

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. ("AP") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CRE
ATION OR PRODUCTION OF THE ACCOMPANYING CODE ("THE PRODUCT") CANNOT AND DO
NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE
PRODUCT. THE PRODUCT IS SOLD "AS IS" WITHOUT WARRANTY OF ANY KIND (EXCEPT AS
HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, ANY WARRANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILI
TY OR FITNESS FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE MAGNETIC
DISKETTE(S) ON WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND
FAULTY WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER'S SOLE AND
EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER
REPLACEMENT OF THE DISKETTE(S) OR REFUND OF THE PURCHASE PRICE, AT AP'S SOLE DIS
CRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR TORT
(INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CRE
ATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT OR ANY MODIFICA
TIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective diskette must be postage prepaid and must be accompanied by the
original defective diskette, your mailing address and telephone number, and proof of date of purchase and pur
chase price. Send such requests, stating the nature of the problem, to Academic Press Customer Service, 6277
Sea Harbor Drive, Orlando, FL 32887, 1-800-321-5068. APP shall have no obligation to refund the purchase
price or to replace a diskette based on claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, not exclusions or limitations of inci
dental or consequential damages, so the above limitations and exclusions may not apply to you. This Warranty
gives you specific legal rights, and you may also have other rights which vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED STATES
LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE
OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF
COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS
YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF AP.

Mastering
Mathematica

Programming Methods
and Applications

John Gray
University of Illinois

Urbana, Illinois

AP PROFESSIONAL
A Division ofHarcourt Brace & Company

Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper. ©

Copyright © 1994 by Academic Press, Inc.
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

Mathematica is a registered trademark of Wolfram Research, Inc.
Unix is a registered trademark of AT&T.
Macintosh is a trademark of Apple Computer, Inc.
NeXT is a trademark of NeXT, Inc.
Sun Sparc is a trademark of Sun Microsystems, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.

AP PROFESSIONAL
955 Massachusetts Avenue, Cambridge, MA 02139

An Imprint of ACADEMIC PRESS, INC.
A Division of HARCOURT BRACE & COMPANY

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Gray, John W. (John Walker), 1931-.
Mastering Mathematica : programming methods and applications /

John W. Gray.
p. cm.

Includes bibliographical references and index.
ISBN 0-12-296040-8
1. Mathematica (Computer file) 2. Mathematics-Data processing.

I. Title.
QA76.95.G68 1994
510'285'53--dc20 93-23738

CIP
Printed in the United States of America
94 95 96 97 98 IP 9 8 7 6 5 4 3 2 1

There are three distinct levels of competence that are relevant to the use of Mathematica, all of
which are addressed in this book. They provide the headings for its three main divisions:

Mathematica as a Symbolic Pocket Calculator
Mathematica as a Programming Language
Knowledge Representation in Mathematica.

Much of this material grew out of a course in mathematical software that has been taught at
the University of Illinois at Urbana-Champaign almost every semester since 1987. It is now
being presented in a form that is accessible to anyone interested in programming in
Mathematica. The course itself was intended for upper division and graduate students in
mathematics, mathematics education, engineering and the sciences, and its purpose was to
teach students how to do their own mathematics using symbolic computation programs. The
emphasis then and now is on how to take known, but rather vaguely described, mathematical
results and turn them into precise algorithmic procedures that can be executed by a computer.
In this way, the range of known examples of a given procedure is extended and insight is
provided into more complex situations than can be investigated by hand. There is a vast
difference between "understanding" some mathematical theory and actually implementing it
in executable form. Our main goal is to provide tools and concepts to overcome this gap.
Naturally, there is nothing new about finding computer implementations of mathematical
theories and efforts in this direction have been going on for 30 years. What is new is that
Mathematica makes it possible for "ordinary" people, who are not computer professionals, to
join in these efforts on an equal basis. There are innumerable opportunities in our highly
technological society for such developments, ranging from theoretical mathematical questions
in group theory or graph theory, through optimization routines in econometrics to intensely
practical questions such as predicting results in tournaments or calculating docking orbits for
satellites. Perhaps the most important contribution of Mathematica, particularly in its notebook
interface versions, is the way in which it has empowered mathematicians, engineers, scientists,
teachers, and students to take advantage of these opportunities.

xiii

xiv Mastering Mathematica

"Empowered" is the key word here, for there are a number of other symbolic computation
programs, most notably Macsyma, Reduce, Derive, Maple, and Axiom. The main difference
between these programs and Mathematica lies in their archaic approach to programming. Their
languages are Pascal-like; i.e. imperative languages based on the language of while-programs.
For many people, programming in such a language is drudgery. Everything is broken down
into such tiny steps and the built-in facilities are so meager that there seems to be no place to
exercise insight and ingenuity. Mathematica, on the other hand, supports four distinct styles of
programming, functional programming, rule-based programming, imperative programming,
and object-oriented programming, and its built-in facilities are so incredibly rich that nearly
any algorithmic, mathematical thought has an almost direct expression in it. There is another
seemingly small difference which is actually an important aspect of empowerment. The
"arcane" knowledge possessed by professional programmers frequently consists in knowing
what key strokes will accomplish their desired end; i.e., which abbreviations or acronyms or
whimsical terms will cause the computer to do what is desired. Symbolic computation
programs are large and have many built-in commands - in the current version of Mathematica
there are over 1100 names. It would be very difficult to try to remember that many
abbreviations. It would even be very difficult to find them in a manual if they were
alphabetized as abbreviated, as they are in Macsyma and Maple. Instead, Mathematica writes
out almost all terms in full, and this makes a tremendous difference in ease of learning to use
the language. Finally, the notebook interface is an order of magnitude improvement over any
of the previous ways in interacting with a symbolic computation program. It is the thing that
empowers people to produce documents containing embedded active mathematics in a very
simple way. This entire book was originally a collection of notebooks.

The first part of the book is concerned with Mathematical use as a symbolic pocket
calculator and requires almost no mathematical sophistication, except in certain sections (for
instance the one on differential equations). Essentially, "buttons" are pushed to see what
happens. The second part treats programming in Mathematica. In these first two parts, there is a
practice section and a section of exercises at the end of almost every chapter. The practice
sections address the question "What should I do first?" Faced with a new program, how do you
get it to do anything? Here, just try out what's in the practice sections. The exercises are
extremely important. It is only after trying to do something yourself that you are motivated to
learn the various ways that it can be done. Answers to selected exercises are given, sometimes
in great detail, at the end of the book. A number of exercises are repeated from chapter to
chapter, each time asking for a more sophisticated answer. Similarly, answers may be given in
several forms, starting with crude programs that just barely work and leading to elegant, brief
programs that display their outputs in graphical form. Once button pushing and programming
have been mastered, the problem then is to use this knowledge to develop some part of
mathematics in detail. The third part of the book is devoted to examples of how to do this.

Considering the contents in more detail, Part I is devoted to using Mathematica as a symbolic
pocket calculator. Chapter 1 does just this. Chapter 2 investigates the three ways of interacting
with Mathematica, and Chapter 3 looks in more detail at numerical calculations and solving
equations. Both algebraic and differential equations are considered here, and a whole mini-
course in differential equations is included, mostly in exercises, because experience has shown

Preface XV

that this very dramatically demonstrates how much can be done by such a symbolic program.
Chapter 4 is concerned with built-in graphics; i.e., how to make pictures without
programming. If all you want is a simple picture with a certain amount of customizing, this
chapter shows you how to make it.

In Part II, we turn to the real concern of the book, which is using Mathematica to program
mathematics. Chapter 5 discusses the Mathematica language, and then we see in Chapters 6, 7,
8, and 9 that Mathematica is capable of four styles of programming: functional programming,
rewrite programming, imperative programming, and object oriented programming.

i) The functional aspects of the language are explained in Chapter 6, with functional
programming itself, via "one-liners" as the main topic. Lisp is a typical functional
programming language, but the actual functionality available to the Mathematica
programmer is many times that to be found in Lisp, thanks to the very many built-in
functions that are immediately usable.

ii) Rule-based programming is studied in Chapter 7. Mathematica actually works by
systems of rewrite rules and the Mathematica programmer can freely create and use his
or her own systems of rules. This distinguishes it from traditional programming
languages, which normally have no such features.

iii) Imperative programming is treated in Chapter 8, where we present several examples
of imperative programs from Pascal and C and show how to translate them into
Mathematica programs. This is an important skill since many thousands of such
programs have been published and they serve as a source for precise statements of
algorithms. In our examples, there is first a direct translation of the program into
Mathematica, and then a translation of the purpose, rather than the form, of the
program into a style that expresses its mathematical content in a much more direct and
"mathematical" form. The possibility of writing such programs is one of the things that
makes Mathematica such an attractive language.

iv) Chapter 9 turns to the topic of object-oriented programming. Mathematica is able to
shed a piercing ray of light onto this most confusing of all programming
methodologies for several reasons: first, because the objective extension of
Mathematica is written in top-level code and hence can be examined to see how it
works. We do not actually carry out this examination in detail, but just show, through
carefully chosen examples, how it is possible to create active data objects that know
how to respond to messages. Second, Mathematica is interactive, so classes and objects
are immediately available for experimentation, without any intervening linking and
compilation steps. Third, the entire Mathematica language can be used to write
methods and interact with objects. For all of these reasons, Mathematica will surely
become the prototyping tool par excellence for object-oriented programming.

Chapter 10 is concerned with graphics primitives; i.e., how to make pictures with
programming. If you want a fully customized picture in which you control all elements of the
final result, this chapter shows how to do it. Finally, Chapter 11 studies the language from a
more technical point of view. Packages, which are a technique for, so to speak, engraving a

XVI Mastering Mathematica

body of code in stone, are treated here. They are the appropriate mechanism for adding
functionality to Mathematica. No program can possibly contain all of the mathematical
procedures that a mathematician, scientist, engineer, economist, etc. could want. It is very easy
to extend Mathematica for one's own use, but if you want to supply new functions for others to
use, then common courtesy and concern for others demands that the code for these functions
should be carefully organized and protected from accidentally interfering with or being
interfered with by other code. Packages are exactly the mechanism for doing this. Several more
technical questions involved with evaluation of expressions and the process of substitution are
also treated here. Along the way we provide a simple implementation of the lambda calculus-
an abstract, theoretical, functional programming language.

The point of becoming fairly fluent in writing short programs is to be able to then use this
facility in developing your own mathematics. Part III consists of some topics that have
interested me, often because of student interest. Chapter 12 on Polya's Pattern Inventory
[Polya] began with a student project by Kungmee Park. Chapter 13 was inspired by material
from an early version of Skiena's book on Discrete Mathematics [Skiena]. Graph theory is such
an obvious topic for computer implementation that one has to be careful not to get carried
away with seeing how one's own particular concerns manifest themselves there. Chapter 14,
concerning differentiable mappings, builds on a problem set that comes earlier in the book. A
direct attack on this problem set usually results in confusion, as the answers show. Once
everything is treated from a more abstract and systematic point of view, the calculations
become clear. Chapter 15 extends the treatment of differentiable mappings to consider the
analysis of critical points of functions and the developments in differential geometry that are
required to study minimal surfaces.

One brief comment on the notation used here. Built-in Mathematica operations all begin with
capital letters. Everything that is defined in this book starts with a lower case letter, so there
should never be any question whether some operation is built-in or user defined. (I strongly
support the suggestion that only employees of Wolfram Research, Inc. are allowed to define
operations starting with capital letters, and in the finest Quaker tradition, I even have my
doubts about some of them.) Inputs and outputs are shown as they appear in Notebook
implementations on machines where bold face fonts are available. Thus, a typical interaction
looks like:

Expand[(1 + *)Λ6]

1 + 6 x + 15 x2 + 20 x3 + 15 x4 + 6 x5 + x6

If the input and output are short enough, they will sometimes be put on a single line separated
by =>, which can be read as "evaluates to."

Expand!(1 + x)A3] => l + 3 x + 3 x 2 + x 3

Preface xvit

Outputs are frequently edited to make them look nicer on the page, but their content has not
been altered. The standard reference for everything concerning Mathematica is Mathematica: A
System for Doing Mathematics by Computer, by Stephen Wolfram, Addison-Wesley, second
edition 1991 [Wolfram]. It will be referred to as "The Mathematica Book" here.

As mentioned above, the kind of material in this book has been taught at the UIUC nearly
every semester since 1987. Furthermore, it has been the subject of three week-long summer
workshops during the summers of 1991-93 sponsored by the Office of Continuing Engineering
Education of the UIUC under its Illinois Software Summer School program. The students in
these courses have contributed a great deal to the final form of this book, both locally and
globally. Locally, they have frequently come up with better ways to do something than
anything I could think of, and globally they have kept the entire organization of the book in
flux, finding out what works educationally and what doesn't. Anybody concerned with
elementary aspects of Mathematica is bound to be influenced by Nancy Blachman's book
[Blachman] and anybody concerned with more advanced aspects will be equally influenced by
Roman Maeder's book [Maeder 1], I owe Roman especial thanks for everything he taught me
about symbolic programs. Finally, I thank my son, Theodore Gray, for his patience and
constant help and advice in dealing with all aspects of Mathematica and my wife, Eva Wirth
Gray, for carefully proof reading and improving much of the book.

How to Use the Disk

The disk accompanying this book is a 1.4MB high density disk formatted for MS-DOS
computers, which can also be used by Macintosh computers. (See the directions below.) It
contains all of the Mathematica input statements in the book as well as all of the packages that
are developed here. The inputs are contained in Mathematica Notebooks, organized by chapter
and section exactly as they appear in the book. Thus, the material on the disk can be used with
the Windows version, the Macintosh version, the NeXT version, or a Unix version of
Mathematica. There are seven packages organized as follows:

Classes.m
GraphTh.m
PolynPat.m
Geometry - CrPoints.m, DiffMaps.m, MapGr.m. MinSurf.m

Directions for using this material will be found at appropriate places in the text. If you place all
of these packages in the Packages Directory that comes with your copy of Mathematica, then
they will be found immediately when it is time to load them.

Specific computer directions

How to use this disk with a MS-DOS computer.

The disk is a normal MS-DOS disk. Copy its files as usual to a suitable directory. The packages
come in two forms, one with a .ma extension that can be opened by Mathematica and directly
evaluated. The package mechanism is disabled in these files. In the other form, the files have a
.m extension and can be loaded as described in the book.

xix

XX Mastering Mathematica

How to use this disk with a Macintosh
computer running System 7.0 or higher.

It is necessary to use the program Apple File Exchange to convert the MS-DOS files to
Macintosh format. This program is supplied on the system software disks for System 7.0 or
higher and can probably be found in the Utilities directory on your hard disk. It is very easy to
use. The following directions are modified from those given in the Macintosh's Users Guide.

1. Find Apple File Exchange and open it.
2. Insert the disk that accompanies this book in a high density disk drive.
3. Use the Open, Drive, and Eject buttons to display the files on this disk and the disk or

folder where you want to store the translated files, preferably the Packages folder in
the Mathematica folder on your hard disk.

4. Shift-Click on the names of all of the files to be translated.
5. Pull down the menu MS-DOS to Mac and select Text translation.... Click OK in the

dialogue box that appears.
6. Click the Translate button in the main dialogue box.
7. When all translations are finished, choose Quit from the File menu.
8. Because of a bug somewhere, the last cell in the package files has extra symbols *, (,

and). Edit these out to make sure the files work correctly.

Note that some of the files end in .ma since that is the default form for MS-DOS and NeXT
Mathematica files. This has no effect on the Macintosh files. Further details can be found in the
Macintosh's Users Guide.

How to use this disk with a NeXT computer.

Insert the disk in the disk drive. Drag the files to the hard disk as usual. See the remarks for
MS-DOS computers and point 8 for Macintosh computers.

How to use this disk with a Unix computer.

Most Unix systems, such as Sun Sparc stations can read MS-DOS disks directly if they have the
appropriate software. Otherwise, it is necessary to use one of the machines described above to
communicate with the Unix computer's network. Notebooks are pure text files and can easily
be sent over a modem or by ftp to the desired destination machine. As long as your machine is
running a notebook front-end, it will use these files exactly as described here.

CHAPTER

A Quick Trip Through
Elementary Mathematics

Anything you can do I can do better.

1 Opening Remarks
^^m^^m^m^M^m^^^^^^m^-^^^^ttxm^^.

On the simplest level, Mathematica is just a glorified pocket calculator, with over 1100 "buttons"
to "push". We will begin our study of the language by looking at just this aspect of it. There are
all kinds of different buttons:

Kinds of Buttons

Arithmetic operations

Special functions

Algebraic manipulations

Calculus routines

Solutions of equations

Linear algebra

Graphics routines

Examples

+ - * / A

Sin, Cos, BesselJ , etc.

Expand, Factor, etc.

D, Integrate , Limit, S e r i e s , etc.

Solve, NSolve, DSolve, etc.

Det, Eigensystem, etc.

P l o t , Plot3D, L i s t P l o t , etc.

The first chapter provides an introduction to this very rich world by examining various parts
of mathematics in the order in which they are usually introduced in school, starting from
grade school arithmetic and running through advanced mathematics.

3

4 Part I · Symbolic Pocket Calculator

2 Grade School Arithmetic
By grade school arithmetic, we mean the study of numbers: integers, fractions, decimals and
for completeness, complex numbers, but no symbols. Naturally, Mathematica has very refined
facilities for treating all kinds of numbers in a precise and flexible way.

2.1 Basic Operations
When you first begin a Mathematica session, start out with some ridiculously simple calculation
to check that the program is working, and to load the kernel if you are working in an interface
mode. E.g.,

2 + 2 => 4

(For short inputs and outputs, we have edited the Mathematica session to show both on the
same line with the output preceded by an arrow, =>. Normally Mathematica displays them on
separate lines.) Observe that input to Mathematica is shown here in a bold face, equispaced
font (Courier bold) and output is shown in a plain, equispaced font (Courier plain). We
consider grade school arithmetic to consist of addition, subtraction, multiplication, division,
and exponentiation by integers. Mathematica can of course deal with bigger numbers than one
usually works w ith by hand, so our examples will be correspondingly bigger than those you
worked in the third grade. Let us try adding two 32 digit numbers.

91725844291614132857617492488779 +
11773984116181554151698259468319

103499828407795687009315751957098

The answer comes back almost immediately, provided the kernel has been loaded with the
preceding simple example. This addition could be carried out by hand with a certain amount
of diligence, but probably a mistake would be made somewhere in the middle, which would
then be difficult to find.

To make the problem a bit more challenging, insert minus signs in the middle of each of the
summands, so that both addition and subtraction are involved.

9172584429161413 - 2857617492488779 +
1177398411618155 - 4151698259468319

3340667088822470

One · A Quick Trip Through Elementary Mathematics 5

This can still be checked by hand but the chances of error have gone up even more. To make
the problem considerably more interesting, insert multiplication signs, indicated by spaces (or
if desired by stars "*"), in the middle of each of the preceding numbers.

91725844 29161413 - 28576174 92488779 +
11773984 11618155 - 41516982 59468319

-2300273380507712

Note that multiplication takes precedence over addition and subtraction; i.e., it is carried out
first. It would take a great deal of time and diligence to check this computation by hand. There
would be 256 multiplications of 8 digit numbers by single numbers, 4 additions of 8 rows of
shifted 8 digit numbers, two more additions of 16 digit numbers to combine the positive and
negative parts, and one subtraction. Alternatively, one can see that the first two products more
or less cancel each other and that the fourth product is bigger than the third, so it is at least
correct that the answer is negative.

Now create an almost impossible problem by inserting division signs, indicated by "/", in
the middle of each of the preceding numbers.

9172/5844 2916/1413 - 2857/6174 9248/8779 +
1177/3984 1161/8155 - 4151/6982 5946/8319

73505399860627799093943317

31033732398009095133051120

The answer still comes back almost instantaneously, but it is now a very large fraction. Note
again that division takes precedence over multiplication, addition, and subtraction. Scarcely
anybody would have the patience to try to do this calculation by hand and the chance of
getting the correct answer must be close to 0.

Finally, insert exponent signs, indicated by A (i.e., 2 A3 becomes 8) in the middle of each of
the preceding numbers.

91Λ72/58Λ44 29Λ16/14"13 - 28*57/61*74 92*48/87*79 +
11*77/39*84 11*61/81*55 - 41*51/69*82 59*46/83*19

317453959104270154241221958455634777400009702468477336279419992
83X384978597846467551165615434006212640638461349172523253967884
66522X842824867832405837422750938502050672183172721393407603551
31992568X
657194861452905842718097859824627695540758387433969843528503988
37X318568245400033473871326732951109388658851965827196796721307
86371X188910757417938071891656236414384441707054636296389704902

Part I ♦ Symbolic Pocket Calculator

09838056\018585397030252228497498602603433273098657078705541585
02874174644X210964820747820124788471924756672050128278556529741
54441634751493X701724907268344914498006351333901714449311561178
81672742511575684X731588558868529629515870291862025318280383005
12151492826011581670X293103808919110094099640490485346886733620
49823905227665533184507X495745689 /
349002642126839797438754826702298177750663465486510044255898897
70X
658009781829457912941507706223730942081451345161068573791492495
89X320085087851815158056312225700642099419118122173490895553053
22942X895097438157143293948976131416985052431168459049311721021
88159684X603153608661739617865351563860497508986299957304168874
16056167265X168496410110701230744053904380067875045180460353475
50692092638560X775838457404167009801711141735181880916790660723
19667911976405761X076290385036085546558525014229258545016826305
69779189670597431818X307664867615051597851579211406792819615340
83043462211974010937987X017414673962430835963451689569012893980
7959592510799138792778235904

This calculation takes a noticeable length of time. Note that exponentiation takes precedence
over all the other arithmetic operators. The single slash in the middle of the output indicates
division since the numerator and the denominator each require many lines. The back slashes at
the ends of the lines just represent line breaks and have no mathematical meaning. Surely
nobody could do this calculation by hand and we have no effective way, other than repeating
it, perhaps in a different program, to know if it is correct or not.

This sequence of computations shows a general property of symbolic mathematics
programs. They will do all of the usual operations that one does by hand much more rapidly
and much more reliably than a person can. In addition they will carry out calculations that are
beyond the possibility of even the most determined human being. Nevertheless, they won't do
everything. The preceding example was deliberately arranged to end up with 2 digit
exponents since, had the exponents been larger, the calculation would have taken too long.
Starting with two 64 digit numbers would have led to 4 digit numbers raised to 4 digit
exponents. We got tired of waiting for such a result to return and aborted the calculation.

Of course Mathematica is perfectly able to deal with larger exponents. For instance:

3 A 10 => 59049

We can now find the 10th root of this result, expressed as an exponent of 1/10.

% Λ (1/10) => 3

Here, % refers to the previous output. The round brackets are used for grouping. We repeat
these last two calculations replacing 10 by 100 and then by 1000.

One · A Quick Trip Through Elementary Mathematics 7
>immi&&vmf>wm**+^***v<c\ *ΡΦ&ΡΦ&*\ *#&&*.*< :^^^t\^m.m^^M^m^^^^^^m-<ì^.

3 Λ 100

515377520732011331036461129765621272702107522001

% Λ (1 / 1 0 0) =» 3
3 Α 1000

132207081948080663689045525975214436596542203275214816766492036
82X268285973467048995407783138506080619639097776968725823559509
54582X100618911865342725257953674027620225198320803878014774228
96484127X439040011758861804112894781562309443806156617305408667
44905061781X254803444055470543970388958174653682549161362208302
68563778582290X228416398307887896918556404084898937609373242171
84635993869551676X501894058810906042608967143886410281435038564
87471658320106143661X32173102768902855220001

% Α (1 / 1 0 0 0) => 3

In the Exercises you are asked to try 3^10000 for yourself.

2.2 Factoring Integers

Integers can be factored into prime factors quickly if they are not too large. (Too large means
more than 30 digits.)

Factorlnteger[4426166212334398690138310945003]

{{37, 1}, {173, 1}, {2143, 2}, {150568994203431074347, 1}}

F a c t o r l n t e g e r writes the prime factors of an integer in the form of a list of pairs. The first
entry in a pair is the prime factor and the second entry is the number of times it occurs in the
factorization. Thus our number is equal to

3 7 1 1 7 3 1 2 1 4 3 2 150568994203431074347 1

We can check that the last number here really is a prime number using the built-in predicate
PrimeQ. (Predicates are functions that return the value True or Fa l se .)

PrimeQ[150568994203431074347] => True

8 Part I · Symbolic Pocket Calculator

2.3 Real Numbers

The number 3 A 1000 calculated above has very many digits. Just how many can be
determined by converting it to a real number in scientific notation.

N[3A1000] => 1.32207 1 0 4 7 7

N [any th ing] finds the numerical value of "anything" expressed as a floating point number in
scientific notation by showing a 6 digit number, with one digit to the left of the decimal point,
times a suitable power of 10 (as soon as the number requires 7 or more digits for its
expression). Integer arithmetic such as was used in the first section is done with infinite
precision; i.e., all relevant digits are shown and no approximations are made. All calculations
involving integers and fractions remain in integer or fractional form with all digits shown.
Numbers are converted to approximate real values only if N is explicitly used.

Square roots are calculated using the square root function.

S q r t [9] => 3

Note that the square root function must be typed in exactly this way, with a capital letter and
square brackets. Sqrt (9) , s q r t [9] and Sqr [9] all don't work. Square brackets are always
used for function application and all built-in operations begin with a capital letter. Try another
example.

Sqrt[10] => S q r t [1 0]

Since 10 is an integer and the square root of 10 is not, the function remains unevaluated.
However, its numerical value as an approximate real number can be found to as many decimal
places as desired.

N[Sqrt[10], 40]

3.1622776601683793319988935444327185337196

This gives the numerical value of the square root of 10 to 40 decimal places. In all occurrences,
N can take a second argument indicating how many significant digits are desired. (See
Chapter 3 for the exact meaning of the second argument.) A single real number containing a
decimal point in an arithmetic expression contaminates the entire numerical calculation and
turns everything into real numbers.

1.0 + 1398/1434 + 21582/4323 - 8935/9602

6.03673

One · A Quick Trip Through Elementary Mathematics 9

Pi denotes the mathematical constant π. It can be calculated to any desired number of decimal
places, depending of course on the amount of computer memory available and the length of
time we are willing to wait. The following calculation is almost instantaneous.

N [P i , 500]

3.1415926535897932384626433832795028841971693993751058209749445
92X307816406286208998628034825342117067982148086513282306647093
84460X955058223172535940812848111745028410270193852110555964462
29489549X303819644288109756659334461284756482337867831652712019
09145648566X923460348610454326648213393607260249141273724587006
60631558817488X152092096282925409171536436789259036001133053054
88204665213841469X519415116094330572703657595919530921861173819
32611793105118548074X462379962749567351885752724891227938183011
94913

2.4 Complex Numbers
Complex numbers are written in the form a + b I, where I is the square root of - 1 . For instance:

(6 + I) A 5 => 5646 + 6121 I

The number here is actually a Gaussian integer (the real and imaginary parts are integers).
They are closed under addition, multiplication and exponentiation by ordinary integers. As
before the 5th root should take us back to where we started.

% " (l / 5) => 6 + I

Try another example.

(2 + 5 I) A 12 => -86719897 + 588467880 I
%"(1 /12) => (-86719897 + 588467880 I) 1 / 1 2

N[%] => 5 .33013 + 0 .767949 I

Clearly, the twelfth root of (2 + 5 I to the twelfth power) is not the same as 2 + 5 I. In the
exercises, you are asked to investigate this situation more carefully.

10 Part I · Symbolic Pocket Calculator

2.5 Number Types in Mathematica
The following table shows the kinds of number types that are available in Mathematica.. We
have divided them into real types and complex types. More general types are to the right and
down in the table.

Real Types

Integers

Rationals

Reals

Complex Types

Gaussian Integers

Gaussian Rationals

Complexes

A Gaussian rational number is a quotient of Gaussian integers. It can always be represented as
a complex number with rational real and imaginary parts. E.g.,

(3 + 5 I) / (2 + 4 1) => 13 /10 + 1/10

Any arithmetic calculation is carried out in the least general type that is common to all of the
arguments of the calculation. For instance, the sum of a rational number and a Gaussian
integer is a Gaussian rational number.

1/2 + (3 + 5 I) => 7/2 + 5 I

The function N [] converts any number to the type at the bottom of its column. Built-in
numerical functions like Sqrt [] are usually only evaluated if the type of the answer matches
the type of the arguments. E.g.,

Sqrt[10.] => 3 .16228

3 High School Algebra and Trigonometry
Virtually every computer program and every person who has been to school is able to handle
numbers in some way. The first step upwards in mathematical sophistication comes with the
introduction of variables and symbolic constants. Most programming languages and many
people never take this step. Those programs that do are called symbolic computation
programs. The place where this happens in school is in high school algebra, which consists of
manipulating algebraic expressions, solving linear and quadratic equations in one variable,
and possibly solving systems of linear equations. The crucial new ingredient is the inclusion of
symbols representing constants or variables.

One · A Quick Trip Through Elementary Mathematics 11

3.1 Manipulating Algebraic Expressions

One of the main strengths of Mathematica lies in its facilities for symbolic manipulation of
mathematical expressions involving symbolic constants and variables.

3.1.1 The first example

Start by entering an algebraic expression with symbolic components.

(x + y) " 2 + 7 (3 + x) (x + y)

7 (3 + x) (x + y) + (x + y) 2

Nothing has been done to this expression except the order of the two summands has been
rearranged according to Mathematical own notion of what should come first. The reason that
nothing was done is that nothing was asked for. If something is asked for, then another form of
the expression will be displayed. For instance:

Expand[%] = > 2 1 x + 8 x 2 + 2 1 y + 9 x y + y 2

Expand does exactly what you would expect. It distributes multiplication over addition until
all terms are monomials and then collects similar terms. Here it has expanded the previous
expression, referred to by %. A person would have no difficulty in carrying out this expansion
by hand. Now raise this new expression to the 4th power.

% Λ 4 => (21 x + 8 x 2 + 21 y + 9 x y + y 2) 4

Again, nothing happened because nothing was asked for other than this expression itself.
Presumably, we meant to expand this expression as well.

Expand[%]

194481 x4 + 296352 x5 + 169344 x6 + 43008 x7 + 4096 x8 +
777924 x3 y + 1222452 x4 y + 719712 x5 y + 188160 x6 y +
18432 x7 y + 1166886 x2 y2 + 1926288 x3 y2 + 1188054 x4 y2 +
324576 x5 y2 + 33152 x6 y2 + 777924 x y3 + 1407672 x2 y3 +
941976 x3 y3 + 276948 x4 y3 + 30240 x5 y3 + 194481 y4 +
444528 x y4 + 354564 x2 y4 + 119952 x3 y4 + 14721 x4 y4 +
37044 y5 + 52920 x y5 + 24696 x2 y5 + 3780 x3 y5 + 2646 y6 +
2352 x y6 + 518 x2 y6 + 84 y7 + 36 x y7 + y8

12 Part I · Symbolic Pocket Calculator

The result is a large expression containing many terms, each of which is a monomial in x and
y. It would be quite difficult to do this expansion by hand, but it is humanly possible. We can
find out how many summands there are in this expression by using the Length function.

Length[%] => 35

Now, factor this large expression. (The command F a c t o r is reserved for algebraic
expressions. To factor integers use Factorlnteger.) The expression we want to factor is now
two outputs back, so we have to use % % to refer to it.

Factor[%%] => (x + y) 4 (21 + 8 x + y) 4

A quick visual check shows that this agrees with the factored form of our first expression,
raised to the 4th power. It would be virtually impossible for a person to find this factorization
by hand without knowing where the expression being factored came from. Note that
Mathematica does not know this either. Human beings are very bad at factoring polynomials in
more than one variable, but there is a very efficient machine algorithm for the same purpose.
Finally, for completeness, note that there is a case in which Expand does not do the expected
thing.

Expand[(x y) * (l / 3)] => (x y) 1 / 3

Thus, Expand does not distribute fractional powers over products. Instead, one has to use
PowerExpand.

PowerExpand[%] => x 1 / 3 y 1 / 3

3.1.2 Another example
Type in a rational expression; i.e., a quotient of polynomials. Note that we have to carefully
bracket the numerator and denominator (actually, bracketing the denominator is sufficient
here) to get the correct expression, using round brackets which are reserved just for the
purpose of grouping terms. (Try this expression without the outer brackets on top and on the
bottom.) This time we give it a name, exp, to use in later calculations by typing exp = "the
expression". (I.e., "=" is used for what is called assignment in some computer languages.)

exp = ((Χ-1Γ2 (2+x)) / (<l+x) (Χ - 3) Λ 2)

(-1 + x) 2 (2 + x)

(-3 + x) 2 (1 + x)

One · A Quick Trip Through Elementary Mathematics 13

Let's see what Expand does to this. Now we can refer to exp by name rather than using %.

Expand[exp]

2 3 x x 3

(-3 + x) 2 (1 + x) (-3 + x)z (1 + x) (-3 + x) 2 (1 + x)

If Expand is applied to a quotient of polynomials, it just expands the numerator and writes
each term over a separate copy of the (unexpanded) denominator. There is a command that
will expand both numerator and denominator.

ExpandAl1[exp]

2 3 x x 3

_ +
9 + 3 x - 5 x 2 + x 3 9 + 3 x - 5 x 2 + x 3 9 + 3 x - 5 x 2 + x 3

Now we can put these back together in expanded form to get what we may have wanted in the
first place.

Together[%]

2 - 3 x + x 3

9 + 3 x - 5 x 2 + x 3

Together just writes fractions over a common denominator. Here is another form of exp.

Apart [exp]

5 19 1
1 + + +

(-3 + x) 2 4 (-3 + x) 4 (1 + x)

A p a r t carries out a partial fractions decomposition of a quotient of polynomials. F a c t o r
takes us back to the original form of the expression in which both numerator and denominator
are factored.

Factor[%]

(- 1 + x) 2 (2 + x)

(-3 + x) 2 (1 + x)

Finally, we can ask Mathematica how it thinks exp should be written.

14 Part I · Symbolic Pocket Calculator

Simplify[exp]

(- 1 + x) 2 (2 + x)

9 + 3 x - 5 x 2 + x 3

S i m p l i f y looks at all possible ways of writing exp and returns the one which it thinks is the
simplest. Finally, if we just want to look at the numerator and denominator of exp separately,
they are given by the commands:

Numerat /or[exp] => (-1 + x) 2 (2 + x)
Denominator [exp] => (-3 + x) 2 (1 + x)

One of the hardest things to do in any symbolic algebra program is to get the program to
display an expression in the form that you want, rather than the form that it wants to give you.
The only way to explain to the program what you want is to become thoroughly familiar with
the commands that are available and the ways to apply them. We shall see other, more
complicated ways to simplify expressions in Chapter 3.

3.1.3 Yet another example

Type in another expression in expanded form.

newexp = Expand[(3 + 2x + y) A 3]

27 + 54 x + 36 x 2 + 8 x 3 + 27 y + 36 x y + 12 x 2 y + 9 y 2 +
6 x y 2 + y 3

The following command lets us concentrate on how x occurs in the expression.

Collect[newexp, x]

27 + 8 x3 + 27 y + 9 y2 + y3 + x2 (36 + 12 y) +
x (54 + 36 y + 6 y2)

Col lec t [express ion, var iab le] tries to write e x p r e s s i o n as a polynomial in
v a r i a b l e (here equal to x) whose coefficients are expressions in any other variables that are
present. The ordering of the output is somewhat unfortunate. Basically, it consists of all of the
terms not involving x followed by decreasing powers of x. This consistent scheme is ruined by
putting x 3 before anything involving y. The powers of y in the coefficients, however, are
ordered in increasing order. However, if we collect coefficients of y, then the ordering is just
what we want.

One · A Quick Trip Through Elementary Mathematics 15

Collect[newexp, y]

27 + 54 x + 36 x2 + 8 x3 + (27 + 36 x + 12 x2) y +
(9 + 6 x) y2 + y3

It is possible to specify the order of symbols by using the operation $StringOrder, but we
won't go into that here. It is also possible to collect in two variables simultaneously, but in this
case nothing new happens.

Collect[newexp, {x, y}]

27 + 8 x3 + 27 y + 9 y2 + y3 + x2 (36 + 12 y) +
x (54 + 36 y + 6 y2)

The following two commands produce the coefficient of x in Col lec t [newexp, x] and the
highest power of y in newexp.

Coefficient[newexp, x] = > 5 4 + 3 6 y + 6 y 2

Exponent[newexp, y] => 3

3.2 Solving Equations
Manipulating expressions is subsidiary to the main purpose of symbolic programs. Nearly
everything that such a program does can be characterized as solving some kind of an equation.
The simplest kinds are algebraic equations in one or more variables. Mathematica has a very
powerful built-in equation solver. Equations are indicated by double equals signs, written ==.
(Recall from above that a single equals sign, =, is used for assignment.)

3.2.1 A single equation in one variable
The syntax for solving the equation 2 x - 3 == 5 for the variable x is as follows:

Solve[2 x - 3 == 5, x] => {{x -> 4}}

The answer, x equals 4, is presented as a list (indicated by the outer curly brackets, which are
reserved for lists) of solutions. In this case, there is only one solution which is itself a list
consisting of a replacement rule. A replacement rule is an expression of the form x -> n. The
meaning is that if x is replaced in the equation by the value n to the right of the arrow, then the
equation is satisfied. To actually carry out the substitution of 4 for x in the left-hand side of the
equation, one uses " / . " which stands for the command ReplaceAll . (See Chapter 7 for a
thorough discussion of rules.)

16 Part I · Symbolic Pocket Calculator

2 x - 3 / . x - > 4 => 5

The result, happily, is the right-hand side of the equation.
Quadratic polynomials are treated in exactly the same way.

S o l v e [x " 2 - 4 x - 8 == 0 , x]

4 + 4 Sqrt[3] 4 - 4 Sqrt[3]
{ { x -> }/ { x -> } }

2 2
This looks nicer if we simplify it.

Simplify!%]

{{x -> 2 + 2 Sqrt[3]}, {x -> 2 - 2 Sqrt[3]}}

Clearly the two rules here consist of the values given by the usual quadratic formula. Actually,
Mathematica will display the general formula just by asking for the solution of a generic
quadratic equation with symbolic coefficients. Our experience above suggests that we should
simplify the result immediately, which we do by just wrapping the S i m p l i f y command
around the S o l v e command.

Simplify[Solve[a χΛ2 + b x + c == 0f x]]

-b + Sqrt[b2 - 4 a c] -(b + Sqrt[b2 - 4 a c])
{ { x _> }, { x -> } }

2 a 2 a

So, Mathematica has given us the usual formula for solving quadratic equations, in a slightly
distorted form.

Finally, let's try a fourth degree polynomial equation in the variable x involving a symbolic
constant a.

Solve[x^4 - 7 xA3 + 3 a χΛ2 == 0, x]

7 + Sqrt[49 - 12 a]
{{x -> 0}, {x -> 0}, {x -> },

2

7 - Sqrt[49 - 12 a]
{ x _> } }

2

One · A Quick Trip Through Elementary Mathematics 17

The result consists of four exact solutions for x in terms of a. In this case x = 0 is a double root
since x2 is a factor of the equation, so there are two solutions of the form {x -> 0}.

3.2.2 Simultaneous equations in more than one variable
The syntax for the solution of a single equation in one variable is S o l v e [e q u a t i o n ,
v a r i a b l e] . The general form for the arguments of So lve consists of a list of equations
followed by a list of variables to be solved for. For instance, the general case of two linear
equations in variables x and y has coefficients a, b, c, d on the left hand side and constants e
and f on the right. This gives the general solutions of such a 2 x 2 system.

Simplify[
Solve[{a x + b y == e, c x + d y == f}, {x, y}]]

d e - b f -(c e) + a f
{ { x -> , y -> } }

-(b c) + a d -(b c) + a d

The solution is unique, so it consists of a list with one entry which itself is a list of two rules,
one for each of x and y.

3.2.3 Exact, closed form solutions
Mathematica can deal with much more complicated equations. Here is a system consisting of a
2nd degree and a 3rd degree polynomial in two variables.

Solve[{ xA3 + y^3 == 1, χΛ2 + y^2 == 1}, {x, y}]

{{x -> 1, y -> 0}, {x -> 1, y -> 0},

-32 - I 29 / 2 - 4 + 1 23 / 2
{ x _> , y _> }f

32 4

-32 + I 29 / 2 - 4 - 1 23 / 2
{x _> , y _> }/

32 4

{x -> 0, y -> 1}, {x -> 0, y -> 1}}

The result this time is a list of six solutions, each solution consisting of a list of two rules, one
for each of x and y. Note that two of the solutions occur with multiplicity 2.

18 Part I · Symbolic Pocket Calculator

Mathematica can give us a picture of this pair of equations, but we have to use a command
that is found in one of the packages rather than built-in to the kernel. Such packages have to be
loaded before they can be used, by issuing a Needs command.

Needs["Graphics"ImplicitPlotv"]

Try this with the pair of equations whose simultaneous solutions are found above.

ImplicitPlot[{xA3 + yA3 == 1, xA2 + yA2 == 1},
{x, -2, 2}];

In this remarkable picture, we can see the two double solutions at (0, 1) and (1, 0). The two
complex solutions of course are not shown.

3.2.4 An impossible equation

Not all polynomial equations, even in one variable, have exact solutions.

S o l v e [l + 8 χΛ3 + xA5 - 2 xA6 + 4 xA7 == 0 , x]

2 + 2 1 S q r t [3] 2 - 2 1 S q r t [3]
{ { x -> } , { x -> } /

8 8
T o R u l e s f R o o t s [1 + 2 x + x 5 = = 0 , x]] }

Here, we tried a 7th degree equation in x . Two solutions are found, leaving a 5th degree
equation to be solved. It is well-known from the theory of equations that equations of degree 4
or less have exact, closed form solutions in terms of roots of expressions constructed from the

One · A Quick Trip Through Elementary Mathematics 19

coefficients. However, as Galois showed, for equations of degree 5 or more, there need be no
such solution. Mathematica leaves this resulting 5th degree equation unevaluated. Of course, a
polynomial equation can be solved for all of its roots by numerical methods. N [] finds all
seven.

N[%]

{{x -> 0.25 + 0.433013 I}, {x -> 0.25 - 0.433013 I},
{x -> -0.701874 - 0.879697 1}, {x -> -0.701874 + 0.879697 I},
{x -> -0.486389}, {x -> 0.945068 - 0.854518 I},
{x -> 0.945068 + 0.854518 I}}

This evaluates so quickly and it is so easy to give the command to find these solutions, that one
is apt to forget that actually finding these numbers requires a very sophisticated algorithm.

3.3 Trigonometry

Hardly anybody thinks that Trigonometry is their favorite subject. Pocket calculators have
eliminated the extensive tables and interpolation formulas that previously were the bane of
trying to use actual values of trigonometric functions. Modern programs let us calculate values
to any desired precision and make arbitrarily detailed plots of these values. All of the standard
trigonometric functions are found as built-in operations. If they are given real arguments, they
return real values, just like an ordinary pocket calculator.

Sin[1 .3] => 0.963558

Mathematica also knows about their complex values for complex arguments, which is more
than most pocket calculators know. E.g., consider a product of a cos and a tan. (The space
indicates multiplication.)

Cos[3.2 + 5.1 I] Tan[0.4 + 3.7 I]

-4.8548 - 81.8002 I

Furthermore, the built-in Plot command lets us make pictures of trigonometric functions.

20 Part I · Symbolic Pocket Calculator

sinplot = Plot[Sin[x], {x, 0, 2 Pi}]

- G r a p h i c s -
P l o t takes two arguments, the first being a numerical function of one variable and the second
being a list of a special form called an iterator. (The same form was used in I m p l i c i t P l o t
above.) The iterator, {x , 0 , 2 P i } , means that the variable x is to take values between 0
and 2 Pi. Note that the output consists of the term - G r a p h i c s - , while the picture is an extra,
side effect of the command. Mathematica knows how to deal with plots of singular functions as
well; for instance:

tanplot = Plot[Tan[x], {x, 0, 2 Pi}]

40
20

-20
-40

-Graphics-

Mathematica has decided on its own to show values only up to about 44. We'll see later how to
increase or decrease this value if desired. The function Show takes the names of a number of
pictures and combines them in the same drawing, which is why we gave names to the
preceding plots. It adjusts the scales of the drawing so they fit together correctly.

One · A Quick Trip Through Elementary Mathematics 21

Show[sinplot, tanplot]

20
15
10

5

-5
10
15

/ \J_
1 / 2 ^ = " 3

\ I

/ J ~1 γ^^

{ 1
- G r a p h i c s -

Notice how Mathematica has decreased the maximum y values that are shown in order to see
what is happening to the sin curve.

Another way to see two plots together is to use G r a p h i c s A r r a y , which takes a list
(actually a matrix) of names of graphics objects and creates a new graphics object consisting of
all of the individual graphics objects scaled to the same size. Show displays this in a
rectangular array.

Show[GraphicsArray[{sinplot, tanplot}]];

40

20

-20

-40

Trigonometric functions can be used to make interesting three-dimensional plots as well. The
syntax is the obvious extension of the two-dimensional case.

22 Part I · Symbolic Pocket Calculator

Plot3D[Sin[x] Sin[3y], {x, -2, 2}, {y, -2, 2}]

-SurfaceGraphics-

Here is another way to illustrate the same function.

ContourPlot[Sin[x] Sin[3y], {x, -2, 2}, {y, -2, 2}]

-ContourGraphics-

Of course, there is more to trigonometry than just pictures. Can Mathematica prove
trigonometric identities? It depends on what you mean by this. Modifications of the Expand
and F a c t o r functions we used earlier will handle many cases of simplifying trigonometric
expressions. For instance:

One · A Quick Trip Through Elementary Mathematics 23

Expand[Sin[xp2 + Cos[xp2, Trig -> True] => 1
Factor[Tan[2 x], Trig -> True]

2 Cos[x] Sin[x]

(Cos[x] - Sin[x]) (Cos[x] + Sin[x])

This output can be improved by using ExpandAll.

ExpandAll[%]

2 Cos[x] S in[x]

Cos[x] 2 - S i n [x] 2

The extra arguments to Expand and Factor are called optional arguments. They are an
important feature of Mathematica operations.

However, proving trigonometric identities should mean that it is possible to check an
identity like

cos z _ sin z
1 + cos z sin z + tan z

Mathematica is not able to make substitutions and turn the left-hand side into the right-hand
side by itself, which is what you might mean by proving such an identity. However, you can
subtract the right-hand side from the left-hand side and use Simplify, hoping that the result
will be 0. (Simplify also takes an optional argument for trigonometric simplification, but the
default value is True, so we don't have to specify it explicitly.)

Simplify[Cos[z]/(1+Cos[z])-Sin[z]/(Sin[z]+Tan[z])]

0

Identities that are surprisingly complex can be handled this way.

4 College Calculus, Differential Equations,
and Linear Algebra

College mathematics means calculus to most people, and that is what most people expect
symbolic computation programs to do. As soon as early symbolic computation programs
could do anything at all, it was realized that symbolic integration posed a major challenge.

24 Part I · Symbolic Pocket Calculator

Symbolic differentiation is very s imple-wel l use it to illustrate different styles of
programming-but there are still aspects of integration which have no easy answer. The first
commercially successful symbolic computation program, Macsyma, grew out of these early
efforts in the 1960s to teach a program to integrate, first as well as an MIT freshman, then as
well as an MIT graduate, and finally as well as the most knowledgeable expert. Current efforts
to complete this endeavor center around the treatment of situations where the form of the
answer depends on the values of symbolic parameters in the integrand.

4.1 Integration, Differentiation, Series and Limits

Mathematica, of course, carries out the standard operations of calculus in symbolic form. The
command to find the antiderivative, or indefinite integral, Jf(x) dx, of f [x] with respect to x is
I n t e g r a t e [f [x] , x] . For instance:

int = Integrate! x / (1 - xA3), x]

1 + 2 x Log[-l + x] Log[l + x + x2]
-ArcTan [] /Sqrt [3]

Sqrt[3] 3 3

Note that the answer omits the constant of integration that all freshmen are told is required.
Differentiation is the inverse operation to integration. It is one of the few commands that are

abbreviated in Mathematica being denoted just by D. Thus, D [f [x] , x] means df (x) /dx . A
good way to check the operation of integration is to differentiate the result, so differentiate the
previous integral.

D [i n t , x]

- 1 1 + 2 x 2
+ _

3 (- 1 + x) 6 (1 + x + x 2) 3 (1 + (1 + 2 x) 2 / 3)

This doesn't look like the function we started with but, after simplification, we get back the
original expression.

Simplify[%] => x / (1 - x3)

Higher order derivatives are given b y D [f [x] , {x, n }] . Thus, the second derivative of i n t
is:

One · A Quick Trip Through Elementary Mathematics 25

Simplify[D[int, {xf 2}]]

1 + 2 x 3

(- 1 + x 3) 2

To find a definite integral,

J a b f(x) dx,

use I n t e g r a t e [f [x] , { x , a, b }] which gives the definite integral of f [x] with respect
to x from a to b . Similarly, N I n t e g r a t e finds numerical values of definite integrals of
functions, even if there is no closed form for their indefinite integral.

I n t e g r a t e [S i n [x] , { x , 0 , P i }] => 2
N I n t e g r a t e [S i n [S i n [x]] , { x , 0 , P i }] => 1.78649

The command S e r i e s [f [x] , { x , a, n }] finds the first n terms of the Taylor's series
expansion of f [x] about the point a.

S e r i e s [Exp[-x] S i n [2 x] , { x , 0 , 6}]

x 3 19 x 5 11 x 6

2 x - 2 x 2 - — + x 4 + 0 [x] 7

3 60 180

The command L imi t [f [x] , x -> a] finds the limit of f [x] as x approaches a.

L i m i t [(S i n [x] - T a n [x]) / x A 3 , x -> 0] => - (1 / 2)

4.2 Calculus of Several Variables

Mixed derivatives are easily calculated. Start with some expression in x and y. We don't need
to see it repeated as output so we suppress the output by following the definition with a
semicolon.

exp = χΛ3 Sin[yA4];

26 Part I · Symbolic Pocket Calculator

The mixed partial derivative of exp with respect to x and then y is given by using the same
symbol D that is used for ordinary derivatives, with an extra argument for the second
variables.

D[exp, x , y] => 12 x 2 y 3 C o s [y 4]

Now differentiate twice with respect to x and three times with respect to y.

D[exp, { x , 2 } , {y , 3 }]

144 x y Cos[y4] - 384 x y9 Cos[y4] - 864 x y5 Sin[y4]

Just as D denotes ordinary or partial differentiation, I n t e g r a t e denotes single or multiple
integration.

I n t e g r a t e [E " (- 2 x) C o s [y] , x , y] => - S i n [y] / (2 E2 x)

Multiple definite integration uses two (or more) iterators.

I n t e g r a t e [E " (- 2 x) C o s [y] , { x , 0 , P i / 4 } , { y , 0 , x }]

1 1

5 5 S q r t [2] E p i / 2

Notice that the second integration is performed first; i.e., this result is the same as the iterated
integral:

Integrate[Integrate[E"(-2x) Cos[y], {y, 0, x}],
{x, 0, Pi/4}]

1 1

5 5 S q r t [2] E p i / 2

4.3 Differential Equations

From one point of view, mathematics education is a long line of development leading from
counting to differential equations. It is differential equations that allow the prediction of the
future, so they are a crucial ingredient in everything from ballistics to bridge construction,
automobile controls to economic forecasts and weather prediction. The ultimate test of a

One · A Quick Trip Through Elementary Mathematics 27

symbolic computation program is how it deals with them. Integration, of course, is a special
case of solving a differential equation, namely, one of the form yf = expression.

The command to solve differential equations is DSo lve . Here is a typical second order,
linear, non-homogeneous differential equation.

diffeql = y'·[x] - 5 y'[x] + 6 y[x] == 2 E"x;

Differentiation is indicated by primes and it is necessary to include the independent variable x
in the expression for the dependent variable y [x] . The syntax for a single differential equation
i s D S o l v e [e q u a t i o n , dependent v a r i a b l e , independent v a r i a b l e] . Thus:

DSolve[diffeql, y[x], x]

{{y[x] -> Ex + E2 x C[l] + E3 x C[2]}}

The constants of integration are called C[l] and C[2] here.
Mathematica can also handle certain non-linear equations, even with symbolic constants. For

instance:

diffeq2 = y'[x] + a x y[x]"2 == 0;
DSolve[diffeq2, y[x], x]

2
{{y[x] -> }, {y[x] -> 0}}

a x 2 - 2 C [l]

If we give Mathematica a differential equation of Bessel type, it recognizes it immediately.

diffeq3 = x y'[x] + y'[x] + x y[x] == 0;
DSolve[diffeq3, y[x], x]

{{y[x] -> BesselY[0, x] C[1] + BesselJ[0, x] C[2]}}

Here B e s s e l J [0 , x] and B e s s e l Y [0 , x] are the usual Oth order Bessel functions.
Mathematica knows all about these functions, as well as all the other usual functions that arise
in physics and engineering. For instance, we can plot both of them together by giving them as
a list to the P l o t command.

P l o t [{ B e s s e l J [0 , x] , B e s s e l Y [0 , x] } , { x , 0 , 10}]

P l o t : : p l n r : C o m p i l e d F u n c t i o n [{x} , « 1 » , -Compi l edCode-] [x]
i s n o t a m a c h i n e - s i z e r e a l number a t x = 0 . .

28 Part I · Symbolic Pocket Calculator

- G r a p h i c s -

The warning message happens because Mathematica recognizes that B e s s e l Y [0 , x] has a
singularity at the origin.

Even if a differential equation cannot be solved exactly, it may be possible to solve it
numerically. There is a built-in function NDSo lve to do this. It works with systems of
differential equations together with equations specifying the initial conditions. Here is an
example.

diffeqSystem =
{ x ' [t] == - y [t] - x [t p 2 ,

y ' [t] == 2 x [t] - y [t] ,
x [0] = = y [0] = = 1 } ?

In the NDSolve command, the system of equations, the dependent variables (here x and y}
and the range of the independent variable (here t) must be specified.

solution = NDSolve[diffeqSystem, {x, y}, {t, 0, 10}]

{{x -> InterpolatingFunction[{0., 10. }, <>],
y -> InterpolâtingFunction[{0., 10.}, <>]}}

The answer is expressed in terms of I n t e r p o l a t i n g F u n c t i o n s for x and y as functions of
t . These functions can be used to find individual values of the solution at some point, e.g., t =
3, by substituting the interpolating functions for x and y.

{ x [3] , y [3] } / . s o l u t i o n => { { - 0 . 1 3 9 7 3 7 , - 0 . 5 1 7 7 5 1 } }

It is much more interesting to plot the solution using the built-in command for plotting a
parametric curve.

One · A Quick Trip Through Elementary Mathematics 29

ParametricPlot[Evaluate[{x[t], y[t]} /. solution],
{t, 0, 10}]

- G r a p h i c s -

The reason for E v a l u a t e in this command will be explained later.

4.4 Lists

Lists are a very important built-in data type in Mathematica, They are used for themselves and
to represent vectors and matrices. As we have seen, lists are indicated by curly brackets.

{a , b , c } {a , b , c}

A convenient way to construct a list whose elements are given by some mathematical formula
is to use the Table command.

Table [Expand[(1 + x) A n] , {n , 1 , 8 }]

{1 + x , 1 + 2 x + x 2 , l + 3 x + 3 x 2 + x 3 ,
l + 4 x + 6 x 2 + 4 x 3 + x 4 ,
1 + 5 x + 10 x 2 + 10 x 3 + 5 x 4 + x 5 ,
1 + 6 x + 15 x 2 + 20 x 3 + 15 x 4 + 6 x 5 + x 6 ,
1 + 7 x + 21 x 2 + 35 x 3 + 35 x 4 + 21 x 5 + 7 x 6 + x 7 ,
1 + 8 x + 28 x 2 + 56 x 3 + 70 x 4 + 56 x 5 + 28 x 6 + 8 x 7 + x 8 }

The command TableForm will display this in a nicer format.

30
Λ . ' Α ' " ^ - -* ^ " * V J ^ V ^ S Ì 0̂ Ì M ^ * ^ V J H ; ; V I '

Part I · Symbolic Pocket Calculator

TableForm[%]

1 + x
1 + 2 x + x 2

l + 3 x + 3 x 2 + x 3

l + 4 x + 6 x 2 + 4 x 3 + x 4

1 + 5 x + 10 x 2 + 10 x 3 + 5 x 4 + x 5

1 + 6 x + 15 x 2 + 20 x + 15 x + 6 x + x
1 + 7 x + 21 x + 35 x 3 + 35 x 4 + 21 x 5 + 7 x 6 + x 7

1 + 8 x + 28 x 2 + 56 x 3 + 70 x 4 + 56 x 5 + 28 x 6 + 8 x 7 + x 8

A list of numbers in sequence can also be constructed by the Range command.

Range[5 , 20]

{ 5 , 6, 7 , 8 , 9 , 10 , 1 1 , 12 , 1 3 , 14 , 1 5 , 16 , 17 , 1 8 , 19 , 20}

There are many operations that take lists as arguments; for instance:

Permutations[{a, b, c}]

{{a , b , c } , { a , c , b } , { b , a, c } ,
{b , c , a } , { c , a, b } , { c , b , a}}

Flat ten!%]

{a , b , c , a , c , b , b , a , c , b , c , a , c , a , b , c , b , a}

4.5 Vectors
Vectors do not appear in Mathematica as a separate data type but are represented as lists. For
instance, the dot product of two vectors is given by writing a dot between the vectors.

{x , y , z} . {a , b , c } = > a x + b y + c z

Vectors can be added and multiplied by scalars in the usual way.

{a , b , c} + { 1 , 2 , 3} => {1 + a , 2 + b , 3 + c}
4 {a , b , c} => {4 a , 4 b , 4 c}

One · A Quick Trip Through Elementary Mathematics 31

4.6 Matrices

One reason for the "unreasonable effectiveness" of mathematics in science is the observation
that many phenomena can be described quite effectively in linear terms. Linear algebra is the
part of mathematics that deals with this. There are large and important Fortran and C
programs that deal with numerical linear algebra and Mathematica!s facilities in this direction,
while effective, are no substitute for these packages. However, one of the main purposes of
symbolic programs is to deal with symbolic linear algebra; e.g., matrices with symbolic rather
than numeric entries.

Matrices also do not appear separately in Mathematica. Rather, they are represented as lists
of lists. For instance:

{ { a , 2 , 3 } , {4 , b , 6 } , { 7 , 8 , c } }

{{a , 2 , 3 } , {4 , b , 6 } , { 7 , 8 , c}}

The commands TableForm and MatrixForm display the output as a two-dimensional table.

TableForm[%]

a 2 3
4 b 6
7 8 c

As with lists themselves, matrices can be constructed by the Table command when the entries
are given by some mathematical formula. Here is the 3 x 3 Hilbert matrix.

m a t r i x = T a b l e [l / (i + j - 1) , { i , 1 , 3 } , { j , 1 , 3 }]

{ { 1 , 1 /2 , 1 / 3 } , { 1 / 2 , 1 / 3 , 1 / 4 } , { 1 / 3 , 1 /4 , 1/5}}

m a t r i x / / TableForm

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

Instead of the prefix form TableForm [] , we have used the suffix form of function application
/ /TableForm here.

If m a t r i x is regarded as a matrix rather than a table, then matrix operations can be carried
out on it. We can, for instance, find its inverse.

32 Parti · Symbolic Pocket Calculator

Inverse[matrix]

{{9, -36, 30}, {-36, 192, -180}, {30, -180, 180}}

Matrix multiplication is also represented by a dot so the following calculation checks that the
preceding result is the inverse of matrix.

% · matrix / / TableForm

1 0 0
0 1 0
0 0 1

Starting with a matrix, its eigenvalues can be calculated by the usual procedure of solving its
characteristic polynomial. Recall that the characteristic polynomial of a matrix is the
determinant of the matrix given by subtracting x from each diagonal entry of the original
matrix. We'll use this procedure to find the eigenvalues of matrix.

matrix - x IdentityMatrix[3] // TableForm

1 - x 1/2 1/3
1/2 1/3 - x 1/4
1/3 1/4 1/5 - x

IdentityMatrix[n] is the n x n identity matrix, as one might expect. Multiplying it by x
gives a matrix with x's on the main diagonal and 0's elsewhere. Subtracting the resulting
matrix from matrix gives the desired matrix (since subtraction of matrices of the same size
subtracts corresponding entries). Next, calculate the determinant of this matrix to find its
characteristic polynomial, using the command Det (which is another of the rare abbreviations
in Mathematica).

Det[%]

1 - 381 x + 3312 x2 - 2160 x3

2160

Actually, there is a built-in command to find the characteristic polynomial.

One · A Quick Trip Through Elementary Mathematics 33

CharacteristicPolynomial[matrix, x]

1 - 381 x + 3312 x2 - 2160 x3

2160

Since the coefficients of matrix are rational numbers, these calculations yield a polynomial
with rational coefficients. This 3rd degree polynomial has an exact solution in terms of roots of
these coefficients, but the resulting answer fills a whole screen, so we content ourselves with
numerical approximations to the roots. There is a special command to find numerical solutions
of equations.

NSolve[% == 0, x]

{{x -> 0.00268734}, {x -> 0.122327}, {x -> 1.40832}}

These are the eigenvalues of matrix by definition.
Of course, there is a built-in function to calculate the eigenvalues of a matrix. It gives the

results in a different order and different form.

Eigenvalues[N[matrix]]

{1.40832, 0.122327, 0.00268734}

One can also calculate the exact eigenvalues. We'll just look at the first one, which is chosen by
the [[1]] following the command to calculate the eigenvalues without the N [] .

eigenl = Eigenvalues[matrix][[1]]

23 6559
— + +
45 180 (517148 + 5 1 Sqrt[589171239])1/3

(517148 + 5 1 Sqrt[589171239])1/3
180

This appears to have a non-trivial complex component. Finding its numerical value shows
otherwise.

34 Part I · Symbolic Pocket Calculator
& « Λ ^ ?> ί <?#*?&tp- " Y - -V *< -;r f #

N[eigenl] => 1.40832 + 5.75982 IO"20 I

Let's try more decimal places.

N[eigenl, 20] => 1.4083189271236539575 + 0. IO"28 I

The complex component gets smaller, but it never actually disappears as it did in versions of
Mathematica before 2.2. Still, it seems safe to conclude that the result is a real number (as it
must be). The command Eigenvalues also works for matrices with symbolic entries. For
instance, try a general 2 x 2 matrix.

Eigenvalues!{{a, b}, {c, d}}] // Simplify

a + d + S q r t [a 2 + 4 b c - 2 a d + d 2]
{ ,

2

a + d - S q r t [a 2 + 4 b c - 2 a d + d 2]
}

2

5 Graduate School
Most of the entries in the following long list of built-in functions would not be encountered in
a typical undergraduate mathematics course.

AiryAi, AiryAiPrime, AiryBi, AiryBiPrime,
ArithmeticGeometricMean, BernoulliB, Bessell, BesselJ, BesselK,
BesselY, Beta, BetaRegularized, Catalan, ChebyshevT,
ChebyshevU, ClebschGordan, Coshlntegral, CosIntegral,
DivisorSigma, EllipticE, EllipticExp, EllipticExpPrime,
EllipticF, EllipticK, EllipticPi, EllipticTheta,
EllipticThetaC, EllipticThetaD, EllipticThetaN,
EllipticThetaPrime, EllipticThetaS, Erf, Erfc, Erfi, EulerE,
ExpIntegralE, ExpIntegralEi, FresnelC, FresnelS, Gamma,
GammaRegularized, GegenbauerC, GroebnerBasis, HermiteH,
HypergeometricPFQ, HypergeometricPRQRegularized,
HypergeometricU, HypergeometricOFl,
HypergeometricOFlRegularized, HypergeometriclFl,
HypergeometriclFlRegularized, Hypergeometric2Fl,

One · A Quick Trip Through Elementary Mathematics 35

Hypergeometric2FlRegularized, InverseJacobiCD, inverseJacobiCN,
InverseJacobiCS, InverseJacobiDC, InverseJacobiDN,
InverseJacobiDS, InverseJacobiNC, InverseJacobiND,
InverseJacobiNS, InverseJacobiSC, InverseJacobiSD,
InverseJacobiSN, InverseWeierstrassP, JacobiAmplitude,
JacobiCDf JacobiCN, JacobiCS, JacobkDC, JacobiDN, JacobiDS,
JacobiNC, JacobiND, JacobiP, JacobiSC, JacobiSD, JacobiSn,
JacobiSymbol, JacobiZeta, JordanDecomposition, LaguerreL,
LatticeReduce, LegendreP, LegendreQ, LerchPhi, LogGamma,
Logintegral, LUBackSubstitution, LUDecomposition, MoebiusMu,
NBernoulliB, Pochhammer, PolyGamma, PolyLog, Pseudoinverse,
QRDecomposition, Resultant, RiemannSiegelTheta, RiemannSiegelZ,
SchurDecomposition, SimplifyGamma, SimplifyPolyGaxnma,
Sinhlntegral, Sinlntegral, SixJSymbol, SphericalHarmonicY,
StirlingSl, StirlingS2, ThreeJSymbol, WeierstrassP,
WeierstrassPPrime, Zeta

In reading over this list, what strikes one is the preponderance of functions from physics,
number theory, and algebraic geometry. There are a few general operations like
GroebnerBasis or LUDecomposit ion, but mainly these functions serve as a substitute for
specialized tables, just like the more common operations Sin, Cos, etc. are substitutes for
tables of constant everyday use. The moral is that, unless your use of mathematics is restricted
to the kinds of operations sketched in this chapter or to the specialized functions mentioned
here, you will have to program the mathematics you want to use yourself. Fortunately,
Mathematica has a powerful, highly developed programming language that permits programs
to be written in a wide variety of styles. These programming facilities are the main subject of
the second part of this book.

6 Practice
In learning any language, one of the most important things is to practice simple phrases and
statements until they become second nature. In an interpreted programming language, this
means typing simple commands into the language until you are thoroughly familiar with
simple aspects of the syntax of the language-using brackets correctly, typing functions with
capital letters, separating variables with commas, etc. Here are a few things to try for practice.

1. 2 + 2 6. 3Λ10
2. 2-2 7. 3.14159Λ10
3. 3 5 8. (3 + 2Ι)Λ10
4. 4 /8 9. Pi
5. 3.14159 + 2.3456 10. N[Pi]

36
9ÎW&wwï>t& *?*%&&&■ - 'z&vçwm&*fWrm&&s "-ä ?^s

Part I · Symbolic Pocket Calculator
r ^vrr i ' %'f%*?^ji%!!&t&*&' "-<"* - -<-- ψ?ψ&<ΧΜΦ* ----'ip^^yi^f^^m^ ^ - --^Μ^- <

11. N[Pi,100] 32.
12. Sqrt[2] 33.
13. Sqrt[2.0] 34.
14. N[Sqrt[2], 20] 35.
15. Sin[2] 36.
16. Sin[2.0] 37.
17. EA(PiI) 38.
18. N[EAPi>PiAE] 39.
19. 1 + 2 3 40.
20. (1 + 2) 3 41.
21. 1 / 2 - 3 42.
22. 1 / (2 -3) 43.
23. 3Λ10000 44.
24. %A(1/10000) 45.
25. 2/5 + 3.0/8 46.
26. Random!] 47.
27. Round[N[23A(2/3)]] 48.
28. Ceiling[N[23A(2/3)]] 49.
29. Plot3D[Sin[x y], {x, 0, Pi}, {y, 0, Pi}] 50.
30. PSPrint[%] (in Unix systems)
31. Eigenvalues[{{a, b, l},{-b, 2, -a},

{b,0,-a}}]

D[xA2, x]
D[xA2 yA3, x, y]
D[xA2,{x,2}]
D[xA2yA3,{x,2},{y,3}]
Integrate[xA2, x]
Integrate[xA2 yA3, x, y]
Integrate[Sin[x], {x, 0, Pi}]
Integrate[Sin[x] y, {x, 0,2 Pi}, {y, 0,2}]
Integrate[Sin[x] y, {x, 0, Pi}, {y, 0, x}]
Integrate[Sin[x] y, {x, 0, y}, {y, 0,2}]
Series} Exp[-x] Sin[2x], {x, Pi I,6}]
Table[iA3, {i, 1,10}]
m = Tabletl / (i + j), {i, 1,3}, {j, 1,3}]
m . m//TableForm
m . Inverse[m]//TableFonn
{{a,b},{c,d}} + {{l,2},{3,4}}
{{a, b}, {c,d}}-{{1,2}, {3,4}}
{{a,b},{c,d}} {{1,2}, {3,4}}
{{a,b},{c,d}}/{{l,2},{3,4}}

7 Exercises
Find the inputs and outputs in Mathematica that solve the following problems.

1. i) Factor the polynomial 1 - x10.

ii) Investigate the factors of polynomials of the form 1 - x n for n between 1 and 10, by
making a suitable table.

2. Use Mathematica to verify the following trigonometric identities. (Hint: subtract the
right-hand side from the left-hand side.)

.x 1 - cos 2t 9

1 + cos 2t

ii) (csc t + cot t)z = 2 _ 1 + cos t
1 - cos f

One · A Quick Trip Through Elementary Mathematics 37

...v cos3 * +sin3 t ^
in) r—— = 1 - sin t cos t.

cos t + sin t
3. Use Mathematica to calculate the following integrals. In each case differentiate the result

to check the answer if possible. Use Simplify, Factor, Together, etc. wherever it
seems appropriate.

0 f « XV5 dx ϋ)ί^ΞΙαχ
Ί χ 5 + χ 4 - χ - 1 J x6

4. Convince Mathematica to display the expression (a + b) ((c + d x) x + e x2) in the
following forms:

i) a c x + b c x + a d x 2 + b d x 2 + a e x 2 + b e x 2

ii) (a + b) c x + (a d + b d + a e + b e) x2

iii) (a + b) x (c + d x + e x)

5. Graph the conic section 9 x 2 + 4 x y + 6 y 2 = l. Hint: you will need the package
ImplicitPlot.m.

6. Find all integer values of n between 0 and 5 such that Mathematica can evaluate the
following integral: Hint: make a table.

l/u)4/3 f (1-1/u
J un du

Use differentiation to check that the values it does find are correct. Hint: subtract the
integrand from the derivative of its integral and use Factor.

7. Same problem as number 5 for the following family of integrals.

-2n 1 dx

Show that the case n = 3 can be integrated by a substitution. Check your result.

8. Find the numerical value of the integral of sin(x3)/cos(x3) from 0 to 1 in two different
ways.

38 Part I · Symbolic Pocket Calculator
x · - -

9. Evaluate the double integral:

ioil·^71*^
10. Let

. (x3 + 6x5)
eXpd=TÖ^37

i) Differentiate expl.
ii) Simplify the result of i).
iii) Integrate the result of ii).
iv) Show that the answer to iii) is correct.

11. We saw in the text that ((2 + 5 I) 1 2) 1 7 1 2 * 2 + 5 I. What is the precise
relationship between these two numbers.

12. Evaluate.

13. i) Consider the matrix

l j m cos x - cot x
χ->π/2 (χ-π/2) 3

1 2 3
A = | 4 5 6

7 8 9

Find the exact values and the numerical values of the eigenvalues and eigenvectors
of A. Display the answers as a table in which the first column has the eigenvalues
and the second column has the corresponding eigenvectors. (Hint: look up
commands starting with Eigen. Also, consider Transpose.) Display your answers
in a nice, readable form.

ii) The transpose of the matrix of eigenvectors of A determines the coordinate
transformation that diagonalizes A. Use this to check the results of part i).

14. Same problem as 13 for the matrix
1 4 3

B = | 4 2 3
3 3 1

The exact values here are very large, but given enough time, Mathematica is able to find
and check them.

One · A Quick Trip Through Elementary Mathematics 39

15. Compare the integral of Vl + cos(x) over the interval (0, π) with the numerical value of
the integral and with a plot of the function over the same interval. This example is
pointed out in [Wei].

16. In [Stoutemyer], David Stoutemyer proposed some tests for symbolic computation
programs. Here are two of them.

i) Over what range of values does Mathematica give a continuous antiderivative for 1 /
(2 + cos x)? Hint: make a plot of the antiderivative. Does Mathematica give the
correct answer for the definite integral of the function from 0 to 2 π.

ii) Use the expression

(x3 + 2 x 2 + 3x + 2)
(x3 + 4 x 2 + 5x + 6)

to show that simplification does not commute with substitution. Hint: the
numerator and denominator have a common factor.

17. In [Simon 1], Barry Simon described the results of submitting test problems to several
symbolic computation programs-Derive, Macsyma, Maple, and Mathematica. Here are
modified versions of some of the problems.

i) Factor the integer 236789456789432678.

ii) Try inverting the n x n Hilbert matrix (just change 3 to n in the definition) for larger
values of n. For n about 10, it is still possible to look at the result. Simon asks for
n = 20. Don't try to display the result, but do check that the answer is correct.

iii) Find the symbolic sum of iP for i from 1 to n. Do this for p equal to various small
values; e.g., 3, 5. You have to use a package to do this, so execute the statement
Needs ["Algebra" Symbolic Sum ̂ "] first. Simon asks for the value when p = 30.

iv) Differentiate x ^ cos(x^ log(x)) with respect to x and then integrate the result, v)
Here is the Van Der Monde matrix of size 3.

(I 1 1 \
x[l] x[2] x[3]

V x[l] 2 x[2]2 x[3]2 j

Here, x[n] is notation for a subscripted variable, x n . Define a function that
constructs the Van Der Monde matrix of size n. Simon's problem is to factor the
determinant of the Van Der Monde matrix of size 6. (Don't try to display the
determinant in unfactored form.) After finding the factorization, answer the
following questions:

40 Parti · Symbolic Pocket Calculator

How many terms are there in the unfactored form of the Van Der Monde
determinant of size n? How many symbols are there in each term? How many
symbols in the entire determinant? (Don't forget about spaces and + and - signs.)
How many pages are needed to display the unfactored Van Der Monde
determinant of size 6? of size 10? Assume that there are 80 symbols per line, that
Mathematica breaks expressions only at + and - signs where possible, and that there
are 50 lines per page.

Mathematica est omnis divisa in partes très.

1 The Different Aspects ^Mathematica
There are three distinct aspects to working with Mathematica, as indicated in the following
tables.

Aspect

The kernel

Notebook front-
end

Explanation

The kernel is a very large C program that deals with
inputs and returns outputs by means of two processes:
calling hard-wired C code to do various computations
and using rewrite rules to reduce expressions to normal
form. (These will be explained in great detail in later
chapters.)

The Notebook front-end is a graphical user interface
with the kernel which is now supported by most
computers. They all present essentially the same
appearance to the user. These front-ends provide
facilities for editing and organizing text and sending
inputs to the kernel for evaluation. The kernel sends the
results back to the front-end which is then responsible
for displaying the outputs in an appropriate form,
including displaying graphics in place. Documents
developed in the Notebook front-end can be printed
exactly as they appear on the screen.

Things to Master

What the commands
are that the kernel
recognizes and how to
use them

How to most effic
iently make use of the
many facilities of the
notebook front-end to
create interesting and
useful documents in
Mathematica.

41

42 I · Symbolic Pocket Calculator

Aspect

Packages

Explanation

Packages are small, or not so small, programs written in
the Mathematica programming language that extend the
functionality of the kernel. Even though the kernel
recognizes over 1100 commands, these do not begin to
cover all of the operations that are needed in various
parts of mathematics, science, engineering, commerce,
etc., so the program is also supplied with 148 packages
organized into 13 directories (or folders), containing
over 2000 additional commands and constants that
supply some of the other desired operations. Many other
packages are available through MathSource.

Things to Master

How to understand and
use the programs that
are available in
packages.

The kernel is functionally the same on all platforms, but details of the Notebook front-end may
vary from one computer to another. However, individual notebooks are completely portable.
This book was originally produced as a sequence of notebooks and then transferred to a word
processor for final formatting. Packages are normally not written as notebooks so they can be
used on any computer, whether or not it has a notebook interface. When you get the program,
you also receive a rather substantial book describing the current versions of the packages.
These packages have to be deliberately loaded, as was illustrated in the first chapter by the
ImplicitPlot package, in order to use the operations contained in them.

It is easy to create your own extensions to the kernel. In fact, the ease with which such
extensions can be created is an important way to distinguish between various symbolic
computation programs. There are two ways to write extensions in Mathematica. One is to write
notebooks containing detailed discussions of the topics being treated along with examples,
graphics, etc., all implemented in the very flexible Mathematica programming language. The
other, more formal way, which is suitable for code intended for use by others, is to write your
own packages using the supplied packages as models. See also [Maeder 1] and Chapter 10,
Section 2 of this book.

2 Interacting with the Kernel
Inputs are typed in from a keyboard, typically in an input cell in a notebook, or at a command
line in a raw kernel. (They can also be read in from a file; see Chapter 8.) It is unnecessary to
end an input with any particular symbol. Carriage returns can be used so that a single input
can extend over many lines. However, be careful to make line breaks in such a way that the
material before the break is not a complete Mathematica expression. If it is, and you are
working in a raw kernel, Mathematica will try to evaluate it. If it is unable to do so or if there is
nothing to be done, then the input will be returned in unevaluated form. In a notebook,
nothing is sent to the kernel until Enter or Shift-Return is typed. Even so, complete expressions
will be evaluated separately. After a shorter or longer time, the evaluated form of the input

Two · Interacting with Mathematica 43

will be returned as an output. In a notebook, if the output is not what was desired, then the
input can be edited in place and reevaluated. The inputs and outputs are numbered
consecutively and provide a temporal ordering, which may differ from the spatial ordering in
a notebook because of réévaluations. On a workstation with a window system but without
notebooks, inputs can be typed in a text editor and then copied and pasted into a Mathematica
session. Here, if the output is not what was desired, then the input can be edited in the text
editor and recopied and pasted into Mathematica again. In this way, a sequence of successful
commands will be built up in the text editor. They can then be saved in a file for reuse.

2.1 Help Facilities in the Kernel

The kernel provides help facilities via ? and ? ? commands. For instance, to find out about the
Plot command use:

?Plot

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of
x from xmin to xmax. Plot[{fl, f2, ...}, {x, xmin, xmax}] plots
several functions fi.

This tells us what the arguments to Plot should look like and what the command does. To get
more information use the following form.

??Plot

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of
x from xmin to xmax. Plot[{fl, f2, ...}, {x, xmin, xmax}] plots
several functions fi.
Attributes[Plot] = {HoldAll, Protected}
Options[Plot] =

{AspectRatio -> GoldenRatioA(-1), Axes -> Automatic,
AxesLabel -> None, AxesOrigin -> Automatic, AxesStyle ->
Automatic, Background -> Automatic,
ColorOutput -> Automatic, Compiled -> True,
DefaultColor -> Automatic, Epilog -> {}, Frame -> False,
FrameLabel -> None, FrameStyle -> Automatic,
FrameTicks -> Automatic, GridLines -> None, MaxBend -> 10.,
PlotDivision -> 20., PlotLabel -> None, PlotPoints -> 25,
PlotRange -> Automatic, PlotRegion -> Automatic,
PlotStyle -> Automatic, Prolog -> {}, RotateLabel -> True,
Ticks -> Automatic, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

44 I · Symbolic Pocket Calculator

This tells us in addition that P l o t has two attributes and 27 options. Both attributes and
options are under the control of the user and we will discuss how to use them in great detail
later. One can use * as a wild card in requests for information. For instance, to see all of the
commands starting with B, use:

?B*
Background
BaseForm
Begin
BeginPackage
Below
BernoulliB
Bessell

BesselJ
BesselK
BesselY
Beta
BetaRegularized
Binomial

Blank Boxed
BlankForm BoxRatios
BlankNullSequence BoxStyle
BlankSequence Break
Block Byte
Bottom ByteCount

To see all of the commands containing the word List , use:

?*List*
CoefficientList List
ComposeList Listable
FactorList ListContourPlot
FactorSquareFreeList ListDensityPlot
FactorTermsList Listen
FindList ListPlay
FixedPointList ListPlot
FoldList ListPlot3D

ListQ
$MessageList
MessageList
NestList
ReadList
RecordLists
SampledSoundList
ValueList

2.2 A Quick Overview of Définitions in Mathematica

There are three kinds of definitions in Mathematica and a great deal can be done just using the
simplest aspects of these forms.

i) Assignment statements
ii) Function definitions

iii) Recursive (function) definitions.

2.2.1 Assignments
An assignment statement assigns a value to some symbol (or expression). It is given by a single
equals sign "=." For instance, assign to r the product x times y.

r = x y x y

Two · Interacting with Mathematica 45

From now on, whenever Mathematica encounters r in an expression, r is replaced by its value
x y.

5 + 2 r + 3 r A 2 => 5 + 2 x y + 3 x 2 y 2

One can also mimic arrays (as in Pascal) by assigning values to expressions of the form w[i] .
E.g.,

w[2] = l + 2 a => 1 + 2 a

Again this is used whenever possible.

w [l] + b w[2] => (1 + 2 a) b + w [l]

2.2.2 Function definitions

The other kind of definition is function definition. This is usually specified by "colon equals,"
i.e., " : =." On the left-hand side there is an underscore "_" preceded by some symbol; e.g., "x."
This should be read as "a pattern named x." The right-hand side then specifies what is to be
done with x. For instance:

f [x _] := x"2

This defines f to be the squaring operation so that f applied to "anything" is replaced by
"anything squared."

f [3] + f [a + b] + f [a n y t h i n g]

9 + a n y t h i n g 2 + (a + b) 2

See Chapter 6 for a thorough discussion of functional programming and Chapter 7 for the
precise meanings of = and : =.

2.2.3 Recursive functions

Patterns as described above can be used to define functions recursively; i.e., the function being
defined can also appear on the right-hand side of the definition. For instance, we can construct
our own factorial function by the following two rules.

fac[n_] := n fac[n-l]
fac[l] = 1;

46 I · Symbolic Pocket Calculator

To ask Mathematica what it has learned about our factorial function, use the same command as
for built-in functions.

?fac

Global"fac
fac[l] = 1
fac[n__] := n*fac[n - 1]

It can be used just like any other function.

fac[20]

2432902008176640000

We can even ask Mathematica to show us how it uses these rules to calculate values of our
factorial function.

Trace[fac[4]]//MatrixForm
fac[4]
4 fac[4 - 1]
{{4 - 1, -1 + 4, 3}, fac[3], 3 fac[3 - 1],
{{3 - 1, -1 + 3, 2}, fac[2], 2 fac[2 - 1],
{{2 - 1, -1 + 2, 1}, fac[l], 1}, 2 1, 1 2, 2}, 3 2,

2 3, 6}
4 6
24

This says that to calculate f ac [4] , first calculate 4 f ac [4 - 1] . Next calculate 4 - 1 , which
is the same as - 1 + 4 which is 3, so calculate f ac [3] . But this requires 3 f ac [3 - 1] , etc.,
until f ac [1] is reached, which is given to be 1. Then these results have to be multiplied
together. So 2*1 is the same as 1*2 which is 2, 3*2 is the same as 2*3 which is 6, and finally
4*6 is 24. (See Chapter 10, Section 3 for a detailed discussion of how Mathematica evaluates
expressions.)

2.2.4 Recursive programming viewed as rewrite rules

Instead of thinking of ":=" definitions as defining functions, which might be recursive, we can
think of them as rewrite rules that say that anything that matches the left-hand side should be
rewritten as the right-hand side. For instance, let us program our own logarithm rules. First,
just consider the rule that says that the logarithm of a product is the sum of the logarithms of
the factors.

log[x_ y_] := log[x] + log[y]

Two · Interacting with Mathematica 47

This is not a definition of a logarithm function but rather a rule for rewriting expressions
containing "log." For instance:

l o g [a b cA2 d]

log[a] + log[b] + log[c2] + log[d]

The rule has been applied several times to reduce the original expression to this form, but it is
not quite what was wanted. Apparently, Mathematica does not recognize that c 2 is the same as
c*c, so we need a second rule to handle this case also.

log[x_ Λ n_] := n log[x]

Try the example again.

l o g [a b c"2 d]

l o g [a] + l o g [b] + 2 l o g [c] + l o g [d]

This is what we wanted. We use ? again to check what Mathematica knows about our
logarithm function.

?log

Global"log
log[(x_)*(y_)] := log[x] + log[y]
log[(x_r(n_)] := n*log[x]

Thus, we have given two different rules for expressions containing "log" that do different
things depending on the form of the argument to log. See Chapter 7 for a thorough discussion
of programming with rewrite rules.

2.3 Some General Observations

2.3.1 Different forms of expressions

Type in an expression.

expr = (2 - 3 x " 2) / (a + S i n [3])

2 - 3 x 2

a + S i n [3]

48 I · Symbolic Pocket Calculator
l i l i l l ^ l i l l i « ^

We can get back the input form of this expression as an output if we want it.

InputForm[expr] => (2 - 3*xA2)/(a + S in[3])

Or we can output the TeX form, the Fortran form, or the C form if they are needed.

TeXForm[expr] =>{{2 - 3\,{xA2}}\over {a + \sin (3)}}
FortranForm[expr] =>(2 - 3*x**2)/(a + Sin(3))
CForm[expr] => (2 - 3*Power(x,2))/(a + Sin(3))

These can then be copied and pasted into a TeX document, a Fortran program, or a C program.

2.3.2 Kinds of brackets
There are five kinds of brackets that are used in Mathematica. Just for fun, we will use
Mathematica to construct a table of these kinds of brackets and what they are used for.

{{"Brackets", "Usage"},
{ II II II II \ r / r
{" []", "function application"},
{"{ }", "lists"},
{"()", "grouping"},
{"[[]]"/ "part extraction"},
{"(* *) " , "comments"}} // TableForm

Brackets Usage

[]
{ }
()
[[]]
(* *)

function application
lists
grouping
part extraction
comments

3 Interacting with the Front-End
Notebooks provide many facilities for the user.

i) The most dramatic of these is the ability to edit inputs in place and reevaluate them
without losing control of the sequence in which things have been evaluated.

Two · Interacting with Mathematica 49

ii) The next obvious thing is the hierarchical organization of the cells in a notebook which
provides a very convenient outlining facility and enables one to hide those parts of a
notebook that are not being worked on.

iii) Graphics and text can be intermixed and printed exactly as they appear on the screen.

3.1 Help Facilities in the Front-End

There are several help facilities in the front-end which are now (Version 2.2 and later) grouped
under the Help menu.

i) Press the Command, Shift and ? keys simultaneously or select the item Help Pointer
in the Help menu. This turns the cursor into a question mark which can be used to
inquire about any part of the notebook interface. For instance, select the item Connect
Remote Kernel in the Action menu with the question mark cursor. A dialogue box
will appear and give a brief explanation of this item-actually just enough to convince
you to read the User's Guide carefully before attempting to use a remote kernel.

ii) Select the item Open Function Browser to bring up a dialogue box with very powerful
facilities to locate commands and information about them. Commands are organized
logically, rather than alphabetically, in the Function Browser in a three-level hierarchy
with related commands being placed near to each other. This is an extremely useful
way to find commands and understand what they do, not only for beginners, but also
for experts in the language. Once a command is found, a template for its arguments
can be created and pasted in a notebook. Alternative, type the beginning of some
command, highlight it and select Completion Selection or Make Template from the
Prepare Input sub- menu of the Action menu. (Note that it has a command key
equivalent.) If there is only one possible completion of your partial command, that will
be made. If there are several, a scrollable dialogue box will appear showing all possible
completions in alphabetical order. Once you have a complete command, you can use
the Find in Function Browser item in the Help menu to find out more about it.

3.2 Menus

Detailed information about all of the menu items can be found in the documentation supplied
with the program, or by using the Help pointer, ?. Here we just mention some of the items that
we use all the time and find very helpful in producing nice documents. The information here is
specific to the Macintosh platform, although MS DOS and X-Windows versions are similar.
The NeXT machine version has things arranged differently, but contains similar items.

50 I · Symbolic Pocket Calculator

3.2.1 File menu
Under Printing Settings, investigate the Printing Options and the Headers and Footers items.
The Save As Other item is one of the most useful utilities since it lets one convert notebooks to
formats that can be used in other programs. The RTF (Rich Text Format) item produces a file
that is suitable for a number of word processors such as Microsoft Word and Aldus
PageMaker. It retains font information but discards directions for formatting cells, etc. The
Plain Text setting produces a file that can be used for versions of Mathematica that don't use
notebooks. Of course any version that does use the Notebook front-end will read the file
produced by any other version. Notebooks are ASCII text files that can be transmitted over
networks and modems with only a moderate amount of editing required at the destination.

3.2.2 Edit menu
The Preferences sub menu contains a number of interesting features. For instance, under
Display one finds the Real-time scroll bar item checked by default. Try it. Under Action
Preferences, you might want to turn on the Display clock timing after each evaluation. In
earlier versions, the Startup Preferences dialogue box is where the size of the stack was
changed. In Version 2.2 and later, you have to switch to the kernel program itself. There is a
Preferences item in the Edit menu there, whose only item is a Stack Size dialogue box. Stack
size is important because sometimes it is not sufficient to increase the recursion limit in order
to complete a calculation (see Chapter 7, Section 6 for an example) and it may be necessary to
increase the stack size.

The most useful item under Nesting is Balance with its keyboard equivalent of Command
b. Put the cursor anywhere in the content of an input cell and type Command b. The smallest
string between two brackets will be selected. Continue pressing Command b and
progressively longer strings will be selected. This is how you find unbalanced brackets.

3.2.3 Cell menu
Everything in this menu is useful. Automatic grouping is wonderful when it does exactly
what you want. If it doesn't, this is where you turn it off.

3.2.4 Graph menu
I use both a monochrome and a color monitor, so I frequently choose Render PostScript to
change a monochrome picture to a colored picture. However, resizing the picture
accomplishes the same end. Another item is Animate Selected Graphics with its keyboard
equivalent Command y.

Two · Interacting with Mathematica 51

3.2.5 Find menu
Most items are standard. Enter Selection is useful if you want to search for a particular term. It
is necessary to learn the keyboard equivalents, Command a and Command d, to find and
replace an item many times. On the other hand, if you select the Find... dialogue box, notice
that there is a button labeled Long Form. Choosing that brings up a completely different Find
box based on Keywords and Styles. Styles refers to cell styles. For instance, I made new
notebooks from each of these chapters by selecting Title Subsubsection or Input. When I
then clicked on All, all of these kinds of cells were selected and I just copied them into a new
notebook to make the disks supplied with this book. Keywords can be used to identify
particular cells. Under the Find menu itself there is an item Edit Keywords... which is where
keywords are added to cells. They can then be used for instance to construct an index using the
Make Index item in this menu.

3.2.6 Action menu
The most useful items are the 3-D View Point Selector on the Prepare Input submenu and the
Evaluate Initialization item. Other items on the Prepare Input submenu are mentioned above.

3.2.7 Style menu
A great deal of work is done in this menu. Cell Styles range from Title through Special 5.
These items constitute the descriptive markup items that are available in the Notebooks front-
end. (Descriptive markup items are just names.) For each such name there has to be a
corresponding procedural markup specification that describes exactly what styling properties
correspond to the name, and this is where it is given. For instance, choose the Edit Styles...
dialogue box and select the cell bracket for the cell This is the Section Style. Then go back to
the Style menu and look at the various items there. You will find:

Attributes Inactive
Font Times (I'm looking at my own setup for this notebook.)
Face Bold
Size 14
Leading +1
Space Around Cell Space above cell 6.00 Space below cell 4.00
Alignment Align Left
Text Color Black
Background Color White
Page Breaks (none chosen)
Formatter Notebook's Kernel
Evaluator Notebook's Kernel

52 I · Symbolic Pocket Calculator

These items constitute the procedural markup specification assigned to Section cells. The left-
hand entries constitute the properties that define a style, and the right-hand entries give their
values. They can all be changed interactively here. Making such changes is an important part
of making your notebook look the way you want it to. Note also that one of the possible cell
attributes is Formatted. This is an attribute of output and graphics cells. If such a cell has this
attribute unchecked, its appearance may change dramatically. For instance, a graphics cell
turns into the PostScript description of the picture.

33 Mouse Operations on Graphics

The coordinates of points in a graphics cell can be determined very simply. Select the graphics
item, hold down the Command key and click with the cross hairs cursor at the desired points.
The coordinates of the cursor are displayed continuously at the bottom left of the window.
After clicking on the desired points, choose Copy. Then place the cursor in a new cell and
choose Paste. A list of the chosen points will be entered in that cell.

If instead the Command and Option keys are held down and the mouse is dragged in the
selected picture, then a rectangle is produced. If this is copied, then a description of the corners
of the rectangle is produced which can be used as the value of the option PlotRange to get a
new picture of the part of the curve in the chosen rectangle. Here is part of a screen dump,
made on a Macintosh, of the appearance of such a rectangle.

P l o t [S i n [x] # { x , 0 , 2 P i >] ;

After copying and pasting, one gets the following list of numbers.

{{0.840136, 3.82095}, {-0.429487, 1.05091}}

The first pair of numbers here is the x-range of the rectangle. If these numbers are used instead
of 0 and 1 for the range of x in another plot, then we get the following picture.

Two · Interacting with Mathematica 53

P l o t [S i n [x] , {x, 0.840136, 3 .82095}] ;

0.7
0.

0 .2

- 0 . 2
- 0 .

This can be used, for instance, to very quickly close in on a zero of a function.

4 Using Packages

4.1 Supplied Packages
The current version of Mathematica has 13 directories (or folders) of packages with names like
Calculus, Graphics, etc. Calculus contains 10 files, a Master file and a subdirectory, Common,
while Graphics contains 20. A very convenient way to find out about packages is to use the
Function Browser if it is available. Just click on the radio button Packages there, and the
browser will show you the names of all the packages, in a hierarchical format with brief
descriptions of each package. Once a package has been loaded, you can use the radio button
Loaded Packages to find descriptions of each of the commands in such a package. There are
two ways to load a package into a session of Mathematica; either use a Get command, written
« , or use a Needs command. A command with « requires either the actual name of the file,
or a context name as described below. You may get a dialogue box if your system can't locate
the file. This can be avoided by using a complete path name for the file. If you use the form

«Po lyhedra . m

then, depending on the machine, you may or may not succeed in loading the file. On a
Macintosh, a dialogue box appears saying the file can't be found. If you use a more complete
path name,

« :Graphics :Polyhedra.m

54 I · Symbolic Pocket Calculator

there is a better change of succeeding. The strange form with back ticks,

«Graphics" Polyhedra"

now seems to be the most reliable, working just like the Needs command. This particular
package enables one to display regular and stellated polyhedra. Using Needs directly is
system independent.

Needs["Graphics"Polyhedra""]

Note the quotation marks and the back ticks after Graphics and Polyhedra. This is actually
a context name rather than a file name. Contexts will be explained when we study packages in
Chapter 11, Section 2.

4.1.1 Graphics and geometry packages .
Start with some examples from graphics packages. Here is an example from the Polyhedra
package.

Show[Graphics3D[GreatDodecahedron[]]];

Actually, each folder in the Package subdirectory has a file called Master.m. If this package is
loaded then all of the commands in all of the other packages in the folder are made available.

Needs["Graphics"Master""]

Two · Interacting with Mathematica 55

The following command will list all of the packages that have now been made available.

$ContextPath

{Graphics"ThreeScript", Graphics"SurfaceOfRevolution",
Graphics"Spline", Graphics"Shapes", Graphics"Polyhedra",
Graphics"PlotField3D", Graphics"PlotField",
Graphics"ParametricPlot3D", Graphics"MultipleListPlot",
Graphics"Legend", Graphics"Graphics3D",
Graphics"Graphics", Graphics"FilledPlot",
Graphics"ContourPlot3D", Graphics"ComplexMap",
Graphics"Common"GraphicsCommon", Graphics"Colors",
Graphics"Arrow", Graphics"ArgColors", Graphics"Animation",
Graphics"Master", Graphics"ImplicitPlot",
Utilities"FilterOptions", Global", System"}

To find out what is in the Shapes package, one can use the following command.

Names["Graphics"Shapes"*"]

{AffineShape, Conef Cylinder, DoubleHelix, Helix, MoebiusStrip,
RotateShape, Shapes, Sphere, Torus, TranslateShape, WireFrame}

Thus, this package makes available 12 more operations in Mathematica. Unfortunately, loading
the M a s t e r package is not enough to get the Function Browser to display all of this
information.

4.1.2 Miscellaneous packages

The directory M i s c e l l a n e o u s contains many useful and interesting constants.

Needs["Miscellaneous"Master";"]

For instance, the package U n i t s has 241 scientific and common units and converts between
them. (See also the package S l U n i t s .) E.g.,

{Convert[27 BTU, C a l o r i e] ,
C o n v e r t [0 . 5 G a l l o n , Teaspoon]}

{6803 .91 C a l o r i e , 384 . Teaspoon}

56 I · Symbolic Pocket Calculator

Similarly, the package ChemicalElements has all 106 elements together with some 25
operations to manipulate them.

{HeatOfVaporization[Xenon],
ElectronConfigurationFormat[Zinc]}

{12.65 Joule Kilo/Mole, I s 2 2s2 2p6 3s23p63d1 0 4s2}

The package PhysicalConstants has exactly what its name suggests.

{AccélérâtionDueToGravity, ThomsonCrossSection}

{9.80665 Meter/Second2, 6.65224 1029 Meter2}

Convert [Accélérât ionDueToGravity, Feet/Second^]

32.174 Feet/Second2

The package Music has absolute and relative frequencies.

{MeanMajor, PythagoreanMajor, Fflat3}//TableForm

0 193.2 386.3 503.4 696.6 889.7 1082.9 1200
0 204 408 498 702 906 1110 1200
329.628

4.2 MathSource
MathSource is a call-in facility maintained by Wolfram Research, Inc. It can be accessed by e-
mail, ftp, and, presumably by the time this appears, by direct modem connection. At the time
of writing, it contains 440 items, some of which are produced in house by Wolfram Research,
Inc., and some of which are contributed by users of the program. There are short programs,
long programs, programs written in a very naive style, and programs written in a very
sophisticated style. Before embarking on a project of your own, it would seem wise to check to
see what is available there. The most convenient way is via ftp which allows you to search the
archives interactively and request desired files.

Two · Interacting with Mathematica 57

5 Saving Work to be Reused

5. / Notebook Front-Ends

If you work in a Notebook front-end, then saving work to be reused is a simple matter. Just
put the work you want to save in a separate notebook and save the notebook under some
convenient name using the menu selection in the File menu. However, this notebook may
contain many other things besides the operations you have defined to carry out certain tasks
and you can arrange things so that just these operations will be evaluated when you start up
Mathematica again and open this notebook. Just select each of the cells containing the important
definitions and give them the attribute Initialization Cell, found in the Attributes submenu of
the Style menu. When such a notebook is reopened a dialogue box appears asking if you want
to evaluate the initialization cells. You can either answer Yes at this point, or answer No and
wait until later when the same thing can be accomplished using the menu item Evaluate
Initialization in the Action menu.

5.2 Raw Kernek

If you work in a system without a Notebook front-end, then there are two alternatives. If you
have a window system, then a common way to work is to keep a textedit window open next to
the Mathematica window and type all of your inputs in the textedit window first, transferring
them to Mathematica by copying and pasting. This makes it easy to edit inputs and reevaluate
them in edited form. When you are done, the textedit window will contain a transcript of the
successful commands. This can be further edited and saved as a text file in the usual way. That
file can later be reloaded in a textedit window and the commands transferred to a new
Mathematica session using copy and paste again. Editors like vi or emacs can also be used.

If all you have available is a terminal, or if you want to save a series of definitions in a file to
be loaded directly into Mathematica at some later time, one way to do it is to use some
commands that will seem rather mysterious at this stage, but will become clear later. First
define a "history" command.

history[m_, n_] := Table[InString[i], {i, m, n}]

This will store the inputs labeled m through n as strings. To try this out, define a few functions.

ff[x 1
fff[x_]
ffff[x]

:= x"2
:= xA3
:= xA4

58 I · Symbolic Pocket Calculator

Try out these functions just to see how they work.

{ f f [2] , f f f [2] , f f f f [2] } => { 2 , 8, 16}

These functions are labeled In [42], In [43], and In [44] in my current session, so make a
new definition recording them as a history.

hhh = history[42, 44]

{ff[x_] := χΛ2;, fff[x_] := xA3, ffff[x__] := xA4}

Note that this is a list of strings. If the inputs you want to save are not in sequence, they can be
saved just by making a list of the I n S t r i n g s of the corresponding I n numbers; e.g.,

(*hhh = {InString[nl], InString[n2],.., InString[nk]}*)

The definition of hhh can now be stored in a file using the Save command.

Save["sessionHistory", hhh]

Now clear the definitions of f f, f f f, and f f f f, so that we can check how to read in the file
and use these definitions again.

Clear[f f , f f f , f f f f]

This causes Mathematica to forget the values that have been assigned to these symbols. E.g.,

?f f => G l o b a l ^ f f

The command Get [" f i l ename"] reads in a file. The result is more readable if we display it
in TableForm although this is unnecessary for what follows.

TableFormfGet["sessionHistory"]]

ff[x_] := χΛ2
fff[x_] := χΛ3
ffff[x_] := χΛ4

These are still strings and so have no value. The command ToExpress ion turns them into
Mathematica expressions, and they then evaluate themselves.

ToExpression[%]

Two · Interacting with Mathematica 59

Now we can use the functions again.

{ff[2], fff[2], ffff[2]} => {2, 8, 16}

6 Practice

1. Needs["Graphics Polyhedra^"]
2. Show[Graphics3D[Icosahedron[]]]
3. ?D*
4. ?*Plot*
5. ?A*

7 Exercises

1. Write rewrite rules for a function l o g b [x] that reverse the rules given for l o g [x] .
Note that in writing these rules it is necessary to use Λ : = instead of : = for reasons that
will be explained in Chapter 7, Section 2.1.1.

2. Make a three-dimensional plot from a different view point. First evaluate

Plot3D[Sin[x] Cos[y], {x, 0, Pi}, {y, 0, Pi}]
to see the picture from the default viewpoint. Then change the command to

Plot3D[Sin[x] Cos[y], {x, 0, Pi}, {y, 0, Pi},]
and place the cursor just after the last comma. Go to the Prepare Input sub menu of the
Action menu and select the 3D ViewPoint Selector. Use the cursor to drag the outline
box to a new orientation and click on the Paste button. Your command will now look
similar to

P l o t 3 D [S i n [x] C o s [y] , { x , 0 , P i } , { y , 0 , P i } ,
V i e w P o i n t - > { 1 . 9 2 7 , - 2 . 5 0 1 , - 1 . 2 1 6 }]

Evaluate this new graphics command and compare the new picture with the original
one.

60 I · Symbolic Pocket Calculator

3. Make a plot of the curve y = x - cos x for x between 0 and 1. Use the technique described
in the section about mouse operations on graphics for selecting new values for the x-
range to close in on the value where x = cos x. Doing this several times should give a
value with six significant digits. Compare this value with the value given by pushing
the cos key on a pocket calculator until the digits stop changing. Alternatively, type
PFixedPoint to find out about this function and use it to find the solution.

4. i) Type Be leaving the cursor just after the e and select Command Completion from
the Prepare Input submenu of the Action menu. Choose BesselY.

ii) Same exercise, except select Make Template instead of Command Completion.
Here are some suggestions from Wolfram Research, Inc. in Course Notes by Paul
Abbot of things to do with the front-end.

5. Open the Find dialogue box and select all of the Subsubsection cells in this notebook,
or some other notebook. Copy them and paste them into another new notebook. Select
all of them and choose Convert to PICT from the Graph menu. Close the group of cells
and Animate them. Use the controls that appear in the lower left-hand corner of the
window to control the speed, or drag the horizontal scroll bar to view the cell names
one at a time.

6. Use a drawing program such as MacDraw to produce a PICT graphics. Copy and Paste
it into a cell in Mathematica and use Convert to InputForm to produce a Mathematica
input cell yielding the same graphics. Give a name to the Graphics item in this drawing.
Evaluate the cell and compare the result with the original graphics item. Load the
package GraphicsvGraphicsv and get information on the command
TransformGraphics. Apply TransformGraphics to your named graphics item using
some function like Sin for the second argument, and Show the result.

7. Use Edit Keywords in the File menu to add some keywords to a few cells in a notebook.
Try typing one of the keywords in another cell and Command double clicking on it. Use
Make Index in the File menu to make an index of the keywords you have added.

CHAPTER

More About Numbers i
and Equations

1 Introduction
At the heart of any symbolic computation program lie its abilities to deal in different ways
with equations of all kinds. The possible ways include exact and approximate numerical
solutions and exact symbolic solutions. The kinds can be linear, polynomial, algebraic and
transcendental equations in one or more variables, as well as ordinary and partial differential
equations involving one or several unknown functions of one or more variables. There are
many subtle questions that we only have space to dwell on briefly in introducing the reader to
this very rich world that Mathematica makes available to users.

2 Numbers

2.1 Precision and Accuracy

There are two important measures attached to numbers in Mathematica, precision and
accuracy. The definitions are:

Precis ion [x] = the total number of significant digits in x
Accuracy[x] = the number of significant decimal digits to the right of the

decimal point in x.

Here are some simple examples, presented as a table of inputs and outputs. Frequently, we
will use either this format or lists of inputs and lists of outputs to save space.

61

62
:~?κ w^ iâ^AW \^^^mM^4M^Mt^m^^wm^^^^--

Part I · Symbolic Pocket Calculator
,->.'> * ,■#* · * \ » < ^&

Inputs

{Precision[10], Accuracy[10]}

{Precision[3/5], Accuracy[3/5]}

{Precision[68.25], Accuracy[68.25]}

Outputs

{Infinity, Infinity}

{Infinity, Infinity}

{19, 17}

It is clear that infinite precision numbers like integers and rational numbers should have
P r e c i s i o n equal to I n f i n i t y . Presumably having Accuracy also equal to I n f i n i t y
suggests an infinite number of zeros to the right of the decimal point. But why the value 19
and 17 for 68.25, rather than 4 and 2? This is because of the way real numbers are handled by
default. They use the built-in machine level floating point arithmetic. For any specific machine
the number of digits can be accessed by the command

$MachinePrecision 19

This result is for a Macintosh. Unix workstations usually have a machine precision of 16.
(Commands that start with $ have values or effects concerned with the environment in which
Mathematica is running or the way in which it works. E.g.,

{$Version, $TimeUnit, $RecursionLimit}

{Macintosh 2.2 (April 9, 1993), 1/60, 256}

The output shows that I am using the Macintosh Version 2.1 of Mathematica from July 28,1992,
that the minimal unit of time on my machine is 1/60 of a second, and that a recursive program
will carry out 256 steps before stopping and asking if I want to continue.) Anyway,
$MachinePrecision equal to 19 means that all machine level real numbers are treated as
though they have 19 significant digits. So 68.25 has Prec is ion 19 and Accuracy 17. For real
numbers with specified precision, the values are as expected.

sq3 = N[Sqrt[30], 25]
{Precision[sq3], Accuracy[sq3]}

5.477225575051661134569698
{25, 24}

However calculations with numbers of specified precision can result in values that have a
different precision. What N [] with a specified second argument really means is "use numbers
of the given precision to carry out the computation" and not "give me an answer with
requested precision." Thus, for instance, start with the square root of 30 calculated with
precision 50.

Three · More About Numbers and Equations 63

N[Sqrt[30], 50]

5.4772255750516611345696978280080213395274469499798

{ P r e c i s i o n ! %] , Accuracy[%]} => {50 , 49}

If we calculate the 25th power of this, we get:

N [S q r t [3 0] , 5 0 p 2 5

2.910822236831029845016854783414410868699805934544 1 0 1 8

{ P r e c i s i o n ! %] , Accuracy[%]} => {49 , 30}

One digit of precision has been lost. Now raise this result to the 25th power.

N[Sqrt[30], 50]"625

3.98466761276428296232867063879011796228706075764 10461

{Precision!%], Accuracy[%]} => {47, -414}

Two more digits of precision have been lost. The negative accuracy value means that the
significant digits start 414 places to the left of the decimal point. Note that

461 - 414 => 47

Machine precision numbers being stored as 19 digit numbers even when fewer are
displayed affects certain calculations. For instance, suppose we want to make a table of
approximations to P i with the values of S i n of those approximations to show the values
approaching 0. The following attempt fails.

T a b l e t { N [P i , n] , S i n [N [P i , n]] } , {n , 1 , 5 }] / / T a b l e F o r m

3 . 3 .79471 1 0 " 1 9

3 . 1 3 .79471 1 0 " 1 9

3 .14 3 . 7 9 4 7 1 1 0 " 1 9

3 .142 3 .79471 10~ 1 9

3 .1416 3 .79471 1 0 " 1 9

We get what appear to be increasingly accurate approximations to P i , but the values of S i n
are all the same. The reason is that in the left-hand column we are just being shown fewer
digits of P i at the beginning. However, consider the following construction which uses

64 Part I · Symbolic Pocket Calculator
, « x v : *-~ >ί , *'A, ™&>W* ί Η ^ ^ ' ^ ώ ^ Δ ί / ν , , Η ο * >y>x̂ *,v , „ „ Ï Î A ^ J V - - ^ ^,-, , ,ν <;^·ί>:Μ<^>^„*, /,«;·* Λ ^ -

ToString to turn a number into a string; i.e., something which has no numerical value. It then
uses ToExpression to turn it back into a number. Along the way all of the hidden digits get
lost and what we see is what we get.

piApprox = ToExpression[ToString[N[Pi, 5]]] => 3.1416
N[piApprox, 10] => 3.1416

This means that piApprox is really 3 .1416000000 Using this, we can make the desired
table.

Table[{ToExpression[ToString[N[Pi, n]]],
N[Sin[ToExpression[ToString[N[Pi, n]]]], 11]},
{n, 1, 5}]//TableForm

3. 0.14112000806
3.1 0.041580662433
3.14 0.0015926529165
3.142 -0.00040734639894
3.1416 -7.3464102067 10~6

There is an interesting number called $MachineEpsilon which is "the smallest machine-
precision number which can be added to 1.0 to give a result not equal to 1.0."

$MachineEpsilon => 1.0842 10"1 9

Adding it to 1.0 doesn't appear to change the value.

1.0 + $MachineEpsilon => 1.

However, comparing this with 1 shows that there is a difference.

% - 1 => 1.0842 10~19

Other interesting machine numbers are the biggest and smallest ones.

{$MaxMachineNumber, $MinMachineNumber}
{1.18973 104932, 6.25. 10"4916}

2.2 Inverses to N[]

There are three commands that convert numbers into integers, Floor, Ce i l ing , and
Round. They behave exactly as might be expected.

{ F l o o r [3 . 5] , C e i l i n g [3 . 5] , Round[3.5]} => {3, 4, 3}

Three · More About Numbers and Equations 65

What is more interesting is to convert real numbers into rational numbers. We saw in Chapter
1 that N[] converts integers and rational numbers (real or complex) into floating point reals or
complexes. If a second argument is given, then it converts them into reals or complexes with a
specified precision. An inverse operation should convert reals or complexes into rational
numbers or integers (real or complex as the case may be). There are operations in Mathematica
that do exactly this. In particular, Rationalize converts decimal numbers into rational
numbers.

Rationalize!3.456789 + 1.234567 I]
3456789 1234567 I

+
1000000 1000000

The result is not very interesting. It has just written the decimals as fractions whose
denominator is an appropriate power of 10. In general, this result will be reduced to lowest
terms, so it might look more interesting without really being so. R a t i o n a l i z e becomes
actually more interesting when it, like N, is given a second argument which represents the
intended accuracy of the rational approximation to the real or complex number.

Rationalize[3.456789 + 1.234567 I, 0.001]
159 21 I

46 17

To check the accuracy of this, just subtract it from the original number to see that it is accurate
to three decimal places.

3.456789 + 1.234567 I - % => 0.000267261 - 0.000727118 I

Let's try to find an approximation to Pi.

Rat iona l i ze [N[P i] , 0.001]

355

113

In fact, let's find many approximations to Pi.

Table[Rationalize[N[Pi], (0.1)Λη], {nf 1, 10}]
22 22 355 355 355 355 104348 104348 104348 312689

I / / / r r / t r / }
7 7 113 113 113 113 33215 33215 33215 99532

66 Part I · Symbolic Pocket Calculator

Surely a curious result! There is no best approximation to Pi whose denominator has two,
four, five, or six digits because 22/7 is a better approximation that any fraction whose
denominator has two digits and 355/113 is better than any one whose denominator has four,
five, or six digits. To check the accuracy of 355/113, just calculate the difference.

N[Pi] - 355/113 => -2.66764 10~7
For another approach to rationalizing real numbers, see Chapter 11, Section 6.1.1.

2.3 Working with Fixed Precision

It is possible to specify the form in which Mathematica displays floating point numbers. For
instance:

NumberForm[N[Pi, 35],
NumberSeparator -> " ", DigitBlock -> 5]

3.14159 26535 89793 23846 26433 83279 50288

The two optional arguments to the command NumberForm, indicated by the ->'s, mean that
we want digits before and after the decimal point divided into groups of 5, separated by
spaces. The following form might be more appropriate for large integers.

NumberForm [3*24,
NumberSeparator -> ",", DigitBlock -> 3]

282,429,536,481

If we were going to work frequently with 35 decimal places, we could define a function that
formats such numbers for us.

n36[x_J := NumberForm[N[x, 36],
NumberSeparator -> " ",
DigitBlock -> 5]

The following command will now apply n36 to every output.

$Post = n36 => n36
Sqrt[3]
1.73205 08075 68877 29352 74463 41505 87236 7

Precision!%] 36.

Three · More About Numbers and Equations 67

Notice that this doesn't affect non-numerical expressions.

a + b => a + b

One way to turn off the post processing of all outputs is to redefine $Post as nothing, using a
period.

$Post = .

Large floating point numbers are usually displayed in scientific notation. To see all of the
digits to the left of the decimal point, use Account ingForm.

{3.24Λ24, AccountingForm[3.24Λ24], N[3.24*24, 20]}
{1.79094 IO12, 1790936736361., 1.790936736360969372 IO12}

2.4 Different Bases

All of the numbers discussed up to now have been written in base 10, but Mathematica can deal
with numbers in different bases and convert values between different bases. The following
illustrates how to convert a number in base 10 to various other bases and convert back again.

Inputs

BaseForm[12345678, 2]

BaseForm[12345678, 15]

BaseForm[12345678, 36]

BaseForm[3/4, 2]

BaseForm[1234.5678, 15]

BaseForm[1234 + 5678 I, 36]

2ΑΛ101111000110000101001110

15~113cea3

36""7clzi

Outputs

1011110001100001010011102

113cea315

7clzi36

II2/IOO2

574.87b4di5

ya36 + 4dq36 I

12345678

12345678

12345678

Thus, any base up to 36 is acceptable (since there are 10 ordinary digits and 26 letters to use to
represent the extra digits). Decimal real numbers can be converted to other bases and complex

68 Part I · Symbolic Pocket Calculator

numbers are also acceptable. Fractions are converted by just converting their numerators and
denominators. To convert numbers in a specified base back to decimal numbers, use the
illustrated form.

2.5 Fun with Factor
F a c t o r l n t e g e r was discussed in Chapter 1. If we give it a prime number such as 2 as
argument, the results are uninteresting.

FactorInteger[2] => {{2, 1}}

However, if F a c t o r l n t e g e r is told to use Gaussian integers in its factorizations via an
optional second argument, then the results are much more interesting.

Factorlnteger[2, Gaussianlntegers -> True]

{{-I, 1}, {1 + I, 2}}

Check that the product of these Gaussian integers does equal 2.

(-1) (1 + I) " 2 => 2

But are thè entries prime numbers? We can check using the predicate PrimeQ which tests if a
number is prime or not.

{PrimeQ[-I], PrimeQ[l +1]} => {False, True}

No, - I is not a Gaussian prime. Actually, it is a unit, i.e., a number that divides 1. The
Gaussian integers have four units, 1, -1,1, and -I. Factorizations into primes in the Gaussian
integers are unique up to multiplication by units. For instance, 1 - I is also a Gaussian prime
and obviously, (1 + 1) (1 - I) = 2;but (1 - I) = (-1) (1 + I) so everything is
OK. The following amusing use of PrimeQ for Gaussian integers appeared in the Mathematica
One-Liners column in the Mathematica Journal, Vol. 1, No. 4, Spring 1991. It illustrates all
Gaussian primes of the form a + b I where a and b are less than or equal to 50.

Table[
If[PrimeQ[a + b I], 1, 0], {b, 0, 50}, {a, 0, 50}];

ListDensityPlot[%];

Three · More About Numbers and Equations 69
,> ^ W ? W Ä ^ V Ä ^ * ? ^ 1 " ^is^;^>»,^ « _^ , . ̂

The white squares here are the Gaussian primes. What can be said about the distribution of
such primes?

2.6 The N Functions

There are 6 numerical functions in Mathematica starting with N; namely, NDSolve ,
N I n t e g r a t e , NProduct, NRoots, NSolve, and NSum. In addition, there are two more in the
package NumericalMath NLimit^ called ND and NLimit . Each of them is a numerical
version of the symbolic, exact command without the N; i.e., DSolve, I n t e g r a t e , Product,
Roots , S o l v e , Sum, D, and Limit . As a general rule, try the exact command first. If that fails,
by returning the input unevaluated, or by returning a partial result, or by never returning, then
try the corresponding N command. In all cases there are in fact four possible ways to get a
result; e.g., in the case of I n t e g r a t e one can try I n t e g r a t e [-] , N [I n t e g r a t e [-]] ,
N I n t e g r a t e [-] , and I n t e g r a t e [N [-]] . The advantage to using N [command [-]] is that
N [-] takes a second argument specifying the precision, but in this case, if I n t e g r a t e [-]
fails, so will N [I n t e g r a t e [-]] , whereas N I n t e g r a t e [-] may very well succeed.

Fortunately, or unfortunately, except for NRoots and NSolve , all of these functions have
several optional arguments, which complicates their use, but gives us a better chance to get an
accurate answer. These actually refine the single optional second argument to N. For instance:

70 Parti · Symbolic Pocket Calculator

Options[NIntegrate]

{AccuracyGoal -> Infinity, Compiled -> True,
GaussPoints -> Automatic, MaxRecursion -> 6,
Method -> Automatic, MinRecursion -> 0,
PrecisionGoal -> Automatic, SingularityDepth -> 4,
WorkingPrecision -> 19}

W o r k i n g P r e c i s i o n determines how accurately the integrand is evaluated in approximating
the integral. This has the same effect as giving a second argument to N[] . P r e c i s i o n G o a l
specifies how precise the answer should be. By default, A u t o m a t i c means that it is 10 digits
less than W o r k i n g P r e c i s i o n . A c c u r a c y G o a l ; similarly sets the desired accuracy of the
answer. These same three options are available in NDSolve, NProduct and NSum. For more
information about the use of these options, see [Skeel].

3 Solving Algebraic Equations

3.1 One Variable

3.1.1 Solutions of equations in one variable

The standard format for solving an equation is S o l v e [e q u a t i o n , v a r i a b l e] , as we have
seen in Chapter 1.

Solvef χΛ2 + 3x == 2 , x]

-3 + Sqrt[17] -3 - Sqrt[17]
{ { x -> }f { x _> } }

2 2

(The "variable" here does not have to be a symbol. See 4.9.2 below.) The output is a list of rules.
However, there is another form of S o l v e that gives its result in a different form.

Roots [χΛ2 + 3x == 2 , x]

-3 + Sqrt[17] -3 - Sqrt[17]

2 2

The output here is a pair of equations for the values of x, separated by | | which means Or in
Mathematica. S o l v e is the same as Roots followed by ToRules.

Three · More About Numbers and Equations 71

{ToRules[%]}

-3 + Sqrt[17] -3 - Sqrt[17]
{{x -> }, {x _> }}

2 2

We would like to check that the answer is correct. One method is to substitute the values for
x into the left-hand side of the equation and see if the results equal the right-hand side. This is
done by using / . indicating application of the rules, followed by %, referring to the previous
output which consists of a list of rules.

χΛ2 + 3x / . %

3 (-3 + S q r t [1 7]) (- 3 + S q r t [1 7]) 2
{ + ,

2 4

3 (-3 - Sqrt[17]) (-3 - Sqrt[17])2
+ }

2 4

It's hard to see if this is right or not, so we S i m p l i f y it.

Simplify[%] => {2, 2}
This may seem rather mysterious. The important thing is that the / . in the form

e x p r e s s i o n / . r u l e s means: use the rules to change the expression by replacing the
occurrences in e x p r e s s i o n of the left-hand sides of the rules by their right-hand sides. For
instance,

a / . a -> 5 => 5

I read something like this as "a, where a gets the value 5." So, I read / . as "where." (Actually, in
Mathematica , / . stands for R e p l a c e A l l .) Rules can be applied simultaneously by putting
them in a list. For instance, calculate the value of x y where x gets the value 2 and y gets the
value 3.

x y / . {x -> 2 , y -> 3} => 6

If the r u l e s part of e x p r e s s i o n / . r u l e s is a list of lists, then the result is a list of
modified expressions, one for each substitution in the list. For instance,

x y / . { { x - > 2 } , {x - > 3 } } => {2 y , 3 y }

72 Part I · Symbolic Pocket Calculator

Another way to check equations is to substitute the answers in the equation itself, which is
the format we will use in looking at a number of equations. First, give a name to the equation.
The output here is suppressed by following the input with a " ; . "

equationl = xA2 + 3x == 2;
Now, solve the equation, giving a name to the solution.

solutionl = Solve[equationl, x]
-3 + Sqrt[17] -3 - Sqrt[17]

{{x -> }/ {x _> }}
2 2

Finally, substitute the solution in the equation, simplifying the result.

Simplify[equationl /. solutionl] => {True, True}
The output is a list of two values of True since s o l u t i o n l is a list of two rules. This also tells
us something more about ==. It behaves something like a predicate. For instance,

{2 == 2r 2 == 3, a == b} => {True, False, a == b}
If Mathematica can determine that the left-hand side of == does or does not equal the right-
hand side, then it returns the value T r u e or F a l s e as appropriate. Otherwise, it leaves the
input unevaluated. This is exactly what one wants for an equation; i.e., a "predicate" that asks
if the two sides are the same, but leaves them unevaluated if there are variables without values
on either or both sides.

Now let's try a more complicated example. Experience shows that the solution to the
following equation is a very large expression consisting of three different rules. To save space,
we just look at one of them by typing [[1]] after So lve , which picks out the first entry in the
list of solutions. It is often a good idea to put in an extra simplification step in solving
equations, so we will always include that, using the postfix form of function application / / .

equat ion2 = xA3 + 34x + 1 — 0;
s o l u t i o n 2 = S o l v e [e q u a t i o n 2 , x] [[1]] / / S i m p l i f y

(-9 + S q r t [4 7 1 7 2 9]) 1 / 3 34 2 1 / 3
{ x _> }

1 8 1 / 3 (-27 + S q r t [4 7 1 7 2 9]) 1 / 3

This is quite complicated looking, but it can be checked.

equation2 /· solution2 // Simplify => True

Three · More About Numbers and Equations 73

(Try this without the postfix application of S i m p l i f y at the end.) As a general policy, you
should never believe the result of a symbolic computation program unless you can find some
way to check the result. For instance, what is one to think about the calculations of P i to 100
decimal places or the value of 3*1000 ? The second one can be checked by taking the 1000th
root, which is an independent calculation, but the only way to check the calculation of P i is to
compare it with some other similar calculation by a different program. So, whenever possible,
we will try to check our results.

If we take the previous equation and complicate it by adding some symbolic constants then
the answer will become much larger.

e q u a t i o n 3 = χΛ3 + a χΛ2 + b x + 2 == 0;
s o l u t i o n 3 = S o l v e [e q u a t i o n 3 , x] [[1]] / / S i m p l i f y

{x -> a / 3 + (2 1 / 3 (a 2 - 3 b)) / (3 Power [-54 - 2 a 3 + 9 a b +
3 S q r t [3] S q r t [1 0 8 + 8 a 3 - 36 a b - a 2 b 2 + 4 b 3] , 1 /3]) +
P o w e r [- 5 4 - 2 a 3 + 9 a b +

3 S q r t [3] S q r t [1 0 8 + 8 a 3 - 36 a b - a 2 b 2 + 4 b 3] , 1/3]
}

3 2 1 / 3

Again, Mathematica is able to check this result, but it takes noticeably longer.

equation3 /. solution3 // Simplify => True

One can of course replace the symbolic values by actual numbers in the solution.

solutionAbl = solution3 /. {a->3, b - > 2 } / /
Simplify

1 (-9 + S q r t [7 8]) 1 / 3
{x - > _ i + + }

3 1 / 3 (-9 + S q r t [7 8]) 1 / 3 3 2 / 3

Does this result agree with the solution of the equation where the substitution is made before
solving it?

solutionAb2 =
Solve[equation3 /. {a -> 3, b -> 2} , x][[1]] //

Simplify

1 (-9 + Sqrt[78])1/3
{x -> -1 + + }

3I/3 (_9 + Sqrt[78])1/3 32/3

74 Part I · Symbolic Pocket Calculator

In Version 2.1, these two solutions looked quite different, although they were equal. Now they
come out identical.

Next, let's look at an equation that cannot be solved exactly.

equation4 = χΛ5 + 5x + 1 == 0;
solution4 = Solve[equation4, x]

{ToRules[Roots[5 x + x5 == -1, x]]}

We have to be satisfied with a numerical solution.

solution4n = N[solution4]

{{x -> -1.0045 - 1.06095 I}, {x -> -1.0045 + 1.06095 I},
{x -> -0.199936}, {x -> 1.10447 - 1.05983 I},
{x -> 1.10447 + 1.05983 I}}

As expected, there are five solutions. Now let's try to check them.

e q u a t i o n 4 / . s o l u t i o n 4 n / / S i m p l i f y

{ F a l s e , F a l s e , T r u e , F a l s e , F a l s e }

It appears that only the third one is correct, but that can't really be true. We have to try harder.
We could substitute these values of s o l u t i o n 4 n in the left-hand side of e q u a t i o n 4 and see
if we get the right-hand side; i.e., 0.

e q u a t i o n 4 [[1]] / . s o l u t i o n 4 n

{-4 .33681 I O " 1 9 - 1.30104 1 0 " 1 8 I ,
- 4 . 3 3 6 8 1 1 0 " 1 9 + 1.30104 1 0 " 1 8 I , 0 . ,
- 4 . 3 3 6 8 1 I O " 1 9 + 4 .33681 10~ 1 8 I ,
- 4 . 3 3 6 8 1 1 0 " 1 9 - 4 . 33681 1 0 " 1 8 1}

These are all tiny numbers, so Chop should eliminate them. As long as we believe that these
tiny results are artifacts of the solution algorithm used by Mathematica (and all other such
programs), we are probably justified in using Chop. (Of course, it is trivial to write an equation
which genuinely has such a tiny solution.)

Chop[%] => {0 , 0 , 0 , 0 , 0}

It's reassuring to see five 0's.

Three · More About Numbers and Equations 75

Another way to proceed is to find the numerical solutions to greater accuracy.

solution4nn = N[solution4, 20]
{{x -> -1.00449745579683551848 - 1.06094650640604064358 I},
{x -> -1.00449745579683551848 + 1.06094650640604064358 I},
{x -> -0.19993610217121999555},
{x -> 1.10446550688244551626 - 1.05982966915252011667 I},
{x -> 1.10446550688244551626 + 1.05982966915252011667 I}}

Now the check proceeds without difficulty.

equation4 / . solution4nn => {True, True, True, True, True}

Question: should we believe this result more than the previous one? The following is faster
and more efficient if one knows that the best that can be achieved is a numerical solution.

NSolve[equation4, x , WorkingPrecision -> 20]
{{x -> -1.00449745579683551848 - 1.06094650640604064358 I},
{x -> -1.00449745579683551848 + 1.06094650640604064358 I},
{x -> -0.19993610217121999555},
{x -> 1.10446550688244551625 - 1.05982966915252011667 I},
{x -> 1.10446550688244551625 + 1.05982966915252011667 I}}

As before, the check succeeds.

equation4 /. % => {True, True, True, True, True}

3.1.2 Transcendental equations
Mathematica can solve certain equations containing transcendental functions applied to the
variable. It always gives a warning that it may not find all solutions. From now on we omit
checking the solution unless the check takes some extra effort.

equation5 = Cos[xp2 + 2 Cos[x] + 4 == 0;
solutions = Solve[equation5, x]
Solve::ifun: Warning: Inverse functions are being used by
Solve, so some solutions may not be found.

-2 + 2 I Sqrt[3] - 2 - 2 1 Sqrt[3]
{ {x->ArcCos [] } , {x->ArcCos [] } }

2 2

76 Part I · Symbolic Pocket Calculator

Here is another example that only began working in Version 2.1.

equationö = 2Λχ == 8;
solution6 = Solve[equation6, x]

Solve::ifun: Warning: Inverse functions are being used by
Solve, so some solutions may not be found.
{{x -> 3}}

But not all such equations can be solved so easily.

Solve[Cos[x] == x, x]

Solve::ifun: Warning: Inverse functions are being used by
Solve, so some solutions may not be found.

Solve::tdep: The equations appear to involve transcendental
functions of the variables in an essentially non-algebraic way.

Solve[Cos[x] == x, x]

The second message tells the whole story. There is no way we can hope to "solve" equations
like this exactly. Instead, numerical methods are required. Newton's method, which is
implemented in the FindRoot command, is the obvious one. We ask it to find a root near
x = 0.5.

FindRoot[Cos[x] == x, {x, 0 .5}]

{x -> 0.739085}

Of course, if you ask something impossible, FindRoot may also give up.

FindRoot[Sin[x] == 2, {x, 1}]

FindRoot:icvnwt: Newton's method failed to converge to the
prescribed accuracy after 15 iterations.

{x -> -10.3883}

The problem is that S i n [x] is always between -1 and +1 for real arguments and so it can
never equal 2. However, if x is allowed to take on complex values, then there is no problem.
We tell Mathematica this by giving a complex seed. Again we set the WorkingPrecision high
enough (namely, 1 more that $MachinePrecision) so that a subsequent check succeeds.

Three · More About Numbers and Equations

FindRoot[Sin[x] == 2, {x, 1 + I},
WorkingPrecision -> 20]

{x -> 1.57079632679489661923 + 1.31695789692481670863 1}

3.1.3 An equation with an exact solution which isn't found
Consider the following special sixth degree equation.

equation7 =
xA6 - 9 xA4 - 4 xA3 + 27 xA2 - 36 x - 23 == 0;

solution7 = Solve[equation7, x]

{ToRules[Roots[-36 x + 27 x2 - 4 x3 - 9 x4 + x6 == 23, x]]}

Mathematica gives up, but we can give a solution ourselves. (See the Mathematica Book.)

solution77 = {x -> 2"(l/3) + 3A(l/2)};
equation7 /. solution77 // Simplify => True

3.1.4 A funny equation
Sometimes strange equations are solved.

equation8 = Sqrt[l - x] + Sqrt[l + x] == a;
solution8 = Solve[equation8, x]

a Sqrt[4 -a2] -(a Sqrt[4 -a2])
{{ x -> }f {x _> }}

2 2

However, Mathematica is not able to do anything about checking this solution by itself.

equation8 /. solution8 // Simplify

a Sqrt[4 -a2] a Sqrt[4 - a2]
{Sqrt[l] + Sqrtfl +] == a,

2 2

78 Parti · Symbolic Pocket Calculator

a Sqrt[4 -a2] a Sqrt[4 - a2]
Sqrt[l] + Sqrt[l +] == a}

2 2

S i m p l i f y just isn't powerful enough to show that these are the same. Here is some magic,
using pure functions as discussed in Chapter 6 together with local patterned rewrite rules as
discussed in Chapter 7, that shows that the squares of the two sides are the same; i.e., the left-
hand sides squared equal a2.

PowerExpand[
Map[Expand[#A2]&, equation8 /. solution8, {2}] /.

Sqrt[x_] Sqrt[y_] :> Sqrt[Simplify[x y]]]

{True, True}

3.1.5 Extraneous solutions

Consider the following equation.

badEquation = χΛ(3/2) + 1 == 0;
badSolution = Solve[badEquation, x]

{{x -> 1}, {x -> (-I)2'3}, {x -> (-l)4/3>>

badEquation /. badSolution // Simplify

{False, True, True}

The solution x -> 1 is clearly wrong as the check shows. Such obvious extraneous solutions
can be eliminated by setting the optional argument V e r i f y S o l u t i o n s to True.

b e t t e r S o l u t i o n = S o l v e [badEquation, x ,
V e r i f y S o l u t i o n s -> True]

{{x -> (- 1) 2 / 3 } , {x -> (- 1) 4 / 3 } }

badEquation / · b e t t e r S o l u t i o n

{ T r u e , True}

Query: why does Mathematica think that (- 1) 4 / 3 is a solution? Do you think it is?

Three · More About Numbers and Equations 79

3.2 Simultaneous Equations-Groebner Bases

The same scheme works for several equations in several variables. In Chapter 1 we looked at
linear equations with symbolic constants and also higher order equations. They are checked in
exactly the same way.

equations9 = { a x + b y = = l f x - y == 2};
solution9 = Solve[equations9, {x, y}]

-1 + 2 a - 2 (a + b) -1 + 2 a
{{x -> -(,, y -> -()}}

a + b a + b

equations9 /. solution9 // Simplify =$ {{True, True}}
The answer is one list of a pair of values equal to True, meaning that both equations are
satisfied.

Here is a more complicated pair of non-linear equations related to the system we
investigated in Chapter 1.

equationslO = { χΛ2 + γΛ2 == 13 , xA3 + yA3 == 9 } ;

We suppress the following solution completely by ending the Solve command with a " ; . "
The answer is very large and this calculation takes a fair amount time.

solutionlO = Solve[equationslO, {x, y}];
We can still check that the answer is correct, but we just do this for the first solution because to
check all solutions takes a very long time.

equationslO /. solutionlO[[1]] // Simplify
{True, True}

Instead of giving a list of equations, one can give a list of left-hand sides "equals equals" to a
list of right-hand sides. This time we solve them numerically.

equationsll = { χΛ2 + y*2, χΛ3 + γΛ3 } == {13, 9};
solutionll = NSolve[equationsll, {x, y}]
{{x -> -3.23205 - 1.98649 I, y -> -3.23205 + 1.98649 I},
{x -> -3.23205 + 1.98649 I, y -> -3.23205 - 1.98649 I},
{x -> -2.30688, y -> 2.77098}, {x -> 2.77098, y -> -2.30688},
{x -> 3. - 1.58114 I, y -> 3. + 1.58114 I},
{x -> 3. + 1.58114 I, y -> 3. - 1.58114 I}}

80 Part I · Symbolic Pocket Calculator
llliiill

As could be predicted, there are six solutions since Bezout's theorem says that the number of
intersection points equals the product of the degrees of the curves. If we add a symbolic
constant, then the solution of this kind of system really takes a long time even though all the
constant does here is to scale the answers by a. We look at just the first exact solution.

equationsl2 =
{χΛ2 + γΛ2 == 13 aA2, χΛ3 + yA3 == 9 aA3 };

solutionl2 = Solve[equations12, {x, y}][[1]]//Simplify

(6 - 1 Sqrt[10]) a (6 + 1 Sqrt[10]) a
{ X _> , y _> }

2 2

Let us investigate how Mathematica goes about solving such systems of equations. The idea
is "diagonalize" the equations, as is done for linear equations, except that now the equations
will be polynomial ones. The goal is to end up with an equation in just one of the variables.
The resulting set of equations is called a Groebner basis for the original equations. (Actually, it
is a basis of a particular form for the polynomial ideal spanned by the original equations.)
There is a built-in command to find such a basis.

gBasis = GroebnerBasis[equations12, {x, y}]

{2 y 6 - a2 (2116 a4 - 507 a2 y2 + 18 a y 3 + 39 y 4) f

2116 a4 x - y (-2116 a4 + 351 a3 y + 169 a2 y2 - 18 a y3 - 26 y4) ,
169 a4 - 9 a3 x - 9 a3 y + 13 a2 x y - 26 a2 y2 + 2 y 4 ,
-9 a3 + 13 a2 x - x y2 + y3 , -13 a2 + x2 + y2}

The first entry in this list of 5 polynomials involves only y, so we can try to find its roots. We
will just look at the second solution since the others are quite complicated.

solutionY = Solve[gBasis[[1]] == 0, y][[2]]//Simplify

(6 + 1 Sqrt[10]) a
{ y -> }

2

This agrees with the value we found for y in s o l u t i o n l 2 , so let's try to find the
corresponding value of x. In the remaining equations in the Groebner basis, the second one is
linear in x, so we can substitute the value we just found for y in it and solve for x.

Three · More About Numbers and Equations 81

solutionX = Solve[(gBasis[[2]]/.solutionY) == 0, x] //
Simplify

(6 - 1 Sqrt[10]) a
{{x _> }

2

These values for x and y are exactly what we found above in the direct solution.

3.3 Simultaneous Equations-FindRoot

If the equations are not multivariate polynomials, then Solve and even NSolve may fail. For
instance, the following system is one of Simon's challenge problems in the Notices of the AMS,
Sept. 1991.

equationsl3 =
{Sin[x] + γΛ2 + Log[z] == 7,

3 x + 2Ay - ζΛ3 == -1,
x + y + z = = 5 } ;

NSolve[equations13, {x, y, z}]

NSolve[{y2 + Log[z] + Sin[x] == 7, 2? + 3 x - z3 == -1,
x + y + z == 5}, {x, y, z}]

However, FindRoot tries to find a solution, given seed values for the variables, for any
system of equations in any number of variables. So far we have been able to find only these
two solutions.

solutionsl3 =
{ FindRoot[equations13, {x, 1}, {y, 1}, {z, 1}],
FindRoot[equations13, {x, 0}, {y, 0}, {z, 2}] }

{{x -> 0.599054, y -> 2.39593, z -> 2.00501},
{x -> 5.10041, y -> -2.64424, z -> 2.54382}}

3.4 Matrix Equations

Two vectors or matrices are "equals equals" providing corresponding entries are the same. In
particular, this means that we can write matrix equations. First define a coefficient matrix, a
variable vector and a right-hand side vector.

82 Part I · Symbolic Pocket Calculator

A = { { 3 , 1 } , {2 , - 5 } } ;
X = {x, y } ;
B = {7 , 8 } ;

Then write the equation exactly as it would be written in a linear algebra book, using the Dot
product.

solutionl4 = Solve[A . X == B, X]

43 10
{{x -> — , y -> -(--)}}

17 17

It would be nicer if the answer were in the form {{X - > { 4 3 / 1 7 . - 1 0 / 1 7 } } . Well see later
how that could be done.

3.5 Indexed Variables

The Table command can be used to construct equations and lists of variables.

equations15 =
Table[2 a[i] + a[i - 1] == a[i + 1], {i, 10}]

{a[0] + 2 a[l] == a[2], a[l] + 2 a[2] == a[3],
a[2] + 2 a[3] == a[4], a[3] + 2 a[4] == a[5],
a[4] + 2 a[5] == a[6], a[5] + 2 a[6] == a[7],
a[6] + 2 a[7] == a[8], a[7] + 2 a[8] == a[9],
a[8] + 2 a[9] == a[10], a[9] + 2 a[10] == a[ll]}

solutionl5 =
Solve[equationslS, Table[a[i], {i, 10}]]//Simplify

-2378 a[0] + a[ll] a[0] + 2378 a[ll]
{{a[l] -> , a[10] -> ,

5741 5741

-408 a[0] + 5 a[ll] 169 a[0] + 12 a[ll]
a[3] -> , a[4] -> ,

5741 5741

Three · More About Numbers and Equations 83

-70 a[0] + 29 a[ll] 29 a[0] + 70 a[ll]
a[5] -> , a[6] -> ,

5741 5741

-12 a[0] + 169 a[ll] 5 a[0] + 408 a[ll]
a[7] -> , a[8] -> ,

5741 5741

-2 a[0] + 985 a[ll] -2 a[0] + 985 a[ll]
a[9] -> , a[2] -> }}

5741 5741

equationsl5 /. solutionl5 // Simplify

{{True, True, True, True, True, True, True, True, True, True}}

3.6 CompUte Solutions
Besides S o l v e and Root , there is another command to solve equations that is particularly
useful for equations with symbolic constants where the forms of the answer may depend on
relations between the constants. If S o l v e is used with a generic quadratic equation, we get the
usual high school formula.

Solve[a χΛ2 + b x + c == 0, x] // Simplify

-(b + Sqrt[b2 - 4 a c]) -b + Sqrt[b2 - 4 a c]
{{x_> }, {x_> } }

2 a 2 a

However, this is clearly wrong if, for instance, a is zero. The full story is given by the
command Reduce.

Reduce[a χΛ2 + b x + c = = 0 , x] / / S i m p l i f y

- (b + S q r t [b 2 - 4 a c])
a != 0 && x == | |

2 a
- b + S q r t [b 2 - 4 a c]

a != 0 && x == | |
2 a

c == 0 && b == 0 && a == 0 | | b != 0 && x == - (c / b) && a == 0

84 Part I · Symbolic Pocket Calculator

This output uses the logical operators I I for "Or," && for "And," and ! for "Not." Notice the
bracketing also. The output means that the possible solutions are: a is not zero and then there
are the usual two high school solutions, or b is not zero but a is zero in which case x ==
- c / b , or all three of a, b, and c are zero in which case there is no restriction on x.

Equations can also be given as logical combinations of "equals equals" statements instead of
as lists. We use equations9 from above as an example.

equations9a = a x + b y = = l & & x - y = = 2 ;
solution9a = Solve[equations9a, {x, y}] // Simplify

l + 2 b 1 - 2 a
{ { x .> , y -> } }

a + b a + b

3.7 Eliminating Variables
Solve can also take a third argument which is a "variable" or list of "variables" that should be
eliminated from the solution.

equations16 = { x = = l + 2 a , y = = 9 + 2 x a } ;

First solve for x and y (in terms of a).

Solve[equationsl6, {x, y}]

{{y -> 9 - 2 (-1 - 2 a) a, x -> 1 + 2 a}}

Next, solve for x and a (in terms of y).

Solve[equations16, {x, a}]

1 - Sq r t [-35 + 4 y] - 2 - 2 Sqr t [-35 + 4 y]
{ { x _> , a -> },

2 8
1 + Sq r t [-35 + 4 y] - 2 + 2 Sqr t [-35 + 4 y]

{ x -> , a -> }}
2 8

Now solve for x, eliminating y.

Solve[equationsl6, x, y] => {{x -> 1 + 2 a}}

Three · More About Numbers and Equations 85

Then solve for x eliminating a.

Solve[equations16, x, a]
1 - Sqrt[l - 4 (9 - y] 1 + Sqrt[l - 4 (9 - y]

{{x -> }, {x -> }}
2 2

Finally, eliminate a from the equations.

Eliminate[equationsl6, a]
y == 9 - x + x2

3.5 Working Modulo a Prime Number

The operation Factor has an optional argument, Modulus -> n, which gives factorizations
modulo n. Here is a well known example of a polynomial that has no factorizations over the
reals, but factors modulo p for all primes p. In the following, Prime [n] means the nth prime
number. (Look up TableForm and its options in The Mathematica Book.)

TableForm[
Table[

{Prime[n], Factor[χΛ4 + 1, Modulus->Prime[n]]},
{n, 1, 10}],

TableHeadings ->
{None, {"prime", "factorization"}},

TableSpacing -> {0, 6}]
prime factorization
2 (1 + x)4
3 (2 + x + x 2) (2 + 2 x + x 2)
5 (2 + x2) (3 + x2)
7 (l + 3 x + x 2) (l + 4 x + x 2)
11 (10 + 3 x + x2) (10 + 8 x + x2)
13 (5 + x2) (8 + x2)
17 (2 + x) (8 + x) (9 + x) (15 + x)
19 (18 + 6 x + x2) (18 + 13 x + x2)
23 (1 + 5 x + x2) (1 + 18 x + x2)
29 (12 + x2) (17 + x2)

Solve also works modulo a prime number. The condition on the modulus is added as another
equation.

86 Part I · Symbolic Pocket Calculator
.,** <$-*<■-,' -& -*<"■ w, ' *w*,'- ,Μά> a^A*"--' *\#v

Table[Solve[{xA4 + 1 == 0, Modulus == Primeln]}, x],
{n, 1, 4}]

{{{Modulus -> 2, x -> -1}, {Modulus -> 2, x -> -1},
{Modulus -> 2, x -> -1}, {Modulus -> 2, x -> -1}},
{{Modulus -> 3, x -> -1 - I}, {Modulus -> 3, x -> -1 + I},

-1 - I Sqrt[7]
{Modulus -> 3, x -> },

2
-1 + I Sqrt[7]

{Modulus -> 3, x -> }},
2

{{Modulus -> 5, x -> -I Sqrt[2]},
{Modulus -> 5, x -> I Sqrt[2]},
{Modulus -> 5, x -> -I Sqrt[3]},
{Modulus -> 5, x -> I Sqrt[3]}}/

- 4 - 2 Sqrt[3]
{{Modulus -> 1, x -> },

2
- 4 + 2 Sqrt[3]

{Modulus -> 1, x -> } ,
2

-3 - Sqrt[5]
{Modulus -> Ί, x -> },

2
-3 + Sqrt[5]

{Modulus -> 1, x -> }}}
2

There are four solutions for each value of the modulus. To check these results, substitute them
in the left-hand side of the equation to see if the result is zero modulo the appropriate prime.

xA4 + 1 /. % // Simplify // Expand
3 3 1 3 3 1

{{2, 2, 2, 2}, {- + — Sqrt[7], Sqrt[7], -3, -3},
2 2 2 2

{5, 5, 10, 10},
{98 - 56 Sqrt[3], 98 - 56 Sqrt[3], 98 + 56 Sqrt[3],
49 21 Sqrt[5] 49 21 Sqrt[5]

, __ + }}
2 2 2 2

Three · More About Numbers and Equations 87

Clearly the coefficients in each case are divisible by the appropriate prime. To check the
Sqrt [7] term for the prime 3, calculate what it is mod 3.

Solve[{xA2 - 7 == 0, Modulus == 3}, x]

{{Modulus -> 3, x -> -1}, {Modulus -> 3, x -> -2}}

So, 1 and 2 are the square roots of 7 mod 3. We leave the further investigation of this situation
to the reader. There is much more to be said about solutions of equations, but they are not our
main concern. We hope that other books will treat them in depth.

4 Solving Ordinary Differential Equations
There are (at least) seven ways to approach ordinary differential equations in Mathematica;
DSol ve, N [DSol ve [-]] , NDSol ve, the package DSol v e . m, the package RungeKutta. m,
series solutions (by hand), and Laplace transform methods in the package
LaplaceTransf orm.m. These operations continue to be under intensive development and so
the problems that can be solved and the forms of their solutions are a moving target. There are
large differences between Versions 2.0,2.1, and 2.2. Everything here is from Version 2.2.

4.1 DSolve
Many simple differential equations can be solved by the built-in operation DSolve.

4.1.1 A linear, first order differential equation
DSolve works in two different ways. Consider a simple example and its solution.

diffEql = y ' [x] + y[x] == 1;
s o l u t i o n l = DSolve[diffEql, y [x] , x]

{{y[x] -> 1 + C [l] / E x } }

The solution contains an arbitrary constant denoted by C[l]. If we try to check this solution in
the same way that we checked algebraic equations, it doesn't work.

diffEql /. solutionl => {1 + C[l]/Ex + y'[x] == 1}

88 Part I · Symbolic Pocket Calculator

The trouble is that y ' is not calculated, so the solution cannot be verified. We could work
around this by calculating y ' [x] ourselves;

s o l u t i o n l · = D[so lu t ion l , x] => {{y ' [x] -> - (C [l] / E x) } }

Then the check succeeds by making substitutions for both y [x] and y ' [x] .

diffEql /. solutionl /. solutionl' => {{True}}

However, there is a better way to do this using the other form of DSolve. The only
difference is that y is used instead of y [x] as the second argument.

newsolutionl = DSolve[diffEql, y, x]

{{y -> Funct ion[x , 1 + C [l] / E x]}}

What has happened in the output is that instead of having y [x] = something, we now have
y = Function [x, something] . This syntax indicates a pure function in Mathematica. Pure
functions will be explained in great detail in Chapter 6. The important thing here is that it
gives a value for y rather than y [x] so this substitution works for y ' as well. Thus:

y' /. newsolutionl // Simplify

{Function[x, -(C[l]/Ex)]}

The check now proceeds exactly as in the algebraic case.

diffEql /. newsolutionl => {True}

Initial conditions are given as additional equations to be satisfied. For instance:

diffEq2 = {y'[x] == a y[x], y[0] == 1};
solution2 = DSolve[diffEq2, y, x]

{{y -> Function[x, Ea x]}}

The check now verifies both the differential equation and the initial condition.

diffEq2 /. solution2 => {{True, True}}

Three · More About Numbers and Equations 89
■$■■&&* ̂ ^mx$·****^^^ * » v ϊ

4.1.2 A non-linear first order equation

Mathematica can solve non-linear first order equations, finding two solutions in this case.

diffEq3 = y[x] y'[x] == 1;
solution3 = DSolve[diffEq3, y, x]

{{y -> Function[x, -Sqrt[2 x + 2 C[l]]]},
{y -> Function[x, Sqrt[2 x + 2 C[l]]]}}

From now on, checks are omitted unless there is some difficulty in carrying them out.

4.1.3 Linear equations with constant coefficients

In principle, Mathematica will solve arbitrary order linear equations with constant coefficients,
provided it can solve the auxiliary equation. Here is a simple example where the coefficients
are chosen by expanding a simple algebraic product.

Expand[Product[x - i, {i, 1, 5}]]

-120 + 274 x - 225 x2 + 85 x3 - 15 x4 + x5

diffEq4 = y' ' ' ' ' [x] - 15 yM,,[x] + 85 y'" [x] -
225 γ'·[χ] + 274 y'[x] - 120 y[x] == 0;

solution4 = DSolve[diffEq4, y, x]

DSolve::dsdeg: Warning: Differential equation of order higher
than four encountered. DSolve may not be able to find the
solution.

{{y ->Function[x, Ex C[l] + E2 x C[2] + E3 x C[3] + E4 x C[4] +
E5 x C[5]]}}

On the other hand, an equation like the following, which is only of the third degree and can
be solved, results in an answer that is too complicated for a human to comprehend so it is
omitted here. Nevertheless, Mathematica is able to check it, although the check takes a long
time. This equation will be investigated numerically below.

diffEq5 = y'^Ix] + y'tx] + y'[x] + a y[x] == 0;
solutions = DSolve[diffEq5, y, x];
diffEq5 /· solution5 // Simplify

{True}

90 Part I · Symbolic Pocket Calculator

4.1.4 Bernoulli's equation

The last equation we look at here is an equation of the Bernoulli type.

di f fEq6 = χΛ2 y ' [x] - y [x] A 3 + 2 x y [x] == 0;
s o l u t i o n 6 = D S o l v e [d i f f E q 6 , y , x] / / S i m p l i f y

1
{{y -> Function[x, -()]},

2
Sqrt[x4 (+ C[l])]

5 x5

1
{y->Function[x/]}, {y->Function[x, 0]}}

2
Sqrtfx4 (+ C[l])]

5 x5

Mathematica needs some help in checking these solutions. The following magic will be
explained in Chapter 6.

Map[Together, diffEq5 /. solution5, {2}]

{True , T rue}

Compare this with the solution of the same equation given by the package DSolve . m below.

4.2 DSolve. m-First Order Differential Equations

The built-in command D S o l v e is relatively weak, but in Version 2.1 and later, there is a
package D S o l v e . m that is much more powerful. Right now, it overrides the built-in DSolve
and provides it with new capabilities. Very many common first and second order differential
equations can be solved using it. These examples and the problems in the Exercises, together
with the series solution examples and the Laplace transform examples, constitute a mini-
course in ordinary differential equations.

Needs["Calculusv DSolve ""]

Three · More About Numbers and Equations 91

4.2.1 Exact equations
Here are three equations that are made exact by integrating factors.

diffEqlntl =
(x y[x] + xA2) y'[x] + y[xp2 + 3 x y[x] == 0;

solutionlntl = DSolve[diffEqlntl, y, x]//Simplify
{{y -> (-#1 + Sqrt[2 C[l] + #14] / #1 &)},
{y -> (-#1 - Sqrt[2 C[l] + #14] / #1 &)}}

The answer here is written in the other syntax for a pure function. Instead of writing
Function[{ x } , body] , where body is some expression involving x, one can write body&
where the x in body is replaced by #. E.g., Function [{x}, χΛ2] and #Λ2& mean the same
thing, namely, the function that squares its argument. See Chapter 6 for an extensive
discussion of pure functions.

The first example here is solved completely. The second one is only solved implicitly, so we
solve for y [x] rather than for y.

diffEqInt2 =
(2 x y[x] - ΕΛ(-2 y[x])) y'[x] + y[x] == 0;

solutionInt2 = DSolve[diffEqInt2, y[x], x]
Solve::tdep: The equations appear to involve transcendental
functions of the variables in an essentially non-algebraic way.

-C[l] - Log[y[x]]
{Solve[x == -(), y[x]]}

E2 y[x]
The algebraic equation to be solved that is given as the output here is one of the usual ways to
present solutions to differential equations, as relations between x and y rather than giving y as
a function of x. Checking this result requires a certain amount of experimentation. First find
the derivative of y [x] .

solution' = Solve[D[solutionInt2[[1, 1]], x], y'[x]]
E2 Υ[χ] y[x]

{{y'[x] -> -()}}
- 1 + 2 C[l] y[x] + 2 Log[y[x]] y[x]

Then, essentially substitute the values for x and y ' [x] in the differential equation.

(diffEqInt2 /. solution' /. {y[x] -> foo} /.
ToRules[solutionInt2[[1, 1]]]) /. {y[x] -> foo} //
Simplify => {True}

92 Parti · Symbolic Pocket Calculator

The third one can be solved exactly, but Mathematica needs some help in checking that the
solution is valid, using the same magic as above.

diffEqInt3 = y'[x] == (3 y[x]A2 + xA2)/(2 x y[x]);
solutionInt3 = DSolve[diffEqlnt3, y, x]

#1 #1
{{y->(#l Sqrt[-1 +]&)}, {y->(-(#l Sqrt[-1 +])&)}}

EC[1] EC[1]

Map[Together, diffEqInt3/.solutionInt3//Simplify, {2}]

{True, True}

4.2.2 Bernoulli's equation

We used the built-in DSolve to solve the Bernoulli equation in 4.1.4 above. Here we try the
package DSolve .m. In this form it is able to check the solution by itself.

diffEqBer = xA2 y'[x] - y[x]A3 + 2 x y[x] == 0;
solutionBer = DSolve[diffEqBer, y[x], x]

Sqrt[5] Sqrt[#l] C[l]5

{{y -> (-() &)}/
Sqrt[-#15 + 2 C[l]10]

Sqrt[5] Sqrt[#l] C[l]5
{ y _> (&) } }

S q r t [- # 1 5 + 2 C [l] 1 0]

In the exercises we ask you to reconcile the two answers given here and in 4.1.4.

4.2.3 Generalized homogeneous equations

The built-in DSolve fails on this one, but DSolve . m finds an implicit solution.

diffEqGenHoml = x (y [x p 2 - 3 x) y ' [x] + 2 y [x p 3 -
5 x y [x] == 0;

solutionGenHoml = DSolve[diffEqGenHoml, y [x] , x]

{ T o R u l e s [R o o t s [- 5 C [l] y [x] 2 + x 2 6 y [x] 1 5 == -13 x C [l] ,
y [x]]] }

So far, we don't know how to check this result.

Three · More About Numbers and Equations 93

4.2.4 A Riccati equation

D S o l v e . m finds the exact solution but Mathematica needs a lot of help in checking the answer,
all of which will be explained in Chapters 6 and 7.

diffEqRic = (1 - xA2) y'[x] == 1 - (2 x - y[x]) y[x];
solutionRic = DSolve[diffEqRic, y, x]

Sqrt[-1 + #1]
1 + #1 C[l] + #1 Log[]

Sqrt[l + #1]
{{y -> (-(—) &)}}

Sqrt[-1 + #1]
-C[l] - Log[]

Sqrtfl + #1]
Map[ExpandAll,

(diffEqRic /. solutionRic // Simplify) //.
Log[Sqrt[a_]/Sqrt[b_]]->(l/2)Log[a] - (l/2)Log[b],
{2}] // Simplify

{True}

4.2.5 A different kind of equation

DSolve[y'[x] == l/(x y[x] + 1), y[x], x]

y[x]2/2 Pi y[x]
{Solve[x == E (C[l] + Sqrt[—] Erf[]), y[x]]}

2 Sqrt[2]

4.2.6 A harder equation

D S o l v e [y ' [x] == a y [x p 3 + b x " (- 3 / 2) , y [x] , x]

Solve[Integrate[
1

f y[x]]-Log[Sqrt[x]]==C[l]f y[x]]
2 b

+ y[X] + 2 a x y[x]3
Sqrt[x]

For more details, see [Bocharov].

94 Part I · Symbolic Pocket Calculator

4.3 DSolve. m-Second Order Differential Equations

4.3.1 Second order linear constant coefficient equations

There are three kinds of solutions of an equation of the form y"[x] + b y'[x] + c y[x] == 0
depending on the roots of the auxiliary equation z 2 + b z + c = = 0 . We treat the case of complex
roots and leave the others to the exercises. In this case, the solution consists of a sin and a cos
term times an exponential function. We also make a picture which shows the exponentially
increasing oscillations. Note that it is necessary to assign values to the arbitrary constants to
make such a plot.

diffEqComplex = y'*[x] - 2 y'[x] + 5 y[x] == 0;
solutionComplex = DSolve[diffEqComplex, y, x]

{{y -> Functionfx, Ex C[2] Cos[2 x] - Ex C[l] Sin[2 x]]}}

Note that there are now two arbitrary constants denoted by C[l] and C[2].

Plot[Evaluate[y[x] /. solutionComplex /.
{C[l] -> 1, C[2] -> 1}], {x, 0, Pi}];

4.3.2 An exact second order differential equation

diffEqEx2 = y'lx] + x y'[x] + y[x] == 0;
solutionEx2 = DSolve[diffEqEx2, y, x]

C[l] C[2] Erfi[#l/Sqrt[2]] Sqrt[#l2]
{{y -> (■

#l2/2 #l2/2
E #12

&)}}

diffEqEx2 /. solutionEx2 // Simplify

{True}

Three · More About Numbers and Equations 95

4.3.3 Bessel's equation
First, try the Oth order Bessel's equation. Checking the solution fails.

diffEqBessel = y"'[x] + y'[x]/x + y[x] == 0;
solutionBessel = DSolve[diffEqBessel, y, x]

BesselK[0, I #1] C[l]
{{y -> (+ Bessell[0, I #1] C[2] &)}}

Sqrt[Pi]
diffEqBessel /. solutionBessel // Simplify
{(-(x BesselK[-2, I x] C[l]) - 2 1 BesselK[-l, I x] C[l] +

2 x BesselK[0, I x] C[1] - 2 I BesselK[l, I x] C[1] -
x BesselK[2, I x] C[l] - SqrtfPi] x BesselI[-2, I x] C[2] +
2 I Sqrt[Pi] Bessell[-1, I x] C[2] +
2 Sqrt[Pi] x Bessell[0, I x] C[2] +
2 I Sqrt[Pi] Bessell[l, I x] C[2] -
Sqrt[Pi] x Bessell[2, I x] C[2]) / (4 Sqrt[Pi] x) == 0}

To go further with the check we would have to add the relations between the various Bessel
functions as rules for simplification. Of course, the solution is correct for other reasons.

Next, try the general nth degree Bessel's equation.

diffEqBesseln =
xA2 y'fx] + x y'[x] + (χΛ2 - nA2) y[x] == 0;

solutionBesseln = DSolve[diffEqBesseln, y, x]
{{y -> (BesselJ[-n, Sqrt[#l2]] C[l] +

BesselJ[n, Sqrt[#l2]] C[2] &)}}
An attempted check has the same problem as before, so we omit it until we find some way to
complete it.

4.3.4 Variation of parameters
Here is a non-homogeneous second order linear differential equation.

diffEqVarl =
(xA2 + 1) y''[x] + 2 x y'[x] + 3/(χΛ2) == 0;

solutionVarl = DSolve[diffEqVarl, y, x]
3 Log[l + #l2]

{{y->(ArcTan[#l] C[l] + C[2] + 3 Log[#l] &)}}
2

96 Part I · Symbolic Pocket Calculator

diffEqVarl /. solutionVarl // Simplify

{True}

And here is a non-linear equation with a power of y ' [x] .

diffEqNonL = y ' ' [x] + y [x] y ' [x p 3 == 0;
so lut ionNonL = DSolve[diffEqNonL, y , x] ;

There is a solution, but it is too complicated to be comprehensible (try it yourself) and the
result of the following attempt to check just the first solution is a complete mess, so it is
suppressed.

diffEqNonL / . s o l u t i o n N o n L [[1 , 1]] / / S i m p l i f y

4.3.5 The Legendre equation

Mathematica is able to solve and check the general second order Legendre differential equation.

dif fEqLeg =
(1 - χΛ2) y''[x] - 2 x y'[x] + n (n - 1) == 0;

solutionLeg = DSolve[diffEqLeg, y, x]

n Log[l - #1] n2 Log[l - #1] n Log[l + #1]
{{y -> (C[2] + +

2 2 2

n2 Log[l + #1] C[l] (-Log[l - #1] + Log[l + #1])
+ &) } }

2 2

diffEqLeg /. solutionLeg // Simplify

{True}

4.4 Some Differential Equations Mathematica Can't Solve Yet
Mathematica just gives up on both of these equations.

diffEqBadl = y''[x] + x y'[x] + EA(- xA2) y[x] == 0;
solutionBadl = DSolve[diffEqBadl, y, x]

y[x]
DSolvef + x y'[x] + y''[x] == 0, y, x]

x2

Three · More About Numbers and Equations 97

diffEqBad2 = χΛ2 y''[x] + 2 x y[x] - 1 == 0;
solutionBad2 = DSolve[diffEqBad2, y, x]

DSolve[-l + 2 x y[x] + x2 y''[x] == 0, y, x]

4.5 NfDSolvefJJ
If the solution to the third order differential equation in Section 4.1.3 is evaluated numerically
with a set equal to 2 , then we get a solution that is comprehensible.

ndiffEq = y""'[x] + y"'[x] + y[x] + 2 y[x] == 0;
nsolution = N[DSolve[ndiffEq, y, x]]

C[l]
{{y -> Function[x, +

2.718281·35321 x

2.71828(°·176605 + 1-20282 I) x C [2] +
2.71828(°·176605 - 1-20282 I) x C[3]]}}

ndiffEq /. nsolution // Simplify // Chop

{True}

4.6 NDSolve
The fastest way to get a numerical solution is with NDSolve. In order to use this it is necessary
to give enough initial conditions to ensure a well determined, numerical answer.

numSolution =
NDSolve[{ndiffEq, y[0] == y'[0] == y''[0] == 1},

y, {x, 0, 10}]

{{y -> InterpolatingFunction[{0., 10.}, <>]}}

This time the result is not available for inspection. All we can do is investigate it further
numerically, for example, by plotting it.

98 Part I · Symbolic Pocket Calculator

Plot[Evaluate[y[x]/.numSolution], {x, 0, 10}];

It is interesting to try to determine the sense in which this is a solution. Following an e-mail
suggestion of J. Keiper, evaluate the left-hand side of the equation for this solution.

lhs[x__] := ndif fEq[[1]]/.numSolution
The point is that Interpolating functions can be differentiated, so this is itself another
Interpolating function.

lhs[x]

{InterpolâtingFunction[{0., 10.}, <>][x] +
InterpolatingFunction[{0., 10.}, <>][x] +
2 InterpolatingFunction[{0., 10.}, <>][x] +
InterpolatingFunction[{0., 10.}, <>][x]}

Hence this function can be plotted. Near 0, the result seems to be very bad, but elsewhere, the
difference of the left-hand side from 0 is quite small.

Plot[Evaluate!Ins[x]], {x, 0, 10}];

Three · More About Numbers and Equations 99

4.6.1 A planetary orbit

A more challenging problem is to determine the trajectory of a mass in the gravitational field
caused by a very large mass at the origin. This is described by a pair of differential equations:

d 2 x / d t 2 = - x / r 3 , d 2 y / d t 2 = - y / r 3 where r = (x 2 + y2) d/2)

NDSolve requires that we also specify initial conditions for x and y and their derivatives at
t = 0.

orbit =
NDSolve[

{ X " [t] == - x [t] / (x [t p 2 + y [t] A 2) A < 3 / 2) ,
y " [t] == - y [t] / (x [t r 2 + y [t J A 2) A < 3 / 2) ,
x [0] == 1 , x · [0] == 0 - 2 ,
y [0] == 0 , y ' [0] == 1 .25 } ,

{ x , Y } , { t , 0 , 4 5 }]

{{x -> InterpolatingFunction[{0., 45. }, <>],
y -> InterpolatingFunction[{0., 45.}, <>]}}

ParametricPlot[Evaluate[{x[t], y[t]}/.orbit],
{tf 0, 45}]?

As is to be expected, the picture shows that the result is an ellipse with one focus at the origin.

4.6.2 Two equal masses

A still more challenging problem is that of two bodies of equal mass acting under mutual
gravitational attraction. If the bodies have coordinates (xl , yl) and (x2 , y2), then the
equations are essentially the same as before, except expressed in terms of the differences (x2 -
xl) and (y2 - yl). One gets 4 second order equations, which require 8 initial conditions. We
start the bodies off located symmetrically with respect to the origin, the left one moving down
and the right one moving up. Note that most of the description is just entering the differential
equations and the initial conditions.

100 Part I · Symbolic Pocket Calculator

twoorbits =
NDSolve[

{ x l " [t] == - (x l [t] -
((x l [t] - x 2 [t]) A 2

y i " [t] == - (y i [t] -
((x l [t] - x 2 [t]) A 2

x 2 " ' [t] == - (x 2 [t] -
((x l [t] - x 2 [t]) A 2

y 2 ' ' [t] == - (y 2 [t] -
((x l [t] - x 2 [t]) A 2

x l [0]
y l [0]
x2[0]
y2[0]

{ x l , y l ,

== 1,
== 0,
== - 1 ,
== 0,

x l '
y l '
x2
y 2 '

x 2 , y2}

[0]
[0]
[0]
[0]
{ t , 0 ,

x 2 [t]) /
+ (y l [t]
y 2 [t]) /
+ (y l [t] ·
x l [t]) /
+ (y l [t]
y i t t]) /
+ (y l [t] ·
- o,
- 0 . 3 ,
= o,
« - 0 . 3 } ,

5 . 5 }]

y 2 [t] T 2

y 2 [t]) - 2

y 2 [t]) - 2

y 2 [t]) A 2

r < 3 / 2) ,

Γ < 3 / 2) ,

) A (3 / 2) ,

) Λ (3 / 2) ,

{{xl -> InterpolatingFunction[{0., 5.5}, <>],
yl -> InterpolatingFunction[{0., 5.5}, <>],
x2 -> InterpolatingFunction[{0., 5.5}, <>],
y2 -> InterpolatingFunctionf{0., 5.5}, <>]}}

ParametricPlot[
{Evaluate!{xl[t], yl[t]} /. twoorbits],
Evaluate!{x2[t], y2[t]} /. twoorbits]},

{t, 0, 5.5}, AspectRatio -> Automatic];

We chose the t-range so as to show not quite one complete orbit, making it easier to see how
the masses are always located symmetrically with respect to their common center of gravity at
the origin. The orbits are periodic, as one can see by increasing the t-range and they appear to
be ellipses again. The following picture shows the result if the initial velocities are changed to
y l ' [0] == 0 . 4 a n d y 2 ' [0] == - 0 . 2 . The time interval is { t , 0, 10}.

Three · More About Numbers and Equations 101

4.7 Runge-Kutta Methods

See Chapter 8, Section 4.4.

4.8 Series Solutions

One way to try to solve an ordinary differential equation is to assume that the dependent
variable y is given by a power series with unknown coefficients in the independent variable x.
Substituting the power series in the differential equation leads to a collection of simultaneous
algebraic equations for the coefficients. For instance, to solve (d y / d x) 2 - y = x, first
construct a finite series approximation to y with unknown coefficients labeled a [i] .

y[x_] := SeriesData[x, 0, Table[a[i], {i, 0, 6}]]

Substituting the series for y in the differential equation gives the following equation.

s e r i e s D i f f E Q = D [y [x] , x p 2 - y [x] == x

(- a [0] + a [l] 2) + (- a [l] + 4 a [l] a [2]) x +
(- a [2] + 4 a [2] 2 + 6 a [l] a [3]) x 2 +
(- a [3] + 12 a [2] a [3] + 8 a [l] a [4]) x 3 +
(9 a [3] 2 - a [4] + 16 a [2] a [4] + 10 a [l] a [5]) x4 +
(24 a [3] a [4] - a [5] + 20 a [2] a [5] + 12 a [l] a [6]) x 5 +
0 [x] 6 == x

Then use LogicalExpand to construct the equations given by setting equal the coefficients of
powers of x on both sides of this equation.

102 Part I · Symbolic Pocket Calculator

coefficientEQ = LogicalExpand[seriesDiffEQ]
-a[0] + a[l]2 == 0 && -1 - a[l] + 4 a[l] a[2] == 0 &&
-a[2] + 4 a[2]2 + 6 a[l] a[3] == 0 &&
-a[3] + 12 a[2] a[3] + 8 a[l] a[4] == 0 &&
9 a[3]2 - a[4] + 16 a[2] a[4] + 10 a[l] a[5] == 0 &&
24 a[3] a[4] - a[5] + 20 a[2] a[5] + 12 a[l] a[6] == 0

To solve these, it seems necessary to add an initial condition.

coefficientSol = Solve[{coefficientEQ, a[0] == 1},
Table[a[i], {i, 0, 6}]]

{{a[O] -> 1, a[6] -> 0, a[5] -> 0,
a[4] -> 0, a[3] -> 0, a[2] -> 0, a[l] -> -1},
{a[0] -> 1, a[6] -> 469/11520, a[5] 41/960> -(—),
a[4] -> 5/96f a[3] -> -(1/12), a[2] -> 1/2, a[l] -> 1}}

Then substitute these two solutions into y to get the resulting series approximations.

seriesSol = y[x]/.coefficientSol
x2 x3 5 x4 41 x5 469 x6

{1 + x + — - — + + + 0[x]7, 1-x + 0[x]7}
2 12 96 960 11520

These are still Mathematica series and have to be converted to normal expressions in order to be
plotted.

?Normal

Normal[expr] converts expr to a normal expression, from a
variety of special forms.

Plot[Evaluate[Normal[seriesSol]], {x, 0, 3}];

Three · More About Numbers and Equations 103

Finally, we can check that the differential equation is satisfied by both solutions up to order 6.

seriesDiffEQ /. coefficientSol
{x + 0[x]6 == x, x + 0[x]6 == x}

In fact, converted into normal expressions, the solutions satisfy the differential equation
exactly.

Normal[%] => {True, True}

4.9 Lapface Transforms

4.9.1 The Laplace transform package
Non-homogeneous, linear equations are frequently solved by Laplace transform techniques. In
order to use Laplace transforms, the appropriate package has to be loaded, which takes a
while.

Needs["Calculus LaplaceTransform""]
Use ? to learn how to use it.

?LaplaceTransform
LaplaceTransform[expr, t, s, opts] gives a function of s, which
is the Laplace transform of expr, a function of t. It is
defined by
LaplaceTransform[expr, t, s] = Integrate[Exp[-s t] expr,
{t, 0, Infinity}].

(Don't try ? ? here. At least in Version 2.2 it reads in the entire Notebook.) Here are a number
of standard examples.

{ LaplaceTransform[1, t, s],
LaplaceTransform[t, t, s],
LaplaceTransform[E*(a t), t, s],
LaplaceTransform[t^n, t, s],
LaplaceTransform[Cos[w t], t, s],
LaplaceTransform[Cosh[w t], t, s] }
1 1 s s
{-, s"2, , s1 - η Gamma[l + η] , , }
s -a + s s2 w2 s2 w2

104 Parti · Symbolic Pocket Calculator

The following relationships are the reason why Laplace transforms can be used to solve
differential equations.

{ LaplaceTransform[y'[t], t, s],
LaplaceTransform[y''[t], t, s] }

{s LaplaceTransform[y[t], t, s] - y[0],
s2 LaplaceTransform[y[t], t, s] - s y[0] - y'[0]}

4.9.2 A single differential equation
Usually, Laplace transforms are used for linear differential equations with constant coefficients
whose right hand sides consist of terms whose Laplace transforms are known. We start with a
simple example.

ltDiffEQl =
y " [t] - 3 y ' [t] + 2 y [t] == 4 t + EA(3 t) ;

The Laplace transform turns this differential equation into an algebraic equation for the
Laplace transform of y [t] .

ItAlgEQl = LaplaceTransform[ltDiffEQl, t, s]
2 LaplaceTransform[y[t],t,s] + s2 LaplaceTransform[y[t],t,s] -
3 (s LaplaceTransform[y[t],t,s] - y[0]) - s y[0] - y'[0] ==

1 4

-3 + s s2
Next, solve this algebraic equation for LaplaceTransform[y [t] , t , s] .

algSolutionl =
Solve[ItAlgEQl, LaplaceTransformfy[t], t, s]]

{{LaplaceTransform[y[t], t, s] ->
-((12 - 4 s - s2 - 9 s2 y[0] + 6 s3 y[0] - s4 y[0] +
3 s2 y'[0] - s3 y'[0]) / (-6 s2 + 11 s3 - 6 s4 + s5))}}

Finally, we want the inverse Laplace transform of this substitution.

?InverseLaplaceTransform
InverseLaplaceTransform[expr, s, t, opts] gives a function of
t, the Laplace transform of which is expr, a function of s.

Three · More About Numbers and Equations 105

We have to apply the inverse Laplace Transform to both parts of the algebraic solution to find
the value of y [t] . This is done by the Map function that will be explained in Chapter 6.

diffSolutionl =
Map[InverseLaplaceTransform[#, s, t]&,

algSolutionl, {3}]

E3 t Et (-7 + 4 y[0] - 2 y'[0])
{{y[t] -> 3 + + 2 t + +

2 2

E2 t (-y[0] + y'[0])}}

Finally, we check that this is actually a solution of the original differential equation. The
solution here involves y [t] , whereas we would rather have y as a pure function. We have to
make the conversion ourselves.

diffSolutionPurel =
{y -> Evaluate!Evaluate[y[t] /.dif fSolution!.[[1]]/.

t -> #]&]}

E3 #1 E# 1 (-7 + 4 y[0] - 2 y'[0])
{y -> (3 + + 2 #1 + +

2 2

E2 #i (-y[0] + y'[0]) &)}

ltDiffEQl /. diffSolutionPurel/. // Simplify

True

4.9.3 Non-constant coefficients
Certain differential equations with non-constant coefficients can also be solved by Laplace
transform techniques. Consider the following example.

ltDiffEQ2 = t y''[t] - t y'[t] - t == 0;
ltDiffDiffEQ2 = LaplaceTransform[ltDiffEQ2, t, s]

-s"2 + LaplaceTransform[y[t], t, s] -
2 s LaplaceTransform[y[t], t, s] +
y[0] + s LaplaceTransform(°' °' 1) [y[t], t, s] -
s2 LaplaceTransform(°' °' 1) [y[t], t, s] == 0

106 Part I · Symbolic Pocket Calculator

The term LaplaceTrans formio' 0' *) [y [t] , t f s] here is a form of the derivative
with respect to s. Its actual input form is as follows:

Derivat ive[0 , 0, 1][LaplaceTransform][y[t] , t , s]

LaplaceTransform(° ' ° ' 1) [y [t] , t , s]

So this time the result involves both the Laplace transform of y [t] and its derivative; i.e., we
get a first order differential equation for the Laplace transform of y [t] , rather than an
algebraic equation. Unfortunately DSolve is unable to deal with this equation directly, so we
have to replace the Laplace transform and its derivative by a generic function g [s] and its
derivative g ' [s] .

newDiffEq =
ltDiffDiffEQ2 //.
LaplaceTransform[y[t], t, s] -> g[s] //.
Derivative[0, 0, 1][LaplaceTransform][y[t], t, s] ->

g'[s]

-s"2 + g[s] - 2 s g[s] + y[0] + s g'[s] - s2 g'[s] == 0

Now we can solve this equation for g [s] and then replace g [s] by the Laplace transform of
y again.

diffSolution2 = DSolve[newDiffEq, g[s], s]

{{g[s] -> E - 1 ^ 1 - sl - Log[s] cf !] +
E-Log[l - s] - Log[s] (_χ _ s2 y[0])

}}
s

Unfortunately, the E-to-the-Log terms are not simplified in Version 2.2 as they were in Version
2.1, so we have to do that ourselves.

algSolution2 = diffSolution2 //.
{EA(a_ + b_) :> EAa EAb,
E"(-Log[x_]) :> 1/x,
g[s] -> LaplaceTransform[y[t], t, s]}

C[l] -1 - s2 y[0]
{{LaplaceTransform[y[t], t , s] -> + }}

(1 - s) s (1 - s) s2

Three · More About Numbers and Equations 107

Finally, apply the inverse Laplace transform to this.

answer =
Map[InverseLaplaceTransform[#, s, t]&,

algSolution2, {3}]

{{y[t] -> -1 - t + C[l] - Et C[l] + Efc (1 + y[0])}>

Again, find y as a pure function.

d i f f S o l u t i o n P u r e 2 =
{y -> E v a l u a t e [E v a l u a t e [y [t] / . a n s w e r [[l]] / . t -> #]&]}

{Y -> (- 1 + C [l] - E # 1 C [l] - #1 + E # 1 (1 + y [0]) &)}

The check proceeds without difficulty.

l t D i f f E Q 2 / . d i f f S o l u t i o n P u r e 2 / / S i m p l i f y => True

4.9.4 A system of two differential equations

The real power of the Laplace transform comes in using it for systems of linear ordinary
differential equations with constant coefficients. In this example, y l [t] and y2 [t] are two
functions of t which are related by a pair of second order differential equations.

ltDiffSystem =
{ yl·'[t] == k (y2[t] - 2 yl[t]),
y2''[t] == k (yl[t] - 2 y2[t]) }

{yl"[t] == k (-2 yl[t] + y2[t]),
y2"[t] == k (yl[t] - 2 y2[t])}

At present, Mathematica can solve this system using DSolve , but we get a nicer answer using
Laplace transforms.

ItAlgSystem = LaplaceTransform[ltDiffSystem, t, s]

{s2 LaplaceTransform[yl[t], t, s] - s yl[0] - yl'[0] ==
k (-2 LaplaceTransform[yl[t], t , s] +

LaplaceTransform[y2[t], t , s]),
s2 LaplaceTransform[y2[t], t , s] - s y2[0] - y2f[0] ==

k (LaplaceTransform[yl[t], t , s] -
2 LaplaceTransform[y2[t], t , s])}

108 Part I · Symbolic Pocket Calculator

The procedure is the same as with a single equation. First solve this system of algebraic
equations for the two Laplace transforms.

algSystemSolution =
Solve[ItAlgSystem,

{ LaplaceTransform[yl[t], t, s],
LaplaceTransform[y2[t], t, s] }]

{{LaplaceTransform[yl[t], t, s] ->
-(((2 k + s2) (-(k (-(s yl[0]) - yl'[0])) -
(2 k + s2) (-(s y2[0])-y2'[0]))) / (k (k2 - (2 k + s2)2)))\

-(s y2[0]) - y2'[0]
+ ,

k

LaplaceTransform[y2[t], t, s] ->
-(k (-(s yl[0])-yl'[0])) - (2 k + s2) (-(s y2[0])-y2·[0])

-()}}

k2 - (2 k + s2)2

Then apply the inverse Laplace transform to these solutions.

diffSystemSolution =
Map[InverseLaplaceTransform[#, s, t]&,

algSystemSolution, {3}]
We have omitted the output since it is very long. However, if we choose initial conditions
carefully, then the result simplifies considerably.

initialConditions =
{ yl[0] -> 1, y2[0] -> 1,
yl'[0] -> Sqrt[3] Sqrt[k],
y2'[0] -> -Sqrt[3] Sqrt[k]}

inltialSystemSolution =
diffSystemSolution /. initialConditions

{{yl[t] -> Cos[Sqrt[k] t] + Sin[Sqrt[3] Sqrt[k] t] ,
y2[t] -> Cos[Sqrt[k] t] - Sin[Sqrt[3] Sqrt[k] t]}}

Three · More About Numbers and Equations 109
i P ^ & $ $ É § « » & i » ^ ^

As before, convert the solutions to pure functions.

initSystemSolutionPure =
{yl -> Evaluate[Evaluate[yl[t]/.

initialSystemSolution[[1]]/.t -> #]&],
y2 -> Evaluate[Evaluate[y2[t]/.

initialSystemSolution[[1]]/.t -> #]&]}

{yl -> (Cos[Sqrt[k] #1] + Sin[Sqrt[3] Sqrt[k] #1] &),
y2 -> (Cos[Sqrt[k] #1] - Sin[Sqrt[3] Sqrt[k] #1] &)}

Finally, check the result.

ltDiffSystem /· initSystemSolutionPure // Simplify

{{{{-(k (Cos[Sqrt[k] t] + 3 Sin[Sqrt[3] Sqrt[k] t])) ==
k (-Cos[Sqrt[k] t] - 3 Sin[Sqrt[3] Sqrt[k] t]),

-(k (Cos[Sqrt[k] t] - 3 Sin[Sqrt[3] Sqrt[k] t])) ==
k (-Cos[Sqrt[k] t] + 3 Sin[Sqrt[3] Sqrtfk] t])}}}}

We can see that this is correct, but Mathematica refuses to simplify it further unless we tell it
what to do, which again will be explained in Chapter 6.

Map[Distribute[Times[#]]&, %, {2}] {True, True}

Of course, this solution can be plotted, treating y 1 [t] and y 2 [t] as determining a parametric
curve, provided k is given a numerical value.

ParametricPlot[
Evaluate! {yl[t], y2[t]}/.

initialSystemSolution/.k -> 2],
{t, 0, 10}];

-1.5

no Part I · Symbolic Pocket Calculator

This is very curious behavior. Trying different plots, one sees that the curve starts at (1,1) with
x increasing and y decreasing. It follows the lower track around to near the point (0, 2) where
there is an apparent singularity at t « 4.5. The curve turns around and seems to go back
through the point (1,1) at t « 8.95. Actually, there is no singularity and the curve misses (1,1)
the second time. For instance, near t = 4.5 we have the situation:

ParametricPlot[
Evaluate[{yl[t], y2[t]}/.

initialSystemSolution/.k
{t, 4.45, 4,6}];

-> 2]

Thus the curve is smooth as it goes past this value. Over a long period of time, the curve
appears to fill out a region in space.

ParametricPlot[
Evaluate! {yl[t], y2[t]}/.

initialSystemSolution/.k -> 2],
{t, 0, 100}];

Three · More About Numbers and Equations 111

Looking carefully, one can see that there are other sharp bends in the curve, for instance, near t
« 37.5. It is interesting to look at the plots for t from 0 to 500, or 0 to 1000, but we omit them
here.

5 Practice
1. {N[Pi], N [E] , N [I] , N[Degree], N[GoldenRatio], N[Eu1erGamma],

N[Catalan]}
2. N[Sin[60 Degree]]
3. {Re[2 + 31], Im[2 + 31], Conjugate[2 + 31]}
4. {Re [a + b I] , Im[a + b I] , Conjugate [a + b I]}
5. Needs ["Algebra Relm^ "]
6. a/: Im[a] = 0
7. b/: Im[b] = 0
8. {Re [a + b I] , Im[a + b I] , Conjugate [a + b I]}
9. Options [NumberForm] (Try out various options.)

10. BaseForm[l/3, 2]
11. Table[{ToExpression[ToString[N[Pi, n l]] / N[Cos[ToExpression[

ToString[N[Pi, n]]]],ll]}, {n, 1, 5}] // TableForm
12. Simplify[Sin[x]^2 + 2 Cos[xp2]
13. FindRoot[Sin[x]/x == 0, {x, 2}]
14. FindRoot[x Cos[x] == 1, {x, 10}]
15. Random [Integer, {0, 10}]
16. Table[Random[Real, {1, 2 }] , {20}]
17. ColumnForm[NSolve[{2 x y + 3 x + 4 y = = 5 , 6 χΛ2 - 7 x - 8 y

== 9}]]
18. Eliminate!{xA2 + 2 a x + a A2 y == 0, y A2 - 2 b y + a b x = = 0 } ,

a]
19. {ToRules [%] }
20. Solve[{xA2 + 2 a x + a"2 y == 0, y*2 - 2 b y + a b x == 0}, {x,

y}]
21. LinearSolve[{{l, 4, 3}, {4, 2, 3}, {3, 3, 1}}, {1, 2, 3}]
22. Solve[{xA2 + y A 2 == 1, χ Λ3 + y^3 == 2 } , {x, y}]
23. N[%]
24. NSolve[{ x A2 + y"2 == 1, xA3 + y"3 == 2}, {x, y}]
25. Rationalize[N[Pi], 0]
26. Union[Table[Rationalize[N[Pi], (O.l)^n], {n, 20}]]
27. RowReduce[Table[3 i - 2 j, {i, 3} , {j, 4}]]
28. diffSolution = NDSolve[{ y l ' ^ t] == 2 (y2[t] - 2 yl[t]),

y 2 " [t] == 2 (yl[t] - 2 y2[t]), yl[0] == 1, y2[0] == 1, yl'[0]
== Sqrt[6], y2'[0] == -Sqrt[6]}, {yl, y2}, {t, 0, 10}]

112 Parti · Symbolic Pocket Calculator

29. ParametricPlot[Evaluate[{yl[t], y2[t]}/.diffSolution], {tf 0f
10}]

30. {$Version, $TimeUnit, $RecursionLimit}
31. ? ? Solve (try out some of the options)
32. ?N*

6 Exercises
Give names to all of the expressions, equations, and solutions you use in the following
problems. For instance, in problem 1, call the equation there e q u a t i o n l and the list of
solutions so lu t ion l , etc.

1. Solve and check the equation

x4 + 17 x . 31 x + 3 7 A . 1 = 0
14 7 14 7

2. Solve the equation

x" - -^ 2 = o
2740 9704700

5 X

with 10 digit accuracy; with $MachinePrecision and $MachinePrecision + 1
digit accuracy. Check your answers. (You may need to use the built-in function Chop.)

3. Solve the pair of equations x2y + y = 2, y - 4 x = 8 exactly for x and y.

4. Solve the three equations

ax + b y - z = 3b,
x - 4 y - 5 c z = 0,
x + a y - b z = c
exactly for x, y, and z. Show the answer and a check of its correctness. Also solve for a,
b, and c and check the answer.

5. Investigate the solutions that Mathematica finds for the equation

V 1 -x + V 1 +x = - 1

What is the result of substituting the solutions in the left hand side of the equation?

Three · More About Numbers and Equations 113
* ** - « ^ s & ̂ \^\'if< l ^ V ^ ;- §

6. Use the built-in operation DSolve to solve the following differential equations. Check
your solutions.
i) y' = y tan(x)

ii) y' - y tan(x) = sec(x).

iii) y! - 2 x y = 1

iv) x2 y' + 3 x y = (sin x) / x

v) y' = x 2 / ((x3+l)y)

vi) y' = x y2 + y2 + x + 1

vii) y" + x y' + y = 0

(Compare with the answer found in the text using DSolve .m.)
viii) x2 y" - 3 x y' + 4 y = 0 (Euler's equation.)

ix) y " - 5 y ' + 6y = 2ex

7. Load the package DSolve·m and use it to solve the following differential equations.
Check your solutions.
i) - x2 y' + y2 + 3 x y + x2 = 0

ii) (x2ey+ sin(x) + 2) y' + 2 x eï+ y cos(x) = 0.

iii) x2 y' + x y (x y + 4) + 2 = 0

iv) xy' + a x y 2 + 2y + bx = 0

v) yM + 2 y' - 3y = 0

(Make a picture of the solution for suitable initial conditions.)

vi) y" - 2 y' + y = 0 (Make a picture.)

vii) y" + 5 y' = 0 (Make a picture.)

8. Reconcile the solutions that were found for Bernoulli's equation in 4.1.4 and 4.2.2.

9. Try to use DSolve to solve the system of differential equations
x'(t) = 2x(t)-x(t)y(t)-2x(t)2
y'(t) = y(t)-(l/2)x(t)y(t)-y(t)2
x(0) = 2
y(0) = 2.

When that fails, solve it numerically for t between 0 and 100 and plot the solution.

114 Parti · Symbolic Pocket Calculator
^i^^v · ,

10. Use the Laplace transform to solve the following differential equations.

i) y M - w 2 y = 0

ii) y " - 4 y ' + 4 y = t2

iii) y " - 5 y * + 4 y = e2t

iv) y" + 2 y + 2 y = t

v) y" + 2y ' + 2 y = e"tsint

vi) yl ' = - 3 yl + 4 y2 + cos t
y2' = - 2 y l + 3 y2 + t

11. Use the function definition facilities described in Chapter 1 to define a function
p a s c a l T r i a n g l e R o w [n _] which displays the nth row of Pascal's triangle. (Note:
there is a built-in function called Binomial [m, n].) Use this function to write another
operation p a s c a l T r i a n g l e [n_] which displays the first n rows of Pascal's triangle in
triangular form.

12. Define a function completeTheSquare [expr_] that takes an expression of the form
a x2 + b x + c and writes it in the form a(x + b / 2 a) 2 + c - b 2 / 4 a 2 . You may find it
necessary to define some auxiliary functions to extract the coefficients from the
expression.

13. i) Jacobian matrices: (look up Jacobian matrices in your advanced calculus book.)
Define a function j acob ian [f u n l i s t _ , v a r l i s t _] which takes as arguments a
list of functions and a list of variables. It calculates the Jacobian matrix of the
functions with respect to the variables. (The (i, j)th entry is the partial derivative of
the ith function with respect to the jth variable.) Include S i m p l i f y in the definition
of the function. Note: the length of a list is given by Length [l i s t] .

ii) Calculate the Jacobian matrix for the pair of functions

u = x 2 + y 2 , v = - 2 x y

with respect to x and y. Name this matrix jak. Note that jak is expressed in terms of
the variables x and y.

iii) Solve for x and y as functions of u and v. There will be four complicated solutions.

iv) In particular, the third solution in part iii) gives x and y as functions of u and v. Use
this to calculate the Jacobian matrix of x and y with respect to u and v. Name this
matrix invjak. Note that it is expressed in terms of the variables u and v.

v) Let jak* be invjak expressed in terms of x and y rather than u and v. I. e., substitute
the values for u and v in terms of x and y into invjak to get jak'.

vi) Show that jak . jakf = I d e n t i t y M a t r i x [2] .

Three · More About Numbers and Equations 115

14. (More Stoutemyer experiments [Stoutemyer].)

i) Is e71^*?*^] an integer? How precisely does it have to be calculated to determine the
answer?

ii) Determine how Mathematica deals with oo - oo, oo/oo, o <*>, lf°

iii) Does Mathematica solve the equation Sqrt[x] = 1 - x correctly?

iv) Does Mathematica calculate the definite integral of 1/x2 from -3 to 2 correctly?

CHAPTER
''·:' '.fi t^ f^ ì^
Built-in
Graphics

Pictures, pictures everywhere

1 Plotting Commands and
Optional Arguments

- ^ *£* *"v*.ii\m ^ $ e ^ ^ ^ ,^·*ν>; v*w&3» ^ΐ-^ν, ,* --- -, *> - -- ;- v i ; - Λ „ > ^ , - , ^ ><,- ,,,νζ &\>*. ^ ,- ìs^r·** ^ ν · ^ ν*·-

For many users, graphics commands are the most important feature of Mathematica. Either
they want to know what some built-in or user defined function looks like, or they have data
from somewhere else that they want to plot. In either case, the basic plotting commands are
very simple to use. We have already seen a number of examples using P l o t , Plot3D,
ParametricPlot, etc. The main thing to be learned is how to use the optional arguments for
these functions. First we have to discover all possible built-in plotting commands. They all end
in Plot or Plot3D so the commands ?*Plot and ?*Plot3D give all such expressions.

ContourPlot ListPlot
DensityPlot ParametricPlot
ListContourPlot Plot
ListDensityPlot ParametricPlot3D
ListPlot3D Plot3D

These are the built-in plotting commands that automatically produce a picture. Each of these
plotting commands can take a number of optional arguments. As an example, list all the
options of Plot.

117

118 Part I · Symbolic Pocket Calculator

Options[Plot]

{AspectRatio -> 1/GoldenRatio, Axes -> Automatic, AxesLabel ->
None, AxesOrigin -> Automatic, AxesStyle -> Automatic,
Background -> Automatic, ColorOutput -> Automatic,
Compiled -> True, DefaultColor -> Automatic, Epilog -> {},
Frame -> False, FrameLabel -> None, FrameStyle -> Automatic,
FrameTicks -> Automatic, GridLines -> None, MaxBend -> 10.,
PlotDivision -> 20., PlotLabel -> None, PlotPoints -> 25,
PlotRange -> Automatic, PlotRegion -> Automatic,
PlotStyle -> Automatic, Prolog -> {}, RotateLabel -> True,
Ticks -> Automatic, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

Length[%] => 27

The 27 entries in this list are in the form of rules that give the default values for the indicated
optional arguments. Some of these options are common to all plotting commands and some
are special to Plot. The following list contains the common options.

{Aspec tRat io , Axes, AxesLabel , AxesS ty le , Background, Color -
Output , D e f a u l t C o l o r , D e f a u l t F o n t , D i s p l a y F u n c t i o n , E p i l o g ,
P lo tLabe l , PlotRange, PlotRegion, Pro log , Ticks}

Among these 15 we can also find those options that have a common default value; namely,

{AxesLabel -> None, AxesSty le -> Automat ic , Background ->
Automatic, ColorOutput -> Automatic, DefaultColor -> Automatic,
Ep i log -> { } , P l o t L a b e l -> None, PlotRange -> Automat ic ,
P lo tRegion -> Automat ic , P ro log -> { } , Ticks -> Automat ic ,
D e f a u l t F o n t :> $ D e f a u l t F o n t , D i s p l a y F u n c t i o n :>
$DisplayFunction}

It is easy to see just by inspection that the only two that are missing from this second list are
AspectRat io and Axes, so these have different default values for different plotting
functions. AspectRatio is the ratio of the height to the width of the final plot. Possible
values are any real number, or Automatic which means that the distances on the two axes are
the same. The possible values of Axes are True (meaning draw axes), False (meaning don't
draw axes), {Boolean, Boolean} (where Boolean is True or False, means draw one but
not both axes), and Automatic (meaning the program will decide where to draw the axes).
Fortunately, most of these various default values make sense, so one doesn't have to try to
remember which are in effect for any given command. The default value for AspectRatio in
the Plot command is GoldenRatio which is a built-in constant.

Four · Built-in Graphics 119

N[GoldenRatio] => 1.61803

It was Plato who asserted that the golden ratio is the ideal shape for a picture. The possible
values for an optional argument are not always evident. If you are using a Notebook front-end,
then the Function Browser contains a great deal of information about possible values of
optional arguments. There are certain standard values that frequently work for different
optional arguments.

Automatic use an optimal internal algorithm
Al 1 include everything
None do not include this
True do this
F a l s e don't do this
<number> use this number as the value
< l i s t > use the entries in the list as the values

In Chapter 10, Section 7 you will learn how to define functions with their own optional
arguments. When you do that, it will be up to you to decide what the possible values should
be and what effect they should have.

2 Two-Dimensional Graphics

2.1 Plot

P l o t has two arguments, the first being either a function or a list of functions and the second
an iterator. The best way to understand the 27 possible options is to try out various
combinations of them to see what effect various values for the built-in options have. Note that
there is no way to add new options to built-in functions.

2.1.1 Simple plots

First, plot a single function of one variable, using no options to see what the standard picture
looks like. The default value of A s p e c t R a t i o for P l o t is 1 /GoldenRat io as shown above,
so the plot region is always about 1.6 times as long as it is high. The first argument to P l o t can
be either one function or a list of several functions of one variable. The second argument is an
iterator giving the range over which the function should be plotted.

120 Part I · Symbolic Pocket Calculator

Input

P l o t [S i n [x] ,
{ x , 0 , 2 P i }] ;

P l o t [{ S i n [x] , - S i n [x] ,
C o s [x] , - C o s [x] } ,

{x , 0, 2 P i }] ;

Graphics

1

0 . 5

- 0 . 5

- 1

1

0 . 5

- 0 . 5

- 1

1 2 : Λ 4 5 ^

\ V V y ί \ 4

2.1.2 Using options
The iterator {x, xmin, xmax} specifies what range of values should be plotted. Optional
arguments are added in a sequence in any order after the iterator. This way of using optional
arguments in one of the strengths of Mathematica since you are not forced to give options in a
particular order or even know anything at all about options you are not using.

Inputs

P l o t t S i n t x] , {x, 0, 2 P i } f

A s p e c t R a t i o -> 1,
Frame -> True,
P l o t L a b e l ->

"A s i n c u r v e "] ;

Graphics

1

0 . 5

0

- 0 . 5

- 1

A s i n c u r v e

Λ
\j

0 1 2 3 4 5 6

Four · Built-in Graphics 121

Inputs

Plot[Sin[x], {xf 0, 2 Pi},
AspectRatio -> Automatic,
Background ->

GrayLevel[0.8],
GridLines -> Automatic];

Graphics

ί
U ♦ Î7

A SL

y
ζ^

pt»«"-««^ fxl
\ s.

X 1 I X * $ À /

Plot[Sin[x], {x, 0, 2 Pi},
AxesOrigin -> {1, 0.5},
AxesLabel ->

{"x-axis", "y-axis"},
AxesStyle ->

Thickness[0.01]];

y - a x i s
1

°/ ' 0

- 0 . 5

- 1

Γλ 2 \ 3 4 5 6 x-axis

Plot[Sin[x], {x, 0, 6 Pi},
PlotPoints -> 7,
PlotDivision -> 1,
MaxBend -> 45,
PlotRange -> {0, 1}];

0 2.5 5 7.5 10 12.5 15 17.5

Plot[Sin[x], {x, 0, 2 Pi},
Ticks ->

{{{0,"0"},{1.57,"Pi/2"},
{3.14,"Pi"},

{4.71,"3Pi/2"},
{6.28, "2Pi"}},
Automatic},
PlotLabel ->
FontForm["A better

sin curve",
{"Palatino-Bold", 12}]] ;

A better sin curve

122 Part I · Symbolic Pocket Calculator

In the first plot we made the plotting region a square, added a frame around the picture and a
label. In the second, the x and y scales are made the same by setting A s p e c t R a t i o equal to
A u t o m a t i c and a background shading is added. On a color screen, use Hue instead of
Gray Leve l to get a colored background. Also, grid lines are added. If you want to know what
value was actually used for Aspec tRat io , you can find out as follows. (% refers to the second
plot above.)

FullOptions[%, AspectRatio] => 0.31831

The actual value for GridLines is more complicated.

FullOptions[% %, GridLines]

Thickness[0.001]
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]}}},
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]
Thickness[0.001]}}}}
Thickness[0.001]
Thickness[0.001]

In the third plot we shifted the origin of the axes, made the axes thicker using A x e s S t y l e
and added labels to the axes. In the fourth plot, the number of plot divisions is changed to
make the curve as jagged as possible and the bottom half is cut off. The way 2-dimensional
graphics works is to first find the values of the function at the default value of P l o t P o i n t s ,
which is the x-axis subdivided into 25 points. The program then looks at the angles between
successive line segments and if these angles are greater than the specified MaxBend in degrees
it adds more divisions until that is the maximum angle. We have chosen the minimum value
for P l o t D i v i s i o n , the maximum value for MaxBend, and a choice for P l o t P o i n t s that
gives a surprising result. For our last example of P l o t , we made a nice S i n curve by putting
in labels along the x-axis at intervals of Pi / 2, while allowing the y-axis intervals to be given
automatically by the program. The FontForm graphics command gives us control over the
appearance of the text. Whether this works or not on the screen is platform dependent, but it
will always print correctly. Two important options that we have not discussed are E p i l o g and
Prolog. These allow graphics primitives to be added to built-in graphics functions and will be
treated in Chapter 10, Section 3.

{{{6.,
{5-,
{4.,
{3.,
{2.,
{1·,
{0.,

{{!·,
{0.5,
{0.,
{-0.5,
{-!·,
{0.,
{-0.5,
{-i·,

{RGBColor[0.
{RGBColor[0.
{RGBColor[0.
<RGBColor[0.
{RGBColor[0.
{RGBColor[0.
{RGBColor[0.
{RGBColor[0.
{RGBColorfO.
{RGBColor[0.
{RGBColor[0.
{RGBColor[0.
{RGBColor[0.
{RGBColorfO.
{RGBColor[0.

, o.
/ 0.
, 0.
, o.
, o.
/ 0.,
, o.,
/ 0.,
, o.
f 0.,
/ 0.,
, o.,
, o.,
, 0.,
/ 0.

r 0.5],
r 0.5],
r 0.5],
r 0.5],
r 0.5],
f 0.5],
f 0 . 5] ,
f 0 . 5] ,
f 0 . 5] ,
f 0.5],
r 0.5],
r 0.5],
r 0.5],
r 0.5],

Four · Built-in Graphics 123

2.1.3 $DisplayFunction

The command Show will display several pictures at the same time on the same set of axes, as
we saw in Chapter 1. There we preplotted the pictures before applying Show. This time we'll
create the plots within the Show command. An important consideration is that the output of
P l o t is a graphics object as is indicated by the actual output - G r a p h i c s - , while the picture
itself is a side effect that happens during the evaluation of a P l o t command. This causes a
problem in showing several plots since any intermediate plots will be displayed also. Thus the
following command produces three pictures.

Show[Plot[Sin[x], {x, 0, 2Pi}],
Plot[Cos[x], {x, 0, 2Pi}]];

The first two occur as side effects to evaluating the P l o t [S i n - -] and P l o t [Cos - -]
commands while the third is the side effect of the final evaluation of Show. The cure for this is
to turn off the display of the two intermediate pictures and then turn the display back on for
Show. This is done with the D i s p l a y F u n c t i o n option. Possible values are:

DisplayFunction -> $DisplayFunction
(the default value which displays the drawing on the screen)

D i s p l a y F u n c t i o n -> I d e n t i t y
(the graphics is calculated but no picture is displayed)

D i s p l a y F u n c t i o n -> F u n c t i o n [D i s p l a y [" f i l e name", #]]
(send the PostScript code to the named file).

The following command does what we want. Note that it doesn't matter if the Plot commands
are put in a list or not.

Show[{Plot[Sin[x], {x, 0, 2Pi},
DisplayFunction -> Identity],

Plot[Cos[x], {x, 0, 2Pi},
DisplayFunction -> Identity]},

DisplayFunction -> $DisplayFunction];

124 Part I · Symbolic Pocket Calculator

2.2 ListPlot

Inputs

L i s t P l o t [
{ 3 . 2 , 5 . 1 , 1 . 4 , 0 . 5 , 4 . 4 }] ;

L i s t P l o t [
{ 3 . 2 , 5 . 1 , 1 . 4 , 0 . 5 , 4 . 4 } ,
PlotRange ->

{ { 0 , 6 } , { 0 , 6 } } ,
A s p e c t R a t i o -> 1,
P l o t S t y l e ->

{ P o i n t S i z e ; [0 . 0 2] }] ;

Graphics

5

4

3

2

6

5

4

3

2

1

0

•

2 3 4 5

i ·

•

• 1

• 1

• 1

1 2 3 4 5 6 J

Four · Built-in Graphics 125

Inputs Graphics

ListPlot[6
{3.2, 5.1, 1.4, 0.5, 4.4},
PlotRange -> 5

{{0, 6}, {0, 6}},
AspectRatio -> 1, \
PlotJoined -> True];

3
2

1

1 2 3 4 5 6

There is one new option for L i s t P l o t ; namely, P l o t J o i n e d with default value Fa l s e .
Basically, L i s t P l o t just plots points. A list of single values is treated as the y-values for x-
coordinates ranging from 1 to the number of points. The default options for A x e s and
A x e s O r i g i n in the first picture above are Automat ic and the axes here do not go through
the origin. Also, the points are so small that we can hardly see them. In the next plot, the size
of the points is increased so they can be seen, the shape of the plot region is increased by
specifying ranges for both the x and y values, and the A s p e c t R a t i o is made 1 to get a more
realistic picture. P l o t S t y l e here is a catch all argument that takes as its value either
A u t o m a t i c or a list of directions concerning properties of points or lines. We'll look at a
number of possible values for it in what follows. It will also be discussed further in Chapter 9,
Section 3. Finally, in the third picture we try the new option P l o t J o i n e d which adds lines
between the points.

Next, let's generate some data to illustrate with L i s t P l o t .

data = Table[N[{x, Sin[x]}], {x, 0, 2 Pi, Pi/5}]

{{0, 0}, {0.628319, 0.587785}, {1.25664, 0.951057},
{1.88496, 0.951057}, {2.51327, 0.587785}, {3.14159, 0},
{3.76991, -0.587785}, {4.39823, -0.951057}, {5.02655,
-0.951057}, {5.65487, -0.587785}, {6.28319, 0}}

If the first argument of L i s t P l o t is a list of pairs, then each pair is treated as the x and y
coordinates of a point.

ListPlot[data, PlotStyle -> {PointSize[0.04]},
PlotRange -> {-1.1, 1.1}];

126 Part I · Symbolic Pocket Calculator

1

0.5[

-0 .5

- 1

• ·

1 2 3 4 5 6

In many applications, the data to be plotted is in some other file and the main problem is to
import the data into Mathematica. This can be more or less complicated depending on the form
of the data. As a very simple example, we put da ta into a file named s t o r a g e and then read
it back into a L i s t P l o t function.

Put[OutputForm[data], "storage"]

To see what is in the file, use:

! ! storage

{{0, 0}, {0.628319, 0.587785}, {1.25664, 0.951057}, {1.88496,
0.951057}, {2.51327, 0.587785}, {3.14159, 0}, {3.76991,
-0.587785}, {4.39823, -0.951057}, {5.02655, -0.951057},
{5.65487, -0.587785}, {6.28319, 0}}

However, this cannot be used within L i s t P l o t to make a picture of this list. Instead, use the
form:

ListPlot[Get["storage"],
PlotStyle -> {PointSize[0.04]},
PlotRange -> {-1.1, 1.1}];

This gives exactly the same picture as before.
These points look as though they could lie on a 3rd degree curve, so we find the best cubic

curve that approximates them using the operation F i t , which takes three arguments: a list of
points, a list of functions, and the independent variable in the functions. It then finds the linear
combination of the functions that gives the best least squares fit to the list of points.

fitCurve = Fit[data, {1, x, χΛ2, xA3}, x]

-0.063509 + 1.70678 x - 0.805274 x2 + 0.0854422 x3

Four · Built-in Graphics 127

Since both P l o t and L i s t P l o t can be combined in a Show command, the data and the curve
that tries to fit the data can be plotted in the same picture.

Show[Plot[fitCurve, {x, -0.5, 6.7},
DisplayFunction -> Identity],

ListPlot[data, PlotStyle -> {PointSize[0.04]},
DisplayFunction -> Identity],

DisplayFunction -> $DisplayFunction];

2.3 ParametricPlot

P a r a m e t r i c P l o t plots parametric curves; that is, curves specified by giving the x and y
coordinates as functions of some third parameter. The options for P a r a m e t r i c P l o t are
exactly the same as for P l o t . As with P l o t , the first argument can be either a single
parametric curve or a list of parametric curves, while the second argument is an iterator giving
the range of parameter values. In the first picture, a Lissajou figure with a frequency ratio of
2 /3 is plotted using no options. In the second picture, another Lissajou figure is added with a
frequency ratio of 1/4. We have changed the color of the curves and made the first one dashed
and the second one thick by using P l o t S t y l e . P l o t S t y l e is an optional argument whose
value is a list of G r a p h i c s primitives, one for each parametric curve. These Graphics
primitives are explained in detail in Chapter 10. On a monochrome monitor, the curves appear
to be shaded. P a r a m e t r i c P l o t can be combined with P l o t or L i s t P l o t in a Show
command.

128 Part I · Symbolic Pocket Calculator

Inputs

ParametricPlot[
{Sin[2 t], Sin[3 t]},
{t, 0, 2 Pi}];

Graphics

ParametricPlot[
{{Sin[2 t], Sin[3 t]},
{Sin[t], Sin[4 t]}},

{tf 0, 2Pi},
PlotStyle ->
{{Dashing[{0.05,0.03}],

RGBColor[l, 0, 0]},
{Thickness[0.01],
RGBColor[0f 1, 0]}}];

2.4 ContourPlot and DensityPlot

Contour plots are 2-dimensional pictures in which the curves where a function of two
variables takes on constant values are drawn. It is not clear if contour plots and density plots
should be considered as two-dimensional or three-dimensional, so we have put them in
between the two topics. C o n t o u r P l o t adds a number of options concerned with the
rendering of the contours and changes some of the other options of P l o t . The following list
shows those options that are different from the options of P lo t .

Complement[Options[ContourPlot], Options[Plot]]

{AspectRatio -> 1, Axes -> False, ColorFunction -> Automatic,
ContourLines -> True, Contours -> 10, ContourShading -> True,
ContourSmoothing -> None, ContourStyle -> Automatic,
Frame -> True, PlotPoints -> 15}

In the three pictures below, the function S i n [x] C o s [y] is shown over a range
encompassing two maxima and two minima. In the first, ContourSmoothing ->
Automat ic is used and the number of plot points is increased, although the calculation then

Four · Built-in Graphics 129

takes considerably longer. None, is also a possible value for ContourSmoothing but it
produces very jagged pictures. Allegedly an integer value for it specifies how often grid lines
should be subdivided in estimating where contours cross the grid lines, but this doesn't seem
to have any effect in the pictures where we have tried it. In the second picture, the only change
is to color the regions differently. You'll have to try this on a color monitor to see what it
actually looks like. Hue is a graphics primitive which is discussed in Chapter 10, Section 1.

Inputs

ContourPlot [
S i n [x] C o s [y] ,
{ x , 0 , 2 P i } ,
{y , - P i / 2 , 3 P i / 2 } ,
P l o t P o i n t s -> 60 ,
ContourSmoothing ->

A u t o m a t i c] ;

ContourPlot [
S i n [x] C o s [y] ,
{ x , 0, 2 P i } ,
{ y , - P i / 2 , 3 P i / 2 } ,
P l o t P o i n t s -> 60
ContourSmoothing ->

Automat ic ,
Co lorFunct ion ->

(H u e [# / 2] &)] ;

Graphics

4

3

2

1

0

- 1
w
0 1

4

3

2

1

0

- 1

Crm
\ ÊÊk ■ U M
ν^~~

0 1

^^^^^^^^H îiiiifi
^^^Hpir..-
^Η ; ^ ■ K à
^ ^ | κ > τ

2 3 4

ÄsV ■ I Ü ■ ■f.;' w
ÉÊÊÈÈ

^ κ * - - " » »

v5
2 3 4

■^^■i vfi ~JMM ~^MÊÈ

5 6

^

m
5 6

130 Part I · Symbolic Pocket Calculator

Inputs

D e n s i t y P l o t [
S i n [x] C o s [y] ,
{x f 0, 2 P i } ,
{y , - P i / 2 , 3 P i / 2 } ,
P l o t P o i n t s -> 50 ,
Mesh -> F a l s e ,
ColorFunct ion ->

(RGBColor[
! - # , # , 0] &)] ;

Graphics

4

3

2

1

0

- 1

0 1 2 3 4 5 6

The third picture uses D e n s i t y P l o t with a number of options. D e n s i t y P l o t uses shading
instead of contours to indicate the values of a function of two variables. The picture improves
dramatically with increased P l o t P o i n t s , but plotting time can become quite long. Besides
the usual options, D e n s i t y P l o t adds an option Mesh whose default value is True. If Mesh is
turned off, the picture may look much smoother. Adding color improves the picture. This time
we use RGBColor rather than Hue. (See Chapter 10.) The picture is more interesting, at least
on a color monitor if it is colored using Co lorFunct ion with a function that depends on the
values of the function. The total range of values is scaled for 0 (lowest) to 1 (highest) and the
indicated pure function is applied to these values. It can be either RGBColor, Hue, or
Grayscale .

2.5 Two-Dimensional Graphics Commands in Packages

There are many other 2-dimensional plotting commands to be found in the packages
distributed with Mathematica. For full details, see the "Guide to Standard Mathematica
Packages" that comes with the program. Here is a list of the currently available plotting
commands in packages. Other plotting commands can be found by consulting the packages
available through MathSource.

BarChart
CartesianMap
ErrorListPlot
FilledPlot
ImplicitPlot
LabeledListPlot
LinearLogListPlot

LogPlot
MovieDensityPlot
MovieParametricPlot
MoviePlot
MultipleListPlot
PercentalBarChart
PieChart

Four · Built-in Graphics 131

LinearLogPlot
ListAndCurvePlot
ListFilledPlot
ListPlotVectorField
LogLinearListPlot
LogListPlot
LogLogListPlot
LogLogPlot

PlotGradientField
PlotHamiltonianField
PlotPolyaField
PlotVectorField
PolarListPlot
PolarMap
PolarPlot
TextListPlot

These commands work just like the built-in graphics commands and they take the same kinds
of optional arguments. To use them, load the appropriate package if you know what it is.

There is a more convenient mechanism for dealing with all of the packages in a given
directory. The commands above are all found in the G r a p h i c s directory, so they can be
accessed by the single command:

Needs["Graphics"Master""]

What this does is to load a master file that gives all of the graphics commands the attribute
Stub. That in turn has the effect of loading the appropriate package containing the command
whenever one of these commands is used or mentioned. Here are a couple of examples. They
show the same curve, first represented in polar coordinates, and then implicitely in terms of x
and y coordinates. It is a standard exercise in analytic geometry to show that these two
equations describe the same curve.

Inputs

P o l a r P l o t [S i n [2 t h e t a] ,
{ t h e t a , 0 , 2 P i } ,
P l o t S t y l e ->
{ T h i c k n e s s [0 . 0 1] } ,
T icks -> None,

AxesLabel ->
{"polar a x i s " , N o n e }] ;

I m p l i c i t P l o t [
(xA2 + γ Λ 2) Λ (3 / 2) == 2 x y ,

{ x , - 1 , 1 } ,
Frame -> True,
FrameStyle ->

{ T h i c k n e s s [0 . 0 1] } ,
FrameTicks -> None,
T icks -> None] ;

Graphics

LA
■"^^^.^ p U l d l cLXJ_o

132 Part I · Symbolic Pocket Calculator

3 Three-Dimensional Graphics

3.1 Plot3D
Plot3D adds many new options, although some of them are also options for DensityPlot.

Options[Plot3D]
{AmbientLight -> GrayLevel[0], AspectRatio -> Automatic,
Axes -> True, AxesEdge -> Automatic, AxesLabel -> None,
AxesStyle -> Automatic, Background -> Automatic,
Boxed -> True, BoxRatios -> {1, 1, 0.4},
BoxStyle -> Automatic, ClipFill -> Automatic,
ColorFunction -> Automatic, ColorOutput -> Automatic,
Compiled -> True, DefaultColor -> Automatic, Epilog -> {},
FaceGrids -> None, HiddenSurface -> True, Lighting -> True,
LightSources ->

{{{1., 0., 1.}, RGBColor[l, 0, 0]},
{{1., 1., 1.}, RGBColor[0, 1, 0]},
{{0., 1., 1.}, RGBColor[0, 0, 1]}}, Mesh -> True,

MeshStyle -> Automatic, PlotLabel -> None, PlotPoints -> 15,
PlotRange -> Automatic, PlotRegion -> Automatic,
Plot3Matrix -> Automatic, Prolog -> {}, Shading -> True,
SphericalRegion -> False, Ticks -> Automatic,
ViewCenter -> Automatic, Viewpoint -> {1.3, -2.4, 2.},
ViewVertical -> {0., 0., 1.}, DefaultFont :> $DefaultFont,
DisplayFunction :> $DisplayFunction}

Inputs

Plot3D[
Cos[x y] ,
{x, 0, P i } ,
{y, 0, P i } ,
AxesLabel ->

{"x-axis",
" y - a x i s " ,

" z - a x i s " } ,
AspectRatio -> 1] ;

Graphics

1 ^
0 . 5 ^ z - a x i s Q\

-0.51 /
-iV

0 ^ -

x-

Γ*\.
- a x i s 2 ^ \ ^

3

mm/2
BB/ y-axit

0

Four • Built-In Graphics

Inputs Graphics

133

Plot3D[
{Cos[x y),

GrayLevel[
Abs[x-y)/(2 Pi))},

{x, -Pi, Pi},
{y, -Pi, Pi},
Boxed -> False,
Axes -> False,
PlotPoints -> 25);

Plot3D[
2 Cos[x y],
{x, -Pi, Pi},
{y, 0, Pi},
FaceGrids ->

{{-I, 0, O},
{O, 1, O},
{O, 0, -I}},

PlotPoints-> 40]

The first is a simple 3-dimensional picture, the axes being labeled to show where they are. One
can change the surface shading by replacing the first argument with a pair consisting of the
function and a shading function that also depends on x and y. This can be either a GrayLevel,
a Hue, or an RGBColor specification. In the second picture, we use GrayLevel to do this.

134 Part I • Symbolic Pocket Calculator

3.2 ParametricPlot3D
Inputs

ParametricPlot3D[
{Sin[t] ,
Cos[t] ,
Sin[t]"2},

{t, 0, 2 Pi},
Axes -> False,
BoxRatios ->

{1, 1, 1}];

ParametricPlot3D[
{r Cos[omega],

r Sin[omega],
omega/6},

{r, 0, 1},
{omega, -Pi, 4 Pi},
PlotPoints ->

{8, Floor[N[16 Pi]]},
Boxed -> False,
Axes -> False];

ParametricPlot3D[
{r Cos[t], r Sin[t],

r"2 Cos[2 tJ},
{t, 0, 2 Pi},
{r, 0, 1},
Axes -> False,
BoxRatios -> {1, 1, 1},
FaceGrids ->

{{-1, 0, O},
{O, 1, O},
{O, 0, -1}},

PlotPoints-> 40];

Graphics

Four · Built-in Graphics 135

ParametricPlot3D plots parametric surfaces and parametric curves in 3-dimensional space.
If the first argument is a list of three functions of one variable and there is only one iterator,
then a space curve is plotted. If the first argument is a list of three functions of two variables
and there are two iterators, then a parametric surface is plotted. We give several examples,
using various options. In the P lo tPo ints option in the second picture, the first value is the
number of values for r while the second is for omega. In the FaceGrids option in the third
picture, a (-1) means the corresponding grid is located on a back or bottom face while 1 means
it is located on a front or top face.

33 Three-Dimensional Graphics Commands in Packages

As with 2-dimensional graphics, there are many 3-dimensional graphics commands in
Packages. Here is a list of those currently available.

BarChart3D
ContourPlot3D
CylindricalPlot3D
ListContourPlot3D
ListPlotVectorField3D
ListShadowPlot3D
ListSurfaceOfRevolution
ListSurfacePlot3D
MovieContourPlot
MoviePlot3D

PlotGradientField3D
PlotVectorField3D
PointParametricPlot3D
ScatterPlot3D
ShadowPlot3D
SkewGraphics3D
SphericalPlot3D
StackGraphics
SurfaceOfRevolution

These are also made available when the Graphics Master^ Package is loaded. Here are
three examples. In the first picture, SphericalPlot3D requires one function which gives rho
as a function of two angles, phi and theta. In the second picture using ShadowPlot, one can
also give an optional argument saying where the projection of the surface should be plotted. In
the third picture, Surf aceOf Revolution requires one function which is though of as giving
y as a function of x. The resulting curve is then rotated about the y axis. Standard options can
be used with all of these plotting commands, but we have not given any here. There are also
special options for some of these commands. For instance, the vector field plotting commands
have special optional arguments dealing with arrow heads on the vectors in the field. These
values are all described in the package Graphics Arrow^ which is used by the packages
implementing the vector field commands.

136 Part I · Symbolic Pocket Calculator

Inputs Graphics

S p h e r i c a l P l o t 3 D [
2 S i n [p h i] ,
{ p h i , 0, P i } ,
{ t h e t a , 0, 3 P i / 2 }] ;

ShadowPlot3D[
S i n [x] C o s [y] ,
{x , 0 , 2 P i } ,
{y , 0, 2 P i }] ;

SurfaceOfRevolut ion[
3 C o s [x] ,
{x , 0, (5 / 2) P i } ,
ViewPoint ->

{ 1 . 9 6 5 , - 2 . 5 5 1 , 1 . 0 4 0 }] ;

Four · Built-in Graphics 137

4 Animation
Animations are most conveniently made in a Notebook front-end environment by using a Do
loop that evaluates a sequence of expressions, controlled by a simple iterator. We will make an
animation of a vibrating plucked string. The initial position is on the interval from 0 to 2, but
the function describing its position has to be extended to be an odd, periodic function of period
4. We do this by giving several rules for the function shape controlled by the clauses that
follow the / ; 's. (Read / ; as "provided"; see Chapter 7.)

shape[x_] := x/4
shape[x_] := (2 - x)/4
shape[x_J := -shape[-x]
shape[x_] := -shape[x - 2]

/; 0 <= x < 1;
/; 1 <= x < 2;
/; x < 0
/; 2 <= x

A picture shows that this has the desired properties. The extra lines at y = 0.3 and y = - 0.3 are
added to control the shape of the picture.

Plot[{0.3, -0,3, shape[x]}, {x,
AspectRatio -> Automatic,
Ticks -> None];

-2, 6 } ,

The position of the string as a function of time is given by the following function of two
variables.

string[x_, t_] := 0.5 (shape[x - t] + shape[x + t])

Now we construct 11 pictures showing the positions of the string for time intervals between 0
and 2.

Do[Plot[{0.3, -0.3, Evaluate[string[x, 0.2 t]]},
{x, 0, 2},
Ticks -> None,
PlotRange -> All],

{t, 0, 10}];

The output is omitted since we can't actually show an animation in a book. In a Notebook
front-end, one would select these 11 plots and animate them. Use the controls to slow down
the animation and to make it cycle back and forth. By making say 40 plots, rather than 10, one
can get a much smoother action at the expense of a much longer plot time and much more

138 Part I · Symbolic Pocket Calculator

memory to store the result. As an alternative to showing the animation, we can make a
graphics array of the output showing all eleven (actually twelve) pictures in one drawing.

Show[GraphicsArray[
Table[Plot[{0.3, -0.3,

Evaluate!string[x, 0.2 (4 i + j)]]},
{x, 0, 2},
Ticks -> None,
PlotRange -> All,
DisplayFunction -> Identity],

{i, 0, 2}, {j, 0, 3}]
], DisplayFunction -> $DisplayFunction];

There's one extra plot to fit the 3x4 array.

5 Sound
Sounds are created in very much the same way as pictures. Specify a sound wave, for instance,
as a sin wave of an appropriate frequency and "show" it by using Play. Here is a major triad.

Play[{Sin[440 2Pi t], Sin[440 5/4 2Pi t],
Sin[440 3/2 2Pi t]}, {t, 0, 2}];

Four · Built-in Graphics 139

tfmYf^ff.H^^yf.W^W.YW^Jff•Ï^^W.Wûi'ftVW^Jff.H^5*W.lfl£3W.TIV^Jflf.Vc^WtAfC^

See [Gray Tl] for many inventive uses of sound and combinations of sound and graphics. The
packages M i s c e l l a n e o u s "Audio" a n d M i s c e l l a n e o u s " M u s i c " contain many constants
and operations that are useful in constructing functions to be used with Play.

6 Practice

1. L i s t C o n t o u r P l o t [{ { l , 1 , 1 , 0 } , { 2 , 1 , 2, 1 } ,
{ 3 , 2, l f 0 } , { 1 , 2, 3, 1 } }] ;

2. L i s t D e n s i t y P l o t [{ { l , 1 , 1 , 0 } , {2, 1 , 2, 1 } ,
{ 3 , 2, l f 0 } , { 1 , 2, 3 , 1 } }] ;

3. ListDensityPlot[{{l, 1, 1, 0}, {2, 1, 2, 1},
{3, 2f 1, 0}f {lf 2, 3, 1}},

ColorFunction ->
(Hue[#/2, (1 - #/3), 1]&)];

4. ListPlot3D[{{l, 1, 1, 0}, {2, 1, 2, 1},
{3, 2, 1, 0}, {1, 2, 3, 1}},

AxesLabel -> {x, y, z}];
5. ListPlot3D[Table[i/j, {i, 10}, {j, 10}],

Table[Hue[Random[], Random[], 1],
{i, 9}, {j, 9}]];

6. (after loading Graphicsv Masterv)
P o i n t P a r a m e t r i c P l o t 3 D [{ u v , u + v , u - v } ,

{u , 0 , 1 } , { v , 0 , 1 }] ;

140 Part I · Symbolic Pocket Calculator

7 Exercises

1. Investigate the meaning of Automatic for other optional values.

2. Investigate the option FaceGrids for Plot3D.

3. Try out PieChart and BarChart in the graphics packages.

4. Look up in a differential equations book the function that describes a vibrating circular
or square membrane (i.e., a drum) and make an animation of this.

The Mathematica
Language

1 Everything Is an Expression

1.1 Atoms

Expressions are going to be described recursively and the recursion has to start somewhere.
The place it starts is with atoms.. In Mathematica, atoms are either symbols, numbers or strings. A
symbol is any sequence of letters and integers (and possibly $), not starting with an integer.
(Letters have ASCII codes from 160 to 255.) Thus, a2Cd is a symbol. A number here means an
integer or a real number. The other four types of numbers-rationals, Gaussian integers,
Gaussian rationals, and complex numbers-are not atoms. Thus, 123 and 12.3 are atoms but 3/4
and 2 + 1 are not. Finally strings are sequences of any ASCII characters between double quotes;
i.e., "A word."

1.2 Expressions

The heading of this section, Everything Is an Expression, is to be understood in a very literal
sense. Many of the things we have looked at in the first four chapters don't look like
expressions, as we are about to characterize them, but in fact they are.

1.2.1 Syntax of expressions
An expression is defined recursively to be either an atom or of the form

f [a i , a2 , . . . , an] , n > 0,

143

144 Part II · Programming Language

where f, ai , a2 , . . . , an are expressions. Note that f[] is allowed; i.e., n can be 0, but [a] is not.
A typical Mathematica expression might look like f [x , y [wl , w2] , z] , where all of the
symbols here are atoms. However, we will frequently prefer to write it in a "pretty printed"
form with all the atoms written out as complete words rather than being abbreviated as single
letters; e.g.,

function[argument1,
argument2[subargument1,

subargument2
],
argument3

1
Here, each new argument level is indented and closing brackets are written directly under the
first letter of the name of the function they are closing. Sometimes we won't be so strict and
will allow a modified form that is just as legible, in which we line up the arguments at a given
level, except at the bottom level, if there is room for them on one line.

function[argument1,
argument2[subargument1, subargument2],
argument3]

If the expression is given in the form exp = f [a i , a2 , . . . , an] , then f is the head
of the expression; i.e., Head [exp] = f. The entries a i , a2 , . . . , a n , are called the
elements, or arguments of exp and the length of exp is n. The ith argument can be accessed by
the command exp [[i]] . Saying that expressions are defined recursively means that the head
and elements can be atoms or other expressions; e.g.,

h[k[m,n]] [a , b [b i , b 2 , b 3 [bi i , b 2 2]] / C [c i] , d , e [e i [e2]]]

is a perfectly good expression. Writing this out in modified pretty printed form, it looks like:

headFunction[kFunction[mArgument, nArgument]
] [aArgument,

bFunction[
blArgument,
b2Argument,
b3Function[bllArgument, b22Argument]

]/
eFunetion[cArgument],
dArgument,
eFunction[elFunction[e2Argument]]

]

Five · The Mathematica Language 145

There is only one way to parse this as an expression. Its head is the expression h[k[m, n]] ,
its first argument is a, its second argument is b[bi , b2 , b3 [bi χ , b2 2 1 L its third is
c [c l] , its fourth is d, and its fifth is e [e i [β2]] .

1.2.2 Meaning of expressions
There are several ways to think about expressions that help in understanding how to use them.
Some of these are suggested by the following table.

Interpretation

Function[argument]

Command[argument]

Operator[operands]

Type[parts]

Example

Sin[x]

Expand[(x + y) *°

Plus[x , y]

L i s t [a , b, c , d, e]

The differences between Function, Command, and Operator as descriptions of heads are
purely psychological. We might think of something as a Function if it takes numbers as
arguments and produces numbers as values. If there are several numerical arguments all on
the same level, then we might regard the head as an Operator, even when it is used with
symbolic arguments. On the other hand, something that takes expressions as arguments and
rewrites them in different forms or carries out some complicated procedure, might be regarded
as a Command. But what do we mean by a Type with parts?

In programming languages, types are a device for dividing expressions into different kinds
of entities, mainly for the purpose of checking that certain expressions are correctly formed.
For instance, if there is a type called "Integer" and a function whose argument is supposed to
be an integer, then (providing the function has some way to know the type of the argument it
is being given) there is the possibility of generating an error message if the function tries to
evaluate a wrong kind of argument. This is very useful, especially in complicated programs.
On the other hand, languages that demand that a type be declared for every entity before it can
even be defined can become very cumbersome to use. Mathematica tries to, and in some sense,
succeeds in having it both ways by allowing heads to be interpreted as types. In a certain
sense, every entity in Mathematica has such a type, but the type doesn't ever have to be
declared and generally doesn't have to be used unless we want to.

This ambiguity in the meaning of heads is very helpful, since a single semantic model for
the behavior of Mathematica expressions is not forced on the user. For instance, on the one
hand, L i s t just holds its arguments together and doesn't do anything to them. On the other
hand, it takes a number of different entities and produces something new out of them, namely,
the list containing them, so it can be looked at as a function. Similarly, we usually think of Sin
as a function, but when it is applied to an integer in Mathematica, nothing happens, so it is just
holding its argument and producing an entity of type Sin.

146 Part II · Programming Language

1.2.3 Forms of expressions
You would certainly be justified in being skeptical about this description of Mathematica, since
many of the things we have used don't resemble expressions in this sense at all. What the
description really applies to is Mathematica's own internal representation of expressions.
However, this internal description can also be used for entering expressions as inputs, which
will be very important later on. It turns out that everything has a head, even atoms. The
internal form can be accessed by the command FullForm.

Expression

abc

27

2 7 . 3 5

"A word"

3 / 4

3 + 5 1

Head

Symbol

I n t e g e r

Real

S t r i n g

R a t i o n a l

Complex

FullForm

abc

27

2 7 . 3 5

"A word"

R a t i o n a l [3 , 4]

C o m p l e x [3 , 5]

Here are many examples, each presented as a table consisting of the input form of some
expression, its Head, and its FullForm. The FullForm of atoms does not include the Head,
but for everything else it does, so we will omit calculating the Head separately for non-atoms.
Head and FullForm are Mathematica operations, so the first line above is given by the two
expressions Head [abc] and FullForm [abc] . In particular, the FullForm of a rational
number or a complex number includes the head R a t i o n a l or Complex, so these are
compound expressions rather than atoms.

Now consider some more complicated expressions.

Expression

x + y + z

x y z

x - y

χ Λ η

x / y

{ x , y* z }

FullForm

P l u s [x , y , z]

T imes[x , y , z]

P l u s [x , T i m e s [- 1 , y]]

Power[x, n]

T imes[x , Power[y, - 1]]

L i s t [x , y , z]

Five · The Mathematica Language 147

Expression

{a, b} . {2, 3}

x -> y

x /. y -> z

FullForm

Dot[List[a, b], List[2, 3]]

Rule[x, y]

ReplaceAll[x, Rule[y, z]

This shows that + is just the infix form of the head Plus. Furthermore, Plus can take any
number of arguments, not just two. One can of course use Plus instead of the infix + sign in
an input. Multiplication is just like addition. Subtraction is not a separate operation internally
but is replaced by Plus and Times. Exponentiation is a separate operation, but division is not.
Curly brackets are just a "circumfix" form for the head Lis t . The dot ". " in the dot product of
vectors is the infix form of Dot. The arrow -> used in substitutions is the infix form of the
head Rule and the / . symbol used in applying substitutions is the infix form of the head
Replace All.

Here is another collection of expressions whose full forms are not immediately obvious.

Expression

x = y

f := y

x[[i]]

a <= b

a == b

a >= b

Infinity

-Infinity

Complexlnfinity

I Infinity

FullForm

Set[x, y]

SetDelayed[f, y]

Part[x, i]

LessEqual[a, b]

Equal[a, b]

GreaterEqual[a, b]

Directedlnfinity[1]

Directedlnfinity[-1]

Directedlnfinity[]

Directedlnfinity[complex[0, 1]]

The two kinds of equals signs used in making assignments and function definitions are the
infix forms of the heads Set and SetDelayed respectively. The reason for these names will
be explained in Chapter 7, Section 2.1. Double square brackets are the postfix notation for part
extraction, here denoted by the head Part. Various notions of infinity all have a FullForm
using Directedlnf inity.

Finally, some of the more mysterious symbols also correspond to reasonable heads.

148 Part II · Programming Language

Expression

%

%%

%5

x__

x _ I n t e g e r

#&

FullForm

Out[]

O u t [- 2]

Out[5]

B lank[]

P a t t e r n [x , B l a n k []]

P a t t e r n [x , B l a n k [I n t e g e r]]

S l o t

F u n c t i o n [S l o t [l]]

This should be enough to convince you that, internally at least, everything is an expression.

1.2.4 Types revisited
Some heads of expressions cause a computation to be performed involving the arguments of
the expression. Others, such as L i s t don't do anything except hold their arguments together
as a single entity. It is certainly a reasonable point of view to regard L i s t as a type in the sense
of type theory for programming languages. But then why not regard any head as a type, as
suggested in the section above about the meaning of expressions. Then every expression has a
type, but we don't have to do anything special about declaring types. (This is not what is
usually understood in type theory where complicated expressions are supposed to have types
that are derived somehow from the types of their constituents.) However, if we decide to think
this way then, as will be seen in Chapter 7, Mathematica does allow type checking for any head.

1.2.5 Parts of expressions
Parts of expressions are described by a numbering scheme which can be used either forwards
or backwards.

exp = f [a l , a2, a3, a 4] ;

{exp[[0]], exp[[l]], exp[[2]], exp[[3]], exp[[4]]}

{f, al, a2, a3, a4}

Five · The Mathematica Language 149

Negative numbers inside double square brackets count from the right-hand end of the
expression.

{exp[[-4]], exp[[-3]], exp[[-2]], exp[[-l]]}
{al, a2, a3, a4}

1.2.6 Tree structure of expressions and partspecs

If we ask for the F u l l F o r m of a more complicated expression, then the result is again a
Mathematica expression built up from the Ful lForms of the parts. For instance:

e x p l = χΛ3 + (1 + ζ) Λ 2 ;
FullForm[expl] => Plus[Power[x, 3], Power[Plus[1, z], 2]]

This kind of format is derived by forcing all operators to be given in prefix form. It is rather
like "forward Polish notation" with explicit bracketing. Expressions can be displayed in
another format, which is sometimes more informative, using the command TreeForm.

TreeForm[expl] Plus[| , |
Power[x, 3] Power[

This is intended as a representation of the tree

P l u s [l , z]

]
2]

[[1]] [[2]]

In the drawing the edges are labeled with the part extraction command that leads to each
particular argument. From the tree form of an expression, one can see how to access any part
of the expression by a multiple part extraction. Thus, the expression corresponding to the
subtree starting at any node can be displayed by giving the path of edges from the root P l u s
to that node as a sequence of numbers inside double square brackets.

e x p l [[l]] => x 3

e x p l [[l]] [[2]] => 3

150 Part II · Programming Language

Instead of first extracting the first argument of e x p l and then extracting the second argument
of the result, there is the following abbreviated form.

e x p l [[l , 2]] ^ 3

Try finding some other subexpressions.

{ e x p l [[2 , 1]] , e x p l [[2 , 1 , 2]] , e x p l [[2 , 1 , 0]] }

{1 + z , z , P l u s }

Note: the initial 0 is not given since e x p l [[0 , 1]] would mean the first part of the head of
exp l , which doesn't exist here. However, it does in the following example.

(f [z] [x]) [[0 , 1]] => z

A partspec is a positive or negative number, n or -n , or a sequence of such numbers (ni, n2 , . . .)
describing the position of an argument in an expression. It is what goes inside [[]] .

If the expression is larger, then it is hard to display its tree form. There are two facilities to
examine such expressions, Short and Shal low.

bigexp :=
Sum[Product[Sum[x[i, j, k],

{i, 1, 5}], {j, 1, 5}], {k, 1, 5}];
Short[bigexp]

(x[l, 1, 1] + x[2, 1, 1] + « 2 » + x[5, 1, 1]) « 4 » + « 4 »

Short shows us part of the complete detail of b i g e x p . We see that it is a sum of products of
sums, and that each innermost sum has 5 terms of the form x [i , j , k] , two of which are
omitted here (i.e., « 2 » means two terms are omitted). Each of these is multiplied by four
more terms, and then there are four more outer summands that are omitted.

Shallow[bigexp]

Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] +
Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] +
Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] +
Plus [« 5 »] Plus [« 5 »] Plus [« 5 »] Plus [« 5 »] Plus [« 5 »] +
Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>]

Five · The Mathematica Language 151

Shallow just displays some of the top of the expression tree. Here we see that the output is a
sum of five terms, each of which is a product of 5 terms, and each of these is again a sum of 5
terms. It is only the lowest level subtrees x [i , j , k] that are compressed. Together Short
and Shallow give us a fairly good idea of what bigexp is like. Both Short and Shallow
take optional arguments which allow a great deal of fine control over what is displayed. Note
that Shallow uses explicit heads while Short does not.

The following example is from [Wei]. The full expression is displayed and then we look at
what Short and Shallow tell us about it.

badexp =
Together[Normal[

Series[l/(2 - Sin[t -a]), {t, 0, 4}]]]
(384 + 192 t Cos[a] - 32 t3 Cos[a] + 96 t2 Cos[a]2 -
32 t4 Cos[a]2 + 48 t3 Cos[a]3 + 24 t4 Cos[a]4 + 768 Sin[a] +
96 t2 Sin[a] - 8 t4 Sin[a] + 288 t Cos[a] Sin[a] +
48 t3 Cos[a] Sin[a] + 96 t2 Cos[a]2 Sin[a] +
40 t4 Cos[a]2 Sin[a] + 24 t3 Cos[a]3 Sin[a] + 576 Sin[a]2 + 144
t2 Sin[a]2 + 12 t4 Sin[a]2 + 144 t Cos[a] Sin[a]2 +
72 t3 Cos[a] Sin[a]2 + 24 t2 Cos[a]2 Sin[a]2 +
28 t4 Cos[a]2 Sin[a]2 + 192 Sin[a]3 + 72 t2 Sin[a]3 +
18 t4 Sin[a]3 + 24 t Cos[a] Sin[a]3 + 20 t3 Cos[a] Sin[a]3 +
24 Sin[a]4 + 12 t2 Sin[a]4 + 5 t4 Sin[a]4)/(24 (2 + Sin[a])5)
Short[badexp]
384 + 192 t Cos[a] - 32 « 2 » + « 2 6 » + 5 t4 Sin[a]4

24 (2 + Sin[a])5
Shallow [badexp]
(384 + Times [«3»] + Times [«3»] + Times [«3»] +
Times [«3»] +
Times [«3»] + Times [«3»] + Times [«2»] + Times [«3»] +
Times[«3>>] + « 2 0 ») / (24 Plus[«2»]5)

Short gives us some vague idea of the form of the expression, but Shallow has lost all the
important detail. However, the following gives a fair idea of what the function actually is.

Short[badexp, 3]
(384 + 192 t Cos[a] - 32 t3 Cos[a] + 96 t2 Cos[a]2 -
32 t4 Cos[a]2 + 48 t3 Cos[a]3 + 24 t4 Cos[a]4 + « 2 0 » +
24 Sin[a]4 + 12 t2 Sin[a]4 + 5 t4 Sin[a]4) / (24 (2 + Sin[a])5)

152 Part II · Programming Language

1.2.7 Levels of expressions, depths of expressions and levelspecs

Recall e x p l = xA3 + (1 + ζ) Λ 2 from above. There is another way to describe the parts of
an expression. Each part occurs at some specific level. The top of the tree is at level 0, the next
row is level 1, etc. Levels are described by levelspecs, which are numbers n or -n , single
numbers in curly brackets {n}, {-n}, or pairs in curly brackets {nl, n2} or Infinity. To see the
parts at exactly level 2 use:

L e v e l [e x p l , { 2 }] => {x, 3 , 1 + z , 2}

Actually, this gives the subtrees, written as expressions, whose roots are exactly at level 2. (By
a subtree, we mean some node together with everything below it. The node is the root of the
subtree.) To see the parts (i.e., subtrees) at level 2 and higher, omit the curly brackets:

Level[expl, 2] => {x, 3, x3 , 1 + z, 2, (1 + z)2 }

A levelspec of the form {nl, n2} gives the subtrees whose roots are between n l and n2. For
instance:

L e v e l [f 0 [f l [f 2 [f 3 [f 4 [f 5]]]]] / {2 , 4}]

{ f 4 [f 5] , f 3 [f 4 [f 5]] , f 2 [f 3 [f 4 [f 5]]] }

The depth of an expression is the maximum number of nodes along a path from the root to a
leaf in the expression.

D e p t h [e x p l] => 4

There are also negative levels which use negative numbers to count from the bottom up. What
is actually counted is the depth of a subexpression. Thus, {-l}gives all subexpressions whose
depth is exactly 1 (i.e., the leaves), whereas - 1 (without the curly brackets) gives all proper
subexpressions of depth at least 1 (i.e., all proper subexpressions).

{Level[expl, {-1}], Level[expl, -1]}

{{x, 3, 1, z, 2}, {x, 3, x3 , 1, z, 1 + z, 2, (1 + z)2 }}

The level specification { -2} gives all proper subtrees of depth 2, whereas - 2 gives all proper
subtrees of depth at least 2.

Five · The Mathematica Language 153

{Level[expl, {-2}], Level[expl, -2]}

{{x 3 , 1 + z } , {x3 , 1 + z , (1 + z) 2 }}

The levelspec I n f i n i t y also gives all proper subexpressions.

Level [expl , I n f i n i t y]

{x, 3 , x 3 , 1 , z , 1 + z , 2 , (1 + z) 2 }

1.2.8 Manipulating arguments of expressions and sequencespecs

Start with a general expression with 6 arguments.

generalExp = fun[a, b, c, d, e, f];

Input
generalExp
Drop[generalExp, 3]
Take[generalExp, 3]
Take[generalExp, {2, 4}]
Delete[generalExp, -3]
Insert[generalExp, hello, 3]
ReplacePart[generalExp,

hello, 3]
ReplacePart[generalExp,

hello, {{2}, {-2}}]
Join[generalExp,

Reverse[generalExp]]
RotateRight[generalExp]
RotateLeft[generalExp]
First[generalExp]
Rest[generalExp]

Output
fun[a,
fun[d,
fun[a,
fun[b,
fun[a,
fun[a,
fun[a,

fun[a,

fun[a,
f,

fun[f,
fun[b,
a
fun[b,

b, c, d, e, f]
e, f]
b, c]
c, d]
b, c, e, f]
b, hello, c, d, e,
b, hello, d, e, f]

hello, c, d, hello,

b, c, d, e, f,
e, d, c, b, a]
a, b, c, d, e]
c, d, e, f, a]

c, d, e, f]

f]

f]

154 Part II · Programming Language

Input
Reverse[generalExp]
Partition[generalExp, 2]

Prepend[generalExp, yesterday]
Append[generalExp, tomorrow]
PrependTo[generalExp, yesterday]
AppendTo[generalExp, tomorrow]

generalExp

Output
fun[f, e, d, c, b, a]
fun[fun[a, b], fun[c, d], too

fun[e, f]]
fun[yesterday, a, b, c, d, e, f]
fun[a, b, c, d, e, f, tomorrow]
fun[yesterday, a, b, c, d, e, f]
fun[yesterday, a, b, c, d, e,

f, tomorrow]
fun[yesterday, a, b, c, d, e,

f, tomorrow]

There are a number of operations that change the arguments in some way. In Drop and Take,
the description of which arguments are affected is given by a sequencespec. A single number n
means the first n arguments. A single number - n means the last n arguments. A number with
curly brackets {n} or {-n} means exactly the nth argument from the left or right. A pair of
numbers in curly brackets means a range of arguments. In D e l e t e , I n s e r t , and
ReplacePart , the second or third argument is a partspec, so a single number n or -n refers to
the nth argument counted from the left or right, and a list refers to the part specification of a
specific subtree. A list of lists refers to several such subtrees. Often these operations seem to
make more sense if they are used just for lists, but in fact they work with arbitrary heads. The
last two operations, as a side effect, change the value of generalExp. We repeat generalExp
at the beginning and end to show how it has been changed. Note that Prepend and Append
do not change the value of g e n e r a l E x p while PrependTo and AppendTo update it to the
new value.

There are other ways to operate on the arguments of expressions that take account of what
they are rather than where they are. These will be discussed in detail in Chapter 7, but here is
an example. P o s i t i v e is a predicate on numbers which is True just for numbers greater than
0. The operation S e l e c t with second argument P o s i t i v e chooses just those arguments that
are positive.

S e l e c t [f [- 3 , 3 , - 2 , 2, - 1 , 1, 0] , Pos i t i ve]

f [3 , 2 , 1]

These operations are all immensely useful, as will be seen in the later chapters. Here we just
call your attention to their existence since they will be needed in the Exercises.

Five · The Mathematica Language 155

2 Lists, Arrays, Intervah, and Sets
Some programming languages have special types for arrays, matrices, lists, etc. In Mathematica
all of these concepts are represented by lists. Since lists are such an important aspect of the
language, there are many special features for dealing with them.

2.1 Listability
When many built-in operations are applied to a list, they automatically apply themselves to
the entries in the list. Such an operation is called L i s t a b l e . Start with a simple list.

l i s t = {2 , 3 , 4 } ;

The only sensible meaning for S i n applied to this list is the list of values of S i n applied to the
entries in the list.

S i n [l i s t] => { S i n [2] , S i n [3] , S i n [4] }

This happens by itself without our doing anything about it. In other words, S i n commutes
with (or distributes over) L i s t . Certain functions have the attribute of being L i s t a b l e which
is shown by the operation A t t r i b u t e s . E.g.,

A t t r i b u t e s [S i n] => { L i s t a b l e , P r o t e c t e d }

Many other functions also have this property. (See Chapter 11, Section 3 for a list of all of
them.) For instance, arithmetic operations, etc., automatically propagate down lists.

newl i s t = x ^ l i s t - 1

{-1 + x 2 , - 1 + x 3 , - 1 + x 4 }

Thus, to show the squares of the entries in this list in expanded form, just expand the list raised
to the power 2.

Expand[newlistΛ2]

{1 - 2 x2 + x4 , 1 - 2 x3 + x6 , 1 - 2 x4 + x8 }

To find the derivatives of these functions at the point 3, use the fact that differentiation is
L i s t a b l e in its first argument as is substitution.

156 Part II · Programming Language

D[%, x] / . x -> 3 => {96 , 1404, 17280}

Since everything here is L i s t a b l e , we can do it all in one step.

D[Expand[x*{2, 3 , 4} - 1] Λ 2 , x] / . x -> 3

{96, 1404, 17280}

This way of handling lists is characteristic of Mathematica, and we shall make frequent use of it.

2.2 Construction of Lists—Tables, Iterators, and Range

We have already seen how to create a list using the Table command. For instance:

Table[x"i + 2 i , { i , 1, 5}]

{2 + x , 4 + x 2 , 6 + x 3 , 8 + x 4 , 10 + x 5 }

The second argument in Tab le , and in a number of other commands like I n t e g r a t e for
definite integrals, P l o t , etc., is called an iterator. It comes in several forms.

{ i , i m i n , imax, s t e p }

{ i , i m i n , imax}

{ i , imax}

{imax}

i runs from imin to imax with stepsize s t e p .

i runs from imin to imax with stepsize 1.

i runs from 1 to imax with stepsize 1

a constant expression is repeated imax times.

Try examples of all four kinds of iterators.

Table[i, {i, 3, 6, 1/2}] => {3, 7/2, 4, 9/2, 5, 1/2, 6}
Table[i, {i, 3, 6}] => {3, 4, 5, 6}
Table[i, {i, 6}] => {1, 2, 3, 4, 5, 6}
Table[Random[Integer, {0, 12}], {12}]

{12, 7, 5, 9, 10, 9, 2, 7, 10, 11, 3, 7}

There is another way to create lists without having some variable i take on successive values.
This is done using the Range command.

Five · The Mathematica Language 157
ΨΦ^^^^^^^^^^^^^-^^Μ^ίΕ^,^^^^ι^^^ *. /̂Λ

Range[10] => { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10}
R a n g e [- 3 , 8] => {-3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 , 5 f 6 , 7 , 8}

Range can also take a third argument specifying the step size.

R a n g e [- 3 , 2 , 1 /2]

{-3 , - (5 / 2) , - 2 , - (3 / 2) , - 1 , - (1 / 2) , 0 , 0 , 1, 3 / 2 , 2}

The arguments to Range are like the first three kinds of iterators without the variable i . Once
a list of index values has been constructed by the Range operation, then the other lists can be
created using listability by replacing the variable by the appropriate value of Range. Thus, in
the Tab le constructed at the beginning of this section, replace i by Range [5] to get exactly
the same output.

x"Range[5] + 2 Range[5]

{2 + x, 4 + x2 , 6 + x3 , 8 + x4 , 10 + x5 }

Another way to operate on ranges using the Map function will be discussed in Chapter 6,
Section 1.

What about multidimensional lists; e.g., the Hilbert matrix of size 3, which is given by the
following operation.

Table[l/(i + j - 1), {i, 3}, {j, 3}]

{{1, 1/2, 1/3}, {1/2, 1/3, 1/4}, {1/3, 1/4, 1/5}}

The same output can be obtained using the operation Outer which applies its first argument
(a function of two or more variables) to all choices of entries from each of two lists. Thus, for
instance,

Outer[Plus, Range[3], Range[3]]

{ { 2 , 3 , 4 } , { 3 , 4 , 5 } , {4 , 5 , 6}}

So the matrix we want is given by the following construction.

1 / (Outer[Plus, Range[3], Range[3]] - 1)

{{1, 1/2, 1/3}, {1/2, 1/3, 1/4}, {1/3, 1/4, 1/5}}

158 Part II · Programming Language

In general, Outer takes a (pure) function as its first argument and any number of lists (or
expressions with the same head) as the rest of its arguments. If there are n lists, then the
function must accept n arguments. Outer then constructs the multidimensional list of the
function applied to all combinations of one argument from each list. Outer will be discussed
further later. If the arguments to Outer are themselves multidimensional lists, then the
behavior of Outer is more complicated. (See Section 3.3 below.)

2.3 Arrays
Symbolic arrays of given sizes can be constructed by the command Array. As an example,
make an array of indexed values of aa's.

Array[aa, {3 , 4}]

{{aa[l, 1], aa[l, 2], aa[l, 3], aa[l, 4]},
{aa[2, 1], aa[2, 2], aa[2, 3], aa[2, 4]},
{aa[3, 1], aa[3, 2], aa[3, 3], aa[3, 4]}}

If desired, the aa's can be formatted with subscripts and superscripts.

Format[aa[i_, j _]] = Subscr ipted[aa[i , j] , { 1 } , { 2 }] ;

Give a name to the formatted form to use later.

aaArray = Array[aa, {3 , 4}]//TableForm

a a i 1 a a i 2 a a i 3 a a i 4

aa21 aa22 aa23 aa24

aa3 1 aaß2 aa3 3 aa34

Values can be assigned to the entries if one wishes to make aaArray into an array of numbers.

a a [i _ , j _] := i + j
aaArray

2 3 4 5
3 4 5 6
4 5 6 7

Five · The Mathematica Language 159

2.4. Fhtten
Flatten removes all inner brackets in lists. First start with a list written in indented form.

list = { { {{a, b}, {c, d}}, {{e, f}, {gf h}} },
{ Hi, j}, {*, 1}}/ {{m, n}f {o, p}} } };

Flatten[list]

{a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p}

Flatten can also take a second argument which is a level specification.

Flatten[list, 1]

{{{a, b}, {c, d}}, {{e, f}, {g, h}}, {{i, j}, {k, 1}},
{{m, n}, {of p}}}

Often it takes a good deal of experimentation to discover the appropriate level specification for
a desired outcome. Actually, all that F l a t t e n requires is that all heads be the same, so it
works for arbitrary heads instead of just List .

Flatten[f[f[af b], f[c, d]]] => f[a, b, c, d]

FlattenAt flattens parts of expressions just at specific locations given by a position list.

PFlattenAt

FlattenAt[list, n] flattens out a sublist that appears as the
n'th element of list. If n is negative, the position is counted
from the end· FlattenAt[expr, {i, j, ..·}] flattens out the
part of expr at position {i, j, ...}. FlattenAt[expr, {{il, jl,
...}, {i2, j2, ··.}, ···}] flattens out parts of expr at
several positions.

Study the following example carefully to understand what FlattenAt actually does.

FlattenAt[list, {{1, 1}, {2}}]

{{{a, b}, {c, d}, {{e, f}, {g, h}}}, {{i, j}, {k, 1}},
{{m, n}, {o, p}}}

160 Part II · Programming Language

2.5 Real IntervaL·
There is a facility, Interval , similar to Range for dealing with intervals of real numbers It
arises as the value of certain functions; e.g.,

real = Limit [Cos [x] , x -> Infinity] => Interval[{-1, 1}]

One can carry out limited calculations with real intervals similar to the calculations with
Range. For instance:

N[2Areal] + 2 real => Interval!{-1.5, 4.}]

2.6 Set Operations
Some operations on lists treat them as though they were sets. Sets can be thought of as lists in
which elements are not repeated and where order doesn't matter. We start with a long list with
repeated entries.

longlist = Table[Random[Integer, {0, 9}], {20}]

{3, 1, 5, 4, 5, 7, 2, 6, 1, 9, 0, 3, 2, 4, 6, 8, 7, 4, 1, 0}

Union of a single list turns it into a set by removing duplicate elements and ordering the
result. Union of several lists first joins them together and then turns the result into a set.
Complement starts with its first entry, deletes the elements of the remaining entries and then
turns what remains into a set. Finally, Intersect ion forms the set theoretic intersection of its
arguments.

Union[longlist] =>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Union[longlist, {5, 4, 3}, {12, 14, 16}]

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 16}

Complement[longlist, {1, 2}, {5}, {7, 8}]

{0, 3, 4, 6, 9}
Intersection! {a, b, c, d, c}, {b, c, d, c, e},

{c, d, e, c, f}, {f, g, d, a, c}]

{c, d}

Five · The Mathematica Language 161

3 Thread, Inner and Outer

3.1 Thread
Lis tab le actually means more than just that single operations automatically map themselves
down lists. Consider what happens if several lists are multiplied.

{2, 3 , 4} {a, b , c} {x, y , z} => {2 a x, 3 b y , 4 c z}

Thus, if Times is given several lists of the same length, then it forms the list given by
multiplying corresponding entries. Any operation of more than one variable which is
Lis tab le behaves the same way.

{ x f y , z p { 2 , 3 , 4} => { x 2 , y 3 , z 4 }

This can sometimes give unexpected results. For instance, Range is L i s tab le , so we get the
following strange output

Range[{l, 1}, {3, 4}, {1/3, 1/2}]

{{1, 4/3, 5/3, 2, 1/3, 8/3, 3}, {1, 3/2, 2, 5/2, 3, 7/2, 4}}

which is the same as

{Range[l, 3, 1/3], Range[l, 4, 1/2]}

The built-in operation Thread will do the same thing for an arbitrary head, even if it is not
Listable.

Thread[ff[{2, 3, 4}, {a, b, c}, {x, y, z}]]

{ff[2, a, x], ff[3, b, y], ff[4, c, z]}

Actually, Thread works with either lists of the same length or individual arguments.

Thread[f f [{2 , 3 , 4 } , {a, b , c } , 2 , x]]

{ f f [2 , a, 2 , x] , f f [3 , b , 2 , x] , f f [4 , c , 2 , x]}

Furthermore, the arguments for Thread don't even have to be lists; they can also have an
arbitrary head, which is then included as a second argument to Thread. (Note that L i s table
only applies to lists.)

162 Part II · Programming Language

Thread[ff[hh[2, 3, 4], hh[a, b, c], hh[x, y, z]], hh]

hh[ff[2, af x]f ff[3, b# y]f ff[4, c, z]]

Thread can be used, for instance, to construct lists used in substitutions. Consider the
following fragment of Mathematica code:

var = {x, y, z } ; point = {1 , 2 , 3 } ;
expr = χΛ2 y + 2 y z - 4 x ζΛ3 ;

Thread can be used to produce a list of substitutions.

Thread[var -> point] => {x -> 1, y -> 2, z -> 3}

This can then be used to substitute the point in the expression.

expr /. Thread[var -> point] => -94

3.2 Inner

There are two more complicated ways of applying operations to arguments consisting of lists.
Inner is a generalization of Dot. The first example shows how to write Dot in terms of
Inner, while the fourth example here shows that, in fact, Inner [f, l i s t i , l i s t 2 , g] is
the same as Apply [g , Thread [f [l i s t 1 , l i s t 2]]] . (See the next chapter for Apply.)
The fifth example shows that second and third arguments don't have to have head Lis t . All
that matters is that the heads be the same and that they have the same number of arguments,
which are then extracted to be used by f and g.

Input
Inner[Times, {a, b, c},

{1, 2, 3}, Plus]
Inner[Plus, {a, b, c},

{1, 2, 3}, Times]
Inner[f, {a, b, c},

{1/ 2, 3}, g]
Apply[g, Thread[

f[{a, b, c}, {1, 2, 3}]]]
Inner[f, hello[a, b, c],

hello[l, 2, 3], g]

Output
a + 2 b + 3 c

(1 + a) (2 + b) (3 + c)

g[f[a, l]f f[b, 2], f[c, 3]]

g[f[a, 1], f[b, 2], f[c, 3]]

g[f[a, 1], f[b, 2], f[c, 3]]

Five · The Mathematica Language 163

3.3 Outer, Transpose, and Distribute

Outer was discussed briefly above in Section 2.2. Outer[f u n c t i o n , l i s t s . . .] takes
any number of lists as second through nth arguments and outputs the function applied to all
choices of arguments from the lists arranged in a nested form to make this suitable for tensor
computations. Thus Outer of a function with two simple lists produces a matrix. Interestingly,
this works with heads other than L i s t . Note that the numbers of arguments in the lists do not
have to be the same.

{Outer[Times, {a, b, c}, {1, 2}],
Outer[Times, set[a, b, c], set[l, 2, 3]]}//MatrixForm

{{a, 2 a}, {b, 2 b}, {c, 2 c}}
set[set[a, 2 a, 3 a], set[b, 2 b, 3 b], set[c, 2 c, 3 c]]

Outer with three simple lists produces what could be regarded as a list of three matrices.

Outer[Times, {a, b, c}, {1, 2, 3}, {u, v, w}]
{{{a u , a v , a w},{2 a u , 2 a v , 2 a w} ,{3 a u , 3 a v , 3 a w}} ,

{{b u , b v , b w},{2 b u , 2 b v , 2 b w} ,{3 b u , 3 b v , 3 b w}} ,
{{c u , c v , c w},{2 c u , 2 c v , 2 c w} ,{3 c u , 3 c v , 3 c w}}}

O u t e r with two matrices (of different sizes here) as arguments produces something of
depth 4.

tensor = Outer[Times, {{a, b}, {c, d}},
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]

{ { { { a , 2 a , 3 a } , {4 a , 5 a , 6 a } , {7 a , 8 a , 9 a } } ,
{{b , 2 b , 3 b } , {4 b , 5 b , 6 b } , {7 b , 8 b , 9 b } } } ,

{ { { c , 2 c , 3 c } , {4 c , 5 c , 6 c } , {7 c , 8 c , 9 c } } ,
{{d , 2 d , 3 d } , {4 d , 5 d , 6 d } , {7 d , 8 d , 9 d}}}}

Transpose can be used to rearrange this in many ways.

PTranspose

Transpose[list] transposes the first two levels in list.
Transpose[list, {nl, n2, ...}] transposes list so that the
nk-th level in list is the k-th level in the result.

164 Part II · Programming Language

T r a n s p o s e [t e n s o r , { 1 , 4 , 2 , 3}]

{{{{ a , b } , {2 a , 2 b } , {3 a , 3 b } } ,
{{4 a , 4 b } , {5 a , 5 b } f {6 a , 6 b } } ,
{{7 a , 7 b } , {8 a , 8 b } f {9 a , 9 b } } } ,

{{{ c , d } , {2 c , 2 d } , {3 c , 3 d } } ,
{{4 c f 4 d } , {5 c , 5 d } , {6 c , 6 d } } ,
{{7 c , 7 d } , {8 c , 8 d } , {9 c , 9 d}}}}

See also D i s t r i b u t e and Through. In particular, D i s t r i b u t e can sometimes be used to do
the same things as Outer, without going inside deeper list structures. The syntax is somewhat
different.

PDistribute

Distribute!f[xl, χ 2, ···]] distributes f over Plus appearing in
any of the xi. Distribute[expr, g] distributes over g.
Distribute[expr, g, f] performs the distribution only if the
head of expr is f.

Distribute[{{a, b}, {c, d}}, List]

{{a, c}, {a, d}, {b, c}, {b, d}}

Distribute!{{{a, b}, {cf d}}, {{e, f}, {g, h}}}, List]

{{{a, b}, {e, f}}f {{af b}r {g, h}},
{{c, d}, {e, f}}, {{c, d}, {gf h}}}

However, this fails to do the expected thing if the head of the first argument evaluates its
arguments.

Distribute[Plus[{a, b}, {c, d}], List]

{{a + c, b + d}}

4 Other Aspects
There are a number of other aspects of the Mathematica language that require consideration.
For two of them, the virtual operating system and the string language, we limit ourselves to
some brief comments and examples. The third, programming facilities, will be the subject of
the next three chapters.

Five · The Mathematica Language 165

.̂ i 7J&* Virtual Operating System
For a detailed description of the virtual operating system, see The Mathematica Book, Chapter
2, Section 10 [Wolfram]. Some aspects, such as reading and writing external files, will be
discussed as part of the examples treated in Chapter 8 here. Other aspects, those enabling one
to manipulate files and run external programs from within Mathematica are what really
constitute the virtual operating system. The effect of such commands is, of course, system
dependent. Thus, the command Run ["date"] produces the date in a Unix environment and 0
on a Macintosh. On the other hand, the commands Directory!] , which gives the current
directory, and FileNames[] , which lists the files in the current directory, seem to work
anywhere.

Directory[] => HardDisk:Mathematica 2.2 Enhanced
FileNames[]
{Defaults, Documents, Help, Mathematica, MathematicaJournal,
Mathematica Kernel, Mathematica Kernel Prefs, Packages,
Sample Notebooks}

In addition, there are a number of commands starting with $ that either give information
about the current machine and its operating system, or concern how Mathematica interacts with
it. You can see all of them by typing Names ["$*"]. For instance, $Path tells Mathematica
where to look for files to be loaded using Needs.

$Path

{HardDisk:Mathematica 2.2 Enhanced:Packages,
HardDiskMathematica 2.2 Enhanced:Packages:Startup}

This will be used in Chapter 13. Here are some others.

{$OperatingSystem, $Packages, $SessionID}
{MacOS, {Global^, Systenf}, 19317473551709172550}

4.2 The String Language
Strings form a special data type in Mathematica which in some sense reflects within itself the
whole Mathematica language. The two commands, ToStr ing and ToExpression take
expressions to strings and vice versa. Similarly, T o C h a r a c t e r C o d e and
FromCharacterCode convert between strings and ASCII code. Furthermore, there is a
collection of operations that mimic those for manipulating expressions. Start with some string.

generalString = "The quick brown fox ";

166
-V-\ v***«*»,e* " '*-%î ^^^^ww^^^^sa«^ .^^* '^^^

Part II · Programming Language

Here is a sample of things that can be done with strings.

Input

StringDrop[generalString,
{5, 10}]}

StringTake[generalString,
{11, 15}]}

Stringlnsert[generalString,
" stupid", 4]

StringReplace[generalString,
{"b" -> "g", "x" -> "e"}]

StringJoin[generalString,
StringReverse[generalString]]

Output

The brown fox

brown

The stupid quick brown fox

The quick grown foe

The quick brown fox
xof nworb kciuq ehT

We will make frequent use of StringJoin, in its infix form <>, in some of the later programs.
The main uses I can think of for these operations are to massage data that has been imported
from or will be exported to an external program and to produce output-dependent text for
graphics.

4.3 Programming Facilities
There are many facilities in Mathematica for dealing with various styles of programming. These
are so important that the next three chapters will be devoted to them, in the order: functional
programming, rule based programming, and procedural programming.

5 Practice

1. ??Set
2. ?? Set De lay ed
3. {FullForm[x && z], FullForm[x || z], FullForm[!x]}
4. {FullForm[a < b] , FullForm[a > b]}
5. Fu l lForm[f]
6. FullForm[f ' ■ · ■ ■]
7. Drop [Range [10] , 3]
8. Take [Range [10], 3]
9. Delete[Range[10], 3]

Five · The Mathematica Language 167
^i^^m%^^^^^m^m^^^'i^^^'-·.^ ***>***«&#**$*** ·:

10. Insert[Range[10], hello, 3]
11. ReplacePart[Range[10], hello, 3]
12. Reverse [Range [10]]
13. Partition [Range [10] , 4, 2]
14. Select[Range[-3, 10], Negative]
15. StringLength[ToString[Range[10]]]
16. StringDrop[ToString[Range[10]], 3]
17. StringTake[ToString[Range[10]], 3]
18. Stringlnsert[ToString[Range[10]], ", hello", 3]
19. StringReplace[ToString[Range[10]], Table[ToString[i] ->

ToString[ll - i] , {i, 10}]]
20. StringReverse[ToString[Range[10]]]
21. Distribute[g[f[a, b] , f[l, 2]] , f, g, ff, gg]
22. Distribute[{{χΛ2 + γ Λ 2 , 2 x y } , {x, y}}, List, List, List, D]
23. ??!
24. Names["$*"]
25. {{a, b, c } , {d, e, f}, {g, h, i}}"2
26. {{a, b, c}, {d, e, f}, {g, h, i}K0
27. Permutations[{1, 2, 3}]
28. Range[{l, 1, 1, 1, 1}, {5, 4, 3, 2, 1}] // TableForm
29. Limit[ArcTan[x], x -> Infinity]
30. N[Tan[%]]

6 Exercises

1. In problem 13 of the Exercises in Chapter 3, the third solution of the transformation
u = x2 + y2

v = - 2 x y
for (x, y) in terms of (u, v) was used to construct invjak which was then expressed in
terms of x and y to get the matrix jak'. It satisfies jak. jak1 = Id. This time:
i) Modify your definition of the jacobian function using the notions introduced in this

chapter.

ii) Find invjak(n), 1 < n < 4 for each of the four solutions of x and y in terms of u and v.
Keep invjak(n) as an expression in u and v.

iii) For each of the four solutions for (x, y) in terms of (u, v), express the original matrix
jak in terms of u and v instead of x and y, giving four Jacobians jak(n), 1 < n < 4 in
terms of u and v.

168 Part II · Programming Language

iv) For each n show that jak(n) . invjak(n) = Id. Your final output should be a list of
four 2 by 2 identity matrices.

Find the greatest common divisor of the nth row of Pascal's triangle, omitting the l's. To
do this:
i) Define a modified function pascal(n), from problem 11 of the Exercises in Chapter 3,

which gives the entries of this row without the l's.

ii) Then define a function gcd(n) which gives the greatest common divisor of the
entries in pascal(n). Note that there is a built-in function GCD.

iii) Make a table of the first 20 values of gcd(n) and conjecture the value of gcd(p) for p
a prime number.

iv) Use Mathematica to check that your conjecture is correct for the first 50 primes. Note
that there is a built-in function Prime [n] .

v) Use your head to prove your conjecture for all primes. You may assume that
binomial coefficients are integers.

vi) Guess the values of gcd(n) for n a power of a prime, and for n a number with at
least two different prime factors. (You might want to extend your table to n = 50, or
even to n = 100 to get more evidence for your guess.)

i) Which rows of Pascal's triangle have all odd entries?
ii) For which rows of Pascal's triangle are all entries, except for the initial and final l's,

even? Note that there are built-in predicates EvenQ and OddQ.
iii) Check your conjectures for the first 210 rows.

Define f[m, r] = b [m + r - 1, r] , where b [m, n] is the binomial coefficient
function. This rotates the usual Pascal's triangle by 45 degrees. Make a table showing
these values in an upper-left triangular form corresponding to the usual table up to size
10. Pascal's Corollary 4 asserts that in this table, each entry is equal to the sum of all the
entries to the north west of it plus 1. Verify this for a number of small values of m and r.

Implement the Gram-Schmidt method for orthogonalizing vectors with respect to the
dot product. It should take as input a list of n-dimensional vectors over the reals and
output a list of n-dimensional orthonormal vectors. You may assume that the original
list is linearly independent. It is sufficient to do this for n = 3. Check your algorithm on a
list of three 3-dimensional vectors with random real components. If you can, write an
algorithm that works for vectors of any dimension. Test it for four 4-dimensional
vectors. (Think about the case of four 3-dimensional vectors with random real
components.)

CHAPTER

Functional
Programming

"Pascal is for building pyramids -imposing, breathtaking, static structures built by armies pushing
heavy blocks into place. Lisp is for building organisms -imposing, breathtaking, dynamic structures
built by squads fitting fluctuating myriads of simpler organisms into place. "
[Abelson].

We, of course, intend to replace "Pascal" by "C" and "Lisp" by "Mathematica"

1 Some Functional Aspects o/^Mathematica
What is a functional programming language? Basically, it's a language in which functions can
be defined and applied to arguments. It is important that the arguments of a function can
themselves be other functions applied to other arguments, etc. There is an abstract, theoretical
functional programming language called the lambda calculus (to be discussed in detail in
Chapter 11, Section 7) which has exactly three operations: function definition, function
application, and substitution-which is essentially a rewrite rule for function application. There
are only a few pure functional languages; e.g., Haskel and Miranda. Most so called functional
languages, such as Scheme or ML are impure in the sense that they have many other features
to make programming more convenient. Mathematica belongs to the category of languages that
have a pure functional component, but also include many other features. It has the advantage
over Scheme and ML of having many built-in mathematical functions to start with that can be
combined with each other to create new functions. Later in this chapter we'll look at exactly
what constitutes functional programming in Mathematica.

Another way to look at the question is to change it to: what properties characterize
functional programming languages? Some possible answers to this are:

169

170 Part II · Programming Language

i) Higher order functions. This property means that functions can be arguments and
values of other functions. We'll give examples of this in Mathematica below.
Mathematically, for instance, composition of functions is represented by the equation
(f o g)(x) = f(g(x)). The operation on the left-hand side, (f ° g), is a higher order
function. It takes two functions, f and g, as its arguments and returns another function,
their composition, as its value. Another example is the special case of twice, where
twice is defined by the equation (twice(f))(x) = f(f(x)); i.e., twice(f) = f <> f.

ii) Referential transparency. A programming language is referentially transparent if the
value of an expression depends only on the values of its subexpressions. For instance,
the value of m + n should depend only on the values of m and n (as well as the value
of +). Thinking mathematically, it is hard to imagine this failing. What else could it
depend on? Well, it might depend on the order in which m and n are evaluated
because evaluating one of them could, as a side effect, change the result of evaluating
the other. (Look in Chapter 8, Section 2.1 to see how this can happen in Mathematica.)
One way to make the notion of "depending only on the values of subexpressions"
more precise is to define it to mean that any subexpression (by which we mean a
subtree of the tree form of the expression) can be replaced by any other expression
with the same value. As a practical matter, it comes to the same thing -no side effects;
i.e., assignment statements like a = 5 are forbidden.

iii) Functions have no memory. Everytime a function is evaluated (with, of course, the
same values for the arguments) it returns the same value. Thus, a history of successive
evaluations of a function would be very dull, consisting just of the same value over
and over again. We'll see in Chapter 9 that this is one of the differences between
applying a function to a value and sending a message to an object.

iv) Lazy evaluation. A language uses lazy evaluation if arguments to functions are only
evaluated when they are needed. In LISP, functions with this property are called
special forms. In Mathematica, they are operations that hold some or all of their
arguments. This is an important property because it allows computations to proceed
even if some of their arguments are not well defined. For instance, the definition

bad[x_] := I f [x == 0, good, 1/x]
works perfectly well at x = 0, even though 1/0 is undefined.

Mathematica shares features with several other programming languages, such as C, Pascal,
Lisp, APL, etc., but it has extended and modified these features as well as added its own
original constructs. In this chapter we examine those features that qualify it as a functional
programming language.

Six · Functional Programming 17 1

/ . / Applying Functions to Values
We have already discussed and used the Mathematica facilities for defining functions and
applying them to arguments. For instance, f [x_] : = χΛ2 defines the squaring function and
f [2] or f § 2 o r 2 / / £ applies it to the value 2. But there is more to practical functional
programming than this. There are a number of built-in operations that take arbitrary functions
as arguments and do something with them. For instance, there are several built-in commands
that take a function as first argument and an arbitrary expression as second and apply the
function to various parts of the expression. The first of these, Map, is a feature of virtually
every functional language. Normally, it has two arguments, a function and a list, and it applies
the function to every entry in the list, producing a list as the output. As usual in Mathematica,
the list argument is replaced by an arbitrary expression and levelspecs can be used to specify
the level of the expression at which the function is applied.

1.1.1 Map

The operation Map [f u n c t i o n , e x p r] or in infix form f u n c t i o n /@ expr applies
f u n c t i o n to each subexpression at level 1 in expr . The operation Map applied to a list,
therefore, just applies the function to each entry in the list; e.g.,

Map[Sin, { a , b , c }] => { S i n [a] , S i n [b] , S i n [c] }

Furthermore, Mathematica can map a function down the arguments of an arbitrary expression,
not just a list. For instance, continuing with expl as in the preceding chapter:

e x p l = χΛ3 + (1 + ζ) Λ 2 ;
Map[Sin, e x p l] => S i n [x 3] + S i n [(l + z) 2]

Be sure you understand the output here. Even more, Map takes a third argument, with a new
effect. Map [f u n c t i o n , e x p r , l e v e l s p e c] applies f u n c t i o n to the parts of e x p r
described by l e v e l s p e c . For instance, we can apply S i n to all of the leaves (described by the
levelspec {-1}), or to all of the subexpressions whose depth is at least 2 (described by the
levelspec -2).

Map[Sin, e x p l , { - 1 }]

S i n [x] S i n [3] + (S i n [l] + S i n [z]) S i n [2]

Map[Sin, e x p l , - 2] => S i n [x 3] + S i n [S i n [l + z] 2]

This is a very powerful facility and is one of our main tools in manipulating expressions. The
next two sections describe some variations on Map.

172 Part II · Programming Language

1.1.2 MapAll
MapAll [funct ion, expr] or function //@ expr applies function to every proper
subexpression of expr. It is the recursive form of funct ion /@ expr; i.e., it applies
function to the expression, then to all of the arguments, then to all of the arguments of the
arguments, etc.

MapAll[Sin, expl]

S i n [S i n [S i n [x] S i n [3]] + S in [S in [S in [1] + S i n [z]] S i n [2]]]

This operation is almost the same as using Map with the levelspec Infinity or -1.

Map[Sin, expl, Infinity]

S i n [S i n [x] s i n t 3]] + S in [S in [S in [1] + S i n [z]] S i n [2] j

The difference is that the levelspec I n f i n i t y does not include the whole expression itself.

1.1.3 MapAt
MapAt[function, expr, p o s i t i o n l i s t] applies f u n c t i o n to the parts of expr
described by the list of partspecs in p o s i t i o n l i s t . Here a partspec, as usual, is described by
the list of edges in the tree form of the expression from the root to the given subtree. We'll use
this to apply Sin just to the variables x and z in expl by giving a list of two partspecs.

MapAt[Sin, expl, {{1,1}, {2,1,2}}]

S i n [x] 3 + (1 + S i n [z]) 2

See also MapThread and Map Indexed in the Mathematica Book.

1.1.4 Apply
The various versions of Map act on the arguments of an expression, while Apply acts only on
its head. What Apply [head, expr] or head @@ expr does is to replace the head of expr
by head (and possibly carry out a subsequent simplification or computation). For instance:

Apply[Plus, {2, 3, 4}] => 9

Here, the head of {2 , 3 , 4} is L i s t which does nothing to its arguments. When L i s t is
replaced by Plus then something happens since Plus calculates the sum of its arguments.
Here is a slightly trickier example.

Six · Functional Programming 173

Apply[Plus, 2 3 x] => 6 + x
This time the head of 2 3 x is Times which multiplies out as much of the expression as it can,
yielding Times[6, x]. When this head is replaced by Plus, we get the indicated result.

With a third argument, Apply[head, expr, levelspec] replaces heads in the parts of expr
described by levelspec by head.

Apply[Sin, { { f [a] , f i b] } , { f [c] , f [d] > } , {2}]

{ { S i n [a] , S i n [b] } , { S i n [c] , S in[d]}}

Apply is frequently used if one first wants to prepare a number of ingredients and then apply
some operation to them. The ingredients can be held in a list until they are ready and then the
head of the list is changed to the appropriate operation by using Apply.

1.1.5 Through
Once it is brought to your attention, Map seems like an obvious operation that ought to be
available in any programming language. But it has an asymmetrical aspect: one function is
applied to a list of values. What about applying a list of functions to a single value. That can be
done too, using the operation Through. For instance:

Through[{Sin, Cos, Tan}[a]]

{Sin[a], Cos[a], Tan[a]}

If the functions in the list are themselves listable, then they can be applied to a list of values.

Through[{Sin, Cos, Tan}[{a, b, c}]]

{{Sin[a], Sin[b], Sin[c]}, {Cos[a], Cos[b], Cos[c]},
{Tan[a], Tan[b], Tan[c]}}

1.2 Defining Functions—Pure Functions

When using Map and similar operations, it is convenient not to have to name the function
being mapped over a list or other expression. For instance, suppose we have two functions, f
and g and we want to form the sum f [x] + g [x] for all the entries in a list. One way would
be to define a new function h as the sum of f and g, and then map it down the list. I.e.:

174 Part II · Programming Language

h [x _] := f [x] + g [x]
Mapfh, { a , b , c }]

{ f [a] + g [a] , f [b] + g [b] , f [c] + g [c] }

Instead, without defining a separate function h, the form Func t ion [{ x } , f [x] + g [x]]
can be used.

M a p [F u n c t i o n [{ x } , f [x] + g [x]] , { a , b , c }]

{ f [a] + g [a] , f [b] + g [b] f f [c] + g [c] }

The expression F u n c t i o n [{ x } , body] is a "pure function" with a bound variable x. This
notation is essentially the notation of the lambda calculus, discussed in Chapter 11, Section 7,
where the form λχ · body is written for the same thing. The operation F u n c t i o n [{x } ,
body] or λχ . body is a canonical name for the function that does to any argument whatever
body describes as being done to x. Such a function is applied to a value in the same way that
built-in functions are. For instance:

Function[{x}, χΛ2][5] =» 25

One can of course give a name to such an expression and then use it as a function

t = Function!{x}, Expand[(l + x)A3]];
t [a] => l + 3 a + 3 a 2 + a 3

The form Function[{x}, body] is the same as Functionfbody] or, in postfix notation, body&,
where x in body is replaced by #. This is a much more convenient form to use in Map and, as
will be seen, in many other places. For instance, our original example now becomes

M a p [(f [#] + g [#]) & , {a f b , c }]

{ f [a] + g [a] , f [b] + g [b] , f [c] + g [c] }

The three expressions

i) Function! {x}, £[x] + g[x]]
ii) Function[f[#] + g[#]]
iii) (f[#] + g[#])&

all produce the same value when applied to an argument. The third is clearly the most concise
form.

Six · Functional Programming 175

Consider a simpler example, the squaring function, written in pure function form as #*2&.
It is applied to an argument using square brackets, as usual.

#"2&[5] => 25

To map it down a list, use Map, or /@.

Hap[#"2&, { a , b , c }] => { a 2 , b 2 , c 2 }
#"2& /@ { a , b , c } => { a 2 , b 2 , c 2 }

A combination of symbols like # A2&/@ can be hard to read. It is somewhat improved by extra
spaces in the form #A2& /@ { a , b, c } , but in general we will avoid such combinations
(although I am personally very fond of them) unless they force themselves on us.

For functions of several arguments, the slots are numbered.

(m [# l , #2] / n [# l , # 2]) & [a , b]

m[a , b]

n [a , b]

One can also operate on pure functions and get pure functions as the output. For instance, the
derivative of a function f can be written as f ' ·

S i n ' => C o s [# l] &

Notice that S i n with no argument is a pure function and the output of S i n ' is written
explicitly as a pure function with a # and an &, although presumably a simple Cos would
have been sufficient. The following also work:

{ (# " 2) & , f (# A 7 &) · " " } => {2 #1 &, 7 6 5 4 3 # 1 2 &}

Pure functions written in this form with # and & are a distinctive and very attractive feature of
the Mathematica programming language.

1.3 Four Kinds of Function Definition

Functions are such an important feature of Mathematica that they are represented in (at least)
four different ways.

176 Part II · Programming Language

1.3.1 Expressions

An expression like χΛ2 + b x + c , contains a symbol x that is intended to be interpreted
(by us) as a variable; that means, we are intended to interpret the whole expression as
describing a function of the variable x. However, it is only we who know this; there is no way
for Mathematica to know it unless we somehow tell Mathematica what the variable is. Thus, in
commands like

Solve[x^2 + b x + c == 0, x],
Plot[Sin[Cos[x] + Tan[x]], {x, 0, Pi}],
Sum[iA3, {i, 0, 10}],
Product!(x + i), {i, 1, 4}], etc.,

the first argument is such an expression intended to be regarded as a function of some variable
it contains, and the second argument includes a description of the appropriate variable, either
by just naming it or by including it as the first argument of an iterator.

Furthermore, if an expression is intended to be regarded as representing a function of some
variable, then there should be some way to substitute an actual value for the variable. This is
where R e p l a c e A l l or, in infix notation / . , comes in. Thus, if e x p r is some expression
involving x then its value at a is given by e x p r / . x -> a. (See Chapter 7, Section 2.2 for a
through discussion of / . and ->.) This, of course, may cause some further simplification to be
carried out. For instance:

2 x + 5 / . x - > 2 => 9

1.3.2 Named pure functions

In a function definition such as f [x_] : = χΛ2 the thing being defined is f, which should be
thought of as the "function in itself." The x in this definition is a dummy variable which is not
really there at all. (In Chapter 7, Section 3.2, we'll see that x_ is a pattern.) If we insist on
thinking of x as the variable in the definition of f, then it is a bound variable in the sense of
logic. The f defined here is in fact a name for a pure function and can be used wherever pure
functions are appropriate just like the names of built-in functions. E.g.,

f [x _] := x A 2 ;

Map[f, { a , b , c }] => { a 2 , b 2 , c 2 }

Thus, defining a function using S e t D e l a y e d (i.e., :=) gives a name to a pure function. The
definitions

Six · Functional Programming 177

square[x_] := xA2,
square = Function!{x}, xA2] and
square = #"2&

are essentially equivalent. However, there are subtle differences described in Chapter 11,
Section 7.

It is not possible, for instance, to plot the function square by using the command
Plot [square, {x , 0, 10}] or to integrate it by the command I n t e g r a t e [square,
{x, 0, 10}] because nowhere is it indicated how x is involved with square. In order to
plot or integrate it, we have to turn it into an expression involving a variable (whose name of
course doesn't matter) which is described in the second argument. Thus, P lot [square [x] ,
{x, 0, 10}] and P lot [square [y] , {y, 0, 10}] both give the same picture. It is
necessary to be aware of commands that require expressions with variable names together
with some other information about those variables.

1.3.3 Nameless pure functions with bound variables
Expressions like Function [{ x } , xA2] define functions using a syntax that, as we have said,
is essentially the same as the lambda calculus. Such a definition involves a bound variable, in
this case x, whose name clearly doesn't matter; i.e., Function [{y }, y*2] describes the same
function. The function itself has no other name attached to it, so it is a nameless pure function.
Functions of more than one variable are allowed. E.g.,

Function[{x, y}, x + y][2, 3] => 5

but they need to be given the proper number of values as arguments (two here). This is to be
distinguished from the following "curried" version which is a function of one variable
returning as value another function of one variable.

Function!{x}, Function[{y}, x + y]][2]

Function[{y$}, 2 + y$]

%[3] => 5

1.3.4 Anonymous functions
The point of the syntax using # and & is that it is possible to construct a nameless pure function
with no variables, bound or otherwise; i.e., an anonymous function. Anonymous pure functions
are functions named by a canonical variable-free name; i.e., a # - & expression. When there is
more than one slot, enough arguments have to be given to fill all slots. "Currying" as above is
not possible with anonymous functions, except by rather grotesque contortions because of the
numbering conventions for S lo ts .

178 Part II · Programming Language

Evaluate!(#1 + #2)&[2]]& /. #2 -> #1
%[3]

2 + #1 &
5

1.3.5 Conversion between forms of functions

Each of these notions is appropriate in its own place. Furthermore, it is possible to convert
from one to the other as shown in the following table.

Example

x2

f[xj:= x2

Function[
fxU2]

#2&

Convert to

expression

f[x]

Function[
M,x2][x]

(#2+2#)&[x]

named pure
function

f[xj:= x2

f

f = Function[
Μ,χ2]

f = (#2)&

pure function
with bound
variable

Function[
M,x2]

Function[
fx},f[x]]

Function!
M,(#2)&M]

anonymous
function

(x2/.x->#)&

f[#]&

Function[
(x),x2][#]&

For instance, the anonymous function (#Λ2 + 2 #)& can be plotted using the appropriate
conversion.

P l o t [(# A 2 + 2 #) & [x] , { x , 0 , 1 0 }] ;

2 4 6 8 10

Six · Functional Programming 179

1.4 Nest and Fold

There are two more pairs of useful operations that fit the discussion here, N e s t and Fold and
their relatives. They are also common ingredients of functional programming languages.

1.4.1 Nest, NestList, and FixedPoint

Nes t and its related operations N e s t L i s t and F i x e d P o i n t apply a function to its argument
many times. Nes t [f u n c t i o n , x , n] applies f u n c t i o n to x and repeats the application n
times; e.g., Nes t [f , x , 3] r e t u r n s f [f [f [x]]] while N e s t L i s t [f u n c t i o n , x , n]
makes a list of these repeated operations a total of n + 1 times (since it starts from 0).

Nest[(# 2)&, a, 3] => 8 a
NestList[f, a, 3] => {a, f[a], f[f[a]], f[f[f[a]]]}
NestList[(# 2)&, a, 3] => {a, 2 a, 4 a, 8 a}

The following works because, as we have seen, D is L i s t a b l e in its first argument.

N e s t L i s t [
D[#/ y]&/ r [y] == S i n [y] C o s [y] , 4] / /Tab leForm

r [y] == C o s [y] S i n [y]
r ' [y] == c o s [y] 2 - S i n [y] 2

r ' ' [y] == -4 C o s [y] S i n [y]
r (3) [y] = = _4 c o s [y] 2 + 4 S i n [y] 2

r (4) [y] = = 1 6 c o s [y] S i n [y]

Here is an example producing a simple continued fraction.

N e s t [(l / (1 + #)) & , x , 3]

1

1
1 +

1
1 +

1 + x

An operation that is closely related to N e s t is F i x e d P o i n t which nests its operation until
there is no change. For instance, everyone is familiar with what happens if the Cos key on a
pocket calculator is pushed repeatedly. In principle, F i x e d P o i n t is what happens if it is
pushed forever.

180 Part II · Programming Language
* $t'/t < Y^'S*'*-', ' , '"„JU, *&*%"> *#?&'+<&**'*'/!*&? "'^»^y*^fV ' '<""' 4 ? '·"»&**·.''&&

{ N e s t [C o s , 0 . 5 , 6] ,
N e s t [C o s , 0 . 5 , 1 2] ,
F i x e d P o i n t [C o s , 0 . 5] } => { 0 . 7 1 9 1 6 5 , 0 . 7 3 7 2 3 6 , 0 .739085}

Actually, F i x e d P o i n t stops after machine accuracy is achieved. Look up the options to
F i x e d P o i n t to see how to change this. There is also an operation F i x e d P o i n t L i s t . The
Practice section at the end of this chapter gives some examples. See Chapter 11, Section 6 for
more serious uses of F ixedPo int .

1.4.2 Fold and FoldList

The second pair of functions, F o l d and F o l d L i s t , do something similar to N e s t and
N e s t L i s t , but for functions of two variables.

F o l d [f , s e e d , { a i , . . . , a n }]

takes a function f of two variables, a starting value s e e d and a list of subsequent values and
returns

f [f [. . . f [s e e d , ai .] , a2] , . . .] , a n]

For instance:

F o l d [f , a , { b , c , d }] => f [f [f [a , b] , c] , d]

Thus, each time f is applied to the seed value a, a new second argument is fed in from the
list { b , c , d } . Similarly, F o l d L i s t produces a list of the successive values of this
procedure.

FoldList[f, a, {b, c, d}]

{a , f [a , b] , f [f [a , b] , c] , f [f [f [a , b] , c] , d] }

Here are a couple of examples.

FoldList[Plus, 0, {a, b, c}]

{0, a, a + b, a + b + c}

F o l d L i s t [P o w e r , 2 , { 2 , 3 , 4 , 5 }]

{2 , 4 , 6 4 , 16777216, 1329227995784915872903807060280344576}

Note that the last value in this output list is 2^0.

Six · Functional Programming 181

It is usually easy to see when it is appropriate to use the function Nest; namely, there is
some top level operation that is to be repeated a number of times. (This is sometimes called
"tail" recursion, although in Mathematica it might be better called "head" recursion.) However,
it is not so easy to see when it is appropriate to use Fold. What happens is that, at each
repetition of the operation, new information is fed in from the list of values in the third
argument. I.e., instead of the third argument being a number saying how many times the
operation is to be performed, it is a list of values to be used in building up some new structure.
In the rest of the book we shall see a number of non-trivial uses of Fold, each of which is a
triumph of human ingenuity.

1.5 Substitution
Function application in a functional programming language usually means substitution of a
value for a variable. Thus we expect that defining the squaring function by f [x_] := xA2
and then applying f to 2 should be the same as evaluating the substitution χΛ2 / . x -> 2.
Of course it is, but as will be seen in Chapter 11, Section 4, this form of substitution sometimes
doesn't work correctly. Furthermore, as will be discussed in the next chapter, this form of
substitution is really an application of a local rewrite rule and should not be thought of as a
substitution at all. However, there is another operation in Mathematica that exactly implements
the idea of substitution in functional programming languages; namely, With. For instance:

With[{x = 2 } , x"2] => 4

In many functional languages, this would be written in the form let x = 2 in χΛ2. Instead of
giving the value where the function is to be applied in the first argument of With, one can also
specify the function in this position.

With[{square = #A2&}, square[2]] => 4

In the theory of functional programming languages, based on the lambda calculus, an
expression of the form let x = 2 in χΛ2, as above, is synonymous with applying the pure
function λχ . χΛ2 to the value 2. Since applying pure functions to values is the only thing that is
done in functional programming, such programs consist mainly of let expressions. This style
of programming can be adopted in Mathematica, using With of course instead of let, and often
has attractive results. For instance, consider the following method to calculate improper
integrals with possible singularities at the end points.

improperIntegrate[expr_, {x_, a_, b_}] :=
With[{integral = Integrate[expr, x]},

Limit[integral, x -> b, Direction -> 1] -
Limit[integral, x -> a, Direction -> -1]]

182 Part II · Programming Language

This works nicely on typical examples.

improperIntegrate[l / (2x - l) A (2 / 3) , {x, 1/2, 2}]

3 3 1 / 3 12

Functional languages usually contain a recursive version of let as well, called letrec.
Mathematica does not allow With to be used with recursive definitions, but we will see in
Chapter 10, Section 5, how to define our own withRec.

/. 6 The Fundamental Dictum of Functional Programming
The purpose of all of these operations based on Map is to make it possible to treat lists as
wholes. For instance, a really poor way to square the entries in a list is as follows:

l i s t = {a, b, c } ;
T a b l e [l i s t [[i] p 2 , { i , Length[list]}] => {a2, b2 , c2}

The term l i s t [[i]] tears apart the original list by extracting its parts one at a time, A2
squares each part and then Table reassembles the parts into a new list. This style is forbidden
in functional programming. In a generalized form, one has the fundamental dictum of
functional programming.

Treat mathematical structures as wholes.
Never tear them apart and rebuild them again.

2 Functional Programs
Functional programs in Mathematica are nested sequences of "button pushes"; i.e., they are
single expressions made up solely from built-in commands and built-in constants. Sometimes
these are called "one-liners." It is possible to do many intricate operations just using such one-
liners. (In fact, or course, any computable function can be expressed by such a construction.)
There is a column devoted to one-liners in the Mathematica Journal. The basic rule for a "strict"
one-liner, as it will be called here, is that the only ingredients allowed on the right-hand side
are built-in operations and constants or argument names that occur in the left-hand side. This
rules out nearly all Table constructions since they require a (bound) variable in the iterator

Six · Functional Programming 183

argument which does not occur in the left-hand side. It also rules out use of I n t e g r a t e and
S o l v e unless they are parts of function definitions which include the variable specification on
the left-hand side. It rules out expressions of the form F u n c t i o n [{ x } , body] since that
form includes the bound variable x Anonymous pure functions do exactly the same things
without introducing any bound variables, which is what makes it possible to construct strict
one-liners. Non-strict, or ordinary, one-liners have no such restrictions. The only condition for
them is that, in theory at least, they should be written on one, possibly very long, line.

Writing such functional programs is an important part of Mathematica programming. Later
on we will use ordinary one-liners and allow arbitrary user defined functions and constants on
the right-hand sides, so that functions will be built up iteratively from the built-in base to yield
more and more complicated constructions. Even when we consider other styles of
programming -rewrite rule programming and procedural programming-the basic ingredients
will still be one-liners. In this chapter we are promoting a functional style of programming that
is in stark contrast to the usual style of Pascal or C programs. In many cases, it is more efficient
and easier to read than such programs. It certainly is much more in accord with mathematical
ways of thinking about algorithms.

2.1 Simple Examples of Functional Programs

Some of the things we did interactively or in more than one step in the first three chapters can
be put together to make simple functional programs. For instance, the interactive sequence of
operations

Integrate[x / (1 - xA3), x]
D[%, x]
Simplify!%]

can be put together into a single nested operation.

Simplify[D[Integrate[x/(l - xA3), x], x]]

x

1 - x3

This violates the rules for a strict one-liner since it involves the bound variable x, but otherwise
it is just a nested sequence of built-in commands. Here are the results of the same process
applied to a number of other interactive constructions from Chapters 1 and 3. Note that we
have replaced T a b l e constructions by mapping a pure function down an index list
constructed by Range or by using Listability.

184 Part II · Programming Language

ListPlot[Map[N[Log[#i]]&, Range[20]]];

40
30
20
10

5 10 15 20

Fit[Map[N[Log[#!]]&, Range[20]], {1, x, χΛ2}, x]

-2.02963 + 1.17902 x + 0.0531166 x2

Consider the construction N [Log [Map [# ! &, Range [2 0]]]] here. There are, in fact, at
least three ways to construct this list of numbers. (The output from the second and third
versions is suppressed.) First, just build a table as we did in Chapter 1.

Table[N[Log[n!]], {n, 20}]

{0, 0.693147, 1.79176, 3.17805, 4.78749, 6.57925, 8.52516,
10.6046, 12.8018, 15.1044, 17.5023, 19.9872, 22.5522, 25.1912,
27.8993, 30.6719, 33.5051, 36.3954, 39.3399, 42.3356}

Second, map a pure function (the factorial function) down the list of desired numbers,
constructed by the Range operation, as we have done here.

Map[N[Log[#!]]&, Range[20]];

Third, use the fact that !, Log, and N are Li s t a b l e to get the result from a very brief
command.

N[Log[Range[20]!]];

In the next three examples, we have to use Map because ToString and Rationalize are
notListable.

Map[{ ToExpression[ToString[N[Pi, #]]],
N[Sin[ToExpression[ToString[N[Pi, #]]]], 11]}&,

Range[5]] // TableForm

Six · Functional Programming 185

3. 0.14112000806
3.1 0.041580662433
3.14 0.0015926529165
3.142 -0.00040734639894
3.1416 -7.3464102067 10"6

Map[Rationalize[N[Pi], (0.1)Λ#]&, Range[10]]

22 22 355 355 355 355 104348 104348 104348 312689
{ / ~~/ / ———t f f — f ———r ~~/ /
7 7 113 113 113 113 33215 33215 33215 99532

Union[Map[Rationalize[N[Pi], (0.1)Λ#]&, Range[20]]]

80143857 245850922 1068966896 3618458675 5419351 1146408
{ / i / / r i

25510582 78256779 340262731 1151791169 1725033 364913

312689 104348 355 22

99532 33215 113 7

The next example uses Outer as described in Chapter 5.

ListDensityPlot[
Outer[If[PrimeQ[#2 + #1 I], 1, 0]&,

Range[0, 50], Range[0, 50]]]
The graphics output from this is the same as the picture of the Gaussian primes in Chapter 3.
All of these fit the requirements for strict one-liners since they contain nothing but built-in
functions and constants. Here is another example from Chapter 3.

Select[
Map[Solve[χΛ4 + 2 χΛ2 + 1 == 0 &&

Modulus == Prime[#], x][[l]]&,
Range[50]], FreeQ[#, -I]&]

This way of using Mathematica constitutes functional programming in Mathematica. It views
the basic entities of Mathematica as functions (possibly of many variables) and the basic
operation as composition of functions, or rather, the iterated application of functions to
arguments. One-liners can either just carry out some specific calculation or they can be used as
definitions of functions whose arguments can then be given values to do something
interesting.

186 Part II · Programming Language

2.2 Developing a Functional Program

The large stock of built-in functions makes it possible to solve rather intricate problems in a
straightforward way. For instance, in Section 1.1.3 above, starting with the expression exp l =
xA3 + (1 + ζ) Λ 2 , we applied S i n to the variables x and z using MapAt.

MapAt[Sin, e x p l , { { 1 , 1 } , { 2 , 1 , 2 } }]

S i n [x] 3 + (1 + S i n [z]) 2

You may have wondered how one would know what partspecs to give without carefully
analyzing the expression. But Mathematica will do this for you by itself, using the function
Posit ion.

Position[expl, x] => {{1,1}}

Thus, the following one-liner does it all.

MapAt[Sin, expl,
Join[Position[expl, x], Position[expl, z]]]

Sin[x]3 + (1 + Sin[z])2

However, this violates the strict rule by referring to the variables x and z. The idea here can
be developed farther by having Mathematica do more of the work. We'll also let it find the
variables without our having to tell it what they are which will turn the operation into a strict
one-liner. In this kind of expression, the variables are particular leaves in the tree form of the
expression. All the leaves are given by the following:

Level[expl, {-1}] => {x, 3, 1, z, 2}

We want to select x and z from this list. The predicate Not [NumberQ [#]] & is True just for
them.

S e l e c t [L e v e l [e x p l , { - 1 }] , Not[NumberQ[#]]&] => {x, z}

Next we need the position in e x p l of each entry of this list, which we find by mapping the
pure function P o s i t i o n [e x p l , #] & down it.

M a p [P o s i t i o n [e x p l , #]&, %] => {{{1 / 1 } } / {{2 , 1, 2}}}

This has too many brackets, but F l a t t e n with a levelspec will get rid of them.

Six · Functional Programming 187

Flatten[%, 1] =» {{1, 1}, {2, 1, 2}}

Finally put everything together by replacing each % by its construction in the previous line,
which yields a one-liner function definition that will take any expression e x p r (instead of
expl) and apply some given function fun (instead of Sin) just to the variables in it.

mapVarsOnly[fun__, expr_] : =
MapAt[fun, e x p r ,

F la t ten[Map[P o s i t i o n [e x p r , #]&,
S e l e c t [L e v e l [e x p r , { - 1 }] ,

Not[NumberQ[#]]&]] , 1]]

Notice that all the work goes on in finding where the function is to be applied. This is a true
one-liner since the only ingredients on the right-hand side are built-in functions and constants
together with expr and fun which occur on the left-hand side. Check it with S in and exp l .

mapVarsOnly[Sin, expl] => Sin[x]3 + (1 + Sin[z])2

Now, try some other examples.

mapVarsOnly[Sqrt[#]&, expl] => x3/2 + (1 + Sqrt[z])2
mapVarsOnly[ArcTan, (x - yA2 + 3)Aw / Sqrt[u"3 + 3 v]]

(3 + ArcTan[x] - ArcTanfy]2)ArcTan[w]

Sqrt[ArcTan[u]J + 3 ArcTan[v]]

As an example of a one-liner, this is OK, but in fact it would fail on an expression that has
what we would regard as a symbolic constant, e.g., a, because it would treat that as a variable
too. In the Exercises we ask you to fix the definition so that mapVarsOnly only treats letters
between p and z as variables.

2.3 Frequencies

List manipulations are important in functional programming. Suppose we want to write a
function that takes a list as its argument and returns a list of the number of times each entry
occurs in the original list. Start with a list to use as an example.

l i s t =
{ a , a, s, f, a, a, s, a f d, f, d, ff g , d, a, f, g } ;

188 Part II · Programming Language

Union will give us the "set" of distinct entries in this list, written in canonical Mathematica
order.

Union[list] => {a, d, f, g, s}

Our problem is to determine how many times each entry here occurs in l i s t . There is a built-
in function that will do that for a single entry.

Count[list, f] => 4

We don't just want the number 4, but we want it associated with the symbol f so we know
what it means; thus we want the pair { f, 4 } as output. This is easily constructed by a pure
function.

{ # , C o u n t [l i s t , #] } & [f] => {f, 4}

So all we have to do is put these together correctly in order to design a function that gives each
distinct element and the number of times it occurs.

f r e q u e n c i e s [l i s t _] :=
Map[{#, C o u n t [l i s t , #]}&, U n i o n [l i s t]]

Using our example, we find:

f r e q u e n c i e s [l i s t]

{{a , 4 } , {d , 5 } , {f, 4 } , { g , 2 } , { s , 2}}

This says that a occurs 4 times, d 5 times, etc. We will use f r e q u e n c i e s later in constructing
our own BarChart graphics function.

2.4 Newton s Method

2.4.1 One variable

Newton's method is a procedure for finding a zero of a function. There is of course the built-in
function FindRoot, but we want to construct our own version to see how it works. Given an
expression representing a function of x, e.g., expr = χΛ2 - 3, and some starting value χθ,
then Newton's method calculates a sequence of values using the iterative formula:

x 0 = xO,
x n + l = (x - e x p r / D [e x p r , x]) / . x -> x n .

Six · Functional Programming 189

The iteration is repeated until the results change by less than some specified error. What we
have to do is to take the right-hand side of the iterative formula, turn it into a pure function
and then repeatedly apply it to successive outputs starting with xO. One way to do this is to
construct a separate function called oneNewtonStep as follows:

oneNewtonStep[expr_, {x_, x0_}] :=
(x - expr/D[expr, x]) / . x -> N[xO]

To force the computation to be done numerically rather than exactly, we use N [xO] instead of
xO as the last argument here. The value of oneNewtonStep at stage n is what is to be used as
the starting point for stage n + 1. That means we want to consider it as a pure function of the
initial point xO. We can either use Nest some given number of times, or let Mathematica decide
how often to iterate the procedure by using FixedPoint · We chose the latter.

newton [expr_, {x_, x0_}] : =
FixedPoint[oneNewtonStep[expr, {x, #}]&, N[xO]]

Here are a couple of examples.

newton[x^2 - 3, {x, 1.0}] => 1.73205

newton[x - Cos[x], {x, 0.5}] => 0.739085

2.4.2 Several variables
Essentially the same formula works for n functions of n variables. Newton's method finds
values of all the variables so that all of the functions are zero. We just imagine that x means an
n-dimensional vector and expr means n functions of n variables. The derivative D becomes the
Jacobian matrix and division becomes multiplication in the sense of the Dot product by the
inverse. The iterative formula becomes:

xn+l = (x - Inverse[jacobian[expr, x]].expr[x])/.x -> xn

Recall that the Jacobian matrix is given by the operation:

jacobian[exprs_, vars_] := N[Outer[D, exprs, vars]]

Our intention now is that exprs is to be list of expressions and vars is to be list of variables.
The initial value will be a list varsO of values. We have to change the notation slightly so that
newton won't become confused about being given one function or a list of functions. (For a
better way to handle this, see the next chapter.)

190 Part II · Programming Language

oneNewtonStep[exprs__, vars_, varsO_] : =
(vars - Inverse[jacobian[exprs, vars]] . exprs) /.
Thread[vars -> N[varsO]]

In the single variable case, we just said x -> xO to evaluate the expression at the initial point,
but here we need a list of rules. Thread does exactly the right thing; e.g.,

Thread[{x, y, z} -> {1 , 2, 3}]

{x -> 1, y -> 2, z -> 3}

The final function is almost the same as the one variable case.

newton[exprs_, vars_, varsO_] :=
FixedPoint[oneNewtonStep[exprs, vars, #]&, N[varsO]]

Here is a simple example.

exprsl = {x*2 + yA2 - 13, xA3 - y"3 - 19};
newton[exprs1, {x, y}f {2, 1}] => {3., 2.}

As an exercise, you are asked to restructure this program so that the answer is a list of rules.

3 Practice

1. MapThread[Rule, {x, y, z}, {1, 2, 3}]
2. Maplndexed[Nest[Sin, #1, Sequence@@#2]&,

{a, b, c}
3. #A2& [anything]
4. #&[anything]
5. 1& [anything]
6. somethings [anything]
7. polys = Table[1 - xAn, {n, 1, 10}];
8. Factor /@ polys // ColumnForm
9. Expand[#"2]& /@ polys // ColumnForm
10. FixedPointList[Cos, .5]
11. FixedPointList[Cos, .5,

SameTest -> (Abs[#l - #2] < 10A-6 &)]

Six · Functional Programming 191

The following are taken from the One-Liners column of the Mathematica Journal, Vol. 1,1991.
Try to understand what they do and how they work. In some cases, minor or major changes
have been made to comply with the canon that one-liners should not introduce any extraneous
variables on their right-hand side.

12. rootPlot[poly_, z_] : =
ListPlot[{Re[z], Im[z]}/.

Solve[N[poly == 0] , z] ,
Prolog -> PointSize[0.04]]

13. poly[n_, z_] : =
ζ Λ η -
Apply[Plus, Map[z"#&, Range[0, n - 1]]]

14. rootPlot[poly[20, z] , z]
15. newtonRoot[f_, x0_] : =

FixedPoint[(# - f[#]/f■[#])&, xO]
16. newtonRoot[(# - Cos[#])&, 0.5]
17. ListDensityPlot [

Outer[If[IntegerQ[Sqrt[#lA2 + #2"2]], 0, 1]&,
Range[50], Range[50]]]

18. phasePlot[f_, ix_r xmin_, xmax_}] : =
ParametricPlot[Evaluate[{f, D[f, x]}],

{x, xmin, xmax}]
19. phasePlot[Sin[x"2], {x, 0, 2 Pi}]
20. reverseinteger [n_] : =

Dot[Power[10, #]& /@
Range[0, Floor[N[Log[10, n]]]],

IntegerDigits[n]]
21. reverseinteger[123456789]

4 Exercises
Observe the fundamental dictum of functional programming in working these exercises.

1. Solve Exercise 13 in Chapter 3 about Jacobians again in a functional style. Hint: figure
out how to combine Thread and Dot.

2. i) Implement your own version of Newton's method to find a zero of a differentiable
function near a given starting value. (See 2.4 and 3.15.) The basic function should be
of the form

192 Part II · Programming Language

newton[expr, {x, xO, n}]
where e x p r is some expression involving an independent variable x, xO is the
starting value of x and n is the number of times the operation in Newton's method
is to be iterated. Define another function newton [e x p r , { x , xO}] which
continues iterating until there is no change. Then there should be two extra
functions,

n e w t o n L i s t [e x p r , { x , xO, n}] and
n e w t o n L i s t [e x p r , { x , xO}, o p t]

which produce a list of successive approximations to the final value. The optional
argument "opt" should allow a test to determine when the iteration is to stop. See
N e s t , N e s t L i s t , F i x e d P o i n t and F i x e d P o i n t L i s t .

ii) Define a function

n e w t o n P i c t u r e [e x p r , { x , xmin, xmax}, {xO, n}]

which makes a plot of the function defined by the expression for values between
xmin and xmax, together with a line illustrating the first n successive
approximations starting from xO. The line should show the successive tangents to
the curve at each approximation point. Test your routine with the example:

n e w t o n P i c t u r e [C o s [x * 3] , { χ , 0 . 8 , 1 . 5 } , { . 8 7 8 8 , 6 }]

iii) Adapt your functions so they work for n functions of n variables.

iv) Restructure these operations so the output is a substitution.

v) Try some test examples and check your results.

3. Define a function c o n t i n u e d F r a c t i o n [l i s t] which takes a list as its only argument
and returns the continued fraction whose numerators are given by the entries in the list
in the given order. Thus c o n t i n u e d F r a c t i o n [{ a , b , c , d}] returns

a / (1 + b / (1 + c / (l + d)))

displayed in a nice form. Hint: try Fold

4. What does the function

power [x _ , n__, b a s e _] : =
F o l d [(# 1 * 2 #2)&, 1 , x " I n t e g e r D i g i t s [n , b a s e]]

calculate when base = 2. (See [Vardi].) What happens when base = 3.

Six · Functional Programming 193

5. i) In Exercise 5 of Chapter 5, the Gram-Schmidt algorithm was implemented for
orthogonalizing ordinary vectors with respect to the usual dot product. Generalize
this procedure so that it works for vectors from an arbitrary vector space with an
arbitrary inner product called innerProduct [v , w] · The new procedure should
have two arguments, the first being a list of vectors and the second being the inner
product. Continue assuming that the given list of vectors is linearly independent.
(There is a very nice way to do this using Fold.) Include a separate normalization
function that also uses innerProduct [v , w] . Also include a procedure to check
that a given list of vectors is orthonormal with respect to innerProduct [v , w] .
The standard case should be recovered by setting innerProduct to Dot.

ii) The matrix H given by
/ 8 3 0 0 \

3 2 1 2
0 1 2 2

V 0 2 2 14/
is positive definite and symmetric and hence determines an inner product for 4-
dimensional vectors by the formula i n n e r P r o d u c t [v , w] = v . H . w .
Orthogonalize and normalize the four standard unit vectors in 4-space using this
inner product. Check the result.

iii) Apply the Gram-Schmidt algorithm to orthogonalize the list of functions {1, x, x^,
x* x4} with respect to the inner product given by

legendre(f, g) = f(x) g(x) dx

Check the result.

iv) Normalize the result of part iii). This does not give the first five terms in the usual
sequence of Legendre polynomials. Why not? Fix things so that you get the first
five Legendre polynomials. Make a plot of them.

6. Modify the definition of mapVarsOnly so that it only treats letters between p and z as
variables. Hint: look up the operations ToStr ing , ToCharacterCode, Greater , and
Less .

7. i) The function Fo ld is sometimes called foldright because it "folds" in its arguments
from the right. Define a function f o l d i e f t so that f o l d l e f t [f , {a , b , c } ,
d] gives the output

f [a , f [b , f [c , d]]] .

ii) Write your own function c o m p o s e L i s t that works just like the built-in operation
with the same name, using F o l d L i s t . Conversely, write your own function
f o l d L i s t that works just like the built-in operation with the same name, using
ComposeList.

Part II · Programming Language

Somewhere in the first 1000 digits in the decimal expansion of π, there is a sequence of
six successive 9's. Use IntegerDigits , Part i t ion, and Pos i t ion to find where this
occurs. Avoid displaying large intermediate results. What other digits also occur more
than twice in succession in this partial decimal expansion? (Based on a problem from
[Blachmanl].)

i) Write your own functions map and through that work just like the built-in
operations with the same names, using Outer, Flatten, #, &, and @. (I.e., if pure
functions can be written, then Map and Through are special cases of Outer, suitably
flattened.)

ii) Generalize this to construct an operation that applies a list of arbitrary functions
(not necessarily listable ones) to a list of values.

CHAPTER

Rule Based
Programming

'"What we need in the future are systems which support both algorithmic coding of the basic
mathematics and a rule-driven interface for the user to direct the semantic flow of the calculations in as
flexible a manner as possible. " [Hearn]

1 Introduction
%.m$$m, ~*&&κ»&&*$ - $&?&&& ***?-***? &^«b^>w * ws&v** &*: 4 v,**** - ^\^ . * * - -',-:-$-* # , w i-t$pk,4w,H^^"\&>w*m>$j&&$

The basic ingredient in a Mathematica program is a one-liner. If built-in operations are the
words in the Mathematica language, then one-liners are the sentences. We now want to turn our
attention to paragraphs. There are essentially three ways to construct larger and more
complicated programs.

i) Remain in the functional programming paradigm and construct nested sequences of
one-liners each of which uses some of the functions defined in the previous one-liners.
This is the way that Lisp works and is the main modus operandi of all functional
programming languages. Such constructions are essentially sequential. Actually, tree
like is a better description. The final function constructed in terms of earlier functions
can always be expanded into a (possibly) very complicated one-liner so, in this
paradigm, paragraphs are just very long sentences.

ii) Defining a function by an expression of the form f [x_] : = body is just a special case
of a rewrite rule of the form f [pat tern] := body. Rule-based programming
exploits this observation by making it possible to give many rules for the same
function name f, depending on the form of the pattern of its arguments; i.e., these
rewrite rules are conditional rules where the conditions can be given by general
Mathematica expressions. Each rewrite rule itself is a one-liner. Constructions of this
form are essentially parallel, consisting of many trees, so paragraphs look like forests.
This is the topic of this chapter. As we will see, the additional facility of local rewrite
rules is a special feature in Mathematica which has surprising uses.

195

196 Partii · Programming Language
><^-iy^<^%^ìm^M^<^^^^

iii) Use Mathematica as a block structured language with the usual control structures of an
imperative language. This is the topic of the next chapter.

Functional programming languages evaluate their expressions by using just one kind of
rewrite rule embodying substitution. (See the discussion in Chapter 11, Section 4.) But they
usually do not allow users to add their own rewrite rules. It seems that, up to the appearance
of Reduce, general programming languages did not incorporate generic procedures for adding
such rules. Mathematica contains very powerful facilities for adding rewrite rules. Of course,
such systems of rewrite rules have been extensively studied and used in special purpose
languages intended for dealing with equationally defined data types. An equational data type
(or theory) is described by giving a number of operations together with equations satisfied by
various combinations of these operations. If the equations are directed from left to right, then
they can be regarded as rewrite rules. For a very simple example of this kind of a calculation
using ordinary mathematical notation, consider the recursive definition of addition in terms of
0 and succ; i.e., 0 + m = m and succ(n) + m = succ(n + m). Turn these into rewrite rules by
directing them from left to right.

0 + m=>m
succ(n) + m => succ(n + m)

The double arrow, => , here means rewrite the left-hand side as the right-hand side. We would
like to prove that 2 + 2 = 4 holds in the system; i.e., that the rule

succ(succ(0)) + succ(succ(0)) => succ(succ(succ(succ(0))))

is valid. (Alternatively, we could just say that we want to evaluate 2 + 2.) The point is to do this
by using the given rewrite rules to turn the left-hand side into the right-hand. But we have the
following sequence of rewritings:

succ(succ(0)) + succ(succ(0)) => succ(succ(O) + succ(succ(O))) by the second rule
=» succ(succ(0 + succ(succ(0))) by the second rule
=> succ(succ(succ(succ(0)))) by the first rule.

This says several interesting, and perhaps liberating things about the equation 2 + 2 = 4.

i) it shows that 2 + 2 rewrites to 4.
ii) the (operational) meaning of 2 + 2 is 4.

iii) the normal form of 2 + 2 is 4.

The last is the best. It means that the calculation of 2 + 2 is done by reducing 2 + 2 to normal
form. (A normal form is an expression to which no further rewrite rules apply.) This is the way
that rewrite rule systems do calculations.

Seven · Rule Based Programming 197

2 Rewrite Rules in Mathematica
Instead of viewing the expressions x = a and f [y_] : = yA2 as assigning the value a to x
and defining the squaring function respectively, we can regard them as establishing rewrite
rules. That means we think that they mean the following:

i) Whenever x occurs, rewrite it as a.
ii) Whenever f [anything] occurs, rewrite it as (anything)Λ 2.

Mathematica supports this interpretation of these expressions in two different forms, as global
rules and as local rules. Each form will be discussed in turn.

2.1 Global Rules
Global rules are rules that are applied whenever the appropriate left-hand side is encountered.
There are two kinds of user defined global rewrite rules, those using = and those using : =. The
distinction between the two lies in when the right-hand side is evaluated. Furthermore, for each
kind of rule there are two forms depending on where the rule is stored, giving four kinds of
rules indicated by =, A=, : =, and Λ : =.

2.1.1 = rules
Up to now, we have viewed rules using = as assignment statements, in analogy with
traditional imperative programming languages. Thinking of them instead as rewrite rules, the
characteristic property of rules using = is that they evaluate the right-hand side immediately
and all subsequent occurrences of the left-hand side are replaced by the evaluated right-hand
side. For instance:

x = a;
x + 5 => 5 + a

In traditional programming languages, the left-hand side of an assignment statement is
required to be a simple identifier (i.e., a symbol). Here, the left-hand side can be arbitrarily
complicated. For instance:

magic[7 + z[5, two]] = Expand[(l + y)^4]

l + 4 y + 6y 2 + 4y 3 + y4

Note that the output of an = expression is the evaluated form of the right-hand side. The left-
hand side should be regarded as a pattern such that whenever something is found that matches
the pattern, then it is replaced by the evaluated right-hand side.

198 Part II · Programming Language

(magic[z[1+4, two]+2+5]+ 5)Λ2 + magic[6 + z[5, two]]

(6 + 4 y + 6 y 2 + 4 y 3 + y 4) 2 + m a g i c [6 + z [5 , t w o]]

In this evaluation, the pattern magic [z [1 + 4 , two] + 2 + 5] simplifies to magic [7 +
z [5 , two]] which is replaced by 1 + 4 y + 6 y2 + 4 y 3 + y4. Hence the first part of the input,
which includes + 5 simplifies to the first term in the output. The second term does not match
any pattern involving m a g i c and so is left in unevaluated form. This rule is stored with
magic.

??magic

Global"magic
magic[7 + z[5, two]] = 1 + 4*y + 6*yA2 + 4*yA3 + yA4

Again we see the evaluated form on the right.
Now, there are some problems associated with left-hand sides that are not symbols. For

instance, suppose we try to make the following rule.

a + c = d

S e t : : w r i t e : Tag P l u s i n a + c i s P r o t e c t e d .
d

We get an error message saying that P l u s is P r o t e c t e d . Let us check this. P r o t e c t e d is an
attribute of functions.

A t t r i b u t e s [P l u s]

{ F l a t , L i s t a b l e , O n e l d e n t i t y , O r d e r l e s s , P r o t e c t e d }

We already know what L i s t a b l e means. What P r o t e c t e d means is that new rules cannot
be added for P lus . There is a (possibly gigantic) table of rules for each built-in operation and
we are not allowed to add new rules for them. This makes a certain amount of sense since
every time Mathematica encounters P l u s , it searches through its rules for P l u s to see if
something applies. If we add a new rule for P lus , then that rule would have to be examined at
every subsequent addition. But, when a rule of the form a + c = d is given, Mathematica
interprets it as a rule of the form P l u s [a , c] = b. Rules have to be stored somewhere and
the default place is with the rules for the head of the left-hand side. Of course, maybe we really
want to make a rule for P l u s , in which case we can unprotect P lus , make the rule, and then
reprotect it.

Seven · Rule Based Programming 199

Unprotect[Plus] => {Plus}
a + c = d => d
Protect[Plus] => {Plus}

Now whenever Mathematica sees a + c, it rewrites it as d.

a + c + m => d + m

Definitions that attach a value to the head of the left-hand side are called down values of the
head. However, there is a much less drastic way to add a new rule when the head of the left-
hand side is protected. There are also up values which try to associate the rule with the left most
unprotected argument of the left-hand side. They are written

m + n A= p => p

Note the caret Λ before the = sign. This rule is associated with the symbol m.

??m

Globalem
m/: m + n = p

One can, in fact, use this form of the syntax directly instead of using the sign Λ=.

q / : q + r = s =ï s
We already know that = is the infix form of Set, not DownSet, which doesn't exist. What is the
real name of Λ=?

FullForm[Hold[q + r Λ= s]]

Hold[UpSet[Plus[q, r], s]]

Thus, the symbol A= is the infix form of UpSet. A given symbol can have both up and down
values. Let's give q a down value in addition to the up value it already has.

q[x_] := 27 χΛ3

Then looking at q shows both kinds of values. The first is an up rule, indicated by the q/ :, and
the second is a down rule.

200 Part II · Programming Language

??q

Global^q
q/: q + r = s
q[x_] := 27*xA3

Finally, we can access the up values and down values individually.

{Upvalues[q], DownValues[q]}

{ { L i t e r a l [q + r] :> s } , { L i t e r a l [q [x _]] :> 27 x3}}

We'll explain later why the left-hand side of these substitutions is wrapped in L i t era l and
the substitution is written : > rather than ->.

Now let us try naively to define the squaring function using an = rule.

g [x] = xA2 => x 2

It works properly for the symbol x but not for anything else.

{g[x], g[y], g[2]} => {χ2, g[y], g[2]>

This is where the special symbol _ comes in. The form x_ means a pattern named x.

FullForm[x_] => Pattern[xf Blank[]]

An underscore _ in a pattern matches anything, so it is a kind of "wild card." If it appears on
the left-hand side of an "=" rule with a name, like x, then the left-hand side is rewritten as the
right-hand side with x replaced by the anything. Use this to redefine g.

g[x_J = xA2 => x 2

Now g works for any argument.

{ g [3] , g [x] , g [y] , g[z + w]}

{9, x 2 , y 2 , (w + z) 2 }

Thus, we can use = rules to define functions.

Seven · Rule Based Programming 201

2.1.2 := rules
Rules using : = are characterized by the property that they do not evaluate the right-hand side
immediately but instead leave it unevaluated until the function is actually used. They can be
used with simple left-hand sides or with left-hand sides containing patterns. For instance, here
are two rules that differ only by using = or :=.

al = Expand[(1 + x)A2];
a2 := Expand[(l + χ)Λ2];

If these are evaluated, they give the same result.

{ a l , a2} => {1 + 2 x + x 2 , 1 + 2 x + x2}

If we now give a value to x, then a l and a2 will use that value in different ways.

x = w + z;
{ a l , a2}

{1 + 2 (w + z) + (w + z) 2 , l + 2 w + w2 + 2 z + 2 w z + z2}

If the left-hand side of a : = rule contains a pattern, then on a subsequent occurrence of the
left-hand side with actual arguments, the formal arguments (or names of patterns) on the
right-hand side are replaced by the actual arguments from the left-hand side and then the
right-hand side is evaluated. Thus, each time the left-hand side of such a rule matches
something, it is replaced by a new evaluation of the right-hand side. To see the difference, we
again set up two rules, differing only by = or : =.

ff[u_] = Expand[u^2];
gg[u_] := Expand[u^2];

Now, try out these two definitions on the same value.

{ f f [l + y] , g g [l + y] } => {(1 + y) 2 , 1 + 2 y + y2}

The right-hand side of the rule for f f is evaluated immediately when it is entered. Since there
is nothing to expand, it just evaluates to u2. The right-hand side of the rule for gg, on the other
hand, retains the whole expression Expand [uA2] . When the two functions are subsequently
used, f f [l + y] is just replaced by (1 + y) 2 , while g g [l + y] is replaced by Expand [(1
+ y) A 2] which evaluates to 1 + 2 y + y2. The internal representation of such a definition
has the following form.

202 Part II · Programming Language
 ̂ -< v̂ s <, -i) s ,S s ' i ' '<i * s ^ s s s , ,·> , ,, s '^s's-vs-sV ^ « s f - s ^ s ^ s -s i^ss-ssssss^s's^ŝ ?st^ss¥,s l « i (^ s

FullForm[Hold[h[x_] := p]]

Hold[Se tDelayed[h[Pa t te rn[x , Blank[]]], p]]

Thus, the symbol := is the infix form of SetDelayed. We can also check what Mathematica
knows about f f and gg.

Input

?? f f

??gg

Output

Globa l^f f
f f [u _] = uA2

Global"gg
g g [u _] := Εχραηα[ιιΛ2]

This makes dramatically clear the distinction between evaluation when the rule is given and
evaluation when the rule is used.

2.1.3 The order in which rules are used
If several rules are given for the same operation, then Mathematica orders them in order of
increasing generality, so more specific rules are listed first. When Mathematica uses the rules it
starts at the beginning and uses the first one that applies. If Mathematica is unable to decide
which of two rules is more general, then it stores them in the order in which they were entered.
For instance.

foo[a_, 2] := bar
foo[2, b_] := barbar

The question is, what is the value of f oo [2 , 2] ?

foo[2 , 2] => bar

DownValues will give us the order in which these are stored.

DownValues[foo]

{ L i t e r a l [f o o [a _ f 2]] :> ba r , L i t e r a l [f o o [2 , b_]] :> barbar}

Thus, foo[a_ , 2] := bar comes first, so it is the rule that is used. If we don't like this
order, then it can be changed by reassigning some new value to DownValues [f o o] . For
instance:

Seven · Rule Based Programming 203

DownValues[foo] = Reverse[DownValues[foo]]

{Literal [foo[2, b_]] :> barbar, Literal [foo[a__, 2]] :> bar}

Then we get the other result for f oo [2 , 2] .

foo[2, 2] => barbar

This example illustrates a well-known problem with rewrite rules. If more than one rule
applies to a particular expression, then which one should be used first? It would be nice if the
order of application of rules didn't make any difference. Such systems of rewrite rules are
called confluent or Church-Rosser (after a famous theorem about the lambda calculus)
[Dershowitz]. Since Mathematica does use a definite order, we often make use of that
knowledge in setting up systems of rewrite rules which are not confluent when, with a bit
more care, they could be written in a confluent form.

2.2 Local Rules

Local rewrite rules are rules that are applied only to a single expression. The basic syntactical
ingredient of a local rewrite rule is an arrow, ->. Such a rule is applied to an expression using
the operation / . .

2.2.1 -> rules
Local rules using an arrow have already been encountered in checking solutions of equations.

equation = xA2 - 5 x + 6 == 0;
solution = Solve[equation, x] => {{x->3}, {x->2}}
equation /. solution => {True, True}

The output of Solve is a list of lists of local rules. Thus, x —> 3 is a local rule which is the
analog of the global rule x = 3. The rule is applied to an expression by using / · , so the
expression equat ion / . s o l u t i o n means "use the rewrite rule x —> 3 just in
equation." The result of this is the expression 3 A 2 - 5*3 + 6 == 0, which simplifies to 0
== 0, which is then evaluated as True. The usual form of the right-hand side of / . is a list of
local rules for some of the symbols that appear on the left-hand side. E.g.,

x y z / . {x -> 2 , y -> 3} => 6 z

204 Part II · Programming Language

If the right-hand side is a list of lists of local rules, then / . behaves as though it were
Lis tab le above the bottom level, so it moves inside the first layer of brackets in this case and
returns a list of results.

x y z / . {{x -> 2, y -> 3 } , {y -> 4, z -> 5}}

{6 z, 20 x}

Actually, / . is rather clever about decoding the list structure of the second argument.

x y z /. { {{x -> 2, y -> 3}, {y -> 4, z -> 5}},
{{x -> 6, y -> 7}, {y -> 8, z -> 9}},
{x -> 10, z -> 11} }

{{6 z, 20 x}, {42 z, 72 x}, 110 y}

Local rules with "—>" share with "=" rules the property that they evaluate their right hand
sides immediately.

2.2.2 :> rules
The local analog of a " : =" rule is a " : >" rule; i.e., a local rule that evaluates its right-hand side
only when it is used, or as the computer scientists say, only when it is called. We can make an
experiment similar to the one we made with "=" and " : =."

fff[l + u] /. fff[v_] -> Expand[(3 + ν)Λ2]

9 + 6 (1 + u) + (1 + u) 2

ggg[l + u] /. ggg[v_] :> Expand[(3 + v)A2]

16 + 8 u + u2

This time, the left-hand sides of the local rules involve patterns rather than just symbols. The
difference is that the local rule for f f f [v_] replaces it by the evaluation of Expand [(3 +
v) Λ2] which equals 9 + 6 ν + νΛ2. Hence, when this is used with v equal to 1 + u, we
get the result 9 + 6 (l + u) + (l + u) 2 . On the other hand, the local rule for ggg [v_]
replaces it by the unevaluated Expand [(3 + v) Λ2] which, when used with v equal to 1 +
u, gives Expand [(3 + (1 + u)) A 2] . This is then simplified to 16 + 8 u + u2. We can
check how these expressions are represented internally.

Seven · Rule Based Programming 205

FullForm[Hold[m /. n -> p]]

Hold[ReplaceAll[m, Rule[n, p]]]

FullForm[Hold[m /. n :> p]]

Hold[ReplaceAll[m, RuleDelayedfn, p]]]

Thus, / . is the infix form of ReplaceAll , the arrow -> is the infix form of Rule, and the
arrow : > is the infix form of RuleDelayed, (corresponding to Set and SetDelayed for =
and : =.) I read the symbol / . as "where." It can be regarded as the postfix form of the
construction "Let n = p in m" in functional programming languages, at least when used with
:>.

2.2.3 Application of rules using /. and //. .
There is another form of / . given by / / . which applies a local rule repeatedly until there is no
further change in the expression. Note that this is the normal mode for application of global
rules; they are always applied wherever possible. Internally, / / . is represented by:

FullForm[Hold[m //. n -> p]]

Hold[ReplaceRepeated[m, Rule[n, p]]]

FullForm[Hold[m //· n :> p]]

Hold[ReplaceRepeated[m, RuleDelayedfn, p]]]

Thus, / / . is the infix form of ReplaceRepeated. I read the symbol / / . as "where ree." It
is the postfix form of the construction "Letrec n = p in m" in functional languages. An example
of the difference between / . and / / . follows. This example uses a list of rules rather than just
a single rule. When a list of rules is applied to a single expression, then each rule for each
symbol is tried from the left until a match is found. In the following example, the right-hand
side of the / . expression consists of a list of two rules for the same symbol, f ac. This list is
searched from the left until a pattern is found that matches the left-hand side of the / .
expression. In the first case using / . , as soon as a match is found, the evaluation is finished. In
the second case using / / . , the rules are tried repeatedly from the left on the output of the
previous evaluation until no matches are found.

-20ο Part II · Programming Language

fac[5] /. {fac[l] -> 1, fac[n_] -> n fac[n - 1]}

5 fac[4]

fac[5] //. {fac[l] -> 1, fac[n_] -> n fac[n - 1]}

120

In the first case, the left-hand side of the rule f a c [l] -> 1 doesn't match anything in
f a c [5] , but fac[n_] -> n fac[n - 1] does with n_ equal to 5, so the output is 5
f ac [4]. In the second case, the left-hand side of the rule f ac [n_j -> n f ac [n - 1]
continues to match a part of the existing expression until one arrives at 12 0 f ac [1]. Then the
left-hand side of the rule f ac [1] -> 1 matches leading to 120*1 which simplifies to 12 0
where neither rule matches, so the output is 12 0.

If such rules are given globally, as in Chapter 2, Section 2.2.3, then the order in which they
are given doesn't matter since Mathematica will put the more specific rule, f ac [1] = 1, first.
However, in a list of local rules, applied with / / . , we are completely responsible for the
ordering. Thus, the following gives the wrong answer:

fac[5] //· {fac[n_] -> n fac[n - 1], fac[0] = 1}

0

2.2.4 Named lists of local rules
Lists of rules can also be named to be used wherever desired.

facrules = {fac[l] -> 1, fac[n_] -> n fac[n - 1]};
{fac[7] /· facrules, fac[7] //.facrules}

{7 fac[6], 5040}

Look at the packages Trigonometry.m and LaplaceTransf orm.m to see large examples of
named lists of delayed rules.

2.2.5 Simultaneous substitution
If several local rules are given for different symbols, then these rules are applied
simultaneously. For instance,

{ x , y , z } / . {x - > y , y - > z , z - > w}

{ y , z , w}

Seven · Rule Based Programming 207

If the substitutions are carried out sequentially, then the results are quite different.

{x , y , z} / . {x -> y} / . {y -> z} / . {z -> w}

{w, w, w}

In particular, this means that variables can be interchanged without introducing an
intermediate temporary variable.

{x , y} / . {x -> y , y -> x} {y , x}

2.3 Summary of Transformation Rules

The following tables summarize the general properties of global and local rules.

evaluate rhs

delay rhs

Global rules
stored with
the head

=

: =

Global rules
stored with an
argument

A _

A : =

Local rules

->

:>

Application of rules

/ . = "where"

/ / . = "where ree"

3 Pattern Matching
'-^"^tM^^<--^- - s^';*!w^-^Vi

3.1 Patterns

Pattern matching is a basic ingredient of rule based programming. There is no problem with a
rule like x = a where the only thing that has to be matched is x. But in more complicated
circumstances like the rule for mag ic above, there is something to be done to discover that
some expression involving mag ic matches the appropriate pattern. Even more so, there is
something to be done for expressions involving _ , perhaps in several locations. Rules using _
are not just simple rules but they are rule-schemes having the effect that anything of a given
form is rewritten in some other specified form. One can think of underscores as "wild cards"
that match anything, except that x_ does not mean "x followed by a wild card," but it means a
pattern named x. Thus, the full form of s y m b o l _ i s P a t t e r n [s y m b o l , Blank []] . The
symbol here is called the "name" of the pattern. Note that symbol must be a symbol in the
Mathematica sense of the term. A compound pattern is an expression with zero or more of these
simple patterns as subexpressions. One can consider a compound pattern as a template for an

208 Part II · Programming Language

expression. An expression expr matches a compound pattern p a t t containing simple
patterns p i , . . . p n , if there are subterms t i , . . . t n , of expr such that patt , with P i , . . .
p n , replaced by t i , . . . t n , is the same as expr. (Note that some of the t i 's can themselves
be patterns.) In all probability, what Mathematica actually does is equivalent to working in the
reverse order by replacing subterms of expr by Pattern to see if the expression patt can be
derived in this way. There are various techniques with names like resolution and narrowing for
complicated pattern matching, but Wolfram Research, Inc. has not revealed exactly how
Mathematica does it.

3.2 Underscore Rules

3.2.1 Rules with _
The symbol _ by itself, without any symbol on the left, can be used to describe a pattern.
(Recall that the FullForm of _ is Blank []). For instance, the expression _Λ_ matches
anything of the form xAy, where x and y are any expressions. However, there is no way to use
the things that match the _'s on the right-hand side. Here is an example of such an unnamed
pattern and three instances of it.

{ f l [a A a , a] , f l [a^b, c] , f l[magic^2, what]} => {p, p , p}

3.2.2 Rules with x_ .
A pattern of the form x_ is matched by any expression and then x is bound to the expression
for purposes of evaluating the right-hand side. Thus if a definition is given in the form f [x_]
:= xA2 then the result of f [a] is the same as evaluating xA2 / .
x -> a. If there are two instances of x_ on the left-hand side of a rule then they must be filled
with the same expression. Here are a pair of examples, with three instances of each.

f2[x_"y_, z_] := p[x q[y, z]];
{f2[aAa, a], f2[aAb, c], f 2 [magica, what]}

{p[a q[a, a]], p[a q[b, c]], p[magic q[2, what]]}

f3[x_Ay_, x_] := p[x q[y]];
{f3[a*a, a], f3[aAb, a], f 3 [magica, what]}
{p[a q[a]], p[a q[b]], f3[magic2, what]}

Seven · Rule Based Programming 209

3.2.3 Rules with x_Head
A pattern of the form x_Head is matched by any expression whose head is Head. Here is the
same example, with three instances.

f4[x_/y_Integer , z_] := p[x q[yf z]] ;
{ f4[a*a, a] , f4[a*b, c] , f4[magic"2, what]}

{f4 [a a , a] , f 4 [a b / c] , p[magic q [2 , what]]}

The only expression here that matches the pattern is f 4 [magic^2, what] .
The head can be anything; e.g.,

f5[x_*y_foo, z_] := p[x q[y, z]] ;
{ f5[a*a, a] , f5[a A b, c] , f5[magic*foo[b] , what]}

{ f5 [a a , a] , f 5 [a b , c] , p[magic q [f o o [b] , what]]}

The internal forms of _, x_ and x_Head are:

{FullForm[_], FullForm[x_], FullForm[x_Head]}

{Blank[]f Pattern[xf Blank[]]f Pattern[xf Blank[Head]]}

Thus x_Head is a restricted form of a wild card that only can be filled by expressions whose
head is Head. As we have seen, one way to think about heads is as types; i.e., the type of an
expression is its head. Then a pattern of the form x_Head only applies to entities of type Head.
We will exploit this point of view later. In all of the examples above, an expression that doesn't
match the left-hand side is returned in unevaluated form. But note that something is always
returned as the output. The program does not crash or report an error. (In a certain sense, the
normal thing is for an expression to be returned without change. Only in "special"
circumstances is it rewritten in a different form.)

3.2.4 Double and triple underscores
If we give a rule for an expression involving two separate underscores then we are
constructing a function of two variables. Such a function only works if it is given exactly two
arguments.

"[*_/ y_] := x + y;
{f6[a], f6[a, b]f f6[a, b, c]}
{f6[a], a + b, f6[a, b, c]}

210 Part II · Programming Language

From the point of view of ordinary mathematics this is the only thing that makes sense. A
function depends on some specified number of arguments. However, from the point of view of
rewrite rules, all that matters is the pattern on the left-hand side, and we as well as the
computer are able to distinguish the pattern consisting of "one or more arguments," or "zero or
more arguments." Mathematica has a provision for using such patterns. Besides rule-schemes
using a single underscore _, there are rule-schemes using a double or triple underscore. A
double underscore, , is matched by one or more expressions, separated by commas, while a
triple underscore, , is matched by zero or more arguments. The form x means a
sequence of one or more expressions, named x, and x Head means a sequence of one or
more expressions, named x, all of whose heads are Head. Similarly, the form x means zero
or more expressions, named x, and x Head means zero or more expressions, named x, all
of whose heads are Head. Here is an example of a function whose output is the square of the
number of arguments it has been given. In the first case, it accepts one or more arguments and
in the second, it accepts zero or more arguments.

f7[x] := Length[{x}p2;
f8[x] := Length [{x}p2;
{f7[], f7[a], f7[a, b], f7[a, b, c]} => {f7[]f 1, 4, 9}
{f8[], f8[a], f8[a, b], f8[a, b, c]} => {0, 1, 4, 9}

Note that some of the built-in functions allow zero or more arguments. E.g.,

{Plus[], Plus[3], Plus[3, 5], Plus[3, 5, 7]}

{0, 3, 8, 15}

{Times[], Times[3], Times[3, 5], Times[3, 5, 7]}

{1, 3, 15, 105}

The case of zero arguments for these built-in operations produces the unit for the operation.
Note: it is hard to think of a way to use x or x in a way that does not either turn it into a
list by using {x} on the right-hand side or pass it to some built-in function that knows what to
do with a variable number of arguments.

3.2.5 Optional arguments
Default values and double or triple underscores are important techniques in giving optional
arguments to functions, in the sense that variable numbers of arguments can be given to such a
function. However, there is another sense in which a specific argument can be optional. Let us
go back to a modification of our first example of a pattern above.

Seven · Rule Based Programming 211

f9[x_*y_, z_] := p[x y z] ;
{f9[a"b, c] , f [a , c] } => {p[a b c] , f [a f c]}

We might think that f [a , c] should match the pattern with an understood exponent 1,
which would mean that it should be rewritten as p [a c], but of course Mathematica can't
guess that this is what we intend. However, there is a provision to take care of such default
values that are meant to be inserted in a pattern if they are missing. When a pattern is intended
to have a default value, v, this is indicated by writing _ : v. So, the effect we wanted to achieve
is given by the form:

flO[x_"y_:l, z_] := p[x y z];
{flO[aAb, c]f flO[a, c]} => {p[a b c], p[a c]}

In this case, the default value 1 for the exponent is the natural and obvious choice, and
Mathematica knows this. It has standard built-in default values for a number of such positions.
The notation _ . tells Mathematica to use the built-in default value. Note the almost invisible
period after the underscore. Thus, the effect we wanted at the beginning is given by a tiny
modification of the original form.

fll[x_Ay_., z_] := p[x y z];
{fll[aAb, c]f fll[a, c]} =» {p[a b c], p[a c]}

Here is another example involving an optional second argument, whose default value is the
pure function Tan.

apply[argument_, function__:Tan]:= function[argument];
{apply [3] , a p p l y [3 . 1] , apply [3 .1 f Cos] ,
apply[3f #Λ2&]}

{Tan[3] , -0 .0416167, -0 .999135, 9}

There is still another way that optional arguments occur in Mathematica. Some functions, for
instance P l o t , can take named optional arguments; e.g., AspectRatio -> 1, etc. By
incorporating such functions into our own definitions, we can use these nmed optional
arguments too. (We will see in Chapter 11, Section 4 how to write our own functions with our
own named optional arguments.) Consider an example of a plotting function.

plotWithSin[functlon_, var_] :=
Plot[{Sin[var], function[var]}f {var, 0, 2 Pi}];
plotWithSin[Cos[2 #]&, x];

212 Part II · Programming Language

1

0 .5

- 0 . 5

- 1

We would like to be able to use the optional arguments for P l o t in our p l o t w i t h s i n
command. The way to do this is to add a triple underscore pattern to its form with the name
o p t s and then just pass o p t s to P l o t .

p l o t W i t h S i n O p t s [f u n c t i o n _ , v a r _ , o p t s] :=
P l o t [{ S i n [v a r] , f u n c t i o n [v a r] } ,

{ v a r , 0 , 2 P i } , o p t s] ;
p l o t W i t h S i n 0 p t s [E " (- # / 2) & , x , A s p e c t R a t i o -> 1] ;

l1

0 .5

- 0 . 5

-1 -

3.2.6 Names for compound patterns

In an expression of the form f [x _ ^ n _ I n t e g e r , z _] , the patterns are named with the
symbols x, n, and z, but there is no name for the whole compound pattern x_*n_ integer .
There is a way to give names to such compound patterns so that they can be referred to
directly on the right-hand side. Some of the Packages that are shipped with Mathematica make
frequent use of this. The syntax consists of a name followed by a colon followed by the
compound pattern. (Don't confuse _ : symbol with name:pattern.) One often encounters
this compound pattern written with an explicit head, but that is not necessary. The following is
an example with two different rules, where the output depends on whether the exponent is an
integer or a real number.

Seven · Rule Based Programming 213

f12[expr:x_An_Integer, z_] := z ExpandAll[expr];
f12[expr:x_^n_Real, z_] := z expr;
{fl2[(l - x"2)"3, 2], fl2[(l - χΛ2)Λ(-3.2), 2]}

2
{2 (1 - 3 x2 + 3 x4 - x6), }

(1 - x2)3·2

3.2.7 Repeated patterns
An interesting kind of pattern that is not covered by the preceding devices is a list of arbitrary
length all of whose entries match some specified pattern. The pattern
{ e n t r i e s I n t e g e r } is matched only by a (possibly empty) list of integers, but if we want
them to all be of the form χ _ Λ η _ I n t e g e r then some new description of the pattern is
necessary. This is given by . . and . . . in the following examples. As usual, . . means one or
more repetitions. The Mathematica Book says that . . . means zero or more repetitions, but this
doesn't seem to work in Version 2.2.

fl3[list:{(_"_Integer)..}] := Apply[Plus, list];
{fl3[{a"2, bA3, cA4}], fl3[{a"x, bAxf cAx}]}

{a2 + b3 + c4, fl3[{ax, bx, cx}]}

fl4[list:{{_, _}..·}] := Map[Apply[Plus, #]&, list];
{fl4[{}], fl4[{{l, 2}, {3, 4}, {5, 6}}]}

{fl4[{}], {3, 7, 11}}

See the package S t a t i s t i c s ^ DataManipulaticuT for a number of examples.

4 Using Patterns in Rules
Patterns play an important role in both global and local rules.

4.1 Patterns in Global Rules

These are illustrated by two examples.

214 Part II · Programming Language

4.1.1 Logarithms
In Chapter 1, rules were given for defining a logarithm-like function.

log[a_ b_] := log[a] + log[b];
log[a_Ab_] := b log[a];

These rules cover some unexpected cases.

{log[a b c d],log[a b^3 c],log[a/b],log[Sqrt[b]]} //
TableForm

log[a] + log[b] + log[c] + log[d]
log[a] + 3 log[b] + log[c]
log[a] - log[b]
log[b] / 2

4.1.2 Differentiation
It is very easy to give rewrite rules for differentiating polynomials of one variable.

diffr[x_^n_., x_] := n χΛ(η - 1);
diffr[a_ + b_, x_] := diffr[a, x] + diffr[b, x];

Notice the default value for n in the first rule. Try it out on some typical values.

{ diffr[x"3, x], diffr[y, y],
diffr[w"(l/3), w], diffr[r"3.1, r],
diffr[x^2 + x"3, x] }

{3 x2, 1, 1/(3 w 2 / 3), 3.1 r2·1, 2 x + 3 x2}

But notice that d i f f r doesn't know what to do with a constant times x, or just a constant for
that matter, and we have no obvious way as yet to teach it what to do.

{diffr[5, x], diffr[5 x, x]}

{ d i f f r [5 , x] , d i f f r [5 x, x]}

We could try the following: first, give a rule for products.

diffr[a_ b_, x] := a diffrfb, x] + diffr[a, x] b

Seven · Rule Based Programming 215

Using this for a x gives

diffr[a x, x] => a + x diffr[a, x]

The program doesn't know that a is supposed to be a constant, so we have to tell it that
explicitly, with a last rule.

diffr[a , x] = 0;

Then it gives the "correct" answer.

d i f f r [a x, x] => a

However, this is not very satisfactory. We would like some general way to say that a is not a
function of x. Section 5.2.2 below will continue this discussion.

4.2 Patterns in Local Rules

These are illustrated by three examples.

4.2.1 Subscripted arrays
An important use for patterns is on the left-hand sides of local rules. The first example is just to
change the appearance of a matrix. Use Array to make a matrix with indexed entries and then
use a local rule to display the indexes as subscripts.

MatrixForm[Array[a, {2, 5}] /.
a[i_, j_] :> Subscripted[a[i, j]]]

*l,l al,2 aif3 ai,4 aif5
*2,1 ^2,2 a2,3 a2,4 a2,5

4.2.2 Length dependent rules
Our next example shows that there can be a rule which depends only on the length of a list.
Whenever the list below tries to grow longer than length three, the first four entries are
multiplied together pairwise to decrease the length of the list by two.

216 Part II · Programming Language

Table[
Range[n]//. {x_, y_, z_, w_, u } -> {x y, z w, u},
{n, 1, 10}]

{{1}, {1, 2}, {1, 2, 3}, {2, 12}, {2, 12, 5}, {24, 30},
{24, 30, 7}, {720, 56}, {720, 56, 9}, {40320, 90}}

4.2.3 runEncode
This example was the 1991 Mathematica programming competition question. The problem is to
write a function called runEncode which detects repeated adjacent entries in a list. The output
is a list of pairs which encodes the entries and how often they are repeated. (Note: this is not
the same as f r e q u e n c i e s discussed in the preceding chapter.) Here is one of the best
procedures.

runEncode[list_List] :=
Map[{#, 1}&, list] //.
{u , {v_, r_}, {v_, s_}, w }->{u, {v, r + s}, w}

And here is a random list of 20 a's and b's to try it on.

newlist =

Map[{a, b}[[Random[Integer, {1, 2}]]]&, Range[20]]

{b, a, a, a, b, b, b, b, b, b, b, a, a, b, b, a, b, a, a, a}

runEncode[newlist]

{{b, l},{a, 3},{b, 7},{a, 2},{b, 2},{a, l},{b, l},{a, 3}}

5 Restricting Pattern Matching with Predicates
So far, all of the rules we have considered have been "context free" rewrite rules. Whenever the
pattern is matched, the rewriting is carried out. There can be a restriction on the head of the
matching expression included in the pattern. However, there are also conditional rewrite rules
which are only applied when some condition is satisfied. First, we have to discuss predicates
in Mathematica, since the conditions will always be expressed in terms of them.

Seven · Rule Based Programming 217

A predicate is a function that returns the value True or False. Predicates can be thought of
as another way to construct types. In this view, types are subsets of the (infinite) universe of all
Mathematica expressions. A predicate P corresponds to the type, or set, of all expressions expr
such that P[expr] evaluates to True. (There is actually a version of set theory proposed by
Von Neumann in the 1920s that defined sets to be exactly such predicates on a pre-existing
universe of elements.) Thus, we have at least two ways to think about types in Mathematica, as
heads or as predicates.

5.1 Examples of predicates
Some predicates only return the value True or False when they are used for numbers.

{1 == 2 , 1 < 2, 1 <= 2 , 1 >=2, 1 > 2}

{Fa l se , Truef True, F a l s e , Fa l se}

{Posit ive[3] , Pos i t ive[-3] , Negative[3], Negative[-3]}

{True, False, False, True}

If they are used for symbols or other expressions, the results are unevaluated, except in special
cases.

{a == b , a < b , a <= b , a >= b , a > b , a == a, a <= a}

{a == b, a < b, a <= b, a >= b, a > b, True, a <= a}

{Positive[a], Positive[-a], Negative[a], Negative[-a]}

{Positive[a], Positive[-a], Negative[a], Negative[-a]}

However, there is a predicate defined for all expressions that is similar to ==.

{expr === expr, a === b} => {True, False}
FullForm[Hold[a === b]] => Hold[SameQ[a, b]]

Thus, === is the infix form of SameQ which returns True if the left and right hand sides are
syntactically identical, and False otherwise. (Recall that == is the infix form of Equal.)

All built-in predicates that are defined for all expressions end with Q. It's easy to display all
of them.

218 Part II · Programming Language

??*Q

AtomQ
DigitQ
EllipticNomeQ
EvenQ
FreeQ
HypergeometricPFQ
IntegerQ
LegendreQ
LetterQ
ListQ
LowerCaseQ

MachineNumberQ
MatchLocalNameQ
MatchQ
MatrixQ
MemberQ
NameQ
NumberQ
OddQ
OptionQ
OrderedQ
PartitionsQ

PolynomialQ
PrimeQ
SameQ
StringMatchQ
StringQ
SyntaxQ
TrueQ
UnsameQ
UpperCaseQ
ValueQ
VectorQ

Try some of the obvious ones concerning numbers.

Input

NumberQ[5.3]

NumberQ[3/5]

NumberQ[3 + 51]

NumberQ[yesterday]

IntegerQ[27]

IntegerQ[5.3]

IntegerQ[3/5]

EvenQ[4]

OddQ[4]

PrimeQ[31]

Output

True

True

True

False

True

False

False

True

False

True

Seven · Rule Based Programming 219

The next predicates involve more general expressions.

Input

PolynomialQ[2 xA3 + 3 y, {x, y}]
PolynomialQ[a χΛ3 + b y, {x, y}]
PolynomialQ[a x + b]
PolynomialQ[Sin[x + 1], {x}]

VectorQ[{a, b, c}]
VectorQ[a]
VectorQ[{a}]

OrderedQ[{3, 5, a, w}]
AtomQ[a]
AtomQ[Sin[a]]
AtomQ[5]

Output

True
True
True
False

True
False
True

True
True
False
True

The second argument to PolynomialQ is the list of variables such that the first argument is a
polynomial in them. If it is missing, then the single argument must be a polynomial in all of its
leaves. OrderedQ asks if the entries in a list are ordered according to the canonical built-in
ordering which is defined for any two expressions.

The predicates MemberQ and FreeQ are less obvious in the way they work.

Input

MemberQ[{x, y, z}, x]
MemberQ[{x, y, z}, s]
MemberQ[{x, xAn}, n]
MemberQ[{x, xAn}, n, Infinity]
MemberQ[{x"2, yA2}, χΛ_]
MemberQ[Plus[x, y, z], x]
MemberQ[(x + y) z, x + y]

Output

True
False
False
True
True
True
True

220 Part II · Programming Language

Input

FreeQ[x y z, x]

FreeQ[x y z, s]

FreeQ[{x, xAn}, n]

FreeQ[{x, xAn}; n, {1}]

FreeQ[{xA2, y*2}, xA_]

FreeQ[Plus[x, y, z], x]

FreeQ[(x + y) z, x + y]

Output

False

True

False

True

False

False

False

To determine what is going on here, look up the help entry for MemberQ.

?MemberQ

MemberQ[list, form] r e t u r n s True i f an element of l i s t
matches form, and Fa l se o the rwi se . MemberQ[list, form,
l e v e l s p e c] t e s t s a l l p a r t s of l i s t s p e c i f i e d by
l e v e l s p e c .

This is not completely clear. First of all, "list" doesn't have to be a list, while "element" means
"occurs at level one." As the fourth example above shows, the way to find out if something
occurs at some other level than 1 is to add a levelspec (here In f in i ty) . The "form" in the
second argument can be a symbol, or a pattern, or a possible subexpression. All of these, of
course, are patterns, but some of them are very specific patterns that are matched by just one
thing. The opposite, in an appropriate sense, of MemberQ is FreeQ. It also can take a levelspec
as third argument.

5.2 Using Predicates

Predicates are used to control pattern matching. However, the position of the predicate in an
expression can make it appear as if predicates are being used in different ways. In general,
predicates are applied using / ;, which is the infix form of Condition.

FullForm[Hold[m /; n]] => Hold[Condition[m, n]]

Seven · Rule Based Programming 221
-< AU v*v***«M " * w v - ̂ , m-î i

5.2.1 Restricting rule application
If the predicate is placed at the end of a global rule definition, then it appears to be used to
restrict the application of the rule. For instance, define a multiplicative function as follows:

h[a_ b_] := a h[b] /; FreeQ[a, x]
h[2 (1 + x) xA2] + h[a b x]

a b h[x] + 2 h[x2 (1 + x)]

I read / ; as "provided" rather than Condi t ion. Rules given this way can be considered to be
conditional rewrite rules, in distinction to previous rules which are unconditional; i.e., which
are applied whenever something matches their pattern. Using rule / ; Predicate restricts
the rule to those situations in which the predicate evaluates to True; i.e., to those expressions
belonging to the type given by the predicate. An unrestricted rule is the same as a conditional
rule where the predicate always equals True.

5.2.2 Differentiation revisited
Predicates can be used to extend our definition of differentiation in Section 4.1.2 above to deal
with arbitrary polynomials in a very natural way by adding a single conditional rule.

diffr[x_*n_., x_]
diffr[a_ + b_, x_]
diffr[a_ b_, x]
diffr[a , x]

= n xA(n-l);
= diffr[a, x] + di£fr[b, x];
= a diffr[b, x] + diffr[a, x] b;
= 0 /; FreeQ[a, x]

Now constants and products are handled properly

{ d i f f r [a x, x] , d i f f r [(2 + 3 χΛ2) (5 - 7 χ Λ 3) , χ] }

{a, -21 x2 (2 + 3 x2) + 6 x (5 - 7 x 3)}

5.2.3 Restricting simple patterns-factorial functions
The other place to put a predicate is immediately after the pattern being affected in which case
it appears to restrict pattern matching rather than rule application. For instance, our simple
construction of a factorial function uses two rules.

factorial[1] = 1; factorial[n_] := n factorial[n - 1]

222 Part II · Programming Language

This works perfectly well if it is given positive integers as arguments.

f a c t o r i a l [3] => 6

However, if it is given some other kind of argument, then it fails badly.

{factorial[today], factorial[-3]}

$RecursionLimit:ireclim: Recursion depth of 256 exceeded.

A very large output is omitted. What happens, of course, in these cases is that the value 1 is
never encountered as an argument, so the function keeps calling itself recursively until the
built-in recursion limit is reached. Note also that these rules are not confluent. When they do
work correctly, the result depends crucially on always trying to use the first rule before the
second one.

This bad behavior can be corrected by using a conditional rule, which incidentally makes
the system confluent.

factoriall[l] = 1;
factoriall[n_] := n factoriall[n - 1] /; n > 1
{factoriall[5], factorial1[-3], factoriall[today]}

{120, factoriall[-3], factorial1[today]}

There is another way to express this using the observation that the condition only involves
one argument on the left-hand side of the rule. One can use the form _? Predicate , which
restricts the pattern to something for which the predicate evaluates to True. To keep things
confluent, we start the system at 0.

factorial2[0] = 1;
factorial2[n_?Positive] := n factorial2[n - 1]
{factorial2[5], factorial2[-3], factorial2[today]}

{120, factorial2[-3], factorial2[today]}

In the form _?Predicate, it is required that Predicate be a pure function. Another version
of the syntax in Version 2.0 and higher is:

factorial3[0] = 1;
factorial3[n_/; Positive[n]] := n factorial3[n - 1]
{factorial3[5], factorial3[-3], factorial3[today]}

{120, factorial3[-3], factorial3[today]}

Seven · Rule Based Programming 223

Note the distinction in form. In n_?Pos i t i ve , P o s i t i v e is a pure function, while in the
form using / ; , the condition is the value of the predicate for the name of the pattern. In either
case, P o s i t i v e or P o s i t i v e [n] is a positive test in the sense that the pattern is matched and
the rule applied only if the test succeeds. These two forms are equivalent, but Mathematica1 s
internal representation of them is different. (See the Practice section below.)

Now try f a c t o r i a l 3 on a real number and see what happens.

f a c t o r i a l 3 [5 . 3] => 67.4607 f a c t o r i a l 3 [- 0 . 7]

What happens is that 5.3, 4.3, 3.3, 2.3, 1.3 and 0.3 are all P o s i t i v e so the rule is applied
until the value -0.7 is reached, where the condition fails so f ac tor ia l3 [-0.7] is returned in
unevaluated form. Notice again that there is no error message, because no error has been
committed. It is not an error for a rule not to match.

Of course, the real problem is that we only intend factorial to apply to integers. But this
additional restriction can easily be added.

factorial4[0] = 1;
factorial4[n_Integer?Positive] := n factorial4[n - 1]
{ factorial4[5], factorial4[-3],
factorial4[today], factorial4[5.3] }

{120, factorial4[-3], factorial4[today], factorial4[5.3]}

This also has an alternative form in Version 2.0 and higher. We revert to starting at 1.

factorials[1] = 1;
factorials[n_Integer /; n > 1] := n factorials[n - 1]
{ factorials[5], factorials[-3],
factorials[today], factorials[5.3] }

{120, factorials[-3], factorials[today], factorials[5.3]}

We also check in the Practice section below that the internal representations of these two
restrictions are different. Of course the predicate that appears after / ; or ? can also be a user
defined expression.

p[x_Integer?((# > 3)&)]:= x + 1
{P[l], P[2], p[3], p[4], p[5]}

<P[l]r P[2], p[3], 5, 6}

224 Part II · Programming Language

Here is the same thing in Version 2.0 and higher. Note the difference in syntax.

pp[x_Integer /; x > 3] : = x + l
{PP[1], PP[2], pp[3], pp[4], pp[5]}

{PP[1], PP[2], pp[3], 5, 6}

5.2.4 Restricting compound patterns
The form ?predicate can only be used after single slots, but the form / ; predicate can be
used after any pattern, simple or compound. For instance,

mm[x_, n_] / ; OddQ[n + x] := xAn;
mm[x_, n_] / ; EvenQfn + x] := x A (- n) ;
{1001(2, 3] , mm[3, 3] , mm[3, 4] , mm[4, 4]}

{8f 1/27, 81 , 1/256}

The Mathematica Book [Wolfram] suggests that it is better to place the predicate as close to the
pattern being affected as possible. However, the pattern has to be a complete expression, so in
the following example, the list brackets are essential.

nn[{x_, n_} /; OddQ[n + x]] := χΛη;
nn[{x_, n_} /; EvenQ[n + x]] := xA(-n);
{nn[{2, 3}], nn[{3, 3}], nn[{3, 4}], nn[{4, 4}]}

{8, 1/27, 81, 1/256}

Named compound patterns can be treated the same way.

nnn[expr:x_An_Integer/;MemberQ[x, n, Infinity], z_] :=
ExpandAll[z expr];

{nnn[(l - χΛ2)Λ2, w + z], nnn[(l - χΛ2)Λ3, w + z]}

{w - 2 w x2 + w x4 + z - 2 x2 z + x4 z, nnn[(l - x2)3, w + z]}

5.2.5 Manipulating lists
Predicates also play an important role in manipulating lists. We have already made frequent
use of the Se l ec t operation. Recall a simple example.

Select[Range[-3, 3], Positive] => {1, 2, 3}

Seven · Rule Based Programming 223

There is a similar operation called Cases whose second argument is a pattern rather than a
predicate.

Cases[{a+b, a bf aAbf a-b, xAx}, _ Λ _] => {ab, xx}

The pattern in the second argument can be restricted by a predicate, in either of the two usual
forms.

Cases[Range[-3, 3]f _?Positive] => {1, 2, 3}
Cases[Range[-3, 3], x_ /; x > 0] => {1, 2, 3}

The opposite of Cases is DeleteCases which drops all entries not matching some pattern.

DeleteCases[Range[10]A2, x_ / ; OddQfx]]

{4, 16, 36, 64, 100}
There is a related operation called P o s i t i o n whose second argument is also a pattern. It

gives the parts list for all arguments that match the pattern.

Position[Range[-3, 3], x_ /; x > 0] => {{5}, {6}, {7}}

Strangely, there is no operation doing the same thing as P o s i t i o n but using a predicate
rather than a pattern. But, as this example demonstrates, that is no restriction since the pattern
can be that of an expression that satisfies some predicate. Note that Cases, DeleteCases,
and P o s i t i o n can all take a third argument which is a levelspec. There is also another form
of Cases in which some operation is applied to the entries that are selected.

Cases[Range[-3, 3], (x_ /; x > 0) :> Sqrt[x]]

{1, Sqrt[2], Sqrt[3]}

Finally, the operation Scan applies some pure function to each element in a list, starting at
the left, just like Map, except that no output is returned. If the operation has some side effect,
then that will be carried out. For instance:

Scan[Print, Range[3]]

1
2
3

226 Part II · Programming Language

Frequently Scan is used to find the first entry satisfying some property. In order to see the
result it is necessary to break out of the scanning procedure when this happens. For instance,

Scan[If[# > 4, Return[#]]&, Range[-3, 3]"2] => 9

In fact, all of these operations work for expressions with arbitrary heads, not just for lists.

6 Examples of Restricted Rewrite Rules

6.1 Global Rules

6.1.1 Subsets of a set

This example appeared in [Simon 1]. Given a finite set (presented as a list) and an integer k, it
finds all k-element subsets of the set.

kSubsets[list_List, 0] := {{ }};
kSubsets [list__List, 1] := Partition [list, 1];
kSubsets [list__List, k__Integer?Positive] := {list} /;

(k == Length[list]);
kSubsets[list_List, k_Integer?Positive] :=

Join[(Prepend[#, First[list]])& /@
kSubsets[Rest[list], k - 1],

kSubsets[Rest[list], k]] ;

The rules correspond directly to the usual proof that the number of k-element subsets of an n-
element set is given by the binomial coefficient (n, k). Thus, the set of 0-element subsets
consists of just the empty set. The set of 1-element subsets consists of the singleton subsets. If k
= n, then there is just one k-element subset; namely, the set itself. Finally, in general, the k-
element subsets consist of the k-element subsets of the set given by dropping the first element
together with the first element added to the (k-l)-element subsets of the same set.

k S u b s e t s [{ 1 , 2 , 3 , 4 , 5 , 6 , 7 } , 3]

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7},
{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5},
{1, 4f 6}, {1, 4, 7}, {1, 5, 6}f {1, 5, 7}, {1, 6, 7},
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 4, 5},
{2, 4, 6}, {2, 4, 7}, {2, 5, 6}, {2, 5, 7}, {2, 6, 7},
{3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 5f 6}, {3, 5, 7},
{3, 6, 7}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}}

Seven · Rule Based Programming 227

To get all subsets from this version, we have to join together the lists of k-element subsets for
all k up to the size of the set.

subsets [list__List] : =
Join[Table[kSubsets[list, k], {k, Length[1ist]}]]

subsets[{1, 2, 3, 4}]

{{{1}, {2}, {3}, {4}}, {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}}, {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}f
{2, 3, 4}}, {{1, 2, 3, 4}}}

Another way to calculate all subsets of a set, via a functional strict one-liner, was found by I.
Vardi [Vardi], based on the distributive law. Observe first how D i s t r ibute works on three
factors.

D i s t r i b u t e ! (1 + a) (1 + b) (1 + c)]

1 + a + b + a b + c + a c + b c + a b c

This result is clearly related to the set of all subsets of {a, b, c}. The plus sign has to be replaced
by a comma and the multiplication has to be replaced by L i s t somehow. Mathematica has a
more general form of D i s tr ibute in which one can specify that f is to be distributed over g.
(Actually, the final £ in this expression is unnecessary.)

Distribute[f[g[x, y], g[x, y]], g, f]

g[f[x, x], f[xf y]f f[y, x], f[y, y]]

So here is a first step in getting all subsets of {a, b, c}. Instead of 1 + a, we use
{ { } / {a} } a n d distribute L i s t over L i s t as follows:

t r i a l =
Distribute! List[{{}f {a}}, {{}, {b}}, {{}, {c}}],

List]

{{{}, {}, {}}, {{}, {}, {c}}, {{}, {b}, {}}, {{}f {b}, {c}},
{{a}, {}, {}}, {{a}, {}, {c}}, {{a}, {b}, {}},
{{a}, {b}, {c}}}

One way to turn this into the list that we want is to F lat ten each of the inner lists.

228 Part II · Programming Language

Map[Flatten, trial]

{{}, {c}, {b}f {b, c}, {a}, {a, c}f {a, b}, {a, bf c}}

Another way is to change the head of each argument of this list to Union.

Map[Apply[Union, #]&, trial]

{{}, {c}, {b}, {b, c}, {a}, {a, c}, {a, b}, {a, b, c}}

So, all we have to do is construct the strange list of pairs consisting of the empty set together
with a singleton set from the original set. This is also easy to do.

Map[({{}, {#}})&, {a, b, c}]

{{{}, {a}}, {{}, {b}}, {{}, {c}}}

Thus, the desired one-liner can be written in two forms. The result is sorted to get subsets in
their usual order of increasing size.

subsetsl[list_List] :=
Sort[Map[Flatten,
Distribute[Map[({{}, {#}})&, list], List]]];

subsets2[list_List] :=
Sort[Map[Apply[Union, #]&,
Distribute[Map[({{}, {#}})&, list], List]]];

These both give the same result.

{subsetsl[{a, b, c}], subsets2[{a, b, c}]}

{{{}/ {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}},
{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}}

Actually, Vardi's version [Vardi] is different. Note that the output is not sorted.

subsetsFunctional[list__List] : =
Distribute! {{}, {#}}& /& list,

List, List, List, Union]

Seven · Rule Based Programming 229

This form of D i s t r ibute is documented in The Mathematica Book [Wolfram] but not online.
The result, of course, is the same as before.

subsetsFunctional[{a, b, c}]

{{}/ {c}, {b}, {b, c}, {a}, {a, c}, {af b}, {a, b, c}}

6.1.2 Laplace transforms
As a more complicated example of a rule based program, consider a simple version of the
Laplace transform. Here is a list of rules that will calculate the Laplace transform for many
simple functions.

laplace[function, t, s]

means the Laplace transform of funct ion which depends on the variable t , expressed as a
function of the variable s. If the function is a constant c, then its Laplace transform is c / s ,
giving us the first rule.

laplace[c_, t_, s_] := c / s /; FreeQ[c, t]

The Laplace transform is a linear function of its first argument. This is expressed by two rules.

laplace[a_ + b_, t_, s_J : =
laplace[a, t, s] + laplace[b, t, s]

laplace[c_ a_, t_, s_J : =
c laplace[a, t, s] /; FreeQfc, t]

If the function is of the form t n with n a positive integer, then the Laplace transform has a
simple form.

laplace[t_~n_., t_, s_] : =
n! / s Λ (η+1) / ; (FreeQ[n, t] && n > 0)

If the function is a product where one factor is of the form tn, then the Laplace transform is
somewhat more complicated.

laplace[a__ t_An_., t_, s__] : =
(-1)Λη D[laplace[a, t, s] , {s, n}] /;

(FreeQ[n, t] && n > 0)

230 Part II · Programming Language
4 <?♦ -1 ^ y v* >"Λ* "Χ& -*""*>

The Laplace transform of a function divided by t can sometimes be calculated.

laplace [a_/t_, t_, s_] : =
Module[{v},

Integrate[laplace[a, t, v], {v, s, Infinity}]]

(See Chapter 8 for Module.) Finally, a function involving E to an exponent which is linear in t
can be reduced to a simpler form.

laplace[a_. Exp[b_. + c_. t_], t_, s_] : =
laplace[a Exp[b], t, s - c] /; FreeQ[{b, c},t]

Note that these rules are mutually recursive. Try a few examples.

laplace[c tA2, t, s] => 2 c / s3
laplace[(t"3 + t"4) tA2, t, s] => 720/s7 + 120/s6
laplace[t"2 Exp[2 + 3 t], t, s] => 2 E2/(-3 + s) 3
laplace[Exp[2 + 3 t]/t, tf s] => Indeterminate

See the packages LaplaceTrans form, m and Trigonometry . m for programs making
extensive use of lists of rules with intricate patterns and conditions.

6.2 Local Rules

Patterns can be used on the left-hand sides of local rules, so restrictions using predicates can
appear in this position also.

6.2.1 maxima
This example was the 1992 Mathematica programming competition question. The problem is to
write a function called maxima that starts with a list of numbers and constructs the sublist of
the numbers bigger than all previous ones from the given list. For instance, maxima [{ 4 , 7 ,
5 , 2, 7 , 9, 1}] should return {4 , 7 , 9}. The winning entry uses a pattern with a
condition in a local rule.

maxima[list_List] :=
list//, {a , x_, y_, b } /; y <= x -> {a, xf b}

maxima[{4, 7, 5, 2, 7, 9, 1}] => {4, Ί, 9}

Seven · Rule Based Programming 231
x s<^w^y^>^< w^ ^ ^ ^ ^ ^ « ^ « ^ » ^ ^ Η Λ Ι ^ Λ · * ^

6.2.2 complexSort
Complex numbers are sorted in Mathematica first by increasing real part and then by increasing
imaginary part. This example, adapted from one on the network, shows how to sort complex
numbers so that conjugate numbers are placed next to each other.

complexSort [cplxs__List] : =
Flatten[Sort[cplxs] //.
({a , z_, b , zbar_, c } /;
Length[{a, b, c}] > 0 && z == Conjugate[zbar]) :>
{a, If[Im[z]<Im[zbar],

{z, zbar}, {zbarf z}], b, c}];
cplxs[n_] := Outer[Plus, Range[-n, n], I Range[-n, n]]
Flatten[Sort[cplxs[1]]]

{-1 - I, -1, -1 + I, -I, 0, I, 1 - I, 1, 1 + 1}

complexSort[cplxs[1]]

{-1 - I, -1 + I, -1, -I, I, 0, 1 - Ir 1 + I, 1}

6.2.3 intervalUnion
This next example comes from John Lee, University of Washington, in response to discussions
on the network about a program to compute the union of a set of possibly overlapping
intervals.

intervalUnion[listOfIntervals_List] :=
Sort[listOfIntervals] //.
{a , {b_, c_}, {d_f e_}, f } :>
{a, {b, Max[c, e]}, f} /; d <= c

intervalUnion[{{1, 2}, {3, 4}, {1.5, 3.5}}] => {{1, 4}}
intervalUnion[{{lf 2}, {3, 4}, {3, 5}}]

{{1, 2}, {3, 5}}

6.2.4 Discussion
In each of these examples, a list is rewritten in a non-trivial way by describing how a typical
pattern in the original list is to be rewritten in the new list. Arbitrary locations in the list are
accessed by using patterns of the form a involving zero or more arguments, conditions are
placed on whether the rewriting should take place by following the left hand side by a / ;
clause. This is a powerful technique which has only recently been recognized as a valuable tool
in Mathematica programming.

232 Part II · Programming Language

63 Dynamic Programming and $RecursionLimit

Recall the final version of the factorial function from Section 5.2.3.

factorial[1] = 1;
factorial[n_Integer /; n > 1] := n factorial[n - 1]

Can one actually use this definition to calculate factor i a l [n] for large values of n? It turns
out that there is a specific limit that cannot be exceeded. The factorial calculation in the first
one is suppressed, but the second one is kept to see what it looks like.

Timing[factorial[253];] => {0.95 Second, Null}
Timing[factorial[254]]
$RecursionLimit::reclim: Recursion depth of 256 exceeded.
{1.18333 Second,
13140590921305800461383000485312999772637584563104865500301097\
58543611293739503047453186720834024829121286589066079326449382\
96083745970661048144805223257663247493463934339581256537256070N
28102944055895649073546925669455844464559611898118678402279915\
38489128092801430257018158961780825702525268564748986301288404\
18630140848571842376633840799347317127027383089494310769179474X
73700246530360714416499720082234418835880264436811011656620579X
1731712000X
0000000
factorial[Hold[2 - 1]]}

As we have programmed it, f a c t o r i a l is a recursive function. In order to calculate
f a c t o r i a l [n] , it first has to calculate f a c t o r i a l [n - 1] , etc., so it builds up a sequence
of unevaluated terms until it finally gets to f a c t o r i a l [1] , which has an explicit value, so
then all the other terms can be evaluated. Precisely, it builds a nested sequence of values as
shown in the following computation.

Trace[factorial[5]]
{factorial!5], {5>1, True}, 5 factorial[5-1],
{{5-1, -1+5, 4}, factorial[4], {4>1, True}, 4 factorial[4-1],
{{4-1, -1+4, 3}, factorial[3], {3>1, True}, 3 factorial[3-1],
{{3-1, -1+3, 2},factorial[2], {2>1, True}, 2 factorial[2-1],
{{2 - 1, -1 + 2, 1}, factorial[l], 1},
2 1, 1 2, 2},
3 2, 2 3, 6},
4 6, 24},
5 24, 120}

Seven · Rule Based Programming 233

Mathematica has a built-in limit, called $RecursionLimit, which by default is set to 256, so
that it will not carry out more than 256 such steps. What happened in the second calculation
above is that there wasn't enough room to carry out the very last step, so it was held. One way
to proceed is to release the hold by using ReleaseHold [%] immediately after the calculation.
It will then proceed for a maximum of 256 more steps. Alternatively, once it is certain that we
are not in an infinite loop, $RecursionLimit can be set higher to calculate larger values.

$RecursionLimit = 5000;

Try timing successive multiples of 200 to see how long these computations take.

Table[{200 n, Timing[factorial[200 n];][[l]]},
{n, 1, 10}]

{{200, 0.816667 Second}, {400, 1.78333 Second},
{600, 2.78333 Second}, {800, 3.86667 Second},
{1000, 4.98333 Second}, {1200, 6.38333 Second},
{1400, 7.4 Second}, {1600, 8.88333 Second},
{1800, 10.1667 Second}, {2000, 11.8833 Second}}

Thus, the time to calculate f a c t o r i a l [200 n] is approximately linear in n. Let us check
what Mathematica knows about f ac tor ia l .

??factor ia l

Global"factorial
factorial!1] = 1
factorial[n_Integer /; n > 1] := n*factorial[n - 1]

It knows just the rules that we gave it.
There is another way to write the program for f a c t o r i a l so that Mathematica will

remember the values that it has already calculated and hence not have to recalculate them each
time it goes through such a recursive procedure. This is called Dynamic Programming. The
syntax is very simple.

factorialDyn[1] = 1;
factorialDyn[n_Integer /; n > 1] :=

factorialDyn[n] = n factorialDyn[n - 1]

If we calculate f actorialDyn[n] then Mathematica will have calculated and remembered all
smaller values because the actual value of factor ialDyn [n] is a Set statement.

234 Part II · Programming Language

factorialDyn[6] =» 720

Look and see what Mathematica knows about this version of fac tor ia l .

? ? factorialDyn

Global"factorialDyn
factorialDyn[1] = 1
factorialDyn[2] = 2
factorialDyn[3] = 6
factorialDyn[4] = 24
factorialDyn[5] = 120
factorialDyn[6] =720
factorialDyn[n_Integer /; n > 1] :=
factorialDyn[n] = n*factorialDyn[n - 1]

If we want to calculate a higher value, then the recursion will only have to go down to the
value 6 instead of 1. We can use this principle to calculate large values without increasing
$RecursionLimit as far as before.

$RecursionLimit = 450;
Table[{200 n, Timing[factorialDyn[200 n];][[l]]},

{n, 1, 10}]
{{200, 2.15 Second}, {400, 2.63333 Second}, {600, 2. Second},
{800, 2.28333 Second}, {1000, 2.91667 Second},
{1200, 4.11667 Second}, {1400, 3.53333 Second},
{1600, 4.25 Second}, {1800, 5.93333 Second},
{2000, 8.25 Second}}

At each step in the table the recursion only has to go back to the previous step. We won't ask
Mathematica what it knows about f actorialDyn now because that would cause it to display
2000 rules, which is more than we want to look at. The timing for each step appears to be
almost constant, or only growing slowly until the values get to 1800. But apparently the total
time to get to 2000, which is the sum of all of the preceding times, is now significantly longer
than the time for the single computation. In the Exercises we will treat an example where
Dynamic Programming has a more significant effect, making possible calculations that are
simply not possible without it. (However, in the case there, special methods work even better.)

emm$mm#-'$&m^m *ws**;*«r*s^ AM*?*/**?**
Seven · Rule Based Programming 235

7 Practice
*4ê^i^m&mm°&âm'm's^-«^^^ **«^^-, * v ^ « ' ^ , w·*^,

1. FullForm[x Λ= y]
2. FullForm[x Λ:= y]
3. ??UpValues
4. ??DownValues
5. ??Global^*
6. ???
7. FullFormfx Head]
8. FullForm[x Head]
9. FullForm[x_:v]
10. FullForm[x:v]
11. FullForm[n_ /; n > 0]
12. FullForm[n_Integer?Positive]
13. FullForm[n_Integer /; n > 1]
14. FullForm[gg[fun:Power[x_, n_Integer]]]
15. subsetsll[list_List] : =

Sort[Flatten /@
Distributee{{}, {#}}&/@list, List]]

16. subsets22[list_List] :=
Sort[Union@@#&/@
Distribute!{{}, {#}}&/@list, List]]

8 Exercises

1. Find all values of the form n = m/3 for m an integer between -10 and 10 such that
Mathematica can evaluate the following integral: (Hint: Make a table and use S e l e c t
and FreeQ).

Λ4/3

J <'-'*■> du
U n

2. In Exercise 5 of Chapter 5 and Exercise 5 of Chapter 6, a Gram-Schmidt procedure was
developed. It only works if the given vectors are linearly independent. Make several
changes in it so it still works even if the given vectors are linearly dependent.
i) Restrict the functions so they only work for arguments of the proper kinds.

ii) Include a separate rule to deal with the projection of a vector on a zero vector.

236 Part II · Programming Language

iii) The resulting list of orthogonal vectors may then contain a zero vector. Add a new
operation, n o z e r o s , to remove such zero vectors. Note that the notion of a zero
vector depends on the vector space under consideration.

iv) Test your procedure on a long list of random 3-dimensional vectors with real
entries.

v) Test your procedure using the Legendre inner product and various polynomials
including the powers of x up to x4.

3. i) Write a function t y p e of one variable such that t y p e takes the value 0 for integer
arguments, the value 1/2 for rational arguments, the value 1 for real numbers, the
value 2 for complex numbers, and the value «> for anything else.

ii) Change the definition of t y p e so that it takes the value 10 for "algebraic
expressions." An algebraic expression is one which is built up recursively from
symbols (i.e., variables) and numbers (integers, rationals, reals, and complexes) by
using addition, subtraction, multiplication, division, and exponentiation. (Hint:
use pattern matching recursively to define a predicate a lgexpQ which takes the
value True just for algebraic expressions. For instance, one such rule is:

algexpQ[u_ + v_] := a lgexpQ[u] && a l g e x p Q [v] .)

iii) Test your predicate algexpQ on the following inputs.

x"2 + (y + 2)A3
xA2 + (S i n [y] + 2) A 3
(5 x y) A (z + w)
S q r t [5 x y p (z + w)
x A (x A (x A (x A x)))
(Y + w) A (x + 2)
(x + 2 I) (3 + y I) A (5 + 41)
(2x + y) + I (z w + u)
Tan[xA2 + y A 2]

iv) Test your type function on the following inputs.

{ a n y t h i n g , 2 4 , 3 / 7 , 3 . 6 4 , (5 + 3 1) ,
- (x + y z) A (z - 3 w) ,
(x + 2 I) (3 + y I) A (5 + 4 1) ,
Sin[anything] +4}

Seven · Rule Based Programming 237

4. i) Extend the definition of d i f f r further so that it differentiates restricted algebraic
expressions correctly, where algebraic expressions are as above, but restricted
means that the only kinds of exponents that are allowed are numbers and symbols.

ii) Extend the definition of d i f f r further so that it differentiates "calculus
expressions" correctly. Here "calculus expressions" are expressions which are built-
up recursively from symbols, numbers, trigonometric functions, the exponential
function, and the logarithm function by using addition, subtraction, multiplication,
division, and restricted exponentiation, where restricted exponentiation now means
that either the base or the exponent is a constant (i.e., a number or a symbol).

iii) Extend the definition of d i f f r further to higher order and mixed derivatives.

5. This is an exercise in calculating the Fibonacci numbers by different methods. Part of the
exercise is to attempt to estimate how large a value can be found by each method in a
reasonable length of time-say 60 seconds.
i) The recursive definition:

f ibr[l] = 1; fibr[2] = 1;
fibr[n_] := fibr[n - 1] + fibr[n - 2]

ii) Dynamic programming:

fibdfl] = 1; fibd[2] = 1;
fibd[n_] := fibd[n] = fibd[n - 1] + fibd[n - 2]

iii) Iteration:

fibi[n_] :=
Module[{ani = 1, an2 = 1},

Do[{ani, an2} = {ani + an2, ani}, {i, 3, n}];
ani]

iv) Symbolic formula for the nth number:

el = (1 + Sqrt[5]) / 2;
e2 = (1 - Sqrt[5]) / 2;
bl = (5 + Sqrt[5]) / 10;
b2 = (5 - Sqrt[5]) / 10;
fibf[n_] := Expand[bl el^(n - 1) + b2 e2A(n - 1).

238 Part II · Programming Language

v) Numeric formula for the n'th number. The f i b f version can be speeded up by
replacing Sqrt [5] by a suitable numerical approximation which depends on n.
Try to do this if you see how. Call this version f ibf n [n] .

vi) Matrix formula. The powers of the matrix {{1, 1} , {1 , 0}} are related to the
Fibonacci numbers. Use this to give yet another way to calculate them called f ibm.

Suggestions for analyzing the algorithms: In each case, experiment to find appropriate
maximal sizes for n. Then make a table of values and timings up to the appropriate size.
Plot these values to see what the timings look like. Try to fit your timing data to an
appropriate curve and use that to find out how long it would take to calculate the
millionth Fibonacci number. In the last five cases, you will probably want to use input
data of the form 2n, rather than n. You might want to combine all of the plots into a
single plot showing the relations between the methods.

6. The function maxima described in the Examples section above can also be implemented
by a strict one-liner functional program. A one-liner using FoldList, Inf in i ty , Max,
Rest , and Union was the most efficient function found in the contest. Write this
function and do a Timing comparison with the pattern matching version.

1 Introduction
In this chapter, we turn to the third alternative mentioned in the previous chapter: using
Mathematica as a block structured language with the usual control structures of an imperative
language. The language of while-programs is an abstract version of such a language. It consists
of exactly four kinds of commands:

assignment commands,
if_then_else_ commands,
composition commands, and
while_do_ commands.

These commands work in quite a different way than the operations in a functional or rewrite
rule language, both of which deal with expressions and reduce them to normal form. An
imperative language deals with states of a computer. To explain this concept, suppose there is a
fixed finite set of variables {xi, . . . χχ } where K is the number of memory locations in some
computer; e.g., K = 232. We will, in fact, think of x; as the name of a specific memory location,
the jth one. Suppose further that each memory location can hold a value, which could be a
number or a bit, or some other choice for values. Let V be the set of values and consider VK,
the Cartesian product of V with itself K times. An element of VKis a K-tuple of values, v = (vi ,
. . . , VK). We can regard the jth component of such a K-tuple as the contents of the jth memory
location and call v a state of the computer. Thus a state is some assignment of a value to each
memory location and VK is the set of all states of the computer. The action of a command is to
change the state by changing the values at some of the memory locations; i.e., commands
produce mappings from V^ to itself and we have to explain exactly what mapping
corresponds to each kind of command.

239

240 Part II · Programming Language

More formally, the language of while-programs with values in the set V = N of natural
numbers consists of the following structures:

i) Arithmetic terms. These consist of the constant 0, variables Xj, and terms succ(A),
pred(A), plus(A, A') and times(A, A') whenever A and A' are arithmetic terms.
Arithmetic terms are thought of as functions from NK to N.

ii) Predicates, or Boolean terms. These consist of the constants tt and ff and terms (A ==
A'), (A < A'), (A > A'), (B and B'), (B or B'), (B implies B'), and not (B) whenever A and
A' are arithmetic terms and B and B' are predicates. Predicates are thought of as
functions from NK to the set Bool = {True, False}.

iii) Commands.
a) An assignment command is one of the form: x = A, where x is a variable and A is

an arithmetic term. For instance, if nj is stored at memory location j , then the
assignment command XJ = 5 denotes the mapping from NK to itself that changes
the value of nj to 5. If A contains variables, they are given the values they have in
the current state.

b) A composed command is one of the form: begin Q ; . . . ; Cn end, where Q , . . . ,
Cn are command terms. The interpretation of a composition command is just the
composition (in the sense of functions) of the interpretations of the Q's as
mappings from NK to itself.

c) A conditional command is one of the form: if B then C else C, where B is a
predicate and C and C are command terms. The interpretation of a conditional
command as a mapping from NK to itself is the interpretation of C (resp., C) in the
current state if the value of B in the current state is tt (resp., f f)

d) A loop command is one of the form: while B do C, where B is a predicate and C is
a command term. The interpretation of a loop command is more complicated. Let
n be the present state. If the interpretation of B in state n is False, then the
command leaves the state unchanged. If it is true, then the command C is
executed, leading to a new state. B is evaluated again in this new state. If the result
is now False, then the new state is the result of the command. Otherwise, C is
executed again. This continues until B evaluates to False, in which case the state at
that point is the result. If B never evaluates to False, then the loop continues
forever. In this case, one says that the command diverges.

Here is a simple example of a while-program to calculate y !. (See next page.)

Eight · Procedural Programming 241

begin
χ = 0;
ζ = succ(O);
if y == ο then z = succ(O) else

while not(x == y) do
begin

x = succ(x);
z = times(z, x)

end
end

To describe the interpretation of this program, suppose there are just three memory
locations where x, y and z are stored; i.e., K = 3. Let {x0 , y0 , z0 } be the initial state before the
program is run. After the first "initialization" steps, the state is {0, y0 ,1}. In the if statement, if
y0 is 0, then the state, which is {0, 0,1}, is returned as the result of the program. If y0 is not 0,
then the while loop is entered. The condition not(x == y) is clearly true so the do part is
executed. The two assignment statements here change the state to {1, y0 , 1 * 1}. The predicate
is checked again and if y is not equal to 1 then the do part is executed again yielding the state
{2, y0 , 1 * 1 * 2}. This continues until the first and second components of the state are y0 and
the third component is y0 !. In either case the result of executing the program is that the x-
location now has the value y0 and the z-location now has the value y0 !; i.e., the final state is
tyo / Yo / Yo !}· Thus, the third memory location now stores the value y0 !.

Mathematica of course has many more arithmetic terms and predicates than those described
above. It also has operations that implement the imperative commands exactly. There are
several forms of conditional and loop commands. However, instead of begin-end forms for
programs, Mathematica uses blocks which are called Modules, although they were called
Blocks in Version 1.x. B locks still exist and are sometimes useful. Understanding the
difference between Modules and Blocks will turn out to be instructive. In Mathematica, the
state is represented by values assigned to global variables. This kind of state is often called a
store in impure functional languages, mainly to try to avoid the bad connotations of states in
functional programs. In the context of a functional programming language, anything other
than reducing an expression to normal form is regarded as a side effect. In particular, if there is
a concept of state in the language, then changing the state is a side effect. In this sense,
imperative languages work solely by side effects.

2 Basic Operations

2.1 Assignments and Composition

Assignment commands in Mathematica are mimicked by expressions of the form x = a; i.e.,
expressions with head Set. The composition or sequencing of commands is indicated by

242 Part II · Programming Language

semicolons. Such a sequence of commands is evaluated, proceeding from left to right. The
output of the composed command is the output of the last command in the sequence. With just
assignment commands and arithmetic operations, we can build up a composed command as
follows:

x = l ; x = x + l ; ' x = x + l ; x = x + l => 4

Notice that the output is 4, which is the output of the last command. In our machine metaphor,
what is now stored in the x location is this value, as shown by querying the state.

x => 4

Be sure to clear x because of this unfortunate side effect. As an aside, recall that everything in
Mathematica is an expression, so composed expressions must also be expressions. We check
that this is true.

FullForm[Hold[x = x + l ; x = x + l]]

Hold[CompoundExpression[Set[x, P lus [x f 1]] ,
S e t [x , P lu s [x , 1]]]]

Thus, ; is just the infix form of CompoundExpression in the same way that + is the infix
form of Plus.

Assignments and composed commands are incompatible with functional programming
constructs. For instance, the following two commands show that addition is not commutative.

y = 6; P lus [(y = y + 1) ; 5, y] => 12
y = 6; P lus[y , (y = y + 1) ; 5] => 11

In these two evaluations, we start with y set to 6. Then we add two expressions in both
possible orders. One of the expressions is just y while the other is the compound expression (y
= y + 1) ; 5. Mathematica evaluates the arguments in Plus from left to right. So in the first
case, inside the P lus , y is set to 7 when the first argument is evaluated; i.e., the state is
changed. This happens as a "side effect" to the value of the first argument which is 5. When the
second argument is evaluated, it finds that y is 7, so the result is 12. In the second case, when
the first argument to Plus is evaluated, y is still 6. When the second argument is evaluated, y
is set to 7, but that has no effect on the value of the first argument and also no effect on the
value of the second argument, which is still 5, so the result is 11. This is an example of non-
referential transparency. The value of the sum does not depend just on the values of the factors,
but also depends on the order in which they are evaluated. The problem of adding assignment
statements to functional languages in such a way as to control unfortunate effects like this is
currently a research topic in computer science. What happens in the first version is that the
evaluation of the first argument affects a variable that is used in the evaluation of the second

Eight · Procedural Programming 243

argument. Needless to say, fixing things so that this doesn't happen would add considerable
complexity to the language. This particular example would be avoided if Mathematica
evaluated its arguments in parallel; e.g., if the state were frozen until all arguments were
evaluated, and then it was updated as necessary. (The problem with this solution is if two
different arguments change the state in different ways, then what should the final state be?)

2.2 Conditional Operations

Conditional operations are used for branching; that is, depending on some condition, the
program should continue following one path or another, but not both. The simplest
conditional operation is the if_then_else_ operation. In Mathematica everything is an expression
so this is represented by an expression with head If and three arguments:

If[test, then, else].

Here t e s t is a predicate and then and e l s e are any other two expressions. Besides this, there
are two other related expressions:

Which[testx, value! , test2, value2, . . .]
Switch [expr, forni! , value! , form2 , value2 , . . .]

which are explained below.

2.2.1 If
I f [t e s t , then , e l se] is just like the (if_then_else_) operation in Pascal. If t e s t evaluates
to True, then then is evaluated and if t e s t evaluates to False , then e l s e is evaluated. If
t e s t is not a Boolean expression (i.e., does not evaluate to True or False) then the I f
expression is returned unevaluated. There are two variations; one is:

If[test, then, else, unknown]

which returns the value of unknown if t e s t does not evaluate to True or False. The other is:

I f [t e s t , then]

which returns then if t e s t evaluates to True and Nul l if t e s t evaluates to False. For
instance:

244 Partii · Programming Language

Input

If[5 > 2, 1, 2]

If[5 < 2, 1, 2]

If[a == b, 1, 2]

If[a == b, 1, 2, 3]

If[5 < 2, 1]

Output

1
2
If[a == b, 1, 2]

3
Null

If we ask about the attributes of If, we find:

Attributes[If] => {HoldAll, Protected}
Thus, I f holds its arguments. This is important for an expression in which one of the
arguments might diverge, but which are never evaluated in that case. For instance:

bad[x_] := I f [x == 0, 0f 1 / x] ;

Then bad [0] is perfectly well behaved.

{bad[0], bad[l], bad[2]} => {0r 1, 1/2}

A function definition of the form

f[x__] : = If [test, then, else, unknown]

where t e s t , then, e l s e , and unknown involve x, divides the universe of Mathematica
expressions into three disjoint subsets, those expressions exp for which t e s t / . x -> exp
evaluates to True, in which case, then / . x -> exp is evaluated, those for which t e s t
/ · x -> exp evaluates to False , in which case, e l s e / . x -> exp is evaluated, and
those for which t e s t / · x -> exp evaluates to neither True nor False, in which case,
unknown / . x -> exp is evaluated. One can use this in interesting ways in Mathematica.
For instance, the resulting function can be plotted.

f[x_] := If[x > 0, xA2, -xA2];
Plot[f[x], {x, -2, 2}];

1
0.5

-2 -1 S
/0.5

/ -1

J
1 2

£ight · Procedural Programming 24. j

The same effect, of course, can be obtained by conditional rewrite rules:

g[x_] := xA2 /; x > 0;
g[x_] := - xA2 /; x <= 0;
Plot[g[x], {x, -2, 2}];

1

0 .5

-2 -1 / ^
/ 0 . 5

/ - 1

J
1 2

Interestingly, f can be differentiated but not g.

{D[f[x], x], D[g[x], x]} => {If[x > 0, 2 x, -(2 x)], g'[x]}

It is possible in Mathematica to get unintended results by using an expression that is only a
predicate for numbers in a situation where more general inputs can arise. For instance, define
an operation that depends on the head of an expression.

heads l [exp_] := If[Head[exp] == Plus , expA2, exp A 3];
{headsl[a + b] , headsl[a b]}

{(a + b) 2 , I f [Head[a b] == P l u s , (a b) 2 , (a b) 3] }

This works perfectly well for expressions whose head is P l u s , but for anything else,
Head [exp] == Plus is unevaluated so the whole expression is returned. Presumably this in
unintended, but it can be cured by using === instead of ==.

heads2[exp_]:= If[Head[exp] === Plus , expA2, exp A 3];
{heads2[a + b] , heads2[a b]} => {(a + b) 2 , a3 b3}

2.2.2 Which
Which [tes tx , expr*! , t e s t 2 , expr2 , · . .] takes an even number of arguments.
Each odd numbered argument expects a predicate. If t e s t i is the first predicate to evaluate to
True, then expr± is evaluated. For instance:

Which[4<l, 1, 4<2, 2, 4<3, 3, 4<4, 4, 4<5, 5]

5

246 Part II · Programming Language

If no predicate evaluates to True, then, in distinction to If, the output is Null; i.e., there is no
output. Thus, the following command returns nothing at all unless it is part of another
expression.

Which[4 < 1, 1, 4 < 2 , 2 , 4 < 3 , 3 , 4 < 4, 4]

A function definition of the form

£[x_] := W h i c h [t e s t i / e x p r x , t e s t 2 , e x p r 2 , . . .]

where t e s t i / a n d expri involve x, for 1 < i < n, divides the universe of Mathematica
expressions into n + 1 disjoint subsets, where the ith subset consists of those expressions exp
for which t e s t i / . x -> exp is the first test which evaluates to True, in which case
expri / · x -> exp is evaluated. The n + 1st subset consists of those expressions for which
no test evaluates to True in which case the result is Null. Here is an example where there are
three tests with their corresponding expressions.

heads3[exp_]:=
Which[

Head[exp] === Plus,
Head[exp] === Times,
Head[exp] === Power,

{ heads3[a + b], heads3[a b],
{(a + b)2, a3 b3, a4 b, Null}

(If you want to be sure that something is returned by a Which command, then make the last
predicate True, with a corresponding expression which could be an error message.)

A Which command is essentially the same as a list of conditional rewrite rules, except for
the behavior on terms that fail to satisfy any of the conditions. E. g.,

heads4[exp_]:= exp"2 /; Head[exp] === Plus;
heads4[exp__] := exp^3 /; Head [exp] === Times;
heads4[exp_]:= βχρΛ4 /; Head[exp] === Power;
{ heads4[a + b], heads4[a b], heads4[aAb], heads4[a&&b] }
{(a + b)2, a3 b3, a4 b, heads4[a && b]}

There is a possible difference in that the rewrite rules may be reordered by Mathematica, which
could change the output. Except for this possibility, a Which command with a final predicate
True is the same as a list of conditional rewrite rules in which the last rule is unconditional.
The Mathematica Book [Wolfram] suggests that rules are more appropriate for Mathematica
style programming.

expA2,
expA3,
expA4];
heads3[aAb], heads3[a&&b] }

£ight · Procedural Programming

2.2.3 Switch
Switch makes explicit use of Mathematica pattern matching. It is not really like anything else
in other languages.

Switch [expr, pattern! , valuei , pattern2 , value2 , . . .]
tries to match expr to one of the patterns. It returns the value following the first pattern that it
matches. Thus we can write:

heads5[exp_]:=
Switch[Head[exp],

Plus, exp*2,
Times, exp*3,
Power, exp*4];

{ heads5[a + b], heads5[a b], heads5[a*b], heads5[a&&b] }
{(a + b)2, a3 b3, a4 b, Switch[Head[a && b], Plus, (a && b)2,
Times, (a && b)3, Power, (a && b)4]}

As one sees from this example, Swi tch , like If, returns the entire Switch expression
unevaluated if the expression fails to match any of the forms, so it is a good idea to include a
final pair whose pattern is _, which produces some neutral value, e.g., Null.

heads6[exp_] : =
Switch[Head[exp],

Plus, expA2,
Times, exp*3,
Power, exp*4,

Null];
{ heads6[a + b], heads6[a b], heads6[a*b], heads6[a&&b] }
{(a + b)2, a3 b3, a4 b, Null}

The patterns don't have to be constants. They can be completely general patterns, so here is
yet another way to write our operation.

heads7[exp_] : =
Switch[exp,

_Plus, expA2,
_Times, exp*3,
_Power, exp*4,

Null];
{ heads7[a + b], heads7[a b], heads7[a"b], heads7[a&&b] }

247

{(a + b)2, a3 b3, a4 b, Null}

248 Part II · Programming Language

This is exactly equivalent to the sequence of rewrite rules

heads8[exp_Plus] := expA2;
heads8[exp__Times] := expA3;
heads8[exp_Power& := exp^4;
heads8[exp__] := Null;

In fact, any sequence of rewrite rules of the form f oo [exp_patterni] : = valuei for 1 < i <
n is exactly equivalent to a Switch statement of the form

foo[exp_] :=
Switch[exp, patterni , valuei , . · · ,

_patternn , valuen]

except that Mathematica might rearrange the rules, but it can do nothing about the order of the
patterns and values in the Switch command.

2.3 Loops
In the language of while-programs, the command that repeats an operation until some
condition is satisfied is the while_do_ command. In Mathematica, there are three built-in
looping constructions, which permit a great variety of programming styles.

2.3.1 Do loops
The simplest loop construct is the Do loop. It is a function of two arguments consisting of an
expression and an iterator of the form Do [expr, { i , imin, imax, i s t e p }] . Notice that
the form is exactly the same as that of the operations Table, Sum, Product, Integrate,
etc. However, in distinction to these operations, Do has no output. The reason is that Do loops
are used only for their side effects-changing the state, printing something, or generating
graphics, etc. A Do command evaluates expr a total of ((imax - imin) / i s t e p) + 1
times with the values imin , imin + i s t e p , imin + 2 i s t e p , . . . imax
successively substituted for i in expr. As usual, the "iterator" has abbreviated forms:

{i, imin, imax} = {i, imin, imax, 1}
{i, imax} = {i, 1, imax}
{imax}, if expr does not depend on i.

Eight · Procedural Programming 249
¥&&%&>>tim<ä&&te#ii'* *&<% *<&\ΐν ;* « s- ,-, -> · χ \ , *» -4*- ί r*\ - ■&- ^<rft - -fc -*> 0 * - *V!È "i * ,-&ssl» ^ Ä * J * * Ä m » Ä

Note that if imin > imax and istep is negative, then the loop goes backwards. In order to see
something happen in a simple example, expr is a Print statement here, which as a side effect
prints the values of its argument.

Do[Print[iA2], {i, 3, 5}]

9
16
25

If expr assigns a value to some other e x p r l , then e x p r l has the value it is given by the
last repetition of the loop. Since Do itself does not return any value, in order to see the result,
we have to ask for it explicitly. A typical construction might start with an "initialization"
statement for some identifier, followed by a Do loop which does something to the initialized
identifier, followed by calling the identifier itself. E.g.,

y = 1; Do[y = (y + i) " 2 , { i , 5 }] ; y => 5408554896900

Funny things are allowed because the only actual restriction on an iterator is that
((imax - i m i n) / i s t e p) has to be a number. The "variable of iteration," i , can be any
expression. Thus, the following is legitimate.

z = 1 ; Do[z = (z f [w]) * 2 , { f [w] , 3 . 2 r a , 6 r a , r a }] ; z

9 .25132 107 r a 1 4

Except for the funny things, Do is very much like the For loop operation in Pascal. Related
operations are N e s t and F o l d and F i x e d P o i n t [f , e x p r] . (See Chapter 6, Section 1.4.)
Note that y and z now have values that have to be cleared.

2.3.2 While loops

Whi le [t e s t , e x p r] is just like the command "while test do expr" in the language of while-
programs. The While expression in Mathematica begins by evaluating t e s t . If t e s t is True ,
then it evaluates expr . Usually, e x p r includes a clause changing some parameter in t e s t .
Then t e s t is re-evaluated with the new value of the parameter. If it still evaluates to True ,
then e x p r is evaluated again. This continues until t e s t evaluates to F a l s e . No value is
returned by the W h i l e operation, but if e x p r assigns a value to some other e x p r l , then
e x p r l has the value it had just before t e s t evaluated to F a l s e . The use of Whi le loops is the
same as Do loops; e.g.,

x = 1 ; W h i l e [x < 1 0 , x = x + 1 ; y = χ Λ 2] ; y => 100

250 Partii · Programming Language

The last time the condition x < 10 is evaluated with result True is when x is 9. In that case,
the expression sets x to 10 and then gives y the value 102 = 100. Note that x again has a value
that has to be cleared.

2.3.3 For loops
For [s t a r t , t e s t , s t e p , expr] is almost exactly the same as a for loop in the language
C, except that in C the clauses are separated by semicolons instead of commas. (Note that C
uses commas for compound statements, so the roles of comma and semicolons in C are exactly
the opposites of their roles in Mathematica.) A For loop first evaluates s t a r t and then
repeatedly evaluates expr, s tep , and then t e s t , until t e s t fails. Usually s t a r t initializes
some variable and s tep alters it in some way that t e s t uses to eventually stop the For loop.
As with Do and While loops, the output of a For loop is Null.

For[i = 1, i < 4, i++f P r i n t [i]]

1
2
3

We have used C slang in writing s tep . Here i++ is shorthand for i = i + 1. One can
also write i += 1 with the same effect. Similarly, i— is shorthand for i -= 1 or i = i -
1. Notice that the last value printed is 3. We can check that t e s t was evaluated one more time
to make t e s t fail by asking for the value of i.

i = » 4

This result also points up the unfortunate fact that evaluating this For loop has had the
unintended "side effect" of giving a value to i , which we probably didn't want.

Here is a more complicated example showing that s t a r t can initialize several variables in a
compound statement and that expr can of course also be a compound expression.

For[i = 1; t = x, iA2 < 10, i++, t = t^2 + i ;
Print[Expand[t]]]

1 + x2

3 + 2 x2 + x4

12 + 12 x2 + 10 x4 + 4 x6 + x8

Note that outputs in the form of Print statements, which we have been forced to resort to in
order to see something from loop statements, are generally not very useful since they are not
available for further processing. Note that i again has a value that has to be cleared.

Eight · Procedural Programming 251
> > ^ * * ^ * ^ ^ ^ ^ V ^ s # ^ M & ^ « ^ ^ ^ ^ , ^ ^ - , * ί ί * ο * ^ # ,&, I*** „ ^ °, .<■-,' ~ »*™tC--îl *, s -*<„.*& „friszi,* *, >'„.-,,,»,- , , , ^ , Λ M'^^'é-\^'-.'-.^ '

3. Modules, Bkcks, and With

3.1 Modules
In the first example of a compound operation in Section 2.1 above, after the calculation was
finished, the variable x had the value 4. If all we cared about was the computation, then it
would be unfortunate to give a value to x which might interfere with later computations. A
mechanism is needed that allows variables to be used just for one calculation and then erases
any values they might have acquired during that computation. Modules and Blocks are
mechanisms that create such "local variables." Here is an example.

Module[{x}, x = l ; x = x + l ; x = x + l ; x = x + l]

4

This is the same output as before, but when it is finished, x doesn't have any value.

x => x

Furthermore, if x is given a value before starting; e.g., x = 17, and then the Module is
evaluated, then x still has its original value. Thus, the x inside the module is independent of
the x outside.

A Module expression takes two arguments, the first being a list of local variables and the
second being any expression (usually a compound expression). If desired, initial values for
local variables can be given within the first argument. The value of a Module expression is the
value of the second argument; thus when the second component is a compound expression, it
is the value of the last component of the compound expression.

Module[{x = 1 } , x = x + l ; x = x + l ; x = x + l] =>4

The local variables are just named, and initializations are given as above; e.g., x = 1. The
body of the Module is separated from the list of variables by a comma. It is a single, possibly
compound expression. Note that the semicolons in it bind more tightly than the comma, in
distinction to most ordinary natural languages.

Modules are usually not used when working interactively. It is only when it is time to put
some procedure into a more final form that they come into play. There are three reasons to use
Modules: preventing variable clash, efficiency, and clarity. Preventing variable clash means
insulating the local variables from any other variables with the same names outside the
Module. This is highly desirable since there is no way to know in advance what other
variables with values may be around when a particular function is used. As to efficiency, local
variables serve to hold values of computations that may be required at several points in some
procedure, so that they only have to be calculated once. Finally, the third use is to give names

252 Partii · Programming Language

to intermediate steps in a computation for purposes of clarity. Look at the examples in the
Examples section of this chapter and determine which local variables are being used for
iteration in some way, and so just have to be protected from the outside, which ones are used
to store information that is used more than once, and which ones are there just for clarity.

3.2 Blocks versus Modules
There are two possible ways in which local variables can be insulated from global ones.
Blocks are just like Modules except in the way that they handle name clashes. Consider the
following expression written with a Block statement.

sumOfPowers[x_] := B l o c k [{ i } , Sum[x^i, { i , 1, 5 }]]

Try it on two examples.

{sumOfPowers[a], sumOfPowers[i]}

{a + a2 + a3 + a4 + a5, 3413}

Now write the same function using a Module statement and try the same two examples.

sumOfPowersl[x_] := Module[{i} , Sum[xAi, { i , 1, 5}]]
{sumOfPowersl[a], sumOfPowersl[i]}

{a + a2 + a3 + a4 + a 5 , i + i 2 + i 3 + i 4 + i 5 }

The difference between these two outcomes is the difference between dynamic scoping and static
scoping of local variables. It is explained very well in The Mathematica Book [Wolfram]. In the
case of Blocks, local variables have unique values but not unique names. When we ask for
sumOf Powers [i] , what happens is that we get Sum [i Λ i , { i , 1, 5 }] which is a number.
The trouble is that the i from outside the Block is the same as the i inside it, so the scope of
the i inside expands dynamically to the outside of the Block. In the case of Modules, local
variables have unique values and unique names so that such a name clash is essentially
impossible. The way this is done is to create new names for the local variables in Module
every time the Module is used. The name given to a local variable in a Module is not actually
used. It is replaced by a distinct name that does not occur anywhere else. Normally these new
names are completely hidden so one never knows exactly what they are, but sometimes they
accidentally (or deliberately) get out of the Module, as in the following example.

Table[Module[{j}, j], {10}]

{j$3, j$4, j$5, j$6, j$7, j$8, j$9, j$10, jll, j12}

Eight · Procedural Programming 253

Thus, j is replaced by j$n where n is an increasing sequence of numbers. The actual numbers
depend on everything that has gone before; specifically on all local variables in all Modules
that have been used in the current session. The numbers start with 1 and increase by 1 every
time a local variable is used in a Module.

Table[Module[{r}, r] , {10}]

{r$13, r$14, r$15 , r$16, r$17 , r$18 , r$19, r$20, r $ 2 1 , r$22}

Local variables can also be seen in Trace commands.

Trace[Module[{t}, t=3]]

{Module[{t}, t = 3], t$23 = 3, 3}

As long as variable names of the form symbol$n are never used, there is no possibility of
name conflict.

3.3 Modules versus With

As remarked above, one use of Modules is just to give a name to some computation which
will be used several times in a further expression. If this computation is used to initialize the
name in the first argument of the Module and nothing is assigned to it in the body of the
Module, then the Module command can be replaced by a With expression. See Chapter 6,
Section 1.5.

4 Examples
We start with some simple examples and then turn to some more complicated ones showing
how to translate programs in Pascal and C into Mathematica programs. In each case the direct
translation can be replaced by a much shorter and clearer Mathematica program written in a
functional or rewrite rule style.

4.1 A Procedural Factorial Function

As the first example, we write the while-program for the factorial function given in the
introduction to this chapter in Mathematica. Notice that very little is changed.

254 Part II · Programming Language
sÄ^^^^ÄÄ^^^^V^Wvs^X^K'· < *-«.

factorialProc[y_] :=
Module[{x =0, z = 1},

If[y == 0,
1,
While[!(x == y),

x = x + 1;
z = z x]] ;

z 1;
The main purpose served by the Module structure here is to prevent global values being given
to x and z. The program works without being put inside a Module but then it would have the
unfortunate side effect of giving x the value of y and z the value y !. Try this version on a pair
of values.

{ Timing[factor ia lProc[252] ;] ,
Timing[factorialProc[1000] ;] }

{{0.833333 Second, N u l l } , {4.31667 Second, Null}}

The timing for 252 is approximately the same as for the recursive version in Chapter 7, Section
6.3. For larger values there is no need to reset $RecursionLimit since no recursion is
involved in this form of the function. (Here, what is f actorialProc [yesterday] ?)

4.2 Continued Fractions
Any real number has finite continued fraction approximations. These are given as follows:

continuedFractionApprox[x_Real,
n_Integer?Positive] :=

Module[
{integerPart, fractionPart = x, result = {}},
Do[integerPart = Floor[fractionPart];

AppendTo[result, integerPart];
fractionPart =

1 / (fractionPart - integerPart),
{n}];

result];
continuedFractionApprox[N[Pi], 10]

{3, 7, 15, 1, 292, 1, 1, 1, 2, 1}

Eight · Procedural Programming 255

The following functional one-liner will display a symbolic continued fraction, given the list of
coefficients. Note that this is different from the form in Exercise 3 of Chapter 6.

continuedFract[list_List] :=
Fold[(#2 + 1/#1)&,

First[Reverse[list]], Rest[Reverse[list]]];
continuedFract[{a, b, c, d}]

1
a +

1
b +

1
c + -

d

To see the continued fraction approximation to P i , we have to turn numbers into strings to
prevent Mathematica from evaluating the continued fraction.

continuedFractionPi =
continuedFract[

Map[ToString,
continuedFractionApprox[N[Pi], 10]]]

1
3 +

1
7 +

1
15 +

1
1 +

1
292 +

1
1 +

1
1 +

1
1 +

1
2 + -

1

256 Part II · Programming Language
M1 * *<-*^^>\^,v< -^&K*A ο&,<*iK#**sx.**^****«*&>nett*\t»^%^>^^m^^>^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ i ^ r Ä r ^ ^ m ^ ^ ^ ^ ^ w ^ ^ ^ » ^ ^ ^ ^ ^ ^ « ^ ^ ^ ^ ^ ^ »

Unfortunately, Mathematica insists on writing some of the sums in the wrong order but we
have edited the output to make it look better. Finally, this can be evaluated by using a
functional program to turn the strings back into expressions.

MapAt[ToExpression, continuedFractionPi,
Position[continuedFractionPi, _String]]

1146408

364913

Compare this value with the value of π.

N[%, 20] => 3.14159265359140397848
N[Pi, 20] => 3.14159265358979323846

4.3 A Procedural Program for Simple Differentiation

In Chapter 7, Sections 4.1.2 and 5.2.2, we wrote rule based programs for simple differentiation.
It is much harder to write a procedural program for this. The problem is that if we don't use
the pattern matching facilities of Mathematica, then we have to recognize the input expression
by analyzing its structure directly; i.e., we have to construct our own parser. This is most easily
organized in a Which statement rather than nested I f statements.

diffw[y_, x_] : =
Module[{n},
Which[
y ===== x, 1,
Length[y]===2 && y[[0]]===Power && y[[l]]===x,

y[[2]] xA(y[[2]] - 1),
y ===== log[x], 1/x]];

Try this out on some examples.

{ diffw[xA3, x], diffw[y, y], diffw[log[z], z],
diffw[w"(l/3), w] , d±ffw[rA3.1, r] }

{3 x2, 1, 1/z, 1/(3 w 2 / 3) , 3.1 r2·1}

Of course if we use Swi t ch , then we get a noticeably simpler program, because
Mathematical pattern matching is used. (Normally, this is not available in procedural
languages.)

Eight · Procedural Programming 257
« « » » Β » ! « » ! « ^ » » 1 » ^ ^ ^ t * ^ ^ Ϊ -V> ^ ° A i'*#

diffs[y_, x_] : =
Switch[y ,

x, 1,
xAn_/; FreeQ[n, x], y[[2]] x"(y[[2]] - 1)
log[x], 1/x];

This gives the same output as the preceding version.

4.4 Runge-Kutta Methods
Runge-Kutta methods are a technique for finding numerical solutions of systems of 1st order
ordinary differential equations of the form

xi ' = f l (χ1 / · · · χη)

Xn ' = fn (xi / · · · Xn)·
Here, prime means differentiation with respect to some independent variable t which does not
occur explicitly on the right-hand sides of the equations. The built-in operation NDSolve finds
solutions for more general systems of equations. The program to implement the Runge-Kutta
method for finding approximate numerical solutions of such systems is similar to the program
for Newton's method in Chapter 7. Starting from some list of initial values, there is a one step
move in the direction of an approximate solution. This new location is the initial point for
another one step move, etc. The fourth-order Runge-Kutta method utilizes the following one
step operation.

oneRungeKuttaStep[exprs_, vars_, varsO_, dt_] :=
Module[{ kl, k2, k3, k4 },
kl = dt N[exprs /. Thread[vars -> varsO]];
k2 = dt N[exprs /. Thread[vars -> varsO + kl/2]];
k3 = dt N[exprs /. Thread[vars -> varsO + k2/2]];
k4 = dt N[exprs /· Thread[vars -> varsO + k3]];
varsO + (kl + 2 k2 + 2 k3 + k4)/6];

exprs is the list of right-hand sides of the system of equations and dt is the step size. The
purpose of the Module structure here is to protect the local variables k l , k2, k3, and k4. They
in turn serve to store intermediate results. One could substitute their values in the last line,
starting with k4, and then both instances of k3, etc., to derive a purely functional operation,
but that would require exprs to be evaluated 10 times instead of 4. This one step operation is
like the one in Newton's method, but it doesn't make sense to then use FixedPoint in the
final operation as we did in Newton's method since in general the solution here will not
converge to a fixed value. Instead, we use NestLis t to calculate a list of successive positions
of the system. Here n is the number of steps to be carried out.

258 Part II · Programming Language

rungeKutta[exprs_, vars_, varsO_, dt_, n_] :=
NestList[oneRungeKuttaStep[exprs, vars, #, N[dt]]&,

N[varsO], n];
We calculate some examples. (See also the package ProgrammingExamples RungeKutta
and [Maeder 1])

4.4.1 Van der Pol's equation
Van der Pol's equation arises from the second order differential equation x" + x = ε (1 - x2) x'
by converting it to a linear system of the form x' = xdot, xdot' = ε (1 - x2) xdot - x. Finding
numerical solutions of this equation was an important research goal during the second World
War. We treat it for the value ε = 1.

systeml = {v, (1 - xA2) v - x } ;

It is known that there is a closed solution through the point {2, 0} and all other solutions are
asymptotic to it. We find three trajectories of this system starting at the points {0, 0.6}, {0, 2.2},
and {0,3.6}. Note that all solutions move clockwise.

Show[
Table[
ListPlot[
rungeKutta[systeml, {x, v}, {0, i}, 0.1, 70],
PlotJoined -> True, AspectRatio -> Automatic,
DisplayFunction -> Identity],

{i, 0.6, 3.8, 1.6}],
DisplayFunction -> $DisplayFunction];

4

3

Eight · Procedural Programming 259

4.4.2 Gravitational attraction
To compare the Runge-Kutta method with the built-in function NDSolve, we use the example
of two equal bodies under gravitational attraction described in Chapter 3, Section 4.6. We have
to turn the system of second order equations given there into a system of first-order
differential equations as usual. The four second-order equations become the following eight
first-order equations.

twoOrbitSystem =
{ xdotl, -(χ1-χ2)/((χ1-χ2)Λ2 + (yl-y2)*2)A(3/2),
ydotl, -(yl-y2)/((xl-x2)"2 + (yl-y2)Α2)Λ(3/2),
xdot2, -(x2-xl)/((xl-x2)"2 + (yl-y2)"2)Λ(3/2),
ydot2/ -(y2-yl)/((xl-x2r2 + (Υ1-Υ2)Λ2)Λ(3/2)} ;

Eight function names and eight initial conditions are required to get a solution.

twoOrbitSolution =
rungeKutta[twoOrbitSystem,
{xl, xdotl, yl, ydotl, x2, xdot2, y2, ydot2},
{1, 0, 0, 0.3, -1, 0, 0, -0.3},
0.1, 60];

The output is suppressed since it is a long list of numbers. To plot the two curves given by
{ x l , y l } , and {x2 , y2}, we have to extract their values from the list of eight values for
each entry in the output of NestList.

Show[
{ ListPlot[

Map[{#[[l]], #[[3]]}&, twoOrbitSolution],
PlotJoined -> True, AspectRatio -> Automatic,
PlotRange -> All, DisplayFunction->Identity],

ListPlot[
Map[{#[[5]], #[[7]]}&, twoOrbitSolution],
PlotJoined -> True, AspectRatio -> Automatic,
PlotRange -> All, DisplayFunction->Identity]},

DisplayFunction -> $DisplayFunction];

260 Part II · Programming Language

4.5 A Program from Oh! Pascal! [Cooper]
Consider the following Pascal program.

var TrialNumber, DividedNumber: integer;
begin

for TrialNumber:= 1 to 500
do If (TrialNumber mod 3) = 1

then begin
DividedNumber:= 2*(TrialNumber div 3);
If (DividedNumber mod 3) = 1

then begin
DividedNumber:= 2*(DividedNumber div 3);
If (DividedNumber mod 3) = 1

then begin
DividedNumber:= 2*(DividedNumber div 3);
If (DividedNumber mod 3) = 1

then writeln(TrialNumber:3, fis a solution.')
end

end
end

end

This comes from page 156 of the book Ohi Pascali by Doug Cooper and Michael Clancey, W.
W. Norton and Co. 1982 [Cooper], which is a standard book on Pascal programming. It
concerns robbers who steal a number of gold bars. Secretly during the night, each one takes
one third for himself, each time leaving one bar left over. In the morning, they divide what is
left and find one still left over. The question is to find the original number of bars. There are
many solutions, so only the solutions less than or equal to 500 are given by this program.

This program can be recreated in Mathematica, almost word for word using a Do loop. The
syntax of a Do loop is almost exactly the same as that of a For loop in Pascal, except the
arguments are given in the reverse order. Functions like If, Mod, and Quotient are written in
prefix form rather than infix or mixfix form as in Pascal. Finally, instead of writeln, we use
Print. Perhaps the most noticeable difference is that the program and var statements at the
beginning of the Pascal program are replaced by the Module head and the local variable
declarations in the first argument of Module. Note that there is no way to declare types of local
variables. Finally, all the ends are replaced by closed brackets.

Eight · Procedural Programming 261

Module[(«Stolen Gold*)
{TrialNumber, DividedNumber},
Do[

If[Mod[TrialNumber, 3] == 1,
DividedNumber = 2 Quotient[TrialNumber, 3];
If[Mod[DividedNumber, 3] == 1,

DividedNumber =
2 Quotient[DividedNumber, 3];

Iff Mod[DividedNumber, 3] == 1,
DividedNumber =

2 Quotient[DividedNumber, 3];
If[Mod[DividedNumber, 3] == 1,

Print[TrialNumber,
" is a solution."]

{TrialNumber, 1, 500}]]
79 is a solution.
160 is a solution.
241 is a solution.
322 is a solution.
403 is a solution.
484 is a solution.

The same thing can be done by a strict one-liner. Note that it returns the values as an output
list, available for further processing.

Select[Range[500],
Apply[And,

Map[(# == 1)&,
Mod[NestList[2 Quotient[#, 3]&, #, 3],

3]]]&]
{79, 160, 241, 322, 403, 484}

It is interesting that Mathematica is able to sort out the different #'s that occur in this function.
The right most one is the one that gets filled by the entries from the list Range [500] . The next
one to the left belongs to the pure function in the argument to NestList , while the left most
one belongs to the predicate that is mapped down the resulting list. For instance, try:

NestList[2 Quotient[#, 3]&, 79, 3]
{79, 52, 34, 22}

262 Part II · Programming Language

Each of these numbers equals 1 modulo 3. (Mod is L i s t a b l e .)

Mod[NestList[2 Quotient[#, 3]&, 79, 3], 3]

{Ir 1 , 1/ 1}

Let Mathematica do the check that they are all l's.

Map[(# == 1)&,
Mod[NestList[2 Quotient[#, 3]&, 79, 3], 3]]

{True, True, True, True}

Get a single value True as the output by Anding together these values.

Apply[And,
Map[(# == 1)&,

Mod[NestList[2 Quotient[#, 3]&, 79, 3], 3]]]

True

Try the same thing for a range of 11 numbers.

Map[Mod[NestList[2 Quotient!#, 3]&, #, 3], 3]&,
Range[70, 80]]

{{1, 1, 0, 2}, {2, 1, 0, 2}, {0, 0, 2, 2}, {1, 0, 2, 2},
{2, 0, 2, 2}, {0, 2, 2, 2}, {1, 2, 2, 2}, {2, 2, 2, 2},
{0, 1, 1, 1}, {1, 1, 1, 1}, {2, 1, 1, 1}}

Map[Apply[And,
Map[(# == 1)&,

Mod[NestList[2 Quotient!#, 3]&, #, 3],
3]]]&,

Range[70, 80]]
{False, False, False, False, False, False, False, False, False,
True, False}

Notice how N e s t L i s t is used to help create the program itself. This is one aspect of what is
meant by a higher order programming language.

Of course, there is a much easier way to generate this series of numbers along with some
bigger entries. We leave it to the reader to figure out why it works.

T a b l e [(8 1 (8 k - 1) + 6 5) / 8 , {k, 1 , 10}]

{79 , 160 , 2 4 1 , 322 , 4 0 3 , 484 , 5 6 5 , 646 , 727 , 808}

£ight · Procedural Programming 263
0* 3ϋ®Ρ»^;?&*!&®' ? »**®*&*Ϊ X-

4.6 A Simple CProgram
Our next example is a simple C program that prints out an interest table.

/*
* Generates a table showing interest accumulation. Allows the
* user to input the interest rate, principal, and period.
*/

main()
{

int period, /* length of period */
year; /* year of period */

float irate /* interest rate */
sum; /* total amount */

printf ("Enter interest rate, principal, and period: ") ;
if (scanf ("%f %f %d", &irate, &sum, &period) == 3)

{
printf ("Year\t Total at %.2f%%\n\n", irate * 100.0);
for (year = 0; year <= period;year++)

{
printf ("%5d\t $ %10.2f\n", year, sum);
sum += sum * irate;

}
}
else

printf ("Error in input. No table printed.\n");
}

This C program can be closely approximated in style and format by a Mathematica program.

Module[
{irate, sum, per, year, scan},
If[Length[

scan =
Input[
"{interestRate?, principal?, period?}"]]===3,

{irate, sum, per} = scan;
Print["Year, Total at ", irate*100, " % "] ;
For[year = 0, year <= per, year++,

Print[PaddedForm[year, 2]," ", sum];
sum += sum * irate],

Printf"Error in input. No table printed."]]]

264 Part II · Programming Language

Year, Total at 10.%
0 10000
1 11000.
2 12100.
3 13310.
4 14641.
5 16105.1
6 17715.6
7 19487.2

When this Module is evaluated, the first thing that happens is that the Input expression is
evaluated. This asks the user for a list of three numbers. If a Notebook interface is being used,
then a dialogue box will appear asking for the input. Otherwise, a prompt will appear asking
for it. The input given here was { 0 . 1 , 10000, 7} . Then the column headings are printed
and a For loop is entered printing out the values for each year, one at a time. If something
other than a list of length three is entered, then an error message is printed. Notice how the
scan statement is inside the predicate Length [scan = . . .] = = 3, mirroring the way the
scan statement is used in the C program. Two things are accomplished this way. There is a
check if the input at least consists of three items, with an error message if it doesn't. The main
purpose of setting the identifier scan to the list of three values is accomplished as a side effect.
Every step in this program is a side effect.

Another way to handle the input statement is to prepare a file containing the desired
information using the form P u t [e x p r , " f i l e "] , or equivalently for a single expression,
expr » f i l e .

P u t [{ 0 . 1 , 10000, 7 } , " tes t i"]

Then, when the program asks for the information, respond with

G e t [" t e s t l "] => { 0 . 1 , 10000, 7}

This could be written as a function taking a file name as its only argument.

interestTable[file_String] :=
Module[
{irate, sum, per, year, scan},
If[Length[scan = Get[file]] == 3,

{irate, sum, per} = scan;
Print["Year, Total at ", irate*100, " % "] ;
For[year = 0, year <= per, year++,

Print[PaddedForm[year, 2]," ", sum];
sum += sum * irate],

Print["Error in input· No table printed."]]];

Eight · Procedural Programming

Evaluate this function for the file t e s t i .

interestTable["testi"]

Year, Total at 10.%
0 10000
1 11000.
2 12100.
3 13310.
4 14641.
5 16105.1
6 17715.6
7 19487.2

The differences between this program and the C program are that it is not necessary to
declare a type for each local variable and that explicit directions don't have to be given for
reading inputs and printing messages. Such a program would normally be written in
Mathematica as a function whose arguments are i n t e r e s t R a t e , pr inc ipa l , and period.
Then there is no need to include the I f statement since, if the wrong number of arguments are
given, Mathematica simply leaves the expression unevaluated.

accumulation[interestRate_, principal_, period_] :=
Module[
{sum = principal, year},
Print["Year, Total at ", interestRate*100, " % "] ;
For[year = 0, year <= period, year++,

Print[PaddedForm[year, 2]," ", sum];
sum += sum * interestRate]];

accumulation[.10, 10000, 7];
The output is the same as before.

Here is a version even more in the spirit of Mathematica programming. Note that no local
variables are required in the single NestLis t operation. The computation itself is simplified
to the extent that most of the function consists of explicit directions for displaying the table and
getting correct column headings as an output rather than a Print statement.

accumulatel[interestRate^, principal^, period_] :=
PaddedForm[TableForm[
NestListf {#[[1]]+1, #[[2]] (1 + interestRate)}&,

{0, principal}, period],
TableHeadings ->

{ None,
{" Year", "Total at " <>
ToString[lOOinterestRate]<>"%"}},

TableSpacing -> {0, 2}], 5];

265

266 Part II · Programming Language

Try this for the same data as before.

accumulateli0.1, 10000, 7]
Year Total at 10.%
0 10000
1 11000.
2 12100.
3 13310.
4 14641.
5 16105.
6 17716.
7 19487.

All numbers had to be padded to size 5 to get the numbers in the Year column to line up
nicely, but not lose digits in the T o t a l column. (That's what the PaddedForm is about.) The
column heading To ta l a t 10. % had to be carefully constructed using the infix form <> of
StringJoin. However, the final information now is in output form and so is available for
further processing. E. g.,

%[[3]] => {2, 12100.}

4.7 AC Program for a Histogram

4.7.1 The C program
Lastly, we consider a longer C program from the book Programming in C, by Lawrence H.
Miller and Alexander E. Quilici, John Wiley & Sons, Inc. 1986 [Miller]. A histogram is a kind of
a bar chart for displaying data. The data is separated into "buckets" of equal sizes according to
the values of the data and then the number of data items in each bucket is plotted. The
program below is divided into a main loop followed by the definitions of the two functions,
fill_bkts and print_histo, which constitute the principal ingredients of the main loop. Thus, the
main program is of the form

main()
{

if (fill_bkts)
/*then*/

print_histo
else

error message
}

Eight · Procedural Programming 267
^ ^ » « « » » ^ ^ ^ ^ , Γ ^ Λ ^ ^ Α Μ ^ Η ' - **T^Ä -Ä' *T^^^^m^&wmm$$m\

The procedure fill_bkts is a compound expression which first does all the work of putting the
data items into the correct buckets and then ends with a predicate asking if the variable
"inpress" which is storing the read in values now has the value EOF (" EndOfFile). Thus, the
predicate part of the if statement, as a side effect, does all of the real work of the command.
Assuming that all of the data has been read in, then the print_histo procedure is carried out,
which makes a picture of the histogram. Otherwise, an error message is printed.

/*
* Produce nice histogram from input values.
*/
♦include <stdio.h>

♦define
♦define
♦define
♦define
♦define

MAXCOLS
MARKER
MAXVAL
MINVAL
NUMBKTS

50
1 if 1

100
0
11

/ *
/ *
/ *
/ *
/ *

columns available for markers */
character used to mark columns */
largest legal input value */
smallest legal input value */
number of buckets */

main()
int buckets[NUMBKTS],

bktsize;
{

/* buckets to place values in */
/* range bucket represents */

bktsize = (MAXVAL - MINVAL) / (NUMBKTS - 1);
if (fill_bkts(buckets, bktsize))

print_histo(buckets, bktsize);
else

printf("Illegal data value—no histogram printed\n");

h
* Read values, updating bucket counts, Returns nonzero only
* if EOF was reached without error.
*/
int fill_bkts(buckets, bktsize)
int buckets[],

bktsize;
{

/* buckets to place values in */
/* range of values in bucket */

int badcnt = 0,
bkt,
inpres,
totalcnt = 0,
value;

/* count of out-or-range values */
/* next bucket to initialize */
/* result of reading in an input line */
/* count of values */
/* next input value */

for (bkt = 0; bkt <= NUMBKTS; buckets[bkt++] = 0)
; /* initialize bucket counts */

268 Part II · Programming Language

while (inpres = scanf("%d"f &value), inpres == 1)
{

if (value >= MINVAL && value <= MAXVAL)
buckets[(value - MINVAL) / bktsize]++;

else
badcnt++;

totalcnt++;
}
if (Ibadcnt)

printf("All %d values in range\n", totalcnt);
else

printf("Out of range %d, total %d\n", badcnt, totalcnt);
return inpres == EOF; /* did we get all the input? */

}
/*
* Print a nice histogram, first computing a scaling factor
*/

print_histo(buckets, bktsize)
int buckets[], /* buckets to place values in */

bktsize; /* range of values in bucket */
{

int bottom, /* first value in current bucket */
bkt, /* current bucket */
markcnt, /* number of marks written */
most, /* values in largest bucket */
values; /* number of values to write out */

float scale; /* scaling factor */
/* compute scaling factor */

for (bkt = most = 0; bkt < NUMBKTS; bkt++)
if (most < buckets[bkt])

most = buckets[bkt];
scale = (most > MAXCOLS) ? (MAXCOLS / (float) most) : 1.0;

/* print the histogram */

putchar('\n');
for (bkt=0, bottom=MINVAL; bkt < NUMBKTS; bottom += bktsize,

bkt++)
{

/* write range */
printf("%3d-%3d |", bottom,

(bkt == NUMBKTS - 1) ? MAXVAL : bottom + bktsize - 1);
/* compute number of MARKERS to write, making sure that

at least

Eight · Procedural Programming 269

one is written if there are any values in the bucket
*/

if (buckets[bkt] && !(values = buckets[bkt] * scale))
values = 1;

/* writes MARKERS and count of values */
for (markcnt = 0; markcnt < MAXCOLS; markcnt++)

putchar((markcnt < values) ? MARKER : ' ') ;
if (buckets[bkt])

printf(" (%d)", buckets[bkt]);
putchar('\n');

}
}

4.7.2 The direct Mathematica translation
First we give the direct translation which attempts to be as close as possible in structure and
spirit to the preceding C program. It is written as a function so that there is a reasonable way to
use it. Also, the data is read from a file rather than from the keyboard as apparently is done in
the C program.

histo6ram[filename_String,
{MINVAL_,MAXVAL_,NUMBKTS_}] : =
Module[
{ MARKER = '■*M,

buckets,
bktsize = (MAXVAL - MINVAL)/ (NUMBKTS - 1)

},
fillBkts[buckets_, bktsize_] :=
Module[{bkt, snum, value, badcnt = 0f totalcnt = 0},

For[bkt=0, bkt<=NUMBKTS,
buckets[bkt++]=0,Null];
snum = OpenRead[filename];
While[

((value = Read [snum, Number];
Length[value] == 0) &&
(value =!= EndOfFile)),

If[value >= MINVAL && value <= MAXVAL,
buckets[

Floor[(value-MINVAL)/bktsize]]++,
badcnt++];

totalcnt++];
CloseRead[filename];

270 Part II · Programming Language

If[i(badcnt > 0),
Print ["All ", totalcnt," values in

range\n"],
Print["Out of range", badcnt, "total",

totalcnt, "\n"]];
value === EndOfFile];

printHisto[buckets_, bktsize_] :=
Module[{bkt, markcnt, stars, bottom},
For[bkt = 0; bottom = MINVAL, bkt < NUMBKTS,

Print[PaddedForm[bottom, 3],
II II

— r

If[bkt == NUMBKTS - 1,
PaddedForm[MAXVAL, 3],
PaddedForm[bottom+bktsize-l, 3]],

II I II

I r
For[markcnt=0; stars={}, markcnt<40,

markcnt++,
If[markcnt < buckets[bkt+1],

AppendTo[stars, MARKER],
AppendTo[stars, " "]]];

If[buckets[bkt+1] > 0,
AppendTo[stars,
StringJoin[
II / II
V r

ToString[buckets[bkt+1]],")"]]];
StringJoin[stars]
];

bottom += bktsize; bkt++]
]; If[
fillBkts[buckets, bktsize],
printHisto[buckets, bktsize],
Print["Illegal data value—

no histogram printedXn"]
1

1
In order to use this program we construct a file, called numbers 1, consisting of 200 random

integers between 1 and 100.

Eight · Procedural Programming
<*à#;M«"\fr**,*v ^ Ä ' ^ S * ^ ^ * „ ^ Ι Α Λ . Α & ^ :

271

OutputForm[
TableForm[

Table[Random[Integer, {1, 100}], {200}],
TableSpacing -> {0, 2}]] » numbers1

histo6ram["numbersi", {0, 100, 11}]
All 200 values in range

0 -
10 -
20 -
30 -
40 -
50 -
60 -
70 -
80 -
90 -

100 -

9 1 19 |
29 j
39 j
49 j
59 j
69 j
79 j
89 j
99 j

100 j

(15)
(22)
(28)
(21)
(13)
(28)
(16)
(17)
(20)
(3)

This result, which comes from Print statements, is almost exactly the same as the output from
the C program, which was our goal in this first translation.

4.7.3 Comments on the direct Mathematica translation
Now that the program is written in Mathematica rather than C, it is somewhat easier to follow
the syntax. A number of things had to be changed in order to get a reasonable Mathematica
program. In particular:

i) HistoGram is a function of two arguments, one of which is a list with three entries,
using up three of the local variables in the C program; namely, MINVAL, MAXVAL,
and NUMBKTS.

ii) MAXCOLS is omitted since the scaling factor computation is omitted, leaving only
MARKER from the original local variables.

iii) The way in which the C program passes values around does not exactly match
Mathematical functional style. Thus, buckets and bktsize are included in the top level
module so they have the same values everywhere.

iv) Inside the top level Module, there are two other Modules as part of the definitions of
the functions f i l l B k t s and p r i n t H i s t o . Normally, these would be defined as
separate functions outside the definition of histoGram, but there is no harm in
putting them where they are.

v) In printHisto, PaddedForm is used several times to get the final Print statements
lined up properly.

272 Part II · Programming Language

vi) The f i l l B k t s operation reads in its data from a file rather than asking the user to
type in numbers each time the program is run. The file is created using » , which is
the infix form of the command Put. We use the commands OpenRead, Read, and
C l o s e Re ad to get the information from the file into the program. The Put
construction created a file numbers 1 that we can examine as follows:

examine = OpenRead["numbersi"] =» InputStream[numbers1, 9]

Note that the name of the file must be a string. (The filename argument in the program is
required to be a string.) The result of OpenRead is to open a stream communication with the
file. We can then read from the stream using the command Read which takes the name of the
stream and the kind of data to be read as arguments. Read maintains a pointer to the last value
read and on each use it returns the next value. Thus, the following Table returns the first 10
numbers in the file.

Table[Read[examine, Number], {10}]

{48, 90, 63, 27, 30, 32, 88, 48, 71, 4}

Repeated, it gives the next 10 values.

Table[Read[examine, Number], {10}]
{54, 77, 30, 60, 60, 15, 36, 66, 97, 100}

Finally, we close the stream using Close. It is always a good idea to close any open stream as
soon as it is no longer needed.

Close[examine] => numbers1
A more elegant and symmetrical way to handle the construction of the file is to open a stream
and write to it. The following Write construction is exactly opposite to the construction Read.
Note that each Write statement writes one item, so we use a Table construction to write
many items to the file. As with Read, we first open a stream to the file, write to it, and then
close it.

sfile = OpenWrite["file"];
Table[Write[sfile, Random[Integer, {0, 20}]], {40}];
Close[sfile];

Eight · Procedural Programming 273

One can add numbers to the file as follows:

afile = OpenAppend["file"];
Write[afile, 20]; Writefafile, 20];
Close[afile];

To see the contents of the file, use:

i I f i l e
We've omitted the output here since it is a long, single column of 42 numbers. To find out
where this file is, use the following command which returns the name of the current working
directory. The output, of course, is machine dependent.

Directory!] => HardDisk:Mathematica 2.2 Enhanced

4.7.4 A better Mathematica program
First of all, we agree with the general idea that the program has two main parts: the first part
puts the data in the appropriate buckets and the second part makes a picture of the filled
buckets. This second part will be implemented in Chapter 10 as an example of graphics
programming. Here, we concentrate on putting the data in buckets. We assume, as does the C
program that the range of the data and the bucket size are given in advance (although it is easy
to imagine a preprocessor that examines the data first and determines the actual range and an
appropriate bucket size). Now, in Chapter 6, Section 2.3, we used the Count function to count
how many times a given item occurs in a list. If we had the range divided into sublists of the
size of each bucket, then we could just add up how many times each value in a given bucket
occurs in the list of data. This is easy to arrange. Assume the range and bucket size are given in
the form {xmin, xmax, xstep} so the values are between xmin and xmax and the bucket
size is xstep. Then defining

(̂ buckets = Partition[Range[xmin, xmax], xstep]*)
would create the buckets as a list of lists. E.g.,

buckets = Partition[Range[0, 99], 10]
{ { 0 ,

{ 1 0 ,
{ 2 0 ,
{ 3 0 ,
{ 4 0 ,
{ 5 0 ,
{ 6 0 ,
{ 7 0 ,
{ 8 0 ,
{ 9 0 ,

1 , 2
1 1 ,
2 1 ,
3 1 ,
4 1 ,
5 1 ,
6 1 ,
7 1 ,
8 1 ,
9 1 ,

, 3 ,
1 2 ,
2 2 ,
3 2 ,
4 2 ,
5 2 ,
6 2 ,
7 2 ,
8 2 ,
9 2 ,

4 , :
1 3 ,
2 3 ,
3 3 ,
4 3 ,
5 3 ,
6 3 ,
7 3 ,
8 3 ,
9 3 ,

5 , 6
1 4 ,
2 4 ,
3 4 ,
4 4 ,
5 4 ,
6 4 ,
7 4 ,
8 4 ,
9 4 ,

, 7 ,
1 5 ,
2 5 ,
3 5 ,
4 5 ,
5 5 ,
6 5 ,
7 5 ,
8 5 ,
9 5 ,

8 ,
1 6 ,
2 6 ,
3 6 ,
4 6 ,
5 6 ,
6 6 ,
7 6 ,
8 6 ,
9 6 ,

9 } ,
1 7 ,
2 7 ,
3 7 ,
4 7 ,
5 7 ,
6 7 ,
7 7 ,
8 7 ,
9 7 ,

1 8 ,
2 8 ,
3 8 ,
4 8 ,
5 8 ,
6 8 ,
7 8 ,
8 8 ,
9 8 ,

19},
29},
39},
49},
59},
69},
79},
89},
99}}

274 Part II · Programming Language

gives us 10 non-overlapping sublists. In the C program, buckets is constructed one item at a
time in a For loop, whereas here, obeying the fundamental dictum of functional
programming, it is made by partitioning the existing list Range [0 , 99] .

To test this, create a list of random integers between 1 and 100.

data = Table[Random[Integer, {0, 99}], {500}];
Then

Map[Map[Count[data, #]&, #]&, buckets]
{{0, 7, 5, 5, 5, 2, 3, 6, 4, 4},
{6, 3, 10, 9, 6, 4, 3, 3, 3, 3},
{6, 5, 8, 7, 3, 3, 6, 5, 9, 8},
{4, 2, 4, 5, 7, 3, 6, 4, 7, 2},
{12, 3, 5, 7, 4, 6, 4, 7, 5, 2},
{3, 4, 7, 3, 3, 4, 5, 5, 4, 6},
{6, 6, 6, 2, 7, 8, 6, 6, 8, 4},
{6, 2, 4, 1, 3, 7, 7, 6, 2, 3},
{6, 4, 4, 6, 1, 3, 2, 5, 5, 5},
{9, 5, 6, 5, 5, 6, 4, 8, 5, 9}}

tells how many times each bucket item occurs in the data, and

Map[Plus@@Map[Count[data, #]&, #]&, buckets]

{41, 50, 60, 44, 55, 44, 59, 41, 41, 62}

adds up the items in each bucket. As with the frequencies command, these values should be
combined with a description of the buckets. We choose to do this by giving the minimum and
maximum values in each bucket; i.e.,

Map[{Min[#], Max[#]]&, buckets]

{{0, 9}, {10, 19}, {20, 29}, {30, 39}, {40, 49}, {50, 59},
{60, 69}, {70, 79}, {80, 89}, {90, 99}}

Finally, put this together with the values in each bucket.

Eight · Procedural Programming 275

Map[{{Min[#], Max[#]}, Plus@@Map[Count[data, #]&, #]}&,
buckets]

{{{0, 9}, 41}, {{10, 19}, 50}, {{20, 29}, 60}, {{30, 39}, 44},
{{40, 49}, 55}, {{50, 59}, 44}, {{60, 69}, 59},
{{70, 79}, 41}, {{80, 89}, 41}, {{90, 99}, 62}}

Thus, the final program to calculate the values is a simple one-liner.

histogram[data_, {xmin_, xmax_, xstep_}] : =
Map[{ {Min[#], Max[#]},

Plus@@Map[Count[data, #]&, #] }&,
Partition[Range[xmin, xmax], xstep]]

This corresponds to the fill_bkts part of the C program. Try this with data.

histo = histogram[data, {0, 99, 10}]

{{{0, 9}, 41}, {{10, 19}, 50}, {{20, 29}, 60}, {{30, 39}, 44},
{{40, 49}, 55}, {{50, 59}, 44}, {{60, 69}, 59},
{{70, 79}, 41}, {{80, 89}, 41}, {{90, 99}, 62}}

A different version of histogram can be based on the BinCounts function in the package
S t a t i s t i c s DatciManipulation^.

histograml[data_, {xmin_, xmax_, xstep_}] : =
Module[

{ buckets =
Partition[Range[xmin, xmax], xstep],

nbuckets = Ceiling[(xmax - xmin)/xstep],
newdata = Ceiling[(data - xmin)/xstep], i},

Transpose[{
Map[{Min[#], Max[#]}&, buckets],
Table[Count[newdata, i], {i, nbuckets}]}]]

As an exercise, step through this program to see how it works. Then look up BinCounts.
In Chapter 10, Section 5.1, we will show how to use Mathematica graphics primitives to

construct a graphics object illustrating the output of h is togram in order to see what the
resulting output looks like. This will correspond to the print_histo part of the C program.

27Ό Part II · Programming Language
'$>'< s &"<S%?-' î t ^ Î V f f * W > V #rî'A^«>

4.7.5 Comparison of the two Mathematica programs
The main difference between the C program, either in itself or as translated into Mathematica,
and the better Mathematica programs is the level on which data is treated. The C program only
deals with individual items of data, while the Mathematica program deals directly with the data
as a whole.

i) For instance, the array of empty buckets is created by a For loop, one bucket at a time,
whereas the better Mathematica program creates the buckets by partitioning the
already existing list given by the Range command. Next, in the filljbkts part, the C
program looks at each item of data in turn and increments the appropriate bucket. The
Mathematica program, on the other hand, uses the technique of the f r e q u e n c i e s
function of Chapter 6, Section 2 to run through the list of possible values in each
bucket and add up the number of times that they occur in the data list, all by mapping
appropriate constructions down lists.

ii) Similarly, in the print_histo part, for each bucket the C program calculates the lower
and upper bounds of the bucket, prints them followed by a bar I, and then, one at a
time prints a "*" for each item in the bucket, followed by individually calculated spaces
" " to fill up each row. In the Mathematica graphics programs constructed in Chapter 10,
a single construction will be applied to each pair in the output of histogram to build
a graphics object which can then be displayed in various forms.

iii) Good Mathematica style consists in dealing with mathematical objects as wholes, in
accordance with the fundamental dictum of functional programming, never breaking
them up into their constituent parts for later reconstruction in another form. It
sometimes takes considerable thought to see how data in one form can be converted
directly into data of another form, but that is one reason why Mathematica
programming is interesting.

5 Practice

1. Trace[y = 6; Plus[(y = y + 1); 5, y]]//TableForm
2. Trace[y = 6; Plus[y, (y = y + 1); 5]]//TableForm
3. Module! {t = 6, u = t}, uA2]
4. Trace [Module [{t = 6, u = t}, υΛ2]]
5. Table[Block[{r}, r], {10}]
6. Trace[Block[{t}, t = 3]]

Eight · Procedural Programming 277

7. ToCycle[perm_] : =
Module[
{a = {}, len = Length[perm], t, n, 1, i},
t = Table[True, {len}];
For[i =1, i <= len, i++,

If[t[[i]],
For[n = perm[[i]]; 1 = {},

t[[n]], n = perm[[n]],
t[[n]] = False; AppendTo[l, n]];

AppendTo[a, 1]
] 1;

Return[a]]
(See Chapter 12 for a functional version of this program, or write your own.)

8. ToCycle[{ 3 , 4 , 15 , 1 3 , 2 , 1 1 , 7 , 6 ,
14 , 9 , 1 2 , 1 , 16 , 5 , 8 , 10}]

6 Exercises

1. Many of the list operations in Mathematica are based on commands from the language
APL (A Programming Language). One that is not implemented is the function d e a l
which is represented in APL by ?. Thus, L?R selects L integers at random from the
population Range [R] without replacement.

i) Write a more general Mathematica function d e a l so that d e a l [l i s t , n] selects n
entries at random from l i s t without replacement.

ii) A deck of cards consists of 52 cards divided into 4 suits called clubs, diamonds,
hearts, and spades. Each suit consists of the cards 2 ,3 ,4 ,5 ,6 , 7,8,9,10, J, Q, K, 1. A
bridge deal consists in giving 13 cards at random to each of 4 players. Define a
Mathematica deck and a function b r i d g e D e a l [deck] that generates and displays
such a bridge deal.

2. Part of the problem in Exercise 3 of Chapter 7 was to write a predicate a lgexpQ in
pattern matching style. Write the same function in two different forms using: i) Which,
ii) Switch.

3. Define a function countTheCharacters [t e x t _] that takes a string t e x t and turns
it into a list of characters. It then returns a list whose entries are pairs with first entry a
character in the list and second entry the relative frequency of the occurrence of the
character in t e x t , expressed as a percentage of the total number of characters in t e x t .
You may want to use the definition of f r e q u e n c y in Chapter 6, Section 2.3. Try to put
the list in order of decreasing frequency.

278 Part II · Programming Language

4. Recreate the Pascal program "Stolen Gold"
i) using a For loop in Mathematica,

ii) using a While loop in Mathematica.

iii) Change the one-liner so it prints out the same results as the Pascal program. It
should still be a strict one-liner.

5. Consider the two infinite sums with possible values
~ a Ç ^ . x ~ a(n) _ IQ

} n = l 2n "99 Z) n = l 10n " 99

Here, a(n) is the number of odd digits in odd positions in the decimal expression for n.
Thus, a(901) = 2, a(1234) = 0, a(4321) = 2, etc. Positions are counted from the right. At
least one of the values is wrong and can be detected by a computation taking a
reasonable length of time (i.e., < 10 seconds). Which one is it? [Borwein]

6. A perfect shuffle of a deck of 2n cards consists in dividing the deck in the middle into
two decks of n cards each and then exactly interleaving the two decks. There are two
ways to do this: either the first card of the first deck remains the first card, in which case
the shuffle is called an out shuffle, or it becomes the second card, in which case the
shuffle is called an in shuffle. Both shuffles determine a permutation of 2n cards. The
two shuffles generate a subgroup of the group of all permutations of 2n cards by
repeating and combining them. For instance, if n = 3, then there are six cards. Label
them {1,2,3,4,5,6}. An out shuffle produces the permutation {1,4,2,5,3,6} while an in
shuffle produces the permutation {4,1,5,2, 6,3}.
i) Write functions outShuf f l e and inShuf f l e taking as argument a list of even

length and permuting it by an out shuffle and an in shuffle.

ii) Since the group of all permutation is a finite group, both outShuf f i e and
i n S h u f f l e have finite orders; i.e., there are integers outOrder[n] and
inOrder [n] for each n such that if outShuf f i e is repeated outOrder [n] times
and inShuf f l e is repeated inOrder[n] times, then the result is the identity
permutation. Determine the orders of outShuf f i e and inShuffle for n between
1 and 50; i.e., for decks consisting of 2 to 100 cards, by finding experimentally how
many times they have to be repeated to put the deck back into its original order.
Note: for n = 26, i.e., for an ordinary deck of 52 cards, outOrder [26] = 8 and
inOrder [26] = 52. Plot these values as a function of 2n.

iii) It is a theorem that the order of outShuf f i e for a deck of 2n cards is the smallest k
such that 2k = 1 mod 2n - 1 , and the order of inShuffle is the same as the order of
outShuf f i e for a deck consisting of 2 more cards. Write functions calculating
these numbers and compare these numbers with the experimental results for n
between 1 and 50.

Eight · Procedural Programming

iv) It is known that the group generated by outShuf f l e and inShuf f l e is
isomorphic to the group of all symmetries of the n-dimensional generalization of
the octahedron. (See [1] and [2] below.) For n = 3, it is the group of all symmetries of
the usual octahedron. Using the values of the orders of outShuf f l e [3] and
inShuf f l e [3] , show that there are symmetries of the required orders. Is there a
nice graphical illustration of this result?

v) Generalize to the situation where a deck of 3 n cards is divided into three equal
parts which can then be shuffled perfectly in six different ways.

References:
[1] Diaconis, P, Graham, R. L., and Kantor, W. M., The mathematics of perfect shuffles,

Adv. Appi. Math., 4 (1983), 175-196.

[2] Medvedoff, S., and Morrison, K., Groups of perfect shuffles, Mathematics Magazine, 60
(1987), 3-14.

7. It is a non-trivial result in number theory that every positive integer can be written as
the sum of four squares. (Zero is allowed as one of the summands.)
i) Write a program to find one such representation for each positive integer. Use it to

find all integers between 1 and 1000 that are not sums of three squares.

ii) Write a program that finds all such representations for each positive integer.

iii) Not all integers can be written as the sum of four distinct non-zero integers. Find all
integers between 1 and 1000 that don't have such a representation. (Warning: this
takes 40 minutes on a SPARC workstation.)

8. There are various systematic methods for generating magic squares. Look up some of
these methods and implement them in Mathematica.

279

1 Introduction
In the preceding three chapters we have discussed three distinct modes of computer
programming-functional programming, rewrite rule programming, and imperative
programming. All three have their roles and most Mathematica programmers use whatever
style seems most appropriate to the thought being expressed, depending on the needs of the
moment. The Mathematica Book [Wolfram] suggests that rule based programming is the most
appropriate. Others insist that only functional programming is acceptable, and presumably
unregenerate C programers will continue to write thinly disguised imperative programs. In
discussing each style we have concentrated on producing operations that realize some definite
mathematical or scientific goal.

But how do you proceed if you have more than one goal and if you want to produce
software for others to use? Most large programs do many things and the organization of the
interactions between the pieces of a program can become a major task. There is a specific
Mathematica facility-that of Packages, to be addressed in the next chapter-that deals with one
aspect of this problem. But, in recent years a paradigm has emerged which has become
increasingly popular in software engineering projects whose purpose is to create large
programs-that of object-oriented programming (OOP). For instance, Mathematica is written in
an object-oriented version of C. Also, essentially all graphical user interfaces are written in
object-oriented languages.

It is possible to write programs in a pseudo object-oriented style in almost any higher order
programming language, but certain languages like C++ and Smalltalk are explicitly intended
to be used only in this way. Although Mathematica does not provide any built-in support for
object-oriented methods, a recent package by Roman Maeder in [Maeder 3] called Classes .m,
implements a full-blown object-oriented extension to it. This package does not make it possible

281

Part II · Programming Language

to do any calculations that couldn't be done before; it just makes it possible to completely
rearrange the way in which they are carried out. It is to be hoped that there will soon be a
hard-wired version in the underlying Mathematica C code.

We have been subtly (and perhaps not so subtly) promoting the view that Mathematica is at
heart a functional programming language. Such languages work by building up a "myriad" of
smaller functions each accomplishing one piece of a task, and then joining them together into
one top level function which is applied to some data producing a result. Mathematica adds to
this the possibility of applying a given function to data in different forms with different
outputs. It does this via the mechanism of pattern matching using heads of expressions or
predicates to restrict patterns. This facility is part of what is called polymorphism, which means
exactly that the same operation works with data of different forms, usually resulting in similar
outputs.

In the general situation, there will be many kinds of data and many operations. Some of the
data will be acted on by more than one operation and some of the operations will act on more
than one kind of data. It is this unexpected symmetry (or perhaps duality is a better term)
between operations and data that led to the invention of object-oriented programming.
Functional programming (or function-oriented programming) concentrates on the functions
and their organization into hierarchies while object-oriented programming concentrates on the
data and its organization into hierarchies.

There are enough subtleties involved in object-oriented programming to fill many books.
Two that are very useful are [Budd] and [Meyer]. In this chapter we shall just explain the
evolution and use of Maeder's implementation by means of some very simple examples.
Section 2 is intended as motivation for the material in Section 3. In it we follow Maeder's
discussion in [Maeder 2] of how to shift attention from the functions to the data. In Chapter 13,
graph theory will be developed in a strictly object-oriented framework, in the hopes that a
single comprehensive and comprehensible example is worth a hundred pages of philosophy.

2 The Duality Between Functions and Data
The transition from functional programming to object-oriented programming is mediated by
the notion of a dispatch table. For a thorough discussion in the context of Lisp, see [Abelson].
Here we follow the treatment of [Maeder 2]. A standard example is given by points in the
plane. Such points can be represented by Cartesian or polar coordinates and can be created in
either form. Given a point in either representation, there are a number of things we would like
to be able to calculate about it; i.e., its x-coordinate, its y-coordinate, its magnitude, and its
polar angle. Furthermore, we would like to be able to make these calculations without
worrying about which coordinate system is used to represent the point. Two somewhat
different implementations of this idea will be given.

282

Nine · Object-Oriented Programming 283

2.1 The First Implementation of Points in the PUne

As was discussed in Chapter 5, one meaning for the head of an expression is the type of the
expression; e.g. the head of 2 is Integer and the head of {a, bf c} is List . In particular,
we will use the heads c a r t e s i a n and po lar to identify Cartesian and polar coordinates
respectively of points in the plane, thinking of these heads as representing two different types
of points. Two functions are defined to create points of the given types just by wrapping the
heads car tes ian and polar around the values.

makeCartesian[{x_, y_}]
makePolar[{r , theta }]

:= cartesian[x, y];
:= polar[r, theta];

The four things we want to calculate, the x-coordinate, the y-coordinate, the magnitude, and
the polar angle, now require two functions each, one for Cartesian points and one for polar
points.

xCoordCartesian[cartesian[x_, y_]]
yCoordCartesian[cartesian[x_, y_]]
magnitudeCartesian[cartesian[x_, y_]]
polarAngleCartesian[cartesian[x_, y_]]
xCoordPolar[polar[r_, theta_]]
yCoordPolar[polar[r_, theta_]]
magnitudePolar[polar[r_, theta_]]
polarAnglePolar[polar[r , theta]]

= x;
= y;

Sqrt[x*2 + y'
ArcTan[y/x];
r Cos[theta];
r Sin[theta];
r;
theta;

2];

Consider the following table in which the rows represent the operations (given generic
names) and the columns represent the types. The entries in the table are the actual functions
that calculate the values for each type. Such a table is called a dispatch table. It dispatches the
operations depending on the types of the arguments. (Cf. the Mathematica operation
Dispatch.)

xCoord

yCoord

magnitude

polarAngle

cartesian

xCoordCartesian

yCoordCartesian

magnitudeCartesian

polarAngleCartesian

polar

xCoordPolar

yCoordPolar

magnitudePolar

polarAnglePolar

284 Partii · Programming Language

We can construct functions that implement this table by using Switch to determine which
concrete operation should be applied to arguments of each type. The four rows require four
functions, each of which has to determine what to do with each type of argument. This is done
by pattern matching using the head of the argument.

xCoord[point_] :=
Switch[Head[point],

cartesian, xCoordCartesian[point],
polar, xCoordPolar[point]];

yCoord[point_] :=
Switch[Head[point],

cartesian, yCoordCartesian[point],
polar, yCoordPolar[point]];

magnitude[point_] :=
Switch[Head[point],

cartesian, magnitudeCartesian[point],
polar, magnitudePolar[point]];

polarAngle[point_] s =
Switch[Head[point],

cartesian, polarAngleCartesian[point],
polar, polarAnglePolar[point]];

In each operation, the head of the argument is matched to the type to determine which
operation should be applied.

Now, using these operations we can, for instance, add points irrespective of how they are
represented.

add[pointl_, point2_] :=
makeCartesian[{ xCoordfpoint1] + xCoord[point2],

yCoord[point1] + yCoord[point2]}];

As an example construct a Cartesian and a polar point

point1 = makeCartesian[{2, 3 }] ;
p o i n t 2 = πΐ3)ςβΡοΐ3Γ[{2Λ(3/2) , P i / 4 }] ;

and then add them together.

add[point1, point2] => cartesiani4, 5]

In this organization, the information about each of the four basic functions is stored with the
function itself as usual. For instance:

Nine · Object-Oriented Programming 285

PxCoord

xCoord[point_] :=
Switch[Head[point], cartesian, xCoordCartesian[point],

polar, xCoordPolar[point]]
As we have seen in the answer to Exercise 8 of Chapter 8, such Switch statements are not

the most efficient way to implement this kind of polymorphism. Parallel rewrite rules are
better both stylistically and from the standpoint of efficiency. For instance, xCoord could be
given by two rules:

xCoord[point__cartesian] := xCoordCartesian[point];
xCoord[point_polar] := xCoordPolar[point]

However, our ultimate goal is not to implement these operations but to explain the form of the
argument to the operation Class described below, and that is best done using Switch.

2.2 The Second Implementation of Points in the Plane

A somewhat more intrinsic way to organize the same information is to group together the
calculation of the x and y coordinates as a list and call it the Cartesian coordinates of a point. In
the same way, the magnitude and polar angle are called the polar coordinates of a point. The
calculations above can be grouped differently so that they represent translations between the
two coordinate systems. This way, we only need two functions, one to turn polar points into
Cartesian points, and the other to provide the opposite transformation. We keep the definitions
of makeCartesian and makePolar from above. Here are the two required functions:

cartesianFromPolar[point_polar] :=
makeCartesian[{ point[[l]] Cos[point[[2]]],

point[[l]] Sin[point[[2]]] }];
polarFromCartesian[point_cartesian] :=

makePolar[{ Sqrt[point[[1]]Λ2 + point[[2]]A2],
ArcTan[point[[2]] /point[[l]]] }];

For instance:

rr = makeCartesian[{3, 4}] => cartesiani;3, 4]
pp = polarFromCartesian[rr] => polar[5, ArcTan[4/3]]

Now what we want to do is to extract the Cartesian and polar coordinates of a point
independently of its type by functions to be called cartesianCoords and polarCoords.
The corresponding dispatch table is somewhat simpler, and the entries look much simpler
than our previous table. In particular, the diagonal entries just change the head of the point to
List.

286 Part II · Programming Language
iH>&M&k v & r e ^ > £ - r ^ Λ <«# ,-#% A-,4. ̂ , » ΐ 4 | ^ ! ^ N S H ? ? * ^ *' ^ÎK«X<.'U- ^ ^ - ^ #wk ^ ̂ > *$&&$J&« s ^ ̂ -^V \-& '<;, , ^ Λ - ^ ^ ν . : ^ ^ V \

cartesian
Coords

polarCoords

cartesian

List@@point

List@@
polarFromCartesian

polar

List@@
cartesianFromPolar

List@@point

The Mathematica implementation of the rows of this table is similar to the first implementation,
again using Switch.

cartesianCoords[point_] :=
Switch[Head[point],

cartesian, List@@point,
polar, List@@cartesianFromPolar[point]];

polarCoords[pointy] :=
Switch[Head[point],

cartesian, List@@polarFromCartesian[point],
polar, List@@point];

The points rr and pp from above are really "the same" even though rr is a Cartesian point
and pp is a polar point, in that they have the same Cartesian and polar coordinates.

{cartes ianCoords[rr] , cartesianCoords[pp]}

{{3 , 4 } , {3 , 4}}

{polarCoords[rr], polarCoords[pp]}
{{5, ArcTan[4/3]}, {5, ArcTan[3/4]}}

Once we have these operations, we can implement others in terms of them; e.g., points can
be translated by a vector and rotated about the origin.

translate[point_, vector_] :=
makeCartesian[cartesianCoords[point] + vector]

rotate[point_, angle_] :=
makePolar[{0, angle} + polarCoords[point]]

For instance:

translate[pp, {5, 5}]
rotate[pp, Pi]
N[%]

cartesian!8, 9]
polar[5, Pi + ArcTan[4/3]]
polar[5., 4.06889]

Nine · Object-Oriented Programming 287

2.3 The Transition to OOP

Instead of having operations that work with different kinds of data, the object-oriented
paradigm designs data objects that respond to different kinds of messages. Furthermore,
instead of applying functions to arguments, messages are sent to objects. Thus

messages = fwçtipns
objects data

Instead of functions knowing how to treat different kinds of arguments, the data itself knows
how to process the messages. In this view, the data-objects become the active participants
whereas the function-messages are little more than passive names. In terms of the dispatch
table, the columns play the main role rather than the rows.

At first it is hard to imagine how this can be achieved, but [Maeder 2] shows in a very
simple way how it is done. In the following examples, in order to avoid confusion with the
preceding operations, be sure to clear the previous definitions.

Clear[makeCartesian, makePolar,
cartesianCoords, polarCoords]

Here is the new version of makeCartesian that creates an active object.

makeCartesian[{x_, y_}] :=
Module[{cartesian},
With[
{dispatch =
Function[{message},
Switch[message,

cartesianCoords, {x, y},
polarCoords,
{Sqrt[xA2 + yA2], ArcTan[y/x]}]]},

cartesian/: f_Symbol[cartesian]:= dispatch[f]/;
MemberQ[{cartesianCoords, polarCoords}, f];

cartesian]]

This operation creates Cartesian point objects (replacing the notion of a cartesian point from
above) from lists of two numbers. The intention is that the properties of a Cartesian point
object will be the same as those of a Cartesian point. In particular, the data item
cartes ian [2 , 3] is replaced by the object that results from evaluating the operation raake-
Cartes ian[{2, 3}] here, the function c a r t e s i a n C o o r d s is replaced by the message
cartesianCoords (which is just a name), and Uve function polarCoords is replaced by the
message polarCoords.

288 Partii · Programming Language

There are two ingredients in this new definition of makeCartesian, Consider first, the
With expression:

With[{dispatch = Function[{message}, functionBody]},
withBody]

In the With statement, a new variable dispatch is set equal to a pure function of yet another
new variable message. The body, functionBody, of this pure function is like the dispatch
table we had before, except that this time it is dispatching the function names instead of the
data types. The function d ispatch gets used in the body, withBody, of the With statement
which is essentially

f_Symbol[cartesian]:= d i spatch[f]

This tells the c a r t e s i a n object how to respond to a message sent in the form
f [cartes ian] ; namely use the dispatch table to match the variable message to f and output
the appropriate result. This of course only works if f is either cartesianCoords or
polarCoords. A pair like (cartesianCoords, {x, y}) is called a method. A method
consists of two parts, the methodName, or message (e.g., c a r t e s i a n C o o r d s) and the
methodBody, or response (e.g., {x, y }).

The information about how to respond to messages is stored with the local variable
cartes ian because the form

c a r t e s i a n / : f_Symbol[cartesian] := d i spatch[f]

is used. The clause following it,

/; MemberQ[{cartesianCoords, polarCoords}, f]

restricts f to be one of the permissible messages. The final cartes ian causes the output of the
Module to be the local variable itself. For instance:

pt = makeCartesian[{2, 3}] => cartesian$6

Notice that c a r t e s i a n is concatenated with $n since it is a local variable. Now we can try
sending the messages polarCoords and cartesianCoords, as well as an illegal message
f f, to pt.

{polarCoords[pt] , cartes ianCoords[pt] , f f [p t] }

{{Sqr t [13] , ArcTan[3 /2]} , {2, 3 } , f f [c a r t e s i a n $ 6] }

Thus, pt knows what its Cartesian and polar coordinates are, but it knows nothing about any
other messages, such as f f. The information about this object is stored with the name
cartes ian$6 .

Nine · Object-Oriented Programming 289

?cartesian$6
(f$_Symbol)[cartesian$6] A:=
Function!{message$},

Switch[message$, cartesianCoords, {2, 3},
polarCoords, {Sqrt[2A2 + 3Λ2], ArcTan[3/2]}]][f$] /;

MemberQt{cartesianCoords, polarCoords}, f$]
What is stored with the data object cartes ian$6 is the information about how to respond to
the messages cartesianCoords and polarCoords in terms of the parameter values, 2 and
3, used in defining it. Thus, we see here, in expanded form, that sending the message f & to
c a r t e s i a n $ 6 by evaluating the command f $ [c a r t e s i a n $ 6] applies the pure function
Function [{method}, functionBody] to f $. When f $ is substituted for message$ in
f unctionBody the result is the Switch statement:

Switch[f$,
cartesianCoords, {2 , 3 } ,
polarCoords, {Sqrt[2*2 + 3 A 2] , ArcTan[3/2]}]

provided, of course, that f $ is either cartesianCoords or polarCoords. Thus, f $ has to
match one of the two patterns in the second and fourth arguments of the Switch statement,
and hence, either the third or the fifth argument will be the output.

Polar objects are constructed analogously.

makePolar[{r_, theta_}] :=
Module[{polar},
With[
{dispatch =
Function[{message},
Switch[message,

cartesianCoords,
{r Cos[theta], r Sin[theta]},

polarCoords, {r, theta}]]},
polar/: f_Symbol[polar]:= dispatch[f]/;

MemberQ[{cartesianCoords, polarCoords}, f];
polar]];

For instance:

pt2 = makePolar[{2, Pi/3}] => polar$9
{cartesianCoords[pt2], polarCoords[pt2]}
{{1, Sqrt[3]}, {2, Pi/3}}

290 Part II · Programming Language

Again, if we were just interested in these operations for themselves, rewrite rules would
provide a much neater implementation. The columns of the dispatch table can equally well be
given by such rules. For instance, makeCartesian could be written in the form:

makeCartesianRule[{x_, y_}] :=
Module[{cartesian},
cartesian/: cartesianCoords[cartesian] = {x, y};
cartesian/: polarCoords[cartesian] =

{Sqrt[x*2 + yA2], ArcTan[y/x]};
cartesian];

This works just as well as the more complex version creating a pure function. Thus,

ptr = makeCartesianRule[{3, 4}] => cartesian$l
{cartesianCoords[ptr], polarCoords[ptr]}
{{3, 4}, {5, ArcTan[4/3]}}

However, this is not the way that classes actually work. The operations makeCartesian and
makePolar actually describe the patterns for Cartesian and polar objects. In object-oriented
languages, such patterns are called classes. Thus, in summary, a class will be a pattern for a
kind of object and an object will consist of some data bundled together with the information
about how to respond to certain messages. Messages here are just names. Message passing (or
calling methods) looks like function application, but it actually consists of applying the object
itself in the guise of the pure function dispatch to the message.

So far we have achieved active data objects which contain within themselves all of the
information needed to respond to messages. Note also that in principle there is no way to
access the data in an object except through the messages that it recognizes. (In fact, of course,
nothing is truly hidden in Mathematica.) Furthermore, these data objects are created as
instances of general operations that play the role of classes.

However, that is not the whole story about object-oriented programming. Suppose, for
instance, that we want to include t rans la t e as a message for Cartesian points. There are two
problems. First of all, t r a n s l a t e takes a vector as a parameter, and second, it would have to
be added to both makeCartesian and makePolar in order to work correctly for all points.
We discuss these in turn.

2.4 Messages with Parameters
Translate takes a parameter-the vector of translation-whereas our other messages up to
now don't require any additional input. The form of the methods and the way that messages
are applied has to be changed to account for such possible parameters. Here is the appropriate
modification of the makeCartesian operation.

Nine · Object-Oriented Programming 291

makeCartesian[{x_, y_}] :=
Module[{cartesian},
With[
{dispatch =
Function[{message},
Switch[message,

cartesianCoords, {x, y}&,
polarCoords,
{Sqrt[x*2 + yA2], ArcTan[y/x]}&,

translate,
makeCartesian[# + {x, y}]&]]},

cartesian/:
f_Symbol[cartesian, args] : =

dispatch[f][args]/;
MemberQ[

{cartesianCoords, polarCoords, translate},
f];

cartesian]]
The first change is that the {x, y} response to the message car tes ianCoords in the
previous version is replaced by the (constant) pure function {x, y}&, and similarly for the
response to polarCoords. The response to the message t r a n s l a t e is the pure function of
one variable

makeCartesian[# + {x, y}]&.
In fact, all of the possible outputs of the Switch expression have to be pure functions
themselves. Furthermore, sending a message has to allow for the possibility of parameters and
treat them correctly. This is accomplished by the new format for responding to messages.

f_Symbol[cartesian, args]:= dispatch[f][args]
This new format means that the response to a message must always be a pure function because
it is going to be applied to a (possibly empty) sequence of arguments. This new form can be
used just like the previous one, except that now a point knows how to translate itself by a
given vector.

pt = makeCartesian[{3, 4}] => cartesian$10
translatent, {5, 5}] => cartesian$ll

The result of a t r a n s l a t e message is a new Cartesian point. To see what it is, we can ask for
its Cartesian coordinates.

cartesianCoords[%] => {8, 9}

292 Part II · Programming Language

Yet again, messages with parameters could easily be added to a rewrite rule
implementation. E.g., redefine makeCartesianRule as follows:

makeCartesianRule[{x__, y_}] : =
Module[{cartesian},
cartesian/: cartesianCoords[cartesian] = {x, y};
cartesian/: polarCoords[cartesian] =

{Sqrt[xA2 + yA2], ArcTan[y/x]};
cartesian/: translate[cartesian, vector_J :=

makeCartesianRule[vector + {x, y}];
cartesian]

For instance:

ptr = makeCartesianRulef{3, 4}] => ca r t e s i an$12
cartes ianCoords[trans late[ptr , {5, 5 }]] => {8, 9}

However, doing things this way wouldn't explain why the second component of a method, as
discussed below, has to be a pure function.

2.5 Inheritance
If we want t r a n s l a t e to work for polar as well, then similar changes have to be made to
the function makePolar. In this tiny example that's harmless, but if we had many more kinds
of objects to deal with, it might be very difficult to insure that all of them were correctly
updated when some new method is added. The solution to this problem is to organize objects
into a hierarchy based on inheritance. To explain this notion, suppose that in addition to
Cartesian points, we also want to have colored Cartesian points. Besides having a position, such
points would also have a color; e.g., red, green, or blue. It would be very convenient if colored
points could inherit all of their positional information from points and just add the color
information themselves. We will say that c a r t e s i a n is the superclass of
coloredCartesian and, of course, that coloredCartesian is a subclass of cartesian. A
class (or kind of object) has only one superclass, but it may have many subclasses. (Some
languages allow many superclasses as well - a feature called multiple inheritance) Thus, we
would like to be able to write something like:

makeColoredCartesian[{x_, y_}, colorname_] :=
"the superclass is cartesian and the
dispatch table has an additional
pair <color, colorname&>. "

The Classes package of R. Maeder [Maeder 2] will provide a way to do this. What has to
happen is that when the message cartesianCoords is sent to a colored point, cpt, then cpt
has to recognize that it doesn't know how to deal with the message and so sends it on to its

Nine · Object-Oriented Programming 293

superclass to see if the superclass can respond to it. Thus, the message cartesianCoords
sent to cpt will just be passed on to the class for Cartesian points which will return the answer
{X/ y }/ whereas the message co lor sent to cpt will be answered by cpt itself.

There is an important proviso in inheritance. If the message t r a n s l a t e is sent to cpt, then
the result should again be a colored point, not just a point. That can't happen given the way
our code is organized now, since the response to t r a n s l a t e in the makeCartesian
definition is of the form makeCartesian [] which produces a new Cartesian point, and
there is no way to change that. Solving this problem requires a whole new mechanism for
creating objects of a given kind. It is a generic method for creating objects, called new, and the
appropriate form to make a Cartesian point will be

new[cartesian, {x, y}].
This still won't get us a colored point as the result of a t r a n s l a t e message. One last
ingredient is needed: a special variable, s e l f , that refers to the current object. Then the
implementation of makeCartesian can say as the response to a t rans la t e message:

new[Class[self] ,]

meaning "make a new object just like yourself but with new parameters."

3 Object-Oriented Programming in Mathematica

3.1 Using Class
The key concepts in OOP are:

object, class, method, message, inheritance, new, s e l f , super ·

These are all implemented in Maeder's package C l a s s e s . m from [Maeder 2]. We won't
attempt to explain how this package works. Suffice it to say that it is an ingenious combination
of all of the facilities that are available in Mathematica, based on the ideas discussed above. The
package is included in the diskette supplied with this book and will repay careful study. After
some preliminary examples showing how to use inheritance, we will use it to set up a small
hierarchy of classes involving points. First, load the package.

Needs["Classes'"]

As far as the user is concerned, the main thing contained in this package is the command
Class. What Class does is to create a pattern for constructing a particular kind of objects. It
takes four arguments in the following form.

294 Part II · Programming Language

Class[nameOfClass,
nameOfSuperclass,
listOfInstanceVariables,
listOfMethods]

We'll discuss the form of each argument in turn.

Argument

nameOf
C l a s s

nameOf
S u p e r c l a s s

l i s t O f
I n s t a n c e
V a r i a b l e s

l i s t O f
Methods

Explanation

The name of the class is whatever you want to call your class.

This is the class one step up in the hierarchy of classes that you are constructing
or extending. If you don't have a hierarchy yet, then use O b j e c t as the
superclass. This class is constructed in the package and serves as the absolute
top of the class hierarchy. It actually implements certain standard methods to be
explained later.

The instance variables (or attributes) are variables like x and y in the function
m a k e C a r t e s i a n . They are required to be symbols, but when they are used,
any expression can be substituted for them.

A method is a pair of the form

{methodName, methodBody&}

where methodName is a Symbol called the message, and methodBody& is
some (possibly compound) expression, which is a pure function implementing
the method, called the response to the message. Thus, the list of methods looks
like

{{methodName1, methodBody1&},

{methodNamek, methodBodyk&}}

The Switch statements in the dispatch tables in the preceding section were deliberately
organized to look just like the lists of methods, without the parentheses.

All classes should have a method with the name new whose body creates a new object
belonging to the class. An object is created by giving a command of the form

o^jectName =
new[nameOfClass, " ins tant ia te instance v a r i a b l e s "] .

For instance, we will construct a class cartes ianPoint below by the command

Class[cartesianPoint, - - -]

Nine · Object-Oriented Programming 295
< $ *ŝ v<tw> -^νΐ è ̂ ^ ^ J * ^ « ^ # *¥*Ώί ? S<W* ^ <s « -^ \i>m£¥t Φ*

This will write the makeCartesian definition from before in the background where we can't
see it. To use this hidden definition, one uses the message new so that

pt = new[cartesianPoint, 3, 4]

replaces makeCartesian [{ 3 , 4 }] from before.
Once an object has been created, then methods are invoked for the object by sending

messages to it consisting of the method name as head of the message. The first argument
consists of the object name. If the method body has parameters, then the rest of the arguments
provide values for these parameters. I.e.,

methodName[objectName, "values of parameters"]

For instance, to translate a point, use

translate[pt, 5, 5]

See also the many examples below.

3.2 Examples
3.2.1 A bank account
A standard elementary example is a class representing bank accounts. A bank account has a
balance value and money can be deposited and withdrawn from it. As a class it is implemented as
follows:

Class[account, Object, {bal},
{ {new, (new[super]; bal = #)&},
{balance, bal&},
{deposit, (bal += #)&},
{withdraw, (bal -= #)&} }]

account

(If the output is not the name of the class, then there is a mistake somewhere.) The first method
is one for new, which says how new instances (i.e., new objects) of the class account are
made. Normally the first thing it does is to call new of the superclass (represented by the
reserved work super). It is the responsibility of new to initialize the instance variables. In this
case, new [super] means new [Objec t] , which doesn't do anything since there are no
instance variables in Object to be initialized. The second component of the method new,
(bal = #), sets the instance variable bal equal to the second argument of new. Thus, an
account object with initial balance of $1000 is created by the command:

296 Partii · Programming Language

ac = new[account, 1000 d o l l a r s] => —account-

The hyphens before and after account in the output conform to a general Mathematica format
to indicate in an abstract way that the actual output is some generally uninformative,
complicated expression that need not be examined further. (Cf. the output —Graphics— from
a P lot command.) Note that new is a message sent to a class, in this case the class account.
There are certain other messages that are also sent to classes (called factory methods because
they are already provided by the program).

Normally messages are sent to objects. For instance, to check the balance of our account,
send the message balance to ac.

balance[ac] => 1000 dollars
and to withdraw $150 send the message withdraw to ac with the parameter value 150
dollars.

withdraw[ac, 150 dollars] => 850 dollars
Note that the output is in fact the new balance, which should only have been returned by the
message balance. This behavior will be changed in the next example.

balance[ac] => 850 dollars
The first argument in sending a message is the name of the object to which it is sent. Observe
that the body of the method with name balance is the constant pure function bal& so it has
no other arguments, while the response to the message withdraw is (bal += #) & which is a
pure function of one variable, so withdraw requires another argument in addition to the
name of the account. Study this example carefully since everything else is an elaboration of it.

Notice that the two input lines balance [ac] lead to different outputs even though they
are identical in appearance. This illustrates an important difference between functional and
object-oriented programs. As we remarked in the introduction to Chapter 6, functions have no
memory; each time a function is invoked with the same arguments, it returns the same value.
Sending a message to an object can be quite different since objects can have a memory. In
particular, ac remembers that something has happened to it; namely, 150 do l lars has been
withdrawn, so the value of the message balance sent to ac changes accordingly. Objects can
have a history, and this may be the most interesting thing to know about them.

3.2.2 An immutable balance bank account
In the preceding example, the value of the instance variable bal was changed by the action of
making a withdrawal. Technically, this means that objects created by Class are mutable) i.e.,
the values of their instance variables can be changed in place. But recall that in our
implementation of points in Section 2, the operation t r a n s l a t e created a new point rather
than changing the point on which it acted. Some object-oriented languages insist that a new
object must be created with a new value by such an operation. This behavior can be imitated if

Nine · Object-Oriented Programming 297

we write the methods for d e p o s i t and withdraw in a different form that allows only
immutable objects to be created.

Class[immutableAccount, Object, {bal},
{ {new, (new[super]; bal = #)&},
{balance, bal&},
{deposit, new[immutableAccount, bal + #]&},
{withdraw, new[immutableAccount, bal - #]&}}]

immutableAccount

In this form there are no assignment statements except in the method body for new. In
particular, nothing changes the value of bal. Instead, the result of a depos i t or withdraw
message is a new object with the required new balance. For instance, create an immutable
account and check its balance.

i a c l = new[immutableAccount, 1000 d o l l a r s]

-immutableAccount-

ba lance [iac l] => 1000 d o l l a r s

Making a withdrawal will create a new immutableAccount object, which needs a name.
We can either make up a new name or use the same one if we like, or we could name it with a
time-stamp argument (using Date []), etc. If we use the same name, then the behavior of these
accounts will be almost identical to the behavior of the mutable accounts. We choose to
number the objects here to keep track of new objects as they are created.

iac2 = withdraw!iacl , 150 d o l l a r s]

-immutableAccount-

Now a withdrawal no longer returns the new balance, but just indicates a new object. To
observe the balance, we have to use the balance method.

balance[iac2] => 850 d o l l a r s

Check that i a c l is unchanged.

balancefiacl] => 1000 dollars

3.2.3 Inheritance
So far, there has been no inheritance involved except for what is inherited from the class
Object. This consists of factory methods (i.e., methods sent to classes), as well as a few

298 Part II · Programming Language

me thods that are available for all objects; namely , C1 a s s Q , S u p e r c l a s s ,
I n s t a n c e V a r i a b l e s , Methods, C l a s s , i s a , d e l e t e , and NIM. Here are examples (which
should be self explanatory) of each of these, except for d e l e t e and NIM that will be treated
later. Note that account is a class while ac is an object.

ClassQIaccount] => True
Superclass[account] => Object
InstanceVariables[account] => {bal}
Methods[account]
{balance, Class, delete, deposit, InstanceVariables,
isa, Methods, new, NIM, Superclass, withdraw}

Class[ac] => account
isa[ac, account] => True

The list of methods of a c c o u n t includes all of the factory methods as well as the methods
defined for account . This is essentially what inheritance means. Without our explicitly saying
so, a class has available to it all of the methods of its superclass. Note that C l a s s with a single
argument returns the class to which the argument belongs, provided it is an object. Finally,
i s a is a predicate between objects and classes that is True providing the object "isa" member
of the class.

3.2.4 Interest paying accounts

As an example of a subclass, we will create a new kind of a bank account that pays interest.
It should inherit all the usual behavior of the class a c c o u n t and add one new method that
changes the balance by adding an interest payment to it. This is easy to do.

C l a s s [i n t e r e s t A c c o u n t , a c c o u n t , { } ,
{ {new, new [s u p e r , #]&},

{ p a y l n t e r e s t , (b a l += (# b a l)) & } }]

i n t e r e s t A c c o u n t

Notice that i n t e r e s t A c c o u n t has no instance variables of its own, but in the method for
paying interest we can refer to the instance variable of the superclass, since it has been
prepended to the (empty list) of instance variables of i n t e r e s t A c c o u n t . Also, the method
for new just refers to new [s u p e r , #]& which takes one parameter since the superclass,
a c c o u n t , has one instance variable. (It need not always be true that the number of extra
arguments to new is the same as the number of instance variables, but in these simple
examples that will always be the case.)

InstanceVariables[interestAccount] => {bal}

Nine · Object-Oriented Programming 299

Let

intAc = new[interestAccount, 1000 dollars]
-interestAccount-

Consider a sequence of interest payments and withdrawals.

paylnterest[intAc, 0.03] => 1030 dollars
withdraw[intAc, 350 dollars] => 680 dollars
paylnterest[intAc, 0·03] => 700.4 dollars

3.2.5 Immutable interest paying accounts
Now try the same thing with the immutable version of accounts.

Class [iinmutablelnterestAccount, immutableAccount, { },
{ {new, new[super, #]&},
{paylnterest, new[iinmutablelnterestAccount,

((1 + #) bal)]&} }]
i inmutablelnterestAccount

Note that immutability requires that the p a y l n t e r e s t method also creates a new object. Set
up an account.

imlntAcl = new[iinmutablelnterestAccount, 1000 d o l l a r s]

- immutab le ln te res tAccount -

Consider the same sequence of interest payments and withdrawals, checking the balance at
each stage.

imIntAc2 = paylnterest[imlntAcl, 0.03]
-immutableInterestAccount-
balance [imIntAc2] => 1030 dollars
imintAc3 = withdraw!imintAc2, 350 dollars]
-immutableAccount-
balance[imIntAc3] => 680 dollars
imintAc4 = payInterest[imintAc3, 0.03]
paylnterest[-immutableAccount-, 0.03]
balance[imintAc4]
balance[paylnterest[-immutableAccount-, 0.03]]

300 Part II · Programming Language

Whoops!! imIntAc3 is only an immutableAccount object, not an i m m u t a b l e -
I n t e r e s t A c c o u n t object, and it no longer pays interest; i.e., it does not respond to a
p a y l n t e r e s t message. The owner of the account will be very unhappy about this state of
affairs. What has happened? The trouble lies in the way the methods in the super class
immutableAccount are written. The two methods for d e p o s i t and withdraw are as
follows:

{deposi t , new[immutableAccount, bal + #]&},
{withdraw, new[immutableAccount, bal - #]&}

The problem is that they say to make a new immutableAccount object, and this is what is
inherited by the class immutablelnterestAccount. Note that this works perfectly well as
far as immutable accounts are concerned. It is only when a subclass is defined that a problem
turns up. The solution is to use the special variable s e l f in place of immutableAccount
here. Actually, what we need is Class [s e l f] . So, we'll have to start over again and write a
correct version of immutableAccount.

3.2.6 A better immutable account

Class[betterlmmutableAccount, Object, {bal},
{ {new, (new[super]; bal = #)&},
{balance, bal&},
{deposit, new[Class[self], bal + #]&}#
{withdraw, new[Class[self], bal - #]&}}]

betterlmmutableAccount
biacl = new[betterlmmutableAccount, 1000 dollars]
-betterImmutableAccount-

Check that it still works.

biac2 = withdraw!biacl, 200 dollars]
-betterImmutableAccount-
balance[b
iac2] => 800 dollars

Define a betterlmmutablelnterestAccount class exactly as before, except that its super
class is betterlmmutableAccount and the p a y l n t e r e s t method is also implemented
with Class [s e l f] in case we want to have further subclasses.

Nine · Object-Oriented Programming 301

Class[betterlmmutablelnterestAccount,
betterImmutableAccount, { },
{ {new, new[super, #]&},
{paylnterest, new[Class[self],

((1 + #) bal)]&} }]
betterlmmutablelnterestAccount

Now everything works as it should.

bilntAcl =
new[betterlmmutablelnterestAccount, 1000 dollars]

-betterImmutablelnterestAccount-
biIntAc2 = paylnterest[bilntAcl, 0.03]
-betterImmutablelnterestAccount-
balance[biIntAc2] => 1030 dollars
biIntAc3 = withdraw[biIntAc2, 350 dollars]
-betterImmutablelnterestAccount-
balance[biIntAc3] => 680 dollars
biIntAc4 = paylnterest[biIntAc3, 0.03]
-betterImmutablelnterestAccount-
balance[biIntAc4] => 700.4 dollars

3.3 Discussion
The moral of this sequence of examples is that the basic underlying structure of object-oriented
programming is very natural and elegant. However, methods of classes that are intended to
have subclasses must be written very carefully to be sure that they do not fail in unexpected
ways. The variables s e l f and super are essential ingredients for doing this and it takes some
practice to learn to use them correctly. One slightly confusing difference is that s e l f refers to
an object-the current object-while super refers to a class-the superclass of the class of the
current object. So far, s e l f has only occurred in the combination Class [s e l f] but as will be
seen it is even more important as a way for an object to refer to itself during a message
execution.

302 Part II · Programming Language

4 The Hierarchy of Point Classes

4.1 Cartesian and poUr points

As a final exercise in OOP, we return to Cartesian and polar points and implement them as
classes. In fact, we will construct a small hierarchy of points that looks as follows:

The classes c a r t e s ianPoint and polarPoint will be very similar to the constructions in
Section 2. There will be a new class point that will contain the information about translating
points and rotating them about the origin. Since both cartes ianPoint and polarPoint are
subclasses of P o i n t , this information will be available to both of them. The class
coloredCartesianPoint will add both a new instance variable and a new method.

To begin with, point won't do anything, and will have to be redefined later.

Class[point, Object, {}, {{new, new[super]&}}]

point

It is easy to define the classes for cartes ianPoint and polarPoint.

Class[cartesianPoint, point, {x, y},
{ {new, (new[super];

(x = #l);(y = #2))&},
{cartesianCoords, {x, y}&},
{polarCoords, { Sqrt[xA2 + y"2],

ArcTan[y/x]}&} }]

cartesianPoint

Nine · Object-Oriented Programming 303
N ^ ' ^ v W 4â&&\ « " V ? ^ ^

Class[polarPoint, point, {r, theta},
{ {new, (new[super];

(r = #1);(theta = #2))&},
{cartesianCoords, { r Cos[theta],

r Sin[theta]}&},
{polarCoords, {r, theta}& } }]

polarPoint

For instance:

pt = new[cartesianPoint, 3 , 4] => —cartesianPoint—
polarCoords[pt] => {5, ArcTan[4/3]}

Now we are ready to add methods t r a n s l a t e and r o t a t e to the class po int . This
definition replaces the one above. If the previous one has been evaluated, it is necessary to
reevaluate the definitions of the classes cartes ianPoint and polarPoint after evaluating
the new definition of point.

Class[point, Object, {},
{ {new, new[super]&},
{translate,
new[cartesianPoint,

Sequence@@(cartesianCoords[self] + #)]&},
{rotate,
new[polarPoint,

Sequence@@(polarCoords[self] + {0, #})]&}
}]
point

The methods here illustrate an important use of se l f . The class point is abstract; there are no
objects belonging to this class. Every point is either a Cartesian or a polar point. Nevertheless,
methods for t r a n s l a t e and ro ta te can be implemented in the class point by using se l f .
If a t r a n s l a t e message is sent to a polar point ppt, then, when the method body

new[cartesianPoint,
Sequence@@(cartesianCoords[self] + #)]&

is evaluated, s e l f refers to ppt and so its response to c a r t e s ianCoords is used. Here are
some sample computations.

pt = new[cartesianPoint, 3 , 4] => —cartesianPoint—
p t l = t r a n s l a t e n t , 5, 5] => —cartesianPoint—
cartes ianCoords[pt l] => {8, 9}
pt2 = r o t a t e [p t l , P i / 4] => —polarPoint—
N[cartesianCoords[pt2]] =» {-0.707107, 12.0208}

304 Part II · Programming Language

4.2 Adding the Subclass coloredCartesianPoint:
Overriding Methods

There is a problem in constructing the subclass coloredCartesianPointof c a r t e s i a n -
Point. In the implementation of the class point , we made use of the observation that it is
simple to t r a n s l a t e a Cartesian point and equally simple to r o t a t e a polar one, by
explicitly creating a new cartesian point or polar point in the appropriate place. For instance, if
we t r a n s l a t e a polar point, it will be turned into a cartesian point. That's OK because all of
our operations work for either kind of point and we don't want to worry about which
representation is used for a particular point. But that also means that in these messages, we
cannot replace new[car te s ian ,] ornew[polar,] by new[Class[self] , —
-] as we did with immutable interest accounts in 3.2.6. So how can we make these operations
work for colored points, where we want the output to again be colored?

It is possible for a class to override a method in its superclass. It does this just by including a
method with the same name and a new body. The new method body doesn't necessarily have
to have any relation to the body of the method in the superclass, and it is this new method
body that will be used when the method is invoked with an object belonging to the subclass.
So, one solution to our problem is to just write new methods with the names t rans la te and
ro ta te for the class coloredCartesianPoint. However, another solution is to think a bit
and realize that we would also like to have methods that will turn a Cartesian or polar point
into a colored point and a method to forget the color of a colored point. If these are included in
the appropriate classes, then new methods in the class coloredCartesianPoint can be
written in a more elegant form. This involves changing the implementation of the class point
by adding the following method.

{makeColored,
new[coloredCartesianPoint,

Sequence@@cartesianCoords[self], #]&}
(See the version of the class point in the Implementation section below. It has to be evaluated
for the changes to take place.)

Now we can construct the class coloredCartesianPoint.

Class[coloredCartesianPoint,
cartesianPoint, {colorname},
{ {new, (new[super, #1, #2];

(colorname = #3))&},
{color, colorname&},
{forgetColor, (new[super,

Sequence@@
cartesianCoords[self]])&},

{translate, makeColored[
translate!
forgetColor[self], #],

Nine · Object-Oriented Programming 305

color[self]]&},
{rotate, makeColored[

rotate[
forgetColor[self], #],

coloriseli]]&} }]
coloredCartesianPoint

The methods for t r a n s l a t e and ro ta te are implemented in terms of the methods in the top
class point . Any changes made there will be propagated throughout the entire hierarchy of
classes. Here is an example of translating a colored point.

cpt = new[coloredCartesianPoint, 3, 4, red]
-coloredCartesianPoint-
cptl = translate[cpt, {5, 5}] => -coloredCartesianPoint-
{cartesianCoords[cptl], color[cpt1]}
{{8, 9}, red}

4.3 Isomorphism Testing

How can we decide if two points are the same? What does it mean for them to be the same? It
turns out that in object-oriented programming this is not just a philosophical question. (See
[Budd] for a thorough discussion.) If we examine what Mathematica thinks a point actually is,
e.g.,

??cptl

cptl = Classes"Private"coloredCartesiansianPoint[colorname$\
42, x$42, y$42]

we see that it is a complicated expression involving some numbered local variables. Thus any
two points that we create are going to have different internal representations and so they can
never be identical in Mathematical sense of Equal or SameQ. Nevertheless, we would like to
construct a message to send to a point asking if it is the same as another point. We arbitrarily
decide that Cartesian or polar points are the same if they have the same cartesian coordinates.
Colored points are the same if they also have the same color, and a colored point may or may
not be the same as a non-colored point. This is easily done by adding the following methods to
point and coloredCartesianPoint respectively.

306 Part II · Programming Language

{isomorphicQ,
SameQ[cartesianCoords[self], cartesianCoords[#]]&}

{isomorphicQ,
(isomorphicQ[forgetColor[self], forgetColor[#]] &&
SameQ[color[self], color[#]])&}

These methods are included in the definitions in the Implementation section below. Note that
isomorphicQ is a message that is sent to a point and has another point as a parameter. For
instance, define several points

pt = new[cartesianPoint, 3, 4];
ppt = new[polarPoint, 5, ArcTan[4/3]];
cptred = new[coloredCartesianPoint, 3, 4, red];
cptgreen = new[coloredCartesianPoint, 3, 4, green];

The Cartesian point and the polar point are the same.

isomorphicQ[pt, ppt] =» True

The two colored points are different.

isomorphicQ[cptred, cptgreen] => False
If the Cartesian point and the first colored point are compared, then the result depends on who
gets the message.

isomorphicQ[pt, cptred] => True
isomorphicQ[cptred, pt] => False

As always, the first argument in a message is the object that gets the message and so the
methods of that object are used in responding to the message. It is slightly unsettling that
isomorphism is not a symmetric relation, but that is often the case in object-oriented languages.
Make sure that you understand why it happens here.

4.4 The Message NIM
One last concern is the message NIM which is part of the class Object and hence available for
all classes. It stands for Non-Implemented Method and is a catch-all method to allow for
messages which have not been implemented in some class but are required to be implemented
by all subclasses of the class. Its use is often a matter of housekeeping. For instance, the
method car te s ianCoords is required to be implemented in all subclasses of point, so we
could add a method

{cartes ianCoords, NIM[self, cartes ianCoords]&}

Nine · Object-Oriented Programming 307

to the class point, with a similar method for polarCoords. These would have no effect since
they are in fact implemented in all subclasses. However, if we added a method

{color, NIM[self, color]&}
to the class po int and then sent the message co lor to a polar point, for instance, the result
would be an error message saying that the method c o l o r was not implemented for polar
points. We omit these methods here but they are used in Chapter 13 on object-oriented graph
theory.

5 Exercises
i l i i i i i W ^ e i i i i l i l l

1. Add methods d i l a t e and af f ineTransf orm to the class point. Here d i l a t e takes
one parameter which is a real number while aff ineTransf orm takes two parameters,
a matrix and a vector.

2. i) Consider only one representation for points, that of Cartesian coordinates, so there
is no need for a separate class point. However, the class of Cartesian points (which
might just as well be called simply point now) has two subclasses: colored points
and directed points. A colored point has an extra attribute of color as before. A
directed point is a point together with a unit vector specifying a direction. Make
sure that when colored or directed points are translated or rotated the result is again
colored or directed.

ii) Add a third subclass, that of rigid directed points in which the angle between the
unit vector and the vector from the origin to the point is preserved by a translation
or a rotation.

3. Implement 3-dimensional points using representations via cartesian, cylindrical, and
spherical coordinates. Include methods for translation and dilation. What should be
done about rotations?

6 Implementation

Class[point, Object, {},
{ {new, new[super]&},
{translate,
new[cartesianPoint,

Sequence@@(cartesianCoords[self] + #)]&},
{rotate,

308 Part II · Programming Language

new[polarPoint,
Sequence@@(polarCoords[self] + {0, #})]&}

{makeColored,
new[coloredCartesianPoint,

Sequence@@cartesianCoords[self], #]&},
{isomorphicQ,

SameQ[cartesianCoords[self],
cartesianCoords[#]]&} }];

Class[cartesianPoint, point, {x, y},
{ {new, (new[super];

(x = #l);(y = #2))&},
{cartesianCoords, {x, y}&},
{polarCoords, {Sqrt[x^2 + yA2],

ArcTan[y/x]}&} }];
Class[polarPoint, point, {r, theta},

{ {new, (new[super];
(r = #l);(theta = #2))&},

{cartesianCoords, {r Cos[theta],
r Sin[theta]}&},

{polarCoords, {r, theta}& } }];

Class[coloredCartesianPoint,
cartesianPoint, {colorname},
{ {new, (new[super, #1, #2];

(colorname = #3))&},
{color, colorname&},
{forgetColor, (new[super,

Sequence@@
cartesianCoords[self]])&},

{translate, makeColored[
translate!

forgetColor[self], #],
color[self]]&},

{rotate, makeColored[
rotate[

forgetColor[self], #],
coloriseli]]&} }]

CHAPTER

Graphics
Programming

1 Introduction to Graphics Primitives
Producing complex and beautiful 2- and 3-dimensional graphics using the functions Plot,
Plot3D, ContourPlot, Dens i tyPlot , etc., is trivial in Mathematica. But Mathematica also
includes a set of primitive graphics objects which you can use to build up complex pictures by
employing all the facilities of the Mathematica programming language. To start with a very
simple example, the following draws a point, a line, and a filled polygon:

Show[Graphics[
{ Point[{2, 0.5}],
Line[{{0, 0}, {4, 4}}],
Polygon[{{l, 1}, {1, 3}, {3, 3}, {3, 1}}]

}]] ;

There are two kinds of graphics primitives: geometric objects and graphics modifiers or
directives (to be called just modifiers here). Geometric objects are expressions with heads such

309

310 Part II · Programming Language

as Point , Line, and Polygon. These heads are like L i s t in that they don't process their
arguments in any way; they just hold them together and indicate that they are particular kinds
of objects. Point takes a single argument which is a "point." Both Line and Polygon take a
single argument which is a list of "points;" i.e, pairs interpreted as coordinates of points in the
plane. L ine will draw a line through the points in the same way as L i s tP lo t , while
Polygon draws the same line but then joins the last point to the first point and fills in the
enclosed region. A graphics object is any expression with head Graphics. It takes one
argument which is a list (of lists ...) of graphics primitives, so for instance the expression

Graphics!{Point[{2, 0.5}]f Line[{{0, 0}, {4, 4}}],
Polygon[{{l, 1}, {1, 3}, {3, 3}, {3, 1}}] }]

is a graphics object. A graphics object is displayed by using the command Show. It is like
P r i n t for text; the actual picture is a side effect and the output is just the expression
- G r a p h i c s - . Options can be specified either for Graphics or for Show as extra optional
named arguments. It will make a difference where the optional arguments are placed when we
consider GraphicsArray.

Graphics modifiers are graphics primitives that control various aspects of geometric objects.
We can change the picture above by using the modifiers Po intSize , Thickness and
GrayLevel. Each of these modifiers has to precede the geometric object it is intended to affect,
and will affect everything (in the same sublist) that follows it.

Show[Graphics[
{ PointSize[0.05], Point[{2, 0.5}],
Thickness[0.02], Line[{{0, 0}, {4, 4}}],
GrayLevel[0.4],
Polygon[{{l, 1}, {1, 3},{3, 3}, {3, 1}}] }]];

If the file Graphics Colors ^ is loaded, then color names can be used as modifiers, again
preceding the geometric objects they modify. They can only be seen, of course, on a color
monitor. For readability, we group each object with its modifiers separately.

Ten · Graphics Programming 311

Needs["Graphics Master^"]
Show[Graphics[

{ { Red, PointSize[0.05], Point[{2, 0.5}]},
{ ForestGreen, Thickness[0.02],
Line[{{0, 0}, {4, 4}}]},

{ CornflowerBlue,
Polygon[{{l, 1}, {1, 3}, {3, 3}, {3, 1}}]} }]];

A slightly more complicated design can be created by letting Table do some of the work.

Show[Graphics[
{Table[{ Hue[i/20], PointSize[i/250 + 1/50],

Point[{Cos[Pi i/10], Sin[Pi i/10]}]},
{i, 20}] }

], PlotRange -> {{-1.2, 1.2}, {-1.2, 1.2}},
AspectRatio -> 1];

m
HP

You can use the full power of Mathematica in producing the list of graphics primitives.

312 Part II · Programming Language

Show[Graphics!
{Table[

{ Hue[i/20],
PointSize[i/250 + 1/50],
Pointf{Cos[Pi i/10], Sin[Pi i/10]}],
Polygon!{{0, 0},
0,9 {Cos[Pi (2i-l)/20], Sin[Pi (2i-l)/20]},
0.9 {Cos[Pi (2i+l)/20], Sin[Pi (2i+l)/20]}}]},

{i, 20}] }
], PlotRange -> {{-1.2, 1.2}, {-1.2, 1.2}},
AspectRatio -> 1];

The following displays a bunch of random lines of varying thicknesses:

Show[Graphics[
Table[

{ T h i c k n e s s [0 . 0 0 5 + 0 . 0 0 0 1 i] ,
L i n e [{ {Random!], Random!]},

{Random[], Random!] } }] } ,
{ i , 30}]]] ;

A slight variation shows a random filled polygon with 50 edges:

Ten · Graphics Programming 313

Show[Graphics[
{ GrayLevel[0.2],

Polygon[Table[{Random[], Random[]}, {50}]] }
Π ;

Note that a folded polygon is shaded using exclusive or; i.e., if a region is covered an even
number of times it appears white, while if it is covered an odd number of times it is shaded.

2 Two-Dimensional Graphics Objectsy

Graphics Modifiers, and Options

2.1 Objects
The following built-in 2-dimensional graphics objects can be displayed by a
Show[6raphics[]] command.

Point[{x0, y0}]
Line[{{x0, y0}, ...}]
Rectangle[{xmin, ymin}, {xmax, ymax}]
Polygon!{{x0, y0}, .·.}]
Circle[{xcenter, ycenter}, radius],

Circle[{xcenter, ycenter}, {semiaxis, semiaxis}]
Circle[{xcenter, ycenter}, radius, {thetal, theta2}]

Disk[{xcenter, ycenter}, radius]
Disk[{xcenter, ycenter}, {semiaxis, semiaxis}]
Disk[{xcenter, ycenter}, radius, {thetal, theta2}]

Raster[numberArray]
Raster[numberArray, rectangle]

RasterArray[modi f ierArray]
RasterArray[modifierArray, rectangle]

Text[expr, {xcenter, ycenter}]
Text[expr, {xcenter, ycenter}, {xoffset, yoffset}]

PostScript["string"]

314 Part II · Programming Language

2.1.1 Circle and Disk

We have already discussed P o i n t , L ine , and Polygon. The objects C i r c l e and Disk can
take other optional arguments giving ellipses and sectors of circles. Here are several examples.

Show[Graphics[
{ Table [C i r c l e [{ 0 , 0 } , { 1 , 1 - i }] , { i , 1 , 0 , - 0 . 2 }] ,

Tablet { G r a y L e v e l [i] , D i s k [{ 2 , 0 } , { 1 , 1 - i }] } ,
{ i , 0 , 1 , 0 . 2 }] ,

C i r c l e [{ 4 , 0 } , 1 , { P i / 2 , 3 P i / 2 }] ,
G r a y L e v e l [0 . 5] , D i s k [{ 4 , 0 } , 1 , { - P i / 2 , P i / 2 }] }

] , A s p e c t R a t i o -> A u t o m a t i c] ;

It is not possible to make a sector of an ellipse. A single such figure can be shown by using
AspectRat io .

2.1.2 Raster and RasterArray

Raster and RasterArray produce rectangular arrays of gray or colored rectangles. The first
argument of R a s t e r has to be a matrix of values between 0 and 1, which are interpreted as
gray levels. The optional second argument is the rectangle in which the array of gray levels
should be drawn. The first argument of Ras terArray is a matrix of modifiers-GrayLevel,
Hue, or RGBColor.

Show[Graphics[
{ R a s t e r [

T a b l e [S i n [x y] ,
{x, Pi/5, Pi, Pi/5}, {y, Pi/5, Pi, Pi/5}],

{{0, 0}, {1, 1}}],
RasterArray[

Table[Hue[Sin[x y]],
{x, Pi/5, Pi, Pi/5}, {y, Pi/5, Pi, Pi/5}],

{{1, 0}, {2, 1}}] }
], AspectRatio -> Automatic];

Ten · Graphics Programming 315

2.1.3 Text.
Text can be included in a Graphics object using a Text object. The first argument of Text is
an expression, which may or may not be a string and the second argument describes the
position of the text. The optional third argument describes how the text is offset from the
center according to conventions described in The Mathematica Book [Wolfram]. One can also
choose a specific font for the text using the format illustrated below.

Show[Graphics[
{ Circle[{0, 0}, 1],
Text[FontForm["Text in a circle",

{"Chicago", 12}], {0, 0.5}],
Text[center, {0, 0}],
Text[right, {0, 0}, {-3, 0}],
Text[left, {0, 0}, { 3, 0}],
Text[above, {0, 0}, { 0, -3}],
Text[below, {0, 0}, { 0, 3}] }

], AspectRatio -> 1];

316 Part II · Programming Language

2.1.4 PostScript
Here is an example of a PostScript object. The single argument to PostScript is a string
consisting of PostScript directions for making a drawing, written in the usual PostScript
format.

Show[Graphics[
{PostScript!"

0 0 moveto
1 0 lineto
1 1 lineto
0 1 lineto
closepath
0.02 0.02 moveto
0.98 0.98 lineto
0.02 0.98 moveto
0.98 0.02 lineto
stroke"]}

], AspectRatio -> 1];

2.2 Modifiers
There are ten modifiers that apply to 2-dimensional graphics objects. In the following, d is any
positive number, usually a small decimal.

PointSize[d]
AbsolutePointSize[d]
Thickness[d]
AbsoluteThickness[d]
Dashing[{dl, ···, }]
AbsoluteDashing[{dl, ...,
GrayLevel[r]
Hue[r]

Hue[r, s, b]
RGBColor[r, g, b]
CMYKColor[c, m, y, b]

}]
0 < r < 1
0 < r < 1
0 < r, s, b < 1
0 < r, g, b < 1
0 < c, m, y, b

Ten · Graphics Programming 317

2.2.1 PointSize and AbsolutePointSize, etc
The difference between P o i n t S i z e and A b s o l u t e P o i n t S i z e is that a P o i n t S i z e
dimension such as 0.01 means 1/100 of the linear size of the displayed figure. If the figure is
resized and made smaller, then the point will also be smaller. A b s o l u t e P o i n t S i z e
dimensions are absolute lengths measured in units of printer's points which are approximately
1/72 of an inch.

Show[Graphics[
{ {PointSize[0.05], Point[{0, 0}]},

{AbsolutePointSize[10], Point[{1, 0}]} }],
PlotRange -> {{-0.2, 1.2}, {-0.1, 0.1}}];

•

If the preceding graphics is resized, then the left hand dot will change size while the right-
hand one remains constant. The same comments apply to Thickness vs. A b s o l u t e -
Thickness and Dashing vs. AbsoluteDashing.

2.2.2 Hue
Hue can take either one argument or three. In either case, the first argument refers to a color
shade from the circumference of a color wheel, scaled between 0 and 1. The values 0 and 1 are
both red and 0.5 is blue. Values smaller that 0.5 shade through green, yellow, and orange to
red while those larger that 0.5 shade through purple and violet to red. If Hue has a second and
third argument, then the second is saturation and the third is brightness. The following
pictures show the effect of varying both hue and saturation while keeping brightness equal to
1. The Hue scale starts at 0.1 while saturation starts at 0 where the colors are almost
indistinguishable.

Show[Graphics[{
Tablet { Hue[i/10, j/10, 1],

Rectangle[{i, j}, {i+1, j+1}]},
{i, 1, 10}, {j, 0, 10}]}],

AspectRatio -> 1];

318 Part II · Programming Language
* '*, *,

2.2.3 RGBColor.
RGBColor works differently. It takes three arguments which are intensities of red, blue, and
green color respectively. The pure colors vary from black (= 0) to full intensity (= 1), as
illustrated in the next drawing.

Show[Graphics[
{ Table[

{ PointSize[0.1], RGBColor[i, 0, 0],
Point[{i, 0.2}] }, {i, 0, 1, 0.1}],

Table[
{ PointSize[0.I], RGBColor[0, 1, 0],

Point[{i, 0.1}] }, {i, 0, 1, 0.1}],
Table[

{ PointSize[0.1], RGBColor[0, 0, i],
Point[{i, 0.0}] }, {i, 0, 1, 0.1}]}

], PlotRange -> {{-0.1, 1.1}, {-0.05, 0.25}}];

Ten · Graphics Programming 319

If the colors are combined, then the intensities add. Both Hue and RGBColor refer to
transmitted light, so adding colors in RGBColor is like adding colored lights. Here are the
results of adding colors two at a time, keeping the total intensity equal to 1.

Show[Graphics[
{ Table[

{ P o i n t S i z e [0 . I] , RGBColor[i, 1 - i , 0] ,
P o i n t [{ i , 0 .2}] } , { i , 0, 1, 0 . 1 }] ,

Table[
{ P o i n t S i z e [0 . 1] , RGBColor[0, i , 1 - i] ,

P o i n t [{ i , 0 .1}] } , { i , 0, 1, 0 . 1 }] ,
Table[

{ P o i n t S i z e [0 . 1] , RGBColor[1 - i , 0, i] ,
P o i n t [{ i f 0 .0}] } , { i , 0f l f 0 . 1 }] }

] , PlotRange -> { { - 0 . 1 f 1 . 1 } , { -0 .05 , 0 . 2 5 } }] ;

To see the whole range of possible colors requires a 3-dimensional cube that one can peer
into to any depth. We show three faces of such a cube, the green-red face, the blue-red face,
and the blue-green face.

Show[GraphicsArray[
{Graphics!

{ Table[{ RGBColor[i, j , 0] ,
Polygon[{ { i , j } , { i , j + 0 . 1 } ,

{i+0.1, j+0.1}, {i+0.1, j}}]},
{i, 0, 1, 0.1}, {j, 0, 1, 0.1}],

Text["red 0 to 1", {0.5, -0.05}],
Text["green 0 to 1 ",

{-0.05, 0.5}, {0, 0}, {0, 1}]},
AspectRatio -> Automatic],

Graphics[
{ Table[{ RGBColor[i, 0, j],

Polygon[{ {i, j}, {i, j+0.1},
{i+0.1, j+0.1}, {i+0.1, j}}]},

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}],

320 Part II · Programming Language

Text["red 0 to 1", {0.5, -0.05}],
Text["blue 0 to 1 ",

{-0.05, 0.5}, {0, 0}, {0, 1}]},
AspectRatio -> Automatic],

Graphics!
{ Table[{ RGBColor[0, i, j],

Polygon[{ {i, j}, {i, j+0.1},
{i+0.1, j+0.1}, {i+0.1, j}}]},

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}],
Text["green 0 to 1", {0.5, -0.05}],
Text["blue 0 to 1 ",

{-0.05, 0.5}, {0, 0}, {0, 1}]},
AspectRatio -> Automatic]

}]];

The colors in the upper right-hand regions of these squares are yellow, magenta, and cyan.
These appear in the next section on CMYK colors. One can look inside the cube by displaying
the layers parallel to the blue-red face given by adding in green stepwise.

Show[GraphicsArray[
{ Table[Graphics[

Table[{ RGBColor[i, k, j],
Polygon[{ {i, j}, {i, j+0.2},

{i+0.2, j+0.2}, {i+0.2, j}}]},
{i, 0, 1, 0.2}, {j, 0, 1, 0.2}],

AspectRatio -> Automatic,
PlotLabel -> "green = "<>ToString[k]],
{k, 0, 0.4, 0.2}],

Table[Graphics[
Table[{ RGBColor[i, k, j],

Polygon[{ {i, j}, {i, j+0.2},
{i+0.2, j+0.2}, {i+0.2, j}}]},

{i, 0, 1, 0.1}, {j, 0, 1, 0.2}],

Ten · Graphics Programming 321

AspectRatio -> Automatic,
PlotLabel -> "green = "<>ToString[k]],
{k, 0.6, 1.0, 0.2}]

}]];

green = 0 green = 0.2 green - 0.4

green = 0.6 green = 0.8 green = 1.

-"■?,

2.2.4 CMYKColor
CMYKColor is another scheme for specifying colors which is adapted to printing. The letters
stand for Cyan, Magenta, Yellow, and Black and refer to specific printers inks whose standards
are carefully maintained. The three colors Cyan, Magenta, and Yellow are essentially the
complements of the colors Red, Green, and Blue and they work in the opposite way by
removing colors (since they represent reflected colors) rather than adding them. Thus, for
instance, a zero value represents white rather than black, as the following pure colors show.

Show[6raphics[
{ Table[{ PointSize[0.1], CMYKColor[i, 0, 0, 0],

Point[{i, 0.2}] }, {i, 0, 1, 0.1}],
Table[{ PointSize[0.I], CMYKColor[0, i, 0, 0],

Point[{i, 0.1}] }, {i, 0, 1, 0.1}],
Table[{ PointSize[0.I], CMYKColor[0, 0, i, 0],

Point[{i, 0.0}] }, {i, 0, 1, 0.1}] }
], PlotRange -> {{-0.1, 1.1}, {-0.05, 0.25}}];

322 Part II · Programming Language

Combining the colors two at a time, keeping a total intensity of 1 has the following effect.

Show[Graphics!
{ Table[{ PointSize[0.1], CMYKColor[i,

Point[{i, 0.2}] }, {i, 0, 1,
PointSize[0.1], CMYKColor[0,

1 - i,
0.1}],

Table[{ PointSize[0.1], CMYKColor[0, i, 1 -
Point[{i, 0.1}] }, {i, 0, 1, 0.1}],

Table[{ PointSize[0.1], CMYKColor[1 - i, 0,
Point[{i, 0.0}] }, {i, 0, 1, 0.1}] }

] , PlotRange -> { { - 0 . 1 , 1 . 1 } , { -0 .05 , 0 . 2 5 } }] ;

0 , 0] ,

0] ,

0] ,

To see the whole range of possible colors would require a 4-dimensional cube this time that
one could peer into to any depth. We ignore the effect of adding black, which decreases the
intensity of the colors, and imagine a 3-dimensional cube as before. We show three faces of
such a cube, the magenta-cyan face, the yellow-cyan face, and the yellow-magenta face.

Show[6raphicsArray[
{ Graphics[

{ Table[

Text[

{ CMYKColor[i, j, 0, 0],
Polygon[{ {i, j}, {i, j+0.1},

{i+0.1,j+0.1},{i+0.1,j}}]},
{i, 0, 1, 0.1}, {j, 0, 1, 0.1}],
"cyan 0 to 1", {0.5, -0.05}],

Ten · Graphics Programming 323

Text["mag 0 to 1 ",
{-0.05, 0.5}f {0, 0}, {0, 1}]},

AspectRatio -> Automatic],
Graphics[
{ Table[{ CMYKColor[i, 0, j, 0],

Polygon[{ {i, j}, {i, j+0.1},
{ΐ+0.1ο+0.1},{ί+0.1^}}]},

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}],
Text["cyan 0 to 1", {0.5, -0.05}],
Text["yel 0 to 1 ",

{-0.05, 0.5}, {0, 0}, {0, 1}]},
AspectRatio -> Automatic],

Graphics[
{ Table[{ CMYKColor[0, i, j, 0],

Polygon[{ {i, j}, {i, j+0.1},
{i+0.1,j+0.1},{i+0.1,j}}]},

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}],
Text["mag 0 to 1", {0.5, -0.05}],
Text["yel 0 to 1 ",

{-0.05, 0.5}, {0, 0}, {0, 1}]},
AspectRatio -> Automatic]

}]];

o|^^H

D :IB1
rd

cvan 0
ίβ !
r.o ϊ̂

o

D

H
ω

1 r.van 0

'̂H
ÎBi

r.ô f%

0
P
D

iriaa 0

The colors in the upper right-hand regions of these squares are blue, green, and red, that
appeared in the last section on RGB colors. One can look inside the cube by displaying the
layers parallel to the yellow-cyan face given by adding in magenta stepwise.

Show[GraphicsArray[
{ Tab le [Graph ic s [

Table [{ CMYKColor[i, k, j , 0] ,
P o l y g o n [{ { i , j } , { i , j + 0 . 2 } ,

{i+0.2,j+0.2}, {i+0.2,j}}]},
{i, 0, 1, 0.2}, {j, 0, 1, 0.2}],
AspectRatio -> Automatic,

324 Part II · Programming Language

PlotLabel -> "magenta = "<>ToString[k]],
{k, 0, 0.4, 0.2}],

Table[Graphics[
Table[{ CMYKColor[i, k, j, 0],

Polygon[{ {i, j}, {i, j+0.2},
{i+0.2,j+0.2}, {i+0.2,j}}]},

{i, 0, 1, 0.1}, {j, 0, 1, 0.2}],
AspectRatio -> Automatic,
PlotLabel -> "magenta = "<>ToString[k]],
{k, 0.6, 1.0, 0.2}]

}]];

magenta = 0 magenta = 0.2 magenta = 0.4

magenta = 0.6 magenta = 0.8 magenta = 1.

2.3 Options
The options available for G r a p h i c s are almost the same as those for P l o t except for those
options affecting the smoothness of a curve.

Complement[Options[Graphics], Options[Plot]]

{Axes -> False}

Options can be given either inside the G r a p h i c s expression as last arguments or as last
arguments to Show. Show does not have any specific options for itself, but uses anything that
makes sense for the graphics objects it is displaying.

Ten · Graphics Programming 325

3 Combining Built-in Graphics
with Graphics Primitives

There are two separate ways to combine built-in graphics with graphics primitives, depending
on whether one is modifying a built-in graphics function by adding graphics primitives or,
instead, modifying a graphics object constructed by including elements produced from built-in
graphics routines.

3.1 Modifying Built-in Graphics with Graphics Primitives

3.1.1 PlotStyle

We have already illustrated the use of P l o t S t y l e to change the appearance of built-in
graphics routines. The general format is P l o t S t y l e -> { { - - - } , . . . } where each
sublist applies to the curve in the corresponding position in the list of curves to be plotted. The
entries in the sublist can be any graphics modifiers; e.g.,
P l o t S t y l e - > { T h i c k n e s s [0 . 0 2] } , etc.

3.1.2 Prolog and Epilog

P r o l o g and E p i l o g are options to all of the built-in graphics functions that allow one to add
arbitrary graphic primitives to them. The difference between the two is that E p i l o g graphics
are produced after the built-in graphics and hence print on top of them, while P r o l o g
graphics are produced first so the built-in graphics print on top.

P l o t [S i n [x] , { x , 0 , 2 P i } f

E p i l o g -> {
{ P o i n t S i z e [0 . 0 5] , P o i n t [{ P i , -1}]},
{ T h i c k n e s s [0 . 0 2] , L i n e [{ { 0 , - 1 } , { 2 P i , 1 } }] } ,
{ G r a y L e v e l [0 . 4] ,
Polygon[{{2,-0.5}, {4,-0.5}, {4,0.5}, {2,0.5}}],
Text["Primitives on top", {Pi, 0.75}]} }];

326 Part II · Programming Language

Plot[Sin[x], {x, 0, 2Pi},
Prolog -> {
{ PointSize[0.05], Point[{Pi, -1}]}/
{ Thickness[0,02], Line[{{0, -1}, {2Pi, 1}}]},
{ GrayLevel[0.4],
Polygon[{{2,-0.5}, {4,-0.5}, {4,0.5}, {2,0.5}}],
Text["Built-ins on top", {Pi, 0.75}]} }];

3.2 Adding Built-in Graphics
to Graphics Objects

Show can be used to display several built-in graphics plots together just by giving it several
arguments; i.e., Show can take any number of arguments which are graphics objects. In
particular, Show will display both built-in graphics and graphics objects constructed from
graphics primitives at the same time. Thus, the picture constructed in the previous section
using Epilog can equally well be made as follows:

Show[
Plot[Sin[x], {x, 0, 2 Pi},

DisplayFunction -> Identity],
Graphics[

{ { PointSize[0.05], Point[{Pi, -1}]},
{ Thickness[0.02], Line[{{0, -1}, {2Pi, 1}}]},
{ GrayLevel[0.4],

Polygon[{ {2, -0.5}, {4, -0.5},
{4, 0.5}, {2, 0.5} }] }

}], DisplayFunction -> $DisplayFunction];

Ten · Graphics Programming 327

This time, things are displayed in the order in which they are given, so if the P lo t and the
Graphics were reversed, then the result would be the same as using Prolog instead of
Epilog. Show will display any number of Graphics objects in any order. For instance, here is
another way to add text to a Plot, just treating it as another graphics object.

Show[
Plot[Sin[x], {x, 0, 2 Pi},

DisplayFunction -> Identity],
Graphics!{Text["sin and cos together",

{Pi, 0.5}]}],
Plot[Cos[x], {x, 0, 2 Pi},

DisplayFunction -> Identity],
DisplayFunction -> $DisplayFunction];

4 Graphics Arrays and Graphics Rectangles
•-w^: "- ̂ V > ^ £ 4 > W > X Ä ' V it- "

4.1 Graphics Arrays

Show can actually take six kinds of arguments:

Graphics, GraphicsArray, Graphics3D,
SurfaceGraphics, ContourGraphics, and DensityGraphics.

328

The first was discussed in the preceding section and here we look at GraphicsArray. A
GraphicsArray object is a list or matrix of graphics objects, which can be of any of the other
five types (since GraphicsArray is not a type of graphics). In order to have something to
draw, recall that the Fourier sine series for an odd, periodic function f[x] of period 2π is given
by calculating the Fourier sine coefficients using the following formula.

B[f_, n_, x_] : =
(2/Pi) Integrate[f[x] Sin[n x], {x, 0, Pi}];

Using these coefficients, the n'th Fourier sine series approximation to f [x] is given by

sinApprox[f_, n_, x_] :=
Sum[B[f, k, x] Sin[k x], {k, 1, n}];

The step function which is -1 between -π and 0 and +1 between 0 and π corresponds to the
constant function 1 between 0 and 1 made into an odd periodic function, so for instance, its 5th
Fourier sine series approximation is

sinApprox[l&, 5, x]
4 Sin[x] 4 Sin[3 x] 4 Sin[5 x]

+ +
Pi 3 Pi 5 Pi

Note that the even approximations are the same as the preceding odd approximations. For
purposes of plotting, define the step function itself by:

step[x_] := If[x > 0, 1, -1]
The first six approximations to this square wave can be illustrated in a single plot.

Show[GraphicsArray[
Table[

Plot[
Evaluate[{ step[x],

sinApprox[l&, 2(3i+j) + 1, x]}],
{x, -Pif Pi},
DisplayFunction -> Identity,
PlotStyle -> {Hue[l], Hue[0.7]},
Axes -> False,
PlotLabel ->

"Approximation "<>ToString[3i+j]],
{i, 0, 1}, {j, 3}]

], DisplayFunction -> $DisplayFunction];

Part II · Programming Language

Ten · Graphics Programming
- -- -* '*̂ f* - ̂ v Sjfo * -· -v,

329

Approximation 1 Approximation 2 Approximation 3

Approximation 4
A^

\/\s\s\/\J*

Approximation 5 Approximation 6

Ό Graphics Rectangles

Instead of using GraphicsArray to display several drawings in the same picture, one can use
the geometric object Rectangle with an optional third argument.

?Rectangle

Rectangle[{xmin, ymin}, {xmax, ymax}] is a two-dimensional
graphics primitive that represents a filled rectangle,
oriented
parallel to the axes. Rectangle[{xmin, ymin}, {xmax, ymax},
graphics] gives a rectangle filled with the specified
graphics.

Show[Graphics[
Table[
Rectangle[

{i-0.5, i-0.5}, {i+0.5, i+0.5},
Graphics[{ Line[{{i-0.5,i+0.5}, {i+0.5,1-0.5}}],

AbsolutePointSize[10 (i + 1)],
Hue[i/4], Point[{i, i}]},
AspectRatio -> 1,
DisplayFunction -> Identity]],

{i/ 0, 3}]],
DisplayFunction->$DisplayFunction, AspectRatio->l];

330 Part II · Programming Language

* \

5 Examples of Two-Dimensional Graphics

5.1 Histogram plots
Recall the program histogram from Chapter 8, Section 4.7.4.

histogram[data_, {xmin_, xmax_, xstep_}]
Map[{ {Min[#], Max[#]},

Plus@@Map[Count[data, #]&,
Partition!Range[xmin, xmax],

Generate a new set of data to use with it.

data = Table[Random[Integer, {1, 100}], {500}];
histo = histogram[data, {0, 99, 10}]

{{{0, 9}, 44}, {{10, 19}, 57}, {{20, 29}, 51}, {{30, 39}, 65},
{{40, 49}, 43}, {{50, 59}, 46}, {{60, 69}, 49},
{{70, 79}, 70}, {{80, 89}, 40}, {{90, 99}, 35}}

We will use Mathematica graphics primitives to construct a graphics object illustrating the
output of h i s t o g r a m in order to see what it looks like. The output from the histogram
function consists of a list of pairs of the form {{a, b}, c}, where {a, b} is an interval on the x-axis
giving the size of a bucket, and c is the number of items in the bucket. We want to plot this as a
rectangle on the base {a, b} of height c, which in Mathematica is described by R e c t a n g l e [{ a ,
0 } , { b , c }] . Thus, we restructure the histogram, using the technique of local rewrite rules
discussed in Chapter 7 Section 6.2, to turn it into the appropriate form. Here is the first very
simple version.

] }&,
xstep]]

Ten · Graphics Programming 331

histoGraphics[histogram_] :=
Graphics[histogram //.
{{a_, b_}f c_?NumberQ}:>Rectangle[{a, 0}, {b, c}]];

Note that the condition on c is required to prevent infinite recursion. As usual, the Mathematica
command Show displays this graphics object.

Show[histoGraphics[histo], Axes -> True];

100

If all we care about is the final picture, then there is no reason to calculate it in two steps. We
can just generate the desired list of rectangles directly.

histoGraphicsl[data_, {xmin_, xmax_, xstep_}] :=
Graphics[

Map[
Rectangle[

{Min[#], 0},
{Max[#], Plus@@Map[Count[data, #]&, #]}]&,

Partition[Range[xmin, xmax], xstep]]];

Then the command

Show[histoGraphics1[data, {0, 99, 10}], Axes -> True];

produces exactly the same picture as before, so it is omitted.
It is more interesting to make a somewhat more complicated graphics object that shades the

buckets differently depending on their contents and includes a count of the number of items in
each bucket at the top of each column. Since we need the height of each bar several times, it is
necessary to first generate the histogram and then process it.

332 Part II · Programming Language

histoGraphicsCount[data_, {xmin_, xmax_, xstep_}] :=
Module[

{ histo = histogram[data, {xmin, xmax, xstep}],
maxnum},

maxnum = Max[Map[#[[2]]&, histo]];
Graphics[

{histo //. {{a_, b_}, c_?NumberQ} :>
{Hue[N[c/maxnum]], Rectangle[{a,0},{b,c}]},

histo //.{{a_, b_}, c_} :>
Text[c, N[{(a + b)/2, 1.05 c + 1}]]}]];

Show[histoGraphicsCount[data, {0, 99, 10}],
Axes -> True];

100

Finally, this program can also take its data from a file by imbedding it in a larger routine
which includes both h i s t o g r a m and h i s t o G r a p h i c s l . Note that in the following program
we use ReadList , rather than Read, because it reads in the entire contents of the file as a list,
which is exactly what we want as the argument to h i s togram. In order to compare this final
program with the original C program, everything is written out in detail rather than using the
previous definitions.

histoGraphicsFile[file_String,
{xmin_, xmax_, xstep_}]:=

Module[
{numbs = ReadList[file], histo, maxnum},
histo =

Map[{ {Min[#], Max[#]},
Plus@@Map[Count[numbs, #]&, #]}&,

Ten · Graphics Programming 333

Partition[Range[xmin, xmax], xstep]];
maxnum = Max[Map[#[[2]]&, histo]];
Show[

Graphics[
{histo //. {{a_, b_}, c_?NumberQ} :>

{ Hue[N[c/maxnum]],
Rectangle[{a, 0}, {b, c}] },

histo //.{{a_, b_}, c_} :>
Text[c, N[{(a + b)/2, 1.05 c + 1}]]}],

Axes -> True]]

This is the final Mathematica version of the C program treated in Chapter 8, Section 4.7.4. Recall
the file " numbers 1 " constructed in Section 4.7.2 there.

histoGraphicsFile["numbers1", {0, 109, 10}];

100

5.2 A simple Bar Chart

Our next example is related to the histogram example, except that this time we have data for
given values and want to plot the data by showing bars rather than by using something like
L i s t P l o t . We will use the frequencies command discussed in Chapter 6 Section 2.3, to
generate the values to be plotted from a list of data.

frequencies[list_List] :=
Map[{#, Count[list, #]}&, Union[list]]

Here is some sample data and the value of frequencies for it.

334 Part II · Programming Language

frequencies[data = {1, 2, 3, 4, 3, 2, 6, 5, 3, 7,
6, 5, 7, 6, 3, 5, 4}]

{{1, 1}, {2, 2}, {3, 4}, {4, 2}, {5, 3}, {6, 3}, {7, 2}}

We would like to convert the output of frequencies into a rectangles by using local rewrite
rules similar to the ones used in h i s t o G r a p h i c s , of the form:

(*frequencies[data]//.{a_, b_} :>
Rectangle!{a, 0}, {a + 1, b}]*)

Interestingly, there does not seem to be any way to do this that doesn't lead to infinite
recursion. So instead, we have to process the output of f r e q u e n c i e s functionally. The
shading is constructed as part of the same functional process.

barChart[data_] :-
With[{freq = frequencies[data],

maxnum = Max[Map[#[[2]]&, freq]]},
Show[Graphics[

{Map[{ Hue[N[#[[2]]/(maxnum)]],
Rectangle[{#[[1]], 0},

{#[[1]] + 1/ #[[2]]}]}&,
freq]}],

Axes -> True,
AxesOrigin -> {Min[Map[#[[1]]&, freq]] - 1, 0}]]

Here is the plot for our simple data above.

barChart[data];

To get more interesting data to plot, we use one of the statistical distributions in the
Packages.

Needs["Statistics ContinuousDistributions^"]

Ten · Graphics Programming 335

We make a table of 50 scores selected at random from a normal distribution with mean 75 and
standard deviation 10.

scores =
Table[Floor[Random[NormalDistribution[75, 10]]],

{50}];

60 65 70 75 80 85 90

This doesn't look very much like a normal distribution, so we try again with 1000 scores,
narrowing the standard deviation a bit.

scores l =
Table[Floor[Random[NormalDistribution[75, 9]]],

{1000}];

barChart[scoresl];

50

40

30

20

10

JÜ , , «_
40

336 Part II · Programming Language

6 Three-Dimensional Graphics Primitives

6.1 Three-Dimensional Objects, Modifiers, and Options

By simply substituting Graphics3D for G r a p h i c s and adding a third dimension to each
coordinate, we can produce 3D graphics. P o i n t , L ine , Po lygon , and Tex t are as before.
There is a new primitive geometric object, a Cubo id . If you are willing to type in the
coordinates of the relevant points, then there is no limit to the 3-dimensional figures that can
be constructed.

Show[Graphics3D[
{
PointSize[0.05], Point[{0,2,2}], Point[{4,2,2}],
Thickness[0.02], Line[{{0, 2, 2}, {4, 2, 2}}],
Polygon[{ {0, 0, 0}, {1.5, 1.5, 1.5},

{2.5, 1.5, 1.5}, {4, 0, 0} }],
Polygon[{ {4, 0, 0}, {2.5, 1.5, 1.5},

{2.5, 2.5, 1.5}, {4, 4, 0} }],
Polygon[{ {4, 4, 0}, {2.5, 2.5, 1.5},

{2.5, 2.5, 2.5}, {4, 4, 4} }],
Polygon[{ {1.5, 2.5, 2.5}, {2.5, 2.5, 2.5},

{4, 4, 4}, {0, 4, 4} }],
Polygon[{ {0, 4, 4}, {1.5, 2.5, 2.5},

{1.5, 2.5, 1.5}, {0, 4, 0} }],
Polygon[{ {0, 4, 0}, {1.5, 2.5, 1.5},

{1.5, 1.5, 1.5}, {0, 0, 0} }],
Cuboid[{1.5, 1.5, 1.5}, {2.5, 2.5, 2.5}]

}]];

Ten · Graphics Programming 337

All of the modifiers for 2-dimensional graphics are available along with three new ones:

EdgeForm[specification]
FaceForm[frontspec, backspec]
SurfaceColor[specification]

EdgeForm is simple to use. EdgeForm[] means no edges are to be drawn. Otherwise,
s p e c i f i c a t i o n can be any modification or list of modifications involving Hue, RGBColor,
CMYKColor, GrayLevel, or Thickness. FaceForm is only useful if both the front and back
faces of some list of similar polygons can be seen and they are to be colored or shaded
differently, f rontspec and backspec can be color or shading modifiers or a Surf aceColor
object. It is more complicated and will be discussed below. There are many new options
available for Graphics3D.

Complement[Options[Graphics3D], Options[Graphics]]

{AmbientLight -> GrayLevel[0.], AspectRatio -> Automatic,
AxesEdge -> Automatic, Boxed -> True,
BoxRatios -> Automatic, BoxStyle -> Automatic,
FaceGrids -> None, Lighting -> True,
LightSources ->

{{{1., 0., 1.}, RGBColor[1, 0, 0]},
{{1., 1., 1.}, RGBColor[0, 1, 0]},
{{0., 1., 1.}, RGBColor[0, 0, 1]}},

Plot3Matrix -> Automatic, Polygonlntersections -> True,
RenderAll -> True, Shading -> True,
SphericalRegion -> False, ViewCenter -> Automatic,
Viewpoint -> {1.3, -2.4, 2.}, ViewVertical -> {0., 0., 1.}}

The only one of these that is familiar is AspectRatio, which just has a different default
value here. AmbientLight specifies the general overall illumination level of the graphics. Its
value can be either a GrayLevel, Hue, or RGBColor specification. AxesEdge determines on
which edges of the display the axes should be drawn. See The Mathematica Book [Wolfram] for
a description of its possible values. The three next options, Boxed, BoxRatios and BoxStyle
refer to the enclosing box drawn around the graphics object. Boxed itself is either True or
False. Changing BoxRatios can distort the graphics by making it fit in a strangely shaped
box. B o x S t y l e can take a list of modifiers such as GrayLevel, Hue, Thickness, and
Dashing. FaceGrids determines if the faces of the bounding box should have grids drawn
on them. It is similar to the option GridLines for 2-dimensional graphics. The options
Light ing and LightSources determine if the graphics should appear to be colored by
reflecting light from the indicated point sources. P lo t3Matr ix has been replaced by
ViewCenter and ViewVertical . P o l y g o n l n t e r s e c t i o n s and RenderAll affect how
polygons are drawn and for which ones PostScript code is generated. SphericalRegion is

338 Part II · Programming Language

mainly useful in creating graphics animations. The final three determine the relative position
of the graphics object in the viewing area. Viewpoint can be set from a special graphics
dialog box in Notebook versions of Mathematica. Here is a slight modification of the preceding
graphics design using some of these.

Show[Graphics3D[
{
PointSize[0.05], Point[{0,2,2}], Point[{4,2,2}],
Thickness[0.02], Line[{{0, 2, 2}, {4, 2, 2}}],
Polygon[{ {0, 0, 0}, {1.5, 1.5, 1.5},

{2.5, 1.5, 1.5}, {4, 0, 0} }],
Polygon[{ {4, 0, 0}, {2.5, 1.5, 1.5},

{2.5, 2.5, 1.5}, {4, 4, 0} }],
Polygon[{ {4, 4, 0}, {2.5, 2.5, 1.5},

{2.5, 2.5, 2.5}, {4, 4, 4} }],
Polygon[{ {1.5, 2.5, 2.5}, {2.5, 2.5, 2.5},

{4, 4, 4}, {0, 4, 4} }],
Polygon[{ {0, 4, 4}, {1.5, 2.5, 2.5},

{1.5, 2.5, 1.5}, {0, 4, 0} }],
Polygon[{ {0, 4, 0}, {1.5, 2.5, 1.5},

{1.5, 1.5, 1.5}, {0, 0, 0} }],
{EdgeForm[{Hue[l], Thickness[0.02]}],
Cuboid[{1.5, 1.5, 1.5}, {2.5, 2.5, 2.5}]}

}], Boxed -> False,
ViewPoint->{1.091, -2.930, 1.294}];

Of course, we prefer to use Mathematica itself to create the graphics objects rather than
typing in coordinates. E.g., here is a five-sided random folded polygon.

Ten · Graphics Programming

Show[Graphics3D[
Polygon[Table[{Random[], Random[], Random[]},

{5}]],
ViewPoint->{1.711, -2.751, 0.975}]];

6.2 Three-Dimensional Objects in Packages

6.2.1 Shapes

The graphics packages supplied with Mathematica contain a number of extra 3-dimensional
geometrical objects in two different packages. The following are in Graphics Shapes^ .

Cylinder[radius(l), height(1), number(20)]
Cone[radius(1), height(1), number(20)]
Torus[radius(1), radius(0.5), number(20), number(10)]
Sphere[radius(1), number(20), number(15)]
MoebiusStrip[radius(1), radius(0.5), number(20)]
Helix[radius(l), height(0.5), turns(2), number(20)]
DoubleHelix[radius(1), height(0.5), turns(2), number(20)]

The numbers in parentheses are the default values when the names are used without any
specified arguments.

These geometric objects are all displayed in a standard position centered on the vertical axis
at the origin. In order to locate them differently, it is necessary to use the two operations
T r a n s l a t e S h a p e [s h a p e , { x , y , z }] and R o t a t e S h a p e [s h a p e , p h i , t h e t a ,
p s i] that are found in the same package. T r a n s l a t e S h a p e is easy to understand; it just
translates every coordinate by the given vector. RotateShape is more complicated since phi,
theta, and psi refer to Euler angles and there are different conventions concerning them. First

340 Part II · Programming Language

of all, Mathematica uses the European convention that has the names phi and psi interchanged
compared to the American convention. However, it keeps them in the American order, which
is confusing. Secondly, R o t a t e S h a p e makes use of R o t a t i o n M a t r i x 3 D that is in the
package G e o m e t r y " R o t a t i o n s " and that calculates the appropriate matrix for a rotation
with given Euler angles. The matrix used refers to what are called "body coordinates" in
physics. However, Mathematica constructs everything with reference to a fixed set of "space
coordinates," which means that the transpose of this matrix should have been used. To correct
this inside RotateShape, it is necessary to use negative angles. Thus, we redefine these two
important constructs as follows:

Needs["Graphics"Master""]
rotationMatrix3D[phi_, theta_, psi_] :=

Transpose[RotationMatrix3D[phi, theta, psi]];
rotateShape[shape_, phi_, theta_, psi_] :=

RotateShape[shape, -psi, -theta, -phi];

Then we can illustrate Euler angles by showing their effect on a standard coordinate system.

a x e s =
{ { T h i c k n e s s [0 . 0 2] , L i n e [{ { 0 , 0 , 0 } , { 1 , 0 , 0 } }] ,

T e x t [" x " , { 1 . 1 , 0 , 0 }] } ,
{ T h i c k n e s s [0 . 0 1 7 5] , L i n e [{ { 0 , 0 , 0 } , { 0 , 1 , 0 } }] ,

T e x t [" y " , { 0 , 1 . 1 , 0 }] } ,
{ T h i c k n e s s [0 . 0 1 5] , L i n e [{ { 0 , 0 , 0 } , { 0 , 0 , 1 } }] ,

T e x t [" z " , { 0 , 0 , 1 . 1 }] } } ;

We also want to change the view point

Show[Graphics3D[axes],
Boxed -> False,
ViewPoint->{2.996, 0.318, 1.540}];

Ten · Graphics Programming 341

The effect of a rotation by Euler angles (phi, thêta, psi) = (Pi/6, Pi /4 , Pi/5) can be
demonstrated by showing the successive positions of the axes under these rotations. We write
three graphics commands with suppressed outputs and then show all three pictures by a
GraphicsArray. In each case, the new position of the coordinate axes is shown in black, and
the old position is in gray. The labels of the original x, y, and z axes remain in all three
pictures.

pictl = Show[Graphics3D[
{ { GrayLevel[0.5], axes},

{ rotateShape[axes, Pi/6, 0, 0],
Text["x"·, rotationMatrix3D[N[Pi/6], 0, 0].

{1.2, 0, 0}],
Text["y"', rotationMatrix3D[N[Pi/6], 0, 0].

{0, 1.2, 0}],
Text["ζ'", rotationMatrix3D[N[Pi/6], 0, 0].

{0, 0, 1.3}]}}
], Boxed -> False,

ViewPoint->{2.996, 0.318, 1.540},
PlotLabel -> "Rotate about the \nz-axis by Pi/6",
DisplayFunction -> Identity];

pict2 = Show[Graphics3D[
{ { GrayLevel[0.5],

rotateShape[axes, Pi/6, 0, 0],
Text["x"', rotationMatrix3D[N[Pi/6], 0, 0].

{1.1, 0, 0}],
Text["y"', rotationMatrix3D[N[Pi/6], 0, 0].

{0, 1.1, 0}],
Text["z"', rotationMatrix3D[N[Pi/6], 0, 0].

{0, 0, 1.3}] },
{ rotateShape[axes, Pi/6, Pi/4, 0],

Text["x1■",
rotationMatrix3D[N[Pi/6], N[Pi/4], 0].
{1.4, 0, 0}],

Text["y ' ' " ,
rotationMatrix3D[N[Pi/6], N[Pi/4], 0].
{0, 1.2, 0}],

Text [" z · * ",
rotationMatrix3D[N[Pi/6], N[Pi/4], 0].
{0, 0, 1.1}]} }

], Boxed -> False,
ViewPoint->{2.996, 0.318, 1.540},
PlotLabel ->

file:///nz-axis

342 Part II · Programming Language

"Rotate about the \nnew x'-axis by Pi/4",
DisplayFunction -> Identity];

pict3 = Show[6raphics3D[
{ { GrayLevel[0.5],

rotateShape[axes, Pi/6, Pi/4, 0] ,
Text["x1■",

rotationMatrix3D[N[Pi/6], N[Pi/4], 0] .
{1.2, 0, 0}],

Text[H y · ' " ,
rotationMatrix3D[N[Pi/6], N[Pi/4], 0] .
{0, 1.2, 0}],

Text [" z ■ ■ " ,
rotationMatrix3D[N[Pi/6], N[Pi/4], 0] .
{0, 0, 1.1}] },

{ rotateShape[axes, Pi/6, Pi/4, Pi/5],
Text["x"'",

rotationMatrix3D[N[Pi/6], N[Pi/4], N[Pi/5]].
{1.4, 0, 0}],

Text[»y···»,
rotationMatrix3D[N[Pi/6], N[Pi/4], N[Pi/5]].
{0, 1.2, 0}],

Text[" z ■ ' '",
rotationMatrix3D[N[Pi/6], N[Pi/4], N[Pi/5]].
{0, 0, 1.3}]}}

] , Boxed -> False,
ViewPoint->{2.996, 0.318, 1.540},
PlotLabel ->

"Rotate about the \nnew z''-axis by Pi/5",
DisplayFunction -> Identity];

Show[GraphicsArray[{pictl, pict2, pict3}],
DisplayFunction -> $DisplayFunction];

Rotate about the Rotate about the Rotate about the
z-axis by Pi/6 new x'-axis by Pi/4 new z' '-axis by Pi/5

z ' :. '
z z zy"'v,,

7 ' ' '

■ y ► X ' '
y X Y ^Τ y

x' x Χ χ - x x "

file:///nnew
file:///nnew

Ten · Graphics Programming 343

The first picture is the action of phi = Pi /6, which is a rotation about the z-axis by Pi/6. The
new z'-axis is the same as the z-axis. The second picture is the action of theta, which is a
rotation about the new x'-axis by Pi/4. The new x"-axis is the same as the x'-axis. Finally, the
third picture is the action of psi, which is a rotation about the new z"-axis by Pi/5. The new z'"-
axis is the same as the z"-axis.

Using translations and rotations, we can make a construction from the graphics objects in
the Shapes package.

Show[6raphics3D[
{ Cuboid[{-l, -1, -1}, {1, 1, 1}],

T r a n s l a t e S h a p e [C y l i n d e r [] , { 0 , 0 , 2 }] ,
r o t a t e S h a p e [T r a n s l a t e S h a p e [C o n e [] , { 0 , 0 , 2 }] ,

0 , P i / 2 , 0] ,
T r a n s l a t e S h a p e [S p h e r e [0 . 5] , { 0 , - 3 , 0 }] ,
r o t a t e S h a p e [T r a n s l a t e S h a p e [H e l i x [] , { 0 , 0 , 2 }] ,

P i / 2 , P i / 2 , 0]
}] , Axes -> T r u e] ;

Here, the C y l i n d e r , Cone, and H e l i x are all originally placed on top of the Cuboid. Then
the Cone is rotated about the x'-axis = the x-axis (because phi = 0) by theta = Pi/2. (Note that
the x-axis runs along the lower front of the box.) For the H e l i x , the new x'-axis is the y-axis
(because phi = Pi/2) and it is rotated about this axis by theta = Pi/2.

344 Part II · Programming Language

6.2.2 Polyhedra
More shapes can be found in the package Graphics" Polyhedra", which are displayed in a
somewhat different manner.

Tetrahedron
Cube
Octahedron
Dodecahedron
Icosahedron

Hexahedron
GreatDodecahedron
SmallStellatedDodecahedron
GreatStellatedDodecahedron
Greatlcosahedron·

These are actually the names of the lists of polygons making up the various shapes. They are
converted into Graphic s 3D objects by affixing the head Polyhedron. In addition,
Polyhedron can take two optional arguments specifying the center of the shape and a scaling
number specifying its size. In order to try them out, we load the Graphics "Master" package
if it hasn't already been loaded. The default location of the center is {0, 0, 0}, with default size
equal to 1.

Show[Polyhedron[Tetrahedron], Axes -> True];

In the next picture, all of the regular solids are shown, in different locations.

Show[Polyhedron!Cube, {0, 0, -1.5}],
Polyhedron[Tetrahedron],
Polyhedron[Octahedron, {0, -1.5, 1.5},
Polyhedron[Dodecahedron, {1.5, 0.5, 1.
Polyhedron[Icosahedron, {-1.5, 0.5, 1.
Axes -> True];

0.8],
5}, 0.8],
5}, 0.8],

Ten · Graphics Programming 345

The polygons making up one of these shapes can be accessed by using
First [Polyhedron [name]]. Thus:

First[Polyhedron[Tetrahedron]]

{Polygon[{{0., 0., 1.73205}f {0., 1.63299, -0.57735},
{-1.41421, -0.816497, -0.57735}}],

Polygon[{{0., 0., 1.73205}, {-1.41421, -0.816497, -0.57735},
{1.41421, -0.816497, -0.57735}}],

Polygon[{{0., 0., 1.73205}, {1.41421, -0.816497, -0.57735},
{0., 1.63299, -0.57735}}],

Polygon[{{0., 1.63299, -0.57735},
{1.41421, -0.816497, -0.57735},
{-1.41421, -0.816497, -0.57735}}]}

Since a polyhedron consists of a list of polygons, this description can be used together with
graphics modifiers to create polyhedra with other characteristics. For instance, a dodecahedron
has twelve faces which can be colored by giving a list of twelve hues. In order to see these
colors, we have to turn off the default lights.

Show[Graphics3D[
Transpose[{

Table[Hue[l - i/12], {i, 12}],
First[Polyhedron[Dodecahedron]]}]],

Lighting -> False];

346 Part II · Programming Language

A cube just fits inside an octahedron with its vertices touching the faces of the octahedron.
(Here, WireFrame is an operation from the package Graphics Shapes^ which removes the
surfaces, just leaving the edges of the polygons.)

Show [Po lyhedron[Cube] ,
WireFrame[

Polyhedron[Octahedron, { 0 , 0 , 0 } , 1 . 4 5]] ,
Boxed -> F a l s e] ;

A rotated cube fits inside a dodecahedron with its vertices the same as some of the vertices
of the dodecahedron and its edges lying in the faces of the dodecahedron.

Show[r o t a t e S h a p e [P o l y h e d r o n [C u b e] , 0 . 3 5 , 0 . 5 4 , 0] ,
r o t a t e S h a p e [

WireFrame[
Polyhedron[Dodecahedron, { 0 , 0 , 0 } , 1 . 1 5]] ,
0 , 0 , 0] ,

Boxed -> F a l s e ,
V i e w P o i n t - > { 2 . 2 2 2 , - 2 . 4 5 1 , 0 . 7 1 3 }] ;

Ten · Graphics Programming _J47_

6.2.3 Color in three-dimensional graphics
The next two commands produce the following two pictures.

Show[Graphics3D[
{ SurfaceColor[GrayLevel[0.2], GrayLevel[0.8], 5],

Sphere[] }],
LightSources -> { {{1., 0., 1.}, GrayLevel[0.9]},

{{0., 1., 1.}, GrayLevel[0.9]}
}];

Show[Graphics3D[
{ SurfaceColor[RGBColor[0.9, 0.9, 0.9], White, 10],

Sphere[]}],
LightSources -> { {{1., 0., 0.3}, Red},

{{0., 1., 0.3}, Yellow},
{{-0.3, 0., 1.}, Blue}}];

348 Part II · Programming Language

6.2.4 Combining three-dimensional graphics
The output of Plot3D is -Surf aceGraphics- so it cannot be used together with other
Graphics3D constructions. The solution is that Graphics3D[Surf aceGraphics []]
converts the Surf a c e G r a p h i c s to a Graphics3D object. However, different
Surf aceGraphics can be combined with Show.

Show[Plot3D[Sin[x y] , {x, 0, P i } , {y, 0, P i } ,
DisplayFunction -> Ident i ty] ,

Plot3D[Cos[x y] , {x, 0, P i } , {y, 0, P i } ,
DisplayFunction -> Ident i ty] ,

DisplayFunction -> $DisplayFunction];

Show[Graphics3D[
Plot3D[Sin[x y] , {x, 0, P i } , {y, 0, P i } ,

DisplayFunction -> Ident i ty]] ,
Polyhedron[Dodecahedron, { P i / 2 , P i / 2 , 0 } , 1 . 5] ,
DisplayFunction -> $DisplayFunction];

Ten · Graphics Programming 349

7 Exercises

1. Make pictures of the partial sums of the Maclaurin's series approximation to sin x.

2. Complete the discussion of Fourier series approximations. Use cos series and the full sin
and cos series for given periodic functions.

3. Make pictures of the solutions of partial differential equations.

4. In the picture with the cube, cylinder, cone, and helix, where would the helix appear if
the directions for it are replaced by

rotateShape[TranslateShape[Helix[], {0, 0, 2}],
Pi/2, Pi/2, Pi/2]

Make a picture to see if your prediction is correct.

5. Make some of the other pictures of regular solids that fit nicely inside other regular
solids.

CHAPTER Λ Λ

1 Introduction
There are still many things to be learned about using Mathematica as a programming language.
In this chapter six miscellaneous topics are collected together to help you fine-tune your
programming abilities: Packages, Attributes, Named Optional Arguments, Evaluation, General
Recursive Functions, and Substitution and the Lambda Calculus. The first four are basic
aspects of the Mathematica programming language, while the last two consider how more
general programming issues are treated in Mathematica. There are several sources for further
information; e.g., The Mathematica Journal and news features on computer networks. A good
way to deepen your knowledge is to read other people's programs and try to decide why
things are written the way they are. The packages supplied with Mathematica are a good place
to start. When you find that you can do better by writing briefer, more transparent, more
cogent, or faster programs, then you have begun to master Mathematica.

2 Packages
Packages are the final organizing ingredient in the Mathematica language. These are
structures that enable one to completely isolate certain portions of code from the outside
world. Not only are variables protected as in Modules, but function definitions are protected
as well. The structural feature that permits this is the notion of Contexts, which will require
some explanation.

351

352 Partii · Programming Language
• * » - ^ 4 '* v, ~ìy&&%^^*^lmmmm®^%<*ì' '■* '> ;:&-\> \

2.1 Contexts
Contexts make themselves evident in a setting familiar to most users of Mathematica. For
example, let us try to evaluate a Laplace transform, forgetting that it is defined in a package.

LaplaceTransform[2 t*3, t, s]

LaplaceTransform[2 t3, t, s]

As is to be expected, nothing happens because the appropriate package hasn't been loaded. So,
load the package.

Needs["Calculus "LaplaceTransform""]

LaplaceTransform::shdw:
Warning: Symbol LaplaceTransform appears in multiple contexts
{Calculus"LaplaceTransform", Global"}; definitions in context
Calculus"LaplaceTransform"may shadow or be shadowed by other
definitions.

What does this strange message about "multiple contexts" and "definitions...shadowed by
other definitions" mean? Furthermore, LaplaceTransform still doesn't work.

LaplaceTransform[2 t A 3 , t , s]

LaplaceTransform[2 t 3 , t , s]

Maybe the message means we have to clear LaplaceTransform before using it.

Clear[LaplaceTransform]
LaplaceTransform[2 t"3, t, s]

LaplaceTransform[2 t3, t , s]

It still doesn't work, but there is a more powerful way to clear expressions, after which it
finally works.

Remove[LaplaceTransform]
LaplaceTransform[2 t^3, t, s] => 12/s4

Eleven · Some Finer Points 353

This is all very strange, but note well the remedy for a function refusing to work after it has
been tried before loading the appropriate package; namely, Remove the offending function.
What is going on? First we have to understand names in Mathematica.

2.2 Names
Names are an important aspect of Mathematica. Everything, in fact, depends on the way that
names are handled. The command Names [s t r i n g] returns all names known to Mathematica
at the time of its being run that match the given pattern.

Names["B*"]

{Background, BaseForm, Begin, BeginPackage, Below, BernoulliB,
Bessell, BesselJ, BesselK, BesselY, Beta, BetaRegularized,
Binomial, Blank, BlankForm, BlankNullSequence, BlankSequence,
Block, Bottom, Boxed, BoxRatios, BoxStyle, Break, Byte,
ByteCount}

In this example, "B* " stands for all words beginning with B. The * is a wild card that matches
anything. Certain names have values attached to them, either because they have built-in
values, or because values have been assigned in the current session. Clear [name] clears
values assigned to name. As an experiment, give aa the value 5 by an assignment statement.

aa = 5 => 5

Then, of course, aa has the value 5 as we can check.

aa => 5

Now clear aa and observe that it no longer has a value.

Clear[aa] ; aa => aa

However, Mathematica still knows about aa as the following demonstrates.

Names["a*"] => {aa}

Clear [name] , or Clear [" nameform"] removes values assigned to a particular name, or to
all symbols whose names match a particular nameform. It does not remove the name however;
it just removes values assigned to a name. Remove [aa] actually removes the object itself
from the context so that Mathematica no longer knows anything about it.

Remove[aa]; Names["a*"] => {}
But, what is meant by removing an object from a context?

354
"ir·%.*<&&;&>, -'

Part II · Programming Language

2.3 The Hierarchy of Contexts
Actually, everything in Mathematica has a much more complicated name which includes its
context. Contexts form a hierarchy that lies behind everything that we have seen so far in our
use of Mathematica. One can see them by asking for the contexts of particular names.

{Context[LaplaceTransform], Context[Sin], Context[aa]}
{Calculus"LaplaceTransform", System", Global"}

The system variable $ContextPath describes the current state of this hierarchy and
$Context tells where we are on this path at present.

$ContextPath
{Calculus"LaplaceTransform", Calculus"Common"Support",
Calculus"DiracDelta", Global", System"}
$Context Global

Every name, either built-in or user defined, has a full name that includes the context in
which it is defined. For instance, the context of all built-in system commands is System" and
the context in which one normally works is Global" . Thus, the full name of S in is
System" Sin and the full name of aa is Global " aa. These names can always be used instead
of their abbreviated forms. Note that context names always end with a tick, " "." The long
context name Calculus"LaplaceTransform" indicates that LaplaceTransform" is a
subcontext of the context Calculus". We can get a list of all of the names that have been
introduced in the Global context during the current session by the following command. Note
that the output here depends on everything that has been done in the current session.

Names["Global"*"] { s , t }

From one point of view, the value of $ContextPath should be seen as a tree structure
reflecting the directory structure of the Packages folder. Thus, right now it looks like the
following tree.

Laplace
Transform

Calculus
' i
Common

I
Support

System

Eleven · Some Finer Points 355

This tree will be searched from left to right by a depth first search to find names. Only the
leaves of this tree are actual contexts. There is no context named just Calculus" . If more
packages are added, then the simple directory structure disappears.

Needs["Graphics"ImplicitPlot""]
Needs["Calculus"Limit""]
$ContextPath
{Calculus"Limit", Graphics"ImplicitPlot",
Utilities"FilterOptions", Calculus"LaplaceTransform",
Calculus"Common"Support", Calculus"DiracDelta", Global",
System"}

Now there are two nodes named Ca lcu lus separated by nodes named Graphics and
U t i l i t i e s . So, from this point of view it is better to see $ContextPath as a simple list
which is searched from left to right.

When a new symbol is entered, Mathematica does the following:

i) It looks in the current context to see if the symbol belongs to the list of names in that
context. If so, it returns the latest value it has for the symbol, or just the symbol itself if
there is no value for it.

ii) If the symbol is not in the current context, it then searches the contexts on the current
context path, and does the same with the first context in which it finds the symbol.

iii) If the symbol is nowhere on the current context path, it adds the symbol to the list of
known names in the current context. Next time the symbol is used, it will be found in
the current context.

The LaplaceTransf orm that was mistakenly typed at the beginning of this session was
therefore placed in the Global" context. When the LaplaceTransf orm package was loaded,
the context named C a l c u l u s " L a p l a c e T r a n s f o r m " was created. The next time
LaplaceTransf orm was typed, it was found in the Global" context where it had no value,
so it was returned unevaluated. The LaplaceTransf orm in the Global" context hid, or
shadowed, the LaplaceTransf orm in the Calculus" LaplaceTransf orm" context so the
real one couldn't be found. Only after the command Remove [Laplace—Transform]
removed LaplaceTr ans form from the Global" context (only) could Mathematica find the
real one in the Calculus "Laplace—Transform" context. Mathematica is supposed to warn
one about the possibility of this happening, which is exactly what it did with the warning
message.

2.4 How to Make a New Context
Start a new session and put a name in the Global" context.

a => a

356 Part II · Programming Language

To create a new context called news tuf f ", use the following command.

Begin["newstuff""] ;

Note the quotation marks and the tick. Check that we are now in a different context.

{$Context, $ContextPath} => {newstuff", {Global", System"}}

Notice that newstuf f " has not been added to the context path. Now give a value to a using a
new symbol b.

a = b + 5;

The symbol b has been introduced in this new context, so its real name is newstuf f" b.

Names["newstuffv*"] => {b}

One can also find it by the following command, which actually shows b with its complete
name.

??newstuff"* => newstuffvb

In this context, a has its given value, even though a is in the Global context.

a => 5 + b
Context[a] => Global"

We can introduce a new symbol with complete name newstuf f a by using its complete
name in the assignment statement.

newstuff"a = c 7;

Now if we ask for a we get its value in the current context.

a => 7 c

Nevertheless, we can still retrieve the previous a by using its complete name.

Global "a => 5 + b

Finally, if we ask for the current names in newstuf f" we get three entries.

Names["newstuff"*"] => {a, b, c}

Eleven · Some Finer Points 357
^-svs\y ^ - *<̂ * ; % \< « *̂ ** <»#^ „- ̂ " ' ^ » > f ^ism&iv*^ H*m>(, ' "#

To leave the context newstuf f ", use the command End [] .

End[];

Finally, check the context path and the context again.

{$Context, $ContextPath} => {Global", {Global", System"}}

Now the current context is again Global" and the context newstuf f " seemingly has
disappeared. However, it is still there, somewhere in the background.

newstuff"a => 7 newstuff"c

2.5 How to Make a New Package
Packages are a technique for

i) setting up new contexts and adding them to the context path;
ii) exporting certain information to a visible context;

iii) hiding the rest of the information

Here is a brief example of how this works. Instead of a B e g i n statement, use a
BeginPackage statement.

BeginPackage["newerstuff""];

Check the current context and context path.

{$Context, $ContextPath}

{newerstuff", {newerstuff", System"}}

Note that Global" is gone but newerstuf f" has been added to the context path; the only
other context on the path is System". Now give a usage message for the function that is to be
exported to the visible contexts.

gamma::usage =
"This function is to be exported to the Global
context.";

358 Part II · Programming Language

Then, start another new context that is to be a subcontext of n e w e r s t u f f " , and give it the
standard name " p r i v a t e " . (Note the tick at the beginning and the end.)

Begin["*private""];

Check where we are.

{$Contex t , $ContextPath}

{ n e w e r s t u f f " p r i v a t e " , { n e w e r s t u f f " , Sys tem"}}

There are several things to notice. The syntax " p r i v a t e " , with an additional tick at the
beginning means that this context is a subcontext of the current context which is
n e w e r s t u f f ", so its actual name is the compound form n e w e r s t u f f " p r i v a t e " given by
$ C o n t e x t . Since we used B e g i n , this context was not added to the context path, which
remains unchanged. Next, introduce an auxiliary variable b e t a , give it a value and use it to
define the function gamma.

beta = 57;
gamma[x_] := beta^x

Now end the private context.

E n d [] ;

Check where we are again.

{$Context, $ContextPath}

{ n e w e r s t u f f " , { n e w e r s t u f f " , Sys tem"}}

Finally, end the package.

EndPackage[]

Check where we are yet again.

{$Context, $ContextPath}

{Global", {newerstuff", Global", System"}}

Eleven · Some Finer Points 359

We are back in the Global^ context, but the context newerstuf f " has been added to the
context path so symbols that exist in the newerstuf f " context will be found without using
their full names.

We can now use the function gamma.

gamma[3] => 185193

But the constant beta is hidden because it is in the context newerstuff private^ which is
not on the context path. The idea is that beta, being in the pr ivate context is not accessible
to the user.

beta =» be t a

However, it's not really lost since we can still get it back by using the full context name.

??newerstuff private beta
newerstuff"private"beta
newerstuff"private'beta = 57

We can also reset beta, changing gamma along with it.

newerstuff pr ivate beta = 100;
gamma[3] => 1000000

Using the p r i v a t e context makes if difficult, but not impossible, to change gamma in this
way. We can find out what Mathematica knows about gamma using ??.

?? gamma

This function is to be exported to the Global context.
gamma [newerstuf f " private" x__] : =
newerstuff"private"betaAnewerstuff"private"x

Notice that the variable x used in the definition of gamma also has a very long "real" name. See
[Maeder 1] for a detailed treatment of contexts.

2.6 Features of Packages

2.6.1 The BeginPackage statement
The general structure of a package is as follows. First comes a BeginPackage statement
containing the name of the new package in quotation marks.

BeginPackage["PackageNamev"]

360 Part II · Programming Language

Recall that when we loaded the package C a l c u l u s "LaplaceTransform" above and then
looked at the context path, it also contained a context Calculus"Common"—Support".

$ContextPath

{ C a l c u l u s " L a p l a c e T r a n s f o r m " , Ca lcu lus"Common"Suppor t " ,
C a l c u l u s " D i r a c D e l t a " , G l o b a l " , Sys tem"}

If you look at the Laplace transform package, then you will see that the Beg inPackage
statement contains a second argument.

BeginPackage["Calculus"LaplaceTransform"",
"Calculus"Common"Support""]

There can be as many additional arguments as desired which are the quoted names of
packages containing operations that are required in the present package. They will all be
automatically loaded, if they are not already present, by the B e g i n P a c k a g e statement.
Alternatively, one can also follow the BeginPackage statement with a Needs ["Package" "]
statement to read in further needed operations. (Note that the M a s t e r packages cannot be
used either in the BeginPackage statement or in a Needs statement inside a package.) There
is in fact an actual hierarchy of contexts determined by which contexts depend on other
contexts by calling them when they are loaded. This hierarchy forms a directed graph since a
given context may have more than one ancestor and of course more than one descendent.

2.6.2 The usage messages

The general format of a usage message is

name::usage = "message";

Note the semicolon at the end. If it is omitted, then all of the usage messages will be printed if
the package is read in as a notebook. Usage messages are not required. What is required is that
the objects that are to be exported from the private part of the package must be mentioned
before the Beg in [" " p r i v a t e " "] statement, so that when their names are mentioned in the
private part of the package, they will be found outside in the main part of the package. There is
no danger of these names conflicting with names in the Global " context since that context has
been removed from the context path. It is sufficient to just list all the names before starting the
" p r i v a t e " context, followed by semicolons. However, if a usage message is given, then once
the package is loaded, typing ?name will display the message just as it does for built-in
operations. The desired format is to first give a usage message for the name of the package
itself so the user can find out what it does. Then give usage messages for the exported objects
in the form

"name[argument1, argument2, . . .] does something.";

Eleven · Some Finer Points 361

where the arguments are given names that suggest their role in the object. The idea is that if
users read the usage message then they will know how to use the operation. In particular, they
will know how many arguments of what kinds the object expects.

2.6.3 The private context in the package
This is where all the work is done in constructing the required operations, defining rewrite
rules, etc. Usually, in complicated situations, other auxiliary operations are needed to define
the ones that will be exported. Because these constructions are given in the private context,
they will not be available to the user. One justification for this is that the usage messages are
specifications for the operations constructed in the package. All the user needs to know is what
the usage messages promise the operations will do. How this is accomplished is up to the
implementer, who may change his or her mind at some later point when the package is
updated or improved. As long as the exported operations do what they are supposed to do,
the details of the implementation shouldn't matter. Therefore, they should be kept hidden
from the user. In particular, the implementer should be free to change the hidden auxiliary
operations at any time without affecting the user's programs.

Of course, in Mathematica, these concerns are somewhat academic since if you have access to
a package at all, then you can look at the complete package to find out exactly how it is
constructed. You can even change it if you want to. But there is still a point in only using
exported operations with usage messages precisely because packages do get updated. E.g.,
packages supplied with Mathematica itself are often updated when a new version of the
program comes out.

2.7 An Alternative Form for Packages
Henry Cejtin and Theodore Gray have advocated an alternative form for Packages, as
discussed beginning on p 259 of [Blachman 1].

3 Attributes
Nearly all built-in functions have attributes chosen from the following 14 possibilities.

Constant Locked
Flat Oneldentity
HoldAll Orderless
HoldFirst Protected
HoldForm ReadProtected
HoldRest Stub
Listable Temporary

362 Part II · Programming Language

Attributes have an important effect on the way in which functions are evaluated. (See Section 5
below.) There are several ways to manipulate At tr ibutes of both built-in and user-defined
functions. One can add attributes or change those that are already present by using the
command SetAttributes.

? SetAttributes

S e t A t t r i b u t e s [s , a t t r] adds a t t r t o t h e l i s t of a t t r i b u t e s
of t h e symbol s .

This is how to set attributes for user-defined functions, but of course, it only works for built-in
functions if they are unprotected first. At tr ibutes can be removed by using the command
Clear Attributes .

?ClearAttributes

C l e a r A t t r i b u t e s [s , a t t r] removes a t t r from the l i s t of
a t t r i b u t e s of t h e symbol s .

The command Attr ibutes [Symbol] returns the current list of attributes for a symbol. It
can be used to change this list just by assigning some new list of attributes to it. Again,
unprotect built-in functions before doing this. The attributes HoldAll, HoldFirst, and
HoldRest will be discussed in Section 5 below.

Let us look at some attributes that are involved in algebraic operations.

Attributes[Plus]

{Flat, Listable, Oneldentity, Orderless, Protected}

Flat corresponds to associativity in the sense for instance that (a + b) + c is the same as a + b +
c. It is called F l a t because in its general guise F l a t means, for instance, that
f [f [a , b] , c] = f [a , b , c] and this looks like flattening a list in case f is List .
Similarly, Orderless corresponds to commutativity in the sense that a + b is the same as b +
a. What it actually means is that the arguments of an orderless function are sorted according to
the built-in Sor t function before the function is applied. As we saw in the chapter on
imperative programming, P lus is not actually commutative because the arguments are
evaluated before they are sorted, as was shown in Chapter 8, Section 2.1. (See also the section
on Evaluation below.) You might think that Oneldentity has something to do with 0 being
an identity for addition, but it doesn't. What it in fact means is that Plus of a single argument
is the identity operation; i.e., Plus [x] = x. The identity for addition very nicely arises as the
value of Plus [] , but this is controlled by a default value rather than by an attribute.

Li s t a b i e is an important option that is possessed by many built-in functions. The
following command finds all such functions.

Eleven · Some Finer Points 363

Select[Names["*"], MemberQ[Attributes[#], Listable]&]

{Abs, AiryAi, AiryAiPrime, AiryBi, AiryBiPrime, ArcCos,
ArcCoshf ArcCotf ArcCoth, ArcCsc, ArcCsch, ArcSec, ArcSech,
ArcSin, ArcSinh, ArcTan, ArcTanh, Arg, ArithmeticGeometricMean,
Attributes, Bessell, BesselJ, BesselK, BesselY, Beta,
BetaRegularized, Binomial, Cancel, Ceiling, Characters,
ChebyshevT, ChebyshevU, Conjugate, Cosf Coshf Coshlntegral,
Coslntegral, Cot, Coth, Csc, Cschf Divide, Divisors,
DivisorSigma, EllipticE, EllipticF, EllipticK, EllipticPi,
EllipticTheta, EllipticThetaPrime, Erf, Erfc, Erfi, EulerPhi,
EvenQ, Exp, ExpIntegralE, ExpIntegralEi, Exponent, Factorial,
Factorial2, Factorlnteger, Floor, FresnelC, FresnelS, Gamma,
GammaRegularized, GCD, GegenbauerC, HermiteH, HypergeometricU,
HypergeometricOF1, HypergeometricOFlRegularized,
HypergeometriclFl, HypergeometriclFlRegularized,
Hypergeometric2Fl, Hypergeometric2FlRegularized, Im, In,
InString, IntegerDigits, JacobiP, JacobiSymbol, JacobiZeta,
LaguerreL, LCM, LegendreP, LegendreQ, LerchPhi, Limit, Log,
LogGamma, Logintegral, MantissaExponent, MessageList, Minus,
Mod, N, Negative, NonNegative, $NumberBits, OddQ, Out, Plus,
Pochhammer, PolyGamma, PolyLog, PolynomialGCD, PolynomialLCM,
Positive, Power, PowerMod, Prime, PrimeQ, Quotient, Range, Re,
RealDigits, Resultant, RiemannSiegelTheta, RiemannSiegelZ,
Round, Sec, Sech, SetAccuracy, SetPrecision, Sign, Sin, Sinh,
Sinhlntegral, Sinlntegral, SphericalHarmonicY, Sqrt, Subtract,
Tan, Tanh, Times, ToExpression, Together, ToHeldExpression,
Zeta}

Looking at this list leads to the conclusion that if it would make sense for a function to be
L i s t a b l e , then it probably is. It is clear what it means for a function of one variable to be
L i s t a b l e ; it automatically maps itself down lists. But, notice that P l u s , Power, and Times
are listable even though they are functions of two or more variables. Listability for functions of
several variables includes the property of threadability as discussed in Chapter 5, Section 3.1.

Our technique for finding all L i s t a b l e functions works for other attributes too. For
instance, we can find out which things are Constant .

S e l e c t [N a m e s [" * "] , M e m b e r Q [A t t r i b u t e s [#] , Constant]&]

{ C a t a l a n , D e g r e e , E, EulerGamma, G o l d e n R a t i o , P i }

The output from Names consists of strings, so to see the values of these constants we have to
first convert them to expressions. Note that both N and ToExpress ion are listable.

364 Partii · Programming Language

N[ToExpression[%]]

{0.915966, 0.0174533, 2.71828, 0.577216, 1.61803, 3.14159}

Something is Locked if you can't change it at all, even by unprotecting it.

Select[Names["*"], MemberQ[Attributes[#], Locked]&]

{$Aborted, $BatchOutput, $CommandLine, $CreationDate,
$DumpDates, $DumpSupported, Fail, False, I, $Input, $Linked,
$LinkSupported, List, $MachineID, $MachineName, $MachineType,
$Off, $OperatingSystem, $PipeSupported, $PrintForms,
$PrintLiteral, $ReleaseNumber, $Remote, Symbol, $System,
$TimeUnit, TooBig, True, $Version, $VersionNumber}

Something has the attribute Stub if, whenever its name is used, the appropriate package is
loaded.

Select[Names[■'*"], MemberQ[Attributes[#], Stub]&]

{}

Apparently, nothing has this attribute, but Master packages assign it to operations in their
directories. These commands are all used in non-front-end environments. Presumably
commands like Integrate have the attribute Stub, except that it is hidden from users.

Finally, nothing has the attribute Temporary.

Select[Names["*"], MemberQ[Attributes[#], Temporary]&]

{ }

We have to use a Module that exports its local variable to get a temporary name.

Module[{t}, t] => t$6

Now there is something with attribute Temporary.

Select[Names["*"], MemberQ[Attributes[#], Temporary]&]

{t$6}

According to The Mathematica Book [Wolfram], these names are removed "when they are no
longer needed". What that means is that if they occur just within a Module and are never
exported to the global context, then they disappear when the Module has finished evaluating.
Otherwise, they are removed when nothing refers to them anymore.

Eleven · Some Finer Points 365

4 Named Optional Arguments
Named optional arguments, as found in the plotting functions for instance, are very
convenient to use. They are to be distinguished from positional arguments that must always be
present in order for a function to work and whose effect on the output is determined by their
position in the function. Named optional arguments can be given in any order (but usually
only after the positional arguments, although this is only a convention) and may not be present
at all. We'll give three illustrations of how to define your own named optional arguments
using three different techniques.

4.1 The Gram-Schmidt Procedure Revisited
We shall rewrite the Gram-Schmidt procedure that was asked for in Exercise 8.2 of Chapter 7
so that the inner product used there becomes an optional argument. Whether the vectors
should be normalized and what inner product to use for that will also be optional arguments.
The format here is based on a modification of the Gram-Schmidt package by John M. Novak
that is distributed with Mathematica. Consider the problem of normalizing a vector. The default
is to divide the vector by the square root of its Dot product with itself. If some other inner
product is specified, then we want to replace Dot by that inner product. This is done by first
giving a list of the options for a function normal ize (here just one), written as a list of
substitutions.

Options[normalize] = {innerProduct -> Dot};

Thus, the default value of innerProduct is set to Dot. Other possible values are pure
functions of two variables that can serve as inner products. The problem then is to define
normalize in such a way as to make use of this description of the options in the form of an
optional argument that may or may not be present. The solution is based on the fact that / .
associates to the left.

normalize[vec_, opts] : =
With[

{innerp =
innerProduct/.{opts}/.Options[normalize]},

If[innerp[vec, vec]=!= 0,
vec / Sqrt[innerp[vec, vec]],
(*else*) 0 vec]];

In the definition of normalize, the purpose of the local variable innerp is to pick up the
desired inner product to use in normalizing vectors. Since / . associates to the left, the line

innerProduct /. {opts} /. Options[normalize]

366 Part II · Programming Language

gives innerProduct the value specified in o p t s if there is one, in which case the expression
innerProduct is no longer present so the second / . Opt ions [n o r m a l i z e] has no effect.
Otherwise it gets its value from Opt ions [n o r m a l i z e] . Try out normal i ze with a weighted
dot product. Note: the round brackets are necessary here.

normalize!{2, -1, 4},
innerProduct ->

(Plus@@Thread[Times[#1, #2, {1, 2, 3}]]&)]
Sqrt[2/3] -1 2 Sqrt[2/3]

{ , , }

3 3 S q r t [6] 3

The projection function works in exactly the same way.

Options[projection] = {innerProduct -> Dot};
projection[vl_, v2_, opts] : =

With[
{innerp =

innerProduct /· {opts} /.
Options[projection]},

If[innerp[v2, v2] =!= 0,
innerp[vl, v2] v2 / innerp[v2, v2],
(*else*) 0]]

This is used to define a multiple projection operation as before.

multipleProjection[vl_, vecs_, opts] :=
Plus ΘΘ Map[projection[vl, #, opts]&, vecs]

Finally, the Gram-Schmidt procedure itself has three possible optional arguments; which
inner product to use, whether the vectors should be normalized, and if so how, and whether or
not zero vectors are to be removed.

Options[gramSchmidt] = { innerProduct -> Dot,
normalized -> True,
deleteZeros -> False };

i n n e r P r o d u c t will work as before, n o r m a l i z e d is allowed to have three possible values:
True, meaning that vectors are to be normalized by using the given inner product, F a l s e ,
meaning that they are not to be normalized at all, and some alternative inner product to use
just for normalizing. d e l e t e Z e r o s also has three possible options: F a l s e meaning they are
not deleted, True, meaning vectors with zero components whose length equals the length of
the input vectors are to be deleted, and finally, some other description of vectors to be deleted.
The gramSchmidt procedure has to be written to make use of all three optional arguments.

Eleven · Some Finer Points 367

gramSchmidt[vecs_List, opts] : =
Module[
{ orthogs,

norm = normalized/.
{opts}/·Options[gramSchmidt],

innerp = innerProduct/·
{opts}/.Options[gramSchmidt],

delete = deleteZeros /·
{opts}/·Options[gramSchmidt] },

orthogs =
Fold[

Join[#l,
{#2 -
multipleProj e c t i o n [# 2 , #1,

innerProduct->innerp]}]&,
{ } , v e c s] ;

Which[
norm === True, orthogs =

Map[normalize[#, innerProduct->innerp]&,
or thogs] ,

norm === False , orthogs,
True, orthogs =

Map[normalize[#, innerProduct->norm]&,
o r t h o g s]] ;

Which[
d e l e t e === False , orthogs,
d e l e t e === True, Se l ec t [or thogs ,

(# =!= Table[0, {Length[vecs [[1]]] }])&] ,
True, Se l ec t [or thogs , (# =!= delete)&]]]

The heart of this program is the Fold statement which now includes a possible optional value
for innerProduct. Its output is processed two more times in the Which statements to take
care of possible optional values for normalized and deleteZeros.

4.1.1 Examples

4.1.1.1

vectors = { {1 , 2 , 3 } , {2 , - 3 , - 4 } , {3 , - 1 , - 1 } ,
{1, -5, -7},{-l, 5, 2}, {6, 2, -8} };

gramSchmidt[vectors]

368 Part II · Programming Language

1 2 3
{{ , Sqrt[-], },
Sqrt[14] 7 Sqrt[14]

22 1 -4

5 Sqrt[21] Sqrt[21] 5 Sqrt[21]
1 2 - 7

{0, 0, 0}, {0, 0, 0}, { , Sqrt[-], },
5 Sqrt[6] 3 5 Sqrt[6]

{0, 0, 0}}

gramSchmidt[vectors, normalized -> False]

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {0, 0, 0}, {0, 0, 0},

{7/30, 7/3, 49/30}, {0, 0, 0}}

gramSchmidt[vectors, deleteZeros -> True]

1 2 3
{{ , Sqrt[-], },
Sqrt[14] 7 Sqrt[14]

22 1 -4
{ , -(), },
5 Sqrt[21] Sqrt[21] 5 Sqrt[21]

1 2 - 7
{ , S q r t [-] , }}

5 S q r t [6] 3 5 S q r t [6]

The options can be changed by the usual built-in command.

SetOptions[gramSchmidt, normalized -> False]
{InnerProduct -> Dot, Normalized -> False,
DeleteZeros -> False}

gramSchmidt[vectors, deleteZeros -> True]

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {7/30, 7/3, -(49/30)}}

Eleven · Some Finer Points 369

Restore the options to their original values for further use.

SetOptions[gramSchmidt, normalized -> True];

4.1.1.2
matrix = { {8, 3, 0, 0},

{3, 2, 1, 2},
{0, 1, 2, 2},
(0, 2, 2, 14} };

gramSchmidt[{ {1, 0, 0, 0}, {0, 1, 0, 0},
{0, 0, 1, 0}, {0, 0, 0, 1} },

innerProduct -> (#1 · matrix . #2&)]
1 -3

{{ , o, 0, 0}f { , 2 Sqrt[2/7], 0, 0},
2 Sqrt[2] 2 Sqrt[14]
{SqrtIS/14], -4 Sqrt[2/21], Sqrt[7/6], 0},
Sqrt[3/7] -4 1 Sqrt[3/7]

{ , , , }}
2 Sqrt[21] 2 Sqrt[21] 2

4.1.1.3
gramSchmidt [

{1, x, χΛ2, χΛ3, χΑ4},
innerProduct -> (Integrate[#1 #2, {x, -1, 1}]&),
normalized -> ((#1Λ2 /. x -> 1)&)] // Together

-1 + 3 x2 -3 x + 5 x3 3 - 30 x2 + 35 x4
{1, X/ , , }

2 2 8
In this case, a possible zero vector is just the expression 0, so this has to be explicitly specified
in the option d e l e t e Z e r o s if dependent functions are included in the input list.

gramSchmidt [
{1, x, xA2, 2 xA2 - 3 x, xA3, xA4, χΛ4 - xA3},
innerProduct -> (Integrate!#1 #2, {x, -1, 1}]&),
normalized -> ((#1Λ2 /· x -> l)&)f
deleteZeros -> 0] // Together

370 Part II · Programming Language

- 1 + 3 x 2 - 3 x + 5 x 3 3 - 30 x 2 + 35 x 4

{ I f X/ , , }
2 2 8

4.2 Newton s Method Revisited

In this second example, we will have our own optional argument together with an optional
argument that is passed on to a built-in function. First set the default options for Newton's
method.

Options[newtonsMethod] = { p r e c i s i o n -> None,
SameTest -> SameQ};

The option p r e c i s i o n is our own, user-defined optional argument, so we have to take care of
its possible values ourselves. The intention is that with the default value None for p r e c i s i o n ,
the output will be the value of N[number] , whereas if p r e c i s i o n is given a specific value,
either a number or $ M a c h i n e P r e c i s i o n , then the output will be the value of N[number,
p r e c i s i o n] . The value for SameTest will just be passed to F i x e d P o i n t L i s t . It knows
how to take care of the various possible optional values for SameTest, so we don't have to do
anything about them.

newtonsMethod[expr_, { x _ , x 0 _ } , o p t s] : =
With[

{ prec = precision/.
{opts}/.Options[newtonsMethod],

test = SameTest/.
{opts}/.Options[newtonsMethod] },

FixedPointList[
Which[

prec === None,
N[Evaluate[

Simplify[x-expr/D[expr, x]]/.x->#]],
True,

N[Evaluate[
Simplify[x-expr/D[expr, x]]/.x->#],

prec]]&,
xO, SameTest -> test]]

The Which clause inside of FixedPointList chooses the precision used for the final output.

Eleven · Some Finer Points 371

4.2.1 Examples

newtonsMethod[(x*3 - 1 0) , { x , 1 }]

{ 1 , 4 . , 2 . 8 7 5 , 2 . 3 1 9 9 4 , 2 . 1 6 5 9 6 , 2 . 1 5 4 5 , 2 . 1 5 4 4 3 , 2 . 1 5 4 4 3 ,
2 . 1 5 4 4 3 , 2 . 15443}

newtonsMethod[(χΛ3 - 10), {x, 1}, precision -> 30]
{1, 4., 2.875, 2.3199432892249527410207939509,
2.165961555177792788479790169, 2.154495925153374739552757015,
2.154434691772292944716076761, 2.15443469003188372316524208,
2.1544346900318837217592936, 2.1544346900318837217592936}
newtonsMethod[(χΛ3 - 10), {x, 1}, precision -> 30,

SameTest -> (Abs[#l - #2] < 10A-10 &)]
{1, 4., 2.875, 2.3199432892249527410207939509,
2.165961555177792788479790169, 2.154495925153374739552757015,
2.154434691772292944716076761, 2.15443469003188372316524208,
2.1544346900318837217592936}

4.3 Solids of Revolution
In the third example, we illustrate a further problem that arises if we want to define a function
with optional arguments, some of which are to be passed on to a built-in function, but we don't
know which ones ahead of time; for instance, if the function being defined includes a built-in
plotting command and we want to be able to specify optional arguments in our function that
will be passed to the plotting command. This problem is solved by the package
U t i l i t i e s F i l t e r O p t i o n s \ (Look at it to see how it works.)

Needs["Utilities^FilterOptions^"]

We'll use this operation in a plotting routine that illustrates a surface of revolution together
with cylindrical shells that show how the volume under the surface is approximated by such
shells. As an option, we want to have a bounding cylinder for figures that require it, but we
also want to pass on ordinary plotting options to Show. The operation will be called
s h e l l P l o t . It's special optional argument is first given a default value.

Options[shellPlot] = {boundingCylinder -> False};
Needs["Graphics Master^"]

The operation F i l t e r O p t i o n s occurs in the next to the last line of the following definition
where it picks out from all given options those that apply to 6raphics3D.

372 Part II · Programming Language

shellPlot[expr_, shells_List, {x_, x0_, xl_}, opts]:=
Module[

{ picture,
shellvals = (expr/.x -> shells) / 2,
val = (expr /. x -> xl) / 2,
bound =
boundingCylinder/.{opts}/.Options[shellPlot]},

picture =
{ Map[Graphics3D[TranslateShape[

Cylinder[#[[l]], #[[2]], 40],
{0, 0, #[[2]]}]]&,

Transpose!{shells, shellvals}]],
WireFrame[
ParametricPlot3D[

{x Cosftheta], x Sin[theta], expr},
{x, xO, xl}, {theta, 0, 2 Pi},
DisplavFunction -> Identity]]};

If[bound, AppendTo[picture,
WireFrame[Graphics3D[TranslateShape[

Cylinder[xl, val, 40], {0, 0, val}]]]]];
Show[Flatten[picture],

FilterOptions[Graphics3D, opts],
DisplavFunction -> $DisplayFunction]];

Here are two examples, using different options.

shellPlot[2 Sin[x],
{Pi/6, Pi/3, Pi/2, 2 Pi/3, 5 Pi/6},
{x, 0, Pi}, Boxed -> False];

Eleven · Some Finer Points

shellPlot[Sin[x], {Pi/6, Pi/3},
{x, 0, Pi/2}, Boxed -> False,
boundingCylinder -> True,
ViewPoint->{1.308, 1.738, 2.591}];

5 Evaluation

5.1 Kinds of Values

When we regard Mathematica as a functional programming language, we think of each head as
a function. When such a head is given appropriate arguments, it processes them and returns
some value. Sometimes what is returned is just the head wrapped around the arguments, as
with L i s t , sometimes it is the word Graphics as with P l o t , sometimes it is a real number as
with S i n for real arguments, etc. But what is really going on is somewhat different. What
really happens is that we type in some expression and then, using Enter or Shift-Return, send
it to the evaluator. We have been calling the evaluator "Mathematica" when we speak of
Mathematica doing something. The evaluator is a meta-function or meta-processor, sitting
hidden behind everything, which takes simgle expressions as arguments and produces
expressions as outputs. We can try to describe precisely what the evaluator does for certain
classes of expressions, but as will be seen, the situation is rather complicated.

Let Expr denote the collection of all Mathematica expressions. The evaluator, Eval, is a
function from Expr to itself; i.e., Eval : Expr -> Expr. (Here we use an arrow to mean a
function from its left-hand side to its right-hand side.) Can one say what Eval does to certain
subsets of Expr? For instance, consider the subset of Expr consisting of expressions whose head
is Integer. Clearly, Eval is the identity function on such expressions. In fact, there is a large
class of expressions, including badly formed ones and those for which there are no rewrite
rules, on which Eval acts as the identity operation, returning the input expression unchanged.
Do expressions with head L i s t belong to this class? Well, not exactly. What Eval does to an
expression with head List is just to move inside it and evaluate the arguments. If Eval acts as
the identity on the arguments, then it acts as the identity on the whole list. A more precise

374 Part II · Programming Language

description would be that Eval commutes with the head L i s t in the following sense. Regard
L i s t as a function from strings of expressions to expressions, so if Expr* denotes the collection
of all strings of expressions, then L i s t : Expr * —> Expr. Here L i s t applied to a string of
expressions wraps itself around the expressions, separating them by commas. Also think of
Eval as determining a function Eval* : Expr* —> Expr* by separately evaluating each
expression in a string, one after the other. Then in the diagram

Eval*
Expr* ► Expr*

List

Expr ► Expr

the two composed functions are the same; i.e., for a given string of expresions, str,

Eval(List[str]) = List[Eval*(str)]

This is what we mean by saying that Eval commutes with L i s t . Actually, another concern is
raised here because what you actually see as the result of such an evaluation is not something
with head L i s t , but something wrapped in curly brackets. These are produced by the
formatter, Formatter, so there is an extra stage determining the actual appearance of the
output. In fact, Eval only works on full forms of expressions so the real situation looks more
like

^ FullForm ,_ Eval _ Formatter _
Expr ► Expr ► Expr ► Expr

In a certain sense, Formatter is the inverse to FullForm.
There is another large class of expressions which Eval takes to the constant Nu l l and which

Formatter then reduces to nothing at all. This class includes well-formed expressions with
head Do, For, While , etc. Similarly, well-formed expressions with heads including P l o t in
some form are taken by Eval to the expression -Graphics - . This of course brings up another
agent that processes expressions, the side-effector which acts on expressions with head P r i n t ,
Graphics , Set , etc.

Now, how does Eval actually do its work? Viewed as a symbolic computation program,
Eval only does two things: it calls C code to compute particular numerical functions and it
evaluates rewrite rules. There are many things to understand about evaluation, but perhaps
the most important thing is the order in which parts of an expression are evaluated. Very
detailed information about this can be found in [Withoff]. We summarize some of this
information here and then investigate the parts of it that are available for experimentation. As
we know, Mathematica maintains tables of rules attached to symbols. There are in fact 10 kinds
of such tables. The first four are:

" C W T ^ I

List

Eleven · Some Finer Points 375

DownValues [symbol] rules for evaluating expressions of the form
symbol[-]

SubValues [symbol] rules for evaluating expressions such as
symbol [-] [-] with a symbolic head of symbol

OwnValues [symbol] a rule for evaluating symbol itself
Upvalues [symbol] rules for evaluating expressions such as f [symbol] ,

where symbol appears as an argument or the head of
an argument

These kinds of values are illustrated by the following examples. Each command returns a
possibly empty list of the appropriate values.

f[x_] := xA2
{DownValues[f], SubValues[f], OwnValues[f], Upvalues[f]}

{{Literal[f[x_]] :> x2}, {}, {}, {}}

g[x_][y_] := x y
{DownValues[g], SubValues[g], OwnValues[g], Upvalues[g]}

{{}, {Literal[g[x_][y_]] :>xy}, {}, {}}

a = 5;
{DownValues[a], SubValues[a], OwnValues[a], Upvalues[a]}
{{}, {}/ {Literal[a] :> 5}, {}}
h[x_] + h[y_] Λ:= h[x y]
{DownValues[h], SubValues[h], OwnValues[h], Upvalues[h]}

{{}, {}, {}, {Literal[h[x_] + h[y_]] :> h[x y]}}

The other kinds of values have a slightly different character.

FormatValues [symbol] printing rules for symbol
NValues[symbol] rules used in evaluating N [- - , symbol, - -]
Def aultValues [symbol] default values for arguments in symbol [- - -]
Options [symbol] default options attached to symbol
Messages [symbol] messages attached to symbol
Attr ibutes [symbol] attributes associated with symbol

376 Part II · Programming Language

For instance:

Format[v[x_J] := Subscripted[v[x]]
FormatValues[v] => {Literal[vx] :> vx}
N[e] = 2.7;
{OwnValues[e], NValues[e]}=> {{{}, {Literal[N[e]] :> 2.7}}
DefaultValues[Plus] => {Literal[Default[Plus]] :> 0}
mappingGraphics::codomainDimensions =
" Codomain dimensions are too large for plotting.\n
Dimensions should be 2 or 3.";
Messages[mappingGraphics]

{Literal[mappingGraphics: :codomainDimensions] :>
Codomain dimensions are too large for plotting.}
Dimensions should be 2 or 3.

Attributes[Plus]

{ F l a t , L i s t a b l e , O n e l d e n t i t y , O r d e r l e s s , P r o t e c t e d }

Note: the Messages example above occurs in Chapter 14.

5.2 Normal Order of Evaluation

The normal order of evaluation of an expression is to first evaluate the head of the expression,
and then the arguments in order from left to right. If we regard the head as the 0th argument,
then Eval by processing all of the arguments, one after the other, in turn, just as with head
L i s t . Finally, the evaluated head is applied to the evaluated arguments. However, the actual
situation is somewhat more complicated. In detail, according to [Withoff], the following steps
are carried out recursively.

1. If the expression is a string, a number, a symbol with no Own Va lues , or if no part of
the expression has changed since the last evaluation, then return the expression; i.e.,
Eval on such expressions is the identity operation.

2. Expressions which are symbols with Own Values are evaluated.
3. The head of the expression is evaluated.
4. The arguments are evaluated from left to right, with several provisos: if head has

attribute H o l d F i r s t , HoldRest , or Ho ldAl l , do not evaluate the corresponding
arguments unless they have head Eva lua te . (This means that all arguments have to
be looked at, in any case, to see if they have the head Evaluate .) If an argument has
head Unevaluated , replace it with the arguments of the argument and keep a record
of the original expression. Flatten out nested expressions with head Sequence.

Eleven · Some Finer Points 377

5. The attributes of the head are used next.
i) F lat means flatten out nested expressions.
ii) L i s tab le means thread head over any arguments that are lists.
iii) Orderless means the evaluated arguments are to be sorted.
Note that these are applied only after the arguments have been evaluated.

6. Upvalues attached to the symbolic heads of the arguments are applied, using user-
defined values before internally defined ones.

7. DownValues are applied if the head is a symbol, otherwise SubValues attached to
the symbolic head are applied, using user-defined values before internally defined
ones.

8. The head Unevaluated is replaced if no applicable rules were found.
9. The head Return is discarded, if present, for expressions generated through

application of user-defined rules.

5.2.1 Normal evaluation
Let us see if we can persuade Eval to display the orders of some evaluations. First introduce a
short-hand for Module [{ t } , t] which is to be evaluated anew each time it is called. We
have already seen that the result of this is to just output t with the current value of the
evaluation counter appended to it.

mod := Module[{t}, t]

Use this as the head and arguments for a generic function.

mod[mod, mod, mod] => t$4[t$5f t$6, t$7]

This at least shows the order of evaluation of the head and the arguments. These rules are
applied recursively to each argument in turn. Thus:

mod[mod[mod, mod], mod[mod[mod], mod[mod]]]

t $ 8 [t $ 9 [t $ 1 0 , t $ l l] , t $ 1 2 [t $ 1 3 [t $ 1 4] , t $ 1 5 [t $ 1 6]]]

In other words, viewing the expression as a tree, the nodes are evaluated by a depth first
traversal of the tree.

5.2.2 Hold
If the head has the attribute HoldAll, then the situation changes. Here is an example.

378 Part II · Programming Language

SetAttributes[gg, HoldAll];
gg[x_] := {x, x};
hh[x_] := {x, x};
{gg[mod], hh[mod]} =» {{t$17, t$18}, {t$19, t$19}}

In the case of gg, the argument mod is not evaluated until it is used in the right-hand side of
the definition of gg. It then is used twice giving two successive values of t $. Computer
scientists term this mode of evaluation "call-by-name." In the case of hh, the argument mod is
evaluated before the operation hh is applied. Its single value is then used twice in the right-
hand side. This mode of evaluation is termed "call-by-value."

An argument which is held is not evaluated. There are two ways to overcome this that were
confused in earlier versions of Mathematica. Starting in Version 2, they have been separated.
For instance, gg has the attribute HoldAll. If we want gg to evaluate its argument, one can
replace gg by ReleaseHold [gg [argument]] , or we can use

gg[Evaluate[argument]].

Thus

{ReleaseHold[gg[mod]], gg[Evaluate[mod]]}

{{t$20, t$21}, {t$22, t$22}}

Clearly in the second version, the argument of gg is evaluated before gg is applied, whereas
ReleaseHold has no effect on the evaluation. Thus, one should use Evaluate [argument]
inside functions that have the attribute HoldAll or HoldFirs t . On the other hand, if
something is explicitly held, then ReleaseHold outside the function is the appropriate
operation.

Hold[2 +2] => Hold[2 + 2]
ReleaseHold[%] => 4

Note that ReleaseHold only removes one layer of holding.

ReleaseHold[Hold[2 + Hold[2 +2]]]

2 + Hold[2 + 2]

Furthermore, there is another similar operation, HoldForm that does the same thing as Hold
but prints the result without wrapping Hold around it. It is also removed using
ReleaseHold.

HoldForm[2 +2] =» 2 + 2

Eleven · Some Finer Points 379

5.2.3 Literal

When we looked at various kinds of values, they were displayed with L i t e r a l wrapped
around the left-hand side. To see what this is about, we'll first look at the built-in information
about Rule, and RuleDelayed, and L i t e r a l .

??Rule

lhs -> rhs represents a rule that transforms lhs to rhs.
Attributes[Rule] = {Protected}

??RuleDelayed

lhs :> rhs represents a rule that transforms lhs to rhs,
evaluating rhs only when the rule is used.
Attributes[RuleDelayed] = {HoldRest, Protected}

??Literal
Literal[expr] is equivalent to expr for pattern matching, but
maintains expr in an unevaluated form,
Attributes[Literal] = {HoldAll, Protected}

Thus, from the A t t r i b u t e statements, we see that Ru le evaluates both of its arguments
while R u l e D e l a y e d evaluates only its first argument. L i t e r a l is used to prevent
RuleDelayed from evaluating its first argument, without changing the form of the pattern to
be matched. Here is a nice example from The Mathematica Book [Wolfram].

H o l d [u [l + 1]] / . L i t e r a l [l + 1] -> x => H o l d [u [x]]

L i t e r a l can not be replaced by Hold here since Hold is a part of any pattern in which it
appears whereas, for purposes of pattern matching, L i t e r a l is invisible.

5.2.4 Evaluation of conditions

To investigate the order of evaluation of conditions, consider the following function definition.

f[x_Integer /; mod || EvenQ[x]] :=
mod[mod, mod, mod] /; (mod; Positive[x])

It is not clear how to apply the 9 rules for evaluation to determine in what order an evaluation
of f [2] will actually be carried out. However, Trace will show us explicitly what happens.

380 Part II · Programming Language

T r a c e [f [2]]

{f[2], {mod || EvenQ[2], {mod, Module[{t}, t], t$23},
{EvenQ[2], True}, True},
{{mod; Positive[2], {mod, Module[{t}, t], t$24},
{Positive!2], True}, True},

RuleCondition[mod[mod, mod, mod], True], mod[mod, mod,
mod]},
mod[mod, mod, mod], {mod, Module[{t}, t], t$25},
{mod, Module[{t}, t], t$26}, {mod, Module[{t}, t], t$27},
{mod, Module[{t}, t], t$28}, t$25[t$26, t$27, t$28]}

Thus, the first thing to be evaluated is the condition inside the definition of f for matching the
pattern for the argument to f. Next the condition at the end of the definition for application of
the rule is checked, and then the usual order of evaluation is followed.

The order of evaluation of substitutions is just what one would expect from the FullForm
of a substitution.

Trace[mod /. mod -> mod]

{{mod, Module[{t}, t], t$36},
{{mod, Module[{t}, t], t$37}, {mod, Module[{t}, t], t$38},
t$37 -> t$38, t$37 -> t$38}, t$36 /. t$37 -> t$38, t$36}

6 Unbounded Search
There are two kinds of iterations and searches in programming languages, bounded and
unbounded ones. A Do loop is a typical example of a bounded iteration; something is done a
specified number of times. A While loop, on the other hand, is potentially unbounded; some
procedure is continued until some condition is satisfied, which may never happen. Similarly, a
S e l e c t or a Scan command is a typical example of a bounded search; a fixed, pre-existing list
is searched or scanned for entries satisfying some criterion. But how does one search for
something that occurs in a potentially infinite sequence of possibilities? Such searches arise in
defining what are called general recursive functions. The typical form of such a function is:
given some predicate g(y), define a new function f(x) by the prescription:

f(x) = "the smallest value of y such that g(z) is defined for all z < y and g(y) is true".

The abstract form of such an algorithm can be given in Mathematica in either an imperative or a
functional form:

Eleven · Some Finer Points 381

f [x_] := Module[{y = 1 } , W h i l e [! g [y] , y++]? y]
f [x_] := F i x e d P o i n t [I f [g [#] , #, # + 1] , 1]

Note that these algorithms can fail to return a value either because g [y] does not return a
value for some y that is reached or because it never happens that g [y] is True.

6.1 Examples

6.1.1 Fractionalize
Replace the built-in function R a t i o n a l i z e by a function that finds a best possible rational
approximation to a real number r whose numerator and denominator have at most a specified
number of digits, with one of them having at least that many digits. (The problem of finding a
functional program to do this was suggested by Charles Wells in an e-mail communitaction.)
We want to use the built-in function in the form

Rationalize[N[r, y], 0.1"(y - 1)]

and the problem is, given r, find the least value of y so that the result has the correct number
of digits in its numerator and denominator. The solution is an unbounded search on values of
y, checking the number of digits in the numerator and denominator as one goes.

fractionalize[number^, size_] :=
With[

{ term =
FixedPoint[

With[
{value = Rationalize[N[number,#+1],0.1^#]},
I f [Length[IntegerDigits[

Numerator[value]]] <= size &&
Length[IntegerDigits[

Denominator[value]]] <= size,
+ 1, #]]&,

1] >,
Rationalize!
N[number, term + 1], 0.1*(term - 1)]];

Here are some results for π.

382 Part II · Programming Language

Map[{#, fractionalize[Pi, #]}&, Range[5, 15]]
355 312689 5419351 80143857

{{5, — } , {6, }, {7, }, {8, },
113 99532 1725033 25510582
245850922 6167950454 21053343141

{9, }, {io, }, {11, },
78256779 1963319607 6701487259
21053343141 8958937768937

{12, }, {13, },
6701487259 2851718461558
8958937768937 428224593349304

{14, }, {15, }}
2851718461558 136308121570117

6.1.2 Expressions for primes
Can a prime number p be written in the form 2 n - 3 m or 3 m - 2nfor some choice of m and n?
Note that m and n can be arbitrarily large. Given p, we can conduct an unbounded search for
m and n by using the usual reverse diagonal recursive enumeration of pairs of natural
numbers e(k) = {pi(k), p2(k)}, given by the formula:

pair[k_] := pair[k] =
With[{r = Floor[N[(Sqrt[l + 8 k] - l)/2]]},

{k - r (r + 1)72, r (r + 3)/2 - k}]
The following picture shows the values of p a i r for k between 0 and 20, starting from the
origin.

Show[Graphics[
With[{points = Table[pair[k], {k, 0f 20}]},

{ Prepend[Map[Point, points],
PointSize[0.03]],

Line[points] }]]];

Eleven · Some Finer Points 383

The functional version of an unbounded search for pairs (i, j) such that 12i - 3J I =
Prime [n] is as follows.

findPair[n_] :=
Module[{val = Prime[n]},
y = FixedPoint[

If[Abs[Thread[{2, 3}"pair[#]]·{1, -1}] == val,
#, # + 1]&,

i];
Print[SequenceForm["|" ,

"2"*pair[y][[l]] - "3"*pair[y][[2]],
"| == ", Prime[n]]];

pair[y]];

Calculate the values for the first 12 primes.

Map[findPair[#]&, Range[12]];

|1 - 3| = = 2
|-1 + 22| = = 3
|22 - 32| == 5
|2 - 32| = = 7
j24 - 33| == 11
|24 - 3| ==13
j2* - 34| == 17
|23 - 33| == 19
|22 - 33j == 23
|25 - 3| ==29
j-1 + 25| == 31
|26 - 33| == 37

What about the 13th prime?

Timing[findPair[13]] => $Aborted
Prime[13] => 41

41 is conjectured to be the smallest prime which has no such representation. In order to find
many primes which have such a representation, it is much faster to find all primes < 20000
with such a representation for k <= 5050; i.e., for m + n < 100. Such a bounded search always
terminates and is to be contrasted with the unbounded search above which presumably would
never terminate for p = 41.

384 Partii · Programming Language

goodPrimes =
S e l e c t [

Union[
S e l e c t [M a p [A b s [2 " p a i r [#] [[1]] - 3 " p a i r [#] [[2]]] & ,

R a n g e [5 0 5 0]] ,
(# < 2 0 0 0 0) *]] ,

PrimeQ]

{2 , 3 , 5 , 7 , 1 1 , 1 3 , 17 , 19 , 2 3 , 2 9 , 3 1 , 3 7 , 4 7 , 6 1 , 7 3 , 79 ,
1 0 1 , 127 , 139 , 179 , 2 1 1 , 2 2 7 , 229 , 239 , 2 4 1 , 269 , 4 3 1 , 5 0 3 ,
509 , 6 0 1 , 727 , 997 , 1 0 2 1 , 1163 , 1319, 1 9 3 1 , 2039 , 2179 , 3299 ,
3 8 5 3 , 4 0 9 3 , 4 5 1 3 , 6529 , 6 5 5 3 , 7949 , 8 1 1 1 , 8 1 9 1 , 11491 , 14197,
1 6 1 4 1 , 1 6 3 8 1 , 19427 , 19681}

Any prime < 20000 which is not on this list is a candidate for a prime with no such
representation.

6.2 WithRec
A seemingly more general form of unbounded search is given by the functional programming
letrec construct. An expression of the form letrec x = exprl in expr2, where x occurs in exprl,
means substitute exprl for x in expr2 . If the resulting expression contains x, then again
substitute exprl for it, continuing this way until x no longer occurs in the expression. Thus, an
unbounded search is being conducted for an iterated substitution that doesn't contain x. This
behavior can be implemented very simply in Mathematica by a F i x e d P o i n t operation.

A t t r i b u t e s [w i t h R e c] = { H o l d F i r s t } ;
w i t h R e c [x _ , e x p r l _ , expr2_] :=

F i x e d P o i n t [W i t h [{ x = e x p r l } , #]&, expr2]

For instance, here is what we hope will be the last version of a factorial computation and a
Fibonacci computation.

withRec[{fac- If[# == 0, 1, # fac[# - 1]]&},
fac[10]] => 3628800

withRec[{ fib-
Which[# == 1, 1,

== 2, 1,
True, fib[# - 1] + fib[# - 2]]&},

fib[20]] => 6765

Eleven · Some Finer Points 385

7 Substitution and the Lambda Calculus
There are two ways to substitute values for arguments in Mathematica, neither of which is
completely satisfactory.

7. / With versus /.

Recall the meaning of / .

? / .

expr /. rules applies a rule or list of rules in an attempt to
transform each subpart of an expression expr.

As we have seen, / . is a very general mechanism for applying local rules. However, if the
rules are of the form expr / . x -> exprl , then the effect is to substitute e x p r l for all
occurrences of x in expr. This substitution is purely and relentlessly syntactical. If Mathematica
sees an x as a separate symbol, it sticks in a copy of e x p r l . We used this kind of substitution,
for instance, in checking solutions of equations where it works very well. However,
sometimes / · does the wrong thing. Consider a pure function.

f = Function!{x}, x + y];

Applying this as a function to values works as it is supposed to

{ f [2] , f [x] , f [y] } => {2 + y, x + y , 2 y}

But now try substituting something for x and y. The result depends on what is substituted.

{f / . y -> 3 , £ / . x -> 3}

Function::flpar: Parameter specification {3} in
Function[{3}, 3 + y] should be a symbol or a list of symbols.

{Function!{x}, x + 3], Function!{3}, 3 + y]}

The first one is OK but the second one makes no sense as the warning message points out. The
x in Function [{x} , x + y] i s a bound variable and it should not be possible to substitute
anything for it.

However, the other built-in operation, With, does carry out substitutions (for variables
only) in a way that is mostly correct.

386 Part II · Programming Language

?With

With[{x = xO, y = yO, . . . } , expr] specifies that in expr
occurrences of the symbols x, y, ... should be replaced by xO,
yo,

Note that in With, the left-hand side of the = expression has to be a symbol and not some more
complicated pattern. For instance

With[{x = 2 } , χΛ2] => 4

Also, With uses the call-by-value mode of evaluation.

With[{x = mod}, {x, x}] => {t$10, t$10}

Try using With with a pure function.

With[{y = 3}, Function!{x}, x + y]]

Function[{x$}, x$ + 3]

With[{x = 3}, Function!{x}, x + y]]

Function[{x}, x + y]

Thus, the substitution of 3 for y is carried out as it should be and the name of x is actually
changed to a new x$. The substitution of 3 for x has no effect, which is also correct. Now
consider a more complicated function whose value is again a function.

g = Function!{x}, Function!{y}, x + y]]

Function[{x}, Function!{y}, x + y]]

Try evaluating this at a.

g[a] => Function!{y$}, a + y$]

Now evaluate it at y.

g[y] => Function!{y$}, y + y$]

Eleven · Some Finer Points 387

Note that there is no conflict because the name of the bound variable y has been changed to y$
so the y outside the function definition is completely separate from the one inside. However,
this arrangement can be fooled if g somehow gets an argument of the form y$.

g[y$] => Function!{y$}, y$ + y$]

The mechanism for evaluating g would be much safer if the evaluation counter were used
here. Also note that Function[{ x } , x + y] properly does not depend on x.

Function[{x}, Function!{x}, x + y]][a]

Function[{x}, x + y]

7.2 The Lambda Cakulus
Sorting out the relationships between pure functions (with named bound variables) like
Function [{ x } , expr] , function applications like f [a] and substitutions like With [{x =
a } , expr] is a non-trivial task. Fortunately, these relationships were all carefully worked out
in the 1930s with the development of the lambda calculus. At present, the lambda calculus is
more often regarded as an abstract prototype of a functional programming language. In order
to see exactly how these relations work, we will implement our own version of them by giving
Mathematica rules connecting these three constructs. As we have seen, we cannot use the
Mathematica operations of Funct ion and ReplaceAl l since they do not work correctly
together. It is tempting to try to use With instead of ReplaceAll since, as we saw above, that
fixes some of the problems. Unfortunately, it does not fix all of them, so we have to implement
the operations ourselves. Thus, we construct two basic operations that do not evaluate their
arguments at all; lambda[{ x } , expr] for function abstraction to replace Function[{ x } ,
expr] , and app[a, b] for function application. Substitution, written above in Mathematica
notation as f /. { x -> g }, is implemented by a l e t operation written in the form l e t [{x =
expr 1 } , expr2] as in the notation used with With. In order for this to work correctly in
Mathematica, l e t has to have the attribute HoldFirst.

Attributes[let] = {HoldFirst}

The other thing that is required is an operation to calculate the free variables in an
expression, given here by f reeVars [expr] . The free variables are those that are not within
the scope of (or bound by) a lambda [{ x } , —] expression. The basic relation between these
notions is given by the rule called beta reduction in the lambda calculus which says that
applying a function written in the form of a lambda expression to an argument should rewrite
to the value of replacing the variable of the lambda expression in the argument by the body of
the lambda expression. I.e.,

388 Part II · Programming Language
'vmm8a&m*&i.<im mmmmm&*&>™* « · 8 « < £ £ * * ί ^ Ü '#e>im# « w * Ä « W f ^

app[lambda[{x_}, expr2_], exprl_J :=
let[{x = exprl}, expr2]

The key to all of this, of course, is given by the rules governing l e t . Certain things are
clearly required. If expr2 = x then the result should be expr l , while if expr2 is some
symbol other than x then that symbol should be the value, giving us the first two simple rules.

let[{x_ = expr_}, x__] := expr;
let[{x_ = exprl_}, y_Symbol] := y /; x =!= y;

Substitution in an application should just be substitution in each argument of the application.

let[{x_ = exprl_}, app[expr2_, expr3_J] : =
app[let[{x = exprl}, expr2],

let[{x = exprl}, expr3]];

The problem comes with substitution in a function abstraction; i.e., in a lambda term. The first
rule is easy: substituting for x in lambda [{ x } , expr] shouldn't do anything.

l e t [{ x _ = expr l_} , lambda[{x_}, expr2_]] :=
lambda[{x}, expr2];

The second and third rules describe what should happen in substituting an exprl for x in a
lambda[y, expr2] where y is different from x. The result depends on whether y occurs
freely in exprl or not. If it doesn't, that means there is no y in exprl to be captured by the
lambda [{ y } , —] so the substitution can be carried out directly giving us another simple
rule.

let[{x_ = exprl_}, lambda[{y_}, expr2_]] :=
lambda[{y}, let[{x = exprl}, expr2]] /;

(x =!= y) &&
(Not[MemberQ[freeVars[exprl], y]]);

The crucial case is when y is a free variable in e x p r l . The simplest thing to do is to
syntactically change all of the symbols y that occur in lambda [{ y } , expr2] to some
completely new symbol, and then carry out the substitution of expr l for x. Fortunately
Mathematica has a facility for creating such new symbols called Unique. It is exactly what is
needed here.

let[{x_ = exprl_}, lambda[{y_}, expr2_]] :=
let[{x = exprl},
(lambda[{y}, expr2]/.y -> Unique!"q"])] /;
(x =1= y) && MemberQ[freeVars[exprl], y];

Eleven · Some Finer Points 389

Finally, the free variable operation is specified by the following rules.

freeVars[x_] := {x};
freeVars[app[expr1_, expr2_]] :=

Union[freeVars[expr1], freeVars[expr2]];
freeVars[lambda[{x_}, expr_]] :=

Select[freeVars[expr], (# =!= x)&]

These ten rules constitute a complete implementation of the lambda calculus. First, a simple
example:

app[lambda[{z}, app[z, a]], lambda[{x}, x]] => a

The result of the first use of the rule for app replaces z with lambda [{ x } , x] in app [z , a]
so one has the expression app [lambda [{x} , x] , a] . The rule applies again, reducing to
the output a. Next, a slightly more complicated example with three app's:

app[app[lambda[{x}, a] , x] ,
app[app[lambda[{y}, b] , y] , c]] => app[a , app[b, c]]

In this example, the final result is an app in which the first argument does not have the head
lambda so no further reduction is possible. Now consider an example which is a possible
source of trouble.

app[app[lambda[{x}, lambda[{y}f app[yf x]]], t], u]

app[u, t]

If we use y instead of t , then variable capture is possible but is avoided because Unique is
used in the appropriate rule.

app[app[lambda[{x}f lambda[{y}f app[y, x]]], y], u]

app[uf y]

Finally, another quite intricate example which also reduces to the symbol a:

app[lambda[{f}, app[ff app[ff a]]],
app[lambda[{x}, app[x, x]]f

app[lambda[{y}, y], lambda[{y}f y]]]] => a

The combination lambda [{ x } , app [x , x]] is called the paradoxical combinator. Applied
to itself, it is the archetype of a non-terminating computation. It behaves as it should.

390 Part II · Programming Language

app[lambda[{x}, app[x, x]], lambda[{x}, app[x, x]]]
$ItérâtionLimit::itlim: Iteration limit of 4096 exceeded.
Hold[app[let[x, lambda[{x}, app[x, x]], x],

let[x, lambda[{x}, app[x, x]], x]]]

Thus, the rule for app was carried out 4096 times, resulting in the same expression being held.
This is exactly what should happen. Now consider the following evaluation. It goes into an
infinite loop as would be expected by call-by-name, but when it hits the iteration limit it
succeeds in finishing the evaluation with the correct answer.

app[lambda[{y}, a],
app[lambda[{x}, app[x, x]], lambda[{x}, app[x, x]]]]

$ItérâtionLimit:ritlim: Iteration limit of 4096 exceeded.
a

73 Arithmetic in the Lambda Cakulus
The lambda calculus as implemented here is actually a complete programming language in
itself. Any calculation that can be done in any of the standard programming languages can
also be done in the lambda calculus, although it might be very unwieldy to actually carry it
out. We'll show here how to introduce arithmetic via the Church numerals which represent
numbers in the lambda calculus. First some preliminary definitions of standard terms.

true = lambda[{x}, lambda[{y}, x]];
false = lambda[{x}, lambda[{y}, y]];
if = lambda[{P}/ lambda[{x}, lambda[{y},

app[app[p, x], y]]]];

Check that if, true, and false fit together in the expected way.

{ app[app[app[if, true], t], f],
app[app[app[if, false], t], f] }

{t, f>

Now create some Church numerals.

zero = lambda[{f}, lambda[{x}, x]];
one = lambda[{f}, lambda[{x}, app[f, x]]];
two = lambda[{f}, lambda[{x}, app[f, app[f, x]]]];

Eleven · Some Finer Points 391

three = lambda[{f}, lambda[{x},
app[f, app[f, app[ff x]]]]];

four = lambda[{f}f lambda[{x},
app[f, app[f, app[ff app[f, x]]]]]];

The general Church numeral n can be constructed using Nest.

churchN[n_J :=
lambda[{f}, lambda[{x}, Nest[app[f, #]&, x, n]]]

Thus the Church numeral n is given by applying a symbol f n times to a symbol x, regarded as
a function of both f and x.

There are standard formulas to define the usual arithmetic functions in terms of this
representation of the natural numbers.

succ = lambda[{n}, lambda[{f}, lambda[{x},
app[app[n, f], app[f, x]]]]];

iszero = lambda [{n},
app[app[n, lambda[{x}, false]],

true]];
add = lambda [{m}, lambda[{n}, lambda[{f},

lambda[{x},
app[app[m, f],

app[app[nf f], x]]]]]];
mult = lambda[{m}, lambda[{n}, lambda[{f},

app[mf app[nf f]]]]];
exp = lambda[{m}, lambda[{n}f lambda[{f},

lambda[{x}f
app[app[app[nr m] , f], x]]]]];

For instance:

{app[iszero, zero], app[iszero, four]}

{lcimbda[{x}, lambda[{y}, x]] , lambda[{x}, lambda[{y}, y]] }

We recognize the output as being { t r u e , f a l s e } . Next try out the successor function.

{app[succ, zero], app[succ, one], app[succ, two]}

{lambda[{f}, lambda[{x}, app[f, x]]]f
lambda[{f}, lambda[{x}, app[f, app[f, x]]]],
lambda[{f}, lambda[{x}, app[f, app[f, app[f, x]]]]]}

392 Part II · Programming Language

We recognize the results as being one, two, and three. Finally try addition, multiplication,
and exponentiation.

app[app[add, two], two]

lambda[{f } , lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]]

app[app[add, churchN[2]], churchN[2]]

lambda[{f}, lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]]

app[app[mult, two], two]

lambda[{f}, lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]]

app[app[exp, two], two]

lambda[{f}, lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]]

In each case we recognize that the answer is four.
However, it is very inconvenient to have to count the number of app [f, -] 's to recognize

what number the output represents. Instead, we add a formatting command based on a
personal suggestion of Roman Maeder's that is an improvement of a version from Theodore
Gray.

Format[lambda[{f_}, lambda[{x_}, expr_]]] :=
SequenceForm[

"churchN[", calculateNumber[expr], "]"] /;
numberlikeExpr[expr, x, f];

numberlikeExpr[expr_, x_, f_] :=
(expr === x) ||
((Length[expr] === 2) && (First[expr] === f) &&
numberlikeExpr[Last[expr], x, f]);

calculateNumber[expr_] :=
If[Length[expr] === 2f

1 + calculateNumber[Last[expr]], 0];

Try out a small example.

app[app[add, churchN[2]], churchN[3]] => churchN[5]

Now we are ready to try some larger calculations. In each case, we time the calculation to
show how surprisingly efficient it is. The numbers are chosen so that each calculation takes
about 6 or 7 seconds. First, the recursion limit has to be increased since these operations are
completely recursive.

Eleven · Some Finer Points 393

$RecursionLimit = 2000;
Timing[app[app[add, churchN[128]], churchN[128]]]

{6.7 Second, churchN[256]}

Timing[app[app[mult, churchN[24]], churchN[24]]]

{7.7 Second, churchN[576]}

Timing[app[app[exp, churchN[4]], churchN[4]]]

{6.68333 Second, churchN[256]}

Compare this implementation and these timings with the implementation of the lambda
calculus in ML given in [Paulson].

Technical note: Mathematica will not allow a definition in the form l e t [{x = e x p r l } ,
expr2] unless the first argument is held. This forces l e t to use call-by-name evaluation. A
call-by-value version can be implemented just by giving l e t three separate values; i.e.,
l e t [x , e x p r l , expr2] with none of them held. Using this form, the last three
computations above are 10 to 20% faster.

8 Exercises

1. Newton's method for finding a zero of several functions of the same number of
variables is a generalization of the method for one function of one variable. It views the
several functions as a single vector valued function of one vector variable and tries to
write the same formula. Given g(x) = {gl (xl, . . . xn), . . . gn (xl , . . . xn)), then the
formula for the next step in the approximation is

xn +1 = (x - Inverse! jacobian[g , x]] . g [x]) / . x -> xn

Here x and g represent n-dimensional vectors. Use this formula to define
oneNewtonZeroStep and then use Nest, NestLis t , and F ixedPoint to define
various versions of a NewtonZero function.

2. Newton's method can be adapted to finding critical points of a function by taking g in
Exercise 1 to be the gradient of a single function f of n variables. Since the jacobian of
the gradient of a function is the same as the hessian of the function, this leads to a
formula

394 Part II · Programming Language

Xn + 1 =
(x-Inverse[hessian[f, x]].gradient[f, x])/.x->xn

Use this formula to define oneNewtonStep and then as above to define various
versions of a NewtonCritical function.

3. Carry out a similar discussion for the method of steepest descent, for Broyden's zero
method and for Broyden's method.

4. Construct a package called minimization to find a local minimum of a function of
several variables, given a starting point. It should take one optional argument, Method,
whose possible values are Newton, SteepestDescent, BroydenZero, and Broyden.
It exports a single function called f indMinimum. Note: there is a built-in function called
FindMinimum so the spelling checker will object, but just ignore that. You may want to
look at the options for it and try to include similar options in your function.

5. Try to implement the lambda calculus using Function and With; i.e., just have one
rule:

app[Function[{x_}, expr2_], exprl_] :=
With[{x = exprl}, expr2]

and replace lambda by Function in the examples. What is the first example where this
fails? (In Version 2.2, it fails at app [succ , zero].)

CHAPTER

Polya 's Pattern
Analysis

1 Introduction
Polya's Pattern Inventory [Polya] is concerned with the following combinatorial problem.
Suppose there is a pattern consisting of n regions which are to be colored using m colors. The
regions could be stripes on a flag, or beads on a necklace, or sides (or edges) of a geometric
figure, etc. (Polya's original problem concerned isomers of molecules in which given numbers
of different atoms could be arranged in different ways in the molecule.) For instance, suppose
we want to make a necklace consisting of 5 beads and there are both red and blue beads
available. Clearly there are 25 = 32 possible necklaces. Now suppose that we decide to use
exactly 2 reds and 3 blues. Then it is almost as immediate that there are Binomial[5, 2] = 10
such necklaces. Next suppose we decide to consider two necklaces to be the same if one is a
rotation of the other. Then the answer takes further thought, particularly if we want to find the
principle that answers all such questions. Polya's Pattern Inventory answers the general
question: suppose there is a group of symmetries acting on the n regions and two colorings by
m colors are to be considered equivalent if one coloring is taken to the other by one of the
symmetries. In our example of a necklace, the rotation group acts on the colorings of the
necklace and two colorings are considered the same if they differ just by the action of some
rotation of the necklace. Polya's Pattern Inventory will determine how many different
necklaces there are all together of each kind, allowing for equivalence under rotations. Thus,
given two colors and five beads, there are six possible choices for numbers of colors: 5 red, 4
red and 1 blue, 3 red and 2 blue, 2 red and 3 blue, 1 red and 4 blue, and 5 blue. For each choice,
we will determine how many necklaces there are considering two necklaces to be the same if
they differ just by a rotation. For instance, there is only one necklace consisting of 5 red beads,
but there is also only one necklace consisting of 4 red and 1 blue beads, since any two colorings
with these colors differ by a rotation.

397

398 Part HI · Knowledge Representation

This question can be investigated from a geometrical or an algebraic point of view.

• The geometric approach starts by constructing all colorings of the regions with the
given colors and then determines the orbit of each coloring under the action of the
specified symmetry group. Different colorings can determine the same orbit; namely,
the colorings in a particular orbit all determine exactly that orbit. The geometric
solution consists in extracting one representative coloring from each distinct orbit. For
small values of n and m these can be illustrated by pictures.

• The algebraic approach, discovered by Polya, consists of the construction of a
polynomial from which one can read off how many colorings there are, modulo a
group action, for specific numbers of regions of specified colors. It does not provide an
actual description of the different colorings, but is the only feasible approach for large
values of the parameters.

Both approaches require some sample groups to use as examples, so these will be
constructed first.

2 Construction of Some Permutation Groups
If the regions to be colored are numbered 1 through n, then the symmetry groups acting on the
regions can always be regarded as permutations of { 1 , . . . , n}, so it suffices to construct
some examples of permutation groups.

2.1 Permutations

A permutation is an expression of the form:
1,2,3,4,5,6,7^
3,1,2,6,5,7,4]

This describes the permutation where 1 goes to 3, 2 goes to 1, 3 goes to 2, etc. Usually, and
especially in Mathematica, the top row is omitted and it is written just as (3,1, 2, 6, 5, 7,4). The
Mathematica operation Part allows one to apply such a permutation to any list of the same
length. E. g.,

{a, b, c, d, e, f, g}[[{3f 1, 2, 6, 5, 1, 4}]]

{c, a, b, f, e, g, d}

Twelve · Polya's Pattern Analysis
I «

399

In particular, a permutation can be applied to another permutation and the result is again a
permutation.

{5, 3 , 4, 2 , 7, 6, 1 } [[{ 3 , 1, 2, 6, 5, 7, 4 }]]

{4, 5, 3 , 6, 7, 1, 2}

2.2 Permutation Groups
Permutations form a group under this operation, called composition of permutations; i.e.,
there is an identity element (= the identity permutation), composition of permutations is
associative, and each permutation has an inverse. To keep things straight, elements of the
group of all permutations of 1, , n will be written in the form ge [i i , . . . , i n]
rather than as { i i , . . . , i n } . The head ge stands for "group element." The formula
above for the composition of permutations, modified for group elements is:

comp[gl_ge, g2_ge] := gl[[List@@g2]];

For instance:

gl = ge[3, 1, 2, 6, 5, 7, 4];
g2 = ge[5, 3, 4, 2, 7, 6, 1];
comp[g2f gl] => ge[4, 5, 3, 6, 1, 1, 2]

The identity permutation of length n is given by

identity[n_] := ge@@Range[n];

Composition with the identity element on either side has no effect.

{comp[gl, identity[7]], comp[identity[7], g2]}

{ge[3f 1, 2, 6, 5, Ί, 4], ge[5, 3, 4, 2, 1, 6, 1]}

The inverse of a permutation is given by a simple formula.

inverse[p_ge] :=
Module[{inv = pf i}f

Do[inv[[p[[i]]]] = i, {if Length[p]}]; inv];

400 Partili · Knowledge Representation

For instance:

{inverse[gl], comp[gl, inverse[gl]]}

{ge[2, 3, 1, 7, 5, 4, 6], ge[l, 2, 3, 4, 5, 6, 7]}

A collection of permutations determines a subgroup of the group of all permutations
consisting of all possible compositions of members of the collection with each other. Outer of
comp with a list of permutations gives all pairwise compositions of the permutations in the list.
Applying Union to the flattening of this eliminates duplicates and puts the result in canonical
order. If this operation is nested until there are no further changes; i.e., if FixedPoint is used,
then all possible compositions are obtained, which gives the group generated by the
permutations. Instead of just getting a list of group elements, we change the head to group to
remind ourselves that this is a group. (Note: sometimes it is necessary to include the identity
group element with the generators and sometimes it can be omitted, so for safety's sake we
include it always.)

générâtedGroup[permutâtions_List] :=
group@@
FixedPoint[

Union[Flatten[Outer[comp[#1, #2]&, #, #]]]&,
Prepend[permutations,

identity[Length[permutations[[1]]]]]
] ;

The output from generatedGroup clearly contains the identity permutation of the
appropriate length as well as the composition of any two entries it contains. A little thought
shows that it also contains the inverse of any entry, but we provide a check for this anyway
that verifies that the collection of inverses of entries coincides with the collection of entries
themselves.

checkGroup[g_group] :=
With[{gr = g}, Union[Map[inverse, gr]] == gr];

2.3 The Rotation Group

The rotation group of size n is the group of all cyclic permutations of 1,. . . , n. It is generated
by a single rotation, in the sense that every rotation is a composition of copies of this smallest
rotation.

Twelve · Polya's Pattern Analysis 401

rotationGenerator[n_] := ge@@RotateLeft[Range[n], 1]

For instance:

rotat ion6enerator[5] => ge [2 , 3 , 4, 5, 1]

The composition of this with itself rotates left by 2 steps, etc.

comp[rotationGenerator[5], rotationGenerator[5]]

ge[3, 4, 5, 1, 2]

The rotation group of a given size consists of all compositions of this with itself and the
identity permutation.

rotationGroup[n_Integer?Positive] : =
generatedGroup[{rotationGenerator[n]}];

For instance:

rotationGroup[5]
g r o u p [g e [l , 2, 3, 4, 5] , ge [2 , 3 , 4, 5, 1] , g e [3 , 4, 5, 1, 2],

ge[4 f 5, 1, 2, 3), g e [5 , 1, 2, 3, 4]]

checkGroup[rotationGroup[5]] => True

Moderately large examples can be constructed and checked.

Timing[checkGroup[rotationGroup[20]]]

{6.58333 Second, True}

2.4 The Tetrahedron Edge Group

The tetrahedron edge group is the group of symmetries of the six edges of a tetrahedron
determined by all proper physical motions of the tetrahedron. It is generated by i) rotating by
120 degrees around a vertex and the center of the opposite face and ii) rotating by 180 degrees
about the line joining the centers of two opposite edges. Number the edges 1, 2, 3 around a
given vertex and then 4,5, 6 around the opposite face, as illustrated.

402 Part III · Knowledge Representation

Needs["Graphics Master^"]
Show[

WireFrame[Polyhedron[Tetrahedron]],
6raphics3D[

{ Text["l", {-0.6,0,1}], Text["2", {0.1,0,1}]/
Text["3", {0.1, 0.7, 1}],
Text[N4N, {0, -0.6, -0.5}],
Text["5", {0.8, 0.6, -0.6}],
Text["6", {-0.5, 0.2, -0.6}]}],

Boxed -> False];

If the 120 degree rotation is about the vertex joining edges 1, 2, and 3, and the 180 degree
rotation is about the line joining the centers of edges 1 and 5, then the generators are:

tetrahedronGeneratorl = ge[2, 3, 1, 5, 6, 4];
tetrahedronGenerator2 = ge[1, 6, 4, 3, 5, 2];

The whole group is generated by all compositions of these generators. Note that there is only
one tetrahedron group rather than a family as with the rotation groups.

tetrahedronGroup =
generatedGroup[{ tetrahedronGeneratorl,

tetrahedronGenerator2 }]

group[ge[l,
ge[2,
ge[3,
ge[4,
ge[5,
ge[6,

2, 3, 4, 5, 6],
3, 1, 5, 6, 4],
1, 2, 6, 4, 5],
If 6, 2, 3, 5],
2, 4, 3, 1, 6],
3, 5, 1, 2, 4],

ge[l, 6,
ge[2, 4,
ge[3, 5,
ge[4, 5,
ge[5, 6,
ge[6, 4,

4, 3, 5, 2],
5, 1, 6, 3],
6, 2, 4, 1],
2, 6, 3, 1],
3, 4, 1, 2],
1, 5, 2, 3]]

checkGroup[tetrahedronGroup] => True

Twelve · Polya's Pattern Analysis 403

2.5 The Octahedron Edge Group

This is similar to the tetrahedron edge group. It consists of all symmetries of the 12 edges of a
regular octahedron generated by rotations of 90 degrees about two adjacent vertices. If the
edges are numbered 1, 2, 3, 4 around a given top vertex, 5, 6, 7, 8 around the middle square,
and 9,10,11,12 around the bottom vertex, then the generators are:

octahedronGeneratorl =
ge[2, 3, 4, 1, 6, 7, 8, 5, 10, 11, 12, 9];

octahedronGenerator2 =
ge[8, 4, 7, 12, 1, 3, 11, 9, 5, 2, 6, 10];

octahedronGroup =
generatedGroup[{ octahedronGeneratorl,

octahedronGenerator2 }];

The output is suppressed since it is rather long, consisting of 24 group elements.

Short[octahedronGroup, 2]

group[ge[l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], « 2 2 » ,
ge[12, 11, 10, 9, 7, 6, 5, 8, 4, 3, 2, 1]]

checkGroup[octahedronGroup] => True

3 The Geometric Approach

3.1 The Pattern Array for a Group Action

Suppose there are 6 regions to be colored with three colors, say red, green, and blue, and we
want to find the distinct patterns with respect to the action of some groups of permutations.
There are several things that have to be constructed before we arrive at the final answer.

i) A possible choice of colors could be 2 reds, 1 green, and 3 blues. This choice is
abbreviated as p t [2 , 1, 3] , where p t stands for partition. Our first task is to
generate the list of all such choices; i.e., all partitions of 6 into three summands
(including 0 as a possible summand).

ii) One possible coloring of six regions using the partition pt [2 , 1, 3] is represented
by pat tern [red, red, green, b l u e , b lue , b l u e] . Our next task is to
construct one such pattern for every possible choice of colors. These will be called basic
patterns.

404 Part III · Knowledge Representation
^ *^ - *$?; tM.>y? <-■: - « - --r*--- s,<- - ' , ^ ^ A®&^mm<^w$m**\y>- , »♦ - '-*„^ ̂ * ^ ^ ; ^ * ^ ^ ^ ^ * - ^ -^ ■

iii) The collection of all patterns is constructed by forming all permutations of each basic
pattern.

iv) Now the symmetry group comes into play. Fix attention on one pattern, pat. Each
permutation in the symmetry group, when applied to pat, determines a possibly
different pattern. The collection of all patterns produced this way from pat by the
symmetry group is called the orbit of pat (with respect to the symmetry group). The
next step is to construct the orbit of each pattern, which leads to a large collection
called a l lOrbits .

v) All patterns in a given orbit determine the same orbit, so many of the orbits
constructed in step iv) are the same. Hence, replace the collection a l lOrbi t s by the
collection d i s t inctOrbi t s .

vi) Finally, pick out a representative pattern from each distinct orbit. This is the pattern
array we are seeking.

We will make all of these constructions interactively first to see how they work and then put
everything together in the final constructions.

3.1.1 Partitions
With a little bit of experimentation, a procedure can be written that generates all partitions of n
into m non-negative summands (and nothing else).

partitions[0, m_] := {pt@@(0 Range[m])};
partitions[n_, 1] := pt[n];
partitions[n_Integer?Positive, m_Integer?Positive] :=

Table[
Flatten[partitions[n - i, m - 1]] //.
pt[x] /; Length[{x}] == m - 1 :> Prepend[pt[x], i] ,

{i, 0, n}];

For instance:

partitions[5, 3]

{pt[0,
pt[0,
{pt[i,
pt[i,
{Pt[2,
<Pt[3,
<Pt[4,

0,
4,
0,
4,
0,
0,
0,

5], pt[0,
1], pt[0,
4], pt[l,
0]},
3], pt[2,
2], pt[3,
1], pt[4,

1, 4], pt[0, 2,
5, 0]},
1, 3], pt[l, 2,

1, 2], pt[2, 2,
1, 1], pt[3, 2,
1, 0]},

3], pt[0, 3, 2],

2], pt[l, 3, 1],

1], pt[2, 3, 0]},
0]},

{pt[5, 0, 0]}}

Twelve · Polya's Pattern Analysis 405

3.1.2 All patterns
Rather than using the names red, green, etc., we denote colors by c [1], c [2] , etc., and instead
of putting the colors in a list, we use an expression with head pat tern. Thus one possible
coloring of 6 regions using the choice of colors {2, 1, 3} is represented by pa t t ern [c [1] ,
c [l] , c [2] , c [3] , c [3] , c [3]] . Our next task is to construct one such pattern for
every possible choice of colors. In the following construction we treat c as a variable since we
will later want to replace it by an operation that actually does something. In these three rewrite
rules, n represents the number of regions and m the number of colors.

oneEach[n_Integer?Positive, 0f c_] := {{}};
oneEach[n_, 1, c_] := pattern@@Table[c[l], {n}];
oneEach[n_Integer?Positive, m_Integer?Positivef c_] :=

Map[pattern@@Flatten[
Table[Table[c[i]f {#[[!]]}], {i, m}]]&,

Flatten[partitions[n, m]]];

To see how this works, we treat the case of 5 regions and 2 colors, since for 3 colors the output
to be calculated later becomes rather large. First of all,

Flatten[partitions[5, 2]]

{ p t [0 , 5] , p t [l , 4] , p t [2 , 3] , p t [3 , 2] , p t [4 , 1] , p t [5 , 0]}

Each of these six partitions will determine a basic pattern.

Map[F l a t t e n [T a b l e [T a b l e [c [i] , { # [[i]] }] , { i , 2}]]&,
partitions[5,

{{c[2], c[2], c[2],
{c[l], c[2], c[2],
{c[l], c[l], c[2],
{c[l], c[l], c[l],
{c[l], c[l], c[l],
{c[l], c[l], c[l],

2]]

c[2],
c[2],
c[2],
c[2],
c[l],
c[l],

c[2]},
c[2]},
c[2]},
c[2]},
c[2]},
c[l]}}

All that has to be done is to change the head of each inner list to pattern to get the resulting
list of six basic patterns.

406 Part IH · Knowledge Representation

basicPatterns = oneEach[5, 2 , c]

{pattern[c[2
pattern[c[1
pattern[c[l
pattern[c[l
pattern[c[1
pattern[c[1

c[2], c[2], c[2], c[2]]
c[2], c[2], c[2], c[2]]
c[l], c[2], c[2]f c[2]]
c[l]f c[l], c[2], c[2]]
c[l], c[l], c[l], c[2]]
c[l], c[l], c[l], c[l]]}

To display this in a more condensed form, replace each pattern by a "*."

basicPatterns/.^pattern -> "*" => {*, *, *,*,*, *}

The output of oneEach gives one basic pattern for each choice of colors. To find all
colorings of the regions for a particular choice of colors, it is necessary to construct all
permutations of the given pattern. For the first pattern in the example, all permutations are
the same. For the second pattern, there are 5! permutations, but only 5 of them represent
different colorings, because permutating c [2] 's amongst themselves produces no change.
Notice that Permutations gives the correct result when some of the items are the same. E.g.,

Permutations[{a, b, b}]

{{a, b, b}, {b, a, b}, {b, b, a}}

To find all patterns, just apply Permutations to each of the patterns given by oneEach. In
the example this is done as follows:

allPatterns =
Map[Permutations, oneEach[5, 2, c]];

The output of a l l P a t t e r n s is suppressed because it is long, but it gives us all possible
25 = 32 colorings of 5 regions using 2 colors. A typical entry is pa t tern [c [2] , c [1] ,
c [2] , c [l] , c [2]] .To understand the output better, we again replace each pattern by " *."

TableForm[allPatterns/ ._pattern :> "*"]

*
* * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * *
*

Twelve · Polya's Pattern Analysis 407

Each star here represents a permutation of a basic pattern and shows that each of the six basic
patterns has been expanded to a number of permuted patterns. The first and last basic patterns
have no permutations, so produce only one pattern each, the second and fifth have five
permutations each, and the third and fourth have ten permutations each. If 3 colors were used
instead of 2, then there would be 3^ colorings broken up into similar groupings, etc.

3.1.3 Orbits
So far, no use has been made of a symmetry group that we assume here in the example to be
the rotation group. It acts on each of these possible patterns by permuting the colors in them
by rotations. In general we can define the action of a group element on an element from a set
as follows:

act[seteleraent_, groupelement_ge] :=
setelement[[List@@groupelement]] /;
Length[setelement] == Length[groupelement];

Thus, a group element acts on a set element by permuting the arguments of the set element,
but this only works if they have the same length. The orbit of a particular pattern with respect
to a given group consists of all the patterns formed by all actions of group elements from the
group.

orbit[setelement__, g_group] : =
Union[Map[act[setelement, #]&, List@@g]];

Of course many of these actions may give the same pattern, so Union has to be used to
eliminate duplicates, and in order to get a list as the output, we have to replace the head
group by the head Lis t . For instance, the orbit of pattern [c [2] , c [l] , c [2] , c [1] ,
c [2]] with respect to the rotation group consists of five patterns.

orb i t [p a t t e r n [c [2] , c [l] , c [2] , c [l] , c [2]] ,
rotationGroup[5]]

{ p a t t e r n [c [l] , c [2] , c [l] , c [2] , c [2]] ,
p a t t e r n [c [l] , c [2] , c [2] , c [l] , c [2]] ,
p a t t e r n [c [2] , c [l] , c [2] , c [l] , c [2]] ,
p a t t e r n [c [2] f c [l] , c [2] , c [2] , c [l]] ,
p a t t e r n [c [2] , c [2] , c [l] , c [2] , c [l]] }

To find the orbit generated by each of the patterns, just map o r b i t down the list
al lPat terns .

408 Part III · Knowledge Representation

allOrbits =
Map[orbit[#, rotationGroup[5]]&, allPatterns, {2}];

The output is again suppressed since it is even larger. In order to visualize it, we make a 3-
dimensional picture showing the basic patterns as large dots in the direction of the x-axis, all
permutations of them as medium-sized dots in the x-y-plane, and the orbits as small dots in
the vertical dimension.

Show[6raphics3D[
{ { PointSize[0.02],

Map[Point, Position[basicPatterns, pattern]/.
{x_, 0} :> {4 x, -0-5, 0}]}f

{ PointSize[0.01],
Map[Point[#]&, Position[allPatterns, pattern]/.

{*_/ y_/ z_> *> {4 x, y, z}]},
{ PointSize[0.005],
Map[Point,

Map[Drop[#, -1]&,
Position[allOrbits, pattern]]/.

{x_f y_, z_} :> {4 x, y, z}]},
{ Text["basic patterns", {12, -3, 0}],
Text["all patterns", {23.5, 6, 0}],
Text["orbits", {19, 12, 1}, {0, 0}, {0, -1}]}

}], Boxed -> False,
ViewPoint->{1.140, -2.883, 1.356}];

. O
• . tr

• . H-
• " · . rt • · . w

*."#· all patterns

basic patterns

There are six basic patterns, and 25 = 32 permutations of them arranged in blocks of sizes (1,
5,10,10, 5,1). Finally, applying orbits to each of these 32 patterns generates one pattern each
for the two singletons and 5 patterns for each of the others, represented by the small vertical

Twelve · Polya's Pattern Analysis 409

dots; i.e., the orbit over each medium-sized dot consists of 5 patterns, except for the two
extreme cases, yielding altogether 152 patterns. However, the five orbits for each of the two
groupings of five permuted patterns are identical, while each of the ten orbits over the two
groupings of ten permuted patterns split into two non-identical orbits each, so we use Union
again, this time to eliminate duplicate orbits.

distinctOrbits = Map[Union, allOrbits];

Now the output is small enough to be displayed just by replacing pattern by * again.

MatrixForm[dist inctOrbits/ .^pattern :> "*"]

{ { * } }
{ { * , * , * , * , * } }
{ { * , * , * , * , * } , { * , * , * , * , * } }
{ { * , * , * , * , * } , { * , * , * , * , * } }
{ { * , * , * , * , * } }
{ { * } }

Thus, all together there are eight different orbits, two of them containing only one pattern each
while the other six consist of five patterns each.

Picking out one representative from each orbit will give us a small enough output to be able
to look at all of it.

Map[First, distinctOrbits, {2}]

{{pattern[c[2]/ c[2], c[2], c[2], c[2]]},
{pattern[c[l], c[2], c[2], c[2], c[2]]},
{pattern[c[l], c[l], c[2], c[2], c[2]],

pattern[c[l], c[2], c[l], c[2], c[2]]},
{pattern[c[l], c[l], c[l], c[2], c[2]],

pattern[c[l], c[l], c[2], c[l], c[2]]},
{pattern[c[l], c[l], c[l], c[l], c[2]]},
{pattern[c[l], c[l], c[l], c[l], c[l]]}}

Each pattern represents a distinct orbit, which means that no pattern is a rotation of any other
pattern, and all possible patterns are rotations of one of the patterns here. Thus there are 8
equivalence classes of rotation invariant necklaces using 2 colors. We will see later that this
number agrees with the value predicted by the Burnside number for this design.

410 Part III · Knowledge Representation

Putting all the steps together gives the final general pair of rewrite rules.

patternArray[g_group/ 1, c_]:=
Table[c[l], {k, Length[g[[l]]]}];

patternArray[g_group, m_Interger?Positive, c_] :=
Map[First, Map[Union,

Map[orbit[#, g]&,
Map[Permutations,

oneEach[Lenght[g[[1]]], m, c]],
{2}]], {2}];

As a check, repeat the calculation we just stepped through.

p a t t e r n A r r a y [r o t a t i o n G r o u p [5] , 2 , c]

{ { p a t t e r n [c [2] , c [2] , c [2] , c [2] , c [2]] } ,
{ p a t t e r n [c [l] , c [2] , c [2] , c [2] , c [2]] } ,
{ p a t t e r n [c [l] , c [l] , c [2] , c [2] , c [2]] ,

p a t t e r n [c [l] , c [2] , c [l] , c [2] , c [2]] } ,
{ p a t t e r n [c [l] , c [l] , c [l] , c [2] , c [2]] ,

p a t t e r n [c [l] , c [l] , c [2] , c [l] , c [2]] } ,
{ p a t t e r n [c [l] , c [l] , c [l] , c [l] , c [2]] } ,
{ p a t t e r n [c [l] , c [l] , c [l] , c [l] , c [l]] } }

If we want a diagram representing this output with *'s replacing the patterns, it is useful to
be able to take the transpose of a table with rows of unequal lengths. To do so, we have to pad
all of the rows until they have the same length with something that doesn't appear in the final
table. The following does it. (Note that the optional argument T a b l e A l i g n m e n t s doesn't
work with Transpose here.)

pad[list_] :=
With[{len = Max[Map[Length, list]]},

Map[Join[#,
Table[" ", {len - Length[#]}]]&, list]];

Transpose[pad[patternArray[rotationGroup[5], 2, c]/.
pattern!] -> "*"]] // TableForm

* * * * * *
* *

In the same way, we can display the output for colorings of the corners of a square using 3
colors.

Twelve · Polya's Pattern Analysis 411

The following is the result for coloring the edges of a tetrahedron with 2 colors.

Transpose[pad[patternArray[tetrahedronGroup, 2, c]/.
pattern[] -> "*"]] // TablePorm

Unfortunately, we cannot calculate the pattern array for the edges of an octahedron using 2
colors, since that involves very large intermediate steps.

3.2 The Picture Array for a Group Action

3.2.1 Picture array
Our ultimate goal is to make pictures of all the patterns, modulo symmetries for a given
design. In order to use the pattern arrays derived above in plots, the head pattern has to be
replaced by L i s t everywhere.

pictureArray[g_group, m_Integer?Positive, c_] :=
patternArray[g, m, c]/. pattern -> List;

For instance:

pictureArray[rotationGroup[5], 2, c]

{{{c[2
{{c[l
{{c[l
{c[l
{{c[l
{c[l
«c[l
{{c[l

c[2],
c[2],
c[l],
c[2],
c[l],
c[l],
c[l],
c[l],

c[2]
c[2]
c[2]
c[l]
c[l]
c[2]
c[l]
c[l]

c[2]
c[2],
c[2]
c[2]
c[2]
c[l]
c[l]
c[l]

c[2]}
c[2]}
c[2]}
c[2]}
c[2]}
c[2]}
c[2]}
c[l]}

412 Part III · Knowledge Representation

3.2.2 Rotation groups
First we treat the case of a rotation group. A necklace will be pictured as a circle with small
disks equally spaced around the circle for the beads. pictureArray can be used to calculate
how to color each bead in a necklace by replacing each abstract color name of the form c [i]
with an actual color specification using Hue [N[# /2] & in place of c when evaluating the
function. For instance:

pictureArray[rotationGroup[5], 2, Hue[N[#/2]]&]
{{Hue[l.],
{{Hue[0.5],
{{Hue[0.5],
{Hue[0.5],
{{Hue[0.5],
{Hue[0.5],
{{Hue[0.5],
{{Hue[0.5],

Hue[1.],
Hue[1.],
Hue[0.5],
Hue[1.],
Hue[0.5],
Hue[0.5],
Hue[0.5],
Hue[0.5],

Hue[1.],
Hue[l.],
Hue[1.],
Hue[0.5],
Hue[0.5],
Hue[l.],
Hue[0.5],
Hue[0.5],

Hue[1.],
Hue[1.],
Hue[1.],
Hue[1.],
Hue[1.],
Hue[0.5],
Hue[0.5],
Hue[0.5],

Hue[l,
Hue[l
Hue[1.
Hue[l
Hue[1■
Hue[1,
Hue[l
Hue[0

]}},
.]}},
]},
.]}}/
]}/
.]}},
.]}},
.5]}}}

Now all that has to be done is combine these color specifications with a Disk description of
the beads.

necklaces[n_, m_] :=
Map[{ Circle[{0, 0}, 1],

Transpose[
{ #, Map[Disk[#, Min[0.25, l/n]]&,

Table[{ Cos[N[2 Pi/n k]],
Sin[N[2 Pi/n k]] },

{k, n}]] }] }&,
pictureArray[rotationGroup[n], m, Hue[N[#/m]]&],
{2}]

As a small example, consider the three necklaces consisting of two beads using two colors;
namely, the two necklaces that use only one color and the necklace using one bead of each
color.

Chop[necklaces[2, 2]]
{{{Circle[{0, 0}, 1], {{Hue[l.], Disk[{-1.,

{Hue[l.], Disk[{l., 0}, 0.25]}}}},
{{Circle[{0, 0}, 1], {{Hue[0.5], Disk[{-1.

{Hue[l.], Disk[{l., 0}, 0.25]}}}},
{{Circle[{0, 0}, 1], {{Hue[0.5], Disk[{-1.

{Hue[0.5], Disk[{l., 0}, 0.25]}}}}}

0}, 0.25]},

r 0}, 0.25]},

r 0}, 0.25]},

Twelve · Polya's Pattern Analysis 413
%&V^X*H*,-^ x,,ΐ» v,-«&:*-, ,<>, - vfcΛ^·y»» $ ■ & · * & & ^ ŝ'*--̂ ^̂ <$̂ ï̂̂ ^w :̂̂ 4̂̂ m ,̂

The plotting routine for necklaces is now very simple using this geometric construction. The
actual graphics objects are constructed by a routine called po lyaPictures . In order to use
particular groups as the first argument to po lyaPic tures , we have to give it the attribute
HoldFirst.

Attributes[polyaPictures] = {HoldFirst};

We would also like to display the pictures here in the same orientation as the diagrams above.
This time we have to be able to take the transpose of a matrix of graphics objects of unequal
lengths. The following operation is what we need.

padGraphics[list_] :=
With[{len = Max[Map[Length, list]]},

Map[
Join[#, Table[Graphics[{}],{len-Length[#]}]]&,
list]];

polyaPictures[rotationGroup[n_], m_] :=
GraphicsArray[

Transpose[
padGraphics[

Map[Graphics[#, AspectRatio -> Automatic]&,
necklaces[n, m], {2}]]]];

Show[polyaPictures[rotationGroup[5], 2]];

ooooo o o
In this picture, each column shows the different patterns with a fixed choice of numbers of
colors. The numbers of necklaces of each kind are given by the command:

Map[Length, pictureArray[rotationGroup[5], 2, c]]

{1, 1, 2, 2, 1, 1}

414 Part III • Knowledge Representation

Show[polyaPie~ures[ro~a~ionGroup[6], 2]]~

o

Map[Leng~h, pie~ureArray[ro~a~ionGroup[6], 2, e)]

{1, 1, 3, 4, 3, 1, 1}

o

3.2.3 The tetrahedron group
Next we treat the case of the edges of a tetrahedron. What is required to make a picture of a
tetrahedron is the list of the coordinates of its four vertices, which is found in one of the
graphics packages.

Ver~iees[Te~rahedron]

{{O, 0, 1.7320S}, {O, 1.63299, -0.S773S},
{-1.41421, -0.816497, -0.S773S}, {1.41421, -0.816497,

-0.S773S}}

We also need the edges of the tetrahedron which we have to calculate for ourselves.

edges[Te~rahedron] = Union[
Map[Union[Take[#, 2]]&, Permu~a~ions[{l, 2, 3, 4}]]]

{{1, 2}, {1, 3}, {I, 4}, {2, 3}, {2, 4}, {3, 4}}

The actual graphical lines representing the edges of the tetrahedron are given by the operation:

Twelve · Polya's Pattern Analysis 415

Map[Line[Vertices[Tetrahedron][[#]]]&,
edges[Tetrahedron]]

{Line[{{Of 0, 1.73205}, {0, 1.63299, -0.57735}}],
Line[{{0, 0, 1.73205}, {-1.41421, -0.816497, -0.57735}}],
Line[{{0, 0, 1.73205}, {1.41421, -0.816497, -0.57735}}],
Line[{{0, 1.63299, -0.57735},

{-1.41421, -0.816497, -0.57735}}],
Line[{{0, 1.63299, -0.57735},

{1.41421, -0.816497, -0.57735}}],
Line[{{-1.41421, -0.816497, -0.57735},

{1.41421, -0.816497, -0.57735}}]}

Using this construction, the geometric tetrahedra are constructed as before.

tetrahedra[m_J :=
With[

{lines = Map[Line[Vertices[Tetrahedron][[#]]]&,
edges[Tetrahedron]]},

Map[Prepend[#, Thickness[0.03]]&,
Map[Transpose!{#, lines}]&,

pictureArray[tetrahedronGroup, m,
GrayLevel[N[(# - l)/m]]&],

{2}],
{3}]];

The plotting routine, using the geometric construction of the tetrahedra, is now almost
exactly the same as for the rotation group.

polyaPictures[tetrahedronGroup, m_] :=
GraphicsArray[

Transpose[
padGraphics[
Map[Graphics3D[#, Boxed -> False]&,

tetrahedra[m], {2}]]]];

416 Part III · Knowledge Representation

Show[polyaPictures[tetrahedronGroup, 2]];

4 ^ ^ 4 ^ ^ 4

Map[Length, pictureArray[tetrahedronGroup, 2, c]]

{1, 1, 2, 4, 2, 1, 1}

^ 2T&* Algebraic Approach
The geometric approach in the preceeding section succeeded through a brute force
construction of the desired patterns. Counting how many patterns there are for each choice of
colors (i.e., the number of entries in a column) is an incidental byproduct of the construction.
The algebraic approach, which is highly refined, concentrates solely on finding these numbers
and never does spell out what the actual patterns are. These numbers will appear as
coefficients in a polynomial whose variables represent the colors; e.g., in the polynomial for the
rotation group of size 5 with 2 colors, the term 2 c [l] 3 c[2]2 will mean that there are 2
(equivalence classes of) necklaces using three beads of color c[l] and two of color c[2]. There
are three steps in constructing this polynomial.

i) First, we have to adopt a different representation of permutations in which they are
given as products of cycles.

ii) Next, given a permutation group G, a polynomial P G M I L X M] , called the cycle
index of G is constructed. Here k is the maximum length of a cycle in the cycle
representations of the elements of G.

iii) Finally, the polynomial for m colors is given by substituting Σ] c[j]* for x[i] in P Q and
dividing the result by the number of elements in G.

Twelve · Polya's Pattern Analysis 417

It is a non-trivial result of group theory that this construction gives the desired answer. For
an introductory treatment of the theory, see [Tucker] and for the full story, see [Rotman] and
[Biggs]

4.1 The Cycle Representation of a Permutation

There is another way to represent permutations; namely, as products of cycles. For instance, in
the permutation {3, 1, 2, 6, 5, 7, 4}, number 1 goes to 3, 3 goes to 2, and 2 goes to 1, so these
three entries are cyclically permuted. This is represented by the cycle {3, 2,1}, or equivalently
{1, 3, 2}, or {2,1, 3}. Notice that the cycle {3, 2,1} is different from the permutation {3, 2,1}, even
though they are both written as the same list. It is a theorem that any permutation is equivalent
to a product of cycles. There is a nice functional program which appeared on the network from
"The Gang of Four at Stanford" which calculates the cycle representation of a permutation. It is
constructed as follows: first take a test permutation.

perm = {3 , 1, 2, 6, 5, 7, 4 } ;

As we have seen, following 1 to 3 to 2 to 1 leads to the cycle {1, 3, 2}. This can be calculated by
the operation:

NestList[perm[[#]]&, 3, Length[perm]]

{3, 2, 1, 3, 2, 1, 3, 2}

We follow the sequence for 8 terms because we don't know exactly how long the cycle is going
to be. Of course, we only need the first three terms here, which are given by

Take[%, Length[Union[%]]] => {3, 2, 1}

Do this for every entry in the permutation.

Map[NestList[perm[[#]]&, #, Length[perm]]&f perm]

{{3, 2, 1, 3, 2, 1, 3, 2}, {1, 3, 2, 1, 3, 2, 1, 3},
{2, 1, 3, 2, 1, 3, 2, 1}, {6, 7, 4, 6, Ί, 4, 6, 1},
{5, 5, 5, 5, 5, 5, 5, 5}, {7, 4, 6, 1, 4, 6, Ί, 4},
{4, 6, 1, 4, 6, 7, 4, 6}}

Map[Take[#, Length[Union[#]]]&, %]

{{3, 2, 1}, {1, 3, 2}, {2, 1, 3}, {6, 1, 4}, {5}, {7, 4, 6},
{4, 6, 7}}

418 Part III · Knowledge Representation

Then pick out those cycles that start with the minimal entry, just to have a definite way to
choose one representative of each cycle.

Select[%, First[#] == Min[#]&]
{{1, 3, 2}, {5}, {4, 6, 7}}

Putting these steps together gives the construction.

toCycles[perm__] :=
Select[

Map[Take[#, Length[Union[#]]]&,
Map[NestList[perm[[#]]&, #, Length[perm]]&,

perm]],
First[#] == Min[#]&];

Check this on the example that was just worked out interactively.

toCyc les [{3 , 1, 2 , 6, 5, 7, 4}]

{{1, 3 , 2 } , {5}, {4, 6, 7}}

4.2 The Cycle Index of a Group
The cycle index for a group G of symmetries is a polynomial

PG(x[l],...x[k])

in variables x[i], i = 1, . . . , k, where k is the maximum length of a cycle in the cycle
representations of the elements of the group G. (Note that we write x[i] rather than xi .) We
first work out an example of its construction interactively. Start with the tetrahedron group,
rewrite it as a list of lists and apply toCycles to each permutation in the group. This gives the
following:

cycleList =
Map[toCycles[List@@#]&, List@@tetrahedronGroup]

{{{1}, {2}, {3}, {4}, {5}, {6}}, {{1}, {3, 4}, {5}, {2, 6}},
{{1, 2, 3}, {4, 5, 6}}, {{1, 2, 4}, {3, 5, 6}},
{{1, 3, 2}, {4, 6, 5}}, {{2, 5, 4}, {1, 3, 6}},
{{1, 4, 2}, {3, 6, 5}}, {{2, 5, 3}, {1, 4, 6}},
{{2}, {3, 4}, {1, 5}, {6}}, {{3}, {4}, {1, 5}, {2, 6}},
{{1, 6, 4}, {2, 3, 5}}, {{1, 6, 3}, {2, 4, 5}}}

Twelve · Polya's Pattern Analysis 419
^^^'■^^'^^^mm^ms^m^ß^i^^^^m^^^^^m^^m^^m

Each argument at level 1 here is a list of cycles.
Now create new variables x[l] , . . . x[k], where k is the maximum length of a cycle (in this

case 3), and replace each cycle by the variable for its length.

vars = Map[x[Length[#]]&, cycleList, {2}]

{{x[l], x[l], x[l], x[l], x[l], x[l]},
{x[l], x[2], x[l], x[2]},
{x[3], x[3]}, {x[3], x[3]}, {x[3], x[3]},
{x[3]f x[3]}, {x[3], x[3]}, {x[3], x[3]},
{x[l], x[2], x[2], x[l]}, {x[l], x[l], x[2], x[2]},
{x[3]f x[3]}f {x[3], x[3]}}

Thus, each cycle of the form {n} is replaced by x[l], each one of the form {m, n} by x[2], etc.
Next, multiply together the variables in each sublist.

terms = Apply[Times, vars, {1}]

{x[l]6, x[l]2 x[2]2, x[3]2, x[3]2, x[3]2, x[3]2, x[3]2, x[3]2,
x[l]2 x[2]2, x[l]2 x[2]2, x[3]2, x[3]2}

What has happened here is that each original permutation in the group has been replaced by a
product of variables determined by the cycle structure of the permutation. The indices of the
variables give the lengths of the cycles and the exponents tell how many cycles there are of
each length. Thus, the second group element ge[l, 6,4,3,5,2] has the cycle structure {{1}, {3,4},
{5}, {2,6}} with two cycles of length one and two of length two so it yields the term x[l]2 x[2]2.

The polynomial we want is the sum of all of these terms.

Pluseeterms => x[l]6 + 3 x[l]2 x[2]2 + 8 x[3]2

Combining these steps gives the general operation.

cycleIndex[g_group, x_] :=
Plus@@

Apply[Times,
Map[x[Length[#]]&,

Map[toCycles[List@@#]&, List@@g],
{2}],

{ i }] ;

As examples, calculate the cycle indices for the groups we're interested in.

420 Part III · Knowledge Representation

cyclelndex[rotationGroup[5], x]
x[l]5 + 4 x[5]
cyclelndex[tetrahedronGroup, x]
x[l]6 + 3 x[l]2 x[2]2 + 8 x[3]2

cyclelndex[octahedronGroup, x]
x[l]12 + 6 x[l]2 x[2]5 + 3 x[2]6 + 8 x[3]4 + 6 x[4]3

We can't help pointing out that constructing this polynomial by hand seems like a daunting
task. Furthermore, when Polya [Polya] discovered it, there were no symbolic computation
programs to make its construction so remarkably simple.

4.3 Polya Ts Pattern Inventory for a Group Action
The Polya Pattern Inventory is constructed from the cycle index by evaluating the polynomial
PQ for the arguments

PG(Xc[j],X cü]2 Sc[j]k)
j = l j = l j = l

and dividing the result by the number of elements in the group. Here m is the number of
colors and k is the maximum length of a cycle in a group element. In generating the list of
substitutions in the following procedure, no harm is done if possibly too many powers are
calculated, so we can ignore the problem of determining what k is and just use the maximum
value it could possibly have. It is non-trivial to prove that this new polynomial will answer our
question.

polyaPatternlnventory[g_group,
m_Integer?Positive, c_]:=

Cancel[Expand[cyclelndex[g, c] /·
Tablet c[i] -> Sum[c[jpi, {j, m}]f

{i, Length[g[[l]]]}]]/ Length[g]];
For a necklace consisting of 5 beads, using two colors, this gives the polynomial:

polyaPatternlnventory[rotationGroup[5], 2, c]
c[l]5 + c[l]4 c[2] + 2 c[l]3 c[2]2 + 2 c[l]2 c[2]3 +
c[l] c[2]4 + c[2]5

Twelve · Polya's Pattern Analysis 421

Each term here corresponds to one way of coloring the necklace. The exponents correspond to
the number of beads of each color and the coefficient gives the number of colorings (modulo
rotations) using that choice of beads. For instance, the term 2 c [1] 2 c [2] 3 means that there
are 2 ways to construct a necklace using 2 beads of color c[l] and 3 beads of color c[2]. We
would like to compare the coefficients in this polynomial with the geometrically determined
numbers of colorings of each kind. The following routine will extract them.

polyaCoefficients[g_group, m__Integer?Positive, c_] : =
Select[

Flatten!
CoefficientList[polyaPatternInventory[g, m, c] ,

Table[c[i] , { i , m}]]] ,
> 0&];

For instance:

polyaCoefficients[rotationGroup[5], 2, c]
{1, 1, 2, 2, 1, 1}

We can let Mathematica do the comparison with the experimental results.

polyaCoef£icients[rotationGroup[5], 2, c] ==
Map[Length, pictureArray[rotationGroup[5], 2, c]]

True

For 5 beads and 3 colors there are many more necklaces.

polyaPatternlnventory[rotationGroup[5], 3 , c]
c[l]5 + c[l]4 c[2] + 2 c[l]3 c[2]2 + 2 c[l]2 c[2]3 + c[l] c[2]4+
c[2]5 + c[l]4 c[3] + 4 c[l]3 c[2] c[3] + 6 c[l]2 c[2]2 c[3] +
4 c[l] c[2]3 c[3] + c[2]4 c[3] + 2 c[l]3 c[3]2 + 6 c[l]2 c[2]
c[3]2 + 6 c[l] c[2]2 c[3]2 + 2 c[2]3 c[3]2 + 2 c[l]2 c[3]3 +
4 c[l] c[2] c[3]3 + 2 c[2]2 c[3]3 + c[l] c[3]4 + c[2] c[3]4 +
c[3]5

However, we can still check that the algebraic theory agrees with the geometric construction.

polyaCoefficients[rotationGroup[5], 3, c] ==
Map[Length, pictureArray[rotationGroup[5], 3, c]]

True

422 Part III · Knowledge Representation

Here are several more examples.

polyaPatternInventory[rotationGroup[6], 2, c]

c[l]6 + c[l]5 c[2] + 3 c[l]4 c[2]2 + 4 c[l]3 c[2]3 + 3 c[l]2
c[2]4 + c[l] c[2]5 + c[2]6

polyaCoefficients[rotationGroup[6], 2, c] ==

Map[Length, pictureArray[rotationGroup[6], 2, c]]

True

polyaPatternlnventory[tetrahedronGroup, 2, c]
c[l]6 + c[l]5 c[2] + 2 c[l]4 c[2]2 + 4 c[l]3 c
c[2]4 + c[l] c[2]5 + c[2]6

polyaCoefficients[tetrahedronGroup, 2, c] ==
Map[Length, pictureArray[tetrahedronGroup,

True

polyaPatternlnventory[tetrahedronGroup, 3, c]

c[l]6 + c[l]5 c[2] + 2 c[l]4 c[2]2 + 4 c[l]3 c[2]3 +
2 c[l]2 c[2]4 + c[l] c[2]5 + c[2]6 + c[l]5 c[3] +
3 c[l]4 c[2] c[3] + 6 c[l]3 c[2]2 c[3] + 6 c[l]2 c[2]3 c[3] +
3 c[l] c[2]4 c[3] + c[2]5 c[3] + 2 c[l]4 c[3]2 +
6 c[l]3 c[2] c[3]2 + 9 c[l]2 c[2]2 c[3]2 + 6 c[l] c[2]3 c[3]2 +
2 c[2]4 c[3]2 + 4 c[l]3 c[3]3 + 6 c[l]2 c[2] c[3]3 +
6 c[l] c[2]2 c[3]3 + 4 c[2]3 c[3]3 + 2 c[l]2 c[3]4 +
3 c[l] c[2] c[3]4 + 2 c[2]2 c[3]4 + c[l] c[3]5 + c[2] c[3]5 +
c[3]6

Notice in the last example that there are 9 ways, up to symmetries, to color the edges of a
tetrahedron using two edges each of three colors.

polyaCoefficients[tetrahedronGroup, 3, c] ==
Map[Length, pictureArray[tetrahedronGroup, 3, c]]

True

[2]3 + 2 c[l]2

2, c]]

Twelve · Polya's Pattern Analysis 423

polyaPatternlnventory[octahedronGroup, 2, c]
c[l]12 + c[l]n c[2] + 5 c[l]10 c[2]2 + 13 c[l]9 c[2]3 +
27 c[l]8 c[2]4 + 38 c[l]7 c[2]5 + 48 c[l]6 c[2]6 + 38 c[l]5
c[2]7 + 27 c[l]4 c[2]8 + 13 c[l]3 c[2]9 + 5 c[l]2 c[2]10 + c[l]
c[2]n + c[2]12

The numbers here are much bigger, which is why we were unable to construct representatives
of all of the orbits geometrically. Thus, for instance, there are 48 ways to color the edges of an
octahedron using equal numbers of two colors. We can check that the geometric description
agrees with the algebraic theory, provided we don't attempt to display the results of the
construction, but the calculation takes a long time.

Timing [
polyaCoefficients[octahedronGroup, 2, c] ==
Map[Length, pictureArray[octahedronGroup, 2, c]]]

{670.75 Second, True}

4.4 The Burnside Number for a Group
The Burnside number for a permutation group G and a number of colors m is the total number
of colorings of the design by m colors modulo the symmetries in the group. It is given by
evaluating the polynomial YQ with all variables set equal to m and dividing by the number n
of elements in the group; i.e., PG [m,. . . , m] / n. Of course, it is also the sum of the numbers
given by polyaCoef f i c i e n t s .

burnsideNumber[g_group, m_Integer?Positive] :=
Module[{c},

cyclelndex[g, c] / Length[g] /.
Table[c[i] -> m, {i, Length[g]}]]

Here are the numbers of various necklaces and the tetrahedron and octahedron colorings using
two colors.

{ burns ideNumber[rotat ionGroup[5], 2],
burnsideNumber[rotationGroup[10], 2],
burnsideNumber[rotationGroup[20], 2],
burnsideNumber[rotationGroup[30], 2],
burnsideNumber[rotationGroup[40], 2],
burns ideNumber[tetrahedronGroup, 2],
burnsideNumber[octahedronGroup, 2] }

{8, 108, 52488, 35792568, 27487816992, 12, 218}

424 Part III · Knowledge Representation

5 Implementation
A complete package implementing all of the commands developed here will be found on the
diskettes distributed with this book. It is called PolyaPatternAnalysis .m.

1 Introduction
A graph consists of a finite set of vertices, some of which are joined by edges. Here are several
examples that will be constructed later.

the vertices are indicated by heavy dots. When the edges are drawn in the plane they
sometimes intersect, but these intersection points are not considered as part of the graph. The
important thing is whether or not there is an edge joining two vertices. These kinds of graphs
are sometimes called undirected, simple graphs to distinguish them from directed graphs
which have arrows on their edges and from multigraphs which can have several edges joining
two vertices. Sometimes edges are allowed from a vertex to itself, but we rule that out here.

Mathematically, a graph can be considered as a relation between vertices. Two vertices are
related if and only if they are joined by an edge. This relation is clearly symmetric: if x is joined
to y then y is joined to x. We assume explicitly that it is anti-reflexive; i.e., a vertex is not joined
to itself. In other words, there are no loops in the graph. Clearly, any symmetric, anti-reflexive
relation can be pictured by such a graph, so it doesn't matter whether we talk about graphs or
about such relations. Now there are various ways to describe relations, each of which
corresponds to a way to describe graphs. A relation on a set V (of vertices) can be considered

425

426 Part HI · Knowledge Representation

as a subset of the Cartesian product V x V; i.e., as a set of ordered pairs of elements of V, so one
can simply make a list of those pairs that belong to the relation. This will be one of our basic
representations of a graph, called the ordered pair representation. Alternatively, such a subset
can be described by its characteristic function-a function on V x V with values 0 and 1 that is 1
exactly for those pairs belonging to the subset. If we name the elements of V by the numbers 1
through n, where n is the number of elements of V, then this characteristic function can be
described by an n x n matrix of O's and l's, in which the (i, j)th entry is 1 if and only if the pair
(i, j) belongs to the subset; i.e., if and only if there is an edge from vertex i to vertex j . This
matrix is called the adjacency matrix of the graph, since a 1 in position (i, j) is interpreted as
meaning that vertex i is adjacent to vertex j . The relation being symmetric is equivalent to the
adjacency matrix being symmetric, and the relation being anti-reflexive means that the
diagonal entries are all 0. This will be another of our basic representation of graphs called the
adjacency matrix representation. The third basic representation is simply to list, for each
vertex, the other vertices to which it is connected. This is called the edge list representation.

Approximately two-thirds of S. Skiena's book, Implementing Discrete Mathematics [Skiena], is
concerned with graph theory. We present here a somewhat different treatment of the subject as
an illustration of a systematic development of a part of mathematics in the object-oriented style
considered in Chapter 9.

There are many aspects to graph theory. There must be thousands or possibly tens of
thousands of algorithms concerning properties of graphs. Many are to be found in Skiena's
book. Each algorithm expects its input in a particular form and works most conveniently or
most efficiently in that form, which is one reason why there are many different representations
of graphs. As the above pictures show, one can make drawings of graphs and try to
understand them through these drawings, so such illustrations are an intrinsic feature of graph
theory. Skiena's representation of graphs includes instructions for making a drawing of each
graph. We omit this feature for simplicity and just have a few general plotting routines that are
suitable for all graphs, and a special one for a particular kind of graph. In this chapter we
concentrate mainly on the construction of new graphs from old ones, and leave the study of
graph algorithms to Skiena's book.

2 Representations of Graphs

2.1 The Class Hierarchy

As a first simple example, consider the complete graph on three vertices, K[3]. It consists of
three vertices, labeled 1,2,3, each of which is connected by an edge to the other two.

Thirteen · Object-Oriented Graph Theory 427
m^^^"^^^^^mmm^^m^^'^^^m&^', <*■ <^ *Ä*"V

3

As described above, the adjacency matrix of a graph is the n x n matrix G in which

G[i, j] == 1 if and only if vertex i is connected to vertex j

Our assumptions are that this matrix is symmetric with O's on the main diagonal. In particular,
the adjacency matrix for K [3] is

O i l
1 0 1
1 1 0

The edge list representation is a list of lists in which the ith list is the list of vertices
connected to the ith vertex. E.g., for K [3] , we have the list of lists:

{ { 2 , 3 } , { 1 , 3 } , { 1 , 2 } }

Here, the first entry, { 2 , 3}, means that the first vertex is connected to vertices 2 and 3, etc.
Clearly, to be the list of edge lists for a graph requires that the individual lists are increasing,
that the largest entry is less than or equal to the number of lists, that i does not occur in the ith
list and that if j occurs in the ith list then i occurs in the jth one.

Finally, the ordered pair representation is the list of pairs of vertices that are connected by
edges. E.g., for K [3] , we have the list of pairs:

{ { 1 , 2}, { 1 , 3 } , { 2 , 1 } , { 2 , 3}, {3, 1 } , { 3 , 2 } }

Here the first entry { 1 , 2 } means that there is an edge from 1 to 2. The only restrictions on a
list of pairs, to be the list of ordered pairs of a graph, are that there are no pairs of the form { i ,
i }, and that if { i , j } occurs in the list then so does { j , i }. Note that the number of vertices
of a graph cannot be determined from its ordered pair representation since there may be
isolated vertices; i.e., vertices that are not connected to any others.

The situation here is very similar to that of points in the plane treated in Chapter 9. There
are three different ways to represent graphs, so we have to have operations translating
between them and the whole situation can be embedded in a small hierarchy of classes
consisting of an abstract top class graph, under the class Object , followed by three subclasses,
one for each way of representing graphs. We call these subclasses adjacents, edges and
ordereds, just to have names that won't conflict with the operations to be constructed for them.
Actually, there will be a number of subsubclasses as well, as indicated in the following picture.

428
*- \^τ^^ ^ ^ ^ \, <**#* s^*4w*%s«*»&^>^ ,«**^ *,s,

Part III · Knowledge Representation
» ,*·*>» ' ^ ^ i f U . V V W V ? ^ " ΐ -^ν^ ί v ̂ js V ^ ì i ì£ ;

Altogether the hierarchy contains 10 classes, but there could be many more.

2.2 Outline Versions of the Classes

The structure to be set up is complicated both in the number and detail of operations to be
implemented and in their object-oriented organization. To get started, we'll first look at the
classes in outline form just to see what's to go in them. First of all is the top class graph, just
under Object. It has no instance variables and no new method as well as three methods with
default second components. I.e., like the class p o i n t in Chapter 9, there are no objects
belonging to this class; it is just there to organize the classes below it. However, just as before,
it will turn out that this class contains almost all of the knowledge about graphs.

Class[
graph,
Object,
{},
{ {graphQ, }f
{adj acencyMatrix,
{edgeLists,
{orderedPairs,
{numberOfVertices,
{numberOfEdges,

(* name of the class*)
(* super class*)
(* an abstract class*)
(* methods*)

NIM[self, adj acencyMatrix]&},
NIM[self, adj acencyMatrix]&},
NIM[self, orderedPairs]&},

}/
},

}]

Thirteen · Object-Oriented Graph Theory 429

Actually, there will be many more methods in this class. The methods with default second
components have to be implemented in the subclasses of graph, and in fact that is about all
that is implemented in them.

Consider the first subclass, adjacents. It has one instance variable called matrix and the
idea is that when a new object of the class is constructed, matrix will be set equal to the
adjacency matrix of some graph. The method adjacencyMatrix will just return this matrix,
while the methods edgeLists and orderedPairs will have to carry out some computation
to find the edge lists and ordered pairs corresponding to the adjacency matrix.

Class[
adjacents ,
graph,
{matrix},
{ {new, new [super] ;

{adj acencyMatrix,
{edgeLists ,
{orderedPairs,

(* name of the c l a s s *)
(* super c l a s s *)
(* the adjacency matrix *)

(matrix = #)&}, (* methods *)
matrix&},
"calculate edge lists"},
"calculate ordered pairs"} }]

The class edges is similar, except this time the single instance variable expects to be given
the list of edge lists of some graph. The method edgeLis ts just returns this list of lists while
the other two methods involve computations.

Class[
edges,
graph,
{eds},
{ {new, new[super];
{adj acencyMatrix,
{edgeLists,
{orderedPairs,

(* name of the class *)
(* super class *)
(* the edge lists *)

(eds =#)&}, (* methods '
"calculate adjacency matrix"},
eds&},
"calculate ordered pairs"} }]

The pattern is now clear. For the class ordereds, the single instance variable is set equal to
the list of ordered pairs of some matrix, which is returned by the method orderedPairs, and
the other two methods require computations.

Class[
ordereds,
graph,
{ords},
{ {new, new[super];

{adj acencyMatrix,
{edgeLists,
{orderedPairs,

(* name of the class *)
(* super class *)
(* the ordered pairs *)

(ords = #)&}, (* methods *)
"calculate adjacency matrix"},
"calculate edge lists"},
ords&} }]

The subsubclasses will be treated later.

430 Part III · Knowledge Representation

2.3 The Subclasses in Detail

Before looking at the class graph, which is rather large, the three subclasses will be discussed
in detail since that is where graphs are actually created.

2.3.1 The class adjacents

For the class a d j a c e n t s , the list of edge lists and the list of ordered pairs has to be calculated
from the adjacency matrix. Conceptually, it is simple to see how to find the list of edge lists.
Consider the first row of the adjacency matrix. The places in that row where there are l's
correspond to the vertices to which the first vertex is connected. The operation P o s i t i o n can
find these places, so a function can be written in our usual functional style to find the edge
lists.

edgeLis t sFromAdjacencyMatr ix[matr ix_] :=
Map[(F l a t t e n [P o s i t i o n [# , edge_ / ; (edge != 0)]]) & ,

matr ix] ;

The reason for the F l a t t e n is because P o s i t i o n returns its results wrapped in extra
parentheses. E. g.,

P o s i t i o n ! { 0 , 1 , 1 } , edge_ / ; (edge != 0)] => { { 2 } , {3}}

In object-oriented programming, this function gets replaced by a method, named
e d g e L i s t s here, with the body of the definition as second argument. Thus, the method for
a d j a c e n t s looks almost the same as the functional definition.

{ e d g e L i s t s ,
Map[(F l a t t e n [P o s i t i o n [# , edge_ / ; (edge != 0)]]) & ,

matr ix]&}

This method works because the instance variable for a d j a c e n t s is named matrix . However,
if the method is written this way then it will not be inherited correctly by subclasses which will
be constructed later. Instead of m a t r i x , we have to write ad jacencyMatr ix [s e l f] so
that the correct matrix from an object of the subclass will be used. Thus, the actual method is:

{edgeLists,
Map[(Flatten[Position!#, edge_ /; (edge != 0)]])&,

adj acencyMatrix[self]]&}
We also need a way to calculate the list of ordered pairs corresponding to the adjacency

matrix of a graph. This is even simpler than finding the edge lists since the desired ordered
pairs are exactly the positions in the adjacency matrix where there is a non-zero entry. In a
functional style, we would just write.

Thirteen · Object-Oriented Graph Theory 431

orderedPairsFromAdjacencyMatrix [matrix_] : =
Position[matrix, edge_ /; (edge != 0)]];

As before, in object-oriented style, this becomes the method:

{orderedPairs,
Position[adjacencyMatrix[self], edge_/;(edge!=0)]&}

Here, m a t r i x is replaced by a d j a c e n c y M a t r i x [s e l f] for the same reason as above.
Putting this all together gives the following class definition.

C l a s s [a d j a c e n t s , graph, { m a t r i x } ,
{ {new, (n e w [s u p e r] ; matr ix = #)&} ,

{adj acencyMatr ix , m a t r i x * } ,
{ e d g e L i s t s ,

Map[(F l a t t e n [P o s i t i o n [# , edge_ / ;
(edge != 0)]]) & ,

adj a c e n c y M a t r i x [s e l f]]&},
{ o r d e r e d P a i r s ,

P o s i t i o n [a d j a c e n c y M a t r i x [s e l f] ,
edge_ / ; (edge != 0)]&} }] ;

If Maeder's package, C l a s s e s [Maeder 2], is loaded and the class graph is evaluated, then we
can try out examples to be sure that everything works correctly.

Needs["Classes"]
Needs["Graphs"]

Start with the complete graph on three vertices, entered "by hand."

K [3] =
new[adjacents, {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}];

Check the calculation of edge lists and ordered pairs.

{edgeLists[K[3]], orderedPairs[K[3]]}//MatrixForm

{{2, 3}, {1, 3}, {1, 2}}
{{1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}}

2.3.2 The class edges.

The class e d g e s is responsible for calculating the adjacency matrix and the list of ordered
pairs from the list of edge lists of a graph. Calculating the adjacency matrix from the edge lists
is the inverse of the first calculation in the preceding section which calculates the edge lists
from the adjacency matrix. Clearly, the edge lists tell us where, in each row of the adjacency

432 Part HI · Knowledge Representation
" Λ ^ , ν Λ , ν , ^ χ

matrix, there is to be a 1. It is easy to write a function to do this, using ReplacePart to put l's
in the appropriate places, determined by the edge lists, in a row of O's.

adjacencyMatrixFromEdgeLists[edges_]:=
Map[ReplacePart[0 Range[Length[edges]], 1, #]&,

Map[Partition!#, 1]&, edges]];

In object-oriented style, this becomes the method

{adj acencyMatrix,
With[{edges = edgeLists[self]},

Map[ReplacePart[0 Range[Length[edges]], 1, #]&,
Map[Partition[#, 1]&, edges]]]&}

The With construction is used to avoid calculating edgeLists [s e l f] twice.
The second calculation needed here is a new conversion; namely, from edge lists to ordered

pairs. If the ith list in the edge lists is {ii, . . . , in}, then there should be ordered pairs of the
form {i, i i) , . . . , {i, in} in the list of ordered pairs of the graph. It is simpler to construct all pairs
{i, j} and then select the ones that we want. It turns out that an auxiliary expression is required
to extract the diagonal from a matrix using a clever method found by Allan Hayes (e-mail
communication).

diagonal[matrix_List] := Transpose[matrix, {1, 1}]

In functional form, the required conversion operation is:

orderedPairsFromEdgeLists[edges_] :=
Flatten[diagonal[Outer[{#1, #2}&,

Range[Length[edges]], edges]],
i] ;

This works because of the way Outer organizes its output. Turned into an object-oriented
message, the operation becomes the last method in the class edges.

Class[edges, graph, {eds},
{ {new, (new[super]; eds = #)&},

{adj acencyMatrix,
With[

{edges = edgeLists[self]},
Map [ReplacePart[0 Range[Length[edges]], 1, #]&,

Map[Partition[#, 1]&, edges]]]&},

Thirteen · Object-Oriented Graph Theory 433

{edgeLists, eds&},
{orderedPairs,

With[{edges = edgeLists[self]},
Flatten[diagonal[

Outer[{#l, #2}&,
Range[Length[edges]], edges]], 1]]&} }];

Try this out using the edge lists from K [3] .

edg[3] = new [edges, edgeLists[K[3]]];

Check that the two important messages work correctly.

{adj acencyMatrix[edg[3]], orderedPairs[edg[3]]} //
MatrixForm

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}
{{1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}}

2.3.3 The class ordereds
Starting with the list of ordered pairs of a graph, this class will find the corresponding
adjacency matrix and edge lists. Both operations are inverse to operations considered in the
preceding two sections. We calculate the adjacency matrix first. Conceptually, this is very
simple since the list of ordered pairs describes the positions of the l's in the adjacency matrix.
So just start with a matrix of O's of the correct size and use the ordered pairs to replace
appropriate O's by l's. In functional form, this looks like:

adj acencyMatrixFromOrderedPairs[pairs_] : =
ReplacePart[0 IdentityMatrix[Max[Flatten[pairs]]],

1, pairs];

As a method, it becomes:

{adj acencyMatrix,
With[{pairs = orderedPairs[self]},

ReplacePart[
0 IdentityMatrix[Max[Flatten[pairs]]],
1, pairs]]&}

Again, we use a With construction to avoid calculating orderedPairs [s e l f] twice.

434 Part HI · Knowledge Representation

Lastly, we find the edge lists in terms of the ordered pairs. The edge list for the vertex i
consists of all second entries of ordered pairs whose first entry is i. In functional form, this is
given by the operation:

edgeListsFromOrderedPairs [pairs__] : =
Table[Cases[pairs , { i , x_} -> x] ,

{ i , Max[Flatten[pairs]]}]

As a message, it becomes the second method in the class ordereds.

Class[ordereds, graph, {ords},
{ {new, (new[super]; ords = #)&},

{adj acencyMatrix,
With[{pairs = orderedPairs[self]},

ReplacePart[
0 IdentityMatrix[Max[Flatten[pairs]]],
1, pairs]]&},

{edgeLists,
With[{pairs = orderedPairs[self]},

Table[Cases[pairs, {i, x_} -> x],
{i, Max[Flatten!pairs]]}]]&},

{orderedPairs, ords&} }];

As a simple example, consider

orp[3] = new[ordereds, orderedPairs[K[3]]];
{ adj acencyMatrix[orp[3]],
edgeLists[orp[3]] } // MatrixForm

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}
{{2, 3}, {1, 3}, {1, 2}}

2.3.4 Discussion
These three classes make it possible to construct graphs by specifying either the adjacency
matrix, the edge lists, or the ordered pairs of the graph. Once the graph is made, these three
messages, ad j acencyMatr ix , edgeLi s t s , and orderedPairs , can be sent without
worrying about how the graph was originally created. This kind of object-oriented
polymorphism is a powerful idea. As long as we describe all further operations in terms of
these three constructs, we never have to be concerned with what a graph actually is; graphs in
this sense are abstract, which is the intuitive reason why the top class graph is an abstract
class.

Thirteen · Object-Oriented Graph Theory 435
*&-- ̂ ^ ï ? w m « t < ^ f ' 0

2.4 The top Class graph : Basic Structure

We're now ready to begin the discussion of the class graph itself. Ultimately, almost all of our
knowledge about graphs will be contained in the messages for this graph, except for the three
calculations done in the subclasses. Recall that the outline version of this class looks like:

Class[graph, Object, {},
{ {graphQ, },

{adj acencyMatrix, NIM[self, adj acencyMatrix]&},
{edgeLists, NIM[self, edgeLists]&},
{orderedPairs, NIM[self, orderedPairs]&},
{numberOfVertices, },
{numberOfEdges, },
— }] I

The default methods are all the same: NIM [s e l f , <name of method>]. The meaning of
this is that these methods must be implemented in the subclasses of graph. If they are not,
then a message to that effect is returned. Now consider the method with name graphQ. Its
second component should be a predicate that returns True if and only if the object under
consideration is a graph. It is easy to describe in functional form when a matrix is the
adjacency matrix of a graph.

adjacencyMatrixOfGraph[matrix_] :=
MatrixQ[matrix, (#===0 || #===1)&] &&
(matrix === Transpose[matrix]) &&
(diagonal[matrix] · diagonal[matrix] === 0);

The first clause says that matrix is a matrix of O's and l's, the second that it is symmetric (and
in particular square), and the third that the diagonal elements are all 0. For instance:

adj acencyMatrixOfGraph[adj acencyMatrix[K[3]]]

True

As a message, it becomes the first method in the class graph. The methods for the numbers of
vertices and edges are simple to write, so, as a start, the class graph is given as follows:

Class[graph, Object, {},
{ {graphQ,

With[{matrix = adjacencyMatrix[self]},
MatrixQ[matrix, (#===0 || #===1)&] &&
(matrix === Transpose[matrix]) &&
(diagonal[matrix] · diagonal[matrix]===0)]&},

436 Part HI · Knowledge Representation

{adjacencyMatrix, NIM[self, adjacencyMatrix]&},
{edgeLists, NIM[self, edgeLists]&},
{orderedPairs, NIM[self, orderedPairs]&},
{numberOfVertices, Length[edgeLists[self]]&},
{numberOfEdges,

Length[Flatten[edgeLists[self]]] / 2 &} }];

For instance:.

{ graphQ[K[3]], numberOfVertices[K[3]],
numberOfEdges[K[3]] }

{True, 3, 3}

The actual class graph as described in the Implementation section at the end of the chapter
contains all of these methods as well as many others. Some of the most important additions are
methods to make pictures of graphs. There are three that are contained in the top class, called
randomlmmersion, c i r c u l a r l m m e r s i o n , and c enterCircu lar lmmers ion . The
underlying principle of all of them is the same. If the graph has n vertices, then n points in the
plane are given explicitly and the list of ordered pairs of the graph is used to determine lines
between appropriate pairs of these points. In doing this we don't need all of the ordered pairs,
just those whose first coordinate is less than the second coordinate. For instance, the method
randomlmmersion is given as follows:

{randomlmmers i o n ,
With[

{ v e r t s = Table[{Random[], Random[]},
{ n u m b e r O f V e r t i c e s [s e l f] }] } ,

Graphics[
J o i n [{ P o i n t S i z e [0 . 0 3 5] } , Map[Point , v e r t s] ,

Map[Line[{ v e r t s [[# [[1]]]] ,
v e r t s [[# [[2]]]] }] & ,

S e l e c t [o r d e r e d P a i r s [s e l f] ,
(# [[1]] < # [[2]]) &]]]

]]&}

Here v e r t s is set equal to a table of n random points in the plane. Then Graphics [] is
called with an argument consisting of a chosen point size, a point for each entry in v e r t s and
a line for each pair of entries in v e r t s that corresponds to an ordered pair of vertices of the
graph. For instance:

Thirteen · Object-Oriented Graph Theory 437

Show[randomlmmers i o n [K [3]]] ;

The principle is the same for the other drawing messages. The argument to Graphics []
is always the same. What differs is the construction of verts . Thus:

{circularImmersion,
With[

{n = numberOfVertices[self], verts},
verts = Table[{ N[Cos[2 Pi i/n]/2],

N[Sin[2 Pi i/n]/2] },
{i, 0, n - 1}];

Graphics[
Join[{PointSize[0.035]}, Map[Point, verts],

Map[Line[{ verts[[#[[1]]]],
verts[[#[[2]]]]}]&,

Select[orderedPairs[self],
(#[[1]] < #[[2]])&]]]

]]&}
Here the vertices are located uniformly around the unit circle, with the first vertex at the point
1 on the x-axis. For instance:

Show[circularImmersion[K[3]], AspectRatio -> Automatic];

The third method, centerCircularImmersion, works in the same way, except the last
vertex is located at the origin. This doesn't work well for K [3] , since all of the vertices come
out collinear.

Show[centerCircularImmersion[K[3]], AspectRatio -> 1];

What is needed at this point is some more graphs to experiment with. That's the purpose of the
subsubclasses.

438 Part III · Knowledge Representation

2.5 Some Classes of Special Graphs

All of the special kinds of graphs to be treated here will be constructed as subsubclasses of the
three main subclasses ad j a c e n t s , edges , and ordereds . Mostly all that has to be done is to
override the method new.

2.5.1 Complete graphs

A complete graph is one in which every vertex is connected to every other vertex. Its adjacency
matrix therefore consists entirely of l's except for O's on the main diagonal. Cameron Smith
(personal communication) had the nice idea of using Listability of subtraction to describe such
a matrix as 1 - I d e n t i t y M a t r i x [n] . We use this to construct a subclass of ad j a c e n t s for
complete graphs.

Class[completeGraph, adjacents, {int},
{{new, new[super, (l-IdentityMatrix[int = #])]&}}];

The standard notation for the complete graph on n vertices is K [n] , which is introduced as an
abbreviation.

K[n_J := new[completeGraph, n]

This gives us a large collection of graphs which will be useful both in themselves and in other
constructions. For instance:

edgeLists[K[6]]

{{2 , 3 , 4 , 5 , 6 } , { 1 , 3 , 4 , 5 , 6 } , { 1 , 2 , 4 , 5 , 6 } ,
{ 1 , 2 , 3 , 5 , 6 } , { 1 , 2 , 3 , 4 , 6 } , { 1 , 2 , 3 , 4 , 5}}

orderedPairs[K[4]]

{{1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 3}, {2, 4}, {3, 1},
{3, 2}, {3, 4}, {4, 1}, {4, 2}, {4, 3}}

Show[circularImmersion[K[ll]],
AspectRatio -> Automatic];

Thirteen · Object-Oriented Graph Theory 439

2.5.2 Balanced graphs
One can think of a complete graph as one for which all vertices look the same; namely, each
vertex is connected to every other one. In a balanced graph, again all vertices look the same,
but a given vertex is connected only to certain others given by taking every second or every
third, or in general every kth vertex. The rows in the adjacency matrix of a complete graph on
n vertices can be described as starting with the table

Prepend[Table[l, {n - 1}], 0]

and rotating it to the right successively to fill out the adjacency matrix. For a balanced graph,
we can do essentially the same thing putting in l's and O's depending on whether the vertex
number is divisible by k or not. Unfortunately, just rotating such a row to the right may not
produce a symmetric matrix, so we have to symmetrize it, keeping the entries O's and l's. This
is done by a general auxiliary function, which we regard as being outside the class system.

adjust[matrix_ /;
MatrixQ[matrix, MatchQ[#, _Integer]&]] :=

Module[{mnew = matrix},
mnew = mnew -

diagonal[mnew] IdentityMatrix[Length[mnew]];
mnew = (mnew + Transpose [mnew]) ;
mnew = Map[If[(# != 0), 1, 0]&, mnew, {2}]

] /; Length[matrix] == Length[Transpose[matrix]]

In three steps, this first sets all of the diagonal entries to 0, then makes the matrix symmetric,
and finally turns all non-zero entries into l's. There are two built-in checks: that the matrix is
square and that its entries are integers.

440 Part III · Knowledge Representation

Class[balancedGraph, adjacents, {n, k},
{ {new,

(n = #1; k = #2;
new[super,

Module[{i, edges},
edges =

Table[If[Mod[i, k] == 0, 1, 0],
{i, 0, n-1}];

adjust[
Table[RotateRight[edges, i],

{i, 0, n - 1}]]]])&} }];

The table edges constructed here always has l's on the main diagonal and sometimes is not
symmetric, which is why the adjust operation is required.

Show[circularImmersion[new [balancedGraph, 9, 3]],
AspectRatio -> Automatic];

Here are pictures of the balanced graphs between (6, 2) and (9, 3). The top row consists of
the graphs that are shown at the beginning of this chapter.

Show[GraphicsArray[
Map[Show[circularImmersion[

new[balancedGraph, #[[1]], #[[2]]]],
AspectRatio -> Automatic,
DisplayFunction ->Identity]&,

Table[{i, j}, {j, 2, 3}, {i, 6, 9}], {2}],
DisplayFunction -> $DisplayFunction]];

Thirteen · Object-Oriented Graph Theory 441

2.5.3 Loops
Although we have stipulated that our graphs have no loops, it will be convenient when we
define tensor products of graphs below to pretend that there are graphs with loops. In
particular, we need the "graph" consisting of n vertices with a loop on each vertex but no other
edges. Its adjacency matrix is an identity matrix of the appropriate size.

Class[loops, adjacents, {int},
{{new, new[super, IdentityMatrix[int=#]]&}}];

orderedPairs[new[loops, 5]]
{{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}}

As expected, the program does not think that a loop is a graph.

graphQ[new[loops, 8]] => False

2.5.4 Empty graphs
We also need another seemingly strange collection of graphs; namely, those with no edges at
all. It is easiest to consider this as a subclass of edges.

Class[empty, edges, {int},
{{new, new [super, Map[({} #)&, Range[int=#]]]&}}];

emp = new[empty, 5];
edgeLists[emp] => {{}, {}, {}, {}, {}}
adj acencyMatrix[emp]
{{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0},
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}

orderedPairs[emp] => {}

442 Part HI · Knowledge Representation

2.5.5 Cyclic graphs.

A cyclic graph is one in which each vertex is connected only to the preceding and succeeding
ones. These graphs can be constructed as a subclass of ordereds .

C l a s s [c y c l i c G r a p h , o r d e r e d s , { i n t } ,
{ {new,

(i n t = #;
new[s u p e r ,

Union@@
Map[

F u n c t i o n [{ p l a c e } ,
{ { p l a c e , Mod[place , i n t] + 1 } ,

{Mod[place , i n t] + l , p l a c e } }] ,
R a n g e [i n t]]]) & } }] ;

e d g e L i s t s [n e w [c y c l i c 6 r a p h , 4]]

{{2 , 4 } , { 1 , 3 } , {2 , 4 } , { 1 , 3}}

Show[circularImmersion[new[cyclicGraph, 10]],
AspectRatio -> Automatic];

2.5.6 Partite graphs

A Kpartite graph is specified by a list of numbers n i , . . . , nk . It has n = Σ\ η vertices grouped
in blocks of sizes ni. Each vertex in a block is connected to all of the vertices not in its block.
One way to construct this graph is by starting with the complete graph on n vertices and
removing the complete graphs on each of the blocks. This requires that we be able to construct
the disjoint union (= coproduct) of the complete graphs on each of the blocks. This is
implemented in the class graph and will be discussed below. We also want a special way to
display Kpartite graphs. If there are k blocks, we locate k equal length segments symmetrically
around the unit circle and place nj points in the ith segment.

Thirteen · Object-Oriented Graph Theory 443

Class[partite, ordereds, {list},
{ {newf

(list = #;
new[super,

Complement[
orderedPairs[new[completeGraph,

Plus@@list]],
orderedPairs[
coproduct[
Sequence@@

Map [new[completeGraph, #]& ,
list]

]]])&},
{partitelmmersion,
Module[

{n = Length[list], p, verts},
p[i_] :={Cos[(2 i + 1) Pi/(2n)],

Sin[(2i+1) Pi/(2n)]};
verts =

Flatten[
Table[

(p[2i-l] +
(j/(list[[i]]-l)) (p[2i] - p[2i-l])),
{i, n}, {j, 0, list[[i]]-l}], 1];

Graphics[
Join[{PointSize[0.035]},

Map[Point, verts],
Map[
Linelivertsltiftl]]]],

verts[[#[[2]]]]}]&f
Select[orderedPairs[self],

(#[[1]] < #[[2]])&]]]]]&} }];

Here is the standard abbreviation for these graphs.

Kpartite[numbers Integer] := new[partite, {numbers}]

A Kpartite graph can of course be displayed by a circular immersion, since p a r t i t e is a
subsubclass of graph.

Show[c i r c u l a r I m m e r s i o n [K p a r t i t e [4 , 3]] ,
A s p e c t R a t i o -> Automatic] ;

444 Part IH · Knowledge Representation

But, the special drawing routine makes a nicer picture.

Show[partiteImmersion[Kpartite[4, 3]],
AspectRatio -> Automatic];

Here are two larger examples.

Show[partitelmmersion[Kpartite[3, 2, 4]],
AspectRatio -> Automatic];

Show[partiteImmersion[Kpartite[3, 2, 4, 6, 5]],
AspectRatio -> Automatic];

Thirteen · Object-Oriented Graph Theory 445
&&tàmii&<*> M*?ù«#*j!-4*m\ 4^4****»$^^

3 Products
^mf^Φ^i^^^m^^^^£>ìίί^»^,Ύyφr^J^^ ^-SÎV , ,'ϊΐ^^ίΛ*·

Products are operations on graphs that depend on more than one graph. As discussed in
Chapter 9, in a strict object-oriented programming language this can only be implemented by
sending a message to the first graph telling it to construct the product using the other graphs
given as parameters to the message. The coproduct of graphs is implemented in this way as a
method for the class graph. Of course, in Mathematica, we can perfectly well write functional
programs depending on several graphs provided we access them through other methods to
which they can respond. This technique is used for the other two products: Cartesian products
and tensor products.

3.1 Coproducts
A coproduct of graphs means their disjoint union; i.e., place them side by side with no vertices
or edges overlapping. One way to construct the coproduct of two graphs is to join together
their edge lists after adding the number of vertices of the first graph to every entry in every
edge list of the second graph. This operation can be iterated for several graphs by using Fold.
In functional form, this looks like:

446 Part III · Knowledge Representation
^ k Ä ^ ^ $*S; >*̂ <8ä§Ä«s ̂ .,Λ£ ̂ *&&w^:-w « A a ^ ^ ^ c ^ M Ä Ä ^ ^ , ΐ Λ ΐ β ^^^^W>^^1A;^\^£^^^Ä^^^_^

coproduct[graphs ?graphQ] :=
new[edges,

Fold[Join[#l, #2 + Length[#l]]&,
{},
Map[edgeLists,{graphs}]]]

However, we have chosen to add coproduct as a message to the class graph, as discussed
above, where it becomes the method:

{coproduct,
new[edges,

Fold[J o i n [# l , #2 + Length[#l]]&,
e d g e L i s t s [s e l f] ,
Map[edgeLists, {##}]]]&}

The main difference is that the Fold operation in the method starts with the edge lists of the
graph to which the message is sent rather than with { }. For instance:

Show[circularImmersion[coproduct[K[3], K[5], K[4]]],
AspectRatio -> Automatic];

3.2 Cartesian Products

The Cartesian product of graphs is described as follows: given graphs G and H, form the
Cartesian product of the sets of vertices. If G has n vertices and H has m vertices, this will be a
set with n m elements described as pairs (v, w) where v is a vertex of G and w is a vertex of H.
There is an edge in the Cartesian product of G and H from (v, w) to (ν', w') if and only if there
is a edge in G from v to vf and an edge in H from w to w\ This is an inconvenient description to
use with our representations of graphs because the vertices ultimately have to be ordered from
1 to n m. However, there is a well-known operation on matrices called the kronecker product
which does exactly the right thing to the adjacency matrices of the graphs. We define a more
general operation which is just a rearrangement and flattening of Outer. The actual operation
we want will then be given by taking the first argument to be Times.

Thirteen · Object-Oriented Graph Theory 447
^ V ^ *~> ν ̂ <*Λ»Λ *Η&&ν Ä ^ ^ ^ W . & \ ^ ^ A * M S Ì > ^

kronecker[f_, p_List, q^List] : =
Flatten[Map[Flatten,

Transpose[Outer[ff p, q], {1, 3, 2}],
{2}],

il;
Here is an example.

(matl = adjacencyMatrix[Kpartite[2, 2]]) // TableForm

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

(mat2 = adjacencyMatrix[new[balancedGraph, 4, 2]]) //
TableForm

1 0
0 1
1 0
0 1

kronecker[Times, mat1, mat2]

{{0,
{0,
{0,
{0,
{0,
{0,
{0,
{0,
{0,
{1,
{0,
{1,
{0,
{1,
{0,
{1,

o,
o,
o,
o,
o,
o,
o,
o,
1,
o,
1,
o,
1,
o,
1,
o,

o,
o,
o,
o,
o,
o,
o,
o,
o,
1,
o,
1,
o,
1,
o,
1,

o,
o,
o,
o,
o,
o,
o,
o,
1,
o,
1,
o,
1,
o,
1,
o,

o,
o,
o,
o,
o,
o,
o,
o,
o,
1,
o,
1,
o,
1,
o,
1,

, o,
, o,
, o,
, o,
, o,
, 0,
, o,
, o,
, o,
, 1 /
, o,
/ If
f 0,
f If
f 0,
f If

Of
o,
o,
o,
Of
Of
o,
o,
1,
o,
1,
o,
1,
Of
1,
Of

Of
1,
Of
1,
Of
1,
o,
1,
Of
o,
o,
Of
o,
Of
o,
Of

1,
o,
1,
o,
1,
o,
1,
o,
o,
o,
o,
o,
o,
o,
o,
o,

o,
1,
o,
1,
o,
1,
o,
1,
o,
o,
o,
o,
o,
o,
o,
o,

1,
o,
1,
o,
1,
o,
1,
o,
o,
o,
o,
o,
o,
o,
o,
o,

o,
1,
o,
1,
o,
1,
o,
1,
o,
o,
o,
o,
o,
o,
o,
o,

1,
o,
1,
o,
1,
o,
1,
o,
o,
o,
o,
o,
o,
o,
o,
o,

o,
1,
o,
1,
o,
1,
o,
1,
o,
o,
o,
o,
o,
o,
o,
o,

1},
0},
1},
0},
1},
0},
1},
0},
0},
0},
0},
0},
0},
0},
0},
0}}

448 Part III · Knowledge Representation

A careful look at this 16 x 16 table shows that if it is divided into 4 x 4 blocks, then in each
position where there is a 1 in mat 1, there is a copy of mat 2 in the kronecker product.

Using kronecker, the Cartesian product of many graphs is constructed in the same
abstract form as the coproduct, involving Fold. The differences are that the function which is
folded is kronecker [Times, #1, #2] & rather than Join [#1, #2 + Length [# 1]] &,
the starting value is { {1} } rather than { }, and the operation is applied to adjacency matrices
rather than edge lists. Note that we omit the predicate graphQ in the following because we
want to use the construction for graphs with loops, which would be ruled out by the predicate.

cartesianProduct[graphs] :=
new[adjacents,

Fold[kronecker[Times, #1, #2]&,
{{1}}/
Map[adj acencyMatrix, {graphs}]]]

This could, but won't, be turned into a method for the class graph. Here are a couple of
examples.

Show[circularImmersion[cartesianProduct[K[3], K[4]]],
AspectRatio -> Automatic];

Show[circularImmersion[
cartesianProduct[K[2], K[3], K[4]]],

AspectRatio -> Automatic];

Thirteen · Object-Oriented Graph Theory 449

3.3 Tensor Products
The tensor product of two graphs has the same vertices as their Cartesian product, but edges
are introduced in a different way. If G has n vertices and H has m vertices, then the set of
vertices has n m elements described as pairs (v, w) where v is a vertex of G and w is a vertex of
H. There is an edge in the tensor product of G and H from (v, w) to (ν', w') if and only if there
is an edge in G from v to vf and w = w', or there is an edge in H from w to w' and v = v'. This
construction is why we want to have the illegitimate class of loops because the edges of the
first kind look like the edges in the Cartesian product of G with loops only on the vertices of H,
and conversely for the edges of the second kind. This leads to the following simple
implementation.

tensorProduct[g_?graphQ, h_?graphQ] :=
new[ordereds,

Union[
orderedPairs[
cartesianProduct[

g, new[loops, numberOfVertices[h]]]],
orderedPairs[
cartesianProduct[

new[loops, numberOfVertices[g]],h]]]];

We have implemented the case of a tensor product of two graphs. The general case can be
handled in a generic way.

450 Part III · Knowledge Representation

tensorProduct[graphs PgraphQ] :=
Fold[tensorProduct, new[empty, 1], {graphs}];

As with the Cartesian product, this could, but also won't, be turned into a method for the class
graph.

Here are some examples.

Show[circularlmmersion[tensorProduct[K[3], K [4]]] ,
AspectRatio -> Automatic] ;

It is instructive to compare the Cartesian product and the tensor product of graphs that consist
just of a single edge.

Show[GraphicsArray[{
Show[circularlmmersion[

cartesianProduct[K[2], K[2]]],
AspectRatio->l, DisplayFunction->Identity],

Show[circularImmersionitensorProduct[K[2], K[2]]],
AspectRatio->l, DisplayFunction->Identity]}],

DisplayFunction -> $DisplayFunction];

Finally, here is an example of a tensor product of three graphs.

Thirteen · Object-Oriented Graph Theory 451

Show[circularImmersioni
tensorProduct[K[2]f K[3], K[4]]]f

AspectRatio -> Automatic];

4 Other Constructions in the Class graph
The top class graph knows about a number of other constructions for graphs. Those presented
here are all constructions that start with a single graph and produce another related graph.

4.1 Complement of a Graph
The complement of a graph is the graph on the same vertices as the original graph which has
an edge wherever the original graph does not have an edge. In terms of ordered pairs, the
ordered pairs of the original graph are subtracted from the ordered pairs of a complete graph
of the same size. This is implemented directly as a method in the class graph.

{complement,
new [ordereds,

Complement[
orderedPairs[

new[completeGraph, numberOfVerticesfself]]],
orderedPairs[self]]]&}

Recall that the complement construction is used in the definition of partite graphs. Here is an
example that has interesting threefold symmetry

452 Part HI · Knowledge Representation

Show[circularImmersion[
complement[tensorProduct[K[3], K [4]]]],

AspectRatio -> Automatic];

4.2 Cones, Stars, and Wheeh
The cone on a graph is the graph given by joining a new vertex to all the vertices of the original
graph. In terms of ordered pairs, it consists of the ordered pairs of the original graph together
with all pairs consisting of an original vertex together with a fixed new vertex. This is also
implemented directly as a method for the class graph.

{cone,
Module[{n = numberOfVertices[self], i},

new[ordereds,
Union[orderedPairs[self],

Table[{if n + 1}, {i, n}],
Table[{n + 1, i}, {if n}]]]]&}

Here are some examples.

Show[centerCircularImmersion[cone[K[5]]],
AspectRatio -> 1] ;

Thirteen · Object-Oriented Graph Theory 453

A brief command can produce a graph with striking symmetries.

Show[centerCircularImmersion[
cone[cartesianProduct[K[3], K[3]]]],

AspectRatio -> 1];

We use the cone construction to describe stars and wheels. Namely, stars are cones on
empty graphs and wheels are cones on cyclic graphs. Both of these could be defined as new
classes, but it is easy enough to just describe them directly.

star[n_] := cone[new[empty, n]]
Show[centerCircularImmersion[star[5]], AspectRatio->l];

wheel[n_] := cone[new[eyelicGraph, n]];
Show[centerCircularImmersion[wheel[12]],

AspectRatio->l];

454 Partili · Knowledge Representation
^ ^ ^ ' ^ ^ « ^ * « ^ ^ ^ % ^ Φ « ^

4.3 Induced Subgraphs
Given a graph and a subset of the vertices, there is an induced subgraph on the subset in which
there is an edge between two vertices in the subset if and only if there is an edge between them
in the original graph. This is implemented as a method in the class graph just by selecting the
appropriate rows and columns of the adjacency matrix.

{inducedSubgraph,
Function[{subset},
new[adjacents,

Transpose!
Transpose[adjacencyMatrix[self][[subset]]]
[[subset]]]]]}

For instance, the graph induced on any subset of a complete graph is again a complete graph.

adjacencyMatrix[inducedSubgraph[K[5], {1, 3, 5}]]

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}

Since the subset is actually given as a list, this can be used to generate a permutation of a
graph.

adj acencyMatrix[
inducedSubgraph[new[star, 5],

{6, 5, 4, 3, 2, l}]]//TableForm

0 1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Now the first, rather than the last, vertex is connected to all the other vertices.

4.4 Incidence Matrix of a Graph
The incidence matrix of a graph is a (normally) non-square matrix whose rows correspond to
the edges of the graph and whose columns correspond to the vertices. A 1 in position (i, j)
means that the jth vertex is one of the ends of the ith edge. Thus, the number of rows is the

Thirteen · Object-Oriented Graph Theory 455

number of edges, the number of columns is the number of vertices, each row has exactly two
l's in positions corresponding to its two ends, and a column has as many l's as there are edges
meeting at that vertex. This is implemented as a method of the class graph.

{incidenceMatrix,
Map[ReplacePart[

Table[0,{numberOfVertices[self]}],
1, Partition[#f 1]]&,

Select[orderedPairs[self],
<#[[!]] < #[[2]])&]]& }

To see how this works, consider the complete graph on 4 vertices. It has six edges as the
following shows.

Select[orderedPairs[K[4]], (#[[1]] < #[[2]])&]

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

Since there are 4 vertices and 6 edges, the incidence matrix is a 6 x 4 matrix. The code produces
rows of O's of length 4 and replaces certain entries by l's. The first ordered pair {1, 2} means
that the first row of this matrix should have l's in positions 1 and 2, etc.

incidenceMatrix[K[4]] // TableForm

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

It would be possible to treat the incidence matrix as another way to represent graphs and
add it as a fourth subclass under the class graph. The other three subclasses would then have
to have methods to calculate the incidence matrix from their data and the incidence matrix
class would have to know how to calculate the other three representations from its data. We
leave this as an exercise.

4.5 Line Graphs

The line graph L(G) of a graph G has a vertex for each edge of G and there is an edge in L(G)
from a vertex v to a vertex w if and only if the two edges of G corresponding to v and w share
a common vertex in G. Thus, the number of vertices of L(G) is the number of rows of the

45o Part III · Knowledge Representation

incidence matrix of G and row i and row j are joined by an edge in L(G) if and only if there is
some column of the incidence matrix that has a 1 in both of these rows. The way to detect
when that occurs is to multiply the incidence matrix of G by its transpose and look to see if the
(i, j) entry there is non-zero. This leads to a square integer matrix which, after adjustment, is
the adjacency matrix of the desired graph. The algorithm is implemented as a method of the
class graph.

{lineGraph,
With[{im = incidenceMatrix[self]},

new[adjacents, adjust[im . Transpose[im]]]]&}

The complete graph on n vertices has n(n - l) /2 edges, so the line graphs for these graphs
grow quickly in size.

Show[circularImmersion[lineGraph[K[5]]] ,
AspectRatio -> Automatic] ;

The line graph of a graph of the form Kpartite[m, n] has m n edges. Pictures of them
have interesting symmetries.

Show[circularImmersionilineGraph[Kpartite[3, 4]]] ,
AspectRatio -> Automatic] ;

The line graph of a cycle is a cycle of the same length, except that two of the vertices are
permuted.

Thirteen · Object-Oriented Graph Theory 457
<#&#mkJ£&~ '-» -

Show[circularImmersioni
lineGraph[new[cyclicGraph, 5]]]

AspectRatio -> Automatic];

5 Some Graph Algorithms
There are thousands of algorithms that use graphs in one way or another. Some of them are
just concerned with properties of graphs, and that is all that we care about here. In principle,
such algorithms belong in the class graph, but then the class becomes unwieldy, so we have
put a few of them there and implemented a few others outside the class in functional style.

5.1 Graph Isomorphism
In principle, every class should have a method to determine when two objects of the class are
isomorphic. In our case, although objects may belong to different classes, everything is
ultimately a graph, so it is sufficient to be able to decide if two graphs are isomorphic. (See the
discussion in Chapter 9, Section 4.4.) We cannot compare them directly as objects since they
will have different identifying numbers, and may belong to different subclasses, but we can,
for instance, compare their adjacency matrices.

5.1.1 Isomorphism predicate
Isomorphism testing will be implemented in functional style first, to understand what is going
on. Graphs are isomorphic if there is some bijection between their vertices that preserves the
property of being connected by an edge. This is equivalent to saying that graphs G and H are
isomorphic if and only if there is some permutation of the vertices of H such that the adjacency
matrix of G is the same as the adjacency matrix of the graph induced from H by the
permutation. Here is a function that checks if a given permutation yields such an
isomorphism.

isomorphismQ[gl_?graphQ, g2_?graphQ, p__List] : =
SameQ[adj acencyMatrix[gl],

adj acencyMatrix[inducedSubgraph[g2, p]]] / ;
Length[p] == numberOfVertices[g2];

458 Part III · Knowledge Representation

For instance:

isomorphismQ[K[5], K[5], {1, 5, 3, 2, 4}] => True
isomorphismQ[Kpartite[2, 2], Kpartite[2, 2],

{1, 3, 2, 4}] => False

5.1.2 Finding isomorphisms

To determine if two graphs are isomorphic, it is necessary to search through all possible
permutations of the vertices to see if some permutation yields an isomorphism. Of course, the
number of permutations grows exponentially with the number of vertices, so such a search
should be avoided if possible. Clearly, if the numbers of vertices of the two graphs are
different, then they cannot be isomorphic, so the number of vertices is an isomorphism
invariant of graphs. There are many other such invariants. We consider just one of them here:
the degree sequence. The degree of a vertex is the number of edges that meet at that vertex. In
our representation, the degree of vertex i is just the number of l 's in the ith row of the
adjacency matrix. The degree sequence of a graph is the decreasing sequence of degrees of
vertices of the graph.

degreeSequence[g_graph] :=
R e v e r s e [S o r t [

Map[(Apply[Plus , #])&, ad jacencyMatr ix [g]]]] ;

Actually, this is implemented as a method in the class graph.

d e g r e e S e q u e n c e [K p a r t i t e [2 , 3 , 4]]

{7 , 7 , 6 , 6 , 6 , 5 , 5 , 5 , 5}

The output means that there are two vertices of degree 7, three of degree 6, and four of degree
5. This sequence is clearly an isomorphism invariant.

Since searching for an isomorphism is a lengthy procedure, some safeguards are built in to
check beforehand if the graphs are clearly non-isomorphic. Any number of invariants could be
used, but we only consider the two mentioned above; namely, the number of vertices and the
degree sequence. The procedure checks if these two invariants are the same before it embarks
on searching through all permutations to try to discover an isomorphism. If the graphs are not
isomorphic, a message giving the reason is printed and the empty list is returned. If they are,
then a specific permutation is returned which realizes the isomorphism. Functionally, we can
implement this using the usual message reporting facilities.

Graph::vertices = "Different numbers of vertices";
Graph::degreeSequence = "Different degree sequences·";
Graph: : isomorphism = "The graphs are not isomorphic";

Thirteen · Object-Oriented Graph Theory 459

The function f ind I so will first test if the number of vertices and the degree sequences are the
same, using a Which clause to report failure of these tests. If they both succeed, then it
proceeds to look at all permutations of the vertices of the first graph and Scan them using the
(written out) predicate isomorphismQ from above, returning the first permutation it finds
that works. If none of them work, it reports that the graphs are not isomorphic.

findIso[gl_?graphQ, g2_?graphQ]:=
Module[{iso},

Which[
numberOfVertices[gl] =!= numberOfVertices[g2],

Message[Graph: :vertices];{},
degreeSequence[gl] =!= degreeSequence[g2],

Message[Graph: :degreeSequence] ; { },
True,

iso =
Scan[If[

adj acencyMatrix[gl] ===
adj acencyMatrix[

inducedSubgraph[g2, #]],
Return[#]]&,

Permutations[
Range[numberOfVertices[gl]]]];

If[iso =!= Null, iso,
Message[Graph:: isomorphism];{}]]];

The f indlsomorphism method of the class graph is just the object-oriented version of this
operation. It doesn't use the Message mechanism, but just prints the appropriate string.

findIsomorphism[K[4], K[3]]

Different numbers of vertices
{}
findlsomorphism[Kpartite[6, 4], Kpartite[5, 5]]

Different degree sequences.
{}
findlsomorphism[Kpartite[3, 2], Kpartite[2, 3]]

{3, 4, 5, 1, 2}

460
- v ^\^^^mmmìì^^f'-^^,'^ ί

Part HI · Knowledge Representation

This result means that if the vertices of the second graph are rearranged in the order {3,4,5,1,
2} then it becomes isomorphic to the first graph (which, of course, is obvious).

findIsomorphism[Kpartite[3, 3],
tensorProduct[K[2], K[3]]]

The graphs are not isomorphic.

{}
In the preceding example, both graphs have six vertices of degree three. The search space

consists of all 720 permutations of {1, 2, 3, 4, 5, 6}. There may be other graphs that have six
vertices of degree three. Here is an attempt to construct one.

newgraph =
With[{edge = {0, 0, 1, 1, 1, 0}},

new [adj acents,
Table[RotateRight[edge, i], {i, 0, 5}]]];

We can make a picture of all three graphs to see if two of them are obviously isomorphic.

Show[GraphicsArray[
Map[Show[circularImmersion[#],

AspectRatio -> Automatic,
DisplayFunction -> Identity]&,

{ newgraph, Kpartite[3, 3],
tensorProduct[K[2], K[3]]}]],

DisplayFunction -> $DisplayFunction];

Clearly, these graphs all have six vertices of degree 3. (In all cases, the center is not a vertex.)
The first and the third both contain two triangles, so we check if they are isomorphic.

findIsomorphism[tensorProduct[K[2], K[3]], newgraph]

{1, 3, 5, 4, 6, 2}

Thirteen · Object-Oriented Graph Theory 461

5.2 Maximum Cliques
A c/u/we of size k in a graph G is a subset of k vertices of G whose induced subgraph is a
complete graph. Finding the largest clique in a graph is very similar to finding isomorphisms
between graphs. One can define a predicate that checks if a given subset is a clique.

cliqueQ[g_?graphQ, clique_List] :=
SameQ[K[Length[clique]],

inducedSubgraph[g, clique]];
For instance:

cliqueQ[K[5], {1, 2, 3, 4, 5}] => True
cliqueQ[Kpartite[3, 3], {1, 2, 3, 4}] => False

To find a maximum clique in a graph one has to scan all subsets of the vertices, ordered by
decreasing size, to find the first one which is a clique. Recall the construction of all subsets of a
set.

subsets[list_List] :=
Sort[Map[Flatten,

Distribute[Map[({{}, {#}})&, list], List]]];
Then the following will find a maximum clique. Note that this algorithm always succeeds since
a single vertex is a clique.

maximumClique[g_graph] :=
Scan[(If[cliqueQ[g, #], Return[#]])&,

Reverse[subsets[Range[numberOfVertices[g]]]]];
MaximumClique is actually implemented as a method for the class graph. In doing so, we

have spelled out the predicate explicitly although it could have been included as a separate
method.

{maximumClique,
Scan[

I f [SameQ[
adj acencyMatrix[

new[completeGraph, Length[#]]],
adj acencyMatrix[inducedSubgraph[self, #]]],

Return[#]]&,
Reverse[subsets[Range[numberOfVertices[self]]]]]&}

462 Part III · Knowledge Representation

Another way to see that the graph newgraph constructed in the preceding section is not
isomorphic to the graph Kpart i t e [2 , 3] is to find maximum cliques in each. Since they
have different sizes, the graphs must be non-isomorphic.

{ maximumClique[Kpartite[2, 3]] , maximumClique[newgraph] }

{{2, 5 } , {2, 4, 6}}

However, tensorProduct [K [2] , K [3]] also has a maximum clique with three vertices (as
it must).

maximumClique[tensorProduct[K[2], K[3]]]

{4, 5, 6}

53 Minimum Vertex Covers

A vertex cover of a graph G is a subset of the vertices of G such that every edge has (at least) one
of its vertices in the subset. A moment's reflection should convince you that two vertices not in
a given cover cannot be connected by an edge in G, since in that case, the subset would not be
a cover. Thus in the complementary graph of G, the vertices not in a clique define a cover. A
minimum vertex cover of G is therefore the complement of a maximum clique in the
complementary graph of G.

minimumVertexCover[g_?graphQ] :=
Complement! Range[numberOfVertices[g]],

maximumClique[complement[g]]];
minimumVertexCover[tensorProduct[K[2], K[3]]]

{1/ 2, 4, 6}

This, and the following algorithms, have not been added as methods to the class graph.

5.4 Maximum Independent Sets of Vertices

An independent set of vertices in a graph G is a subset of the vertices such that no two vertices
in the subset are joined by an edge. If V is a vertex cover of a graph, then the complement of V
is an independent set. Hence, a maximum independent set is the complement of a minimum
vertex cover.

Thirteen · Object-Oriented Graph Theory

maximumIndependentSet[g_?graphQ] :=
Complement! Range[numberOfVertices[g]],

minimumVertexCover[g]];
maximumlndependentSet[tensorProduct[K[2], K[3]]]

{3, 5}

5*5 Hamiltonian Cycles
A Hamiltonian cycle of a graph G is a cycle in G that visits every vertex exactly once. As with
finding isomorphisms and maximum cliques, we first need a predicate to determine if a
particular permutation of the vertices determines a Hamiltonian cycle. All that is necessary is
that there be edges in G between the successive vertices of the permutation together with an
edge from the last entry of the permutation to the first.

hamiltonianCycleQ[g_?graphQ, vert_List] :=
Complement[

Partition[Append[vert, First[vert]], 2, 1],
orderedPairs[g]] == {} /;

Sort[vert] === Range[numberOfVertices[g]];

Consider the graph Kpartite [3, 3].

Show[partiteImmersion[Kpartite[3, 3]],
AspectRatio->l];

The order of vertices here is up the right side and down the left.

hamiltonianCycleQ[Kpartite[3, 3], {6, 5, 4, 3, 2, 1}]

False

hamiltonianCycleQ[Kpartite[3, 3], {1, 4, 2, 5, 3, 6}]

True

So there is a Hamiltonian cycle in Kpartite [3 , 3] .

463

464 Part HI · Knowledge Representation

Next we want to construct a procedure that yields such a cycle if there is one, and otherwise
returns the empty list.

f indHamil tonianCycle[g_?graphQ] :=
With[

{ path =
Scan[(I f [hami l ton ianCyc leQ[g , #] , R e t u r n [#]]) & ,

Permutat ions [R a n g e [n u m b e r O f V e r t i c e s [g]]]] } ,
I f [p a t h === N u l l , { } , pa th]]

Now instead of guessing the cycle above, we can use the program to find it.

findHamiltonianCycle[Kpartite[3, 3]]

{1, 4, 2, 5, 3, 6}

Many graphs don't have Hamiltonian cycles.

f i n d H a m i l t o n i a n C y c l e [K p a r t i t e [2 , 3]] => {}

But many do.

f i n d H a m i l t o n i a n C y c l e [t e n s o r P r o d u c t [K [2] , K [3]]]

{ 1 , 2 , 3 , 6, 5, 4}

Six vertices have 720 permutations, which is a feasible number to search, but seven vertices
have 5040, all of which would have to be searched for a graph which doesn't have a
Hamiltonian cycle, like K p a r t i t e [3 , 4] . For those that do, like t e n s o r P r o d u c t [K [3] ,
K [3]] , it might be possible for the program to find one if it didn't have to first build the list
of all 362880 permutations and then search that. What is needed is an operation
"nextPermutation" to generate permutations and test them one at a time.

6 Exercises

1. Define the class empty as a subclass of ad j a c e n t s .

2. Add a fourth subclass, i n c i d e n t s , to the class graph and fill in all of the required
details, as described in Section 2.3.

Thirteen · Object-Oriented Graph Theory 465

3. i) Describe the tensor product of several graphs by a single operation analogous to the
descriptions of the coproduct and Cartesian product.

ii) Prove that the tensor product is the complement of the Cartesian product and use
this to give a different implementation of tensor products.

4. Look up Skiena's method [Skiena] to represent graphs, which includes instructions for
drawing each graph. Consider the three constructions-coproduct, Cartesian product,
and tensor product-in this light. Given the drawing instructions for graphs G and H,
what should the drawing instructions be for coproduct [G, H], c a r t e s i a n
Product[G, H], and tensorProduct[G, H]?

5. What happens to the three kinds of products for the case of reflexive graphs; i.e., graphs
in which it is assumed that there is always at least a loop on every vertex. The whole
theory can be redone for this case. In particular, empty graphs for this case would be
what we have called loops here. Work out a way to make drawings of such graphs.

7 Implementation
A complete package implementing all of the commands developed here will be found on the
diskettes distributed with this book. It is called GraphTheory .m. Essentially everything there
has been discussed here already except for the complete form of the class graph, so we
include that here.

Class[graph, Object, {},
{ {graphQ,

With[{matrix = adjacencyMatrix[self]},
MatrixQ[matrix, (#===0 || #===1)&] &&
(matrix === Transpose[matrix]) &&
(diagonal[matrix].diagonal[matrix]===0)]&},

{adjacencyMatrix, NIM[self, adjacencyMatrix]&},
{edgeLists, NIM[self, edgeLists]&},
{orderedPairs, NIM[self, orderedPairs]&},
{numberOfVertices, Length[edgeLists[self]]&},
{numberOfEdges,
Length[Flatten[edgeLists[self]]] / 2 &} }];

{incidenceMatrix,
Map[ReplacePart[

Table[0, {numberOfVertices[self]}],
1, Partition!#, 1]]&,

Select[orderedPairs[self],
(#[[1]] < #[[2]])&]]&},

466 Part HI · Knowledge Representation
^#pm t ***?*&«; -m

{coproduct,
new[edges,

Fold[Join[#l, #2 + Length[#l]]&,
edgeLists[self],
Map[edgeLists, {##}]]]&},

{complement,
new [ordereds,

Complement[
orderedPairs[
new[completeGraph, numberOfVertices[self]]],
orderedPairs[self]]]&},

{cone,
Module[{n = numberOfVertices[self], i},

new [ordereds,
Union[orderedPairs[self],
Table[{i, n + 1}, {i, n}],
Table[{n + 1, i}, {i, n}]]]]&},

{lineGraph,
With[{im = incidenceMatrix[self]},

new[adjacents, adjust[im . Transpose[im]]]]&},
{randomlmmers ion,
With[

{verts = Table[{Random[], Random[]},
{numberOfVertices[self]}]},

Graphics[
Join[{PointSize[0.035]}, Map[Point, verts],

Map[Line[{verts[[#[[1]]]],
verts[[#[[2]]]]}]&,

Select[orderedPairs[self],
(#[[!]] < #[[2]])&]]]]]&},

{circularlmmersion,
With[

{n = numberOfVertices[self], verts},
verts = Table[{N[Cos[2 Pi i/n]/2],

N[Sin[2 Pi i/n]/2] },
{i, 0, n - 1}];

Graphics[
Join[{PointSize[0.035]}, Map[Point, verts],

Map[Line[{ verts[[#[[1]]]],
verts[[#[[2]]]]}]&,

Select[orderedPairs[self],

Thirteen · Object-Oriented Graph Theory 467

(#[[1]] < #[[2]])&]]]]]&},
{ centerCircularImmersion,
Module[{n = numberOfVertices[self], verts},

verts =
Append[Table[{N[Cos[2 Pi i/(n-l)]/2],

N[Sin[2 Pi i/(n-l)]/2]},
{i, (n-1)}], {0, 0}];

Graphics[Join[
{PointSize[0.035]},
Map[Point, verts],
Map[Line[{verts[[#[[l]]]], verts[[#[[2]]]]}]&,

Select[orderedPairs[self],
(#[[1]] < #[[2]])&]]]]]&},

{ degreeSequence,
Reverse[Sort[

Map[(Apply[Plus, #])&,
adjacencyMatrix[self]]]]&},

{ inducedSubgraph,
Function[{subset},

new[adjacents,
Transpose[Transpose[
adjacencyMatrix[self][[subset]]

][[subset]]]]]},
{ max imumC 1 ique,

Module[{temp},
Scan[If[SameQ[

adj acencyMatrix[
new[completeGraph, Length[#]]],

adj acencyMatrix[
temp = inducedSubgraph[self, #]]],

Return[#], delete[temp]]&,
Reverse[subsets[

Range[numberOfVertices[self]]]]]]&},
{ findlsomorphism,

Function!{gh},
Module[{iso, temp},

Which[
numberOfVertices[self] =!=
numberOfVertices[gh],

Print["Different numbers of vertices"];{},
degreeSequence[self] =!=

degreeSequence[gh],

Part III · Knowledge Representation

Print["Different degree sequences·"];{},
True,

iso =
Scan[(If[adjacencyMatrix[self] ===

adj acencyMatrix[
temp = inducedSubgraph[gh, #]],

Return[#],
delete[temp]])&,

Permutations[
Range[numberOfVertices[self]]]];

If[iso =!= Null, iso,
Print[
"The graphs are not isomorphic·"];{}]]]]}

CHAPTER

Differ entiab le
Mappings

1 Introduction
The preceding two chapters covering Polya's Pattern Inventory and graph theory involve
finite, discrete mathematical structures whose representations in terms of numbers-in-a-
computer are probably as concrete a presentation of these structures as can be given. Such
finite structures don't require Mathematical symbolic powers; they can be and have been
programmed in lower level languages. In this chapter and the next one we will treat infinite,
continuous structures associated with differentiable mappings. There is no way to directly
realize such constructs in a computer other than in terms of symbolic representations of the
basic entities. This is exactly the way that Mathematica handles topics like symbolic
differentiation, integration and differential equations, and this is what will be used here.

The main theme of this chapter is the Jacobian of a differentiable mapping and its use in the
tangent mapping associated with a differentiable mapping. In Chapters 3 and 5 there were
problems concerning Jacobians of differentiable transformations. These will be investigated
here in a much more systematic fashion. There are two packages named
Dif f erentiableMappings .m and MappingGraphics .m that contain all of the commands
in this chapter. They have been placed in a directory named Geometry which is a subdirectory
of MmPackages. On my machine, this directory has been placed in a top level directory named
MathematicaData. The value of $Path has to be changed using the following command so
that Mathematica can find these packages. (Note that the name of the hard disk on my machine
is HardDisk Also note the quotation marks. To make a permanent change, this line has to be
put in the init.m file.)

469

470 Part HI · Knowledge Representation

AppendTo[$Path, "HardDisk:MathematicaData:MmPackages"]

{"HardDisk:Mathematica 2.2 Enhanced:Packages",
"HardDisk:Mathematica 2.2 Enhanced: Packages:Startup", ":",
"HardDisk:MathematicaData:MmPackages"}

Once this is done, the packages can be loaded when they are needed using the Needs
command with an argument of the form Needs ["Geometry" PackageName" "]

1.1 Types in Mathematica

Types are discussed in Chapter 5 where the basics types Symbol, Integer, and Real are
identified, as well as the built-in type List . As discussed there, any head of an expression can
be regarded as a type. This is certainly the case for those heads that just hold their arguments
together without processing them, such as List , Graphics, Graphics3D, as well as the user-
defined types that were introduced in the last two chapters such as group for groups, ge for
group elements, graph for graphs, etc. Mathematica uses the term object to refer to expressions
with given heads; e.g., graphics objects are expressions with head Graphics. Thus it makes
sense to regard a group, for instance, as an object of type "group." In type theory functions
have types determined by the types of their arguments and the type of their output [Mitchell].
Thus a function whose argument is of type A and whose output is of type B is said to have
type A —> B. Note that Mathematica does provide the facility to restrict the application of a
function to arguments with a given head by the construction f [x_head] : = expr. If expr
has some other head headl, then we can say that f has type head —» headl. In this chapter,
there are two kinds of entities under consideration: the spaces on which differentiable
mappings act and the mappings themselves. Our type theory will provide one type for the
spaces and another type for the mappings.

2 Differentiable Mappings
The differentiable mappings we are concerned with are mappings between domains or regions
in finite dimensional, real vector spaces. There are various ways in which one might try to
describe domains in an n-dimensional space; for instance, by inequalities, but any such
treatment leads inevitably to great complications. Thus we assume here that our objects are
just the whole n-dimensional spaces themselves. Such a space will be described by a list of n
coordinates, {x, y, z, . . .}. The type of the objects under discussion therefore is L i s t . To
describe a differentiable mapping between two such spaces we have to specify what the spaces
are and then give rules telling how points in the first space are mapped to points in the second.
Differentiable mappings will therefore be expressions of the form

Fourteen · Differentiable Mappings

mapping[oldvariables, rules, newvariables]

We regard mapping as a type, and expressions of this form as objects of type mapping. For
instance,

mapping[{x, y } f {χΛ2 - y~2, 2 x y } , {u, v}]

represents the mapping from the x-y-plane to the u-v-plane given by the coordinate functions

u = x2 - y2 and v = 2 x y .

Thus, the rules are a list of expressions describing how the new variables are functions of the
old variables. Since a mapping consists of three lists, we could say that its type is the product
type

List X List X List,

except that there are implicit restrictions; namely, the lengths of the second and third
components should be the same and the first and third components should consist just of
variables, so mapping is actually a subtype of the above product type.

2.1 Differentiable Mappings, Jacobians,
Inverses and Equality

If the package Dif f erentiableMappings .m is loaded using the following command, then
all of the operations introduced in this section are automatically made available. Alternatively,
they can be evaluated one at a time.

Needs["Geometry"DifferentiableMappings""]

The three components of a mapping can be extracted by functions called dorn (for the list of
domain variables), rules , and cod (for the list of codomain variables). We expect ru les to be
a list of expressions in the domain variables, whose length equals the length of the list of
codomain variables, thought of as determining each codomain variable as a function of the
domain variables, as in the example above. These extractors are defined in the obvious way.

dorn [map_mapping] : = map [[1]] ;
rules[map_mapping] : = map[[2]];
cod[map_mapping] : = map[[3]];

471

472 Part III · Knowledge Representation

In the preceding chapter on graph theory we were able to construct a predicate graphQ
which served as a formal definition of a graph in Mathematica, but in the case of differentiate
mappings it does not seem possible to write down anything more than the most trivial clauses
in such a check. Certainly, a formal definition seems unattainable.

mappingQ[map_mapping]:=
Length[map] = = 3 &&
Depth[dorn[map]] == Depth[cod[map]] == 2 &&
L e n g t h [r u l e s [m a p]] == L e n g t h [c o d [m a p]] ;

Our main interest is in constructions on mappings. One such construction is the operation
inversemap that returns an object of the same type which is the inverse of the given mapping
(if it exists). Thus i n v e r s e m a p has type mapping —> mapping. Actually, from the
implementation using So lve , a given mapping may have several inverses so it would be more
accurate to describe the type as mapping —> Lis tOf Mappings. In fact, what we have really
constructed is a list of left inverses with respect to the composition operation defined below.

inversemap [m_mapping] : =
With[{answers = Solve[Thread[rules[m] == cod[m]], dom[m]]},

Map[mapping!cod[m], #, dom[m]]&, dom[m] /· answers]];
As a very simple illustrative example (not requiring any extra simplification), we find the
inverse mappings for the squaring mapping between 1-dimensional spaces.

mp = m a p p i n g ! { x } , { x A 2 } , { u }] ;
mplnv = inversemap[mp]

{ m a p p i n g ! { u } , { - u A (l / 2) > , { x }] , m a p p i n g ! { u } , { u A (l / 2) } , {x}]}

Thus, if u = x2 , then there are two inverses given by x = ±Sqrt [u] .
Now, whenever possible, we want an equality test that determines if two objects of a given

type are the same. The test for differentiable mappings is called i n t e n t i o n a l E q u a l Q , the
term intentional suggesting that we do not compare values of two mappings, but rather
compare the expressions determining the mappings.

intentionalEqualQ[ml_mapping, m2_mapping] : =
(dom[ml] == dom[m2]) &&
(cod[ml] == cod[m2]) &&
(Simplify[rules[ml] - rules[m2]] ===
Table[0, {Length[cod[ml]]}]);

i n t e n t i o n a l E q u a l Q is an operation returning an object of type Boole (although there is no
type by this name in Mathematica), i.e., True or F a l s e , so i n t e n t i o n a l E q u a l Q has type
mapping x mapping —> Boole .

Fourteen · Differentiable Mappings 473

2.2 Compositions and Identity Mappings
An important feature of mappings is that they can be composed provided the codomain of the
first mapping is the same as the domain of the second. Furthermore, for any list of variables,
there is an identity mapping from the domain represented by those variables to itself, which
serves as an identity for composition. identityMapping is an operation taking a list as
argument and returning a mapping, so its type is clearly L i s t —» mapping, while
composition is an operation taking a pair of mappings and returning a mapping, so its type
is approximately mapping x mapping -> mapping. Actually, its domain type is the
subtype of mapping x mapping consisting of those pairs such that the codomain of the first
equals the domain of the second.

composition[mapl_mappingf map2_mapping] :=
mapping[dom[mapl],

rules[map2] /. Thread[cod[mapl] -> rules[mapl]],
cod[map2]] /;

cod[mapl] === dom[map2];
identityMapping[var_List] := mapping[var, var, var]

To understand the composition rule, consider the following example:

mapl = mapping!{x, y}, {χΛ2 + y"2, -2 x y}, {u, v}];
map2 = mapping[{u, v}, {u + v, u - v}, {r, s}];

Then
rules[map2] => {u + v, u - v}
Thread [cod [mapl] -> rules [mapl]] => {u -> x2 + y2, v -> -2 x y}
rules[map2] /. Thread[cod[mapl] -> rules[mapl]]
{x2 - 2 x y + y2, x2 + 2 x y + y2}

Thus, the rules for a composed mapping are given by substituting the formulas for mapl into
the formulas for map2. If composition is evaluated for mapl and map2, then interestingly
the rules are factored. We also check the value of mappingQ and try an identity mapping.

composition[mapl, map2]
mapping[{x, y}, {x2 - 2 x y + y2, x2 + 2 x y + y2}, {r, s}]
mappingQ[composition[mapl, map2]] => True
identityMapping[{x, y, z}]
mapping[{x, y, z}, {x, y, z} , {x, y, z}]

474 Part III · Knowledge Representation

We can use these operations to check that the two mappings in mplnv are left inverses to mp
with respect to composition.

Map[intentionalEqualQ[
composition!#, mp], identityMapping[cod[mp]]]&,

mplnv] => {True, True}

However, only one of them is a right inverse to mp; namely, the second one.

Map[intentionalEqualQ[
composition[mp, #]//PowerExpand,
identityMapping[dom[mp]]]&,

mplnv] => {False, True}

2.3 The Tangent Map
The Jacobian of a mapping is a linear map (represented by a matrix) at each point of the
domain of the mapping constructed from the derivatives of the rules of the mapping. We treat
it here as an operation that applies to objects of type mapping..

jacobian[map_mapping] := Outer[D, rules[map], dorn[map]]

For instance:

jacobian[mapl] => {{2 x, 2 y}, {-2 y, -2 x}}

One of the problems to be faced here is that there is no obvious type for the value of
j acobian. The output appears to be a matrix of expressions whose size depends on the size of
the mapping. In order to fit the Jacobian into our type system, it is necessary to construct a
codomain for its values. In fact, starting from a given mapping a new mapping will be
constructed, called the tangent mapping, whose rules make use of the Jacobian. The domain
and codomain of the tangent mapping are called the tangent spaces of the original domain and
codomain. In order to describe them in terms of lists of variables, we need a new head v to
wrap around the old variables, displayed in subscripted form; e.g., v x . (Think of vx as a
vector coordinate in the direction of the x coordinate.) The most convenient way to do this is to
make v listable, with the stipulation that it print in subscripted form, and then apply it to the
old domain and codomain.

Attributes[v] = {Listable};
Format[v[x_]] := Subscripted[v[x]];
tangentSpace[list_List] := Join[list, v[list]];

Fourteen · Differentiable Mappings 475

For instance,

t angentSpace[{x , y , z}] =» {x, y, z, v x , v y , vz}

Thus the tangent space of a real vector space is a real vector space of twice the dimension with
new coordinates given by v applied to the old coordinates.

The tangent mapping between the tangent spaces of the domain and codomain of a
mapping uses the Jacobian. It solves the mathematical and programming problem of providing
a type for the value of the Jacobian.

tangentMapping[map_mapping] :=
mapping[tangentSpace[dorn[map]],

Join[rules[map], jacobian[map] . v[dom[map]]],
tangentSpace[cod[map]]]

Try this on our main example.

tangentMapping[mapl]

mapping[{x, y , v x , v y } ,
{x2 + y 2 , -2 x y, 2 x vx + 2 y v y , -2 y vx - 2 x v y } ,
{u, v, v u , vv}]

The rules for the t angen tMapping of mapl are the same as those of mapl as far as the
variables u and v are concerned. For fixed values of x and y, the new variables vu and v v (in
the tangent space of the codomain), are given in terms of the new variables v x and vy (in the
tangent space of the domain) by multiplying them by the value of the Jacobian matrix at the
point { x , y }. In terms of the equations

u = x2 - y2 and v = 2 x y .

vu and v v are given by the matrix equation
/ v u W 2x 2 y \ / v x \
V v v / V - 2 y 2 x A v y /

In particular, the type of tangentMapping is mapping —> mapping.

2.4 Tangent Vector Fields
The tangent mapping can be used to construct the vector fields tangent to the coordinate lines
of a mapping by composing it with the unit tangent vector fields in the tangent space of the
domain of the mapping. These are given by the operations:

476 Part III · Knowledge Representation

(* unitVectors[dom_List] :=
Map[mapping[dorn, Join[dorn, #], tangentSpace[dorn]]&,

IdentityMatrix[Length[dorn]]] *)
(* tangentVectorFields [map__mapping] : =

Map[composition[#, tangentMapping[map]]&,
unitVectors[dorn[map]]] *)

We have commented out these operations because, although they are very attractive
geometrically, in practice they turn out to be very slow. A much more efficient way to find the
tangent vectors fields is to use the following version.

tangentVectorFields[map_mapping] :=
Map[mapping[dorn[map], Join[rules[map], #],

tangentSpace[cod[map]]]&,
Transpose[j acobian[map]]];

For instance:

tangentVectorFields[mapl]

{mapping!{xf YÌ, {*2 + Y2, -2 x y, 2 x, -2 y}, {u, v, vu, vv}],
mapping[{x, y}, {x2 + y2, -2 x y, 2 y, -2 x}, {u, v, vu/ vv}]}

This works because the transpose of the Jacobian has as its i'th row the partial derivatives of
the rules for the mapping with respect to the ith domain variable.

2.5 The Chain rule
The chain rule for functions of several variables says that the Jacobian of a composed map is
the matrix product of the Jacobians of the factors (expressed in the correct variables). This is
the content of the exercises in Chapters 3 and 5. The problem of course is to get the expressions
in terms of the correct variables. Once we have the concept of the tangent mapping of a
mapping as well as the concept of the composition of two mappings, then everything takes
care of itself very nicely. The proper theorem does not talk directly about the Jacobian at all,
but just says that the tangent mapping of a composition of mappings is the composition of the
tangent mappings of the given mappings. The only place one has to talk about substitution of
expressions for variables is in the definition of composition. Once composition is given, then
everything else follows. We express this as a theorem about a pair of composable mappings.

theoremT[mapl_mapping, map2_mapping] :=
intentionalEqualQ[
tangentMapping[composition[mapl, map2]],
composition[tangentMapping[mapl], tangentMapping[map2]]]/;

cod[mapl] === dom[map2]

Fourteen · Differentiable Mappings 477

For instance:

theoremT[mapl, map2] => True

An auxiliary result says that the tangent mapping of an identity mapping is an identity
mapping.

t h e o r e m l [v a r _ L i s t] :=
i n t e n t i o n a l E q u a l Q [

t a n g e n t M a p p i n g [i d e n t i t y M a p p i n g [v a r]] ,
i d e n t i t y M a p p i n g [t a n g e n t S p a c e [v a r]]]

3 Making Plots of Differentiable Mappings
To use the graphics routines implemented here, load the package MappingGraphics .m. It
automatically loads the package D i f f e r e n t i a b l e M a p p i n g s .m if that has not already been
loaded.

Needs["Geometry MappingGraphics^"]

The operations in this package illustrate mappings whose domain has dimension 1 or 2 and
whose codomain has dimension 2 or 3. The only operation exported by the package is called
mapGraphics. Its output is a graphics object, to be displayed by Show, which makes pictures
of the domain and the codomain of a mapping, showing how the domain is transformed into
the codomain. The domain is shown by a rectangular grid and the codomain by the image of
that grid. To indicate the direction of the transformation, a named arrow is included between
the two. Each of these ingredients is in a rectangle for assembly in the final graphics operation,
so that both the grid and its image are displayed in the same picture. The operation is used in
the form: mapGraphics [mapping, "name", range (s)] , where the range is either an
interval { a , b} or a pair of intervals with step sizes { a i , &2, s t e p a } , { b i , Y>2,
stepfc}. The use of this operation is illustrated by the following four mappings. The first two
are mappings from a 1-dimensional space into a 2- and 3-dimensional space respectively.

mapl ine = m a p p i n g [{ t } , { t ^ 2 , t ^ 3 } , { x , y }] ;
mapcurve = m a p p i n g ! { t } , { S i n [t] , C o s [t] , S i n [t] ^ 2 } , { x , y , z }] ;

The second two are mappings from a 2-dimensional space into a 2 and 3-dimensional space
respectively.

map2d = mapping[{x, y}, {χΛ2 + y^2, -2 x y}, {u, v}];
map3d = mapping! {u, v},

{Cos[v] Cos[u], Cos[v] Sin[u], Sin[v]},
{Xf Y, z}];

478 Part III · Knowledge Representation

These mappings produce the following pictures.

Show[mapGraphics[mapline, "mapline", {-1, 1}]];

y
lì

mapline
-1 1

-Il

Show[mapGraphics[mapcurve, "mapcurve", {0, 2 Pi}]];

mapcurve
2 Pi

Show[mapGraphics[map2d, "map2d", {-1, 0, 0.1}, {0, 1, 0.1}]]

map 2d

-1 4x

Fourteen · Differentiable Mappings 479

Show[mapGraphics[map3d, "map3d",
{0, Pi, Pi/10}, {0, 2Pi, Pi/5}]];

v
2 Pir Mill

oUiiL

map 3d
= >

Pi

If the dimension of the codomain is too large, then an error message is printed.

toobig = identityMapping[{x, y, z, w}];
Show[mapGraphics[toobig, "toobig", {0, 1}]];

mappingGraphics: :codomainDimensions:
Codomain dimensions are too large for plotting.
The codomain should have dimension 2 or 3.

toobig

4 Examples

4.1 Example 1

Let us now look at the theoretical computations associated with map2d shown in the preceding
section. This is the mapping that was treated in the Exercises in Chapters 3 and 5.

480 Part III · Knowledge Representation

map2d = mapping!{x, Y}/ {x"2 + y"2, -2 x y}, {u, v}];
jacobian[map2d] => {{2 x, 2 y}, {-2 y, -2 x}}
tangentMapping[map2d]

mapping[{x, y, vx, vy},
{x2 + y2, -2 x y, 2 x vx + 2 y vy, -2 y vx - 2 x vy},
{u, v, vu, vv}]

inverses = inversemap[map2d];

The output, which has been suppressed because it is quite large, consists of four mappings. If
map 2d is composed with these different inverse mappings, the result is the identity mapping
for the space {x, y } only in the first case.

Map[composition[map2d, #]&, inverses] //
Simplify // PowerExpand // Simplify // PowerExpand

{mapping!{x, y},{x, y},{x, y}],
mapping!{x, y},{-y, -x},{x, y}],
mappingf{x, y},{y, x},{x, y}],
mapping!{x, y},{-x, -y},{x, y}]}

However, each inverse map followed by map 2d does give the identity for the variables
{u, v}.

Map[composition[#, map2d]&, inverses] // Simplify

{mapping!{u, v}, {u, v}, {u, v}],
mapping!{u, v}, {u, v } , {u, v}] ,
mapping!{u, v } , {u, v}, {u, v}] ,
mapping!{u, v}f {u, v}, {u, v}]}

Thus each of the mappings found by inversemap is a left inverse to map 2d but only the first
one is a right inverse. TheoremT holds for the composition in both directions of map 2d with
all of its inverses. (Note: the following two calculations take a long time.) The first computation
generalizes the result found in Exercise 13 of Chapter 3. Here, as there, it requires a lot of help
in simplifying the results.

Map[theoremT[map2d, #]&, inverses //·
Sqrt[m_^2 - n_A2] ->

Sqrt[m + n] Sqrt[m - n]//Simplify]//PowerExpand//Simplify
{True, True, True, True}

Fourteen · Differentiable Mappings 481

The second computation is equivalent to the result found in Exercise 1 of Chapter 5. It needs
no help at all in simplification.

Map[theoremT[#, map2d]&, inverses] => {True, True, True, True}

4.2 Example 2

This example repeats the steps of the preceding one using a different mapping.

map2 = mapping!{x, y}, {χΛ2 - x y, x y + yA2}, {u, v}];
Show[map6raphics[map2, "map2", {-1, 1, 0.2}, {0, 1, 0.2}]];

y
1 .

r

mib

map 2

Define

inverses2 = inversemap[map2];

The output is again suppressed because of its size. This time, only the second of these
mappings is a right inverse to map2 but all four are left inverses.

Map[composition[map2, #]&, inverses2] //
PowerExpand // Simplify // PowerExpand

{mapping[{x, y}, {-x, -y}, {x, y}],
mapping[{x, y}, {x, y}, {x, y}],

-x + y x + y
mapping[{x, y}, { , }, {x, y}],

Sqrt[2] Sqrt[2]

x - y x + y
mapping[{x, y}, { , -()}, {x, y}]}

Sqrt[2] Sqrt[2]

482 Part III · Knowledge Representation

Map[composition[#, map2]&, inverses2] // Simplify

{mapping[{u, v}, {u, v}, {u, v}],
mapping[{u, v}, {u, v}, {u, v}],
mapping!{u, v}, {u, v}, {u, v}],
mapping[{u, v}, {u, v}, {u, v}]}

As in the previous example, the following two computations take a long time.

Map[theoremT[map2, #]&, inverses] => {True, True, True, True}

Map[theoremT[#, map2]&, inverses] => {True, True, True, True}

4.3 Example 3
The theorems concerning the tangent mapping work for generic functions of given numbers of
variables. For instance, let mapA and mapB be generic mappings between 2-dimensional
spaces.

mapA = mapping[{x, y}, {f[x, y], g[x, y]}, {u, v}];
mapB = mapping!{u, v}, {r[u, v], s[u, v]}, {w, z}];

Composition and identity mappings work correctly.

composition[mapA, mapB]

mapping!{x, y},
{r[f[x, y], g[x, y]], s[f[x, y], g[x, y]]},
{w, z}]

composition[identityMapping[dom[mapA]], mapA] === mapA
True
composition[mapA, identityMapping[cod[mapA]]] === mapA
True

Furthermore, Mathematica is able to evaluate Theorems T and I in this generality. The
computation is much faster than for the specific examples above.

theoremT[mapA, mapB] // Simplify => True
theoremI[dom[mapA]] => True

Fourteen · Differentiable Mappings 483

The result for TheoremT[mapA, mapB] can be regarded as a proof of the theorem for the
composition of two mappings between 2-dimensional spaces. Clearly the same thing could be
done for mappings between spaces of any fixed dimensions that fit together properly.
However, it would take a totally different strategy to formulate the theorem in such a way that
Mathematica could prove it for all possible dimensions in one step.

5 Dimension [domain] == 1: Curves
If the dimension of the domain of a mapping is 1, then the rules for the mapping consist of one
or more functions of a single variable. Geometrically, the mapping is a parametric curve in 1,2,
or higher dimensional space. If the codomain has dimension 3, then one can investigate the
curvature and torsion of the curve, the tangent, normal, and binormal vector fields associated
with it, find its arc length, etc. We leave these topics for the interested reader to pursue and just
look at one simple example, where the codomain also has dimension 1. In this case the
mapping itself is a mapping between 1-dimensional spaces and the tangent mapping is a
mapping between 2-dimensional spaces. From it we will extract a mapping from 1-
dimensional space to 2-dimensional space using the tangent vector field. This of course will be
a plane curve.

5.1 Example: A Phase Portrait
Consider the curve x = sin t and think of it as the description of a particle undergoing simple
harmonic motion as a function of time. The phase plane for such a system is the plane whose
coordinates are position and velocity. It is the same as the tangent space to the 1-dimensional
coordinate space. The curve in the phase plane given by the pair of functions {x(t), x'(t)} is
called the phase portrait of the motion. In Mathematica, this looks as follows:

sincurve = mapping[{t}, {Sin[t]}, {x}];
phasecurve = First[tangentVectorFields[sincurve]]
mapping[{t}, {Sin[t], Cos[t]}, {x, vx}]
Show[mapGraphics[phasecurve, "phase", {0, 2 Pi}]];

v x

—_-. phase
2 Pi >

484 Part HI · Knowledge Representation

5.2 Example: Damped Harmonic Motion

Damped harmonic motion provides a more interesting example.

damped = mapping!{t}, {ΕΛ(-0.1 t) Sinft]}, {x}];
phasecurve = First[tangentVectorFields[damped]]

Sin[t] Cos[t] 0.1 Sin[t]
mapping[{t}, { , }, {x, vx>;

Eo.i t Eo.i t Eo.i t

Show[mapGraphics[phasecurve, "phase", {0, 4 Pi}]];

4 Pi
phase

0.28

6 Implementation
Complete packages implementing all of the commands developed here will be found on the
diskette distributed with this book. They are called D i f f e r e n t i a b l e M a p p i n g s . m . and
MapGraphics. m

CHAPTER

Critical Points and
Minimal Surfaces

1 Introduction
In the previous chapter differentiable mappings were introduced and the Jacobian was used to
define the tangent mapping associated with a mapping. In this chapter, two special cases are
considered:

i) Dimension[codomain] = 1; i.e., the mapping is determined by a single function of one
or more variables.

ii) Dimension[domain] = 2 and dimension[codomain] = 3; i.e., the mapping is a
parametric surface in 3-dimensional space.

The Jacobian plays a central role in both cases. In the first case, the Jacobian of a single function
is just the gradient of the function and the zeros of the gradient determine the critical points of
the function. In the second case, the Jacobian determines the first fundamental form of a
parametric surface. In addition to the Jacobian there is a new theoretical ingredient-the
hessian. In the first case, the hessian is what classifies the critical points of a function. In the
second case, the hessian, in vector form, determines the second fundamental form of a surface,
and the two fundamental forms together determine the Gaussian and mean curvatures of a
surface. A minimal surface is one whose mean curvature is zero.

2 Critical Points
If the dimension of the codomain of a mapping is 1, then the rule for the mapping consists of
just one differentiable function, of one or more variables. One of the many things to be
investigated in this situation is the topic of critical points.

15

485

486 Part HI · Knowledge Representation

2.1 The Mathematical Problem
If f is a differentiable function of several variables, then the critical points of f are the points
where the gradient of f is 0. Such points are local minima, local maxima, or saddle points. The
behavior of f at each critical point is determined by the hessian matrix of f, evaluated at that
critical point. The hessian is the square matrix of all second partial derivatives of f with respect
to the variables.

hessian(f) = a2f
3XJ 3xji

The analysis of the critical points involves looking at the values of the principal minors of this
matrix at the critical points; namely, the determinants of the square submatrices running down
the main diagonal in the upper left-hand side of the hessian, as illustrated. For a 4 x 4 matrix,
there are 4 such determinants.

aj
e
i
m

b
f
j
n

c
g
k
o

d
h
1
P

i) The matrix is called positive definite if all of these determinants are positive. If the
hessian at a critical point is positive definite, then the critical point is a local minimum.

ii) The matrix is called negative definite if these determinants strictly alternate in sign,
starting with the upper left hand entry being negative. If the hessian at a critical point
is negative definite, then the critical point is a local maximum.

iii) If the hessian matrix at a critical point is neither positive nor negative definite, then the
critical point will be called a saddle point here. (We are ignoring the case in which some
principal minor is 0, although this occurs in some of the examples below.) In the case
of a saddle point, it is necessary to calculate the eigenvalues and eigenvectors of the
matrix in order to understand the behavior of the function near such a point. If an
eigenvalue is positive (respectively, negative), then the function increases
(respectively, decreases) in the direction of the corresponding eigenvector. Positive
(respectively, negative) definite corresponds to all eigenvalues being positive
(respectively, negative).

2.2 The Mathematica ΤοτπΜ^ίοη
To use the commands implemented here, load the package Cr i t i ca lPo int s .m using the
method described in the preceding chapter. It automatically loads the package
Dif f erentiableMappings .m if that has not already been loaded.

Needs["Geometry"CriticalPoints""]

Fifteen · Critical Points and Minimal Surfaces 487

2.2.1 Find the critical points

The gradient of a function is the vector of first partial derivatives of the function. (This is the
same as the jacobian of a single function with respect to several variables.)

grad[expr_, var_List] := D[expr, #]& /@ var

We want to use this for mappings whose codomain has dimension 1. We characterize such
mappings as functions here. The default name for the single coordinate in the codomain space
will be "It" (for line type).

function[old_, rule_, new_] :=
mapping[old, rule, new] /; Length[new] == 1

The gradient is also defined for a function in this sense.

grad[fun_mapping] := grad[rule[fun], dorn[fun]]

The gradient can also be viewed more intrinsically as part of a mapping into the vector half of
the tangent space of the domain of the function.

gradientMapping[fun_mapping] :=
mapping[dorn[fun], grad[fun], v[dorn[fun]]]

For instance, consider a generic function of two variables.

gener icFun = f u n c t i o n [{ x , y } , { f [x , y] } , { I t }] ;
g r a d [g e n e r i c F u n] => { f i 1 ' ° > [x , y] , f (° ' ^ [x , y] }
grad ientMapping[gener icFun]

m a p p i n g [{ x , y } , { f i 1 ' °) [x , y] , f (° ' l) [x , y] } , { v x , v y }]

The critical points of a function are the points where the gradient is zero. We are not
interested in multiple solutions or complex solutions, so we apply U n i o n to the list of
solutions and then select those that don't have complex entries. The operation
c r i t i c a l P o i n t s is programmed dynamically since it is a lengthy computation that is
involved in all further calculations.

c r i t i c a l P o i n t s [f u n _ m a p p i n g] := c r i t i c a l P o i n t s [f u n] =
S e l e c t [U n i o n [S o l v e [g r a d [f u n] == 0 , dorn[fun],

V e r i f y S o l u t i o n s -> True]] ,
FreeQ[#, Complex]&]

488 Part III · Knowledge Representation

2.2.2 Analyze the critical points
The hessian matrix of a function is the matrix of all second partial derivatives of the function.
As with the gradient, it is programmed in two forms, one in terms of functions and variables
and one for functions as mappings whose codomain is 1-dimensional.

hessian[funs_, vars_] := Outer[D[funs, #1, #2]&, vars, vars];
hessian[funjmapping] := hessian[First[rule[fun]], dorn[fun]] /;

Length[cod[fun]] == 1;

For our generic function this gives the following result.

hessian[genericFun] // TableForm
f(2, 0) [X / y] f(l, 1) [X / y]
f(lr 1)[X, y] f(0, 2) [X f y]

To find the principal minors, first define one step in the process of decreasing the size of a
matrix by dropping the last row and column.

oneMinor[matrix_] := Map[Drop[#, -1]&, Drop[matrix, -1]];

The principal minors are given by nesting this operation and then taking the determinants of
the results.

principalMinors[matrix_] :=
Det /@ NestList[oneMinor, matrix, (Length[matrix] - 1)];

For the hessian of our generic function, this gives:

principalMinors[hessian[genericFun]]
{_f(l, l) [X f y]2 + f(2, 0) [X / y] f(0, 2) [X f y]r f(2, 0) [X / y] }

A matrix is positive definite if all principal minors are positive.

positiveDefiniteQ[matrix_] :=
And@@Positive[principalMinors[matrix]];

A matrix is negative definite if the principal minors alternate in sign, starting with a negative
value in the upper left-hand corner; equivalently, if -1 times the matrix is positive definite.

negativeDefiniteQ[matrix_] := positiveDefiniteQ[-matrix];

If the hessian is positive definite at a critical point, then the critical point is a local minimum.
If it is negative definite, then the critical point is a local maximum.

Fifteen · Critical Points and Minimal Surfaces 489

localMinima[fun_mapping] :=
Select[criticalPoints[fun],

positiveDefiniteQ[hessian[fun]/·#]&]
localMaxima[fun_mapping] :=

Select[criticalPoints[fun],
negativeDefiniteQ[hessian[fun]/.#]&]

If a critical point is neither positive nor negative definite, then we consider it to be a saddle
point. The output of the operation s a d d l e P o i n t s is an expression with head
c r i t i c a l D i r e c t i o n s whose arguments are pairs consisting of a critical point and the
eigensystem of the hessian evaluated at that point.

otherCriticalPoints [f un__mapping] : =
Complement! criticalPoints[fun],

localMinima[fun], localMaxima[fun]];
saddlePoints[fun_mapping] :=

With[
{others = otherCriticalPoints[fun]},
If[others == {}, {},

Thread[
criticalDirections[

others,
Transpose[Eigensystem[#]]& /@

(hessian[fun]/.others)]]]];

2.2.3 Numerical versions of the commands

In the implementation package there are numerical versions of all of the preceding commands.
They have the same names preceded by an N; i.e., N c r i t i c a l P o i n t s , NlocalMinima,
NlocalMaxima, N o t h e r C r i t i c a l P o i n t s , N s a d d l e P o i n t s .

2.3 Examples

2.3.1 Example 1

The first example has a single local minimum at the origin.

f u n c t i o n l =
f u n c t i o n [{ x , y , z } ,

{3 χΛ2 + 2 yA2 + 2 ζΛ2 + 2 x y + 2 x z + 2 y z } ,
{It}];

localMinima[functionl] => {{x -> 0, y -> 0, z -> 0}}
localMaxima[functionl] => {}
saddlePoints[functionl] => {}

490 Part HI · Knowledge Representation

2.3.2 Example 2

The second example is much more interesting. It has one local maximum at the origin, with
four symmetrically located local minima surrounding it, separated by four saddle points.

f u n e t i o n 2 = f u n c t i o n [{ x , y } , {χΛ4 + y^4 - xA2 - y^2 + 1 } , { I t }] ;
l o c a l M i n i m a [f u n c t i o n 2]

{{x -> (- 1 / S q r t [2]) , y -> (- 1 / S q r t [2]) } ,
{x -> (- 1 / S q r t [2]) , y -> (1 / S q r t [2]) } ,
{x -> (1 / S q r t [2]) , y -> (- 1 / S q r t [2]) } ,
{x -> (1 / S q r t [2]) / y -> (1 / S q r t [2]) } }

l oca lMax ima[func t ion2] => { { x - > 0 / y - > 0 } }
s a d d l e P o i n t s [f u n c t i o n 2]

{ c r i t i c a l D i r e c t i o n s [
{x -> 0 , y -> - (1 / S q r t [2]) } , {{-2, { 1 , 0 } } , {4 , {0 , 1 } } }] ,

c r i t i c a l D i r e c t i o n s [
{x -> 0 , y -> 1 / S q r t [2] } , { { - 2 , { 1 , 0 } } , {4 , {0 , 1 } } }] ,

c r i t i c a l D i r e c t i o n s [
{y -> 0 , x -> - (1 / S q r t [2]) > , { { - 2 , {0 , 1 } } , {4 , { 1 , 0 } } }] ,

criticalDirections[
{y -> 0, x -> 1/Sqrt[2] }, {{-2, {0, 1}}, {4, {1, 0}}}]}

The first item in the output of s a d d l e P o i n t s here,

c r i t i c a l D i r e c t i o n s [
{ x _> o, y -> - (1 / S q r t [2]) } , {{-2, { 1 , 0 } } , {4 , {0 , 1}}}]

means that the point { 0 , 1 (1 /Sqrt [2] } is a saddle point and the eigensystem of the hessian
at this point consists of an eigenvalue - 2 with corresponding eigenvector (1 , 0} and an
eigenvalue 4 with corresponding eigenvector { 0 , 1}. In the case of a function of two
variables, we can plot the function as a surface to see exactly what it looks like.

Plot3D[E v a l u a t e [F i r s t [r u l e [f u n c t i o n 2]]] , { χ , - 1 , 1 } , { y , - l , l } ,
P l o t P o i n t s -> 4 0 , Mesh -> F a l s e] ;

Fifteen · Critical Points and Minimal Surfaces 491

In this picture, { 0 , - 1 / S q r t [2] } is the saddle point nearest the front. { 1 , 0 } is a vector
in the direction of the x-axis and in that direction the function has a local maximum,
corresponding to the eigenvalue - 2 . Similarly, {0 , 1} is a vector in the direction of the y-axis
and the function has a local minimum, corresponding to the eigenvalue 4.

2.3.3 Example 3

The third example has the interesting property of having a saddle point (at the origin) without
any local minima or maxima.

function3 =
function[{x, y, z}, {xA2 + y~2 + ζΛ2 - 4 x z}, {It}];

localMinima[function3] => {}
localMaxima[£unction3] =» {}
saddlePoints[function3]

{criticalDirections[{x -> 0, y -> 0, z -> 0},
{{-2, {1, 0, 1}}, {2, {0, 1, 0}}, {6, {-1, 0, 1}}}]}

At the origin the function decreases in one direction and increases in the other two directions
(because there is one negative eigenvalue and two positive ones.)

2.3.4 Example 4

This example is too complicated for the symbolic routines, so we have to use the numerical
versions of the commands. This time we find two local minima and three saddle points, but no
local maxima. We have decided to include the value, v a l , of the function at each critical point
as a final component of the output.

492 Part IH · Knowledge Representation

function4 =
function[

{χΛ4 + yA4 + ζΛ4 - χΛ2 - yA2 - ζΛ2 + 4 x y + 4 x z + l } ,
{It}];

With[{mins = NlocalMinima[function4]},
Transpose[{mins, val -> First[rule[function4]] /. mins}]]

{{{y->-l.28785, z->-l.28785, x-> 1.49207}, val -> -9.45797},
{{y-> 1.28785, z ->1.28785, x->-l.49207}, val -> -9.45797}}

NlocalMaxima[function4] => {}
With[{sads = NsaddlePoints[function4]},

Transpose!
{ sads,
val->First[rule[function4]]/.Map[(#[[1]])&, sads]}]]

{{criticalDirections[{y -> -0.707107, z -> 0.707107, x -> 0},
{{7.40312, {0.515499, 0.605913, 0.605913}},
{-5.40312, {-0.85689, 0.364513, 0.364513}},
{4., {0, -0.707107, 0.707107}}}], val -> 0.5},

{criticalDirections[{y -> 0, z -> 0, x -> 0},
{{-2., {0, -1., 1.}},
{-7.65685, {-1.41421, 1., 1.}},
{3.65685, {1.41421, 1., 1.}}}], val -> 1},

{criticalDirections[{y -> 0.707107, z -> -0.707107, x -> 0},
{{7.40312, {0.515499, 0.605913, 0.605913}},
{-5.40312, {-0.85689, 0.364513, 0.364513}},
{4., {0, -0.707107, 0.707107}}}], val -> 0.5}}

Note that the saddle points happen for x = 0, in which case, f u n c t i o n 4 is the same as
f unc t ion2 with one less variable.

2.3.5 Example 5

In this example, there is one local minimum and one saddle point. Mathematica is unable to
find the exact eigenvectors, so we use the numerical version to find the saddle points.

functions =
function[{x, y, z},

{x"3 + y"3 + z"3 - 4 x z - 4 y z + 2 } , {It}];
localMinima[functions]

Fifteen · Critical Points and Minimal Surfaces 493

4 2 1/3 4 2 1/3 4 2 2 / 3

{ { x - > -, z - > ■ } }

localMaxima[functions]
NsaddlePoints[functions]

{}

{critical-Directions[{x -> 0, y -> 0, z -> 0},
{{0, {-1., 1., 0}},
{-5.65685, {0.707107, 0.707107, 1.}},
{5.65685, {-0.707107, -0.707107, 1.}}}]}

Here, we see that the three eigenvalues are respectively zero, negative, and positive. The
direction of the eigenvector corresponding to the negative eigenvalue should take us to the
local minimum. If we restrict to a 2-dimensional subspace perpendicular to the direction of the
null space of the hessian, given by setting y = x (since the eigenvectgor corresponding to the 0
eigenvalue is {-1, 1, 0}), then we can make a plot of this situation. In the picture, we see
the saddle point at (0,0) and the local minimum at {x -> 1.68, z -> 2.12}.

ContourPlot[Evaluate[First[rule[functions/.y -> x]]],
{x, -1, 2.5}, {z, -1, 3},
Contours -> 30, ContourShading -> False];

- 1 - 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5

2.3.6 Example 6
For this function of 4 variables, there are no local minima or maxima and just one (real) saddle
point which turns out to have two zero eigenvalues.

494 Part III · Knowledge Representation

function6 =
function[

{x, y, z, w},
{(x + 10 y)~2 + 5 (z - w)"2 + (y - 2 z)A4 + 10 (x - w)"4},
{It}];

localMinima[function6] => {}
localMaxima[function6] => {}
saddlePoints[function6]

{criticalDirections[{x -> 0, y -> 0, z -> 0, w -> 0},
{{0, {0, 0, 1, 1}}, {0, {-10, 1, 0, 0}}f
{20, {0, 0, -1, 1}}, {202f {1, 10, 0, 0}}}]}

Notice that two eigenvalues are 0 and the other two are positive; in other words, the hessian is
positive semi-definite, so this is not really a saddle point at all. Analyze this as in Example 5 by
looking at the function restricted to the orthogonal complement of the nuUspace of the hessian
at the origin.

orthocomp = Solve[{-10 w + z == 0, x + y == 0}, {z, y}]

{{z -> 10 w, y -> -x}}

function66 =
function[{x, w}, rule[function6] /. orthocomp[[1]], {It}]

mapping[{x, w}, {405 w2 + (-20 w - x)4 + 81 x2 + 10 (-w + x)4},
{It}]

This is obviously a convex function with a minimum at the origin. The symbolic critical points
functions fail, but the numerical ones succeed.

NlocalMinima[function66] => {{x->0,w->0}}
NlocalMaxima[function66] => {}
NsaddlePoints[function66] => {}

To see what the function looks like when restricted to this subspace, we plot it on two different
scales.

Show[GraphicsArray[
{ Graphics3D[

Plot3D[Evaluate[First[rule[function66]]],
{x, -0.0001, 0.0001}, {w, -0.0001, 0.0001},
DisplayFunction -> Identity]],

Fifteen · Critical Points and Minimal Surfaces 495

Graphics3D[
Plot3D[Evaluate[First[rule[function66]]],

{x, -1, 1}, {w, -1, 1},
DisplayFunction -> Identity]] }],

DisplayFunction -> $DisplayFunction];

These pictures show that the minimum is very flat even in this subspace, but it does actually
increase in both perpendicular directions.

2.3.7 Example 7

Neither procedure is able to deal with the last function.

function7 =
function[{x, y, z},

{100 (z - (10/(2 N[Pi])) ArcTan[y/x])"2 +
(Sqrt[x"2 + y"2] - 1)Λ2 + zA2}, {It}];

NcriticalPoints[function7]
A number of error messages are generated, but no output. If we proceed by hand using
FindRoot, then we can find at least one critical point.

gradient = grad[function7];
solution = FindRoot[gradient == 0, {x, 1}, {y, 0}, {z, 0}]
{x -> 1., y -> 0., z -> 0.}
hessian[function7] /. solution
{{2., 0., 0.}, {0., 506.606, -318.31}, {0., -318.31, 202}}
p o s i t i v e D e f i n i t e Q [%] => True

Thus, we conclude that the point (1, 0, 0) is a local minimum of f unct ion7 .

496 Part IH · Knowledge Representation

3 Minimal surfaces
If the dimension of the domain of a mapping is 2, then the rule for the mapping consists of one
or more functions of 2 variables. Geometrically, the mapping is a parametric surface in some
possibly higher dimension space. We consider just the case where the dimension of the
codomain is 3. A differential mapping from a 2-dimensional space to a 3-dimensional space is
usually called a (differentiable) parametric surface. In classical differential geometry, the
concepts analogous to the curvature of a curve are the Gaussian and mean curvatures of a
surface. These functions can be defined in terms of the principal normal curvatures of a
surface, which are constructed as follows. Imagine a vector Νχ that is normal to the surface at
a point X on it and a vector Vx that is tangent to the surface at the same point. These vectors
determine a plane P whose intersection with the surface is a plane curve C. The curvature
k(Vx) of this curve is called the normal curvature of the surface in the direction Vx. The
minimum and maximum values, ki < k2 of k(Vx) as Vx varies are called the principal
curvaturesof the surface at X. Then the mean curvature H is the average of ki and k2; i.e.,
(ki + k2)/2, while the Gaussian curvature K is their product ki k2- A surface is called a minimal
surface if the mean curvature is identically 0. This means that ki = -k2, and since the directions
of the principal curvatures are mutually perpendicular, it means that the maximum amount
that the surface curves down is equal to the maximum amount that it curves up. Minimal
surfaces are a 2-dimensional analogue of straight lines in the following sense. A straight line
between two points has the shortest length of any path joining the two points. The points
constitute the boundary of the line segment. The boundary of a 2-dimensional piece of a
surface is a closed curve. A surface is minimal if it has the least area of any surface with the
same boundary.

A plane is an obvious example of a minimal surface, but there are many others. Several
examples were found in the 19th century, and then there was a long gap until recently when
interesting new minimal surfaces were discovered. For a readable general account, see
[Hoffman]. For a detailed treatment of the classical theory, see [Struik,] or [O'Neill].

3.1 The Differential Geometry of Minimal Surfaces:
Mathematica ΈοίΎητι^ίοη

3.1.1 Differentiable surfaces
To use the commands implemented here, load the package Min imalSur f a c e s .m. It
automatically loads the package Dif f e ren t iab leMappings .m if that has not already been
loaded.

Needs["Geometry'MinimalSurfacesv"]

Fifteen · Critical Points and Minimal Surfaces 497

Minimal surfaces are differentiable surfaces in 3-dimensional space whose mean curvature
is zero. Pictures of such surfaces are often very attractive. For our purposes, a (parametric)
surface is determined by a vector valued function of two variables which can be represented as
a list of three ordinary differentiable functions of two variables:

X(u,v) = {f(u,v),g(u,v),h(u,v)}.

The goal here is to construct two functions of the form:

gaussianCurvature[surface]
meanCurvature[surface]

that calculate the Gaussian and mean curvature functions of such a surface. As discussed
above, these are defined in terms of the principal curvatures of the surface. The principal
curvatures in turn can be calculated from a pair of "forms" called the First and Second
Fundamental Forms of the surface. It is pleasant to find that these forms have nice expressions
in Mathematica, and so there are very concise formulae for the Gaussian and mean curvatures
of a surface.

Formally, we define a (parametric) surface to be a differentiable mapping from a 2-
dimensional space to a 3-dimensional space, so it can be characterized as a subtype of the
general type of mapping.

surface[dom_, rule_ , cod_] := mapping[dorn, ru l e , cod] / ;
Length[dorn] == 2 && Length[cod] == 3;

For instance, here is a generic surface.

generic =
surface[{u, v}, {f[u, v]f g[u, v], h[u, v]}, {x, y, z}]

mapping[{u, v}, {f[u, v], g[u, v], h[u, v]}, {x, y, z}]

The rules for such a surface are given by a list of three functions of two variables X(u, v) as
above. Then the vector fields on this surface along the coordinate lines are given by the partial
derivatives with respect to u and v.

3X=(3f 3g 3h| <^ = [Κ 3g 3h|
du \du du dui dv \dv dv dvj

In Mathematica, these are the rows of the transpose of the Jacobian of the mapping.

498 Part HI · Knowledge Representation

Transpose[j acobian[generic]]

{{fi1' °)[u, v], gì1' °>[u, v], M 1 ' °>[u, v]},
{f(0, l) [U f V] f g(0, 1) [U / v]f h(0, l) [U f v] } }

We also have a more intrinsic representation of these vector fields as mappings to the
tangent space of the codomain of the surface, as defined in Chapter 14.

tangentVectorFields[generic]

{mapping[{u, v},
{f[u, v], g[u, v], h[u, v],

f(l, 0) [U f v] / g(l, 0) [U f v]f h (l , 0) [U f v] } /
{x, y, z, vx, vy, vz}],

mapping[{u, v},
{f[u, v], g[u, v], h[u, v],

f(°' ^ [u , v] , g (° ' 1 >[u / v] , h (° ' ^ [u , v] } ,
{x, y , z, vXf vyr v z }]}

3.1.2 The first fundamental form of a surface
The "coefficients" of the "first fundamental form," I(X), for a given surface are the three possible
dot products of the tangent vectors:

F _ 3 X . Ç ^ F _ ^ # ^ G _ ^ # 3 X
~3u 3u' ~3u 3v' ~3v 3v

The first fundamental form itself can be thought of as the matrix:

(Ï5MÎ *£)·(«)
Thus, in Mathematica, it is given by the operation

f irstFundamentalForm[surf__mapping] : =
With[{partials = jacobian[surf]},

Transpose[partials] . partials] // Simplify;

For the generic case, the result looks rather complicated.

firstFundamentalForm[generic]

Fifteen · Critical Points and Minimal Surfaces 499

{ { f i 1 ' °) [u , v] 2 + g ì 1 ' °>[u, v] 2 + h i 1 ' °>[u, v] 2 ,
f (° ' 1) [u / v] f t 1 ' °) [u , v] + g (° ' 1) [u / v] ql1' °>[u, v] +

h(0f ^ [u , v] h t 1 ' °>[u, v] } ,
{f<0' 1) [u / v] f i 1 ' °>[u, v] + g (° ' 1>[uf v] g t 1 ' °>[u, v] +

h (° ' 1)[ur v] h i 1 ' °>[u, v] ,
f (° ' x) [u , v] 2 + g (° ' !>[u, v] 2 + h<0' x) [u , v] 2 }}

3.1.3 Normal vectors and the second fundamental form
A normal vector field on the surface can be constructed by the cross product of the tangent
vectors:

Normal (X(u, v)) = ^— χ ^τ-
du dv

and the unit normal vector field UnitNormal (X (u , v)) is given by dividing this vector field
by its length. In Mathematica, we need our own cross product given by the usual formula and a
formula for the length of a vector.

cross [{a_, b_, c_}, {x_f y_, z_}] : =
{ b z - c y , c x - a z, a y - b x};

length[vect_] := Sqrt[vect . vect] // Simplify;

Then the unit normal vector field is given by the formula:

unitNormal[surface_mapping] :=
With[{vect = cross@@Transpose[jacobianfsurface]]},

vect / length[vect] // Simplify];

More intrinsically, we can define an associated mapping into the tangent space of the
codomain of the surface.

normalVectorField[surf^mapping] :=
mapping[dorn[surf],

Join[rule[surf],
cross@@Transpose[jacobian[surf]]],

tangentSpace[cod[surf]]];

Both of these lead to large expressions if evaluated for gener ic . The "coefficients" of the
"second fundamental form," II(X), for a given surface, by definition, are the dot products of the
second partial derivatives of X with the unit normal vector.

500 Part III · Knowledge Representation

?2X L(X(u,v)) = — y . UnitNormal (X(u,v))

d2X M(X(u, v)) = ^ -^ - . UnitNormal(X(u, v))

r)2X
N(X(u, v)) = —2 . UnitNorma(X(u, v))

3v

These coefficients can also be thought of as entries in a 2 x 2 symmetric matrix, but the formula
to calculate it is more complicated.

I L(X(u, v)) M(X(u, \))\(xu,u xu, v) X u xX v
1M(X(U,V)) N(X(u,v))j-^Xv?u X v ? v J ' |X u xX v |

The entries in the matrix on the right are vectors and the dot product means take the dot
product of each of these vectors with the unit normal vector. The matrix of second partial
derivatives is just the hessian matrix in vector form as in the preceding section. For our generic
surface, this is a 2 x 2 matrix whose entries are vectors.

hess ian[generic]
{ { {f(2, 0) [U r v]f g(2, 0) [u # v]/ h(2, 0) [u # v]}f

{fi1' !)[u, V] , gì1' !)[u, V] , ht1' 1>[uf V]}},
{{ft1' 1>[uf v] # g^1' 1>[u/ v] f M 1 ' l)[uf v]},
{f(0r 2)[uf v], g<0' 2)[uf v], h(°' 2>[uf v]}}}

Using this, the second fundamental form has a very simple description.

secondFundamentalForm[surf_mapping] :=
Dot[hessian[surf], unitNormal[surf]] // Simplify;

Again, this gives a very large result if it is evaluated for generic . Note: in the package the
unitNormal, f irstFundamentalForm, secondFundamentalForm, and curvatureDet
operations are programmed dynamically and include S i m p l i f y since otherwise the
computations in the examples below take inordinately long.

3.1.4 The Gaussian and mean curvatures of a surface
It is shown in books like O'Neill [O'Neill] and Struik [Struik} cited above that

gaussianCurvature[X(u, v)] = (L N - M2) / (E G - F2)
meanCurvature[X(u, v)] = (E N - 2 F M + G L) / (E G - F2).

Fifteen · Critical Points and Minimal Surfaces 501

These values can also be derived directly from the first and second fundamental forms by
forming the polynomial det(I (X) - x II (X)) and dividing by the leading coefficient. The
constant term of the resulting monic polynomial is the Gaussian curvature and the coefficient
of x is the negative of twice the mean curvature. In Mathematica, this is given by the operations:

curvatureDet[surf_mapping, x_] :=
With[{det = Det[secondFundamentalForm[surf] -

x firstFundamentalForm[surf]]},
Expand[det/Coefficient[det, xA2]]];

gaussianCurvature[surf_mapping] :=
Module[{x},

Coefficient[curvatureDet[surf, x], x, 0]];
meanCurvature[surf_mapping] :=

Module[{x},
Coefficient[curvatureDet[surf, x], x] / 2];

The results of these operations applied to generic are huge expressions, so we only evaluate
them for selected examples. Note that some of the following calculations take a long time.
Calculating the Gaussian curvature already evaluates the curvature determinant, so the
calculation of the mean curvature is usually much faster.

3.2 Examples

3.2.1 Plane
Any parametric surface given by linear rules is a plane. We chose an arbitrary one and find, as
expected, that both curvatures are 0.

plane =
surface[{u, v}, {a u + b v, c u + d v , p u + q v}, {x, y, z}];

gaussianCurvature[plane] => 0
meanCurvature[plane] => 0

3.2.2 Torus
Consider the pinched torus given by rotating a circle about an axis tangent to the circle.

torus = surface[{phi, theta},
{ 2 Sin[phi] Sin[phi] Cos[theta],

2 Sin[phi] Sin[phi] Sin[theta],
2 Sin[phi] Cos[phi] },

{Xf Y/ z}];

502 Part III · Knowledge Representation

About all that we can expect here is that the curvatures are independent of theta, but the exact
forms are surprisingly brief.

gaussianCurvature[torus] => -(Cos[2 phi] Csc[phi]2)/2
meanCurvature[torus]//Together => (2 - Cos[2 phi] Csc[phi]2)/4
ParametricPlot3D[Evaluate[rule[torus]],

{phi, 0, Pi}, {theta, 0, 2Pi}];

3.2.3 Sphere
Consider a parametric sphere of radius r. It is also not a minimal surface, but the results of the
computations are instructive.

sphere = surface[{u, v},
{r Cos[v] Cos[u], r Cos[v] Sin[u], r Sin[v]},
{x, y, 2}];

firstFundamentalForm[sphere] // TableForm

r2 Cos[v]2 0

secondFundamentalForm[sphere] // PowerExpand // TableForm

-r Cos[v]2 0
0 -r

gaussianCurvature[sphere]
meanCurvature[sphere]//PowerExpand

:-2
.-1

Fifteen · Critical Points and Minimal Surfaces 503

3.2.4 Catenoid

The only minimal surfaces of revolution are the catenoids, as was discovered by Euler in the
1740s.

catenoid =
surface[{u, v},

{a Cosh[u/a] Cos[v], a Cosh[u/a] Sin[v], u},
{x. Y, z} 1;

firstFundamentalForm[catenoid]

{{Cosh[u/a]2, 0}, {0, a2 Cosh[u/a]2}}

secondFundamentalForm[catenoid] // PowerExpand

{{-(1/a), 0}, {0, a}}

gaussianCurvature[catenoid] => -Sech[u/a]4 / a2
meanCurvature[catenoid] => 0
ParametricPlot3D[Evaluate[a = 1; rule[catenoid]],

{u, -1, 1}, {v, 0, 2 Pi},
P l o t P o i n t s -> { 1 5 , 30}] ;

3.2.5 Helicoid

A right conoid is a surface generated by moving a straight line parallel to a plane and
intersecting a line perpendicular to this plane. The only minimal right conoids are the
helicoids, as was shown by Meusnier in the 1770s. In fact, the only ruled minimal surfaces are
planes and helicoids.

504 Part IH · Knowledge Representation

helicoid = surface[{u, v},
{u Cos[v], u Sin[v], b v},
{X/ Y, z} 1;

gaussianCurvature[helicoid]

b2 / (b2 + u 2) 2

meanCurvature[helicoid] => 0
ParametricPlot3D[Evaluate[b = .3; rule[helicoid]],

{u, 0, 2}, {v, -Pi, 4Pi},
PlotPoints -> {15, 40} ,
ViewPoint->{1.463, -2.702, 1.418}];

3.2.6 Sherk's first minimal surface

Sherk's first minimal surface, discovered in 1835, "was the first minimal surface discovered
after Meusnier's discovery of the catenoid and the helicoid." [Struik]

sherkl = surface[{x, y},
{x, y, Log[Cos[y]] - Log[Cos[x]]},
{X/ Y, z}];

gaussianCurvature[sherkl]
Sec[x]2 Sec[y]2

_()
(1 + Tan[x]2 + Tan[y]2) (Sec[x]2 Sec[y]2 - Tan[x]2 Tan[y]2)

meanCurvature[sherkl] => 0

Fifteen · Critical Points and Minimal Surfaces 505

«Graphics "ContourPlot 3D"
ContourPlot3D[Cos[x] ΕΛζ - Cos[y],

{x, -Pi/2, Pi/2}, {y, -Pi/2, Pi/2}, {z, -3, 3}];

3.2.7 Sherk's second minimal surface

This surface was found at the same time as the first one.

sherk2 = surface[{x, y},
{x, y, ArcSin[Sinh[x] Sinh[y]},
{x, y, z}];

gaussianCurvature[sherk2]

-(Sech[x]2 Sech[y]2)

meanCurvature[sherk2] => 0

506 Part III · Knowledge Representation

ContourPlot3D[Sin[z] - Sinh[x] Sinh[y],
{x, -2, 2}, {y, -2, 2}, {z, -6, 2},
PlotPoints -> {5, 7}, PlotRange -> All,
Boxed -> False];

3.2.8 No name surface
I don't know the name of this minimal surface.

noname = surface[{x, y}, {x, y, ArcTan[y/x]}, {x, y, z}];
gaussianCurvature[noname] // Together => -(1 + x2 + y 2)~
meanCurvature[noname] // Together => 0

Fifteen · Critical Points and Minimal Surfaces 507

Plot3D[Evaluate[rule[noname][[3]]],
{x, -1, 1}, {y, -1, 1},
PlotRange -> All, PlotPoints -> 40,
ViewPoint->{-2.5, -1.5, 1.7}];

3.2.9 Monge surfaces
A Monge parametric surface is one of the form X[x, y] = {x, y, h[x, y]}. The last two examples
are such surfaces. For these surfaces, there is a simpler formula for the mean curvature given
in terms of the function h[x, y].

meanCurv[h_, {x_, y_}] :=
With[{den = Sqrt[l + D[h, x]A2 + D[h, yp2]},

(l/2)(D[D[h, x]/den, x] + D[D[h, y]/den, y]) //
Simplify]

This can be calculated for a generic function of two variables.

meanl = meanCurv[h[x, y], {x, y}]

(h<0' 2)[x, y] + h<0' 2)[x, y] hi1' °)[x, y] 2 -
2 h<0' !)[x, y] hi1' °>[x, y] hi1* χ>[χ, y] + h<2' °)[x, y] +

h<0' 1)[x, y] 2 h<2' °)[x, y]) /
(2 (1 + h(°' χ)[χ, y] 2 + hi1' °)[x, y]2)3/2)

Minimal surfaces over a region in the x-y-plane are described by functions h(x, y) satisfying the
partial differential equation given by setting this expression equal to 0. We can check that this
formula is equivalent to our general formula applied to the special case of Monge surfaces by
calculating the mean curvature for such a surface by our usual method.

508 Part III · Knowledge Representation

monge = s u r f a c e [{ x , y } , { x , y , h [x , y] } , { x , y , z }] ;
mean2 = meanCurvature[monge] / /Together

(- h (° ' 2 > [x , y] - h (° ' 2) [x , y] h i 1 ' ° > [x , y] 2 +
2 h < 0 ' 1) [x / y] h i 1 ' ° > [x , y] h i 1 ' χ) [χ , y] - h < 2 ' °> [x , y] -

η< 0 ' λ)[χ, y] 2 h < 2 ' °) [x , y]) /
(2 (1 + h < 0 ' x) [x , y] 2 + h i 1 ' ° > [x , y] 2) 3 / 2)

Finally, check that these two expressions for the mean curvature of a Monge surface differ just
by a minus sign.

meanl + m e a n 2 / / S i m p l i f y => 0

Of course, once one has this result, it is sufficient to set the numerator of meanl equal to 0
to describe a minimal surface in Monge form. This expression,

Numerator[meanCurv[h[x, y] , { x , y }]]

h (° ' 2 > [x , y] + h < 0 ' 2) [x , y] h i 1 ' ° > [x , y] 2 -
2 h (° ' 1 > [x f y] h ^ 1 ' °) [x , y] h i 1 ' x) [x , y] + h < 2 ' °) [x f y] +

h (° ' l) [x , y] 2 h < 2 ' °) [x , y]

is just the Euler-Lagrange equation for the area functional of a surface, which shows the
connection between asking for the mean curvature equal to be 0 and minimizing the area
bounded by a curve.

4 Implementation
Complete packages implementing all of the commands developed here will be found on the
diskettes distributed with this book. They are called C r i t i c a l P o i n t s . m . and Minimal-
Surf a c e s . m The following cells should be edited to load this package on your system.

«HardDisk:MathematicaData:MMPackages:CriticalPoints.m

«HardDisk:MathematicaData:MMPackages:MiminalSurfaces.m

Alternatively, use the method described at the beginning of Chapter 14, or load the packages
by opening the Notebooks and evaluating the initialization cells.

Problem 1
i) Factor the polynomial 1 - x10.
ii) Investigate the factors of polynomials of the form 1 - xnfor n between 1 and 10.

Answer: Use the following format:

Table[Factor[1 - χ Λ η] , {n, 1, 5}]//TableForm

1 - x
(1 - x) (1 + x)
(1 - x) (1 + x + x2)
(1 - x) (1 + x) (1 + x2)
(1 - x) (1 + x + x2 + x3 + x4)

Problem 3
Use Mathematica to calculate the following integrals. In each case differentiate the result to
check the answer if possible. Use Simplify , Factor, Together, etc., wherever it seems
appropriate.

511

512 Part IV · Answers

Answer:

expressionl = (xA2 + 5) / (xA5 + χΛ4 - x - 1);
integrali = Integrate[expressionl, x]// Simplify

3 3 Log[-l+x] 7 Log[l+x] Log[l+x2]
ArcTan[x] + +

2(l+x) 4 4 2

derivativel = D[integrali, x] // Simplify

5 + x2

-1 - x + x4 + x5

derivativel == expressionl => True

Problem 4
Convince Mathematica to display the expression (a + b) ((c + d x) x + e x2) in the following
forms:

i) a c x + b c x + a d x 2 + b d x 2 + a e x 2 + b e x 2

ii) (a + b) c x + (ad + b d + a e + b e) x 2

iii) (a + b)x (c + d x + ex)

Answer:

e x p r e s s i o n l = (a + b) ((c + d x) x + e χ Λ 2)

(a + b) (e x 2 + x (c + d x))

E x p a n d [e x p r e s s i o n l]

a c x + b c x + a d x 2 + b d x 2 + a e x 2 + b e x 2

Collect[expressionl, {x, c}]

(a + b) c x + (a d + b d + a e + b e) x 2

Factor[expressionl] => (a + b) x (c + d x + e x)

One · Answers 513

Problem 5
Graph the conic section 9 x2 + 4 x y + 6 y2 = 1. Hint: you will need the package I m p l i c i t -
Plot.
Answer:

Needs["Graphics'ImplicitPlot""]
ImplicitPlot[9xA2 + 4x y + 6yA2 == 1, {x, -0.5, 0.5}]

Problem 6
Find all integer values of n between 0 and 5 such that Mathematica can evaluate the following
integral: Hint: make a table.

Use differentiation to check that the values it does find are correct. Hint: subtract the integrand
from the derivative of its integral and use Factor.

514 Part IV · Answers
■ί *>#*&£*» '<\W%*vV?T*' --'^>4Μ&* Μ&\<ί , ,, ^*%*,·*„'*ί&»&*' *,w? «*■**. X« '":* --',>■.- <--<Ψ~,~. AJS5%.W *<-i%, - K-

Answer:
goodlntegrals =
Table[{n, Integrate!(1-1/u)"(4/3)/uAn, u]}, {n, 0, 5}]

((-l+u)/u)1/3 4 Integrate [, u]
-1 + u . -1 + u

{{0, ()l/3 (3 + u) }, u 3
15 3 -1 + u 1 ,. ((-l+u)/u)1/3 {1, (-(--) + —-) () 1 / 3 + lntegrate[, u]}, 4 4 u u -1 + u

3 3 6 -1 + u
{2, (- +) ()l/3},

7 7 u2 7 u u

9 3 33 3 -1 + u .7.
{3/ (— + +) ()l/3},

70 10 u3 70 u2 70 u u
27 3 21 6 9 -1 + u Ί ,.

{4/ (— + + +) ()1/3},
455 13 u4 65 u3 455 u2 455 u u
243 3 51 3 27 81 -1 + u Λ ,. {5,(+ + + +) ()1/3}}
7280 16 u5 208 u4 520 u3 3640 u2 7280 u u

The differentiation check is given by

D[goodlntegrals, u] -
Table[{0, (1 - l/u)"(4/3) / u"n}f {n, 0, 5}] //
Factor => {{0, 0}f {0f 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}

If one does the same thing with step size 1/3, then there are many more integrals that
Mathematica can handle. There is a definite regularity in the results and it appears that there is
probably a very complicated recursion formula for these values.

Problem 7
Same problem as number 5 for the following family of integrals.

f x2n + 2 V4x 2 n - l dx

Show that the case n = 3 can be integrated by a substitution. Check your result.

' *Ψ&-

One · Answers 515

Answer l. This answer uses commands that haven't been introduced yet.

moreGoodlntegrals =
Se l ec t [

Table[
{ n,

Integrate[χ Λ (2η + 2) Sqrt[4 χΛ(2 n) - l] , x] } ,
{n, - 1 0 , 1 0 }] ,

FreeQ[# [[2]] , Integrate]&]

χ3
{{0, },

Sqrt[3]
-x x3 x5 Log[2 x + Sqrt[-1 + 4 x2]]

{1, Sqrt[-1 + 4 x2] (+ —) }}
256 96 6 512

This time Mathematica can only integrate the cases n = 0,1. In order to check this calculation,
we differentiate moreGoodlntegrals and subtract the appropriate table of functions that we
started with, and then simplify the difference.

D[moreGoodlntegrals, x] -
Table[{0 , χΛ(2 n + 2) Sqrt[4 χΛ(2 n) - 1] } ,

{n, 0, 1}] / /S impl i fy => {{0, 0 } , {0, 0}}

When n = 3, we get an integral which Mathematica can't evaluate.

Integrate[xA8 Sqrt[4 xA6 - 1], x]

x 2

I n t e g r a t e [, x]
- x 3 x 9 S q r t [- 1 + 4 x 6]

S q r t [- 1 + 4 x 6] (+ —)
96 12 32

Mathematica doesn't know how to make a substitution in an integral, so we have to do it. The
standard substitution here is u = 2 x3. We have to substitute the inverse function for x and
calculate what has to be substituted for dx.

newexp = χΛ8 Sqrt[4 χΛ6 - 1] dx /.
{x -> (u/2)"(l/3), dx -> D[(u/2)"(l/3)f u]}

u2 Sqrt[-1 + u2]

24

516 Part IV · Answers

ans = Integrate[newexp, u] /· u -> 2 χΛ3
-x3 x9 Log[2 x3 + Sqrt[-1 + 4 x6]]

Sqrt[-1 + 4 x6] (+ —)
96 12 192

Check by differentiating.

D[ans, x] // Simplify => x8 Sqrt[-1 + 4 x6]

Note: the substitution u = x6 also works.

Answer 2. Here is a different substitution, where we let Mathematica find the inverse function
itself.

sub = Solve[u == 4 xA6 - 1, x][[l]]
(1 + u) 1 / 6

{x -> }
2l/3

newexpl = χΛ8 Sqrt[4 χΛ6 - 1] dx /.
sub /. dx -> D[x /. sub, u]

Sqrt[u] Sqrt[l + u]

48
Integrate the simplified expression and substitute x back into this.

ansi = Integrate[newexpl, u] / . u -> 4 χΛ6 - 1

S q r t [- l + 4 x 6] (-1+4 x 6) 3 / 2 ArcS inh[Sqr t [-1+4 x 6]]
2 S q r t [x 6] (+)

192 96 192

Note that this answer is quite different in form from the previous one, but it also checks.

D[ansl, x] // Simplify // PowerExpand
x8 Sqrt[-1 + 4 x6]

One · Answers 517

If we try to check directly that ans and ansi are the same, then the following works.

ans - ansi // PowerExpand // Simplify
ArcSinh[Sqrt[-l + 4 x6]] - Log[2 x3 + Sqrt[-1 + 4 x6]]

192

Now we have to show that Sinh of the Log term equals the Sqrt term.

Sinh[Log[2*x"3 + (-1 + 4*x"6)* (l / 2)]] / / Simplify

-1 + 4 x6 + 2 x3 S q r t [- 1 + 4 x6]

2 x3 + S q r t [- 1 + 4 x6]

Finally, multiply numerator and denominator by the difference of the two terms in the
denominator.

((Numerator!%] (2 x*3-Sqrt[- l+4 x A 6])) / / S impl i fy) /
((Denominator[%] (2 x"3-Sqrt[- l + 4 χ Λ 6])) / / S i m p l i f y)

Sqrt[-1 + 4 x6]

Problem 10
Let

, (x3 + 6 x5)
exprl=TÔT^)~

i) Differentiate expl.
ii) Simplify the result of i).

iii) Integrate the result of ii).
iv) Show that the answer to iii) is correct.

Answer:

expressione = (xA3 + 6 χΛ5) / (2 (1 - χΛ3));
derivative6 = D[expression6, x] // Simplify
3 x2 (1 + 10 x2 - 4 x5)

2 (-1 + x3) 2

518 Part IV · Answers
- < ^ Α ^ ^ ^ ^ w w ^ &i&*k>mffl8«tj *^.m*K&mfä&!«*?&?K

integrale = Integrate[derivative6, x] // Simplify
1 + 6 x5

2 - 2 x3

(integralo - expression6) / / Simplify => 1/2

As is to be expected, the integral of the derivative and the expression differ by a constant.

Problem 11
We saw in the text that ((2 + 5 I) u) 1 / u * 2 + 5 I . What is the precise relationship
between these two numbers.

Answer: There are several ways to compare 2 + 51 with ((2 + 51)12)1/12.

num = (2 + 5 I)A12 =» -86719879 + 588467880 I
N[num"(l/12)] => 5.33013 + 0.767949 I
twelthroots = N[Solve[z"12 == num]]
{{z -> -5. + 2. I}, {z -> -2. - 5. I}, {z -> 2. + 5. I},
{z -> 5. - 2. I}, {z -> -4.23205 - 3.33013 I},
{z -> 0.767949 - 5.33013 I}, {z -> -0.767949 + 5.33013 I},
{z -> 4.23205 + 3.33013 I}, {z -> -5.33013 - 0.767949 I},
{z -> -3.33013 + 4.23205 I}, {z -> 3.33013 - 4.23205 I},
{z -> 5.33013 + 0.767949 I}}

Thus, numA (1 /12) is the primitive twelfth root of num and 2 + 5 I is the third one. Here is
a picture of all of the twelfth roots with labels on the two that we are interested in.

Show[Graphics!{PointSize[0.03],
Map[Point[{Re[#], Im[#]}]&, z /. twelthroots],
Text["num"(1/12) ", {8.5, 0.9}],
Text["2 + 5 I", {4.5, 5}]}],
Axes -> True, AspectRatio -> Automatic,
PlotRange -> {{-7, 11.5}, Automatic}];

One · Answers
^■sMmw*»** ?* \-Φ *» "

519

Φ

m

^5 ^2

m

.5

•

•
4

2

-2

-4
•

• 2

2^5

•

+

•

5 I

φ num/ N(l /12)

*5 7?5 Ϊ0

•

In fact, all twelfth roots of num are multiples of numA (1/12) by twelfth roots of 1.

rootsOne = N [S o l v e [z " 1 2 == 1] , 20]

{ { z -> - 1 . } , {z -> - 1 . I } , {z -> 1 . I } , {z
{z -> -0.5 - 0.86602540378443864676 I},
{z -> -0.8660254037844386468 + 0.5 I},

0.86602540378443864676 - 0.5 I},
0.5 - 0.86602540378443864676 I},
-0.5 + 0.86602540378443864676 I},

-> 1·}/

{z
{z

->
->

{z ->
{z -> -0.8660254037844386468 - 0.5 I},
{z -> 0.86602540378443864676 + 0.5 I},
{z -> 0.5 + 0.86602540378443864676 I}}

We need the last entry here. In order for the check to work we have to work with 20 significant
digits.

2 + 5 . I == N [n u n T (l / 1 2) , 20] z / . r o o t s O n e [[1 2]]

True

Problem 13
i) Consider the matrix

A =
1 2 3
4 5 6
7 8 9

Find the exact values and the numerical values of the eigenvalues and eigenvectors of
A. Display the answers as a table in which the first column has the eigenvalues and the
second column has the corresponding eigenvectors. (Hint: look up commands starting
with E igen . Also, consider Transpose .) Display your answers in a nice, readable
form.

520 Part IV · Answers

ii) The transpose of the matrix of eigenvectors of A determines the coordinate
transformation that diagonalizes A. Use this to check the results of part i).

matrix = { { 1 , 2, 3 } , {4, 5, 6 } , {7, 8, 9 } } ;

Answer 1. Find the exact solution for the eigenvalues and eigenvectors.

Transpose[Eigensystem[matrix]]//MatrixForm

0 {1, -2, 1}
-3 (1 + Sqrt[33]) 8 (168 - 24 (1 + Sqrt[33]))

{ + ,
14 7 (-198 + 42 Sqrt[33])

3 (5 - Sqrt[33]) 168 - 24 (1 + Sqrt[33])
_() , i}

2 -198 + 42 Sqrt[33]

-3 (1 - Sqrt[33]) 8 (168 - 24 (1 - Sqrt[33]))
{ + ,

14 7 (-198 - 42 Sqrt[33])

3 (5 + Sqrt[33]) 168 - 24 (1 - Sqrt[33])
_() , i}

2 -198 - 42 Sqrt[33]

This is pretty unwieldy, but in numerical form, it is quite simple.

N[%]//MatrixForm

0 {1., -2., 1.}
-1.11684 {-1.28335, -0.141675, 1.}
16.1168 {0.283349, 0.641675, 1.}

Answer 2. Turn the matrix into a matrix of real numbers and then find the eigenvalues and
eigenvectors. Notice that this is much faster, but gives its results in a different order and finds
a tiny value instead of 0. It uses a different algorithm.

Transpose[Eigensystem[N[matrix]]] // MatrixForm

16.1168 {0.231971, 0.525322, 0.818673}
-1.11684 {0.78583, 0.0867513, -0.612328}
-2.5707 10"19 {0.408248, -0.816497, 0.408248}

One · Answers 521

The eigenvectors look different, but of course the eigenvectors corresponding to a given
eigenvalue are only determined up to a multiplicative constant. To compare the results, we
reorder the second matrix of eigenvectors so that it is in the same order as the first, and then
divide the two matrices, which has the effect of dividing corresponding entries.

N[Eigensystem[matrix]][[2]] /
Eigensystem[N[matrix]][[2]][[{3, 2, 1}]]

{{2.44949, 2.44949, 2.44949},
{-1.63311, -1.63311, -1.63311},
{1.22149, 1.22149, 1.22149}}

This shows that each row in the first matrix is the appropriate constant multiple of the
corresponding row in the second matrix.

The Check. The coordinate transformation that diagonalizes matrix is given by the transpose
of the matrix of eigenvectors.

P = Transpose[N[Eigensystem[matrix]][[2]]]

{{1., -1.28335, 0.283349}, {-2., -0.141675, 0.641675},
{1., 1., 1.}}

The following product should be the diagonal matrix whose entries are the eigenvalues.

I n v e r s e [P] . matr ix · P

{ { - 2 . 1 6 8 4 1 0 ~ 1 9 , - 1 . 5 3 6 0 4 1 0 " 2 0 , 6 .95705 1 0 ~ 2 0 } ,
{ 0 . , - 1 . 1 1 6 8 4 , - 5 . 6 9 2 0 6 1 0 ~ 1 9 } ,
{ -8 .67362 1 0 " 1 9 , 8 .67362 1 0 " 1 9 , 16 .1168}}

Not quite, but Chop fixes it.

Chop[%] => {{0 , 0 , 0 } , {0 , - 1 . 1 1 6 8 4 , 0 } , {0 , 0 , 16 .1168}}

We can also carry out the check using the exact symbolic result.

P = T r a n s p o s e [E i g e n s y s t e m [m a t r i x] [[2]]]

- 1 1 - S q r t [2 9 7] - 1 1 + S q r t [2 9 7]
{ { 1 , , } ,

22 22

522 Part IV · Answers

11 - Sqrt[297] 11 + Sqrt[297]
{_2, , }, {1, 1, 1}}

44 44

Inverse[P] . matrix . P // Simplify

3 (-33 + Sqrt[33]) 3 (33 + Sqrt[33])
{{0, 0, 0}, {0, , 0}, {0, 0, }}

3 3 + 7 Sqrt[33] -33 + 7 Sqrt[33]

One has to work hard to get Mathematica to carry out the check that this is the matrix of
eigenvalues of the matrix.

((% - DiagonalMatrix[Eigensystem[matrix][[1]]]) // Simplify) ==
0 IdentityMatrix[3]

True

Problem 15
Compare the integral of V1 + cos(x) over the interval (0, π) with the numerical value of the
integral and with a plot of the function over the same interval. In versions before Version 2.2,
Mathematica got this wrong.

Answer:

Integrate[Sqrt[l + Cos[x]], {x, 0, Pi}]
N[%]

NIntegrate and Plot also get it right.

NIntegrate[Sqrt[l + Cos[x]]f {x, 0, Pi}]
Plot[Sqrt[l + Cos[x]], {x, 0, Pi}];

23/2
2.82843

2.82843

0.5 1 1.5 2 2.5 3

One · Answers 523

Problem 16
Part a. Over what range of values does Mathematica give a continuous antiderivative for
1 / (2 + cos x)?

Answer:

bad = Integrateti / (2 + Cos[x]), x]

Tan[x/2]
2 ArcTan[]

Sqrt[3]
Sqrt[3]

Plot[Evaluate!bad], {x, -2 Pi, 2 Pi}];

The drawing shows that Mathematica has found a continuous integral from - P i to Pi and then
repeated those values periodically. The result is not continuous between 0 and 2 Pi.

Integrateli / (2 + Cos[x]), {x, 0, 2 Pi}] => 2 Pi/Sqrt[3]

Thus Mathematica did not use its indefinite integral and just evaluate it at the end points since
that would have given the result 0. Instead, Mathematica has a very powerful different
algorithm for evaluating definite integrals which has given the correct result here.
Part b. Use the expression

(x3 + 2 x2 + 3 x + 2)
(x3+4x2 + 5x + 6)

to show that simplification does not commute with substitution. Hint: the numerator and
denominator have a common factor.

524 Part IV · Answers

Answer:

exp = (xA3 + 2 χΛ2 + 3 x + 2) / (x"3 + 4 xA2 + 5 x + 6) ;
exp / / Simplify

1 + x

3 + x

{Factor[Numerator[exp]], Factor[Denominator[exp]]}
{(1 + x) (2 + x + x2), (3 + x) (2 + x + x2)

Since the numerator and denominator have a common factor, we can defeat the simplifier
by using a root of the common factor. If we first substitute the roots of x2 + x + 2 == 0 into exp
and then simplify, the results are indeterminate.

exp/.Solve[xA2 + x + 2 == 0, x] // Simplify
{Indeterminate, Indeterminate}

However, if we simplify first and then make the substitution, the results are OK.

(exp // Simplify) /. Solve[xA2 + x + 2 == 0, x] // Simplify
I + Sqrt[7] -I + Sqrt[7]

{ , }
5 1 + Sqrt[7] -5 1 + Sqrt[7]

Problem 17
Part b. Try inverting the n x n Hilbert matrix (just change 3 to n in the definition) for larger
values of n. For n about 10, it is still possible to look at the result. Simon asks for n = 20. Don't
try to display the result, but do check that the answer is correct.

Answer:

hilbert[n_] := Table[l/(i + j - 1), {i, n}, {j, n}]
Timing[hilbert[20] . Inverse[hilbert[20]] ==

IdentityMatrix[20]]

{26.8667 Second, True}

One · Answers 525

Part c. Find the symbolic sum of iPfor i from 1 to n. Do this for p equal to various small values;
e.g., 3,5. You have to use a package to do this. Simon asks for the value when p = 30.
Answer:

Needs["Algebra"SymbolicSunT "]
SymbolicSum[iA30, {i, 1, n}]

(n (1 + n) (1 + 2 n) (8615841276005 - 25847523828015 n +
3620925455812 n2 + 40832271288594 n3 - 17837160922265 n4 -
28153059810393 n5 + 14950298960254 n6 + 11455222740024 n7 -
6593111576555 n8 - 3131110750383 n9 + 1880950772008 n10 +
619369184742 n11 - 381864885017 n12 - 93143714433 n13 +
58417981930 n14 + 11033483076 n15 - 7003032113 n16 -
1057869813 n17 + 677256580 n18 + 83969886 n19 - 54097043 n20 -
5648643 n21 + 3653650 n22 + 336336 n23 - 217217 n24 -
21021 n25 + 12936 n26 + 3234 n27 + 231 n28)) / 14322

Part e. Here is the Van Der Monde matrix of size 3.

f 1 1 1 \
x[l] x[2] x[3]

V x[l]2 x[2]2 x[3]2j

Define a function that constructs the Van Der Monde matrix of size n. Simon's problem is to
factor the determinant of the Van Der Monde matrix of size 6. (Don't try to display the
determinant in unfactored form.) After finding the factorization, answer the following
questions:

• How many terms are there in the unfactored form of the Van Der Monde determinant
of size n?

• How many symbols are there in each term?
• How many symbols in the entire determinant? (Don't forget about spaces and + and -

signs.)
• How many pages are needed to display the unfactored Van Der Monde determinant of

size 6? of size 10?
Answer:

vanDerMonde[n_, x_] :=
Table[x[ip(j - 1), {j, n}, {i, n}]

Short[Det[vanDerMonde[6, x]], 2]

-(x[l]5 x[2]4 x[3]3 x[4]2 x[5]) + x[l]4 x[2]5 x[3]3 x[4]2 x[5] +
«717» + x[2] x[3]2 x[4]3 x[5]4 x[6]5

526 Part IV · Answers

Det[vanDerMonde[6, χ]] // Factor

(-χ[1] + χ[2]) (-x[l] + χ[3]) (-x[2] + χ[3])
(-χ[1] + x[4]) (-χ[2] + χ[4]) (-χ[3] + χ[4])
(-χ[1] + χ[5]) (-χ[2] + χ[5]) (-χ[3] + χ[5])
(-χ[4] + χ[5]) (-x[l] + x[6]) (-χ[2] + χ[6])
(-χ[3] + χ[6]) (-χ[4] + χ[6]) (-χ[5] + χ[6])

A determinant of size n has n! terms. In this case, they are all different. In the Van Der
Monde determinant, a typical term consists of a product of n - 1 factors of the form x[i] for
different values of i, and n - 2 of these also have an exponent. Each such factor uses 4
characters so there are 4n - 4 characters, plus n - 2 spaces, plus n - 2 exponents, plus two
brackets, plus a + or - sign, giving 6n - 5 characters altogether in each term, ignoring all
spaces. Thus, there are n! (6n - 5) = 6 n n! - 5 n! characters in the whole determinant. A simple
calculation suggests the following:

6 n n! - 5 n! / . { { n -> 6 } , {n -> 10}}

{22320, 199584000}

N[{%/80, %/(80 50)}]

{{279., 2.4948 106}, {5.58, 49896.}}

This says that for n = 6, there would be 280 lines on 5.58 pages, and for n = 10, there would be
over 2.49 million lines on 49,896 pages. However, the restriction on line breaks makes a
difference. When n = 6, a single term has 30 characters plus 2 for the spaces and + or - sign,
except possibly at the beginning, giving 32 characters. Thus, only 2 terms fit on a single line.
The number of terms is 6! = 720, so 360 lines are required, taking 7.2 pages. When n = 10, a
single term has 54 characters plus 2 more, giving 56 characters, so only 1 term fits on a line.
There are 10! = 3,628,800 lines, taking 72,576 pages. That's the same as 72 volumes of 1000
pages each, or two large encyclopedias. One should measure output from a symbolic program
in terms of screens, pages, chapters, books, book shelves, stacks, libraries, etc.

In some of the later problems here, we use commands that haven't been introduced yet. This is
just to make the presentation of the answers as concise as possible. Everything that is used will
be explained eventually.

Problem 1
Solve and check the equation

3
4 17 x

14
Answer:

equationi =
-3 /7 + (37 x) /14 - (31 x"2)/7 +
(17 x*3)/14 + χΛ4 == 0;

solutionl = Solve[equationi, x]

{{x -> -3}, {x -> 2/7}, {x -> 1/2}, {x -> 1}}

equationl /. solutionl => {True, True, True, True}

Problem 2
Solve the equation

x5 - ^ L 3 = o
2740 9704700

with 10 digit accuracy; with $MachinePrecision and $MachinePrecision + 1 digits
accuracy. Check your answers. (You may need to use the built-in function Chop.)

_ 31 x + 3 7 A - 1 = 0
7 14 7

527

528 Part IV · Answers

Answer:

equation2 = xA5 - xA2/2740 - 3/9704700 == 0;
solution2 = Solve[equation2, x]

{ToRules[Roots[-161745 x2 + 443181300 x5 == 137, x]]}

nsolution210 = N[solution2, 10]

{{x -> -0.03839999805 - 0.0586618867 I},
{x -> -0.03839999805 + 0.0586618867 I},
{x -> 0.0009533644888 - 0.02896122465 I},
{x -> 0.0009533644888 + 0.02896122465 I},
{x -> 0.07489326712}}

equation2/.nsolution210 => {False, False, False, False, False}
equation2[[1]]/.nsolution210//Chop => {0, 0, 0, 0, 0}
nsolution219 = N[solution2, 19]

{{x -> -0.03839999804998090929 - 0.05866188669978060415 I},
{x -> -0.03839999804998090929 + 0.05866188669978060415 I},
{x -> 0.0009533644887842921987 - 0.02896122464679609684 I},
{x -> 0.0009533644887842921987 + 0.02896122464679609684 I},
{x -> 0.07489326712239323419}}

equation2/.nsolution219

{False, False, False, False, False}

nsolution220 = N[solution2, 20]

{{x -> -0.038399998049980909293 - 0.058661886699780604152 I},
{x -> -0.038399998049980909293 + 0.058661886699780604152 I},
{x -> 0.000953364488784292199 - 0.028961224646796096844 I},
{x -> 0.000953364488784292199 + 0.028961224646796096844 I},
{x -> 0.074893267122393234189}}

equation2/.nsolution220

{True, True, True, True, True}

20 digits is one more than machine accuracy on the machine being used.

Three · Answers 529

Problem 3
Solve the pair of equations x2y + y = 2 , y - 4 x = 8 exactly for x and y.

Answer:
equations3 = {χΛ2 y + y == 2, y - 4x == 8};
solution3 = Solve[equations3, {x, y}]//Simplify;
equations3/.solution3//Simplify
{{True, True}, {True, True}, {True, True}}

This last evaluation takes a long time. We are still searching for an example in Version 2.2
involving only polynomials where Mathematica can find the answer but can't verify it.

Problem 4
Solve the three equations

a x + b y - z = 3 b,
x - 4 y - 5 c z = 0,
x + a y - bz = c

exactly for x, y, and z. Show the answer and a check of its correctness. Also solve for a, b, and c
and check the answer.

Answer:
equations4 = {a x + b y - z == 3 b,

x - 4 y - 5 c z == 0,
x + a y - b z == c};

solution4xyz = Solve[equations4, {x, y, z}]//Simplify
-12 b 2 + 4 c - 1 5 a b c + 5 b c 2

{ { x _> ,

4 + a - 4 a b - b 2 - 5 a2 c + 5 b c

-3 b 2 + c + 1 5 b c - 5 a c 2

y -> ,
4 + a - 4 a b - b 2 - 5 a2 c + 5 b c

-12 b - 3 a b + 4 a c + b c
z _> } }

4 + a - 4 a b - b 2 - 5 a2 c + 5 b c

530 Part IV · Answers

equations4/.solution4xyz//Simplify

{{True, True, True}}

solution4abc = Solve[equations4, {a, b, c}]//Simplify

-3 x + 12 y + x y - 4 y2 + 1 5 x z - 5 x y z + 5 z 3
{ { a -> ,

5 z (-3 y + y2 + x z)

x2 - 4 x y - 5 x 2 z - 5 y z 2 x - 4 y
b -> , c -> }}

5 z (3 y - y 2 - x z) 5 z

equations4/.solution4abc//Simplify

{{True, True, True}}

Problem 5
Investigate the solutions that Mathematica finds for the equation

V 1 -x + V 1 +x = - 1

What is the result of substituting the solutions in the left-hand side of the equation?

Answer:
equation5 = Sqrt[l - x] + Sqrt[l + x] ==3;
solution5 = Solve[equations, x]

-3 1 3 1
{{x -> Sqrt[5]}, {x -> Sqrt[5]}}

2 2
equation5/.solution5//Simplify

3 1 3 1
{Sqrt[l Sqrt[5]] + Sqrt[l + Sqrt[5]] == 3,

2 2
3 1 3 1

Sqrt[l Sqrt[5]] + Sqrtfl + Sqrt[5]] == 3}
2 2

Three · Answers 531

Note however, the following interesting result.

Reduce[%] => True

Problem 6
Use the built-in operation DSolve to solve the following differential equations. Check your
solutions.

ii) y' - y tan(x) = sec(x).

Answer: We illustrate the procedure using part ii). There are two forms of DSolve; one solves
for y [x] and the other for y as a pure function.

diffEquation = y'[x] - y[x] Tan[x] == Sec[x];
solutionl = DSolve[diffEquation, y[x], x]
{{y[x] -> x Sec[x] + C[l] Sec[x]}}

In this form, it is necessary to substitute explicitly for y [x] and for y ' [x] .

diffEquation/.solutionl/· D[solutionl, x] // Simplify
{{True}}

If one solves for y as a pure function, then the check is much simpler and is exactly the same
check that was used for algebraic equations.

solution2 = DSolve[diffEquation, y, x]
{{y -> Function[x, x Sec[x] + C[l] Sec[x]]}}
diffEquation /· solution2 // Simplify => {True}

Problem 9
Try to use DSolve to solve the system of differential equations

x'(t) = 2x(t)-x(t)y(t)-2x(t)2
y'(t) = y(t)-(l/2)x(t)y(t)-y(t)2

x(0) = 2
y(0) = 2.

When that fails, solve it numerically for t between 0 and 100 and plot the solution.

532 Part IV · Answers

Answer: These kinds of equations are called Lotka-Volterra systems. They describe things like
predator-prey situations. For appropriate choices of the coefficients, the solution tends towards
a fixed point and one is interested in stability properties of this fixed point. Here is a short
routine to create the equations from a list of the right-hand sides together with the list of
variables, the list of initial values and an iterator to give the range for the desired solution.

diffEqSystem =
{ x'[t]
y'[t]
x[0]
y[0]

== 2 x[t] - x[t] y[t] - 2 x[tp2,
== y[t] - (1/2) x[t] y[t] - y[tp2,
== 2,
== 2 };

DSolve doesn't work.
DSolve[diffEqSystem, {x, y}, t]
DSolve[{x"[t] == 2 x[t] - 2 x[t]2

x[t] y[t]
y'[t] == y[t] y[t]2,

2

{x, y } , t]

- x [t] y [t] f

x[0]==2, y[0]==2}f

DSolve.m doesn't help either. Instead, we have to find a numerical solution and then use
ParametricPlot to see what the answer looks like.

systemSol =
NDSolve[diffEqSystem, {x[t], y[t]}, {t, 0f 100}]

{{x[t] -> InterpolatingFunctionHO., 100.}, <>][t],
y[t] -> InterpolatingFunction[{0., 100.}, <>][t]}}

ParametricPlot[Evaluate[{x[t], y[t]}/·systemSol],
{tf 0, 100}];

Three · Answers 533

Add an Epi log to give points on the curve at equal time intervals to show convergence to
fixed point. Also fix the plot range and the axes.

ParametricPlot[
Evaluate!{x[t], y[t]}/.systemSol], {t, 0, 100},
PlotRange -> All, AxesOrigin -> {0, 0},
Epilog ->{ PointSize[0.015],

Map[Point,
Table[{x[t], y[t]}/.systemSol[[1]],

{tf 0, 10, 1}]]}];

1.8 ^ ^ ^
1.6 ^ ^ ^
1.4 S ^
1.2 S^

0.8 t

0.6 0.8 1 1.2 1.4 1.6 1.8 2

Problem 11
Use the function definition facilities described in Chapter 1 to define a function
pascalTriangleRow[n_J that displays the nth row of Pascal's triangle. (Note: there is a
built-in function called Binomial[m , n].) Use this function to write another operation
pascalTriangle [n_] that displays the first n rows of Pascal's triangle in triangular form.

Answer: The nth row of Pascal's Triangle can be defined in a straightforward way as:

pascaltrianglerow[n_J : =
Table[Binomial[n, i], {i, 1, n}]

A more elegant solution, using the L i s t a b i l i t y of Binomial in its second argument, is:

pascalTriangleRow[n_J := Binomial[n, Range[0, n]]
pascalTriangleRow[6] => {1 , 6, 15, 20, 15, 6, 1}

pascalTriangleRow is itself L i s tab le since it is built from L i s table ingredients.

534 Part IV · Answers
*£ ί,ΛΛν M**»**! ^^Ί'^r^^^m^^^i.-m^^^i^'mfmm

pascalTriangle[n_] :=
TableForm[pascalTriangleRow[Range[0, n]],

TableAlignments -> Center,
TableSpacing -> {1, 1}]

pascalTriangle[9]

1
1

1
1
8

9

1

7

36

1

6

28

1

5

21

84

1

4

15

56

1

3

10

35

126

1

2

6

20

70

1

3

10

35

126

1

4

15

56

1

5

21

84

1

6

28

1

7

36

1

8
1

1
9 1

Problem 12
--^i >?*." *ΤΌ si

Define a function completeTheSquare [expr] that takes an expression of the form ax 2 + b
x + c and writes it in the form a (x + b / 2 a)̂ "+ c - b 2 / 4 a2. You may find it necessary to
define some auxiliary functions to extract the coefficients from the expression.
There are several ways to construct the "complete the square" operation.

Answer 1.

aa[expr__, x_]
bb[expr_, x_]
cc[expr_, x_]

= Coefficient[expr, x, 2];
= Coefficient[expr, x, 1];
= Coefficient[expr, x, 0];

completeTheSquare[expr_, x_] :=
aa[expr, x] (x + bb[expr, x]/(2 aa[expr, x]))A2+
cc[expr, x] - bb[expr, xp2 / (4 aa[expr, x])

exprl = 2 χΛ2 + 3 x + 4;
completeTheSquare[expr1, x]
23 3
— + 2 (- + x)2
8 4

Three · Answers 535

expr2 = a χΛ2 + b χ + e;
completeTheSquare[expr2, x]

-b2 b
+ e + a (+ x)2

4 a 2 a

There is no reasonable way (i.e., not using string operations) to get Mathematica to reverse the
order in which it displays this result.

Answer 2. It is better to use local variables for this problem. We haven't discussed them yet,
but they occur inside Module expressions.

completeTheSquare[expr_, x__] : =
Module[{a, b, c},

{c, b, a} = CoefficientList[expr, x];
a (x + b / (2a))"2 + c - b"2 / (4a)]

completeTheSquare[expr2, x]

-b2 b
+ c + a (+ x)2

4 a 2 a

To check this result, expand it.

Expand[%] => c + b x + a x 2

Problem 13
i) Jacobian matrices: (Look up Jacobian matrices in your advanced calculus book.) Define

a function j a c o b i a n [f u n l i s t _ , v a r l i s t _] which takes as arguments a list of
functions and a list of variables. It calculates the Jacobian matrix of the functions with
respect to the variables. (The (i, j)th entry is the partial derivative of the ith function
with respect to the jth variable.) Include Simplify in the definition of the function.
Note: the length of a list is given by Length [l i s t] .

ii) Calculate the Jacobian matrix for the pair of functions u = x2 + y2, v = - 2 x y with
respect to x and y. Name this matrix jak. Note that jak is expressed in terms of the
variables x and y.

iii) Solve for x and y as functions of u and v. There will be four complicated solutions.

536 Part IV · Answers
Λ \,β&&%**£ρ4Ι, '?ί*3%*

iv) In particular, the third solution in part iii) gives x and y as functions of u and v. Use
this to calculate the Jacobian matrix of x and y with respect to u and v. Name this
matrix invjak. Note that it is expressed in terms of the variables u and v.

v) Let jakf be invjak expressed in terms of x and y rather than u and v. I. e., substitute the
values for u and v in terms of x and y into invjak to get jak'.

vi) Show that jak. jak1 = IdentityMatrix [2] .

Answer: The point of the exercise is to check the generalized chain rule for functions of several
variables. Here is the straightforward way to define the Jacobian matrix of a list of functions of
many variables.

jacobian [fun__List, var_List] :=
Simplify!

Table[D[fun[[i]],var[[j]]],
{i, 1, Length[fun]}, {j, 1, Length[var]}]]

fun = {χΛ2 + γΛ2, -2 x y}; var = {x, y};
jak = jacobian[fun, var] => {{2 x, 2 y}, {-2 y, -2 x}}

We view this pair of functions in x and y as a mapping from the x-y-plane to the u-v-plane,
and we want to calculate the inverse mapping. The given mapping is not one-to-one and there
are four "inverse" functions. The Jacobian matrix of such a mapping is the best linear
approximation to the mapping at any given point; i.e., at some point (a, b) in the domain of the
transformation, the evaluation of the Jacobian matrix at (a, b) is the matrix of the best linear
approximation to the mapping at the point (a, b).

invexp = Solve[fun == {u, v}, {x, y}] // Simplify

Sqrt[u - Sqrt[u2 - v2]] (u + Sqrt[u2 - v2])
{{x _> _(),

Sqrt[2] v

Sqrt[u - Sqrt[u2 - v2]]
y -> },

Sqrt[2]

(u - Sqrt[u2 - v2]) Sqrt[u + Sqrtfu2 - v2]]
{x _> ,

Sqrt[2] v

Sqrt[u + Sqrt[u2 - v2]]
y -> -()},

Sqrt[2]

Three · Answers 537

(-u + Sqrtfu2 - v2]) Sqrt[u + Sqrtfu2 - v2]]
{x -> ,

Sqrt[2] v

Sqrt[u + Sqrt[u2 - v2]]
y -> },

Sqrt[2]
Sqrtfu - Sqrtfu2 - v2]] (u + Sqrtfu2 - v2])

{x _> ,

Sqrt[2] v

Sqrtfu - Sqrtfu2 - v2]]
y -> - () } }

Sqrt[2]

We can check that the third pair of functions here is an actual inverse transformation by
showing that

x (u (x , y) , v (x , y)) = x, and y (u (x , y) , v (x , y)) = y, u (x (u ,
v) , y (u , v)) = u , and v (x (u , v) , y (u , v)) = v .

The first pair of equations are verified as follows:

{x, y} /. invexp[[3]] /. Thread[{u, v} -> fun] //
Simplify // PowerExpand // Expand // PowerExpand

{x , y}

Here, {x, y} / . invexpf [3]] gives x(u, v} and y{u, v} for the third pair of functions
above. Following this by the substitution Thread[{u, v} -> fun] gives x(u(x, y), v(x, y))
and y(u(x, y), v(x, y)). The output of this computation shows that the result eventually
simplifies to {x, y}. The other check is done analogously. In this case, a simple Simplify
suffices.

{u, v} / .Thread[{u, v} -> f u n] / . i n v e x p f [3]] / / S i m p l i f y

{u, v}

Now we concentrate on the inverse mapping given by the third solution and call it invFun.
The variables for this are u and v.

invFun = ({x, y} /. invexpf[3]]); invVar = {u, v};

538 Part IV · Answers

Next construct the Jacobian of invFun in terms of invVar.

invJac = jacobian[invFun, invVar]

-(Sqrt[u - Sqrt[u2 - v2]] (u + Sqrt[u2 - v2]))
{{ ,

2 Sqrt[2] v Sqrt[u2 - v2]

Sqrt[u - Sqrt[u2 - v2]]

Sqrt[2] Sqrt[u2 - v2]

u + Sqrt[u2 - v2]
+

2 Sqrt[2] Sqrt[u2 - v2] Sqrt[u - Sqrt[u2 - v2]]
Sqrt[u - Sqrt[u2 - v2]] (u + Sqrt[u2 - v2])

},
Sqrt[2] v2

u
1

Sqrt[u2 - v2]
{ ,

2 Sqrt[2] Sqrtfu - Sqrtfu2 - v2]]

v
} }

2 Sqrt[2] Sqrt[u2 - v 2] Sqrt[u - Sqrt[u2 - v 2]]

The original Jacobian matrix j ak is in terms of the variables x and y, while inv Jac is in
terms of u and v. In order to check the generalized chain rule, we have to express both of them
in terms of x and y. So define j ak · to be inv Jac with u and v replaced by their values in
terms of x and y from the original mapping fun. A lot of simplification is required to reduce
j ak ' to its simplest form. This is done interactively until a reasonable form is arrived at.

jak* = invJac /. Thread[{u, v} -> fun] //
Simplify // PowerExpand //
ExpandAll // PowerExpand // Simplify

x y y x
{{ , }, { , }}
2 (x2 - y2) 2 (x2 - y2) 2 (-x2 + y2) 2 (-x2 + y2)

Three · Answers 539

Simplify!jak . jak1] // TableForm

1 0
0 1

This result shows that the Jacobian matrix of a composition of transformations (in this case
equal to the identity transformation so its Jacobian matrix is an identity matrix) is equal to the
matrix product of the Jacobian matrices of the factors.

■ Pictures of the transformation u = xA2 + yA2, v = -2 xy.

We construct a graphics function which shows the image under a transformation of a
rectangular grid in the x-y-plane. This is adapted from the Complex Map construction in
[Maeder 1].

car tes ianMap[expr_, {χ_, x0_, χ 1 _ / dx_} ,
<Y_' Y°_' Y 1 - ' d Y _ } ' op t ions] : =

Module[{coords, lines},
coords = Table[N[expr],

{x, xO, xl, dx}, {y, yO, yl, dy}];
lines = Map[Line, Join[coords,

Transpose[coords]]];
Show[Graphics[lines],

AspectRatio->Automatic, Axes->Automatic,
options]]

f [* _ ' Y_l s = ί χ " 2 + Y ' 2 / " 2 x Y}

Here is a picture of the images of the upper half plane and the lower half plane.

Show [GraphicsAr ray [
{ cartesianMap[{xA2 + y^2, -2 x y},

{x, -4, 4, 0.2}, {y, 0.1, 3.6, 0.2},
DisplayFunction -> Identity],

cartesianMap[{x/v2 + y*2, -2 x y},
{x, -4, 4, 0.2}, {y, -3.7, -0.1, 0.2},
DisplayFunction -> Identity] }],

DisplayFunction -> $DisplayFunction];

540 Part IV · Answers

Discussion: The mapping f[x, y] is singular along the lines x = y and x = -y as one sees because
the jacobian is zero there. The mapping folds the first quadrant along the line x = y and covers
the indicated region in the fourth quadrant twice. The second quadrant is mapped onto the
first quadrant in the same way. Finally, the lower half plane is mapped just like the upper half
plane, so every point in the image is covered four times. That's why there are four "inverse"
functions.

Problem 14 i)
Is e π v 163 an integer? How precisely does it have to be calculated to determine the answer?
Answer:

TableForm[
Table[{n, AccountingForm[N[E"(Pi Sqrt[163]), n]]},

{n, 30, 33}],
TableHeadings -> {None, {"Precision", "Value"}},
TableSpacing -> {1, 3}]

Precision Value
30 262537412640768744.
31 262537412640768744.
32 262537412640768743.999999999999
33 262537412640768743.9999999999993

Thus, 33 digits of precision are required to show that this number in not an integer.

Three · Answers 541
^^^^^^m^m^m^^m^^^^'^,^^4ciS^^^>^^A^^^^^^^^^^^^è^^^?A htte, '* * P^'<i- ;- ̂ '«v̂ s&Wf'Viv* ^Ä«^V*V >'̂ iWÄ**<3&<sMm$ci3&$®&&ät&

Problem 14 ti)
Determine how Mathematica deals with «>— <», oo/oo, o «>, 1°!

Answer:

Infinity - Infinity => Indeterminate
Infinity/Infinity => Indeterminate
0 Infinity => Indeterminate
1ΛInfinity =» Indeterminate

Problem 14 tit)
Does Mathematica solve the equation Sqrtfx] = 1 - x correctly?
Answer:

eqn = Sqrt[x] == 1 - x;

sol = Solve[eqn, x]

3 - Sqrt[5]
{{x -> (}}

2

eqn/.sol//Simplify

Sqrt[3 - Sqrt[5]] -1 + Sqrt[5]
{ == }

Sqrt[2] 2

The best we can do to complete the check is to use some magic to show that the squares of the
two sides are the same.

Map[#*2&, %, {2}]//Simplify

{True}

542 Part IV · Answers

Problem 14 iv)
Does Mathematica calculate the definite integral of 1/x2 from -3 to 2 correctly?

Answer:

Integrate[l/x*2, {x, -3, 2}] => Indeterminant

This is much better than Mathematica did in earlier versions where it reported the value -5/6.
A plot shows what is going on.

P l o t [l / x A 2 , {x, - 3 , 2 }] ;

50011

4od|
3od
2oq
ìod L

-3 -2 -1
NIntegrate[1/χΛ2, {χ, -3, 2}]
NIntegrate:rslwcon:

Numerical integration converging too slowly; suspect one of
the following; singularity, oscillatory integrandf or
insufficient WorkingPrecision.

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy after 7
recursive bisections in x near x = -0.0117188.

4111.6

Integrate gives no warning that there is a singularity at zero. NIntegrate notices that its
algorithm is failing to converge and suggests possible reasons why.

If we analyze the integrand and break up the integral, then we get a better answer.

Three · Answers 543

Integrate[l/x"2, {x, -3f 0}] +
Integrate[1/χΛ2, {x, 0, 2}]

Infinity:rindet: Indeterminate expression -Infinity + Infinity
encountered.
Inde te rmina te

To get the correct answer, we have to evaluate these indeterminate integrals correctly as limits.

Limit [
Integrate[l/xA2, {x, -3, t}], t->0, Direction->l] +

Limit [
Integrate!l/xA2, {xf t, 2}], t->0f Direction->-l]
Integrate::gener: Unable to check convergence.
Infinity

The answer now is strictly correct. It is I n f i n i t y , not Indeterminant .

CHAPTER

Answers

Problem 1
In problem 13 of the Exercises in Chapter 3, the third solution of the transformation

u = x2 + y2

v = - 2 x y

for (x, y) in terms of (u, v) was used to construct invjak which was then expressed in terms of x
and y to get the matrix jak'. It satisfies jak . jak* = Id. This time:

i) Modify your definition of the Jacobian function using the notions introduced in this
chapter.

ii) Find invjak(n), 1 < n < 4 for each of the four solutions of x and y in terms of u and v.
Keep invjak(n) as an expression in u and v.

iii) For each of the four solutions for (x, y) in terms of (u, v), express the original matrix
jak in terms of u and v instead of x and y, giving four Jacobians jak(n), 1 < n < 4 in
terms of u and v.

iv) For each n show that jak(n). invjak(n) = Id. Your final output should be a list of four 2
by 2 identity matrices.

Answer 1. Modify the definition of the Jacobian from Exercise 13 of Chapter 3 using Outer.

jacobian [fun__List, var_List] : =
Simplify[Outer[D, fun, var]]

Set up the variables and the expressions for the mapping.

fun = {χΛ2 - y*2, - 2 x y};
var = {x, y}; newvar = {u, v};

545

546 Part IV · Answers

Describe a family of functions to make the final computation; i.e., calculate the Jacobian of the
original transformation with respect to the original variables, solve for the four inverse
transformations, and find the Jacobians of each of the inverse transformations with respect to
the new variable.

jak = jacobian[fun, var];
inveqs[fun_, var_, newvar_] :=

Solve[fun == newvar, var]//Simplify;
newfuns[n_] := inveqs[fun, var, newvar][[n]];
invfun[n_] := ({x, y}/.newfuns[n]);
invjak[n__] := jacobian[invfun[n], newvar] //Simplify

Make the computation; i.e., express the original Jacobian in terms of each of the inverse
transformations and multiply it by each of the inverse Jacobians. Time the calculation to see
how long it takes.

Timing [
Table[(jak/.newfuns[n])·(invjak[n]) //

Simplify // Together,
{n, Length[inveqs[fun, var, newvar]]}] //

TableForm]
{218.6 Second, 1 0}

0 1

1 0
0 1

1 0
0 1

1 0
0 1

Answer 2. The following is noticeably faster. The only difference is that it calculates the inverse
functions immediately, whereas the first version calculates them four times.

jak = jacobian[fun, var];
newfuns = Solve[fun == newvar, var]//Simplify;
newjaks = jak/«newfuns;
invfun[n_] := ({x, y}/·newfuns[[n]]);
invjak[n_] := jacobian[invfun[n], newvar]//Simplify
Timing[Table[

(newjaks[[n]]).(invjak[n]) // Simplify // Together,
{n, Length[newfuns]}] // TableForm]

Five · Answers 547

{126,517 Second, 1 0}
0 1

1 0
0 1

1 0
0 1

1 0
0 1

Problem 2
Find the greatest common divisor of the nth row of Pascal's triangle, omitting the l's. To do
this:

i) Define a modified function pascal(n), from problem 11 of the Exercises in Chapter 3,
which gives the entries of this row without the l's.

ii) Then define a function gcd(n) which gives the greatest common divisor of the entries
in pascal(n). Note that there is a built-in function GCD.

iii) Make a table of the first 20 values of gcd(n) and conjecture the value of gcd(p) for p a
prime number.

iv) Use Mathematica to check that your conjecture is correct for the first 50 primes. Note
that there is a built-in function Prime [n] .

v) Use your head to prove your conjecture for all primes. You may assume that binomial
coefficients are integers.

vi) Guess the values of gcd(n) for n a power of a prime, and for n a number with at least
two different prime factors. (You might want to extend your table to n = 50, or even to
n = 100 to get more evidence for your guess.)

Answer:

pascal[n_] := Binomial[n, Range[l, n - 1]]
Attributes[gcd] = {Listable};
gcd[n__] := Apply[GCD, pascal[n]]

It is necessary that gcd have the attribute L i s tab le in order for the following construction to
work.

548 Part IV · Answers
\'^/-ψ'*ΐ*\}? *%$%$%%<'$'!> X'/"\ ih-**. .%.}******/»-' '*3^v ■* - · ?"% ">*"***< -, -νχ«"*^;, ^ * - v w m *z* ̂ Ή ^ * » » '

Timing[Thread[{Range[100], gcd[Range[100]]}]]

{ 3 6 . 2 1 6 7 S e c o n d ,
{ 6 ,
{ 1 3 ,
{ 1 9 ,
{ 2 5 ,
{ 3 1 ,
{ 3 7 ,
{ 4 3 ,
{ 4 9 ,
{ 5 5 ,
{ 6 1 ,
{ 6 7 ,
{ 7 3 ,
{ 7 9 ,
{ 8 5 ,
{ 9 1 ,
{ 9 7 ,

1 } , { 7 , 7 } ,
1 3 } , { 1 4 ,]
1 9 } , { 2 0 , :
5 } , { 2 6 , 1]
3 1 } , { 3 2 , :
3 7 } , { 3 8 , :
4 3 } , { 4 4 ,]
7 } , { 5 0 , 1]
1 } , { 5 6 , 1]
6 1 } , { 6 2 ,]
6 7 } , { 6 8 ,]
7 3 } , { 7 4 , :
7 9 } , { 8 0 ,]
1 } , { 8 6 , 1]
1 } , { 9 2 , 1]
9 7 } , { 9 8 ,]

{ { 1 , 0 } , { 2 , 2 } , { 3 , 3 } , { 4 , 2 } , { 5 , 5 } ,
{ 8 , 2 } , { 9 , 3 } , { 1 0 , 1 } , { 1 1 , 1 1 } , { 1 2 , 1 } ,

L}, { 1 5 , 1 } , { 1 6 , 2]
L}, { 2 1 , 1 } , { 2 2 , 1]
} , { 2 7 , 3 } , { 2 8 , 1 } ,
> } , { 3 3 , 1 } , { 3 4 , 1]
L}, { 3 9 , 1 } , { 4 0 , 1]
L}, { 4 5 , 1 } , { 4 6 , 1]
Ϊ, { 5 1 , 1 } , { 5 2 , 1 } ,
^ { 5 7 , 1 } , { 5 8 , 1 } ,
L}, { 6 3 , 1 } , { 6 4 , 2]
L}, { 6 9 , 1 } , { 7 0 , 1]
L}, { 7 5 , 1 } , { 7 6 , 1]
L}, { 8 1 , 3 } , { 8 2 , 1]
h, { 8 7 , 1 } , { 8 8 , 1 } ,
} , { 9 3 , 1 } , { 9 4 , 1>,
L}, { 9 9 , 1 } , { 1 0 0 ,]

l·, { 1 7 , 1 7 } , { 1 8 , 1 } ,
\, { 2 3 , 2 3 } , { 2 4 , 1 } ,

{ 2 9 , 2 9 } , { 3 0 , 1 } ,
\, { 3 5 , 1 } , { 3 6 , 1 } ,
\, { 4 1 , 4 1 } , { 4 2 , 1 } ,
\, { 4 7 , 4 7 } , { 4 8 , 1 } ,

{ 5 3 , 5 3 } , { 5 4 , 1 } ,
{ 5 9 , 5 9 } , { 6 0 , 1 } ,

\, { 6 5 , 1 } , { 6 6 , 1 } ,
\, { 7 1 , 7 1 } , { 7 2 , 1 } ,
\, { 7 7 , 1 } , { 7 8 , 1 } ,
\, { 8 3 , 8 3 } , { 8 4 , 1 } ,

{ 8 9 , 8 9 } , { 9 0 , 1 } ,
{ 9 5 , 1 } , { 9 6 , 1 } ,

L}}}

This takes a fraction of a second longer than the form:

Timing[Table[{n, gcd[n]}, {n, 2, 100}];]

{35.95 Second, Null}

Note that for n = 100, the GCD of 99 numbers is being calculated which is why it takes so long.
After inspecting the table, conjecture that for a prime p, the gcd of the pth row is p. Try the
conjecture for the first 50 primes.

Timing[Prime[Range[50]] == gcd[Prime[Range[50]]]]

{81.0667 Second, True}

This is slightly slower than the form:

Timing[Apply[And,
Table[Prime[p] == gcd[Prime[p]], {p, 1, 50}]]]

{80.55 Second, True}

Five · Answers 549
%·*?·&%$#%* t*f·

To prove the conjecture, note that the binomial coefficient p! / i! (p - i)! is divisible by p
since the factors in i! and (p - i)! are smaller than p and a prime number is not the product of
smaller numbers.

Examining the table, we conjecture that the gcd of the p n th row is also p and the gcd of the
nth row where n has at least two prime factors is 1. These are somewhat harder to prove. We
check the result for prime powers for a few primes.

Timing[And@@Flatten[
Outer[(gcd[Prime[#lp#2] == Prime[#l])&,

Range[3], Range[3]]]] =>{2.06667 Second, True}

This is slightly faster than the following:

Timing[Apply[And, Flatten[
Table[gcd[Prime[p]Λη] == Prime[p],

{p, 1, 3}, {n, 1, 3}]]]]

{2.05 Second, True}

If 3 is replaced by 4 in the preceding calculations, no output appears after a reasonable
length of time, so the calculation has to be aborted. Of course, Prime [4]Λ4 = 2401, so it's
not surprising that it takes a long time to calculate gcd [2401] . We can in fact, however, check
all three conjectures (which really are only two) in one step for values up to 100 in a reasonably
short time.

And@@Table[If[Length[Factorlnteger[n]] > 1,
(gcd[n] == 1),
gcd[n] == FactorInteger[n][[1, 1]]],

{n, 2, 100}] => {True}

Problem 4
Define f[m, r] = b[m + r - 1, r] ,whereb[m, n] is the binomial coefficient function.
This rotates the usual Pascal's triangle by 45 degrees. Make a table showing these values in an
upper-left triangular form corresponding to the usual table up to size 10. Pascal's Corollary 4
asserts that in this table, each entry is equal to the sum of all the entries to the north west of it
plus 1. Verify this for a number of small values of m and r.

Answer: If the built-in binomial coefficient function is not used, then one needs the usual
recursive definitions:

550 Part IV · Answers
- is *Λ*Αν*ϊ*&ϋΐΚ » ' ϊΐ^ΐΧ^θΦΤν?*^ s** ^ ^ ^ m ^ Ä ^ ™ * * »

b[n_, 0]
b[n_, n_]
b[n , r]

= 1;
= 1;
= b [n - l , r-1] + b [n - l , r]

{b[10, 3], Binomial[10, 3]} {120, 120}

We also want b[n, r] = f[n - r + 1, r] (turn this around to define f[m, r] = b[m + r - 1, r]. This
rotates the table by 45 degrees.)

f [m_, r _] := b[m + r - 1 , r]

Pascal's original triangle looked as follows:

Table[f[i, j], {i, 1, 12}, {j, 0, 11 - i}]//TableForm

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10

1
3
6
10
15
21
28
36
45

1
4
10
20
35
56
84
120

1
5
15
35
70
126
210

1
6
21
56
126
252

1
7
28
84
210

1
8
36
120

1
9
45

1
10

Pascal's corollary 4 is the next result. It says that each entry is equal to the sum of all the
entries to the north west of it plus 1.

cor4[m_, r_] :=
flm, r] ==

Sum[f[i, j], {jf 0 , r - 1}, {i, 1, m - 1}] + 1
Timing [

And@@Flatten[Table[cor4[m, r] ,
{m, 1, 7}, {r, 1, 7}]]]

{74.7833 Second, True}

We can also define this using the built-in Binomial function.

fl[m , r] := Binomial[m + r - 1, r]

Five · Answers 551

Then one can calculate much farther in a reasonable length of time.

cor41[m_, r_] :=
fl[mf r] ==

Sum[fl[i, j], {j, 0 , r - 1}, {i, 1, m - 1}] + 1
Timing [

And@@Flatten[
Table[cor41[m, r], {m, 1, 16}, {r, 1, 16}]]]

{70.7667 Second, True}

Well investigate these kinds of timing questions in a later assignment.

Problem 5
Implement the Gram-Schmidt method for orthogonalizing vectors with respect to the dot
product. It should take as input a list of n-dimensional vectors over the reals and output a list
of n-dimensional orthonormal vectors. You may assume that the original list is linearly
independent. It is sufficient to do this for n = 3. Check your algorithm on a list of three 3-
dimensional vectors with random real components. (Think about the case of four 3-
dimensional vectors with random real components.)

Answer: To orthogonalize a list of vectors we first have to be able to project a vector onto
another vector. Thus we construct a function to calculate the projection pro j ec t ion [a , v]
of a vector a on a vector v.

project ion[a_ f v_] := ((a . v) / (v . v)) v ;

The general procedure of the Gram-Schmidt method applied to a list v = {vi , V2 , V3 } of
vectors is to produce the vectors

ui = vi ,
U2 = V2 - projection[v2 , ui]
u3 = v3 - projection[v3 , ui] - projection^ , U2]

If there are more than three vectors in a higher dimensional space, the procedure continues in
the obvious fashion. Here is a simple version that has to repeat the calculation of U2 twice
since we have no place to store it here.

552 Part IV · Answers
&&:

orthogonalizel[vectors_] :=
{ vectors[[1]],

vectors[[2]] -
proj ection[vectors[[2]], vectors[[1]]],

vectors[[3]] -
projection[vectors[[3]], vectors![1]]] -

proj ection[vectors[[3]],
vectors[[2]] -
proj ection[vectors[[2]],

vectors[[1]]]]}

Try a simple example.

vectsl = {{1, 2, 3}, {2, -3, -4}, {-1, 5, 2}};
newvectsl = orthogonalizel[vectsl]

22 5 4 7 7 49
{{1, 2, 3}, { — , -(-), -(-)}, { — , -, -(—)}}

7 7 7 30 3 30

A solution for n-dimensional space

The preceding version only works for three vectors in 3-dimensional space. To find a more
general procedure that works for n vectors in n-dimensional space, we have to give names to
the new vectors that are constructed by the procedure. Here is a recursive procedure to do this
for any number of vectors, using the Sum function.

newvectors [i_, vectors_] :=
vectors[[i]] -

Sum [proj ection[vectors[[i]],
newvectors[j, vectors]],

{j, i - 1}];
The new basis then is just the list of the new vectors. Notice that this version is very inefficient
since it calculates the same things many times.

orthogonalize2[vectors_] :=
Table[newvectors[i, vectors], {i,Length[vectors]}];

orthogonalize2[vectsl]

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {7/30, 7/3, -(49/30)}}

Five · Answers 553

This works for n vectors in n-dimensional space. For instance, here are 4 vectors in 4-
dimensional space.

vects2 = { { 1 , 2 , 3 , 4 } , {2 , - 3 , - 4 , 5 } ,

{ - l f 5, 2, - 4 } , {-2 , - 3 , 4, 2 } } ;

newvects2 = orthogonalize2[vects2]

{{1, 2, 3, 4}, {28/15, -(49/15), -(22/5), 67/15},
481 1865 1277 95 3317 465 651 1085

{ „ _ , ,-(),-(__-)}, {-(), , _(), }}
802 802 802 802 2668 2668 2668 2668

Normalization
Finally, if we want to get orthonormal vectors, we have to divide each vector by its length.

length[vector_] := Sqrt[vector . vector]
normalize[vectors_J :=

Table[vectors[[i]]/length[vectors[[i]]],
{i, Length[vectors]}]

Try this on newvectsl.

orthonormvectsl = normalize[newvectsl]

{{1/Sqrt[14], Sqrt[2/7], 3/Sqrt[14]},
{22/(5 Sqrt[21]), -1/Sqrt[21], -4/(5 Sqrt[21]}
{1/(5 Sqrt[6]), Sqrt[2/3], -7/(5 Sqrt[6])}}

If this really is an orthonormal basis, then this list of vectors regarded as a matrix must be
orthogonal. But that's easy to check, since then its transpose must be its inverse.

Transpose[orthonormvectsl] == Inverse[orthonormvectsl]

True

Problem 1
Solve Exercise 13 in Chapter 3 about Jacobians again, this time in a functional style. Hint:
figure out how to combine Thread and Dot.

Answer:

jacobian[fun__List, var_List] : =
Simplify[Outer[D, fun, var]];

fun = {χΛ2 - y"2, - 2 x y};
var = {x, y}; newvar = {u, v};
jak = jacobian[funf var] => {{2 x, -2 y}, {-2 y, -2 x}}
newfuns = Solve[fun == newvar, var]//Simplify;
invfun = {x, y}/.newfuns;
invjaks =
matrices@@Map[jacobian[#, newvar]&, invfun]//Simplify;

newjaks = matrices@@(jak/.newfuns);
Timing [
List@@

Map[Together,
Thread[Dot[newj aks, invjaks], matrices] //

Simplify//Together,
{3}] // TableForm]

556 Part IV · Answers

{28.8333 Second, 1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

Problem 2
i) Implement your own version of Newton's method to find a zero of a differentiable

function near a given starting value. (See Chapter 6, 2.4 and 3.15.) The basic function
should be of the form

newton[expr, {x, xO, n}]
where expr is some expression involving an independent variable x. Here xO is the
starting value of x and n is the number of times the operation in Newton's method is
to be iterated. Define another function newton [e x p r , { x , xO}] which continues
iterating until there is no change. Then there should be two extra functions,

newtonList[expr, {x, xO, n}] and
newtonList[expr, {x, xO}, opt]
that produce a list of successive approximations to the final value. The optional
argument "opt" should allow a test to determine when the iteration should stop. See
Nest, NestLis t , FixedPoint and FixedPointLlst.

ii) Adapt your functions so they work for n functions of n variables.
iii) Restructure these operations so the output is a list of substitutions.
iv) Try some test examples and check your results.

2.1 The Basic Construction
Newton's method to find a zero of a function f [x] is to use the iteration

Xn + 1 = Xn - f[Xn 1 / f'[Xn]

starting from some chosen value xo . This translates directly into a Mathematica command. The
basic operation iterates a fixed number of times.

Six · Answers

newton [expr_, {x_, x0_, n_}] : =
Nest[

Evaluate[Simplify[x-expr/D[expr, x]]/. x->#]&,
N[xO], n];

NewtonList shows all of the intermediate values.

newtonList[expr_, {x_, x0_, n_}] :=
NestList[

Evaluate[Simplify[x-expr/D[expr, x]]/. x->#]&,
N[xO], n];

Timing[newton[χΛ2 - 3, {xf 1.0, 10}]]

{0.4 Second, 1.73205}

Timing[newtonList[x"2 - 3, {x, 1.0, 10}]]

{0.366667 Second, {1., 2., 1.15, 1.73214, 1.73205, 1.73205,
1.73205, 1.73205, 1.73205, 1.73205, 1.73205}}

Note that Nes t and N e s t L i s t require pure functions as their first arguments. We have
achieved this by substituting # for x in the formula and appending an &.

2.2 The Picture
Here is the desired plotting routine.

newtonPicture[expr_, {x_, xmin_, xmax_}f {x0_, n_}] : =
Show[Plot[

expr, {x, xmin, xmax},
DisplayFunction ->Identity],

ListPlot[
Flatten[

Map[{{#, 0}, {#, expr/.x -> #}}&,
newtonList[expr, {x, xO, n}]],

11/
PlotJoined -> True, PlotRange -> All,
PlotStyle -> {Thickness[0.008]},
DisplayFunction -> Identity],

DisplayFunction -> $DisplayFunction];

557

558 Part IV · Answers
^ ^ : m ^ ^ « ^ ^ ^ 4 - ^ ^ ^ ^ ^ ^ < ^ ^ ^ ^ \ ^ ^ 0 ^ s^i^VV^ ^ « Ϊ & Λ ^ Ό ^ χ^ϊ^Λ^ΐ^· * ^ , « > ^ ^ % ^ ^ « ^ « ^ ^ ^ « ^ ^ A ^ ^ ^ È # S

The desired example looks as follows:

newtonPicture[Cos[xA3], {x, 0.8, 1.5}, {.8788, 6}]

2.3 The Fixed Point Construction
Define newton where the second argument is a list with only two entries. The intention is to
continue the iteration until the result no longer changes.

newton [expr_, {x_, x0_}] : =
FixedPoint[N[Simplify[x-expr/D[expr, x]]/· x->#]&,

xO];
newton[xA2 - 3f {x, 1.0}] => 1.73205

This satisfies the equation to within machine precision.
%*2 - 3 => 2.1684 10"1 9

Finally, define a version of newton with three arguments to give an option to
F i x e d P o i n t L i s t . (Note that this same optional argument could also be given to
FixedPoint.)

newtonList[expr_, {*_/ χ 0_Κ opt] s =

FixedPointList[
Evaluate!(x - expr/D[expr, x]) / . x->#]&, xO,
{ o p t }] ;

newtonList[x"2 - 3 , {x, 1 . 0 } ,
SameTest -> (Abs[#l - #2] < 1CT-3 &)]

{1., 2., 1.75, 1.73214, 1.73205}

Six · Answers 559

newtonList[x - Cos[x], {x, 0.5},
SameTest -> (Abs[#l - #2] < 10"-5 &)]

{0.5, 0.755222, 0.739142, 0.739085, 0.739085}

Check that the last entry here is an approximate fixed point for Cos.

Last[%] - Cos[Last[%]] =» -2.05998 IO"18
newtonList[x - Cos[x], {x, 0.5}]

{0.5, 0.755222, 0.739142, 0.739085, 0.739085, 0.739085,
0.739085,0.739085, 0.739085}

The last entry here is a better approximation to the fixed point for Cos even though one can't
see the extra accuracy.

Last[%] - Cos[Last[%]] => -5.42101 10"2 0

2.3 Another Solution
Here is a different way to organize this construction that makes clear that a certain process is
being repeated and gives us a function that can easily be converted to a pure function in
newton 1.

oneStepNewton[f__, {x_, x0_}] : =
Simplify! x - f/D[f, x]] /. x -> xO;

newtonl[f_, {x_, x0_, n_}] : =
NestList[oneStepNewton[f, {x, #}]&, xO, n];

Timing[newtonl[x~2 - 3, {x, 1.0, 10}]]

{3. Second, {1., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205,
1.73205, 1.73205, 1.73205, 1.73205}}

For simple functions like this, the corresponding procedure without a simplification is much
faster. The answer can also be written in the following form.

newtonSub[f_, {x_, x0_}] :=
{x -> FixedPoint[oneStepNewton[f, {x, #}]&, N[xO]]};

exprl s χΛ2 + χΛ3 - 13;
newtonSub[exprl, {x, 2}] => {x -> 2.06087}

Part IV · Answers

Problem 3
Define a function c o n t i n u e d F r a c t i o n [l i s t] which takes a list as its only argument and
returns the continued fraction whose numerators are given by the entries in the list in the
given order. Thus c o n t i n u e d F r a c t i o n [{ a , b , c , d }] returns

a / (1 + b / (1 + c / (l + d)))

displayed in a nice form. Hint: try Fold.

Answer 1. This is an obvious chance to use Fold. The only problem is to give the arguments in
the correct order.

F o l d [(# l / (l + #2))&, a , { b , c , d }]

a

(1 + b) (1 + c) (1 + d)

Fold[(#2/(l + #1))*, a, {b, c, d}]

d

c
1 +

b
1 +

1 + a

In this form, the arguments are in the wrong order and "a" is treated differently. A slight
modification gives the desired result.

continuedFraction[list_List] :=
Fold[(#2/(1 + #1))&,

First[Reverse[list]],
Rest[Reverse[list]]];

continuedFraction[{a, b, c, d, e, f}]

560

Six · Answers 561

a

b
1 +

e
1 +

d
1 +

e
1 +

1 + f

If numbers rather than symbols are used, then Mathematica insists on evaluating the
expression.

cont inuedFract ion[{ l , 1, 1, 1, 1, 1 , 1 }] =» 13/21

However, strings can be used to see the actual continued fraction.

numfr =
continuedFraction[Map[ToString, {1,1,1,1,1,1,1}]]

1

1
1 +

1
1 +

1
1 +

1
1 +

1
1 -i-

1 + 1

Converting the strings back into expressions leads back to the fractional value.

MapAt[ToExpression, numfr, Position[numfr, _Str ing]]

13/21

562

Answer 2. This was discovered by some students.

continuedFractionl[list_List] :=

Fold[(#2/(l + #1))&, 0, Reverse[list]];

continuedFractionl[{a, b, c, d, e, f}]

a
b

1 +
c

1 +
d

1 +
e

1 +
1 + f

Problem 5
i) In Exercise 5 of Chapter 5, the Gram-Schmidt algorithm was implemented for

orthogonalizing ordinary vectors with respect to the usual dot product. Generalize this
procedure so that it works for vectors from an arbitrary vector space with respect to an
arbitrary inner product called i n n e r P r o d u c t [v , w] . The new procedure should
have two arguments, the first being a list of vectors and the second being the inner
product. Continue assuming that the given list of vectors is linearly independent.
(There is a very nice way to do this using Fold.) Include a separate normalization
function that also uses i n n e r P r o d u c t [v , w] . Also include a procedure to check
that a given list of vectors is orthonormal with respect to innerProduct [v , w] . The
standard case should be recovered by setting innerProduct to Dot.

ii) The matrix
I 8 3 0 0\

3 2 1 2
0 1 2 2

\ 0 2 2 14/

is positive definite and symmetric and hence determines an inner product for 4-
dimensional vectors. Orthogonalize and normalize the four standard unit vectors in 4-
space using this inner product. Check the result.

Part IV · Answers

Six · Answers 563
w*ämmmmm6»»mEW*mäbyü ^ « ι ^

iii) Apply the Gram-Schmidt algorithm to orthogonalize the list of functions {1, x, x2, x3,
x4} with respect to the inner product given by

legendre(f, g) = f(x) g(x) dx

Check the result.
iv) Normalize the result of part iii). This does not give the first five terms in the usual

sequence of Legendre polynomials. Why not? Fix things so that you get the first five
Legendre polynomials. Make a plot of them.

5. 1 The Gram-Schmidt Procedure

The projection function from the answers to Exercise 5 in Chapter 5 is easily modified to work
with an arbitrary inner product.

projection[a_, v_, innerProduct_] :=
(innerProduct[a, v] / innerProduct[v, v]) v;

The definitions of newvectors and orthogonalize2 can now be used with only minor
changes.

newvectors[i_, vectors_, innerProduct^] :=
vectors[[i]] -

Sum[projection! vectors[[i]],
newvectors[j, vectors],
innerProduct],

{j, i - 1}];
orthogonalize2[vectors_, innerProduct_] :=

Table[newvectors[i, vectors, innerProduct],
{i, Length[vectors]}];

However, both of these violate the fundamental dictum of functional programming, so they
have to be replaced.

A certain amount of reorganization is required to get satisfactory functional programs. First,
we separate out the projection of a vector on a sum of orthogonal vectors as a new operation.

multiProjection[a_, basis_, innerProduct_] :=
Apply[Plus,

Map[projection[a, #, innerProduct]&, basis]];

564 Part IV · Answers

The idea of the Gram-Schmidt process is to start with the empty list of vectors and successively
feed in new vectors from the given list, modifying them and building up a list of orthogonal
vectors. This sounds just like Fo ld . The problem is to figure out how to use it. Here is an
elegant solution based on one from John Novak which can be found in the package
LinearAlgebra O r t h o g o n a l i z a t i o n \

o r t h o g o n a l i z e [v e c t o r s _ , innerProduct_] :=
Fold[

J o i n [# l ,
{Chop[

2 - m u l t i P r o j e c t i o n [# 2 , # 1 , i n n e r P r o d u c t]] }] & ,
{ } ,
v e c t o r s] ;

The pure function in the first argument of F o l d expects its first argument to be the list of
orthogonal vectors that is being constructed. What is appended to that list is the result of
projecting the vectors, fed in from the given list, one at a time onto the existing basis. It is just
an accident that the F o l d command can start with the empty list, since if we try projecting
something onto the empty list we get the following result.

m u l t i P r o j e c t i o n [{ 1 , 2, 3}, { } f Dot] => 0

We get a 0 here because mapping anything to the empty list gives the empty list.

Map[Sin, { }] => {}

Furthermore, P l u s of no arguments is zero.

Plus@@{} => 0

But since arithmetic operations are L i s t a b l e , we get the right answer for the first step
anyway.

{ 1 , 2, 3} - m u l t i P r o j e c t i o n [{ l , 2, 3}, { } , Dot]

{ 1 , 2, 3}

After that, the action of Fo ld is to build up the basis by folding one vector at a time from the
given list of vectors into the basis until there are no more vectors left. The picture is basis <-
vectors. At the beginning, basis is empty. At each step one vector is removed from vectors
and, in a suitably modified form, added to basis. At the end, vectors is empty and basis is the
desired orthogonal basis. Chop is added to take care of vectors with real entries since
gramSchmidt can fail for such vectors because of tiny spurious components.

Six · Answers 565

We still have to worry about normalization, but that is easy to rewrite.

normalize[list_, innerProduct_]:=
Map[Expand[#/Sqrt[innerProduct[#, #]]]&, list];

Finally, we need an operation to check that a set of vectors is actually orthonormal. The check
we used before was Transpose [vec tors] == Inverse [vectors] .This clearly won't
work for a different inner product. We would like to replace it by something like

(*Outer[innerProduct, v e c t o r s , vectors] ==
Ident i tyMatr ix[length[vectors]*)

This doesn't work because Outer of matrices produces something of depth 4. (Try it and see.)
However, D i s t r i b u t e does work for ordinary vectors and an arbitrary inner product. It
won't work for functions.

orthoNormalQ[vectors_, innerProduct_] :=
Simpl i fy[Distr ibute[

innerProduct[
vec tors , Transpose[vectors]] ,
L i s t , innerProduct, L i s t , innerProduct]] ===
Ident i tyMatrix[Length[vectors]] ;

5.2 Examples

5.2.1 Three-dimensional space with the usual inner product
Try same example as before.

vectsl = {{1, 2, 3}, {2, -3, -4}, {-1, 5, 2}};
orthovectsl = orthogonalize[vectsl, Dot]

{{1, 2, 3}, {22/7, -5/7, -4/7}, {7/30, 7/3, -49/30}}

orthonormvectsl = normalize[orthovectsl, Dot]

566 Part IV · Answers
-SSS^^-W^X**.̂ V-* - - ^ - - -' "* - v l " - " Ι . Ν Λ ' ^ ν Φ ' ν ^ ^ Vi » , ^ ^ ^ V ^ ^ ^ ^ ^ V ^ - Ν ^

1 2 3
{ { , S q r t [-] , } ,

S q r t [1 4] 7 S q r t [1 4]

22 1 -4
{ , - () , } ,
5 Sqrt[21] Sqrt[21] 5 Sqrt[21]

1 2 - 7
{ , Sqrt[-], }}
5 Sqrt[6] 3 5 Sqrt[6]

orthoNormalQ[orthonormvects1, Dot] => True

5.2.2 Four-dimensional space with a different inner product

The following matrix is positive definite and symmetric.

matr ix = { { 8 , 3 , 0 , 0 } ,
{ 3 , 2 , 1 , 2 } ,
{ 0 , 1 , 2 , 2},
{ 0 , 2, 2, 1 4 } } ;

Use it to define an inner product.

innerProduct4[v__List , w _ L i s t] := v . matr ix . w;

Orthonormalize the four standard unit vectors with respect to this new inner product.

newvects =
orthogonalize[IdentityMatrix[4], innerProduct4]

{{1, 0, 0, 0},
{-(3/8), 1, 0, 0},
{3/7, -(8/7), 1, 0},
{1, -(8/3), 1/3, 1}}

newbasis = normalize[newvects, innerProduct4]
{{1/(2 Sqrt[2]), 0, 0, 0},
{-3/(2 Sqrt[14]), 2 Sqrt[2/7], 0, 0},
{Sqrt[3/14], -4 Sqrt[2/21], Sqrt[7/6], 0},
{Sqrt[3/7]/2, -4/Sqrt[21], 1/(2 Sqrt[21]), Sqrt[3/7]/2}}

orthoNormalQ[newbasis, innerProduct4] =» True

Six · Answers 567

5.2.3 Example: Legendre polynomials
In this example, our "vectors" are functions defined on the interval -1 < x < 1, and the inner
product is given by integrating the product of the functions over this interval. Our test
example consists of the first five powers of x.

legendre[f_, g_] := Integrate[f gf{x, -1/ 1}];
powers = {1, x, χΛ2, χΑ3, χΛ4};
legendrePowers =

orthogonalize[powers, legendre] // Expand

{1, x, -(-) + x2, + x3, + x4 }
1 -3 x 3 6 x2
>) + x2r + x3,
3 5 35 7

notlegendrePolys = normalize[legendrePowers, legendre]

1 -Sqrt[5/2] 3 Sqrt[5/2] x2

{ , sqrt[3/2] x, + ,
Sqrt[2] 2 2

-3 Sqrt[7 /2] x 5 Sqrt[7 /2] x3 9 45 x2 105 x4
+ , + }

2 2 8 Sqrt[2] 4 Sqrt[2] 8 Sqrt[2]

A check that these are orthonormal can use Outer as suggested above.

Outer[legendre, notlegendrePolys, notlegendrePolys] ==
IdentityMatrix[5] => True

This does not give the Legendre polynomials because they are not usually normalized by
making their length equal to one, but rather by making their value at the point 1 equal to 1. We
can achieve this by the small trick of defining a new "inner product" that isn't really an inner
product.

atone[z_, w_] := ζΛ2 /. x -> 1;
legendrePolys =

normalize[legendrePowers, atone] // Together

-1 + 3 x2 -3 x + 5 x3 3 - 30 x2 + 35 x4
{If x, / f }

2 2 8

568 Part IV · Answers

A plot shows how these polynomials are related to each other.

Plot[Evaluate[legendrePolys], {x, -1, 1}];

Note: these polynomials can be given by the formula:

P[n_, x_] : =
(1/(2Λη η!)) D[(xA2 -1)Λη, {x, n}] //
Simplify // Expand;

Table[P[n, x], {n, 0, 4}]

{1, x, -(1/2) + (3 x2)/2, (-3 x)/2 + (5 x3)/2,
3/8 - (15 x2)/4 + (35 x4)/8}

They are also given by the recursion relations:

P1[0, x_] = 1;
Pl[l, x_] = x;
Pl[n_, x_] := (1/n) ((2n - 1) x Pl[n-1, x] -

(n - 1) Pl[n-2, x])//Expand;
Table[Pl[n, x] , {n, 0, 4}]//Simplify

{1, x, (-1 + 3 x2)/2, (x (-3 + 5 x2))/2, (3 - 30 x2 + 35 x4)/8}

They are also built-in.

Table[LegendreP[n, x], {n, 0, 4}]

{1, x, (-1 + 3 x2)/2, (-3 x + 5 x3)/2, (3 - 30 x2 + 35 x4)/8}

Six · Answers 569

Problem 6
Modify the definition of mapVarsOnly so that it only treats letters between p and z as
variables. Hint: look up the operations ToString, ToCharacterCode, Greater, and Less.

Answer: We need the ASCII codes of p and z. Note that the values have to be extracted from a
list.

{ToCharacterCode[ToString[p]][[1]],
ToCharacterCode[ToStringfz]][[1]]}

{112, 122}

All that has to be modified is the predicate used to select the appropriate terms from the
leaves.

mapVarsOnly[fun_, expr_] :=
MapAt[fun, expr,
Flatten[Map[Position[expr, #]&,

Select[Level[expr, {-1}],
(Not[NumberQ[#]] &&
112 <= ToCharacterCode[ToString[#]][[1]] <=

122)&]],
1] 1;

mapVarsOnly[Sin, (3 + a) q + (1 - b x ζ)Λ3]

(3 + a) Sin[q] + (1 - b Sin[x] Sin[z])3

Problem 7
i) The function Fold is sometimes called foldright because it "folds" in its arguments

from the right. Define a function f o l d l e f t so that f o l d l e f t [f , {a, b, c} , d]
gives the output f [a , f [b , f [c , d]]].

Answer 1. One can define f oldLef t in terms of the built-in function Fold.

foldLeft[f_, list_List, seed_] : =
Fold[f[#2, #1]&, seed, Reverse[list]];

foldLeft[f, {a, b, c}, d] => f[a, f[b, ftc, d]]]

570 Part IV · Answers

Here the variables in f are interchanged surreptitiously. This can be done by explicitly
interchanging the variables.

twist[a_, b_] := Sequence[b, a];
foldLeftl[f_, list_List, seed_] :=

Fold[Composition[f, twist], seed, Reverse[list]];
foldLeftl[f, {a, b, c}, d] => f[a, f[b, f[c, d]]]

Alternatively, f oldLef t can be defined from scratch recursively.

foldLeftR[f_, {}, seed_J := seed;
foldLeftR[f_, list_List, seed_] :=

f[First[list], foldLeftR[f, Rest[list], seed]];
foldLeftR[f, {a, b, c}, d] => f[a, f[b, f[c, d]]]

The first version is clearly much faster.

{ Timing[foldLeft[Plus, Range[200], 0]] ,
Timing[foldLeftR[Plus, Range[200], 0]] }

{{0.25 Second, 20100}, {1.26667 Second, 20100}}

ii) Write your own function composeList that works just like the built-in operation
with the same name, using F o l d L i s t . Conversely, write your own function
f o l d L i s t that works just like the built-in operation with the same name, using
ComposeList.

Answer 2. The first operation is very simple

composeList[list_, x_] := FoldList[#2@#1&, x, list];

For instance:

composeList[{f, g, h}, x]

{x, f[x], g[f[x]], h[g[f[x]]]}

The other direction is harder since we have to produce the list whose ith entry is f [#, a±] &.
from the list whose ith entry is a±.

Six · Answers 571

foldList[f_, χ_, list_] :=
ComposeList[Map[Function[{q}, f[#, q]&], list], x];

For instance,

foldList[f, x, {a, b, e}]

{x, f[x, a], f[f[x, a], b], f[f[f[x, a], b], e]}

Problem 8
^^%ΑΦ^^Α%<^>*^^ ^ V W ^ ^

Somewhere in the first 1000 digits in the decimal expansion of π, there is a sequence of six
successive 9's. Use In tegerDig i t s , Par t i t i on , and P o s i t i o n to find where this occurs.
Avoid displaying large intermediate results. What other digits also occur more than twice in
succession in this partial decimal expansion? (Based on a problem from [Blachman 1].)

Answer: One arrives at the following sequences of commands interactively.

Position[
Partition!

IntegerDigits [Floor [N[Pi, 1000] HP1000]],
6, 1],

Table[9, {6}]]

{{763}}

Thus, 9 occurs in positions 763 through 768 in this list which is positions 762 through 767 after
the decimal point in π. To find digits that occur more than twice in succession, use the form:

Table[
{ n,
Position[

Partition[
IntegerDigits!Floor[N[Pi, 1000] 10A1000]],
3, 1],

Table[n, {3}]] },
{n, 9}] // MatrixForm

572 Part IV · Answers

154}, {984}}

178}}

763}, {764}, {765}, {766}}

Problem 9

i) Write your own functions map and through that work just like the built-in operations
with the same names, using Outer, Flatten , #, &, and @. (I.e., if pure functions can be
written, then Map and Through are special cases of Outer, suitably flattened.)

ii) Generalize this to construct an operation that applies a list of arbitrary functions (not
necessarily listable ones) to a list of values.

Here are the required functions and test outputs.

map[f_, listj := Flatten[Outer[#1@#2&, {f}, list]];
map[f, {a, b, c}]

{f[a], f[b], f[c]}

through[list_, x_]:=
Flatten[Outer[#1@#2&, list, {x}]];

through[{Sin, Cos}, x]

{Sin[x], Cos[x]}

applyAll[funs__, vars__] := Outer[#l@#2&, funs, vars] ;
applyAll[{f, g, h}, {x, y, z}]

{{f[x], f[y], f[z]}, {g[x], g[y], g[z]}, {h[x], h[y], h[z]}}

CHAPTER
^^^4^^^^^i^.^f$y^'^fT^^t40wßf/

Answers

Problem 1
Find all values of the form n = m/3 for m an integer between -10 and 10 such that Mathematica
can evaluate the following integral: Hint: make a table and use Se l ec t and FreeQ.

/
(1 - 1/u) 4/3

du

Answer: Use the following table to find the answers. Instead of displaying the entire output,
which is very long, just pick out the first components that show the values of n where the
integration succeeded. Note: this computation takes several minutes.

Map[First,
Select[

Table[{n, Integrate!(1 - 1/u)A(4/3)/u"n, u]},
{n, -10, 10, 1/3}],

FreeQ[#[[2]] , Integrate]&]]

{-28/3, -25/3, -22/3, -19/3, -16/3, -13/3, -10/3, -7/3, -4/3,
2, 3, 4, 5, 6, 7, 8, 9, 10}

Problem 2
In Exercise 5 of Chapters 5 and Exercise 5 of Chapter 6, the Gram-Schmidt procedure was
developed. It only works if the given vectors are linearly independent. Make several changes
in the procedure so it still works even if the given vectors are linearly dependent.

573

574 Part IV · Answers

i) Restrict the functions so they only work for arguments of the proper kinds.
ii) Include a separate rule to deal with the projection of a vector on a zero vector.

iii) The resulting list of orthogonal vectors may then contain a zero vector. Add a new
operation, nozeros, to remove such zero vectors. Note that the notion of a zero vector
depends on the vector space under consideration.

iv) Test your procedure on a long list of random 3-dimensional vectors with real entries.
v) Test your procedure using the legendre inner product and various polynomials

including the powers of x up to x4.

Answer: The following modifications are required for the Gram-Schmidt procedure. Two rules
are required for the projection function to take care of projecting onto a 0 vector.

projection[a_, v_f innerProduct_] :=
(innerProduct[a, v] / innerProduct[v, v]) v /;

innerProduct[v, v] =!= 0;
projection[a_, v_, innerProduct_] := 0 v /;

innerProduct[v, v] == 0;

The remaining operations are defined as before.

multiProjection[a_, basis_List, innerProduct_] :=
Plus@@((projection[a, #, innerProduct])& /@
basis);

orthogonalize[vectors_, innerProduct_] :=
Fold[

Join[#l,
{Chop[#2-

multiProjection[#2,#1,innerProduct]]}]&,
{}/
vectors];

normalize[vectors_List, innerProduct^]:=
(Expand[# / Sqrt[innerProduct[#, #]]])& /@
vectors ;

nozeros[vectors_List, zero_] :=
DeleteCases[vectors, zero];

2.1 Examples

2.1.1 Too many vectors in three-dimensional space.
Try six vectors in 3-dimensional space.

Seven · Answers 575

morevectors = {{lf 2, 3}, {2, -3, -4}, {3, -1, -1},
{1, -5f -7},{-lf 5, 2}, {6, 2, -8}};

moreorthogonals = orthogonalize[morevectors, Dot]
{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {0, 0, 0}, {0, 0, 0},
{7/30, 7/3, 49/30}, {0, 0, 0}}

result = nozeros[moreorthogonals, {0, 0, 0}]

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {7/30, 7/3, -(49/30)}}

Try a collection of 100 random real vectors in 3-dimensional space.

randomvects =
Table[{Random[], Random[], Random[]}, {100}];

nozeros[orthogonalize[randomvects, Dot], {0, 0, 0}]
{{0.136351, 0.863602, 0.00931478},
{0.240561, -0.0471237, 0.847607},
{0.288211, -0.0445957, -0.0842773}}

(Try this without nozeros to see that, almost certainly, the first three vectors are linearly
independent and all the rest are zero.)

2.1.2 Polynomials
Recall the Legendre polynomials using the inner product.

legendre[f__, g_] := Integrate[f g,{x, -1, 1}];
morepowers =

{ 1, x, x"2, 2 xA2 - 3, χΛ3,
5 χΛ3 - 3 xA2 + x, χΛ4, χΛ4 - xA3 };

orthogonalize[morepowers, legendre]//Expand

1 -3 x 3 6 x2
{1, x, -(-) + x2, 0, + x3, 0, + x4, 0}

3 5 35 7

nozeros[%, 0]

1 -3 x 3 6 x2
{1, x, -(-) + x2, + x3, + x4}

3 5 35 7

576 PartIV · Answers

Problem 3
i) Write a function type of one variable such that type takes the value 0 for integer

arguments, the value 1/2 for rational arguments, the value 1 for real numbers, the
value 2 for complex numbers, and the value «> for anything else.

ii) Change the definition of type so that it takes the value 10 for "algebraic expressions."
An algebraic expression is one which is built up recursively from symbols (i.e.,
variables) and numbers (integers, rationals, reals, and complexes) by using addition,
subtraction, multiplication, division, and exponentiation. (Hint: use pattern matching
recursively to define a predicate algexpQ which takes the value T r u e just for
algebraic expressions. For instance, one such rule is:

algexpQ[u_ + v_] := algexpQ[u] && algexpQ[v] .)

iii) Test your predicate algexpQ on specified inputs.
iv) Test your type function on specified inputs.

3.1 The Algebraic Expression Predicate
This solution is based on using rewrite rules recursively.

= algexpQ[u] && algexpQ[v]
= algexpQ[u] && algexpQ[v]
= algexpQ[u] && algexpQ[v]

algexpQ[u_ + v_]
algexpQ [u_ v_]
algexpQ[u_Av_]
algexpQ[w_J

MemberQ[{Symbol, Integer, Rational,Real, Complex},
Head[w]];

Try this on the test expressions.

{ algexpQ[x"2 + (y + 2)Λ3],
algexpQ[xA2 + (Sin[y] + 2)Λ3],
algexpQ[(5 x y)"(z + w)],
algexpQ[Sqrt[5 x yp(z + w)],
algexpQ[xA(x"(x"(x"x)))],
algexpQ[(y + w)A(x + 2)],
algexpQ[(x + 2 1) (3 + y I)A(5 + 41)],
algexpQ[(2x + y) + I (z w + u)],
algexpQ[Tan[χΛ2 + y"2]] }

{True, False, True, True, True, True, True, True, False}

Seven · Answers 577
W * '/^"■^ίΛ^-ί^^- -*■

3.2 The Type Function

Next, we define the function type by giving conditional rules.

type[expr_Symbol]
type[expr_Integer]
type[expr_Rational]
type[expr_Real]
type[expr_Complex]
type[expr_/;algexpQ[expr]]
type[expr_]

Test the type function on some inputs.

= -i;
= 0;
= 1/2;
= l;
= 2;
= 10;
= Infinity

{ type[anything], type[24], type[3/7], type[3.64],
type[(5 + 3 I)], type[-(x + y ζ)Λ(ζ - 3 w)],
type[(x + 2 1) (3 + y Ι)Λ(5 + 41)],
type[Sin[anything] +4] }

{ -1 , 0, 1/2, 1, 2, 10, 10, I n f i n i t y }

Problem 5
This is an exercise in calculating the Fibonacci numbers by different methods. Part of the
exercise is to attempt to estimate the complexity of the various methods. Reference: [Maeder 2].

5.1 The Recursive Version of Fibonacci
This method uses the usual recursive definition of the Fibonacci numbers.

fibr[l] = 1;
fibr[2] = 1; fibr[n_] := fibr[n-l] + fibr[n-2];

Calculate some values.

fibrValues =
Table[{2 m, Timing[fibr[2 m]][[l]] / Second},

{m, 1, 11}]
{{2, 0.0166667}, {4, 0.0166667}, {6, 0.0333333},
{8, 0.0833333}, {10, 0.25}, {12, 0.6}, {14, 1.56667},
{16, 4.01667}, {18, 10.6}, {20, 27.4833}, {22, 72.2333}}

578 Part IV · Answers

Fit a curve to the data.

fibrFit = Fit[fibrValues, {lf x, χΛ2}, χ]

18.8051 - 6.00332 x + 0.347077 x2

Use the curve to estimate the time to calculate the millionth Fibonacci number.

fibrTimeToAMillion =
(fibrFit /. x -> 1000000)/(60 60 24 356) years

11283.8. years

Plot the time in seconds to calculate the nth Fibonacci number against n.

fibrPlot =
Plot[fibrFit, {x, 0, 22},

PlotRange -> {{0, 23}, {-8, 70}},
PlotLabel -> "Recursion",
Epilog ->

{ PointSize[0.025],
Map[Point, fibrValues]}];

The plots are all collected in a GraphicsArray at the end. Actually, it is known that the
theoretical complexity of this algorithm is exponential (see below). One way to find a suitable
base is to take the limit of Fibonacci [n + 1] / Fibonacci [n] as n -> oo, which is easily shown to
be the golden ratio. A student discovered the following good idea.

gr = N[GoldenRatio] => 1.61803

grfit = Fit[fibrValues, {1, grAx}, x]

-0.0120873 + 0.00184334 1.61803x

Show[GraphicsArray[{grplot =
Plot[grfit, {x, 1, 22}, PlotRange -> All,

DisplayFunction -> Identity,
PlotLabel -> "grplot"],

Show[{fibrPlot, grplot},
DisplayFunction -> Identity]}],

DisplayFunction -> $DisplayFunction];

Seven · Answers 579
««ì^l5Riìw«#fcM? <y$\ -*m>i< ̂ ^-"^μ^^ν^ κ »*-« * ** <«&

70
60
50
40
3 0
2 0
10

grplot Recursion

10 15 20

5.2 The Dynamic Programming Version of Fibonacci

This version uses the usual recursive definition, but programmed dynamically. Follow the
same sequence of steps.

f i b d [l] = 1; f ibd[2] = 1;
f ibd[n_] := f ibd[n] = f i b d [n - l] + f i b d [n - 2] ;

fibdValues =
Table[{100m, Timing[fibd[100 m]] [[1]] /Second} ,

{m, 1, 20}]

{{100 , 0 . 9 3 3 3 3 3 } , {200 , 1 . 4 1 6 6 7 } , {300 , 1 . 8 5 } , {400 , 0 . 7 8 3 3 3 3 } ,
{500 , 0 . 8 5 } , {600, 0 . 8 3 3 3 3 3 } , {700 , 0 . 8 5 } , {800, 0 . 8 8 3 3 3 3 } ,
{900 , 0 . 9 3 3 3 3 3 } , {1000, 1 . 0 1 6 6 7 } , {1100, 1 . 1 8 3 3 3 } ,
{1200 , 1 . 0 3 3 3 3 } , {1300, 1 . 0 6 6 6 7 } , {1400, 1 . 1 1 6 6 7 } ,
{1500 , 1 . 1 8 3 3 3 } , {1600 , 1 . 3 6 6 6 7 } , {1700, 1 . 2 3 3 3 3 } ,
{1800 , 1 . 2 1 6 6 7 } , {1900, 1 . 4 } , {2000, 1 .51667}}

The complexity is essentially constant time since at each stage, 100 more values are calculated.
If individual values are tried, then the Recursion Limit is exceeded exactly at f i b d [129] . To
check this, it is necessary to clear f ibd before each calculation.

Clear[fibd];
fibd[l] = 1; fibd[2] = 1;
fibd[n_] := fibd[n] = fibd[n-l] + fibd[n-2];
fibd[128] =* 251728825683549488150424261
Clear[fibd];
fibd[l] = 1; fibd[2] = 1;
fibd[n_] := fibd[n] = fibd[n-l] + fibd[n-2];
fibd[129]

580 Part IV · Answers

$ R e c u r s i o n L i m i t : : r e c l i m : R e c u r s i o n d e p t h of 256 e x c e e d e d .

96151855463018422468774568 + 155576970220531065681649693
H o l d [f i b d [H o l d [3 - 2] - 1] + f i b d [H o l d [3 - 2] - 2]] +
155576970220531065681649693 H o l d [f i b d [H o l d [3 - 1] - 1] +
f i b d [H o l d [3 - 1] - 2]]

Thus, f i bd uses two recursion steps per number and so it runs out of space after 128 steps. If
the recursion depth is reset, then the calculation will go farther. The correct thing to do is to
clear f ibd and redefine it at each step. $Recurs ionLimi t has to be reset to more than twice
the maximum value calculated.

$RecursionLimit = 10000;

fibdValues =
Table[{ 2Am,

Clear[fibd];
fibd[l] = 1; fibd[2] = 1;
fibd[n_] := fibd[n] = fibd[n-l]+fibd[n-2];
Timing[fibd[2*m]][[1]] / Second },

{m, 1, 12}]

{{2, 0.}, {4, 0.0166667}, {8, 0.05}, {16, 0.183333},
{32, 0.316667}, {64, 0.6}, {128, 1.3}, {256, 3.31667},
{512, 5.71667}, {1024, 10.5333}, {2048, 22.1167}}

$RecursionLimit = 256;

fibdFit = Fit[fibdValues, {1, xf xA2}, x]

0.0418782 + 0.0105309 x + 1.02998 10~7 x2

fibdTimeToAMillion =
(fibdFit /. x -> 1000000)/(60 60 24) days

1.31339 days

fibdPlot =
Plot[fibdFit, {x, 0, 4200},

PlotLabel -> "Dynamic"f
Epilog ->

{ PointSize[0.025],
Map[Point, fibdValues]}];

Seven · Answers 581

5.2.1 Analysis of recursion versus dynamic programming

Why does the recursive program give up at a bit over 20, while the dynamic program goes up
to 100 with no trouble? Use Trace to see how the tree is actually searched.

Trace[fibr[6], fibr] // MatrixForm
fibr[6]
fibr[6 - 1] + fibr[6 - 2]
{fibr[5], fibr[5 - 1] + fibr[5 - 2],
{fibr[4], fibr[4 - 1] + fibr[4 - 2],
{fibr[3], fibr[3 - 1] + fibr[3 - 2],

{fibr[2], 1}, {fibr[l], 1}},
{fibr[2], 1}}, {fibr[3], fibr[3 - 1] + fibr[3 - 2],

{fibr[2], 1},
{fibr[l], 1}}}

{fibr[4], fibr[4 - 1] + fibr[4 -2],
{fibr[3], fibr[3 - 1] + fibr[3 - 2],

{fibr[2], l}f {fibr[l], 1}}, {fibr[2], 1}}
Clear[fibd];
fibd[l] = 1; fibd[2] = 1;
fibd[n_] := fibd[n] = fibd[n-l] + fibd[n-2];
Trace[fibd[6], fibd] // MatrixForm
fibd[6]
fibd[6] = fibd[6 - 1] + fibd[6 - 2]
{{fibd[5], fibd[5] = fibd[5 - 1] + fibd[5 - 2],
{{fibd[4], fibd[4] = fibd[4 - 1] + fibd[4 - 2],
{{fibd[3], fibd[3] = fibd[3 - 1] + fibd[3 - 2],
{{fibd[2],l}, {fibd[l]fl}}}, {fibd[2]fl}}}/ {fibd[3],2}}},

{fibd[4]f 3}}
The definition of the Fibonacci numbers builds a tree of values to be calculated. For n = 6, it

looks as follows:

5"^
/ \

4 3
/ \ / \

3 2 2 1
/ \

2 1

■ 4

/ \
3 2

/ \
2 1

582 Part IV · Answers

In the recursive version, every node of this tree is visited in a depth first traversal, going first
down the left-hand side, then recursive coming up until it is possible to descend again. The
order is {6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 2, 1, 2), as one sees from the Trace of f ibr. In the
dynamic version, again the left-hand side is traversed, but that results in all of the required
values being calculated, so only the tops of the rest of the subtrees are visited. The order is {6,
5,4,3, 2,1, 2,3,4}. Note that the size of the tree satisfies the recursive equation tree[n] = tree[n
- 1] + tree[n - 2] + 1, with tree[l] = tree[2] = 1, so tree[6] = 15. These sizes grow somewhat
faster than the Fibonacci numbers and I don't know their limiting ratio, but this at least gives
some justification for using the limiting ratio of the Fibonacci numbers as the exponential base
in fitting a curve to their timing in the recursive case.

5.3 The Iteration Version of Fibonacci

This version uses a simple iteration repeated n times to calculate the nth Fibonacci number.

fibi[n_] :=
Module[

{ani = 1, an2 = 1},
Do[{ani, an2} = {ani + an2, ani}, {1, 3, n}];
ani];

fibiValues =
Table[{2Am, Timing[fibi[2^m]][[1]]/Second},

{m, 1, 14}]

{{2, 0.0166667}, {4, 0.0166667}, {8, 0.0166667}, {16, 0.05},
{32, 0.0833333}, {64, 0.15}, {128, 0.316667}, {256, 0.6},
{512, 1.23333}, {1024, 2.51667}, {2048, 5.18333},
{4096, 11.0833}, {8192, 26.2833}, {16384, 66.4333}}

fibiFit = Fit[fibiValues, {1, x, χΛ2}, χ]

0.000361078 + 0.00232285 x + 1.05801 10~7 x2

fibiTimeToAMillion =
(fibiFit /. x -> 1000000)/(60 60) hours

30.0345 hours

Seven · Answers 583

fibiPlot =
Plot[fibiFit, {x, 0, 16500},

PlotLabel -> "Iteration",
Ticks ->

{{ {0, "0"}, {5000, "5000"},
{10000, "10000"}, {15000, "15000"}},

Automatic},
Epilog ->

{ PointSize[0·025],
Map[Point, fibiValues] }];

5A The Symbolic Formufa Version of Fibonacci

See [Maeder 2], referred to at the beginning, for a derivation of these constants and this
formula for the Fibonacci numbers.

el = (1 + Sqrt[5])/2; e2 = (1 - Sqrt[5])/2;
bl = (5 + Sqrt[5])/10; b2 = (5 - Sqrt[5])/10;
fibf[n_] := Simpli£y[bl elA(n - 1) + b2 e2A(n - 1)];
fibfValues =

Table[{2Am, Timing[fibf[2Am]][[1]]/Second},
{m, 1, 10}]

{{2, 2.03333}, {4, 1.46667}, {8, 1.51667}, {16, 1.61667},
{32, 1.9}, {64, 9.18333}, {128, 5.88333}, {256, 11.1667},
{512, 25.}, {1024, 74.1833}}

fibfFit = Fit[fibfValues, {1, x, xA2}, x]

2.30898 + 0.022519 x + 0.0000463389 x2

fibfTimeToAMillion =
(fibfFit /. x -> 1000000)/(60 60 24) days

536.59 days

Try adding Log [x] to the functions being fitted.

fibfLogFit = Fit[fibfValues, {1, Log[x], x, xA2}, x]

0.160961 + 0.00797877 x + 0.0000562965 x2 + 0.978612 Log[x]

584 Part IV · Answers

fibfLogTimeToAMillion =
N[fibfLogFit /. x -> 1000000]/(60 60 24) days

651,672 days
fibfPlot =
Plot[fibfFit, {xf 0, 1050},

PlotLabel -> "Symbolic Function",
Epilog ->

{ PointSize[0.025],
Map[Point, fibfValues] }];

Using f i b f LogFit instead of f i b f F i t gives an indistinguishable picture.

5.5 The Numeric Formuh Version of Fibonacci
The symbolic formula is not very efficient because it constructs huge symbolic expressions
involving S q r t [5] and then has to simplify those expressions. In this version, we introduce
suitable numerical approximations to S q r t [5] . The problem is that as n grows, the required
number of digits of accuracy of S q r t [5] increases also. Note that

bl = (1 + Sqrt[5])/(2 Sqrt[5]) = (1/Sqrt[5]) el, and similarly
b2 = (1/Sqrt[5]) e2.

Hence,
bl eli11"1) + b2 e2(n"1) =
(1/Sqrt[5]) ((1 + Sqrt[5])/2)n + (1/Sqrt[5])((1 - Sqrt[5])12)n.

But:
N [(l / S q r t [5]) (1 - S q r t [5]) / 2] => - 0 . 2 7 6 3 9 3

This, to the n'th power, is always less than 1/2 so it can be omitted from the expression.
Furthermore,

log[(1/Sqrt[5]) ((1 + Sqrt[5])/2)Λη] =
log[(1/Sqrt[5])] + n log[(1 + Sqrt[5])/2]

so we have:
{Log[N[l/Sqrt[5]]], Log[N[(l + Sqrt[5])/2]]}
{-0.804719, 0.481212}

Seven · Answers 585

Since log[a] + 1 is the number of digits of a, the nth Fibonacci number has at most n/2 digits,
so it is sufficient to calculate the numerical value to n/2 digits of accuracy. (Actually, we will
see below that n/4 would be sufficient.)

fibfn[n_] :=
Round[N[(1/Sqrt[5]) ((1 + Sqrt[5])/2)*n,

Round[n/2]]]

The following calculation checks our derivation. Note: this table takes a long time to evaluate.

Table[fibfn[2An] - fibi[2An], {n, 1, 14}]

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

fibfnValues =
Table[{2Am, Timing[fibfn[2"m]][[1]]/Second},

{m, 1, 14}]
{{2, 0,0333333}, {4, 0.0333333}, {8, 0.0333333}, {16, 0.05},
{32, 0.05}, {64, 0.1}, {128, 0.15}, {256, 0.2},
{512, 0.383333}, {1024, 0.8}, {2048, 2.2}, {4096, 7.5},
{8192, 24.8333}, {16384, 92.6833}}

fibfnFit = Fit[fibfnValues, {1, x, χΛ2}, χ]

0.0541302 + 0.000441702 x + 3.18008 IO'7 x2

fibfnTimeToAMillion =
(fibfnFit /. x -> 1000000)/(60 60 24) days

3.68576 days

fibfnPlot =
Plot[fibfnFit, {x, 0, 16500},

PlotLabel -> "Numeric Function",
Ticks ->

{{ {0, "0"}, {5000, "5000"},
{10000, "10000"}, {15000, "15000"}},

Automatic},
Epilog ->

{ PointSize[0.025],
Map[Point,fibfnValues] }];

586 Part IV · Answers
< i>^^, ; > ,-,>,<- \ s \-&S&;&ki4è^<*V -^ M «i ^ f ^ ^ ^ - W « ^ ^ > ^ * e Ä Ä ^

Maeder [Maeder 2] gives a different analyses and a different algorithm. In the algorithm, a
numerical approximation of the nth Fibonacci number is calculated along with the number of
its digits. This is increased by 10 and used as the number of digit in the approximation of
S q r t [5] .

fibfnum[n_] :=
Module[{ digits, approx = N[bl elAn]},

digits = Ceiling[Log[10, approx]] + 10;
approx = N[bl, digits] N[el, digits]^n;
Round[approx]]

There is a shift in the values of the argument. Thus, f ibf num [n] = f ibf n [n + 1] .

{fib£num[9], fibfn[10]} => {55, 55}

fibfnumValues =
Table[{2Am, Timing[fibfnum[2"m-1]][[1]]/Second},

{m, 1, 15}]
{{2, 0.0333333}, {4, 0.05}, {8, 0.05}, {16, 0.05}, {32, 0.05},
{64, 0.1}, {128, 0.116667}, {256, 0.15}, {512, 0.183333},
{1024, 0.3}, {2048, 0.533333}, {4096, 1.76667}, {8192, 6.9},
{16384, 25.5167}, {32768, 309.017}}

fibfnumFit = Fit[fibfnumValues, {1, x, χΛ2}, χ]

2.60303 - 0.00452458 x + 4.20691 10"7 x2

fibfnumTimeToAMillion =
(fibfnumFit/.x -> 1000000)/(60 60) hours

115.603 hours

fibfnumPlot =
Plot[fibfnumFit, {x, 0, 33000},

PlotLabel -> "Maeder Function",
Ticks ->

{{{0, "0"}, {10000, "10000"},
{20000, "20000"}, {30000, "30000"}},

Automatic},
Epilog ->

{ PointSize[0.025],
Map[Point, fibfnumValues] }];

Seven · Answers 587

5.6 The Matrix Version of Fibonacci

This method uses MatrixPower to calculate the Fibonacci numbers. It is much faster than the
other methods.

mat = {{1, 1}, {1, 0}};
fibm[n_] := MatrixPower[mat, n-l][[l, 1]]
fibmValues =

Table[{2Λρ, Timing[fibm[2Ap]][[1]]/Second},
{P, 1, 16}]

{{2, 0.05}, {4, 0.}, {8, 0.}, {16, 0.}, {32, 0.}, {64, 0.05},
{128, 0.05}, {256, 0.0666667}, {512, 0.0833333}, {1024, 0.1},
{2048, 0.183333}, {4096, 0.366667}, {8192, 0.95},
{16384, 2.73333}, {32768, 8.05}, {65536, 24.1833}}

fibmFit = Fit[fibmValues, {1, x, χΛ2}, χ]

-0.0154996 + 0.000109752 x + 3.96909 10~9 x2

fibmTimeToAMillion =
(fibmFit/.x -> 1000000)/(60 60) hours => 1.13301 hours

fibmPlot =
Plot[fibmFit, {x, 0, 66000},

PlotLabel -> "Matrix",
Ticks ->

{{{0, "0"}, {20000, "20000"},
{40000, "40000"}, {60000, "60000"}},

Automatic},
Epilog ->

{ PointSize[0.025],
Map[Point, fibmValues] }];

Note that we get:

{2Λ16, Timing[N[fibm[2"16]]]}

{65536, {71.3667 Second, 7.319921446029055283 1013695}}

588 Part IV · Answers

This method is fast enough to make it possible to calculate the millionth Fibonacci number on a
Macintosh Ilfx.

{2Λ20, Timing[N[m[2*20]]]}

{1048576, {17700.7 Second, 1.186800606355066115 10 2 1 9 1 3 9 }}

The time it takes is of the same order of magnitude as the calculated time.

17700.7 / (60 60) hours => 4.91686 hours

These results also show that the length of the nth Fibonacci number is smaller than n / 4.

5.7 Comparison
The theoretical complexity of the different methods varies from exponential to apparently n2

and there is a vast difference in the values of F i b o n a c c i [n] that can be calculated in
approximately one minute.

The timing result depend very much on the system and the version. For all but the last
method, Version 2.2 is approximately 50% slower than Version 2.1. The matrix method
however, runs two to three times faster in Version 2.2 than in Version 2.1. Maeder [Maeder 2]
computed the ten-millionth Fibonacci number in 22 hours on a NeXTstation using Version 2.1
and a still different algorithm, giving the approximate result:

1.12983437822539976032 10Λ2089876

The next page shows pictures of all seven methods, combined in a single GraphicsArray.

Seven · Answers
mmmmmmmmm

589
N&ÄÄsi #4 ^ Λ ί ^ VÄ^<S V - ^ & Ä mm&. <a§&v& ; Ä W ^ - ^ ,

Show[GraphicsArray[{ {fibrPlot, fibfPlot},
{fibdPlot, fibiPlot},
{fibfnPlot, fibfnumPlot},
{fibmPlot} }]];

2 Of

Dynamic

1000 2000 3000 4000
Numeric Function

5000 10000 15000
Matrix

200 400 600 800 1000
Iteration

60
50
40
30
20
10

5000 10000 15000
Maeder Function

10000 20000 30000

20000 40000 60000

590 Part IV · Answers

Here is a picture of the last six methods. To get a better display, change all of the individual
plots to include their name as a suitably located graphics element rather than a PlotLable.

Show[{fibfPlot, fibdPlot, fibiPlot,
fibfnPlot, fibfnumPlot, fibmPlot}];

Symbolic Function
70
60
50
40
30
20
lOj

10000 20000 30000 40000
Note that only the points from the first plot appear here since they are calculated in optional
arguments to Plot, and Show only uses the options from the first of its arguments.

Problem 6
The function maxima described in the Examples section above can also be implemented by a
strict one-liner functional program. Write this function and do a Timing comparison with the
pattern matching version.

maximafun[list_List] :=
Union[Rest[FoldList[Max, -Infinity, list]]];

Try this on a sample list.

list = {-1-4, 3.2, 2.5, -5, 2.6, 7.3, 5, 3, 8, 6, 4};
maximafun[list] => {-1.4, 3.2, 7.3, 8}

Recall the rule based operation.

maxima[list_List] :=
list //. {a , x_, y , b } /; y <= x -> {a, x, b}

Seven · Answers 591

Construct a test to compare timings.

test[n__] := Table [Random [Integer, 100], {n}];
experiment = Module[{tt},

Table [(tt = test[2"m]);
{ {2Am, Timing[maxima[tt];]},

{2Am, Timing[maximafun[tt];]}},
{m, 0, 9}]]

{{{1, {0. Second, Null}}, {1, {0.0166667 Second, Null}}},
{{2, {0.0166667 Second, Null}},

{2, {0.0166667 Second, Null}}},
{{4, {0.0166667 Second, Null}},

{4, {0.0166667 Second, Null}}},
{{8, {0.05 Second, Null}}, {8, {0.0166667 Second, Null}}},
{{16, {0.0833333 Second, Null}},

{16, {0.0166667 Second, Null}}},
{{32, {0.266667 Second, Null}},

{32, {0.0166667 Second, Null}}},
{{64, {0.683333 Second, Null}}, {64, {0.05 Second, Null}}},
{{128, {1.48333 Second, Null}},

{128, {0.0833333 Second, Null}}},
{{256, {5. Second, Null}}, {256, {0.166667 Second, Null}}},
{{512, {21.8167 Second, Null}},

{512, {0.333333 Second, Null}}}}

Extract the two sets of data.

listing[i_] :=
Map[{#[[i, 1]], #[[i, 2, l]]/Second}&,

experiment];

Fit curves to the data.

fit[i_] := Fit[listing[i], {1, x, χΛ2}, χ];

Plot both curves together.

592 Part IV · Answers
" Ϊ Ϊ Α ' -j- ,*^ν^'^^Λν, ^*IÄÄr,;»Jfc#S ϊ Α ί Α ί Α Α Α ^

Show[
Join[

Map[
Plot[Evaluate[fit[#]], {x, Of 512},

PlotLabel -> "maxima test",
Ticks ->

{{{32, "32"}, {64, "64"}, {128, "128"},
{256, "256"}, {512, "512"}},

Automatic},
DisplayFunction -> Identity]&,

{If 2}],
Map[

ListPlot[listing[#],
PlotStyle -> {PointSize[0.025]},
DisplayFunction -> Identity]&,

{1/ 2}]],
DisplayFunction -> $DisplayFunction,
PlotRange -> All];

maxima test

20

15

10

-*■# 512

The upper curve is the rule-based version while the lower one is the functional version.

Answers

CHAPTER

Problein l
^Ά.*^- '- \ *■&&><$&, ΐ

i) Write a more general Mathematica function dea l so that deal [l i s t , n] selects n
entries at random from l i s t without replacement.

ii) A deck of cards consists of 52 cards divided into 4 suits called clubs, diamonds, hearts,
and spades. Each suit consists of the cards 2, 3, 4, 5, 6, 7, 8, 9,10, J, Q, K, 1. A bridge
deal consists in giving 13 cards at random to each of 4 players. Define a Mathematica
deck and a function bridgeDeal [deck] that generates and displays such a bridge
deal.

1.1 The definition of deal
The function deal is supposed to select n elements at random without replacement from a
given population. There are many ways to implement this function. We give five of them; a
procedural version, two rewrite rule versions, and two functional versions. Only the last one is
a strict one-liner, but it turns out to have a drawback later.

1.1.1 The imperative definition
A procedural version of the function can be written either with a While loop or a Do loop. We
prefer the latter.

593

594 Part IV · Answers
.<,. :, - i ■$.- (w i «Jrt «i* » *'* < ̂ „* : ̂ %* * * s w <* *■< " ^^^^^>^u^m.^mm^^^^^^^^^^^^0^>-

dealProc[population_List, n_Integer]:=
Module[

{list = population, selection = {}, rand },
Do[rand = Random[Integer, {1, Length[1ist]}];

AppendTo[selection, list[[rand]]];
list = Delete[list, rand],
{n}];

selection] /;
0 <= n <= Length[population];

1.1.2 Rewrite rule definition 1
A student found the following elegant recursive rewrite rule version. This version, in effect
repeats dealing one element from population n times; i.e., it calls itself n times.

dealRewl[population_List, 0] := {};
dealRewl[population_List, n_Integer?Positive] :=

Module[
{rand =

Random[Integer, {1, Length[population]}]},
PrependTo[

dealRewl[Delete[population, rand], n - 1],
population![rand]]]

]/; n <= Length[population];

1.1.3 Rewrite rule definition 2
Here is another rewrite rule version that works in a different way.

oneStepRule = {hand_List, deck_List} :>
Module[

{choice = Random[Integer, {1, Length[deck]}]},
{ Append[hand, deck[[choice]]],
Delete[deck, choice] }];

Next, we need a function to apply this rule.

oneStep[{hand_List, deck_List}]2=
{hand, deck} /· oneStepRule

Eight · Answers 595

We can now use this to apply the rule a fixed number of times.

dealRew2 [population__List, n_Integer] : =
dealRew2[{}, population, n][[l]];

dealRew2[hand_List, deck_List, n_Integer] :=
Nest[oneStep[#]&, {hand, deck}, n];

1.1.4 An attempted functional definition
Here is another version that works in a completely different way. It is more in the spirit of the
fundamental dictum of functional programming. However, there seems to be no way to avoid
generating a sequence of n random elements from scratch somewhere in the program. Note
that this version sorts the output.

dealRandom[population__List, n_Integer] : =
Module[{i = n - 1, hand = {}},

While[
Length[hand] < n,
i++;
hand =
population[[Union[

Table[
Random[Integer, {1, Length[population]}],
{i}]] 111;

hand = Take[hand, n]];

1.1.5 A one-liner
The following one-liner was posted to the mathgroup mailbox by Richard Gaylord, in
response to our challenge to find such a version. Note that it also sorts the output which makes
it unusable in the final game deal function below.

dealFun[populat ion__List, n_Integer] :=
Complement[

population,
Nest[

Delete[#, Random[Integer, {1, Length[#]}]]&,
population, n]] /;

0 <= n <= Length[population];

The challenge still remains to find a good functional version that doesn't sort its output.

596 Part IV · Answers

1.2 Examples

d e a l P r o c [{ a , b , c , d , e , f , g , h , i , j , k , l , m , n } , 6]

{h, g, 1, i , c , e}

The elements of populat ion don't have to be distinct. The following had to be run several
times to get the indicated output.

dealProc[{a, b, a, b, a, b } , 2] => {b, b}

Next we try some larger values and time them.

{ Timing[dealRewl[Range[200], 6 0] ;] ,
Timing[dealRew2[Range[200], 6 0] ;] ,
Timing[dealProc[Range[200], 6 0] ;] ,
Timing[dealFun[Range[200] , 6 0] ;] }

{{6.06667 Second, N u l l } , {1.93333 Second, N u l l } ,
{1.03333 Second, N u l l } , {0.916667 Second, Null}}

This comparison shows that dealFun is more than six times as fast as dealRewl. The second
version, dealRew2 is much better than dealRewl, and dea lProc is almost as good as
dealFun. The performance of dealRandom is harder to measure, since it depends on how far
one has to go to get enough different terms. We try averaging 10 runs.

Apply[Plus,
Table[Timing[dealRandom[Range[200], 60];],

{10}]] / 10
{1.38 Second, Null}

This compares very favorably with dealProc, and sometimes it will have been significantly
faster. However, if n approaches the size of population, then this method can become very
slow.

Timing[dealRandom[Range[50], 45] ;] => {5.1 Second, Null}

If all the entries in a population are dealt, then in effect a random permutation of the entries
has been generated, providing the output is not sorted. Thus all methods except dealRandom
and dealFun will generate such a random permutation.

Eight Answers 597

1.3 The Bridge Deal
Several versions are given, starting with a very primitive one and progressing to a fairly nice
one. The problem is to figure out how to combine the deal function in a efficient way to
distribute the desired hands of cards.

1.3.1 The first version
Since de a l Fun is clearly the fastest procedure, we use it for the next few definitions and
rebaptize it deal.

deal[population_List, n_Integer] :=
Complement[

population,
Nest[Delete [#,

Random[Integer, {1, Length[#]}]]&,
population, n]] /;

0 <= n <= Length[population]

First create a standard deck of cards.

deck = Flatten[
Outer[List, {c, d, h, s},

Join[Range[2, 1 0] , {J, Q, K, A }]] , 1]

{{c, 2 } , {c, 3 } , {c, 4 } , {c, 5 } , {c, 6 } , {c, 7 } , {c, 8 } ,
{c, 9 } , {c, 10}, {c, J } , {c, Q}, {c, K}, {c, A}, {d, 2 } ,
{d, 3 } , {d, 4 } , {d, 5 } , {d, 6 } , {d, 7 } , {d, 8 } , {d, 9 } ,
{d, 10}, {d, J } , {d, Q}, {d, K}, {d, A}, {h, 2 } , {h, 3 } ,
{h, 4 } , {h, 5 } , {h, 6 } , {h, 7 } , {h, 8 } , {h, 9 } , {h, 10},
{h, J } , {h, Q}, {h, K}, {h, A}, {s , 2 } , {s , 3 } , {s , 4 } ,
{s , 5 } , {s , 6 } , {s , 7 } , {s , 8 } , {s , 9 } , {s , 10}, {s , J } ,
{s , Q}, {s , K}, {s , A}}

Try dealing a sample hand of 13 cards.

deal[deck, 13]

{{c, 8 } , {c, A}, {c, J } , {c, K}, {d, 4 } , {d, 10}, {h, 3 } ,
{h, 4 } , {h, 5 } , {h, 6 } , {s , 5 } , {s , 10}, {s , Q}}

Note that this is automatically sorted.

598 Part IV · Answers
^%mme>&&? * w*«*v*i

Our first try at defining bridgeDeal is rather crude, but it works.

bridgeDeal [deck__] : =
Module[{hand1, hand2, hand3, hand4},

handl = deal[deck, 13];
hand2 = deal[Complement[deck, handl], 13];
hand3 = deal[

Complement[deck, Join[handl, hand2]], 13];
hand4 =

Complement[deck, Join[handl, hand2, hand3]];
TableForm[{handl, hand2, hand3, hand4},
TableHeadings ->

{{ "handl",
bridgeDeal[deck]

handl

hand2

hand3

hand4

c
6
c
2
c
7
c
4

c
9
c
3
c
8
d
2

c
K
c
5
c
10
d
4

"hand2'

d
7
c
J
c
A
d
6

d
A
d
5
c
Q
d
9

' ,"hand3"

h
2
d
8
d
3
d
J

h
4
h
9
d
10
d
K

II
/

h
10
h
K
d
Q
h
3

hand4

h
A
s
3
h
6
h
5

"K

h
Q
s
4
h
8
h
7

None}]

s
5
s
7
h
J
s
6

s
9
s
10
s
2
s
8

1;

s
J
s
K
s
A
s
Q

1.3.2 A better version

In this somewhat better version, Mathematica does more of the work. It uses dynamic
programming to store values.

bridgeDeal[deck_J :=
Module[{hand},

hand[i_] := hand[i] =
deal[Complement[deck,

Join[Sequence@@Table[hand[j], {j, i-1 }]]],
13];

TableForm[
Table[hand[i], {i, 1, 4}],

TableHeadings ->
{Table["hand["<>ToString[i]<>"]",

{i, 4}], None}]];

Eight · Answers 599

bridgeDeal[deck]

hand[l]

hand[2]

hand[3]

hand[4]

c
10
c
4
c
2
c
3

c
J
c
9
c
Q
c
5

d
3
c
A
d
8
c
6

d
4
d
5
d
9
c
7

d
6
h
3
d
10
c
8

d
7
h
4
d
K
c
K

h
2
h
6
d
Q
d
2

h
5
h
7
h
10
d
A

h
A
h
8
h
J
d
J

h
Q
s
2
s
7
h
9

s
3
s
5
s
9
h
K

s
6
s
8
s
10
s
4

s
K
s
J
s
Q
s
A

1.3.3 A more general solution
The following generalization deals a given number of cards to a given number of players from
a given deck using essentially the same strategy as the preceding version.

dealCards[deck_,
numberOfPlayers_IntegerPPositive,
cardsPerPlayer_Integer?Positive] :=

Module[{hand},
hand[i_] := hand[i] =

deal[
Complement[

deck,
Join[Sequence@@Table[hand[j],

{j, i-1 >]]],
cardsPerPlayer];

TableForm[
Table[hand[i], {i, numberOfPlayers}],

TableHeadings ->
{Tablet ,,hand["<>ToString[i] <>"]",

{i, numberOfPlayers}],
None}]];

Here is a sample poker deal to six players.

dealCards[deck, 6, 5]
c h h s s

hand[l] 7 3 8 7 9
c c c s s

hand[2] 4 A Q 6 10
c c d h s

hand[3] 6 J 9 6 A

600 Part IV · Answers
V Λ ί ^ ^ ' Α Μ ί Λ ί

hand[4]

hand[5]

hand[6]

c
5
c
3
c
10

c
K
c
9
d
4

d
Q
d
7
d
J

h
Q
d
10
d
K

s
8
s
2
h
J

1.3.4 A still better solution

In the previous versions, the required number of cards are dealt in a block to each player. The
new version here is based on nesting the operation of dealing one round of cards to each
player. A Transpose operation is then required to see the cards dealt to each player; i.e., the
view of the player is the transpose of the view of the dealer. Because the fastest version of
d e a l sorts the cards that are dealt, it cannot be used here. We replace it by the procedural
version.

d e a l [p o p u l a t i o n _ L i s t , n _ I n t e g e r] : =
Module[

{ l i s t = p o p u l a t i o n , s e l e c t i o n = { } , rand } ,
Do[rand = Random[Integer, { 1 , L e n g t h [l i s t] }] ;

A p p e n d T o [s e l e c t i o n , l i s t [[r a n d]]] ;
l i s t = D e l e t e [l i s t , rand] ,
{ n }] ;

s e l e c t i o n] / ; 0 <= n <= L e n g t h [p o p u l a t i o n] ;

Next, we define the operation of dealing a round of cards, one to each player. The idea is that
the operation of dealing one round of cards is something that can be nested as many times as
necessary to complete the game deal. It operates on pairs consisting of the already dealt cards
and the reamining cards in the deck and produces a similar output.

oneRoundf { a l r e a d y D e a l t _ L i s t , remainingCards__List} ,
n o O f P l a y e r s _ I n t e g e r] : =

Module[{round =
d e a l [r e m a i n i n g C a r d s , n o O f P l a y e r s] } ,

{ Append[a lreadyDea l t , r o u n d] ,
Complement[remainingCards, r o u n d] }] ;

Now we can define a more pleasant version of the program. The operation oneRound is
nested noOf Cards times starting with the pair { { } , d e c k } . The first entry is the list of lists
of cards that are dealt in each round. Its transpose therefore is the list of lists of cards dealt to
each player. Finally, the cards are sorted according to the usual ranking of cards.

Eight · Answers

g cime De al [deck_Lis t, noOf Players_Integer,
noOfCards_Integer] :=

Map [Sort[#, cardOrderQ]&,
Transpose[

Nest[oneRound[#, noOfPlayers]&,
{{}, deck}, noOfCards][[1]]]] /;

0 <= noOfPlayers noOfCards <= Length[deck];

Here cardOrder is a sorting routine which is defined lexicographically in
values.

suits = {s, h, d, c};
values = Join[Range[2, 10], {J, Q, K, A}];
suitOrderQ[cardl_, card2_] :=

Position[suits, cardl[[l]]][[1, 1]] <
Position[suits, card2[[l]]][[1, 1]];

valueOrderQ[cardl_, card2_] :=
Position[values, cardi[[2]]][[1, 1]] <
Position[values, card2[[2]]][[1, 1]];

cardOrderQ[cardl_, card2_] :=
suitOrderQ[cardi, card2] ||
(cardl[[l]] === card2[[l]] &&

valueOrderQ[cardi, card2]);

We also want to display the deal in a nice form.

displayDeal[deck__List, noOfPlayers_Integer,
noOfCards_Integer]:=

TableForm[
gameDeal[deck, noOfPlayers, noOfCards],
TableHeadings ->

{Tablet "hand["<>ToString[i]<>"]",
{i, noOfPlayers}],

None}] /;
0 <= noOfPlayers noOfCards <= Length[deck];

602 PartIV · Answers
fc^^^N»t,V" - ^ V V A * ? « ^ « * M » * ^ P « ^ ^ « B ^ « Ä Ä ^ » m « ^ ^ U « ♦ - ^ i ; ^ # ^ ^ \ ì ^ ^ s ^ ^ t ó A 4 ^ > #

First try dealing the cards for a bridge game.

displayDeal[deck, 4, 13]

hand[l]

hand[2]

hand[3]

hand[4]

s
5
s
10
s
7
s
2

s
9
s
K
S
J
s
3

s
Q
s
A
h
3
s
4

h
2
h
7
h
5
s
6

h
4
h
8
h
6
s
8

h
10
h
9
h
J
h
Q

d
2
d
5
d
3
h
K

d
4
d
9
d
10
h
A

d
6
d
J
d
K
d
7

c
2
d
Q
c
3
d
8

c
4
c
Q
c
5
d
A

c
6
c
K
c
7
c
8

c
9
c
A
C
10
c
J

Now try dealing the cards for a poker game.

displayDeal[deck, 6, 5]

hand[l]

hand[2]

hand[3]

hand[4]

hand[5]

hand[6]

s
5
h
2
s
3
h
5
s
4
s
8

s
9
d
2
h
7
h
Q
s
J
s
Q

h
K
d
10
d
5
h
A
c
8
s
K

d
3
d
Q
d
9
d
7
c
9
h
3

c
5
c
3
c
2
c
Q
c
A
h
4

1.3.5 A one-liner for gameDeal
Now that we have tried several versions, we can see better how to put everything together.
First, modify the ordering of cards to reflect the observation that the ordering of suits is the
reverse of canonical ordering. Then define different card orderings for different games since
the way in which cards are combined usually is different in different games.

values = Join[Range[2, 10], {J, Q, K, A}];

Eight · Answers
M « ^ Ä Ä ^ ^ ^

603

valueOrderQ[card1_, card2_] :=
Position[values, cardi[[2]]][[1, 1]] <
Position[values, card2[[2]]][[1, 1]];

bridgeOrderQ[cardl_, card2_] :=
(!SameQ[card2[[l]], cardl[[l]]] &&
0rderedQ[{card2[[l]], cardl[[l]]}]) ||

(SameQ[cardl[[l]], card2[[l]]] &&
valueOrderQ[cardi, card2]);

pokerOrderQ[cardl__, card2_] :=
(SameQ[card2[[2]], cardi[[2]]] &&
0rderedQ[{card2[[1]], cardl[[l]]}]) ||

(!SameQ[cardl[[2]], card2[[2]]] &&
valueOrderQ[cardi, card2]);

The following operation does everything simply by dealing out the total number of cards
required and then partitioning them into the appropriate number of cards for each player. It
also improves the ridiculous table construction of the table headings.

gameDeal [deck_, noOf Player s_, noOf Cards_, gameOrderQ__] : =
TableForm[

Map[Sort[#, gameOrderQ]&,
Partition[

deal[deck, noOfPlayers noOfCards],
noOfCards]],

TableHeadings ->
{Map[hand, Range[noOfPlayers]],
None}] /;

0 <= noOfPlayers noOfCards <= Length[deck];

Here are our final two examples.

gameDeal[deck, 4, 13, bridgeOrderQ]

hand[l]

hand[2]

hand[3]

hand[4]

s
4
s
6
s
2
s
7

s
5
s
9
s
3
s
J

h
2
s
10
s
8
h
3

h
4
s
Q
h
5
h
6

h
7
s
K
h
9
h
10

d
2
s
A
h
Q
h
J

d
4
h
8
h
K
h
A

d
5
d
6
d
3
d
10

d
7
d
J
d
8
d
Q

d
9
d
K
c
2
d
A

c
6
c
4
c
3
c
7

c
8
c
5
c
10
c
J

c
9
c
A
C
Q
c
K

604 Part IV · Answers

gameDeal[deck, 6, 5, pokerOrderQ]

hand[l]

hand[3]

hand[5]

h
6
h
2
d
3

h
8
d
4
e
3

s
9
d
9
s
8

d
J
c
10
h
10

c
K
h
K
s
K

hand[2]

hand[4]

hand[6]

s
6
c
4
s
3

d
7
s
7
s
5

c
8
h
9
d
6

c
Q
s
10
s
Q

s
A
d
A
d
Q

«ΐί- s ^ >&>$Φ®Τ"*

Problem 2
Write the same function algexp in two different forms using: i) Which, ii) Switch.

2.1 The Algebraic Expression Predicate
We give seven ways to define this predicate and compare their speeds.

Answer 1. Make a list of the admissible heads of subexpressions and check recursively that all
heads of all subexpressions belong to the list by visiting every level of the expression.

algheads[l] = { Plus, Times, Power, Integer,
Rational, Real, Complex, Symbol };

algexp[l][exp_]:=
MemberQ[algheads[1], Head[exp]] &&
If[Length[exp] > 0,

And@@Map[algexp[l], List@@exp],
True];

Answer 2. Separate the allowed heads into the heads for leaves and the heads for internal
nodes in the tree structure. Then uses a Which clause to separate out the different cases.

algheads[2] = {Plus, Times, Power};
algleaves[2] =

{Symbol, Integer, Rational, Real, Complex};
algexp[2][exp_] :=

Which[Length[exp] === 0,
MemberQ[algleaves[2], Head[exp]],

MemberQ[algheads[2], Head[exp]],
And@@Map[algexp[2], List@@exp],

Head[exp] === Rational, True,
Head[exp] === Complex, True,
True, False];

Eight · Answers 605

Answer 3. This solution is a more organized way to do the same thing.

algexp[3][exp_] :=
Which[

Map[(Head[exp] === #)&,
Plus || Times || Power],

And@@Map[algexp[3], List@@exp],
(Head[exp] === Symbol) || NumberQ[exp],

True,
True, False];

Answer 4. Use Switch recursively to look at the heads of the subexpressions. Here we make
use of the command A l t e r n a t i v e s , written in infix notation with |, which acts like Or for
patterns.

algexp[4][exp_] :=
Switch [exp,

(_?NumberQ | _Symbol),
True,

(_Plus |_Times |_Power),
And@@Map[algexp[4], List@@exp],

_ , F a l s e] ;

Answer 5. This is another recursive version using Switch.

algexp[5][exp_] :=
Switch [

Head[exp],
(Symbol|Integer|Real|Rational|Complex),

True,
(Plus|Times|Power),

And@@Map[algexp[5], List@@exp],
_, False];

Answer 6. This is the solution from Exercise 3 of Chapter 7 using rewrite rules recursively.

algexp[6][u_+v_] := algexp[6][u] && algexp[6][v]
algexp[6][u_ v_] := algexp[6][u] && algexp[6][v]
algexp[6][u_Av_] := algexp[6][u] && algexp[6][v]
algexp[6][w_] := MemberQ[{Symbol, Integer,

Rational, Real, Complex},
Head[w]]

606 Part IV · Answers

Answer 7. The "power" solution. It just looks at all the heads of all the subtrees of the
expression, including the expression itself, and insists that they belong to the appropriate list.

algexp[7][exp_] :=
Complement! Head/@Append[Level[exp,Infinity],exp],

{ Plus, Power, Times, Symbol, Integer,
Real, Rational, Complex }] = = { }

2.2 Test the answers

testAlgExp[n_] :=
{ algexp[n][x"2 + (y + 2)A3],

algexp[n][χΛ2 + (Sin[y] + 2)A3],
algexp[n][(5 x y)A(z + w)],
algexp[n] [Sqrt[5 x yp(z + w)],
algexp[n][xA(xA(xA(xAx)))],
algexp[n][(y + w)A(x + 2)] ,
algexp[n][(x + 2 1) (3 + y I)A(5 + 41)],
algexp[n] [(2x + y) + I (z w + u)],
algexp[n][Tan[xA2 + νΛ2]] };

Use method 7 to test the values.

testAlgExp[7]

{True, False, True, True, True, True, True, True, False}

Now try all of them many times to get comparative timings.

Table[{ method[n],
Timing[Do[testAlgExp[n], {20}]][[1]] },

{n, 1, 7}]
{{method[1], 13.0833Second}, {method[2], 14.3167 Second},
{method[3], 17.75 Second}, {method[4], 13.2833 Second},
{method[5], 12.5667 Second}, {method[6], 6.65 Second},
{method[7], 3.25 Second}}

Eight · Answers 607

Thus, the first five methods are approximately the same, except for method 3 using Which that
is definitely the worst. Method 7 is clearly the winner, being more than a half an order of
magnitude faster than the slower methods. The pure rewrite rule method 6 is surprisingly fast.
The actual order of the algorithms is

7<6<5<1<4<2<3.

It is curious that 5 is definitely faster than 4 and that 1 is faster than 2. One can get exactly the
same comparative timing results by using a very large, deeply nested algebraic expression.

exp = Nest[((xA#) #&), zA2, 8];
Table[Timing[algexp[n][exp]], {n, 1, 7}]

{{9.11667 Second, True}, {10.1833 Second, True},
{13.2667 Second, True}, {9.21667 Second, True},
{8.9 Second, True}, {4.73333 Second, True},
{0.733333 Second, True}}

Now method 7 appears to be an order of magnitude faster than the slower methods. Actually,
of course, the first five methods probably are exponential while method 7 may be linear. The
surprise is method 6 again.

Problem 3
Define a function countTheCharacters [t e x t _] that takes a string t e x t and turns it into a
list of characters. It then returns a list whose entries are pairs with first entry a character in the
list and second entry the relative frequency of the occurrence of the character in text ,
expressed as a percentage of the total number of characters in t ext . You may want to use the
definition of frequency in Chapter 6, Section 2.3. Try to put the list in order of decreasing
frequency.

3.1 The Procedure

There are a number of things to worry about. First of all, we don't want to distinguish between
lower and upper case letters. Fortunately, ToLowerCase makes all symbols lower case. Then,
Characters turns a running text into a list. Secondly, we don't want to count punctuation
marks, and again fortunately, the predicate LetterQ eliminates them. Then it's just a matter of
counting the number of times each of the remaining symbols occurs and sorting the result
nicely.

608 Part IV · Answers
&<,", ^**-y??^ -- «%*-**** &&&&**

countTheCharacters[text_String] :=
With[

{chars = Select[Characters[ToLowerCase[text]],
LetterQ[ToString[#]]&]},

Sort[Map[
{ #,

N[Count[chars,#] 100/Length[chars] "%",
3]}&,

Union[chars]],
(#l[[2]]/"%" > #2[[2]]/"%")&]];

An example.

text = "Pascal is for building pyramids - imposing,
breathtaking, static structures built by armies pushing heavy
blocks into place. Lisp is for building organisms - imposing,
breathtaking, dynamic structures built by squads fitting
fluctuating myriads of simpler organisms into place.";
countTheCharacters[text]

{{i, 12.6 %}, {s, 9.96 %}, {t, 7.79 %}, {a, 7.79 %},
{r, 6.06 %}, {n, 6.06 %}, {u, 5.19 %}, {1, 4.76 %},
{g, 4.76 %}, {o, 4.33 %}, {p, 3.9 %}, {m, 3.9 %}, {e, 3.9 %},
{c, 3.9 %}, {b, 3.9 %}, {y, 2.6 %}, {d, 2.6 %}, {f, 2.16 %},
{h, 1.73 %}, {k, 1.3 %}, {v, 0.433 %}, {q, 0.433 %}}

Problem 4

Recreate the Pascal program "Stolen Gold" in Mathematica

i) using a For loop,
ii) using a While loop.

iii) Change the one-liner so it prints out the same results as the Pascal program. It should
still be a strict one-liner.

Part 1. Here are all three forms of the translation of the Pascal program into Mathematica, using
a Do loop, a For loop, and a While loop. In order to avoid repeating the same fragment of
code three times we put it into a separate Module.

Eight · Answers 609

i fS ta tement [t r ia l_] :=
Module[{divided},

I f [Mod[trial , 3] == 1,
divided = 2 Q u o t i e n t [t r i a l , 3] ;
I f [Mod[divided, 3] == 1,

divided = 2 Quotient[divided, 3] ;
I f [Mod[divided, 3] == 1,

divided = 2 Quotient[divided, 3] ;
I f [Mod[divided, 3] == 1,

Print[PaddedForm[trial, 3] ,
" i s a solut ion. 1 1]]]]]] ;

We compare timings for the three versions, editing out the Print statements from the second
and third versions.

Timing[
Module[{TrialNumber},

Do[ifStatement!TrialNumber],
{TrialNumber, 1, 500}]]]

79 is a solution.
160 is a solution.
241 is a solution.
322 is a solution.
403 is a solution.
484 is a solution.

{9. Second, Null}
Timing [

Module[{TrialNumber},
For[TrialNumber = 1,

TrialNumber <= 500,
TrialNumber++,
ifStatement!TrialNumber]]]]

{9.45 Second, Null}
Timing[

Module[{TrialNumber = 0},
While[TrialNumber++; TrialNumber <= 500,

ifStatement[TrialNumber]]]]
{9.6 Second, Null}

As one might suspect, there is slightly less overhead in a Do loop than in the other versions.

610 Part IV · Answers

Part 2. To make the one-liner print its solution just wrap Print [-, "is a solut ion"]
around the given one-liner and put a semicolon at the end.

Timing[Map[
Print[PaddedForm[#, 3], " is a solution"]&,
Select[Range[500],

And@@Map[
(# == 1)&,
Mod[NestList[2 Floor[#/3]&, #, 3], 3]]&

]] ;]

{10,35 Second, Null}

Unfortunately, it is the slowest of all.

Problem 5

Consider the two infinite sums with possible values

'Là I0n 10 'Li 2n 99
n=ì n=\

Here, a(n) is the number of odd digits in odd positions in the decimal expression for n. Thus,
a(901) = 2, a(1234) = 0, a(4321) = 2, etc. Positions are counted from the right. At least one of the
values is wrong and can be detected by a computation taking a reasonable length of time (i.e.,
< 10 seconds). Which one is definitely wrong. (Cf. [Borwein])

Answer: First define a(n) which is used in both of the strange sums.

a[n_] :=
Module[{intdig = IntegerDigits[n]},
Length[
Select[
Delete[Reverse[intdig],

Map[List,
2 Range[Floor[Length[intdig]/2]]]],

OddQ]]];

For instance:

a[324234501] 4

Eight · Answers 611

The first series. The first series is the following.

series[k_] := N[Sum[a[n]/10An, {nf k}], k];
Check its value for various values of k. Since the series consists of positive terms, if the value
ever exceeds the value of 10/99, then the claimed result is false. This first occurs at
k = 100.

series[100]
0.10\
1010101010101010101010101010101010101011
N[10/99f 100]
0.10\
101
test[m_] := series[m] <= N[10/99, m];
t e s t [1 0 0] => Fa l se

Clearly, the answer to the first series is wrong.

The second series. Here is the second series.

newSeries[k_] := N[Sum[a[2An]/2An, {n, k}], k/3];
No matter how far we go, the value is always slightly less than the value of 1/99. (This takes a
long time.)

newSeries[1000]
0.01X
01\
01X
OIX
01009397857239X
351968725415446675343944215
N[l/99, 100]
O.OIX
01

612 Part IV · Answers
-' sSf^v ,̂ v ^■.*;~w*g$c-? \ Ï-

The evidence suggests that the answer is correct. According to [Borwein] it is.

A third attempt. We make an attempt at another of the series discussed in [Borwein].

e[n_] :=
Module[{intdig= IntegerDigits[n]},

Reverse[intdig] ·
Table[(l/10)*j, {j, Length[intdig]}]];

e[1234567891011121314151617181921]

1291817161514131211101987654321

10000000000000000000000000000000
N[%, 100] =»0.1291817161514131211101987654321
newnewSeries[k_] : =

N[Sum[e[n]/(n (n + 1)), {n, k}], k/100];
newnewSeries[500] => 0.23159
newnewSeries[1000] => 0.2320870333
newnewSeries[1500] => 0.232251712114929
N[10/99 Log[10], 100]

0.232584352827681382224039540877208505818293079659472017781\
1442324209669302704396444682825459686462928

For 500 terms, the first two digits are correct. For 1000 terms, three digits are correct. The
answer for 5000 terms never returned. It seems that this is computationally infeasible.
Apparently it is necessary to keep the sum in exact form until the last step in order to avoid
roundoff errors. According to [Borwein], the answer is correct.

Problem 6
* *$ί'>'**ά\&-Φ*»*&?»

i) Write functions outShuf f l e and inShuf f l e taking as argument a list of even length
and permuting it by an out shuffle and an in shuffle.

ii) Determine the orders of outShuf f l e and inShuf f l e for n between 1 and 50; i.e., for
decks consisting of 2 to 100 cards, by finding experimentally how many times they
have to be repeated to put the deck back into its original order. Note: for n = 26, i.e., for
an ordinary deck of 52 cards, orderOut[26] = 8 and orderIn[26] = 52. Plot
these values as a function of 2 n.

Eight · Answers 613
, V < * ^ i -

iii) It is a theorem that the order of outShuf f i e for a deck of 2n cards is the smallest k
such that 2k = 1 mod 2n - 1, and the order of inShuf f i e is the same as the order of
outShuf f i e for a deck consisting of 2 more cards. Write functions calculating these
numbers and compare these numbers with the experimental results for n between 1
and 50.

iv) It is known that the group generated by outShuf f i e and inShuf f i e is isomorphic
to the group of all symmetries of the n-dimensional generalization of the octahedron.
(See [1] and [2], p 226.) For n = 3, it is the group of all symmetries of the usual
octahedron. Using the values of the orders of outShuf f i e [3] and inShuf f i e [3] ,
show that there are symmetries of the required orders. Is there a nice graphical
illustration of this result?

v) Generalize to the situation where a deck of 3n cards is divided into three equal parts
which can then be shuffled perfectly in six different ways.

6.1 outShuffle and inShuffle
First define outShuff le and inShuff le . The command Thread, when flattened, does the
actual shuffling.

outShuffle[deck_List /; EvenQ[Length[deck]]] :=
Flatten[Thread[{ Take[deck, Length[deck]/2],

Take[deck, -Length[deck]/2] }]];
inShuffle[deck_List /; EvenQ[Length[deck]]] :=

Flatten[Thread[{ Take[deck, -Length[deck]/2],
Take[deck, Length[deck]/2] }]];

For instance:

outShuffie[Range[16]]

{1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15, 8, 16}

inShuffle[Range[16]]

{9, 1, 10, 2, 11, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8}

6.2 The Experimental Orders of out shuf f le
and inShuffle

If outShuff le or inShuff le is iterated often enough, the deck must ultimately be brought
back to its original order, since the group of all permutations is a finite group. Find the order of
outShuffle in a deck with 2n cards. Since we don't know what the order is, we use a While

614 Part IV · Answers
^ ν ί ^ ^ Λ , ,- fr- ■■ ¥̂*> *»*?&« *s*^*&*i*«&4»*^> -*,> ^ ^ ^ ^ # Ä ^ Ä - I ^ Ä ^ ^ Ä ^ P ^ ^ ^

loop that continues until we find the identity permutation. It is known that the group
generated by outShuf f l e and inShuf f l e acts transitively on the deck and is the same as
the group of symmetries of the n-octahedron.

outOrder[n_Integer7; P o s i t i v e [n]] :=
Module[

{num = 1, out = outShuffie[Range[2 n]] } ,
While[out =!= Range[2 n] ,

out = outShuf f ie [out] ; num++];
num] ;

inOrder[n_Integer/; P o s i t i v e [n]] :=
Module[

{num = 1 , in = inShuffie[Range[2 n]] } ,
While[in = ! = Range[2 n] ,

in = i n S h u f f i e [i n] ; num++];
num] ;

Calculate the answers for the case of an ordinary deck of cards where n = 26; i.e., 2n = 52.

{outOrder[26], inOrder[26]} => {{8}, {52}}

Thus, if a perfect out shuffle is performed 8 times, an ordinary deck is returned to its original
order, while it takes 52 in shuffles for the same effect. Now calculate out orders and in orders
for even numbers of cards up to 100.

outOrdersUpTo[m_] :=
Map[Flatten, Table[{2 n, outOrder[n]}, {n, m}]];

ListPlot[outOrdersUpTo[50], PlotJoined -> True];

80

60

40

20

20 40 60 80 100

Eighi t · Answers 615

inOrdersUpTo[m_] :=
Map[Flatten, Table[{2 n, inOrder[n]}, {n, m}]];

ListPlot[inOrdersUpTo[50], PlotJoined -> True];

100

100
For both, the order apparently is less than or equal to 2n. From the values it seems clear that
the orders of inShuf f l e are equal to those of outShuf f l e shifted by 2. It is known in fact
that the order of outShuf f i e is less than or equal to 2n - 2 and the order of inShuf f i e is
less than or equal to 2n.

6.3 Some Experiments

The isomorphism with the symmetries of the n octahedron is based on the fact that every such
permutation is centrally symmetric, as illustrated below.

symdeck = Join[Table[a[i], {i, 10}],
Reverse[Table[b[i], {i, 10}]]]

{ a[l], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10],
b[10], b[9], b[8], b[7], b[6], b[5], b[4], b[3], b[2], b[l]}

outShuffie[symdeck]

{a[l], b[10], a[2], b[9], a[3], b[8], a[4], b[7], a[5], b[6],
a[6], b[5], a[7], b[4], a[8], b[3], a[9], b[2], a[10], b[l]}

outShuffle[%]

{all], a[6], b[10], b[5], a[2], a[7], b[9], b[4], a[3], a[8],
b[8], b[3], a[4], a[9], b[7], b[2], a[5], a[10], b[6], b[l]}

616 Part IV · Answers

6.4 The Theoretical Orders ö/Outshuf f le
and inShuffle

These calculations are done easily using a While loop.

outOrderCalc[n_] :=
Module[{k = 1 } ,

I f [n == 1, 1,
While[Mod[2*k, 2n - 1] =!= 1, k++]; k]]?

inOrderCalc[n_] :=
Module[{k = 1},

While[Mod[2Ak, 2n + 1] =!= 1, k++]; k];
{outOrderCalc[26], inOrderCalc[26]} => {8, 52}

They can also be written in functional form using FixedPoint .

outOrderCalcFun[n_] :=
FixedPoint[If[Mod[2/v#/ 2n - 1] =!= 1, #+1, #]&, 1];

inOrderCalcFun[n_] :=
FixedPoint[If[Mod[2A#, 2n + 1] =!= 1, #+1, #]&, 1];

{outOrderCalcFun[26], inOrderCalcFun[26]} => {8, 52}

To check if this agrees with the experimental results, calculate many values.

outOrdersCalcUpTo[m_] :=
Map[{2 #, outOrderCalc[#]}&, Range[m]];

inOrdersCalcUpTo[m_] :=
Map[{2 #, inOrderCalc[#]}&, Range[m]];

outTest[m_] := outOrdersUpTo[m] === outOrdersCalcUpTo[m];
inTest[m_] := inOrdersUpTo[m] === inOrdersCalcUpTo[m];
{outTest[50], inTest[50]} => {Truef True}

Problem 7

It is a non-trivial result in number theory that every positive integer can be written as the sum
of four squares. (Zero is allowed as one of the summands.)

i) Write a program to find one such representation for each positive integer.
ii) Write a program that finds all such representations for each positive integer. Use it to

find all integers between 1 and 1000 that are not sums of three squares.

Eight · Answers 677

iii) Not all integers can be written as the sum of four distinct non-zero integers. Find all
integers between 1 and 1000 that don't have such a representation. (Warning: this takes
40 minutes on a SPARC workstation.)

7. / Find One Representation

7.1.1 The procedure
The following procedure is optimized to find one representation of n as a sum of four squares.
Originally it was written with a For loop, but a Do loop seems to be simpler. The purpose of
the Return statement is to break out of the loop as soon as a solution is found. The program is
developed in three steps. First find a representation of an integer n as a sum of two squares, if
it exists. For this, it is sufficient to search for an integer i between Floor [N[Sqrt [n/2]]]
and Floor [N [Sqrt [n]]] such that n - i 2 is the square of an integer. It is most efficient to
start at the bigger value and step down. Then find a representation of n as a sum of three
squares, if it exists, by searching for an integer i between Floor [N [Sqrt [n/3]]] and
Floor [N[Sqrt [n]]] such that n - i 2 is the sum of two squares. Finally, find a
representation of n as a sum of four squares by searching for an integer i between
Floor [N [Sqrt [n/4]]] and Floor [N [Sqrt [n]]] such that n - i 2 is the sum of three
squares. This is guaranteed to exist.

sumOfTwoSquares[n_Integer] :=
Module[

{ i , t r i a l } ,
Do[trial = Sqrt[n - iA2];

If[IntegerQ[trial], Return[{i, trial}]],
{i, Floor[N[Sqrt[n]]], Floor[N[Sqrt[n/2]]],-1}]];

sumOfThreeSquares[n_Integer] :=
Module[

{i, trial},
Do[trial = sumOfTwoSquares[n - iA2];

If[trial=!=Null, Return[Flatten[{i, trial}]]],
{i, Floor[N[Sqrt[n]]], Floor[N[Sqrt[n/3]]],-1}]];

sumOfFoursquares[n_Integer] :=
Module[

{i, trial},
Do[trial = sumOfThreeSquares[n - iA2];

Iff trial =!= Null,
Return[Flatten[{i, trial}]]],

{i, Floor[N[Sqrt[n]]], Floor[N[Sqrt[n/4]]],-1}]];

618 Part IV · Answers

7.1.2 Examples

sumOfTwoSquares[5] => {2, 1}

sumOfThreeSquares[14] => {3, 2, 1}

sumOfFourSquares[1000] => {30, 10, 0, 0}

Table[{i, sumOfFourSquares[i]}, {i, 150, 183, 3}]

{{150, {12, 2, 1, 1}}, {153, {12, 3, 0, 0}},
{156, {12, 2, 2, 2}}, {159, {11, 6, 1, 1}},
{162, {12, 4, 1, 1}}, {165, {12, 4, 2, 1}},
{168, {12, 4, 2, 2}}, {171, {13, 1, 1, 0}},
{174, {13, 2, 1, 0}}, {177, {13, 2, 2, 0}},
{180, {13, 3, 1, 1}}, {183, {13, 3, 2, 1}}}

Timing[sumOfFoursquares[16720845]]

{1.86667 Second, {4088, 94, 16, 3}}

This procedure is very fast, but the results are boring for small numbers since the first entry is
almost always the largest integer whose square is less or equal to n. The following finds all
integers between 1 and 1000 that are not sums of three squares.

Map[#[[1]]&,
Select[Table[{i, sumOfThreeSquares[i]},

{i, 1, 1000}], #[[2]] ===Null&]]

We suppress the output because of its length. There are 165 such numbers.

7.2 Find All Representations

7.2.1 The procedure
These functions work in a somewhat different way. It takes much longer to find all
representations. In this case we have written functional programs, but the strategy is the same
as before. The procedure twoSquares is implemented using Fold, but the other two seem to
be possible only by mapping an operation down the list of relevant values. The output from
foursquares is a list consisting of all representation of n as a sum of four squares. A
procedure for checking the output is provided.

Eight · Answers
mm&ùmmwim8jmm^$*i**& ******* »«*«ν#&*ΐ ;* - v *«■

t w o S q u a r e s [n _ I n t e g e r] :=
Fo ld[

I f [I n t e g e r Q [S q r t [n - # 2 * 2]] ,
Append[# l f { # 2 , S q r t [n - # 2 * 2] }] , #1]&,

{ } ,
Range[Floor[N[Sqrt[n/2]]], Floor[N[Sqrt[n]]]]];

threeSquares [n__Integer] : =
Union[Flatten[

Cases[
Map[{#, twoSquares[n - #*2]}&,

Range[Floor[N[Sqrt[n/3]]],
Floor[N[Sqrt[n]]]]],

{a_Integer, bJList} /; b =1= {}] /.
{a_Integer, b_List} :>

Map[Sort[Flatten[{a, #}]]&, b],
i]];

foursquares [n__Integer] : =
Union[Flatten[

Cases[
Map[{#, threeSquares[n - fA2]}&,

Range[Floor[N[Sqrt[n/4]]],
Floor[N[Sqrt[n]]]]],

{a_Integer, b_List} /; b =!= {}] /·
{a_Integer, b_List} :>

Map[Reverse[Sort[Flatten[{a, #}]]]&, b],
i]];

checkRep[list_List] := Map[Plus@@(#*2)&, list];

7.2.2 Examples

For instance:

twoSquares[25] => {{3, 4}, {4, 3}, {
checkRep[%] => {25, 25, 25}
foursquares[102]

{{6, 5, 5, 4}, {7, 6, 4, 1}, {7, 7, 2, 0}, {8, 5, 3, 2
{8, 6, 1, 1}, {9, 4, 2, 1}, {10, 1, 1, 0}}

620 PartIV · Answers

checkRep[%] => {102f 102, 102, 102, 102, 102, 102}
Table[foursquares[n], {n, 71, 75}]//MatrixForm
{{6, 5, 3, 1}, {7, 3, 3, 2}},
{{6, 4, 4, 2}, {6, 6, 0, 0}, {8, 2, 2, 0}},
{{5, 4, 4, 4}, {6, 6, 1, 0}, {7, 4, 2, 2}, {8, 2, 2, 1},
{8, 3, 0, 0}}

{{6, 5, 3, 2}, {6, 6, 1, 1}, {7, 4, 3, 0}, {7, 5, 0, 0}f
{8, 3, 1, 0}}

{{5, 5, 4, 3}, {5, 5, 5, 0}, {7, 4, 3, 1}, {7, 5, 1, 0},
{8, 3, 1, 1}}

Timing[foursquares[3456]]
{81.5 Second,
{{40, 32, 24, 16}, {40, 40, 16, 0}, {48, 24, 24, 0},
{48, 32, 8, 8}, {56, 16, 8, 0}}}

73 Sums of Distinct Squares
Some, but not all, numbers are the sum of four distinct, non-zero squares. Our representations
are always in decreasing order so the following predicate picks out the distinct
representations.

distinctQ[list_List] ;=
list[[l]] > list[[2]] > list[[3]] > list[[4]] > 0;

distinctSquares[n_Integer] :=
Select[foursquares[n], distinctQ]

distinctSquares[102]
{{7, 6, 4, 1}, {8, 5, 3, 2}, {9, 4, 2, 1}}

The following takes a long time to calculate. The output is suppressed since it is over 50 pages
long.

distinctRepresentations =
Table[{n, distinctSquares[n]}, {n, 1, 1000}];

Once all distinct representations have been calculated, then information can be extracted from
the table without actually displaying it all. The following finds all numbers between 1 and
1000 that have no representation as a sum of four distinct non-zero squares.

Eight · Answers 621

noRepresentations =
Map[#[[1]]&,

Select[distinctRepresentations,
(#[[2]] === {})&]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35,
36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 55, 56,
58, 59, 60, 61, 64, 67, 68, 69, 72, 73, 76, 77, 80, 82, 83, 88,
89, 92, 96, 97, 100, 101, 103, 104, 108, 112, 115, 124, 128,
132, 136, 144, 148, 152, 157, 160, 168, 172, 176, 188, 192,
208, 220, 224, 232, 240, 256, 268, 272, 288, 292, 304, 320,
328, 352, 368, 384, 388, 400, 412, 416, 432, 448, 496, 512,
528, 544, 576, 592, 608, 640, 672, 688, 704, 752, 768, 832,
880, 896, 928, 960}

Problem 8
Here are the results of a student's investigations of magic squares. No attempt has been made
to improve the procedures. Can these be replaced by functional programs?

8.1 Odd Order Magic Squares
oddMagicSquare[n_]:=
Module[

{basicList = Table[0, {n}, {n}], k},
Do[

basicList[[
Mod[l - k + 2 Floor[(k-l)/n], n]+l,
Mod[l/2 (n-3)+k-Floor[(k-l)/n], n]+l]] = k,

{k, ηΛ2}];
basicList // TableForm];

value[n_] := n (ηΛ2 + 1) / 2;

oddMagicSquare[5]

17
23
4
10

24
5
6
12

1
7
13
19

8
14
20
21

15
16
22
3

11 18 25

622 Part IV · Answers

Sura[oddMagicSquare[5][[1, 1, i]], {i, 5}] ==
value[5]

True

8.2 Double Even Order Magic Squares
doubleEvenMagicSquare[n_]:=

Module[
{basicSquare = Table[0, {n}, {n}], i, j, k, p, q,

auxiliarySquare, square},
Do[basicSquare[[1, i]] =

{i, n+l-i}[[Random[Integer, {1, 2}]]],
{i, n/2}];

Do[basicSquare[[1,j]] =
n + 1 - basicSquare[[1, n+1-j]],

{j, n/2 + lf n}];
Do[bas icSquare[[k]] = basicSquare[[1]],

{k, n/2 - 1}];
Do[basicSquare[[p]] = n + 1 - basicSquare[[p-1]],

{p, 2, nil, 2}];
Do[basicSquare[[q]] = basicSquare[[n + 1 - q]],

{q, n/2 + 1, n}];
auxiliarySquare =

Flatten[Map[{(# - 1) n}&,
Transpose[basicSquare]], 1];

square [i__, j_] : =
basicSquare[[i, j]] + auxiliarySquare[[i, j]];

Table[square[i, j], {i, n}, {j, n}] //
TableForm];

doubleEvenMagicSquare[4]

64
9
48
25
33
24
49
8

2
55
18
39
31
42
15
58

62
11
46
27
35
22
51
6

4
53
20
37
29
44
13
60

5
52
21
36
28
45
12
61

59
14
43
30
38
19
54
3

7
50
23
34
26
47
10
63

57
16
41
32
40
17
56
1

Sum[%[[l, i]], {i, 8}] == value[8] => True

References

[Abell 1] Abell, M. L. and Braselton, J. P., Mathematica by Example, Academic Press,
New York, 1992.

[Abell 2] Abell, M. L. and Braselton, J. P., Differential Equations with Mathematica,
Academic Press, New York, 1993.

[Abelson] Abelson, H. and Sussman, G. J. with Sussman, J., Structure and Interpretation
of Computer Programs, The MIT Press, Cambridge, 1985.

[Barendregt 1] Barendregt, H. P., The Lambda Calculus: Its Syntax and Semantics, Studies in
Logic and the Foundations of Mathematics 103, Second Edition, North-
Holland, Amsterdam, 1984.

[Barendregt 2] Barendregt, H. P., "Functional Programming and Lambda Calculus", in
Handbook of Theoretical Computer Science, Vol. B, Formal Models and
Semantics, Ed. J. van Leeuwen, Elsevier Science Publishers, 1990,321-363.

[Biggs] Biggs, N. L., Discrete Mathematics, Oxford University Press, Oxford, 1989.
[Blachman 1] Blachman, N., Mathematica, a Practical Approach, Prentice Hall, New Jersey,

1992.
[Blachman 2] Blachman, N., Quick Reference Cards, Prentice-Hall, New Jersey, 1992.
[Bocharov] Bocharov, A. V., Solving Nonlinear Differential Equations with DSolve,

Technical Report, Wolfram Research, Inc., 1992.
[Borwein] Borwein, J. M., and Borwein, P. B., Strange Series and High Precision Fraud,

Amer. Math. Mon. 99 (1992), 622-640.
[Budd] Budd, T., An Introduction to Object-Oriented Programming, Addison-Wesley,

New York, 1991.
[Church] Church, A., An Unsolvable Problem of Elementary Number Theory, Amer. J.

Math 58,1936,354-363.
[Cooper] Cooper, D. and Clancey, M., Oh! Pascal!, W. W. Norton and Co. 1982
[Crandall] Crandall, R. E. Mathematica for the Sciences, Addison-Wesley, New York, 1991.

623

624 Mastering Mathematica

[Curry] Curry, H. and Feys, R., Combinatori/ Logic, Voi I., North-Holland, Amsterdam,
1958.

[Dershowitz] Dershowitz, N. and Jouannaud, J.-P., "Rewrite Systems", in Handbook of
Theoretical Computer Science, Vol. B, Formal Models and Semantics, Ed. J. van
Leeuwen, Elsevier Science Publishers, New York, 1990,243-320.

[Ellis] Ellis, W., and Lodi, E., A tutorial Introduction to Mathematica, Brooks/Cole
Pub.Co., Pacific Grove, California, 1991.

[Fitch] J. Fitch, "A Survey of Symbolic Computation in Physics", in Symbolic and
Algebraic Computation, Proc. EUROSAM '79, Lecture Notes in Computer
Science 72, Springer-Verlag, New York, 1979,30-41.

[Gray A] Gray, A., Modern Differential Geometry of Curves and Surfaces, CRC Press, Boca
Raton, 1993.

[Gray Tl] Gray, T. and Glynn, J., Exploring Mathematics with Mathematica: Dialogs
concerning Computers and Mathematics, Addison-Wesley, New York, 1991.

[Gray T2] Gray, T. and Glynn, J., The Beginners Guide to Mathematica 2.O., Addison-
Wesley, New York, 1992.

[Hearn] Hearn, A., Reduce, "A Case Study in Algebra System Development", in
Computer Algebra, Lecture Notes in Computer Science 144, Springer-Verlag,
New York, 1982,263-272.

[Hindley] Hindley, J. R. and Seldin, J. P., Introduction to Combinators and λ-calculus,
Cambridge University Press, Cambridge, 1986.

[Horowitz] E. Horowitz, Programming Languages: A Grand Tour, Third Edition, Computer
Science Press, Rockville, MD, 1987.

[Hoffman] Hoffman, D., The Computer-Aided Discovery of New Embedded Minimal
Surfaces, The Mathematical Intelligencer, Vol. 9, No. 3 (1987), 8 -21 .

[vanHulzen] van Hulzen, J. A. and Calmet, J, Computer Algebra: Symbolic and Algebraic
Computation, Computer Algebra Applications, Second Edition, Springer-Verlag,
New York,1983

[Maeder 1] Maeder, R., Programming in Mathematica, Second Edition, Addison-Wesley,
New York, 1991.

[Maeder 2] Maeder, R., The Mathematica Programmer, Academic Press Professional,
Cambridge, 1994.

[McCarthy] McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., and Levin, M.,
LISP 1.5 Programmer's Manual, reprinted in Programming Languages: A Grand
Tour, Third Edition, Ed., E. Horowitz, Computer Science Press, Rockville,
MD, 1987,215-239.

[Meyer] Meyer, B. Object-oriented Software Construction, Prentice-Hall, New York,
1988.

References 625

[Michaelson] Michaelson, G., An Introduction to Functional Programming through Lambda
Calculus, Addison-Wesley, New York, 1989.

[Miller] Miller, L. H. and Quilici, A. E., Programming in C, Wiley & Sons Inc., New
York, 1986.

[Mitchell] Mitchell, J., "Type Systems for Programming Languages", in Handbook of
Theoretical Computer Science, Vol. B, Formal Models and Semantics, Ed. J. van
Leeuwen, Elsevier Science Publishers, 1990,365-458.

[Ng] Ng, E., Symbolic-Numeric Interface: A Review, Symbolic and Algebraic
Computation, Proc. EUROSAM 79, Lecture Notes in Computer Science 72,
Siringer Verlag, New York, 1979,330-345.

[O'Neill] O'Neill, B. Elementary Differential Geometry, Academic Press, New York, 1966.
[Paulson] Paulson, L, C, ML for the Working Programmer, Cambridge University Press,

Cambridge, 1991.
[Rogers] Rogers, H., Theory of Recursive Functions and Effective Computability, The MIT

Press, Cambridge, 1987.
[Rotman] Rotman, J., An Introduction to the Theory of Groups, Fourth Edition, Springer-

Verlag, New York, 1994.
[Schmidt] Schmidt, D. A., Denotational Semantics, A Methodology for Language

Development, Allyn and Bacon, Boston, 1986.
[Simon 1] Simon, B., Four Computer Mathematical Environments, Computers and

Mathematics, Amer. Math. Soc. Notices, 37 (7), 1990,861-868.
[Simon 2] Simon, B., Comparitive CAS Review, Computers and Mathematics, Amer.

Math. Soc. Notices, 39 (7), 1992, 700-710.
[Skeel] Skeel, R. and Keiper, J., Elementary Numerical Computing with Mathematica,

McGraw-Hill, New York, 1993.
[Skiena] Skiena, S., Implementing Discrete Mathematics: Combinatorics and Graph Theory

with Mathematica, Addison-Wesley, New York, 1990.
[Soare] Soare, R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, New

York, 1987.
[Stoutemyer] Stoutemyer, D., Crimes and Misdemeanors in the Computer Algebra Trade,

Computers and Mathematics, Amer. Math. Soc. Notices, 38 (7), 1992, 778-
785.

[Struik] Struik, D., Classical Differential Geometry, Addison-Wesley 1950.
[Tucker] Tucker, A., Applied Combinatorics, Second Edition, John Wiley & Sons, New

York, 1984.
[Vardi] Vardi, I., Computational Recreations in Mathematica, Addison-Wesley, New

York, 1991.

Mastering Mathematica

[Varian] Varian, H., Economic and Financial Modeling with Mathematica, TELOS /
Springer-Verlag, New York, 1993.

[Wagon] Wagon, S., Mathematica in Action, W. H. Freeman, San Franscisco, 1991.
[Wei] Wei, Sha Xin, Mathematica 2.0, Amer. Math. Soc. Notices, 39 (5), 1992, 428-

435.
[Withoff] Mathematica Internals, Technical Report, Wolfram Research, Inc. 1992.
[Wolfram] Wolfram, S., Mathematica: A system for Doing Mathematics by Computer, Second

Edition, Addison-Wesley, New York, 1991.

Index

! 84
! ! 273
$Context 354
$ContextPath 55,354
$ D i s p l a y F u n c t i o n 123
$MachineEpsi lon 64
$Mach inePrec i s ion 62
$MaxMachineNumber 64
$MinMachineNumber 64
$Operat ingSystem 165
$Packages 165
$Path 165
$Pos t 66
$Recurs ionLimi t 62,112,232
$ S e s s i o n I D 165
$Str ingOrder 15
$TimeUnit 62,112
$Vers ion62,112
%6
%% 12
& 174
&& 84
() 48
(* *) 48
/ 137,199
/ . 15,71,203,385
/ / . 205
/@ 171
; 242
< 217
<= 217
<> 166
== 15,70,72,217
=== 217
> 217
>= 217

» 264
@@ 172
Abbot, Paul 60
Abelson, Harold 169
Abs 190
AbsolutePointSize 317
AccelerationDueToGravity 56
account 295
AccountingForm 67
a c c u m u l a t e l 265
accumulat ion 265
accuracy 61
AccuracyGoal 70
a c t 407
Action menu 49
add 284, 391
adjacencyMatr ix 465

method 432,433
adjacencyMatrixFromEdgeLists 432
adj acencyMatrixFromOrderedPairs 433
adjacencyMatrixOfGraph 435
a d j a c e n t s 429,431
algebraic expressions 10,11
Algebraic manipulations 3,11-15
Algebra RelnT 111
Algebra^SymbolicSunT 39
algexpQ 236,277, 576
a l l O r b i t s 408
a l l P a t t e r n s 406
AmbientLight 337
And, 84
Animation 137
Anonymous functions 177
antiderivative 24
Apart 13
APL 277

627

628 Mastering Mathematica

app 388
Append 154
AppendTo154
Apple File Exchange xx
Apply 172
a p p l y A l l 572
arguments

default values 211
optional 23,210
optional named 211,365-373

Arithmetic operations 3
Array 158
arrays 158

subscripted 215
A s p e c t R a t i o 118

default value 118
Assignment statements 44,240
AtomQ 219
Atoms 143
A t t r i b u t e s 361-364, 376

Constant 363
F l a t 362
Locked 364
One I d e n t i t y 362
O r d e r l e s s 362
P r o t e c t e d 198
Stub 364
Temporary 364

Automatic 118
Axes 118
AxesEdge 337
AxesLabel 121,132
AxesOrig in 121
A x e s S t y l e 121
Axiom xii
back slashes 6
Background 121
balancedGraph 440
Bank accounts

as classes 295
immutable balance 296,300
immutable interest bearing 299, 300
interest bearing 298

Bar charts
simple example 333

barChart 334
BaseForm 67, 111
Begin 356, 358
BeginPackage 357
Bernoulli equation 90, 92
Bessel 27,95

B e s s e U 2 7

Besse lY 27
bet ter lmmutableAccount 300
b e t t e r l m m u t a b l e l n t e r e s t A c c o u n t 301
Bezout's theorem 80
Biggs, N. L. 417
Binomial 114
Blachman, Mancy xvii
Blank 148,207
Block 252
Blocks 241,252
body& 174
Borwein, J. M. 278
Borwein, P. B 278
boundingCyl inder 371
Boxed 133,337
BoxRat ios 134,337
BoxSty le 337
Brackets

comments 48
function application 48
grouping 48
lists 48
part extraction 48

br idgeDea l 277, 598
card ordering 602
displayDeal 601
gameDeal 600
one-liner 603

Budd, T 282
burnsideNumber 423
buttons xii
C xii
C++ 281
calculateNumber 392
Calculus 23

definite integral 25
differentiation 24
integration 24
limits 25
mixed derivatives 25
numerical integration 25
routines 3
series 25
several variables 25

C a l c u l u s LaplaceTrans fornT 103,352
capital letters xiv
c a r t e s i a n 283
c a r t e s i a n C o o r d s 286
car tes ianFromPolar 285
cartes ianMap 539
c a r t e s i a n P o i n t 302
c a r t e s i a n P r o d u c t 448

Index

Cases 225
Cata lan 111
C e i l i n g 36, 64
centerCircu lar lxnmers ion 467
CForm 48
characteristic polynomial 32
C h a r a c t e r i s t i c P o l y n o m i a l 3 3
checkGroup 400
Checking

solutions of algebraic equations 71
solutions of differential equations 88

Checking equations 72
ChemicalElements 56
Chop 74
Church-Rosser 203
churchN 391
C i r c l e 314
c i r c u l a r Immersion 437,466
Clancey, Michael 260
Classes

arguments of 294
bank accounts 295-301
factory methods 298
graphs 428-468
instance variables of 294
points in the plane 302
simple examples of 295
Superclass of 294
the method new 295
top class 294
use of self 300

C l a s s e s ^ 293
Clear 58
C l e a r A t t r i b u t e s 362
c l iqueQ461
C l o s e 272
CloseRead 269
CMYKColor 321

as reflected light 321
intensities in 321
interior of cube of 323
range of values 322

cod 471
codomain 471
C o e f f i c i e n t 15
C o l l e c t 14
c o l o r e d C a r t e s i a n P o i n t 304
ColorFunct ion129
ColumnForm 111, 190
Command, 145
comp 399
Complement 160, 451, 466

completeGraph 438
completeTheSquare 114, 534
Complex 10,146
Complex numbers 9
complexSort 231
Composed commands 240
composeLis t 193,570
c o m p o s i t i o n 473
CompoundExpression242
Conditional commands 240
Cone 343,452,466
Conjugate 111
Connect Remote Kernel 49
Constant 363
constant of integration 24
Context 354
Contexts 352

Global 354
hierarchy of 354
how to make new 355
names in 353
symbols in 355
System 354

c o n t i n u e d F r a c t 255
c o n t i n u e d F r a c t i o n 192, 560
cont inuedFract ionApprox 254
c o n t i n u e d F r a c t i o n P i 255
ContourGraphics 22
ContourPlot 22,128

options of 128
ContourSmoothing 128
Convert 55, 56
Cooper, Doug 260
coproduct 446,466

method 446
Cornf lowerBlue 311
Cos 19
Count 188
countTheCharacters 277, 608
Critical points xvii, 485-495

analysis of 488
command 487
c r i t i c a l D i r e c t i o n s 489
examples 489-495
finding 487
g r a d i e n t 487
h e s s i a n 4 8 8
hessian matrix 486
local maximum 486
local minimum 486
localMaxima 488
localMinima 488

630

Mathematica formulation 486
mathematical theory of 486
numerical commands 489
saddle points 486,489

c r i t i c a l D i r e c t i o n s 4 8 9
c r i t i c a l P o i n t s 487
c r o s s 499
Cuboid 336
curvatureDet501
c y c l e l n d e x 419
c y c l i c G r a p h 442
C y l i n d e r 343
D 24
Dashing 128
Data 126

putting in a file 126
reading from a file 126

d e a l 277
examples 596
functional versions 595
procedural version 593
rewrite rule versions 594

dealCards 599
D e f a u l t V a l u e s 3 7 6
definite integral 25
Definitions

assignments 44
function definition 45
recursive functions 45

Degree 111
degreeSequence 458,467
D e l e t e 153
D e l e t e C a s e s 225
d e l e t e Z e r o s 366
Denominator 14
D e n s i t y P l o t 130

options of 130
dependent variable 27
Depth 152
Derive xiv, 39
Dershowitz, N. 203
Det32
determinant 32
Diaconis, P 279
d i a g o n a l 432
Differentìable mappings xix, 469-484

chain rule 476
composition of 473
curves 483-484
damped harmonic motion 484
domain, rules, and codomain 471
examples 479-483

Mastering Mathematica

generic maps 482
identity maps 473
intentional equality of 472
minimal surfaces 496-508
phase portrait 483
plots of 477
predicate for 472
the tangent map 474-477
theoremT 476
type of 471

Differentìable surfaces 496-501
examples 501-508

c a t e n o i d 503
h e l i c o i d 503
Monge 507
no name 506
p l a n e 501
Sherk's first 504
Sherk's second 505
sphere 502
t o r u s 501

first fundamental form 498
Gaussian curvature 496
mean curvature 496

other formula 507
normal curvatures 496
normal vector field 499
principal curvatures 496
secondFundamentalForm 499
Differential equations 26, 87

Bernoulli 90, 92
Bessel 95
constant coefficients 89
exact equations 91
gravitational attraction 99
homogeneous 92
Laplace transforms 103
Legendre 96
non-linear first order 89
numerical solutions 28, 97-111
planetary orbit 99
Riccati 93
second order 94
series solutions 101
seven approaches 87

Differentiation 24,214,221,256
d i f f r 2 1 4 , 2 3 7
d i f f s 257
d i f fw256
D i g i t B l o c k 66
D i r e c t e d l n f i n i t y 147
D i r e c t o r y 165,273

Index

Disk 314
how to use with DOS xix
how to use with Mac xix
how to use with NeXT xx
how to use with Unix xx

d i s p l a y D e a l 601
D i s p l a y F u n c t i o n 123
d i s t i n c t O r b i t s 409
D i s t r i b u t e 164, 227
Dodecahedron 344
dom 471
domain 471
Dot 147
dot product 30
doubleEvenMagicSquare622
down values 199
DownValues 200, 375
Drop 153
DSolve 27
DSolve.m90
Dynamic Programming 233
dynamic scope 252
B i l l
EdgeForm 337
e d g e L i s t s 465

method 430,434
edgeListsFromAdjacencyMatrix 430
edgeLis t sFromOrderedPairs 434
e d g e s 429
eigenvalues 32, 33
Elec tronConf igura t ionFormat 56
E l i m i n a t e 111
empowerment xiv
empty 441
End 357
EndOf F i l e 269
EndPackage 358
E p i l o g 325
Equal 147, 217
Equations 15,17

algebraic 70-87
differential 87-111
impossible 18
logical combinations 84
matrix 81
simple examples of 19
simultaneous 79
transcendental 75

Euler angles 340
body coordinates versus space coordinates 340
effect on coordinate axes 340

EulerGamma 111

631

E v a l u a t e 29,378
Evaluation 373-380

as a function 373
depth first traversal 377
holding of 377
kinds of values 373
Literal versus RuleDelayed 379
normal order of 376-380
of conditions 379
ReleaseHold versus Evaluate 378

EvenQ 218
Exercises

3-dimensional points 307
add methods to point 307
algebraic equations 112, 527-531
algexpQ 236,277, 604-607
Broyden's method 394
compieteTheSquare114, 534
continued fractions 192,560-562
countTheCharacters 277, 607
d e a l 277, 593-604
differential equations 113,531
differentiation 237
digits in Pi 194,571
directed points 307
display of expressions 37, 512
eigenvalues and eigenvectors 38, 519
Exp[PiSqrt[163]]115,540
factor polynomials 36, 511
Fibonacci numbers 237, 577-590
f o l d 193,569
Fourier Series approximations 349
functional maxima 238,590
gcd Pascal's triangle 168, 547-549
Gram-Schmidt 168, 193, 235, 551-554, 562-568,
574-575
incidence matrices of graphs 464
infinite sums 278, 610
infinities 115, 541
integrals 37, 235, 511, 513, 573
integration over singularities 115, 542
jacobians 114,167,191,535-540, 545-547,555
lambda calculus using With 394
Laplace transforms 114
limits 38
local minima 394
logarithms 59
magic squares 279, 621
map and through 194, 572
mapVarsOnly 193, 569
Newton's method 191, 393, 556-559
Pascal's triangle 114, 533

632

Pascal's triangle odd and even 168
Pascal's triangle rotated 168,549
perfect shuffles 278, 612-616
plot of a conic section 37, 513
power 192
products of graphs 465
reflexive graphs 465
roots of complex numbers 38, 518
Simon questions 39, 524
Stolen Gold 278, 608-610
Stoutemyer experiments 39,115,523, 540
sums of squares 279,617-621
tensor products of graphs 465
the front end 60
three dimensional plots 59
transcendental equation 60
trigonometric identities 36
type 236, 576
VanDer Monde determinant 39,525

exp 391
Expand 11
ExpandAll 13
Exponent 15
Expression

recursive description of 144
expressions 11,143-154

applying functions to parts of 171
arguments of 144
as functions 176
atoms 143
depth of 152
display of large 150
forms of 47,146
heads of 144
internal form 146
levels of 152
manipulating arguments of 153
meaning of 145
parts of 148
paths of edges in 149
rational 12
replacing heads of 172
structure of 144
syntax of 144
threading over 161
tree structure of 149

f ac 45, 206
FaceForm 337
FaceGrids 133, 337
F a c t o r 12,13

Gaussian integers 68
modulo a prime number 85

Mastering Mathematica

f a c t o r i a l 221,232
Factorial function 221,223
factorialDyn233
factorialProc254
Factoring 7
factoring polynomials 12
F a c t o r l n t e g e r 7
f a l s e 390
Fibonacci numbers

calculation of 237, 577-590
comparison of methods 588
dynamic programming 237, 579
dynamic versus recursive 581
iteration 237, 582
matrix formula 238,587
numeric formula 238, 584
recursive definition 237,577
symbolic formula 237, 583

FileNames 165
Files

construction of 270
reading from 272, 332
writing to 272

findHamiltonianCycle 464
findIso459
find Isomorph ism 459,467
findPair 383
FindRoot 76,81
First 153
firstFundamentalForm 498
Fit 126
FixedPoint 179
FixedPointList 190
Flat 362
Flatten 30,159
FlattenAt 159
floating point arithmetic 62
floating point number 8
Floor 64
Fold 180,192
f o l d l e f 1193, 569
F o l d L i s t 180,193, 571
FontForm 121, 315
ForestGreen 311
Format 158

as a function 374
FormatValues 376
FortranForm 48
four 391
Fourier sine series 328
foursquares 619
fractionalize381

Index 633

Frame 120
FreeQ 220
f reeVars 389
f r e q u e n c i e s 188
front-end 41
FullForm 146

as a function 374
of complicated expressions 149

F u l l O p t i o n s 122
F u n c t i o n 148,174
Function Browser 53
Function definitions 45
functional programming xiv, xvi, 169-182

development of 186
evaluation history 170
higher order functions 169
lazy evaluation 170
polymorphism 282
referential transparency 170,242
simple examples of 183
the fundamental dictum of 182, 276
versus Pascal or C 183

Functions 145
anonymous 177
applying to values 171-172
conversion between forms of 178
critical points of 485-495
defining 173-178
definition using If 244
definition using patterns 200
folding of 180
gradient of 487
named pure functions 176
nameless pure functions 177
nesting of 179
pure 173-178
representation of 175

Galois 19
gameDeal603
Gaussian integer 9

prime 68
Gaussian Rationals 10
gauss ianCurvature 501
gcd 168, 547
ge399
generatedGroup 400
Geometric objects

circles and disks 314
Line 310
Point 310
Polygon 310

Geometry"CriticalPoints" 486

Geometry"DifferentiableMappings" 471
Geometry"MappingGraphics" 477
Geometry"MinimalSurfaces" 496
Geometry"Rotations" 340
Get 53,264
Global" 354
Glynn, Jerry 139
GoldenRatio 111, 118
goodPrimes 384
grad 487
grade school arithmetic 4

addition 4
division 5
exponentiation 6
multiplication 4
subtraction 4

gradientMapping 487
Graham, R. L. 279
Gram-Schmidt method 168,193

dependent vectors 235, 574-575
examples 367
optional arguments 365-370

gramSchmidt 367
graph 428,435,465
Graph algorithms 457-464

degree Sequence 458
f indHami l ton ianCyc le method 463
f indlsomorphism method 459
isomorphism testing 457
maximumClique method 461
maximumlndependentSet method 462
minimumVertexCover 462

Graph theory xix, 425-468
classes for 428

Graphics 20, 309
2-dimensional examples 330-335
3-dimensional objects in packages 339
3-dimensional primitives 336-339
adding built-ins to objects 326
adding primitives to built-ins 325
animation 137
arrays 327
bar charts 333
circles and disks 314
CMYKColor 321-324
color in 3-dimensional 347
combining 3-dimensional 348
combining built-in with primitives 325-327
combining types of 127
constructions using polyhedra 344-347
constructions using Shapes 343
ContourPlot 22,128

634

cube in a dodecahedron 346
cube in an octahedron 346
Cuboid 336
D e n s i t y P l o t 128
display of objects 310
geometric objects 309
GraphicsArray 20
Hue 317
ListContourPlot139
ListDensityPlot 139
ListPlot 124-127
ListPlot3D 139
modifiers 309, 316
objects 310
options 324
ParametricPlot 28,127
ParametricPlot3D 134
Plot 19,117-123
Plot3D 21,132
PlotStyle 325
PointParametricPlot3D139
PointSize versus AbsolutePointSize 317
PostScript 316
primitives xiii, 309-313
programming 309-349
Pro log and E p i l o g 325
R a s t e r and RasterArray 314
rectangles 329
RGBColor 318-321
routings 3
ShadowPlot3D 136
Show 20
S p h e r i c a l P l o t 3 D 1 3 6
suppressing display of 123
SurfaceOfRevo lu t ion 136
text 315
three dimensional 132-135
three-dimensional in packages 135
two-dimensional 119-131
two-dimensional in packages 130
two-dimensional objects 313
vibrating string 137

Graphics modifiers
CMYKColor 321
GrayLevel 310
Hue 317
PointSize 310
RGBColor 318
Thickness 310

Graph ics 3D 54, 336
GraphicsArray 21, 328
Graphics"Colors" 310

Mastering Mathematica

G r a p h i c s " I m p l i c i t P l o t " 18,513
Graphics "Master" 54,131
Graphics"Polyhedra" 54,344
Graphics"Shapes" 55,339
GraphQ 436,465

method 435
Graphs

adjacency matrices 426,427
adjacencyMatr ix method 436
as abstract objects 434
as classes 428
as relations 425
cartesian products 446
centerCircular Immersion method 437
circularlmmersion method 437
class hierarchy 426-445
complement method 451
cone method 452
coproducts 445
edge lists 426,427
e d g e L i s t s method 436
implementation 465
incidence matrix method 454
induced subgraph method 454
line graph method 455
numberOf Edges method 436
numberOfVertices method 436
ordered pairs 426,427
o r d e r e d P a i r s method 436
randomlmmersion method 436
s t a r 453
subclasses 427

a d j a c e n t s 429,430
edges 429, 431
ordereds 429,433

subsubclasses
balanced graphs 439
complete graphs 438
cyclic graphs 442
empty graphs 441
loops 441
partite graphs 442

tensor products 449
top class 435
wheel 453

gravitational attraction 99, 259
Gray, Eva Wirth xvii
Gray, Theodore xvii, 139
GrayLevel 121, 310, 313
Greater 193
GreaterEqual 147
GridLines 121, 337

Index

Groebner basis 80
GroebnerBas is 80
Groups (see Permutation groups)
hami l ton ianCyc leQ 463
harmonic motion 484
Head 144
headsl 245
Hearn, Anthony 195
HeatOfVapor izat ion 56
H e l i x 343
Help

front end 49
kernel 43

Help menu 49
Help Pointer 49
hess ian488 ,500
High School Algebra 10
Hilbert 39,524
Hilbert matrix 31
Histogram 269,275, 330

C versus Mathematica 276
in C 266
in Mathematica 269
one-liner 273
plots 330-333

h i s t o g r a m l 275
h i s t o G r a p h i c s 331
h i s t o G r a p h i c s l 331
h i s toGraphic sCount 332
h i s t o G r a p h i c s F i l e 332
h i s t o r y 57
Hoffman, David 496
HoldAl l 378
HoldForm 378
Hue 122, 311, 317
I 111
Icosahedron 344
I d e n t i t y 123
I d e n t i t y M a t r i x 32
I f 243,390
Im 111
immutableAccount 297
i m m u t a b l e l n t e r e s t A c c o u n t 299
Imperative programming xv

assignments 241
C versus Mathematica 271
commands 239
composition 242
conditionals 243
Do 248
examples 253-276
For 250

635

I f 243
incompatibility 242
modules 251
states 239
Swi tch 247
Which 245
While 249

Imperative programs
from Oh! Pascal!! 260
histogram in C 266
interest table in C 263

I m p l i c i t P l o t 18,131
i m p r o p e r l n t e g r a t e 1 8 1
i n c i d e n c e M a t r i x 455, 465
indefinite integral 24
independent variable 27
inducedSubgraph 454,467
I n f i n i t y

as levelspec 172
Inheritance 292,297
initial conditions 28
Inner 162
innerProduct 193, 365
inOrder 278,614
inOrderCalc 616
Input Form 48
I n s e r t 153
inShuf f l e278 ,613
I n S t r i n g 57
integer 143
I n t e g e r D i g i t s 1 9 2
IntegerQ 191, 218
Integers 10
I n t e g r a t e 24
integration 24

by substitution 515
i n t e n t i o n a l E q u a l Q 472
Interaction

front end 48
kernel 42
packages 53

Interest table
from file 264
functional versions 265
in C 263
in Mathematica 263

i n t e r e s t A c c o u n t 298
interpolating functions 28
interpolation formulas 19
I n t e r s e c t i o n 160
I n t e r v a l 160
i n t e r v a l U n i o n 231

636 Mastering Mathematica

I n v e r s e 32, 399
Inverse functions 76
InverseLaplaceTransform 104
inversemap 472
isomorphismQ 457
iszero 391
iterator 20,120,156
j a c o b i a n 114,189,474, 535, 545, 555
J o i n 153
Kantor, W. M. 279
Keiper, Jerry B. 70
kernel 41
Kinds of Buttons 3

arithmetic operations 3
calculus routines 3
graphics routines 3
linear algebra 3
solutions of equations 3
special functions 3

kronecker 447
k S u b s e t s 226
Kungmee Park xvi
1181
lambda 388
lambda calculus 169, 387-393

arithmetic in 390-393
call-by-value version 393
Church numerals 391
formatting Church numerals 392
rules for free variables 389
rules for let 388
simple examples 389

l a p l a c e 229
Laplace transforms 103

a single equation 104
examples 114
non-constant coefficients 105
rules for 229
systems 107

LaplaceTransf orm 103,352
Legendre 96,567, 575
Length 12,499
Less 193
LessEqual 147
l e t 181, 387
letrec 182
Leve l 152,186
levelspec 225
levelspecs 152,172
L i g h t i n g 337
L i g h t S o u r c e s 337
Limit 25

L i n e 309
Linear algebra 3
linear equations 10
L i n e a r S o l v e 111
l ineGraph 456,466
Lisp xv, 169,195
L i s t 146
Listability 155,161
L i s t a b l e 362
L i s t C o n t o u r P l o t 1 3 9
L i s t D e n s i t y P l o t 68,139,191
L i s t P l o t 124-127

options of 125
plotting data with 125

L i s t P l o t 3 D 139
Lists 29, 30,155-164

as arrays 158
as matrices 31
as sets 160
as vectors 30
construction of 29,156
flattening 159
listability 155
manipulating 224
multidimensional 157
operations on 157,162
threading over 161

L i t e r a l 200, 379
Local variables 251

names of 252
scope of 252

locaIMaxima 489
localMinima 489
Locked 364
l o g 46,214
Logarithms 214
LogicalExpand 102
Loops 240,441

Do 248
For 250
While 249

lowercase letter xvi
Macsyma 3xii, 9
Maeder, Roman xvii, 281, 539, 577
Magic squares

double even order 622
exercise 279, 621
odd order 621

magnitude 284
makeCartesian 283,287,291
makeCartesianRule 290, 292
makeColoredCartesian 292

Index

makePolar 283, 289
Manipulating expressions 11-15
Map 78,171,194, 572
MapAll 172
MapAt 172
mapGraphics 478
Maplndexed190
Maple xiv, 39
mappingQ 472
MapThread 190
mapVarsOnly 187,193,569
Mathematica Book, The xvii
MathSource 56
Matrices 31

as lists 31
characteristic polynomial 32
determinant 32
eigenvalues 33
h e s s i a n 4 8 6
Hilbert 39, 524
identity matrix 32
inverses 31
kronecker product of 446
negative definite 486
n e g a t i v e D e f i n i t e Q 488
positive definite 486
p o s i t i v e D e f i n i t e Q 488
p r i n c i p a l M i n o r s 488

Matrix multiplication 32
MatrixForm 31
Max 274
MaxBend 121
maxima 230,238,590

timing comparison 591
maxima fun 590
maximumClique 461,467
maximumlndependentSet 463
meanCurv 507
meanCurvature 501
Medvedoff, S. 279
MemberQ 219
Menu items

3-D View Point Selector 51
Action 49
Action Preferences 50
Animate Selected Graphics 50
Automatic grouping 50
Completion Selection 49
Connect Remote Kernel 49
Evaluate Initialization 57
Find 51
Find in Function Browser 49

Help 49
Help Pointer 49
Initialization Cell 57
Make Template 49
Nesting 50
Open Function Browser 49
Preferences 50
Prepare Input 49
Real-time scroll bar 50
Startup Preferences 50
Style 51

Messages 376
NIM 306
sent to objects 287
to points 287
with parameters 290

Methods 288
overriding 304

Meyer, B 282
Miller, Lawrence H. 266
Min 274
Minimal surfaces 496-508

definition 497
implementation 508
least area 496

minimumVertexCover 462
M i s c e l l a n e o u s Audio^ 139
M i s c e l l a n e o u s Master^ 55
M i s c e l l a n e o u s Music^ 139
Mitchell, John 470
ML 393
Module 251
Modules 241, 251

local variables 251
reasons to use 251
versus blocks 252
versus With 253
when to use 251

Modulus 85
Morrison, K. 279
Mouse operations 52
mult 391
m u l t i p l e P r o j e c t i o n 366
m u l t i P r o j e c t i o n 563, 574
Music 56
N8

inverses to 64
N Functions 69
Names 353

expressions 12
N c r i t i c a l P o i n t s 489
ND69

638 Mastering Mathematica

NDSolve 28, 69, 97
checking solutions of 98

n e c k l a c e s 412
Needs 18, 53
N e g a t i v e 217
n e g a t i v e D e f i n i t e Q 488
Nest 179
N e s t L i s t , 179
new 293
newton 189,190,192,557,558
Newton's method 370

for finding critical points 394
one variable 188
several variables 189, 393

newtonLis t 192, 557
newtonPic ture 192, 557
newtonRoot 191
newtonsMethod 370
MM 435
N I n t e g r a t e 25, 69
NLimit 69
NlocalMaxima 489
NlocalMinima 489
Normal 102
normal form 196
normal i ze 193, 365, 565, 574
normal ized 366
normalVec torF ie ld 499
Not 84
Notebooks 41, 48
N o t h e r C r i t i c a l P o i n t s 489
n o z e r o s 574
NProduct 69
NRoots 69
N s a d d l e P o i n t s 489
NSolve 33, 69
NSum 69
number 143
Number types 10
NumberForm 66, 111
numberlikeExpr 392
numberOf Edges 436,465
numberOfVertices 436,465
NumberQ 218
Numbers

accuracy 61
AccuracyGoal 70
C e i l i n g 65
complex 9
convert between bases 67
different bases 67
F l o o r 65

fractions 4
integers 4, 7
precision 61
P r e c i s i o n G o a l 70
R a t i o n a l i z e 65
rationals 4
real 8
Round 65
specified precision 62
workingPrecision 70

NumberSeparator 66
Numerator 14
NumericalMatlT NLimit" 69
NValues 376
O'Neill, B. 496
Object 294
Object-oriented programming xv

care in writing methods 301
classes 290, 293
data hierarchies 282
functions versus data 282
graph theory 426-468
immutable objects 296
in Mathematica 293
inheritance 292, 297
isomorphism of objects 305
methods 288
objects and messages 287
overriding methods 304
simple examples of 295
uses of 281

Objects
accounts 295
cartesian points 287
isomorphism testing 305
response to messages 287

Octahedron 344
octahedronGenerator 403
octahedronGroup 403, 423
oddMagicSquare 621
OddQ 218
one 390
one-liners xv, 182
oneEach 405
O n e l d e n t i t y 362
oneMinor488
oneNewtonStep 189,190
oneRungeKuttaStep 257
Open Function Browser 49
OpenAppend 273
OpenRead 269, 272
OpenWrite 272

Index 639

Operator 145
optional arguments 117, 365, 373

Gram-Schmidt method 365
meaning of 119
Newton's method 370
solids of revolution 371

optional arguments. 23
Opt ions 118
Or, 84
o r b i t 407
order of evaluation 170
orderedPairs 465
method 431, 432

orderedPairsFromAdjacencyMatrix 431
orderedPairsFromEdgeLists432
OrderedQ 219
Orderless 362
Orthogonalize 193, 564, 574
orthoNormalQ 565
otherCriticalPoints 489
Out 148
Outer 157,163
outOrder 278, 614
outOrderCalc 616
OutputForm 271
outShuf f le 278, 613
OwnValues 375
Packages 42, 53, 351-361, 371

alternative form of 361
BeginPackage statement 359
Calculus"LaplaceTransform" 352
C l a s s e s 293
contexts in 352
C r i t i c a l P o i n t s . m 486
D i f f e r e n t i a b l e M a p p i n g s . m 469
features of 359
Geometry"Rotat ions" 340
Graphics"Colors" 310
Graphics"Geometry"54
Graphics"Graphics"54
Graphics"Master" 54
Graphics"Polyhedra" 54,344
Graphics"Shapes" 55,339
how to make new 357
MappingGraphics.m 469
Minimalsurfaces.m 496
Miscellaneous"Audio" 139
Miscellaneous"ChemicalElements" 56
Miscellaneous"Music" 56,139
Miscellaneous"PhysicalConstants" 56
Mixcellaneous"Master" 55
PolyaPatternAnalysis.m424

private contexts 358, 361
Statistics"ContinuousDistributions
" 334
usage messages 360

pad 410
PaddedForm 265
padGraphics 413
p a i r 382
P a r a m e t r i c P l o t 29,127
Parametr icPlot3D 134
Part 147
partial fractions decomposition 13
p a r t i t e 443
p a r t i t e I m m e r s i o n 443
P a r t i t i o n 154
p a r t i t i o n s 404
partspecs 149
Pascal xv, 168,169,260, 547
Pascal's triangle 168
p a s c a l T r i a n g l e 114, 534
pasca lTr iang leRow 114, 533
P a t t e r n 148,207
pat ternArray 410
Patterns 207-213

compound 212
discussion 231
examples in global rules 213
examples in local rules 215
for function definition 200
invariance under group actions 397
left hand sides as 197
repeated 213
restricting compound 224
using in rules 213
x_ as pattern named x 200
_ as wild card 200

Paulson, L. C. 393
Perfect shuffles

exercise 278, 612-616
Permutation group actions 403-411

orbits 407
Permutation groups 398-403

checking 400
composition in 399
generation of 400
identity element 399
inverse operation 399
octahedron edge group 403
rotation group 400
tetrahedron edge group 401

Permutat ions 30
cycle representation of 417

640 Mastering Mathematica

Phase curve 483
p h a s e P l o t 1 9 1
P h y s i c a l C o n s t a n t s 56
P i l l i

approximations to 64, 65
six successive 9's in 194, 571

p i c t u r e A r r a y 411
planetary orbit 99
Plato 119
Play 138
P l o t 19,117,119

attributes of 43
options of 43,117
using options of 120

Plot3D 132
options of 132

P l o t D i v i s i o n 1 2 1
P l o t J o i n e d 125
P l o t L a b e l 120,121
P l o t P o i n t s 121,129
PlotRange 121
P l o t S t y l e 325
plotting data 125
Plus 146
p o i n t 302, 309
PointParametr icP lo t3D139
Points

addition of 284
as active objects 287
as classes 302
cartesian 283
cartesian points 302
colored cartesian 304
implementation 307
polar 283, 302
translation and rotation 286
via dispatch tables 283
via rewrite rules 285
via transformations 285

P o i n t S i z e 124, 310, 317
p o l a r 283
polarAngle284
polarCoords 286
polarFromCartes ian 285
P o l a r P l o t 131
p o l a r P o i n t 303
p o l y 191
Polya pattern analysis 397-423

algebraic approach 416-423
all patterns 405
Burnside number 423
cycle index 417-420

display of patterns 406-409
geometric approach 403-416
pattern inventory 420
patternArray 410
picture array 411
Polya's Pattern Inventory [Polya] xvi

p o l y a C o e f f i c i e n t s 421
p o l y a P a t t e r n l n v e n t o r y 420
p o l y a P i c t u r e s 413,415
Polygon 309
P o l y g o n l n t e r s e c t i o n s 337
Polyhedron 344
PolynomialQ 219
P o s i t i o n 186
positionlist 172
P o s i t i v e 154, 217
p o s i t i v e D e f i n i t e Q 488
P o s t S c r i p t 316
Power 146,192
PowerExpand 12, 78
precedence 5
p r e c i s i o n 61, 370

fixed 66
P r e c i s i o n G o a l 70
Predicates

as types 217
examples of 217
examples of use 220
restricting pattern matching with 216
restricting rule application 221

Prepend 154
PrependTo 154
Prime 85, 383
PrimeQ 7, 68, 218
p r i n c i p a l M i n o r s 488
Procedural programs

continued fractions 254
differentiation 256
factorial function 253
Runge-Kutta 257

Programming
recursive 46

Programming in C 266
programming languages xiii

types in 145
Programming methodologies xv

functional programming xv, 169-182
imperative programming xv, 239-253
large programs 195
object-oriented programming xv, 281-301
rule-based programming xv, 195-213

p r o j e c t i o n 366, 563, 574

Index

Pro log 326
P r o t e c t 199
P r o t e c t e d 198
PSPrint 36
Pure functions 173-178

anonymous 177
derivative of 175
named 176
nameless 177
solutions of differential equations 88

Put 264
quadratic equations 10
quadratic formula 16
Quilici, Alexander E. 266
quotient of polynomials 12
Random 36

with distribution 335
randomlmmersion 436, 466
Range 30,157
Raster 314
RasterArray 314
R a t i o n a l 146
rational expression 12
R a t i o n a l i z e 65, 381
Rationals 10
Re 111
Read 269, 272
Real Intervals 160
real number 143
Reals 10
R e c t a n g l e 329
recursion

general recursive functions 380
tail 181
unbounded search 380

Recursive functions 45, 232
examples 381-384
expressions for primes 382
general 380
withRec as letrec 384

Recursive programming 46
Red 311
Reduce xiv, 83,196
ReleaseHold 233,378
Remove 352
Render A l l 337
R e p l a c e A l l 15, 71,147,176, 205
replacement rule 15
ReplacePart 153
ReplaceRepeated 205
Rest 153
Reverse 153

r e v e r s e i n t e g e r 191
rewrite rules 46
RGBColor 128, 318

as transmitted light 319
intensities in 318
interior of cube of 320
range of values 319

Riccati equation 93
r o o t P l o t 191
Roots 70
roots of unity 519
r o t a t e 286
R o t a t e L e f t 1 5 3
RotateRight 153
RotateShape 339, 340
r o t a t i o n G e n e r a t o r 401
rotat ionGroup 401, 413, 421
Rotat ionMatrix3D 340
Rotman, Joseph J. 417
Round 36, 64
round brackets 12
Rule 147, 205, 379
rule-based programming xiii, xiv, 195-213

-> rules 203
:= rules 201
: > rules 204
= rules 197
= versus := 201
global rules 197-203
left hand sides as patterns 197
local rules 203-207
recursive application of rules 205
summary 207
time of evaluation 197, 201, 204

RuleDelayed 205, 379
r u l e s 70,196,471

confluence 203
double and triple underscore 209
examples of restricted 226, 231
global 197
length dependent 215
local 203, 330
named underscore 208
order of use 202, 206, 248
patterns in 213
restricted global 226
restricted local 230
restricting application with predicates 221
underscore 208
underscore with head 209

Run 165
runEncode 216

642 Mastering Mathematica

Runge-Kutta methods 257
gravitational attraction 259
Van der Pols equation 258

rungeKutta 258
s a d d l e P o i n t s 4 8 9
SameTest 190, 370
Save 58
Saving work

kernels 57
notebooks 57

scalars 30
Scan 225
scientific notation 8
secondFundamentalForm500
S e l e c t 154,186,224
Sequence 190
SequenceForm392
S e r i e s 25
Series solutions 101
S e r i e s D a t a 101
S e t 147,199
S e t A t t r i b u t e s 362
SetDe layed 147,176, 202
Sets 160

operations on 160
subsets 226

ShadowPlot3D 136
Shal low 150
shape 137
s h e l l P l o t 371
Short 150
Show 20,127, 309

kinds of arguments 327
side effects 20,170,241, 242,248,250,254
Simon, Barry 39
simplify 14
Simultaneous equations 17, 79
Sin 19
S l U n i t s 55
Skeel, Robert D. 70
Skiena, Steven xvi, 426
S l o t 148
Smalltalk 281
Solids of revolution

optional arguments 371
Solutions of differential equations

a planatary order 99
arbitrary constants 87
Bernoulli's equation 92
Bessel's equation 95
checking 88
DSolve 87

DSolve.m 90-96
exact 91
exact second order 94
examples 113, 531
first order 90
generalized homogeneous equations 92
gravitational attraction 99
implicit solutions 91
Laplace transforms 103-111
Legendre equation 96
linear first order 87
NDSolve 97-100
non-linear first order 89
N [D S o l v e []] 97
pure functions 88
pure functions - body& 91
Riccati equation 93
second order linear constant coefficient 94
series solutions 101
seven approaches 87
unsolvable equations 96
variation of parameters 95

Solutions of equations 3
complete solutions 83
elimination of variables 84
exact solution not found 77
extraneous solutions 78
funny equation 77
Groebner bases 79
logical combinations 84
matrix equations 81
modula a prime number 85
one variable 70-75
simultaneous equations 79-81
transcendental 75-76

S o l v e 15
Solving Equations 15-19
Sound 138
Special functions 3
S p h e r i c a l P l o t 3 D 136
Spher ica lReg ion337
Sqrt 8
s t a r 453
static scope 252
S t a t i s t i c s C o n t i n u o u s D i s t r i b u t i o n s ^

334
Stolen Gold

exercise 278, 608-610
in Pascal 260
Mathematica version 260
one-liner 261
simplest version 262

Index

Stoutemyer, David 39,115
s t r i n g 137
Str ingDrop 166
S t r i n g l n s e r t 1 6 6
S t r i n g J o i n 1 6 6
Str ingLength167
S t r i n g R e p l a c e 1 6 6
S t r i n g R e v e r s e 1 6 6
strings 143

operations on 165
Str ingTake166
Struik, D. 496
Stub 131, 364
Styles

Alignment 51
Face 51
Font 51
Leading 51
Page Breaks 51
Size 51

S u b s c r i p t e d 158
s u b s e t s 227
s u b s e t s l 228
s u b s e t s l l 235
s u b s e t s 2 228
s u b s e t s 2 2 235
s u b s e t s F u n c t i o n a l 228
Substitution 181

commuting with simplification 39, 523
in equation 71
in expressions 176
in pure functions 385
recursive 384
simultaneous 206
using With 181
With versus / . 385

SubValues 375
succ 391
suffix 31
sumOfFoursquares 617
sumOfThreeSquares 617
sumOfTwoSquares 617
Sums of squares

all representations 618
distinct values 620
exercise 279, 617-621
no distinct representations 620
one representation 617

s u r f a c e 497
Surf aceCo lor 337, 347
SurfaceGraphic s22
SurfaceOfRevo lu t ion 136

Sussman, Gerald Jay 169
Substitution

and the lambda calculus 385-393
symbolic computation programs 10

Axiom xiv
Derive xiv
Macsyms xiv
Maple xiv
Reduce xiv

symbolic constants 10
symbolic manipulation 11
symbols

as atoms 143
down values 199
in contexts 355
upvalues 199

Table 29,156
TableForm 29
TableHeadings 85, 265
TableSpacing 85, 265
Take 153
Tan 19
tangentMapping 475
Tangents
chain rule 476
tangentMapping 475
tangentSpace 474
tangentVectorFields 475

tangentSpace 474
tangentVectorFields 476
Temporary 364
tensorProduct 449
of graphs 449

tetrahedra 415
Tetrahedron 344,402
tetrahedronGenerator 402
tetrahedronGroup 402,415,422
TeXForm 48
Text 315
theoreml 477
theoremT 476
Thickness 121, 310
ThomsonCrossSection 56
Thread 161
three 391
threeSquares 619
Through 173,194, 572
Ticks 121
Times 146
ToCharacterCode 193
ToCycle 277
toCycles 418

644 Mastering Mathematica

ToExpression 58, 111
Together 13
ToRules 70
ToString 111, 193
Trace 46
translate 286, 291
TranslateShape 339
Transpose 38,163
TreeForm 149
Trig 23
trigonometric functions 19
trigonometric identities 22, 36
Trigonometry 10,19
True 23, 390
Tucker, Alan 417
two 390
t w o O r b i t S o l u t i o n 259
twoOrbitSystem 259
twoSquares619
Type 145,148, 236,576, 577
Types

as heads 145,148
as predicates 217
of functions 470

Union 111, 160,188
unitNormal 499
U n i t s 55
u n i t V e c t o r s 476
Unprotec t 199
up values 199
UpSet 199
Upvalues 200, 375
U t i l i t i e s " F i l t e r O p t i o n s " 3 7 1
Values

kinds of 373-376
Van Der Monde determinant 40
Van Der Monde matrix 39, 525
Van der Pols equation 258
vanDerMonde 525
variables 10

elimination of 84
indexed 82

VectorQ 219
Vectors 30

as lists 30
orthogonalization of 168,551-554

ViewCenter 337
Viewpoint 338
ViewVert i ca l337
Virtual Operating System 165
warning message 28
Wei 39
wheel 453
Which 245
while-programs 239

arithmetic terms 240
begin-end 240
commands 240
if B then C else C 240
predicates 240
simple example of 241
while B do C 240
x = A 240

wild card 44
WireFrame 346
With 181, 253, 386
Wolfram, Stephan xvii
WorkingPrec i s ion 70
Write 272
x -> n 15
xCoord 284
yCoord 284
zero 390
[] 48
[[]] 48
[[1]] 3 3
_200
_.211
{ } 48
I I 8 4

