be implemented in
terms of Fold. First start with your own recursive definition of Map.

In[136]:= myMap@_, 8<D := 8<

myMap@f_, l_D := PrependAmyMap@f, Rest@lDD, f@First@lDDE

2.9 Understanding the Use of Fold As an Alternative to Recursion | 53



The translation requires reversing the list because prepending the application of f to
a list is clearly not associative.

In[138]:= myMap2@f_, l_D := Fold@Prepend@Ò1, f@Ò2DD &, 8<, Reverse@lDD

Here  is  a  test  of  the  recursive  implementation,  first  on  an  empty  list,  then  on  a
nonempty one.

In[139]:= myMap@Sqrt, 8<D

Out[139]= 8<

In[140]:= myMap@Sqrt, 81, 2, 3, 4<D

Out[140]= :1, 2 , 3 , 2>

Now the Fold version.

In[141]:= myMap2@Sqrt, 8<D

Out[141]= 8<

In[142]:= myMap2@Sqrt, 81, 2, 3, 4<D

Out[142]= :1, 2 , 3 , 2>

Before considering more useful applications of Fold, I need to clear up some poten-
tial confusion with folding implementations from other languages. In Haskell, there
are functions called foldl and foldr, which stand for fold left and fold right, respec-
tively. Mathematica’s Fold is like foldl.

In[143]:= H*This is like Haskell's foldr.*L

foldr@f_, v_, 8<D := v

foldr@f_, v_, l_D := f@First@lD, foldr@f, v, Rest@lDDD

In[145]:= H*This is like Haskell's foldl and Mathematica's Fold.*L

foldl@f_, v_, 8<D := v

foldl@f_, v_, l_D := foldl@f, f@v, First@lDD, Rest@lDD

These  various  folds  will  give  the  same  answer  if  the  function  passed  is  associative
and commutative.

In[147]:= foldr@Plus, 0, 81, 2, 3<D

Out[147]= 6

In[148]:= foldl@Plus, 0, 81, 2, 3<D

Out[148]= 6

In[149]:= Fold@Plus, 0 , 81, 2, 3<D

Out[149]= 6
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To visualize the difference between foldr and foldl, consider the trees produced by
using the List  function. Trees labeled b  and c  are the same, confirming the equiva-
lence of Haskell’s foldl and Mathematica’s Fold.

In[150]:= GridAPartitionAMapIndexedATreeFormAÒ, ImageMargins Ø 1,

ImagePadding Ø 0, PlotLabel Ø Extract@8"a", "b", "c"<, Ò2DE & ,

8foldr@List, 8<, 81, 2, 3<D, foldl@List, 8<, 81, 2, 3<D,

Fold@List, 8<, 81, 2, 3<D<E, 2, 2, 81, 1<, SpanFromLeftEE

Out[150]=

List

1 List

2 List

3 8<

a

List

List

List

8< 1

2

3

b

List

List

List

8< 1

2

3

c

You  can  use  the  relationship  between  Fold  and  recursion  to  analyze  more  compli-
cated use cases. For example, the Mathematica documentation provides an example
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You  can  use  the  relationship  between  Fold  and  recursion  to  analyze  more  compli-
cated use cases. For example, the Mathematica documentation provides an example
of using Fold to find all the unique sums of a list of numbers.

In[151]:= Fold@Union@Ò1, Ò1 + Ò2D &, 80<, 81, 2, 7<D

Out[151]= 80, 1, 2, 3, 7, 8, 9, 10<

When  I  first  saw  this,  it  was  not  immediately  obvious  to  me  why  the  solution
worked. However, by converting to the recursively equivalent solution, it is easier to
analyze what is happening. 

In[152]:= uniqueSums@8<D := 80<

uniqueSums@l_D :=

Union@8First@lD<, uniqueSums@Rest@lDD, First@lD + uniqueSums@Rest@lDDD

In[154]:= uniqueSums@81, 2, 7<D

Out[154]= 80, 1, 2, 3, 7, 8, 9, 10<

The first rule is obvious. The sum of the empty list is zero. The second rule says that
the  unique  sums  of  a  list  are  found by  taking  the  union  of  the  first  element  of  the
list, the unique sums of the rest of the list, and the sum of the first element and the
unique sums of the rest of the list. The last part of the union (First[l] + uniqueSums
[Rest[l]])  provided me with  the  key  insight  into  why this  example  worked.  It  is  a
sum of a scalar and a vector and provides the sum of the first element with all other
combinations  of  sums  of  the  remaining  elements.  It  is  obvious  that  the  recursive
translation,  as  written,  is  suboptimal  because  the  recursive  call  is  made  twice  (this
could easily be fixed with a local variable), but the point here was to use the recur-
sive function as a tool to analyze the meaning of the Fold implementation.

See Also
FoldList is a variant of Fold that returns all intermediate steps of the Fold in a list.
Refer to the Mathematica documentation for details.

Nest  and NestList  also repeatedly apply a function to an expression, but the repeti-
tions are controlled by an integer n. See Recipe 2.11.

NestWhile  and  NestWhileList  apply  a  function  as  long  as  a  test  condition  remains
true. See Recipe 2.11.
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2.10 Incremental Construction of Lists
Problem
You  need  to  build  up  a  list  piece  by  piece  during  an  iterative  or  recursive
computation.

Solution
An obvious solution to this problem is to use the function AppendTo[s, elem]; how-
ever,  AppendTo  should  be  avoided  for  performance  reasons.  Instead,  use  Reap  and
Sow.  Here  is  a  simple  factorial  function that  collects  intermediate  results  using Reap
and Sow.

In[155]:= factorialListAn_Integer ê; n ¥ 0E := Reap@factorialListSow@nDD

factorialListSow@0D := Sow@1D

factorialListSow@n_D := Module@8fact<, Sow@ n * factorialListSow@n - 1DDD

In[158]:= factorialList@8D

Out[158]= 840320, 881, 1, 2, 6, 24, 120, 720, 5040, 40320<<<

Discussion
Reap  and  Sow  cause  confusion  for  some,  possibly  because  there  are  few  languages
that have such a feature built in. Simply think of Reap as establishing a private queue
and each Sow as pushing an expression to the end of that queue. When control exits
Reap, the items are extracted from the queue and returned along with the value com-
puted by the code inside the Reap.  I  don’t claim that Reap  and Sow  are implemented
in this way (they might or might not be), but thinking in these terms will make you
more comfortable with their use.

Reap  and Sow  are  often used as  evaluation-monitoring functions  for  numerical  algo-
rithms. FindRoot, NDSolve, NIntegrate, NMinimize and NSum allow an optional Evaluation-
Monitor or StepMonitor where Reap and Sow can come in handy.
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In[159]:= ModuleA9x, y, f = FunctionA9x, y=, Ix^3 - y^2M^2E=, ReapA

NMinimizeAfAx, yE,

98x, -5, 5<, 9y, -5, 5==, EvaluationMonitor ß SowA9x, y=EEEE

Out[159]= 992.93874µ10-39, 9x$2657 Ø 0.0781025, y$2657 Ø 0.0218272==,

8881.52468, 1.3307<, 81.82813, 0.663518<, 84.35202, 4.76188<,

8-0.999213, -2.76766<, 80.338596, -0.885272<, 80.0351429, -0.218087<,

8-0.861351, -0.65889<, 8-1.15094, -2.43406<, 80.855774, 0.389512<,

80.552321, 1.0567<, 80.392027, -0.39978<, 8-0.428604, -1.00738<,

80.534679, 0.0402892<, 8-0.107509, -0.658156<, 80.374132, -0.134322<,

80.0172481, 0.0473707<, 8-0.170141, 0.270946<, 80.356237, 0.131136<,

8-0.000646785, 0.312828<, 80.280437, -0.0225345<,

8-0.0585518, -0.106299<, 8-0.321741, -0.0363943<,

80.129893, -0.0259995<, 80.205693, 0.127671<, 80.139632, 0.0691781<,

80.252276, -0.00419199<, 80.0760051, 0.03448<, 80.0662664, -0.0606976<,

80.12129, 0.0367092<, 80.0674026, 0.0971887<, 80.11427, 0.00479757<,

80.0830251, 0.0663916<, 80.106459, 0.0201961<, 80.0908364, 0.0509931<,

80.102553, 0.0278953<, 80.147838, 0.0301245<, 80.0939635, 0.0333911<,

80.0752265, 0.0245773<, 80.0521947, 0.0185113<, 80.0666367, 0.0300731<,

80.0935742, 0.0284398<, 80.0748372, 0.0196259<, 80.0931849, 0.0234884<,

80.0797161, 0.0243051<, 80.0886953, 0.0237606<, 80.0819609, 0.024169<,

80.100698, 0.0329828<, 80.0813024, 0.0229651<, 80.0929156, 0.027236<,

80.0846996, 0.0249357<, 80.0901769, 0.0264692<, 80.0860689, 0.0253191<,

80.0737971, 0.0198445<, 80.0785637, 0.0221984<, 80.0908355, 0.027673<,

80.0780567, 0.0218016<, 80.085562, 0.0249223<, 80.0838124, 0.0242413<,

80.0780567, 0.0218016<, 80.0780567, 0.0218016<, 80.0781026, 0.0218272<,

80.0781025, 0.0218272<, 80.0781025, 0.0218272<, 80.0781025, 0.0218272<,

80.0780567, 0.0218016<, 80.0780567, 0.0218016<, 80.0780545, 0.021807<,

80.0780545, 0.021807<, 80.0780545, 0.021807<<<=

Reap and Sow also can be used to build up several lists by specifying tags with Sow and
patterns that match those tags in Reap. Here you create a three-way partitioning func-
tion using an ordering function by sowing values with tags |1, 0, or 1, depending on
the relation.

In[160]:= partition@l_, v_, comp_ D := Flatten êü Reap@

Scan@

Which@comp@Ò, vD, Sow@Ò, -1D,

comp@v, ÒD, Sow@Ò, 1D, True, Sow@Ò, 0DD &, lD,

8-1, 0, 1<D@@2DD

In[161]:= partition@83, 5, 7, 9, 2, 4, 6, 8, 3, 4<, 4, LessD

Out[161]= 883, 2, 3<, 84, 4<, 85, 7, 9, 6, 8<<

Our queue analogy easily  extends to this  case  by assuming Reap  establishes  a  sepa-
rate queue for each pattern and Sow chooses the matching queue.

See Also
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See Also
Reap and Sow are used in the tree traversal algorithms in Recipe 3.11. 

2.11 Computing Through Repeated 
Function Application 
Problem
You want to understand the types of computations you can perform using the Nest
family of functions (Nest, NestList, NestWhile, NestWhileList).

Solution
Many problems require repeated application of a function for a specified number of
times. One example that is familiar to most people is compounded interest.

In[162]:= compoundedInterestAprincipal_, rate_, years_, n_E :=

NestAÒ H1.0 + rateênL &, principal, years nE

As expected, the principal grows in value quicker the more times the interest is com-
pounded per year.

In[163]:= Table@compoundedInterest@1000, 0.05, 10, nD, 8n, 81, 2, 4, 12, 365<<D

Out[163]= 81628.89, 1638.62, 1643.62, 1647.01, 1648.66<

Another  classic  application  is  fractals.  Here  I  use  Nest  to  generate  one  side  of
the Koch snowflake. The rule for creating the snowflake is to take the line seg-
ment,  divide it  into three equal  segments,  rotate  copies  of  the middle  segment
Pi/3  and  -Pi/3  radians  from  their  ends  to  form  an  equilateral  triangle,  and
then  remove  the  middle  section  of  the  original  line  segment.  This  is  imple-
mented  literally (but not efficiently) by iterating a replacement rule using Nest.  We
cover these rules in Chapter 4.
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In[164]:= Clear@koch, snowflakeD

koch@Line@x_DD := WithA9s = ScalingMatrix@81ê3, 1ê3<D,

r1 = RotationMatrix@Piê3D, r2 = RotationMatrix@-Piê3D=,

8 Line@x.sD, Line@x.r1.s + 881ê3, 0<, 81ê3, 0<<D,

Line@x.r2.s + 881ê2, -0.289<, 81ê2, -0.289<<D,

Line@s.x + 882ê3, 0<, 82ê3, 0<<D<E

snowflake@n_D := WithA9g = Graphics@8Line@880, 0<, 81, 0<<D<D=,

NestAÒ ê. Line@x_D ß koch@Line@xDD &, g, nEE

GraphicsGrid@

88snowflake@1D, snowflake@3D<, 8snowflake@2D, snowflake@4D<<D

Out[167]=

Discussion
If  you  are  interested  in  the  intermediate  values  of  the  iteration,  NestList  is  the  an-
swer. Suppose you want to see all rotations of a shape through d radians. Here I use
NestList  to rotate clockwise and translate a square with a dot in its corner through
angle d until at least 2Pi radians (360 degrees) are covered.

In[168]:= allRotations@shape_, d_D := WithA9n = Ceiling@2 PiêdD=,

Graphics@NestList@Translate@Rotate@Ò, -dD, 81.5, 0<D &, shape, nDDE

allRotationsA9Red, Rectangle@D, Black, Point@80.90, 0.1<D=, Piê6E

Out[169]=

NestWhile and NestWhileList generalize Nest and NestList, respectively, by adding a
test  predicate  to  determine  if  the  iterative  application  of  the  function  should  con-
tinue. In addition to the test, an upper limit can be specified to guarantee the itera-
tion terminates in a given number of steps if the test does not terminate it first. Here
is  an  application  that  searches  for  a  tour  in  a  traveling  salesperson  problem  (TSP)
that is  less  than some specified distance.  The cities  are numbered 1 through n,  and
the distances are represented as a sparse matrix. 
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In[170]:= H*Make random set of cities.*L

makeCities@n_D :=

SparseArrayAFlattenA

TableA9i, j= Ø IfAi ã j, 0, RandomReal@81, 50<DE, 8i, 1, n<, 9j, 1, i=EEE

H*Given set of cities, and two particular cities,

return distance between.*L

distance@cities_, c1_, c2_D :=

With@8i1 = Max@c1, c2D, i2 = Min@c1, c2D<, cities@@i1, i2DDD

H*Given a tour, compute the total distance traveled

if you visit each city and return to the first.*L

totalDistance@cities_, tour_D :=

Total@ListConvolve@81, 1<, tour,

8-1, -1<, tour, Ò2 &, distance@cities, Ò1, Ò2D &DD

H*Make an initial tour where cities are visted in

ascending order of city number.*L

makeOrderedTour@cities_D := RangeALength@citiesDE

H*Randomly sample tours until a tour is less

than specified distance or maxTries is exceeded.*L

findTourLessThan@cities_, distance_, maxTries_D :=

ModuleA9n = Length@citiesD=,

NestWhile@RandomSample@Ò, nD &, makeOrderedTour@citiesD,

totalDistance@cities, ÒD >= distance &, maxTriesDE

The  algorithm  is  not  very  intelligent,  but  it  nicely  demonstrates  NestWhile.  First  I
make a random set of 10 cities and see the distance of the ordered tour.

In[175]:= cities = makeCities@10D;

dist = totalDistance@cities, makeOrderedTour@citiesDD
Out[176]= 273.898

Now I  see  if  I  can find a  better  tour  that  is  better  than 80% of  the ordered tour  in
100,000 tries.

In[177]:= findTourLessThan@cities, 0.80 dist , 100000D

Out[177]= 89, 5, 10, 2, 6, 8, 3, 7, 1, 4<

You can see that it was successful!

In[178]:= totalDistance@cities, %D

Out[178]= 300.754

2.11 Computing Through Repeated Function Application | 61



See Also
The replacement rules used in the Koch snowflake are covered in Chapter 4.

In Recipe 12.16, NestList is used to drive a simulation.

The TSP example used ListConvolve to compute the distance of a tour. See Recipe 2.6.

2.12 Building a Function Through Iteration 
Problem
You want to construct a higher-order function from explicit iteration of a lower-or-
der function.

Solution
This is a good application for Nest. For example, you can pre-expand terms in New-
ton’s method for n .

In[179]:= ClearAf, x, y, z, n, termsE;

makeSqrtNewtonExpansionAn_, terms_Integer: 4E :=

FunctionAx,

EvaluateATogether@Nest@Function@z, Hz + nêzLê2D, x, termsDDEE

In[181]:= sqrt2 = makeSqrtNewtonExpansion@2, 4D

Out[181]= FunctionAx$, I256 + 15360 x$2 + 116480 x$4 +

256256 x$6 + 205920 x$8 + 64064 x$10 + 7280 x$12 + 240 x$14 + x$16Më

I16 x$ I2 + x$2M I4 + 12 x$2 + x$4M I16 + 224 x$2 + 280 x$4 + 56 x$6 + x$8MME

We are left with a function that will converge quickly to sqrt[2] when given an initial
guess. Here we see it takes just four iterations to converge.

In[182]:= FixedPointList@sqrt2, 1`40D

Out[182]= 81.000000000000000000000000000000000000000,

1.41421356237468991062629557889013491012,

1.4142135623730950488016887242096980786,

1.414213562373095048801688724209698079<

Discussion
Code generation is a powerful technique; the solution shows how Function and Nest
can be used with Evaluate  to  create  such a generator.  The  key  here  is  the  use  of
Evaluate,  which  forces  the  Nest  to  execute  immediately  to  create  the  body  of  the
function.  Later,  when  you  use  the  function,  you  execute  just  the  generated  code
(i.e., the cost of the Nest is paid only during generation, not application).

Fold can also be used as a generator. Here is an example of constructing a continued
fraction  using  Fold  adapted  from  Eric  W.  Weisstein’s  “Continued  Fraction”  from
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Fold can also be used as a generator. Here is an example of constructing a continued
fraction  using  Fold  adapted  from  Eric  W.  Weisstein’s  “Continued  Fraction”  from
MathWorld (http://bit.ly/35rxJF).

In[183]:= continuedFraction@8a0_, l_List?MatrixQ<D :=

a0 + Fold@Ò2@@1DDêHÒ1 + Ò2@@2DDL &, 0, Reverse@lDD

continuedFraction@8a0_, 8<<D := a0

In[185]:= continuedFraction@8a@0D, Table@8b@iD, a@iD<, 8i, 4<D<D ê.

x_Ay_E ß SubscriptAx, yE

Out[185]= a0 +
b1

a1 +
b2

a2+
b3

a3+
b4
a4

2.13 Exploiting Function Composition and 
Inverse Functions
Problem
You want  to  compose  one  or  more  functions  to  produce  a  new function,  with  the
added ability to easily invert the new function.

Solution
Use Composition to build a new function f1[f2[f3...[x]]]  from f1,  f2,  f3...  and
InverseFunction to convert the composition to ...f3-1[f2-1[f1-1[x]]].

In[186]:= f = Composition@Exp, CosD

Out[186]= Composition@Exp, CosD

In[187]:= result = f@0.5D

Out[187]= 2.40508

In[188]:= Exp@Cos@0.5DD

Out[188]= 2.40508

If  the  composed  functions  are  invertible,  you  can  compute  the  inverse  of  the
composition.

In[189]:= InverseFunction@fD@resultD

Out[189]= 0.5
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Discussion
The  Mathematica  6  documentation  for  Composition  is  not  very  compelling.  It  lists
the following examples of usage:

In[190]:= H*Create a sum of numbers to be displayed in held form.*L

Composition@HoldForm, PlusD üü Range@20D

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20
Out[190]= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20

Out[191]= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20

In[192]:= H*Tabulate square roots of values without using auxiliary variables.*L

TableFormACompositionAThrough, 9Identity, Sqrt=E êü 80, 1.0, 2.0, 3.0, 4.0<E
Out[192]//TableForm=

0 0

1. 1.

2. 1.41421

3. 1.73205

4. 2.

Although these are certainly examples of usage, they are not compelling because the
same results can be achieved without Composition and, to my tastes, more simply. 

In[193]:= HoldForm@Plus@ÒÒDD & üü Range@20D

Out[193]= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20

This is an example of Recipe 2.4.

In[194]:= 9Identity@ÒD, Sqrt@ÒD= & êü 80, 1.0, 2.0, 3.0, 4.0< êê TableForm
Out[194]//TableForm=

0 0

1. 1.

2. 1.41421

3. 1.73205

4. 2.

For some time I  thought that  Composition  was just  a  curiosity  that  might appeal  to
some mathematically minded folks on aesthetic grounds but otherwise did not add
much  value.  This  was  before  I  understood  how  Composition  can  work  together
with  InverseFunction.  When  you  have  an  arbitrary  composition  of  functions,  In-
verseFunction will produce an inverse of the composition by inverting each compo-
nent and reversing the order of application. In the case of the example in the preceding
“Solution” section, you get the following:

In[195]:= InverseFunction@Composition@Exp, CosDD

Out[195]= CompositionAArcCos, LogE

Unfortunately, mathematical functions often are not invertible, so this particular ex-
ample  will  not  always  work  given  an  arbitrary  list  of  functions.  But  the  really  cool
thing is that the functions need not be mathematical or perfectly invertible as long as
you tell  Mathematica you know what you’re doing by defining the inverses of your
custom functions!
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Unfortunately, mathematical functions often are not invertible, so this particular ex-
ample  will  not  always  work  given  an  arbitrary  list  of  functions.  But  the  really  cool
thing is that the functions need not be mathematical or perfectly invertible as long as
you tell  Mathematica you know what you’re doing by defining the inverses of your
custom functions!

You can see that Mathematica has no idea what the inverse of RotateRight  is,  even
though it is obvious that for a list it is RotateLeft.

In[196]:= InverseFunctionARotateRightE@81, 2, 3<D

Out[196]= RotateRightH-1L@81, 2, 3<D

But  you  can  define  your  own  version  and  its  inverse  by  using  upvalues  (see
“DownValues and UpValues” on page 27).

In[197]:= ClearAllAreverse, rotateRightE;

rotateRight@list_ListD := RotateRight@listD

H*Define an UpValue for inverse of rotateRight.*L

InverseFunctionArotateRightE ^:= RotateLeft@Ò1D &

reverse@list_ListD := Reverse@listD

H*Clearly, reverse is its own inverse.*L

InverseFunction@reverseD ^:= reverse@ÒD &

Now, given an arbitrary composition of these functions, we are guaranteed the abil-
ity to produce its inverse with no effort at all! I find that compelling, don’t you?

In[202]:= tr1 = CompositionAreverse, rotateRight, rotateRightE;

In[203]:= v = tr1@81, 2, 3, 4, 5, 6<D

Out[203]= 84, 3, 2, 1, 6, 5<

In[204]:= InverseFunction@tr1D@vD

Out[204]= 81, 2, 3, 4, 5, 6<

The  obvious  implication  of  this  simple  example  is  that  if  you  define  a  set  of  func-
tions and inverses, then given an arbitrary composition of those functions, you will
always have the undo operation handy. Further, you get partial undo via Drop.

In[205]:= H*Drop one level of undo.*L

Drop@InverseFunction@tr1D, 1D@vD
Out[205]= 86, 1, 2, 3, 4, 5<

In Recipe 2.7 we discussed composing functions using prefix operator @. The follow-
ing illustrates the relationship:

In[206]:= Composition@f1, f2, f3D@xD === f1üf2üf3üx

Out[206]= True

See Also
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See Also
ComposeList  returns  the  list  of  results  computed  by  successive  compositions  of  a
given list of functions. See the Mathematica documentation.

2.14 Implementing Closures 
Problem
You  want  to  create  expressions  with  persistent  private  state,  behavior,  and  identity,  but
Mathematica does not directly support Lisp-like closures or object-oriented programming.

The  techniques  described  in  this  section  fall  a  bit  outside  garden-
variety Mathematica; some purists may frown on using techniques that
make  Mathematica  feel  like  a  different  language.  They  might  argue
that  Mathematica  has  enough  features  to  solve  problems  and  that
users  are  better  off  mastering  these  rather  than  trying  to  morph  the
language  into  something  else.  I  think  this  advice  is  generally  sound.
However, Mathematica is a system for multiparadigm programming as
well as a system for research and exploration. So if you are interested,
as  I  am,  in  exploring  software  development  concepts  for  their  own
sake,  I  think  you  will  find  this  recipe  useful  in  stimulating  new  ideas
about what Mathematica can do.

Solution
Create  a  symbol  called  closure  with  attributes  HoldAll  and  with  the  form  closure
[var_List, val_List, func_List]. Create an evaluation function for closures that ex-
ecutes in a private environment provided by Block and returns the result and a new
closure that captures any state changes that occurred during the evaluation.

In[207]:= SetAttributes@closure, HoldAllD;

SetAttributes@evaluate, HoldFirstD;

evaluate@f_, closure@vars_, vals_, funcs_DD := Block@vars, vars = vals;

Block@funcs, 8f , closure@vars, Evaluate@varsD, funcsD<DD

You can now use this machinery to create a counter.

In[210]:= ClearAll@makeCounter, counterD;

makeCounter@init_D := With@8v = init<, closure@8x<, 8v<,

8incr = Function@x = x + 1D, decr = Function@x = x - 1D,

reset = Function@v, x = vD, read = Function@xD<DD

counter = makeCounter@0D
Out[212]= closure@8x<, 80<, 8incr = Hx = x + 1L &,

decr = Hx = x - 1L &, reset = Function@v, x = vD, read = x &<D
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From a syntactic point of view, the implementation is only half done, but it is usable
(see the folllowing “Discussion” for the icing on the cake).

In[213]:= 8val, counter< = evaluate@incr@D, counterD; val

Out[213]= 1

When you evaluate again, you see that the state change persisted.

In[214]:= 8val, counter< = evaluate@incr@D, counterD; val

Out[214]= 2

Notice  that  even  though  the  closure  contains  a  free  variable  x,  changes  to  x  in  the
global environment do not impact the closure.

In[215]:= x = 0;

8val, counter< = evaluate@incr@D, counterD; val
Out[216]= 3

However,  you  can  reset  the  counter  through  the  provided  interface.  You  can  also
decrement it and read its current value.

In[217]:= 8val, counter< = evaluate@decr@D, counterD; val

Out[217]= 2

In[218]:= 8val, counter< = evaluate@reset@7D, counterD; val

Out[218]= 7

In[219]:= 8val, counter< = evaluate@read@7D, counterD; val

Out[219]= 7

Discussion
In computer science, a closure is a function that closes over the lexical environment
in which it was defined. In some languages (e.g., Lisp, JavaScript), a closure may oc-
cur when a function is defined within another function, and the inner function refers
to local variables of the outer function. Mathematica cannot do this in a safe way (as
discussed here), hence the solution.

The solution presented is a bit awkward to use and read and, thus, would be easy to
dismiss as a mere curiosity. However, we can use an advanced feature of Mathemat-
ica to make the solution far more compelling, especially to those readers who come
from an object-oriented mind-set. One problem with the solution is that you need to
deal  with  both  the  returned  value  and  the  returned  closure.  This  is  easy  to  fix  by
defining a function call that hides this housekeeping. 

In[220]:= SetAttributes@call, HoldAllD;

call@f_, c_D := Module@8val<, 8val, c< = evaluate@f, cD; valD

This simplifies things considerably.
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This simplifies things considerably.

In[222]:= val = call@decr@D, counterD

Out[222]= 6

But we can go further by adding some syntactic sugar using the Notation facility.

In[223]:= << Notation`

Notation@c_ fl func_ ó call@func_, c_DD;

Now you can write code like this:

In[225]:= counter fl incr@D

Out[225]= 7

In[226]:= counter fl reset@0D

Out[226]= 0

In[227]:= counter fl incr@D

Out[227]= 1

You  can  use  an  existing  closure  to  create  new  independent  closures  by  creating  a
clone method. This is known as the prototype pattern.

In[228]:= clone@closure@vars_, vals_, funcs_DD :=

clone@closure@vars, vals, funcsD, valsD

clone@closure@vars_, vals_, funcs_D, newVals_D :=

With@8v = newVals<, closure@vars, v, funcsDD

In[230]:= counter2 = clone@counterD H*Clone existing state.*L

Out[230]= closure@8x<, 81<, 8incr = Hx = x + 1L &,

decr = Hx = x - 1L &, reset = Function@v, x = vD, read = x &<D

In[231]:= counter3 = clone@counter, 80<D

H*Clone structure but initialize to new state.*L
Out[231]= closure@8x<, 80<, 8incr = Hx = x + 1L &,

decr = Hx = x - 1L &, reset = Function@v, x = vD, read = x &<D

You can see these counters are independent from the original counters (but they do
share the same functions, so they don’t incur much additional memory overhead).

In[232]:= counter2 fl incr@D

Out[232]= 2

In[233]:= counter3 fl incr@D

Out[233]= 1

In[234]:= counter fl read@D

Out[234]= 1
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It is instructive to compare this solution with other languages that support closures.
In JavaScript, a closure over an accumulator can be created like this:
javascript

function counter (n) {

return function (i) { return n += i }

} 

Let’s see what happens if we attempt the same approach in Mathematica.

In[235]:= Clear@makeCounterD;

makeCounterAn_IntegerE := Function@i, n += iD

counter = makeCounter@0D;

In[238]:= counter@1D

AddTo::rvalue :

0 is not a variable with a value, so its value cannot

be changed. à

Out[238]= 0 += 1

This  was doomed from the start  because n  is  not  a  free  variable  that  can be closed
over by Function. But let’s try something else.

In[239]:= Clear@makeCounter, stateD;

makeCounterAn_IntegerE := Block@8state = n<, Function@i, state += iDD

counter = makeCounter@0D;

In[242]:= counter@1D

AddTo::rvalue :

state is not a variable with a value, so its value

cannot be changed. à

Out[242]= state += 1

This fails because state is only defined while the block is active, because Block is a
dynamic scoping construct  and closures require lexical scoping. You might recall that
Module is a lexical scoping construct; perhaps we would have better luck with that.

In[243]:= Clear@makeCounter, stateD;

makeCounterAn_IntegerE := Module@8state = n<, Function@i, state += iDD

counter = makeCounter@0D;

In[246]:= counter@1D

Out[246]= 1

In[247]:= counter@1D

Out[247]= 2

This  seems  to  work,  but  it  has  a  flaw  that  you  can  see  if  you  inspect  the  value  of
counter.
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This  seems  to  work,  but  it  has  a  flaw  that  you  can  see  if  you  inspect  the  value  of
counter.

In[248]:= counter

Out[248]= Function@i$, state$2811 += i$D

The  variable  we  called  state  has  now  morphed  into  something  called  state$<some
number>.  The  point  here  is  that  Module  implements  lexical  scope  by  synthesizing  a
global variable that is guaranteed not to be defined already, but that variable is not
protected in any way and could be changed by the user. This is not esthetically pleasing
and is not at all what is happening in the JavaScript or Lisp equivalents.

The solution in this recipe uses a different tactic. It uses the HoldAll attribute to cre-
ate a container for the lexical environment of the closure. Because the variables and
functions are held in unevaluated form, it  makes no difference if  there are global
symbols with the same names. When it comes time to evaluate the closure, the evaluate
function builds up a Block on the fly to create local instances of the variables and an-
other Block to create local instances of the functions. It then binds the stored values
of  the  variables  and  functions  to  these  locals  and  calls  the  appropriate  locally  de-
fined function. 

What practical value are closures within the context of Mathematica? Clearly, creat-
ing a counter is too trivial. However, even the simple counter example shows some
promising features of this technique. First, had we implemented the counter as a sim-
ple global variable, it could be used accidentally for some purpose inconsistent with
the behavior of a counter. By encapsulating the counter in the closure, we restrict ac-
cess to its state and the interface exposed by the closure becomes the only way to ma-
nipulate it. Further, the interface can be easily inspected because it is carried around
inside the closure. 

Mathematica  6’s  Dynamic  feature  provides  the  context  for  a  compelling  application
of closures. Let’s say you want to create a graphic that can be dynamically updated
under programmatic control (rather than user control, for which you would use Ma-
nipulate instead). One way to do this is to define variables for all the aspects of the
graphic that you need to change and wrap the graphic in a Dynamic function.
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In[249]:= rectX = 1; rectY = 2; rectAngle = 10 Degree; circR = 1;

DynamicModuleA9g=,

g = GraphicsA9Thick, Green, RotateARectangle@80, 0<, 8rectX, rectY<D,

rectAngleE, Red, Disk@80, 0<, circRD=, ImageSize Ø SmallE;

DynamicA

gEE

Out[250]=

You then write Mathematica code that manipulates the variables as necessary to dy-
namically  update  the  drawing.  This  is  all  well  and good for  a  simple  example  with
two shapes and four degrees of freedom, but imagine if you were doing this as part
of  a  simulation that  had hundreds  of  shapes  with  hundreds  of  degrees  of  freedom.
Clearly, you would want a way to encapsulate all those variables behind an interface
that made sense for the simulation. This closure facility can do just that.

In[251]:= ClearAll@shapeCtrlD

shapeCtrl = closureA9rectX, rectY, rectAngle, circR=, 91, 2, 10 Degree, 1=,

9rotate = FunctionAa, rectAngle += aE,

grow = Function@r, rectX *= r; rectY *= rD,

rectCorner = Function@8rectX, rectY<D,

angle = FunctionArectAngleE,

radius = Function@circRD=E

Out[252]= closureA9rectX, rectY, rectAngle, circR=,

81, 2, 10 °, 1<, 9rotate = FunctionAa, rectAngle += aE,

grow = Function@r, rectX *= r; rectY *= rD,

rectCorner = 8rectX, rectY< &, angle = rectAngle &, radius = circR &=E
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In[253]:= closureA9rectX, rectY, rectAngle, circR=,

81, 2, 10 °, 1<, 9rotate = FunctionAa, rectAngle += aE,

grow = Function@r, rectX *= r; rectY *= rD,

rectCorner = 8rectX, rectY< &, angle = rectAngle &, radius = circR &=E

Out[253]= closureA9rectX, rectY, rectAngle, circR=,

81, 2, 10 °, 1<, 9rotate = FunctionAa, rectAngle += aE,

grow = Function@r, rectX *= r; rectY *= rD,

rectCorner = 8rectX, rectY< &, angle = rectAngle &, radius = circR &=E

Here you define a closure, called shapeCtrl,  over the same graphic but expose only
two  functions,  rotate  and  grow,  that  are  capable  of  changing  the  state.  The  other
functions are strictly for returning the values for use in the graphic. You now specify
the dynamic graphic in terms of the shape controller closure.

In[254]:= DynamicAGraphicsA9Thick, Green, RotateA

Rectangle@80, 0<, shapeCtrl fl rectCorner@DD, shapeCtrl fl angle@DE, Red,

Disk@80, 0<, shapeCtrl fl radius@DD=, Frame Ø True, PlotRange Ø AllEE;

By its nature, dynamic content does not lend itself to static print demonstration, but
we compensate by showing the result of each transform in the figure.

Original shapeCtrlfl rotate@20D shapeCtrlfl grow@1.5D

Figure 2-1. Transformations snapshots of the graphics

It could be argued that this recipe has crossed the boundary of the traditional defini-
tion of a closure and moved toward the capabilities of object-oriented programming.
This is no accident, since there is a relationship between closures and objects, in that
closures can be used to implement object-oriented programming, and languages like
C++  can  implement  closures  in  terms  of  objects  with  operator().  However,  a
full-blown,  object-oriented  implementation  would  have  to  provide  additional  fea-
tures not implemented by this recipe. Inheritance is the most obvious, but there are
others (e.g., different access levels for functions and data). I prefer to think of this im-
plementation as souped-up closures rather than dumbed-down objects, but you can
think  of  them  in  whichever  way  makes  the  most  sense  to  you.  My  feeling  is  that
more  traditional  closures  that  act  like  single  functions  don’t  provide  enough  bang
for the buck. In any case, the simpler, traditional form can be implemented in terms
of the richer form demonstrated in this recipe. Here is one way to do it.
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It could be argued that this recipe has crossed the boundary of the traditional defini-
tion of a closure and moved toward the capabilities of object-oriented programming.
This is no accident, since there is a relationship between closures and objects, in that
closures can be used to implement object-oriented programming, and languages like
C++  can  implement  closures  in  terms  of  objects  with  operator().  However,  a
full-blown,  object-oriented  implementation  would  have  to  provide  additional  fea-
tures not implemented by this recipe. Inheritance is the most obvious, but there are
others (e.g., different access levels for functions and data). I prefer to think of this im-
plementation as souped-up closures rather than dumbed-down objects, but you can
think  of  them  in  whichever  way  makes  the  most  sense  to  you.  My  feeling  is  that
more  traditional  closures  that  act  like  single  functions  don’t  provide  enough  bang
for the buck. In any case, the simpler, traditional form can be implemented in terms
of the richer form demonstrated in this recipe. Here is one way to do it.

In[255]:= H*First define a closure with a

single function and assign to a variable.*L

incr = closure@8x<, 80<, 8incr = Function@x = x + 1D<D
Out[255]= closure@8x<, 80<, 8incr = Hx = x + 1L &<D

In[256]:= H*Then define a function pattern in terms of the same closure

but with a Blank where the state variables would reside.*L

closure@8x<, 8_<, 8incr = Function@x = x + 1D<D @D := call@incr@D, incrD

In[257]:= H*Now, whenever the variable is used like a function,

it will invoke the call on the closure.*L

incr@D
Out[257]= 1

In[258]:= incr@D

Out[258]= 2

In[259]:= incr@D

Out[259]= 3

See Also
The Wikipedia entry for closures (http://bit.ly/T9vhN) is a good place to start learn-
ing more about this concept because it contains links to some useful papers and im-
plementations in other languages.

2.15 Currying in Mathematica
Problem
You want to emulate the ability of other functional languages to automatically con-
vert  functions  of  multiple  arguments  into  higher-order  functions  with  a  single
argument.

This  recipe  is  more  of  theoretical  interest  to  functional  programming
aficionados  than  of  practical  use  for  everyday  Mathematica
development.  The  techniques  employed  are  of  more  general  interest,
but  you  may  need  to  consult  Chapter  4  if  you  are  unfamiliar  with
patterns and replacement rules.
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Solution
Mathematica does not support implicit  currying like Haskell  does,  but you can use
this  solution  to  create  functions  that  curry  implicitly.  Refer  to  the  next  section,
“Discussion,” if you are unfamiliar with currying.

In[260]:= Clear@f, f1, f2D; Curry@f_, x__D :=

ModuleA8expr<, expr = HoldAIfAValueQ@f@xDD, f@xD, Curry@z, ÒÒD &EE êê.

g_@a_D@b__D -> g@a, bD ê. z Ø f@xD; ReleaseHold@exprDE

fAx_, y_, z_E := x + y +

z

In[262]:= H*Create f1 by currying f.*L

f1 = Curry@f, 10D

Out[262]= Curry@f@10D, ÒÒ1D &

In[263]:= H*f2 now can be created by implicit currying f1.*L

f2 = f1@20D
Out[263]= Curry@f@10D@20D, ÒÒ1D &

In[264]:= H*f2 evaluates because all three arguments become available.*L

f2@30D
Out[264]= 60

In[265]:= H*f1 evaluates if the remaining two arguments are supplied.*L

f1@20, 30D
Out[265]= 60

In[266]:= H*And the curried syntax works as well.*L

f1@20D@30D
Out[266]= 60

Discussion
Currying  is  the  process  of  transforming  a  function  that  takes  multiple  arguments
into a function that takes just a single argument and returns another function if any
arguments are still needed. In languages that implicitly curry, you can write code as
follows:

In[267]:= f1 = f@10D

Out[267]= f@10D

In[268]:= f2 = f1@20D

Out[268]= f@10D@20D

In[269]:= f2@30D

Out[269]= f@10D@20D@30D

This is legal in Mathematica, but notice that when all three arguments are supplied,
the function remains in unevaluated curried form. This is not the effect that you typi-
cally  want.  It  is  possible  to  manually  uncurry  by  using  ReplaceAllRepeated  (//.)  to
transform the curried form to normal form.
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This is legal in Mathematica, but notice that when all three arguments are supplied,
the function remains in unevaluated curried form. This is not the effect that you typi-
cally  want.  It  is  possible  to  manually  uncurry  by  using  ReplaceAllRepeated  (//.)  to
transform the curried form to normal form.

In[270]:= f2@30D êê. g_@a_D@b__D Ø g@a, bD

Out[270]= 60

The function Curry in the solution works as follows. It builds up an expression that
says,  “See  if  the  specified  function  (first  argument)  with  the  specified  parameters
(second  argument)  will  evaluate  (ValueQ);  if  so,  evaluate  it.  Otherwise,  return  the
curried version of the function within a lambda expression using the Curry function
itself.” To add to the trickery, this expression needs to be built up in the context of a
Hold to keep everything unevaluated until it can be transformed into a format where
the ValueQ test and evaluation are in uncurried form. However, the lambda function
part  must remain in curried form, so we use z  as  a  placeholder for  a  second round
ReplaceAll (/.) that injects the curried form, instead of z. 

I’ll  be  the  first  to  admit  this  is  tricky,  but  if  you  are  tenacious  (and  perhaps  look
ahead to some of  the  recipes in Chapter 4), you will be rewarded with a deeper under-
standing of how powerful Mathematica can be at bootstrapping new behaviors. One
way to get a handle on what is happening is to execute a version of Curry that does not re-
lease the Hold. This allows you to inspect the result at each stage before it is evaluated.

In[271]:= CurryHold@f_, x__D :=

ModuleA8expr<, expr = HoldAIfAValueQ@f@xDD, f@xD, Curry@z, ÒÒD &EE êê.

g_@a_D@b__D -> g@a, bD ê. z Ø f@xDE

When the Hold is released, ValueQ[f[10]] will return false, so we will return a Func-
tion (&) that curries f[10] with yet to be supplied arguments ##1.

In[272]:= CurryHold@f, 10D

Out[272]= HoldAIfAValueQ@f@10DD, f@10D, Curry@f@10D, ÒÒ1D &EE

When this Hold is released, ValueQ will also fail because there is no two-argument ver-
sion of f, and we get a further currying function on f[10][20] that is ready for more
arguments ##1.

In[273]:= CurryHold@f1, 20D

Out[273]= HoldAIfAValueQ@f@10, 20DD, f@10, 20D, Curry@f@10D@20D, ÒÒ1D &EE

Finally,  by  supplying  a  third  argument,  we  get  an  uncurried  function  f[10,20,30]
that will evaluate; so ValueQ succeeds, and the uncurried version is evaluated.

In[274]:= CurryHold@f2, 30D

Out[274]= HoldAIfAValueQ@f@10, 20, 30DD, f@10, 20, 30D, Curry@f@10D@20D@30D, ÒÒ1D &EE

A useful  addition is  a function that creates a self-currying function without supply-
ing the first argument.
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A useful  addition is  a function that creates a self-currying function without supply-
ing the first argument.

In[275]:= makeCurry@f_D := Curry@f, ÒÒD &

In[276]:= f0 = makeCurry@fD

Out[276]= Curry@f, ÒÒ1D &

In[277]:= f0@10D @20D@30D

Out[277]= 60

So  now  that  you’ve  suffered  through  this  magic  act,  I  expect  you’d  like  to  be  told
that there is some neat application of currying. However, as I mentioned in the warn-
ing  on  page  73,  currying  is  largely  of  theoretical  interest.  This  is  true  even  in  lan-
guages where it occurs transparently. For example, many new Haskell programmers
don’t  think  in  terms  of  transformations  from  functions  to  higher-order  functions,
but  rather,  in  terms  of  producing  new functions  that  are  specializations  of  existing
functions (i.e., the new function is produced by binding the first argument of the gen-
eral function). The reason Haskell was designed with currying functions is that its
designers  were  concerned with formal  proofs  of  correctness.  Such proofs  are  easier
when all  functions can be thought  of  as  having a  single  argument  and producing a
single result. If you’re a mathematician, you may find these ideas interesting; please
see the references in the “See Also” section on page 77.

I should emphasize that the goal of this recipe was to achieve implicit currying. Ex-
plicit currying is easy. In fact, explicit currying should really not be called currying at
all,  but  rather,  should  be  called  partial  function  application.  For  example,  if  you
want to manually create a function that hard codes the first parameter of f to 10, sim-
ply write f[10, ##]& . You can automate creation of such functions with the follow-
ing code:

In[278]:= explicitCurry@f_, v_D := Function@f@v, ÒÒDD

In[279]:= f1 = explicitCurry@f, 10D;

f2 = explicitCurry@f1, 20D;

In[281]:= f1@20, 30D

Out[281]= 60

In[282]:= f2@30D

Out[282]= 60

The obvious difference between implicit  and explicit  currying is  the need to explic-
itly use the currying function each time, hence the name “explicit.”
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See Also
Information on currying in Haskell can be found at http://bit.ly/2eABAm.

You  will  be  impressed  by  the  expressiveness  of  Mathematica  by  comparing  the
amount  of  code  in  this  recipe  with  the  code  to  implement  implicit  currying  in
scheme (http://bit.ly/otB90).

Theoretical ideas about the relationship between proofs and programs can be found
at http://bit.ly/2YrkxI.

2.16 Creating Functions with Default Values
Problem
You want to create functions with optional arguments that specify default values. 

Solution
The simplest way to define a function with default values is to use the syntax x_: default
or x_h:default.

In[283]:= someFuncAarg1_Integer, arg2_Integer : 0E := arg1 ^ 2 + arg2

In[284]:= someFunc@10D

Out[284]= 100

In[285]:= someFunc@10, 1D

Out[285]= 101

Another  technique  is  to  register  a  global  default  value  with  Mathematica  using  De-
fault.  This  facility  is  used  by  many  built-in  Mathematica  functions,  such  as  Plus.
You can use Default to query or set defaults for your own functions. Defaults can apply
to multiple arguments or specific arguments.

In[286]:= Default@PlusDH*Missing arguments to Plus default to zero.*L

Out[286]= 0

In[287]:= Plus@D

Out[287]= 0

In[288]:= Plus@1D

Out[288]= 1

If you ask for a default that is undefined, the function will not evaluate.

In[289]:= ClearAllAmyFuncWithDefaultE; DefaultAmyFuncWithDefault, 2E

Out[289]= DefaultAmyFuncWithDefault, 2E

You must define the default before defining the function that uses it.
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You must define the default before defining the function that uses it.

In[290]:= DefaultAmyFuncWithDefault, 2E = 0

Out[290]= 0

In[291]:= DefaultAmyFuncWithDefault, 2E

Out[291]= 0

An argument whose default has been registered with Default is specified as x_. (the
trailing period signals the default).

In[292]:= myFuncWithDefaultAx_, y_.E := x^y - x + y

When you inspect the definition of a function, it shows the registered defaults.

In[293]:= DefinitionAmyFuncWithDefaultE

Out[293]= myFuncWithDefaultAx_, y_.E := xy - x + y

myFuncWithDefault ê: DefaultAmyFuncWithDefault, 2E = 0

In[294]:= myFuncWithDefault@4D

Out[294]= -3

In[295]:= myFuncWithDefault@10, 1D

Out[295]= 1

Discussion
Unlike in some other languages, in Mathematica, the arguments with default values
need not be at the end.

In[296]:= someFunc2Aarg1_Integer : 1, arg2_IntegerE := arg1 ^ 2 + arg2

In[297]:= someFunc2@10D

Out[297]= 11

In[298]:= someFunc2@10, 1D

Out[298]= 101

Ambiguities are resolved by assigning values to the leftmost argument that matches.

In[299]:= someFunc3Aarg1_Integer : 1, arg2_Integer : 0E := 2 arg1 + arg2

In[300]:= someFunc3@10D

Out[300]= 20

In[301]:= someFunc4Aarg1_String : "test", arg2_Integer : 1E := StringTakeAarg1, arg2E

In[302]:= someFunc4@3D H*3 does not match String

so it is assigned to the second default.*L

Out[302]= tes

Having this  much flexibility  is  sometimes  useful,  but  if  you are  writing  a  library  of
functions  to  be  used  by  others,  it  is  probably  best  to  place  all  parameters  with  de-
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Having this  much flexibility  is  sometimes  useful,  but  if  you are  writing  a  library  of
functions  to  be  used  by  others,  it  is  probably  best  to  place  all  parameters  with  de-
faults at the end.

You may be wondering why Mathematica provides two distinct methods to specify
default  values.  The flippant  answer is  that  Mathematica provides at  least  two ways
to  do  everything!  But  there  are  useful  differences.  For  functions  you write  for  your
own use,  the  arg_ : default  does  the  job in  most  cases.  The advantage of  the  De-
fault method is that it separates the default definition from the function definition.
This allows users to alter the defaults if they do so before loading the module contain-
ing your functions, and if you code your module to only define defaults if existing de-
faults are not already defined. 

BeginPackage["SomePackage`"]

yourFunction::usage = "This function works miracles."

Begin["`Private`"]

(*If there are not already defaults defined, define them.*)

If[DefaultValues[yourFunction] == {},

Default[yourFunction] = 0,

Null];

yourFunction[a_,b_,c_.,d_.] := ...

End[]

EndPackage[]

2.17 Creating Functions That Accept Options
Problem
You need to write a function that can be customized by the user in a variety of ways. 

Solution
Set  up  default  values  for  the  function  by  registering  them  with  Options[yourFun].
Then  write  the  function  to  accept  an  optional  OptionsPattern[]  as  the  last  argu-
ment.  Use  the  companion  function  OptionValue[option]  to  retrieve  the  effective
value of option. I’ll illustrate this technique by implementing a quick sort algorithm.
There  are  two  obvious  ways  to  customize  a  quick  sort.  First,  you  can  allow

the user to specify the comparison function. Second, you can allow the caller to cus-
tomize the function used to select the pivot element.
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the user to specify the comparison function. Second, you can allow the caller to cus-
tomize the function used to select the pivot element.

This quick sort is in no way as performant as Mathematica’s Sort[], so
I don’t recommend using it. I introduce it solely to illustrate a custom
function with options.

By default, use the first element to pivot and the Less function for comparisons.

In[303]:= Options@qsortD = 8pivot Ø First, compare Ø Less< ;

The options, by convention, are accepted as the last parameter.

In[304]:= qsort@l_List, opts : OptionsPattern@DD :=

Module@8pivotFunc, compareFunc<,

8pivotFunc, compareFunc< = 8OptionValue@pivotD, OptionValue@compareD< ;

Reap@qsort2@l, pivotFunc, compareFuncDD@@2, 1DDD

Function  qsort2  does  most  of  the  work  after  options  are  resolved.  The  partition  is
from Recipe 2.10.

In[305]:= qsort2@8<, _, _D := 8<

qsort2@8a_<, _, _D := Sow@aD

qsort2@l_List, pivot_, comp_D :=

Block@8l1, l2, l3<, 8l1, l2, l3< = partition@l, pivot@lD, compD;

qsort2@l1, pivot, compD;

Scan@Sow, l2D;

qsort2@l3, pivot, compDD

Prior  to  version  6,  OptionValue[]  did  not  exist.  The  idiomatic  solution  used  Re-
placeAll (/.) to first apply user-specified options and then the default options. You
may still encounter this idiom in older code. 

{pivotFunc, compareFunc} = {pivot, compare} /. opts /. Options[qsort];

Let’s test the function with and without options.

In[308]:= unsorted = RandomInteger@8-100, 100<, 50D

Out[308]= 842, 77, 50, 98, -89, 49, 21, 70, 2, -39, 41, -100, 32, -19, -36, 99, 43,

37, 34, 35, -98, 58, -10, -38, -80, 25, -40, -26, 3, 62, -13, 5, 15, -40,

83, -74, -43, 31, 78, -89, 15, 60, 67, -55, -7, -45, -16, -91, 21, 16<

In[309]:= qsort@unsortedD

Out[309]= 8-100, -98, -91, -89, -89, -80, -74, -55, -45, -43, -40, -40, -39, -38,

-36, -26, -19, -16, -13, -10, -7, 2, 3, 5, 15, 15, 16, 21, 21, 25, 31,

32, 34, 35, 37, 41, 42, 43, 49, 50, 58, 60, 62, 67, 70, 77, 78, 83, 98, 99<
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In[310]:= qsort@unsorted, compare Ø GreaterD

Out[310]= 899, 98, 83, 78, 77, 70, 67, 62, 60, 58, 50, 49, 43, 42, 41, 37, 35, 34, 32,

31, 25, 21, 21, 16, 15, 15, 5, 3, 2, -7, -10, -13, -16, -19, -26, -36,

-38, -39, -40, -40, -43, -45, -55, -74, -80, -89, -89, -91, -98, -100<

In[311]:= H*Always pivoting on the first element leads to bad performance

if lists are already sorted, so a random selection of pivot

points might be safer Ialthough there are no guaranteesM.*L

qsort@unsorted, pivot Ø RandomChoiceD
Out[311]= 8-100, -98, -91, -89, -89, -80, -74, -55, -45, -43, -40, -40, -39, -38,

-36, -26, -19, -16, -13, -10, -7, 2, 3, 5, 15, 15, 16, 21, 21, 25, 31,

32, 34, 35, 37, 41, 42, 43, 49, 50, 58, 60, 62, 67, 70, 77, 78, 83, 98, 99<

In[312]:= H*Here we specify both pivot and comparison using custom functions.*L

qsortAunsorted, pivot Ø IPartAÒ, FloorALength@ÒDë 2EE &M,

compare Ø HLess@Abs@Ò1D, Abs@Ò2DD &LE

Out[312]= 82, 3, 5, -7, -10, -13, 15, 15, -16, 16, -19, 21, 21, 25, -26, 31, 32, 34,

35, -36, 37, -38, -39, -40, -40, 41, 42, 43, -43, -45, 49, 50, -55, 58,

60, 62, 67, 70, -74, 77, 78, -80, 83, -89, -89, -91, 98, -98, 99, -100<

Discussion
Options  are  a  better  choice  than default  values  (Recipe  2.16)  when there  are  many
different options (the Graphics function of Mathematica is a good example) or when
the  default  option  values  are  fine  for  most  users  and you don’t  want  to  clutter  the
function interface with low-level details.

Sometimes  you  are  not  interested  in  using  options  directly  in  your  function,  but
merely want to pass them on to other built-in Mathematica functions. You need to
be  careful  to  pass  only  options  that  are  applicable.  The  function  FilterRules  pro-
vides a convenient way to solve this problem. The Mathematica documentation pro-
vides a nice example of a function that solves a differential equation and then plots
the solution.
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In[313]:= ClearAx, y, x0, x1E;

odeplotAde_, y_, 8x_, x0_, x1_<, opts : OptionsPattern@DE :=

ModuleA8sol<,

sol =

NDSolveAde, y, 8x, x0, x1<, FilterRules@8opts<, Options@NDSolveDDE;

IfAHead@solD === NDSolve,

$Failed,

PlotAEvaluateAy ê. solE, 8x, x0, x1<,

Evaluate@FilterRules@8opts<, Options@PlotDDDE

E

E

In[315]:= odeplotA9y''@xD + y@xD == 0, y@0D ã 1, y'@0D ã 0=, y@xD,

8x, 0, 10<, Method -> "ExplicitRungeKutta", PlotStyle Ø DashedE

Out[315]=
2 4 6 8 10

-1.0

-0.5

0.5

1.0

Without FilterOptions you would get an error.

In[316]:= ClearAx, y, x0, x1E;

odeplotBadAde_, y_, 8x_, x0_, x1_<, opts : OptionsPattern@DE :=

ModuleA8sol<,

sol = NDSolveAde, y, 8x, x0, x1<, optsE;

IfAHead@solD === NDSolve,

$Failed,

PlotAEvaluateAy ê. solE, 8x, x0, x1<, optsE

E

E
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In[318]:= odeplotBadA9y''@xD + y@xD == 0, y@0D ã 1, y'@0D ã 0=, y@xD,

8x, 0, 10<, Method -> "ExplicitRungeKutta", PlotStyle Ø DashedE

NDSolve::optx : Unknown option PlotStyle in

NDSolve@8y@xD + y££@xDã 0, y@0Dã 1, y£@0Dã 0<, y@xD,

8x, 0, 10<, Method Ø

ExplicitRungeKutta, PlotStyle Ø Dashing@8Small, Small<DD.

à

Out[318]= $Failed

When writing or working with functions that use options, keep in mind that Mathe-
matica’s convention is to give precedence to options that appear earlier in the list. So
if two options conflict, the first wins.

In[319]:= PlotASin@xD, 8x, -Pi, Pi<, PlotStyle Ø Dashed, PlotStyle Ø ThickE

H*Dashed wins.*L

Out[319]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0
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CHAPTER 3

Data Structures 

Well I live with snakes and lizards 
And other things that go bump in the night 

Ministry, “Everyday Is Halloween” 

3.0 Introduction
Higher  mathematics  is  rich in structures  and formalisms that  take mathematics  be-
yond  the  realm  of  numbers.  This  chapter  includes  a  potpourri  of  recipes  for  data
structures  and  algorithms  that  arise  in  linear  algebra,  tensor  calculus,  set  theory,
graph theory, and computer science. For the most part, lists form the foundation for
these  structures.  Mathematica  gains  a  lot  of  mileage  by  representing  sets,  vectors,
matrices,  and tensors using lists  because all  the generic  list  operations are available
for their manipulation. Of course, a list, a set, and a tensor are very distinct entities
from  a  mathematical  point  of  view,  but  this  distinction  is  handled  by  special-
purpose functions rather than special-purpose data structures. 

This  introduction  reviews  the  most  common  operations  associated  with  list  struc-
tures  but  is  not  an  exhaustive  reference.  These  operations  will  be  used  frequently
throughout this book, so you should have some basic familiarity.

List Functions
The foundation of most data structures in Mathematica is the list. It is difficult to do
much advanced work with Mathematica unless you are fluent in its functions for list
processing. To this end, the initial recipes revolve around basic list processing. A list
in  Mathematica  is  constructed  using  the  function  List[elem1,elem2,...,elemN]  or,
more  commonly,  with  curly  brackets  {elem1,elem2,...,elemN}.  There  is  no  restric-
tion  on  the  nature  of  these  elements.  They  could  be  mixtures  of  numbers,  strings,
functions,  other  lists,  or  anything  else  Mathematica  can  represent  (like  graphic  or
sound data). 

The  first  thing  you need  to  know about  lists  is  how to  generate  them.  Table  is  the
workhorse  function for  doing  this.  It  has  several  variations  that  are  most  easily  ex-
plained by example.
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The first  thing  you need  to  know about  lists  is  how to  generate  them.  Table  is  the
workhorse  function for  doing  this.  It  has  several  variations  that  are  most  easily  ex-
plained by example.

In[1]:= H*Ten copies of an expr; in this case, the constant 1*L

Table@1, 810<D
Out[1]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1<

In[2]:= H*The result of evaluation expr for i 1 to 10*L

Table@i^2, 8i, 10<D
Out[2]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

In[3]:= H*The result of evaluation expr for i 2 to 10*L

Table@i^2, 8i, 2, 10<D
Out[3]= 84, 9, 16, 25, 36, 49, 64, 81, 100<

In[4]:= H*The result of evaluation expr for i 2 to 10 by steps of 2*L

Table@i, 8i, 2, 10, 2<D
Out[4]= 82, 4, 6, 8, 10<

In[5]:= H*2 x 3 matrix of constant 1*L

Table@1, 82<, 83<D
Out[5]= 881, 1, 1<, 81, 1, 1<<

In[6]:= H*Tensor of rank three*L

TableAi + j^2 + k^3, 8i, 0, 2<, 9j, 0, 2=, 8k, 0, 2<E êê MatrixForm
Out[6]//MatrixForm=

0

1

8

1

2

9

4

5

12

1

2

9

2

3

10

5

6

13

2

3

10

3

4

11

6

7

14

In  addition  to  Table,  Mathematica  has  several  special-purpose  list  constructors:
Range,  Array,  ConstantArray,  DiagonalMatrix,  and  IdentityMatrix.  These  functions
are less general than Table but are clearer and simpler to use when applicable. For ex-
ample, consider IdentityMatrix and its Table equivalent. 
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In[7]:= IdentityMatrix@3D êê MatrixForm

Out[7]//MatrixForm=
1 0 0

0 1 0

0 0 1

In[8]:= H*Equivalent to IdentityMatrix*L

TableAIfAi ã j, 1, 0E, 8i, 1, 3<, 9j, 1, 3=E êê MatrixForm
Out[8]//MatrixForm=

1 0 0

0 1 0

0 0 1

Sometimes using a  special-purpose list  constructor  is  more verbose.  Consider  these
equivalent ways of generating an array of ten 1s. Here, 1& is the function that always
returns 1.

In[9]:= Array@1 &, 10D ã ConstantArray@1, 10D

Out[9]= True

Once  you  have  one  or  more  lists,  you  can  compose  new  lists  using  functions  like
Append, Prepend, Insert, Join, and Riffle.

In[10]:= list1 = Range@10D

Out[10]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

In[11]:= list2 = list1 ^ 2

Out[11]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

In[12]:= H*Add elements to the end.*L

Append@list1, 11D
Out[12]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<

In[13]:= H*Add elements to the front.*L

Prepend@list1, 0D
Out[13]= 80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10<

In[14]:= H*Insert elements at specific positions.*L

Insert@list1, 3.5, 4D
Out[14]= 81, 2, 3, 3.5, 4, 5, 6, 7, 8, 9, 10<

In[15]:= H*Negative offsets to insert from the end*L

Insert@list1, 3.5, -4D
Out[15]= 81, 2, 3, 4, 5, 6, 7, 3.5, 8, 9, 10<

In[16]:= H*You can insert at multiple positions 88i1<,8i2<,...,8iN<<.*L

InsertAlist1, 0, List êü RangeA2, Length@list1DEE

Out[16]= 81, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10<

3.0 Introduction | 87



In[17]:= H*Join one or more lists.*L

Join@list1, list2D
Out[17]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100<

In[18]:= H*Riffle is a function specifically designed to interleave elements.*L

Riffle@list1, 0D
Out[18]= 81, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10<

The flip side of building lists is taking them apart. Here you will use operations like
Part, First, Last, Rest, Most, Take, Drop, Select, and Cases.

In[19]:= H*Part is frequently accessed via its operator @@exprDD equivalent.*L

list1@@3DD ã Part@list1, 3D
Out[19]= True

In[20]:= H*Accessing the first element. Lisp

programmers call this operation car.*L

First@list1D
Out[20]= 1

In[21]:= H*Accessing the last element*L

Last@list1D
Out[21]= 10

In[22]:= H*All but the first element. Lisp programmers call this operation cdr.*L

Rest@list1D
Out[22]= 82, 3, 4, 5, 6, 7, 8, 9, 10<

In[23]:= H*All but the last element*L

Most@list1D
Out[23]= 81, 2, 3, 4, 5, 6, 7, 8, 9<

In[24]:= H*The first three elements*L

Take@list1, 3D
Out[24]= 81, 2, 3<

In[25]:= H*All but the first three*L

Drop@list1, 3D
Out[25]= 84, 5, 6, 7, 8, 9, 10<

In[26]:= H*The elements in which some criterion is satisfied,

in this case odd elements*L

Select@list1, OddQD
Out[26]= 81, 3, 5, 7, 9<

88 | Chapter 3: Data Structures 



In[27]:= H*The elements matching a pattern*L

CasesAlist1 ê3 , a_Integer Ø 3 aE

Out[27]= 83, 6, 9<

See Chapter 5 for more information on patterns.

You  rearrange  and  restructure  lists  using  functions  such  as  Reverse,  RotateLeft,
RotateRight, Flatten, Partition, Transpose, and Sort. 

In[28]:= Reverse@list1D

Out[28]= 810, 9, 8, 7, 6, 5, 4, 3, 2, 1<

In[29]:= RotateLeft@list1D

Out[29]= 82, 3, 4, 5, 6, 7, 8, 9, 10, 1<

In[30]:= RotateRight@list1D

Out[30]= 810, 1, 2, 3, 4, 5, 6, 7, 8, 9<

Partition  and Flatten  are  very  versatile  functions  for  creating  and removing  struc-
ture. Flatten can be thought of as the inverse of Partition. Here, repeated partition-
ing using Nest converts a list to a binary tree.

In[31]:= bifurcate@list_D :=

NestAPartition@Ò, 2D &, list, FloorALogA2, Length@listDEEE

Hstructured = bifurcate@list1DL êê TreeForm
Out[32]//TreeForm=

List

List

List

List

1 2

List

3 4

List

List

5 6

List

7 8

In[33]:= Flatten@structuredD

Out[33]= 81, 2, 3, 4, 5, 6, 7, 8<
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Flatten can also take a level that tells it to flatten only up to that level.

In[34]:= Flatten@structured, 1D êê TreeForm

Out[34]//TreeForm=

List

List

List

1 2

List

3 4

List

List

5 6

List

7 8

In[35]:= Flatten@structured, 2D êê TreeForm
Out[35]//TreeForm=

List

List

1 2

List

3 4

List

5 6

List

7 8

In[36]:= Flatten@structured, 3D

Out[36]= 81, 2, 3, 4, 5, 6, 7, 8<

Many  of  these  functions  have  advanced  features,  so  you  should  refer  to  the
Mathematica documentation for each to understand their full capabilities. I will use
these  functions  frequently  throughout  this  book  without  further  explanation,  so  if
you  are  not  already  familiar  with  them,  you  should  take  some  time  to  experi-
ment on your own.
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Set Functions
A  set  in  Mathematica  is  nothing  more  than  a  list  that  is  normalized  to  eliminate
duplicates  upon  application  of  a  set  operation:  Union,  Intersection,  or  Complement.
To determine duplicates, Mathematica uses an option called SameTest, which by de-
fault  is  the  function SameQ  or  ===.  The function Subsets  constructs  a  list  of  all  sub-
sets. MemberQ is used to test membership, but this function is far more general, and I
will revisit it in Chapter 4. 

In[37]:= Union@list1, list2D

Out[37]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 25, 36, 49, 64, 81, 100<

In[38]:= Intersection@list1, list2D

Out[38]= 81, 4, 9<

In[39]:= H*Complement can be used with

Intersection to implement Set Difference.*L

Complement@list1, Intersection@list1, list2DD
Out[39]= 82, 3, 5, 6, 7, 8, 10<

In[40]:= Complement@list2, Intersection@list1, list2DD

Out[40]= 816, 25, 36, 49, 64, 81, 100<

In[41]:= H*Generating all subsets*L

Subsets@8a, b, c<D
Out[41]= 88<, 8a<, 8b<, 8c<, 8a, b<, 8a, c<, 8b, c<, 8a, b, c<<

In[42]:= MemberQ@list2, 4D

Out[42]= True

Vector Functions
A vector is  also represented by a list,  but  Mathematica has a  special  representation
called a SparseArray  that can conserve space when a vector contains many zero en-
tries (see Recipe 3.8). Matrices and tensors are naturally represented as nested lists;
these likewise can use SparseArrays.

Vector math is supported by the fact that most mathematical operations have the at-
tribute Listable, meaning that the operations automatically thread over lists.
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In[43]:= H*Multiplication and subtraction of a vector by a scalar*L

3 * list1 - 3
Out[43]= 80, 3, 6, 9, 12, 15, 18, 21, 24, 27<

In[44]:= H*Listable is the relevant property.*L

Intersection@Flatten@Attributes@8Times, Plus, Minus, Divide, Power<DDD
Out[44]= 9Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected, ReadProtected=

Same-sized  vectors  and  matrices  can  also  be  added,  multiplied,  and  so  on,  in
an element-by-element fashion.

In[45]:= Range@10D ^ Range@10, 1, -1D

Out[45]= 81, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10<

Vector-specific  operations  are  also  supported.  Some  of  the  more  advanced  opera-
tions  are  in  a  package  called  VectorAnalysis`,  including  CrossProduct,  Norm,  Div,
Grad,  Curl,  and  about  three  dozen  others.  Use  ?VectorAnalysis`*  after  loading  the
package to see the full list.

In[47]:= u = 8-1, 0.5, 1<; v = 81, -0.5, 1<;

In[48]:= u.v

Out[48]= -0.25

In[49]:= Norm@uD

Out[49]= 1.5

In[50]:= Orthogonalize@8u, v<D

Out[50]= 88-0.666667, 0.333333, 0.666667<, 80.596285, -0.298142, 0.745356<<

In[51]:= Projection@u, vD

Out[51]= 8-0.111111, 0.0555556, -0.111111<

CrossProduct is not built in, so you must load a special package.

In[52]:= NeedsA"VectorAnalysis`"E

In[53]:= CrossProduct@u, vD

Out[53]= 81., 2., 0.<
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Matrix and Tensor Functions
Vectors and matrices are familiar to most scientists, engineers, and software develop-
ers. A tensor is a generalization of vectors and matrices to higher dimensions. Specifi-
cally, a scalar is a zero-order tensor, a vector is a first-order tensor, and a matrix is a
second-order tensor. Tensors of order three and higher are represented in Mathemat-
ica  as  more  deeply  nested lists.  Here  is  an  example  of  a  tensor  of  order  four.  Note
that  the  use  of  subscripting  in  this  example  is  for  illustration and is  not  integral  to
the notion of  a  tensor  from Mathematica’s  point  of  view.  (Mathematicians  familiar
with tensor analysis know that subscripts and superscripts have very definite mean-
ing,  but  Mathematica  does  not  directly  support  those  notations  [although  some
third-party packages do].)

In[54]:= Itensor4 = TableASubscriptAa, i, j, k, lE,

8i, 1, 2<, 9j, 1, 2=, 8k, 1, 2<, 8l, 1, 2<EM êê MatrixForm
Out[54]//MatrixForm=

a1,1,1,1 a1,1,1,2

a1,1,2,1 a1,1,2,2

a1,2,1,1 a1,2,1,2

a1,2,2,1 a1,2,2,2

a2,1,1,1 a2,1,1,2

a2,1,2,1 a2,1,2,2

a2,2,1,1 a2,2,1,2

a2,2,2,1 a2,2,2,2

In[55]:= H*Using Part with a single index yields a third-order tensor.*L

tensor4@@1DD êê MatrixForm
Out[55]//MatrixForm=

a1,1,1,1

a1,1,1,2

a1,1,2,1

a1,1,2,2

a1,2,1,1

a1,2,1,2

a1,2,2,1

a1,2,2,2

In[56]:= H*Using Part with two indices on a fourth-

order tensor yields a second-order tensor Hi.e., a matrixL.*L

tensor4@@1, 1DD êê MatrixForm
Out[56]//MatrixForm=

a1,1,1,1 a1,1,1,2

a1,1,2,1 a1,1,2,2

In[57]:= H*Using Part with three indices yields a vector.*L

tensor4@@1, 1, 2DD
Out[57]= 9a1,1,2,1, a1,1,2,2=

In[58]:= H*And all 4 indices gives a scalar.*L

tensor4@@2, 1, 2, 2DD
Out[58]= a2,1,2,2
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The recipes in this chapter deal mostly with vectors and matrices, but many opera-
tions in Mathematica are generalized to higher-order tensors. A very important func-
tion central to linear algebra is the Dot product. In linear algebra texts, this is often
referred to simply as vector multiplication. The Dot product only works if vectors and
matrices have compatible shapes.

In[59]:= DotA8x1, x2, x3<, 9y1, y2, y3=E

Out[59]= x1 y1 + x2 y2 + x3 y3

In[60]:= ClearAx, yE;

DotATableASubscriptAx, i, jE, 8i, 1, 3<, 9j, 1, 2=E,

TableASubscriptAy, i, jE, 8i, 1, 2<, 9j, 1, 3=EE êê MatrixForm
Out[61]//MatrixForm=

x1,1 y1,1 + x1,2 y2,1 x1,1 y1,2 + x1,2 y2,2 x1,1 y1,3 + x1,2 y2,3

x2,1 y1,1 + x2,2 y2,1 x2,1 y1,2 + x2,2 y2,2 x2,1 y1,3 + x2,2 y2,3

x3,1 y1,1 + x3,2 y2,1 x3,1 y1,2 + x3,2 y2,2 x3,1 y1,3 + x3,2 y2,3

Inner[f,m1,m2,g]  is  a function that generalizes Dot  by allowing a function f  to take
the  place  of  multiplication  and  g  to  take  the  place  of  addition.  Here  are  some
examples.

In[62]:= InnerAList, TableAi^j, 8i, 1, 4<, 9j, 1, 3=E,

TableAj! i!, 8i, 1, 3<, 9j, 1, 4=E, MaxE êê MatrixForm
Out[62]//MatrixForm=

6 12 36 144

8 12 36 144

27 27 36 144

64 64 64 144

In[63]:= InnerAList, TableAi + j, 8i, 1, 3<, 9j, 1, 2=E,

TableAi*j, 8i, 1, 2<, 9j, 1, 3=E, ListE êê MatrixForm
Out[63]//MatrixForm=

2 1

3 2

2 2

3 4

2 3

3 6

3 1

4 2

3 2

4 4

3 3

4 6

4 1

5 2

4 2

5 4

4 3

5 6
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In[64]:= InnerAList, TableAi*j, 8i, 1, 2<, 9j, 1, 2=E,

TableAi + j, 8i, 1, 2<, 9j, 1, 2=E, JoinE êê MatrixForm
Out[64]//MatrixForm=

1

2

2

3

1

3

2

4

2

2

4

3

2

3

4

4

In[65]:= InnerAAnd, TableAi < j, 8i, 1, 3<, 9j, 1, 3=E,

TableAj < i, 8i, 1, 3<, 9j, 1, 3=E, OrE êê MatrixForm
Out[65]//MatrixForm=

True True False

True True False

False False False

3.1 Ensuring the Most Efficient Representation 
of Numerical Lists 
Problem
You are performing very mathematically intense computations on large vectors, ma-
trices, or higher-order tensors and want the most efficient representation in terms of
speed and space.

Solution
Make sure your lists are packed arrays by not mixing numerical types. This means ar-
rays of integers should work exclusively in integers or exclusively in machine preci-
sion  floating  point.  Use  of  uniform types  is  necessary  but  not  sufficient  for  getting
packed arrays.  Mathematica tries to automatically use packed arrays when generat-
ing  large  lists  of  numbers,  but  sometimes  subtle  coding  differences  prevent  it  from
packing the result.

Here  are  two  very  similar  pieces  of  code,  but  the  first  generates  an  unpacked
representation and the second generates a packed one.

In[66]:= array1 = N@Table@i * Pi, 8i, 0, 500000<DD;

Developer`PackedArrayQAarray1E

Out[67]= False
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In[68]:= array2 = Table@i * Pi, 8i, 0.0, 500000.0<D;

Developer`PackedArrayQAarray2E

Out[69]= True

The difference is that the first Table generates a table in symbolic form and then con-
verts it to real numbers with N. So, although the final array meets the uniform criteria,
N will not pack it. In the second version, I force Table to create a list of real numbers
right off the bat by using real bounds for the index i. This makes N unnecessary and
causes Table to return a packed result.

Discussion
To get some insight into the superiority of  packed arrays,  we can ask Mathematica
to tell us the size of each array from the solution.

In[70]:= GridA98"", "size", "per elem"<,

9"array1", ByteCountAarray1E, NAByteCountAarray1Eë LengthAarray1EE=,

9"array2", ByteCountAarray2E, NAByteCountAarray2Eë LengthAarray2EE==,

Alignment Ø Right, Frame Ø AllE

Out[70]=

size per elem

array1 12000056 24.0001

array2 4000132 8.00025

As you can see, the space saved is considerable. Essentially, packed is giving you the
equivalent of a C or Fortran array. Space savings is not the only reason to work with
packed  arrays.  Many  operations  are  considerably  faster  as  well.  Here  you  see  that
multiplication of packed arrays is an order of magnitude faster than unpacked! 

In[71]:= MeanüTableATimingAarray1*array2E@@1DD, 8100<E

Out[71]= 0.0909364

In[72]:= MeanüTableATimingAarray2*array2E@@1DD, 8100<E

Out[72]= 0.00625822

When you can get an order of magnitude improvement, it is a good idea to take it,
because life is short!

The  Developer`  package  has  a  function  to  pack  an  unpacked  array,  although  it  is
preferable to alter your coding style as we’ve discussed here to get packed arrays.

In[73]:= array1 = Developer`ToPackedArrayAarray1E;

Developer`PackedArrayQAarray1E

Out[74]= True
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If  you have a very large packed array and assign a value to one of  the
elements  that  differ  from  the  packed  type,  this  assignment  will  be
expensive relative to a normal assignment. Mathematica will be forced
to copy the entire array into unpacked form before the assignment can
be made. 

See Also
The  Developer`  package  also  has  a  function  Developer`FromPackedArray  for
converting  a  packed  form  back  to  the  normal  representation.  Evaluating
?"Developer`*" allows you to peruse all the functions in this package, but many are
undocumented. 

3.2 Sorting Lists
Problem
You need to sort a list based on standard ordering (Less) or a custom-ordering rela-
tion. One common reason for sorting is to enable binary search.

Solution
Use Sort or SortBy, depending on how the ordering relation is specified. By default,
Sort uses less than (<) to order elements. 

In[76]:= list = RandomInteger@8-100, 100<, 10D;

In[77]:= Sort@listD

Out[77]= 8-73, -50, -45, -43, -20, 2, 42, 50, 66, 84<

In[78]:= Sort@list, GreaterD

Out[78]= 884, 66, 50, 42, 2, -20, -43, -45, -50, -73<

SortBy does not use an ordering relation, but rather uses a function whose output is
passed to Less.

In[79]:= SortBy@list, AbsD

Out[79]= 82, -20, 42, -43, -45, -50, 50, 66, -73, 84<

Discussion
If  you need to sort  lists  containing objects more complicated than scalars,  you
will  need  to  be  comfortable  with  expressing  the  order  relation  function.  Here
are some examples.
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In[80]:= data = 9

8"21 Mar 2007 14:34:30", 10.1, 12.7, 13.3<,

8"21 Jun 2005 10:19:30", 10.3, 11.7, 11.7<,

9"21 Aug 2006 15:34:01", 11.7, 16.8, 8.6=,

9"21 Aug 2006 09:34:00", 11.9, 16.5, 8.6=

=;

H*Sort the data by the time entry,

which must be converted to an absolute time to be properly ordered.*L

SortAdata,

LessAAbsoluteTimeA9Ò1@@1DD, 9"Day", "MonthNameShort", "Year", "Time"==E,

AbsoluteTimeA9Ò2@@1DD,

9"Day", "MonthNameShort", "Year", "Time"==EE &E êê TableForm
Out[81]//TableForm=

21 Jun 2005 10:19:30 10.3 11.7 11.7

21 Aug 2006 09:34:00 11.9 16.5 8.6

21 Aug 2006 15:34:01 11.7 16.8 8.6

21 Mar 2007 14:34:30 10.1 12.7 13.3

For practical sorting, you will never need to look beyond Sort, because it is both fast
and flexible.  However,  if  you are interested in sorting from an algorithmic perspec-
tive,  Mathematica  also  has  a  package  called  Combinatorica`,  which  contains  some
sorting routines that use specific algorithms (SelectionSort, HeapSort). 

In[82]:= Needs@"Combinatorica`"D

In[83]:= SelectionSort@list, LessD

Out[83]= 8-73, -50, -45, -43, -20, 2, 42, 50, 66, 84<

Of course, there is probably no practical reason to use SelectionSort since its asymp-
totic  behavior  is  O(n^2),  whereas  Sort  uses  a  O(n log n)  algorithm. You can count
the  number  of  comparisons  each  sort  makes  using  a  custom  comparison  function.
The framed number is the comparison count.

In[84]:= H*The sorted list and count of comparisons with Sort*L

Block@8count = 0<, 8Sort@list, Hcount++; Less@Ò1, Ò2DL &D, Framed@countD<D

Out[84]= :8-73, -50, -45, -43, -20, 2, 42, 50, 66, 84<, 26 >

In[85]:= H*Comparisons consistent with n log n*L

LogA2.0, Length@listDE * Length@listD

Out[85]= 33.2193
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In[86]:= H*The sorted list and count of comparisons

with SelectionSort. Roughly twice the comparisons*L

Block@8count = 0<,

8SelectionSort@list, Hcount++; Less@Ò1, Ò2DL &D, Framed@countD<D

Out[86]= :8-73, -50, -45, -43, -20, 2, 42, 50, 66, 84<, 55 >

In[87]:= H*Although better than worst case*L

Length@listD^2

Out[87]= 100

Heap  sort  is  O(n  log  n),  but  the  Combinatorica`  implementation  is  somewhat  
crippled because the ordering operation cannot be customized. 

In[88]:= HeapSort@listD

Out[88]= 8-73, -50, -45, -43, -20, 2, 42, 50, 66, 84<

If you are keen to do this experiment with HeapSort, you can easily make a customi-
zable version, since the source code is available. 

In[89]:= genericHeapSort@8<, _D := 8<

genericHeapSortAp_List, ordering_E :=

ModuleA9heap = genericHeapifyAp, orderingE, min=,

AppendATableAmin = First@heapD; heap@@1DD = heap@@nDD;

heap = genericHeapifyADrop@heap, -1D, 1, orderingE; min,

9n, Length@pD, 2, -1=E, Max@heapDEE ê; Length@pD > 0

H*HeapSort is implemented in terms of a function Heapify,

which we must customize to inject our ordering.*L

genericHeapifyAp_List, ordering_E :=

ModuleA9j, heap = p=, DoAheap = genericHeapifyAheap, j, orderingE,

9j, QuotientALength@pD, 2E, 1, -1=E; heapE

genericHeapifyAp_List, k_Integer, ordering_E :=

ModuleA9hp = p, i = k, l, n = Length@pD=,

WhileAHl = 2 iL § n, IfAl < n && ordering@hp@@l + 1DD, hp@@lDDD, l++E;

IfAordering@hp@@lDD, hp@@iDDD,

8hp@@iDD, hp@@lDD< = 8hp@@lDD, hp@@iDD<; i = l, i = n + 1E;E; hpE

In[93]:= BlockA8count = 0<,

9genericHeapSort@list, Hcount++; Less@Ò1, Ò2DL &D, Framed@countD=E

Out[93]= :8-73, -50, -45, -43, -20, 2, 42, 50, 66, 84<, 39 >

It  is  unfortunate  that  we  have  to  hack  HeapSort  to  give  it  customizable  ordering
function.  When  you  develop  your  own  general-purpose  functions,  it  pays  to
consider facilities that allow you and other users to customize the details while
leaving  the  essential  algorithm  intact.  This  is  the  essence  of  what  is  called
generic programming.  Chapter 2 has several  recipes that demonstrate how to create
more generic functions. 
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It  is  unfortunate  that  we  have  to  hack  HeapSort  to  give  it  customizable  ordering
function.  When  you  develop  your  own  general-purpose  functions,  it  pays  to
consider facilities that allow you and other users to customize the details while
leaving  the  essential  algorithm  intact.  This  is  the  essence  of  what  is  called
generic programming.  Chapter 2 has several  recipes that demonstrate how to create
more generic functions. 

One application of sorting is  performing efficient search. The Combinatorica`  pack-
age provides the function BinarySearch, which requires a sorted list. BinarySearch re-
turns  the  index  of  the  first  occurrence  of  a  search  key,  if  found.  If  the  key  is  not
found, it returns index + 1/2, indicating that the key belongs between index and in-
dex + 1 if it were to be inserted.

In[94]:= list2 = Range@1, 20, 2D

Out[94]= 81, 3, 5, 7, 9, 11, 13, 15, 17, 19<

In[95]:= BinarySearch@list2, 7D

Out[95]= 4

In[96]:= BinarySearch@list2, 6D

Out[96]=
7

2

In[97]:= H*An example of how BinarySearch might be used to

conditionally insert new elements into a sorted list*L

value = 6 ;

pos = BinarySearch@list2, valueD;

IfAIntegerQ@posD, pos, pos = Ceiling@posD;

list2 = Insert@list2, value, posD; posE;

list2
Out[100]= 81, 3, 5, 6, 7, 9, 11, 13, 15, 17, 19<

See Also
Recipe  3.3  discusses  how  to  determine  sorted  order  without  rearranging  the  ele-
ments of the list. 

A good overview of various sorting algorithms can be found at http://bit.ly/2bRckv.

3.3 Determining Order Without Sorting
Problem
You  need  to  know  how  the  elements  of  a  list  are  ordered  without  actually  sorting
them. This may be because it is too expensive to keep multiple copies of the data in
various orderings.
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Solution
Use Ordering to get a list of offsets to the elements in the order they would appear if
sorted.

In[101]:= unsorted = RandomInteger@890, 99<, 10D

Out[101]= 898, 90, 91, 98, 98, 91, 99, 99, 97, 96<

In[102]:= Ordering@unsortedD

Out[102]= 82, 3, 6, 10, 9, 1, 4, 5, 7, 8<

Discussion
Ordering  has  two  variations.  The  first  takes  an  integer  that  limits  how  many  posi-
tions are returned. If you specify n, then the first n are returned; if you specify -n, the
last  n  are  returned.  This  option  makes  Ordering  more  useful  than  Sort  when  you
don’t need the entire list sorted.

In[103]:= Ordering@unsorted, 3D

Out[103]= 82, 3, 6<

In[104]:= Ordering@unsorted, -3D

Out[104]= 85, 7, 8<

The second variation takes both an integer and an ordering relation.

In[105]:= OrderingAunsorted, Length@unsortedD, GreaterE

Out[105]= 88, 7, 5, 4, 1, 9, 10, 6, 3, 2<

Given an ordering, it is easy to create a sorted version of the list.

In[106]:= unsortedAAOrdering@unsortedDEE

Out[106]= 890, 91, 91, 96, 97, 98, 98, 98, 99, 99<

Unfortunately,  Ordering  does  as  many  comparisons  as  a  full  sort  even  if  you  only
want the first few orderings. 

In[107]:= BlockA8count = 0<,

9Ordering@unsorted, 3, Hcount++; Less@Ò1, Ò2DL &D, Framed@countD=E

Out[107]= :82, 6, 3<, 23 >

In[108]:= BlockA8count = 0<,

9Ordering@unsorted, 6, Hcount++; Less@Ò1, Ò2DL &D, Framed@countD=E

Out[108]= :82, 6, 3, 10, 9, 5<, 23 >

A heap would be superior in such an application, but rolling your version of Order-
ing is unlikely to yield superior results due to optimizations that go beyond minimiz-
ing comparisons.  After  all,  it  takes Ordering  less  than a second to do its  work on a
million integers on my relatively low-powered laptop.
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A heap would be superior in such an application, but rolling your version of Order-
ing is unlikely to yield superior results due to optimizations that go beyond minimiz-
ing comparisons.  After  all,  it  takes Ordering  less  than a second to do its  work on a
million integers on my relatively low-powered laptop.

In[109]:= TimingAOrderingARandomInteger@81, 999999<, 1000000D, 2EE

Out[109]= 80.255152, 8314075, 337366<<

See Also
Recipe 3.2 discusses sorting.

OrderedQ  tests if  a list  is  ordered, and Order  compares  two  expressions,  returning
|1 (Less), 0 (Equal), or 1 (Greater). 

3.4 Extracting the Diagonals of a Matrix 
Problem
You want  to  extract  the  diagonal,  subdiagonal,  superdiagonal,  or  antidiagonal  of  a
matrix.

Solution
In versions prior to Mathematica 6, use Tr with List as the combining function (the
default combining function of Tr is Plus).

In[110]:= Hmatrix = 881, 2, 3<, 84, 5, 6<, 87, 8, 9<<L êê MatrixForm

Out[110]//MatrixForm=
1 2 3

4 5 6

7 8 9

In[111]:= Tr@matrix, ListD

Out[111]= 81, 5, 9<

Mathematica 6 introduced the function Diagonal, which makes this recipe trivial.

In[112]:= Diagonal@matrixD

Out[112]= 81, 5, 9<
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You can extract the antidiagonal using either of the following expressions:

In[113]:= Diagonal@Map@Reverse, matrixDD

Out[113]= 83, 5, 7<

In[114]:= Tr@Map@Reverse, matrixD, ListD

Out[114]= 83, 5, 7<

Discussion
The Diagonal function is more versatile than Tr in that it allows you to select off the
main diagonal by proving an index.

In[115]:= Diagonal@matrix, 1D

Out[115]= 82, 6<

In[116]:= Diagonal@matrix, -1D

Out[116]= 84, 8<

Although the solutions implementation of antidiagonal is  simple,  it  is  not the most
efficient: it reverses every row of the input matrix. An iterative solution using Table
is simple and fast.

In[117]:= AntiDiagonal@matrix_D := ModuleA9len = Length@matrixD=,

Table@matrix@@i, len - i + 1DD, 8i, 1, len<DE

In[118]:= bigMatrix = TableAi*j, 8i, 0, 5500<, 9j, 0, 5500=E;

In[119]:= TimingAAntiDiagonalAbigMatrixEE@@1DD

Out[119]= 0.001839

In[120]:= TimingADiagonalAMapAReverse, bigMatrixEEE@@1DD

Out[120]= 0.230145

It is always good to test a new version of an algorithm against one you already know
works.

In[121]:= AntiDiagonalAbigMatrixE ã DiagonalAMapAReverse, bigMatrixEE

Out[121]= True

3.5 Constructing Matrices of Specific Structure
Problem
You  want  to  construct  matrices  of  a  specific  structure  (e.g.,  diagonal,  identity,
tridiagonal).

Solution
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Solution
Mathematica has built-in matrix constructions for the most common kinds of matrices.

In[122]:= IdentityMatrix@5D êê MatrixForm

Out[122]//MatrixForm=
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

In[123]:= DiagonalMatrixARange@4DE êê MatrixForm
Out[123]//MatrixForm=

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

Discussion
Although identity and diagonal matrices are quite common, there are other kinds of
matrices  that  arise  frequently  in  practical  problems.  For  example,  problems involv-
ing coupled systems often give rise to tridiagonal matrices. SparseArray and Band are
perfect for this job. These are discussed in Recipe 3.8. Here, the use of Normal to con-
vert  sparse  form  to  list  form  is  not  essential  because  sparse  arrays  will  play  nicely
with regular ones.

In[124]:= triDiagonal@sub_List, main_List, super_ListD ê;

9Length@subD, Length@superD= + 1 ã 9Length@mainD , Length@mainD= :=

ModuleA8<,

NormalASparseArrayA8Band@82, 1<D Ø sub,

Band@81, 2<D Ø super, Band@81, 1<D Ø main<, Length@mainDEEE

In[125]:= triDiagonalAsub_?NumericQ, main_?NumericQ, super_?NumericQ, n_IntegerE :=

NormalASparseArray@

8Band@82, 1<D Ø sub, Band@81, 2<D Ø super, Band@81, 1<D Ø main<, nDE

In[126]:= triDiagonal@8-1, -1, -1<, 82, 2, 2, 2<, 81, 1, 1<D êê MatrixForm
Out[126]//MatrixForm=

2 1 0 0

-1 2 1 0

0 -1 2 1

0 0 -1 2
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Tridiagonal matrices are always invertible.

In[127]:= InverseAtriDiagonal@8-1, -1, -1<, 82, 2, 2, 2<, 81, 1, 1<DE

Out[127]= ::
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>, :
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>>

There are also functions to transform a given matrix to another. Mathematica 7 in-
troduced  LowerTriangularize  and  UpperTriangularize  to  create  triangular  matrices
from a given matrix.

In[128]:= WithA9m = Array@1 &, 84, 4<D=, RowA9LowerTriangularize@mD êê MatrixForm,

UpperTriangularize@mD êê MatrixForm=EE

Out[128]=

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

These functions take an optional second parameter k, where positive k refers to sub-
diagonals  above the main diagonal  and negative k  refers  to subdiagonals  below the
main  diagonal.  This  points  to  another  way  to  arrive  at  a  tridiagonal  matrix  from a
given or synthesized matrix. 

In[129]:= UpperTriangularizeA

LowerTriangularizeAArray@Ò &, 84, 4<D, 1E, -1E êê MatrixForm
Out[129]//MatrixForm=

1 1 0 0

2 2 2 0

0 3 3 3

0 0 4 4

See Also
Certain  important  transformation  matrices  are accommodated by ScalingMatrix,
RotationMatrix, and ReflectionMatrix. See Recipe 2.11 for a usage example.

3.6 Constructing Permutation and Shift Matrices
Problem
You want to construct a matrix that will permute or shift the rows or columns of an
input matrix.

Solution
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Solution
A permutation matrix is a permutation of the identity matrix. It is used to permute
either the rows or columns of another matrix.

In[130]:= permutationMatrix@list_D := IdentityMatrixALength@listDE@@listDD

In[131]:= Im1 = TableA2 i + j, 8i, 1, 3<, 9j, 1, 3=EM êê MatrixForm

Out[131]//MatrixForm=
3 4 5

5 6 7

7 8 9

In[132]:= H*Create a permutation matrix that

permutes the second and first row or column.*L

Hp1 = permutationMatrix@82, 1, 3<DL êê MatrixForm
Out[132]//MatrixForm=

0 1 0

1 0 0

0 0 1

In[133]:= Hm1p1 = Dot@m1, p1DL êê MatrixForm H*Permute columns.*L
Out[133]//MatrixForm=

4 3 5

6 5 7

8 7 9

In[134]:= Hp1m1 = Dot@p1, m1DL êê MatrixForm H*Permute rows.*L
Out[134]//MatrixForm=

5 6 7

3 4 5

7 8 9

Whereas a permutation matrix permutes rows or columns, a shift matrix shifts rows
or columns, replacing the empty elements with zeros. A shift matrix is simply a ma-
trix  with  1s  on  the  superdiagonal  or  subdiagonal  and  0s  everywhere  else.  This  can
easily be constructed using the DiagonalMatrix function. 

In[135]:= shiftMatrix@n_, dir_D := DiagonalMatrix@Table@1, 8n - Abs@dirD<D, dirD

In[136]:= DotAshiftMatrix@4, 2D, TableA1, 8i, 1, 4<, 9j, 1, 4=EE êê MatrixForm
Out[136]//MatrixForm=

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0
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In[137]:= H*Shift columns right.*L

Dot@m1, shiftMatrix@3, 1DD êê MatrixForm
Out[137]//MatrixForm=

0 3 4

0 5 6

0 7 8

In[138]:= H*Shift columns left.*L

Dot@m1, shiftMatrix@3, -1DD êê MatrixForm
Out[138]//MatrixForm=

4 5 0

6 7 0

8 9 0

In[139]:= H*Shift rows up.*L

Dot@ shiftMatrix@3, 1D, m1D êê MatrixForm
Out[139]//MatrixForm=

5 6 7

7 8 9

0 0 0

In[140]:= H*Shift rows down.*L

Dot@ shiftMatrix@3, -1D, m1D êê MatrixForm
Out[140]//MatrixForm=

0 0 0

3 4 5

5 6 7

Discussion
A  generalized  permutation  matrix  has  the  same  zero  entries  as  the  corresponding  
permutation matrix, but the nonzero entries can have values other than 1. 

In[141]:= generalizedPermutationMatrix@values_List, perm_ListD :=

DotADiagonalMatrix@valuesD, permutationMatrix@permDE

In[142]:= generalizedPermutationMatrix@83, -1, 4<, 82, 3, 1<D êê MatrixForm
Out[142]//MatrixForm=

0 3 0

0 0 -1

4 0 0

You can easily enumerate all n! permutation matrices of size n. 

In[143]:= allPermutationMatrices@n_D :=

permutationMatrix@ÒD & êü PermutationsARange@nDE
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In[144]:= Grid@Partition@MatrixForm êü allPermutationMatrices@4D, 6DD

Out[144]=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

It is also easy to detect if a matrix is a row permutation of another matrix: simply re-
move  each  row  from  m1  that  matches  m2  and  see  if  you  are  left  with  no  rows.  Of
course, you must also check that the matrices are the same size. A check for column
permutation is just a check for row permutations on the transpose of each matrix.

In[145]:= isRowPermutation@m1_, m2_D :=

Length@m1D ã Length@m2D && Fold@DeleteCases@Ò1, Ò2D &, m1, m2D ã 8<

isMatrixPermutation@m1_, m2_D := isRowPermutation@m1, m2D »»

isRowPermutation@Transpose@m1D, Transpose@m2DD

You can verify this on some test cases.

In[147]:= H*Obviously a matrix is a permutation of itself.*L

isMatrixPermutation@m1, m1D
Out[147]= True

In[148]:= H*Test a row permutation.*L

isMatrixPermutation@m1, p1m1D
Out[148]= True

In[149]:= H*Test a column permutation.*L

isMatrixPermutation@m1, m1p1D
Out[149]= True

In[150]:= H*A matrix and its tranpose are not permutations unless symmetric.*L

isMatrixPermutation@m1, Transpose@m1DD
Out[150]= False

You may be thinking that matrix permutations via linear algebra will  only apply  to
matrices  of  numbers,  but  recall  that  Mathematica  is  a  symbolic  language  and,
thus, not limited to numerical manipulation. Here we do a Dot product on a matrix
of graphics! 

108 | Chapter 3: Data Structures 



You may be thinking that matrix permutations via linear algebra will  only apply  to
matrices  of  numbers,  but  recall  that  Mathematica  is  a  symbolic  language  and,
thus, not limited to numerical manipulation. Here we do a Dot product on a matrix
of graphics! 

In[151]:= greenRook = ImportA

FileNameJoinA9NotebookDirectory@D, "..", "images", "greenRook.gif"=EE;

redSq = ImportAFileNameJoinA9NotebookDirectory@D,

"..", "images", "redSq.gif"=EE;

greenSq = ImportAFileNameJoinA9NotebookDirectory@D,

"..", "images", "greenSq.gif"=EE;

pieceAi_, j_E := WhichAi ã j, greenRook, OddQAi + jE,

redSq, True, greenSqE;

Iboard = TableApieceAi, jE, 8i, 1, 4<, 9j, 1, 4=EM êê MatrixForm
Out[155]//MatrixForm=

In[156]:= Dot@board, permutationMatrix@82, 3, 1, 4<DD êê MatrixForm
Out[156]//MatrixForm=

This chess demo lacks some aesthetics (the squares move along with the rooks), but
it does illustrate the generality of the permutation matrix. 
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3.7 Manipulating Rows and Columns of Matrices
Problem
You want to add, remove, or modify entire rows or columns of a matrix in place.

Solution
Many operations on lists (including higher-order lists such as matrices) do not
modify  the  input  list  but rather produce a new list with the change. For example,
Append[myList,10]  returns  a  list  with  10  appended  but  leaves  myList  untouched.
Sometimes you want to modify the actual value of the list associated with a symbol.

In[157]:= H*Create a 5 x 5 zero matrix.*L

Hx = Table@0, 85<, 85<DL êê MatrixForm
Out[157]//MatrixForm=

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

In[158]:= H*Set the second column to 81,2,3,4,5<.*L

x@@All, 2DD = Range@5D;

In[159]:= x êê MatrixForm
Out[159]//MatrixForm=

0 1 0 0 0

0 2 0 0 0

0 3 0 0 0

0 4 0 0 0

0 5 0 0 0

In[160]:= H*Set the third row to 3.*L

x@@3, AllDD = 3;

In[161]:= x êê MatrixForm
Out[161]//MatrixForm=

0 1 0 0 0

0 2 0 0 0

3 3 3 3 3

0 4 0 0 0

0 5 0 0 0

In[162]:= H*Set 3 x 3 interior to 9.*L

x@@2 ;; 4, 2 ;; 4DD = 9;
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In[163]:= x êê MatrixForm

Out[163]//MatrixForm=
0 1 0 0 0

0 9 9 9 0

3 9 9 9 3

0 9 9 9 0

0 5 0 0 0

You may also want to add elements, rows, and columns.

In[164]:= H*Add a row.*L

AppendToAx, Range@10, 14DE;

In[165]:= x êê MatrixForm

Out[165]//MatrixForm=
0 1 0 0 0

0 9 9 9 0

3 9 9 9 3

0 9 9 9 0

0 5 0 0 0

10 11 12 13 14

In[166]:= H*Add a column of 9s.*L

Do@AppendTo@x@@iDD, 9D, 8i, 1, 6<D

In[167]:= x êê MatrixForm
Out[167]//MatrixForm=

0 1 0 0 0 9

0 9 9 9 0 9

3 9 9 9 3 9

0 9 9 9 0 9

0 5 0 0 0 9

10 11 12 13 14 9

Discussion
Destructive operations should generally be avoided because they can lead to annoy-
ing bugs.  For one thing,  they make code sensitive to evaluation order.  This  type of
code  is  harder  to  change.  Further,  you  need  to  keep  in  mind  that  these  operations
are  being  performed  on  symbols  rather  than  lists.  What  does  this  mean?  Let’s  in-
spect the attributes of AppendTo to gain a bit of insight. 

In[168]:= Attributes@AppendToD

Out[168]= 8HoldFirst, Protected<

The  relevant  attribute  here  is  HoldFirst.  This  means  that  the  expression  passed  as
the  first  argument  is  passed  in  unevaluated  form.  This  has  implications  when  you
want  to  write  your  own functions  that  destructively  change  the  value  of  a  symbol.
Consider trying to implement your own AppendTo.
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The  relevant  attribute  here  is  HoldFirst.  This  means  that  the  expression  passed  as
the  first  argument  is  passed  in  unevaluated  form.  This  has  implications  when  you
want  to  write  your  own functions  that  destructively  change  the  value  of  a  symbol.
Consider trying to implement your own AppendTo.

In[169]:= ClearAllAmyAppendToE ;

myAppendTo@x_, val_D := x = Append@x, valD

In[171]:= AttributesAmyAppendToE

Out[171]= 8<

In[172]:= x = 8< ; myAppendTo@x, 10D

Set::shape : Lists 8< and 810< are not the same shape. à

Out[172]= 810<

In[173]:= x

Out[173]= 8<

First  notice  that  this  generated  an  error  message  and  that  x  did  not  change.
This occurred because x was evaluated before the call, and you ended up evaluating
AppendTo[List[], 10], which is illegal. You can remedy this by using HoldFirst.

In[174]:= SetAttributesAmyAppendTo, 8HoldFirst<E

In[175]:= myAppendTo@x, 10D

Out[175]= 810<

In[176]:= x

Out[176]= 810<

Now it works. As a general rule, you need to use attributes HoldFirst,  HoldRest,  or
HoldAll, as appropriate, to pass expressions in unevaluated form to your own func-
tions. This is covered in Chapter 2, “Introduction,” on page 30, and in Recipe 2.2.

3.8 Using Sparse Arrays to Conserve Memory 
Problem
You need to work with very large arrays or matrices but most of the entries are dupli-
cates (typically 0). 
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Solution
Mathematica has direct support for sparse arrays and higher-order tensors using the
SparseArray  function.  The  sparse  array  is  built  from a  rule-based  specification  that
maps positions to values.

In[177]:= H*1000 µ 1000 sparse matrix*L

m1 = SparseArray@881, 1< Ø 1, 81000, 1000< Ø -1, 8500, 750< Ø 5<D

Out[177]= SparseArray@<3>, 81000, 1000<D

You can also specify the positions and values in separate lists. Here is a sparse vector
using this technique.

In[178]:= v1 = SparseArray@81, 3, 9, 81, 6561< Ø 85, 10, 15, 20, 25<D

Out[178]= SparseArray@<5>, 86561<D

You can also convert a standard matrix to a sparse one.

In[179]:= dense = DiagonalMatrixARange@1000DE;

In[180]:= sparse = SparseArray@denseD

Out[180]= SparseArray@<1000>, 81000, 1000<D

As you can see, the memory savings is considerable.

In[181]:= ByteCount@denseD - ByteCount@sparseD

Out[181]= 3987416

In[182]:= ClearAll@denseD

Discussion
Very large but sparsely populated matrices arise often in applications of linear alge-
bra.  Mathematica  provides  excellent  support  for  sparse  arrays  because  most  opera-
tions that are available for list-based matrices (or tensors in general) are available for
sparse array objects.

Mathematica  does  not  have  sparse  equivalents  of  the  convenience  functions
IdentityMatrix  and  DiagonalMatrix,  but  they  are  easy  to  synthesize  using  Band,
which specifies either the starting position of a diagonal entry or a range of positions
for a diagonal.

In[183]:= H*100 x 100 identity matrix*L

identity = SparseArray@Band@81, 1<D Ø 1, 8100, 100<D

Out[183]= SparseArray@<100>, 8100, 100<D
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In[184]:= H*100 x 100 diagonal matrix with

the values 81,2,3,...,100< on the diagonal*L

diagonal = SparseArrayABand@81, 1<D Ø Range@100D, 8100, 100<E

Out[184]= SparseArray@<100>, 8100, 100<D

A general sparse diagonal function looks like this.

In[185]:= sparseDiagonal@list_, k_D :=

SparseArrayABand@If@k > 0, 81, 1 + k<, 81 - k, 1<DD Ø list,

ILength@listD + Abs@kDM 81, 1<E

You can also produce sparse versions of the permutation matrices from Recipe 3.6. 

In[186]:= sparsePermutationMatrix@list_D :=

SparseArrayABand@81, 1<D Ø 1, Length@listD 81, 1<E @@listDD

antiDiag = sparsePermutationMatrixARange@100, 1, -1DE

Out[187]= SparseArray@<100>, 8100, 100<D

See Also
Recipe 3.5 showed how to use SparseArray and Band to create tridiagonal matrices.

3.9 Manipulating Deeply Nested Lists Using 
Functions with Level Specifications
Problem
You need to extract, delete, modify, or transform content deep inside a nested list.

Solution
A level specification (or levelspec) is the key for surgically manipulating lists that con-
tain  many  levels.  Most  of  Mathematica’s  functions  that  deal  with  lists  have  varia-
tions that  take levelspecs.  Position  is  one such function.  Consider  a  list  of  integers
that has values nested up to eight levels.

In[188]:= deep = 81, 82, 3, 4, 5, 81, 6, 1, 7<,

81, 88881, 8<, 1<, 81<<, 1<<, 1, 1, 1, 9, 10, 11<, 12<;

Depth@

deepD
Out[189]= 8
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In[190]:= deep êê TreeForm

Out[190]//TreeForm=

List

1 List

2 3 4 5 List

1 6 1 7

List

1 List

List

List

List

1 8

1

List

1

1

1 1 1 9 10 11

12

If you use Position to search for 1, you get a list of all positions that have the value
1. You can verify this using Extract.

In[191]:= Position@deep, 1D

Out[191]= 881<, 82, 5, 1<, 82, 5, 3<, 82, 6, 1<, 82, 6, 2, 1, 1, 1, 1<,

82, 6, 2, 1, 1, 2<, 82, 6, 2, 1, 2, 1<, 82, 6, 2, 2<, 82, 7<, 82, 8<, 82, 9<<

In[192]:= Extract@deep, Position@deep, 1DD

Out[192]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

Suppose you do not want the 1s at every level. This is where levelspecs come in handy.

Use a single positive integer n to search at all levels up to and including n.

In[193]:= H*Only search up to level two.*L

Position@deep, 1, 2D
Out[193]= 881<, 82, 7<, 82, 8<, 82, 9<<

Enclosing the level {n} in a list restricts search to that level.

In[194]:= H*Only search at level two.*L

Position@deep, 1, 82<D
Out[194]= 882, 7<, 82, 8<, 82, 9<<

The list notation {n,m} restricts search to levels n through m, inclusively.

In[195]:= H*Search at levels three through five.*L

Position@deep, 1, 83, 5<D
Out[195]= 882, 5, 1<, 82, 5, 3<, 82, 6, 1<, 82, 6, 2, 2<<
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Negative  level  specification  of  the  form  -n  looks  for  objects  that  themselves  have
depth n. 

In[196]:= Position@deep, 1, -1D

Out[196]= 881<, 82, 5, 1<, 82, 5, 3<, 82, 6, 1<, 82, 6, 2, 1, 1, 1, 1<,

82, 6, 2, 1, 1, 2<, 82, 6, 2, 1, 2, 1<, 82, 6, 2, 2<, 82, 7<, 82, 8<, 82, 9<<

In[197]:= H*See the discussion for why this is empty and must be empty.*L

Position@deep, 1, -2D
Out[197]= 8<

Discussion
We  used  Position  to  get  a  feel  for  level  specifications  because  it  is  easy  to  judge,
based on the length of each position sublist, the depth of each item found. However,
you may be surprised that the last example was empty. It is easy to mistakenly think
that negative level specification means searching from the bottom of the tree up be-
cause this seems analogous to the way negative indices work in functions like Part.
This is not the case. A negative level specification means only looking for items with
specified depth after dropping the minus sign. Any scalar (like 1) has depth 1, includ-
ing complex numbers. 

In[198]:= 8Depth@1D, Depth@3.7D, Depth@"foo"D, Depth@1 + 7 ID<

Out[198]= 81, 1, 1, 1<

From this, it follows that a scalar will never be found by using a negative depth value
less than |1.

Another important function for illustrating the use of level specifications is Level. Its
function is to retrieve all objects at the specified level(s). 

In[199]:= Level@deep, 82<D

Out[199]= 82, 3, 4, 5, 81, 6, 1, 7<, 81, 88881, 8<, 1<, 81<<, 1<<, 1, 1, 1, 9, 10, 11<

Objects at level {2} may have a variety of depths.

In[200]:= Depth êü Level@deep, 82<D

Out[200]= 81, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 1<

Objects at level {-2} will only have a single depth by definition.

In[201]:= Level@deep, 8-2<D

Out[201]= 881, 6, 1, 7<, 81, 8<, 81<<

In[202]:= Depth êü Level@deep, 8-2<D

Out[202]= 82, 2, 2<

A picture helps reinforce this. Note that each tree has two levels.
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A picture helps reinforce this. Note that each tree has two levels.

In[203]:= GraphicsRowATreeForm êü Level@deep, 8-2<D, ImageSize Ø LargeE

Out[203]=

List

1 6 1 7

List

1 8

List

1

Note the difference between {-2},  meaning exactly depth 2, and -2,  meaning depth
2 or more.

In[204]:= Depth êü Level@deep, -2D

Out[204]= 82, 2, 3, 2, 4, 5, 6, 7<

Once  you  have  mastered  level  specifications,  the  functions  Apply,  Cases,  Delete,
DeleteCases,  Extract,  FreeQ,  Level,  Map,  MapIndexed,  MemberQ,  Position,  Replace,
and Scan take on more power and precision because they each have versions that use
levelspecs. 

Here  are  some examples  in  which we extract,  delete,  and modify  the  contents  of  a
deeply nested expression. This time we use an algebraic expression.

In[205]:= ClearAx, yE;

deepAlg = 1 + Ix + yM - 2 x^2 + Ix + yM^3 + E^Ix + yM;

deepAlg = FactorAdeepAlg ^ deepAlg - deepAlgE

Out[207]= I1 + ‰x+y + x - 2 x2 + x3 + y + 3 x2 y + 3 x y2 + y3M

I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
-2 x2

K-I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
2 x2

+

I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
‰x+y+x+y+Hx+yL3

O

In[208]:= DepthAdeepAlgE

Out[208]= 8

In[209]:= H*The three x's at levels two through three*L

ExtractAdeepAlg, PositionAdeepAlg, x, 82, 3<EE

Out[209]= 8x, x, x, x<
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In[210]:= H*Delete the x's at two and three.*L

DeleteAdeepAlg, PositionAdeepAlg, x, 82, 3<EE

Out[210]= I4 + ‰x+y - 2 x2 + y + 3 x2 y + 3 y2 + y3M

I1 + ‰x+y - 2 x2 + y + Ix + yM3M
-2 x2

K-I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
2 x2

+

I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
‰x+y+x+y+Hx+yL3

O

In[211]:= H*Change those x's to z's.*L

ReplaceAdeepAlg, x Ø z, 82, 3<E

Out[211]= K-I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
2 x2

+

I1 + ‰x+y + x - 2 x2 + y + Ix + yM3M
‰x+y+x+y+Hx+yL3

O

I1 + ‰x+y - 2 x2 + y + Ix + yM3 + zM-2 x2

I1 + ‰x+y - 2 x2 + y + 3 x2 y + y3 + z + 3 y2 z + z3M

In[212]:= H*Sure enough, there are now four z's.*L

Count@%, z, 82, 3<D
Out[212]= 4

In[213]:= H*Replace any subexpression with depth three with z.*L

ReplaceAdeepAlg, _ Ø z, 8-3<E

Out[213]= I1 + x + y + 3 zMz I1 + x + x3 + y + y3 + 4 zM

I-I1 + x + y + 3 zMz + I1 + x + y + 3 zMx+y+2 zM

In[214]:= H*Square all subexpressions of depth three.*L

MapAÒ^2 &, deepAlg, 8-3<E

Out[214]= I1 + ‰2 x+2 y + x + x3 + 4 x4 + y + 9 x4 y2 + y3 + 9 x2 y4M

I1 + ‰2 x+2 y + x + 4 x4 + y + Ix + yM6M
4 x4

-I1 + ‰2 x+2 y + x + 4 x4 + y + Ix + yM6M
4 x4

+

I1 + ‰2 x+2 y + x + 4 x4 + y + Ix + yM6M
‰2 x+2 y+x+y+Hx+yL6

See Also
Chapter 2, “Functional Programming,”  has  recipes  that  deal  with  the  specifics  of
Apply, Map, MapIndexed, and Scan.

Chapter 4, “Patterns,”  has  recipes  that  deal  with  the  specifics  of  Cases,  
DeleteCases, FreeQ, MemberQ, and Replace.
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3.10 Implementing Bit Vectors and Using 
Format to Customize Their Presentation
Problem
You want to manipulate a vector of bits  in a space-efficient fashion. You also want
to give these vectors a concise default display format.

Solution
You can use Mathematica’s ability to represent arbitrarily large integers as a means
of implementing bit vectors. Using Mathematica’s UpValue convention (see Chapter 2,
“DownValues and UpValues,” page 27) you can make bit vectors adopt the familiar
interface  used  by  lists.  When  you  create  custom  data  structures  like  this,  you  can
give them an output format that hides the details of their internal representation.

In[215]:= H*Make a bit vector from a list of bit value.*L

makeBitVector@bits_ListD :=

bitvecAFromDigits@Reverse@bitsD, 2D, Length@bitsDE

H*Make a bit vector of a specified

length. Values are initialized to 0.*L

makeBitVector@l_: 32D := bitvec@0, lD

H*Set bit at index to 0 or 1.*L

setBitAbitvec@n_, l_D, index_Integer, 1E :=

ModuleA8n2 = BitSet@n, index - 1D<, bitvecAn2, MaxAl, BitLength@n2DEEE

setBitAbitvec@n_, l_D, index_Integer, 0E :=

bitvec@BitClear@n, index - 1D, lD

SetAttributes@setBitOf, HoldFirstD

setBitOfAname_Symbol, index_Integer, bit_ ê; bit === 0 »» bit === 1E :=

name = setBit@name, index, bitD

H*Get the first bit value.*L

bitvec ê: First@bitvec@n_, _DD := BitGet@n , 0D

H*Get the rest of the bits after the first as a new bit vector.*L

bitvec ê: Rest@bitvec@n_, l_DD := bitvec@Floor@nê2D, l - 1D

H*Get bit at index.*L

bitvec ê: PartAbitvec@n_, _D, index_IntegerE := BitGet@n , index - 1D

H*Get the length of the bit vector.*L

bitvec ê: Length@bitvec@n_, l_DD := l

bitvec ê: BitLength@bitvec@n_, l_DD := l

H*Perform bitwise AND of two vectors.*L
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bitvec ê: BitAnd@bitvec@n1_, l1_D, bitvec@n2_, l2_DD :=

bitvec@BitAnd@n1, n2D, Max@l1, l2DD

H*Perform bitwise OR of two vectors.*L

bitvec ê: BitOr@bitvec@n1_, l1_D, bitvec@n2_, l2_DD :=

bitvec@BitAnd@n1, n2D, Max@l1, l2DD

H*Return the complement HNOTL of a bit vector.*L

bitvec ê: BitNot@bitvec@n_, l_DD :=

bitvec@BitAnd@BitNot@nD, 2^l - 1D, lD

H*Create a format to print bit vectors in an abbreviated fashion.*L

Format@bitvec@n_, l_DD :=

"bitvec"A"<" <> ToString@BitGet@n, 0DD <> "..." <>

ToString@BitGet@n, l - 1DD <> ">", lE

Here are some examples of usage.

In[229]:= bv = makeBitVector@81, 0, 0, 0, 1<D

Out[229]= bitvec@<1...1>, 5D

In[230]:= bv@@2DD

Out[230]= 0

In[231]:= bv = setBit@bv, 2, 1D

Out[231]= bitvec@<1...1>, 5D

In[232]:= bv@@2DD

Out[232]= 1

In[233]:= bv = setBit@bv, 500, 1D

Out[233]= bitvec@<1...1>, 500D

In[234]:= bv2 = Rest@bvD

Out[234]= bitvec@<1...1>, 499D

In[235]:= bv3 = BitNot@makeBitVector@81, 0, 0, 0, 1<DD

Out[235]= bitvec@<0...0>, 5D

In[236]:= bv3@@1DD

Out[236]= 0

Discussion
Even if you have no immediate application for bit vectors, this recipe provides a les-
son in how you can create new types of objects and integrate them into Mathemat-
ica using familiar native functions. 
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See Also
See  tutorial/DefiningOutputFormats  in  the  Mathematica  documentation  for  more
details on Format.

3.11 Implementing Trees and Traversals 
Using Lists
Problem
You want  to  model  tree  data  structures  in  Mathematica  and operate  on them with
standard tree-based algorithms. 

Solution
The simplest tree is the binary tree, and the simplest model of a binary tree in Mathe-
matica is a list consisting of the left branch, node value, and right branch. 

In[238]:= H*MakeTree constructs either an empty

tree or a tree with only a root element.*L

makeTree@D := 8<

makeTree@value_D := 88<, value, 8<<

H*Functions for extracting the parts of a node*L

getTreeValue@tree_D := tree@@2DD

getTreeLeft@tree_D := tree@@1DD

getTreeRight@tree_D := tree@@3DD

H*We insert elements into a tree using < ordering relation.*L

insertTree@8<, value_D := 88<, value, 8<<

insertTree@tree_, value_D := IfAvalue < getTreeValue@treeD,

9insertTreeAgetTreeLeft@treeD, valueE,

getTreeValue@treeD, getTreeRight@treeD=,

9getTreeLeft@treeD, getTreeValue@treeD,

insertTreeAgetTreeRight@treeD, valueE=E

H*Given the above primitives, it is easy to define

some common algorithms.*L

listToTree@list_ListD := Fold@insertTree@Ò1, Ò2D &, makeTree@D, listD

H*A preorder traversal is also known as depth-first.*L

preorder@tree_D := Reap@preorder2@treeDD @@2, 1DD

preorder2@8<D := 8<

preorder2@tree_D := ModuleA8<, SowAgetTreeValue@treeDE;

preorder2AgetTreeLeft@treeDE;

preorder2AgetTreeRight@treeDEE
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In[238]:=

postorder@tree_D := Reap@postorder2@treeDD@@2, 1DD

postorder2@8<D := 8<

postorder2@tree_D := ModuleA8<,

postorder2AgetTreeLeft@treeDE;

postorder2AgetTreeRight@treeDE;

SowAgetTreeValue@treeDEE

H*An inorder traversal returns the values in sorted order.*L

inorder@tree_D := Reap@inorder2@treeDD@@2, 1DD

inorder2@8<D := 8<

inorder2@tree_D := ModuleA8<,

inorder2AgetTreeLeft@treeDE;

SowAgetTreeValue@treeDE;

inorder2AgetTreeRight@treeDEE

H*A level order traversal is also known as breadth first.*L

levelorder@tree_D := Reap@levelorder2@8tree<DD@@2, 1DD

H*Breadth first is commonly implemented in terms of

a queue that keeps track of unprocessed levels. I model

the queue as a list.*L

levelorder2@8<D := 8< H*Stop on empty queue.*L

levelorder2@88<<D := 8< H*Stop on queue with empty tree.*L

levelorder2@queue_D := ModuleA9front = First@queueD,

queue2 = Rest@queueD, H*Pop front of queue.*L,

left, right=,

SowAgetTreeValue@frontDE; H*Visit node.*L

left = getTreeLeft@frontD;

right = getTreeRight@frontD;

queue2 = IfALength@leftD ã 0, queue2, Append@queue2, leftDE;

H*Append left if not empty.*L

queue2 = IfALengthArightE ã 0, queue2, AppendAqueue2, rightEE;

H*Append right if not empty.*L

levelorder2@queue2DE

In[259]:= nodes = RandomInteger@81, 100<, 18D

Out[259]= 862, 97, 36, 82, 76, 84, 58, 32, 79, 16, 89, 15, 45, 72, 90, 32, 12, 9<
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In[260]:= Htree = listToTree@nodesDL êê

TreeFormAÒ, PlotRangePadding Ø 0, ImageSize Ø 450E &
Out[260]//TreeForm=

List

List

List

List

List

List

List

8< 9 8<

12 8<

15 8<

16 8<

32 List

8< 32 8<

36 List

List

8< 45 8<

58 8<

62 List

List

List

List

8< 72 8<

76 List

8< 79 8<

82 List

8< 84 List

8< 89 List

8< 90 8<

97 8<

In[261]:= preorder@treeD

Out[261]= 862, 36, 32, 16, 15, 12, 9, 32, 58, 45, 97, 82, 76, 72, 79, 84, 89, 90<

In[262]:= postorder@treeD

Out[262]= 89, 12, 15, 16, 32, 32, 45, 58, 36, 72, 79, 76, 90, 89, 84, 82, 97, 62<

In[263]:= inorder@treeD

Out[263]= 89, 12, 15, 16, 32, 32, 36, 45, 58, 62, 72, 76, 79, 82, 84, 89, 90, 97<

In[264]:= levelorder@treeD

Out[264]= 862, 36, 97, 32, 58, 82, 16, 32, 45, 76, 84, 15, 72, 79, 89, 12, 90, 9<

Discussion
The tree implementation in the solution is a bit simplistic, but it is intended to illus-
trate basic concepts. One way to generalize the implementation is to allow a differ-
ent ordering function. It makes sense to keep the ordering with each instance of the
tree.  For  this,  it  is  best  to  use  Mathematica  options,  which  are  a  standard  conven-
tion for optional values. You need to redefine the functions for creating trees and ac-
cessing  their  parts,  but  once  you  do  that,  the  existing  algorithm  implementations
will still work.
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In[265]:= ClearAllAmakeTree, getTreeValue,

getTreeLeft, getTreeRight, insertTree, listToTreeE;

H*Use the explicit head Tree to hold the

representation and the options.*L

makeTreeAopt : OptionsPatternAOrdering Ø LessEE := Tree@8<, optD

makeTreeAvalue_, opt : OptionsPatternAordering Ø LessEE :=

Tree@88<, value, 8<<, optD

H*Functions for extracting the parts of a node are now overloaded for top-

level Tree form.*L

getTreeValue@Tree@tree_, ___DD := getTreeValue@treeD

getTreeValue@tree_D := tree@@2DD

getTreeLeft@Tree@tree_, ___DD := getTreeLeft@treeD

getTreeLeft@tree_D := tree@@1DD

getTreeRight@Tree@tree_, ___DD := getTreeRight@treeD

getTreeRight@tree_D := tree@@3DD

H*Insert extracts the ordering option

using the replacement rule and passes it to

the function that implements the insert.*L

insertTree@Tree@tree_, opts_D, value_D :=

TreeAinsertTreeAtree, value, ordering ê. optsE, optsE

insertTree@8<, value_, _D := 88<, value, 8<<

insertTreeAtree_, value_, ordering_E :=

IfAorderingAvalue, getTreeValue@treeDE ,

9insertTreeAgetTreeLeft@treeD, value, orderingE,

getTreeValue@treeD, getTreeRight@treeD=,

9getTreeLeft@treeD, getTreeValue@treeD,

insertTreeAgetTreeRight@treeD, value, orderingE=E

listToTreeAlist_List, opt : OptionsPatternAOrdering Ø LessEE :=

Fold@insertTree@Ò1, Ò2D &, makeTree@optD, listD

In[278]:= t1 = listToTreeARandomInteger@81, 100<, 20D, ordering Ø GreaterE;

inorder@t1D
Out[279]= 892, 92, 91, 84, 78, 71, 68, 56, 56, 54, 41, 39, 38, 35, 34, 32, 21, 16, 11, 2<
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Another  enhancement  is  to  generalize  the  so-called  visit  function  of  the  traversal  
algorithms. 

In[280]:= ClearAll@inorder, inorder2D;

inorder@tree_, visit_ : Sow D := Flatten@ Reap@inorder2@tree, visitDDD

inorder2@8<, _D := 8<

inorder2@tree_, visit_D := ModuleA8<,

inorder2AgetTreeLeft@treeD, visitE;

visitAgetTreeValue@treeDE;

inorder2AgetTreeRight@treeD, visitEE

This allows the caller the option of not receiving all the nodes. For example, rather
than Sow, you can pass in a function that writes the values to a file or a filter as we do
here.

In[284]:= inorder@t1, If@OddQ@ÒD, Sow@ÒD, ÒD &D

Out[284]= 891, 71, 41, 39, 35, 21, 11<

See Also
More information on trees and tree traversal can be found in any computer science
data structures book or at http://bit.ly/7xP6jQ.

3.12 Implementing Ordered Associative Lookup 
Using a Red-Black Tree
Problem
You need better-than-linear associative lookup and storage to increase performance
of a program. You also need the elements to remain ordered.

Solution
A red-black tree is a popular balanced tree algorithm used as the foundation for asso-
ciative data structures. To implement a red-black tree in Mathematica, you create a
representation of the tree and functions for creating, reading, updating, and deleting
(CRUD). This implementation will use a head rbTree containing a tree and an order-
ing relation. The tree is modeled as either an empty list or a quadruple consisting of
a color (red or black), a left subtree, an element, and a right subtree. By default, we
use the function Less as the ordering relation. Storing the ordering relation as part of
the tree allows for trees of varying element content.
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In[285]:= H*Make an empty tree with default ordering.*L

makeRBTree@D := rbTree@8<, LessD

H*Make an empty tree with a custom ordering.*L

makeRBTreeAordering_E := rbTreeA8<, orderingE

H*Make a tree with given root and ordering.*L

makeRBTreeA9color_, left_, elem_, right_=, ordering_E :=

rbTreeA9color, left, elem, right=, orderingE

Before we can do much with these trees, we need a method for inserting new el-
ements while keeping the tree well ordered and balanced. For this, we create a top-
level insert function implemented in terms of several low-level functions that main-
tain all the constraints necessary for a red-black tree.

In[288]:= insertRBTreeArbTreeAstruct_, ordering_E, elem_E :=

makeRBTreeAmakeBlackAinsertRBTree2Astruct, elem, orderingEE, orderingE

In[289]:= H*This implementation method does ordered

insertion and balancing of the tree representation.

Note: empty subtrees 8< are considered implicitly black.*L

insertRBTree2@8<, elem_, _D := 8red, 8<, elem, 8<<

insertRBTree2A9color_, left_, elem2_, right_=, elem1_, ordering_E :=

WhichAordering@elem1, elem2D,

balanceAcolor, insertRBTree2Aleft, elem1, orderingE, elem2, rightE,

ordering@elem2, elem1D,

balanceAcolor, left, elem2, insertRBTree2Aright, elem1, orderingEE,

True, 9color, left, elem2, right=E

In[291]:= H*This is a helper that turns a node to black.*L

makeBlackA9color_, left_, elem_, right_=E := 9black, left, elem, right=

In[292]:= H*Balancing is handled by a transformation function that

matches all red-black constraint violations

and transforms them into balanced versions.*L

balanceAblack, 9red, 9red, left1_, elem1_, right1_=, elem2_, right2_=,

elem3_, right3_E :=

9red, 9black, left1, elem1, right1=, elem2, 9black, right2, elem3, right3==

balanceAblack, 9red, left1_, elem1_, 9red, left2_, elem2_, right1_==,

elem3_, right2_E :=

9red, 8black, left1, elem1, left2<, elem2, 9black, left2, elem3, right2==
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balanceAblack, left1_, elem1_,

9red, 9red, left2_, elem2_, right1_=, elem3_, right2_=E :=

9red, 8black, left1, elem1, left2<, elem2,

9black, right1, elem3, right2==

balanceAblack, left1_, elem1_,

9red, left2_, elem2_, 9red, left3_, elem3_, right1_==E :=

9red, 8black, left1, elem1, left2<, elem2, 9black, left3, elem3, right1==

balanceAcolor_, left1_, elem1_, right1_E :=

9color, left1, elem1, right1=

List-to-tree  and  tree-to-list  conversions  are  very  convenient  operations  for  inter-
facing with the rest of Mathematica.

In[296]:= H*Given a list create an rbTree of the elements.*L

listToRBTree@list_ListD :=

Fold@insertRBTree@Ò1, Ò2D &, makeRBTree@D, listD

listToRBTreeAlist_List, ordering_E :=

FoldAinsertRBTree@Ò1, Ò2D &, makeRBTreeAorderingE, listE

H*Given a tree convert to a list while retaining ordering.*L

rbTreeToList@rbTree@tree_, _DD :=

FlattenAtree ê. Hred blackL Ø Sequence@D, InfinityE

rbTreeFind@rbTree@8<, _D, _D := 8<

rbTreeFindArbTreeAtree_, ordering_E, elem_E :=

rbTreeFind2Atree, elem, orderingE

rbTreeFind2A9color_, left_, elem2_, right_=, elem1_, ordering_E :=

WhichAordering@elem1, elem2D, rbTreeFind2Aleft, elem1, orderingE,

ordering@elem2, elem1D, rbTreeFind2Aright, elem1, orderingE,

True, 8elem2<E

rbTreeMax2@8_, _, elem_, 8<<D := elem

rbTreeMax2A9_, _, _, right_=E := rbTreeMax2ArightE

removeRBTreeArbTreeA8<, ordering_E, elem_E := rbTreeA8<, orderingE

removeRBTreeArbTreeAtree_, ordering_E, elem_E :=

makeRBTreeAmakeBlackAremoveRBTree2Atree, elem, orderingEE, orderingE

removeRBTree2@8<, _, _D := 8<
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removeRBTree2A9color_, left_, elem2_, right_=, elem1_, ordering_E :=

WhichAordering@elem1, elem2D,

balanceAred, removeRBTree2Aleft, elem1, orderingE, elem2, rightE,

ordering@elem2, elem1D,

balanceAred, left, elem2, removeRBTree2Aright, elem1, orderingEE,

True, WhichAright == 8<, left,

left == 8<, right,

True, WithA8max = rbTreeMax2@leftD<,

balanceAred, removeRBTree2Aleft, max, orderingE, max, rightEEE

E

Discussion
There are several ways to approach a problem like this. One reasonable answer is to
implement  associative  lookup  outside  of  Mathematica  using  a  language  like  C++
and then use MathLink to access this functionality. Here we will take the approach
of implementing a red-black tree directly in Mathematica. 

A  red-black  tree  implemented  in  C may  typically  be  hundreds  of  lines  of  code,  yet
we achieve an implementation in Mathematica with less  than a hundred,  including
comments.  How  is  this  possible?  The  main  idea  is  to  exploit  pattern  matching  as
much as possible. Note particularly the function balance. This function directly im-
plements  the  most  tricky  part  of  a  red-black-tree  implementation  in  a  traditionally
procedural language by stating the balancing rules in a form that is very close to the
way the algorithm requirements might specify them. Let’s take one of the versions as
an example.

balance[black, {red, {red, left1_, elem1_, right1_}, elem2_, right2_}, elem3

_, right3_] := 

 {red, {black, left1, elem1, right1}, elem2, {black, right2, elem3, right3}}

The above says:  “If  you find a  black node (elem3)  with  a  red left  child  (elem2)  that
also has a red left child (elem1), then convert to a red node with two black children
(elem1  and elem3,  in  that  order).  This  is  a  case  where  the  code speaks  more  clearly
and precisely than any English translation. With a slight bit of editing, the code itself
translates into a graphical  view of before and after.  I  can’t  think of another general
programming language where you can code and visualize an algorithm with so little
added effort!
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In[309]:= TreeFormA9black, 9red, 9red, left1, elem1, right1=, elem2, right2=,

elem3, right3= , ImageSize Ø MediumE

TreeFormA9red, 9black, left1, elem1, right1=, elem2,

9black, right2, elem3, right3==, ImageSize Ø 450E
Out[309]//TreeForm=

List

black List

red List

red left1 elem1 right1

elem2 right2

elem3 right3

Out[310]//TreeForm=

List

red List

black left1 elem1 right1

elem2 List

black right2 elem3 right3

See Also
A  solution  to  associative  lookup  that  is  more  in  the  spirit  of  Mathematica  can  be
found in Recipe 3.13.

This  recipe  was  inspired  by  the  book  Purely  Functional  Data  Structures  by  Chris
Okasaki  (Cambridge  University  Press),  in  which  Haskell  is  used  to  demonstrate
that  data  structures  can  be  written  under  the  constraints  of  a  pure  functional  pro-
gramming language. 

Wikipedia provides a good basic explanation of  and references to more sources for
red-black trees (http://bit.ly/3WEqrT). 
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3.13 Exploiting Mathematica’s Built-In 
Associative Lookup 
Problem
You want to create a dictionary to associate keys with values, but you want Mathe-
matica to do most of the work.

Solution
Harness the same mechanism Mathematica uses to locate the downvalues of a sym-
bol to create the dictionary.

Here I outline the basic idea for the solution and defer the actual implementation to
the discussion. The idea is simply to exploit something that Mathematica must
already  do  well:  look  up  a  symbol’s  downvalues.  It  must  do  this  well  because  it  is
central to Mathematica programming. Imagine you want to create a table of values
associating some U.S. zip codes with towns. A reasonable way to proceed is as follows:

In[311]:= zipcode@11771D = 9"Oyster Bay", "Upper Brookville",

"East Norwhich", "Cove Neck", "Centere Island"=;

zipcode@11772D = 9"Patchogue", "North Patchogue", "East Patchogue"=;

H*And so on...*L

zipcode@11779D = 8"Ronkonkoma", "Lake Ronkonkoma"<;

Now,  when  your  program  needs  to  do  a  lookup,  it  can  simply  call  the  “function”
zipcode.

In[314]:= WithA8zip = 11771<,

PrintA"The number of towns in ",

zip, " is ", Length@zipcode@zipDD, ";"E;E

The number of towns in 11771 is 5.

This  is  so  obvious  that  few  regular  Mathematica  programmers  would  even  think
twice about doing this. However, this use case is static. Most associative data struc-
tures are dynamic. This is not a problem because you can also remove downvalues.

In[315]:= zipcode@11779D =.

Now there is no longer an association to 11779. Mathematica indicates this by return-
ing the expression in unevaluated form.

In[316]:= zipcode@11779D

Out[316]= zipcode@11779D
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But this is still not enough. An associated data structure should also tell you all the
keys and all the values it knows. Again, Mathematica comes through.

In[317]:= DownValues@zipcodeD

Out[317]= 9HoldPattern@zipcode@11771DD ß

9Oyster Bay, Upper Brookville, East Norwhich, Cove Neck, Centere Island=,

HoldPattern@zipcode@11772DD ß

9Patchogue, North Patchogue, East Patchogue==

So all the building blocks are present in the core of Mathematica to create a dynamic
dictionary-like  data  structure.  All  that  is  needed  is  the  creation  of  some  code  to
neatly tie these pieces together into a general utility. 

Discussion
The first function we need is a way to construct a dictionary. In the solution, we use
a symbol that makes sense for the problem at hand, but in a generic implementation
what symbol is used is not significant so long as it is unique. Luckily, Mathematica
has the function Unique to deliver the goods. We initialize the dictionary by creating
a downvalue that maps any value to the empty list. The symbol is wrapped up in the
head Dictionary and returned to the caller.

In[318]:= makeDictionary@D :=

ModuleA8name<,

name = Unique@"dict"D ;

Evaluate@nameD@k_D := 8<;

Dictionary@nameD

E

You will also want a way to get rid of dictionaries and all their content. Remove does
the trick.

In[319]:= destroyDictionaryADictionary@name_, ___DE :=

If@ValueQ@name@_DD, Remove@nameD; True, FalseD

Although we said that there is no need to know the symbol used internally, there is
no harm in providing a function to retrieve it. Further, our implementation will use
this function so that it is easier to change the internal representation in the future. 

In[320]:= dictNameADictionary@name_, ___DE := name

The  most  important  function,  dictStore,  allows  the  association  of  a  value  with  a
key.  We assume, as in the solution,  that more than one value may be needed for a
given key, so we store values in a list and prepend new values as they are added. 

In[321]:= dictStoreAdict_Dictionary, key_, value_E :=

ModuleA8d = dictName@dictD<, dAkeyE = PrependAdAkeyE, valueEE

The  function  dictReplace  is  like  dictStore,  except  it  guarantees  value  is  unique.
That  is,  there  are  no  duplicates  of  value,  although  there  might  be  other  values  for
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The  function  dictReplace  is  like  dictStore,  except  it  guarantees  value  is  unique.
That  is,  there  are  no  duplicates  of  value,  although  there  might  be  other  values  for
the key.

In[322]:= dictReplaceAdict_Dictionary, key_, value_E :=

ModuleA8d = dictName@dictD<, dAkeyE = dAkeyE ‹ 8value<E

In  contrast,  the  function  dictRemove  ensures  that  there  are  no  instances  of  value  
associated with the key (although, again, there might be other values for the key).

In[323]:= dictRemoveAdict_Dictionary, key_, value_E :=

ModuleA8d = dictName@dictD<, dAkeyE = ComplementAdAkeyE, 8value<EE

If you want all values removed, then use dictClear.

In[324]:= dictClearADictionary@name_, ___DE :=

If@ValueQ@name@_DD, Clear@nameD; Evaluate@nameD@k_D := 8<; True, FalseD

Maintaining the dictionary is  all  well  and good, but you also need to be able to re-
trieve  values.  The  function  dictLookup  is  the  easiest  to  implement  because  it  gets
Mathematica to do all the work by simply asking for the downvalue in the usual way.

In[325]:= dictLookupADictionary@name_, ___D, key_E := nameAkeyE

Sometimes  you  might  not  care  what  the  value  is  but  rather  if  the  key  exists  at  all.
Here I use ValueQ, which returns true if the evaluation of an expression returns
something  different  than  the  expression  itself  (hence,  indicating  there  is  a
value). In this implementation, I don’t care that the value may be the empty list {}
because dictHasKeyQ is only intended to tell the caller that the key is present.

In[326]:= dictHasKeyQADictionary@name_, ___D, key_E := ValueQAnameAkeyEE

This function tells you that the key is present but has no values.

In[327]:= dictKeyEmptyQADictionary@name_, ___D, key_E := nameAkeyE === 8<

In some applications,  you may want to know the set  of  all  keys;  dictKeys  provides
that. It works by using DownValues, as shown in the solution, but transforms the re-
sults  to  extract  only  the  keys.  Most  is  used  to  exclude  the  special  downvalue
name[k_],  which was created within makeDictionary.  The use of HoldPattern  follows
from the format that DownValues uses, as seen in the solution section. Here, Evaluate
is used because DownValues has the attribute HoldAll.

In[328]:= dictKeysAdict_DictionaryE := Most@DownValues@Evaluate@dictName@dictDDDD ê.

HoldPattern@a_ ß _ListD ß aP1, 1T

Another  useful  capability  is  to  get  a  list  of  all  key  value  pairs;  dictKeyValuePairs
does that.
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In[329]:= dictKeyValuePairsAdict_DictionaryE :=

Most@DownValues@Evaluate@dictName@dictDDDD ê.

HoldPattern@a_ ß values_ListD ß 8aP1, 1T, values<

Before I exercise this functionality, a few general points need to be made. 

You may be curious about the pattern Dictionary[name_, ___] since the representa-
tion  of  the  dictionary,  per  makeDictionary,  is  clearly  just  Dictionary[name].  As  you
probably already know (see Chapter 4 if necessary), ___ matches a sequence of zero
or  more  expressions.  Using  this  pattern  will  future  proof  the  functions  against
changes in the implementation. For example, I  may want to enhance Dictionary  to
take options that control aspects of its behavior (for example, whether duplicate val-
ues  are  allowed  for  a  key  or  whether  a  key  can  have  multiple  values  all  together).
Keep this in mind when creating your own data structures. 

A  collection  of  functions  like  this  really  begs  to  be  organized  more  formally  as  a
Mathematica  package.  In  fact,  you  can  download  such  a  package,  with  the  source
code, at this book’s website, http://oreilly.com/catalog/9780596520991/. I cover pack-
ages in Recipe 18.4. 

Here is how I might code the zip codes example from the solution if I needed the full
set of create, read, update, and delete capabilities that Dictionary provides.

In[330]:= zipcodes = makeDictionary@D;

dictStore@zipcodes, 11771, ÒD & êü 9"Oyster Bay",

"Upper Brookville", "East Norwhich", "Cove Neck", "Centere Island"=;

dictStore@zipcodes, 11772, ÒD & êü

9"Patchogue", "North Patchogue", "East Patchogue"=;

dictStore@zipcodes, 11779, ÒD & êü 8"Ronkonkoma", "Lake Ronkonkoma"<;

In[334]:= dictLookup@zipcodes, 11771D

Out[334]= 9Centere Island, Cove Neck, East Norwhich, Upper Brookville, Oyster Bay=

In[335]:= dictLookup@zipcodes, 99999D

Out[335]= 8<

Ask if a key is present.

In[336]:= dictHasKeyQ@zipcodes, 11779D

Out[336]= True

Get all the zip codes stored.

In[337]:= dictKeys@zipcodesD

Out[337]= 811771, 11772, 11779<

In Recipe 3.12, “Red-Black Trees,” quite a bit more coding is required to get a
similar  level  of  functionality.  This  recipe  is  relatively  easy  because  it  leverages  one
of Mathematica’s strengths. This is an important lesson when working with Mathe-
matica  (or  any  language).  Always  look  for  solutions  that  play  to  the  language’s
strengths rather than using hack solutions designed for other programming environ-
ments.  To  be  fair,  the  red-black-tree  implementation  has  features  that  would  be
more difficult to support in this recipe. Specifically, we could control the ordering of keys
with  red-black  tree,  but  here  keys  are  ordered  according  to  Mathematica’s  conventions
(which are conveniently in line with the expectations one would have for a dictionary).
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In Recipe 3.12, “Red-Black Trees,” quite a bit more coding is required to get a
similar  level  of  functionality.  This  recipe  is  relatively  easy  because  it  leverages  one
of Mathematica’s strengths. This is an important lesson when working with Mathe-
matica  (or  any  language).  Always  look  for  solutions  that  play  to  the  language’s
strengths rather than using hack solutions designed for other programming environ-
ments.  To  be  fair,  the  red-black-tree  implementation  has  features  that  would  be
more difficult to support in this recipe. Specifically, we could control the ordering of keys
with  red-black  tree,  but  here  keys  are  ordered  according  to  Mathematica’s  conventions
(which are conveniently in line with the expectations one would have for a dictionary).

3.14 Constructing Graphs Using the 
Combinatorica` Package
Problem
You are solving a problem modeled as a graph and need to create that graph for use
with Combinatorica` package’s algorithms.

Solution
If your graph is almost complete, construct a complete graph and remove unwanted
edges.

In[338]:= Needs@"Combinatorica`"D

In[339]:= g1 = CompleteGraph@6D;

g1 = DeleteEdgesAg1, 881, 5<, 81, 3<<E;

ShowGraphAg1, VertexNumber Ø True, ImageSize Ø SmallE

Out[341]=

12

3

4 5

6
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If your graph is sparse, construct directly.

In[342]:= ShowGraphAFromUnorderedPairs@881, 2<, 81, 4<, 82, 3<, 83, 6<, 84, 6<<D ,

VertexNumber Ø True, ImageSize Ø SmallE

Out[342]=

12

3

4 5

6

Use MakeGraph if your graph can be defined by a predicate.

In[343]:= ShowGraphAMakeGraphARange@14D, ! CoprimeQ@Ò1, Ò2D && Ò1 ≠ Ò2 &,

Type -> UndirectedE, VertexNumber Ø True,

VertexStyle Ø Directive@PointSize@0.01DD, ImageSize Ø SmallE

Out[343]=

1

2

34

5

6

7

8

9

10 11

12

13

14

Discussion
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Discussion
Graphs can also be constructed from combinations of existing graphs by using
GraphUnion,  GraphIntersection,  GraphDifference, GraphProduct,  and GraphJoin.  In the
examples given here, I always use two graphs, but the operations are generalized to
multiple graphs.

GraphUnion  always  creates  a  disjoint  graph  resulting  from  the  combination  of  the
graphs in the union.

In[344]:= ShowGraph@GraphUnion@CompleteGraph@3D, CompleteGraph@3, 2DD,

VertexLabel Ø TrueD

Out[344]=

1

2

3

4

5

6

7

8

GraphJoin  performs a union and then links up all  the vertices from the correspond-
ing graphs.

In[345]:= ShowGraph@GraphJoin@CompleteGraph@3D, CompleteGraph@3, 2DD,

VertexLabel Ø TrueD

Out[345]=

1

2

3

4

5

6

7

8
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GraphIntersection  works  only  on  graphs  with  the  same  number  of  vertices  and  
produces a graph where the input graphs have edges in common.

In[346]:= g1 = DeleteEdge@CompleteGraph@5D, 81, 2<D;

g2 = DeleteEdge@CompleteGraph@5D, 82, 3<D;

ShowGraphArrayA9g1, g2, GraphIntersectionAg1, g2E=, VertexLabel Ø TrueE

Out[348]=

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

GraphDifference creates a graph with all the edges that are in the first graph but not
in the second.

In[349]:= g1 = CompleteGraph@5D;

g2 = DeleteEdges@CompleteGraph@5D, 881, 2<, 82, 3<, 82, 5<, 84, 5<<D;

ShowGraphArrayA9g1, g2, GraphDifferenceAg1, g2E=, VertexLabel Ø TrueE

Out[351]=

1

2

3

4

5

1

2

3

4

5

1

2

3

4

GraphProduct creates a graph by injecting copies of the first graph into the second at
each  vertex  of  the  second  and  then  connecting  the  vertices  of  the  injected  graphs.

Unlike a numerical product, this operation is not commutative, as demonstrated in
Out[354] on page 138.
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In[352]:= g1 = CompleteGraph@3D;

g2 = CompleteGraph@3, 2D;

ShowGraphArrayA99g1, g2=, 9GraphProductAg1, g2E, GraphProductAg2, g1E==,

VertexLabel Ø True, ImageSize Ø MediumE

Out[354]=
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8
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15

Another  way  to  construct  graphs  is  from  alternate  representations,  such  as  adja-
cency  matrices  and  adjacency  lists.  Out[355]  on  page  139  shows  a  graph  constructed
from an adjacency matrix obtained from GraphData. Normal is used to convert Sparse-
Matrix, since Combinatorica does not recognize sparse-matrix representations.
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In[355]:= ShowGraphAFromAdjacencyMatrixANormalA

GraphDataA"CubicalGraph", "AdjacencyMatrix"EEE, ImageSize Ø SmallE

Out[355]=

Combinatorica  also supports directed graphs and graphs with weighted edges. Using
SetEdgeWeights  alone  gives  random  real  weights  in  the  range  [0,1].  SetEdgeWeights
also  accepts  WeightingFunction  and  WeightRange  options.  You  can  also  explicitly
specify the weights in a list, which will be assigned to the edges in the same order as
returned by the function Edges.

In[356]:= SeedRandom@1D;

g1 = RandomGraphA5, 0.3, Type Ø DirectedE;

g1 = SetEdgeWeightsAg1,

WeightingFunction Ø RandomInteger, WeightRange Ø 81, 10<E;

g2 = MakeUndirectedAg1E;

H*The number of weights must match

the number of edges or you'll get garbage!*L

g2 = SetEdgeWeightsAg2, 81, 2, 3, 4, 5, 6, 7<E;

SetGraphOptionsAg2, Type Ø DirectedE;

GraphicsRowA9ShowGraphA

SetEdgeLabelsAg1, GetEdgeWeightsAg1EE, ImagePadding Ø 8840, 0<, 80, 0<<E,

ShowGraphASetEdgeLabelsAg2, GetEdgeWeightsAg2EE,

ImagePadding Ø 8840, 0<, 80, 0<<E=,

BaseStyle Ø 8FontSize Ø 10<, ImageSize Ø MediumE
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Out[362]= 6

5

4

1

2

4

6

4

1

2

3

4

5
6

7

See Also
The  definitive  reference  to  Combinatorica  is  Computational  Discrete  Mathematics:
Combinatorics  and  Graph  Theory  with  Mathematica  by  Sriram  Pemmaraju  and
Steven Skiena (Cambridge University Press). This reference is essential if you intend
to use Combinatorica in a serious way, because the documentation that comes bun-
dled with Mathematica is very sparse.

Mathematica has an alternate graph package called GraphUtilities`  that represents
graphs using lists  of  rules (e.g.,  {aØb, aØc, bØc}).  There  is  a  conversion  func-
tion  to  Combinatorica`  graphs.  Search  for  GraphUtilities  in  the  Mathematica
documentation.

3.15 Using Graph Algorithms to Extract 
Information from Graphs
Problem
You want to test a graph for specific properties or find paths through a graph with
specific properties or which satisfy specific constraints.

Solution
There  are  many graph theoretic  functions  in  the  Combinatorica`  package  related to
shortest  paths,  network  flows,  connectivity,  planarity  testing,  topological  sorting,
and so on. The solutions and following discussion show a sampling of some of the
more popular graph algorithms. 
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Out[363]a  shows  a  graph  generated  from  a  complete  graph  with  select  edges  re-
moved.  The  graph  in  Out[363]b  is  the  minimum  spanning  tree  of  Out[363]a,
and Out[363]c is the shortest path spanning tree. 

In[363]:=
ModuleA9g, edges=,

H*Start with a complete graph.*L

g = CompleteGraph@20D;

H*Generate some edges to remove.*L

9dummy, 9edges== = ReapA

DoAIfAModAj, iE < 7 , SowA9i, j=E, NullE, 8i, 1, 20<, 9j, i + 1, 15=EE;

Ig = DeleteEdgeAg, ÒEM & êü edges;

H*Weight the edges randomly.*L

SeedRandom@1D; H*Make random edge weights repeatable.*L

SetEdgeWeightsAgE;

H*Demonstrate MinimumSpanningTree and ShortestPathSpanningTree.*L

GraphicsRowA9ShowGraphAg, PlotLabel Ø "a"E,

ShowGraphAMinimumSpanningTreeAgE, VertexNumber Ø True, PlotLabel Ø "b"E,

ShowGraphAShortestPathSpanningTreeAg, 1E,

VertexNumber Ø True, PlotLabel Ø "c"E=, ImageSize Ø 450E

E

Out[363]=

a

1

2

3
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7

8

9

10
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b

1

2

3
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7

8

9
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20

c

Discussion
Properties  of  graphs  can  be  tested  using  a  variety  of  functions,  such  as  HamiltonianQ
(which  has  a  cycle  that  visits  each  vertex  once),  EulerianQ  (which  has  a  tour  that
traverses each edge once), AntisymmetricQ, ReflexiveQ, UndirectedQ, SelfLoopsQ, and
so on. There are over 40 such predicates in Combinatorica.
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In[364]:= g1 = Hypercube@3D; g2 = CompleteGraph@4, 2D;

GraphicsRowA9ShowGraphAg1,

PlotLabel Ø "HamiltonianQ == " <> ToStringAHamiltonianQAg1EEE,

ShowGraphAg2, PlotLabel Ø "HamiltonianQ == " <>

ToStringAHamiltonianQAg2EEE=E

Out[365]=

HamiltonianQ == True HamiltonianQ == False

In[366]:= GraphicsRowA

9ShowGraphAg1, PlotLabel Ø "EulerianQ == " <> ToStringAEulerianQAg1EEE,

ShowGraphAg2, PlotLabel Ø "EulerianQ == " <> ToStringAEulerianQAg2EEE=E

Out[366]=

EulerianQ == False EulerianQ == True

A directed graph with no cycles is called a directed acyclic graph (DAG). The transi-
tive  closer  of  a  DAG  is  the  supergraph  that  adds  directed  edges  from  ancestors  to
descendants.

In[367]:= g = CompleteBinaryTree@7D;

e = ReverseAEdgesAgE, 82<E;

g = DeleteEdgesAMakeDirectedAgE, eE;

9AcyclicQAgE, TopologicalSortATransitiveClosureAgEE=

Out[370]= 8True, 81, 2, 3, 4, 5, 6, 7<<
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Out[371]  shows  the  tree  and  its  transitive  closure.  When  you  display  highly  con-
nected  graphs  (like  the  transitive  closure)  with  vertex  labels,  it  often  helps  to  use
opacity or font control to make sure vertex labels are not obscured by the edges.

In[371]:= ModuleA8opts<,

opts =

SequenceAVertexLabel Ø True, BaseStyle Ø 9FontWeight Ø Bold, FontSize Ø 12=,

LabelStyle -> 9FontWeight Ø Medium=,

VertexStyle Ø Disk@0.005D, EdgeStyle -> Opacity@0.4DE;

GraphicsRowA

9ShowGraphAg, opts, PlotLabel Ø "Tree"E, ShowGraphATransitiveClosureAgE,

opts, PlotLabel Ø "TransitiveClosure"E=, ImageSize Ø 450EE

Out[371]=

See Also
See  Chapters  7  and  8  in  Computational  Discrete  Mathematics:  Combinatorics  and
Graph Theory with Mathematica by Sriram Pemmaraju and Steven Skiena.
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CHAPTER 4

Patterns and Rule-Based Programming

You are an obsession
I cannot sleep

I am your possession
Unopened at your feet

There’s no balance
No equality

Be still I will not accept defeat

I will have you
Yes, I will have you

I will find a way and I will have you
Like a butterfly
A wild butterly

I will collect you and capture you

Animotion, “Obsession”

4.0 Introduction
In Chapter 2, I  argue that the functional style of programming is the preferred way
to solve problems in Mathematica.  Although functions form much of the brawn,
pattern  matching  provides  the  brains.  In  fact,  functions  and  patterns  should  be
thought  of  as  partners  rather  than  competitors.  By  mastering  both  functional  pro-
gramming and pattern-based programming, you will be able to use Mathematica to
its  fullest  potential.  In  fact,  once  you  get  the  hang  of  pattern-based  solutions  they
may become a bit of an obsession.

If  you  have  done  any  programming  that  involves  text  manipulation,  you  have  no
doubt  been  exposed  to  regular  expressions,  a  concise  syntax  for  describing
patterns  in  text  and  manipulating  text.  Mathematica’s  pattern  syntax  general-
izes  regular  expressions  to  the  domain  of  symbolic  processing,  which  allows
you  to  manipulate  arbitrary  symbolic  structures.  Patterns  and  rules  are  at  the
foundation of Mathematica’s symbolic processing capabilities. Symbolic integration,

differentiation,  equation  solving,  and  simplification  are  all  driven  by  the  pat-
tern primitives explained in this chapter. 
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differentiation,  equation  solving,  and  simplification  are  all  driven  by  the  pat-
tern primitives explained in this chapter. 

In  the  context  of  Mathematica,  a  pattern  is  an  expression  that  acts  as  a  template
against  which other  expressions  can be  matched.  Some of  the  most  useful  patterns
contain variables that are bound to values as a result of the matching process. How-
ever, many times just knowing that a pattern matched is sufficient. Patterns are cen-
tral  to  specifying  constraints  in  function  arguments  (e.g.,  Integer).  They  also  play
roles in parsing, replacing, and counting, as we show in the recipes here. I defer the
role of patterns in string manipulation to Chapter 5. 

Rules  build  on patterns  by  specifying  a  mapping from a  pattern  to  another  expres-
sion that uses all or parts of the matched results. Rules pervade Mathematica, as you
will see in this chapter’s recipes and throughout this book. It’s safe to say that Mathe-
matica would be almost as crippled by the removal of rules as it would be by the re-
moval of the definition for Plus.

The rest of this introduction gives a brief overview of the most important primitives
associated with pattern matching. This will make the recipes a bit easier to follow if
you are new to these concepts. The recipes will explore the primitives more deeply,
and as usual, you should refer to the Mathematica documentation for subtle details
or clarification.

Blanks
The  most  basic  pattern  constructs  are  Blank[]  (_),  BlankSequence[]  (__),  and
BlankNullSequence[]  (___).  Blank[]  matches  any  expression  (_),  whereas  Blank[h]
(_h)  matches  any  expression  with  head  h.  BlankSequence  (__)  means  one  or  more;
BlankNullSequence means zero or more. Thus, ___h means zero or more expressions
with head h. Here MatchQ tests if a pattern matches an expression.

In[1]:= MatchQ@a, _D

Out[1]= True

In[2]:= MatchQ@a@1D, _aD

Out[2]= True

In[3]:= H*By itself a has head Symbol.*L

MatchQ@a, _aD
Out[3]= False

In[4]:= MatchQ@81, 2<, _ListD

Out[4]= True
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Blanks  are  more  powerful  when  you  can  determine  what  they  are  matched  against
so you can use the matched value for further processing. This is most often done us-
ing  a  prefix  symbol  (e.g.,  x_,  x__,  x___).  This  syntax  should  be  familiar  since  it  is
most  commonly  used  for  function  arguments.  However,  as  shown  in  this  recipe,
there are other contexts where binding symbols to matches comes into play.

In[5]:= H*f1 will match when called with a single integer argument.*L

f1An_IntegerE := 8n<

H*f2 will match when called with one or more integers.*L

f2An__IntegerE := 8n<

H*f3 will match when called with zero or more integers.*L

f3An___IntegerE := 8n<

In[8]:= f1@10D H*Match*L

Out[8]= 810<

In[9]:= f1@10, 20D H*No match*L

Out[9]= f1@10, 20D

In[10]:= f2@10, 20D H*Match*L

Out[10]= 810, 20<

In[11]:= f2@D H*No match*L

Out[11]= f2@D

In[12]:= f3@D H*Match*L

Out[12]= 8<

In[13]:= f3@1, 2, "3"D H*No match*L

Out[13]= f3@1, 2, 3D

Alternatives
Sometimes you need to construct patterns that match two or more forms. This can
be  done  using  Alternatives[p1,p2,...,pn]  or,  more  commonly,  using  vertical  bar
p1|p2|...|pn.

In[14]:= Cases@8a, r, t, i, c, h, o, k, e<, a e i o uD

Out[14]= 8a, i, o, e<

This form can also appear in functions.

In[15]:= Clear@fD

fAx_Complex x_Real x_IntegerE := x
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In[17]:= f êü 81, 3.14, 10 + 3 I, 1ê2, "foo"<

Out[17]= :1, 3.14, 10 + 3 Â, fB
1

2
F, f@fooD>

Repeats
You use Repeated[p]  or p..  to match one or more instances of some pattern p;  you
use RepeatedNull[p] or p... to match zero or more instances of p. 

In[18]:= Cases@880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<,

81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<, 81 .., 0 ..<D
Out[18]= 881, 0, 0<, 81, 1, 0<<

In[19]:= Cases@880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<,

81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<, 81 ..., 0 ...<D
Out[19]= 880, 0, 0<, 81, 0, 0<, 81, 1, 0<, 81, 1, 1<<

PatternSequence
Repeated  (p..)  matches a  very  specific  sequence,  whereas  BlankSequence  (x__)  is
very  general.  Sometimes  you  need  to  match  a  sequence  of  intermediate  specificity.
PatternSequence  was introduced in Mathematica 6 to help achieve this. The follow-
ing means f is a function that takes exactly two expressions.

In[20]:= Clear@fD;

f@x : PatternSequence@_, _DD := Power@xD

In[22]:= f@1D H*No match, too few*L

Out[22]= f@1D

In[23]:= f@2, 3D H*Match*L

Out[23]= 8

In[24]:= f@2, 3, 4D H*No match, too many*L

Out[24]= f@2, 3, 4D

Above, PatternSequence is not strictly necessary because f[x_,y_] := Power[x,y] is the
more conventional notation, but consider these more interesting use cases.

f[0 | PatternSequence[]] := 0 (*Matches either f[0] or f[]*)

f[p : PatternSequence[_,_],___] := {p} (*Names the first two elements of a

sequence and discards the rest*)

f[p : Longests@PatternSequence[a,b]..,rest___] (*The longest repeated

sequence of a,b*)
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Except
Often,  it  is  easier  to  describe  what  you don’t  want  to  match  than what  you do.  In
these cases,  you can use Except[p]  to indicate matching for everything except what
matches p.

In[25]:= Cases@8a, r, t, i, c, h, o, k, e<, Except@a e i o uDD

Out[25]= 8r, t, c, h, k<

Conditions and Pattern Tests
Conditions allow you to qualify a pattern with an additional test that the matching
element must pass for the match to succeed. This is a powerful construct because it
extends the degree of control over the matching process to any criteria Mathematica
can compute. 

In[26]:= Cases@880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<,

81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<, b__ ê; Total@bD > 1D
Out[26]= 880, 1, 1<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

Pattern tests also qualify the match, but they apply to the entire pattern and, there-
fore, don’t require pattern variables. The following lists all primes less than 250  + 2
of the form 2n± 1.

In[27]:= Cases@Union@Flatten@Table@82^n - 1, 2^n + 1<, 8n, 0, 50<DDD, _?PrimeQD

Out[27]= 82, 3, 5, 7, 17, 31, 127, 257, 8191, 65537, 131071, 524287, 2147483647<

In[28]:= Cases@Union@Flatten@Table@82^n - 1, 2^n + 1<, 8n, 0, 50<DDD,

_?HÒ1 < 127 &LD
Out[28]= 80, 1, 2, 3, 5, 7, 9, 15, 17, 31, 33, 63, 65<

A common mistake is to write the last example in one of two ways that
will not work:

In[29]:= Cases[Union[Flatten[Table[{2^n - 1, 2^n + 1}, 
{n, 0, 50}]]], _?(#1 < 127)&] (*wrong!*)

Out[29]= 8<

In[30]:= Cases[Union[Flatten[Table[{2^n - 1, 2^n + 1}, 
{n, 0, 50}]]], _?#1 < 127&]  (*wrong!*)

Out[30]= 8<

I  still  make  this  mistake  from  time  to  time,  and  it’s  frustrating;  pay
attention to those parentheses!
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Rules
Rules  take  pattern  matching  to  a  new level  of  expressiveness,  allowing  you  to  per-
form transformations on matched expressions.  Rules are an integral  part  of  Mathe-
matica  internal  operations  and  are  used  in  expressing  solutions  to  equations  (see
Recipe 11.6), Options (see Recipe 2.17), and SparseArrays (see Recipe 3.8). Rules are
also the foundation of Mathematica’s symbolic abilities. With all these applications,
no serious user of Mathematica can afford to ignore them.

In[32]:= H*Here we use a rule to replace all Hê.L

occurrences of x with the numerical value of Pi.*L

x - x^2 + x^3 - x ^4 + x^5 ê. x Ø N@PiD
Out[32]= 232.889

In[33]:= H*Convert matching binary digit list to integers. You need

to use RuleDelayed since b is not defined until the match.*L

CasesA880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<, 81, 0, 0<,

81, 0, 1<, 81, 1, 0<, 81, 1, 1<<, b : 81 .., 0 ..< ß FromDigits@b, 2DE

Out[33]= 84, 6<

A good  way  to  gain  insight  into  the  difference  between  Ø  and  ß  is  to  consider  replace-
ments of a randomly generated number.

In[34]:= H*With Rule, RandomInteger@D is evaluated

immediately so is constant while the rule is applied.*L

8x, x, x, x< ê. x Ø RandomInteger@80, 100<D

Out[34]= 82, 2, 2, 2<

In[35]:= H*With RuleDelayed, it is newly evaluated on each match.*L

8x, x, x, x< ê. x ß RandomInteger@80, 100<D

Out[35]= 836, 37, 62, 23<

See Also
The tutorial  of  pattern primitives is  a useful resource:  tutorial/PatternsAndTransfor-
mationRules. Committing most of these to memory will strengthen your Mathemat-
ica skills considerably.
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4.1 Collecting Items That Match 
(or Don’t Match) a Pattern
Problem
You  have  a  list  or  other  expression  and  want  to  find  values  that  match  a  pattern.
You may also want to transform the matching values as they are found.

Solution
Use Cases with a pattern to produce a list of expressions that match the pattern.

In[36]:= list = 81, 1.2, "test", 3, 82<, x + 1<;

CasesAlist, _IntegerE

Out[37]= 81, 3<

Use  a  rule  to  transform  matches  to  other  forms.  Here  the  matched  integers  are
squared to produce the result. This added capability of Cases is extremely powerful.

In[38]:= CasesAlist, x_Integer :> x^2E

Out[38]= 81, 9<

Wrapping the pattern in Except gives the nonmatching values.

In[39]:= CasesA81, 1.2, "test", 3, 82<, x + 1<, ExceptA_IntegerEE

Out[39]= 81.2, test, 82<, 1 + x<

Note the use of colon syntax when capturing the value matched using Except with a
rule-based transformation.  Here  I  use  a  rule  that  demonstrates  that  the  type of  ob-
ject produced does not need to be the same as the type that matched (i.e., all results
here are symbols).

In[40]:= CasesA81, 1.2, "test", 3, 82<, x + 1<, x : ExceptA_IntegerE ß Head@xD E

Out[40]= 9Real, String, List, Plus=

Discussion
Cases  will  work  with  any  expression,  not  just  lists.  However,  you  need  to  keep  in
mind that Mathematica will rearrange the expression before the pattern is applied.

In[41]:= CasesAx + y - z^2 + z^3 + x^5, _^_E

Out[41]= 9x5, z3=
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You may have expected z^2 or -z^2 to be selected; examining the FullForm of the ex-
pression will reveal why it was not. FullForm is your friend when it comes to debug-
ging pattern matching because that is the form that Mathematica sees.

In[42]:= x + y - z^2 + z^3 + x^5 êê FullForm

Out[42]//FullForm=
PlusAx, Power@x, 5D, y, Times@-1, Power@z, 2DD, Power@z, 3DE

Providing a level specification will allow you to reach down deeper. Level specifica-
tions are discussed in Recipe 3.9.

In[43]:= CasesAx + y - z^2 + z^3 + x^5, _^_, 2E

Out[43]= 9x5, z2, z3=

You can also limit the number of matches using an optional fourth argument.

In[44]:= CasesAx + y - z^2 + z^3 + x^5, _^_, 2, 1E

Out[44]= 9x5=

Take  into  account  the  attributes  Flat  and  Orderless  when  pattern  matching.  Flat
means nested expressions like Plus[a,Plus[b,c]] will be flattened; Orderless means
the  operation  is  communicative,  and  Mathematica  will  account  for  this  when  pat-
tern matching.

In[45]:= Attributes@PlusD

Out[45]= 9Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected=

Here we select every expression that contains b +, no matter its level or order in the
input expression.

In[46]:= Cases@8a + b, a + c, b + a, a^2 + b, Plus@a, Plus@b, cDD<, b + _D

Out[46]= 9a + b, a + b, a2 + b, a + b + c=

Hold  will  suppress transformations due to Flat  and Orderless,  but the pattern itself
is still reordered from b + a to a + b. In Recipe 4.8 we show how to prevent this us-
ing HoldPattern.

In[47]:= Cases@Hold@a + b, a + c, b + a, a^2 + b, Plus@a, Plus@b, cDDD, b + aD

Out[47]= 8a + b<

An alternative to Cases is the combination of Position and Extract. Here Position lo-
cates  the  items,  and  Extract  returns  them.  This  variation  would  be  more  helpful
than  Cases,  for  example,  if  you  needed to  know the  positions  as  well  as  the  items,
since Cases does not provide positional information. By default, Position will search
every level, but you can restrict it with a levelspec as I do here.
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In[48]:= list = 81, 1.2, "test", 3, 82<, x + 1<;

positions = PositionAlist, _Integer, 81<E;

Extract@list, positionsD
Out[50]= 81, 3<

One useful  application  of  this  idiom is  matching  on  one  list  and  extracting  from a
parallel list.

In[51]:= names = 8"Jane", "Jim", "Jeff", "Jessie", "Jezebel"<;

ages = 830, 20, 42, 16, 69< ;

ExtractAnames, PositionAages, x_ ê; x > 30EE

Out[53]= 8Jeff, Jezebel<

See Also
Recipe 3.9 also discusses Position and Extract in greater detail.

4.2 Excluding Items That Match 
(or Don’t Match) a Pattern
Problem
You have a list or other expression and want to exclude elements that do not match
a pattern.

Solution
DeleteCases has features similar to Cases but excludes elements that match.

In[54]:= DeleteCasesA81, 1.2, "test", 3, 82<, x + 1<, _IntegerE

Out[54]= 81.2, test, 82<, 1 + x<

Wrapping the pattern in Except  makes DeleteCases  work like  Cases  for  the non-
inverted pattern.

In[55]:= DeleteCasesA81, 1.2, "test", 3, 82<, x + 1<, ExceptA_IntegerEE

Out[55]= 81, 3<

Cases and DeleteCases can be made to return the same result by using Except, but Cases
should be used when you want to transform the items that remain (see Recipe 4.1).

In[56]:= DeleteCasesA81, 1.2, "test", 3, 82<, x + 1<, ExceptA_IntegerEE ã

CasesA81, 1.2, "test", 3, 82<, x + 1<, _IntegerE

Out[56]= True

Discussion
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Discussion
Most of the variations supported by Cases  discussed in Recipe 4.1 apply to Delete-
Cases as well. In fact, given the existence of Except, one could argue that DeleteCases
is  redundant.  However,  given  the  context  of  the  problem,  usually  either  Cases  or
DeleteCases will be easier to understand compared to using pattern inversions. Also,
Except  has some limitations since pattern variables like x_  can’t appear inside of an
Except.

Use  levelspecs  to  constrain  deletions  to  particular  portions  of  an  expression  tree.
Here is an expression that is nine levels deep.

In[57]:= expr = ‡ Sqrt@x + Sqrt@xDD „x

Out[57]=
1

12
x + x K-3 + 2 x + 8 xO +

1

8
LogB1 + 2 x + 2 x + x F

In[58]:= Depth@exprD

Out[58]= 9

You can delete roots at level four.

In[59]:= DeleteCases@expr, Sqrt@_D, 84<D

Out[59]=
1

12
x H-1 + 8 xL +

1

8
LogB1 + 2 x + 2 x + x F

You can also delete roots at levels up to four.

In[60]:= DeleteCases@expr, Sqrt@_D, 4D

Out[60]=
1

12
H-1 + 8 xL +

1

8
LogB1 + 2 x + 2 x + x F

Or, you delete roots at every level.

In[61]:= DeleteCasesAexpr, Sqrt@_D, InfinityE

Out[61]=
1

12
H-1 + 8 xL +

Log@5D

8

Just  as  Extract  plus  Position  is  the  equivalent  of  Cases  (discussed  in  Recipe  4.1),
Delete  plus Position  is  the equivalent for DeleteCases. Again, remember that Position
looks at all levels unless you restrict it.
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In[62]:= list = 81, 1.2, "test", 3, 82<, x + 1<;

ColumnA9

DeleteAlist, PositionAlist, _IntegerEE,

DeleteAlist, PositionAlist, _Integer, 81<EE

=E

Out[63]=
81.2, test, 8<, x<

81.2, test, 82<, 1 + x<

This leads to a way to get the results of Cases and DeleteCases without executing the
pattern match twice.

In[64]:= list = 81, 1.2, "test", 3, 82<, x + 1<;

positions = PositionAlist, _Integer, 81<E;

Column@8

Extract@list, positionsD,

Delete@list, positionsD

<D

Out[66]=
81, 3<

81.2, test, 82<, 1 + x<

4.3 Counting Items That Match a Pattern
Problem
You need to know the number of expressions that match a pattern by matching the
expressions themselves or their position.

Solution
Use Count to count matching elements in an expression or at particular levels in an
expression. Counting literal matches is perhaps the simplest application of Count.

In[67]:= Count@8a, 1, a, 2, a, 3<, aD

Out[67]= 3

By default, Count works only on level one (levelspec {1}), but you can provide alter-
nate levelspecs as a third argument.

In[68]:= expr = 1 + 3 I + 4 + I x + x^2 + yx
x
;

9 Count@expr, xD,

CountAexpr, x, InfinityE=

Out[69]= 80, 4<
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Count  can  be  derived  from  Position  or  Cases,  so  these  are  handy  if  you  need  the
matching items (or positions) in addition to the count.

In[70]:= Length@Cases@8a, 1, a, 2, a, 3<, aDD

Out[70]= 3

In[71]:= Length@Position@8a, 1, a, 2, a, 3<, a, 81<DD

Out[71]= 3

Discussion
Other counting functions include LeafCount and Tally. It is difficult to emulate Leaf-
Count using Count because LeafCount treats complex numbers in their FullForm (e.g.,
Complex[1,1] has LeafCount == 3) but using FullForm on an expression does not pro-
vide the right answer.

In[72]:= 9LeafCount@exprD, CountAFullForm@exprD, _?AtomQ, Infinity, Heads Ø TrueE=

Out[72]= 817, 14<

You need to eliminate the complex numbers using ReplaceAll before performing the
count, so LeafCount is rather unique. 

In[73]:= 9LeafCount@exprD, CountA

expr ê. Complex@r_, i_D ß complex@r, iD, _?AtomQ, Infinity, Heads Ø TrueE=

Out[73]= 817, 17<

Tally  counts  equivalent  elements  in  a  list  using  SameQ  or  a  user-supplied  equality
test. It works only on lists, so you’ll need to convert expressions with other heads to
List  before  using  Tally.  The  output  is  a  list  of  pairs  showing  the  element  and  its
count.

In[74]:= TallyA9a, x, a, x, a, a, b, y=E

Out[74]= 98a, 4<, 8x, 2<, 8b, 1<, 9y, 1==

In[75]:= TallyAFlattenüApplyAList, expr, 90, Infinity=EE

Out[75]= 985 + 3 Â, 1<, 8Â, 1<, 8x, 4<, 82, 1<, 9y, 1==

Here is an example using a different equivalence relation (congruence module 7).

In[76]:= TallyAPrimeARange@100DE, Mod@Ò1, 7D ã Mod@Ò2, 7D &E

Out[76]= 882, 18<, 83, 18<, 85, 18<, 87, 1<, 811, 14<, 813, 16<, 829, 15<<

See Also
Level specifications are covered in detail in Recipe 3.9.

4.4 Replacing Parts of an Expression
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4.4 Replacing Parts of an Expression
Problem
You want to transform the parts of an expression designated by an index.

Solution
Use  ReplacePart,  which  can  use  indices  or  index  patterns  to  limit  the  scope  of  a
replacement.

In[77]:= H*Replace elements at position three and position seven.*L

ReplacePartA9a, b, c, d, e, f, g, h, i= , 83 Ø 3, 7 Ø 11<E

Out[77]= 8a, b, 3, d, e, f, 11, h, i<

In[78]:= Range@0, 20, 2D

Out[78]= 80, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20<

Place an x at prime-numbered positions. Note that the position is  being tested for
primality, not for value.

In[79]:= ReplacePartA9a, b, c, d, e, f, g, h, i=, 8i_?PrimeQ :> x<E

Out[79]= 8a, x, x, d, x, f, x, h, i<

If you want access to the value as well, you can use the position to index into the list.

In[80]:= WithA9list = 9a, b, c, d, e, f, g, h, i==,

ReplacePart@list, 8i_?PrimeQ :> Framed@list@@iDDD<DE

Out[80]= :a, b , c , d, e , f, g , h, i>

Discussion
On first encounter, you might think ReplacePart and part assignment are redundant.

In[81]:= list1 = 81, 2, 3, 4, 5, 6<;

list1@@81, 3<DD = 99;

list1
Out[83]= 899, 2, 99, 4, 5, 6<

This seems similar to what is achieved using ReplacePart.

In[84]:= list1 = 81, 2, 3, 4, 5, 6<;

list2 = ReplacePart@list1, 81 Ø 99, 3 Ø 99<D
Out[85]= 899, 2, 99, 4, 5, 6<
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However,  there  are  a  multitude  of  differences.  First,  ReplacePart  does  not  modify
the list but creates a new list with modified values. 

In[86]:= 8list1, list2<

Out[86]= 881, 2, 3, 4, 5, 6<, 899, 2, 99, 4, 5, 6<<

A  related  difference  is  that  assignment  is  meaningful  only  to  symbols,  not  expres-
sions. In contrast, ReplacePart can use either as input. 

In[87]:= 81, 2, 3<@@2DD = 99

Set::setps : 81, 2, 3< in the part assignment is not a symbol. à

Out[87]= 99

Another important difference is that it is harmless to specify an index that does not
match. ReplacePart simply returns a new list with the same content. Contrast this to
part assignment, where you get an error.

In[88]:= ReplacePart@81, 2, 3<, 10 Ø 99D

Out[88]= 81, 2, 3<

In[89]:= list1@@10DD = 99

Set::partw : Part 10 of 81, 2, 3, 4, 5, 6< does not exist. à

Out[89]= 99

Part assignment gains flexibility by supporting ranges and lists of position, whereas
ReplacePart uses index patterns.

In[90]:= list1 = Range@10D ;

In[91]:= ReplacePartARange@10D, i_?HÒ > 3 && Ò < 7 &L Ø 99E

Out[91]= 81, 2, 3, 99, 99, 99, 7, 8, 9, 10<

In[92]:= list1@@4 ;; 6DD = 99;

list1
Out[93]= 81, 2, 3, 99, 99, 99, 7, 8, 9, 10<
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ReplacePart  works  on  arbitrarily  nested  expressions,  including  matrices.  Also  note
that the index patterns can be referenced on the right side of rules.

In[94]:= ReplacePartAIdentityMatrix@5D, 8i_, i_< -> iE êê MatrixForm

Out[94]//MatrixForm=
1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5

The following use case performs a transpose.

In[95]:= matrix = Table@x, 810<, 8x, 1, 10<D;

ReplacePartAmatrix, 9i_, j_= :> matrixAAj, iEE E êê MatrixForm
Out[96]//MatrixForm=

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10

In[97]:= ReplacePart@Expand@Hx + 3L^3D, 83, 2< :> zD

Out[97]= 27 + 27 x + x3 + 9 z

See Also
Chapter 3 covers list manipulation in detail, including the use of Part.

4.5 Finding the Longest (or Shortest) 
Match for a Pattern
Problem
A  replacement  rule  is  not  working  the  way  you  think  it  should.  In  particular,  it
seems  to  work  on  only  part  of  the  expression.  Often  this  is  an  indication  that  you
need greedy matching provided by Longest.
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Solution
By default, sequence patterns like a__ and a___ act as if they are surrounded by
Shortest.  This means they match as little as possible to still  be consistent with the
entire pattern. The following repeated replacement seems like it should shuffle items
in the list until  all  equal values are adjacent. It almost works, but a 3 and a 1 stub-
bornly remain in place. This happens because on the final pass a___ matches noth-
ing (which is  shortest),  b_ matches 1, c__ matches 1, b_ matches the third 1,  and
d___  matches  the remainder.  This  results  in  a  null  transformation,  so Replace-
Repeated stops.

In[98]:= 81, 3, 1, 4, 1, 3, 4, 2, 7, 1, 8< êê.

88a___, b_, c__, b_, d___< -> 8b , b, a, c, d<<
Out[98]= 81, 1, 1, 3, 4, 3, 4, 2, 7, 1, 8<

Contrast this to the same transformation using Longest. Here we force a___ to
greedily gobble up as many elements as it  can and still  keep the rest  of  the pattern
matching. 

In[99]:= 81, 3, 1, 4, 1, 3, 4, 2, 7, 1, 8< êê.

99Longest@a___D, b_, c__, b_, d___= -> 8b , b, a, c, d<=

Out[99]= 81, 1, 1, 1, 3, 3, 4, 4, 2, 7, 8<

Forcing a___ to match as much as it can and yet still satisfy the rest of the pattern re-
sults in all sequences of identical elements separated by one or more other elements
(b_, c__, b_) to be found.

Discussion
Readers familiar with regular expression will recognize the solution example as illus-
trating the difference between greedy and nongreedy matching. This difference is the
source of infinite frustration to pattern writers because, depending on your test case,
nongreedy patterns can appear to work most of the time. Always consider what will
happen  if  patterns  like  a__  match  only  one  item  and  a___  matches  nothing.  Often
this is what you want, but almost as often it is not!

A reasonable question to ask is why there is a Shortest if it is the default. For string
patterns (see Chapter 5), the default is reversed. You may also use Shortest to docu-
ment that it is your intent, but you should probably limit this to portions of the pat-
tern that are up front.

Also keep in mind that if multiple Shortest  or Longest  directives are used, the ones
that appear earlier are given higher priority to match the shortest or longest number
of elements, respectively. 

160 | Chapter 4: Patterns and Rule-Based Programming



In[100]:= 81, 2, 3, 4, 5< ê. 8Shortest@a__D, Shortest@b__D< Ø 88a<, 8b<<

Out[100]= 881<, 82, 3, 4, 5<<

In[101]:= 81, 2, 3, 4, 5< ê. 9Longest@a__D, Longest@b__D= Ø 88a<, 8b<<

Out[101]= 881, 2, 3, 4<, 85<<

See Also
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly) has an extensive dis-
cussion of greedy versus lazy matching that is relevant to understanding Longest and
Shortest. This book is a good investment if  you also make use of Mathematica’s
regular expression syntax for string manipulation.

4.6 Implementing Algorithms in Terms of Rules
Problem
You need to implement an algorithm that can be viewed as a transformation from a
start state to a goal state. 

Solution
Many  problems  are  elegantly  stated  in  a  few  simple  transformation  rules.  Here  I
show some simple examples; the discussion will try a few more ambitious tasks. 

Imagine you have a graph of vertex-to-vertex connection rules.  This is  the notation
used by GraphPlot and the functions in the GraphUtilities` package.

In[102]:=

In[103]:= ClearAa, b, c, d, e, f, g, h, x, y, zE;

graph = 9a Ø b, b Ø e, b Ø f, f Ø g, a Ø c, a Ø d, e Ø g=;

graph2 = 9a Ø b, b Ø c, c Ø d, d Ø e, b Ø h, h Ø c, c Ø g, g Ø d, d Ø f,

f Ø e, h Ø i, i Ø g, i Ø f, a Ø x, x Ø y, x Ø z, y Ø z, z Ø a=;

In[106]:= GraphPlotAgraph, VertexLabeling Ø True, DirectedEdges Ø TrueE

Out[106]= a b

e

f

g

c

d
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The idea in this solution is to find a path from the from  node to some intermediate
node x, and from x to some node y, and then add the path fromØy if it does not al-
ready  exist.  Continue  this  until  the  graph  no  longer  changes  (hence  FixedPoint).
Then check if fromØto is present using MemberQ.

In[107]:= hasPathAgraph_, from_, from_E := True

hasPathAgraph_, from_, to_E :=

ModuleA9graph2 = graph, pat1=,

pat1 = 9a___, from Ø x_, b___, x_ Ø y_, c___= ê;

! MemberQAgraph2, from Ø yE ß 9from Ø y, x Ø y, from Ø x, a, b, c=;

MemberQAFixedPointAIgraph2 = ReplaceAll@Ò , pat1DM &, graph2E, from Ø toEE

You can test hasPath on the graph in Out[106] on page 161.

In[109]:= hasPathAgraph, a, gE

Out[109]= True

In[110]:= hasPathAgraph, b, dE

Out[110]= False

Here is an exhaustive test of the vertex c in the graph in Out[113].

In[111]:= 9hasPathAgraph2, c, ÒE, Ò= & êü Igraph2 ê. Rule@v_, _D ß vM

Out[111]= 98False, a<, 8False, b<, 8True, c<, 8True, d<, 8False, b<, 8False, h<,

8True, c<, 9True, g=, 8True, d<, 8True, f<, 8False, h<, 8False, i<,

8False, i<, 8False, a<, 8False, x<, 8False, x<, 9False, y=, 8False, z<=

Here is a related function to compute the transitive closure of a graph.

In[112]:= transitiveClosureAgraph_E :=

ModuleA9graph2 = graph, pat1=,

pat1 = 9a___, w_ Ø x_, b___, x_ Ø y_, c___= ê;

! MemberQAgraph2, w Ø yE && w =!= y ß 9a, w Ø x, b, x Ø y, c, w Ø y=;

FixedPointAIgraph2 = ReplaceAll@Ò , pat1DM &, graph2EE

In[113]:= GraphPlotAgraph2, VertexLabeling Ø True, DirectedEdges Ø TrueE

Out[113]=
ab

c
de

h

g

f

i

x

y

z
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Here you compute the transitive closure of Out[113].

In[114]:= transitiveClosureAgraph2E

Out[114]= 9a Ø b, b Ø c, c Ø d, d Ø e, b Ø h, h Ø c, c Ø g, g Ø d, d Ø f, f Ø e,

h Ø i, i Ø g, i Ø f, a Ø x, x Ø y, x Ø z, y Ø z, z Ø a, a Ø c, a Ø h,

b Ø d, a Ø d, b Ø g, a Ø g, c Ø e, b Ø e, a Ø e, c Ø f, b Ø f, a Ø f,

b Ø i, a Ø i, h Ø g, h Ø e, h Ø f, g Ø f, a Ø y, a Ø z, x Ø a, y Ø a, z Ø c,

x Ø c, y Ø c, z Ø h, x Ø h, y Ø h, z Ø d, x Ø d, y Ø d, z Ø g, x Ø g, y Ø g,

z Ø e, x Ø e, y Ø e, z Ø f, x Ø f, y Ø f, z Ø i, x Ø i, y Ø i, z Ø y=

Out[115] is the plot of the transitive closure of the simpler graph from Out[106] on
page 161.

In[115]:= GraphPlotAtransitiveClosureAgraphE,

VertexLabeling Ø True, DirectedEdges Ø TrueE

Out[115]= a b

e

f

g

c

d

Discussion
The hasPath and transitiveClosure functions share a common property. They are im-
plemented by repeated transformation of the input until some goal state is achieved.
The  search  terminates  when  there  are  no  more  available  transformations,  as  deter-
mined  by  FixedPoint.  TransitiveClosure  uses  the  final  state  as  the  result,  whereas
hasPath makes one more match using MemberQ to see if the goal was reached.

Although rule-driven algorithms tend to be small, they are not always the most effi-
cient.  HasPath  finds  all  paths  from  the  start  node  before  making  a  determination.
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The hasPath2 implementation here uses Catch-Throw to exit as soon as the solution
is found.

In[116]:= hasPath2Agraph_, from_, to_E :=

ModuleA9graph2 = graph, pat1, pat2=,

pat1 = 8___, from Ø to, __< ß Throw@from Ø toD;

pat2 = 9a___, from Ø x_, b___, x_ Ø y_, c___= ê;

! MemberQAgraph2, from Ø yE ß 9from Ø y, from Ø x, x Ø y, a, b, c=;

CatchAFixedPointAIgraph2 = ReplaceAll@Ò , 8pat1, pat2<DM &, graph2EE;

MemberQAgraph2, from Ø toEE

In[117]:= monsterGraph = Table@i Ø i + 1, 8i, 500<D;

In[118]:= Timing@hasPath@monsterGraph, 1, 250DD

Out[118]= 86.15429, True<

In[119]:= Timing@hasPath2@monsterGraph, 1, 250DD

Out[119]= 80.519091, True<

The main components of this solution are: 

1. Localization: Module[ {rules, start, next, final}, .. ] 

2. Rules: Enumeration of the rules with tests against next (graph2 plays the role of
next in the examples). An optional Throw rule detects success for early termination.

3. Repetition: next = ReplaceAll[next, rules] 

4. Stopping criteria: final = FixedPoint[ .., start]. Assignment to final allows
the result to undergo some post processing. In the examples, final was implicit.
If a Throw rule is used, FixedPoint should be wrapped in a Catch.

5. Postprocessing:  Extract  results  from  final.  Here  MemberQ  is  used  to  test  if  the
path was found. 

If you have trouble following one of these solutions, Mathematica will show its work
if you use FixedPointList. For example, here is the expansion of the steps in hasPath.

In[120]:= explainHasPathAgraph_, from_, from_E := 8from Ø from<

explainHasPathAgraph_, from_, to_E :=

ModuleA9graph2 = graph, pat1=,

pat1 = 9a___, from Ø x_, b___, x_ Ø y_, c___= ê;

! MemberQAgraph2, from Ø yE ß 9from Ø y, x Ø y, from Ø x, a, b, c=;

FixedPointListAIgraph2 = ReplaceAll@Ò , pat1DM &, graph2EE
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In[122]:= explainHasPathAgraph, a, gE êê TableForm

Out[122]//TableForm=
a Ø b b Ø e b Ø f f Ø g a Ø c a Ø d e Ø g

a Ø e b Ø e a Ø b b Ø f f Ø g a Ø c a Ø d e Ø g

a Ø g e Ø g a Ø e b Ø e a Ø b b Ø f f Ø g a Ø c a Ø d

a Ø f b Ø f a Ø b a Ø g e Ø g a Ø e b Ø e f Ø g a Ø c a Ø d

a Ø f b Ø f a Ø b a Ø g e Ø g a Ø e b Ø e f Ø g a Ø c a Ø d

This shows each step in the transition from the original graph to the one with all in-
termediate  steps  filled  in.  Try  to  work  out  how the  rule  took  each  line  to  the  next
line.  Only  by  working  through  examples  like  this  will  you  begin  to  master  the
concepts.

See Also
FixedPoint usually finds application in numerical methods that use iteration, such as
Newton’s method (see Recipe 2.12), but any algorithm that computes until an equi-
librium state is reached can use FixedPoint.

4.7 Debugging Infinite Loops When Using 
ReplaceRepeated
Problem
Mathematica  went  into  an  infinite  loop when you used  //.  (ReplaceRepeated),  and
the reason is not immediately obvious.

Solution
ReplaceRepeated  is  often  very  handy  but  also  dangerous  because  it  only  terminates
when the result stops changing. The simplest thing to do is to test ReplaceRepeated
with the option MaxIterations set to a reasonably small value (the default is 65,536).

In[123]:= ReplaceRepeated@81, 2<, 8a_, b_< Ø 88a<, 8b<<, MaxIterations Ø 10D

ReplaceRepeated::rrlim :

Exiting after 81, 2< scanned 10 times. à

Out[123]= 888888888881<<<<<<<<<<, 88888888882<<<<<<<<<<<
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It should be clear that this will never terminate. Any transformation that adds struc-
ture  is  doomed.  However,  sometimes  the  end  result  obtained  when  clamping
iterations  does  not  immediately  reveal  the  problem.  In  such  cases,  it  helps  to  see
the  whole  sequence  of  transformations.  You  can  do  that  using  NestList  and
ReplaceAll  to emulate a ReplaceRepeated  with  a  small number of iterations that re-
turn the result after each iteration.

In[124]:= NestList@ReplaceAll@Ò, 8a_, b_< Ø 8b, a<D &, 81, 2<, 10D

Out[124]= 881, 2<, 82, 1<, 81, 2<, 82, 1<, 81, 2<,

82, 1<, 81, 2<, 82, 1<, 81, 2<, 82, 1<, 81, 2<<

Here  the  problem  is  an  oscillating  transformation  that  will  never  settle  down.  You
could probably see that by inspection, but seeing each step makes it obvious.

Discussion
Sometimes  applying  the  debugging  techniques  in  the  solution  can  still  leave  you
stumped. Here is an example that one would expect to terminate based on the fact
that NumberQ[Infinity] is false.

In[125]:= ReplaceRepeatedA81, a, 2, b, 3, c< ,

9_?NumberQ Ø FAInfinityE=, MaxIterations -> 10E

ReplaceRepeated::rrlim :

Exiting after 81, a, 2, b, 3, c< scanned 10 times. à

Out[125]= 9FADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinity@F@¶DDEEEEEEEEEEEEEEEEE,

a, FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinity@F@¶DDEEEEEEEEEEEEEEEEE,

b, FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinity@F@¶DDEEEEEEEEEEEEEEEEE, c=
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In  situations  like  this,  you  should  try  applying  FullForm  to  the  output  to  see  what
Mathematica sees rather than what it shows you.

In[126]:= FullForm@%D

Out[126]//FullForm=
ListAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityAFA

DirectedInfinityAFADirectedInfinityA

FADirectedInfinity@1DEEEEEEEEEEEEEEEEEEE,

a, FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinity@1DEEEEEEEEEEEEEEEEEEE,

b, FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinityAFADirectedInfinityAFADirectedInfinityA

FADirectedInfinity@1DEEEEEEEEEEEEEEEEEEE, cE

Do you see the problem? It is near the end of the output. If you can’t see it, consider
this.

In[127]:= FullFormAInfinityE
Out[127]//FullForm=

DirectedInfinity@1D

The  full  form  of  Infinity  contains  the  integer  1,  which  is  being  matched  and  replaced
with F[DirectedInfinity[1]] and so on, ad infinitum. In this simple case, Replace-
Repeated  was  not  needed  because  ReplaceAll  would  do  the  trick.  If  Replace-
Repeated  is  necessary,  break the  process  into  two steps,  first  using  a  proxy for
the construct that has the hidden representation that is messing you up. Here I use
Inf instead of Infinity.

In[128]:= 81, a, 2, b, 3, c< êê. 8_?NumberQ Ø F@InfD< ê. Inf Ø Infinity

Out[128]= 8F@¶D, a, F@¶D, b, F@¶D, c<

See Also
You  can  find  a  realistic  example  of  the  Infinity  problem  at  the  Wolfram  Math-
Group Archives: http://bit.ly/2oRAuZ.
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4.8 Preventing Evaluation 
Until Replace Is Complete
Problem
You are trying to transform an expression, but the structure you want to transform
is disappearing due to evaluation before you can transform it.

Solution 
Use Hold and ReleaseHold with the replacement.

This does not work the way you probably intended.

In[129]:= 1 + 1 + 1 + 1 + 1 ê. 81 Ø 2, Plus -> Times<

Out[129]= 5

This  preserves  the  structure  until  the  transformation  is  complete,  then  allows  it  to
evaluate.

In[130]:= ReleaseHold@Hold@1 + 1 + 1 + 1 + 1 D ê. 81 Ø 2, Plus -> Times<D

Out[130]= 32

A related problem is wanting the left  side of a replacement rule to remain unevalu-
ated. In this case, you need to use HoldPattern.

This is equivalent to ReleaseHold[Hold[1 + 1 + 1 + 1 + 1 ] /. 4 :> 2 + 2 + 2 + 2 ].

In[131]:= ReleaseHold@Hold@1 + 1 + 1 + 1 + 1 D ê. 1 + 1 + 1 + 1 :> 2 + 2 + 2 + 2D

Out[131]= 5

In[132]:= H*This works as intended by preserving the structure of the pattern.*L

ReleaseHold@

Hold@1 + 1 + 1 + 1 + 1 D ê. HoldPattern@1 + 1 + 1 + 1D :> 2 + 2 + 2 + 2D
Out[132]= 9

Discussion
Keep  in  mind  that  HoldPattern[expr]  differs  from  Hold[expr].  From  a  pattern-matching
point  of  view,  HoldPattern[expr]  is  equivalent  to  expr  alone  except  it  prevents
evaluation. Hold[expr] includes the Hold as part of the pattern.
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In[133]:= GO = "gone";

In[134]:= Hold@1 + 2 + 3D ê. HoldPattern@1 + 2 + 3D :> GO

Out[134]= Hold@GOD

In[135]:= Hold@1 + 2 + 3D ê. Hold@1 + 2 + 3D :> GO

Out[135]= gone

See Also
Chapter 2 discusses Hold in more detail.

4.9 Manipulating Patterns with Patterns
Problem
You need to transform a pattern expression using patterns. 

Solution
Use  Verbatim  to  allow  a  pattern  to  match  another  pattern.  Here  Verbatim  tells
Mathematica to treat the expression literally. 

In[136]:= x_ Ø 1 ê. Verbatim@x_D ß y_

Out[136]= y_ Ø 1

Here we want to split up a pattern variable into the name and the head it matches.

In[137]:= x_Integer ê. Verbatim@PatternD@name_, head_D ß 8name, head<

Out[137]= 9x, _Integer=

Discussion
The key to understanding the solution is to consider the FullForm of pattern variables.

In[138]:= 9FullForm@x_D, FullForm@x__D, FullForm@x___D, FullFormAx_IntegerE=

Out[138]= 9Pattern@x, Blank@DD, Pattern@x, BlankSequence@DD,

Pattern@x, BlankNullSequence@DD, PatternAx, BlankAIntegerEE=

Without Verbatim, the first example in the first part of the solution would go wrong.

In[139]:= x_ Ø 1 ê. x_ ß y_

Out[139]= y_
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The second part of the solution would fail because a pattern can’t have another pat-
tern as its name.

In[140]:= x_Integer ê. Pattern@name_, head_D ß 8name, head<

Pattern::patvar :

First element in pattern Pattern@name_, head_D is

not a valid pattern name. à

Out[140]= x_Integer

Verbatim[expr] says “match expr exactly as it appears.” You will not use Verbatim of-
ten  unless  you  find  yourself  writing  Mathematica  code  to  transform  Mathematica
code, as you might if you were writing a special interpreter or code to rewrite Mathe-
matica code containing patterns in some other form.

See Also
The  Mathematica  Programmer  II  by  Roman  Maeder  (Academic  Press)  uses Verbatim
during the development of an interpreter for a Prolog-like language.

4.10 Optimizing Rules
Problem
You have a large list of frequently used rules and want to speed up processing.

Solution
Use Dispatch to create a dispatch table and use that in place of the rules.

In[141]:= rules = 9 Inf Ø Infinity, sin Ø Sin, cos Ø Cos, tan Ø Tan, pi Ø Pi=

Out[141]= 8Inf Ø ¶, sin Ø Sin, cos Ø Cos, tan Ø Tan, pi Ø p<

In[142]:= dispatch = Dispatch@rulesD

Out[142]= Dispatch@8Inf Ø ¶, sin Ø Sin, cos Ø Cos, tan Ø Tan, pi Ø p<, -DispatchTables -D

In[143]:= cos@2 pi qD + sin@q^2D - sin@cos@3 zDD ê. dispatch

Out[143]= Cos@2 p qD + SinAq2E - Sin@Cos@3 zDD
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Discussion
If you do a lot of multiple-rule transformations, it is convenient to store all the rules
in a single variable. This common practice makes maintenance of your code simpler
since there is only a single definition to maintain for all rules. However, the penalty
for doing this is that the performance of a replace decreases as the number of rules
increases. This is because each rule must be scanned in turn, even if it ends up being
inapplicable  to  a  given  transformation.  Rule  dispatch  tables  optimize  rule  dispatch
so it is mostly independent of the number of rules.

To test this claim, I generate a list of 5,000 rules, called monsterRuleSet,  and then
optimize  it  to  create  monsterDispatch.  The  timing  on  the  monsterRuleSet  is  very
poor, whereas the dispatched version is lickety-split.

In[144]:= monsterRuleSet = Table@i Ø i + 1, 8i, 5000<D;

monsterDispatch = Dispatch@monsterRuleSetD;

In[146]:= Timing@81< êê. monsterRuleSetD

Out[146]= 83.29176, 85001<<

In[147]:= Timing@81< êê. monsterDispatchD

Out[147]= 80.005828, 85001<<

Peering into the implementation, you can see that the secret to Dispatch’s success is
a hash table.

In[148]:= monsterDispatch@@2DD êê Short
Out[148]//Short=

8HashTable@1, 5000, 1, 8810, 2856<, 8<, 83110, 3440<, 8<, 81245<, á4989à,

83060<, 81008<, 8912<, 8879, 3696, 4165, 4971<, 8545, 676, 4204<<D<

4.11 Using Patterns As a Query Language
Problem
You want to perform SQL-like queries on data stored in Mathematica.

Solution
Consider data of the sort one might encounter in a relational database but encoded
in  Mathematica  form.  This  example  is  taken  from  the  classic  introduction  to
databases by C. J. Date.
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In[149]:= S = 8

supplier@ "S1" , "Smith", 20, "London"D,

supplier@"S2", "Jones" , 10 , "Paris"D,

supplier@"S3", "Blake" , 30 , "Paris"D,

supplier@ "S4", "Clark", 20 , "London"D,

supplier@ "S5", "Adams" , 30 , "Athens"D

<;

P = 9

part@"P1", "Nut" , "Red", 12, "London"D,

part@ "P2" , "Bolt" , "Green", 17, "Paris"D,

part@"P3" , "Screw", "Blue", 17, "Rome"D,

part@"P4" , "Screw", "Red", 14, "London"D,

part@ "P5" , "Cam", "Blue", 12, "Paris"D,

partA "P6" , "Cog", "Red" , 19, "London"E

=;

INV = 9

inventory@ "S1" , "P1" , 300D,

inventory@ "S1" , "P2" , 200D,

inventory@ "S1" , "P3" , 400D,

inventory@ "S1" , "P4" , 200D,

inventory@ "S1" , "P5" , 100D,

inventory@ "S1" , "P6" , 100D,

inventory@ "S2" , "P1" , 300D,

inventory@ "S2" , "P2" , 400D,

inventory@ "S3" , "P2" , 200D,

inventory@ "S4" , "P2" , 200D,

inventory@ "S4" , "P4" , 300D,

inventory@ "S4" , "P5" , 400D

=;

Simple queries can be done using Cases alone.

In[152]:= H*Find suppliers in Paris.*L

Cases@S, supplier@_, _, _, "Paris"D D

Out[152]= 8supplier@S2, Jones, 10, ParisD, supplier@S3, Blake, 30, ParisD<

In[153]:= H*Find suppliers in Paris with status greater than 10.*L

Cases@S, supplier@_, _, status_ ê; status > 10, "Paris"D D

Out[153]= 8supplier@S3, Blake, 30, ParisD<
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Queries involving joins can be implemented with the help of Outer.

In[154]:= H*Find suppliers and parts located in the same city.*L

FlattenAOuterA

CasesA88Ò1, Ò2<<, 9supplierAsid_, __, city_E, partApid_, __, city_E= ß

colocatedAsid, pid, cityEE &, S, PEE

Out[154]= 8colocated@S1, P1, LondonD, colocated@S1, P4, LondonD,

colocated@S1, P6, LondonD, colocated@S2, P2, ParisD,

colocated@S2, P5, ParisD, colocated@S3, P2, ParisD,

colocated@S3, P5, ParisD, colocated@S4, P1, LondonD,

colocated@S4, P4, LondonD, colocated@S4, P6, LondonD<

In[155]:= H*Find suppliers who have the same status.*L

Flatten@Outer@Cases@88Ò1, Ò2<<,

8supplier@sid1_, _, s_, _D, supplier@sid2_, _, s_, _D< ê;

Order@sid1 , sid2D == 1 ß same@sid1, sid2, sDD &, S, SDD
Out[155]= 8same@S1, S4, 20D, same@S3, S5, 30D<

Discussion
If  the data you need to query resides in a database,  it  makes more sense to let  that
database do the query work before the data is imported into Mathematica. If this is
not  the  case,  Mathematica  can  easily  do  the  job,  even  for  rather  sophisticated
queries. Here are some simple examples with SQL equivalents.

Find all pairs of cities where a supplier in the first city has inventory on a part in the
second city.

SELECT DISTINCT S.CITY, P.CITY

FROM S, INV, P

WHERE S.SID = INV.SID

AND INV.PID = P.PID;

In[156]:= query = 9supplierAsid_, _, _, city1_E, inventory@sid_, pid_, _D,

partApid_, _, _, _, city2_E= ß citiesAcity1, city2E;

UnionAFlattenAOuterACasesA88Ò1, Ò2, Ò3<<, queryE &, S, INV, PEEE êê

TableForm
Out[157]//TableForm=

cities@London, LondonD

cities@London, ParisD

cities@London, RomeD

cities@Paris, LondonD

cities@Paris, ParisD
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In this case, ReplaceRepeated can be used to implement GROUP BY. The idea is to con-
tinually  search  for  pairs  of  items  that  match  on  the  grouping  criteria  and  combine
them according to some aggregation method, in this case the sum of qty. Since each
replacement  removes  an  inventory  item,  we  are  guaranteed  to  terminate  when  all
items are unique. A final ReplaceAll is used to extract the relevant information. The
use of Null in the replacement rule is just for aesthetics, conveying that when you
aggregate two inventory records you no longer  have  a  valid  record  for  a  particu-
lar supplier.

SELECT PID, SUM(QTY)

FROM INV

GROUP BY PID;

In[158]:= INV êê.

9Longest@i1___D, inventory@ _ , p_ , q1_D, i2__, inventory@_, p_, q2_D,

i3___= ß 9i1, inventory@Null, p , q1 + q2D, i2, i3= ê.

inventory@s_ , p_ , q_D ß totals@p, qD êê TableForm
Out[158]//TableForm=

totals@P1, 600D

totals@P2, 1000D

totals@P3, 400D

totals@P4, 500D

totals@P5, 500D

totals@P6, 100D

Suppose you want the names of suppliers who have inventory in the part P1. This in-
volves  integrating  information  from  S  and  INV.  This  can  be  done  as  a  join,  but  in
SQL it can also be done via a subquery. You can emulate that using rules. Here MemberQ
implements the semantics of the SQL IN.

SELECT NAME

FROM S

WHERE SID IN

( SELECT SID

FROM INV

WHERE PID = 'P2') 

In[159]:= CasesAS, supplier@sid_, sname_, ___D ê; MemberQA

CasesAINV, inventory@sid1_, "P2", _D ß sid1E,

sidE ß snameE

Out[159]= 8Smith, Jones, Blake, Clark<

In  the  examples  given,  I  have  demonstrated  queries  for  which  the  data  is  in  rela-
tional form. One feature of relational form is that it  is  normalized so that each col-
umn can hold only atomic data. However, Mathematica is not a relational database,

174 | Chapter 4: Patterns and Rule-Based Programming



so data can appear in just about any form with any level of nesting. This is no prob-
lem because  patterns  are  much more  flexible  than SQL.  Still,  I  find it  easier  to  put
data  in  a  tabular  form  before  trying  to  extract  information  and  relationships  with
other collections of data. Let’s consider an example that is more in the Mathematica
domain.

GraphData  and PolyhedronData  are two extensive data sources that are bundled with
Mathematica  6  and  later  versions.  The  relationship  between  these  data  sources  is
that each polyhedron has an associated graph. In PolyhedronData,  the property that
ties  the two sources  together  is  called SkeletonGraph.  In database jargon,  Skeleton-
Graph is a foreign key to GraphData, and thus, allows us to investigate relationships be-
tween  polyhedra  and  their  associated  graphs.  For  this  example,  I  want  to  consider
all graphs that are both Eulerian and Hamiltonian with their associated polyhedron
being  Archimedean.  (An  Archimedean  solid  is  a  highly  symmetric,  semiregular,
convex polyhedron composed of  two or more types of  regular  polygons meeting in
identical vertices.)

In[160]:= Archimedean = CasesA9ToString@ÒD,

PolyhedronData@ÒD, PolyhedronData@Ò, "SkeletonGraphName"D,

PolyhedronData@Ò, "Archimedean"D= & êü PolyhedronData@D ,

9name_, image_, graph_, True= ß archimedeanAname, image, graphEE;

Graphs = CasesA9ToString@ÒD, GraphData@ÒD, GraphData@Ò, "Eulerian"D,

GraphData@Ò, "Hamiltonian"D= & êü GraphData@D ,

9name_, image_, True, True= ß graphEorHAname, imageEE;

It’s often a good idea to see how many results you received.

In[162]:= 9Length@ArchimedeanD, Length@GraphsD=

Out[162]= 813, 676<

In[163]:= results =

FlattenAOuterACasesA88Ò1, Ò2<<, 9archimedeanApname_, pimage_, gname_E,

graphEorHAgname_, gimage_E= ß

rAgname, pname, gimage, pimageEE &, Archimedean, GraphsEE ;

There are exactly 4 cases out of 13 Archimedean polyhedra that meet the criteria of
having both Eulerian and Hamiltonian graphs. 

In[164]:= TableFormAresults ê. 9 rAgname_, pname_, gimage_, pimage_E ß

99gname, gimage= ê. Graphics@a__D ß GraphicsAa, ImageSize Ø 100E,

9pname, pimage= ê. Graphics3D@b__D ß Graphics3DAb, ImageSize Ø 100E==E
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Out[164]//TableForm=
CuboctahedralGraph Cuboctahedron

IcosidodecahedralGraph Icosidodecahedron

SmallRhombicosidodecahedralGraph SmallRhombicosidodecahedron

SmallRhombicuboctahedralGraph SmallRhombicuboctahedron
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You might find more intuitive ways to solve this problem, but the solution given em-
phasizes  pattern  matching.  You  could  also  use  Intersection  with  an  appropriate
SameTest, as shown here. The r @@@ serves only to put the result in the same form as
we used previously and is not strictly needed.

In[165]:= results = r üüü

Intersection@Archimedean, Graphs, SameTest -> HÒ1@@3DD == Ò2@@1DD &LD;

See Also
The  supplier-parts  database  is  a  classic  example  borrowed from An Introduction  to
Database Systems: Volume 1, Fourth Edition, by C. J. Date (Addison-Wesley). 

4.12 Semantic Pattern Matching
Problem
You  want  to  work  with  patterns  that  reach  beyond  syntactic  (structural)  relation-
ships to consider semantic relationships.

Solution
This solution is a simplified adaptation of concepts from “Semantica: Semantic Pat-
tern Matching in Mathematica” by Jason Harris, published in the Mathematica Jour-
nal, Volume 7, Issue 3, 1999. 

Pattern matching in Mathematica is strictly structural. Consider the following func-
tion f.

In[166]:= Clear@fD

SetAttributes@f, HoldFirstD;

fAx_Integer^2E := 1

Clearly,  3^2  matches  the  first  version  of  the  function.  However,  neither  f[9]  nor
f[10]  are  in  the  correct  form,  so  they  fail  to  match,  even  though  in  the  second
case 9 == 3^2.

In[169]:= 8f@3^2D, f@9D, f@10D<

Out[169]= 81, f@9D, f@10D<
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All  hope  is  not  lost.  By  exploiting  patterns,  you  can  create  a  semantic  match  that
uses Condition, which is commonly abbreviated as /;.

In[170]:= Clear@fD;

SetAttributes@f, HoldFirstD;

fAx_ ê; IntegerQ@xD && IReduceAz^2 ã x, 8z<, IntegersE =!= FalseME := 1

Now both the first and second cases match but not the last.

In[173]:= 8f@3^2D, f@9D, f@10D<

Out[173]= 81, 1, f@10D<

Discussion
Mathematica deals with structural patterns simply because, in general, it is impossi-
ble to determine if two expressions are semantically equivalent. In the 1930s, Gödel,
Turing, Church, and others performed the theoretical work that underlies this unfor-
tunate truth. Still,  there are many restricted cases for which semantic matching can
succeed, as demonstrated in the solution. 

4.13 Unification Pattern Matching
Problem
You want to emulate unification-based matching, à la Prolog.

Solution
Unification  is  more  powerful  than  Mathematica  pattern  matching  in  that  it  allows
pattern variables on both sides of the match. We can’t use normal pattern variables
for this purpose, so we use the syntax $[var] to denote unification variable. 

In[174]:= ClearAllAunifyE

SetAttributesA$, HoldAllE

OptionsAunifyE = 9bindings Ø 8<=;

unifyAx_, y_, opt___E :=

BlockA9$bindings = bindings ê. 8opt< ê. OptionsAunifyE=,

ModuleA9unify0, boundQ, lookup=,

SetAttributesAunify0, OrderlessE;

boundQ@x1_D := ModuleA8<, Ix1 ê. $bindings M =!= x1E;

lookup@x1_D := ModuleA8<, x1 ê. $bindingsE;
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In[174]:=

H*If both variables are bound, then match if values match.*L

unify0A$@x1_D, $Ay1_EE ê; boundQ@x1D && boundQAy1E :=

ModuleA8<, lookup@x1D === lookupAy1EE;

H*If one variable matches,

then bind the other to the same value and unify again.*L

unify0A$@x1_D, $Ay1_EE ê; boundQ@x1D :=

ModuleA8xval<, xval = lookup@x1D;

AppendToA$bindings, y1 Ø xvalE; unify0Axval, $Ay1EEE;

H*If neither variable is bound,

then eliminate variable by binding first to second.*L

unify0A$@x1_D, $Ay1_EE :=

ModuleA8<, AppendToA$bindings, x1 Ø y1E; TrueE;

H*Unify a bound variable to an

expression by unifying its value to the expression.*L

unify0A$@x1_D, y1_E ê; boundQ@x1D :=

ModuleA8<, unify0Alookup@x1D, y1EE;

H*Unify an unbound variable

to an expression by binding to the expression.*L

unify0A$@x1_D, y1_E := ModuleA8<,

AppendToA$bindings, x1 Ø y1E; TrueE;

H*Atoms unify if they are the same.*L

unify0Ax1_?AtomQ, y1_?AtomQE := ModuleA8<, x1 === y1E;

H*Compound expressions unify if they have the same head and

the same length and their corresponding elements unify.*L

unify0Ax1_, y1_E ê; Head@x1D === HeadAy1E &&

Length@x1D ã LengthAy1E :=

ModuleA8u<, And üü ThreadAuAx1, y1E, Head@x1DE ê. u Ø unify0E;

H*Otherwise fail*L

unify0Ax1_, y1_E := False;

IfAunify0Ax, yE, 9True, $bindings ê. $@a_D ß a=, 8False, 8<<EEE

Test unify on various expressions:

In[178]:= unify@1, 1D

Out[178]= 8True, 8<<

In[179]:= unifyA$@xD, 1E

Out[179]= 8True, 8x Ø 1<<
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In[180]:= unifyA1, $@xDE

Out[180]= 8True, 8x Ø 1<<

In[181]:= unifyAfA$@xD, aE, fAb, $AyEEE

Out[181]= 9True, 9x Ø b, y Ø a==

In[182]:= unifyAfA$@xD, aE, fAb, $@xDEE

Out[182]= 8False, 8<<

In[183]:= unifyAfA$@xD, gA$AyEEE, fAg@3D, $@xDEE

Out[183]= 9True, 9x Ø g@3D, y Ø 3==

In[184]:= unifyAfAgA$AyEEE, fA$@xDEE

Out[184]= 9True, 9x Ø gAyE==

Here you pass in a preexisting binding so the unification fails.

In[185]:= unifyA1, $@xD, bindings Ø 8x Ø 2<E

Out[185]= 8False, 8<<

Discussion
In[186]:= ClearAunifyNE

unifyNAx_, y_E := unifyAx, yE

unifyNAx_, y_, z__E := ModuleA8t, b2<,

8t, b2< = unifyN@x, zD; IfAt, unifyAx, y, bindings ß b2E, 8t, b2<EE

In[189]:= unifyNAfA$@wD, 2, 3, 4E, fA1, $@xD, 3, 4E, fA1, 2, $AyE, 4E, fA1, 2, 3, $@zDEE

Out[189]= 9True, 9w Ø 1, z Ø 4, y Ø 3, x Ø 2==

See Also
Maeder’s Mathematica Programmer II  goes much further than this recipe by imple-
menting a large subset of Prolog. It also allows you to use normal pattern syntax by
rewriting the variables using techniques discussed in Recipe 3.10.
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CHAPTER 5

String and Text Processing

Someone will call
Something will fall

And smash on the floor
Without reading the text

Know what comes next
Seen it before

And it’s painful
Things must change

We must rearrange them
Or we’ll have to estrange them

All that I’m saying
The game’s not worth playing

Over and over again

Depeche Mode, “The Sun and the Rainfall”

5.0 Introduction
Users who come to Mathematica for its superior mathematical capabilities are pleas-
antly surprised to find strong abilities in programming areas outside of mathematics
proper. This is certainly true in the area of textual and string processing. Mathemati-
ca’s rich library of functions for string and structured text manipulation rivals Java,
Perl, or any other modern language you can tie a string around. 

The sections in this introduction provide information on some of the basic tools of
strings and string manipulation. 

Characters and Character Encodings
Mathematica uses Unicode  internally, but externally (e.g.,  when saving a notebook)
it uses ASCII codes, encoding non-ASCII characters in a special form.

For example, lowercase Greek letters and other non-ASCII  characters  are encoded
using backslash-bracketed character names (\[name]).
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In[1]:= alpha = "a"

Out[1]= a

The function ToString will translate strings using different encoding schemes.

In[2]:= ToStringAalpha, CharacterEncoding Ø "ASCII"E

Out[2]= \[Alpha]

The  default  character  encoding  used  by  Mathematica  is  stored  in  $CharacterEncoding,
and the native character  encoding of  the underlying operating system Mathematica
is running is  stored in $SystemCharacterEncoding.  All  available encodings are stored
in $CharacterEncodings.

In[3]:= $CharacterEncoding

Out[3]= UTF-8

In[4]:= $SystemCharacterEncoding

Out[4]= UTF-8

In[5]:= PartitionA$CharacterEncodings, 4E êê TableForm

Out[5]//TableForm=
AdobeStandard ASCII CP936 CP949
CP950 Custom EUC-JP EUC
IBM-850 ISO10646-1 ISO8859-10 ISO8859-11
ISO8859-13 ISO8859-14 ISO8859-15 ISO8859-16
ISO8859-1 ISO8859-2 ISO8859-3 ISO8859-4
ISO8859-5 ISO8859-6 ISO8859-7 ISO8859-8
ISO8859-9 ISOLatin1 ISOLatin2 ISOLatin3
ISOLatin4 ISOLatinCyrillic Klingon koi8-r
MacintoshArabic MacintoshChineseSimplified MacintoshChineseTraditional MacintoshCroatian
MacintoshCyrillic MacintoshGreek MacintoshHebrew MacintoshIcelandic
MacintoshKorean MacintoshNonCyrillicSlavic MacintoshRomanian MacintoshRoman
MacintoshThai MacintoshTurkish MacintoshUkrainian Math1
Math2 Math3 Math4 Math5
Mathematica1 Mathematica2 Mathematica3 Mathematica4
Mathematica5 Mathematica6 Mathematica7 PrintableASCII
ShiftJIS Symbol Unicode UTF8
WindowsANSI WindowsBaltic WindowsCyrillic WindowsEastEurope
WindowsGreek WindowsThai WindowsTurkish ZapfDingbats

Notice how UTF-8 needs two bytes to display alpha.

In[6]:= ToStringAalpha, CharacterEncoding Ø "UTF8"E

Out[6]= Î±

ToCharacterCode gives the numerical representation.

In[7]:= ToCharacterCodeAToStringAalpha, CharacterEncoding Ø "UTF8"EE

Out[7]= 8206, 177<
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You can map from character codes back to characters using FromCharacterCode[].

In[8]:= FromCharacterCode@887, 88, 89, 90<D

Out[8]= WXYZ

The mapping may not be one-to-one for certain encodings.

In[9]:= FromCharacterCode@8206, 177<, "UTF8"D

Out[9]= a

String and Regular Expressions
A great deal of Mathematica’s prowess in text processing comes from its rich support
for  pattern  matching.  There  are  two  basic  classes  of  string  patterns:  string  expres-
sions and regular expressions.  Introduced in version 5.1,  each has a similar  expres-
sive  power.  The  advantage  of  StringExpression  is  that  it  is  less  cryptic  because  it
uses more words than symbols to express patterns. The advantage of RegularExpression is
that it is more standardized with other languages such as Perl, Ruby, Java, and so on.
Non-Mathematica  programmers,  especially  those  with  a  background  in  Unix,  are
more likely to understand regular expressions, although these expressions are cryp-
tic to the uninitiated. You should become familiar with both if you plan to do much
string manipulation. If you program frequently in languages outside of Mathematica,
master the regular expression syntax. If you work strictly in Mathematica, choose the one
that most appeals to you. If  you learn the string expression syntax, you will  have a
leg  up  on  learning  Mathematica’s  more  general  pattern-matching  syntax,  which  is
used in many contexts outside text processing. You can also mix string expressions
and regular expressions into compound patterns.

String expressions     

StringExpressions are mostly written using the infix operator ~~, which is a syntactic
shortcut  for  the  StringExpression[]  function.  StringExpression  uses  Mathematica’s
blanks notation (e.g., _, __, and ___) to represent wild cards. See Chapter 4 for more
on blanks.

Match "xy" followed by any character.

In[10]:= "xy" ~~ _;

In[11]:= StringMatchQA"xyz" , "xy" ~~ _E

Out[11]= True

In[12]:= StringMatchQA"xyzz" , "xy" ~~ _E

Out[12]= False
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Match "xy" followed by one or more characters.

In[13]:= "xy" ~~ __;

In[14]:= StringMatchQA"xyzz" , "xy" ~~ __E

Out[14]= True

In[15]:= StringMatchQA"xy" , "xy" ~~ __E

Out[15]= False

Match "xy" followed by zero or more characters.

In[16]:= "xy" ~~ ___;

In[17]:= StringMatchQA"xyz" , "xy" ~~ ___E

Out[17]= True

In[18]:= StringMatchQA"xy" , "xy" ~~ ___E

Out[18]= True

Patterns  can  be  associated  with  variables  so  that  the  matching  portion  can  be  re-
ferred to in a subsequent expression. For example, the following pattern will match
if the string begins and ends with the same sequence of characters.

In[19]:= StringMatchQA"xyx" , x__ ~~ ___ ~~ x__E

Out[19]= True

In[20]:= StringMatchQA"Hello. I said, hello" , x__ ~~ ___ ~~ x__, IgnoreCase Ø TrueE

Out[20]= True

In[21]:= StringMatchQA"123ABC323", x : NumberString ~~ ___ ~~ x_E

Out[21]= False

In[22]:= StringMatchQA"123ABC123", x : NumberString ~~ ___ ~~ x_E

Out[22]= True

Table 5-1 shows some of the common raw ingredients for string expressions. If you
have already read Chapter 4 on pattern matching, you can see that all the same con-
structs  are  available  for  strings.  The  full  set  of  string  expression  primitives  can  be
found in tutorial/WorkingWithStringPatterns.
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Table 5-1. Common string patterns

Pattern Description

"\"string\""

"_"

"a literal string of characters"

"any single character"

"__" "any substring of

one or more characters"

"___" "any substring of

zero or more characters"

"x_,x__,x___" "substrings given the name x"

"x:pattern" "pattern given the name x"

"pattern.." "pattern repeated one or more times"

"pattern..." "pattern repeated zero or more times"

"patt1»patt2»..." "a pattern matching

at least one of the patt-i"

"pattê;cond" "a pattern for which

cond evaluates to True"

"pattern?test" "a pattern for which test

yields True for each character"

"Except@patternD" "matches anything except pattern"

"Whitespace" "a sequence of whitespace characters"

"NumberString" "the characters of a number"

"DatePattern@specD" "the characters of a date"

"charobj" "an object representing a

character class Hsee belowL"

Table 5-2 shows some of the common raw ingredients for regular expressions. The full set
of regular expression primitives can be found in tutorial/WorkingWithStringPatterns.
Here c or cn, where n is a number, is a placeholder for an arbitrary character, and pn
is a placeholder for an arbitrary regular expression.
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Table 5-2. Common regular expressions

Regular expression Description

"@c1c2c3D"

"@c1-c2D"

"Matches any of the characters c1, c2, or c3.

For example,@AEIOUaeiouD matches vowels."

"Matches characters c1 through c2. For example,

@a-zD matches all lowercase letters."

"@^c1c2c3D" "Matches any characters EXCEPT c1, c2, c3. For

example,@^AEIOUaeiouD matches nonvowels."

"c*" "Zero or more occurrences

of character c. Greedy version."

"c+" "One or more occurrences

of character c. Greedy version."

"c?" "The character c or nothing Hi.e., zero

or one occurrencesL. Greedy version."

"c*?" "Lazy version of c*."

"c+?" "Lazy version of c+."

"c??" "Lazy version of c?."

"p1»p2»...»pN" "Matches p1 or p2 or ... pN."

"p1p2...pN" "Matches p1, followed by p2, followed by ... pN."

"^p1" "Matches p1 only at the start of the string."

"p1$" "Matches p1 only at the end of the string."

"^p1$" "Matches only if p1 matches the entire string."

"\\d" "Any digit 0-9"

"\\s" "Whitespace"

See Also
The definitive reference on regular expressions is Mastering Regular Expressions, Sec-
ond Edition, by Jeffrey E. F. Friedl (O’Reilly). If you plan to do anything nontrivial
using regular expression matching, you will save yourself hours of frustration by con-
sulting this book.

An  excellent  tutorial  on  working  with  string  patterns  in  Mathematica  can  be
found  in  the  documentation  under  tutorial/WorkingWithStringPatterns  or  online  at
http://bit.ly/yGbND. Besides being a good all-around tutorial, it has a section specifi-
cally targeting Perl programmers, which is helpful for those who already have experi-
ence with string manipulation in Perl.
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5.1 Comparing Strings
Problem
You want to compare strings but Less, LessEqual, Greater, and GreaterEqual do not
work.

Solution
Use Order[e1,e2], which returns 1 if e1 is before e2, |1 if e1 is after e2, and 0 if they
are equal.

In[23]:= Order@"rat", "rate"D

Out[23]= 1

In[24]:= Order@"rat", "cat"D

Out[24]= -1

Discussion
Most users of Mathematica will  not find themselves doing direct string comparison
since functions like Sort and Ordering do the right thing. However, if you find your-
self needing to use the more natural comparison operators with strings, you can do
the following:

In[25]:= Unprotect@Less, LessEqual, Greater, GreaterEqualD;

LessAs1_String, s2_StringE := Order@s1, s2D > 0;

LessEqualAs1_String, s2_StringE := Order@s1, s2D > -1;

GreaterAs1_String, s2_StringE := Order@s1, s2D < 0;

GreaterEqualAs1_String, s2_StringE := Order@s1, s2D < 1;

Protect@Less, LessEqual, Greater, GreaterEqualD;

In[31]:= "rat" < "cat"

Out[31]= False

In[32]:= "cat" < "rat"

Out[32]= True

In[33]:= "cat" <= "cat"

Out[33]= True
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5.2 Removing and Replacing Characters 
from Strings
Problem
You  want  to  strip  certain  characters  (e.g.,  whitespace)  or  characters  at  certain  positions
from a string. You may also want to replace these characters with other characters.

Solution
Using patterns

StringReplace[]  is  an extremely versatile  function that  solves  most  character-oriented
stripping and replacing operations. It supports a very general set of string-substitution
rules, including regular expressions and Mathematica-specific string patterns.

Strip all spaces.
In[34]:= myString = " The quick brown fox jumped over the lazy programmer ";

In[35]:= StringReplaceAmyString, " " Ø ""E

Out[35]= Thequickbrownfoxjumpedoverthelazyprogrammer

Strip leading and trailing whitespace.
In[36]:= StringReplaceAmyString, RegularExpressionA"^\\s+»\\s+$"E Ø ""E êê InputForm

Out[36]//InputForm=

"The quick brown  fox   jumped over the lazy programmer"

Normalize whitespace: strip leading, trailing, and multiple internal whitespace.
In[37]:= StringReplaceAmyString, 9RegularExpressionA"^\\s+»\\s+$"E Ø "",

RegularExpression@"\\s\\s+"D Ø " "=E êê InputForm
Out[37]//InputForm=

"The quick brown fox jumped over the lazy programmer"

Literal string substitution.
In[38]:= StringReplaceAmyString, "the" Ø "a"E êê InputForm

Out[38]//InputForm=
" The quick brown  fox   jumped over a lazy programmer   "

Ignore case while matching.
In[39]:= StringReplaceAmyString, "the" Ø "a", IgnoreCase Ø TrueE êê InputForm

Out[39]//InputForm=

" a quick brown  fox   jumped over a lazy programmer    "

Use Mathematica-specific patterns instead of regular expressions.
In[40]:= StringReplaceAmyString, "ox" ~~ Whitespace Ø "ox "E

Out[40]= The quick brown fox jumped over the lazy programmer
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Using positions

Sometimes you know exactly where the characters are that you want to remove. In
that case, StringDrop[] is a lot more efficient. StringDrop[] takes the string and a sec-
ond argument, which can be an offset from the front, an offset from the end, specific
positions, or a range of positions.

Consider:

In[41]:= myString = "abcdefghijklmnop" ;

Here you drop the first three characters. 

In[42]:= StringDropAmyString, 3E

Out[42]= defghijklmnop

Alternatively, you drop the last three characters, like so.

In[43]:= StringDropAmyString, -3E

Out[43]= abcdefghijklm

Drop only the third character, like this.

In[44]:= StringDropAmyString, 83<E

Out[44]= abdefghijklmnop

And drop the third through fifth ("cde"), using a range list.

In[45]:= StringDropAmyString, 83, 5<E

Out[45]= abfghijklmnop

The step size in the range can even be greater than one by specifying it as the third
element. Here you specify a step size of two to remove every other character. The -1
upper  limit  is  a  convenient  way  to  specify  the  end  of  the  string  without  having  to
know its length.

In[46]:= StringDropAmyString, 81, -1, 2<E

Out[46]= bdfhjlnp

You can also act on several strings at once.

In[47]:= otherString = "1234567890";

In[48]:= StringDropA9myString, otherString=, 83, 5<E

Out[48]= 9abfghijklmnop, 1267890=

The  positional  form  for  replacement  is  called  StringReplacePart[],  and  it  works
using  similar  conventions  for  specifying  positions.  The  difference  is  that  you  must
always provide a contiguous range or a list of such ranges.
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In[49]:= StringReplacePartAmyString, "ZZZ", 83, 5<E

Out[49]= abZZZfghijklmnop

In[50]:= StringReplacePartAmyString, "ZZZ", 883, 5<, 810, 15<<E

Out[50]= abZZZfghiZZZp

Each range can also have its own replacement string.

In[51]:= StringReplacePartAmyString, 8"ZZZ", "WWW"<, 883, 5<, 810, 15<<E

Out[51]= abZZZfghiWWWp

Discussion
As you can see from the given examples, StringReplace  is  quite versatile.  However,
the  versatility  is  derived  from  Mathematica’s  rich  support  for  patterns  (see
“Introduction”  on  page  181).  Here  are  some  typical  text-processing  problems  that
yield to the application of StringReplace[] and pattern matching.

Stripping comments

String expression version:

In[52]:= StringReplaceA

"1 + 2 * 3.14 H*precise enough for our purpose*L ê 42 H*secret

of the universe*L", "H*" ~~ ShortestMatch@___D ~~ "*L" Ø ""E

Out[52]= 1 + 2 * 3.14 ê 42

Regular expression version:

In[53]:= StringReplaceA

"1 + 2 * 3.14 H*precise enough for our purpose*L ê 42 H*secret of

the universe*L", RegularExpression@"\\H\\*.*?\\*\\L"D Ø ""E

Out[53]= 1 + 2 * 3.14 ê 42

Changing delimiters

Delimited text (e.g., comma-delimited text) sounds simple at first, but many delim-
ited  formats  allow  a  way  to  handle  the  delimiters  as  regular  text  by  some  quoting
mechanism,  as  well  as  a  way  to  escape  quotes  themselves.  Furthermore,  you  must
handle  empty  fields.  If  you want  to  replace  a  comma-delimited  format  with,  say,  a
semicolon-delimited  format,  you  must  craft  expressions  that  deal  with  all  cases.
Here,  ""  is  used  to  escape  a  double  quote.  This  example  does  not  handle  empty
fields, but see Friedl’s Mastering Regular Expressions for guidance. 
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In[54]:= delimitedText = "Ten Thousand,10000,

2710 ,\"10,000\",\"It's \"\"10 Grand\"\",baby\",10k";

StringJoinARiffleAStringCasesAdelimitedText,

RegularExpression@"H@^\",D+»\"H?:@^\"D»\"\"L*\"L"D ß

StringReplaceA"$1", "\"\"" ß "\""EE, ";"EE

Out[55]= Ten Thousand;10000; 2710 ;"10,000";"It's "10 Grand",baby";10k

Removing XML markup

Simple  XML manipulations,  such as  discarding markup,  can be accomplished with
StringReplace[].

In[56]:= NotebookDirectory@D

Out[56]= êUsersêsmanganoêDocumentsêworkspaceêMathematica Cookbookêmathematicaê

In[57]:= xml = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "data", "ch02", "data1.xml"=E, "Text"E

Out[57]= <?xml version="1.0" encoding="UTF-8"?>

<!-- Some data to use as a test for Mathematica's XML import -->

<?test Just for didactic purposes?>

<data>

<item>

<name>Leonardo<êname>

<sex>male<êsex>

<age>8<êage>

<height>4.7<êheight>

<êitem>

<item>

<name>Salvatore<êname>

<sex>male<êsex>

<age>5<êage>

<height>4.1<êheight>

<êitem>

<item>

<name>Alexis<êname>

<sex>female<êsex>

<age>6<êage>

<height>4.4<êheight>

<êitem>

<êdata>

<!-- Comment at end -->
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In[58]:= StringReplace@xml,

8Shortest@"<" ~~ Except@">"D .. ~~ ">"D .. Ø "", Whitespace Ø " "<D
Out[58]= Leonardo male 8 4.7 Salvatore male 5 4.1 Alexis female 6 4.4

Replacing with expression evaluation

By capturing matched substrings in variables, you can perform expression evaluation
using ToExpression[] as you replace.

In[59]:= expr = "Is 1 + 1 in every possible universe? What about Pi ê 2?" ;

In[60]:= StringReplaceAexpr,

x : I9NumberString , "Pi"= ~~ Whitespace ... ~~ 8"*", "+", "-", "ê"< ~~

Whitespace ... ~~ 9NumberString , "Pi"=M ß

x <> " = " <> ToString@N@ToExpression@xDDDE

Out[60]= Is 1 + 1 = 2. in every possible universe? What about Pi ê 2 = 1.5708?

Here is another example using dates.

In[61]:= invoice =

"05ê17ê2008\nMathematica Programming: $1000.00\nInvoice is Net 30";

BlockA9datefmt = 9"Month", "ê", "Day", "ê", "Year"=, date=,

date = StringCases@invoice, DatePattern@datefmtDD;

StringReplaceAinvoice, "Net " ~~ n : NumberString ß "due " <> DateString@

DatePlus@DateList@date@@1DDD, ToExpression@nDD, datefmtDEE

Out[62]= 05ê17ê2008

Mathematica Programming: $1000.00

Invoice is due 06ê16ê2008

See Also
See  Recipe  2.4  for  use  of  StringPosition[],  which  returns  sequence  specification
that can be fed into StringReplacePart[] and StringDrop[].

See Recipes 2.8 and 2.9 for more sophisticated forms of XML processing. 

5.3 Extracting Characters and Substrings
Problem
You want to extract a substring by position or content from a string.
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Solution
Using patterns

StringCases[] provides the pattern-driven means of extracting substrings. There are
two  major  variations.  In  the  first,  you  simply  extract  what  the  patterns  literally
match.  The  second  variation  uses  rules  to  transform  the  matched  substrings  into
other strings and return those instead.

You  can  extract  specific  words  using  regular  expressions  (here  \\b  matches  word
boundaries).

In[63]:= StringCasesA"The pig thought he was a dog and then chased the cat.",

RegularExpression@"\\bHa»theL\\b"D, IgnoreCase Ø TrueE

Out[63]= 8The, a, the<

The same can be done using string expressions.

In[64]:= StringCasesA"The pig thought he was a dog and then chased the cat.",

WordBoundary ~~ 8"a", "the"< ~~ WordBoundary, IgnoreCase -> TrueE

Out[64]= 8The, a, the<

The most common reason for using rules instead of patterns is to match a substring
within a specific context but return the substring alone. Here we want to return sub-
strings bracketed by one or more occurrences of the letter a. This example also illus-
trates that regular expressions and string expressions can be mixed. 

In[65]:= StringCasesA"abacbcdbdaeaaazzza",

RegularExpression@"H?<=aL"D ~~

x : Repeated@Except@"a"DD ~~

RegularExpression@"H?=aL"D Ø xE

H*Return the characters surrounded by "a".*L

Out[65]= 8b, cbcdbd, e, zzz<

Using positions

Sometimes you know exactly where the characters are that you want to remove. In
that case, StringTake[] is a lot more efficient. StringTake[] takes the string and a sec-
ond argument, which can be an offset from the front, an offset from the end, specific
positions, or a range of positions.

Consider:

In[66]:= myString = "abcdefghijklmnop" ;
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Here you take the first three characters. 

In[67]:= StringTakeAmyString, 3E

Out[67]= abc

Alternatively, you take the last three characters, like so.

In[68]:= StringTakeAmyString, -3E

Out[68]= nop

Take only the third character, like this.

In[69]:= StringTakeAmyString, 83<E

Out[69]= c

And take the third through fifth ("cde") using a range list.

In[70]:= StringTakeAmyString, 83, 5<E

Out[70]= cde

The step size in the range can even be greater than one by specifying it as the third
element. Here you specify a step size of two to take every other character.  The -1  upper
limit is a convenient way to specify the end of the string without having to know its length.

In[71]:= StringTakeAmyString, 81, -1, 2<E

Out[71]= acegikmo

Conveniently, you can also act on several strings at once.

In[72]:= otherString = "1234567890";

In[73]:= StringTakeA9myString, otherString=, 83, 5<E

Out[73]= 8cde, 345<

If you have read Recipe 5.2, you see that StringTake has very similar parameter varia-
tions as  StringDrop[].  However,  StringTake  has  an additional  feature:  it  can take a
list of position specifications and produce a list of the resulting extracts. 

In[74]:= StringTakeAmyString, 881<, 83<, 88, 10<<E

Out[74]= 9a, c, hij=

This  is  useful  for  picking  multiple  segments  from a  string  in  one  step.  However,  if
you want a string rather than a list, simply wrap the expression in a StringJoin[].

In[75]:= StringJoinAStringTakeAmyString, 881<, 83<, 88, 10<<EE

Out[75]= achij
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Discussion
In the “Solution” section on page 193 we used RegularExpression["(?<=a)"]  (look-
behind)  and  RegularExpression["(?=a)"]  (look-ahead) because there is  no string-
expression  equivalent.  However,  there  is  an  option  for  StringCases[]  called  Over-
laps, which when set to True, causes the matcher to continue at the character that
follows  the  first  character  of  the  last  matched  substring.  In  the  following  example,
this allows a single a to act as both a start of pattern and end of pattern. 

In[76]:= StringCases@"abacbcdbdaeaaazzza",

"a" ~~ x : Repeated@Except@"a"DD ~~ "a" Ø x, Overlaps Ø TrueD
Out[76]= 8b, cbcdbd, e, zzz<

Without OverlapsØTrue, you would not get the "cbcbd" substring.

In[77]:= StringCases@"abacbcdbdaeaaazzza",

"a" ~~ x : Repeated@Except@"a"DD ~~ "a" Ø xD
Out[77]= 8b, e, zzz<

There is a third setting, OverlapsØAll, which causes the matcher to repeat searches
from the same position until no new matches are found. To see the effect of All, we
need to consider a different example, one in which the bracketing character is not ex-
cluded from the match. A parenthesized expression is a good example. 

In[78]:= StringCasesA"HHa-bL Hc + dL He ê Hf + gLLL",

Shortest@"H" ~~ __ ~~ "L"D , Overlaps Ø FalseE êê TableForm
Out[78]//TableForm=

HHa-bL

Hc + dL

He ê Hf + gL

In[79]:= StringCasesA"HHa-bL Hc + dL He ê Hf + gLLL",

Shortest@"H" ~~ __ ~~ "L"D , Overlaps Ø TrueE êê TableForm
Out[79]//TableForm=

HHa-bL

Ha-bL

Hc + dL

He ê Hf + gL

Hf + gL

In[80]:= StringCasesA"HHa-bL Hc + dL He ê Hf + gLLL",

Shortest@"H" ~~ __ ~~ "L"D , Overlaps Ø AllE êê TableForm
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Out[80]//TableForm=
HHa-bL

HHa-bL Hc + dL

HHa-bL Hc + dL He ê Hf + gL

HHa-bL Hc + dL He ê Hf + gLL

HHa-bL Hc + dL He ê Hf + gLLL

Ha-bL

Ha-bL Hc + dL

Ha-bL Hc + dL He ê Hf + gL

Ha-bL Hc + dL He ê Hf + gLL

Ha-bL Hc + dL He ê Hf + gLLL

Hc + dL

Hc + dL He ê Hf + gL

Hc + dL He ê Hf + gLL

Hc + dL He ê Hf + gLLL

He ê Hf + gL

He ê Hf + gLL

He ê Hf + gLLL

Hf + gL

Hf + gLL

Hf + gLLL

See Also
If you have a list of strings and want to extract those that match a pattern, you want
Select,  using StringMatchQ  with a string pattern as the test, rather than StringCases.  See
Recipe 4.1.

5.4 Duplicating a String 
Problem
You need to synthesize a string from a fixed number of copies of a seed string.

Solution
Use StringJoin[] on the output of Table[].

In[81]:= stringDup@seed_, n_: 2D := StringJoinüArray@seed &, nD

In[82]:= stringDup@"-", 10D êê InputForm
Out[82]//InputForm=

"----------"

In[83]:= stringDup@"wiki "D

Out[83]= wiki wiki
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Discussion
This is a simple recipe, and I include it because it’s something you expect to be bun-
dled as a native function, but it’s not. For most practical applications, the solution is
fine, but for very large n, a doubling approach will have better performance. Rather
than doing the math to get the exact string size, we simply truncate the closest sized
string obtained from pure doubling of the seed.

In[84]:= stringDup2@seed_, n_D :=

StringTakeANestAÒ <> Ò &, seed, CeilingALog@2, nDE E, nE

In[85]:= MeanATableATimingAstringDup@"-", 100000DE@@1DD, 810<EE

Out[85]= 0.0486878

In[86]:= MeanATableATimingAstringDup2@"-", 100000DE@@1DD, 810<EE

Out[86]= 0.0031014

This solution may not be obvious, so let’s break it down. It should be clear that map-
ping the function #<>#& to a list containing a string will double that string (recall that
<> is string concatenation).

In[87]:= Ò <> Ò & êü 8"-"<

Out[87]= 8--<

It follows that doing this twice will quadruple it.

In[88]:= Ò <> Ò & êü HÒ <> Ò & êü 8"-"<L

Out[88]= 8----<

Repeating this process m times will create a string of length 2^m. However, the input
is  the  desired length n,  not  the  number  of  doublings,  so  we know we need at  least
Ceiling[Log[2, n]] doublings; by using Nest with this number, we get exactly that.
However, this overshoots the desired length in most cases, because we rarely expect
n to be an exact power of 2. So we use Take to extract the correct length. The reason
this is fast for large n is that it reduces a O(n) operation in terms of Table to a O(log n)
operation using StringJoin.

You  can  bundle  these  versions  together  into  one  function  that  gives  good  perfor-
mance across all sizes.

In[89]:= ClearAstringDupE;

stringDupAseed_String, n_Integer ê; n >= 2^12E :=

StringTakeANestAÒ <> Ò &, seed, CeilingALog@2, nDE E, nE

stringDupAseed_String, n_Integer: 2E := StringJoinüArray@seed &, nD
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See Also
Nest is discussed in Recipe 2.11.

5.5 Matching and Searching Text
Problem
You want to determine if a string contains a pattern and at what positions.

Solution
Use StringMatchQ[string,pattern] to determine if a string matches a pattern. 

In[92]:= StringMatchQA"1234", NumberStringE

Out[92]= True

Here I show a match on multiple strings with a pattern that is predicated.

In[93]:= StringMatchQA8"1234", "1237"<, p : NumberString ê; OddQAFromDigits@pDEE

Out[93]= 8False, True<

Use StringFreeQ[string,pattern] to determine if a string does not match a pattern.  

In[94]:= StringFreeQA8"1234", "abcde"<, p : NumberStringE

Out[94]= 8False, True<

Use StringPosition[string,pattern]  to find the integer offsets  of  matches.  The de-
fault behavior is to search for all occurrences of the pattern (i.e., Overlaps Ø True).

In[95]:= StringPositionA"1234abcd54321", NumberStringE

Out[95]= 881, 4<, 82, 4<, 83, 4<, 84, 4<,

89, 13<, 810, 13<, 811, 13<, 812, 13<, 813, 13<<

With Overlaps Ø False, you only get matches on substrings that don’t share charac-
ters with prior matches.

In[96]:= StringPositionA"1234abcd54321", NumberString, Overlaps Ø FalseE

Out[96]= 881, 4<, 89, 13<<
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Discussion
StringMatchQ[]  and  StringFreeQ[]  very  often find application in restricting  inputs  to
functions.

In[97]:= classifyAword_String ê; StringMatchQAword, 9"I", "me", "we",

"you", "they", "him", "her", "it"=EE := pronoun@wordD

classifyAword_String ê; StringMatchQAword, 9"and", "or", "nor",

"after," "although," "as," "because," "before," "how," "if,"

"once," "since," "than," "that," "though," "till," "until,"

"when," "where," "whether,", "while"=EE := conjunction@wordD

classifyAword_String ê; StringMatchQAword, DatePatternA9"DayName"=EEE :=

dayofweek@wordD

classifyAword_String ê; StringMatchQ@word, DatePattern@8"MonthName"<DDE :=

month@wordD

H*...*L

classifyAword_StringE := other@wordD ;

You can also use them as input to other functions, like Pick[] in the following grep
implementation  adapted  from  an  example  in  Mathematica  documentation.  Recall
that  in  the  standard  Unix  grep,  option -v  instructs  grep  to  return  lines  that  don’t
match the pattern. Here Transpose and Range are used to number each line so the re-
sult contains a list of pairs {line, match text}. This grep function was implemented
in terms of StringFreeQ rather than StringMatchQ since the latter only succeeds if the
entire string matches.

In[102]:= grep@file_, patt_, "-v"D := grepImpl@file, patt, True D

grep@file_, patt_D := grepImpl@file, patt, FalseD

grepImpl@file_, patt_, value_D := WithA8data = Import@file, "Lines"D<,

PickATransposeA9RangeALength@dataDE, data=E,

StringFreeQAdata, RegularExpression@pattDE, valueEE

In[105]:= grepAFileNameJoinA9NotebookDirectory@D, "greptest.txt"=E, "bar"E êê

TableForm
Out[105]//TableForm=

1 bar

4 foo bar

5 foobar

6 barfo

In[106]:= grepAFileNameJoinA9NotebookDirectory@D, "greptest.txt"=E, "bar$"E

Out[106]= 881, bar<, 84, foo bar<, 85, foobar<<

In[107]:= grepAFileNameJoinA9NotebookDirectory@D, "greptest.txt"=E, "bar", "-v"E

Out[107]= 882, foo<, 83, baz<, 87, fo o<<
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Both  StringMatchQ[]  and  StringFreeQ[]  support  the  IgnoreCase  Ø  True  option.
StringMatchQ  also  supports  option  SpellingCorrection  Ø  True,  which  allows  the
match to succeed even if a small number of characters are wrong. However, in many
cases a small number can mean only 1, as the following example demonstrates, so I
would not rely too heavily on this “feature.”

In[108]:= StringMatchQA"mississippi", "missisippi", SpellingCorrection Ø TrueE

Out[108]= True

In[109]:= StringMatchQA"mississippi", "misisipi", SpellingCorrection Ø TrueE

Out[109]= False

The output of StringPosition[] can be used as the input to StringTake. 

In[110]:= WithA8str = "1234abcd54321"<,

StringTakeAstr, StringPositionAstr, NumberStringEEE

Out[110]= 81234, 234, 34, 4, 54321, 4321, 321, 21, 1<

If you want to use it with StringDrop[], you need to map StringDrop[] over the list
returned by StringPosition[].  This will give you a list with each matching segment
dropped. More than likely, you will want to set Overlaps Ø False  in this case. Try
Overlaps Ø True with the expression given below to see why it is undesirable.

In[111]:= WithA8str = "1234abcd54321"<, StringDrop@str, ÒD & êü

StringPositionAstr, NumberString, Overlaps Ø FalseEE

Out[111]= 8abcd54321, 1234abcd<

See Also
See Recipes 5.3 and 5.2 for usage of StringTake[] and StringDrop[]. 
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5.6 Tokenizing Text
Problem
You want to break a string into tokens based on a character or pattern.

Solution
StringSplit[] provides a variety of options for tokenizing text. The default is simply
to tokenize on whitespace.

In[112]:= StringSplitA"The quick brown fox\njumped over the lazy programmer"E

Out[112]= 9The, quick, brown, fox, jumped, over, the, lazy, programmer=

Other delimiters can be specified as literals or more general patterns. Here you spec-
ify comma delimiters with zero or more whitespace characters.

In[113]:= StringSplit@"2008ê01ê20, test1, 100.3, 77.8,33.77",

"," ~~ WhitespaceCharacter ...D
Out[113]= 82008ê01ê20, test1, 100.3, 77.8, 33.77<

If there are several delimiters, give each pattern in a list. Here you decide to parse the
date along with the comma-delimited text.

In[114]:= StringSplit@"2008ê01ê20, test1, 100.3, 77.8,33.77",

8"," ~~ WhitespaceCharacter ..., "ê"<D
Out[114]= 82008, 01, 20, test1, 100.3, 77.8, 33.77<

Discussion
StringSplit supports rules as well as patterns, which leads to some interesting ap-
plications, such as a means of highlighting output. Here is an example that stylizes XML
by rendering directives,  comments,  and tags  in specific  font  styles  and colors.  (The
colors will  not be visible in a monochrome print, but you can try the code on your
own to see the effect.)
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In[115]:= StringSplitAImportA

FileNameJoinA9NotebookDirectory@D, "..", "data", "ch02", "data1.xml"=E,

"text"E, 9x : H"<!--" ~~ Except@">"D .. ~~ ">"L ß

Style@x, FontSlant Ø Italic, FontColor Ø BrownD,

x : H"<?" ~~ Except@">"D .. ~~ ">"L ß Style@x, FontColor Ø RedD,

x : H"<" ~~ Except@">"D .. ~~ ">"L ß

StyleAx, FontWeight Ø Bold, FontColor Ø BlueE=E êê Row

Out[115]= <?xml version="1.0" encoding="UTF-8"?>

<!-- Some data to use as a test for Mathematica's XML import -->

<?test Just for didactic purposes?>

<data>

<item>

<name>Leonardo<êname>

<sex>male<êsex>

<age>8<êage>

<height>4.7<êheight>

<êitem>

<item>

<name>Salvatore<êname>

<sex>male<êsex>

<age>5<êage>

<height>4.1<êheight>

<êitem>

<item>

<name>Alexis<êname>

<sex>female<êsex>

<age>6<êage>

<height>4.4<êheight>

<êitem>

<êdata>

<!-- Comment at end -->

5.7 Working with Natural Language Dictionaries
Problem
You want to do some simple linguistic processing driven by a reliable lexicon. 

Solution
As of version 6, Mathematica comes bundled with many useful data sources. One of
these sources is an integrated English language dictionary (dictionaries for other lan-
guages can be installed). 
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Look up words that begin with th and end with y.

In[116]:= DictionaryLookupA"th" ~~ ___ ~~ "y"E

Out[116]= 9thankfully, thanklessly, theatricality, theatrically,

thematically, theocracy, theologically, theology, theoretically,

theory, theosophy, therapeutically, therapy, thereby, thermally,

thermodynamically, thermostatically, they, thickly, thievery,

thingummy, thingy, thinly, thirdly, thirstily, thirsty, thirty, thorny,

thoroughly, thoughtfully, thoughtlessly, thready, threateningly,

threepenny, threnody, thriftily, thrifty, thrillingly, throatily,

throaty, throwaway, thruway, thuggery, thunderously, thundery, thy=

Look up words that end in ee.

In[117]:= DictionaryLookup@___ ~~ "ee"D

Out[117]= 9absentee, addressee, agree, Aimee, Albee, amputee, apogee, appointee,

Ashlee, attendee, Attlee, axletree, banshee, bee, bootee, bumblebee,

bungee, carefree, Chattahoochee, Cherokee, chickadee, chimpanzee,

coffee, committee, conferee, consignee, coulee, Cree, debauchee, decree,

Dee, degree, deportee, Desiree, detainee, devotee, disagree, divorcee,

draftee, Dundee, dungaree, Elysee, emcee, employee, enlistee, entree,

epee, escapee, evacuee, fat-free, fee, fiancee, filigree, flee, foresee,

franchisee, free, fricassee, Frisbee, fusee, Galilee, garnishee, gee, ghee,

glee, goatee, grandee, grantee, guarantee, gumtree, honeybee, honoree,

Humvee, inductee, internee, interviewee, invitee, jamboree, Jaycee,

jubilee, kedgeree, Klee, knee, lee, Lee, legatee, Legree, lessee, levee,

licensee, manatee, marquee, matinee, McGee, McKee, melee, Menominee,

Milwaukee, mortgagee, Murrumbidgee, Muskogee, nee, negligee, nominee,

Okeechobee, Okefenokee, oversee, parolee, Pawnee, payee, pedigree, pee,

peewee, Pelee, perigee, pewee, pharisee, Pharisee, pongee, prithee,

protegee, puree, puttee, quadtree, ranee, referee, refugee, Renee,

repartee, retiree, returnee, Rhee, rupee, Sadducee, scree, see, settee,

Shawnee, Sheree, shoetree, singletree, sirree, Slurpee, soiree, spree,

squeegee, standee, subcommittee, subtree, suttee, Suwanee, Swanee,

Tallahassee, tee, Tennessee, tepee, thee, three, toffee, toll-free, topee,

toupee, towhee, townee, Toynbee, trainee, transferee, tree, trochee,

Truckee, trustee, Tuskegee, twee, Tweedledee, Tyree, wannabee, wee, whee,

whiffletree, whippletree, whoopee, Yahtzee, Yankee, yippee, Zebedee=
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Discussion
There are a lot of neat applications for an integrated dictionary. 

Crossword puzzles

Here is  how you might cheat at a crossword puzzle.  Say you have three letters of a
six-letter word and the clue is “51 down: unkeyed.”

In[118]:= DictionaryLookup@"a" ~~ _ ~~ "o" ~~ _ ~~ _ ~~ "l"D

Out[118]= 8amoral, atonal, avowal<

Ah, atonal sounds right (pun intended)!

Anagrams

You can also help your second grader impress the teacher on that November work-
sheet  for  finding  all  the  words  you  can  make  out  of  the  letters  in  “Thanksgiving”
(i.e.,  anagrams). Here we use a pattern containing all  combinations of the letters in
“thanksgiving”  and  an  extra  constraint  function  to  ensure  letters  are  contained  by
their availability (count). Strictly speaking, an anagram must use all the letters of the
input, but I ignore that here.

In[119]:= thanksgivingQ@word_D := StringCount@word, "t"D < 2 &&

StringCount@word, "h"D < 2 && StringCount@word, "a"D < 2 &&

StringCount@word, "n"D < 3 && StringCount@word, "k"D < 2 &&

StringCount@word, "s"D < 2 && StringCountAword, "g"E < 3 &&

StringCount@word, "i"D < 3 && StringCount@word, "v"D < 2 ;

In[120]:= DictionaryLookupA

word : I"t" "h" "a" "n" "k" "s" "g" "i" "v" M .. ê;

thanksgivingQ@wordD, IgnoreCase Ø True E
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Out[120]= 9a, aging, agings, Agni, ah, Aisha, akin, Akita, an, Ana, angst, Anita, ankh,

ankhs, Ann, Anna, ans, Anshan, ant, anti, anting, antis, ants, as, ash,

Ashanti, ashing, Asia, Asian, ask, asking, at, Atkins, Ava, Avis, gag,

gags, gain, gaining, gains, gait, gaits, gang, gangs, gas, gash, gashing,

gating, Gavin, ghat, ghats, Ghats, GI, giant, giants, gig, gigs, gin,

Gina, gins, Gish, gist, git, gits, giving, givings, gnash, gnashing,

gnat, gnats, gs, ha, hag, haggis, hags, Hahn, Haiti, Han, hang, hanging,

hangings, hangs, hank, Hank, hanks, Hans, has, hast, hasting, hat, hating,

hats, having, hi, Higgins, hiking, hinging, hint, hinting, hints, his,

histing, hit, hits, HIV, hiving, I, Ian, in, Ina, ink, inking, inks, inn,

innit, inns, ins, insight, inti, is, Isa, Isiah, it, IT, its, Iva, Ivan,

Kan, Kans, Kant, khan, Khan, khans, kin, king, King, kings, Kings, kins,

kit, Kit, kith, kithing, kiths, kiting, kits, knavish, knight, Knight,

knighting, knights, knish, knit, knits, ks, nag, nags, nah, nan, Nan,

nans, NASA, Nash, Nat, nigh, night, nights, Nikita, Nina, ninth, ninths,

Nisan, nit, Nita, nits, nth, sag, saint, saith, Saki, Saks, San, sang,

Sang, saning, sank, Sask, sat, SAT, satin, sating, satining, saving, sh,

shag, shaking, shank, shat, shaving, shin, shining, shiv, Shiva, sigh,

sighing, sight, sighting, sign, signing, Sikh, Sikhs, sin, Sinai, sing,

singing, sink, Sinkiang, sinking, sit, siting, Siva, Sivan, ska, skating,

ski, skiing, skin, skint, skit, skiting, skiving, snag, snaking, snit,

stag, staging, stain, staining, staking, Stan, stank, staving, sting,

stinging, stink, stinking, ta, tag, tags, Tahiti, taking, takings, tan,

tang, tangs, tank, tanking, tanks, tans, task, tasking, Thai, Thais,

than, thank, thanking, thanks, thanksgiving, Thanksgiving, Thant, thin,

thing, things, think, thinking, thinks, thins, this, ti, Tia, tin, Tina,

ting, Ting, tinging, tings, tining, tins, Tisha, Titan, Titans, Titian,

TNT, ts, TV, TVs, vain, van, Van, Vang, vanish, vanishing, vans, vast,

vat, VAT, vats, VHS, via, viking, Viking, vikings, Vikings, vining,

visa, Visa, visaing, vising, visit, vista, vistaing, vita, Vivian, vs=

Using  Tally[]  to  count  letter  occurrences  and  doing  a  bit  of  set  manipulation,  we
can generalize this for any word. The condition checking for the empty complement
at the end is not strictly needed here because we will never match a word in the dic-
tionary that has a letter that is not in the input word. However, it is needed to make
the logic if isWordSubsetQ[] is correct as a general predicate.
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In[121]:= isWordSubsetQ@word1_, word2_D :=

BlockA9tally1 = Tally@Characters@word1DD,

tally2 = Tally@Characters@word2DD=,

And üü MapThreadAHÒ1@@2DD ¥ Ò2@@2DDL &, 9IntersectionAtally1,

tally2, SameTest Ø HÒ1@@1DD === Ò2@@1DD &LE, IntersectionA

tally2, tally1, SameTest Ø HÒ1@@1DD === Ò2@@1DD &LE=E &&

Complement@Characters@word2D, Characters@word1DD === 8<E

In[122]:= isWordSubsetQA"thanksgiving", "visa"E

Out[122]= True

In[123]:= isWordSubsetQA"thanksgiving", "pork"E

Out[123]= False

In[124]:= anagrams@word_D := DictionaryLookupA

w : Characters@wordD .. ê; isWordSubsetQ@word, wD, IgnoreCase Ø TrueE

You can test the generality against other words.

In[125]:= anagrams@"winter"D

Out[125]= 8en, er, in, inert, inter, ire, it, net, new, newt, nit, niter, re, rein, rent,

rite, ten, tern, ti, tie, tier, tin, tine, tire, twin, twine, twiner, we,

weir, wen, went, wet, win, wine, winter, wire, wit, wren, writ, write<

In[126]:= anagramsA"dog"E

Out[126]= 9do, dog, go, god=

Palindromes

Here is a neat little palindrome finder (courtesy of the Mathematica documentation).

In[127]:= DictionaryLookupAx__ ê; x === StringReverse@xDE

Out[127]= 9a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified,

did, dud, DVD, eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak,

kook, level, ma'am, madam, mam, MGM, minim, mom, mum, nan, non, noon,

nun, oho, pap, peep, pep, pip, poop, pop, pup, radar, redder, refer,

repaper, reviver, rotor, sagas, sees, seres, sexes, shahs, sis,

solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW=

Spell-checker

By using all  the  words in  the dictionary with Nearest[],  you can create  a  rudimen-
tary  spell-checker.  For  our  first  attempt,  we’ll  use  Nearest’s  default  distance  func-
tion. We’ll return a list for which the first element is True or False depending on the
word’s  inclusion in the dictionary and the second element is  a  list  of  potential  cor-
rect spellings. 
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In[128]:= nf1 = NearestADictionaryLookup@DE;

SpellCheck1@word_D := Module@8corrections = nf1@word, 15D<,

If@ MemberQ@ corrections, wordD, 8True, word<, 8False, corrections<DD

In[130]:= SpellCheck1@"pickel"D

Out[130]= 9False, 9nickel, picked, picker, picket, bicker, dicker, dickey,

hickey, kicked, kicker, licked, Michel, mickey, Mickey, nicked==

We  see  that  the  default  distance  function  used  for  strings  (EditDistance)  does  not
make  the  greatest  spell-checker:  the  obvious  suggestion  of  pickle  is  not  among  the
first  15  nearest  words.  You  can  experiment  with  other  distance  functions.  Here  is
one that penalizes more heavily for mistakes in consonants than for mistakes in vowels. 

In[131]:= SpellDistance@a_, b_D := ModuleA

8vowelpat = H"a" "e" "i" "o" "u"L Ø ""<, EditDistance@a, bD +

EditDistanceAStringReplace@a, vowelpatD, StringReplace@b, vowelpatDEE

nf2 = NearestADictionaryLookup@D, DistanceFunction Ø SpellDistanceE;

SpellCheck2@word_D := Module@8corrections = nf2@word, 10D<,

If@ MemberQ@ corrections, wordD, 8True, word<, 8False, corrections<DD

In[134]:= SpellCheck2@"pickel"D

Out[134]= 8False, 8nickel, picked, picker,

picket, pickle, packed, packer, packet, pecked, pick<<

Here we test on some commonly misspelled words (according to the Oxford Dictio-
naries website: http://bit.ly/KuIQ2) .

In[135]:= SpellCheck2@"accomodate"D

Out[135]= 8False, 8accommodate, accommodated, accommodates, accumulate, accelerate,

accentuate, acclimate, accolade, accommodation, accordant<<

In[136]:= SpellCheck2@"alcahol"D

Out[136]= 9False, 9alcohol, alcohols, alcoholic,

achoo, ahchoo, algal, anchor, carol, lethal, local==

In[137]:= SpellCheck2@"mispell"D

Out[137]= 9False, 9misspell, Aspell, Ispell, miscall,

respell, spell, dispel, dispels, misdeal, misplay==

This returns useful results, but performance (speed) is poor. 

In[138]:= SpellCheck2@"pickel"D êê Timing

Out[138]= 82.22533, 8False, 8nickel, picked, picker,

picket, pickle, packed, packer, packet, pecked, pick<<<

We  can  improve  the  speed  using  a  divide-and-conquer  approach:  pick  a  large  but
manageable  number  (e.g.,  100)  of  nearest  words  according to  simple  EditDistance,
and then do a second pass on the smaller set with the EditDistance sans vowels. We
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We  can  improve  the  speed  using  a  divide-and-conquer  approach:  pick  a  large  but
manageable  number  (e.g.,  100)  of  nearest  words  according to  simple  EditDistance,
and then do a second pass on the smaller set with the EditDistance sans vowels. We
define a distance function called ConsonantDistance[] for the second pass.

In[139]:= ConsonantDistance@a_, b_D :=

ModuleA8vowelpat = H"a" "e" "i" "o" "u"L Ø ""<,

EditDistanceAStringReplace@a, vowelpatD, StringReplace@b, vowelpatDEE

In[140]:= SpellCheck3@word_D :=

Module@8corrections, corrections2, nf<, corrections = nf1@word, 100D;

nf = Nearest@corrections, DistanceFunction Ø ConsonantDistanceD;

corrections2 = nf@word, 10D;

If@ MemberQ@ corrections2, wordD, 8True, word<, 8False, corrections2<DD

In[141]:= SpellCheck3@"pickel"D êê Timing

Out[141]= 80.055973, 8False, 8pickle, nickel, picked,

picker, picket, packed, packer, packet, pecked, pick<<<

Good results and about 43 times faster! 

Mathematica  also  provides  WordData[],  which returns  information about  properties
of words, such as parts of speech and definitions. 

In[142]:= WordData@"run"D

Out[142]= 98run, Noun, Score<, 8run, Noun, Travel<, 9run, Noun, RegularTrip=,

8run, Noun, ShortTrip<, 9run, Noun, FootballPlay=, 8run, Noun, Endeavor<,

8run, Noun, Successiveness<, 8run, Noun, Flow<, 9run, Noun, Damage=,

8run, Noun, Footrace<, 9run, Noun, Campaign=, 8run, Noun, Streak<,

8run, Noun, Stream<, 9run, Noun, IndefiniteQuantity=,

9run, Noun, Liberty=, 8run, Noun, TimePeriod<, 9run, Verb, Disintegrate=,

8run, Verb, SplitUp<, 8run, Verb, Dissolve<, 8run, Verb, Treat<,

9run, Verb, Change=, 8run, Verb, Get<, 8run, Verb, Vie<, 8run, Verb, Race<,

8run, Verb, Catch<, 8run, Verb, Draw<, 8run, Verb, Operate<,

8run, Verb, Function<, 9run, Verb, CarryThrough=, 9run, Verb, Play=,

8run, Verb, Circularize<, 8run, Verb, Trip<, 9run, Verb, GoThrough=,

9run, Verb, Hurry=, 9run, Verb, TravelRapidly=, 8run, Verb, Sport<,

9run, Verb, Accompany=, 8run, Verb, Sail<, 8run, Verb, SpreadOut<,

8run, Verb, Flow<, 9run, Verb, GoAway=, 8run, Verb, Displace<,

9run, Verb, MoveFreely=, 8run, Verb, Trade<, 8run, Verb, Loose<,

8run, Verb, Direct<, 8run, Verb, Succeed<, 8run, Verb, Implement<,

8run, Verb, Occur<, 8run, Verb, Continue<, 8run, Verb, Endure<,

8run, Verb, Extend<, 8run, Verb, MakePass<, 8run, Verb, Lean<,

8run, Verb, Incur<, 8run, Verb, Go<, 9run, Verb, Range==

See Also
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See Also
Readers  interested  in  spell-checkers  should  check  out  this  approach  (written  in
Python) by Peter Norvig of Google: http://bit.ly/19gyjN. 

5.8 Importing XML 
Problem
You want to import and manipulate XML data in Mathematica.

Solution
Use  Import[]  with  format  "XMLObject"  to  import  XML  and  convert  it  to  a  special
Mathematica  expression  form.  Consider  the  following  XML  in  file  data1.xml
(available for download at the book’s website).

<?xml version="1.0" encoding="UTF-8"?>

<!-- Some data to use as a test for Mathematica's XML import -->

<?test Just for didactic purposes?>

<data>

<item>

<name>Leonardo</name>

<sex>male</sex>

<age>8</age>

<height>4.7</height>

</item>

<item>

<name>Salvatore</name>

<sex>male</sex>

<age>5</age>

<height>4.1</height>

</item>

<item>

<name>Alexis</name>

<sex>female</sex>

<age>6</age>

<height>4.4</height>

</item>

</data>
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In[143]:= data = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "data", "ch02", "data1.xml"=E, "XMLObject"E

Out[143]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<, 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex, 8<, 8male<D,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElement@sex, 8<, 8male<D, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElement@sex, 8<, 8female<D,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=E,

9XMLObject@CommentD@ Comment at end D=E

Discussion
Mathematica  imports  XML  into  expression  form.  You  can  manipulate  the  ex-
pression  just  like  you  would  any  other  Mathematica  expression,  but  first  you
need to  understand the structure,  which is  a  bit  unconventional.  Mathematica
uses  two  types  of  heads  to  encode  XML.  XMLObject["type"]  is  used  to  repre-
sent  everything  that  is  not  an  element,  including  the  entire  document  (type  =
"Document"),  comments  (type  =  "Comment"),  CDATA  sections  (type  =
"CDATASection"), processing instructions (type = "ProcessingInstruction"), decla-
rations  (type  =  "Declaration"),  and  document  types  (type  =  "Doctype").  In  the
XML  above,  you  see  examples  for  document,  declaration,  comment,  and  process-
ing instruction. XMLElement[tag,{attr1Øval1,...},{data1,...}] is used to represent
element data for both simple (text values) and complex element types (those with
child elements). Don’t get tripped up by the XMLObject notation. The entire syntax
XMLObject["type"]  is  the head of  the expression,  while  the remainder is  a  sequence
of one or more arguments that depends on the type.

In[144]:= Head@dataD êê InputForm

Out[144]//InputForm=

XMLObject["Document"]

The document version consists of three arguments: a list containing the declaration
and possibly other objects, the document content, and a list of any objects (such as
comments) that might appear past the last XML element. A very crude way to access
structure is through Part[] or, equivalently, [[n]].

210 | Chapter 5: String and Text Processing



In[145]:= data@@1DD

Out[145]= 9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=

In[146]:= data@@2DD

Out[146]= XMLElementAdata, 8<, 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex, 8<, 8male<D,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElement@sex, 8<, 8male<D, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElement@sex, 8<, 8female<D,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=E

In[147]:= data@@3DD

Out[147]= 9XMLObject@CommentD@ Comment at end D=

In[148]:= data@@2DD@@1DD H*The tag of the root element*L

Out[148]= data

In[149]:= data@@2DD@@3DD@@1DD H*The first child*L

Out[149]= XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex, 8<, 8male<D,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E

Pattern matching is  much more elegant  and more resilient  to changes in document
structure. Here we extract male elements using Cases  with a pattern and an infinite
level specification. This is roughly equivalent to using XPath in native XML processing.

In[150]:= CasesAdata, XMLElement@_, _, 8_, XMLElement@"sex", _, 8"male"<D, ___<D,

InfinityE êê TableForm
Out[150]//TableForm=

XMLElement@item, 8<, 8XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex,

8<, 8male<D, XMLElement@age, 8<, 88<D, XMLElement@height, 8<, 84.7<D<D

XMLElement@item, 8<, 8XMLElement@name, 8<, 8Salvatore<D, XMLElement@sex,

8<, 8male<D, XMLElement@age, 8<, 85<D, XMLElement@height, 8<, 84.1<D<D
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Sometimes, the XMLObject  and XMLElement  notation can be a bit  too heavy, and it  is
easier to work with simple nested lists. This can be done with Apply plus List, speci-
fying all levels.

In[151]:= list = ApplyAList, data, 90, Infinity=E

Out[151]= 9998Version, 1.0<, 9Encoding, UTF-8==,

8 Some data to use as a test for Mathematica's XML import <,

8test, Just for didactic purposes<=, 9data, 8<,

99item, 8<, 98name, 8<, 8Leonardo<<, 8sex, 8<, 8male<<, 9age, 8<, 88<=,

9height, 8<, 84.7<===, 9item, 8<, 98name, 8<, 8Salvatore<<,

8sex, 8<, 8male<<, 9age, 8<, 85<=, 9height, 8<, 84.1<===,

9item, 8<, 98name, 8<, 8Alexis<<, 8sex, 8<, 8female<<,

9age, 8<, 86<=, 9height, 8<, 84.4<=====, 88 Comment at end <<=

This can shorten the patterns needed to extract content.

In[152]:= CasesAlist, 8___, 8"sex", _, 8"male"<<, ___<, InfinityE

Out[152]= 998name, 8<, 8Leonardo<<, 8sex, 8<, 8male<<,

9age, 8<, 88<=, 9height, 8<, 84.7<==, 98name, 8<, 8Salvatore<<,

8sex, 8<, 8male<<, 9age, 8<, 85<=, 9height, 8<, 84.1<===

Another  useful  transformation  is  to  change  all  heads  to  the  symbolic  form  of
the  element  tag.  Here  we  use  //. (ReplaceAll)  with  rules  that  strip  XMLObject  and
convert XMLElement expressions. I show the output in tree form to make it clear what
this transformation does. 

In[153]:= data êê. 9XMLObject@"Document"D@_, content_, _D ß content,

XMLElement@"data", attrs_, content_D ß XMLElement@"items",

attrs, contentD, XMLElementAtag_String, _, 8content___<E ß

SymbolAtagE üü 8content<= êê TreeFormAÒ, ImageSize Ø 600E &
Out[153]//TreeForm=

items

item

name

Leonardo

sex

male

age

8

height

4.7

item

name

Salvatore

sex

male

age

5

height

4.1

item

name

Alexis

sex

female

age

6

height

4.4
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When converting strings to symbols, you need to be cognizant of whether a
symbol already exists and has a value. This bit me when I was preparing this
recipe, because I failed to recognize that the top-level element tag name was
“data,”  which,  of  course,  turned  out  to  be  the  name  of  the  variable
that I was transforming. Infinite recursion! The solution was to include
the  transformation  from  XMLElement["data",  attrs_,  content_]  to
XMLElement["items", attrs, content] as the first transformation.

See Also
Recipes 5.9 and 5.10 show you how to transform imported XML into other structures.

5.9 Transforming XML Using Patterns and Rules
Problem
You want to transform imported XML into something more suitable to mathemati-
cal manipulation.

Solution
The  format  of  imported  XML  is  a  bit  heavy.  You  use  pattern  matching  and
ReplaceAll  to  transform  it  into  something  more  digestible.  Here  we  take  our
row-oriented XML data into a simple matrix.

In[154]:= data = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "data", "ch02", "data1.xml"=E, "XMLObject"E;

In[155]:= CasesAdata , XMLElement@"item", _, _D, InfinityE ê.

XMLElement@_, _ , 8val_<D ß val ê.

XMLElement@"item", _, list_D ß list ê. 9n_, s_, age_, ht_= Ø

9n, s, ToExpressionAageE, ToExpression@htD= êê MatrixForm
Out[155]//MatrixForm=

Leonardo male 8 4.7

Salvatore male 5 4.1

Alexis female 6 4.4

This technique has two basic steps. First, you use Cases to extract the relevant elements. Sec-
ond, you use a series of one or more transformations to massage the data into the form you
want.  In  the  first  transformation,  elements  are  taken  to  primitive  values.  Here  you
rely on the column position to determine when strings need conversion into numbers via
ToExpression[].  The second  transformation  strips  out  the  remaining  XMLElement  con-
tent. Until you have some experience with these types of transformations it is unlikely that
you’ll whip them up off the top of your head. The final form of this transformation
reflects the fact that I developed it in stages. Here are the successive refinements.
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Choose the relevant elements.

In[156]:= CasesAdata , XMLElement@"item", _, _D, InfinityE

Out[156]= 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex, 8<, 8male<D,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElement@sex, 8<, 8male<D, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElement@sex, 8<, 8female<D,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=

Strip out the data-level XML structure.

In[157]:= CasesAdata , XMLElement@"item", _, _D, InfinityE ê.

XMLElement@_, _ , 8val_<D ß val
Out[157]= 8XMLElement@item, 8<, 8Leonardo, male, 8, 4.7<D,

XMLElement@item, 8<, 8Salvatore, male, 5, 4.1<D,

XMLElement@item, 8<, 8Alexis, female, 6, 4.4<D<

Strip  out  the  row-level  XML  structure,  leaving  the  data  in  matrix  form  but  all  the
primitive values as strings.

In[158]:= CasesAdata , XMLElement@"item", _, _D, InfinityE ê.

XMLElement@_, _ , 8val_<D ß val ê. XMLElement@"item", _, list_D ß list
Out[158]= 88Leonardo, male, 8, 4.7<, 8Salvatore, male, 5, 4.1<, 8Alexis, female, 6, 4.4<<

Finally, do the type conversion.

In[159]:= CasesAdata , XMLElement@"item", _, _D, InfinityE ê.

XMLElement@_, _ , 8val_<D ß val ê.

XMLElement@"item", _, list_D ß list ê.

9n_, s_, age_, ht_= Ø 9n, s, ToExpressionAageE, ToExpression@htD=

Out[159]= 88Leonardo, male, 8, 4.7<, 8Salvatore, male, 5, 4.1<, 8Alexis, female, 6, 4.4<<

Discussion
There are always many ways to solve the same transformation problem. The trade-
offs involve brevity, clarity, generality, and performance. The solution has clarity, be-
cause it accomplishes the transformation in a step-by-step fashion. However, it is nei-
ther brief nor very general. The following transformation does the same thing but is
more  general.  It  will  work  on  any  two-level  XML  document  because  it  does  not
match  on  specific  element  names  (like  "item").  It  also  does  not  hardcode  which
columns contain numeric data. However, it is a bit more cryptic because it does not
mention XMLElement at all. Rather, it immediately converts the data to a  list  (using
Apply with head List), and it uses [[n]] to pick out the relevant items.
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In[160]:= toMatrix@xml_D :=

ApplyAList, xml@@2DD, 90, Infinity=E@@3DD ê. 8_, 8<, row_< ß row ê.

8_, 8<, 8val_<< ß

IfAStringMatchQAval, NumberStringE, ToExpression@valD, valE

toMatrix@dataD êê MatrixForm
Out[161]//MatrixForm=

Leonardo male 8 4.7

Salvatore male 5 4.1

Alexis female 6 4.4

I  demonstrate  the  generality  by  processing  an  XML file  with  a  different  number  of
rows, columns, and data types. 

In[162]:= toMatrixAImportA

FileNameJoinA9NotebookDirectory@D, "..", "data", "ch02", "data2.xml"=E,

"XMLObject"EE êê MatrixForm
Out[162]//MatrixForm=

1. 88.33 8 1000 4.7

2. 99.66 5 1001 4.1

3. 89.7 6 1002 4.4

1.5 99.7 6 1008 4.45

XML-to-XML transformations

You may find that you need to transform XML for reasons other than using the data
in  Mathematica.  Unless  you  already  know  a  language  specifically  designed  for  this
purpose (like XSLT), Mathematica is a good choice. Mathematica’s pattern-matching
capabilities  are  well  suited  to  many  types  of  XML  transformations.  Consider  the
problem of converting elements to attributes. 

In[163]:= dataUsingAttr =

data ê. XMLElement@"item", 8<, childElements_D :> XMLElementA"item",

childElements ê. XMLElementAtag_, _, 8val_<E :> RuleAtag, valE, 8<E

Out[163]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<,

9XMLElementAitem, 9name Ø Leonardo, sex Ø male, age Ø 8, height Ø 4.7=, 8<E,

XMLElementAitem, 9name Ø Salvatore, sex Ø male, age Ø 5, height Ø 4.1=,

8<E, XMLElementAitem,

9name Ø Alexis, sex Ø female, age Ø 6, height Ø 4.4=, 8<E=E,

9XMLObject@CommentD@ Comment at end D=E

It is a bit easier to see how this worked by converting back to XML text. The strip-
ping of carriage returns (\r) is only for formatting purposes.
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It is a bit easier to see how this worked by converting back to XML text. The strip-
ping of carriage returns (\r) is only for formatting purposes.

In[164]:= StringReplaceAExportStringAdataUsingAttr, "XML"E, "\r" Ø ""E

Out[164]= <?xml version='1.0' encoding='UTF-8'?>

<!-- Some data to uses as a test for Mathematica's XML import -->

<?test Just for didactic purposes?>

<data>

<item name='Leonardo'

sex='male'

age='8'

height='4.7' ê>

<item name='Salvatore'

sex='male'

age='5'

height='4.1' ê>

<item name='Alexis'

sex='female'

age='6'

height='4.4' ê>

<êdata>

<!-- Comment at end -->

A transformation from attributes to elements follows similar lines. The use of Join[]
here  is  not  strictly  necessary,  but  it  shows  you  how  to  handle  cases  in  which  you
don’t want to lose preexisting child elements at the point where you are injecting at-
tribute content.

In[165]:= dataUsingElems =

dataUsingAttr ê. XMLElement@"item", attrs_, childElements_D ß

XMLElementA"item", 8<, JoinAchildElements,

attrs ê. RuleAtag_, val_E ß XMLElementAtag, 8<, 8val<EEE
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Out[165]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<, 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex, 8<, 8male<D,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElement@sex, 8<, 8male<D, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElement@sex, 8<, 8female<D,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=E,

9XMLObject@CommentD@ Comment at end D=E

In[166]:= StringReplaceAExportStringAdataUsingElems, "XML"E, "\r" Ø ""E

Out[166]= <?xml version='1.0' encoding='UTF-8'?>

<!-- Some data to use as a test for Mathematica's XML import -->

<?test Just for didactic purposes?>

<data>

<item>

<name>Leonardo<êname>

<sex>male<êsex>

<age>8<êage>

<height>4.7<êheight>

<êitem>

<item>

<name>Salvatore<êname>

<sex>male<êsex>

<age>5<êage>

<height>4.1<êheight>

<êitem>

<item>

<name>Alexis<êname>

<sex>female<êsex>

<age>6<êage>

<height>4.4<êheight>

<êitem>

<êdata>

<!-- Comment at end -->

5.9 Transforming XML Using Patterns and Rules | 217



See Also
See the tutorial XML/tutorial/TransformingXML in the Mathematica documentation
(also at http://bit.ly/4tS1Ce).

Recipe 5.10 shows alternate techniques for XML transformation.

5.10 Transforming XML Using Recursive 
Functions (à la XSLT)
Problem
The pure pattern-based approach of Recipe 5.9 is too awkward, cryptic, or complex
for your particular transformation problem.

Solution
Consider using an approach inspired by Extensible Stylesheet Language Transforms
(XSLT).  XSLT  is  a  language  that  is  specifically  designed  to  transform  XML.  There
are some rough similarities between XSLT and a style of Mathematica programming
that  exploits  functions,  patterns,  and  recursion.  Here  is  how you  use  Mathematica
to process XML in ways similar to XSLT. Consider the Recipe 5.9 transformation of
elements to attributes. Rather than rely on replacement, we use a set of mutually re-
cursive  functions  with  patterns  to  navigate  the  XML  tree  while  surgically  inserting
transformations at the correct places. 

In[167]:= data = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "data", "ch02", "data1.xml"=E, "XMLObject"E

Out[167]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<, 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElement@sex, 8<, 8male<D,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElement@sex, 8<, 8male<D, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElement@sex, 8<, 8female<D,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=E,

9XMLObject@CommentD@ Comment at end D=E
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In[168]:= ClearAll@transformD

transformAXMLObject@"Document"D@decl_, content_, rest_DE :=

ModuleA8<, XMLObjectAtypeE@decl, transform@contentD, restD E

transformAXMLObjectAtype_EAargs___EE :=

ModuleA8<, XMLObjectAtypeEAargs EE

transform@XMLElement@"item", _, elements__D D :=

Module@8<, XMLElement@"item", asAttribute@ÒD & êü elements, 8<D D

transformAXMLElementAtag_String, attrs_List, child_ListEE :=

ModuleA8<, XMLElementAtag, attrs, transform@childDEE

transform@list_ListD := Module@8<, transform@ÒD & êü list D

asAttributeAXMLElementAtag_, 8<, 8val_<EE :=

ModuleA8<, RuleAtag, valE E

In[175]:= transform@dataD

Out[175]= XMLObjectAtypeEA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E, XMLObject@

CommentD@ Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<,

9XMLElementAitem, 9name Ø Leonardo, sex Ø male, age Ø 8, height Ø 4.7=, 8<E,

XMLElementAitem, 9name Ø Salvatore, sex Ø male, age Ø 5, height Ø 4.1=,

8<E, XMLElementAitem,

9name Ø Alexis, sex Ø female, age Ø 6, height Ø 4.4=, 8<E=E,

9XMLObject@CommentD@ Comment at end D=E

Discussion
A natural  objection  to  using  this  style  of  transformation  rather  than  using  replace-
ment  rules  is  that  it  is  more  verbose.  This  verbosity  comes  with  some  advantages.
The first advantage is that when things go wrong, it is generally easier to debug a set
of  discrete  functions  than  a  replacement  pattern.  Most  of  the  action  of  a  replace-
ment  pattern  is  happening under  the  covers.  The second advantage  comes in  cases
where  you  need  to  make  many  changes  at  different  levels  in  the  XML  hierarchy.
Here  the  overhead  of  the  recursive  approach  is  less  bothersome.  We  implement  a
transformation  that  changes  elements  to  attributes,  renames  the  "item"  element  to
"row", changes  "sex"  to  "gender",  and converts  the  height  from feet  to  meters~all
with very little extra overhead.
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In[176]:= ClearAll@transformD

transformAXMLObject@"Document"D@decl_, content_, rest_DE :=

ModuleA8<, XMLObject@"Document"D@decl, transform@contentD, restD E

transformAXMLObjectAtype_EAargs___EE :=

ModuleA8<, XMLObjectAtypeEAargs EE

transform@XMLElement@"item", _, elements__D D :=

Module@8<, XMLElement@"row", asAttribute@ÒD & êü elements, 8<D D

transform@list_ListD := Module@8<, transform@ÒD & êü list D

transformAXMLElementAtag_String, attrs_List, child_ListEE :=

ModuleA8<, XMLElementAtag, attrs, transform@childDEE

asAttribute@XMLElement@"sex", 8<, 8val_<DD :=

ModuleA8<, RuleA"gender", valE E

asAttributeAXMLElementA"height", 8<, 8val_<EE :=

ModuleA8<, RuleA"height", ToString@0.3048* ToExpression@valDDE E

asAttributeAXMLElementAtag_, 8<, 8val_<EE := ModuleA8<, RuleAtag, valE E

In[185]:= data2 = transform@dataD

Out[185]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<, 9XMLElementArow,

9name Ø Leonardo, gender Ø male, age Ø 8, height Ø 1.43256=, 8<E,

XMLElementArow, 9name Ø Salvatore, gender Ø male,

age Ø 5, height Ø 1.24968=, 8<E, XMLElementArow,

9name Ø Alexis, gender Ø female, age Ø 6, height Ø 1.34112=, 8<E=E,

9XMLObject@CommentD@ Comment at end D=E
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In[186]:= ExportString@data2, "XML"D êê StringReplace@Ò, "\r" Ø ""D &

Out[186]= <?xml version='1.0' encoding='UTF-8'?>

<!-- Some data to use as a test for Mathematica's XML import -->

<?test Just for didactic purposes?>

<data>

<row name='Leonardo'

gender='male'

age='8'

height='1.43256' ê>

<row name='Salvatore'

gender='male'

age='5'

height='1.24968' ê>

<row name='Alexis'

gender='female'

age='6'

height='1.34112' ê>

<êdata>

<!-- Comment at end -->

One of the first things you learn about XSLT is that if you create an empty stylesheet
(XSLT’s equivalent of a program), you get some default transformation rules that act
to  output  just  the  text  nodes  of  the  XML  data.  We  can  emulate  that  behavior  in
Mathematica with the following functions.

In[187]:= ClearAll@transformD

transformAXMLObjectAtype_E@content__DE :=

StringJoin@transform@ÒD & êü List@contentDD

transformAXMLElementAtag_, attrs_List, data_ListEE :=

StringJoin@transform@ÒD & êü data D

transformAtext_StringE := text

transform@_D := ""

In[192]:= transform@dataD

Out[192]= Leonardomale84.7Salvatoremale54.1Alexisfemale64.4
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So  far,  so  good,  but  can  we  do  something  more  interesting?  Suppose  we  want  to
clone our XML document but replace all occurrences of the element "sex"  with the
element "gender".

In[193]:= ClearAll@transformD

In[194]:= transformAXMLObjectAtype_E@content__DE :=

ModuleA8<, XMLObjectAtypeE@transform@List@contentDDD E

transform@XMLElement@"sex", attrs_List, data_ListDD :=

ModuleA8<, XMLElementA"gender", attrs, transform@dataDEE

transformAXMLElementAtag_String, attrs_List, data_ListEE :=

ModuleA8<, XMLElementAtag, attrs, transform@dataDE E

transform@list_ListD := Module@8<, transform@ÒD & êü list D

transformAtext_StringE := Module@8<, textD

In[199]:= transform@dataD

Out[199]= XMLObject@DocumentDA99XMLObject@DeclarationDA9transform@Version Ø 1.0D,

transformAEncoding Ø UTF-8E=E, XMLObject@CommentD@

8 Some data to use as a test for Mathematica's XML import <D,

XMLObjectAProcessingInstructionE@8test, Just for didactic purposes<D=,

XMLElementAdata, 8<, 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElementAgender, 8<, 8male<E,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElementAgender, 8<, 8male<E, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElementAgender, 8<, 8female<E,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=E,

9XMLObject@CommentD@8 Comment at end <D==E
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This  recursive  transformational  approach  is  overkill  in  this  scenario  since  we  can
more easily express this transformation using ReplaceAll.

In[200]:= data ê. "sex" Ø "gender"

Out[200]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E,

XMLObject@CommentD@

Some data to use as a test for Mathematica's XML import D,

XMLObjectAProcessingInstructionE@test, Just for didactic purposesD=,

XMLElementAdata, 8<, 9XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Leonardo<D, XMLElementAgender, 8<, 8male<E,

XMLElementAage, 8<, 88<E, XMLElementAheight, 8<, 84.7<E=E,

XMLElementAitem, 8<, 9XMLElement@name, 8<, 8Salvatore<D,

XMLElementAgender, 8<, 8male<E, XMLElementAage, 8<, 85<E,

XMLElementAheight, 8<, 84.1<E=E, XMLElementAitem, 8<,

9XMLElement@name, 8<, 8Alexis<D, XMLElementAgender, 8<, 8female<E,

XMLElementAage, 8<, 86<E, XMLElementAheight, 8<, 84.4<E=E=E,

9XMLObject@CommentD@ Comment at end D=E
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There  are  certain  types  of  structure-adding  transformations  that  were  difficult  to  do  in
XSLT until a grouping construct was added (xsl:for-each-group) in XSLT 2.0. Here is a
solution to a grouping problem using Mathematica’s Sort[] and Split[] functions.

In[201]:= employees =

ImportAFileNameJoinA9NotebookDirectory@D,

"..", "data", "ch02", "employee.xml"=E, "XMLObject"E

Out[201]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E=,

XMLElementAEmployees, 8<,

9XMLElementAemployee, 8name Ø Jil Michel, sex Ø female, dept Ø 1001<, 8<E,

XMLElementAemployee, 9name Ø Nancy Pratt, sex Ø female, dept Ø 1001=, 8<E,

XMLElementAemployee,

8name Ø Phill McKraken, sex Ø male, dept Ø 1003<, 8<E,

XMLElementAemployee, 8name Ø Ima Little, sex Ø female, dept Ø 1001<, 8<E,

XMLElementAemployee, 9name Ø Betsy Ross, sex Ø female, dept Ø 1007=, 8<E,

XMLElementAemployee, 8name Ø Jane Doe, sex Ø female, dept Ø 1003<, 8<E,

XMLElementAemployee, 8name Ø Walter H. Potter, sex Ø male, dept Ø 2001<,

8<E, XMLElementAemployee,

9name Ø Wendy B.K. McDonald, sex Ø female, dept Ø 2003=, 8<E,

XMLElementAemployee, 9name Ø Craig F. Frye, sex Ø male, dept Ø 1001=, 8<E,

XMLElementAemployee, 9name Ø Hardy Hamburg, sex Ø male, dept Ø 2001=, 8<E,

XMLElementAemployee, 8name Ø Rich Shaker, sex Ø male, dept Ø 2001<, 8<E,

XMLElementAemployee, 8name Ø Mike Rosenbaum, sex Ø male, dept Ø 2003<,

8<E, XMLElementAemployee,

9name Ø Cindy Post-Kellog, sex Ø female, dept Ø 3001=, 8<E,

XMLElementAemployee, 8name Ø Allen Bran, sex Ø male, dept Ø 3001<, 8<E,

XMLElementAemployee, 9name Ø Frank N. Berry, sex Ø male, dept Ø 1001=,

8<E, XMLElementAemployee,

8name Ø Jack Apple, sex Ø male, dept Ø 2001<, 8<E, XMLElementA

employee, 8name Ø Oscar A. Winner, sex Ø male, dept Ø 3003<, 8<E,

XMLElementAemployee, 8name Ø Jack Nickolas, sex Ø male, dept Ø 1001<, 8<E,

XMLElementAemployee, 9name Ø R.P. McMurphy, sex Ø male, dept Ø 1001=, 8<E,

XMLElementAemployee, 8name Ø Tom Hanks, sex Ø male, dept Ø 2001<, 8<E,

XMLElementAemployee, 8name Ø Forest Gump, sex Ø male, dept Ø 2003<, 8<E,

XMLElementAemployee, 8name Ø Andrew Beckett, sex Ø male, dept Ø 3001<,

8<E, XMLElementAemployee,

8name Ø Susan Sarandon, sex Ø female, dept Ø 1001<, 8<E, XMLElementA

employee, 9name Ø Helen Prejean, sex Ø female, dept Ø 2001=, 8<E=E, 8<E
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The goal of this transformation is to group all employees in the same department un-
der a new element <Dept dept="num">. Notice how this is accomplished with little ad-
ditional  code.  Helper functions define an ordering and an equivalence relation
for Sort and OrderQ, respectively, and a transform[] applies the additional level
of grouping when it matches the "employees" element.

In[202]:= ClearAll@transformD

getDept@XMLElement@_, 8__, "dept" Ø dept_<, 8<DD := dept

sameDeptQ@a_, b_D := ModuleA8<, OrderAgetDept@aD, getDept@bDE ã 0E

orderDept@a_, b_D := ModuleA8<, OrderAgetDept@aD, getDept@bDE ã 1E

transformAXMLObject@"Document"D@decl_, content_, rest_DE :=

ModuleA8<, XMLObject@"Document"D@decl, transform@contentD, restD E

transformAXMLObjectAtype_EAargs___EE :=

ModuleA8<, XMLObjectAtypeEAargs EE

transformAXMLElementA"Employees", _, elements__E E :=

ModuleA8<, XMLElementA"Employees", 8<,

XMLElementA"Dept", 9"dept" Ø getDept@Ò@@1DDD=, ÒE & êü

Split@Sort@elements, orderDeptD, sameDeptQD EE

transform@list_ListD := Module@8<, transform@ÒD & êü list D

transformAXMLElementAtag_String, attrs_List, child_ListEE :=

ModuleA8<, XMLElementAtag, attrs, transform@childDEE
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In[211]:= transformAemployeesE

Out[211]= XMLObject@DocumentDA

9XMLObject@DeclarationDAVersion Ø 1.0, Encoding Ø UTF-8E=,

XMLElementAEmployees, 8<, 9XMLElementADept, 8dept Ø 1001<,

9XMLElementAemployee, 8name Ø Susan Sarandon, sex Ø female, dept Ø 1001<,

8<E, XMLElementAemployee, 9name Ø R.P. McMurphy,

sex Ø male, dept Ø 1001=, 8<E, XMLElementAemployee,

8name Ø Jack Nickolas, sex Ø male, dept Ø 1001<, 8<E, XMLElementA

employee, 9name Ø Frank N. Berry, sex Ø male, dept Ø 1001=, 8<E,

XMLElementAemployee, 9name Ø Craig F. Frye, sex Ø male, dept Ø 1001=,

8<E, XMLElementAemployee, 8name Ø Ima Little,

sex Ø female, dept Ø 1001<, 8<E, XMLElementAemployee,

9name Ø Nancy Pratt, sex Ø female, dept Ø 1001=, 8<E, XMLElementA

employee, 8name Ø Jil Michel, sex Ø female, dept Ø 1001<, 8<E=E,

XMLElementADept, 8dept Ø 1003<, 9XMLElementAemployee,

8name Ø Jane Doe, sex Ø female, dept Ø 1003<, 8<E, XMLElementA

employee, 8name Ø Phill McKraken, sex Ø male, dept Ø 1003<, 8<E=E,

XMLElementADept, 8dept Ø 1007<, 9XMLElementAemployee,

9name Ø Betsy Ross, sex Ø female, dept Ø 1007=, 8<E=E,

XMLElementADept, 8dept Ø 2001<, 9XMLElementAemployee,

9name Ø Helen Prejean, sex Ø female, dept Ø 2001=, 8<E,

XMLElementAemployee, 8name Ø Tom Hanks, sex Ø male, dept Ø 2001<, 8<E,

XMLElementAemployee, 8name Ø Jack Apple, sex Ø male, dept Ø 2001<, 8<E,

XMLElementAemployee, 8name Ø Rich Shaker, sex Ø male, dept Ø 2001<, 8<E,

XMLElementAemployee, 9name Ø Hardy Hamburg, sex Ø male, dept Ø 2001=,

8<E, XMLElementAemployee, 8name Ø Walter H. Potter, sex Ø male,

dept Ø 2001<, 8<E=E, XMLElementADept, 8dept Ø 2003<,

9XMLElementAemployee, 8name Ø Forest Gump, sex Ø male, dept Ø 2003<, 8<E,

XMLElementAemployee, 8name Ø Mike Rosenbaum, sex Ø male, dept Ø 2003<,

8<E, XMLElementAemployee,

9name Ø Wendy B.K. McDonald, sex Ø female, dept Ø 2003=, 8<E=E,

XMLElementADept, 8dept Ø 3001<, 9XMLElementAemployee,

8name Ø Andrew Beckett, sex Ø male, dept Ø 3001<, 8<E,

XMLElementAemployee, 8name Ø Allen Bran, sex Ø male, dept Ø 3001<, 8<E,

XMLElementAemployee,

9name Ø Cindy Post-Kellog, sex Ø female, dept Ø 3001=, 8<E=E,

XMLElementADept, 8dept Ø 3003<, 9XMLElementAemployee,

8name Ø Oscar A. Winner, sex Ø male, dept Ø 3003<, 8<E=E=E, 8<E

Of course, there are significant differences between these transformations and XSLT.
For example, in XSLT, you operate on a tree and, hence, can navigate upward from
child elements to parent elements. This is not the case for Mathematica’s representa-
tion  of  XML.  The  tutorial  mentioned  in  the  following  “See  Also”  section  provides
some guidance for working around these issues.
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Of course, there are significant differences between these transformations and XSLT.
For example, in XSLT, you operate on a tree and, hence, can navigate upward from
child elements to parent elements. This is not the case for Mathematica’s representa-
tion  of  XML.  The  tutorial  mentioned  in  the  following  “See  Also”  section  provides
some guidance for working around these issues.

See Also
The  tutorial  XML/tutorial/TransformingXML  in  the  Mathematica  documentation
(also at http://bit.ly/4tS1Ce) has a section comparing Mathematica to XSLT and can
provide further help in exploiting these techniques.

You can learn more about XSLT at the XSL Working Group’s website: http://bit.ly/1fJsB.

5.11 Writing Parsers and Grammars 
in Mathematica
Problem
You want to write a parser in Mathematica.

Solution
The easiest type of parser to write in Mathematica is a recursive descent parser. Be-
fore writing the parser, we need to know the grammar of the language we will parse.
The  most  common  notation  for  grammars  is  Backus-Naur  Form  (BNF),  but  for
reasons that will become apparent in the discussion, I use Mathematica itself to rep-
resent the grammar. For this example, I use a simplified English grammar. The pre-
sentation  here  is  a  variation  of  one  developed  and  given  by  Daniel  Lichtblau  of
Wolfram  Research  at  the  Wolfram  Developer’s  Conference  in  1999.  Refer  to  the
“See Also” section on page 235 for more information.

First,  we need some helper functions to make creating the grammar easier.  We use
two functions, sequence and choose, with attribute HoldAll to prevent them from eval-
uating their arguments and causing an infinite recursion. As its name would suggest,
sequence[]  represents  a  sequence  of  terms  of  the  grammar.  Choose  represents  a
choice of one out of two or more possible terms. I allow choose to take an extra argu-
ment, which is a list of probabilities for the choices. More on that later. 

In[212]:= SetAttributes@8sequence, choose<, HoldAllD

NILL = "";
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This grammar is for a small subset of English.

In[214]:= sentence := chooseAdeclarative, interrogative, imperativeE

declarative := sequenceAsubject, predicatepastE

interrogative := sequenceAqverb, subject, predicatepresentE

imperative := sequenceAactverb, subjectE

subject := choose@nounclause, sequence@nounclause, prepositionclauseDD

nounclause := sequenceAadjectiveclause, nounE

noun = 9"skyscraper", "ball", "dog", "cow", "shark", "attorney", "hatter",

"programmer", "city", "village", "buffalo", "moon", "librarian", "sheep"=;

adjectiveclause := sequenceAarticle, adjectivelistE

adjectivelist := chooseANILL, sequenceAadjective, adjectivelistE, 80.7<E

article = 8"a", "the", "this", "that"<;

adjective =

9"big", "wet", "mad", "hideous", "red", "repugnant", "slimy", "delectable",

"mild-mannered", "lazy", "silly", "crazy", "ferocious", "cute"=;

prepositionclause := sequence@preposition, nounclause D

preposition = 8"in", "above", "under", "from", "near", "at", "with"< ;

predicatepresent := sequenceAverbpresent, subjectE

predicatepast := sequenceAverbclause, subjectE

verbclause := sequence@adverblist, verbpastD

adverblist := choose@NILL, sequence@adverb, adverblist D, 80.6<D

adverb =

9"swiftly", "unflinchingly", "smugly", "selflessly", "oddly", "mightily"=;

verbpast = 9"ate", "threw", "gnashed", "boiled",

"grated", "milked", "spanked", "jumped"=;

verbpresent = 9"eat", "throw", "gnash", "boil", "grate",

"milk", "spank", "salivate", "jump"=;

qverb = 8"did", "will", "could", "should"<;

actverb = 8"break", "fix", "launch", "squeeze", "fetch"<;

In[236]:= ToUpperCaseAStringTakeAToString@Hold@sentenceDD, 86, -2<EE

Out[236]= SENTENCE

This  grammar  becomes  the  specification  for  our  parser.  Recursive  descent  parsers
are probably the easiest parsers to craft by hand because their structure mimics the
grammar.  The  goal  of  this  parser  is  to  create  a  labeled  parse  tree  from  a  sentence.
The  parser  is  very  simple:  it  contains  no  provision  for  error  handling  and relies  on
the grammar being completely  conflict  free.  For  example,  the major  sentence types
are  completely  determined  by  the  first  word.  Real  languages  or  even  artificial  lan-
guages (like programming languages) are rarely that clean. 
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In[237]:= H*Test for membership of a terminal

symbol in a list of terminal symbols.*L

isQAtype_, word_E := MemberQAtype, wordE

H*Get next word for parser.*L

getNextWord@8<D := ""

getNextWord@words_ListD := First@wordsD

H*Parse a single word, classifyingit as head, and return length of 1.*L

atomParse@head_, words_ListD := 9headAgetNextWord@wordsDE, 1=

H*Top level parse function for

sentences. Dispatches based on first word.*L

sentenceParseAsentence_sentenceTypeE :=

ModuleA9sentencelist = Apply@List, sentenceD, firstWord =,

firstWord = First@sentencelistD;

IfAisQ@qverb, firstWordD, interrogativeParse@sentencelistD,

If@isQ@actverb, firstWordD, imperativeParse@sentencelistD,

declarativeParse@sentencelistDDEE

H*declarative := sequenceAsubject, predicatepastE*L

declarativeParse@words_ListD :=

ModuleA9subject = subjectParse@wordsD, predicate=,

predicate = predicatepastParseADropAwords, subject@@2DDEE;

"DECLARATIVE SENTENCE"Asubject@@1DD, predicate@@1DDEE

H*interrogative := sequenceAqverb, subject, predicatepresentE*L

interrogativeParse@words_ListD :=

ModuleA9qverb = atomParse@"QUESTION VERB", wordsD, subject, predicate=,

subject = subjectParse@Drop@words, qverb@@2DDDD;

predicate = predicatepresentParseA

DropAwords, qverb@@2DD + subject@@2DDEE;

"INTERROGATIVE SENTENCE"Aqverb@@1DD, subject@@1DD, predicate@@1DDEE

H**L

H*imperative := sequenceAactverb, subjectE*L

imperativeParse@words_ListD :=

ModuleA9actverb = atomParse@"ACTION VERB", wordsD, subject=,

subject = subjectParse@Drop@words, actverb@@2DDDD;

"IMPERATIVE SENTENCE"Aactverb@@1DD, subject@@1DDEE
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In[237]:=

H*subject :=

choose@nounclause, sequence@nounclause, prepositionclauseDD*L

subjectParse@words_ListD :=

ModuleA8nounclause = nounclauseParse@wordsD, prepositionclause<,

prepositionclause = Drop@words, nounclause@@2DDD;

IfA! isQApreposition, getNextWord@prepositionclauseDE,

8"SUBJECT"@nounclause@@1DDD, nounclause@@2DD<,

prepositionclause = prepositionclauseParse@prepositionclauseD;

8"SUBJECT"@nounclause@@1DD, prepositionclause@@1DDD,

nounclause@@2DD + prepositionclause@@2DD<EE

H*predicatepast:=sequenceAverbclause,subjectE*L

predicatepastParse@words_ListD :=

ModuleA9verbclause = verbclauseParse@wordsD, subject=,

subject = subjectParse@Drop@words, verbclause@@2DDDD;

9"PREDICATE"Averbclause@@1DD, subject@@1DDE,

verbclause@@2DD + subject@@2DD=E

H*predicatepresent:=sequenceAverbpresent,subjectE*L

predicatepresentParse@words_ListD :=

ModuleA9verb = atomParse@"VERB HPRESENT TENSEL", wordsD, subject=,

subject = subjectParse@Drop@words, verb@@2DDDD;

9"PREDICATE"Averb@@1DD, subject@@1DDE, verb@@2DD + subject@@2DD=E

H*verbclause:=sequence@adverblist,verbpastD*L

verbclauseParse@words_ListD :=

Module@8adverbs = adverblistParse@wordsD, verb<,

verb = atomParse@"VERB HPAST TENSEL", Drop@words, adverbs@@2DDDD;

If@adverbs@@2DD ã 0, verb,

8"VERB CLAUSE"@adverbs@@1DD, verb@@1DDD, adverbs@@2DD + verb@@2DD<DD

H*nounclause:= sequenceAadjectiveclause, nounE*L

nounclauseParse@words_ListD :=

ModuleA9adjectiveclause = adjectiveclauseParse@wordsD, noun=,

noun = atomParseA"NOUN", DropAwords, adjectiveclause@@2DDEE;

9"NOUN CLAUSE"Aadjectiveclause@@1DD, noun@@1DDE,

adjectiveclause@@2DD + noun@@2DD=E

H*adjectiveclause := sequenceAarticle, adjectivelistE*L

adjectiveclauseParse@words_ListD :=

ModuleA9art = atomParse@"ARTICLE", wordsD, adjlist=,

adjlist = adjectivelistParse@Drop@words, art@@2DDDD;
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In[237]:=

IfAadjlist@@2DD ã 0, art, 9"ADJECTIVE CLAUSE"Aart@@1DD, adjlist@@1DDE,

art@@2DD + adjlist@@2DD=EE

H*Parse Ipossibly emptyM list of adjectives.*L

H*adjectivelist :=

chooseANILL, sequenceAadjective, adjectivelistE, 80.7<E*L

adjectivelistParse@words_ListD :=

ModuleA9words2 = words, adj, result, len = 0=, result = "ADJECTIVE LIST"@D;

WhileAisQAadjective, getNextWord@words2DE,

adj = atomParse@"ADJECTIVE", words2D;

len += adj@@2DD;

result = "ADJECTIVE LIST"Aresult, adj@@1DDE;

words2 = DropAwords2, adj@@2DDEE;

9FlattenAresult, Infinity, "ADJECTIVE LIST"E, len=E

H*prepositionclause := sequence@preposition, nounclauseD*L

prepositionclauseParse@words_ListD :=

Module@8preposition = atomParse@"PREPOSITION", wordsD, nounclause<,

nounclause = nounclauseParse@Drop@words, preposition@@2DDDD;

8"PREPOSITION CLAUSE"@preposition@@1DD, nounclause@@1DDD,

preposition@@2DD + nounclause@@2DD<D

H*Parse Ipossibly emptyM list of adverbs.*L

H*adverblist := choose@NILL, sequence@adverb,adverblistD, 80.6<D*L

adverblistParse@words_ListD :=

ModuleA8words2 = words, adv, result, len = 0<, result = "ADVERB LIST"@D;

WhileAisQAadverb, getNextWord@words2DE,

adv = atomParse@"ADVERB", words2D;

len += adv@@2DD;

result = "ADVERB LIST"@result, adv@@1DDD;

words2 = Drop@words2, adv@@2DDDE;

9FlattenAresult, Infinity, "ADVERB LIST"E, len=E
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We can test the parser on a sentence that conforms to the grammar.

In[254]:= sentenceParseA

sentenceTypeA"will", "the", "wet", "programmer", "spank", "the", "moon"EE

Out[254]= INTERROGATIVE SENTENCEAQUESTION VERB@willD,

SUBJECTANOUN CLAUSEAADJECTIVE CLAUSE@ARTICLE@theD,

ADJECTIVE LIST@ADJECTIVE@wetDDD, NOUNAprogrammerEEE,

PREDICATE@VERB HPRESENT TENSEL@spankD,

SUBJECT@NOUN CLAUSE@ARTICLE@theD, NOUN@moonDDDDE

Discussion
You may wonder why I took the trouble to specify the grammar using Mathematica
if  I  was  going  to  write  the  parser  by  hand.  First,  I  did  not  write  this  parser;  I
just  prettied  up  a  parser  written  by  Daniel  Lichtblau!  The  more  serious  answer  is
that the grammar can be used to easily create a language generator to go along with
the parser. The generator is very useful for testing the parser. Here I based a genera-
tor  on  Lichtblau’s  implementation  but  made  some  significant  improvements.  The
first improvement is that my implementation is more declarative than procedural be-
cause it leverages Mathematica’s pattern matching. The second improvement is that
the  generator  absorbs  all  the  complexity  so  the  grammar can remain very  clean.  In
Lichtblau’s original grammar, the representation was soiled by the presence of pro-
grammatic constructs, like Hold[]  and his implementation of random choice. Other
than the presence of probabilities, the grammar in the preceding “Solution” section
is  completely  clean.  In  fact,  it  reads  as  easy  as  BNF.  Refer  to  the  URL  in  the  “See
Also” section on page 235 to compare this implementation with the original.
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In[255]:= << Combinatorica`

H*needed for BinarySearch@D*L

H*randomChoose@parts_List,probs_ListD selects an item from

parts_List based on a list of probabilities the length of

which must be one less than the number of parts and the sum

of which is less than one. The interpretation is that each

probability corresponds to the probability of the item in the same

position except for the last item, which gets the residual.*L

randomChoose@parts_List, probs_ListD := ModuleA9weights, test, pos=,

weights = N@Append@FoldList@Plus, First@probsD, Rest@probsDD, 1DD;

test = RandomReal@D; pos = CeilingABinarySearchAweights, testEE;

parts@@posDDE

H*randomPart@D is responsible for interpreting the grammar in

a random manner. There is a variation for each possible term,

and recursion is used to expand nonterminals.*L

randomPart@sequence@parts__DD := randomPart@ÒD & êü List@partsD

randomPart@choose@parts__, probs_ListDD :=

Union@Flatten@List@randomPart@randomChoose@List@partsD, probsDDDDD

randomPart@choose@parts__DD := ModuleA8partList, numParts<,

partList = List@partsD; numParts = Length@partListD;

randomPart@randomChoose@partList, Table@1ênumParts, 8numParts - 1<DDDE

randomPart@terminals_ListD :=

terminalsAA RandomIntegerA 91, Length@terminalsD=E EE

randomPart@NILLD := 8<

H*randomSentence@D is the entry point for

generating a random sentence of the grammar.*L

randomSentence@D := sentenceType üü Flatten@randomPart@sentenceDD

H*We provide a nice textual formatting for

sentences that also takes care of punctuation.*L

FormatAsentence_sentenceTypeE :=

ModuleA8word = First@sentenceD, words, punc<,

words = MapAStringJoin@Ò, " "D &, sentenceE;

punc = If@isQ@qverb, wordD, "?", If@isQ@actverb, wordD, "!", "."DD;

wordsAALength@wordsDEE = StringReplacePart@Last@wordsD, punc, -1D;

words@@1DD = StringReplacePartAFirst@wordsD,

ToUpperCaseAStringTake@First@wordsD, 1DE, 1E;

ApplyAStringJoin, wordsEE

Here  you  can  see  the  result  of  generating  10  random  sentences.  They  are,  for  the
most part, utter gibberish, but some are kind of funny. They all conform to the gram-
mar, as we can see by running them through the parser.
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In[264]:= randomSentence@D êê InputForm

Out[264]//InputForm=
sentenceType["a", "city", "in", "that", "mad", "village", "threw", "the", 
"shark", "at", "a", "ball"]

In[265]:= Table@randomSentence@D, 810<D êê TableForm
Out[265]//TableForm=

Launch this moon from the city!

A skyscraper from a village ate a skyscraper in the attorney.

"The delectable librarian above that red hatter spanked this buffalo above

the big sheep."

Will that programmer salivate that programmer?

Could that mad silly ball spank this moon at that buffalo?

This skyscraper under the cow boiled a village in that village.

Squeeze a ball!

"The crazy mad city in the skyscraper unflinchingly jumped this village

above the skyscraper."

Could a programmer spank the attorney?

Fetch a programmer in this shark!

In[266]:= SeedRandom@2D;

sentenceParse@randomSentence@DD êê TreeFormAÒ, ImageSize Ø 500E &
Out[267]//TreeForm=

IMPERATIVE SENTENCE

ACTION VERB

break

SUBJECT

NOUN CLAUSE

ARTICLE

that

NOUN

dog

PREPOSITION CLAUSE

PREPOSITION

above

NOUN CLAUSE

ADJECTIVE CLAUSE

ARTICLE

this

ADJECTIVE LIST

ADJECTIVE

ferocious

NOUN

cow
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The parser  we wrote by hand is  an instance of  a  predictive  recursive descent parser
because  it  looks  ahead  wherever  there  is  a  choice  so  that  it  does  not  take  a  wrong
path  through  the  grammar.  In  contrast,  a  backtracking  parser  simply  starts  over
from where it left off if a particular parse path fails. If  you are ambitious,  you can
continue this recipe and write a backtracking parser generator in Mathematica. The
references in the following “See Also” section provide some background.

See Also
See Daniel Lichtblau’s original implementation at http://bit.ly/zXhUm.

Packrat parsing is amenable to Mathematica implementation. See http://bit.ly/RsNCe.

A functional approach to parsing is discussed in “Monadic Parser Combinators” by
Graham  Hutton  and  Erik  Meijer,  published  in  Journal  of  Functional  Programming,
Volume 8, Issue 4, 1996. See http://bit.ly/PIVAh (PostScript file). 
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CHAPTER 6

Two-Dimensional Graphics and Plots

I’ve been looking so long at these pictures of you
that I almost believe that they’re real

I’ve been living so long with my pictures of you
that I almost believe that the pictures are all I can feel

The Cure, “Pictures of You”

6.0 Introduction
One  of  the  features  that  places  Mathematica  in  a  class  by  itself  among  similar
computer-aided mathematics  tools  is  its  advanced graphics  capabilities.  This  chap-
ter focuses on two-dimensional graphics. Mathematica provides a variety of plotting
functions  with  a  versatile  set  of  options  for  customizing  their  display.  The  most
common  types  of  2D  graphic  are  the  plot  of  a  function  and  list  plots  of  values.
Recipe 6.1 covers Plot  and Recipe 6.4 covers  ListPlot.  Frequently  you will  want
to  use  other  coordinate  systems  or  scales.  In  two  dimensions,  PolarPlot  and
ParametricPlot are often used as demonstrated in Recipes 6.1 and 6.2.

True  to  its  symbolic  nature,  Mathematica  represents  all  graphics  as  collections  of
graphics primitives and directives. Primitives include objects such as Point and Line;
directives  provide  styling  information  such  as  Thickness  and  Hue.  Mathematica  al-
lows  you  to  work  with  the  low-level  primitives  (see  Recipe  6.8),  but  most  readers
will  be interested in the higher-level  functions like Plot  and ListPlot,  which gener-
ate graphics from functions and data and display them. However, it is easy to demon-
strate that these functions generate primitives by specifying InputForm.

In[1]:= ListPlot@80, 1, 2, 3<D êê InputForm
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Out[1]//InputForm=
GraphicsA8Hue@0.67, 0.6, 0.6D,

Point@881., 0.<, 82., 1.<, 83., 2.<, 84., 3.<<D<,

9AspectRatio -> GoldenRatio^H-1L, Axes -> True,

AxesOrigin -> 80, Automatic<,

PlotRange -> Automatic, PlotRangeClipping -> True=E

This  uniform  representation  allows  graphics  to  be  manipulated  programmatically,
just  like  any  Mathematica  object,  and  sometimes  can  be  useful  for  generating  cus-
tom effects. However, this representation is not entirely at the lowest level, because
graphics constructs like axes are implicitly specified via options. To get to the lowest
level  you  can  use  the  function  FullGraphics.  Here  I  use  Short  to  suppress  some  of
the details.

In[2]:= Short@InputForm@FullGraphics@ListPlot@80, 1, 2, 3<DDD, 10D
Out[2]//Short=

Graphics@88Hue@0.67, 0.6, 0.6D, Point@881., 0.<, 82., 1.<, 83.,

2.<, 84., 3.<<D<, 88GrayLevel@0.D, AbsoluteThickness@0.25D,

Line@880.2, 0.<, 80.2, 0.010112712429686845<<D<, Text@0.2,

80.2, -0.02022542485937369<, 80., 1.<D, 8GrayLevel@0.D,

AbsoluteThickness@0.25D, Line@880.4, 0.<, 80.4,

0.010112712429686845<<D<, Text@0.4, 80.4, -0.02022542485937369<,

80., 1.<D, 8GrayLevel@0.D, AbsoluteThickness@0.25D,

Line@880.6000000000000001, 0.<, 80.6000000000000001,

0.010112712429686845<<D<, Text@0.6000000000000001,

80.6000000000000001, -0.02022542485937369<, 80., 1.<D,

8GrayLevel@0.D, AbsoluteThickness@0.25D, Line@880.8, 0.<, 80.8,

0.010112712429686845<<D<, <<41>>, 8GrayLevel@0.D, <<2>><,

8GrayLevel@0.D, AbsoluteThickness@0.125D, Line@880., 0.9<, 80.00375,

0.9<<D<, 8GrayLevel@0.D, AbsoluteThickness@0.125D, Line@880.,

0.9500000000000001<, 80.00375, 0.9500000000000001<<D<, 8GrayLevel@0.D,

AbsoluteThickness@0.25D, Line@880., 0.<, 80., 1.<<D<<<D

In the recipes that follow, I  make frequent use of GraphicsRow,  GraphicsColumn,  and
GraphicsGrid.  These  are  handy  for  formatting  multiple  graphics  outputs  across  the
page  to  make  maximum  use  of  both  horizontal  and  vertical  space.  Both  GraphicsRow
and  GraphicsColumn  take  a  list  of  graphics  to  format,  whereas  GraphicsGrid
takes  a  matrix.  To  help  generate  these  lists  and  matrices,  I  sometimes  use
Table and Partition. These functions are simple enough that I hope they do not de-
tract from the intended lesson of the recipe. Recipe 6.6 explains the use of these grid-
like formatting functions in detail.
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6.1 Plotting Functions in Cartesian Coordinates
Problem
You want to graph one or more built-in or user-defined functions.

Solution
The simplest solution is to use the Plot  command with the range of values to plot.
Plot  takes  one  or  more  functions  of  a  single  variable  and  an  iterator  of  the  form
{var, min, max}.

In[3]:= GraphicsRow@8

Plot@Erf@xD, 8x, -2, 2<D,

Plot@80.5 Sin@2 xD, Cos@3 xD<, 8x, -Pi, Pi<D

<D

Out[3]=
-2 -1 1 2

-1.0

-0.5

0.5

1.0

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Discussion
Plot  has  a  wide  variety  of  options  for  controlling  the  appearance  of  the  plot.  Here
are the defaults.

In[4]:= Partition@ Options@PlotD , 4D êê TableForm
Out[4]//TableForm=
AlignmentPointØ Center AspectRatioØ 1êGoldenRatio AxesØ True AxesLabelØ None

AxesOriginØ Automatic AxesStyleØ8< BackgroundØ None BaselinePositionØ Automatic

BaseStyleØ8< ClippingStyleØ None ColorFunctionØ Automatic ColorFunctionScalingØ True

ColorOutputØ Automatic ContentSelectableØ Automatic CoordinatesToolOptionsØ Automatic DisplayFunctionß $DisplayFunction

EpilogØ8< EvaluatedØ Automatic EvaluationMonitorØ None ExclusionsØ Automatic

ExclusionsStyleØ None FillingØ None FillingStyleØ Automatic FormatTypeß TraditionalForm

FrameØ False FrameLabelØ None FrameStyleØ8< FrameTicksØ Automatic

FrameTicksStyleØ8< GridLinesØ None GridLinesStyleØ8< ImageMarginsØ 0.

ImagePaddingØ All ImageSizeØ Automatic ImageSizeRawØ Automatic LabelStyleØ8<

MaxRecursionØ Automatic MeshØ None MeshFunctionsØ9Ò1 &= MeshShadingØ None

MeshStyleØ Automatic MethodØ Automatic PerformanceGoalß $PerformanceGoal PlotLabelØ None

PlotPointsØ Automatic PlotRangeØ9Full, Automatic= PlotRangeClippingØ True PlotRangePaddingØ Automatic

PlotRegionØ Automatic PlotStyleØ Automatic PreserveImageOptionsØ Automatic PrologØ8<

RegionFunctionØITrue &M RotateLabelØ True TicksØ Automatic TicksStyleØ8<
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When  plotting  two  or  more  functions,  you  may  want  to  explicitly  set  the  style  of
each plot’s lines. You can also suppress one or both of the axes using Axes, as I do in
the second and fourth plots. You can label one or both of the axes using AxesLabel and
control the format using LabelStyle.

In[5]:= GraphicsGridA9

9PlotA80.5 Sin@2 xD, Cos@3 xD, Sin@xD - Cos@2 xD<, 8x, -Pi, Pi<,

PlotStyle Ø 8Directive@Black, ThinD, Directive@Black, ThickD,

Directive@Black, DashedD<, ImageSize Ø SmallE,

Plot@Erf@xD, 8x, -2, 2<, Axes Ø 8False, True<D=,

9PlotA0.5 Sin@2 qD, 8q, 0, 2 p<, AxesLabel Ø 9"Angle", "Amplitude"=,

LabelStyle Ø Directive@BoldD, ImageSize Ø SmallE,

PlotA0.5 Sin@2 qD, 8q, 0, 2 p<, Axes Ø False, ImageSize Ø SmallE

==E

Out[5]=

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

1.5

2.0

-1.0

-0.5

0.0

0.5

1.0

1 2 3 4 5 6

Angle

-0.4

-0.2

0.2

0.4

Amplitude
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PlotLabel  is  a  handy  option  for  naming  plots,  especially  when  you  display  several
plots at a time.

In[6]:= GraphicsRow@8

Plot@Sin@xD, 8x, -2 Pi, 2 Pi<, PlotLabel Ø "Sin"D,

Plot@Cos@xD, 8x, -2 Pi, 2 Pi<, PlotLabel Ø "Cos"D

<D

Out[6]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0
Sin

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0
Cos

You can add grid lines with an explicitly determined frequency or a frequency deter-
mined automatically by Mathematica.

In[7]:= GraphicsRowA9

PlotATan@xD, 8x, -Piê2, Piê2<, GridLines Ø Automatic, ImageSize Ø Small,

PlotLabel Ø "Automatic Grid"E, PlotATan@xD, 8x, -Piê2, Piê2<,

GridLines Ø 88-Piê2, -Piê4, 0, Piê4, Piê2<, 8-6, -4, -2, 0, 2, 4, 6<<,

ImageSize Ø Small, PlotLabel Ø "Custom Grid"E

=E

Out[7]=
-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

4

6

Automatic Grid

-1.5 -1.0 -0.5 0.5 1.0 1.5

-6

-4

-2

2

4

6

Custom Grid
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Frame,  FrameStyle,  and FrameLabel  let you annotate the graph with a border and la-
bel.  Note  that  FrameStyle  and  FrameLabel  only  have  effect  if  FrameØTrue  is  also
specified.

In[8]:= GraphicsRowB:

PlotBExp@Sin@xDD, 8x, 0, 2 Pi<, Frame Ø True, FrameLabel Ø "esin x",

ImageSize Ø SmallF,

PlotAExp@Cos@xDD, 8x, 0, 2 Pi<, Frame Ø True, FrameLabel Ø "ecos x",

FrameStyle Ø DirectiveAGray, ThickE,

ImageSize Ø SmallE

>F

Out[8]=
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1.5

2.0

2.5

e
cos x

Mesh  is  an  option that  allows  you to  highlight  specific points in the plot. Mesh Ø All
will  highlight  all  points  sampled  while  plotting  the graph, Mesh Ø Full  will  use
regularly spaced points. Mesh Ø n will use n equally spaced points. The behavior of
Mesh Ø Automatic will vary based on the plotting primitive.
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In[9]:= GraphicsGridAPartitionATableA

PlotA0.5 Sin@2 qD, 8q, 0, 2 p<, Mesh Ø m,

ImageSize Ø Small, Frame Ø True,

PlotLabel Ø "Mesh Ø " <> ToString@mDE,

8m, 8None, Automatic, All, Full, 16, 50<<E, 2E, Spacings Ø 0E

Out[9]=
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Mesh Ø Full
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Mesh Ø 16
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Mesh Ø 50

PlotRange  is  an  important  option  that  controls  what  coordinates  to  include  in  the
plot. Automatic lets Mathematica decide on the best choice,  All  specifies all points
actually plotted, and Full specifies  the entire range.  In addition,  you can supply
explicit coordinates in the form {{xmin,xmax},{ymin,ymax}}.
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In[10]:= GraphicsGridAPartitionA

TableA

PlotASqrt@100.0 - x^2D, 8x, 0, 100<,

PlotRange Ø r, ImageSize Ø 8225, Automatic<, Frame Ø True,

FrameLabel Ø "PlotRange Ø " <> ToString@rDE,

8r, 8Automatic, All, Full, 880, 20<, 80, 20<<<<E, 2E, Spacings Ø 0E

Out[10]=
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PlotRange Ø All
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PlotRange Ø Full

0 5 10 15 20
0
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10

15

20

PlotRange Ø 880, 20<, 80, 20<<

AspectRatio  controls  the  ratio  of  height  to  width  of  the  plot.  The  default  value  is
1/GoldenRatio (also known as f). A value of Automatic uses the coordinate values to
determine the aspect ratio. 
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In[11]:= GraphicsGridüPartitionA

TableA

PlotASqrt@100.0 - x^2D, 8x, 0, 10<, AspectRatio Ø a, Frame Ø True,

FrameLabel Ø "AspectRatio Ø " <> ToString@TraditionalForm@aDDE,

9a, 9GoldenRatio-1, Automatic, 1.25, 0.75==E, 2E

Out[11]=
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Sometimes you want to emphasize an area on one side of the curve or between two
different curves. Filling can be set to Top to fill from the curve upward, Bottom to fill
from  the  curve  downward,  Axis  to  fill  from  the  axis  to  the  curve,  or  to  a  numeric
value to fill from the curve to that value in either y direction. 
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In[12]:= GraphicsGridüPartitionATableA

PlotASin@xD, 8x, 0, 2 Pi<, Filling Ø f, Frame Ø True,

FrameLabel -> "Filling Ø " <> ToString@fD,

ImageSize Ø 8200, Automatic<E,

8f, 8Top, Bottom, Axis, 0.5<<E, 2E

Out[12]=

FillingStyle allows you to control the color and opacity of the filling. Specifying an
opacity is useful where regions of multiple functions overlap.

In[13]:= PlotA8Cosh@xD, Cosh@3 xD<, 8x, -1, 1<, Filling Ø Top,

FillingStyle Ø DirectiveAGray, Opacity@0.5DE, ImageSize Ø 300E

Out[13]=
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You can also use a special notation to fill the area between two curves. In this nota-
tion, you refer to a curve by {i}  where i  is  an integer referring to the ith plot.  You
can then say something like Filling Ø {i Ø {j}} to specify that filling should be be-
tween plot i and plot j. You can also override the FillingStyle by including a graph-
ics directive, as in the example here.

In[14]:= PlotA8Sin@xD, 2 Sin@x + 1D + 3, 3 Sin@x + 2D + 6<, 8x, 0, 2 Pi<,

Filling Ø 81 Ø 882<, Red<, 2 Ø 883<, Yellow<<,

ImageSize Ø 300E

Out[14]=
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See Also
Recipes 6.2 and 6.3 demonstrate PolarPlot and ListPlot, which share most of the
options of Plot.

6.2 Plotting in Polar Coordinates
Problem
You want to create a plot in polar coordinates of radius as a function of angle.

Solution
Use PolarPlot, which plots the radius as the angle in polar coordinates varies counter-
clockwise with 0 at the x-axis, p/2 at the y-axis, and so on. 
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In[15]:= GraphicsGrid@8

8PolarPlot@1, 8q, 0, 2 p<, PlotLabel Ø "Constant"D,

PolarPlot@q, 8q, 0, 2 p<, PlotLabel Ø "Spiral"D<,

8PolarPlot@Sin@5 qD, 8q, 0, 2 p<, PlotLabel Ø "Loops"D,

PolarPlot@1êH1.5 + Sin@5 qDL, 8q, 0, 2 p<, PlotLabel Ø "Star Fish"D<

<D

Out[15]=
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Discussion
As with Plot, you can plot several functions simultaneously.
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In[16]:= PolarPlotA81, 0.5 Cos@2 qD, Sin@Exp@qê2DD<, 8q, 0, 2 p<,

ImageSize Ø 300,

PlotStyle Ø 8Directive@Black, DashedD,

Directive@Black, DotDashedD,

Directive@Black, DottedD<E

Out[16]=
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The options for PolarPlot are essentially the same as Plot. One notable exception is
the absence of options related to Filling. Also note that AspectRatio is automatic by
default, which makes sense because symmetry is an essential aesthetic of polar plots.

In[17]:= Complement@Options@PolarPlotD, Options@PlotDD

Out[17]= 9AspectRatio Ø Automatic, Axes Ø Automatic, AxesOrigin Ø 80, 0<,

MeshFunctions Ø 8Ò3 &<, PlotRange Ø Automatic, PolarAxes Ø False,

PolarAxesOrigin Ø Automatic, PolarGridLines Ø None, PolarTicks Ø Automatic=

6.3 Creating Plots Parametrically
Problem
You want to create Lissajous curves and other parametric plots where points {fx[u],
fy[u]} are plotted against a parameter u. 
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Solution
Here are  some common Lissajous curves.  Note  how ParametricPlot  takes  a  pair  of
functions in the form of a list. 

In[18]:= GraphicsGrid@88ParametricPlot@

8Sin@Pi uD, Sin@2 Pi uD<, 8u, 0, 2<, PlotLabel Ø "H1:2L"D,

ParametricPlot@8Sin@2 Pi uD, Sin@ Pi uD<,

8u, 0, 2<, PlotLabel Ø "H2:1L"D<,

8ParametricPlot@8Sin@5 Pi uD, Sin@4 Pi uD<, 8u, 0, 2<,

PlotLabel Ø "H5:4L"D,

ParametricPlot@

8Sin@9 Pi uD, Sin@8 Pi uD<, 8u, 0, 2<, PlotLabel Ø "H9:8L"D<<D

Out[18]=
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Discussion
Here  is  an  animation  showing  the  effect  of  phase  shifting  on  signals  of  frequency  
ratio 1:1 and 2:1.

In[19]:= Animate@

GraphicsRow@8ParametricPlot@8Sin@Pi u + dD, Sin@ Pi uD<, 8u, 0, 2<D,

ParametricPlot@8Sin@2 Pi u + dD, Sin@ Pi uD<, 8u, 0, 2<D

<D, 8d, 0, 2 Pi<D

Out[19]=
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You also use ParametricPlot to create parametric surfaces. This introduces a second
parameter.

In[20]:= ParametricPlot@

8 r^2 Cos@Sqrt@ tDD, Sqrt@ rD Sin@r tD<, 8t, 0, 2 Pi<, 8r, 1, 2<D

Out[20]=

See Also
The 3D counterpart to ParametricPlot, ParametricPlot3D, is covered in Recipe 7.5.
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6.4 Plotting Data 
Problem
You  want  to  graph  data  values  that  were  captured  outside  Mathematica  or  previ-
ously computed within Mathematica.

Solution
Use ListPlot with either lists of x values or lists of (x,y) pairs. In this first plot, I gen-
erate the y values but let the x values derive from the iteration range. You can also ex-
plicitly provide the x and y values as a pair for each point plotted, as shown in the
second ListPlot, which compares PrimePi to Prime.

In[21]:= GraphicsRowA9

ListPlotATableAPrime@iDëI1 + Log@Fibonacci@iDDM, 8i, 1, 100<E,

ImageSize Ø 250E,

ListPlotATable@8PrimePi@iD, Prime@iD<, 8i, 1, 200<D, ImageSize Ø 250E

=E

Out[21]=
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Discussion
ListPlot shares most options with Plot; instead of repeating them here, I show only
the differences.

In[22]:= Complement@Options@ListPlotD, Options@PlotDD

Out[22]= 9DataRange Ø Automatic, InterpolationOrder Ø None, Joined Ø False,

MaxPlotPoints Ø ¶, PlotMarkers Ø None, PlotRange Ø Automatic=

DataRange allows you to specify minimum and maximum values for the x-axis. In the
first plot, the x-axis is assumed to be integer values. 

In[24]:= data = Table@Sin@xD, 8x, -10, 10, 0.1<D; GraphicsRowA

9ListPlot@dataD, ListPlotAdata, DataRange Ø 8-10, 10<E=, ImageSize Ø 500E

Out[24]=
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InterpolationOrder  is  used  with  Joined  to  control  the  way  lines  drawn  between
points are interpolated.  A value of  1 results  in straight lines;  higher values result  in
smoothing, although for most practical purposes, a value of 2 is sufficient.
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In[25]:= data = RandomReal@80, 2<, 8D;

GraphicsColumnA

TableAListPlotAdata, Joined Ø True, InterpolationOrder Ø i,

PlotLabel Ø I"InterpolationOrder" <> ToString@iDM,

ImageSize Ø SmallE, 8i, 81, 2, 3<<EE

Out[26]=
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See Also
Mathematica  has  related  list  plotting  functions  ListLinePlot,  ListLogLogPlot,  and
ListLogLinearPlot that have similar usage to ListPlot but are specialized for certain
types of data. Refer to the Mathematica documentation to learn more.
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6.5 Mixing Two or More Graphs 
into a Single Graph
Problem
You want to mix several kinds of plots into a single graph.

Solution
Use Show to combine graphs produced by different functions.

In[27]:= Show@Plot@x, 8x, 1, 100<D, ListPlot@Table@Prime@xD, 8x, 1, 100<DDD

Out[27]=
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Discussion
When using Show  to  combine plots,  you can override  options  used in  the  indi-
vidual graphs. For example, you can override the position of axes, aspect ratio,
and plot range.

In[28]:= g1 = PlotAx^2 - x, 8x, 1, 10<, AspectRatio Ø 0.6, AxesOrigin Ø AutomaticE;

g2 = PlotAx^2 + x, 8x, 1, 10<, AspectRatio Ø 0.6, AxesOrigin Ø AutomaticE;

In[30]:= GraphicsColumnA

9g1, g2, ShowAg1, g2, AspectRatio Ø 1, AxesOrigin Ø 80, 0<, PlotRange Ø AllE=,

ImageSize Ø 200E
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Out[30]=
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Show can be used to combine arbitrary graphics. For example, you can give a graphic
a background image.
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In[31]:= g1 = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "Graphics"E;

g1 = GraphicsA9Opacity@0.3D, g1@@1DD=E;

H*Insert opacity directive into graphics.*L

ShowAPlotAx, 8x, 0, 100<, PlotStyle Ø ThickE,

g1, PlotRange Ø All, ImageSize Ø SmallE

Out[32]=

One  of  my  favorite  mathematical  illustrations  is  convergence  through  the  iteration
of  a  function  (something  I  am sure  many  of  you  have  done  by  repeatedly  pressing
Cos on a pocket calculator). Here, NestList performs 12 iterations. We duplicate ev-
ery two and flatten and partition into pairs with overhand of 1 to yield the points for
illustrating the convergence of the starting point 1 to the solution of x == Cos[x]. 

In[33]:= Show@Plot@8x, Cos@xD<, 8x, 0.1, 1.1<D, Graphics@

Line@Partition@Flatten@8Ò, Ò< & êü NestList@Cos, 1.0, 12DD, 2, 1DDDD

Out[33]=
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Show uses the following rules to combine plots:

Ë Use the union of plot intervals.

Ë Use  the  value  of  Options  from  the  first  plot  unless  overridden  by  Show’s  own
options.

6.6 Displaying Multiple Graphs in a Grid
Problem
You want to display several related graphs for easy comparison.

Solution
Use GraphicsGrid in Mathematica 6 or GraphicsArray in earlier versions. You can use
tables to group several plots together, but this gives you very little control of the lay-
out  of  the  images.  GraphicsGrid  gives  control  of  the  dimensions  of  the  grid,  the
frame, spacing, dividers, and other options. The dimensions of the grid are inferred
from  the  dimensions  of  the  list  of  graphics  passed  as  the  first  argument.  You  will
find  Partition  handy  for  converting  a  linear  list  into  the  desired  two-dimensional
form.

In[34]:= WithA8cols = 2<,

GraphicsGridA

PartitionATableAPlotA0.5 Sin@2 qD, 8q, 0, 2 p<,

Mesh Ø m, ImageSize Ø Small, Frame Ø True,

FrameLabel Ø "Mesh Ø " <> ToString@mDE,

8m, 8None, Automatic, All, Full, 16, 50<<E,

colsE, Frame Ø AllE

E
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Out[34]=
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Discussion
In  addition  to  GraphicsGrid,  Mathematica  provides  GraphicsRow  and  GraphicsColumn,
which are simpler to use for laying out graphics  horizontally  or  vertically.  These
layout functions can be combined and nested to create more complex layouts. Here
I demonstrate using GraphicsRow to show a GraphicsColumn next to another Graphics-
Row. Frames can be drawn around the row or column (FrameØTrue) or additionally
dividing all the elements (FrameØAll).
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In[35]:= WithA9polygons = TableA

GraphicsA9EdgeForm@BlackD, FaceFormALightGrayE,

Polygon@Table@8Cos@2 Pi k êpD, Sin@2 Pi k êpD<, 8k, p<DD=,

ImageSize Ø TinyE,

8p, 4, 8, 2<E=,

GraphicsRowA9

GraphicsColumnApolygons, Frame Ø TrueE,

GraphicsRowApolygons, Frame Ø TrueE

=, Frame Ø All, ImageSize Ø 450EE

Out[35]=

6.7 Creating Plots with Legends
Problem
You want to identify the information in a plot of multiple data sets using a legend.

Solution
Use the PlotLegends`  package with the PlotLegend,  LegendPosition,  and LegendSize
options.
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In[36]:= NeedsA"PlotLegends`"E;

PlotA8Sin@xD, Sin@2 xD<, 8x, 0, 2 Pi<,

PlotStyle Ø 8Directive@Black, DottedD, Directive@Black, DashedD<,

PlotLegend Ø 8"Sin x", "Sin 2x"<,

LegendPosition Ø 81, 0.1<, LegendSize Ø 0.75E

Out[37]=
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Legends  use  their  own coordinate  system,  for  which the  center  of  the  graphic  is  at
{0,0}  and  the  inside  is  the  scaled  bounding  region  {{-1,-1},{1,1}}.  LegendPosition
refers to the lower left corner of the legend.

Discussion
There are a variety of options for further tweaking the legend’s appearance. You can
turn off or control the offset of the drop shadow (LegendShadow);  control spacing of
various  elements  using  LegendSpacing,  LegendTextSpace,  LegendLabelSpace,  and
LegendBorderSpace;  control  the  labels  with  LegendTextDirection,  LegendTextOffset,
LegendSpacing,  and  LegendTextSpace;  and  give  the  legend  a  label  with  LegendLabel
and LegendLabelSpace. 

Notice  the  effect  of  LegendTextSpace,  which  is  a  bit  counterintuitive  because  it  ex-
presses the ratio of the text space to the size of a key box so larger numbers actually
shrink the legend. LegendSpacing controls the space around each key box on a scale
where the box size is 1. 
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In[38]:= plotCommonOptions = SequenceA

PlotStyle Ø 8Directive@Black, DottedD, Directive@Black, DashedD<,

PlotLegend Ø 8"Sin x", "Sin 2x"<, LegendPosition Ø 81, 0.1<,

LegendSize Ø 0.75, ImageSize Ø 250E;

GraphicsGridA9

9PlotA8Sin@xD, Sin@2 xD<, 8x, 0, 2 Pi<,

Evaluate@plotCommonOptionsD,

LegendShadow Ø None,

LegendSpacing Ø 1ê2, LegendTextSpace Ø 10E,

PlotA8Sin@xD, Sin@2 xD<, 8x, 0, 2 Pi<,

Evaluate@plotCommonOptionsD,

LegendShadow Ø None, LegendLabel Ø "Plots",

LegendSpacing Ø 0.2, LegendTextSpace Ø 5E

=,

9PlotA8Sin@xD, Sin@2 xD<, 8x, 0, 2 Pi<,

Evaluate@plotCommonOptionsD,

LegendShadow Ø 8-0.1, -0.1<, LegendLabel Ø "Plots",

LegendSpacing Ø 0.2, LegendTextSpace Ø 5E,

PlotA8Sin@xD, Sin@2 xD<, 8x, 0, 2 Pi<,

Evaluate@plotCommonOptionsD,

LegendShadow Ø 80.1, 0.1<,

LegendSpacing Ø 1ê2, LegendTextSpace Ø 10E

=

=,

Dividers Ø AllE
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Out[39]=
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See Also
Sometimes  you  want  to  create  a  more  customized  legend.  In  that  case,  consider  
Legend and ShowLegend.

See the tutorial on the PlotLegends` package at http://bit.ly/TYvfV.

6.8 Displaying 2D Geometric Shapes
Problem
You want to create graphics that contain lines, squares, circles, and other geometric
objects.

Solution
Mathematica  has  a  versatile  collection  of  graphics  primitives:  Text,  Polygon,
Rectangle,  Circle,  Disk,  Line,  Point,  Arrow,  Raster,  and Point  can  be  combined  to
create  a  variety  of  2D  drawings.  Here  I  demonstrate  a  somewhat  frivolous  yet
instructive  function  that  creates  a  snowman  drawing  using  a  broad  sampling  of
the  available  primitives.  Included  is  a  useful  function,  ngon,  for  creating  regular
polygons.
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In[41]:= ClearAllAgenerateSnowE

In[42]:= H*Create a regular polygon.*L

ngonAsides_Integer, center_List, size_?NumberQ, rotation_: 0 E :=

Polygon@Table@8size Cos@2 Pi kêsides + rotationD + center@@1DD,

size Sin@2 Pi kêsides + rotationD + center@@2DD<, 8k, sides<DD

H*Generate snow as randomly scattered pairs of

semitransparent points of random size.*L

generateSnowAminPoint_List, maxPoint_List, density_?NumberQE := ModuleA

9size, z = 100, j=, 9Opacity@0.3D, ReapADoAWhichARandomReal@D < 0.3,

size = RandomReal@80.001, 0.008<D;

j = RandomReal@8-1.0, 1.0<D;

SowA9PointSize@sizeê1.3D,

IfARandomReal@D < 0.5, 9PointA9x, y + z size + j =E,

PointA9x, y - z size + j=E, PointA9x + z size, y + j =E,

PointA9x - z size, y + j=E=, 9PointA9x + z size, y + z size + j =E,

PointA9x - z size, y + z size + j=E, PointA9x + z size,

y - z size + j =E, PointA9x - z size, y - z size + j=E=E,

PointSize@sizeD, PointA9x, y + j=E=EE,

9x, minPoint@@1DD, maxPoint@@1DD, density=,

9y, minPoint@@2DD, maxPoint@@2DD, density=EE@@2, 1DD=E

H*Draw a snowman whose base is of the given radius.*L

snowmanAbodyRadius_E := ModuleA9bodyCenter = 80, 0<,

H*Proportioning the torso and head

based on golden ratio gives a pleasing effect.*L

torsoRadius = bodyRadius ë GoldenRatio,

headRadius = bodyRadius ë HGoldenRatio^2L,

torsoCenter, headCenter, leftShoulder, rightShoulder,

buttonSize = bodyRadiusë 10, buttonSep = bodyRadiusë 3.3,

leftHand, rightHand, mouthCenter, leftEyeCenter, rightEyeCenter=,

torsoCenter = 9bodyCenter@@1DD, torsoRadius + bodyRadius=;

headCenter =

9bodyCenter@@1DD, bodyRadius + 2 torsoRadius + headRadius=;

H*Position the arms at -60 and 60 degrees.*L

leftShoulder =

torsoCenter + 8torsoRadius *Sin@-Piê3D, torsoRadius * Cos@-Piê3D<;

leftHand = torsoCenter + 83 torsoRadius *Sin@-Piê3D,

3 torsoRadius * Cos@-Piê3D<;

rightShoulder = torsoCenter + 8torsoRadius *Sin@Piê3D,

torsoRadius * Cos@Piê3D<;

rightHand = torsoCenter + 83 torsoRadius *Sin@Piê3D,

3 torsoRadius * Cos@Piê3D<;
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In[42]:=

H*Position eyes at -45 and 45 degrees and half

the radius of the head.*L

leftEyeCenter = headCenter + 80.5 headRadius * Sin@-Piê4D,

0.5 headRadius * Cos@-Piê4D<;

rightEyeCenter = headCenter + 80.5 headRadius * Sin@Piê4D,

0.5 headRadius * Cos@Piê4D<;

H*Position mouth at 180 degrees -

bottom of circle. Also half radius of head.*L

mouthCenter = headCenter +

80.5 headRadius * Sin@PiD, 0.5 headRadius * Cos@PiD<;

GraphicsA9

CircleAbodyCenter, bodyRadiusE, H*base ciricle*L

Circle@torsoCenter, torsoRadiusD, H*middle circle*L

Circle@headCenter, headRadiusD, H*head*L

Circle@mouthCenter, headRadiusê4, 8-Pi, 0<D,

H*half circle for mouth*L

H*Use disks for eyes.*L

DiskAleftEyeCenter, headRadiusê8E,

DiskArightEyeCenter, headRadiusê8E,

H*Make a carrot-shaped nose out of lines. The

proportions here were worked out by trial and error.*L

Line@8headCenter - 80, headRadiusê10<, headCenter -

8headRadiusê2, headRadiusê5<, headCenter + 80, headRadiusê10<<D,

H*I use arrows for arms to illustrate how they

work. See discussion for more detail.*L

8Arrowheads@8-0.1, 0<D, Arrow@8leftHand, leftShoulder<D<,

9Arrowheads@80, 0.1<D, ArrowA9rightShoulder, rightHand=E=,

9Gray, Thickness@torsoRadiusê800D,

LineA9rightHand + 8-2, 2<, 9rightHand@@1DD - 2, -bodyRadiusë 2==E,

RectangleAbodyCenter + 9bodyRadiusë 1.4, -2=,

bodyCenter + 92.4 bodyRadius, -bodyRadius=E=,

generateSnowA9-2 bodyRadius, -bodyRadius=,

93 bodyRadius, 3.1 bodyRadius=, 5E,

H*Use pentagons to simulate coal buttons.*L

ngonA5, 90, torsoRadius + bodyRadius - buttonSep=, buttonSizeE,

ngonA5, 90, torsoRadius + bodyRadius=, buttonSizeE,

ngonA5, 90, torsoRadius + bodyRadius + buttonSep=, buttonSizeE=,

ImageSize -> bodyRadius*10EE

snowman@40D
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Out[45]=

Discussion
One of the keys to getting the most out of the graphics primitives is to learn how to
combine  them  with  graphics  directives.  Some  directives  are  very  specific,  whereas
others are quite general. For example, Arrowheads applies only to Arrow, whereas Red
and Opacity apply to all primitives. A directive will apply to all objects that follow it,
subject to scoping created by nesting objects within a list. For example, in the follow-
ing graphic, Red applies to Disk and Rectangle but not Line because the line is given
a specific color and thickness within its own scope.

In[46]:= GraphicsA9Red, Disk@8-2, -2<, 0.5D, Rectangle@D, 8Thickness@0.02D,

Black, Line@88-1.65, -1.65<, 80, 0<<D<=, ImageSize Ø SmallE

Out[46]=

Color directives can use named colors: Red,  Green,  Blue,  Black,  White,  Gray,  Cyan,
Magenta,  Yellow,  Brown,  Orange,  Pink,  Purple,  LightRed,  LightGreen,  LightBlue,
LightGray, LightCyan, LightMagenta, LightYellow, LightBrown, LightOrange, LightPink, and
LightPurple.  You  can  also  synthesize  colors  using  RGBColor  or  Hue,  CMYKColor,
GrayLevel,  and  Blend.  In  Mathematica  6  or  later  versions,  these  directives  can
take opacity values in addition to values that define the color or gray settings. Blend
is also new to Mathematica 6.

266 | Chapter 6: Two-Dimensional Graphics and Plots



In[47]:= GraphicsATableA9Hue@xD, Rectangle@8x, 1<, 8x + 0.1, 2<D=, 8x, 0, 0.99, .1<E,

ImageSize -> SmallE

Out[47]=

In[48]:= GraphicsATableA9Hue@xD, Rectangle@8x, 1<, 8x + 0.05, 2<D,

Blend@8Hue@xD, Hue@x + 0.05D<, 0.25D, Rectangle@8x + .05, 1<,

8x + 0.1, 2<D=, 8x, 0, 0.99, .1<E, ImageSize -> SmallE

Out[48]=

Of course, you’ll need to try the code on your own to view the colors.
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Thickness[r]  is  specified  relative  to  the  total  width  of  the  graphic  and,  therefore,
scales with size changes. AbsoluteThickness[d] is specified in units of printer points
(1/72 inch) and does not scale. Thick  and Thin  are predefined versions (0.25 and 2,
respectively) of AbsoluteThickness. Thickness directives apply to primitives that con-
tain lines such as Line, Polygon, Arrow, and the like.

In[49]:= Graphics@8Line@880, -1<, 80, 1<<D,

8Thin, Line@880.5, -1<, 80.5, 1<<D<, 8Thick, Line@881, -1<, 81, 1<<D<,

8AbsoluteThickness@3D, Line@881.5, -1<, 81.5, 1<<D<<D

Out[49]=

See Also
Recipe 14.12 applies Mathematica’s graphics primitives to the serious task of visualiz-
ing Hull-White trees, which are used in modeling interest-rate-sensitive securities.

Recipe  13.11  shows  an  application  in  constructing  finite  element  diagrams  used  in
engineering.
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6.9 Annotating Graphics with Text
Problem
You want to add stylized text to graphics.

Solution
Use Text with Style to specify FontFamily, FontSubstitutions, FontSize, FontWeight,
FontSlant, FontTracking, FontColor, and Background.

In[50]:= GraphicsA9TextAStyle@"12 Point Default Font", FontSize Ø 12D, 80, 0<E, TextA

Style@"16 Point Italic", FontSize Ø 16, FontSlant Ø ItalicD, 80, -.2<E,

TextAStyleA"14 Point Bold", FontSize Ø 14, FontWeight Ø BoldE, 80, -.4<E,

TextA

StyleA"14 Point Arial", FontSize Ø 14, FontFamily Ø "Arial"E, 80, -.6<E,

TextAStyleA"14 Point Arial Narrow", FontSize Ø 14,

FontFamily Ø "Arial", FontTracking Ø "Narrow"E, 80, -.8<E,

TextAStyleA"14 Point Bold White on Black", FontSize Ø 14,

FontWeight Ø Bold, FontColor Ø White, Background Ø BlackE,

80, -1<E=, ImageSize Ø SmallE

Out[50]=

12 Point Default Font

16 Point Italic

14 Point Bold

14 Point Arial

14 Point ArialNarrow

14 Point Bold White on Black

Discussion
In  this  chapter,  I  demonstrate  various  plotting  functions  that  contain  options  for
adding labels to the entire graph, frames, and axes. These options can also be stylized.
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In[51]:= PlotA0.5 Sin@2 qD, 8q, 0, 2 p<,

PlotLabel Ø StyleA0.5 Sin@2 qD, FontSize Ø 20, FontFamily Ø "Arial"E,

AxesLabel Ø 8"Radians", "Amplitude"<, LabelStyle Ø

DirectiveABold, FontFamily Ø "Arial", FontSize Ø 12E, Frame Ø True,

FrameLabel Ø Style@"Sine Wave", FontSlant Ø ItalicD, ImageSize Ø MediumE

Out[51]=

0 1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

Sine Wave

Radians

0.5 sinH2 qL

The Style  directive was added into Mathematica 6 and is  quite versatile.  Style  can
add style options to both Mathematica expressions and graphics.

6.10 Creating Custom Arrows
Problem
You want  to  create  arrows with custom arrowheads,  tails,  and connecting lines  for
use in annotating graphics.

Solution
Use Arrowheads with a custom graphic to create arbitrary arrowheads and tails.

In[52]:= WithA8h = Graphics@8Disk@80, 0<, 0.75D<D,

t = Graphics@8Line@88-0.5, 0<, 80.5, 0<<D,

Line@880, -0.6<, 80, 0.6<<D, Line@880.2, -0.6<, 80.2, 0.6<<D<D<,

GraphicsA8Arrowheads@880.05, 1, h<, 80.1, 0, t<<D,

Arrow@880, 0<, 80.25, 0.25<<D<, ImageSize Ø SmallEE
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Out[52]=

Discussion
Arrowheads  is quite versatile. You can easily create double-ended arrows and arrows
with multiple arrowheads along the span.

In[53]:= GraphicsA8Arrowheads@8-0.1, 0.1<D, Arrow@880, 0<, 81, 0<<D,

Arrowheads@80, 0.1, .1, .1, .1<D, Arrow@880, -0.5<, 81, -0.5<<D<,

ImageSize Ø SmallE

Out[53]=

You may consider using Arrowheads to label arrows, but Mathematica does not treat
such “arrowheads” specially, so you may get undesirable effects.
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In[54]:= GraphicsA9ArrowheadsA90, 9Automatic, 0.5, GraphicsA

9TextAStyleA"Label", FontSize Ø 14, FontWeight Ø BoldEE=E=, 0.1=E,

Arrow@880, 0<, 8-0.25, 0.25<<D=, ImageSize Ø SmallE

Out[54]=
Lab

el

A  better  option  is  to  position  the  text  by  using  Rotate  with  Text  or  Inset  or  by
using  GraphPlot  or  related  functions  (see  Recipe  4.6).  The  advantage  of  Inset  over
manually positioned Text  is  that you get auto-centering if  you don’t mind the label
not being parallel to the arrow.

In[55]:= GraphicsA9Arrowheads@80.1<D, Arrow@880, 0<, 8-0.25, 0.25<<D,

RotateATextAStyleA"Label", FontSize Ø 14, FontWeight Ø BoldE,

8-0.14, 0.11<E, -Piê4E=, ImageSize Ø SmallE

Out[55]= Label
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In[56]:= GraphicsA9Arrowheads@80.1<D, Arrow@880, 0<, 8-0.25, 0.25<<D,

InsetATextAStyleA"Label", FontSize Ø 14, FontWeight Ø BoldEEE=,

ImageSize Ø SmallE

Out[56]= Label
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CHAPTER 7

Three-Dimensional Plots and Graphics

Maybe I’ll win
Saved by zero
Holding onto

Winds that teach me
I will conquer

Space around me

The Fixx, “Saved by Zero”

7.0 Introduction
Modern  mathematics  demands  advanced  visualization  tools.  Although  Mathemati-
ca’s  2D  graphics  are  impressive,  3D  graphics  is  where  Mathematica  really  distin-
guishes  itself.  As  with  2D,  3D  graphics  are  represented  symbolically  but  with  the
head Graphics3D instead of Graphics. There are 3D counterparts to most 2D plotting
functions. For example, Plot3D and ListPlot3D are the counterparts to the 2D func-
tions Plot and ListPlot. There are also many functions unique to 3D space, such as
SphericalPlot3D and RevolutionPlot3D. 

Mathematica’s 3D graphics are interactive, although it is difficult to illustrate this in
book form! Any 3D plot or drawing can be rotated, flipped, and stretched, allowing
you to  see  different  perspectives.  Furthermore,  Mathematica  6  added a  host  of  op-
tions  for  controlling  lighting,  camera  placement,  and  even  how  light  reflects  off  of
surfaces (see Recipes 7.12 and 7.13). 
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The Symbolic Nature of Graphics
I  think most users  are quite impressed with the breadth and depth of  what Mathe-
matica 7 can achieve with plotting functions (see Recipes 7.1 through 7.9). However,
as a programmer, I am even more taken with what can be achieved in Mathematica
that would be next to impossible in most plotting packages outside of Mathematica.
When  you  ask  the  Mathematica  kernel  to  perform  a  plot,  it  does  not  produce  a
raster image that the frontend simply renders using the graphics hardware. Instead,
it  produces a symbolic representation of the plot that the frontend translates into a
raster  image.  Why  is  this  relevant?  Imagine  you  were  working  in  another  domain
(e.g.,  Microsoft  Excel)  and  there  were  two  plotting  functions  that  each  did  half  of
what you wanted to render on the screen. How could you morph those two plots to
achieve the desired result? You couldn’t. (I’m ignoring whatever skills you might pos-
sess  as  a  Photoshop hacker!)  In  Mathematica,  all  hope  is  not  lost.  In  Recipe  7.6,  a
3D plot and a 2D contour plot are combined to achieve a 3D plot with a 2D contour
“shadow” underneath. Another example is Recipe 7.10: RevolutionPlot3D is used to
generate  a  cone  to  compensate  for  the  lack  of  a  Cone  primitive  in  Mathematica  6
(Cone  is  built  into  Mathematica  7).  Achieving  these  results  involves  sticking  your
head under the hood and, sometimes, doing quite a bit of trial and error, but the re-
sults are within reach once you have the general principles.

See Also
In  Recipe  18.5,  I  discuss  how  the  attributes  of  3D  graphics  can  be  controlled
through stylesheets. If you intend to create publication-quality documents in Mathe-
matica, you should familiarize yourself with stylesheets. 

7.1 Plotting Functions of Two Variables 
in Cartesian Coordinates
Problem
You want to graph one or more built-in or user-defined functions of two variables.

Solution
Use Plot3D with the function or functions to plot and two lists specifying the ranges
for the independent variables. 
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In[1]:= Plot3DASinAx Pi ExpA-y + xEE, 8x, -1, 1<, 9y, -1, 1=E

Out[1]=

As with most plots, you can provide multiple functions. However, 3D plots will be-
come crowded quickly (Figure 7-1a), so consider placing multiple plots side by side
rather  than  trying  to  shoehorn  everything  into  a  single  plot.  With  some  functions
and options, this is not an issue (Figure 7-1b).

In[2]:= GraphicsGridA

99Plot3DA9SinAx Pi ExpA-y + xEE, CosAx Pi ExpA1 - x yEE=, 8x, -1, 1<,

9y, -1, 1=, PlotLabel Ø "a"E, Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<,

9y, -2, 2=, BoxRatios Ø Automatic, PlotLabel Ø "b"E==, ImageSize Ø LargeE

Out[2]=

Figure 7-1. 3D plots of multiple functions
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Discussion
As you might suspect, Plot3D  has a variety of options for customizing presentation.
Here I use Complement to list only those options that differ from the 2D Plot function
in Recipe 6.1.

In[3]:= Complement@First êü Options@Plot3DD, First êü Options@PlotDD

Out[3]= 9AxesEdge, BoundaryStyle, Boxed, BoxRatios, BoxStyle, ControllerLinking,

ControllerMethod, ControllerPath, FaceGrids, FaceGridsStyle,

Lighting, NormalsFunction, RotationAction, SphericalRegion, ViewAngle,

ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, ViewVertical=

In[4]:= 9AxesEdge, BoundaryStyle, Boxed, BoxRatios, BoxStyle, ControllerLinking,

ControllerMethod, ControllerPath, FaceGrids, FaceGridsStyle,

Lighting, NormalsFunction, RotationAction, SphericalRegion, ViewAngle,

ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, ViewVertical=

Out[4]= 9AxesEdge, BoundaryStyle, Boxed, BoxRatios, BoxStyle, ControllerLinking,

ControllerMethod, ControllerPath, FaceGrids, FaceGridsStyle,

Lighting, NormalsFunction, RotationAction, SphericalRegion, ViewAngle,

ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, ViewVertical=

AxesEdge  determines  where  the  axes  are  drawn,  and  the  default  value  of  Automatic
(Figure  7-2a)  usually  gives  good  results.  You  can  override  the  default  by  proving  a
specification  of  the  form  {{dir  y,  dir  z},{dir  x,  dir  z},{dir  x,  dir  y}}
where  each  dir  i  must  be  either  +1  or  |1,  indicating  whether  axes  are  drawn
on  the  edge  of  the  box  with  a  larger  or  smaller  value  of  coordinate  i,  respec-
tively (Figure 7-2b, c, and d). 
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In[5]:= GraphicsGridA99Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=,

BoxRatios Ø Automatic, PlotLabel Ø "a", AxesEdge Ø AutomaticE, Plot3DA

9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø Automatic,

PlotLabel Ø "b", AxesEdge Ø 88-1, -1<, 8-1, 1<, 8-1, -1<<E=,

9Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø

Automatic, PlotLabel Ø "c", AxesEdge Ø 881, 1<, 81, -1<, 81, 1<<E,

Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø

Automatic, PlotLabel Ø "d", AxesEdge Ø 881, 1<, 81, 1<, 81, 1<<E==,

ImageSize Ø 400, Spacings Ø 80.1, 0.1<E

Out[5]=

Figure 7-2. Examples of AxesEdge option
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BoundaryStyle allows you to stylize the edge of a plot surface.

In[6]:= Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=,

BoundaryStyle Ø Directive@Black, Thickness@0.0125DDE

Out[6]=

Boxed,  BoxRatios,  and  BoxStyle  control  the  presence,  proportions,  and  style  of  the
edges surrounding 3D plots. Each of the plots in Figure 7-3 is of the same function.
The differences  are  that  Figure  7-3a  is  not  boxed,  Figure  7-3b is  boxed with  Auto-
matic ratios, and Figure 7-3c and Figure 7-3d have specified ratios.
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In[7]:= GraphicsGridA

99Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=, PlotLabel Ø "a",

Boxed Ø FalseE, Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<,

9y, -2, 2=, BoxRatios Ø Automatic, PlotLabel Ø "b"E=,

9Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø

81, 2, 1<, PlotLabel Ø "c", AxesEdge Ø 881, 1<, 81, -1<, 81, 1<<E,

Plot3DA9x^2 + y^2, -x^2 - y^2=, 8x, -2, 2<, 9y, -2, 2=,

BoxRatios Ø 82, 1, 2<, PlotLabel Ø "d"E==, ImageSize Ø MediumE

Out[7]=

Figure 7-3. Examples of BoxRatios option

FaceGrids  specifies  grid  lines  to  draw on the faces  of  the  bounding  box.  You  can
specify  All  or  specific  faces  using  {x,y,z},  where  two values  are  0  and the  third  is
either +1 (largest value) or |1 (smallest  value).  FaceGridsStyle  allows you to stylize
the grid to your liking.
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In[8]:= GraphicsGridA99Plot3DAx^2 + y^2, 8x, -2, 2<, 9y, -2, 2=,

BoxRatios Ø Automatic, PlotLabel Ø "a", FaceGrids Ø AllE,

Plot3DAx^2 + y^2, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø Automatic,

PlotLabel Ø "b", FaceGrids Ø 880, 0, 1<<E=,

9Plot3DAx^2 + y^2, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø Automatic,

PlotLabel Ø "c", FaceGrids Ø 881, 0, 0<, 80, 1, 0<<E,

Plot3DAx^2 + y^2, 8x, -2, 2<, 9y, -2, 2=, BoxRatios Ø Automatic,

PlotLabel Ø "d", FaceGrids Ø 88-1, 0, 0<, 80, 1, 0<<,

FaceGridsStyle Ø Directive@Red, ThickDE==, ImageSize Ø 400E

Out[8]=

See Also
ViewAngle, ViewCenter, ViewMatrix, ViewPoint, ViewRange, ViewVector, and View-
Vertical  are  options  that  give  you  detailed  control  of  the  orientation  of  the  plot.
These are covered in Recipe 7.12.

Recipe 6.1 demonstrates Plot, which is the 2D counterpart to Plot3D.

7.2 Plotting Functions in Spherical Coordinates
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7.2 Plotting Functions in Spherical Coordinates
Problem
You want to plot a surface with spherical radius r as a function of rotational angles q
(latitude) and f (longitude).

Solution
Use  SphericalPlot3D  when  plotting  one  or  more  surfaces  in  spherical  coordinates.
Such plots most often arise in situations where there  is  some degree  of  rotational
symmetry. For example, a sphere is fully symmetrical under all rotations and is triv-
ially plotted using SphericalPlot3D as a constant radius.

In[9]:= SphericalPlot3DA1, 8q, 0, Pi<, 8f, 0, 2 Pi<, ImageSize Ø SmallE

Out[9]=

Discussion
You  can  plot  multiple  surfaces  by  providing  a  list  of  functions  and  leave  holes  in
some of the surfaces by returning the symbol None for these regions. 
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In[10]:= SphericalPlot3DA81, If@f < 3 Piê2, 2, NoneD, If@f < 3 Piê2, 3, NoneD<,

8q, 0, Pi<, 8f, 0, 2 Pi<, ImageSize Ø SmallE

Out[10]=

Of course, you will probably use SphericalPlot3D to plot more interesting functions
too.

In[11]:= SphericalPlot3DAExp@1êH1 + qL + Cos@3 fDD,

8q, 0, Pi<, 8f, 0, 2 Pi<, ImageSize Ø SmallE

Out[11]=

Use PlotStyle  to  achieve  some dramatic  effects.  Applying the Opacity  option is espe-
cially  useful  when  specifying  rotational  angles  greater  than  2Pi  radians;  otherwise,
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Use PlotStyle  to  achieve  some dramatic  effects.  Applying the Opacity  option is espe-
cially  useful  when  specifying  rotational  angles  greater  than  2Pi  radians;  otherwise,
the resulting interior surfaces would be hidden. Compare Figure 7-4a with Figure 7-4b.

In[12]:= GraphicsRowA

9SphericalPlot3DAIf@q < Piê4, None, 1êHf + 5 LD, 8q, 0, Pi<, 8f, 0, 4 Pi<,

PlotStyle Ø DirectiveAOrange, Opacity@0.6D, Specularity@White, 10DE,

Mesh Ø None, PlotPoints Ø 30, PlotLabel Ø "a"E,

SphericalPlot3DAIf@q < Piê4, None, 1êHf + 5 LD, 8q, 0, Pi<,

8f, 0, 4 Pi<, PlotStyle Ø DirectiveAOrange, Specularity@White, 10DE,

Mesh Ø None, PlotPoints Ø 30, PlotLabel Ø "b"E=, ImageSize Ø 400E

Out[12]=

Figure 7-4. Effect of Opacity

See Also
See Recipe 7.4 for the relationship between SphericalPlot3D and ParametricPlot3D.

7.3 Plotting Surfaces in Cylindrical Coordinates
Problem
You want to visualize a surface generated via a revolution of a function or paramet-
ric curve around the z-axis.
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Solution
Many common surfaces can be generated by revolving a 2D curve. The following ex-
amples illustrate the basic idea.

Revolve a parabola to create a bowl.

In[13]:= RevolutionPlot3DAt^2 , 8t, 0, 1<, ImageSize Ø SmallE

Out[13]=

Revolve a vertical line at a constant distance from the center to create a cylinder.

In[14]:= RevolutionPlot3DA81, t< , 8t, 0, 1<, ImageSize Ø SmallE

Out[14]=

Functions  that  incorporate  the  angle  of  revolution  can  create  more  exotic  surfaces,
such as the spiral shown here. Notice how the angle of revolution can be greater (or
less) than 2Pi (one revolution).
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In[15]:= RevolutionPlot3DA84 t, q< , 8t, 0, 1<, 8q, 0, 4 Pi<, ImageSize Ø SmallE

Out[15]=

Discussion
To  get  a  feel  for  RevolutionPlot3D,  plot  the  2D  parametric  version  of  the  equation
next  to  the  3D  revolution.  It  is  fairly  easy  to  see  how  the  180-degree  rotation
of  the  2D curve  around  the  y-axis in Figure 7-5a will  yield the 3D surface shown
in Figure 7-5b.
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In[16]:= ModuleA8f1, f2<,

fx@x_D := Sin@xD + Sin@9 xDê5;

fy@x_D := Cos@xD + Cos@9 xDê5;

GraphicsRowA9

ParametricPlotA9fx@tD, fy@tD=, 8t, 0, Pi<, PlotLabel Ø "a"E,

RevolutionPlot3DA9fx@tD, fy@tD=, 8t, 0, Pi<, 8q, 0, Pi<, PlotLabel Ø "b"E

=, ImageSize Ø 400EE

Out[16]=

Figure 7-5. Relationship between ParametricPlot and RevolutionPlot3D

RevolutionPlot3D  was introduced in Mathematica 6.  Prior  to version 6,  similar  sur-
faces  could be  generated with  ParametricPlot3D;  however,  the  equations  one needs
to plot a specific surface using RevolutionPlot3D are often simpler and more intuitive
than  those  used  when  plotting  parametrically.  Both  of  the  following  plots  yield  a
torus, but the RevolutionPlot3D version is simpler.

In[17]:= GraphicsRowA

8ParametricPlot3D@8H2 + Cos@vDL Sin@uD, H2 + Cos@vDL Cos@uD, 2 + Sin@vD<,

8u, 0, 2 Pi<, 8v, 0, 2 Pi<D,

RevolutionPlot3D@82 + Cos@tD, 2 + Sin@tD<, 8t, 0, 2 Pi<D<, ImageSize Ø 400E

Out[17]=

As of version 6, Mathematica did not have a RevolutionAxis option, which was in a
legacy package called Graphics`SurfaceOfRevolution`. The effect could be emulated
by swapping axes and using ViewVertical. Here I also use ViewPoint  to compensate
for  the  different  default  orientations  of  the  two  plotting  functions,  but  that  is  not
strictly necessary.  The important aspect of the code that produces Figure 7-6 is  the
transposition of t and t^2 in RevolutionPlot3D.
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As of version 6, Mathematica did not have a RevolutionAxis option, which was in a
legacy package called Graphics`SurfaceOfRevolution`. The effect could be emulated
by swapping axes and using ViewVertical. Here I also use ViewPoint  to compensate
for  the  different  default  orientations  of  the  two  plotting  functions,  but  that  is  not
strictly necessary.  The important aspect of the code that produces Figure 7-6 is  the
transposition of t and t^2 in RevolutionPlot3D.

In[18]:= Needs@"Graphics`SurfaceOfRevolution`"D

GraphicsRowA8RevolutionPlot3D@8t^2, t<, 8t, 0, 2<,

Ticks Ø None, ViewVertical Ø 8-1, 0, 0<, ViewPoint Ø 8-2, -2, 1.1<D,

SurfaceOfRevolution@8t, t^2<, 8t, 0, 2<, Ticks Ø None,

RevolutionAxis Ø 81, 0, 0<D<, ImageSize Ø 400E

General::obspkg :

Graphics`SurfaceOfRevolution` is now obsolete. The

legacy version being loaded may conflict with

current Mathematica functionality. See the

Compatibility Guide for updating information. à

Out[19]=

Figure 7-6.  Emulating SurfaceOfRevolution

(Note: RevolutionAxis was added in version 7.)

See Also
See discussion of ParametricPlot3D in Recipe 7.4. 

See Recipe 7.12 for use of the geometry options ViewVertical and ViewPoint.

7.4 Plotting 3D Surfaces Parametrically
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7.4 Plotting 3D Surfaces Parametrically
Problem
You  want  to  plot  a  3D  curve  or  surface  parameterized  over  a  region  defined  by  a
range. 

Solution
Here you plot  a  curve in  3D space by specifying a  single  variable  u  over  the range 
[|Pi,Pi]. This creates the curve in 3D space, shown in Figure 7-7.

In[20]:= ParametricPlot3DA8Cos@uD, Sin@uD, Cos@u^2D* Sin@u^2D<,

8u, -Pi, Pi<, ImageSize Ø SmallE

Out[20]=
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Figure 7-7. Curve in 3D space

Here you plot a surface in 3D space by specifying an area defined by variables u and
v, yielding Figure 7-8.
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In[21]:= ParametricPlot3DA8Cos@uD, Sin@vD, Cos@u^2D* Sin@v^2D<,

8u, -Pi, Pi<, 8v, -Pi, Pi<, ImageSize Ø SmallE

Out[21]=

Figure 7-8. Surface in 3D space

Discussion
To get a better understanding of ParametricPlot3D, consider it as a generalization of
the more specialized Plot3D.  In Plot3D,  the x  and y  coordinates always vary linearly
over the range as it plots a specified function in the z-axis. This implies that you can
mimic Plot3D using ParametricPlot (Figure 7-9). The only caveat is that you need to
change the BoxRatios, which have different defaults in ParametricPlot3D.

In[22]:= GraphicsRowA

9Plot3DASinAx yE + Cos@xD, 8x, -Pi, Pi<, 9y, -Pi, Pi=, PlotLabel Ø Plot3DE,

ParametricPlot3DA9x, y, SinAx yE + Cos@xD=, 8x, -Pi, Pi<, 9y, -Pi, Pi=,

BoxRatios Ø 81, 1, 0.4<, PlotLabel -> ParametricPlot3DE=, ImageSize Ø 400E

Out[22]=

Figure 7-9. Using ParametricPlot3D to emulate Plot3D
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The relationship between ParametricPlot3D and SphericalPlot3D can be understood
in terms of the following:

fx = f[q,f] sin q cos f

fy = f[q,f] sin q sin f

fz = f[q,f] cos q

For example,  if  we pick f[q,f]  to  be  the  constant  1,  both  SphericalPlot3D  and
ParametricPlot3D give a sphere using this relationship.

In[23]:= GraphicsRowA

8SphericalPlot3D@1, 8q, 0, Pi<, 8f, 0, 2 Pi<, PlotLabel -> SphericalPlot3DD,

ParametricPlot3D@81 Sin@qD Cos@fD, 1 Sin@qD Sin@fD, 1 Cos@qD<,

8q, 0, Pi<, 8f, 0, 2 Pi<, PlotLabel -> ParametricPlot3DD<, ImageSize Ø 400E

Out[23]=

7.5 Creating 3D Contour Plots
Problem
You want  to  create  a  plot  showing the  surfaces  where  a  function of  three  variables
takes on a specific value (Figure 7-10).

Solution
Use  ContourPlot3D  with  a  function  to  produce  evenly  spaced  contour  surfaces  for
that function. 
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In[24]:= ContourPlot3DASinAx y zE, 8x, -Pi, Pi<,

9y, -1, 1=, 8z, -1, 1<, ImageSize Ø 300E

Out[24]=

Figure 7-10. 3D contour plot example

Use  ContourPlot3D  with  an  equivalence  relation  to  plot  the  surface  where  the
equivalence  is  satisfied.  In  Figure  7-11,  ContourPlot3D  shows  the  surface  where  the
polynomial is equal to zero.

In[25]:= ContourPlot3DAx^3 + y^2 - z^2 == 0,

8x, -2, 2<, 9y, -2, 2=, 8z, -2, 2<, ImageSize Ø SmallE

Out[25]=

Figure 7-11. Surface where polynomial is zero
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Discussion
3D contour  plots  show surfaces  of  equal  value.  ContourPlot3D  plots  several  equally
spaced  surfaces  over  the  specified  intervals.  You  use  the  option  Contours  Ø  n,
where n is an integer, to control the number of surfaces.

In[26]:= GraphicsGridA

PartitionATableAContourPlot3DAx^3 + y^2 - z^2, 8x, -2, 2<, 9y, -2, 2=,

8z, -2, 2<, Contours Ø n, PlotLabel Ø "Contours->" <> ToString@nDE,

8n, 1, 4<E, 2E, ImageSize Ø 400E

Out[26]=

See Also
The 2D version ContourPlot is discussed in Recipe 7.6. 
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7.6 Combining 2D Contours with 3D Plots
Problem
You want to use a 2D contour plot to annotate the lower plane of a 3D plot.

Solution
Transform the 2D contour plot into a 3D graphic by adding a third z  coordinate of
constant value. Use Show to combine the new 3D graphic with a 3D plot.

In[27]:= ModuleA8f<, fAx_, y_, z_E := 2 x3 + 3 y2 - 5 z; ShowA

ContourPlot3DAfAx, y, zE, 8x, -1, 1<, 9y, -1, 1=, 8z, -1, 1<, Contours Ø 1E,

Graphics3DAContourPlotAfAx, y, -1E, 8x, -1, 1<, 9y, -1, 1=EP1T ê.

9x_Real, y_Real= Ø 9x, y, -1=E, ImageSize Ø 300EE

Out[27]=

Discussion
You can apply the same technique to Plot3D. Here I use a larger PlotRange on the
z-axis to provide room to see the contour. Using Opacity  to add some translucence
to the 3D plot also allows the contour plot to be better viewed.
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In[28]:= ModuleA8f<, fAx_, y_E := Sin@2 Pi x^3D + CosA 3 Pi y^2E;

ShowAPlot3DAfAx, yE, 8x, -1, 1<, 9y, -1, 1=,

PlotStyle Ø Opacity@0.7D, PlotRange Ø 8Automatic, Automatic, 8-8, 2<<E,

Graphics3DA

ContourPlotAfAx, yE, 8x, -1, 1<, 9y, -1, 1=, Axes Ø FalseE@@1D

D ê. 9x : _Real, y : _Real= Ø 9x, y, -8=E,

ViewPoint Ø 8-2, -2, 1<, ImageSize Ø 300

E

E

Out[28]=

7.7 Constraining Plots to Specified Regions
Problem
You want to plot a 3D surface that includes only the points defined by a predicate. 

Solution
Use  the  RegionFunction  option  with  Plot3D,  SphericalPlot3D,  RevolutionPlot3D,
ParametricPlot3D, and other 3D plots. 
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In[29]:= SphericalPlot3DA1, 8q, 0, Pi<, 8f, -Pi, Pi<,

RegionFunction Ø Function@8q, f<, Sin@f q D < 0.3D,

ViewPoint Ø 82, 2, 0<, ImageSize Ø SmallE

Out[29]=

Discussion
The  parameters  passed  to  a  region  function  vary  by  plot  type;  these  are  listed  in
Table 7-1.

Table 7-1. Region functions by plot type

Plot type RegionFunction arguments

Plot3D, ListPlot3D, ListSurfacePlot3D x, y, z

ContourPlot3D, ListContourPlot3D x, y, z, f

ParametricPlot3D x, y, z, u, v

SphericalPlot3D x, y, z, q, f , r

RevolutionPlot3D x, y, z, t, q, r

The region function can be  used to  create  quite  exotic  effects,  as  demonstrated  in  
Figure 7-12.
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The region function can be  used to  create  quite  exotic  effects,  as  demonstrated  in  
Figure 7-12.

In[30]:= GraphicsRowA9SphericalPlot3DA1 + Sin@5 fDê10, 8q, 0, Pi<, 8f, 0, 2 Pi<,

RegionFunction -> HSin@5 HÒ3 + Ò5LD > 0 &L,

Mesh Ø None, BoundaryStyle Ø BlackE,

SphericalPlot3DA1 + Sin@5 fDê10, 8q, 0, Pi<, 8f, 0, 2 Pi<,

RegionFunction -> HSin@5 HÒ3 + Ò6LD > 0 &L,

Mesh Ø None, BoundaryStyle Ø BlackE=, ImageSize Ø 400E

Out[30]=

Figure 7-12. Effects of the RegionFunction option

7.8 Plotting Data in 3D
Problem
You  have  a  matrix  of  data  points  that  you  want  to  plot  as  heights,  with  possible  
interpolation of intermediate values.

Solution
Use  ListPlot3D  with  InterpolationOrderØ0  to  plot  distinct  levels,  Interpolation-
OrderØ1 to join points with straight lines, and InterpolationOrderØ2 or higher to
create smoother surfaces.

In[31]:= SeedRandom@1000D;

data = RandomReal@8-10, 10<, 820, 20<D;
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In[33]:= GraphicsColumnA

Table@ListPlot3D@data, InterpolationOrder Ø i, Mesh Ø NoneD, 8i, 0, 2<D,

ImageSize Ø 150, Frame Ø AllE

Out[33]=
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Discussion
3D list plots are often enhanced by use of a mesh. Here, in an example adapted from
the Wolfram documentation, I show a plot of elevation of the state of Utah by lati-
tude and longitude.  The option MeshFunctions Ø {#3 &}  uses the elevation data to
specify the mesh giving contours (first  image) that help visualize the elvation better
than the default mesh (second image).

In[34]:= ColumnA9ListPlot3DA

9CityDataAÒ, "Longitude"E, CityData@Ò, "Latitude"D, CityData@Ò,

"Elevation"D= & êü CityData@8All, "Utah", "UnitedStates"<D,

MeshFunctions Ø 8Ò3 &<, ImageSize Ø 300E,

ListPlot3DA9CityDataAÒ, "Longitude"E,

CityData@Ò, "Latitude"D, CityData@Ò, "Elevation"D= & êü

CityData@8All, "Utah", "UnitedStates"<D, ImageSize Ø 300E=E

Out[34]=

See Also
ListPointPlot3D is used to create 3D scatter plots. 
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7.9 Plotting 3D Regions Where a Predicate 
Is Satisfied
Problem
You want to visualize regions where a predicate is satisfied.

Solution
RegionPlot takes a predicate of up to three variables. The predicate can use all of the
relational operators (<, <=, >, >=, ==, !=) and logical connectives (&&, ||, Not). 

In[35]:= RegionPlot3DA x^2 + z^3 - 4 y^2 > 1 »» x^2 + y^2 + z^2 < 0.5,

8x, -2, 2<, 9y, -2, 2=, 8z, -2, 2<, ViewPoint Ø Front, ImageSize Ø 250E

Out[35]=

Discussion
RegionPlot3D uses an adaptive algorithm that is based on the options PlotPoints and
MaxRecursion.  The  default  setting  for  each  is  Automatic,  meaning  Mathematica  will
pick what it thinks are appropriate values based on the predicate and ranges. The al-
gorithm first samples using equally spaced points, and then subdivides those points
based on MaxRecursions and the behavior of the predicate. It is possible for the algo-
rithm to miss regions where the predicate is true. One way to gain confidence in the
result  is  to  plot  with  successively  larger  values  for  PlotPoints  and  MaxRecursion.
However, of the two, PlotPoints usually has a more significant effect. 
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In[314]:= GridAPartitionATableA

RegionPlot3DAx^2 + y^2 + z^2 § 0.75 + Sin@3 xD SinA5 yE Sin@7 zDê2,

8x, -1.25, 1.25<, 9y, -1.25, 1.25=, 8z, -1.25, 1.25<, Mesh Ø None,

MaxRecursion Ø 0, PlotPoints Ø ppE, 8pp, 85, 10, 15, 25<<E, 2EE

Out[314]=

7.10 Displaying 3D Geometrical Shapes
Problem
You  want  to  create  graphics  that  contain  spheres,  cylinders,  polyhedra,  and  other
3D shapes.
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Solution
Mathematica has 3D primitives: Cuboid, Sphere, Cylinder Line, Point, and Polygon. 

In[37]:= ClearAll@coneD

In[38]:= coneAheight_, base_, 9x_, y_, z_=, 9ax_, ay_, az_=E :=

ModuleA8c1, c2, c3, c4, c5<,

c1 = RevolutionPlot3DA9t, -height t 2=, 8t, 0, base<, Mesh Ø NoneE;

c2 = Rotate@c1@@1DD, ax, 81, 0, 0<D; c3 = RotateAc2, ay, 80, 1, 0<E;

c4 = Rotate@c3, az, 80, 0, 1<D;

c5 = TranslateAc4, 9x, y, z + height * base=E; c5E

torus@D := 8<

snowman3DAbodyRadius_E := ModuleA9bodyCenter = 80, 0, 0<,

H*Proportioning the torso and

head based on golden ratio gives pleasing effect.*L

torsoRadius = bodyRadius ë GoldenRatio,

headRadius = bodyRadius ë HGoldenRatio^2L,

torsoCenter, headCenter, leftShoulder, rightShoulder,

buttonSize = bodyRadiusë 10, buttonSep = bodyRadiusë 3.3,

leftHand, rightHand, mouthCenter, leftEyeCenter, rightEyeCenter=,

torsoCenter =

9bodyCenter@@1DD, bodyCenter@@2DD, torsoRadius + bodyRadius=;

headCenter = 9bodyCenter@@1DD, bodyCenter@@2DD,

bodyRadius + 2 torsoRadius + headRadius=;

H*Position the arms at -60 and 60 degrees.*L

leftShoulder = torsoCenter +

8torsoRadius *Sin@-Piê3D, 0, torsoRadius * Cos@-Piê3D<;

leftHand = torsoCenter + 82.5 torsoRadius *Sin@-Piê3D,

0, 3 torsoRadius * Cos@-Piê3D<;

rightShoulder = torsoCenter + 8torsoRadius *Sin@Piê3D,

0, torsoRadius * Cos@Piê3D<;

rightHand = torsoCenter + 82.5 torsoRadius *Sin@Piê3D,

0, 3 torsoRadius * Cos@Piê3D<;

H*Position eyes at -45 and 45 degrees and half

the radius of the head.*L

leftEyeCenter = headCenter + 80.5 headRadius * Sin@-Piê4D,

-0.8 headRadius, 0.5 headRadius * Cos@-Piê4D<;

rightEyeCenter = headCenter + 80.5 headRadius * Sin@Piê4D,

-0.8 headRadius, 0.5 headRadius * Cos@Piê4D<;

H*Position mouth at 180 degrees - bottom of circle,

also half radius of head.*L

mouthCenter = headCenter + 80.75 headRadius * Sin@PiD,

-25, 0.75 headRadius * Cos@PiD<;
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In[38]:=

Graphics3DA9

SphereAbodyCenter, bodyRadiusE, H*Base circle*L

Sphere@torsoCenter, torsoRadiusD, H*Middle circle*L

Sphere@headCenter, headRadiusD,

Cylinder@8leftShoulder, leftHand<, 1.5D,

CylinderA9rightShoulder, rightHand=, 1.5E,

SphereAleftEyeCenter, headRadiusê4E,

SphereArightEyeCenter, headRadiusê4E,

coneAheadRadiusê4, headRadiusê4,

headCenter - 8headRadiusê8, 2 headRadius, 0.75 headRadius<,

990 Degree, 180 Degree, -5 Degree=E=, Axes Ø True,

AxesLabel Ø 9"x", "y", "z"=, ImageSize Ø SmallEE;

snowman3D@30D

Out[41]=

Discussion
A  more  mathematically  inspired  demonstration  of  graphics  primitives  is  the  Dan-
delin  construction.  Here  one  drops  two  spheres,  one  small  and  one  large,  into  a
cone  such  that  the  spheres  do  not  touch.  Consider  a  plane  that  slices  through  the
cone tangent to the surface of both spheres. As you may know, a plane intersecting
a  cone traces an ellipse. What is remarkable is that the tangent points with the spheres
are the foci of this ellipse. I adapt the construction from Stan Wagon’s Mathematica
in  Action  (W.H.  Freeman),  upgrading it  to  take  advantage  of  the  advanced 3D fea-
tures  of  Mathematica  6,  such  as  Opacity  and  PointSize.  I  refer  the  reader  to  Wag-
on’s book for the derivation of the mathematics.
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In[42]:= BlockA

8r1, r2, m, h1, h2, C1, C2, M, MC1, MC2, T1, T2, ht,

cone, slope, plane<,

8r1, r2< = 81.4, 3.4<;

m = TanA70.*DegreeE;

h1 := r1*Sqrt@1 + m^2D;

h2 := r2*Sqrt@1 + m^2D;

C1 := 80, 0, h1<;

C2 := 80, 0, h2<;

M = 80, MC1 + h1<;

MC2 = MC1*Hr2êr1L;

MC1 = Hr1*Hh2 - h1LLêHr1 + r2L;

T1 = C1 + r1*8-Sqrt@1 - r1^2êMC1^2D, 0, r1êMC1<;

T2 = C2 + r2*8Sqrt@1 - r2^2êMC2^2D, 0, -Hr2êMC2L<;

ht = 1.2*Hh2 + r2L; cone@m_, h_D :=

RevolutionPlot3D@8t, m*t<, 8t, 0, hêm<, Mesh -> FalseD@@1DD;

slope = HT2@@3DD - T1@@3DDLêHT2@@1DD - T1@@1DDL;

plane = ParametricPlot3D@8t, u, slope*t + M@@2DD<, 8t, -2*m, 12êm<,

8u, -3, 3<, Boxed -> False, Axes -> FalseD@@1DD;

Graphics3DA99Opacity@0.45D, cone@m, 1.2*Hh2 + r2LD=,

9Opacity@0.5D, Sphere@C1, r1D, Sphere@C2, r2D=,

9Opacity@0.5D, plane=, PointSize@0.0175D, Point@T1D, Point@T2D=,

Boxed -> False, ViewPoint -> 8-1.8, -2.5, 1.5<, ImageSize -> 300EE

Out[42]=

Mathematica can also deal with 3D graphics that are not necessarily of mathemati-
cal origin. You can demonstrate this using ExampleData.
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Mathematica can also deal with 3D graphics that are not necessarily of mathemati-
cal origin. You can demonstrate this using ExampleData.

In[43]:= GraphicsGridA

PartitionAExampleData êü TakeA ExampleDataA"Geometry3D"E, 16E, 4EE

Out[43]=

7.11 Constructing Wireframe Models from Mesh
Problem
You want to build a wireframe model or other structural models from an existing 3D
plot.

Solution
The following solution was developed by Ulises Cervantes-Pimentel and Chris Carl-
son of Wolfram Research. As with Recipe 7.6, the trick is to leverage Mathematica’s
symbolic representation of 3D graphics and to perform transformations on that repre-
sentation to yield the desired result. 

You begin with the shape of interest. Here Chris Carlson was interested in an archi-
tectural  model  of  a  bubblelike  structure.  Note  the  use  of  the  Mesh  option,  which is
central to extracting the wireframe.
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In[44]:= bubbleModel = ModuleC

9d = 1.5`, h = 5, l = 0.15`, nx = 10, ny = 10, r = 0.4`, t = 0.15`, zMin = -0.2`=,

ContourPlot3DC x -
d

2

2

+ y2 + h z2 - 1 x +
d

2

2

+ y2 + h Hz + tL2 - r ,

8x, -2, 2<, 9y, -2, 2=, 8z, zMin, 1<, BoxRatios Ø Automatic,

PlotPoints Ø 20 81, 1, 1<, Axes Ø None, PerformanceGoal Ø "Quality",

Contours Ø 8l<, ImageSize Ø 400, Mesh Ø 9nx, ny, 0=GG

Out[44]=

You can go directly to a wireframe by simply extracting the lines.

In[45]:= Graphics3DACases@Normal@bubbleModelD, _Line, ¶D,

Boxed Ø False, ImageSize Ø 400E

Out[45]=

Discussion

7.11 Constructing Wireframe Models from Mesh | 307



Discussion
The solution was quite simple because the transformation was a simple extraction of
graphics data that was already present. However, you can take this approach much
further.  Here  Normal  is  used  to  force  the  Graphics3D  object  into  a  representation  of
low-level  primitives,  and  Cases  is  used  to  extract  the  lines.  However,  this  time  the
lines are transformed to polygons to create a box model.

In[46]:= Graphics3DACasesANormal@bubbleModelD, Line@pts_, ___D ß Polygon@ptsD, ¶E,

Boxed Ø False, ImageSize Ø 400E

Out[46]=

If your end goal was an architectural structure, the box model is no good. You need
to open up the space. Here is an even more sophisticated transformation that turns
the walls of the model into curved support beams.

In[47]:= InsetPoints@pts_D := PolygonAJoinApts, ReverseA

ModuleA9centroid = HPlus üü ptsLë Length@ptsD=,

HÒ + .1 Hcentroid - ÒLL & êü ptsE

EEE

Graphics3DACases@Normal@bubbleModelD,

Line@pts_, ___D ß InsetPoints@ptsD, ¶D, Boxed Ø False, ImageSize Ø 500E

Out[48]=
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As a final step, you may want to show how the structure would look if it were cov-
ered  with  a  translucent  covering.  Here  Mathematica’s  sophisticated  Lighting  and
Specularity options are used. 

In[49]:= Graphics3DA9

Gray,

Cases@Normal@bubbleModelD, Line@pts_, ___D ß InsetPoints@ptsD, ¶D,

EdgeForm@NoneD, Opacity@.5D,

Specularity@White, 1000D, Hue@.66, .75, .5D, Lighting Ø "Neutral",

CasesANormal@bubbleModelD, _Polygon, ¶E

=, Boxed Ø False, ImageSize Ø 500, Lighting Ø "Neutral"E

Out[49]=

See Also
Recipe 7.13 covers Lighting and Specularity.

Chris  Carlson  gave  a  superb  presentation  at  the  2009  International  Mathematica
User Conference (IMUC). This post on the Wolfram Blog covers a good portion of
the talk: http://bit.ly/291CDE.

7.12 Controlling Viewing Geometry 
Problem
You want  to  control  the  placement  of  a  simulated  camera  that  determines  viewing
perspective of a 3D graphic.
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Solution
Use the ViewPoint option to control the point in space from which a 3D object is to
be viewed. Here I enumerate some of the possibilities.

In[50]:= GraphicsGridA

PartitionATableAAppendAExampleDataA9"Geometry3D", "Beethoven"=E,

9ViewPoint Ø vp, PlotLabel Ø ToString@vpD=E, 9vp, 9Front, Back,

Above, Below, Top, Left, Right, 80, -2, 2<, 82, -2, 0<==E, 3EE

Out[50]=
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Use the  ViewCenter  option  to  control  the  point  that  should  appear  as  the  center  of
the displayed image. The coordinates are scaled to the range [0,1].

In[51]:= GridAPartitionA

TableAGraphics3DACylinder@D, ViewCenter Ø vc, SphericalRegion Ø True,

PlotLabel Ø ToString@N@vc, 2DD, ImageSize Ø TinyE, 8vc,

880, 0, 0<, 81ê2, 1ê2, 1ê2<, 81, 0, 1<, 81, 1, 0<, 80, 1, 1<, 81, 1, 1<,

81ê3, 1ê2, 1ê3<, 80, 1ê3, 1ê3<, 81ê3, 1ê3, 0<<<E, 3E, Frame Ø AllE

Out[51]=
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Use the ViewVertical option to control which coordinates should be vertical.

In[52]:= GraphicsRowATableAGraphics3DACylinder@D, ViewVertical Ø vvE,

8vv, 881, 0, 0<, 80, 1, 0<, 80, 0, 1<, 8-0.5, -1, 1<<<EE

Out[52]=

Discussion
For  many users,  combinations  of  ViewPoint,  ViewCenter,  and ViewVertical  will  cre-
ate  the  initial  spatial  orientation  of  the  3D  graphic  that  most  suits  your  tastes  or
visual  emphasis.  However,  there  are  additional  options  that  are  useful  in  some cir-
cumstances. ViewVector allows you to control the position and orientation of a simu-
lated  camera.  ViewVector  takes  either  a  single  vector  that  specifies  the  position
of  the  camera  that  is  pointed  at  ViewCenter  or  a  pair  of  vectors  that  specify  both
the  position  of  the  camera  and  the  center.  ViewVector  overrides  ViewPoint  and
ViewCenter.  To  understand  the  concept  of  the  camera,  picture  yourself  looking
through the camera as it moves around the stationary graphic.

In[53]:= GraphicsRowA

TableAGraphics3DACylinder@D, SphericalRegion Ø True, ViewVector Ø vvE,

8vv, 885, 5, -5<, 80, 5, 5<, 85, -5, 0<, 82.5, 2, 2.5<<<EE

Out[53]=

Continuing with the camera metaphor, the option ViewAngle  is analogous to zoom-
ing. The default view angle is 35 degrees. You can specify a specific angle or the sym-
bol All, which will pick an angle that is sufficient to see everything.
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7.13 Controlling Lighting and Surface Properties
Problem
You want to modulate lighting and surface characteristics to highlight important fea-
tures or create artistic effects.

Solution
Mathematica  provides  quite  sophisticated control  of  light  via  the  options  Lighting,
Specularity,  and Glow.  The simplest  settings  for  Lighting  are  Automatic,  "Neutral",
and None (Figure 7-13).

In[54]:= GraphicsRowATableAGraphics3DASphere@D, Lighting Ø lE,

8l, 8Automatic, "Neutral", None<<EE

Out[54]=

Figure 7-13. Examples of Lighting

For  more  sophisticated  control,  you  can  specify  combinations  of  ambient,  direc-
tional, spot, and point light sources (Figure 7-14). Try the code on your own for the
full effect.

In[55]:= GraphicsRowATableAGraphics3DASphere@D, Lighting Ø lE,

8l, 888"Point", Red, 80, 0, 2<<<, 88"Ambient", Green<<,

88"Directional", Blue, 880, 0, 1<, 8-1, 1, 1<<<<<<EE

Out[55]=

Figure 7-14. Examples of Glow
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Glow is the opposite of Lighting. It specifies the color of the surface itself. Glow is also
different from an object’s color, as you can see in Figure 7-15. (However, Glow is not
easily  demonstrated  in  monochrome print.  Please  try  the  code  on  your  own to  see
the effect.) Both the cylinder and the sphere have a green color, but the sphere also
has a green glow. There is no lighting, so only the cylinder appears bright because of
Glow.  Another way Glow  differs from Lighting  is  that  it  does  not  affect  surround-
ing  objects,  only  the  objects  with  Glow.  In  other  words,  a  glowing  object  is  not  a
light source in the Graphics3D domain.

In[56]:= Graphics3DA99Glow@GreenD, Green, Cylinder@D=,

8Green, Sphere@82, 1.5, 0<D<=, Lighting Ø None, ImageSize Ø 300E

Out[56]=

Figure 7-15. Difference between Glow and color
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Discussion
As you probably would expect from your experience with colored lights, Mathemat-
ica lighting follows the additive color model (refer to the online version of the follow-
ing image to appreciate its full glory: http://bit.ly/xIgx7).

In[58]:= ModuleA9lights, plane=, lights = 88"Spot", Red, 883, 3, 5<, 83, 3, 0<<, Piê8<,

8"Spot", Green, 887, 3, 5<, 87, 3, 0<<, Piê8<,

8"Spot", Blue, 885, 6, 5<, 85, 6, 0<<, Piê8<<;

plane = ParametricPlot3D@8u, v, -2<, 8u, 0, 10<, 8v, 0, 9<,

PlotPoints Ø 100, MaxRecursion Ø 0, Mesh Ø None, Axes Ø FalseD;

ShowAplane, Lighting Ø lightsEE

Out[58]=

Lighting can be used as an option that applies to an entire graphic, but it also works
as  a  graphics  directive  that  applies  to  the  objects  that  follow  it  within  the  same
scope. 
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In[59]:= Graphics3DA9

9Lighting Ø 88"Directional", Blue, 880, 0, 1<, 8-1, 1, 1<<<,

8"Point", Red, 81, 1, 1<<<,

9Specularity@0.5D, Sphere@80, 0, 1<, 0.25D=,

Sphere@81, 0, 0<, 0.25D=,

Sphere@81, 1, 1<, 0.25D

=, Lighting Ø 88"Ambient", Green<<, ImageSize Ø SmallE

Out[59]=

Specularity  and Glow  are  strictly  used as  directives,  although  Specularity  can  be
combined with Lighting.

See Also
The  use  cases  covered  in  this  recipe  should  satisfy  most  common  uses  of  colored
lighting, but if you are trying to achieve very specific lighting effects, you should con-
sult  the  Mathematica  documentation  to  explore  the  full  range  of  forms  Lighting,
Specularity, and Glow can take and how they interact with color. 
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7.14 Transforming 3D Graphics
Problem
You want to scale, translate, or rotate graphics in 3D space.

Solution
Use Scale to stretch or shrink graphics.

In[60]:= GraphicsGridA

PartitionATableAGraphics3DA8Scale@Sphere@D, 8s, s, s<, 80, 0, 0<D<,

PlotRange Ø 88-2, 2<, 8-2, 2<, 8-2, 2<<,

PlotLabel Ø "Scale = " <> ToString@N@sDDE,

8s, 81ê3, 1ê2, 1, 2<<E, 2E, ImageSize Ø 300E

Out[60]=
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Use Translate  to move graphics in 3D space. Figure 7-16 presents four translations
of a sphere that is originally constructed at the origin.

In[61]:= GraphicsGridAPartitionA

TableAGraphics3DA8Translate@Sphere@80, 0, 0<, 0.75D, vD<, PlotRange Ø

88-2, 2<, 8-2, 2<, 8-2, 2<<, PlotLabel Ø "Vec = " <> ToString@N@vDDE,

8v, 88-1, -1, -1<, 80, 0, 0<, 81, 1, 1<, 81ê2, 0, -1ê2<<<E,

2E, ImageSize Ø 300E

Out[61]=

Figure 7-16. Examples of Translate

Use Rotate to change the orientation of graphics. Figure 7-17 rotates a cube through
Pi/4 radians (45 degrees) but uses different vectors to define the rotation axis.
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In[62]:= GraphicsGridA

PartitionATableAGraphics3DA8Rotate@Cuboid@D, Piê4, vD<, PlotRange Ø

88-2, 2<, 8-2, 2<, 8-2, 2<<, PlotLabel Ø "Vec =" <> ToString@N@vDDE,

8v, 88-1, 0, 1<, 80, 1, -1<, 81, 1, 0<, 81, 1, 1<<<E, 2E, ImageSize Ø 300E

Out[62]=

Vec =8-1., 0., 1.< Vec =80., 1., -1.<

Vec =81., 1., 0.< Vec =81., 1., 1.<

Figure 7-17. Examples of Rotate

Discussion
In  addition  to  the  primitive  transformations  shown  in  the  solution,  Mathematica
provides  support  for  transformation  matrices  and  symbolic  transformation  functions.
Matrices  include  RotationMatrix,  ScalingMatrix,  ShearingMatrix,  and  Reflection-
Matrix.  The transformation functions are  RotationTransform,  TranslationTransform,
ScalingTransform,  ShearingTransform,  ReflectionTransform,  RescalingTransform,
AffineTransform, and LinearFractionalTransform. A smattering of examples is given here.
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Transformations  work  in  conjunction  with  the  function  GeometricTransformation,
which takes a graphic and either a transformation or a matrix.

ShearingTransform[q,v,n]  is an area or volume preserving transformation that adds
a slant, also known as a shear, to a graphic. Shear is specified in terms of an angle q
along a vector v and normal to a second vector n. Figure 7-18 shows a polyhedron in
its  original  state  followed  by  a  shear  transform.  A  translucent  cube  is  also  trans-
formed to give a sense of the angles.

In[63]:= ModuleA9poly=, poly = PolyhedronDataA"DisdyakisDodecahedron"E@@1DD;

GraphicsRowA9

Graphics3DA9Green, poly=, Boxed Ø False, ViewPoint Ø FrontE,

Graphics3DA9Green,

GeometricTransformationApoly,

ShearingTransform@Piê6, 81, 0, 0<, 80, 0, 1<DE, Opacity@0.1D,

GeometricTransformationACuboid@8-1.5, -1.5, -1.5<, 81.5, 1.5, 1.5<D,

ShearingTransform@Piê6, 81, 0, 0<, 80, 0, 1<DE=,

Boxed Ø False, ViewPoint Ø FrontE=

EE

Out[63]=

Figure 7-18. Example of ShearingTransform

7.15 Exploring Polyhedra
Problem
You want to investigate the characteristics of various polyhedra.
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Solution
Mathematica 6 includes PolyhedronData,  which is effectively an embedded database
of  polyhedra  attributes.  Apropos  to  this  chapter,  PolyhedronData  contains  the  3D
graphics  data  for  a  variety  of  common  and  exotic  polyhedra.  If  you  call
PolyhedronData[]  with no arguments,  it  returns  a  list  of  all  polyhedra  it  has  informa-
tion about. 

In[64]:= PartitionA

PolyhedronData@"Properties"D,

4, 4, 81, 1<, 8<E êê TableForm
Out[64]//TableForm=
AdjacentFaceIndices AlternateNames AlternateStandardNames Amphichiral

Antiprism Archimedean ArchimedeanDual Centroid

Chiral Circumcenter Circumradius Circumsphere

Classes Compound Concave Convex

Cuboid DefaultOrientation Deltahedron DihedralAngleRules

DihedralAngles Dipyramid DualCompound DualName

DualScale EdgeCount EdgeIndices EdgeLengths

Edges Equilateral FaceCount FaceCountRules

FaceIndices Faces GeneralizedDiameter Hypercube

Image Incenter InertiaTensor Information

Inradius Insphere Johnson KeplerPoinsot

Midcenter Midradius Midsphere Name

NetCoordinates NetCount NetEdgeIndices NetEdges

NetFaceIndices NetFaces NetImage NotationRules

Orientations Orthotope Platonic PolyhedronIndices

Prism Pyramid Quasiregular RectangularParallelepiped

RegionFunction Rhombohedron Rigid SchlaefliSymbol

SelfDual Shaky Simplex SkeletonCoordinates

SkeletonGraphName SkeletonImage SkeletonRules SpaceFilling

StandardName StandardNames Stellation StellationCount

SurfaceArea SymmetryGroupString Uniform UniformDual

VertexCoordinates VertexCount VertexIndices Volume

WythoffSymbol Zonohedron

If you call PolyhedronData[poly], where poly is the name of the polyhedron, it will re-
turn the graphic. The code given here creates a labeled grid of a random selection of
24 polyhedra known to Mathematica 7. Here StringSplit  uses a regular expression
to parse the names on CamelCase boundaries and inserts a new line so the names fit
inside the grid cells.
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In[65]:= BlockRandomA

SeedRandom@4D; BlockA9p = AppendAPolyhedronData@ÒD,

9PlotLabel Ø TextAStyleAStringJoinAStringSplitAToString@ÒD,

RegularExpression@"H@a-zDLH@A-ZDL"D Ø "$1\n$2"EE,

FontSize Ø 10, TextAlignment Ø CenterEE, Boxed Ø False,

ImageSize Ø Large=E & êü RandomChoiceA PolyhedronData@D, 20E=,

GridAPartitionAShowAÒ, ImageSize Ø 95E & êü p, 5E, Spacings Ø 80, 0<E

E

E

Out[65]=

Gyroelongated
Pentagonal
Bicupola

Truncated
Cube

Gyroelongated
Square

Pyramid

Gyroelongated
Triangular

Cupola

Dodecahedron
Small

Triambic
Icosahedron
Compound

Gyroelongated
Pentagonal

Cupola

Gyroelongated
Triangular
Bicupola

Augmented
Truncated

Dodecahedron

Gyroelongated
Triangular

Cupola

Elongated
Pentagonal

Gyrobirotunda

Parabidiminished
Rhombicosidodecahedron

Tetrahedron Rhombic
Icosahedron

Elongated
Triangular

Cupola
Triaugmented

Hexagonal
Prism

Augmented
Truncated

Dodecahedron

Elongated
Triangular

Gyrobicupola

Biaugmented
Triangular

Prism

Triakis
Icosahedron

Tetrahedron
Three

Compound
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Discussion
PolyhedraData contains a treasure trove of polyhedra information. In the solution we
demonstrate  how  to  extract  graphics  by  name.  Here  we  show  the  input  form  of  a
cube.

In[66]:= PolyhedronData@"Cube"D êê InputForm

Out[66]//InputForm=

Graphics3D[GraphicsComplex[{{-1/2, -1/2, -1/2}, {-1/2, -1/2, 1/2}, {-1/2, 

1/2, -1/2}, {-1/2, 1/2, 1/2}, {1/2, -1/2, -1/2}, 

   {1/2, -1/2, 1/2}, {1/2, 1/2, -1/2}, {1/2, 1/2, 1/2}}, Polygon[{{8, 4, 2, 

6}, {8, 6, 5, 7}, {8, 7, 3, 4}, {4, 3, 1, 2}, 

    {1, 3, 7, 5}, {2, 1, 5, 6}}]]]

The solution also exploits the ability to list all the polyhedra by providing no argu-
ments. The solution used the first 20, but there are many more, as you can see.

In[67]:= LengthAPolyhedronData@DE

Out[67]= 187

You can explore all of them with this little dynamic widget.

In[68]:= DynamicModuleA9poly = "DodecahedronSixCompound"=,

RowA9PopupMenuADynamicApolyE, PolyhedronData@DE,

DynamicAPolyhedronDataApolyEE=, " "EE

Out[68]= DodecahedronSixCompound
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The polyhedra are grouped into classes. You can get a list of these classes or a list of
the members of a particular class.

In[69]:= PolyhedronData@"Classes"D

Out[69]= 9Amphichiral, Antiprism, Archimedean, ArchimedeanDual, Chiral, Compound,

Concave, Convex, Cuboid, Deltahedron, Dipyramid, Equilateral, Hypercube,

Johnson, KeplerPoinsot, Orthotope, Platonic, Prism, Pyramid, Quasiregular,

RectangularParallelepiped, Rhombohedron, Rigid, SelfDual, Shaky,

Simplex, SpaceFilling, Stellation, Uniform, UniformDual, Zonohedron=

In[70]:= PolyhedronData@"Chiral"D

Out[70]= 9GyroelongatedPentagonalBicupola, GyroelongatedPentagonalBirotunda,

GyroelongatedPentagonalCupolarotunda, GyroelongatedSquareBicupola,

GyroelongatedTriangularBicupola, PentagonalHexecontahedron,

PentagonalIcositetrahedron, SnubCube, SnubDodecahedron=

Polyhedra also have various properties, which you can list or use with a polyhedron
to retrieve the value.

In[71]:= PolyhedronData@"Properties"D

Out[71]= 9AdjacentFaceIndices, AlternateNames, AlternateStandardNames, Amphichiral,

Antiprism, Archimedean, ArchimedeanDual, Centroid, Chiral, Circumcenter,

Circumradius, Circumsphere, Classes, Compound, Concave, Convex, Cuboid,

DefaultOrientation, Deltahedron, DihedralAngleRules, DihedralAngles,

Dipyramid, DualCompound, DualName, DualScale, EdgeCount, EdgeIndices,

EdgeLengths, Edges, Equilateral, FaceCount, FaceCountRules, FaceIndices,

Faces, GeneralizedDiameter, Hypercube, Image, Incenter, InertiaTensor,

Information, Inradius, Insphere, Johnson, KeplerPoinsot, Midcenter,

Midradius, Midsphere, Name, NetCoordinates, NetCount, NetEdgeIndices,

NetEdges, NetFaceIndices, NetFaces, NetImage, NotationRules,

Orientations, Orthotope, Platonic, PolyhedronIndices, Prism, Pyramid,

Quasiregular, RectangularParallelepiped, RegionFunction, Rhombohedron,

Rigid, SchlaefliSymbol, SelfDual, Shaky, Simplex, SkeletonCoordinates,

SkeletonGraphName, SkeletonImage, SkeletonRules, SpaceFilling,

StandardName, StandardNames, Stellation, StellationCount, SurfaceArea,

SymmetryGroupString, Uniform, UniformDual, VertexCoordinates,

VertexCount, VertexIndices, Volume, WythoffSymbol, Zonohedron=

In[72]:= PolyhedronDataA"GyroelongatedPentagonalBicupola", "VertexCount"E

Out[72]= 30

324 | Chapter 7: Three-Dimensional Plots and Graphics



In[73]:= PolyhedronData@"Cube", "Faces"D

Out[73]= GraphicsComplexC;;-
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Polygon@888, 4, 2, 6<, 88, 6, 5, 7<, 88, 7, 3, 4<,

84, 3, 1, 2<, 81, 3, 7, 5<, 82, 1, 5, 6<<DG

Skeletal images show the polygons in terms of connected graphs.

In[74]:= GraphicsRowA9PolyhedronDataA"Cube", "SkeletonImage"E, PolyhedronDataA

"GyroelongatedPentagonalBicupola", "SkeletonImage"E=, ImageSize Ø MediumE

Out[74]=

NetImage  is  my  favorite  aspect  of  PolyhedronData  because  it  shows  how  to  make  a
cutout  that  can  be  folded  into  an  actual  3D  model  of  the  named  polyhedron.  My
kids like this one, too, although I have to do all the tedious parts!

In[75]:= GraphicsRowA9PolyhedronDataA"GyroelongatedPentagonalBicupola", "NetImage"E,

ImportAFileNameJoinA9NotebookDirectory@D, "..", "images",

"GyroelongatedPentagonalBicupolaConstr.PNG"=EE=E

Out[75]=

7.15 Exploring Polyhedra | 325



See Also
GraphData,  KnotData,  and  LatticeData  are  equally  cool  graphical  data  sources  that
you can explore on your own. Refer to the Mathematica documentation.

7.16 Importing 3D Graphics from CAD 
and Other 3D Software
Problem
You have 3D data from another application that you would like to view or manipu-
late within Mathematica.

Solution
Mathematica 6 can import several popular 3D graphics formats, including Drawing
Exchange Format (DXF) produced by AutoCAD and other CAD packages.

In[76]:= dxf = ImportA"ExampleDataêhelicopter.dxf.gz", ImageSize Ø SmallE

Out[76]=

Discussion
Mathematica’s  symbolic  representation  makes  it  possible  to  manipulate  imported
graphics via pattern matching.

You can change colors and directives. 
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In[77]:= GraphicsRowA9dxf ê. RGBColor@1., 0., 0.D Ø RGBColor@0, 1., 1.D,

dxf ê. 9 RGBColor@__D, Polygon@x_D= :> 9EdgeForm@DashedD, Polygon@x D==,

ImageSize Ø 400E

Out[77]=

You  can  extract  elements  based  on  properties.  Here  we  delete  all  nonyellow  
polygons (i.e., all but the rotor). 

In[78]:= DeleteCasesAdxf, ExceptA9RGBColor@1., 1., 0.D, Polygon@__D=E, 85<E

Out[78]=

You  can  emphasize  the  component  polygons  by  shrinking  each  toward  its  center
and changing all colors to dark gray.

In[79]:= shrinkAt_, Polygon@x_List, opts___DE := ModuleA

9c = Plus üü xë Length@xD=, Polygon@Map@Hc + H1 - tL HÒ - cLL &, xD, optsDE

In[80]:= dxf ê. 9x_Polygon ß shrink@0.4, xD,

RGBColor@_, _, _D ß GrayLevel@0.3D, Small ß 600=

Out[80]=
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CHAPTER 8

Image Processing

I have a picture
Pinned to my wall

An image of you and of me and we’re laughing
We’re loving it all

...
You say I’m a dreamer

We’re two of a kind
Both of us searching for some perfect world

We know we’ll never find

Thompson Twins, “Hold Me Now”

8.0 Introduction
Image  processing  is  a  field  with  many  challenges.  The  first  challenge  is  the  magni-
tude of the data. Consider that a simple 256 × 256 pixel grayscale image will contain
65,536  bytes  of  data  for  the  pixel  values  alone.  Larger  color  images  can  contain
many times this amount. The second challenge is the raster form of the image data,
which is optimized for display, not for detecting distinct visual elements. A third chal-
lenge is the noise and other artifacts of the image-capture process. A final challenge
is  the  lack of  contextual  information;  most  images  do not  encode where  they  were
taken, the lighting conditions, the device used, and so on (although this is beginning
to change). In my opinion, these challenges make working on image processing very
rewarding, especially when one considers that significant portions of our brains are
dedicated to  visual  perception.  Finding algorithms that  achieve  the  kinds  of  visual-
processing tasks that the brain performs is one way to begin to peel away the veil ob-
scuring the workings of our most mysterious organ.

The field of  image processing is  very broad; this  chapter only samples a small  frac-
tion  of  the  relevant  problems.  The  choice  of  topics  is  largely  a  function  of  the  au-
thor’s interests and experience. The full scope of image-processing research includes
efficient  encoding  of  images  and video,  image  enhancement  and restoration,  image

segmentation,  recovering spatial  shape from shading and pattern distortions,  learn-
ing about 3D from multiple 2D images, as well as image recognition. Researchers in
this  field rely on a wide variety of  mathematical  techniques;  hence,  Mathematica is
an ideal platform to get one’s feet wet. 329



segmentation,  recovering spatial  shape from shading and pattern distortions,  learn-
ing about 3D from multiple 2D images, as well as image recognition. Researchers in
this  field rely on a wide variety of  mathematical  techniques;  hence,  Mathematica is
an ideal platform to get one’s feet wet. 

Image Representation
Mathematica  uses  the  function  Import  to  load  images  into  a  format  suitable  for
processing  and  display  within  the  frontend.  When  you  use  Import  on  an  image
file  in  versions  of  Mathematica  prior  to  7,  you  get  a  Graphics  object  that  typically
contains a single Mathematica graphics primitive called Raster.  A Raster  represents
a  2D  array  of  grayscale  or  color  cells.  A  gray  cell  value  will  be  a  single  number;  a
color  cell  value  will  be  three  or  four  numbers.  An  option  called  ColorFunction
tells  Mathematica  how  to  map  the  cell  values  to  display  colors.  Typical  encodings
are  RGBColor,  GrayLevel,  and  Hue.  Most  of  the  recipes  in  this  chapter  deal  with
grayscale  images;  however,  the  first  recipe  shows  you  how  to  transform  red-green-
blue  (RGB)  images  to  other  encodings  that  are  appropriate  for  the  kinds  of  algo-
rithms in these recipes. 

As  of  version  7,  Mathematica  images  have  their  own  representation,  called  Image,
which  is  distinct  from  Graphics  (although  you  can  request  the  older  format
for  backward  compatibility  using  “Graphic”  with  Import).  To  make  these  recipes
compatible  to  both  versions  6  and  7,  I  use  the  following  functions  throughout
this chapter. However, in some recipes these are not sufficient because the code as-
sumed  Graphics  form  when  recreating  the  image  for  display,  and  hence,  expected
Graphics options to be present in the imported version. 

In[18]:= ClearAgetImgData, getImgRange, getImgDim, rasterReplaceE

getImgDataAimg_GraphicsE := img@@1, 1DD

getImgDataAimg_ImageE := ReverseAImageDataAimg, "Byte"EE

getImgRangeAimg_GraphicsE := img@@1, 3DD

getImgRangeAimg_ImageE := ModuleA8<,

SwitchAImageTypeAimgE, "Bit", 80, 1<, "Byte",

80, 255<, "Bit16", 80, 65535<, "Real", 80.0, 1.0<EE

getImgDimAimg_GraphicsE := img@@1, 2, 2DD - img@@1, 2, 1DD

getImgDimAimg_ImageE := ImageDimensionsAimgE
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getImgCoordAimg_GraphicsE := img@@1, 2DD

getImgCoordAimg_ImageE := 980, 0<, getImgDimAimgE=

rasterReplaceAimg_Graphics, raster_List, opts___E :=

GraphicsARasterAraster, img@@1, 2DD, opts, Sequence üü OptionsAimg@@1DDEE,

Sequence üü OptionsAimgEE

rasterReplaceAimg_Image, raster_List, opts___E :=

ImageAraster, img@@2DD, opts, Sequence üü OptionsAimgEE

Image Processing in Mathematica 7
Most  of  this  chapter  was  originally  written  prior  to  the  release  of  Mathematica  7,
which  introduced  many  native  functions  for  image  processing.  After  the  release  of
version 7, I  added content and augmented some of the recipes.  However,  I  still  left
most of the custom algorithms intact, rather than just rewrite everything in terms of
the built-in constructs. As I stated previously, I believe image-processing algorithms
are interesting in their own right. The Mathematica 7 functions are very easy to use;
if you want to sharpen an image, for example, use Sharpen and you are done. How-
ever,  if  you  want  to  understand  the  mathematics,  see  Recipe  8.5  or  8.6.  In  some
recipes,  I  simply  refer  you  to  the  appropriate  Mathematica  function  in  the  “See
Also” section. There are some common image transformations that are not covered
in this chapter, but most are easily implemented and are native to Mathematica 7. If
you  need  to  crop,  pad,  rotate,  and  so  on,  you  will  want  to  upgrade  to  version  7,
which has ImageCrop, ImagePad, ImageResize, ImageTake, and ImageRotate.

See Also
The  recipes  in  this  chapter  draw  heavily  on  Rafael  C.  Gonzalez  and  Richard  E.
Woods’s Digital Image Processing, Second Edition (Addison-Wesley). This is one of
the  classic  texts  in  the  field,  and  any  individual  who  has  a  serious  interest  in
image  processing  should  own  this  text.  Although  I  relied  on  the  second  edition,
I would recommend buying the latest (third) edition, published by Prentice Hall in 2008. 

If  you have  never  worked with  images  in  Mathematica,  consult  the  documentation
and  experiment  with  the  functions  Import,  Graphics,  and  Raster  before  diving  into
these recipes. 
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8.1 Extracting Image Information
Problem
You want to extract  information from one or more image files  for manipulation by
Mathematica or for combining into a new image.

Solution
Use the two-argument version of the Import function to selectively import data from
an image file. Using Import with a PNG, GIF, TIFF, BMP, or other supported image
format will import the image and display it in the Mathematica frontend. However,
sometimes  you  might  want  to  extract  a  subset  of  the  image  data  for  manipulation
rather than display. What information can you extract? This is answered using a sec-
ond argument of "Elements".

In[200]:= ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "Elements"E

Out[200]= 9Aperture, BitDepth, CameraTopOrientation, ColorMap, ColorSpace, Data,

DataType, Date, Exposure, FocalLength, Graphics, GrayLevels, Image,

ImageSize, ISOSpeed, Manufacturer, Model, RawData, RGBColorArray=

Note  that  not  every  image  will  provide  the  same  level  of  information.  The  image
format and the device that produced the image determine which elements are available.

In[201]:= ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "mechanism1.png"=E, "Elements"E

Out[201]= 9BitDepth, ColorSpace, Data, DataType,

Graphics, GrayLevels, Image, ImageSize, RGBColorArray=

Once you know which elements are available, you can extract them by name.

In[202]:= ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "BitDepth"E

Out[202]= 8

Note  that  an  image  element  might  be  supported  but  not  available,  in  which  case  
Import will return None.

In[203]:= ImportA

FileNameJoinA9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "Model"E

Out[203]= None

332 | Chapter 8: Image Processing



However,  if  you  ask  for  the  value  of  an  element  that  is  not  supported,  Import  will
fail. 

In[204]:= ImportAFileNameJoinA9NotebookDirectory@D, "..", "images", "truck.jpg"=E,

"Copyright"E

Import::noelem :

The Import element "Copyright" is not present when

importing as JPEG. à

Out[204]= $Failed

Discussion
From an  image  processing  point  of  view,  the  elements  you  will  most  likely  extract
are  "Graphics",  "GrayLevels",  "Data",  and  "RGBColorArray".  The  "Graphics"
element is the default element for an image file. It extracts the image in a format suit-
able for immediate display in the frontend.

In[205]:= ImportAFileNameJoinA9NotebookDirectory@D, "..", "images", "truck.jpg"=E,

"Graphics"E

Out[205]=

Note,  if  you want to extract  the "Graphics"  format without displaying it,  terminate
the expression with a semicolon.

In[206]:= image = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "Graphics"E;
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The "GrayLevels" element will convert color image data to gray level data. That is, it
will return a 2D array of pixel gray values in the range 0 (black) to 1 (white). Here I
use Short to only show a few of the gray level values.

In[207]:= ShortAImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "GrayLevels"E, 6E
Out[207]//Short=

880.283235, 0.330294, 0.270298, 0.242804, 0.227118, 0.190608,

0.190608, 0.161494, 0.181102, 0.156357, 0.21518, 0.322149, 0.388816,

0.446467, 0.524855, 0.576922, 0.620016, 0.646208,á125à,

0.980071, 0.988663, 0.980373, 0.981588, 0.98551, 0.984592, 0.984592,

0.984122, 0.972357, 0.985016, 0.985016, 0.984973, 0.984078,

0.984078, 0.984592, 0.984592, 0.983698<,á118à, 8á1à<<

The "Data" element will extract the image pixel data as it is stored in the image file.
The format of the data will vary depending on the image type, but typically it will be
a matrix of RGB triplets for a color image and gray values for a grayscale image both
in the range [0,255].

In[208]:= ShortAImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "Data"E, 6E
Out[208]//Short=

88886, 67, 63<, 898, 79, 75<, 882, 64, 60<, 873, 58, 53<, 869, 54, 49<,

857, 46, 40<, 857, 46, 40<, 847, 40, 32<, 852, 45, 37<, 843, 40, 31<,

858, 55, 46<, 882, 84, 73<, 899, 101, 90<, 8113, 116, 105<, 8131, 137, 125<,

8141, 152, 138<, 8150, 164, 149<, 8152, 173, 156<, 8150, 175, 156<,

8141, 168, 149<, 8136, 160, 144<, 8142, 165, 149<, 8149, 169, 157<,

8155, 173, 161<, 8146, 163, 153<, 8145, 165, 154<, 8146, 167, 158<,

á107à, 8246, 245, 241<, 8250, 249, 245<, 8255, 255, 251<,

8255, 255, 251<, 8249, 251, 248<, 8248, 250, 247<, 8247, 251, 252<,

8249, 253, 254<, 8248, 252, 255<, 8247, 251, 252<, 8248, 255, 248<,

8246, 253, 245<, 8249, 252, 245<, 8250, 253, 246<, 8252, 251, 249<,

8252, 251, 249<, 8254, 249, 253<, 8251, 246, 250<, 8254, 249, 255<,

8254, 249, 255<, 8252, 250, 255<, 8252, 250, 253<, 8252, 250, 253<,

8252, 251, 249<, 8252, 251, 249<, 8252, 251, 247<<, á118à, 8á1à<<
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In[209]:= ShortAImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "RGBColorArray"E, 6E
Out[209]//Short=

88RGBColor@0.337255, 0.262745, 0.247059D,

RGBColor@0.384314, 0.309804, 0.294118D,

RGBColor@0.321569, 0.25098, 0.235294D,

RGBColor@0.286275, 0.227451, 0.207843D,

RGBColor@0.270588, 0.211765, 0.192157D,

á150à, RGBColor@0.988235, 0.980392, 0.992157D,

RGBColor@0.988235, 0.980392, 0.992157D,

RGBColor@0.988235, 0.984314, 0.976471D,

RGBColor@0.988235, 0.984314, 0.976471D,

RGBColor@0.988235, 0.984314, 0.968627D<, á119à<

See Also
More  details  can  be  found  in  the  Mathematica  documentation  for  Import  and  the
formats JPEG, TIFF, BMP, PNG, and GIF.

8.2 Converting Images from RGB Color Space 
to HSV Color Space
Problem
You have an image that is represented in RGB but most image-processing algorithms
demand the hue-saturation-value (HSV) color space model. 

Solution
The  solution  starts  with  defining  some primitives  to  compute  Hue,  Saturation,  and
Value from Red, Green, and Blue intensities.

The  HSV  color  model  is  often  depicted  geometrically  as  a  cone  (see  http://en.
wikipedia.org/wiki/Image:HSV_cone.png). The hue can be thought of as the angle of
a vector rotating around the center, with angles close to 0 degrees corresponding to
red  and  increasing  angles  moving  through  the  rainbow  out  to  violet  and  returning
again to red. To simplify the math, we first scale the standard RGB values that range
from 0 to 255 to values that range between 0 and 1.  Mathematically speaking,  you
compute hue by finding which two of  the three scaled RGB color  intensities  domi-
nate and then using their difference to compute an angular offset from a starting an-
gle  determined  by  the  third  (least  dominant)  color.  Here  you  divide  the  circle  into
six regions (red, orange, yellow, green, blue, violet) with i specifying the start region
and  f  acting  as  a  factor  determining  the  offset  from  i.  This  value  is  scaled  by  the
difference between the most dominant (rgbMax) and least dominant (rgbMin) color to
yield a value between 0 and 6. Finally you divide by 6 to get a value for hue in the
range [0,1]. 8.2 Converting Images from RGB Color Space to HSV Color Space | 335
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The  HSV  color  model  is  often  depicted  geometrically  as  a  cone  (see  http://en.
wikipedia.org/wiki/Image:HSV_cone.png). The hue can be thought of as the angle of
a vector rotating around the center, with angles close to 0 degrees corresponding to
red  and  increasing  angles  moving  through  the  rainbow  out  to  violet  and  returning
again to red. To simplify the math, we first scale the standard RGB values that range
from 0 to 255 to values that range between 0 and 1.  Mathematically speaking,  you
compute hue by finding which two of  the three scaled RGB color  intensities  domi-
nate and then using their difference to compute an angular offset from a starting an-
gle  determined  by  the  third  (least  dominant)  color.  Here  you  divide  the  circle  into
six regions (red, orange, yellow, green, blue, violet) with i specifying the start region
and  f  acting  as  a  factor  determining  the  offset  from  i.  This  value  is  scaled  by  the
difference between the most dominant (rgbMax) and least dominant (rgbMin) color to
yield a value between 0 and 6. Finally you divide by 6 to get a value for hue in the
range [0,1]. 

In[210]:= HueValueAr_Integer, g_Integer, b_IntegerE :=

HueValue2Arê255.0, gë 255.0, bê255.0E

HueValue2Ar_ ê; r § 1, g_ ê; g § 1, b_ ê; b § 1E :=

ModuleA9minRGB = MinAr, g, bE, maxRGB = MaxAr, g, bE, f, i=,

WhichAmaxRGB ã minRGB, Return@0D,

minRGB ã r , f = g - b; i = 3,

minRGB ã g, f = b - r; i = 5,

minRGB ã b, f = r - g; i = 1E;

Hi - fêHmaxRGB - minRGBLLê6E

Saturation is  a  measure  of  the  purity  of  the  hue.  Highly  saturated colors  are  domi-
nated  by  a  single  color,  whereas  low saturation  yields  colors  that  are  more  muted.
Geometrically,  saturation is  depicted as  the distance from the center  to the edge of
the HSV cone. Mathematically, saturation is the difference between the most domi-
nant and least dominant color scaled by the most dominant.  Again, you scale RGB
integer values to the range [0,1]. 

In[212]:= SatValueAr_Integer, g_Integer, b_IntegerE :=

SatValue2Arê255.0, gë 255.0, bê255.0E

SatValue2Ar_ ê; r § 1, g_ ê; g § 1, b_ ê; b § 1E :=

ModuleA9minRGB = MinAr, g, bE, maxRGB = MaxAr, g, bE=,

If@maxRGB > 0, HmaxRGB - minRGBLêmaxRGB, 0DE

The third component of the HSV triplet is the value, which is also known as bright-
ness (HSV is sometimes referred to as HSB). The brightness is the simplest to com-
pute since it is simply the value of the most dominant RGB value scaled to the range
[0,1]. Geometrically, the value is the distance from the apex (dark) of the HSV cone
to the base (bright). 

In[214]:= BrightValueAr_Integer, g_Integer, b_IntegerE := MaxAr, g, bE ë 255.0

Given  these  primitives,  it  becomes  a  relatively  simple  matter  to  translate  an  image
from RGB space to HSV space. But before you can do this, you need to understand
how  Mathematica  represents  imported  images.  The  applicable  function  is  called
Raster,  and  it  depicts  a  rectangular  region  of  color  or  gray  level  cells.  See  the
“Discussion”  section  on  page  338  for  more  information  on  Raster.  The  goal  is  to
transform the RGB color  cells  to  HSV color  cells.  An easy  way to  do that  is  to  lin-
earize the 2D grid into a linear array and then use the techniques from Recipe 2.1 to
transform this RGB array into an HSV array. To get everything back to a 2D grid, we
use  the  Partition  function  with  information  from  the  original  image  to  get  the
proper width and height.  To get HSV  images to display properly, we tell Mathematica
to use Hue  as  the ColorFunction.  Finally,  we copy options from the original  graphic
to the new graphic, which requires a sequence rather than a list.
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Given  these  primitives,  it  becomes  a  relatively  simple  matter  to  translate  an  image
from RGB space to HSV space. But before you can do this, you need to understand
how  Mathematica  represents  imported  images.  The  applicable  function  is  called
Raster,  and  it  depicts  a  rectangular  region  of  color  or  gray  level  cells.  See  the
“Discussion”  section  on  page  338  for  more  information  on  Raster.  The  goal  is  to
transform the RGB color  cells  to  HSV color  cells.  An easy  way to  do that  is  to  lin-
earize the 2D grid into a linear array and then use the techniques from  to
transform this RGB array into an HSV array. To get everything back to a 2D grid, we
use  the  Partition  function  with  information  from  the  original  image  to  get  the
proper width and height.  To get HSV  images to display properly, we tell Mathematica
to use Hue  as  the ColorFunction.  Finally,  we copy options from the original  graphic
to the new graphic, which requires a sequence rather than a list.

In[215]:= H*RGB2HSVAimage_GraphicsE :=

ModuleA9rgb =FlattenAgetImgDataAimageE,1E,hsv,width,height=,

9width,height= = getImgDimAimageE;

hsv =

9Apply@HueValue,ÒD, Apply@SatValue,ÒD,ApplyABrightValue,ÒE=& êü rgb;

GraphicsARasterAPartition@hsv,widthD, 980,0<,getImgDimAimageE=,

ColorFunctionØHueE,Sequence üü OptionsAimageEEE*L

RGB2HSVAimage_GraphicsE :=

ModuleA9rgb = FlattenAgetImgDataAimageE, 1E, hsv, width, height=,

9width, height= = getImgDimAimageE;

hsv = 9Apply@HueValue, ÒD,

Apply@SatValue, ÒD, ApplyABrightValue, ÒE= & êü rgb;

rasterReplaceAimage, Partition@hsv, widthD, ColorFunction Ø HueEE

In[216]:= image = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "truck.jpg"=E, "Graphics"E

Out[216]=

In[217]:= imageHSV = RGB2HSVAimageE

Out[217]=
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These two images of the red truck look identical, but we can see they have a very dif-
ferent internal representation by inspecting a portion of each Raster.

In[218]:= ShortAgetImgDataAimageE@@1DD, 3E

Out[218]//Short=
88104, 122, 142<, 899, 117, 137<, 894, 112, 132<,

894, 112, 132<, 898, 119, 138<, 8104, 125, 144<, 8106, 127, 146<,

8106, 127, 146<, 8101, 124, 142<, 8101, 124, 142<, 8100, 123, 141<,

899, 122, 140<, 895, 121, 138<,á134à, 894, 116, 130<,

892, 114, 128<, 892, 114, 128<, 893, 115, 129<, 895, 117, 131<,

899, 121, 135<, 898, 120, 134<, 898, 120, 134<, 898, 120, 134<,

899, 121, 135<, 8101, 123, 137<, 8103, 125, 139<, 8104, 126, 140<<

In[219]:= ShortAgetImgDataAimageHSVE@@1DD, 3E
Out[219]//Short=

880.587719, 0.267606, 0.556863<, 80.587719, 0.277372, 0.537255<,

80.587719, 0.287879, 0.517647<,á155à,

80.564815, 0.258993, 0.545098<, 80.564815, 0.257143, 0.54902<<

Discussion
The  major  color  spaces  in  popular  use  are  RGB,  HSV,  and  cyan-magenta-yellow-
black (CMYK). RGB is the most common format because it maps directly onto dis-
play technology. The problem with RGB is that it is not very good for image analysis
because  colors  that  are  close  in  perceptual  space  are  not  grouped  together  in  RGB
space. CMYK is most often used in printing. HSV is popular in image processing ap-
plications  because  the  mathematical  distance  between  the  colors  is  more  closely
aligned  with  human  judgments,  yielding  a  closer  approximation  to  human  percep-
tion of  color.  Another  advantage of  HSV is  that  one can immediately  convert  from
color  to  grayscale  by  discarding  the  hue  and  saturation  components  and  retaining
the value component.

In[220]:= imageHSV ê. 98_Real, _Real, v_Real< Ø v, Hue Ø GrayLevel=

Out[220]=
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Doing image processing in Mathematica requires  familiarity  with the Raster  graph-
ics primitive. When an image is imported from a JPEG, BMP, or GIF file, it  will  be
represented  as  an  RGB  or  grayscale  Raster  with  cell  values  ranging  from  0
through  255. The ColorFunction will be RGBColor for color image and GrayLevel for
grayscale  images.  There  are  several  forms of  the  Raster  function,  but  the  form you
will  typically  encounter  in  image  processing  is  Raster[array,  dimensions,  scale,
ColorFunction Ø function], where array is a 2D array of integers or RGB triplets,
dimensions defines a rectangle of the form {{xmin,ymin}, {xmax,ymax}}, scale speci-
fies the minimum and maximum values in the array (typically {0,255}), and function
is  either GrayLevel  or  RGBColor.  A good way to test  algorithms is  to mathematically
create rasters so you have controlled test cases. 

For example, the following is a green gradient in RGB space that varies from black in
the lower left corner to bright green in the upper right. (Of course, you’ll need to try
the code yourself to view the color effects.)

In[221]:= greenGradientRGB = GraphicsA

RasterATableA90, MinAg*16 + x, 255E, 0=, 9g, 0, 15=, 8x, 0, 15<E ,

880, 0<, 816, 16<<, 80, 255<E, ImageSize Ø 8160, 160<E

Out[221]=

In[222]:= greenGradientHSV = RGB2HSVAgreenGradientRGBE

Out[222]=

In[223]:= greenGradientHSV@@1, 2DD

Out[223]= 880, 0<, 816, 16<<
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In HSV space, we expect the hue coordinate to be a constant (1/3)  with the excep-
tion  of  the  black  corner  element.  The  saturation  should  also  be  constant  and  the
brightness values should form a straight line when plotted. This is easy to check.

In[224]:= UnionAFlattenAgetImgDataAgreenGradientHSVE ê. 8h_, _, _< ß hEE

Out[224]= 80, 0.333333<

In[225]:= CountAFlattenAgetImgDataAgreenGradientHSVE ê. 8h_, _, _< ß hE, 0E

Out[225]= 1

In[226]:= CountAFlattenAgetImgDataAgreenGradientHSVE ê. 8h_, _, _< ß hE,

0.3333333333333333`E

Out[226]= 255

In[227]:= ListPlotAFlattenAgetImgDataAgreenGradientHSVE ê. 8_, _, v_< ß vE,

ImageSize Ø SmallE

Out[227]=
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See Also
In  Mathematica  7,  use  ColorConvert  (see  the  documentation  center:  http://bit.ly/
irShF).

Wikipedia  has  several  very  approachable  articles  on  color  models.  See  http://bit.ly/
lWvVW, http://bit.ly/2DZAhY, http://bit.ly/3jawwr, and http://bit.ly/2qHxrI. 

Color renderings of  the images in this  chapter can be found at http://bit.ly/xIgx7  or
http://www.mathematicacookbook.com.
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8.3 Enhancing Images Using 
Histogram Equalization
Problem
You  have  an  image  that  is  too  dark  or  too  light  and  you  would  like  to  increase
contrast.

Solution
You  obtain  the  histogram  of  a  grayscale  image  using  BinCounts  on  the  flattened
raster  matrix.  If  an  image  has  poor  contrast,  you  will  see  that  the  histogram  is
skewed when you plot the histogram using BarChart.

In[228]:= overexposed = ImportAFileNameJoinA9NotebookDirectory@D,

"..", "images", "truckOverExposed.jpg"=E, "Graphics"E

Out[228]=

In[229]:= Quiet@Needs@"BarCharts`"DD

In[230]:= histogramPlotAimage_GraphicsE :=

ModuleA9pixels = FlattenAgetImgDataAimageEE, min, max, dx, width, height=,

8min, max< = IfAMatchQAgetImgRangeAimageE, 8_, _<E,

getImgRangeAimageE, 80, 1<E;

dx = Hmax - minLê255.0;

BarChartABinCounts@pixels, 8min, max + dx, dx<D, BarLabels Ø None,

BarStyle Ø Black, BarSpacing Ø 0.25, BarEdges Ø FalseEE
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In[231]:= histogramPlot@overexposedD

Out[231]=
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Histogram equalization  works  by  using  the  image  distribution  to  derive  a  transfor-
mation function that will always yield a more uniform distribution of gray levels de-
spite  the  shape  of  the  input  image’s  distribution.  The  solution  below will  work  on
any grayscale image but is not very efficient. I’ll implement a more efficient solution
in the “Discussion” section on page 343 and also cover theory that explains why this
transformation works. 

In[232]:= histCDFAx_, histogram_, n_E :=

NASumAhistogram@@iDD, 8i, 1, x + 1, 1<E*255 ênE

In[233]:= histogramCorrectAimage_GraphicsE :=

ModuleA9pixels = FlattenAgetImgDataAimageEE,

min, max, histogram, width, height, nPixels, outpix=,

H*Extract the image's dimensions.*L

9width, height= = getImgDimAimageE ;

H*Extract the image's range, which if unspecified implies @0,1D.*L

8min, max< =

IfAMatchQAgetImgRangeAimageE, 8_, _<E, getImgRangeAimageE, 80, 1<E;

H*Normalize the data to the range @0,255D if necessary.*L

pixels = If@8min, max< == 80, 255<,

pixels, Round@Rescale@pixels, 8min, max<, 80, 255<DDD;

H*Compute histogram. Use 256 as the upper limit because

the BinCount range is of the form @min,maxD.*L

histogram = BinCounts@pixels, 80, 256, 1<D;

H*Transform by treating the

histogram as a cumulative distribution function.*L

nPixels = width * height;

outpix = histCDFAÒ, histogram, nPixelsE & êü pixels;

GraphicsARasterAPartition@outpix, widthD, image@@1, 2DD, 80, 255<,

ColorFunction Ø GrayLevelE, Sequence üü OptionsAimageEEE
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In[234]:= corrected = histogramCorrect@overexposedD

Out[234]=

Note how the histogram of the corrected image is more spread out than the input.

In[235]:= histogramPlot@correctedD

Out[235]=
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Discussion
The theory behind automatic histogram equalization is based on probability theory.
View the gray levels of an image as a random variable in the interval [0,1]. It is clear
that  grayscale  ranges  in  the [0,255]  range can be scaled to [0,1]  simply by dividing
by 255.  Let  pr[r]  denote  the  probability  density  function (PDF) of  the  input  image.
Let ps[s] denote the desired PDF of the output image. In this case, we want ps[s] to
be uniform. Let T[r]  denote the transformation function applied  to  the  input  r  to
produce  output  s  with  PDF  ps[s].  We  want  T[r]  to  be  a  single-valued  monotoni-
cally increasing function. Single valued is necessary so that the inverse exists; mono-
tonic  prevents  the  transformation  from inverting  gray  levels.  We also  want  T[r]  to
have range [0,1].  Given these conditions,  we know from probability  that  the trans-
formed PDF is related to the original PDF by:

ps@sD = pr@rD
dr

ds
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In the solution, we used the discrete form of the cumulative density function (CDF)
as T[r]. The continuous form of the CDF is

s = T@rD= ‡
0

r
pr@wD„w

By substitution, we obtain

d s

d r
=

d T@rD

d r
=

d

d r
‡
0

r
pr@wD„w

We can ask Mathematica to evaluate this  derivative for  us  by entering it  in Mathe-
matica syntax.

In[236]:= DC‡
0

r
pr@wD „w, rG

Out[236]= pr@rD

By substitution into the original equation, we get

s@sD = pr@rD
1

pr@rD

Since  the  probabilities  are  always  positive,  we  can  remove  the  absolute  value  to
prove that 

s[s] = 1

This  means  that  the  PDF  of  s  is  1;  hence,  we  have  a  uniform  distribution.  This
demonstrates that in the continuous case, using the CDF as a transformation always
yields  a  uniform  distribution  regardless  of  the  characteristics  of  the  input  PDF.
Of  course,  these  results  for  the  continuous  domain  do  not  translate  exactly  to  the
discrete domain, but it suggests that the discrete CDF will tend to shift gray levels to
a more uniform range. To gain some deeper insight, you can plot the transformation
function obtained from the histogram of the overexposed image.

In[237]:= ClearAllAT, i, k, histogram, nPixelsE;

histogram = BinCountsAFlattenAgetImgData@overexposedDE, 80, 256, 1<E;

nSum = TotalAhistogramE;

nPixels = Times üü IgetImgDim@overexposedDM;

T@k_D := NASumAhistogram@@iDD, 8i, 1, k + 1, 1<Eë nPixelsE*255

PlotAT@xD, 8x, 0, 255<, PlotRange Ø AutomaticE
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Out[242]=
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This shows that all but the brightest levels will be mapped to darker levels; thus an
overly bright image will  tend to be darkened. The opposite will  occur for an overly
dark (underexposed) input image. 

The nature  of  the  transformation function leads  to  an obvious optimization:  a  pre-
computed lookup table computed in a single pass using FoldList. This lookup table
can be used as the transformation function. This produces an O(nPixels) algorithm
from our original O(nLevels * nPixels).

In[243]:= histogramCorrect2Aimage_GraphicsE :=

ModuleA9pixels = FlattenAgetImgDataAimageEE, min, max,

histogram, transform, width, height, nPixels, outpix=,

H*Extract the image's dimensions.*L

9width, height= = getImgDimAimageE;

H*Extract the image's range, which if unspecified implies @0,1D.*L

8min, max< =

IfAMatchQAgetImgRangeAimageE, 8_, _<E, getImgRangeAimageE, 80, 1<E;

H*Normalize the data to the range @0,255D if necessary.*L

pixels = If@8min, max< == 80, 255<,

pixels, Round@Rescale@pixels, 8min, max<, 80, 255<DDD;

H*Compute histogram. Use 256 as the upper limit because

the BinCount range is of the form @min,maxM.*L

histogram = BinCounts@pixels, 80, 256, 1<D;

H*Transform by treating the

histogram as a cumulative distribution function.*L

nPixels = width * height;

transform = NARestAFoldListAPlus, 0, histogramEE * 255ênPixelsE;

outpix = transform@@Ò + 1DD & êü pixels;

GraphicsARasterAPartition@outpix, widthD, image@@1, 2DD, 80, 255<,

ColorFunction Ø GrayLevelE, Sequence üü OptionsAimageEEE
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As you can see,  there  is  a  two-orders-of-magnitude performance  improvement  for
histogramCorrect2.

In[244]:= timingOrig = TimingAhistogramCorrect@overexposedDE@@1DD;

timingNew = TimingAhistogramCorrect2@overexposedDE@@1DD;

GridA99"original", "new"=, 9timingOrig, timingNew==E

Out[246]=
original new

2.356 0.015

Here are the histograms from each for comparison.

In[247]:= GraphicsRowA9histogramPlotAhistogramCorrect2@overexposedDE,

histogramPlotAhistogramCorrect@overexposedDE=E

Out[247]=
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Mathematica  7  has  the  native  function  ImageHistogram  for  plotting  an  image’s
histogram.

In[248]:= GraphicsRowA9ImageHistogramAhistogramCorrect2@overexposedDE,

ImageHistogramAhistogramCorrect@overexposedDE=E

Out[248]=

See Also
Recipe 8.3 shows how histograms can be used to match one image’s contrast to that
of a reference image.
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8.4 Correcting Images Using Histogram 
Specification
Problem
You  need  to  transform  the  gray  levels  of  an  image  to  match  another  image’s
histogram.

Solution
To match a histogram of one image to another, you produce the equalization trans-
form of the input image as in Recipe 8.1. You then produce the equalization trans-
form  of  the  target  image,  and  from  that  and  the  input  transform,  derive  the  final
specification transform. Next, map the input through the specification transform to
yield an image that approaches the target image’s histogram. Since you need to build
the equalization transform for each image, it makes sense to factor that logic into a
separate  function.  Here  I  call  it  buildEqualizationMap.  You will  recognize  the  basic
logic from Recipe 8.2.

In[249]:= buildEqualizationMapAimage_GraphicsE :=

ModuleA9pixels , min, max, histogram, width, height, nPixels=,

pixels = FlattenAgetImgDataAimageEE;

8min, max< = IfAMatchQAgetImgRangeAimageE, 8_, _<E,

getImgRangeAimageE, 80, 1<E;

pixels = If@8min, max< == 80, 255<, pixels,

Rescale@pixels, 8min, max<, 80, 255<DD;

nPixels = Length@pixelsD ;

histogram = BinCounts@pixels, 80, 256, 1<D;

NARestAFoldListAPlus, 0, histogramEE * 255ênPixelsEE

The main function must build the map for each image and use those maps to derive
the final  transformation (here  it  is  called specMap).  The logic  underlying the deriva-
tion  of  specMap  is  explained  in  the  “Discussion”  section  on  page  349  and  was
adapted from work by Nikos  Drakos  and Ross  Moore  (refer  to  the  “See  Also” sec-
tion on page 351). Here we take advantage of Reap and Sow to build up specMap incre-
mentally without the overhead of Append.

8.4 Correcting Images Using Histogram Specification | 347



In[250]:= specificationMapAinputMap_List, targetMap_ListE :=

ModuleA9i, j = 0=, ReapADoA

IfAIinputMap@@i + 1DD <= targetMapAAj + 1EEM ,

SowAjE,

WhileAinputMap@@i + 1DD > targetMapAAj + 1EE , j++E;

SowAIfAItargetMapAAj + 1EE - inputMap@@i + 1DDM >

IinputMap@@i + 1DD - targetMapAAjEEM, j--, jEE

E, 8i, 0, 255<EE@@2, 1DDE

In[251]:= histogramSpecificationAinput_Graphics, target_GraphicsE :=

ModuleA9pixels , min, max, histogram, width,

height, nPixels, inputMap, targetMap, specMap, outpix=,

H*Compute histogram mapping of target.*L

targetMap = buildEqualizationMapAtargetE;

H*Compute histogram mapping of input.*L

inputMap = buildEqualizationMap@inputD;

H*Compute inverse of targetMap.*L

specMap = specificationMapAinputMap, targetMapE;

H*Use inverse to transform input.*L

outpix = FlattenAgetImgData@inputDE;

H*outpix = inputMap@@Round@ÒD+1DD&êü outpix;*L

outpix = specMap@@Round@ÒD + 1DD & êü outpix ;

9width, height= = getImgDim@inputD ;

GraphicsARasterAPartition@outpix, widthD, input@@1, 2DD, 80, 255<,

ColorFunction Ø GrayLevelE, Sequence üü Options@inputDEE

To demonstrate histogramSpecification, I’ll synthesize two raster images with differ-
ent grayscale levels, using one as the input and the other as the target. In Recipe 8.4
there is a much less contrived example of this algorithm’s application.

In[252]:= test = GraphicsARasterATableAi*jë 2, 8i, 1, 16<, 9j, 1, 16=E,

880, 0<, 816, 16<<, 80, 255<E, ImageSize Ø 864, 64<E

Out[252]=
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In[253]:= target = GraphicsARasterATableAi*j - 1, 8i, 1, 16<, 9j, 1, 16=E,

880, 0<, 816, 16<<, 80, 255<E, ImageSize Ø 864, 64<E

Out[253]=

Here  you  can  see  the  darker  test  image  has  been  shifted  toward  the  lighter  target
image.

In[254]:= histogramSpecificationAtest, targetE

Out[254]=

Discussion
In Recipe 8.2 we saw how histograms can be used to automatically equalize an im-
age’s contrast. However, sometimes it is preferable to equalize based on a reference
histogram  rather  than  a  uniform  distribution.  This  often  arises  when  transforma-
tions are applied to an image and have side effects that reduce contrast~side effects
we wish to undo by shifting the image back to the grayscale distribution of the origi-
nal image (see Recipe 8.4).

To appreciate the theory behind the solution, imagine an image that has a uniform
grayscale distribution. Suppose you want to transform this hypothetical image to the
distribution  of  the  target  image.  How  could  you  produce  such  a  transformation?
You  already  know  how  to  transform  the  target  image  to  a  uniform  distribution
(Recipe 8.2); it  follows that the inverse of this transformation will  take the uniform
distribution  back  to  the  target  distribution.  If  we  had  this  inverse  distribution,  we
could proceed as follows:

1. Transform the input image to a uniform distribution using Recipe 8.2.

2. Use  the  inverse  of  the  target  equalization  transformation  to  transform  the
output of (1) to the distribution of the target.

The  key  to  the  solution  is  finding  the  inverse.  Since  you  are  working  in  a  discrete
domain,  you  cannot  hope  to  find  the  exact  inverse,  but  you  can  approximate  the
inverse  by  flipping  the  targetMap,  taking  the  minimal  unique  values,  and  filling  in
missing values with the next closest higher entry. The function inverseEqualization-
Map  shown here  will  build  such  an  inverse  from an  image.  However,  if  you  inspect
the code in histogramSpecification, you’ll see that for efficiency the inverse is never
built,  but  rather  it  computes  the  specification  map  directly  using  specificationMap
from the input and target equalization transformations (inputMap and targetMap). 
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In[255]:= expand@p1_List, p2_ListD := Reap@Sow@p1D;

Do@Sow@8i, p2@@2DD<D, 8i, p1@@1DD + 1, p2@@1DD - 1<DD@@2, 1DD

buildPartialInverseEqualizationMapAimage_GraphicsE :=

ModuleA9map = buildEqualizationMapAimageE=,

Union@880, 0<<, Table@8Round@map@@i + 1DDD, i<, 8i, 0, 255<D,

88256, 255<<, SameTest Ø HÒ1@@1DD ã Ò2@@1DD &LDE

inverseEqualizationMapAimage_GraphicsE := FlattenA

expand üüü PartitionAbuildPartialInverseEqualizationMapAimageE, 2, 1E,

1E@@All, 2DD

We  can  gain  some  insight  into  this  process  by  creating  a  function  histogram-
SpecificationPlot,  which  plots  the  input  transform,  target  transform,  target
inverse,  and the resulting histogram specification transform. These plots show how
input  gray  levels  are  mapped  to  output  gray  levels.  If  you  are  not  convinced  that
specificationMap  gives  the  desired transformation,  replace  the  plot  of  specMap  with
inverseMap[#]& /@ inputMap to see that it yields the same plot. 

In[258]:= NeedsA"PlotLegends`"E

histogramSpecificationPlotAinput_Graphics, target_GraphicsE :=

ModuleA9inputMap, targetMap, inverseMap, specMap=,

H*Compute histogram mapping of target.*L

targetMap = buildEqualizationMapAtargetE;

H*Compute histogram mapping of input.*L

inputMap = buildEqualizationMap@inputD;

inverseMap = inverseEqualizationMapAtargetE;

H*Compute inverse of targetMap.*L

specMap = specificationMapAinputMap, targetMapE;

ListPlotA9inputMap, targetMap, inverseMap, specMap=,

PlotMarkers Ø Automatic, Joined Ø True, MaxPlotPoints Ø 50,

PlotLegend Ø 9"inputEq", "targetEq", "inverseTarget", "spec"=,

LegendPosition Ø 80.7, -0.5<, LegendSize Ø 0.4,

LegendShadow Ø None, ImageSize Ø LargeEE
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In[260]:= histogramSpecificationPlotAtest, targetE

Out[260]=
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See Also
The  theory  behind  histogram  specification  can  be  found  in  Gonzalez  and  Woods,
but for the implementation, I  am indebted to Professor Ruye Wang’s lecture notes,
available  at  http://bit.ly/4oSglp.  Wang’s  lecture  contains  information originally  pub-
lished  by  Nikos  Drakos  (University  of  Leeds)  and  Ross  Moore  (Macquarie  Univer-
sity, Sydney). 

8.5 Sharpening Images Using Laplacian 
Transforms
Problem
You want to emphasize edges in the image and make them easier for the eye to pick
out. You want to work in the spatial domain.
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Solution
This transformation is performed as a convolution of the image with one of the Lap-
lacian kernels in Figure 8-1.

Transforms Subtract transform from image Add transform to image

Sharpens in vertical
and

horizontal

0 1 0

1 -4 1

0 1 01

0 -1 0

-1 4 -1

0 -1 0

Also sharpens in
diagonal

1 1 1

1 -8 1

1 1 1

-1 -1 -1

-1 8 -1

-1 -1 -1

Figure 8-1. Laplacian kernels

The built-in function ListConvolve makes it easy to implement image convolution in
Mathematica. The only caveat is that by default, ListConvolve returns a matrix that
is smaller than the input.  However,  you can specify a  cyclic  convolution  by  pass-
ing a  third parameter of 1 to ListConvolve to make the output size match the input
size. Refer to the ListConvolve Mathematica documentation for clarification. 

In[261]:= sharpenWithLaplacianAimage_Graphics,

kernel_List : 88-1, -1, -1<, 8-1, 8, -1<, 8-1, -1, -1<<E :=

ModuleA8transformed, sharpened<,

transformed = ListConvolveAkernel, getImgDataAimageE, 1E;

sharpened = NAgetImgDataAimageE + Sign@kernel@@2, 2DDD* transformedE;

GraphicsA

RasterARescale@sharpened, 8Min@ÒÒD, Max@ÒÒD< & üü Flatten@sharpenedD,

80, 255<D, image@@1, 2DD, 80, 255<,

ColorFunction Ø GrayLevelE, Sequence üü OptionsAimageEEE

Here  we  want  to  see  more  fine  detail  of  the  craters  in  an  image  of  the  moon.  The
transform  achieves  this  but  we  lose  contrast.  We  can  readjust  contrast  using  the
histogramSpecification algorithm from Recipe 8.3.
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In[262]:= image = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "moon.jpg"=E, "Graphics"E

Out[262]=

In[263]:= sharpenWithLaplacianAimageE

Out[263]=
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In[264]:= histogramSpecificationAsharpenWithLaplacianAimageE, imageE

Out[264]=

Discussion
The Laplacian of a continuous 2D function is given as

“2f =
∂2f

∂2x2
+
∂2f

∂2y2

This  equation is  not  useful  for  image processing and must  be converted to discrete
form.  A  common  way  to  do  this  is  to  express  each  component  in  finite  difference
form and sum the result.

∂2f

∂2x2
=fIx+1,yM + f Ix-1,yM - 2fIx,yM

∂2f

∂2y2
= fIx,y+1M + fIx,y-1M - 2fIx,yM

“2f = fIx+1,yM + f Ix-1,yM + fIx,y+1M + fIx,y-1M - 4 fIx,yM

This leads to the convolution kernel shown in Figure 8-2a. To improve results in the
diagonal directions, one can add terms for each of the four diagonal components~
for example, f(x+1,y+1)~each which contributes a negative f(x,y)  term leading to
the kernel in Figure 8-2b. Equivalently, one can multiply each of these kernels by |1,
with the sign of the center value determining whether you add or subtract the trans-
formation from the input image to get the sharpened version. Since the operation is
based  on  second  derivatives,  it  creates  a  sharp  response  in  areas  of  discontinuities
and a shallow response around more slowly varying gray levels.  This  can be seen
by  viewing  the  output  of  the  transformation  directly  (i.e.,  before  it  is  added  to
the input image).
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a b

0 1 0
1 -4 1
0 1 0

1 1 1
1 -8 1
1 1 1

Figure 8-2. Convolution kernels

In[265]:= laplacianImageAimage_Graphics,

kernel_List : 88-1, -1, -1<, 8-1, 8, -1<, 8-1, -1, -1<<E :=

ModuleA8transformed<, transformed =

ListConvolveAkernel, getImgDataAimageE, 1E;

GraphicsARasterARescale@transformed, 8Min@ÒÒD, Max@ÒÒD< & üü

Flatten@transformedD, 80, 255<D, image@@1, 2DD, 80, 255<,

ColorFunction Ø GrayLevelE, Sequence üü OptionsAimageEEE

In[266]:= laplacianImageAimageE

Out[266]=
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See Also
In Mathematica 7, you can use Sharpen (http://bit.ly/2rutpn).

8.6 Sharpening and Smoothing 
with Fourier Transforms
Problem
You want to emphasize either the low or high frequency characteristics of an image. 

Solution
Fourier-based  image  processing  in  Mathematica  is  particularly  easy  to  implement
since it has the native function Fourier, which implements a high-quality version of
the Fast Fourier Transform (FFT). The basic steps of Fourier image processing are

1. Obtain the Fourier transform of the image.

2. Center  the  Fourier  transform using  one  of  the  techniques  explained in  the  dis-
cussion here.

3. Apply a filtering function to the transformed result.

4. Undo the centering. 

5. Apply  the  inverse  Fourier  transform,  discarding  any  residual  imaginary
components.
In[95]:= Clear@fourierFilterD;

fourierFilterAimage_, filter_E :=

ModuleA9four , trans, cols = LengthAgetImgDataAimageE@@1DDE,

rows = LengthAgetImgDataAimageEE=,

trans = TableAH-1Lx+y, 8x, 1, rows<, 9y, 1, cols=E;

H*Centering transforms*L

four = FourierAgetImgDataAimageE *trans, FourierParameters -> 81, -1<E;

four =

TableAfilterAx, y, rows, colsE, 8x, 1, rows<, 9y, 1, cols=E * four;

four = Abs@InverseFourier@four, FourierParameters -> 81, -1<D* transD;

GraphicsARasterAfour, getImgCoordAimageE, 8Min@ÒÒD, Max@ÒÒD< & üü

Flatten@fourD, ColorFunction Ø IGrayLevel@Ò1, 1D &MEEE
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The fourierFilter  function is designed to work with a custom filter function. Here
are some common functions found in the literature. See the “Discussion” section on
page 358 for more details.

In[11]:= dist@u_, v_, rows_, cols_D := Sqrt@Hu - rowsê2.L^2 + Hv - colsê2.L^2D

In[12]:= idealLowPass@u_, v_, rows_, cols_, d0_D :=

If@dist@u, v, rows, colsD § d0, 1, 0D

In[13]:= idealHighPass@u_, v_, rows_, cols_, d0_D :=

If@dist@u, v, rows, colsD § d0, 0, 1D

In[14]:= butterWorthLowPass@u_, v_, rows_, cols_, d0_, n_D :=

1.0êH1.0 + Hdist@u, v, rows, colsDêd0L^2 nL

One can use a low-pass filter for blurring an image. This might be done as a single
stage of a multistage process applied to text that will be processed by OCR software.
For  example,  blurring  can  diminish  gaps  in  letters.  This  might  be  followed  by  a
threshold transformation and other adjustments. 

In[100]:= image = ColorConvertA

ImportAFileNameJoinA9NotebookDirectory@D, "..", "images", "text2.png"=E,

"Graphics", ImageSize Ø MediumE, "GrayScale"E

Out[100]=
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In[103]:= image2 = fourierFilterAimage, butterWorthLowPass@Ò1, Ò2, Ò3, Ò4, 90, 1D &E

Out[103]=

Discussion
An  important  step  in  this  algorithm  is  centering  the  zero  frequency  component  of
the  transform.  This  allows  filter  functions  to  use  the  distance  from  the  center  as  a
function of increasing frequency. There are two ways to achieve centering. One way
is to preprocess the image before it is transformed by multiplying it by the function
H-1Lx+y. This function produces a matrix of alternating values 1 and |1. This is the
technique used in the solution.

In[274]:= TableAH-1Lx+y, 8x, 1, 10<, 9y, 1, 10=E êê MatrixForm
Out[274]//MatrixForm=

1 -1 1 -1 1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 1

1 -1 1 -1 1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 -1 1 -1 1
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Alternatively, one can postprocess the Fourier output by swapping quadrants using
the quadSwap function.

In[275]:= quadSwap@matrix_ListD := ModuleA9width, height, q1, q2, q3, q4=,

9width, height= = 9Length@matrix@@1DDD, Length@matrixD=;

q1 = matrixAA1 ;; FloorAheightë 2E, 1 ;; Floor@widthê2DEE;

q2 = matrixAA1 ;; FloorAheightë 2E, Floor@widthê2D + 1 ;; widthEE;

q3 =

matrixAAFloorAheightë 2E + 1 ;; height, Floor@widthê2D + 1 ;; widthEE;

q4 = matrixAAFloorAheightë 2E + 1 ;; height, 1 ;; Floor@widthê2DEE;

Join@Join@q3, q4, 2D, Join@q2, q1, 2DDE

In[276]:= ItestQuadSwap = TableA

IfAx <= 5 && y <= 5, 1, IfAx > 5 && y <= 5, 4, IfAx § 5 && y > 5, 2, 3EEE,

8x, 1, 10<, 9y, 1, 10=EM êê MatrixForm
Out[276]//MatrixForm=

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

4 4 4 4 4 3 3 3 3 3

4 4 4 4 4 3 3 3 3 3

4 4 4 4 4 3 3 3 3 3

4 4 4 4 4 3 3 3 3 3

4 4 4 4 4 3 3 3 3 3

In[277]:= quadSwap@testQuadSwapD êê MatrixForm
Out[277]//MatrixForm=

3 3 3 3 3 4 4 4 4 4

3 3 3 3 3 4 4 4 4 4

3 3 3 3 3 4 4 4 4 4

3 3 3 3 3 4 4 4 4 4

3 3 3 3 3 4 4 4 4 4

2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

I include both methods because you may encounter either of them in the literature.
Gonzalez  and  Woods  use  the  preprocessing  technique,  although  I  find  the  post-
processing technique easier to understand conceptually.

It  is  difficult  to  appreciate  the  meaning  of  complex  images  after  they  are  mapped
into  the  frequency  domain.  However,  almost  every  image-processing  text  that
discusses the Fourier transform will provide images of the transformation after center-
ing.  The  fourierImage  function below does this  using quadSwap,  whereas  fourier-
Image2  uses  H-1Lx+y.  You  can  see  that  they  produce  equivalent  results.  You’ll
notice  that  each  function  maps  Log[#+1]  over  the  pixel  values  because  Fourier
transforms produce images with a much too large dynamic range. 
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In[278]:= fourierImageAimage_GraphicsE :=

ModuleA9four = MapALog@Ò + 1D &, quadSwapAAbsA

FourierAgetImgDataAimageE, FourierParameters Ø 81, -1<EEE, 2E=,

GraphicsARasterAfour, image@@1, 2DD, 8Min@ÒÒD, Max@ÒÒD< & üü

Flatten@fourD, ColorFunction Ø GrayLevelE, OptionsAimageEEE

In[279]:= fourierImage2Aimage_GraphicsE := ModuleA9width, height, trans, four=,

8cols, rows< = getImgDimAimageE;

trans = TableAH-1Lx+y, 8x, 1, rows<, 9y, 1, cols=E;

four = MapALog@Ò + 1D &, AbsA

FourierAgetImgDataAimageE * trans, FourierParameters Ø 81, -1<EE, 2E;

GraphicsARasterAfour, image@@1, 2DD, 8Min@ÒÒD, Max@ÒÒD< & üü

Flatten@fourD, ColorFunction Ø GrayLevelE, OptionsAimageEEE

In[280]:= fourierImageAimageE

Out[280]=
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In[281]:= fourierImage2AimageE

Out[281]=

8.7 Detecting Edges in Images
Problem
You  want  to  detect  boundaries  between  distinct  objects  in  an  image  possibly  as  a
preprocessing step to object recognition.

Solution
Two popular methods of edge detection are the Sobel and Laplacian of the Gaussian
(LoG) algorithms. The Sobel is based on first-order derivatives that approximate the
gradient.  The LoG algorithm combines the second-order Laplacian that  we used in
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Recipe  3.3  with  a  Gaussian smoothing to  reduce the  sensitivity  of  the  Laplacian to
noise. See the “Discussion” section on page 364 for further details. This implementa-
tion  uses  transformation  rules  that  map  intermediate  gray  levels  to  either  white  or
black to emphasize the edges.

The  edgeDetectSobel  function  provides  the  orientation  optional  parameter  for
extracting just the x edges {1,0}, just the y edges {0,1}, or both {1,1} (the default).

In[282]:= edgeDetectSobelAimage_Graphics, orientation_List : 81, 1<E :=

ModuleA9yKernel = orientation@@2DD*881, 0, -1<, 82, 0, -2<, 81, 0, -1<<,

xKernel = orientation@@1DD*881, 2, 1<, 80, 0, 0<, 8-2, -1, -1<<,

transformed=,

transformed = AbsAListConvolveAxKernel, getImgDataAimageE, 1EE +

AbsAListConvolveAyKernel, getImgDataAimageE, 1EE;

GraphicsARasterAtransformed ê. 8x_ ê; x < 127 Ø 0, x_ ê; x ¥ 127 Ø 255<,

image@@1, 2DD, 80, 255<, ColorFunction Ø GrayLevelE,

Sequence üü OptionsAimageEEE

The  edgeDetectLOG  function  provides  a  way  to  customize  the  kernel.  See  the
“Discussion” section on page 364 for criteria of appropriate kernels. 

In[283]:= edgeDetectLOGAimage_Graphics,

kernel_List : 880, 0, -1, 0, 0<, 80, -1, -2, -1, 0<,

8-1, -2, 16, -2, -1<, 80, -1, -2, -1, 0<, 80, 0, -1, 0, 0<<E :=

ModuleA8transformed<, transformed =

ListConvolveAkernel, getImgDataAimageE, 1E;

GraphicsARasterAtransformed ê. 8x_ ê; x < 127 Ø 0, x_ ê; x ¥ 127 Ø 255<,

image@@1, 2DD, 80, 255<, ColorFunction Ø GrayLevelE,

Sequence üü OptionsAimageEEE

In[284]:= mech = ImportAFileNameJoinA

9NotebookDirectory@D, "..", "images", "mechanism.png"=E, "Graphics"E;
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In[285]:= GraphicsGridA99mech, edgeDetectSobel@mechD=,

9edgeDetectSobel@mech, 80, 1<D, edgeDetectSobel@mech, 81, 0<D=,

9edgeDetectLOG@mechD , edgeDetectLOG@mech,

2*880, 0, -1, 0, 0<, 80, -1, -2, -1, 0<, 8-1, -2, 16, -2, -1<,

80, -1, -2, -1, 0<, 80, 0, -1, 0, 0<<D ==,

ImageSize Ø Medium, Dividers Ø AllE

Out[285]=
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Discussion
An edge is a set of connected pixels that lie on the boundary of two regions. Edges
are local areas of discontinuity rather than more global regions. An ideal edge would
have a sharp transition between two very different grayscale values; however, few
realistic images will have edges that are so sharply defined. Typically an edge transi-
tion  will  be  in  the  form  of  a  ramp  from  one  level  to  the  next,  possibly  with  some
noise superimposed on the transition. See Gonzalez and Woods for some nice visual-
izations of these concepts.

Since  edges  are  transitions,  it  is  not  surprising  that  methods  of  edge  detection
are based on mathematical derivatives. First derivatives of a noisy ramp will produce
an approximate square wave transition along the length of the ramp. Second deriva-
tives will form a spike at the start of the edge transition and one of opposite sign at
the end. 

The  Sobel  masks  and  Laplacian  masks  approximate  first  and  second  derivatives
in  the  discrete  domain.  There  are  two  masks  in  the  first-derivative  Sobel  method.
The first finds horizontal edges; the second finds vertical edges. The function edge-
DetectSobel  is written so that you can use the second parameter to emphasize both
edges {1,1}, horizontal edges {1,0}, or vertical edges {0,1}. 

The  edgeDetectLOG  functions  uses  a  larger  5  ×  5  mask  to  better  approximate  the
Mexican  hat  response  function  sought  by  that  transformation  (large  central  peak,
with  rapid  tapering  off,  followed  by  a  gentle  increase).  This  transformation  creates
finer lines but is more sensitive to image noise. 

Mathematica 7 has ImageConvolve. Here is an example using a Sobel mask.

In[286]:= ImageResizeAImageConvolveAImportA

FileNameJoinA9NotebookDirectory@D, "..", "images", "mechanism.png"=EE,

88-1, 0, 1<, 8-2, 0, 2<, 8-1, 0, 1<<E, 250E

Out[286]=
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8.8 Image Recognition Using Eigenvectors 
(Eigenimages)
Problem
Given an initial  training set of images, you want to find the best match of an input
image to an image in the training set.

Solution
Here  we  show  a  solution  that  uses  concepts  from  principal  component  analysis
(PCA) and information theory to map a high-dimensional training set of images into
a lower dimension such that the most significant features of the data are preserved.
This allows new images to be classified in terms of the training set. 

In[287]:= H*Helper for vectorizing and scaling image data*L

imageVectorAimage : I_Graphics _ImageME :=

NARescaleAFlattenAgetImgDataAimageEEEE

H*Computes eigenimage vectors, avg image vector,

and eigenvectors of reduced M x M system

where M is the number of training images*L

eigenImageElementsAimages_List, frac_ : 0.5E :=

ModuleA9imgMatrix = imageVector êü images,

imgMatrixAdj, imgAverage, eigenVecs=,

imgAverage = NATotalAimgMatrixEë LengthAimgMatrixEE;

imgMatrixAdj = IÒ - imgAverageM & êü imgMatrix;

eigenVecs = EigenvectorsADotAimgMatrixAdj, TransposeAimgMatrixAdjEEE ;

imgMatrixAdj =

DotATakeAeigenVecs, CeilingAfrac * LengthAeigenVecsEEE, imgMatrixE;

9imgMatrixAdj, imgAverage, eigenVecs=E

H*Computes the eigenimages and

average image from a set of training images*L

eigenImagesAimages_List, frac_ : 0.5E :=

ModuleA9eigenImages, imgAvg, dummy, img1 = images@@1DD, width=,

9eigenImages, imgAvg, dummy= = eigenImageElementsAimages, fracE;

width = getImgDimAimg1E@@1DD;

GraphicsARasterAPartition@Rescale@ÒD, widthD, img1@@1, 2DD, 80.0, 1.0<E,

OptionsAimg1EE & êü AppendAeigenImages , imgAvgE

E
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In[287]:=

H*Computes a set of weight vectors for each input image,

and acceptance threshold for matching new

images based on the results from eigenImageElements*L

eigenImageRecognitionElementsAimages_List, frac_ : 0.5E :=

ModuleA

9eigenImages, imgAvg, dummy, weightVecs, thresholdVec, threshold=,

9eigenImages, imgAvg, dummy= = eigenImageElementsAimages, fracE;

weightVecs =

TableADotAimageVectorAimages@@iDDE - imgAvg, eigenImagesAAjEEE,

9i, 1, LengthAimagesE=, 9j, 1, LengthAeigenImagesE=E;

thresholdVec = TableADotAimgAvg, eigenImages@@iDDE,

9i, 1, LengthAeigenImagesE=E;

threshold = MinAEuclideanDistance@thresholdVec, ÒD & êü weightVecsEë 2;

EigenImageElementsA9weightVecs, threshold, eigenImages, imgAvg=EE

H*Given a training set, determines if a test image matches any image in

the set and also returns the possible matches ranked best to worst*L

eigenImageRecognitionAimages_List,

testImage : I_Graphics _ImageM, frac_ : 0.5E :=

ModuleA9eigenImages, imgAvg, dummy, weightVecs, testVec,

matchDistances, matchOrdering, match, thresholdVec, threshold=,

9weightVecs, threshold, eigenImages, imgAvg= =

eigenImageRecognitionElementsAimages, fracE@@1DD;

testVec = TableADotAimageVectorAtestImageE - imgAvg, eigenImages@@iDDE,

9i, 1, LengthAeigenImagesE=E;

matchDistances = EuclideanDistance@testVec, ÒD & êü weightVecs;

matchOrdering = Ordering@matchDistancesD;

matchDistances = matchDistancesAAmatchOrderingEE;

9matchDistances@@1DD § threshold,

InnerAList, matchOrdering, matchDistances, ListE=

E
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H*This function is more efficient when many test images need to

be matched since it allows you to compute the eigenImageElements

once for the training set and reuse it for each test image.*L

eigenImageRecognitionAeigenImageElements_EigenImageElements,

testImage : I_Graphics _ImageM, frac_ : 0.5E :=

ModuleA9eigenImages, imgAvg, dummy, weightVecs, testVec,

matchDistances, matchOrdering, match, thresholdVec, threshold=,

9weightVecs, threshold, eigenImages, imgAvg= = eigenImageElements@@1DD ;

testVec = TableADotAimageVectorAtestImageE - imgAvg, eigenImages@@iDDE,

9i, 1, LengthAeigenImagesE=E;

matchDistances = EuclideanDistance@testVec, ÒD & êü weightVecs;

matchOrdering = Ordering@matchDistancesD;

matchDistances = matchDistancesAAmatchOrderingEE;

9matchDistances@@1DD § threshold,

InnerAList, matchOrdering, matchDistances, ListE=

E

I  use  a  training  set  of  faces  obtained  from  the  Yale  Faces  Database.  These  images
were labeled “normal” in the database and were normalized manually in Photoshop
to center the faces and equalize image dimensions. 

In[293]:= faces = Import@Ò, "Graphics"D & êü FileNamesAFileNameJoinA

9NotebookDirectory@D, "..", "images", "faces", "subject*.png"=EE;

Discussion
The  solution  is  based  on  work  performed  by  Matthew  Turk  and  Alex  Pentland  at
the  MIT Media  Laboratory.  They  were  inspired  by  earlier  work  by  L.  Sirovich  and
M. Kirby for representing faces using PCA to efficiently encode face images. PCA is a
technique for identifying patterns in data by highlighting similarities and differences.
PCA is used to reduce high-dimensional data sets. It uses the most significant eigen-
vectors  (those  with  the  greatest  eigenvalues)  of  a  covariance  matrix  to  project
the  high-dimensional  data  on  a  smaller  dimensional  subspace  in  terms  of  the
eigenvectors. 

In the case of image recognition, you start with a training set of images normalized
to  the  same  dimensions.  For  this  example  I  used  images  from  the  Yale  Face
Database that I normalized to 180 × 240 pixels with the face centered. 
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In[294]:= GraphicsGridAPartition@faces, 5D, ImageSize Ø MediumE

Out[294]=

The first step is to represent the images as vectors by flattening and normalizing the
raster  data.  The  helper  function  imageVector  is  used  for  that  purpose.  The  vectors
are then grouped into a matrix of 15 rows and 43,200 (180 × 240) columns and nor-
malized  by  subtracting  the  average  of  all  images  from  each  image.  If  the  solution
used  PCA  directly,  it  would  then  need  to  generate  a  43,200  ×  43,200  covariance
matrix  and  solve  for  the  43,200  eigensystem.  Clearly  this  brute  force  attack  is  in-
tractable.  Rather,  the  solution  takes  advantage  of  the  fact  that  in  a  system  where
the  number  of  images  (15)  is  much  less  than  the  number  of  data  points  (43,200),
most eigenvalues will be zero. Hence, it takes an indirect approach of computing the
eigenvectors of a smaller 15 × 15 matrix obtained from multiplying the image matrix
by  its  transpose  as  explained  in  Turk  and  Pentland.  A  fraction  (half  by  default)  of
these eigenvectors are then used to compute the eigenimages from the original image
data.  This  work  is  encapsulated  in  the  function  eigenImageElements,  which  returns
the  eigenimages,  the  average  image,  and  the  computed  eigenvectors  of  the  smaller
matrix. This prevents the need to recompute these values in other functions. 

The function eigenImages is used to visualize the results. It returns a list of graphics
containing each of the eigenimages plus the average image. Here we show all 16 (15
eigen  +  1  average)  images  by  setting  frac  to  1.  The  ghostlike  quality  is  a  standard
feature of eigenimages of faces. Recalling that the lightest areas of a grayscale image
represent  the  largest  magnitudes,  you  can  see  the  elements  of  each  image  that  are
emphasized. For example, the area around the cheek bones of the first image are the
most significant. 
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The function eigenImages is used to visualize the results. It returns a list of graphics
containing each of the eigenimages plus the average image. Here we show all 16 (15
eigen  +  1  average)  images  by  setting  frac  to  1.  The  ghostlike  quality  is  a  standard
feature of eigenimages of faces. Recalling that the lightest areas of a grayscale image
represent  the  largest  magnitudes,  you  can  see  the  elements  of  each  image  that  are
emphasized. For example, the area around the cheek bones of the first image are the
most significant. 

In[295]:= GraphicsGridAPartitionAeigenImages@faces, 0.95D, 5, 5, 81, 1<, Graphics@DE,

ImageSize Ø MediumE

Out[295]=

The eigenimages can be used as a basis  for image recognition by using the product
of the eigenimages and the original images to form a vector of weights for each test
image.  The weights  represent  the  contribution of  eigenimage to  the  original  image.
Given these weight vectors, you can compute similar weights for an unknown image
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and use  the  Euclidean  distance  as  a  classification  metric.  If  the  distance  is  below a
certain threshold, then a match is declared. 

The  test  images  are  derived  from  some  non-face  images,  some  distortions  of  facial
images,  and  other  poses  of  the  faces  in  the  training  set.  The  function  eigenImage-
Recognition returns a Boolean and a ranking list. The Boolean determines if the test
image fell in the threshold of the training set. The threshold is computed using the av-
erage image distance. The ranking set ties the index to the image in the training set
and the distance in order of increasing distance. This means the first entry is the best
match to the training image.

In[296]:= testFaces = Import@Ò, "Graphics"D & êü FileNamesAFileNameJoinA

9NotebookDirectory@D, "..", "images", "faces", "test", "*.png"=EE;

In[297]:= GraphicsGridA

Partition@testFaces, 6, 6, 81, 1<, Graphics@DD, ImageSize Ø MediumE

Out[297]=

In[298]:= eir = eigenImageRecognitionElements@facesD;

results = eigenImageRecognition@eir, ÒD & êü testFaces ;

The code that follows displays the best match in the training set that corresponds to
the test image. If the threshold was not met, an X is superimposed on the image. 
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In[300]:= GraphicsGridAPartition@If@Ò@@1DD, faces@@Ò@@2, 1, 1DDDD,

Graphics@8faces@@Ò@@2, 1, 1DDDD@@1DD, Red, Thick,

Line@88180, 1<, 81, 240<<D, Line@881, 1<, 8180, 240<<D<DD & êü

results, 6, 6, 81, 1<, Graphics@DD, ImageSize Ø MediumE

Out[300]=

These results show a false positive for the second image in the first row, the first im-
ages in the second and third rows, and the fourth image in the third row. There is a
false negative for the second image in the second row, meaning there was a correct
match  but  it  fell  below  the  threshold.  All  other  results  are  correct.  This  is  pretty
good considering the small size of the training set.

See Also
The images used here can be found at http://bit.ly/xlgx7  or http://www.mathematica
cookbook.com. The original Yale Face Database can be found at http://bit.ly/52lgvb.

The original research of paper Eigenfaces for Recognition by Matthew Turk and Alex
Pentland from the Journal  of  Cognitive  Neuroscience  (Volume 3,  Number 1)  can be
found at http://bit.ly/7OSSBw.

An excellent tutorial by Lindsay I. Smith on PCA can be found at http://bit.ly/6CJTWn.
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CHAPTER 9

Audio and Music Processing

Deep in the back of my mind is an unrealized sound
Every feeling I get from the street says it soon

could be found
When I hear the cold lies of the pusher,

I know it exists
It’s confirmed in the eyes of the kids, emphasized

with their fists
...

The music must change
For we’re chewing a bone

We soared like the sparrow hawk flied
Then we dropped like a stone

Like the tide and the waves
Growing slowly in range

Crushing mountains as old as the Earth
So the music must change

The Who, “Music Must Change”

9.0 Introduction
Audio  and  music  can  be  approached  in  three  different  ways  with  Mathematica:
(1) as traditional musical notes with associated pitch names and other specifications,
such  as  duration,  timbre,  loudness,  etc.;  (2)  as  abstract  mathematical  waveforms
that  represent  vibrating  systems;  and (3)  as  digitally  represented  sound~just  think
of .wav and .aiff files. If nothing else, this chapter should hint at the ease with which
Mathematica can be put in the service of the arts. Let’s make some music!

Mathematica  allows  you  to  approach  music  and  sound  in  at  least  three  different
ways.  You  can  talk  to  Mathematica  about  musical  notes  such  as  "C"  or  "Fsharp".
You  can  directly  specify  other  traditional  concepts,  such  as  timbre  and  loudness,
with  Mathematica’s  Sound,  SoundNote,  and  PlayList  functions.  You can  ask  Mathe-
matica to play analog waveforms. And you can ask Mathematica to interpret digital
sound samples.

9.1 Creating Musical Notes
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9.1 Creating Musical Notes
Problem
You want to create musical notes corresponding to traditional musical notation. 

Solution
The Mathematica  function  SoundNote  represents  a  musical  sound.  SoundNote  uses
either  a  numerical  convention,  for  which  middle  C is  represented  as  zero,  or  it  ac-
cepts strings like "C",  "C3",  or "Aflat4",  where "A0"  represents the lowest note on a
piano keyboard.

In[691]:= Sound@SoundNote@0DD

Out[691]=

1 s

In[692]:= Sound@SoundNote@"C"DD

Out[692]=

1 s

Discussion
SoundNote  assumes  you  want  to  play  a  piano  sound,  for  exactly  one  second,  at  a
medium  volume.  You  can  override  these  presets.  Here’s  a  loud  (SoundVolumeØ1),
short (0.125 second), guitar blast ("GuitarOverdriven").
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In[693]:= Sound@SoundNote@0, 0.125, "GuitarOverdriven", SoundVolume Ø 1DD

Out[693]=

0.13 s

9.2 Creating a Scale or a Melody
Problem
You want to create a sequence of notes, like a scale or single-note melody.

Solution
Sound can accept a list of notes, which it will play sequentially. Here is a whole-tone
scale specified to take exactly 1.5 seconds to play in its entirety.

In[694]:= Sound@8SoundNote@0D, SoundNote@2D, SoundNote@4D,

SoundNote@6D, SoundNote@8D, SoundNote@10D, SoundNote@12D<, 1.5D

Out[694]=

1.5 s
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Here’s  an  alternative  syntax  using  Map  (/@),  which  requires  less  typing  and  collects
the note specifications into a list.

In[695]:= Sound@SoundNote@ÒD & êü 80, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24<, 1.0D

Out[695]=

1 s

Here’s  a  randomly  generated  melody  composed  of  notes  from  an  AŸ  major  scale.
The duration of  each note  is  specified as  0.125 second.  The duration specification,
now  a  parameter  of  SoundNote  rather  than  an  overall  specification  of  the  entire
melody as in the previous examples, sets the stage for the next example.

In[696]:= Sound@SoundNote@Ò, 0.125D & êü RandomChoice@

8"Aflat2", "Bflat2", "C3", "Dflat3", "Eflat3", "F3", "G3", "Aflat3"<, 10DD

Out[696]=

1.25 s

9.3 Adding Rhythm to a Melody
Problem
You need to specify a melody for which the notes have different rhythm values. 

Solution
Replace  the  0.125  specification  in  the  previous  example  with  other  values.  Since
you’re generating a random melody, why not generate random durations?
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In[697]:= Sound@

SoundNote@Ò, RandomChoice@80.125, 0.5, 0.75, 1.0<DD & êü RandomChoice@

8"Aflat2", "Bflat2", "C3", "Dflat3", "Eflat3", "F3", "G3", "Aflat3"<, 10DD

Out[697]=

3.25 s

Here, the weighting feature of RandomChoice is used to guarantee a preponderance of
short notes.

In[698]:= Sound@

SoundNote@Ò, RandomChoice@810, 1, 1, 1< Ø 80.125, 0.5, 0.75, 1.0<DD & êü

RandomChoice@8"Aflat2", "Bflat2", "C3",

"Dflat3", "Eflat3", "F3", "G3", "Aflat3"<, 10DD

Out[698]=

2 s

9.4 Controlling the Volume
Problem
You would like to add some phrasing to your melody by controlling the volume.

Solution
Unlike duration, which is specified as a parameter to SoundNote, you control the vol-
ume  with  an  option  setting.  Pulling  everything  together  from  the  examples  above

and adding a randomized volume yields this funky guitar pattern. Anyone for a cup
of Maxwell House coffee? 
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and adding a randomized volume yields this funky guitar pattern. Anyone for a cup
of Maxwell House coffee? 

In[699]:= Sound@SoundNote@Ò, 0.125, "GuitarMuted", SoundVolume Ø RandomReal@DD & êü

RandomChoice@820, 1, 1, 1, 1, 1< Ø 80, 2, 4, 7, 9, 12<, 56DD

Out[699]=

7 s

9.5 Creating Chords
Problem
You want to move beyond simple sequences of single notes to chord patterns.

Solution
To make a chord, give SoundNote a list of notes. For example, you can specify the C
major  triad  using  the  pitches  C,  E,  and  G  specified  as  a  list  of  numbers  {0,4,7}.
Don’t  confuse  making  chords  by  giving  SoundNote  a  list  of  notes  with  making
melodies by giving Sound a list of SoundNotes.

In[700]:= Sound@SoundNote@80, 4, 7<DD

Out[700]=

1 s

378 | Chapter 9: Audio and Music Processing



9.6 Playing a Chord Progression
Problem
You want to make a chord progression.

Solution
This is the same as making melodies. Spell out the chords in your chord progression
as lists inside a list. Feed them into SoundNote using Map.

In[701]:= Sound@SoundNote@Ò, 0.5D & êü

88"C3", "E3", "G3"<, 8"F3", "A3", "C4"<, 8"G3", "B3", "D4"<<D

Out[701]=

1.5 s

Here’s a popular pop song progression.

In[702]:= Sound@SoundNote@Ò, 1D & êü 88"C3", "E3", "G3"<,

8"B2", "E3", "G3"<, 8"Bb2", "E3", "G3"<, 8"A2", "E3", "G3"<,

8"Aflat2", "Eflat3", "G3"<, 8"G2", "C3", "D3", "G3"<, 8"C3", "E3", "G3"<<D

Out[702]=

7 s
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9.7 Writing Music with Traditional 
Chord Notation
Problem
You  want  to  specify  a  chord  progression  using  traditional  notation.  For  example,
you would like to write something like: 

In[703]:= myProg = "C A7 d-7 FêG C";

or, using roman numerals as is common in jazz notation, 

In[704]:= myJazzProgression = "<Eb> I vi-9 II7êÒ9b13 ii-9 V7sus I";

Solution
Mathematica  can  deftly  handle  this  task  with  its  String  manipulation  routines  and
its pattern recognition functions. First, decide which chord symbols will be allowed.
Here’s  a  list  of  jazz chords:  Maj7/9,  Majadd9,  add9,  Maj7#11, Maj7/13,  Maj7/#5,
Maj7, Maj, -7b5, -7, -9, -11, min, 7/b913, 7/#9b13, 7/b9b13, 7/b9#11, 7/b5, 7/b9,
7/#9, 7/#11, 7/13, 7, 7/9, 7sus, and sus.

The rules below turn the chord names into the appropriate scale degree numbers in
the key of C. Later, as a second step, you’ll transpose these voicings to other keys.

In[705]:= chordSpellingRules = 9"Maj7ê9" ß 80, 4, 7, 11, 14<, "Majadd9" ß 80, 2, 4, 7<,

"add9" ß 80, 2, 4, 7<, "Maj7êÒ11" ß 80, 4, 7, 11, 14, 18<,

"Maj7ê13" ß 82, 6, 9<, "Maj7êÒ5" ß 84, 8, 11<, "Maj7" ß 80, 4, 7, 11<,

"Maj" ß 80, 4, 7<,

H*lstead - added rule so "F" works*L

"" ß 80, 4, 7<,

"-7b5" ß 80, 3, 6, 10<, "-7" ß 80, 3, 7, 10<,

"-9" ß 80, 3, 7, 10, 14<, "-11" ß 80, 3, 7, 10, 14, 17<,

"min" ß 80, 3, 7<,

H*lstead - added rule so "D-" works*L

"-" ß 80, 3, 7<,

"7êb913" ß 81, 4, 9, 10<, "7êÒ9b13" ß 80, 3, 8<, "7êb9b13" ß 81, 4, 8, 10<,

"7êb9Ò11" ß 81, 4, 6, 10<, "7êb5" ß 80, 4, 6, 10<,

"7êb9" ß 81, 4, 7, 10<, "7êÒ9" ß 84, 10, 15<,

"7êÒ11" ß 80, 4, 7, 10, 14, 18<, "7ê13" ß 84, 9, 10, 14<, "7" ß 80, 4, 7, 10<,

"7ê9" ß 80, 4, 7, 10, 14<, "7sus" ß 80, 5, 7, 10<, "sus" ß 80, 5, 7, 12<=;
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romanRoots = 8"bIII" ß 3, "III" ß 4, "bII" ß 1, "II" ß 2, "ÒII" ß 3,

"IV" ß 5, "ÒIV" ß 6, "bVII" ß 10, "VII" ß 11, "bVI" ß 8, "VI" ß 9,

"ÒVI" ß 10, "bV" ß 6, "V" ß 7, "ÒV" ß 8, "I" ß 0, "ÒI" ß 1<;

letterRoots = 8"C" ß 0, "CÒ" ß 1, "Db" ß 1, "D" ß 2, "DÒ" ß 3,

"Eb" ß 3, "E" ß 4, "F" ß 5, "FÒ" ß 6, "Gb" ß 6, "G" ß 7,

"GÒ" ß 8, "Ab" ß 8, "A" ß 9, "Bb" ß 10, "B" ß 11<;

roots = Join@romanRoots, letterRootsD
Out[708]= 8bIII ß 3, III ß 4, bII ß 1, II ß 2, ÒII ß 3, IV ß 5, ÒIV ß 6,

bVII ß 10, VII ß 11, bVI ß 8, VI ß 9, ÒVI ß 10, bV ß 6, V ß 7, ÒV ß 8,

I ß 0, ÒI ß 1, C ß 0, CÒ ß 1, Db ß 1, D ß 2, DÒ ß 3, Eb ß 3, E ß 4,

F ß 5, FÒ ß 6, Gb ß 6, G ß 7, GÒ ß 8, Ab ß 8, A ß 9, Bb ß 10, B ß 11<

Make a table by concatenating together each possible root and type. Then /. can 
be used to decode chord.

In[709]:= compoundRules = TableAToUpperCase@lP1, 1T ~~ lP2, 1TD ->

8lP1, 2T, lP2, 2T<, 9l, TuplesA9roots, chordSpellingRules=E=E;

drules = Dispatch@compoundRulesD;

Now  create  a  function  for  converting  the  chord  string  into  a  progression
representation.

In[711]:= progressionFromString@s_D :=

BlockA8su, ss<,

ss = StringSplit@s, WhitespaceD;

progression@First@ssD, ToUpperCase@Rest@ssDDDE

progressionAkey_, chords_E :=

BlockA9keyCenter, lh, rh=,

keyCenter = StringCasesAkey,

RegularExpression@"H?iL@a-zD+"DEP1T ê. letterRoots;

progressionAkey, chords, keyCenter,

TableA

8lh, rh< = Hchord ê. drulesL;

lh = lh + keyCenter - 24;

rh = rh + lh + 24;

Flatten@8lh, rh<D,

8chord, chords<EEE

And a function to play the progression.

In[713]:= playProgressionAprogressionAk_, csyms_, kn_, chords_EE :=

Sound@SoundNote@Ò, 1D & êü chords, 5D
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Let’s test it on a jazz progression.

In[714]:= jazzS = "<Eb> I vi-9 II7êÒ9b13 ii-9 V7sus I";

In[715]:= jazzP = progressionFromStringAjazzSE

Out[715]= progression@<Eb>, 8I, VI-9, II7êÒ9B13, II-9, V7SUS, I<,

3, 88-21, 3, 7, 10<, 8-12, 12, 15, 19, 22, 26<, 8-19, 5, 8, 13<,

8-19, 5, 8, 12, 15, 19<, 8-14, 10, 15, 17, 20<, 8-21, 3, 7, 10<<D

In[716]:= playProgressionAjazzPE

Out[716]=

5 s

Let’s add some rhythm and volume.

In[717]:= buffer = progressionFromStringAjazzSE@@4DD

Sound@MapIndexed@SoundNote@Ò, 81, 0.5, 0.5, 0.75, 0.25, 1<PSequence üü Ò2T,

SoundVolume Ø RandomReal@0.5, 1DD &, bufferDD

Out[717]= 88-21, 3, 7, 10<, 8-12, 12, 15, 19, 22, 26<, 8-19, 5, 8, 13<,

8-19, 5, 8, 12, 15, 19<, 8-14, 10, 15, 17, 20<, 8-21, 3, 7, 10<<

Out[718]=

4 s
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Discussion
There’s a very unsatisfying feature to the result: the chords jump around in an unmu-
sical way. A piano player would typically invert the chords to keep the voicings cen-
tered  around  middle  C.  So  for  example,  when  playing  a  CMaj7  chord,  which  is
defined as {0,4,7,11}  or  {"C3","E3","G3","B3"},  a  piano player might drop the top
two notes down an octave and play {-5,-1,0,4} or {"G2","B2","C3","E3"}. You can
use  Mathematica’s  Mod  function  to  achieve  the  same  result.  Here  the  notes  greater
than 6 {"F#3"} are transposed down an octave simply by subtracting 12 from them.

In[719]:= buffer

Out[719]= 88-21, 3, 7, 10<, 8-12, 12, 15, 19, 22, 26<, 8-19, 5, 8, 13<,

8-19, 5, 8, 12, 15, 19<, 8-14, 10, 15, 17, 20<, 8-21, 3, 7, 10<<

Currently in the buffer, the nonbass notes are all positive, so this rule, which uses /;
n>0  as  a condition,  leaves the (negative)  bass notes untouched while processing the
rest of the voicing.

In[720]:= buffer ê. 9n_Integer ê; n > 0 :> Mod@n, 12, -5D=

Out[720]= 88-21, 3, -5, -2<, 8-12, 0, 3, -5, -2, 2<, 8-19, 5, -4, 1<,

8-19, 5, -4, 0, 3, -5<, 8-14, -2, 3, 5, -4<, 8-21, 3, -5, -2<<

In[721]:=
SoundASoundNote@Ò, 1D & êü I buffer ê. 9n_Integer ê; n > 0 :> Mod@n, 12, -5D=ME

Out[721]=

6 s
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Here’s another progression showing all the steps in one place.

In[722]:= buffer = progressionFromString@"<F> F Eb7 F C7 d- Bb7 C7 F"D@@4DD;

SoundA

SoundNote@Ò, 1D & êü I buffer ê. 9n_Integer ê; n > 0 :> Mod@n, 12, -5D=ME

Out[723]=

8 s

9.8 Creating Percussion Grooves
Problem
You want to make percussion sounds.

Solution
Mathematica  has  implemented  60  percussion  instruments  as  specified  in  the  Gen-
eral MIDI (musical instrument digital interface) specification.

Here the percussion instruments are listed in alphabetical order. Some of the names
are  not  obvious.  For  example,  there  is  no  triangle  or  conga,  instead  there’s
"MuteTriangle", "OpenTriangle", "HighCongaMute", "HighCongaOpen", and "LowConga".

In[724]:= allPerc = 9"BassDrum", "BassDrum2", "BellTree", "Cabasa", "Castanets",

"ChineseCymbal", "Clap", "Claves", "Cowbell", "CrashCymbal",

"CrashCymbal2", "ElectricSnare", "GuiroLong", "GuiroShort", "HighAgogo",

"HighBongo", "HighCongaMute", "HighCongaOpen", "HighFloorTom",

"HighTimbale", "HighTom", "HighWoodblock", "HiHatClosed", "HiHatOpen",

"HiHatPedal", "JingleBell", "LowAgogo", "LowBongo", "LowConga",

"LowFloorTom", "LowTimbale", "LowTom", "LowWoodblock", "Maracas",

"MetronomeBell", "MetronomeClick", "MidTom", "MidTom2", "MuteCuica",

"MuteSurdo", "MuteTriangle", "OpenCuica", "OpenSurdo", "OpenTriangle",

"RideBell", "RideCymbal", "RideCymbal2", "ScratchPull", "ScratchPush",

"Shaker", "SideStick", "Slap", "Snare", "SplashCymbal", "SquareClick",

"Sticks", "Tambourine", "Vibraslap", "WhistleLong", "WhistleShort"=;

Here’s what each instrument sounds like. The instrument name is fed into SoundNote
where,  more  typically,  the  note  specification  should  be.  In  fact,  in  the  Standard
MIDI specification, each percussion instrument is  represented as a single pitch in a
“drum” patch. So for example, "BassDrum" is C0, "BassDrum2" is C#0, "Snare" is D0,
and so on. Therefore,  it  makes sense for Mathematica to treat these instruments as
notes,  not  as  “instruments”  as  was  done  above  for  "Piano",  "GuitarMuted",  and
"GuitarOverDriven".

384 | Chapter 9: Audio and Music Processing



Here’s what each instrument sounds like. The instrument name is fed into SoundNote
where,  more  typically,  the  note  specification  should  be.  In  fact,  in  the  Standard
MIDI specification, each percussion instrument is  represented as a single pitch in a
“drum” patch. So for example, "BassDrum" is C0, "BassDrum2" is C#0, "Snare" is D0,
and so on. Therefore,  it  makes sense for Mathematica to treat these instruments as
notes,  not  as  “instruments”  as  was  done  above  for  "Piano",  "GuitarMuted",  and
"GuitarOverDriven".

In[725]:= Sound@SoundNote@Ò, 0.125D & êü allPercD

Out[725]=

7.5 s

Here’s a measure’s worth of closed hi-hat:

In[726]:= Sound@SoundNote@Ò, 0.125D & êü Table@"HiHatClosed", 88<DD

Out[726]=

1 s
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And here’s something with a little more pizzazz. Both the choice of instrument and
volume are randomized.

In[727]:= Sound@SoundNote@Ò, 0.125, SoundVolume Ø RandomReal@80.25, 1<DD & êü

Table@RandomChoice@8"HiHatOpen", "HiHatClosed", "HiHatPedal"<D, 816<DD

Out[727]=

2 s

9.9 Creating More Complex Percussion Grooves
Problem
You want to create a drum kit groove for a pop song using kick, snare, and hi-hat.

Solution
This task is the percussion equivalent of making chords, because on certain beats all
three instruments could be playing, on other beats only one instrument or possibly
none. Here’s the previous hi-hat pattern, played at a slower tempo.

In[728]:= Sound@SoundNote@Ò, 0.25D & êü Table@"HiHatClosed", 88<DD

Out[728]=

2 s
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Here’s a kick drum pattern. Use None as a rest indication.

In[729]:= Sound@SoundNote@Ò, 0.25D & êü

8"BassDrum", None, None, "BassDrum", "BassDrum", None, None, None<D

Out[729]=

1.25 s

Here’s the snare drum backbeat. The display omits the leading rests,  so the picture
is  a  little  misleading.  As  soon  as  we  integrate  this  with  the  hi-hat  and  kick  drum,
everything will look correct.

In[730]:= Sound@SoundNote@Ò, 0.25D & êü

8None, None, "Snare", None, None, None, "Snare", None<D

Out[730]=

1.75 s

Each  list  has  exactly  eight  elements,  so  we  can  use  Transpose  to  interlace  the
elements.

In[731]:= groove = Transpose@8Table@"HiHatClosed", 88<D,

8"BassDrum", None, None, "BassDrum", "BassDrum", None, None, None<,

8None, None, "Snare", None, None, None, "Snare", None<<D
Out[731]= 88HiHatClosed, BassDrum, None<, 8HiHatClosed, None, None<,

8HiHatClosed, None, Snare<, 8HiHatClosed, BassDrum, None<,

8HiHatClosed, BassDrum, None<, 8HiHatClosed, None, None<,

8HiHatClosed, None, Snare<, 8HiHatClosed, None, None<<
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In[732]:= SoundASoundNote@Ò, 0.25D & êü grooveE

Out[732]=

2 s

An  entire  tune  can  now  be  made  by  repeating  this  one-measure  groove  as  many
times as desired. 

In[733]:= SoundASoundNote@Ò, 0.25D & êü FlattenATableA groove, 84<E, 1EE

Out[733]=

8 s

Discussion
Getting the curly braces just right in Mathematica’s syntax can be a little frustrating.
Without  Flatten  in  the  example  above,  the  SoundNote  function  is  confused  by  the
List-within-List results of the Table function. Consequently, you get no output.

In[734]:= SoundASoundNote@Ò, 0.25D & êü TableA groove, 84<EE

Out[734]= Sound@

8SoundNote@88"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", "BassDrum", None<,

8"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", None, None<<, 0.25`D,

SoundNote@88"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", "BassDrum", None<,

8"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", None, None<<, 0.25`D,
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SoundNote@88"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", "BassDrum", None<,

8"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", None, None<<, 0.25`D,

SoundNote@88"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", "BassDrum", None<,

8"HiHatClosed", "BassDrum", None<, 8"HiHatClosed", None, None<,

8"HiHatClosed", None, "Snare"<, 8"HiHatClosed", None, None<<, 0.25`D<D

Furthermore, with a simple Flatten  wrapped around the Table  function, each hit is
treated individually; we lose the chordal quality of the drums hitting simultaneously.
Go back and notice that the correct idea is to remove just one layer of braces by us-
ing Flatten[ ... , 1 ].

In[735]:= SoundASoundNote@Ò, 0.25D & êü FlattenATableA groove, 84<EEE

Out[735]=

23.5 s

9.10 Exporting MIDI files
Problem
You want to save your Mathematica expression as a standard MIDI file.

Solution
Mathematica  can  export  any  expression  composed  of  Sound  and  SoundNote  expres-
sions as a standard MIDI file.  The rub,  however,  is  that  Mathematica does not im-
port MIDI files. So let’s create some utilities that at the very least let you look at the
guts of standard MIDI files.
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Here’s a simple phrase that gets exported as the file myPhrase.mid.

In[736]:= myPhrase = Sound@

8SoundNote@0D, SoundNote@4D, SoundNote@7D, SoundNote@80, 4, 7, 12<D<D

Out[736]=

4 s

In[737]:= ExportA"myPhrase.mid", myPhraseE

Out[737]= myPhrase.mid

9.11 Playing Functions As Sound
Problem
You want to listen to the waveform generated by a mathematical function.

Solution
If you know how to plot a function in Mathematica:

In[738]:= PlotASin@1000*2 p*tD, 8t, 0, 0.001<, ImageSize Ø 300E

Out[738]=
0.0002 0.0004 0.0006 0.0008 0.0010

-1.0

-0.5

0.5

1.0

You  can  play  a  function.  Play  uses  the  same  syntax  as  Plot.  However,  you  don’t
want to listen to 1/1000th of a second, which is what was plotted above, so specify
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You  can  play  a  function.  Play  uses  the  same  syntax  as  Plot.  However,  you  don’t
want to listen to 1/1000th of a second, which is what was plotted above, so specify
something like {t, 0, 1}.

In[739]:= Play@Sin@1000*2 p*tD, 8t, 0, 1<D

Out[739]=

Discussion
Here are other crazy-sounding functions.

In[740]:= Play@Sin@300 2 p t Exp@tDD, 8t, 0, 8<D

Out[740]=

In[741]:= Play@H2 + Cos@40 t^2DL Sin@700 t^2D, 8t, 0, 10<D

Out[741]=
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9.12 Adding Tremolo
Problem
You want to add tremolo.

Solution
“Tremolo” is the musical term for amplitude modulation. Here a 20 Hz signal modi-
fies the amplitude of a 1,000 Hz signal.

In[742]:= PlotAH2 + Sin@20*2 p*tDL*Sin@1000*2 p*tD, 8t, 0, 0.1<, ImageSize -> 300E

Out[742]=
0.02 0.04 0.06 0.08 0.10

-3

-2

-1

1

2

3

And here, a 5 Hz signal modifies a 1,000 Hz signal.

In[743]:= Play@H2 + Sin@5*2 p*tDL*Sin@1000*2 p*tD, 8t, 0, 1<D

Out[743]=

9.13 Adding Vibrato
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9.13 Adding Vibrato
Problem
You want to add vibrato.

Solution
Vibrato  is  frequency  modulation.  Notice  that  the  sine  wave  alternates  between  re-
gions of compression and expansion.

In[744]:= PlotAHSin@H1 + Sin@250*2 p*tDL*1000*2 p*tDL,

8t, 0, 0.010<, ImageSize Ø 400, AspectRatio Ø 0.5E

Out[744]=
0.002 0.004 0.006 0.008 0.010

-1.0

-0.5

0.5

1.0

Here the parameters are adjusted for listening.

In[745]:= Play@HSin@H1 + 0.002 Sin@5*2 p*tDL*1000*2 p*tDL, 8t, 0, 1<D

Out[745]=
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Why not put the two modulations together: tremolo and vibrato?

In[746]:= Play@H2 + Sin@5*2 p*tDL*

Sin@H1 + 0.002 Sin@5*2 p*tDL*1000*2 p*tD, 8t, 0, 1<D

Out[746]=

9.14 Applying an Envelope to a Signal
Problem
You want to apply an envelope to your signal.

Solution
The  Mathematica  function  Piecewise  is  the  perfect  tool  for  creating  an  envelope.
Here is the popular attack-decay-sustain-release (ADSR) envelope.

In[747]:= PlotAPiecewise@8

86 t, t < 1<,

86 - 5 Ht - 1L, t < 2<,

81, t < 4<,

81 - 0.5 Ht - 4L, t < 6<

<D,

8t, 0, 6<,

PlotStyle Ø AbsoluteThickness@2D,

ImageSize Ø 8300, 150<, AspectRatio Ø 0.5

E
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Out[747]=

1 2 3 4 5 6

1

2

3

4

5

6

Sine waves are typically represented as amplitude * sine (wt). You can simply substi-
tute the entire Piecewise[] envelope for amplitude.

In[748]:= PlotA

Piecewise@8

86 t, t < 1<,

8-5 Ht - 1L + 6, t < 2<,

81, t < 4<,

8-0.5 Ht - 4L + 1, t < 6<<

D*Sin@6*2 p*tD,

8t, 0, 6<,

PlotRange Ø All

E

Out[748]=
1 2 3 4 5 6

-6

-4

-2

2

4

6
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Listen!

In[749]:= Play@

Piecewise@8

8H6 tL, t < 1<,

8H-5 Ht - 1L + 6L, t < 2<,

8H1L, t < 4<,

8H-0.5 Ht - 4L + 1L, t < 6<

<D*Sin@1000*2 p*tD,

8t, 0, 6<

D

Out[749]=

Discussion
Calculating the envelope functions for  the four regions is  not as  hard as you might
expect. Perhaps you remember the equation for a straight line: y = m x + b, where m
is the slope of the line and b is the y-intercept. Here is a line with a slope of |2 that
intercepts the y-axis at y = 4, so its equation is y = |2x + 4.

In[750]:= PlotA-2 x + 4, 8x, 0, 2<, PlotRange Ø 880, 4<, 8-1, 4<<,

PlotStyle Ø 9AbsoluteDashing@84, 4<D, 8Thick, Black<=E

Out[750]=

1 2 3 4

-1

0

1

2

3

4

If  this  were the function for the second portion of  the envelope,  the decay portion,
you would need to shift this line to the right. You can shift the line to the right sim-
ply by replacing x  with (x  |  displacement). In general,  the template for creating the
equations  for  the  Piecewise  functions  will  be:  y  =  m  (x  |  displacement)  +  initial
value  of  segment.  Notice  that  what  was  at  first  the  y-intercept  is  now  the  “initial
value  of  the  segment.”  The  line  here  is  shifted  two units  to  the  right,  and  the  new
equation is y = |2 (x | 2) + 4. If we simplify the right side, the equation becomes y =
|2x + 8. This line has the same |2 slope but would intercept the y-axis at y = 8 if we
were to extend the line to the left.
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If  this  were the function for the second portion of  the envelope,  the decay portion,
you would need to shift this line to the right. You can shift the line to the right sim-
ply by replacing x  with (x  |  displacement). In general,  the template for creating the
equations  for  the  Piecewise  functions  will  be:  y  =  m  (x  |  displacement)  +  initial
value  of  segment.  Notice  that  what  was  at  first  the  y-intercept  is  now  the  “initial
value  of  the  segment.”  The  line  here  is  shifted  two units  to  the  right,  and  the  new
equation is y = |2 (x | 2) + 4. If we simplify the right side, the equation becomes y =
|2x + 8. This line has the same |2 slope but would intercept the y-axis at y = 8 if we
were to extend the line to the left.

In[751]:= PlotA-2 Hx - 2L + 4, 8x, 0, 4<, PlotRange Ø 880, 4<, 8-1, 4<<,

PlotStyle Ø 9AbsoluteDashing@84, 4<D, 8Thick, Black<=E

Out[751]=

1 2 3 4

-1

0

1

2

3

4

9.15 Exploring Alternate Tunings
Problem
You  want  to  explore  different  partitions  of  the  musical  scale  and  alternate  instru-
ment tunings.

Solution
Modern Western music uses tempered tuning, which is a slight compromise to the vi-
brations  of  the  natural  world,  or  at  least  the  perfection  of  the  natural  world  as  the
Greeks described it 3,000 years ago. The ancient Greeks (and even earlier, the Babylo-
nians)  noticed that  when objects  vibrate in simple,  integer ratios to each other,  the
resulting sound is pleasant. The simple ratio of 2:1 is so pleasant that we perceive it
as  an  equivalence.  When  two  notes  vibrate  in  a  ratio  of  2:1,  we  say  they  have  the
same pitch but are in different octaves. The history of music has been the history of
partitioning the octave. 

The first obvious division of the octave is created by the next simplest ratio, a 3:1 ra-
tio. Consider the following schematic of a vibrating string. The only requirement on
the string is that its endpoints remain fixed. The string can vibrate in many different
modes, as shown in the first column. Each mode has a characteristic number of still
points,  called  “nodes,”  that  appear  symmetrically  along  the  length  of  the  string.
Each mode also has a characteristic rate of vibration, which is a simple integer multi-
ple to the lowest fundamental frequency. Notice that three out of the first four har-
monics  are  octave  equivalences.  The  third  harmonic,  situated  between  the  second
and  fourth  harmonics,  has  a  ratio  of  3:2  to  the  second  harmonic  and  3:4  to  the
fourth. These were the kinds of simple ratios that appealed to the Greeks.
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The first obvious division of the octave is created by the next simplest ratio, a 3:1 ra-
tio. Consider the following schematic of a vibrating string. The only requirement on
the string is that its endpoints remain fixed. The string can vibrate in many different
modes, as shown in the first column. Each mode has a characteristic number of still
points,  called  “nodes,”  that  appear  symmetrically  along  the  length  of  the  string.
Each mode also has a characteristic rate of vibration, which is a simple integer multi-
ple to the lowest fundamental frequency. Notice that three out of the first four har-
monics  are  octave  equivalences.  The  third  harmonic,  situated  between  the  second
and  fourth  harmonics,  has  a  ratio  of  3:2  to  the  second  harmonic  and  3:4  to  the
fourth. These were the kinds of simple ratios that appealed to the Greeks.

In[752]:= SetOptionsAPlot, ImageSize Ø 8150, 30<, AspectRatio Ø 0.2,

Ticks Ø None, PlotStyle Ø AbsoluteThickness@2DE;

StyleBGridB:

8"mode", "harmonic", "musical interpretation", "ratio to fundamental"<,

:Plot@Sin@400 µ 2 p*tD, 8t, 0, 0.005<D, "4th", "octave", "
4

1
">,

:Plot@Sin@300 µ 2 p*tD, 8t, 0, 0.005<D, "3rd", "fifth", "
3

1
">,

:Plot@Sin@200 µ 2 p*tD, 8t, 0, 0.005<D, "2nd", "octave", "
2

1
">,

9PlotASin@100 µ 2 p*tD, 8t, 0, 0.005<, PlotRange Ø 8-1, 1<E,

"1st", "tonic", "1"=

>,

Frame Ø All,

Background Ø 8White, 8White, White, White, White, White<<

F, 14, "Label"

F

Out[753]=

mode harmonic musical interpretation ratio to fundamental

4th octave
4

1

3rd fifth
3

1

2nd octave
2

1

1st tonic 1
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Out[90]=

mode harmonic musical interpretation ratio to fundamental

4th octave
4

1

3rd fifth
3

1

2nd octave
2

1

1st tonic 1

mode harmonic musical interpretation ratio to fundamental

4th octave
4

1

3rd fifth
3

1

2nd octave
2

1

1st tonic 1

The following keyboard shows how a successive application of the 3:2 ratio can be
used to build the entire chromatic scale. After 12 applications of this 3:2 ratio, every
note  of  the  modern  chromatic  scale  has  been  visited  once  and  we  are  returned  to
starting pitch~sort of!

In[754]:= WithA9y1 = -1.6, y2 = 6.5=,

whiteKeys = TableARectangle@8x, 0<, 8x + 1, 5<D, 8x, 0, 49<E;

blackKeys = TableARectangle@8octave + x + 0.65, 2<, 8octave + x + 1.3, 5<D,

8x, 80, 1, 3, 4, 5<<, 8octave, 0, 42, 7<E;

sequential = SortAFlattenüJoinAwhiteKeys, blackKeysEE;

highlights = sequentialPTable@n, 8n, 1, 85, 7<DT;

keyboard = 9White, EdgeForm@8Black, AbsoluteThickness@1D<D, whiteKeys,

Gray, highlights, Black, blackKeys, Gray, highlightsP7 ;; 11T=;

GraphicsA9keyboard,

StyleA9TextA"1", 90.5, y1=E, TextA3ê2, 94.5, y1=E, TextAH3ê2L2,

98.5, y1=E, TextAH3ê2L3, 912.5, y1=E, TextAH3ê2L4, 916.5, y1=E,

TextAH3ê2L5, 920.5, y1=E, TextAH3ê2L6, 925, y2=E,

TextAH3ê2L7, 929, y2=E, TextAH3ê2L8, 933, y2=E,

TextAH3ê2L9, 937, y2=E, TextAH3ê2L10, 941, y2=E,

TextAH3ê2L11, 945.5, y1=E, TextAH3ê2L12, 949.5, y1=E=, 9E

=, ImageSize Ø 8550, 200<EE
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Out[754]=

1 3 ê

2

9 ê

4

27 ê

8

81 ê

16

243 ê

32

729 ê

64

2187 ê

128

6561 ê

256

19 683 ê

512

59 049 ê

1024

177 147 ê

2048

531 441 ê

4096

There’s a problem: H3 ê 2L12  represents the C seven octaves above the starting C and
should equal a C with a frequency ratio of 27  = 128, but H3 ê 2L12  equals 129.75. The
equal temperament solution to this problem is to distribute this discrepancy equally
over all  the intervals.  In other words,  in equal  temperament,  every interval  is  made
slightly, and equally, “out of tune.” Johann Sebastian Bach composed a series of key-
board pieces  in 1722 called “The Well-Tempered Clavier”  to demonstrate  that  this
compromise was basically imperceptible and had no negative impact on the beauty
of the music. 

Mathematically,  equal  temperament means that the frequency of  each pitch should
have  the  same  ratio  to  its  immediate  lower  neighbor’s  frequency.  Call  this  ratio  a.
Then it must be the case that if a chromatic scale, which contains 12 pitches, takes
you from some frequency to twice that frequency, then a12= 2. So the ratio of a semi-
tone in equal temperament is 1.0596.

In[755]:= a = 2.0
12

Out[755]= 1.05946

Out[92]= 1.05946

1.05946

However,  now  that  we  have  the  octave  in  perfect  shape,  every  other  interval  is
slightly  “wrong”~or  at  least  wrong  according  to  the  manner  in  which  the  Greeks
were trying to make their intervals. So for example, a Pythagorean fifth, which is 3/2
=  1.5,  is  slightly  flat  in  equal  temperament  (the  musical  interval  of  a  fifth  is  com-
posed of seven half-steps).

In[756]:= a7

Out[756]= 1.49831 7

In[757]:= 1.498307

Out[757]= 1.49831

Now that we’ve gone through the basics of tuning, how do you use Mathematica to
explore alternate tunings?
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Discussion
As explained above, tuning instruments in the modern Western world is based on di-
viding  the  octave  into  12  equal  segments.  If  the  ratio  of  the  semitone  C  to  C#  is
called  a,  then  the  ratio  of  the  octave  from  C3  to  C4  is  a12  and  should  equal  2.0.
Therefore you can calculate a to be the 12th root of 20. 

In[758]:= a = 2.0
12

Out[758]= 1.05946

Out[95]= 1.05946

1.05946

Here’s the equal-tempered chromatic scale, sometimes referred to as 12-TET (twelve-
tone equal temperament):

In[759]:= TET = TableASinA440.0*an *2 p*tE, 8n, 0, 12<E

Out[759]= 8Sin@2764.6 tD, Sin@2928.99 tD, Sin@3103.16 tD,

Sin@3287.68 tD, Sin@3483.18 tD, Sin@3690.3 tD,

Sin@3909.74 tD, Sin@4142.22 tD, Sin@4388.53 tD,

Sin@4649.49 tD, Sin@4925.96 tD, Sin@5218.87 tD, Sin@5529.2 tD<

Out[96]= 8Sin@2764.6 tD, Sin@2928.99 tD, Sin@3103.16 tD,

Sin@3287.68 tD, Sin@3483.18 tD, Sin@3690.3 tD,

Sin@3909.74 tD, Sin@4142.22 tD, Sin@4388.53 tD,

Sin@4649.49 tD, Sin@4925.96 tD, Sin@5218.87 tD, Sin@5529.2 tD<

8Sin@2764.6 tD, Sin@2928.99 tD, Sin@3103.16 tD,

Sin@3287.68 tD, Sin@3483.18 tD, Sin@3690.3 tD,

Sin@3909.74 tD, Sin@4142.22 tD, Sin@4388.53 tD,

Sin@4649.49 tD, Sin@4925.96 tD, Sin@5218.87 tD, Sin@5529.2 tD<
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In[760]:= ShowAPlay@Ò, 8t, 0, 0.25<D & êü TETE

Out[760]=

The equal-tempered major scale is

In[761]:= ShowAPlay@Ò, 8t, 0, 0.25<D & êü TETP1 + 80, 2, 4, 5, 7, 9, 11, 12<TE

Out[761]=
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9.16 Importing Digital Sound Files
Problem
You want to import a digital sound file, for example, a WAV or AIFF file.

Solution
Mathematica  imports  many  standard  file  formats.  Both  AIFF  and  WAV  are  in  the
list.

In[762]:= $ImportFormats

Out[762]= 93DS, ACO, AIFF, ApacheLog, AU, AVI, Base64, Binary, Bit, BMP, Byte, BYU,

BZIP2, CDED, CDF, Character16, Character8, Complex128, Complex256,

Complex64, CSV, CUR, DBF, DICOM, DIF, Directory, DXF, EDF, ExpressionML,

FASTA, FITS, FLAC, GenBank, GeoTIFF, GIF, Graph6, GTOPO30, GZIP,

HarwellBoeing, HDF, HDF5, HTML, ICO, Integer128, Integer16, Integer24,

Integer32, Integer64, Integer8, JPEG, JPEG2000, JVX, LaTeX, List, LWO,

MAT, MathML, MBOX, MDB, MGF, MMCIF, MOL, MOL2, MPS, MTP, MTX, MX, NB,

NetCDF, NOFF, OBJ, ODS, OFF, Package, PBM, PCX, PDB, PDF, PGM, PLY, PNG,

PNM, PPM, PXR, QuickTime, RawBitmap, Real128, Real32, Real64, RIB,

RSS, RTF, SCT, SDF, SDTS, SDTSDEM, SHP, SMILES, SND, SP3, Sparse6, STL,

String, SXC, Table, TAR, TerminatedString, Text, TGA, TIFF, TIGER,

TSV, UnsignedInteger128, UnsignedInteger16, UnsignedInteger24,

UnsignedInteger32, UnsignedInteger64, UnsignedInteger8, USGSDEM, UUE,

VCF, WAV, Wave64, WDX, XBM, XHTML, XHTMLMathML, XLS, XML, XPORT, XYZ, ZIP=

Using the "Data"  specification will  save you the aggravation of decoding the syntax
of the imported data. Don’t forget the semicolon, which prevents Mathematica from
listing  all  the  sample  points.  The  easiest  way  to  access  a  file  is  to  type  Import[  ],
place your cursor between the empty brackets, choose File... from the Insert Menu,
navigate in the dialog box to the file you want to open.

In[763]:= file = FileNameJoinA9NotebookDirectory@D , "..", "data", "JCK_01.aif"=E;

data = FlattenüImport@file, "Data"D;

You’ll need to know the sample rate and whether this file is a mono or stereo, so do
a second Import on the same file but specify "Options". 

In[765]:= Import@file, "Options"D

Out[765]= 9AudioChannels Ø 1, AudioEncoding Ø Integer16, SampleRate Ø 48000=

If you simply wanted to play the file, specify "Sound" as the second parameter.

In[766]:= snd = Import@file, "Sound"D;

This returns a Sound object.
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This returns a Sound object.

In[767]:= snd êê Head

Out[767]= Sound

And can be played like so:

In[768]:= snd

Out[768]=

Discussion
Sound files can be huge, and as such, become difficult to work with. 

In[769]:= Length@dataD

Out[769]= 1396853

Here’s a quick way to get an overview of a sound file. Mathematica is being asked to
display  every  thousandth  sample  point.  You  can  easily  see  there  are  a  handful  of
bursts of energy.

In[770]:= SetOptionsAListLinePlot,

ImageSize Ø 8500, 150<, AspectRatio Ø 0.25, PlotRange Ø AllE;

In[771]:= SetOptionsAListPlot, ImageSize Ø 8500, 150<,

AspectRatio Ø 0.25, PlotRange Ø AllE;

In[772]:= ListLinePlot@dataP1 ;; 1396000 ;; 1000TD

Out[772]=
200 400 600 800 1000 1200 1400

-0.3

-0.2

-0.1

0.1

0.2

0.3
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Focus on the three wavelets between 900 and 1,300.

In[773]:= ListLinePlot@dataP900000 ;; 1300000TD

Out[773]=

“Yes we can; yes we can; yes we can!”

In[774]:= Sound@SampledSoundList@dataP900000 ;; 1300000T, 48000DD

Out[774]=

9.17 Analyzing Digital Sound Files
Problem
You want to do a Fourier analysis on a sound file. Fourier analysis is a means of in-
vestigating  the  energy  in  a  signal.  Specifically,  Fourier  analysis  will  report  on  the
energy spectrum of a signal versus frequency. The mathematics behind Fourier analy-
sis is quite sophisticated, but armed with just a few principles, you can put Mathe-
matica’s Fourier tools to work for you. 

Solution
Typically  you’ll  start  with  a  digitized  signal.  The  sampling  rate  will  determine  the
highest  frequency  that  can  be  investigated.  This  highest  frequency  is  called  the
Nyquist frequency and is always exactly one half the sampling rate. For this “Yes we

can!” sample, which was digitized at 48 KHz, the highest frequency is 24 KHz. (It’s
not coincidental that this frequency is slightly greater than the limits of human hear-
ing.) Notice the plot is symmetric about the Nyquist frequency.
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can!” sample, which was digitized at 48 KHz, the highest frequency is 24 KHz. (It’s
not coincidental that this frequency is slightly greater than the limits of human hear-
ing.) Notice the plot is symmetric about the Nyquist frequency.

The number of  sample points used in any analysis  is  also critical.  Here exactly one
second of audio, that is, 48,000 sample points, is being analyzed. The 48,000 points
from the time domain yield 48,000 points in the frequency domain, but as you can
see, the right side of the plot, between points 24,000 and 48,000, is just a mirror du-
plication  of  the  points  between  0  and  24,000.  This  is  an  artifact  of  the  underlying
mathematics, and there is no additional information in this half of the plot.

In[775]:= ListLinePlot@Abs@Fourier@dataP900000 ;; 900000 + 48000TDDD

Out[775]=

10 000 20 000 30 000 40 000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Since  this  is  speech,  you  can  focus  on  the  first  2,000  points,  which  correspond  to
frequencies  0  to  2,000  Hz.  Later  you’ll  see  that  2,000  points  of  a  Fourier  analysis
doesn’t  always  mean  frequencies  0  through  2,000  Hz.  It  does  in  this  case  because
you started with 48,000 sample points in the time domain that equals the sampling
rate  and  created  a  one-to-one  relationship  between  data  points  and  frequencies  in
the frequency domain.  You can see  that  this  speaker  has  four  significant  frequency
resonances  to  his  voice  at  approximately  150  Hz,  300  Hz,  490  Hz,  and  700  Hz.
These resonances are known as formants. Notice, the Ticks option customized the la-
beling of the x-axis.

In[776]:= ListLinePlot@Abs@Fourier@dataP900000 ;; 900000 + 48000TDDP1 ;; 2000T,

Ticks Ø 88150, 300, 490, 700, 1000, 1500, 2000<, Automatic<D

Out[776]=
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Typically, when analyzing voice, one second is too long of a sample. Just think how
many syllables you utter in one second of normal speech. A much more appropriate
length  would  be  1/10  or  1/20  or  even  1/30  of  a  second.  You  can  easily  identify
various  phonemes  of  “yes  we  can”  in  the  plot  below:  the  “yeh”  and  “sss”  of  the
“yes,” the singular vowel sound of “we,” and the hard “c” and “an” of “can.” 
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Typically, when analyzing voice, one second is too long of a sample. Just think how
many syllables you utter in one second of normal speech. A much more appropriate
length  would  be  1/10  or  1/20  or  even  1/30  of  a  second.  You  can  easily  identify
various  phonemes  of  “yes  we  can”  in  the  plot  below:  the  “yeh”  and  “sss”  of  the
“yes,” the singular vowel sound of “we,” and the hard “c” and “an” of “can.” 

In[777]:= ListLinePlotAdata@@925000 ;; 925000 + 96000DD,

PlotRange -> All, AxesOrigin Ø 80, -0.4<E

Out[777]=

20 000 40 000 60 000 80 000

-0.2

0.0

0.2

0.4

Here’s the “we,” which is very homogeneous.

In[778]:= ListLinePlotAdata@@955000 ;; 955000 + 9600DD, PlotRange -> AllE

Out[778]=
2000 4000 6000 8000

-0.2

-0.1

0.1

0.2

0.3

You’re now looking at 9,600 sample points (9,600/48,000 = 1/5 sec) in the time do-
main,  so  each  point  in  the  frequency  domain  represents  48,000/9,600  =  5  Hz.
There’s a direct trade-off between using as few sample points as possible to narrow
the analysis to a single phoneme, versus sampling enough points to ascertain a desired
precision in the frequency domain. 

In[779]:= pts = Abs@Fourier@data@@955000 ;; 955000 + 9600DDDD@@1 ;; 100DD;

ListPlotApts, Joined Ø True,

Epilog Ø 8MapIndexed@Point@8Sequence üü Ò2, Ò<D &, ptsD<,

Ticks Ø 8Table@8n, 5*n<, 8n, 0, 100, 10<D, Automatic<,

PlotRange Ø All, Filling Ø AxisE

Out[780]=
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Here, half as many points (4,800) sampled from the same region focuses our analysis
in the time domain, but each sample point now represents 10 Hz. Perhaps we’re los-
ing some detail in the 150|200 Hz range, as well as the 300|350 Hz range?

In[781]:= pts = Abs@Fourier@data@@955000 ;; 955000 + 4800DDDD@@1 ;; 100DD;

ListPlotApts, Joined Ø True,

Epilog Ø 8MapIndexed@Point@8Sequence üü Ò2, Ò<D &, ptsD<,

Ticks Ø 8Table@8n, 10*n<, 8n, 0, 100, 10<D, Automatic<,

PlotRange Ø All, Filling Ø AxisE

Out[782]=

9.18 Slicing a Sample
Problem
You want a Fourier analysis over time.

Solution
You can partition the  data  into  1/30 of  a  second slices  and do an analysis  on each
slice.  Each  sample  point  in  the  frequency  domain  will  be  30  Hz,  which  is  “wider”
than  the  previous  examples,  but  the  precision  in  the  time  domain  will  more  than
make up for it.

In[783]:= ffts = Table@Fourier@dataPt ;; t + 1600 - 1TD,

8t, 900000, 900000 + 1600*250, 1600<D;

Take just the lowest 100 frequency bands, frequencies 0|3,000 Hz.

In[784]:= lines = Abs@fftsPAll, 1 ;; 100TD;

With Mathematica’s  Graphics3D  primitives,  you can make this  waterfall-style  chart,
where time is left to right across the front, and frequency is front to back.

In[785]:= Graphics3DA

Line@ÒD & êü MapIndexed@List@Sequence üü Ò2, ÒD &, lines , 8-1<D,

PlotRange Ø 880, 250<, 80, 60<, 80, 4<<, BoxRatios Ø 84, 2, 1<,

ImageSize Ø 500, SphericalRegion Ø True,

ViewPoint Ø 81, -1, 0.75<, Boxed Ø TrueE
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Out[785]=

ListLinePlot  accomplishes the same thing but interpolates the individual  lines into
surfaces.

In[786]:= ListPlot3DAlines,

Mesh Ø None, PlotRange Ø All, ImageSize Ø 500,

SphericalRegion Ø True, ViewPoint Ø 8-1, 1, 0.75<,

Boxed Ø False, ColorFunction Ø IGrayLevel@1 - Ò3D &M,

Ticks Ø 8Function@8min, max<, Table@8i, i*30<, 8i, 0, Floor@maxD, 10<DD,

Function@8min, max<,

Table@8i, i*0.033 êê Round<, 8i, 0, Floor@maxD, 30<DD, Automatic<

E

Out[786]=
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Discussion
Now  that  you’ve  seen  the  previous  3D  displays,  perhaps  these  contour  plots  will
make immediate  sense to you.  These are  bird’s-eye views of  the 3D plots.  You can
really finesse these plots to bring out the details. Look at the color versions provided
in the online version of this book.

In[787]:= ListContourPlotA

TransposeüTable@Abs@Fourier@dataPn ;; n + 1600 - 1TDDP1 ;; 120T,

8n, 900000, 900000 + 1600*250, 1600<D,

Contours Ø 20, ContourShading Ø None, ImageSize Ø 8500, 300<,

AspectRatio Ø 0.5, Ticks Ø 8None, None<,

FrameTicks Ø 8Automatic,

Function@8min, max<, Table@8i, i*15<, 8i, 0, max, 20<DD<E

Out[787]=

Tweaking  the  Contours  and  ContourShading  options  prevent  the  white-outs  in  the
peak regions.

In[788]:= ListContourPlotA

TransposeüTable@Abs@Fourier@dataPn ;; n + 1600 - 1TDDP1 ;; 120T,

8n, 900000, 900000 + 1600*250, 1600<D,

Contours Ø FunctionA8min, max<, Range@0, max, 0.25DE,

ContourShading Ø TableAGrayLevel@1 - nê16.D, 8n, 16<E, PlotRange Ø All,

ImageSize Ø 8800, 400<, AspectRatio Ø 0.5E

Out[788]=
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A Spectrograph

ArrayPlot  is another perfect tool to display the results. ArrayPlot  will automatically
scale  the  results  such  that  the  greater  the  energy  content  in  the  frequency  domain,
the darker the plot.  Frequency runs across the page, as shown previously in Recipe
9.17, whereas the individual slices run down the page.

In[789]:= SetOptionsAArrayPlot, ImageSize Ø 8600, 200<, AspectRatio Ø 0.25E;

In[790]:= ArrayPlot@Table@Abs@Fourier@dataPn ;; n + 1600 - 1TDDP1 ;; 100T,

8n, 900000, 900000 + 1600*250, 1600<D,

FrameTicks Ø 8Automatic, Table@8n, 30*n<, 8n, 0, 100, 5<D<D

Out[790]=
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You  can  improve  on  ArrayPlot’s  formatting.  Convention  wants  time  to  run  left  to
right across the page and frequency to run bottom to top. Transpose will reverse the
axes, but you’ll also need DataReversedØTrue to make time run left to right.

In[791]:= ArrayPlot@TransposeüTable@Abs@Fourier@dataPn ;; n + 1600 - 1TDDP1 ;; 120T,

8n, 900000, 900000 + 1600*250, 1600<D,

FrameTicks Ø 8Table@8n, 30*n<, 8n, 0, 100, 10<D,

Table@8n, 0.03333*n êê Round<, 8n, 0, 250, 30<D<, DataReversed Ø TrueD

Out[791]=
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You could set a threshold and display in black and white.

In[792]:= ArrayPlot@TransposeüTable@Abs@Fourier@dataPn ;; n + 1600 - 1TDDP1 ;; 120T,

8n, 900000, 900000 + 1600*250, 1600<D ê.

8_Real?HÒ >= 0.3 &L ß 1, _Real?HÒ < 0.3 &L ß 0<,
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In[792]:= FrameTicks Ø 8Table@8n, 30*n<, 8n, 0, 100, 10<D,

Table@8n, 0.03333*n êê Round<, 8n, 0, 250, 30<D<, DataReversed Ø TrueD

Out[792]=
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Or, you could zoom in and look more closely at the lower frequencies.

In[793]:= ArrayPlot@TransposeüTable@Abs@Fourier@dataPn ;; n + 1600 - 1TDDP1 ;; 30T,

8n, 900000, 900000 + 1600*250, 1600<D,

FrameTicks Ø 8Table@8n, 30*n<, 8n, 0, 30, 5<D,

Table@8n, 0.03333*n êê Round<, 8n, 0, 250, 30<D<, DataReversed Ø TrueD

Out[793]=
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CHAPTER 10

Algebra

When a problem comes along
You must whip it

Before the cream sits out too long
You must whip it

When something’s going wrong
You must whip it

Now whip it
Into shape

Shape it up
Get straight
Go forward
Move ahead

Try to detect it
It’s not too late

To whip it
Whip it good

Devo, “Whip It”

10.0 Introduction
Algebra can be divided into elementary algebra and abstract algebra. Elementary algebra
is the kind we all learned in high school. Mathematica is well equipped to solve prob-
lems in elementary algebra, and many of the recipes in this chapter show you how to
leverage  these  features.  Mathematica  does  not  presently  have  deep  support  for  ab-
stract algebra, which is concerned with constructs such as groups, rings, and fields.
However, there are third-party packages available for exploring abstract algebra, and
I provide references for those.

Mathematica’s  ability  to  do  algebraic  manipulation  is  important  for  two  reasons.
First, many problems, although conceptually easy to solve by hand, are tedious, and
it makes sense to have Mathematica relieve you of this drudgery. Recipe 10.1 shows
you  how  to  solve  algebraic  equations;  Recipe  10.2  shows  how  to  work  backward
from a root to a polynomial. However, helping you solve algebraic equations is not
the most important part of this chapter. Rather, you will often find that Mathemat-
ica will not automatically give you an answer in the form you desire. Knowing how
to coax expressions into the desired form is an important skill in your day-to-day use
of Mathematica. Recipe 10.3 is geared to helping you gain proficiency in this area. It is easy
enough to create a polynomial by typing input into Mathematica, but if you want to
generate a polynomial  of  a  specific  form, Recipe 10.4 will  show you how. On the other
hand,  if  you  need  to  break  up  a  polynomial  into  parts  to  perform  some  low-level
manipulations, you will want to look at Recipe 10.5. Diving a bit deeper into abstrac-
tion, Recipe 10.6 investigates division and related operations on polynomials.
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Mathematica’s  ability  to  do  algebraic  manipulation  is  important  for  two  reasons.
First, many problems, although conceptually easy to solve by hand, are tedious, and
it makes sense to have Mathematica relieve you of this drudgery. Recipe 10.1 shows
you  how  to  solve  algebraic  equations;  Recipe  10.2  shows  how  to  work  backward
from a root to a polynomial. However, helping you solve algebraic equations is not
the most important part of this chapter. Rather, you will often find that Mathemat-
ica will not automatically give you an answer in the form you desire. Knowing how
to coax expressions into the desired form is an important skill in your day-to-day use
of Mathematica. Recipe 10.3 is geared to helping you gain proficiency in this area. It is easy
enough to create a polynomial by typing input into Mathematica, but if you want to
generate a polynomial  of  a  specific  form, Recipe 10.4 will  show you how. On the other
hand,  if  you  need  to  break  up  a  polynomial  into  parts  to  perform  some  low-level
manipulations, you will want to look at Recipe 10.5. Diving a bit deeper into abstrac-
tion, Recipe 10.6 investigates division and related operations on polynomials.

See Also
Allen C. Hibbard and Kenneth M. Levasseur have developed “Exploring Abstract Al-
gebra  with  Mathematica”  (http://bit.ly/CHT9O),  which  can  be  freely  downloaded
after registering. 

10.1 Solving Algebraic Equations
Problem
You want to solve an algebraic equation for its unknowns. 

Solution
Use Solve  with expressions of the form left-hand-side  == right-hand-side  and the
unknown  variable  (or  variables)  provided  as  the  second  argument.  Results  are  re-
turned as rules.

In[2]:= Solve@x^2 - 2 x - 3 ã 0, xD

Out[2]:= 88x Ø -1<, 8x Ø 3<<

Solve takes either a single expression, as above, or a list of expressions or several ex-
pressions linked with &&.  As you would expect,  solutions can be found in symbolic
form.

In[3]:= SolveA9a x + 2 y ã 7, 3 b x - y ã 1=, 9x, y=E

Out[3]= ;;x Ø
9

a + 6 b
, y Ø -

a - 21 b

a + 6 b
??

In[4]:= SolveAa x - 2 y ã 7 && 2 b x + y ã 0, 9x, y=E

Out[4]= ;;x Ø
7

a + 4 b
, y Ø -

14 b

a + 4 b
??

Discussion
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Discussion
Solve  works  best  with  linear  and  polynomial  equations.  For  expressions  involving
constraints,  inequalities,  or  non-algebraic  expressions,  you  should  use  Reduce.  (In
Mathematica 8.0, Solve  will  be enhanced to cover a much larger class of problems,
thus reducing the need to Reduce!) 

In[5]:= Reduce@x > 0 && x^2 - 2 x - 3 ã 0, xD

Out[5]= x ã 3

Reduce does not use rules because it may need to express solutions in terms of intervals.

In[6]:= Reduce@x > 0 && x^2 < 2, xD

Out[6]= 0 < x < 2

FindRoot is appropriate when you are looking for numerical solutions and have pro-
vided a starting point where you want Mathematica to search. FindRoot is a numeri-
cal method, so it can solve a larger class of expressions then Solve, although it is not
guaranteed to converge. 

In[7]:= FindRoot@x^2 - 2 x - 3 ã 0, 8x, -3<D

Out[7]= 8x Ø -1.<

In[8]:= FindRoot@x^2 - Exp@2 xD - 3 ã x, 8x, 0<D

Out[8]= 8x Ø -1.32237<

10.2 Finding a Polynomial from a Given Root
Problem
You have an algebraic number and you want a polynomial that has the number among
its roots. This is the opposite of Solve, which finds the roots given a polynomial.

Solution
Use MinimalPolynomial to find the minimal polynomial (least degree) with the given
value as a root.

In[9]:= poly = MinimalPolynomial@Sqrt@2D + Sqrt@5D, xD

Out[9]= 9 - 14 x2 + x4

In[10]:= LastASolveApoly ã 0, xEE êê FullSimplify

Out[10]= ;x Ø 2 + 5 ?
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Discussion
As you would expect, complex numbers are allowed.

In[11]:= MinimalPolynomial@2 + I, xD

Out[11]= 5 - 4 x + x2

Numbers must be explicitly algebraic or you will get an error. Trying to use Minimal-
Polynomial  with Pi is doomed,  since Pi is a transcendental  number,  but  a  rational
approximation of Pi fails as well because it is not explicitly algebraic.

In[12]:= MinimalPolynomial@Pi, xD

MinimalPolynomial::nalg :

p is not an explicit algebraic number. à

Out[12]= MinimalPolynomial@p, xD

In[13]:= MinimalPolynomial@3.14, xD

MinimalPolynomial::nalg :

3.14` is not an explicit algebraic number. à

Out[13]= MinimalPolynomial@3.14, xD

Use Rationalize to work around this limitation.

Out[14]= MinimalPolynomial@Rationalize@3.14D, xD

Out[14]= -157 + 50 x

10.3 Transforming Expressions to Other Forms
Problem
You have a symbolic expression that you would like to transform to a different form.
This  problem often  arises  when  you  get  a  result  from a  Mathematica  computation
that is in a form you don’t want. One common requirement is to simplify the expression.
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Solution
The  two  most  important  symbolic  transformations  are  Simplify  and  FullSimplify.
These functions attempt to apply algebraic and other transformations to an expres-
sion  that  will  convert  it  to  an  equivalent  form  that  contains  fewer  symbols.  The
main  difference  between  Simplify  and  FullSimplify  is  that  FullSimplify  will  con-
sider  a  much larger  set  of  transformations,  including  special  functions.  As  a  result,
FullSimplify is often more effective but also slower.

Here Simplify and FullSimplify ultimately arrive at the same answer, but Full-
Simplify  takes  well  over  a  minute,  whereas  Simplify  completes  in  just  over  a
second.

In[15]:= TimingASimplifyASinAIx + y + zM^2E CosA Iz + y + xM^2EEE

Out[15]= ;0.764,
1

2
SinA2 Ix + y + zM2E?

In[16]:= TimingAFullSimplifyASinAIx + y + zM^2E CosA Iz + y + xM^2EEE

In[16]:= ;38.626,
1

2
SinA2 Ix + y + zM2E?

Discussion
Simplify  and  FullSimplify  perform  fully  automated  simplification.  However,  you
sometimes  want  to  apply  more  targeted  transformations.  For  example,  a  common
transformation is to bring together a sum over a common denominator.

In[17]:= Together@

aêHa^2 + b^2 + c^2L + bêHa^2 + b^2 + c^2L + cêHa^2 + b^2 + c^2LD

In[17]:=
a + b + c

a2 + b2 + c2

Apart is another useful transformation that represents an expression as sums of par-
tial fractions.

In[18]:= Apart@4êHH1 + xL H5 + xLLD

In[18]:=
1

1 + x
-

1

5 + x

Polynomial transformations are a very important class, exemplified by functions like
Factor, FactorTerms, FactorSquareFree, Expand, and ExpandAll.

In[19]:= FactorA21 - 4 x - x2E

In[19]:= -H-3 + xL H7 + xL
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Expand  is  the  opposite  of  Factor  and  expands  out  sums  of  products  and  positive
powers.

In[20]:= Expand@%D

Out[20]= 21 - 4 x - x2

In[21]:= Expand@H1 + xL^5D

Out[21]= 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

In[22]:= Factor@%D

Out[22]= H1 + xL5

ExpandAll is similar to Expand but reaches in deeper into the expression, for example,
into  arguments  of  functions  like  Sin  or  Exp.  Notice  how  Expand  has  no  effect  on  a
nested polynomial but ExpandAll does.

In[23]:= ExpandASinAH1 + xL5EE

Out[23]= SinAH1 + xL5E

In[24]:= ExpandAllASinAH1 + xL5EE

Out[24]= SinA1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5E

You can also narrow the scope of Expand to the numerator or denominator of a ratio-
nal expression using ExpandNumerator and ExpandDenominator, respectively.

In[25]:= With@8expr = H1 + xL^3 ê H3 + xL^4<,

Row@8ExpandNumerator@exprD, ExpandDenominator@exprD< , Invisible@exprDDD

Out[25]=
1 + 3 x + 3 x2 + x3

H3 + xL4

H1 + xL3

81 + 108 x + 54 x2 + 12 x3 + x4

Collect  does  the  job of  Expand  but  also collects  terms of  matching powers  of  some
variable. Compare the results of Expand and Collect given here.

In[26]:= Expand@Ha + xL^2 Hb + xL^3D

Out[26]= a2 b3 + 3 a2 b2 x + 2 a b3 x + 3 a2 b x2 + 6 a b2 x2 +

b3 x2 + a2 x3 + 6 a b x3 + 3 b2 x3 + 2 a x4 + 3 b x4 + x5

In[27]:= Collect@Ha + xL^2 Hb + xL^3, xD

In[27]:= a2 b3 + I3 a2 b2 + 2 a b3M x + I3 a2 b + 6 a b2 + b3M x2 +

Ia2 + 6 a b + 3 b2M x3 + H2 a + 3 bL x4 + x5

FactorTerms  factors  out  numerical  terms or  terms that  do not  depend on particular
variables.

In[28]:= FactorTerms@Expand@H3 + 3 xL^5DD

Out[28]= 243 I1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5M
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In[29]:= ExpandAIy + y xM^5E

Out[29]= y5 + 5 x y5 + 10 x2 y5 + 10 x3 y5 + 5 x4 y5 + x5 y5

In[30]:= FactorTermsA%, yE

Out[30]= I1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5M y5

Another  important  class  of  transformations  are  trigonometric  transformations.
These include TrigFactor, TrigExpand, TrigExpandAll, and TrigReduce.

In[31]:= TrigFactor@Sin@3 xDD

Out[31]= H1 + 2 Cos@2 xDL Sin@xD

TrigExpand  removes  sums and products  inside  arguments  by expanding the  expres-
sion using trigonometric identities.

In[32]:= TrigExpand@Sin@3 x + 1DD

Out[32]= Cos@xD3 Sin@1D + 3 Cos@1D Cos@xD2 Sin@xD -

3 Cos@xD Sin@1D Sin@xD2 - Cos@1D Sin@xD3

Cos@xD3 Sin@1D + 3 Cos@1D Cos@xD2 Sin@xD -

3 Cos@xD Sin@1D Sin@xD2 - Cos@1D Sin@xD3

Cos@xD3 Sin@1D + 3 Cos@1D Cos@xD2 Sin@xD -

3 Cos@xD Sin@1D Sin@xD2 - Cos@1D Sin@xD3

TrigReduce  transforms  an  expression  so  that  it  is  linear  in  the  trigonometric  terms
(no powers or multiplications of two different trig functions).

In[33]:= TrigReduce@Sin@3 xD^2 Cos@2 xDD

Out[33]=
1

4
H2 Cos@2 xD - Cos@4 xD - Cos@8 xDL

See Also
Mathematica  has  quite  a  few  specialized  functions  for  manipulating  polynomials
and  extracting portions of their structure. See tutorial/AlgebraicOperationsOnPolynomials
in the documentation. 

A complete overview of  algebraic  manipulations can be found at  tutorial/Algebraic  
ManipulationOverview.

10.4 Generating Polynomials
Problem
You want to generate a polynomial of a specific degree.

Solution
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Solution
A simple solution uses Sum and Subscript. Here I generate a fourth-degree polynomial.

In[34]:= Sum@Subscript@a, iD x^i, 8i, 0, 4<D

Out[34]= a0 + x a1 + x2 a2 + x3 a3 + x4 a4

Discussion
If, other than the degree, you don’t care about the particular form of the polynomial,
then  the  solution  is  fine.  However,  if  you  want  to  specify  the  coefficients,  you  can
generate a polynomial with Dot.

In[35]:= ClearAllAmakePolyE

SetAttributesAmakePoly, HoldRestE; makePoly@coef_List, var_: xD :=

DotATableAvar^i, 9i, 0, Length@coefD - 1=E, coefE

In[37]:= makePoly@8a, b, c, d, e<D

Out[37]= a + b x + c x2 + d x3 + e x4

Here I specify a variable other than x.

In[38]:= makePoly@8a, b, c, d, e<, zD

Out[38]= a + b z + c z2 + d z3 + e z4

Many mathematics textbooks show polynomials from highest to lowest degree, and
you  may  want  to  generate  and  display  your  polynomials  in  this  order  as  well.  Re-
place Dot with Inner and use HoldForm so the sum is not reordered by Mathematica.
Note how I changed Table to generate terms from highest degree to lowest.

In[39]:= ClearAllAmakePoly2E

SetAttributesAmakePoly2, HoldRestE;

makePoly2@coef_List, var_: xD := InnerATimes,

TableAvar^i, 9i, Length@coefD - 1, 0, -1=E, coef, HoldForm@Plus@ÒÒDD &E

In[41]:= makePoly2@8a, b, c, d, e<, zD

Out[41]= a z4 + b z3 + c z2 + d z + e

10.5 Decomposing Polynomials into Their 
Constituent Parts
Problem
You  want  to  extract  a  list  of  coefficients,  monomials,  or  variables  from  a  given
polynomial.

Solution
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Solution
Two  useful  primitives  for  decomposing  polynomials  are  CoefficientList  and
MonomialList. First I generate a polynomial, per Recipe 10.4. 

In[42]:= poly = Sum@Subscript@a, iD x^i, 8i, 0, 6<D

Out[42]= a0 + x a1 + x2 a2 + x3 a3 + x4 a4 + x5 a5 + x6 a6

Use CoefficientList to extract a list of coefficients of poly.

In[43]:= CoefficientListApoly, xE

In[43]:= 8a0, a1, a2, a3, a4, a5, a6<

Use MonomialList to extract a list of the individual monomial terms of poly.

In[44]:= MonomialListApolyE

Out[44]= 9a0, x
6 a6, x

5 a5, x
4 a4, x

3 a3, x
2 a2, x a1=

If you only want the variables of the polynomial, use Variables.

In[45]:= VariablesAHx + 1L^2 Iy + 3M^3E

Out[45]= 9x, y=

Discussion
In addition to CoefficientList, you can pick coefficients that match a specific form
using Coefficient.

In[46]:= CoefficientA8 + 12 x + 6 x2 + x3, x^2E

Out[46]= 6

Coefficient also takes a third argument, which specifies the power of the second ar-
gument. So the same extraction can be done as shown here.

In[47]:= CoefficientA8 + 12 x + 6 x2 + x3, x, 2E

In[47]:= 6

Conveniently, this also allows you to extract the constant term. 

In[48]:= CoefficientA8 + 12 x + 6 x2 + x3, x, 0E

Out[48]= 8

Returning to MonomialList, there is a third argument that allows you to change the or-
der  of  the  monomials  returned.  The  available  orderings  are  "Lexicographic",
"DegreeLexicographic",  "DegreeReverseLexicographic",  "NegativeLexicographic",
"NegativeDegreeLexicographic",  and  "NegativeDegreeReverseLexicographic".  Refer
to the documentation of MonomialList for definitions.
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In[49]:= poly = ExpandAHx + 2L^2 Iy + 3M^3E

Out[49]= 108 + 108 x + 27 x2 + 108 y + 108 x y +

27 x2 y + 36 y2 + 36 x y2 + 9 x2 y2 + 4 y3 + 4 x y3 + x2 y3

In[50]:= MonomialListApoly, 9x, y=, "DegreeLexicographic"E

Out[50]= 9x2 y3, 9 x2 y2, 4 x y3, 27 x2 y, 36 x y2, 4 y3, 27 x2, 108 x y, 36 y2, 108 x, 108 y, 108=

In[51]:= MonomialListApoly, 9x, y=, "Lexicographic"E

Out[51]= 9x2 y3, 9 x2 y2, 27 x2 y, 27 x2, 4 x y3, 36 x y2, 108 x y, 108 x, 4 y3, 36 y2, 108 y, 108=

In[52]:= MonomialListApoly, 9x, y=, "NegativeDegreeLexicographic"E

Out[52]= 9108, 108 x, 108 y, 27 x2, 108 x y, 36 y2, 27 x2 y, 36 x y2, 4 y3, 9 x2 y2, 4 x y3, x2 y3=

After using MonomialList to get the monomials in the desired order, you can display
the polynomial in that order using HoldForm.

In[53]:= HoldForm@Plus@ÒÒDD & üü MonomialListApoly, 9x, y=, "Lexicographic"E

Out[53]= x2 y3 + 9 x2 y2 + 27 x2 y + 27 x2 + 4 x y3 +

36 x y2 + 108 x y + 108 x + 4 y3 + 36 y2 + 108 y + 108

See Also
You  may  also  want  to  consider  CoefficientArrays  and  CoefficientRules.  See  the
Mathematica documentation for these functions.

10.6 Dividing Polynomials by Other Polynomials
Problem
You want to divide polynomials,  find remainders,  greatest common divisor (GCD),
or least common multiple (LCM). 

Solution
Use  PolynomialQuotient  or  PolynomialRemainder.  If  you  need  both,  use  Polynomial-
QuotientRemainder.

In[54]:= PolynomialQuotient@x^3 + x^2 - x + 1, x + 1, xD

Out[54]:= -1 + x2

In[55]:= PolynomialRemainder@x^3 + x^2 - x + 1, x + 1, xD

Out[55]= 2

In[56]:= PolynomialQuotientRemainder@x^3 + x^2 - x + 1, x + 1, xD

Out[56]= 9-1 + x2, 2=
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Discussion
Mathematica  also  provides  PolynomialMod,  which  uses  an  algorithm  based  on  re-
peated  subtraction  and,  hence,  never  performs  a  division.  In  contrast,  Polynomial-
Remainder is implemented in terms of PolynomialQuotient.

In[57]:= WithA9poly = x^3 + x^2 - x + 1, divisor = x^2=,

SimplifyApoly - Idivisor* PolynomialQuotientApoly, divisor, xE ME ===

PolynomialRemainderApoly, divisor, xEE

Out[57]= True

In  many  cases,  PolynomialMod  and  PolynomialRemainder  will  return  the  same  result.
In particular, for univariate rational polynomials, PolynomialRemainder is the same as
PolynomialMod.

In[58]:= PolynomialMod@x^3 + x^2 - x + 1, x^2D ===

PolynomialRemainder@x^3 + x^2 - x + 1, x^2, xD

Out[58]= True

In[59]:= PolynomialMod@x^3 + x^2 - x + 1, xD ===

PolynomialRemainder@x^3 + x^2 - x + 1, x, xD

Out[59]= True

If the divisor is a constant or multivariate, the functions work differently. In the case
of  PolynomialMod,  a  constant  m  reduces  the  coefficients  module  m  whereas
PolynomialRemainder will always give 0.

In[60]:= PolynomialMod@13 x^3 + 15 x^2 - 5 x + 7, 7D

Out[60]= 2 x + x2 + 6 x3

In[61]:= PolynomialRemainder@x^3 + x^2 - x + 1, 7, xD

Out[61]= 0

In the multivariate case, PolynomialMod determines variable order based on OrderedQ.

In[62]:= PolynomialMod@a x^3 + 2 a x^2 - 5 ax + 1, x + aD

Out[62]:= 1 - 5 ax - 2 x3 - x4

In[63]:= PolynomialRemainder@a x^3 + 2 a x^2 - 5 ax + 1, x + a, xD

Out[63]= 1 + 2 a3 - a4 - 5 ax
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Both PolynomialMod and PolynomialRemainder allow you to compute the result mod-
ule to a specific integer n by specifying the option ModulusØn. This means the compu-
tation is over the finite ring of integers Zn. The default is ModulusØ0,  meaning the
infinite set of integers.

In[64]:= PolynomialRemainder@x^2 + 2 x + 2, x, xD

Out[64]= 2

Given  these  polynomial  generalizations  of  division,  it  makes  sense  to  discuss  GCD
and LCM.

In[65]:= PolynomialGCD@10 x^3 + 2, 30 x^3 + 6D

Out[65]= 2 + 10 x3

Here  we  show  that  polynomials  with  coefficients  with  LCM  less  than  the  product
will result in polynomials with LCM different than their product.

In[66]:= WithA8p1 = 12 x + 18, p2 = 18 x + 24<,

GridA9Expand êü 9 PolynomialLCM@p1, p2D, p1 *p2==, Dividers Ø All EE

Out[66]= 72 + 102 x + 36 x2 432 + 612 x + 216 x2

Observe that 

In[67]:= 8LCM@18, 24D, LCM@12, 18D<

Out[67]:= 872, 36<

In[68]:= 612ê102 ã 432ê72 ã 216ê36 ã GCD@18, 24, 12D

Out[68]= True
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CHAPTER 11

 Calculus: Continuous and Discrete

Time may change me
But I can’t trace time

I said that time may change me
But I can’t trace time

David Bowie, “Changes”

11.0 Introduction
This  chapter  primarily  focuses  on the  types  of  problems students  and teachers  will
cover  in  college-level  mathematics  courses  and  how  Mathematica  can  be  used  as
a calculator (tool  for getting an answer) and a teacher (tool  for gaining insight into
a  mathematical  problem).  However,  this  focus  was  largely  pragmatic  and  does
not imply that Mathematica is limited to introductory calculus. Quite the contrary.
Mathematica has been leading the charge among computer algebra systems since its
inception,  and with  each new release  the  depth  and breadth  of  its  abilities  in  sym-
bolic  calculus  improve.  My  goal  in  most  of  these  recipes  is  to  provide  a  starting
point  for  the  inexperienced  user.  Experts  will  probably  find  little  that  is  new  or
highly original.  This  was a  conscious choice based on space limitations.  I  am quite
certain one could write a small cookbook by turning each recipe here into an entire
chapter! Such is the depth of Mathematica’s abilities. 

Most of the recipes in this chapter address what is commonly known as infinitesimal
or  continuous  calculus.  These  problems  deal  with  limits  (Recipe  11.1),  series
(Recipe  11.3),  derivatives  (Recipe  11.4),  integrals  (Recipe  11.5),  and  differential
equations  (Recipe  11.6).  A  common  application  of  calculus  is  finding  minimums
and  maximums.  Mathematica  packages  these  techniques  into  Minimize,  Maximize,
and related functions (Recipe 11.7). When you use your calculus skills to solve real
engineering  and  physics  problems,  you  are  bound  to  run  smack  into  applications
that  involve  vector  calculus.  Mathematica  has  a  package  of  functions  specifically
dedicated  to  vector  calculus,  and  we  touch  on  some  of  this  functionality  in
Recipe 11.8. 

Although the calculus of continuous functions still plays a dominant role, discrete calcu-
lus  is  extremely  important  and  has  been  garnering  increasing  attention  lately  due  to  re-
search  in  such varied  domains  as  string  theory,  probability  theory,  theory  of  algorithms,
and combinatorics, to name a few. Mathematica 7 has enhanced its discrete calculus
abilities. Recipes 11.9 through 11.11 help you start using these capabilities. 
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Although the calculus of continuous functions still plays a dominant role, discrete calcu-
lus  is  extremely  important  and  has  been  garnering  increasing  attention  lately  due  to  re-
search  in  such varied  domains  as  string  theory,  probability  theory,  theory  of  algorithms,
and combinatorics, to name a few. Mathematica 7 has enhanced its discrete calculus
abilities. Recipes 11.9 through 11.11 help you start using these capabilities. 

See Also
A guide to all functions related to infinitesimal calculus can be found in the Mathe-
matica documentation at guide/Calculus.

A guide to all functions related to discrete calculus can be found in the Mathematica
documentation at guide/DiscreteCalculus.

11.1 Computing Limits
Problem
You  want  to  determine  the  value  of  a  function  as  a  variable  approaches  a  specific
value, even if evaluating the function at that limit may give an indeterminate result.

Solution
The functions Sin[x]/x,  Sin[x^2]/x,  and Sin[x]/x^2  each evaluate to the indetermi-
nate value 0/0 at x = 0; however, their limits as x approaches zero are quite definite
and different.

In[1]:= Limit@Sin@xDêx, x Ø 0D

Out[1]= 1

In[2]:= Limit@Sin@x^2Dêx, x Ø 0D

Out[2]= 0

In[3]:= Limit@Sin@xDêx^2, x Ø 0D

Out[3]= ¶

Discussion
Plotting functions around the limiting value is often a good way to provide visual in-
sight into the limiting value.
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In[4]:= GraphicsRow@8Plot@Sin@xDêx, 8x, -1, 1<D,

Plot@Sin@x^2Dêx, 8x, -1, 1<D, Plot@Sin@xDêx^2, 8x, -1, 1<D<D

Out[4]=

-1.0 -0.5 0.0 0.5 1.0

0.90

0.95

1.00

-1.0 -0.5 0.5 1.0

-0.5

0.5

-1.0 -0.5 0.5 1.0

-10

-5

5

10

Here  you  can  see  that  the  last  function  has  different  limits  depending  on  whether
one approaches the limit from the left or the right. You can specify which limit you
want using the option Direction.

In[5]:= H*From the left*LLimit@Sin@xDêx^2, x -> 0, Direction Ø 1D

Out[5]= -¶

In[6]:= H*From the right*LLimit@Sin@xDêx^2, x -> 0, Direction Ø -1D

Out[6]= ¶

11.2 Working with Piecewise Functions
Problem
You  want  to  express  a  function  in  terms  of  two  or  more  functions  over  different
intervals.

Solution
Mathematica  supports  a  function Piecewise  for  composing  a  complex function out
of  simpler  functions  using  predicates  to  determine  which  of  the  simpler  functions
apply. 

In[7]:= f@x_D =

Piecewise@88Sqrt@1êx^2D, x < -0.3<, 81êx, x > 0.3 <, 83.33, True<<D

Out[7]=

1

x2
x < -0.3

1

x
x > 0.3

3.33 True
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In[8]:= Plot@f@xD, 8x, -3, 3<D

Out[8]=

-3 -2 -1 1 2 3

1.0

1.5

2.0

2.5

3.0

Discussion
Clip,  Sign,  and UnitStep  are  special  cases  of  built-in piecewise functions.  Clip  con-
strains its  input to a minimum and maximum value (default  |1 and +1).  Sign  gives
|1 or 1 depending on whether the input is negative or positive, and UnitStep is 0 for
negative values and 1 for values greater than or equal to zero.

In[9]:= GraphicsRowA9Plot@Clip@2 Sin@xDD, 8x, -Pi, Pi<, PlotLabel -> "Clip"D,

PlotASign@2 Sin@xDD, 8x, -Pi, Pi<, PlotLabel -> "Sign"E,

Plot@UnitStep@2 Sin@xDD, 8x, -Pi, Pi<, PlotLabel -> "UnitStep"D=,

ImageSize Ø 8500, 150<E

Out[9]=
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You  can  differentiate  and  integrate  piecewise  functions,  and  you’ll  get  a  piecewise
function.

In[10]:= D@Clip@2 Sin@xDD, xD

Out[10]=
0 Sin@xD < -

1

2
»» Sin@xD >

1

2

2 Cos@xD True

In[11]:= Integrate@Clip@2 Sin@xDD, xD

Out[11]=

-x Sin@xD < -
1

2

x Sin@xD >
1

2

-2 Cos@xD True

PiecewiseExpand  can  take  a  nested  piecewise  function  and  return  a  single  function.
You can  use  this  to  show that  Min,  Max,  and  Abs  are  also  special  cases  of  piecewise
functions.
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PiecewiseExpand  can  take  a  nested  piecewise  function  and  return  a  single  function.
You can  use  this  to  show that  Min,  Max,  and  Abs  are  also  special  cases  of  piecewise
functions.

In[12]:= PiecewiseExpandAMaxAw, x, y, zEE

Out[12]=

w w - x ¥ 0 && w - y ¥ 0 && w - z ¥ 0

x w - x < 0 && x - y ¥ 0 && x - z ¥ 0

y w - y < 0 && x - y < 0 && y - z ¥ 0

z True

In[13]:= PiecewiseExpandAClipAMinAx, yEEE

Out[13]=

-1 Ix < -1 && x - y § 0M »» Ix - y > 0 && y < -1M

1 Ix > 1 && x - y § 0M »» Ix - y > 0 && y > 1M

x -1 § x § 1 && x - y § 0

y True

11.3 Using Power Series Representations 
Problem
You want to find the series expansion of a function.

Solution
The  Mathematica  function  Series  will  generate  the  series  expansion  of  a  function
about  a  point  to  a  specified order.  It  produces  a  SeriesObject,  which Mathematica
will display as a traditional series expansion.

In[14]:= Series@Sin@xD, 8x, 0, 10<D

Out[14]= x -
x3

6
+

x5

120
-

x7

5040
+

x9

362880
+ O@xD11

In[15]:= % êê InputForm
Out[15]//InputForm=

SeriesData[x, 0, {1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880}, 1, 11, 1]

You  use  Normal  to  create  a  regular  Mathematica  expression.  Here  I  also  use
Evaluate because I am defining a function and want Normal to evaluate immediately
even though the function is defined using SetDelayed (:=). Equivalently, you can use
Set (=) to define the function without Evaluate.

In[16]:= f@x_D := Evaluate@Normal@Series@Sin@xD, 8x, 0, 10<DDD
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You visualize the accuracy of the series approximation by plotting over successively
larger  intervals.  As  expected,  this  series  approximation  begins  to  diverge  as  you
move away from the origin.

In[17]:= GraphicsColumn@Table@Plot@8Sin@xD, f@xD<, 8x, -n Pi, n Pi<D, 8n, 1, 3<DD

Out[17]=

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

-6 -4 -2 2 4 6

-3

-2

-1

1

2

3

-5 5

-3

-2

-1

1

2

3

Discussion
You can compute the inverse of a series using InverseSeries.

In[18]:= fInv@x_D = Normal@InverseSeries@Series@Sin@xD, 8x, 0, 10<DDD

Out[18]= x +
x3

6
+
3 x5

40
+

5 x7

112
+

35 x9

1152
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In[19]:= PlotA8ArcSin@xD , fInv@xD<, 8x, -1, 1<, ImageSize Ø SmallE

Out[19]=
-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

11.4 Differentiating Functions 
Problem
You  want  to  compute  derivatives  or  partial  derivatives  of  functions  in  symbolic
form. You may do this as a means of creating new functions or as a means of teach-
ing the concepts that underlie differentiation.

Solution
Mathematica allows you to enter derivatives in input form as D[f[x], x] or in stan-
dard form as ∂xf[x].

In[20]:= D@Sin@xD, xD

Out[20]= Cos@xD

In[21]:= ∂x Sin@xD

Out[21]= Cos@xD

Higher-order  derivatives  are  specified  as  D[f[x],{x,n}]  where  n  is  2  for  the  second
derivative, 3 for the third, and so on. In standard form, the second derivative can be
entered as ∂8x,2< f@xD.

In[22]:= D@Sin@xD, 8x, 2<D

Out[22]= -Sin@xD

Partial  derivatives  are  easily  accommodated  as  well  using  several  equivalent
notations.

In[23]:= DASin@xD SinAyE, 8x, 1<E

Out[23]= Cos@xD SinAyE
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In[24]:= DASin@xD SinAyE, x, x, yE

Out[24]= -CosAyE Sin@xD

In[25]:= DASin@xD SinAyE, 8x, 2<, 9y, 1=E

Out[25]= -CosAyE Sin@xD

Discussion
Mathematica  also  recognizes  prime  notation,  but  this  notation  is  more  commonly
used  in  Mathematica  when  entering  a  differential  equation.  See  the  sidebar
“Mathematica’s Representation of Differentiation” on page 433 for some important
subtleties.

In[26]:= 8Sin'@xD, Sin''@xD<

Out[26]= 8Cos@xD, -Sin@xD<

You  can  use  D  along  with  Solve  to  differentiate  implicit  functions.  Simply  use  D  as
usual and use Solve to find the solution in terms of y'[x].

In[35]:= implicitFunction = x^4 + 2 y@xD^2 ã 8;

SolveAD@implicitFunction, xD, y'@xDE

Out[36]= ;;y£@xD Ø -
x3

y@xD
??

There are cases where you may want to use the D to synthesize a function on the fly.
In this case, use Set  (=) to perform the differentiation operation immediately or use
Evaluate with SetDelayed (:=). 

In[37]:= f1@x_D = D@Sin@Pi x Cos@x ^ 2DD, xD;

In[38]:= f2@x_D := Evaluate@D@Sin@Pi x Cos@x ^ 2DD, xDD

In[39]:= 8f1@2.D, f2@2.D<

Out[39]= 8-9.65614, -9.65614<

If you forget to do so, you will get an error when you call the function with a literal
value.

In[40]:= f3@x_D := D@Sin@Pi x Cos@x ^ 2DD, xD

In[41]:= f3@2.D

General::ivar : 2.` is not a valid variable. à

Out[41]= ∂2. 0.82226
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Mathematica’s Representation of Differentiation
More importantly, the prime notation is not synonymous with D[] but rather with a
differential  operator  of  the  form  Derivative[n].  The  operator  form  clarifies
ambiguities that would result from using it with functions of more than one variable.
Think of Derivative[n1, n2, ...] as an operator that acts on a function to produce
the specific derivative. The number of n’s should not exceed the number of variables
of the function since each n is associated with the nth derivative of the corresponding
variable. Some examples should help clarify.

First derivative with respect to x:
Derivative@1D@fDAx, yE

1 -
x2

2
+

x4

24
-

x6

720
+

x8

40320

f£Ax, yE

1 -
x2

2
+

x4

24
-

x6

720
+

x8

40320

First derivative with respect to x, then y:
Derivative@1, 1D@fDAx, yE

fH1,1LAx, yE

fH1,1LAx, yE

fH1,1LAx, yE

First derivative with respect to x, then second derivative with respect to y:
Derivative@1, 2D@fDAx, yE

fH1,2LAx, yE

fH1,2LAx, yE

fH1,2LAx, yE

For the most part, you should work with D[] directly, but keep the operator notation
in  the  back  of  your  mind  because  it  is  how  Mathematica  represents  derivatives
internally.

DAfAx, yE, x, yE êê FullForm
Derivative@1, 1D@fDAx, yE

Derivative@1, 1D@fDAx, yE

fH1,1LAx, yE

Many students will use Mathematica to check the answers to their calculus homework,
but Mathematica is also useful for generating demonstrations of the fundamental con-
cepts underlying differentiation. For example, the derivative of a function at a point
is  the  slope  of  the  tangent  to  the  function at  that  point.  Further,  given two points,
the slope of the secant drawn between these points approaches the derivative as the
points  approach  each  other  along  the  curve.  The  following  function  uses
Mathematica’s dynamic features to generate presentations of this fact using any func-
tion and starting points as input.
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Many students will use Mathematica to check the answers to their calculus homework,
but Mathematica is also useful for generating demonstrations of the fundamental con-
cepts underlying differentiation. For example, the derivative of a function at a point
is  the  slope  of  the  tangent  to  the  function at  that  point.  Further,  given two points,
the slope of the secant drawn between these points approaches the derivative as the
points  approach  each  other  along  the  curve.  The  following  function  uses
Mathematica’s dynamic features to generate presentations of this fact using any func-
tion and starting points as input.

In[42]:= makeDerivativeDemo@f_, x1_, x2_, opts : OptionsPattern@DD :=

DynamicModuleA9fp, f2, p1, p2, g, slope, slopeText, buildPlot, minX, maxX=,

p1 = 8x1, f@x1D<;

p2 = 8x2, f@x2D<;

g = buildPlot@f, fp, f2, p1, p2D;

With A9plotRange = Inner@8Min@ÒÒ - 3D, Max@ÒÒ + 3D< &, p1, p2, ListD=,

minX = plotRange@@1, 1DD;

maxX = plotRange@@1, 2DD;

DynamicA

GraphicsA9g@@1DD, Line@8p1, p2<D,

LocatorADynamicAp1, 9Hp1 = 8Ò@@1DD, f@Ò@@1DDD<L &,

Ig = buildPlot@f, fp, f2, p1, p2DM &=E, Appearance Ø SmallE,

LocatorADynamicAp2, 9Hp2 = 8Ò@@1DD, f@Ò@@1DDD<L &,

Ig = buildPlot@f, fp, f2, p1, p2DM &=E, Appearance Ø SmallE=,

FilterRulesA8opts<, OptionsAgEE, PlotRange -> plotRange,

OptionsAgEEE

E,

Initialization ß I

H*The actual derivative*L

fp@x_D := Evaluate@D@f@xD, xDD;

H*Function for tangent line at x0*L

f2@x0_, x_D := Module@8<, f@x0D + fp@x0D Hx - x0LD;

H*Text for slope of line from p1 to p2*L

slopeText@p1_, p2_D :=

ModuleA8s<, s = Divide üü H1.0êHp2 - p1LL; ToString@sDE;

H*Plot function, tangent line, and text label*L

buildPlot@ff_, fp_, f2_, p1_, p2_D := ModuleA8<,

NormalA

PlotA8ff@xD, f2@p1@@1DD, xD<, 8x, p1@@1DD - 3, p2@@1DD + 3<,

Epilog Ø 9InsetAPanelA"Secant slope = " <>

slopeText@p1, p2D <>

"\nDerivative = " <>

ToString@N@fp@p1@@1DDDDDE, 8Left, Top<, 8Left, Top<E=

EE

E

ME
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In[43]:= makeDerivativeDemo@Sin@Pi Cos@ÒDD &, 1.25, 1.75D

Out[43]=

11.5 Integration
Problem
You want  to  solve  problems  that  involve  indefinite  or  definite  integrals  using  sym-
bolic integration. 

Solution
Use  Integrate  or  Ÿ  to  compute  single,  double,  or  higher-order  integrations.  Indefi-
nite integrals specify an expression and the variables of integration.

In[44]:= Integrate@1êx, xD

Out[44]= Log@xD

Definite  integrals  provide  the  minimum  and  maximum  limits,  which  can  be  con-
stants or expressions.

In[45]:= Integrate@1êx, 8x, 1, 10.0<D

Out[45]= 2.30259

In[46]:= Clear@a, bD;

Integrate@x^2, 8x, a, b<D

Out[47]= -
a3

3
+
b3

3

The minimum and maximum limits can be -Infinity or Infinity.

In[48]:= IntegrateA1êHx^3 + x^2L, 9x, 1, Infinity=E

Out[48]= 1 - Log@2D
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Discussion
Integrate will easily handle most integration problems you are likely to encounter in
school, engineering, and science. 

In[49]:= ·

z2

Iz2 - 1M z2 + 1

„z

Out[49]=
1

4
4 ArcSinh@zD + 2 Log@-1 + zD - Log@1 + zD +

LogC-1 + z - 2 1 + z2 G - LogC1 + z + 2 1 + z2 G

Double and higher-order integrals are computed with a single Integrate function by
adding multiple integration variables. However, if you use the traditional integration
notation, you will use multiple integral symbols.

In[50]:= IntegrateASinA2 Pi z yë xE x y z, x, y, zE

Out[50]=
1

64 p2
x I-2 p x2 y z + 4 p3 y3 z3M CosC

2 p y z

x
G +

x I-3 x2 + 2 p2 y2 z2M SinC
2 p y z

x
G +

4 Ix4 + 2 p4 y4 z4M SinIntegralC
2 p y z

x
G

In[51]:= ‡ ‡ ‡ x y z „x „y „z

Out[51]=
1

8
x2 y2 z2

Some  integrations  may  return  with  conditionals  and  assumptions  due  to  conver-
gence issues. You can eliminate these by providing your own assumptions.

In[52]:= IntegrateAExpA-c x2E, 8x, -¶, ¶<E

Out[52]= IfCRe@cD > 0,
p

c
, IntegrateB‰-c x2, 8x, -¶, ¶<, Assumptions Ø Re@cD § 0FG

In[53]:= IntegrateAExpA-c x2E, 8x, -¶, ¶<, Assumptions Ø c > 0E

Out[53]=
p

c
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You also do this using GenerateConditions Ø False.

In[54]:= IntegrateAExpA-c x2E, 8x, -¶, ¶<, GenerateConditions Ø FalseE

Out[54]=
p

c

You can also get piecewise functions as a result of Integrate.

In[55]:= Integrate@Abs@x + Abs@xD^2D, x, Assumptions Ø x œ RealsD

Out[55]=

x2

2
+

x3

3
x § -1

1

3
-

x2

2
-

x3

3
-1 < x § 0

1

3
+

x2

2
+

x3

3
True

When Integrate is unable to solve the integration, it will return the unevaluated inte-
gral in symbolic form. 

In[56]:= IntegrateAExpA1ëILog@xD + 1ME, 8x, 2, 3<E

Out[56]= ‡
2

3
‰

1

1+Log@xD „x

Applications  of  integration  are  numerous,  and  it  would  be  impossible  to  provide
even a small representative set of examples here. Rather, I will provide examples that
emphasize  how  Integrate  can  be  combined  with  other  Mathematica  functions  in
non-obvious ways.

A simple application is a function to compute the area between two arbitrary curves
given two points. When you create functions that embed Integrate, you often want
to allow options to pass through to increase generality.

In[57]:= areaBetweenTwoCurves@expr1_, expr2_, var_, a_,

b_, opts : OptionsPattern@DD := IntegrateAexpr1 - expr2,

8var, a, b<, Sequence üü FilterRulesA8opts<, OptionsAIntegrateEEE

In[58]:= areaBetweenTwoCurves@x, x^2, x, 0, 1D

Out[58]=
1

6

This would generate a huge messy conditional if not for the ability to pass assump-
tions about the arbitrary bounds a and b.

In[59]:= areaBetweenTwoCurvesALog@xD, Sin@xD, x, a, b, Assumptions Ø a > 0 && b > 0E

Out[59]= a - b - Cos@aD + Cos@bD - a Log@aD + b Log@bD

Create  a  table  of  volumes  of  hyperspheres.  Here  Boole  maps  True  to  1  and  False
to  0.  Note  that  the list  of  integration limits  must  be  converted to  a  sequence using
Apply  (@@).  By the way, this is a very expensive way to calculate volume of a hyper-
sphere,  but  it  does  illustrates  how  to  parameterize  the  order  of  integration.  Search
for  hyperspheres  on  Wikipedia  or  Wolfram’s  MathWorld  to  find  a  more  practical
formula.
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Create  a  table  of  volumes  of  hyperspheres.  Here  Boole  maps  True  to  1  and  False
to  0.  Note  that  the list  of  integration limits  must  be  converted to  a  sequence using
Apply  (@@).  By the way, this is a very expensive way to calculate volume of a hyper-
sphere,  but  it  does  illustrates  how  to  parameterize  the  order  of  integration.  Search
for  hyperspheres  on  Wikipedia  or  Wolfram’s  MathWorld  to  find  a  more  practical
formula.

In[60]:= TableAIntegrateABoole@Sum@x@iD^2, 8i, 1, n<D § 1D,

Sequence üü TableA9xAjE, -Infinity, Infinity=, 9j, 1, n=E,

GenerateConditions Ø TrueE, 8n, 1, 5<E

Out[60]= ;2, p,
4 p

3
,
p2

2
,
8 p2

15
?

You can combine Integrate with differentiation to create a general function to com-
pute the length of a curve between two points.

In[61]:= ClearAlengthOfCurveE

In[62]:= lengthOfCurve@expr_, var_, a_, b_, opts : OptionsPattern@DD :=

IntegrateASqrt@1 + D@expr, varD^2D, 8var, a, b<,

Sequence üü FilterRulesA8opts<, OptionsAIntegrateEEE

Or, you can compute the length of the hypotenuse of a right triangle.

In[63]:= lengthOfCurve@x, x, 0, 1D

Out[63]= 2

Verify  the formula for  the circumference of  a  circle  given its  radius by taking twice
the arc length of a semicircle. 

In[64]:= 2 lengthOfCurve@Sqrt@r^2 - x^2D, x, -r, r, Assumptions Ø r > 0D

Out[64]= 2 p r

Here is a purely symbolic solution with assumptions to simplify results.

In[65]:= lengthOfCurve@Exp@xD, x, a, b, Assumptions Ø Ha > 0 && b > 0LD

Out[65]= - 1 + ‰2 a + 1 + ‰2 b +
1

2
LogC

1 + 1 + ‰2 a -1 + 1 + ‰2 b

-1 + 1 + ‰2 a 1 + 1 + ‰2 b

G

11.6 Solving Differential Equations
Problem
You have a model of a system described by a differential equation and you want to
solve that equation symbolically. Two related problems are getting the equation in a
form Mathematica expects and getting the solution in the form you expect.

Solution
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Solution
An undergraduate student of engineering or physics will commonly need to solve dif-
ferential equations that model simple systems. A common problem is an undamped
oscillator composed of a mass hanging from a spring. The problem may appear in a
textbook as

In[66]:= m y'' + k y = 0

This says that the force (mass ×  acceleration) is balanced by the force of the spring,
as given by Hooke’s law, where k is the spring constant. The key to solving this equa-
tion in Mathematica using DSolve is to make the equation more explicit. Specifically,
the  equation  omits  the  time  variable.  You  must  also  replace  the  =  symbol  with  ==
and tell Mathematica what equation we are solving for and what are the variables.

In[67]:= DSolveAm y''@tD + k y@tD ã 0, y@tD, tE

Out[67]= ;;y@tD Ø C@1D CosC
k t

m
G + C@2D SinC

k t

m
G??

The solution is given as a replacement rule, and since the equation is a second order,
two constants,  C[1]  and C[2],  are introduced. You can provide initial  conditions to
eliminate the constants. In this case, you can also render the solution in its customary
form by replacing Sqrt[k]/Sqrt[m] by the angular frequency w. 

In[68]:= DSolveA9m y''@tD + k y@tD ã 0, y@0D ã 1, y'@0D ã 1=, y@tD, tE ê.

8Sqrt@kDêSqrt@mD Ø w<

Out[68]= ;;y@tD Ø
k Cos@t wD + m Sin@t wD

k
??

Discussion
The  solutions  provided  by  DSolve  are  not  automatically  simplified,  and  you  often
will want to use Simplify or FullSimplify to postprocess them into a more mathe-
matically  friendly  form.  This  is  especially  relevant  when  comparing  the  answer
DSolve  finds  with  answers  provided  in  a  typical  textbook.  Consider  this  problem
adapted  from  Advanced  Engineering  Mathematics  by  Erwin  Kreyszig  (John  Wiley).
Here you want to find the solution to a differential equation describing the speed of
a fluid flowing out of an opening in a container. 
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In[69]:= k = 0.00266 ;

eq = 8h'@tD ã -k Sqrt@h@tDD, h@0D == 150<;

sol = DSolve@eq, h@tD, tD

Out[71]= 99h@tD Ø 150. - 0.0325782 t + 1.7689µ10-6 t2=,

9h@tD Ø 150. + 0.0325782 t + 1.7689µ10-6 t2==

Given the physics of the problem, it  should be clear we want the first solution (the
second solution has the height increasing with time). 

In[72]:= FullSimplify@sol@@1DDD

Out[72]= 9h@tD Ø 1.7689µ10-6 H-9208.61 + tL H-9208.61 + tL=

Although this has simplified the result somewhat, it is a much more complicated solu-
tion than the one provided by Kreyszig, which is

In[73]:= 150 -0.00133` t
2

Out[73]= 5 6 - 0.00133 t
2

Did DSolve give the wrong result? A common mistake when using Mathematica is to
prematurely substitute specific constants as I did above. It is often advisable to solve
equations entirely in symbolic form and substitute constants later. 

In[74]:= eq = 8h'@tD ã -k1 Sqrt@h@tDD, h@0D == h0<;

sol = FullSimplify@DSolve@eq, h@tD, tD@@1DDD

Out[75]= ;h@tD Ø
1

4
-2 h0 + k1 t

2
?

Although this did not get us all the way to the form of the book’s solution, you are
more likely to see the final transformation that will demonstrate that DSolve was cor-
rect. It hinges on noticing that 1/4 is the same as (|1/2)*(|1/2).

1

4
-2 h0 +k1 t

2

ã

1

4
-2 h0 +k1 t -2 h0 +k1 t ã

-
1

2
-2 h0 +k1 t -

1

2
-2 h0 +k1 t ã

h0 -
k1

2
t h0 -

k1

2
t ã

h0 -
k1

2
t

2

Substituting h0  and k1  with the  constants  shows that  Mathematica  did get  the  cor-
rect  solution.  Alternatively,  you can ask Mathematica  to  prove its  solution is  equal
to  the  book’s  solution  by  using  Resolve  and ForAll.  The  only  problem here  is  that
Mathematica does not show its work!
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Substituting h0  and k1  with the  constants  shows that  Mathematica  did get  the  cor-
rect  solution.  Alternatively,  you can ask Mathematica  to  prove its  solution is  equal
to  the  book’s  solution  by  using  Resolve  and ForAll.  The  only  problem here  is  that
Mathematica does not show its work!

In[76]:= ResolveBForAllB8h0, k1, t<,
1

4
-2 h0 + k1 t

2

ã h0 -
k1

2
t

2

F F

Out[76]= True

11.7 Solving Minima and Maxima Problems
Problem
You want to find the minimum or maximum values of a function. You may need to
find these extremes subject to constraints or for numbers in a specific domain (e.g.,
integers).

Solution
Although there are standard techniques used in calculus for finding extrema, Mathe-
matica provides the specific functions Minimize and Maximize, which provide a great
deal of power.

In[77]:= MaximizeA1 - H-2 + xL2 - H-1 + xL4, xE êê N

Out[77]= 80.710727, 8x Ø 1.58975<<

In[78]:= Minimize@2 x^4 - 3 x^2 + x, xD êê N

Out[78]= 8-2.0293, 8x Ø -0.939693<<

Discussion
For many applications of minimization or maximization, you are interested in the ex-
treme value within a specific interval. 

In[79]:= Maximize@8HHx - 3L^3 - 2 x^2 - xL, -1 < x < 4<, xD êê N

Out[79]= 8-9.3726, 8x Ø 1.48085<<

I  restrict  this  discussion to Maximize  for  simplicity,  but everything here applies
to  Minimize  as  well.  If  you  are  interested  in  displaying  the  result  of  Maximize,  you
will  want to force the result  to numerical  form, as we did in the solution.  Maximize
will keep the result in exact form if it is given input in exact form. For polynomials,
this typically means the result will be expressed in terms of radicals or Root objects.
A Root[f,k] object represents the kth solution to a polynomial equation f[x] == 0. 
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In[80]:= Maximize@8HHx - 3L^3 - 2 x^2 - xL, -1 < x < 4<, xD

Out[80]= ;-27 +
26

3
11 - 43 -

11

9
11 - 43

2
+

1

27
11 - 43

3
,

;x Ø
1

3
11 - 43 ??

In[81]:= MaximizeA1 - H-2 + xL2 - H-1 + xL4, xE

Out[81]= :-4 + 8 RootA-4 + 7 Ò1 - 6 Ò12 + 2 Ò13 &, 1E -

7 RootA-4 + 7 Ò1 - 6 Ò12 + 2 Ò13 &, 1E2
+ 4 RootA-4 + 7 Ò1 - 6 Ò12 + 2 Ò13 &, 1E3

-

RootA-4 + 7 Ò1 - 6 Ò12 + 2 Ò13 &, 1E4, 9x Ø RootA-4 + 7 Ò1 - 6 Ò12 + 2 Ò13 &, 1E=>

Sometimes you want to find solutions for  integer  values  only.  You can constrain
Maximize to the integers in one of two ways. You might recognize this problem as an
instance of a knapsack problem where you are optimizing the value of the knapsack
(item1 has value 8, item2 11, and so on) subject to size constraint of 14 where item1
has size 5 and so on.

In[82]:= MaximizeA98 x1 + 11 x2 + 6 x3 + 4 x4,

5 x1 + 7 x2 + 4 x3 + 3 x4 § 14 && x1 < 2 && x2 < 2 && x3 < 2 &&

x4 < 2 && ElementAx1 x2 x3 x4, IntegersE=, 8x1, x2, x3, x4<E

Out[82]= 821, 8x1 Ø 0, x2 Ø 1, x3 Ø 1, x4 Ø 1<<

A more convenient notation when all variables are integer is to specify the domain as
the third argument to Maximize. 

In[83]:= MaximizeA88 x1 + 11 x2 + 6 x3 + 4 x4, 5 x1 + 7 x2 + 4 x3 + 3 x4 § 14 &&

x1 < 2 && x2 < 2 && x3 < 2 && x4 < 2<, 8x1, x2, x3, x4<, IntegersE

Out[83]= 821, 8x1 Ø 0, x2 Ø 1, x3 Ø 1, x4 Ø 1<<

Maximize  seeks  a  global  maximum,  whereas  an  alternative  function,  FindMaximum,
seeks a local maximum (there is also FindMinimum  for local minimums). FindMaximum
allows you to specify a starting point for the search, but otherwise has a very similar
form to Maximize. The following program demonstrates the difference between Maxi-
mize  and  FindMaximum.  The  advantage  of  FindMaximum  is  that  it  does  not  require
the objective function to be differentiable.
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In[84]:= Clear@"Global`*"D;

f@x_D := x Cos@0.1 Exp@xDD Sin@0.1 Pi Exp@xDD ;

globalMax = Maximize@8f@xD, 0 < x < 5<, xD;

localMax = FindMaximum@f@xD, 8x, 0<D;

PlotAf@xD, 8x, 0, 5<, Epilog Ø 9PointSize@0.02D,

Red, Point@8x, f@xD<D ê. LastAglobalMaxE ,

Blue, Point@8x, f@xD<D ê. Last@localMaxD=E

Out[88]=

1 2 3 4 5

-2

2

4

11.8 Solving Vector Calculus Problems
Problem
You want to find solutions to problems within vector fields. Such problems arise in
mechanics, electromagnetic theory, and fluid dynamics.

Solution
Simple vector calculus problems can be solved in terms of the calculus primitives dis-
cussed in this chapter’s recipes along with vector functions like Dot and Cross. For ex-
ample, line integrals are commonly used to calculate work performed when moving
a particle along a path in a vector field. Here F is the vector equation of the field, f is
the equation of the path through the field, var is the parameter of f, and a and b are
the start and end points of the path.

In[89]:= lineIntegral@F_, f_, var_, a_, b_D :=

Integrate@Dot@F@f@varDD, D@f@varD, varDD, 8var, a, b<D

FA9x_, y_, z_=E := 9x + y, y^2, x - z=

f@t_D := 8-t + 1, t + 2, -6 t + 1<

lineIntegral@F, f, t, 0, 1D

Out[92]= -
35

3

Another common operation in vector calculus is the surface integral over scalar func-
tions and vector fields. Surface integrals are the 2D analog of line integrals. One way
to  think  of  the  scalar  surface  integral  is  to  imagine  a  surface  f  made  of  a  material
whose  density  varies  as  described by a  second function g.  The surface  integral  of  f
over g is then the mass per unit thickness. 
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Another common operation in vector calculus is the surface integral over scalar func-
tions and vector fields. Surface integrals are the 2D analog of line integrals. One way
to  think  of  the  scalar  surface  integral  is  to  imagine  a  surface  f  made  of  a  material
whose  density  varies  as  described by a  second function g.  The surface  integral  of  f
over g is then the mass per unit thickness. 

In[93]:= surfaceIntegralScalarAg_, f_, 8v1_, v1a_, v1b_<, 8v2_, v2a_, v2b_<E :=

IntegrateAg@f@v1, v2DD Norm@Cross@D@f@v1, v2D, v1D, D@f@v1, v2D, v2DDD,

8v1, v1a, v1b<, 8v2, v2a, v2b<E

For example, consider the surface f1, which is a half sphere over the interval {f, 0,
Pi/2}  and {q, 0, 2 Pi},  and compute the surface integral  given a density function
given by (x^2 + y^2) z.

In[94]:= f1@f_, q_D := 8Sin@fD Cos@qD, Sin@fD Sin@qD, Cos@fD<

g1A9x_, y_, z_=E := Ix^2 + y^2M z

surfaceIntegralScalarAg1, f1, 8f, 0, Piê2<, 8q, 0, 2 Pi<E

Out[96]=
p

2

If we use a constant function (uniform density), we get the surface area of the half sphere
as expected (surface area of an entire sphere is 4 pr2).

In[97]:= g2A9x_, y_, z_=E := 1

surfaceIntegralScalarAg2, f1, 8f, 0, Piê2<, 8q, 0, 2 Pi<E

Out[98]= 2 p

For a vector field, there is a similar  equation using Dot in place of scalar multiplication
by the norm. The traditional way to visualize the vector surface interval is to consider
a fluid flowing through a surface where there is a vector function F describing the ve-
locity  of  the  fluid  at  various  points  on  the  surface.  The  surface  integral  is  then  the
flux, or the quantity of fluid flowing through the surface in unit time.

In[99]:= surfaceIntegralVector@F_, f_, 8v1_, v1a_, v1b_<, 8v2_, v2a_, v2b_<D :=

Integrate@Dot@F@f@v1, v2DD, Cross@D@f@v1, v2D, v1D, D@f@v1, v2D, v2DDD,

8v1, v1a, v1b<, 8v2, v2a, v2b<D

Here is  the  solution to the flux described by {3 y, -z, x^2}  through a  surface  de-
scribed parametrically as {s t, s + t, (s^2 - t^2)/2}.

In[100]:= f@s_, t_D := 8s t, s + t, Hs^2 - t^2Lê2<

FA9x_, y_, z_=E := 93 y, -z, x^2=

surfaceIntegralVector@F, f, 8s, 0, 1<, 8t, 0, 3<D

Out[102]= -15
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A standard  result  from electrostatics  is  that  the  net  flux  out  of  a  unit  sphere,  for  a
field that is everywhere normal, is zero. We can verify this as follows:

In[103]:= F2A9x_, y_, z_=E := 81, 1, 1<ëIx^2 + y^2 + z^2M

In[104]:= f2@q_, f_D := 8Sin@fD Cos@qD, Sin@fD Sin@qD, Cos@fD<

In[105]:= surfaceIntegralVector@F2, f2, 8q, 0, 2 Pi<, 8f, 0, Pi<D

Out[105]= 0

Discussion
The  solution  shows  how  the  calculus  primitives  and  other  Mathematica  functions
can be used to build up higher-order vector calculus solutions. However, if  you are
interested in solving problems in vector calculus, the package VectorAnalysis` is defi-
nitely worth a look. Be forewarned that you might be in for a bit of a learning curve
with this particular package, but it offers a lot of functionality. An important feature
of  the  package  is  that  it  simplifies  working  in  different  coordinate  systems.
Before you can make effective use of VectorAnalysis`, you need to understand how
coordinate  systems  are  used  and  which  coordinate  system  is  appropriate  to  your
problem.

In[106]:= NeedsA"VectorAnalysis`"E

In[107]:= CoordinateSystem

Out[107]= Cartesian

In[108]:= SetCoordinates@SphericalD

Out[108]= Spherical@Rr, Ttheta, PphiD

In[109]:= CoordinateSystem

Out[109]= Spherical

When you use VectorAnalysis`, you will typically want to use functions in that pack-
age in place of some standard Mathematica functions such as Dot and Cross. This is
because  the  alternatives  DotProduct  and  CrossProduct  respect  the  current  coordi-
nate system. For example, if the current coordinate system is Spherical, you expect
the following DotProduct  to be zero because the vectors  are orthogonal  in spherical
coordinates.

In[110]:= DotProduct@81, Piê2, 0<, 81, Piê2, Piê2<D

Out[110]= 0
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In contrast, Dot and Cross always assume Cartesian coordinates.

In[111]:= Dot@81, Piê2, 0<, 81, Piê2, Piê2<D

Out[111]= 1 +
p2

4

Some  of  the  most  important  vector  calculus  operations  are  Div  (divergence),  Grad
(gradient), Curl, and the Laplacian. Although it would make a nice exercise to imple-
ment these from the calculus primitives, as I did for line and surface integrals, there
is no need if you use the VectorAnalysis` package. These operations use the default
coordinate  system,  or  you  can  specify  a  specific  coordinate  system  as  a  separate
argument.

The divergence represents the instantaneous outflow of a vector field at each point.

In[112]:= TogetherADivA81, 1, 1<ëIx^2 + y^2 + z^2M, CartesianAx, y, zEEE

Out[112]= -
2 Ix + y + zM

Ix2 + y2 + z2M2

The curl of a vector field represents the amount of rotation.

In[113]:= TogetherACurlA81, 1, 1<ëIx^2 + y^2 + z^2M, CartesianAx, y, zEEE

Out[113]= ;-
2 Iy - zM

Ix2 + y2 + z2M2
,

2 Hx - zL

Ix2 + y2 + z2M2
, -

2 Ix - yM

Ix2 + y2 + z2M2
?

By  definition,  the  divergence  of  the  curl  must  be  zero  since  the  curl  has  no  net
outflow.

In[114]:= SetCoordinatesACartesianAx, y, zEE;

DivACurlA81, 1, 1<ëIx^2 + y^2 + z^2MEE

Out[115]= 0

The gradient of  a  function f  is  a  vector-valued function that  indicates the direction
in which f is increasing most rapidly. If you were climbing a hill, you would move in
the direction of the gradient at each point to reach the top (strictly speaking the gradi-
ent would only be guaranteed to be directing you to a local peak). You can visualize
the meaning of the gradient by using VectorPlot. I restrict the result to 2D for easier
visualization. 
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In[116]:= GraphicsRowA9Plot3DAx2 y3, 8x, -1, 1<, 9y, -1, 1=, PlotRange Ø FullE,

VectorPlotAEvaluateADropAGradA x2 y3 1, CartesianAx, y, zEE, -1EE,

8x, -1, 1<, 9y, -1, 1=E=, ImageSize Ø 500E

Out[116]=

See Also
The Mathematica tutorial to the VectorAnalysis  package is essential reading for us-
ing those functions.

Div,  Grad,  Curl,  and All  That  by H. M. Schey (W.W. Norton) and Vector Calculus
by Paul C. Matthews (Springer) are two of my favorite informal introductions to vec-
tor calculus.

11.9 Solving Problems Involving Sums 
and Products
Problem
You want to solve problems in discrete calculus that are expressed in terms of sums
or products.

Solution
Mathematica can handle infinite sums and products with ease, provided, of course,
they converge.

In[117]:= ‚

n=1

¶ 1

n2

Out[117]=
p2

6
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In[118]:= ‰

i=2

¶

1 -
1

i3

Out[118]=

CoshC
3 p

2
G

3 p

Discussion
If  sums or products don’t  converge,  Mathematica will  let  you know by emitting an
error.  You  can  test  for  convergence  without  evaluating  the  sum  using  Sum-
Convergence.

In[119]:= ‚

n=1

¶ 1

n

Sum::div : Sum does not converge. à

Out[119]= ‚

n=1

¶ 1

n

In[120]:= TableB:
1

nk
, SumConvergenceB

1

nk
, nF>, 8k, 1, 4<F êê TableForm

Out[120]//TableForm=
1

n
False

1

n2
True

1

n3
True

1

n4
True

As with Integrate, Sum can specify multiple summation variables. In traditional
form these sums are rendered as a multiple summation, but keep in mind that these
are  entered  as  Sum[expr,{n,nmin,nmax},{m,mmin,mmaz}]  rather  than  Sum[Sum[expr,
{n,nmin,nmax}],{m,mmin,mmaz}].

This double summation has a surprisingly simply solution.

In[121]:= ‚

m=1

¶

‚

n=1

¶ m2 n

2m Hm 2n + 2m nL

Out[121]= 2

This is a very famous sum attributed to Srinivasa Ramanujan, one of India’s greatest
mathematical geniuses. You might think that Mathematica is just doing some simple
pattern  matching  to  recognize  this  result;  however,  substitute  for  any  of  the  magic
constants in this formula, and Mathematica will handle it just as well (but don’t ex-
pect the answer to be as pretty).
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This is a very famous sum attributed to Srinivasa Ramanujan, one of India’s greatest
mathematical geniuses. You might think that Mathematica is just doing some simple
pattern  matching  to  recognize  this  result;  however,  substitute  for  any  of  the  magic
constants in this formula, and Mathematica will handle it just as well (but don’t ex-
pect the answer to be as pretty).

In[122]:=
2 2

9801
‚

k=0

¶ H4 kL! H1103 + 26390 kL

Hk!L4 3964 k

Out[122]=
1

p

In[123]:= ‚

k=0

¶ H3 kL! H5 + 10 kL

Hk!L4 3004 k

Out[123]=
1

135000000
675000000 HypergeometricPFQC;

1

3
,
2

3
?, 81, 1<,

1

300000000
G +

HypergeometricPFQC;
4

3
,
5

3
?, 82, 2<,

1

300000000
G

Here  is  a  very  pretty  formula  for  p  that  combines  an  infinite  sum  and  an  infinite
product.

In[124]:=

¤n=1
¶ J1 +

1

4 n2-1
N

⁄n=1
¶ 1

4 n2-1

Out[124]= p

As of version 7, Mathematica can handle indefinite sums and products.  Mathemat-
ica will seek to eliminate the sum if possible. For example, the sum over k of a polyno-
mial  is  another  polynomial  that  can  be  expressed  in  terms  of  k,  and  products  over
polynomials will invariably reduce to some expression involving Gamma.

In[125]:= ‚

k

I3 k3 - k2 + 3 k + 5M

Out[125]=
1

12
k I40 + 33 k - 22 k2 + 9 k3M

In[126]:= ‰
k
Ik2 - 3 k + 5M

Out[126]=

3 CoshC
11 p

2
G GammaC-

3

2
-

Â 11

2
+ kG GammaC-

3

2
+

Â 11

2
+ kG

p

The Z-transform is an important infinite sum used in signal processing. It is defined
as Sum[f[n] z^-n,{n,0,Infinity}], but is directly supported using ZTransform.

In[127]:= ZTransform@n^2, n, zD

Out[127]=
z H1 + zL

H-1 + zL3

Here is an unconventional application for Sum, but one that is sometimes used in dis-
crete  math to  introduce  the  idea  of  a  generating  function.  You can use  Sum  to  con-
struct a generating function for solutions to problems like x1+x2+x3 == 12 subject to
x1 >= 4, x2 >= 2, and 5 >= x3 >= 2. Each Sum is constructed from the smallest num-
ber  the  associated  variable  can  take  to  the  largest,  by  considering  the  smallest  the
other variables can take. For example, x1 must be at least 4 but can’t be greater than
12|2|2 = 8, since x2 and x3 must each be at least 2. Here we use Expand to generate
the  polynomial  and  Cases  to  find  the  exponents  that  sum  to  12,  thus  giving  all
solutions.
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Here is an unconventional application for Sum, but one that is sometimes used in dis-
crete  math to  introduce  the  idea  of  a  generating  function.  You can use  Sum  to  con-
struct a generating function for solutions to problems like x1+x2+x3 == 12 subject to
x1 >= 4, x2 >= 2, and 5 >= x3 >= 2. Each Sum is constructed from the smallest num-
ber  the  associated  variable  can  take  to  the  largest,  by  considering  the  smallest  the
other variables can take. For example, x1 must be at least 4 but can’t be greater than
12|2|2 = 8, since x2 and x3 must each be at least 2. Here we use Expand to generate
the  polynomial  and  Cases  to  find  the  exponents  that  sum  to  12,  thus  giving  all
solutions.

In[128]:= CasesB ExpandB‚
n=4

8

x1n ‚
n=2

6

x2n ‚
n=2

5

x3n F,

x1n1_ x2n2_ x3n3_ ê; n1 + n2 + n3 ã 12 ß 8n1, n2, n3<F

Out[128]= 888, 2, 2<, 87, 3, 2<, 86, 4, 2<, 85, 5, 2<, 84, 6, 2<, 87, 2, 3<, 86, 3, 3<,

85, 4, 3<, 84, 5, 3<, 86, 2, 4<, 85, 3, 4<, 84, 4, 4<, 85, 2, 5<, 84, 3, 5<<

If you only care about the number of solutions, it would fall out of the coefficient of
x12 in the expansion of this polynomial.

In[129]:= CasesB ExpandB‚
n=4

8

xn ‚
n=2

6

xn ‚
n=2

5

xn F, a_ x12 ß aF

Out[129]= 814<

See Also
See Recipe 11.11 for more information on generating functions in Mathematica.

Readers  who  are  interested  in  gaining  insight  into  the  algorithms  that  underlie
Mathematica’s  amazing  feats  with  infinite  sums  should  read  A=B  by  Marko
Petkovsek,  Herbert  S.  Wilf,  and  Doron  Zeilberger  (A  K  Peters),  which  is  avail-
able online at http://bit.ly/1LJiwe.

11.10 Solving Difference Equations
Problem
You want to solve problems that arise in discrete systems such as finance, actuarial
science,  dynamical  systems,  and  numerical  analysis.  Many  such  problems  can  be
modeled as recurrence relations, also known as difference equations.
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Solution
RSolve is used to solve difference equations. A simple problem where RSolve applies
is in mortgage calculations. Suppose you want to derive a function for the outstand-
ing  principal  over  the  life  of  a  loan.  Let’s  say  the  yearly  interest  rate  is  5.75%,  the
monthly payment is $1,000.00, and the term is 30 years. This loan can be described
as the following difference equation. Here the constraint y[360] == 0 arises from the
condition that the last payment is zero (I am using y[0] as the origin).

In[130]:= i = 0.0575;

payment = 1000.00;

sol = RSolveA9y@n + 1D ã H1 + iê12L y@nD - payment, y@360D ã 0=, y, nE

Out[132]= 99y Ø FunctionA8n<, 0.995231µ2.71828-0.00478022 n

I209696.µ1.00479n - 37516.4µ1.00479n 2.718280.00478022 nME==

From this we can figure out the initial principal or the payoff at any given month:

In[133]:= y@0D ê. sol@@1DD

Out[133]= 171358.

After 60 months,  or 5 years,  very little has been paid off,  which is  quite depressing
but a fact of life.

In[134]:= y@0D - y@60D ê. sol@@1DD

Out[134]= 12402.6

Discussion
Setting up a difference equation is often a matter of solving the problem by hand for
small  values  of  n  and then detecting  the  relationship  between  successive  values.
Consider  the  Towers  of  Hanoi  puzzle.  A  one-disk  problem  is  solved  in  one  move
(T[1] = 1),  a two-disk problem is solved in three moves (T[2] = 3),  and three-disk
problem is solved in seven moves (T[3] = 7). It follows then that T[n] = 2 T[n-1] + 1.

In[135]:= RSolve@8T@nD ã 2 T@n - 1D + 1, T@1D ã 1<, T, nD

Out[135]= 99T Ø FunctionA8n<, -1 + 2nE==

A seemingly innocent difference equation can result in a solution involving complex
numbers. This is a second-order equation, so two initial values are required to get an
exact solution with no arbitrary constants.

In[136]:= sol = RSolve@8a@nD == 2 Ha@n - 1D - a@n - 2DL, a@0D == 1, a@1D ã 2<, a, nD

Out[136]= ;;a Ø FunctionC8n<,
1

2
+

Â

2
IH1 - ÂLn - Â H1 + ÂLnMG??
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Note that like DSolve, RSolve does not try to simplify the result. It is advisable to try
to simplify it; in this case, you see that complex numbers disappear, and the result is
in terms of trigonometric functions, which you may not have expected.

In[137]:= FullSimplify@a@nD ê. sol@@1DDD

Out[137]= H1 - ÂL-1+n + H1 + ÂL-1+n

As  with  DSolve,  if  you  do  not  provide  initial  conditions,  you  will  get  solutions  in-
volving arbitrary constants of the form C[N]. 

In[138]:= RSolve@8a@nD - 3 a@n - 1D ã 5 H3^nL<, a, nD

Out[138]= 99a Ø FunctionA8n<, 5 µ 3n n + 3-1+n C@1DE==

These solutions were found in terms of pure functions because we asked for the solu-
tion in terms of  a,  but you can change the form of  the second argument to a[n]  to
get the solution in that form.

In[139]:= sol = RSolve@8a@nD - 3 a@n - 1D ã 5 H3^nL<, a@nD, nD

Out[139]= 99a@nD Ø 5 µ 3n n + 3-1+n C@1D==

You can evaluate this solution for specific n and C[1] using ReplaceAll (//.).

In[140]:= a@nD êê. Flatten@8sol, n Ø 3, C@1D Ø 2<D

Out[140]= 423

See Also
One of the best introductions to the subject of  difference equations is  An Introduc-
tion to Difference Equations by Saber Elaydi (Springer).

11.11 Generating Functions 
and Sequence Recognition
Problem
You want Mathematica to generate a function associated with a particular sequence
or to infer a function that will produce the sequence for successive integers.
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Solution
Use  FindGeneratingFunction  to  derive  the  generating  function  for  a  sequence.
Recall  that  the  power  series  of  a  generating  function  encodes  the  sequence  in  its
coefficients. 

In[141]:= g = FindGeneratingFunction@81, 4, 9, 16, 25, 36, 49, 64, 81, 100<, xD

Out[141]=
-1 - x

H-1 + xL3

In[142]:= SeriesAg, 8x, 0, 12<E

Out[142]= 1 + 4 x + 9 x2 + 16 x3 + 25 x4 + 36 x5 + 49 x6 +

64 x7 + 81 x8 + 100 x9 + 121 x10 + 144 x11 + 169 x12 + O@xD13

Use FindSequenceFunction  to find an expression that maps the integers to the spec-
ified sequence.

In[143]:= s = FindSequenceFunction@81, 4, 9, 16, 25, 36, 49, 64, 81, 100<, nD

Out[143]= n2

In[144]:= Table@s, 8n, 1, 12<D

Out[144]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144<

Discussion
FindSequenceFunction  can  deal  with  sequences  that  are  not  strictly  increasing  and
with noninteger sequences. 

In[145]:= FindSequenceFunction@8-1, 3, -11, 13, -29, 31, -55,

57, -89, 91, -131, 133, -181, 183, -239<, nD êê FullSimplify

Out[145]= H-1Ln I-H-1Ln H-1 + nL + n2M

In[146]:= FindSequenceFunctionB:0,
2

9
,
3

8
,
12

25
,
5

9
,
30

49
,
21

32
,
56

81
,
18

25
,

90

121
>, xF

Out[146]=
-x + x2

H1 + xL2

You  can  synthesize  a  generating  function  from  an  expression  using  Generating-
Function.

In[147]:= g = GeneratingFunctionB
1

Hn + 1L!
, n, xF

Out[147]=
-1 + ‰x

x
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And recover the sequence to the Nth term using the following expression:

In[148]:= WithA8N = 12<,

1ë TableASeriesCoefficientASimplifyASeriesAg, 8x, 0, N<EE, nE, 8n, 1, N<EE

Out[148]= 82, 6, 24, 120, 720, 5040, 40320, 362880,

3628800, 39916800, 479001600, 6227020800<

See Also
For the nonexpert, a very approachable book on generating functions is Generating-
functionology by Herbert S. Wilf (A K Peters).  An online version can be found at
http://bit.ly/3bkssK.
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CHAPTER 12

Statistics and Data Analysis

Watching in a trance
The crew is certain

Nothing left to chance
...

Starting to collect
Requested data

“What will it affect
When all is done?”
Thinks Major Tom

Peter Schilling, “Major Tom (Coming Home)”

12.0 Introduction
Ask  statisticians  what  software  they  use,  and  chances  are  (no  pun  intended),  they
will  mention SAS, SPSS, or maybe even R. Those systems are quite good, but most
are highly specialized for statistical work. With the release of version 7, Wolfram has
substantially beefed up the statistical  capabilities of Mathematica. Given everything
else  Mathematica  can  do,  it  is  now  a  compelling  alternative  for  statistics  and  data
analysis.  An  entire  Mathematica  statistical  cookbook  could  be  written;  therefore,
this  chapter  is  necessarily  incomplete.  I  have  selected  these  recipes  for  this  chapter
to provide jumping-off points for further exploration. You should consult the Mathe-
matica  documentation  for  more  depth,  and  nonexperts  should  consider  Sarah
Boslaugh  and  Paul  Andrew  Watters’  Statistics  in  a  Nutshell  (O’Reilly)  for  a  broad
overview of the relevant concepts. 

Even readers without much interest in statistics are encouraged to skim these recipes
because  there  are  demonstrations  here  that  have  application  outside  statistics
proper.  Most  users  of  Mathematica  are  comfortable  with  basic  statistical  metrics,
such as mean and variance, but perhaps you are rusty on quantiles. All are covered
in Recipe 12.1. Every programmer needs to generate random numbers from time to
time, and it is useful to know how to use different distributions beside the standard

uniform distribution (Recipe 12.2). Students and teachers of probability will appreci-
ate  Mathematica’s  ability  to  manipulate  and plot  a  variety  of  common (and not  so
common) distributions (Recipe 12.3) as well as the ability to illustrate statistical theo-
rems  and  puzzles  (Recipes  12.4  and  12.16).  Advanced  statisticians  and  researchers
will  get a lot of use out of Mathematica’s data analysis features, covered in Recipes
12.5 through 12.13. Finally, Recipe 12.14 demonstrates plots that are specific to sta-
tistical analysis.
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uniform distribution (Recipe 12.2). Students and teachers of probability will appreci-
ate  Mathematica’s  ability  to  manipulate  and plot  a  variety  of  common (and not  so
common) distributions (Recipe 12.3) as well as the ability to illustrate statistical theo-
rems  and  puzzles  (Recipes  12.4  and  12.16).  Advanced  statisticians  and  researchers
will  get a lot of use out of Mathematica’s data analysis features, covered in Recipes
12.5 through 12.13. Finally, Recipe 12.14 demonstrates plots that are specific to sta-
tistical analysis.

This  chapter often synthesizes data using random generation.  In these cases,  I  seed
the  random  number  generator  with  a  specific  seed  so  the  results  are  repeatable.
There is no magic behind the seeds specified other than they provided a reasonable
result. When I use specific data in these recipes, it is plausible but entirely fabricated
and should not be construed as coming from an actual experiment.

12.1 Computing Common Statistical Metrics 
of Numerical and Symbolic Data
Problem
You want to perform common statistical  analysis  of  data sets.  These metrics  repre-
sent the entry-level statistical functions that all users of Mathematica should have un-
der their belts.

Solution
It should come as little surprise that Mathematica is equipped with the standard sta-
tistical  functions.  Here I  use the byte count of  Mathematica files  on my folder  as  a
source of data.

In[1]:= data = NA FileByteCount êü

FileNamesAFileNameJoinA9NotebookDirectory@D, "*.nb"=EEE;

H*Compute the mean.*L

Mean@dataD

Out[2]= 2.45023µ106

The  statistical  functions  you  will  use  most  in  Mathematica  (Mean,  Median,  Max,  Min,
Variance,  and  StandardDeviation)  have  obvious  names  and  obvious  uses.  Here  I
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get  a  bit  fancy  by  computing  a  table  in  one  step  by  using  Through  with  the  list  of
functions.

In[3]:= ModuleA8statFuncs<,

statFuncs = 8Mean, Median, Max, Min, Variance, StandardDeviation<;

TableFormA9Through@statFuncs@ dataDD=,

TableHeadings Ø 9None, ToString êü statFuncs=EE
Out[3]//TableForm=

Mean Median Max Min Variance StandardDeviation

2.45023µ106 114698. 3.62386µ107 1019. 3.94825µ1013 6.28351µ106

Not  quite  as  pedestrian,  quantiles  are  a  common concept  in  statistics  that  general-
izes the concept of median to other subdivisions.

In[4]:= H*Find the lower quantile.*L

Quantile@data, 1ê4D
Out[4]= 14412.

In[5]:= H*Find the 1ê2, 1ê3, 1ê4, ... 1ê10.*L

Quantile@data, ÒD & êü Table@1ên, 8n, 2, 10<D
Out[5]= 8114698., 26623., 14412., 7712., 6102., 5456., 4775., 3865., 3514.<

In[6]:= Quantile@data, 1ê2D

Out[6]= 114698.

When used with default parameters Quantile always returns some element in the ac-
tual list. Thus, Quantile[data, 1/2] may not be the same as Median.

In[7]:= Quantile@data, 1ê2D ã Median@dataD

Out[7]= True

With the following parameters, Quantile and Median are identical. See Quantile docu-
mentation for the meaning of these parameters.

In[8]:= Quantile@data, 1ê2, 881ê2, 0<, 80, 1<<D ã Median@dataD

Out[8]= True

Discussion
The basic functions covered in the solution are no doubt familiar and hardly warrant
further elaboration except to note their generality. 

All  of  the statistics functions in Mathematica work with SparseArray,  which is  very
convenient when you have a very large but sparse data set.

In[9]:= NAMeanASparseArray@81 Ø 10, 2 Ø 11, 3 Ø 12, 4 Ø 11<, 810000<, 7DEE

Out[9]= 7.0016

Further, given Mathematica’s symbolic nature, you should not be too surprised that
it can do more than other common data analysis applications, such as MS Excel. 
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Further, given Mathematica’s symbolic nature, you should not be too surprised that
it can do more than other common data analysis applications, such as MS Excel. 

In[10]:= Clear@a, b, c, dD;

Variance@8a, a, a, c, c, b, d, d<D

Out[11]=
1

56
I3 H5 a - b - 2 c - 2 dL Conjugate@aD + H-3 a + 7 b - 2 c - 2 dL Conjugate@bD +

2 H-3 a - b + 6 c - 2 dL Conjugate@cD + 2 H-3 a - b - 2 c + 6 dL Conjugate@dDM

What does this result mean? It is the formula for computing the variance of a set of
data with 3 a’s, 1 b, 2 c’s and 2 d’s. You can use this formula using ReplaceAll.

In[12]:= Variance@8a, a, a, c, c, b, d, d<D ê. 8a Ø 1, b Ø 2, c Ø 3, d Ø 4<

Out[12]=
95

56

This is exactly the result you would get if you took the direct route.

In[13]:= Variance@81, 1, 1, 3, 3, 2, 4, 4<D

Out[13]=
95

56

This  may  seem  completely  academic;  for  many  of  you,  it  will  be  so.  Yet  consider
that  symbolic  form  allows  you  to  perform  further  symbolic  manipulations  that  ac-
count for properties you may know about the symbolic data. For example, imagine
the items were all angles in radians in a given relationship and you wanted to know
the formula for the variance of their sine. Such examples are contrived only until you
need to do a similar transformation.

In[14]:= TrigFactorAFullSimplify@

Variance@8a, a, a, c, c, b, d, d<D ê. 8a Ø Sin@xD, b Ø Sin@2 xD,

c Ø Sin@3 xD, d Ø Sin@4 xD<, Assumptions Ø x œ Reals DE

Out[14]=
1

14
CosC

x

2
G
2

H93 - 100 Cos@xD + 94 Cos@2 xD -

64 Cos@3 xD + 64 Cos@4 xD - 16 Cos@5 xD + 24 Cos@6 xDL SinC
x

2
G
2

These symbolic capabilities also imply you can use these functions with common dis-
tributions rather than on individual values.

In[15]:= 9MeanALogNormalDistribution@0, 1DE, Variance@HalfNormalDistribution@1DD,

StandardDeviation@InverseGaussianDistribution@1, 2DD=

Out[15]= ; ‰ ,
1

2
H-2 + pL,

1

2
?
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Another common statistical metric is the mode. This function is called Commonest in
Mathematica and can be used to find the commonest or the n  commonest.  Related
to this is a new function in version 7, Tally, that gives the individual counts.

In[16]:= list = FirstA RealDigits@Pi, 10, 50DE;

In[17]:= 8Commonest@listD, Commonest@list, 3D<

Out[17]= 883<, 83, 1, 9<<

In[18]:= Tally@listD

Out[18]= 883, 9<, 81, 5<, 84, 4<, 85, 5<, 89, 8<, 82, 5<, 86, 4<, 88, 5<, 87, 4<, 80, 1<<

See Also
There  is  a  multivariate  statistics  package  (see  MultivariateStatistics/guide/Multivariate
StatisticsPackage) that generalizes notions of mean, median, and so on, to multiple
dimensions. Here you will find functions such as SpatialMedian, SimplexMedian, and
PolytopeQuantile, which clearly are targeted at specialists.

12.2 Generating Pseudorandom Numbers 
with a Given Distribution
Problem
You  want  to  generate  random  numbers  that  have  nonuniform  distributions.  Many
recipes  in  this  book  use  RandomReal  and  RandomInteger,  but  these  functions give  uni-
form distributions unless you specify otherwise. 

Solution
Both  RandomReal  and  RandomInteger  can  take  a  distribution  as  their  first  argument.
RandomReal uses continuous distributions, including NormalDistribution, HalfNormal-
Distribution,  LogNormalDistribution,  InverseGaussianDistribution,  GammaDistribution,
ChiSquareDistribution, and others. RandomInteger uses discrete distributions, such
as  BernoulliDistribution,  GeometricDistribution,  HypergeometricDistribution,
PoissonDistribution, and others.

In[19]:= RandomReal@NormalDistribution@D, 10D

Out[19]= 8-0.96524, 1.19926, 0.989088, 0.156427, -0.336326,

-1.66671, 0.149802, -0.464219, -0.998164, 0.948215<

In[20]:= RandomInteger@PoissonDistribution@5D, 10D

Out[20]= 85, 2, 6, 5, 6, 4, 3, 4, 4, 5<

Discussion
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Discussion
You can visualize distributions using BinCounts and BarChar.

In[21]:= GraphicsRowA

9BarChartABinCountsARandomInteger@GeometricDistribution@0.3D, 5000DEE,

BarChartABinCountsARandomInteger@PoissonDistribution@5D, 5000DEE=E

Out[21]=

Another  way  to  visualize  the  various  continuous  distributions  is  to  generate  a  ran-
dom  raster  using  each  distribution.  How  would  you  rewrite  this  to  remove  the  re-
dundancy? (Hint: functional programming!)

In[22]:= GraphicsGridA99Graphics@Point@RandomReal@80, 1<, 8500, 2<DDD,

Graphics@Point@RandomReal@NormalDistribution@D, 8500, 2<DDD,

Graphics@Point@RandomReal@HalfNormalDistribution@1D, 8500, 2<DDD,

GraphicsAPointARandomRealALogNormalDistribution@0, 1D, 8500, 2<EEE,

Graphics@

Point@RandomReal@InverseGaussianDistribution@1, 1D, 8500, 2<DDD=,

9"Uniform", "Normal", "HalfNormal", "LogNormal", "InverseGaussian"==E

Out[22]=

Uniform Normal HalfNormal LogNormal InverseGaussian
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See Also
Other  useful  functions  to  explore  in  the  Mathematica  documentation  are  Seed-
Random, BlockRandom, and RandomComplex. 

See Recipe 12.12 for a common method for testing random generators based on the
chi-square distribution.

12.3 Working with Probability Distributions
Problem
You want to compute the probability density function (PDF) and cumulative density
function (CDF) of various distributions. You may also want to determine the charac-
teristic function of the associated distribution. 

Solution
Use PDF to compute the probability density function and CDF to compute the cumu-
lative density function. I  illustrate the use of these functions using the standardized
normal distribution (mean 0 and variance 1).

In[23]:= Plot@PDF@NormalDistribution@0, 1D, xD, 8x, -3, 3<D

Out[23]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4
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In[24]:= Plot@CDF@NormalDistribution@0, 1D, xD, 8x, -3, 3<D

Out[24]=

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

Discussion
The CDF is obtained from the PDF by integrating the PDF from |¶ to x, which you
can illustrate in Mathematica very easily. The implementation given here is designed
to  execute  the  integration only  once  and then store  it  as  a  new function for  subse-
quent  evaluation,  so  it  is  almost  as  fast  as  the  built-in  CDF.  There  is  no  compelling
reason to use this over the built-in CDF implementation. It is here strictly as an illustra-
tion of the relationship. If you use Mathematica to teach statistics, it is a good idea
to peek under the covers of black box functions like CDF whenever possible.

In[25]:= cdf@dist_D := cdf@distD =

FunctionA8x<, EvaluateAIntegrateAPDF@dist, x1D, 9x1, -Infinity, x=EEE

Plot@cdf@NormalDistribution@0, 1DD@xD, 8x, -3, 3<D

Out[26]=

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0
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Clearly,  you can also obtain the closed-form formula for the CDF of any particular
distribution.

In[27]:= Integrate@PDF@NormalDistribution@0, 1D, xD, xD

Out[27]=
1

2
ErfC

x

2
G

Find the value at |¶.

In[28]:= % êê. x Ø -Infinity

Out[28]= -
1

2

So the closed-form value for the CDF of the normal distribution is 

In[29]:= cumNormDist@x_D := Erf@xêSqrt@2DDê2 + 0.5

The  classic  application  of  a  PDF  is  in  computing  the  probability  that  a  particular
value  falls  within  some  range.  For  example,  consider  the  probability  of  a  value
falling between 0 and 0.25 for various distributions.

In[30]:= Integrate@PDF@Ò, xD, 8x, 0, 0.25<D & êü

8UniformDistribution@80, 1<D, NormalDistribution@0, 1D,

HalfNormalDistribution@1D, ChiSquareDistribution@2D<
Out[30]= 80.25, 0.0987063, 0.158106, 0.117503<

Based on the definition of the CDF, it is easy to see that it computes the probability
that a value will be less than or equal to a specific value. Subtracting the CDF from 1
will give the probability of a value being greater than a specified limit.

In[31]:= H*Probability that a normally distributed random variable will

be less than or equal to 0.5*LCDF@NormalDistribution@0, 1D, 0.5D
Out[31]= 0.691462

In[32]:= H*Probability that a normally distributed random variable will

be greater than 0.8*L1 - CDF@NormalDistribution@0, 1D, 0.8D

Out[32]= 0.211855

In[33]:= H*Probability that a normally distributed random

variable will be less than -1 or greater than 1*L

CDF@NormalDistribution@0, 1D, -1.D +

H1 - CDF@NormalDistribution@0, 1D, 1.DL
Out[33]= 0.317311
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When  you  plot  a  PDF,  you  can  use  ColorFunction  to  highlight  regions  of  interest,
but  make  sure  you  also  set  Filling  Ø  Axis  and  ColorFunctionScaling  Ø  False.
Here I plot the regions of interest whose total area (and hence probability) is approxi-
mately 0.317311.

In[34]:= PlotAPDF@NormalDistribution@0, 1D, xD, 8x, -3, 3<,

ColorFunction -> FunctionA9x, y=, IfAx < -1 »» x > 1, LightGray, WhiteEE,

Filling -> Axis, FillingStyle Ø Automatic, ColorFunctionScaling Ø False,

ImageSize -> Small, Axes Ø 8True, False<, Mesh Ø FullE

Out[34]=

Use  CharacteristicFunction[dist,var]  to  extract  the  characteristic  function  of  a
distribution  in  terms  of  a  variable  var.  Here  are  the  functions  for  five  common
distributions.

In[35]:= Row@CharacteristicFunction@Ò, tD & êü 8UniformDistribution@80, 1<D,

NormalDistribution@0, 1D, HalfNormalDistribution@1D,

ChiSquareDistribution@2D, PoissonDistribution@3D<, ", "D

Out[35]= -
Â I-1 + ‰Â tM

t
, ‰

-
t2

2 , ‰
-
p t2

4 1 + Â ErfiC
p t

2
G ,

1

1 - 2 Â t
, ‰

3 J-1+‰Â tN

See Also
Recipe 12.12 demonstrates an application of the chi-square distribution.

Recipe 12.6 demonstrates metrics for capturing the shapes of various distributions. 

12.4 Demonstrating the Central Limit Theorem
Problem
You want to illustrate the central limit theorem (CLT) to yourself or your students.
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Solution
The  CLT  states  that  the  mean  of  sufficiently  large  samples  from  any  distribution
will  approximate  a  normal  distribution.  You  can  illustrate  this  by  averaging  suit-
ably  large  random  samples  from  a  nonnormal  distribution,  such  as  the  uniform
distribution.

In[36]:= BarChart@BinCounts@Mean êü Table@RandomReal@8-100, 100<, 30D, 8200<DDD

Out[36]=

Discussion
The CLT is often stated in a very technical way. In Statistics in a Nutshell, Boslaugh
and Watters explain that the CLT “states that the sampling distribution of the sam-
ple mean approximates the normal distribution, regardless of the distribution of the
population  from  which  samples  are  drawn,  if  the  sample  size  is  sufficiently  large”
(137).  Other  references  define  it  in  an  equally  technical  way.  The  solution  shows
that the concept is not difficult, although the result is certainly not obvious. The so-
lution  demonstrates  200  samples  of  uniformly  generated  lists  of  random  numbers,
each of length 30, being averaged and then the counts of each integer-valued range
being organized into bins and plotted. The shape looks roughly normal, which is the
prediction  of  the  CLT.  BinCounts,  Mean,  and  RandomReal  are  relatively  easy  to  under-
stand (see prior recipes), so this makes the idea behind the CLT rather concrete.

To further emphasize that this is not a property of the uniform distribution, you can
substitute  other  distributions.  These use  finer  grained bins  due to the tighter  range
of  numbers  generated,  but  the  result  is  similar.  As  an  exercise,  wrap  a  Manipulate
around the code in the “Solution” section above and adjust both the sample size and
the number of samples. This will illustrate that the validity of the CLT is predicated
on a sufficiently large number of samples of sufficiently large size.
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In[37]:= BarChart@BinCounts@Mean êü

Table@RandomReal@HalfNormalDistribution@0.5D, 40D, 81000<D, 0.05DD

Out[37]=

In[38]:= BarChart@BinCounts@Mean êü

Table@RandomReal@ExponentialDistribution@1D, 25D, 81000<D, 0.05DD

Out[38]=

See Also
A proof of the CLT can be found at Wolfram MathWorld: http://bit.ly/S00Y1.

12.5 Computing Covariance and Correlation 
of Vectors and Matrices
Problem
You want to measure the relationship between data sets to see if they vary about the
mean in a similar way (covariance) or if there is a linear relationship (correlation).
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Solution
In[39]:= ModuleA8data1, data2, data3<,

data1 = 81, 3, 5, 7, 9, 11, 13<;

data2 = 82, 4, 6, 8, 10, 12, 14<;

data3 = 8100, 99, 98, 97, 96, 95, 94<;

TableFormA8

8Covariance@data1, data2D,

Covariance@data1, data3D, Covariance@data2, data3D<,

8Correlation@data1, data2D, Correlation@data1, data3D,

Correlation@data2, data3D<

< êê N, TableHeadings Ø 88"Covariance", "Correlation"<,

8"1 vs 2", "1 vs 3", "2 vs 3"<<EE
Out[39]//TableForm=

1 vs 2 1 vs 3 2 vs 3

Covariance 18.6667 -9.33333 -9.33333

Correlation 1. -1. -1.

Discussion
Covariance and Correlation both operate on matrices. If you pass a single matrix, it
will  return  a  covariance  (or  correlation)  matrix  resulting  from computing  the  covar-
iance between each column. To demonstrate this clearly, I’ll engineer a matrix with
an obvious relationship between the first and second column and a weak correlation
of these in a third column. The output matrix will always be symmetrical. The corre-
lation matrix will always have ones on the diagonal, since these entries represent cor-
relations of columns with themselves. You can also pass two matrices, in which case
you get the covariance (or correlation) with respective columns.

In[40]:= SeedRandom@2D;

Hdata = Transpose@880, 1, 2, 3, 4, 5, 6, 7, 8, 9<,

80, 10, 20, 30, 40, 50, 60, 70, 80, 90<,

RandomReal@8-1, 1<, 10D<DL êê TableForm
Out[41]//TableForm=

0 0 0.44448

1 10 -0.781103

2 20 -0.0585946

3 30 0.0711637

4 40 0.166355

5 50 -0.412115

6 60 -0.669691

7 70 0.202516

8 80 0.508435

9 90 0.542246
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In[42]:= Covariance@dataD êê TableForm

Out[42]//TableForm=
9.16667 91.6667 0.467288

91.6667 916.667 4.67288

0.467288 4.67288 0.228412

In[43]:= Correlation@dataD êê TableForm

Out[43]//TableForm=
1. 1. 0.322938

1. 1. 0.322938

0.322938 0.322938 1.

In[44]:= Correlation@data, data^2D êê TableForm

Out[44]//TableForm=
0.962691 0.962691 0.00604923

0.962691 0.962691 0.00604923

0.442467 0.442467 -0.522003

12.6 Measuring the Shape of Data 
Problem
You  want  to  summarize  the  shape  of  your  data  using  some  common  statistical
measures.

Solution
Use  Skewness  to  measure  the  asymmetry  of  a  distribution.  A  symmetrical  distribu-
tion like the NormalDistribution will have skewness of zero. A positive skewness indi-
cates the right tail is longer, while a negative skewness indicates the left tail is longer.

In[45]:= dist1 = NormalDistribution@0, 1D;

dist2 = ChiSquareDistribution@1D; dist3 = BetaDistribution@8, 2D;

GridA99TextAStyle@"Skewness", Bold, 14DE, TextAStyle@"Plot", Bold, 14DE=,

8Skewness@dist1D, Plot@PDF@dist1, xD, 8x, -5, 5<D<,

8Skewness@dist2D, Plot@PDF@dist2, xD, 8x, 0, 5<D<,

8Skewness@dist3D, Plot@PDF@dist3, xD, 8x, 0, 1<D<=, Frame Ø AllE
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Out[46]=
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Use QuartileSkewness to measure if the median is closer to the upper or lower quar-
tile.  QuartileSkewness  is  a  more  robust  measure  of  skewness  in  the  presence  of  ex-
treme values. 

In[47]:= data = 80.1, 0.3, 0.7, 1, 0.6, 99, 0.8, 2, 2.1, 0.95, 1.7, 0.69<;

8QuartileSkewness@dataD, Skewness@dataD<
Out[48]= 80.618257, 3.01242<

Use Kurtosis to measure the sharpness of the peak of a distribution. A high kurtosis
distribution has a sharper peak and longer, fatter tails, whereas a low kurtosis distri-
bution has a more rounded peak and shorter, thinner tails.
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In[49]:= dist1 = LogNormalDistribution@0, 1D;

dist2 = NormalDistribution@0, 1D; dist3 = BetaDistribution@1, 1D;

GridA

99TextAStyle@"Kurtosis", Bold, 14DE, TextAStyle@"Plot", Bold, 14DE=,

8Kurtosis@dist1D êê N, Plot@PDF@dist1, xD, 8x, 0, 6<D<,

8Kurtosis@dist2D êê N, Plot@PDF@dist2, xD, 8x, 0, 6<D<,

8Kurtosis@dist3D êê N, Plot@PDF@dist3, xD, 8x, 0, 6<D<=, Frame Ø AllE

Out[49]=

Kurtosis Plot
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Discussion
CentralMoment is a fundamental measure that underlies statistical measures of shape.
It is computed as

1

n
‚

i

Ixi-xM
r

The second central moment of a data set is called the population variance (which is
not as commonly used as sample variance as computed by the Variance function).

In[50]:= data = 80.1, 0.3, 0.7, 1, 0.6, 99, 0.8, 2, 2.1, 0.95, 1.7, 0.69<;

In[51]:= Table@CentralMoment@data, iD, 8i, 1, 3<D

Out[51]= 91.77636µ10-15, 734.086, 59915.=

Skewness  is  equivalent  to  CentralMoment[list,3]/CentralMoment[list,2]^(3/2);  Kurto-
sis is CentralMoment[list,4]/CentralMoment[list,2]^2. 

12.7 Finding and Adjusting for Outliers
Problem
You have a  large data set  and you want to identify  outliers  and possibly  adjust  the
statistics to compensate.

Solution
A simple way to identify outliers is to use Sort and inspect the beginning and end of
the list.  You can also look at  a  certain  number  of  elements  near  the  minimum and
maximum using Nearest.

In[52]:= data = Join@80.0001, 0.0005<, RandomReal@810, 30<, 500D, 81000, 1007<D;

8min, max< = 8Min@dataD, Max@dataD<;

8Nearest@data, min, 5D, Nearest@data, max, 5D<
Out[54]= 880.0001, 0.0005, 10.0021, 10.1101, 10.1403<,

81007, 1000, 29.9915, 29.9773, 29.975<<

You can also compute the trimmed mean, which is the mean after dropping a frac-
tion of the smallest and largest elements.

In[55]:= 8Mean@dataD, TrimmedMean@data, 0.2D<

Out[55]= 824.0623, 20.173<

12.7 Finding and Adjusting for Outliers | 471



Discussion
Here  I  take  advantage  of  a  feature  of  Tally  that  allows  you  to  provide  custom
equivalence function.  The idea here  is  to  treat  values  within a  specified distance of
each other as equal. In this case, I use distance 5. This shows that there are 3 clusters
of values in the data and some outliers with low frequency of occurrence. 

In[56]:= Tally@data, HAbs@Ò1 - Ò2D < 5L &D êê TableForm

Out[56]//TableForm=
0.0001 2

25.5715 235

10.4722 135

17.0082 130

1000 1

1007 1

12.8 Fitting Data Using a Linear Model
Problem
You have a data set and would like to find a linear model of the data. A linear model
is commonly called a “linear regression.” A linear model has various statistics that
define its accuracy, and you typically want to obtain these as well.

Solution
In[57]:= data = Table@8x, x + RandomReal@8-2, 3<D<, 8x, 1, 20<D;

Use Fit in versions prior to Mathematica 7.

In[58]:= linFit@x_D := Evaluate@Fit@data, 81, x<, xDD

In[59]:= ShowAListPlot@dataD, Plot@linFit@xD, 8x, 1, 20<D, ImageSize Ø SmallE

Out[59]=
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Use LinearModelFit in version 7 and above to build a linear model that you can then
use to plot or extract statistics.

In[60]:= lm = LinearModelFit@data, x, xD;

ShowAListPlot@dataD, Plot@lm@xD, 8x, 1, 20<D, ImageSize Ø SmallE

Out[60]=
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Discussion
LinearModelFit is a vast improvement over Fit since it is not just a way to synthesize
a function. Once you have constructed a linear  model,  you  can  query  its  various
properties, of which there are quite a few. To find out what is available, simply ask
the model. Ask for a specific property by name.

In[62]:= lm@"Properties"D

Out[62]= 9AdjustedRSquared, AIC, ANOVATable, ANOVATableDegreesOfFreedom,

ANOVATableEntries, ANOVATableFStatistics, ANOVATableMeanSquares,

ANOVATablePValues, ANOVATableSumsOfSquares, BetaDifferences, BestFit,

BestFitParameters, BIC, CatcherMatrix, CoefficientOfVariation,

CookDistances, CorrelationMatrix, CovarianceMatrix, CovarianceRatios,

Data, DesignMatrix, DurbinWatsonD, EigenstructureTable,

EigenstructureTableEigenvalues, EigenstructureTableEntries,

EigenstructureTableIndexes, EigenstructureTablePartitions,

EstimatedVariance, FitDifferences, FitResiduals, Function,

FVarianceRatios, HatDiagonal, MeanPredictionBands,
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MeanPredictionConfidenceIntervals, MeanPredictionConfidenceIntervalTable,

MeanPredictionConfidenceIntervalTableEntries, MeanPredictionErrors,

ParameterConfidenceIntervals, ParameterConfidenceIntervalTable,

ParameterConfidenceIntervalTableEntries, ParameterConfidenceRegion,

ParameterErrors, ParameterPValues, ParameterTable, ParameterTableEntries,

ParameterTStatistics, PartialSumOfSquares, PredictedResponse, Properties,

Response, RSquared, SequentialSumOfSquares, SingleDeletionVariances,

SinglePredictionBands, SinglePredictionConfidenceIntervals,

SinglePredictionConfidenceIntervalTable,

SinglePredictionConfidenceIntervalTableEntries, SinglePredictionErrors,

StandardizedResiduals, StudentizedResiduals, VarianceInflationFactors=

In[63]:= lm@"RSquared"D

Out[63]= 0.944788

In[64]:= lm@"MeanPredictionErrors"D

Out[64]= 80.627101, 0.579603, 0.533846, 0.490318, 0.449667, 0.412744,

0.380636, 0.354652, 0.336216, 0.326608, 0.326608, 0.336216, 0.354652,

0.380636, 0.412744, 0.449667, 0.490318, 0.533846, 0.579603, 0.627101<

In[65]:= lm@"BestFit"D

Out[65]= 0.981879 + 0.990357 x

You can also get the best Fit function by using Normal.

In[66]:= Normal@lmD

Out[66]= 0.981879 + 0.990357 x

See Also
FindFit  and LeastSquares  are  other  related functions  you can explore  in  the  Math-
ematica documentation.

GeneralizedLinearModelFit  and  DesignMatrix  are  Mathematica  7  functions  that  are
also worth exploring in the documentation and tutorials.
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12.9 Fitting Data Using a Nonlinear Model
Problem
You want to fit data to a function for which you have knowledge of the mathemati-
cal model. Specifically, you know the model is nonlinear and, hence, neither Fit nor
LinearModelFit is appropriate.

Solution
Use FindFit in versions prior to Mathematica 7. 

In[67]:= SeedRandom@3D;

H*Randomly generate data that is not linear.*L

data = Sort@RandomSample@Table@8x, 3 Exp@x - 8 D<, 8x, 0, 10, 0.1<D, 22DD
Out[68]= 880.9, 0.00247531<, 81.3, 0.00369274<, 81.7, 0.00550891<,

82.7, 0.0149748<, 82.9, 0.0182902<, 83.2, 0.0246892<,

83.5, 0.033327<, 83.6, 0.036832<, 83.9, 0.049718<, 84.6, 0.10012<,

85.4, 0.222821<, 85.8, 0.332409<, 85.9, 0.367369<, 86.1, 0.448706<,

86.2, 0.495897<, 86.8, 0.903583<, 87.5, 1.81959<, 88., 3.<,

88.7, 6.04126<, 88.8, 6.67662<, 88.9, 7.37881<, 89.6, 14.8591<<

In[69]:= FindFit@data , a Exp@b + c xD + d, 8a, b, c, d<, xD

Out[69]= 9a Ø 0.0608805, b Ø -4.10255, c Ø 1., d Ø 3.33224µ10-17=

Use NonLinearModel fit in Mathematica 7 as a more complete solution.

In[70]:= nlm = NonlinearModelFit@data, a Exp@b + c xD + d , 8a, b, c, d<, xD;

In[71]:= Normal@nlmD

Out[71]= 3.33224µ10-17 + 0.0608805 ‰-4.10255+1. x

In[72]:= Show@ListPlot@dataD, Plot@nlm@xD, 8x, 0, 10<D, Frame Ø TrueD

Out[72]=

0 2 4 6 8

0

1

2

3

4
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Discussion
As with LinearModelFit, NonlinearModelFit encapsulates a wealth of information.

In[73]:= nlm@"Properties"D

Out[73]= 9AdjustedRSquared, AIC, ANOVATable, ANOVATableDegreesOfFreedom,

ANOVATableEntries, ANOVATableMeanSquares, ANOVATableSumsOfSquares,

BestFit, BestFitParameters, BIC, CorrelationMatrix, CovarianceMatrix,

CurvatureConfidenceRegion, Data, EstimatedVariance, FitCurvatureTable,

FitCurvatureTableEntries, FitResiduals, Function, HatDiagonal,

MaxIntrinsicCurvature, MaxParameterEffectsCurvature, MeanPredictionBands,

MeanPredictionConfidenceIntervals, MeanPredictionConfidenceIntervalTable,

MeanPredictionConfidenceIntervalTableEntries,

MeanPredictionErrors, ParameterBias, ParameterConfidenceIntervals,

ParameterConfidenceIntervalTable, ParameterConfidenceIntervalTableEntries,

ParameterConfidenceRegion, ParameterErrors, ParameterPValues,

ParameterTable, ParameterTableEntries, ParameterTStatistics,

PredictedResponse, Properties, Response, RSquared, SingleDeletionVariances,

SinglePredictionBands, SinglePredictionConfidenceIntervals,

SinglePredictionConfidenceIntervalTable,

SinglePredictionConfidenceIntervalTableEntries,

SinglePredictionErrors, StandardizedResiduals, StudentizedResiduals=

For  example,  you  can  extract  and  plot  confidence  bands  for  various  confidence
levels. 

In[74]:= SeedRandom@30D;

data = Sort@

RandomSample@Table@8x, Exp@x + 1.3 Sin@xDD<, 8x, 0, 10, 0.1<D, 15DD;

nlm = NonlinearModelFit@data, a x Exp@b + c xD + d , 8a, b, c, d<, xD;

8bands90@x_D, bands95@x_D, bands99@x_D, bands999@x_D< =

Table@nlm@"MeanPredictionBands", ConfidenceLevel Ø clD,

8cl, 8.9, .95, .99, .999<<D;

ShowAListPlot@dataD, PlotA8nlm@xD, bands90@xD, bands95@xD, bands99@xD,

bands999@xD<, 8x, 1, 10<, Filling Ø 82 Ø 81<, 3 Ø 82<, 4 Ø 83<, 5 Ø 84<<EE

Out[78]=

Or you can extract a variety of statistics.
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Or you can extract a variety of statistics.

In[79]:= nlm@"MeanPredictionErrors"D

Out[79]= 8854.599, 758.348, 729.776, 709.976, 580.188, 526.565, 526.883,

567.372, 617.731, 669.962, 711.146, 717.15, 732.972, 968.248, 1442.15<

In[80]:= nlm@"ANOVATable"D

Out[80]=

DF SS MS

Model 4 4.04209µ108 1.01052µ108

Error 11 3.28552µ107 2.98683µ106

Uncorrected Total 15 4.37064µ108

Corrected Total 14 2.96124µ108

In[81]:= nlm@"CorrelationMatrix"D êê TableForm

Out[81]//TableForm=
1. 1. -0.993792 -0.777438

1. 1. -0.993792 -0.777438

-0.993792 -0.993792 1. 0.730294

-0.777438 -0.777438 0.730294 1.

See Also
The  statistical  model  analysis  guide  (guide/StatisticalModelAnalysis)  is  a  good  start-
ing point for exploring all the new modeling capabilities in Mathematica 7.

12.10 Creating Interpolation Functions 
from Data 
Problem
You have a set of data points and want to construct a function you can use to pre-
dict values at other points.

Solution
Normally,  you would interpolate  data  that  was  obtained in  the  wild  without  any a
priori notion of the underlying function. However, as a simple illustration, I’ll sam-
ple data from a known function.

In[82]:= xvalues = Sort@RandomReal@8-4 Pi, 4 Pi<, 18DD;

data = Table@8x, Sin@xD<, 8x, xvalues<D;

fData = Interpolation@dataD
Out[84]= InterpolatingFunction@88-11.3374, 12.5436<<, <>D
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In[85]:= PlotA8fData@xD, Sin@xD<, 8x, -2 Pi, 2 Pi<, PlotStyle Ø 8Thin, Dashed<E

Out[85]=
-6 -4 -2 2 4 6
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0.5

1.0

Discussion
Interpolation  returns an InterpolationFunctionObject,  which can be used just  like
a normal function. The default order for Interpolation is 3 but this can be varied us-
ing the option InterpolationOrder.

In[86]:= fData1 = Interpolation@data, InterpolationOrder Ø 1D;

fData2 = Interpolation@data, InterpolationOrder Ø 2D;

fData3 = Interpolation@data, InterpolationOrder Ø 3D;

In[89]:= PlotA8fData1@xD, fData2@xD, fData3@xD<,

8x, -2 Pi, 2 Pi<, PlotStyle Ø 8Dashed, Thin, Thick<E

Out[89]=
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12.11 Testing for Statistically Significant 
Difference Between Groups Using ANOVA
Problem
You have experimental data suggesting a linear relationship between an independent
and dependent variables; however, you are unsure if  the relationship is causal.  You
run an  experiment  using  an  experimental  group and a  control  group.  You want  to
know if the results of the experiment are statistically significant.

Solution
Analysis  of  variance (ANOVA) is  a  popular statistical  technique that is  very impor-
tant in the analysis of experimental results. Mathematica provides this functionality
in a package aptly named ANOVA`. To illustrate the use of this package, I borrow a toy
example from Boslaugh and Watters’  Statistics  in  a  Nutshell.  Imagine you collected
the data in table  coffeeIQ  suggesting a  relationship between coffee  consumption in
cups and IQ as measured by some standardized IQ test.

In[90]:= coffeeIQ = 882, 123<, 81, 112<, 81, 102<, 81, 98<,

80, 79<, 80, 87<, 81, 102<, 82, 120<, 82, 120<, 83, 145<<;

In[91]:= lm = LinearModelFit@coffeeIQ, x, xD;

ShowAListPlot@coffeeIQD, Plot@lm@xD, 8x, 0, 4<D, ImageSize Ø SmallE

Out[92]=
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In[93]:= Normal@lmD

Out[93]= 83.0247 + 19.8272 x
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The question that remains is whether there is a causal relationship between caffeine
and IQ, since one could equally suppose smart people just like to drink coffee. To in-
vestigate  further,  you  design  an  experiment  with  two  randomly  selected  groups:
everyone  in  the  first  group  receives  a  caffeine  pill,  and  those  in  the  second  group
receive a placebo. The pills are administered in a double-blind method, at the same
time, under the exact same conditions, and each group is administered an IQ test at
a specific time after the pills were taken. From these experiments you obtain the fol-
lowing data, where the first entry is 1 for those who received the caffeine and 0 for
those who received the placebo. The second entry is the measured IQ.

In[94]:= experiments = 881, 110<, 81, 100<, 81, 120<, 81, 125<, 81, 120<, 81, 120<,

81, 115<, 81, 98<, 81, 95<, 81, 91<, 80, 100<, 80, 95<, 80, 100<,

80, 122<, 80, 115<, 80, 88<, 80, 97<, 80, 87<, 80, 92<, 80, 76<<;

Using ANOVA you see 

In[95]:= Needs@"ANOVA`"D

In[96]:= ANOVA@experiments D

Out[96]= ;ANOVA Ø

DF SumOfSq MeanSq FRatio PValue

Model 1 744.2 744.2 4.47415 0.0486171

Error 18 2994. 166.333

Total 19 3738.2

, CellMeans Ø
All 103.3

Model@0D 97.2

Model@1D 109.4

?

Here the important results are the FRatio (higher is better) and PValue (smaller is bet-
ter).  The PValue  is  the  probability  of  obtaining  the  result  at  least  as  extreme as  the
one that was actually observed, given that the null hypothesis is true. Typically one
will reject the null hypothesis when the PValue is less than 0.05.

Discussion
You may wonder why the output of ANOVA is formatted as it is. Here Mathematica
is  emulating a  popular  statistics  package called Minitab.  You can drill  down to the
raw values easily enough.

In[97]:= HANOVA ê. ANOVA@experiments DL@@1DD

Out[97]= 881, 744.2, 744.2, 4.47415, 0.0486171<, 818, 2994., 166.333<, 819, 3738.2<<

The solution shows a one-way ANOVA. It is frequently the case that there are multi-
ple  independent  variables.  In  this  case,  you  must  describe  the  model  and  variables
more precisely. For example, suppose you were measuring height and age of men as
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a predictor of income. For the purpose of this experiment, we will designate men un-
der 5'10" as “short,” assigning them height classification 1 and “tall” men classifica-
tion 2.  Similarly,  we will  define  “young” men as  under  40  with  age  classification 1
and “mature” men with age classification 2.

In[98]:= twowaydata = 881, 1, 30000<, 81, 1, 65000<, 81, 1, 57000<, 81, 1, 45000<,

81, 2, 49000<, 81, 2, 87000<, 81, 2, 56000<, 81, 2, 90000<,

82, 1, 55000<, 82, 1, 88000<, 82, 1, 104000<, 82, 1, 88000<,

82, 2, 75000<, 82, 2, 101000<, 82, 2, 150000<, 82, 2, 125000<<;

In[99]:= ANOVAAtwowaydata, 9height, age, All=, 9height, age=E êê

StyleAÒ, FontTracking Ø "Condensed"E &

Out[99]= :ANOVA Ø

DF SumOfSq MeanSq FRatio PValue

height 1 5.89056µ109 5.89056µ109 11.053 0.00605829

age 1 2.52506µ109 2.52506µ109 4.73801 0.0501898

age height 1 6.00625µ107 6.00625µ107 0.112701 0.742887

Error 12 6.39525µ109 5.32938µ108

Total 15 1.48709µ1010

,

CellMeansØ

All 79062.5

height@1D 59875.

height@2D 98250.

age@1D 66500.

age@2D 91625.

age@1Dheight@1D 49250.

age@1Dheight@2D 83750.

age@2Dheight@1D 70500.

age@2Dheight@2D 112750.

>

Here  I  use  All  in  the  model  input  to  indicate  I  want  to  analyze  all  products  of  the
main  effects.  You  can  also  specify  the  products  individually.  For  example,  if  you
want to analyze the significance of height and height and age together, you can spec-
ify the model parameter as {height, age height}.
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In[100]:= ANOVAAtwowaydata, 9height, age height =, 9height, age=E êê

StyleAÒ, FontTracking Ø "Condensed"E &

Out[100]= :ANOVA Ø

DF SumOfSq MeanSq FRatio PValue

height 1 5.89056µ109 5.89056µ109 11.053 0.00605829

age height 2 2.58513µ109 1.29256µ109 2.42535 0.13043

Error 12 6.39525µ109 5.32938µ108

Total 15 1.48709µ1010

,

CellMeansØ

All 79062.5

height@1D 59875.

height@2D 98250.

age@1Dheight@1D 49250.

age@1Dheight@2D 83750.

age@2Dheight@1D 70500.

age@2Dheight@2D 112750.

>

There  are  a  few  standard  post  hoc  tests  you  can  run  to  determine  which  group’s
means  were  significantly  different  given  SignificanceLevel  (default  is  0.05).  I  will
not  delve  into  the  statistics  behind  these  tests.  You  should  refer  to  one  of  the  re-
sources in the “See Also” section on page 483. The output is fairly self-explanatory.
Here  we see  that  using  the  Bonferroni  and Tukey tests,  variation in  income due  to
height was statistically significant between groups 1 and 2, but age did not show up
as significant for either test. 

In[101]:= ANOVAAtwowaydata, 9height, age , All =, 9height, age=,

SignificanceLevel Ø 0.05, PostTests Ø 9Tukey, Bonferroni=,

CellMeans Ø FalseE êê StyleAÒ, FontTracking Ø "Condensed"E &

Out[101]= :ANOVA Ø

DF SumOfSq MeanSq FRatio PValue

height 1 5.89056µ109 5.89056µ109 11.053 0.00605829

age 1 2.52506µ109 2.52506µ109 4.73801 0.0501898

age height 1 6.00625µ107 6.00625µ107 0.112701 0.742887

Error 12 6.39525µ109 5.32938µ108

Total 15 1.48709µ1010

,

PostTestsØ :heightØ
Bonferroni 81, 2<

Tukey 81, 2<
, ageØ

Bonferroni 8<

Tukey 8<
>>
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Returning to the data from the “Solution” section on page 479, we can see how the
tests can pass at one significance level but fail at a tighter tolerance. Note also how I
use the output as a replacement rule to extract only the test results.

In[102]:= PostTests ê. ANOVAAexperiments , SignificanceLevel Ø 0.05,

PostTests Ø 9Tukey, Bonferroni=, CellMeans Ø FalseE

Out[102]= ;Model Ø
Bonferroni 80, 1<

Tukey 80, 1<
?

In[103]:= PostTests ê. ANOVAAexperiments , SignificanceLevel Ø 0.01,

PostTests Ø 9Tukey, Bonferroni=, CellMeans Ø FalseE

Out[103]= ;Model Ø
Bonferroni 8<

Tukey 8<
?

In  the  examples  given here,  I  have  also  used the  option CellMeans Ø False,  which
suppresses the display of the means.

See Also
Basic information on ANOVA can be found on Wikipedia at http:/bit.ly/bf8PrO, and
in Boslaugh and Watters, Statistics in a Nutshell.

12.12 Hypothesis Testing with Categorical Data
Problem
You want to determine if  there are statistically significant relationships within cate-
gorical data. 

Solution
The  chi-square  test  is  a  standard  computation  on  categorical  data.  Categorical
data  is  that  for  which  the  response  is  a  choice  among  a  set  of  discrete  categories
rather  than  a  measurement  on  a  continuous  scale.  Common  examples  are  sex
{male,  female},  party  {Democrat,  Republican},  or  sometimes  data  that  could  be
placed  on  a  scale  but  for  simplicity  is  lumped  into  discrete  groups,  for  example,
blood  pressure  {low, normal, prehypertensive, hypertensive}.  Experiments  using
categorical data often result in tables; hence, the data is called row-column (RC) data.
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Here is a simplest possible example (borrowed from Statistics in a Nutshell) showing
a two-by-two table relating smoking to lung cancer.

Lung Cancer Diagnosis No Lung Cancer Diagnosis

Currently smoke 60 300

Do not currently smoke 10 390

The chi-square test is a test for independence. If the RC data is independent, there is
no demonstrated relationship between smoking and cancer  (the  null  hypothesis);
otherwise,  there  is  evidence  for  the  alternate  hypothesis.  The  chi-square  statistic
starts with the computation of expected, values for each cell. The formula is

E i j=
i th row total * j th row total

grand total

This is easily computed for the entire table using Outer.

In[104]:= data := 8860, 300<, 810, 390<<;

Out[105]= expectedValues@rc_ListD := ModuleA9rowTotals, colTotals, grandTotal=,

colTotals := Total@rcD ;

rowTotals := Total@Transpose@rcDD;

grandTotal := Total@rowTotalsD ;

Outer@Times, rowTotals, colTotalsD ë grandTotalE

The  chi-square  value  is  computed  by  taking  the  differences  between  expected  and
observed, squaring the result, dividing it by expected, and summing all the ratios.

In[106]:= chiSquare@data_ListD := Module@8ev<, ev = expectedValues@dataD;

Total@HHdata - ev L ^ 2 Lê ev, 2DD

In[107]:= expectedValues@dataD êê N êê TableForm
Out[107]//TableForm=

33.1579 326.842

36.8421 363.158

In[108]:= chiSquare@dataD êê N

Out[108]= 45.4741

To  interpret  this  result,  you  need  to  compute  PValue.  The  smaller  the  p-value,  the
more confident you can be in rejecting the null hypothesis. 

In[109]:= NeedsA"HypothesisTesting`"E

ChiSquarePValue@45.4741, 1D

Out[110]= OneSidedPValue Ø 1.54671µ10-11
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Discussion
The  second  argument  to  ChiSquarePValue  specifies  the  degrees  of  freedom  of  the
distribution.  In  the  solution  example,  we  use  1  without  explanation.  The  rule  for
computing the degrees of freedom for RC data is (numRows |1)(numCols |1).

In[111]:= degreesOfFreedom@rc_ListD := Times üü HDimensions@rcD - 1L

In[112]:= degreesOfFreedom@dataD

Out[112]= 1

In the literature you will  often find tables of critical  values for various distributions
relative  to  a  significance  level  called  alpha  (a).  For  example,  a  common  value  for
alpha is 0.05, which represents 95% confidence or (1 | a) * 100%. The critical value
for a specified degree of freedom is the lower (or upper) bound for chiSquare in the
solution that  would give you the required confidence.  Computing the critical  value
is the problem of finding a limit that gives the specified alpha as the area under the
PDF  for  the  distribution.  We  can  compute  these  values  efficiently  using  FindRoot
and NIntegrate. 

In[113]:= chiSqUpperP@criticalValue_, df_D := WithA9infinity = 1000=, NIntegrateA

PDF@ChiSquareDistribution@dfD, xD, 9x, criticalValue, infinity=EE

chiSqLowerP@criticalValue_, df_D := NIntegrate@

PDF@ChiSquareDistribution@dfD, xD, 8x, 0, criticalValue<D

criticalValueUpper@alpha_, df_D :=

FindRoot@chiSqUpperP@c, dfD ã alpha, 8c, 0.1<D

criticalValueLower@alpha_, df_D :=

FindRoot@chiSqLowerP@c, dfD ã alpha, 8c, 0.1<D

The critical value for the experiment in the solution is

In[117]:= criticalValueUpper@0.05, 1D êê Quiet

Out[117]= 8c Ø 3.84146<

Our result  was  45.47,  so  the  result  was  well  over  the  critical  value.  A  result  below
the  lower  critical  value  is  also  acceptable,  but  clearly  that  does  not  apply  to  this
experiment.

In[118]:= criticalValueLower@0.05, 1D êê Quiet

Out[118]= 8c Ø 0.00393214<

Given these functions, you can create your own tables of critical values like those in
the NIST/SEMATECH e-Handbook of Statistical Methods website (http://bit.ly/AbGvb).

In[119]:= chiSqCritValues@dfFrom_, dfTo_D := WithA8alphas = 80.10, 0.05, 0.01, 0.001<<,

TableFormATable@c ê. criticalValueUpper@alpha, dfD, 8df, dfFrom, dfTo<,

8alpha, alphas<D, TableHeadings Ø 9Range@dfFrom, dfToD, alphas=EE
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In[120]:= chiSqCritValues@1, 10D êê Quiet

Out[120]//TableForm=
0.1 0.05 0.01 0.001

1 2.70554 3.84146 6.6349 10.8276

2 4.60517 5.99146 9.21034 13.8155

3 6.25139 7.81473 11.3449 16.2662

4 7.77944 9.48773 13.2767 18.4668

5 9.23636 11.0705 15.0863 20.515

6 10.6446 12.5916 16.8119 22.4577

7 12.017 14.0671 18.4753 24.3219

8 13.3616 15.5073 20.0902 26.1245

9 14.6837 16.919 21.666 27.8772

10 15.9872 18.307 23.2093 29.5883

See Also
More information on using ChiSquare can be found in the NIST/SEMATECH e-Hand-
book of Statistical Methods website (http://bit.ly/AbGvb).

A  tutorial  on  the  complete  HypothesisTesting`  package  in  Mathematica  can  be
found in the documentation (HypothesisTesting/tutorial/HypothesisTesting).

12.13 Grouping Data into Clusters
Problem
You want to group data in separate lists based on a metric like Euclidean distance or
Hamming distance. This problem arises in a wide variety of contexts, including mar-
ket research, demographics, informatics, risk analysis, and so forth. 

Solution
Use  FindClusters  with  the  default  Euclidean  distance  function  for  numbers  and
vectors.

In[121]:= FindClusters@81, 100, 2, 101, 3, 102, 1000, 1010, 4, 1020, 7<D

Out[121]= 881, 2, 3, 4, 7<, 8100, 101, 102<, 81000, 1010, 1020<<

When you use FindClusters with strings, this distance function is “edit distance” or
the number of character changes to get from one string to another.

In[122]:= FindClustersADictionaryLookup@_ ~~ "ead" ~~ _DE

Out[122]= 98beads, heads, leads, reads<, 9beady, heady, Meade, Reade, ready==
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You can insist on a specific number of clusters.

In[123]:= FindClusters@81, 100, 2, 101, 3, 102, 1000, 1010, 4, 1020, 7<, 4D

Out[123]= 881, 2, 3, 4<, 8100, 101, 102<, 81000, 1010, 1020<, 87<<

Discussion
If you need to cluster data by a key or criterion that is not part of the data, transform
the  data  into  the  form  {key1Ødata1,  key2Ødata2,  ...}.  When  FindClusters  sees
this  format,  it  will  cluster  that  data  using  the  keys.  For  example,  say  you  retrieve
some  data  from  a  database  with  names  and  ages  and  you  want  to  cluster  names
by age.

In[124]:= data = 88"Wanda", 41<, 8"Sal", 44<, 8"Leo", 9<,

8"Salvatore", 6<, 8"Steven", 37<, 8"Adrian", 3<<;

H*Use ReplaceAll Hê.L to transform data into the right format.*L

FindClustersAdata ê. 9name_, age_= :> age Ø nameE

Out[125]= 88Wanda, Sal, Steven<, 8Leo, Salvatore, Adrian<<

If you don’t want to lose the ages, you can use the following variation:

In[126]:= FindClustersAdata ê. 9name_, age_= :> age Ø 9name, age=E

Out[126]= 888Wanda, 41<, 8Sal, 44<, 8Steven, 37<<,

88Leo, 9<, 8Salvatore, 6<, 8Adrian, 3<<<

There is also a variation that is more convenient when the keys and values are in sep-
arate lists.

In[127]:= keys = 841, 44, 9, 6, 37, 3< ;

values = 8"Wanda", "Sal", "Leo", "Salvatore", "Steven", "Adrian"<;

FindClustersAkeys Ø valuesE

Out[129]= 88Wanda, Sal, Steven<, 8Leo, Salvatore, Adrian<<

You can  also  handle  the  situation  via  a  custom distance  function,  which  is  a  more
general solution since the function can use other metrics besides Euclidean distance. 

In[130]:= FindClustersAdata,

DistanceFunction Ø FunctionA9x, y=, AbsAx@@2DD - y@@2DDEEE

Out[130]= 888Wanda, 41<, 8Sal, 44<, 8Steven, 37<<,

88Leo, 9<, 8Salvatore, 6<, 8Adrian, 3<<<
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Mathematica provides  a  variety  of  built-in  distance functions that  cater  to different
conceptions  of  closeness  as  well  as  different  data  types.  For  numbers,  vectors,
and  higher-order  tensors,  you  can  use  EuclideanDistance,  SquaredEuclideanDistance,
ManhattanDistance,  ChessboardDistance,  CanberraDistance,  CosineDistance,  Correlation-
Distance, or BrayCurtisDistance. For example, CosineDistance (also known as angu-
lar distance) is often used with highly dimensional data. Here we generate a data set
of 800 vectors of length 50. By design, the vectors are clumped into four groups by
magnitude, so it  should be of little surprise that FindClusters using default Euclidean-
Distance discovers four clusters.

In[131]:= data =

Join@RandomReal@8-10, -5<, 8200, 50<D, RandomReal@8-5, 0<, 8200, 50<D,

RandomReal@80, 1<, 8200, 50<D, RandomReal@85, 10<, 8200, 50<DD;

In[132]:= Length@FindClusters@dataDD

Out[132]= 4

However,  using  CosineDistance,  which  is  insensitive  to  vector  length,  only  two
clusters are found. 

In[133]:= Length@FindClusters@data, DistanceFunction -> CosineDistanceDD

In[133]:= 2

For  Boolean  vectors,  you  can  use  MatchingDissimilarity,  JaccardDissimilarity,
RussellRaoDissimilarity,  SokalSneathDissimilarity,  RogersTanimotoDissimilarity,
DiceDissimilarity, and YuleDissimilarity. Consider a problem that turns the game
of 20 Questions on its head. I devised 20 questions in a somewhat haphazard fashion
and  then  selected  a  bunch  of  nouns  as  they  came  into  my  head  (Table  12-1).  The
idea here is to associate a Boolean vector with each noun based on how one might
answer the questions in relation to the noun. Some of the questions are very subjec-
tive, and some don’t really apply to all nouns, but to stay in the domain of Boolean,
I forced myself to choose either true or false.
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Table 12-1. Twenty Questions

Number Question

1 Is it living?

2 Is it bigger than a bread box?

3 Is it soft?

4 Is it visible?

5 Is it man - made?

6 Is it flammable?

7 Is it famous?

8 Does it run on electricity?

9 Does it have hair or fur?

10 Does it process information?

11 Does it usually cost more than $1000?

12 Is it mostly one color?

13 Can you sell it legally?

14 Does it conduct electricity?

15 Can you bend it without

breaking and it retains its new shape?

16 Can an average human lift it?

17 Can it been seen with the unaided eye?

18 Can you transfer it over the Internet?

19 Is it scary?

20 Does its English name come before Lizard in the dictionary?

The nouns I applied these questions to are

In[135]:= words = 9"cat", "PC", "Java", "bird", "airplane", "Obama", "Mathematica",

"Hillary Clinton", "weather", "time", "wind", "tunnel",

"carpenter", "house", "red", "beer", "LSD", "Nintendo Wii",

"John Lennon", "Paul McCartney", "Howard Stern", "mother", "Linux",

"candle", "paper", "rock", "scissors", "steak", "broccoli"=;
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I’ll  only  show part  of  the  data  set  (you  can  find  it  in  the  file  20Q.nb  in  the  down-
loads from the book’s website) . 

In[136]:= 88True, True, True, True, False, True, False, False, True, True, False,

False, True, True, False, True, True, False, False, True< Ø "cat",

8False, True, False, True, True, False, False, True, False, True, True,

False, True, False, False, True, True, False, False, False< Ø "PC",

8False, False, False, True, True, True, False, False, False, True,

False, False, True, False, False, False, True, True, False, True< Ø

"Java", 8True, False, True, True, False, True, False,

False, False, True, False, True, True, True, False,

True, True, False, False, True< Ø "bird"< êê TableForm
Out[136]//TableForm=

9True, True, True, True, False, True, False, False, True, True, False, False, True, True, False, True, True, False, False, True=Ø cat

9False, True, False, True, True, False, False, True, False, True, True, False, True, False, False, True, True, False, False, False=Ø PC

9False, False, False, True, True, True, False, False, False, True, False, False, True, False, False, False, True, True, False, True=Ø Java

9True, False, True, True, False, True, False, False, False, True, False, True, True, True, False, True, True, False, False, True=Ø bird

Assuming  the  full  data  set  is  stored  in  the  variable  data,  we  can  see  how  Find-
Clusters partitions the data using the various Boolean distance functions. 

In[137]:= ColumnAFindClusters A Flatten@data, 2D,

DistanceFunction -> MatchingDissimilarityEE

Out[137]=

9Cat, bird, airplane, Obama, Hillary Clinton, carpenter,

John Lennon, Paul McCartney, Howard Stern, mother, broccoli=

8PC, Java, Mathematica, weather, time, wind, tunnel, house, red,

beer, LSD, Nintendo Wii, Linux, candle, paper, rock, scissors, steak<

In[138]:= ColumnAFindClusters A Flatten@data, 2D,

DistanceFunction -> JaccardDissimilarityEE

Out[138]=

9Cat, Obama, Hillary Clinton, carpenter,

John Lennon, Paul McCartney, Howard Stern, mother=

8PC, Java, Mathematica, weather, time,

wind, tunnel, house, Nintendo Wii, Linux, rock<

8bird, airplane, red, beer, LSD, candle, paper, scissors, steak, broccoli<
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By transforming Boolean value to 0 and 1, you can see how EuclideanDistance  and
ManhattanDistance tend to create a larger number of clusters. 

In[139]:= Column@FindClusters @ Flatten@data, 2D ê. 8False Ø 0., True Ø 1.<,

DistanceFunction Ø EuclideanDistanceDD

Out[139]=

8Cat, bird, airplane, beer, steak, broccoli<

8PC, Java, Mathematica, house, LSD,

Nintendo Wii, Linux, candle, paper, rock, scissors<

9Obama, Hillary Clinton, carpenter,

John Lennon, Paul McCartney, Howard Stern, mother=

8weather, time, wind, tunnel, red<

In[140]:= Column@FindClusters @ Flatten@data, 2D ê. 8False Ø 0., True Ø 1.<,

DistanceFunction Ø ManhattanDistanceDD

Out[140]=

8Cat, bird, beer, steak, broccoli<

8PC, Mathematica, tunnel, red, LSD,

Nintendo Wii, candle, paper, rock, scissors<

8Java, Linux<

8airplane, house<

9Obama, Hillary Clinton, carpenter,

John Lennon, Paul McCartney, Howard Stern, mother=

8weather, time, wind<

For  strings,  you  can  choose  from  EditDistance,  DamerauLevenshteinDistance,  and
HammingDistance.

In[141]:= FindClustersAPrependADictionaryLookup@"b" ~~ __ ~~ "i"D, "brocolli"E,

DistanceFunction Ø EditDistanceE

Out[141]= 98brocolli, bacilli, beriberi, bouzouki, broccoli, bronchi<,

9bani, banzai, bhaji, bikini, blini, bonsai, borzoi==

HammingDistance  requires  equal  length  strings,  otherwise  it  will  report  an  error.
I  added  a  preprocessing  function  that  pads  each  string  at  the  end  with  blanks  to
make each as long as the longest string in the list.

In[142]:= lengthNormalize@words_ListD := ModuleA8maxLen< ,

maxLen = MaxAStringLength êü wordsE;

StringInsertAÒ,

StringJoinATableA" ", 9maxLen - StringLength@ÒD=EE, -1E & êü wordsE
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In[143]:= FindClustersA

lengthNormalizeAPrependADictionaryLookup@"b" ~~ __ ~~ "i"D, "brocolli"EE,

DistanceFunction Ø HammingDistanceE

Out[143]= 98brocolli, beriberi, bouzouki, broccoli, bronchi <, 9bacilli ,

bani , banzai , bhaji , bikini , blini , bonsai , borzoi ==

For advanced applications of FindCluster, you can tweak fine-grained aspects of the
clustering algorithm via the Method option. Consult the FindClusters tutorial for de-
tailed specifications of Method  that provide for custom significance tests and linkage
tests.

See Also
The tutorial for partitioning data into clusters (tutorial/PartitioningDataIntoClusters)
is the essential resource for advanced features of FindClusters.

The Mathematica 7 function Gather is a special case of FindClusters: it groups identi-
cal elements, which is akin to clustering only when the distance is zero. 

12.14 Creating Common Statistical Plots
Problem
You want to visualize experimental data in a manner that effectively summarizes all
the standard statistical measures.

Solution
The BoxWhiskerPlot  is  an  excellent  way  to  visually  convey  the  essential  statistics  of
one or more data sets. 
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In[144]:= Needs@"StatisticalPlots`"D

dataSet1 = 8100, 95, 100, 122, 115, 88, 97, 87, 92, 76<

dataSet2 = 8110, 100, 120, 125, 120, 120, 115, 98, 95, 91<

BoxWhiskerPlot@dataSet1, dataSet2, BoxLabels Ø 8"Control", "Treatment"<D
Out[145]= 8100, 95, 100, 122, 115, 88, 97, 87, 92, 76<

In[146]:= 8110, 100, 120, 125, 120, 120, 115, 98, 95, 91<

Out[147]=

Control Treatment

80

90

100

110

120

Discussion
A box plot shows the minimum, maximum, median (black line), and middle quan-
tile  (box).  There  are  options  to  change  orientation  (BoxOrientation),  spacing
(BoxExtraSpacing),  styles  (BoxLineStyle,  BoxMedianStyle,  BoxFillingStyle),  and  dis-
play of outliers (BoxOutliers, BoxOutlierMarkers). You can also show other quantiles
using BoxQuantile.
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In[148]:= BoxWhiskerPlotAdataSet1, dataSet2, BoxLabels Ø 8"Control", "Treatment"<,

BoxOrientation Ø Horizontal, BoxMedianStyle Ø Dashed, BoxQuantile Ø 1ê3E

Out[148]=

80 90 100 110 120

Control

Treatment

Other  common  statistical  chart  types  include  StemLeafPlot,  ParetoPlot,  
QuantilePlot, and PairwiseScatterPlot.

In[149]:= StemLeafPlot@dataSet1D

Out[149]=

Stem Leaves

7 6
8 78
9 257
10 00
11 5
12 2

Stem units: 10
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A Pareto plot combines a bar chart of percentages of categories with a plot of cumu-
lative percentages. It is often used in quality control applications for which the data
might be defects for various products.

In[150]:= RandomSeed@666D;

ParetoPlotAFlattenATableAi, 8i, 1, 7<, 9RandomInteger@81, 12<D=EEE

Out[151]=

Quantile plots are used to visualize whether two data sets come from the same popu-
lation. If so, the data lies along a straight line reference line.

In[152]:= GraphicsRow@

8QuantilePlot@RandomReal@8-1, 1<, 100D, RandomReal@8-1, 1<, 100DD,

QuantilePlot@RandomReal@8-1, 1<, 100D,

RandomReal@NormalDistribution@0, 1D, 100DD<D

Out[152]=
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PairwiseScatterPlot  plots  each  column  of  a  matrix  against  each  of  the  other
columns.  The  diagonals  will  always  be  straight  lines.  The  following  plot  of  2006,
2007,  and  2008  Dow  Jones  Industrial  Average  (DJIA)  data  shows  how  2006  and
2008  had  nearly  inverse  trends,  whereas  2007  deviated  in  the  middle  of  the  year
from the 2008 data.
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In[153]:= PairwiseScatterPlot@Transpose@8Rescale@

FinancialData@"^DJI", 882006, 1, 1<, 82006, 12, 31<<D@@All, 2DDD,

Rescale@FinancialData@"^DJI", 882007, 1, 1<, 82007, 12, 31<<D@@All, 2DDD,

Drop@Rescale@FinancialData@"^DJI", 882008, 1, 1<, 82008, 12, 31<<D@@

All, 2DDD, 2D<D, DataLabels Ø 8"2006", "2007", "2008"<D

Out[153]=

2006 2007 2008

2008

2007

2006

See Also
The  tutorial  StatisticalPlots/tutorial/StatisticalPlots  in  the  documentation  provides
many examples for customizing these plots to your needs.

12.15 Quasi-Random Number Generation
Problem
You need to generate random numbers, but you want to avoid the inevitable cluster-
ing that occurs using pseudorandom generators. This type of generator is sometimes
called quasirandom.
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Solution
Notice the clumping in this randomly generated list plot of 500 points. 

In[154]:= WithA8N = 500<,

ListPlotA RandomReal@80, 1<, 8N, 2<D,

PlotStyle Ø Black, Frame Ø True, AspectRatio Ø 1, ImageSize Ø SmallEE

Out[154]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

The  van  der  Corput  sequence  takes  the  digits  of  an  integer  in  a  given  base  b,  and
then reflects them about the decimal point. This maps the numbers from 1 to n into
a set of numbers [0,1] in an even distribution, provided n is one less than a power of
the base.

In[155]:= corput@n_, b_D :=

IntegerDigits@n, bD.Ib ^ RangeA-FloorALog@b, nD + 1E, -1EM;

SetAttributes@corput, ListableD
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The Halton sequence shows that a good way to distribute the values in n dimensions
is to use the first n primes as the bases used with van der Corput. 

In[157]:= halton@n_, s_D := corputAn, PrimeARange@sDEE

WithA8N = 500<, ListPlotATable@halton@n, 2D, 8n, N<D,

PlotStyle Ø Black, Frame Ø True, AspectRatio Ø 1, ImageSize Ø SmallEE

Out[158]=
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0.4

0.6

0.8

1.0

As  you  can  see,  this  gives  far  less  clumpy  distribution  of  points  than  RandomReal
gives.

Discussion
These quasirandom numbers are often used in simulations and Monte Carlo meth-
ods. One problem with these sequences is that they always give you the same set of
numbers. One possibility is to perturb each number by a small random epsilon (e).
This more or less preserves the even distribution provided the random perturbation
is small.
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In[159]:= halton@n_, s_, e_D :=

ClipAcorputAn, PrimeARange@sDEE + RandomReal@8-e, e<D, 80, 1<E

In[160]:= WithA8N = 500<,

GraphicsRowA9

ListPlotATable@halton@n, 2, 0.01D, 8n, N<D,

PlotStyle Ø Black, Frame Ø True, AspectRatio Ø 1, ImageSize Ø SmallE,

ListPlotATable@Halton@n, 2, 0.05D, 8n, N<D,

PlotStyle Ø Black, Frame Ø True, AspectRatio Ø 1, ImageSize Ø SmallE=EE

Out[160]=
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See Also
An  excellent  reference  is  this  Quasi-Monte  Carlo  Simulation  website  found  at
http://bit.ly/2vdGQs.

Interesting  papers  and  Mathematica  notebooks  that  explore  quasirandomness
can  be  found  at  James  Propp’s  University  of  Massachusetts  Lowell  website
(http://bit.ly/7kC32).

12.16 Creating Stochastic Simulations 
Problem
You want to create a simulation as a means of developing a better understanding of
the long-term behavior of a system governed by randomness.
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Solution
One of the most well-known types of stochastic processes is the random walk. A ran-
dom walk can occur in one-,  two-,  three-,  or  even higher  dimensional  space,  but  it
is easiest to visualize in one or two dimensions. Here I show a random walk on a 2D
lattice. A particle (or drunkard, if you prefer) starts at the origin {0,0} and can take a
step east {0,1}, west {0,-1}, north {1,0} or south {-1,0}.

In[161]:= latticeWalk2D@n_D := Module@8start = 80, 0<,

east = 81, 0<, west = 8-1, 0<, north = 80, 1<, south = 80, -1<<,

NestList@Ò + RandomChoice@8east, west, north, south<D &, start, nDD

The walk  is  generated by  specifying  a  number  of  steps  and can be  visualized using
ListLinePlot or using arrows for each step, as I show in Out[163] below. Here I use
SeedRandom only to make sure I always get the same walk no matter how many times
this notebook is evaluated before going to press! 

In[162]:= SeedRandom@1004D; walk = latticeWalk2D@50D

Out[162]= 880, 0<, 8-1, 0<, 80, 0<, 80, 1<, 80, 0<, 80, 1<, 8-1, 1<, 8-1, 2<,

80, 2<, 8-1, 2<, 8-1, 1<, 8-2, 1<, 8-1, 1<, 8-1, 2<, 80, 2<, 80, 1<,

80, 2<, 8-1, 2<, 8-1, 1<, 8-1, 0<, 8-1, 1<, 8-2, 1<, 8-3, 1<, 8-4, 1<,

8-4, 2<, 8-5, 2<, 8-5, 3<, 8-6, 3<, 8-6, 2<, 8-5, 2<, 8-6, 2<, 8-6, 1<,

8-5, 1<, 8-5, 0<, 8-5, -1<, 8-5, -2<, 8-6, -2<, 8-7, -2<, 8-8, -2<,

8-9, -2<, 8-10, -2<, 8-10, -3<, 8-10, -4<, 8-11, -4<, 8-10, -4<,

8-11, -4<, 8-10, -4<, 8-11, -4<, 8-12, -4<, 8-11, -4<, 8-10, -4<<

In[163]:= GraphicsA8Arrowheads@SmallD, Arrow êü Partition@walk, 2, 1D,

PointSize@0.03D, Green, Point@First@walkDD, Red,

Point@Last@walkDD<, ImageSize Ø All, Axes Ø TrueE

Out[163]=
-12 -10 -8 -6 -4 -2
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3
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Discussion
Some simulations  contain  constraints  on what  can happen at  each step.  For  exam-
ple, if you wanted a walk for which a back-step is disallowed, you could remember
the previous step and remove its inverse from the population on the generation. 

In[164]:= latticeWalk2DNoBackStep@n_D :=

ModuleA8start = 80, 0<, east = 81, 0<, west = 8-1, 0<,

north = 80, 1<, south = 80, -1<, steps, last<,

steps = 8east, west, north, south<;

H*Initialize last to a step not in the

population so not to remove anything the first time.*L

last = 81, 1<;

H*At each step the inverse H-lastL

is removed from possible steps using Complement.*L

NestList@Ò + Hlast = RandomChoice@Complement@steps, 8-last<DDL &,

start, nDE

In[165]:= SeedRandom@778D; walk = latticeWalk2DNoBackStep@25D

Out[165]= 880, 0<, 81, 0<, 82, 0<, 82, -1<, 83, -1<, 84, -1<, 85, -1<, 85, -2<,

86, -2<, 86, -1<, 86, 0<, 85, 0<, 84, 0<, 84, 1<, 85, 1<, 85, 2<, 86, 2<,

87, 2<, 87, 1<, 87, 0<, 88, 0<, 89, 0<, 89, 1<, 88, 1<, 88, 2<, 88, 3<<

In[166]:= GraphicsA8Arrowheads@SmallD, Arrow êü Partition@walk, 2, 1D,

PointSize@0.02D, Green, Point@First@walkDD, Red,

Point@Last@walkDD<, ImageSize Ø Medium, Axes Ø TrueE

Out[166]=

2 4 6 8

-2

-1

1

2

3

Given  a  simulation,  you  will  usually  want  to  understand  its  behavior  over  many
runs.  One  obvious  metric  is  the  distance  from the  origin.  You might  postulate,  for
example,  that  the  average  distance  from  the  origin  for  latticeWalk2D  will  be  less
than  latticeWalk2DNoBackStep.  By  running  the  simulation  500  times  for  each  case
and  computing  the  mean,  median,  and  other  statistics,  you  can  be  more  confident
this intuition is correct. You can also see that the advantage seems to be only about
two steps. 12.16 Creating Stochastic Simulations | 501
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In[167]:= ModuleA8distL2D, distL2DNoBack, walkDistance,

statFuncs = 8Mean, Median, Max, Min, Variance, StandardDeviation<<,

walkDistance@walk_D := ManhattanDistance@First@walkD, Last@walkDD;

distL2D = Table@walkDistance@latticeWalk2D@25DD, 8500<D;

distL2DNoBack =

Table@walkDistance@latticeWalk2DNoBackStep@25DD, 8500<D;

TableFormA9Through@statFuncs@ distL2DDD,

Through@statFuncs@ distL2DNoBackDD= êê N, TableHeadings Ø

98"Unconstrained", "No Back Step"<, ToString êü statFuncs=EE
Out[167]//TableForm=

Mean Median Max Min Variance StandardDeviation

Unconstrained 5.616 5. 15. 1. 8.69393 2.94855

No Back Step 7.78 7. 21. 1. 13.8754 3.72496

Simulation is also powerful as a tool for persuading someone of a truth that seems to
defy  intuition.  A  famous  example  is  the  Monty  Hall  problem.  This  problem  is
named after a U.S. game show called “Let’s Make a Deal,” which was popular in the
1960s and ’70s and hosted by Monty Hall. A well-known statement of the problem
was published in Parade magazine (“Ask Marilyn,” Sept. 1990, 16):

Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No.
1,  and the host,  who knows what’s  behind the doors,  opens another door,
say  No.  3,  which  has  a  goat.  He  then  says  to  you,  “Do  you  want  to  pick
door No. 2?” Is it to your advantage to switch your choice?

For many people, the intuitive answer is that there is no advantage in switching be-
cause there is a 50/50 chance you have the car either way you go. There even seems
to be a bias for not switching, based on the platitude “go with your first instincts.”
However, if you analyze the problem correctly (see the following analysis) there is a
2/3 probability of getting the car if you switch. But the analysis is subtle and appar-
ently fails to convince even some very intelligent people, so perhaps a simulation is
helpful.  An  advantage  of  creating  the  simulation  is  that  it  makes  it  clear  just  what
you mean by this problem. Specifically,  we are talking about the best decision over
many trials for a problem where the initial choice of door is random, the placement
of the car is random, and Monty always shows the door that contains a goat. In this
simulation, we call sticking with your first choice strategy1 and switching to the re-
maining door strategy2. The simulation is purposefully without any cute functional
programming  tricks  so  it  is  clear  that  at  each  step  we  are  accurately  following  the
rules of the game.
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In[168]:= H*randomPick is similar to RandomChoice except we want

the position of the choice rather than the choice itself.*L

randomPick@choices_ListD :=

ModuleA8<, RandomIntegerA91, Length@choicesD=EE

H*simulateStrat1VSStrat2 computes the winnings over a number

of trials for strategy1 HstickL and strategy2 HswitchL.*L

simulateStrat1VSStrat2Atrials_IntegerE :=

ModuleA9GOAT = 0, CAR = 1, doors, firstPick, secondPick,

winnings1 = 0, winnings2 = 0, doorsTemp, makePrizes=,

H*There are 3 possible initial game configurations. These

can be generated using Permutations.*L

SeedRandom@D;

DoA

H*Randomly pick one of the

three possible initial game configurations.*L

doors = RandomSample@8GOAT, GOAT, CAR<D;

H*Contestant picks a door at random. Recall this

is the position of the prize, not the prize itself.*L

firstPick = randomPick@doorsD;

H*Winnings of contestant who keeps first pick always*L

winnings1 += doors@@firstPickDD;

H*Delete first pick from choices.*L

doorsTemp = Drop@doors, 8firstPick<D;

H*Delete goat from remaining; this is where Monty shows the goat.

Here I use position to find a goat and, since there could be two,

I arbitrarily remove the first.*L

doorsTemp = Drop@doorsTemp, Position@doorsTemp, GOATD@@1DDD;

H*Contestant following second

strategy always switches to remaining prize.*L

secondPick = doorsTemp@@1DD;

H*Winnings of contestant who switches*L

winnings2 += secondPick,

8trials<E;

9winnings1, winnings2=E

You  can  now  simulate  any  number  of  games  and  compare  the  accumulated  win-
nings  over  that  many  games.  Here  I  show  the  results  where  the  number  of  games
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varies from 10 to 100,000 in increments of powers of 10. Clearly strategy2,  always
switching, is the way to play the Monty Hall game.

In[170]:= Table@simulateStrat1VSStrat2@10^iD, 8i, 1, 5<D êê TableForm

Out[170]//TableForm=
4 6

34 66

304 696

3345 6655

33321 66679

The Monty Hall game analysis that leads to the correct conclusion is as follows: Con-
sider the probability of not picking the car at the start of the game. Since there are 2
goats and 1 car, the probability of not picking a car is 2/3. Now consider what hap-
pens when Monty shows you a goat. In effect he tells you that IF you did not pick a
car  initially,  THEN there  is  definitely  a  car  behind  the  remaining  door.  We agreed
that the probability of not having picked the car initially was 2/3, so now the proba-
bility of the car being behind the remaining door must be 2/3. The simulation we’re
given  shows this to be the case.

See Also
Computer Simulations with Mathematica: Explorations in Complex Physical and Bio-
logical  by Richard J.  Gaylord and Paul  R.  Wellin  (Springer-Verlag  TELOS) demon-
strates a variety of simple simulations, but some of the examples need to be updated
to Mathematica 6 and 7. 

Chapter  14,  “Financial  Engineering,”  contains  an  example  of  Monte  Carlo  simula-
tion that is a very popular technique in finance and the physical sciences.

The  Wolfram  Demonstration  Project  (http://bit.ly/40hsJD)  contains  many  small
simulation problems that exploit Mathematica’s dynamic capabilities.
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CHAPTER 13

Science and Engineering

Mmm~but it’s poetry in motion
And when she turned her eyes to me

As deep as any ocean
As sweet as any harmony

Mmm~but she blinded me with science
And failed me in geometry

When she’s dancing next to me
“Blinding me with science~science!”

“Science!”
I can hear machinery

“Blinding me with science~science!”
“Science!”

Thomas Dolby, “She Blinded Me With Science”

13.0 Introduction
Scientists and engineers make up a large part of the Mathematica user base, and it is
hard  to  think  of  any  scientific  or  engineering  practitioner,  no  matter  how  special-
ized, who could not benefit from Mathematica. I am neither a scientist nor an engi-
neer by profession, but just fiddling around with Mathematica has given me insights
into scientific and engineering ideas that otherwise would have taken many years
of study.

The goals of this chapter are threefold. First, I want to illustrate techniques for orga-
nizing  solutions  to  problems.  Many  science and engineering problems require numer-
ous variables, and organization becomes paramount. There is not one correct way to
organize complex solutions, but I  provide two different approaches in Recipes 13.6
and 13.11. The second goal is to take some of the theoretical recipes covered in ear-
lier chapters and apply them to real-world problems. I often see posts on Mathemati-
ca’s  primary  mailing  list  questioning  the  usefulness  of  function  or  pattern-based
programming on real-world problems.  Other posters  express  a  wish to use these
techniques but can’t get themselves on the right track. This chapter contains recipes
to which most scientists and engineers can relate, and all use a mixture of functional
and  pattern-based  ideas.  An  auxiliary  goal  is  to  take  some  of  the  functions  intro-
duced in Chapter 11 and make each the focus of a recipe. The third goal of the chap-
ter  is  to  introduce  some special  features  of  Mathematica  that  we  did  not  have
occasion to discuss in earlier recipes. 
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duced in Chapter 11 and make each the focus of a recipe. The third goal of the chap-
ter  is  to  introduce  some special  features  of  Mathematica  that  we  did  not  have
occasion to discuss in earlier recipes. 

One important feature introduced in Mathematica 6 that gained momentum in ver-
sion 7 is  curated data sources.  These high-quality  data sources alone are worth the
cost  of  admission  to  Mathematica’s  user  base.  Recipes  13.1  through  13.4  discuss
some sources pertinent to the sciences. Chapter 14 includes recipes related to finan-
cial  data  sources.  All  these  sources  have  a  uniform,  self-describing  structure.  You
can query any data source for the kinds of data it provides using syntax DataSource
["Properties"]. This will give you a list of properties. Each property describes an im-
portant subset of the data held by the source. You use the properties along with keys
to  retrieve  particular  values.  For  example,  ElementData[1,  "AtomicWeight"]  gives
1.00794, the atomic weight of hydrogen. Once you master the data source concept,
you will quickly be able to leverage new data sources as they become available.

Recipe 13.5 applies the discrete calculus function RSolve from Recipe 11.10 to solve
a standard predator-prey problem. Here I also demonstrate how Mathematica’s inter-
active features can be used to explore the solution space and gain insight into the dy-
namics of the problem. 

In Recipe 13.6, I  solve a relatively straightforward problem in rigid body dynamics.
The primary purpose of this recipe is to illustrate one way you might organize a prob-
lem with many objects and many parameters per object. This recipe highlights Math-
ematica’s  flexible  ways  of  creating  names  of  things,  an  ability  you  should  exploit
when  modeling  complex  problems.  Recipe  13.11  uses  the  topic  of  finite  element
method (FEM) to illustrate an alternate way to organize a problem that uses a lot of
data and a variety of related functions. The interface developed here follows a trend
that is becoming more popular in new Mathematica features (e.g., LinearModelFit).

Recipes  13.7  through  13.10  focus  on  applied  differential  equations.  Here  I  solve
some  problems  symbolically  using  DSolve  and  some problems  numerically  using
NDSolve. These recipes show how to set up initial and boundary conditions, how to
leverage Fourier series in obtaining solutions, and how to visualize solutions.
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13.1 Working with Element Data
Problem
You want to perform computations that take as input information about the chemi-
cal  elements.  You may also  want  to  create  visual displays of this information for
reference or classroom use.

Solution
You can  list  the  names  of  all  the  elements  using  ElementData[]  or  the  name  of  the
nth element using ElementData[n].

In[1]:= ElementData@D

Out[1]= 9Hydrogen, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen,

Fluorine, Neon, Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Sulfur,

Chlorine, Argon, Potassium, Calcium, Scandium, Titanium, Vanadium,

Chromium, Manganese, Iron, Cobalt, Nickel, Copper, Zinc, Gallium,

Germanium, Arsenic, Selenium, Bromine, Krypton, Rubidium, Strontium,

Yttrium, Zirconium, Niobium, Molybdenum, Technetium, Ruthenium, Rhodium,

Palladium, Silver, Cadmium, Indium, Tin, Antimony, Tellurium, Iodine,

Xenon, Cesium, Barium, Lanthanum, Cerium, Praseodymium, Neodymium,

Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium,

Holmium, Erbium, Thulium, Ytterbium, Lutetium, Hafnium, Tantalum,

Tungsten, Rhenium, Osmium, Iridium, Platinum, Gold, Mercury, Thallium,

Lead, Bismuth, Polonium, Astatine, Radon, Francium, Radium, Actinium,

Thorium, Protactinium, Uranium, Neptunium, Plutonium, Americium,

Curium, Berkelium, Californium, Einsteinium, Fermium, Mendelevium,

Nobelium, Lawrencium, Rutherfordium, Dubnium, Seaborgium, Bohrium,

Hassium, Meitnerium, Darmstadtium, Roentgenium, Ununbium, Ununtrium,

Ununquadium, Ununpentium, Ununhexium, Ununseptium, Ununoctium=

In[2]:= ElementData@1D

Out[2]= Hydrogen

Mathematica will  return properties of an element if  given its number and the name
of the property.

In[3]:= RowA9ElementData@1D, ElementData@1, "AtomicNumber"D,

ElementDataA1, "AtomicWeight"E, ElementData@1, "Phase"D=, "\t"E

Out[3]= Hydrogen 1 1.00794 Gas
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Discussion
You  can  see  from  the  list  of  all  properties  that  Mathematica  has  a  comprehensive
database  of  elemental  data.  Be  aware  that  CommonCompoundNames  will  pull  in  a  lot  of
data if you use it with a common element like hydrogen.

In[4]:= Partition@ElementData@"Properties"D, 3, 3, 1, ""D êê TableForm

Out[4]//TableForm=
Abbreviation AbsoluteBoilingPoint AbsoluteMeltingPoint

AdiabaticIndex AllotropeNames AllotropicMultiplicities

AlternateNames AlternateStandardNames AtomicNumber

AtomicRadius AtomicWeight Block

BoilingPoint BrinellHardness BulkModulus

CASNumber Color CommonCompoundNames

CovalentRadius CriticalPressure CriticalTemperature

CrustAbundance CrystalStructure CuriePoint

DecayMode Density DiscoveryCountries

DiscoveryYear ElectricalConductivity ElectricalType

ElectronAffinity ElectronConfiguration ElectronConfigurationString

Electronegativity ElectronShellConfiguration FusionHeat

GasAtomicMultiplicities Group HalfLife

HumanAbundance IconColor IonizationEnergies

IsotopeAbundances KnownIsotopes LatticeAngles

LatticeConstants Lifetime LiquidDensity

MagneticType MassMagneticSusceptibility MeltingPoint

Memberships MeteoriteAbundance MohsHardness

MolarMagneticSusceptibility MolarVolume Name

NeelPoint NeutronCrossSection NeutronMassAbsorption

OceanAbundance Period Phase

PoissonRatio QuantumNumbers Radioactive

RefractiveIndex Resistivity ShearModulus

SolarAbundance SoundSpeed SpaceGroupName

SpaceGroupNumber SpecificHeat StableIsotopes

StandardName SuperconductingPoint ThermalConductivity

ThermalExpansion UniverseAbundance Valence

VanDerWaalsRadius VaporizationHeat VickersHardness

VolumeMagneticSusceptibility YoungModulus

The most  obvious  application  of  ElementData  is  to  create  a  periodic  table.  The
ElementData  documentation shows  code for a simple  table.  Here  I  show a more
ambitious one, complete with Tooltip.
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In[5]:= makeElemDetail@a_D :=

ModuleA9abr, name, atomicWeight, density, melting, boiling, color, phase=,

9abr, name, atomicWeight, density, melting, boiling, color, phase= = TableA

ElementData@a, pD, 9p, 9"Abbreviation", "StandardName", "AtomicWeight",

"Density", "MeltingPoint", "BoilingPoint", "Color", "Phase"==E;

GridA98name, SpanFromLeft, a<, 9abr, atomicWeight, "amu"=,

9"Density", density, "Kgêm3"=, 9"Melting Pt", melting, "C"=,

9"Boiling Pt.", boiling, "C"=, 8"Phase", color, phase<=, Frame Ø All,

Alignment Ø 99Left, Right, Right=, 8Center, Center, Center<=E

E

makeElem@a_, size_D :=

ModuleA9abr, name, atomicWeight=, abr = ElementData@a, "Abbreviation"D;

atomicWeight = ElementDataAa, "AtomicWeight"E;

GraphicsA9TextAStyleAToString@aD, 9, Bold,

FontFamily -> "Helvetica", TextAlignment Ø CenterE, 80, 20<E,

TextAStyleAabr, 20, FontWeight Ø "Bold", FontFamily -> "Helvetica"E,

80, 0<E, TextAStyleAToStringAatomicWeightE, 8,

FontFamily -> "Helvetica", TextAlignment Ø CenterE, 80, -20<E=,

ImageSize Ø 8size, size<EE

makePeriodicTable@w_, h_D :=

ModuleA9elemData, frame, background, re1 = 57, re2 = 71, re3 = 89,

re4 = 103, gsz = 42=, elemData = Table@ElementData@e, pD,

8e, 1, 118<, 8p, 8"AtomicNumber", "Period", "Group"<<D;

frame = 9None, None, CasesAelemData,

9a_Integer, p_, g_Integer= ß I9p, g= Ø TrueME=;

background = 9None, None, CasesAelemData, 9a_Integer, p_, g_Integer= ß

I9p, g= Ø ElementData@a, "IconColor"DME=;

ColumnA9

GraphicsGridANormalASparseArrayA

CasesAelemData, 9a_Integer, p_, g_Integer= ß I9p, g= Ø aMEEE ê.

9a_Integer ê; a > 0 ß TooltipAmakeElemAa, gszE, makeElemDetail@aDE,

0 Ø Graphics@8<D=, Frame Ø frame, Background -> background,

ImageSize Ø 8w, h<E,

GraphicsGridA9TableATooltipAmakeElemAa, gszE, makeElemDetail@aDE,

8a, re1, re2<E, TableAmakeElemAa, gszE, 8a, re3, re4<E=,

ImageSize Ø 8w - 100, 100<, Background Ø 8None, None,

Flatten@Table@881, a - re1 + 1< -> ElementData@a, "IconColor"D,

82, a - re1 + 1< -> ElementData@a + re3 - re1, "IconColor"D<,

8a, re1, re2<DD<E=, Alignment Ø 8Center, Automatic<EE
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In[8]:= makePeriodicTable@650, 300D

Out[8]=

1

H
1.00794

2

He
4.002602

3

Li
6.941

4

Be
9.012182

5

B
10.811

6

C
12.0107

7

N
14.0067

8

O
15.9994

9

F
18.9984032

10

Ne
20.1797

11

Na
22.989770

12

Mg
24.3050

13

Al
26.981538

14

Si
28.0855

15

P
30.973761

16

S
32.065

17

Cl
35.453

18

Ar
39.948

19

K
39.0983

20

Ca
40.078

21

Sc
44.955910

22

Ti
47.867

23

V
50.9415

24

Cr
51.9961

25

Mn
54.938049

26

Fe
55.845

27

Co
58.9332

28

Ni
58.6934

29

Cu
63.546

30

Zn
65.409

31

Ga
69.723

32

Ge
72.64

33

As
74.92160

34

Se
78.96

35

Br
79.904

36

Kr
83.798

37

Rb
85.4678

38

Sr
87.62

39

Y
88.90585

40

Zr
91.224

41

Nb
92.90638

42

Mo
95.94

43

Tc
98

44

Ru
101.07

45

Rh
102.90550

46

Pd
106.42

47

Ag
107.8682

48

Cd
112.411

49

In
114.818

50

Sn
118.710

51

Sb
121.760

52

Te
127.60

53

I
126.90447

54

Xe
131.293

55

Cs
132.90545

56

Ba
137.327

71

Lu
174.967

72

Hf
178.49

73

Ta
180.9479

74

W
183.84

75

Re
186.207

76

Os
190.23

77

Ir
192.217

78

Pt
195.078

79

Au
196.96655

80

Hg
200.59

81

Tl
204.3833

82

Pb
207.2

83

Bi
208.98038

84

Po
209

85

At
210

86

Rn
222

87

Fr
223

88

Ra
226

103

Lr
262

104

Rf
261

105

Db
262

106

Sg
266

107

Bh
264

108

Hs
277

109

Mt
268

110

Ds
281

111

Rg
272

112

Uub
285

113

Uut
284

114

Uuq
289

115

Uup
288

116

Uuh
292

117

Uus
Missing@UnknownD

118

Uuo
294

57

La
138.9055

58

Ce
140.116

59

Pr
140.90765

60

Nd
144.24

61

Pm
145

62

Sm
150.36

63

Eu
151.964

64

Gd
157.25

65

Tb
158.92534

66

Dy
162.5

67

Ho
164.93032

68

Er
167.259

69

Tm
168.93421

70

Yb
173.04

71

Lu
174.967

89

Ac
227

90

Th
232.0381

91

Pa
231.03588

92

U
238.02891

93

Np
237

94

Pu
244

95

Am
243

96

Cm
247

97

Bk
247

98

Cf
251

99

Es
252

100

Fm
257

101

Md
258

102

No
259

103

Lr
262

13.2 Working with Chemical Data
Problem
You want to perform computations that take as input information about the chemi-
cal compounds. You may also want to create visual displays of this information for
reference or classroom use.

Solution
ChemicalData is a curated data source. You can request chemical information by com-
mon names, registry numbers, IUPAC-like names, or structure strings.

In[9]:= ChemicalData@"Water"D

Out[9]= O
H

O
H

In[10]:= ChemicalData@"CO2", "IUPACName"D

Out[10]= carbon dioxide

In[11]:= ChemicalData@"CID5234", "Name"D

Out[11]= 8sodium chloride, sodium chloride-35 Cl<

In[12]:= ChemicalDataA"Glucose", "CompoundFormulaDisplay"E

Out[12]= 9C6H12O6, C6H12O6, C6H12O6, C6H12O6=
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In[13]:= GraphicsRowAChemicalData@"Glucose", "MoleculePlot"D, ImageSize Ø LargeE

Out[13]=

Discussion
The  list  of  properties  of  chemical  compounds  is  quite  impressive.  The  table  below
lists a random subset of the full list of 101 properties.

In[14]:= Partition@Sort@RandomSample@ChemicalData@"Properties"D, 30DD, 3D êê

TableForm
Out[14]//TableForm=

AcidityConstant BoilingPoint CHStructureDiagram

CIDNumber CompoundFormulaDisplay CriticalPressure

CriticalTemperature FlashPointFahrenheit FormattedName

HildebrandSolubility IUPACName MDLNumber

MeltingPoint NFPAHazards NFPAHealthRating

NFPALabel NonStandardIsotopeCount NonStandardIsotopeNumbers

PartitionCoefficient Phase Resistivity

RotatableBondCount SideChainAcidityConstant SpaceFillingMoleculePlot

StructureDiagram TautomerCount TopologicalPolarSurfaceArea

VaporPressureTorr VertexTypes Viscosity

At  the  time  of  this  writing,  Mathematica  has  curated  data  on  over  34,300  com-
pounds, subdivided into 67 classes. 

In[15]:= Length@ChemicalData@DD

Out[15]= 34336

In[16]:= ChemicalData@"Classes"D

Out[16]= 9AcidAnhydrides, AcidHalides, Acids, Alcohols, Aldehydes, Alkanes,

Alkenes, Alkynes, Alloys, Amides, Amines, AminoAcidDerivatives,

AminoAcids, Arenes, Aromatic, Bases, Brominated, Carbohydrates,

CarboxylicAcids, Catalysts, Cations, Ceramics, Chiral, Chlorinated,

Dendrimers, Esters, Ethers, Fluorinated, Furans, Gases, Halogenated,

HeavyMolecules, Heterocyclic, Hydrides, Hydrocarbons, Imidazoles,

Indoles, Inorganic, Iodinated, IonicLiquids, Ketones, Ligands,

Lipids, Liquids, MetalCarbonyls, Monomers, Nanomaterials, Nitriles,

Organic, Organometallic, Oxides, Phenols, Piperazines, Piperidines,

Polymers, Pyrazoles, Pyridines, Pyrimidines, Quinolines, Salts, Solids,

Solvents, Sulfides, SyntheticElements, Thiazoles, Thiols, Thiophenes=

There  are  six  kinds  of  structural  diagrams that  can be  used to  visualize  these  com-
pounds.  Here,  for  example,  are  representations  for  what  may  be  one  of  your  fa-
vorites, for better or worse~caffeine.
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There  are  six  kinds  of  structural  diagrams that  can be  used to  visualize  these  com-
pounds.  Here,  for  example,  are  representations  for  what  may  be  one  of  your  fa-
vorites, for better or worse~caffeine.

In[17]:= GraphicsGridAPartitionA

TableAChemicalData@"Caffeine", pD, 9p, 9"CHColorStructureDiagram",

"CHStructureDiagram", "ColorStructureDiagram", "StructureDiagram",

"MoleculePlot", "SpaceFillingMoleculePlot"==E, 3E, ImageSize Ø LargeE

Out[17]=

You can use the data to analyze relationships between properties. Here I show a plot
of inverse vapor pressure to boiling point for all liquids with a Tooltip around each
point so outliers are easy to identify. Cases is used to filter out any MissingData entries.

In[18]:=
ListLogLogPlotACasesATableA9ChemicalData@c, "VaporPressure"D,

ChemicalDataAc, "BoilingPoint"E, c=, 8c, ChemicalData@"Liquids"D<E,

9vp_Real, bp_Real, c_String= ß Tooltip@81êvp, bp<, cDEE

Out[18]=
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13.3 Working with Particle Data
Problem
You want to perform computations that take as input information about the elemen-
tary particles. You may also want to create visual displays of this information for ref-
erence or classroom use.

Solution
In[19]:= ParticleData@"Classes"D

Out[19]= 9Baryon, BBBarMeson, Boson, BottomBaryon, BottomMeson,

CCBarMeson, CharmedBaryon, CharmedMeson, Fermion, GaugeBoson,

Hadron, Lepton, LongLived, Meson, Neutrino, Pentaquark, Quark,

Stable, StrangeBaryon, StrangeCharmedBaryon, StrangeCharmedMeson,

StrangeMeson, UnflavoredBaryon, UnflavoredMeson=

It  is  easy  to  create  functions  that  generate  tables  of  particle  information.  The func-
tion  particleTable  accepts  a  list  of  one  or  more  class  memberships  (e.g.,  Baryon,
LongLived,  and others from ParticleData["Classes"]) and a list of properties to use
as columns. The helper function particleData reformats "QuarkContent" into a more
concise representation. You will often want to filter out entries that are missing since
there is only partial data available for exotic particles. 

In[20]:= particleData@p_, "QuarkContent"D :=

FlattenA ParticleData@p, "QuarkContent"D ê.

q_String ß ParticleDataAq, "Symbol"EE

particleData@p_, prop_D := ParticleData@p, propD

particleTable@memberships_List, properties_ListD := ModuleA8<,

GridAPrepend@

Table@particleData@particle, ÒD & êü properties,

8particle, Select@ParticleData@D,

HIntersection@ParticleData@Ò, "Memberships"D, membershipsD ã

memberships L &D<D, propertiesD ê.

9Missing@"Unknown"D Ø "?", Missing@"NotAvailable"D Ø "NêA"=,

Frame Ø All,

ItemStyle Ø

9Automatic, Automatic, 9981, 1<, 91, Length@propertiesD== Ø Bold==E

E

Create a table of long-lived baryons. A baryon is a particle made of three quarks, and
long-lived refers to particles whose lifetime is greater than 10|20 seconds.
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In[23]:= particleTableA9"Baryon", "LongLived"=, 9"StandardName",

"Symbol", "Mass", "Charge", "Lifetime", "Isospin", "QuarkContent"=E

Out[23]=

StandardName Symbol Mass Charge Lifetime Isospin QuarkContent

Lambda L 1115.683 0 2.632µ10-10 0 8s, d, u<

LambdaBar L 1115.683 0 2.632µ10-10 0 :s, d, u>

Neutron n 939.56536 0 885.6
1

2
8d, d, u<

NeutronBar n 939.56536 0 885.6
1

2
:d, d, u>

Omega W 1672.45 -1 8.21µ10-11 0 8s, s, s<

OmegaBar W 1672.45 1 8.21µ10-11 0 9s, s, s=

Proton p 938.27203 1 ¶
1

2
8d, u, u<

ProtonBar p 938.27203 -1 ¶
1

2
:d, u, u>

SigmaBarMinus S
- 1189.37 -1 8.018µ10-11 1 9s, u, u=

SigmaBarPlus S
+ 1197.449 1 1.48µ10-10 1 :s, d, d>

SigmaBarZero S
0 1192.642 0 7.4µ10-20 1 :s, d, u>

SigmaMinus S- 1197.449 -1 1.48µ10-10 1 8s, d, d<

SigmaPlus S+ 1189.37 1 8.018µ10-11 1 8s, u, u<

SigmaZero S0 1192.642 0 7.4µ10-20 1 8s, d, u<

XiBarPlus X
+ 1321.31 1 1.64µ10-10

1

2
:s, s, d>

XiBarZero X
0 1314.83 0 2.90µ10-10

1

2
9s, s, u=

XiMinus X- 1321.31 -1 1.64µ10-10
1

2
8s, s, d<

XiZero X0 1314.83 0 2.90µ10-10
1

2
8s, s, u<

8LambdaB, 0< Lb 5624. 0 1.23µ10-12 0 8b, d, u<

8LambdaBBar, 0< Lb 5624. 0 1.23µ10-12 0 :b, d, u>

8LambdaC, 1< Lc 2286.46 1 2.0µ10-13 0 8c, d, u<

8LambdaCBar, -1< Lc 2286.46 -1 2.0µ10-13 0 :c, d, u>

8OmegaC, 0< Wc 2697.5 0 6.9µ10-14 0 8c, s, s<

8OmegaCBar, 0< Wc 2697.5 0 6.9µ10-14 0 9c, s, s=

8XiC, 0< Xc
0 2471. 0 1.1µ10-13

1

2
8c, s, d<

8XiC, 1< Xc
+ 2467.9 1 4.42µ10-13

1

2
8c, s, u<

8XiCBar, -1< Xc
- 2467.9 -1 4.42µ10-13

1

2
9c, s, u=

8XiCBar, 0< Xc
0 2471. 0 1.1µ10-13

1

2
:c, s, d>

8XiCC, 1< Xcc 3518.9 1 3.3000µ10-14 ? 8c, c, d<

8XiCCBar, -1< Xcc 3518.9 -1 3.3000µ10-14 ? :c, c, d>
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Discussion
The list of properties available in particle data are as follows:

In[24]:= Transpose@Partition@ParticleData@"Properties"D, 9, 9, 1, ""DD êê TableForm

Out[24]//TableForm=
Antiparticle Excitations Isospin PDGNumber

BaryonNumber FullDecayModes IsospinMultiplet QuarkContent

Bottomness FullSymbol IsospinProjection Spin

Charge GenericFullSymbol LeptonNumber Strangeness

ChargeStates GenericSymbol Lifetime Symbol

Charm GFactor Mass Topness

CParity GParity MeanSquareChargeRadius UnobservedDecayModes

DecayModes HalfLife Memberships Width

DecayType Hypercharge Parity

In[25]:= ParticleData@"Classes"D

Out[25]= 9Baryon, BBBarMeson, Boson, BottomBaryon, BottomMeson,

CCBarMeson, CharmedBaryon, CharmedMeson, Fermion, GaugeBoson,

Hadron, Lepton, LongLived, Meson, Neutrino, Pentaquark, Quark,

Stable, StrangeBaryon, StrangeCharmedBaryon, StrangeCharmedMeson,

StrangeMeson, UnflavoredBaryon, UnflavoredMeson=

A scatter plot of mass versus spin versus charge shows large voids where there are no
known particles (or where the values are unknown).

In[26]:= ListPointPlot3DA

CasesASortA9ParticleData@Ò, "Mass"D, ParticleData@Ò, "Spin"D,

ParticleDataAÒ, "Charge"E= & êü ParticleData@"Hadron"DE,

8_?NumberQ, _?NumberQ, _?NumberQ<E, AxesLabel Ø

9"mass", "spin", "charge"=E

Out[26]=
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13.3 Working with Particle Data | 515



DecayModes  and FullDecayModes  list  the  ways  the  particle  can decay;  FullDecayModes
also lists those predicted by theory but not observed in detectors. The number (or in-
terval) display with the decay mode is the branch ratio.

In[27]:= FlattenATableAp Ø Ò & êü ParticleDataAp, "DecayModes"E,

8p, 8"DeltaMinus", "DeltaZero", "DeltaPlus", "Lambda"<<E, 1E êê TableForm
Out[27]//TableForm=

DeltaMinus Ø 88Neutron, PiMinus<, 1.00<

DeltaZero Ø 88Neutron, Photon<, Interval@80.0051, 0.008<D<

DeltaPlus Ø 88Proton, Photon<, Interval@80.0051, 0.008<D<

Lambda Ø 88Proton, PiMinus<, 0.639<

Lambda Ø 88Neutron, PiZero<, 0.358<

Lambda Ø 88Neutron, Photon<, 0.00175<

Lambda Ø 88Proton, PiMinus, Photon<, 0.00084<

Lambda Ø 88Proton, Electron, ElectronNeutrinoBar<, 0.000832<

Lambda Ø 88Proton, Muon, MuonNeutrinoBar<, 0.000157<

13.4 Working with Genetic Data and 
Protein Data
Problem
You want to use Mathematica’s pattern matching and computational capabilities to
develop  bioinformatics  applications.  GenomeData  and  ProteinData  provide  the  raw
materials for this application.

Solution
Get the first 100 nucleobases (or, simply, bases) on the male X chromosome.

In[28]:= GenomeData@8"ChromosomeX", 81, 100<<D

Out[28]= CTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTCTGAAAGTGGACCTATCAGCAGGATGTGGGTGGGAGÖ

CAGATTAGAGAATAAAAGCAGACTGC

516 | Chapter 13: Science and Engineering



Get the first 10 proteins known to Mathematica and show number of amino acids in
its sequence.

In[29]:= 9Ò, ProteinDataAÒ, "SequenceLength"E= & êü

Take@ProteinData@D, 10D êê TableForm
Out[29]//TableForm=

A1BG 495

A2M 1474

NAT1 290

NAT2 290

SERPINA3 423

AADAC 399

AAMP 434

AANAT 207

AARS 968

ABAT 500

Find  five  other  chromosomes  that  have  sequences  that  match  the  first  50  bases  of
chromosome-1 in the human genome. Strands of the chromosome are indicated as 1
or |1. 

In[30]:= GenomeLookup@GenomeData@8"Chromosome1", 81, 50<<D, 5D

Out[30]= 888Chromosome1, 1<, 81, 50<<, 88Chromosome1, 1<, 87, 56<<,

88Chromosome1, 1<, 813, 62<<, 88Chromosome3, -1<, 8116621, 116670<<,

88Chromosome3, -1<, 8116615, 116664<<<

Discussion
At the time of writing, Mathematica has data on 27,479 proteins and 39,920 genes. 

In[31]:= 9Length@ProteinData@DD, Length@GenomeData@DD=

Out[31]= 827479, 39920<

The  following  is  a  list  of  properties  of  the  proteins.  This  data  is  somewhat  incom-
plete:  some  of  the  values  are  not  known  or  have  not  been  updated  in  Wolfram’s
database.  The good news is  that  it  improves over time,  so there is  likely more data
when you’re reading this than when I wrote it. Notice how this sample is ordered in
columns, whereas prior recipes showed similar lists  in rows. All  you need is  Trans-
pose and a bit of math to get the desired number of columns. 

In[32]:= ModuleA8props = ProteinData@"Properties"D<,

WithA9nCols = CeilingALength@propsDë 3E=,

Transpose@Partition@props, nCols, nCols, 1, ""DDEE êê TableForm
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Out[32]//TableForm=
AdditionalAtomPositions DNACodingSequence MolecularWeight

AdditionalAtomTypes DNACodingSequenceLength MoleculePlot

AtomPositions DomainIDs Name

AtomRoles DomainPositions NCBIAccessions

AtomTypes Domains PDBIDList

BiologicalProcesses Gene PrimaryPDBID

CellularComponents GeneID SecondaryStructureRules

ChainLabels GyrationRadius Sequence

ChainSequences Memberships SequenceLength

DihedralAngles MolecularFunctions StandardName

One property that is sparsely populated is MoleculePlot.  At the time of writing, the
only protein beginning with “ATP” that has a MolecularPlot is ATP7BIsoformA.

In[33]:= ProteinData@"ATP7BIsoformA", "MoleculePlot"D

Out[33]=

GenomeData  likewise  contains  a  wealth  of  information.  Here  I  show  the  properties
available. 

In[34]:= ModuleA8props = GenomeData@"Properties"D<,

WithA9nCols = CeilingALength@propsDë 3E=,

Transpose@Partition@props, nCols, nCols, 1, ""DDEE êê TableForm
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Out[34]//TableForm=
AlternateNames GBandStainingLevels Orientation

AlternateStandardNames GenBankIndices ProteinGenBankIndices

BiologicalProcesses GeneID ProteinNames

CellularComponents GeneOntologyIDs ProteinNCBIAccessions

Chromosome GeneType ProteinStandardNames

CodingSequenceLists InteractingGenes PubMedIDs

CodingSequencePositions IntronSequences SequenceLength

CodingSequences LocusList StandardName

ExonSequences LocusString TranscriptGenBankIndices

FullSequence Memberships TranscriptNCBIAccessions

FullSequencePosition MIMNumbers UniProtAccessions

GBandLocusStrings MolecularFunctions UnsequencedPositions

GBandScaledPositions Name UTRSequences

GBandStainingCodes NCBIAccessions

In[35]:= GenomeData@"ACOT9", "ProteinNames"D

Out[35]= 9acyl-Coenzyme A thioesterase 2, mitochondrial isoform a,

acyl-Coenzyme A thioesterase 2, mitochondrial isoform b=

In[36]:= GenomeData@"ACOT9", "Memberships"D

Out[36]= 9ChromosomeXGenes, Genes, Hydrolase,

Mitochondrion, ProteinBinding, ProteinCoding=

In[37]:= GenomeData@"ACOT9", "CellularComponents"D

Out[37]= 8Mitochondrion<

In[38]:= GenomeData@"ACOT9", "MolecularFunctions"D

Out[38]= 9AcetylCoAHydrolaseActivity,

CarboxylesteraseActivity, HydrolaseActivity, ProteinBinding=

13.5 Modeling Predator-Prey Dynamics
Problem
You  want  to  model  a  dynamic  system  consisting  of  populations  of  predators  and
prey to see how population levels evolve over time.

Solution
Consider a population of rabbits (prey) and foxes (predators) with a specific growth
rate  for  rabbits  G  and carrying capacity  of  their  environment  K.  The population dy-
namics can be modeled by a pair of difference equations. See the “Discussion” sec-
tion on page 520 for more insight into the form of these equations and the meaning
of the constants. 
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Rt+1  Rt + G Rt 1 -
Rt

K
- 0.0001 Ft Rt

Ft+1  Ft + 0.0001 Ft Rt - 0.02 Ft

NestList presents one possible solution for deriving the dynamics of the population
over time from an initial starting point. 

In[39]:= RabFox@8r_, f_<, G_: 0.02, K_: 500D :=

8r + HG H1 - HrêKLL rL - 0.0001 r f, f + H0.0001 r fL - H0.02 fL<

initPop = 850, 10<;

ListLinePlotA NestList@RabFox, initPop, 1500D,

PlotRange Ø 880, 500<, 80, 200<<, AxesLabel Ø 8"Rabbits", "Foxes"<E

Out[41]=
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This shows the rabbit population doing what rabbits do for many generations as the
fox  population  slowly  increases  due  to  the  increasing  food  supply.  An  inflection
point is reached, and the fox population begins to take off with a resulting collapse
in the rabbit population. Eventually the system reaches equilibrium.

Discussion
The equation for rabbits assumes that rabbits follow the logistic model of exponen-
tial growth limited by the carrying capacity of the environment and then subtracts a
term proportional to the number of rabbits and foxes where the constant 0.0001 re-
flects the efficiency of the predators. The equation for foxes assumes that the fox pop-
ulation is proportional to the ability to catch rabbits (same term from first equation)
minus some natural death rate (here 2 percent of the population). 

NestList  provides a very simple solution to this model, but it is not the best choice
if, due to efficiency, you want to create an interactive model using Manipulate. Luckily,
Mathematica 7 has new capabilities for discrete math that provide an alternate solu-
tion path. RecurrenceTable is a new function that will generate the list of solutions of
specified length given a recurrence relation.  

520 | Chapter 13: Science and Engineering



In[42]:= DynamicModuleA8pop<,

ManipulateA

pop = RecurrenceTable@8

R@t + 1D ã R@tD + G * H1 - HR@tDêkLL*R@tD - 0.0001 R@tD F@tD,

F@t + 1D ã F@tD + 0.0001 R@tD F@tD - 0.02 F@tD,

R@0D ã P@@1DD,

F@0D ã P@@2DD<, 8R, F<, 8t, 0, T<, Method Ø 8Compiled Ø False<D;

ListLinePlotApop, PlotRange Ø 880, 500<, 80, 200<<,

AxesLabel Ø 8"Rabbits", "Foxes"<, PlotLabel ß Floor@Last@popDDE,

88G, 0.02<, 0.00, 0.03<, 88k, 500<, 300, 800<, 88P, 850, 10<<, Locator<,

88T, 1000<, 1, 5000, 1<, SaveDefinitions Ø TrueEE

Out[42]=
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This interactive model allows you to position the locator at the initial population lev-
els for rabbits and foxes and allows you to adjust the growth rate, carrying capacity,
and number of iterations. The plot title displays the end value of rabbits and foxes.

See Also
More elaborate  predator-prey  models  can be  found at  the  Wolfram Demonstration
Project: http://bit.ly/mUVGS and http://bit.ly/21GfLm. 
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13.6 Solving Basic Rigid Bodies Problems 
Problem
You want to compute mass, center of mass, and moment of inertia as a prerequisite
to solving dynamical problems involving rigid bodies.

Solution
The  basic  equation  for  computing  the  center  of  mass  given  a  collection  of  discrete
point masses is

⁄i=1
n cmi mi

⁄i=1
n mi

where  cmi is the center  of  mass  of  each  point  and  mi is its mass. The  numerator  of
this equation is called the first  moment.  Another name for the center of mass is the
centroid.

In[43]:= centerMass@particles_D := ModuleA8totalMass, firstMoment<,

8firstMoment, totalMass < =

SumA8massüparticles@@iDD centroidüparticles@@iDD,

massüparticles@@iDD<, 9i, Length@particlesD=E;

firstMomentê totalMassE

In[44]:= massücar = 1000.;

centroidücar = 8100, 100<;

massüdriver = 86.;

centroidüdriver = 8103, 101< ;

massüfuel = 14.2;

centroidüfuel = 893, 100<;

centerMass@8car, driver, fuel<D
Out[50]= 8100.144, 100.078<

Discussion
The solution is fairly elementary from a physical point of view, but it may look a bit
mysterious  from a  Mathematica  coding  point  of  view.  The  solution  is  coded  using
Mathematica’s  prefix  notion.  Recall  that  f@x  is  prefix  notation  for  f[x].  This  nota-
tion is appealing for modeling problems because it is concise and readable (simply re-
place the @ with “of” as you read the code). Notice how I use the same notation with
the problem objects car, driver, and fuel. 

Now suppose  this  notation  does  not  appeal  to  you;  perhaps  you like  to  model  the
physical  objects  as  lists  or  some  other  notation  like  object[{mass,centroid}].  Does  this
mean you need to reimplement the centerMass function? Not at all. Simply define the
function’s mass and centroid for your preferred representation, and you are all set.522 | Chapter 13: Science and Engineering



Now suppose  this  notation  does  not  appeal  to  you;  perhaps  you like  to  model  the
physical  objects  as  lists  or  some  other  notation  like  object[{mass,centroid}].  Does  this
mean you need to reimplement the centerMass function? Not at all. Simply define the
function’s mass and centroid for your preferred representation, and you are all set.

In[51]:= massAobject@8m_, ___<DE := m

In[52]:= centroidAobject@8_, c_, ___<DE := c

In[53]:= centerMassA9object@81000, 8100, 100<<D,

object@886, 8103, 101<<D, object@814.2, 893, 100<<D=E

Out[53]= 8100.144, 100.078<

Another important property of rigid bodies is the mass moment of inertia about an
axis.  These  values  are  important  when  solving  problems  involving  rotation  of  the
body. The general equation for the mass moment of inertia involves integration over
infinitesimal  point  masses  that  make  up  the  body,  but  in  practice  problems,  equa-
tions for known geometries are typically used. One way to approach this in Mathe-
matica is to use a property called shape and rely on pattern matching to select the
appropriate  formula.  Each  of  these  functions  returns  a  list  in  the  form  {Ixx, Iyy,
Izz}, giving the moment of inertia about the x-, y-, and z-axis, respectively.

In[1]:= massMomentOfInertia@o_D ê; shapeüo ã "circularCylinder" :=

ModuleA8i1, i2<,

i1 = HHmassüo radiusüo^2Lê4L + IImassüo lengthüo ^2Më 12M;

i2 = HHmassüo radiusüo^2Lê2L ;

8i1, i1, i2< E

massMomentOfInertia@o_D ê; shapeüo ã "circularCylindricalShell" :=

ModuleA8i1, i2<,

i1 = HHmassüo radiusüo^2Lê2L + IImassüo lengthüo ^2Më 12M;

i2 = HHmassüo radiusüo^2LL ;

8i1, i1, i2< E

massMomentOfInertia@o_D ê; shapeüo ã "rectangularCylinder" :=

ModuleA9ixx, iyy, izz=,

ixx = IImassüo Iheightüo + lengthüoM ^2Më 12M ;

iyy = IImassüo Iwidthüo + lengthüoM ^2Më 12M ;

izz = IImassüo Iwidthüo + heightüoM ^2Më 12M ;

9ixx, iyy, izz= E

massMomentOfInertia@o_D ê; shapeüo ã "sphere" := Module@8i<,

i = Hmassüo H2 radiusüo ^2Lê5L ;

8i, i, i< D

massMomentOfInertia@o_D ê; shapeüo ã "sphericalShell" := Module@8i<,

i = Hmassüo H2 radiusüo ^2Lê3L ;

8i, i, i< D

13.6 Solving Basic Rigid Bodies Problems | 523



In[59]:= shapeücar = "rectangularCylinder";

lengthücar = 4.73;

widthücar = 1.83;

heightücar = 1.25;

In[63]:= massMomentOfInertia@carD

Out[63]= 82980.03, 3586.13, 790.533<

In[64]:= shapeücar = "circularCylindricalShell";

radiusücar = 1.83;

In[66]:= massMomentOfInertia@carD

Out[66]= 83538.86, 3538.86, 3348.9<

13.7 Solving Problems in Kinematics
Problem
You want to demonstrate standard problems in kinematics, like those you typically
find in first-year physics studies. 

Solution
The basic equations of kinematics are as follows.

In[67]:= acceleration1@deltaT_, v1_, v2_D := Hv2 - v1L ê deltaT

acceleration2@deltaT_, v1_, deltaS_D :=

2 HdeltaS - v1 deltaTL ê HdeltaT^2L

acceleration3@v1_, v2_, deltaS_D := Hv2^2 - v1^2Lê H2 deltaSL

distance@a_, v1_, deltaT_D := Ha deltaT^2 ê2L + v1 deltaT

distance1@a_, v1_, v2_D := Hv2^2 - v1^2L ê H2 aL

distance2@deltaT_, v1_, v2_D := HdeltaTê2L Hv1 + v2L

time1@a_, v1_, v2_D := Hv2 - v1Lê a

time2@a_, v1_, deltaS_D := HSqrt@v1^2 + 2 + 2 a deltaSD - v1L ê a

time3@v1_, v2_, deltaS_D := H 2 deltaSL ê Hv1 + v2L

velocity1@a_, v2_, deltaT_D := v2 - a deltaT

velocity2@a_, deltaS_, deltaT_D := HdeltaSêdeltaTL - H a deltaTê2L

velocity3@a_, v2_, deltaS_D := Sqrt@v2^2 - 2 a deltaSD

Given  these  equations,  you  can  solve  a  variety  of  problems.  For  example,  how  far
will a bullet drop if shot horizontally from a rifle at a target 500 m away if the initial
velocity is 800 m/s? Ignore drag, wind, and other factors.

First, compute how long the bullet remains in flight before hitting the target by tak-
ing the initial and final velocity to be the same.
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In[79]:= timeTraveled = time3@800, 800, 500D êê N

Out[79]= 0.625

Given the acceleration due to gravity is 9.8 m/s2, compute the distance dropped by
setting the initial vertical velocity component to zero.

In[80]:= distanceDropped = distance@9.8, 0, timeTraveledD

Out[80]= 1.91406

The bullet drops almost 2 meters. 

Discussion
The  solution  works  out  a  simple  problem  by  working  first  in  the  x  direction  and
then plugging the results into an equation in the y direction. In more complex prob-
lems, it is often necessary to use vectors to capture the velocity components in the x,
y, and z directions. Consider a game or simulation involving a movable cannon and
a movable target of varying size. 

Imagine the cannon is fixed to the side of a fortress such that the vertical height (z di-
rection in this example) is variable but the x and y position is fixed. The length, angle
of elevation (alpha), left-right angle (gamma), and muzzle velocities are also variable.
You require a function that gives the locus of points traversed by the shell given the
cannon settings and the time of flight. Here we use Select to filter the points above
ground level (positive in the z direction). The function returns a list of values of the
form {{x1,y1,z1,t1}, ..., {xn,yn,zn,tn}},  where each entry is  the position of the
shell at the specified time. Chop is used only to replace numbers close to zero by zero.
Note that in each dimension, the basic kinematic equations are in play, but since the
inputs are in terms of angles, some basic trigonometry is needed to get the separate
x,  y,  and  z  components.  Velocity  is  constant  in  the  x-y  plane  (we  are  still  ignoring
drag), and the z-axis uses the initial velocity component and the fall of the shell due
to gravity.

In[81]:= displacementAorigin_List, velocity_, alpha_, gamma_, tEnd_E :=

WithA9g = 9.8=,

SelectAIf AtEnd § 0, 8<,

ChopATableA9

origin@@1DD + velocity *t * Cos@alpha * Piê2D,

origin@@2DD + velocity * t * CosAgamma * PiE,

origin@@3DD + velocity * t * Sin@alpha * Piê2D - 0.5 g t^2,

t=,

8t, 0, tEnd, 0.25<EEE, Ò@@3DD ¥ 0 &E

E

You can also create a function that computes the instantaneous velocity components
at a specified time.
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You can also create a function that computes the instantaneous velocity components
at a specified time.

In[82]:= velocityAvelocity_, alpha_, gamma_, t_E :=

WithA9g = 9.8=,

ChopA

IfAt > 0,

9velocity * Cos@alpha * Piê2D,

velocity * CosAgamma * PiE,

velocity Sin@alpha * Piê2D - g t=, 80., 0., 0.<E

E

E

Since  the  plan is  to  create  a  simulation,  you need a  function that  figures  out  when
the shell intersects with the target. For simplicity, assume the shape of the target is a box.

In[83]:= intersect@point_List, corner1_List, corner2_ListD :=

point@@1DD ¥ corner1@@1DD && point@@1DD § corner2@@1DD &&

point@@2DD ¥ corner1@@2DD && point@@2DD § corner2@@2DD &&

point@@3DD ¥ corner1@@3DD && point@@3DD § corner2@@3DD

H*The shell hit the target if any point in the locus

of points intersects. Apply Or to list of Booleans.*L

intersection@points_List, corner1_List, corner2_ListD :=

Or üü Hintersect@Ò, corner1, corner2D & êü pointsL

You  can  set  the  simulation  up  inside  of  a  Manipulate  so  that  you  can  play  around
with all the variables. 
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In[85]:= WithA9width = 200, height = 200, length = 200, limit = 10=,

ManipulateA

DynamicModuleA9b, Lx, Ly, Lz, cannonAlpha,

cannonGamma, targetX, targetY, path, text, color, Vx, Vy, Vz=,

8cannonGamma, cannonAlpha< = cannonOrient;

9targetX, targetY= = targetPos;

b = cannonL * Cos@H1 - cannonAlphaL * Piê2D;

Lx = cannonL Cos@cannonAlpha * Piê2D;

Ly = lengthë 2 + cannonL * Cos@cannonGamma * PiD;

Lz = cannonL Sin@cannonAlpha * Piê2D;

path = displacementA9Lx, Ly, cannonZb + Lz=,

cannonVM, cannonAlpha, cannonGamma, timeE;

tLast = IfALength@pathD > 1, Last@pathD@@4DD, 0E;

9Vx, Vy, Vz= = velocity@cannonVM, cannonAlpha, cannonGamma, tLastD;

color =

IfAintersectionApath, 9targetX, targetY, targetZ=, 9targetX + targetL,

targetY + targetW, targetZ + targetH=E, Red, GreenE;

ColumnA9

GridA99"Vx", "Vy", "Vz"=, 9Vx, Vy, Vz==E,

Graphics3DA99Thickness@0.02D,

LineA990, lengthë 2, cannonZb=, 9Lx, Ly, Lz + cannonZb==E=, 9color,

CuboidA9targetX, targetY, targetZ=, 9targetX + targetL, targetY +

targetW, targetZ + targetH=E=, Point@Most@ÒDD & êü path=,

PlotRange Ø 980, width<, 90, length=, 90, height==,

ImageSize Ø 300E=E

E,

88cannonVM, 50<, 10, 100<, 88cannonOrient, 80.5, 0.5<<, 80, 0<, 81, 1<<,

9cannonL, 20, lengthë 2=, 9cannonZb, 0, heightë 2=,

99targetPos, 8100, 100<=, 85 * limit, 0<,

9width - limit, length - limit==,

9targetZ, 0, height - limit=, 9targetL, limit, lengthë 2=,

9targetW, limit, widthê2=, 9targetH, limit, heightë 2=,

8time, 0, 25<,

9time, 0, 25, ControlType Ø Trigger=, SaveDefinitions Ø TrueEE
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Out[85]=

canonVM

canonOrient

canonL

canonZb

targetPos

targetZ

targetL

targetW

targetH

time

time

Vx Vy Vz

0 0 0

The initial output of the Manipulate is shown in Out[85] above. The path of the bul-
let  is  displayed up until  the  point  in  time specified by the  time control,  so  the  box
turns  red  after  it  is  hit  by  a  shell.  The  instantaneous  velocity  of  the  shell  is  dis-
played for the current value of time. The Vz will be negative when the shell is falling.
Figure  13-1  shows  two  frames  from  the  Manipulate,  at  a  time  before  impact  and  a
time after.

See Also
David M. Bourg’s Physics for Game Developers (O’Reilly) has an example of the can-
non problem where wind drag is introduced. Keep in mind that the author uses the
y-axis as the vertical whereas the code in this recipe uses the z-axis.

Mathematical  Methods  Using Mathematica  by Sadri  Hassani  (Springer) has solutions
to  similar  problems  using  differential  equations  which  consider  drag,  curvature  of
the  earth,  and  nonconstant  acceleration  at  large  distances  from  the  earth’s  surface
(see Chapter 6). 
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Figure 13-1. Two frames from the cannon simulation
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13.8 Computing Normal Modes for Coupled 
Mass Problems
Problem
You want to compute the normal modes for a system of identical masses connected
by identical springs. Normal modes are natural or resonant frequencies of the entire
system.  The  system  this  recipe  considers  consists  of  n>1  masses  connected  by  n-1
springs on a frictionless surface. Figure 13-2 shows an example for n=3. 

Figure 13-2. Coupled masses

Solution
Here I state, without proof (refer to “See Also” section on page 532), that these sys-
tems take the form of n  simultaneous linear equations whose matrix representation
is tridiagonal. That is a matrix with nonzero entries along the main diagonal and adja-
cent minor diagonals and zero entries in all other elements. The corner entries of the
main diagonal are special  since they represent masses that are free on one side and
take the form k - m*w^2, where k is the spring constant, m is the mass, and w is the an-
gular  frequency.  The  off  corner  entries  represent  the  masses  with  springs  on  both
sides and take the form 2*k - m*w^2. The minor diagonals are all -k. Here I solve the
three mass problems, and in the discussion, I show how to create a general solver for
the n mass case.

In[86]:= matrix =

k - 2 w^2 -k 0

-k 2 k - 2 w^2 -k

0 -k k - 2 w^2

Out[86]= 99k - 2 w2, -k, 0=, 9-k, 2 k - 2 w2, -k=, 90, -k, k - 2 w2==

Nontrivial solutions to this system leave the matrix as noninvertible; hence, the deter-
minant is zero. Use Solve to find the frequencies in terms of k.
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In[87]:= sol = Solve@Det@matrixD ã 0, wD

Out[87]= ;8w Ø 0<, 8w Ø 0<, ;w Ø -
3

2
k ?,

;w Ø
3

2
k ?, ;w Ø -

k

2
?, ;w Ø

k

2
??

You don’t care about the solutions with negative or zero frequencies, so you can fil-
ter these out to obtain two physically interesting resonant frequencies.

In[88]:= sol = Cases@sol, Except@8_ Ø 0< 8_ Ø -_<DD

Out[88]= ;;w Ø
3

2
k ?, ;w Ø

k

2
??

Given the frequencies, you can solve the system to get the amplitudes. The first solu-
tion gives a1 == a3  and a2 == -2a1, with the alternative of k == 0  being physically
uninteresting. This solution has the outer masses moving in unison in the same direc-
tion  while  the  inner  mass  compensates  by  moving  in  the  opposite  direction  with
twice the amplitude.

In[89]:= Reduce@Dot@Hmatrix ê. sol@@1DDL , 8a1, a2, a3<D ã 0, 8a1, a2, a3<D

Out[89]= Ha2 ã -2 a1 && a3 ã a1L »» k ã 0

The second solution gives a2 == 0 and a3 == -a1 with the alternative of k == 0 being
physically uninteresting. This is a solution with the center mass at rest and the outer
masses moving toward and then away from the center. 

In[90]:= Reduce@Dot@Hmatrix ê. sol@@2DDL , 8a1, a2, a3<D ã 0, 8a1, a2, a3<D

Out[90]= Ha2 ã 0 && a3 ã -a1L »» k ã 0

Discussion
To solve the general  n-mass system, we need a  way to synthesize  a  tridiagonal  ma-
trix of the proper form. For this,  SparseArray  and Band  are just what the doctor or-
dered.  When  using  sparse  matrix,  rules  that  come  earlier  override  rules  that  come
later.  This  works  to  your  favor  because  it  allows  the  case  where  n == 2  to  be
handled without  any conditional  logic  stemming  from  the  fact  that  there  are  no
2*k - m*w^2 terms when n == 2.
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In[91]:= Clear@massMatrixD;

massMatrix@n_ ê; n > 1D := SparseArray@8

81, 1< -> k - m w^2,

8n, n< -> k - m w^2,

Band@82, 1<D Ø -k,

Band@81, 2<D Ø -k,

Band@81, 1<D Ø 2 k - m w^2<, nD

In[93]:= massMatrix@2D êê MatrixForm
Out[93]//MatrixForm=

k - m w2 -k

-k k - m w2

In[94]:= massMatrix@5D êê MatrixForm
Out[94]//MatrixForm=

k - m w2 -k 0 0 0

-k 2 k - m w2 -k 0 0

0 -k 2 k - m w2 -k 0

0 0 -k 2 k - m w2 -k

0 0 0 -k k - m w2

For the general solution, you want to use NSolve  with specific values of m and k be-
cause roots of polynomials with degree greater than five are likely to give Solve trou-
ble. Here I solve a 10-mass system with k == 1  and m == 1.  Chop  is used to remove
residual  imaginary  values  and  Cases  filters  out  zero  and  negative  solutions  because
they are physically uninteresting.

In[95]:= Cases@Chop@NSolve@Det@massMatrix@10DD ã 0 ê. 8k Ø 1, m Ø 1<, wDD,

8_ Ø a_ ê; a > 0<D
Out[95]= 88w Ø 0.312869<, 8w Ø 0.618034<, 8w Ø 0.907981<, 8w Ø 1.17557<,

8w Ø 1.41421<, 8w Ø 1.61803<, 8w Ø 1.78201<, 8w Ø 1.90211<, 8w Ø 1.97538<<

See Also
You  can  find  derivations  of  the  systems  solved  in  this  recipe  in  many  advanced
physics and linear algebra books. In particular, Mathematical Methods Using Mathe-
matica  by  Sadri  Hassani  provides  a  nice  mix  of  practical  physics  and  Mathematica
techniques, although the most recent edition is written for versions of Mathematica
prior to 6 and therefore does not always indicate the best technique to use for cur-
rent versions. 
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13.9 Modeling a Vibrating String
Problem
You want to model the dynamics of a vibrating string after it is released from a partic-
ular deformation.

Solution
This  solution  is  a  particular  solution  to  the  one-dimensional  wave  equation  D[u[x,t],
{x,2}] == c^2 D[u[x,t],{t,2}] where u[x,t] gives the position of the string at point
x  and  time  t.  The  general  solution  to  the  wave  equation  can  be  obtained  using
DSolve.

In[96]:= DSolve@D@u@x, tD, 8x, 2<D == c^2 D@u@x, tD, 8t, 2<D, u@t, xD, 8t, x<D

Out[96]= ;;u@x, tD Ø C@1DCt - c2 xG + C@2DCt + c2 xG??

The general  solution is  not  very  helpful  because  it  is  specified  in  terms of  two
unknown  functions,  C[1]  and  C[2].  In  theory,  you  could  specify  boundary  condi-
tions and initial conditions, but DSolve  is very limited in its ability to find solutions
to  partial  differential  equations.  This  problem  is  better  handled  numerically  with
NDSolve.

First  we need a  specification for  the shape of  the string at  t  =  0.  For  simplicity,  I’ll
use the Sin function that will give a width of L units. Here I use Plot to show the ini-
tial defection of the string. 

In[97]:= string@x_, L_D := 0.35 SinB
p x

L
F;

In[98]:= WithA8L = 5<, PlotAstring@ x, LD, 8x, 0, L<, AspectRatio Ø 1êLEE

Out[98]=

1 2 3 4 5

0.05
0.10
0.15
0.20
0.25
0.30
0.35

To use NDSolve to model the vibrating string, you must provide initial and boundary
conditions.  The initial  condition states that u[0,x] = string[x].  In other words,  at
the start,  the string has the position depicted previously.  You must also specify the
initial velocity of the string, which is the first derivative with respect to time. The ob-
vious  choice  for  initial  velocity  is  zero.  Using  input  form,  this  would  be  entered  as
Derivative[1,  0][u][0,  x]  ==  0.  This  operator  notation  was  explained  in  Recipe
11.4. The two boundary conditions specify that the ends of the string are anchored
at position 0 and L, u[t, 0] == 0, and u[t, L] == 0.
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In[99]:= WithA8L = 5, T = 10, waveEq = D@u@t, xD, t, tD == D@u@t, xD, x, xD<,

sol = NDSolveA

9waveEq, u@0, xD == string@x, LD, Derivative@1, 0D@uD@0, xD == 0,

u@t, 0D == 0, u@t, LD == 0=, u, 8t, 0, 10<, 8x, 0, L<E;

AnimateAPlotAEvaluate@u@t, xD ê. sol@@1DDD, 8x, 0, L<,

AspectRatio -> 1êL, PlotRange Ø 880, L<, 8-0.4, 0.4<<E,

8t, 0, T, 0.5<, SaveDefinitions Ø TrueEE

Out[99]=

t

1 2 3 4 5

-0.4

-0.2

0.0

0.2

0.4

Discussion
Although DSolve  can deal  with some partial  differential  equations (PDEs),  it  is  lim-
ited  in  its  ability  to  derive  specific  solutions  given  initial  and  boundary  conditions.
Therefore, it is better to use NDSolve on PDEs, as I’ve done in the solution. However,
it is not difficult to pose problems that NDSolve  will have a hard time with and ulti-
mately fail to solve. Consider trying to solve the wave equation with an initial posi-
tion that contains a discontinuity.

In[100]:= string2@x_, L_D := 0.7 Abs@ x êL - Round@xêLDD

In[101]:= WithA8L = 5<, PlotAstring2@ x, LD, 8x, 0, L<, AspectRatio Ø 1êLEE

Out[101]=

1 2 3 4 5

0.05
0.10
0.15
0.20
0.25
0.30
0.35

If you try to use string2 in the solution shown in In[99] above, it will likely run for a
very long time, consuming memory and finally failing. However, this situation is not
entirely hopeless. One technique is to produce an approximation to string2 using Fourier
series. Using Fourier series, I obtained the following Sin expansion, called sinString2:
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In[102]:= sinString2@x_D = 0.285325252629769` Sin@HPi*xLê5D -

0.033193742967516204` Sin@H3*Pi*xLê5D +

0.013117204588138661` Sin@p xD - 0.007723288156504195`

Sin@H7*Pi*xLê5D + 0.005695145921372713` Sin@H9*Pi*xLê5D -

0.004945365736699312` Sin@H11*Pi*xLê5D;

Below  I  plot  both  functions  to  demonstrate  how  closely  sinString2  approximates
string2 while smoothing out the discontinuity at the apex.

In[103]:= WithA8L = 5<, PlotA9string2@ x, LD, sinString2@xD=,

8x, 0, L<, AspectRatio Ø 1êL, PlotStyle Ø 8Dashed, Thin<EE

Out[103]=

1 2 3 4 5

0.05
0.10
0.15
0.20
0.25
0.30
0.35

In[104]:=

In[105]:= WithA8L = 5, T = 10, waveEq = D@u@t, xD, t, tD == D@u@t, xD, x, xD<,

sol2 = NDSolveA

9waveEq, u@0, xD == sinString2@xD, Derivative@1, 0D@uD@0, xD == 0,

u@t, 0D == 0, u@t, LD == 0=, u, 8t, 0, 10<, 8x, 0, L<E;

AnimateAPlotAEvaluate@u@t, xD ê. sol2@@1DDD, 8x, 0, L<,

AspectRatio -> 1êL, PlotRange Ø 880, L<, 8-0.40, 0.40<<E,

8t, 0, T, 0.5<, SaveDefinitions Ø TrueEE

Out[105]=

t

1 2 3 4 5

-0.4

-0.2

0.0

0.2

0.4

There is an exact solution to the triangular wave, although it isn’t derived here (refer
to the “See Also” section on page 536). It is given by this infinite sum, which Mathe-
matica can solve using a special function LerchPhi. This solution is too complex to
use  in  an  animation,  but  you  can  use  it  to  verify  that  the  approximate  solution  is
quite good.
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In[106]:= triangular@t_, x_D = WithA8L = 5<, FullSimplifyA

HH0.35*8LêPi^2L*SumAH-1L^Hi + 1L*Sin@H2*i - 1L*Pi*HxêLLD*

HCos@H2*i - 1L*Pi*HtêLLDêH2*i - 1L^2L, 9i, 1, Infinity=EEE

Out[106]= ‰
-
1

5
Â p H5 t+xL

H0. - 0.0177312 ÂL ‰

2

5
Â p H2 t+xL

LerchPhiC-‰
-
2

5
Â p Ht-xL

, 2,
1

2
G +

H0. + 0.0177312 ÂL ‰

6 Â p t

5 LerchPhiC-‰
2

5
Â p Ht-xL

, 2,
1

2
G +

H0. + 0.0177312 ÂL ‰

4 Â p t

5 LerchPhiC-‰
-
2

5
Â p Ht+xL

, 2,
1

2
G -

H0. + 0.0177312 ÂL ‰

2

5
Â p H3 t+xL

LerchPhiC-‰
2

5
Â p Ht+xL

, 2,
1

2
G

Plotting a few snapshots of the exact solution over time tells us that the approximate
solution is more than adequate and, in some sense,  superior  because  it  is  far  less
computationally intense.

In[107]:= GridAWithA8L = 5, T = 5<,

PartitionATableAPlotAtriangular@t, xD , 8x, 0, L<,

AspectRatio -> 1êL, Ticks Ø None,

PlotRange Ø 880, L<, 8-0.40, 0.40<<E, 8t, 0, T<E, 3EEE

Out[107]=

See Also
There are many ways to approach the solution to the wave equation. When this prob-
lem is solved by hand, separation of variables is often employed. See Advanced Engi-
neering  Mathematics  by  Erwin  Kreyszig  (John  Wiley)  for  a  step-by-step  exam-
ple.  Warning:  this  book  is  not  a  Mathematica  reference,  but  the  problems  are
worked  out  in  enough  detail  that  you  can  easily  see  your  way to creating your own
Mathematica-based solutions.

536 | Chapter 13: Science and Engineering



13.10 Modeling Electrical Circuits
Problem
You  want  to  understand  how  electrical  circuits  consisting  of  resistors,  capacitors,
and inductors behave. 

Solution
The differential  equation governing an RLC circuit  is  L I'' + R I' + I/C = E(t),
where I  is  current,  L  is  inductance,  R  is  resistance,  C  is  capacitance,  and E(t)  is  the
electromotive force (commonly known as voltage). Modeling the system means un-
derstanding how the current varies as you drive the system with a particular timing
varying voltage. Let’s consider a common sinusoidal voltage and solve the system
assuming  that  the  charge  and current  are  zero  at  t=0.  Setting  the  problem up with
the context of  a With  allows you to solve the problem for different values of  induc-
tance, capacitance, resistance, frequency, and voltage.

In[108]:= sol = WithB8L = 0.01, R = 100, C = 0.001, f = 60, V = 1<,

DSolveB:L Iout''@tD + R Iout'@tD +
1

C
Iout@tD ã V 2 Pi f Cos@2 Pi f tD,

Iout@0D ã 0, Iout'@0D ã 0>, Iout@tD, tFF

Out[108]= 99Iout@tD Ø

‰-10000. t I0.000377588 ‰10.01 t - 0.000265869 ‰9989.99 t - H0.000111719 + 0. ÂL

‰10000. t Cos@376.991 tD + H0.00999875 + 0. ÂL ‰10000. t Sin@376.991 tDM==

In[109]:= fIout@t_D = ChopAFullSimplify@Iout@tD ê. sol@@1DDDE

Out[109]= 0.000377588 ‰-9989.99 t - 0.000265869 ‰-10.01 t -

0.000111719 Cos@376.991 tD + 0.00999875 Sin@376.991 tD

By plotting the input voltage and output current, you can see they have the same ba-
sic shape and frequency except for a phase shift.

In[110]:= With@8f = 60, V = 1<,

GraphicsRow@8Plot@8V 2 Pi f Cos@2 Pi f tD<, 8t, 0, 0.1<, PlotLabel Ø VinD,

Plot@8fIout@tD<, 8t, 0, 0.1<, PlotLabel Ø IoutD<D

D

Out[110]=
0.02 0.04 0.06 0.08 0.10

-300
-200
-100

100
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Iout

Discussion
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Discussion
A  more  interesting  example  uses  a  nonsinusoidal  wave,  such  as  a  triangular  wave.
Conveniently, Mathematica 7 has a function TriangleWave[t] that suits our purpose. 

In[111]:= Et@V_, t_D = V TriangleWave@tD;

In[112]:= PlotAEt@1, tD, 8t, 1, 3<, ImageSize Ø SmallE

Out[112]=
1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

However,  the  discontinuities  in  this  waveform  throw  DSolve  for  a  loop.  To  work
around this, represent the triangular wave by its Fourier series. This will give a very
close approximation without the discontinuities at the extremes. This will allow you
to use DSolve. 

In[113]:= Et2@V_, t_D =

FourierSinSeries@Et@V, tD, t, 10, FourierParameters Ø 81, 2 Pi<D

Out[113]=
8 V Sin@2 p tD

p2
-

8 V Sin@6 p tD

9 p2
+

8 V Sin@10 p tD

25 p2
-

8 V Sin@14 p tD

49 p2
+

8 V Sin@18 p tD

81 p2

In[114]:= PlotAEt2@1, tD, 8t, 1, 3<, ImageSize Ø SmallE

Out[114]=
1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

In[115]:= sol2 = With@8L = 0.01, R = 100, C = 0.001, V = 1<,

DSolve@8L*Derivative@2D@IiD@tD +

R*Derivative@1D@IiD@tD + H1êCL*Ii@tD ==

Et2@V, tD, Ii@0D == 0, Derivative@1D@IiD@0D == 0<, Ii@tD, tDD;

In[116]:= fIout2@t_D = Ii@tD ê. sol2@@1DD;
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Notice how the RLC circuit responds to the triangular wave input by smoothing the
current  flow  to  an  approximately  sinusoidal  form.  As  an  exercise,  you  can  try  this
same example using SquareWave, SawtoothWave, or other functions of your own design. 

In[117]:= With@8f = 60, V = 1<,

GraphicsRow@8Plot@8Et2@1, tD<, 8t, 0, 3<, PlotLabel Ø VinD,

Plot@8fIout2@tD<, 8t, 0, 3<, PlotLabel Ø IoutD<D

D

Out[117]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0
Vin

0.5 1.0 1.5 2.0 2.5 3.0

-0.0006
-0.0004
-0.0002

0.0002
0.0004
0.0006

Iout

13.11 Modeling Truss Structures Using 
the Finite Element Method 
Problem
You want to build a model based on the finite element method (FEM). You want to
organize  the  model  in  a  manner  that  allows  you  to  obtain  the  solution  as  well  as
other intermediate results and structural diagrams.

Solution
The FEM has a wide range of engineering applications. In this recipe, I will limit the
discussion to structures composed of  linear elements known as trusses.  See the fig-
ure shown in the “Discussion” section on page 545. Here my focus will be on the or-
ganization of the solution within Mathematica rather than on the underlying theory.
Therefore, all results will be present without derivation of the underlying mathemat-
ics. Please refer to the references in the “See Also” section on page 547. 

To begin,  you will  need a  means to represent  the elements.  I  use a  structure called
linearElement  that  specifies  two  endpoints  called  nodes  ({{x1, y1}, {x2, y2}}),  an
area, and a measure of stiffness called Young’s Modulus (YM). 

linearElementA99x1, y1=, 9x2, y2==, area, YME

In addition, you need a means for specifying the x and y components of the force at
each node. 

forceA9x, y=, fx, fyE

Furthermore,  at  each  node  there  is  a  computed  displacement  in  the  x  and  y  direc-
tion. The FEM literature uses the variable u for x displacements and v for y displace-
ments Typically, each node is sequentially numbered,  so  you  would  have  u1,  v1,
u2, v2, and so on. I will not use a sequential numbering here, because each node
is  uniquely identified by its coordinates, and given Mathematica’s liberal repre-
sentation of variables, it is much more convenient to specify nodal displacements us-
ing coordinates. 
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Furthermore,  at  each  node  there  is  a  computed  displacement  in  the  x  and  y  direc-
tion. The FEM literature uses the variable u for x displacements and v for y displace-
ments Typically, each node is sequentially numbered,  so  you  would  have  u1,  v1,
u2, v2, and so on. I will not use a sequential numbering here, because each node
is  uniquely identified by its coordinates, and given Mathematica’s liberal repre-
sentation of variables, it is much more convenient to specify nodal displacements us-
ing coordinates. 

uAx1, y1E

H*The displacement in the x direction at node 9x1,y1=*L

vAx1, y1E H*The displacement in the y direction at node 9x1,y1=*L

With  these  conventions  established,  I  proceed  by  defining  a  series  of  helper  func-
tions that will be needed later. I provide a brief description of each function but, for
brevity, defer more detail to the “Discussion” section on page 543.

Each element in the model is governed by a system of linear equations. The system
is  naturally  represented  by  a  symmetric  matrix.  The  symmetry  takes  the  form
{{A,-A},{-A,A}} where A is a block matrix. 

In[118]:= linearElementMatrixA

linearElementA99x1_, y1_=, 9x2_, y2_==, area_, YM_EE :=

ModuleA8L, BlockMatrix, LocalMatrix, A, l, m<,

L = EuclideanDistanceA9x1, y1=, 9x2, y2=E;

BlockMatrix = 88A, -A<, 8-A, A<<;

LocalMatrix =

ArrayFlatten@ BlockMatrix ê. 8A Ø 88l l, l m<, 8l m, m m<<<D;

I LocalMatrix ê. 9l Ø Hx2 - x1LêL , m Ø Iy2 - y1M ë L=M

HH YM areaLêLL

E

A location vector provides a means for locating the position of the local element ma-
trices  computed  by  linearElementMatrix  within  a  larger  global  matrix  that  repre-
sents the system over all elements.

In[119]:= assemblyLocationVector@linearElement@8n1_, n2_<, __D, allnodes_D :=

Flatten@Position@allnodes, ÒD & êü 8u üü n1, v üü n1, u üü n2, v üü n2<D

This helper maps a node of  the form {{x1,y1},{x2,y2}}  to the corresponding force
components {{fx1,fy1},{{fx2,fy2}}}. It does this by searching for the first match of
the node within the list of forces and transforming it to the desired form.

In[120]:= getExternalForces@8forces__force<, node_D :=

Cases@8forces<, force@node, fu_, fv_D :> 8fu, fv<, 1, 1D
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This helper extracts the unique set of nodes from the elements and places them in a
canonical order, as defined by Union. This ordering is essential to the construction of
a consistent system of equations. See the “Discussion” section on page 543 for details.

In[121]:= getNodes@8elements__linearElement<D :=

Union@8elements< ê. linearElement@8n1_, n2_<, __D :> Sequence@n1, n2DD

This helper is used to construct a replacement rule for forces.

In[122]:= makeForceRuleAforceAp_, fx_, fy_EE := force@p, _, _D Ø forceAp, fx, fyE

Construct a global vector of all forces using a set of nodes in canonical order. 

In[123]:= getForceVector@8forces__force<, nodes_D :=

FlattenAgetExternalForces@8forces<, ÒD & êü nodesE

Assemble the global matrix that defines the system of equations over all elements us-
ing the local matrices for individual elements and the location vectors that define the
position of the local matrices with the global matrix. Note that the global matrix is
obtained  by  summing  the  local  matrices  into  the  appropriate  positions  within  the
global matrix. In other words, think of each member of locationVectors  as specify-
ing a submatrix within the global matrix for which the corresponding member of
localMatrices is added. 

In[124]:= assembleGlobalMatrix@localMatricies_,

locationVectors_, numElements_, dimension_D :=

ModuleA9g=,

g = Table@0, 8dimension<, 8dimension<D;

DoAg@@ locationVectors@@iDD, locationVectors@@iDD DD +=

localMatricies@@iDD, 8i, 1, numElements<E;

g

E

A model  consists  of  a  collection of  connected elements,  the  external  forces  applied
to  the  structure  at  one  or  more  nodes,  and  the  boundary  conditions  that  typically
manifest  as  points  where  a  node  is  anchored,  rendered  immobile  in  the  x,  y,  or
both directions. Here I organize a solution in the spirit of LinearModelFit covered in
Chapter 12. That is, I construct an object called a TrussModel, the function of which
is  to  organize  the  underlying  data  and  then  use  that  object  as  the  target  for  re-
quests for certain properties relevant to the FEM. As of Mathematica 6 and particularly
in  Mathematica  7,  this  object-based  methodology  has  emerged  as  a  design  pat-
tern for organizing solutions that involve large quantities of data or collections of re-
lated functionality.
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To proceed in this manner, you need a function for creating the TrussModel  and a
Format  for  displaying  it.  The  Format  is  syntactic  sugar  that  hides  the  details  of  the
TrussModel, which could be quite large.

In[125]:= createTrussModelA8elements__linearElement<,

8forces___force<, boundaryNodes_E :=

ModuleA9localMatrices, nodes, nodalVar, forceVec, locationVectors,

degreesOfFreedom, globalMatrix, allForces, forceRules=,

nodes = getNodes@8elements<D;

nodalVar = Flatten@8u üü Ò, v üü Ò< & êü nodesD;

localMatrices = linearElementMatrix êü 8elements<;

locationVectors = assemblyLocationVector@Ò, nodalVarD & êü 8elements<;

globalMatrix = assembleGlobalMatrixAlocalMatrices,

locationVectors, Length@8elements<D, Length@nodalVarDE;

degreesOfFreedom = ComplementARangeALength@nodalVarDE,

FlattenAPosition@nodalVar, ÒD & êü boundaryNodesEE;

allForces = force@Ò, 0, 0D & êü nodes;

forceRules = makeForceRule êü 8forces< ;

allForces = allForces ê. forceRules;

forceVec = getForceVector@allForces, nodesD;

TrussModelA8elements<, boundaryNodes, localMatrices,

globalMatrix, nodalVar, forceVec, degreesOfFreedom, forcesEE

FormatATrussModelAelements_, boundaryNodes_, __EE :=

ToStringATrussModelA9Length@elementsD=, 9LengthAboundaryNodesE=EE

The goal of a FEM analysis is to determine the behavior of the structure from the be-
havior  of  the  elements.  For  a  system  of  trusses,  solve  for  the  displacements  at  the
joints,  the  axial  forces,  and  axial  stresses.  Following  the  proposed  methodology,
these will be accessed as properties of the TrussModel. 

The  displacements  property  is  implemented  as  a  functional  pattern  associated
with  the TrussModel. This notation may look somewhat unusual but is quite natural
from the  standpoint  of  Mathematica’s  design.  It  simply  states  that  when  you  see  a
pattern consisting of a TrussModel and a literal argument, "displacements", replace it
with the results of computing the displacements using data from the TrussModel.

In[127]:= TrussModelA_, _, _, globalMatrix_, nodalVars_,

forceVec_, degreesOfFreedom_, ___E@"displacements"D :=

FlattenASolveADotAglobalMatrixAAdegreesOfFreedom, degreesOfFreedomEE,

nodalVarsAAdegreesOfFreedomEEE ã

forceVecAAdegreesOfFreedomEE, nodalVarsAAdegreesOfFreedomEEEE

As  a  matter  of  convenience,  you  can  make  a  property  the  default  property  of  the
model  by  associating  it  with  the  invocation  of  the  model  with  no  arguments.  Of
course,  thus far  I  have defined only one property,  displacements,  but it  was my in-
tent to make this the default. In the discussion I derive other properties of this model.
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As  a  matter  of  convenience,  you  can  make  a  property  the  default  property  of  the
model  by  associating  it  with  the  invocation  of  the  model  with  no  arguments.  Of
course,  thus far  I  have defined only one property,  displacements,  but it  was my in-
tent to make this the default. In the discussion I derive other properties of this model.

In[128]:= TrussModel@model__D@D := TrussModel@modelD@"displacements"D

All this tedious preparation leads us to a solution that is very easy to use. Here is the
TrussModel, depicted in Out[136] on page 545. The example data is borrowed from
a problem presented in Bhatti’s book (refer to the “See Also” section on page 547).

In[129]:= tm = createTrussModel@

8linearElement@880, 0<, 81500, 3500<<, 4000., 200*10^3D,

linearElement@881500, 3500<, 85000, 5000<<, 4000., 200*10^3D,

linearElement@880, 0<, 80, 5000<<, 3000., 200*10^3D,

linearElement@880, 5000<, 85000, 5000<<, 3000., 200*10^3D,

linearElement@880, 5000<, 81500, 3500<<, 2000., 70*10^3D<,

8force@81500, 3500<, 0, -150000D<,

8u@0, 0D, v@0, 0D, u@5000, 5000D, v@5000, 5000D<D
Out[129]= TrussModel@85<, 84<D

Now you can compute the nodal displacements at the nodes that are unsupported.

In[130]:= tm@"displacements"D

Out[130]= 8u@0, 5000D Ø 0.264704, v@0, 5000D Ø -0.264704,

u@1500, 3500D Ø 0.538954, v@1500, 3500D Ø -0.953061<

Discussion
To complete the TrussModel,  we need to define more properties. It is nice to have a
visual aid to help diagnose problems in the setup of the model. A "diagram" property
generates graphics.  As before,  I  need to develop some helper functions to take care
of certain tails. Each helper function has a placeholder for options (opts___), but to
keep  the  implementation  from  getting  any  more  complicated,  I  do  not  implement
any options. You could add options to control the level of detail, for example, to in-
clude  or  suppress  displacement  arrows  and  labels.  Other  options  might  be  pass-
through options to Graphics.

The diagram uses a convention where supported nodes are filled-in points, whereas
unsupported nodes are hollow circles with associated displacement arrows. It is pos-
sible that a node can be stationary in one direction but not the other. For example, a
roller would be free to move in the x direction but not the y. Professional FEM soft-
ware handles a much wider variety of boundary conditions,  and standard icons are
used in the industry to depict these. The goal here is simplicity over sophistication.

The  function  trussGraphicsNodes  does  most  of  the  work  of  mapping  the  various
types of nodes onto the specific graphics element. The complexity of the code is man-
aged  by  judicious  use  of  patterns  and  replacement  rules.  Some  of  the  scaling  and
text placement was largely determined by trial and error, so you may need to tweak
these settings  for  your own application or  add additional code to help generalize
the solution. 
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The  function  trussGraphicsNodes  does  most  of  the  work  of  mapping  the  various
types of nodes onto the specific graphics element. The complexity of the code is man-
aged  by  judicious  use  of  patterns  and  replacement  rules.  Some  of  the  scaling  and
text placement was largely determined by trial and error, so you may need to tweak
these settings  for  your own application or  add additional code to help generalize
the solution. 

In[131]:= trussGraphicsElementA

linearElementA99x1_, y1_=, 9x2_, y2_==, ___E, opts___E :=

9Opacity@0.6D, LineA99x1, y1=, 9x2, y2==E=

trussGraphicsNodesAnodalVars_, boundaryNodes_, arrowLen_, opts___E :=

ModuleA8freeNodes, arrows, circles, disks<,

freeNodes = ComplementAnodalVars, boundaryNodesE ;

arrows = 9 Arrowheads@.02D,

freeNodes ê. 9uAx_, y_E ß 9ArrowA99x, y=, 9x + arrowLen, y==E,

TextAuAx, yE, OffsetA812, 12<, 9x + arrowLen, y=EE=,

vAx_, y_E ß 9ArrowA99x, y=, 9x, y + arrowLen==E,

TextAvAx, yE, OffsetA812, 12<, 9x, y + arrowLen=EE==

=;

circles =

UnionAfreeNodes ê. Hu vLAx_, y_E ß CircleA9x, y=, arrowLenê6EE;

disks = UnionAboundaryNodes ê.

Hu vLAx_, y_E ß DiskA9x, y=, arrowLenê6EE;

Flatten@8circles, disks, arrows<D

E

trussForceGraphicsAforceA9x_, y_=, fx_, fy_E, scale_, opts___E :=

ModuleA8a1, a2<,

a1 = 9ArrowA99x, y=, 9x + fx*scale, y==E,

TextAfx, OffsetA9Sign@fxD 12, 0=, 9x + fx*scale, y=EE=;

a2 = 9ArrowA99x, y=, 9x, y + fy*scale==E,

TextAfy, OffsetA90, SignAfyE 12=, 9x, y + fy*scale=EE=;

8a1, a2<

E

trussBoundaryAforceA9x_, y_=, fx_, fy_E, scale_, opts___E :=

ModuleA8a1, a2<,

a1 = ArrowA99x, y=, 9x + fx*scale, y==E;

a2 = ArrowA99x, y=, 9x, y + fy*scale==E;

8a1, a2<

E
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In[131]:=

E

TrussModelA8elements__linearElement<, boundaryNodes_, _, _, nodalVars_,

forceVec_, degreesOfFreedom_, forces_EA"diagram", opts___E :=

ModuleA8dispLen, forceScale, min, max<,

8max, min< = 8Max@ÒÒD, Min@ÒÒD< & üü Flatten@List üüü nodalVarsD;

dispLen = Hmax - minL ê15;

forceScale = Hmax - minLêH3 Max@Abs@forceVecDDL;

GraphicsA9

trussGraphicsElement@Ò, optsD & êü 8elements< ,

trussGraphicsNodesAnodalVars, boundaryNodes, dispLen, optsE,

Flatten@trussForceGraphics@Ò, forceScale, optsD & êü 8forces<D

=, Axes Ø True, ImagePadding Ø All, AxesOrigin Ø 8-maxê10, -maxê10<EE

As before, once the infrastructure is in place, the diagram is easy to create by simply
asking the model for the "diagram" property.

In[136]:= tmA"diagram"E

Out[136]=

Other  important  properties  are  axialStrain,  axialStress,  and  axialForce.  These
will be implemented to return all or specific values for a specified element.
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In[137]:= Clear@axialStrainD

axialStrainA

linearElementA99x1_, y1_=, 9x2_, y2_==, __E, displacements_E :=

ModuleA8l, m, L, dv<,

dv = 9uAx1, y1E, vAx1, y1E, uAx2, y2E, vAx2, y2E= ê. displacements ê.

Hu vL@__D Ø 0;

L = EuclideanDistanceA9x1, y1=, 9x2, y2=E;

l = Hx2 - x1LêL;

m = Iy2 - y1Më L;

Plus@-Ò1, Ò2D & üü Dot@88l, m, 0, 0<, 80, 0, l, m<<, dvDêLE

axialStress@linearElement@_, _, YM_D, strain_D := strain * YM;

axialForce@linearElement@_, A_, _D, stress_D := stress * A ;

In[141]:= TrussModel@8elements__linearElement<, __D@"elements"D := 8elements<

In[142]:= TrussModel@model__D@"axial strain", element_ : AllD :=

Module@8thisModel, disp, elements<,

thisModel = TrussModel@modelD;

disp = thisModel@"displacements"D;

elements = Cases@thisModel@"elements"D, element ê. 8All Ø _<D;

axialStrain@Ò, dispD & êü elementsD

TrussModel@model__D@"axial stress", element_ : AllD :=

Module@8thisModel, strain, elements<,

thisModel = TrussModel@modelD;

elements = Cases@thisModel@"elements"D, element ê. 8All Ø _<D;

strain = thisModel@"axial strain", elementD;

MapThread@axialStress , 8elements, strain<DD

In[144]:= TrussModel@model__D@"axial force", element_ : AllD :=

Module@8thisModel, stress, elements<,

thisModel = TrussModel@modelD;

elements = Cases@thisModel@"elements"D, element ê. 8All Ø _<D;

stress = thisModel@"axial stress", elementD;

MapThread@axialForce , 8elements, stress<DD

In[145]:= tm@"axial strain"D

Out[145]= 8-0.000174295, -0.0000314997, -0.0000529407, -0.0000529407, 0.000320869<

In[146]:= tm@"axial strain", linearElement@880, 0<, 81500, 3500<<, __DD

Out[146]= 8-0.000174295<

In[147]:= tm@"axial stress"D

Out[147]= 8-34.8591, -6.29994, -10.5881, -10.5881, 22.4608<
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In[148]:= tm@"axial force"D

Out[148]= 8-139436., -25199.8, -31764.4, -31764.4, 44921.7<

See Also
There are many books and online resources that cover FEM. For example,  the the-
ory relevant to truss structures can be found at Jason Midkiff’s Virginia Tech science
and engineering website: http://bit.ly/32BUq1. 

If you are looking for books with a Mathematica focus, look no further than Funda-
mental Finite Element Analysis and Applications: With Mathematica and Matlab Com-
putations  (John Wiley)  and~if  you are  really  into  FEM~Advanced Topics  in  Finite
Element Analysis of Structures: With Mathematica and MATLAB Computations (John
Wiley), both by M. Asghar Bhatti. The code in these books is pre|version 6, but
I found few incompatibilities. 
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CHAPTER 14

Financial Engineering

I’ve got the brains, you’ve got the looks
Let’s make lots of money

You’ve got the brawn, I’ve got the brains
Let’s make lots of money

Pet Shop Boys, “Opportunities (Let’s Make
Lots of Money)”

14.0 Introduction
Financial engineering (also known as computational finance) is the use of computers
to create mathematical models and simulations that attempt to price financial instru-
ments, model their sensitivity to changes in the market, hedge against these changes,
and measure and manage risk. This is a high-stakes game, where there can be great
reward for getting things right but even greater loss if you get things wrong. This be-
came  acutely  evident  during  the  financial  crisis  that  started  around  July  2007.  It
might  be  tempting  to  conclude  that  attempts  to  bring  mathematical  rigor  to  the
chaos of the market is foolhardy, but this would be like concluding that traditional
engineering is foolhardy because a plane crashed or a bridge fell. Such failings are hu-
man failings,  not  mathematical  ones.  They only  point  to  the  need to  use  computa-
tional tools more diligently and more responsibly.

One goal  for this  chapter was to create a variety of  recipes with a range of  difficul-
ties. This means that there are some recipes that may seem trivial and others that a
novice might find difficult. Almost every recipe tries to demonstrate techniques that
are  unique  to  Mathematica;  I  hope  readers  of  every  skill  level  will  take  away  tech-
niques that they can apply to financial problems that interest them. 
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Mathematica has unique characteristics lacking in many other tools commonly used
in the financial industry. As of version 6, Mathematica has integrated financial data
that is essential to testing your models. This is a big plus; having worked in the indus-
try,  I  have seen how hard it  can be for  quants  (quantitative  analysts)  to  get  data
easily that is immediately usable.  This may seem counterintuitive; it  seems that
investment banks and hedge funds would be swimming in data. They are, but you of-
ten must  exert  great  effort  to  access  it  because  of  technical,  logistical,  and political
barriers.  Recipe  14.1  explains  how  to  use  FinancialData  to  get  access  to  historical
and delayed market data. Unfortunately, FinancialData is still incomplete. As of ver-
sion 7, it concentrates mainly on equities, commodities, and currency data. There is
nothing  related  to  government,  municipal,  or  corporate  bonds;  options;  or  interest
rates. Luckily, Mathematica will import data from other sources; Recipe 14.2 shows
an example of that.

Another important feature of Mathematica is its ability to find exact solutions using
its unparalleled symbolic capabilities. Exact solutions, when you can get them, over-
come  the  errors  and  inaccuracies  introduced  by  numerical  methods,  especially
around the boundaries of a solution. For example, when computing Greeks it is ad-
vantageous if you can compute a symbolic derivative (D) rather than a numerical one
(ND).  Recipe 14.6 shows how the symbolic  capabilities  of  Mathematica can be used
to  compute  and  visualize  the  Greeks  for  European  style  options.  See  the  introduc-
tory sidebar on page 551 if this is all Greek to you!

Performance is  important in financial  engineering,  and getting Mathematica to per-
form well  can be tricky for  the novice.  Recipes  14.8,  14.9,  and 14.10 show how to
use some of the optimized special functions that execute at machine speed and how
to use Compile to eliminate the overhead of handwritten interpreted code. When writ-
ing numerically intense financial functions, you should try  to compile  as  much as
possible, but there are cases where functions cannot be compiled fully and where do-
ing so may influence results.

Finally, Mathematica has some of the best visualization tools for checking your mod-
els and developing an intuition for their behaviors across different regions of the solu-
tion. Almost every recipe includes 2D or 3D plots, but Recipe 14.12 shows how you
can use lower-level graphics primitives to create useful diagrams.
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A Brief Introduction to Computational Finance for the Nonquant
It is impossible to do justice to this topic in a few paragraphs, but since this is a general
purpose  book  and  computational  finance  is  littered  with  specific  terminology,  I
attempt to define some basic ideas that are assumed in the recipes in the book. The
references below can help you dig deeper.

Bonds  are  debt  instruments  that  allow  the  lending  of  money  under  set  terms.
Typically,  the  issuer  (borrower)  of  a  bond  is  obligated  to  pay  the  holder  (lender)
interest in the form of fixed payments at specified dates (the coupon). A wide variety
of terms are associated with various bonds that influence the computation of price,
yield, risk characteristics, and so forth. Some bonds may be convertible to a different
security  (e.g.,  common  stock)  and  some  may  be  callable  (the  issuer  can  cancel  their
obligation by paying back the holder before the bonds expire). A fixed-rate bond is initially
issued at a set price for a standardized amount (e.g., 1000 × $100.00) at a set interest rate
(e.g.,  6%). After the bond is issued, its  price fluctuates (based on factors such as interest
rates, credit ratings, and so forth). The change in price alters the bond’s yield or effective
interest  rate,  since  the  interest  remains  fixed.  So,  for  example,  if  the  bond was  issued at
$100 but falls to $95, its yield would increase because a buyer would be getting the same
interest payments for less up-front cost. Thus, price and yield have an inverse relation.

An  option  on  a  security  is  a  contract  that  gives  the  holder  the  right  (but  not  the
obligation) to buy or sell that stock at a specific price (the strike price) on a specific
date. The owner of a call has the right to buy; the owner of a put has the right to sell
to  the  buyer.  In  contrast,  the  seller  of  a  call  is  obligated  to  sell  the  security  at  the
strike if  it  is exercised  by the owner, and the seller of the put is obligated to buy. It
would  only  make  sense  for  an  owner  of  an  option  to  exercise  it  if  it  were  in  the
money,  if  the  option’s  strike  were  favorable  relative  to  the  market  price  of  the
underlying security. For example, a call for IBM at strike $100 would be favorable to
the call owner if IBM were trading at $120 when the call was exercised: there would
be an immediate profit of $20 less transaction fees.

Options  come  in  different  flavors.  European  options  can  only  be  exercised  at  the
expiration date. These are the simplest to model. American options can be exercised
at  any  time up to  expiration.  If  the  underlying  security  pays  dividends,  it  creates  further
complications that must be accounted for in the model. There are also more exotic flavors
of options, such as Asian and Bermudian, that you can read about in the references. 

The Greeks are important measures for an options trader. The Greeks are computed
as  derivatives  of  the  option’s  pricing  function  with  respect  to  various  parameters.
For  example,  delta  is  the  derivative  with  respect  to  the  price  of  the  underlying
security.  Thus,  delta  measures  the  sensitivity  of  the  option’s  price  with  respect  to
changes  in  the  underlying.  Gamma  is  a  second derivative  with respect  to  price  and
measures  the  sensitivity  of  delta.  Other  important  Greeks  are  theta  (time),  rho
(interest rates), and vega (volatility). These are discussed in Recipe 14.6.

14.0 Introduction | 551



See Also
The  classic  text  in  this  area  is  Options,  Futures,  and  Other  Derivatives  by  John  C.
Hull (Prentice Hall).

The  Wilmott  Journal  and  magazine  discuss  modern  ideas  in  quantitative  finance:
http://bit.ly/rm9hO.

If  you  have  more  of  a  passing  interest,  Wikipedia  has  good  definitions  and  basic
explanations of most of the ideas discussed here.

An excellent book that teaches Mathematica programming in parallel with financial
engineering  is  Computational  Financial  Mathematics  Using  Mathematica  by  Srdjan
Stojanović (Springer). 

14.1 Leveraging Mathematica’s Bundled 
Financial Data
Problem
You need financial data to test your mathematical models.

Solution
Use Mathematica’s curated financial data, FinancialData.  This is a data source that
you can query  to  extract  quite  a  variety  of  up-to-date  data  (15-minute  delayed and
historical)  on  a  variety  of  security  types,  what  Mathematica  calls  "Groups".  To  see
the available groups, execute the following. If this is the first time you are doing this,
you will  see  the  status  message  "Initializing Financial Indices",  and the  groups
will display.

In[1]:= FinancialData@"Groups"D

Out[1]= 9Currencies, Exchanges, ExchangeTradedFunds,

Futures, Indices, MutualFunds, Sectors, Stocks=

The next thing you will want to find is the available properties of the data.
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In[2]:= FinancialData@"Properties"D

Out[2]= 9Ask, AskSize, Average200Day, Average50Day, AverageVolume3Month,

Bid, BidSize, BookValuePerShare, Change, Change200Day, Change50Day,

ChangeHigh52Week, ChangeLow52Week, CIK, Close, Company,

CumulativeFractionalChange, CumulativeReturn, CUSIP, Dividend,

DividendPerShare, DividendYield, EarningsPerShare, EBITDA, Exchange,

FloatShares, ForwardEarnings, ForwardPERatio, FractionalChange,

FractionalChange200Day, FractionalChange50Day, FractionalChangeHigh52Week,

FractionalChangeLow52Week, High, High52Week, ISIN, LastTradeSize,

LatestTrade, Lookup, Low, Low52Week, MarketCap, Name, Open, PEGRatio,

PERatio, Price, PriceTarget, PriceToBookRatio, PriceToSalesRatio,

QuarterForwardEarnings, Range, Range52Week, RawClose, RawHigh,

RawLow, RawOpen, RawRange, Return, Sector, SEDOL, ShortRatio,

SICCode, StandardName, Symbol, Volatility20Day, Volatility50Day,

Volume, Website, YearEarningsEstimate, YearPERatioEstimate=

Now you can retrieve data for a specific symbol. By default, you will get the current
price, but you can also ask for data from a specific date or within a date range.

In[3]:= FinancialData@"IBM", "Price"D

Out[3]= 127.17

In[4]:= DateListPlot@8FinancialData@"IBM", "Price", "Jan 1,2005"D,

FinancialData@"AAPL", "Price", "Jan 1,2005"D<D

Out[4]=
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Discussion
FinancialData has a rich interface that allows you to perform many types of queries.
First,  let’s see how you can use the interface to find what is available. Suppose you
are curious to see what coverage there is for a specific symbol.

In[5]:= FinancialData@"IBM", "Properties"D

Out[5]= 9Ask, AskSize, Average200Day, Average50Day, AverageVolume3Month,

Bid, BidSize, BookValuePerShare, Change, Change200Day, Change50Day,

ChangeHigh52Week, ChangeLow52Week, CIK, Close, Company,

CumulativeFractionalChange, CumulativeReturn, CUSIP, Dividend,

DividendPerShare, DividendYield, EarningsPerShare, EBITDA, Exchange,

FloatShares, ForwardEarnings, ForwardPERatio, FractionalChange,

FractionalChange200Day, FractionalChange50Day, FractionalChangeHigh52Week,

FractionalChangeLow52Week, High, High52Week, ISIN, LastTradeSize,

LatestTrade, Lookup, Low, Low52Week, MarketCap, Name, Open, PEGRatio,

PERatio, Price, PriceTarget, PriceToBookRatio, PriceToSalesRatio,

QuarterForwardEarnings, Range, Range52Week, RawClose, RawHigh,

RawLow, RawOpen, RawRange, Return, Sector, SEDOL, ShortRatio,

SICCode, StandardName, Symbol, Volatility20Day, Volatility50Day,

Volume, Website, YearEarningsEstimate, YearPERatioEstimate=

One difficulty is  that every security is  not guaranteed to have every property popu-
lated. There seem to be two possibilities when a property is not present. You may
get Missing["NotAvailable"] or you may get an unevaluated expression like Financial-
Data["IBM",  "CumulativeFractionalChange"].  One  way  to  see  what  properties  are
populated and also get a sample of the associated data is to execute the following (I
elide the results with Short).

In[6]:= WithA8sec = "IBM"<,

SelectA

Table@8prop, FinancialData@sec, propD<,

8prop, FinancialData@sec, "Properties"D<D,

FreeQAÒ, 9_, Missing@"NotAvailable"D

HoldPattern@FinancialData@__DD=E &EE êê Short
Out[6]//Short=

99Average200Day, 122.097=, 9Average50Day, 129.82=,á54à,

9YearEarningsEstimate, 11.08=, 8YearPERatioEstimate, 11.64<=

Let’s look at other types of financial data and see some of the additional capabilities
that are provided. Industry sectors are especially useful for studying and comparing
different industries’ performance.
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In[7]:= Length@FinancialData@"Sectors"DD

Out[7]= 169

There are 169 sectors. Here I use a pattern to find those with the string "Service" in
the name.

In[8]:= SelectAFinancialData@"Sectors"D, StringMatchQ@Ò, __ ~~ "Service" ~~ __D &E

Out[8]= 9CommunicationsServicesNotElsewhere,

LegalServices, MiscellaneousBusinessServices,

MiscellaneousHealthAndAlliedServicesNot, OilNaturalGasFieldServices,

RefrigerationServiceMachinery, ResearchDevelopmentAndTestingServices,

TruckingAndCourierServicesExceptAir=

Given  a  sector,  you  can  ask  for  its  members.  You  can  also  use  "Members"  with  an
index,  such  as  the  S&P  500,  or  an  exchange  like  the  New  York  Stock  Exchange
(NYSE). Here I pick 10 OilNaturalGasFieldServices members at random.

In[9]:= RandomChoice@FinancialData@"OilNaturalGasFieldServices", "Members"D, 10D

Out[9]= 8DE:HRL, PK:ONXC, PK:ASRPF, F:SJR,

PK:VTHC, F:DG1, NYSE:WG, TO:POU, TO:POU, DE:DO1<

In[10]:= Mean@Select@Quiet@FinancialData@Ò, "Price"D & êü

FinancialData@"OilNaturalGasFieldServices", "Members"DD, NumberQDD
Out[10]= 13.025

FinancialData  provides  information  on  153  currencies.  You  can  get  the  exchange
rate by using a string or list notation.

In[11]:= Length@FinancialData@"Currencies"DD

Out[11]= 153

In[12]:= FinancialData@"USDêEUR"D

Out[12]= 0.7065

In[13]:= FinancialData@8"USD", "EUR"<D

Out[13]= 0.7065

FinancialData  does  not  provide  a  notation  to  get  more  than  a  single  property  at  a
time,  which  is  unfortunate.  You  can  use  Outer  to  get  this  behavior,  but  it  seems  it
could  be  done  more  efficiently  if  this  were  native  to  FinancialData.  First  I  extract
U.S. oil and gas service companies using FinancialData’s ability to list the members
of a sector. 

In[14]:= americanOilGasCos =

SelectAFinancialData@"OilNaturalGasFieldServices", "Members"D,

StringMatchQ@Ò, H"AMEX:" "NYSE:" "NASDAQ:"L ~~ __D &E;

Then,  using  Outer,  I  extract  the  market  cap  and  a  price.  Recalling  that  market  cap
equals  share  price  *  shares  outstanding,  it  is  easy  to  compute  a  share-weighted
average price for the sector by summing the market cap and dividing by the sum of
the shares outstanding. I put this in a function sharedWeightedAvg so we can reuse
it later.
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Then,  using  Outer,  I  extract  the  market  cap  and  a  price.  Recalling  that  market  cap
equals  share  price  *  shares  outstanding,  it  is  easy  to  compute  a  share-weighted
average price for the sector by summing the market cap and dividing by the sum of
the shares outstanding. I put this in a function sharedWeightedAvg so we can reuse
it later.

In[15]:= sharedWeightedAvgAsymbols_List, price_E := ModuleA8data<,

data = SelectA

QuietAOuterAFinancialData@Ò1, Ò2D &, symbols, 8"MarketCap", price<EE,

And üü HNumberQ êü ÒL &E;

Total@dataD@@1DDêTotal@Divide üü Ò & êü dataDE

sharedWeightedAvg@americanOilGasCos, "Close"D

Out[16]= 33.619

You can  add  as  many  properties  as  you  need  to  the  second argument  of  Outer.  As
usual, it is a good idea to filter out invalid data, as I do here by using Select and test-
ing  for  numeric  values  in  both  entries  using  And @@ (NumberQ /@ #) &  as  the  filter
function.

You can use "Members" with indices and exchanges. Here I get the share-weighted av-
erage for the Dow Jones Industrial Average (DJIA) stocks.

In[17]:= sharedWeightedAvg@FinancialData@"^DJI", "Members"D, "Close"D

Out[17]= 35.3389

In[18]:= FinancialDataA"Exchanges"E

Out[18]= 9AMEX, Amsterdam, AustraliaASX, Barcelona, Berlin, Bilbao, Bombay, Brussels,

BuenosAires, Cairo, CBOE, CBOT, CME, Colombo, COMEX, Copenhagen,

Dusseldorf, Eurex, Euronext, Frankfurt, Hamburg, Hanover, HongKong,

IndiaNSE, Ireland, Jakarta, KCBT, KoreaKOSDAQ, KoreaKSE, Lisbon,

LondonIOB, LSE, Madrid, MadridCATS, MexicoBMV, Milan, Munich, NASDAQ,

NewZealandNZX, NYBOT, NYMEX, NYSE, Oslo, OTCBB, Paris, PhilippinesPSE,

Pinksheets, Prague, RussiaRTS, Santiago, SaoPaulo, Shanghai,

Shenzhen, Singapore, Stockholm, Stuttgart, SwitzerlandSWX, TaiwanOTC,

TaiwanTSEC, TelAviv, Toronto, TSXVenture, Valencia, Vienna, Xetra=

A special property called "Lookup" allows you to search using patterns. Here I search
for  New York Mercantile  Exchange (NYMEX) symbols  that  begin with "A"  and re-
trieve the full name.

In[19]:= FinancialData@Ò, "Name"D & êü FinancialData@"NYM:A*", "Lookup"D

Out[19]= 8Ardour Global XL Mar 2009, Ardour Global XL Jun 2009,

Ardour Global XL Sep 2009, Ardour Global XL Dec 2008<
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You can use dynamic features to create a mini interface for exploring the data. Here
I use PopMenu to create an interface over all the symbols in the Dow Jones Industrials
and all available properties.

In[20]:= DynamicModuleA9symbol = "MSFT", prop=,

RowA9PopupMenuADynamicAsymbolE, FinancialData@"^DJI", "Members"DE,

PopupMenuADynamic@propD, FinancialData@"Properties"DE,

DynamicAFinancialDataAsymbol, propEE=, " "EE

Out[20]= MSFT Ask 29.17

In the solution, we saw that data can be retrieved over intervals of time. The inter-
vals can specify a start date, a start and an end date, and also a period, such as "Day",
"Week", "Month", or "Year". 

In[21]:= FinancialData@"^DJI", 8"Jan 1,2008", "Jan 1,2009", "Month"<D

Out[21]= 8882008, 1, 2<, 12650.4<, 882008, 2, 1<, 12266.4<, 882008, 3, 3<, 12262.9<,

882008, 4, 1<, 12820.1<, 882008, 5, 1<, 12638.3<, 882008, 6, 2<, 11350.<,

882008, 7, 1<, 11378.<, 882008, 8, 1<, 11543.6<, 882008, 9, 2<, 10850.7<,

882008, 10, 1<, 9325.01<, 882008, 11, 3<, 8829.04<, 882008, 12, 1<, 8776.39<<

14.2 Importing Financial Data from Websites
Problem
The data you want is not yet available from FinancialData but it is available from an-
other website.

Solution
The  Import  function  can  retrieve  data  directly  from  websites  like  Yahoo!  Finance
that support an interface that uses HTTP GET|style queries. Here I extract options
data for IBM.

In[22]:= WithA9optSymbol = "IBMGM.X"=,

ImportA"http:êêdownload.finance.yahoo.comêdêquotes.csv?s=" <>

optSymbol <> "&f=sl1d1t1c1ohgv&e=.csv"EE

Out[22]= 88IBMGM.X, 0., NêA, NêA, 0., 0., 0., 0., 0<<

Discussion
The  Yahoo!  URL  structure  is  self-explanatory  except  for  the  f=sl1d1t1c1ohgv  por-
tion. The f stands for “format,” and the characters define the types of data you want

to  download.  For  example,  s  stands  for  symbol,  l1  last  trade  price,  and  d1  is  the
trade  date.  The  entire  set  is  available  on  a  website  (see  the  “See  Also”  section  on
page 559).
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to  download.  For  example,  s  stands  for  symbol,  l1  last  trade  price,  and  d1  is  the
trade  date.  The  entire  set  is  available  on  a  website  (see  the  “See  Also”  section  on
page 559).

To get more data on options chains it is useful to be able to encode an option sym-
bol. Each option symbol is made up of a base symbol, an expiration month letter in
the  range  A|L for  calls  and  M|X for  puts,  and  a  strike  price  letter.  Standard  strike
prices  are  in  increments  of  5  and  use  the  letters  A|T,  but  there  are  also  fractional
strike prices using letters U|Z (see the “See Also” section on page 559).

In[23]:= strikePriceCodeAstrike_IntegerE ê; Mod@strike, 5D ã 0 :=

FromCharacterCode@ToCharacterCode@"A"D + Mod@strikeê5 - 1, 20DD

strikePriceCode@strike_RealD :=

FromCharacterCode@ToCharacterCode@"U"D+Floor@Mod@Hstrike - 2.5L ê5 - 1, 6DDD

expirationCall@month_D :=

FromCharacterCode@ToCharacterCode@"A"D + month - 1D

expirationPut@month_D :=

FromCharacterCode@ToCharacterCode@"M"D + month - 1D

Now  it  is  easy  to  download  a  range  of  options  data,  such  as  these  July  (month  7)
calls for IBM at various strike prices.

In[27]:= WithA9symbols = Flatten@Table@"IBM" <> expirationCall@7D <>

strikePriceCode@strikeD <> ".X", 8strike, 60, 135, 5<DD=,

TableAImportA"http:êêdownload.finance.yahoo.comêdêquotes.csv?s=" <>

optSymbol <> "&f=sl1d1t1c1ohgv&e=.csv"E, 9optSymbol, symbols=EE

Out[27]= 888IBMGL.X, 0., NêA, 2:56pm, NêA, NêA, NêA, NêA, NêA<<,

88IBMGM.X, 0., NêA, NêA, 0., 0., 0., 0., 0<<,

88IBMGN.X, 0., NêA, NêA, 0., 0., 0., 0., 0<<,

88IBMGO.X, 0., NêA, NêA, 0., 0., 0., 0., 0<<,

88IBMGP.X, 51.4, 1ê22ê2010, 10:54am, 0., 51.4, 51.4, 51.4, 10<<,

88IBMGQ.X, 46.45, 1ê22ê2010, 10:55am, 0., 46.45, 46.45, 46.45, 10<<,

88IBMGR.X, 39.15, 1ê22ê2010, 10:54am, 0., 39., 39.15, 39.15, 34<<,

88IBMGS.X, 35., 1ê22ê2010, 10:54am, 0., 34.85, 35., 35., 52<<,

88IBMGT.X, 29.45, 1ê22ê2010, 10:54am, 0., 29.45, 29.45, 29.45, 2<<,

88IBMGA.X, 24.78, 1ê22ê2010, 10:54am, 0., 25.73, 24.78, 24.78, 106<<,

88IBMGB.X, 18.7, 1ê22ê2010, 10:55am, -2., 21.52, 19.8, 18.7, 16<<,

88IBMGC.X, 15.65, 1ê22ê2010, 10:54am, -0.45, 16.6, 15.65, 15.65, 55<<,

88IBMGD.X, 11.45, 1ê22ê2010, 10:55am, -0.9, 11.15, 11.95, 11.15, 49<<,

88IBMGE.X, 8.05, 1ê22ê2010, 10:54am, -0.95, 8.55, 8.75, 8.05, 111<<,

88IBMGF.X, 5.59, 1ê22ê2010, 10:55am, -0.76, 6.4, 6.2, 5.5, 62<<,

88IBMGG.X, 3.6, 1ê22ê2010, 10:54am, -0.6, 4.5, 4.05, 3.6, 63<<<

You  can  also  import  data  from  files  in  a  variety  of  formats  and  from  databases
(provided  you  have  access  to  such  databases).  See  Recipe  17.9  for  Mathematica's
database connectivity capabilities.
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See Also
An explanation of the Yahoo! interface can be found at: http://bit.ly/dyiIPO.

The encoding of options ticker symbols is explained here http://bit.ly/24yb0p.

14.3 Present Value of Future Cash Flows
Problem
You want  to  compute  the  present  value  of  a  set  of  cash  payments  or  receipts  over
time.

Solution
Use the standard formula for compound interest calculations to discount future cash
flows to the present.

In[28]:= pv@cashFlows_List, times_List, rate_RealD :=

ModuleB9T = Length@cashFlowsD=,‚
t=1

T cashFlows@@tDD

H1 + rateLtimes@@tDD
F

For  example,  if  you  pay  $1000  today  to  receive  income  of  $100,  $300,  $600,  and
$600 in the next four years with a rate of 5%, the present value is

In[29]:= pv@8-1000.0, 100.0, 300.0, 600.0, 600.0<, 80, 1, 2, 3, 4<, 0.05D

Out[29]= 379.271

Discussion
Cash in hand today is worth more then the same amount in the future. Present value
is determined by discounting future cash flows by a discount factor. The solution fol-
lows from the formula for a discount factor in terms of an interest rate r and a time
t, which is Hr + 1L-t. There are some standard types of cash flow arrangements, and
you can use Simplify to derive them from the standard present value formula in the
solution. For example, a perpetuity is a set of fixed cash flows X that repeat forever. 

In[30]:= SimplifyASumAXêH1 + rL^t, 9t, 1, Infinity=EE

Out[30]=
X

r

In[31]:= 1êHH1 + rL^tL êê TraditionalForm

Out[31]//TraditionalForm=

Hr + 1L-t

Hence...
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Hence...

In[32]:= pvPerpetuity@cash_Real, rate_RealD :=
cash

rate

An annuity is a set of fixed cash flows X that repeat for a specified number of periods T.

In[33]:= Simplify@Sum@XêH1 + rL^t, 8t, 1, T<DD

Out[33]=
X - H1 + rL-T X

r

In[34]:= pvPerpetuity@100.00, 0.03D

Out[34]= 3333.33

Hence...

In[35]:= pvAnuityAcash_Real, rate_Real, periods_IntegerE :=

cash - H1 + rateL-periods cash

rate

In[36]:= pvAnuity@100.00, 0.03, 10D

Out[36]= 853.02

Closely  related  to  present  value  is  the  internal  rate  of  return,  the  rate  that  would
make the present value equal to zero. You can use FindRoot to calculate the internal
rate of return for a set of cash flows. Here we tell FindRoot to begin searching for a so-
lution at irr of 0.0.

In[37]:= internalRateOfReturn@cashFlows_List, times_ListD :=

FindRoot@pv@cashFlows, times, irrD, 8irr, 0.0<D

In[38]:= internalRateOfReturn@8-1000.0, 100.0, 300.0, 600.0, 600.0<, 80, 1, 2, 3, 4<D

Out[38]= 8irr Ø 0.169775<

In finance, it is more common to deal with continuously compounding interest than
the discrete compounding formulas discussed. The present value in terms of continu-
ously compounding interest is

In[39]:= pvCC@cashFlows_List, times_List, rate_RealD :=

ModuleA9N = Length@cashFlowsD=,

Sum@cashFlows@@iDDêE^Hrate*times@@iDDL,

8i, 1, N<DE

In[40]:= pvCC@8-1000.0, 100.0, 300.0, 600.0, 600.0<, 80, 1, 2, 3, 4<, 0.05D

Out[40]= 374.237
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See Also
You may want to play with (and download the source code for) some of the Wolfram
demonstrations  that  cover  present  value  and  related  basic  financial  concepts.  See,
for example, http://bit.ly/1D7JVU. 

14.4 Interest Rate Sensitivity of Bonds 
Problem
You want  to  determine the fair  value of  a  bond and analyze  its  performance under
varying market conditions.

Solution
Before  you  can  analyze  a  bond,  you  need  to  know  how  to  compute  its  price  and
yield to maturity. The price of a fixed-rate bond is equivalent to the present value of the
bond’s coupon payments. For example, if a three-year bond has a face value of $100
and makes yearly payments of 10% and the present interest rate is 8%, then the fair
bond price should be

In[41]:= pv@810, 10, 110<, 81, 2, 3<, 0.08D

Out[41]= 105.154

The price only captures one aspect of a bond. You may also want to know the effec-
tive interest  rate  of  the bond if  it  is  held to maturity  (yield to  maturity).  This  is  the
same as the internal rate of return calculation of Recipe 12.1. The first  cash flow
is  the  bond’s  price,  then the  two coupon payments,  and  the  final  is  coupon  plus
face value.

In[42]:= H*Yield to maturity for a bond is the same

calculation as IRR with bond price as first cash flow.*L

internalRateOfReturn@8-105.154, 10, 10, 110<, 80, 1, 2, 3<D
Out[42]= 8irr Ø 0.0800007<

It is no accident that the yield to maturity is equal (modulo rounding errors) to the
current interest rate. This is a sign that the bond is priced correctly. 

Investors in bonds want to understand a bond’s sensitivity to changes in current inter-
est rates. The price of an asset with long-term cash flows has more interest-rate sensi-
tivity than an asset with cash flows in the near future.  The duration  is  a  weighted
average maturity of a bond. 
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In[43]:= duration@cashFlows_List, times_List, rate_RealD :=

ModuleA9T = Length@cashFlowsD, D, B=,

8D, B< = Sum@8Htimes@@tDD*cashFlows@@tDDLêH1 + rateL^times@@tDD,

cashFlows@@tDDêH1 + rateL^times@@tDD<, 8t, 1, T<D; DêBE

In[44]:= duration@810, 10, 110<, 81, 2, 3<, 0.08D

Out[44]= 2.74236

In[45]:= convexity@cashFlows_List, times_List, rate_RealD :=

ModuleA9T = Length@cashFlowsD, B=,

B = pv@cashFlows, times, rateD; H1êBL*H1êH1 + rateL^2L *

Sum@Htimes@@tDD + times@@tDD^2L *

HcashFlows@@tDDêH1 + rateL^times@@tDDL, 8t, 1, T<DE

In[46]:= convexity@810, 10, 110<, 81, 2, 3<, 0.08D

Out[46]= 9.11374

Discussion
In[47]:= Plot@pv@810, 10, 10, 10, 10, 110<, 81, 2, 3, 4, 5, 6<, rD, 8r, 0.0, 0.20<D

Out[47]=
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In[48]:= PlotApvAAppend@Table@10, 8119<D, 110D, Range@1, 120D, rE, 8r, 0.0, 0.20<E

Out[48]=
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14.5 Constructing and Manipulating 
Yield Curves
Problem
You want to build a yield curve from underlying spot rates and then model changes
in the curve so you can model the return of a portfolio of rate-sensitive securities.

Solution
If you are only interested in changes in the yield curve at a particular maturity, you
can use published yields  for  various maturities  and use interpolation.  For  example,
here  is  some  interest  rate  data  taken  from  Bloomberg  in  late  June  2009.  The  pairs
are {days, rate}.

In[49]:= rates = 887, 0.01<, 814, 0.04<, 830, 0.05<, 860, 0.17<, 8180, 0.29<,

8360, 0.4<, 8730, 1.11<, 81095, 1.63<, 81825, 2.56<, 82555, 3.20<,

83650, 3.54<, 85475, 4.12<, 87300, 4.49<, 810950, 4.86<<;

In[50]:= iRates = Interpolation@rates, Method Ø "Spline"D;

In[51]:= ShowAListPlotArates, PlotStyle Ø 8PointSize@0.01D<,

PlotRange Ø 880, 11000<, 80, 6<<E,

Plot@iRates@tD, 8t, 7, 11000<D

E

Out[51]=
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Interpolation is all well and good, but if you want to understand the dynamics of the
curve, you need a model. The Nelson-Siegel function is a popular parametric model
of the yield curve. 
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In[52]:= nsYieldCurve@m_, b0_, b1_, b2_, t_D :=

b0 +
b1 H1 - Exp@-mêtDL

HmêtL
+

b2
H1 - Exp@-mêtDL

HmêtL
- Exp@-mêtD

In[53]:= fit = FindFit@ rates, nsYieldCurve@m, b0, b1, b2, tD,

8b0, b1, b2, t<, m, Method Ø NMinimizeD
Out[53]= 8b0 Ø 5.28846, b1 Ø -5.26294, b2 Ø -3.75868, t Ø 651.468<

Here I use the fitted curve to initialize a Manipulate. You can then play with the pa-
rameters to get a feel for their effect.

In[54]:= ManipulateAShowAListPlotArates,

PlotStyle Ø 8PointSize@0.01D<, PlotRange Ø 880, 11000<, 80, 6<<E,

PlotAnsYieldCurve@m, beta0, beta1, beta2, tauD,

8m, 1, 11000<, PlotRange Ø 880, 11000<, 80, 6<<EE,

88beta0, b0<, 3, 6, 0.1<,

88beta1, b1<, 2, -6, 0.1<,

88beta2, b2<, -5, -1, 0.1<,

88tau, t<, 100, 1000, 10<, SaveDefinitions Ø TrueE ê. fit

Out[54]=
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Discussion
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Discussion
An extension of the Nelson-Siegel model is the Svensson model, which addresses problems
with convexity, inaccuracies introduced for large changes in yield due to the nonlinear
relationship between prices and yields. The capital gain induced by a decline in the
yield is larger than the capital loss induced by an equal-sized increase in the yield.

Given  the  Svensson  model  for  the  forward  curve,  you  can  use  Mathematica’s  sym-
bolic integration capabilities to find the zero coupon (or spot) model.

In[55]:= Clear@svForwardCurve, svSpotCurveD;

svForwardCurve@m_, b0_, b1_, b2_, b3_, t1_, t2_D :=

b0 + b1 Exp@-mêt1D + b2 Hmêt1L Exp@-mêt1D + b3 Hmêt2L Exp@-mêt2D

In[57]:= svSpotCurve@m_, b0_, b1_, b2_, b3_, t1_, t2_D =

FullSimplifyAH1êmL*

Integrate@svForwardCurve@m, b0, b1, b2, b3, t1, t2D, 8m, 0, m<DE

Out[57]=

m b0 + b1 t1 - ‰
-

m

t1 t1 + b2 t1 - ‰
-

m

t1 Hm + t1L + b3 t2 - ‰
-

m

t2 Hm + t2L

m

The solution  demonstrates  a  so-called  parametric  method (i.e.,  a  method based on
parameters  that  have  real-world  meaning).  There  are  also  nonparametric  methods
that  are  in  use  where  curves  are  fit  using  polynomials  and  tension  splines.  See  the
following references.

See Also
This recipe is based on Parsimonious Modeling of Yield Curves by Charles R. Nelson
and  Andrew  F.  Siegel  (Journal  of  Business,  Vol.  60,  No.  4  [Oct.  1987]:  473|489),
which can be found online at http://bit.ly/1mQ3mq.

A library of Mathematica code for working with the term structure of interest rates
can be found on Mark Fisher’s website at http://bit.ly/3hW4KC, with documentation
at http://bit.ly/1ormSc.

A more thorough investigation of yield curve models can be found in this notebook
at the Wolfram Library Archives, http://bit.ly/17OU4U, which was developed by Jan
Hurt of the Charles University of Prague.

14.6 Black-Scholes for European Option Pricing
Problem
You want to price European puts and calls using the Black-Scholes formula.
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Solution
We  give  the  solution  to  the  Black-Scholes  formula  here  without  derivation.  There
are many excellent resources listed in the “See Also” section on page 572 for readers
interested  in  the  theory  underlying  this  solution.  The  helper  functions  d1  and  d2
have become fairly standard within the literature, so I use them here despite my per-
sonal  aversion to short,  cryptic  names.  The expression involving the d1  term in the
pricing functions is related to the value of acquiring the stock; the expression involv-
ing the d2 term relates to the value of exercising the option on expiration. 

In[58]:= Clear@d1, d2, priceEuroCall, priceEuroPutD

These helper functions are used by both priceEuroCall and priceEuroPut.

In[59]:= d1Aprice_Real, strike_Real, volatility_Real, maturityT_Real, rate_RealE :=

ILog@priceêstrikeD + Irate + volatility^2.ë 2.M*maturityTMë

Ivolatility*SqrtAmaturityTEM;

d2Aprice_Real, strike_Real, volatility_Real, maturityT_Real, rate_RealE :=

d1Aprice, strike, volatility, maturityT, rateE -

volatility*SqrtAmaturityTE;

cumNormDist@x_?NumberQD := CDF@NormalDistribution@D, xD;

Given the price of a stock, the strike price of the option, the volatility, time to option
maturity in fractions of a year, and the risk-free interest rate, compute the value of a
call or put option.

In[62]:= priceEuroCallAprice_Real, strike_Real,

volatility_Real, maturityT_Real, rate_RealE :=

price*cumNormDistAd1Aprice, strike, volatility, maturityT, rateEE -

strike*ExpA-rate*maturityTE*

cumNormDistAd2Aprice, strike, volatility, maturityT, rateEE

The fact that a put can be priced in terms of a call is called put-call parity.

In[63]:= priceEuroPutAprice_Real, strike_Real, volatility_Real, maturityT_Real,

rate_RealE := priceEuroCallAprice, strike, volatility, maturityT, rateE +

strike*ExpA-rate*maturityTE - price

Here we compute the value of a call option with strike $60 and 1/2 year to maturity,
with the underlying stock trading at $70, with a volatility of 0.29, and a risk-free rate
of 4%. The volatility is usually measured as the standard deviation of the stock price.

In[64]:= priceEuroCall@70., 60., 0.29, 0.5, 0.04D

Out[64]= 12.6323
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Here  we  show  the  opposing  relationship  between  a  call  and  a  put  with  equal
attributes  by  plotting  their  values  against  the  price  of  the  underlying  stock.  A  call
increases in value with the stock price, whereas a put decreases in value. 

In[65]:= PlotA8priceEuroCall@s, 60., 0.29, 0.5, 0.04D,

priceEuroPut@s, 60., 0.29, 0.5, 0.04D<, 8s, 40, 80<,

PlotRange -> All, AxesLabel -> 8"stock price", "option price"<,

PlotRange Ø 880, 15<, 82, 15<<, ImageSize Ø SmallE

Out[65]=

50 60 70 80

stock price

5

10

15

20

option price

Discussion
Although the ability to price an option is vital to successful trading, it is equally vital
to measure the sensitivity of an option (or any other derivative security) to changes
in  the  economic  environment.  These  measures  are  based  on  mathematical  deriva-
tives of the pricing function. These measures are collectively known as the Greeks be-
cause each is associated with a Greek letter.

In[66]:= ClearAdeltaEuroCall, deltaEuroPut,

gammaEuroCall, gammaEuroPut, thetaEuroCall, thetaEuroPut,

rhoEuroCall, rhoEuroPut, vegaEuroCall, vegaEuroPutE

Delta is a measure of the sensitivity of an option to changes in the stock price. It is
computed as the first derivative of the pricing function with respect to the underly-
ing stock price.

In[67]:= deltaEuroCallAprice_Real, strike_,

volatility_Real, maturityT_Real, rate_RealE :=

ModuleA8s<, DApriceEuroCallAs, strike, volatility, maturityT, rateE, sE ê.

s ß priceE

deltaEuroPutAprice_Real, strike_, volatility_Real,

maturityT_Real, rate_RealE :=

DApriceEuroPutAs, strike, volatility, maturityT, rateE, sE ê. s ß price

Gamma is a measure of the sensitivity of the delta to changes in the stock price. It is
computed as the second derivative of the pricing function with respect to the underly-
ing stock price.
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In[69]:= gammaEuroCallAprice_Real, strike_, volatility_, maturityT_, rate_E :=

ModuleA8s<,

DApriceEuroCallAs, strike, volatility, maturityT, rateE, 8s, 2<E ê.

s ß priceE

gammaEuroPutAprice_Real, strike_, volatility_, maturityT_, rate_E :=

ModuleA8s<,

DApriceEuroPutAs, strike, volatility, maturityT, rateE, 8s, 2<E ê.

s ß priceE

Theta is a measure of the sensitivity of the option price to time. It is computed as the
first derivative of the pricing function with respect to the time to expiration (maturity).

In[71]:= thetaEuroCallAprice_Real, strike_,

volatility_Real, maturityT_Real, rate_RealE :=

ModuleA8t<, -DApriceEuroCallAprice, strike, volatility, t, rateE, tE ê.

t ß maturityTE

thetaEuroPutAprice_Real, strike_, volatility_Real,

maturityT_Real, rate_RealE :=

ModuleA8t<, -DApriceEuroPutAprice, strike, volatility, t, rateE, tE ê.

t ß maturityTE

Rho is a measure of the sensitivity of the option price to changes in the risk-free rate.
It is computed as the first derivative of the pricing function with respect to the inter-
est rate.

In[73]:= rhoEuroCallAprice_Real, strike_Real,

volatility_Real, maturityT_Real, rate_RealE :=

ModuleA8r<, DApriceEuroCallAprice, strike, volatility, maturityT, rE,

rE ê. r ß rateE

rhoEuroPutAprice_Real, strike_Real, volatility_Real,

maturityT_Real, rate_RealE :=

ModuleA8r<, DApriceEuroPutAprice, strike, volatility, maturityT, rE, rE ê.

r ß rateE

Vega  (also  known  as  kappa)  is  a  measure  of  the  sensitivity  of  the  option  price  to
changes in the volatility.  It is computed as the first derivative of the pricing function
with respect to the volatility.
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In[75]:= vegaEuroCallAprice_Real, strike_Real,

volatility_Real, maturityT_Real, rate_RealE :=

ModuleA8v<, DApriceEuroCallAprice, strike, v, maturityT, rateE, vE ê.

v ß volatilityE

vegaEuroPutAprice_Real, strike_Real, volatility_Real,

maturityT_Real, rate_RealE :=

ModuleA8v<, DApriceEuroPutAprice, strike, v, maturityT, rateE, vE ê.

v ß volatilityE

Here we compute delta of a call with strike $60 with 6 months left to maturity when
the stock is trading at $40. This shows that the option will change value by roughly
3.7 cents for a dollar move. We can confirm this using the pricing function.

In[77]:= deltaEuroCall@40.00, 60., 0.29, 0.5, 0.04D

Out[77]= 0.0377654

This  is  in  basic  agreement  with the  difference  between the  value  of  the  option at  a
stock  price  of  $40.50  and  $39.50  (we  choose  a  dollar  spread  that  places  the  delta
stock price at the center).

In[78]:= priceEuroCall@40.50, 60., 0.29, 0.5, 0.04D -

priceEuroCall@39.50, 60., 0.29, 0.5, 0.04D
Out[78]= 0.0378454

You can get an intuitive feel for the behavior of options by creating a 3D plot of each
Greek with respect to stock price and time.

Note how delta  increases  sharply  as  the stock price  approaches the strike and how
this sensitivity is stronger near expiration (t = 0).

In[79]:= Plot3DAdeltaEuroCall@s, 60., 0.29, t1, 0.04D,

8s, 40., 80.<, 8t1, 0.001, 1<, ImageSize -> SmallE

Out[79]=
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The  sensitivity  of  the  delta  to  shrinking  time  to  maturity  and  strike  price  is  rein-
forced by the plot of the gamma, which is the second derivative of the price, or the
first derivative of the delta. 

In[80]:= Plot3DAgammaEuroCall@s1, 60., 0.29, t1, 0.04D,

8s1, 40., 80.<, 8t1, 0.001, 1.<, ImageSize -> SmallE

Out[80]=

The plot of theta shows that the value of an option will decay more rapidly with ad-
verse  moves  of  the  underlying  stock  when  there  is  a  short  time  to  expiration  com-
pared to when there are longer times.

In[81]:= Plot3DAthetaEuroCall@s1, 60, 0.29, t1, 0.04D,

8s1, 40, 80<, 8t1, 0.001, 1.<, ImageSize Ø SmallE

Out[81]=
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In[82]:= Plot3DArhoEuroCall@s1, 60., 0.29, t1, 0.04D,

8s1, 40, 80<, 8t1, 0.001, 1<, ImageSize Ø SmallE

Out[82]=

Note how sensitivity to volatility increases near the strike price and with increasing
time. This follows from the fact that high volatility has more impact over longer time
periods  and  for  options  that  are  in  the  money  (because  of  the  larger  delta  and
gamma of in-the-money options).

In[83]:= Plot3DAvegaEuroCall@s1, 60, 0.29, t1, 0.04D,

8s1, 20, 100<, 8t1, 0.01, 0.5<, ImageSize Ø SmallE

Out[83]=

The interactive capabilities of Mathematica 6 provide an excellent platform for get-
ting the feel of the behavior of the Greeks. However, for sake of responsiveness, it is
a  good  idea  to  evaluate  the  derivative  outside  the  Manipulate.  You  can  use  With  to
evaluate the derivative before the call to Manipulate and FullSimplify to make sure it
is in simplest form. 
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In[84]:= manipulateDeltaEuroCall@D := BlockA8k, v, t1, r<,

WithA9deltaCall = FullSimplify@D@priceEuroCall@s, k, v, t1, rD, sDD=,

ManipulateAPlot3D@Evaluate@deltaCallD, 8s, 40., 80.<, 8t1, 0.001, 1.<,

PerformanceGoal Ø "Speed"D, 88k, 60., "Strike"<, 10., 100.<,

88r, 0.04, "Rate"<, 0.01, 0.12<, 99v, 0.29, "Volatility"=, 0.01, 0.40=,

ContinuousAction Ø False, AppearanceElements Ø AllEEE

In[85]:= manipulateDeltaEuroCall@D

Out[85]=

Strike

Rate

Volatility

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

0.0

0.5

1.0

See Also
Modeling  Financial  Derivatives  with  Mathematica  (Cambridge  University  Press)  by
William  Shaw  is  an  excellent  resource  for  the  quant  interested  in  modeling  vanilla
and more exotic flavors (such as Asian options) in Mathematica. It concentrates on
analytical solutions rather than solutions based on numerical methods.

Black-Scholes  and Beyond:  Option Pricing Models  by Neil  A.  Chris  (McGraw-Hill)
covers the basics of modern option pricing. Wikipedia also provides basic informa-
tion on the Black-Scholes model: http://bit.ly/c8IrYX.
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14.7 Computing the Implied Volatility 
of Financial Derivatives
Problem
You want to compute the volatility of an option that is implied by its current market
price.

Solution
Use FindRoot to solve for the volatility.

In[86]:= impliedVolEuroCallAprice_, strike_, maturityT_, rate_, optionsPrice_E :=

volatility ê.

FindRootApriceEuroCallAprice, strike, volatility, maturityT, rateE ã

optionsPrice, 9volatility, 0.2=E

In[87]:= impliedVolEuroPutAprice_, strike_, maturityT_, rate_, optionsPrice_E :=

volatility ê.

FindRootApriceEuroPutAprice, strike, volatility, maturityT, rateE ã

optionsPrice, 9volatility, 0.2=E

In[88]:= impliedVolEuroCall@58.00, 60., 0.5, 0.04, 3.8D

Out[88]= 0.254867

Discussion
Implied  volatility  is  the  volatility  that  is  implied  by  the  market  price  of  the  option
given the pricing model. The idea is that the market will find the fair price for the op-
tion,  and  from that,  you  can  back  out  the  volatility  of  the  underlying  security  that
the market  is  pricing in.  This  is  in contrast  to historical  volatility,  which is  a  direct
measure of the movement of the underlying’s price over recent history. 

In  the  solution,  FindRoot  searches  for  a  numerical  root  of  the  pricing  function  that
will yield the observed price, given the other option parameters. 
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14.8 Speeding Up NDSolve When Solving 
Black-Scholes and Other PDEs
Problem
You  want  to compute numerical  solutions to partial  differential  equations (PDEs),
such as the Black-Scholes PDE. NDSolve can sometimes take too much time or lose ac-
curacy near critical values. You would like to speed up NDSolve without loss of accu-
racy where it matters. 

-∂tu@x,tD==
1

2
s2x2∂x,xu@x,tD+r x ∂xu@x,tD-r u@x,tD;

Solution
This  recipe  was  motivated  by  work  done  by  Andreas  Lauschke  and  used  with
permission. Refer to the “See Also” section on page 578 for more information.

To  illustrate  the  problem,  I  use  the  PDE  for  a  European  put  on  a  dividend-paying
security. For the interest and dividend, I use fixed rate plus time-varying rate that is
strictly  increasing.  For volatility,  I  use a  volatility  smile,  which reflects  the observa-
tion  that  volatility  is  higher  for  in-  and  out-of-the-money  options  and  lower  for
at-the-money options. In the PDE, x represents the price of the underlying and t is time. 

In[89]:= ClearAiRate, dividend, sigma, makePutEuropeanE;

iRate@t_D := 0.035 + t 0.01ê3

dividend@t_D := 0.01 + t 0.01ê3;

sigma@price_, strike_, time_D := 1.ê10000 Hprice - strikeL^2 + 0.25

Options@makePutEuropeanD = 8Method Ø Automatic<;

makePutEuropean@strike_, lower_,

upper_, timeToExp_, opts : OptionsPattern@DD :=

ModuleA8<,

NDSolveA9D@u@x, tD, tD + 1ê2 D@u@x, tD, x, xD x^2 sigma@x, strike, tD^2 +

HiRate@tD - dividend@tDL x D@u@x, tD, xD - iRate@tD u@x, tD ã 0,

u@x, timeToExpD ã Max@0, strike - xD,

u@lower, tD ã strike,

u@upper, tD ã 0=, u, 8x, lower, upper<, 8t, 0, timeToExp<, optsEE

You  can  adjust  different  aspects  of  this  model  to  suit  your  needs.  The  main  point
here is to consider the performance of NDSolve using different options.

In[95]:= Off@NDSolve::"mxsst"D

8timePut1, put1< = makePutEuropean@50, 0, 250, 1D êê Timing

Out[96]= 93.01551, 99u Ø InterpolatingFunction@880., 250.<, 80., 1.<<, <>D===
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It took just over eight seconds to solve this PDE numerically. However, you can do
better  using  an  adaptive  grid  method  where  you  instruct  NDSolve  to  sample  more
points around the strike price while being looser away from the strike. Here I define
a function for the adaptive grid but defer explanation until the discussion.

In[97]:= Clear@makeAdaptiveGrid, makePutEuropeanAdaptiveD

makeAdaptiveGridAstrike_, size_: 200, deg_: 1E :=

ModuleA9a = 2 deg + 1, incr = 2 strikeêsize=,

Table@HHx - strikeL^aêstrike^Ha - 1LL + strike, 8x, 0, strike*2, incr<DE

In[99]:= makePutEuropeanAdaptive@strike_, lower_, upper_, timeToExp_D :=

ModuleA8<,

NDSolveA9D@u@x, tD, tD + 1ê2 D@u@x, tD, x, xD x^2 sigma@x, strike, tD^2 +

HiRate@tD - dividend@tDL x D@u@x, tD, xD == iRate@tD u@x, tD,

u@x, timeToExpD ã Max@0, strike - xD,

u@lower, tD ã strike,

u@upper, tD ã 0=, u, 8x, lower, upper<,

8t, 0, timeToExp<, Method ß 9"MethodOfLines",

"SpatialDiscretization" Ø 9"TensorProductGrid", "Coordinates" Ø Nü

UnionAmakeAdaptiveGrid@strikeD, Range@2 strike, 5 strike, 2DE==EE

In[100]:= Off@NDSolve : : "eerri", NDSolve::"eerr"D

8timePut2, put2< = makePutEuropeanAdaptive@50, 0, 250, 1D êê Timing

Out[101]= 90.129383, 99u Ø InterpolatingFunction@880., 250.<, 80., 1.<<, <>D===

You can see the speedup is quite substantial. 

In[102]:= timePut1êtimePut2

Out[102]= 23.3068

Discussion
You can see that the result of pricing the option appears the same for both versions.

In[103]:= GraphicsColumnA9Plot3DAEvaluate@u@x, 1 - tD ê. Firstüput1D, 8x, 40, 60<,

8t, 0, 1<, PlotRange Ø All, ImageSize Ø 8300, 300<, AxesLabel Ø

9"Underlying Price", "Time to\nExpiration", "Option\nPrice"=E,

Plot3DAEvaluate@u@x, 1 - tD ê. Firstüput2D, 8x, 40, 60<, 8t, 0, 1<,

PlotRange Ø All, ImageSize Ø 8300, 300<, AxesLabel Ø 9"Underlying Price",

"Time to\nExpiration", "Option\nPrice"=E=, Spacings Ø 0E
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Out[103]=

And, indeed, you can see that the max difference in both approaches is negligible.

In[104]:= Maxü

FlattenüAbs@Table@Hu@x, tD ê. Firstüput1L, 8x, 40, 60<, 8t, 0, 1, 0.01<D -

Table@Hu@x, tD ê. Firstüput2L, 8x, 40, 60<, 8t, 0, 1, 0.01<DD
Out[104]= 0.0000251351
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A few words  about  the  function makeAdaptiveGrid  are  in  order.  The  motivation for
this function can be seen considering the plot of  x^3.

In[105]:= PlotAx^3, 8x, -3, 3<, ImageSize Ø SmallE

Out[105]=
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The slope about the origin is small compared to the slope at the extremes. This is per-
fect for our application because it means that simply shifting the origin to the strike
will give a function that generates a dense grid around the strike and a looser one at
the  wings  of  the  option  (away  from  the  strike).  The  two  optional  parameters  of
makeAdaptiveGrid  control  the  number  of  grid  points  (size)  generated  and  the
extent of the density around the slope (deg).

In[106]:= NeedsA"PlotLegends`"E

WithA8strike = 50<,

ListLinePlotA8makeAdaptiveGrid@strike, 200, 1D,

makeAdaptiveGrid@strike, 200, 2D<, DataRange Ø 80, 2 strike<,

PlotStyle Ø 8Thin, Dashed<, PlotLegend Ø 9"deg = 1", "deg = 2"=,

LegendPosition Ø 8-0.75, 0.25<, LegendSize Ø 0.5EE

Out[107]=
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In the NDSolve options, I use MethodOfLines, which is a very efficient way to numerically
solve  a  PDE provided it  is  an  initial  value  problem.  In  particular,  the  solution uses
the  suboption  "SpatialDiscretization",  which  itself  allows  the  coordinates  to  be
passed  in.  Here  the  expression  N@Union[makeAdaptiveGrid[strike],  Range[2  strike,
5 strike, 2]] simply tacks on some coarsely spaced points far from the strike so we
can ensure  the  solution is  valid  for  a  reasonably  liberal  range  of  prices  on the  high
end.  Refer  to  the  references  in  the  following  “See  Also”  section  for  more  details
about  MethodOfLines,  which  is  quite  feature  rich  and  worth  learning  if  you  plan  to
use NDSolve.
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In the NDSolve options, I use MethodOfLines, which is a very efficient way to numerically
solve  a  PDE provided it  is  an  initial  value  problem.  In  particular,  the  solution uses
the  suboption  "SpatialDiscretization",  which  itself  allows  the  coordinates  to  be
passed  in.  Here  the  expression  N@Union[makeAdaptiveGrid[strike],  Range[2  strike,
5 strike, 2]] simply tacks on some coarsely spaced points far from the strike so we
can ensure  the  solution is  valid  for  a  reasonably  liberal  range  of  prices  on the  high
end.  Refer  to  the  references  in  the  following  “See  Also”  section  for  more  details
about  MethodOfLines,  which  is  quite  feature  rich  and  worth  learning  if  you  plan  to
use NDSolve.

See Also
This  recipe  was  motivated  by  the  notebook  penalty.nb  developed  by  Andreas
Lauschke. The original notebook is available in the downloads section of this book’s
website:  http://bit.ly/xIgx7.  Also  see  Lauschke’s  site  at  http://bit.ly/1Zhdfv  for  useful
Mathematica and web Mathematica samples, products, and services.

NDSolve was introduced in Recipe 13.9.

The  MethodOfLines  can  be  found  in  tutorial/NDSolvePDE  in  the  Mathematica
documentation.

14.9 Developing an Explicit Finite Difference 
Method for the Black-Scholes Formula 
Problem
You  want  to  use  the  finite  difference  method  (FDM)  to  compute  solutions  to  the
Black-Scholes formula in an efficient manner.

Solution
This solution was developed by Thomas Weber and rearranged to conform to the for-
mat of  this  book.  Refer  to the “See Also” section on page 582 for  references to the
original notebook.

In this solution we will price a European call option with the following attributes:

In[108]:= strike = 100.; H*strike price at maturity of the option*L

sigma = 0.2; H*volatility of the prices of the underlying*L

tau = 1.0; H*time to maturity of the option*L

rate = 0.05 ; H*riskless interest rate*L

The presented calculation scheme is a version of the explicit finite difference method
(FDM).  While  applying  this  calculation  scheme,  the  new  values  for  the  derivative
Vj,i-1  are stepwise calculated from Vj+1,i, Vj,i, and Vj-1,i. The concepts are elabo-
rated in the “Discussion” section on page 580. 578 | Chapter 14: Financial Engineering



The presented calculation scheme is a version of the explicit finite difference method
(FDM).  While  applying  this  calculation  scheme,  the  new  values  for  the  derivative
Vj,i-1  are stepwise calculated from Vj+1,i, Vj,i, and Vj-1,i. The concepts are elabo-
rated in the “Discussion” section on page 580. 

In this solution, the number of grid points for the discrete prices of the stock n  can
freely  be  chosen  within  a  specific  range.  Increasing  the  number  of  time  steps  im-
proves the accuracy but also increases the overall calculation time. For a first demon-
stration, the number of discrete stock prices is set to 20.

In[112]:= n = 20;

The grid points for the stock price should be placed in a range not too tight around
the current  stock price.  In  this  example,  the  range is  chosen from zero up to  twice
the strike price. From the chosen region results the step size DS for the discretization
of  the  stock  prices  range.  One  way  to  generate  the  list  of  grid  points  is  to  use
NestList. #+DS& within NestList is a generic function defined for local use.

On  the  list  of  discrete  stock  prices,  the  exercise  function  of  the  option  can  be  ap-
plied.  The  resulting  list  provides  the  starting  or  initial  values  for  the  numerical
method.

In[113]:= dS = H2*strikeLên;

S = NestList@Ò1 + dS & , 0, nD;

V = HMax@Ò1 - strike, 0D & L êü S;

The  necessary  number  of  time  steps  for  the  explicit  FDM  to  converge  depends  on
the  step  size  for  the  discretization  of  the  stock  price,  the  volatility,  and  the  strike
price. The number of time steps can be calculated as follows (for more information,
see the Wilmott reference in the “See Also” section on page 582):

In[116]:= nt = Floor@têHdSêH2*X*sLL^2D + 1;

Then the size of the time steps are

In[117]:= dt =
t

nt
;

In pricingFunc, two terms G and D (see the “Discussion” section on page 580) are
the speed-critical  computations since they are inside the Do loop. The Mathematica
function ListConvolve  is  used because it  is  a  very fast  way to compute finite  differ-
ences.  After  the  Do  loop  is  finished,  V  contains  a  list  of  option  values.  Each  option
value corresponds to a discrete stock price on the grid. Interpolation on these num-
bers produces an interpolating function for the option price given current price of the
underlying S0.
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In[118]:= pricingFunc@X_, r_, t_, s_, n_D :=

Module@8D, G, s, v, V, S, dS<, dS = H2*XLên;

S = NestList@Ò1 + dS & , 0, nD;

V = HMax@Ò1 - X, 0D & L êü S;

Do@D = ListConvolve@81, 0, -1<, VDêH2*dSL;

G = ListConvolve@81, -2, 1<, VDêdS^2;

s = Take@S, 82, -2<D;

v = Take@V, 82, -2<D;

V = Join@80<, v + dt*HH1ê2L*s^2*s^2*G + r*s*D - r*vL,

8Last@SD - XêE^Hr*i*dtL<D, 8i, nt<

D;

Interpolation@Transpose@8S, V<DDD

In[119]:= pf = pricingFunc@V, S, X, r, dS, dt, s, ntD;

S0 = 100.; H*price of the stock at valuation time*L

pf@S0D

Out[121]= pricingFuncC80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0., 10., 20., 30., 40., 50., 60.,

70., 80., 90., 100.<, 80, 10., 20., 30., 40., 50., 60., 70., 80., 90.,

100., 110., 120., 130., 140., 150., 160., 170., 180., 190., 200.<, X,

r, 10.,
t

1 + FloorA0.04 X2 s2 tE
, s, 1 + FloorA0.04 X2 s2 tEG@100.D

Discussion
The PDE from the Black-Scholes formula for a derivative V on the security S is given as:

In[122]:= Clear@S, dS, t, dt, s, r, VD;

pde = -D@V@S, tD, tD ==

H1ê2L*s^2*S^2*D@V@S, tD, S, SD + r*S*D@V@S, tD, SD - r*V@S, tD;

Numerical  approximation  for  the  partial  derivative  follows,  for  example  from  the
Taylor series. The partial derivatives in the equation are replaced through the appro-
priate Taylor series.

In[124]:= rls = 8D@V@S, tD, tD -> HV@S, t - dtD - V@S, tDLêdt,

D@V@S, tD, SD -> HV@S + dS, tD - V@S - dS, tDLêH2*dSL,

D@V@S, tD, S, SD ->

HV@S + dS, tD - 2*V@S, tD + V@S - dS, tDLêdS^2<;

prox = pde ê. rls

Out[125]= -
-V@S, tD + V@S, t - dtD

dt
ã -r V@S, tD +

r S H-V@S - dS, tD + V@S + dS, tDL

2 dS
+

S2 s2 H-2 V@S, tD + V@S - dS, tD + V@S + dS, tDL

2 dS2
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In  the  next  step,  the  notation  is  changed  to  make  it  more  consistent  with  a  grid
scheme.

In[126]:= prox = prox ê. 9V@S, tD Ø Vj,i,

V@S, t - dtD Ø Vj,i-1, V@S + dS, tD Ø Vj+1,i, V@S - dS, tD Ø Vj-1,i=

Out[126]= -
Vj,-1+i - Vj,i

dt
ã -r Vj,i +

r S I-V-1+j,i + V1+j,iM

2 dS
+

S2 s2 IV-1+j,i - 2 Vj,i + V1+j,iM

2 dS2

To  better  illustrate  the  structure  of  the  equation,  more  notational  adjustments  are
made. The new structure will later help to simplify the calculations.

In[127]:= prox = prox ê. ;
Vj+1,i - 2 Vj,i + Vj-1,i

dS2
Ø Gi,j,

Vj+1,i - Vj-1,i

2 dS
Ø Di,j?

Out[127]= -
Vj,-1+i - Vj,i

dt
ã -r Vj,i +

1

2
S2 s2 Gi,j + r S Di,j

Solving the last expression for V j,i and simplifying leads to

In[128]:= diff = SolveAprox, Vj,i-1E êê Simplify êê First;

diff êê TraditionalForm
Out[129]//TraditionalForm=

:V j,i-1 Ø Hr dt + 1LV j,i -
1

2
S dt I2 r Di, j + Ss2 Gi, jM>

The presented calculation scheme is  a  version of  the explicit  FDM. While applying
this  calculation  scheme,  the  new  values  for  the  derivative  V j,i-1  are  stepwise

calculated from V j+1,i, V j,i, and V j-1,i. Figure 14-1 illustrates this approach.

Vj
i-1

Vj+1
i

Vj
i

Vj-1
iDS

Dt

Sj

ti

Figure 14-1. Explicit FDM

An efficient Mathematica function for the calculation of the differences needed in D
and  G  is  available  through  ListConvolve.  To  demonstrate  this,  ListConvolve  is
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An efficient Mathematica function for the calculation of the differences needed in D
and  G  is  available  through  ListConvolve.  To  demonstrate  this,  ListConvolve  is
applied to a list of symbols.

In[130]:= Clear@V, dSD;

v = TableAVj, 9j, 6=E

Out[131]= 8V1, V2, V3, V4, V5, V6<

ListConvolve used for D results in the following expression.

In[132]:= D = ListConvolve@81, 0, -1<, vDêH2 dSL êê TraditionalForm
Out[132]//TraditionalForm=

:
V3 - V1

2 dS
,
V4 - V2

2 dS
,
V5 - V3

2 dS
,
V6 - V4

2 dS
>

The first list in ListConvolve,  the kernel {1,0,1},  is applied piecewise to the second
list, multiplies the elements of the second list, and adds them up according to the val-
ues given in the kernel. This operation runs internally in Mathematica and is much
faster than any loop written in Mathematica code.

The approach used for  D  can also be applied for  the calculation of  G.  ListConvolve
can replace loops that are common to the explicit approximation of PDEs.

In[133]:= G = ListConvolve@81, -2, 1<, vD ê HdS ^ 2L êê TraditionalForm

Out[133]//TraditionalForm=

:
V1 - 2V2 + V3

dS2
,
V2 - 2V3 + V4

dS2
,
V3 - 2V4 + V5

dS2
,
V4 - 2V5 + V6

dS2
>

See Also
Derivatives: The Theory and Practice of Financial Engineering (Wiley) by P. Wilmott
contains the technical background underlying this recipe.

This  recipes  was  derived  from work  done  by  Thomas  Weber  of  Weber  & Partner.
The  original  notebook  and  other  interesting  financial  applications  in  Mathematica
can be found at http://bit.ly/bR0bF.

The method used in this recipe is based on the explicit FDM. There are also implicit
methods.  See  Wikipedia  for  a  general  explanation  of  the  difference  and  the  trade-
offs (http://bit.ly/tr3IN).
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14.10 Compiling an Implementation of Explicit 
Trinomial for Fast Pricing of American Options
Problem
You need a very fast pricer for American options. You want to make sure the imple-
mentation can be compiled for  fastest  possible  execution without  any calls  to  non-
compiled code.

Solution
This  solution  was  contributed  by  Andreas  Lauschke.  See  Recipe  14.8  for  more
information.

Mathematica has a built-in compiler that creates optimized code for a Mathematica-
specific  virtual  machine.  Compile  is  discussed  fully  in  Recipe  18.5.  Here  we  simply
show  an  application  that  creates  a  pricer  for  American  options  using  trinomial
scheme (see discussion). 

In[134]:= americanPutCompiled = CompileA9kk, r, sigma, tt=,

WithA9a = 5, nn = 100, mm = 20, tt0 = sigma^2 ttê2, k = 2 rë sigma^2=,

ModuleA8alpha, h = 2 aênn, s = tt0êmm, x, ss, tmax, f, pp0, u, z<,

alpha = sêh^2;

x = Range@-a, a, hD;

ss = kk Expüx;

tmax = MapThread@Max, 8Table@0, 8nn + 1<D, 1 - Expüx<D;

f =

Exp@1ê2 Hk - 1L x + 1ê4 Hk + 1L^2 HÒ - 1L sD tmax & êü Range@mm + 1D;

pp0 = Max@0, kk - ÒD & êü ss;

u = Exp@1ê2 Hk - 1L xD pp0êkk;

DoAz = alpha HTake@u, 83, nn + 1<D + Take@u, 81, nn - 1<DL -

H2 alpha - 1L Take@u, 82, nn<D;

z = AppendAPrependAz, alpha u@@2DD - H2 alpha - 1L u@@1DD +

alphaêkk ExpA1ê2 Hk - 1L a + 1ê4 Hk + 1L^2 Ij - 1M sEE, 0E;

u = MapThreadAMax, 9z, fAAjEE=E;, 9j, mm=E;

8ss, kk Exp@-1ê4 Hk + 1L^2 tt0D Exp@-1ê2 Hk - 1L xD u<EEE;

You  can  see  that  10  runs  of  the  pricer  over  various  strike  prices  execute  in  32
milliseconds.
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In[135]:= 9time, pricing= = Timing@

Table@Take@TransposeüamericanPutCompiled@strike, 0.05, 0.4, 1D, 60D,

8strike, 50, 100, 5<DD;

ListLinePlotApricing, PlotLabel Ø ToString@time*10^3D <> " millisecs"E

Out[136]=

50 100 150

20

40

60

80

100
18.485 millisecs

Discussion
The  function  americanPutCompiled  returns  a  packed  array  of  two  lists:  the  first  is  a
list of nodes in the spatial (stock price) direction, and the second is a list of Ameri-
can option prices at these nodes. The two lists can now be interpolated with Mathe-
matica’s Interpolation function to obtain intermediate values.

The  function  americanPutCompiled  is  fully  compiled,  as  can  be  seen  by  inspecting
americanPutCompiled[[4]] and noting that all list elements are numeric. 

In[137]:= DeleteCases@Flatten@americanPutCompiled@@4DDD, _?NumericQD

Out[137]= 8<

The algorithm implements a method to price American options based on the linear
complementarity  formulation  of  the  free  boundary  value  problem.  The  numbers  a,
nn, T0, and mm (and, correspondingly, s and h) are parameters that define the grid to
be used. a and nn determine the grid along the space (stock price) axis, and T0 and mm
determine the grid along the time axis. For explicit methods, it is crucial to keep the
spatial  and  temporal  spacing  in  certain  limits,  otherwise  local  blow-up  will  occur.
For a 100% explicit method, it is necessary that alpha=s/h^2<=1/2. That means that
if the spatial step size h is reduced by a factor of 10, the time step size s has to be re-
duced by a factor of 100. This is not due to reasons of precision, but due to reasons
of stability. If, for example, mm is lowered to 15, alpha is no longer <=1/2, and the in-
stability becomes quite visible. For numbers like 5 or 10 for mm,  the method wreaks
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havoc. Traditional American option pricing methods use binomial trees and exhibit
this problem with what is called oscillations. (All tree methods are necessarily 100%
explicit.) It’s the same stability problem that is inherent to all explicit methods.

What makes this rectangular grid method so powerful is the fact that although it is
faster  than  most  tree-based  implementations,  it  computes  the  option  prices  for  the
whole interval, not just for one  particular price of the underlying, which is a limita-
tion all tree-based methods possess.

See Also
Recipe 18.5 explains the mechanics of compiled functions and the performance impli-
cations of functions that don’t fully compile.

See  Ansgar  Jüngel,  “Modellierung und Numerik von Finanzderivaten,”  Vorlesungs-
manuskript 2002, Johannes-Gutenberg Universität Mainz.

14.11 Modeling the Value-at-Risk of a Portfolio 
Using Monte Carlo and Other Methods
Problem
You want to understand the worst expected loss of a portfolio of securities. This is re-
ferred to as Value-at-Risk  or VaR.  Specifically,  you want to use Monte Carlo meth-
ods  because  these  allow you to  trade  accuracy  for  speed  by  varying  the  number  of
samples. 

Since the financial disaster that began in 2007, the notion of Value-at-
Risk  has  become  quite  controversial.  Some,  like  Nassim  Taleb,  have
called it an intellectual fraud, while others have called it an invaluable
tool,  if  used  properly.  I  include  this  recipe  as  an  illustration  of  the  math
behind one particular implementation of VaR and without judgment as to its
effectiveness. Please refer to the link in the “See Also” section on page
587 for a thorough discussion of the efficacy of VaR in practice.

Solution
In its simplest form, VaR is a measure of the worst expected loss under normal mar-
ket  conditions  over  some  time  interval,  usually  days  or  weeks.  The  simplest  (and
highly artificial)  illustration of  VaR concerns a portfolio consisting of  a single secu-
rity. Let’s assume it is worth $10 million, the average return is 0.085, and the stan-
dard deviation is 0.26. The distribution of the portfolio’s value is
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In[138]:= With@8portfolio = 10^7, return = 0.085, stddev = 0.26<,

Plot@PDF@NormalDistribution@portfolio * H1.0 + returnL,

portfolio *stddev D, xD, 8x, 0, 2 portfolio<DD

Out[138]=

5.0µ106 1.0µ107 1.5µ107 2.0µ107

2.µ10-8

4.µ10-8

6.µ10-8

8.µ10-8

1.µ10-7

1.2µ10-7

1.4µ10-7

From this we can compute the probability of a loss of 25% using the CDF.

In[139]:= With@8portfolio = 10000000, return = 0.085, stddev = 0.26, loss = 0.25<,

CDF@NormalDistribution@portfolio * H1.0 + returnL, portfolio *stddev D,

portfolio H1 - lossLDD
Out[139]= 0.0987927

VaR is  computed in terms of  worst  expected loss  in  dollars  at  a  certain probability
level, say 1%.  

In[140]:= valueAtRiskAstartingValue_, meanReturn_, var_, level_E :=

ModuleA9expected = startingValue* H1 + meanReturnL=,

startingValue -

QuantileANormalDistributionAexpected, startingValue*varE, levelEE

In[141]:= With@8portfolio = 10000000,

meadReturn = 0.085, stddev = 0.26, loss = 0.25<,

valueAtRisk@portfolio, meadReturn, stddev, 0.01DD

Out[141]= 5.1985µ106

Thus the VaR at 1% is about 5.2 million.
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Discussion
The  solution  merely  shows  the  statistical  ideas  behind  VaR.  In  real-life  scenarios,
portfolios are more complexly structured, and you need to measure and account for
correlations  in  the  movements  of  these  assets’  values.  The  rest  of  this  discussion
deals with these issues.

The  first  issue  to  address  is  that  prices  don’t  typically  follow a  NormalDistribution
but rather a LogNormal one. Second, portfolio managers and traders are typically inter-
ested in VaR over much shorter time periods than one year. So a more useful func-
tion is

In[142]:= Clear@valueAtRiskD

valueAtRiskAstartingValue_, mean_,

var_, level_, days_, tradingDays_: 365E :=

ModuleA9T = daysë tradingDays=,

startingValue - ExpAQuantileANormalDistributionA

LogüstartingValue + Hmean - var^2ê2L*T, var*TE, levelEE

E

Here we compute the VaR assuming 250 trading days.

In[144]:= WithA9portfolio = 10000000,

return = 0.085, stddev = 0.26, loss = 0.25, days = 1=,

valueAtRiskAportfolio, return, stddev, 0.01, days, 250EE

Out[144]= 22121.5

See Also
An  extensive  discussion  of  VaR  in  light  of  the  financial  crisis  of  2007|2009  (and
counting)  can  be  found  in  this  excellent  New  York  Times  article  by  Joe  Nocera:
http://bit.ly/2SgV68.

14.12 Visualizing Trees for Interest-Rate 
Sensitive Instruments
Problem
You are  using  a  tree-based  approach  to  pricing  (such  as  the  Hull-White  trees)  and
you want to visualize these trees using Mathematica’s graphics abilities. Such visual-
izations are often useful for pedagogical or diagnostic purposes.
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Solution
In  this  recipe,  I  am  only  concerned  with  using  Mathematica  for  visualizing  Hull-
White trees. See the “See Also” section on page 591 for the theory and Mathematica
implementation of the same for pricing purposes.

The  usual  way  to  implement  tree  valuation  methods  is  to  state  results  in  two  or
more new states, thereby modeling the diffusion of the stochastic process. The idea
of Hull-White to model  mean reverting processes is  to add boundary conditions to
this tree structure. The boundary conditions are valid for a given maximum state. 

The  graphical  building  blocks  of  the  tree  can  then  be  defined  as  follows.  The  vari-
able  nmax  is  global.  There  are  three  primitive  elements:  a  nonboundary element,  an
upper-boundary element, and a lower-boundary element. The function path returns
a triple that defines the terminal points of the path.  

In[145]:= pathAj_E := j + 81, 0, -1<

pathAj_ ê; j == nmaxE := j - 80, 1, 2<

pathAj_ ê; j ã -nmaxE := j + 80, 1, 2<

The function grpath then constructs the graphical representation in terms of Line ele-
ments emanating from a starting point.

In[148]:= grpathApt : 9i_, j_=E := Line@8pt, 8i + 1, Ò<<D & êü pathAjE

Here then are the three primitive components used to build the tree.

In[149]:= BlockA8nmax = 2<,

GraphicsGridA99GraphicsAgrpath@80, 1<D, PlotLabel Ø "Unbounded"E,

GraphicsAgrpath@80, nmax<D, PlotLabel Ø "Upper Boundary"E,

GraphicsAgrpath@80, -nmax<D, PlotLabel Ø "Lower Boundary"E==,

AspectRatio Ø 0.3E ê. Line Ø ArrowE

Out[149]=

Unbounded Upper Boundary Lower Boundary

Given these primitives, it’s a straightforward process to generate a tree with a particu-
lar boundary and depth.
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In[150]:= BlockA8nmax = 4, depth = 10<,

ModuleA8n<,

n@m_D := Min@nmax, mD;

GraphicsATableAgrpathA9m, j=E,

8m, 0, depth - 1<, 9j, -n@mD, n@mD=E, Axes -> TrueEEE

Out[150]=
2 4 6 8 10

-4

-2

2

4

Discussion
The solution is really just a skeleton to illustrate the general technique. For purposes
of  visualization,  we  need  trees  with  labels  that  suggest  the  underlying  semantics  of
Hull-White.  A  particularly  nice  way  to  proceed  is  to  augment  the  tree  with  node
labels that are purely coordinates. This is just a matter of adding text elements to the
solution version. The resulting gr becomes a template, and you can leverage Mathe-
matica’s pattern-directed replacement to assign meaningful labels to the nodes.

In[151]:= gr = BlockA8nmax = 2, depth = 3<,

ModuleA8n <,

n@m_D := Min@nmax, mD;

FlattenATableA9IfAm < depth, grpathA9m, j=E, 8<E,

TextA9m, j=, 9m, j=, Background Ø WhiteE=,

8m, 0, depth<, 9j, -n@mD, n@mD=EE

EE;
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In[152]:= GraphicsAgr, AspectRatio Ø 1êGoldenRatioE

Out[152]= 80, 0<

81, -1<

81, 0<

81, 1<

82, -2<

82, -1<

82, 0<

82, 1<

82, 2<

83, -2<

83, -1<

83, 0<

83, 1<

83, 2<

The process you want to visualize is a single-factor interest rate model described by
the following formula:

dr = HqHtL - a rt L dt + s dz.

Here r is the short-term rate, and a and s are constants. 

In[153]:= a = 0.1;

s = 0.01;

Dt = 1;

Dr = s*Sqrt@3*DtD;

Using the template gr, replace the nodes with the rate deltas using the node coordi-
nates in the computation of the labels. Here you use depth Infinity with Replace so
you need not worry about the actual depth of the graphics elements.

In[157]:= GraphicsAReplaceAgr, 99x_Integer, y_Integer= :> 9x, y Dr=,

TextA9m_, j_=, y___E :> TextAj 100 , yE=, InfinityE,

AspectRatio Ø 1êGoldenRatioE

Out[157]= 0

-1.73205

0

1.73205

-3.4641

-1.73205

0

1.73205

3.4641

-3.4641

-1.73205

0

1.73205

3.4641
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See Also
This  recipe  contains  content  originally  developed  by  Thomas  Weber  of  Weber  &
Partner  (http://bit.ly/3Dz1wg)  and  is  used  with  permission.  A  complete  notebook
showing  both  the  theory  and  visualization  is  available  at  this  cookbook’s  website:
http://bit.ly/xIgx7. 
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CHAPTER 15

Interactivity

I’m alive
Oh oh, so alive

I’m alive
Oh oh, so alive

...
My head is full of magic, baby
And I can share this with you

The feel I’m on top again, baby
That’s got everything to do with you 

Love and Rockets, “So Alive”

15.0 Introduction
The pièce de résistance of Mathematica 6 is its dynamic interactivity features. These
features  forced  Wolfram to  completely  rethink  and  redesign  its  frontend.  This  had
the  unfortunate  consequence  of  breaking  many  notebooks  from version  5  and  ear-
lier, especially those that used graphics. However, it is my opinion that the gain was
well worth the pain!

The interactive features of Mathematica 6 are even more impressive when one consid-
ers  that  they  sit  on  relatively  few  new  functions.  The  centerpiece  of  interactivity  is
the function Manipulate. Think of Manipulate as a very intelligent user-interface genera-
tor. Manipulate’s power comes by virtue of its ability to take any Mathematica ex-
pression  plus  a  declarative  description  of  the  expression’s  variables  and  generate  a
mini  embedded  GUI  within  the  notebook  for  interacting  with  that  expression.  Of
course, there are always caveats, and an important feature of this chapter is to help
you get the best possible results with nontrivial Manipulate use cases.

The first five recipes of this chapter are intended to gradually introduce the reader to
Manipulate  by demonstrating increasingly sophisticated examples. These recipes are
not necessarily intended for direct use but rather to illustrate the basic features and
generality of Manipulate. Each recipe highlights a feature of Manipulate or a subtlety
of its use in a particular context. Animate is a relative of Manipulate that puts its interac-
tive features in autonomous mode. Recipe 15.15 focuses  on Animate  and shows how
animations can be exported to Flash and other Web-friendly formats.
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The first five recipes of this chapter are intended to gradually introduce the reader to
Manipulate  by demonstrating increasingly sophisticated examples. These recipes are
not necessarily intended for direct use but rather to illustrate the basic features and
generality of Manipulate. Each recipe highlights a feature of Manipulate or a subtlety
of its use in a particular context. Animate is a relative of Manipulate that puts its interac-
tive features in autonomous mode. Recipe 15.15 focuses  on Animate  and shows how
animations can be exported to Flash and other Web-friendly formats.

Many users will never need anything beyond Manipulate, but more advanced applica-
tions  require  you  to  dig  deeper  and  understand  lower-level  dynamic  primitive  func-
tions called Dynamic, DynamicModule, and DynamicWrapper. Recipe 15.4 shows how Dy-
namic  is  used  in  conjunction  with  Manipulate  to  achieve  better  performance  or
smoother operation. DynamicModule is a preferred alternative to Module when working
with dynamic content, and I use it liberally before introducing it formally. The initial
usage does not  require  you to know more than its  function as  a  scoping construct.
Recipe  15.11  illustrates  the  intimate  relationship  between  Manipulate  and  Dynamic-
Module and shows why you often want to use DynamicModule directly. Many useful dy-
namic techniques require the use of DynamicWrapper but, unfortunately (as of version
7),  this  important  function  is  undocumented  in  the  help  system.  Recipes  15.8,
15.11, and 15.16 show some interesting use cases for this hidden gem.

You  will  get  the  most  out  of  this  chapter  by  downloading  its
associated  notebook  from  the  book’s  website  and  playing  along;  see
http://oreilly.com/catalog/9780596520991. 

15.1 Manipulating a Variable
Problem
You want  to  control  the  value  of  one  or  more  variables  via  an  interactive  interface
and see their values update as you interact with the interface.

Solution
Use Manipulate with the desired variables and (optionally) their ranges.

In[1]:= Manipulate@a, 8a, 1, 10<D

Out[1]=

a

1
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In[2]:= ManipulateA8a, b, c, d, pt<,

8a, 1, 10<, H*a varies from 1 - 10.*L

8b, 1, 10, 1<, H*b varies from 1 - 10 in steps of 1.*L

88c, 5<, 1, 10<, H*c varies 1 - 10. Initial value 5*L

8d<, H*d can have any value.*L

8pt, 81, 1<, 810, 10<<, H*Creates a 2D slider*L

99d, 7, "d again"=, 81, 3, 5, 7, 9<= H*Creates buttons*L

E

Out[2]=

a

b

c

d 7

pt

d again 1 3 5 7 9

81, 1, 5, 7, 81, 1<<

Discussion
This solution is strictly intended as a simple introduction to Manipulate. As it stands,
it  is  not very practical  because the variables are displayed rather than used to com-
pute. Still, there are some important concepts. 

The  first  concept  is  that  Manipulate  will  automatically  choose  a  control  type  based
on  the  structure  of  the  constraints  you  place  on  a  variable’s  value.  The  most  com-
mon control is a slider. It is chosen when a variable is specified with a minimum and
maximum value. Out[3] below shows three variations of this idea. The second exam-
ple uses a specified increment, and the third adds an initial value.
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The first  concept  is  that  Manipulate  will  automatically  choose  a  control  type  based
on  the  structure  of  the  constraints  you  place  on  a  variable’s  value.  The  most  com-
mon control is a slider. It is chosen when a variable is specified with a minimum and
maximum value. Out[3] below shows three variations of this idea. The second exam-
ple uses a specified increment, and the third adds an initial value.

In[3]:= Column@8Manipulate@a, 8a, -10, 10<D, Manipulate@b, 8b, -10, 10, 0.1<D,

Manipulate@c, 88c, 0<, -10, 10, 0.1<D<, Spacer@2DD

Out[3]=

a

-10

b

-10

c

0

When a  multiple-choice  list  is  specified,  you will  get  either  a  series  of  buttons  or  a
drop-down list, depending on the number of choices.

In[4]:= Row@8Manipulate@a, 8a, 80, 1, 2, 3<<D,

Manipulate@b, 8b, Table@i, 8i, 10<D<D<, Spacer@5DD

Out[4]=

a 0 1 2 3

0

b 1

1

When a variable is unconstrained or just specified with an initial value, Manipulate
infers an edit control. In the first case, the variable begins with a null value, so it is
probably a good idea to provide an initial value.
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In[5]:= Row@8Manipulate@a, 8a<D, Manipulate@b, 8b, 3.3<D<, Spacer@2DD

Out[5]=

a

Null

b 3.3

3.3

A second concept, illustrated in Out[6], is that a single variable can be bound to mul-
tiple  controls.  This  has  the  effect  of  tying  the  controls  together  so  a  change  in  one
control  changes  the  variable  and  is  automatically  reflected  in  the  other  controls
bound to that variable. It’s possible in this circumstance to violate the constraints of
one of the controls. In this case, Manipulate will display a red area in the control that
has the violated constraint.

In[6]:= Manipulate@a, 8a, -10, 10<, 8a, -20, 20<D

Out[6]=

a

a

-20

A third concept is the ability to provide an arbitrary label by specifying the label af-
ter the initial value. The label can be any Mathematica expression.

In[7]:= ColumnA9Manipulate@Sin@N@aDD, 88a, -10, Sin@aD<, -10, 10<D, ManipulateAa,

99a, -10, RasterizeATextAStyle@"a", Blue, Italic, Bold, 20DEE=,

-10, 10=E=, Spacer@2DE

Out[7]=

Sin@aD

0.544021

-10
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15.2 Manipulating a Symbolic Expression
Problem
You want to vary the structure of a symbolic expression interactively.

Solution
This  recipe  is  intended  to  illustrate  that  any  Mathematica  expression  that  can  be
parametrized can be used with Manipulate. 

In[8]:= Clear@xD;

GridAPartitionATableAManipulateAExpand@Hx + 1L^rD, 88r, init<, 0, 30, 1<,

FrameMargins Ø 0, ImageMargins Ø 0, ContentSize Ø 8250, 75<E,

8init, 81, 2, 10, 15<<E, 2E, Spacings Ø 0.5, Alignment Ø LeftE

Out[8]=

r

1 + x

r

1 + 2 x + x2

r

1 + 10 x + 45 x2 + 120 x3 + 210 x4 +

252 x5 + 210 x6 + 120 x7 + 45 x8 + 10 x9 + x10

r

1 + 15 x + 105 x2 + 455 x3 + 1365 x4 + 3003 x5 + 5005 x6 + 6435 x7 +

6435 x8 + 5005 x9 + 3003 x10 + 1365 x11 + 455 x12 + 105 x13 + 15 x14 + x15

Discussion
Here are a few examples to reinforce the idea that any aspect of an expression can be
manipulated. In Out[9] on page 599, both of the  function’s integration limits are vari-
able.  In  Out[10]  on  page  599,  every  aspect  of  the  expression,  including  its  display
form,  is  subject  to  user  manipulation.  Finally,  in  Out[11]  on  page  600,  you  see
that  tables  of  values  can  be  dynamically  generated  and  that  Manipulate  will  adjust
the  display  area  to  accommodate  the  additional  rows.  The  ability  of  Manipulate  to
mostly do the right thing is immensely liberating: it allows you to focus on the con-
cept you are illustrating rather than the GUI programming. 
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In[9]:= ModuleC8x<, ManipulateC‡
a

b
Ig@fD@xDM „x, 88a, 0<, 0., 10<, 88b, 10<, 0., 10<,

9f, 9Identity, Sin, Cos, Exp, Sqrt==, 9g, 9Identity, InverseFunction==GG

Out[9]=

a

b

f Identity Sin Cos Exp Sqrt

g Identity InverseFunction

50

In[10]:= ManipulateCfC
a b

c d
G êê form, 88f, Inverse<, 8Det, Transpose, Inverse<<,

88a, x^2<, 80, 1, x, x^2<<, 88b, x<, 80, 1, x, x^2<<,

88c, I<, 80, 1, -1, I, x, Sqrt@xD<<, 88d, x<, 8-1, 0, 1, x<<,

8form, 8MatrixForm, StandardForm, TraditionalForm, InputForm<<,

BaseStyle Ø 9Large=G

Out[10]=

f Det Transpose Inverse

a 0 1 x x2

b 0 1 x x2

c Â

d -1 0 1 x

form MatrixForm StandardForm TraditionalForm InputForm

x
-Â x+x3

- x
-Â x+x3

- Â
-Â x+x3

x2

-Â x+x3
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In[11]:= GridA99

ManipulateA

FramedATableFormA8Ò, N@f@ÒDD< & êü Table@i, 8i, 0, 2 Pi, incr<D,

TableSpacing Ø 81, 2<, TableHeadings Ø 8None, 8"x", f<<EE,

8incr, 1, 0.1, -0.1<, 88f, Sin<, 8Sin, Cos, Tan, Sec, Csc, Cot<<,

8incr<E, ManipulateA

FramedATableFormA8Ò, N@f@ÒDD< & êü Table@i, 8i, 0, 2 Pi, incr<D,

TableSpacing Ø 81, 2<, TableHeadings Ø 8None, 8"x", f<<EE,

88incr, 0.5<, 1, 0.1, -0.1<, 88f, Cos<, 8Sin, Cos, Tan, Sec, Csc, Cot<<,

8incr<E==, Alignment Ø Top, Spacings Ø 3E

Out[11]=

incr

f Sin

incr 1

x Sin

0 0.

1 0.841471

2 0.909297

3 0.14112

4 -0.756802

5 -0.958924

6 -0.279415

incr

f Cos

incr 0.5

x Cos

0. 1.

0.5 0.877583

1. 0.540302

1.5 0.0707372

2. -0.416147

2.5 -0.801144

3. -0.989992

3.5 -0.936457

4. -0.653644

4.5 -0.210796

5. 0.283662

5.5 0.70867

6. 0.96017

15.3 Manipulating a Plot
Problem
You want to create an interactive graph.

Solution
Possibly one of the most popular use cases for Manipulate is to create an interactive
plot.  However,  a  common  stumbling  block  is  forgetting  to  specify  the  PlotRange,
causing a plot for which the axes vary instead of the plot itself varying. 
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In[12]:= ManipulateAPlotAm x + b, 8x, -10, 10<, PlotRange Ø 8Automatic, 8-30, 30<<E,

88m, 1<, -3, 3<, 88b, 0<, -10, 10<E

Out[12]=

m

b

-10 -5 5 10

-30

-20

-10

10

20

30

Discussion
Use Mathematica to compare the solution to the following variation and you will
immediately see why PlotRange is essential.

In[13]:= Manipulate@Plot@m x + b, 8x, -10, 10<D, 88m, 1<, -3, 3<, 88b, 0<, -10, 10<D

Out[13]=

m

b

-10 -5 5 10

-10

-5

5

10
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Another  common  problem  when  manipulating  graphics  is  sluggishness  when  con-
trols are varied. A crude way of dealing with this problem is to tell Manipulate to not
update the display until the control is released. You do this with the option Con-
tinuousActionØFalse .

In[14]:= Manipulate@

SphericalPlot3D@81, If@f < 3 Piê2, 2, NoneD, If@f < 3 Piê2, 3, NoneD<,

8q, 0, l1<, 8f, 0, l2<D, 88l1, Pi<, Piê4, 2 Pi<,

88l2, 2 Pi<, Piê4, 2 Pi<, ContinuousAction Ø FalseD

Out[14]=

l1

l2

A  more  refined  alternative  is  to  perform  a  low-resolution  plot  while  controls  are
changing and then switch automatically to a full-resolution plot when the control
is  released. The ControlActive function along with PlotPoints  is exactly what the
doctor ordered. Many graphics functions are self-adaptive when used inside a Ma-
nipulate, but ControlActive allows you to fine-tune this behavior to match the com-
plexity of the graph and the speed of your computer. 
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In[15]:= Manipulate@

SphericalPlot3D@81, If@f < 3 Piê2, 2, NoneD, If@f < 3 Piê2, 3, NoneD<,

8q, 0, l1<, 8f, 0, l2<, PlotPoints Ø ControlActive@12, 25DD,

88l1, Pi<, Piê4, 2 Pi<, 88l2, 2 Pi<, Piê4, 2 Pi<D

Out[15]=

l1

l2

Another way to fine-tune interactive plots is to separate those options that  can be
rendered quickly from those that require a lot of computation. A classic example is a
plot with variable parameters  that  change the shape of  the plot  (expensive)  and
parameters that change the orientation of the plot (inexpensive). Ideally, parameters
that  are  inexpensive  to  compute  should  not  trigger  computation  of  the  expensive
parts. You achieve this by wrapping the inexpensive parts in Dynamic[]. I discuss this
use of Dynamic in detail in Recipe 15.11.
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In[16]:= ManipulateAPlot3DAa Sin@2 Pi a xD + b SinA2 Pi b yE, 8x, 0, 2 Pi<, 9y, 0, 2 Pi=,

ViewPoint Ø Dynamic@82, v, 2<DE, 8a, 0.1, 1<, 8b, 0.1, 1<, 8v, -3, 3<E

Out[16]=

a

b

v

15.4 Creating Expressions for Which Value 
Dynamically Updates
Problem
You want to create output cells that have values that change in real time as variables
used in computing the cell values change.

Solution
Normally  an  expression  is  evaluated  and  produces  an  output  that  remains  static.
You can wrap an expression in Dynamic[]  to indicate you want Mathematica to up-
date the value whenever a variable in the expression acquires a new value. Here I ini-
tialize three variables and create a list in which the first element is their sum and the
second is the sum wrapped in Dynamic. Initially the result is {6,6} as you would ex-
pect.  However,  you are looking at  the output after the variable x1  was given a new
value of 100. Notice how the second element reflects the new sum of 105.
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In[17]:= x1 = 1; x2 = 2; x3 = 3; 9x1 + x2 + x3, Dynamic@x1 + x2 + x3D=

Out[17]= 86, 105<

In[18]:= x1 = 100

Out[18]= 100

Discussion
Dynamic  is  one of  the low-level  primitives  that  make the functionality  of  Manipulate
possible. A typical use case of Dynamic is creating free controls that update a variable.

In[19]:= a1 = 3;

RowA9SliderADynamic@a1D, 81, 5<E, Dynamic@a1D=, "\t"E

Out[20]= 1.

Dynamic  expressions  can  appear  in  a  variety  of  contexts  and  work  across  multiple
cells. Each output cell here will update as the slider changes the value of a1.

In[21]:= ModuleA8x<, DynamicAIntegrate@Exp@xD, 8x, a1, 10<DEE

Out[21]= 22023.7

In[22]:= DynamicAPlotASin@ a1 xD, 8x, 0, 2 Pi<, PlotRange Ø 8Automatic, 8-1, 1<<EE

Out[22]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

In[23]:= DynamicAGraphicsACircle@80, 0<, 1, 80, a1 2 Piê5<D, ImageSize Ø 850, 50<EE

Out[23]=

There are two key principles that underlie Dynamic, and you must keep these in mind
to avoid common pitfalls.  The first  principle  is  that  Dynamic  has the attribute Hold-
First.  This  means that  it  does not immediately update its  expression until  it  needs
to and does so only to produce output.
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In[24]:= AttributesADynamicE

Out[24]= 8HoldFirst, Protected, ReadProtected<

This  leads  to  the  second  key  concept.  Dynamic  is  strictly  a  frontend  function  and
can’t be used to produce values that will be passed to other functions. The following
example underscores this important point. 

In[25]:= DynamicModuleA8x<, RowA9SliderADynamic@xD, 81, 5<E,

PlotASinADynamic@xD iE, 8i, 0, 2 Pi<E=, Spacer@2DEE

Out[25]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Moving  the  slider  does  nothing  because  passing  the  output  of  Dynamic  to  a  kernel
function like Sin can never work. 

As a general rule, if Dynamic is not in a context where its output will be
displayed directly or embedded in an expression that will be displayed
(like  a  control  or  a  graphics  primitive),  then  you  are  almost  certainly
using Dynamic incorrectly.

See Also
See the tutorial “Introduction to Dynamic” under tutorial/IntroductionToDynamic in
the Wolfram help system.
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15.5 Intercepting the Values of a Control 
Attached to a Dynamic Expression 
Problem
You want to apply a function to the output of a control before it affects the value of
a Dynamic expression.

Solution
Normally  when you adjust  a  control,  the value produced is  assigned to the expres-
sion  in  the  first  argument  of  Dynamic.  However,  if  the  expression  is  not  a  variable
that can be assigned, this will lead to errors. The solution is provided by the second
argument  of  Dynamic,  which  allows  you  to  provide  a  function  that  can  override
the  default  behavior.  A classic  example  is  the  creation of  a  control  that  inverts  the
value of the slider. Here are a normal slider and an inverted slider that uses an inver-
sion function as its second argument.

In[26]:= DynamicModuleA8x1<,

9SliderADynamic@x1, AutomaticDE, SliderADynamic@1 - x1, Hx1 = 1 - ÒL &DE=E

Out[26]= 9 , =

Discussion
The solution shows a  case  where the second argument of  Dynamic  is  a  function.  Dynamic
also supports a more advanced variation where a list of functions is passed in the sec-
ond argument. A list with two functions tells Dynamic to evaluate the first function as the
control is varied and the second function when interaction with the control is complete.
A list with three functions defines a start function, a during function, and an end function.

In[27]:= DynamicModuleA8x1<, SliderADynamic@x1, 8Hx1 = ÒL &, Print@"End ", ÒD &<DEE

Out[27]=

End 0.

In[28]:= DynamicModuleA8x1<, SliderA

Dynamic@x1, 8Print@"Start ", ÒD &, Hx1 = ÒL &, Print@"End ", ÒD &<DEE

Out[28]=

Start 0.

End 0.
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Here is an example illustrating Ohm’s law (voltage = current * resistance) as a set of
three coupled sliders. The goal is for voltage to be computed when the current or re-
sistance sliders change. However, if voltage is changed, then current must be recom-
puted.  The  problem  with  such  an  example  is  that  if  you  allow  voltage  to  change
when  resistance  is  high,  it  can  easily  lead  to  very  large  currents  that  would  violate
the limits of the current slider. The solution is to make the sliders’ limits dynamic as
well, but that requires the whole slider to be dynamic! Of course, you don’t want the
interface to be constantly  generated as  a  slider  is  moved.  This  is  where  the  finish
function comes in handy. When a slider interaction ends, the limits of the other slid-
ers are recomputed, triggering the creation of a new slider. 

In[29]:= DynamicModuleA9current = 0., resistance = 1., voltage,

maxCurrent = 1, maxResistance = 100, maxVoltage = 100=,

DynamicWrapperA

GridA99"current",

DynamicASliderADynamicAcurrent, 9

H*The interactive function updates current and computes voltage.*L

I9current, voltage= = 8Ò, resistance * Ò<M &,

H*The finish function updates voltage and resistance limits.*L

I9maxVoltage, maxResistance= = 9MaxAmaxVoltage, Ò * resistanceE,

MaxAmaxResistance, voltage ë Max@Ò, 1DE=M &=E,

80., maxCurrent<EE, Dynamic@currentD=,

9"resistance",

DynamicASliderADynamicAresistance, 9

H*The interactive function

updates resistance and computes voltage.*L

I9resistance, voltage= = 8Ò, Ò * current<M &,

H*The finish function updates current and voltage limits.*L

I9maxCurrent, maxVoltage= = 9MaxAmaxCurrent, voltageëÒE,

MaxAmaxVoltage, current*ÒE=M &=E,

81., maxResistance<EE, Dynamic@resistanceD=,
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9"voltage",

DynamicASliderADynamicAvoltage, 9

H*The interactive function updates voltage and computes current.*L

I9voltage, current= = 8Ò, Òêresistance <M &,

H*The finish function updates current and resistance limits.*L

H8maxCurrent, maxResistance< = 8Max@maxCurrent, ÒêresistanceD,

Max@maxResistance, ÒêMax@current, 1DD<L &=E,

90., MaxA100., maxVoltageE=EE,

DynamicAvoltageE=,

H*Reset to starting conditions.*L

9ButtonA"Reset", current = 0.;

resistance = 1.; voltage = current * resistance;

maxCurrent = 1; maxResistance = 100; maxVoltage = 100;E=

=

E, voltage = current * resistanceEE

Out[29]=

current 0.

resistance 1.

voltage 0.

Reset

See Also
See Recipe 15.7 for an explanation of why DynamicModule is used in the Ohm’s law
example. 

15.6 Controlling Updates of Dynamic Values
Problem
You want to control the timing or variable dependencies that trigger and update to a
dynamic value.

Solution
Use  Refresh  to  explicitly  control  dynamic  updates.  The  following  dynamic  expres-
sion will generate a random number once every second.
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In[30]:= DynamicARefreshARandomInteger@81, 100<D, UpdateInterval Ø 1EE

Out[30]= 93

In[31]:= 9

Out[31]= 9

Also use Refresh to control dependencies between dynamic variables. Here you cre-
ate two sliders that update the variables x  and y  and two dynamic sums of x  and y,
but  you use  Refresh  to  make  the  first  sum respond to  changes  in  x  alone,  whereas
the second responds only to changes in y.

In[32]:= DynamicModuleA9x, y=,

GridA

99SliderADynamic@xDE, DynamicAx + y, TrackedSymbols Ø 8x<E=,

9SliderADynamicAyEE, DynamicAx + y, TrackedSymbols Ø 9y=E==EE

Out[32]=
0.

0.

Discussion
Refresh should be used with caution because it subverts  the  expected behavior  of
Dynamic. One legitimate use of Refresh is with functions that will not be triggered by
Dynamic. Theodore Gray of Wolfram Research refers to these functions as nonticklish.
The function Set normally written as = is ticklish, as you can see by evaluating the fol-
lowing expression. 

In[33]:= DynamicModuleA8x = 1<, Dynamic@x = x + 1DE

Out[33]= 32872

This will  create an output cell  that increments about 20 times per second, which is
the standard refresh rate for Dynamic. Contrast this with the evaluation of a nontick-
lish function, RandomReal. 

In[34]:= Dynamic@RandomReal@DD

Out[34]= 0.570894

This  creates  a  single  random  number  that  will  not  update.  However,  wrapping  it
with a Refresh, like we did in the “Solution” section above, will force it to update.  

See Also
See the tutorial “Advanced Dynamic Functionality” at tutorial/AdvancedDynamicFunctionality
in the Wolfram help.
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15.7 Using DynamicModule As a Scoping 
Construct in Interactive Notebooks
Problem
You want  to  create  dynamic  content  with  local,  statically  scoped  variables  (similar
to Module) that maintain values across sessions.

Solution
DynamicModule  is similar to Module  in that it restricts the scope of variables, but
DynamicModule  has the additional behavior of preserving the values of the local vari-
ables in the output so that they are retained between Mathematica sessions. Further,
if  you copy and paste  the output  of  a  DynamicModule,  the  values  of  the  pasted copy
are also localized in the copy, leaving the original unchanged as the copy varies.

In[35]:= DynamicModuleA8pts = 880, 0<, 81, 1<, 82, 0<, 83, 2<<<,

LocatorPaneADynamic@ptsD,

DynamicAPlotAInterpolatingPolynomial@pts, xD, 8x, 0, 3<, PlotRange Ø 3EEEE

Out[35]=
0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

1

2

3

The  dynamic  plot  on  page  612  was  copied  from  Out[35]  above,  pasted  here,  and
then the locators manipulated. Each variable has its own independent state that will
be retained after  Mathematica is  shut down and restarted with this  notebook. This
works because the values are bundled with the expression that underlies  the output
cells of a dynamic module. 
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Discussion
Normal  variables  (including global  variables  and scoped variables  inside  a  Block  or
Module) are stored inside the Mathematica kernel’s memory. When the kernel exits,
the values are lost.  DynamicModule  variables are stored in the notebook output cells.
Below are a trivial  DynamicModule  and a trivial  Module.  Each simply sets  a local  vari-
able to 1 and outputs the value. In Figures 15-1 and 15-2 you can see the difference
in the underlying notebook representation (via ShowExpression).

In[36]:= DynamicModule@8x = 1<, xD

Out[36]= 1

Cell[BoxData[

  DynamicModuleBox[{$CellContext`x$$ = 1}, "1",

   DynamicModuleValues:>{}]], "Output",

  CellChangeTimes->{3.4346288561668787`*^9}]

Figure 15-1. Cells resulting from DynamicModule

In[37]:= Module@8x = 1<, xD

Out[37]= 1

Cell[BoxData["1"], "Output",

  CellChangeTimes->{3.4346290869012537`*^9}]

Figure 15-2. Cells resulting from Module
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15.8 Using Scratch Variables with 
DynamicModule to Balance Speed Versus Space
Problem
You want  to  avoid  doing  duplicate  computations  in  a  dynamic  module  by  caching
data, but you don’t want to create a bloated notebook when saved.

Solution
Use the UnsavedVariables option of DynamicModule to prevent saving in the notebook
while keeping the variable localized in the frontend. Also use DynamicWrapper to guar-
antee cached data is calculated before any of the dynamic expressions. In this exam-
ple,  you  wish  to  compute  plotPoints  once  since  we  plot  the  points  and  their
squares. You neither need nor want plotPoints  to be saved in the notebook; saving
the locator point is sufficient. 

In[38]:= DynamicModuleA8pt = 81, 1<, plotPoints<,

DynamicWrapperA

RowA9LocatorPaneADynamic@ptD, GraphicsA9Gray, Opacity@0.5D, Disk@D=,

Axes Ø True, ImageSize Ø 150EE,

DynamicAListPlotAplotPoints, AspectRatio Ø 1, ImageSize Ø 150EE,

DynamicAListPlotAplotPoints^2, AspectRatio Ø 1, ImageSize Ø 150EE=,

" "E,

plotPoints = 8Re@ÒD, Im@ÒD< & êü Table@HComplex@Ò1, Ò2D & üü ptL^n,

8n, 0, 16, 0.1<DE, UnsavedVariables Ø 8plotPoints<E

Out[38]=
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Discussion
My  first  attempt  at  the  solution  did  not  use  DynamicWrapper  and  seemed  to  work
fine. However, as explained by Theodore Gray of Wolfram, there is a subtle bug that
will likely cause this to break in future versions of Mathematica. The assumption is
that  the  first  Dynamic  will  be  computed  before  the  second,  and  Mathematica  pro-
vides  no  such  evaluation  order  guarantee.  In  contrast,  the  solution  using  Dynamic-
Wrapper  will  always  guarantee  that  the  second  argument  of  DynamicWrapper  will  be
computed before any dynamic expressions contained in the first argument.

In[39]:= DynamicModuleA8pt = 81, 1<, plotPoints<,

RowA9LocatorPaneADynamic@ptD,

GraphicsA9Gray, Opacity@0.5D, Disk@D=, Axes Ø True, ImageSize Ø 150EE,

DynamicAListPlotAplotPoints = 8Re@ÒD, Im@ÒD< & êü

Table@HComplex@Ò1, Ò2D & üü ptL^n, 8n, 0, 16, 0.1<D,

AspectRatio Ø 1, ImageSize Ø 150EE,

DynamicAListPlotAplotPoints^2, AspectRatio Ø 1, ImageSize Ø 150EE=, " "E,

UnsavedVariables Ø 8plotPoints<E

Out[39]=
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See Also
DynamicWrapper is further discussed in the “DynamicWrapper” sidebar on page 615 and
the “Discussion” section of Recipe 15.11. 
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DynamicWrapper: A Useful Undocumented Function
If  you  search  the  Mathematica  documentation  as  of  version  7,  you  will  not  find
reference to DynamicWrapper, and as I write this, Google will fail to turn up anything
as  well.  I  was  alerted  to  the  existence  of  DynamicWrapper  by  Theodore  Gray  of
Wolfram,  who  stated  that  it  is  definitely  an  approved  function  that  just  slipped
through the  documentation cracks.  In  fact,  you can find an instance  of  its  use  in  a
Wolfram demonstration at http://bit.ly/jds9Z. This sidebar will provide you with the
information you need until Wolfram fills this hole.

DynamicWrapper[appearance, expr]  -  appearance  is  typeset  and  displayed  normally
as a static (nondynamic) box structure. Associated with that box structure (wrapped
around  it)  is  an  invisible  Dynamic[expr]  that  is  tracked  and  evaluated  just  like  any
other  Dynamic,  but  the  result  of  evaluating  expr  is  not  displayed  anywhere.  An
important  feature  is  that  it  is  guaranteed,  now  and  in  the  future,  that  expr  will  be
evaluated  before  any  Dynamics  there  may  be  inside  appearance.  This  allows  you  to
use  DynamicWrapper  to  set  up,  initialize,  and  update  variables  used  by  Dynamics
inside it.

15.9 Making a Manipulate Self-Contained 
Problem
You want to make sure a Manipulate  encapsulates  all  definitions  necessary  for  its
operation so it always starts up in a working state.

Solution
Manipulate  can reference functions and variables  from the current  kernel’s  environ-
ment. There is no guarantee that these will be defined or defined equivalently when
a notebook is saved and reopened. Compare the following two cases. Although each
Manipulate below will behave the same after initial evaluation, you are seeing the re-
sults after restarting Mathematica and reloading this notebook without reevaluating
the definitions of f1  and f2. Note how the first does not know what f1  is, whereas
the second remembers the definition of f2 as before.
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f1@x_D := Sin@x^2D + Cos@xD

f2@x_D := Sin@x^2D + Cos@xD

Manipulate@f1@xD, 88x, N@PiD<, 0, 2 Pi<,

FrameLabel Ø "Definitions UnSaved"D

Manipulate@f2@xD, 88x, N@PiD<, 0, 2 Pi<,

SaveDefinitions Ø True, FrameLabel Ø "Definitions Saved"D

In[40]:=

x

f1@3.14159D

Definitions UnSaved

Out[40]=

x

f1@3.14159D

Definitions UnSaved

In[41]:=

x

-1.4303

Definitions Saved

Out[41]=

x

-1.4303

Definitions Saved
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Discussion
For simple cases of self-contained formulas, the solution using SaveDefinitions is ap-
propriate,  but  it  has  limitations.  Although  the  definition  of  the  function  is  saved
within  the  context  of  the  manipulate  output,  it  is  still  in  the  Global`  scope.  This
means  a  Clear[f2]  will  break  the  manipulation.  To  localize  functions  and  variable
definitions, you can wrap the Manipulate in a DynamicModule.  Now the variables de-
fined in the DynamicModule will be localized and values will be preserved across Math-
ematica sessions.

In[42]:= DynamicModule@8f<,

f@x_D := Sin@x^2D + Cos@xD;

Manipulate@f@xD, 88x, N@PiD<, 0, 2 Pi<,

FrameLabel -> "Definitions Localized"DD

Clear@

fD

Out[42]=

x

-1.4303

Definitions Localized

Another potential problem with SaveDefinitions is that a great deal of code can get
pulled into the Manipulate output. Imagine your Manipulate uses a function that de-
pends on code from an external package pulled in by Needs. All the code in the pack-
age  could  potentially  be  pulled  into  the  Manipulate  cell  by  SaveDefinitions.  This  will
bloat the notebook and affect the time it takes the control to initialize each time. In
situations like this, it is better to use the option Initialization. Further, if the Ini-
tialization  code  must  complete  before  the  results  are  displayed,  you  should  also
specify option SynchronousInitialization Ø True.

In[44]:= ManipulateAHistogramARandomReal@dist, 81000<D, PlotRange Ø AllE,

8dist, 880, 1<, NormalDistribution@0, 1D, HalfNormalDistribution@1D,

StudentTDistribution@2D, StudentTDistribution@3D<<,

Initialization :> IIfATrueQA$VersionNumber < 7E, NeedsA"Histograms`"EEM,

SynchronousInitialization Ø TrueE

15.9 Making a Manipulate Self-Contained | 617



Out[44]=

dist 80, 1< NormalDistribution@0, 1D HalfNormalDistribution@1D StudentTDistribution@2D StudentTDistribution@3D

Mathematica  7  was  released  midway  through  the  production  of  this
book,  hence  I  conditionalized  the  Initialization  since  Histogram  is  a
built-in function in version 7. 

15.10 Remembering the Values Found Using 
Manipulate
Problem
You found some interesting results using Manipulate  and want to preserve them for
future use.

Solution
Use the + icon in the Manipulate to select either “Paste Snapshot ” or “Add To Bookmarks.”

In[45]:= Manipulate@-0.07 x^5 - 0.42 x^4 + 0.94 x^3 - 4.25 x^2 + 86.5 x - 0.13,

8x, 4.873, 4.874<D

Out[45]=

x

0.0617716
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In[46]:= DynamicModuleA8x = 4.8732500000000005`<,

-0.07` x5 - 0.42` x4 + 0.94` x3 - 4.25` x2 + 86.5` x - 0.13`E

Out[46]= -0.00816536

In[47]:= DynamicModuleA8x = 4.873219000000001`<,

-0.07` x5 - 0.42` x4 + 0.94` x3 - 4.25` x2 + 86.5` x - 0.13`E

Out[47]= 0.000507714

Discussion
You can bookmark specific settings by adjusting the dynamic module output to the
desired values and then choosing “Add To Bookmarks.” You will be prompted for a
bookmark  name.  From  that  point  on  you  can  return  to  those  settings  by  selecting
the  bookmark.  In  the  figure  below I  have  added  two  bookmarks:  “Initial  Settings”
and “Interesting.”

15.11 Improving Performance of Manipulate by 
Segregating Fast and Slow Operations
Problem
You have a sluggish Manipulate with several controls and you would like to improve
some aspects of its performance.  
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Solution
Isolate fast dynamic computations from computationally intensive ones by perform-
ing the fast computations local to an internal Dynamic. In the example below, the gen-
eration of the 50,000 data points using NestList is significantly more expensive than
raising the values in the list  to a power. You need not pay the price of the generation
when manipulating the variable z, but to isolate that computation you need to wrap
it in a Dynamic, as shown.

In[48]:= ManipulateA

DynamicModuleA8data<, data = NestList@r Ò H1.0 - ÒL &, x, 50000D;

DynamicAListPlotA data^z, PlotRange -> 880, 10000<, 80, 1<<EEE,

88r, 3.58<, 2, 4<, 88x, 0.4<, 0, 1<, 88z, 1<, 0.1, 5<E

Out[48]=

r

x

z

0 2000 4000 6000 8000 10 000
0.0

0.2

0.4

0.6

0.8

1.0

Discussion
This technique works because internally Manipulate  wraps its expression with a Dy-
namic  and the net result is  a Dynamic  nested inside another Dynamic.  In the solution,
the inner Dynamic is monitoring changes in data and z but not r or x, and since data
does not recompute when z changes, data need not be recomputed. The general rule
is that changes that trigger only updates to an inner Dynamic will not trigger updates
to any outer Dynamic.

You can also exploit this property when combining plots where one is slow and the
other is fast. To make this work, you need to solicit the services of DynamicWrapper
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because Show  cannot combine Dynamic output. The trick here is to use DynamicWrapper
to capture the output of each plot, nesting the DynamicWrapper  that  computes the
ReliefPlot (less expensive) inside the DynamicWrapper that computes the ListContour-
Plot (more expensive). The result is that you can change the color function cf or the
plot points p of the ReliefPlot and get fast updates while paying for the updates to n
or the number of contours c only when these are changed.

In[49]:= ManipulateADynamicModuleA8p1 = 0, p2 = 0, data<,

data = TableAi + SinAi^n + j^nE, 8i, -4, 4, .03<, 9j, -4, 4, .03=E;

DynamicWrapperADynamicWrapperADynamic@Show@8p2, p1<DD,

p1 = ListContourPlotAdata, ContourShading -> None, Contours -> c,

ContourStyle -> 9Opacity@.5D, Opacity@.8D=, ImageSize -> 300EE,

p2 = ReliefPlotAdata, MaxPlotPoints -> p, ColorFunction -> cf,

ImageSize -> 300EEE, 88n, 2<, 1, 10, 1<,

88c, 3<, 3, 10, 1<, 88p, 50<, 20, 200, 1<,

8cf, 8Automatic, "SunsetColors", "BlueGreenYellow"<<E

Out[49]=

n

c

p

cf Automatic SunsetColors BlueGreenYellow
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In[50]:= DynamicModuleA8cf = "SunsetColors", c = 5, n = 6, p = 110<,

DynamicModuleA8p1, p2, data<,

data = TableAi + SinAin + jnE, 8i, -4, 4, 0.03`<, 9j, -4, 4, 0.03`=E;

DynamicWrapperADynamicWrapperADynamic@Show@8p2, p1<DD,

p1 = ListContourPlotAdata, ContourShading Ø None, Contours Ø c,

ContourStyle Ø 9Opacity@0.5`D, Opacity@0.8`D=, ImageSize Ø 500EE,

p2 = ReliefPlotAdata, MaxPlotPoints Ø p, ColorFunction Ø cf,

ImageSize Ø 300EEEE

Out[50]=

15.12 Localizing a Function in a Manipulate
Problem
You want to manipulate a function while keeping the function’s definition localized.

Solution
Wrap the Manipulate in a DynamicModule and use the Initialization option to estab-
lish the function’s definition. Below we define a global function f[x] and two Manipu-
lates using localized definitions of f[x] that remain independent.

In[51]:= f@x_D := 1
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In[52]:= DynamicModule@8f<, Manipulate@f@xD, 8x, -2 Pi, 2 Pi<D,

Initialization :> Hf@x_D := Sin@xDLD

Out[52]=

x

0

In[53]:= DynamicModule@8f<, Manipulate@f@xD, 8x, -2 Pi, 2 Pi<D,

Initialization :> Hf@x_D := Cos@xDLD

Out[53]=

x

1

Discussion
Manipulate  only localizes variables associated with control variables. This can cause
problems when you have  multiple  Manipulates  that  use  the  same function  name in
different ways. In Out[54] below, it is clear that the second definition of g[x] modi-
fied the first since Sin[x] takes on values between |1 and 1.

In[54]:= ManipulateAg@xD, 8x, -2. Pi, 2. Pi<, Initialization :> Ig@x_D := Sin@xDME

Out[54]=

x

-18.8496

In[55]:= ManipulateAg@xD, 8x, 1., 2.<, Initialization :> Ig@x_D := 3 xME

Out[55]=

x

3.
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Note that SaveDefinitionsØTrue as discussed in Recipe 15.9 does not localize the sym-
bol, so it is not a solution to this problem.

In[56]:= f@x_D := Exp@xD

Manipulate@f@xD, 8x, -2 Pi, 2 Pi<, SaveDefinitions Ø TrueD

Out[57]=

x

‰-2 p

In[58]:= f@x_D := 1

15.13 Sharing DynamicModule Variables across 
Cell or Window Boundaries
Problem
You want to create an interface that is divided across multiple cells or notebooks but
interacts with shared variables. However, you don’t want these variables to be global.

Solution
Create a DynamicModule Wormhole using InheritScopeØTrue from within a Manip-
ulate or DynamicModule you want to inherit from.

Discussion
Variables defined in the first argument of a DynamicModule or as control variables in a
Manipulate have their scope restricted to the resulting output cell. This concept is ex-
plained in Recipe 15.7. Generally, this is exactly the behavior you want when using
Manipulate. An obvious exception is when you want to create a more complex appli-
cation  composed  of  multiple  notebooks  (a  palette  is  implemented  as  a  notebook).
The whimsical term wormhole is used to suggest the sharing of scope between differ-
ent physical locations (e.g., output cells). 

Here is  an example that uses the same technique as the solution but with Dynamic-
Module  instead  of  Manipulate  and  multiple  output  cells  instead  of  a  palette.  Each
time the button is pressed, a new cell is printed that inherits the scope from the origi-
nal DynamicModule.
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In[59]:= DynamicModuleA8x = 0, d<,

9Dynamic@xD, SliderADynamic@xD, 8-10, 10<E, ButtonA"MakeCell",

PrintADynamicModuleA8<, Dynamic@xD, InheritScope Ø TrueEEE=E

Out[59]= ;0, , MakeCell ?

See Also
The “Advanced Dynamic Functionality” tutorial (http://bit.ly/3u8fXo) explains some
of the technical details underlying DynamicModule wormholes. It hints at the ability to
link up arbitrary existing DynamicModules  but,  unfortunately,  provides no additional
information. 

15.14 Creating Your Own Custom Controls
Problem
You want to create a  control  of  your own design that  can be used inside a Manipu-
late or notebook cell.

Solution
Manipulate  allows you to associate a control  variable with a function and thus pro-
vides  a  means  to  specify  controls  with  nonstandard  behavior  and  appearance.  The
function incUntilButton creates a button that increments the dynamic variable until
it hits a specified value, at which point it sets it back to the minimum specified in the
Manipulate  definition. Notice how the slider can change the x  through its full range
while the button immediately resets x to |10 if it exceeds 5.

In[60]:= incUntilButtonAname_String, limit_Integer, Dynamic@val_D,

8min_, max_<E := Button@name, If@val < limit, ++val, val = minDD

Manipulate@x, 8x, -10, 10<, 88x, 0<, -10, 10,

incUntilButton@"Inc Until 5", 5, ÒÒD &<D

Out[61]=

x

x incUntilButton@Inc Until 5, 5, -10, 8-10, 10<D

-10
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Discussion
The function you use to create a custom control  can take two forms. In the simple
form, it is passed only the control variable wrapped in Dynamic (e.g., Dynamic[x]).

In[62]:= simpleADynamic@var_DE := Button@"inc", ++varD

Manipulate@x, 88x, 0<, -10, 10<, 88x, 0<, simple@ÒD &<D

Out[63]=

x

x simple@0D

0

The  solution  shows  the  advanced  form  that  gives  the  function  access  to  the  mini-
mum and maximum values specified in the definition. In this case, the function
Manipulate  sees  must  have  the  form f[Dynamic[var_], {min_,max_}].  As the solution
shows, this does not mean you can’t use a function that takes additional arguments.
However, those arguments must be bound when the anonymous function is created
inside the Manipulate, as I did by providing "Inc Until 5" and 5 in the solution.

You may argue that a button hardly qualifies as a “custom control” even though the
solution gives it custom behavior. Have no fear, because you have all the user inter-
face primitives Mathematica has to offer at your disposal for creating interesting con-
trols.  Here  is  an  example  that  shows  how  the  angular  slider  (adapted  from  the
“Applications” section DynamicModule in the Mathematica documentation) can be in-
corporated as a control in a Manipulate.

This  example  uses  the  function  Control  and  the  option  ContentSize,
which are only available in Mathematica 7.
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In[64]:= angularSliderADynamicAangle_EE :=

ControlA9angle, IDynamicModuleA9p = 81, 0<, angleCalc=,

LocatorPaneADynamicAp, IangleCalc üü Normalize êü 8Ò, p<M &E,

GraphicsA9Circle@D, Arrowheads@0.15D, ArrowA

Dynamic@880, 0<, p<DE=, ImageSize Ø TinyE, Appearance Ø NoneE,

Initialization ß Iangle = 0; angleCalc@newp_, oldp_D := Iangle =

angle + ArcCos@newp.oldpD Sign@Cross@newpD.Hnewp - oldpLD;

p = 9CosAangleE, SinAangleE=MMEM &=E

ManipulateA9angle, SinAangleE, CosAangleE=, 9angle, angularSlider@ÒD &=,

ContentSize Ø 275E

Out[65]=

angle angularSlider@0D

80, 0, 1<

15.15 Animating an Expression
Problem
You want to see how an expression evolves without having to manually adjust controls.

Solution
Use  Animate  to  create  instructive  self-running  demonstrations.  Here  Animate  drives
an  illustration  of  the  cycloid,  which  is  the  locus  of  points  traced  by  a  point  on  a
wheel as it rolls across a flat surface.

In[66]= AnimateA

ShowAParametricPlotA8t - Sin@tD, 1 - Cos@tD<, 9t, 0, x + $MachineEpsilon=,

PlotRange Ø 880, 4 Pi<, 80, 2<<, Axes Ø NoneE, Graphics@Translate@

Rotate@8Circle@80, 1<D, Point@80, 0<D<, -xD, 8x , 0<DDE, 8x, 0, 4 Pi<E

Out[66]=

x
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Discussion
Animate can drive a variety of demonstrations. Here we can get some insight into the
implementation  of  the  Sort  function  by  providing  a  parameter  limit  within  a  cus-
tom comparison function that short-circuits the sort after that many steps. You use
Animate  with BarChart  to visualize  the  partialSort  at  each  step.  Here  the  option
DisplayAllSteps  keeps Animate  from skipping over steps.  DisplayAllSteps  will  slow
things down, so only use it if the animation suffers without it.

In[67]= DynamicModuleA8list, len<,

list = RandomReal@81, 100<, 50D;

len = Length@listD;

max = FloorAlen * Log@2, lenDE;

AnimateABarChartApartialSort@list, tD, Axes Ø None,

ColorFunction Ø FunctionA9height=, ColorData@"Rainbow"DA1 - heightEEE,

8t, 0, max, 1<, DisplayAllSteps Ø TrueE,

Initialization ß H

partialSort@list_, limit_D :=

Module@8step = 0<, Sort@list, Hstep++ < limit && Ò1 < Ò2L &DD

LE

Out[67]=

t

Other  useful  options  are  AnimationRunningØTrue,  which  starts  the  animation  run-
ning immediately; AnimationRate,  which sets the initial speed of the animation; and
AnimationRepetitions, which controls how many times the animation repeats before
stopping. 
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As you might expect,  there is  a  close relationship between Animate  and Manipulate.
Animate  is  implemented in  terms of  Manipulate  with  the  help  of  a  low-level  control
called an Animator. You can use an Animator directly to get more control over the de-
tails of the animation layout. Stare at the next animation for 10 seconds, and when
you awaken, you will have the strong urge to tell all your friends to buy the Mathe-
matica Cookbook!

In[68]:= DynamicModuleA8x<,

GridA99AnimatorADynamic@xDE, DynamicAGraphicsA9Opacity@0.5D,

Disk@80, 0<, 0.5D, Disk@80, 0<, xD=EE=, 9"You are getting...",

DynamicATextAStyleA"Sleepy", Bold, 12 + 5 xEEE==EE

Out[68]=

You are getting... Sleepy

You can share your animations over the Web by exporting them to several common
video formats, such as Microsoft AVI or Adobe Flash. You may need to experiment
with  the  options  AnimationRate,  RefreshRate,  and  DefaultDuration  to  get  a  smooth
animation.

In[69]:= ExportA"cycloid.avi",

AnimateAShowAParametricPlotA8t - Sin@tD, 1 - Cos@tD<,

9t, 0, x + $MachineEpsilon=, PlotRange Ø 880, 4 Pi<, 80, 2<<,

Axes Ø NoneE, Graphics@Translate@

Rotate@8Circle@80, 1<D, Point@80, 0<D<, -xD, 8x , 0<DDE,

8x, 0, 4 Pi<, AnimationRate Ø 0.1, RefreshRate Ø 1,

AnimationRunning Ø True, DefaultDuration Ø 20.`,

AnimationDirection Ø ForwardBackwardEE;
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See Also
The function ListAnimate provides an alternative to Animate in which the animation
is  derived  by  cycling  through  the  elements  of  a  list.  This  is  useful  in  a  case  where
each step in  the  animation takes  a  lot  of  computation;  you can precompute  all  the
frames of the animation and play them back using ListAnimate.  See the Mathemat-
ica documentation for examples.

15.16 Creating Custom Interfaces
Problem
You  want  to  create  a  custom  interface  that  requires  handling  of  low-level  events
such as mouse clicks.

Solution
Mathematica’s  higher  level  interactive  functionality  is  adequate  for  most  casual
users,  but  sometimes  you  want  to  achieve  something  cool.  Luckily,  Mathematica
lets  you  intercept  low-level  GUI  events  generated  by  your  operating  system  using
EventHandler. When you execute the following code, you can increase the size of the
text  by  dragging  (moving the  mouse  with  the  left  button depressed)  over  the  word
Start. When you release the mouse, the text changes to Done.

In[70]:= DynamicModuleA8text = "Start", points = 12<,

EventHandlerADynamicATextAStyle@text, pointsDEE,

"MouseDown" ß Htext = "Start"; points = 12L,

"MouseUp" ß Htext = "Done"L, "MouseDragged" ß Hpoints += 0.5LEE

Out[70]= Start

Discussion
You can use event handlers to add interactive features to existing plotting and graph-
ics functions. In these applications, you will often use MousePosition["Graphics"] to
query the position of the mouse relative to the enclosing graphic. Here interactive-
Plot creates a plot of a function and annotates it with a point based on the position
of the mouse when you click. The coordinates of the point are displayed in the up-
per left.
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In[71]:= SetAttributes@interactivePlot, HoldAllD;

interactivePlotAf_, range_E := DynamicModuleA8m, p = 80, 0<, plot, dot<,

ColumnA9Dynamic@Row@p, Spacer@4DDD, EventHandlerA

plot = PlotAf, rangeE;

DynamicWrapperADynamic@Show@plot, dotDD,

dot = Graphics@Point@8p@@1DD, p@@2DD<D, AspectRatio Ø 0.1DE,

"MouseDown" ß Hm = MousePosition@"Graphics"D;

p = 8m@@1DD, Head@fD@m@@1DDD<LE=EE

In[73]:= interactivePlot@Cos@xD, 8x, 0, 4 Pi<D

Out[73]=

0 0

2 4 6 8 10 12

-1.0

-0.5

0.5

1.0

Event handlers can nest with the options PassEventsDown and PassEventsUp, control-
ling event propagation. By default, inner event handlers get to act on events first, but
outer event handlers see the event first and thus can control propagation of the event
downward. The program below creates a simple game using the keyboard. The idea
is to try to catch the dot with the arrow. Notice that there is an outer event handler
that  is  used to control  the difficulty  of  the game using the d and e  keys.  The outer
event  handler  uses  PassEventsDown  Ø  False,  which  means  that  if  it  handles  the
event,  then  the  inner  handler  will  not  see  it.  This  prevents  the  dot  from  moving
when the d or e key is handled. 

EventHandler  using  arrow  keys  does  not  work  well  in  Mac  OS  X
because  selection  is  lost  when  the  arrow  is  pressed.  I  do  not  know  a
workaround except to use other keys or mouse events.
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In[74]:= DynamicModuleA9line = 880, 0<<, dot, inc = 0.1, difficulty = 0.5=,

dot = Disk@Round@RandomReal@80, 1<, 2D, 0.1D, 0.025D;

H*This event handler controls difficulty.*L

EventHandlerADynamicA

H*This event handler controls the game play.*L

EventHandlerA

DynamicA

ColumnA9RowA9"Difficulty", difficulty=, Spacer@2DE, GraphicsA9White,

EdgeForm@ThickD, Rectangle@D, Black, Arrow@lineD, dot=E=EE,

H*Arrow keys extend the line.*L

"RightArrowKeyDown" ß AppendTo@line, Last@lineD + 8inc, 0<D,

"LeftArrowKeyDown" ß AppendTo@line, Last@lineD + 8-inc, 0<D,

"UpArrowKeyDown" ß AppendTo@line, Last@lineD + 80, inc<D,

"DownArrowKeyDown" ß AppendTo@line, Last@lineD + 80, -inc<D,

H*Any key, including arrows, may move the dot or declare a winner.*L

"KeyDown" ß Idot = IfAinc > 0 && dot@@1DD ã Last@lineD,

inc = 0; TextAStyle@"Winner", Bold, 16D, dot@@1DDE,

IfAinc ã 0 »» RandomReal@D > difficulty, dot,

Disk@Round@RandomReal@80, 1<, 2D, 0.1D, 0.025DEEMEE,

9"KeyDown", "d"= ß Idifficulty = MinA0.8, difficulty + 0.05EM,

9"KeyDown", "e"= ß Idifficulty = MaxA0.1, difficulty - 0.05EM,

H*Escape key resets the game.*L

"EscapeKeyDown" ß Hline = 880, 0<<; inc = 0.1;

dot = Disk@Round@RandomReal@80, 1<, 2D, 0.1D, 0.025DL,

H*Don't pass events handled on this layer down.*L

PassEventsDown Ø FalseEE

Out[74]=

Difficulty 0.5

See Also
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See Also
FrontEndEventActions,  NotebookEventActions,  and  CellEventActions  are  other  event
handlers with differing levels of granularity. See the Mathematica documentation for
details.

15.17 Managing a Large Number of Controls in 
Limited Screen Real Estate
Problem
You want to go beyond what Manipulate has to offer and create your own custom in-
terfaces.  You may need to manage a large number of  controls in a sensible manner
or need a custom layout that Manipulate does not support.

Solution
The  building  blocks  of  sophisticated  user  interfaces  are  PaneSelector  and  Opener-
View,  for  managing  many  controls;  Control,  for  selection  of  appropriate  controls;
and  Item,  Row,  Column,  and  Grid,  for  layout.  The  following  Manipulate  initially  pre-
sents a simple interface for modifying the parameters to a 3D plot. You use Opener-
View  to  provide  an  advanced  set  of  controls  that  remain  hidden  until  selected.
Within this OpenerView, you use PaneSelector to alternate between sets of controls, de-
pending on a checkbox that allows modification of PlotStyle or ColorFunction.

Control  is  a  Mathematica  7  feature,  so  the  following  code  will  not
work in version 6.
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In[75]:= DynamicModuleA9color, specularity, colorFunc, colorScale, vxy, vz=,

ManipulateAPlot3DASinAa Pi x + y^2E b CosAc Pi yE, 8x, -1, 1<,

9y, -1, 1=, PlotRange Ø 88-1, 1<, 8-1, 1<, 8-5, 5<<,

PlotStyle Ø 9SpecularityAWhite, specularityE, color=,

ColorFunction Ø

IfAcolorFunc, FunctionA9x, y, z=, Hue@colorScale H1 - zLDE, NoneE,

H*Here I use Dynamic as per Recipes 15.6 and 15.5 so that updates

are fast and viewpoint drags of plot sync with controls.*L

ViewPoint Ø DynamicAFlattenA9vxy, vz=E,

I9vxy@@1DD, vxy@@2DD, vz= = ÒM &EE,

8a, -5, 5<, 8b, -5, 5<, 8c, -5, 5<,

H*Advanced set of controls*L

OpenerViewA9"Advanced", ColumnA9

ItemA"Plot Style", Alignment Ø CenterE,

Control@88colorFunc, False<, 8True, False<<D,

H*PlotStyle and ColorFunction are mutually exclusive.*L

PaneSelectorA9True ->

Control@88colorScale, 0.65<, 0, 1<D,

False Ø ColumnA9ControlA9color, Orange=E,

ControlA99specularity, 3=, 5, 1=E=E=, Dynamic@colorFuncDE,

ItemA"View", Alignment Ø CenterE,

RowA9ControlA99vxy, 82, 2<, "x-y"=, 8-2 Pi, -2 Pi<, 82 Pi, 2 Pi<=E,

ControlA98vz, 2, "z"<, -2 Pi, 2 Pi,

ControlType Ø VerticalSlider, ImageSize Ø Tiny=E=E

=E=EEE
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Out[75]=

a

b

c

Advanced

Discussion
In  addition  to  OpenerView  and PaneSelector,  there  is  a  whole  family  of  controls  for
managing  limited  screen  real  estate.  These  include  FlipView,  MenuView,  SlideView,
and TabView. I provide a sample of each without going into much detail because they
are fairly self-explanatory and follow the same basic syntax. 

A FlipView cycles through a list of expressions as you click on the output. Here I use
FlipView over a list of graphics. Click on the graphic to see the next in the series. 

In[76]:= FlipViewA

GraphicsAÒ, ImageSize Ø TinyE & êü 9Disk@D, Circle@D, Rectangle@D=E

Out[76]=
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SlideView is similar to FlipView but uses VCR-style controls to give more control of
the progression.

In[77]:= SlideViewA

GraphicsAÒ, ImageSize Ø TinyE & êü 9Disk@D, Circle@D, Rectangle@D=E

Out[77]=

 « ▸ 

A MenuView  allows you random access to the items via a menu that you specify as a
list of rules: MenuView[{lbl1Øexpr1, label2Øexpr2, ...}]. This is similar syntax to
that  used  by  PaneSelector  in  the  solution.  Don’t  be  afraid  to  build up these expres-
sions using a  bit  of  functional  programming as  I  do here,  especially  if  it  cuts  down
on repetition. In Out[78] below, I use the Head of each graphic primitive as the label
for convenience, but you can also provide the label explicitly, as in Out[79] on page
637, which builds the list of rules using Inner. 

In[78]:= MenuViewAIHead@ÒD ß GraphicsAÒ, ImageSize Ø TinyEM & êü

9Disk@D, Circle@D, Rectangle@D=E

Out[78]=

Disk

636 | Chapter 15: Interactivity



In[79]= MenuViewAInnerAIÒ1 Ø GraphicsAÒ2, ImageSize Ø TinyEM &,

9"aDisk", "aCircle", "aRectangle"=,

9Disk@D, Circle@D, Rectangle@D=, ListEE

Out[79]=

aDisk

TabView is similar to MenuView but uses the familiar tabbed folder theme that has be-
come popular in a variety of modern interfaces, including most web browsers.

In[80]:= TabViewAInnerAIÒ1 Ø GraphicsAÒ2, ImageSize Ø TinyEM &,

9"aDisk", "aCircle", "aRectangle"=,

9Disk@D, Circle@D, Rectangle@D=, ListEE

Out[80]=

aDisk aCircle aRectangle

Clearly these controls can be mixed, combined with Manipulate, or used alone to cre-
ate an unlimited variety of sophisticated interfaces. For example, here is a tabbed set
of Manipulates.
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In[81]:= TabView@Inner@

HÒ1 Ø Manipulate@ Plot@a Ò2@b xD, 8x, 0, Pi<D, 8a, 1, 5<, 8b, 1, 5<DL &,

8"Sin", "Cos", "Tan"<, 8Sin, Cos, Tan<, ListDD

Out[81]=

a

b

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Sin Cos Tan

Contrast this to a single Manipulate that can switch between a TabView or a MenuView,
or even one that lets you switch back and forth. This is  actually a useful  technique
when building an interface for someone’s approval. You can switch among various
design choices without touching the code.
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In[82]:= Manipulate@control@Inner@HÒ1 Ø Plot@a Ò2@b xD, 8x, 0, Pi<DL &,

8"Sin", "Cos", "Tan"<, 8Sin, Cos, Tan<, ListDD,

8a, 1, 5<, 8b, 1, 5<, 88control, TabView<, 8TabView, MenuView<<D

Out[82]=

a

b

control TabView MenuView

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Sin Cos Tan

See Also
Inspiration  for  this  recipe  came  from  a  presentation  by  Lou  D’Andria  of  Wolfram
during  the  2008  International  Mathematica  User  Conference.  Presentations  from
this conference can be found at http://bit.ly/41BMSZ.
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CHAPTER 16

Parallel Mathematica

splintered dreams of unity (our lives are parallel)
so far from reality (our lives are parallel)

independent trajectories (our lives are parallel)
separate terms of equality (our lives are parallel)

our lives are parallel

is there no redemption? no common good?
is there nothing we can do for ourselves?

or only what we should?
comes the hard admission of what we don’t provide

goes the insistence on the ways
and means that so divide

Bad Religion, “Parallel”

16.0 Introduction
Mathematica has impressive performance on many types of problems. The majority
of Mathematica users are not drawn to Mathematica for its  brute speed, but rather
for its unparalleled depth of features in the realm of symbolic processing. Yet, there
are certainly problems that you will solve in Mathematica that you will want to scale
to  larger  data  sets  or  more  complex  models.  In  the  past,  the  only  viable  solution
might be to port your Mathematica solution to C or Fortran. Today relatively cheap
multiprocessor  and  multicore  computers  have  become  commonplace.  My  primary
development machine has eight cores available. Wolfram provides two solutions for
exploiting multiple CPUs. The first solution, called Grid Mathematica, has been avail-
able as a separate (and somewhat costly) product distinct from your vanilla Mathe-
matica  product.  The  second  solution  is  available  to  everyone  who  has  updated  to
Mathematica 7. One of the big feature enhancements in version 7 is integrated paral-
lelism that can exploit up to four CPU cores. At the present time, going beyond four
cores requires the Grid Mathematica solution, even with version 7. 

Whether  you  use  Mathematica  7,  Grid  Mathematica  7,  or  Grid  Mathematica  pre-
release 7, the road to parallelizing your Mathematica code is essentially the same, al-
though  it  has  become  significantly  more  user  friendly  in  version  7.  Mathematica’s
concurrency model revolves around running multiple communicating kernels. These
kernels  can  be  on  the  same  machine  (which  only  makes  sense  if  that  machine  has
multiple  cores)  or  on  several  networked  machines.  In  the  networked  case,  the  ma-
chines can be of any architecture and operating  system for  which  a  Mathematica
version exists.
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Whether  you  use  Mathematica  7,  Grid  Mathematica  7,  or  Grid  Mathematica  pre-
release 7, the road to parallelizing your Mathematica code is essentially the same, al-
though  it  has  become  significantly  more  user  friendly  in  version  7.  Mathematica’s
concurrency model revolves around running multiple communicating kernels. These
kernels  can  be  on  the  same  machine  (which  only  makes  sense  if  that  machine  has
multiple  cores)  or  on  several  networked  machines.  In  the  networked  case,  the  ma-
chines can be of any architecture and operating  system for  which  a  Mathematica
version exists.

Mathematica’s  concurrency  model  uses  one  master  kernel  and  multiple  slave  ker-
nels. The designations master  and slave  do not  denote different versions of the kernel:
any kernel can play the role of the master. The master coordinates the activity of the
slaves, ships work to the slave kernels, and integrates results to present back to the
end  users.  There  are  several  possible  configurations  of  master  and  slaves  that  will
vary based on your particular arrangement of computer resources and possibly third-
party  tools.  The  simplest  configuration  uses  all  local  kernels  and  is  appropriate
when working on a multicore machine. The next level of complexity is based on Wolf-
ram’s  Lightweight  Grid  Service  technology  and  represents  the  simplest  option  for
users who need to distribute computations over a network of computers. The third
option is ideal for enterprise users who already deploy some third-party vendor’s clus-
tering solution (e.g., Microsoft Cluster Server, Apple Workgroup Cluster, Altair PBS
GridWorks,  etc.).  A  final  option  is  based  on  the  ability  of  the  master  kernel  to
launch remote kernels using the remote shell (rsh), but this is largely a legacy option
and is typically harder to set up and maintain. Recipes 16.1 and 16.2 explain how to
set up the two most common configurations. 

The recipes in this chapter assume you have Mathematica 7, which no
longer  relies  on  the  Parallel  Computing  Toolkit  that  was  the
foundation  of  parallel  operations  for  Mathematica  6  and  earlier
versions.  However,  many of  the  recipes  will  port  easily  to  the  Parallel
Computing Toolkit since many of commands have the same names.

There  are  some  common pitfalls  you  need  to  avoid  so  your  experience  with  paral-
lelization does not end in utter frustration.

Never  attempt  to  test  your  code  for  the  first  time  in  parallel  evaluation.  If  you  are
writing a function that you plan to evaluate in parallel, first test it in the normal way
on  a  single  kernel.  Make  sure  it  is  as  bug  free  as  possible  so  you  can  separate  any
problems you encounter  under  parallel  operation from problems that  have nothing
to do with parallel evaluation. 
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Don’t  forget  that  slave  kernels  do  not  have  access  to  variables  and  definitions  cre-
ated in the master unless you specifically grant them access. A very common pitfall
is to forget to use DistributeDefinitions.

Try structuring your code so that it is side-effect free. Code with side effects, includ-
ing code that  may create  new definitions  within  the  kernel,  perform writes  to  files,
or create visual content in the frontend, may still  be parallelizable, but you need to
know what you are doing. A function that saves some state in one slave kernel will
not see that change when it runs again in a different slave kernel. 

Race conditions may be another problem. Consider a function that checks if a file ex-
ists, opens it, and writes some data to the end. If the file was not found, it creates it.
Parallelizing the function is going to be fraught with difficulties unless special precau-
tions are taken. If the function is running on two kernels, both may see that the file
does not exist, and both may then attempt to create it. This will most likely result in
the initial  output  of  one kernel  getting lost.  Race conditions are  extremely frustrat-
ing because a program may work 99 times in a row but then suddenly fail on the
hundredth try. Recipe 16.11 provides techniques for avoiding these kinds of problems.

16.1 Configuring Local Kernels
Problem
You want to exploit your multicore computer by running two or more local kernels
in parallel.

Solution
Use Edit,  Preferences and navigate to the Parallel  tab (see Figure 16-1).  Within this
top-level tab there is a subtab group where the first subtab is called Local Kernels. If
you are configuring parallel preferences for the first time, this tab is probably already
selected.  Notice  the  button  called  Enable  Local  Kernels.  Pressing  that  button  will
cause the display to change to that in Figure 16-2.
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Figure 16-1. Parallel preferences for local kernel configuration

There  are  a  few  radio  buttons  for  specifying  how  many  slave  kernels  to  run.  The
default setting is Automatic, meaning it will run as many kernels as there are cores,
up to the standard license limit of four. For most users, this is exactly the setting you
want, and you can now close the Preferences dialog and begin using the parallel pro-
gramming primitives described in the remaining recipes of this chapter.
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Figure 16-2. Preferences after enabling local kernels

Discussion
The simplest way to get started with parallel computing in Mathematica is to run on
a  computer  with  more  than  one  core.  A  four-core  machine  is  ideal  because  that  is
the number of slave kernels Mathematica allows in a standard configuration. If you
are  using  the  computer  to  do  other  work,  you  may  want  to  leave  “Run  kernels  at
lower process priority” checked, but on my Mac Pro eight-core processor, I uncheck
this  since  there  is  plenty  of  CPU available  to  the  system even  with  the  four  slaves,
one master, and the frontend. 

Once you have enabled local kernels, you can use Parallel Kernel Status to check the
status of the slaves and launch or close them. 
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See Also
See  Recipe  16.2  for  configuring  access  to  kernels  running  on  other  computers  on
your network.

16.2 Configuring Remote Services Kernels
Problem
You  want  to  exploit  the  computing  resources  of  your  network  by  running  two  or
more kernels across multiple networked computers.

Solution
If you have not already done so, you must obtain the Lightweight Grid Service from
Wolfram  and  install  it  on  all  computers  that  you  wish  to  share  kernels.  The
Lightweight Grid Service is available free to users who have Premier Service. Contact
Wolfram for licensing details. By default, the Lightweight Grid Service is associated
with port 3737, and assuming this default,  you can administer the service remotely
via  a  URL  of  the  form  http://<server  name>:3737/WolframLightweightGrid/,  where
<server  name>  is  replaced  by  the  server  or  IP  address.  For  example,  I  use  http://
maxwell.local:3737/WolframLightweightGrid/  for  my  Mac  Pro.  I  could  also  access  this
machine via its IP address on my network http://10.0.1.4:3737/WolframLightweightGrid/. 

Use  the  Lightweight  Grid  tab  under  Parallel  Preferences  tab  to  configure  the
Lightweight Grid. This tab should automatically detect machines on your local sub-
net.  You  can  also  find  machines  on  other  subnets  (provided  they  are  running
Lightweight  Grid)  by  using  the  “Discover  More  Kernels”  option,  and  entering  the
name of the machine manually.
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Figure 16-3. Parallel preferences for Lightweight Grid
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Discussion
Once you have the Lightweight Grid configured, remote kernels are as easy to use as
local  ones.  Mathematica will  launch the specified number of  remote kernels on the
computers  you selected provided the  kernels  are  available.  The kernels  may not  be
available if they are being used by another user on the network since each computer
will typically have a maximum number of kernels that can be launched, and launch-
ing more kernels than there are cores on a specific computer does not usually make
sense.

You  can  use  the  LaunchKernels  command  to  launch  kernels  associated  with  a  spe-
cific computer running the Lightweight Grid Service. 

In[1]:= LaunchKernelsA"http:êê10.0.1.4:3737êWolframLightweightGridê"E;

See Also
Documentation and download links for the Lightweight Grid can be found at http://
www.wolfram.com/products/lightweightgrid/.

16.3 Sending a Command to Multiple Kernels 
for Parallel Evaluation
Problem
You want to run a command on several kernels simultaneously.

Solution
Use ParallelEvaluate to send commands to multiple kernels and wait for results to
complete. Use With to bind locally defined variables before distribution. 

Imagine you need to generate many random numbers and you want to distribute the
calculation across all available kernels. Here I use $KernelCount to make the computa-
tion independent of the number of kernels and Take to compensate for the extra num-
bers returned if $KernelCount does not divide 100 evenly. 
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In[2]:= TakeAFlattenAParallelEvaluateA

RandomIntegerA8-100, 100<, CeilingA100ë $KernelCount EEEE, 100E

Out[2]= 883, -11, 5, -15, -11, -24, 6, -75, 74, 27, -42, 95, 100, -83, -91, -81, 25,

-91, -96, -98, 9, 47, 44, 44, -81, 17, 10, -66, -40, -31, -30, 96, -55,

92, -76, 5, -44, -79, -83, 51, -36, -93, -1, 12, 34, -68, -8, 29, 9, 1,

44, 39, -1, 10, -80, -25, 62, 58, 88, -49, 77, 44, -48, 13, -69, -80, -39,

-44, -37, 95, 34, -81, -8, 33, -79, 86, -97, 29, -29, -19, 22, 50, 4, 95,

-55, -99, -98, 9, -61, -7, 0, -66, -14, -26, 95, 47, -35, -24, -29, -23<

In[3]:= Length@%D

Out[3]= 100

If you want to make the number of random numbers into a variable, you need to use
With since variable values are not known across multiple kernels by default.

In[4]:= vars = WithA8num = 1000<, TakeAFlattenAParallelEvaluateA

RandomIntegerA8-100, 100<, CeilingAnumë $KernelCount EEEE, numEE;

Length@

varsD
Out[5]= 1000

Discussion
Since  ParallelEvaluate  simply  ships  the  command  as  stated  to  multiple  kernels,
there needs to be something that inherently makes the command different for each
kernel; otherwise you just get the same result back multiple times.

In[6]:= ParallelEvaluate@Sin@Piê3DD

Out[6]= ;
3

2
,

3

2
,

3

2
,

3

2
?

You can control  which kernels  ParallelEvaluate  uses  by  passing  as  a  second argu-
ment  the  list  of  kernel  objects  you  want  to  use.  The  available  kernel  objects  are
returned by the function Kernels[].

In[7]:= Kernels@D

Out[7]= 9KernelObject@1, localD, KernelObject@2, localD,

KernelObject@3, localD, KernelObject@4, localD=

Here  you  evaluate  the  kernel  ID  and  process  ID  of  the  first  kernel  returned  by
Kernels[] and then for all but the last kernel.

In[8]:= link = Kernels@D@@1DD;

ParallelEvaluateA9$KernelID, $ProcessID=, linkE

Out[9]= 81, 2478<
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In[10]:= ParallelEvaluateA9$KernelID, $ProcessID=, Drop@Kernels@D, 1DE

Out[10]= 882, 2479<, 83, 2480<, 84, 2481<<

If  you  use  Do  or  Table  with  ParallelEvaluate,  you  may  not  get  the  result  you
expect since the iterator variable will not be known on remote kernels. You must use
With to bind the iteration variable before invoking ParallelEvaluate. 

In[11]:= TableAWithA8i = i<, ParallelEvaluateASin@PiêiD,

Kernels@DAAModAi, $KernelCountE + 1EEEE, 8i, 1, 10<E

Out[11]= ;0, 1,
3

2
,

1

2
,

5

8
-

5

8
,
1

2
, SinC

p

7
G, SinC

p

8
G, SinC

p

9
G,

1

4
-1 + 5 ?

In any case, you don’t want to use ParallelEvaluate with Table because this will ef-
fectively serialize the computation across multiple kernels rather than execute them
in parallel. You can see this by using AbsoluteTiming.

In[12]:= AbsoluteTimingATableAParallelEvaluateAPause@1D;

0, Kernels@DAAModAj, $KernelCountE + 1EEE, 9j, 1, 4=EE

Out[12]= 84.010592, 80, 0, 0, 0<<

ParallelEvaluate  is  useful  for  interrogating the remote kernels  to  check their  state.
For  example,  a  common problem with  parallel  processing  occurs  when the  remote
kernels are not in sync with the master with respect to definitions of functions. 

In[13]:= ClearAmyFuncE;

OptionsAmyFuncE = 8option1 Ø 2<;

myFunc@x_, opts : OptionsPattern@DD := OptionValue@option1D * x;

DistributeDefinitionsAmyFuncE;

OptionsAmyFuncE = 8option1 Ø 3<;

ParallelEvaluateAOptionsAmyFuncEE

Out[14]= 88option1 Ø 2<, 8option1 Ø 2<, 8option1 Ø 2<, 8option1 Ø 2<<

In[15]:= OptionsAmyFuncE

Out[15]= 8option1 Ø 3<

See Also
See the Mathematica documentation for ParallelTable and ParallelArray for better
ways to parallelize Table-like operations.
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16.4 Automatically Parallelizing Existing 
Serial Expressions
Problem
You have code that you wrote previously in a serial fashion and you want to experi-
ment with parallelization without rewriting.

Solution
Use  Parallelize  to  have  Mathematica  decide  how  to  distribute  work  across
multiple  kernels.  To  demonstrate,  I  first  generate  1,000  large  random  semiprimes
(composite numbers with only two factors).

In[16]:= semiprimes =

Times üüü MapAPrime, RandomInteger@810000, 1000000<, 81000, 2<D, 82<E;

In[17]:= Prime@10000D

Out[17]= 104729

Using Parallelize, these semiprimes are factored in ~0.20 seconds.

In[18]:= 9timing1, result= =

AbsoluteTimingAParallelizeAMapAFactorInteger, semiprimesEEE; timing1

Out[18]= 0.206849

Running on a single kernel takes ~0.73 seconds, giving a 3.6 times speedup on my
eight-core machine.

In[19]:= 9timing2, result= = AbsoluteTimingAMapAFactorInteger, semiprimesEE; timing2

Out[19]= 0.737002

In[20]:= timing2ë timing1

Out[20]= 3.563

If you replace AbsoluteTiming  with Timing, you measure an 8 times speedup on this
problem, so the cost of communicating results back to the frontend is significant. 

Discussion
In the solution, I did not use any user-defined functions, so Parallelize was all that
was necessary. In a more realistic situation, you will first need to DistributeDefinitions
of user-defined functions and constants to all kernels before using Parallelize.
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In[21]:= fmaxFactorAx_IntegerE := MaxAPower üüü FactorInteger@xDE

fmaxFactor@1000D
Out[22]= 125

In[23]:= DistributeDefinitions@fmaxFactorD;

Parallelize@Map@fmaxFactor, semiprimesDD êê Short
Out[24]= 811124193, 11988217, 12572531, 3331357, 15447821, 11540261,

715643, 5844217, 9529441, 8574353, 3133597, 9773531,á976à,

10027051, 7012807, 13236779, 13258519, 11375971, 7156727,

13759661, 15155867, 13243157, 8888531, 11137717, 1340891<

Parallelize  will consider listable functions, higher-order functions (e.g., Apply, Map,
MapThread), reductions (e.g., Count, MemberQ), and iterations (Table). 

There  is  a  natural  trade-off  in  parallelization  between  controlling  the  overhead  of
splitting  a  problem or  keeping  all  cores  busy.  A  coarse-grained  approach  splits  the
work into large chunks based on the number of kernels. If a kernel finishes its chunk
first, it will remain idle as the other kernels complete their work. In contrast, a fine-
grained approach uses smaller chunks and therefore has a better chance of keeping
cores occupied, but the trade-off is increased communications overhead.

In[26]:= 9timing1, result= = AbsoluteTimingAParallelizeA

MapAFactorInteger, semiprimesE, Method Ø "CoarsestGrained"EE; timing1

Out[26]= 0.240895

In[27]:= 9timing2, result= = AbsoluteTimingAParallelizeA

MapAFactorInteger, semiprimesE, Method Ø "FinestGrained"EE; timing2

Out[27]= 0.862007

In[28]:= timing2ë timing1

Out[28]= 3.57835

You  can  use  Parallelize  to  implement  a  parallel  version  of  MapIndexed  since
Mathematica  7  does  not  have  this  as  a  native  operation  (it  does  have  ParallelMap,
which I will discuss in Recipe 16.6).

In[29]:= parallelMapIndexed@func_, expr_, opts : OptionsPattern@DD := Parallelize@

MapIndexed@func, exprD, FilterRules@opts, Options@ParallelizeDDD

parallelMapIndexed@func_, expr_, levelspec_, opts : OptionsPattern@DD :=

Parallelize@MapIndexed@func, expr, levelspecD,

FilterRules@opts, Options@ParallelizeDDD
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In[31]:= parallelMapIndexedAÒ1^First@Ò2D &, Range@10DE

Out[31]= ParallelizeBMapIndexedBÒ1First@Ò2D &, 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<F,

FilterRules@8Method Ø Automatic<DF

16.5 Distributing Data Segments in Parallel 
and Combining the Results
Problem
You want to parallelize a function that can be fed chunks of a list in parallel and the
intermediate results combined to yield the final answer. 

Solution
Use  ParallelCombine  to  automatically  divvy  up  the  processing  among  available
kernels.  Here  we  generate  a  list  of  integers  and  ask  Mathematica  to  feed  segments
of the list to Total  with each segment running on a different kernel. The individual
totals are then combined with the function Plus to arrive at the grand total.

In[32]:= integersList = RandomInteger@80, 10^8<, 10000000D;

ParallelCombineATotal, integersList, PlusE

Out[33]= 500152672039330

In[34]:= Flatten@8Outer@Min, 89, 9, 9, 10<, 83, 4<D, Outer@Max, 89, 9, 9, 10<, 83, 4<D<D

Out[34]= 83, 4, 3, 4, 3, 4, 3, 4, 9, 9, 9, 9, 9, 9, 10, 10<

Discussion
ParallelCombine  can  be  applied  to  optimization problems where  the  goal  is  to  find
the best  of  a  list  of  inputs.  Here I  use Max  as  the objective function,  but  in practice
this  would  only  be  useful  if  the  objective  function  was  computationally  intense
enough to justify the parallel processing overhead. If the objective function is equally
expensive for all inputs, you will want to specify MethodØ"CoarsestGrained".

In[35]:= data = Union@RandomReal@80, 10.0<, 100000DD;

ParallelCombine@Max, data, Max, Method Ø "CoarsestGrained"D
Out[36]= 9.99998

To  get  actual  speedup  with  ParallelCombine,  you  must  pick  problems  for  which
the  data returned from each kernel is much smaller than the data sent. Here is an
example  that  has  no  hope  for  speedup  even  though  on  the  surface  it  may  seem
compelling.  Here,  the  idea  is  to  speed  up  a  Sort  by  using  ParallelCombine  to  Sort
smaller segments, and then perform a final merge on the sorted sections.
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To  get  actual  speedup  with  ParallelCombine,  you  must  pick  problems  for  which
the  data returned from each kernel is much smaller than the data sent. Here is an
example  that  has  no  hope  for  speedup  even  though  on  the  surface  it  may  seem
compelling.  Here,  the  idea  is  to  speed  up  a  Sort  by  using  ParallelCombine  to  Sort
smaller segments, and then perform a final merge on the sorted sections.

In[37]:= data = RandomInteger@81, 100<, 100000D;

AbsoluteTiming@ParallelCombine@Sort, data,

Sort@Flatten@ÒDD &, Method Ø "CoarsestGrained"DD êê Short
Out[38]= 80.047581, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,á24942à, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100<<

Here you can see that a plain Sort in a single kernel is an order of magnitude faster.
If  you  think  this  has  to  do  with  using  Sort[Flatten[#]]  as  the  merge  function,
think again. 

In[39]:= AbsoluteTiming@Sort@dataDD êê Short

Out[39]= 80.018599, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,á99942à, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100<<

Even if  you use Identity  to make the merge a no-op, the distributed "Sort"  will  be
significantly slower. Adding more data or more process will not help because it only
exacerbates the communications overhead.

In[40]:= AbsoluteTimingAParallelCombineASort, data,

Identity@Flatten@ÒDD &, Method Ø "CoarsestGrained"EE êê Short

Out[40]= 80.091931, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,á24942à, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100<<

16.6 Implementing Data-Parallel Algorithms 
by Using ParallelMap
Problem
You want to map a function across a list of data by executing the function in parallel
for different items in a list.
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Solution
Functional styles of programming often lead naturally to parallel implementation, es-
pecially when functions are side-effect free. ParallelMap is the parallel counterpart to
Map (/@). It will spread the execution of the Map operation across available kernels.

In[41]:= ParallelMapAPrimeOmega, RandomInteger@810^40, 10^50<, 32DE

Out[41]= 85, 5, 5, 5, 4, 2, 1, 6, 1, 7, 10, 7, 5, 7,

6, 7, 7, 5, 4, 9, 10, 5, 7, 6, 4, 6, 8, 3, 12, 7, 7, 4<

Discussion
Here I compare the performance of ParallelMap with regular Map on a machine run-
ning four slave kernels. You can see that the speedup is less than the theoretical limit
due to overhead caused by communication with the kernels and other inefficiencies
inherent in ParallelMap’s implementation. 

In[42]:= ModuleA9data = RandomInteger@810^40, 10^50<, 32D=,

SeedRandom@8D;

ColumnA9

AbsoluteTimingAParallelMapAPrimeOmega, dataEE,

AbsoluteTimingAMapAPrimeOmega, dataEE=EE

Out[43]=

811.794302, 85, 6, 8, 7, 5, 5, 2, 7, 6, 5, 9, 6,

6, 8, 7, 4, 6, 5, 14, 8, 2, 5, 3, 5, 6, 5, 7, 4, 5, 3, 3, 5<<

818.872163, 85, 6, 8, 7, 5, 5, 2, 7, 6, 5, 9, 6,

6, 8, 7, 4, 6, 5, 14, 8, 2, 5, 3, 5, 6, 5, 7, 4, 5, 3, 3, 5<<

ParallelMap is a natural way to introduce parallelism using a functional style. When
you have a computationally intensive function you need to execute over a large data
set, it often makes sense to execute the operations in parallel by allowing Mathemat-
ica to split the mapping among multiple kernels. 

Like Map, ParallelMap can accept a levelspec as a third argument to control the parts
of the expression that are mapped. For example, here I count the satisfiability count
for all Boolean functions of one to four variables, where each function of a particular
variable count is grouped together at level two in the list. The entire output is large,
so I abbreviate using Short.

16.6 Implementing Data-Parallel Algorithms by Using ParallelMap | 655



In[44]:= ParallelMapASatisfiabilityCount@BooleanFunction üü ÒD &,

Table@8n, v<, 8v, 1, 4<, 8n, 1, 2^2^v<D, 82<E êê Short

Out[44]= 881, 1, 2, 0<,á2à, 81, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2,

3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3,á65460à, 14, 13,

14, 14, 15, 11, 12, 12, 13, 12, 13, 13, 14, 12, 13, 13, 14, 13, 14, 14,

15, 12, 13, 13, 14, 13, 14, 14, 15, 13, 14, 14, 15, 14, 15, 15, 16, 0<<

16.7 Decomposing a Problem into Parallel 
Data Sets
Problem
You have a problem that involves computation across a large data set, and you parti-
tion the data set into chunks that can be processed in parallel.

Solution
A simple example of this problem is where the computation occurs across a data set
that  can  be  generated  by  Table.  Here  you  can  simply  substitute  ParallelTable.
For example, visualizing the Mandelbrot set requires performing an iterative compu-
tation  on  each  point  across  a  region  of  the  complex  plane  and  assigning  a  color
based  on  how  quickly  the  iteration  explodes  toward  infinity.  Here  I  use  a  simple
grayscale mapping for simplicity. 
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In[45]:= Clear@mbrotColorD

mbrotColor@c_ComplexD := ModuleA8max = 100, r<,

r = NestWhile@8Ò@@1DD + 1, Ò@@2DD^2 + c< &,

80, c<, Norm@Ò@@2DDD < 2 &, 1, maxD@@1DD;

H*Map r onto a grayscale value. Squaring is for finer detail.*L

1.0 - HHmax - rLêmaxL^2E

DistributeDefinitions@mbrotColorD

WithA9granularity = 0.004=,

ArrayPlotATransposeAParallelTableAmbrotColorAi + j IE,

9i, -2, 0.75, granularity=,

9j, -1, 1, granularity=EE, ImageSize Ø 450EE

Out[46]=

Discussion
ParallelTable has many useful applications. Plotting a large number of graphics is a
perfect  way  to  utilize  a  multicore  computer.  Parallel  processing  makes  you  a  lot
more productive when creating animations, for example. 
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In[47]:= images = ParallelTableA

SphericalPlot3DAIf@q < Piê4, None, 1êHf + 5 LD, 8q, 0, Pi<, 8f, 0, i Pi<,

PlotStyle Ø DirectiveAOrange, Specularity@White, 10DE, Mesh Ø None,

PlotPoints Ø 30, Axes Ø None, Boxed Ø FalseE, 8i, 1, 8, 0.25<E;

ListAnimateAimages, ImageSize Ø SmallE

Out[48]=

You  can  also  generate  multiple  data  sets  in  parallel,  which  you  can  then  plot  or
process further.

In[49]:= ListLinePlot@ParallelTable@ Sin@n Pi xDên, 8n, 1, 4<, 8x, 0, 2 Pi, 0.01<DD

Out[49]=
100 200 300 400 500 600

-1.0

-0.5

0.5

1.0
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16.8  Choosing an Appropriate 
Distribution Method
Problem
You  want  to  parallelize  an  operation  whose  runtime  varies  greatly  over  different
inputs.

Solution
The parallel primitives Parallelize, ParallelMap, ParallelTable, ParallelDo, ParallelSum,
and  ParallelCombine  support  an  option  called  Method,  which  allows  you  to  specify
the granularity of subdivisions used to distribute the computation across kernels. 

Use Method Ø "FinestGrained" when the completion time of each atomic unit of com-
putation  is  expected  to  vary  widely.  "FinestGrained"  prevents  Mathematica  from
committing work units to a kernel until a scheduled work unit is complete. To illus-
trate  this,  create  a  function  for  which  the  completion  time  can  be  controlled  via
Pause.  Then  generate  a  list  of  small  random  delays  and  prepend  to  that  a  much
larger delay to simulate a long-running computation. 

In[50]:= SeedRandom@11D;

delays = RandomReal@80.1, 0.15<, 200D;

H*Add a long

20-second delay to simulate a bottleneck in the computation.*L

PrependToAdelays, 20.0E;

funcWithDelayAdelay_E := ModuleA8<, PauseAdelayE; delayE

DistributeDefinitionsAfuncWithDelayE;

Since the pauses are distributed over several cores, we expect the actual delay to be
less  than  the  total  delay,  and  that  is  what  we  get.  However,  by  specifying
"CoarsestGrained",  we  tell  Mathematica  to  distribute  large  chunks  of  work  to  the
kernels. This effectively results in jobs backing up behind the ~20-second delay.

In[52]:= AbsoluteTimingA

TotalAParallelMapAfuncWithDelay, delays, Method Ø "CoarsestGrained"EEE

Out[52]= 826.403951, 44.8136<

When we run the same computation with Method Ø "FinestGrained", our actual com-
pletion  time drops  by  6  seconds  since  the  remaining  cores  are  free  to  receive  more
work units as soon as they complete a given work unit. 
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In[53]:= AbsoluteTimingA

TotalAParallelMapAfuncWithDelay, delays, Method Ø "FinestGrained"EEE

Out[53]= 820.040469, 44.8136<

Contrast this to the case where the expected computation time is very uniform. Here
Method Ø "CoarsestGrained" has a distinct advantage since there is less overhead in
distributing work in one shot than incrementally.

In[54]:= delays = Table@0.1, 8800<D;

In[55]:= AbsoluteTimingA

TotalAParallelMapAfuncWithDelay, delays, Method Ø "CoarsestGrained"EEE

Out[55]= 820.112191, 80.<

Here we see that Method Ø "FinestGrained" only has a slight disadvantage, but that
disadvantage would increase with larger payloads and remotely running kernels.

In[56]:= AbsoluteTimingA

TotalAParallelMapAfuncWithDelay, delays, Method Ø "FinestGrained"EEE

Out[56]= 820.973056, 80.<

Discussion
If you have ever been to the bank, chances are you stood in a single line that served
several tellers. When a teller became free, the person at the head of the line went to
that  window.  It  turns  out  that  this  queuing  organization  produces  higher  overall
throughput because different customers’ bank transactions take varying amounts of
time, while presumably each teller is equally skilled at handling a variety of transac-
tions. This setup is analogous to the effect you get when using "FinestGrained".

If  there  were  no  overhead  involved  in  communication,  "FinestGrained"  would  be
ideal. But, returning to the analogy with the bank, it is often the case that the person
who is next in line fails to notice a teller has become free and a delay is introduced.
This  is  analogous  to  the  master-slave  overhead:  the  master  must  receive  a  result
from the slave  and move the  next  work unit  into  the  freed-up slave.  Each such ac-
tion has overhead, and this overhead can swamp any gains obtained from making
immediate use of an available slave.

In  many  problems,  it  is  best  to  let  Mathematica  balance  these  trade-offs  by  using
MethodØAutomatic, which is what you get by default when no Method  is  explicitly
specified. Under this scenario, Mathematica performs a moderate amount of chunk-
ing  of  work  units  to  minimize  communication  overhead  while  not  committing  too
many units to a single slave and thus risking wasted computation when one slave
finishes before the others. 
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See Also
There  are  a  few  less  important  Method  options  ("EvaluationsPerKernel"  and
"ItemsPerEvaluation") that are covered under the Parallelize function in Mathemati-
ca’s documentation. These give you more precise control over the distribution of work.

16.9 Running Different Algorithms in Parallel 
and Accepting the First to Complete
Problem
You have several different ways to solve a problem and are uncertain which will com-
plete fastest.  Typically,  one algorithm may be faster  on some inputs,  while  another
will be faster on other inputs. There is no simple computation that makes this deter-
mination at lower cost than running the algorithms themselves.

Solution
Use  ParallelTry  to  run  as  many  versions  of  your  algorithm  as  you  have  available
slave  kernels.  There  are  several  ways  to  use  ParallelTry,  but  the  differences  are
largely  syntactical.  If  your  algorithms  are  implemented  in  separate  functions  (e.g.,
algo1[data_],  algo2[data_],  and  algo3[data_]),  you  can  use  ParallelTry,  as  in  the
following example. Here I merely simulate the uncertainty of first completion using
a random pause.

In[57]:= RandomSeed@13D;

algo1@data_D := ModuleA8<, PauseARandomInteger@81, 10<DE; data^2E

algo2@data_D := ModuleA8<, PauseARandomInteger@81, 10<DE; data^3E

algo3@data_D := ModuleA8<, PauseARandomInteger@81, 10<DE; data^4E

DistributeDefinitionsAalgo1, algo2, algo3E

algo@data_D := ParallelTryAComposition@ÒD@dataD &, 9algo1, algo2, algo3=E

In[59]:= algo@2D

Out[59]= 4

Discussion
Sometimes you can choose variations to try by passing different function arguments.
Here I minimize a BooleanFunction of 30 variables using ParallelTry with four of the
forms supported by BooleanMinimize. 
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In[60]:= ParallelTry@8Ò, BooleanMinimize@BooleanFunction@10000, 30D, ÒD< &,

8"DNF", "CNF", "NAND", "NOR"<D
Out[60]= 8CNF, ! Ò1 && ! Ò2 && ! Ò3 && ! Ò4 && ! Ò5 && ! Ò6 && ! Ò7 && ! Ò8 &&

! Ò9 && ! Ò10 && ! Ò11 && ! Ò12 && ! Ò13 && ! Ò14 && ! Ò15 && ! Ò16 &&

! Ò17 && ! Ò18 && ! Ò19 && ! Ò20 && ! Ò21 && ! Ò22 && ! Ò23 && ! Ò24 &&

! Ò25 && ! Ò26 && H! Ò27 »» ! Ò28 »» Ò30L && HÒ27 »» Ò28L &&

HÒ27 »» ! Ò30L && H! Ò28 »» ! Ò29L && H! Ò29 »» ! Ò30L &<

Another  possibility  is  that  you  have  a  single  function  that  takes  different  options,
indicating  different  computational  methods.  Many  advanced  numerical  algorithms
in Mathematica are packaged in this manner.

In[61]:= WeierstrassFunction@a_, x_D := Sum@Sin@Pi k^a xDêHPi k^aL, 8k, 100<D

DistributeDefinitions@WeierstrassFunctionD

In[63]:= ParallelTryA

9Ò, FindMinimumASinAWeierstrassFunctionASin@xD, SinA2 yEEE,

98x, 0.6<, 9y, 0.6==, WorkingPrecision Ø 48, Method Ø ÒE= &,

9"Gradient", "ConjugateGradient", "InteriorPoint", "QuasiNewton", "Newton"=E

Out[63]= 9QuasiNewton, 9-1.00000000000000000000000000000000000000000000000,

9x Ø 0.104539716554326205174773982146950548720470352834,

y Ø 0.510629205999258520978426706655563835929211167845===

16.10 Sharing Data Between Parallel Kernels
Problem
Your  parallel  implementations  need  to  communicate  via  one  or  more  variables
shared across kernels.

Solution
Mathematica provides SetSharedVariable  as a means of declaring one or more vari-
ables as synchronized across all parallel kernels. Similarly, SetSharedFunction is used
to synchronize the down values of a symbol. In the following example, the variable
list is shared and each slave kernel is thus able to prepend its $KernelID. 

In[64]:= SetSharedVariable@listD; list = 8<;

ParallelEvaluateAPrependToAlist, $KernelIDEE;

list
Out[65]= 84, 3, 2, 1<
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Discussion
Consider a combinatorial optimization problem like the traveling salesperson prob-
lem (TSP). You might want all kernels to be aware of the best solution found by any
given kernel thus far so that each kernel can use this information to avoid pursuing
suboptimal solutions. Here I use a solution to the TSP based on simulated annealing.

In[66]:= dist = TableAIfAi <= j, 0, RandomReal@81, 10<DE, 8i, 1, 10<, 9j, 1, i=E;

16.11 Preventing Race Conditions When 
Multiple Kernels Access a Shared Resource
Problem
Prior  to  Mathematica  7,  users  never  had  to  think  about  problems  like  race  condi-
tions because all processing occurred in a single thread of execution. Parallel process-
ing creates the possibility of subtle bugs caused by two or more kernels accessing a
shared resource such as the file system or variables that are shared. These resources
are not subject to atomic update or synchronization unless special care is taken. 

Solution
Consider a situation where each parallel task needs to update a shared data structure
like  a  list.  Here  I  create  a  simplified  example  with  a  shared  list.  Each  kernel  is
instructed to prepend its $KernelID to the list 10 times. If all goes well, we should see
10  IDs  for  each  kernel.  I  use  Tally  to  see  if  that  is  the  case.  The  random  pause  is
there to inject a bit of unpredictability into each computation to simulate a more real-
istic computation.

In[67]:= SetSharedVariable@aListD; aList = 8<;

ParallelEvaluateADoAaList = PrependAaList, $KernelIDE;

Pause@RandomReal@80.01, 0.1<DD, 810<EE;

Tally@

aListD
Out[68]= 882, 7<, 81, 8<, 83, 4<, 84, 7<<
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Clearly this is not the result expected, since not one of the $KernelID’s showed up 10
times. The problem is that each kernel may interfere with the others as it attempts to
modify the shared list. This problem is solved by the use of CriticalSection.

In[69]:= SetSharedVariable@aListD; aList = 8<;

ParallelEvaluateA

DoACriticalSectionA8aListLock<, aList = PrependAaList, $KernelIDEE;

Pause@RandomReal@80.01, 0.1<DD, 810<EE;

Tally@

aListD
Out[70]= 884, 10<, 83, 10<, 81, 10<, 82, 10<<

Much better. Now each kernel ID appears exactly 10 times. 

Discussion
A  critical  section  is  a  mutual  exclusion  primitive  implemented  in  terms  of  one  or
more locks.  The variables passed, as in the list  (first  argument to CriticalSection),
play the role of the locks. A kernel must get control of all locks before it is allowed
to enter the critical  section.  You may wonder why you would ever need more than
one lock variable. Consider the case where there are two shared resources and three
functions that may be executing in parallel. Function f1 accesses resource r1, which
is  protected by lock l1.  Function f2  accesses  resource  r2, which is protected by lock
l2.  However,  function  f3  accesses  both  r1  and  r2,  so  it  must  establish  both  locks.
The following example illustrates.

In[71]:= SetSharedVariable@r1, r2, r3D;

r1 = 8<; r2 = 8<; r3 = 8<;

f1@x_D :=

Module@8<, CriticalSection@8l1<, PrependTo@r1, xDDD

f2@x_D :=

Module@8<, CriticalSection@8l2<, PrependTo@r2, xDDD

f3@D :=

Module@8<, CriticalSection@8l1, l2<, r3 = Join@r1, r2DDD

If  f1,  f2,  and  f3  happen  to  be  running  in  three  different  kernels,  f1  and  f2  will  be
able to enter their critical sections simultaneously because they depend on different
locks,  but  f3  will  be  excluded.  Likewise,  if  f3  has  managed to enter  its  critical  sec-
tion, both f1 and f2 will be locked out until f3 exits its critical section.

Keep  in  mind  that  shared  resources  are  not  only  variables  used  with  SetShared-
Variable.  They might be any resource that a kernel  could gain simultaneous access
to, including the computer’s file system, a database, and so on. 

664 | Chapter 16: Parallel Mathematica



It should not come as a surprise that critical sections can reduce parallel processing
performance  since  they  effectively  define  sections  of  code  that  can  only  execute  in
one kernel at a time. Further, there is a loss of liveliness since a kernel that is waiting
on a lock cannot detect instantaneously that the lock has been freed. In fact, if  you
dig into the implementation (the entire source code for Mathematica 7’s parallel pro-
cessing  primitives  is  available  in  Parallel.m  and  Concurrency.m)  you  will  see  that
a  kernel  enters  into  a  0.1-second  pause  while  waiting  on  a  lock.  This  implies  that
CriticalSection  should be used sparingly,  and if  possible,  you should find ways to
structure  a  program  to  avoid  it  altogether.  One  obvious  way  to  do  this  is  to  rely
largely  on  the  data  parallelism  primitives  like  ParallelMap  and  ParallelTable  and
only  integrate  results  of  these  operations  in  the  master  kernel.  However,  advanced
users  may want  to  experiment  with  more  subtle  parallel  program designs,  and it  is
handy that synchronization is available right out of the box. 

See Also
In Recipe 16.13, I implement the map-reduce algorithm where CriticalSection is nec-
essary to synchronize access to the file system. 

16.12 Organizing Parallel Processing Operations 
Using a Pipeline Approach
Problem
You have a computation that involves processing many data sets where the computa-
tion  can  be  viewed  as  data  flowing  through  several  processing  steps.  This  type  of
computation is analogous to an assembly line. 

Solution
An easy  way  to  organize  a  pipeline  is  to  create  a  kind of  to-do  list  and associate  it
with  each  data  set.  The  master  kernel  loads  the  data,  tacks  on  the  to-do  list  and  a
job identifier, and then submits the computations to an available slave kernel using
ParallelSubmit.  The  slave  takes  the  first  operation  off  the  to-do  list,  performs
the operation, and returns the result to the master along with the to-do list and job
identifier it was given. The master then records the operation as complete by remov-
ing the first item in the to-do list and submits the data again for the next step. Pro-
cessing is complete when the to-do list  is  empty. Here I  use Reap  and Sow  to collect
the final results.
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In[73]:= slaveHandlerAinput_, todo_, jobId_E := ModuleA8result<,

result = First@todoD@inputD;

9todo, result, jobId=

E

DistributeDefinitions@slaveHandlerD;

pipelineProcessor@inputs_, todo_D :=

ModuleA8pids, result, id<,

ReapA

pids = With@8todo1 = todo<,

MapIndexed@ParallelSubmit@slaveHandler@Ò, todo1,

First@Ò2DDD &, inputsDD;

WhileApids =!= 8<,

8result, id, pids< = WaitNext@pidsD;

IfALength@result@@1DDD > 1,

AppendToApids,

WithA9todo1 = Rest@result@@1DDD, in = result@@2DD, jobId =

result@@3DD=, ParallelSubmitAslaveHandlerAin, todo1, jobIdEEEE,

Sow@8Last@FileNameSplit@inputs@@result@@3DDDDDD, result@@2DD<

D;

E

E;

True

E

E

To illustrate  this  technique,  I  use  an  image-processing  problem.  In  this  problem,  a
number of images need to be loaded, resized, sharpened, and then rotated. For sim-
plicity,  I  assume  all  images  will  use  the  same  parameters.  You  can  see  that  the
to-do list is manifested as a list of functions.

In[75]:= files = FileNameJoinA9NotebookDirectory@D, "..", "images", Ò=E & êü

9"image1.jpg", "image2.jpg", "image3.jpg"=;

todoList = 9Import@ÒD &, ImageResize@Ò, 100D &,

Sharpen@ÒD &, ImageRotateAÒ, RightE &=;

Grid üü pipelineProcessor@files, todoListD@@2DD
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Out[76]=

image2.jpg

image1.jpg

image3.jpg

Discussion
The solution illustrates a few points about using ParallelSubmit that are worth not-
ing even if you have no immediate need to use a pipeline approach to parallelism.

First,  note  the  use  of  MapIndexed  as  the  initial  launching  pad  for  the  jobs.
MapIndexed  is  ideal  for  this  purpose  because  the  generated  index  is  perfect  as  a  job
identifier. The jobId plays no role in slaveHandler but is simply returned back to the
master. This jobId allows the master to know what initial inputs were sent to the re-
sponding  slave.  Similarly,  you  may  wonder  why  the  whole  to-do  list  is  sent  to  the
slave if it is only going to process the first entry. The motivation is simple. This ap-
proach frees pipelineProcessor  from state management.  Every time it  receives a re-
sponse from a slave, it knows immediately what functions are left for that particular
job.  This  approach is  sometimes called stateless  because neither  the master  nor  the
slaves need to maintain state past the point where one transfers control to the other.

16.12 Organizing Parallel Processing Operations Using a Pipeline Approach | 667



Also note the use of With  as a means of evaluating expressions before they appear in-
side  the  arguments  of  ParallelSubmit.  This  is  important  because  ParallelSubmit
keeps  expressions  in  held  form  and  evaluating  those  expressions  on  slave  cores  is
likely to fail because the data symbols (like todo and result) don’t exist there. 

A  reasonable  question  to  ask  is,  why  use  this  approach  at  all?  For  instance,  if  you
know  you  want  to  perform  five  operations  on  an  image  in  sequence,  why  not  just
wrap them up in a function and use ParallelMap to distribute images for processing?
For some cases, this approach is indeed appropriate. There are a few reasons why a
pipeline technique might still make sense.

Intermediate results
For some problems, you want to keep the intermediate results of each step. By
returning  the  intermediate  results  back  to  the  master,  you  can  keep  the  code
that  knows  what  needs  to  be  done  with  the  result  out  of  the  logic  that  is
distributed to the slaves. This is a nice way to reduce overall complexity, and it
works when the slaves don’t have the appropriate access to a database or other
storage area where the intermediate results are to be archived.

Checkpointing
Even  if  you  don’t  care  about  intermediate  steps,  you  may  want  to  checkpoint
each immediate calculation, especially if that calculation was quite expensive to
compute. Then, if some later step fails, you do not lose everything computed up
to that point.

Managing complexity
The solution showed a very simplistic  use case where there is  a  fixed to-do list
for  each  input.  This  is  not  the  only  possibility.  It  might  be  the  case  that  each
input  needs  a  specialized to-do list  or,  more  ambitiously,  the  to-do list  for  any
input will change based on the results that return from intermediate steps. This
can, of course, be done with complex conditional logic distributed to the slaves,
but  overall  complexity  might  be  reduced  by  keeping  these  decisions  in  the
master pipeline logic. 

Branching pipelines
Slave  kernels  can’t  initiate  further  parallel  computations,  so  if  an  intermediate
result  suggests  a  further  parallel  computation,  control  needs  to  be  returned  to
the master in any case. Of course, branching introduces a degree of complexity,
since  the  master  kernel  must  now  do  state  management  to  keep  track  of
progress along each branch.
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16.13 Processing a Massive Number of Files 
Using the Map-Reduce Technique
Problem
You have a large number of data files that you need to process. Typically you need
to  integrate  information  from  these  files  into  some  global  statistics  or  create  an
index, sort, or cross-reference. The data from these files is too large to load into a sin-
gle Mathematica kernel.

Solution
Here I show a toy use case traditionally used to introduce mapReduce. The problem is
to process a large number of text files and calculate word frequencies. The principle
that makes mapReduce so attractive is that the user need only specify two, often sim-
ple, functions called the map  function and the reduce  function. The framework does
the rest. The map function takes a key and a value and outputs a different key and a
different value. The reduce function takes the key that was output by map and the list
of  all  values  that  map  assigned  to  the  specific  key.  The  framework’s  job  is  to  dis-
tribute the work of the map and reduce functions across a large number of processors
on a network and to group by key the data output by map before passing it to reduce. 

To  make  this  concrete,  I  show how to  implement  the  word-counting  problem and
the top-level  mapReduce  infrastructure.  In the discussion, I  dive deeper into the nuts
and bolts.

First we need a map function. Recall that it takes a key and a value. Let’s say the key
is  the name of  a file  and the value is  a  word that has been extracted from that file.
The output of the map  function is another key and value. What should these outputs
be to implement word counting? The simplest possible answer is that the output key
should be the word and the output value is simply 1, indicating the word has been
counted. Note that the input key (the filename) is discarded, which is perfectly legiti-
mate if you have no need for it. In this case, I do not wish to track the word’s source. 

In[77]:= countWordsAkey_, value_E := 8value, 1<

Okay,  that  was  easy.  Now we need  a  reduce  function.  Recall  that  the  reduce  func-
tion will  receive a key and a list  of  all  values associated to the key by the map  func-
tion. For the case at hand, it means reduce will receive a word and a list of 1’s repre-
senting each time that  word was seen.  Since the goal  is  to count words,  the reduce
function simply performs a total on the list. What could be easier?

In[78]:= totalWordsAkey_, value_ListE := Total@valueD

Here again I discard the key because the framework will automatically associate the
key to the output of reduce. In other applications, the key might be required for the
computation.
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Here again I discard the key because the framework will automatically associate the
key to the output of reduce. In other applications, the key might be required for the
computation.

Surprisingly enough, these two functions largely complete the solution to the prob-
lem!  Of  course,  something  is  missing,  namely  the  map-reduce  implementation  that
glues everything together. Here is the top-level function that does the work. 

In[79]:= Clear@mapReduceD;

Options@mapReduceD = 9

fileDisposition Ø DeleteFile,

intermediateFile Ø True,

saveDirectory ß $UserDocumentsDirectory,

keyToFilenamePrefix Ø Identity=;

mapReduce@inputs_List, map_,

reduce_, parser_ , opts : OptionsPattern@DD :=

ModuleA8<,

ParallelMapA

reducer@Ò, reduce, FilterRules@8opts<, Options@reducerDDD &,

mergeAllAParallelMap@mapper@Ò, parser, map,

FilterRules@8opts<, Options@mapperDDD &, inputsD,

FilterRulesA8opts<, OptionsAmergeAllEEEE

E

You  can  see  from  this  function  that  it  requires  a  list  of  inputs.  That  will  be
the list of files to process. It needs a function map, which in this example will be count-
Words,  and  a  function  reduce,  which  will  be  totalWords.  It  also  needs  something
called a  parser.  The parser  is  a  function that  breaks up the input file  into the units
that map will process. Here I use a simple parser that breaks up a file into words. This
function  leverages  Mathematica’s  I/O  primitive  ReadList,  which  does  most  of  the
work. The only bit of postprocessing is to strip some common punctuation that Read-
List does not strip and to convert words to lowercase so counting is case insensitive.

In[81]:= parseFileToWords@file_D := ModuleA8stream, words<,

stream = OpenRead@fileD;

words = ToLowerCaseASelectAReadList@stream, WordD, StringMatchQAÒ,

RegularExpressionA"^@A-Za-z0-9D@A-Za-z0-9-D*$"EE &EE;

Close@streamD;

words

E

Here is how you use the framework in practice. For test data, I downloaded a bunch
of files from http://www.textfiles.com/conspiracy/. I placed the names of these files in
another file called wordcountfiles and use Get to input this list. This is to avoid clut-
tering the solution with all these files.

670 | Chapter 16: Parallel Mathematica



Here is how you use the framework in practice. For test data, I downloaded a bunch
of files from http://www.textfiles.com/conspiracy/. I placed the names of these files in
another file called wordcountfiles and use Get to input this list. This is to avoid clut-
tering the solution with all these files.

In[82]:= files = GetAFileNameJoinA9$UserDocumentsDirectory, "oreilly",

"Mathematica Cookbook", "data", "textfiles", "filelist.m"=EE;

In[83]:= mapReduce@files, countWords, totalWords, parseFileToWordsD

Out[83]= mergeAllAreducerA9mapperAêUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêa-z-cons.txt, parseFileToWords,

countWords, 8<E, mapperAêUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêafrica.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêaids-2.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêaids-war.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêaids.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêaids02.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêaidsconsp.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêair-rail.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêalt3.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêanti-jew.txt,

parseFileToWords, countWords, 8<E, áà mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêpvt-prop.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêpvtprop2.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêrat11.txt,

parseFileToWords, countWords, E,
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Out[83]=

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêrealene.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêrfk1.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêright-lf.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêrightday.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêscrtgovt.txt,

parseFileToWords, countWords, 8<E, mapperA

êUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêtextfilesêêsecret.txt,

parseFileToWords, countWords, 8<E=, totalWords,

8<E, reducer@8<, totalWords,

8<DE

In[84]:= % >> "mapReduce.out"

In[85]:= ?countWords

Global`countWords

countWords@key_, value_D := 8value, 1<
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Discussion
If  you  want  to  try  map-reduce,  use  the  package  files  Dictionary.m  and
MapReduce.m.  The  code  here  is  laid  out  primarily  for  explanation
purposes.  You will  need to add the following code to your notebook,
and don’t  forget  to  use  DistributeDefinitions  with  the  functions  you
create for map, reduce, and parse.

Needs["Cookbook`Dictionary`"]

Needs["Cookbook`MapReduce`"]

ParallelNeeds["Cookbook`Dictionary`"]

ParallelNeeds["Cookbook`MapReduce`"]

You can find examples of usage in mapReduce.nb.

If  you are new to map-reduce  you should refer to references listed in the “See Also”
section on page 678 before trying to wrap your mind around the low-level implemen-
tation.  The  original  paper  by  the  Google  researchers  provides  the  fastest  high-level
overview and lists  additional  applications  beyond the  word-counting  problem.  The
most important point about map-reduce is that it is not an efficient way to use paral-
lel processing unless you have a very large number of files to process and a very large
number  of  networked  CPUs  to  work  on  the  processing.  The  ideal  use  case  is  a
problem for which the data is far too large to fit in the memory of a single computer,
mandating that  the processing be spread across  many machines.  To illustrate,  con-
sider how you might implement word counting across a small number of files.

In[86]:= baseDir = FileNameJoinA

9$UserDocumentsDirectory, "oreilly", "Mathematica Cookbook", "data"=E;

files = FileNameJoin@8baseDir, Ò<D & êü 9"adventur.txt", "solitary.txt"=;

AbsoluteTimingATally@Flatten@parseFileToWords@ÒD & êü filesDDE êê Short

AbsoluteTiming@mapReduce@files, countWords, totalWords,

parseFileToWords, intermediateFile Ø FalseDD êê Short
Out[86]= 90.089739, 98adventure, 3<, 9solving, 1=, 8it, 77<, 8in, 123<,

9easy, 3=, 8steps, 1<,á1562à, 8viewed, 1<, 9gravely, 1=,

8reputation, 1<, 8sufficient, 1<, 9satisfy, 1=, 8demands, 1<==

Out[87]= 90.014468,

mergeAllAreducerA9mapperAêUsersêsmanganoêDocumentsêoreillyêMathematica

Cookbookêdataêadventur.txt, parseFileToWords, countWords, 8<E,

mapper@á1àD=, totalWords, 8<E, reducer@8<,á10à, 8<DE=
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The guts  of  our  map-reduce  implementation  are  a  bit  more  complex  than the  other
parallel  recipes.  The  low-level  implementation  details  have  less  to  do  with  parallel
processing than with managing the data as it flows though the distributed algorithm.
A key data structure used is a dictionary which stores the intermediate results of a sin-
gle  file  in  memory.  This  makes  use  of  a  packaged  version  of  code  I  introduced  in
Recipe 3.13 and won’t repeat here.

The function mapAndStore is responsible for applying the map function to a key value
pair  and  storing  the  result  in  a  dictionary.  The  dictionary  solves  the  problem  of
grouping all identical keys for a given input file.

In[88]:= mapAndStoreA9key1_, value1_=, map_, dict_DictionaryE :=

ModuleA9key2, value2=,

9key2, value2= = mapAkey1, value1E;

IfAkey2 =!= Null,

dictStoreAdict, key2, value2EE

E

The default behavior of mapReduce is to store intermediate results in a file. The func-
tions uniqueFileName, nextUniqueFile, and saver have the responsibility of synthesiz-
ing the names of these files and storing the results. The filename is derived from the
key, and options saveDirectory and keyToFilenamePrefix help to customize the
behavior.  These  options  are  provided  in  the  top-level  mapReduce  call.  Here  save-
Directory  provides  a  directory  where  the  intermediate  files  will  be  stored.  This
directory must be writable by all slave kernels. Use keyToFilenamePrefix to specify a
function that maps the key to a filename prefix. This function is necessary for cases
where the key might not represent a valid filename. 
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In[89]:= nextUniqueFileAexistingFile_E := StringReplaceAexistingFile,

num : RegularExpression@"\d+"D ß WithA8n = ToExpression@numD<,

ToStringA

IfAn < 999, PaddedFormAn + 1, 3, NumberPadding Ø 8"0", ""<E,

n + 1EEE

E

uniqueFilename@base_, dir_D := ModuleA9baseFile, existingFiles=,

baseFile = FileNameJoinA9dir, ToString@baseD=E;

H*Ensure only one kernel goes for the next file.*L

CriticalSectionA8uniqueFilenameLock<,

existingFiles = Sort@FileNames@baseFile <> ".*." <> "mr"DD;

IfAexistingFiles === 8<, baseFile <> ".0001.mr",

nextUniqueFileALastAexistingFilesEEE

E

E

Clear@saverD;

Options@saverD = 9

saveDirectory ß $UserDocumentsDirectory,

keyToFilenamePrefix Ø Identity

=;

saverA9key_, values_List=, OptionsPattern@DE :=

ModuleA8filename, stream, prefix<,

prefix = OptionValueAkeyToFilenamePrefixEAkeyE;

filename =

uniqueFilenameAReleaseHold@prefixD, OptionValueAsaveDirectoryEE;

stream = OpenWrite@filenameD;

Write@stream, valuesD;

Close@streamD;

9key, filename=E

ClearAsaveKeyValuesE;

OptionsAsaveKeyValuesE = 9

saveDirectory ß $UserDocumentsDirectory,

keyToFilenamePrefix Ø Identity

=;

saveKeyValuesAdict_Dictionary, opts : OptionsPattern@DE :=

ModuleA9keyValues=,

keyValues = dictKeyValuePairs@dictD ;

saver@Ò, FilterRules@8opts<, Options@saverDDD & êü keyValuesE

The  function  mapper  provides  the  glue  between  the  parser,  the  map function,  and
the  intermediate  storage  of  the  output  of  map.  As  mentioned  above,  the  default
behavior is  to store the output in a file  whose name is  derived from the key.  How-
ever, for small toy problems you might wish to dispense with the intermediate stor-
age and return the actual output to the next stage of processing in the master kernel.
This feature is available by specifying intermediateFile Ø False (the default is True).

16.13 Processing a Massive Number of Files Using the Map-Reduce Technique | 675



The  function  mapper  provides  the  glue  between  the  parser,  the  map function,  and
the  intermediate  storage  of  the  output  of  map.  As  mentioned  above,  the  default
behavior is  to store the output in a file  whose name is  derived from the key.  How-
ever, for small toy problems you might wish to dispense with the intermediate stor-
age and return the actual output to the next stage of processing in the master kernel.
This feature is available by specifying intermediateFile Ø False (the default is True).

In[91]:= H*mapper*L

Clear@mapperD;

Options@mapperD =

9intermediateFile Ø True, keyToFilenamePrefix Ø Identity=;

mapper@input_, parser_, map_, opts : OptionsPattern@DD :=

ModuleA8parseList, dict, result, useFile<,

parseList = parser@inputD;

dict = makeDictionary@D;

Scan@mapAndStore@8input, Ò<, map, dictD &, parseListD;

useFile = OptionValue@intermediateFileD;

result = IfAuseFile,

saveKeyValuesAdict, FilterRulesA8opts<, OptionsAsaveKeyValuesEEE,

dictKeyValuePairs@dictDE;

destroyDictionary@dictD;

result

E

Before  the  results  of  mapper  can  be  passed  to  the  reduce  stage  of  processing,  it  is
necessary to group all intermediate results together. For example, in the solution, we
presented the problem of counting words in files. Consider a common word like the.
Clearly, this word will have been found in almost all of the files. Thus, counts of this
word  are  distributed  across  a  bunch  of  intermediate  files  (or  lists  if  intermediate-
FileØFalse was specified). Before the final reduction, the intermediate files (or lists)
must be grouped by key and merged.  This  is  the job of  the functions mergeAll  and
merge. The grouping task is solved by the Mathematica 7 function GatherBy, and the
actual  merging  is  implemented  as  a  parallel  operation  since  each  key  can  be  pro-
cessed independently. 
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In[92]:= ClearAmerge, putE;

H*Put is a helper function around the Mathematica

Put that saves the merged results and deletes

the now redundant files.*L

Options@putD = 8fileDisposition Ø DeleteFile<;

put@list_, files_, opts : OptionsPattern@DD :=

HPut@list, First@filesDD;

OptionValue@fileDispositionD@Rest@filesDD; First@filesDL

H*Merge either merges files into a

single file or lists into a single list.*L

OptionsAmergeE = 8intermediateFile Ø True<;

merge@list_, opts : OptionsPattern@DD :=

ModuleA9useFile, getFunc, putFunc=,

useFile = OptionValue@intermediateFileD ;

9getFunc, putFunc= = If AuseFile, 8Get, put@Ò, listD &<,

9Identity, Identity=, 9Identity, Identity=E;

putFuncAJoin üü getFunc êü listEE

ClearAmergeAllE

OptionsAmergeAllE = 8intermediateFile Ø True<;

mergeAll@result_, opts : OptionsPattern@DD := ModuleA9groupResult=,

H*Gather by key,

which is the First element of each list in the flattened result.*L

groupResult = GatherBy@Flatten@result, 1D, FirstD;

H*Transform grouped results into single key and merged values.

Here Transpose is used to take results of the form:

99key, value1=,9key,value2=,..., 9key,valueN== to

99key,...=,8value1,value2,...<= so the duplicate keys are easily

discarded and the values passed to merge.*L

ParallelMapA

I9First@Ò1D, merge@Ò2, optsD= & üü Transpose@ÒDM & , groupResultE

E

The final stage is the reducer, which accepts the merged results (in file or list form)
for each key and passes the key and resulting list to the reduce function. An option,
fileDisposition,  is  used to determine what should happen to the intermediate file.
The default disposition is DeleteFile, but you could imagine adding some more com-
plex  processing  at  this  stage,  such  as  logging  or  checkpointing  a  transaction  that
began during the parsing stage. 
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In[94]:= H*reducer*L

Clear@reducerD;

Options@reducerD =

8fileDisposition Ø DeleteFile, intermediateFile Ø True<;

reducerA9key_, value_=, reduce_, opts : OptionsPattern@DE :=

ModuleA8stream, list, temp, useFile<,

useFile = OptionValue@intermediateFileD;

list = If@useFile,

temp = Get@valueD;

OptionValue@fileDispositionD@valueD;

temp,

valueD;

9key, reduceAkey, listE=

E

In[95]:= DistributeDefinitionsAcountWords, destroyDictionary, dictName,

dictKeyValuePairs, dictLookup, makeDictionary, mapAndStore, mapper,

mapReduce, merge, mergeAll, nextUniqueFile, parseFileToWords, put,

reducer, saveKeyValues, saver, dictStore, totalWords, uniqueFilenameE

See Also
The original paper on map-reduce can be found at http://bit.ly/cqBSTH.

More details that were left out of the original paper can be found in the analysis at
http://bit.ly/bXsWsD.

16.14 Diagnosing Parallel Processing 
Performance
Problem
You  are  trying  to  understand  why  your  parallel  program  is  not  achieving  the
expected speedup.
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Solution
You  can  enable  parallel  tracing  by  setting  options  associated  with  the  symbol
$Parallel. Use Tracers to specify the types of trace information you want to output
and TraceHandler to specify how the trace information should be processed. 

In[96]:= SetOptionsA$Parallel, Tracers Ø 8SendReceive<, TraceHandler Ø PrintE

Out[96]= 8Tracers Ø 8SendReceive<, TraceHandler Ø Print<

In[97]:= ParallelTable@Prime@iD, 8i, 99990, 100010<D

SendReceive:

Sending to kernel 4: iid8600@Table@Prime@iD, 8i, 99990, 99992, 1<DD Hq=0L

SendReceive:

Sending to kernel 3: iid8601@Table@Prime@iD, 8i, 99993, 99995, 1<DD Hq=0L

SendReceive:

Sending to kernel 2: iid8602@Table@Prime@iD, 8i, 99996, 99998, 1<DD Hq=0L

SendReceive:

Sending to kernel 1: iid8603@Table@Prime@iD, 8i, 99999, 100001, 1<DD Hq=0L

SendReceive:

Receiving from kernel 2: iid8602@81299647, 1299653, 1299673<D Hq=0L

SendReceive:

Sending to kernel 2: iid8604@Table@Prime@iD, 8i, 100002, 100004, 1<DD Hq=0L

SendReceive:

Receiving from kernel 3: iid8601@81299601, 1299631, 1299637<D Hq=0L

SendReceive:

Sending to kernel 3: iid8605@Table@Prime@iD, 8i, 100005, 100006, 1<DD Hq=0L

SendReceive:

Receiving from kernel 2: iid8604@81299743, 1299763, 1299791<D Hq=0L

SendReceive:

Sending to kernel 2: iid8606@Table@Prime@iD, 8i, 100007, 100008, 1<DD Hq=0L
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SendReceive: Receiving from kernel 3: iid8605@81299811, 1299817<D Hq=0L

SendReceive:

Sending to kernel 3: iid8607@Table@Prime@iD, 8i, 100009, 100010, 1<DD Hq=0L

SendReceive: Receiving from kernel 2: iid8606@81299821, 1299827<D Hq=0L

SendReceive: Receiving from kernel 3: iid8607@81299833, 1299841<D Hq=0L

SendReceive:

Receiving from kernel 4: iid8600@81299541, 1299553, 1299583<D Hq=0L

SendReceive:

Receiving from kernel 1: iid8603@81299689, 1299709, 1299721<D Hq=0L

Out[97]= 81299541, 1299553, 1299583, 1299601, 1299631, 1299637, 1299647,

1299653, 1299673, 1299689, 1299709, 1299721, 1299743, 1299763,

1299791, 1299811, 1299817, 1299821, 1299827, 1299833, 1299841<

Be sure to disable tracing when you are done.

In[98]:= SetOptionsA$Parallel, Tracers Ø 8<E

Out[98]= 8Tracers Ø 8<<

Discussion
There are four kinds of Tracers, and you can enable any combination of these. Each
focuses on a different aspect of Mathematica’s parallel architecture. 

In[99]:= OptionValues@TracersD

Out[99]= 9MathLink, Queueing, SendReceive, SharedMemory=

In  addition,  there  are  three  ways  to  present  the  data  via  the  TraceHandler  option.
Print  and  Display  are  similar,  but  Save  is  interesting  because  it  defers  output  until
the TraceList[] command is invoked.

In[100]:= OptionValues@TraceHandlerE

Out[100]= 9Print, Save, Display=

In[101]:= SetOptionsA$Parallel, Tracers Ø 9SendReceive, Queueing=E;

SetOptionsA$Parallel, TraceHandler Ø "Save"E;

newTraceList@D;

ParallelTable@Prime@iD, 8i, 99990, 100010<D;
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Now  when  you  execute  TraceList,  it  will  return  the  trace  information  in  a  list
instead of printing it. This is useful if you want to further process this data in some
way.

In[103]:= TraceList@D

Out[103]= 99SendReceive,

Sending to kernel 4: iid8608@Table@Prime@iD, 8i, 99990, 99992, 1<DD

Hq=0L=, 9SendReceive, Sending to kernel 3:

iid8609@Table@Prime@iD, 8i, 99993, 99995, 1<DD Hq=0L=, 9SendReceive,

Sending to kernel 2: iid8610@Table@Prime@iD, 8i, 99996, 99998, 1<DD

Hq=0L=, 9SendReceive,

Sending to kernel 1: iid8611@Table@Prime@iD, 8i, 99999, 100001, 1<DD

Hq=0L=, 9SendReceive,

Receiving from kernel 4: iid8608@81299541, 1299553, 1299583<D Hq=0L=,

9Queueing, eid8608@Table@Prime@iD, 8i, 99990, 99992, 1<DD done=,

9SendReceive,

Sending to kernel 4: iid8612@Table@Prime@iD, 8i, 100002, 100004, 1<DD

Hq=0L=, 9SendReceive,

Receiving from kernel 3: iid8609@81299601, 1299631, 1299637<D Hq=0L=,

9Queueing, eid8609@Table@Prime@iD, 8i, 99993, 99995, 1<DD done=,

9SendReceive,

Sending to kernel 3: iid8613@Table@Prime@iD, 8i, 100005, 100006, 1<DD

Hq=0L=, 9SendReceive,

Receiving from kernel 2: iid8610@81299647, 1299653, 1299673<D Hq=0L=,

9Queueing, eid8610@Table@Prime@iD, 8i, 99996, 99998, 1<DD done=,

9SendReceive,

Sending to kernel 2: iid8614@Table@Prime@iD, 8i, 100007, 100008, 1<DD

Hq=0L=, 9SendReceive,

Receiving from kernel 1: iid8611@81299689, 1299709, 1299721<D Hq=0L=,

9Queueing, eid8611@Table@Prime@iD, 8i, 99999, 100001, 1<DD done=,

9SendReceive,

Sending to kernel 1: iid8615@Table@Prime@iD, 8i, 100009, 100010, 1<DD

Hq=0L=, 9SendReceive,

Receiving from kernel 4: iid8612@81299743, 1299763, 1299791<D Hq=0L=,

9Queueing, eid8612@Table@Prime@iD, 8i, 100002, 100004, 1<DD done=,

9SendReceive, Receiving from kernel 3: iid8613@81299811, 1299817<D Hq=0L=,

9Queueing, eid8613@Table@Prime@iD, 8i, 100005, 100006, 1<DD done=,

9SendReceive, Receiving from kernel 2: iid8614@81299821, 1299827<D Hq=0L=,

9Queueing, eid8614@Table@Prime@iD, 8i, 100007, 100008, 1<DD done=,

9SendReceive, Receiving from kernel 1: iid8615@81299833, 1299841<D Hq=0L=,

9Queueing, eid8615@Table@Prime@iD, 8i, 100009, 100010, 1<DD done==

You can get a better understanding of the use of shared memory and critical sections
by using the SharedMemory tracer.
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You can get a better understanding of the use of shared memory and critical sections
by using the SharedMemory tracer.

In[104]:= SetSharedVariable@listD; list = 8<

SetOptionsA$Parallel, Tracers Ø 9SendReceive, SharedMemory=E;

SetOptionsA$Parallel, TraceHandler Ø "Save"E;

newTraceList@D;

ParallelEvaluateA

CriticalSectionA8listLock<, list = PrependAlist, $KernelIDEEE

In[104]:= 8<

Out[105]= 881<, 82, 1<, 83, 2, 1<, 84, 3, 2, 1<<

Now executing  TraceList  shows how a  shared  variable  was  accessed  and modified
over the parallel evaluation as well as how locks were set and released.

In[106]:= TraceList@D

Out[106]= 99SendReceive, Sending to kernel 1:

CriticalSection@8listLock<, list = Prepend@list, $KernelIDDD Hq=0L=,

9SendReceive, Sending to kernel 2:

CriticalSection@8listLock<, list = Prepend@list, $KernelIDDD Hq=0L=,

9SendReceive, Sending to kernel 3:

CriticalSection@8listLock<, list = Prepend@list, $KernelIDDD Hq=0L=,

9SendReceive, Sending to kernel 4:

CriticalSection@8listLock<, list = Prepend@list, $KernelIDDD

Hq=0L=, 9SharedMemory,

kernel 1: Parallel`Concurrency`Private`acquire@8listLock<, 1D ö True=,

9SharedMemory,

kernel 2: Parallel`Concurrency`Private`acquire@8listLock<, 2D ö False=,

9SharedMemory,

kernel 3: Parallel`Concurrency`Private`acquire@8listLock<, 3D ö False=,

9SharedMemory,

kernel 4: Parallel`Concurrency`Private`acquire@8listLock<, 4D ö False=,

9SharedMemory, kernel 1: list ö 8<=,

9SharedMemory,

kernel 1: list = 81< ö 81<=, 9SharedMemory,

kernel 1: Parallel`Concurrency`Private`release@8listLock<D ö True=,

9SendReceive, Receiving from kernel 1: 81< Hq=0L=,

9SharedMemory,

kernel 2: Parallel`Concurrency`Private`acquire@8listLock<, 2D ö True=,

9SharedMemory,

kernel 3: Parallel`Concurrency`Private`acquire@8listLock<, 3D ö False=,

9SharedMemory,

=,
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Out[106]=

kernel 4: Parallel`Concurrency`Private`acquire@8listLock<, 4D ö False=,

9SharedMemory, kernel 2: list ö 81<=,

9SharedMemory, kernel 2: list = 82, 1< ö 82, 1<=,

9SharedMemory,

kernel 2: Parallel`Concurrency`Private`release@8listLock<D ö True=,

9SendReceive, Receiving from kernel 2: 82, 1< Hq=0L=,

9SharedMemory,

kernel 3: Parallel`Concurrency`Private`acquire@8listLock<, 3D ö True=,

9SharedMemory,

kernel 4: Parallel`Concurrency`Private`acquire@8listLock<, 4D ö False=,

9SharedMemory, kernel 3: list ö 82, 1<=,

9SharedMemory, kernel 3: list = 83, 2, 1< ö 83, 2, 1<=,

9SharedMemory,

kernel 3: Parallel`Concurrency`Private`release@8listLock<D ö True=,

9SendReceive, Receiving from kernel 3: 83, 2, 1< Hq=0L=,

9SharedMemory,

kernel 4: Parallel`Concurrency`Private`acquire@8listLock<, 4D ö True=,

9SharedMemory, kernel 4: list ö 83, 2, 1<=,

9SharedMemory, kernel 4: list = 84, 3, 2, 1< ö 84, 3, 2, 1<=,

9SharedMemory,

kernel 4: Parallel`Concurrency`Private`release@8listLock<D ö True=,

9SendReceive, Receiving from kernel 4: 84, 3, 2, 1< Hq=0L==

TraceList@D

99SendReceive,

StringFormASending to `1`: `2` Hq=`3`L, StringForm@kernel `1`, 1D,

HoldForm@CriticalSection@8listLock<, list = Prepend@list, $KernelIDDDD, 0E=,

9SendReceive,

StringFormASending to `1`: `2` Hq=`3`L, StringForm@kernel `1`, 2D,

HoldForm@CriticalSection@8listLock<, list = Prepend@list, $KernelIDDDD, 0E=,

9SendReceive,

StringFormASending to `1`: `2` Hq=`3`L, StringForm@kernel `1`, 3D,

HoldForm@CriticalSection@8listLock<, list = Prepend@list, $KernelIDDDD, 0E=,

9SendReceive,

StringFormASending to `1`: `2` Hq=`3`L, StringForm@kernel `1`, 4D,

HoldForm@CriticalSection@8listLock<, list = Prepend@list, $KernelIDDDD, 0E=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 1D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 1DE,

HoldForm@TrueDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 2D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 2DE,

E=,
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HoldForm@FalseDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 3D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 3DE,

HoldForm@FalseDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 4D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 4DE,

HoldForm@FalseDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 1D,

HoldForm@listD, HoldForm@8<DE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 1D,

HoldForm@list = 81<D, HoldForm@81<DE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 1D,

HoldFormAParallel`Concurrency`Private`release@8listLock<DE,

HoldForm@TrueDE=, 9SendReceive,

StringFormAReceiving from `1`: `2` Hq=`3`L, StringForm@kernel `1`, 1D,

HoldForm@81<D, 0E=, 9SharedMemory,

StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 2D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 2DE,

HoldForm@TrueDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 3D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 3DE,

HoldForm@FalseDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 4D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 4DE,

HoldForm@FalseDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 2D,

HoldForm@listD, HoldForm@81<DE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 2D,

HoldForm@list = 82, 1<D, HoldForm@82, 1<DE=, 9SharedMemory,

StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 2D, HoldFormA

Parallel`Concurrency`Private`release@8listLock<DE, HoldForm@TrueDE=,

9SendReceive, StringFormAReceiving from `1`: `2` Hq=`3`L,

StringForm@kernel `1`, 2D, HoldForm@82, 1<D, 0E=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 3D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 3DE,

HoldForm@TrueDE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 4D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 4DE,

HoldForm@FalseDE=, 9SharedMemory, StringFormA`1`: `2` ö `3`,

StringForm@kernel `1`, 3D, HoldForm@listD, HoldForm@82, 1<DE=,
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9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 3D,

HoldForm@list = 83, 2, 1<D, HoldForm@83, 2, 1<DE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 3D,

HoldFormAParallel`Concurrency`Private`release@8listLock<DE,

HoldForm@TrueDE=,

9SendReceive, StringFormAReceiving from `1`: `2` Hq=`3`L,

StringForm@kernel `1`, 3D, HoldForm@83, 2, 1<D, 0E=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 4D,

HoldFormAParallel`Concurrency`Private`acquire@8listLock<, 4DE,

HoldForm@TrueDE=, 9SharedMemory, StringFormA`1`: `2` ö `3`,

StringForm@kernel `1`, 4D, HoldForm@listD, HoldForm@83, 2, 1<DE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 4D,

HoldForm@list = 84, 3, 2, 1<D, HoldForm@84, 3, 2, 1<DE=,

9SharedMemory, StringFormA`1`: `2` ö `3`, StringForm@kernel `1`, 4D,

HoldFormAParallel`Concurrency`Private`release@8listLock<DE,

HoldForm@TrueDE=,

9SendReceive, StringFormAReceiving from `1`: `2` Hq=`3`L,

StringForm@kernel `1`, 4D, HoldForm@84, 3, 2, 1<D, 0E==

It is enlightening to do the same trace without the use of CriticalSection. Here you
can see the problems caused by unsynchronized modification of shared memory.

In[107]:= SetSharedVariable@listD; list = 8<

SetOptionsA$Parallel, Tracers Ø 9SendReceive, SharedMemory=E;

SetOptionsA$Parallel, TraceHandler Ø "Save"E;

newTraceList@D;

ParallelEvaluateAlist = PrependAlist, $KernelIDEE

In[107]:= 8<

Out[108]= 881<, 82<, 83<, 84<<
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In[109]:= TraceList@D

Out[109]= 99SendReceive, Sending to kernel 1: list = Prepend@list, $KernelIDD Hq=0L=,

9SendReceive, Sending to kernel 2: list = Prepend@list, $KernelIDD Hq=0L=,

9SendReceive, Sending to kernel 3: list = Prepend@list, $KernelIDD Hq=0L=,

9SendReceive, Sending to kernel 4: list = Prepend@list, $KernelIDD Hq=0L=,

9SharedMemory, kernel 1: list ö 8<=,

9SharedMemory, kernel 2: list ö 8<=,

9SharedMemory, kernel 3: list ö 8<=,

9SharedMemory, kernel 4: list ö 8<=,

9SharedMemory, kernel 1: list = 81< ö 81<=,

9SharedMemory, kernel 2: list = 82< ö 82<=,

9SharedMemory, kernel 3: list = 83< ö 83<=,

9SharedMemory, kernel 4: list = 84< ö 84<=,

9SendReceive, Receiving from kernel 1: 81< Hq=0L=,

9SendReceive, Receiving from kernel 2: 82< Hq=0L=,

9SendReceive, Receiving from kernel 3: 83< Hq=0L=,

9SendReceive, Receiving from kernel 4: 84< Hq=0L==

16.15 Measuring the Overhead of 
Parallelization in Your Environment
Problem
You want to get a handle on the inherent data communications overhead of parallel
Mathematica in your environment.

Solution
Given that Mathematica is available on many operating systems and classes of com-
puter, and also given that computational cores may be local or networked, and given
network topologies and throughput, it is important to benchmark your environment
to get a sense of its parallel performance characteristics. 

One solution is to plot the time it takes to send various amounts of data to kernels
with and without computation taking place on the data.  The code below generates
random data of various sizes and measures the time it takes to execute a function on
that data on all kernels using ParallelEvaluate. Here I plot the Identity versus Sqrt
versus  Total  to  show  the  effect  of  no  computation  versus  computation  on
every  element  of  data  versus  computation  on  every  element  with  a  single  return
value. The key here is that the amount of data sent to slaves and returned to master
is  the  same  in  the  first  two  cases,  whereas  for  the  third  case  (dotted),  less  data  is
returned than sent. Also, the first case (solid) does no computation, and the second
(dashed) and third (dotted) do.
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One solution is to plot the time it takes to send various amounts of data to kernels
with and without computation taking place on the data.  The code below generates
random data of various sizes and measures the time it takes to execute a function on
that data on all kernels using ParallelEvaluate. Here I plot the Identity versus Sqrt
versus  Total  to  show  the  effect  of  no  computation  versus  computation  on
every  element  of  data  versus  computation  on  every  element  with  a  single  return
value. The key here is that the amount of data sent to slaves and returned to master
is  the  same  in  the  first  two  cases,  whereas  for  the  third  case  (dotted),  less  data  is
returned than sent. Also, the first case (solid) does no computation, and the second
(dashed) and third (dotted) do.

In[110]:= sendReceiveTimeAcomplexity_, op_E :=

ModuleA9data = RandomRealA80, 100<, 2^complexityE=,

WithA8d = data, now = AbsoluteTime@D<,

ParallelEvaluate@op@dDD; 92^complexity, AbsoluteTime@D - now=EE

ListLinePlotATransposeATableA9sendReceiveTimeAc, IdentityE,

sendReceiveTime@c, SqrtD, sendReceiveTime@c, TotalD=, 8c, 0, 24<EE,

PlotStyle Ø 8Black, Directive@Black, DashedD, Directive@Black, DottedD<E

Out[2]=

500 000 1.0µ 106 1.5µ 106 2.0µ 106 2.5µ 106

0.1

0.2

0.3

0.4

0.5

The plot shows that communication overhead of sending data to kernels dominates
since the effect of computing Sqrt is negligible. Also, Total (dotted) performs better
because  less  data  is  returned  to  the  master.  Notice  how  the  overhead  is  roughly
linear within my configuration, which consists of four local cores on a Mac Pro with
4 GB of memory.

Discussion
Many  users  who  experiment  casually  with  parallelization  in  Mathematica  7  come
away  disappointed.  This  is  unfortunate  because  there  are  quite  a  few  useful  prob-
lems where parallel primitives can yield real gains. The trick is to understand the in-
herent overhead of your computational setup. Running simple experiments like the
one in the solution can give you a sense of the limitations. There are many calcula-
tions Mathematica can do that take well under 0.05 seconds, but that is how long it
might take to get your data shipped to another kernel. This can make parallelization
impractical for your problem.

Consider the Mandelbrot plot from Recipe 16.7. Why did I  achieve speedup there?
The key characteristics of that problem are that very little data is shipped to the ker-
nels,  much computation is  done with the data sent,  and no coordination is  needed
with kernels solving other parts of the problem. Such problems are called embarrass-
ingly  parallel  because  it  is  virtually  guaranteed  that  you  will  get  almost  linear
speedup with the number of cores at your disposal. 
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Consider the Mandelbrot plot from Recipe 16.7. Why did I  achieve speedup there?
The key characteristics of that problem are that very little data is shipped to the ker-
nels,  much computation is  done with the data sent,  and no coordination is  needed
with kernels solving other parts of the problem. Such problems are called embarrass-
ingly  parallel  because  it  is  virtually  guaranteed  that  you  will  get  almost  linear
speedup with the number of cores at your disposal. 

Unfortunately, many problems you come across are not embarrassingly parallel, and
you will  have  to  work hard to  exploit  any parallelism that  exists.  In  many cases,  if
you can achieve any speedup at all, you will need to expend much effort in reorganiz-
ing  the  problem to  fit  the  computational  resources  you  have  at  your  disposal.  The
keys to success are:

1. Try to ship data to kernel only once.

2. Try to ship data in large chunks, provided computation does not become skewed.

3. Try to compute as much as possible and return as little data as possible.

4. Try to avoid the need to communicate between kernels via shared data.

5. Try to return data in a form that can be efficiently combined by the master into
a final result.

6. Try to avoid repeating identical computations on separate kernels. 
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CHAPTER 17

Interfacing Mathematica

I want somebody to share
Share the rest of my life

Share my innermost thoughts
Know my intimate details

Someone who’ll stand by my side
And give me support

And in return
She’ll get my support
She will listen to me

When I want to speak

Depeche Mode, “Somebody”

17.0 Introduction
As  wonderful  as  Mathematica  is,  there  are  many  practical  reasons  for  needing  to
interact  with  other  languages  and  data  sources.  Luckily,  Mathematica  is  designed
to  interoperate  well  with  third-party  tools.  The  foundation  of  much  of  this  inter-
operability is  MathLink. The MathLink protocol is  central  to Mathematica because
it is how the frontend communicates with the kernel.  A link (LinkObject) is a com-
munications  channel  that  allows  Mathematica  expressions  and  data  values  to  be
transmitted  between  the  kernel  and  programs  written  in  C,  Java,  .NET,  and  even
scripting languages like Python. Recipes 17.5, 17.6, 17.7, and 17.8 solve some of the
most common language interoperability problems.

Equally  important  to  programming  language  interoperability  is  database  interoper-
ability. A powerful language like Mathematica would be far less useful if it did not al-
low full access to enterprise data. In the past, the ability to read in data from flat files
would  suffice,  but  today  most  enterprises  keep  data  in  some  form  of  relational
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database.  Mathematica  supports  a  variety  of  database  linkages,  such  as  generic
Open Database  Connectivity  (ODBC),  Java  Database  Connectivity  (JDBC),  as  well
as  specific  database  products  like  MySQL  (http://www.mysql.com/)  and  HSQL
(http://hsqldb.org/).  Recipes  17.8  and  17.9  show  typical  database  connectivity  use
cases. Recipe 17.10 shows how to extract metadata from a database.

More  mundane,  but  nonetheless  useful,  interfacing problems involve  launching ex-
ternal programs and using remote kernels. See Recipes 17.1, 17.2, and 17.3.

17.1 Calling External Command Line Programs 
from Mathematica
Problem
You have an executable program that you would like to launch from Mathematica.

Solution
Use  Run  to  execute  command  line  programs.  Run  returns  the  exit  code  of  the  pro-
gram. Results can be read in from a file written by the program. Here is an example
that will work on the Windows operating system. This is only to illustrate the tech-
nique. Mathematica is perfectly capable of telling you the date itself.

Run@"\"date êT > date.txt\""D; FilePrint@"date.txt"D

Sat 11/15/2008 

Discussion
You can also  read the  output  of  external  programs by using the  escape character  !
and the  function  ReadList.  This  example  uses  the  GNU program wget  to  retrieve  a
web  page  and  extract  the  unique  URLs.  Note  that  this  example  assumes  you  have
wget  installed  on your  system and that  it  is  in  the  path  the  Operating  System (OS)
uses to find programs. 
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webpage = ReadListA"!wget -O - http:êêwww.wolfram.com", StringE;

UnionAFlattenAStringCasesAwebpage, RegularExpression@

"https?:êêH@-\w\.D+L+H:\d+L?HêH@\wê_\.D*H\?\S+L?L?L?"DEEE
9http:êêblog.wolfram.comê,

http:êêdemonstrations.wolfram.comê, http:êêfunctions.wolfram.comê,

http:êêintegrals.wolfram.comêindex.jsp, http:êêlibrary.wolfram.comê,

http:êêmathworld.wolfram.comê, http:êêpartnerships.wolfram.comê,

http:êêreference.wolfram.comêalphaindexê,

http:êêreference.wolfram.comêmathematicaêguideêMathematica.html,

http:êêregister.wolfram.comê, http:êêsearch.wolfram.comê,

http:êêstore.wolfram.comê, http:êêstore.wolfram.comêcatalogê,

http:êêstore.wolfram.comêviewêappêmathematicaêupgrade.upg,

http:êêsupport.wolfram.comê, http:êêtones.wolfram.comê,

http:êêwww.mathematica-journal.comêissueêv10i3ê,

http:êêwww.stephenwolfram.comê, http:êêwww.w3.orgê1999êxhtml,

http:êêwww.w3.orgêTRêxhtml1êDTDêxhtml1,

http:êêwww.wolfram.comêservicesêeducationêseminarsê,

http:êêwww.wolframscience.comê=

See Also
Additional details about running external programs can be found in the Mathemat-
ica tutorial /ExternalPrograms.

17.2 Launching Windows Programs from 
Mathematica
Problem
You  want  to  launch  a  Windows-based  program  from  the  frontend  and  Run["Pro-
gram"] does not work.

Solution
Use the Windows Start command in the Run so the program is launched indirectly.

Run@"Start WinWord"D ;H*starts MS Word*L
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Discussion
I ran across this problem while preparing a presentation in Mathematica for which I
wanted to  have  a  button that  launched XMLSpy to  show some XML.  Without  the
use of Start, you need to specify the full path to the executable; Mathematica com-
plains because it  expects the command to be short-lived. Note that Start  is a Win-
dows command and not a Mathematica one.

ButtonA"Show some XML",

RunA"\"c:êProgram FilesêAltovaêXMLSpy2006êXmlSpy.exe\""EE

Show some XML

The above problem could be solved using Method Ø "Queued" as an option to Button,
but using Start is much simpler.

ButtonA"Show some XML", RunA"Start XMLSpy"EE

Show some XML

17.3 Connecting the Frontend 
to a Remote Kernel
Problem
You want to use the Mathematica kernel from a different computer than the one you
are using to run the frontend.

Solution
Use  the  menu  Evaluation,  Kernel  Configuration  to  create  a  configuration  for  a  re-
mote kernel. Select Add from the dialog. You will then be presented with the Kernel
Properties dialog shown in Figure 17-1. It makes sense to give the kernel a meaning-
ful name that will remind you what server it is connected to, but you can name it af-
ter your spouse or your dog if you like. Select the radio button Remote Machine and
then enter the machine’s name, a login name, and the kernel program (which is of-
ten “math,” but see the “Discussion” section on page 693). I like to check the option
“Append name to In/Out prompts” to remind me I am working with a remote ker-
nel, but this is a matter of taste. If you will mostly be working with this specific re-
mote kernel, you can also check the automatic launch option.
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Figure 17-1. Kernel Properties dialog

When you have the kernel configured, you can use Evaluation, Start Kernel to start
it and Evaluation, Notebook Kernel to associate it with the current notebook.

Discussion
If you have network access to a more powerful computer than the one you use daily
and  that  computer  has  Mathematica  installed,  then  you  can  reap  a  lot  of  benefit
from  using  a  remote  kernel.  For  example,  I  like  to  work  on  my  laptop  because  it
gives me the flexibility to work anywhere in my house. However, my basement has
my powerful Mac Pro, so I  usually run my kernel there. This not only gives me ac-
cess to a faster machine, but frees resources on the laptop that would otherwise be
used by the local kernel.

There is a caveat to the solution. If the machine you are connected to is a Mac, there
is  no  program  called  “math.”  You  must  instead  give  the  full  path  to  the  program
called  MathKernel  in  the  edit  box  for  Kernel  Program.  The  location  will  depend
on  where  Mathematica  was  installed.  For  example,  I  installed  Mathematica
under  /Applications/Wolfram,  so  I  entered  /Applications/Wolfram/Mathematica.app/
Contents/MacOS/MathKernel. 
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There is a caveat to the solution. If the machine you are connected to is a Mac, there
is  no  program  called  “math.”  You  must  instead  give  the  full  path  to  the  program
called  MathKernel  in  the  edit  box  for  Kernel  Program.  The  location  will  depend
on  where  Mathematica  was  installed.  For  example,  I  installed  Mathematica
under  /Applications/Wolfram,  so  I  entered  /Applications/Wolfram/Mathematica.app/
Contents/MacOS/MathKernel. 

If  you  have  trouble  connecting  to  the  remote  kernel  you should  take  the  following
steps.

1. Make sure  you can ping  the  computer  you entered on the  command line.  You
can  run  ping  from  the  Windows  cmd.exe  shell  or  Unix  or  Mac  OS  X  shell.  If
you  can’t  ping  the  machine,  it  is  either  off  or  there  is  some network  issue  you
need to resolve.

2. If  you  can  ping  the  computer  but  the  kernel  fails  to  start,  make  sure
Mathematica is  properly installed on the remote computer.  Do this by running
Mathematica  directly  from  the  remote  computer  or  ask  your  systems
administrator  to  verify.  A  common problem is  for  Mathematica  to  be  installed
but to rely on a license manager (MathLM) that is not running.

3. If  you get  an error  like “SSH could not  launch kernel  ‘<kernel  name>’ because
the  remote  machine  refused  the  connection.  Error  code  =  113”,  then  there  is
most  likely  a  permissions  problem  with  the  login  name  and  the  password  you
provided when prompted by the frontend. Make sure you can remotely log in to
the  machine  using  Secure  Shell  (SSH)  or  PuTTY  from  the  command  line
(PuTTY  is  a  free  SSH  program  for  Windows  that  you  can  download  from
http://www.putty.org/).

17.4 Using Mathematica with C and C++
Problem
You want to call C functions from Mathematica.

Solution
Here I  demonstrate the process of creating a C program with functions that can be
invoked from Mathematica. This example uses Microsoft Visual C++ 2005. Refer to
the “See  Also” section on page 699 for  information  on  using  other  programming
environments. The simplest way to interface Mathematica to C is to utilize the pre-
processor  mprep,  which  takes  a  template  file  describing  one  or  more  C  functions,
and  generate  the  glue  code  needed  to  interface  those  functions  to  Mathematica.
Here is an example of an mprep file describing three different functions.
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:Begin:

:Function: fExample1

:Pattern: fExample1[x_Integer, y_Integer]

:Arguments: {x, y}

:ArgumentTypes: {Integer, Integer}

:ReturnType: Integer

:Function: fExample2

:Pattern: fExample2[x_List, y_List]

:Arguments: {x, y}

:ArgumentTypes: {IntegerList, RealList}

:ReturnType: Integer

:Function: fExample3

:Pattern: fExample3[aStr_String]

:Arguments: {aStr}

:ArgumentTypes: {String}

:ReturnType: String

:End:

The  C  source  code  corresponding  to  these  definitions  follows.  Note  that  lists  are
passed as  pointers  to  arrays  and that  an extra  integer  parameter  is  needed for  each
such list to receive the length of the array. In this listing, you will also find the defini-
tion of WinMain that is required for Windows executables built with Microsoft Visual
Studio. The body of WinMain is standard boilerplate that you can copy into your own
project.  The  implementation  of  the  functions  themselves  is  really  not  important  in
this code as its main purpose is to demonstrate the C interface mechanics.

//functions.h

extern "C"

{

int fExample1(int x, int y);

double fExample2(int * x, long xLen, double* y, long yLen);

char * fExample3(char * aStr);

}

//functions.cpp

#include "functions.h"

#include <mathlink.h>
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#include <stdio.h>

#include <ctype.h>

int fExample1(int x, int y)

{

return (x >> y) + 1;

}

double fExample2(int * x, int xLen, double* y, int yLen)

{

double result = 0.0;

int i = 0;

for (; i<xLen && i<yLen; ++i)

{

result += x[i] * y[i] ;

}

for (;i < yLen; ++i)

{

result += y[i];

}

return result ;

}

char * fExample3(char * aStr)

{

for(char *p=aStr;*p;++p)

{

*p = toupper(*p) ;

}

return aStr ;

}

int PASCAL WinMain( HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,        

LPSTR lpszCmdLine, int nCmdShow)

{

char  buff[512];

char FAR * buff_start = buff;

char FAR * argv[32];

char FAR * FAR * argv_end = argv + 32;
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hinstPrevious = hinstPrevious; /*suppress warning*/

if( !MLInitializeIcon( hinstCurrent, nCmdShow)) return 1;

MLScanString( argv, &argv_end, &lpszCmdLine, &buff_start);

return MLMain( (int)(argv_end - argv), argv);

}

Once you have a MathLink program compiled to an executable, you can install it us-
ing Install. By default, Install will look in the current directory for the executable;
either  change  the  current  directory  or  give  Install  the  full  path.  Install  returns  a
LinkObject, which can be used to get information about available functions and also
to terminate the connection using Uninstall.

saveCurDir = Directory@D;

SetDirectoryA

"oreilly\\Mathematica Cookbook\\code\mathLinkExample\\Debug"E;

link = Install@"mathLinkExample"D;

SetDirectory@saveCurDirD;

You can interrogate a link for the available functions.

LinkPatterns@linkD

9fExample1Ax_Integer, y_IntegerE,

fExample2Ax_List, y_ListE, fExample3AaStr_StringE=

You call installed MathLink functions just like normal Mathematica functions.

fExample1@2000, 4D

126

fExample2@81, 2, 3<, 82.0, 4.0, 6.0, 8.0<D

36.

fExample3A"Testing"E

TESTING

Uninstall@linkD

mathLinkExample
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Discussion
Although  the  solution  is  fairly  straightforward,  there  are  numerous  details  that  are
specific  to  the  OS  and  compilation  environment  (compiler  and  IDE  or  make  sys-
tem). The Mathematica documentation for MathLink contains detailed instructions
for  many common environments,  and you should follow those directions carefully.
It  is  highly  recommended  that  you  use  either  the  example  in  the  solution  given  or
some of the simple examples that are installed with Mathematica to become familiar
with the process before trying to interface your own C functions. 

Often you will need to return objects more complex than integers and doubles from
your C functions. If this is the case, you should specify a return type of Manual in the
template file. Manual  means that you will manually code the function to call the ap-
propriate  low-level  MathLink C API  functions  needed to  return the  correct  data  to
Mathematica.

//randomList.tm

#include <stdlib.h>

#include <mathlink.h>

:Begin:

:Function:       randomIntList

:Pattern:        randomIntList[n_Integer]

:Arguments:      {n}

:ArgumentTypes:  {Integer}

:ReturnType:     Manual

:End:

extern "C" void randomIntList(int n)

{

int* randData = new int [n] ;

if (randData)

{

for(int i=0; i<n; ++i)

{

randData[i] = rand() ;

}

MLPutInteger32List(stdlink, randData , n);

delete [] randData; 

}
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else

{

MLPutInteger32List(stdlink,0,0) ;

}

}

saveCurDir = Directory@D;

SetDirectoryA

"oreilly\\Mathematica Cookbook\\code\mathLinkExample2\\Debug"E;

link2 = Install@"mathLinkExample2"D;

SetDirectory@saveCurDirD;

LinkPatterns@link2D

9randomIntListAn_IntegerE=

randomIntList@12D

82287, 5306, 19753, 3868, 19313,

1043, 29879, 26846, 14625, 1380, 24555, 28439<

Uninstall@link2D;

The  example  given  illustrates  the  use  of  MLPutInteger32List  to  return  an  array  of
data as a list. The MathLink API contains many related functions for returning a vari-
ety of  types,  including integers,  strings,  lists,  multidimensional  arrays,  and the like.
This  example  also  demonstrates  that  template  files  processed  by  mprep  can  mix
source code with template directives.

Another common requirement is  the need to execute initialization code once when
you install the MathLink program. C-based initialization code can easily be added to
the  applications  main()  or  WinMain(),  but  what  about  Mathematica  code?  A typical
example is code that installs documentation for the installed functions. For this you
use mprep’s :Evaluate: specifications. For an example of this see http://bit.ly/duSEnb.

See Also
Information  on  how  to  set  up  your  C-built  environment  can  be  found  at  tutorial/
MathLinkDeveloperGuide  (Mac  OSX),  tutorial/MathLinkDeveloperGuide  (Windows),
and tutorial/MathLinkDeveloperGuide (Unix and Linux).

See ref/program/mprep in the Mathematica documentation.
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17.5 Using Mathematica with Java
Problem
You want to use Mathematica as a Java scripting language to prototype a Java appli-
cation or leverage the functionality of Java classes.

Solution
Use the JLink` package and call InstallJava to make the Java runtime environment
available  to  Mathematica.  You  can  then  create  objects  and  call  methods  or  load
classes to access static methods just as if they were Mathematica functions.

Needs@"JLink`"D

InstallJava@D;

H*Create an instance of decimal format and

call a method using prefix notation objümethod.*L

fmt = JavaNewA"java.text.DecimalFormat", "Ò.0000"E;

fmtüformat@ÒD & êü 81.0, 7.333, N@PiD, 1ê3.<
81.0000, 7.3330, 3.1416, .3333<

H*Load a class and call a static method using

the full class name as if it were a package.*L

LoadJavaClassA"java.lang.System"E;

java`lang`System`currentTimeMillis@D
1226852744984

Discussion
Options@InstallJavaD

9ClassPath Ø Automatic, CommandLine Ø Automatic, JVMArguments Ø None,

ForceLaunch Ø False, Default Ø Automatic, CreateExtraLinks Ø Automatic=

InstallJava takes options that control how the Java is loaded. CommandLine Ø java-
path allows you to specify the particular version of Java you want to load if you have
several  versions  available.  For  example,  CommandLine  Ø  "c:\\Program  Files\\Java
\\jre1.6.0_07\\bin\\java".  ClassPath  Ø  classpath  is  used  to  provide  a  classpath
that is different from the default obtained from the CLASSPATH environment variable.
If  you  require  special  Java  Virtual  Machine  (JVM)  options,  use  JVMArguments  Ø
arguments. 

When InstallJava is invoked several times during a Mathematica session, the subse-
quent  invocations  are  ignored.  However,  sometimes  you  want  to  clear  out  the  old
JVM  and  start  fresh.  In  that  case,  use  ReinstallJava  to  exit  and  reload  Java.  This
is especially useful if you are making changes to a Java Archive (JAR) that you are de-
veloping alongside  the  Mathematica  notebook that  uses  it.  ReinstallJava  takes  the
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When InstallJava is invoked several times during a Mathematica session, the subse-
quent  invocations  are  ignored.  However,  sometimes  you  want  to  clear  out  the  old
JVM  and  start  fresh.  In  that  case,  use  ReinstallJava  to  exit  and  reload  Java.  This
is especially useful if you are making changes to a Java Archive (JAR) that you are de-
veloping alongside  the  Mathematica  notebook that  uses  it.  ReinstallJava  takes  the
same options as InstallJava.

ReinstallJavaA

CommandLine Ø "c:\\Program Files\\Java\\jre1.6.0_07\\bin\\java"E;

The  following  example  uses  a  genetic  algorithm (GA)  Java  library  called  JGAP (see
http://jgap.sourceforge.net/). GAs are in the class of evolutionary inspired algorithms
typically used to tackle complex optimization problems. This example demonstrates
an ideal  blend of  Mathematica and Java because it  shows how easy it  is  to script  a
Java application and exploit the visualization features of Mathematica to investigate
its behavior. 

The example also illustrates the use of JavaBlock as a means of automatically clean-
ing up Java objects when they are no longer needed. It also shows how Java arrays of
objects  are  replaced by  Mathematica  lists  and how the  translation is  automated by
JLink.

Needs@"JLink`"D

ReinstallJavaAClassPath Ø

"C:\\code\\jgap;C:\\code\\jgap\jgap-examples.jar;C:\\code\\jgap\jgap.jar

;C:\\code\\jgap\jgapMathematica.jar"E;

H*The volumes of items we wish to be packed*L

itemVolumes = 81.2, 2.8, 3.5, 4.0, 25.0, 6.75, 14.36, 36.7, 78.9, 325.1<;

H*The names of the items*L

itemNames = 9"item1", "item2", "item3", "item4", "widget",

"thingie", "thingie2", "fooBar", "WingWam", "ThingAMaBob"=;

targetVolume = 1000.0;

popSize = 1500;

generations = 150;

I  implement the problem using a function called knapsack,  which takes an optional
fitness  function.  The  reason  for  this  will  become  apparent  later.  Most  of  the  code
within knapsack  is  straightforward use  of  JLink facilities  interspersed with standard
Mathematica code. The comments in the code point out what’s going on, and much
of the detail is specific to the JGAP library and the knapsack problem. One thing that
might trip you up in your own Java-interfacing projects is dealing with Java arrays of
objects. There is no JLink function specifically designed to construct arrays. Instead,
wherever you need to call a Java function that expects an array, simply pass it a Mathe-
matica  list  of  objects  created  with  JavaNew  and  Jlink  will  translate.  Mathematica’s
Table  is convenient for that purpose and it is how the following code creates an ar-
ray of Gene objects. Likewise, when calling a Java function that returns an array, ex-
pect Mathematica to convert it to a list.

17.5 Using Mathematica with Java | 701



knapsack@fitnessFunc_ : NoneD :=

H*Use a JavaBlock to release all Java objects when block completes.*L

JavaBlockA

ModuleA9conf, fitnessFunc2, sampleGenes, sampleChromosome, population,

individuals, bestSolutionSoFar, packing, volumeFound, dummy=,

H*JGAP uses a configuration object to organize the

genetic algorithm's parameters and objects.*L

LoadJavaClassA"org.jgap.Configuration"E;

Configuration`reset@D;

conf = JavaNewA"org.jgap.impl.DefaultConfiguration"E;

H*We want to preserve the fittest individual.*L

confüsetPreservFittestIndividual@TrueD;

H*The fitness function is

implemented as a class in the example code.*L

fitnessFunc2 = IfAfitnessFunc === None,

JavaNewA"examples.knapsack.KnapsackFitnessFunction", targetVolumeE,

JavaNewA"jgapMathematica.FitnessFunction", fitnessFuncEE;

confüsetFitnessFunction@fitnessFunc2D;

H*In the original Java code sampleGenes is a Java array of class

Gene. However, in Mathematica you create lists of objects, and the

JLink code will take care of translating to arrays when necessary.*L

sampleGenes = TableAJavaNewA"org.jgap.impl.IntegerGene",

conf, 0, CeilingA0.75 targetVolumeë itemVolumes@@iDDEE,

9i, 1, Length@itemVolumesD=E;

sampleChromosome = JavaNewA"org.jgap.Chromosome", conf, sampleGenesE;

confüsetSampleChromosome@sampleChromosomeD;

confüsetPopulationSize@popSizeD;

LoadJavaClassA"org.jgap.Genotype"E;

population = org`jgap`Genotype`randomInitialGenotype@confD;

H*Let's run the evolution for 200 generations and

capture the fittest at each generation.*L

9dummy, 8saveFitnessValues <= = ReapADoApopulationüevolve@D;

SowApopulationügetFittestChromosome@DügetFitnessValue@DE,

9generations=EE;

bestSolutionSoFar = populationügetFittestChromosome@D;

PrintA"Fitness of Best:", bestSolutionSoFarügetFitnessValue@DE;

H*Here we decode the best solution to get the qty of each item.*L
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packing =

TableA9bestSolutionSoFarügetGene@iDügetAllele@D,

itemNames@@i + 1DD=, 8i, 0, bestSolutionSoFarüsize@D - 1<E;

PrintA"Packing found: ", packingE;

volumeFound = TotalApacking@@All, 1DD * itemVolumesE;

Print@"Volume used ", volumeFoundD;

PrintA"Difference from desired volume: ", targetVolume - volumeFoundE;

E

E

Using a fairly healthy population size and a large number of generations, we unfortu-
nately get a fairly poor solution! This indicates a problem with the design of our GA.
Let’s see how we can draw on Mathematica to help resolve this. 

popSize = 1500;

generations = 200;

knapsack@D

Fitness of Best: 4.58099µ108

Packing found:

8878, item1<, 827, item2<, 838, item3<, 80, item4<, 826, widget<,

886, thingie<, 811, thingie2<, 80, fooBar<, 80, WingWam<, 80, ThingAMaBob<<

Volume used 1690.66

Difference from desired volume: -690.66

By plotting the logarithm of the fitness at each generation, we can see that the fitness
landscape of this problem is extremely steep since we make a rapid transition from
very low fitness to very high fitness. This suggests the fitness function provided with
this JGAP sample might not be ideal. The poor quality of the solution is further indi-
cation of  a  poorly  designed fitness  function.  The real  lesson is  that  Mathematica  is
an  ideal  experimental  playground  for  Java  libraries  because  the  full  wealth  of  ana-
lytic and visual tools is at your disposal. In fact, I use Mathematica to help find a bet-
ter fitness function, so read on.
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BarChartALog@saveFitnessValuesDE

If you want to experiment with Java libraries, it is ideal to be able to implement inter-
faces  defined  by  those  libraries  directly  in  Mathematica.  In  fact,  this  can  be  done
rather  easily  using ImplementJavaInterface.  The following example  uses  Implement-
JavaInterface to try an alternate fitness function for the knapsack problem. There is
a  caveat,  however.  ImplementJavaInterface  will  only  work  with  true  interfaces,  not
abstract classes. In JGAP, FitnessFunction is an abstract class, hence we can’t imple-
ment it using ImplementJavaInterface.  The solution in cases like this is to create an
adapter like the one in the following listing.

package jgapMathematica;

import org.jgap.IChromosome;

public class FitnessFunction extends org.jgap.FitnessFunction {

private IMathematicFitness m_fitness;

public FitnessFunction(IMathematicFitness fitness) {

m_fitness = fitness ;

}

@Override

protected double evaluate(final IChromosome chromosome) {

return m_fitness.evaluate(chromosome);

}

}

The above fitness function allows us to use the following interface within Mathemat-
ica code. 

704 | Chapter 17: Interfacing Mathematica



package jgapMathematica;

import org.jgap.IChromosome;

public interface IMathematicFitness {

public double evaluate(final IChromosome chromosome) ;

}

Once  this  is  done,  we  can  write  any  fitness  function  we  like  in  pure  Mathematica
code. This solution is general in that any abstract class you find in any Java library
can  be  adapted  in  a  similar  manner.  Below,  we  exploit  the  adapter  to  write  a  new
fitness  function  for  the  knapsack  problem.  The  function  penalizes  solutions  that
use more volume than specified, while giving increasing reward to solutions that use
close to the available volume.

knapsackEvaluateAsubject_E := ModuleA9subjPacking, subjVol=,

H*Figure out the volume used by the solution being evaluated.*L

subjPacking =

TableAsubjectügetGene@iDügetAllele@D, 9i, 0, subjectüsize@D - 1=E;

subjVol = TotalAsubjPacking *itemVolumesE;

H*This function gives small fitness to

volumes that are far from the target volume; however,

it rewards underfitting twice as much as overfitting.*L

IfAsubjVol > targetVolume, targetVolumeë subjVol,

IsubjVolë targetVolumeM *2.0E

E

H*Implementing an interface is nothing more than mapping the interface

methods to the Mathematica function. Here our interface has only a single

function called evaluate and it gets mapped to knapsackEvaluate.*L

ff = ImplementJavaInterfaceA"jgapMathematica.IMathematicFitness",

8"evaluate" Ø "knapsackEvaluate"<E;

popSize = 50;

generations = 20;

knapsack@ffD

Fitness of Best: 1.99776

Packing found:

8820, item1<, 895, item2<, 867, item3<, 820, item4<, 82, widget<,

834, thingie<, 88, thingie2<, 80, fooBar<, 80, WingWam<, 80, ThingAMaBob<<
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Volume used 998.88

Difference from desired volume: 1.12

BarChart@saveFitnessValuesD

Keep  in  mind  that  implementing  interface  in  Mathematica  code  is  convenient  but
comes at a very high cost. In our case, it makes the GA run much slower and forces
the use of a much smaller population size. This is especially true because the fitness
function is  called many times,  and it  must  call  back into Java,  making it  extremely
costly. This is not a real issue because the goal here is experimentation. When a rea-
sonable  fitness  function  is  found,  it  can  be  ported  back  to  Java.  You  can  use  the
same  methodology  when  working  with  other  Java  libraries.  Of  course,  if  the  inter-
face you implement in Mathematica is called infrequently, the hassle of porting back
to Java may seem unnecessary.

See Also
The  J/Link  tutorial  is  an  excellent  way  to  round  out  your  knowledge  of  the
Mathematica-to-Java interface. See JLink/tutorial/Overview.

Mathematica  is  bundled  with  notebooks  illustrating  different  aspects  of
Mathematica-Java  interaction  (such  as  using  the  GUI  features  of  Java  Swing).
These  can  be  found  in  the  Mathematica  installation  directory  (evaluate
$InstallationDirectory) under subdirectory SystemFiles/Links/JLink/Examples.
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17.6 Using Mathematica to Interact with 
Microsoft’s .NET Framework
Problem
You  want  to  use  Mathematica  as  a  .NET  scripting  language  to  prototype  a  .NET
application  or  leverage  Windows-specific  functionality  not  directly  available  in
Mathematica. 

Solution
Use the NETLink` package and InstallNET to initialize Mathematica’s .NET interface.
You  then  can  use  functions  like  LoadNETAssembly  to  load  custom  .NET  assemblies
and NETNew  to create instances of objects. Methods and properties of objects are ac-
cessed  using  Mathematica  prefix  notation  object@property  and  object@method
[args]. 

As  an  example,  you  can  use  Mathematica  6’s  dynamic  functionality  with  a  .NET
timer to display a ticking clock.

Needs@"NETLink`"D

InstallNET@D;

timeOut = "Not Set";

timer = NETNewA"System.Timers.Timer", 1000E;

H*1 sec timer = 1000 msec*L

onTimedEventAsource_, eventArgs_E :=

ModuleA8<, timeOut = eventArgsüSignalTimeüToString@"G"DE;

H*Use AddEventHandler to bind a Mathematica function to an event.*L

AddEventHandler@timerüElapsed, onTimedEventD;

timerüEnabled = True;

Dynamic@timeOutD
timeOut

timerüEnabled = False; H*Stop the timer*L

Discussion
When you use NETNew,  Mathematica implicitly loads the .NET type of the class you
are  creating.  For  some  cases,  you  need  to  load  the  type  explicitly.  For  example,
many  .NET  components  use  Enums  in  their  interface.  To  reference  these  in  Mathe-
matica  code,  you need to load them. In Mathematica,  you use LoadNETType  for  this
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purpose.  In  the  following  example,  you  use  LoadNETType  to  get  the  enumerations
associated with dialog box results. This allows you to use the OpenFileDialog compo-
nent to select a file. If you run this code, you may need to press Alt-Tab to switch to
the dialog.

Needs@"NETLink`"D

InstallNET@D;

LoadNETTypeA"System.Windows.Forms.DialogResult"E;

openFileDialog1 = NETNewA"System.Windows.Forms.OpenFileDialog"E;

openFileDialog1üInitialDirectory =

"c:\\Documents And Setting\\Salvtore Mangano"; openFileDialog1üFilter =

"image files H*.jpg;*.gif;*.bmpL»*.jpg;*.gif;*.bmp»All

files H*.*L»*.*"; openFileDialog1üFilterIndex = 1;

openFileDialog1üRestoreDirectory = True;

IfAopenFileDialog1üShowDialog@D === DialogResult`OK,

ImportAopenFileDialog1üFileNameE, "No Image Selected"E

You also use LoadNETType  to load a class  that  has a  static  method you want to call.
Static methods are then accessible as normal Mathematica functions.

Needs@"NETLink`"D

InstallNET@D;

LoadNETTypeA"System.Diagnostics.Stopwatch"E;

System`Diagnostics`Stopwatch`GetTimestamp@D
5674487004

The  default  value  for  the  LoadNETType  option  StaticsVisible  is  False,  but  you  can
set it to True  to avoid having to specify the full namespace path to invoke the func-
tion. You should use this feature with caution since it can lead to name conflicts.

See Also
An extensive tutorial on NETLink can be found in the Mathematica documentation at
NETLink/tutorial/Overview.
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17.7 Using the Mathematica Kernel
from a .NET Application
Problem
You  want  to  leverage  the  advanced  Mathematica  algorithms  from  within  a  .NET
application.

Solution
Use the classes in the Wolfram.NETLink.dll from your .NET application. This recipe
will  use  C#,  but  the  Mathematica  kernel  is  accessible  from  any  .NET  language.
The  simplest  way  to  interact  with  Mathematica  is  through  passing  strings  of
Mathematica  code  using  an  instance  of  IKernelLink.  You  acquire  an  instance  via
MathLinkFactory.CreateKernelLink.  IKernelLink  has  several  methods  for  evaluating
Mathematica  code,  but  the  function  EvaluateToOutputForm  is  one  of  the  most
convenient.

using System;

using Wolfram.NETLink;

namespace TestNetLink1

{

     public class TestNetLink

     {

    public static void Main (String[] args)

    {

         //Launch the Mathematica Kernel

         IKernelLink ml = MathLinkFactory.CreateKernelLink ();

         //Discard the initial response kernel will send when launched.

         ml.WaitAndDiscardAnswer ();

         //Solve a differential equation and evaluate at the value 2

             string expr = "s = NDSolve[{y''[x]+Sin[y[x]] y[x] == 0,

    y[0] == 1," +

                 "y'[0] == 0},y,{x, 0,30}]; y[2] /. s";

         string result = ml.EvaluateToOutputForm(expr, 0);

        Console.WriteLine ("Result = " + result);

        }

  }

}

17.7 Using the Mathematica Kernelfrom a .NET Application | 709



Discussion
Receiving numerical  data back in string form is  fine when you just  want to display
the result of a computation, but if you want to feed the results Mathematica returns
into further computations, it is less than ideal. There are other ways to read the data
returned  by  evaluation  expressions,  but  these  involve  being  cognizant  of  the  types
you expect back. 

using System;

using Wolfram.NETLink;

namespace TestNetLink2

{

     public class TestNetLink2

     {

         public static void Main(String[] args)

         {

             //Launch the Mathematica Kernel

             IKernelLink ml = MathLinkFactory.CreateKernelLink();

             //Discard the initial response kernel will send when launched.

             ml.WaitAndDiscardAnswer();

             //Solve a differential equation and evaluate at the value 2.

             string expr = "s = NDSolve[{y''[x]+Sin[y[x]] y[x] == 0, y[0] ==

1," +

                 "y'[0] == 0},y,{x, 0,30}]; y[2] /. s";

             //Evaluate expression. Notice this does not return anything.

             ml.Evaluate(expr);

             //Wait for results to be ready.

             ml.WaitForAnswer();

             //Read the result being sure to use the method that retrieves a

n

  appropriate

             //type. In this case, we expect a list of doubles but MathLink

converts

             //these into arrays. Here you get the first element of the arra

y

  and can then

             //perform additional computations such as adding 10.

             double result = ml.GetDoubleArray()[0] + 10.0;

             Console.WriteLine("Result = " + result);

         }

     }

}
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The  IKernelLink  interface  has  a  variety  of  methods  for  retrieving  typed  results.
These include GetBoolean, GetDouble, GetInteger, GetString, GetDecimal, GetDouble-
Array, and quite a few others. Refer to the NETLink documentation for the full set of
methods.

In addition to IKernelLink, there is a very high-level interface to Mathematica imple-
mented  as  a  class  called  MathKernel  that  is  ideal  for  creating  a  custom  frontend  to
Mathematica.  MathKernel  derives  from  System.ComponentModel.Component  and  fol-
lows the conventions of .NET components. A nice example of using MathKernel can
be  found in  the  Mathematica  installation  directory  ($InstallationDirectory)  under
SystemFiles/Links/NETLink/Examples/Part2/MathKernelApp.

See Also
You can find more information on interacting with the kernel from .NET languages
at  NETLink/tutorial/CallingMathematicaFromNET.  There  are  examples  there  using
both C# and Visual Basic.

17.8 Querying a Database 
Problem
You want to compute with data retrieved from an external database.

The  examples  in  Recipes  17.8  and  17.10  assume  the  existence  of
certain databases. If you don’t have access to a database system where
you can set up these databases, the examples will obviously not work.
If you have a database system or know how to install one, you can get
files  to  initialize  the  database  for  these  examples  from  the  book’s
website.  Naturally,  these  examples  are  only  for  illustrating techniques
that  you  can  employ  on  real  databases  you  wish  to  interface  to
Mathematica.

Mathematica  supports  several  flavors  of  database  connectivity,
including  ODBC,  JDBC,  MySQL,  and  HSQLDB  (Hyper  Structured
Query Language Database).

Solution
Here I open a connection to a SupplierParts  database previously set up on my sys-
tem and then query all  rows of the part  table.  SQLSelect  is  the best way to retrieve
all data from a single table. See the discussion for variations and alternatives.
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Needs@"DatabaseLink`"D;

conn = OpenSQLConnection@"SupplierParts"D;

SQLSelect@conn, "part"D

98p1, Nut, Red, 12., London<, 8p2, Bolt, Green, 17., Paris<,

8p3, Screw, Blue, 17., Rome<, 8p4, Screw, Red, 14., London<,

8p5, Cam, Blue, 12., Paris<, 9p6, Cog, Red, 19., London==

Discussion
SQLSelect  provides  a  stylized  means  to  perform  simple  database  queries  with-
out  knowing  SQL.  Below  are  three  increasingly  complex  queries  you  can  do  with
SQLSelect. 

H*Restrict to specific columns.*L

SQLSelectAconn, "supplier", 9"name", "city"=E
88Smith, London<, 8Jones, Paris<,

8Blake, Paris<, 8Clark, London<, 8Adams, Athens<<

H*Specify selection criteria.*L

SQLSelectAconn, "supplier", 9"name", "city"=, SQLColumn@"id"D ã "s1"E
88Smith, London<<

H*Join data from multiple tables. Here I show

collocated suppliers and parts, and specify a sort.*L

SQLSelectAconn, 8"supplier", "part"<,

98"supplier", "id"<, 8"part", "id"<, 9"supplier", "city"==,

SQLColumnA9"supplier", "city"=E ã SQLColumnA9"part", "city"=E,

"SortingColumns" Ø 8SQLColumn@8"supplier", "id"<D,

SQLColumn@8"part", "id"<D<E êê TableForm
s1 p1 London

s1 p4 London

s1 p6 London

s2 p2 Paris

s2 p5 Paris

s3 p2 Paris

s3 p5 Paris

s4 p1 London

s4 p4 London

s4 p6 London
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Of course, the conventions used by SQLSelect create a very thin veneer over SQL, so
if you plan to do quite a bit of database work, you will benefit from learning and us-
ing SQL directly via SQLExecute.

SQLExecuteAconn,

"SELECT supplier.id sid, part.id pid, supplier.city city

FROM supplier, part

WHERE supplier.city = part.city

ORDER BY sid,pid", "ShowColumnHeadings" Ø TrueE êê TableForm
sid pid city

s1 p1 London

s1 p4 London

s1 p6 London

s2 p2 Paris

s2 p5 Paris

s3 p2 Paris

s3 p5 Paris

s4 p1 London

s4 p4 London

s4 p6 London

Nevertheless,  using  straight  SQL can sometimes  be  a  pain  when you need to  build
the query from data stored in variables. SQLArgument, along with argument placehold-
ers  (e.g.,  `1`,  `2`),  is  the  recommended solution.  You can  use  SQLArgument  directly
with  values,  but  if  you  are  parameterizing  a  query  on  column  or  table  names,  you
must also use SQLColumn and SQLTable, respectively.

table = "supplier"; id = "s2"; col = "city";

SQLExecuteAconn,

"SELECT `1` FROM `2` WHERE id = `3`", 9SQLArgument@SQLColumn@colDD,

SQLArgument@SQLTable@tableDD, SQLArgument@idD=E
88Paris<<

CloseSQLConnection@connD;

See Also
Detailed  discussion  of  query  commands  can  be  found  in  DatabaseLink/tutorial/
SelectingData in the Mathematica documentation.
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17.9 Updating a Database
Problem
You want to store results of computations to a database.

Solution
Use SQLInsert to add new records and SQLUpdate to modify existing records.

Needs@"DatabaseLink`"D;

conn = OpenSQLConnectionA"MySQLTest"E;

SQLInsert@conn, "data1", 8"x1", "x2", "x3"<,

Table@8i, Prime@iD, RandomReal@D<, 8i, 1, 100<DD;

SQLUpdateAconn, "data1", 8"x1", "x2", "x3"<,

80.0, 1.0, 2.0<, SQLColumnA"data1.key"E == 4E
1

Use SQLDelete to remove records.

SQLDeleteAconn, "data1", SQLColumnA"data1.key"E ã 10E

0

Discussion
If you need to update multiple tables in an all-or-nothing manner and your database
management  system  supports  transactions,  you  should  use  SQLBeginTransaction
and  SQLCommitTransaction  to  bracket  the  updates.  If  an  error  occurs  you  can  use
SQLRollbackTransaction, which rolls back to the beginning of the transaction or to a
named save point (which is set using SQLSetSavepoint).

Inserting,  updating,  and  deleting  are  the  most  common  operations  for  changing  a
database, but Mathematica also gives you the ability to create and drop tables. 

SQLExecuteAconn, "UPDATE data1 SET x1=0,x2=1,x3=2 WHERE data1.key=104"E

1

See Also
Detailed discussion of transactions can be found in DatabaseLink/tutorial/Transactions
in the Mathematica documentation.
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17.10 Introspection of Databases
Problem
You  want  to  query  a  database  to  find  out  what  entities  (tables,  columns,  etc.)  are
available.

Solution
Mathematica  contains  a  variety  of  methods  that  return  information  about  the  data
sources available, their tables, and the schema of those tables.

Needs@"DatabaseLink`"D

The  command  DataSourceNames[]  lists  all  data  sources  known  to  the  Mathematica
instance.

DataSourceNames@D

9demo, graphs, publisher, MySQLMeta, MySQLTest, SupplierParts=

Given a connection to one of these sources, list all the tables.

conn = OpenSQLConnection@"SupplierParts"D;

SQLTables@connD
9SQLTableAinventory, TableType Ø TABLEE,

SQLTableApart, TableType Ø TABLEE, SQLTableAsupplier, TableType Ø TABLEE=

Given a connection, list all columns with their associated tables.

SQLColumnNames@connD êê TableForm
inventory sid

inventory pid

inventory qty

part id

part name

part color

part weight

part city

supplier id

supplier name

supplier status

supplier city
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You can also find out all the data types supported by your particular database.

SQLDataTypeNames@connD

8BIT, BOOL, TINYINT, TINYINT UNSIGNED, BIGINT, BIGINT UNSIGNED,

LONG VARBINARY, MEDIUMBLOB, LONGBLOB, BLOB, TINYBLOB, VARBINARY, BINARY,

LONG VARCHAR, MEDIUMTEXT, LONGTEXT, TEXT, TINYTEXT, CHAR, NUMERIC,

DECIMAL, INTEGER, INTEGER UNSIGNED, INT, INT UNSIGNED, MEDIUMINT,

MEDIUMINT UNSIGNED, SMALLINT, SMALLINT UNSIGNED, FLOAT, DOUBLE,

DOUBLE PRECISION, REAL, VARCHAR, ENUM, SET, DATE, TIME, DATETIME, TIMESTAMP<

CloseSQLConnection@connD;

Discussion
The introspection commands demonstrated in  the solution can take different  argu-
ments and options that restrict results or return additional information.

Needs@"DatabaseLink`"D

conn = OpenSQLConnectionA"MySQLTest"E;

For example,  the SQLTables  command can retrieve specific  tables  by name or  using
wildcards %  (zero or  more characters)  and _  (any single  character).  By default,  only
tables are returned, but you can use the option TableType to list other tablelike enti-
ties, such as views. 

SQLTables@connD

9SQLTableAdata1, TableType Ø TABLEE, SQLTableAdata2, TableType Ø TABLEE=

SQLTablesAconn, "data1%", "TableType" Ø 8"TABLE", "VIEW"<E

9SQLTableAdata1, TableType Ø TABLEE,

SQLTableAdata1view100, TableType Ø VIEWE=

SQLTablesAconn, "data_", "TableType" Ø 8"TABLE", "VIEW"<E

9SQLTableAdata1, TableType Ø TABLEE, SQLTableAdata2, TableType Ø TABLEE=

If  you  are  unsure  what  kinds  of  table  types  your  database  supports,  you  can  list
them with SQLTableTypeNames.

SQLTableTypeNames@connD

8TABLE, VIEW, LOCAL TEMPORARY<
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SQLColumnNames  provides  similar  functionality.  Here  you  can  restrict  columns  to  a
particular table or columns in a table that match a pattern.

SQLColumnNames@connD

99data1, key=, 8data1, x1<, 8data1, x2<, 8data1, x3<,

9data2, akey=, 8data2, avalue<, 9data1view100, key=,

8data1view100, x1<, 8data1view100, x2<, 8data1view100, x3<=

SQLColumnNames@conn, "data_"D

99data1, key=, 8data1, x1<, 8data1, x2<,

8data1, x3<, 9data2, akey=, 8data2, avalue<=

SQLColumnNames@conn, 8"data_", "x_"<D

88data1, x1<, 8data1, x2<, 8data1, x3<<

See Also
Detailed discussion of descriptive commands can be found in DatabaseLink/tutorial/
TableStructure  and  DatabaseLink/tutorial/ColumnStructure  in  the  Mathematica
documentation.
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CHAPTER 18

Tricks of the Trade

Meine tricks
Don’t know what I would do without

Tricks yeah yeah
Gimme tricks

Ihr wisst ich bin alleine ohne meine meine
Tricks yeah

That’s the only reason my heart still ticks
Vishnu, Batu, Fu Manchu too

Hu-Hu, Jonny Manushutu
Dr. Wu, Peggy Sue

Randy Andy too
One thing in common when they get up to their tricks

They do it for kicks
So if you ever see me acting
Like a kid from outer space

And you think of lending a hand
But if you look real close

You’ll see a smile on my face
Then I’m sure you’ll understand

Falco, “Tricks”

18.0 Introduction
This chapter’s recipes consist of Mathematica techniques and capabilities that every
serious  user  should  have  in  their  tool  box.  Unlike  other  chapters,  the  recipes  here
are not tied together by any one theme. I include them because each recipe will give
you  some  deeper  insight  into  details  that  are  unique  to  the  Mathematica  architec-
ture. Each recipe has been a lifesaver to me at various times, and I hope that one or
more of them will be helpful to you. 
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18.1 Cleaning Up During Incremental 
Development
Problem
You are  solving  a  problem by  incremental  refinement  of  a  set  of  functions.  As  you
proceed to  refactor  and introduce  alternative  definitions  for  symbols,  you find that
code that was working before mysteriously breaks.

Solution
Make judicious use of Clear before every group of functions that are still undergoing
development. First, I illustrate what can go wrong if you are sloppy. Suppose you de-
fine this function f.

fAx_IntegerE := x^2;

Later,  you  decide  that  you  should  be  more  general  about  the  valid  types  for  argu-
ment x and also realize you really meant to compute x^2 +1, so you change the line
to this (deleting the previous line from the notebook):

f@x_?NumericQD := x^2 + 1

Later  (possibly  after  you  have  forgotten  the  old  version  even  existed),  you  try  out
your code and are surprised by the result.

f@2D

4

To avoid problems like this, you should clear old definitions before defining a func-
tion. Then you can redefine f to your heart’s content without worrying that old defi-
nitions will interfere.

Clear@fD

f@x_?NumericQD := x^2 + 1

Discussion
Developers  coming  from  other  programming  environments  easily  fall  into  the  trap
caused by the  fact  that  the  kernel  holds  all  definitions  created during a  session
unless they are specifically cleared or exactly redefined. This is not the expected be-
havior of  languages that are compiled or interpreted, since in those environments old
definitions do not persist. The solution shows one way problems can arise, but there
are others.  It  is  just as likely that conflicts can come from other notebooks that are
sharing the same kernel instance. Many Mathematica veterans begin their notebooks

with an expression to clear every symbol in the global context (a context is similar to
what other languages call namespaces). 
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with an expression to clear every symbol in the global context (a context is similar to
what other languages call namespaces). 

Clear@"Global`*"D

The Global` context is the default context in which new symbols are defined. 

You  can  also  clear  the  command  history.  This  is  useful  for  freeing  memory.  Con-
sider the following example.

In[192]:= MemoryInUse@D

Out[192]= 132430904

Let’s use a lot of memory.

In[193]:= x = Array@f, 81000, 1000<D;

MemoryInUse@D

Out[194]= 188470896

Simply clearing x does not get the memory back because it is cached in the history.

In[196]:= Clear@xD;

MemoryInUse@D

Out[197]= 188473032

However, you can clear the In and Out history by unprotecting, clearing, and repro-
tecting In and Out. 

In[198]:= Unprotect@In, OutD;

Clear@In, OutD;

Protect@In, OutD;

MemoryInUse@D

Out[201]= 132287208

See Also
Problems with name conflicts can also be mitigated by use of packages. See Recipe 18.4.

18.2 Modifying Built-in Functions and Constants
Problem
You  want  to  extend  or  alter  the  meaning  of  intrinsic  functions  that  are  built  in  to
Mathematica. Perhaps you want to introduce a mathematical object that has its own
natural definitions for the standard operations Plus, Times, etc. 
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Solution
The  most  straightforward  way  to  modify  Mathematica  operations  is  to  unprotect
them, augment their meaning, and protect them again. However, the easiest way is
frequently not the best or safest way, so be sure not to skip the “Discussion” section.

It  is  common in  certain  applications  to  consider  0^0 to  be  defined  as  1;  however,
Mathematica considers this expression to be indeterminate and will issue a warning
when it evaluates it (hence, the use of Quiet here).

0^0 êê Quiet

Indeterminate

You can change this behavior quite easily.

Unprotect@PowerD;

Power@0, 0D = 1;

Protect@PowerD;

0^0
1

This new behavior will  persist  only within the Mathematica kernel session and will
be  known to  all  notebooks  associated  with  the  notebook’s  kernel.  See  Recipe  18.9
for a way to make such changes automatically active each time you use Mathematica.

Discussion
The solution shows a reasonable change to the meaning of an intrinsic function. It is
reasonable  because  it  is  unlikely  to  change the  behavior  of  Mathematica  in  a  detri-
mental  way  since  you  are  simply  supplying  meaning  to  an  expression  that  had  no
meaning. Technically speaking, it is possible that third-party code you are also using
depended on Power[0,0] evaluating to indeterminate; however, this possibility is far-
fetched.  This  is  not  the  case  for  other  seemingly  reasonable  changes.  For  example,
you might be irked by the following result:

H-1L^H1ê3L êê N

0.5 + 0.866025 Â

Clearly, an equally valid answer is -1. In fact, there are three valid answers. This is a
question of which branch Mathematica takes by default. 

Solve@x ^ 3 ã -1, xD êê N

88x Ø -1.<, 8x Ø 0.5 + 0.866025 Â<, 8x Ø 0.5 - 0.866025 Â<<

To remedy this  choice,  you might decide to take matters  into your own hands and
force  Mathematica  to  take  a  different  branch whenever it needs to evaluate a rational
power of a negative number.
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Unprotect@PowerD;

PowerAa_?Negative, n_RationalE = ExpAn Log@aD + n 2 Pi IE;

Protect@PowerD;

H-1L^H1ê3L êê N

-1.

This has an unfortunate consequence if you want Solve to work as before!

Solve@x ^ 3 ã -1, xD êê N

88x Ø -1.<, 8x Ø -1.<, 8x Ø -1.<<

Quitting the kernel will revert to the old behavior.

Quit@D

Solve@x ^ 3 ã -1, xD êê N

88x Ø -1.<, 8x Ø 0.5 + 0.866025 Â<, 8x Ø 0.5 - 0.866025 Â<<

Sometimes  you want  to  temporarily  change  the  meaning of  a  symbol.  In  that  case,
use  of  Unprotect  is  overkill,  and  it  is  better  to  introduce  the  new  value  within  a
Block.  For  example,  E  is  the  built-in  symbol  for  the  base  of  the  natural  logarithm,
but in this block we use E as hex digit 14.

Block@8A = 10, B = 11, C = 12, D = 13, E = 14, F = 15<, A*16 + ED

174

This  technique  is  often  used  to  temporarily  change  special  global  variables  like
$RecursionLimit. The following is a recursive implementation of the Ackermann func-
tion that would easily overflow the default stack limit of 256. This is for illustration
purposes and not a good way to implement Ackermann.

H*Ackermann function*L

BlockA9$RecursionLimit = 100000, A=,

A@0, n_D := n + 1; A@m_, 0D := A@m, 0D = A@m - 1, 1D;

A@m_, n_D := A@m, nD = A@m - 1, A@m, n - 1DD; A@4, 1DE
65533

18.3 Locating Undocumented Functions
Problem
You are  wondering what  undocumented functions  might  be  hiding in  your  current
version of Mathematica.

Solution
Inspect  the  Developer`  and  Experimental`  contexts  for  hidden  treasures.  Here,
//Short is used only to reduce clutter, so remove that before evaluating.
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In[891]:= Names@"Developer`*"D êê Short
Out[891]//Short=

;Developer`BesselSimplify ,á69à, Developer`$SymbolSystemShadowing ?

In[892]:= Names@"Experimental`*"D êê Short
Out[892]//Short=

;Experimental`AngleRange ,á47à, Experimental`Wait ?

Discussion
Strictly  speaking,  the  Developer`  context  is  not  entirely  undocumented,  but  rather
consists of low-level access to underlying algorithms that are typically used in the im-
plementation of  higher-level,  built-in functions.  Here is  an example of  such a func-
tion and its documentation. However, you can see that the documentation is much
more sparse than that of a function available in standard System` context.

In[550]:= ?? Developer`PartitionMap

PartitionMap@f, list, nD applies f to list after
partitioning into non-overlapping sublists of length n.

PartitionMap@f, list, n, dD applies f to sublists
obtained by partitioning with offset d.

PartitionMap@f, list, 8n1, n2, …<D applies f after partitioning
a nested list into blocks of size n1än2ä… .

PartitionMap@f, list, 8n1, n2, …<, 8d1, d2, …<D applies f

after partitioning using offset di at level i.
PartitionMap@f, list, n, d, 8kL, kR<D specifies where

sublists should begin and end.
PartitionMap@f, list, n, d, 8kL, kR<, paddingD specifies

what padding should be used. °à

Attributes@Developer`PartitionMapD = 8Protected<

In  contrast,  expect  to  find  little  information  about  functions  in  the  Experimental`
context. 

In[558]:= ?? Experimental`ShortestSupersequence

Experimental`ShortestSupersequence

Attributes@Experimental`ShortestSupersequenceD = 8Protected<

Options@Experimental`ShortestSupersequenceD = 8IgnoreCase Ø False<
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Even  if  you  manage  to  figure  out  how these  functions  work,  there  is  no  guarantee
the functions won’t change or be removed in a future version, so use them with cau-
tion. Sometimes an experimental function will tell you it  has been deprecated and
direct you to an alternative.

In[559]:= Experimental`FileBrowse@D

Experimental`FileBrowse::obs :

Experimental`FileBrowse has been superseded by

SystemDialogInput, and is now obsolete. It

will not be included in Mathematica version 8.

See Also
PartitionMap was used in Recipe 2.6. 

18.4 Packaging Your Mathematica Solutions
 into Libraries for Others to Use
Problem
You have a nice collection of functions that are of general use within your organiza-
tion or perhaps as a library that you want to distribute to others.

Solution
Mathematica provides a facility for defining custom packages that place functions in
a unique namespace and also allow you to selectively  expose some functions while
leaving other low-level details hidden. 

BeginPackage["CoolStuff`"]

Unique`::usage = "Unique[list] removes duplicates from a list (similar to 

Union) but does not reorder elements of the list."

Begin["`Private`"]

Unique[list_List] := Module[{once}, 

once[x_] := once[x] = Sequence[];x

once /@ list]

End[]

EndPackage[]
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Discussion
The solution follows a standard convention where actual definitions are placed in a
Private  context  (Begin["`Private`"]  ...  End[])  while  the  function  is  exposed  by
defining its  usage string (Unique`::usage)  in the public  part  of  the package.  Having
the  definition  of  Unique  inside  Private  does  not  mean  you  can’t  access  it.  What  it
does mean is that any symbols introduced inside the definition of Unique will not be
exported when the package is read in. The context Private` does not have any spe-
cial  semantics,  but  it  is  a  convention  used  by  most  Mathematica  package  authors,
and it would be wise to follow suit.

If a package depends on other packages, you can list the dependents as a second argu-
ment to BeginPackage. Here, CoolStuff` needs SuperCool` and Essential`.

BeginPackage["CoolStuff`", {"SuperCool`", "Essential`"}]

You can defer loading other  packages  until  you  know they  are  needed  by  using
DeclarePackage.  The  syntax  is  DeclarePackage["context`",  {"name1",  "name2",  ...}].
Here you are telling Mathematica to execute Needs["context`"] contingent on the use of
one of the symbols name1, name2, and so on (typically functions or constants).

BeginPackage["CoolStuff`"]

Cool`::usage = "Cool[list] does something cool."

Cooler`::usage = "Cooler[list] does something even cooler."

ReallyRadCool`::usage = "ReallyRadCool[list] does something too cool for words."

(*If functions Cooler or ReallyRadCool are used, then execute 
Needs["SuperCool`"].*)

DeclarePackage["SuperCool`", {"Cooler", "ReallyRadCool"}]

Begin["`Private`"]

Cool[list_List] := Module[{},

(*...*) 

]

Cooler[list_List] := Module[{x,y},

(*... uses something in SuperCool` context.*) 

]

ReallyRadCool[list_List] := Module[{elvis, jamesdean},

(*... uses something in SuperCool` context ...

  If I show you, I'd have to kill you.*) 

]

End[]

EndPackage[]
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See Also
See the tutorial for setting up Mathematica packages: http://bit.ly/8Q9WIq.

Some good advice regarding the creation of packages can be found here in the Wolfram
Research MathGroup Archive: http://bit.ly/7rZ60P.

It is also worth reading Michael A. Morrison’s “Mathematica Tips, Tricks, and Tech-
niques” (http://bit.ly/5Z5dI9), although this is less about creating packages and more
about using them.

18.5 Compiling Functions to Improve 
Performance
Problem
You have a function that is called frequently and you want to optimize its performance. 

Solution
In  many  cases,  you  can  remove  a  significant  amount  of  overhead  from  your  func-
tions  by  compiling  them.  You  can  compile  functions  that  take  Integer,  Real,  Complex,
Boolean arguments (True | False), or uniform vectors and tensors of these types.

magnitude1@vector : 8__Real<D := Sqrt@Plus üü vectorD;

magnitude2 = Compile@88vector, _Real, 1<<, Sqrt@Plus üü vectorDD;

vec = RandomReal@80, 10<, 1000000D;

TimingAmagnitude1@vecDE
80.485, 2236.01<

TimingAmagnitude2@vecDE

80.187, 2236.01<

Discussion
The syntax of Compile can be a bit confusing at first because it does not follow the tra-
ditional pattern-based syntax of an uncompiled function. This is partly due to the
fact that Compile is far less flexible,  and each argument must be entirely unam-
biguous  in  regard  to  its  type.  First  note  that  Compile  takes  a  list  of  argument
specifications  and  that  each  argument  specification  is  itself  a  list.  The  argument
specifications  must  at  minimum  specify  the  argument  name,  but  can  also  specify
the type and the rank~if the argument is a vector (rank = 1), matrix (rank = 2), or
tensor (rank > 2).

Table 18-1. Example argument specifications for compile
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Table 18-1. Example argument specifications for compile

Argument specification Description

8x< x is some numeric type

8x, _Integer< x is an Integer

8x, _Real< x is a Real

8x, _Integer, 1< x is a vector of Integers

8x, _Complex, 2< x is a matrix of Complex

8x, _Real, 5< x is a rank 5 tensor of Reals

8x, True False, 1< x is a vector of logical values

Note that functions that take strings or general symbolic arguments cannot be com-
piled. Also, if you specify a rank of two or higher, you must pass uniform arrays of
the appropriate rank rather than jagged arrays (like {{1,2},{3}}), and you can’t mix
types in vectors or higher-ranked tensors.  If  you violate these constraints,  the func-
tion  may  still  work,  but  Mathematica  will  use  an  uncompiled  form,  which  defeats
the advantage of compilation.

18.6 Automating and Standardizing the 
Appearance of Notebooks Using Stylesheets
Problem
You find  yourself  frequently  needing  to  tweak formatting  in  your  notebook or  you
find formatting tedious. You may be frustrated that your notebooks do not have the
professional  appearance  of  your  peers’  or  of  notebooks  you  see  at  conferences  or
download from the Web.

Solution
Creating  a  basic  stylesheet  or  modifying  an  existing  stylesheet  is  easier  than  you
might think, although there are some aspects that are tricky (or nearly impossible to
figure out without help). The easiest way to proceed is to start with a built-in style.
Starting with a new notebook, select Format, Stylesheet and select a style from one
of  the  submenus.  Figure  18-1  shows  a  notebook  configured  with  the  NaturalColor
stylesheet, which is under the Creative submenu in Stylesheets. 
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Figure 18-1. A notebook using the built-in Mathematica 7 stylesheet

Once you have a stylesheet selected that is close to how you want your notebook to
look, you can customize it  by selecting the Format, Edit Stylesheet menu. This will
launch a  special  stylesheet  notebook,  shown in  Figure  18-2.  To  modify  an  existing
style,  use  the  “Choose  a  style”  drop-down  menu.  This  will  add  a  cell  to  the  note-
book  that  is  styled  in  the  selected  style.  By  altering  the  style  elements  of  this  cell
(using  the  Format  menu),  you  update  the  stylesheet  so  this  style  now is  associated
with the style of the cell. Think of this as styling by example, which is a bit different
than how stylesheets work in most word processors and certainly different than Cas-
cading Style Sheets (CSS) used in web pages, but simple enough. You can also add a
new style. In Figure 18-2, I add a style called Warning and give it a red font with gray
background. New styles are added by typing their names in the “Enter a style” edit
box and hitting Enter. 

Figure 18-2. Editing a stylesheet to modify existing styles or add new styles
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Discussion
Often when creating a new style you want to base it on an existing style. This inheri-
tance of style attributes is a powerful capability because it reduces the effort for speci-
fying  a  style  and  allows  changes  to  the  base  style  to  automatically  propagate  to
the derived. Creating derived styles involves getting your hands a bit dirty since you
need to drill down into the underlying syntax of the stylesheet cells. As an example,
imagine you want to create a  base style  called Note and a derived style called Warning.
The  intent  is  to  use  Note  to  provide  some  extra  parenthetical  information.  Warning
should derive from Note, but have a red font to emphasize that the extra information
is cautionary.

When you select a cell  (or cells)  in a stylesheet and use Ctrl-Shift-E (or Command-
Shift-E  on  Mac)  you  convert  the  cell  to  expression  form,  as  shown  in  Figure  18-3.
Here I show two cells that have been changed to expression form. The first cell de-
fines  the  general  properties  I  want  to  have  for  a  note,  including  a  special  margin,
bold font, and gray background. I’ll discuss MenuPosition later.

Figure 18-3. Editing style option in expression form

For now, consider the second style cell. Note in particular the expression for Style-
Data. Here, in addition to the style’s name, there is a rule StyleDefinitions, which in-
dicates  the  base  style  is  "Note".  This  is  what  you must  type  by  hand to  link  a  new
style  to  its  base  since  there  is  presently  no  other  way  to  establish  this  relationship.
Once the relationship is established, the Warning style will inherit all the attributes of
Note but will be able to override or augment them. Here you can see that I augment
Warning  to  use  a  red  font.  Once  the  inheritance  is  defined,  you can  revert  the  style
cells back to their normal form (Ctrl-Shift-E again) since most other changes can be
affected using the Format. 
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When you create  new styles,  they  are  integrated  into  the  frontend menus  (Format,
Style) as well as the window’s toolbar (assuming you show the toolbar; see Window,
Show Toolbar). The position of the style within the choices is governed by the Menu-
Position  option in the stylesheet cell  (Figure 18-3).  You can set this value to what-
ever number you want, but a sensible scheme is to use either 1 or 10000 (the default). If
you choose 1, the style will sort alphabetically within all styles that have the value 1.
If you choose 10000, the style will appear after all styles with position 1, but again,
sorted alphabetically.  This  sets  up two groups, one for native styles (MenuPositionØ1)
and  the  other  for  custom  styles  (MenuPositionØ10000).  If  you  would  like  multiple
groupings,  use  an  intermediate  value  (like  5000),  but  don’t  attempt  to  assign  a
unique value to every style because this is not the intention of the option and will create
maintenance headaches for your stylesheet.

There  are  a  few style  settings  that  are  tricky  to  set  up.  One in  particular  is  a  num-
bered style for a heading. Here you typically desire a series of headings and subhead-
ings  with  a  hierarchical  numbering  system.  The  NaturalColor  stylesheet  has  styles
called  ItemNumbered  and  SubitemNumbered,  so  let’s  look  at  these  styles  in  expression
form (Figure 18-4).

Figure 18-4. Expression form for numbered styles does not reveal the numbering options

Do you see anything that would indicate that these styles have some auto-
numbering capability? No? Me either. These settings are magical. You need to select
the  cell  and  invoke  the  options  inspector.  Let’s  revert  to  normal  cell  form
(important!)  and  use  Ctrl-Shift-O  to  inspect  options  for  ItemNumbered.  Figure  18-5
shows  how  the  item  counters  are  maintained  and  Figure  18-6  shows  how  the  dis-
played  output  is  generated.  These  options  are  not  visible  in  the  stylesheet  because
they are inherited from the Default stylesheet. You can learn a great deal about Mathe-
matica’s  stylesheet  capabilities  by  studying  the  Default  stylesheet,  which  is  located  in
$InstallationDirectory <> "/SystemFiles/FrontEnd/StyleSheets/Default.nb".  Default
itself inherits from Core, so you should inspect that as well. You should avoid changing
either  Core  or  Default;  rather,  customize  your  own  stylesheet  based  on  these,
as explained in the “Solution” section on page 728.
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Do you see anything that would indicate that these styles have some auto-
numbering capability? No? Me either. These settings are magical. You need to select
the  cell  and  invoke  the  options  inspector.  Let’s  revert  to  normal  cell  form
(important!)  and  use  Ctrl-Shift-O  to  inspect  options  for  ItemNumbered.  Figure  18-5
shows  how  the  item  counters  are  maintained  and  Figure  18-6  shows  how  the  dis-
played  output  is  generated.  These  options  are  not  visible  in  the  stylesheet  because
they are inherited from the Default stylesheet. You can learn a great deal about Mathe-
matica’s  stylesheet  capabilities  by  studying  the  Default  stylesheet,  which  is  located  in
$InstallationDirectory <> "/SystemFiles/FrontEnd/StyleSheets/Default.nb".  Default
itself inherits from Core, so you should inspect that as well. You should avoid changing
either  Core  or  Default;  rather,  customize  your  own  stylesheet  based  on  these,
as explained in the “Solution” section on page 728.

Figure 18-5. Options inspector for ItemNumbered reveals numbering settings

Figure 18-6. The CellDingbat option controls how the number is generated into the output

Armed with this information, you can create your own numbered styles. 

1-       This is h1 style.

1-1.   This is h2 style.

1-1-1 This is h3 style.
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18.7 Transforming Notebooks into Other Forms
Problem
You want to extract content from notebooks to create other kinds of documents that
Mathematica does not support as a straight export. You may also want  to  extract
information from notebooks for other purposes.

Solution
Like everything in Mathematica, notebooks are expressions and can be manipulated
using the powerful expression manipulation facilities of Mathematica. Here is an
example that takes a chapter of Mathematica Cookbook and creates a recipe cross-
reference to native Mathematica symbols (those in the System` package).

In[518]:= crossRef@8_, code__<, 8recipe_<D :=

9StringJoinAToString êü 8chapter, ".", recipe - 1<E,

IntersectionAnative, CasesA8code<, _String, InfinityEE=

crossRefCookbookChapterAch_Integer, path_StringE :=

Module@8nb<,

nb = NotebookOpen@path, Visible Ø FalseD;

crossRefCookbookChapter@ch, NotebookGet@nbDDD

crossRefCookbookChapterAch_Integer, nb_NotebookE :=

BlockA8native, chapter, cells, recipes, recipe = 0<,

chapter = ch;

native = ToString êü NamesA"System`*"E;

cells = CasesAnb, CellA_, "Heading1" "Input", ___E, InfinityE;

recipes = GatherByAcells, FunctionAcell,

IfAMatchQAcell, CellA_, "Heading1", ___EE, ++recipe, recipeEEE;

MapIndexed@crossRef, recipesD

E

Here I run the transformation against Chapter 5’s notebook.

In[521]:= crossRefCookbookChapterA5, NotebookDirectory@D <> "Strings.nb"E
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Out[521]= 995.0, 9CharacterEncoding, FromCharacterCode,

IgnoreCase, Input, NumberString, Partition, StringMatchQ,

TableForm, ToCharacterCode, ToString, True, $CharacterEncoding,

$CharacterEncodings, $SystemCharacterEncoding==, 85.1,

8Greater, GreaterEqual, Input, Less, LessEqual, Order, Protect, Unprotect<<,

95.2, 9Block, DateList, DatePattern, DatePlus, DateString,

Except, FileNameJoin, IgnoreCase, Import, Input, InputForm, N,

NotebookDirectory, NumberString, RegularExpression, Riffle, Shortest,

ShortestMatch, StringCases, StringDrop, StringJoin, StringReplace,

StringReplacePart, ToExpression, ToString, True, Whitespace==,

95.3, 9All, Except, False, IgnoreCase, Input, Overlaps,

RegularExpression, Repeated, Return, Shortest, StringCases,

StringJoin, StringTake, TableForm, True, WordBoundary==,

95.4, 9Array, Ceiling, Clear, Input, InputForm, Log, Mean,

Nest, StringJoin, StringTake, Table, Timing==,

95.5, 9DatePattern, False, FileNameJoin, FromDigits, Import,

Input, Length, NotebookDirectory, NumberString, OddQ,

Overlaps, Pick, Range, RegularExpression, SpellingCorrection,

StringDrop, StringFreeQ, StringMatchQ, StringPosition,

StringTake, TableForm, Transpose, True, With==,

95.6, 9Blue, Bold, Brown, Except, FileNameJoin, FontColor,

FontSlant, FontWeight, Import, Input, Italic, NotebookDirectory,

Red, Row, StringSplit, Style, WhitespaceCharacter==,

95.7, 9And, Block, Characters, Complement, DictionaryLookup,

DistanceFunction, EditDistance, False, If, IgnoreCase, Input,

Intersection, MapThread, MemberQ, Module, Nearest, SameTest, StringCount,

StringReplace, StringReverse, Tally, Timing, True, WordData==,

95.8, 9Apply, Cases, FileNameJoin, Head, ImageSize, Import,

Infinity, Input, InputForm, List, NotebookDirectory,

Symbol, TableForm, TreeForm, XMLElement, XMLObject==,

95.9, 9Apply, Cases, ExportString, FileNameJoin, If, Import, Infinity,

Input, Join, List, MatrixForm, NotebookDirectory, NumberString,

Rule, StringMatchQ, StringReplace, ToExpression, XMLElement==,

95.10, 9ClearAll, ExportString, FileNameJoin, Import, Input, List,

Module, NotebookDirectory, Order, Rule, Sort, Split, StringJoin,

StringReplace, ToExpression, ToString, XMLElement, XMLObject==,

95.11, 9Append, Apply, Ceiling, Drop, First, Flatten, FoldList, Format,

Hold, HoldAll, If, ImageSize, Infinity, Input, InputForm, Last, Length,

List, Map, MemberQ, Module, N, Plus, RandomInteger, RandomReal, Rest,

SeedRandom, SetAttributes, StringJoin, StringReplacePart, StringTake,

Table, TableForm, Top, ToString, ToUpperCase, TreeForm, Union, While===

Discussion
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Discussion
The easiest  way to get  a  notebook into another  form is  to  leverage the conversions
built into Save As. As of Mathematica 7, you can save a notebook as PDF, XHTML
+ MathML,  plain  text,  Rich  Text  Format  (RTF),  and  PostScript.  However,  if  these
formats are not what you’re after, you should not be afraid to take matters into your
own hands as I did in the solution.

The command NotebookOpen  is  used to load the notebook from disk and produce a
NotebookObject. You use the option Visible Ø False  to prevent the notebook from
being opened in a new window. NotebookGet  is applied to the NotebookObject  to re-
turn the raw symbolic form of the notebook for manipulation. Here the bulk of the
work  is  done  by  the  second  version  of  crossRefCookbookChapter.  Cases  is  used  to
parse out Cell expressions with the style Heading1 or Input. The Heading1 cells repre-
sent  the  recipe  titles,  and  the  Input  cells  are  the  ones  you  want  to  cross  reference.
GatherBy  groups  input  cells  with  their  associated  recipes,  and  then  MapIndexed  pro-
cesses  each  recipe  using  the  index  and  the  chapter  number  to  generate  the  recipe
number.  The mapped function, crossRef,  extracts strings and  uses  Intersection  to  lo-
cate just those strings that are in the set of native System` symbols.

One of  the  handiest  uses  of  notebook manipulation is  to  create  small  bulk  conver-
sion  utilities.  For  example,  imagine  you had a  large  number  of  notebooks  and you
needed to change one style into another. This would be tedious to do by hand, but
is a breeze with Mathematica. The converter would look something like this.

In[541]:= ClearAconvertStyleE;

convertStyleApath_String, saveAs_String, fromStyle_String,

toStyle_StringE := ModuleA8<, NotebookSaveAconvertStyleA

NotebookOpen@path, Visible Ø FalseD, fromStyle, toStyleE, saveAsEE

convertStyleAnb_NotebookObject,

fromStyle_String, toStyle_StringE := ModuleA8<,

NotebookPutANotebookGet@nbD ê.

CellAc_, fromStyle, o___E ß CellAc, toStyle, oE, nbEE

Here I introduce NotebookPut and NotebookSave, which are used to modify the origi-
nal  notebook  object  and  save  it  back  to  disk,  respectively.  Here  is  an  example  of
usage:

In[543]:= convertStyleANotebookDirectory@D <> "TestStyleConvert.nb",

NotebookDirectory@D <> "TestStyleConvertOut.nb", "Section", "Subsection"E

18.7 Transforming Notebooks into Other Forms | 735



See Also
Advanced  notebook  manipulations  often  require  that  you  convert  between  strings,
boxes,  and  expressions.  See  the  tutorial/ConvertingBetweenStringsBoxesAndExpressions
in the Mathematica documentation for details.

18.8 Calling into the Mathematica Frontend
Problem
You want to programmatically invoke functionality that is provided by the frontend
rather than the kernel.

Solution
There  are  certain  operations  that  are  executed  by  the  Mathematica  frontend rather
than the kernel. If you are running a program from the frontend, you generally don’t
need to worry about  the distinction,  because Mathematica is  designed to make the
distinction  appear  seamless.  However,  you  can  bypass  the  kernel  when  using  the
frontend with FrontEndExecute. 

In[2]:= FrontEndExecute@

FrontEnd`CellPrint@Cell@"No Help From Kernel", "Emphasis"DDD

No Help From Kernel

You can also invoke actions typically  performed via  interaction with the frontend’s
menu. For example, the following will open the Font dialog.

In[5]:= FrontEndExecute@FrontEndToken@"FontPanel"DD

Whereas FrontEndExecute  is intended to be used in the  frontend,  UsingFrontEnd  is
intended to be executed from a kernel session to allow the kernel to invoke an op-
eration in the frontend. The output here was created by executing the kernel di-
rectly on the command line.

In[1]:= nb = UsingFrontEnd[NotebookCreate[]]

Out[1]= -NotebookObject-

Note that a frontend must be installed on the system for this to work.
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Discussion
You  can  see  all  the  commands  that  can  be  executed  directly  in  the  frontend  by
executing

Names@"FrontEnd`*"D

Sometimes you want to invoke features in the frontend that are not available via func-
tions. For example, while doing some notebook manipulations a la Recipe 18.7, you
wish  to  get  the  functionality  available  by  selecting  a  cell  and  using  CopyAs,  Plain
Text. You can do this like so:

In[885]:= someCell = Cell@

BoxData@RowBox@8"N", "@", FractionBox@"1", "9999"D, "D"<DD, "Input"D;

First@MathLink`CallFrontEnd@

FrontEnd`ExportPacket@someCell, "PlainText"DDD
Out[886]= N@1ê9999D

See Also
See  the  tutorial  ExecutingNotebookCommandsDirectlyInTheFrontEnd  for more details
on frontend execution.

See  guide/FrontEndTokens  for  tokens  that  can  be  used  with  FrontEndToken  or
FrontEndTokenExecute.

Also  consult  tutorial/ManipulatingTheFrontEndFromTheKernel  for  further  commands
useful for controlling the frontend from the kernel.

18.9 Initializing and Cleaning Up Automatically
Problem
You want to automatically execute code whenever the kernel or frontend starts. You
may also want to execute code when the kernel is terminated.

Solution
There are several init.m files in which you can place function definitions or code you
want executed automatically.

To execute code on kernel start for every user, modify the file given by

In[865]:= ToFileNameA9$BaseDirectory, "Kernel"=, "init.m"E

Out[865]= êLibraryêMathematicaêKernelêinit.m

To execute code on kernel start for the currently logged-in user, modify the file given by
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To execute code on kernel start for the currently logged-in user, modify the file given by

In[866]:= ToFileNameA9$UserBaseDirectory, "Kernel"=, "init.m"E

Out[866]= êUsersêsmanganoêLibraryêMathematicaêKernelêinit.m

To execute code on frontend start for every user, modify the file given by

In[867]:= ToFileNameA9$BaseDirectory, "FrontEnd"=, "init.m"E

Out[867]= êLibraryêMathematicaêFrontEndêinit.m

To  execute  code  on  frontend  start  for  the  currently  logged-in  user,  modify  the  file
given by

In[868]:= ToFileNameA9$UserBaseDirectory, "FrontEnd"=, "init.m"E

Out[868]= êUsersêsmanganoêLibraryêMathematicaêFrontEndêinit.m

Clearly the results will vary depending on your particular OS.

Within  these  files,  you  can  also  modify  the  variable  $Epilog  to define code that exe-
cutes right before the kernel exits.

Discussion
If you make frequent use of some utility functions or constants, you can make sure
they are always available in every session. For example, if you always use a package
called  Essential`,  you  can  add  Needs["Essential`"]  to  the  user-level  version  of
init.m for the kernel. 

Note  that  user-level  initializations  come  after  system-wide  ones,  so  if  you  want  to
override some system-level definition, you can do so.

See Also
Recipe 18.10 shows a use case for init.m and $Epilog.

See ref/file/init.m in the Mathematica documentation for more information.
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18.10 Customizing Frontend User Interaction
Problem
You  want  to  hook  into  the  processing  performed  by  the  frontend  as  you  type  and
evaluate expressions.

Solution
You  can  intercept  Mathematica’s  message  loop  at  various  stages  by  defining  func-
tions for $PreRead, $Pre, $Post, $PrePrint, and $SyntaxHandler. For example, as an edu-
cator,  you  might  want  to  study  students’  experiences  with  learning  Mathematica
and log their interactions to a file. Here you can define $PreRead, which intercepts input
before being fed to Mathematica; $SyntaxHandler, which is applied to lines with syn-
tax errors; and $PrePrint, which gets the results before printing.

In[830]:= InitializeStudentMonitoring@D :=

ModuleA9logFile, stream=,

logFile = $UserName <> DateStringA9"Year", "", "Month", "", "Day",

"-", "Hour24", "", "Minute", "", "SecondExact"=E <> ".log";

stream = OpenWriteAlogFileE ;

$PreRead = HWrite@stream, "Input> ", ÒD; ÒL &;

$PrePrint = HWrite@stream, "Output> ", ÒD; ÒL &;

$SyntaxHandler = IWriteAstream, "Syntax:", Ò2, "> " , Ò1E; $FailedM &;

stream

E

In[845]:= StopStudentMonitoring@stream_D := ModuleA8<,

$PreRead =.;

$PrePrint =.;

$SyntaxHandler =.;

Close@streamDE

You can then place a call to InitializeStudentMonitoring[] in the init.m file and set
delayed $Epilog to StopStudentMonitoring[Evaluate[stream]]. 

In[850]:= stream = InitializeStudentMonitoring@D;

$Epilog := StopStudentMonitoring@Evaluate@streamDD
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Discussion
The solution shows a use case for capturing but not altering session input and out-
put. However, you can also imagine advanced use cases where you want to use these
hooks  to  do  preprocessing  or  postprocessing.  Here  I  use  $PrePrint  to  force  any
string output into InputForm so I can see the quotes.

In[859]:= $PrePrint = IfAStringQ@ÒD, InputForm@ÒD, ÒE &;

In[860]:= "SomeString"

Out[860]= "SomeString"

Now revert to default behavior.

In[863]:= $PrePrint =.

In[864]:= "SomeString"

Out[864]= SomeString

See Also
See the tutorial tutorial/TheMainLoop for more information.
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CHAPTER 19

Debugging and Testing

Trying hard to speak and
Fighting with my weak hand

Driven to distraction
So part of the plan

When something is broken
And you try to fix it

Trying to repair it
Any way you can

I’m diving off the deep end
You become my best friend

I wanna love you
But I don’t know if I can

I know something is broken
And I’m trying to fix it

Trying to repair it
Any way I can

Coldplay, “X&Y”

19.0 Introduction
Debugging  and  testing  are  not  as  romantic  as  solving  a  difficult  partial  differential
equation, creating a breathtaking plot, or achieving a compelling interactive demon-
stration of a complicated mathematical  concept.  But,  to loosely paraphrase Edison,
Mathematica creation is often 10% coding and 90% debugging and testing. Mathe-
matica’s interactive development paradigm encourages incremental development, so
often you proceed to solve a complex problem by writing little pieces,  trying them,
tweaking  them,  and  repeating.  In  time,  you  will  find  yourself  with  quite  a  bit  of
code.  Then,  quite  satisfied  with  yourself,  you  begin  to  feed  your  code  real-world
data  and~bam!~something  goes  awry.  Now  what?  Recipes  19.1  through  19.6
demonstrate  various  debugging  techniques  that  you  can  use  from within  the  tradi-
tional Mathematica frontend. Recipe 19.7 shows you how to use the powerful sym-
bolic debugger provide by Wolfram Workbench.

Debugging skills are essential, but here frustration can begin to creep in. Mathemat-
ica code can often be difficult to debug, and if you’ve written a lot of it in a haphazard
fashion,  you might  have  your  work cut  out  for  you.  There  are  two complementary
techniques for maintaining your sanity when working with Mathematica on large
projects.  The  first  is  knowing how to  isolate  the  problem through debugging  tech-
niques, and the second is not getting into the problem in the first place. Clearly, the
second  is  preferable,  but  how  is  it  achieved?  As  convenient  as  interactive  develop-
ment inside a notebook can be, it is often a trap. How thoroughly can you test a com-
plex  function  by  feeding  it  a  few  values?  Not  very  thoroughly.  The  solution  is  to
write repeatable unit tests. Why is that better? First,  test-drive  development  (part
of  what  software  developers  call  an agile  development  methodology)  encourages
breaking  problems  into  small,  easily  testable  pieces.  In  its  purest  form,  developers
are encouraged to actually write the test before the code! Having a test suite acts as
documentation for the use cases of your function and is a godsend if you decide to
enhance your implementation, because you can quickly see if you have broken exist-
ing functionality. Recipes 19.8 through 19.10 show how to develop unit tests within
Wolfram Workbench. Recipe 19.11 shows how to adapt the underlying MUnit frame-
work that is integrated with Wolfram Workbench for use in the frontend.
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Debugging skills are essential, but here frustration can begin to creep in. Mathemat-
ica code can often be difficult to debug, and if you’ve written a lot of it in a haphazard
fashion,  you might  have  your  work cut  out  for  you.  There  are  two complementary
techniques for maintaining your sanity when working with Mathematica on large
projects.  The  first  is  knowing how to  isolate  the  problem through debugging  tech-
niques, and the second is not getting into the problem in the first place. Clearly, the
second  is  preferable,  but  how  is  it  achieved?  As  convenient  as  interactive  develop-
ment inside a notebook can be, it is often a trap. How thoroughly can you test a com-
plex  function  by  feeding  it  a  few  values?  Not  very  thoroughly.  The  solution  is  to
write repeatable unit tests. Why is that better? First,  test-drive  development  (part
of  what  software  developers  call  an agile  development  methodology)  encourages
breaking  problems  into  small,  easily  testable  pieces.  In  its  purest  form,  developers
are encouraged to actually write the test before the code! Having a test suite acts as
documentation for the use cases of your function and is a godsend if you decide to
enhance your implementation, because you can quickly see if you have broken exist-
ing functionality. Recipes 19.8 through 19.10 show how to develop unit tests within
Wolfram Workbench. Recipe 19.11 shows how to adapt the underlying MUnit frame-
work that is integrated with Wolfram Workbench for use in the frontend.

This chapter’s workhorse function for illustrating debugging techniques is the Acker-
mann  function.  This  infamous  function  has  a  simple  recursive  definition,  but  its
pathological behavior makes it  convenient for illustrating various real-world debug-
ging problems (like stack overflows). 

A[0,n_] := n+1

A[m_,0] := A[m - 1, 1]

A[m_, n_] := A[m - 1, A[m, n - 1]]

Figure 19-1. Ackermann function

The  Mathematica  frontend  has  a  debugger  built  into  the  Evaluation
menu.  I  do  not  discuss  this  debugger  in  this  chapter.  I  left  it  out  for
several reasons. The main reason is that I never use it, and when I have
attempted to use it, I have found the experience quite unsatisfying. My
impression is that, at best, the frontend integrated debugger is a work
in  progress.  See  ref/menuitem/DebuggerControls  for  description  of  the
debugger. 
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19.1 Printing as the First Recourse to Debugging
Problem
You can’t understand why you are getting a particular result but suspect it is due to
a false assumption or bug in an intermediate calculation whose value is not visible.

Solution
Injecting  a  strategically  placed  Print  statement  can  often  be  the  quickest  path  to
debugging a small piece of code. Suppose you forgot or did not know Mathematica’s
convention for choosing branches in the Power[x,y] function (it prefers the principal
value of ey log HxL).

In[1]:= x = -1;

y = Power@x, 1ê3D;

IfA y ã -1, "expected", "not expected"E

Out[3]= not expected

Here is the same code with a Print inserted so the value of y can be inspected. You
will often want to force numerical conversion using N[] when inserting Print; other-
wise  you  would  get  the  symbolic  value  (in  this  case  -1^(1/3)),  which  is  quite
unhelpful.

In[4]:= x = -1;

y = Power@x, 1ê3D; PrintANAyEE;

IfA y ã -1, "expected", "not expected"E

0.5 + 0.866025 Â

Out[6]= not expected

Discussion
Anyone who has spent even a day programming has come across this obvious debug-
ging  technique,  so  it  may  seem  hardly  worth  a  whole  recipe,  but  please  read  on.
Sometimes,  injecting Print  into code is  very  inconvenient,  especially  if  you code in
tight  function  style  with  few  intermediate  values  appearing  in  variables.  The  prob-
lem is that you can’t inject Print into functional code because Print does not return
a value. Consider if the code for the value y did not exist because it was in-lined.

In[7]:= x = -1;

If@ Power@x, 1ê3D ã -1, "expected", "not expected"D
Out[8]= not expected

You can’t wrap the call to Power in a Print because it would change the behavior of
the expression, which is not what you want to do when you are already contending
with bugs. For these situations, it is handy to whip up a functional version of Print,
which  I  call  fPrint.  This  saves  you  the  trouble  of  introducing  temporary  variables
for  purposes  of  debugging,  thus  leaving  less  mess  to  clean  up  after  you  have  diag-
nosed the problem.
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You can’t wrap the call to Power in a Print because it would change the behavior of
the expression, which is not what you want to do when you are already contending
with bugs. For these situations, it is handy to whip up a functional version of Print,
which  I  call  fPrint.  This  saves  you  the  trouble  of  introducing  temporary  variables
for  purposes  of  debugging,  thus  leaving  less  mess  to  clean  up  after  you  have  diag-
nosed the problem.

In[9]:= fPrint@x__D := HPrint@xD; xL

x = -1;

If@ fPrint@N@Power@x, 1ê3DDD ã -1, "expected", "not expected"D

0.5 + 0.866025 Â

Out[11]= not expected

A possible problem that can lead to lost or gray hairs when debugging with Print is
when it seems to print nothing. This can take you down the road to hell by mislead-
ing you into thinking your code must be taking a different branch. For example, it is
easy to miss the empty print cell created by executing this code.

In[12]:= x = Sequence@D;

Print@xD

This is not as contrived as it may seem: there are bugs that arise from failure to con-
sider the fact that a sequence might be null, for example, when you use Apply (@@) on
an empty list.

In[14]:= myFunctionThatIsBrokenForEmptySeq@x___D := Total@xD

IfAmyFunctionThatIsBrokenForEmptySeq üü 8< ã 0,

"zero", "not zero", "something completely different"E

Total::argt :

Total called with 0 arguments; 1 or 2 arguments are expected.

à

Out[15]= "something completely different"

Here an error was generated, and the output was “something completely different”
because the expression in the If was neither True nor False. Pretend it was not imme-
diately obvious to you what was going on (after all, you clearly see that you called
Total with one argument x).  You decide to use Print  to get  to the bottom of  it.
Notice that introducing Print into this code requires the whole thing to be wrapped
in parentheses (another common debugging pitfall).

744 | Chapter 19: Debugging and Testing



In[16]:= myFunctionThatIsBrokenForEmptySeq@x___D := HPrint@xD; Total@xDL

IfAmyFunctionThatIsBrokenForEmptySeq üü 8< ã 0,

"zero", "not zero", "something completely different"E

Total::argt :

Total called with 0 arguments; 1 or 2 arguments are expected.

à

Out[17]= "something completely different"

If you were confused before, you are now totally befuddled! Here is where your own
little functional fPrint can help, but you need to tweak it slightly to expose two com-
mon ghosts you might encounter in the wild. 

In[18]:= Clear@fPrintD;

fPrint@D := HPrint@"NullSequence!!"D; Unevaluated@Sequence@DDL

fPrint@""D := IPrintA"NullString!!"E; ""M

fPrint@x__D := HPrint@xD; xL

Now the problem is revealed, and you also side-stepped the parenthesis mistake.

In[22]:= myFunctionThatIsBrokenForEmptySeq@x___D := Total@fPrint@xDD

IfAmyFunctionThatIsBrokenForEmptySeq üü 8< ã 0,

"zero", "not zero", "something completely different"E

NullSequence!!

Total::argt :

Total called with 0 arguments; 1 or 2 arguments are expected.

à

Out[23]= "something completely different"

See Also
There  are  other  output  functions  (PrintTemporary,  CellPrint,  and  MessageDialog)
that may be useful in certain debugging situations. See the documentation for these
functions. I use PrintTemporary as part of the solution in Recipe 19.5.
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19.2 Debugging Functions Called Many Times 
Problem
You have a function that is  invoked thousands of times, but only a few of the calls
produce an unexpected result, and it is difficult to determine which invocations are
causing the problem. Print is a poor choice because of the unreasonable amount of
data that may get printed before you identify the issue.

Solution
Use  the  Reap-Sow  combination  discussed  in  Recipe  2.10  to  capture  the  data  so  you
can analyze it using pattern matching or plotting. For example, imagine you have a
function called func that is returning unexpected negative values and you are trying
to understand the arguments that lead up to negative results. Here I use a contrived
function for sake of the example. You can write a little wrapper around the function
like so.

In[24]:= func@a_, b_, c_, d_D := If@a + 16 < b + c , 1 - d, b + cD

funcWrapperAargs__E :=

ModuleA8r<, r = funcAargsE ; IfAr < 0, SowA9args=EE; rE

8result, 8problem<< =

Reap@Table@funcWrapper@a, b, c, dD, 8a, 10<, 8b, 10<, 8c, 10<, 8d, 10<DD;

You can now see that there are 90 sets of arguments that caused the negative condi-
tion. Furthermore, you have the exact problematic values captured in a variable and
can use the values to debug the function using techniques presented in other recipes
in this chapter.

In[27]:= Length@problemD

Out[27]= 90

Invoking the function on these problematic arguments is a cinch using @@@.

In[28]:= func üüü problem

Out[28]= 8-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9<
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Discussion
Reap-Sow are a powerful debugging tool because they can direct debug data into an
arbitrary number of channels. By channel, I refer to the capability of Sow to specify a
tag as a second argument such that all instances of Sow with that tag collect data into
a distinct list. For example, imagine you want to detect when func  returns zero but
want to segregate those arguments from the arguments that cause negative results. 

In[29]:= funcWrapperAargs__E := ModuleA8r<, r = funcAargsE ;

WhichAr < 0, SowA9args=, negativeE, r ã 0, SowA9args=, zeroE, True, 0E; rE

In[30]:= 8result, 88n<, 8z<<< = ReapATable@funcWrapper@a, b, c, dD,

8a, 10<, 8b, 10<, 8c, 10<, 8d, 10<D, 9negative, zero=E;

Now  you  can  use  these  values  as  separate  test  sets  to  understand  these  distinct
behaviors.

In[31]:= func üüü n

Out[31]= 8-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9,

-1, -2, -3, -4, -5, -6, -7, -8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9<

In[32]:= func üüü z

Out[32]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0<

See Also
Recipe  19.6  shows  another  common  application  of  Reap-Sow  in  the  debugging  of
built-in numerical algorithms or plotting functions.

Recipe 19.3 shows how to use  Reap-Sow to take Stack snapshots.

19.3 Stack Tracing to Debug Recursive Functions
Problem
You have a recursive function that is unexpectedly violating $RecursionLimit and gen-
erating  an  error.  Alternatively,  you  have  a  complex  function  with  many  function
calls and you want to understand the sequence of calls that leads up to an error con-
dition or erroneous value.
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Solution
Use  Stack[]  to  output  a  stack  trace.  Here  I  use  Ackermann’s  function  to  illustrate
the use of Stack because it will easily violate any sane recursion limit. Further, I cre-
ate a function that will  detect stack overflow before it  happens and Throw  the stack
to caller. Specifically, I throw those expressions on the stack that match the function
of interest by using Stack[A].

In[33]:= debugStack@D :=

IfALength@Stack@DD + 1 ¥ $RecursionLimit, Throw@Stack@ADDE;

A@0, n_D := n + 1

A@m_, 0D := IdebugStack@D; A@m - 1, 1DM

A@m_, n_D := IdebugStack@D; A@m - 1, A@m, n - 1DDM

In[37]:= CatchABlockA9$RecursionLimit = 30=, A@4, 1DEE

Out[37]= 8A@4 - 1, A@4, 1 - 1DD, A@2 - 1, A@2, 5 - 1DD,

A@2 - 1, A@2, 4 - 1DD, A@1 - 1, A@1, 7 - 1DD,

A@1 - 1, A@1, 6 - 1DD, A@1 - 1, A@1, 5 - 1DD, A@1 - 1, A@1, 4 - 1DD,

A@1 - 1, A@1, 3 - 1DD, A@1 - 1, A@1, 2 - 1DD, A@1 - 1, A@1, 1 - 1DD<

Discussion
If you want to take multiple snapshots of the stack during the progression of the func-
tion, regardless whether it overflows or not, you can use Reap-Sow.

In[38]:= Clear@fD

In[39]:= f@0D := Module@8<, Sow@Stack@TimesDD; 1D

f@x_D := Module@8<, Sow@Stack@TimesDD; x * f@x - 1DD

In[41]:= Reap@f@3DD

Out[41]= 86, 888<, 83 f@3 - 1D<,

83 f@3 - 1D, 2 f@2 - 1D<, 83 f@3 - 1D, 2 f@2 - 1D, 1 f@1 - 1D<<<<

Out[44]= 86, 888<, 83 f@3 - 1D<,

83 f@3 - 1D, 2 f@2 - 1D<, 83 f@3 - 1D, 2 f@2 - 1D, 1 f@1 - 1D<<<<

Out[189]= 86, 888<, 83 f@3 - 1D<,

83 f@3 - 1D, 2 f@2 - 1D<, 83 f@3 - 1D, 2 f@2 - 1D, 1 f@1 - 1D<<<<

86, 888<, 83 f@3 - 1D<,

83 f@3 - 1D, 2 f@2 - 1D<, 83 f@3 - 1D, 2 f@2 - 1D, 1 f@1 - 1D<<<<
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See Also
StackInhibit can be used to keep certain expressions from showing up in the evalua-
tion  stack.  It  can  be  helpful  to  insert  this  function  into  your  code  to  control  the
amount of information in the stack. I use this function as part of Recipe 19.5.

19.4 Taming Trace to Extract Useful Debugging 
Information
Problem
Trace provides an extremely detailed account of the evaluation of an expression; how-
ever,  for  all  but  the most  trivial  expressions,  this  voluminous detail  can be difficult
to wade through. 

Solution
Again, I use the Ackermann function to illustrate the issue, although this problem is
not  particular  to  recursive  functions.  Ackermann is  convenient  because  it  creates  a
large  number  of  nested  function  calls  and  intermediate  expressions.  In  addition,  I
purposefully  throw  a  monkey  wrench  into  this  function  to  simulate  a  bug:  "bug".
Real-world bugs don’t come so nicely labeled (if only!) but the point here is that in a
real-world  debugging  situation  you  are  looking  for  a  particular  subexpression  that
looks fishy based on your knowledge of the intended computation. 

In[42]:= A@0, n_D := n + 1

A@m_, 0D := A@m - 1, 1D

A@m_, 2D := I "bug"; A@m - 1, A@m, 1DDM

A@m_, n_D := A@m - 1, A@m, n - 1DD

If  you  attempt  to  trace  this  buggy  Ackermann  on  even  relatively  tame  inputs,  you
will quickly generate a lot of output that anyone but the most seasoned Mathemat-
ica developer would have trouble deciphering. In essence, what you are seeing is an
expansion of  the call  tree,  and thus,  the problem is  not  only the amount of  output
but  the  deeply  nested  structure  of  the  output.  You  could  easily  miss  the  “bug”  in
this  data,  and  even  if  you  spot  it,  you  might  still  have  trouble  understanding  what
led up to its occurrence. 
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In[46]:= trace = Trace@A@2, 3DD

Out[46]= 9A@2, 3D, A@2 - 1, A@2, 3 - 1DD, 82 - 1, 1<,

983 - 1, 2<, A@2, 2D, bug; A@2 - 1, A@2, 1DD,

982 - 1, 1<, 9A@2, 1D, A@2 - 1, A@2, 1 - 1DD, 82 - 1, 1<, 881 - 1, 0<, A@2, 0D,

A@2 - 1, 1D, 82 - 1, 1<, A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 81 - 1, 0<,

881 - 1, 0<, A@1, 0D, A@1 - 1, 1D, 81 - 1, 0<, A@0, 1D, 1 + 1, 2<,

A@0, 2D, 2 + 1, 3<, A@1, 3D, A@1 - 1, A@1, 3 - 1DD,

81 - 1, 0<, 983 - 1, 2<, A@1, 2D, bug; A@1 - 1, A@1, 1DD,

881 - 1, 0<, 8A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 81 - 1, 0<,

881 - 1, 0<, A@1, 0D, A@1 - 1, 1D, 81 - 1, 0<, A@0, 1D, 1 + 1, 2<,

A@0, 2D, 2 + 1, 3<, A@0, 3D, 3 + 1, 4<, 4=, A@0, 4D, 4 + 1, 5=, A@1, 5D,

A@1 - 1, A@1, 5 - 1DD, 81 - 1, 0<, 985 - 1, 4<, A@1, 4D, A@1 - 1, A@1, 4 - 1DD,

81 - 1, 0<, 984 - 1, 3<, A@1, 3D, A@1 - 1, A@1, 3 - 1DD,

81 - 1, 0<, 983 - 1, 2<, A@1, 2D, bug; A@1 - 1, A@1, 1DD,

881 - 1, 0<, 8A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 81 - 1, 0<,

881 - 1, 0<, A@1, 0D, A@1 - 1, 1D, 81 - 1, 0<, A@0, 1D, 1 + 1, 2<,

A@0, 2D, 2 + 1, 3<, A@0, 3D, 3 + 1, 4<, 4=, A@0, 4D, 4 + 1, 5=,

A@0, 5D, 5 + 1, 6=, A@0, 6D, 6 + 1, 7=, 7=, A@1, 7D,

A@1 - 1, A@1, 7 - 1DD, 81 - 1, 0<, 987 - 1, 6<,

A@1, 6D,

A@1 - 1, A@1, 6 - 1DD,

81 - 1, 0<,

986 - 1, 5<, A@1, 5D, A@1 - 1, A@1, 5 - 1DD, 81 - 1, 0<,

985 - 1, 4<, A@1, 4D, A@1 - 1, A@1, 4 - 1DD, 81 - 1, 0<,

984 - 1, 3<, A@1, 3D, A@1 - 1, A@1, 3 - 1DD, 81 - 1, 0<,

983 - 1, 2<, A@1, 2D, bug; A@1 - 1, A@1, 1DD, 881 - 1, 0<,

8A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 81 - 1, 0<, 881 - 1, 0<, A@1, 0D,

A@1 - 1, 1D, 81 - 1, 0<, A@0, 1D, 1 + 1, 2<, A@0, 2D, 2 + 1, 3<,

A@0, 3D, 3 + 1, 4<, 4=, A@0, 4D, 4 + 1, 5=, A@0, 5D, 5 + 1, 6=,

A@0, 6D, 6 + 1, 7=, A@0, 7D, 7 + 1, 8=, A@0, 8D, 8 + 1, 9=

Using Depth,  you can see that  there are  13 levels  in the expression output by Trace
(although this  is  inflated by  the  existence  of  HoldForm,  as  I  explain  later).  In  a  real-
world use of Trace, you could easily encounter output with depth an order of magni-
tude larger and an overall output several orders of magnitude larger still.

In[47]:= Depth@traceD

Out[47]= 13

To understand  this  solution,  be  aware  that  all  the  intermediate  expressions  output
by Trace are wrapped in HoldForm to prevent their evaluation (which would of course
defeat the purpose of Trace). You can see this by using InputForm. I use Short to sup-
press repeating the mess of output from above.
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In[48]:= trace êê InputForm êê Short

Out[48]//Short=

8HoldForm@A@2, 3DD, HoldForm@A@2

- 1, A@2, <<1>>DDD, <<8>>, HoldForm@9D<

One way to get a handle on the output of Trace  is  to  linearize  it  so you get  a  flat
structure that presents the sequence of operations as they occur in time. This can be
done by using what amounts to a preorder tree traversal.

In[49]:= Clear@traverseTrace, traverseTrace1D;

traverseTrace@x_D := Flatten@Reap@traverseTrace1@xDDD

traverseTrace1@8<D := Sequence@D

traverseTrace1@x_ListD :=

HtraverseTrace1@First@xDD; traverseTrace1@Rest@xDDL

traverseTrace1@HoldForm@x_DD := Sow@HoldForm@xDD

This still produces as much raw data, but its linear nature makes it easier to visualize
and manipulate. 

In[54]:= timeSequence = traverseTrace@traceD

Out[54]= 9A@2, 3D, A@2 - 1, A@2, 3 - 1DD, 2 - 1, 1, 3 - 1, 2, A@2, 2D, bug;

A@2 - 1, A@2, 1DD, 2 - 1, 1, A@2, 1D, A@2 - 1, A@2, 1 - 1DD, 2 - 1, 1, 1 - 1,

0, A@2, 0D, A@2 - 1, 1D, 2 - 1, 1, A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 1 - 1,

0, 1 - 1, 0, A@1, 0D, A@1 - 1, 1D, 1 - 1, 0, A@0, 1D, 1 + 1, 2, A@0, 2D,

2 + 1, 3, A@1, 3D, A@1 - 1, A@1, 3 - 1DD, 1 - 1, 0, 3 - 1, 2, A@1, 2D, bug;

A@1 - 1, A@1, 1DD, 1 - 1, 0, A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 1 - 1, 0,

1 - 1, 0, A@1, 0D, A@1 - 1, 1D, 1 - 1, 0, A@0, 1D, 1 + 1, 2, A@0, 2D, 2 + 1,

3, A@0, 3D, 3 + 1, 4, 4, A@0, 4D, 4 + 1, 5, A@1, 5D, A@1 - 1, A@1, 5 - 1DD,

1 - 1, 0, 5 - 1, 4, A@1, 4D, A@1 - 1, A@1, 4 - 1DD, 1 - 1, 0, 4 - 1, 3, A@1, 3D,

A@1 - 1, A@1, 3 - 1DD, 1 - 1, 0, 3 - 1, 2, A@1, 2D, bug; A@1 - 1, A@1, 1DD,

1 - 1, 0, A@1, 1D, A@1 - 1, A@1, 1 - 1DD, 1 - 1, 0, 1 - 1, 0, A@1, 0D,

A@1 - 1, 1D, 1 - 1, 0, A@0, 1D, 1 + 1, 2, A@0, 2D, 2 + 1, 3, A@0, 3D, 3 + 1,

4, 4, A@0, 4D, 4 + 1, 5, A@0, 5D, 5 + 1, 6, A@0, 6D, 6 + 1, 7, 7, A@1, 7D,

A@1 - 1, A@1, 7 - 1DD, 1 - 1, 0, 7 - 1, 6, A@1, 6D, A@1 - 1, A@1, 6 - 1DD,

1 - 1, 0, 6 - 1, 5, A@1, 5D, A@1 - 1, A@1, 5 - 1DD, 1 - 1, 0, 5 - 1, 4, A@1, 4D,

A@1 - 1, A@1, 4 - 1DD, 1 - 1, 0, 4 - 1, 3, A@1, 3D, A@1 - 1, A@1, 3 - 1DD,

1 - 1, 0, 3 - 1, 2, A@1, 2D, bug; A@1 - 1, A@1, 1DD, 1 - 1, 0, A@1, 1D,

A@1 - 1, A@1, 1 - 1DD, 1 - 1, 0, 1 - 1, 0, A@1, 0D, A@1 - 1, 1D, 1 - 1, 0,

A@0, 1D, 1 + 1, 2, A@0, 2D, 2 + 1, 3, A@0, 3D, 3 + 1, 4, 4, A@0, 4D, 4 + 1, 5,

A@0, 5D, 5 + 1, 6, A@0, 6D, 6 + 1, 7, A@0, 7D, 7 + 1, 8, A@0, 8D, 8 + 1, 9=

Discussion
Once you have linearized the output of Trace, you can easily extract segments of the
execution history or use patterns to extract specific segments of interest.
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In[55]:= timeSequence@@5 ;; 18DD êê InputForm

Out[55]//InputForm=
9HoldForm@3 - 1D, HoldForm@2D, HoldForm@A@2, 2DD,

HoldFormAbug; A@2 - 1, A@2, 1DDE, HoldForm@2 - 1D, HoldForm@1D,

HoldForm@A@2, 1DD, HoldForm@A@2 - 1, A@2, 1 - 1DDD, HoldForm@2 - 1D,

HoldForm@1D, HoldForm@1 - 1D, HoldForm@0D, HoldForm@A@2, 0DD,

HoldForm@A@2 - 1, 1DD=

Here  I  use  ReplaceList  to  find  every  occurrence  of  a  call  to  A  where  the  first  argu-
ment was 0, and then output the expression computed immediately before and im-
mediately after.

In[56]:= ReplaceList@timeSequence ,

8___, a_, HoldForm@A@0, z_DD, b_, ___< ß 8a, HoldForm@A@0, zDD, b<D
Out[56]= 880, A@0, 1D, 1 + 1<, 82, A@0, 2D, 2 + 1<,

80, A@0, 1D, 1 + 1<, 82, A@0, 2D, 2 + 1<, 83, A@0, 3D, 3 + 1<,

84, A@0, 4D, 4 + 1<, 80, A@0, 1D, 1 + 1<, 82, A@0, 2D, 2 + 1<,

83, A@0, 3D, 3 + 1<, 84, A@0, 4D, 4 + 1<, 85, A@0, 5D, 5 + 1<,

86, A@0, 6D, 6 + 1<, 80, A@0, 1D, 1 + 1<, 82, A@0, 2D, 2 + 1<,

83, A@0, 3D, 3 + 1<, 84, A@0, 4D, 4 + 1<, 85, A@0, 5D, 5 + 1<,

86, A@0, 6D, 6 + 1<, 87, A@0, 7D, 7 + 1<, 88, A@0, 8D, 8 + 1<<

More  to  the  point,  here  I  do  the  same  with  the  pattern  that  is  the  proxy  for  the
buggy behavior. This shows the expressions that preceded and followed the bug.

In[57]:= ReplaceListAtimeSequence ,

9___, a_, HoldFormA"bug"; z__E, b_, ___= ß 9a, HoldFormA"bug"; zE, b=E

Out[57]= 99A@2, 2D, bug; A@2 - 1, A@2, 1DD, 2 - 1=,

9A@1, 2D, bug; A@1 - 1, A@1, 1DD, 1 - 1=,

9A@1, 2D, bug; A@1 - 1, A@1, 1DD, 1 - 1=,

9A@1, 2D, bug; A@1 - 1, A@1, 1DD, 1 - 1==

Clearly, linearizing loses some information that was in the original output of Trace.
What  you lose  is  the information that  says  a  certain bunch of  subexpressions were
triggered  by  some  parent  expression.  But,  the  act  of  debugging  (or  indeed  under-
standing any complex data set) is the act of suppressing extraneous information un-
til  you  can  identify  the  area  where  there  was  a  problem.  Then  some  strategically
placed debug code or Print functions can often get you the rest of the way to the fix.

A very similar result to this solution can be obtained using a variation of Trace called
TraceScan  along with  Reap-Sow.  The difference  is  that  this  expression will  include a
bit more extraneous detail because it shows the evaluation of every symbol and con-
stant. Here is an excerpt using Short.
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In[58]:= Reap@TraceScan@Sow, A@2, 3DDD@@2, 1DD êê Short

Out[58]//Short=
8A@2, 3D, A, 2, 3, A@2 - 1, A@2, 3 - 1DD, A, 2 - 1,

Plus, 2,á450à, 7, 1, 8, A@0, 8D, 8 + 1, Plus, 8, 1, 9<

See Also
Trace has advanced features I did not cover here. Refer to tutorial/TracingEvaluation
in the Mathematica documentation for details as well as a description of the related
functions TraceDialog and TracePrint.

19.5 Creating a Poor Man’s Mathematica 
Debugger 
Problem
You  tried  debugging  using  Print,  but  your  program  creates  too  much  output  too
quickly and it is difficult to identify the issue. You want to have more control of the
debugging process. 

Solution
Mathematica has  an alternative  print  command called PrintTemporary  that  inspired
me to create a sort of interactive debugger. PrintTemporary works just like Print ex-
cept  after  the  evaluation is  complete  the  output  is  automatically  removed.  Further,
PrintTemporary returns a value that can be passed to the function NotebookDelete to
delete the output at  any time. You can get  an idea of  what PrintTemporary  does by
evaluating the following line:

In[59]:= PrintTemporary@"test"D; Pause@2D

If  you could inject  debug code into  your  ill-behaved programs that  used PrintTemporary
and then paused until you took some action (like pressing a button), you could effec-
tively  step  though  the  code  with  the  embedded  prints  acting  like  breakpoints  in  a
real debugger. This can be done using a relatively small amount of code. 
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In[60]:= pmDebuggerInit@D :=

ModuleA8<, $pmStep = False; $pmStop = False; CellPrintADynamicARowA

9ButtonA"Step", $pmStep = TrueE, ButtonA"Stop", $pmStop = TrueE=EEEE

pmWait@x___, t_D := IWhileA$pmStep == False && $pmStop ã False,

PauseA $TimeUnitEE; IfA$pmStop, Abort@DE; NotebookDelete@tD; xM

pmPrint@D := ModuleA8t<, $pmStep = False;

t = PrintTemporary@"NullSequence!!"D;

pmWait@Unevaluated@Sequence@DD, tDE

pmPrint@""D := ModuleA8t<, $pmStep = False;

t = PrintTemporaryA"NullString!!"E; pmWait@"", tDE

pmPrint@x__D := ModuleA8t<, $pmStep = False;

t = PrintTemporary@xD; pmWait@x, tDE

I explain this code further in the following “Discussion” section. For now, let’s just try
it out. Here I use an instrumented version of the Ackermann function as a test example. 

In[65]:=
A@0, n_D := pmPrint@n + 1D;

A@m_, 0D := A@m - 1, 1D;

A@m_, n_D := A@m - 1, A@m, n - 1DD;

test@D := ModuleA8<, pmDebuggerInit@D; A@4, 1DE

Executing test[] creates the debugging controls.

In[85]:= test@D

Step Stop

3

Discussion
The code  in  the  solution contains  two user  functions,  pmPrint  and pmDebuggerInit.
Function pmPrint has the same features as fPrint from Recipe 19.1, but it uses Print-
Temporary  rather  than  Print.  Further,  it  calls  a  function  pmWait,  which  loops  and
pauses until  a  Boolean  variable  becomes  true.  These  variables  are  initialized  in
pmDebuggerInit and associated with buttons that are used to control progress of the
debugging session.

Often  when  creating  little  utilities  like  this,  it’s  fun  to  see  how  far  you  can  extend
them  without  going  too  far  over  the  top.  There  are  a  few  deficiencies  in  the  solu-
tion’s debugging techniques. First, if you insert multiple print statements, there is no
way to know which one created output. Second, it would be nice if you did not al-
ways have to step one print at a time. Third, it might be nice if you can also dump
the stack while the program is paused. It turns out that using a bit of cleverness can
get you all this new functionality using roughly the same amount of code. 
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Often  when  creating  little  utilities  like  this,  it’s  fun  to  see  how  far  you  can  extend
them  without  going  too  far  over  the  top.  There  are  a  few  deficiencies  in  the  solu-
tion’s debugging techniques. First, if you insert multiple print statements, there is no
way to know which one created output. Second, it would be nice if you did not al-
ways have to step one print at a time. Third, it might be nice if you can also dump
the stack while the program is paused. It turns out that using a bit of cleverness can
get you all this new functionality using roughly the same amount of code. 

In[69]:= ClearApmDebuggerInit, pmWait, pmPrintE;

pmDebuggerInit@D :=

ModuleA8<, $pmStep = 1; $pmStop = Function@FalseD; $pmPrintCells = 8<;

CellPrintADynamicA

RowA9ButtonA"Step", INotebookDelete êü $pmPrintCells; $pmStep = 1ME,

ButtonA"Step 10", INotebookDelete êü $pmPrintCells; $pmStep = 10ME,

ButtonA"Stack", $pmStop = FunctionA

StackInhibitAPrependToA$pmPrintCells, PrintTemporary@Stack@DDE;

$pmStop = Function@FalseD; FalseEEE,

ButtonA"Stack Detail", $pmStop = FunctionAStackInhibitA

PrependToA$pmPrintCells, PrintTemporary@Most@Stack@_DDDE;

$pmStop = Function@FalseD; FalseEEE

ButtonA"Stop", $pmStop = Function@Abort@DDE=EEEE

pmWait@x___D :=

IWhileA$pmStep ã 0 && $pmStop@D ã False, PauseA $TimeUnitEE; xM

pmPrintAx__, tag_: ""E :=

ModuleA8<, StackInhibitA$pmStep--; PrependToA$pmPrintCells,

PrintTemporaryARowA9tag, x=, " "EEE; pmWait@xDEE

pmPrintAtag_: ""E := ModuleA8<, $pmStep--; PrependToA$pmPrintCells,

PrintTemporaryARowA9tag, "NullSequence!!"=, " "EEE; pmWait@""DE

In[74]:= A@0, n_D := pmPrint@n + 1, "n+1="D;

A@m_, 0D := A@pmPrint@m - 1, "m-1="D, 1D;

A@m_, n_D := A@m - 1, A@m, n - 1DD;

test@D := ModuleA8<, pmDebuggerInit@D; A@4, 1DE

In[95]:= test@D

Step Step 10 Stack Stack Detail Stop

n+1=2

The trick here is to convert $pmStep to a counter instead of a Boolean and $pmStop to
a function that  can be changed by the buttons to either  Abort  or  Print  the Stack.  I
also  introduce  a  new  variable  to  collect  multiple  temporary  print  cells  and  move
their  cleanup  to  the  button  press  for  Step  or  Step  10.  Finally,  the  pmPrint  is  refac-
tored  to  take  an  optional  tag  to  display  so  you  can  distinguish  one  debug  output
from another.
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See Also
Recipes 19.1, 19.3, and 19.4 cover some of the functions used in this recipe in more
detail.

19.6 Debugging Built-In Functions with 
Evaluation and Step Monitors
Problem
You are using various black-box numerical algorithms like FindRoot, NDSolve, NIntegrate,
and the  like,  and you are  getting  puzzling  results.  You would like  to  get  under  the
covers to gain insight into what is going on.

Solution
A classic problem with FindRoot (which uses Newton’s method by default) is the pos-
sibility of getting into a cycle. If you did not know about this possibility, you might
be  confused  by  the  error  message  generated.  Here  I  suppress  the  message  using
Quiet  because  I  have  purposefully  cherry-picked  a  misbehaved  function.  FindRoot
has an option EvaluationMonitor  that lets you hook every call  to the supplied func-
tion. Here you use Reap-Sow  to capture these values for analysis. Note that you must
use RuleDelayed (:>) rather than Rule (->) with EvaluationMonitor.

In[78]:= 8result, 8xValues<< = Reap@

Quiet@FindRoot@x^3 - 2 x + 2, 8x, 0<, EvaluationMonitor ß Sow@xDDDD;

ListPlot@xValuesD

Out[79]=

50 100 150

0.7

0.8

0.9

1.0

1.1
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Discussion
Sometimes a StepMonitor can also be useful for debugging. Whereas EvaluationMonitor
shows each time a function is  called,  a  StepMonitor  is  called  only  when  the  algo-
rithm takes a successful step toward the solution. Stephen Wolfram explains the dif-
ference best:

To take a successful step towards an answer, iterative numerical algorithms
sometimes  have  to  do  several  evaluations  of  the  functions  they  have  been
given. Sometimes this is because each step requires, say, estimating a deriva-
tive  from differences  between function values,  and sometimes  it  is  because
several attempts are needed to achieve a successful step.

In the solution example, StepMonitor is less informative than EvaluationMonitor.

In[80]:= 8result, 8xValues<< =

Reap@Quiet@FindRoot@x^3 - 2 x + 2, 8x, 0<, StepMonitor ß Sow@xDDDD;

xValues êê InputForm
Out[81]//InputForm=

81., 0.8, 0.8178125000000002, 0.816037292480469, 0.8169240294396879,

0.816480444471563, 0.8165081617635014, 0.8164943029060661,

0.8164960352500287, 0.8164960352543595<

One  reason  you  might  use  StepMonitor  during  debugging  is  to  get  a  sense  of  how
much computational  effort  an algorithm is  expending to find a solution.  One mea-
sure of effort would be the average number of function calls per step. Here you can
see that the effort can vary widely for different algorithms and expressions.

In[82]:= ClearAx, yE;

BlockA8stepCount = 0, callCount = 0<,

NDSolveA9y'@xD ã y@xD CosAx + y@xDE, y@0D ã 1=,

y, 8x, 0, 30<, StepMonitor ß stepCount++,

EvaluationMonitor ß callCount++E; N@callCountêstepCountDE

Out[83]= 2.14243

In[84]:= ClearAx, yE;

BlockA8stepCount = 0, callCount = 0<,

NDSolveA9y'@xD ã y@xD CosAx + y@xDE, y@0D ã 1=, y, 8x, 0, 30<,

Method -> "ExplicitRungeKutta", StepMonitor ß stepCount++,

EvaluationMonitor ß callCount++E; N@callCountêstepCountDE

Out[85]= 16.039
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In[86]:= ClearAx, yE;

BlockA8stepCount = 0, callCount = 0<,

NDSolveA9y'@xD ã y@xD CosAx + y@xDE, y@0D ã 1=, y,

8x, 0, 30<, Method -> "Extrapolation", StepMonitor ß stepCount++,

EvaluationMonitor ß callCount++E; N@callCountêstepCountDE

Out[87]= 49.25

See Also
Evaluation and StepMonitor are also useful outside a debugging context. For example,
they can be used to visualize the behavior of an algorithm for educational purposes.
See the Wolfram documentation for examples.

19.7 Visual Debugging with Wolfram 
Workbench
Problem
You are a Mathematica user longing for the kinds of visual debugging environments
common in mainstream programming  environments  like  Eclipse,  Visual  Studio,
InteliJ, DDD, and others.

Solution
Use Wolfram Workbench, a Mathematica-specific extension to the Eclipse platform.
When you launch Wolfram Workbench,  you must  first  create  a  project.  Use menu
File, New, New Project. Give the project a name. I used the name Debugging for this
example.  Workbench  automatically  creates  two  files  named  after  your  project.  In
this  example,  I  got  a  Debugging.m  and  a  Debugging.nb.  The  .m  file  is  where  you
would  enter  code  that  you  want  to  debug.  The  Debugging.nb  is  a  normal  frontend
notebook file. Here you would typically set up your test calls.

A[0,n_] := n+1

A[m_,0] := A[m - 1, 1]

A[m_, n_] := A[m - 1, A[m, n - 1]]

Figure 19-2. Debugging.m~functions being debugged
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A[3,2]

Figure 19-3. Debugging.nb~place to exercise the functions to be debugged

Once you have these files set up, you can place a breakpoint by double-clicking on
the left margin of the line of code you want the debugger to stop. In Figure 19-4 you
see  a  dot  appear  in  the  margin  to  indicate  the  successful  placement  of  the  break-
point. You can place as many breakpoints as necessary.

Figure 19-4. Wolfram Workbench showing breakpoints on A[m_,0]

Now right-click on the Debugging.nb  file  in the Package Explorer and select  Debug
As... Mathematica. You will be prompted to switch to the Debug perspective, which
is  recommended.  Figure  19-5  shows  what  this  perspective  looks  like.  It  will  also
launch the frontend with Debugging.nb  active. Here you can use normal Shift-Enter
evaluation to execute an expression. When a breakpoint is hit, you can switch back
to  the  Workbench  to  continue  debugging.  Here  you  can  inspect  the  call  stack,  see
the value of variables, and set further breakpoints. You can step over or into further
functions using F5 (set),  F6 (step over) and F7 (step return).  In short,  you can per-
form all the operations you’d expect from a modern symbolic debugger.
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Now right-click on the Debugging.nb  file  in the Package Explorer and select  Debug
As... Mathematica. You will be prompted to switch to the Debug perspective, which
is  recommended.  Figure  19-5  shows  what  this  perspective  looks  like.  It  will  also
launch the frontend with Debugging.nb  active. Here you can use normal Shift-Enter
evaluation to execute an expression. When a breakpoint is hit, you can switch back
to  the  Workbench  to  continue  debugging.  Here  you  can  inspect  the  call  stack,  see
the value of variables, and set further breakpoints. You can step over or into further
functions using F5 (set),  F6 (step over) and F7 (step return).  In short,  you can per-
form all the operations you’d expect from a modern symbolic debugger.

Figure 19-5. Wolfram Workbench in Debug perspective

Discussion
Many old-time Mathematica users feel that it is sacrilegious (or perhaps just frustrat-
ing) to leave the comfortable Mathematica frontend just to debug. If you don’t have
such a prejudice, your willingness will be rewarded. There is nothing like debugging
within a real debugging environment! If you are a Java or C programmer who is used

to such luxuries, the Eclipse-based Workbench environment is a must-have. Eclipse
is an open source framework for building integrated software development environ-
ments  (IDEs)  that  first  gained  popularity  with  Java  developers.  Wolfram  used
Eclipse to build an alternative development environment for Mathematica as an alter-
native  to  the  traditional  frontend.  However,  you  don’t  need  to  abandon  the  tradi-
tional Mathematica interface to use Workbench to debug. In this section, I  refer to
Eclipse when speaking about generic features that are true about all Eclipse IDEs and
Workbench when speaking about features of Workbench in particular.
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to such luxuries, the Eclipse-based Workbench environment is a must-have. Eclipse
is an open source framework for building integrated software development environ-
ments  (IDEs)  that  first  gained  popularity  with  Java  developers.  Wolfram  used
Eclipse to build an alternative development environment for Mathematica as an alter-
native  to  the  traditional  frontend.  However,  you  don’t  need  to  abandon  the  tradi-
tional Mathematica interface to use Workbench to debug. In this section, I  refer to
Eclipse when speaking about generic features that are true about all Eclipse IDEs and
Workbench when speaking about features of Workbench in particular.

If  you  have  never  used  more  traditional  languages,  such  as  Java,  C,  C++  and  C#,
then you are likely to find working in Workbench somewhat foreign. To avoid being
frustrated, you should keep a few ideas in mind. First,  because Workbench is  built
on top of Eclipse and Eclipse was built  outside of Wolfram, you should not expect
Workbench to have the same look and feel  as the traditional  frontend. You should
approach it as you would approach any new piece of software~with an open mind
and no  preconceptions.  For  example,  you  should  not  expect  to  debug  code  that  is
written using all the fancy mathematical typesetting features available in a notebook.
If  you  developed  code  solely  using  the  .nb  format,  you  should  save  your  code  as  a
.m, which is a pure text format. This is not to say you can’t launch notebooks from
Eclipse (the solution shows this is possible) but rather you should make all code that
you wish to debug available in text format. 

Another important concept of Eclipse is that it wants to manage all the source code
under  a  project.  Projects  in  Eclipse  typically  correspond to  directories  under  a  spe-
cific  root  directory  you  choose  when  Eclipse  is  installed.  It  is  possible  to  specify
other directories outside this hierarchy, but you will  not automatically pick up files
that happen to be in an existing location. You can use File, Import for that purpose.

In  addition  to  source  code|level  breakpoints,  Workbench  supports  message  break-
points that break when a function emits any error message and symbol breakpoints
that  provide  a  convenient  way  to  place  a  breakpoint  on  an  overloaded  function
name. For example, a symbol breakpoint can be used to put a break on all three vari-
ants  of  the  Ackermann  function  A.  The  three  types  of  breakpoints  are  accessible
from the Breakpoints tab shown in Figure 19-6. The message break is set using ,

and   is used for symbol breakpoints. There are also buttons for clearing selected

breakpoints,  ,  or  all  breakpoints,  ,  and  you  can  uncheck  a  breakpoint  in

the list to temporarily disable it.
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Figure 19-6. Breakpoints tab has toolbar buttons for setting various types of breakpoints

See Also
If you are new to Eclipse, you should definitely check out the series of screencasts on
Wolfram Workbench at http://bit.ly/2srUoj.

19.8 Writing Unit Tests to Help Ensure 
Correctness of Your Code
Problem
You want to write unit tests to help uncover bugs in a library of functions. Perhaps
you are familiar with the unit-testing frameworks that exist in other languages, and
you would like the equivalent for Mathematica.

Solution
Wolfram  Workbench  is  nicely  integrated  with  MUnit,  a  unit-testing  framework
for  Mathematica.  You  create  a  unit  test  in  a  special  file  with  extension  .mt.  The
easiest  way  to  create  such  a  file  is  to  right-click  on  your  project  and  select  New,
Mathematica Test File (you should make sure you are in Mathematica Development
Perspective, or you will have to navigate into the Other submenu to get to this feature). 

The most  convenient  way  to  create  your  first  test  case  is  to  type  Test  and then  hit
Ctrl-Space to trigger code assist, which automatically creates the test boilerplate. 
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(*Mathematica test file for Ackermann*)

Test[

A[0,0]

,

1

,

TestID->"Test2-20090508-O1L1K5"

]

Test[

A[1,0]

,

2

,

TestID->"Test2-20090508-N4W7U7"

]

Test[

A[0,1]

,

2

,

TestID->"Test2-20090508-F5F9A7"

]

(*This test will fail!*)

Test[

A[1,2]

,

3

,

TestID->"Test2-20090508-L7N0S2"

]

Discussion
You can execute your unit tests at any time by saving the test file, right-clicking on it
in the package explorer, and selecting Run As, Mathematica Test. This will generate
a  Test  Report,  as  shown  in  Figure  19-7.  The  report  shows  which  tests  passed  and
which failed. Unique TestIDs are essential to this function, and Workbench has a fea-
ture  that  will  help  fix  and  duplicate  IDs.  Simply  right-click  on  the  file,  select  the
Source menu, and then select Fix Test IDs. 
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Figure 19-7. Test report generated after running the tests defined in the solution

Functions like Ackermann that  return scalar  values are easy to inspect  in the failed
tests section to investigate the difference between the expected and actual output. In
Figure 19-7, you can see that the expected output is 6, but the actual output is 4. In
this  case,  it  is  the  test  function  that  is  wrong,  because  the  correct  output  is  4.  The
more typical  circumstance is  that  the  function is  wrong,  but  in  either  case  you can
quickly see that  something is  awry.  With more complex outputs,  it  can be difficult
to  find  the  difference.  A  useful  feature  of  Workbench  is  Failure  Compare.  Simply
right-click on the failure test ID and select Failure Compare. This will open a dialog
with a side-by-side tree view of the expected and actual expression (see Figure 19-8).
You can expand the tree to inspect the branches that indicate differences (the X). 
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Figure 19-8. Use the test failure comparator to drill down into test results to detect problems

See Also
See the Wolfram Workbench unit-testing screencast at http://bit.ly/dOJBL for a step-
by-step overview of unit testing.

19.9 Creating MUnit Tests Where Success Is Not 
Based on Equality Testing
Problem
Although the MUnit Test function is easy to use, it is not the most appropriate func-
tion  for  certain  types  of  testing.  For  example,  you  may  want  to  define  your  test  in
terms of pattern matching.

Solution
MUnit provides other test functions, including TestMatch, TestFree, TestStringMatch,
and TestStringFree.  TestMatch  uses  MatchQ  to  compare actual  and expected results,
and  TestFree  uses  FreeQ.  Likewise,  TestStringMatch  uses  StringMatchQ,  and  Test-
StringFree uses StringFreeQ.
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TestMatch[

{1,2,3,4,5}

,

{__Integer}

,

TestID->"TestOther-20090509-L8U9H1"

]

TestFree[

{10,12,1/2,2/3,3/4,4/5,5/6}

,

{__Complex}

,

TestID->"TestOther-20090509-L8U9H2"

]

TestStringMatch[

"Hello"

,

"H" ~~ __ ~~ "o"

,

TestID->"TestOther-20090509-L8U9H3"

]

TestStringFree[

"Hello"

,

"x"

,

TestID->"TestOther-20090509-L8U9H4"

]

Discussion
You can create even more flexible tests  by using the EquivalenceFunction  option of
Test to specify an alternative definition of success. The following test succeeds if the
actual value is greater than 0.

Test[Cos[1]^2 + Sin[1]^2 - Sqrt[1 - Exp[-10]],

  0,

  EquivalenceFunction -> Greater,

  TestID -> "ID17"]
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This option comes in handy when you are creating tests where exact equality is not
useful. For example, you might want to use Round or Chop before comparing.

Test[

InverseFourier[Fourier[{2, 1, 1, 0, 0, 0}]],

  {2, 1, 1, 0, 0, 0},

  EquivalenceFunction -> (Chop[#1] == Chop[#2] &),

  TestID -> "ID42"

  ]

Of course, you can just as readily write the test with Chop applied to the actual com-
putation, but I feel that EquivalenceFunction better documents the test designer’s
intention. Another example is when you are only worried about equality up to a speci-
fied tolerance. 

Test[

(12/7) (2 Sqrt[2] - 1),

  Pi,

  EquivalenceFunction -> Abs[#1-#2] < 0.01,

  TestID -> "ID66"

19.10 Organizing and Controlling MUnit Tests 
and Test Suites
Problem
You have a  complex test  suite  with many tests.  The tests  may naturally  group into
sections. Further, you want the ability to turn on and off test sections as well as state
dependencies  between  sections,  possibly  to  account  for  side  effects.  For  example,
you  want  to  say,  “only  continue  with  this  section  if  tests  succeed,  because  further
tests rely on results computed by earlier tests.”

Solution
There  are  a  few  advanced  MUnit  features  that  are  useful  for  organizing  tests  and
managing  test  dependencies.  You can  organize  tests  into  sections  using  BeginTest-
Section[name,switch] and EndTestSection[].
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(*Switches to activate and deactivate sections*)

Sect1Active = True;

Sect2Active = True;

(*Section 1*)

BeginTestSection["sect1", Sect1Active]

(*All tests in this section depend on first test success.*)

TestFree[str=OpenRead["SomeTestFile.txt"], $Failed, 

EquivalenceFunction ->UnsameQ,

TestID-> "TestAdvanced-20090509-O6O6O3", TestFailureAction -> "SkipSection"]

Test[Read[str, Number], 5, TestID -> "IDS1_1"]

Test[Read[str, Word], "cars", TestID -> "IDS1_2"]

EndTestSection[]

(*Section 2*)

BeginTestSection["sect2", Sect2Active]

Test[2 + 2, 4, TestID -> "IDS2_1"]

EndTestSection[]

Discussion
If it does not make sense to continue tests after a failure, you can also specify Test-
FailureAction Ø "Abort". This feature is available even if you do not use sections.

If  you have a  complex Mathematica library,  you will  want  to organize  it  into sepa-
rate test files. However, running each test separately would be tedious, so MUnit pro-
vides a TestSuite construct. First, you should place all your test files (.mt files) into a
folder under the main project folder. Then create a test file that ties all the tests to-
gether into a suite, as shown in Figure 19-9.
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(*Mathematica TestSuite*)

TestSuite[

{

"Test.mt",

"Test2.mt",

"TestAdvanced.mt",

"TestOther.mt"

}

]

Figure 19-9. TestSuite is a test file that allows you to run other test files all at once

19.11 Integrating Wolfram Workbench’s MUnit 
Package into the Frontend 
Problem
You would like to create unit tests but you prefer to work in the traditional frontend
rather than Workbench. 

Solution
You  need  a  test  driver  to  run  the  tests.  This  mimics  the  basic  functionality  of
Workbench.

In[88]:= Needs@"MUnit`"D;

TestDriver@tests__D :=

ModuleA8testList = 8tests<, numTests, failedTests<,

numTests = Length@testListD;

failedTests = Select@8tests<, H FailureMode@ÒD =!= "Success"L &D;

PrintA"Passed Tests: ", numTests - Length@failedTestsDE;

PrintA"Failed Tests: ", Length@failedTestsDE;

Print@"Failed Test Id: ", TestID@ÒD, "\nExpected: ",

ExpectedOutput@ÒD, " Actual: ", ActualOutput@ÒDD & êü failedTests;

E
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The MUnit package is not part of Mathematica 7, but you can still use it
if  you have installed Wolfram Workbench 1.1 or  higher.  You need to
tell the kernel where to find the package. This will vary from system to
system, but generally it  will  be under the Wolfram Research directory
where  Mathematica  is  installed.  You  want  to  find  a  directory  called
MUnit and add the path to that directory to $Path. On my Windows XP
installation, I added the location to $Path by executing:

In[90]:= AppendToA$Path, FileNameJoinA9"C:", "Program Files",

"Wolfram Research", "WolframWorkbench", "1.1", "plug-ins",

"com.wolfram.eclipse.testing_1.1.0", "MathematicaSource"=EE

Out[90]= 9C:\Program Files\Wolfram

Research\Mathematica\7.0\SystemFiles\Links,

C:\Users\Sal Mangano\AppData\Roaming\Mathematica\Kernel,

C:\Users\Sal Mangano\AppData\Roaming\Mathematica\Autoload,

C:\Users\Sal Mangano\AppData\Roaming\Mathematica\Applications,

C:\ProgramData\Mathematica\Kernel,

C:\ProgramData\Mathematica\Autoload,

C:\ProgramData\Mathematica\Applications, .,

C:\Users\Sal Mangano, C:\Program Files\Wolfram

Research\Mathematica\7.0\AddOns\Packages,

C:\Program Files\Wolfram

Research\Mathematica\7.0\AddOns\LegacyPackages,

C:\Program Files\Wolfram

Research\Mathematica\7.0\SystemFiles\Autoload, C:\Program

Files\Wolfram Research\Mathematica\7.0\AddOns\Autoload,

C:\Program Files\Wolfram

Research\Mathematica\7.0\AddOns\Applications, C:\Program

Files\Wolfram Research\Mathematica\7.0\AddOns\ExtraPackages,

C:\Program Files\Wolfram

Research\Mathematica\7.0\SystemFiles\Kernel\Packages,

C:\Program Files\Wolfram

Research\Mathematica\7.0\Documentation\English\System,

C:\Program Files\Wolfram

Research\WolframWorkbench\1.1\plug-ins\com.wolfram.eclipse.

testing_1.1.0\MathematicaSource=

You  can  add  this  to  init.m  if  you  intend  to  use  MUnit  frequently.
Alternatively,  you  can  also  copy  the  MUnit  package  into  one  of  the
locations in $Path. 
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Here is a simple example of using the driver. I purposefully made tests with ID2 and
ID4 fail.

In[91]:= TestDriver@

Test@1 + 1, 2, TestID Ø "ID1"D,

Test@1 + 1, 3, TestID Ø "ID2"D,

Test@2 + 2, 4, TestID Ø "ID3"D,

Test@2 + 2, 3, TestID Ø "ID4"DD

Passed Tests: 2

Failed Tests: 2

Failed Test Id: ID2

Expected: 3 Actual: 2

Failed Test Id: ID4

Expected: 3 Actual: 4

Discussion
The test  driver  used in  the  preceding  “Solution” section is  very  basic  and does  not
support all the features available when you build unit tests in Workbench. If you are
ambitious,  you can build a more sophisticated driver~even one that  has more fea-
tures than Workbench. It really depends on your needs. The main requirement is to
become familiar  with the MUnit  API.  Although documentation on MUnit  is  sparse at
the  time  I  am  writing  this,  well-written  Mathematica  packages  are  self-describing.
For  example,  you  can  find  all  the  public  functions  in  the  package  by  using
?"MUnit`*".  For the sake of space, I’ll only list the functions that begin with the let-
ter T. By clicking on the output, you can see what the function or option does. The
most  important  functions  are  selectors,  like  TestID,  because  these  allow you to  ex-
tract  information  from  a  TestResultObject,  which  is  the  output  produced  by  func-
tions like Test, TestMatch, and so on. 
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In[92]:= ?"MUnit`T*"

MUnit`

Test TestIndex TestRunResultObject

TestCaveat TestInput TestRunTitle

TestCellEvaluationFunction TestLog TestStringFree

TestExecute TestMatch TestStringMatch

TestFailureAction TestMemoryUsed TestTags

TestFailureMessage TestRequirement TestTerminate

TestFree TestResultObject TestTimeUsed

TestID TestResultQ

TestIgnore TestRun

By  inspecting  MUnit’s  functions,  I  was  inspired  to  create  a  test  driver  that  supports
the idea of test sections (see Recipe 19.10). However, instead of a BeginTestSection-
EndTestSection  pair,  I  use  a  single  TestSection  function.  The  TestDriver  will  work
with  multiple  TestSections  or  multiple  Tests  but  not  mixtures  of  both.  For  this
driver  to  handle  skipping  and  aborting,  it  must  be  careful  to  evaluate  a  test  lazily,
hence, it uses Hold and the HoldAll attribute judiciously. It also uses Catch and Throw
combinations.  This  is  a  feature of  Mathematica I  have largely  avoided in the book,
but it sometimes comes in handy as a way to terminate an iteration without cumber-
some  conditional  logic.  In  this  case,  the  function  RunTest  causes  a  test  to  evaluate
and  tests  for  failure.  If  the  test  does  not  succeed,  it  defers  further  decisions  to  On-
FailedTest based on the test’s FailureMode. OnFailedTest will either Throw or return,
depending on the mode. Further, it uses the mode as a tag in the Throw, so the appro-
priate Catch handler can intercept the failure.
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In[93]:= ClearAll@TestDriver, TestSection, RunTest, OnFailedTestD;

SetAttributes@8TestDriver, TestDriver2, TestSection, RunTest<, HoldAllD;

H*OnFailedTest simply returns the test if mode is Continue,

otherwise it throws using mode as a tag.*L

OnFailedTest@test_, "Continue"D := test

OnFailedTest@test_, mode_D := Throw@test, modeD

H*RunTest tests the failure mode and updates

counters. It defers failure action to OnFailedTest.*L

RunTestAtest_TestResultObjectE :=

If@FailureMode@testD =!= "Success", failedTests++;

OnFailedTest@test, TestFailureAction@testDD, passedTests++; testD

H*A TestSection has one or more tests, a name,

and Boolean for enabling or disabling the section.*L

TestSectionAtests__, section_String, FalseE := 8<

TestSectionAtests__, section_String, _ : TrueE :=

Module@8<,

Catch@ReleaseHold@RunTest@ÒD & êü Hold@testsDD, "SkipSection"DD

H*TestDriver2 valuates the results of tests.*L

TestDriver2@tests__D := Module@8testList = 8tests<, numTests, failed<,

failed = Select@8tests<, H FailureMode@ÒD =!= "Success"L &D;

Print@"Passed Tests: ", passedTestsD;

Print@"Failed Tests: ", failedTestsD;

Print@"Failed Test Id: ", TestID@ÒD, "\nExpected: ",

ExpectedOutput@ÒD, " Actual: ", ActualOutput@ÒDD & êü failed;

D

H*This instance of TestDriver executes sections.*L

TestDriver@secs__TestSectionD :=

Block@8passedTests = 0, failedTests = 0<,

TestDriver2 üü Flatten@ 8Catch@ 8secs<, "Abort"D<DD

H*This instance of TestDriver executes tests.*L

TestDriver@tests__D := Block@8passedTests = 0, failedTests = 0<,

TestDriver2 üü Flatten@ 8Catch@RunTest êü 8tests<, "Abort"D<DD
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Here I put the driver through its paces demonstrating different failure scenarios.

In  this  scenario,  the  second  test  in  sect1  fails  with  an  Abort;  hence,  tests  with  test
IDs "Sect1ID3" and "Sect2ID1" are not run.

In[103]:= TestDriver@

TestSection@

Test@1 + 1, 3, TestID Ø "Sect1ID1"D,

Test@1 + 1, 3, TestID Ø "Sect1ID2", TestFailureAction Ø "Abort"D,

Test@1 + 3, 4, TestID Ø "Sect1ID3"D, "sect1"D,

TestSection@

Test@1 + 1, 2, TestID Ø "Sect2ID1"D, "sect2"D

D

Passed Tests: 0

Failed Tests: 2

Failed Test Id: Sect1ID2

Expected: 3 Actual: 2

In this  scenario,  the second test  in  sect1  fails  with a  "SkipSection";  hence,  the test
with test ID "Sect1ID3" is skipped, but a "Sect2ID1" runs.

In[104]:= TestDriver@

TestSection@

Test@1 + 1, 3, TestID Ø "Sect1ID1"D,

Test@1 + 1, 3, TestID Ø "Sect1ID2", TestFailureAction Ø "SkipSection"D,

Test@1 + 3, 4, TestID Ø "Sect1ID3"D, "sect1"D,

TestSection@

Test@1 + 1, 2, TestID Ø "Sect2ID1"D, "sect2"D

D

Passed Tests: 1

Failed Tests: 2

Failed Test Id: Sect1ID2

Expected: 3 Actual: 2
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Here sections are not used, but a TestFailureAction of "Abort" is still handled appro-
priately. 

In[105]:= TestDriver@Test@1 + 3, 2, TestID Ø "Sect1ID1", TestFailureAction Ø "Abort"D,

Test@1 + 1, 2, TestID Ø "Sect1ID1"DD

Passed Tests: 0

Failed Tests: 1

Failed Test Id: Sect1ID1

Expected: 2 Actual: 4

See Also
The concept of test sections is native to MUnit when used with Workbench, but has a
different syntax. This is covered in Recipe 19.10.
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Symbols
` (backtick), 7
! (escape character), 690–691
@ (prefix notation), 6, 49–50, 65
=== (SameQ), 91
## (slot sequence), 34
# (slots), 35
| (vertical bar), 147–148
// (postfix notation), 6, 20–21, 49
/@ operator, 27
@@ operator, 27
@@@ operator, 27, 34
$CharacterEncoding, 182
$CharacterEncodings, 182
$MachinePrecision, 7
$MaxPrecision, 8–9
$MinPrecision, 8–9
$SystemCharacterEncoding, 182

A
AbsoluteThickness, 268
AccountingForm, 20–21
Accuracy, 8
accuracy of numeric results, 4–9, 10
Ackermann function

as debugging illustration, 742
debugging recursive functions, 748
extracting debugging information, 749–753
and recursion limits, 723

adaptive grid method, 575–577
Advanced Engineering Mathematics 

(Kreyszig), 439–440, 536

algebra problems, 413–414
decomposing polynomials, 420–422
dividing polynomials by other 

polynomials, 422–424
finding polynomials from given roots, 

415–416
generating polynomials, 419–420
solving equations, 414–415
transforming expressions, 416–419

algorithms (see also tree algorithms)
rule-driven, 161–165
running in parallel, 661–662

All, 481
alpha, 485–486
alternate tunings, 397–402
Alternatives, 147–148
American option pricing, 583–585
americanPutCompiled, 583–584
amplitude modulation, 392
anagram demonstration, 204–206
analysis of variance (ANOVA), 479–483
Animate

creating self-running demonstrations, 
627–629

as key function for interactivity, 594
relationship with Manipulate, 629

AnimationRate, 628
AnimationRepetitions, 628
AnimationRunning, 628
animations, 627–630
Animator, 629
annotation

of 2D graphics, 269–270
of 3D plots with 2D contours, 295–296

Index

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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arrows, 270–273
graph labels, 241–242
interactive, 630–631
legends, 260–263

annuity, 560
anonymous functions, 32
ANOVA (analysis of variance), 479–483
ANOVÀ  package, 479–480
Antidiagonal, 103
Apart, 417
Append, 87
AppendTo, 111–112
Apply

level specifications, 117
mapping multi-argument functions, 33–35
operator notation, 26–27
XML data, 212

apply (term usage), 26
approximate numeric results, 2–3, 5–7
approximate numeric values

converting to exact, 19
with mixed numerical types, 9–10

arguments, holding, 36
Array

constructing lists, 86–87
generating kernels, 48

ArrayPlot, 411–412
arrays

packed and unpacked, 95–97
sparse, 112–114

Arrow, 263–266
Arrowheads, 270–272
arrows

in 2D graphics, 263–266
customizing, 270–273

ASCII codes, use of, 181–182
AspectRatio

overriding, 255
with Plot, 244–245
with PolarPlot, 249

associative functions, 30
associative lookup

built-in, 130–134
red-black tree implementation, 125–129

attributes, 29–30
Attributes, 29
audio and music processing, 373

alternate tunings, 397–402
applying an envelope to a signal, 394–397

chord notation, 380
chords and progressions, 378, 379, 383–384
exporting MIDI files, 389–390
Fourier analysis, 405–412
importing digital sound files, 403–412
musical notes, 374–375
percussion, 384–389
playing functions as sound, 390–391
rhythm, 376–377, 382
scales and melodies, 375–376
tremolo, 392, 394
vibrato, 393–394
volume, 377–378, 382

Axes
overriding, 255–256
suppressing plot axes, 240

AxesEdge, 278–279
AxesLabel, 240
axialForce, 545–547
axialStrain, 545–547
axialStress, 545–547

B
backtracking parsers, 235
Backus-Naur Form (BNF), 227, 232
balance, 128
Band

synthesizing sparse functions, 113–114
synthesizing tridiagonal matrices, 104, 

531–532
BarChar, 460
BaseForm, 12–13
bases other than 10, 12–13
BeginTestSection, 767–768
binary trees

converting lists to, 89
modeling, 121–123
selective flattening, 90

BinarySearch, 100
BinCounts

distributions of pseudorandom  
numbers, 460

grayscale histograms, 341
bit vectors, 119–121
Black-Scholes formula

finite difference method for, 578–582
pricing European puts and calls, 565–572
speeding up NDSolve, 574–578
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Blank pattern constructs, 146–147, 148
Block, 66, 69–70
BNF (Backus-Naur Form), 227, 232
bonds, 551, 561–562
bookmarks, 618–619
Boslaugh, Sarah (see Statistics in a Nutshell)
BoundaryStyle, 280
box plots, 493–494
Boxed, 280–281
BoxQuantile, 493–494
BoxRatios, 280–281
BoxStyle, 280–281
BoxWhiskersPlot, 492–493
breakpoints, 761
buttons, 596

C
C and C++ functions, calling, 694–699
CAD, importing from, 326
calculus problems

difference equations, 450–452, 519–521
differential equations, 438–441, 537
differentiating functions, 431–435
generating functions for sequence 

recognition, 452–454
integration, 435–438
limits, 426–427
minima and maxima problems, 441–443
piecewise functions, 427–429
power series representations, 429–431
sum and product problems, 447–450
vector calculus problems, 443–447

call options, 551, 566–567
Carlson, Chris, 306
Cartesian coordinates

2D plots in, 239–247
3D plots in, 276–282

Cases
compared to DeleteCases, 153–154
with Count, 156
in coupled mass problems, 532
extracting lines from 3D objects, 308
extracting XML elements, 211
filtering out MissingData entries, 512
generating polynomials, 450
level specifications, 117
pattern matching, 151–152, 211
querying databases, 172–173

taking lists apart, 88–89
transforming notebooks, 735
transforming XML, 213–214

cash flow value, 559–561
Catch, 772–773
categorical data, 483–486
CDF (cumulative density function), 461–464
Ceiling, 18–19
CellMeans, 483
center of mass, computing, 522–524
centerMass, 522–523
central limit theorem (CLT), 464–466
CentralMoment, 471
Cervantes-Pimentel, Ulises, 306
character encodings, 181–183
character manipulation, 188–192, 192–196
CharacteristicFunction, 464
ChemicalData source, 510–512
chi-square tests, 483–486
ChiSquarePValue, 485
choose, 227–228
Chop, 525
chords

controlling voicings, 383–384
creating, 378
notation, 380
playing progressions, 379

Circle, 263–266
cleaning up

automatically, 737–738
during incremental development, 720–721

Clear, 720–721
ClearAttributes, 29
Clip, 428
clone method, 68
closures

in functional languages, 32
implementing, 66–73
transitive, 162–163

CLT (central limit theorem), 464–466
clustering solutions, third-party, 642
clusters

grouping data into, 486–492
and random number generation, 496–499

CMYK color space, 338
"CoarsestGrained", 659–660
Coefficient, 421
CoefficientList, 421
Collect, 418



780 | Index

colon syntax, 151
color directives, 266–267
color models, 335–340
ColorFunction

highlighting distribution plots, 464
imported image format, 330, 339

Column, 633–635
Combinatoricà  package

constructing graphs to use with, 134–140
extracting information from graphs, 

140–143
sorting lists, 98–100

command history, clearing, 721
command line programs, external, 690–691
comments, stripping, 190
CommonCompoundNames, 508
Commonest, 459
commutative functions, 29
Compile

improving function performance, 727–728
pricing American securities options, 583

compiling (computational finance), 550
Complement, 91, 278
complex numbers

converting to other bases, 12–13
as expression heads, 1–2

Composition, 63–66
computational finance, overview of, 549–551
Condition, 178
conditions, pattern, 149
ConsonantDistance, 208
ConstantArray, 86–87
constants, modifying, 721–723
continuations, 32
“Continued Fraction” (Weisstein), 63
continuously compounding interest, 560
ContourPlot3D, 292–294
contrast, image, 341–346
Control, 633–635
ControlActive, 602–603
controls

creating custom, 625–627
and dynamic updates, 605
and graphics manipulation speed, 602–603
intercepting output of, 607–609
managing large numbers of, 633–639
Manipulate’s choice of, 595–596
multiple, for single variables, 597
types of, 595–596

convergence
graphing iterations, 257
of sums or products, 448

Core stylesheet, 731–732
Correlation, 467–468
correlation, computing, 466–468
CosineDistance, 488
Count, 155–156
coupled mass problems, 530–532
Covariance, 467–468
covariance, computing, 466
critical sections, 664, 665, 682
critical values, 485–486
CriticalSection

diagnosing parallel processing 
performance, 685–686

sharing resources in parallel evaluation, 
664–665

Cross, 443
CrossProduct

solving vector calculus problems, 445–446
and VectorAnalysis̀  package, 92

crossRef, 735
crossword puzzles, cheating on, 204
cumulative density function (CDF), 461–464
curl, of vector fields, 92, 446
Curry, 74–77
currying, 32, 73–77
cylindrical coordinates, 285–289

D
D, 432, 433
DAGs (directed acyclic graphs), 142–143
DamerauLevenshteinDistance, 491
Dandelin demonstration, 304–305
data

adjusting for outliers, 471–472
categorical, 483–486
generating multiple data sets in  

parallel, 658
grouping into clusters, 486–492
linear models, 472–474
measuring shape of, 468–471
nonlinear models, 475–477
partitioning into parallel data sets, 

656–658
plotting in 2D, 252–254
plotting in 3D, 298–300
sharing between parallel kernels, 662–663
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data sources, curated
ChemicalData, 510–512
dictionaries, 202
ElementData, 507–510
FinancialData, 550, 552–557
GenomeData, 516, 518–519
ParticleData, 513–516
PolyhedronData, 320–326
ProteinData, 516–518
value of, 506

Data specification, 403
databases (see also data sources, curated)

querying with patterns, 171–177, 555
storing results in, 714
third-party, 690, 711–713, 715–717

"Data" element, extracting, 334–335
DataRange, 253
DataSourceNames, 715
Date, C.J., 171–172
debugger, built-in, 742
debuggers, creating interactive, 753–756
debugging, 741–742

extracting useful information, 749–753
function libraries, 762–765
functions invoked many times, 746–747
incremental development problems, 

720–721
infinite loops, 165–167
with Print, 743–745
recursive functions, 747–749
visual, 758–762
XML transformations, 219

DecayModes, 516
DeclarePackage, 726
Default, 77–79
Default stylesheet, 731–732
default values

compared to options, 81
creating functions with, 77–79

definitions, custom, 28–29, 79–83
Delete

level specifications, 117–118
pattern matching, 154–155

DeleteCases
excluding matching elements, 153–155
extracting digits of a number, 15
level specifications, 117

delimiters, changing, 190–191
delta (computational finance)

computing, 567, 569
defined, 551, 567
plotting, 569–570

Depth, 750
Derivative, 433
derivatives, computing, 431–435
derivatives, notation for, 431–432, 433
Developer̀  context, 723–724
Developer̀  package, 48, 96–97
Diagonal, 102–103
DiagonalMatrix

compared to Table, 86
constructing shift matrices, 106–107
specifying matrix structure, 104
synthesizing sparse equivalent of, 113–114

diagram, 543, 545
dictClear, 132
dictHasKeyQ, 132
dictionaries

associative lookup, 131–133
key-value, 130–134
natural language, 202–209

Dictionary, 131, 133
dictKeys, 132
dictKeyValuePairs, 132–133
dictLookup, 132
dictRemove, 132
dictReplace, 132
dictStore, 131–132
difference equations

modeling predator-prey dynamics, 519–521
solving, 450–452

differential equations
modeling electrical circuits, 537
solving, 438–441

Digital Image Processing (Gonzalez and 
Woods), 331, 351, 359

DigitBlock, 21
digits, extracting, 13–16
directed acyclic graphs (DAGs), 142–143
directives (see graphics directives)
discount factors, 559–561
Disk, 263–266
Dispatch, 170–171
displacements, 542–543
Display, 680
display forms

bit vectors, 119–121
numerical expressions, 4, 20–22
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DisplayAllSteps, 628
distance functions, 488, 490–492
DistributeDefinitions

with map-reduce, 673
with Parallelize, 651

distribution of processing (see parallel 
processing)

distributions, statistical
central limit theorem, 464–466
cumulative and probability density 

functions, 461–464
measuring shape of data, 468–471
nonuniform, 459–461

divergence (vector calculus), 446
Do

non-functionality of, 31
with ParallelEvaluate, 650

Dot
compared to DotProduct, 445–446
generating polynomials, 420
with graphics matrices, 109
solving vector calculus problems, 443, 444
vector multiplication, 94–95

DotProduct, 445–446
downvalues

inspecting with DownValues, 27–28
synchronizing, 662

DownValues
associative lookup, 132
inspecting downvalues with, 27–28

Drakos, Nikos, 347, 351
Drop

for composed invertible functions, 65
taking lists apart, 88

drop-down lists, 596
DSolve

compared to RSolve, 452
limitations, 534
modeling vibrating strings, 533, 534
solving differential equations, 439–441
with triangular waves, 538

duration of bonds, 561–562
Dynamic

behavior of, 605–606
creating closures, 70–71
in dynamic updates, 604–606
effect of Refresh on, 610
intercepting control output, 607–609
refresh rate, 610

segregating fast and slow operations, 620
speeding up interactive plots, 603–604

dynamic interactivity, overview of, 593–594
dynamic module variables, 624–625
dynamic updates

with changing cell values, 604–606
intercepting control values, 607–609

dynamic values, 609–610
DynamicModule

balancing speed and space, 613–615
creating wormholes, 624–625
with Manipulate, 617, 622
notebook representation of, 612
scope of variables, 624
as a scoping construct, 611–612

DynamicWrapper
balancing speed and space, 613–615
segregating fast and slow operations, 

620–621

E
Eclipse, 761
edgeDetectLOG, 362–364
edgeDetectSobel, 362–363
edges, detecting, 361–364
EditDistance

creating spell-checkers, 207–208
grouping data into clusters, 491

Eigenfaces for Recognition (Turk and 
Pentland), 367, 371

eigenImageElements, 368
eigenImageRecognition, 370
eigenImages, 368
eigenvectors (eigenimages), 365–371
electrical circuits, modeling, 537–539
ElementData, 507–510
engineering applications, overview of, 

505–506
EngineeringForm, 22
envelopes, applying to signals, 394–397
EquivalenceFunction, 766–767
errors, estimating, 16–18
EuclidianDistance, 488, 491
EulerianQ, 141–142
European option pricing, 551, 565–576, 

578–582
Evaluate, 62
evaluation after transformation, 168–169
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evaluation monitors, debugging with, 
756–758

EvaluationMonitor, 757–758
event propagation, controlling, 631–632
EventHandler, 630, 631–632
exact numeric values

in expressions with mixed numerical 
types, 9–10, 11

results as, 2–3, 5–7
ExampleData, 306
Except

finding nonmatching values, 149, 151
limitations of, 154

executable programs, calling, 690–691
Expand

generating polynomials, 450
transforming polynomials, 417–418

ExpandAll, 417–418
Experimental` context, 723–725
explicit methods, stability problems in, 585
expression evaluation, replacement and, 192
Extract

level specifications, 117–118
pattern matching, 152–153

F
FaceGrids, 281–282
FaceGridsStyle, 281–282
Factor, 417
FactorTerms, 417, 418–419
FDM (finite difference method), 578–582
FEM (finite element method), 539–547
fileDisposition, 677–678
Filling

with ColorFunction, 464
with Plot, 245–247
with PolarPlot, 249

FillingStyle, 246–247
FilterOptions, 82
FilterRules, 81–82
financial data, importing from websites, 

557–559
financial derivatives, 573
financial engineering, overview of, 549–551
FinancialData source, 550, 552–557
FindClusters, 486–492
FindFit, 475
FindGeneratingFunction, 453

FindMaximum, 442–443
FindRoot

computing critical values, 485
computing securities option volatility, 573
debugging built-in functions, 756
evaluation monitoring, 57–58
solving algebraic equations, 415

FindSequenceFunction, 453
"FinestGrained", 659–660
finite difference method (FDM), 578–582
finite element method (FEM), 539–547
First, 88
first-class entities, 24
Fit, 473
fitness functions, in Java libraries, 703–706
FixedPointList, 164–165
Flat, 30, 152
Flatten

collapsing unneeded nesting, 43
restructuring lists, 89–90
with SoundNote, 388–389

FlipView, 635
Floor, 18–19
flux, 444
Fold, 26

as code generator, 63
as recursion alternative, 53–56

foldl (Haskell), 54–55
FoldList, 26, 56
foldr (Haskell), 54–55
ForAll, 441
Format, 542
forms, for numerical expressions, 4, 20–22
Fourier analysis, on sound files, 405–412
Fourier series

modeling electrical circuits, 538
modeling vibrating strings, 534

Fourier transforms, in image processing, 
356–361

fourierFilter, 357
fourierImage, 360–361
fractals, generating, 59–60
Frame, 242
FrameLabel, 242
FrameStyle, 242
FRatio, 480
frequency modulation (vibrato), 393–394
FromCharacterCode, 183
FromDigits, 15
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frontend
calling into, 736–737
connecting to remote kernel, 692–694
customizing user interaction, 739–740
integrating MUnit` into, 769–775
startup operations, 737–738

FrontEndExecute, 736
FullDecayModes, 516
FullForm

debugging infinite loops, 167
pattern matching, 152, 169–170

FullGraphics, 238
FullSimplify

measuring securities option sensitivity, 
571–572

solving differential equations, 439
transforming symbolic expressions, 417

function attributes, 29–30
functional notation

for derivatives, 431–432, 433
for numerical expressions, 6

functional programming languages, 31–32
functional programming style, 24–25

compared to pattern-based  
programming, 145

debugging with Print, 743–744
and parallel evaluations, 654–655

functions (see also graphics primitives; 
primitive functions)

associative, 30
commutative, 29
compiling, 727–728
custom definitions, 28–29, 79–83
debugging, 746–749, 756–758
differentiating, 431–435
distance, 488, 490–492
finding series expansions, 429–431
for image processing, 331
indexed, 51–52
for interactivity, 593–594
interpolation, 477–478
localizing within a Manipulate, 622–624
locating undocumented, 723–725
modifying built-in, 721–723
packaging into libraries, 725–727
piecewise, 427–429, 431–435
playing as sound, 390–391
recursive, 218–227, 747–749
redefining with upvalues, 28–29

region, 297–298
repeated application of, 59–62
for sequence recognition, 452–454
vector, 91–92

functions, building
accepting options, 79–83
default values, 77–79
downvalues and upvalues, 27–29
for explicit currying, 73–77
holding arguments, 36
invertible, 63–66
sequence recognition, 452–454
through iteration, 62–63

functions, mapping over lists
automatically, 37
moving sublists, 43–48
multiple arguments, 32–35
multiple functions, 38–41
tracking item indexes, 41–43

functions, plotting
in Cartesian coordinates, 239–247, 

276–282
in polar coordinates, 247–249
in spherical coordinates, 283–285

G
gamma (computational finance), 551, 

567–568
GAs (genetic algorithms), 701, 706
Gather, 492
GatherBy

with map-reduce technique, 676–677
transforming notebooks, 735

GCD (greatest common divisor), 424
GenerateConditions, 437
GeneratingFunction, 453–454
generic programming, 99–100
genetic algorithms (GAs), 701, 706
GenomeData source, 516–519
geometric shapes, displaying, 263–268, 

302–306
Global` context, 721
global matrices, 541
global variables, changing temporarily, 723
Glow, 313–314, 316
Gonzalez, Rafael, 331, 351, 359
gradient (vector calculus), 446
grammars, creating, 227–235
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graph algorithms, 140–143
GraphData

constructing graphs, 138–139
querying databases, 175–177

GraphDifference, 136–137
Graphics, 330–331
graphics directives, 237

color, 266–267
combining with graphics primitives, 266
lighting, 315–316

"Graphics" element, extracting, 333–334
graphics primitives

combining with graphics directives, 266
imported image representation, 330, 339
three-dimensional, 303–305, 408–409
two-dimensional, 237, 263
visualizing tree-based pricing  

approaches, 588
graphics, symbolic nature of, 276
graphics, three-dimensional (see also plots, 

three-dimensional)
compared to 2D graphics, 275
formats supported, 326
geometric shapes, 302–306
importing, 326–327
lighting properties, 313–316
polyhedra, 320–326
surface properties, 313–316
transforming, 317–320
viewing perspective, 309–312
wireframe models, 306–309

graphics, two-dimensional (see also plots, 
two-dimensional)

annotating, 241–242, 269–270
arrows, 270–273
combining multiple graphics, 256–257
format of imported images, 330–331
geometric shapes, 263–268
tree-based pricing approaches, 587–591

Graphics3D, 408–409
GraphicsArray, 258–259
GraphicsColumn, 238, 259–260
GraphicsGrid

displaying related graphs, 258–259
formatting 2D graphics outputs, 238

GraphicsRow, 238, 259–260
GraphIntersection, 136–137
GraphJoin, 136
GraphPlot, 161

GraphProduct, 136–138
graphs

constructing for Combinatoricà  
algorithms, 134–140

extracting information, 140–143
interactive, 600–604
transitive closure of, 162–163

GraphUnion, 136
GraphUtilities̀  package, 140, 161
Gray, Theodore, 610, 614, 615
"GrayLevels" element, 333–334
greatest common divisor (GCD), 424
greedy matching, 159–161
Greeks, 551, 567–572
grep demonstration, 199–200
Grid, 633–635
grid lines, on graphs, 241–245
Grid Mathematica, 641
grpath, 588

H
Halton sequence, 498
HamiltonianQ, 141–142
HammingDistance, 491–492
Haskell

currying functions, 76, 77
folding implementations, 54–55
as functional language, 31–32

hasPath, 162–165
Head, 1–2
heads

graphics, 275
indexed, 51
numerals, 1–2
red-black trees, 125–126
XML, 210, 212–213

HeapSort, 99–100
histogram equalization, 341–346
histogram specification, 347–351
histogramSpecification, 348–350, 352–354
history, clearing, 721
Hold, 30

completing replacement before 
evaluation, 168–169

currying, 75
holding unique argument combinations, 36
nonstrictness of, 32
pattern matching, 152
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HoldAll, 30
creating grammars, 227–228
implementing closures, 66, 70
nonstrictness of, 32

HoldFirst, 30
destructive changes to symbol values, 

111–112
effect on Dynamic, 605–606
nonstrictness of, 32

HoldForm
displaying polynomials in specific order, 

420, 422
with Trace, 750–751

HoldPattern
associative lookup, 132
completing replacement before 

evaluation, 168–169
HoldRest, 30, 32
HSV color model, 335–340
hue, 335–337
Hull-White method, 587–590
hyperspheres, volume of, 437–438
hypothesis testing, 483–486

I
identity matrices, 104
IdentityMatrix

constructing lists, 86–87
specifying matrix structure, 104
synthesizing sparse equivalent of, 113–114

IgnoreCase, 200
IKernelLink, 709–711
Image, 330–331
image processing

challenges of, 329
converting RGB to HSV, 335–340
correcting images, 347–351
detecting edges, 361–364
enhancing images, 341–346
extracting elements, 332–335
functions, 331
image recognition, 365–371
sharpening images, 351–361
smoothing images, 356–361

image representation, 330–331, 336
ImageConvolve, 364
ImageHistogram, 346
images, imported, 330–331
imageVector, 368

ImplementJavaInterface, 704
Import

extracting image information, 332–335
image processing format, 330–331
importing digital sound files, 403
importing financial data, 557–558
importing XML, 209–210

incUntilButton, 625
indexed functions, 51–52
infinite loops, debugging, 165–167
infix notation, 6
Initialization, 617–618, 622–623
initializing automatically, 737–738
Inner, 94–95, 420
InputForm, 237
Insert, 87
Inset, 272–273
Install (MathLink), 697
InstallJava, 700–701
InstallNET, 707
IntegerDigits, 13–15
integers, as expression heads, 1–2
IntegerString, 16
Integrate, 435–437
integration, 435–438
interactivePlot, 630–631
interactivity, 593–594

animating expressions, 627–630
balancing speed and space, 613–615
controlling dynamic value updates, 

609–610
creating custom controls, 625–627
creating custom interfaces, 630–633
dynamic updates, 604–606
improving Manipulate performance, 

619–622
intercepting control values, 607–609
localizing functions in Manipulate, 

622–624
making a self-contained Manipulate, 

615–618
manipulating plots, 600–604
manipulating symbolic expressions, 

598–600
remembering found values, 618
scoping constructs in notebooks, 611–612
sharing dynamic module variables, 

624–625
variable manipulation, 594–597
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interest, continuously compounding, 560
interest rate sensitivity

of bonds, 561–562
of options, 567–572
visualizing tree-based approaches, 587–591

interfaces, custom
creating, 630–633
managing large number of controls in, 

633–639
interfacing with third-party tools, 689–694
internal rate of return, 560
Interpolation

computing finite differences, 579–580
creating interpolation functions from 

data, 477–478
InterpolationOrder

in 2D plots, 253–254
in 3D plots, 298–299

Intersection
eliminating duplicate list elements, 91
querying databases, 177

IntervalIntersection, 18
IntervalMemberQ, 18
intervals, estimating errors with, 16–18
IntervalUnion, 18
inverseEqualizationMap, 350
InverseFunction, 63–66
InverseSeries, 430–431
Item, 633–635
ItemNumbered, 731–732
iteration

building functions through, 62–63
computing with Nest functions, 59–62
graphing convergence, 257

J
Java, 700–706
JavaBlock, 701
JavaScript closure solutions, 69–70
JLink` package, 700–701
Join

composing new lists, 87–88
transforming XML, 216

K
kernels

as argument of ListConvolve, 45
bypassing, 736

clearing old definitions from, 720–721
Laplacian, 352
local, 643–646
master, 642, 660, 665, 667, 668
master-slave overhead, 660
and .NET applications, 709–711
in parallel computing, 642–650,  

659–663, 686–688
remote, 646–648, 692–694
shared resource issues, 663–665
sharing data across, 662–663
slave, 642–646, 660, 665, 667, 668
startup and termination operations, 

737–738
variable storage in, 612

Kernels, 649–650
keyToFilenamePrefix, 674–675
kinematics problems, 524–529
knapsack, 701–706
Koch snowflake demonstration, 59–60
Kreyszig, Erwin, 439–440, 536
Kurtosis, 469–470, 471

L
labels

arrows, 272–273
on graphs, 241–242

LabelStyle, 240
lambda functions, 32
language generators, creating, 232
Laplacian, 446
Laplacian of the Gaussian (LoG) algorithm, 

361–362
Laplacian transforms, 351–356
Last, 88
LaunchKernels, 648
Lauschke, Andreas, 574, 578, 583
lazy evaluation, 32
LCM (least common multiple), 424
LeafCount, 156
least common multiple (LCM), 424
Legend, 263
LegendPosition, 261
legends, creating, 260–263
LegendSpacing, 261–263
LegendTextSpace, 261–263
Less

creating functions that accept options, 80
ordered associative lookup, 125–126



788 | Index

Level, 116–117
level specifications (levelspecs), 114

counting matching elements, 155
manipulating nested lists, 114–118
in mapping multi-argument functions, 

34–35
with ParallelMap, 655
pattern matching, 152, 154

libraries
creating, 725–727
debugging, 762–769

Lichtblau, Daniel, 227, 232
Lighting

controlling lighting of 3D graphics, 
313–316

visualizing translucent surface  
coverings, 309

lighting properties, 313–316
Lightweight Grid Service, 642, 646–648
limits, computing, 426–427
Line, 263–266
line integrals, computing, 443
linear regressions, 472–474
linearElement, 539–540
linearElementMatrix, 540
LinearModelFit, 473–474
linguistic processing, 202–209
LinkObject, 689, 697
links, defined, 689
Lissajous curves, plotting, 249–250
List

constructing lists, 85
extracting matrix diagonals, 102

list functions, overview of, 85–90
Listable, 30

mapping over lists automatically, 37
vector math operations, 91–92

ListAnimate, 630
ListContourPlot, 410
ListConvolve

computing finite differences, 579–580, 582
image convolution, 352
performing computations on sublists, 

44–48
ListCorrelate, 44–48
ListLinePlot

in Fourier analysis, 409
visualizing random walks, 500

ListPlot, 252–254

ListPlot3D, 298–300
lists

building incrementally, 57–59
converting to and from trees, 89, 127–128
determining order without sorting, 

100–102
eliminating duplicate elements, 91
generating, 85–88
manipulating nested, 114–118
modeling tree data structures, 121–125
numerical representation, 95–97
processing functions, 85–90
rearranging, 89–90
restructuring, 89–90
sorting, 97–100
taking apart, 88–89

LoadNETType, 707–708
local kernels, 643–646
localMatrices, 541
locationVectors, 541
lock variables, 664–665
LoG (Laplacian of the Gaussian) algorithm, 

361–362
Longest, 159–161
"Lookup", 556–557
LowerTriangularize, 105

M
machine precision, 2–3, 7
MachinePrecision, 7
Macintosh computers, and remote kernels, 

693–694
makeAdaptiveGrid, 575–577
MakeGraph, 135
ManhattanDistance, 488, 491
Manipulate, 593–594

controlling variable values interactively, 
594–597

creating custom controls, 625–627
creating custom interfaces, 633–635
creating interactive graphs, 600–604
creating tabbed and menu interfaces, 

637–639
encapsulating startup definitions, 

615–618
and graphics manipulation speed, 602
improving performance of, 619–622
localizing functions in, 622–624
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measuring securities option sensitivity, 
571–572

relationship with Animate, 629
remembering found values, 618–619
scope of control variables, 624
simulating kinematics problems, 526–529
varying symbolic expression structures, 

598–600
with yield curves, 564–565

Manual, 698–699
Map

compared to ParallelMap, 654–656
creating scales and melodies, 376
effect of, 27
level specifications, 117–118
mapping multi-argument functions, 33–35
mapping multiple functions in a single 

pass, 38–41
notations for, 26
playing chord progressions, 379

mapAndStore, 674
MapIndexed

level specifications, 117
parallel processing with, 652–653, 667
tracking item indexes, 41–43
transforming notebooks, 735

mapper, 676
mapping (see functions, mapping over lists; 

Map)
mapReduce, 669–678
market cap, defined, 556
mass, computing, 522–524
master kernels

overhead, 660
in parallel computing, 642
in pipeline approach, 665, 667–668

matching (see pattern matching)
Mathematica in Action (Wagon)

3D graphics primitives demonstration, 
304–305

iterative functions systems study, 52
MathKernel

connecting frontend to remote kernel, 
693–694

creating a custom frontend, 711
MathLink, 689

installing programs, 697
types returned, 699

matrices, 93

diagonal, 104
global, 541
identity, 104
permutation, 105–106
shift, 106–107
sparse arrays, 112–114
tridiagonal, 104–105, 530

matrices, building, 103–109
matrices, manipulating

extracting diagonals, 102–103
modifying rows and columns, 110–112
non-numeric permutations, 109
permuting rows and columns, 105–107
transforming, 105, 319
with vector functions, 91–92

matrix computations
covariance and correlation, 466–468
normal modes, 530, 531–532

matrix functions, overview of, 93–95
maxima problems, solving, 441–443
Maximize, 441–443
MaxIterations, 165–166
MaxRecursion, 301–302
Median, 457
melody, 375–377
MemberQ

eliminating duplicate list elements, 91
emulating SQL subqueries, 174
level specifications, 117
testing repeated transformations, 163–164

"Members", 556
memory, freeing, 112–114, 721
memory, shared, 682
MenuPosition, 731
MenuView, 635–637
merge, 676–677
mergeAll, 676–677
Mesh

constructing wireframe models, 306–307
highlighting plot points, 242–243

MeshFunctions, 300
Method, 659–661
MethodOfLines, 578
Microsoft .NET, 707–711
MIDI files, exporting, 389–390
minima problems, solving, 441–443
MinimalPolynomial, 415–416
Minimize, 441–443
Mod, 383–384
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mode, computing, 459
Module

compared to DynamicModule, 611–612
implementing closures, 70

moment of inertia, computing, 522–524
MonomialList, 421–422
Monte Carlo method, 585–587
Monty Hall problem, 502–503
Moore, Ross, 347, 351
Most

associative lookup, 132
taking lists apart, 88

MousePosition, 630
MovingAverage, 44
MovingMean, 44
mprep preprocessor, 694–695, 699
MUnit` framework

creating unit tests, 762–765, 765–767
directing kernel to, 770
functions, 772
integrating with frontend, 769–775
organizing and controlling tests, 767–769

music (see audio and music processing)
musical notes, creating, 374–375

N
N, 4–7
natural language dictionaries, 202–209
NDSolve

evaluation monitoring, 57–58
limitations, 534
modeling vibrating strings, 533–534
speeding up, 574–578

Nearest, 206–207
Nelson-Siegel function, 563–565
Nest, 26

building functions through iteration, 62–63
iterative computations, 59–60
as recursion alternative, 56
restructuring lists, 89

nested applications
flattening, 30
readability of, 48–51

nested lists, manipulating, 114–118
NestList, 26

convergence through iteration, 257
debugging infinite loops, 166
generating lists of grid points, 579

iterative computations, 60
modeling population dynamics, 520
as recursion alternative, 56

NestWhile
iterative computations, 60–62
as recursion alternative, 56

NestWhileList
iterative computations, 60
as recursion alternative, 56

.NET, 707–711
NetImage, 325
NETLink` package, 707
NETNew, 707–708
networks

configuring remote services kernels, 
646–648

map-reduce technique for, 673
parallel computing on, 642

nextUniqueFile, 674–675
ngon, 263–266
NIntegrate

computing critical values, 485
evaluation monitoring, 57–58

NMinimize, 57–58
nongreedy matching, 160–161
nonlinear models, 475–477
NonLinearModelFit, 475–477
nonparametric methods, 565
nonsinusoidal waves, 538–539
nonstrict languages, 32
nonticklish functions, 610
Normal

converting sparse matrix to list form, 
104, 138–139

forcing low-level primitive  
representation, 308

generating series expansions of  
functions, 429

normal modes, computing, 530–532
notation, 3–4 (see also postfix notation; 

prefix notation)
for bases other than 10, 12–13
for derivatives, 431–432, 433
functional, 6, 431–432, 433
in GraphUtilities̀  package, 161
for language grammars, 227
musical, 380–384
for numerical expressions, 3–4, 6
for XMLObject, 210–211
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Notation, 68
NotebookGet, 735
NotebookOpen, 735
NotebookPut, 735
notebooks

extracting information from, 733–737
formatting, 728–732
SaveAs formats, 735
saving and reopening, 615–616
saving space in, 613–615
transforming into other forms, 733–736

notebooks, interactive, 611–612
NotebookSave, 735
NSolve, 532
NSum, 57–58
Null, 174
NumberForm, 21
NumberFormat, 22
NumberPadding, 21
numbers, representation of (see also types, 

numerical)
display forms, 20–22
in lists, 95–97
using other bases, 12–13

numeric results, precision of, 2–3, 4–9
numerical expressions, notation for, 3–6
numerical types (see types, numerical)

O
object-based programming, 541–542
octave divisions, 397–401
Ohm’s law demonstration, 608–609
Opacity, 285, 295–296
OpenerView, 633–635
Options, 79–83
options, accepting, 79–83
options on securities, 551

American pricing, 583–585
computing implied volatility, 573
European pricing, 551, 565–576, 578–582
measuring sensitivity, 567–572

OptionValue, 79–80
Order, 187
ordered associative lookup, 125–129, 

133–134
Ordering, 101–102
Orderless, 29, 152
oscillations in tree methods, 585

Outer
extracting financial properties, 555–556
querying databases, 173

outliers, adjusting for, 471–472
overhead

master-slave, 660
of parallelization, 686–688
tradeoffs, 652

Overlaps
with StringCases, 195–196
with StringPosition, 198, 200

P
packages, defining custom, 725–727
packed arrays, 95–97
PaddedForm, 21–22
PairwiseScatterPlot, 494–496
palindrome demonstration, 206
PaneSelector, 633–635
Parade magazine, 502
Parallel Computing Toolkit, 642
parallel primitives, 659
parallel processing, 641–643

combining results of parallel data 
segments, 653–654

debugging code for, 642
distribution methods, 659–661
mapping functions across lists, 654–656
organizing operations, 665–668
overhead of, 652, 686–688
partitioning large data sets, 656–658
performance problems, 678–686
processing massive numbers of files, 

669–678
race conditions, 663–665
running commands on multiple kernels, 

648–650
running different algorithms in parallel, 

661–662
scope of, 641–642
of serial expressions, 651–653
sharing data between kernels, 662–663

ParallelCombine, 653–654, 659
ParallelDo, 659
ParallelEvaluate

checking state of remote kernels, 650
measuring overhead of parallelization, 

686–687
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running commands on multiple kernels, 
648–650

Parallelize, 651–653, 659
ParallelMap

as alternative to CriticalSection, 665
distributing computation across  

kernels, 659
implementing data-parallel algorithms, 

654–656
ParallelSubmit, 665–668
ParallelSum, 659
ParallelTable, 659

as alternative to CriticalSection, 665
partitioning large data sets, 656–658

ParallelTry, 661–662
parametric methods, 565
parametric plots, 249–251
ParametricPlot, 250–251
ParametricPlot3D, 290–292

compared to RevolutionPlot3D, 288
compared to SphericalPlot3D, 292
constraining 3D plots to specified 

regions, 296–297
ParetoPlot, 494–495
parsers, 227–235, 670
Part

accessing XML structure, 210–211
compared to ReplacePart, 157–159
taking lists apart, 88

partial derivatives, computing, 431–435
partial differential equations (PDEs), 534, 

574–578
particleData function, 513
ParticleData source, 513–516
particleTable, 513–514
Partition

converting linear list into 2D form, 
258–259

converting RGB images to HSV, 336–337
relationship to ListConvolve, 47–48
restructuring lists, 89–90

PassEventsDown, 631–632
PassEventsUp, 631
pattern-based programming, 145–146
pattern constructs, 146–150
pattern matching, 198–200

counting matching elements, 155–156
emulating unification-based matching, 

178–180

excluding matching elements, 153–155
extracting substrings, 193
extracting XML elements, 211–212
finding longest or shortest matches, 

159–161
finding matching values, 151–153
with genetic and protein data, 516–519
greedy and nongreedy, 159–161
manipulating 3D graphics, 326–327
manipulating patterns with, 169–170
order of processing, 28
primitives, 145–149
querying databases, 171–177
removing and replacing string  

characters, 188
replacing parts of an expression, 157–159
in strings and text, 183–186, 198–200
transforming matching values, 151–153
transforming XML, 213–214
using semantic relationships, 177–178

pattern tests, 149
patterns, defined, 146
PatternSequence, 148
PCA (principal component analysis), 

365–367
PDEs (partial differential equations), 534, 

574–578
PDF (probability density function), 461–464
Pentland, Alex, 367, 371
percussion grooves, 384–389
performance, improving

compiling functions, 727–728
dynamic modules, 613–615
freeing memory, 91, 112–114, 721
interactive graphics manipulation, 

602–604
interactivity, 613–615, 619–622
parallel processing, 665, 678–688
partial differential equations, 574–578

periodic table of elements, 508–510
permutation matrices

constructing, 105–109
sparse versions of, 114

perpetuity, 559–560
perspective, 309–312
perturbation, random, 498–499
Piecewise

composing complex functions, 427–428
creating envelopes, 394–397
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piecewise functions
composing, 427–429
as result of Integrate, 437

PiecewiseExpand, 429
pipeline approach, 665–668
Play, 391
Plot, 239

compared to ListPlot, 253
compared to Plot3D, 278
compared to PolarPlot, 248–249

Plot3D
combining 2D contours with 3D plots, 

295–296
compared to ParametricPlot3D, 291
compared to Plot, 278
constraining plots to specified regions, 

296–297
plotting functions in Cartesian 

coordinates, 276–282
PlotLabel, 241
PlotLegends̀  package, 260–261
PlotPoints

plotting 3D regions with satisfied 
predicates, 301–302

speeding up interactive graphics 
manipulation, 602–603

PlotRange
in interactive plots, 600–601
overriding, 255
specifying coordinates, 243–244
viewing 2D contours with 3D plots, 

295–296
plots, general (see also graphs)

combining slow and fast, 620–622
interactive annotation, 630–631
resolution and speed of interactivity, 602

plots, three-dimensional (see also graphics, 
three-dimensional; graphs)

3D contour plots, 292–294
building structural models from, 306–309
in Cartesian coordinates, 276–282
combining 2D contours with 3D plots, 

295–296
constraining to specified regions, 296–298
in cylindrical coordinates, 285–289
interactivity, 600–604
parametric, 290–292
plotting data, 298–300
regions with satisfied predicates, 301–302

in spherical coordinates, 283–285
plots, two-dimensional, 237–238 (see also 

graphics, two-dimensional; graphs)
in Cartesian coordinates, 239–247
central limit theorem, 464–466
combining 2D contours with 3D plots, 

295–296
combining multiple plots, 255–258
combining slow and fast plots, 620–622
of data, 252–254
displaying related plots, 258–260
distribution shapes, 468–471
formatting, 239–247, 259–260
function gradients, 446–447
interactivity, 600–604
legends, 260–263
limiting values, 426–427
linear regressions, 472–474
nonlinear models, 475–477
parametric plots, 249–251
in polar coordinates, 247–249
probability distributions, 464
pseudorandom number distributions, 460
series approximations, 430
statistical, 492–496
stylizing, 269–270
yield curves, 563–565

PlotStyle, 285
Plus, 34
polar coordinates, plotting in, 247–249
PolarPlot, 247–249
polyhedra characteristics, 320–326
PolyhedronData source, 175–177, 320–325
PolynomialMod, 423–424
PolynomialQuotient, 422
PolynomialQuotientRemainder, 422
PolynomialRemainder, 423–424
polynomials

decomposing, 420–422
dividing by other polynomials, 422–424
extreme values, 441–442
finding from given roots, 415–416
generating, 419–420
indefinite sums and products, 449
transforming, 417–419

population dynamics, modeling, 519–521
Position

with Count, 156
level specifications, 117
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manipulating nested lists, 114–116
pattern matching, 152–153, 154–155, 156

positions
extracting substrings, 193–194
removing and replacing string characters, 

189–190
Postfix, 51
postfix notation, 6

with AccountingForm, 20–21
and code readability, 48–51
specifying precision, 7

power series representations, 429–431
Precision, 8
precision of numeric results, 6

controlling, 2–3, 4–9
with mixed numerical types, 11
with mixed-precision values, 10

predator-prey dynamics, modeling, 519–521
Prefix, 51
prefix notation, 6

and code readability, 48–51
in rigid bodies problems, 522–523

Prepend, 87
prime notation, 432, 433
primes demonstration, 38–40
primitive functions, 25–27 (see also graphics 

primitives)
color primitives, 335–336
for decomposing polynomials, 421
parallel primitives, 659
pattern primitives, 145–149

principal component analysis (PCA), 365–367
Print

compared to PrintTemporary, 753
debugging with, 743–745
with TraceHandler, 680

printing, as debugging technique, 743–745
PrintTemporary, 753–754
Privatè  context, 726
probability density function (PDF), 461–464
probability distributions, 461–464
procedural programming style, 24–25
products (discrete calculus), 447–450
ProteinData source, 516–519
prototype patterns, defined, 68
pseudorandom numbers, generating, 459–461
pure functional languages, 31–32
pure functions, 24, 32
put-call parity, 566

put options, 551, 566–567
PValue

in ANOVA results, 480
in chi-square tests, 484

Q
quadSwap, 359
Quantile, 457
QuantilePlot, 494–495
quantiles, 457
QuartileSkewness, 469
quasirandom generators, 496–499
querying databases

for available entities, 715–717
with patterns, 171–177, 555
with SQLSelect, 711–713

Quiet, 756

R
race conditions

in parallel evaluation, 643
preventing, 663–665

Ramanujan, Srinivasa, 448
random numbers, 459–461, 496–504
random perturbation, 498–499
random walks, 500–502
RandomChoice

adding rhythm to melody, 377
defining indexed functions, 52

RandomInteger, 459
RandomReal

generating random numbers, 459
as nonticklish function, 610

Range
composing lists, 86–87
in grep implementation, 199

Raster, 330, 336–339
rational numbers

converting to integers, 18–19
as expression heads, 1–2

Rationalize
converting approximate values to exact, 19
finding polynomials from given roots, 416

readability, 48–51
ReadList, 690–691
real numbers

converting to other bases, 12–13
as expression heads, 1–2
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RealDigits, 13–14
Reap

building image transformations 
incrementally, 347–348

building lists incrementally, 57–59
debugging with, 746–749, 752, 756

Rectangle, 263–266
RecurrenceTable, 520–521
recursive descent parsers, 227–228, 235
recursive functions

debugging, 747–749
nonrecursive alternatives, 53–56
transforming XML with, 218–227

red-black tree algorithms
compared to built-in associative lookup, 

133–134
ordered associative lookup, 125–129

Reduce, 415
reduce, 669–678
Refresh, 609–610
RegionFunction, 298
RegionPlot, 301–302
regions

constraining plots to, 296–298
plotting, 301–302

regular expressions
common, 185–186
extracting words from strings, 193
standardization of, 183
stripping comments from, 190

RegularExpression, 183
ReinstallJava, 700–701
ReleaseHold, 168–169
remote kernels

benefits of, 693
configuring, 646–648
connecting frontend to, 692–694

Remove, 131
Repeated, 148
RepeatedNull, 148
Replace, 117–118
ReplaceAll

changing heads of XML data, 212–213
computing variance, 458
creating functions that accept options, 80
debugging infinite loops, 166–167
eliminating complex numbers, 156
evaluating difference equation solutions, 

452

querying databases, 174
transforming XML, 213, 223

ReplaceAllRepeated, 75
ReplaceList, 752
ReplacePart, 157–159
ReplaceRepeated

querying databases, 173–174
testing, 165–167

Resolve, 441
Rest, 88
Reverse, 89
RevolutionAxis, 289
RevolutionPlot3D

constraining 3D plots to specified 
regions, 296–297

plotting surfaces in cylindrical 
coordinates, 286–288

RGB color model, 335–340
rho (computational finance)

computing, 568
defined, 551, 568
plotting, 571

rhythm, 376–377, 382
Riffle, 87–88
rigid bodies problems, 522–524
roman numerals, converting, 15
Root objects, 441–442
Rotate

labeling arrows, 272–273
rotating 3D graphics, 318–319

RotateLeft, 65, 89
RotateRight, 65, 89
Round, 18–19
rounding rational numbers, 18–20
Row, 633–635
RSolve, 451–452
rules, 146, 150

completing replacement before 
evaluating, 168–169

implementing algorithms, 161–165
optimizing, 170–171
transforming matched values, 151
transforming XML, 213–218
using patterns as a query language, 171–177

Run, 690–691

S
SameQ, 91, 156
SameTest
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finding duplicate list elements, 91
querying databases, 177

saturation, 336
Save, 680
SaveAs, 735
SaveDefinitions, 617, 622–624
saveDirectory, 674–675
saver, 674–675
scalar operations, 17
scalars, defined, 93
Scale, 317
scales, musical, 375–376
Scan, 117–118
scientific applications, overview of, 505–506
ScientificForm, 22
scoping constructs, 611–612
scratch variables, 613–615
SeedRandom, 500
Select

extracting matching strings, 196
filtering points in kinematics problems, 525
taking lists apart, 88

SelectionSort, 98–99
semantic pattern matching, 177–178
sequence, 227–228
sequence recognition, 452–454
serial expressions, parallelizing, 651–653
Series, 429
SeriesObject, 429
Set

creating downvalues, 28
differentiating functions, 432
finding series expansions, 429

set functions, overview of, 91
SetAttributes, 29
SetDelayed

creating downvalues, 28
differentiating functions, 432
finding series expansions, 429

SetEdgeWeights, 139–140
SetPrecision, 7
sets, defined, 91
SetSharedFunction, 662
SetSharedVariable, 662–663
shape, 523–524
shared memory performance, 682
SharedMemory tracer, 682
Sharpen, 356
ShearingTransform, 320

shift matrices, constructing, 105–109
Short, 15
Shortest, 160–161
Show

combining 2D contours with 3D plots, 295
combining plots in a single graph, 

255–258
ShowLegend, 263
Sign, 428
Simplify

deriving cash flow arrangements, 559–560
solving differential equations, 439
transforming symbolic expressions, 417

simulations
kinematics problems, 526–529
power of, 502
stochastic, 499–504

Sin functions, 426–427
single-assignment, 31
SkeletonGraph, 175
Skewness, 468–469, 471
slave kernels

checking status of, 645
configuring, 643, 644–646
overhead, 660
in parallel computing, 642
in pipeline approach, 667, 668

sliders, 595–596, 625–627
SlideView, 635–636
Sobel edge-detection method, 361–364
Solve

compared to NSolve, 532
computing normal modes, 530–531
differentiating functions, 432
solving algebraic equations, 414–415

Sort
animated demonstration of, 628
compared to Ordering, 101
compared to SelectionSort, 98
identifying outliers, 471
with ParallelCombine, 653–654
restructuring lists, 89
sorting lists, 97–100
in structure-adding transformations, 

224–226
SortBy, 97
sorting (see also Sort; SortBy)

customizing quick sorts, 79–80
lists, 97–100



Index | 797

Sound
creating scales and melodies, 375–376
playing digital sound files, 403–404

sound files, digital, 403–412
SoundNote

creating chords, 378
creating musical notes, 374–375
playing chord progressions, 379
specifying percussion instruments, 

385–388
syntax, 388–389

sounds (see audio and music processing)
Sow

building image transformations 
incrementally, 347–348

building lists incrementally, 57–59
debugging with, 746–749, 752, 756

sparse arrays, 112–114
SparseArray

conserving space, 91, 113–114
in statistical analysis, 457
synthesizing tridiagonal matrices, 104, 

531–532
specificationMap, 347–348, 350–351
spectrograph demonstration, 411–412
Specularity

controlling lighting of 3D graphics,  
313, 316

visualizing translucent surface  
coverings, 309

spell-check demonstration, 206–209
spherical coordinates, 3D plots in, 283–285
SphericalPlot3D

compared to ParametricPlot3D, 292
constraining 3D plots to specified 

regions, 296–297
plotting surfaces in spherical coordinates, 

283–284
Split, 224
SQL

database connectivity, 713–717
query equivalents, 171–177

Stack, 748
stack tracing, 747–749
StackInhibit, 749
Start (Windows), 691–692
stateless approach, 667
statistical analysis, 455–456

central limit theorem, 464–466

common functions, 456–459
common plots, 492–496
covariance and correlation, 466–468
grouping data into clusters, 486–492
hypothesis testing, 483–486
interpolation functions, 477–478
linear models, 472–474
measuring data shapes, 468
nonlinear models, 475–477
outliers, 471–472
probability distributions, 461–464
pseudorandom number generation, 

459–461
quasirandom number generation, 

496–499
statistical significance, 479–483
stochastic simulations, 499–504

Statistics in a Nutshell (Boslaugh and 
Watters), 455

central limit theorem, 465
chi-square demonstration, 484
testing for statistical significance, 479–480

StemLeafPlot, 494
step monitors, debugging with, 756–758
StepMonitor, 757–758
stochastic rounding, 19–20
stochastic simulations, 499–504
strict languages, 32
String, 380–381
string expressions, 183–185, 193
string patterns, classes of, 183–186
StringCases, 193, 195–196
StringDrop

compared to StringTake, 194
matching and searching text, 200
removing and replacing characters, 189

StringExpression, 183–184
StringFreeQ, 198, 199–200
StringJoin

duplicating strings, 196–197
extracting characters, 194

StringMatchQ
extracting matching strings, 196
matching patterns, 198, 199–200

StringPosition, 198, 200
StringReplace, 188–192
StringReplacePart, 189–190
strings, 181–186

comparing, 187
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converting, 15–16
duplicating, 196–198
extracting substrings from, 192–196
removing and replacing characters, 

188–192
stripping comments from, 190

StringSplit
listing polyhedron attributes, 321–322
tokenizing text, 201–202

StringTake, 193–194, 200
Style, 269
StyleData, 730
StyleDefinitions, 730
stylesheets, 728–732
SubitemNumbered, 731
Subscript, 420
subscripts, 51
Subsets, 91
substrings, extracting, 192–196
Sum

generating polynomials, 420
solving discrete calculus problems, 

448–450
SumConvergence, 448
sums (discrete calculus), 447–450
surface integrals, 444–445
surface properties, 313–316
surfaces, plotting, 285–292
Svensson model, 565
symbolic expressions, manipulating, 598–600
symbols

assigning attributes to, 29
in expressions with mixed numerical 

types, 9–10
modifying meaning of, 723

symbols, undefined, 27
syntax, 6

colon use, 151
Dictionary, 133

T
Table

creating a moving window for mapping, 44
generating lists, 86–87
mapping multiple functions in a single 

pass, 39–40
with ParallelEvaluate, 650
representing numerical lists, 95–96

TableType, 716

TabView, 635, 637–638
TagSet, 29
TagSetDelayed, 29
Take

mapping a function over a moving 
sublist, 44

running commands on multiple kernels, 
648–649

taking lists apart, 88
Tally

adjusting for outliers, 472
counting matching elements, 156
in linguistic processing, 205–206
in statistical analysis, 459

tempered tuning, 397, 400, 401–402
tensor functions, 93–95
tensors, defined, 93
Test, 766–767
TestFree, 765–766
TestID, 763, 771
testing, 742

creating tests with alternate criteria, 
765–767

creating unit tests, 762–765
organizing and controlling MUnit tests, 

767–769
TestMatch, 765–766
TestSections, 772–775
TestStringFree, 765–766
TestStringMatch, 765–766
TestSuite construct, 768–769
Text

annotating 2D graphics, 263, 269–270
labeling arrows, 272–273

text annotations (see annotation)
text strings, 181–186

changing delimiters in, 190–191
matching patterns in, 198–200
tokenizing, 201–202

theta (computational finance)
computing, 568
defined, 551, 568
plotting, 570

Thickness, 268
three-dimensional graphics (see graphics, 

three-dimensional; graphs; plots, 
three-dimensional)

Through, 457
Throw, 772–773
ToCharacterCode, 182
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ToExpression
expression evaluation, 192
transforming XML, 213–214

tokenizing text, 201–202
ToolTip, 512
ToString, 182
Towers of Hanoi puzzle, 451–452
Tr, 102–103
Trace, 749–753
TraceHandler, 679–680
TraceList, 680–686
Tracers, 679–680
TraceScan, 752–753
transform, 225–226
transformation functions, symbolic, 319–320
transformation matrices, 319–320
transformations

after evaluation, 168–169
images, 347–348
polynomials, 417–419
structure-adding, 224–226
trigonometric, 419

transitive closure, computing, 162–163
transitiveClosure, 162–163
Translate, 318
Transpose

formatting property lists, 517–518
in Fourier analysis, 411–412
in grep implementation, 199
interlacing percussion elements, 387–388
restructuring lists, 89

traversal algorithms, 121–125
tree algorithms

interest-rate sensitivity, 587–591
option pricing, 585, 587–590
red-black, 125–129, 133–134
traversals, 121–125

tree data structures
converting to and from lists, 89, 127–128
modeling with lists, 121–125
selective flattening, 90

tremolo, 392, 394
TriangleWave, 538
tridiagonal matrices, 104–105, 530
TrigExpand, 419
TrigFactor, 419
trigonometric transformations, 419
TrigReduce, 419
trimmed mean, computing, 471

trinomial scheme, 583–585
truss structures, modeling, 539–547
trussGraphicNodes, 544–545
TrussModel, 541–547
tunings, alternate, 397–402
Tuples, 14–15
Turk, Matthew, 367, 371
two-dimensional graphics (see graphics, 

two-dimensional; graphs; plots, 
two-dimensional)

types, numerical
compiling functions, 727, 728
converting between, 18–20
identifying database support for, 716
indicated by Head, 1–2
mixing, 9–11
with .NET applications, 707–708, 710
returned by MathLink, 699

U
unbiased rounding rule, 19–20
uncertainty, 16–18
undo operation, 65
Unicode, 181
unification-based matching, 178–180
uniform distributions, 465–466
unify, 179–180
Union

eliminating duplicate list elements, 91
ordering extracted nodes, 541

Unique
associative lookup, 131
with Private, 726

uniqueFileName, 674–675
unit tests

in frontend, 769–775
organizing and controlling, 767–769
writing, 762–767

UnitStep, 428
unpacked arrays, 95–97
unprotecting operations, 722–723
UnsavedVariables, 613
UpperTriangularize, 105
UpSet, 28–29
UpSetDelayed, 28–29
upvalues, 28–29, 65
UpValues

displaying bit vectors efficiently, 119
redefining functions, 28–29
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user-customized functions, 28–29, 79–83
UsingFrontEnd, 736

V
value (brightness), 336–337
Value-at-Risk (VaR), modeling, 585–587
van der Corput sequence, 497, 498
variables

controlling values interactively, 594–597
dynamic module, 624–625
global, 723
labeling, 597
scoped, 611–612
scratch, 613–615
storage of, 612

Variables, 421
variance, computing, 458
vector calculus problems, solving, 443–447
vector functions, overview of, 91–92
VectorAnalysis̀  package, 92, 445
VectorPlot, 446–447
vectors, 93

bit, 119–121
Boolean, 488–491
computing covariance and correlation, 

466–468
eigenvectors, 365–371

vega (computational finance)
computing, 568–569
defined, 551, 568
plotting, 571

Verbatim, 169–170
vibrating strings, modeling, 533–536
vibrato, 393–394
ViewAngle, 312
ViewCenter, 311–312
ViewPoint, 310, 312
ViewVector, 312
ViewVertical

controlling viewing perspective, 312
plotting surfaces in cylindrical 

coordinates, 289
volatility, implied, 573
volume, 377–378, 382

W
Wagon, Stan, 52, 304–305
Wang, Ruye, 351

Watters, Paul (see Statistics in a Nutshell)
Webber, Thomas, 578, 582
Weisstein, Eric, 63
wget (GNU), 690–691
Windows programs, launching, 691–692
WinMain, 695–697
wireframe models, 306–309
With

binding locally defined variables, 
648–650
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