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There are three distinct levels of competence that are relevant to the use of Mathematica, all of 
which are addressed in this book. They provide the headings for its three main divisions: 

Mathematica as a Symbolic Pocket Calculator 
Mathematica as a Programming Language 
Knowledge Representation in Mathematica. 

Much of this material grew out of a course in mathematical software that has been taught at 
the University of Illinois at Urbana-Champaign almost every semester since 1987. It is now 
being presented in a form that is accessible to anyone interested in programming in 
Mathematica. The course itself was intended for upper division and graduate students in 
mathematics, mathematics education, engineering and the sciences, and its purpose was to 
teach students how to do their own mathematics using symbolic computation programs. The 
emphasis then and now is on how to take known, but rather vaguely described, mathematical 
results and turn them into precise algorithmic procedures that can be executed by a computer. 
In this way, the range of known examples of a given procedure is extended and insight is 
provided into more complex situations than can be investigated by hand. There is a vast 
difference between "understanding" some mathematical theory and actually implementing it 
in executable form. Our main goal is to provide tools and concepts to overcome this gap. 
Naturally, there is nothing new about finding computer implementations of mathematical 
theories and efforts in this direction have been going on for 30 years. What is new is that 
Mathematica makes it possible for "ordinary" people, who are not computer professionals, to 
join in these efforts on an equal basis. There are innumerable opportunities in our highly 
technological society for such developments, ranging from theoretical mathematical questions 
in group theory or graph theory, through optimization routines in econometrics to intensely 
practical questions such as predicting results in tournaments or calculating docking orbits for 
satellites. Perhaps the most important contribution of Mathematica, particularly in its notebook 
interface versions, is the way in which it has empowered mathematicians, engineers, scientists, 
teachers, and students to take advantage of these opportunities. 
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"Empowered" is the key word here, for there are a number of other symbolic computation 
programs, most notably Macsyma, Reduce, Derive, Maple, and Axiom. The main difference 
between these programs and Mathematica lies in their archaic approach to programming. Their 
languages are Pascal-like; i.e. imperative languages based on the language of while-programs. 
For many people, programming in such a language is drudgery. Everything is broken down 
into such tiny steps and the built-in facilities are so meager that there seems to be no place to 
exercise insight and ingenuity. Mathematica, on the other hand, supports four distinct styles of 
programming, functional programming, rule-based programming, imperative programming, 
and object-oriented programming, and its built-in facilities are so incredibly rich that nearly 
any algorithmic, mathematical thought has an almost direct expression in it. There is another 
seemingly small difference which is actually an important aspect of empowerment. The 
"arcane" knowledge possessed by professional programmers frequently consists in knowing 
what key strokes will accomplish their desired end; i.e., which abbreviations or acronyms or 
whimsical terms will cause the computer to do what is desired. Symbolic computation 
programs are large and have many built-in commands - in the current version of Mathematica 
there are over 1100 names. It would be very difficult to try to remember that many 
abbreviations. It would even be very difficult to find them in a manual if they were 
alphabetized as abbreviated, as they are in Macsyma and Maple. Instead, Mathematica writes 
out almost all terms in full, and this makes a tremendous difference in ease of learning to use 
the language. Finally, the notebook interface is an order of magnitude improvement over any 
of the previous ways in interacting with a symbolic computation program. It is the thing that 
empowers people to produce documents containing embedded active mathematics in a very 
simple way. This entire book was originally a collection of notebooks. 

The first part of the book is concerned with Mathematical use as a symbolic pocket 
calculator and requires almost no mathematical sophistication, except in certain sections (for 
instance the one on differential equations). Essentially, "buttons" are pushed to see what 
happens. The second part treats programming in Mathematica. In these first two parts, there is a 
practice section and a section of exercises at the end of almost every chapter. The practice 
sections address the question "What should I do first?" Faced with a new program, how do you 
get it to do anything? Here, just try out what's in the practice sections. The exercises are 
extremely important. It is only after trying to do something yourself that you are motivated to 
learn the various ways that it can be done. Answers to selected exercises are given, sometimes 
in great detail, at the end of the book. A number of exercises are repeated from chapter to 
chapter, each time asking for a more sophisticated answer. Similarly, answers may be given in 
several forms, starting with crude programs that just barely work and leading to elegant, brief 
programs that display their outputs in graphical form. Once button pushing and programming 
have been mastered, the problem then is to use this knowledge to develop some part of 
mathematics in detail. The third part of the book is devoted to examples of how to do this. 

Considering the contents in more detail, Part I is devoted to using Mathematica as a symbolic 
pocket calculator. Chapter 1 does just this. Chapter 2 investigates the three ways of interacting 
with Mathematica, and Chapter 3 looks in more detail at numerical calculations and solving 
equations. Both algebraic and differential equations are considered here, and a whole mini-
course in differential equations is included, mostly in exercises, because experience has shown 



Preface XV 

that this very dramatically demonstrates how much can be done by such a symbolic program. 
Chapter 4 is concerned with built-in graphics; i.e., how to make pictures without 
programming. If all you want is a simple picture with a certain amount of customizing, this 
chapter shows you how to make it. 

In Part II, we turn to the real concern of the book, which is using Mathematica to program 
mathematics. Chapter 5 discusses the Mathematica language, and then we see in Chapters 6, 7, 
8, and 9 that Mathematica is capable of four styles of programming: functional programming, 
rewrite programming, imperative programming, and object oriented programming. 

i) The functional aspects of the language are explained in Chapter 6, with functional 
programming itself, via "one-liners" as the main topic. Lisp is a typical functional 
programming language, but the actual functionality available to the Mathematica 
programmer is many times that to be found in Lisp, thanks to the very many built-in 
functions that are immediately usable. 

ii) Rule-based programming is studied in Chapter 7. Mathematica actually works by 
systems of rewrite rules and the Mathematica programmer can freely create and use his 
or her own systems of rules. This distinguishes it from traditional programming 
languages, which normally have no such features. 

iii) Imperative programming is treated in Chapter 8, where we present several examples 
of imperative programs from Pascal and C and show how to translate them into 
Mathematica programs. This is an important skill since many thousands of such 
programs have been published and they serve as a source for precise statements of 
algorithms. In our examples, there is first a direct translation of the program into 
Mathematica, and then a translation of the purpose, rather than the form, of the 
program into a style that expresses its mathematical content in a much more direct and 
"mathematical" form. The possibility of writing such programs is one of the things that 
makes Mathematica such an attractive language. 

iv) Chapter 9 turns to the topic of object-oriented programming. Mathematica is able to 
shed a piercing ray of light onto this most confusing of all programming 
methodologies for several reasons: first, because the objective extension of 
Mathematica is written in top-level code and hence can be examined to see how it 
works. We do not actually carry out this examination in detail, but just show, through 
carefully chosen examples, how it is possible to create active data objects that know 
how to respond to messages. Second, Mathematica is interactive, so classes and objects 
are immediately available for experimentation, without any intervening linking and 
compilation steps. Third, the entire Mathematica language can be used to write 
methods and interact with objects. For all of these reasons, Mathematica will surely 
become the prototyping tool par excellence for object-oriented programming. 

Chapter 10 is concerned with graphics primitives; i.e., how to make pictures with 
programming. If you want a fully customized picture in which you control all elements of the 
final result, this chapter shows how to do it. Finally, Chapter 11 studies the language from a 
more technical point of view. Packages, which are a technique for, so to speak, engraving a 
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body of code in stone, are treated here. They are the appropriate mechanism for adding 
functionality to Mathematica. No program can possibly contain all of the mathematical 
procedures that a mathematician, scientist, engineer, economist, etc. could want. It is very easy 
to extend Mathematica for one's own use, but if you want to supply new functions for others to 
use, then common courtesy and concern for others demands that the code for these functions 
should be carefully organized and protected from accidentally interfering with or being 
interfered with by other code. Packages are exactly the mechanism for doing this. Several more 
technical questions involved with evaluation of expressions and the process of substitution are 
also treated here. Along the way we provide a simple implementation of the lambda calculus-
an abstract, theoretical, functional programming language. 

The point of becoming fairly fluent in writing short programs is to be able to then use this 
facility in developing your own mathematics. Part III consists of some topics that have 
interested me, often because of student interest. Chapter 12 on Polya's Pattern Inventory 
[Polya] began with a student project by Kungmee Park. Chapter 13 was inspired by material 
from an early version of Skiena's book on Discrete Mathematics [Skiena]. Graph theory is such 
an obvious topic for computer implementation that one has to be careful not to get carried 
away with seeing how one's own particular concerns manifest themselves there. Chapter 14, 
concerning differentiable mappings, builds on a problem set that comes earlier in the book. A 
direct attack on this problem set usually results in confusion, as the answers show. Once 
everything is treated from a more abstract and systematic point of view, the calculations 
become clear. Chapter 15 extends the treatment of differentiable mappings to consider the 
analysis of critical points of functions and the developments in differential geometry that are 
required to study minimal surfaces. 

One brief comment on the notation used here. Built-in Mathematica operations all begin with 
capital letters. Everything that is defined in this book starts with a lower case letter, so there 
should never be any question whether some operation is built-in or user defined. (I strongly 
support the suggestion that only employees of Wolfram Research, Inc. are allowed to define 
operations starting with capital letters, and in the finest Quaker tradition, I even have my 
doubts about some of them.) Inputs and outputs are shown as they appear in Notebook 
implementations on machines where bold face fonts are available. Thus, a typical interaction 
looks like: 

Expand[(1 + *)Λ6] 

1 + 6 x + 15 x2 + 20 x3 + 15 x4 + 6 x5 + x6 

If the input and output are short enough, they will sometimes be put on a single line separated 
by =>, which can be read as "evaluates to." 

Expand!(1 + x)A3] => l + 3 x + 3 x 2 + x 3 
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Outputs are frequently edited to make them look nicer on the page, but their content has not 
been altered. The standard reference for everything concerning Mathematica is Mathematica: A 
System for Doing Mathematics by Computer, by Stephen Wolfram, Addison-Wesley, second 
edition 1991 [Wolfram]. It will be referred to as "The Mathematica Book" here. 

As mentioned above, the kind of material in this book has been taught at the UIUC nearly 
every semester since 1987. Furthermore, it has been the subject of three week-long summer 
workshops during the summers of 1991-93 sponsored by the Office of Continuing Engineering 
Education of the UIUC under its Illinois Software Summer School program. The students in 
these courses have contributed a great deal to the final form of this book, both locally and 
globally. Locally, they have frequently come up with better ways to do something than 
anything I could think of, and globally they have kept the entire organization of the book in 
flux, finding out what works educationally and what doesn't. Anybody concerned with 
elementary aspects of Mathematica is bound to be influenced by Nancy Blachman's book 
[Blachman] and anybody concerned with more advanced aspects will be equally influenced by 
Roman Maeder's book [Maeder 1], I owe Roman especial thanks for everything he taught me 
about symbolic programs. Finally, I thank my son, Theodore Gray, for his patience and 
constant help and advice in dealing with all aspects of Mathematica and my wife, Eva Wirth 
Gray, for carefully proof reading and improving much of the book. 



How to Use the Disk 

The disk accompanying this book is a 1.4MB high density disk formatted for MS-DOS 
computers, which can also be used by Macintosh computers. (See the directions below.) It 
contains all of the Mathematica input statements in the book as well as all of the packages that 
are developed here. The inputs are contained in Mathematica Notebooks, organized by chapter 
and section exactly as they appear in the book. Thus, the material on the disk can be used with 
the Windows version, the Macintosh version, the NeXT version, or a Unix version of 
Mathematica. There are seven packages organized as follows: 

Classes.m 
GraphTh.m 
PolynPat.m 
Geometry - CrPoints.m, DiffMaps.m, MapGr.m. MinSurf.m 

Directions for using this material will be found at appropriate places in the text. If you place all 
of these packages in the Packages Directory that comes with your copy of Mathematica, then 
they will be found immediately when it is time to load them. 

Specific computer directions 

How to use this disk with a MS-DOS computer. 

The disk is a normal MS-DOS disk. Copy its files as usual to a suitable directory. The packages 
come in two forms, one with a .ma extension that can be opened by Mathematica and directly 
evaluated. The package mechanism is disabled in these files. In the other form, the files have a 
.m extension and can be loaded as described in the book. 

xix 
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How to use this disk with a Macintosh 
computer running System 7.0 or higher. 

It is necessary to use the program Apple File Exchange to convert the MS-DOS files to 
Macintosh format. This program is supplied on the system software disks for System 7.0 or 
higher and can probably be found in the Utilities directory on your hard disk. It is very easy to 
use. The following directions are modified from those given in the Macintosh's Users Guide. 

1. Find Apple File Exchange and open it. 
2. Insert the disk that accompanies this book in a high density disk drive. 
3. Use the Open, Drive, and Eject buttons to display the files on this disk and the disk or 

folder where you want to store the translated files, preferably the Packages folder in 
the Mathematica folder on your hard disk. 

4. Shift-Click on the names of all of the files to be translated. 
5. Pull down the menu MS-DOS to Mac and select Text translation.... Click OK in the 

dialogue box that appears. 
6. Click the Translate button in the main dialogue box. 
7. When all translations are finished, choose Quit from the File menu. 
8. Because of a bug somewhere, the last cell in the package files has extra symbols *, (, 

and ). Edit these out to make sure the files work correctly. 

Note that some of the files end in .ma since that is the default form for MS-DOS and NeXT 
Mathematica files. This has no effect on the Macintosh files. Further details can be found in the 
Macintosh's Users Guide. 

How to use this disk with a NeXT computer. 

Insert the disk in the disk drive. Drag the files to the hard disk as usual. See the remarks for 
MS-DOS computers and point 8 for Macintosh computers. 

How to use this disk with a Unix computer. 

Most Unix systems, such as Sun Sparc stations can read MS-DOS disks directly if they have the 
appropriate software. Otherwise, it is necessary to use one of the machines described above to 
communicate with the Unix computer's network. Notebooks are pure text files and can easily 
be sent over a modem or by ftp to the desired destination machine. As long as your machine is 
running a notebook front-end, it will use these files exactly as described here. 



CHAPTER 

A Quick Trip Through 
Elementary Mathematics 

Anything you can do I can do better. 

1 Opening Remarks 
^^m^^m^m^M^m^^^^^^m^-^^^^ttxm^^. 

On the simplest level, Mathematica is just a glorified pocket calculator, with over 1100 "buttons" 
to "push". We will begin our study of the language by looking at just this aspect of it. There are 
all kinds of different buttons: 

Kinds of Buttons 

Arithmetic operations 

Special functions 

Algebraic manipulations 

Calculus routines 

Solutions of equations 

Linear algebra 

Graphics routines 

Examples 

+ - * / A 

Sin, Cos, BesselJ , etc. 

Expand, Factor, etc. 

D, Integrate , Limit, S e r i e s , etc. 

Solve, NSolve, DSolve, etc. 

Det, Eigensystem, etc. 

P l o t , Plot3D, L i s t P l o t , etc. 

The first chapter provides an introduction to this very rich world by examining various parts 
of mathematics in the order in which they are usually introduced in school, starting from 
grade school arithmetic and running through advanced mathematics. 

3 
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2 Grade School Arithmetic 
By grade school arithmetic, we mean the study of numbers: integers, fractions, decimals and 
for completeness, complex numbers, but no symbols. Naturally, Mathematica has very refined 
facilities for treating all kinds of numbers in a precise and flexible way. 

2.1 Basic Operations 
When you first begin a Mathematica session, start out with some ridiculously simple calculation 
to check that the program is working, and to load the kernel if you are working in an interface 
mode. E.g., 

2 + 2 => 4 

(For short inputs and outputs, we have edited the Mathematica session to show both on the 
same line with the output preceded by an arrow, =>. Normally Mathematica displays them on 
separate lines.) Observe that input to Mathematica is shown here in a bold face, equispaced 
font (Courier bold) and output is shown in a plain, equispaced font (Courier plain). We 
consider grade school arithmetic to consist of addition, subtraction, multiplication, division, 
and exponentiation by integers. Mathematica can of course deal with bigger numbers than one 
usually works w ith by hand, so our examples will be correspondingly bigger than those you 
worked in the third grade. Let us try adding two 32 digit numbers. 

91725844291614132857617492488779 + 
11773984116181554151698259468319 

103499828407795687009315751957098 

The answer comes back almost immediately, provided the kernel has been loaded with the 
preceding simple example. This addition could be carried out by hand with a certain amount 
of diligence, but probably a mistake would be made somewhere in the middle, which would 
then be difficult to find. 

To make the problem a bit more challenging, insert minus signs in the middle of each of the 
summands, so that both addition and subtraction are involved. 

9172584429161413 - 2857617492488779 + 
1177398411618155 - 4151698259468319 

3340667088822470 
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This can still be checked by hand but the chances of error have gone up even more. To make 
the problem considerably more interesting, insert multiplication signs, indicated by spaces (or 
if desired by stars "*"), in the middle of each of the preceding numbers. 

91725844 29161413 - 28576174 92488779 + 
11773984 11618155 - 41516982 59468319 

-2300273380507712 

Note that multiplication takes precedence over addition and subtraction; i.e., it is carried out 
first. It would take a great deal of time and diligence to check this computation by hand. There 
would be 256 multiplications of 8 digit numbers by single numbers, 4 additions of 8 rows of 
shifted 8 digit numbers, two more additions of 16 digit numbers to combine the positive and 
negative parts, and one subtraction. Alternatively, one can see that the first two products more 
or less cancel each other and that the fourth product is bigger than the third, so it is at least 
correct that the answer is negative. 

Now create an almost impossible problem by inserting division signs, indicated by "/", in 
the middle of each of the preceding numbers. 

9172/5844 2916/1413 - 2857/6174 9248/8779 + 
1177/3984 1161/8155 - 4151/6982 5946/8319 

73505399860627799093943317 

31033732398009095133051120 

The answer still comes back almost instantaneously, but it is now a very large fraction. Note 
again that division takes precedence over multiplication, addition, and subtraction. Scarcely 
anybody would have the patience to try to do this calculation by hand and the chance of 
getting the correct answer must be close to 0. 

Finally, insert exponent signs, indicated by A (i.e., 2 A3 becomes 8) in the middle of each of 
the preceding numbers. 

91Λ72/58Λ44 29Λ16/14"13 - 28*57/61*74 92*48/87*79 + 
11*77/39*84 11*61/81*55 - 41*51/69*82 59*46/83*19 

317453959104270154241221958455634777400009702468477336279419992 
83X384978597846467551165615434006212640638461349172523253967884 
66522X842824867832405837422750938502050672183172721393407603551 
31992568X 
657194861452905842718097859824627695540758387433969843528503988 
37X318568245400033473871326732951109388658851965827196796721307 
86371X188910757417938071891656236414384441707054636296389704902 
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09838056\018585397030252228497498602603433273098657078705541585 
02874174644X210964820747820124788471924756672050128278556529741 
54441634751493X701724907268344914498006351333901714449311561178 
81672742511575684X731588558868529629515870291862025318280383005 
12151492826011581670X293103808919110094099640490485346886733620 
49823905227665533184507X495745689 / 
349002642126839797438754826702298177750663465486510044255898897 
70X 
658009781829457912941507706223730942081451345161068573791492495 
89X320085087851815158056312225700642099419118122173490895553053 
22942X895097438157143293948976131416985052431168459049311721021 
88159684X603153608661739617865351563860497508986299957304168874 
16056167265X168496410110701230744053904380067875045180460353475 
50692092638560X775838457404167009801711141735181880916790660723 
19667911976405761X076290385036085546558525014229258545016826305 
69779189670597431818X307664867615051597851579211406792819615340 
83043462211974010937987X017414673962430835963451689569012893980 
7959592510799138792778235904 

This calculation takes a noticeable length of time. Note that exponentiation takes precedence 
over all the other arithmetic operators. The single slash in the middle of the output indicates 
division since the numerator and the denominator each require many lines. The back slashes at 
the ends of the lines just represent line breaks and have no mathematical meaning. Surely 
nobody could do this calculation by hand and we have no effective way, other than repeating 
it, perhaps in a different program, to know if it is correct or not. 

This sequence of computations shows a general property of symbolic mathematics 
programs. They will do all of the usual operations that one does by hand much more rapidly 
and much more reliably than a person can. In addition they will carry out calculations that are 
beyond the possibility of even the most determined human being. Nevertheless, they won't do 
everything. The preceding example was deliberately arranged to end up with 2 digit 
exponents since, had the exponents been larger, the calculation would have taken too long. 
Starting with two 64 digit numbers would have led to 4 digit numbers raised to 4 digit 
exponents. We got tired of waiting for such a result to return and aborted the calculation. 

Of course Mathematica is perfectly able to deal with larger exponents. For instance: 

3 A 10 => 59049 

We can now find the 10th root of this result, expressed as an exponent of 1/10. 

% Λ (1/10) => 3 

Here, % refers to the previous output. The round brackets are used for grouping. We repeat 
these last two calculations replacing 10 by 100 and then by 1000. 
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3 Λ 100 

515377520732011331036461129765621272702107522001 

% Λ ( 1 / 1 0 0 ) =» 3 
3 Α 1000 

132207081948080663689045525975214436596542203275214816766492036 
82X268285973467048995407783138506080619639097776968725823559509 
54582X100618911865342725257953674027620225198320803878014774228 
96484127X439040011758861804112894781562309443806156617305408667 
44905061781X254803444055470543970388958174653682549161362208302 
68563778582290X228416398307887896918556404084898937609373242171 
84635993869551676X501894058810906042608967143886410281435038564 
87471658320106143661X32173102768902855220001 

% Α ( 1 / 1 0 0 0 ) => 3 

In the Exercises you are asked to try 3^10000 for yourself. 

2.2 Factoring Integers 

Integers can be factored into prime factors quickly if they are not too large. (Too large means 
more than 30 digits.) 

Factorlnteger[4426166212334398690138310945003] 

{{37, 1}, {173, 1}, {2143, 2}, {150568994203431074347, 1}} 

F a c t o r l n t e g e r writes the prime factors of an integer in the form of a list of pairs. The first 
entry in a pair is the prime factor and the second entry is the number of times it occurs in the 
factorization. Thus our number is equal to 

3 7 1 1 7 3 1 2 1 4 3 2 150568994203431074347 1 

We can check that the last number here really is a prime number using the built-in predicate 
PrimeQ. (Predicates are functions that return the value True or Fa l se . ) 

PrimeQ[150568994203431074347] => True 
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2.3 Real Numbers 

The number 3 A 1000 calculated above has very many digits. Just how many can be 
determined by converting it to a real number in scientific notation. 

N[3A1000] => 1.32207 1 0 4 7 7 

N [ any th ing ] finds the numerical value of "anything" expressed as a floating point number in 
scientific notation by showing a 6 digit number, with one digit to the left of the decimal point, 
times a suitable power of 10 (as soon as the number requires 7 or more digits for its 
expression). Integer arithmetic such as was used in the first section is done with infinite 
precision; i.e., all relevant digits are shown and no approximations are made. All calculations 
involving integers and fractions remain in integer or fractional form with all digits shown. 
Numbers are converted to approximate real values only if N is explicitly used. 

Square roots are calculated using the square root function. 

S q r t [ 9 ] => 3 

Note that the square root function must be typed in exactly this way, with a capital letter and 
square brackets. Sqrt ( 9 ) , s q r t [ 9 ] and Sqr [ 9 ] all don't work. Square brackets are always 
used for function application and all built-in operations begin with a capital letter. Try another 
example. 

Sqrt[10] => S q r t [ 1 0 ] 

Since 10 is an integer and the square root of 10 is not, the function remains unevaluated. 
However, its numerical value as an approximate real number can be found to as many decimal 
places as desired. 

N[Sqrt[10], 40] 

3.1622776601683793319988935444327185337196 

This gives the numerical value of the square root of 10 to 40 decimal places. In all occurrences, 
N can take a second argument indicating how many significant digits are desired. (See 
Chapter 3 for the exact meaning of the second argument.) A single real number containing a 
decimal point in an arithmetic expression contaminates the entire numerical calculation and 
turns everything into real numbers. 

1.0 + 1398/1434 + 21582/4323 - 8935/9602 

6.03673 
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Pi denotes the mathematical constant π. It can be calculated to any desired number of decimal 
places, depending of course on the amount of computer memory available and the length of 
time we are willing to wait. The following calculation is almost instantaneous. 

N [ P i , 500] 

3.1415926535897932384626433832795028841971693993751058209749445 
92X307816406286208998628034825342117067982148086513282306647093 
84460X955058223172535940812848111745028410270193852110555964462 
29489549X303819644288109756659334461284756482337867831652712019 
09145648566X923460348610454326648213393607260249141273724587006 
60631558817488X152092096282925409171536436789259036001133053054 
88204665213841469X519415116094330572703657595919530921861173819 
32611793105118548074X462379962749567351885752724891227938183011 
94913 

2.4 Complex Numbers 
Complex numbers are written in the form a + b I, where I is the square root of - 1 . For instance: 

(6 + I ) A 5 => 5646 + 6121 I 

The number here is actually a Gaussian integer (the real and imaginary parts are integers). 
They are closed under addition, multiplication and exponentiation by ordinary integers. As 
before the 5th root should take us back to where we started. 

% " ( l / 5 ) => 6 + I 

Try another example. 

(2 + 5 I ) A 12 => -86719897 + 588467880 I 
%"(1 /12) => ( -86719897 + 588467880 I ) 1 / 1 2 

N[%] => 5 .33013 + 0 .767949 I 

Clearly, the twelfth root of (2 + 5 I to the twelfth power) is not the same as 2 + 5 I. In the 
exercises, you are asked to investigate this situation more carefully. 
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2.5 Number Types in Mathematica 
The following table shows the kinds of number types that are available in Mathematica.. We 
have divided them into real types and complex types. More general types are to the right and 
down in the table. 

Real Types 

Integers 

Rationals 

Reals 

Complex Types 

Gaussian Integers 

Gaussian Rationals 

Complexes 

A Gaussian rational number is a quotient of Gaussian integers. It can always be represented as 
a complex number with rational real and imaginary parts. E.g., 

( 3 + 5 I ) / ( 2 + 4 1) => 13 /10 + 1/10 

Any arithmetic calculation is carried out in the least general type that is common to all of the 
arguments of the calculation. For instance, the sum of a rational number and a Gaussian 
integer is a Gaussian rational number. 

1/2 + (3 + 5 I ) => 7/2 + 5 I 

The function N [ ] converts any number to the type at the bottom of its column. Built-in 
numerical functions like Sqrt [ ] are usually only evaluated if the type of the answer matches 
the type of the arguments. E.g., 

Sqrt[10.] => 3 .16228 

3 High School Algebra and Trigonometry 
Virtually every computer program and every person who has been to school is able to handle 
numbers in some way. The first step upwards in mathematical sophistication comes with the 
introduction of variables and symbolic constants. Most programming languages and many 
people never take this step. Those programs that do are called symbolic computation 
programs. The place where this happens in school is in high school algebra, which consists of 
manipulating algebraic expressions, solving linear and quadratic equations in one variable, 
and possibly solving systems of linear equations. The crucial new ingredient is the inclusion of 
symbols representing constants or variables. 
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3.1 Manipulating Algebraic Expressions 

One of the main strengths of Mathematica lies in its facilities for symbolic manipulation of 
mathematical expressions involving symbolic constants and variables. 

3.1.1 The first example 

Start by entering an algebraic expression with symbolic components. 

(x + y) " 2 + 7 (3 + x) (x + y) 

7 (3 + x) (x + y) + (x + y ) 2 

Nothing has been done to this expression except the order of the two summands has been 
rearranged according to Mathematical own notion of what should come first. The reason that 
nothing was done is that nothing was asked for. If something is asked for, then another form of 
the expression will be displayed. For instance: 

Expand[%] = > 2 1 x + 8 x 2 + 2 1 y + 9 x y + y 2 

Expand does exactly what you would expect. It distributes multiplication over addition until 
all terms are monomials and then collects similar terms. Here it has expanded the previous 
expression, referred to by %. A person would have no difficulty in carrying out this expansion 
by hand. Now raise this new expression to the 4th power. 

% Λ 4 => (21 x + 8 x 2 + 21 y + 9 x y + y 2 ) 4 

Again, nothing happened because nothing was asked for other than this expression itself. 
Presumably, we meant to expand this expression as well. 

Expand[%] 

194481 x4 + 296352 x5 + 169344 x6 + 43008 x7 + 4096 x8 + 
777924 x3 y + 1222452 x4 y + 719712 x5 y + 188160 x6 y + 
18432 x7 y + 1166886 x2 y2 + 1926288 x3 y2 + 1188054 x4 y2 + 
324576 x5 y2 + 33152 x6 y2 + 777924 x y3 + 1407672 x2 y3 + 
941976 x3 y3 + 276948 x4 y3 + 30240 x5 y3 + 194481 y4 + 
444528 x y4 + 354564 x2 y4 + 119952 x3 y4 + 14721 x4 y4 + 
37044 y5 + 52920 x y5 + 24696 x2 y5 + 3780 x3 y5 + 2646 y6 + 
2352 x y6 + 518 x2 y6 + 84 y7 + 36 x y7 + y8 
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The result is a large expression containing many terms, each of which is a monomial in x and 
y. It would be quite difficult to do this expansion by hand, but it is humanly possible. We can 
find out how many summands there are in this expression by using the Length function. 

Length[%] => 35 

Now, factor this large expression. (The command F a c t o r is reserved for algebraic 
expressions. To factor integers use Factorlnteger.) The expression we want to factor is now 
two outputs back, so we have to use % % to refer to it. 

Factor[%%] => (x + y ) 4 (21 + 8 x + y ) 4 

A quick visual check shows that this agrees with the factored form of our first expression, 
raised to the 4th power. It would be virtually impossible for a person to find this factorization 
by hand without knowing where the expression being factored came from. Note that 
Mathematica does not know this either. Human beings are very bad at factoring polynomials in 
more than one variable, but there is a very efficient machine algorithm for the same purpose. 
Finally, for completeness, note that there is a case in which Expand does not do the expected 
thing. 

Expand[(x y ) * ( l / 3 ) ] => (x y ) 1 / 3 

Thus, Expand does not distribute fractional powers over products. Instead, one has to use 
PowerExpand. 

PowerExpand[ %] => x 1 / 3 y 1 / 3 

3.1.2 Another example 
Type in a rational expression; i.e., a quotient of polynomials. Note that we have to carefully 
bracket the numerator and denominator (actually, bracketing the denominator is sufficient 
here) to get the correct expression, using round brackets which are reserved just for the 
purpose of grouping terms. (Try this expression without the outer brackets on top and on the 
bottom.) This time we give it a name, exp, to use in later calculations by typing exp = "the 
expression". (I.e., "=" is used for what is called assignment in some computer languages.) 

exp = ( (Χ-1Γ2 (2+x)) / (<l+x) ( Χ - 3 ) Λ 2 ) 

(-1 + x ) 2 (2 + x) 

(-3 + x ) 2 (1 + x) 
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Let's see what Expand does to this. Now we can refer to exp by name rather than using %. 

Expand[exp] 

2 3 x x 3 

( -3 + x ) 2 (1 + x) ( -3 + x)z (1 + x) ( -3 + x ) 2 (1 + x) 

If Expand is applied to a quotient of polynomials, it just expands the numerator and writes 
each term over a separate copy of the (unexpanded) denominator. There is a command that 
will expand both numerator and denominator. 

ExpandAl1[exp] 

2 3 x x 3 

_ + 
9 + 3 x - 5 x 2 + x 3 9 + 3 x - 5 x 2 + x 3 9 + 3 x - 5 x 2 + x 3 

Now we can put these back together in expanded form to get what we may have wanted in the 
first place. 

Together[% ] 

2 - 3 x + x 3 

9 + 3 x - 5 x 2 + x 3 

Together just writes fractions over a common denominator. Here is another form of exp. 

Apart [exp] 

5 19 1 
1 + + + 

( -3 + x ) 2 4 ( -3 + x) 4 (1 + x) 

A p a r t carries out a partial fractions decomposition of a quotient of polynomials. F a c t o r 
takes us back to the original form of the expression in which both numerator and denominator 
are factored. 

Factor[%] 

( - 1 + x ) 2 (2 + x) 

( -3 + x ) 2 (1 + x) 

Finally, we can ask Mathematica how it thinks exp should be written. 
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Simplify[exp] 

( - 1 + x ) 2 (2 + x) 

9 + 3 x - 5 x 2 + x 3 

S i m p l i f y looks at all possible ways of writing exp and returns the one which it thinks is the 
simplest. Finally, if we just want to look at the numerator and denominator of exp separately, 
they are given by the commands: 

Numerat /or[exp] => ( -1 + x ) 2 (2 + x) 
Denominator [exp] => ( -3 + x ) 2 (1 + x) 

One of the hardest things to do in any symbolic algebra program is to get the program to 
display an expression in the form that you want, rather than the form that it wants to give you. 
The only way to explain to the program what you want is to become thoroughly familiar with 
the commands that are available and the ways to apply them. We shall see other, more 
complicated ways to simplify expressions in Chapter 3. 

3.1.3 Yet another example 

Type in another expression in expanded form. 

newexp = Expand[(3 + 2x + y ) A 3 ] 

27 + 54 x + 36 x 2 + 8 x 3 + 27 y + 36 x y + 12 x 2 y + 9 y 2 + 
6 x y 2 + y 3 

The following command lets us concentrate on how x occurs in the expression. 

Collect[newexp, x] 

27 + 8 x3 + 27 y + 9 y2 + y3 + x2 (36 + 12 y) + 
x (54 + 36 y + 6 y2) 

Col lec t [express ion, var iab le ] tries to write e x p r e s s i o n as a polynomial in 
v a r i a b l e (here equal to x) whose coefficients are expressions in any other variables that are 
present. The ordering of the output is somewhat unfortunate. Basically, it consists of all of the 
terms not involving x followed by decreasing powers of x. This consistent scheme is ruined by 
putting x 3 before anything involving y. The powers of y in the coefficients, however, are 
ordered in increasing order. However, if we collect coefficients of y, then the ordering is just 
what we want. 
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Collect[newexp, y] 

27 + 54 x + 36 x2 + 8 x3 + (27 + 36 x + 12 x2) y + 
(9 + 6 x) y2 + y3 

It is possible to specify the order of symbols by using the operation $StringOrder, but we 
won't go into that here. It is also possible to collect in two variables simultaneously, but in this 
case nothing new happens. 

Collect[newexp, {x, y}] 

27 + 8 x3 + 27 y + 9 y2 + y3 + x2 (36 + 12 y) + 
x (54 + 36 y + 6 y2) 

The following two commands produce the coefficient of x in Col lec t [newexp, x] and the 
highest power of y in newexp. 

Coefficient[newexp, x] = > 5 4 + 3 6 y + 6 y 2 

Exponent[newexp, y] => 3 

3.2 Solving Equations 
Manipulating expressions is subsidiary to the main purpose of symbolic programs. Nearly 
everything that such a program does can be characterized as solving some kind of an equation. 
The simplest kinds are algebraic equations in one or more variables. Mathematica has a very 
powerful built-in equation solver. Equations are indicated by double equals signs, written ==. 
(Recall from above that a single equals sign, =, is used for assignment.) 

3.2.1 A single equation in one variable 
The syntax for solving the equation 2 x - 3 == 5 for the variable x is as follows: 

Solve[2 x - 3 == 5, x] => {{x -> 4}} 

The answer, x equals 4, is presented as a list (indicated by the outer curly brackets, which are 
reserved for lists) of solutions. In this case, there is only one solution which is itself a list 
consisting of a replacement rule. A replacement rule is an expression of the form x -> n. The 
meaning is that if x is replaced in the equation by the value n to the right of the arrow, then the 
equation is satisfied. To actually carry out the substitution of 4 for x in the left-hand side of the 
equation, one uses " / . " which stands for the command ReplaceAll . (See Chapter 7 for a 
thorough discussion of rules.) 
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2 x - 3 / . x - > 4 => 5 

The result, happily, is the right-hand side of the equation. 
Quadratic polynomials are treated in exactly the same way. 

S o l v e [ x " 2 - 4 x - 8 == 0 , x] 

4 + 4 Sqrt[3] 4 - 4 Sqrt[3] 
{ { x -> }/ { x -> } } 

2 2 
This looks nicer if we simplify it. 

Simplify!%] 

{{x -> 2 + 2 Sqrt[3]}, {x -> 2 - 2 Sqrt[3]}} 

Clearly the two rules here consist of the values given by the usual quadratic formula. Actually, 
Mathematica will display the general formula just by asking for the solution of a generic 
quadratic equation with symbolic coefficients. Our experience above suggests that we should 
simplify the result immediately, which we do by just wrapping the S i m p l i f y command 
around the S o l v e command. 

Simplify[Solve[a χΛ2 + b x + c == 0f x]] 

-b + Sqrt[b2 - 4 a c] -(b + Sqrt[b2 - 4 a c]) 
{ { x _> }, { x -> } } 

2 a 2 a 

So, Mathematica has given us the usual formula for solving quadratic equations, in a slightly 
distorted form. 

Finally, let's try a fourth degree polynomial equation in the variable x involving a symbolic 
constant a. 

Solve[x^4 - 7 xA3 + 3 a χΛ2 == 0, x] 

7 + Sqrt[49 - 12 a] 
{{x -> 0}, {x -> 0}, {x -> }, 

2 

7 - Sqrt[49 - 12 a] 
{ x _> } } 

2 
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The result consists of four exact solutions for x in terms of a. In this case x = 0 is a double root 
since x2 is a factor of the equation, so there are two solutions of the form {x -> 0}. 

3.2.2 Simultaneous equations in more than one variable 
The syntax for the solution of a single equation in one variable is S o l v e [ e q u a t i o n , 
v a r i a b l e ] . The general form for the arguments of So lve consists of a list of equations 
followed by a list of variables to be solved for. For instance, the general case of two linear 
equations in variables x and y has coefficients a, b, c, d on the left hand side and constants e 
and f on the right. This gives the general solutions of such a 2 x 2 system. 

Simplify[ 
Solve[{a x + b y == e, c x + d y == f}, {x, y} ]] 

d e - b f -(c e) + a f 
{ { x -> , y -> } } 

-(b c) + a d -(b c) + a d 

The solution is unique, so it consists of a list with one entry which itself is a list of two rules, 
one for each of x and y. 

3.2.3 Exact, closed form solutions 
Mathematica can deal with much more complicated equations. Here is a system consisting of a 
2nd degree and a 3rd degree polynomial in two variables. 

Solve[{ xA3 + y^3 == 1, χΛ2 + y^2 == 1}, {x, y} ] 

{{x -> 1, y -> 0}, {x -> 1, y -> 0}, 

-32 - I 29 / 2 - 4 + 1 23 / 2 
{ x _> , y _> }f 

32 4 

-32 + I 29 / 2 - 4 - 1 23 / 2 
{x _> , y _> }/ 

32 4 

{x -> 0, y -> 1}, {x -> 0, y -> 1}} 

The result this time is a list of six solutions, each solution consisting of a list of two rules, one 
for each of x and y. Note that two of the solutions occur with multiplicity 2. 
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Mathematica can give us a picture of this pair of equations, but we have to use a command 
that is found in one of the packages rather than built-in to the kernel. Such packages have to be 
loaded before they can be used, by issuing a Needs command. 

Needs["Graphics"ImplicitPlotv"] 

Try this with the pair of equations whose simultaneous solutions are found above. 

ImplicitPlot[ {xA3 + yA3 == 1, xA2 + yA2 == 1}, 
{x, -2, 2} ]; 

In this remarkable picture, we can see the two double solutions at (0, 1) and (1, 0). The two 
complex solutions of course are not shown. 

3.2.4 An impossible equation 

Not all polynomial equations, even in one variable, have exact solutions. 

S o l v e [ l + 8 χΛ3 + xA5 - 2 xA6 + 4 xA7 == 0 , x ] 

2 + 2 1 S q r t [ 3 ] 2 - 2 1 S q r t [ 3 ] 
{ { x -> } , { x -> } / 

8 8 
T o R u l e s f R o o t s [ 1 + 2 x + x 5 = = 0 , x ] ] } 

Here, we tried a 7th degree equation in x . Two solutions are found, leaving a 5th degree 
equation to be solved. It is well-known from the theory of equations that equations of degree 4 
or less have exact, closed form solutions in terms of roots of expressions constructed from the 
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coefficients. However, as Galois showed, for equations of degree 5 or more, there need be no 
such solution. Mathematica leaves this resulting 5th degree equation unevaluated. Of course, a 
polynomial equation can be solved for all of its roots by numerical methods. N [ ] finds all 
seven. 

N[%] 

{{x -> 0.25 + 0.433013 I}, {x -> 0.25 - 0.433013 I}, 
{x -> -0.701874 - 0.879697 1}, {x -> -0.701874 + 0.879697 I}, 
{x -> -0.486389}, {x -> 0.945068 - 0.854518 I}, 
{x -> 0.945068 + 0.854518 I}} 

This evaluates so quickly and it is so easy to give the command to find these solutions, that one 
is apt to forget that actually finding these numbers requires a very sophisticated algorithm. 

3.3 Trigonometry 

Hardly anybody thinks that Trigonometry is their favorite subject. Pocket calculators have 
eliminated the extensive tables and interpolation formulas that previously were the bane of 
trying to use actual values of trigonometric functions. Modern programs let us calculate values 
to any desired precision and make arbitrarily detailed plots of these values. All of the standard 
trigonometric functions are found as built-in operations. If they are given real arguments, they 
return real values, just like an ordinary pocket calculator. 

Sin[1 .3 ] => 0.963558 

Mathematica also knows about their complex values for complex arguments, which is more 
than most pocket calculators know. E.g., consider a product of a cos and a tan. (The space 
indicates multiplication.) 

Cos[3.2 + 5.1 I] Tan[0.4 + 3.7 I] 

-4.8548 - 81.8002 I 

Furthermore, the built-in Plot command lets us make pictures of trigonometric functions. 
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sinplot = Plot[Sin[x], {x, 0, 2 Pi}] 

- G r a p h i c s -
P l o t takes two arguments, the first being a numerical function of one variable and the second 
being a list of a special form called an iterator. (The same form was used in I m p l i c i t P l o t 
above.) The iterator, {x , 0 , 2 P i } , means that the variable x is to take values between 0 
and 2 Pi. Note that the output consists of the term - G r a p h i c s - , while the picture is an extra, 
side effect of the command. Mathematica knows how to deal with plots of singular functions as 
well; for instance: 

tanplot = Plot[Tan[x], {x, 0, 2 Pi}] 

40 
20 

-20 
-40 

-Graphics-

Mathematica has decided on its own to show values only up to about 44. We'll see later how to 
increase or decrease this value if desired. The function Show takes the names of a number of 
pictures and combines them in the same drawing, which is why we gave names to the 
preceding plots. It adjusts the scales of the drawing so they fit together correctly. 
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Show[sinplot, tanplot] 

20 
15 
10 

5 

-5 
10 
15 

/ \J_ 
1 / 2 ^ = " 3 

\ I 

/ J ~1 γ^^ 

{ 1 
- G r a p h i c s -

Notice how Mathematica has decreased the maximum y values that are shown in order to see 
what is happening to the sin curve. 

Another way to see two plots together is to use G r a p h i c s A r r a y , which takes a list 
(actually a matrix) of names of graphics objects and creates a new graphics object consisting of 
all of the individual graphics objects scaled to the same size. Show displays this in a 
rectangular array. 

Show[GraphicsArray[{sinplot, tanplot}]]; 

40 

20 

-20 

-40 

Trigonometric functions can be used to make interesting three-dimensional plots as well. The 
syntax is the obvious extension of the two-dimensional case. 
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Plot3D[ Sin[x] Sin[3y], {x, -2, 2}, {y, -2, 2} ] 

-SurfaceGraphics-

Here is another way to illustrate the same function. 

ContourPlot[ Sin[x] Sin[3y], {x, -2, 2}, {y, -2, 2} ] 

-ContourGraphics-

Of course, there is more to trigonometry than just pictures. Can Mathematica prove 
trigonometric identities? It depends on what you mean by this. Modifications of the Expand 
and F a c t o r functions we used earlier will handle many cases of simplifying trigonometric 
expressions. For instance: 
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Expand[Sin[xp2 + Cos[xp2, Trig -> True] => 1 
Factor[Tan[2 x], Trig -> True] 

2 Cos[x] Sin[x] 

(Cos[x] - Sin[x]) (Cos[x] + Sin[x]) 

This output can be improved by using ExpandAll. 

ExpandAll[%] 

2 Cos[x] S in[x] 

Cos[x] 2 - S i n [ x ] 2 

The extra arguments to Expand and Factor are called optional arguments. They are an 
important feature of Mathematica operations. 

However, proving trigonometric identities should mean that it is possible to check an 
identity like 

cos z _ sin z 
1 + cos z sin z + tan z 

Mathematica is not able to make substitutions and turn the left-hand side into the right-hand 
side by itself, which is what you might mean by proving such an identity. However, you can 
subtract the right-hand side from the left-hand side and use Simplify, hoping that the result 
will be 0. (Simplify also takes an optional argument for trigonometric simplification, but the 
default value is True, so we don't have to specify it explicitly.) 

Simplify[Cos[z]/(1+Cos[z])-Sin[z]/(Sin[z]+Tan[z])] 

0 

Identities that are surprisingly complex can be handled this way. 

4 College Calculus, Differential Equations, 
and Linear Algebra 

College mathematics means calculus to most people, and that is what most people expect 
symbolic computation programs to do. As soon as early symbolic computation programs 
could do anything at all, it was realized that symbolic integration posed a major challenge. 
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Symbolic differentiation is very s imple-wel l use it to illustrate different styles of 
programming-but there are still aspects of integration which have no easy answer. The first 
commercially successful symbolic computation program, Macsyma, grew out of these early 
efforts in the 1960s to teach a program to integrate, first as well as an MIT freshman, then as 
well as an MIT graduate, and finally as well as the most knowledgeable expert. Current efforts 
to complete this endeavor center around the treatment of situations where the form of the 
answer depends on the values of symbolic parameters in the integrand. 

4.1 Integration, Differentiation, Series and Limits 

Mathematica, of course, carries out the standard operations of calculus in symbolic form. The 
command to find the antiderivative, or indefinite integral, Jf(x) dx, of f [x] with respect to x is 
I n t e g r a t e [ f [ x ] , x ] . For instance: 

int = Integrate! x / (1 - xA3), x ] 

1 + 2 x Log[-l + x] Log[l + x + x2 ] 
-ArcTan [ ] /Sqrt [ 3 ] 

Sqrt[3] 3 3 

Note that the answer omits the constant of integration that all freshmen are told is required. 
Differentiation is the inverse operation to integration. It is one of the few commands that are 

abbreviated in Mathematica being denoted just by D. Thus, D [ f [ x ] , x ] means df ( x ) /dx . A 
good way to check the operation of integration is to differentiate the result, so differentiate the 
previous integral. 

D [ i n t , x] 

- 1 1 + 2 x 2 
+ _ 

3 ( - 1 + x) 6 (1 + x + x 2 ) 3 (1 + (1 + 2 x ) 2 / 3) 

This doesn't look like the function we started with but, after simplification, we get back the 
original expression. 

Simplify[%] => x / (1 - x3) 

Higher order derivatives are given b y D [ f [ x ] , {x, n } ] . Thus, the second derivative of i n t 
is: 



One · A Quick Trip Through Elementary Mathematics 25 

Simplify[D[int, {xf 2}]] 

1 + 2 x 3 

( - 1 + x 3 ) 2 

To find a definite integral, 

J a b f(x) dx, 

use I n t e g r a t e [ f [ x ] , { x , a, b } ] which gives the definite integral of f [ x ] with respect 
to x from a to b . Similarly, N I n t e g r a t e finds numerical values of definite integrals of 
functions, even if there is no closed form for their indefinite integral. 

I n t e g r a t e [ S i n [ x ] , { x , 0 , P i } ] => 2 
N I n t e g r a t e [ S i n [ S i n [ x ] ] , { x , 0 , P i } ] => 1.78649 

The command S e r i e s [ f [x ] , { x , a, n } ] finds the first n terms of the Taylor's series 
expansion of f [ x ] about the point a. 

S e r i e s [ Exp[ -x ] S i n [ 2 x ] , { x , 0 , 6} ] 

x 3 19 x 5 11 x 6 

2 x - 2 x 2 - — + x 4 + 0 [ x ] 7 

3 60 180 

The command L imi t [ f [ x ] , x -> a ] finds the limit of f [ x ] as x approaches a. 

L i m i t [ ( S i n [ x ] - T a n [ x ] ) / x A 3 , x -> 0] => - ( 1 / 2 ) 

4.2 Calculus of Several Variables 

Mixed derivatives are easily calculated. Start with some expression in x and y. We don't need 
to see it repeated as output so we suppress the output by following the definition with a 
semicolon. 

exp = χΛ3 Sin[yA4]; 
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The mixed partial derivative of exp with respect to x and then y is given by using the same 
symbol D that is used for ordinary derivatives, with an extra argument for the second 
variables. 

D[exp, x , y ] => 12 x 2 y 3 C o s [ y 4 ] 

Now differentiate twice with respect to x and three times with respect to y. 

D[exp, { x , 2 } , {y , 3 } ] 

144 x y Cos[y4] - 384 x y9 Cos[y4] - 864 x y5 Sin[y4] 

Just as D denotes ordinary or partial differentiation, I n t e g r a t e denotes single or multiple 
integration. 

I n t e g r a t e [ E " ( - 2 x ) C o s [ y ] , x , y ] => - S i n [ y ] / ( 2 E2 x ) 

Multiple definite integration uses two (or more) iterators. 

I n t e g r a t e [ E " ( - 2 x ) C o s [ y ] , { x , 0 , P i / 4 } , { y , 0 , x } ] 

1 1 

5 5 S q r t [ 2 ] E p i / 2 

Notice that the second integration is performed first; i.e., this result is the same as the iterated 
integral: 

Integrate[Integrate[E"(-2x) Cos[y], {y, 0, x}], 
{x, 0, Pi/4} ] 

1 1 

5 5 S q r t [ 2 ] E p i / 2 

4.3 Differential Equations 

From one point of view, mathematics education is a long line of development leading from 
counting to differential equations. It is differential equations that allow the prediction of the 
future, so they are a crucial ingredient in everything from ballistics to bridge construction, 
automobile controls to economic forecasts and weather prediction. The ultimate test of a 
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symbolic computation program is how it deals with them. Integration, of course, is a special 
case of solving a differential equation, namely, one of the form yf = expression. 

The command to solve differential equations is DSo lve . Here is a typical second order, 
linear, non-homogeneous differential equation. 

diffeql = y'·[x] - 5 y'[x] + 6 y[x] == 2 E"x; 

Differentiation is indicated by primes and it is necessary to include the independent variable x 
in the expression for the dependent variable y [ x ] . The syntax for a single differential equation 
i s D S o l v e [ e q u a t i o n , dependent v a r i a b l e , independent v a r i a b l e ] . Thus: 

DSolve[diffeql, y[x], x] 

{{y[x] -> Ex + E2 x C[l] + E3 x C[2]}} 

The constants of integration are called C[l] and C[2] here. 
Mathematica can also handle certain non-linear equations, even with symbolic constants. For 

instance: 

diffeq2 = y'[x] + a x y[x]"2 == 0; 
DSolve[diffeq2, y[x], x] 

2 
{{y[x] -> }, {y[x] -> 0}} 

a x 2 - 2 C [ l ] 

If we give Mathematica a differential equation of Bessel type, it recognizes it immediately. 

diffeq3 = x y'[x] + y'[x] + x y[x] == 0; 
DSolve[diffeq3, y[x], x] 

{{y[x] -> BesselY[0, x] C[1] + BesselJ[0, x] C[2]}} 

Here B e s s e l J [ 0 , x ] and B e s s e l Y [ 0 , x ] are the usual Oth order Bessel functions. 
Mathematica knows all about these functions, as well as all the other usual functions that arise 
in physics and engineering. For instance, we can plot both of them together by giving them as 
a list to the P l o t command. 

P l o t [ { B e s s e l J [ 0 , x ] , B e s s e l Y [ 0 , x ] } , { x , 0 , 10} ] 

P l o t : : p l n r : C o m p i l e d F u n c t i o n [ {x} , « 1 » , -Compi l edCode- ] [x] 
i s n o t a m a c h i n e - s i z e r e a l number a t x = 0 . . 
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- G r a p h i c s -

The warning message happens because Mathematica recognizes that B e s s e l Y [ 0 , x] has a 
singularity at the origin. 

Even if a differential equation cannot be solved exactly, it may be possible to solve it 
numerically. There is a built-in function NDSo lve to do this. It works with systems of 
differential equations together with equations specifying the initial conditions. Here is an 
example. 

diffeqSystem = 
{ x ' [ t ] == - y [ t ] - x [ t p 2 , 

y ' [ t ] == 2 x [ t ] - y [ t ] , 
x [ 0 ] = = y [ 0 ] = = 1 } ? 

In the NDSolve command, the system of equations, the dependent variables (here x and y} 
and the range of the independent variable (here t ) must be specified. 

solution = NDSolve[diffeqSystem, {x, y}, {t, 0, 10}] 

{{x -> InterpolatingFunction[{0., 10. }, <>], 
y -> InterpolâtingFunction[{0., 10.}, <>]}} 

The answer is expressed in terms of I n t e r p o l a t i n g F u n c t i o n s for x and y as functions of 
t . These functions can be used to find individual values of the solution at some point, e.g., t = 
3, by substituting the interpolating functions for x and y. 

{ x [ 3 ] , y [ 3 ] } / . s o l u t i o n => { { - 0 . 1 3 9 7 3 7 , - 0 . 5 1 7 7 5 1 } } 

It is much more interesting to plot the solution using the built-in command for plotting a 
parametric curve. 
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ParametricPlot[ Evaluate[{x[t], y[t]} /. solution], 
{t, 0, 10}] 

- G r a p h i c s -

The reason for E v a l u a t e in this command will be explained later. 

4.4 Lists 

Lists are a very important built-in data type in Mathematica, They are used for themselves and 
to represent vectors and matrices. As we have seen, lists are indicated by curly brackets. 

{a , b , c } {a , b , c} 

A convenient way to construct a list whose elements are given by some mathematical formula 
is to use the Table command. 

Table [Expand[ (1 + x ) A n ] , {n , 1 , 8 } ] 

{1 + x , 1 + 2 x + x 2 , l + 3 x + 3 x 2 + x 3 , 
l + 4 x + 6 x 2 + 4 x 3 + x 4 , 
1 + 5 x + 10 x 2 + 10 x 3 + 5 x 4 + x 5 , 
1 + 6 x + 15 x 2 + 20 x 3 + 15 x 4 + 6 x 5 + x 6 , 
1 + 7 x + 21 x 2 + 35 x 3 + 35 x 4 + 21 x 5 + 7 x 6 + x 7 , 
1 + 8 x + 28 x 2 + 56 x 3 + 70 x 4 + 56 x 5 + 28 x 6 + 8 x 7 + x 8 } 

The command TableForm will display this in a nicer format. 
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TableForm[%] 

1 + x 
1 + 2 x + x 2 

l + 3 x + 3 x 2 + x 3 

l + 4 x + 6 x 2 + 4 x 3 + x 4 

1 + 5 x + 10 x 2 + 10 x 3 + 5 x 4 + x 5 

1 + 6 x + 15 x 2 + 20 x + 15 x + 6 x + x 
1 + 7 x + 21 x + 35 x 3 + 35 x 4 + 21 x 5 + 7 x 6 + x 7 

1 + 8 x + 28 x 2 + 56 x 3 + 70 x 4 + 56 x 5 + 28 x 6 + 8 x 7 + x 8 

A list of numbers in sequence can also be constructed by the Range command. 

Range[5 , 20] 

{ 5 , 6, 7 , 8 , 9 , 10 , 1 1 , 12 , 1 3 , 14 , 1 5 , 16 , 17 , 1 8 , 19 , 20} 

There are many operations that take lists as arguments; for instance: 

Permutations[{a, b, c}] 

{{a , b , c } , { a , c , b } , { b , a, c } , 
{b , c , a } , { c , a, b } , { c , b , a}} 

Flat ten!%] 

{a , b , c , a , c , b , b , a , c , b , c , a , c , a , b , c , b , a} 

4.5 Vectors 
Vectors do not appear in Mathematica as a separate data type but are represented as lists. For 
instance, the dot product of two vectors is given by writing a dot between the vectors. 

{x , y , z} . {a , b , c } = > a x + b y + c z 

Vectors can be added and multiplied by scalars in the usual way. 

{a , b , c} + { 1 , 2 , 3} => {1 + a , 2 + b , 3 + c} 
4 {a , b , c} => {4 a , 4 b , 4 c} 
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4.6 Matrices 

One reason for the "unreasonable effectiveness" of mathematics in science is the observation 
that many phenomena can be described quite effectively in linear terms. Linear algebra is the 
part of mathematics that deals with this. There are large and important Fortran and C 
programs that deal with numerical linear algebra and Mathematica!s facilities in this direction, 
while effective, are no substitute for these packages. However, one of the main purposes of 
symbolic programs is to deal with symbolic linear algebra; e.g., matrices with symbolic rather 
than numeric entries. 

Matrices also do not appear separately in Mathematica. Rather, they are represented as lists 
of lists. For instance: 

{ { a , 2 , 3 } , {4 , b , 6 } , { 7 , 8 , c } } 

{{a , 2 , 3 } , {4 , b , 6 } , { 7 , 8 , c}} 

The commands TableForm and MatrixForm display the output as a two-dimensional table. 

TableForm[%] 

a 2 3 
4 b 6 
7 8 c 

As with lists themselves, matrices can be constructed by the Table command when the entries 
are given by some mathematical formula. Here is the 3 x 3 Hilbert matrix. 

m a t r i x = T a b l e [ l / ( i + j - 1 ) , { i , 1 , 3 } , { j , 1 , 3 } ] 

{ { 1 , 1 /2 , 1 / 3 } , { 1 / 2 , 1 / 3 , 1 / 4 } , { 1 / 3 , 1 /4 , 1/5}} 

m a t r i x / / TableForm 

1 1/2 1/3 
1/2 1/3 1/4 
1/3 1/4 1/5 

Instead of the prefix form TableForm [ ] , we have used the suffix form of function application 
/ /TableForm here. 

If m a t r i x is regarded as a matrix rather than a table, then matrix operations can be carried 
out on it. We can, for instance, find its inverse. 
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Inverse[matrix] 

{{9, -36, 30}, {-36, 192, -180}, {30, -180, 180}} 

Matrix multiplication is also represented by a dot so the following calculation checks that the 
preceding result is the inverse of matrix. 

% · matrix / / TableForm 

1 0 0 
0 1 0 
0 0 1 

Starting with a matrix, its eigenvalues can be calculated by the usual procedure of solving its 
characteristic polynomial. Recall that the characteristic polynomial of a matrix is the 
determinant of the matrix given by subtracting x from each diagonal entry of the original 
matrix. We'll use this procedure to find the eigenvalues of matrix. 

matrix - x IdentityMatrix[3] // TableForm 

1 - x 1/2 1/3 
1/2 1/3 - x 1/4 
1/3 1/4 1/5 - x 

IdentityMatrix[n] is the n x n identity matrix, as one might expect. Multiplying it by x 
gives a matrix with x's on the main diagonal and 0's elsewhere. Subtracting the resulting 
matrix from matrix gives the desired matrix ( since subtraction of matrices of the same size 
subtracts corresponding entries). Next, calculate the determinant of this matrix to find its 
characteristic polynomial, using the command Det (which is another of the rare abbreviations 
in Mathematica). 

Det[ % ] 

1 - 381 x + 3312 x2 - 2160 x3 

2160 

Actually, there is a built-in command to find the characteristic polynomial. 
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CharacteristicPolynomial[matrix, x] 

1 - 381 x + 3312 x2 - 2160 x3 

2160 

Since the coefficients of matrix are rational numbers, these calculations yield a polynomial 
with rational coefficients. This 3rd degree polynomial has an exact solution in terms of roots of 
these coefficients, but the resulting answer fills a whole screen, so we content ourselves with 
numerical approximations to the roots. There is a special command to find numerical solutions 
of equations. 

NSolve[% == 0, x] 

{{x -> 0.00268734}, {x -> 0.122327}, {x -> 1.40832}} 

These are the eigenvalues of matrix by definition. 
Of course, there is a built-in function to calculate the eigenvalues of a matrix. It gives the 

results in a different order and different form. 

Eigenvalues[N[matrix]] 

{1.40832, 0.122327, 0.00268734} 

One can also calculate the exact eigenvalues. We'll just look at the first one, which is chosen by 
the [ [ 1 ] ] following the command to calculate the eigenvalues without the N [ ] . 

eigenl = Eigenvalues[matrix][[1]] 

23 6559 
— + + 
45 180 (517148 + 5 1 Sqrt[589171239])1/3 

(517148 + 5 1 Sqrt[589171239])1/3 
180 

This appears to have a non-trivial complex component. Finding its numerical value shows 
otherwise. 
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N[eigenl] => 1.40832 + 5.75982 IO"20 I 

Let's try more decimal places. 

N[eigenl, 20] => 1.4083189271236539575 + 0. IO"28 I 

The complex component gets smaller, but it never actually disappears as it did in versions of 
Mathematica before 2.2. Still, it seems safe to conclude that the result is a real number (as it 
must be). The command Eigenvalues also works for matrices with symbolic entries. For 
instance, try a general 2 x 2 matrix. 

Eigenvalues!{{a, b}, {c, d}}] // Simplify 

a + d + S q r t [ a 2 + 4 b c - 2 a d + d 2 ] 
{ , 

2 

a + d - S q r t [ a 2 + 4 b c - 2 a d + d 2 ] 
} 

2 

5 Graduate School 
Most of the entries in the following long list of built-in functions would not be encountered in 
a typical undergraduate mathematics course. 

AiryAi, AiryAiPrime, AiryBi, AiryBiPrime, 
ArithmeticGeometricMean, BernoulliB, Bessell, BesselJ, BesselK, 
BesselY, Beta, BetaRegularized, Catalan, ChebyshevT, 
ChebyshevU, ClebschGordan, Coshlntegral, CosIntegral, 
DivisorSigma, EllipticE, EllipticExp, EllipticExpPrime, 
EllipticF, EllipticK, EllipticPi, EllipticTheta, 
EllipticThetaC, EllipticThetaD, EllipticThetaN, 
EllipticThetaPrime, EllipticThetaS, Erf, Erfc, Erfi, EulerE, 
ExpIntegralE, ExpIntegralEi, FresnelC, FresnelS, Gamma, 
GammaRegularized, GegenbauerC, GroebnerBasis, HermiteH, 
HypergeometricPFQ, HypergeometricPRQRegularized, 
HypergeometricU, HypergeometricOFl, 
HypergeometricOFlRegularized, HypergeometriclFl, 
HypergeometriclFlRegularized, Hypergeometric2Fl, 
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Hypergeometric2FlRegularized, InverseJacobiCD, inverseJacobiCN, 
InverseJacobiCS, InverseJacobiDC, InverseJacobiDN, 
InverseJacobiDS, InverseJacobiNC, InverseJacobiND, 
InverseJacobiNS, InverseJacobiSC, InverseJacobiSD, 
InverseJacobiSN, InverseWeierstrassP, JacobiAmplitude, 
JacobiCDf JacobiCN, JacobiCS, JacobkDC, JacobiDN, JacobiDS, 
JacobiNC, JacobiND, JacobiP, JacobiSC, JacobiSD, JacobiSn, 
JacobiSymbol, JacobiZeta, JordanDecomposition, LaguerreL, 
LatticeReduce, LegendreP, LegendreQ, LerchPhi, LogGamma, 
Logintegral, LUBackSubstitution, LUDecomposition, MoebiusMu, 
NBernoulliB, Pochhammer, PolyGamma, PolyLog, Pseudoinverse, 
QRDecomposition, Resultant, RiemannSiegelTheta, RiemannSiegelZ, 
SchurDecomposition, SimplifyGamma, SimplifyPolyGaxnma, 
Sinhlntegral, Sinlntegral, SixJSymbol, SphericalHarmonicY, 
StirlingSl, StirlingS2, ThreeJSymbol, WeierstrassP, 
WeierstrassPPrime, Zeta 

In reading over this list, what strikes one is the preponderance of functions from physics, 
number theory, and algebraic geometry. There are a few general operations like 
GroebnerBasis or LUDecomposit ion, but mainly these functions serve as a substitute for 
specialized tables, just like the more common operations Sin, Cos, etc. are substitutes for 
tables of constant everyday use. The moral is that, unless your use of mathematics is restricted 
to the kinds of operations sketched in this chapter or to the specialized functions mentioned 
here, you will have to program the mathematics you want to use yourself. Fortunately, 
Mathematica has a powerful, highly developed programming language that permits programs 
to be written in a wide variety of styles. These programming facilities are the main subject of 
the second part of this book. 

6 Practice 
In learning any language, one of the most important things is to practice simple phrases and 
statements until they become second nature. In an interpreted programming language, this 
means typing simple commands into the language until you are thoroughly familiar with 
simple aspects of the syntax of the language-using brackets correctly, typing functions with 
capital letters, separating variables with commas, etc. Here are a few things to try for practice. 

1. 2 + 2 6. 3Λ10 
2. 2-2 7. 3.14159Λ10 
3. 3 5 8. (3 + 2Ι)Λ10 
4. 4 /8 9. Pi 
5. 3.14159 + 2.3456 10. N[Pi] 
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11. N[Pi,100] 32. 
12. Sqrt[2] 33. 
13. Sqrt[2.0] 34. 
14. N[Sqrt[2], 20] 35. 
15. Sin[2] 36. 
16. Sin[2.0] 37. 
17. EA(PiI) 38. 
18. N[EAPi>PiAE] 39. 
19. 1 + 2 3 40. 
20. (1 + 2) 3 41. 
21. 1 / 2 - 3 42. 
22. 1 / (2 -3 ) 43. 
23. 3Λ10000 44. 
24. %A(1/10000) 45. 
25. 2/5 + 3.0/8 46. 
26. Random!] 47. 
27. Round[N[23A(2/3)]] 48. 
28. Ceiling[N[23A(2/3)]] 49. 
29. Plot3D[Sin[x y], {x, 0, Pi}, {y, 0, Pi}] 50. 
30. PSPrint[%] (in Unix systems) 
31. Eigenvalues[{{a, b, l},{-b, 2, -a}, 

{b,0,-a}}] 

D[xA2, x] 
D[xA2 yA3, x, y] 
D[xA2,{x,2}] 
D[xA2yA3,{x,2},{y,3}] 
Integrate[xA2, x] 
Integrate[xA2 yA3, x, y] 
Integrate[Sin[x], {x, 0, Pi}] 
Integrate[Sin[x] y, {x, 0,2 Pi}, {y, 0,2}] 
Integrate[Sin[x] y, {x, 0, Pi}, {y, 0, x}] 
Integrate[Sin[x] y, {x, 0, y}, {y, 0,2}] 
Series} Exp[-x] Sin[2x], {x, Pi I,6} ] 
Table[iA3, {i, 1,10}] 
m = Tabletl / (i + j), {i, 1,3}, {j, 1,3}] 
m . m//TableForm 
m . Inverse[m]//TableFonn 
{{a,b},{c,d}} + {{l,2},{3,4}} 
{{a, b}, {c,d}}-{{1,2}, {3,4}} 
{{a,b},{c,d}} {{1,2}, {3,4}} 
{{a,b},{c,d}}/{{l,2},{3,4}} 

7 Exercises 
Find the inputs and outputs in Mathematica that solve the following problems. 

1. i) Factor the polynomial 1 - x10. 

ii) Investigate the factors of polynomials of the form 1 - x n for n between 1 and 10, by 
making a suitable table. 

2. Use Mathematica to verify the following trigonometric identities. (Hint: subtract the 
right-hand side from the left-hand side.) 

.x 1 - cos 2t 9 

1 + cos 2t 

ii) (csc t + cot t)z = 2 _ 1 + cos t 
1 - cos f 
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...v cos3 * +sin3 t ^ 
in) r—— = 1 - sin t cos t. 

cos t + sin t 
3. Use Mathematica to calculate the following integrals. In each case differentiate the result 

to check the answer if possible. Use Simplify, Factor, Together, etc. wherever it 
seems appropriate. 

0 f « XV5 dx ϋ)ί^ΞΙαχ 
Ί χ 5 + χ 4 - χ - 1 J x6 

4. Convince Mathematica to display the expression (a + b) ((c + d x) x + e x2) in the 
following forms: 

i) a c x + b c x + a d x 2 + b d x 2 + a e x 2 + b e x 2 

ii) (a + b) c x + (a d + b d + a e + b e) x2 

iii) (a + b) x (c + d x + e x) 

5. Graph the conic section 9 x 2 + 4 x y + 6 y 2 = l. Hint: you will need the package 
ImplicitPlot.m. 

6. Find all integer values of n between 0 and 5 such that Mathematica can evaluate the 
following integral: Hint: make a table. 

l/u)4/3 f (1-1/u 
J un du 

Use differentiation to check that the values it does find are correct. Hint: subtract the 
integrand from the derivative of its integral and use Factor. 

7. Same problem as number 5 for the following family of integrals. 

-2n 1 dx 

Show that the case n = 3 can be integrated by a substitution. Check your result. 

8. Find the numerical value of the integral of sin(x3)/cos(x3) from 0 to 1 in two different 
ways. 
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x · - -

9. Evaluate the double integral: 

ioil·^71*^ 
10. Let 

. (x3 + 6x5) 
eXpd=TÖ^37 

i) Differentiate expl. 
ii) Simplify the result of i). 
iii) Integrate the result of ii). 
iv) Show that the answer to iii) is correct. 

11. We saw in the text that ((2 + 5 I ) 1 2 ) 1 7 1 2 * 2 + 5 I. What is the precise 
relationship between these two numbers. 

12. Evaluate. 

13. i) Consider the matrix 

l j m cos x - cot x 
χ->π/2 (χ-π/2) 3 

1 2 3 
A = | 4 5 6 

7 8 9 

Find the exact values and the numerical values of the eigenvalues and eigenvectors 
of A. Display the answers as a table in which the first column has the eigenvalues 
and the second column has the corresponding eigenvectors. (Hint: look up 
commands starting with Eigen. Also, consider Transpose.) Display your answers 
in a nice, readable form. 

ii) The transpose of the matrix of eigenvectors of A determines the coordinate 
transformation that diagonalizes A. Use this to check the results of part i). 

14. Same problem as 13 for the matrix 
1 4 3 

B = | 4 2 3 
3 3 1 

The exact values here are very large, but given enough time, Mathematica is able to find 
and check them. 
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15. Compare the integral of Vl + cos(x) over the interval (0, π) with the numerical value of 
the integral and with a plot of the function over the same interval. This example is 
pointed out in [Wei]. 

16. In [Stoutemyer], David Stoutemyer proposed some tests for symbolic computation 
programs. Here are two of them. 

i) Over what range of values does Mathematica give a continuous antiderivative for 1 / 
(2 + cos x)? Hint: make a plot of the antiderivative. Does Mathematica give the 
correct answer for the definite integral of the function from 0 to 2 π. 

ii) Use the expression 

(x3 + 2 x 2 + 3x + 2) 
(x3 + 4 x 2 + 5x + 6) 

to show that simplification does not commute with substitution. Hint: the 
numerator and denominator have a common factor. 

17. In [Simon 1], Barry Simon described the results of submitting test problems to several 
symbolic computation programs-Derive, Macsyma, Maple, and Mathematica. Here are 
modified versions of some of the problems. 

i) Factor the integer 236789456789432678. 

ii) Try inverting the n x n Hilbert matrix (just change 3 to n in the definition) for larger 
values of n. For n about 10, it is still possible to look at the result. Simon asks for 
n = 20. Don't try to display the result, but do check that the answer is correct. 

iii) Find the symbolic sum of iP for i from 1 to n. Do this for p equal to various small 
values; e.g., 3, 5. You have to use a package to do this, so execute the statement 
Needs [ "Algebra" Symbolic Sum ̂  " ] first. Simon asks for the value when p = 30. 

iv) Differentiate x ^ cos(x^ log(x)) with respect to x and then integrate the result, v) 
Here is the Van Der Monde matrix of size 3. 

( I 1 1 \ 
x[l] x[2] x[3] 

V x[ l ] 2 x[2]2 x[3]2 j 

Here, x[n] is notation for a subscripted variable, x n . Define a function that 
constructs the Van Der Monde matrix of size n. Simon's problem is to factor the 
determinant of the Van Der Monde matrix of size 6. (Don't try to display the 
determinant in unfactored form.) After finding the factorization, answer the 
following questions: 



40 Parti · Symbolic Pocket Calculator 

How many terms are there in the unfactored form of the Van Der Monde 
determinant of size n? How many symbols are there in each term? How many 
symbols in the entire determinant? (Don't forget about spaces and + and - signs.) 
How many pages are needed to display the unfactored Van Der Monde 
determinant of size 6? of size 10? Assume that there are 80 symbols per line, that 
Mathematica breaks expressions only at + and - signs where possible, and that there 
are 50 lines per page. 



Mathematica est omnis divisa in partes très. 

1 The Different Aspects ^Mathematica 
There are three distinct aspects to working with Mathematica, as indicated in the following 
tables. 

Aspect 

The kernel 

Notebook front-
end 

Explanation 

The kernel is a very large C program that deals with 
inputs and returns outputs by means of two processes: 
calling hard-wired C code to do various computations 
and using rewrite rules to reduce expressions to normal 
form. (These will be explained in great detail in later 
chapters.) 

The Notebook front-end is a graphical user interface 
with the kernel which is now supported by most 
computers. They all present essentially the same 
appearance to the user. These front-ends provide 
facilities for editing and organizing text and sending 
inputs to the kernel for evaluation. The kernel sends the 
results back to the front-end which is then responsible 
for displaying the outputs in an appropriate form, 
including displaying graphics in place. Documents 
developed in the Notebook front-end can be printed 
exactly as they appear on the screen. 

Things to Master 

What the commands 
are that the kernel 
recognizes and how to 
use them 

How to most effic
iently make use of the 
many facilities of the 
notebook front-end to 
create interesting and 
useful documents in 
Mathematica. 

41 
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Aspect 

Packages 

Explanation 

Packages are small, or not so small, programs written in 
the Mathematica programming language that extend the 
functionality of the kernel. Even though the kernel 
recognizes over 1100 commands, these do not begin to 
cover all of the operations that are needed in various 
parts of mathematics, science, engineering, commerce, 
etc., so the program is also supplied with 148 packages 
organized into 13 directories (or folders), containing 
over 2000 additional commands and constants that 
supply some of the other desired operations. Many other 
packages are available through MathSource. 

Things to Master 

How to understand and 
use the programs that 
are available in 
packages. 

The kernel is functionally the same on all platforms, but details of the Notebook front-end may 
vary from one computer to another. However, individual notebooks are completely portable. 
This book was originally produced as a sequence of notebooks and then transferred to a word 
processor for final formatting. Packages are normally not written as notebooks so they can be 
used on any computer, whether or not it has a notebook interface. When you get the program, 
you also receive a rather substantial book describing the current versions of the packages. 
These packages have to be deliberately loaded, as was illustrated in the first chapter by the 
ImplicitPlot package, in order to use the operations contained in them. 

It is easy to create your own extensions to the kernel. In fact, the ease with which such 
extensions can be created is an important way to distinguish between various symbolic 
computation programs. There are two ways to write extensions in Mathematica. One is to write 
notebooks containing detailed discussions of the topics being treated along with examples, 
graphics, etc., all implemented in the very flexible Mathematica programming language. The 
other, more formal way, which is suitable for code intended for use by others, is to write your 
own packages using the supplied packages as models. See also [Maeder 1] and Chapter 10, 
Section 2 of this book. 

2 Interacting with the Kernel 
Inputs are typed in from a keyboard, typically in an input cell in a notebook, or at a command 
line in a raw kernel. (They can also be read in from a file; see Chapter 8.) It is unnecessary to 
end an input with any particular symbol. Carriage returns can be used so that a single input 
can extend over many lines. However, be careful to make line breaks in such a way that the 
material before the break is not a complete Mathematica expression. If it is, and you are 
working in a raw kernel, Mathematica will try to evaluate it. If it is unable to do so or if there is 
nothing to be done, then the input will be returned in unevaluated form. In a notebook, 
nothing is sent to the kernel until Enter or Shift-Return is typed. Even so, complete expressions 
will be evaluated separately. After a shorter or longer time, the evaluated form of the input 
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will be returned as an output. In a notebook, if the output is not what was desired, then the 
input can be edited in place and reevaluated. The inputs and outputs are numbered 
consecutively and provide a temporal ordering, which may differ from the spatial ordering in 
a notebook because of réévaluations. On a workstation with a window system but without 
notebooks, inputs can be typed in a text editor and then copied and pasted into a Mathematica 
session. Here, if the output is not what was desired, then the input can be edited in the text 
editor and recopied and pasted into Mathematica again. In this way, a sequence of successful 
commands will be built up in the text editor. They can then be saved in a file for reuse. 

2.1 Help Facilities in the Kernel 

The kernel provides help facilities via ? and ? ? commands. For instance, to find out about the 
Plot command use: 

?Plot 

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of 
x from xmin to xmax. Plot[{fl, f2, ...}, {x, xmin, xmax}] plots 
several functions fi. 

This tells us what the arguments to Plot should look like and what the command does. To get 
more information use the following form. 

??Plot 

Plot[f, {x, xmin, xmax}] generates a plot of f as a function of 
x from xmin to xmax. Plot[{fl, f2, ...}, {x, xmin, xmax}] plots 
several functions fi. 
Attributes[Plot] = {HoldAll, Protected} 
Options[Plot] = 

{AspectRatio -> GoldenRatioA(-1), Axes -> Automatic, 
AxesLabel -> None, AxesOrigin -> Automatic, AxesStyle -> 
Automatic, Background -> Automatic, 
ColorOutput -> Automatic, Compiled -> True, 
DefaultColor -> Automatic, Epilog -> {}, Frame -> False, 
FrameLabel -> None, FrameStyle -> Automatic, 
FrameTicks -> Automatic, GridLines -> None, MaxBend -> 10., 
PlotDivision -> 20., PlotLabel -> None, PlotPoints -> 25, 
PlotRange -> Automatic, PlotRegion -> Automatic, 
PlotStyle -> Automatic, Prolog -> {}, RotateLabel -> True, 
Ticks -> Automatic, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 
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This tells us in addition that P l o t has two attributes and 27 options. Both attributes and 
options are under the control of the user and we will discuss how to use them in great detail 
later. One can use * as a wild card in requests for information. For instance, to see all of the 
commands starting with B, use: 

?B* 
Background 
BaseForm 
Begin 
BeginPackage 
Below 
BernoulliB 
Bessell 

BesselJ 
BesselK 
BesselY 
Beta 
BetaRegularized 
Binomial 

Blank Boxed 
BlankForm BoxRatios 
BlankNullSequence BoxStyle 
BlankSequence Break 
Block Byte 
Bottom ByteCount 

To see all of the commands containing the word List , use: 

?*List* 
CoefficientList List 
ComposeList Listable 
FactorList ListContourPlot 
FactorSquareFreeList ListDensityPlot 
FactorTermsList Listen 
FindList ListPlay 
FixedPointList ListPlot 
FoldList ListPlot3D 

ListQ 
$MessageList 
MessageList 
NestList 
ReadList 
RecordLists 
SampledSoundList 
ValueList 

2.2 A Quick Overview of Définitions in Mathematica 

There are three kinds of definitions in Mathematica and a great deal can be done just using the 
simplest aspects of these forms. 

i) Assignment statements 
ii) Function definitions 

iii) Recursive (function) definitions. 

2.2.1 Assignments 
An assignment statement assigns a value to some symbol (or expression). It is given by a single 
equals sign "=." For instance, assign to r the product x times y. 

r = x y x y 
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From now on, whenever Mathematica encounters r in an expression, r is replaced by its value 
x y. 

5 + 2 r + 3 r A 2 => 5 + 2 x y + 3 x 2 y 2 

One can also mimic arrays (as in Pascal) by assigning values to expressions of the form w[ i ] . 
E.g., 

w[2] = l + 2 a => 1 + 2 a 

Again this is used whenever possible. 

w [ l ] + b w[2] => (1 + 2 a) b + w [ l ] 

2.2.2 Function definitions 

The other kind of definition is function definition. This is usually specified by "colon equals," 
i.e., " : =." On the left-hand side there is an underscore "_" preceded by some symbol; e.g., "x." 
This should be read as "a pattern named x." The right-hand side then specifies what is to be 
done with x. For instance: 

f [ x _ ] := x"2 

This defines f to be the squaring operation so that f applied to "anything" is replaced by 
"anything squared." 

f [ 3 ] + f [ a + b ] + f [ a n y t h i n g ] 

9 + a n y t h i n g 2 + (a + b ) 2 

See Chapter 6 for a thorough discussion of functional programming and Chapter 7 for the 
precise meanings of = and : =. 

2.2.3 Recursive functions 

Patterns as described above can be used to define functions recursively; i.e., the function being 
defined can also appear on the right-hand side of the definition. For instance, we can construct 
our own factorial function by the following two rules. 

fac[n_] := n fac[n-l] 
fac[l] = 1; 
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To ask Mathematica what it has learned about our factorial function, use the same command as 
for built-in functions. 

?fac 

Global"fac 
fac[l] = 1 
fac[n__] := n*fac[n - 1] 

It can be used just like any other function. 

fac[20] 

2432902008176640000 

We can even ask Mathematica to show us how it uses these rules to calculate values of our 
factorial function. 

Trace[fac[4]]//MatrixForm 
fac[4] 
4 fac[4 - 1] 
{{4 - 1, -1 + 4, 3}, fac[3], 3 fac[3 - 1], 
{{3 - 1, -1 + 3, 2}, fac[2], 2 fac[2 - 1], 
{{2 - 1, -1 + 2, 1}, fac[l], 1}, 2 1, 1 2, 2}, 3 2, 

2 3, 6} 
4 6 
24 

This says that to calculate f ac [ 4 ] , first calculate 4 f ac [4 - 1 ] . Next calculate 4 - 1 , which 
is the same as - 1 + 4 which is 3, so calculate f ac [ 3 ] . But this requires 3 f ac [3 - 1 ] , etc., 
until f ac [ 1 ] is reached, which is given to be 1. Then these results have to be multiplied 
together. So 2*1 is the same as 1*2 which is 2, 3*2 is the same as 2*3 which is 6, and finally 
4*6 is 24. (See Chapter 10, Section 3 for a detailed discussion of how Mathematica evaluates 
expressions.) 

2.2.4 Recursive programming viewed as rewrite rules 

Instead of thinking of ":=" definitions as defining functions, which might be recursive, we can 
think of them as rewrite rules that say that anything that matches the left-hand side should be 
rewritten as the right-hand side. For instance, let us program our own logarithm rules. First, 
just consider the rule that says that the logarithm of a product is the sum of the logarithms of 
the factors. 

log[x_ y_] := log[x] + log[y] 



Two · Interacting with Mathematica 47 

This is not a definition of a logarithm function but rather a rule for rewriting expressions 
containing "log." For instance: 

l o g [ a b cA2 d] 

log[a] + log[b] + log[c2] + log[d] 

The rule has been applied several times to reduce the original expression to this form, but it is 
not quite what was wanted. Apparently, Mathematica does not recognize that c 2 is the same as 
c*c, so we need a second rule to handle this case also. 

log[x_ Λ n_] := n log[x] 

Try the example again. 

l o g [ a b c"2 d] 

l o g [ a ] + l o g [ b ] + 2 l o g [ c ] + l o g [ d ] 

This is what we wanted. We use ? again to check what Mathematica knows about our 
logarithm function. 

?log 

Global"log 
log[(x_)*(y_)] := log[x] + log[y] 
log[(x_r(n_)] := n*log[x] 

Thus, we have given two different rules for expressions containing "log" that do different 
things depending on the form of the argument to log. See Chapter 7 for a thorough discussion 
of programming with rewrite rules. 

2.3 Some General Observations 

2.3.1 Different forms of expressions 

Type in an expression. 

expr = (2 - 3 x " 2 ) / ( a + S i n [ 3 ] ) 

2 - 3 x 2 

a + S i n [ 3 ] 
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We can get back the input form of this expression as an output if we want it. 

InputForm[ expr ] => (2 - 3*xA2)/(a + S in[3] ) 

Or we can output the TeX form, the Fortran form, or the C form if they are needed. 

TeXForm[ expr ] =>{{2 - 3\,{xA2}}\over {a + \sin (3)}} 
FortranForm[ expr ] =>(2 - 3*x**2)/(a + Sin(3)) 
CForm[ expr ] => (2 - 3*Power(x,2))/(a + Sin(3)) 

These can then be copied and pasted into a TeX document, a Fortran program, or a C program. 

2.3.2 Kinds of brackets 
There are five kinds of brackets that are used in Mathematica. Just for fun, we will use 
Mathematica to construct a table of these kinds of brackets and what they are used for. 

{{"Brackets", "Usage"}, 
{ II II II II \ r / r 
{" [ ]", "function application"}, 
{"{ }", "lists"}, 
{"( )", "grouping"}, 
{"[[ ]]"/ "part extraction"}, 
{"(* * ) " , "comments"}} // TableForm 

Brackets Usage 

[ ] 
{ } 
( ) 
[[ ] ] 
(* * ) 

function application 
lists 
grouping 
part extraction 
comments 

3 Interacting with the Front-End 
Notebooks provide many facilities for the user. 

i) The most dramatic of these is the ability to edit inputs in place and reevaluate them 
without losing control of the sequence in which things have been evaluated. 
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ii) The next obvious thing is the hierarchical organization of the cells in a notebook which 
provides a very convenient outlining facility and enables one to hide those parts of a 
notebook that are not being worked on. 

iii) Graphics and text can be intermixed and printed exactly as they appear on the screen. 

3.1 Help Facilities in the Front-End 

There are several help facilities in the front-end which are now (Version 2.2 and later) grouped 
under the Help menu. 

i) Press the Command, Shift and ? keys simultaneously or select the item Help Pointer 
in the Help menu. This turns the cursor into a question mark which can be used to 
inquire about any part of the notebook interface. For instance, select the item Connect 
Remote Kernel in the Action menu with the question mark cursor. A dialogue box 
will appear and give a brief explanation of this item-actually just enough to convince 
you to read the User's Guide carefully before attempting to use a remote kernel. 

ii) Select the item Open Function Browser to bring up a dialogue box with very powerful 
facilities to locate commands and information about them. Commands are organized 
logically, rather than alphabetically, in the Function Browser in a three-level hierarchy 
with related commands being placed near to each other. This is an extremely useful 
way to find commands and understand what they do, not only for beginners, but also 
for experts in the language. Once a command is found, a template for its arguments 
can be created and pasted in a notebook. Alternative, type the beginning of some 
command, highlight it and select Completion Selection or Make Template from the 
Prepare Input sub- menu of the Action menu. (Note that it has a command key 
equivalent.) If there is only one possible completion of your partial command, that will 
be made. If there are several, a scrollable dialogue box will appear showing all possible 
completions in alphabetical order. Once you have a complete command, you can use 
the Find in Function Browser item in the Help menu to find out more about it. 

3.2 Menus 

Detailed information about all of the menu items can be found in the documentation supplied 
with the program, or by using the Help pointer, ?. Here we just mention some of the items that 
we use all the time and find very helpful in producing nice documents. The information here is 
specific to the Macintosh platform, although MS DOS and X-Windows versions are similar. 
The NeXT machine version has things arranged differently, but contains similar items. 
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3.2.1 File menu 
Under Printing Settings, investigate the Printing Options and the Headers and Footers items. 
The Save As Other item is one of the most useful utilities since it lets one convert notebooks to 
formats that can be used in other programs. The RTF (Rich Text Format) item produces a file 
that is suitable for a number of word processors such as Microsoft Word and Aldus 
PageMaker. It retains font information but discards directions for formatting cells, etc. The 
Plain Text setting produces a file that can be used for versions of Mathematica that don't use 
notebooks. Of course any version that does use the Notebook front-end will read the file 
produced by any other version. Notebooks are ASCII text files that can be transmitted over 
networks and modems with only a moderate amount of editing required at the destination. 

3.2.2 Edit menu 
The Preferences sub menu contains a number of interesting features. For instance, under 
Display one finds the Real-time scroll bar item checked by default. Try it. Under Action 
Preferences, you might want to turn on the Display clock timing after each evaluation. In 
earlier versions, the Startup Preferences dialogue box is where the size of the stack was 
changed. In Version 2.2 and later, you have to switch to the kernel program itself. There is a 
Preferences item in the Edit menu there, whose only item is a Stack Size dialogue box. Stack 
size is important because sometimes it is not sufficient to increase the recursion limit in order 
to complete a calculation (see Chapter 7, Section 6 for an example) and it may be necessary to 
increase the stack size. 

The most useful item under Nesting is Balance with its keyboard equivalent of Command 
b. Put the cursor anywhere in the content of an input cell and type Command b. The smallest 
string between two brackets will be selected. Continue pressing Command b and 
progressively longer strings will be selected. This is how you find unbalanced brackets. 

3.2.3 Cell menu 
Everything in this menu is useful. Automatic grouping is wonderful when it does exactly 
what you want. If it doesn't, this is where you turn it off. 

3.2.4 Graph menu 
I use both a monochrome and a color monitor, so I frequently choose Render PostScript to 
change a monochrome picture to a colored picture. However, resizing the picture 
accomplishes the same end. Another item is Animate Selected Graphics with its keyboard 
equivalent Command y. 
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3.2.5 Find menu 
Most items are standard. Enter Selection is useful if you want to search for a particular term. It 
is necessary to learn the keyboard equivalents, Command a and Command d, to find and 
replace an item many times. On the other hand, if you select the Find... dialogue box, notice 
that there is a button labeled Long Form. Choosing that brings up a completely different Find 
box based on Keywords and Styles. Styles refers to cell styles. For instance, I made new 
notebooks from each of these chapters by selecting Title Subsubsection or Input. When I 
then clicked on All, all of these kinds of cells were selected and I just copied them into a new 
notebook to make the disks supplied with this book. Keywords can be used to identify 
particular cells. Under the Find menu itself there is an item Edit Keywords... which is where 
keywords are added to cells. They can then be used for instance to construct an index using the 
Make Index item in this menu. 

3.2.6 Action menu 
The most useful items are the 3-D View Point Selector on the Prepare Input submenu and the 
Evaluate Initialization item. Other items on the Prepare Input submenu are mentioned above. 

3.2.7 Style menu 
A great deal of work is done in this menu. Cell Styles range from Title through Special 5. 
These items constitute the descriptive markup items that are available in the Notebooks front-
end. (Descriptive markup items are just names.) For each such name there has to be a 
corresponding procedural markup specification that describes exactly what styling properties 
correspond to the name, and this is where it is given. For instance, choose the Edit Styles... 
dialogue box and select the cell bracket for the cell This is the Section Style. Then go back to 
the Style menu and look at the various items there. You will find: 

Attributes Inactive 
Font Times (I'm looking at my own setup for this notebook.) 
Face Bold 
Size 14 
Leading +1 
Space Around Cell Space above cell 6.00 Space below cell 4.00 
Alignment Align Left 
Text Color Black 
Background Color White 
Page Breaks (none chosen) 
Formatter Notebook's Kernel 
Evaluator Notebook's Kernel 
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These items constitute the procedural markup specification assigned to Section cells. The left-
hand entries constitute the properties that define a style, and the right-hand entries give their 
values. They can all be changed interactively here. Making such changes is an important part 
of making your notebook look the way you want it to. Note also that one of the possible cell 
attributes is Formatted. This is an attribute of output and graphics cells. If such a cell has this 
attribute unchecked, its appearance may change dramatically. For instance, a graphics cell 
turns into the PostScript description of the picture. 

33 Mouse Operations on Graphics 

The coordinates of points in a graphics cell can be determined very simply. Select the graphics 
item, hold down the Command key and click with the cross hairs cursor at the desired points. 
The coordinates of the cursor are displayed continuously at the bottom left of the window. 
After clicking on the desired points, choose Copy. Then place the cursor in a new cell and 
choose Paste. A list of the chosen points will be entered in that cell. 

If instead the Command and Option keys are held down and the mouse is dragged in the 
selected picture, then a rectangle is produced. If this is copied, then a description of the corners 
of the rectangle is produced which can be used as the value of the option PlotRange to get a 
new picture of the part of the curve in the chosen rectangle. Here is part of a screen dump, 
made on a Macintosh, of the appearance of such a rectangle. 

P l o t [ S i n [ x ] # { x , 0 , 2 P i > ] ; 

After copying and pasting, one gets the following list of numbers. 

{{0.840136, 3.82095}, {-0.429487, 1.05091}} 

The first pair of numbers here is the x-range of the rectangle. If these numbers are used instead 
of 0 and 1 for the range of x in another plot, then we get the following picture. 
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P l o t [ S i n [ x ] , {x, 0.840136, 3 .82095}] ; 

0.7 
0. 

0 .2 

- 0 . 2 
- 0 . 

This can be used, for instance, to very quickly close in on a zero of a function. 

4 Using Packages 

4.1 Supplied Packages 
The current version of Mathematica has 13 directories (or folders) of packages with names like 
Calculus, Graphics, etc. Calculus contains 10 files, a Master file and a subdirectory, Common, 
while Graphics contains 20. A very convenient way to find out about packages is to use the 
Function Browser if it is available. Just click on the radio button Packages there, and the 
browser will show you the names of all the packages, in a hierarchical format with brief 
descriptions of each package. Once a package has been loaded, you can use the radio button 
Loaded Packages to find descriptions of each of the commands in such a package. There are 
two ways to load a package into a session of Mathematica; either use a Get command, written 
« , or use a Needs command. A command with « requires either the actual name of the file, 
or a context name as described below. You may get a dialogue box if your system can't locate 
the file. This can be avoided by using a complete path name for the file. If you use the form 

«Po lyhedra . m 

then, depending on the machine, you may or may not succeed in loading the file. On a 
Macintosh, a dialogue box appears saying the file can't be found. If you use a more complete 
path name, 

« :Graphics :Polyhedra.m 
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there is a better change of succeeding. The strange form with back ticks, 

«Graphics" Polyhedra" 

now seems to be the most reliable, working just like the Needs command. This particular 
package enables one to display regular and stellated polyhedra. Using Needs directly is 
system independent. 

Needs["Graphics"Polyhedra""] 

Note the quotation marks and the back ticks after Graphics and Polyhedra. This is actually 
a context name rather than a file name. Contexts will be explained when we study packages in 
Chapter 11, Section 2. 

4.1.1 Graphics and geometry packages . 
Start with some examples from graphics packages. Here is an example from the Polyhedra 
package. 

Show[Graphics3D[GreatDodecahedron[]]]; 

Actually, each folder in the Package subdirectory has a file called Master.m. If this package is 
loaded then all of the commands in all of the other packages in the folder are made available. 

Needs["Graphics"Master""] 
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The following command will list all of the packages that have now been made available. 

$ContextPath 

{Graphics"ThreeScript", Graphics"SurfaceOfRevolution", 
Graphics"Spline", Graphics"Shapes", Graphics"Polyhedra", 
Graphics"PlotField3D", Graphics"PlotField", 
Graphics"ParametricPlot3D", Graphics"MultipleListPlot", 
Graphics"Legend", Graphics"Graphics3D", 
Graphics"Graphics", Graphics"FilledPlot", 
Graphics"ContourPlot3D", Graphics"ComplexMap", 
Graphics"Common"GraphicsCommon", Graphics"Colors", 
Graphics"Arrow", Graphics"ArgColors", Graphics"Animation", 
Graphics"Master", Graphics"ImplicitPlot", 
Utilities"FilterOptions", Global", System"} 

To find out what is in the Shapes package, one can use the following command. 

Names["Graphics"Shapes"*"] 

{AffineShape, Conef Cylinder, DoubleHelix, Helix, MoebiusStrip, 
RotateShape, Shapes, Sphere, Torus, TranslateShape, WireFrame} 

Thus, this package makes available 12 more operations in Mathematica. Unfortunately, loading 
the M a s t e r package is not enough to get the Function Browser to display all of this 
information. 

4.1.2 Miscellaneous packages 

The directory M i s c e l l a n e o u s contains many useful and interesting constants. 

Needs["Miscellaneous"Master";"] 

For instance, the package U n i t s has 241 scientific and common units and converts between 
them. (See also the package S l U n i t s . ) E.g., 

{Convert[27 BTU, C a l o r i e ] , 
C o n v e r t [ 0 . 5 G a l l o n , Teaspoon]} 

{6803 .91 C a l o r i e , 384 . Teaspoon} 
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Similarly, the package ChemicalElements has all 106 elements together with some 25 
operations to manipulate them. 

{HeatOfVaporization[Xenon], 
ElectronConfigurationFormat[Zinc]} 

{12.65 Joule Kilo/Mole, I s 2 2s2 2p6 3s23p63d1 0 4s2} 

The package PhysicalConstants has exactly what its name suggests. 

{AccélérâtionDueToGravity, ThomsonCrossSection} 

{9.80665 Meter/Second2, 6.65224 1029 Meter2} 

Convert [Accélérât ionDueToGravity, Feet/Second^] 

32.174 Feet/Second2 

The package Music has absolute and relative frequencies. 

{MeanMajor, PythagoreanMajor, Fflat3}//TableForm 

0 193.2 386.3 503.4 696.6 889.7 1082.9 1200 
0 204 408 498 702 906 1110 1200 
329.628 

4.2 MathSource 
MathSource is a call-in facility maintained by Wolfram Research, Inc. It can be accessed by e-
mail, ftp, and, presumably by the time this appears, by direct modem connection. At the time 
of writing, it contains 440 items, some of which are produced in house by Wolfram Research, 
Inc., and some of which are contributed by users of the program. There are short programs, 
long programs, programs written in a very naive style, and programs written in a very 
sophisticated style. Before embarking on a project of your own, it would seem wise to check to 
see what is available there. The most convenient way is via ftp which allows you to search the 
archives interactively and request desired files. 
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5 Saving Work to be Reused 

5. / Notebook Front-Ends 

If you work in a Notebook front-end, then saving work to be reused is a simple matter. Just 
put the work you want to save in a separate notebook and save the notebook under some 
convenient name using the menu selection in the File menu. However, this notebook may 
contain many other things besides the operations you have defined to carry out certain tasks 
and you can arrange things so that just these operations will be evaluated when you start up 
Mathematica again and open this notebook. Just select each of the cells containing the important 
definitions and give them the attribute Initialization Cell, found in the Attributes submenu of 
the Style menu. When such a notebook is reopened a dialogue box appears asking if you want 
to evaluate the initialization cells. You can either answer Yes at this point, or answer No and 
wait until later when the same thing can be accomplished using the menu item Evaluate 
Initialization in the Action menu. 

5.2 Raw Kernek 

If you work in a system without a Notebook front-end, then there are two alternatives. If you 
have a window system, then a common way to work is to keep a textedit window open next to 
the Mathematica window and type all of your inputs in the textedit window first, transferring 
them to Mathematica by copying and pasting. This makes it easy to edit inputs and reevaluate 
them in edited form. When you are done, the textedit window will contain a transcript of the 
successful commands. This can be further edited and saved as a text file in the usual way. That 
file can later be reloaded in a textedit window and the commands transferred to a new 
Mathematica session using copy and paste again. Editors like vi or emacs can also be used. 

If all you have available is a terminal, or if you want to save a series of definitions in a file to 
be loaded directly into Mathematica at some later time, one way to do it is to use some 
commands that will seem rather mysterious at this stage, but will become clear later. First 
define a "history" command. 

history[m_, n_] := Table[InString[i], {i, m, n}] 

This will store the inputs labeled m through n as strings. To try this out, define a few functions. 

ff[x 1 
fff[x_] 
ffff[x ] 

:= x"2 
:= xA3 
:= xA4 
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Try out these functions just to see how they work. 

{ f f [ 2 ] , f f f [ 2 ] , f f f f [ 2 ] } => { 2 , 8, 16} 

These functions are labeled In [42], In [43], and In [44] in my current session, so make a 
new definition recording them as a history. 

hhh = history[42, 44] 

{ff[x_] := χΛ2;, fff[x_] := xA3, ffff[x__] := xA4} 

Note that this is a list of strings. If the inputs you want to save are not in sequence, they can be 
saved just by making a list of the I n S t r i n g s of the corresponding I n numbers; e.g., 

(*hhh = {InString[nl], InString[n2],.., InString[nk]}*) 

The definition of hhh can now be stored in a file using the Save command. 

Save["sessionHistory", hhh] 

Now clear the definitions of f f, f f f, and f f f f, so that we can check how to read in the file 
and use these definitions again. 

Clear[f f , f f f , f f f f ] 

This causes Mathematica to forget the values that have been assigned to these symbols. E.g., 

?f f => G l o b a l ^ f f 

The command Get [ " f i l ename" ] reads in a file. The result is more readable if we display it 
in TableForm although this is unnecessary for what follows. 

TableFormfGet["sessionHistory"]] 

ff[x_] := χΛ2 
fff[x_] := χΛ3 
ffff[x_] := χΛ4 

These are still strings and so have no value. The command ToExpress ion turns them into 
Mathematica expressions, and they then evaluate themselves. 

ToExpression[%] 



Two · Interacting with Mathematica 59 

Now we can use the functions again. 

{ff[2], fff[2], ffff[2]} => {2, 8, 16} 

6 Practice 

1. Needs["Graphics Polyhedra^"] 
2. Show[ Graphics3D[ Icosahedron[ ] ] ] 
3. ?D* 
4. ?*Plot* 
5. ?A* 

7 Exercises 

1. Write rewrite rules for a function l o g b [ x ] that reverse the rules given for l o g [ x ] . 
Note that in writing these rules it is necessary to use Λ : = instead of : = for reasons that 
will be explained in Chapter 7, Section 2.1.1. 

2. Make a three-dimensional plot from a different view point. First evaluate 

Plot3D[Sin[x] Cos[y], {x, 0, Pi}, {y, 0, Pi}] 
to see the picture from the default viewpoint. Then change the command to 

Plot3D[Sin[x] Cos[y], {x, 0, Pi}, {y, 0, Pi}, ] 
and place the cursor just after the last comma. Go to the Prepare Input sub menu of the 
Action menu and select the 3D ViewPoint Selector. Use the cursor to drag the outline 
box to a new orientation and click on the Paste button. Your command will now look 
similar to 

P l o t 3 D [ S i n [ x ] C o s [ y ] , { x , 0 , P i } , { y , 0 , P i } , 
V i e w P o i n t - > { 1 . 9 2 7 , - 2 . 5 0 1 , - 1 . 2 1 6 } ] 

Evaluate this new graphics command and compare the new picture with the original 
one. 
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3. Make a plot of the curve y = x - cos x for x between 0 and 1. Use the technique described 
in the section about mouse operations on graphics for selecting new values for the x-
range to close in on the value where x = cos x. Doing this several times should give a 
value with six significant digits. Compare this value with the value given by pushing 
the cos key on a pocket calculator until the digits stop changing. Alternatively, type 
PFixedPoint to find out about this function and use it to find the solution. 

4. i) Type Be leaving the cursor just after the e and select Command Completion from 
the Prepare Input submenu of the Action menu. Choose BesselY. 

ii) Same exercise, except select Make Template instead of Command Completion. 
Here are some suggestions from Wolfram Research, Inc. in Course Notes by Paul 
Abbot of things to do with the front-end. 

5. Open the Find dialogue box and select all of the Subsubsection cells in this notebook, 
or some other notebook. Copy them and paste them into another new notebook. Select 
all of them and choose Convert to PICT from the Graph menu. Close the group of cells 
and Animate them. Use the controls that appear in the lower left-hand corner of the 
window to control the speed, or drag the horizontal scroll bar to view the cell names 
one at a time. 

6. Use a drawing program such as MacDraw to produce a PICT graphics. Copy and Paste 
it into a cell in Mathematica and use Convert to InputForm to produce a Mathematica 
input cell yielding the same graphics. Give a name to the Graphics item in this drawing. 
Evaluate the cell and compare the result with the original graphics item. Load the 
package GraphicsvGraphicsv and get information on the command 
TransformGraphics. Apply TransformGraphics to your named graphics item using 
some function like Sin for the second argument, and Show the result. 

7. Use Edit Keywords in the File menu to add some keywords to a few cells in a notebook. 
Try typing one of the keywords in another cell and Command double clicking on it. Use 
Make Index in the File menu to make an index of the keywords you have added. 



CHAPTER 

More About Numbers i 
and Equations 

1 Introduction 
At the heart of any symbolic computation program lie its abilities to deal in different ways 
with equations of all kinds. The possible ways include exact and approximate numerical 
solutions and exact symbolic solutions. The kinds can be linear, polynomial, algebraic and 
transcendental equations in one or more variables, as well as ordinary and partial differential 
equations involving one or several unknown functions of one or more variables. There are 
many subtle questions that we only have space to dwell on briefly in introducing the reader to 
this very rich world that Mathematica makes available to users. 

2 Numbers 

2.1 Precision and Accuracy 

There are two important measures attached to numbers in Mathematica, precision and 
accuracy. The definitions are: 

Precis ion [ x] = the total number of significant digits in x 
Accuracy[x] = the number of significant decimal digits to the right of the 

decimal point in x. 

Here are some simple examples, presented as a table of inputs and outputs. Frequently, we 
will use either this format or lists of inputs and lists of outputs to save space. 

61 
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Inputs 

{Precision[10], Accuracy[10]} 

{Precision[3/5], Accuracy[3/5]} 

{Precision[68.25], Accuracy[68.25]} 

Outputs 

{Infinity, Infinity} 

{Infinity, Infinity} 

{19, 17} 

It is clear that infinite precision numbers like integers and rational numbers should have 
P r e c i s i o n equal to I n f i n i t y . Presumably having Accuracy also equal to I n f i n i t y 
suggests an infinite number of zeros to the right of the decimal point. But why the value 19 
and 17 for 68.25, rather than 4 and 2? This is because of the way real numbers are handled by 
default. They use the built-in machine level floating point arithmetic. For any specific machine 
the number of digits can be accessed by the command 

$MachinePrecision 19 

This result is for a Macintosh. Unix workstations usually have a machine precision of 16. 
(Commands that start with $ have values or effects concerned with the environment in which 
Mathematica is running or the way in which it works. E.g., 

{$Version, $TimeUnit, $RecursionLimit} 

{Macintosh 2.2 (April 9, 1993), 1/60, 256} 

The output shows that I am using the Macintosh Version 2.1 of Mathematica from July 28,1992, 
that the minimal unit of time on my machine is 1/60 of a second, and that a recursive program 
will carry out 256 steps before stopping and asking if I want to continue.) Anyway, 
$MachinePrecision equal to 19 means that all machine level real numbers are treated as 
though they have 19 significant digits. So 68.25 has Prec is ion 19 and Accuracy 17. For real 
numbers with specified precision, the values are as expected. 

sq3 = N[Sqrt[30], 25] 
{Precision[sq3], Accuracy[sq3]} 

5.477225575051661134569698 
{25, 24} 

However calculations with numbers of specified precision can result in values that have a 
different precision. What N [ ] with a specified second argument really means is "use numbers 
of the given precision to carry out the computation" and not "give me an answer with 
requested precision." Thus, for instance, start with the square root of 30 calculated with 
precision 50. 
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N[Sqrt[30], 50] 

5.4772255750516611345696978280080213395274469499798 

{ P r e c i s i o n ! % ] , Accuracy[%]} => {50 , 49} 

If we calculate the 25th power of this, we get: 

N [ S q r t [ 3 0 ] , 5 0 p 2 5 

2.910822236831029845016854783414410868699805934544 1 0 1 8 

{ P r e c i s i o n ! % ] , Accuracy[%]} => {49 , 30} 

One digit of precision has been lost. Now raise this result to the 25th power. 

N[Sqrt[30], 50]"625 

3.98466761276428296232867063879011796228706075764 10461 

{Precision!%], Accuracy[%]} => {47, -414} 

Two more digits of precision have been lost. The negative accuracy value means that the 
significant digits start 414 places to the left of the decimal point. Note that 

461 - 414 => 47 

Machine precision numbers being stored as 19 digit numbers even when fewer are 
displayed affects certain calculations. For instance, suppose we want to make a table of 
approximations to P i with the values of S i n of those approximations to show the values 
approaching 0. The following attempt fails. 

T a b l e t { N [ P i , n ] , S i n [ N [ P i , n ] ] } , {n , 1 , 5 } ] / / T a b l e F o r m 

3 . 3 .79471 1 0 " 1 9 

3 . 1 3 .79471 1 0 " 1 9 

3 .14 3 . 7 9 4 7 1 1 0 " 1 9 

3 .142 3 .79471 10~ 1 9 

3 .1416 3 .79471 1 0 " 1 9 

We get what appear to be increasingly accurate approximations to P i , but the values of S i n 
are all the same. The reason is that in the left-hand column we are just being shown fewer 
digits of P i at the beginning. However, consider the following construction which uses 
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ToString to turn a number into a string; i.e., something which has no numerical value. It then 
uses ToExpression to turn it back into a number. Along the way all of the hidden digits get 
lost and what we see is what we get. 

piApprox = ToExpression[ToString[N[Pi, 5 ] ] ] => 3.1416 
N[piApprox, 10] => 3.1416 

This means that piApprox is really 3 .1416000000 . . . . Using this, we can make the desired 
table. 

Table[ {ToExpression[ToString[N[Pi, n] ] ], 
N[Sin[ToExpression[ToString[N[Pi, n]]]], 11]}, 
{n, 1, 5}]//TableForm 

3. 0.14112000806 
3.1 0.041580662433 
3.14 0.0015926529165 
3.142 -0.00040734639894 
3.1416 -7.3464102067 10~6 

There is an interesting number called $MachineEpsilon which is "the smallest machine-
precision number which can be added to 1.0 to give a result not equal to 1.0." 

$MachineEpsilon => 1.0842 10"1 9 

Adding it to 1.0 doesn't appear to change the value. 

1.0 + $MachineEpsilon => 1. 

However, comparing this with 1 shows that there is a difference. 

% - 1 => 1.0842 10~19 

Other interesting machine numbers are the biggest and smallest ones. 

{$MaxMachineNumber, $MinMachineNumber} 
{1.18973 104932, 6.25. 10"4916} 

2.2 Inverses to N[ ] 

There are three commands that convert numbers into integers, Floor, Ce i l ing , and 
Round. They behave exactly as might be expected. 

{ F l o o r [ 3 . 5 ] , C e i l i n g [ 3 . 5 ] , Round[3.5]} => {3, 4, 3} 
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What is more interesting is to convert real numbers into rational numbers. We saw in Chapter 
1 that N[] converts integers and rational numbers (real or complex) into floating point reals or 
complexes. If a second argument is given, then it converts them into reals or complexes with a 
specified precision. An inverse operation should convert reals or complexes into rational 
numbers or integers (real or complex as the case may be). There are operations in Mathematica 
that do exactly this. In particular, Rationalize converts decimal numbers into rational 
numbers. 

Rationalize!3.456789 + 1.234567 I] 
3456789 1234567 I 

+ 
1000000 1000000 

The result is not very interesting. It has just written the decimals as fractions whose 
denominator is an appropriate power of 10. In general, this result will be reduced to lowest 
terms, so it might look more interesting without really being so. R a t i o n a l i z e becomes 
actually more interesting when it, like N, is given a second argument which represents the 
intended accuracy of the rational approximation to the real or complex number. 

Rationalize[3.456789 + 1.234567 I, 0.001] 
159 21 I 

46 17 

To check the accuracy of this, just subtract it from the original number to see that it is accurate 
to three decimal places. 

3.456789 + 1.234567 I - % => 0.000267261 - 0.000727118 I 

Let's try to find an approximation to Pi. 

Rat iona l i ze [N[P i ] , 0.001] 

355 

113 

In fact, let's find many approximations to Pi. 

Table[Rationalize[N[Pi], (0.1)Λη], {nf 1, 10}] 
22 22 355 355 355 355 104348 104348 104348 312689 

I / / / r r / t r / } 
7 7 113 113 113 113 33215 33215 33215 99532 
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Surely a curious result! There is no best approximation to Pi whose denominator has two, 
four, five, or six digits because 22/7 is a better approximation that any fraction whose 
denominator has two digits and 355/113 is better than any one whose denominator has four, 
five, or six digits. To check the accuracy of 355/113, just calculate the difference. 

N[Pi] - 355/113 => -2.66764 10~7 
For another approach to rationalizing real numbers, see Chapter 11, Section 6.1.1. 

2.3 Working with Fixed Precision 

It is possible to specify the form in which Mathematica displays floating point numbers. For 
instance: 

NumberForm[ N[Pi, 35], 
NumberSeparator -> " ", DigitBlock -> 5] 

3.14159 26535 89793 23846 26433 83279 50288 

The two optional arguments to the command NumberForm, indicated by the ->'s, mean that 
we want digits before and after the decimal point divided into groups of 5, separated by 
spaces. The following form might be more appropriate for large integers. 

NumberForm [ 3*24, 
NumberSeparator -> ",", DigitBlock -> 3] 

282,429,536,481 

If we were going to work frequently with 35 decimal places, we could define a function that 
formats such numbers for us. 

n36[x_J := NumberForm[ N[x, 36], 
NumberSeparator -> " ", 
DigitBlock -> 5] 

The following command will now apply n36 to every output. 

$Post = n36 => n36 
Sqrt[3] 
1.73205 08075 68877 29352 74463 41505 87236 7 

Precision!%] 36. 
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Notice that this doesn't affect non-numerical expressions. 

a + b => a + b 

One way to turn off the post processing of all outputs is to redefine $Post as nothing, using a 
period. 

$Post = . 

Large floating point numbers are usually displayed in scientific notation. To see all of the 
digits to the left of the decimal point, use Account ingForm. 

{3.24Λ24, AccountingForm[3.24Λ24], N[3.24*24, 20]} 
{1.79094 IO12, 1790936736361., 1.790936736360969372 IO12} 

2.4 Different Bases 

All of the numbers discussed up to now have been written in base 10, but Mathematica can deal 
with numbers in different bases and convert values between different bases. The following 
illustrates how to convert a number in base 10 to various other bases and convert back again. 

Inputs 

BaseForm[12345678, 2] 

BaseForm[12345678, 15] 

BaseForm[12345678, 36] 

BaseForm[3/4, 2] 

BaseForm[1234.5678, 15] 

BaseForm[1234 + 5678 I, 36] 

2ΑΛ101111000110000101001110 

15~113cea3 

36""7clzi 

Outputs 

1011110001100001010011102 

113cea315 

7clzi36 

II2/IOO2 

574.87b4di5 

ya36 + 4dq36 I 

12345678 

12345678 

12345678 

Thus, any base up to 36 is acceptable (since there are 10 ordinary digits and 26 letters to use to 
represent the extra digits). Decimal real numbers can be converted to other bases and complex 
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numbers are also acceptable. Fractions are converted by just converting their numerators and 
denominators. To convert numbers in a specified base back to decimal numbers, use the 
illustrated form. 

2.5 Fun with Factor 
F a c t o r l n t e g e r was discussed in Chapter 1. If we give it a prime number such as 2 as 
argument, the results are uninteresting. 

FactorInteger[2] => {{2, 1}} 

However, if F a c t o r l n t e g e r is told to use Gaussian integers in its factorizations via an 
optional second argument, then the results are much more interesting. 

Factorlnteger[2, Gaussianlntegers -> True] 

{{-I, 1}, {1 + I, 2}} 

Check that the product of these Gaussian integers does equal 2. 

(-1) (1 + I ) " 2 => 2 

But are thè entries prime numbers? We can check using the predicate PrimeQ which tests if a 
number is prime or not. 

{PrimeQ[-I], PrimeQ[l +1]} => {False, True} 

No, - I is not a Gaussian prime. Actually, it is a unit, i.e., a number that divides 1. The 
Gaussian integers have four units, 1, -1,1, and -I. Factorizations into primes in the Gaussian 
integers are unique up to multiplication by units. For instance, 1 - I is also a Gaussian prime 
and obviously, (1 + 1) ( 1 - I ) = 2;but ( 1 - I ) = (-1) (1 + I ) so everything is 
OK. The following amusing use of PrimeQ for Gaussian integers appeared in the Mathematica 
One-Liners column in the Mathematica Journal, Vol. 1, No. 4, Spring 1991. It illustrates all 
Gaussian primes of the form a + b I where a and b are less than or equal to 50. 

Table[ 
If[PrimeQ[a + b I], 1, 0], {b, 0, 50}, {a, 0, 50}]; 

ListDensityPlot[%]; 
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The white squares here are the Gaussian primes. What can be said about the distribution of 
such primes? 

2.6 The N Functions 

There are 6 numerical functions in Mathematica starting with N; namely, NDSolve , 
N I n t e g r a t e , NProduct, NRoots, NSolve, and NSum. In addition, there are two more in the 
package NumericalMath NLimit^ called ND and NLimit . Each of them is a numerical 
version of the symbolic, exact command without the N; i.e., DSolve, I n t e g r a t e , Product, 
Roots , S o l v e , Sum, D, and Limit . As a general rule, try the exact command first. If that fails, 
by returning the input unevaluated, or by returning a partial result, or by never returning, then 
try the corresponding N command. In all cases there are in fact four possible ways to get a 
result; e.g., in the case of I n t e g r a t e one can try I n t e g r a t e [ - ] , N [ I n t e g r a t e [ - ] ] , 
N I n t e g r a t e [ - ] , and I n t e g r a t e [ N [ - ] ] . The advantage to using N [ command [ - ] ] is that 
N [ - ] takes a second argument specifying the precision, but in this case, if I n t e g r a t e [ - ] 
fails, so will N [ I n t e g r a t e [ - ] ] , whereas N I n t e g r a t e [ - ] may very well succeed. 

Fortunately, or unfortunately, except for NRoots and NSolve , all of these functions have 
several optional arguments, which complicates their use, but gives us a better chance to get an 
accurate answer. These actually refine the single optional second argument to N. For instance: 
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Options[NIntegrate] 

{AccuracyGoal -> Infinity, Compiled -> True, 
GaussPoints -> Automatic, MaxRecursion -> 6, 
Method -> Automatic, MinRecursion -> 0, 
PrecisionGoal -> Automatic, SingularityDepth -> 4, 
WorkingPrecision -> 19} 

W o r k i n g P r e c i s i o n determines how accurately the integrand is evaluated in approximating 
the integral. This has the same effect as giving a second argument to N[ ] . P r e c i s i o n G o a l 
specifies how precise the answer should be. By default, A u t o m a t i c means that it is 10 digits 
less than W o r k i n g P r e c i s i o n . A c c u r a c y G o a l ; similarly sets the desired accuracy of the 
answer. These same three options are available in NDSolve, NProduct and NSum. For more 
information about the use of these options, see [Skeel]. 

3 Solving Algebraic Equations 

3.1 One Variable 

3.1.1 Solutions of equations in one variable 

The standard format for solving an equation is S o l v e [ e q u a t i o n , v a r i a b l e ] , as we have 
seen in Chapter 1. 

Solvef χΛ2 + 3x == 2 , x ] 

-3 + Sqrt[17] -3 - Sqrt[17] 
{ { x -> }f { x _> } } 

2 2 

(The "variable" here does not have to be a symbol. See 4.9.2 below.) The output is a list of rules. 
However, there is another form of S o l v e that gives its result in a different form. 

Roots [ χΛ2 + 3x == 2 , x ] 

-3 + Sqrt[17] -3 - Sqrt[17] 

2 2 

The output here is a pair of equations for the values of x, separated by | | which means Or in 
Mathematica. S o l v e is the same as Roots followed by ToRules. 
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{ToRules[%]} 

-3 + Sqrt[17] -3 - Sqrt[17] 
{{x -> }, {x _> }} 

2 2 

We would like to check that the answer is correct. One method is to substitute the values for 
x into the left-hand side of the equation and see if the results equal the right-hand side. This is 
done by using / . indicating application of the rules, followed by %, referring to the previous 
output which consists of a list of rules. 

χΛ2 + 3x / . % 

3 ( -3 + S q r t [ 1 7 ] ) ( - 3 + S q r t [ 1 7 ] ) 2 
{ + , 

2 4 

3 (-3 - Sqrt[17]) (-3 - Sqrt[17])2 
+ } 

2 4 

It's hard to see if this is right or not, so we S i m p l i f y it. 

Simplify[%] => {2, 2} 
This may seem rather mysterious. The important thing is that the / . in the form 

e x p r e s s i o n / . r u l e s means: use the rules to change the expression by replacing the 
occurrences in e x p r e s s i o n of the left-hand sides of the rules by their right-hand sides. For 
instance, 

a / . a -> 5 => 5 

I read something like this as "a, where a gets the value 5." So, I read / . as "where." (Actually, in 
Mathematica , / . stands for R e p l a c e A l l . ) Rules can be applied simultaneously by putting 
them in a list. For instance, calculate the value of x y where x gets the value 2 and y gets the 
value 3. 

x y / . {x -> 2 , y -> 3} => 6 

If the r u l e s part of e x p r e s s i o n / . r u l e s is a list of lists, then the result is a list of 
modified expressions, one for each substitution in the list. For instance, 

x y / . { { x - > 2 } , {x - > 3 } } => {2 y , 3 y } 
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Another way to check equations is to substitute the answers in the equation itself, which is 
the format we will use in looking at a number of equations. First, give a name to the equation. 
The output here is suppressed by following the input with a " ; . " 

equationl = xA2 + 3x == 2; 
Now, solve the equation, giving a name to the solution. 

solutionl = Solve[ equationl, x ] 
-3 + Sqrt[17] -3 - Sqrt[17] 

{{x -> }/ {x _> }} 
2 2 

Finally, substitute the solution in the equation, simplifying the result. 

Simplify[ equationl /. solutionl ] => {True, True} 
The output is a list of two values of True since s o l u t i o n l is a list of two rules. This also tells 
us something more about ==. It behaves something like a predicate. For instance, 

{2 == 2r 2 == 3, a == b} => {True, False, a == b} 
If Mathematica can determine that the left-hand side of == does or does not equal the right-
hand side, then it returns the value T r u e or F a l s e as appropriate. Otherwise, it leaves the 
input unevaluated. This is exactly what one wants for an equation; i.e., a "predicate" that asks 
if the two sides are the same, but leaves them unevaluated if there are variables without values 
on either or both sides. 

Now let's try a more complicated example. Experience shows that the solution to the 
following equation is a very large expression consisting of three different rules. To save space, 
we just look at one of them by typing [ [ 1 ] ] after So lve , which picks out the first entry in the 
list of solutions. It is often a good idea to put in an extra simplification step in solving 
equations, so we will always include that, using the postfix form of function application / / . 

equat ion2 = xA3 + 34x + 1 — 0; 
s o l u t i o n 2 = S o l v e [ e q u a t i o n 2 , x ] [ [ 1 ] ] / / S i m p l i f y 

( -9 + S q r t [ 4 7 1 7 2 9 ] ) 1 / 3 34 2 1 / 3 
{ x _> } 

1 8 1 / 3 ( -27 + S q r t [ 4 7 1 7 2 9 ] ) 1 / 3 

This is quite complicated looking, but it can be checked. 

equation2 /· solution2 // Simplify => True 
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(Try this without the postfix application of S i m p l i f y at the end.) As a general policy, you 
should never believe the result of a symbolic computation program unless you can find some 
way to check the result. For instance, what is one to think about the calculations of P i to 100 
decimal places or the value of 3*1000 ? The second one can be checked by taking the 1000th 
root, which is an independent calculation, but the only way to check the calculation of P i is to 
compare it with some other similar calculation by a different program. So, whenever possible, 
we will try to check our results. 

If we take the previous equation and complicate it by adding some symbolic constants then 
the answer will become much larger. 

e q u a t i o n 3 = χΛ3 + a χΛ2 + b x + 2 == 0; 
s o l u t i o n 3 = S o l v e [ e q u a t i o n 3 , x ] [ [ 1 ] ] / / S i m p l i f y 

{x -> a / 3 + ( 2 1 / 3 ( a 2 - 3 b ) ) / (3 Power [ -54 - 2 a 3 + 9 a b + 
3 S q r t [ 3 ] S q r t [ 1 0 8 + 8 a 3 - 36 a b - a 2 b 2 + 4 b 3 ] , 1 /3 ] ) + 
P o w e r [ - 5 4 - 2 a 3 + 9 a b + 

3 S q r t [ 3 ] S q r t [ 1 0 8 + 8 a 3 - 36 a b - a 2 b 2 + 4 b 3 ] , 1/3] 
} 

3 2 1 / 3 

Again, Mathematica is able to check this result, but it takes noticeably longer. 

equation3 /. solution3 // Simplify => True 

One can of course replace the symbolic values by actual numbers in the solution. 

solutionAbl = solution3 /. {a->3, b - > 2 } / / 
Simplify 

1 ( -9 + S q r t [ 7 8 ] ) 1 / 3 
{x - > _ i + + } 

3 1 / 3 ( -9 + S q r t [ 7 8 ] ) 1 / 3 3 2 / 3 

Does this result agree with the solution of the equation where the substitution is made before 
solving it? 

solutionAb2 = 
Solve[ equation3 /. {a -> 3, b -> 2} , x ][[1]] // 

Simplify 

1 (-9 + Sqrt[78])1/3 
{x -> -1 + + } 

3I/3 (_9 + Sqrt[78])1/3 32/3 
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In Version 2.1, these two solutions looked quite different, although they were equal. Now they 
come out identical. 

Next, let's look at an equation that cannot be solved exactly. 

equation4 = χΛ5 + 5x + 1 == 0; 
solution4 = Solve[ equation4, x ] 

{ToRules[Roots[5 x + x5 == -1, x]]} 

We have to be satisfied with a numerical solution. 

solution4n = N[ solution4 ] 

{{x -> -1.0045 - 1.06095 I}, {x -> -1.0045 + 1.06095 I}, 
{x -> -0.199936}, {x -> 1.10447 - 1.05983 I}, 
{x -> 1.10447 + 1.05983 I}} 

As expected, there are five solutions. Now let's try to check them. 

e q u a t i o n 4 / . s o l u t i o n 4 n / / S i m p l i f y 

{ F a l s e , F a l s e , T r u e , F a l s e , F a l s e } 

It appears that only the third one is correct, but that can't really be true. We have to try harder. 
We could substitute these values of s o l u t i o n 4 n in the left-hand side of e q u a t i o n 4 and see 
if we get the right-hand side; i.e., 0. 

e q u a t i o n 4 [ [ 1 ] ] / . s o l u t i o n 4 n 

{-4 .33681 I O " 1 9 - 1.30104 1 0 " 1 8 I , 
- 4 . 3 3 6 8 1 1 0 " 1 9 + 1.30104 1 0 " 1 8 I , 0 . , 
- 4 . 3 3 6 8 1 I O " 1 9 + 4 .33681 10~ 1 8 I , 
- 4 . 3 3 6 8 1 1 0 " 1 9 - 4 . 33681 1 0 " 1 8 1} 

These are all tiny numbers, so Chop should eliminate them. As long as we believe that these 
tiny results are artifacts of the solution algorithm used by Mathematica (and all other such 
programs), we are probably justified in using Chop. (Of course, it is trivial to write an equation 
which genuinely has such a tiny solution.) 

Chop[%] => {0 , 0 , 0 , 0 , 0} 

It's reassuring to see five 0's. 
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Another way to proceed is to find the numerical solutions to greater accuracy. 

solution4nn = N[ solution4, 20 ] 
{{x -> -1.00449745579683551848 - 1.06094650640604064358 I}, 
{x -> -1.00449745579683551848 + 1.06094650640604064358 I}, 
{x -> -0.19993610217121999555}, 
{x -> 1.10446550688244551626 - 1.05982966915252011667 I}, 
{x -> 1.10446550688244551626 + 1.05982966915252011667 I}} 

Now the check proceeds without difficulty. 

equation4 / . solution4nn => {True, True, True, True, True} 

Question: should we believe this result more than the previous one? The following is faster 
and more efficient if one knows that the best that can be achieved is a numerical solution. 

NSolve[equation4, x , WorkingPrecision -> 20] 
{{x -> -1.00449745579683551848 - 1.06094650640604064358 I}, 
{x -> -1.00449745579683551848 + 1.06094650640604064358 I}, 
{x -> -0.19993610217121999555}, 
{x -> 1.10446550688244551625 - 1.05982966915252011667 I}, 
{x -> 1.10446550688244551625 + 1.05982966915252011667 I}} 

As before, the check succeeds. 

equation4 /. % => {True, True, True, True, True} 

3.1.2 Transcendental equations 
Mathematica can solve certain equations containing transcendental functions applied to the 
variable. It always gives a warning that it may not find all solutions. From now on we omit 
checking the solution unless the check takes some extra effort. 

equation5 = Cos[xp2 + 2 Cos[x] + 4 == 0; 
solutions = Solve[equation5, x] 
Solve::ifun: Warning: Inverse functions are being used by 
Solve, so some solutions may not be found. 

-2 + 2 I Sqrt[3] - 2 - 2 1 Sqrt[3] 
{ {x->ArcCos [ ] } , {x->ArcCos [ ] } } 

2 2 
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Here is another example that only began working in Version 2.1. 

equationö = 2Λχ == 8; 
solution6 = Solve[equation6, x] 

Solve::ifun: Warning: Inverse functions are being used by 
Solve, so some solutions may not be found. 
{{x -> 3}} 

But not all such equations can be solved so easily. 

Solve[ Cos[x] == x, x ] 

Solve::ifun: Warning: Inverse functions are being used by 
Solve, so some solutions may not be found. 

Solve::tdep: The equations appear to involve transcendental 
functions of the variables in an essentially non-algebraic way. 

Solve[Cos[x] == x, x] 

The second message tells the whole story. There is no way we can hope to "solve" equations 
like this exactly. Instead, numerical methods are required. Newton's method, which is 
implemented in the FindRoot command, is the obvious one. We ask it to find a root near 
x = 0.5. 

FindRoot[Cos[x] == x, {x, 0 .5} ] 

{x -> 0.739085} 

Of course, if you ask something impossible, FindRoot may also give up. 

FindRoot[Sin[x] == 2, {x, 1}] 

FindRoot:icvnwt: Newton's method failed to converge to the 
prescribed accuracy after 15 iterations. 

{x -> -10.3883} 

The problem is that S i n [ x ] is always between -1 and +1 for real arguments and so it can 
never equal 2. However, if x is allowed to take on complex values, then there is no problem. 
We tell Mathematica this by giving a complex seed. Again we set the WorkingPrecision high 
enough (namely, 1 more that $MachinePrecision) so that a subsequent check succeeds. 
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FindRoot[ Sin[x] == 2, {x, 1 + I}, 
WorkingPrecision -> 20 ] 

{x -> 1.57079632679489661923 + 1.31695789692481670863 1} 

3.1.3 An equation with an exact solution which isn't found 
Consider the following special sixth degree equation. 

equation7 = 
xA6 - 9 xA4 - 4 xA3 + 27 xA2 - 36 x - 23 == 0; 

solution7 = Solve[equation7, x] 

{ToRules[Roots[-36 x + 27 x2 - 4 x3 - 9 x4 + x6 == 23, x]]} 

Mathematica gives up, but we can give a solution ourselves. (See the Mathematica Book.) 

solution77 = {x -> 2"(l/3) + 3A(l/2)}; 
equation7 /. solution77 // Simplify => True 

3.1.4 A funny equation 
Sometimes strange equations are solved. 

equation8 = Sqrt[l - x] + Sqrt[l + x] == a; 
solution8 = Solve[ equation8, x] 

a Sqrt[4 -a2] -(a Sqrt[4 -a2]) 
{{ x -> }f {x _> }} 

2 2 

However, Mathematica is not able to do anything about checking this solution by itself. 

equation8 /. solution8 // Simplify 

a Sqrt[4 -a2] a Sqrt[4 - a2] 
{Sqrt[l ] + Sqrtfl + ] == a, 

2 2 
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a Sqrt[4 -a2] a Sqrt[4 - a2] 
Sqrt[l ] + Sqrt[l + ] == a} 

2 2 

S i m p l i f y just isn't powerful enough to show that these are the same. Here is some magic, 
using pure functions as discussed in Chapter 6 together with local patterned rewrite rules as 
discussed in Chapter 7, that shows that the squares of the two sides are the same; i.e., the left-
hand sides squared equal a2. 

PowerExpand[ 
Map[Expand[#A2]&, equation8 /. solution8, {2}] /. 

Sqrt[x_] Sqrt[y_] :> Sqrt[Simplify[x y]]] 

{True, True} 

3.1.5 Extraneous solutions 

Consider the following equation. 

badEquation = χΛ(3/2) + 1 == 0; 
badSolution = Solve[badEquation, x] 

{{x -> 1}, {x -> (-I)2'3}, {x -> (-l)4/3>> 

badEquation /. badSolution // Simplify 

{False, True, True} 

The solution x -> 1 is clearly wrong as the check shows. Such obvious extraneous solutions 
can be eliminated by setting the optional argument V e r i f y S o l u t i o n s to True. 

b e t t e r S o l u t i o n = S o l v e [ badEquation, x , 
V e r i f y S o l u t i o n s -> True] 

{{x -> ( - 1 ) 2 / 3 } , {x -> ( - 1 ) 4 / 3 } } 

badEquation / · b e t t e r S o l u t i o n 

{ T r u e , True} 

Query: why does Mathematica think that ( - 1 ) 4 / 3 is a solution? Do you think it is? 
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3.2 Simultaneous Equations-Groebner Bases 

The same scheme works for several equations in several variables. In Chapter 1 we looked at 
linear equations with symbolic constants and also higher order equations. They are checked in 
exactly the same way. 

equations9 = { a x + b y = = l f x - y == 2}; 
solution9 = Solve[equations9, {x, y}] 

-1 + 2 a - 2 (a + b) -1 + 2 a 
{{x -> -( ,, y -> -( )}} 

a + b a + b 

equations9 /. solution9 // Simplify =$ {{True, True}} 
The answer is one list of a pair of values equal to True, meaning that both equations are 
satisfied. 

Here is a more complicated pair of non-linear equations related to the system we 
investigated in Chapter 1. 

equationslO = { χΛ2 + γΛ2 == 13 , xA3 + yA3 == 9 } ; 

We suppress the following solution completely by ending the Solve command with a " ; . " 
The answer is very large and this calculation takes a fair amount time. 

solutionlO = Solve[ equationslO, {x, y} ]; 
We can still check that the answer is correct, but we just do this for the first solution because to 
check all solutions takes a very long time. 

equationslO /. solutionlO[[1]] // Simplify 
{True, True} 

Instead of giving a list of equations, one can give a list of left-hand sides "equals equals" to a 
list of right-hand sides. This time we solve them numerically. 

equationsll = { χΛ2 + y*2, χΛ3 + γΛ3 } == {13, 9}; 
solutionll = NSolve[ equationsll, {x, y} ] 
{{x -> -3.23205 - 1.98649 I, y -> -3.23205 + 1.98649 I}, 
{x -> -3.23205 + 1.98649 I, y -> -3.23205 - 1.98649 I}, 
{x -> -2.30688, y -> 2.77098}, {x -> 2.77098, y -> -2.30688}, 
{x -> 3. - 1.58114 I, y -> 3. + 1.58114 I}, 
{x -> 3. + 1.58114 I, y -> 3. - 1.58114 I}} 
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As could be predicted, there are six solutions since Bezout's theorem says that the number of 
intersection points equals the product of the degrees of the curves. If we add a symbolic 
constant, then the solution of this kind of system really takes a long time even though all the 
constant does here is to scale the answers by a. We look at just the first exact solution. 

equationsl2 = 
{χΛ2 + γΛ2 == 13 aA2, χΛ3 + yA3 == 9 aA3 }; 

solutionl2 = Solve[equations12, {x, y}][[1]]//Simplify 

( 6 - 1 Sqrt[10]) a ( 6 + 1 Sqrt[10]) a 
{ X _> , y _> } 

2 2 

Let us investigate how Mathematica goes about solving such systems of equations. The idea 
is "diagonalize" the equations, as is done for linear equations, except that now the equations 
will be polynomial ones. The goal is to end up with an equation in just one of the variables. 
The resulting set of equations is called a Groebner basis for the original equations. (Actually, it 
is a basis of a particular form for the polynomial ideal spanned by the original equations.) 
There is a built-in command to find such a basis. 

gBasis = GroebnerBasis[equations12, {x, y} ] 

{2 y 6 - a2 (2116 a4 - 507 a2 y2 + 18 a y 3 + 39 y 4 ) f 

2116 a4 x - y (-2116 a4 + 351 a3 y + 169 a2 y2 - 18 a y3 - 26 y4 ) , 
169 a4 - 9 a3 x - 9 a3 y + 13 a2 x y - 26 a2 y2 + 2 y 4 , 
-9 a3 + 13 a2 x - x y2 + y3 , -13 a2 + x2 + y2} 

The first entry in this list of 5 polynomials involves only y, so we can try to find its roots. We 
will just look at the second solution since the others are quite complicated. 

solutionY = Solve[gBasis[[1]] == 0, y][[2]]//Simplify 

( 6 + 1 Sqrt[10]) a 
{ y -> } 

2 

This agrees with the value we found for y in s o l u t i o n l 2 , so let's try to find the 
corresponding value of x. In the remaining equations in the Groebner basis, the second one is 
linear in x, so we can substitute the value we just found for y in it and solve for x. 
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solutionX = Solve[(gBasis[[2]]/.solutionY) == 0, x] // 
Simplify 

( 6 - 1 Sqrt[10]) a 
{{x _> } 

2 

These values for x and y are exactly what we found above in the direct solution. 

3.3 Simultaneous Equations-FindRoot 

If the equations are not multivariate polynomials, then Solve and even NSolve may fail. For 
instance, the following system is one of Simon's challenge problems in the Notices of the AMS, 
Sept. 1991. 

equationsl3 = 
{Sin[x] + γΛ2 + Log[z] == 7, 

3 x + 2Ay - ζΛ3 == -1, 
x + y + z = = 5 } ; 

NSolve[equations13, {x, y, z}] 

NSolve[{y2 + Log[z] + Sin[x] == 7, 2? + 3 x - z3 == -1, 
x + y + z == 5}, {x, y, z}] 

However, FindRoot tries to find a solution, given seed values for the variables, for any 
system of equations in any number of variables. So far we have been able to find only these 
two solutions. 

solutionsl3 = 
{ FindRoot[equations13, {x, 1}, {y, 1}, {z, 1}], 
FindRoot[equations13, {x, 0}, {y, 0}, {z, 2}] } 

{{x -> 0.599054, y -> 2.39593, z -> 2.00501}, 
{x -> 5.10041, y -> -2.64424, z -> 2.54382}} 

3.4 Matrix Equations 

Two vectors or matrices are "equals equals" providing corresponding entries are the same. In 
particular, this means that we can write matrix equations. First define a coefficient matrix, a 
variable vector and a right-hand side vector. 
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A = { { 3 , 1 } , {2 , - 5 } } ; 
X = {x, y } ; 
B = {7 , 8 } ; 

Then write the equation exactly as it would be written in a linear algebra book, using the Dot 
product. 

solutionl4 = Solve[ A . X == B, X ] 

43 10 
{{x -> — , y -> -(--)}} 

17 17 

It would be nicer if the answer were in the form {{X - > { 4 3 / 1 7 . - 1 0 / 1 7 } } . Well see later 
how that could be done. 

3.5 Indexed Variables 

The Table command can be used to construct equations and lists of variables. 

equations15 = 
Table[2 a[i] + a[i - 1] == a[i + 1], {i, 10}] 

{a[0] + 2 a[l] == a[2], a[l] + 2 a[2] == a[3], 
a[2] + 2 a[3] == a[4], a[3] + 2 a[4] == a[5], 
a[4] + 2 a[5] == a[6], a[5] + 2 a[6] == a[7], 
a[6] + 2 a[7] == a[8], a[7] + 2 a[8] == a[9], 
a[8] + 2 a[9] == a[10], a[9] + 2 a[10] == a[ll]} 

solutionl5 = 
Solve[equationslS, Table[a[i], {i, 10}]]//Simplify 

-2378 a[0] + a[ll] a[0] + 2378 a[ll] 
{{a[l] -> , a[10] -> , 

5741 5741 

-408 a[0] + 5 a[ll] 169 a[0] + 12 a[ll] 
a[3] -> , a[4] -> , 

5741 5741 
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-70 a[0] + 29 a[ll] 29 a[0] + 70 a[ll] 
a[5] -> , a[6] -> , 

5741 5741 

-12 a[0] + 169 a[ll] 5 a[0] + 408 a[ll] 
a[7] -> , a[8] -> , 

5741 5741 

-2 a[0] + 985 a[ll] -2 a[0] + 985 a[ll] 
a[9] -> , a[2] -> }} 

5741 5741 

equationsl5 /. solutionl5 // Simplify 

{{True, True, True, True, True, True, True, True, True, True}} 

3.6 CompUte Solutions 
Besides S o l v e and Root , there is another command to solve equations that is particularly 
useful for equations with symbolic constants where the forms of the answer may depend on 
relations between the constants. If S o l v e is used with a generic quadratic equation, we get the 
usual high school formula. 

Solve[ a χΛ2 + b x + c == 0, x ] // Simplify 

-(b + Sqrt[b2 - 4 a c]) -b + Sqrt[b2 - 4 a c] 
{{x_> }, {x_> } } 

2 a 2 a 

However, this is clearly wrong if, for instance, a is zero. The full story is given by the 
command Reduce. 

Reduce[ a χΛ2 + b x + c = = 0 , x ] / / S i m p l i f y 

- ( b + S q r t [ b 2 - 4 a c ] ) 
a != 0 && x == | | 

2 a 
- b + S q r t [ b 2 - 4 a c ] 

a != 0 && x == | | 
2 a 

c == 0 && b == 0 && a == 0 | | b != 0 && x == - ( c / b ) && a == 0 
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This output uses the logical operators I I for "Or," && for "And," and ! for "Not." Notice the 
bracketing also. The output means that the possible solutions are: a is not zero and then there 
are the usual two high school solutions, or b is not zero but a is zero in which case x == 
- c / b , or all three of a, b, and c are zero in which case there is no restriction on x. 

Equations can also be given as logical combinations of "equals equals" statements instead of 
as lists. We use equations9 from above as an example. 

equations9a = a x + b y = = l & & x - y = = 2 ; 
solution9a = Solve[ equations9a, {x, y} ] // Simplify 

l + 2 b 1 - 2 a 
{ { x .> , y -> } } 

a + b a + b 

3.7 Eliminating Variables 
Solve can also take a third argument which is a "variable" or list of "variables" that should be 
eliminated from the solution. 

equations16 = { x = = l + 2 a , y = = 9 + 2 x a } ; 

First solve for x and y (in terms of a). 

Solve[ equationsl6, {x, y} ] 

{{y -> 9 - 2 (-1 - 2 a) a, x -> 1 + 2 a}} 

Next, solve for x and a (in terms of y). 

Solve[ equations16, {x, a} ] 

1 - Sq r t [ -35 + 4 y] - 2 - 2 Sqr t [ -35 + 4 y] 
{ { x _> , a -> }, 

2 8 
1 + Sq r t [ -35 + 4 y] - 2 + 2 Sqr t [ -35 + 4 y] 

{ x -> , a -> }} 
2 8 

Now solve for x, eliminating y. 

Solve[ equationsl6, x, y ] => {{x -> 1 + 2 a}} 
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Then solve for x eliminating a. 

Solve[ equations16, x, a ] 
1 - Sqrt[l - 4 (9 - y] 1 + Sqrt[l - 4 (9 - y] 

{{x -> }, {x -> }} 
2 2 

Finally, eliminate a from the equations. 

Eliminate[ equationsl6, a ] 
y == 9 - x + x2 

3.5 Working Modulo a Prime Number 

The operation Factor has an optional argument, Modulus -> n, which gives factorizations 
modulo n. Here is a well known example of a polynomial that has no factorizations over the 
reals, but factors modulo p for all primes p. In the following, Prime [n] means the nth prime 
number. (Look up TableForm and its options in The Mathematica Book.) 

TableForm[ 
Table[ 

{Prime[n], Factor[χΛ4 + 1, Modulus->Prime[n]]}, 
{n, 1, 10}], 

TableHeadings -> 
{None, {"prime", "factorization"}}, 

TableSpacing -> {0, 6}] 
prime factorization 
2 (1 + x)4 
3 ( 2 + x + x 2 ) ( 2 + 2 x + x 2 ) 
5 (2 + x2) (3 + x2) 
7 ( l + 3 x + x 2 ) ( l + 4 x + x 2 ) 
11 (10 + 3 x + x2) (10 + 8 x + x2) 
13 (5 + x2) (8 + x2) 
17 (2 + x) (8 + x) (9 + x) (15 + x) 
19 (18 + 6 x + x2) (18 + 13 x + x2) 
23 (1 + 5 x + x2) (1 + 18 x + x2) 
29 (12 + x2) (17 + x2) 

Solve also works modulo a prime number. The condition on the modulus is added as another 
equation. 
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Table[Solve[{xA4 + 1 == 0, Modulus == Primeln]}, x], 
{n, 1, 4}] 

{{{Modulus -> 2, x -> -1}, {Modulus -> 2, x -> -1}, 
{Modulus -> 2, x -> -1}, {Modulus -> 2, x -> -1}}, 
{{Modulus -> 3, x -> -1 - I}, {Modulus -> 3, x -> -1 + I}, 

-1 - I Sqrt[7] 
{Modulus -> 3, x -> }, 

2 
-1 + I Sqrt[7] 

{Modulus -> 3, x -> }}, 
2 

{{Modulus -> 5, x -> -I Sqrt[2]}, 
{Modulus -> 5, x -> I Sqrt[2]}, 
{Modulus -> 5, x -> -I Sqrt[3]}, 
{Modulus -> 5, x -> I Sqrt[3]}}/ 

- 4 - 2 Sqrt[3] 
{{Modulus -> 1, x -> }, 

2 
- 4 + 2 Sqrt[3] 

{Modulus -> 1, x -> } , 
2 

-3 - Sqrt[5] 
{Modulus -> Ί, x -> }, 

2 
-3 + Sqrt[5] 

{Modulus -> 1, x -> }}} 
2 

There are four solutions for each value of the modulus. To check these results, substitute them 
in the left-hand side of the equation to see if the result is zero modulo the appropriate prime. 

xA4 + 1 /. % // Simplify // Expand 
3 3 1 3 3 1 

{{2, 2, 2, 2}, {- + — Sqrt[7], Sqrt[7], -3, -3}, 
2 2 2 2 

{5, 5, 10, 10}, 
{98 - 56 Sqrt[3], 98 - 56 Sqrt[3], 98 + 56 Sqrt[3], 
49 21 Sqrt[5] 49 21 Sqrt[5] 

, __ + }} 
2 2 2 2 
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Clearly the coefficients in each case are divisible by the appropriate prime. To check the 
Sqrt [ 7 ] term for the prime 3, calculate what it is mod 3. 

Solve[{xA2 - 7 == 0, Modulus == 3}, x] 

{{Modulus -> 3, x -> -1}, {Modulus -> 3, x -> -2}} 

So, 1 and 2 are the square roots of 7 mod 3. We leave the further investigation of this situation 
to the reader. There is much more to be said about solutions of equations, but they are not our 
main concern. We hope that other books will treat them in depth. 

4 Solving Ordinary Differential Equations 
There are (at least) seven ways to approach ordinary differential equations in Mathematica; 
DSol ve, N [ DSol ve [ - ] ] , NDSol ve, the package DSol v e . m, the package RungeKutta. m, 
series solutions (by hand), and Laplace transform methods in the package 
LaplaceTransf orm.m. These operations continue to be under intensive development and so 
the problems that can be solved and the forms of their solutions are a moving target. There are 
large differences between Versions 2.0,2.1, and 2.2. Everything here is from Version 2.2. 

4.1 DSolve 
Many simple differential equations can be solved by the built-in operation DSolve. 

4.1.1 A linear, first order differential equation 
DSolve works in two different ways. Consider a simple example and its solution. 

diffEql = y ' [ x ] + y[x] == 1; 
s o l u t i o n l = DSolve[diffEql, y [ x ] , x] 

{{y[x] -> 1 + C [ l ] / E x } } 

The solution contains an arbitrary constant denoted by C[l]. If we try to check this solution in 
the same way that we checked algebraic equations, it doesn't work. 

diffEql /. solutionl => {1 + C[l]/Ex + y'[x] == 1} 
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The trouble is that y ' is not calculated, so the solution cannot be verified. We could work 
around this by calculating y ' [ x ] ourselves; 

s o l u t i o n l · = D[so lu t ion l , x] => {{y ' [x ] -> - ( C [ l ] / E x ) } } 

Then the check succeeds by making substitutions for both y [ x ] and y ' [ x ] . 

diffEql /. solutionl /. solutionl' => {{True}} 

However, there is a better way to do this using the other form of DSolve. The only 
difference is that y is used instead of y [ x ] as the second argument. 

newsolutionl = DSolve[diffEql, y, x] 

{{y -> Funct ion[x , 1 + C [ l ] / E x ]}} 

What has happened in the output is that instead of having y [ x ] = something, we now have 
y = Function [ x, something ] . This syntax indicates a pure function in Mathematica. Pure 
functions will be explained in great detail in Chapter 6. The important thing here is that it 
gives a value for y rather than y [ x ] so this substitution works for y ' as well. Thus: 

y' /. newsolutionl // Simplify 

{Function[x, -(C[l]/Ex)]} 

The check now proceeds exactly as in the algebraic case. 

diffEql /. newsolutionl => {True} 

Initial conditions are given as additional equations to be satisfied. For instance: 

diffEq2 = {y'[x] == a y[x], y[0] == 1}; 
solution2 = DSolve[diffEq2, y, x] 

{{y -> Function[x, Ea x]}} 

The check now verifies both the differential equation and the initial condition. 

diffEq2 /. solution2 => {{True, True}} 
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4.1.2 A non-linear first order equation 

Mathematica can solve non-linear first order equations, finding two solutions in this case. 

diffEq3 = y[x] y'[x] == 1; 
solution3 = DSolve[diffEq3, y, x] 

{{y -> Function[x, -Sqrt[2 x + 2 C[l]]]}, 
{y -> Function[x, Sqrt[2 x + 2 C[l]]]}} 

From now on, checks are omitted unless there is some difficulty in carrying them out. 

4.1.3 Linear equations with constant coefficients 

In principle, Mathematica will solve arbitrary order linear equations with constant coefficients, 
provided it can solve the auxiliary equation. Here is a simple example where the coefficients 
are chosen by expanding a simple algebraic product. 

Expand[Product[x - i, {i, 1, 5}]] 

-120 + 274 x - 225 x2 + 85 x3 - 15 x4 + x5 

diffEq4 = y' ' ' ' ' [x] - 15 yM,,[x] + 85 y'" [x] -
225 γ'·[χ] + 274 y'[x] - 120 y[x] == 0; 

solution4 = DSolve[diffEq4, y, x] 

DSolve::dsdeg: Warning: Differential equation of order higher 
than four encountered. DSolve may not be able to find the 
solution. 

{{y ->Function[x, Ex C[l] + E2 x C[2] + E3 x C[3] + E4 x C[4] + 
E5 x C[5]]}} 

On the other hand, an equation like the following, which is only of the third degree and can 
be solved, results in an answer that is too complicated for a human to comprehend so it is 
omitted here. Nevertheless, Mathematica is able to check it, although the check takes a long 
time. This equation will be investigated numerically below. 

diffEq5 = y'^Ix] + y'tx] + y'[x] + a y[x] == 0; 
solutions = DSolve[diffEq5, y, x]; 
diffEq5 /· solution5 // Simplify 

{True} 
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4.1.4 Bernoulli's equation 

The last equation we look at here is an equation of the Bernoulli type. 

di f fEq6 = χΛ2 y ' [ x ] - y [ x ] A 3 + 2 x y [ x ] == 0; 
s o l u t i o n 6 = D S o l v e [ d i f f E q 6 , y , x ] / / S i m p l i f y 

1 
{{y -> Function[x, -( )]}, 

2 
Sqrt[x4 ( + C[l])] 

5 x5 

1 
{y->Function[x/ ]}, {y->Function[x, 0]}} 

2 
Sqrtfx4 ( + C[l])] 

5 x5 

Mathematica needs some help in checking these solutions. The following magic will be 
explained in Chapter 6. 

Map[Together, diffEq5 /. solution5, {2}] 

{True , T rue} 

Compare this with the solution of the same equation given by the package DSolve . m below. 

4.2 DSolve. m-First Order Differential Equations 

The built-in command D S o l v e is relatively weak, but in Version 2.1 and later, there is a 
package D S o l v e . m that is much more powerful. Right now, it overrides the built-in DSolve 
and provides it with new capabilities. Very many common first and second order differential 
equations can be solved using it. These examples and the problems in the Exercises, together 
with the series solution examples and the Laplace transform examples, constitute a mini-
course in ordinary differential equations. 

Needs["Calculusv DSolve ""] 
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4.2.1 Exact equations 
Here are three equations that are made exact by integrating factors. 

diffEqlntl = 
(x y[x] + xA2) y'[x] + y[xp2 + 3 x y[x] == 0; 

solutionlntl = DSolve[diffEqlntl, y, x]//Simplify 
{{y -> (-#1 + Sqrt[2 C[l] + #14] / #1 & )}, 
{y -> (-#1 - Sqrt[2 C[l] + #14] / #1 & )}} 

The answer here is written in the other syntax for a pure function. Instead of writing 
Function[ { x } , body] , where body is some expression involving x, one can write body& 
where the x in body is replaced by #. E.g., Function [ {x}, χΛ2] and #Λ2& mean the same 
thing, namely, the function that squares its argument. See Chapter 6 for an extensive 
discussion of pure functions. 

The first example here is solved completely. The second one is only solved implicitly, so we 
solve for y [ x ] rather than for y. 

diffEqInt2 = 
(2 x y[x] - ΕΛ(-2 y[x])) y'[x] + y[x] == 0; 

solutionInt2 = DSolve[diffEqInt2, y[x], x] 
Solve::tdep: The equations appear to involve transcendental 
functions of the variables in an essentially non-algebraic way. 

-C[l] - Log[y[x]] 
{Solve[x == -( ), y[x]]} 

E2 y[x] 
The algebraic equation to be solved that is given as the output here is one of the usual ways to 
present solutions to differential equations, as relations between x and y rather than giving y as 
a function of x. Checking this result requires a certain amount of experimentation. First find 
the derivative of y [ x ] . 

solution' = Solve[D[solutionInt2[[1, 1]], x], y'[x]] 
E2 Υ[χ] y[x] 

{{y'[x] -> -( )}} 
- 1 + 2 C[l] y[x] + 2 Log[y[x]] y[x] 

Then, essentially substitute the values for x and y ' [ x ] in the differential equation. 

(diffEqInt2 /. solution' /. {y[x] -> foo} /. 
ToRules[solutionInt2[[1, 1]]]) /. {y[x] -> foo} // 
Simplify => {True} 
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The third one can be solved exactly, but Mathematica needs some help in checking that the 
solution is valid, using the same magic as above. 

diffEqInt3 = y'[x] == (3 y[x]A2 + xA2)/(2 x y[x]); 
solutionInt3 = DSolve[diffEqlnt3, y, x] 

#1 #1 
{{y->(#l Sqrt[-1 + ]&)}, {y->(-(#l Sqrt[-1 + ])&)}} 

EC[1] EC[1] 

Map[Together, diffEqInt3/.solutionInt3//Simplify, {2}] 

{True, True} 

4.2.2 Bernoulli's equation 

We used the built-in DSolve to solve the Bernoulli equation in 4.1.4 above. Here we try the 
package DSolve .m. In this form it is able to check the solution by itself. 

diffEqBer = xA2 y'[x] - y[x]A3 + 2 x y[x] == 0; 
solutionBer = DSolve[diffEqBer, y[x], x] 

Sqrt[5] Sqrt[#l] C[l]5 

{{y -> (-( ) & )}/ 
Sqrt[-#15 + 2 C[l]10] 

Sqrt[5] Sqrt[#l] C[l]5 
{ y _> ( & ) } } 

S q r t [ - # 1 5 + 2 C [ l ] 1 0 ] 

In the exercises we ask you to reconcile the two answers given here and in 4.1.4. 

4.2.3 Generalized homogeneous equations 

The built-in DSolve fails on this one, but DSolve . m finds an implicit solution. 

diffEqGenHoml = x ( y [ x p 2 - 3 x) y ' [x] + 2 y [ x p 3 -
5 x y [ x ] == 0; 

solutionGenHoml = DSolve[diffEqGenHoml, y [ x ] , x] 

{ T o R u l e s [ R o o t s [ - 5 C [ l ] y [ x ] 2 + x 2 6 y [ x ] 1 5 == -13 x C [ l ] , 
y [ x ] ] ] } 

So far, we don't know how to check this result. 
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4.2.4 A Riccati equation 

D S o l v e . m finds the exact solution but Mathematica needs a lot of help in checking the answer, 
all of which will be explained in Chapters 6 and 7. 

diffEqRic = (1 - xA2) y'[x] == 1 - (2 x - y[x]) y[x]; 
solutionRic = DSolve[diffEqRic, y, x] 

Sqrt[-1 + #1] 
1 + #1 C[l] + #1 Log[ ] 

Sqrt[l + #1] 
{{y -> (-( — ) & )}} 

Sqrt[-1 + #1] 
-C[l] - Log[ ] 

Sqrtfl + #1] 
Map[ExpandAll, 

(diffEqRic /. solutionRic // Simplify) //. 
Log[Sqrt[a_]/Sqrt[b_]]->(l/2)Log[a] - (l/2)Log[b], 
{2}] // Simplify 

{True} 

4.2.5 A different kind of equation 

DSolve[y'[x] == l/(x y[x] + 1), y[x], x] 

y[x]2/2 Pi y[x] 
{Solve[x == E (C[l] + Sqrt[ — ] Erf[ ]), y[x]]} 

2 Sqrt[2] 

4.2.6 A harder equation 

D S o l v e [ y ' [ x ] == a y [ x p 3 + b x " ( - 3 / 2 ) , y [ x ] , x] 

Solve[Integrate[ 
1 

f y[x]]-Log[Sqrt[x]]==C[l]f y[x]] 
2 b 

+ y[X] + 2 a x y[x]3 
Sqrt[x] 

For more details, see [Bocharov]. 
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4.3 DSolve. m-Second Order Differential Equations 

4.3.1 Second order linear constant coefficient equations 

There are three kinds of solutions of an equation of the form y"[x] + b y'[x] + c y[x] == 0 
depending on the roots of the auxiliary equation z 2 + b z + c = = 0 . We treat the case of complex 
roots and leave the others to the exercises. In this case, the solution consists of a sin and a cos 
term times an exponential function. We also make a picture which shows the exponentially 
increasing oscillations. Note that it is necessary to assign values to the arbitrary constants to 
make such a plot. 

diffEqComplex = y'*[x] - 2 y'[x] + 5 y[x] == 0; 
solutionComplex = DSolve[diffEqComplex, y, x] 

{{y -> Functionfx, Ex C[2] Cos[2 x] - Ex C[l] Sin[2 x]]}} 

Note that there are now two arbitrary constants denoted by C[l] and C[2]. 

Plot[Evaluate[y[x] /. solutionComplex /. 
{C[l] -> 1, C[2] -> 1}], {x, 0, Pi}]; 

4.3.2 An exact second order differential equation 

diffEqEx2 = y'lx] + x y'[x] + y[x] == 0; 
solutionEx2 = DSolve[diffEqEx2, y, x] 

C[l] C[2] Erfi[#l/Sqrt[2]] Sqrt[#l2] 
{{y -> (■ 

#l2/2 #l2/2 
E #12 

&)}} 

diffEqEx2 /. solutionEx2 // Simplify 

{True} 
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4.3.3 Bessel's equation 
First, try the Oth order Bessel's equation. Checking the solution fails. 

diffEqBessel = y"'[x] + y'[x]/x + y[x] == 0; 
solutionBessel = DSolve[diffEqBessel, y, x] 

BesselK[0, I #1] C[l] 
{{y -> ( + Bessell[0, I #1] C[2] & )}} 

Sqrt[Pi] 
diffEqBessel /. solutionBessel // Simplify 
{(-(x BesselK[-2, I x] C[l]) - 2 1 BesselK[-l, I x] C[l] + 

2 x BesselK[0, I x] C[1] - 2 I BesselK[l, I x] C[1] -
x BesselK[2, I x] C[l] - SqrtfPi] x BesselI[-2, I x] C[2] + 
2 I Sqrt[Pi] Bessell[-1, I x] C[2] + 
2 Sqrt[Pi] x Bessell[0, I x] C[2] + 
2 I Sqrt[Pi] Bessell[l, I x] C[2] -
Sqrt[Pi] x Bessell[2, I x] C[2]) / (4 Sqrt[Pi] x) == 0} 

To go further with the check we would have to add the relations between the various Bessel 
functions as rules for simplification. Of course, the solution is correct for other reasons. 

Next, try the general nth degree Bessel's equation. 

diffEqBesseln = 
xA2 y'fx] + x y'[x] + (χΛ2 - nA2) y[x] == 0; 

solutionBesseln = DSolve[diffEqBesseln, y, x] 
{{y -> (BesselJ[-n, Sqrt[#l2]] C[l] + 

BesselJ[n, Sqrt[#l2]] C[2] & )}} 
An attempted check has the same problem as before, so we omit it until we find some way to 
complete it. 

4.3.4 Variation of parameters 
Here is a non-homogeneous second order linear differential equation. 

diffEqVarl = 
(xA2 + 1) y''[x] + 2 x y'[x] + 3/(χΛ2) == 0; 

solutionVarl = DSolve[diffEqVarl, y, x] 
3 Log[l + #l2] 

{{y->(ArcTan[#l] C[l] + C[2] + 3 Log[#l] & )}} 
2 
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diffEqVarl /. solutionVarl // Simplify 

{True} 

And here is a non-linear equation with a power of y ' [ x ] . 

diffEqNonL = y ' ' [ x ] + y [ x ] y ' [ x p 3 == 0; 
so lut ionNonL = DSolve[diffEqNonL, y , x ] ; 

There is a solution, but it is too complicated to be comprehensible (try it yourself) and the 
result of the following attempt to check just the first solution is a complete mess, so it is 
suppressed. 

diffEqNonL / . s o l u t i o n N o n L [ [ 1 , 1 ] ] / / S i m p l i f y 

4.3.5 The Legendre equation 

Mathematica is able to solve and check the general second order Legendre differential equation. 

dif fEqLeg = 
(1 - χΛ2) y''[x] - 2 x y'[x] + n (n - 1) == 0; 

solutionLeg = DSolve[diffEqLeg, y, x] 

n Log[l - #1] n2 Log[l - #1] n Log[l + #1] 
{{y -> (C[2] + + 

2 2 2 

n2 Log[l + #1] C[l] (-Log[l - #1] + Log[l + #1]) 
+ & ) } } 

2 2 

diffEqLeg /. solutionLeg // Simplify 

{True} 

4.4 Some Differential Equations Mathematica Can't Solve Yet 
Mathematica just gives up on both of these equations. 

diffEqBadl = y''[x] + x y'[x] + EA(- xA2) y[x] == 0; 
solutionBadl = DSolve[diffEqBadl, y, x] 

y[x] 
DSolvef + x y'[x] + y''[x] == 0, y, x] 

x2 
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diffEqBad2 = χΛ2 y''[x] + 2 x y[x] - 1 == 0; 
solutionBad2 = DSolve[diffEqBad2, y, x] 

DSolve[-l + 2 x y[x] + x2 y''[x] == 0, y, x] 

4.5 NfDSolvefJJ 
If the solution to the third order differential equation in Section 4.1.3 is evaluated numerically 
with a set equal to 2 , then we get a solution that is comprehensible. 

ndiffEq = y""'[x] + y"'[x] + y[x] + 2 y[x] == 0; 
nsolution = N[DSolve[ndiffEq, y, x]] 

C[l] 
{{y -> Function[x, + 

2.718281·35321 x 

2.71828(°·176605 + 1-20282 I) x C [ 2 ] + 
2.71828(°·176605 - 1-20282 I) x C[3]]}} 

ndiffEq /. nsolution // Simplify // Chop 

{True} 

4.6 NDSolve 
The fastest way to get a numerical solution is with NDSolve. In order to use this it is necessary 
to give enough initial conditions to ensure a well determined, numerical answer. 

numSolution = 
NDSolve[ {ndiffEq, y[0] == y'[0] == y''[0] == 1}, 

y, {x, 0, 10}] 

{{y -> InterpolatingFunction[{0., 10.}, <>]}} 

This time the result is not available for inspection. All we can do is investigate it further 
numerically, for example, by plotting it. 



98 Part I · Symbolic Pocket Calculator 

Plot[Evaluate[y[x]/.numSolution], {x, 0, 10}]; 

It is interesting to try to determine the sense in which this is a solution. Following an e-mail 
suggestion of J. Keiper, evaluate the left-hand side of the equation for this solution. 

lhs[x__] := ndif fEq[ [1] ]/.numSolution 
The point is that Interpolating functions can be differentiated, so this is itself another 
Interpolating function. 

lhs[x] 

{InterpolâtingFunction[{0., 10.}, <>][x] + 
InterpolatingFunction[{0., 10.}, <>][x] + 
2 InterpolatingFunction[{0., 10.}, <>][x] + 
InterpolatingFunction[{0., 10.}, <>][x]} 

Hence this function can be plotted. Near 0, the result seems to be very bad, but elsewhere, the 
difference of the left-hand side from 0 is quite small. 

Plot[Evaluate!Ins[x]], {x, 0, 10}]; 
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4.6.1 A planetary orbit 

A more challenging problem is to determine the trajectory of a mass in the gravitational field 
caused by a very large mass at the origin. This is described by a pair of differential equations: 

d 2 x / d t 2 = - x / r 3 , d 2 y / d t 2 = - y / r 3 where r = (x 2 + y2) d/2) 

NDSolve requires that we also specify initial conditions for x and y and their derivatives at 
t = 0. 

orbit = 
NDSolve[ 

{ X " [ t ] == - x [ t ] / ( x [ t p 2 + y [ t ] A 2 ) A < 3 / 2 ) , 
y " [ t ] == - y [ t ] / ( x [ t r 2 + y [ t J A 2 ) A < 3 / 2 ) , 
x [ 0 ] == 1 , x · [ 0 ] == 0 - 2 , 
y [ 0 ] == 0 , y ' [ 0 ] == 1 .25 } , 

{ x , Y } , { t , 0 , 4 5 } ] 

{{x -> InterpolatingFunction[{0., 45. }, <>], 
y -> InterpolatingFunction[{0., 45.}, <>]}} 

ParametricPlot[ Evaluate[{x[t], y[t]}/.orbit], 
{tf 0, 45} ]? 

As is to be expected, the picture shows that the result is an ellipse with one focus at the origin. 

4.6.2 Two equal masses 

A still more challenging problem is that of two bodies of equal mass acting under mutual 
gravitational attraction. If the bodies have coordinates (xl , yl ) and (x2 , y2 ), then the 
equations are essentially the same as before, except expressed in terms of the differences (x2 -
xl ) and (y2 - yl ). One gets 4 second order equations, which require 8 initial conditions. We 
start the bodies off located symmetrically with respect to the origin, the left one moving down 
and the right one moving up. Note that most of the description is just entering the differential 
equations and the initial conditions. 
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twoorbits = 
NDSolve[ 

{ x l " [ t ] == - ( x l [ t ] -
( ( x l [ t ] - x 2 [ t ] ) A 2 

y i " [ t ] == - ( y i [ t ] -
( ( x l [ t ] - x 2 [ t ] ) A 2 

x 2 " ' [ t ] == - ( x 2 [ t ] -
( ( x l [ t ] - x 2 [ t ] ) A 2 

y 2 ' ' [ t ] == - ( y 2 [ t ] -
( ( x l [ t ] - x 2 [ t ] ) A 2 

x l [ 0 ] 
y l [ 0 ] 
x2[0] 
y2[0] 

{ x l , y l , 

== 1, 
== 0, 
== - 1 , 
== 0, 

x l ' 
y l ' 
x2 
y 2 ' 

x 2 , y2} 

[0] 
[0] 
[0] 
[0] 
{ t , 0 , 

x 2 [ t ] ) / 
+ ( y l [ t ] 
y 2 [ t ] ) / 
+ ( y l [ t ] · 
x l [ t ] ) / 
+ ( y l [ t ] 
y i t t ] ) / 
+ ( y l [ t ] · 
- o, 
- 0 . 3 , 
= o, 
« - 0 . 3 } , 

5 . 5 } ] 

y 2 [ t ] T 2 

y 2 [ t ] ) - 2 

y 2 [ t ] ) - 2 

y 2 [ t ] ) A 2 

r < 3 / 2 ) , 

Γ < 3 / 2 ) , 

) A ( 3 / 2 ) , 

) Λ ( 3 / 2 ) , 

{{xl -> InterpolatingFunction[{0., 5.5}, <>], 
yl -> InterpolatingFunction[{0., 5.5}, <>], 
x2 -> InterpolatingFunction[{0., 5.5}, <>], 
y2 -> InterpolatingFunctionf{0., 5.5}, <>]}} 

ParametricPlot[ 
{Evaluate!{xl[t], yl[t]} /. twoorbits], 
Evaluate!{x2[t], y2[t]} /. twoorbits]}, 

{t, 0, 5.5}, AspectRatio -> Automatic]; 

We chose the t-range so as to show not quite one complete orbit, making it easier to see how 
the masses are always located symmetrically with respect to their common center of gravity at 
the origin. The orbits are periodic, as one can see by increasing the t-range and they appear to 
be ellipses again. The following picture shows the result if the initial velocities are changed to 
y l ' [ 0 ] == 0 . 4 a n d y 2 ' [ 0 ] == - 0 . 2 . The time interval is { t , 0, 10}. 
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4.7 Runge-Kutta Methods 

See Chapter 8, Section 4.4. 

4.8 Series Solutions 

One way to try to solve an ordinary differential equation is to assume that the dependent 
variable y is given by a power series with unknown coefficients in the independent variable x. 
Substituting the power series in the differential equation leads to a collection of simultaneous 
algebraic equations for the coefficients. For instance, to solve ( d y / d x ) 2 - y = x, first 
construct a finite series approximation to y with unknown coefficients labeled a [ i ] . 

y[x_] := SeriesData[x, 0, Table[a[i], {i, 0, 6}]] 

Substituting the series for y in the differential equation gives the following equation. 

s e r i e s D i f f E Q = D [ y [ x ] , x p 2 - y [ x ] == x 

( - a [ 0 ] + a [ l ] 2 ) + ( - a [ l ] + 4 a [ l ] a [ 2 ] ) x + 
( - a [ 2 ] + 4 a [ 2 ] 2 + 6 a [ l ] a [ 3 ] ) x 2 + 
( - a [ 3 ] + 12 a [ 2 ] a [ 3 ] + 8 a [ l ] a [ 4 ] ) x 3 + 
(9 a [ 3 ] 2 - a [ 4 ] + 16 a [ 2 ] a [ 4 ] + 10 a [ l ] a [ 5 ] ) x4 + 
(24 a [ 3 ] a [ 4 ] - a [ 5 ] + 20 a [ 2 ] a [ 5 ] + 12 a [ l ] a [ 6 ] ) x 5 + 
0 [ x ] 6 == x 

Then use LogicalExpand to construct the equations given by setting equal the coefficients of 
powers of x on both sides of this equation. 
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coefficientEQ = LogicalExpand[seriesDiffEQ] 
-a[0] + a[l]2 == 0 && -1 - a[l] + 4 a[l] a[2] == 0 && 
-a[2] + 4 a[2]2 + 6 a[l] a[3] == 0 && 
-a[3] + 12 a[2] a[3] + 8 a[l] a[4] == 0 && 
9 a[3]2 - a[4] + 16 a[2] a[4] + 10 a[l] a[5] == 0 && 
24 a[3] a[4] - a[5] + 20 a[2] a[5] + 12 a[l] a[6] == 0 

To solve these, it seems necessary to add an initial condition. 

coefficientSol = Solve[ {coefficientEQ, a[0] == 1}, 
Table[a[i], {i, 0, 6}] ] 

{{a[O] -> 1, a[6] -> 0, a[5] -> 0, 
a[4] -> 0, a[3] -> 0, a[2] -> 0, a[l] -> -1}, 
{a[0] -> 1, a[6] -> 469/11520, a[5] 41/960> -( — ), 
a[4] -> 5/96f a[3] -> -(1/12), a[2] -> 1/2, a[l] -> 1}} 

Then substitute these two solutions into y to get the resulting series approximations. 

seriesSol = y[x]/.coefficientSol 
x2 x3 5 x4 41 x5 469 x6 

{1 + x + — - — + + + 0[x]7, 1-x + 0[x]7} 
2 12 96 960 11520 

These are still Mathematica series and have to be converted to normal expressions in order to be 
plotted. 

?Normal 

Normal[expr] converts expr to a normal expression, from a 
variety of special forms. 

Plot[Evaluate[Normal[seriesSol]], {x, 0, 3}]; 
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Finally, we can check that the differential equation is satisfied by both solutions up to order 6. 

seriesDiffEQ /. coefficientSol 
{x + 0[x]6 == x, x + 0[x]6 == x} 

In fact, converted into normal expressions, the solutions satisfy the differential equation 
exactly. 

Normal[%] => {True, True} 

4.9 Lapface Transforms 

4.9.1 The Laplace transform package 
Non-homogeneous, linear equations are frequently solved by Laplace transform techniques. In 
order to use Laplace transforms, the appropriate package has to be loaded, which takes a 
while. 

Needs["Calculus LaplaceTransform""] 
Use ? to learn how to use it. 

?LaplaceTransform 
LaplaceTransform[expr, t, s, opts] gives a function of s, which 
is the Laplace transform of expr, a function of t. It is 
defined by 
LaplaceTransform[expr, t, s] = Integrate[Exp[-s t] expr, 
{t, 0, Infinity}]. 

(Don't try ? ? here. At least in Version 2.2 it reads in the entire Notebook.) Here are a number 
of standard examples. 

{ LaplaceTransform[1, t, s], 
LaplaceTransform[t, t, s], 
LaplaceTransform[E*(a t), t, s], 
LaplaceTransform[t^n, t, s], 
LaplaceTransform[Cos[w t], t, s], 
LaplaceTransform[Cosh[w t], t, s] } 
1 1 s s 
{-, s"2, , s1 - η Gamma[l + η ] , , } 
s -a + s s2 w2 s2 w2 
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The following relationships are the reason why Laplace transforms can be used to solve 
differential equations. 

{ LaplaceTransform[y'[t], t, s], 
LaplaceTransform[y''[t], t, s] } 

{s LaplaceTransform[y[t], t, s] - y[0], 
s2 LaplaceTransform[y[t], t, s] - s y[0] - y'[0]} 

4.9.2 A single differential equation 
Usually, Laplace transforms are used for linear differential equations with constant coefficients 
whose right hand sides consist of terms whose Laplace transforms are known. We start with a 
simple example. 

ltDiffEQl = 
y " [ t ] - 3 y ' [ t ] + 2 y [ t ] == 4 t + EA(3 t ) ; 

The Laplace transform turns this differential equation into an algebraic equation for the 
Laplace transform of y [ t ] . 

ItAlgEQl = LaplaceTransform[ltDiffEQl, t, s] 
2 LaplaceTransform[y[t],t,s] + s2 LaplaceTransform[y[t],t,s] -
3 (s LaplaceTransform[y[t],t,s] - y[0]) - s y[0] - y'[0] == 

1 4 

-3 + s s2 
Next, solve this algebraic equation for LaplaceTransform[y [ t ] , t , s ] . 

algSolutionl = 
Solve[ItAlgEQl, LaplaceTransformfy[t], t, s]] 

{{LaplaceTransform[y[t], t, s] -> 
-((12 - 4 s - s2 - 9 s2 y[0] + 6 s3 y[0] - s4 y[0] + 
3 s2 y'[0] - s3 y'[0]) / (-6 s2 + 11 s3 - 6 s4 + s5))}} 

Finally, we want the inverse Laplace transform of this substitution. 

?InverseLaplaceTransform 
InverseLaplaceTransform[expr, s, t, opts] gives a function of 
t, the Laplace transform of which is expr, a function of s. 
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We have to apply the inverse Laplace Transform to both parts of the algebraic solution to find 
the value of y [ t ] . This is done by the Map function that will be explained in Chapter 6. 

diffSolutionl = 
Map[InverseLaplaceTransform[#, s, t]&, 

algSolutionl, {3}] 

E3 t Et (-7 + 4 y[0] - 2 y'[0]) 
{{y[t] -> 3 + + 2 t + + 

2 2 

E2 t (-y[0] + y'[0])}} 

Finally, we check that this is actually a solution of the original differential equation. The 
solution here involves y [ t ] , whereas we would rather have y as a pure function. We have to 
make the conversion ourselves. 

diffSolutionPurel = 
{y -> Evaluate!Evaluate[y[t] /.dif fSolution!.[ [1] ]/. 

t -> #]&]} 

E3 #1 E# 1 (-7 + 4 y[0] - 2 y'[0]) 
{y -> (3 + + 2 #1 + + 

2 2 

E2 #i (-y[0] + y'[0]) & )} 

ltDiffEQl /. diffSolutionPurel/. // Simplify 

True 

4.9.3 Non-constant coefficients 
Certain differential equations with non-constant coefficients can also be solved by Laplace 
transform techniques. Consider the following example. 

ltDiffEQ2 = t y''[t] - t y'[t] - t == 0; 
ltDiffDiffEQ2 = LaplaceTransform[ltDiffEQ2, t, s] 

-s"2 + LaplaceTransform[y[t], t, s] -
2 s LaplaceTransform[y[t], t, s] + 
y[0] + s LaplaceTransform(°' °' 1) [y[t], t, s] -
s2 LaplaceTransform(°' °' 1) [y[t], t, s] == 0 
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The term LaplaceTrans formio' 0' * ) [ y [ t ] , t f s ] here is a form of the derivative 
with respect to s. Its actual input form is as follows: 

Derivat ive[0 , 0, 1][LaplaceTransform][y[t] , t , s ] 

LaplaceTransform(° ' ° ' 1 ) [ y [ t ] , t , s ] 

So this time the result involves both the Laplace transform of y [ t ] and its derivative; i.e., we 
get a first order differential equation for the Laplace transform of y [ t ] , rather than an 
algebraic equation. Unfortunately DSolve is unable to deal with this equation directly, so we 
have to replace the Laplace transform and its derivative by a generic function g [ s ] and its 
derivative g ' [ s ] . 

newDiffEq = 
ltDiffDiffEQ2 //. 
LaplaceTransform[y[t], t, s] -> g[s] //. 
Derivative[0, 0, 1][LaplaceTransform][y[t], t, s] -> 

g'[s] 

-s"2 + g[s] - 2 s g[s] + y[0] + s g'[s] - s2 g'[s] == 0 

Now we can solve this equation for g [ s ] and then replace g [ s ] by the Laplace transform of 
y again. 

diffSolution2 = DSolve[newDiffEq, g[s], s] 

{{g[s] -> E - 1 ^ 1 - sl - Log[s] cf ! ] + 
E-Log[l - s] - Log[s] (_χ _ s2 y[0]) 

}} 
s 

Unfortunately, the E-to-the-Log terms are not simplified in Version 2.2 as they were in Version 
2.1, so we have to do that ourselves. 

algSolution2 = diffSolution2 //. 
{EA(a_ + b_) :> EAa EAb, 
E"(-Log[x_]) :> 1/x, 
g[s] -> LaplaceTransform[y[t], t, s]} 

C[l] -1 - s2 y[0] 
{{LaplaceTransform[y[t], t , s] -> + }} 

(1 - s) s (1 - s) s2 
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Finally, apply the inverse Laplace transform to this. 

answer = 
Map[ InverseLaplaceTransform[#, s, t]&, 

algSolution2, {3} ] 

{{y[t] -> -1 - t + C[l] - Et C[l] + Efc (1 + y[0])}> 

Again, find y as a pure function. 

d i f f S o l u t i o n P u r e 2 = 
{y -> E v a l u a t e [ E v a l u a t e [ y [ t ] / . a n s w e r [ [ l ] ] / . t -> #]&]} 

{Y -> ( - 1 + C [ l ] - E # 1 C [ l ] - #1 + E # 1 (1 + y [ 0 ] ) & )} 

The check proceeds without difficulty. 

l t D i f f E Q 2 / . d i f f S o l u t i o n P u r e 2 / / S i m p l i f y => True 

4.9.4 A system of two differential equations 

The real power of the Laplace transform comes in using it for systems of linear ordinary 
differential equations with constant coefficients. In this example, y l [ t ] and y2 [ t ] are two 
functions of t which are related by a pair of second order differential equations. 

ltDiffSystem = 
{ yl·'[t] == k (y2[t] - 2 yl[t]), 
y2''[t] == k (yl[t] - 2 y2[t]) } 

{yl"[t] == k (-2 yl[t] + y2[t]), 
y2"[t] == k (yl[t] - 2 y2[t])} 

At present, Mathematica can solve this system using DSolve , but we get a nicer answer using 
Laplace transforms. 

ItAlgSystem = LaplaceTransform[ltDiffSystem, t, s] 

{s2 LaplaceTransform[yl[t], t, s] - s yl[0] - yl'[0] == 
k (-2 LaplaceTransform[yl[t], t , s] + 

LaplaceTransform[y2[t], t , s]), 
s2 LaplaceTransform[y2[t], t , s] - s y2[0] - y2f[0] == 

k (LaplaceTransform[yl[t], t , s] -
2 LaplaceTransform[y2[t], t , s])} 
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The procedure is the same as with a single equation. First solve this system of algebraic 
equations for the two Laplace transforms. 

algSystemSolution = 
Solve[ ItAlgSystem, 

{ LaplaceTransform[yl[t], t, s], 
LaplaceTransform[y2[t], t, s] } ] 

{{LaplaceTransform[yl[t], t, s] -> 
-(((2 k + s2) (-(k (-(s yl[0]) - yl'[0])) -
(2 k + s2) (-(s y2[0])-y2'[0]))) / (k (k2 - (2 k + s2)2)))\ 

-(s y2[0]) - y2'[0] 
+ , 

k 

LaplaceTransform[y2[t], t, s] -> 
-(k (-(s yl[0])-yl'[0])) - (2 k + s2) (-(s y2[0])-y2·[0]) 

-( )}} 

k2 - (2 k + s2)2 

Then apply the inverse Laplace transform to these solutions. 

diffSystemSolution = 
Map[ InverseLaplaceTransform[#, s, t]&, 

algSystemSolution, {3} ] 
We have omitted the output since it is very long. However, if we choose initial conditions 
carefully, then the result simplifies considerably. 

initialConditions = 
{ yl[0] -> 1, y2[0] -> 1, 
yl'[0] -> Sqrt[3] Sqrt[k], 
y2'[0] -> -Sqrt[3] Sqrt[k]} 

inltialSystemSolution = 
diffSystemSolution /. initialConditions 

{{yl[t] -> Cos[Sqrt[k] t] + Sin[Sqrt[3] Sqrt[k] t] , 
y2[t] -> Cos[Sqrt[k] t] - Sin[Sqrt[3] Sqrt[k] t]}} 
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As before, convert the solutions to pure functions. 

initSystemSolutionPure = 
{yl -> Evaluate[Evaluate[yl[t]/. 

initialSystemSolution[[1]]/.t -> #]&], 
y2 -> Evaluate[Evaluate[y2[t]/. 

initialSystemSolution[[1]]/.t -> #]&]} 

{yl -> (Cos[Sqrt[k] #1] + Sin[Sqrt[3] Sqrt[k] #1] & ), 
y2 -> (Cos[Sqrt[k] #1] - Sin[Sqrt[3] Sqrt[k] #1] & )} 

Finally, check the result. 

ltDiffSystem /· initSystemSolutionPure // Simplify 

{{{{-(k (Cos[Sqrt[k] t] + 3 Sin[Sqrt[3] Sqrt[k] t])) == 
k (-Cos[Sqrt[k] t] - 3 Sin[Sqrt[3] Sqrt[k] t]), 

-(k (Cos[Sqrt[k] t] - 3 Sin[Sqrt[3] Sqrt[k] t])) == 
k (-Cos[Sqrt[k] t] + 3 Sin[Sqrt[3] Sqrtfk] t])}}}} 

We can see that this is correct, but Mathematica refuses to simplify it further unless we tell it 
what to do, which again will be explained in Chapter 6. 

Map[Distribute[Times[#]]&, %, {2}] {True, True} 

Of course, this solution can be plotted, treating y 1 [ t ] and y 2 [ t ] as determining a parametric 
curve, provided k is given a numerical value. 

ParametricPlot[ 
Evaluate! {yl[t], y2[t]}/. 

initialSystemSolution/.k -> 2 ], 
{t, 0, 10}]; 

-1.5 
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This is very curious behavior. Trying different plots, one sees that the curve starts at (1,1) with 
x increasing and y decreasing. It follows the lower track around to near the point (0, 2) where 
there is an apparent singularity at t « 4.5. The curve turns around and seems to go back 
through the point (1,1) at t « 8.95. Actually, there is no singularity and the curve misses (1,1) 
the second time. For instance, near t = 4.5 we have the situation: 

ParametricPlot[ 
Evaluate[ {yl[t], y2[t]}/. 

initialSystemSolution/.k 
{t, 4.45, 4,6}]; 

-> 2] 

Thus the curve is smooth as it goes past this value. Over a long period of time, the curve 
appears to fill out a region in space. 

ParametricPlot[ 
Evaluate! {yl[t], y2[t]}/. 

initialSystemSolution/.k -> 2 ], 
{t, 0, 100}]; 
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Looking carefully, one can see that there are other sharp bends in the curve, for instance, near t 
« 37.5. It is interesting to look at the plots for t from 0 to 500, or 0 to 1000, but we omit them 
here. 

5 Practice 
1. {N[Pi], N [ E ] , N [ I ] , N[Degree], N[GoldenRatio], N[Eu1erGamma], 

N[Catalan]} 
2. N[Sin[60 Degree]] 
3. {Re[2 + 31], Im[2 + 31], Conjugate[2 + 31]} 
4. {Re [a + b I ] , Im[a + b I ] , Conjugate [a + b I]} 
5. Needs [ "Algebra Relm^ " ] 
6. a/: Im[a] = 0 
7. b/: Im[b] = 0 
8. {Re [a + b I ] , Im[a + b I] , Conjugate [a + b I]} 
9. Options [ NumberForm] (Try out various options.) 

10. BaseForm[l/3, 2] 
11. Table[{ToExpression[ToString[N[Pi, n l ] ] / N[Cos[ToExpression[ 

ToString[N[Pi, n]]]],ll]}, {n, 1, 5}] // TableForm 
12. Simplify[Sin[x]^2 + 2 Cos[xp2] 
13. FindRoot[Sin[x]/x == 0, {x, 2}] 
14. FindRoot[x Cos[x] == 1, {x, 10}] 
15. Random [Integer, {0, 10}] 
16. Table[Random[Real, {1, 2 } ] , {20}] 
17. ColumnForm[NSolve[{2 x y + 3 x + 4 y = = 5 , 6 χΛ2 - 7 x - 8 y 

== 9}]] 
18. Eliminate!{xA2 + 2 a x + a A2 y == 0, y A2 - 2 b y + a b x = = 0 } , 

a] 
19. {ToRules [ % ] } 
20. Solve[ {xA2 + 2 a x + a"2 y == 0, y*2 - 2 b y + a b x == 0}, {x, 

y}] 
21. LinearSolve[{{l, 4, 3}, {4, 2, 3}, {3, 3, 1}}, {1, 2, 3}] 
22. Solve[{xA2 + y A 2 == 1, χ Λ3 + y^3 == 2 } , {x, y}] 
23. N[%] 
24. NSolve[{ x A2 + y"2 == 1, xA3 + y"3 == 2}, {x, y}] 
25. Rationalize[N[Pi], 0] 
26. Union[Table[Rationalize[N[Pi], (O.l)^n], {n, 20}]] 
27. RowReduce[Table[3 i - 2 j, {i, 3} , {j, 4}]] 
28. diffSolution = NDSolve[{ y l ' ^ t ] == 2 (y2[t] - 2 yl[t]), 

y 2 " [ t ] == 2 (yl[t] - 2 y2[t]), yl[0] == 1, y2[0] == 1, yl'[0] 
== Sqrt[6], y2'[0] == -Sqrt[6]}, {yl, y2}, {t, 0, 10}] 
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29. ParametricPlot[Evaluate[{yl[t], y2[t]}/.diffSolution], {tf 0f 
10}] 

30. {$Version, $TimeUnit, $RecursionLimit} 
31. ? ? Solve (try out some of the options) 
32. ?N* 

6 Exercises 
Give names to all of the expressions, equations, and solutions you use in the following 
problems. For instance, in problem 1, call the equation there e q u a t i o n l and the list of 
solutions so lu t ion l , etc. 

1. Solve and check the equation 

x4 + 17 x . 31 x + 3 7 A . 1 = 0 
14 7 14 7 

2. Solve the equation 

x" - -^ 2 = o 
2740 9704700 

5 X 

with 10 digit accuracy; with $MachinePrecision and $MachinePrecision + 1 
digit accuracy. Check your answers. (You may need to use the built-in function Chop.) 

3. Solve the pair of equations x2y + y = 2, y - 4 x = 8 exactly for x and y. 

4. Solve the three equations 

ax + b y - z = 3b, 
x - 4 y - 5 c z = 0, 
x + a y - b z = c 
exactly for x, y, and z. Show the answer and a check of its correctness. Also solve for a, 
b, and c and check the answer. 

5. Investigate the solutions that Mathematica finds for the equation 

V 1 -x + V 1 +x = - 1 

What is the result of substituting the solutions in the left hand side of the equation? 
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6. Use the built-in operation DSolve to solve the following differential equations. Check 
your solutions. 
i) y' = y tan(x) 

ii) y' - y tan(x) = sec(x). 

iii) y! - 2 x y = 1 

iv) x2 y' + 3 x y = (sin x) / x 

v) y' = x 2 / ( (x3+l )y) 

vi) y' = x y2 + y2 + x + 1 

vii) y" + x y' + y = 0 

(Compare with the answer found in the text using DSolve .m.) 
viii) x2 y" - 3 x y' + 4 y = 0 (Euler's equation.) 

ix) y " - 5 y ' + 6y = 2ex 

7. Load the package DSolve·m and use it to solve the following differential equations. 
Check your solutions. 
i) - x2 y' + y2 + 3 x y + x2 = 0 

ii) (x2ey+ sin(x) + 2) y' + 2 x eï+ y cos(x) = 0. 

iii) x2 y' + x y (x y + 4) + 2 = 0 

iv) xy' + a x y 2 + 2y + bx = 0 

v) yM + 2 y' - 3y = 0 

(Make a picture of the solution for suitable initial conditions.) 

vi) y" - 2 y' + y = 0 (Make a picture.) 

vii) y" + 5 y' = 0 (Make a picture.) 

8. Reconcile the solutions that were found for Bernoulli's equation in 4.1.4 and 4.2.2. 

9. Try to use DSolve to solve the system of differential equations 
x'(t) = 2x(t)-x(t)y(t)-2x(t)2 
y'(t) = y(t)-(l/2)x(t)y(t)-y(t)2 
x(0) = 2 
y(0) = 2. 

When that fails, solve it numerically for t between 0 and 100 and plot the solution. 
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10. Use the Laplace transform to solve the following differential equations. 

i) y M - w 2 y = 0 

ii) y " - 4 y ' + 4 y = t2 

iii) y " - 5 y * + 4 y = e2t 

iv) y" + 2 y + 2 y = t 

v) y" + 2y ' + 2 y = e"tsint 

vi) yl ' = - 3 yl + 4 y2 + cos t 
y2' = - 2 y l + 3 y2 + t 

11. Use the function definition facilities described in Chapter 1 to define a function 
p a s c a l T r i a n g l e R o w [ n _ ] which displays the nth row of Pascal's triangle. (Note: 
there is a built-in function called Binomial [m, n].) Use this function to write another 
operation p a s c a l T r i a n g l e [ n_] which displays the first n rows of Pascal's triangle in 
triangular form. 

12. Define a function completeTheSquare [ expr_] that takes an expression of the form 
a x2 + b x + c and writes it in the form a(x + b / 2 a ) 2 + c - b 2 / 4 a 2 . You may find it 
necessary to define some auxiliary functions to extract the coefficients from the 
expression. 

13. i) Jacobian matrices: (look up Jacobian matrices in your advanced calculus book.) 
Define a function j acob ian [ f u n l i s t _ , v a r l i s t _ ] which takes as arguments a 
list of functions and a list of variables. It calculates the Jacobian matrix of the 
functions with respect to the variables. (The (i, j)th entry is the partial derivative of 
the ith function with respect to the jth variable.) Include S i m p l i f y in the definition 
of the function. Note: the length of a list is given by Length [ l i s t ] . 

ii) Calculate the Jacobian matrix for the pair of functions 

u = x 2 + y 2 , v = - 2 x y 

with respect to x and y. Name this matrix jak. Note that jak is expressed in terms of 
the variables x and y. 

iii) Solve for x and y as functions of u and v. There will be four complicated solutions. 

iv) In particular, the third solution in part iii) gives x and y as functions of u and v. Use 
this to calculate the Jacobian matrix of x and y with respect to u and v. Name this 
matrix invjak. Note that it is expressed in terms of the variables u and v. 

v) Let jak* be invjak expressed in terms of x and y rather than u and v. I. e., substitute 
the values for u and v in terms of x and y into invjak to get jak'. 

vi) Show that jak . jakf = I d e n t i t y M a t r i x [ 2 ] . 



Three · More About Numbers and Equations 115 

14. (More Stoutemyer experiments [Stoutemyer].) 

i) Is e71^*?*^] an integer? How precisely does it have to be calculated to determine the 
answer? 

ii) Determine how Mathematica deals with oo - oo, oo/oo, o <*>, lf° 

iii) Does Mathematica solve the equation Sqrt[x] = 1 - x correctly? 

iv) Does Mathematica calculate the definite integral of 1/x2 from -3 to 2 correctly? 
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Pictures, pictures everywhere 

1 Plotting Commands and 
Optional Arguments 
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For many users, graphics commands are the most important feature of Mathematica. Either 
they want to know what some built-in or user defined function looks like, or they have data 
from somewhere else that they want to plot. In either case, the basic plotting commands are 
very simple to use. We have already seen a number of examples using P l o t , Plot3D, 
ParametricPlot, etc. The main thing to be learned is how to use the optional arguments for 
these functions. First we have to discover all possible built-in plotting commands. They all end 
in Plot or Plot3D so the commands ?*Plot and ?*Plot3D give all such expressions. 

ContourPlot ListPlot 
DensityPlot ParametricPlot 
ListContourPlot Plot 
ListDensityPlot ParametricPlot3D 
ListPlot3D Plot3D 

These are the built-in plotting commands that automatically produce a picture. Each of these 
plotting commands can take a number of optional arguments. As an example, list all the 
options of Plot. 

117 
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Options[Plot] 

{AspectRatio -> 1/GoldenRatio, Axes -> Automatic, AxesLabel -> 
None, AxesOrigin -> Automatic, AxesStyle -> Automatic, 
Background -> Automatic, ColorOutput -> Automatic, 
Compiled -> True, DefaultColor -> Automatic, Epilog -> {}, 
Frame -> False, FrameLabel -> None, FrameStyle -> Automatic, 
FrameTicks -> Automatic, GridLines -> None, MaxBend -> 10., 
PlotDivision -> 20., PlotLabel -> None, PlotPoints -> 25, 
PlotRange -> Automatic, PlotRegion -> Automatic, 
PlotStyle -> Automatic, Prolog -> {}, RotateLabel -> True, 
Ticks -> Automatic, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

Length[%] => 27 

The 27 entries in this list are in the form of rules that give the default values for the indicated 
optional arguments. Some of these options are common to all plotting commands and some 
are special to Plot. The following list contains the common options. 

{Aspec tRat io , Axes, AxesLabel , AxesS ty le , Background, Color -
Output , D e f a u l t C o l o r , D e f a u l t F o n t , D i s p l a y F u n c t i o n , E p i l o g , 
P lo tLabe l , PlotRange, PlotRegion, Pro log , Ticks} 

Among these 15 we can also find those options that have a common default value; namely, 

{AxesLabel -> None, AxesSty le -> Automat ic , Background -> 
Automatic, ColorOutput -> Automatic, DefaultColor -> Automatic, 
Ep i log -> { } , P l o t L a b e l -> None, PlotRange -> Automat ic , 
P lo tRegion -> Automat ic , P ro log -> { } , Ticks -> Automat ic , 
D e f a u l t F o n t :> $ D e f a u l t F o n t , D i s p l a y F u n c t i o n :> 
$DisplayFunction} 

It is easy to see just by inspection that the only two that are missing from this second list are 
AspectRat io and Axes, so these have different default values for different plotting 
functions. AspectRatio is the ratio of the height to the width of the final plot. Possible 
values are any real number, or Automatic which means that the distances on the two axes are 
the same. The possible values of Axes are True (meaning draw axes), False (meaning don't 
draw axes), {Boolean, Boolean} (where Boolean is True or False, means draw one but 
not both axes), and Automatic (meaning the program will decide where to draw the axes). 
Fortunately, most of these various default values make sense, so one doesn't have to try to 
remember which are in effect for any given command. The default value for AspectRatio in 
the Plot command is GoldenRatio which is a built-in constant. 
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N[GoldenRatio] => 1.61803 

It was Plato who asserted that the golden ratio is the ideal shape for a picture. The possible 
values for an optional argument are not always evident. If you are using a Notebook front-end, 
then the Function Browser contains a great deal of information about possible values of 
optional arguments. There are certain standard values that frequently work for different 
optional arguments. 

Automatic use an optimal internal algorithm 
Al 1 include everything 
None do not include this 
True do this 
F a l s e don't do this 
<number> use this number as the value 
< l i s t > use the entries in the list as the values 

In Chapter 10, Section 7 you will learn how to define functions with their own optional 
arguments. When you do that, it will be up to you to decide what the possible values should 
be and what effect they should have. 

2 Two-Dimensional Graphics 

2.1 Plot 

P l o t has two arguments, the first being either a function or a list of functions and the second 
an iterator. The best way to understand the 27 possible options is to try out various 
combinations of them to see what effect various values for the built-in options have. Note that 
there is no way to add new options to built-in functions. 

2.1.1 Simple plots 

First, plot a single function of one variable, using no options to see what the standard picture 
looks like. The default value of A s p e c t R a t i o for P l o t is 1 /GoldenRat io as shown above, 
so the plot region is always about 1.6 times as long as it is high. The first argument to P l o t can 
be either one function or a list of several functions of one variable. The second argument is an 
iterator giving the range over which the function should be plotted. 
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Input 

P l o t [ S i n [ x ] , 
{ x , 0 , 2 P i } ] ; 

P l o t [ { S i n [ x ] , - S i n [ x ] , 
C o s [ x ] , - C o s [ x ] } , 

{x , 0, 2 P i } ] ; 

Graphics 

1 

0 . 5 

- 0 . 5 

- 1 

1 

0 . 5 

- 0 . 5 

- 1 

1 2 : Λ 4 5 ^ 

\ V V y ί \ 4 

2.1.2 Using options 
The iterator {x, xmin, xmax} specifies what range of values should be plotted. Optional 
arguments are added in a sequence in any order after the iterator. This way of using optional 
arguments in one of the strengths of Mathematica since you are not forced to give options in a 
particular order or even know anything at all about options you are not using. 

Inputs 

P l o t t S i n t x ] , {x, 0, 2 P i } f 

A s p e c t R a t i o -> 1, 
Frame -> True, 
P l o t L a b e l -> 

"A s i n c u r v e " ] ; 

Graphics 

1 

0 . 5 

0 

- 0 . 5 

- 1 

A s i n c u r v e 

Λ 
\j 

0 1 2 3 4 5 6 
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Inputs 

Plot[Sin[x], {xf 0, 2 Pi}, 
AspectRatio -> Automatic, 
Background -> 

GrayLevel[0.8], 
GridLines -> Automatic]; 

Graphics 
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Plot[Sin[x], {x, 0, 2 Pi}, 
AxesOrigin -> {1, 0.5}, 
AxesLabel -> 

{"x-axis", "y-axis"}, 
AxesStyle -> 

Thickness[0.01]]; 

y - a x i s 
1 

°/ ' 0 

- 0 . 5 

- 1 

Γλ 2 \ 3 4 5 6 x-axis 

Plot[Sin[x], {x, 0, 6 Pi}, 
PlotPoints -> 7, 
PlotDivision -> 1, 
MaxBend -> 45, 
PlotRange -> {0, 1}]; 

0 2.5 5 7.5 10 12.5 15 17.5 

Plot[Sin[x], {x, 0, 2 Pi}, 
Ticks -> 

{{{0,"0"},{1.57,"Pi/2"}, 
{3.14,"Pi"}, 

{4.71,"3Pi/2"}, 
{6.28, "2Pi"}}, 
Automatic}, 
PlotLabel -> 
FontForm["A better 

sin curve", 
{"Palatino-Bold", 12} ] ] ; 

A better sin curve 
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In the first plot we made the plotting region a square, added a frame around the picture and a 
label. In the second, the x and y scales are made the same by setting A s p e c t R a t i o equal to 
A u t o m a t i c and a background shading is added. On a color screen, use Hue instead of 
Gray Leve l to get a colored background. Also, grid lines are added. If you want to know what 
value was actually used for Aspec tRat io , you can find out as follows. (% refers to the second 
plot above.) 

FullOptions[%, AspectRatio] => 0.31831 

The actual value for GridLines is more complicated. 

FullOptions[% %, GridLines] 

Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001]}}}, 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001] 
Thickness[0.001]}}}} 
Thickness[0.001] 
Thickness[0.001] 

In the third plot we shifted the origin of the axes, made the axes thicker using A x e s S t y l e 
and added labels to the axes. In the fourth plot, the number of plot divisions is changed to 
make the curve as jagged as possible and the bottom half is cut off. The way 2-dimensional 
graphics works is to first find the values of the function at the default value of P l o t P o i n t s , 
which is the x-axis subdivided into 25 points. The program then looks at the angles between 
successive line segments and if these angles are greater than the specified MaxBend in degrees 
it adds more divisions until that is the maximum angle. We have chosen the minimum value 
for P l o t D i v i s i o n , the maximum value for MaxBend, and a choice for P l o t P o i n t s that 
gives a surprising result. For our last example of P l o t , we made a nice S i n curve by putting 
in labels along the x-axis at intervals of Pi / 2, while allowing the y-axis intervals to be given 
automatically by the program. The FontForm graphics command gives us control over the 
appearance of the text. Whether this works or not on the screen is platform dependent, but it 
will always print correctly. Two important options that we have not discussed are E p i l o g and 
Prolog. These allow graphics primitives to be added to built-in graphics functions and will be 
treated in Chapter 10, Section 3. 
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2.1.3 $DisplayFunction 

The command Show will display several pictures at the same time on the same set of axes, as 
we saw in Chapter 1. There we preplotted the pictures before applying Show. This time we'll 
create the plots within the Show command. An important consideration is that the output of 
P l o t is a graphics object as is indicated by the actual output - G r a p h i c s - , while the picture 
itself is a side effect that happens during the evaluation of a P l o t command. This causes a 
problem in showing several plots since any intermediate plots will be displayed also. Thus the 
following command produces three pictures. 

Show[Plot[Sin[x], {x, 0, 2Pi}], 
Plot[Cos[x], {x, 0, 2Pi}]]; 

The first two occur as side effects to evaluating the P l o t [ S i n - - ] and P l o t [Cos - - ] 
commands while the third is the side effect of the final evaluation of Show. The cure for this is 
to turn off the display of the two intermediate pictures and then turn the display back on for 
Show. This is done with the D i s p l a y F u n c t i o n option. Possible values are: 

DisplayFunction -> $DisplayFunction 
(the default value which displays the drawing on the screen) 

D i s p l a y F u n c t i o n -> I d e n t i t y 
(the graphics is calculated but no picture is displayed) 

D i s p l a y F u n c t i o n -> F u n c t i o n [ D i s p l a y [ " f i l e name", # ] ] 
(send the PostScript code to the named file). 

The following command does what we want. Note that it doesn't matter if the Plot commands 
are put in a list or not. 

Show[{Plot[Sin[x], {x, 0, 2Pi}, 
DisplayFunction -> Identity], 

Plot[Cos[x], {x, 0, 2Pi}, 
DisplayFunction -> Identity]}, 

DisplayFunction -> $DisplayFunction]; 
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2.2 ListPlot 

Inputs 

L i s t P l o t [ 
{ 3 . 2 , 5 . 1 , 1 . 4 , 0 . 5 , 4 . 4 } ] ; 

L i s t P l o t [ 
{ 3 . 2 , 5 . 1 , 1 . 4 , 0 . 5 , 4 . 4 } , 
PlotRange -> 

{ { 0 , 6 } , { 0 , 6 } } , 
A s p e c t R a t i o -> 1, 
P l o t S t y l e -> 

{ P o i n t S i z e ; [ 0 . 0 2 ] } ] ; 

Graphics 
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Inputs Graphics 

ListPlot[ 6 
{3.2, 5.1, 1.4, 0.5, 4.4}, 
PlotRange -> 5 

{{0, 6}, {0, 6}}, 
AspectRatio -> 1, \ 
PlotJoined -> True]; 

3 
2 

1 

1 2 3 4 5 6 

There is one new option for L i s t P l o t ; namely, P l o t J o i n e d with default value Fa l s e . 
Basically, L i s t P l o t just plots points. A list of single values is treated as the y-values for x-
coordinates ranging from 1 to the number of points. The default options for A x e s and 
A x e s O r i g i n in the first picture above are Automat ic and the axes here do not go through 
the origin. Also, the points are so small that we can hardly see them. In the next plot, the size 
of the points is increased so they can be seen, the shape of the plot region is increased by 
specifying ranges for both the x and y values, and the A s p e c t R a t i o is made 1 to get a more 
realistic picture. P l o t S t y l e here is a catch all argument that takes as its value either 
A u t o m a t i c or a list of directions concerning properties of points or lines. We'll look at a 
number of possible values for it in what follows. It will also be discussed further in Chapter 9, 
Section 3. Finally, in the third picture we try the new option P l o t J o i n e d which adds lines 
between the points. 

Next, let's generate some data to illustrate with L i s t P l o t . 

data = Table[N[{x, Sin[x]}], {x, 0, 2 Pi, Pi/5}] 

{{0, 0}, {0.628319, 0.587785}, {1.25664, 0.951057}, 
{1.88496, 0.951057}, {2.51327, 0.587785}, {3.14159, 0}, 
{3.76991, -0.587785}, {4.39823, -0.951057}, {5.02655, 
-0.951057}, {5.65487, -0.587785}, {6.28319, 0}} 

If the first argument of L i s t P l o t is a list of pairs, then each pair is treated as the x and y 
coordinates of a point. 

ListPlot[data, PlotStyle -> {PointSize[0.04]}, 
PlotRange -> {-1.1, 1.1}]; 
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In many applications, the data to be plotted is in some other file and the main problem is to 
import the data into Mathematica. This can be more or less complicated depending on the form 
of the data. As a very simple example, we put da ta into a file named s t o r a g e and then read 
it back into a L i s t P l o t function. 

Put[OutputForm[data], "storage"] 

To see what is in the file, use: 

! ! storage 

{{0, 0}, {0.628319, 0.587785}, {1.25664, 0.951057}, {1.88496, 
0.951057}, {2.51327, 0.587785}, {3.14159, 0}, {3.76991, 
-0.587785}, {4.39823, -0.951057}, {5.02655, -0.951057}, 
{5.65487, -0.587785}, {6.28319, 0}} 

However, this cannot be used within L i s t P l o t to make a picture of this list. Instead, use the 
form: 

ListPlot[ Get["storage"], 
PlotStyle -> {PointSize[0.04]}, 
PlotRange -> {-1.1, 1.1} ]; 

This gives exactly the same picture as before. 
These points look as though they could lie on a 3rd degree curve, so we find the best cubic 

curve that approximates them using the operation F i t , which takes three arguments: a list of 
points, a list of functions, and the independent variable in the functions. It then finds the linear 
combination of the functions that gives the best least squares fit to the list of points. 

fitCurve = Fit[data, {1, x, χΛ2, xA3}, x] 

-0.063509 + 1.70678 x - 0.805274 x2 + 0.0854422 x3 
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Since both P l o t and L i s t P l o t can be combined in a Show command, the data and the curve 
that tries to fit the data can be plotted in the same picture. 

Show[ Plot[ fitCurve, {x, -0.5, 6.7}, 
DisplayFunction -> Identity], 

ListPlot[ data, PlotStyle -> {PointSize[0.04]}, 
DisplayFunction -> Identity], 

DisplayFunction -> $DisplayFunction]; 

2.3 ParametricPlot 

P a r a m e t r i c P l o t plots parametric curves; that is, curves specified by giving the x and y 
coordinates as functions of some third parameter. The options for P a r a m e t r i c P l o t are 
exactly the same as for P l o t . As with P l o t , the first argument can be either a single 
parametric curve or a list of parametric curves, while the second argument is an iterator giving 
the range of parameter values. In the first picture, a Lissajou figure with a frequency ratio of 
2 /3 is plotted using no options. In the second picture, another Lissajou figure is added with a 
frequency ratio of 1/4. We have changed the color of the curves and made the first one dashed 
and the second one thick by using P l o t S t y l e . P l o t S t y l e is an optional argument whose 
value is a list of G r a p h i c s primitives, one for each parametric curve. These Graphics 
primitives are explained in detail in Chapter 10. On a monochrome monitor, the curves appear 
to be shaded. P a r a m e t r i c P l o t can be combined with P l o t or L i s t P l o t in a Show 
command. 
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Inputs 

ParametricPlot[ 
{Sin[2 t], Sin[3 t]}, 
{t, 0, 2 Pi}]; 

Graphics 

ParametricPlot[ 
{{Sin[2 t], Sin[3 t]}, 
{Sin[t], Sin[4 t]}}, 

{tf 0, 2Pi}, 
PlotStyle -> 
{{Dashing[{0.05,0.03}], 

RGBColor[l, 0, 0]}, 
{Thickness[0.01], 
RGBColor[0f 1, 0]}}]; 

2.4 ContourPlot and DensityPlot 

Contour plots are 2-dimensional pictures in which the curves where a function of two 
variables takes on constant values are drawn. It is not clear if contour plots and density plots 
should be considered as two-dimensional or three-dimensional, so we have put them in 
between the two topics. C o n t o u r P l o t adds a number of options concerned with the 
rendering of the contours and changes some of the other options of P l o t . The following list 
shows those options that are different from the options of P lo t . 

Complement[Options[ContourPlot], Options[Plot]] 

{AspectRatio -> 1, Axes -> False, ColorFunction -> Automatic, 
ContourLines -> True, Contours -> 10, ContourShading -> True, 
ContourSmoothing -> None, ContourStyle -> Automatic, 
Frame -> True, PlotPoints -> 15} 

In the three pictures below, the function S i n [ x ] C o s [ y ] is shown over a range 
encompassing two maxima and two minima. In the first, ContourSmoothing -> 
Automat ic is used and the number of plot points is increased, although the calculation then 



Four · Built-in Graphics 129 

takes considerably longer. None, is also a possible value for ContourSmoothing but it 
produces very jagged pictures. Allegedly an integer value for it specifies how often grid lines 
should be subdivided in estimating where contours cross the grid lines, but this doesn't seem 
to have any effect in the pictures where we have tried it. In the second picture, the only change 
is to color the regions differently. You'll have to try this on a color monitor to see what it 
actually looks like. Hue is a graphics primitive which is discussed in Chapter 10, Section 1. 

Inputs 

ContourPlot [ 
S i n [ x ] C o s [ y ] , 
{ x , 0 , 2 P i } , 
{y , - P i / 2 , 3 P i / 2 } , 
P l o t P o i n t s -> 60 , 
ContourSmoothing -> 

A u t o m a t i c ] ; 

ContourPlot [ 
S i n [ x ] C o s [ y ] , 
{ x , 0, 2 P i } , 
{ y , - P i / 2 , 3 P i / 2 } , 
P l o t P o i n t s -> 60 
ContourSmoothing -> 

Automat ic , 
Co lorFunct ion -> 

( H u e [ # / 2 ] & ) ] ; 

Graphics 
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Inputs 

D e n s i t y P l o t [ 
S i n [ x ] C o s [ y ] , 
{x f 0, 2 P i } , 
{y , - P i / 2 , 3 P i / 2 } , 
P l o t P o i n t s -> 50 , 
Mesh -> F a l s e , 
ColorFunct ion -> 

(RGBColor[ 
! - # , # , 0 ] & ) ] ; 

Graphics 
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The third picture uses D e n s i t y P l o t with a number of options. D e n s i t y P l o t uses shading 
instead of contours to indicate the values of a function of two variables. The picture improves 
dramatically with increased P l o t P o i n t s , but plotting time can become quite long. Besides 
the usual options, D e n s i t y P l o t adds an option Mesh whose default value is True. If Mesh is 
turned off, the picture may look much smoother. Adding color improves the picture. This time 
we use RGBColor rather than Hue. (See Chapter 10.) The picture is more interesting, at least 
on a color monitor if it is colored using Co lorFunct ion with a function that depends on the 
values of the function. The total range of values is scaled for 0 (lowest) to 1 (highest) and the 
indicated pure function is applied to these values. It can be either RGBColor, Hue, or 
Grayscale . 

2.5 Two-Dimensional Graphics Commands in Packages 

There are many other 2-dimensional plotting commands to be found in the packages 
distributed with Mathematica. For full details, see the "Guide to Standard Mathematica 
Packages" that comes with the program. Here is a list of the currently available plotting 
commands in packages. Other plotting commands can be found by consulting the packages 
available through MathSource. 

BarChart 
CartesianMap 
ErrorListPlot 
FilledPlot 
ImplicitPlot 
LabeledListPlot 
LinearLogListPlot 

LogPlot 
MovieDensityPlot 
MovieParametricPlot 
MoviePlot 
MultipleListPlot 
PercentalBarChart 
PieChart 
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LinearLogPlot 
ListAndCurvePlot 
ListFilledPlot 
ListPlotVectorField 
LogLinearListPlot 
LogListPlot 
LogLogListPlot 
LogLogPlot 

PlotGradientField 
PlotHamiltonianField 
PlotPolyaField 
PlotVectorField 
PolarListPlot 
PolarMap 
PolarPlot 
TextListPlot 

These commands work just like the built-in graphics commands and they take the same kinds 
of optional arguments. To use them, load the appropriate package if you know what it is. 

There is a more convenient mechanism for dealing with all of the packages in a given 
directory. The commands above are all found in the G r a p h i c s directory, so they can be 
accessed by the single command: 

Needs["Graphics"Master""] 

What this does is to load a master file that gives all of the graphics commands the attribute 
Stub. That in turn has the effect of loading the appropriate package containing the command 
whenever one of these commands is used or mentioned. Here are a couple of examples. They 
show the same curve, first represented in polar coordinates, and then implicitely in terms of x 
and y coordinates. It is a standard exercise in analytic geometry to show that these two 
equations describe the same curve. 

Inputs 

P o l a r P l o t [ S i n [ 2 t h e t a ] , 
{ t h e t a , 0 , 2 P i } , 
P l o t S t y l e -> 
{ T h i c k n e s s [ 0 . 0 1 ] } , 
T icks -> None, 

AxesLabel -> 
{"polar a x i s " , N o n e } ] ; 

I m p l i c i t P l o t [ 
(xA2 + γ Λ 2 ) Λ ( 3 / 2 ) == 2 x y , 

{ x , - 1 , 1 } , 
Frame -> True, 
FrameStyle -> 

{ T h i c k n e s s [ 0 . 0 1 ] } , 
FrameTicks -> None, 
T icks -> None] ; 

Graphics 

LA 
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3 Three-Dimensional Graphics 

3.1 Plot3D 
Plot3D adds many new options, although some of them are also options for DensityPlot. 

Options[Plot3D] 
{AmbientLight -> GrayLevel[0], AspectRatio -> Automatic, 
Axes -> True, AxesEdge -> Automatic, AxesLabel -> None, 
AxesStyle -> Automatic, Background -> Automatic, 
Boxed -> True, BoxRatios -> {1, 1, 0.4}, 
BoxStyle -> Automatic, ClipFill -> Automatic, 
ColorFunction -> Automatic, ColorOutput -> Automatic, 
Compiled -> True, DefaultColor -> Automatic, Epilog -> {}, 
FaceGrids -> None, HiddenSurface -> True, Lighting -> True, 
LightSources -> 

{{{1., 0., 1.}, RGBColor[l, 0, 0]}, 
{{1., 1., 1.}, RGBColor[0, 1, 0]}, 
{{0., 1., 1.}, RGBColor[0, 0, 1]}}, Mesh -> True, 

MeshStyle -> Automatic, PlotLabel -> None, PlotPoints -> 15, 
PlotRange -> Automatic, PlotRegion -> Automatic, 
Plot3Matrix -> Automatic, Prolog -> {}, Shading -> True, 
SphericalRegion -> False, Ticks -> Automatic, 
ViewCenter -> Automatic, Viewpoint -> {1.3, -2.4, 2.}, 
ViewVertical -> {0., 0., 1.}, DefaultFont :> $DefaultFont, 
DisplayFunction :> $DisplayFunction} 

Inputs 

Plot3D[ 
Cos[x y ] , 
{x, 0, P i } , 
{y, 0, P i } , 
AxesLabel -> 

{"x-axis", 
" y - a x i s " , 

" z - a x i s " } , 
AspectRatio -> 1 ] ; 

Graphics 
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Inputs Graphics

133

Plot3D[
{Cos[x y),

GrayLevel[
Abs[x-y)/(2 Pi))},

{x, -Pi, Pi},
{y, -Pi, Pi},
Boxed -> False,
Axes -> False,
PlotPoints -> 25);

Plot3D[
2 Cos[x y],
{x, -Pi, Pi},
{y, 0, Pi},
FaceGrids ->

{{-I, 0, O},
{O, 1, O},
{O, 0, -I}},

PlotPoints-> 40]

The first is a simple 3-dimensional picture, the axes being labeled to show where they are. One
can change the surface shading by replacing the first argument with a pair consisting of the
function and a shading function that also depends on x and y. This can be either a GrayLevel,
a Hue, or an RGBColor specification. In the second picture, we use GrayLevel to do this.
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3.2 ParametricPlot3D
Inputs

ParametricPlot3D[
{Sin[t] ,
Cos[t] ,
Sin[t]"2},

{t, 0, 2 Pi},
Axes -> False,
BoxRatios ->

{1, 1, 1}];

ParametricPlot3D[
{r Cos[omega],

r Sin[omega],
omega/6},

{r, 0, 1},
{omega, -Pi, 4 Pi},
PlotPoints ->

{8, Floor[N[16 Pi]]},
Boxed -> False,
Axes -> False];

ParametricPlot3D[
{r Cos[t], r Sin[t],

r"2 Cos[2 tJ},
{t, 0, 2 Pi},
{r, 0, 1},
Axes -> False,
BoxRatios -> {1, 1, 1},
FaceGrids ->

{{-1, 0, O},
{O, 1, O},
{O, 0, -1}},

PlotPoints-> 40];

Graphics
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ParametricPlot3D plots parametric surfaces and parametric curves in 3-dimensional space. 
If the first argument is a list of three functions of one variable and there is only one iterator, 
then a space curve is plotted. If the first argument is a list of three functions of two variables 
and there are two iterators, then a parametric surface is plotted. We give several examples, 
using various options. In the P lo tPo ints option in the second picture, the first value is the 
number of values for r while the second is for omega. In the FaceGrids option in the third 
picture, a ( -1) means the corresponding grid is located on a back or bottom face while 1 means 
it is located on a front or top face. 

33 Three-Dimensional Graphics Commands in Packages 

As with 2-dimensional graphics, there are many 3-dimensional graphics commands in 
Packages. Here is a list of those currently available. 

BarChart3D 
ContourPlot3D 
CylindricalPlot3D 
ListContourPlot3D 
ListPlotVectorField3D 
ListShadowPlot3D 
ListSurfaceOfRevolution 
ListSurfacePlot3D 
MovieContourPlot 
MoviePlot3D 

PlotGradientField3D 
PlotVectorField3D 
PointParametricPlot3D 
ScatterPlot3D 
ShadowPlot3D 
SkewGraphics3D 
SphericalPlot3D 
StackGraphics 
SurfaceOfRevolution 

These are also made available when the Graphics Master^ Package is loaded. Here are 
three examples. In the first picture, SphericalPlot3D requires one function which gives rho 
as a function of two angles, phi and theta. In the second picture using ShadowPlot, one can 
also give an optional argument saying where the projection of the surface should be plotted. In 
the third picture, Surf aceOf Revolution requires one function which is though of as giving 
y as a function of x. The resulting curve is then rotated about the y axis. Standard options can 
be used with all of these plotting commands, but we have not given any here. There are also 
special options for some of these commands. For instance, the vector field plotting commands 
have special optional arguments dealing with arrow heads on the vectors in the field. These 
values are all described in the package Graphics Arrow^ which is used by the packages 
implementing the vector field commands. 



136 Part I · Symbolic Pocket Calculator 

Inputs Graphics 

S p h e r i c a l P l o t 3 D [ 
2 S i n [ p h i ] , 
{ p h i , 0, P i } , 
{ t h e t a , 0, 3 P i / 2 } ] ; 

ShadowPlot3D[ 
S i n [ x ] C o s [ y ] , 
{x , 0 , 2 P i } , 
{y , 0, 2 P i } ] ; 

SurfaceOfRevolut ion[ 
3 C o s [ x ] , 
{x , 0, ( 5 / 2 ) P i } , 
ViewPoint -> 

{ 1 . 9 6 5 , - 2 . 5 5 1 , 1 . 0 4 0 } ] ; 
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4 Animation 
Animations are most conveniently made in a Notebook front-end environment by using a Do 
loop that evaluates a sequence of expressions, controlled by a simple iterator. We will make an 
animation of a vibrating plucked string. The initial position is on the interval from 0 to 2, but 
the function describing its position has to be extended to be an odd, periodic function of period 
4. We do this by giving several rules for the function shape controlled by the clauses that 
follow the / ; 's. (Read / ; as "provided"; see Chapter 7.) 

shape[x_] := x/4 
shape[x_] := (2 - x)/4 
shape[x_J := -shape[-x] 
shape[x_] := -shape[x - 2] 

/; 0 <= x < 1; 
/; 1 <= x < 2; 
/; x < 0 
/; 2 <= x 

A picture shows that this has the desired properties. The extra lines at y = 0.3 and y = - 0.3 are 
added to control the shape of the picture. 

Plot[{0.3, -0,3, shape[x]}, {x, 
AspectRatio -> Automatic, 
Ticks -> None]; 

-2, 6 } , 

The position of the string as a function of time is given by the following function of two 
variables. 

string[x_, t_] := 0.5 (shape[x - t] + shape[x + t]) 

Now we construct 11 pictures showing the positions of the string for time intervals between 0 
and 2. 

Do[Plot[{0.3, -0.3, Evaluate[string[x, 0.2 t]]}, 
{x, 0, 2}, 
Ticks -> None, 
PlotRange -> All], 

{t, 0, 10}]; 

The output is omitted since we can't actually show an animation in a book. In a Notebook 
front-end, one would select these 11 plots and animate them. Use the controls to slow down 
the animation and to make it cycle back and forth. By making say 40 plots, rather than 10, one 
can get a much smoother action at the expense of a much longer plot time and much more 
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memory to store the result. As an alternative to showing the animation, we can make a 
graphics array of the output showing all eleven (actually twelve) pictures in one drawing. 

Show[GraphicsArray[ 
Table[Plot[{0.3, -0.3, 

Evaluate!string[x, 0.2 (4 i + j)]]}, 
{x, 0, 2}, 
Ticks -> None, 
PlotRange -> All, 
DisplayFunction -> Identity], 

{i, 0, 2}, {j, 0, 3}] 
], DisplayFunction -> $DisplayFunction]; 

There's one extra plot to fit the 3x4 array. 

5 Sound 
Sounds are created in very much the same way as pictures. Specify a sound wave, for instance, 
as a sin wave of an appropriate frequency and "show" it by using Play. Here is a major triad. 

Play[{Sin[440 2Pi t], Sin[440 5/4 2Pi t], 
Sin[440 3/2 2Pi t]}, {t, 0, 2}]; 
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See [Gray Tl] for many inventive uses of sound and combinations of sound and graphics. The 
packages M i s c e l l a n e o u s "Audio" a n d M i s c e l l a n e o u s " M u s i c " contain many constants 
and operations that are useful in constructing functions to be used with Play. 

6 Practice 

1. L i s t C o n t o u r P l o t [ { { l , 1 , 1 , 0 } , { 2 , 1 , 2, 1 } , 
{ 3 , 2, l f 0 } , { 1 , 2, 3, 1 } } ] ; 

2. L i s t D e n s i t y P l o t [ { { l , 1 , 1 , 0 } , {2, 1 , 2, 1 } , 
{ 3 , 2, l f 0 } , { 1 , 2, 3 , 1 } } ] ; 

3. ListDensityPlot[{{l, 1, 1, 0}, {2, 1, 2, 1}, 
{3, 2f 1, 0}f {lf 2, 3, 1}}, 

ColorFunction -> 
(Hue[#/2, (1 - #/3), 1]&)]; 

4. ListPlot3D[{{l, 1, 1, 0}, {2, 1, 2, 1}, 
{3, 2, 1, 0}, {1, 2, 3, 1}}, 

AxesLabel -> {x, y, z}]; 
5. ListPlot3D[Table[i/j, {i, 10}, {j, 10}], 

Table[Hue[Random[], Random[], 1], 
{i, 9}, {j, 9}]]; 

6. (after loading Graphicsv Masterv) 
P o i n t P a r a m e t r i c P l o t 3 D [ { u v , u + v , u - v } , 

{u , 0 , 1 } , { v , 0 , 1 } ] ; 
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7 Exercises 

1. Investigate the meaning of Automatic for other optional values. 

2. Investigate the option FaceGrids for Plot3D. 

3. Try out PieChart and BarChart in the graphics packages. 

4. Look up in a differential equations book the function that describes a vibrating circular 
or square membrane (i.e., a drum) and make an animation of this. 



The Mathematica 
Language 

1 Everything Is an Expression 

1.1 Atoms 

Expressions are going to be described recursively and the recursion has to start somewhere. 
The place it starts is with atoms.. In Mathematica, atoms are either symbols, numbers or strings. A 
symbol is any sequence of letters and integers (and possibly $), not starting with an integer. 
(Letters have ASCII codes from 160 to 255.) Thus, a2Cd is a symbol. A number here means an 
integer or a real number. The other four types of numbers-rationals, Gaussian integers, 
Gaussian rationals, and complex numbers-are not atoms. Thus, 123 and 12.3 are atoms but 3/4 
and 2 + 1 are not. Finally strings are sequences of any ASCII characters between double quotes; 
i.e., "A word." 

1.2 Expressions 

The heading of this section, Everything Is an Expression, is to be understood in a very literal 
sense. Many of the things we have looked at in the first four chapters don't look like 
expressions, as we are about to characterize them, but in fact they are. 

1.2.1 Syntax of expressions 
An expression is defined recursively to be either an atom or of the form 

f [a i , a2 , . . . , an ] , n > 0, 

143 
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where f, ai , a2 , . . . , an are expressions. Note that f[ ] is allowed; i.e., n can be 0, but [a] is not. 
A typical Mathematica expression might look like f [ x , y [ wl , w2 ] , z ] , where all of the 
symbols here are atoms. However, we will frequently prefer to write it in a "pretty printed" 
form with all the atoms written out as complete words rather than being abbreviated as single 
letters; e.g., 

function[ argument1, 
argument2[ subargument1, 

subargument2 
], 
argument3 

1 
Here, each new argument level is indented and closing brackets are written directly under the 
first letter of the name of the function they are closing. Sometimes we won't be so strict and 
will allow a modified form that is just as legible, in which we line up the arguments at a given 
level, except at the bottom level, if there is room for them on one line. 

function[argument1, 
argument2[subargument1, subargument2], 
argument3] 

If the expression is given in the form exp = f [ a i , a2 , . . . , an ] , then f is the head 
of the expression; i.e., Head [exp] = f. The entries a i , a2 , . . . , a n , are called the 
elements, or arguments of exp and the length of exp is n. The ith argument can be accessed by 
the command exp [ [ i ] ] . Saying that expressions are defined recursively means that the head 
and elements can be atoms or other expressions; e.g., 

h[k[m,n]] [ a , b [ b i , b 2 , b 3 [bi i , b 2 2 ] ] / C [ c i ] , d , e [ e i [e2 ] ] ] 

is a perfectly good expression. Writing this out in modified pretty printed form, it looks like: 

headFunction[kFunction[mArgument, nArgument] 
] [ aArgument, 

bFunction[ 
blArgument, 
b2Argument, 
b3Function[bllArgument, b22Argument] 

]/ 
eFunetion[cArgument], 
dArgument, 
eFunction[elFunction[e2Argument]] 

] 
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There is only one way to parse this as an expression. Its head is the expression h[k[m, n] ] , 
its first argument is a, its second argument is b[bi , b2 , b3 [bi χ , b2 2 1 L its third is 
c [ c l ] , its fourth is d, and its fifth is e [ e i [ β2 ] ] . 

1.2.2 Meaning of expressions 
There are several ways to think about expressions that help in understanding how to use them. 
Some of these are suggested by the following table. 

Interpretation 

Function[argument] 

Command[argument] 

Operator[operands] 

Type[parts] 

Example 

Sin[x] 

Expand[(x + y) *° 

Plus[x , y] 

L i s t [ a , b, c , d, e] 

The differences between Function, Command, and Operator as descriptions of heads are 
purely psychological. We might think of something as a Function if it takes numbers as 
arguments and produces numbers as values. If there are several numerical arguments all on 
the same level, then we might regard the head as an Operator, even when it is used with 
symbolic arguments. On the other hand, something that takes expressions as arguments and 
rewrites them in different forms or carries out some complicated procedure, might be regarded 
as a Command. But what do we mean by a Type with parts? 

In programming languages, types are a device for dividing expressions into different kinds 
of entities, mainly for the purpose of checking that certain expressions are correctly formed. 
For instance, if there is a type called "Integer" and a function whose argument is supposed to 
be an integer, then (providing the function has some way to know the type of the argument it 
is being given) there is the possibility of generating an error message if the function tries to 
evaluate a wrong kind of argument. This is very useful, especially in complicated programs. 
On the other hand, languages that demand that a type be declared for every entity before it can 
even be defined can become very cumbersome to use. Mathematica tries to, and in some sense, 
succeeds in having it both ways by allowing heads to be interpreted as types. In a certain 
sense, every entity in Mathematica has such a type, but the type doesn't ever have to be 
declared and generally doesn't have to be used unless we want to. 

This ambiguity in the meaning of heads is very helpful, since a single semantic model for 
the behavior of Mathematica expressions is not forced on the user. For instance, on the one 
hand, L i s t just holds its arguments together and doesn't do anything to them. On the other 
hand, it takes a number of different entities and produces something new out of them, namely, 
the list containing them, so it can be looked at as a function. Similarly, we usually think of Sin 
as a function, but when it is applied to an integer in Mathematica, nothing happens, so it is just 
holding its argument and producing an entity of type Sin. 
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1.2.3 Forms of expressions 
You would certainly be justified in being skeptical about this description of Mathematica, since 
many of the things we have used don't resemble expressions in this sense at all. What the 
description really applies to is Mathematica's own internal representation of expressions. 
However, this internal description can also be used for entering expressions as inputs, which 
will be very important later on. It turns out that everything has a head, even atoms. The 
internal form can be accessed by the command FullForm. 

Expression 

abc 

27 

2 7 . 3 5 

"A word" 

3 / 4 

3 + 5 1 

Head 

Symbol 

I n t e g e r 

Real 

S t r i n g 

R a t i o n a l 

Complex 

FullForm 

abc 

27 

2 7 . 3 5 

"A word" 

R a t i o n a l [ 3 , 4] 

C o m p l e x [ 3 , 5 ] 

Here are many examples, each presented as a table consisting of the input form of some 
expression, its Head, and its FullForm. The FullForm of atoms does not include the Head, 
but for everything else it does, so we will omit calculating the Head separately for non-atoms. 
Head and FullForm are Mathematica operations, so the first line above is given by the two 
expressions Head [abc] and FullForm [ abc ] . In particular, the FullForm of a rational 
number or a complex number includes the head R a t i o n a l or Complex, so these are 
compound expressions rather than atoms. 

Now consider some more complicated expressions. 

Expression 

x + y + z 

x y z 

x - y 

χ Λ η 

x / y 

{ x , y* z } 

FullForm 

P l u s [ x , y , z ] 

T imes[x , y , z ] 

P l u s [ x , T i m e s [ - 1 , y ] ] 

Power[x, n] 

T imes[x , Power[y, - 1 ] ] 

L i s t [ x , y , z ] 
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Expression 

{a, b} . {2, 3} 

x -> y 

x /. y -> z 

FullForm 

Dot[List[a, b], List[2, 3]] 

Rule[x, y] 

ReplaceAll[x, Rule[y, z] 

This shows that + is just the infix form of the head Plus. Furthermore, Plus can take any 
number of arguments, not just two. One can of course use Plus instead of the infix + sign in 
an input. Multiplication is just like addition. Subtraction is not a separate operation internally 
but is replaced by Plus and Times. Exponentiation is a separate operation, but division is not. 
Curly brackets are just a "circumfix" form for the head Lis t . The dot ". " in the dot product of 
vectors is the infix form of Dot. The arrow -> used in substitutions is the infix form of the 
head Rule and the / . symbol used in applying substitutions is the infix form of the head 
Replace All. 

Here is another collection of expressions whose full forms are not immediately obvious. 

Expression 

x = y 

f := y 

x[[i]] 

a <= b 

a == b 

a >= b 

Infinity 

-Infinity 

Complexlnfinity 

I Infinity 

FullForm 

Set[x, y] 

SetDelayed[f, y] 

Part[x, i] 

LessEqual[a, b] 

Equal[a, b] 

GreaterEqual[a, b] 

Directedlnfinity[1] 

Directedlnfinity[-1] 

Directedlnfinity[] 

Directedlnfinity[complex[0, 1]] 

The two kinds of equals signs used in making assignments and function definitions are the 
infix forms of the heads Set and SetDelayed respectively. The reason for these names will 
be explained in Chapter 7, Section 2.1. Double square brackets are the postfix notation for part 
extraction, here denoted by the head Part. Various notions of infinity all have a FullForm 
using Directedlnf inity. 

Finally, some of the more mysterious symbols also correspond to reasonable heads. 
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Expression 

% 

%% 

%5 

x__ 

x _ I n t e g e r 

# 

#& 

FullForm 

Out[] 

O u t [ - 2 ] 

Out[5] 

B lank[ ] 

P a t t e r n [ x , B l a n k [ ] ] 

P a t t e r n [ x , B l a n k [ I n t e g e r ] ] 

S l o t 

F u n c t i o n [ S l o t [ l ] ] 

This should be enough to convince you that, internally at least, everything is an expression. 

1.2.4 Types revisited 
Some heads of expressions cause a computation to be performed involving the arguments of 
the expression. Others, such as L i s t don't do anything except hold their arguments together 
as a single entity. It is certainly a reasonable point of view to regard L i s t as a type in the sense 
of type theory for programming languages. But then why not regard any head as a type, as 
suggested in the section above about the meaning of expressions. Then every expression has a 
type, but we don't have to do anything special about declaring types. (This is not what is 
usually understood in type theory where complicated expressions are supposed to have types 
that are derived somehow from the types of their constituents.) However, if we decide to think 
this way then, as will be seen in Chapter 7, Mathematica does allow type checking for any head. 

1.2.5 Parts of expressions 
Parts of expressions are described by a numbering scheme which can be used either forwards 
or backwards. 

exp = f [ a l , a2, a3, a 4 ] ; 

{exp[[0]], exp[[l]], exp[[2]], exp[[3]], exp[[4]]} 

{f, al, a2, a3, a4} 
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Negative numbers inside double square brackets count from the right-hand end of the 
expression. 

{exp[[-4]], exp[[-3]], exp[[-2]], exp[[-l]]} 
{al, a2, a3, a4} 

1.2.6 Tree structure of expressions and partspecs 

If we ask for the F u l l F o r m of a more complicated expression, then the result is again a 
Mathematica expression built up from the Ful lForms of the parts. For instance: 

e x p l = χΛ3 + (1 + ζ ) Λ 2 ; 
FullForm[expl] => Plus[Power[x, 3], Power[Plus[1, z], 2]] 

This kind of format is derived by forcing all operators to be given in prefix form. It is rather 
like "forward Polish notation" with explicit bracketing. Expressions can be displayed in 
another format, which is sometimes more informative, using the command TreeForm. 

TreeForm[expl] Plus[| , | 
Power[x, 3] Power[ 

This is intended as a representation of the tree 

P l u s [ l , z ] 

] 
2 ] 

[ [ 1 ] ] [ [ 2 ] ] 

In the drawing the edges are labeled with the part extraction command that leads to each 
particular argument. From the tree form of an expression, one can see how to access any part 
of the expression by a multiple part extraction. Thus, the expression corresponding to the 
subtree starting at any node can be displayed by giving the path of edges from the root P l u s 
to that node as a sequence of numbers inside double square brackets. 

e x p l [ [ l ] ] => x 3 

e x p l [ [ l ] ] [ [ 2 ] ] => 3 
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Instead of first extracting the first argument of e x p l and then extracting the second argument 
of the result, there is the following abbreviated form. 

e x p l [ [ l , 2 ] ] ^ 3 

Try finding some other subexpressions. 

{ e x p l [ [ 2 , 1 ] ] , e x p l [ [ 2 , 1 , 2 ] ] , e x p l [ [ 2 , 1 , 0 ] ] } 

{1 + z , z , P l u s } 

Note: the initial 0 is not given since e x p l [ [ 0 , 1 ] ] would mean the first part of the head of 
exp l , which doesn't exist here. However, it does in the following example. 

( f [ z ] [ x ] ) [ [ 0 , 1 ] ] => z 

A partspec is a positive or negative number, n or -n , or a sequence of such numbers (ni, n2 , . . . ) 
describing the position of an argument in an expression. It is what goes inside [ [ ] ] . 

If the expression is larger, then it is hard to display its tree form. There are two facilities to 
examine such expressions, Short and Shal low. 

bigexp := 
Sum[Product[Sum[x[i, j, k], 

{i, 1, 5}], {j, 1, 5}], {k, 1, 5}]; 
Short[bigexp] 

(x[l, 1, 1] + x[2, 1, 1] + « 2 » + x[5, 1, 1]) « 4 » + « 4 » 

Short shows us part of the complete detail of b i g e x p . We see that it is a sum of products of 
sums, and that each innermost sum has 5 terms of the form x [ i , j , k ] , two of which are 
omitted here (i.e., « 2 » means two terms are omitted). Each of these is multiplied by four 
more terms, and then there are four more outer summands that are omitted. 

Shallow[bigexp] 

Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] + 
Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] + 
Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] + 
Plus [ « 5 » ] Plus [ « 5 » ] Plus [ « 5 » ] Plus [ « 5 » ] Plus [ « 5 » ] + 
Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] Plus[«5>>] 
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Shallow just displays some of the top of the expression tree. Here we see that the output is a 
sum of five terms, each of which is a product of 5 terms, and each of these is again a sum of 5 
terms. It is only the lowest level subtrees x [ i , j , k] that are compressed. Together Short 
and Shallow give us a fairly good idea of what bigexp is like. Both Short and Shallow 
take optional arguments which allow a great deal of fine control over what is displayed. Note 
that Shallow uses explicit heads while Short does not. 

The following example is from [Wei]. The full expression is displayed and then we look at 
what Short and Shallow tell us about it. 

badexp = 
Together[Normal[ 

Series[l/(2 - Sin[t -a]), {t, 0, 4}]]] 
(384 + 192 t Cos[a] - 32 t3 Cos[a] + 96 t2 Cos[a]2 -
32 t4 Cos[a]2 + 48 t3 Cos[a]3 + 24 t4 Cos[a]4 + 768 Sin[a] + 
96 t2 Sin[a] - 8 t4 Sin[a] + 288 t Cos[a] Sin[a] + 
48 t3 Cos[a] Sin[a] + 96 t2 Cos[a]2 Sin[a] + 
40 t4 Cos[a]2 Sin[a] + 24 t3 Cos[a]3 Sin[a] + 576 Sin[a]2 + 144 
t2 Sin[a]2 + 12 t4 Sin[a]2 + 144 t Cos[a] Sin[a]2 + 
72 t3 Cos[a] Sin[a]2 + 24 t2 Cos[a]2 Sin[a]2 + 
28 t4 Cos[a]2 Sin[a]2 + 192 Sin[a]3 + 72 t2 Sin[a]3 + 
18 t4 Sin[a]3 + 24 t Cos[a] Sin[a]3 + 20 t3 Cos[a] Sin[a]3 + 
24 Sin[a]4 + 12 t2 Sin[a]4 + 5 t4 Sin[a]4 )/(24 (2 + Sin[a])5) 
Short[badexp] 
384 + 192 t Cos[a] - 32 « 2 » + « 2 6 » + 5 t4 Sin[a]4 

24 (2 + Sin[a])5 
Shallow [ badexp] 
(384 + Times [«3»] + Times [«3»] + Times [«3»] + 
Times [«3»] + 
Times [«3»] + Times [«3»] + Times [«2»] + Times [«3»] + 
Times[«3>>] + « 2 0 » ) / (24 Plus[«2»]5 ) 

Short gives us some vague idea of the form of the expression, but Shallow has lost all the 
important detail. However, the following gives a fair idea of what the function actually is. 

Short[badexp, 3] 
(384 + 192 t Cos[a] - 32 t3 Cos[a] + 96 t2 Cos[a]2 -
32 t4 Cos[a]2 + 48 t3 Cos[a]3 + 24 t4 Cos[a]4 + « 2 0 » + 
24 Sin[a]4 + 12 t2 Sin[a]4 + 5 t4 Sin[a]4) / (24 (2 + Sin[a])5) 
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1.2.7 Levels of expressions, depths of expressions and levelspecs 

Recall e x p l = xA3 + (1 + ζ ) Λ 2 from above. There is another way to describe the parts of 
an expression. Each part occurs at some specific level. The top of the tree is at level 0, the next 
row is level 1, etc. Levels are described by levelspecs, which are numbers n or -n , single 
numbers in curly brackets {n}, {-n}, or pairs in curly brackets {nl, n2} or Infinity. To see the 
parts at exactly level 2 use: 

L e v e l [ e x p l , { 2 } ] => {x, 3 , 1 + z , 2} 

Actually, this gives the subtrees, written as expressions, whose roots are exactly at level 2. (By 
a subtree, we mean some node together with everything below it. The node is the root of the 
subtree.) To see the parts (i.e., subtrees) at level 2 and higher, omit the curly brackets: 

Level[expl, 2] => {x, 3, x3 , 1 + z, 2, (1 + z)2 } 

A levelspec of the form {nl, n2} gives the subtrees whose roots are between n l and n2. For 
instance: 

L e v e l [ f 0 [ f l [ f 2 [ f 3 [ f 4 [ f 5 ] ] ] ] ] / {2 , 4}] 

{ f 4 [ f 5 ] , f 3 [ f 4 [ f 5 ] ] , f 2 [ f 3 [ f 4 [ f 5 ] ] ] } 

The depth of an expression is the maximum number of nodes along a path from the root to a 
leaf in the expression. 

D e p t h [ e x p l ] => 4 

There are also negative levels which use negative numbers to count from the bottom up. What 
is actually counted is the depth of a subexpression. Thus, {-l}gives all subexpressions whose 
depth is exactly 1 (i.e., the leaves), whereas - 1 (without the curly brackets) gives all proper 
subexpressions of depth at least 1 (i.e., all proper subexpressions). 

{Level[expl, {-1}], Level[expl, -1]} 

{{x, 3, 1, z, 2}, {x, 3, x3 , 1, z, 1 + z, 2, (1 + z)2 }} 

The level specification { -2} gives all proper subtrees of depth 2, whereas - 2 gives all proper 
subtrees of depth at least 2. 
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{Level[expl, {-2}], Level[expl, -2]} 

{{x 3 , 1 + z } , {x3 , 1 + z , (1 + z ) 2 }} 

The levelspec I n f i n i t y also gives all proper subexpressions. 

Level [expl , I n f i n i t y ] 

{x, 3 , x 3 , 1 , z , 1 + z , 2 , (1 + z ) 2 } 

1.2.8 Manipulating arguments of expressions and sequencespecs 

Start with a general expression with 6 arguments. 

generalExp = fun[a, b, c, d, e, f]; 

Input 
generalExp 
Drop[generalExp, 3] 
Take[generalExp, 3] 
Take[generalExp, {2, 4}] 
Delete[generalExp, -3] 
Insert[generalExp, hello, 3] 
ReplacePart[generalExp, 

hello, 3] 
ReplacePart[generalExp, 

hello, {{2}, {-2}}] 
Join[generalExp, 

Reverse[generalExp]] 
RotateRight[generalExp] 
RotateLeft[generalExp] 
First[generalExp] 
Rest[generalExp] 

Output 
fun[a, 
fun[d, 
fun[a, 
fun[b, 
fun[a, 
fun[a, 
fun[a, 

fun[a, 

fun[a, 
f, 

fun[f, 
fun[b, 
a 
fun[b, 

b, c, d, e, f] 
e, f] 
b, c] 
c, d] 
b, c, e, f] 
b, hello, c, d, e, 
b, hello, d, e, f] 

hello, c, d, hello, 

b, c, d, e, f, 
e, d, c, b, a] 
a, b, c, d, e] 
c, d, e, f, a] 

c, d, e, f] 

f] 

f] 
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Input 
Reverse[generalExp] 
Partition[generalExp, 2] 

Prepend[generalExp, yesterday] 
Append[generalExp, tomorrow] 
PrependTo[generalExp, yesterday] 
AppendTo[generalExp, tomorrow] 

generalExp 

Output 
fun[f, e, d, c, b, a] 
fun[fun[a, b], fun[c, d], too 

fun[e, f]] 
fun[yesterday, a, b, c, d, e, f] 
fun[a, b, c, d, e, f, tomorrow] 
fun[yesterday, a, b, c, d, e, f] 
fun[yesterday, a, b, c, d, e, 

f, tomorrow] 
fun[yesterday, a, b, c, d, e, 

f, tomorrow] 

There are a number of operations that change the arguments in some way. In Drop and Take, 
the description of which arguments are affected is given by a sequencespec. A single number n 
means the first n arguments. A single number - n means the last n arguments. A number with 
curly brackets {n} or {-n} means exactly the nth argument from the left or right. A pair of 
numbers in curly brackets means a range of arguments. In D e l e t e , I n s e r t , and 
ReplacePart , the second or third argument is a partspec, so a single number n or -n refers to 
the nth argument counted from the left or right, and a list refers to the part specification of a 
specific subtree. A list of lists refers to several such subtrees. Often these operations seem to 
make more sense if they are used just for lists, but in fact they work with arbitrary heads. The 
last two operations, as a side effect, change the value of generalExp. We repeat generalExp 
at the beginning and end to show how it has been changed. Note that Prepend and Append 
do not change the value of g e n e r a l E x p while PrependTo and AppendTo update it to the 
new value. 

There are other ways to operate on the arguments of expressions that take account of what 
they are rather than where they are. These will be discussed in detail in Chapter 7, but here is 
an example. P o s i t i v e is a predicate on numbers which is True just for numbers greater than 
0. The operation S e l e c t with second argument P o s i t i v e chooses just those arguments that 
are positive. 

S e l e c t [ f [ - 3 , 3 , - 2 , 2, - 1 , 1, 0 ] , Pos i t i ve ] 

f [ 3 , 2 , 1] 

These operations are all immensely useful, as will be seen in the later chapters. Here we just 
call your attention to their existence since they will be needed in the Exercises. 
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2 Lists, Arrays, Intervah, and Sets 
Some programming languages have special types for arrays, matrices, lists, etc. In Mathematica 
all of these concepts are represented by lists. Since lists are such an important aspect of the 
language, there are many special features for dealing with them. 

2.1 Listability 
When many built-in operations are applied to a list, they automatically apply themselves to 
the entries in the list. Such an operation is called L i s t a b l e . Start with a simple list. 

l i s t = {2 , 3 , 4 } ; 

The only sensible meaning for S i n applied to this list is the list of values of S i n applied to the 
entries in the list. 

S i n [ l i s t ] => { S i n [ 2 ] , S i n [ 3 ] , S i n [ 4 ] } 

This happens by itself without our doing anything about it. In other words, S i n commutes 
with (or distributes over) L i s t . Certain functions have the attribute of being L i s t a b l e which 
is shown by the operation A t t r i b u t e s . E.g., 

A t t r i b u t e s [ S i n ] => { L i s t a b l e , P r o t e c t e d } 

Many other functions also have this property. (See Chapter 11, Section 3 for a list of all of 
them.) For instance, arithmetic operations, etc., automatically propagate down lists. 

newl i s t = x ^ l i s t - 1 

{-1 + x 2 , - 1 + x 3 , - 1 + x 4 } 

Thus, to show the squares of the entries in this list in expanded form, just expand the list raised 
to the power 2. 

Expand[newlistΛ2] 

{1 - 2 x2 + x4 , 1 - 2 x3 + x6 , 1 - 2 x4 + x8 } 

To find the derivatives of these functions at the point 3, use the fact that differentiation is 
L i s t a b l e in its first argument as is substitution. 
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D[%, x] / . x -> 3 => {96 , 1404, 17280} 

Since everything here is L i s t a b l e , we can do it all in one step. 

D[Expand[x*{2, 3 , 4} - 1 ] Λ 2 , x] / . x -> 3 

{96, 1404, 17280} 

This way of handling lists is characteristic of Mathematica, and we shall make frequent use of it. 

2.2 Construction of Lists—Tables, Iterators, and Range 

We have already seen how to create a list using the Table command. For instance: 

Table[x"i + 2 i , { i , 1, 5}] 

{2 + x , 4 + x 2 , 6 + x 3 , 8 + x 4 , 10 + x 5 } 

The second argument in Tab le , and in a number of other commands like I n t e g r a t e for 
definite integrals, P l o t , etc., is called an iterator. It comes in several forms. 

{ i , i m i n , imax, s t e p } 

{ i , i m i n , imax} 

{ i , imax} 

{imax} 

i runs from imin to imax with stepsize s t e p . 

i runs from imin to imax with stepsize 1. 

i runs from 1 to imax with stepsize 1 

a constant expression is repeated imax times. 

Try examples of all four kinds of iterators. 

Table[i, {i, 3, 6, 1/2}] => {3, 7/2, 4, 9/2, 5, 1/2, 6} 
Table[i, {i, 3, 6}] => {3, 4, 5, 6} 
Table[i, {i, 6}] => {1, 2, 3, 4, 5, 6} 
Table[Random[Integer, {0, 12}], {12}] 

{12, 7, 5, 9, 10, 9, 2, 7, 10, 11, 3, 7} 

There is another way to create lists without having some variable i take on successive values. 
This is done using the Range command. 
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Range[10] => { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10} 
R a n g e [ - 3 , 8] => {-3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 , 5 f 6 , 7 , 8} 

Range can also take a third argument specifying the step size. 

R a n g e [ - 3 , 2 , 1 /2 ] 

{-3 , - ( 5 / 2 ) , - 2 , - ( 3 / 2 ) , - 1 , - ( 1 / 2 ) , 0 , 0 , 1, 3 / 2 , 2} 

The arguments to Range are like the first three kinds of iterators without the variable i . Once 
a list of index values has been constructed by the Range operation, then the other lists can be 
created using listability by replacing the variable by the appropriate value of Range. Thus, in 
the Tab le constructed at the beginning of this section, replace i by Range [ 5 ] to get exactly 
the same output. 

x"Range[5] + 2 Range[5] 

{2 + x, 4 + x2 , 6 + x3 , 8 + x4 , 10 + x5 } 

Another way to operate on ranges using the Map function will be discussed in Chapter 6, 
Section 1. 

What about multidimensional lists; e.g., the Hilbert matrix of size 3, which is given by the 
following operation. 

Table[l/(i + j - 1), {i, 3}, {j, 3}] 

{{1, 1/2, 1/3}, {1/2, 1/3, 1/4}, {1/3, 1/4, 1/5}} 

The same output can be obtained using the operation Outer which applies its first argument 
(a function of two or more variables) to all choices of entries from each of two lists. Thus, for 
instance, 

Outer[Plus, Range[3], Range[3]] 

{ { 2 , 3 , 4 } , { 3 , 4 , 5 } , {4 , 5 , 6}} 

So the matrix we want is given by the following construction. 

1 / (Outer[Plus, Range[3], Range[3]] - 1) 

{{1, 1/2, 1/3}, {1/2, 1/3, 1/4}, {1/3, 1/4, 1/5}} 
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In general, Outer takes a (pure) function as its first argument and any number of lists (or 
expressions with the same head) as the rest of its arguments. If there are n lists, then the 
function must accept n arguments. Outer then constructs the multidimensional list of the 
function applied to all combinations of one argument from each list. Outer will be discussed 
further later. If the arguments to Outer are themselves multidimensional lists, then the 
behavior of Outer is more complicated. (See Section 3.3 below.) 

2.3 Arrays 
Symbolic arrays of given sizes can be constructed by the command Array. As an example, 
make an array of indexed values of aa's. 

Array[aa, {3 , 4}] 

{{aa[l, 1], aa[l, 2], aa[l, 3], aa[l, 4]}, 
{aa[2, 1], aa[2, 2], aa[2, 3], aa[2, 4]}, 
{aa[3, 1], aa[3, 2], aa[3, 3], aa[3, 4]}} 

If desired, the aa's can be formatted with subscripts and superscripts. 

Format[aa[i_, j _ ] ] = Subscr ipted[aa[ i , j ] , { 1 } , { 2 } ] ; 

Give a name to the formatted form to use later. 

aaArray = Array[aa, {3 , 4}]//TableForm 

a a i 1 a a i 2 a a i 3 a a i 4 

aa21 aa22 aa23 aa24 

aa3 1 aaß2 aa3 3 aa34 

Values can be assigned to the entries if one wishes to make aaArray into an array of numbers. 

a a [ i _ , j _ ] := i + j 
aaArray 

2 3 4 5 
3 4 5 6 
4 5 6 7 
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2.4. Fhtten 
Flatten removes all inner brackets in lists. First start with a list written in indented form. 

list = { { {{a, b}, {c, d}}, {{e, f}, {gf h}} }, 
{ Hi, j}, {*, 1}}/ {{m, n}f {o, p}} } }; 

Flatten[list] 

{a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p} 

Flatten can also take a second argument which is a level specification. 

Flatten[list, 1] 

{{{a, b}, {c, d}}, {{e, f}, {g, h}}, {{i, j}, {k, 1}}, 
{{m, n}, {of p}}} 

Often it takes a good deal of experimentation to discover the appropriate level specification for 
a desired outcome. Actually, all that F l a t t e n requires is that all heads be the same, so it 
works for arbitrary heads instead of just List . 

Flatten[f[f[af b], f[c, d]]] => f[a, b, c, d] 

FlattenAt flattens parts of expressions just at specific locations given by a position list. 

PFlattenAt 

FlattenAt[list, n] flattens out a sublist that appears as the 
n'th element of list. If n is negative, the position is counted 
from the end· FlattenAt[expr, {i, j, ..·}] flattens out the 
part of expr at position {i, j, ...}. FlattenAt[expr, {{il, jl, 
...}, {i2, j2, ··.}, ···}] flattens out parts of expr at 
several positions. 

Study the following example carefully to understand what FlattenAt actually does. 

FlattenAt[list, {{1, 1}, {2}}] 

{{{a, b}, {c, d}, {{e, f}, {g, h}}}, {{i, j}, {k, 1}}, 
{{m, n}, {o, p}}} 
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2.5 Real IntervaL· 
There is a facility, Interval , similar to Range for dealing with intervals of real numbers It 
arises as the value of certain functions; e.g., 

real = Limit [Cos [x] , x -> Infinity] => Interval[ {-1, 1}] 

One can carry out limited calculations with real intervals similar to the calculations with 
Range. For instance: 

N[2Areal] + 2 real => Interval!{-1.5, 4.}] 

2.6 Set Operations 
Some operations on lists treat them as though they were sets. Sets can be thought of as lists in 
which elements are not repeated and where order doesn't matter. We start with a long list with 
repeated entries. 

longlist = Table[Random[Integer, {0, 9}], {20}] 

{3, 1, 5, 4, 5, 7, 2, 6, 1, 9, 0, 3, 2, 4, 6, 8, 7, 4, 1, 0} 

Union of a single list turns it into a set by removing duplicate elements and ordering the 
result. Union of several lists first joins them together and then turns the result into a set. 
Complement starts with its first entry, deletes the elements of the remaining entries and then 
turns what remains into a set. Finally, Intersect ion forms the set theoretic intersection of its 
arguments. 

Union[longlist] =>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

Union[longlist, {5, 4, 3}, {12, 14, 16}] 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 16} 

Complement[longlist, {1, 2}, {5}, {7, 8}] 

{0, 3, 4, 6, 9} 
Intersection! {a, b, c, d, c}, {b, c, d, c, e}, 

{c, d, e, c, f}, {f, g, d, a, c} ] 

{c, d} 
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3 Thread, Inner and Outer 

3.1 Thread 
Lis tab le actually means more than just that single operations automatically map themselves 
down lists. Consider what happens if several lists are multiplied. 

{2, 3 , 4} {a, b , c} {x, y , z} => {2 a x, 3 b y , 4 c z} 

Thus, if Times is given several lists of the same length, then it forms the list given by 
multiplying corresponding entries. Any operation of more than one variable which is 
Lis tab le behaves the same way. 

{ x f y , z p { 2 , 3 , 4} => { x 2 , y 3 , z 4 } 

This can sometimes give unexpected results. For instance, Range is L i s tab le , so we get the 
following strange output 

Range[{l, 1}, {3, 4}, {1/3, 1/2}] 

{{1, 4/3, 5/3, 2, 1/3, 8/3, 3}, {1, 3/2, 2, 5/2, 3, 7/2, 4}} 

which is the same as 

{Range[l, 3, 1/3], Range[l, 4, 1/2]} 

The built-in operation Thread will do the same thing for an arbitrary head, even if it is not 
Listable. 

Thread[ff[{2, 3, 4}, {a, b, c}, {x, y, z}]] 

{ff[2, a, x], ff[3, b, y], ff[4, c, z]} 

Actually, Thread works with either lists of the same length or individual arguments. 

Thread[f f [{2 , 3 , 4 } , {a, b , c } , 2 , x] ] 

{ f f [ 2 , a, 2 , x ] , f f [ 3 , b , 2 , x ] , f f [ 4 , c , 2 , x]} 

Furthermore, the arguments for Thread don't even have to be lists; they can also have an 
arbitrary head, which is then included as a second argument to Thread. (Note that L i s table 
only applies to lists.) 
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Thread[ff[hh[2, 3, 4], hh[a, b, c], hh[x, y, z]], hh] 

hh[ff[2, af x]f ff[3, b# y]f ff[4, c, z]] 

Thread can be used, for instance, to construct lists used in substitutions. Consider the 
following fragment of Mathematica code: 

var = {x, y, z } ; point = {1 , 2 , 3 } ; 
expr = χΛ2 y + 2 y z - 4 x ζΛ3 ; 

Thread can be used to produce a list of substitutions. 

Thread[var -> point] => {x -> 1, y -> 2, z -> 3} 

This can then be used to substitute the point in the expression. 

expr /. Thread[var -> point] => -94 

3.2 Inner 

There are two more complicated ways of applying operations to arguments consisting of lists. 
Inner is a generalization of Dot. The first example shows how to write Dot in terms of 
Inner, while the fourth example here shows that, in fact, Inner [ f, l i s t i , l i s t 2 , g] is 
the same as Apply [g , Thread [ f [ l i s t 1 , l i s t 2 ] ] ] . (See the next chapter for Apply.) 
The fifth example shows that second and third arguments don't have to have head Lis t . All 
that matters is that the heads be the same and that they have the same number of arguments, 
which are then extracted to be used by f and g. 

Input 
Inner[Times, {a, b, c}, 

{1, 2, 3}, Plus] 
Inner[Plus, {a, b, c}, 

{1, 2, 3}, Times] 
Inner[f, {a, b, c}, 

{1/ 2, 3}, g] 
Apply[g, Thread[ 

f[{a, b, c}, {1, 2, 3}]]] 
Inner[f, hello[a, b, c], 

hello[l, 2, 3], g] 

Output 
a + 2 b + 3 c 

(1 + a) (2 + b) (3 + c) 

g[f[a, l]f f[b, 2], f[c, 3]] 

g[f[a, 1], f[b, 2], f[c, 3]] 

g[f[a, 1], f[b, 2], f[c, 3]] 
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3.3 Outer, Transpose, and Distribute 

Outer was discussed briefly above in Section 2.2. Outer[ f u n c t i o n , l i s t s . . . ] takes 
any number of lists as second through nth arguments and outputs the function applied to all 
choices of arguments from the lists arranged in a nested form to make this suitable for tensor 
computations. Thus Outer of a function with two simple lists produces a matrix. Interestingly, 
this works with heads other than L i s t . Note that the numbers of arguments in the lists do not 
have to be the same. 

{Outer[Times, {a, b, c}, {1, 2}], 
Outer[Times, set[a, b, c], set[l, 2, 3]]}//MatrixForm 

{{a, 2 a}, {b, 2 b}, {c, 2 c}} 
set[set[a, 2 a, 3 a], set[b, 2 b, 3 b], set[c, 2 c, 3 c]] 

Outer with three simple lists produces what could be regarded as a list of three matrices. 

Outer[Times, {a, b, c}, {1, 2, 3}, {u, v, w}] 
{{{a u , a v , a w},{2 a u , 2 a v , 2 a w} ,{3 a u , 3 a v , 3 a w}} , 

{{b u , b v , b w},{2 b u , 2 b v , 2 b w} ,{3 b u , 3 b v , 3 b w}} , 
{{c u , c v , c w},{2 c u , 2 c v , 2 c w} ,{3 c u , 3 c v , 3 c w}}} 

O u t e r with two matrices (of different sizes here) as arguments produces something of 
depth 4. 

tensor = Outer[Times, {{a, b}, {c, d}}, 
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}] 

{ { { { a , 2 a , 3 a } , {4 a , 5 a , 6 a } , {7 a , 8 a , 9 a } } , 
{{b , 2 b , 3 b } , {4 b , 5 b , 6 b } , {7 b , 8 b , 9 b } } } , 

{ { { c , 2 c , 3 c } , {4 c , 5 c , 6 c } , {7 c , 8 c , 9 c } } , 
{{d , 2 d , 3 d } , {4 d , 5 d , 6 d } , {7 d , 8 d , 9 d}}}} 

Transpose can be used to rearrange this in many ways. 

PTranspose 

Transpose[list] transposes the first two levels in list. 
Transpose[list, {nl, n2, ...}] transposes list so that the 
nk-th level in list is the k-th level in the result. 
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T r a n s p o s e [ t e n s o r , { 1 , 4 , 2 , 3}] 

{{{{ a , b } , {2 a , 2 b } , {3 a , 3 b } } , 
{{4 a , 4 b } , {5 a , 5 b } f {6 a , 6 b } } , 
{{7 a , 7 b } , {8 a , 8 b } f {9 a , 9 b } } } , 

{{{ c , d } , {2 c , 2 d } , {3 c , 3 d } } , 
{{4 c f 4 d } , {5 c , 5 d } , {6 c , 6 d } } , 
{{7 c , 7 d } , {8 c , 8 d } , {9 c , 9 d}}}} 

See also D i s t r i b u t e and Through. In particular, D i s t r i b u t e can sometimes be used to do 
the same things as Outer, without going inside deeper list structures. The syntax is somewhat 
different. 

PDistribute 

Distribute!f[xl, χ 2, ···]] distributes f over Plus appearing in 
any of the xi. Distribute[expr, g] distributes over g. 
Distribute[expr, g, f] performs the distribution only if the 
head of expr is f. 

Distribute[{{a, b}, {c, d}}, List] 

{{a, c}, {a, d}, {b, c}, {b, d}} 

Distribute!{{{a, b}, {cf d}}, {{e, f}, {g, h}}}, List] 

{{{a, b}, {e, f}}f {{af b}r {g, h}}, 
{{c, d}, {e, f}}, {{c, d}, {gf h}}} 

However, this fails to do the expected thing if the head of the first argument evaluates its 
arguments. 

Distribute[Plus[{a, b}, {c, d}], List] 

{{a + c, b + d}} 

4 Other Aspects 
There are a number of other aspects of the Mathematica language that require consideration. 
For two of them, the virtual operating system and the string language, we limit ourselves to 
some brief comments and examples. The third, programming facilities, will be the subject of 
the next three chapters. 
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.̂ i 7J&* Virtual Operating System 
For a detailed description of the virtual operating system, see The Mathematica Book, Chapter 
2, Section 10 [Wolfram]. Some aspects, such as reading and writing external files, will be 
discussed as part of the examples treated in Chapter 8 here. Other aspects, those enabling one 
to manipulate files and run external programs from within Mathematica are what really 
constitute the virtual operating system. The effect of such commands is, of course, system 
dependent. Thus, the command Run [ "date" ] produces the date in a Unix environment and 0 
on a Macintosh. On the other hand, the commands Directory! ] , which gives the current 
directory, and FileNames[ ] , which lists the files in the current directory, seem to work 
anywhere. 

Directory[] => HardDisk:Mathematica 2.2 Enhanced 
FileNames[] 
{Defaults, Documents, Help, Mathematica, MathematicaJournal, 
Mathematica Kernel, Mathematica Kernel Prefs, Packages, 
Sample Notebooks} 

In addition, there are a number of commands starting with $ that either give information 
about the current machine and its operating system, or concern how Mathematica interacts with 
it. You can see all of them by typing Names ["$*"]. For instance, $Path tells Mathematica 
where to look for files to be loaded using Needs. 

$Path 

{HardDisk:Mathematica 2.2 Enhanced:Packages, 
HardDiskMathematica 2.2 Enhanced:Packages:Startup} 

This will be used in Chapter 13. Here are some others. 

{$OperatingSystem, $Packages, $SessionID} 
{MacOS, {Global^, Systenf}, 19317473551709172550} 

4.2 The String Language 
Strings form a special data type in Mathematica which in some sense reflects within itself the 
whole Mathematica language. The two commands, ToStr ing and ToExpression take 
expressions to strings and vice versa. Similarly, T o C h a r a c t e r C o d e and 
FromCharacterCode convert between strings and ASCII code. Furthermore, there is a 
collection of operations that mimic those for manipulating expressions. Start with some string. 

generalString = "The quick brown fox "; 
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Here is a sample of things that can be done with strings. 

Input 

StringDrop[generalString, 
{5, 10}]} 

StringTake[generalString, 
{11, 15}]} 

Stringlnsert[generalString, 
" stupid", 4] 

StringReplace[generalString, 
{"b" -> "g", "x" -> "e"}] 

StringJoin[generalString, 
StringReverse[generalString]] 

Output 

The brown fox 

brown 

The stupid quick brown fox 

The quick grown foe 

The quick brown fox 
xof nworb kciuq ehT 

We will make frequent use of StringJoin, in its infix form <>, in some of the later programs. 
The main uses I can think of for these operations are to massage data that has been imported 
from or will be exported to an external program and to produce output-dependent text for 
graphics. 

4.3 Programming Facilities 
There are many facilities in Mathematica for dealing with various styles of programming. These 
are so important that the next three chapters will be devoted to them, in the order: functional 
programming, rule based programming, and procedural programming. 

5 Practice 

1. ??Set 
2. ?? Set De lay ed 
3. {FullForm[x && z], FullForm[x || z], FullForm[!x]} 
4. {FullForm[a < b ] , FullForm[a > b]} 
5. Fu l lForm[f ] 
6. FullForm[f ' ■ · ■ ■ ] 
7. Drop [ Range [ 10 ] , 3 ] 
8. Take [ Range [ 10 ], 3] 
9. Delete[Range[ 10], 3] 
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10. Insert[Range[ 10], hello, 3] 
11. ReplacePart[Range[10], hello, 3] 
12. Reverse [ Range [ 10 ] ] 
13. Partition [ Range [ 10 ] , 4, 2 ] 
14. Select[Range[-3, 10], Negative] 
15. StringLength[ToString[Range[10]]] 
16. StringDrop[ToString[Range[10]], 3] 
17. StringTake[ToString[Range[10]], 3] 
18. Stringlnsert[ToString[Range[10]], ", hello", 3] 
19. StringReplace[ToString[Range[10]], Table[ToString[i] -> 

ToString[ll - i ] , {i, 10}]] 
20. StringReverse[ToString[Range[10]]] 
21. Distribute[g[f[a, b ] , f[l, 2 ] ] , f, g, ff, gg] 
22. Distribute[{{χΛ2 + γ Λ 2 , 2 x y } , {x, y}}, List, List, List, D] 
23. ??! 
24. Names["$*"] 
25. {{a, b, c } , {d, e, f}, {g, h, i}}"2 
26. {{a, b, c}, {d, e, f}, {g, h, i}K0 
27. Permutations[{1, 2, 3}] 
28. Range[{l, 1, 1, 1, 1}, {5, 4, 3, 2, 1}] // TableForm 
29. Limit[ArcTan[x], x -> Infinity] 
30. N[Tan[%]] 

6 Exercises 

1. In problem 13 of the Exercises in Chapter 3, the third solution of the transformation 
u = x2 + y2 

v = - 2 x y 
for (x, y) in terms of (u, v) was used to construct invjak which was then expressed in 
terms of x and y to get the matrix jak'. It satisfies jak. jak1 = Id. This time: 
i) Modify your definition of the jacobian function using the notions introduced in this 

chapter. 

ii) Find invjak(n), 1 < n < 4 for each of the four solutions of x and y in terms of u and v. 
Keep invjak(n) as an expression in u and v. 

iii) For each of the four solutions for (x, y) in terms of (u, v), express the original matrix 
jak in terms of u and v instead of x and y, giving four Jacobians jak(n), 1 < n < 4 in 
terms of u and v. 
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iv) For each n show that jak(n) . invjak(n) = Id. Your final output should be a list of 
four 2 by 2 identity matrices. 

Find the greatest common divisor of the nth row of Pascal's triangle, omitting the l's. To 
do this: 
i) Define a modified function pascal(n), from problem 11 of the Exercises in Chapter 3, 

which gives the entries of this row without the l's. 

ii) Then define a function gcd(n) which gives the greatest common divisor of the 
entries in pascal(n). Note that there is a built-in function GCD. 

iii) Make a table of the first 20 values of gcd(n) and conjecture the value of gcd(p) for p 
a prime number. 

iv) Use Mathematica to check that your conjecture is correct for the first 50 primes. Note 
that there is a built-in function Prime [ n] . 

v) Use your head to prove your conjecture for all primes. You may assume that 
binomial coefficients are integers. 

vi) Guess the values of gcd(n) for n a power of a prime, and for n a number with at 
least two different prime factors. (You might want to extend your table to n = 50, or 
even to n = 100 to get more evidence for your guess.) 

i) Which rows of Pascal's triangle have all odd entries? 
ii) For which rows of Pascal's triangle are all entries, except for the initial and final l's, 

even? Note that there are built-in predicates EvenQ and OddQ. 
iii) Check your conjectures for the first 210 rows. 

Define f[m, r ] = b [ m + r - 1, r ] , where b [ m, n ] is the binomial coefficient 
function. This rotates the usual Pascal's triangle by 45 degrees. Make a table showing 
these values in an upper-left triangular form corresponding to the usual table up to size 
10. Pascal's Corollary 4 asserts that in this table, each entry is equal to the sum of all the 
entries to the north west of it plus 1. Verify this for a number of small values of m and r. 

Implement the Gram-Schmidt method for orthogonalizing vectors with respect to the 
dot product. It should take as input a list of n-dimensional vectors over the reals and 
output a list of n-dimensional orthonormal vectors. You may assume that the original 
list is linearly independent. It is sufficient to do this for n = 3. Check your algorithm on a 
list of three 3-dimensional vectors with random real components. If you can, write an 
algorithm that works for vectors of any dimension. Test it for four 4-dimensional 
vectors. (Think about the case of four 3-dimensional vectors with random real 
components.) 



CHAPTER 

Functional 
Programming 

"Pascal is for building pyramids -imposing, breathtaking, static structures built by armies pushing 
heavy blocks into place. Lisp is for building organisms -imposing, breathtaking, dynamic structures 
built by squads fitting fluctuating myriads of simpler organisms into place. " 
[Abelson]. 

We, of course, intend to replace "Pascal" by "C" and "Lisp" by "Mathematica" 

1 Some Functional Aspects o/^Mathematica 
What is a functional programming language? Basically, it's a language in which functions can 
be defined and applied to arguments. It is important that the arguments of a function can 
themselves be other functions applied to other arguments, etc. There is an abstract, theoretical 
functional programming language called the lambda calculus (to be discussed in detail in 
Chapter 11, Section 7) which has exactly three operations: function definition, function 
application, and substitution-which is essentially a rewrite rule for function application. There 
are only a few pure functional languages; e.g., Haskel and Miranda. Most so called functional 
languages, such as Scheme or ML are impure in the sense that they have many other features 
to make programming more convenient. Mathematica belongs to the category of languages that 
have a pure functional component, but also include many other features. It has the advantage 
over Scheme and ML of having many built-in mathematical functions to start with that can be 
combined with each other to create new functions. Later in this chapter we'll look at exactly 
what constitutes functional programming in Mathematica. 

Another way to look at the question is to change it to: what properties characterize 
functional programming languages? Some possible answers to this are: 

169 
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i) Higher order functions. This property means that functions can be arguments and 
values of other functions. We'll give examples of this in Mathematica below. 
Mathematically, for instance, composition of functions is represented by the equation 
(f o g)(x) = f(g(x)). The operation on the left-hand side, (f ° g), is a higher order 
function. It takes two functions, f and g, as its arguments and returns another function, 
their composition, as its value. Another example is the special case of twice, where 
twice is defined by the equation (twice(f))(x) = f(f(x)); i.e., twice(f) = f <> f. 

ii) Referential transparency. A programming language is referentially transparent if the 
value of an expression depends only on the values of its subexpressions. For instance, 
the value of m + n should depend only on the values of m and n (as well as the value 
of +). Thinking mathematically, it is hard to imagine this failing. What else could it 
depend on? Well, it might depend on the order in which m and n are evaluated 
because evaluating one of them could, as a side effect, change the result of evaluating 
the other. (Look in Chapter 8, Section 2.1 to see how this can happen in Mathematica.) 
One way to make the notion of "depending only on the values of subexpressions" 
more precise is to define it to mean that any subexpression (by which we mean a 
subtree of the tree form of the expression) can be replaced by any other expression 
with the same value. As a practical matter, it comes to the same thing -no side effects; 
i.e., assignment statements like a = 5 are forbidden. 

iii) Functions have no memory. Everytime a function is evaluated (with, of course, the 
same values for the arguments) it returns the same value. Thus, a history of successive 
evaluations of a function would be very dull, consisting just of the same value over 
and over again. We'll see in Chapter 9 that this is one of the differences between 
applying a function to a value and sending a message to an object. 

iv) Lazy evaluation. A language uses lazy evaluation if arguments to functions are only 
evaluated when they are needed. In LISP, functions with this property are called 
special forms. In Mathematica, they are operations that hold some or all of their 
arguments. This is an important property because it allows computations to proceed 
even if some of their arguments are not well defined. For instance, the definition 

bad[x_] := I f [ x == 0, good, 1/x] 
works perfectly well at x = 0, even though 1/0 is undefined. 

Mathematica shares features with several other programming languages, such as C, Pascal, 
Lisp, APL, etc., but it has extended and modified these features as well as added its own 
original constructs. In this chapter we examine those features that qualify it as a functional 
programming language. 
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/ . / Applying Functions to Values 
We have already discussed and used the Mathematica facilities for defining functions and 
applying them to arguments. For instance, f [x_] : = χΛ2 defines the squaring function and 
f [ 2 ] or f § 2 o r 2 / / £ applies it to the value 2. But there is more to practical functional 
programming than this. There are a number of built-in operations that take arbitrary functions 
as arguments and do something with them. For instance, there are several built-in commands 
that take a function as first argument and an arbitrary expression as second and apply the 
function to various parts of the expression. The first of these, Map, is a feature of virtually 
every functional language. Normally, it has two arguments, a function and a list, and it applies 
the function to every entry in the list, producing a list as the output. As usual in Mathematica, 
the list argument is replaced by an arbitrary expression and levelspecs can be used to specify 
the level of the expression at which the function is applied. 

1.1.1 Map 

The operation Map [ f u n c t i o n , e x p r ] or in infix form f u n c t i o n /@ expr applies 
f u n c t i o n to each subexpression at level 1 in expr . The operation Map applied to a list, 
therefore, just applies the function to each entry in the list; e.g., 

Map[Sin, { a , b , c } ] => { S i n [ a ] , S i n [ b ] , S i n [ c ] } 

Furthermore, Mathematica can map a function down the arguments of an arbitrary expression, 
not just a list. For instance, continuing with expl as in the preceding chapter: 

e x p l = χΛ3 + (1 + ζ ) Λ 2 ; 
Map[Sin, e x p l ] => S i n [ x 3 ] + S i n [ ( l + z ) 2 ] 

Be sure you understand the output here. Even more, Map takes a third argument, with a new 
effect. Map [ f u n c t i o n , e x p r , l e v e l s p e c ] applies f u n c t i o n to the parts of e x p r 
described by l e v e l s p e c . For instance, we can apply S i n to all of the leaves (described by the 
levelspec {-1}), or to all of the subexpressions whose depth is at least 2 (described by the 
levelspec -2). 

Map[Sin, e x p l , { - 1 } ] 

S i n [ x ] S i n [ 3 ] + ( S i n [ l ] + S i n [ z ] ) S i n [ 2 ] 

Map[Sin, e x p l , - 2 ] => S i n [ x 3 ] + S i n [ S i n [ l + z ] 2 ] 

This is a very powerful facility and is one of our main tools in manipulating expressions. The 
next two sections describe some variations on Map. 
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1.1.2 MapAll 
MapAll [ funct ion, expr] or function //@ expr applies function to every proper 
subexpression of expr. It is the recursive form of funct ion /@ expr; i.e., it applies 
function to the expression, then to all of the arguments, then to all of the arguments of the 
arguments, etc. 

MapAll[Sin, expl] 

S i n [ S i n [ S i n [ x ] S i n [ 3 ] ] + S in [S in [S in [1 ] + S i n [ z ] ] S i n [ 2 ] ] ] 

This operation is almost the same as using Map with the levelspec Infinity or -1. 

Map[Sin, expl, Infinity] 

S i n [ S i n [ x ] s i n t 3 ] ] + S in [S in [S in [1 ] + S i n [ z ] ] S i n [ 2 ] j 

The difference is that the levelspec I n f i n i t y does not include the whole expression itself. 

1.1.3 MapAt 
MapAt[function, expr, p o s i t i o n l i s t ] applies f u n c t i o n to the parts of expr 
described by the list of partspecs in p o s i t i o n l i s t . Here a partspec, as usual, is described by 
the list of edges in the tree form of the expression from the root to the given subtree. We'll use 
this to apply Sin just to the variables x and z in expl by giving a list of two partspecs. 

MapAt[Sin, expl, {{1,1}, {2,1,2}}] 

S i n [ x ] 3 + (1 + S i n [ z ] ) 2 

See also MapThread and Map Indexed in the Mathematica Book. 

1.1.4 Apply 
The various versions of Map act on the arguments of an expression, while Apply acts only on 
its head. What Apply [ head, expr ] or head @@ expr does is to replace the head of expr 
by head (and possibly carry out a subsequent simplification or computation). For instance: 

Apply[Plus, {2, 3, 4}] => 9 

Here, the head of {2 , 3 , 4} is L i s t which does nothing to its arguments. When L i s t is 
replaced by Plus then something happens since Plus calculates the sum of its arguments. 
Here is a slightly trickier example. 
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Apply[Plus, 2 3 x] => 6 + x 
This time the head of 2 3 x is Times which multiplies out as much of the expression as it can, 
yielding Times[6, x]. When this head is replaced by Plus, we get the indicated result. 

With a third argument, Apply[head, expr, levelspec] replaces heads in the parts of expr 
described by levelspec by head. 

Apply[Sin, { { f [ a ] , f i b ] } , { f [ c ] , f [ d ] > } , {2}] 

{ { S i n [ a ] , S i n [ b ] } , { S i n [ c ] , S in[d]}} 

Apply is frequently used if one first wants to prepare a number of ingredients and then apply 
some operation to them. The ingredients can be held in a list until they are ready and then the 
head of the list is changed to the appropriate operation by using Apply. 

1.1.5 Through 
Once it is brought to your attention, Map seems like an obvious operation that ought to be 
available in any programming language. But it has an asymmetrical aspect: one function is 
applied to a list of values. What about applying a list of functions to a single value. That can be 
done too, using the operation Through. For instance: 

Through[{Sin, Cos, Tan}[a]] 

{Sin[a], Cos[a], Tan[a]} 

If the functions in the list are themselves listable, then they can be applied to a list of values. 

Through[{Sin, Cos, Tan}[{a, b, c}]] 

{{Sin[a], Sin[b], Sin[c]}, {Cos[a], Cos[b], Cos[c]}, 
{Tan[a], Tan[b], Tan[c]}} 

1.2 Defining Functions—Pure Functions 

When using Map and similar operations, it is convenient not to have to name the function 
being mapped over a list or other expression. For instance, suppose we have two functions, f 
and g and we want to form the sum f [ x ] + g [ x ] for all the entries in a list. One way would 
be to define a new function h as the sum of f and g, and then map it down the list. I.e.: 
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h [ x _ ] := f [ x ] + g [ x ] 
Mapfh, { a , b , c } ] 

{ f [ a ] + g [ a ] , f [ b ] + g [ b ] , f [ c ] + g [ c ] } 

Instead, without defining a separate function h, the form Func t ion [ { x } , f [ x ] + g [ x ] ] 
can be used. 

M a p [ F u n c t i o n [ { x } , f [ x ] + g [ x ] ] , { a , b , c } ] 

{ f [ a ] + g [ a ] , f [ b ] + g [ b ] f f [ c ] + g [ c ] } 

The expression F u n c t i o n [ { x } , body] is a "pure function" with a bound variable x. This 
notation is essentially the notation of the lambda calculus, discussed in Chapter 11, Section 7, 
where the form λχ · body is written for the same thing. The operation F u n c t i o n [ {x } , 
body] or λχ . body is a canonical name for the function that does to any argument whatever 
body describes as being done to x. Such a function is applied to a value in the same way that 
built-in functions are. For instance: 

Function[{x}, χΛ2][5] =» 25 

One can of course give a name to such an expression and then use it as a function 

t = Function!{x}, Expand[(l + x)A3]]; 
t [ a ] => l + 3 a + 3 a 2 + a 3 

The form Function[{x}, body] is the same as Functionfbody] or, in postfix notation, body&, 
where x in body is replaced by #. This is a much more convenient form to use in Map and, as 
will be seen, in many other places. For instance, our original example now becomes 

M a p [ ( f [ # ] + g [ # ] ) & , {a f b , c } ] 

{ f [ a ] + g [ a ] , f [ b ] + g [ b ] , f [ c ] + g [ c ] } 

The three expressions 

i) Function! {x}, £[x] + g[x]] 
ii) Function[f[#] + g[#]] 
iii) (f[#] + g[#])& 

all produce the same value when applied to an argument. The third is clearly the most concise 
form. 
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Consider a simpler example, the squaring function, written in pure function form as #*2&. 
It is applied to an argument using square brackets, as usual. 

#"2&[5] => 25 

To map it down a list, use Map, or /@. 

Hap[#"2&, { a , b , c } ] => { a 2 , b 2 , c 2 } 
#"2& /@ { a , b , c } => { a 2 , b 2 , c 2 } 

A combination of symbols like # A2&/@ can be hard to read. It is somewhat improved by extra 
spaces in the form #A2& /@ { a , b, c } , but in general we will avoid such combinations 
(although I am personally very fond of them) unless they force themselves on us. 

For functions of several arguments, the slots are numbered. 

( m [ # l , #2] / n [ # l , # 2 ] ) & [ a , b] 

m[a , b ] 

n [ a , b ] 

One can also operate on pure functions and get pure functions as the output. For instance, the 
derivative of a function f can be written as f ' · 

S i n ' => C o s [ # l ] & 

Notice that S i n with no argument is a pure function and the output of S i n ' is written 
explicitly as a pure function with a # and an &, although presumably a simple Cos would 
have been sufficient. The following also work: 

{ ( # " 2 ) & , f ( # A 7 & ) · " " } => {2 #1 &, 7 6 5 4 3 # 1 2 &} 

Pure functions written in this form with # and & are a distinctive and very attractive feature of 
the Mathematica programming language. 

1.3 Four Kinds of Function Definition 

Functions are such an important feature of Mathematica that they are represented in (at least) 
four different ways. 
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1.3.1 Expressions 

An expression like χΛ2 + b x + c , contains a symbol x that is intended to be interpreted 
(by us) as a variable; that means, we are intended to interpret the whole expression as 
describing a function of the variable x. However, it is only we who know this; there is no way 
for Mathematica to know it unless we somehow tell Mathematica what the variable is. Thus, in 
commands like 

Solve[x^2 + b x + c == 0, x], 
Plot[Sin[Cos[x] + Tan[x]], {x, 0, Pi}], 
Sum[ iA3, {i, 0, 10}], 
Product!(x + i), {i, 1, 4}], etc., 

the first argument is such an expression intended to be regarded as a function of some variable 
it contains, and the second argument includes a description of the appropriate variable, either 
by just naming it or by including it as the first argument of an iterator. 

Furthermore, if an expression is intended to be regarded as representing a function of some 
variable, then there should be some way to substitute an actual value for the variable. This is 
where R e p l a c e A l l or, in infix notation / . , comes in. Thus, if e x p r is some expression 
involving x then its value at a is given by e x p r / . x -> a. (See Chapter 7, Section 2.2 for a 
through discussion of / . and ->.) This, of course, may cause some further simplification to be 
carried out. For instance: 

2 x + 5 / . x - > 2 => 9 

1.3.2 Named pure functions 

In a function definition such as f [ x_] : = χΛ2 the thing being defined is f, which should be 
thought of as the "function in itself." The x in this definition is a dummy variable which is not 
really there at all. (In Chapter 7, Section 3.2, we'll see that x_ is a pattern.) If we insist on 
thinking of x as the variable in the definition of f, then it is a bound variable in the sense of 
logic. The f defined here is in fact a name for a pure function and can be used wherever pure 
functions are appropriate just like the names of built-in functions. E.g., 

f [ x _ ] := x A 2 ; 

Map[f, { a , b , c } ] => { a 2 , b 2 , c 2 } 

Thus, defining a function using S e t D e l a y e d (i.e., :=) gives a name to a pure function. The 
definitions 
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square[x_] := xA2, 
square = Function!{x}, xA2] and 
square = #"2& 

are essentially equivalent. However, there are subtle differences described in Chapter 11, 
Section 7. 

It is not possible, for instance, to plot the function square by using the command 
Plot [square, {x , 0, 10}] or to integrate it by the command I n t e g r a t e [square, 
{x, 0, 10} ] because nowhere is it indicated how x is involved with square. In order to 
plot or integrate it, we have to turn it into an expression involving a variable (whose name of 
course doesn't matter) which is described in the second argument. Thus, P lot [ square [ x ] , 
{x, 0, 10}] and P lot [square [y] , {y, 0, 10}] both give the same picture. It is 
necessary to be aware of commands that require expressions with variable names together 
with some other information about those variables. 

1.3.3 Nameless pure functions with bound variables 
Expressions like Function [ { x } , xA2 ] define functions using a syntax that, as we have said, 
is essentially the same as the lambda calculus. Such a definition involves a bound variable, in 
this case x, whose name clearly doesn't matter; i.e., Function [ {y }, y*2 ] describes the same 
function. The function itself has no other name attached to it, so it is a nameless pure function. 
Functions of more than one variable are allowed. E.g., 

Function[{x, y}, x + y][2, 3] => 5 

but they need to be given the proper number of values as arguments (two here). This is to be 
distinguished from the following "curried" version which is a function of one variable 
returning as value another function of one variable. 

Function!{x}, Function[{y}, x + y]][2] 

Function[{y$}, 2 + y$] 

%[3] => 5 

1.3.4 Anonymous functions 
The point of the syntax using # and & is that it is possible to construct a nameless pure function 
with no variables, bound or otherwise; i.e., an anonymous function. Anonymous pure functions 
are functions named by a canonical variable-free name; i.e., a # - & expression. When there is 
more than one slot, enough arguments have to be given to fill all slots. "Currying" as above is 
not possible with anonymous functions, except by rather grotesque contortions because of the 
numbering conventions for S lo ts . 
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Evaluate!(#1 + #2)&[2]]& /. #2 -> #1 
%[3] 

2 + #1 & 
5 

1.3.5 Conversion between forms of functions 

Each of these notions is appropriate in its own place. Furthermore, it is possible to convert 
from one to the other as shown in the following table. 

Example 

x2 

f[xj:= x2 

Function[ 
fxU2] 

#2& 

Convert to 

expression 

f[x] 

Function[ 
M,x2][x] 

(#2+2#)&[x] 

named pure 
function 

f[xj:= x2 

f 

f = Function[ 
Μ,χ2] 

f = (#2)& 

pure function 
with bound 
variable 

Function[ 
M,x2] 

Function[ 
fx},f[x]] 

Function! 
M,(#2)&M] 

anonymous 
function 

(x2/.x->#)& 

f[#]& 

Function[ 
(x),x2][#]& 

For instance, the anonymous function (#Λ2 + 2 #)& can be plotted using the appropriate 
conversion. 

P l o t [ ( # A 2 + 2 # ) & [ x ] , { x , 0 , 1 0 } ] ; 

2 4 6 8 10 
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1.4 Nest and Fold 

There are two more pairs of useful operations that fit the discussion here, N e s t and Fold and 
their relatives. They are also common ingredients of functional programming languages. 

1.4.1 Nest, NestList, and FixedPoint 

Nes t and its related operations N e s t L i s t and F i x e d P o i n t apply a function to its argument 
many times. Nes t [ f u n c t i o n , x , n] applies f u n c t i o n to x and repeats the application n 
times; e.g., Nes t [ f , x , 3] r e t u r n s f [ f [ f [ x ] ] ] while N e s t L i s t [ f u n c t i o n , x , n] 
makes a list of these repeated operations a total of n + 1 times (since it starts from 0). 

Nest[(# 2)&, a, 3] => 8 a 
NestList[f, a, 3] => {a, f[a], f[f[a]], f[f[f[a]]]} 
NestList[(# 2)&, a, 3] => {a, 2 a, 4 a, 8 a} 

The following works because, as we have seen, D is L i s t a b l e in its first argument. 

N e s t L i s t [ 
D[#/ y]&/ r [ y ] == S i n [ y ] C o s [ y ] , 4 ] / /Tab leForm 

r [ y ] == C o s [ y ] S i n [ y ] 
r ' [ y ] == c o s [ y ] 2 - S i n [ y ] 2 

r ' ' [ y ] == -4 C o s [ y ] S i n [ y ] 
r ( 3 ) [ y ] = = _4 c o s [ y ] 2 + 4 S i n [ y ] 2 

r ( 4 ) [ y ] = = 1 6 c o s [ y ] S i n [ y ] 

Here is an example producing a simple continued fraction. 

N e s t [ ( l / ( 1 + # ) ) & , x , 3] 

1 

1 
1 + 

1 
1 + 

1 + x 

An operation that is closely related to N e s t is F i x e d P o i n t which nests its operation until 
there is no change. For instance, everyone is familiar with what happens if the Cos key on a 
pocket calculator is pushed repeatedly. In principle, F i x e d P o i n t is what happens if it is 
pushed forever. 
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{ N e s t [ C o s , 0 . 5 , 6 ] , 
N e s t [ C o s , 0 . 5 , 1 2 ] , 
F i x e d P o i n t [ C o s , 0 . 5 ] } => { 0 . 7 1 9 1 6 5 , 0 . 7 3 7 2 3 6 , 0 .739085} 

Actually, F i x e d P o i n t stops after machine accuracy is achieved. Look up the options to 
F i x e d P o i n t to see how to change this. There is also an operation F i x e d P o i n t L i s t . The 
Practice section at the end of this chapter gives some examples. See Chapter 11, Section 6 for 
more serious uses of F ixedPo int . 

1.4.2 Fold and FoldList 

The second pair of functions, F o l d and F o l d L i s t , do something similar to N e s t and 
N e s t L i s t , but for functions of two variables. 

F o l d [ f , s e e d , { a i , . . . , a n } ] 

takes a function f of two variables, a starting value s e e d and a list of subsequent values and 
returns 

f [ f [ . . . f [ s e e d , ai . ] , a2 ] , . . . ] , a n ] 

For instance: 

F o l d [ f , a , { b , c , d } ] => f [ f [ f [ a , b ] , c ] , d] 

Thus, each time f is applied to the seed value a, a new second argument is fed in from the 
list { b , c , d } . Similarly, F o l d L i s t produces a list of the successive values of this 
procedure. 

FoldList[f, a, {b, c, d}] 

{a , f [ a , b ] , f [ f [ a , b ] , c ] , f [ f [ f [ a , b ] , c ] , d ] } 

Here are a couple of examples. 

FoldList[Plus, 0, {a, b, c}] 

{0, a, a + b, a + b + c} 

F o l d L i s t [ P o w e r , 2 , { 2 , 3 , 4 , 5 } ] 

{2 , 4 , 6 4 , 16777216, 1329227995784915872903807060280344576} 

Note that the last value in this output list is 2^0. 
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It is usually easy to see when it is appropriate to use the function Nest; namely, there is 
some top level operation that is to be repeated a number of times. (This is sometimes called 
"tail" recursion, although in Mathematica it might be better called "head" recursion.) However, 
it is not so easy to see when it is appropriate to use Fold. What happens is that, at each 
repetition of the operation, new information is fed in from the list of values in the third 
argument. I.e., instead of the third argument being a number saying how many times the 
operation is to be performed, it is a list of values to be used in building up some new structure. 
In the rest of the book we shall see a number of non-trivial uses of Fold, each of which is a 
triumph of human ingenuity. 

1.5 Substitution 
Function application in a functional programming language usually means substitution of a 
value for a variable. Thus we expect that defining the squaring function by f [x_] := xA2 
and then applying f to 2 should be the same as evaluating the substitution χΛ2 / . x -> 2. 
Of course it is, but as will be seen in Chapter 11, Section 4, this form of substitution sometimes 
doesn't work correctly. Furthermore, as will be discussed in the next chapter, this form of 
substitution is really an application of a local rewrite rule and should not be thought of as a 
substitution at all. However, there is another operation in Mathematica that exactly implements 
the idea of substitution in functional programming languages; namely, With. For instance: 

With[{x = 2 } , x"2] => 4 

In many functional languages, this would be written in the form let x = 2 in χΛ2. Instead of 
giving the value where the function is to be applied in the first argument of With, one can also 
specify the function in this position. 

With[{square = #A2&}, square[2]] => 4 

In the theory of functional programming languages, based on the lambda calculus, an 
expression of the form let x = 2 in χΛ2, as above, is synonymous with applying the pure 
function λχ . χΛ2 to the value 2. Since applying pure functions to values is the only thing that is 
done in functional programming, such programs consist mainly of let expressions. This style 
of programming can be adopted in Mathematica, using With of course instead of let, and often 
has attractive results. For instance, consider the following method to calculate improper 
integrals with possible singularities at the end points. 

improperIntegrate[expr_, {x_, a_, b_}] := 
With[ {integral = Integrate[expr, x]}, 

Limit[integral, x -> b, Direction -> 1] -
Limit[integral, x -> a, Direction -> -1]] 
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This works nicely on typical examples. 

improperIntegrate[ l / (2x - l ) A ( 2 / 3 ) , {x, 1/2, 2}] 

3 3 1 / 3 12 

Functional languages usually contain a recursive version of let as well, called letrec. 
Mathematica does not allow With to be used with recursive definitions, but we will see in 
Chapter 10, Section 5, how to define our own withRec. 

/. 6 The Fundamental Dictum of Functional Programming 
The purpose of all of these operations based on Map is to make it possible to treat lists as 
wholes. For instance, a really poor way to square the entries in a list is as follows: 

l i s t = {a, b, c } ; 
T a b l e [ l i s t [ [ i ] p 2 , { i , Length[list]}] => {a2, b2 , c2} 

The term l i s t [ [ i ] ] tears apart the original list by extracting its parts one at a time, A2 
squares each part and then Table reassembles the parts into a new list. This style is forbidden 
in functional programming. In a generalized form, one has the fundamental dictum of 
functional programming. 

Treat mathematical structures as wholes. 
Never tear them apart and rebuild them again. 

2 Functional Programs 
Functional programs in Mathematica are nested sequences of "button pushes"; i.e., they are 
single expressions made up solely from built-in commands and built-in constants. Sometimes 
these are called "one-liners." It is possible to do many intricate operations just using such one-
liners. (In fact, or course, any computable function can be expressed by such a construction.) 
There is a column devoted to one-liners in the Mathematica Journal. The basic rule for a "strict" 
one-liner, as it will be called here, is that the only ingredients allowed on the right-hand side 
are built-in operations and constants or argument names that occur in the left-hand side. This 
rules out nearly all Table constructions since they require a (bound) variable in the iterator 
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argument which does not occur in the left-hand side. It also rules out use of I n t e g r a t e and 
S o l v e unless they are parts of function definitions which include the variable specification on 
the left-hand side. It rules out expressions of the form F u n c t i o n [ { x } , body] since that 
form includes the bound variable x Anonymous pure functions do exactly the same things 
without introducing any bound variables, which is what makes it possible to construct strict 
one-liners. Non-strict, or ordinary, one-liners have no such restrictions. The only condition for 
them is that, in theory at least, they should be written on one, possibly very long, line. 

Writing such functional programs is an important part of Mathematica programming. Later 
on we will use ordinary one-liners and allow arbitrary user defined functions and constants on 
the right-hand sides, so that functions will be built up iteratively from the built-in base to yield 
more and more complicated constructions. Even when we consider other styles of 
programming -rewrite rule programming and procedural programming-the basic ingredients 
will still be one-liners. In this chapter we are promoting a functional style of programming that 
is in stark contrast to the usual style of Pascal or C programs. In many cases, it is more efficient 
and easier to read than such programs. It certainly is much more in accord with mathematical 
ways of thinking about algorithms. 

2.1 Simple Examples of Functional Programs 

Some of the things we did interactively or in more than one step in the first three chapters can 
be put together to make simple functional programs. For instance, the interactive sequence of 
operations 

Integrate[ x / (1 - xA3), x ] 
D[%, x] 
Simplify!%] 

can be put together into a single nested operation. 

Simplify[D[Integrate[x/(l - xA3), x], x]] 

x 

1 - x3 

This violates the rules for a strict one-liner since it involves the bound variable x, but otherwise 
it is just a nested sequence of built-in commands. Here are the results of the same process 
applied to a number of other interactive constructions from Chapters 1 and 3. Note that we 
have replaced T a b l e constructions by mapping a pure function down an index list 
constructed by Range or by using Listability. 
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ListPlot[ Map[ N[Log[#i]]&, Range[20] ] ]; 

40 
30 
20 
10 

5 10 15 20 

Fit[Map[N[Log[#!]]&, Range[20]], {1, x, χΛ2}, x] 

-2.02963 + 1.17902 x + 0.0531166 x2 

Consider the construction N [ Log [ Map [ # ! &, Range [ 2 0 ] ] ] ] here. There are, in fact, at 
least three ways to construct this list of numbers. (The output from the second and third 
versions is suppressed.) First, just build a table as we did in Chapter 1. 

Table[N[Log[n!]], {n, 20}] 

{0, 0.693147, 1.79176, 3.17805, 4.78749, 6.57925, 8.52516, 
10.6046, 12.8018, 15.1044, 17.5023, 19.9872, 22.5522, 25.1912, 
27.8993, 30.6719, 33.5051, 36.3954, 39.3399, 42.3356} 

Second, map a pure function (the factorial function) down the list of desired numbers, 
constructed by the Range operation, as we have done here. 

Map[N[Log[#!]]&, Range[20]]; 

Third, use the fact that !, Log, and N are Li s t a b l e to get the result from a very brief 
command. 

N[Log[Range[20]!]]; 

In the next three examples, we have to use Map because ToString and Rationalize are 
notListable. 

Map[ { ToExpression[ToString[N[Pi, #]]], 
N[Sin[ToExpression[ToString[N[Pi, #]]]], 11]}&, 

Range[5]] // TableForm 
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3. 0.14112000806 
3.1 0.041580662433 
3.14 0.0015926529165 
3.142 -0.00040734639894 
3.1416 -7.3464102067 10"6 

Map[Rationalize[N[Pi], (0.1)Λ#]&, Range[10]] 

22 22 355 355 355 355 104348 104348 104348 312689 
{ / ~~/ / ———t f f — f ———r ~~/ / 
7 7 113 113 113 113 33215 33215 33215 99532 

Union[Map[Rationalize[N[Pi], (0.1)Λ#]&, Range[20]]] 

80143857 245850922 1068966896 3618458675 5419351 1146408 
{ / i / / r i 

25510582 78256779 340262731 1151791169 1725033 364913 

312689 104348 355 22 

99532 33215 113 7 

The next example uses Outer as described in Chapter 5. 

ListDensityPlot[ 
Outer[ If[PrimeQ[#2 + #1 I], 1, 0]&, 

Range[0, 50], Range[0, 50]] ] 
The graphics output from this is the same as the picture of the Gaussian primes in Chapter 3. 
All of these fit the requirements for strict one-liners since they contain nothing but built-in 
functions and constants. Here is another example from Chapter 3. 

Select[ 
Map[ Solve[ χΛ4 + 2 χΛ2 + 1 == 0 && 

Modulus == Prime[#], x][[l]]&, 
Range[50]], FreeQ[#, -I]&] 

This way of using Mathematica constitutes functional programming in Mathematica. It views 
the basic entities of Mathematica as functions (possibly of many variables) and the basic 
operation as composition of functions, or rather, the iterated application of functions to 
arguments. One-liners can either just carry out some specific calculation or they can be used as 
definitions of functions whose arguments can then be given values to do something 
interesting. 
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2.2 Developing a Functional Program 

The large stock of built-in functions makes it possible to solve rather intricate problems in a 
straightforward way. For instance, in Section 1.1.3 above, starting with the expression exp l = 
xA3 + (1 + ζ ) Λ 2 , we applied S i n to the variables x and z using MapAt. 

MapAt[Sin, e x p l , { { 1 , 1 } , { 2 , 1 , 2 } } ] 

S i n [ x ] 3 + (1 + S i n [ z ] ) 2 

You may have wondered how one would know what partspecs to give without carefully 
analyzing the expression. But Mathematica will do this for you by itself, using the function 
Posit ion. 

Position[expl, x] => {{1,1}} 

Thus, the following one-liner does it all. 

MapAt[ Sin, expl, 
Join[Position[expl, x], Position[expl, z]]] 

Sin[x]3 + (1 + Sin[z])2 

However, this violates the strict rule by referring to the variables x and z. The idea here can 
be developed farther by having Mathematica do more of the work. We'll also let it find the 
variables without our having to tell it what they are which will turn the operation into a strict 
one-liner. In this kind of expression, the variables are particular leaves in the tree form of the 
expression. All the leaves are given by the following: 

Level[expl, {-1}] => {x, 3, 1, z, 2} 

We want to select x and z from this list. The predicate Not [ NumberQ [ # ] ] & is True just for 
them. 

S e l e c t [ L e v e l [ e x p l , { - 1 } ] , Not[NumberQ[#]]&] => {x, z} 

Next we need the position in e x p l of each entry of this list, which we find by mapping the 
pure function P o s i t i o n [ e x p l , # ] & down it. 

M a p [ P o s i t i o n [ e x p l , #]&, %] => {{{1 / 1 } } / {{2 , 1, 2}}} 

This has too many brackets, but F l a t t e n with a levelspec will get rid of them. 
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Flatten[%, 1] =» {{1, 1}, {2, 1, 2}} 

Finally put everything together by replacing each % by its construction in the previous line, 
which yields a one-liner function definition that will take any expression e x p r (instead of 
expl ) and apply some given function fun (instead of Sin) just to the variables in it. 

mapVarsOnly[fun__, expr_] : = 
MapAt[fun, e x p r , 

F la t ten[Map[ P o s i t i o n [ e x p r , #]&, 
S e l e c t [ L e v e l [ e x p r , { - 1 } ] , 

Not[NumberQ[#]]&]] , 1 ] ] 

Notice that all the work goes on in finding where the function is to be applied. This is a true 
one-liner since the only ingredients on the right-hand side are built-in functions and constants 
together with expr and fun which occur on the left-hand side. Check it with S in and exp l . 

mapVarsOnly[Sin, expl] => Sin[x]3 + (1 + Sin[z])2 

Now, try some other examples. 

mapVarsOnly[Sqrt[#]&, expl] => x3/2 + (1 + Sqrt[z])2 
mapVarsOnly[ArcTan, (x - yA2 + 3)Aw / Sqrt[u"3 + 3 v]] 

(3 + ArcTan[x] - ArcTanfy]2)ArcTan[w] 

Sqrt[ArcTan[u]J + 3 ArcTan[v]] 

As an example of a one-liner, this is OK, but in fact it would fail on an expression that has 
what we would regard as a symbolic constant, e.g., a, because it would treat that as a variable 
too. In the Exercises we ask you to fix the definition so that mapVarsOnly only treats letters 
between p and z as variables. 

2.3 Frequencies 

List manipulations are important in functional programming. Suppose we want to write a 
function that takes a list as its argument and returns a list of the number of times each entry 
occurs in the original list. Start with a list to use as an example. 

l i s t = 
{ a , a, s, f, a, a, s, a f d, f, d, ff g , d, a, f, g } ; 
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Union will give us the "set" of distinct entries in this list, written in canonical Mathematica 
order. 

Union[list] => {a, d, f, g, s} 

Our problem is to determine how many times each entry here occurs in l i s t . There is a built-
in function that will do that for a single entry. 

Count[list, f] => 4 

We don't just want the number 4, but we want it associated with the symbol f so we know 
what it means; thus we want the pair { f, 4 } as output. This is easily constructed by a pure 
function. 

{ # , C o u n t [ l i s t , # ] } & [ f ] => {f, 4} 

So all we have to do is put these together correctly in order to design a function that gives each 
distinct element and the number of times it occurs. 

f r e q u e n c i e s [ l i s t _ ] := 
Map[{#, C o u n t [ l i s t , #]}&, U n i o n [ l i s t ] ] 

Using our example, we find: 

f r e q u e n c i e s [ l i s t ] 

{{a , 4 } , {d , 5 } , {f, 4 } , { g , 2 } , { s , 2}} 

This says that a occurs 4 times, d 5 times, etc. We will use f r e q u e n c i e s later in constructing 
our own BarChart graphics function. 

2.4 Newton s Method 

2.4.1 One variable 

Newton's method is a procedure for finding a zero of a function. There is of course the built-in 
function FindRoot, but we want to construct our own version to see how it works. Given an 
expression representing a function of x, e.g., expr = χΛ2 - 3, and some starting value χθ, 
then Newton's method calculates a sequence of values using the iterative formula: 

x 0 = xO, 
x n + l = ( x - e x p r / D [ e x p r , x] ) / . x -> x n . 
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The iteration is repeated until the results change by less than some specified error. What we 
have to do is to take the right-hand side of the iterative formula, turn it into a pure function 
and then repeatedly apply it to successive outputs starting with xO. One way to do this is to 
construct a separate function called oneNewtonStep as follows: 

oneNewtonStep[expr_, {x_, x0_}] := 
(x - expr/D[expr, x] ) / . x -> N[xO] 

To force the computation to be done numerically rather than exactly, we use N [ xO ] instead of 
xO as the last argument here. The value of oneNewtonStep at stage n is what is to be used as 
the starting point for stage n + 1. That means we want to consider it as a pure function of the 
initial point xO. We can either use Nest some given number of times, or let Mathematica decide 
how often to iterate the procedure by using FixedPoint · We chose the latter. 

newton [expr_, {x_, x0_}] : = 
FixedPoint[oneNewtonStep[expr, {x, #}]&, N[xO]] 

Here are a couple of examples. 

newton[x^2 - 3, {x, 1.0}] => 1.73205 

newton[x - Cos[x], {x, 0.5}] => 0.739085 

2.4.2 Several variables 
Essentially the same formula works for n functions of n variables. Newton's method finds 
values of all the variables so that all of the functions are zero. We just imagine that x means an 
n-dimensional vector and expr means n functions of n variables. The derivative D becomes the 
Jacobian matrix and division becomes multiplication in the sense of the Dot product by the 
inverse. The iterative formula becomes: 

xn+l = (x - Inverse[jacobian[expr, x]].expr[x])/.x -> xn 

Recall that the Jacobian matrix is given by the operation: 

jacobian[exprs_, vars_] := N[Outer[D, exprs, vars]] 

Our intention now is that exprs is to be list of expressions and vars is to be list of variables. 
The initial value will be a list varsO of values. We have to change the notation slightly so that 
newton won't become confused about being given one function or a list of functions. (For a 
better way to handle this, see the next chapter.) 
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oneNewtonStep[exprs__, vars_, varsO_] : = 
(vars - Inverse[jacobian[exprs, vars]] . exprs) /. 
Thread[vars -> N[varsO]] 

In the single variable case, we just said x -> xO to evaluate the expression at the initial point, 
but here we need a list of rules. Thread does exactly the right thing; e.g., 

Thread[{x, y, z} -> {1 , 2, 3}] 

{x -> 1, y -> 2, z -> 3} 

The final function is almost the same as the one variable case. 

newton[exprs_, vars_, varsO_] := 
FixedPoint[oneNewtonStep[exprs, vars, #]&, N[varsO]] 

Here is a simple example. 

exprsl = {x*2 + yA2 - 13, xA3 - y"3 - 19}; 
newton[exprs1, {x, y}f {2, 1}] => {3., 2.} 

As an exercise, you are asked to restructure this program so that the answer is a list of rules. 

3 Practice 

1. MapThread[Rule, {x, y, z}, {1, 2, 3}] 
2. Maplndexed[Nest[Sin, #1, Sequence@@#2]&, 

{a, b, c} 
3. #A2& [anything] 
4. #&[ anything] 
5. 1& [anything] 
6. somethings [ anything ] 
7. polys = Table[1 - xAn, {n, 1, 10}]; 
8. Factor /@ polys // ColumnForm 
9. Expand[#"2]& /@ polys // ColumnForm 
10. FixedPointList[Cos, .5] 
11. FixedPointList[Cos, .5, 

SameTest -> (Abs[#l - #2] < 10A-6 &)] 
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The following are taken from the One-Liners column of the Mathematica Journal, Vol. 1,1991. 
Try to understand what they do and how they work. In some cases, minor or major changes 
have been made to comply with the canon that one-liners should not introduce any extraneous 
variables on their right-hand side. 

12. rootPlot[poly_, z_] : = 
ListPlot[{Re[z], Im[z]}/. 

Solve[N[poly == 0 ] , z ] , 
Prolog -> PointSize[0.04]] 

13. poly[n_, z_] : = 
ζ Λ η -
Apply[Plus, Map[z"#&, Range[0, n - 1]]] 

14. rootPlot[poly[20, z ] , z] 
15. newtonRoot[f_, x0_] : = 

FixedPoint[(# - f[#]/f■[#])&, xO] 
16. newtonRoot[(# - Cos[#])&, 0.5] 
17. ListDensityPlot [ 

Outer[ If[IntegerQ[Sqrt[#lA2 + #2"2]], 0, 1]&, 
Range[50], Range[50]]] 

18. phasePlot[f_, ix_r xmin_, xmax_}] : = 
ParametricPlot[ Evaluate[{f, D[f, x]}], 

{x, xmin, xmax}] 
19. phasePlot[Sin[x"2], {x, 0, 2 Pi}] 
20. reverseinteger [n_] : = 

Dot[ Power[10, #]& /@ 
Range[0, Floor[N[Log[10, n]]]], 

IntegerDigits[n] ] 
21. reverseinteger[123456789] 

4 Exercises 
Observe the fundamental dictum of functional programming in working these exercises. 

1. Solve Exercise 13 in Chapter 3 about Jacobians again in a functional style. Hint: figure 
out how to combine Thread and Dot. 

2. i) Implement your own version of Newton's method to find a zero of a differentiable 
function near a given starting value. (See 2.4 and 3.15.) The basic function should be 
of the form 
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newton[expr, {x, xO, n}] 
where e x p r is some expression involving an independent variable x, xO is the 
starting value of x and n is the number of times the operation in Newton's method 
is to be iterated. Define another function newton [ e x p r , { x , xO}] which 
continues iterating until there is no change. Then there should be two extra 
functions, 

n e w t o n L i s t [ e x p r , { x , xO, n} ] and 
n e w t o n L i s t [ e x p r , { x , xO}, o p t ] 

which produce a list of successive approximations to the final value. The optional 
argument "opt" should allow a test to determine when the iteration is to stop. See 
N e s t , N e s t L i s t , F i x e d P o i n t and F i x e d P o i n t L i s t . 

ii) Define a function 

n e w t o n P i c t u r e [ e x p r , { x , xmin, xmax}, {xO, n} ] 

which makes a plot of the function defined by the expression for values between 
xmin and xmax, together with a line illustrating the first n successive 
approximations starting from xO. The line should show the successive tangents to 
the curve at each approximation point. Test your routine with the example: 

n e w t o n P i c t u r e [ C o s [ x * 3 ] , { χ , 0 . 8 , 1 . 5 } , { . 8 7 8 8 , 6 } ] 

iii) Adapt your functions so they work for n functions of n variables. 

iv) Restructure these operations so the output is a substitution. 

v) Try some test examples and check your results. 

3. Define a function c o n t i n u e d F r a c t i o n [ l i s t ] which takes a list as its only argument 
and returns the continued fraction whose numerators are given by the entries in the list 
in the given order. Thus c o n t i n u e d F r a c t i o n [ { a , b , c , d} ] returns 

a / (1 + b / (1 + c / ( l + d ) ) ) 

displayed in a nice form. Hint: try Fold 

4. What does the function 

power [ x _ , n__, b a s e _ ] : = 
F o l d [ ( # 1 * 2 #2)&, 1 , x " I n t e g e r D i g i t s [ n , b a s e ] ] 

calculate when base = 2. (See [Vardi].) What happens when base = 3. 
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5. i) In Exercise 5 of Chapter 5, the Gram-Schmidt algorithm was implemented for 
orthogonalizing ordinary vectors with respect to the usual dot product. Generalize 
this procedure so that it works for vectors from an arbitrary vector space with an 
arbitrary inner product called innerProduct [ v , w] · The new procedure should 
have two arguments, the first being a list of vectors and the second being the inner 
product. Continue assuming that the given list of vectors is linearly independent. 
(There is a very nice way to do this using Fold.) Include a separate normalization 
function that also uses innerProduct [ v , w ] . Also include a procedure to check 
that a given list of vectors is orthonormal with respect to innerProduct [ v , w] . 
The standard case should be recovered by setting innerProduct to Dot. 

ii) The matrix H given by 
/ 8 3 0 0 \ 

3 2 1 2 
0 1 2 2 

V 0 2 2 14/ 
is positive definite and symmetric and hence determines an inner product for 4-
dimensional vectors by the formula i n n e r P r o d u c t [ v , w] = v . H . w . 
Orthogonalize and normalize the four standard unit vectors in 4-space using this 
inner product. Check the result. 

iii) Apply the Gram-Schmidt algorithm to orthogonalize the list of functions {1, x, x^, 
x* x4} with respect to the inner product given by 

legendre(f, g) = f(x) g(x) dx 

Check the result. 

iv) Normalize the result of part iii). This does not give the first five terms in the usual 
sequence of Legendre polynomials. Why not? Fix things so that you get the first 
five Legendre polynomials. Make a plot of them. 

6. Modify the definition of mapVarsOnly so that it only treats letters between p and z as 
variables. Hint: look up the operations ToStr ing , ToCharacterCode, Greater , and 
Less . 

7. i) The function Fo ld is sometimes called foldright because it "folds" in its arguments 
from the right. Define a function f o l d i e f t so that f o l d l e f t [ f , {a , b , c } , 
d] gives the output 

f [ a , f [ b , f [ c , d ] ] ] . 

ii) Write your own function c o m p o s e L i s t that works just like the built-in operation 
with the same name, using F o l d L i s t . Conversely, write your own function 
f o l d L i s t that works just like the built-in operation with the same name, using 
ComposeList. 
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Somewhere in the first 1000 digits in the decimal expansion of π, there is a sequence of 
six successive 9's. Use IntegerDigits , Part i t ion, and Pos i t ion to find where this 
occurs. Avoid displaying large intermediate results. What other digits also occur more 
than twice in succession in this partial decimal expansion? (Based on a problem from 
[Blachmanl].) 

i) Write your own functions map and through that work just like the built-in 
operations with the same names, using Outer, Flatten, #, &, and @. (I.e., if pure 
functions can be written, then Map and Through are special cases of Outer, suitably 
flattened.) 

ii) Generalize this to construct an operation that applies a list of arbitrary functions 
(not necessarily listable ones) to a list of values. 



CHAPTER 

Rule Based 
Programming 

'"What we need in the future are systems which support both algorithmic coding of the basic 
mathematics and a rule-driven interface for the user to direct the semantic flow of the calculations in as 
flexible a manner as possible. " [Hearn] 

1 Introduction 
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The basic ingredient in a Mathematica program is a one-liner. If built-in operations are the 
words in the Mathematica language, then one-liners are the sentences. We now want to turn our 
attention to paragraphs. There are essentially three ways to construct larger and more 
complicated programs. 

i) Remain in the functional programming paradigm and construct nested sequences of 
one-liners each of which uses some of the functions defined in the previous one-liners. 
This is the way that Lisp works and is the main modus operandi of all functional 
programming languages. Such constructions are essentially sequential. Actually, tree 
like is a better description. The final function constructed in terms of earlier functions 
can always be expanded into a (possibly) very complicated one-liner so, in this 
paradigm, paragraphs are just very long sentences. 

ii) Defining a function by an expression of the form f [ x_] : = body is just a special case 
of a rewrite rule of the form f [pat tern] := body. Rule-based programming 
exploits this observation by making it possible to give many rules for the same 
function name f, depending on the form of the pattern of its arguments; i.e., these 
rewrite rules are conditional rules where the conditions can be given by general 
Mathematica expressions. Each rewrite rule itself is a one-liner. Constructions of this 
form are essentially parallel, consisting of many trees, so paragraphs look like forests. 
This is the topic of this chapter. As we will see, the additional facility of local rewrite 
rules is a special feature in Mathematica which has surprising uses. 

195 
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iii) Use Mathematica as a block structured language with the usual control structures of an 
imperative language. This is the topic of the next chapter. 

Functional programming languages evaluate their expressions by using just one kind of 
rewrite rule embodying substitution. (See the discussion in Chapter 11, Section 4.) But they 
usually do not allow users to add their own rewrite rules. It seems that, up to the appearance 
of Reduce, general programming languages did not incorporate generic procedures for adding 
such rules. Mathematica contains very powerful facilities for adding rewrite rules. Of course, 
such systems of rewrite rules have been extensively studied and used in special purpose 
languages intended for dealing with equationally defined data types. An equational data type 
(or theory) is described by giving a number of operations together with equations satisfied by 
various combinations of these operations. If the equations are directed from left to right, then 
they can be regarded as rewrite rules. For a very simple example of this kind of a calculation 
using ordinary mathematical notation, consider the recursive definition of addition in terms of 
0 and succ; i.e., 0 + m = m and succ(n) + m = succ(n + m). Turn these into rewrite rules by 
directing them from left to right. 

0 + m=>m 
succ(n) + m => succ(n + m) 

The double arrow, => , here means rewrite the left-hand side as the right-hand side. We would 
like to prove that 2 + 2 = 4 holds in the system; i.e., that the rule 

succ(succ(0)) + succ(succ(0)) => succ(succ(succ(succ(0)))) 

is valid. (Alternatively, we could just say that we want to evaluate 2 + 2.) The point is to do this 
by using the given rewrite rules to turn the left-hand side into the right-hand. But we have the 
following sequence of rewritings: 

succ(succ(0)) + succ(succ(0)) => succ( succ(O) + succ( succ(O) ) ) by the second rule 
=» succ( succ(0 + succ(succ(0) ) ) by the second rule 
=> succ(succ(succ(succ(0)))) by the first rule. 

This says several interesting, and perhaps liberating things about the equation 2 + 2 = 4. 

i) it shows that 2 + 2 rewrites to 4. 
ii) the (operational) meaning of 2 + 2 is 4. 

iii) the normal form of 2 + 2 is 4. 

The last is the best. It means that the calculation of 2 + 2 is done by reducing 2 + 2 to normal 
form. (A normal form is an expression to which no further rewrite rules apply.) This is the way 
that rewrite rule systems do calculations. 
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2 Rewrite Rules in Mathematica 
Instead of viewing the expressions x = a and f [y_] : = yA2 as assigning the value a to x 
and defining the squaring function respectively, we can regard them as establishing rewrite 
rules. That means we think that they mean the following: 

i) Whenever x occurs, rewrite it as a. 
ii) Whenever f [ anything ] occurs, rewrite it as ( anything )Λ 2. 

Mathematica supports this interpretation of these expressions in two different forms, as global 
rules and as local rules. Each form will be discussed in turn. 

2.1 Global Rules 
Global rules are rules that are applied whenever the appropriate left-hand side is encountered. 
There are two kinds of user defined global rewrite rules, those using = and those using : =. The 
distinction between the two lies in when the right-hand side is evaluated. Furthermore, for each 
kind of rule there are two forms depending on where the rule is stored, giving four kinds of 
rules indicated by =, A=, : =, and Λ : =. 

2.1.1 = rules 
Up to now, we have viewed rules using = as assignment statements, in analogy with 
traditional imperative programming languages. Thinking of them instead as rewrite rules, the 
characteristic property of rules using = is that they evaluate the right-hand side immediately 
and all subsequent occurrences of the left-hand side are replaced by the evaluated right-hand 
side. For instance: 

x = a; 
x + 5 => 5 + a 

In traditional programming languages, the left-hand side of an assignment statement is 
required to be a simple identifier (i.e., a symbol). Here, the left-hand side can be arbitrarily 
complicated. For instance: 

magic[7 + z[5, two]] = Expand[(l + y)^4] 

l + 4 y + 6y 2 + 4y 3 + y4 

Note that the output of an = expression is the evaluated form of the right-hand side. The left-
hand side should be regarded as a pattern such that whenever something is found that matches 
the pattern, then it is replaced by the evaluated right-hand side. 
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(magic[z[1+4, two]+2+5]+ 5)Λ2 + magic[6 + z[5, two]] 

( 6 + 4 y + 6 y 2 + 4 y 3 + y 4 ) 2 + m a g i c [ 6 + z [ 5 , t w o ] ] 

In this evaluation, the pattern magic [ z [ 1 + 4 , two] + 2 + 5 ] simplifies to magic [ 7 + 
z [ 5 , two] ] which is replaced by 1 + 4 y + 6 y2 + 4 y 3 + y4. Hence the first part of the input, 
which includes + 5 simplifies to the first term in the output. The second term does not match 
any pattern involving m a g i c and so is left in unevaluated form. This rule is stored with 
magic. 

??magic 

Global"magic 
magic[7 + z[5, two]] = 1 + 4*y + 6*yA2 + 4*yA3 + yA4 

Again we see the evaluated form on the right. 
Now, there are some problems associated with left-hand sides that are not symbols. For 

instance, suppose we try to make the following rule. 

a + c = d 

S e t : : w r i t e : Tag P l u s i n a + c i s P r o t e c t e d . 
d 

We get an error message saying that P l u s is P r o t e c t e d . Let us check this. P r o t e c t e d is an 
attribute of functions. 

A t t r i b u t e s [ P l u s ] 

{ F l a t , L i s t a b l e , O n e l d e n t i t y , O r d e r l e s s , P r o t e c t e d } 

We already know what L i s t a b l e means. What P r o t e c t e d means is that new rules cannot 
be added for P lus . There is a (possibly gigantic) table of rules for each built-in operation and 
we are not allowed to add new rules for them. This makes a certain amount of sense since 
every time Mathematica encounters P l u s , it searches through its rules for P l u s to see if 
something applies. If we add a new rule for P lus , then that rule would have to be examined at 
every subsequent addition. But, when a rule of the form a + c = d is given, Mathematica 
interprets it as a rule of the form P l u s [ a , c ] = b. Rules have to be stored somewhere and 
the default place is with the rules for the head of the left-hand side. Of course, maybe we really 
want to make a rule for P l u s , in which case we can unprotect P lus , make the rule, and then 
reprotect it. 
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Unprotect[Plus] => {Plus} 
a + c = d => d 
Protect[Plus] => {Plus} 

Now whenever Mathematica sees a + c, it rewrites it as d. 

a + c + m => d + m 

Definitions that attach a value to the head of the left-hand side are called down values of the 
head. However, there is a much less drastic way to add a new rule when the head of the left-
hand side is protected. There are also up values which try to associate the rule with the left most 
unprotected argument of the left-hand side. They are written 

m + n A= p => p 

Note the caret Λ before the = sign. This rule is associated with the symbol m. 

??m 

Globalem 
m/: m + n = p 

One can, in fact, use this form of the syntax directly instead of using the sign Λ=. 

q / : q + r = s =ï s 
We already know that = is the infix form of Set, not DownSet, which doesn't exist. What is the 
real name of Λ=? 

FullForm[Hold[q + r Λ= s]] 

Hold[UpSet[Plus[q, r], s]] 

Thus, the symbol A= is the infix form of UpSet. A given symbol can have both up and down 
values. Let's give q a down value in addition to the up value it already has. 

q[x_] := 27 χΛ3 

Then looking at q shows both kinds of values. The first is an up rule, indicated by the q/ :, and 
the second is a down rule. 
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??q 

Global^q 
q/: q + r = s 
q[x_] := 27*xA3 

Finally, we can access the up values and down values individually. 

{Upvalues[q], DownValues[q]} 

{ { L i t e r a l [ q + r ] :> s } , { L i t e r a l [ q [ x _ ] ] :> 27 x3}} 

We'll explain later why the left-hand side of these substitutions is wrapped in L i t era l and 
the substitution is written : > rather than ->. 

Now let us try naively to define the squaring function using an = rule. 

g [ x ] = xA2 => x 2 

It works properly for the symbol x but not for anything else. 

{g[x], g[y], g[2]} => {χ2, g[y], g[2]> 

This is where the special symbol _ comes in. The form x_ means a pattern named x. 

FullForm[x_] => Pattern[xf Blank[]] 

An underscore _ in a pattern matches anything, so it is a kind of "wild card." If it appears on 
the left-hand side of an "=" rule with a name, like x, then the left-hand side is rewritten as the 
right-hand side with x replaced by the anything. Use this to redefine g. 

g[x_J = xA2 => x 2 

Now g works for any argument. 

{ g [ 3 ] , g [ x ] , g [ y ] , g[z + w]} 

{9, x 2 , y 2 , (w + z ) 2 } 

Thus, we can use = rules to define functions. 
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2.1.2 := rules 
Rules using : = are characterized by the property that they do not evaluate the right-hand side 
immediately but instead leave it unevaluated until the function is actually used. They can be 
used with simple left-hand sides or with left-hand sides containing patterns. For instance, here 
are two rules that differ only by using = or :=. 

al = Expand[(1 + x)A2]; 
a2 := Expand[(l + χ)Λ2]; 

If these are evaluated, they give the same result. 

{ a l , a2} => {1 + 2 x + x 2 , 1 + 2 x + x2} 

If we now give a value to x, then a l and a2 will use that value in different ways. 

x = w + z; 
{ a l , a2} 

{1 + 2 (w + z) + (w + z ) 2 , l + 2 w + w2 + 2 z + 2 w z + z2} 

If the left-hand side of a : = rule contains a pattern, then on a subsequent occurrence of the 
left-hand side with actual arguments, the formal arguments (or names of patterns) on the 
right-hand side are replaced by the actual arguments from the left-hand side and then the 
right-hand side is evaluated. Thus, each time the left-hand side of such a rule matches 
something, it is replaced by a new evaluation of the right-hand side. To see the difference, we 
again set up two rules, differing only by = or : =. 

ff[u_] = Expand[u^2]; 
gg[u_] := Expand[u^2]; 

Now, try out these two definitions on the same value. 

{ f f [ l + y ] , g g [ l + y ] } => {(1 + y ) 2 , 1 + 2 y + y2} 

The right-hand side of the rule for f f is evaluated immediately when it is entered. Since there 
is nothing to expand, it just evaluates to u2. The right-hand side of the rule for gg, on the other 
hand, retains the whole expression Expand [uA2 ] . When the two functions are subsequently 
used, f f [ l + y ] is just replaced by ( 1 + y ) 2 , while g g [ l + y ] is replaced by Expand [ (1 
+ y) A 2] which evaluates to 1 + 2 y + y2. The internal representation of such a definition 
has the following form. 
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FullForm[Hold[h[x_] := p ] ] 

Hold[Se tDelayed[h[Pa t te rn[x , Blank[]]], p ] ] 

Thus, the symbol := is the infix form of SetDelayed. We can also check what Mathematica 
knows about f f and gg. 

Input 

?? f f 

??gg 

Output 

Globa l^f f 
f f [ u _ ] = uA2 

Global"gg 
g g [ u _ ] := Εχραηα[ιιΛ2] 

This makes dramatically clear the distinction between evaluation when the rule is given and 
evaluation when the rule is used. 

2.1.3 The order in which rules are used 
If several rules are given for the same operation, then Mathematica orders them in order of 
increasing generality, so more specific rules are listed first. When Mathematica uses the rules it 
starts at the beginning and uses the first one that applies. If Mathematica is unable to decide 
which of two rules is more general, then it stores them in the order in which they were entered. 
For instance. 

foo[a_, 2] := bar 
foo[2, b_] := barbar 

The question is, what is the value of f oo [ 2 , 2 ] ? 

foo[2 , 2] => bar 

DownValues will give us the order in which these are stored. 

DownValues[foo] 

{ L i t e r a l [ f o o [ a _ f 2] ] :> ba r , L i t e r a l [ f o o [ 2 , b_]] :> barbar} 

Thus, foo[a_ , 2] := bar comes first, so it is the rule that is used. If we don't like this 
order, then it can be changed by reassigning some new value to DownValues [ f o o ] . For 
instance: 
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DownValues[foo] = Reverse[DownValues[foo]] 

{Literal [foo[ 2, b_] ] :> barbar, Literal [ foo[a__, 2]] :> bar} 

Then we get the other result for f oo [ 2 , 2 ] . 

foo[2, 2] => barbar 

This example illustrates a well-known problem with rewrite rules. If more than one rule 
applies to a particular expression, then which one should be used first? It would be nice if the 
order of application of rules didn't make any difference. Such systems of rewrite rules are 
called confluent or Church-Rosser (after a famous theorem about the lambda calculus) 
[Dershowitz]. Since Mathematica does use a definite order, we often make use of that 
knowledge in setting up systems of rewrite rules which are not confluent when, with a bit 
more care, they could be written in a confluent form. 

2.2 Local Rules 

Local rewrite rules are rules that are applied only to a single expression. The basic syntactical 
ingredient of a local rewrite rule is an arrow, ->. Such a rule is applied to an expression using 
the operation / . . 

2.2.1 -> rules 
Local rules using an arrow have already been encountered in checking solutions of equations. 

equation = xA2 - 5 x + 6 == 0; 
solution = Solve[equation, x] => {{x->3}, {x->2}} 
equation /. solution => {True, True} 

The output of Solve is a list of lists of local rules. Thus, x —> 3 is a local rule which is the 
analog of the global rule x = 3. The rule is applied to an expression by using / · , so the 
expression equat ion / . s o l u t i o n means "use the rewrite rule x —> 3 just in 
equation." The result of this is the expression 3 A 2 - 5*3 + 6 == 0, which simplifies to 0 
== 0, which is then evaluated as True. The usual form of the right-hand side of / . is a list of 
local rules for some of the symbols that appear on the left-hand side. E.g., 

x y z / . {x -> 2 , y -> 3} => 6 z 
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If the right-hand side is a list of lists of local rules, then / . behaves as though it were 
Lis tab le above the bottom level, so it moves inside the first layer of brackets in this case and 
returns a list of results. 

x y z / . {{x -> 2, y -> 3 } , {y -> 4, z -> 5}} 

{6 z, 20 x} 

Actually, / . is rather clever about decoding the list structure of the second argument. 

x y z /. { {{x -> 2, y -> 3}, {y -> 4, z -> 5}}, 
{{x -> 6, y -> 7}, {y -> 8, z -> 9}}, 
{x -> 10, z -> 11} } 

{{6 z, 20 x}, {42 z, 72 x}, 110 y} 

Local rules with "—>" share with "=" rules the property that they evaluate their right hand 
sides immediately. 

2.2.2 :> rules 
The local analog of a " : =" rule is a " : >" rule; i.e., a local rule that evaluates its right-hand side 
only when it is used, or as the computer scientists say, only when it is called. We can make an 
experiment similar to the one we made with "=" and " : =." 

fff[l + u] /. fff[v_] -> Expand[(3 + ν)Λ2] 

9 + 6 (1 + u) + (1 + u) 2 

ggg[l + u] /. ggg[v_] :> Expand[(3 + v)A2] 

16 + 8 u + u2 

This time, the left-hand sides of the local rules involve patterns rather than just symbols. The 
difference is that the local rule for f f f [ v_] replaces it by the evaluation of Expand [ (3 + 
v) Λ2] which equals 9 + 6 ν + νΛ2. Hence, when this is used with v equal to 1 + u, we 
get the result 9 + 6 ( l + u) + ( l + u ) 2 . On the other hand, the local rule for ggg [ v_] 
replaces it by the unevaluated Expand [ ( 3 + v) Λ2 ] which, when used with v equal to 1 + 
u, gives Expand [(3 + (1 + u ) ) A 2 ] . This is then simplified to 16 + 8 u + u2. We can 
check how these expressions are represented internally. 
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FullForm[Hold[m /. n -> p]] 

Hold[ReplaceAll[m, Rule[n, p]]] 

FullForm[Hold[m /. n :> p]] 

Hold[ReplaceAll[m, RuleDelayedfn, p]]] 

Thus, / . is the infix form of ReplaceAll , the arrow -> is the infix form of Rule, and the 
arrow : > is the infix form of RuleDelayed, (corresponding to Set and SetDelayed for = 
and : =.) I read the symbol / . as "where." It can be regarded as the postfix form of the 
construction "Let n = p in m" in functional programming languages, at least when used with 
:>. 

2.2.3 Application of rules using /. and //. . 
There is another form of / . given by / / . which applies a local rule repeatedly until there is no 
further change in the expression. Note that this is the normal mode for application of global 
rules; they are always applied wherever possible. Internally, / / . is represented by: 

FullForm[Hold[m //. n -> p]] 

Hold[ReplaceRepeated[m, Rule[n, p]]] 

FullForm[Hold[m //· n :> p]] 

Hold[ReplaceRepeated[m, RuleDelayedfn, p]]] 

Thus, / / . is the infix form of ReplaceRepeated. I read the symbol / / . as "where ree." It 
is the postfix form of the construction "Letrec n = p in m" in functional languages. An example 
of the difference between / . and / / . follows. This example uses a list of rules rather than just 
a single rule. When a list of rules is applied to a single expression, then each rule for each 
symbol is tried from the left until a match is found. In the following example, the right-hand 
side of the / . expression consists of a list of two rules for the same symbol, f ac. This list is 
searched from the left until a pattern is found that matches the left-hand side of the / . 
expression. In the first case using / . , as soon as a match is found, the evaluation is finished. In 
the second case using / / . , the rules are tried repeatedly from the left on the output of the 
previous evaluation until no matches are found. 
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fac[5] /. {fac[l] -> 1, fac[n_] -> n fac[n - 1]} 

5 fac[4] 

fac[5] //. {fac[l] -> 1, fac[n_] -> n fac[n - 1]} 

120 

In the first case, the left-hand side of the rule f a c [ l ] -> 1 doesn't match anything in 
f a c [ 5 ] , but fac[n_] -> n fac[n - 1] does with n_ equal to 5, so the output is 5 
f ac [ 4 ]. In the second case, the left-hand side of the rule f ac [ n_j -> n f ac [ n - 1 ] 
continues to match a part of the existing expression until one arrives at 12 0 f ac [ 1 ]. Then the 
left-hand side of the rule f ac [ 1 ] -> 1 matches leading to 120*1 which simplifies to 12 0 
where neither rule matches, so the output is 12 0. 

If such rules are given globally, as in Chapter 2, Section 2.2.3, then the order in which they 
are given doesn't matter since Mathematica will put the more specific rule, f ac [ 1 ] = 1, first. 
However, in a list of local rules, applied with / / . , we are completely responsible for the 
ordering. Thus, the following gives the wrong answer: 

fac[5] //· {fac[n_] -> n fac[n - 1], fac[0] = 1} 

0 

2.2.4 Named lists of local rules 
Lists of rules can also be named to be used wherever desired. 

facrules = {fac[l] -> 1, fac[n_] -> n fac[n - 1]}; 
{fac[7] /· facrules, fac[7] //.facrules} 

{7 fac[6], 5040} 

Look at the packages Trigonometry.m and LaplaceTransf orm.m to see large examples of 
named lists of delayed rules. 

2.2.5 Simultaneous substitution 
If several local rules are given for different symbols, then these rules are applied 
simultaneously. For instance, 

{ x , y , z } / . {x - > y , y - > z , z - > w} 

{ y , z , w} 
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If the substitutions are carried out sequentially, then the results are quite different. 

{x , y , z} / . {x -> y} / . {y -> z} / . {z -> w} 

{w, w, w} 

In particular, this means that variables can be interchanged without introducing an 
intermediate temporary variable. 

{x , y} / . {x -> y , y -> x} {y , x} 

2.3 Summary of Transformation Rules 

The following tables summarize the general properties of global and local rules. 

evaluate rhs 

delay rhs 

Global rules 
stored with 
the head 

= 

: = 

Global rules 
stored with an 
argument 

A _ 

A : = 

Local rules 

-> 

:> 

Application of rules 

/ . = "where" 

/ / . = "where ree" 

3 Pattern Matching 
'-^"^tM^^<--^- - s^';*!w^-^Vi 

3.1 Patterns 

Pattern matching is a basic ingredient of rule based programming. There is no problem with a 
rule like x = a where the only thing that has to be matched is x. But in more complicated 
circumstances like the rule for mag ic above, there is something to be done to discover that 
some expression involving mag ic matches the appropriate pattern. Even more so, there is 
something to be done for expressions involving _ , perhaps in several locations. Rules using _ 
are not just simple rules but they are rule-schemes having the effect that anything of a given 
form is rewritten in some other specified form. One can think of underscores as "wild cards" 
that match anything, except that x_ does not mean "x followed by a wild card," but it means a 
pattern named x. Thus, the full form of s y m b o l _ i s P a t t e r n [ s y m b o l , Blank [ ] ] . The 
symbol here is called the "name" of the pattern. Note that symbol must be a symbol in the 
Mathematica sense of the term. A compound pattern is an expression with zero or more of these 
simple patterns as subexpressions. One can consider a compound pattern as a template for an 
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expression. An expression expr matches a compound pattern p a t t containing simple 
patterns p i , . . . p n , if there are subterms t i , . . . t n , of expr such that patt , with P i , . . . 
p n , replaced by t i , . . . t n , is the same as expr. (Note that some of the t i 's can themselves 
be patterns.) In all probability, what Mathematica actually does is equivalent to working in the 
reverse order by replacing subterms of expr by Pattern to see if the expression patt can be 
derived in this way. There are various techniques with names like resolution and narrowing for 
complicated pattern matching, but Wolfram Research, Inc. has not revealed exactly how 
Mathematica does it. 

3.2 Underscore Rules 

3.2.1 Rules with _ 
The symbol _ by itself, without any symbol on the left, can be used to describe a pattern. 
(Recall that the FullForm of _ is Blank [ ]). For instance, the expression _Λ_ matches 
anything of the form xAy, where x and y are any expressions. However, there is no way to use 
the things that match the _'s on the right-hand side. Here is an example of such an unnamed 
pattern and three instances of it. 

{ f l [ a A a , a ] , f l [a^b, c ] , f l[magic^2, what]} => {p, p , p} 

3.2.2 Rules with x_ . 
A pattern of the form x_ is matched by any expression and then x is bound to the expression 
for purposes of evaluating the right-hand side. Thus if a definition is given in the form f [ x_] 
:= xA2 then the result of f [ a ] is the same as evaluating xA2 / . 
x -> a. If there are two instances of x_ on the left-hand side of a rule then they must be filled 
with the same expression. Here are a pair of examples, with three instances of each. 

f2[x_"y_, z_] := p[x q[y, z]]; 
{f2[aAa, a], f2[aAb, c], f 2 [magica, what]} 

{p[a q[a, a]], p[a q[b, c]], p[magic q[2, what]]} 

f3[x_Ay_, x_] := p[x q[y]]; 
{f3[a*a, a], f3[aAb, a], f 3 [magica, what]} 
{p[a q[a]], p[a q[b]], f3[magic2, what]} 
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3.2.3 Rules with x_Head 
A pattern of the form x_Head is matched by any expression whose head is Head. Here is the 
same example, with three instances. 

f4[x_/y_Integer , z_] := p[x q[yf z ] ] ; 
{ f4[a*a, a ] , f4[a*b, c ] , f4[magic"2, what]} 

{f4 [a a , a ] , f 4 [ a b / c ] , p[magic q [ 2 , what ] ]} 

The only expression here that matches the pattern is f 4 [magic^2, what ] . 
The head can be anything; e.g., 

f5[x_*y_foo, z_] := p[x q[y, z ] ] ; 
{ f5[a*a, a ] , f5[a A b, c ] , f5[magic*foo[b] , what]} 

{ f5 [a a , a ] , f 5 [ a b , c ] , p[magic q [ f o o [ b ] , what ] ]} 

The internal forms of _, x_ and x_Head are: 

{FullForm[_], FullForm[x_], FullForm[x_Head]} 

{Blank[]f Pattern[xf Blank[]]f Pattern[xf Blank[Head]]} 

Thus x_Head is a restricted form of a wild card that only can be filled by expressions whose 
head is Head. As we have seen, one way to think about heads is as types; i.e., the type of an 
expression is its head. Then a pattern of the form x_Head only applies to entities of type Head. 
We will exploit this point of view later. In all of the examples above, an expression that doesn't 
match the left-hand side is returned in unevaluated form. But note that something is always 
returned as the output. The program does not crash or report an error. (In a certain sense, the 
normal thing is for an expression to be returned without change. Only in "special" 
circumstances is it rewritten in a different form.) 

3.2.4 Double and triple underscores 
If we give a rule for an expression involving two separate underscores then we are 
constructing a function of two variables. Such a function only works if it is given exactly two 
arguments. 

"[*_/ y_] := x + y; 
{f6[a], f6[a, b]f f6[a, b, c]} 
{f6[a], a + b, f6[a, b, c]} 
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From the point of view of ordinary mathematics this is the only thing that makes sense. A 
function depends on some specified number of arguments. However, from the point of view of 
rewrite rules, all that matters is the pattern on the left-hand side, and we as well as the 
computer are able to distinguish the pattern consisting of "one or more arguments," or "zero or 
more arguments." Mathematica has a provision for using such patterns. Besides rule-schemes 
using a single underscore _, there are rule-schemes using a double or triple underscore. A 
double underscore, , is matched by one or more expressions, separated by commas, while a 
triple underscore, , is matched by zero or more arguments. The form x means a 
sequence of one or more expressions, named x, and x Head means a sequence of one or 
more expressions, named x, all of whose heads are Head. Similarly, the form x means zero 
or more expressions, named x, and x Head means zero or more expressions, named x, all 
of whose heads are Head. Here is an example of a function whose output is the square of the 
number of arguments it has been given. In the first case, it accepts one or more arguments and 
in the second, it accepts zero or more arguments. 

f7[x ] := Length[ {x}p2; 
f8[x ] := Length [{x}p2; 
{f7[], f7[a], f7[a, b], f7[a, b, c]} => {f7[]f 1, 4, 9} 
{f8[], f8[a], f8[a, b], f8[a, b, c]} => {0, 1, 4, 9} 

Note that some of the built-in functions allow zero or more arguments. E.g., 

{Plus[], Plus[3], Plus[3, 5], Plus[3, 5, 7]} 

{0, 3, 8, 15} 

{Times[], Times[3], Times[3, 5], Times[3, 5, 7]} 

{1, 3, 15, 105} 

The case of zero arguments for these built-in operations produces the unit for the operation. 
Note: it is hard to think of a way to use x or x in a way that does not either turn it into a 
list by using {x} on the right-hand side or pass it to some built-in function that knows what to 
do with a variable number of arguments. 

3.2.5 Optional arguments 
Default values and double or triple underscores are important techniques in giving optional 
arguments to functions, in the sense that variable numbers of arguments can be given to such a 
function. However, there is another sense in which a specific argument can be optional. Let us 
go back to a modification of our first example of a pattern above. 
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f9[x_*y_, z_] := p[x y z ] ; 
{f9[a"b, c ] , f [ a , c ] } => {p[a b c ] , f [ a f c ]} 

We might think that f [a , c ] should match the pattern with an understood exponent 1, 
which would mean that it should be rewritten as p [ a c ], but of course Mathematica can't 
guess that this is what we intend. However, there is a provision to take care of such default 
values that are meant to be inserted in a pattern if they are missing. When a pattern is intended 
to have a default value, v, this is indicated by writing _ : v. So, the effect we wanted to achieve 
is given by the form: 

flO[x_"y_:l, z_] := p[x y z]; 
{flO[aAb, c]f flO[a, c]} => {p[a b c], p[a c]} 

In this case, the default value 1 for the exponent is the natural and obvious choice, and 
Mathematica knows this. It has standard built-in default values for a number of such positions. 
The notation _ . tells Mathematica to use the built-in default value. Note the almost invisible 
period after the underscore. Thus, the effect we wanted at the beginning is given by a tiny 
modification of the original form. 

fll[x_Ay_., z_] := p[x y z]; 
{fll[aAb, c]f fll[a, c]} =» {p[a b c], p[a c]} 

Here is another example involving an optional second argument, whose default value is the 
pure function Tan. 

apply[argument_, function__:Tan]:= function[argument]; 
{apply [3 ] , a p p l y [ 3 . 1 ] , apply [3 .1 f Cos] , 
apply[3f #Λ2&]} 

{Tan[3] , -0 .0416167, -0 .999135, 9} 

There is still another way that optional arguments occur in Mathematica. Some functions, for 
instance P l o t , can take named optional arguments; e.g., AspectRatio -> 1, etc. By 
incorporating such functions into our own definitions, we can use these nmed optional 
arguments too. (We will see in Chapter 11, Section 4 how to write our own functions with our 
own named optional arguments.) Consider an example of a plotting function. 

plotWithSin[functlon_, var_] := 
Plot[{Sin[var], function[var]}f {var, 0, 2 Pi}]; 
plotWithSin[Cos[2 #]&, x]; 
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1 

0 .5 

- 0 . 5 

- 1 

We would like to be able to use the optional arguments for P l o t in our p l o t w i t h s i n 
command. The way to do this is to add a triple underscore pattern to its form with the name 
o p t s and then just pass o p t s to P l o t . 

p l o t W i t h S i n O p t s [ f u n c t i o n _ , v a r _ , o p t s ] := 
P l o t [ { S i n [ v a r ] , f u n c t i o n [ v a r ] } , 

{ v a r , 0 , 2 P i } , o p t s ] ; 
p l o t W i t h S i n 0 p t s [ E " ( - # / 2 ) & , x , A s p e c t R a t i o -> 1 ] ; 

l1 

0 .5 

- 0 . 5 

-1 -

3.2.6 Names for compound patterns 

In an expression of the form f [ x _ ^ n _ I n t e g e r , z _ ] , the patterns are named with the 
symbols x, n, and z, but there is no name for the whole compound pattern x_*n_ integer . 
There is a way to give names to such compound patterns so that they can be referred to 
directly on the right-hand side. Some of the Packages that are shipped with Mathematica make 
frequent use of this. The syntax consists of a name followed by a colon followed by the 
compound pattern. (Don't confuse _ : symbol with name:pattern. ) One often encounters 
this compound pattern written with an explicit head, but that is not necessary. The following is 
an example with two different rules, where the output depends on whether the exponent is an 
integer or a real number. 
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f12[expr:x_An_Integer, z_] := z ExpandAll[expr]; 
f12[expr:x_^n_Real, z_] := z expr; 
{fl2[(l - x"2)"3, 2], fl2[(l - χΛ2)Λ(-3.2), 2]} 

2 
{2 (1 - 3 x2 + 3 x4 - x6), } 

(1 - x2)3·2 

3.2.7 Repeated patterns 
An interesting kind of pattern that is not covered by the preceding devices is a list of arbitrary 
length all of whose entries match some specified pattern. The pattern 
{ e n t r i e s I n t e g e r } is matched only by a (possibly empty) list of integers, but if we want 
them to all be of the form χ _ Λ η _ I n t e g e r then some new description of the pattern is 
necessary. This is given by . . and . . . in the following examples. As usual, . . means one or 
more repetitions. The Mathematica Book says that . . . means zero or more repetitions, but this 
doesn't seem to work in Version 2.2. 

fl3[list:{(_"_Integer)..}] := Apply[Plus, list]; 
{fl3[{a"2, bA3, cA4}], fl3[{a"x, bAxf cAx}]} 

{a2 + b3 + c4, fl3[{ax, bx, cx}]} 

fl4[list:{{_, _}..·}] := Map[Apply[Plus, #]&, list]; 
{fl4[{}], fl4[{{l, 2}, {3, 4}, {5, 6}}]} 

{fl4[{}], {3, 7, 11}} 

See the package S t a t i s t i c s ^ DataManipulaticuT for a number of examples. 

4 Using Patterns in Rules 
Patterns play an important role in both global and local rules. 

4.1 Patterns in Global Rules 

These are illustrated by two examples. 
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4.1.1 Logarithms 
In Chapter 1, rules were given for defining a logarithm-like function. 

log[a_ b_] := log[a] + log[b]; 
log[a_Ab_] := b log[a]; 

These rules cover some unexpected cases. 

{log[a b c d],log[a b^3 c],log[a/b],log[Sqrt[b]]} // 
TableForm 

log[a] + log[b] + log[c] + log[d] 
log[a] + 3 log[b] + log[c] 
log[a] - log[b] 
log[b] / 2 

4.1.2 Differentiation 
It is very easy to give rewrite rules for differentiating polynomials of one variable. 

diffr[x_^n_., x_] := n χΛ(η - 1); 
diffr[a_ + b_, x_] := diffr[a, x] + diffr[b, x]; 

Notice the default value for n in the first rule. Try it out on some typical values. 

{ diffr[x"3, x], diffr[y, y], 
diffr[w"(l/3), w], diffr[r"3.1, r], 
diffr[x^2 + x"3, x] } 

{3 x2, 1, 1/(3 w 2 / 3 ), 3.1 r2·1, 2 x + 3 x2} 

But notice that d i f f r doesn't know what to do with a constant times x, or just a constant for 
that matter, and we have no obvious way as yet to teach it what to do. 

{diffr[5, x], diffr[5 x, x]} 

{ d i f f r [ 5 , x ] , d i f f r [ 5 x, x]} 

We could try the following: first, give a rule for products. 

diffr[a_ b_, x] := a diffrfb, x] + diffr[a, x] b 
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Using this for a x gives 

diffr[a x, x] => a + x diffr[a, x] 

The program doesn't know that a is supposed to be a constant, so we have to tell it that 
explicitly, with a last rule. 

diffr[a , x] = 0; 

Then it gives the "correct" answer. 

d i f f r [ a x, x] => a 

However, this is not very satisfactory. We would like some general way to say that a is not a 
function of x. Section 5.2.2 below will continue this discussion. 

4.2 Patterns in Local Rules 

These are illustrated by three examples. 

4.2.1 Subscripted arrays 
An important use for patterns is on the left-hand sides of local rules. The first example is just to 
change the appearance of a matrix. Use Array to make a matrix with indexed entries and then 
use a local rule to display the indexes as subscripts. 

MatrixForm[Array[a, {2, 5}] /. 
a[i_, j_] :> Subscripted[a[i, j]]] 

*l,l al,2 aif3 ai,4 aif5 
*2,1 ^2,2 a2,3 a2,4 a2,5 

4.2.2 Length dependent rules 
Our next example shows that there can be a rule which depends only on the length of a list. 
Whenever the list below tries to grow longer than length three, the first four entries are 
multiplied together pairwise to decrease the length of the list by two. 
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Table[ 
Range[n]//. {x_, y_, z_, w_, u } -> {x y, z w, u}, 
{n, 1, 10}] 

{{1}, {1, 2}, {1, 2, 3}, {2, 12}, {2, 12, 5}, {24, 30}, 
{24, 30, 7}, {720, 56}, {720, 56, 9}, {40320, 90}} 

4.2.3 runEncode 
This example was the 1991 Mathematica programming competition question. The problem is to 
write a function called runEncode which detects repeated adjacent entries in a list. The output 
is a list of pairs which encodes the entries and how often they are repeated. (Note: this is not 
the same as f r e q u e n c i e s discussed in the preceding chapter.) Here is one of the best 
procedures. 

runEncode[list_List] := 
Map[{#, 1}&, list] //. 
{u , {v_, r_}, {v_, s_}, w }->{u, {v, r + s}, w} 

And here is a random list of 20 a's and b's to try it on. 

newlist = 

Map[{a, b}[[Random[Integer, {1, 2}] ]]&, Range[20]] 

{b, a, a, a, b, b, b, b, b, b, b, a, a, b, b, a, b, a, a, a} 

runEncode[newlist] 

{{b, l},{a, 3},{b, 7},{a, 2},{b, 2},{a, l},{b, l},{a, 3}} 

5 Restricting Pattern Matching with Predicates 
So far, all of the rules we have considered have been "context free" rewrite rules. Whenever the 
pattern is matched, the rewriting is carried out. There can be a restriction on the head of the 
matching expression included in the pattern. However, there are also conditional rewrite rules 
which are only applied when some condition is satisfied. First, we have to discuss predicates 
in Mathematica, since the conditions will always be expressed in terms of them. 
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A predicate is a function that returns the value True or False. Predicates can be thought of 
as another way to construct types. In this view, types are subsets of the (infinite) universe of all 
Mathematica expressions. A predicate P corresponds to the type, or set, of all expressions expr 
such that P[expr] evaluates to True. (There is actually a version of set theory proposed by 
Von Neumann in the 1920s that defined sets to be exactly such predicates on a pre-existing 
universe of elements.) Thus, we have at least two ways to think about types in Mathematica, as 
heads or as predicates. 

5.1 Examples of predicates 
Some predicates only return the value True or False when they are used for numbers. 

{1 == 2 , 1 < 2, 1 <= 2 , 1 >=2, 1 > 2} 

{Fa l se , Truef True, F a l s e , Fa l se} 

{Posit ive[3] , Pos i t ive[ -3] , Negative[3], Negative[-3]} 

{True, False, False, True} 

If they are used for symbols or other expressions, the results are unevaluated, except in special 
cases. 

{a == b , a < b , a <= b , a >= b , a > b , a == a, a <= a} 

{a == b, a < b, a <= b, a >= b, a > b, True, a <= a} 

{Positive[a], Positive[-a], Negative[a], Negative[-a]} 

{Positive[a], Positive[-a], Negative[a], Negative[-a]} 

However, there is a predicate defined for all expressions that is similar to ==. 

{expr === expr, a === b} => {True, False} 
FullForm[Hold[a === b]] => Hold[SameQ[a, b]] 

Thus, === is the infix form of SameQ which returns True if the left and right hand sides are 
syntactically identical, and False otherwise. (Recall that == is the infix form of Equal.) 

All built-in predicates that are defined for all expressions end with Q. It's easy to display all 
of them. 
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??*Q 

AtomQ 
DigitQ 
EllipticNomeQ 
EvenQ 
FreeQ 
HypergeometricPFQ 
IntegerQ 
LegendreQ 
LetterQ 
ListQ 
LowerCaseQ 

MachineNumberQ 
MatchLocalNameQ 
MatchQ 
MatrixQ 
MemberQ 
NameQ 
NumberQ 
OddQ 
OptionQ 
OrderedQ 
PartitionsQ 

PolynomialQ 
PrimeQ 
SameQ 
StringMatchQ 
StringQ 
SyntaxQ 
TrueQ 
UnsameQ 
UpperCaseQ 
ValueQ 
VectorQ 

Try some of the obvious ones concerning numbers. 

Input 

NumberQ[5.3] 

NumberQ[3/5] 

NumberQ[3 + 51] 

NumberQ[yesterday] 

IntegerQ[27] 

IntegerQ[5.3] 

IntegerQ[3/5] 

EvenQ[4] 

OddQ[4] 

PrimeQ[31] 

Output 

True 

True 

True 

False 

True 

False 

False 

True 

False 

True 
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The next predicates involve more general expressions. 

Input 

PolynomialQ[2 xA3 + 3 y, {x, y}] 
PolynomialQ[a χΛ3 + b y, {x, y}] 
PolynomialQ[a x + b] 
PolynomialQ[Sin[x + 1], {x}] 

VectorQ[{a, b, c}] 
VectorQ[a] 
VectorQ[{a}] 

OrderedQ[{3, 5, a, w}] 
AtomQ[a] 
AtomQ[Sin[a]] 
AtomQ[5] 

Output 

True 
True 
True 
False 

True 
False 
True 

True 
True 
False 
True 

The second argument to PolynomialQ is the list of variables such that the first argument is a 
polynomial in them. If it is missing, then the single argument must be a polynomial in all of its 
leaves. OrderedQ asks if the entries in a list are ordered according to the canonical built-in 
ordering which is defined for any two expressions. 

The predicates MemberQ and FreeQ are less obvious in the way they work. 

Input 

MemberQ[{x, y, z}, x] 
MemberQ[{x, y, z}, s] 
MemberQ[{x, xAn}, n] 
MemberQ[{x, xAn}, n, Infinity] 
MemberQ[{x"2, yA2}, χΛ_] 
MemberQ[Plus[x, y, z], x] 
MemberQ[(x + y) z, x + y] 

Output 

True 
False 
False 
True 
True 
True 
True 
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Input 

FreeQ[x y z, x] 

FreeQ[x y z, s] 

FreeQ[{x, xAn}, n] 

FreeQ[{x, xAn}; n, {1}] 

FreeQ[{xA2, y*2}, xA_] 

FreeQ[Plus[x, y, z], x] 

FreeQ[(x + y) z, x + y] 

Output 

False 

True 

False 

True 

False 

False 

False 

To determine what is going on here, look up the help entry for MemberQ. 

?MemberQ 

MemberQ[list, form] r e t u r n s True i f an element of l i s t 
matches form, and Fa l se o the rwi se . MemberQ[list, form, 
l e v e l s p e c ] t e s t s a l l p a r t s of l i s t s p e c i f i e d by 
l e v e l s p e c . 

This is not completely clear. First of all, "list" doesn't have to be a list, while "element" means 
"occurs at level one." As the fourth example above shows, the way to find out if something 
occurs at some other level than 1 is to add a levelspec (here In f in i ty ) . The "form" in the 
second argument can be a symbol, or a pattern, or a possible subexpression. All of these, of 
course, are patterns, but some of them are very specific patterns that are matched by just one 
thing. The opposite, in an appropriate sense, of MemberQ is FreeQ. It also can take a levelspec 
as third argument. 

5.2 Using Predicates 

Predicates are used to control pattern matching. However, the position of the predicate in an 
expression can make it appear as if predicates are being used in different ways. In general, 
predicates are applied using / ;, which is the infix form of Condition. 

FullForm[Hold[m /; n]] => Hold[Condition[m, n]] 
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5.2.1 Restricting rule application 
If the predicate is placed at the end of a global rule definition, then it appears to be used to 
restrict the application of the rule. For instance, define a multiplicative function as follows: 

h[a_ b_] := a h[b] /; FreeQ[a, x] 
h[2 (1 + x) xA2] + h[a b x] 

a b h[x] + 2 h[x2 (1 + x)] 

I read / ; as "provided" rather than Condi t ion. Rules given this way can be considered to be 
conditional rewrite rules, in distinction to previous rules which are unconditional; i.e., which 
are applied whenever something matches their pattern. Using rule / ; Predicate restricts 
the rule to those situations in which the predicate evaluates to True; i.e., to those expressions 
belonging to the type given by the predicate. An unrestricted rule is the same as a conditional 
rule where the predicate always equals True. 

5.2.2 Differentiation revisited 
Predicates can be used to extend our definition of differentiation in Section 4.1.2 above to deal 
with arbitrary polynomials in a very natural way by adding a single conditional rule. 

diffr[x_*n_., x_] 
diffr[a_ + b_, x_] 
diffr[a_ b_, x] 
diffr[a , x ] 

= n xA(n-l); 
= diffr[a, x] + di£fr[b, x]; 
= a diffr[b, x] + diffr[a, x] b; 
= 0 /; FreeQ[a, x] 

Now constants and products are handled properly 

{ d i f f r [ a x, x ] , d i f f r [ ( 2 + 3 χΛ2) ( 5 - 7 χ Λ 3 ) , χ ] } 

{a, -21 x2 (2 + 3 x2) + 6 x (5 - 7 x 3 )} 

5.2.3 Restricting simple patterns-factorial functions 
The other place to put a predicate is immediately after the pattern being affected in which case 
it appears to restrict pattern matching rather than rule application. For instance, our simple 
construction of a factorial function uses two rules. 

factorial[1] = 1; factorial[n_] := n factorial[n - 1] 
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This works perfectly well if it is given positive integers as arguments. 

f a c t o r i a l [ 3 ] => 6 

However, if it is given some other kind of argument, then it fails badly. 

{factorial[today], factorial[-3]} 

$RecursionLimit:ireclim: Recursion depth of 256 exceeded. 

A very large output is omitted. What happens, of course, in these cases is that the value 1 is 
never encountered as an argument, so the function keeps calling itself recursively until the 
built-in recursion limit is reached. Note also that these rules are not confluent. When they do 
work correctly, the result depends crucially on always trying to use the first rule before the 
second one. 

This bad behavior can be corrected by using a conditional rule, which incidentally makes 
the system confluent. 

factoriall[l] = 1; 
factoriall[n_] := n factoriall[n - 1] /; n > 1 
{factoriall[5], factorial1[-3], factoriall[today]} 

{120, factoriall[-3], factorial1[today]} 

There is another way to express this using the observation that the condition only involves 
one argument on the left-hand side of the rule. One can use the form _? Predicate , which 
restricts the pattern to something for which the predicate evaluates to True. To keep things 
confluent, we start the system at 0. 

factorial2[0] = 1; 
factorial2[n_?Positive] := n factorial2[n - 1] 
{factorial2[5], factorial2[-3], factorial2[today]} 

{120, factorial2[-3], factorial2[today]} 

In the form _?Predicate, it is required that Predicate be a pure function. Another version 
of the syntax in Version 2.0 and higher is: 

factorial3[0] = 1; 
factorial3[n_/; Positive[n]] := n factorial3[n - 1] 
{factorial3[5], factorial3[-3], factorial3[today]} 

{120, factorial3[-3], factorial3[today]} 
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Note the distinction in form. In n_?Pos i t i ve , P o s i t i v e is a pure function, while in the 
form using / ; , the condition is the value of the predicate for the name of the pattern. In either 
case, P o s i t i v e or P o s i t i v e [ n] is a positive test in the sense that the pattern is matched and 
the rule applied only if the test succeeds. These two forms are equivalent, but Mathematica1 s 
internal representation of them is different. (See the Practice section below.) 

Now try f a c t o r i a l 3 on a real number and see what happens. 

f a c t o r i a l 3 [ 5 . 3 ] => 67.4607 f a c t o r i a l 3 [ - 0 . 7 ] 

What happens is that 5.3, 4.3, 3.3, 2.3, 1.3 and 0.3 are all P o s i t i v e so the rule is applied 
until the value -0.7 is reached, where the condition fails so f ac tor ia l3 [-0.7] is returned in 
unevaluated form. Notice again that there is no error message, because no error has been 
committed. It is not an error for a rule not to match. 

Of course, the real problem is that we only intend factorial to apply to integers. But this 
additional restriction can easily be added. 

factorial4[0] = 1; 
factorial4[n_Integer?Positive] := n factorial4[n - 1] 
{ factorial4[5], factorial4[-3], 
factorial4[today], factorial4[5.3] } 

{120, factorial4[-3], factorial4[today], factorial4[5.3]} 

This also has an alternative form in Version 2.0 and higher. We revert to starting at 1. 

factorials[1] = 1; 
factorials[n_Integer /; n > 1] := n factorials[n - 1] 
{ factorials[5], factorials[-3], 
factorials[today], factorials[5.3] } 

{120, factorials[-3], factorials[today], factorials[5.3]} 

We also check in the Practice section below that the internal representations of these two 
restrictions are different. Of course the predicate that appears after / ; or ? can also be a user 
defined expression. 

p[x_Integer?((# > 3)&)]:= x + 1 
{P[l], P[2], p[3], p[4], p[5]} 

<P[l]r P[2], p[3], 5, 6} 
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Here is the same thing in Version 2.0 and higher. Note the difference in syntax. 

pp[x_Integer /; x > 3] : = x + l 
{PP[1], PP[2], pp[3], pp[4], pp[5]} 

{PP[1], PP[2], pp[3], 5, 6} 

5.2.4 Restricting compound patterns 
The form ?predicate can only be used after single slots, but the form / ; predicate can be 
used after any pattern, simple or compound. For instance, 

mm[x_, n_] / ; OddQ[n + x] := xAn; 
mm[x_, n_] / ; EvenQfn + x] := x A ( - n ) ; 
{1001(2, 3 ] , mm[3, 3 ] , mm[3, 4 ] , mm[4, 4]} 

{8f 1/27, 81 , 1/256} 

The Mathematica Book [Wolfram] suggests that it is better to place the predicate as close to the 
pattern being affected as possible. However, the pattern has to be a complete expression, so in 
the following example, the list brackets are essential. 

nn[{x_, n_} /; OddQ[n + x]] := χΛη; 
nn[{x_, n_} /; EvenQ[n + x]] := xA(-n); 
{nn[{2, 3}], nn[{3, 3}], nn[{3, 4}], nn[{4, 4}]} 

{8, 1/27, 81, 1/256} 

Named compound patterns can be treated the same way. 

nnn[expr:x_An_Integer/;MemberQ[x, n, Infinity], z_] := 
ExpandAll[z expr]; 

{nnn[(l - χΛ2)Λ2, w + z], nnn[(l - χΛ2)Λ3, w + z]} 

{w - 2 w x2 + w x4 + z - 2 x2 z + x4 z, nnn[(l - x2)3, w + z]} 

5.2.5 Manipulating lists 
Predicates also play an important role in manipulating lists. We have already made frequent 
use of the Se l ec t operation. Recall a simple example. 

Select[Range[-3, 3], Positive] => {1, 2, 3} 
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There is a similar operation called Cases whose second argument is a pattern rather than a 
predicate. 

Cases[{a+b, a bf aAbf a-b, xAx}, _ Λ _] => {ab, xx} 

The pattern in the second argument can be restricted by a predicate, in either of the two usual 
forms. 

Cases[Range[-3, 3]f _?Positive] => {1, 2, 3} 
Cases[Range[-3, 3], x_ /; x > 0] => {1, 2, 3} 

The opposite of Cases is DeleteCases which drops all entries not matching some pattern. 

DeleteCases[Range[10]A2, x_ / ; OddQfx]] 

{4, 16, 36, 64, 100} 
There is a related operation called P o s i t i o n whose second argument is also a pattern. It 

gives the parts list for all arguments that match the pattern. 

Position[Range[-3, 3], x_ /; x > 0] => {{5}, {6}, {7}} 

Strangely, there is no operation doing the same thing as P o s i t i o n but using a predicate 
rather than a pattern. But, as this example demonstrates, that is no restriction since the pattern 
can be that of an expression that satisfies some predicate. Note that Cases, DeleteCases, 
and P o s i t i o n can all take a third argument which is a levelspec. There is also another form 
of Cases in which some operation is applied to the entries that are selected. 

Cases[Range[-3, 3], (x_ /; x > 0) :> Sqrt[x]] 

{1, Sqrt[2], Sqrt[3]} 

Finally, the operation Scan applies some pure function to each element in a list, starting at 
the left, just like Map, except that no output is returned. If the operation has some side effect, 
then that will be carried out. For instance: 

Scan[Print, Range[3]] 

1 
2 
3 
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Frequently Scan is used to find the first entry satisfying some property. In order to see the 
result it is necessary to break out of the scanning procedure when this happens. For instance, 

Scan[If[# > 4, Return[#]]&, Range[-3, 3]"2] => 9 

In fact, all of these operations work for expressions with arbitrary heads, not just for lists. 

6 Examples of Restricted Rewrite Rules 

6.1 Global Rules 

6.1.1 Subsets of a set 

This example appeared in [Simon 1]. Given a finite set (presented as a list) and an integer k, it 
finds all k-element subsets of the set. 

kSubsets[list_List, 0] := {{ }}; 
kSubsets [list__List, 1] := Partition [list, 1]; 
kSubsets [list__List, k__Integer?Positive] := {list} /; 

(k == Length[list]); 
kSubsets[list_List, k_Integer?Positive] := 

Join[ (Prepend[#, First[list]])& /@ 
kSubsets[Rest[list], k - 1], 

kSubsets[Rest[list], k] ] ; 

The rules correspond directly to the usual proof that the number of k-element subsets of an n-
element set is given by the binomial coefficient (n, k). Thus, the set of 0-element subsets 
consists of just the empty set. The set of 1-element subsets consists of the singleton subsets. If k 
= n, then there is just one k-element subset; namely, the set itself. Finally, in general, the k-
element subsets consist of the k-element subsets of the set given by dropping the first element 
together with the first element added to the (k-l)-element subsets of the same set. 

k S u b s e t s [ { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , 3] 

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, 
{1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5}, 
{1, 4f 6}, {1, 4, 7}, {1, 5, 6}f {1, 5, 7}, {1, 6, 7}, 
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 4, 5}, 
{2, 4, 6}, {2, 4, 7}, {2, 5, 6}, {2, 5, 7}, {2, 6, 7}, 
{3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 5f 6}, {3, 5, 7}, 
{3, 6, 7}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}} 
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To get all subsets from this version, we have to join together the lists of k-element subsets for 
all k up to the size of the set. 

subsets [ list__List ] : = 
Join[Table[kSubsets[list, k], {k, Length[1ist]}]] 

subsets[{1, 2, 3, 4}] 

{{{1}, {2}, {3}, {4}}, {{1, 2}, {1, 3}, {1, 4}, {2, 3}, 
{2, 4}, {3, 4}}, {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}f 
{2, 3, 4}}, {{1, 2, 3, 4}}} 

Another way to calculate all subsets of a set, via a functional strict one-liner, was found by I. 
Vardi [Vardi], based on the distributive law. Observe first how D i s t r ibute works on three 
factors. 

D i s t r i b u t e ! ( 1 + a) (1 + b) (1 + c ) ] 

1 + a + b + a b + c + a c + b c + a b c 

This result is clearly related to the set of all subsets of {a, b, c}. The plus sign has to be replaced 
by a comma and the multiplication has to be replaced by L i s t somehow. Mathematica has a 
more general form of D i s tr ibute in which one can specify that f is to be distributed over g. 
(Actually, the final £ in this expression is unnecessary.) 

Distribute[f[g[x, y], g[x, y]], g, f] 

g[f[x, x], f[xf y]f f[y, x], f[y, y]] 

So here is a first step in getting all subsets of {a, b, c}. Instead of 1 + a, we use 
{ { } / {a} } a n d distribute L i s t over L i s t as follows: 

t r i a l = 
Distribute! List[{{}f {a}}, {{}, {b}}, {{}, {c}}], 

List] 

{{{}, {}, {}}, {{}, {}, {c}}, {{}, {b}, {}}, {{}f {b}, {c}}, 
{{a}, {}, {}}, {{a}, {}, {c}}, {{a}, {b}, {}}, 
{{a}, {b}, {c}}} 

One way to turn this into the list that we want is to F lat ten each of the inner lists. 
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Map[Flatten, trial] 

{{}, {c}, {b}f {b, c}, {a}, {a, c}f {a, b}, {a, bf c}} 

Another way is to change the head of each argument of this list to Union. 

Map[Apply[Union, #]&, trial] 

{{}, {c}, {b}, {b, c}, {a}, {a, c}, {a, b}, {a, b, c}} 

So, all we have to do is construct the strange list of pairs consisting of the empty set together 
with a singleton set from the original set. This is also easy to do. 

Map[({{}, {#}})&, {a, b, c} ] 

{{{}, {a}}, {{}, {b}}, {{}, {c}}} 

Thus, the desired one-liner can be written in two forms. The result is sorted to get subsets in 
their usual order of increasing size. 

subsetsl[list_List] := 
Sort[Map[Flatten, 
Distribute[Map[({{}, {#}})&, list], List]]]; 

subsets2[list_List] := 
Sort[Map[Apply[Union, #]&, 
Distribute[Map[({{}, {#}})&, list], List]]]; 

These both give the same result. 

{subsetsl[{a, b, c}], subsets2[{a, b, c}]} 

{{{}/ {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, 
{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}} 

Actually, Vardi's version [Vardi] is different. Note that the output is not sorted. 

subsetsFunctional[list__List] : = 
Distribute! {{}, {#}}& /& list, 

List, List, List, Union ] 
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This form of D i s t r ibute is documented in The Mathematica Book [Wolfram] but not online. 
The result, of course, is the same as before. 

subsetsFunctional[{a, b, c}] 

{{}/ {c}, {b}, {b, c}, {a}, {a, c}, {af b}, {a, b, c}} 

6.1.2 Laplace transforms 
As a more complicated example of a rule based program, consider a simple version of the 
Laplace transform. Here is a list of rules that will calculate the Laplace transform for many 
simple functions. 

laplace[function, t, s] 

means the Laplace transform of funct ion which depends on the variable t , expressed as a 
function of the variable s. If the function is a constant c, then its Laplace transform is c / s , 
giving us the first rule. 

laplace[c_, t_, s_] := c / s /; FreeQ[c, t] 

The Laplace transform is a linear function of its first argument. This is expressed by two rules. 

laplace[a_ + b_, t_, s_J : = 
laplace[a, t, s] + laplace[b, t, s] 

laplace[c_ a_, t_, s_J : = 
c laplace[a, t, s] /; FreeQfc, t] 

If the function is of the form t n with n a positive integer, then the Laplace transform has a 
simple form. 

laplace[t_~n_., t_, s_] : = 
n! / s Λ (η+1) / ; (FreeQ[n, t ] && n > 0) 

If the function is a product where one factor is of the form tn, then the Laplace transform is 
somewhat more complicated. 

laplace[a__ t_An_., t_, s__] : = 
(-1)Λη D[laplace[a, t, s] , {s, n}] /; 

(FreeQ[n, t] && n > 0) 
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The Laplace transform of a function divided by t can sometimes be calculated. 

laplace [a_/t_, t_, s_] : = 
Module[{v}, 

Integrate[laplace[a, t, v], {v, s, Infinity}]] 

(See Chapter 8 for Module.) Finally, a function involving E to an exponent which is linear in t 
can be reduced to a simpler form. 

laplace[a_. Exp[b_. + c_. t_], t_, s_] : = 
laplace[a Exp[b], t, s - c] /; FreeQ[{b, c},t] 

Note that these rules are mutually recursive. Try a few examples. 

laplace[c tA2, t, s] => 2 c / s3 
laplace[(t"3 + t"4) tA2, t, s] => 720/s7 + 120/s6 
laplace[t"2 Exp[2 + 3 t], t, s] => 2 E2/(-3 + s) 3 
laplace[Exp[2 + 3 t]/t, tf s] => Indeterminate 

See the packages LaplaceTrans form, m and Trigonometry . m for programs making 
extensive use of lists of rules with intricate patterns and conditions. 

6.2 Local Rules 

Patterns can be used on the left-hand sides of local rules, so restrictions using predicates can 
appear in this position also. 

6.2.1 maxima 
This example was the 1992 Mathematica programming competition question. The problem is to 
write a function called maxima that starts with a list of numbers and constructs the sublist of 
the numbers bigger than all previous ones from the given list. For instance, maxima [ { 4 , 7 , 
5 , 2, 7 , 9, 1} ] should return {4 , 7 , 9}. The winning entry uses a pattern with a 
condition in a local rule. 

maxima[list_List] := 
list//, {a , x_, y_, b } /; y <= x -> {a, xf b} 

maxima[{4, 7, 5, 2, 7, 9, 1}] => {4, Ί, 9} 
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6.2.2 complexSort 
Complex numbers are sorted in Mathematica first by increasing real part and then by increasing 
imaginary part. This example, adapted from one on the network, shows how to sort complex 
numbers so that conjugate numbers are placed next to each other. 

complexSort [ cplxs__List ] : = 
Flatten[Sort[cplxs] //. 
({a , z_, b , zbar_, c } /; 
Length[{a, b, c}] > 0 && z == Conjugate[zbar]) :> 
{a, If[ Im[z]<Im[zbar], 

{z, zbar}, {zbarf z}], b, c}]; 
cplxs[n_] := Outer[Plus, Range[-n, n], I Range[-n, n]] 
Flatten[Sort[cplxs[1]]] 

{-1 - I, -1, -1 + I, -I, 0, I, 1 - I, 1, 1 + 1} 

complexSort[cplxs[1]] 

{-1 - I, -1 + I, -1, -I, I, 0, 1 - Ir 1 + I, 1} 

6.2.3 intervalUnion 
This next example comes from John Lee, University of Washington, in response to discussions 
on the network about a program to compute the union of a set of possibly overlapping 
intervals. 

intervalUnion[listOfIntervals_List] := 
Sort[listOfIntervals] //. 
{a , {b_, c_}, {d_f e_}, f } :> 
{a, {b, Max[c, e]}, f} /; d <= c 

intervalUnion[{{1, 2}, {3, 4}, {1.5, 3.5}}] => {{1, 4}} 
intervalUnion[{{lf 2}, {3, 4}, {3, 5}}] 

{{1, 2}, {3, 5}} 

6.2.4 Discussion 
In each of these examples, a list is rewritten in a non-trivial way by describing how a typical 
pattern in the original list is to be rewritten in the new list. Arbitrary locations in the list are 
accessed by using patterns of the form a involving zero or more arguments, conditions are 
placed on whether the rewriting should take place by following the left hand side by a / ; 
clause. This is a powerful technique which has only recently been recognized as a valuable tool 
in Mathematica programming. 
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63 Dynamic Programming and $RecursionLimit 

Recall the final version of the factorial function from Section 5.2.3. 

factorial[1] = 1; 
factorial[n_Integer /; n > 1] := n factorial[n - 1] 

Can one actually use this definition to calculate factor i a l [n] for large values of n? It turns 
out that there is a specific limit that cannot be exceeded. The factorial calculation in the first 
one is suppressed, but the second one is kept to see what it looks like. 

Timing[factorial[253];] => {0.95 Second, Null} 
Timing[factorial[254]] 
$RecursionLimit::reclim: Recursion depth of 256 exceeded. 
{1.18333 Second, 
13140590921305800461383000485312999772637584563104865500301097\ 
58543611293739503047453186720834024829121286589066079326449382\ 
96083745970661048144805223257663247493463934339581256537256070N 
28102944055895649073546925669455844464559611898118678402279915\ 
38489128092801430257018158961780825702525268564748986301288404\ 
18630140848571842376633840799347317127027383089494310769179474X 
73700246530360714416499720082234418835880264436811011656620579X 
17317120000000000000000000000000000000000000000000000000000000X 
0000000 
factorial[Hold[2 - 1]]} 

As we have programmed it, f a c t o r i a l is a recursive function. In order to calculate 
f a c t o r i a l [ n ] , it first has to calculate f a c t o r i a l [ n - 1 ] , etc., so it builds up a sequence 
of unevaluated terms until it finally gets to f a c t o r i a l [ 1 ] , which has an explicit value, so 
then all the other terms can be evaluated. Precisely, it builds a nested sequence of values as 
shown in the following computation. 

Trace[factorial[5]] 
{factorial!5], {5>1, True}, 5 factorial[5-1], 
{{5-1, -1+5, 4}, factorial[4], {4>1, True}, 4 factorial[4-1], 
{{4-1, -1+4, 3}, factorial[3], {3>1, True}, 3 factorial[3-1], 
{{3-1, -1+3, 2},factorial[2], {2>1, True}, 2 factorial[2-1], 
{{2 - 1, -1 + 2, 1}, factorial[l], 1}, 
2 1, 1 2, 2}, 
3 2, 2 3, 6}, 
4 6, 24}, 
5 24, 120} 
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Mathematica has a built-in limit, called $RecursionLimit, which by default is set to 256, so 
that it will not carry out more than 256 such steps. What happened in the second calculation 
above is that there wasn't enough room to carry out the very last step, so it was held. One way 
to proceed is to release the hold by using ReleaseHold [ % ] immediately after the calculation. 
It will then proceed for a maximum of 256 more steps. Alternatively, once it is certain that we 
are not in an infinite loop, $RecursionLimit can be set higher to calculate larger values. 

$RecursionLimit = 5000; 

Try timing successive multiples of 200 to see how long these computations take. 

Table[ {200 n, Timing[factorial[200 n];][[l]]}, 
{n, 1, 10} ] 

{{200, 0.816667 Second}, {400, 1.78333 Second}, 
{600, 2.78333 Second}, {800, 3.86667 Second}, 
{1000, 4.98333 Second}, {1200, 6.38333 Second}, 
{1400, 7.4 Second}, {1600, 8.88333 Second}, 
{1800, 10.1667 Second}, {2000, 11.8833 Second}} 

Thus, the time to calculate f a c t o r i a l [200 n] is approximately linear in n. Let us check 
what Mathematica knows about f ac tor ia l . 

??factor ia l 

Global"factorial 
factorial!1] = 1 
factorial[n_Integer /; n > 1] := n*factorial[n - 1] 

It knows just the rules that we gave it. 
There is another way to write the program for f a c t o r i a l so that Mathematica will 

remember the values that it has already calculated and hence not have to recalculate them each 
time it goes through such a recursive procedure. This is called Dynamic Programming. The 
syntax is very simple. 

factorialDyn[1] = 1; 
factorialDyn[n_Integer /; n > 1] := 

factorialDyn[n] = n factorialDyn[n - 1] 

If we calculate f actorialDyn[n] then Mathematica will have calculated and remembered all 
smaller values because the actual value of factor ialDyn [ n ] is a Set statement. 
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factorialDyn[6] =» 720 

Look and see what Mathematica knows about this version of fac tor ia l . 

? ? factorialDyn 

Global"factorialDyn 
factorialDyn[1] = 1 
factorialDyn[2] = 2 
factorialDyn[3] = 6 
factorialDyn[4] = 24 
factorialDyn[5] = 120 
factorialDyn[6] =720 
factorialDyn[n_Integer /; n > 1] := 
factorialDyn[n] = n*factorialDyn[n - 1] 

If we want to calculate a higher value, then the recursion will only have to go down to the 
value 6 instead of 1. We can use this principle to calculate large values without increasing 
$RecursionLimit as far as before. 

$RecursionLimit = 450; 
Table[ {200 n, Timing[factorialDyn[200 n];][[l]]}, 

{n, 1, 10} ] 
{{200, 2.15 Second}, {400, 2.63333 Second}, {600, 2. Second}, 
{800, 2.28333 Second}, {1000, 2.91667 Second}, 
{1200, 4.11667 Second}, {1400, 3.53333 Second}, 
{1600, 4.25 Second}, {1800, 5.93333 Second}, 
{2000, 8.25 Second}} 

At each step in the table the recursion only has to go back to the previous step. We won't ask 
Mathematica what it knows about f actorialDyn now because that would cause it to display 
2000 rules, which is more than we want to look at. The timing for each step appears to be 
almost constant, or only growing slowly until the values get to 1800. But apparently the total 
time to get to 2000, which is the sum of all of the preceding times, is now significantly longer 
than the time for the single computation. In the Exercises we will treat an example where 
Dynamic Programming has a more significant effect, making possible calculations that are 
simply not possible without it. (However, in the case there, special methods work even better.) 
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7 Practice 
*4ê^i^m&mm°&âm'm's^-«^^^ **«^^-, * v ^ « ' ^ , w·*^, 

1. FullForm[x Λ= y] 
2. FullForm[x Λ:= y] 
3. ??UpValues 
4. ??DownValues 
5. ??Global^* 
6. ??? 
7. FullFormfx Head] 
8. FullForm[x Head] 
9. FullForm[x_:v] 
10. FullForm[x:v] 
11. FullForm[n_ /; n > 0] 
12. FullForm[n_Integer?Positive] 
13. FullForm[n_Integer /; n > 1] 
14. FullForm[gg[fun:Power[x_, n_Integer]]] 
15. subsetsll[list_List] : = 

Sort[Flatten /@ 
Distributee{{}, {#}}&/@list, List]] 

16. subsets22[list_List] := 
Sort[Union@@#&/@ 
Distribute!{{}, {#}}&/@list, List]] 

8 Exercises 

1. Find all values of the form n = m/3 for m an integer between -10 and 10 such that 
Mathematica can evaluate the following integral: (Hint: Make a table and use S e l e c t 
and FreeQ). 

Λ4/3 

J <'-'*■> du 
U n 

2. In Exercise 5 of Chapter 5 and Exercise 5 of Chapter 6, a Gram-Schmidt procedure was 
developed. It only works if the given vectors are linearly independent. Make several 
changes in it so it still works even if the given vectors are linearly dependent. 
i) Restrict the functions so they only work for arguments of the proper kinds. 

ii) Include a separate rule to deal with the projection of a vector on a zero vector. 
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iii) The resulting list of orthogonal vectors may then contain a zero vector. Add a new 
operation, n o z e r o s , to remove such zero vectors. Note that the notion of a zero 
vector depends on the vector space under consideration. 

iv) Test your procedure on a long list of random 3-dimensional vectors with real 
entries. 

v) Test your procedure using the Legendre inner product and various polynomials 
including the powers of x up to x4. 

3. i) Write a function t y p e of one variable such that t y p e takes the value 0 for integer 
arguments, the value 1/2 for rational arguments, the value 1 for real numbers, the 
value 2 for complex numbers, and the value «> for anything else. 

ii) Change the definition of t y p e so that it takes the value 10 for "algebraic 
expressions." An algebraic expression is one which is built up recursively from 
symbols (i.e., variables) and numbers (integers, rationals, reals, and complexes) by 
using addition, subtraction, multiplication, division, and exponentiation. (Hint: 
use pattern matching recursively to define a predicate a lgexpQ which takes the 
value True just for algebraic expressions. For instance, one such rule is: 

algexpQ[u_ + v_] := a lgexpQ[u] && a l g e x p Q [ v ] . ) 

iii) Test your predicate algexpQ on the following inputs. 

x"2 + (y + 2)A3 
xA2 + ( S i n [ y ] + 2 ) A 3 
(5 x y ) A ( z + w) 
S q r t [ 5 x y p ( z + w) 
x A ( x A ( x A ( x A x ) ) ) 
(Y + w ) A ( x + 2) 
(x + 2 I ) (3 + y I ) A ( 5 + 41) 
(2x + y) + I (z w + u) 
Tan[xA2 + y A 2] 

iv) Test your type function on the following inputs. 

{ a n y t h i n g , 2 4 , 3 / 7 , 3 . 6 4 , ( 5 + 3 1 ) , 
- ( x + y z ) A ( z - 3 w ) , 
(x + 2 I ) (3 + y I ) A ( 5 + 4 1 ) , 
Sin[anything] +4} 
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4. i) Extend the definition of d i f f r further so that it differentiates restricted algebraic 
expressions correctly, where algebraic expressions are as above, but restricted 
means that the only kinds of exponents that are allowed are numbers and symbols. 

ii) Extend the definition of d i f f r further so that it differentiates "calculus 
expressions" correctly. Here "calculus expressions" are expressions which are built-
up recursively from symbols, numbers, trigonometric functions, the exponential 
function, and the logarithm function by using addition, subtraction, multiplication, 
division, and restricted exponentiation, where restricted exponentiation now means 
that either the base or the exponent is a constant (i.e., a number or a symbol). 

iii) Extend the definition of d i f f r further to higher order and mixed derivatives. 

5. This is an exercise in calculating the Fibonacci numbers by different methods. Part of the 
exercise is to attempt to estimate how large a value can be found by each method in a 
reasonable length of time-say 60 seconds. 
i) The recursive definition: 

f ibr[ l ] = 1; fibr[2] = 1; 
fibr[n_] := fibr[n - 1] + fibr[n - 2] 

ii) Dynamic programming: 

fibdfl] = 1; fibd[2] = 1; 
fibd[n_] := fibd[n] = fibd[n - 1] + fibd[n - 2] 

iii) Iteration: 

fibi[n_] := 
Module[{ani = 1, an2 = 1}, 

Do[{ani, an2} = {ani + an2, ani}, {i, 3, n}]; 
ani] 

iv) Symbolic formula for the nth number: 

el = (1 + Sqrt[5]) / 2; 
e2 = (1 - Sqrt[5]) / 2; 
bl = (5 + Sqrt[5]) / 10; 
b2 = (5 - Sqrt[5]) / 10; 
fibf[n_] := Expand[bl el^(n - 1) + b2 e2A(n - 1). 
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v) Numeric formula for the n'th number. The f i b f version can be speeded up by 
replacing Sqrt [ 5 ] by a suitable numerical approximation which depends on n. 
Try to do this if you see how. Call this version f ibf n [ n ] . 

vi) Matrix formula. The powers of the matrix {{1, 1} , {1 , 0}} are related to the 
Fibonacci numbers. Use this to give yet another way to calculate them called f ibm. 

Suggestions for analyzing the algorithms: In each case, experiment to find appropriate 
maximal sizes for n. Then make a table of values and timings up to the appropriate size. 
Plot these values to see what the timings look like. Try to fit your timing data to an 
appropriate curve and use that to find out how long it would take to calculate the 
millionth Fibonacci number. In the last five cases, you will probably want to use input 
data of the form 2n, rather than n. You might want to combine all of the plots into a 
single plot showing the relations between the methods. 

6. The function maxima described in the Examples section above can also be implemented 
by a strict one-liner functional program. A one-liner using FoldList, Inf in i ty , Max, 
Rest , and Union was the most efficient function found in the contest. Write this 
function and do a Timing comparison with the pattern matching version. 



1 Introduction 
In this chapter, we turn to the third alternative mentioned in the previous chapter: using 
Mathematica as a block structured language with the usual control structures of an imperative 
language. The language of while-programs is an abstract version of such a language. It consists 
of exactly four kinds of commands: 

assignment commands, 
if_then_else_ commands, 
composition commands, and 
while_do_ commands. 

These commands work in quite a different way than the operations in a functional or rewrite 
rule language, both of which deal with expressions and reduce them to normal form. An 
imperative language deals with states of a computer. To explain this concept, suppose there is a 
fixed finite set of variables {xi, . . . χχ } where K is the number of memory locations in some 
computer; e.g., K = 232. We will, in fact, think of x; as the name of a specific memory location, 
the jth one. Suppose further that each memory location can hold a value, which could be a 
number or a bit, or some other choice for values. Let V be the set of values and consider VK, 
the Cartesian product of V with itself K times. An element of VKis a K-tuple of values, v = (vi , 
. . . , VK ). We can regard the jth component of such a K-tuple as the contents of the jth memory 
location and call v a state of the computer. Thus a state is some assignment of a value to each 
memory location and VK is the set of all states of the computer. The action of a command is to 
change the state by changing the values at some of the memory locations; i.e., commands 
produce mappings from V^ to itself and we have to explain exactly what mapping 
corresponds to each kind of command. 

239 
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More formally, the language of while-programs with values in the set V = N of natural 
numbers consists of the following structures: 

i) Arithmetic terms. These consist of the constant 0, variables Xj, and terms succ(A), 
pred(A), plus(A, A') and times(A, A') whenever A and A' are arithmetic terms. 
Arithmetic terms are thought of as functions from NK to N. 

ii) Predicates, or Boolean terms. These consist of the constants tt and ff and terms (A == 
A'), (A < A'), (A > A'), (B and B'), (B or B'), (B implies B'), and not (B) whenever A and 
A' are arithmetic terms and B and B' are predicates. Predicates are thought of as 
functions from NK to the set Bool = {True, False}. 

iii) Commands. 
a) An assignment command is one of the form: x = A, where x is a variable and A is 

an arithmetic term. For instance, if nj is stored at memory location j , then the 
assignment command XJ = 5 denotes the mapping from NK to itself that changes 
the value of nj to 5. If A contains variables, they are given the values they have in 
the current state. 

b) A composed command is one of the form: begin Q ; . . . ; Cn end, where Q , . . . , 
Cn are command terms. The interpretation of a composition command is just the 
composition (in the sense of functions) of the interpretations of the Q's as 
mappings from NK to itself. 

c) A conditional command is one of the form: if B then C else C, where B is a 
predicate and C and C are command terms. The interpretation of a conditional 
command as a mapping from NK to itself is the interpretation of C (resp., C) in the 
current state if the value of B in the current state is tt (resp., f f ) 

d) A loop command is one of the form: while B do C, where B is a predicate and C is 
a command term. The interpretation of a loop command is more complicated. Let 
n be the present state. If the interpretation of B in state n is False, then the 
command leaves the state unchanged. If it is true, then the command C is 
executed, leading to a new state. B is evaluated again in this new state. If the result 
is now False, then the new state is the result of the command. Otherwise, C is 
executed again. This continues until B evaluates to False, in which case the state at 
that point is the result. If B never evaluates to False, then the loop continues 
forever. In this case, one says that the command diverges. 

Here is a simple example of a while-program to calculate y !. (See next page.) 
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begin 
χ = 0; 
ζ = succ(O); 
if y == ο then z = succ(O) else 

while not(x == y) do 
begin 

x = succ(x); 
z = times(z, x) 

end 
end 

To describe the interpretation of this program, suppose there are just three memory 
locations where x, y and z are stored; i.e., K = 3. Let {x0 , y0 , z0 } be the initial state before the 
program is run. After the first "initialization" steps, the state is {0, y0 ,1}. In the if statement, if 
y0 is 0, then the state, which is {0, 0,1}, is returned as the result of the program. If y0 is not 0, 
then the while loop is entered. The condition not(x == y) is clearly true so the do part is 
executed. The two assignment statements here change the state to {1, y0 , 1 * 1}. The predicate 
is checked again and if y is not equal to 1 then the do part is executed again yielding the state 
{2, y0 , 1 * 1 * 2}. This continues until the first and second components of the state are y0 and 
the third component is y0 !. In either case the result of executing the program is that the x-
location now has the value y0 and the z-location now has the value y0 !; i.e., the final state is 
tyo / Yo / Yo !}· Thus, the third memory location now stores the value y0 !. 

Mathematica of course has many more arithmetic terms and predicates than those described 
above. It also has operations that implement the imperative commands exactly. There are 
several forms of conditional and loop commands. However, instead of begin-end forms for 
programs, Mathematica uses blocks which are called Modules, although they were called 
Blocks in Version 1.x. B locks still exist and are sometimes useful. Understanding the 
difference between Modules and Blocks will turn out to be instructive. In Mathematica, the 
state is represented by values assigned to global variables. This kind of state is often called a 
store in impure functional languages, mainly to try to avoid the bad connotations of states in 
functional programs. In the context of a functional programming language, anything other 
than reducing an expression to normal form is regarded as a side effect. In particular, if there is 
a concept of state in the language, then changing the state is a side effect. In this sense, 
imperative languages work solely by side effects. 

2 Basic Operations 

2.1 Assignments and Composition 

Assignment commands in Mathematica are mimicked by expressions of the form x = a; i.e., 
expressions with head Set. The composition or sequencing of commands is indicated by 



242 Part II · Programming Language 

semicolons. Such a sequence of commands is evaluated, proceeding from left to right. The 
output of the composed command is the output of the last command in the sequence. With just 
assignment commands and arithmetic operations, we can build up a composed command as 
follows: 

x = l ; x = x + l ; ' x = x + l ; x = x + l => 4 

Notice that the output is 4, which is the output of the last command. In our machine metaphor, 
what is now stored in the x location is this value, as shown by querying the state. 

x => 4 

Be sure to clear x because of this unfortunate side effect. As an aside, recall that everything in 
Mathematica is an expression, so composed expressions must also be expressions. We check 
that this is true. 

FullForm[Hold[x = x + l ; x = x + l ] ] 

Hold[CompoundExpression[Set[x, P lus [x f 1 ] ] , 
S e t [ x , P lu s [x , 1 ] ] ] ] 

Thus, ; is just the infix form of CompoundExpression in the same way that + is the infix 
form of Plus. 

Assignments and composed commands are incompatible with functional programming 
constructs. For instance, the following two commands show that addition is not commutative. 

y = 6; P lus [ (y = y + 1 ) ; 5, y] => 12 
y = 6; P lus[y , (y = y + 1 ) ; 5] => 11 

In these two evaluations, we start with y set to 6. Then we add two expressions in both 
possible orders. One of the expressions is just y while the other is the compound expression (y 
= y + 1 ) ; 5. Mathematica evaluates the arguments in Plus from left to right. So in the first 
case, inside the P lus , y is set to 7 when the first argument is evaluated; i.e., the state is 
changed. This happens as a "side effect" to the value of the first argument which is 5. When the 
second argument is evaluated, it finds that y is 7, so the result is 12. In the second case, when 
the first argument to Plus is evaluated, y is still 6. When the second argument is evaluated, y 
is set to 7, but that has no effect on the value of the first argument and also no effect on the 
value of the second argument, which is still 5, so the result is 11. This is an example of non-
referential transparency. The value of the sum does not depend just on the values of the factors, 
but also depends on the order in which they are evaluated. The problem of adding assignment 
statements to functional languages in such a way as to control unfortunate effects like this is 
currently a research topic in computer science. What happens in the first version is that the 
evaluation of the first argument affects a variable that is used in the evaluation of the second 



Eight · Procedural Programming 243 

argument. Needless to say, fixing things so that this doesn't happen would add considerable 
complexity to the language. This particular example would be avoided if Mathematica 
evaluated its arguments in parallel; e.g., if the state were frozen until all arguments were 
evaluated, and then it was updated as necessary. (The problem with this solution is if two 
different arguments change the state in different ways, then what should the final state be?) 

2.2 Conditional Operations 

Conditional operations are used for branching; that is, depending on some condition, the 
program should continue following one path or another, but not both. The simplest 
conditional operation is the if_then_else_ operation. In Mathematica everything is an expression 
so this is represented by an expression with head If and three arguments: 

If[test, then, else]. 

Here t e s t is a predicate and then and e l s e are any other two expressions. Besides this, there 
are two other related expressions: 

Which[testx, value! , test2, value2, . . . ] 
Switch [expr, forni! , value! , form2 , value2 , . . . ] 

which are explained below. 

2.2.1 If 
I f [ t e s t , then , e l se ] is just like the (if_then_else_) operation in Pascal. If t e s t evaluates 
to True, then then is evaluated and if t e s t evaluates to False , then e l s e is evaluated. If 
t e s t is not a Boolean expression (i.e., does not evaluate to True or False) then the I f 
expression is returned unevaluated. There are two variations; one is: 

If[test, then, else, unknown] 

which returns the value of unknown if t e s t does not evaluate to True or False. The other is: 

I f [ t e s t , then] 

which returns then if t e s t evaluates to True and Nul l if t e s t evaluates to False. For 
instance: 
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Input 

If[5 > 2, 1, 2] 

If[5 < 2, 1, 2] 

If[a == b, 1, 2] 

If[a == b, 1, 2, 3] 

If[5 < 2, 1] 

Output 

1 
2 
If[a == b, 1, 2] 

3 
Null 

If we ask about the attributes of If, we find: 

Attributes[If] => {HoldAll, Protected} 
Thus, I f holds its arguments. This is important for an expression in which one of the 
arguments might diverge, but which are never evaluated in that case. For instance: 

bad[x_] := I f [ x == 0, 0f 1 / x ] ; 

Then bad [ 0 ] is perfectly well behaved. 

{bad[0], bad[l], bad[2]} => {0r 1, 1/2} 

A function definition of the form 

f[x__] : = If [test, then, else, unknown] 

where t e s t , then, e l s e , and unknown involve x, divides the universe of Mathematica 
expressions into three disjoint subsets, those expressions exp for which t e s t / . x -> exp 
evaluates to True, in which case, then / . x -> exp is evaluated, those for which t e s t 
/ · x -> exp evaluates to False , in which case, e l s e / . x -> exp is evaluated, and 
those for which t e s t / · x -> exp evaluates to neither True nor False, in which case, 
unknown / . x -> exp is evaluated. One can use this in interesting ways in Mathematica. 
For instance, the resulting function can be plotted. 

f[x_] := If[x > 0, xA2, -xA2]; 
Plot[f[x], {x, -2, 2}]; 

1 
0.5 

-2 -1 S 
/0.5 

/ -1 

J 
1 2 
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The same effect, of course, can be obtained by conditional rewrite rules: 

g[x_] := xA2 /; x > 0; 
g[x_] := - xA2 /; x <= 0; 
Plot[g[x], {x, -2, 2}]; 

1 

0 .5 

-2 -1 / ^ 
/ 0 . 5 

/ - 1 

J 
1 2 

Interestingly, f can be differentiated but not g. 

{D[f[x], x], D[g[x], x]} => {If[x > 0, 2 x, -(2 x) ], g'[x]} 

It is possible in Mathematica to get unintended results by using an expression that is only a 
predicate for numbers in a situation where more general inputs can arise. For instance, define 
an operation that depends on the head of an expression. 

heads l [exp_] := If[Head[exp] == Plus , expA2, exp A 3]; 
{headsl[a + b ] , headsl[a b]} 

{(a + b ) 2 , I f [Head[a b] == P l u s , (a b ) 2 , (a b ) 3 ] } 

This works perfectly well for expressions whose head is P l u s , but for anything else, 
Head [ exp ] == Plus is unevaluated so the whole expression is returned. Presumably this in 
unintended, but it can be cured by using === instead of ==. 

heads2[exp_]:= If[Head[exp] === Plus , expA2, exp A 3]; 
{heads2[a + b ] , heads2[a b]} => {(a + b ) 2 , a3 b3} 

2.2.2 Which 
Which [ tes tx , expr*! , t e s t 2 , expr2 , · . . ] takes an even number of arguments. 
Each odd numbered argument expects a predicate. If t e s t i is the first predicate to evaluate to 
True, then expr± is evaluated. For instance: 

Which[4<l, 1, 4<2, 2, 4<3, 3, 4<4, 4, 4<5, 5] 

5 
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If no predicate evaluates to True, then, in distinction to If, the output is Null; i.e., there is no 
output. Thus, the following command returns nothing at all unless it is part of another 
expression. 

Which[4 < 1, 1, 4 < 2 , 2 , 4 < 3 , 3 , 4 < 4, 4] 

A function definition of the form 

£[x_] := W h i c h [ t e s t i / e x p r x , t e s t 2 , e x p r 2 , . . . ] 

where t e s t i / a n d expri involve x, for 1 < i < n, divides the universe of Mathematica 
expressions into n + 1 disjoint subsets, where the ith subset consists of those expressions exp 
for which t e s t i / . x -> exp is the first test which evaluates to True, in which case 
expri / · x -> exp is evaluated. The n + 1st subset consists of those expressions for which 
no test evaluates to True in which case the result is Null. Here is an example where there are 
three tests with their corresponding expressions. 

heads3[exp_]:= 
Which[ 

Head[exp] === Plus, 
Head[exp] === Times, 
Head[exp] === Power, 

{ heads3[a + b], heads3[a b], 
{(a + b)2, a3 b3, a4 b, Null} 

(If you want to be sure that something is returned by a Which command, then make the last 
predicate True, with a corresponding expression which could be an error message.) 

A Which command is essentially the same as a list of conditional rewrite rules, except for 
the behavior on terms that fail to satisfy any of the conditions. E. g., 

heads4[exp_]:= exp"2 /; Head[exp] === Plus; 
heads4[exp__] := exp^3 /; Head [exp] === Times; 
heads4[exp_]:= βχρΛ4 /; Head[exp] === Power; 
{ heads4[a + b], heads4[a b], heads4[aAb], heads4[a&&b] } 
{(a + b)2, a3 b3, a4 b, heads4[a && b]} 

There is a possible difference in that the rewrite rules may be reordered by Mathematica, which 
could change the output. Except for this possibility, a Which command with a final predicate 
True is the same as a list of conditional rewrite rules in which the last rule is unconditional. 
The Mathematica Book [Wolfram] suggests that rules are more appropriate for Mathematica 
style programming. 

expA2, 
expA3, 
expA4 ]; 
heads3[aAb], heads3[a&&b] } 
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2.2.3 Switch 
Switch makes explicit use of Mathematica pattern matching. It is not really like anything else 
in other languages. 

Switch [expr, pattern! , valuei , pattern2 , value2 , . . . ] 
tries to match expr to one of the patterns. It returns the value following the first pattern that it 
matches. Thus we can write: 

heads5[exp_]:= 
Switch[ Head[exp], 

Plus, exp*2, 
Times, exp*3, 
Power, exp*4 ]; 

{ heads5[a + b], heads5[a b], heads5[a*b], heads5[a&&b] } 
{(a + b)2, a3 b3, a4 b, Switch[Head[a && b], Plus, (a && b)2, 
Times, (a && b)3, Power, (a && b)4]} 

As one sees from this example, Swi tch , like If, returns the entire Switch expression 
unevaluated if the expression fails to match any of the forms, so it is a good idea to include a 
final pair whose pattern is _, which produces some neutral value, e.g., Null. 

heads6[exp_] : = 
Switch[ Head[exp], 

Plus, expA2, 
Times, exp*3, 
Power, exp*4, 

Null ]; 
{ heads6[a + b], heads6[a b], heads6[a*b], heads6[a&&b] } 
{(a + b)2, a3 b3, a4 b, Null} 

The patterns don't have to be constants. They can be completely general patterns, so here is 
yet another way to write our operation. 

heads7[exp_] : = 
Switch[ exp, 

_Plus, expA2, 
_Times, exp*3, 
_Power, exp*4, 

Null ]; 
{ heads7[a + b], heads7[a b], heads7[a"b], heads7[a&&b] } 

247 

{(a + b)2, a3 b3, a4 b, Null} 
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This is exactly equivalent to the sequence of rewrite rules 

heads8[exp_Plus] := expA2; 
heads8[exp__Times] := expA3; 
heads8[exp_Power& := exp^4; 
heads8[exp__] := Null; 

In fact, any sequence of rewrite rules of the form f oo [ exp_patterni ] : = valuei for 1 < i < 
n is exactly equivalent to a Switch statement of the form 

foo[exp_] := 
Switch[exp, patterni , valuei , . · · , 

_patternn , valuen ] 

except that Mathematica might rearrange the rules, but it can do nothing about the order of the 
patterns and values in the Switch command. 

2.3 Loops 
In the language of while-programs, the command that repeats an operation until some 
condition is satisfied is the while_do_ command. In Mathematica, there are three built-in 
looping constructions, which permit a great variety of programming styles. 

2.3.1 Do loops 
The simplest loop construct is the Do loop. It is a function of two arguments consisting of an 
expression and an iterator of the form Do [ expr, { i , imin, imax, i s t e p } ] . Notice that 
the form is exactly the same as that of the operations Table, Sum, Product, Integrate, 
etc. However, in distinction to these operations, Do has no output. The reason is that Do loops 
are used only for their side effects-changing the state, printing something, or generating 
graphics, etc. A Do command evaluates expr a total of ( ( imax - imin) / i s t e p ) + 1 
times with the values imin , imin + i s t e p , imin + 2 i s t e p , . . . imax 
successively substituted for i in expr. As usual, the "iterator" has abbreviated forms: 

{i, imin, imax} = {i, imin, imax, 1} 
{i, imax} = {i, 1, imax} 
{imax}, if expr does not depend on i. 
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Note that if imin > imax and istep is negative, then the loop goes backwards. In order to see 
something happen in a simple example, expr is a Print statement here, which as a side effect 
prints the values of its argument. 

Do[Print[iA2], {i, 3, 5}] 

9 
16 
25 

If expr assigns a value to some other e x p r l , then e x p r l has the value it is given by the 
last repetition of the loop. Since Do itself does not return any value, in order to see the result, 
we have to ask for it explicitly. A typical construction might start with an "initialization" 
statement for some identifier, followed by a Do loop which does something to the initialized 
identifier, followed by calling the identifier itself. E.g., 

y = 1; Do[y = (y + i ) " 2 , { i , 5 } ] ; y => 5408554896900 

Funny things are allowed because the only actual restriction on an iterator is that 
( ( imax - i m i n ) / i s t e p ) has to be a number. The "variable of iteration," i , can be any 
expression. Thus, the following is legitimate. 

z = 1 ; Do[z = (z f [ w ] ) * 2 , { f [ w ] , 3 . 2 r a , 6 r a , r a } ] ; z 

9 .25132 107 r a 1 4 

Except for the funny things, Do is very much like the For loop operation in Pascal. Related 
operations are N e s t and F o l d and F i x e d P o i n t [ f , e x p r ] . (See Chapter 6, Section 1.4.) 
Note that y and z now have values that have to be cleared. 

2.3.2 While loops 

Whi le [ t e s t , e x p r ] is just like the command "while test do expr" in the language of while-
programs. The While expression in Mathematica begins by evaluating t e s t . If t e s t is True , 
then it evaluates expr . Usually, e x p r includes a clause changing some parameter in t e s t . 
Then t e s t is re-evaluated with the new value of the parameter. If it still evaluates to True , 
then e x p r is evaluated again. This continues until t e s t evaluates to F a l s e . No value is 
returned by the W h i l e operation, but if e x p r assigns a value to some other e x p r l , then 
e x p r l has the value it had just before t e s t evaluated to F a l s e . The use of Whi le loops is the 
same as Do loops; e.g., 

x = 1 ; W h i l e [ x < 1 0 , x = x + 1 ; y = χ Λ 2 ] ; y => 100 
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The last time the condition x < 10 is evaluated with result True is when x is 9. In that case, 
the expression sets x to 10 and then gives y the value 102 = 100. Note that x again has a value 
that has to be cleared. 

2.3.3 For loops 
For [ s t a r t , t e s t , s t e p , expr ] is almost exactly the same as a for loop in the language 
C, except that in C the clauses are separated by semicolons instead of commas. (Note that C 
uses commas for compound statements, so the roles of comma and semicolons in C are exactly 
the opposites of their roles in Mathematica.) A For loop first evaluates s t a r t and then 
repeatedly evaluates expr, s tep , and then t e s t , until t e s t fails. Usually s t a r t initializes 
some variable and s tep alters it in some way that t e s t uses to eventually stop the For loop. 
As with Do and While loops, the output of a For loop is Null. 

For[i = 1, i < 4, i++f P r i n t [ i ] ] 

1 
2 
3 

We have used C slang in writing s tep . Here i++ is shorthand for i = i + 1. One can 
also write i += 1 with the same effect. Similarly, i— is shorthand for i -= 1 or i = i -
1. Notice that the last value printed is 3. We can check that t e s t was evaluated one more time 
to make t e s t fail by asking for the value of i. 

i = » 4 

This result also points up the unfortunate fact that evaluating this For loop has had the 
unintended "side effect" of giving a value to i , which we probably didn't want. 

Here is a more complicated example showing that s t a r t can initialize several variables in a 
compound statement and that expr can of course also be a compound expression. 

For[ i = 1; t = x, iA2 < 10, i++, t = t^2 + i ; 
Print[Expand[t]] ] 

1 + x2 

3 + 2 x2 + x4 

12 + 12 x2 + 10 x4 + 4 x6 + x8 

Note that outputs in the form of Print statements, which we have been forced to resort to in 
order to see something from loop statements, are generally not very useful since they are not 
available for further processing. Note that i again has a value that has to be cleared. 
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3. Modules, Bkcks, and With 

3.1 Modules 
In the first example of a compound operation in Section 2.1 above, after the calculation was 
finished, the variable x had the value 4. If all we cared about was the computation, then it 
would be unfortunate to give a value to x which might interfere with later computations. A 
mechanism is needed that allows variables to be used just for one calculation and then erases 
any values they might have acquired during that computation. Modules and Blocks are 
mechanisms that create such "local variables." Here is an example. 

Module[{x}, x = l ; x = x + l ; x = x + l ; x = x + l ] 

4 

This is the same output as before, but when it is finished, x doesn't have any value. 

x => x 

Furthermore, if x is given a value before starting; e.g., x = 17, and then the Module is 
evaluated, then x still has its original value. Thus, the x inside the module is independent of 
the x outside. 

A Module expression takes two arguments, the first being a list of local variables and the 
second being any expression (usually a compound expression). If desired, initial values for 
local variables can be given within the first argument. The value of a Module expression is the 
value of the second argument; thus when the second component is a compound expression, it 
is the value of the last component of the compound expression. 

Module[{x = 1 } , x = x + l ; x = x + l ; x = x + l ] =>4 

The local variables are just named, and initializations are given as above; e.g., x = 1. The 
body of the Module is separated from the list of variables by a comma. It is a single, possibly 
compound expression. Note that the semicolons in it bind more tightly than the comma, in 
distinction to most ordinary natural languages. 

Modules are usually not used when working interactively. It is only when it is time to put 
some procedure into a more final form that they come into play. There are three reasons to use 
Modules: preventing variable clash, efficiency, and clarity. Preventing variable clash means 
insulating the local variables from any other variables with the same names outside the 
Module. This is highly desirable since there is no way to know in advance what other 
variables with values may be around when a particular function is used. As to efficiency, local 
variables serve to hold values of computations that may be required at several points in some 
procedure, so that they only have to be calculated once. Finally, the third use is to give names 
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to intermediate steps in a computation for purposes of clarity. Look at the examples in the 
Examples section of this chapter and determine which local variables are being used for 
iteration in some way, and so just have to be protected from the outside, which ones are used 
to store information that is used more than once, and which ones are there just for clarity. 

3.2 Blocks versus Modules 
There are two possible ways in which local variables can be insulated from global ones. 
Blocks are just like Modules except in the way that they handle name clashes. Consider the 
following expression written with a Block statement. 

sumOfPowers[x_] := B l o c k [ { i } , Sum[x^i, { i , 1, 5 } ] ] 

Try it on two examples. 

{sumOfPowers[a], sumOfPowers[i]} 

{a + a2 + a3 + a4 + a5, 3413} 

Now write the same function using a Module statement and try the same two examples. 

sumOfPowersl[x_] := Module[{i} , Sum[xAi, { i , 1, 5} ] ] 
{sumOfPowersl[a], sumOfPowersl[i]} 

{a + a2 + a3 + a4 + a 5 , i + i 2 + i 3 + i 4 + i 5 } 

The difference between these two outcomes is the difference between dynamic scoping and static 
scoping of local variables. It is explained very well in The Mathematica Book [Wolfram]. In the 
case of Blocks, local variables have unique values but not unique names. When we ask for 
sumOf Powers [ i ] , what happens is that we get Sum [ i Λ i , { i , 1, 5 } ] which is a number. 
The trouble is that the i from outside the Block is the same as the i inside it, so the scope of 
the i inside expands dynamically to the outside of the Block. In the case of Modules, local 
variables have unique values and unique names so that such a name clash is essentially 
impossible. The way this is done is to create new names for the local variables in Module 
every time the Module is used. The name given to a local variable in a Module is not actually 
used. It is replaced by a distinct name that does not occur anywhere else. Normally these new 
names are completely hidden so one never knows exactly what they are, but sometimes they 
accidentally (or deliberately) get out of the Module, as in the following example. 

Table[Module[{j}, j], {10}] 

{j$3, j$4, j$5, j$6, j$7, j$8, j$9, j$10, j$ll, j$12} 
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Thus, j is replaced by j$n where n is an increasing sequence of numbers. The actual numbers 
depend on everything that has gone before; specifically on all local variables in all Modules 
that have been used in the current session. The numbers start with 1 and increase by 1 every 
time a local variable is used in a Module. 

Table[Module[{r}, r ] , {10}] 

{r$13, r$14, r$15 , r$16, r$17 , r$18 , r$19, r$20, r $ 2 1 , r$22} 

Local variables can also be seen in Trace commands. 

Trace[Module[{t}, t=3]] 

{Module[{t}, t = 3], t$23 = 3, 3} 

As long as variable names of the form symbol$n are never used, there is no possibility of 
name conflict. 

3.3 Modules versus With 

As remarked above, one use of Modules is just to give a name to some computation which 
will be used several times in a further expression. If this computation is used to initialize the 
name in the first argument of the Module and nothing is assigned to it in the body of the 
Module, then the Module command can be replaced by a With expression. See Chapter 6, 
Section 1.5. 

4 Examples 
We start with some simple examples and then turn to some more complicated ones showing 
how to translate programs in Pascal and C into Mathematica programs. In each case the direct 
translation can be replaced by a much shorter and clearer Mathematica program written in a 
functional or rewrite rule style. 

4.1 A Procedural Factorial Function 

As the first example, we write the while-program for the factorial function given in the 
introduction to this chapter in Mathematica. Notice that very little is changed. 
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factorialProc[y_] := 
Module[{x =0, z = 1}, 

If[y == 0, 
1, 
While[!(x == y), 

x = x + 1; 
z = z x ] ] ; 

z 1; 
The main purpose served by the Module structure here is to prevent global values being given 
to x and z. The program works without being put inside a Module but then it would have the 
unfortunate side effect of giving x the value of y and z the value y !. Try this version on a pair 
of values. 

{ Timing[factor ia lProc[252] ; ] , 
Timing[factorialProc[1000] ; ] } 

{{0.833333 Second, N u l l } , {4.31667 Second, Null}} 

The timing for 252 is approximately the same as for the recursive version in Chapter 7, Section 
6.3. For larger values there is no need to reset $RecursionLimit since no recursion is 
involved in this form of the function. (Here, what is f actorialProc [yesterday ] ?) 

4.2 Continued Fractions 
Any real number has finite continued fraction approximations. These are given as follows: 

continuedFractionApprox[ x_Real, 
n_Integer?Positive] := 

Module[ 
{integerPart, fractionPart = x, result = {}}, 
Do[ integerPart = Floor[fractionPart]; 

AppendTo[result, integerPart]; 
fractionPart = 

1 / (fractionPart - integerPart), 
{n} ]; 

result]; 
continuedFractionApprox[ N[Pi], 10 ] 

{3, 7, 15, 1, 292, 1, 1, 1, 2, 1} 
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The following functional one-liner will display a symbolic continued fraction, given the list of 
coefficients. Note that this is different from the form in Exercise 3 of Chapter 6. 

continuedFract[list_List] := 
Fold[ (#2 + 1/#1)&, 

First[Reverse[list]], Rest[Reverse[list]]]; 
continuedFract[{a, b, c, d}] 

1 
a + 

1 
b + 

1 
c + -

d 

To see the continued fraction approximation to P i , we have to turn numbers into strings to 
prevent Mathematica from evaluating the continued fraction. 

continuedFractionPi = 
continuedFract[ 

Map[ ToString, 
continuedFractionApprox[N[Pi], 10 ] ]] 

1 
3 + 

1 
7 + 

1 
15 + 

1 
1 + 

1 
292 + 

1 
1 + 

1 
1 + 

1 
1 + 

1 
2 + -

1 
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Unfortunately, Mathematica insists on writing some of the sums in the wrong order but we 
have edited the output to make it look better. Finally, this can be evaluated by using a 
functional program to turn the strings back into expressions. 

MapAt[ ToExpression, continuedFractionPi, 
Position[continuedFractionPi, _String] ] 

1146408 

364913 

Compare this value with the value of π. 

N[%, 20] => 3.14159265359140397848 
N[Pi, 20] => 3.14159265358979323846 

4.3 A Procedural Program for Simple Differentiation 

In Chapter 7, Sections 4.1.2 and 5.2.2, we wrote rule based programs for simple differentiation. 
It is much harder to write a procedural program for this. The problem is that if we don't use 
the pattern matching facilities of Mathematica, then we have to recognize the input expression 
by analyzing its structure directly; i.e., we have to construct our own parser. This is most easily 
organized in a Which statement rather than nested I f statements. 

diffw[y_, x_] : = 
Module[{n}, 
Which[ 
y ===== x, 1, 
Length[y]===2 && y[[0]]===Power && y[[l]]===x, 

y[[2]] xA(y[[2]] - 1), 
y ===== log[x], 1/x ]]; 

Try this out on some examples. 

{ diffw[xA3, x], diffw[y, y], diffw[log[z], z], 
diffw[w"(l/3), w ] , d±ffw[rA3.1, r] } 

{3 x2, 1, 1/z, 1/(3 w 2 / 3 ) , 3.1 r2·1} 

Of course if we use Swi t ch , then we get a noticeably simpler program, because 
Mathematical pattern matching is used. (Normally, this is not available in procedural 
languages.) 
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diffs[y_, x_] : = 
Switch[ y , 

x, 1, 
xAn_/; FreeQ[n, x], y[[2]] x"(y[[2]] - 1) 
log[x], 1/x ]; 

This gives the same output as the preceding version. 

4.4 Runge-Kutta Methods 
Runge-Kutta methods are a technique for finding numerical solutions of systems of 1st order 
ordinary differential equations of the form 

xi ' = f l (χ1 / · · · χη ) 

Xn ' = fn (xi / · · · Xn )· 
Here, prime means differentiation with respect to some independent variable t which does not 
occur explicitly on the right-hand sides of the equations. The built-in operation NDSolve finds 
solutions for more general systems of equations. The program to implement the Runge-Kutta 
method for finding approximate numerical solutions of such systems is similar to the program 
for Newton's method in Chapter 7. Starting from some list of initial values, there is a one step 
move in the direction of an approximate solution. This new location is the initial point for 
another one step move, etc. The fourth-order Runge-Kutta method utilizes the following one 
step operation. 

oneRungeKuttaStep[exprs_, vars_, varsO_, dt_] := 
Module[{ kl, k2, k3, k4 }, 
kl = dt N[exprs /. Thread[vars -> varsO]]; 
k2 = dt N[exprs /. Thread[vars -> varsO + kl/2]]; 
k3 = dt N[exprs /. Thread[vars -> varsO + k2/2]]; 
k4 = dt N[exprs /· Thread[vars -> varsO + k3]]; 
varsO + (kl + 2 k2 + 2 k3 + k4)/6]; 

exprs is the list of right-hand sides of the system of equations and dt is the step size. The 
purpose of the Module structure here is to protect the local variables k l , k2, k3, and k4. They 
in turn serve to store intermediate results. One could substitute their values in the last line, 
starting with k4, and then both instances of k3, etc., to derive a purely functional operation, 
but that would require exprs to be evaluated 10 times instead of 4. This one step operation is 
like the one in Newton's method, but it doesn't make sense to then use FixedPoint in the 
final operation as we did in Newton's method since in general the solution here will not 
converge to a fixed value. Instead, we use NestLis t to calculate a list of successive positions 
of the system. Here n is the number of steps to be carried out. 
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rungeKutta[exprs_, vars_, varsO_, dt_, n_] := 
NestList[ oneRungeKuttaStep[exprs, vars, #, N[dt]]&, 

N[varsO], n ]; 
We calculate some examples. (See also the package ProgrammingExamples RungeKutta 
and [Maeder 1]) 

4.4.1 Van der Pol's equation 
Van der Pol's equation arises from the second order differential equation x" + x = ε (1 - x2) x' 
by converting it to a linear system of the form x' = xdot, xdot' = ε (1 - x2) xdot - x. Finding 
numerical solutions of this equation was an important research goal during the second World 
War. We treat it for the value ε = 1. 

systeml = {v, (1 - xA2) v - x } ; 

It is known that there is a closed solution through the point {2, 0} and all other solutions are 
asymptotic to it. We find three trajectories of this system starting at the points {0, 0.6}, {0, 2.2}, 
and {0,3.6}. Note that all solutions move clockwise. 

Show[ 
Table[ 
ListPlot[ 
rungeKutta[systeml, {x, v}, {0, i}, 0.1, 70], 
PlotJoined -> True, AspectRatio -> Automatic, 
DisplayFunction -> Identity], 

{i, 0.6, 3.8, 1.6}], 
DisplayFunction -> $DisplayFunction]; 

4 

3 
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4.4.2 Gravitational attraction 
To compare the Runge-Kutta method with the built-in function NDSolve, we use the example 
of two equal bodies under gravitational attraction described in Chapter 3, Section 4.6. We have 
to turn the system of second order equations given there into a system of first-order 
differential equations as usual. The four second-order equations become the following eight 
first-order equations. 

twoOrbitSystem = 
{ xdotl, -(χ1-χ2)/((χ1-χ2)Λ2 + (yl-y2)*2)A(3/2), 
ydotl, -(yl-y2)/((xl-x2)"2 + (yl-y2)Α2)Λ(3/2), 
xdot2, -(x2-xl)/((xl-x2)"2 + (yl-y2)"2)Λ(3/2), 
ydot2/ -(y2-yl)/((xl-x2r2 + (Υ1-Υ2)Λ2)Λ(3/2)} ; 

Eight function names and eight initial conditions are required to get a solution. 

twoOrbitSolution = 
rungeKutta[twoOrbitSystem, 
{xl, xdotl, yl, ydotl, x2, xdot2, y2, ydot2}, 
{1, 0, 0, 0.3, -1, 0, 0, -0.3}, 
0.1, 60]; 

The output is suppressed since it is a long list of numbers. To plot the two curves given by 
{ x l , y l } , and {x2 , y2}, we have to extract their values from the list of eight values for 
each entry in the output of NestList. 

Show[ 
{ ListPlot[ 

Map[{#[[l]], #[[3]]}&, twoOrbitSolution], 
PlotJoined -> True, AspectRatio -> Automatic, 
PlotRange -> All, DisplayFunction->Identity], 

ListPlot[ 
Map[{#[[5]], #[[7]]}&, twoOrbitSolution], 
PlotJoined -> True, AspectRatio -> Automatic, 
PlotRange -> All, DisplayFunction->Identity]}, 

DisplayFunction -> $DisplayFunction]; 
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4.5 A Program from Oh! Pascal! [Cooper] 
Consider the following Pascal program. 

var TrialNumber, DividedNumber: integer; 
begin 

for TrialNumber:= 1 to 500 
do If (TrialNumber mod 3) = 1 

then begin 
DividedNumber:= 2*(TrialNumber div 3); 
If (DividedNumber mod 3) = 1 

then begin 
DividedNumber:= 2*(DividedNumber div 3); 
If (DividedNumber mod 3) = 1 

then begin 
DividedNumber:= 2*(DividedNumber div 3); 
If (DividedNumber mod 3) = 1 

then writeln(TrialNumber:3, fis a solution.') 
end 

end 
end 

end 

This comes from page 156 of the book Ohi Pascali by Doug Cooper and Michael Clancey, W. 
W. Norton and Co. 1982 [Cooper], which is a standard book on Pascal programming. It 
concerns robbers who steal a number of gold bars. Secretly during the night, each one takes 
one third for himself, each time leaving one bar left over. In the morning, they divide what is 
left and find one still left over. The question is to find the original number of bars. There are 
many solutions, so only the solutions less than or equal to 500 are given by this program. 

This program can be recreated in Mathematica, almost word for word using a Do loop. The 
syntax of a Do loop is almost exactly the same as that of a For loop in Pascal, except the 
arguments are given in the reverse order. Functions like If, Mod, and Quotient are written in 
prefix form rather than infix or mixfix form as in Pascal. Finally, instead of writeln, we use 
Print. Perhaps the most noticeable difference is that the program and var statements at the 
beginning of the Pascal program are replaced by the Module head and the local variable 
declarations in the first argument of Module. Note that there is no way to declare types of local 
variables. Finally, all the ends are replaced by closed brackets. 
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Module[(«Stolen Gold*) 
{TrialNumber, DividedNumber}, 
Do[ 

If[ Mod[TrialNumber, 3] == 1, 
DividedNumber = 2 Quotient[TrialNumber, 3]; 
If[ Mod[DividedNumber, 3] == 1, 

DividedNumber = 
2 Quotient[DividedNumber, 3]; 

Iff Mod[DividedNumber, 3] == 1, 
DividedNumber = 

2 Quotient[DividedNumber, 3]; 
If[ Mod[DividedNumber, 3] == 1, 

Print[ TrialNumber, 
" is a solution."] 

{TrialNumber, 1, 500}]] 
79 is a solution. 
160 is a solution. 
241 is a solution. 
322 is a solution. 
403 is a solution. 
484 is a solution. 

The same thing can be done by a strict one-liner. Note that it returns the values as an output 
list, available for further processing. 

Select[Range[500], 
Apply[ And, 

Map[ (# == 1)&, 
Mod[ NestList[2 Quotient[#, 3]&, #, 3], 

3]]]&] 
{79, 160, 241, 322, 403, 484} 

It is interesting that Mathematica is able to sort out the different #'s that occur in this function. 
The right most one is the one that gets filled by the entries from the list Range [ 500] . The next 
one to the left belongs to the pure function in the argument to NestList , while the left most 
one belongs to the predicate that is mapped down the resulting list. For instance, try: 

NestList[2 Quotient[#, 3]&, 79, 3] 
{79, 52, 34, 22} 
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Each of these numbers equals 1 modulo 3. (Mod is L i s t a b l e . ) 

Mod[NestList[2 Quotient[#, 3]&, 79, 3], 3] 

{Ir 1 , 1/ 1} 

Let Mathematica do the check that they are all l's. 

Map[ (# == 1)&, 
Mod[NestList[2 Quotient[#, 3]&, 79, 3], 3]] 

{True, True, True, True} 

Get a single value True as the output by Anding together these values. 

Apply[And, 
Map[ (# == 1)&, 

Mod[NestList[2 Quotient[#, 3]&, 79, 3], 3]]] 

True 

Try the same thing for a range of 11 numbers. 

Map[ Mod[NestList[2 Quotient!#, 3]&, #, 3], 3]&, 
Range[70, 80] ] 

{{1, 1, 0, 2}, {2, 1, 0, 2}, {0, 0, 2, 2}, {1, 0, 2, 2}, 
{2, 0, 2, 2}, {0, 2, 2, 2}, {1, 2, 2, 2}, {2, 2, 2, 2}, 
{0, 1, 1, 1}, {1, 1, 1, 1}, {2, 1, 1, 1}} 

Map[ Apply[And, 
Map[ (# == 1)&, 

Mod[ NestList[2 Quotient!#, 3]&, #, 3], 
3]]]&, 

Range[70, 80]] 
{False, False, False, False, False, False, False, False, False, 
True, False} 

Notice how N e s t L i s t is used to help create the program itself. This is one aspect of what is 
meant by a higher order programming language. 

Of course, there is a much easier way to generate this series of numbers along with some 
bigger entries. We leave it to the reader to figure out why it works. 

T a b l e [ ( 8 1 (8 k - 1) + 6 5 ) / 8 , {k, 1 , 10} ] 

{79 , 160 , 2 4 1 , 322 , 4 0 3 , 484 , 5 6 5 , 646 , 727 , 808} 
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4.6 A Simple CProgram 
Our next example is a simple C program that prints out an interest table. 

/* 
* Generates a table showing interest accumulation. Allows the 
* user to input the interest rate, principal, and period. 
*/ 

main() 
{ 

int period, /* length of period */ 
year; /* year of period */ 

float irate /* interest rate */ 
sum; /* total amount */ 

printf ("Enter interest rate, principal, and period: " ) ; 
if (scanf ("%f %f %d", &irate, &sum, &period) == 3) 

{ 
printf ("Year\t Total at %.2f%%\n\n", irate * 100.0); 
for (year = 0; year <= period;year++) 

{ 
printf ("%5d\t $ %10.2f\n", year, sum); 
sum += sum * irate; 

} 
} 
else 

printf ("Error in input. No table printed.\n"); 
} 

This C program can be closely approximated in style and format by a Mathematica program. 

Module[ 
{irate, sum, per, year, scan}, 
If[Length[ 

scan = 
Input[ 
"{interestRate?, principal?, period?}"]]===3, 

{irate, sum, per} = scan; 
Print["Year, Total at ", irate*100, " % " ] ; 
For[year = 0, year <= per, year++, 

Print[PaddedForm[year, 2]," ", sum]; 
sum += sum * irate], 

Printf"Error in input. No table printed."]]] 
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Year, Total at 10.% 
0 10000 
1 11000. 
2 12100. 
3 13310. 
4 14641. 
5 16105.1 
6 17715.6 
7 19487.2 

When this Module is evaluated, the first thing that happens is that the Input expression is 
evaluated. This asks the user for a list of three numbers. If a Notebook interface is being used, 
then a dialogue box will appear asking for the input. Otherwise, a prompt will appear asking 
for it. The input given here was { 0 . 1 , 10000, 7} . Then the column headings are printed 
and a For loop is entered printing out the values for each year, one at a time. If something 
other than a list of length three is entered, then an error message is printed. Notice how the 
scan statement is inside the predicate Length [ scan = . . . ] = = 3, mirroring the way the 
scan statement is used in the C program. Two things are accomplished this way. There is a 
check if the input at least consists of three items, with an error message if it doesn't. The main 
purpose of setting the identifier scan to the list of three values is accomplished as a side effect. 
Every step in this program is a side effect. 

Another way to handle the input statement is to prepare a file containing the desired 
information using the form P u t [ e x p r , " f i l e " ] , or equivalently for a single expression, 
expr » f i l e . 

P u t [ { 0 . 1 , 10000, 7 } , " tes t i" ] 

Then, when the program asks for the information, respond with 

G e t [ " t e s t l " ] => { 0 . 1 , 10000, 7} 

This could be written as a function taking a file name as its only argument. 

interestTable[file_String] := 
Module[ 
{irate, sum, per, year, scan}, 
If[ Length[scan = Get[file]] == 3, 

{irate, sum, per} = scan; 
Print["Year, Total at ", irate*100, " % " ] ; 
For[ year = 0, year <= per, year++, 

Print[PaddedForm[year, 2]," ", sum]; 
sum += sum * irate], 

Print["Error in input· No table printed."]]]; 
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Evaluate this function for the file t e s t i . 

interestTable["testi"] 

Year, Total at 10.% 
0 10000 
1 11000. 
2 12100. 
3 13310. 
4 14641. 
5 16105.1 
6 17715.6 
7 19487.2 

The differences between this program and the C program are that it is not necessary to 
declare a type for each local variable and that explicit directions don't have to be given for 
reading inputs and printing messages. Such a program would normally be written in 
Mathematica as a function whose arguments are i n t e r e s t R a t e , pr inc ipa l , and period. 
Then there is no need to include the I f statement since, if the wrong number of arguments are 
given, Mathematica simply leaves the expression unevaluated. 

accumulation[interestRate_, principal_, period_] := 
Module[ 
{sum = principal, year}, 
Print["Year, Total at ", interestRate*100, " % " ] ; 
For[ year = 0, year <= period, year++, 

Print[PaddedForm[year, 2]," ", sum]; 
sum += sum * interestRate]]; 

accumulation[.10, 10000, 7]; 
The output is the same as before. 

Here is a version even more in the spirit of Mathematica programming. Note that no local 
variables are required in the single NestLis t operation. The computation itself is simplified 
to the extent that most of the function consists of explicit directions for displaying the table and 
getting correct column headings as an output rather than a Print statement. 

accumulatel[interestRate^, principal^, period_] := 
PaddedForm[TableForm[ 
NestListf {#[[1]]+1, #[[2]] (1 + interestRate)}&, 

{0, principal}, period], 
TableHeadings -> 

{ None, 
{" Year", "Total at " <> 
ToString[lOOinterestRate]<>"%"}}, 

TableSpacing -> {0, 2}], 5]; 

265 
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Try this for the same data as before. 

accumulateli0.1, 10000, 7] 
Year Total at 10.% 
0 10000 
1 11000. 
2 12100. 
3 13310. 
4 14641. 
5 16105. 
6 17716. 
7 19487. 

All numbers had to be padded to size 5 to get the numbers in the Year column to line up 
nicely, but not lose digits in the T o t a l column. (That's what the PaddedForm is about.) The 
column heading To ta l a t 10. % had to be carefully constructed using the infix form <> of 
StringJoin. However, the final information now is in output form and so is available for 
further processing. E. g., 

%[[3]] => {2, 12100.} 

4.7 AC Program for a Histogram 

4.7.1 The C program 
Lastly, we consider a longer C program from the book Programming in C, by Lawrence H. 
Miller and Alexander E. Quilici, John Wiley & Sons, Inc. 1986 [Miller]. A histogram is a kind of 
a bar chart for displaying data. The data is separated into "buckets" of equal sizes according to 
the values of the data and then the number of data items in each bucket is plotted. The 
program below is divided into a main loop followed by the definitions of the two functions, 
fill_bkts and print_histo, which constitute the principal ingredients of the main loop. Thus, the 
main program is of the form 

main() 
{ 

if (fill_bkts ) 
/*then*/ 

print_histo 
else 

error message 
} 
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The procedure fill_bkts is a compound expression which first does all the work of putting the 
data items into the correct buckets and then ends with a predicate asking if the variable 
"inpress" which is storing the read in values now has the value EOF ( " EndOfFile). Thus, the 
predicate part of the if statement, as a side effect, does all of the real work of the command. 
Assuming that all of the data has been read in, then the print_histo procedure is carried out, 
which makes a picture of the histogram. Otherwise, an error message is printed. 

/* 
* Produce nice histogram from input values. 
*/ 
♦include <stdio.h> 

♦define 
♦define 
♦define 
♦define 
♦define 

MAXCOLS 
MARKER 
MAXVAL 
MINVAL 
NUMBKTS 

50 
1 if 1 

100 
0 
11 

/ * 
/ * 
/ * 
/ * 
/ * 

columns available for markers */ 
character used to mark columns */ 
largest legal input value */ 
smallest legal input value */ 
number of buckets */ 

main() 
int buckets[NUMBKTS], 

bktsize; 
{ 

/* buckets to place values in */ 
/* range bucket represents */ 

bktsize = (MAXVAL - MINVAL) / (NUMBKTS - 1); 
if (fill_bkts(buckets, bktsize)) 

print_histo(buckets, bktsize); 
else 

printf("Illegal data value—no histogram printed\n"); 

h 
* Read values, updating bucket counts, Returns nonzero only 
* if EOF was reached without error. 
*/ 
int fill_bkts(buckets, bktsize) 
int buckets[], 

bktsize; 
{ 

/* buckets to place values in */ 
/* range of values in bucket */ 

int badcnt = 0, 
bkt, 
inpres, 
totalcnt = 0, 
value; 

/* count of out-or-range values */ 
/* next bucket to initialize */ 
/* result of reading in an input line */ 
/* count of values */ 
/* next input value */ 

for (bkt = 0; bkt <= NUMBKTS; buckets[bkt++] = 0) 
; /* initialize bucket counts */ 
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while (inpres = scanf("%d"f &value), inpres == 1) 
{ 

if (value >= MINVAL && value <= MAXVAL) 
buckets[(value - MINVAL) / bktsize]++; 

else 
badcnt++; 

totalcnt++; 
} 
if (Ibadcnt) 

printf("All %d values in range\n", totalcnt); 
else 

printf("Out of range %d, total %d\n", badcnt, totalcnt); 
return inpres == EOF; /* did we get all the input? */ 

} 
/* 
* Print a nice histogram, first computing a scaling factor 
*/ 

print_histo(buckets, bktsize) 
int buckets[], /* buckets to place values in */ 

bktsize; /* range of values in bucket */ 
{ 

int bottom, /* first value in current bucket */ 
bkt, /* current bucket */ 
markcnt, /* number of marks written */ 
most, /* values in largest bucket */ 
values; /* number of values to write out */ 

float scale; /* scaling factor */ 
/* compute scaling factor */ 

for (bkt = most = 0; bkt < NUMBKTS; bkt++) 
if (most < buckets[bkt]) 

most = buckets[bkt]; 
scale = (most > MAXCOLS) ? (MAXCOLS / (float) most) : 1.0; 

/* print the histogram */ 

putchar('\n'); 
for (bkt=0, bottom=MINVAL; bkt < NUMBKTS; bottom += bktsize, 

bkt++) 
{ 

/* write range */ 
printf("%3d-%3d |", bottom, 

(bkt == NUMBKTS - 1) ? MAXVAL : bottom + bktsize - 1); 
/* compute number of MARKERS to write, making sure that 

at least 
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one is written if there are any values in the bucket 
*/ 

if (buckets[bkt] && !(values = buckets[bkt] * scale)) 
values = 1; 

/* writes MARKERS and count of values */ 
for (markcnt = 0; markcnt < MAXCOLS; markcnt++) 

putchar((markcnt < values) ? MARKER : ' ' ) ; 
if (buckets[bkt]) 

printf(" (%d)", buckets[bkt]); 
putchar('\n'); 

} 
} 

4.7.2 The direct Mathematica translation 
First we give the direct translation which attempts to be as close as possible in structure and 
spirit to the preceding C program. It is written as a function so that there is a reasonable way to 
use it. Also, the data is read from a file rather than from the keyboard as apparently is done in 
the C program. 

histo6ram[filename_String, 
{MINVAL_,MAXVAL_,NUMBKTS_}] : = 
Module[ 
{ MARKER = '■*M, 

buckets, 
bktsize = (MAXVAL - MINVAL)/ (NUMBKTS - 1) 

}, 
fillBkts[buckets_, bktsize_] := 
Module[{bkt, snum, value, badcnt = 0f totalcnt = 0}, 

For[ bkt=0, bkt<=NUMBKTS, 
buckets[bkt++]=0,Null]; 
snum = OpenRead[filename]; 
While[ 

((value = Read [snum, Number]; 
Length[value] == 0) && 
(value =!= EndOfFile)), 

If[ value >= MINVAL && value <= MAXVAL, 
buckets[ 

Floor[(value-MINVAL)/bktsize]]++, 
badcnt++]; 

totalcnt++]; 
CloseRead[filename]; 
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If[ i(badcnt > 0), 
Print ["All ", totalcnt," values in 

range\n"], 
Print["Out of range", badcnt, "total", 

totalcnt, "\n"]]; 
value === EndOfFile]; 

printHisto[buckets_, bktsize_] := 
Module[{bkt, markcnt, stars, bottom}, 
For[ bkt = 0; bottom = MINVAL, bkt < NUMBKTS, 

Print[PaddedForm[bottom, 3], 
II II 

— r 

If[bkt == NUMBKTS - 1, 
PaddedForm[MAXVAL, 3 ], 
PaddedForm[bottom+bktsize-l, 3]], 

II I II 

I r 
For[markcnt=0; stars={}, markcnt<40, 

markcnt++, 
If[markcnt < buckets[bkt+1], 

AppendTo[stars, MARKER], 
AppendTo[stars, " "]]]; 

If[buckets[bkt+1] > 0, 
AppendTo[stars, 
StringJoin[ 
II / II 
V r 

ToString[buckets[bkt+1]],")"]]]; 
StringJoin[stars] 
]; 

bottom += bktsize; bkt++] 
]; If[ 
fillBkts[buckets, bktsize], 
printHisto[buckets, bktsize], 
Print["Illegal data value— 

no histogram printedXn"] 
1 

1 
In order to use this program we construct a file, called numbers 1, consisting of 200 random 

integers between 1 and 100. 
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OutputForm[ 
TableForm[ 

Table[Random[Integer, {1, 100}], {200}], 
TableSpacing -> {0, 2}]] » numbers1 

histo6ram["numbersi", {0, 100, 11}] 
All 200 values in range 

*************** 
********************** 
**************************** 
********************* 
************* 
**************************** 
**************** 
***************** 
******************** 
*** 

0 -
10 -
20 -
30 -
40 -
50 -
60 -
70 -
80 -
90 -

100 -

9 1 19 | 
29 j 
39 j 
49 j 
59 j 
69 j 
79 j 
89 j 
99 j 

100 j 

(15) 
(22) 
(28) 
(21) 
(13) 
(28) 
(16) 
(17) 
(20) 
(3) 

This result, which comes from Print statements, is almost exactly the same as the output from 
the C program, which was our goal in this first translation. 

4.7.3 Comments on the direct Mathematica translation 
Now that the program is written in Mathematica rather than C, it is somewhat easier to follow 
the syntax. A number of things had to be changed in order to get a reasonable Mathematica 
program. In particular: 

i) HistoGram is a function of two arguments, one of which is a list with three entries, 
using up three of the local variables in the C program; namely, MINVAL, MAXVAL, 
and NUMBKTS. 

ii) MAXCOLS is omitted since the scaling factor computation is omitted, leaving only 
MARKER from the original local variables. 

iii) The way in which the C program passes values around does not exactly match 
Mathematical functional style. Thus, buckets and bktsize are included in the top level 
module so they have the same values everywhere. 

iv) Inside the top level Module, there are two other Modules as part of the definitions of 
the functions f i l l B k t s and p r i n t H i s t o . Normally, these would be defined as 
separate functions outside the definition of histoGram, but there is no harm in 
putting them where they are. 

v) In printHisto, PaddedForm is used several times to get the final Print statements 
lined up properly. 
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vi) The f i l l B k t s operation reads in its data from a file rather than asking the user to 
type in numbers each time the program is run. The file is created using » , which is 
the infix form of the command Put. We use the commands OpenRead, Read, and 
C l o s e Re ad to get the information from the file into the program. The Put 
construction created a file numbers 1 that we can examine as follows: 

examine = OpenRead["numbersi"] =» InputStream[numbers1, 9] 

Note that the name of the file must be a string. (The filename argument in the program is 
required to be a string.) The result of OpenRead is to open a stream communication with the 
file. We can then read from the stream using the command Read which takes the name of the 
stream and the kind of data to be read as arguments. Read maintains a pointer to the last value 
read and on each use it returns the next value. Thus, the following Table returns the first 10 
numbers in the file. 

Table[Read[examine, Number], {10}] 

{48, 90, 63, 27, 30, 32, 88, 48, 71, 4} 

Repeated, it gives the next 10 values. 

Table[Read[examine, Number], {10}] 
{54, 77, 30, 60, 60, 15, 36, 66, 97, 100} 

Finally, we close the stream using Close. It is always a good idea to close any open stream as 
soon as it is no longer needed. 

Close[examine] => numbers1 
A more elegant and symmetrical way to handle the construction of the file is to open a stream 
and write to it. The following Write construction is exactly opposite to the construction Read. 
Note that each Write statement writes one item, so we use a Table construction to write 
many items to the file. As with Read, we first open a stream to the file, write to it, and then 
close it. 

sfile = OpenWrite["file"]; 
Table[Write[sfile, Random[Integer, {0, 20}]], {40}]; 
Close[sfile]; 
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One can add numbers to the file as follows: 

afile = OpenAppend["file"]; 
Write[afile, 20]; Writefafile, 20]; 
Close[afile]; 

To see the contents of the file, use: 

i I f i l e 
We've omitted the output here since it is a long, single column of 42 numbers. To find out 
where this file is, use the following command which returns the name of the current working 
directory. The output, of course, is machine dependent. 

Directory!] => HardDisk:Mathematica 2.2 Enhanced 

4.7.4 A better Mathematica program 
First of all, we agree with the general idea that the program has two main parts: the first part 
puts the data in the appropriate buckets and the second part makes a picture of the filled 
buckets. This second part will be implemented in Chapter 10 as an example of graphics 
programming. Here, we concentrate on putting the data in buckets. We assume, as does the C 
program that the range of the data and the bucket size are given in advance (although it is easy 
to imagine a preprocessor that examines the data first and determines the actual range and an 
appropriate bucket size). Now, in Chapter 6, Section 2.3, we used the Count function to count 
how many times a given item occurs in a list. If we had the range divided into sublists of the 
size of each bucket, then we could just add up how many times each value in a given bucket 
occurs in the list of data. This is easy to arrange. Assume the range and bucket size are given in 
the form {xmin, xmax, xstep} so the values are between xmin and xmax and the bucket 
size is xstep. Then defining 

(̂ buckets = Partition[Range[xmin, xmax], xstep]*) 
would create the buckets as a list of lists. E.g., 

buckets = Partition[Range[0, 99], 10] 
{ { 0 , 

{ 1 0 , 
{ 2 0 , 
{ 3 0 , 
{ 4 0 , 
{ 5 0 , 
{ 6 0 , 
{ 7 0 , 
{ 8 0 , 
{ 9 0 , 

1 , 2 
1 1 , 
2 1 , 
3 1 , 
4 1 , 
5 1 , 
6 1 , 
7 1 , 
8 1 , 
9 1 , 

, 3 , 
1 2 , 
2 2 , 
3 2 , 
4 2 , 
5 2 , 
6 2 , 
7 2 , 
8 2 , 
9 2 , 

4 , : 
1 3 , 
2 3 , 
3 3 , 
4 3 , 
5 3 , 
6 3 , 
7 3 , 
8 3 , 
9 3 , 

5 , 6 
1 4 , 
2 4 , 
3 4 , 
4 4 , 
5 4 , 
6 4 , 
7 4 , 
8 4 , 
9 4 , 

, 7 , 
1 5 , 
2 5 , 
3 5 , 
4 5 , 
5 5 , 
6 5 , 
7 5 , 
8 5 , 
9 5 , 

8 , 
1 6 , 
2 6 , 
3 6 , 
4 6 , 
5 6 , 
6 6 , 
7 6 , 
8 6 , 
9 6 , 

9 } , 
1 7 , 
2 7 , 
3 7 , 
4 7 , 
5 7 , 
6 7 , 
7 7 , 
8 7 , 
9 7 , 

1 8 , 
2 8 , 
3 8 , 
4 8 , 
5 8 , 
6 8 , 
7 8 , 
8 8 , 
9 8 , 

19}, 
29}, 
39}, 
49}, 
59}, 
69}, 
79}, 
89}, 
99}} 
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gives us 10 non-overlapping sublists. In the C program, buckets is constructed one item at a 
time in a For loop, whereas here, obeying the fundamental dictum of functional 
programming, it is made by partitioning the existing list Range [ 0 , 99 ] . 

To test this, create a list of random integers between 1 and 100. 

data = Table[Random[Integer, {0, 99}], {500}]; 
Then 

Map[Map[Count[data, #]&, #]&, buckets] 
{{0, 7, 5, 5, 5, 2, 3, 6, 4, 4}, 
{6, 3, 10, 9, 6, 4, 3, 3, 3, 3}, 
{6, 5, 8, 7, 3, 3, 6, 5, 9, 8}, 
{4, 2, 4, 5, 7, 3, 6, 4, 7, 2}, 
{12, 3, 5, 7, 4, 6, 4, 7, 5, 2}, 
{3, 4, 7, 3, 3, 4, 5, 5, 4, 6}, 
{6, 6, 6, 2, 7, 8, 6, 6, 8, 4}, 
{6, 2, 4, 1, 3, 7, 7, 6, 2, 3}, 
{6, 4, 4, 6, 1, 3, 2, 5, 5, 5}, 
{9, 5, 6, 5, 5, 6, 4, 8, 5, 9}} 

tells how many times each bucket item occurs in the data, and 

Map[Plus@@Map[Count[data, #]&, #]&, buckets] 

{41, 50, 60, 44, 55, 44, 59, 41, 41, 62} 

adds up the items in each bucket. As with the frequencies command, these values should be 
combined with a description of the buckets. We choose to do this by giving the minimum and 
maximum values in each bucket; i.e., 

Map[{Min[#], Max[#]]&, buckets] 

{{0, 9}, {10, 19}, {20, 29}, {30, 39}, {40, 49}, {50, 59}, 
{60, 69}, {70, 79}, {80, 89}, {90, 99}} 

Finally, put this together with the values in each bucket. 
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Map[ {{Min[#], Max[#]}, Plus@@Map[Count[data, #]&, #]}&, 
buckets] 

{{{0, 9}, 41}, {{10, 19}, 50}, {{20, 29}, 60}, {{30, 39}, 44}, 
{{40, 49}, 55}, {{50, 59}, 44}, {{60, 69}, 59}, 
{{70, 79}, 41}, {{80, 89}, 41}, {{90, 99}, 62}} 

Thus, the final program to calculate the values is a simple one-liner. 

histogram[data_, {xmin_, xmax_, xstep_}] : = 
Map[ { {Min[#], Max[#]}, 

Plus@@Map[Count[data, #]&, #] }&, 
Partition[Range[xmin, xmax], xstep] ] 

This corresponds to the fill_bkts part of the C program. Try this with data. 

histo = histogram[data, {0, 99, 10}] 

{{{0, 9}, 41}, {{10, 19}, 50}, {{20, 29}, 60}, {{30, 39}, 44}, 
{{40, 49}, 55}, {{50, 59}, 44}, {{60, 69}, 59}, 
{{70, 79}, 41}, {{80, 89}, 41}, {{90, 99}, 62}} 

A different version of histogram can be based on the BinCounts function in the package 
S t a t i s t i c s DatciManipulation^. 

histograml[data_, {xmin_, xmax_, xstep_}] : = 
Module[ 

{ buckets = 
Partition[Range[xmin, xmax], xstep], 

nbuckets = Ceiling[(xmax - xmin)/xstep], 
newdata = Ceiling[(data - xmin)/xstep], i}, 

Transpose[{ 
Map[{Min[#], Max[#]}&, buckets], 
Table[Count[newdata, i], {i, nbuckets}]}]] 

As an exercise, step through this program to see how it works. Then look up BinCounts. 
In Chapter 10, Section 5.1, we will show how to use Mathematica graphics primitives to 

construct a graphics object illustrating the output of h is togram in order to see what the 
resulting output looks like. This will correspond to the print_histo part of the C program. 
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4.7.5 Comparison of the two Mathematica programs 
The main difference between the C program, either in itself or as translated into Mathematica, 
and the better Mathematica programs is the level on which data is treated. The C program only 
deals with individual items of data, while the Mathematica program deals directly with the data 
as a whole. 

i) For instance, the array of empty buckets is created by a For loop, one bucket at a time, 
whereas the better Mathematica program creates the buckets by partitioning the 
already existing list given by the Range command. Next, in the filljbkts part, the C 
program looks at each item of data in turn and increments the appropriate bucket. The 
Mathematica program, on the other hand, uses the technique of the f r e q u e n c i e s 
function of Chapter 6, Section 2 to run through the list of possible values in each 
bucket and add up the number of times that they occur in the data list, all by mapping 
appropriate constructions down lists. 

ii) Similarly, in the print_histo part, for each bucket the C program calculates the lower 
and upper bounds of the bucket, prints them followed by a bar I, and then, one at a 
time prints a "*" for each item in the bucket, followed by individually calculated spaces 
" " to fill up each row. In the Mathematica graphics programs constructed in Chapter 10, 
a single construction will be applied to each pair in the output of histogram to build 
a graphics object which can then be displayed in various forms. 

iii) Good Mathematica style consists in dealing with mathematical objects as wholes, in 
accordance with the fundamental dictum of functional programming, never breaking 
them up into their constituent parts for later reconstruction in another form. It 
sometimes takes considerable thought to see how data in one form can be converted 
directly into data of another form, but that is one reason why Mathematica 
programming is interesting. 

5 Practice 

1. Trace[y = 6; Plus[(y = y + 1); 5, y]]//TableForm 
2. Trace[y = 6; Plus[y, (y = y + 1); 5]]//TableForm 
3. Module! {t = 6, u = t}, uA2] 
4. Trace [Module [{t = 6, u = t}, υΛ2]] 
5. Table[Block[{r}, r], {10}] 
6. Trace[Block[{t}, t = 3]] 
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7. ToCycle[perm_] : = 
Module[ 
{a = {}, len = Length[perm], t, n, 1, i}, 
t = Table[True, {len}]; 
For[i =1, i <= len, i++, 

If[t[[i]], 
For[n = perm[[i]]; 1 = {}, 

t[[n]], n = perm[[n]], 
t[[n]] = False; AppendTo[l, n]]; 

AppendTo[a, 1] 
] 1; 

Return[a] ] 
(See Chapter 12 for a functional version of this program, or write your own.) 

8. ToCycle[ { 3 , 4 , 15 , 1 3 , 2 , 1 1 , 7 , 6 , 
14 , 9 , 1 2 , 1 , 16 , 5 , 8 , 10} ] 

6 Exercises 

1. Many of the list operations in Mathematica are based on commands from the language 
APL (A Programming Language). One that is not implemented is the function d e a l 
which is represented in APL by ?. Thus, L?R selects L integers at random from the 
population Range [ R] without replacement. 

i) Write a more general Mathematica function d e a l so that d e a l [ l i s t , n] selects n 
entries at random from l i s t without replacement. 

ii) A deck of cards consists of 52 cards divided into 4 suits called clubs, diamonds, 
hearts, and spades. Each suit consists of the cards 2 ,3 ,4 ,5 ,6 , 7,8,9,10, J, Q, K, 1. A 
bridge deal consists in giving 13 cards at random to each of 4 players. Define a 
Mathematica deck and a function b r i d g e D e a l [deck] that generates and displays 
such a bridge deal. 

2. Part of the problem in Exercise 3 of Chapter 7 was to write a predicate a lgexpQ in 
pattern matching style. Write the same function in two different forms using: i) Which, 
ii) Switch. 

3. Define a function countTheCharacters [ t e x t _ ] that takes a string t e x t and turns 
it into a list of characters. It then returns a list whose entries are pairs with first entry a 
character in the list and second entry the relative frequency of the occurrence of the 
character in t e x t , expressed as a percentage of the total number of characters in t e x t . 
You may want to use the definition of f r e q u e n c y in Chapter 6, Section 2.3. Try to put 
the list in order of decreasing frequency. 



278 Part II · Programming Language 

4. Recreate the Pascal program "Stolen Gold" 
i) using a For loop in Mathematica, 

ii) using a While loop in Mathematica. 

iii) Change the one-liner so it prints out the same results as the Pascal program. It 
should still be a strict one-liner. 

5. Consider the two infinite sums with possible values 
~ a Ç ^ . x ~ a(n) _ IQ 

} n = l 2n "99 Z) n = l 10n " 99 

Here, a(n) is the number of odd digits in odd positions in the decimal expression for n. 
Thus, a(901) = 2, a(1234) = 0, a(4321) = 2, etc. Positions are counted from the right. At 
least one of the values is wrong and can be detected by a computation taking a 
reasonable length of time (i.e., < 10 seconds). Which one is it? [Borwein] 

6. A perfect shuffle of a deck of 2n cards consists in dividing the deck in the middle into 
two decks of n cards each and then exactly interleaving the two decks. There are two 
ways to do this: either the first card of the first deck remains the first card, in which case 
the shuffle is called an out shuffle, or it becomes the second card, in which case the 
shuffle is called an in shuffle. Both shuffles determine a permutation of 2n cards. The 
two shuffles generate a subgroup of the group of all permutations of 2n cards by 
repeating and combining them. For instance, if n = 3, then there are six cards. Label 
them {1,2,3,4,5,6}. An out shuffle produces the permutation {1,4,2,5,3,6} while an in 
shuffle produces the permutation {4,1,5,2, 6,3}. 
i) Write functions outShuf f l e and inShuf f l e taking as argument a list of even 

length and permuting it by an out shuffle and an in shuffle. 

ii) Since the group of all permutation is a finite group, both outShuf f i e and 
i n S h u f f l e have finite orders; i.e., there are integers outOrder[n] and 
inOrder [n] for each n such that if outShuf f i e is repeated outOrder [n] times 
and inShuf f l e is repeated inOrder[n] times, then the result is the identity 
permutation. Determine the orders of outShuf f i e and inShuffle for n between 
1 and 50; i.e., for decks consisting of 2 to 100 cards, by finding experimentally how 
many times they have to be repeated to put the deck back into its original order. 
Note: for n = 26, i.e., for an ordinary deck of 52 cards, outOrder [26] = 8 and 
inOrder [26] = 52. Plot these values as a function of 2n. 

iii) It is a theorem that the order of outShuf f i e for a deck of 2n cards is the smallest k 
such that 2k = 1 mod 2n - 1 , and the order of inShuffle is the same as the order of 
outShuf f i e for a deck consisting of 2 more cards. Write functions calculating 
these numbers and compare these numbers with the experimental results for n 
between 1 and 50. 
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iv) It is known that the group generated by outShuf f l e and inShuf f l e is 
isomorphic to the group of all symmetries of the n-dimensional generalization of 
the octahedron. (See [1] and [2] below.) For n = 3, it is the group of all symmetries of 
the usual octahedron. Using the values of the orders of outShuf f l e [ 3 ] and 
inShuf f l e [ 3 ] , show that there are symmetries of the required orders. Is there a 
nice graphical illustration of this result? 

v) Generalize to the situation where a deck of 3 n cards is divided into three equal 
parts which can then be shuffled perfectly in six different ways. 

References: 
[1] Diaconis, P, Graham, R. L., and Kantor, W. M., The mathematics of perfect shuffles, 

Adv. Appi. Math., 4 (1983), 175-196. 

[2] Medvedoff, S., and Morrison, K., Groups of perfect shuffles, Mathematics Magazine, 60 
(1987), 3-14. 

7. It is a non-trivial result in number theory that every positive integer can be written as 
the sum of four squares. (Zero is allowed as one of the summands.) 
i) Write a program to find one such representation for each positive integer. Use it to 

find all integers between 1 and 1000 that are not sums of three squares. 

ii) Write a program that finds all such representations for each positive integer. 

iii) Not all integers can be written as the sum of four distinct non-zero integers. Find all 
integers between 1 and 1000 that don't have such a representation. (Warning: this 
takes 40 minutes on a SPARC workstation.) 

8. There are various systematic methods for generating magic squares. Look up some of 
these methods and implement them in Mathematica. 

279 



1 Introduction 
In the preceding three chapters we have discussed three distinct modes of computer 
programming-functional programming, rewrite rule programming, and imperative 
programming. All three have their roles and most Mathematica programmers use whatever 
style seems most appropriate to the thought being expressed, depending on the needs of the 
moment. The Mathematica Book [Wolfram] suggests that rule based programming is the most 
appropriate. Others insist that only functional programming is acceptable, and presumably 
unregenerate C programers will continue to write thinly disguised imperative programs. In 
discussing each style we have concentrated on producing operations that realize some definite 
mathematical or scientific goal. 

But how do you proceed if you have more than one goal and if you want to produce 
software for others to use? Most large programs do many things and the organization of the 
interactions between the pieces of a program can become a major task. There is a specific 
Mathematica facility-that of Packages, to be addressed in the next chapter-that deals with one 
aspect of this problem. But, in recent years a paradigm has emerged which has become 
increasingly popular in software engineering projects whose purpose is to create large 
programs-that of object-oriented programming (OOP). For instance, Mathematica is written in 
an object-oriented version of C. Also, essentially all graphical user interfaces are written in 
object-oriented languages. 

It is possible to write programs in a pseudo object-oriented style in almost any higher order 
programming language, but certain languages like C++ and Smalltalk are explicitly intended 
to be used only in this way. Although Mathematica does not provide any built-in support for 
object-oriented methods, a recent package by Roman Maeder in [Maeder 3] called Classes .m, 
implements a full-blown object-oriented extension to it. This package does not make it possible 
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to do any calculations that couldn't be done before; it just makes it possible to completely 
rearrange the way in which they are carried out. It is to be hoped that there will soon be a 
hard-wired version in the underlying Mathematica C code. 

We have been subtly (and perhaps not so subtly) promoting the view that Mathematica is at 
heart a functional programming language. Such languages work by building up a "myriad" of 
smaller functions each accomplishing one piece of a task, and then joining them together into 
one top level function which is applied to some data producing a result. Mathematica adds to 
this the possibility of applying a given function to data in different forms with different 
outputs. It does this via the mechanism of pattern matching using heads of expressions or 
predicates to restrict patterns. This facility is part of what is called polymorphism, which means 
exactly that the same operation works with data of different forms, usually resulting in similar 
outputs. 

In the general situation, there will be many kinds of data and many operations. Some of the 
data will be acted on by more than one operation and some of the operations will act on more 
than one kind of data. It is this unexpected symmetry (or perhaps duality is a better term) 
between operations and data that led to the invention of object-oriented programming. 
Functional programming (or function-oriented programming) concentrates on the functions 
and their organization into hierarchies while object-oriented programming concentrates on the 
data and its organization into hierarchies. 

There are enough subtleties involved in object-oriented programming to fill many books. 
Two that are very useful are [Budd] and [Meyer]. In this chapter we shall just explain the 
evolution and use of Maeder's implementation by means of some very simple examples. 
Section 2 is intended as motivation for the material in Section 3. In it we follow Maeder's 
discussion in [Maeder 2] of how to shift attention from the functions to the data. In Chapter 13, 
graph theory will be developed in a strictly object-oriented framework, in the hopes that a 
single comprehensive and comprehensible example is worth a hundred pages of philosophy. 

2 The Duality Between Functions and Data 
The transition from functional programming to object-oriented programming is mediated by 
the notion of a dispatch table. For a thorough discussion in the context of Lisp, see [Abelson]. 
Here we follow the treatment of [Maeder 2]. A standard example is given by points in the 
plane. Such points can be represented by Cartesian or polar coordinates and can be created in 
either form. Given a point in either representation, there are a number of things we would like 
to be able to calculate about it; i.e., its x-coordinate, its y-coordinate, its magnitude, and its 
polar angle. Furthermore, we would like to be able to make these calculations without 
worrying about which coordinate system is used to represent the point. Two somewhat 
different implementations of this idea will be given. 
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2.1 The First Implementation of Points in the PUne 

As was discussed in Chapter 5, one meaning for the head of an expression is the type of the 
expression; e.g. the head of 2 is Integer and the head of {a, bf c} is List . In particular, 
we will use the heads c a r t e s i a n and po lar to identify Cartesian and polar coordinates 
respectively of points in the plane, thinking of these heads as representing two different types 
of points. Two functions are defined to create points of the given types just by wrapping the 
heads car tes ian and polar around the values. 

makeCartesian[{x_, y_}] 
makePolar[{r , theta }] 

:= cartesian[x, y]; 
:= polar[r, theta]; 

The four things we want to calculate, the x-coordinate, the y-coordinate, the magnitude, and 
the polar angle, now require two functions each, one for Cartesian points and one for polar 
points. 

xCoordCartesian[cartesian[x_, y_]] 
yCoordCartesian[cartesian[x_, y_] ] 
magnitudeCartesian[cartesian[x_, y_]] 
polarAngleCartesian[cartesian[x_, y_]] 
xCoordPolar[polar[r_, theta_]] 
yCoordPolar[polar[r_, theta_]] 
magnitudePolar[polar[r_, theta_]] 
polarAnglePolar[polar[r , theta ]] 

= x; 
= y; 

Sqrt[x*2 + y' 
ArcTan[y/x]; 
r Cos[theta]; 
r Sin[theta]; 
r; 
theta; 

2]; 

Consider the following table in which the rows represent the operations (given generic 
names) and the columns represent the types. The entries in the table are the actual functions 
that calculate the values for each type. Such a table is called a dispatch table. It dispatches the 
operations depending on the types of the arguments. (Cf. the Mathematica operation 
Dispatch.) 

xCoord 

yCoord 

magnitude 

polarAngle 

cartesian 

xCoordCartesian 

yCoordCartesian 

magnitudeCartesian 

polarAngleCartesian 

polar 

xCoordPolar 

yCoordPolar 

magnitudePolar 

polarAnglePolar 
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We can construct functions that implement this table by using Switch to determine which 
concrete operation should be applied to arguments of each type. The four rows require four 
functions, each of which has to determine what to do with each type of argument. This is done 
by pattern matching using the head of the argument. 

xCoord[point_] := 
Switch[ Head[point], 

cartesian, xCoordCartesian[point], 
polar, xCoordPolar[point] ]; 

yCoord[point_] := 
Switch[ Head[point], 

cartesian, yCoordCartesian[point], 
polar, yCoordPolar[point] ]; 

magnitude[point_] := 
Switch[ Head[point], 

cartesian, magnitudeCartesian[point], 
polar, magnitudePolar[point] ]; 

polarAngle[point_] s = 
Switch[ Head[point], 

cartesian, polarAngleCartesian[point], 
polar, polarAnglePolar[point] ]; 

In each operation, the head of the argument is matched to the type to determine which 
operation should be applied. 

Now, using these operations we can, for instance, add points irrespective of how they are 
represented. 

add[pointl_, point2_] := 
makeCartesian[ { xCoordfpoint1] + xCoord[point2], 

yCoord[point1] + yCoord[point2]}]; 

As an example construct a Cartesian and a polar point 

point1 = makeCartesian[{2, 3 } ] ; 
p o i n t 2 = πΐ3)ςβΡοΐ3Γ[{2Λ(3/2) , P i / 4 } ] ; 

and then add them together. 

add[point1, point2] => cartesiani4, 5] 

In this organization, the information about each of the four basic functions is stored with the 
function itself as usual. For instance: 
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PxCoord 

xCoord[point_] := 
Switch[Head[point], cartesian, xCoordCartesian[point], 

polar, xCoordPolar[point]] 
As we have seen in the answer to Exercise 8 of Chapter 8, such Switch statements are not 

the most efficient way to implement this kind of polymorphism. Parallel rewrite rules are 
better both stylistically and from the standpoint of efficiency. For instance, xCoord could be 
given by two rules: 

xCoord[point__cartesian] := xCoordCartesian[point]; 
xCoord[point_polar] := xCoordPolar[point] 

However, our ultimate goal is not to implement these operations but to explain the form of the 
argument to the operation Class described below, and that is best done using Switch. 

2.2 The Second Implementation of Points in the Plane 

A somewhat more intrinsic way to organize the same information is to group together the 
calculation of the x and y coordinates as a list and call it the Cartesian coordinates of a point. In 
the same way, the magnitude and polar angle are called the polar coordinates of a point. The 
calculations above can be grouped differently so that they represent translations between the 
two coordinate systems. This way, we only need two functions, one to turn polar points into 
Cartesian points, and the other to provide the opposite transformation. We keep the definitions 
of makeCartesian and makePolar from above. Here are the two required functions: 

cartesianFromPolar[point_polar] := 
makeCartesian[ { point[[l]] Cos[point[[2]]], 

point[[l]] Sin[point[[2]] ] }]; 
polarFromCartesian[point_cartesian] := 

makePolar[ { Sqrt[point[[1]]Λ2 + point[[2]]A2], 
ArcTan[point[[2]] /point[[l]] ] }]; 

For instance: 

rr = makeCartesian[{3, 4}] => cartesiani;3, 4] 
pp = polarFromCartesian[rr] => polar[5, ArcTan[4/3]] 

Now what we want to do is to extract the Cartesian and polar coordinates of a point 
independently of its type by functions to be called cartesianCoords and polarCoords. 
The corresponding dispatch table is somewhat simpler, and the entries look much simpler 
than our previous table. In particular, the diagonal entries just change the head of the point to 
List. 
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cartesian 
Coords 

polarCoords 

cartesian 

List@@point 

List@@ 
polarFromCartesian 

polar 

List@@ 
cartesianFromPolar 

List@@point 

The Mathematica implementation of the rows of this table is similar to the first implementation, 
again using Switch. 

cartesianCoords[point_] := 
Switch[ Head[point], 

cartesian, List@@point, 
polar, List@@cartesianFromPolar[point]]; 

polarCoords[pointy] := 
Switch[ Head[point], 

cartesian, List@@polarFromCartesian[point], 
polar, List@@point ]; 

The points rr and pp from above are really "the same" even though rr is a Cartesian point 
and pp is a polar point, in that they have the same Cartesian and polar coordinates. 

{cartes ianCoords[rr] , cartesianCoords[pp]} 

{{3 , 4 } , {3 , 4}} 

{polarCoords[rr], polarCoords[pp]} 
{{5, ArcTan[4/3]}, {5, ArcTan[3/4]}} 

Once we have these operations, we can implement others in terms of them; e.g., points can 
be translated by a vector and rotated about the origin. 

translate[point_, vector_] := 
makeCartesian[cartesianCoords[point] + vector] 

rotate[point_, angle_] := 
makePolar[{0, angle} + polarCoords[point]] 

For instance: 

translate[pp, {5, 5}] 
rotate[pp, Pi] 
N[%] 

cartesian!8, 9] 
polar[5, Pi + ArcTan[4/3]] 
polar[5., 4.06889] 
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2.3 The Transition to OOP 

Instead of having operations that work with different kinds of data, the object-oriented 
paradigm designs data objects that respond to different kinds of messages. Furthermore, 
instead of applying functions to arguments, messages are sent to objects. Thus 

messages = fwçtipns 
objects data 

Instead of functions knowing how to treat different kinds of arguments, the data itself knows 
how to process the messages. In this view, the data-objects become the active participants 
whereas the function-messages are little more than passive names. In terms of the dispatch 
table, the columns play the main role rather than the rows. 

At first it is hard to imagine how this can be achieved, but [Maeder 2] shows in a very 
simple way how it is done. In the following examples, in order to avoid confusion with the 
preceding operations, be sure to clear the previous definitions. 

Clear[ makeCartesian, makePolar, 
cartesianCoords, polarCoords ] 

Here is the new version of makeCartesian that creates an active object. 

makeCartesian[{x_, y_}] := 
Module[{cartesian}, 
With[ 
{dispatch = 
Function[{message}, 
Switch[ message, 

cartesianCoords, {x, y}, 
polarCoords, 
{Sqrt[xA2 + yA2], ArcTan[y/x]}]]}, 

cartesian/: f_Symbol[cartesian]:= dispatch[f]/; 
MemberQ[{cartesianCoords, polarCoords}, f]; 

cartesian]] 

This operation creates Cartesian point objects (replacing the notion of a cartesian point from 
above) from lists of two numbers. The intention is that the properties of a Cartesian point 
object will be the same as those of a Cartesian point. In particular, the data item 
cartes ian [ 2 , 3 ] is replaced by the object that results from evaluating the operation raake-
Cartes ian[ {2, 3}] here, the function c a r t e s i a n C o o r d s is replaced by the message 
cartesianCoords (which is just a name), and Uve function polarCoords is replaced by the 
message polarCoords. 
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There are two ingredients in this new definition of makeCartesian, Consider first, the 
With expression: 

With[{dispatch = Function[{message}, functionBody]}, 
withBody] 

In the With statement, a new variable dispatch is set equal to a pure function of yet another 
new variable message. The body, functionBody, of this pure function is like the dispatch 
table we had before, except that this time it is dispatching the function names instead of the 
data types. The function d ispatch gets used in the body, withBody, of the With statement 
which is essentially 

f_Symbol[cartesian]:= d i spatch[ f ] 

This tells the c a r t e s i a n object how to respond to a message sent in the form 
f [cartes ian] ; namely use the dispatch table to match the variable message to f and output 
the appropriate result. This of course only works if f is either cartesianCoords or 
polarCoords. A pair like (cartesianCoords, {x, y}) is called a method. A method 
consists of two parts, the methodName, or message (e.g., c a r t e s i a n C o o r d s ) and the 
methodBody, or response (e.g., {x, y }). 

The information about how to respond to messages is stored with the local variable 
cartes ian because the form 

c a r t e s i a n / : f_Symbol[cartesian] := d i spatch[ f ] 

is used. The clause following it, 

/; MemberQ[{cartesianCoords, polarCoords}, f] 

restricts f to be one of the permissible messages. The final cartes ian causes the output of the 
Module to be the local variable itself. For instance: 

pt = makeCartesian[{2, 3}] => cartesian$6 

Notice that c a r t e s i a n is concatenated with $n since it is a local variable. Now we can try 
sending the messages polarCoords and cartesianCoords, as well as an illegal message 
f f, to pt. 

{polarCoords[pt] , cartes ianCoords[pt] , f f [ p t ] } 

{{Sqr t [13 ] , ArcTan[3 /2]} , {2, 3 } , f f [ c a r t e s i a n $ 6 ] } 

Thus, pt knows what its Cartesian and polar coordinates are, but it knows nothing about any 
other messages, such as f f. The information about this object is stored with the name 
cartes ian$6 . 



Nine · Object-Oriented Programming 289 

?cartesian$6 
(f$_Symbol)[cartesian$6] A:= 
Function!{message$}, 

Switch[message$, cartesianCoords, {2, 3}, 
polarCoords, {Sqrt[2A2 + 3Λ2], ArcTan[3/2]}]][f$] /; 

MemberQt{cartesianCoords, polarCoords}, f$] 
What is stored with the data object cartes ian$6 is the information about how to respond to 
the messages cartesianCoords and polarCoords in terms of the parameter values, 2 and 
3, used in defining it. Thus, we see here, in expanded form, that sending the message f & to 
c a r t e s i a n $ 6 by evaluating the command f $ [ c a r t e s i a n $ 6 ] applies the pure function 
Function [{method}, functionBody] to f $. When f $ is substituted for message$ in 
f unctionBody the result is the Switch statement: 

Switch[ f$ , 
cartesianCoords, {2 , 3 } , 
polarCoords, {Sqrt[2*2 + 3 A 2 ] , ArcTan[3/2]}] 

provided, of course, that f $ is either cartesianCoords or polarCoords. Thus, f $ has to 
match one of the two patterns in the second and fourth arguments of the Switch statement, 
and hence, either the third or the fifth argument will be the output. 

Polar objects are constructed analogously. 

makePolar[{r_, theta_}] := 
Module[{polar}, 
With[ 
{dispatch = 
Function[{message}, 
Switch[ message, 

cartesianCoords, 
{r Cos[theta], r Sin[theta]}, 

polarCoords, {r, theta}]]}, 
polar/: f_Symbol[polar]:= dispatch[f]/; 

MemberQ[{cartesianCoords, polarCoords}, f]; 
polar]]; 

For instance: 

pt2 = makePolar[{2, Pi/3}] => polar$9 
{cartesianCoords[pt2], polarCoords[pt2]} 
{{1, Sqrt[3]}, {2, Pi/3}} 
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Again, if we were just interested in these operations for themselves, rewrite rules would 
provide a much neater implementation. The columns of the dispatch table can equally well be 
given by such rules. For instance, makeCartesian could be written in the form: 

makeCartesianRule[{x_, y_}] := 
Module[{cartesian}, 
cartesian/: cartesianCoords[cartesian] = {x, y}; 
cartesian/: polarCoords[cartesian] = 

{Sqrt[x*2 + yA2], ArcTan[y/x]}; 
cartesian]; 

This works just as well as the more complex version creating a pure function. Thus, 

ptr = makeCartesianRule[{3, 4}] => cartesian$l 
{cartesianCoords[ptr], polarCoords[ptr]} 
{{3, 4}, {5, ArcTan[4/3]}} 

However, this is not the way that classes actually work. The operations makeCartesian and 
makePolar actually describe the patterns for Cartesian and polar objects. In object-oriented 
languages, such patterns are called classes. Thus, in summary, a class will be a pattern for a 
kind of object and an object will consist of some data bundled together with the information 
about how to respond to certain messages. Messages here are just names. Message passing (or 
calling methods) looks like function application, but it actually consists of applying the object 
itself in the guise of the pure function dispatch to the message. 

So far we have achieved active data objects which contain within themselves all of the 
information needed to respond to messages. Note also that in principle there is no way to 
access the data in an object except through the messages that it recognizes. (In fact, of course, 
nothing is truly hidden in Mathematica.) Furthermore, these data objects are created as 
instances of general operations that play the role of classes. 

However, that is not the whole story about object-oriented programming. Suppose, for 
instance, that we want to include t rans la t e as a message for Cartesian points. There are two 
problems. First of all, t r a n s l a t e takes a vector as a parameter, and second, it would have to 
be added to both makeCartesian and makePolar in order to work correctly for all points. 
We discuss these in turn. 

2.4 Messages with Parameters 
Translate takes a parameter-the vector of translation-whereas our other messages up to 
now don't require any additional input. The form of the methods and the way that messages 
are applied has to be changed to account for such possible parameters. Here is the appropriate 
modification of the makeCartesian operation. 
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makeCartesian[{x_, y_}] := 
Module[{cartesian}, 
With[ 
{dispatch = 
Function[{message}, 
Switch[ message, 

cartesianCoords, {x, y}&, 
polarCoords, 
{Sqrt[x*2 + yA2], ArcTan[y/x]}&, 

translate, 
makeCartesian[# + {x, y}]& ] ]}, 

cartesian/: 
f_Symbol[cartesian, args ] : = 

dispatch[f][args]/; 
MemberQ[ 

{cartesianCoords, polarCoords, translate}, 
f]; 

cartesian]] 
The first change is that the {x, y} response to the message car tes ianCoords in the 
previous version is replaced by the (constant) pure function {x, y}&, and similarly for the 
response to polarCoords. The response to the message t r a n s l a t e is the pure function of 
one variable 

makeCartesian[# + {x, y}]&. 
In fact, all of the possible outputs of the Switch expression have to be pure functions 
themselves. Furthermore, sending a message has to allow for the possibility of parameters and 
treat them correctly. This is accomplished by the new format for responding to messages. 

f_Symbol[cartesian, args ]:= dispatch[f][args] 
This new format means that the response to a message must always be a pure function because 
it is going to be applied to a (possibly empty) sequence of arguments. This new form can be 
used just like the previous one, except that now a point knows how to translate itself by a 
given vector. 

pt = makeCartesian[{3, 4}] => cartesian$10 
translatent, {5, 5}] => cartesian$ll 

The result of a t r a n s l a t e message is a new Cartesian point. To see what it is, we can ask for 
its Cartesian coordinates. 

cartesianCoords[%] => {8, 9} 
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Yet again, messages with parameters could easily be added to a rewrite rule 
implementation. E.g., redefine makeCartesianRule as follows: 

makeCartesianRule[{x__, y_}] : = 
Module[{cartesian}, 
cartesian/: cartesianCoords[cartesian] = {x, y}; 
cartesian/: polarCoords[cartesian] = 

{Sqrt[xA2 + yA2], ArcTan[y/x]}; 
cartesian/: translate[cartesian, vector_J := 

makeCartesianRule[vector + {x, y}]; 
cartesian] 

For instance: 

ptr = makeCartesianRulef{3, 4}] => ca r t e s i an$12 
cartes ianCoords[ trans late[ptr , {5, 5 } ] ] => {8, 9} 

However, doing things this way wouldn't explain why the second component of a method, as 
discussed below, has to be a pure function. 

2.5 Inheritance 
If we want t r a n s l a t e to work for polar as well, then similar changes have to be made to 
the function makePolar. In this tiny example that's harmless, but if we had many more kinds 
of objects to deal with, it might be very difficult to insure that all of them were correctly 
updated when some new method is added. The solution to this problem is to organize objects 
into a hierarchy based on inheritance. To explain this notion, suppose that in addition to 
Cartesian points, we also want to have colored Cartesian points. Besides having a position, such 
points would also have a color; e.g., red, green, or blue. It would be very convenient if colored 
points could inherit all of their positional information from points and just add the color 
information themselves. We will say that c a r t e s i a n is the superclass of 
coloredCartesian and, of course, that coloredCartesian is a subclass of cartesian. A 
class (or kind of object) has only one superclass, but it may have many subclasses. (Some 
languages allow many superclasses as well - a feature called multiple inheritance) Thus, we 
would like to be able to write something like: 

makeColoredCartesian[{x_, y_}, colorname_] := 
"the superclass is cartesian and the 
dispatch table has an additional 
pair <color, colorname&>. " 

The Classes package of R. Maeder [Maeder 2] will provide a way to do this. What has to 
happen is that when the message cartesianCoords is sent to a colored point, cpt, then cpt 
has to recognize that it doesn't know how to deal with the message and so sends it on to its 
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superclass to see if the superclass can respond to it. Thus, the message cartesianCoords 
sent to cpt will just be passed on to the class for Cartesian points which will return the answer 
{X/ y }/ whereas the message co lor sent to cpt will be answered by cpt itself. 

There is an important proviso in inheritance. If the message t r a n s l a t e is sent to cpt, then 
the result should again be a colored point, not just a point. That can't happen given the way 
our code is organized now, since the response to t r a n s l a t e in the makeCartesian 
definition is of the form makeCartesian [ ] which produces a new Cartesian point, and 
there is no way to change that. Solving this problem requires a whole new mechanism for 
creating objects of a given kind. It is a generic method for creating objects, called new, and the 
appropriate form to make a Cartesian point will be 

new[cartesian, {x, y}]. 
This still won't get us a colored point as the result of a t r a n s l a t e message. One last 
ingredient is needed: a special variable, s e l f , that refers to the current object. Then the 
implementation of makeCartesian can say as the response to a t rans la t e message: 

new[Class[self] , ] 

meaning "make a new object just like yourself but with new parameters." 

3 Object-Oriented Programming in Mathematica 

3.1 Using Class 
The key concepts in OOP are: 

object, class, method, message, inheritance, new, s e l f , super · 

These are all implemented in Maeder's package C l a s s e s . m from [Maeder 2]. We won't 
attempt to explain how this package works. Suffice it to say that it is an ingenious combination 
of all of the facilities that are available in Mathematica, based on the ideas discussed above. The 
package is included in the diskette supplied with this book and will repay careful study. After 
some preliminary examples showing how to use inheritance, we will use it to set up a small 
hierarchy of classes involving points. First, load the package. 

Needs["Classes'"] 

As far as the user is concerned, the main thing contained in this package is the command 
Class. What Class does is to create a pattern for constructing a particular kind of objects. It 
takes four arguments in the following form. 
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Class[ nameOfClass, 
nameOfSuperclass, 
listOfInstanceVariables, 
listOfMethods ] 

We'll discuss the form of each argument in turn. 

Argument 

nameOf 
C l a s s 

nameOf 
S u p e r c l a s s 

l i s t O f 
I n s t a n c e 
V a r i a b l e s 

l i s t O f 
Methods 

Explanation 

The name of the class is whatever you want to call your class. 

This is the class one step up in the hierarchy of classes that you are constructing 
or extending. If you don't have a hierarchy yet, then use O b j e c t as the 
superclass. This class is constructed in the package and serves as the absolute 
top of the class hierarchy. It actually implements certain standard methods to be 
explained later. 

The instance variables (or attributes) are variables like x and y in the function 
m a k e C a r t e s i a n . They are required to be symbols, but when they are used, 
any expression can be substituted for them. 

A method is a pair of the form 

{methodName, methodBody&} 

where methodName is a Symbol called the message, and methodBody& is 
some (possibly compound) expression, which is a pure function implementing 
the method, called the response to the message. Thus, the list of methods looks 
like 

{{methodName1, methodBody1&}, 

{methodNamek, methodBodyk&}} 

The Switch statements in the dispatch tables in the preceding section were deliberately 
organized to look just like the lists of methods, without the parentheses. 

All classes should have a method with the name new whose body creates a new object 
belonging to the class. An object is created by giving a command of the form 

o^jectName = 
new[nameOfClass, " ins tant ia te instance v a r i a b l e s " ] . 

For instance, we will construct a class cartes ianPoint below by the command 

Class[cartesianPoint, - - - ] 
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This will write the makeCartesian definition from before in the background where we can't 
see it. To use this hidden definition, one uses the message new so that 

pt = new[cartesianPoint, 3, 4] 

replaces makeCartesian [ { 3 , 4 } ] from before. 
Once an object has been created, then methods are invoked for the object by sending 

messages to it consisting of the method name as head of the message. The first argument 
consists of the object name. If the method body has parameters, then the rest of the arguments 
provide values for these parameters. I.e., 

methodName[objectName, "values of parameters"] 

For instance, to translate a point, use 

translate[pt, 5, 5] 

See also the many examples below. 

3.2 Examples 
3.2.1 A bank account 
A standard elementary example is a class representing bank accounts. A bank account has a 
balance value and money can be deposited and withdrawn from it. As a class it is implemented as 
follows: 

Class[ account, Object, {bal}, 
{ {new, (new[super]; bal = #)&}, 
{balance, bal&}, 
{deposit, (bal += #)&}, 
{withdraw, (bal -= #)&} }] 

account 

(If the output is not the name of the class, then there is a mistake somewhere.) The first method 
is one for new, which says how new instances (i.e., new objects) of the class account are 
made. Normally the first thing it does is to call new of the superclass (represented by the 
reserved work super). It is the responsibility of new to initialize the instance variables. In this 
case, new [super] means new [Objec t ] , which doesn't do anything since there are no 
instance variables in Object to be initialized. The second component of the method new, 
(bal = #), sets the instance variable bal equal to the second argument of new. Thus, an 
account object with initial balance of $1000 is created by the command: 



296 Partii · Programming Language 

ac = new[account, 1000 d o l l a r s ] => —account-

The hyphens before and after account in the output conform to a general Mathematica format 
to indicate in an abstract way that the actual output is some generally uninformative, 
complicated expression that need not be examined further. (Cf. the output —Graphics— from 
a P lot command.) Note that new is a message sent to a class, in this case the class account. 
There are certain other messages that are also sent to classes (called factory methods because 
they are already provided by the program). 

Normally messages are sent to objects. For instance, to check the balance of our account, 
send the message balance to ac. 

balance[ac] => 1000 dollars 
and to withdraw $150 send the message withdraw to ac with the parameter value 150 
dollars. 

withdraw[ac, 150 dollars] => 850 dollars 
Note that the output is in fact the new balance, which should only have been returned by the 
message balance. This behavior will be changed in the next example. 

balance[ac] => 850 dollars 
The first argument in sending a message is the name of the object to which it is sent. Observe 
that the body of the method with name balance is the constant pure function bal& so it has 
no other arguments, while the response to the message withdraw is (bal += # ) & which is a 
pure function of one variable, so withdraw requires another argument in addition to the 
name of the account. Study this example carefully since everything else is an elaboration of it. 

Notice that the two input lines balance [ac] lead to different outputs even though they 
are identical in appearance. This illustrates an important difference between functional and 
object-oriented programs. As we remarked in the introduction to Chapter 6, functions have no 
memory; each time a function is invoked with the same arguments, it returns the same value. 
Sending a message to an object can be quite different since objects can have a memory. In 
particular, ac remembers that something has happened to it; namely, 150 do l lars has been 
withdrawn, so the value of the message balance sent to ac changes accordingly. Objects can 
have a history, and this may be the most interesting thing to know about them. 

3.2.2 An immutable balance bank account 
In the preceding example, the value of the instance variable bal was changed by the action of 
making a withdrawal. Technically, this means that objects created by Class are mutable) i.e., 
the values of their instance variables can be changed in place. But recall that in our 
implementation of points in Section 2, the operation t r a n s l a t e created a new point rather 
than changing the point on which it acted. Some object-oriented languages insist that a new 
object must be created with a new value by such an operation. This behavior can be imitated if 
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we write the methods for d e p o s i t and withdraw in a different form that allows only 
immutable objects to be created. 

Class[ immutableAccount, Object, {bal}, 
{ {new, (new[super]; bal = #)&}, 
{balance, bal&}, 
{deposit, new[immutableAccount, bal + #]&}, 
{withdraw, new[immutableAccount, bal - #]&}}] 

immutableAccount 

In this form there are no assignment statements except in the method body for new. In 
particular, nothing changes the value of bal. Instead, the result of a depos i t or withdraw 
message is a new object with the required new balance. For instance, create an immutable 
account and check its balance. 

i a c l = new[immutableAccount, 1000 d o l l a r s ] 

-immutableAccount-

ba lance [ iac l ] => 1000 d o l l a r s 

Making a withdrawal will create a new immutableAccount object, which needs a name. 
We can either make up a new name or use the same one if we like, or we could name it with a 
time-stamp argument (using Date [ ] ), etc. If we use the same name, then the behavior of these 
accounts will be almost identical to the behavior of the mutable accounts. We choose to 
number the objects here to keep track of new objects as they are created. 

iac2 = withdraw!iacl , 150 d o l l a r s ] 

-immutableAccount-

Now a withdrawal no longer returns the new balance, but just indicates a new object. To 
observe the balance, we have to use the balance method. 

balance[ iac2] => 850 d o l l a r s 

Check that i a c l is unchanged. 

balancefiacl] => 1000 dollars 

3.2.3 Inheritance 
So far, there has been no inheritance involved except for what is inherited from the class 
Object. This consists of factory methods (i.e., methods sent to classes), as well as a few 
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me thods that are available for all objects; namely , C1 a s s Q , S u p e r c l a s s , 
I n s t a n c e V a r i a b l e s , Methods, C l a s s , i s a , d e l e t e , and NIM. Here are examples (which 
should be self explanatory) of each of these, except for d e l e t e and NIM that will be treated 
later. Note that account is a class while ac is an object. 

ClassQIaccount] => True 
Superclass[account] => Object 
InstanceVariables[account] => {bal} 
Methods[account] 
{balance, Class, delete, deposit, InstanceVariables, 
isa, Methods, new, NIM, Superclass, withdraw} 

Class[ac] => account 
isa[ac, account] => True 

The list of methods of a c c o u n t includes all of the factory methods as well as the methods 
defined for account . This is essentially what inheritance means. Without our explicitly saying 
so, a class has available to it all of the methods of its superclass. Note that C l a s s with a single 
argument returns the class to which the argument belongs, provided it is an object. Finally, 
i s a is a predicate between objects and classes that is True providing the object "isa" member 
of the class. 

3.2.4 Interest paying accounts 

As an example of a subclass, we will create a new kind of a bank account that pays interest. 
It should inherit all the usual behavior of the class a c c o u n t and add one new method that 
changes the balance by adding an interest payment to it. This is easy to do. 

C l a s s [ i n t e r e s t A c c o u n t , a c c o u n t , { } , 
{ {new, new [ s u p e r , # ]&}, 

{ p a y l n t e r e s t , ( b a l += (# b a l ) ) & } } ] 

i n t e r e s t A c c o u n t 

Notice that i n t e r e s t A c c o u n t has no instance variables of its own, but in the method for 
paying interest we can refer to the instance variable of the superclass, since it has been 
prepended to the (empty list) of instance variables of i n t e r e s t A c c o u n t . Also, the method 
for new just refers to new [ s u p e r , #]& which takes one parameter since the superclass, 
a c c o u n t , has one instance variable. (It need not always be true that the number of extra 
arguments to new is the same as the number of instance variables, but in these simple 
examples that will always be the case.) 

InstanceVariables[interestAccount] => {bal} 
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Let 

intAc = new[interestAccount, 1000 dollars] 
-interestAccount-

Consider a sequence of interest payments and withdrawals. 

paylnterest[intAc, 0.03] => 1030 dollars 
withdraw[intAc, 350 dollars] => 680 dollars 
paylnterest[intAc, 0·03] => 700.4 dollars 

3.2.5 Immutable interest paying accounts 
Now try the same thing with the immutable version of accounts. 

Class [ iinmutablelnterestAccount, immutableAccount, { }, 
{ {new, new[ super, #]&}, 
{paylnterest, new[ iinmutablelnterestAccount, 

((1 + #) bal)]&} }] 
i inmutablelnterestAccount 

Note that immutability requires that the p a y l n t e r e s t method also creates a new object. Set 
up an account. 

imlntAcl = new[iinmutablelnterestAccount, 1000 d o l l a r s ] 

- immutab le ln te res tAccount -

Consider the same sequence of interest payments and withdrawals, checking the balance at 
each stage. 

imIntAc2 = paylnterest[imlntAcl, 0.03] 
-immutableInterestAccount-
balance [imIntAc2] => 1030 dollars 
imintAc3 = withdraw!imintAc2, 350 dollars] 
-immutableAccount-
balance[imIntAc3] => 680 dollars 
imintAc4 = payInterest[imintAc3, 0.03] 
paylnterest[-immutableAccount-, 0.03] 
balance[imintAc4] 
balance[paylnterest[-immutableAccount-, 0.03]] 
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Whoops!! imIntAc3 is only an immutableAccount object, not an i m m u t a b l e -
I n t e r e s t A c c o u n t object, and it no longer pays interest; i.e., it does not respond to a 
p a y l n t e r e s t message. The owner of the account will be very unhappy about this state of 
affairs. What has happened? The trouble lies in the way the methods in the super class 
immutableAccount are written. The two methods for d e p o s i t and withdraw are as 
follows: 

{deposi t , new[immutableAccount, bal + #]&}, 
{withdraw, new[immutableAccount, bal - #]&} 

The problem is that they say to make a new immutableAccount object, and this is what is 
inherited by the class immutablelnterestAccount. Note that this works perfectly well as 
far as immutable accounts are concerned. It is only when a subclass is defined that a problem 
turns up. The solution is to use the special variable s e l f in place of immutableAccount 
here. Actually, what we need is Class [ s e l f ] . So, we'll have to start over again and write a 
correct version of immutableAccount. 

3.2.6 A better immutable account 

Class[ betterlmmutableAccount, Object, {bal}, 
{ {new, (new[super]; bal = #)&}, 
{balance, bal&}, 
{deposit, new[Class[self], bal + #]&}# 
{withdraw, new[Class[self], bal - #]&}}] 

betterlmmutableAccount 
biacl = new[betterlmmutableAccount, 1000 dollars] 
-betterImmutableAccount-

Check that it still works. 

biac2 = withdraw!biacl, 200 dollars] 
-betterImmutableAccount-
balance[b 
iac2] => 800 dollars 

Define a betterlmmutablelnterestAccount class exactly as before, except that its super 
class is betterlmmutableAccount and the p a y l n t e r e s t method is also implemented 
with Class [ s e l f ] in case we want to have further subclasses. 
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Class[ betterlmmutablelnterestAccount, 
betterImmutableAccount, { }, 
{ {new, new[ super, #]&}, 
{paylnterest, new[ Class[self], 

((1 + #) bal)]&} }] 
betterlmmutablelnterestAccount 

Now everything works as it should. 

bilntAcl = 
new[betterlmmutablelnterestAccount, 1000 dollars] 

-betterImmutablelnterestAccount-
biIntAc2 = paylnterest[bilntAcl, 0.03] 
-betterImmutablelnterestAccount-
balance[biIntAc2] => 1030 dollars 
biIntAc3 = withdraw[biIntAc2, 350 dollars] 
-betterImmutablelnterestAccount-
balance[biIntAc3] => 680 dollars 
biIntAc4 = paylnterest[biIntAc3, 0.03] 
-betterImmutablelnterestAccount-
balance[biIntAc4] => 700.4 dollars 

3.3 Discussion 
The moral of this sequence of examples is that the basic underlying structure of object-oriented 
programming is very natural and elegant. However, methods of classes that are intended to 
have subclasses must be written very carefully to be sure that they do not fail in unexpected 
ways. The variables s e l f and super are essential ingredients for doing this and it takes some 
practice to learn to use them correctly. One slightly confusing difference is that s e l f refers to 
an object-the current object-while super refers to a class-the superclass of the class of the 
current object. So far, s e l f has only occurred in the combination Class [ s e l f ] but as will be 
seen it is even more important as a way for an object to refer to itself during a message 
execution. 
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4 The Hierarchy of Point Classes 

4.1 Cartesian and poUr points 

As a final exercise in OOP, we return to Cartesian and polar points and implement them as 
classes. In fact, we will construct a small hierarchy of points that looks as follows: 

The classes c a r t e s ianPoint and polarPoint will be very similar to the constructions in 
Section 2. There will be a new class point that will contain the information about translating 
points and rotating them about the origin. Since both cartes ianPoint and polarPoint are 
subclasses of P o i n t , this information will be available to both of them. The class 
coloredCartesianPoint will add both a new instance variable and a new method. 

To begin with, point won't do anything, and will have to be redefined later. 

Class[point, Object, {}, {{new, new[super]&}}] 

point 

It is easy to define the classes for cartes ianPoint and polarPoint. 

Class[ cartesianPoint, point, {x, y}, 
{ {new, (new[super]; 

(x = #l);(y = #2))&}, 
{cartesianCoords, {x, y}&}, 
{polarCoords, { Sqrt[xA2 + y"2], 

ArcTan[y/x]}&} }] 

cartesianPoint 
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Class[ polarPoint, point, {r, theta}, 
{ {new, (new[super]; 

(r = #1);(theta = #2))&}, 
{cartesianCoords, { r Cos[theta], 

r Sin[theta]}&}, 
{polarCoords, {r, theta}& } }] 

polarPoint 

For instance: 

pt = new[cartesianPoint, 3 , 4] => —cartesianPoint— 
polarCoords[pt] => {5, ArcTan[4/3]} 

Now we are ready to add methods t r a n s l a t e and r o t a t e to the class po int . This 
definition replaces the one above. If the previous one has been evaluated, it is necessary to 
reevaluate the definitions of the classes cartes ianPoint and polarPoint after evaluating 
the new definition of point. 

Class[point, Object, {}, 
{ {new, new[super]&}, 
{translate, 
new[ cartesianPoint, 

Sequence@@(cartesianCoords[self] + #)]&}, 
{rotate, 
new[ polarPoint, 

Sequence@@(polarCoords[self] + {0, #})]&} 
}] 
point 

The methods here illustrate an important use of se l f . The class point is abstract; there are no 
objects belonging to this class. Every point is either a Cartesian or a polar point. Nevertheless, 
methods for t r a n s l a t e and ro ta te can be implemented in the class point by using se l f . 
If a t r a n s l a t e message is sent to a polar point ppt, then, when the method body 

new[ cartesianPoint, 
Sequence@@(cartesianCoords[self] + #)]& 

is evaluated, s e l f refers to ppt and so its response to c a r t e s ianCoords is used. Here are 
some sample computations. 

pt = new[cartesianPoint, 3 , 4] => —cartesianPoint— 
p t l = t r a n s l a t e n t , 5, 5] => —cartesianPoint— 
cartes ianCoords[pt l ] => {8, 9} 
pt2 = r o t a t e [ p t l , P i / 4 ] => —polarPoint— 
N[cartesianCoords[pt2]] =» {-0.707107, 12.0208} 
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4.2 Adding the Subclass coloredCartesianPoint: 
Overriding Methods 

There is a problem in constructing the subclass coloredCartesianPointof c a r t e s i a n -
Point. In the implementation of the class point , we made use of the observation that it is 
simple to t r a n s l a t e a Cartesian point and equally simple to r o t a t e a polar one, by 
explicitly creating a new cartesian point or polar point in the appropriate place. For instance, if 
we t r a n s l a t e a polar point, it will be turned into a cartesian point. That's OK because all of 
our operations work for either kind of point and we don't want to worry about which 
representation is used for a particular point. But that also means that in these messages, we 
cannot replace new[ car te s ian , ] ornew[polar, ] by new[Class[self ] , — 
- ] as we did with immutable interest accounts in 3.2.6. So how can we make these operations 
work for colored points, where we want the output to again be colored? 

It is possible for a class to override a method in its superclass. It does this just by including a 
method with the same name and a new body. The new method body doesn't necessarily have 
to have any relation to the body of the method in the superclass, and it is this new method 
body that will be used when the method is invoked with an object belonging to the subclass. 
So, one solution to our problem is to just write new methods with the names t rans la te and 
ro ta te for the class coloredCartesianPoint. However, another solution is to think a bit 
and realize that we would also like to have methods that will turn a Cartesian or polar point 
into a colored point and a method to forget the color of a colored point. If these are included in 
the appropriate classes, then new methods in the class coloredCartesianPoint can be 
written in a more elegant form. This involves changing the implementation of the class point 
by adding the following method. 

{makeColored, 
new[ coloredCartesianPoint, 

Sequence@@cartesianCoords[self], #]&} 
(See the version of the class point in the Implementation section below. It has to be evaluated 
for the changes to take place.) 

Now we can construct the class coloredCartesianPoint. 

Class[ coloredCartesianPoint, 
cartesianPoint, {colorname}, 
{ {new, (new[ super, #1, #2]; 

(colorname = #3))&}, 
{color, colorname&}, 
{forgetColor, (new[super, 

Sequence@@ 
cartesianCoords[self]] )&}, 

{translate, makeColored[ 
translate! 
forgetColor[self], #], 
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color[self]]&}, 
{rotate, makeColored[ 

rotate[ 
forgetColor[self], # ], 

coloriseli]]&} }] 
coloredCartesianPoint 

The methods for t r a n s l a t e and ro ta te are implemented in terms of the methods in the top 
class point . Any changes made there will be propagated throughout the entire hierarchy of 
classes. Here is an example of translating a colored point. 

cpt = new[coloredCartesianPoint, 3, 4, red] 
-coloredCartesianPoint-
cptl = translate[cpt, {5, 5}] => -coloredCartesianPoint-
{cartesianCoords[cptl], color[cpt1]} 
{{8, 9}, red} 

4.3 Isomorphism Testing 

How can we decide if two points are the same? What does it mean for them to be the same? It 
turns out that in object-oriented programming this is not just a philosophical question. (See 
[Budd] for a thorough discussion.) If we examine what Mathematica thinks a point actually is, 
e.g., 

??cptl 

cptl = Classes"Private"coloredCartesiansianPoint[colorname$\ 
42, x$42, y$42] 

we see that it is a complicated expression involving some numbered local variables. Thus any 
two points that we create are going to have different internal representations and so they can 
never be identical in Mathematical sense of Equal or SameQ. Nevertheless, we would like to 
construct a message to send to a point asking if it is the same as another point. We arbitrarily 
decide that Cartesian or polar points are the same if they have the same cartesian coordinates. 
Colored points are the same if they also have the same color, and a colored point may or may 
not be the same as a non-colored point. This is easily done by adding the following methods to 
point and coloredCartesianPoint respectively. 



306 Part II · Programming Language 

{isomorphicQ, 
SameQ[cartesianCoords[self], cartesianCoords[#]]&} 

{isomorphicQ, 
( isomorphicQ[forgetColor[self], forgetColor[#]] && 
SameQ[color[self], color[#]] )&} 

These methods are included in the definitions in the Implementation section below. Note that 
isomorphicQ is a message that is sent to a point and has another point as a parameter. For 
instance, define several points 

pt = new[cartesianPoint, 3, 4]; 
ppt = new[polarPoint, 5, ArcTan[4/3]]; 
cptred = new[coloredCartesianPoint, 3, 4, red]; 
cptgreen = new[coloredCartesianPoint, 3, 4, green]; 

The Cartesian point and the polar point are the same. 

isomorphicQ[pt, ppt] =» True 

The two colored points are different. 

isomorphicQ[cptred, cptgreen] => False 
If the Cartesian point and the first colored point are compared, then the result depends on who 
gets the message. 

isomorphicQ[pt, cptred] => True 
isomorphicQ[cptred, pt] => False 

As always, the first argument in a message is the object that gets the message and so the 
methods of that object are used in responding to the message. It is slightly unsettling that 
isomorphism is not a symmetric relation, but that is often the case in object-oriented languages. 
Make sure that you understand why it happens here. 

4.4 The Message NIM 
One last concern is the message NIM which is part of the class Object and hence available for 
all classes. It stands for Non-Implemented Method and is a catch-all method to allow for 
messages which have not been implemented in some class but are required to be implemented 
by all subclasses of the class. Its use is often a matter of housekeeping. For instance, the 
method car te s ianCoords is required to be implemented in all subclasses of point, so we 
could add a method 

{cartes ianCoords, NIM[self, cartes ianCoords]&} 
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to the class point, with a similar method for polarCoords. These would have no effect since 
they are in fact implemented in all subclasses. However, if we added a method 

{color, NIM[self, color]&} 
to the class po int and then sent the message co lor to a polar point, for instance, the result 
would be an error message saying that the method c o l o r was not implemented for polar 
points. We omit these methods here but they are used in Chapter 13 on object-oriented graph 
theory. 

5 Exercises 
i l i i i i i W ^ e i i i i l i l l 

1. Add methods d i l a t e and af f ineTransf orm to the class point. Here d i l a t e takes 
one parameter which is a real number while aff ineTransf orm takes two parameters, 
a matrix and a vector. 

2. i) Consider only one representation for points, that of Cartesian coordinates, so there 
is no need for a separate class point. However, the class of Cartesian points (which 
might just as well be called simply point now) has two subclasses: colored points 
and directed points. A colored point has an extra attribute of color as before. A 
directed point is a point together with a unit vector specifying a direction. Make 
sure that when colored or directed points are translated or rotated the result is again 
colored or directed. 

ii) Add a third subclass, that of rigid directed points in which the angle between the 
unit vector and the vector from the origin to the point is preserved by a translation 
or a rotation. 

3. Implement 3-dimensional points using representations via cartesian, cylindrical, and 
spherical coordinates. Include methods for translation and dilation. What should be 
done about rotations? 

6 Implementation 

Class[point, Object, {}, 
{ {new, new[super]&}, 
{translate, 
new[ cartesianPoint, 

Sequence@@(cartesianCoords[self] + #)]&}, 
{rotate, 
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new[ polarPoint, 
Sequence@@(polarCoords[self] + {0, #})]&} 

{makeColored, 
new[ coloredCartesianPoint, 

Sequence@@cartesianCoords[self], #]&}, 
{isomorphicQ, 

SameQ[ cartesianCoords[self], 
cartesianCoords[#]]&} }]; 

Class[ cartesianPoint, point, {x, y}, 
{ {new, (new[super]; 

(x = #l);(y = #2))&}, 
{cartesianCoords, {x, y}&}, 
{polarCoords, {Sqrt[x^2 + yA2], 

ArcTan[y/x]}&} }]; 
Class[ polarPoint, point, {r, theta}, 

{ {new, (new[super]; 
(r = #l);(theta = #2))&}, 

{cartesianCoords, {r Cos[theta], 
r Sin[theta]}&}, 

{polarCoords, {r, theta}& } }]; 

Class[ coloredCartesianPoint, 
cartesianPoint, {colorname}, 
{ {new, (new[ super, #1, #2]; 

(colorname = #3))&}, 
{color, colorname&}, 
{forgetColor, (new[super, 

Sequence@@ 
cartesianCoords[self]])&}, 

{translate, makeColored[ 
translate! 

forgetColor[self], #], 
color[self]]&}, 

{rotate, makeColored[ 
rotate[ 

forgetColor[self], #], 
coloriseli]]&} }] 



CHAPTER 

Graphics 
Programming 

1 Introduction to Graphics Primitives 
Producing complex and beautiful 2- and 3-dimensional graphics using the functions Plot, 
Plot3D, ContourPlot, Dens i tyPlot , etc., is trivial in Mathematica. But Mathematica also 
includes a set of primitive graphics objects which you can use to build up complex pictures by 
employing all the facilities of the Mathematica programming language. To start with a very 
simple example, the following draws a point, a line, and a filled polygon: 

Show[Graphics[ 
{ Point[{2, 0.5}], 
Line[{{0, 0}, {4, 4}}], 
Polygon[{{l, 1}, {1, 3}, {3, 3}, {3, 1}}] 

} ] ] ; 

There are two kinds of graphics primitives: geometric objects and graphics modifiers or 
directives (to be called just modifiers here). Geometric objects are expressions with heads such 

309 
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as Point , Line, and Polygon. These heads are like L i s t in that they don't process their 
arguments in any way; they just hold them together and indicate that they are particular kinds 
of objects. Point takes a single argument which is a "point." Both Line and Polygon take a 
single argument which is a list of "points;" i.e, pairs interpreted as coordinates of points in the 
plane. L ine will draw a line through the points in the same way as L i s tP lo t , while 
Polygon draws the same line but then joins the last point to the first point and fills in the 
enclosed region. A graphics object is any expression with head Graphics. It takes one 
argument which is a list (of lists ...) of graphics primitives, so for instance the expression 

Graphics!{Point[{2, 0.5}]f Line[{{0, 0}, {4, 4}}], 
Polygon[{{l, 1}, {1, 3}, {3, 3}, {3, 1}}] }] 

is a graphics object. A graphics object is displayed by using the command Show. It is like 
P r i n t for text; the actual picture is a side effect and the output is just the expression 
- G r a p h i c s - . Options can be specified either for Graphics or for Show as extra optional 
named arguments. It will make a difference where the optional arguments are placed when we 
consider GraphicsArray. 

Graphics modifiers are graphics primitives that control various aspects of geometric objects. 
We can change the picture above by using the modifiers Po intSize , Thickness and 
GrayLevel. Each of these modifiers has to precede the geometric object it is intended to affect, 
and will affect everything (in the same sublist) that follows it. 

Show[Graphics[ 
{ PointSize[0.05], Point[{2, 0.5}], 
Thickness[0.02], Line[{{0, 0}, {4, 4}}], 
GrayLevel[0.4], 
Polygon[{{l, 1}, {1, 3},{3, 3}, {3, 1}}] }]]; 

If the file Graphics Colors ^ is loaded, then color names can be used as modifiers, again 
preceding the geometric objects they modify. They can only be seen, of course, on a color 
monitor. For readability, we group each object with its modifiers separately. 
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Needs["Graphics Master^"] 
Show[Graphics[ 

{ { Red, PointSize[0.05], Point[{2, 0.5}]}, 
{ ForestGreen, Thickness[0.02], 
Line[{{0, 0}, {4, 4}}]}, 

{ CornflowerBlue, 
Polygon[{{l, 1}, {1, 3}, {3, 3}, {3, 1}}]} }]]; 

A slightly more complicated design can be created by letting Table do some of the work. 

Show[Graphics[ 
{Table[ { Hue[i/20], PointSize[i/250 + 1/50], 

Point[{Cos[Pi i/10], Sin[Pi i/10]}]}, 
{i, 20} ] } 

], PlotRange -> {{-1.2, 1.2}, {-1.2, 1.2}}, 
AspectRatio -> 1]; 

m 
HP 

You can use the full power of Mathematica in producing the list of graphics primitives. 
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Show[Graphics! 
{Table[ 

{ Hue[i/20], 
PointSize[i/250 + 1/50], 
Pointf{Cos[Pi i/10], Sin[Pi i/10]}], 
Polygon!{{0, 0}, 
0,9 {Cos[Pi (2i-l)/20], Sin[Pi (2i-l)/20]}, 
0.9 {Cos[Pi (2i+l)/20], Sin[Pi (2i+l)/20]}}]}, 

{i, 20}] } 
], PlotRange -> {{-1.2, 1.2}, {-1.2, 1.2}}, 
AspectRatio -> 1]; 

The following displays a bunch of random lines of varying thicknesses: 

Show[Graphics[ 
Table[ 

{ T h i c k n e s s [ 0 . 0 0 5 + 0 . 0 0 0 1 i ] , 
L i n e [ { {Random!], Random!]}, 

{Random[], Random!] } } ] } , 
{ i , 30} ] ] ] ; 

A slight variation shows a random filled polygon with 50 edges: 
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Show[Graphics[ 
{ GrayLevel[0.2], 

Polygon[Table[{Random[], Random[]}, {50}] ] } 
Π ; 

Note that a folded polygon is shaded using exclusive or; i.e., if a region is covered an even 
number of times it appears white, while if it is covered an odd number of times it is shaded. 

2 Two-Dimensional Graphics Objectsy 

Graphics Modifiers, and Options 

2.1 Objects 
The following built-in 2-dimensional graphics objects can be displayed by a 
Show[6raphics[ ] ] command. 

Point[{x0, y0}] 
Line[{{x0, y0}, ...}] 
Rectangle[{xmin, ymin}, {xmax, ymax}] 
Polygon!{{x0, y0}, .·.}] 
Circle[{xcenter, ycenter}, radius], 

Circle[{xcenter, ycenter}, {semiaxis, semiaxis}] 
Circle[{xcenter, ycenter}, radius, {thetal, theta2}] 

Disk[{xcenter, ycenter}, radius] 
Disk[{xcenter, ycenter}, {semiaxis, semiaxis}] 
Disk[{xcenter, ycenter}, radius, {thetal, theta2}] 

Raster[numberArray] 
Raster[numberArray, rectangle] 

RasterArray[modi f ierArray] 
RasterArray[modifierArray, rectangle] 

Text[expr, {xcenter, ycenter}] 
Text[expr, {xcenter, ycenter}, {xoffset, yoffset}] 

PostScript["string"] 
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2.1.1 Circle and Disk 

We have already discussed P o i n t , L ine , and Polygon. The objects C i r c l e and Disk can 
take other optional arguments giving ellipses and sectors of circles. Here are several examples. 

Show[Graphics[ 
{ Table [ C i r c l e [ { 0 , 0 } , { 1 , 1 - i } ] , { i , 1 , 0 , - 0 . 2 } ] , 

Tablet { G r a y L e v e l [ i ] , D i s k [ { 2 , 0 } , { 1 , 1 - i } ] } , 
{ i , 0 , 1 , 0 . 2 } ] , 

C i r c l e [ { 4 , 0 } , 1 , { P i / 2 , 3 P i / 2 } ] , 
G r a y L e v e l [ 0 . 5 ] , D i s k [ { 4 , 0 } , 1 , { - P i / 2 , P i / 2 } ] } 

] , A s p e c t R a t i o -> A u t o m a t i c ] ; 

It is not possible to make a sector of an ellipse. A single such figure can be shown by using 
AspectRat io . 

2.1.2 Raster and RasterArray 

Raster and RasterArray produce rectangular arrays of gray or colored rectangles. The first 
argument of R a s t e r has to be a matrix of values between 0 and 1, which are interpreted as 
gray levels. The optional second argument is the rectangle in which the array of gray levels 
should be drawn. The first argument of Ras terArray is a matrix of modifiers-GrayLevel, 
Hue, or RGBColor. 

Show[Graphics[ 
{ R a s t e r [ 

T a b l e [ S i n [ x y ] , 
{x, Pi/5, Pi, Pi/5}, {y, Pi/5, Pi, Pi/5}], 

{{0, 0}, {1, 1}}], 
RasterArray[ 

Table[Hue[Sin[x y]], 
{x, Pi/5, Pi, Pi/5}, {y, Pi/5, Pi, Pi/5}], 

{{1, 0}, {2, 1}}] } 
], AspectRatio -> Automatic]; 
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2.1.3 Text. 
Text can be included in a Graphics object using a Text object. The first argument of Text is 
an expression, which may or may not be a string and the second argument describes the 
position of the text. The optional third argument describes how the text is offset from the 
center according to conventions described in The Mathematica Book [Wolfram]. One can also 
choose a specific font for the text using the format illustrated below. 

Show[Graphics[ 
{ Circle[{0, 0}, 1], 
Text[FontForm[ "Text in a circle", 

{"Chicago", 12}], {0, 0.5}], 
Text[center, {0, 0}], 
Text[right, {0, 0}, {-3, 0}], 
Text[left, {0, 0}, { 3, 0}], 
Text[above, {0, 0}, { 0, -3}], 
Text[below, {0, 0}, { 0, 3}] } 

], AspectRatio -> 1]; 
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2.1.4 PostScript 
Here is an example of a PostScript object. The single argument to PostScript is a string 
consisting of PostScript directions for making a drawing, written in the usual PostScript 
format. 

Show[Graphics[ 
{PostScript!" 

0 0 moveto 
1 0 lineto 
1 1 lineto 
0 1 lineto 
closepath 
0.02 0.02 moveto 
0.98 0.98 lineto 
0.02 0.98 moveto 
0.98 0.02 lineto 
stroke"]} 

], AspectRatio -> 1]; 

2.2 Modifiers 
There are ten modifiers that apply to 2-dimensional graphics objects. In the following, d is any 
positive number, usually a small decimal. 

PointSize[d] 
AbsolutePointSize[d] 
Thickness[d] 
AbsoluteThickness[d] 
Dashing[{dl, ···, }] 
AbsoluteDashing[{dl, ..., 
GrayLevel[r] 
Hue[r] 

Hue[r, s, b] 
RGBColor[r, g, b] 
CMYKColor[c, m, y, b] 

}] 
0 < r < 1 
0 < r < 1 
0 < r, s, b < 1 
0 < r, g, b < 1 
0 < c, m, y, b 



Ten · Graphics Programming 317 

2.2.1 PointSize and AbsolutePointSize, etc 
The difference between P o i n t S i z e and A b s o l u t e P o i n t S i z e is that a P o i n t S i z e 
dimension such as 0.01 means 1/100 of the linear size of the displayed figure. If the figure is 
resized and made smaller, then the point will also be smaller. A b s o l u t e P o i n t S i z e 
dimensions are absolute lengths measured in units of printer's points which are approximately 
1/72 of an inch. 

Show[Graphics[ 
{ {PointSize[0.05], Point[{0, 0}]}, 

{AbsolutePointSize[10], Point[{1, 0}]} } ], 
PlotRange -> {{-0.2, 1.2}, {-0.1, 0.1}}]; 

• 

If the preceding graphics is resized, then the left hand dot will change size while the right-
hand one remains constant. The same comments apply to Thickness vs. A b s o l u t e -
Thickness and Dashing vs. AbsoluteDashing. 

2.2.2 Hue 
Hue can take either one argument or three. In either case, the first argument refers to a color 
shade from the circumference of a color wheel, scaled between 0 and 1. The values 0 and 1 are 
both red and 0.5 is blue. Values smaller that 0.5 shade through green, yellow, and orange to 
red while those larger that 0.5 shade through purple and violet to red. If Hue has a second and 
third argument, then the second is saturation and the third is brightness. The following 
pictures show the effect of varying both hue and saturation while keeping brightness equal to 
1. The Hue scale starts at 0.1 while saturation starts at 0 where the colors are almost 
indistinguishable. 

Show[Graphics[{ 
Tablet { Hue[i/10, j/10, 1], 

Rectangle[{i, j}, {i+1, j+1}]}, 
{i, 1, 10}, {j, 0, 10}]}], 

AspectRatio -> 1]; 
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2.2.3 RGBColor. 
RGBColor works differently. It takes three arguments which are intensities of red, blue, and 
green color respectively. The pure colors vary from black (= 0) to full intensity (= 1), as 
illustrated in the next drawing. 

Show[Graphics[ 
{ Table[ 

{ PointSize[0.1], RGBColor[i, 0, 0], 
Point[{i, 0.2}] }, {i, 0, 1, 0.1}], 

Table[ 
{ PointSize[0.I], RGBColor[0, 1, 0], 

Point[{i, 0.1}] }, {i, 0, 1, 0.1}], 
Table[ 

{ PointSize[0.1], RGBColor[0, 0, i], 
Point[{i, 0.0}] }, {i, 0, 1, 0.1}]} 

], PlotRange -> {{-0.1, 1.1}, {-0.05, 0.25}}]; 
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If the colors are combined, then the intensities add. Both Hue and RGBColor refer to 
transmitted light, so adding colors in RGBColor is like adding colored lights. Here are the 
results of adding colors two at a time, keeping the total intensity equal to 1. 

Show[Graphics[ 
{ Table[ 

{ P o i n t S i z e [ 0 . I ] , RGBColor[i, 1 - i , 0 ] , 
P o i n t [ { i , 0 .2} ] } , { i , 0, 1, 0 . 1 } ] , 

Table[ 
{ P o i n t S i z e [ 0 . 1 ] , RGBColor[0, i , 1 - i ] , 

P o i n t [ { i , 0 .1} ] } , { i , 0, 1, 0 . 1 } ] , 
Table[ 

{ P o i n t S i z e [ 0 . 1 ] , RGBColor[1 - i , 0, i ] , 
P o i n t [ { i f 0 .0} ] } , { i , 0f l f 0 . 1 } ] } 

] , PlotRange -> { { - 0 . 1 f 1 . 1 } , { -0 .05 , 0 . 2 5 } } ] ; 

To see the whole range of possible colors requires a 3-dimensional cube that one can peer 
into to any depth. We show three faces of such a cube, the green-red face, the blue-red face, 
and the blue-green face. 

Show[GraphicsArray[ 
{Graphics! 

{ Table[ { RGBColor[i, j , 0 ] , 
Polygon[{ { i , j } , { i , j + 0 . 1 } , 

{i+0.1, j+0.1}, {i+0.1, j}}]}, 
{i, 0, 1, 0.1}, {j, 0, 1, 0.1}], 

Text[ "red 0 to 1", {0.5, -0.05}], 
Text[ "green 0 to 1 ", 

{-0.05, 0.5}, {0, 0}, {0, 1}]}, 
AspectRatio -> Automatic], 

Graphics[ 
{ Table[ { RGBColor[i, 0, j], 

Polygon[{ {i, j}, {i, j+0.1}, 
{i+0.1, j+0.1}, {i+0.1, j}}]}, 

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}], 
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Text[ "red 0 to 1", {0.5, -0.05}], 
Text[ "blue 0 to 1 ", 

{-0.05, 0.5}, {0, 0}, {0, 1}]}, 
AspectRatio -> Automatic], 

Graphics! 
{ Table[ { RGBColor[0, i, j], 

Polygon[{ {i, j}, {i, j+0.1}, 
{i+0.1, j+0.1}, {i+0.1, j}}]}, 

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}], 
Text[ "green 0 to 1", {0.5, -0.05}], 
Text[ "blue 0 to 1 ", 

{-0.05, 0.5}, {0, 0}, {0, 1}]}, 
AspectRatio -> Automatic] 

}]]; 

The colors in the upper right-hand regions of these squares are yellow, magenta, and cyan. 
These appear in the next section on CMYK colors. One can look inside the cube by displaying 
the layers parallel to the blue-red face given by adding in green stepwise. 

Show[GraphicsArray[ 
{ Table[Graphics[ 

Table[ { RGBColor[i, k, j], 
Polygon[{ {i, j}, {i, j+0.2}, 

{i+0.2, j+0.2}, {i+0.2, j}}]}, 
{i, 0, 1, 0.2}, {j, 0, 1, 0.2}], 

AspectRatio -> Automatic, 
PlotLabel -> "green = "<>ToString[k]], 
{k, 0, 0.4, 0.2}], 

Table[Graphics[ 
Table[ { RGBColor[i, k, j], 

Polygon[{ {i, j}, {i, j+0.2}, 
{i+0.2, j+0.2}, {i+0.2, j}}]}, 

{i, 0, 1, 0.1}, {j, 0, 1, 0.2}], 
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AspectRatio -> Automatic, 
PlotLabel -> "green = "<>ToString[k]], 
{k, 0.6, 1.0, 0.2}] 

}]]; 

green = 0 green = 0.2 green - 0.4 

green = 0.6 green = 0.8 green = 1. 

-"■?, 

2.2.4 CMYKColor 
CMYKColor is another scheme for specifying colors which is adapted to printing. The letters 
stand for Cyan, Magenta, Yellow, and Black and refer to specific printers inks whose standards 
are carefully maintained. The three colors Cyan, Magenta, and Yellow are essentially the 
complements of the colors Red, Green, and Blue and they work in the opposite way by 
removing colors (since they represent reflected colors) rather than adding them. Thus, for 
instance, a zero value represents white rather than black, as the following pure colors show. 

Show[6raphics[ 
{ Table[{ PointSize[0.1], CMYKColor[i, 0, 0, 0], 

Point[{i, 0.2}] }, {i, 0, 1, 0.1}], 
Table[{ PointSize[0.I], CMYKColor[0, i, 0, 0], 

Point[{i, 0.1}] }, {i, 0, 1, 0.1}], 
Table[{ PointSize[0.I], CMYKColor[0, 0, i, 0], 

Point[{i, 0.0}] }, {i, 0, 1, 0.1}] } 
], PlotRange -> {{-0.1, 1.1}, {-0.05, 0.25}}]; 
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Combining the colors two at a time, keeping a total intensity of 1 has the following effect. 

Show[Graphics! 
{ Table[{ PointSize[0.1], CMYKColor[i, 

Point[{i, 0.2}] }, {i, 0, 1, 
PointSize[0.1], CMYKColor[0, 

1 - i, 
0.1}], 

Table[{ PointSize[0.1], CMYKColor[0, i, 1 -
Point[{i, 0.1}] }, {i, 0, 1, 0.1}], 

Table[{ PointSize[0.1], CMYKColor[1 - i, 0, 
Point[{i, 0.0}] }, {i, 0, 1, 0.1}] } 

] , PlotRange -> { { - 0 . 1 , 1 . 1 } , { -0 .05 , 0 . 2 5 } } ] ; 

0 , 0 ] , 

0 ] , 

0 ] , 

To see the whole range of possible colors would require a 4-dimensional cube this time that 
one could peer into to any depth. We ignore the effect of adding black, which decreases the 
intensity of the colors, and imagine a 3-dimensional cube as before. We show three faces of 
such a cube, the magenta-cyan face, the yellow-cyan face, and the yellow-magenta face. 

Show[6raphicsArray[ 
{ Graphics[ 

{ Table[ 

Text[ 

{ CMYKColor[i, j, 0, 0], 
Polygon[{ {i, j}, {i, j+0.1}, 

{i+0.1,j+0.1},{i+0.1,j}}]}, 
{i, 0, 1, 0.1}, {j, 0, 1, 0.1}], 
"cyan 0 to 1", {0.5, -0.05}], 
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Text[ "mag 0 to 1 ", 
{-0.05, 0.5}f {0, 0}, {0, 1}]}, 

AspectRatio -> Automatic], 
Graphics[ 
{ Table[ { CMYKColor[i, 0, j, 0], 

Polygon[{ {i, j}, {i, j+0.1}, 
{ΐ+0.1ο+0.1},{ί+0.1^}}]}, 

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}], 
Text[ "cyan 0 to 1", {0.5, -0.05}], 
Text[ "yel 0 to 1 ", 

{-0.05, 0.5}, {0, 0}, {0, 1}]}, 
AspectRatio -> Automatic], 

Graphics[ 
{ Table[ { CMYKColor[0, i, j, 0], 

Polygon[{ {i, j}, {i, j+0.1}, 
{i+0.1,j+0.1},{i+0.1,j}}]}, 

{i, 0, 1, 0.1}, {j, 0, 1, 0.1}], 
Text[ "mag 0 to 1", {0.5, -0.05}], 
Text[ "yel 0 to 1 ", 

{-0.05, 0.5}, {0, 0}, {0, 1}]}, 
AspectRatio -> Automatic] 

}]]; 
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The colors in the upper right-hand regions of these squares are blue, green, and red, that 
appeared in the last section on RGB colors. One can look inside the cube by displaying the 
layers parallel to the yellow-cyan face given by adding in magenta stepwise. 

Show[GraphicsArray[ 
{ Tab le [Graph ic s [ 

Table [ { CMYKColor[i, k, j , 0 ] , 
P o l y g o n [ { { i , j } , { i , j + 0 . 2 } , 

{i+0.2,j+0.2}, {i+0.2,j}}]}, 
{i, 0, 1, 0.2}, {j, 0, 1, 0.2}], 
AspectRatio -> Automatic, 
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PlotLabel -> "magenta = "<>ToString[k]], 
{k, 0, 0.4, 0.2}], 

Table[Graphics[ 
Table[ { CMYKColor[i, k, j, 0], 

Polygon[{ {i, j}, {i, j+0.2}, 
{i+0.2,j+0.2}, {i+0.2,j}}]}, 

{i, 0, 1, 0.1}, {j, 0, 1, 0.2}], 
AspectRatio -> Automatic, 
PlotLabel -> "magenta = "<>ToString[k]], 
{k, 0.6, 1.0, 0.2}] 

}]]; 

magenta = 0 magenta = 0.2 magenta = 0.4 

magenta = 0.6 magenta = 0.8 magenta = 1. 

2.3 Options 
The options available for G r a p h i c s are almost the same as those for P l o t except for those 
options affecting the smoothness of a curve. 

Complement[Options[Graphics], Options[Plot]] 

{Axes -> False} 

Options can be given either inside the G r a p h i c s expression as last arguments or as last 
arguments to Show. Show does not have any specific options for itself, but uses anything that 
makes sense for the graphics objects it is displaying. 
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3 Combining Built-in Graphics 
with Graphics Primitives 

There are two separate ways to combine built-in graphics with graphics primitives, depending 
on whether one is modifying a built-in graphics function by adding graphics primitives or, 
instead, modifying a graphics object constructed by including elements produced from built-in 
graphics routines. 

3.1 Modifying Built-in Graphics with Graphics Primitives 

3.1.1 PlotStyle 

We have already illustrated the use of P l o t S t y l e to change the appearance of built-in 
graphics routines. The general format is P l o t S t y l e -> { { - - - } , . . . } where each 
sublist applies to the curve in the corresponding position in the list of curves to be plotted. The 
entries in the sublist can be any graphics modifiers; e.g., 
P l o t S t y l e - > { T h i c k n e s s [ 0 . 0 2 ] } , etc. 

3.1.2 Prolog and Epilog 

P r o l o g and E p i l o g are options to all of the built-in graphics functions that allow one to add 
arbitrary graphic primitives to them. The difference between the two is that E p i l o g graphics 
are produced after the built-in graphics and hence print on top of them, while P r o l o g 
graphics are produced first so the built-in graphics print on top. 

P l o t [ S i n [ x ] , { x , 0 , 2 P i } f 

E p i l o g -> { 
{ P o i n t S i z e [ 0 . 0 5 ] , P o i n t [ { P i , -1}]}, 
{ T h i c k n e s s [ 0 . 0 2 ] , L i n e [ { { 0 , - 1 } , { 2 P i , 1 } } ] } , 
{ G r a y L e v e l [ 0 . 4 ] , 
Polygon[{{2,-0.5}, {4,-0.5}, {4,0.5}, {2,0.5}}], 
Text["Primitives on top", {Pi, 0.75}]} }]; 
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Plot[Sin[x], {x, 0, 2Pi}, 
Prolog -> { 
{ PointSize[0.05], Point[{Pi, -1}]}/ 
{ Thickness[0,02], Line[{{0, -1}, {2Pi, 1}}]}, 
{ GrayLevel[0.4], 
Polygon[{{2,-0.5}, {4,-0.5}, {4,0.5}, {2,0.5}}], 
Text["Built-ins on top", {Pi, 0.75}]} }]; 

3.2 Adding Built-in Graphics 
to Graphics Objects 

Show can be used to display several built-in graphics plots together just by giving it several 
arguments; i.e., Show can take any number of arguments which are graphics objects. In 
particular, Show will display both built-in graphics and graphics objects constructed from 
graphics primitives at the same time. Thus, the picture constructed in the previous section 
using Epilog can equally well be made as follows: 

Show[ 
Plot[ Sin[x], {x, 0, 2 Pi}, 

DisplayFunction -> Identity], 
Graphics[ 

{ { PointSize[0.05], Point[{Pi, -1}]}, 
{ Thickness[0.02], Line[{{0, -1}, {2Pi, 1}}]}, 
{ GrayLevel[0.4], 

Polygon[{ {2, -0.5}, {4, -0.5}, 
{4, 0.5}, {2, 0.5} }] } 

}], DisplayFunction -> $DisplayFunction]; 
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This time, things are displayed in the order in which they are given, so if the P lo t and the 
Graphics were reversed, then the result would be the same as using Prolog instead of 
Epilog. Show will display any number of Graphics objects in any order. For instance, here is 
another way to add text to a Plot, just treating it as another graphics object. 

Show[ 
Plot[ Sin[x], {x, 0, 2 Pi}, 

DisplayFunction -> Identity], 
Graphics!{Text[ "sin and cos together", 

{Pi, 0.5}]}], 
Plot[ Cos[x], {x, 0, 2 Pi}, 

DisplayFunction -> Identity], 
DisplayFunction -> $DisplayFunction]; 

4 Graphics Arrays and Graphics Rectangles 
•-w^: "- ̂ V > ^ £ 4 > W > X Ä ' V it- " 

4.1 Graphics Arrays 

Show can actually take six kinds of arguments: 

Graphics, GraphicsArray, Graphics3D, 
SurfaceGraphics, ContourGraphics, and DensityGraphics. 



328 

The first was discussed in the preceding section and here we look at GraphicsArray. A 
GraphicsArray object is a list or matrix of graphics objects, which can be of any of the other 
five types (since GraphicsArray is not a type of graphics). In order to have something to 
draw, recall that the Fourier sine series for an odd, periodic function f[x] of period 2π is given 
by calculating the Fourier sine coefficients using the following formula. 

B[f_, n_, x_] : = 
(2/Pi) Integrate[f[x] Sin[n x], {x, 0, Pi}]; 

Using these coefficients, the n'th Fourier sine series approximation to f [ x ] is given by 

sinApprox[f_, n_, x_] := 
Sum[B[f, k, x] Sin[k x], {k, 1, n}]; 

The step function which is -1 between -π and 0 and +1 between 0 and π corresponds to the 
constant function 1 between 0 and 1 made into an odd periodic function, so for instance, its 5th 
Fourier sine series approximation is 

sinApprox[l&, 5, x] 
4 Sin[x] 4 Sin[3 x] 4 Sin[5 x] 

+ + 
Pi 3 Pi 5 Pi 

Note that the even approximations are the same as the preceding odd approximations. For 
purposes of plotting, define the step function itself by: 

step[x_] := If[x > 0, 1, -1] 
The first six approximations to this square wave can be illustrated in a single plot. 

Show[GraphicsArray[ 
Table[ 

Plot[ 
Evaluate[{ step[x], 

sinApprox[l&, 2(3i+j) + 1, x]}], 
{x, -Pif Pi}, 
DisplayFunction -> Identity, 
PlotStyle -> {Hue[l], Hue[0.7]}, 
Axes -> False, 
PlotLabel -> 

"Approximation "<>ToString[3i+j]], 
{i, 0, 1}, {j, 3}] 

], DisplayFunction -> $DisplayFunction]; 
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Approximation 1 Approximation 2 Approximation 3 

Approximation 4 
A^ 

\/\s\s\/\J* 

Approximation 5 Approximation 6 

Ό Graphics Rectangles 

Instead of using GraphicsArray to display several drawings in the same picture, one can use 
the geometric object Rectangle with an optional third argument. 

?Rectangle 

Rectangle[{xmin, ymin}, {xmax, ymax}] is a two-dimensional 
graphics primitive that represents a filled rectangle, 
oriented 
parallel to the axes. Rectangle[{xmin, ymin}, {xmax, ymax}, 
graphics] gives a rectangle filled with the specified 
graphics. 

Show[Graphics[ 
Table[ 
Rectangle[ 

{i-0.5, i-0.5}, {i+0.5, i+0.5}, 
Graphics[{ Line[{{i-0.5,i+0.5}, {i+0.5,1-0.5}}], 

AbsolutePointSize[10 (i + 1)], 
Hue[i/4], Point[{i, i}]}, 
AspectRatio -> 1, 
DisplayFunction -> Identity]], 

{i/ 0, 3}]], 
DisplayFunction->$DisplayFunction, AspectRatio->l]; 
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5 Examples of Two-Dimensional Graphics 

5.1 Histogram plots 
Recall the program histogram from Chapter 8, Section 4.7.4. 

histogram[data_, {xmin_, xmax_, xstep_}] 
Map[ { {Min[#], Max[#]}, 

Plus@@Map[Count[data, #]&, 
Partition!Range[xmin, xmax], 

Generate a new set of data to use with it. 

data = Table[Random[Integer, {1, 100}], {500}]; 
histo = histogram[data, {0, 99, 10}] 

{{{0, 9}, 44}, {{10, 19}, 57}, {{20, 29}, 51}, {{30, 39}, 65}, 
{{40, 49}, 43}, {{50, 59}, 46}, {{60, 69}, 49}, 
{{70, 79}, 70}, {{80, 89}, 40}, {{90, 99}, 35}} 

We will use Mathematica graphics primitives to construct a graphics object illustrating the 
output of h i s t o g r a m in order to see what it looks like. The output from the histogram 
function consists of a list of pairs of the form {{a, b}, c}, where {a, b} is an interval on the x-axis 
giving the size of a bucket, and c is the number of items in the bucket. We want to plot this as a 
rectangle on the base {a, b} of height c, which in Mathematica is described by R e c t a n g l e [ { a , 
0 } , { b , c } ] . Thus, we restructure the histogram, using the technique of local rewrite rules 
discussed in Chapter 7 Section 6.2, to turn it into the appropriate form. Here is the first very 
simple version. 

# ] }&, 
xstep] ] 
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histoGraphics[histogram_] := 
Graphics[histogram //. 
{{a_, b_}f c_?NumberQ}:>Rectangle[{a, 0}, {b, c}]]; 

Note that the condition on c is required to prevent infinite recursion. As usual, the Mathematica 
command Show displays this graphics object. 

Show[histoGraphics[histo], Axes -> True]; 

100 

If all we care about is the final picture, then there is no reason to calculate it in two steps. We 
can just generate the desired list of rectangles directly. 

histoGraphicsl[data_, {xmin_, xmax_, xstep_}] := 
Graphics[ 

Map[ 
Rectangle[ 

{Min[#], 0}, 
{Max[#], Plus@@Map[Count[data, #]&, #]}]&, 

Partition[Range[xmin, xmax], xstep]]]; 

Then the command 

Show[histoGraphics1[data, {0, 99, 10}], Axes -> True]; 

produces exactly the same picture as before, so it is omitted. 
It is more interesting to make a somewhat more complicated graphics object that shades the 

buckets differently depending on their contents and includes a count of the number of items in 
each bucket at the top of each column. Since we need the height of each bar several times, it is 
necessary to first generate the histogram and then process it. 
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histoGraphicsCount[data_, {xmin_, xmax_, xstep_}] := 
Module[ 

{ histo = histogram[data, {xmin, xmax, xstep}], 
maxnum}, 

maxnum = Max[Map[#[[2]]&, histo]]; 
Graphics[ 

{histo //. {{a_, b_}, c_?NumberQ} :> 
{Hue[N[c/maxnum]], Rectangle[{a,0},{b,c}]}, 

histo //.{{a_, b_}, c_} :> 
Text[c, N[{(a + b)/2, 1.05 c + 1}]]}] ]; 

Show[ histoGraphicsCount[data, {0, 99, 10}], 
Axes -> True ]; 

100 

Finally, this program can also take its data from a file by imbedding it in a larger routine 
which includes both h i s t o g r a m and h i s t o G r a p h i c s l . Note that in the following program 
we use ReadList , rather than Read, because it reads in the entire contents of the file as a list, 
which is exactly what we want as the argument to h i s togram. In order to compare this final 
program with the original C program, everything is written out in detail rather than using the 
previous definitions. 

histoGraphicsFile[ file_String, 
{xmin_, xmax_, xstep_}]:= 

Module[ 
{numbs = ReadList[file], histo, maxnum}, 
histo = 

Map[ { {Min[#], Max[#]}, 
Plus@@Map[Count[numbs, #]&, #]}&, 
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Partition[Range[xmin, xmax], xstep]]; 
maxnum = Max[Map[#[[2]]&, histo]]; 
Show[ 

Graphics[ 
{histo //. {{a_, b_}, c_?NumberQ} :> 

{ Hue[N[c/maxnum]], 
Rectangle[{a, 0}, {b, c}] }, 

histo //.{{a_, b_}, c_} :> 
Text[c, N[{(a + b)/2, 1.05 c + 1}]]}], 

Axes -> True]] 

This is the final Mathematica version of the C program treated in Chapter 8, Section 4.7.4. Recall 
the file " numbers 1 " constructed in Section 4.7.2 there. 

histoGraphicsFile["numbers1", {0, 109, 10}]; 

100 

5.2 A simple Bar Chart 

Our next example is related to the histogram example, except that this time we have data for 
given values and want to plot the data by showing bars rather than by using something like 
L i s t P l o t . We will use the frequencies command discussed in Chapter 6 Section 2.3, to 
generate the values to be plotted from a list of data. 

frequencies[list_List] := 
Map[{#, Count[list, #]}&, Union[list]] 

Here is some sample data and the value of frequencies for it. 
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frequencies[data = {1, 2, 3, 4, 3, 2, 6, 5, 3, 7, 
6, 5, 7, 6, 3, 5, 4}] 

{{1, 1}, {2, 2}, {3, 4}, {4, 2}, {5, 3}, {6, 3}, {7, 2}} 

We would like to convert the output of frequencies into a rectangles by using local rewrite 
rules similar to the ones used in h i s t o G r a p h i c s , of the form: 

(*frequencies[data]//.{a_, b_} :> 
Rectangle!{a, 0}, {a + 1, b}]*) 

Interestingly, there does not seem to be any way to do this that doesn't lead to infinite 
recursion. So instead, we have to process the output of f r e q u e n c i e s functionally. The 
shading is constructed as part of the same functional process. 

barChart[data_] :-
With[{freq = frequencies[data], 

maxnum = Max[Map[#[[2]]&, freq]]}, 
Show[Graphics[ 

{Map[ { Hue[N[#[[2]]/(maxnum)]], 
Rectangle[ {#[[1]], 0}, 

{#[[1]] + 1/ #[[2]]}]}&, 
freq]}], 

Axes -> True, 
AxesOrigin -> {Min[Map[#[[1]]&, freq]] - 1, 0}] ] 

Here is the plot for our simple data above. 

barChart[data]; 

To get more interesting data to plot, we use one of the statistical distributions in the 
Packages. 

Needs["Statistics ContinuousDistributions^"] 
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We make a table of 50 scores selected at random from a normal distribution with mean 75 and 
standard deviation 10. 

scores = 
Table[ Floor[Random[NormalDistribution[75, 10]]], 

{50}]; 

60 65 70 75 80 85 90 

This doesn't look very much like a normal distribution, so we try again with 1000 scores, 
narrowing the standard deviation a bit. 

scores l = 
Table[ Floor[Random[NormalDistribution[75, 9]]], 

{1000}]; 

barChart[scoresl]; 

50 

40 

30 

20 

10 

JÜ , , «_ 
40 
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6 Three-Dimensional Graphics Primitives 

6.1 Three-Dimensional Objects, Modifiers, and Options 

By simply substituting Graphics3D for G r a p h i c s and adding a third dimension to each 
coordinate, we can produce 3D graphics. P o i n t , L ine , Po lygon , and Tex t are as before. 
There is a new primitive geometric object, a Cubo id . If you are willing to type in the 
coordinates of the relevant points, then there is no limit to the 3-dimensional figures that can 
be constructed. 

Show[Graphics3D[ 
{ 
PointSize[0.05], Point[{0,2,2}], Point[{4,2,2}], 
Thickness[0.02], Line[{{0, 2, 2}, {4, 2, 2}}], 
Polygon[{ {0, 0, 0}, {1.5, 1.5, 1.5}, 

{2.5, 1.5, 1.5}, {4, 0, 0} }], 
Polygon[{ {4, 0, 0}, {2.5, 1.5, 1.5}, 

{2.5, 2.5, 1.5}, {4, 4, 0} }], 
Polygon[{ {4, 4, 0}, {2.5, 2.5, 1.5}, 

{2.5, 2.5, 2.5}, {4, 4, 4} }], 
Polygon[{ {1.5, 2.5, 2.5}, {2.5, 2.5, 2.5}, 

{4, 4, 4}, {0, 4, 4} }], 
Polygon[{ {0, 4, 4}, {1.5, 2.5, 2.5}, 

{1.5, 2.5, 1.5}, {0, 4, 0} }], 
Polygon[{ {0, 4, 0}, {1.5, 2.5, 1.5}, 

{1.5, 1.5, 1.5}, {0, 0, 0} }], 
Cuboid[{1.5, 1.5, 1.5}, {2.5, 2.5, 2.5}] 

}]]; 
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All of the modifiers for 2-dimensional graphics are available along with three new ones: 

EdgeForm[specification] 
FaceForm[frontspec, backspec] 
SurfaceColor[specification] 

EdgeForm is simple to use. EdgeForm[ ] means no edges are to be drawn. Otherwise, 
s p e c i f i c a t i o n can be any modification or list of modifications involving Hue, RGBColor, 
CMYKColor, GrayLevel, or Thickness. FaceForm is only useful if both the front and back 
faces of some list of similar polygons can be seen and they are to be colored or shaded 
differently, f rontspec and backspec can be color or shading modifiers or a Surf aceColor 
object. It is more complicated and will be discussed below. There are many new options 
available for Graphics3D. 

Complement[Options[Graphics3D], Options[Graphics]] 

{AmbientLight -> GrayLevel[0.], AspectRatio -> Automatic, 
AxesEdge -> Automatic, Boxed -> True, 
BoxRatios -> Automatic, BoxStyle -> Automatic, 
FaceGrids -> None, Lighting -> True, 
LightSources -> 

{{{1., 0., 1.}, RGBColor[1, 0, 0]}, 
{{1., 1., 1.}, RGBColor[0, 1, 0]}, 
{{0., 1., 1.}, RGBColor[0, 0, 1]}}, 

Plot3Matrix -> Automatic, Polygonlntersections -> True, 
RenderAll -> True, Shading -> True, 
SphericalRegion -> False, ViewCenter -> Automatic, 
Viewpoint -> {1.3, -2.4, 2.}, ViewVertical -> {0., 0., 1.}} 

The only one of these that is familiar is AspectRatio, which just has a different default 
value here. AmbientLight specifies the general overall illumination level of the graphics. Its 
value can be either a GrayLevel, Hue, or RGBColor specification. AxesEdge determines on 
which edges of the display the axes should be drawn. See The Mathematica Book [Wolfram] for 
a description of its possible values. The three next options, Boxed, BoxRatios and BoxStyle 
refer to the enclosing box drawn around the graphics object. Boxed itself is either True or 
False. Changing BoxRatios can distort the graphics by making it fit in a strangely shaped 
box. B o x S t y l e can take a list of modifiers such as GrayLevel, Hue, Thickness, and 
Dashing. FaceGrids determines if the faces of the bounding box should have grids drawn 
on them. It is similar to the option GridLines for 2-dimensional graphics. The options 
Light ing and LightSources determine if the graphics should appear to be colored by 
reflecting light from the indicated point sources. P lo t3Matr ix has been replaced by 
ViewCenter and ViewVertical . P o l y g o n l n t e r s e c t i o n s and RenderAll affect how 
polygons are drawn and for which ones PostScript code is generated. SphericalRegion is 
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mainly useful in creating graphics animations. The final three determine the relative position 
of the graphics object in the viewing area. Viewpoint can be set from a special graphics 
dialog box in Notebook versions of Mathematica. Here is a slight modification of the preceding 
graphics design using some of these. 

Show[Graphics3D[ 
{ 
PointSize[0.05], Point[{0,2,2}], Point[{4,2,2}], 
Thickness[0.02], Line[{{0, 2, 2}, {4, 2, 2}}], 
Polygon[{ {0, 0, 0}, {1.5, 1.5, 1.5}, 

{2.5, 1.5, 1.5}, {4, 0, 0} }], 
Polygon[{ {4, 0, 0}, {2.5, 1.5, 1.5}, 

{2.5, 2.5, 1.5}, {4, 4, 0} }], 
Polygon[{ {4, 4, 0}, {2.5, 2.5, 1.5}, 

{2.5, 2.5, 2.5}, {4, 4, 4} }], 
Polygon[{ {1.5, 2.5, 2.5}, {2.5, 2.5, 2.5}, 

{4, 4, 4}, {0, 4, 4} }], 
Polygon[{ {0, 4, 4}, {1.5, 2.5, 2.5}, 

{1.5, 2.5, 1.5}, {0, 4, 0} }], 
Polygon[{ {0, 4, 0}, {1.5, 2.5, 1.5}, 

{1.5, 1.5, 1.5}, {0, 0, 0} }], 
{EdgeForm[{Hue[l], Thickness[0.02]}], 
Cuboid[{1.5, 1.5, 1.5}, {2.5, 2.5, 2.5}]} 

}], Boxed -> False, 
ViewPoint->{1.091, -2.930, 1.294}]; 

Of course, we prefer to use Mathematica itself to create the graphics objects rather than 
typing in coordinates. E.g., here is a five-sided random folded polygon. 
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Show[Graphics3D[ 
Polygon[Table[ {Random[], Random[], Random[]}, 

{5}]], 
ViewPoint->{1.711, -2.751, 0.975} ]]; 

6.2 Three-Dimensional Objects in Packages 

6.2.1 Shapes 

The graphics packages supplied with Mathematica contain a number of extra 3-dimensional 
geometrical objects in two different packages. The following are in Graphics Shapes^ . 

Cylinder[radius(l), height(1), number(20)] 
Cone[radius(1), height(1), number(20)] 
Torus[radius(1), radius(0.5), number(20), number(10)] 
Sphere[radius(1), number(20), number(15)] 
MoebiusStrip[radius(1), radius(0.5), number(20)] 
Helix[radius(l), height(0.5), turns(2), number(20)] 
DoubleHelix[radius(1), height(0.5), turns(2), number(20)] 

The numbers in parentheses are the default values when the names are used without any 
specified arguments. 

These geometric objects are all displayed in a standard position centered on the vertical axis 
at the origin. In order to locate them differently, it is necessary to use the two operations 
T r a n s l a t e S h a p e [ s h a p e , { x , y , z } ] and R o t a t e S h a p e [ s h a p e , p h i , t h e t a , 
p s i ] that are found in the same package. T r a n s l a t e S h a p e is easy to understand; it just 
translates every coordinate by the given vector. RotateShape is more complicated since phi, 
theta, and psi refer to Euler angles and there are different conventions concerning them. First 
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of all, Mathematica uses the European convention that has the names phi and psi interchanged 
compared to the American convention. However, it keeps them in the American order, which 
is confusing. Secondly, R o t a t e S h a p e makes use of R o t a t i o n M a t r i x 3 D that is in the 
package G e o m e t r y " R o t a t i o n s " and that calculates the appropriate matrix for a rotation 
with given Euler angles. The matrix used refers to what are called "body coordinates" in 
physics. However, Mathematica constructs everything with reference to a fixed set of "space 
coordinates," which means that the transpose of this matrix should have been used. To correct 
this inside RotateShape, it is necessary to use negative angles. Thus, we redefine these two 
important constructs as follows: 

Needs["Graphics"Master""] 
rotationMatrix3D[phi_, theta_, psi_] := 

Transpose[RotationMatrix3D[phi, theta, psi]]; 
rotateShape[shape_, phi_, theta_, psi_] := 

RotateShape[shape, -psi, -theta, -phi]; 

Then we can illustrate Euler angles by showing their effect on a standard coordinate system. 

a x e s = 
{ { T h i c k n e s s [ 0 . 0 2 ] , L i n e [ { { 0 , 0 , 0 } , { 1 , 0 , 0 } } ] , 

T e x t [ " x " , { 1 . 1 , 0 , 0 } ] } , 
{ T h i c k n e s s [ 0 . 0 1 7 5 ] , L i n e [ { { 0 , 0 , 0 } , { 0 , 1 , 0 } } ] , 

T e x t [ " y " , { 0 , 1 . 1 , 0 } ] } , 
{ T h i c k n e s s [ 0 . 0 1 5 ] , L i n e [ { { 0 , 0 , 0 } , { 0 , 0 , 1 } } ] , 

T e x t [ " z " , { 0 , 0 , 1 . 1 } ] } } ; 

We also want to change the view point 

Show[Graphics3D[axes], 
Boxed -> False, 
ViewPoint->{2.996, 0.318, 1.540}]; 
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The effect of a rotation by Euler angles (phi, thêta, psi) = (Pi/6, Pi /4 , Pi/5) can be 
demonstrated by showing the successive positions of the axes under these rotations. We write 
three graphics commands with suppressed outputs and then show all three pictures by a 
GraphicsArray. In each case, the new position of the coordinate axes is shown in black, and 
the old position is in gray. The labels of the original x, y, and z axes remain in all three 
pictures. 

pictl = Show[Graphics3D[ 
{ { GrayLevel[0.5], axes}, 

{ rotateShape[axes, Pi/6, 0, 0], 
Text[ "x"·, rotationMatrix3D[N[Pi/6], 0, 0]. 

{1.2, 0, 0}], 
Text[ "y"', rotationMatrix3D[N[Pi/6], 0, 0]. 

{0, 1.2, 0}], 
Text[ "ζ'", rotationMatrix3D[N[Pi/6], 0, 0]. 

{0, 0, 1.3}]}} 
], Boxed -> False, 

ViewPoint->{2.996, 0.318, 1.540}, 
PlotLabel -> "Rotate about the \nz-axis by Pi/6", 
DisplayFunction -> Identity]; 

pict2 = Show[Graphics3D[ 
{ { GrayLevel[0.5], 

rotateShape[axes, Pi/6, 0, 0], 
Text[ "x"', rotationMatrix3D[N[Pi/6], 0, 0]. 

{1.1, 0, 0}], 
Text[ "y"', rotationMatrix3D[N[Pi/6], 0, 0]. 

{0, 1.1, 0}], 
Text[ "z"', rotationMatrix3D[N[Pi/6], 0, 0]. 

{0, 0, 1.3}] }, 
{ rotateShape[axes, Pi/6, Pi/4, 0], 

Text[ "x1■", 
rotationMatrix3D[N[Pi/6], N[Pi/4], 0]. 
{1.4, 0, 0}], 

Text[ "y ' ' " , 
rotationMatrix3D[N[Pi/6], N[Pi/4], 0]. 
{0, 1.2, 0}], 

Text [ " z · * ", 
rotationMatrix3D[N[Pi/6], N[Pi/4], 0]. 
{0, 0, 1.1}]} } 

], Boxed -> False, 
ViewPoint->{2.996, 0.318, 1.540}, 
PlotLabel -> 

file:///nz-axis
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"Rotate about the \nnew x'-axis by Pi/4", 
DisplayFunction -> Identity]; 

pict3 = Show[6raphics3D[ 
{ { GrayLevel[0.5], 

rotateShape[axes, Pi/6, Pi/4, 0 ] , 
Text[ "x1■", 

rotationMatrix3D[N[Pi/6], N[Pi/4], 0 ] . 
{1.2, 0, 0}], 

Text[ H y · ' " , 
rotationMatrix3D[N[Pi/6], N[Pi/4], 0 ] . 
{0, 1.2, 0}], 

Text [ " z ■ ■ " , 
rotationMatrix3D[N[Pi/6], N[Pi/4], 0] . 
{0, 0, 1.1}] }, 

{ rotateShape[axes, Pi/6, Pi/4, Pi/5], 
Text[ "x"'", 

rotationMatrix3D[N[Pi/6], N[Pi/4], N[Pi/5]]. 
{1.4, 0, 0}], 

Text[ »y···», 
rotationMatrix3D[N[Pi/6], N[Pi/4], N[Pi/5]]. 
{0, 1.2, 0}], 

Text[ " z ■ ' '", 
rotationMatrix3D[N[Pi/6], N[Pi/4], N[Pi/5]]. 
{0, 0, 1.3}]}} 

] , Boxed -> False, 
ViewPoint->{2.996, 0.318, 1.540}, 
PlotLabel -> 

"Rotate about the \nnew z''-axis by Pi/5", 
DisplayFunction -> Identity]; 

Show[ GraphicsArray[{pictl, pict2, pict3}], 
DisplayFunction -> $DisplayFunction]; 

Rotate about the Rotate about the Rotate about the 
z-axis by Pi/6 new x'-axis by Pi/4 new z' '-axis by Pi/5 

z ' :. ' 
z z zy"'v,, 

7 ' ' ' 

■ y ► X ' ' 
y X Y ^Τ y 

x' x Χ χ - x x " 

file:///nnew
file:///nnew
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The first picture is the action of phi = Pi /6, which is a rotation about the z-axis by Pi/6. The 
new z'-axis is the same as the z-axis. The second picture is the action of theta, which is a 
rotation about the new x'-axis by Pi/4. The new x"-axis is the same as the x'-axis. Finally, the 
third picture is the action of psi, which is a rotation about the new z"-axis by Pi/5. The new z'"-
axis is the same as the z"-axis. 

Using translations and rotations, we can make a construction from the graphics objects in 
the Shapes package. 

Show[6raphics3D[ 
{ Cuboid[{-l, -1, -1}, {1, 1, 1}], 

T r a n s l a t e S h a p e [ C y l i n d e r [ ] , { 0 , 0 , 2 } ] , 
r o t a t e S h a p e [ T r a n s l a t e S h a p e [ C o n e [ ] , { 0 , 0 , 2 } ] , 

0 , P i / 2 , 0 ] , 
T r a n s l a t e S h a p e [ S p h e r e [ 0 . 5 ] , { 0 , - 3 , 0 } ] , 
r o t a t e S h a p e [ T r a n s l a t e S h a p e [ H e l i x [ ] , { 0 , 0 , 2 } ] , 

P i / 2 , P i / 2 , 0] 
} ] , Axes -> T r u e ] ; 

Here, the C y l i n d e r , Cone, and H e l i x are all originally placed on top of the Cuboid. Then 
the Cone is rotated about the x'-axis = the x-axis (because phi = 0) by theta = Pi/2. (Note that 
the x-axis runs along the lower front of the box.) For the H e l i x , the new x'-axis is the y-axis 
(because phi = Pi/2) and it is rotated about this axis by theta = Pi/2. 
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6.2.2 Polyhedra 
More shapes can be found in the package Graphics" Polyhedra", which are displayed in a 
somewhat different manner. 

Tetrahedron 
Cube 
Octahedron 
Dodecahedron 
Icosahedron 

Hexahedron 
GreatDodecahedron 
SmallStellatedDodecahedron 
GreatStellatedDodecahedron 
Greatlcosahedron· 

These are actually the names of the lists of polygons making up the various shapes. They are 
converted into Graphic s 3D objects by affixing the head Polyhedron. In addition, 
Polyhedron can take two optional arguments specifying the center of the shape and a scaling 
number specifying its size. In order to try them out, we load the Graphics "Master" package 
if it hasn't already been loaded. The default location of the center is {0, 0, 0}, with default size 
equal to 1. 

Show[Polyhedron[Tetrahedron], Axes -> True]; 

In the next picture, all of the regular solids are shown, in different locations. 

Show[ Polyhedron!Cube, {0, 0, -1.5}], 
Polyhedron[Tetrahedron], 
Polyhedron[Octahedron, {0, -1.5, 1.5}, 
Polyhedron[Dodecahedron, {1.5, 0.5, 1. 
Polyhedron[Icosahedron, {-1.5, 0.5, 1. 
Axes -> True]; 

0.8], 
5}, 0.8], 
5}, 0.8], 
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The polygons making up one of these shapes can be accessed by using 
First [ Polyhedron [ name ] ]. Thus: 

First[Polyhedron[Tetrahedron]] 

{Polygon[{{0., 0., 1.73205}f {0., 1.63299, -0.57735}, 
{-1.41421, -0.816497, -0.57735}}], 

Polygon[{{0., 0., 1.73205}, {-1.41421, -0.816497, -0.57735}, 
{1.41421, -0.816497, -0.57735}}], 

Polygon[{{0., 0., 1.73205}, {1.41421, -0.816497, -0.57735}, 
{0., 1.63299, -0.57735}}], 

Polygon[{{0., 1.63299, -0.57735}, 
{1.41421, -0.816497, -0.57735}, 
{-1.41421, -0.816497, -0.57735}}]} 

Since a polyhedron consists of a list of polygons, this description can be used together with 
graphics modifiers to create polyhedra with other characteristics. For instance, a dodecahedron 
has twelve faces which can be colored by giving a list of twelve hues. In order to see these 
colors, we have to turn off the default lights. 

Show[ Graphics3D[ 
Transpose[{ 

Table[Hue[l - i/12], {i, 12}], 
First[Polyhedron[Dodecahedron]]}] ], 

Lighting -> False ]; 
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A cube just fits inside an octahedron with its vertices touching the faces of the octahedron. 
(Here, WireFrame is an operation from the package Graphics Shapes^ which removes the 
surfaces, just leaving the edges of the polygons.) 

Show [ Po lyhedron[Cube] , 
WireFrame[ 

Polyhedron[Octahedron, { 0 , 0 , 0 } , 1 . 4 5 ] ] , 
Boxed -> F a l s e ] ; 

A rotated cube fits inside a dodecahedron with its vertices the same as some of the vertices 
of the dodecahedron and its edges lying in the faces of the dodecahedron. 

Show[ r o t a t e S h a p e [ P o l y h e d r o n [ C u b e ] , 0 . 3 5 , 0 . 5 4 , 0 ] , 
r o t a t e S h a p e [ 

WireFrame[ 
Polyhedron[Dodecahedron, { 0 , 0 , 0 } , 1 . 1 5 ] ] , 
0 , 0 , 0 ] , 

Boxed -> F a l s e , 
V i e w P o i n t - > { 2 . 2 2 2 , - 2 . 4 5 1 , 0 . 7 1 3 } ] ; 
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6.2.3 Color in three-dimensional graphics 
The next two commands produce the following two pictures. 

Show[Graphics3D[ 
{ SurfaceColor[GrayLevel[0.2], GrayLevel[0.8], 5], 

Sphere[] }], 
LightSources -> { {{1., 0., 1.}, GrayLevel[0.9]}, 

{{0., 1., 1.}, GrayLevel[0.9]} 
}]; 

Show[Graphics3D[ 
{ SurfaceColor[RGBColor[0.9, 0.9, 0.9], White, 10], 

Sphere[]}], 
LightSources -> { {{1., 0., 0.3}, Red}, 

{{0., 1., 0.3}, Yellow}, 
{{-0.3, 0., 1.}, Blue}}]; 



348 Part II · Programming Language 

6.2.4 Combining three-dimensional graphics 
The output of Plot3D is -Surf aceGraphics- so it cannot be used together with other 
Graphics3D constructions. The solution is that Graphics3D[ Surf aceGraphics [ ] ] 
converts the Surf a c e G r a p h i c s to a Graphics3D object. However, different 
Surf aceGraphics can be combined with Show. 

Show[ Plot3D[ Sin[x y] , {x, 0, P i } , {y, 0, P i } , 
DisplayFunction -> Ident i ty ] , 

Plot3D[ Cos[x y ] , {x, 0, P i } , {y, 0, P i } , 
DisplayFunction -> Ident i ty ] , 

DisplayFunction -> $DisplayFunction]; 

Show[Graphics3D[ 
Plot3D[ Sin[x y ] , {x, 0, P i } , {y, 0, P i } , 

DisplayFunction -> Ident i ty ] ] , 
Polyhedron[Dodecahedron, { P i / 2 , P i / 2 , 0 } , 1 . 5 ] , 
DisplayFunction -> $DisplayFunction]; 
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7 Exercises 

1. Make pictures of the partial sums of the Maclaurin's series approximation to sin x. 

2. Complete the discussion of Fourier series approximations. Use cos series and the full sin 
and cos series for given periodic functions. 

3. Make pictures of the solutions of partial differential equations. 

4. In the picture with the cube, cylinder, cone, and helix, where would the helix appear if 
the directions for it are replaced by 

rotateShape[ TranslateShape[Helix[], {0, 0, 2}], 
Pi/2, Pi/2, Pi/2 ] 

Make a picture to see if your prediction is correct. 

5. Make some of the other pictures of regular solids that fit nicely inside other regular 
solids. 



CHAPTER Λ Λ 

1 Introduction 
There are still many things to be learned about using Mathematica as a programming language. 
In this chapter six miscellaneous topics are collected together to help you fine-tune your 
programming abilities: Packages, Attributes, Named Optional Arguments, Evaluation, General 
Recursive Functions, and Substitution and the Lambda Calculus. The first four are basic 
aspects of the Mathematica programming language, while the last two consider how more 
general programming issues are treated in Mathematica. There are several sources for further 
information; e.g., The Mathematica Journal and news features on computer networks. A good 
way to deepen your knowledge is to read other people's programs and try to decide why 
things are written the way they are. The packages supplied with Mathematica are a good place 
to start. When you find that you can do better by writing briefer, more transparent, more 
cogent, or faster programs, then you have begun to master Mathematica. 

2 Packages 
Packages are the final organizing ingredient in the Mathematica language. These are 
structures that enable one to completely isolate certain portions of code from the outside 
world. Not only are variables protected as in Modules, but function definitions are protected 
as well. The structural feature that permits this is the notion of Contexts, which will require 
some explanation. 

351 
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2.1 Contexts 
Contexts make themselves evident in a setting familiar to most users of Mathematica. For 
example, let us try to evaluate a Laplace transform, forgetting that it is defined in a package. 

LaplaceTransform[2 t*3, t, s] 

LaplaceTransform[2 t3, t, s] 

As is to be expected, nothing happens because the appropriate package hasn't been loaded. So, 
load the package. 

Needs["Calculus "LaplaceTransform""] 

LaplaceTransform::shdw: 
Warning: Symbol LaplaceTransform appears in multiple contexts 
{Calculus"LaplaceTransform", Global"}; definitions in context 
Calculus"LaplaceTransform"may shadow or be shadowed by other 
definitions. 

What does this strange message about "multiple contexts" and "definitions...shadowed by 
other definitions" mean? Furthermore, LaplaceTransform still doesn't work. 

LaplaceTransform[2 t A 3 , t , s ] 

LaplaceTransform[2 t 3 , t , s ] 

Maybe the message means we have to clear LaplaceTransform before using it. 

Clear[LaplaceTransform] 
LaplaceTransform[2 t"3, t, s] 

LaplaceTransform[2 t3, t , s] 

It still doesn't work, but there is a more powerful way to clear expressions, after which it 
finally works. 

Remove[LaplaceTransform] 
LaplaceTransform[2 t^3, t, s] => 12/s4 
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This is all very strange, but note well the remedy for a function refusing to work after it has 
been tried before loading the appropriate package; namely, Remove the offending function. 
What is going on? First we have to understand names in Mathematica. 

2.2 Names 
Names are an important aspect of Mathematica. Everything, in fact, depends on the way that 
names are handled. The command Names [ s t r i n g ] returns all names known to Mathematica 
at the time of its being run that match the given pattern. 

Names["B*"] 

{Background, BaseForm, Begin, BeginPackage, Below, BernoulliB, 
Bessell, BesselJ, BesselK, BesselY, Beta, BetaRegularized, 
Binomial, Blank, BlankForm, BlankNullSequence, BlankSequence, 
Block, Bottom, Boxed, BoxRatios, BoxStyle, Break, Byte, 
ByteCount} 

In this example, "B* " stands for all words beginning with B. The * is a wild card that matches 
anything. Certain names have values attached to them, either because they have built-in 
values, or because values have been assigned in the current session. Clear [name] clears 
values assigned to name. As an experiment, give aa the value 5 by an assignment statement. 

aa = 5 => 5 

Then, of course, aa has the value 5 as we can check. 

aa => 5 

Now clear aa and observe that it no longer has a value. 

Clear[aa] ; aa => aa 

However, Mathematica still knows about aa as the following demonstrates. 

Names["a*"] => {aa} 

Clear [ name ] , or Clear [ " nameform" ] removes values assigned to a particular name, or to 
all symbols whose names match a particular nameform. It does not remove the name however; 
it just removes values assigned to a name. Remove [ aa ] actually removes the object itself 
from the context so that Mathematica no longer knows anything about it. 

Remove[aa]; Names["a*"] => {} 
But, what is meant by removing an object from a context? 
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2.3 The Hierarchy of Contexts 
Actually, everything in Mathematica has a much more complicated name which includes its 
context. Contexts form a hierarchy that lies behind everything that we have seen so far in our 
use of Mathematica. One can see them by asking for the contexts of particular names. 

{Context[LaplaceTransform], Context[Sin], Context[aa]} 
{Calculus"LaplaceTransform", System", Global"} 

The system variable $ContextPath describes the current state of this hierarchy and 
$Context tells where we are on this path at present. 

$ContextPath 
{Calculus"LaplaceTransform", Calculus"Common"Support", 
Calculus"DiracDelta", Global", System"} 
$Context Global 

Every name, either built-in or user defined, has a full name that includes the context in 
which it is defined. For instance, the context of all built-in system commands is System" and 
the context in which one normally works is Global" . Thus, the full name of S in is 
System" Sin and the full name of aa is Global " aa. These names can always be used instead 
of their abbreviated forms. Note that context names always end with a tick, " "." The long 
context name Calculus"LaplaceTransform" indicates that LaplaceTransform" is a 
subcontext of the context Calculus". We can get a list of all of the names that have been 
introduced in the Global context during the current session by the following command. Note 
that the output here depends on everything that has been done in the current session. 

Names["Global"*"] { s , t } 

From one point of view, the value of $ContextPath should be seen as a tree structure 
reflecting the directory structure of the Packages folder. Thus, right now it looks like the 
following tree. 

Laplace 
Transform 

Calculus 
' i 
Common 

I 
Support 

System 
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This tree will be searched from left to right by a depth first search to find names. Only the 
leaves of this tree are actual contexts. There is no context named just Calculus" . If more 
packages are added, then the simple directory structure disappears. 

Needs["Graphics"ImplicitPlot""] 
Needs["Calculus"Limit""] 
$ContextPath 
{Calculus"Limit", Graphics"ImplicitPlot", 
Utilities"FilterOptions", Calculus"LaplaceTransform", 
Calculus"Common"Support", Calculus"DiracDelta", Global", 
System"} 

Now there are two nodes named Ca lcu lus separated by nodes named Graphics and 
U t i l i t i e s . So, from this point of view it is better to see $ContextPath as a simple list 
which is searched from left to right. 

When a new symbol is entered, Mathematica does the following: 

i) It looks in the current context to see if the symbol belongs to the list of names in that 
context. If so, it returns the latest value it has for the symbol, or just the symbol itself if 
there is no value for it. 

ii) If the symbol is not in the current context, it then searches the contexts on the current 
context path, and does the same with the first context in which it finds the symbol. 

iii) If the symbol is nowhere on the current context path, it adds the symbol to the list of 
known names in the current context. Next time the symbol is used, it will be found in 
the current context. 

The LaplaceTransf orm that was mistakenly typed at the beginning of this session was 
therefore placed in the Global" context. When the LaplaceTransf orm package was loaded, 
the context named C a l c u l u s " L a p l a c e T r a n s f o r m " was created. The next time 
LaplaceTransf orm was typed, it was found in the Global" context where it had no value, 
so it was returned unevaluated. The LaplaceTransf orm in the Global" context hid, or 
shadowed, the LaplaceTransf orm in the Calculus" LaplaceTransf orm" context so the 
real one couldn't be found. Only after the command Remove [Laplace—Transform] 
removed LaplaceTr ans form from the Global" context (only) could Mathematica find the 
real one in the Calculus "Laplace—Transform" context. Mathematica is supposed to warn 
one about the possibility of this happening, which is exactly what it did with the warning 
message. 

2.4 How to Make a New Context 
Start a new session and put a name in the Global" context. 

a => a 
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To create a new context called news tuf f ", use the following command. 

Begin["newstuff""] ; 

Note the quotation marks and the tick. Check that we are now in a different context. 

{$Context, $ContextPath} => {newstuff", {Global", System"}} 

Notice that newstuf f " has not been added to the context path. Now give a value to a using a 
new symbol b. 

a = b + 5; 

The symbol b has been introduced in this new context, so its real name is newstuf f" b. 

Names["newstuffv*"] => {b} 

One can also find it by the following command, which actually shows b with its complete 
name. 

??newstuff"* => newstuffvb 

In this context, a has its given value, even though a is in the Global context. 

a => 5 + b 
Context[a] => Global" 

We can introduce a new symbol with complete name newstuf f a by using its complete 
name in the assignment statement. 

newstuff"a = c 7; 

Now if we ask for a we get its value in the current context. 

a => 7 c 

Nevertheless, we can still retrieve the previous a by using its complete name. 

Global "a => 5 + b 

Finally, if we ask for the current names in newstuf f" we get three entries. 

Names["newstuff"*"] => {a, b, c} 
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To leave the context newstuf f ", use the command End [ ] . 

End[]; 

Finally, check the context path and the context again. 

{$Context, $ContextPath} => {Global", {Global", System"}} 

Now the current context is again Global" and the context newstuf f " seemingly has 
disappeared. However, it is still there, somewhere in the background. 

newstuff"a => 7 newstuff"c 

2.5 How to Make a New Package 
Packages are a technique for 

i) setting up new contexts and adding them to the context path; 
ii) exporting certain information to a visible context; 

iii) hiding the rest of the information 

Here is a brief example of how this works. Instead of a B e g i n statement, use a 
BeginPackage statement. 

BeginPackage["newerstuff""]; 

Check the current context and context path. 

{$Context, $ContextPath} 

{newerstuff", {newerstuff", System"}} 

Note that Global" is gone but newerstuf f" has been added to the context path; the only 
other context on the path is System". Now give a usage message for the function that is to be 
exported to the visible contexts. 

gamma::usage = 
"This function is to be exported to the Global 
context."; 
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Then, start another new context that is to be a subcontext of n e w e r s t u f f " , and give it the 
standard name " p r i v a t e " . (Note the tick at the beginning and the end.) 

Begin["*private""]; 

Check where we are. 

{$Contex t , $ContextPath} 

{ n e w e r s t u f f " p r i v a t e " , { n e w e r s t u f f " , Sys tem"}} 

There are several things to notice. The syntax " p r i v a t e " , with an additional tick at the 
beginning means that this context is a subcontext of the current context which is 
n e w e r s t u f f ", so its actual name is the compound form n e w e r s t u f f " p r i v a t e " given by 
$ C o n t e x t . Since we used B e g i n , this context was not added to the context path, which 
remains unchanged. Next, introduce an auxiliary variable b e t a , give it a value and use it to 
define the function gamma. 

beta = 57; 
gamma[x_] := beta^x 

Now end the private context. 

E n d [ ] ; 

Check where we are again. 

{$Context, $ContextPath} 

{ n e w e r s t u f f " , { n e w e r s t u f f " , Sys tem"}} 

Finally, end the package. 

EndPackage[] 

Check where we are yet again. 

{$Context, $ContextPath} 

{Global", {newerstuff", Global", System"}} 
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We are back in the Global^ context, but the context newerstuf f " has been added to the 
context path so symbols that exist in the newerstuf f " context will be found without using 
their full names. 

We can now use the function gamma. 

gamma[3] => 185193 

But the constant beta is hidden because it is in the context newerstuff private^ which is 
not on the context path. The idea is that beta, being in the pr ivate context is not accessible 
to the user. 

beta =» be t a 

However, it's not really lost since we can still get it back by using the full context name. 

??newerstuff private beta 
newerstuff"private"beta 
newerstuff"private'beta = 57 

We can also reset beta, changing gamma along with it. 

newerstuff pr ivate beta = 100; 
gamma[3] => 1000000 

Using the p r i v a t e context makes if difficult, but not impossible, to change gamma in this 
way. We can find out what Mathematica knows about gamma using ??. 

?? gamma 

This function is to be exported to the Global context. 
gamma [ newerstuf f " private" x__] : = 
newerstuff"private"betaAnewerstuff"private"x 

Notice that the variable x used in the definition of gamma also has a very long "real" name. See 
[Maeder 1] for a detailed treatment of contexts. 

2.6 Features of Packages 

2.6.1 The BeginPackage statement 
The general structure of a package is as follows. First comes a BeginPackage statement 
containing the name of the new package in quotation marks. 

BeginPackage["PackageNamev"] 
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Recall that when we loaded the package C a l c u l u s "LaplaceTransform" above and then 
looked at the context path, it also contained a context Calculus"Common"—Support". 

$ContextPath 

{ C a l c u l u s " L a p l a c e T r a n s f o r m " , Ca lcu lus"Common"Suppor t " , 
C a l c u l u s " D i r a c D e l t a " , G l o b a l " , Sys tem"} 

If you look at the Laplace transform package, then you will see that the Beg inPackage 
statement contains a second argument. 

BeginPackage[ "Calculus"LaplaceTransform"", 
"Calculus"Common"Support"" ] 

There can be as many additional arguments as desired which are the quoted names of 
packages containing operations that are required in the present package. They will all be 
automatically loaded, if they are not already present, by the B e g i n P a c k a g e statement. 
Alternatively, one can also follow the BeginPackage statement with a Needs [ "Package" " ] 
statement to read in further needed operations. (Note that the M a s t e r packages cannot be 
used either in the BeginPackage statement or in a Needs statement inside a package.) There 
is in fact an actual hierarchy of contexts determined by which contexts depend on other 
contexts by calling them when they are loaded. This hierarchy forms a directed graph since a 
given context may have more than one ancestor and of course more than one descendent. 

2.6.2 The usage messages 

The general format of a usage message is 

name::usage = "message"; 

Note the semicolon at the end. If it is omitted, then all of the usage messages will be printed if 
the package is read in as a notebook. Usage messages are not required. What is required is that 
the objects that are to be exported from the private part of the package must be mentioned 
before the Beg in [ " " p r i v a t e " " ] statement, so that when their names are mentioned in the 
private part of the package, they will be found outside in the main part of the package. There is 
no danger of these names conflicting with names in the Global " context since that context has 
been removed from the context path. It is sufficient to just list all the names before starting the 
" p r i v a t e " context, followed by semicolons. However, if a usage message is given, then once 
the package is loaded, typing ?name will display the message just as it does for built-in 
operations. The desired format is to first give a usage message for the name of the package 
itself so the user can find out what it does. Then give usage messages for the exported objects 
in the form 

"name[argument1, argument2, . . .] does something."; 
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where the arguments are given names that suggest their role in the object. The idea is that if 
users read the usage message then they will know how to use the operation. In particular, they 
will know how many arguments of what kinds the object expects. 

2.6.3 The private context in the package 
This is where all the work is done in constructing the required operations, defining rewrite 
rules, etc. Usually, in complicated situations, other auxiliary operations are needed to define 
the ones that will be exported. Because these constructions are given in the private context, 
they will not be available to the user. One justification for this is that the usage messages are 
specifications for the operations constructed in the package. All the user needs to know is what 
the usage messages promise the operations will do. How this is accomplished is up to the 
implementer, who may change his or her mind at some later point when the package is 
updated or improved. As long as the exported operations do what they are supposed to do, 
the details of the implementation shouldn't matter. Therefore, they should be kept hidden 
from the user. In particular, the implementer should be free to change the hidden auxiliary 
operations at any time without affecting the user's programs. 

Of course, in Mathematica, these concerns are somewhat academic since if you have access to 
a package at all, then you can look at the complete package to find out exactly how it is 
constructed. You can even change it if you want to. But there is still a point in only using 
exported operations with usage messages precisely because packages do get updated. E.g., 
packages supplied with Mathematica itself are often updated when a new version of the 
program comes out. 

2.7 An Alternative Form for Packages 
Henry Cejtin and Theodore Gray have advocated an alternative form for Packages, as 
discussed beginning on p 259 of [Blachman 1]. 

3 Attributes 
Nearly all built-in functions have attributes chosen from the following 14 possibilities. 

Constant Locked 
Flat Oneldentity 
HoldAll Orderless 
HoldFirst Protected 
HoldForm ReadProtected 
HoldRest Stub 
Listable Temporary 
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Attributes have an important effect on the way in which functions are evaluated. (See Section 5 
below.) There are several ways to manipulate At tr ibutes of both built-in and user-defined 
functions. One can add attributes or change those that are already present by using the 
command SetAttributes. 

? SetAttributes 

S e t A t t r i b u t e s [ s , a t t r ] adds a t t r t o t h e l i s t of a t t r i b u t e s 
of t h e symbol s . 

This is how to set attributes for user-defined functions, but of course, it only works for built-in 
functions if they are unprotected first. At tr ibutes can be removed by using the command 
Clear Attributes . 

?ClearAttributes 

C l e a r A t t r i b u t e s [ s , a t t r ] removes a t t r from the l i s t of 
a t t r i b u t e s of t h e symbol s . 

The command Attr ibutes [ Symbol ] returns the current list of attributes for a symbol. It 
can be used to change this list just by assigning some new list of attributes to it. Again, 
unprotect built-in functions before doing this. The attributes HoldAll, HoldFirst, and 
HoldRest will be discussed in Section 5 below. 

Let us look at some attributes that are involved in algebraic operations. 

Attributes[Plus] 

{Flat, Listable, Oneldentity, Orderless, Protected} 

Flat corresponds to associativity in the sense for instance that (a + b) + c is the same as a + b + 
c. It is called F l a t because in its general guise F l a t means, for instance, that 
f [ f [ a , b ] , c] = f [ a , b , c] and this looks like flattening a list in case f is List . 
Similarly, Orderless corresponds to commutativity in the sense that a + b is the same as b + 
a. What it actually means is that the arguments of an orderless function are sorted according to 
the built-in Sor t function before the function is applied. As we saw in the chapter on 
imperative programming, P lus is not actually commutative because the arguments are 
evaluated before they are sorted, as was shown in Chapter 8, Section 2.1. (See also the section 
on Evaluation below.) You might think that Oneldentity has something to do with 0 being 
an identity for addition, but it doesn't. What it in fact means is that Plus of a single argument 
is the identity operation; i.e., Plus [ x ] = x. The identity for addition very nicely arises as the 
value of Plus [ ] , but this is controlled by a default value rather than by an attribute. 

Li s t a b i e is an important option that is possessed by many built-in functions. The 
following command finds all such functions. 
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Select[Names["*"], MemberQ[Attributes[#], Listable]&] 

{Abs, AiryAi, AiryAiPrime, AiryBi, AiryBiPrime, ArcCos, 
ArcCoshf ArcCotf ArcCoth, ArcCsc, ArcCsch, ArcSec, ArcSech, 
ArcSin, ArcSinh, ArcTan, ArcTanh, Arg, ArithmeticGeometricMean, 
Attributes, Bessell, BesselJ, BesselK, BesselY, Beta, 
BetaRegularized, Binomial, Cancel, Ceiling, Characters, 
ChebyshevT, ChebyshevU, Conjugate, Cosf Coshf Coshlntegral, 
Coslntegral, Cot, Coth, Csc, Cschf Divide, Divisors, 
DivisorSigma, EllipticE, EllipticF, EllipticK, EllipticPi, 
EllipticTheta, EllipticThetaPrime, Erf, Erfc, Erfi, EulerPhi, 
EvenQ, Exp, ExpIntegralE, ExpIntegralEi, Exponent, Factorial, 
Factorial2, Factorlnteger, Floor, FresnelC, FresnelS, Gamma, 
GammaRegularized, GCD, GegenbauerC, HermiteH, HypergeometricU, 
HypergeometricOF1, HypergeometricOFlRegularized, 
HypergeometriclFl, HypergeometriclFlRegularized, 
Hypergeometric2Fl, Hypergeometric2FlRegularized, Im, In, 
InString, IntegerDigits, JacobiP, JacobiSymbol, JacobiZeta, 
LaguerreL, LCM, LegendreP, LegendreQ, LerchPhi, Limit, Log, 
LogGamma, Logintegral, MantissaExponent, MessageList, Minus, 
Mod, N, Negative, NonNegative, $NumberBits, OddQ, Out, Plus, 
Pochhammer, PolyGamma, PolyLog, PolynomialGCD, PolynomialLCM, 
Positive, Power, PowerMod, Prime, PrimeQ, Quotient, Range, Re, 
RealDigits, Resultant, RiemannSiegelTheta, RiemannSiegelZ, 
Round, Sec, Sech, SetAccuracy, SetPrecision, Sign, Sin, Sinh, 
Sinhlntegral, Sinlntegral, SphericalHarmonicY, Sqrt, Subtract, 
Tan, Tanh, Times, ToExpression, Together, ToHeldExpression, 
Zeta} 

Looking at this list leads to the conclusion that if it would make sense for a function to be 
L i s t a b l e , then it probably is. It is clear what it means for a function of one variable to be 
L i s t a b l e ; it automatically maps itself down lists. But, notice that P l u s , Power, and Times 
are listable even though they are functions of two or more variables. Listability for functions of 
several variables includes the property of threadability as discussed in Chapter 5, Section 3.1. 

Our technique for finding all L i s t a b l e functions works for other attributes too. For 
instance, we can find out which things are Constant . 

S e l e c t [ N a m e s [ " * " ] , M e m b e r Q [ A t t r i b u t e s [ # ] , Constant]&] 

{ C a t a l a n , D e g r e e , E, EulerGamma, G o l d e n R a t i o , P i } 

The output from Names consists of strings, so to see the values of these constants we have to 
first convert them to expressions. Note that both N and ToExpress ion are listable. 
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N[ToExpression[%]] 

{0.915966, 0.0174533, 2.71828, 0.577216, 1.61803, 3.14159} 

Something is Locked if you can't change it at all, even by unprotecting it. 

Select[Names["*"], MemberQ[Attributes[#], Locked]&] 

{$Aborted, $BatchOutput, $CommandLine, $CreationDate, 
$DumpDates, $DumpSupported, Fail, False, I, $Input, $Linked, 
$LinkSupported, List, $MachineID, $MachineName, $MachineType, 
$Off, $OperatingSystem, $PipeSupported, $PrintForms, 
$PrintLiteral, $ReleaseNumber, $Remote, Symbol, $System, 
$TimeUnit, TooBig, True, $Version, $VersionNumber} 

Something has the attribute Stub if, whenever its name is used, the appropriate package is 
loaded. 

Select[Names[■'*"], MemberQ[Attributes[#], Stub]&] 

{} 

Apparently, nothing has this attribute, but Master packages assign it to operations in their 
directories. These commands are all used in non-front-end environments. Presumably 
commands like Integrate have the attribute Stub, except that it is hidden from users. 

Finally, nothing has the attribute Temporary. 

Select[Names["*"], MemberQ[Attributes[#], Temporary]&] 

{ } 

We have to use a Module that exports its local variable to get a temporary name. 

Module[{t}, t ] => t$6 

Now there is something with attribute Temporary. 

Select[Names["*"], MemberQ[Attributes[#], Temporary]&] 

{t$6} 

According to The Mathematica Book [Wolfram], these names are removed "when they are no 
longer needed". What that means is that if they occur just within a Module and are never 
exported to the global context, then they disappear when the Module has finished evaluating. 
Otherwise, they are removed when nothing refers to them anymore. 
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4 Named Optional Arguments 
Named optional arguments, as found in the plotting functions for instance, are very 
convenient to use. They are to be distinguished from positional arguments that must always be 
present in order for a function to work and whose effect on the output is determined by their 
position in the function. Named optional arguments can be given in any order (but usually 
only after the positional arguments, although this is only a convention) and may not be present 
at all. We'll give three illustrations of how to define your own named optional arguments 
using three different techniques. 

4.1 The Gram-Schmidt Procedure Revisited 
We shall rewrite the Gram-Schmidt procedure that was asked for in Exercise 8.2 of Chapter 7 
so that the inner product used there becomes an optional argument. Whether the vectors 
should be normalized and what inner product to use for that will also be optional arguments. 
The format here is based on a modification of the Gram-Schmidt package by John M. Novak 
that is distributed with Mathematica. Consider the problem of normalizing a vector. The default 
is to divide the vector by the square root of its Dot product with itself. If some other inner 
product is specified, then we want to replace Dot by that inner product. This is done by first 
giving a list of the options for a function normal ize (here just one), written as a list of 
substitutions. 

Options[normalize] = {innerProduct -> Dot}; 

Thus, the default value of innerProduct is set to Dot. Other possible values are pure 
functions of two variables that can serve as inner products. The problem then is to define 
normalize in such a way as to make use of this description of the options in the form of an 
optional argument that may or may not be present. The solution is based on the fact that / . 
associates to the left. 

normalize[vec_, opts ] : = 
With[ 

{innerp = 
innerProduct/.{opts}/.Options[normalize]}, 

If[ innerp[vec, vec]=!= 0, 
vec / Sqrt[innerp[vec, vec]], 
(*else*) 0 vec ] ]; 

In the definition of normalize, the purpose of the local variable innerp is to pick up the 
desired inner product to use in normalizing vectors. Since / . associates to the left, the line 

innerProduct /. {opts} /. Options[normalize] 
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gives innerProduct the value specified in o p t s if there is one, in which case the expression 
innerProduct is no longer present so the second / . Opt ions [ n o r m a l i z e ] has no effect. 
Otherwise it gets its value from Opt ions [ n o r m a l i z e ] . Try out normal i ze with a weighted 
dot product. Note: the round brackets are necessary here. 

normalize!{2, -1, 4}, 
innerProduct -> 

(Plus@@Thread[Times[#1, #2, {1, 2, 3}]]&)] 
Sqrt[2/3] -1 2 Sqrt[2/3] 

{ , , } 

3 3 S q r t [ 6 ] 3 

The projection function works in exactly the same way. 

Options[projection] = {innerProduct -> Dot}; 
projection[vl_, v2_, opts ] : = 

With[ 
{innerp = 

innerProduct /· {opts} /. 
Options[projection]}, 

If[ innerp[v2, v2] =!= 0, 
innerp[vl, v2] v2 / innerp[v2, v2], 
(*else*) 0 ] ] 

This is used to define a multiple projection operation as before. 

multipleProjection[vl_, vecs_, opts ] := 
Plus ΘΘ Map[projection[vl, #, opts]&, vecs] 

Finally, the Gram-Schmidt procedure itself has three possible optional arguments; which 
inner product to use, whether the vectors should be normalized, and if so how, and whether or 
not zero vectors are to be removed. 

Options[gramSchmidt] = { innerProduct -> Dot, 
normalized -> True, 
deleteZeros -> False }; 

i n n e r P r o d u c t will work as before, n o r m a l i z e d is allowed to have three possible values: 
True, meaning that vectors are to be normalized by using the given inner product, F a l s e , 
meaning that they are not to be normalized at all, and some alternative inner product to use 
just for normalizing. d e l e t e Z e r o s also has three possible options: F a l s e meaning they are 
not deleted, True, meaning vectors with zero components whose length equals the length of 
the input vectors are to be deleted, and finally, some other description of vectors to be deleted. 
The gramSchmidt procedure has to be written to make use of all three optional arguments. 
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gramSchmidt[vecs_List, opts ] : = 
Module[ 
{ orthogs, 

norm = normalized/. 
{opts}/·Options[gramSchmidt], 

innerp = innerProduct/· 
{opts}/.Options[gramSchmidt], 

delete = deleteZeros /· 
{opts}/·Options[gramSchmidt] }, 

orthogs = 
Fold[ 

Join[#l, 
{#2 -
multipleProj e c t i o n [ # 2 , #1, 

innerProduct->innerp]}]&, 
{ } , v e c s ] ; 

Which[ 
norm === True, orthogs = 

Map[ normalize[#, innerProduct->innerp]&, 
or thogs ] , 

norm === False , orthogs, 
True, orthogs = 

Map[ normalize[#, innerProduct->norm]&, 
o r t h o g s ] ] ; 

Which[ 
d e l e t e === False , orthogs, 
d e l e t e === True, Se l ec t [or thogs , 

(# =!= Table[0, {Length[vecs [ [1 ] ] ] } ] )&] , 
True, Se l ec t [or thogs , (# =!= delete)&] ] ] 

The heart of this program is the Fold statement which now includes a possible optional value 
for innerProduct. Its output is processed two more times in the Which statements to take 
care of possible optional values for normalized and deleteZeros. 

4.1.1 Examples 

4.1.1.1 

vectors = { {1 , 2 , 3 } , {2 , - 3 , - 4 } , {3 , - 1 , - 1 } , 
{1, -5, -7},{-l, 5, 2}, {6, 2, -8} }; 

gramSchmidt[vectors] 
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1 2 3 
{{ , Sqrt[-], }, 
Sqrt[14] 7 Sqrt[14] 

22 1 -4 

5 Sqrt[21] Sqrt[21] 5 Sqrt[21] 
1 2 - 7 

{0, 0, 0}, {0, 0, 0}, { , Sqrt[-], }, 
5 Sqrt[6] 3 5 Sqrt[6] 

{0, 0, 0}} 

gramSchmidt[vectors, normalized -> False] 

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {0, 0, 0}, {0, 0, 0}, 

{7/30, 7/3, 49/30}, {0, 0, 0}} 

gramSchmidt[vectors, deleteZeros -> True] 

1 2 3 
{{ , Sqrt[-], }, 
Sqrt[14] 7 Sqrt[14] 

22 1 -4 
{ , -( ), }, 
5 Sqrt[21] Sqrt[21] 5 Sqrt[21] 

1 2 - 7 
{ , S q r t [ - ] , }} 

5 S q r t [ 6 ] 3 5 S q r t [ 6 ] 

The options can be changed by the usual built-in command. 

SetOptions[gramSchmidt, normalized -> False] 
{InnerProduct -> Dot, Normalized -> False, 
DeleteZeros -> False} 

gramSchmidt[vectors, deleteZeros -> True] 

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {7/30, 7/3, -(49/30)}} 



Eleven · Some Finer Points 369 

Restore the options to their original values for further use. 

SetOptions[gramSchmidt, normalized -> True]; 

4.1.1.2 
matrix = { {8, 3, 0, 0}, 

{3, 2, 1, 2}, 
{0, 1, 2, 2}, 
(0, 2, 2, 14} }; 

gramSchmidt[ { {1, 0, 0, 0}, {0, 1, 0, 0}, 
{0, 0, 1, 0}, {0, 0, 0, 1} }, 

innerProduct -> (#1 · matrix . #2&)] 
1 -3 

{{ , o, 0, 0}f { , 2 Sqrt[2/7], 0, 0}, 
2 Sqrt[2] 2 Sqrt[14] 
{SqrtIS/14], -4 Sqrt[2/21], Sqrt[7/6], 0}, 
Sqrt[3/7] -4 1 Sqrt[3/7] 

{ , , , }} 
2 Sqrt[21] 2 Sqrt[21] 2 

4.1.1.3 
gramSchmidt [ 

{1, x, χΛ2, χΛ3, χΑ4}, 
innerProduct -> (Integrate[#1 #2, {x, -1, 1}]&), 
normalized -> ((#1Λ2 /. x -> 1)&)] // Together 

-1 + 3 x2 -3 x + 5 x3 3 - 30 x2 + 35 x4 
{1, X/ , , } 

2 2 8 
In this case, a possible zero vector is just the expression 0, so this has to be explicitly specified 
in the option d e l e t e Z e r o s if dependent functions are included in the input list. 

gramSchmidt [ 
{1, x, xA2, 2 xA2 - 3 x, xA3, xA4, χΛ4 - xA3}, 
innerProduct -> (Integrate!#1 #2, {x, -1, 1}]&), 
normalized -> ((#1Λ2 /· x -> l)&)f 
deleteZeros -> 0] // Together 
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- 1 + 3 x 2 - 3 x + 5 x 3 3 - 30 x 2 + 35 x 4 

{ I f X/ , , } 
2 2 8 

4.2 Newton s Method Revisited 

In this second example, we will have our own optional argument together with an optional 
argument that is passed on to a built-in function. First set the default options for Newton's 
method. 

Options[newtonsMethod] = { p r e c i s i o n -> None, 
SameTest -> SameQ}; 

The option p r e c i s i o n is our own, user-defined optional argument, so we have to take care of 
its possible values ourselves. The intention is that with the default value None for p r e c i s i o n , 
the output will be the value of N[ number ] , whereas if p r e c i s i o n is given a specific value, 
either a number or $ M a c h i n e P r e c i s i o n , then the output will be the value of N[number, 
p r e c i s i o n ] . The value for SameTest will just be passed to F i x e d P o i n t L i s t . It knows 
how to take care of the various possible optional values for SameTest, so we don't have to do 
anything about them. 

newtonsMethod[expr_, { x _ , x 0 _ } , o p t s ] : = 
With[ 

{ prec = precision/. 
{opts}/.Options[newtonsMethod], 

test = SameTest/. 
{opts}/.Options[newtonsMethod] }, 

FixedPointList[ 
Which[ 

prec === None, 
N[ Evaluate[ 

Simplify[x-expr/D[expr, x]]/.x->#]], 
True, 

N[ Evaluate[ 
Simplify[x-expr/D[expr, x]]/.x->#], 

prec] ]&, 
xO, SameTest -> test] ] 

The Which clause inside of FixedPointList chooses the precision used for the final output. 
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4.2.1 Examples 

newtonsMethod[(x*3 - 1 0 ) , { x , 1 } ] 

{ 1 , 4 . , 2 . 8 7 5 , 2 . 3 1 9 9 4 , 2 . 1 6 5 9 6 , 2 . 1 5 4 5 , 2 . 1 5 4 4 3 , 2 . 1 5 4 4 3 , 
2 . 1 5 4 4 3 , 2 . 15443} 

newtonsMethod[(χΛ3 - 10), {x, 1}, precision -> 30] 
{1, 4., 2.875, 2.3199432892249527410207939509, 
2.165961555177792788479790169, 2.154495925153374739552757015, 
2.154434691772292944716076761, 2.15443469003188372316524208, 
2.1544346900318837217592936, 2.1544346900318837217592936} 
newtonsMethod[(χΛ3 - 10), {x, 1}, precision -> 30, 

SameTest -> (Abs[#l - #2] < 10A-10 &)] 
{1, 4., 2.875, 2.3199432892249527410207939509, 
2.165961555177792788479790169, 2.154495925153374739552757015, 
2.154434691772292944716076761, 2.15443469003188372316524208, 
2.1544346900318837217592936} 

4.3 Solids of Revolution 
In the third example, we illustrate a further problem that arises if we want to define a function 
with optional arguments, some of which are to be passed on to a built-in function, but we don't 
know which ones ahead of time; for instance, if the function being defined includes a built-in 
plotting command and we want to be able to specify optional arguments in our function that 
will be passed to the plotting command. This problem is solved by the package 
U t i l i t i e s F i l t e r O p t i o n s \ (Look at it to see how it works.) 

Needs["Utilities^FilterOptions^"] 

We'll use this operation in a plotting routine that illustrates a surface of revolution together 
with cylindrical shells that show how the volume under the surface is approximated by such 
shells. As an option, we want to have a bounding cylinder for figures that require it, but we 
also want to pass on ordinary plotting options to Show. The operation will be called 
s h e l l P l o t . It's special optional argument is first given a default value. 

Options[shellPlot] = {boundingCylinder -> False}; 
Needs["Graphics Master^"] 

The operation F i l t e r O p t i o n s occurs in the next to the last line of the following definition 
where it picks out from all given options those that apply to 6raphics3D. 
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shellPlot[expr_, shells_List, {x_, x0_, xl_}, opts ]:= 
Module[ 

{ picture, 
shellvals = (expr/.x -> shells) / 2, 
val = (expr /. x -> xl) / 2, 
bound = 
boundingCylinder/.{opts}/.Options[shellPlot]}, 

picture = 
{ Map[ Graphics3D[TranslateShape[ 

Cylinder[#[[l]], #[[2]], 40], 
{0, 0, #[[2]]}]]&, 

Transpose!{shells, shellvals}]], 
WireFrame[ 
ParametricPlot3D[ 

{x Cosftheta], x Sin[theta], expr}, 
{x, xO, xl}, {theta, 0, 2 Pi}, 
DisplavFunction -> Identity]]}; 

If[ bound, AppendTo[picture, 
WireFrame[Graphics3D[TranslateShape[ 

Cylinder[xl, val, 40], {0, 0, val}]]]]]; 
Show[Flatten[picture], 

FilterOptions[Graphics3D, opts], 
DisplavFunction -> $DisplayFunction]]; 

Here are two examples, using different options. 

shellPlot[ 2 Sin[x], 
{Pi/6, Pi/3, Pi/2, 2 Pi/3, 5 Pi/6}, 
{x, 0, Pi}, Boxed -> False ]; 
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shellPlot[ Sin[x], {Pi/6, Pi/3}, 
{x, 0, Pi/2}, Boxed -> False, 
boundingCylinder -> True, 
ViewPoint->{1.308, 1.738, 2.591} ]; 

5 Evaluation 

5.1 Kinds of Values 

When we regard Mathematica as a functional programming language, we think of each head as 
a function. When such a head is given appropriate arguments, it processes them and returns 
some value. Sometimes what is returned is just the head wrapped around the arguments, as 
with L i s t , sometimes it is the word Graphics as with P l o t , sometimes it is a real number as 
with S i n for real arguments, etc. But what is really going on is somewhat different. What 
really happens is that we type in some expression and then, using Enter or Shift-Return, send 
it to the evaluator. We have been calling the evaluator "Mathematica" when we speak of 
Mathematica doing something. The evaluator is a meta-function or meta-processor, sitting 
hidden behind everything, which takes simgle expressions as arguments and produces 
expressions as outputs. We can try to describe precisely what the evaluator does for certain 
classes of expressions, but as will be seen, the situation is rather complicated. 

Let Expr denote the collection of all Mathematica expressions. The evaluator, Eval, is a 
function from Expr to itself; i.e., Eval : Expr -> Expr. (Here we use an arrow to mean a 
function from its left-hand side to its right-hand side.) Can one say what Eval does to certain 
subsets of Expr? For instance, consider the subset of Expr consisting of expressions whose head 
is Integer. Clearly, Eval is the identity function on such expressions. In fact, there is a large 
class of expressions, including badly formed ones and those for which there are no rewrite 
rules, on which Eval acts as the identity operation, returning the input expression unchanged. 
Do expressions with head L i s t belong to this class? Well, not exactly. What Eval does to an 
expression with head List is just to move inside it and evaluate the arguments. If Eval acts as 
the identity on the arguments, then it acts as the identity on the whole list. A more precise 
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description would be that Eval commutes with the head L i s t in the following sense. Regard 
L i s t as a function from strings of expressions to expressions, so if Expr* denotes the collection 
of all strings of expressions, then L i s t : Expr * —> Expr. Here L i s t applied to a string of 
expressions wraps itself around the expressions, separating them by commas. Also think of 
Eval as determining a function Eval* : Expr* —> Expr* by separately evaluating each 
expression in a string, one after the other. Then in the diagram 

Eval* 
Expr* ► Expr* 

List 

Expr ► Expr 

the two composed functions are the same; i.e., for a given string of expresions, str, 

Eval(List[str]) = List[Eval*(str)] 

This is what we mean by saying that Eval commutes with L i s t . Actually, another concern is 
raised here because what you actually see as the result of such an evaluation is not something 
with head L i s t , but something wrapped in curly brackets. These are produced by the 
formatter, Formatter, so there is an extra stage determining the actual appearance of the 
output. In fact, Eval only works on full forms of expressions so the real situation looks more 
like 

^ FullForm ,_ Eval _ Formatter _ 
Expr ► Expr ► Expr ► Expr 

In a certain sense, Formatter is the inverse to FullForm. 
There is another large class of expressions which Eval takes to the constant Nu l l and which 

Formatter then reduces to nothing at all. This class includes well-formed expressions with 
head Do, For, While , etc. Similarly, well-formed expressions with heads including P l o t in 
some form are taken by Eval to the expression -Graphics - . This of course brings up another 
agent that processes expressions, the side-effector which acts on expressions with head P r i n t , 
Graphics , Set , etc. 

Now, how does Eval actually do its work? Viewed as a symbolic computation program, 
Eval only does two things: it calls C code to compute particular numerical functions and it 
evaluates rewrite rules. There are many things to understand about evaluation, but perhaps 
the most important thing is the order in which parts of an expression are evaluated. Very 
detailed information about this can be found in [Withoff]. We summarize some of this 
information here and then investigate the parts of it that are available for experimentation. As 
we know, Mathematica maintains tables of rules attached to symbols. There are in fact 10 kinds 
of such tables. The first four are: 

" C W T ^ I 

List 
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DownValues [ symbol ] rules for evaluating expressions of the form 
symbol[-] 

SubValues [ symbol ] rules for evaluating expressions such as 
symbol [ - ] [ - ] with a symbolic head of symbol 

OwnValues [ symbol ] a rule for evaluating symbol itself 
Upvalues [ symbol ] rules for evaluating expressions such as f [ symbol ] , 

where symbol appears as an argument or the head of 
an argument 

These kinds of values are illustrated by the following examples. Each command returns a 
possibly empty list of the appropriate values. 

f[x_] := xA2 
{DownValues[f], SubValues[f], OwnValues[f], Upvalues[f]} 

{{Literal[f[x_]] :> x2}, {}, {}, {}} 

g[x_][y_] := x y 
{DownValues[g], SubValues[g], OwnValues[g], Upvalues[g]} 

{{}, {Literal[g[x_][y_]] :>xy}, {}, {}} 

a = 5; 
{DownValues[a], SubValues[a], OwnValues[a], Upvalues[a]} 
{{}, {}/ {Literal[a] :> 5}, {}} 
h[x_] + h[y_] Λ:= h[x y] 
{DownValues[h], SubValues[h], OwnValues[h], Upvalues[h]} 

{{}, {}, {}, {Literal[h[x_] + h[y_]] :> h[x y]}} 

The other kinds of values have a slightly different character. 

FormatValues [ symbol ] printing rules for symbol 
NValues[symbol] rules used in evaluating N [ - - , symbol, - - ] 
Def aultValues [symbol] default values for arguments in symbol [- - - ] 
Options [ symbol ] default options attached to symbol 
Messages [ symbol ] messages attached to symbol 
Attr ibutes [ symbol ] attributes associated with symbol 
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For instance: 

Format[v[x_J ] := Subscripted[v[x]] 
FormatValues[v] => {Literal[vx ] :> vx} 
N[e] = 2.7; 
{OwnValues[e], NValues[e]}=> {{{}, {Literal[N[e]] :> 2.7}} 
DefaultValues[Plus] => {Literal[Default[Plus]] :> 0} 
mappingGraphics::codomainDimensions = 
" Codomain dimensions are too large for plotting.\n 
Dimensions should be 2 or 3."; 
Messages[mappingGraphics] 

{Literal[mappingGraphics: :codomainDimensions] :> 
Codomain dimensions are too large for plotting.} 
Dimensions should be 2 or 3. 

Attributes[Plus] 

{ F l a t , L i s t a b l e , O n e l d e n t i t y , O r d e r l e s s , P r o t e c t e d } 

Note: the Messages example above occurs in Chapter 14. 

5.2 Normal Order of Evaluation 

The normal order of evaluation of an expression is to first evaluate the head of the expression, 
and then the arguments in order from left to right. If we regard the head as the 0th argument, 
then Eval by processing all of the arguments, one after the other, in turn, just as with head 
L i s t . Finally, the evaluated head is applied to the evaluated arguments. However, the actual 
situation is somewhat more complicated. In detail, according to [Withoff], the following steps 
are carried out recursively. 

1. If the expression is a string, a number, a symbol with no Own Va lues , or if no part of 
the expression has changed since the last evaluation, then return the expression; i.e., 
Eval on such expressions is the identity operation. 

2. Expressions which are symbols with Own Values are evaluated. 
3. The head of the expression is evaluated. 
4. The arguments are evaluated from left to right, with several provisos: if head has 

attribute H o l d F i r s t , HoldRest , or Ho ldAl l , do not evaluate the corresponding 
arguments unless they have head Eva lua te . (This means that all arguments have to 
be looked at, in any case, to see if they have the head Evaluate . ) If an argument has 
head Unevaluated , replace it with the arguments of the argument and keep a record 
of the original expression. Flatten out nested expressions with head Sequence. 
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5. The attributes of the head are used next. 
i) F lat means flatten out nested expressions. 
ii) L i s tab le means thread head over any arguments that are lists. 
iii) Orderless means the evaluated arguments are to be sorted. 
Note that these are applied only after the arguments have been evaluated. 

6. Upvalues attached to the symbolic heads of the arguments are applied, using user-
defined values before internally defined ones. 

7. DownValues are applied if the head is a symbol, otherwise SubValues attached to 
the symbolic head are applied, using user-defined values before internally defined 
ones. 

8. The head Unevaluated is replaced if no applicable rules were found. 
9. The head Return is discarded, if present, for expressions generated through 

application of user-defined rules. 

5.2.1 Normal evaluation 
Let us see if we can persuade Eval to display the orders of some evaluations. First introduce a 
short-hand for Module [ { t } , t ] which is to be evaluated anew each time it is called. We 
have already seen that the result of this is to just output t with the current value of the 
evaluation counter appended to it. 

mod := Module[{t}, t] 

Use this as the head and arguments for a generic function. 

mod[mod, mod, mod] => t$4[t$5f t$6, t$7] 

This at least shows the order of evaluation of the head and the arguments. These rules are 
applied recursively to each argument in turn. Thus: 

mod[mod[mod, mod], mod[mod[mod], mod[mod]]] 

t $ 8 [ t $ 9 [ t $ 1 0 , t $ l l ] , t $ 1 2 [ t $ 1 3 [ t $ 1 4 ] , t $ 1 5 [ t $ 1 6 ] ] ] 

In other words, viewing the expression as a tree, the nodes are evaluated by a depth first 
traversal of the tree. 

5.2.2 Hold 
If the head has the attribute HoldAll, then the situation changes. Here is an example. 
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SetAttributes[gg, HoldAll]; 
gg[x_] := {x, x}; 
hh[x_] := {x, x}; 
{gg[mod], hh[mod]} =» {{t$17, t$18}, {t$19, t$19}} 

In the case of gg, the argument mod is not evaluated until it is used in the right-hand side of 
the definition of gg. It then is used twice giving two successive values of t $ . Computer 
scientists term this mode of evaluation "call-by-name." In the case of hh, the argument mod is 
evaluated before the operation hh is applied. Its single value is then used twice in the right-
hand side. This mode of evaluation is termed "call-by-value." 

An argument which is held is not evaluated. There are two ways to overcome this that were 
confused in earlier versions of Mathematica. Starting in Version 2, they have been separated. 
For instance, gg has the attribute HoldAll. If we want gg to evaluate its argument, one can 
replace gg by ReleaseHold [ gg [ argument ] ] , or we can use 

gg[Evaluate[argument]]. 

Thus 

{ReleaseHold[gg[mod]], gg[Evaluate[mod]]} 

{{t$20, t$21}, {t$22, t$22}} 

Clearly in the second version, the argument of gg is evaluated before gg is applied, whereas 
ReleaseHold has no effect on the evaluation. Thus, one should use Evaluate [argument] 
inside functions that have the attribute HoldAll or HoldFirs t . On the other hand, if 
something is explicitly held, then ReleaseHold outside the function is the appropriate 
operation. 

Hold[2 +2] => Hold[2 + 2] 
ReleaseHold[%] => 4 

Note that ReleaseHold only removes one layer of holding. 

ReleaseHold[Hold[2 + Hold[2 +2]]] 

2 + Hold[2 + 2] 

Furthermore, there is another similar operation, HoldForm that does the same thing as Hold 
but prints the result without wrapping Hold around it. It is also removed using 
ReleaseHold. 

HoldForm[2 +2] =» 2 + 2 
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5.2.3 Literal 

When we looked at various kinds of values, they were displayed with L i t e r a l wrapped 
around the left-hand side. To see what this is about, we'll first look at the built-in information 
about Rule, and RuleDelayed, and L i t e r a l . 

??Rule 

lhs -> rhs represents a rule that transforms lhs to rhs. 
Attributes[Rule] = {Protected} 

??RuleDelayed 

lhs :> rhs represents a rule that transforms lhs to rhs, 
evaluating rhs only when the rule is used. 
Attributes[RuleDelayed] = {HoldRest, Protected} 

??Literal 
Literal[expr] is equivalent to expr for pattern matching, but 
maintains expr in an unevaluated form, 
Attributes[Literal] = {HoldAll, Protected} 

Thus, from the A t t r i b u t e statements, we see that Ru le evaluates both of its arguments 
while R u l e D e l a y e d evaluates only its first argument. L i t e r a l is used to prevent 
RuleDelayed from evaluating its first argument, without changing the form of the pattern to 
be matched. Here is a nice example from The Mathematica Book [Wolfram]. 

H o l d [ u [ l + 1 ] ] / . L i t e r a l [ l + 1] -> x => H o l d [ u [ x ] ] 

L i t e r a l can not be replaced by Hold here since Hold is a part of any pattern in which it 
appears whereas, for purposes of pattern matching, L i t e r a l is invisible. 

5.2.4 Evaluation of conditions 

To investigate the order of evaluation of conditions, consider the following function definition. 

f[x_Integer /; mod || EvenQ[x]] := 
mod[mod, mod, mod] /; (mod; Positive[x]) 

It is not clear how to apply the 9 rules for evaluation to determine in what order an evaluation 
of f [ 2 ] will actually be carried out. However, Trace will show us explicitly what happens. 
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T r a c e [ f [ 2 ] ] 

{f[2], {mod || EvenQ[2], {mod, Module[{t}, t], t$23}, 
{EvenQ[2], True}, True}, 
{{mod; Positive[2], {mod, Module[{t}, t], t$24}, 
{Positive!2], True}, True}, 

RuleCondition[mod[mod, mod, mod], True], mod[mod, mod, 
mod]}, 
mod[mod, mod, mod], {mod, Module[{t}, t], t$25}, 
{mod, Module[{t}, t], t$26}, {mod, Module[{t}, t], t$27}, 
{mod, Module[{t}, t], t$28}, t$25[t$26, t$27, t$28]} 

Thus, the first thing to be evaluated is the condition inside the definition of f for matching the 
pattern for the argument to f. Next the condition at the end of the definition for application of 
the rule is checked, and then the usual order of evaluation is followed. 

The order of evaluation of substitutions is just what one would expect from the FullForm 
of a substitution. 

Trace[mod /. mod -> mod] 

{{mod, Module[{t}, t], t$36}, 
{{mod, Module[{t}, t], t$37}, {mod, Module[{t}, t], t$38}, 
t$37 -> t$38, t$37 -> t$38}, t$36 /. t$37 -> t$38, t$36} 

6 Unbounded Search 
There are two kinds of iterations and searches in programming languages, bounded and 
unbounded ones. A Do loop is a typical example of a bounded iteration; something is done a 
specified number of times. A While loop, on the other hand, is potentially unbounded; some 
procedure is continued until some condition is satisfied, which may never happen. Similarly, a 
S e l e c t or a Scan command is a typical example of a bounded search; a fixed, pre-existing list 
is searched or scanned for entries satisfying some criterion. But how does one search for 
something that occurs in a potentially infinite sequence of possibilities? Such searches arise in 
defining what are called general recursive functions. The typical form of such a function is: 
given some predicate g(y), define a new function f(x) by the prescription: 

f(x) = "the smallest value of y such that g(z) is defined for all z < y and g(y) is true". 

The abstract form of such an algorithm can be given in Mathematica in either an imperative or a 
functional form: 
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f [x_] := Module[{y = 1 } , W h i l e [ ! g [ y ] , y++]? y] 
f [x_] := F i x e d P o i n t [ I f [ g [ # ] , #, # + 1 ] , 1] 

Note that these algorithms can fail to return a value either because g [y ] does not return a 
value for some y that is reached or because it never happens that g [ y ] is True. 

6.1 Examples 

6.1.1 Fractionalize 
Replace the built-in function R a t i o n a l i z e by a function that finds a best possible rational 
approximation to a real number r whose numerator and denominator have at most a specified 
number of digits, with one of them having at least that many digits. (The problem of finding a 
functional program to do this was suggested by Charles Wells in an e-mail communitaction.) 
We want to use the built-in function in the form 

Rationalize[N[r, y], 0.1"(y - 1)] 

and the problem is, given r, find the least value of y so that the result has the correct number 
of digits in its numerator and denominator. The solution is an unbounded search on values of 
y, checking the number of digits in the numerator and denominator as one goes. 

fractionalize[number^, size_] := 
With[ 

{ term = 
FixedPoint[ 

With[ 
{value = Rationalize[N[number,#+1],0.1^#]}, 
I f [ Length[IntegerDigits[ 

Numerator[value]]] <= size && 
Length[IntegerDigits[ 

Denominator[value]]] <= size, 
# + 1, #]]&, 

1] >, 
Rationalize! 
N[number, term + 1], 0.1*(term - 1)]]; 

Here are some results for π. 
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Map[{#, fractionalize[Pi, #]}&, Range[5, 15]] 
355 312689 5419351 80143857 

{{5, — } , {6, }, {7, }, {8, }, 
113 99532 1725033 25510582 
245850922 6167950454 21053343141 

{9, }, {io, }, {11, }, 
78256779 1963319607 6701487259 
21053343141 8958937768937 

{12, }, {13, }, 
6701487259 2851718461558 
8958937768937 428224593349304 

{14, }, {15, }} 
2851718461558 136308121570117 

6.1.2 Expressions for primes 
Can a prime number p be written in the form 2 n - 3 m or 3 m - 2nfor some choice of m and n? 
Note that m and n can be arbitrarily large. Given p, we can conduct an unbounded search for 
m and n by using the usual reverse diagonal recursive enumeration of pairs of natural 
numbers e(k) = {pi(k), p2(k)}, given by the formula: 

pair[k_] := pair[k] = 
With[ {r = Floor[N[(Sqrt[l + 8 k] - l)/2]]}, 

{k - r (r + 1)72, r (r + 3)/2 - k}] 
The following picture shows the values of p a i r for k between 0 and 20, starting from the 
origin. 

Show[Graphics[ 
With[ {points = Table[pair[k], {k, 0f 20}]}, 

{ Prepend[ Map[Point, points], 
PointSize[0.03]], 

Line[points] }] ]]; 
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The functional version of an unbounded search for pairs (i, j) such that 12i - 3J I = 
Prime [ n ] is as follows. 

findPair[n_] := 
Module[{val = Prime[n]}, 
y = FixedPoint[ 

If[Abs[Thread[{2, 3}"pair[#]]·{1, -1}] == val, 
#, # + 1]&, 

i]; 
Print[SequenceForm["|" , 

"2"*pair[y][[l]] - "3"*pair[y][[2]], 
"| == ", Prime[n]]]; 

pair[y] ]; 

Calculate the values for the first 12 primes. 

Map[findPair[#]&, Range[12]]; 

|1 - 3| = = 2 
|-1 + 22| = = 3 
|22 - 32| == 5 
|2 - 32| = = 7 
j24 - 33| == 11 
|24 - 3| ==13 
j2* - 34| == 17 
|23 - 33| == 19 
|22 - 33j == 23 
|25 - 3| ==29 
j-1 + 25| == 31 
|26 - 33| == 37 

What about the 13th prime? 

Timing[findPair[13]] => $Aborted 
Prime[13] => 41 

41 is conjectured to be the smallest prime which has no such representation. In order to find 
many primes which have such a representation, it is much faster to find all primes < 20000 
with such a representation for k <= 5050; i.e., for m + n < 100. Such a bounded search always 
terminates and is to be contrasted with the unbounded search above which presumably would 
never terminate for p = 41. 
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goodPrimes = 
S e l e c t [ 

Union[ 
S e l e c t [ M a p [ A b s [ 2 " p a i r [ # ] [ [ 1 ] ] - 3 " p a i r [ # ] [ [ 2 ] ] ] & , 

R a n g e [ 5 0 5 0 ] ] , 
(# < 2 0 0 0 0 ) * ] ] , 

PrimeQ] 

{2 , 3 , 5 , 7 , 1 1 , 1 3 , 17 , 19 , 2 3 , 2 9 , 3 1 , 3 7 , 4 7 , 6 1 , 7 3 , 79 , 
1 0 1 , 127 , 139 , 179 , 2 1 1 , 2 2 7 , 229 , 239 , 2 4 1 , 269 , 4 3 1 , 5 0 3 , 
509 , 6 0 1 , 727 , 997 , 1 0 2 1 , 1163 , 1319, 1 9 3 1 , 2039 , 2179 , 3299 , 
3 8 5 3 , 4 0 9 3 , 4 5 1 3 , 6529 , 6 5 5 3 , 7949 , 8 1 1 1 , 8 1 9 1 , 11491 , 14197, 
1 6 1 4 1 , 1 6 3 8 1 , 19427 , 19681} 

Any prime < 20000 which is not on this list is a candidate for a prime with no such 
representation. 

6.2 WithRec 
A seemingly more general form of unbounded search is given by the functional programming 
letrec construct. An expression of the form letrec x = exprl in expr2, where x occurs in exprl, 
means substitute exprl for x in expr2 . If the resulting expression contains x, then again 
substitute exprl for it, continuing this way until x no longer occurs in the expression. Thus, an 
unbounded search is being conducted for an iterated substitution that doesn't contain x. This 
behavior can be implemented very simply in Mathematica by a F i x e d P o i n t operation. 

A t t r i b u t e s [ w i t h R e c ] = { H o l d F i r s t } ; 
w i t h R e c [ x _ , e x p r l _ , expr2_] := 

F i x e d P o i n t [ W i t h [ { x = e x p r l } , #]&, expr2] 

For instance, here is what we hope will be the last version of a factorial computation and a 
Fibonacci computation. 

withRec[ {fac- If[# == 0, 1, # fac[# - 1]]&}, 
fac[10]] => 3628800 

withRec[ { fib-
Which[ # == 1, 1, 

# == 2, 1, 
True, fib[# - 1] + fib[# - 2]]&}, 

fib[20]] => 6765 
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7 Substitution and the Lambda Calculus 
There are two ways to substitute values for arguments in Mathematica, neither of which is 
completely satisfactory. 

7. / With versus /. 

Recall the meaning of / . 

? / . 

expr /. rules applies a rule or list of rules in an attempt to 
transform each subpart of an expression expr. 

As we have seen, / . is a very general mechanism for applying local rules. However, if the 
rules are of the form expr / . x -> exprl , then the effect is to substitute e x p r l for all 
occurrences of x in expr. This substitution is purely and relentlessly syntactical. If Mathematica 
sees an x as a separate symbol, it sticks in a copy of e x p r l . We used this kind of substitution, 
for instance, in checking solutions of equations where it works very well. However, 
sometimes / · does the wrong thing. Consider a pure function. 

f = Function!{x}, x + y]; 

Applying this as a function to values works as it is supposed to 

{ f [ 2 ] , f [ x ] , f [ y ] } => {2 + y, x + y , 2 y} 

But now try substituting something for x and y. The result depends on what is substituted. 

{f / . y -> 3 , £ / . x -> 3} 

Function::flpar: Parameter specification {3} in 
Function[{3}, 3 + y] should be a symbol or a list of symbols. 

{Function!{x}, x + 3], Function!{3}, 3 + y]} 

The first one is OK but the second one makes no sense as the warning message points out. The 
x in Function [ {x} , x + y ] i s a bound variable and it should not be possible to substitute 
anything for it. 

However, the other built-in operation, With, does carry out substitutions (for variables 
only) in a way that is mostly correct. 
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?With 

With[{x = xO, y = yO, . . . } , expr] specifies that in expr 
occurrences of the symbols x, y, ... should be replaced by xO, 
yo, 

Note that in With, the left-hand side of the = expression has to be a symbol and not some more 
complicated pattern. For instance 

With[{x = 2 } , χΛ2] => 4 

Also, With uses the call-by-value mode of evaluation. 

With[{x = mod}, {x, x}] => {t$10, t$10} 

Try using With with a pure function. 

With[{y = 3}, Function!{x}, x + y]] 

Function[{x$}, x$ + 3] 

With[{x = 3}, Function!{x}, x + y]] 

Function[{x}, x + y] 

Thus, the substitution of 3 for y is carried out as it should be and the name of x is actually 
changed to a new x$. The substitution of 3 for x has no effect, which is also correct. Now 
consider a more complicated function whose value is again a function. 

g = Function!{x}, Function!{y}, x + y]] 

Function[{x}, Function!{y}, x + y]] 

Try evaluating this at a. 

g[a] => Function!{y$}, a + y$] 

Now evaluate it at y. 

g[y] => Function!{y$}, y + y$] 



Eleven · Some Finer Points 387 

Note that there is no conflict because the name of the bound variable y has been changed to y$ 
so the y outside the function definition is completely separate from the one inside. However, 
this arrangement can be fooled if g somehow gets an argument of the form y$. 

g[y$] => Function!{y$}, y$ + y$] 

The mechanism for evaluating g would be much safer if the evaluation counter were used 
here. Also note that Function[ { x } , x + y ] properly does not depend on x. 

Function[{x}, Function!{x}, x + y]][a] 

Function[{x}, x + y] 

7.2 The Lambda Cakulus 
Sorting out the relationships between pure functions (with named bound variables) like 
Function [ { x } , expr ] , function applications like f [ a] and substitutions like With [ {x = 
a } , expr] is a non-trivial task. Fortunately, these relationships were all carefully worked out 
in the 1930s with the development of the lambda calculus. At present, the lambda calculus is 
more often regarded as an abstract prototype of a functional programming language. In order 
to see exactly how these relations work, we will implement our own version of them by giving 
Mathematica rules connecting these three constructs. As we have seen, we cannot use the 
Mathematica operations of Funct ion and ReplaceAl l since they do not work correctly 
together. It is tempting to try to use With instead of ReplaceAll since, as we saw above, that 
fixes some of the problems. Unfortunately, it does not fix all of them, so we have to implement 
the operations ourselves. Thus, we construct two basic operations that do not evaluate their 
arguments at all; lambda[ { x } , expr] for function abstraction to replace Function[ { x } , 
expr] , and app[a, b] for function application. Substitution, written above in Mathematica 
notation as f /. { x -> g }, is implemented by a l e t operation written in the form l e t [ {x = 
expr 1 } , expr2 ] as in the notation used with With. In order for this to work correctly in 
Mathematica, l e t has to have the attribute HoldFirst. 

Attributes[let] = {HoldFirst} 

The other thing that is required is an operation to calculate the free variables in an 
expression, given here by f reeVars [expr] . The free variables are those that are not within 
the scope of (or bound by) a lambda [ { x } , — ] expression. The basic relation between these 
notions is given by the rule called beta reduction in the lambda calculus which says that 
applying a function written in the form of a lambda expression to an argument should rewrite 
to the value of replacing the variable of the lambda expression in the argument by the body of 
the lambda expression. I.e., 
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app[lambda[{x_}, expr2_], exprl_J := 
let[{x = exprl}, expr2] 

The key to all of this, of course, is given by the rules governing l e t . Certain things are 
clearly required. If expr2 = x then the result should be expr l , while if expr2 is some 
symbol other than x then that symbol should be the value, giving us the first two simple rules. 

let[{x_ = expr_}, x__] := expr; 
let[{x_ = exprl_}, y_Symbol] := y /; x =!= y; 

Substitution in an application should just be substitution in each argument of the application. 

let[{x_ = exprl_}, app[expr2_, expr3_J ] : = 
app[ let[{x = exprl}, expr2], 

let[{x = exprl}, expr3] ]; 

The problem comes with substitution in a function abstraction; i.e., in a lambda term. The first 
rule is easy: substituting for x in lambda [ { x } , expr] shouldn't do anything. 

l e t [ { x _ = expr l_} , lambda[{x_}, expr2_] ] := 
lambda[{x}, expr2]; 

The second and third rules describe what should happen in substituting an exprl for x in a 
lambda[y, expr2] where y is different from x. The result depends on whether y occurs 
freely in exprl or not. If it doesn't, that means there is no y in exprl to be captured by the 
lambda [ { y } , — ] so the substitution can be carried out directly giving us another simple 
rule. 

let[{x_ = exprl_}, lambda[{y_}, expr2_]] := 
lambda[{y}, let[{x = exprl}, expr2]] /; 

(x =!= y) && 
(Not[MemberQ[freeVars[exprl], y]]); 

The crucial case is when y is a free variable in e x p r l . The simplest thing to do is to 
syntactically change all of the symbols y that occur in lambda [ { y } , expr2] to some 
completely new symbol, and then carry out the substitution of expr l for x. Fortunately 
Mathematica has a facility for creating such new symbols called Unique. It is exactly what is 
needed here. 

let[{x_ = exprl_}, lambda[{y_}, expr2_]] := 
let[ {x = exprl}, 
(lambda[{y}, expr2]/.y -> Unique!"q"])] /; 
(x =1= y) && MemberQ[freeVars[exprl], y]; 
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Finally, the free variable operation is specified by the following rules. 

freeVars[x_] := {x}; 
freeVars[app[expr1_, expr2_]] := 

Union[freeVars[expr1], freeVars[expr2]]; 
freeVars[lambda[{x_}, expr_]] := 

Select[freeVars[expr], (# =!= x)&] 

These ten rules constitute a complete implementation of the lambda calculus. First, a simple 
example: 

app[lambda[{z}, app[z, a]], lambda[{x}, x]] => a 

The result of the first use of the rule for app replaces z with lambda [ { x } , x ] in app [ z , a ] 
so one has the expression app [ lambda [ {x} , x ] , a ] . The rule applies again, reducing to 
the output a. Next, a slightly more complicated example with three app's: 

app[ app[lambda[{x}, a ] , x ] , 
app[app[lambda[{y}, b ] , y ] , c] ] => app[a , app[b, c ] ] 

In this example, the final result is an app in which the first argument does not have the head 
lambda so no further reduction is possible. Now consider an example which is a possible 
source of trouble. 

app[app[lambda[{x}, lambda[{y}f app[yf x]]], t], u] 

app[u, t] 

If we use y instead of t , then variable capture is possible but is avoided because Unique is 
used in the appropriate rule. 

app[app[lambda[{x}f lambda[{y}f app[y, x]]], y], u] 

app[uf y] 

Finally, another quite intricate example which also reduces to the symbol a: 

app[ lambda[{f}, app[ff app[ff a]]], 
app[ lambda[{x}, app[x, x]]f 

app[lambda[{y}, y], lambda[{y}f y]]]] => a 

The combination lambda [ { x } , app [ x , x ] ] is called the paradoxical combinator. Applied 
to itself, it is the archetype of a non-terminating computation. It behaves as it should. 
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app[lambda[{x}, app[x, x]], lambda[{x}, app[x, x]]] 
$ItérâtionLimit::itlim: Iteration limit of 4096 exceeded. 
Hold[app[let[x, lambda[{x}, app[x, x]], x], 

let[x, lambda[{x}, app[x, x]], x]]] 

Thus, the rule for app was carried out 4096 times, resulting in the same expression being held. 
This is exactly what should happen. Now consider the following evaluation. It goes into an 
infinite loop as would be expected by call-by-name, but when it hits the iteration limit it 
succeeds in finishing the evaluation with the correct answer. 

app[lambda[{y}, a], 
app[lambda[{x}, app[x, x]], lambda[{x}, app[x, x]]]] 

$ItérâtionLimit:ritlim: Iteration limit of 4096 exceeded. 
a 

73 Arithmetic in the Lambda Cakulus 
The lambda calculus as implemented here is actually a complete programming language in 
itself. Any calculation that can be done in any of the standard programming languages can 
also be done in the lambda calculus, although it might be very unwieldy to actually carry it 
out. We'll show here how to introduce arithmetic via the Church numerals which represent 
numbers in the lambda calculus. First some preliminary definitions of standard terms. 

true = lambda[{x}, lambda[{y}, x]]; 
false = lambda[{x}, lambda[{y}, y]]; 
if = lambda[ {P}/ lambda[{x}, lambda[{y}, 

app[app[p, x], y]]]]; 

Check that if, true, and false fit together in the expected way. 

{ app[app[app[if, true], t], f ], 
app[app[app[if, false], t], f] } 

{t, f> 

Now create some Church numerals. 

zero = lambda[{f}, lambda[{x}, x]]; 
one = lambda[{f}, lambda[{x}, app[f, x]]]; 
two = lambda[{f}, lambda[{x}, app[f, app[f, x]]]]; 
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three = lambda[ {f}, lambda[{x}, 
app[f, app[f, app[ff x]]]]]; 

four = lambda[ {f}f lambda[{x}, 
app[f, app[f, app[ff app[f, x]]]]]]; 

The general Church numeral n can be constructed using Nest. 

churchN[n_J := 
lambda[{f}, lambda[{x}, Nest[app[f, #]&, x, n] ] ] 

Thus the Church numeral n is given by applying a symbol f n times to a symbol x, regarded as 
a function of both f and x. 

There are standard formulas to define the usual arithmetic functions in terms of this 
representation of the natural numbers. 

succ = lambda[ {n}, lambda[{f}, lambda[{x}, 
app[app[n, f], app[f, x]]]]]; 

iszero = lambda [ {n}, 
app[ app[n, lambda[{x}, false]], 

true] ]; 
add = lambda [{m}, lambda[{n}, lambda[ {f}, 

lambda[{x}, 
app[ app[m, f], 

app[app[nf f], x]] ]]]]; 
mult = lambda[ {m}, lambda[{n}, lambda[{f}, 

app[mf app[nf f]] ]]]; 
exp = lambda[{m}, lambda[{n}f lambda[{f}, 

lambda[{x}f 
app[app[app[nr m] , f], x] ]]]]; 

For instance: 

{app[iszero, zero], app[iszero, four]} 

{lcimbda[ {x}, lambda[{y}, x ] ] , lambda[{x}, lambda[{y}, y ] ] } 

We recognize the output as being { t r u e , f a l s e } . Next try out the successor function. 

{app[succ, zero], app[succ, one], app[succ, two]} 

{lambda[{f}, lambda[{x}, app[f, x]]]f 
lambda[{f}, lambda[{x}, app[f, app[f, x]]]], 
lambda[{f}, lambda[{x}, app[f, app[f, app[f, x]]]]]} 
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We recognize the results as being one, two, and three. Finally try addition, multiplication, 
and exponentiation. 

app[app[add, two], two] 

lambda[{f } , lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]] 

app[app[add, churchN[2]], churchN[2]] 

lambda[{f}, lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]] 

app[app[mult, two], two] 

lambda[{f}, lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]] 

app[app[exp, two ], two] 

lambda[{f}, lambda[{x}, app[f, app[f, app[f, app[f, x]]]]]] 

In each case we recognize that the answer is four. 
However, it is very inconvenient to have to count the number of app [ f, - ] 's to recognize 

what number the output represents. Instead, we add a formatting command based on a 
personal suggestion of Roman Maeder's that is an improvement of a version from Theodore 
Gray. 

Format[lambda[{f_}, lambda[{x_}, expr_] ] ] := 
SequenceForm[ 

"churchN[", calculateNumber[expr], "]"] /; 
numberlikeExpr[expr, x, f]; 

numberlikeExpr[expr_, x_, f_] := 
(expr === x) || 
( (Length[expr] === 2) && (First[expr] === f) && 
numberlikeExpr[Last[expr], x, f]); 

calculateNumber[expr_] := 
If[ Length[expr] === 2f 

1 + calculateNumber[Last[expr]], 0 ]; 

Try out a small example. 

app[app[add, churchN[2]], churchN[3]] => churchN[5] 

Now we are ready to try some larger calculations. In each case, we time the calculation to 
show how surprisingly efficient it is. The numbers are chosen so that each calculation takes 
about 6 or 7 seconds. First, the recursion limit has to be increased since these operations are 
completely recursive. 
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$RecursionLimit = 2000; 
Timing[app[app[add, churchN[128]], churchN[128]]] 

{6.7 Second, churchN[256]} 

Timing[app[app[mult, churchN[24]], churchN[24]]] 

{7.7 Second, churchN[576]} 

Timing[app[app[exp, churchN[4]], churchN[4]]] 

{6.68333 Second, churchN[256]} 

Compare this implementation and these timings with the implementation of the lambda 
calculus in ML given in [Paulson]. 

Technical note: Mathematica will not allow a definition in the form l e t [ {x = e x p r l } , 
expr2] unless the first argument is held. This forces l e t to use call-by-name evaluation. A 
call-by-value version can be implemented just by giving l e t three separate values; i.e., 
l e t [ x , e x p r l , expr2] with none of them held. Using this form, the last three 
computations above are 10 to 20% faster. 

8 Exercises 

1. Newton's method for finding a zero of several functions of the same number of 
variables is a generalization of the method for one function of one variable. It views the 
several functions as a single vector valued function of one vector variable and tries to 
write the same formula. Given g(x) = {gl (xl, . . . xn ), . . . gn (xl , . . . xn )), then the 
formula for the next step in the approximation is 

xn +1 = ( x - Inverse! jacobian[g , x ] ] . g [ x ] ) / . x -> xn 

Here x and g represent n-dimensional vectors. Use this formula to define 
oneNewtonZeroStep and then use Nest, NestLis t , and F ixedPoint to define 
various versions of a NewtonZero function. 

2. Newton's method can be adapted to finding critical points of a function by taking g in 
Exercise 1 to be the gradient of a single function f of n variables. Since the jacobian of 
the gradient of a function is the same as the hessian of the function, this leads to a 
formula 
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Xn + 1 = 
(x-Inverse[hessian[f, x]].gradient[f, x])/.x->xn 

Use this formula to define oneNewtonStep and then as above to define various 
versions of a NewtonCritical function. 

3. Carry out a similar discussion for the method of steepest descent, for Broyden's zero 
method and for Broyden's method. 

4. Construct a package called minimization to find a local minimum of a function of 
several variables, given a starting point. It should take one optional argument, Method, 
whose possible values are Newton, SteepestDescent, BroydenZero, and Broyden. 
It exports a single function called f indMinimum. Note: there is a built-in function called 
FindMinimum so the spelling checker will object, but just ignore that. You may want to 
look at the options for it and try to include similar options in your function. 

5. Try to implement the lambda calculus using Function and With; i.e., just have one 
rule: 

app[Function[{x_}, expr2_], exprl_] := 
With[{x = exprl}, expr2] 

and replace lambda by Function in the examples. What is the first example where this 
fails? (In Version 2.2, it fails at app [ succ , zero].) 
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Polya 's Pattern 
Analysis 

1 Introduction 
Polya's Pattern Inventory [Polya] is concerned with the following combinatorial problem. 
Suppose there is a pattern consisting of n regions which are to be colored using m colors. The 
regions could be stripes on a flag, or beads on a necklace, or sides (or edges) of a geometric 
figure, etc. (Polya's original problem concerned isomers of molecules in which given numbers 
of different atoms could be arranged in different ways in the molecule.) For instance, suppose 
we want to make a necklace consisting of 5 beads and there are both red and blue beads 
available. Clearly there are 25 = 32 possible necklaces. Now suppose that we decide to use 
exactly 2 reds and 3 blues. Then it is almost as immediate that there are Binomial[5, 2] = 10 
such necklaces. Next suppose we decide to consider two necklaces to be the same if one is a 
rotation of the other. Then the answer takes further thought, particularly if we want to find the 
principle that answers all such questions. Polya's Pattern Inventory answers the general 
question: suppose there is a group of symmetries acting on the n regions and two colorings by 
m colors are to be considered equivalent if one coloring is taken to the other by one of the 
symmetries. In our example of a necklace, the rotation group acts on the colorings of the 
necklace and two colorings are considered the same if they differ just by the action of some 
rotation of the necklace. Polya's Pattern Inventory will determine how many different 
necklaces there are all together of each kind, allowing for equivalence under rotations. Thus, 
given two colors and five beads, there are six possible choices for numbers of colors: 5 red, 4 
red and 1 blue, 3 red and 2 blue, 2 red and 3 blue, 1 red and 4 blue, and 5 blue. For each choice, 
we will determine how many necklaces there are considering two necklaces to be the same if 
they differ just by a rotation. For instance, there is only one necklace consisting of 5 red beads, 
but there is also only one necklace consisting of 4 red and 1 blue beads, since any two colorings 
with these colors differ by a rotation. 

397 
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This question can be investigated from a geometrical or an algebraic point of view. 

• The geometric approach starts by constructing all colorings of the regions with the 
given colors and then determines the orbit of each coloring under the action of the 
specified symmetry group. Different colorings can determine the same orbit; namely, 
the colorings in a particular orbit all determine exactly that orbit. The geometric 
solution consists in extracting one representative coloring from each distinct orbit. For 
small values of n and m these can be illustrated by pictures. 

• The algebraic approach, discovered by Polya, consists of the construction of a 
polynomial from which one can read off how many colorings there are, modulo a 
group action, for specific numbers of regions of specified colors. It does not provide an 
actual description of the different colorings, but is the only feasible approach for large 
values of the parameters. 

Both approaches require some sample groups to use as examples, so these will be 
constructed first. 

2 Construction of Some Permutation Groups 
If the regions to be colored are numbered 1 through n, then the symmetry groups acting on the 
regions can always be regarded as permutations of { 1 , . . . , n}, so it suffices to construct 
some examples of permutation groups. 

2.1 Permutations 

A permutation is an expression of the form: 
1,2,3,4,5,6,7^ 
3,1,2,6,5,7,4] 

This describes the permutation where 1 goes to 3, 2 goes to 1, 3 goes to 2, etc. Usually, and 
especially in Mathematica, the top row is omitted and it is written just as (3,1, 2, 6, 5, 7,4). The 
Mathematica operation Part allows one to apply such a permutation to any list of the same 
length. E. g., 

{a, b, c, d, e, f, g}[[{3f 1, 2, 6, 5, 1, 4}]] 

{c, a, b, f, e, g, d} 
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In particular, a permutation can be applied to another permutation and the result is again a 
permutation. 

{5, 3 , 4, 2 , 7, 6, 1 } [ [ { 3 , 1, 2, 6, 5, 7, 4 } ] ] 

{4, 5, 3 , 6, 7, 1, 2} 

2.2 Permutation Groups 
Permutations form a group under this operation, called composition of permutations; i.e., 
there is an identity element (= the identity permutation), composition of permutations is 
associative, and each permutation has an inverse. To keep things straight, elements of the 
group of all permutations of 1, , n will be written in the form ge [ i i , . . . , i n ] 
rather than as { i i , . . . , i n } . The head ge stands for "group element." The formula 
above for the composition of permutations, modified for group elements is: 

comp[gl_ge, g2_ge] := gl[[List@@g2]]; 

For instance: 

gl = ge[3, 1, 2, 6, 5, 7, 4]; 
g2 = ge[5, 3, 4, 2, 7, 6, 1]; 
comp[g2f gl] => ge[4, 5, 3, 6, 1, 1, 2] 

The identity permutation of length n is given by 

identity[n_] := ge@@Range[n]; 

Composition with the identity element on either side has no effect. 

{comp[gl, identity[7]], comp[identity[7], g2]} 

{ge[3f 1, 2, 6, 5, Ί, 4], ge[5, 3, 4, 2, 1, 6, 1]} 

The inverse of a permutation is given by a simple formula. 

inverse[p_ge] := 
Module[{inv = pf i}f 

Do[inv[[ p[[i]] ]] = i, {if Length[p]}]; inv]; 
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For instance: 

{inverse[gl], comp[gl, inverse[gl]]} 

{ge[2, 3, 1, 7, 5, 4, 6], ge[l, 2, 3, 4, 5, 6, 7]} 

A collection of permutations determines a subgroup of the group of all permutations 
consisting of all possible compositions of members of the collection with each other. Outer of 
comp with a list of permutations gives all pairwise compositions of the permutations in the list. 
Applying Union to the flattening of this eliminates duplicates and puts the result in canonical 
order. If this operation is nested until there are no further changes; i.e., if FixedPoint is used, 
then all possible compositions are obtained, which gives the group generated by the 
permutations. Instead of just getting a list of group elements, we change the head to group to 
remind ourselves that this is a group. (Note: sometimes it is necessary to include the identity 
group element with the generators and sometimes it can be omitted, so for safety's sake we 
include it always.) 

générâtedGroup[permutâtions_List] := 
group@@ 
FixedPoint[ 

Union[Flatten[Outer[comp[#1, #2]&, #, #]]]&, 
Prepend[ permutations, 

identity[Length[permutations[[1]] ]]] 
] ; 

The output from generatedGroup clearly contains the identity permutation of the 
appropriate length as well as the composition of any two entries it contains. A little thought 
shows that it also contains the inverse of any entry, but we provide a check for this anyway 
that verifies that the collection of inverses of entries coincides with the collection of entries 
themselves. 

checkGroup[g_group] := 
With[{gr = g}, Union[Map[inverse, gr]] == gr]; 

2.3 The Rotation Group 

The rotation group of size n is the group of all cyclic permutations of 1,. . . , n. It is generated 
by a single rotation, in the sense that every rotation is a composition of copies of this smallest 
rotation. 
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rotationGenerator[n_] := ge@@RotateLeft[Range[n], 1] 

For instance: 

rotat ion6enerator[5] => ge [2 , 3 , 4, 5, 1] 

The composition of this with itself rotates left by 2 steps, etc. 

comp[rotationGenerator[5], rotationGenerator[5]] 

ge[3, 4, 5, 1, 2] 

The rotation group of a given size consists of all compositions of this with itself and the 
identity permutation. 

rotationGroup[n_Integer?Positive] : = 
generatedGroup[{rotationGenerator[n]}]; 

For instance: 

rotationGroup[5] 
g r o u p [ g e [ l , 2, 3, 4, 5 ] , ge [2 , 3 , 4, 5, 1 ] , g e [ 3 , 4, 5, 1, 2], 

ge[4 f 5, 1, 2, 3), g e [ 5 , 1, 2, 3, 4] ] 

checkGroup[rotationGroup[5]] => True 

Moderately large examples can be constructed and checked. 

Timing[checkGroup[rotationGroup[20]]] 

{6.58333 Second, True} 

2.4 The Tetrahedron Edge Group 

The tetrahedron edge group is the group of symmetries of the six edges of a tetrahedron 
determined by all proper physical motions of the tetrahedron. It is generated by i) rotating by 
120 degrees around a vertex and the center of the opposite face and ii) rotating by 180 degrees 
about the line joining the centers of two opposite edges. Number the edges 1, 2, 3 around a 
given vertex and then 4,5, 6 around the opposite face, as illustrated. 
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Needs["Graphics Master^"] 
Show[ 

WireFrame[Polyhedron[Tetrahedron]], 
6raphics3D[ 

{ Text["l", {-0.6,0,1}], Text["2", {0.1,0,1}]/ 
Text["3", {0.1, 0.7, 1}], 
Text[N4N, {0, -0.6, -0.5}], 
Text["5", {0.8, 0.6, -0.6}], 
Text["6", {-0.5, 0.2, -0.6}]}], 

Boxed -> False]; 

If the 120 degree rotation is about the vertex joining edges 1, 2, and 3, and the 180 degree 
rotation is about the line joining the centers of edges 1 and 5, then the generators are: 

tetrahedronGeneratorl = ge[2, 3, 1, 5, 6, 4]; 
tetrahedronGenerator2 = ge[1, 6, 4, 3, 5, 2]; 

The whole group is generated by all compositions of these generators. Note that there is only 
one tetrahedron group rather than a family as with the rotation groups. 

tetrahedronGroup = 
generatedGroup[{ tetrahedronGeneratorl, 

tetrahedronGenerator2 }] 

group[ge[l, 
ge[2, 
ge[3, 
ge[4, 
ge[5, 
ge[6, 

2, 3, 4, 5, 6], 
3, 1, 5, 6, 4], 
1, 2, 6, 4, 5], 
If 6, 2, 3, 5], 
2, 4, 3, 1, 6], 
3, 5, 1, 2, 4], 

ge[l, 6, 
ge[2, 4, 
ge[3, 5, 
ge[4, 5, 
ge[5, 6, 
ge[6, 4, 

4, 3, 5, 2], 
5, 1, 6, 3], 
6, 2, 4, 1], 
2, 6, 3, 1], 
3, 4, 1, 2], 
1, 5, 2, 3]] 

checkGroup[tetrahedronGroup] => True 
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2.5 The Octahedron Edge Group 

This is similar to the tetrahedron edge group. It consists of all symmetries of the 12 edges of a 
regular octahedron generated by rotations of 90 degrees about two adjacent vertices. If the 
edges are numbered 1, 2, 3, 4 around a given top vertex, 5, 6, 7, 8 around the middle square, 
and 9,10,11,12 around the bottom vertex, then the generators are: 

octahedronGeneratorl = 
ge[2, 3, 4, 1, 6, 7, 8, 5, 10, 11, 12, 9]; 

octahedronGenerator2 = 
ge[8, 4, 7, 12, 1, 3, 11, 9, 5, 2, 6, 10]; 

octahedronGroup = 
generatedGroup[{ octahedronGeneratorl, 

octahedronGenerator2 }]; 

The output is suppressed since it is rather long, consisting of 24 group elements. 

Short[octahedronGroup, 2] 

group[ge[l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], « 2 2 » , 
ge[12, 11, 10, 9, 7, 6, 5, 8, 4, 3, 2, 1]] 

checkGroup[octahedronGroup] => True 

3 The Geometric Approach 

3.1 The Pattern Array for a Group Action 

Suppose there are 6 regions to be colored with three colors, say red, green, and blue, and we 
want to find the distinct patterns with respect to the action of some groups of permutations. 
There are several things that have to be constructed before we arrive at the final answer. 

i) A possible choice of colors could be 2 reds, 1 green, and 3 blues. This choice is 
abbreviated as p t [ 2 , 1, 3 ] , where p t stands for partition. Our first task is to 
generate the list of all such choices; i.e., all partitions of 6 into three summands 
(including 0 as a possible summand). 

ii) One possible coloring of six regions using the partition pt [ 2 , 1, 3 ] is represented 
by pat tern [red, red, green, b l u e , b lue , b l u e ] . Our next task is to 
construct one such pattern for every possible choice of colors. These will be called basic 
patterns. 
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iii) The collection of all patterns is constructed by forming all permutations of each basic 
pattern. 

iv) Now the symmetry group comes into play. Fix attention on one pattern, pat. Each 
permutation in the symmetry group, when applied to pat, determines a possibly 
different pattern. The collection of all patterns produced this way from pat by the 
symmetry group is called the orbit of pat (with respect to the symmetry group). The 
next step is to construct the orbit of each pattern, which leads to a large collection 
called a l lOrbits . 

v) All patterns in a given orbit determine the same orbit, so many of the orbits 
constructed in step iv) are the same. Hence, replace the collection a l lOrbi t s by the 
collection d i s t inctOrbi t s . 

vi) Finally, pick out a representative pattern from each distinct orbit. This is the pattern 
array we are seeking. 

We will make all of these constructions interactively first to see how they work and then put 
everything together in the final constructions. 

3.1.1 Partitions 
With a little bit of experimentation, a procedure can be written that generates all partitions of n 
into m non-negative summands (and nothing else). 

partitions[0, m_] := {pt@@(0 Range[m])}; 
partitions[n_, 1] := pt[n]; 
partitions[n_Integer?Positive, m_Integer?Positive] := 

Table[ 
Flatten[partitions[n - i, m - 1]] //. 
pt[x ] /; Length[{x}] == m - 1 :> Prepend[pt[x], i] , 

{i, 0, n}]; 

For instance: 

partitions[5, 3] 

{pt[0, 
pt[0, 
{pt[i, 
pt[i, 
{Pt[2, 
<Pt[3, 
<Pt[4, 

0, 
4, 
0, 
4, 
0, 
0, 
0, 

5], pt[0, 
1], pt[0, 
4], pt[l, 
0]}, 
3], pt[2, 
2], pt[3, 
1], pt[4, 

1, 4], pt[0, 2, 
5, 0]}, 
1, 3], pt[l, 2, 

1, 2], pt[2, 2, 
1, 1], pt[3, 2, 
1, 0]}, 

3], pt[0, 3, 2], 

2], pt[l, 3, 1], 

1], pt[2, 3, 0]}, 
0]}, 

{pt[5, 0, 0]}} 
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3.1.2 All patterns 
Rather than using the names red, green, etc., we denote colors by c [ 1], c [ 2 ] , etc., and instead 
of putting the colors in a list, we use an expression with head pat tern. Thus one possible 
coloring of 6 regions using the choice of colors {2, 1, 3} is represented by pa t t ern [ c [ 1 ] , 
c [ l ] , c [ 2 ] , c [ 3 ] , c [ 3 ] , c [ 3 ] ] . Our next task is to construct one such pattern for 
every possible choice of colors. In the following construction we treat c as a variable since we 
will later want to replace it by an operation that actually does something. In these three rewrite 
rules, n represents the number of regions and m the number of colors. 

oneEach[n_Integer?Positive, 0f c_] := {{}}; 
oneEach[n_, 1, c_] := pattern@@Table[c[l], {n}]; 
oneEach[n_Integer?Positive, m_Integer?Positivef c_] := 

Map[ pattern@@Flatten[ 
Table[Table[c[i]f {#[[!]]}], {i, m}]]&, 

Flatten[partitions[n, m] ]]; 

To see how this works, we treat the case of 5 regions and 2 colors, since for 3 colors the output 
to be calculated later becomes rather large. First of all, 

Flatten[partitions[5, 2]] 

{ p t [ 0 , 5 ] , p t [ l , 4 ] , p t [ 2 , 3 ] , p t [ 3 , 2 ] , p t [ 4 , 1 ] , p t [ 5 , 0]} 

Each of these six partitions will determine a basic pattern. 

Map[ F l a t t e n [ T a b l e [ T a b l e [ c [ i ] , { # [ [ i ] ] } ] , { i , 2}]]&, 
partitions[5, 

{{c[2], c[2], c[2], 
{c[l], c[2], c[2], 
{c[l], c[l], c[2], 
{c[l], c[l], c[l], 
{c[l], c[l], c[l], 
{c[l], c[l], c[l], 

2]] 

c[2], 
c[2], 
c[2], 
c[2], 
c[l], 
c[l], 

c[2]}, 
c[2]}, 
c[2]}, 
c[2]}, 
c[2]}, 
c[l]}} 

All that has to be done is to change the head of each inner list to pattern to get the resulting 
list of six basic patterns. 
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basicPatterns = oneEach[5, 2 , c] 

{pattern[c[2 
pattern[c[1 
pattern[c[l 
pattern[c[l 
pattern[c[1 
pattern[c[1 

c[2], c[2], c[2], c[2]] 
c[2], c[2], c[2], c[2]] 
c[l], c[2], c[2]f c[2]] 
c[l]f c[l], c[2], c[2]] 
c[l], c[l], c[l], c[2]] 
c[l], c[l], c[l], c[l]]} 

To display this in a more condensed form, replace each pattern by a "*." 

basicPatterns/.^pattern -> "*" => {*, *, *,*,*, *} 

The output of oneEach gives one basic pattern for each choice of colors. To find all 
colorings of the regions for a particular choice of colors, it is necessary to construct all 
permutations of the given pattern. For the first pattern in the example, all permutations are 
the same. For the second pattern, there are 5! permutations, but only 5 of them represent 
different colorings, because permutating c [ 2 ] 's amongst themselves produces no change. 
Notice that Permutations gives the correct result when some of the items are the same. E.g., 

Permutations[{a, b, b}] 

{{a, b, b}, {b, a, b}, {b, b, a}} 

To find all patterns, just apply Permutations to each of the patterns given by oneEach. In 
the example this is done as follows: 

allPatterns = 
Map[Permutations, oneEach[5, 2, c]]; 

The output of a l l P a t t e r n s is suppressed because it is long, but it gives us all possible 
25 = 32 colorings of 5 regions using 2 colors. A typical entry is pa t tern [ c [ 2 ] , c [ 1 ] , 
c [ 2 ] , c [ l ] , c [2] ] .To understand the output better, we again replace each pattern by " *." 

TableForm[allPatterns/ ._pattern :> "*"] 

* 
* * * * * 
* * * * * * * * * * 
* * * * * * * * * * 
* * * * * 
* 
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Each star here represents a permutation of a basic pattern and shows that each of the six basic 
patterns has been expanded to a number of permuted patterns. The first and last basic patterns 
have no permutations, so produce only one pattern each, the second and fifth have five 
permutations each, and the third and fourth have ten permutations each. If 3 colors were used 
instead of 2, then there would be 3^ colorings broken up into similar groupings, etc. 

3.1.3 Orbits 
So far, no use has been made of a symmetry group that we assume here in the example to be 
the rotation group. It acts on each of these possible patterns by permuting the colors in them 
by rotations. In general we can define the action of a group element on an element from a set 
as follows: 

act[seteleraent_, groupelement_ge] := 
setelement[[List@@groupelement]] /; 
Length[setelement] == Length[groupelement]; 

Thus, a group element acts on a set element by permuting the arguments of the set element, 
but this only works if they have the same length. The orbit of a particular pattern with respect 
to a given group consists of all the patterns formed by all actions of group elements from the 
group. 

orbit[setelement__, g_group] : = 
Union[Map[act[setelement, #]&, List@@g]]; 

Of course many of these actions may give the same pattern, so Union has to be used to 
eliminate duplicates, and in order to get a list as the output, we have to replace the head 
group by the head Lis t . For instance, the orbit of pattern [ c [ 2 ] , c [ l ] , c [ 2 ] , c [ 1 ] , 
c [ 2 ] ] with respect to the rotation group consists of five patterns. 

orb i t [ p a t t e r n [ c [ 2 ] , c [ l ] , c [ 2 ] , c [ l ] , c [ 2 ] ] , 
rotationGroup[5]] 

{ p a t t e r n [ c [ l ] , c [ 2 ] , c [ l ] , c [ 2 ] , c [ 2 ] ] , 
p a t t e r n [ c [ l ] , c [ 2 ] , c [ 2 ] , c [ l ] , c [ 2 ] ] , 
p a t t e r n [ c [ 2 ] , c [ l ] , c [ 2 ] , c [ l ] , c [ 2 ] ] , 
p a t t e r n [ c [ 2 ] f c [ l ] , c [ 2 ] , c [ 2 ] , c [ l ] ] , 
p a t t e r n [ c [ 2 ] , c [ 2 ] , c [ l ] , c [ 2 ] , c [ l ] ] } 

To find the orbit generated by each of the patterns, just map o r b i t down the list 
al lPat terns . 
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allOrbits = 
Map[orbit[#, rotationGroup[5]]&, allPatterns, {2}]; 

The output is again suppressed since it is even larger. In order to visualize it, we make a 3-
dimensional picture showing the basic patterns as large dots in the direction of the x-axis, all 
permutations of them as medium-sized dots in the x-y-plane, and the orbits as small dots in 
the vertical dimension. 

Show[6raphics3D[ 
{ { PointSize[0.02], 

Map[ Point, Position[basicPatterns, pattern]/. 
{x_, 0} :> {4 x, -0-5, 0}]}f 

{ PointSize[0.01], 
Map[ Point[#]&, Position[allPatterns, pattern]/. 

{*_/ y_/ z_> *> {4 x, y, z}]}, 
{ PointSize[0.005], 
Map[ Point, 

Map[ Drop[#, -1]&, 
Position[allOrbits, pattern]]/. 

{x_f y_, z_} :> {4 x, y, z}]}, 
{ Text["basic patterns", {12, -3, 0}], 
Text["all patterns", {23.5, 6, 0}], 
Text["orbits", {19, 12, 1}, {0, 0}, {0, -1}]} 

}], Boxed -> False, 
ViewPoint->{1.140, -2.883, 1.356}]; 

. O 
• . tr 

• . H-
• " · . rt • · . w 

*."#· all patterns 

basic patterns 

There are six basic patterns, and 25 = 32 permutations of them arranged in blocks of sizes (1, 
5,10,10, 5,1). Finally, applying orbits to each of these 32 patterns generates one pattern each 
for the two singletons and 5 patterns for each of the others, represented by the small vertical 
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dots; i.e., the orbit over each medium-sized dot consists of 5 patterns, except for the two 
extreme cases, yielding altogether 152 patterns. However, the five orbits for each of the two 
groupings of five permuted patterns are identical, while each of the ten orbits over the two 
groupings of ten permuted patterns split into two non-identical orbits each, so we use Union 
again, this time to eliminate duplicate orbits. 

distinctOrbits = Map[Union, allOrbits]; 

Now the output is small enough to be displayed just by replacing pattern by * again. 

MatrixForm[dist inctOrbits/ .^pattern :> "*"] 

{ { * } } 
{ { * , * , * , * , * } } 
{ { * , * , * , * , * } , { * , * , * , * , * } } 
{ { * , * , * , * , * } , { * , * , * , * , * } } 
{ { * , * , * , * , * } } 
{ { * } } 

Thus, all together there are eight different orbits, two of them containing only one pattern each 
while the other six consist of five patterns each. 

Picking out one representative from each orbit will give us a small enough output to be able 
to look at all of it. 

Map[First, distinctOrbits, {2}] 

{{pattern[c[2]/ c[2], c[2], c[2], c[2]]}, 
{pattern[c[l], c[2], c[2], c[2], c[2]]}, 
{pattern[c[l], c[l], c[2], c[2], c[2]], 

pattern[c[l], c[2], c[l], c[2], c[2]]}, 
{pattern[c[l], c[l], c[l], c[2], c[2]], 

pattern[c[l], c[l], c[2], c[l], c[2]]}, 
{pattern[c[l], c[l], c[l], c[l], c[2]]}, 
{pattern[c[l], c[l], c[l], c[l], c[l]]}} 

Each pattern represents a distinct orbit, which means that no pattern is a rotation of any other 
pattern, and all possible patterns are rotations of one of the patterns here. Thus there are 8 
equivalence classes of rotation invariant necklaces using 2 colors. We will see later that this 
number agrees with the value predicted by the Burnside number for this design. 
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Putting all the steps together gives the final general pair of rewrite rules. 

patternArray[g_group/ 1, c_]:= 
Table[c[l], {k, Length[g[[l]]]}]; 

patternArray[g_group, m_Interger?Positive, c_] := 
Map[ First, Map[Union, 

Map[ orbit[#, g]&, 
Map[ Permutations, 

oneEach[Lenght[g[[1]]], m, c]], 
{2}]], {2}]; 

As a check, repeat the calculation we just stepped through. 

p a t t e r n A r r a y [ r o t a t i o n G r o u p [ 5 ] , 2 , c ] 

{ { p a t t e r n [ c [ 2 ] , c [ 2 ] , c [ 2 ] , c [ 2 ] , c [ 2 ] ] } , 
{ p a t t e r n [ c [ l ] , c [ 2 ] , c [ 2 ] , c [ 2 ] , c [ 2 ] ] } , 
{ p a t t e r n [ c [ l ] , c [ l ] , c [ 2 ] , c [ 2 ] , c [ 2 ] ] , 

p a t t e r n [ c [ l ] , c [ 2 ] , c [ l ] , c [ 2 ] , c [ 2 ] ] } , 
{ p a t t e r n [ c [ l ] , c [ l ] , c [ l ] , c [ 2 ] , c [ 2 ] ] , 

p a t t e r n [ c [ l ] , c [ l ] , c [ 2 ] , c [ l ] , c [ 2 ] ] } , 
{ p a t t e r n [ c [ l ] , c [ l ] , c [ l ] , c [ l ] , c [ 2 ] ] } , 
{ p a t t e r n [ c [ l ] , c [ l ] , c [ l ] , c [ l ] , c [ l ] ] } } 

If we want a diagram representing this output with *'s replacing the patterns, it is useful to 
be able to take the transpose of a table with rows of unequal lengths. To do so, we have to pad 
all of the rows until they have the same length with something that doesn't appear in the final 
table. The following does it. (Note that the optional argument T a b l e A l i g n m e n t s doesn't 
work with Transpose here.) 

pad[list_] := 
With[{len = Max[Map[Length, list]]}, 

Map[ Join[#, 
Table[" ", {len - Length[#]}]]&, list]]; 

Transpose[pad[patternArray[rotationGroup[5], 2, c]/. 
pattern! ] -> "*"]] // TableForm 

* * * * * * 
* * 

In the same way, we can display the output for colorings of the corners of a square using 3 
colors. 
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The following is the result for coloring the edges of a tetrahedron with 2 colors. 

Transpose[pad[patternArray[tetrahedronGroup, 2, c]/. 
pattern[ ] -> "*"]] // TablePorm 

Unfortunately, we cannot calculate the pattern array for the edges of an octahedron using 2 
colors, since that involves very large intermediate steps. 

3.2 The Picture Array for a Group Action 

3.2.1 Picture array 
Our ultimate goal is to make pictures of all the patterns, modulo symmetries for a given 
design. In order to use the pattern arrays derived above in plots, the head pattern has to be 
replaced by L i s t everywhere. 

pictureArray[g_group, m_Integer?Positive, c_] := 
patternArray[g, m, c]/. pattern -> List; 

For instance: 

pictureArray[rotationGroup[5], 2, c] 

{{{c[2 
{{c[l 
{{c[l 
{c[l 
{{c[l 
{c[l 
«c[l 
{{c[l 

c[2], 
c[2], 
c[l], 
c[2], 
c[l], 
c[l], 
c[l], 
c[l], 

c[2] 
c[2] 
c[2] 
c[l] 
c[l] 
c[2] 
c[l] 
c[l] 

c[2] 
c[2], 
c[2] 
c[2] 
c[2] 
c[l] 
c[l] 
c[l] 

c[2]} 
c[2]} 
c[2]} 
c[2]} 
c[2]} 
c[2]} 
c[2]} 
c[l]} 
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3.2.2 Rotation groups 
First we treat the case of a rotation group. A necklace will be pictured as a circle with small 
disks equally spaced around the circle for the beads. pictureArray can be used to calculate 
how to color each bead in a necklace by replacing each abstract color name of the form c [ i ] 
with an actual color specification using Hue [N[ # /2 ] & in place of c when evaluating the 
function. For instance: 

pictureArray[rotationGroup[5], 2, Hue[N[#/2]]&] 
{{Hue[l.], 
{{Hue[0.5], 
{{Hue[0.5], 
{Hue[0.5], 
{{Hue[0.5], 
{Hue[0.5], 
{{Hue[0.5], 
{{Hue[0.5], 

Hue[1.], 
Hue[1.], 
Hue[0.5], 
Hue[1.], 
Hue[0.5], 
Hue[0.5], 
Hue[0.5], 
Hue[0.5], 

Hue[1.], 
Hue[l.], 
Hue[1.], 
Hue[0.5], 
Hue[0.5], 
Hue[l.], 
Hue[0.5], 
Hue[0.5], 

Hue[1.], 
Hue[1.], 
Hue[1.], 
Hue[1.], 
Hue[1.], 
Hue[0.5], 
Hue[0.5], 
Hue[0.5], 

Hue[l, 
Hue[l 
Hue[1. 
Hue[l 
Hue[1■ 
Hue[1, 
Hue[l 
Hue[0 

]}}, 
.]}}, 
]}, 
.]}}/ 
]}/ 
.]}}, 
.]}}, 
.5]}}} 

Now all that has to be done is combine these color specifications with a Disk description of 
the beads. 

necklaces[n_, m_] := 
Map[{ Circle[{0, 0}, 1], 

Transpose[ 
{ #, Map[ Disk[#, Min[0.25, l/n]]&, 

Table[ { Cos[N[2 Pi/n k]], 
Sin[N[2 Pi/n k]] }, 

{k, n}] ] }] }&, 
pictureArray[rotationGroup[n], m, Hue[N[#/m]]&], 
{2}] 

As a small example, consider the three necklaces consisting of two beads using two colors; 
namely, the two necklaces that use only one color and the necklace using one bead of each 
color. 

Chop[necklaces[2, 2]] 
{{{Circle[{0, 0}, 1], {{Hue[l.], Disk[{-1., 

{Hue[l.], Disk[{l., 0}, 0.25]}}}}, 
{{Circle[{0, 0}, 1], {{Hue[0.5], Disk[{-1. 

{Hue[l.], Disk[{l., 0}, 0.25]}}}}, 
{{Circle[{0, 0}, 1], {{Hue[0.5], Disk[{-1. 

{Hue[0.5], Disk[{l., 0}, 0.25]}}}}} 

0}, 0.25]}, 

r 0}, 0.25]}, 

r 0}, 0.25]}, 
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The plotting routine for necklaces is now very simple using this geometric construction. The 
actual graphics objects are constructed by a routine called po lyaPictures . In order to use 
particular groups as the first argument to po lyaPic tures , we have to give it the attribute 
HoldFirst. 

Attributes[polyaPictures] = {HoldFirst}; 

We would also like to display the pictures here in the same orientation as the diagrams above. 
This time we have to be able to take the transpose of a matrix of graphics objects of unequal 
lengths. The following operation is what we need. 

padGraphics[list_] := 
With[{len = Max[Map[Length, list]]}, 

Map[ 
Join[#, Table[Graphics[{}],{len-Length[#]}]]&, 
list]]; 

polyaPictures[rotationGroup[n_], m_] := 
GraphicsArray[ 

Transpose[ 
padGraphics[ 

Map[ Graphics[#, AspectRatio -> Automatic]&, 
necklaces[n, m], {2}] ] ]]; 

Show[polyaPictures[rotationGroup[5], 2]]; 

ooooo o o 
In this picture, each column shows the different patterns with a fixed choice of numbers of 
colors. The numbers of necklaces of each kind are given by the command: 

Map[Length, pictureArray[rotationGroup[5], 2, c]] 

{1, 1, 2, 2, 1, 1} 
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Show[polyaPie~ures[ro~a~ionGroup[6], 2]]~

o

Map[Leng~h, pie~ureArray[ro~a~ionGroup[6], 2, e)]

{1, 1, 3, 4, 3, 1, 1}

o

3.2.3 The tetrahedron group
Next we treat the case of the edges of a tetrahedron. What is required to make a picture of a
tetrahedron is the list of the coordinates of its four vertices, which is found in one of the
graphics packages.

Ver~iees[Te~rahedron]

{{O, 0, 1.7320S}, {O, 1.63299, -0.S773S},
{-1.41421, -0.816497, -0.S773S}, {1.41421, -0.816497,

-0.S773S}}

We also need the edges of the tetrahedron which we have to calculate for ourselves.

edges[Te~rahedron] = Union[
Map[Union[Take[#, 2]]&, Permu~a~ions[{l, 2, 3, 4}]]]

{{1, 2}, {1, 3}, {I, 4}, {2, 3}, {2, 4}, {3, 4}}

The actual graphical lines representing the edges of the tetrahedron are given by the operation:



Twelve · Polya's Pattern Analysis 415 

Map[ Line[Vertices[Tetrahedron][[#]]]&, 
edges[Tetrahedron] ] 

{Line[{{Of 0, 1.73205}, {0, 1.63299, -0.57735}}], 
Line[{{0, 0, 1.73205}, {-1.41421, -0.816497, -0.57735}}], 
Line[{{0, 0, 1.73205}, {1.41421, -0.816497, -0.57735}}], 
Line[{{0, 1.63299, -0.57735}, 

{-1.41421, -0.816497, -0.57735}}], 
Line[{{0, 1.63299, -0.57735}, 

{1.41421, -0.816497, -0.57735}}], 
Line[{{-1.41421, -0.816497, -0.57735}, 

{1.41421, -0.816497, -0.57735}}]} 

Using this construction, the geometric tetrahedra are constructed as before. 

tetrahedra[m_J := 
With[ 

{lines = Map[ Line[Vertices[Tetrahedron][[#]]]&, 
edges[Tetrahedron]]}, 

Map[ Prepend[#, Thickness[0.03]]&, 
Map[ Transpose!{#, lines}]&, 

pictureArray[ tetrahedronGroup, m, 
GrayLevel[N[(# - l)/m]]&], 

{2}], 
{3}]]; 

The plotting routine, using the geometric construction of the tetrahedra, is now almost 
exactly the same as for the rotation group. 

polyaPictures[tetrahedronGroup, m_] := 
GraphicsArray[ 

Transpose[ 
padGraphics[ 
Map[ Graphics3D[#, Boxed -> False]&, 

tetrahedra[m], {2}]]] ]; 
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Show[polyaPictures[tetrahedronGroup, 2]]; 

4 ^ ^ 4 ^ ^ 4 

Map[Length, pictureArray[tetrahedronGroup, 2, c]] 

{1, 1, 2, 4, 2, 1, 1} 

^ 2T&* Algebraic Approach 
The geometric approach in the preceeding section succeeded through a brute force 
construction of the desired patterns. Counting how many patterns there are for each choice of 
colors (i.e., the number of entries in a column) is an incidental byproduct of the construction. 
The algebraic approach, which is highly refined, concentrates solely on finding these numbers 
and never does spell out what the actual patterns are. These numbers will appear as 
coefficients in a polynomial whose variables represent the colors; e.g., in the polynomial for the 
rotation group of size 5 with 2 colors, the term 2 c [ l ] 3 c[2]2 will mean that there are 2 
(equivalence classes of) necklaces using three beads of color c[l] and two of color c[2]. There 
are three steps in constructing this polynomial. 

i) First, we have to adopt a different representation of permutations in which they are 
given as products of cycles. 

ii) Next, given a permutation group G, a polynomial P G M I L X M ] , called the cycle 
index of G is constructed. Here k is the maximum length of a cycle in the cycle 
representations of the elements of G. 

iii) Finally, the polynomial for m colors is given by substituting Σ] c[j]* for x[i] in P Q and 
dividing the result by the number of elements in G. 
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It is a non-trivial result of group theory that this construction gives the desired answer. For 
an introductory treatment of the theory, see [Tucker] and for the full story, see [Rotman] and 
[Biggs] 

4.1 The Cycle Representation of a Permutation 

There is another way to represent permutations; namely, as products of cycles. For instance, in 
the permutation {3, 1, 2, 6, 5, 7, 4}, number 1 goes to 3, 3 goes to 2, and 2 goes to 1, so these 
three entries are cyclically permuted. This is represented by the cycle {3, 2,1}, or equivalently 
{1, 3, 2}, or {2,1, 3}. Notice that the cycle {3, 2,1} is different from the permutation {3, 2,1}, even 
though they are both written as the same list. It is a theorem that any permutation is equivalent 
to a product of cycles. There is a nice functional program which appeared on the network from 
"The Gang of Four at Stanford" which calculates the cycle representation of a permutation. It is 
constructed as follows: first take a test permutation. 

perm = {3 , 1, 2, 6, 5, 7, 4 } ; 

As we have seen, following 1 to 3 to 2 to 1 leads to the cycle {1, 3, 2}. This can be calculated by 
the operation: 

NestList[perm[[#]]&, 3, Length[perm]] 

{3, 2, 1, 3, 2, 1, 3, 2} 

We follow the sequence for 8 terms because we don't know exactly how long the cycle is going 
to be. Of course, we only need the first three terms here, which are given by 

Take[%, Length[Union[%]]] => {3, 2, 1} 

Do this for every entry in the permutation. 

Map[NestList[perm[[#]]&, #, Length[perm]]&f perm] 

{{3, 2, 1, 3, 2, 1, 3, 2}, {1, 3, 2, 1, 3, 2, 1, 3}, 
{2, 1, 3, 2, 1, 3, 2, 1}, {6, 7, 4, 6, Ί, 4, 6, 1}, 
{5, 5, 5, 5, 5, 5, 5, 5}, {7, 4, 6, 1, 4, 6, Ί, 4}, 
{4, 6, 1, 4, 6, 7, 4, 6}} 

Map[Take[#, Length[Union[#]]]&, %] 

{{3, 2, 1}, {1, 3, 2}, {2, 1, 3}, {6, 1, 4}, {5}, {7, 4, 6}, 
{4, 6, 7}} 
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Then pick out those cycles that start with the minimal entry, just to have a definite way to 
choose one representative of each cycle. 

Select[%, First[#] == Min[#]&] 
{{1, 3, 2}, {5}, {4, 6, 7}} 

Putting these steps together gives the construction. 

toCycles[perm__] := 
Select[ 

Map[ Take[#, Length[Union[#]]]&, 
Map[ NestList[perm[[#]]&, #, Length[perm]]&, 

perm] ], 
First[#] == Min[#]&]; 

Check this on the example that was just worked out interactively. 

toCyc les [ {3 , 1, 2 , 6, 5, 7, 4}] 

{{1, 3 , 2 } , {5}, {4, 6, 7}} 

4.2 The Cycle Index of a Group 
The cycle index for a group G of symmetries is a polynomial 

PG(x[l],...x[k]) 

in variables x[i], i = 1, . . . , k, where k is the maximum length of a cycle in the cycle 
representations of the elements of the group G. (Note that we write x[i] rather than xi .) We 
first work out an example of its construction interactively. Start with the tetrahedron group, 
rewrite it as a list of lists and apply toCycles to each permutation in the group. This gives the 
following: 

cycleList = 
Map[toCycles[List@@#]&, List@@tetrahedronGroup] 

{{{1}, {2}, {3}, {4}, {5}, {6}}, {{1}, {3, 4}, {5}, {2, 6}}, 
{{1, 2, 3}, {4, 5, 6}}, {{1, 2, 4}, {3, 5, 6}}, 
{{1, 3, 2}, {4, 6, 5}}, {{2, 5, 4}, {1, 3, 6}}, 
{{1, 4, 2}, {3, 6, 5}}, {{2, 5, 3}, {1, 4, 6}}, 
{{2}, {3, 4}, {1, 5}, {6}}, {{3}, {4}, {1, 5}, {2, 6}}, 
{{1, 6, 4}, {2, 3, 5}}, {{1, 6, 3}, {2, 4, 5}}} 
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Each argument at level 1 here is a list of cycles. 
Now create new variables x[ l ] , . . . x[k], where k is the maximum length of a cycle (in this 

case 3), and replace each cycle by the variable for its length. 

vars = Map[x[Length[#]]&, cycleList, {2}] 

{{x[l], x[l], x[l], x[l], x[l], x[l]}, 
{x[l], x[2], x[l], x[2]}, 
{x[3], x[3]}, {x[3], x[3]}, {x[3], x[3]}, 
{x[3]f x[3]}, {x[3], x[3]}, {x[3], x[3]}, 
{x[l], x[2], x[2], x[l]}, {x[l], x[l], x[2], x[2]}, 
{x[3]f x[3]}f {x[3], x[3]}} 

Thus, each cycle of the form {n} is replaced by x[l], each one of the form {m, n} by x[2], etc. 
Next, multiply together the variables in each sublist. 

terms = Apply[Times, vars, {1}] 

{x[l]6, x[l]2 x[2]2, x[3]2, x[3]2, x[3]2, x[3]2, x[3]2, x[3]2, 
x[l]2 x[2]2, x[l]2 x[2]2, x[3]2, x[3]2} 

What has happened here is that each original permutation in the group has been replaced by a 
product of variables determined by the cycle structure of the permutation. The indices of the 
variables give the lengths of the cycles and the exponents tell how many cycles there are of 
each length. Thus, the second group element ge[l, 6,4,3,5,2] has the cycle structure {{1}, {3,4}, 
{5}, {2,6}} with two cycles of length one and two of length two so it yields the term x[l]2 x[2]2. 

The polynomial we want is the sum of all of these terms. 

Pluseeterms => x[l]6 + 3 x[l]2 x[2]2 + 8 x[3]2 

Combining these steps gives the general operation. 

cycleIndex[g_group, x_] := 
Plus@@ 

Apply[ Times, 
Map[ x[Length[#]]&, 

Map[toCycles[List@@#]&, List@@g], 
{2}], 

{ i } ] ; 

As examples, calculate the cycle indices for the groups we're interested in. 
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cyclelndex[rotationGroup[5], x ] 
x[l]5 + 4 x[5] 
cyclelndex[tetrahedronGroup, x] 
x[l]6 + 3 x[l]2 x[2]2 + 8 x[3]2 

cyclelndex[octahedronGroup, x] 
x[l]12 + 6 x[l]2 x[2]5 + 3 x[2]6 + 8 x[3]4 + 6 x[4]3 

We can't help pointing out that constructing this polynomial by hand seems like a daunting 
task. Furthermore, when Polya [Polya] discovered it, there were no symbolic computation 
programs to make its construction so remarkably simple. 

4.3 Polya Ts Pattern Inventory for a Group Action 
The Polya Pattern Inventory is constructed from the cycle index by evaluating the polynomial 
PQ for the arguments 

PG(Xc[j],X cü]2 Sc[j]k) 
j = l j = l j = l 

and dividing the result by the number of elements in the group. Here m is the number of 
colors and k is the maximum length of a cycle in a group element. In generating the list of 
substitutions in the following procedure, no harm is done if possibly too many powers are 
calculated, so we can ignore the problem of determining what k is and just use the maximum 
value it could possibly have. It is non-trivial to prove that this new polynomial will answer our 
question. 

polyaPatternlnventory[ g_group, 
m_Integer?Positive, c_]:= 

Cancel[Expand[cyclelndex[g, c] /· 
Tablet c[i] -> Sum[c[jpi, {j, m}]f 

{i, Length[g[[l]]]}]]/ Length[g]]; 
For a necklace consisting of 5 beads, using two colors, this gives the polynomial: 

polyaPatternlnventory[rotationGroup[5], 2, c] 
c[l]5 + c[l]4 c[2] + 2 c[l]3 c[2]2 + 2 c[l]2 c[2]3 + 
c[l] c[2]4 + c[2]5 
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Each term here corresponds to one way of coloring the necklace. The exponents correspond to 
the number of beads of each color and the coefficient gives the number of colorings (modulo 
rotations) using that choice of beads. For instance, the term 2 c [ 1 ] 2 c [ 2 ] 3 means that there 
are 2 ways to construct a necklace using 2 beads of color c[l] and 3 beads of color c[2]. We 
would like to compare the coefficients in this polynomial with the geometrically determined 
numbers of colorings of each kind. The following routine will extract them. 

polyaCoefficients[g_group, m__Integer?Positive, c_] : = 
Select[ 

Flatten! 
CoefficientList[ polyaPatternInventory[g, m, c ] , 

Table[c[ i ] , { i , m}] ] ] , 
# > 0&]; 

For instance: 

polyaCoefficients[rotationGroup[5], 2, c] 
{1, 1, 2, 2, 1, 1} 

We can let Mathematica do the comparison with the experimental results. 

polyaCoef£icients[rotationGroup[5], 2, c] == 
Map[Length, pictureArray[rotationGroup[5], 2, c]] 

True 

For 5 beads and 3 colors there are many more necklaces. 

polyaPatternlnventory[rotationGroup[5], 3 , c] 
c[l]5 + c[l]4 c[2] + 2 c[l]3 c[2]2 + 2 c[l]2 c[2]3 + c[l] c[2]4+ 
c[2]5 + c[l]4 c[3] + 4 c[l]3 c[2] c[3] + 6 c[l]2 c[2]2 c[3] + 
4 c[l] c[2]3 c[3] + c[2]4 c[3] + 2 c[l]3 c[3]2 + 6 c[l]2 c[2] 
c[3]2 + 6 c[l] c[2]2 c[3]2 + 2 c[2]3 c[3]2 + 2 c[l]2 c[3]3 + 
4 c[l] c[2] c[3]3 + 2 c[2]2 c[3]3 + c[l] c[3]4 + c[2] c[3]4 + 
c[3]5 

However, we can still check that the algebraic theory agrees with the geometric construction. 

polyaCoefficients[rotationGroup[5], 3, c] == 
Map[Length, pictureArray[rotationGroup[5], 3, c]] 

True 
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Here are several more examples. 

polyaPatternInventory[rotationGroup[6], 2, c] 

c[l]6 + c[l]5 c[2] + 3 c[l]4 c[2]2 + 4 c[l]3 c[2]3 + 3 c[l]2 
c[2]4 + c[l] c[2]5 + c[2]6 

polyaCoefficients[rotationGroup[6], 2, c] == 

Map[Length, pictureArray[rotationGroup[6], 2, c]] 

True 

polyaPatternlnventory[tetrahedronGroup, 2, c] 
c[l]6 + c[l]5 c[2] + 2 c[l]4 c[2]2 + 4 c[l]3 c 
c[2]4 + c[l] c[2]5 + c[2]6 

polyaCoefficients[tetrahedronGroup, 2, c] == 
Map[Length, pictureArray[tetrahedronGroup, 

True 

polyaPatternlnventory[tetrahedronGroup, 3, c] 

c[l]6 + c[l]5 c[2] + 2 c[l]4 c[2]2 + 4 c[l]3 c[2]3 + 
2 c[l]2 c[2]4 + c[l] c[2]5 + c[2]6 + c[l]5 c[3] + 
3 c[l]4 c[2] c[3] + 6 c[l]3 c[2]2 c[3] + 6 c[l]2 c[2]3 c[3] + 
3 c[l] c[2]4 c[3] + c[2]5 c[3] + 2 c[l]4 c[3]2 + 
6 c[l]3 c[2] c[3]2 + 9 c[l]2 c[2]2 c[3]2 + 6 c[l] c[2]3 c[3]2 + 
2 c[2]4 c[3]2 + 4 c[l]3 c[3]3 + 6 c[l]2 c[2] c[3]3 + 
6 c[l] c[2]2 c[3]3 + 4 c[2]3 c[3]3 + 2 c[l]2 c[3]4 + 
3 c[l] c[2] c[3]4 + 2 c[2]2 c[3]4 + c[l] c[3]5 + c[2] c[3]5 + 
c[3]6 

Notice in the last example that there are 9 ways, up to symmetries, to color the edges of a 
tetrahedron using two edges each of three colors. 

polyaCoefficients[tetrahedronGroup, 3, c] == 
Map[Length, pictureArray[tetrahedronGroup, 3, c]] 

True 

[2]3 + 2 c[l]2 

2, c]] 
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polyaPatternlnventory[octahedronGroup, 2, c] 
c[l]12 + c[l]n c[2] + 5 c[l]10 c[2]2 + 13 c[l]9 c[2]3 + 
27 c[l]8 c[2]4 + 38 c[l]7 c[2]5 + 48 c[l]6 c[2]6 + 38 c[l]5 
c[2]7 + 27 c[l]4 c[2]8 + 13 c[l]3 c[2]9 + 5 c[l]2 c[2]10 + c[l] 
c[2]n + c[2]12 

The numbers here are much bigger, which is why we were unable to construct representatives 
of all of the orbits geometrically. Thus, for instance, there are 48 ways to color the edges of an 
octahedron using equal numbers of two colors. We can check that the geometric description 
agrees with the algebraic theory, provided we don't attempt to display the results of the 
construction, but the calculation takes a long time. 

Timing [ 
polyaCoefficients[octahedronGroup, 2, c] == 
Map[Length, pictureArray[octahedronGroup, 2, c]]] 

{670.75 Second, True} 

4.4 The Burnside Number for a Group 
The Burnside number for a permutation group G and a number of colors m is the total number 
of colorings of the design by m colors modulo the symmetries in the group. It is given by 
evaluating the polynomial YQ with all variables set equal to m and dividing by the number n 
of elements in the group; i.e., PG [m,. . . , m] / n. Of course, it is also the sum of the numbers 
given by polyaCoef f i c i e n t s . 

burnsideNumber[g_group, m_Integer?Positive] := 
Module[ {c}, 

cyclelndex[g, c] / Length[g] /. 
Table[c[i] -> m, {i, Length[g]}] ] 

Here are the numbers of various necklaces and the tetrahedron and octahedron colorings using 
two colors. 

{ burns ideNumber[rotat ionGroup[5], 2], 
burnsideNumber[rotationGroup[ 10 ], 2], 
burnsideNumber[rotationGroup[20], 2], 
burnsideNumber[rotationGroup[30], 2], 
burnsideNumber[rotationGroup[40], 2], 
burns ideNumber[tetrahedronGroup, 2], 
burnsideNumber[octahedronGroup, 2] } 

{8, 108, 52488, 35792568, 27487816992, 12, 218} 
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5 Implementation 
A complete package implementing all of the commands developed here will be found on the 
diskettes distributed with this book. It is called PolyaPatternAnalysis .m. 



1 Introduction 
A graph consists of a finite set of vertices, some of which are joined by edges. Here are several 
examples that will be constructed later. 

the vertices are indicated by heavy dots. When the edges are drawn in the plane they 
sometimes intersect, but these intersection points are not considered as part of the graph. The 
important thing is whether or not there is an edge joining two vertices. These kinds of graphs 
are sometimes called undirected, simple graphs to distinguish them from directed graphs 
which have arrows on their edges and from multigraphs which can have several edges joining 
two vertices. Sometimes edges are allowed from a vertex to itself, but we rule that out here. 

Mathematically, a graph can be considered as a relation between vertices. Two vertices are 
related if and only if they are joined by an edge. This relation is clearly symmetric: if x is joined 
to y then y is joined to x. We assume explicitly that it is anti-reflexive; i.e., a vertex is not joined 
to itself. In other words, there are no loops in the graph. Clearly, any symmetric, anti-reflexive 
relation can be pictured by such a graph, so it doesn't matter whether we talk about graphs or 
about such relations. Now there are various ways to describe relations, each of which 
corresponds to a way to describe graphs. A relation on a set V (of vertices) can be considered 

425 
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as a subset of the Cartesian product V x V; i.e., as a set of ordered pairs of elements of V, so one 
can simply make a list of those pairs that belong to the relation. This will be one of our basic 
representations of a graph, called the ordered pair representation. Alternatively, such a subset 
can be described by its characteristic function-a function on V x V with values 0 and 1 that is 1 
exactly for those pairs belonging to the subset. If we name the elements of V by the numbers 1 
through n, where n is the number of elements of V, then this characteristic function can be 
described by an n x n matrix of O's and l's, in which the (i, j)th entry is 1 if and only if the pair 
(i, j) belongs to the subset; i.e., if and only if there is an edge from vertex i to vertex j . This 
matrix is called the adjacency matrix of the graph, since a 1 in position (i, j) is interpreted as 
meaning that vertex i is adjacent to vertex j . The relation being symmetric is equivalent to the 
adjacency matrix being symmetric, and the relation being anti-reflexive means that the 
diagonal entries are all 0. This will be another of our basic representation of graphs called the 
adjacency matrix representation. The third basic representation is simply to list, for each 
vertex, the other vertices to which it is connected. This is called the edge list representation. 

Approximately two-thirds of S. Skiena's book, Implementing Discrete Mathematics [Skiena], is 
concerned with graph theory. We present here a somewhat different treatment of the subject as 
an illustration of a systematic development of a part of mathematics in the object-oriented style 
considered in Chapter 9. 

There are many aspects to graph theory. There must be thousands or possibly tens of 
thousands of algorithms concerning properties of graphs. Many are to be found in Skiena's 
book. Each algorithm expects its input in a particular form and works most conveniently or 
most efficiently in that form, which is one reason why there are many different representations 
of graphs. As the above pictures show, one can make drawings of graphs and try to 
understand them through these drawings, so such illustrations are an intrinsic feature of graph 
theory. Skiena's representation of graphs includes instructions for making a drawing of each 
graph. We omit this feature for simplicity and just have a few general plotting routines that are 
suitable for all graphs, and a special one for a particular kind of graph. In this chapter we 
concentrate mainly on the construction of new graphs from old ones, and leave the study of 
graph algorithms to Skiena's book. 

2 Representations of Graphs 

2.1 The Class Hierarchy 

As a first simple example, consider the complete graph on three vertices, K[3]. It consists of 
three vertices, labeled 1,2,3, each of which is connected by an edge to the other two. 
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As described above, the adjacency matrix of a graph is the n x n matrix G in which 

G[i, j] == 1 if and only if vertex i is connected to vertex j 

Our assumptions are that this matrix is symmetric with O's on the main diagonal. In particular, 
the adjacency matrix for K [ 3 ] is 

O i l 
1 0 1 
1 1 0 

The edge list representation is a list of lists in which the ith list is the list of vertices 
connected to the ith vertex. E.g., for K [ 3 ] , we have the list of lists: 

{ { 2 , 3 } , { 1 , 3 } , { 1 , 2 } } 

Here, the first entry, { 2 , 3}, means that the first vertex is connected to vertices 2 and 3, etc. 
Clearly, to be the list of edge lists for a graph requires that the individual lists are increasing, 
that the largest entry is less than or equal to the number of lists, that i does not occur in the ith 
list and that if j occurs in the ith list then i occurs in the jth one. 

Finally, the ordered pair representation is the list of pairs of vertices that are connected by 
edges. E.g., for K [ 3 ] , we have the list of pairs: 

{ { 1 , 2}, { 1 , 3 } , { 2 , 1 } , { 2 , 3}, {3, 1 } , { 3 , 2 } } 

Here the first entry { 1 , 2 } means that there is an edge from 1 to 2. The only restrictions on a 
list of pairs, to be the list of ordered pairs of a graph, are that there are no pairs of the form { i , 
i }, and that if { i , j } occurs in the list then so does { j , i }. Note that the number of vertices 
of a graph cannot be determined from its ordered pair representation since there may be 
isolated vertices; i.e., vertices that are not connected to any others. 

The situation here is very similar to that of points in the plane treated in Chapter 9. There 
are three different ways to represent graphs, so we have to have operations translating 
between them and the whole situation can be embedded in a small hierarchy of classes 
consisting of an abstract top class graph, under the class Object , followed by three subclasses, 
one for each way of representing graphs. We call these subclasses adjacents, edges and 
ordereds, just to have names that won't conflict with the operations to be constructed for them. 
Actually, there will be a number of subsubclasses as well, as indicated in the following picture. 
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Altogether the hierarchy contains 10 classes, but there could be many more. 

2.2 Outline Versions of the Classes 

The structure to be set up is complicated both in the number and detail of operations to be 
implemented and in their object-oriented organization. To get started, we'll first look at the 
classes in outline form just to see what's to go in them. First of all is the top class graph, just 
under Object. It has no instance variables and no new method as well as three methods with 
default second components. I.e., like the class p o i n t in Chapter 9, there are no objects 
belonging to this class; it is just there to organize the classes below it. However, just as before, 
it will turn out that this class contains almost all of the knowledge about graphs. 

Class[ 
graph, 
Object, 
{}, 
{ {graphQ, }f 
{adj acencyMatrix, 
{edgeLists, 
{orderedPairs, 
{numberOfVertices, 
{numberOfEdges, 

(* name of the class*) 
(* super class*) 
(* an abstract class*) 
(* methods*) 

NIM[self, adj acencyMatrix]&}, 
NIM[self, adj acencyMatrix]&}, 
NIM[self, orderedPairs]&}, 

}/ 
}, 

}] 
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Actually, there will be many more methods in this class. The methods with default second 
components have to be implemented in the subclasses of graph, and in fact that is about all 
that is implemented in them. 

Consider the first subclass, adjacents. It has one instance variable called matrix and the 
idea is that when a new object of the class is constructed, matrix will be set equal to the 
adjacency matrix of some graph. The method adjacencyMatrix will just return this matrix, 
while the methods edgeLists and orderedPairs will have to carry out some computation 
to find the edge lists and ordered pairs corresponding to the adjacency matrix. 

Class[ 
adjacents , 
graph, 
{matrix}, 
{ {new, new [super] ; 

{adj acencyMatrix, 
{edgeLists , 
{orderedPairs, 

(* name of the c l a s s *) 
(* super c l a s s *) 
(* the adjacency matrix *) 

(matrix = #)&}, (* methods *) 
matrix&}, 
"calculate edge lists"}, 
"calculate ordered pairs"} }] 

The class edges is similar, except this time the single instance variable expects to be given 
the list of edge lists of some graph. The method edgeLis ts just returns this list of lists while 
the other two methods involve computations. 

Class[ 
edges, 
graph, 
{eds}, 
{ {new, new[super]; 
{adj acencyMatrix, 
{edgeLists, 
{orderedPairs, 

(* name of the class *) 
(* super class *) 
(* the edge lists *) 

(eds =#)&}, (* methods ' 
"calculate adjacency matrix"}, 
eds&}, 
"calculate ordered pairs"} }] 

The pattern is now clear. For the class ordereds, the single instance variable is set equal to 
the list of ordered pairs of some matrix, which is returned by the method orderedPairs, and 
the other two methods require computations. 

Class[ 
ordereds, 
graph, 
{ords}, 
{ {new, new[super]; 

{adj acencyMatrix, 
{edgeLists, 
{orderedPairs, 

(* name of the class *) 
(* super class *) 
(* the ordered pairs *) 

(ords = #)&}, (* methods *) 
"calculate adjacency matrix"}, 
"calculate edge lists"}, 
ords&} }] 

The subsubclasses will be treated later. 
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2.3 The Subclasses in Detail 

Before looking at the class graph, which is rather large, the three subclasses will be discussed 
in detail since that is where graphs are actually created. 

2.3.1 The class adjacents 

For the class a d j a c e n t s , the list of edge lists and the list of ordered pairs has to be calculated 
from the adjacency matrix. Conceptually, it is simple to see how to find the list of edge lists. 
Consider the first row of the adjacency matrix. The places in that row where there are l's 
correspond to the vertices to which the first vertex is connected. The operation P o s i t i o n can 
find these places, so a function can be written in our usual functional style to find the edge 
lists. 

edgeLis t sFromAdjacencyMatr ix[matr ix_] := 
Map[ ( F l a t t e n [ P o s i t i o n [ # , edge_ / ; (edge != 0 ) ] ] ) & , 

matr ix ] ; 

The reason for the F l a t t e n is because P o s i t i o n returns its results wrapped in extra 
parentheses. E. g., 

P o s i t i o n ! { 0 , 1 , 1 } , edge_ / ; (edge != 0 ) ] => { { 2 } , {3}} 

In object-oriented programming, this function gets replaced by a method, named 
e d g e L i s t s here, with the body of the definition as second argument. Thus, the method for 
a d j a c e n t s looks almost the same as the functional definition. 

{ e d g e L i s t s , 
Map[ ( F l a t t e n [ P o s i t i o n [ # , edge_ / ; (edge != 0 ) ] ] ) & , 

matr ix ]&} 

This method works because the instance variable for a d j a c e n t s is named matrix . However, 
if the method is written this way then it will not be inherited correctly by subclasses which will 
be constructed later. Instead of m a t r i x , we have to write ad jacencyMatr ix [ s e l f ] so 
that the correct matrix from an object of the subclass will be used. Thus, the actual method is: 

{edgeLists, 
Map[ (Flatten[Position!#, edge_ /; (edge != 0)]])&, 

adj acencyMatrix[self] ]&} 
We also need a way to calculate the list of ordered pairs corresponding to the adjacency 

matrix of a graph. This is even simpler than finding the edge lists since the desired ordered 
pairs are exactly the positions in the adjacency matrix where there is a non-zero entry. In a 
functional style, we would just write. 



Thirteen · Object-Oriented Graph Theory 431 

orderedPairsFromAdjacencyMatrix [matrix_] : = 
Position[matrix, edge_ /; (edge != 0)]]; 

As before, in object-oriented style, this becomes the method: 

{orderedPairs, 
Position[adjacencyMatrix[self], edge_/;(edge!=0)]&} 

Here, m a t r i x is replaced by a d j a c e n c y M a t r i x [ s e l f ] for the same reason as above. 
Putting this all together gives the following class definition. 

C l a s s [ a d j a c e n t s , graph, { m a t r i x } , 
{ {new, ( n e w [ s u p e r ] ; matr ix = # )&} , 

{adj acencyMatr ix , m a t r i x * } , 
{ e d g e L i s t s , 

Map[ ( F l a t t e n [ P o s i t i o n [ # , edge_ / ; 
(edge != 0 ) ] ] ) & , 

adj a c e n c y M a t r i x [ s e l f ] ]&}, 
{ o r d e r e d P a i r s , 

P o s i t i o n [ a d j a c e n c y M a t r i x [ s e l f ] , 
edge_ / ; (edge != 0) ]&} } ] ; 

If Maeder's package, C l a s s e s [Maeder 2], is loaded and the class graph is evaluated, then we 
can try out examples to be sure that everything works correctly. 

Needs["Classes"] 
Needs["Graphs"] 

Start with the complete graph on three vertices, entered "by hand." 

K [ 3 ] = 
new[adjacents, {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}]; 

Check the calculation of edge lists and ordered pairs. 

{edgeLists[K[3]], orderedPairs[K[3]]}//MatrixForm 

{{2, 3}, {1, 3}, {1, 2}} 
{{1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}} 

2.3.2 The class edges. 

The class e d g e s is responsible for calculating the adjacency matrix and the list of ordered 
pairs from the list of edge lists of a graph. Calculating the adjacency matrix from the edge lists 
is the inverse of the first calculation in the preceding section which calculates the edge lists 
from the adjacency matrix. Clearly, the edge lists tell us where, in each row of the adjacency 
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matrix, there is to be a 1. It is easy to write a function to do this, using ReplacePart to put l's 
in the appropriate places, determined by the edge lists, in a row of O's. 

adjacencyMatrixFromEdgeLists[edges_]:= 
Map[ ReplacePart[0 Range[Length[edges]], 1, #]&, 

Map[Partition!#, 1]&, edges]]; 

In object-oriented style, this becomes the method 

{adj acencyMatrix, 
With[ {edges = edgeLists[self]}, 

Map[ ReplacePart[ 0 Range[Length[edges]], 1, #]&, 
Map[Partition[#, 1]&, edges]]]&} 

The With construction is used to avoid calculating edgeLists [ s e l f ] twice. 
The second calculation needed here is a new conversion; namely, from edge lists to ordered 

pairs. If the ith list in the edge lists is {ii, . . . , in}, then there should be ordered pairs of the 
form {i, i i ) , . . . , {i, in} in the list of ordered pairs of the graph. It is simpler to construct all pairs 
{i, j} and then select the ones that we want. It turns out that an auxiliary expression is required 
to extract the diagonal from a matrix using a clever method found by Allan Hayes (e-mail 
communication). 

diagonal[matrix_List] := Transpose[matrix, {1, 1}] 

In functional form, the required conversion operation is: 

orderedPairsFromEdgeLists[edges_] := 
Flatten[ diagonal[ Outer[{#1, #2}&, 

Range[Length[edges]], edges] ], 
i ] ; 

This works because of the way Outer organizes its output. Turned into an object-oriented 
message, the operation becomes the last method in the class edges. 

Class[edges, graph, {eds}, 
{ {new, (new[super]; eds = #)&}, 

{adj acencyMatrix, 
With[ 

{edges = edgeLists[self]}, 
Map [ ReplacePart[ 0 Range[Length[edges]], 1, #]&, 

Map[Partition[#, 1]&, edges]]]&}, 
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{edgeLists, eds&}, 
{orderedPairs, 

With[{edges = edgeLists[self]}, 
Flatten[diagonal[ 

Outer[{#l, #2}&, 
Range[Length[edges]], edges]], 1]]&} }]; 

Try this out using the edge lists from K [ 3 ] . 

edg[3] = new [edges, edgeLists[K[3]]]; 

Check that the two important messages work correctly. 

{adj acencyMatrix[edg[3]], orderedPairs[edg[3]]} // 
MatrixForm 

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} 
{{1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}} 

2.3.3 The class ordereds 
Starting with the list of ordered pairs of a graph, this class will find the corresponding 
adjacency matrix and edge lists. Both operations are inverse to operations considered in the 
preceding two sections. We calculate the adjacency matrix first. Conceptually, this is very 
simple since the list of ordered pairs describes the positions of the l's in the adjacency matrix. 
So just start with a matrix of O's of the correct size and use the ordered pairs to replace 
appropriate O's by l's. In functional form, this looks like: 

adj acencyMatrixFromOrderedPairs[pairs_] : = 
ReplacePart[ 0 IdentityMatrix[Max[Flatten[pairs]]], 

1, pairs]; 

As a method, it becomes: 

{adj acencyMatrix, 
With[ {pairs = orderedPairs[self]}, 

ReplacePart[ 
0 IdentityMatrix[Max[Flatten[pairs]]], 
1, pairs]]&} 

Again, we use a With construction to avoid calculating orderedPairs [ s e l f ] twice. 
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Lastly, we find the edge lists in terms of the ordered pairs. The edge list for the vertex i 
consists of all second entries of ordered pairs whose first entry is i. In functional form, this is 
given by the operation: 

edgeListsFromOrderedPairs [pairs__] : = 
Table[ Cases[pairs , { i , x_} -> x ] , 

{ i , Max[Flatten[pairs]]} ] 

As a message, it becomes the second method in the class ordereds. 

Class[ordereds, graph, {ords}, 
{ {new, (new[super]; ords = #)&}, 

{adj acencyMatrix, 
With[{pairs = orderedPairs[self]}, 

ReplacePart[ 
0 IdentityMatrix[Max[Flatten[pairs]]], 
1, pairs]]&}, 

{edgeLists, 
With[{pairs = orderedPairs[self]}, 

Table[ Cases[pairs, {i, x_} -> x], 
{i, Max[Flatten!pairs]]}]]&}, 

{orderedPairs, ords&} }]; 

As a simple example, consider 

orp[3] = new[ordereds, orderedPairs[K[3]]]; 
{ adj acencyMatrix[orp[3]], 
edgeLists[orp[3]] } // MatrixForm 

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} 
{{2, 3}, {1, 3}, {1, 2}} 

2.3.4 Discussion 
These three classes make it possible to construct graphs by specifying either the adjacency 
matrix, the edge lists, or the ordered pairs of the graph. Once the graph is made, these three 
messages, ad j acencyMatr ix , edgeLi s t s , and orderedPairs , can be sent without 
worrying about how the graph was originally created. This kind of object-oriented 
polymorphism is a powerful idea. As long as we describe all further operations in terms of 
these three constructs, we never have to be concerned with what a graph actually is; graphs in 
this sense are abstract, which is the intuitive reason why the top class graph is an abstract 
class. 
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2.4 The top Class graph : Basic Structure 

We're now ready to begin the discussion of the class graph itself. Ultimately, almost all of our 
knowledge about graphs will be contained in the messages for this graph, except for the three 
calculations done in the subclasses. Recall that the outline version of this class looks like: 

Class[graph, Object, {}, 
{ {graphQ, }, 

{adj acencyMatrix, NIM[self, adj acencyMatrix]&}, 
{edgeLists, NIM[self, edgeLists]&}, 
{orderedPairs, NIM[self, orderedPairs]&}, 
{numberOfVertices, }, 
{numberOfEdges, }, 
— }] I 

The default methods are all the same: NIM [ s e l f , <name of method>]. The meaning of 
this is that these methods must be implemented in the subclasses of graph. If they are not, 
then a message to that effect is returned. Now consider the method with name graphQ. Its 
second component should be a predicate that returns True if and only if the object under 
consideration is a graph. It is easy to describe in functional form when a matrix is the 
adjacency matrix of a graph. 

adjacencyMatrixOfGraph[matrix_] := 
MatrixQ[matrix, (#===0 || #===1)&] && 
(matrix === Transpose[matrix]) && 
(diagonal[matrix] · diagonal[matrix] === 0); 

The first clause says that matrix is a matrix of O's and l's, the second that it is symmetric (and 
in particular square), and the third that the diagonal elements are all 0. For instance: 

adj acencyMatrixOfGraph[adj acencyMatrix[K[3]]] 

True 

As a message, it becomes the first method in the class graph. The methods for the numbers of 
vertices and edges are simple to write, so, as a start, the class graph is given as follows: 

Class[graph, Object, {}, 
{ {graphQ, 

With[{matrix = adjacencyMatrix[self]}, 
MatrixQ[matrix, (#===0 || #===1)&] && 
(matrix === Transpose[matrix]) && 
(diagonal[matrix] · diagonal[matrix]===0)]&}, 
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{adjacencyMatrix, NIM[self, adjacencyMatrix]&}, 
{edgeLists, NIM[self, edgeLists]&}, 
{orderedPairs, NIM[self, orderedPairs]&}, 
{numberOfVertices, Length[edgeLists[self] ]&}, 
{numberOfEdges, 

Length[Flatten[edgeLists[self] ]] / 2 &} }]; 

For instance:. 

{ graphQ[K[3]], numberOfVertices[K[3]], 
numberOfEdges[K[3]] } 

{True, 3, 3} 

The actual class graph as described in the Implementation section at the end of the chapter 
contains all of these methods as well as many others. Some of the most important additions are 
methods to make pictures of graphs. There are three that are contained in the top class, called 
randomlmmersion, c i r c u l a r l m m e r s i o n , and c enterCircu lar lmmers ion . The 
underlying principle of all of them is the same. If the graph has n vertices, then n points in the 
plane are given explicitly and the list of ordered pairs of the graph is used to determine lines 
between appropriate pairs of these points. In doing this we don't need all of the ordered pairs, 
just those whose first coordinate is less than the second coordinate. For instance, the method 
randomlmmersion is given as follows: 

{randomlmmers i o n , 
With[ 

{ v e r t s = Table[ {Random[], Random[]}, 
{ n u m b e r O f V e r t i c e s [ s e l f ] } ] } , 

Graphics[ 
J o i n [ { P o i n t S i z e [ 0 . 0 3 5 ] } , Map[Point , v e r t s ] , 

Map[ Line[ { v e r t s [ [ # [ [ 1 ] ] ] ] , 
v e r t s [ [ # [ [ 2 ] ] ] ] } ] & , 

S e l e c t [ o r d e r e d P a i r s [ s e l f ] , 
( # [ [ 1 ] ] < # [ [ 2 ] ] ) & ] ] ] 

] ]&} 

Here v e r t s is set equal to a table of n random points in the plane. Then Graphics [ ] is 
called with an argument consisting of a chosen point size, a point for each entry in v e r t s and 
a line for each pair of entries in v e r t s that corresponds to an ordered pair of vertices of the 
graph. For instance: 
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Show[randomlmmers i o n [ K [ 3 ] ] ] ; 

The principle is the same for the other drawing messages. The argument to Graphics [ ] 
is always the same. What differs is the construction of verts . Thus: 

{circularImmersion, 
With[ 

{n = numberOfVertices[self], verts}, 
verts = Table[ { N[Cos[2 Pi i/n]/2], 

N[Sin[2 Pi i/n]/2] }, 
{i, 0, n - 1}]; 

Graphics[ 
Join[ {PointSize[0.035]}, Map[Point, verts], 

Map[ Line[ { verts[[#[[1]]]], 
verts[[#[[2]]]]}]&, 

Select[ orderedPairs[self], 
(#[[1]] < #[[2]])&] ] ] 

] ]&} 
Here the vertices are located uniformly around the unit circle, with the first vertex at the point 
1 on the x-axis. For instance: 

Show[circularImmersion[K[3]], AspectRatio -> Automatic]; 

The third method, centerCircularImmersion, works in the same way, except the last 
vertex is located at the origin. This doesn't work well for K [ 3 ] , since all of the vertices come 
out collinear. 

Show[centerCircularImmersion[K[3]], AspectRatio -> 1]; 

What is needed at this point is some more graphs to experiment with. That's the purpose of the 
subsubclasses. 



438 Part III · Knowledge Representation 

2.5 Some Classes of Special Graphs 

All of the special kinds of graphs to be treated here will be constructed as subsubclasses of the 
three main subclasses ad j a c e n t s , edges , and ordereds . Mostly all that has to be done is to 
override the method new. 

2.5.1 Complete graphs 

A complete graph is one in which every vertex is connected to every other vertex. Its adjacency 
matrix therefore consists entirely of l's except for O's on the main diagonal. Cameron Smith 
(personal communication) had the nice idea of using Listability of subtraction to describe such 
a matrix as 1 - I d e n t i t y M a t r i x [ n ] . We use this to construct a subclass of ad j a c e n t s for 
complete graphs. 

Class[completeGraph, adjacents, {int}, 
{{new, new[super, (l-IdentityMatrix[int = #])]&}}]; 

The standard notation for the complete graph on n vertices is K [ n ] , which is introduced as an 
abbreviation. 

K[n_J := new[completeGraph, n] 

This gives us a large collection of graphs which will be useful both in themselves and in other 
constructions. For instance: 

edgeLists[K[6] ] 

{{2 , 3 , 4 , 5 , 6 } , { 1 , 3 , 4 , 5 , 6 } , { 1 , 2 , 4 , 5 , 6 } , 
{ 1 , 2 , 3 , 5 , 6 } , { 1 , 2 , 3 , 4 , 6 } , { 1 , 2 , 3 , 4 , 5}} 

orderedPairs[K[4]] 

{{1, 2}, {1, 3}, {1, 4}, {2, 1}, {2, 3}, {2, 4}, {3, 1}, 
{3, 2}, {3, 4}, {4, 1}, {4, 2}, {4, 3}} 

Show[ circularImmersion[K[ll]], 
AspectRatio -> Automatic]; 
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2.5.2 Balanced graphs 
One can think of a complete graph as one for which all vertices look the same; namely, each 
vertex is connected to every other one. In a balanced graph, again all vertices look the same, 
but a given vertex is connected only to certain others given by taking every second or every 
third, or in general every kth vertex. The rows in the adjacency matrix of a complete graph on 
n vertices can be described as starting with the table 

Prepend[Table[l, {n - 1}], 0] 

and rotating it to the right successively to fill out the adjacency matrix. For a balanced graph, 
we can do essentially the same thing putting in l's and O's depending on whether the vertex 
number is divisible by k or not. Unfortunately, just rotating such a row to the right may not 
produce a symmetric matrix, so we have to symmetrize it, keeping the entries O's and l's. This 
is done by a general auxiliary function, which we regard as being outside the class system. 

adjust[ matrix_ /; 
MatrixQ[matrix, MatchQ[#, _Integer]&]] := 

Module[{mnew = matrix}, 
mnew = mnew -

diagonal[mnew] IdentityMatrix[Length[mnew]]; 
mnew = (mnew + Transpose [mnew] ) ; 
mnew = Map[If[(# != 0), 1, 0]&, mnew, {2}] 

] /; Length[matrix] == Length[Transpose[matrix]] 

In three steps, this first sets all of the diagonal entries to 0, then makes the matrix symmetric, 
and finally turns all non-zero entries into l's. There are two built-in checks: that the matrix is 
square and that its entries are integers. 
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Class[balancedGraph, adjacents, {n, k}, 
{ {new, 

(n = #1; k = #2; 
new[ super, 

Module[{i, edges}, 
edges = 

Table[ If[Mod[i, k] == 0, 1, 0], 
{i, 0, n-1}]; 

adjust[ 
Table[ RotateRight[edges, i], 

{i, 0, n - 1}]]]])&} }]; 

The table edges constructed here always has l's on the main diagonal and sometimes is not 
symmetric, which is why the adjust operation is required. 

Show[ circularImmersion[ new [balancedGraph, 9, 3]], 
AspectRatio -> Automatic ]; 

Here are pictures of the balanced graphs between (6, 2) and (9, 3). The top row consists of 
the graphs that are shown at the beginning of this chapter. 

Show[GraphicsArray[ 
Map[Show[ circularImmersion[ 

new[balancedGraph, #[[1]], #[[2]]] ], 
AspectRatio -> Automatic, 
DisplayFunction ->Identity]&, 

Table[{i, j}, {j, 2, 3}, {i, 6, 9}], {2}], 
DisplayFunction -> $DisplayFunction]]; 
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2.5.3 Loops 
Although we have stipulated that our graphs have no loops, it will be convenient when we 
define tensor products of graphs below to pretend that there are graphs with loops. In 
particular, we need the "graph" consisting of n vertices with a loop on each vertex but no other 
edges. Its adjacency matrix is an identity matrix of the appropriate size. 

Class[loops, adjacents, {int}, 
{{new, new[super, IdentityMatrix[int=#]]&}}]; 

orderedPairs[new[loops, 5]] 
{{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}} 

As expected, the program does not think that a loop is a graph. 

graphQ[new[loops, 8]] => False 

2.5.4 Empty graphs 
We also need another seemingly strange collection of graphs; namely, those with no edges at 
all. It is easiest to consider this as a subclass of edges. 

Class[empty, edges, {int}, 
{{new, new [super, Map[({} #)&, Range[int=#]]]&}}]; 

emp = new[empty, 5]; 
edgeLists[emp] => {{}, {}, {}, {}, {}} 
adj acencyMatrix[emp] 
{{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, 
{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}} 

orderedPairs[emp] => {} 



442 Part HI · Knowledge Representation 

2.5.5 Cyclic graphs. 

A cyclic graph is one in which each vertex is connected only to the preceding and succeeding 
ones. These graphs can be constructed as a subclass of ordereds . 

C l a s s [ c y c l i c G r a p h , o r d e r e d s , { i n t } , 
{ {new, 

( i n t = #; 
new[ s u p e r , 

Union@@ 
Map[ 

F u n c t i o n [ { p l a c e } , 
{ { p l a c e , Mod[place , i n t ] + 1 } , 

{Mod[place , i n t ] + l , p l a c e } } ] , 
R a n g e [ i n t ] ] ] ) & } } ] ; 

e d g e L i s t s [ n e w [ c y c l i c 6 r a p h , 4 ] ] 

{{2 , 4 } , { 1 , 3 } , {2 , 4 } , { 1 , 3}} 

Show[ circularImmersion[new[cyclicGraph, 10]], 
AspectRatio -> Automatic ]; 

2.5.6 Partite graphs 

A Kpartite graph is specified by a list of numbers n i , . . . , nk . It has n = Σ\ η vertices grouped 
in blocks of sizes ni. Each vertex in a block is connected to all of the vertices not in its block. 
One way to construct this graph is by starting with the complete graph on n vertices and 
removing the complete graphs on each of the blocks. This requires that we be able to construct 
the disjoint union (= coproduct) of the complete graphs on each of the blocks. This is 
implemented in the class graph and will be discussed below. We also want a special way to 
display Kpartite graphs. If there are k blocks, we locate k equal length segments symmetrically 
around the unit circle and place nj points in the ith segment. 
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Class[partite, ordereds, {list}, 
{ {newf 

( list = #; 
new[super, 

Complement[ 
orderedPairs[ new[ completeGraph, 

Plus@@list]], 
orderedPairs[ 
coproduct[ 
Sequence@@ 

Map [ new[completeGraph, #]& , 
list] 

]]])&}, 
{partitelmmersion, 
Module[ 

{n = Length[list], p, verts}, 
p[i_] :={Cos[(2 i + 1) Pi/(2n)], 

Sin[(2i+1) Pi/(2n)]}; 
verts = 

Flatten[ 
Table[ 

(p[2i-l] + 
(j/(list[[i]]-l)) (p[2i] - p[2i-l])), 
{i, n}, {j, 0, list[[i]]-l}], 1]; 

Graphics[ 
Join[{PointSize[0.035]}, 

Map[Point, verts], 
Map[ 
Linelivertsltiftl]]]], 

verts[[#[[2]]]]}]&f 
Select[orderedPairs[self], 

(#[[1]] < #[[2]])&]] ]] ]&} }]; 

Here is the standard abbreviation for these graphs. 

Kpartite[numbers Integer] := new[partite, {numbers}] 

A Kpartite graph can of course be displayed by a circular immersion, since p a r t i t e is a 
subsubclass of graph. 

Show[ c i r c u l a r I m m e r s i o n [ K p a r t i t e [ 4 , 3 ] ] , 
A s p e c t R a t i o -> Automatic ] ; 
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But, the special drawing routine makes a nicer picture. 

Show[ partiteImmersion[Kpartite[4, 3]], 
AspectRatio -> Automatic ]; 

Here are two larger examples. 

Show[ partitelmmersion[Kpartite[3, 2, 4]], 
AspectRatio -> Automatic ]; 

Show[ partiteImmersion[Kpartite[3, 2, 4, 6, 5]], 
AspectRatio -> Automatic ]; 
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Products are operations on graphs that depend on more than one graph. As discussed in 
Chapter 9, in a strict object-oriented programming language this can only be implemented by 
sending a message to the first graph telling it to construct the product using the other graphs 
given as parameters to the message. The coproduct of graphs is implemented in this way as a 
method for the class graph. Of course, in Mathematica, we can perfectly well write functional 
programs depending on several graphs provided we access them through other methods to 
which they can respond. This technique is used for the other two products: Cartesian products 
and tensor products. 

3.1 Coproducts 
A coproduct of graphs means their disjoint union; i.e., place them side by side with no vertices 
or edges overlapping. One way to construct the coproduct of two graphs is to join together 
their edge lists after adding the number of vertices of the first graph to every entry in every 
edge list of the second graph. This operation can be iterated for several graphs by using Fold. 
In functional form, this looks like: 
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coproduct[graphs ?graphQ] := 
new[ edges, 

Fold[ Join[#l, #2 + Length[#l]]&, 
{}, 
Map[edgeLists,{graphs}] ]] 

However, we have chosen to add coproduct as a message to the class graph, as discussed 
above, where it becomes the method: 

{coproduct, 
new[ edges, 

Fold[ J o i n [ # l , #2 + Length[#l]]&, 
e d g e L i s t s [ s e l f ] , 
Map[edgeLists, {##}]]]&} 

The main difference is that the Fold operation in the method starts with the edge lists of the 
graph to which the message is sent rather than with { }. For instance: 

Show[ circularImmersion[coproduct[K[3], K[5], K[4]]], 
AspectRatio -> Automatic ]; 

3.2 Cartesian Products 

The Cartesian product of graphs is described as follows: given graphs G and H, form the 
Cartesian product of the sets of vertices. If G has n vertices and H has m vertices, this will be a 
set with n m elements described as pairs (v, w) where v is a vertex of G and w is a vertex of H. 
There is an edge in the Cartesian product of G and H from (v, w) to (ν', w') if and only if there 
is a edge in G from v to vf and an edge in H from w to w\ This is an inconvenient description to 
use with our representations of graphs because the vertices ultimately have to be ordered from 
1 to n m. However, there is a well-known operation on matrices called the kronecker product 
which does exactly the right thing to the adjacency matrices of the graphs. We define a more 
general operation which is just a rearrangement and flattening of Outer. The actual operation 
we want will then be given by taking the first argument to be Times. 
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kronecker[f_, p_List, q^List] : = 
Flatten[ Map[ Flatten, 

Transpose[Outer[ff p, q], {1, 3, 2}], 
{2}], 

il; 
Here is an example. 

(matl = adjacencyMatrix[Kpartite[2, 2]]) // TableForm 

0 0 1 1 
0 0 1 1 
1 1 0 0 
1 1 0 0 

(mat2 = adjacencyMatrix[new[balancedGraph, 4, 2]]) // 
TableForm 

1 0 
0 1 
1 0 
0 1 

kronecker[Times, mat1, mat2] 

{{0, 
{0, 
{0, 
{0, 
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{0, 
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A careful look at this 16 x 16 table shows that if it is divided into 4 x 4 blocks, then in each 
position where there is a 1 in mat 1, there is a copy of mat 2 in the kronecker product. 

Using kronecker, the Cartesian product of many graphs is constructed in the same 
abstract form as the coproduct, involving Fold. The differences are that the function which is 
folded is kronecker [Times, #1, #2] & rather than Join [ #1, #2 + Length [# 1 ] ] &, 
the starting value is { {1} } rather than { }, and the operation is applied to adjacency matrices 
rather than edge lists. Note that we omit the predicate graphQ in the following because we 
want to use the construction for graphs with loops, which would be ruled out by the predicate. 

cartesianProduct[graphs ] := 
new[ adjacents, 

Fold[ kronecker[Times, #1, #2]&, 
{{1}}/ 
Map[adj acencyMatrix, {graphs}] ]] 

This could, but won't, be turned into a method for the class graph. Here are a couple of 
examples. 

Show[ circularImmersion[cartesianProduct[K[3], K[4]]], 
AspectRatio -> Automatic ]; 

Show[ circularImmersion[ 
cartesianProduct[K[2], K[3], K[4]]], 

AspectRatio -> Automatic]; 
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3.3 Tensor Products 
The tensor product of two graphs has the same vertices as their Cartesian product, but edges 
are introduced in a different way. If G has n vertices and H has m vertices, then the set of 
vertices has n m elements described as pairs (v, w) where v is a vertex of G and w is a vertex of 
H. There is an edge in the tensor product of G and H from (v, w) to (ν', w') if and only if there 
is an edge in G from v to vf and w = w', or there is an edge in H from w to w' and v = v'. This 
construction is why we want to have the illegitimate class of loops because the edges of the 
first kind look like the edges in the Cartesian product of G with loops only on the vertices of H, 
and conversely for the edges of the second kind. This leads to the following simple 
implementation. 

tensorProduct[g_?graphQ, h_?graphQ] := 
new[ ordereds, 

Union[ 
orderedPairs[ 
cartesianProduct[ 

g, new[loops, numberOfVertices[h] ]]], 
orderedPairs[ 
cartesianProduct[ 

new[loops, numberOfVertices[g]],h]]]]; 

We have implemented the case of a tensor product of two graphs. The general case can be 
handled in a generic way. 
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tensorProduct[graphs PgraphQ] := 
Fold[tensorProduct, new[empty, 1], {graphs}]; 

As with the Cartesian product, this could, but also won't, be turned into a method for the class 
graph. 

Here are some examples. 

Show[ circularlmmersion[tensorProduct[K[3], K [ 4 ] ] ] , 
AspectRatio -> Automatic ] ; 

It is instructive to compare the Cartesian product and the tensor product of graphs that consist 
just of a single edge. 

Show[GraphicsArray[{ 
Show[ circularlmmersion[ 

cartesianProduct[K[2], K[2]]], 
AspectRatio->l, DisplayFunction->Identity], 

Show[ circularImmersionitensorProduct[K[2], K[2]]], 
AspectRatio->l, DisplayFunction->Identity]}], 

DisplayFunction -> $DisplayFunction]; 

Finally, here is an example of a tensor product of three graphs. 
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Show[ circularImmersioni 
tensorProduct[K[2]f K[3], K[4]]]f 

AspectRatio -> Automatic]; 

4 Other Constructions in the Class graph 
The top class graph knows about a number of other constructions for graphs. Those presented 
here are all constructions that start with a single graph and produce another related graph. 

4.1 Complement of a Graph 
The complement of a graph is the graph on the same vertices as the original graph which has 
an edge wherever the original graph does not have an edge. In terms of ordered pairs, the 
ordered pairs of the original graph are subtracted from the ordered pairs of a complete graph 
of the same size. This is implemented directly as a method in the class graph. 

{complement, 
new [ ordereds, 

Complement[ 
orderedPairs[ 

new[completeGraph, numberOfVerticesfself]]], 
orderedPairs[self] ] ]&} 

Recall that the complement construction is used in the definition of partite graphs. Here is an 
example that has interesting threefold symmetry 
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Show[ circularImmersion[ 
complement[tensorProduct[K[3], K [ 4 ] ] ] ], 

AspectRatio -> Automatic ]; 

4.2 Cones, Stars, and Wheeh 
The cone on a graph is the graph given by joining a new vertex to all the vertices of the original 
graph. In terms of ordered pairs, it consists of the ordered pairs of the original graph together 
with all pairs consisting of an original vertex together with a fixed new vertex. This is also 
implemented directly as a method for the class graph. 

{cone, 
Module[ {n = numberOfVertices[self], i}, 

new[ ordereds, 
Union[ orderedPairs[self], 

Table[{if n + 1}, {i, n}], 
Table[{n + 1, i}, {if n}] ]]]&} 

Here are some examples. 

Show[ centerCircularImmersion[cone[K[5]]], 
AspectRatio -> 1 ] ; 
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A brief command can produce a graph with striking symmetries. 

Show[ centerCircularImmersion[ 
cone[cartesianProduct[K[3], K[3]]]], 

AspectRatio -> 1 ]; 

We use the cone construction to describe stars and wheels. Namely, stars are cones on 
empty graphs and wheels are cones on cyclic graphs. Both of these could be defined as new 
classes, but it is easy enough to just describe them directly. 

star[n_] := cone[new[empty, n]] 
Show[centerCircularImmersion[star[5]], AspectRatio->l]; 

wheel[n_] := cone[new[eyelicGraph, n]]; 
Show[ centerCircularImmersion[wheel[12]], 

AspectRatio->l ]; 
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4.3 Induced Subgraphs 
Given a graph and a subset of the vertices, there is an induced subgraph on the subset in which 
there is an edge between two vertices in the subset if and only if there is an edge between them 
in the original graph. This is implemented as a method in the class graph just by selecting the 
appropriate rows and columns of the adjacency matrix. 

{inducedSubgraph, 
Function[{subset}, 
new[ adjacents, 

Transpose! 
Transpose[adjacencyMatrix[self][[subset]] ] 
[[subset]] ] ] ]} 

For instance, the graph induced on any subset of a complete graph is again a complete graph. 

adjacencyMatrix[inducedSubgraph[K[5], {1, 3, 5}]] 

{{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} 

Since the subset is actually given as a list, this can be used to generate a permutation of a 
graph. 

adj acencyMatrix[ 
inducedSubgraph[ new[star, 5], 

{6, 5, 4, 3, 2, l}]]//TableForm 

0 1 1 1 1 1 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

Now the first, rather than the last, vertex is connected to all the other vertices. 

4.4 Incidence Matrix of a Graph 
The incidence matrix of a graph is a (normally) non-square matrix whose rows correspond to 
the edges of the graph and whose columns correspond to the vertices. A 1 in position (i, j) 
means that the jth vertex is one of the ends of the ith edge. Thus, the number of rows is the 
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number of edges, the number of columns is the number of vertices, each row has exactly two 
l's in positions corresponding to its two ends, and a column has as many l's as there are edges 
meeting at that vertex. This is implemented as a method of the class graph. 

{incidenceMatrix, 
Map[ ReplacePart[ 

Table[0,{numberOfVertices[self]}], 
1, Partition[#f 1]]&, 

Select[ orderedPairs[self], 
<#[[!]] < #[[2]])& ] ]& } 

To see how this works, consider the complete graph on 4 vertices. It has six edges as the 
following shows. 

Select[orderedPairs[K[4]], (#[[1]] < #[[2]])&] 

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} 

Since there are 4 vertices and 6 edges, the incidence matrix is a 6 x 4 matrix. The code produces 
rows of O's of length 4 and replaces certain entries by l's. The first ordered pair {1, 2} means 
that the first row of this matrix should have l's in positions 1 and 2, etc. 

incidenceMatrix[K[4]] // TableForm 

1 1 0 0 
1 0 1 0 
1 0 0 1 
0 1 1 0 
0 1 0 1 
0 0 1 1 

It would be possible to treat the incidence matrix as another way to represent graphs and 
add it as a fourth subclass under the class graph. The other three subclasses would then have 
to have methods to calculate the incidence matrix from their data and the incidence matrix 
class would have to know how to calculate the other three representations from its data. We 
leave this as an exercise. 

4.5 Line Graphs 

The line graph L(G) of a graph G has a vertex for each edge of G and there is an edge in L(G) 
from a vertex v to a vertex w if and only if the two edges of G corresponding to v and w share 
a common vertex in G. Thus, the number of vertices of L(G) is the number of rows of the 
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incidence matrix of G and row i and row j are joined by an edge in L(G) if and only if there is 
some column of the incidence matrix that has a 1 in both of these rows. The way to detect 
when that occurs is to multiply the incidence matrix of G by its transpose and look to see if the 
(i, j) entry there is non-zero. This leads to a square integer matrix which, after adjustment, is 
the adjacency matrix of the desired graph. The algorithm is implemented as a method of the 
class graph. 

{lineGraph, 
With[{im = incidenceMatrix[self]}, 

new[adjacents, adjust[im . Transpose[im]]] ]&} 

The complete graph on n vertices has n(n - l) /2 edges, so the line graphs for these graphs 
grow quickly in size. 

Show[ circularImmersion[lineGraph[K[5]] ] , 
AspectRatio -> Automatic ] ; 

The line graph of a graph of the form Kpartite[m, n] has m n edges. Pictures of them 
have interesting symmetries. 

Show[ circularImmersionilineGraph[Kpartite[3, 4]] ] , 
AspectRatio -> Automatic ] ; 

The line graph of a cycle is a cycle of the same length, except that two of the vertices are 
permuted. 



Thirteen · Object-Oriented Graph Theory 457 
*<#&*#mkJ£&~ '-» -

Show[ circularImmersioni 
lineGraph[new[cyclicGraph, 5]] ] 

AspectRatio -> Automatic ]; 

5 Some Graph Algorithms 
There are thousands of algorithms that use graphs in one way or another. Some of them are 
just concerned with properties of graphs, and that is all that we care about here. In principle, 
such algorithms belong in the class graph, but then the class becomes unwieldy, so we have 
put a few of them there and implemented a few others outside the class in functional style. 

5.1 Graph Isomorphism 
In principle, every class should have a method to determine when two objects of the class are 
isomorphic. In our case, although objects may belong to different classes, everything is 
ultimately a graph, so it is sufficient to be able to decide if two graphs are isomorphic. (See the 
discussion in Chapter 9, Section 4.4.) We cannot compare them directly as objects since they 
will have different identifying numbers, and may belong to different subclasses, but we can, 
for instance, compare their adjacency matrices. 

5.1.1 Isomorphism predicate 
Isomorphism testing will be implemented in functional style first, to understand what is going 
on. Graphs are isomorphic if there is some bijection between their vertices that preserves the 
property of being connected by an edge. This is equivalent to saying that graphs G and H are 
isomorphic if and only if there is some permutation of the vertices of H such that the adjacency 
matrix of G is the same as the adjacency matrix of the graph induced from H by the 
permutation. Here is a function that checks if a given permutation yields such an 
isomorphism. 

isomorphismQ[gl_?graphQ, g2_?graphQ, p__List] : = 
SameQ[ adj acencyMatrix[gl], 

adj acencyMatrix[inducedSubgraph[g2, p]]] / ; 
Length[p] == numberOfVertices[g2]; 
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For instance: 

isomorphismQ[K[5], K[5], {1, 5, 3, 2, 4}] => True 
isomorphismQ[ Kpartite[2, 2], Kpartite[2, 2], 

{1, 3, 2, 4}] => False 

5.1.2 Finding isomorphisms 

To determine if two graphs are isomorphic, it is necessary to search through all possible 
permutations of the vertices to see if some permutation yields an isomorphism. Of course, the 
number of permutations grows exponentially with the number of vertices, so such a search 
should be avoided if possible. Clearly, if the numbers of vertices of the two graphs are 
different, then they cannot be isomorphic, so the number of vertices is an isomorphism 
invariant of graphs. There are many other such invariants. We consider just one of them here: 
the degree sequence. The degree of a vertex is the number of edges that meet at that vertex. In 
our representation, the degree of vertex i is just the number of l 's in the ith row of the 
adjacency matrix. The degree sequence of a graph is the decreasing sequence of degrees of 
vertices of the graph. 

degreeSequence[g_graph] := 
R e v e r s e [ S o r t [ 

Map[(Apply[Plus , # ] )&, ad jacencyMatr ix [g ] ] ] ] ; 

Actually, this is implemented as a method in the class graph. 

d e g r e e S e q u e n c e [ K p a r t i t e [ 2 , 3 , 4 ] ] 

{7 , 7 , 6 , 6 , 6 , 5 , 5 , 5 , 5} 

The output means that there are two vertices of degree 7, three of degree 6, and four of degree 
5. This sequence is clearly an isomorphism invariant. 

Since searching for an isomorphism is a lengthy procedure, some safeguards are built in to 
check beforehand if the graphs are clearly non-isomorphic. Any number of invariants could be 
used, but we only consider the two mentioned above; namely, the number of vertices and the 
degree sequence. The procedure checks if these two invariants are the same before it embarks 
on searching through all permutations to try to discover an isomorphism. If the graphs are not 
isomorphic, a message giving the reason is printed and the empty list is returned. If they are, 
then a specific permutation is returned which realizes the isomorphism. Functionally, we can 
implement this using the usual message reporting facilities. 

Graph::vertices = "Different numbers of vertices"; 
Graph::degreeSequence = "Different degree sequences·"; 
Graph: : isomorphism = "The graphs are not isomorphic"; 
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The function f ind I so will first test if the number of vertices and the degree sequences are the 
same, using a Which clause to report failure of these tests. If they both succeed, then it 
proceeds to look at all permutations of the vertices of the first graph and Scan them using the 
(written out) predicate isomorphismQ from above, returning the first permutation it finds 
that works. If none of them work, it reports that the graphs are not isomorphic. 

findIso[gl_?graphQ, g2_?graphQ]:= 
Module[{iso}, 

Which[ 
numberOfVertices[gl] =!= numberOfVertices[g2], 

Message[Graph: :vertices];{}, 
degreeSequence[gl] =!= degreeSequence[g2], 

Message[Graph: :degreeSequence] ; { }, 
True, 

iso = 
Scan[ If[ 

adj acencyMatrix[gl] === 
adj acencyMatrix[ 

inducedSubgraph[g2, #]], 
Return[#]]&, 

Permutations[ 
Range[numberOfVertices[gl]]]]; 

If[iso =!= Null, iso, 
Message[Graph:: isomorphism];{} ]] ]; 

The f indlsomorphism method of the class graph is just the object-oriented version of this 
operation. It doesn't use the Message mechanism, but just prints the appropriate string. 

findIsomorphism[K[4], K[3]] 

Different numbers of vertices 
{} 
findlsomorphism[Kpartite[6, 4], Kpartite[5, 5]] 

Different degree sequences. 
{} 
findlsomorphism[Kpartite[3, 2], Kpartite[2, 3]] 

{3, 4, 5, 1, 2} 
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This result means that if the vertices of the second graph are rearranged in the order {3,4,5,1, 
2} then it becomes isomorphic to the first graph (which, of course, is obvious). 

findIsomorphism[ Kpartite[3, 3], 
tensorProduct[K[2], K[3]] ] 

The graphs are not isomorphic. 

{} 
In the preceding example, both graphs have six vertices of degree three. The search space 

consists of all 720 permutations of {1, 2, 3, 4, 5, 6}. There may be other graphs that have six 
vertices of degree three. Here is an attempt to construct one. 

newgraph = 
With[{edge = {0, 0, 1, 1, 1, 0}}, 

new [ adj acents, 
Table[RotateRight[edge, i], {i, 0, 5}] ]]; 

We can make a picture of all three graphs to see if two of them are obviously isomorphic. 

Show[GraphicsArray[ 
Map[ Show[ circularImmersion[#], 

AspectRatio -> Automatic, 
DisplayFunction -> Identity]&, 

{ newgraph, Kpartite[3, 3], 
tensorProduct[K[2], K[3]]}]], 

DisplayFunction -> $DisplayFunction]; 

Clearly, these graphs all have six vertices of degree 3. (In all cases, the center is not a vertex.) 
The first and the third both contain two triangles, so we check if they are isomorphic. 

findIsomorphism[tensorProduct[K[2], K[3]], newgraph] 

{1, 3, 5, 4, 6, 2} 
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5.2 Maximum Cliques 
A c/u/we of size k in a graph G is a subset of k vertices of G whose induced subgraph is a 
complete graph. Finding the largest clique in a graph is very similar to finding isomorphisms 
between graphs. One can define a predicate that checks if a given subset is a clique. 

cliqueQ[g_?graphQ, clique_List] := 
SameQ[ K[Length[clique]], 

inducedSubgraph[g, clique] ]; 
For instance: 

cliqueQ[K[5], {1, 2, 3, 4, 5}] => True 
cliqueQ[Kpartite[3, 3], {1, 2, 3, 4}] => False 

To find a maximum clique in a graph one has to scan all subsets of the vertices, ordered by 
decreasing size, to find the first one which is a clique. Recall the construction of all subsets of a 
set. 

subsets[list_List] := 
Sort[ Map[Flatten, 

Distribute[ Map[({{}, {#}})&, list], List]]]; 
Then the following will find a maximum clique. Note that this algorithm always succeeds since 
a single vertex is a clique. 

maximumClique[g_graph] := 
Scan[ (If[cliqueQ[g, #], Return[#] ])&, 

Reverse[subsets[ Range[numberOfVertices[g]]]]]; 
MaximumClique is actually implemented as a method for the class graph. In doing so, we 

have spelled out the predicate explicitly although it could have been included as a separate 
method. 

{maximumClique, 
Scan[ 

I f [ SameQ[ 
adj acencyMatrix[ 

new[completeGraph, Length[#]]], 
adj acencyMatrix[inducedSubgraph[self, #]]], 

Return[#]]&, 
Reverse[ subsets[Range[numberOfVertices[self]]]]]&} 
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Another way to see that the graph newgraph constructed in the preceding section is not 
isomorphic to the graph Kpart i t e [2 , 3] is to find maximum cliques in each. Since they 
have different sizes, the graphs must be non-isomorphic. 

{ maximumClique[Kpartite[ 2, 3 ] ] , maximumClique[newgraph] } 

{{2, 5 } , {2, 4, 6}} 

However, tensorProduct [ K [ 2 ] , K [ 3 ] ] also has a maximum clique with three vertices (as 
it must). 

maximumClique[tensorProduct[K[2], K[3]]] 

{4, 5, 6} 

53 Minimum Vertex Covers 

A vertex cover of a graph G is a subset of the vertices of G such that every edge has (at least) one 
of its vertices in the subset. A moment's reflection should convince you that two vertices not in 
a given cover cannot be connected by an edge in G, since in that case, the subset would not be 
a cover. Thus in the complementary graph of G, the vertices not in a clique define a cover. A 
minimum vertex cover of G is therefore the complement of a maximum clique in the 
complementary graph of G. 

minimumVertexCover[g_?graphQ] := 
Complement! Range[numberOfVertices[g]], 

maximumClique[complement[g] ] ]; 
minimumVertexCover[tensorProduct[K[2], K[3]]] 

{1/ 2, 4, 6} 

This, and the following algorithms, have not been added as methods to the class graph. 

5.4 Maximum Independent Sets of Vertices 

An independent set of vertices in a graph G is a subset of the vertices such that no two vertices 
in the subset are joined by an edge. If V is a vertex cover of a graph, then the complement of V 
is an independent set. Hence, a maximum independent set is the complement of a minimum 
vertex cover. 
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maximumIndependentSet[g_?graphQ] := 
Complement! Range[numberOfVertices[g]], 

minimumVertexCover[g] ]; 
maximumlndependentSet[tensorProduct[K[2], K[3]]] 

{3, 5} 

5*5 Hamiltonian Cycles 
A Hamiltonian cycle of a graph G is a cycle in G that visits every vertex exactly once. As with 
finding isomorphisms and maximum cliques, we first need a predicate to determine if a 
particular permutation of the vertices determines a Hamiltonian cycle. All that is necessary is 
that there be edges in G between the successive vertices of the permutation together with an 
edge from the last entry of the permutation to the first. 

hamiltonianCycleQ[g_?graphQ, vert_List] := 
Complement[ 

Partition[Append[vert, First[vert]], 2, 1], 
orderedPairs[g]] == {} /; 

Sort[vert] === Range[numberOfVertices[g]]; 

Consider the graph Kpartite [ 3, 3 ]. 

Show[ partiteImmersion[Kpartite[3, 3]], 
AspectRatio->l ]; 

The order of vertices here is up the right side and down the left. 

hamiltonianCycleQ[Kpartite[3, 3], {6, 5, 4, 3, 2, 1}] 

False 

hamiltonianCycleQ[Kpartite[3, 3], {1, 4, 2, 5, 3, 6}] 

True 

So there is a Hamiltonian cycle in Kpartite [ 3 , 3 ] . 

463 
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Next we want to construct a procedure that yields such a cycle if there is one, and otherwise 
returns the empty list. 

f indHamil tonianCycle[g_?graphQ] := 
With[ 

{ path = 
Scan[ ( I f [ hami l ton ianCyc leQ[g , # ] , R e t u r n [ # ] ] ) & , 

Permutat ions [ R a n g e [ n u m b e r O f V e r t i c e s [ g ] ] ] ] } , 
I f [ p a t h === N u l l , { } , pa th ] ] 

Now instead of guessing the cycle above, we can use the program to find it. 

findHamiltonianCycle[Kpartite[3, 3]] 

{1, 4, 2, 5, 3, 6} 

Many graphs don't have Hamiltonian cycles. 

f i n d H a m i l t o n i a n C y c l e [ K p a r t i t e [ 2 , 3 ] ] => {} 

But many do. 

f i n d H a m i l t o n i a n C y c l e [ t e n s o r P r o d u c t [ K [ 2 ] , K [ 3 ] ] ] 

{ 1 , 2 , 3 , 6, 5, 4} 

Six vertices have 720 permutations, which is a feasible number to search, but seven vertices 
have 5040, all of which would have to be searched for a graph which doesn't have a 
Hamiltonian cycle, like K p a r t i t e [ 3 , 4 ] . For those that do, like t e n s o r P r o d u c t [ K [ 3 ] , 
K [ 3 ] ] , it might be possible for the program to find one if it didn't have to first build the list 
of all 362880 permutations and then search that. What is needed is an operation 
"nextPermutation" to generate permutations and test them one at a time. 

6 Exercises 

1. Define the class empty as a subclass of ad j a c e n t s . 

2. Add a fourth subclass, i n c i d e n t s , to the class graph and fill in all of the required 
details, as described in Section 2.3. 
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3. i) Describe the tensor product of several graphs by a single operation analogous to the 
descriptions of the coproduct and Cartesian product. 

ii) Prove that the tensor product is the complement of the Cartesian product and use 
this to give a different implementation of tensor products. 

4. Look up Skiena's method [Skiena] to represent graphs, which includes instructions for 
drawing each graph. Consider the three constructions-coproduct, Cartesian product, 
and tensor product-in this light. Given the drawing instructions for graphs G and H, 
what should the drawing instructions be for coproduct [G, H], c a r t e s i a n 
Product[G, H], and tensorProduct[G, H]? 

5. What happens to the three kinds of products for the case of reflexive graphs; i.e., graphs 
in which it is assumed that there is always at least a loop on every vertex. The whole 
theory can be redone for this case. In particular, empty graphs for this case would be 
what we have called loops here. Work out a way to make drawings of such graphs. 

7 Implementation 
A complete package implementing all of the commands developed here will be found on the 
diskettes distributed with this book. It is called GraphTheory .m. Essentially everything there 
has been discussed here already except for the complete form of the class graph, so we 
include that here. 

Class[graph, Object, {}, 
{ {graphQ, 

With[{matrix = adjacencyMatrix[self]}, 
MatrixQ[matrix, (#===0 || #===1)&] && 
(matrix === Transpose[matrix]) && 
(diagonal[matrix].diagonal[matrix]===0)]&}, 

{adjacencyMatrix, NIM[self, adjacencyMatrix]&}, 
{edgeLists, NIM[self, edgeLists]&}, 
{orderedPairs, NIM[self, orderedPairs]&}, 
{numberOfVertices, Length[edgeLists[self] ]&}, 
{numberOfEdges, 
Length[Flatten[edgeLists[self] ]] / 2 &} }]; 

{incidenceMatrix, 
Map[ReplacePart[ 

Table[0, {numberOfVertices[self]}], 
1, Partition!#, 1]]&, 

Select[ orderedPairs[self ], 
(#[[1]] < #[[2]])&] ]&}, 
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{coproduct, 
new[edges, 

Fold[ Join[#l, #2 + Length[#l]]&, 
edgeLists[self], 
Map[edgeLists, {##}]]]&}, 

{complement, 
new [ ordereds, 

Complement[ 
orderedPairs[ 
new[ completeGraph, numberOfVertices[self]]], 
orderedPairs[self] ] ]&}, 

{cone, 
Module[{n = numberOfVertices[self], i}, 

new [ordereds, 
Union[orderedPairs[self], 
Table[{i, n + 1}, {i, n}], 
Table[{n + 1, i}, {i, n}]]]]&}, 

{lineGraph, 
With[{im = incidenceMatrix[self]}, 

new[adjacents, adjust[im . Transpose[im]]]]&}, 
{randomlmmers ion, 
With[ 

{verts = Table[{Random[], Random[]}, 
{numberOfVertices[self]}]}, 

Graphics[ 
Join[ {PointSize[0.035]}, Map[Point, verts], 

Map[ Line[ {verts[[#[[1]]]], 
verts[[#[[2]]]]}]&, 

Select[orderedPairs[self], 
(#[[!]] < #[[2]])&] ] ] ] ]&}, 

{circularlmmersion, 
With[ 

{n = numberOfVertices[self], verts}, 
verts = Table[{N[Cos[2 Pi i/n]/2], 

N[Sin[2 Pi i/n]/2] }, 
{i, 0, n - 1}]; 

Graphics[ 
Join[{PointSize[0.035]}, Map[Point, verts], 

Map[ Line[ { verts[[#[[1]]]], 
verts[[#[[2]]]]}]&, 

Select[ orderedPairs[self], 
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(#[[1]] < #[[2]])&]]]]]&}, 
{ centerCircularImmersion, 
Module[{n = numberOfVertices[self], verts}, 

verts = 
Append[Table[{N[Cos[2 Pi i/(n-l)]/2], 

N[Sin[2 Pi i/(n-l)]/2]}, 
{i, (n-1)}], {0, 0}]; 

Graphics[Join[ 
{PointSize[0.035]}, 
Map[Point, verts], 
Map[Line[{verts[[#[[l]]]], verts[[#[[2]]]]}]&, 

Select[orderedPairs[self], 
(#[[1]] < #[[2]])&]] ]] ]&}, 

{ degreeSequence, 
Reverse[Sort[ 

Map[ (Apply[Plus, #])&, 
adjacencyMatrix[self] ]]]&}, 

{ inducedSubgraph, 
Function[{subset}, 

new[ adjacents, 
Transpose[Transpose[ 
adjacencyMatrix[self][[subset]] 

][[subset]] ]]]}, 
{ max imumC 1 ique, 

Module[{temp}, 
Scan[If[SameQ[ 

adj acencyMatrix[ 
new[completeGraph, Length[#]]], 

adj acencyMatrix[ 
temp = inducedSubgraph[self, #]]], 

Return[#], delete[temp]]&, 
Reverse[subsets[ 

Range[numberOfVertices[self]]]]]]&}, 
{ findlsomorphism, 

Function!{gh}, 
Module[{iso, temp}, 

Which[ 
numberOfVertices[self] =!= 
numberOfVertices[gh], 

Print["Different numbers of vertices"];{}, 
degreeSequence[self] =!= 

degreeSequence[gh], 
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Print["Different degree sequences·"];{}, 
True, 

iso = 
Scan[(If[adjacencyMatrix[self] === 

adj acencyMatrix[ 
temp = inducedSubgraph[gh, #]], 

Return[#], 
delete[temp]])&, 

Permutations[ 
Range[numberOfVertices[self]]]]; 

If[iso =!= Null, iso, 
Print[ 
"The graphs are not isomorphic·"];{}]]]]} 



CHAPTER 

Differ entiab le 
Mappings 

1 Introduction 
The preceding two chapters covering Polya's Pattern Inventory and graph theory involve 
finite, discrete mathematical structures whose representations in terms of numbers-in-a-
computer are probably as concrete a presentation of these structures as can be given. Such 
finite structures don't require Mathematical symbolic powers; they can be and have been 
programmed in lower level languages. In this chapter and the next one we will treat infinite, 
continuous structures associated with differentiable mappings. There is no way to directly 
realize such constructs in a computer other than in terms of symbolic representations of the 
basic entities. This is exactly the way that Mathematica handles topics like symbolic 
differentiation, integration and differential equations, and this is what will be used here. 

The main theme of this chapter is the Jacobian of a differentiable mapping and its use in the 
tangent mapping associated with a differentiable mapping. In Chapters 3 and 5 there were 
problems concerning Jacobians of differentiable transformations. These will be investigated 
here in a much more systematic fashion. There are two packages named 
Dif f erentiableMappings .m and MappingGraphics .m that contain all of the commands 
in this chapter. They have been placed in a directory named Geometry which is a subdirectory 
of MmPackages. On my machine, this directory has been placed in a top level directory named 
MathematicaData. The value of $Path has to be changed using the following command so 
that Mathematica can find these packages. (Note that the name of the hard disk on my machine 
is HardDisk Also note the quotation marks. To make a permanent change, this line has to be 
put in the init.m file.) 

469 
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AppendTo[$Path, "HardDisk:MathematicaData:MmPackages"] 

{"HardDisk:Mathematica 2.2 Enhanced:Packages", 
"HardDisk:Mathematica 2.2 Enhanced: Packages:Startup", ":", 
"HardDisk:MathematicaData:MmPackages"} 

Once this is done, the packages can be loaded when they are needed using the Needs 
command with an argument of the form Needs [ "Geometry" PackageName" " ] 

1.1 Types in Mathematica 

Types are discussed in Chapter 5 where the basics types Symbol, Integer, and Real are 
identified, as well as the built-in type List . As discussed there, any head of an expression can 
be regarded as a type. This is certainly the case for those heads that just hold their arguments 
together without processing them, such as List , Graphics, Graphics3D, as well as the user-
defined types that were introduced in the last two chapters such as group for groups, ge for 
group elements, graph for graphs, etc. Mathematica uses the term object to refer to expressions 
with given heads; e.g., graphics objects are expressions with head Graphics. Thus it makes 
sense to regard a group, for instance, as an object of type "group." In type theory functions 
have types determined by the types of their arguments and the type of their output [Mitchell]. 
Thus a function whose argument is of type A and whose output is of type B is said to have 
type A —> B. Note that Mathematica does provide the facility to restrict the application of a 
function to arguments with a given head by the construction f [ x_head] : = expr. If expr 
has some other head headl, then we can say that f has type head —» headl. In this chapter, 
there are two kinds of entities under consideration: the spaces on which differentiable 
mappings act and the mappings themselves. Our type theory will provide one type for the 
spaces and another type for the mappings. 

2 Differentiable Mappings 
The differentiable mappings we are concerned with are mappings between domains or regions 
in finite dimensional, real vector spaces. There are various ways in which one might try to 
describe domains in an n-dimensional space; for instance, by inequalities, but any such 
treatment leads inevitably to great complications. Thus we assume here that our objects are 
just the whole n-dimensional spaces themselves. Such a space will be described by a list of n 
coordinates, {x, y, z, . . .}. The type of the objects under discussion therefore is L i s t . To 
describe a differentiable mapping between two such spaces we have to specify what the spaces 
are and then give rules telling how points in the first space are mapped to points in the second. 
Differentiable mappings will therefore be expressions of the form 
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mapping[oldvariables, rules, newvariables] 

We regard mapping as a type, and expressions of this form as objects of type mapping. For 
instance, 

mapping[{x, y } f {χΛ2 - y~2, 2 x y } , {u, v}] 

represents the mapping from the x-y-plane to the u-v-plane given by the coordinate functions 

u = x2 - y2 and v = 2 x y . 

Thus, the rules are a list of expressions describing how the new variables are functions of the 
old variables. Since a mapping consists of three lists, we could say that its type is the product 
type 

List X List X List, 

except that there are implicit restrictions; namely, the lengths of the second and third 
components should be the same and the first and third components should consist just of 
variables, so mapping is actually a subtype of the above product type. 

2.1 Differentiable Mappings, Jacobians, 
Inverses and Equality 

If the package Dif f erentiableMappings .m is loaded using the following command, then 
all of the operations introduced in this section are automatically made available. Alternatively, 
they can be evaluated one at a time. 

Needs["Geometry"DifferentiableMappings""] 

The three components of a mapping can be extracted by functions called dorn (for the list of 
domain variables), rules , and cod (for the list of codomain variables). We expect ru les to be 
a list of expressions in the domain variables, whose length equals the length of the list of 
codomain variables, thought of as determining each codomain variable as a function of the 
domain variables, as in the example above. These extractors are defined in the obvious way. 

dorn [map_mapping ] : = map [ [ 1 ] ] ; 
rules[map_mapping] : = map[[2]]; 
cod[map_mapping] : = map[[3]]; 

471 
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In the preceding chapter on graph theory we were able to construct a predicate graphQ 
which served as a formal definition of a graph in Mathematica, but in the case of differentiate 
mappings it does not seem possible to write down anything more than the most trivial clauses 
in such a check. Certainly, a formal definition seems unattainable. 

mappingQ[map_mapping]:= 
Length[map] = = 3 && 
Depth[dorn[map]] == Depth[cod[map]] == 2 && 
L e n g t h [ r u l e s [ m a p ] ] == L e n g t h [ c o d [ m a p ] ] ; 

Our main interest is in constructions on mappings. One such construction is the operation 
inversemap that returns an object of the same type which is the inverse of the given mapping 
(if it exists). Thus i n v e r s e m a p has type mapping —> mapping. Actually, from the 
implementation using So lve , a given mapping may have several inverses so it would be more 
accurate to describe the type as mapping —> Lis tOf Mappings. In fact, what we have really 
constructed is a list of left inverses with respect to the composition operation defined below. 

inversemap [m_mapping] : = 
With[ {answers = Solve[Thread[rules[m] == cod[m]], dom[m]]}, 

Map[mapping!cod[m], #, dom[m]]&, dom[m] /· answers]]; 
As a very simple illustrative example (not requiring any extra simplification), we find the 
inverse mappings for the squaring mapping between 1-dimensional spaces. 

mp = m a p p i n g ! { x } , { x A 2 } , { u } ] ; 
mplnv = inversemap[mp] 

{ m a p p i n g ! { u } , { - u A ( l / 2 ) > , { x } ] , m a p p i n g ! { u } , { u A ( l / 2 ) } , {x}]} 

Thus, if u = x2 , then there are two inverses given by x = ±Sqrt [ u ] . 
Now, whenever possible, we want an equality test that determines if two objects of a given 

type are the same. The test for differentiable mappings is called i n t e n t i o n a l E q u a l Q , the 
term intentional suggesting that we do not compare values of two mappings, but rather 
compare the expressions determining the mappings. 

intentionalEqualQ[ml_mapping, m2_mapping ] : = 
(dom[ml] == dom[m2]) && 
(cod[ml] == cod[m2]) && 
(Simplify[rules[ml] - rules[m2]] === 
Table[0, {Length[cod[ml]]} ] ); 

i n t e n t i o n a l E q u a l Q is an operation returning an object of type Boole (although there is no 
type by this name in Mathematica), i.e., True or F a l s e , so i n t e n t i o n a l E q u a l Q has type 
mapping x mapping —> Boole . 
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2.2 Compositions and Identity Mappings 
An important feature of mappings is that they can be composed provided the codomain of the 
first mapping is the same as the domain of the second. Furthermore, for any list of variables, 
there is an identity mapping from the domain represented by those variables to itself, which 
serves as an identity for composition. identityMapping is an operation taking a list as 
argument and returning a mapping, so its type is clearly L i s t —» mapping, while 
composition is an operation taking a pair of mappings and returning a mapping, so its type 
is approximately mapping x mapping -> mapping. Actually, its domain type is the 
subtype of mapping x mapping consisting of those pairs such that the codomain of the first 
equals the domain of the second. 

composition[mapl_mappingf map2_mapping] := 
mapping[ dom[mapl], 

rules[map2] /. Thread[cod[mapl] -> rules[mapl]], 
cod[map2]] /; 

cod[mapl] === dom[map2]; 
identityMapping[var_List] := mapping[var, var, var] 

To understand the composition rule, consider the following example: 

mapl = mapping!{x, y}, {χΛ2 + y"2, -2 x y}, {u, v}]; 
map2 = mapping[{u, v}, {u + v, u - v}, {r, s}]; 

Then 
rules[map2] => {u + v, u - v} 
Thread [cod [mapl] -> rules [mapl]] => {u -> x2 + y2, v -> -2 x y} 
rules[map2] /. Thread[cod[mapl] -> rules[mapl]] 
{x2 - 2 x y + y2, x2 + 2 x y + y2} 

Thus, the rules for a composed mapping are given by substituting the formulas for mapl into 
the formulas for map2. If composition is evaluated for mapl and map2, then interestingly 
the rules are factored. We also check the value of mappingQ and try an identity mapping. 

composition[mapl, map2] 
mapping[{x, y}, {x2 - 2 x y + y2, x2 + 2 x y + y2}, {r, s}] 
mappingQ[composition[mapl, map2]] => True 
identityMapping[{x, y, z}] 
mapping[{x, y, z}, {x, y, z} , {x, y, z}] 
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We can use these operations to check that the two mappings in mplnv are left inverses to mp 
with respect to composition. 

Map[ intentionalEqualQ[ 
composition!#, mp], identityMapping[cod[mp]]]&, 

mplnv] => {True, True} 

However, only one of them is a right inverse to mp; namely, the second one. 

Map[ intentionalEqualQ[ 
composition[mp, #]//PowerExpand, 
identityMapping[dom[mp]]]&, 

mplnv] => {False, True} 

2.3 The Tangent Map 
The Jacobian of a mapping is a linear map (represented by a matrix) at each point of the 
domain of the mapping constructed from the derivatives of the rules of the mapping. We treat 
it here as an operation that applies to objects of type mapping.. 

jacobian[map_mapping] := Outer[D, rules[map], dorn[map]] 

For instance: 

jacobian[mapl] => {{2 x, 2 y}, {-2 y, -2 x}} 

One of the problems to be faced here is that there is no obvious type for the value of 
j acobian. The output appears to be a matrix of expressions whose size depends on the size of 
the mapping. In order to fit the Jacobian into our type system, it is necessary to construct a 
codomain for its values. In fact, starting from a given mapping a new mapping will be 
constructed, called the tangent mapping, whose rules make use of the Jacobian. The domain 
and codomain of the tangent mapping are called the tangent spaces of the original domain and 
codomain. In order to describe them in terms of lists of variables, we need a new head v to 
wrap around the old variables, displayed in subscripted form; e.g., v x . (Think of vx as a 
vector coordinate in the direction of the x coordinate.) The most convenient way to do this is to 
make v listable, with the stipulation that it print in subscripted form, and then apply it to the 
old domain and codomain. 

Attributes[v] = {Listable}; 
Format[v[x_]] := Subscripted[v[x]]; 
tangentSpace[list_List] := Join[list, v[list]]; 
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For instance, 

t angentSpace[{x , y , z}] =» {x, y, z, v x , v y , vz} 

Thus the tangent space of a real vector space is a real vector space of twice the dimension with 
new coordinates given by v applied to the old coordinates. 

The tangent mapping between the tangent spaces of the domain and codomain of a 
mapping uses the Jacobian. It solves the mathematical and programming problem of providing 
a type for the value of the Jacobian. 

tangentMapping[map_mapping] := 
mapping[ tangentSpace[dorn[map]], 

Join[rules[map], jacobian[map] . v[dom[map]]], 
tangentSpace[cod[map]]] 

Try this on our main example. 

tangentMapping[mapl] 

mapping[{x, y , v x , v y } , 
{x2 + y 2 , -2 x y, 2 x vx + 2 y v y , -2 y vx - 2 x v y } , 
{u, v, v u , vv}] 

The rules for the t angen tMapping of mapl are the same as those of mapl as far as the 
variables u and v are concerned. For fixed values of x and y, the new variables vu and v v (in 
the tangent space of the codomain), are given in terms of the new variables v x and vy (in the 
tangent space of the domain) by multiplying them by the value of the Jacobian matrix at the 
point { x , y }. In terms of the equations 

u = x2 - y2 and v = 2 x y . 

vu and v v are given by the matrix equation 
/ v u W 2x 2 y \ / v x \ 
V v v / V - 2 y 2 x A v y / 

In particular, the type of tangentMapping is mapping —> mapping. 

2.4 Tangent Vector Fields 
The tangent mapping can be used to construct the vector fields tangent to the coordinate lines 
of a mapping by composing it with the unit tangent vector fields in the tangent space of the 
domain of the mapping. These are given by the operations: 
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(* unitVectors[dom_List] := 
Map[ mapping[dorn, Join[dorn, #], tangentSpace[dorn]]&, 

IdentityMatrix[Length[dorn]] ] *) 
(* tangentVectorFields [map__mapping] : = 

Map[ composition[#, tangentMapping[map]]&, 
unitVectors[dorn[map]]] *) 

We have commented out these operations because, although they are very attractive 
geometrically, in practice they turn out to be very slow. A much more efficient way to find the 
tangent vectors fields is to use the following version. 

tangentVectorFields[map_mapping] := 
Map[ mapping[ dorn[map], Join[rules[map], #], 

tangentSpace[cod[map]]]&, 
Transpose[j acobian[map]] ]; 

For instance: 

tangentVectorFields[mapl] 

{mapping!{xf YÌ, {*2 + Y2, -2 x y, 2 x, -2 y}, {u, v, vu, vv} ], 
mapping[{x, y}, {x2 + y2, -2 x y, 2 y, -2 x}, {u, v, vu/ vv} ]} 

This works because the transpose of the Jacobian has as its i'th row the partial derivatives of 
the rules for the mapping with respect to the ith domain variable. 

2.5 The Chain rule 
The chain rule for functions of several variables says that the Jacobian of a composed map is 
the matrix product of the Jacobians of the factors (expressed in the correct variables). This is 
the content of the exercises in Chapters 3 and 5. The problem of course is to get the expressions 
in terms of the correct variables. Once we have the concept of the tangent mapping of a 
mapping as well as the concept of the composition of two mappings, then everything takes 
care of itself very nicely. The proper theorem does not talk directly about the Jacobian at all, 
but just says that the tangent mapping of a composition of mappings is the composition of the 
tangent mappings of the given mappings. The only place one has to talk about substitution of 
expressions for variables is in the definition of composition. Once composition is given, then 
everything else follows. We express this as a theorem about a pair of composable mappings. 

theoremT[mapl_mapping, map2_mapping] := 
intentionalEqualQ[ 
tangentMapping[composition[mapl, map2]], 
composition[tangentMapping[mapl], tangentMapping[map2]]]/; 

cod[mapl] === dom[map2] 



Fourteen · Differentiable Mappings 477 

For instance: 

theoremT[mapl, map2] => True 

An auxiliary result says that the tangent mapping of an identity mapping is an identity 
mapping. 

t h e o r e m l [ v a r _ L i s t ] := 
i n t e n t i o n a l E q u a l Q [ 

t a n g e n t M a p p i n g [ i d e n t i t y M a p p i n g [ v a r ] ] , 
i d e n t i t y M a p p i n g [ t a n g e n t S p a c e [ v a r ] ] ] 

3 Making Plots of Differentiable Mappings 
To use the graphics routines implemented here, load the package MappingGraphics .m. It 
automatically loads the package D i f f e r e n t i a b l e M a p p i n g s .m if that has not already been 
loaded. 

Needs["Geometry MappingGraphics^"] 

The operations in this package illustrate mappings whose domain has dimension 1 or 2 and 
whose codomain has dimension 2 or 3. The only operation exported by the package is called 
mapGraphics. Its output is a graphics object, to be displayed by Show, which makes pictures 
of the domain and the codomain of a mapping, showing how the domain is transformed into 
the codomain. The domain is shown by a rectangular grid and the codomain by the image of 
that grid. To indicate the direction of the transformation, a named arrow is included between 
the two. Each of these ingredients is in a rectangle for assembly in the final graphics operation, 
so that both the grid and its image are displayed in the same picture. The operation is used in 
the form: mapGraphics [mapping, "name", range ( s ) ] , where the range is either an 
interval { a , b} or a pair of intervals with step sizes { a i , &2, s t e p a } , { b i , Y>2, 
stepfc}. The use of this operation is illustrated by the following four mappings. The first two 
are mappings from a 1-dimensional space into a 2- and 3-dimensional space respectively. 

mapl ine = m a p p i n g [ { t } , { t ^ 2 , t ^ 3 } , { x , y } ] ; 
mapcurve = m a p p i n g ! { t } , { S i n [ t ] , C o s [ t ] , S i n [ t ] ^ 2 } , { x , y , z } ] ; 

The second two are mappings from a 2-dimensional space into a 2 and 3-dimensional space 
respectively. 

map2d = mapping[{x, y}, {χΛ2 + y^2, -2 x y}, {u, v}]; 
map3d = mapping! {u, v}, 

{Cos[v] Cos[u], Cos[v] Sin[u], Sin[v]}, 
{Xf Y, z}]; 
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These mappings produce the following pictures. 

Show[mapGraphics[mapline, "mapline", {-1, 1}]]; 

y 
lì 

mapline 
-1 1 

-Il 

Show[mapGraphics[mapcurve, "mapcurve", {0, 2 Pi}]]; 

mapcurve 
2 Pi 

Show[mapGraphics[map2d, "map2d", {-1, 0, 0.1}, {0, 1, 0.1}]] 

map 2d 

-1 4x 
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Show[mapGraphics[ map3d, "map3d", 
{0, Pi, Pi/10}, {0, 2Pi, Pi/5}]]; 

v 
2 Pir Mill 

oUiiL 

map 3d 
= > 

Pi 

If the dimension of the codomain is too large, then an error message is printed. 

toobig = identityMapping[{x, y, z, w}]; 
Show[mapGraphics[toobig, "toobig", {0, 1}]]; 

mappingGraphics: :codomainDimensions: 
Codomain dimensions are too large for plotting. 
The codomain should have dimension 2 or 3. 

toobig 

4 Examples 

4.1 Example 1 

Let us now look at the theoretical computations associated with map2d shown in the preceding 
section. This is the mapping that was treated in the Exercises in Chapters 3 and 5. 
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map2d = mapping!{x, Y}/ {x"2 + y"2, -2 x y}, {u, v}]; 
jacobian[map2d] => {{2 x, 2 y}, {-2 y, -2 x}} 
tangentMapping[map2d] 

mapping[{x, y, vx, vy}, 
{x2 + y2, -2 x y, 2 x vx + 2 y vy, -2 y vx - 2 x vy}, 
{u, v, vu, vv}] 

inverses = inversemap[map2d]; 

The output, which has been suppressed because it is quite large, consists of four mappings. If 
map 2d is composed with these different inverse mappings, the result is the identity mapping 
for the space {x, y } only in the first case. 

Map[composition[map2d, #]&, inverses] // 
Simplify // PowerExpand // Simplify // PowerExpand 

{mapping!{x, y},{x, y},{x, y}], 
mapping!{x, y},{-y, -x},{x, y}], 
mappingf{x, y},{y, x},{x, y}], 
mapping!{x, y},{-x, -y},{x, y}]} 

However, each inverse map followed by map 2d does give the identity for the variables 
{u, v}. 

Map[composition[#, map2d]&, inverses] // Simplify 

{mapping!{u, v}, {u, v}, {u, v}], 
mapping!{u, v}, {u, v } , {u, v}] , 
mapping!{u, v } , {u, v}, {u, v}] , 
mapping!{u, v}f {u, v}, {u, v}]} 

Thus each of the mappings found by inversemap is a left inverse to map 2d but only the first 
one is a right inverse. TheoremT holds for the composition in both directions of map 2d with 
all of its inverses. (Note: the following two calculations take a long time.) The first computation 
generalizes the result found in Exercise 13 of Chapter 3. Here, as there, it requires a lot of help 
in simplifying the results. 

Map[theoremT[map2d, #]&, inverses //· 
Sqrt[m_^2 - n_A2] -> 

Sqrt[m + n] Sqrt[m - n]//Simplify]//PowerExpand//Simplify 
{True, True, True, True} 
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The second computation is equivalent to the result found in Exercise 1 of Chapter 5. It needs 
no help at all in simplification. 

Map[theoremT[#, map2d]&, inverses] => {True, True, True, True} 

4.2 Example 2 

This example repeats the steps of the preceding one using a different mapping. 

map2 = mapping!{x, y}, {χΛ2 - x y, x y + yA2}, {u, v}]; 
Show[map6raphics[map2, "map2", {-1, 1, 0.2}, {0, 1, 0.2}]]; 

y 
1 . 

r 

mib 

map 2 

Define 

inverses2 = inversemap[map2]; 

The output is again suppressed because of its size. This time, only the second of these 
mappings is a right inverse to map2 but all four are left inverses. 

Map[composition[map2, # ]&, inverses2] // 
PowerExpand // Simplify // PowerExpand 

{mapping[{x, y}, {-x, -y}, {x, y}], 
mapping[{x, y}, {x, y}, {x, y}], 

-x + y x + y 
mapping[{x, y}, { , }, {x, y}], 

Sqrt[2] Sqrt[2] 

x - y x + y 
mapping[{x, y}, { , -( )}, {x, y}]} 

Sqrt[2] Sqrt[2] 
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Map[composition[#, map2]&, inverses2] // Simplify 

{mapping[{u, v}, {u, v}, {u, v}], 
mapping[{u, v}, {u, v}, {u, v}], 
mapping!{u, v}, {u, v}, {u, v}], 
mapping[{u, v}, {u, v}, {u, v}]} 

As in the previous example, the following two computations take a long time. 

Map[theoremT[map2, #]&, inverses] => {True, True, True, True} 

Map[theoremT[#, map2]&, inverses] => {True, True, True, True} 

4.3 Example 3 
The theorems concerning the tangent mapping work for generic functions of given numbers of 
variables. For instance, let mapA and mapB be generic mappings between 2-dimensional 
spaces. 

mapA = mapping[{x, y}, {f[x, y], g[x, y]}, {u, v}]; 
mapB = mapping!{u, v}, {r[u, v], s[u, v]}, {w, z}]; 

Composition and identity mappings work correctly. 

composition[mapA, mapB] 

mapping!{x, y}, 
{r[f[x, y], g[x, y]], s[f[x, y], g[x, y]]}, 
{w, z}] 

composition[identityMapping[dom[mapA]], mapA] === mapA 
True 
composition[mapA, identityMapping[cod[mapA]]] === mapA 
True 

Furthermore, Mathematica is able to evaluate Theorems T and I in this generality. The 
computation is much faster than for the specific examples above. 

theoremT[mapA, mapB] // Simplify => True 
theoremI[dom[mapA] ] => True 
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The result for TheoremT[mapA, mapB] can be regarded as a proof of the theorem for the 
composition of two mappings between 2-dimensional spaces. Clearly the same thing could be 
done for mappings between spaces of any fixed dimensions that fit together properly. 
However, it would take a totally different strategy to formulate the theorem in such a way that 
Mathematica could prove it for all possible dimensions in one step. 

5 Dimension [domain] == 1: Curves 
If the dimension of the domain of a mapping is 1, then the rules for the mapping consist of one 
or more functions of a single variable. Geometrically, the mapping is a parametric curve in 1,2, 
or higher dimensional space. If the codomain has dimension 3, then one can investigate the 
curvature and torsion of the curve, the tangent, normal, and binormal vector fields associated 
with it, find its arc length, etc. We leave these topics for the interested reader to pursue and just 
look at one simple example, where the codomain also has dimension 1. In this case the 
mapping itself is a mapping between 1-dimensional spaces and the tangent mapping is a 
mapping between 2-dimensional spaces. From it we will extract a mapping from 1-
dimensional space to 2-dimensional space using the tangent vector field. This of course will be 
a plane curve. 

5.1 Example: A Phase Portrait 
Consider the curve x = sin t and think of it as the description of a particle undergoing simple 
harmonic motion as a function of time. The phase plane for such a system is the plane whose 
coordinates are position and velocity. It is the same as the tangent space to the 1-dimensional 
coordinate space. The curve in the phase plane given by the pair of functions {x(t), x'(t)} is 
called the phase portrait of the motion. In Mathematica, this looks as follows: 

sincurve = mapping[{t}, {Sin[t]}, {x}]; 
phasecurve = First[tangentVectorFields[sincurve]] 
mapping[{t}, {Sin[t], Cos[t]}, {x, vx}] 
Show[mapGraphics[phasecurve, "phase", {0, 2 Pi}]]; 

v x 

—_-. phase 
2 Pi > 
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5.2 Example: Damped Harmonic Motion 

Damped harmonic motion provides a more interesting example. 

damped = mapping!{t}, {ΕΛ(-0.1 t) Sinft]}, {x}]; 
phasecurve = First[tangentVectorFields[damped]] 

Sin[t] Cos[t] 0.1 Sin[t] 
mapping[{t}, { , }, {x, vx>; 

Eo.i t Eo.i t Eo.i t 

Show[mapGraphics[phasecurve, "phase", {0, 4 Pi}]]; 

4 Pi 
phase 

0.28 

6 Implementation 
Complete packages implementing all of the commands developed here will be found on the 
diskette distributed with this book. They are called D i f f e r e n t i a b l e M a p p i n g s . m . and 
MapGraphics. m 



CHAPTER 

Critical Points and 
Minimal Surfaces 

1 Introduction 
In the previous chapter differentiable mappings were introduced and the Jacobian was used to 
define the tangent mapping associated with a mapping. In this chapter, two special cases are 
considered: 

i) Dimension[codomain] = 1; i.e., the mapping is determined by a single function of one 
or more variables. 

ii) Dimension[domain] = 2 and dimension[codomain] = 3; i.e., the mapping is a 
parametric surface in 3-dimensional space. 

The Jacobian plays a central role in both cases. In the first case, the Jacobian of a single function 
is just the gradient of the function and the zeros of the gradient determine the critical points of 
the function. In the second case, the Jacobian determines the first fundamental form of a 
parametric surface. In addition to the Jacobian there is a new theoretical ingredient-the 
hessian. In the first case, the hessian is what classifies the critical points of a function. In the 
second case, the hessian, in vector form, determines the second fundamental form of a surface, 
and the two fundamental forms together determine the Gaussian and mean curvatures of a 
surface. A minimal surface is one whose mean curvature is zero. 

2 Critical Points 
If the dimension of the codomain of a mapping is 1, then the rule for the mapping consists of 
just one differentiable function, of one or more variables. One of the many things to be 
investigated in this situation is the topic of critical points. 

15 

485 
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2.1 The Mathematical Problem 
If f is a differentiable function of several variables, then the critical points of f are the points 
where the gradient of f is 0. Such points are local minima, local maxima, or saddle points. The 
behavior of f at each critical point is determined by the hessian matrix of f, evaluated at that 
critical point. The hessian is the square matrix of all second partial derivatives of f with respect 
to the variables. 

hessian(f) = a2f 
3XJ 3xji 

The analysis of the critical points involves looking at the values of the principal minors of this 
matrix at the critical points; namely, the determinants of the square submatrices running down 
the main diagonal in the upper left-hand side of the hessian, as illustrated. For a 4 x 4 matrix, 
there are 4 such determinants. 

aj 
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i) The matrix is called positive definite if all of these determinants are positive. If the 
hessian at a critical point is positive definite, then the critical point is a local minimum. 

ii) The matrix is called negative definite if these determinants strictly alternate in sign, 
starting with the upper left hand entry being negative. If the hessian at a critical point 
is negative definite, then the critical point is a local maximum. 

iii) If the hessian matrix at a critical point is neither positive nor negative definite, then the 
critical point will be called a saddle point here. (We are ignoring the case in which some 
principal minor is 0, although this occurs in some of the examples below.) In the case 
of a saddle point, it is necessary to calculate the eigenvalues and eigenvectors of the 
matrix in order to understand the behavior of the function near such a point. If an 
eigenvalue is positive (respectively, negative), then the function increases 
(respectively, decreases) in the direction of the corresponding eigenvector. Positive 
(respectively, negative) definite corresponds to all eigenvalues being positive 
(respectively, negative). 

2.2 The Mathematica ΤοτπΜ^ίοη 
To use the commands implemented here, load the package Cr i t i ca lPo int s .m using the 
method described in the preceding chapter. It automatically loads the package 
Dif f erentiableMappings .m if that has not already been loaded. 

Needs["Geometry"CriticalPoints""] 
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2.2.1 Find the critical points 

The gradient of a function is the vector of first partial derivatives of the function. (This is the 
same as the jacobian of a single function with respect to several variables.) 

grad[expr_, var_List] := D[expr, #]& /@ var 

We want to use this for mappings whose codomain has dimension 1. We characterize such 
mappings as functions here. The default name for the single coordinate in the codomain space 
will be "It" (for line type). 

function[old_, rule_, new_] := 
mapping[old, rule, new] /; Length[new] == 1 

The gradient is also defined for a function in this sense. 

grad[fun_mapping] := grad[rule[fun], dorn[fun]] 

The gradient can also be viewed more intrinsically as part of a mapping into the vector half of 
the tangent space of the domain of the function. 

gradientMapping[fun_mapping] := 
mapping[dorn[fun], grad[fun], v[dorn[fun]]] 

For instance, consider a generic function of two variables. 

gener icFun = f u n c t i o n [ { x , y } , { f [ x , y ] } , { I t } ] ; 
g r a d [ g e n e r i c F u n ] => { f i 1 ' ° > [ x , y ] , f ( ° ' ^ [ x , y ] } 
grad ientMapping[gener icFun] 

m a p p i n g [ { x , y } , { f i 1 ' ° ) [ x , y ] , f ( ° ' l ) [ x , y ] } , { v x , v y } ] 

The critical points of a function are the points where the gradient is zero. We are not 
interested in multiple solutions or complex solutions, so we apply U n i o n to the list of 
solutions and then select those that don't have complex entries. The operation 
c r i t i c a l P o i n t s is programmed dynamically since it is a lengthy computation that is 
involved in all further calculations. 

c r i t i c a l P o i n t s [ f u n _ m a p p i n g ] := c r i t i c a l P o i n t s [ f u n ] = 
S e l e c t [ U n i o n [ S o l v e [ g r a d [ f u n ] == 0 , dorn[fun], 

V e r i f y S o l u t i o n s -> True ] ] , 
FreeQ[#, Complex]& ] 



488 Part III · Knowledge Representation 

2.2.2 Analyze the critical points 
The hessian matrix of a function is the matrix of all second partial derivatives of the function. 
As with the gradient, it is programmed in two forms, one in terms of functions and variables 
and one for functions as mappings whose codomain is 1-dimensional. 

hessian[funs_, vars_] := Outer[D[funs, #1, #2]&, vars, vars]; 
hessian[funjmapping] := hessian[First[rule[fun]], dorn[fun]] /; 

Length[cod[fun]] == 1; 

For our generic function this gives the following result. 

hessian[genericFun] // TableForm 
f(2, 0 ) [ X / y ] f(l, 1 ) [ X / y ] 
f(lr 1)[X, y] f(0, 2 ) [ X f y ] 

To find the principal minors, first define one step in the process of decreasing the size of a 
matrix by dropping the last row and column. 

oneMinor[matrix_] := Map[Drop[#, -1]&, Drop[matrix, -1]]; 

The principal minors are given by nesting this operation and then taking the determinants of 
the results. 

principalMinors[matrix_] := 
Det /@ NestList[oneMinor, matrix, (Length[matrix] - 1)]; 

For the hessian of our generic function, this gives: 

principalMinors[hessian[genericFun]] 
{_f(l, l ) [ X f y]2 + f(2, 0 ) [ X / y ] f(0, 2 ) [ X f y]r f(2, 0 ) [ X / y ] } 

A matrix is positive definite if all principal minors are positive. 

positiveDefiniteQ[matrix_] := 
And@@Positive[principalMinors[matrix]]; 

A matrix is negative definite if the principal minors alternate in sign, starting with a negative 
value in the upper left-hand corner; equivalently, if -1 times the matrix is positive definite. 

negativeDefiniteQ[matrix_] := positiveDefiniteQ[-matrix]; 

If the hessian is positive definite at a critical point, then the critical point is a local minimum. 
If it is negative definite, then the critical point is a local maximum. 
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localMinima[fun_mapping] := 
Select[ criticalPoints[fun], 

positiveDefiniteQ[hessian[fun]/·#]&] 
localMaxima[fun_mapping] := 

Select[ criticalPoints[fun], 
negativeDefiniteQ[hessian[fun]/.#]&] 

If a critical point is neither positive nor negative definite, then we consider it to be a saddle 
point. The output of the operation s a d d l e P o i n t s is an expression with head 
c r i t i c a l D i r e c t i o n s whose arguments are pairs consisting of a critical point and the 
eigensystem of the hessian evaluated at that point. 

otherCriticalPoints [ f un__mapping] : = 
Complement! criticalPoints[fun], 

localMinima[fun], localMaxima[fun] ]; 
saddlePoints[fun_mapping] := 

With[ 
{others = otherCriticalPoints[fun]}, 
If[ others == {}, {}, 

Thread[ 
criticalDirections[ 

others, 
Transpose[Eigensystem[#]]& /@ 

(hessian[fun]/.others)]]]]; 

2.2.3 Numerical versions of the commands 

In the implementation package there are numerical versions of all of the preceding commands. 
They have the same names preceded by an N; i.e., N c r i t i c a l P o i n t s , NlocalMinima, 
NlocalMaxima, N o t h e r C r i t i c a l P o i n t s , N s a d d l e P o i n t s . 

2.3 Examples 

2.3.1 Example 1 

The first example has a single local minimum at the origin. 

f u n c t i o n l = 
f u n c t i o n [ { x , y , z } , 

{3 χΛ2 + 2 yA2 + 2 ζΛ2 + 2 x y + 2 x z + 2 y z } , 
{It}]; 

localMinima[functionl] => {{x -> 0, y -> 0, z -> 0}} 
localMaxima[functionl] => {} 
saddlePoints[functionl] => {} 
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2.3.2 Example 2 

The second example is much more interesting. It has one local maximum at the origin, with 
four symmetrically located local minima surrounding it, separated by four saddle points. 

f u n e t i o n 2 = f u n c t i o n [ { x , y } , {χΛ4 + y^4 - xA2 - y^2 + 1 } , { I t } ] ; 
l o c a l M i n i m a [ f u n c t i o n 2 ] 

{{x -> ( - 1 / S q r t [ 2 ] ) , y -> ( - 1 / S q r t [ 2 ] ) } , 
{x -> ( - 1 / S q r t [ 2 ] ) , y -> ( 1 / S q r t [ 2 ] ) } , 
{x -> ( 1 / S q r t [ 2 ] ) , y -> ( - 1 / S q r t [ 2 ] ) } , 
{x -> ( 1 / S q r t [ 2 ] ) / y -> ( 1 / S q r t [ 2 ] ) } } 

l oca lMax ima[ func t ion2 ] => { { x - > 0 / y - > 0 } } 
s a d d l e P o i n t s [ f u n c t i o n 2 ] 

{ c r i t i c a l D i r e c t i o n s [ 
{x -> 0 , y -> - ( 1 / S q r t [ 2 ] ) } , {{-2, { 1 , 0 } } , {4 , {0 , 1 } } } ] , 

c r i t i c a l D i r e c t i o n s [ 
{x -> 0 , y -> 1 / S q r t [ 2 ] } , { { - 2 , { 1 , 0 } } , {4 , {0 , 1 } } } ] , 

c r i t i c a l D i r e c t i o n s [ 
{y -> 0 , x -> - ( 1 / S q r t [ 2 ] ) > , { { - 2 , {0 , 1 } } , {4 , { 1 , 0 } } } ] , 

criticalDirections[ 
{y -> 0, x -> 1/Sqrt[2] }, {{-2, {0, 1}}, {4, {1, 0}}}]} 

The first item in the output of s a d d l e P o i n t s here, 

c r i t i c a l D i r e c t i o n s [ 
{ x _> o, y -> - ( 1 / S q r t [ 2 ] ) } , {{-2, { 1 , 0 } } , {4 , {0 , 1}}}] 

means that the point { 0 , 1 ( 1 /Sqrt [ 2 ] } is a saddle point and the eigensystem of the hessian 
at this point consists of an eigenvalue - 2 with corresponding eigenvector ( 1 , 0} and an 
eigenvalue 4 with corresponding eigenvector { 0 , 1}. In the case of a function of two 
variables, we can plot the function as a surface to see exactly what it looks like. 

Plot3D[ E v a l u a t e [ F i r s t [ r u l e [ f u n c t i o n 2 ] ] ] , { χ , - 1 , 1 } , { y , - l , l } , 
P l o t P o i n t s -> 4 0 , Mesh -> F a l s e ] ; 
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In this picture, { 0 , - 1 / S q r t [ 2 ] } is the saddle point nearest the front. { 1 , 0 } is a vector 
in the direction of the x-axis and in that direction the function has a local maximum, 
corresponding to the eigenvalue - 2 . Similarly, {0 , 1} is a vector in the direction of the y-axis 
and the function has a local minimum, corresponding to the eigenvalue 4. 

2.3.3 Example 3 

The third example has the interesting property of having a saddle point (at the origin) without 
any local minima or maxima. 

function3 = 
function[{x, y, z}, {xA2 + y~2 + ζΛ2 - 4 x z}, {It}]; 

localMinima[function3] => {} 
localMaxima[£unction3] =» {} 
saddlePoints[function3] 

{criticalDirections[{x -> 0, y -> 0, z -> 0}, 
{{-2, {1, 0, 1}}, {2, {0, 1, 0}}, {6, {-1, 0, 1}}}]} 

At the origin the function decreases in one direction and increases in the other two directions 
(because there is one negative eigenvalue and two positive ones.) 

2.3.4 Example 4 

This example is too complicated for the symbolic routines, so we have to use the numerical 
versions of the commands. This time we find two local minima and three saddle points, but no 
local maxima. We have decided to include the value, v a l , of the function at each critical point 
as a final component of the output. 
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function4 = 
function[ 

{χΛ4 + yA4 + ζΛ4 - χΛ2 - yA2 - ζΛ2 + 4 x y + 4 x z + l } , 
{It}]; 

With[ {mins = NlocalMinima[function4]}, 
Transpose[{mins, val -> First[rule[function4]] /. mins}]] 

{{{y->-l.28785, z->-l.28785, x-> 1.49207}, val -> -9.45797}, 
{{y-> 1.28785, z ->1.28785, x->-l.49207}, val -> -9.45797}} 

NlocalMaxima[function4] => {} 
With[ {sads = NsaddlePoints[function4]}, 

Transpose! 
{ sads, 
val->First[rule[function4]]/.Map[(#[[1]])&, sads]}]] 

{{criticalDirections[{y -> -0.707107, z -> 0.707107, x -> 0}, 
{{7.40312, {0.515499, 0.605913, 0.605913}}, 
{-5.40312, {-0.85689, 0.364513, 0.364513}}, 
{4., {0, -0.707107, 0.707107}}}], val -> 0.5}, 

{criticalDirections[{y -> 0, z -> 0, x -> 0}, 
{{-2., {0, -1., 1.}}, 
{-7.65685, {-1.41421, 1., 1.}}, 
{3.65685, {1.41421, 1., 1.}}}], val -> 1}, 

{criticalDirections[{y -> 0.707107, z -> -0.707107, x -> 0}, 
{{7.40312, {0.515499, 0.605913, 0.605913}}, 
{-5.40312, {-0.85689, 0.364513, 0.364513}}, 
{4., {0, -0.707107, 0.707107}}}], val -> 0.5}} 

Note that the saddle points happen for x = 0, in which case, f u n c t i o n 4 is the same as 
f unc t ion2 with one less variable. 

2.3.5 Example 5 

In this example, there is one local minimum and one saddle point. Mathematica is unable to 
find the exact eigenvectors, so we use the numerical version to find the saddle points. 

functions = 
function[ {x, y, z}, 

{x"3 + y"3 + z"3 - 4 x z - 4 y z + 2 } , {It}]; 
localMinima[functions] 
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4 2 1/3 4 2 1/3 4 2 2 / 3 

{ { x - > -, z - > ■ } } 

localMaxima[functions] 
NsaddlePoints[functions] 

{} 

{critical-Directions[ {x -> 0, y -> 0, z -> 0}, 
{{0, {-1., 1., 0}}, 
{-5.65685, {0.707107, 0.707107, 1.}}, 
{5.65685, {-0.707107, -0.707107, 1.}}}]} 

Here, we see that the three eigenvalues are respectively zero, negative, and positive. The 
direction of the eigenvector corresponding to the negative eigenvalue should take us to the 
local minimum. If we restrict to a 2-dimensional subspace perpendicular to the direction of the 
null space of the hessian, given by setting y = x (since the eigenvectgor corresponding to the 0 
eigenvalue is {-1, 1, 0}), then we can make a plot of this situation. In the picture, we see 
the saddle point at (0,0) and the local minimum at {x -> 1.68, z -> 2.12}. 

ContourPlot[ Evaluate[First[rule[functions/.y -> x]]], 
{x, -1, 2.5}, {z, -1, 3}, 
Contours -> 30, ContourShading -> False ]; 

- 1 - 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 

2.3.6 Example 6 
For this function of 4 variables, there are no local minima or maxima and just one (real) saddle 
point which turns out to have two zero eigenvalues. 
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function6 = 
function[ 

{x, y, z, w}, 
{(x + 10 y)~2 + 5 (z - w)"2 + (y - 2 z)A4 + 10 (x - w)"4}, 
{It} ]; 

localMinima[function6] => {} 
localMaxima[function6] => {} 
saddlePoints[function6] 

{criticalDirections[{x -> 0, y -> 0, z -> 0, w -> 0}, 
{{0, {0, 0, 1, 1}}, {0, {-10, 1, 0, 0}}f 
{20, {0, 0, -1, 1}}, {202f {1, 10, 0, 0}}}]} 

Notice that two eigenvalues are 0 and the other two are positive; in other words, the hessian is 
positive semi-definite, so this is not really a saddle point at all. Analyze this as in Example 5 by 
looking at the function restricted to the orthogonal complement of the nuUspace of the hessian 
at the origin. 

orthocomp = Solve[{-10 w + z == 0, x + y == 0}, {z, y}] 

{{z -> 10 w, y -> -x}} 

function66 = 
function[{x, w}, rule[function6] /. orthocomp[[1]], {It}] 

mapping[{x, w}, {405 w2 + (-20 w - x)4 + 81 x2 + 10 (-w + x)4}, 
{It}] 

This is obviously a convex function with a minimum at the origin. The symbolic critical points 
functions fail, but the numerical ones succeed. 

NlocalMinima[function66] => {{x->0,w->0}} 
NlocalMaxima[function66] => {} 
NsaddlePoints[function66] => {} 

To see what the function looks like when restricted to this subspace, we plot it on two different 
scales. 

Show[GraphicsArray[ 
{ Graphics3D[ 

Plot3D[ Evaluate[First[rule[function66]]], 
{x, -0.0001, 0.0001}, {w, -0.0001, 0.0001}, 
DisplayFunction -> Identity ]], 
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Graphics3D[ 
Plot3D[ Evaluate[First[rule[function66]]], 

{x, -1, 1}, {w, -1, 1}, 
DisplayFunction -> Identity ]] }], 

DisplayFunction -> $DisplayFunction]; 

These pictures show that the minimum is very flat even in this subspace, but it does actually 
increase in both perpendicular directions. 

2.3.7 Example 7 

Neither procedure is able to deal with the last function. 

function7 = 
function[ {x, y, z}, 

{100 (z - (10/(2 N[Pi])) ArcTan[y/x])"2 + 
(Sqrt[x"2 + y"2] - 1)Λ2 + zA2}, {It}]; 

NcriticalPoints[function7] 
A number of error messages are generated, but no output. If we proceed by hand using 
FindRoot, then we can find at least one critical point. 

gradient = grad[function7]; 
solution = FindRoot[gradient == 0, {x, 1}, {y, 0}, {z, 0}] 
{x -> 1., y -> 0., z -> 0.} 
hessian[function7] /. solution 
{{2., 0., 0.}, {0., 506.606, -318.31}, {0., -318.31, 202}} 
p o s i t i v e D e f i n i t e Q [ % ] => True 

Thus, we conclude that the point (1, 0, 0) is a local minimum of f unct ion7 . 
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3 Minimal surfaces 
If the dimension of the domain of a mapping is 2, then the rule for the mapping consists of one 
or more functions of 2 variables. Geometrically, the mapping is a parametric surface in some 
possibly higher dimension space. We consider just the case where the dimension of the 
codomain is 3. A differential mapping from a 2-dimensional space to a 3-dimensional space is 
usually called a (differentiable) parametric surface. In classical differential geometry, the 
concepts analogous to the curvature of a curve are the Gaussian and mean curvatures of a 
surface. These functions can be defined in terms of the principal normal curvatures of a 
surface, which are constructed as follows. Imagine a vector Νχ that is normal to the surface at 
a point X on it and a vector Vx that is tangent to the surface at the same point. These vectors 
determine a plane P whose intersection with the surface is a plane curve C. The curvature 
k(Vx) of this curve is called the normal curvature of the surface in the direction Vx. The 
minimum and maximum values, ki < k2 of k(Vx) as Vx varies are called the principal 
curvaturesof the surface at X. Then the mean curvature H is the average of ki and k2; i.e., 
(ki + k2)/2, while the Gaussian curvature K is their product ki k2- A surface is called a minimal 
surface if the mean curvature is identically 0. This means that ki = -k2, and since the directions 
of the principal curvatures are mutually perpendicular, it means that the maximum amount 
that the surface curves down is equal to the maximum amount that it curves up. Minimal 
surfaces are a 2-dimensional analogue of straight lines in the following sense. A straight line 
between two points has the shortest length of any path joining the two points. The points 
constitute the boundary of the line segment. The boundary of a 2-dimensional piece of a 
surface is a closed curve. A surface is minimal if it has the least area of any surface with the 
same boundary. 

A plane is an obvious example of a minimal surface, but there are many others. Several 
examples were found in the 19th century, and then there was a long gap until recently when 
interesting new minimal surfaces were discovered. For a readable general account, see 
[Hoffman]. For a detailed treatment of the classical theory, see [Struik,] or [O'Neill]. 

3.1 The Differential Geometry of Minimal Surfaces: 
Mathematica ΈοίΎητι^ίοη 

3.1.1 Differentiable surfaces 
To use the commands implemented here, load the package Min imalSur f a c e s .m. It 
automatically loads the package Dif f e ren t iab leMappings .m if that has not already been 
loaded. 

Needs["Geometry'MinimalSurfacesv"] 
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Minimal surfaces are differentiable surfaces in 3-dimensional space whose mean curvature 
is zero. Pictures of such surfaces are often very attractive. For our purposes, a (parametric) 
surface is determined by a vector valued function of two variables which can be represented as 
a list of three ordinary differentiable functions of two variables: 

X(u,v) = {f(u,v),g(u,v),h(u,v)}. 

The goal here is to construct two functions of the form: 

gaussianCurvature[surface] 
meanCurvature[surface] 

that calculate the Gaussian and mean curvature functions of such a surface. As discussed 
above, these are defined in terms of the principal curvatures of the surface. The principal 
curvatures in turn can be calculated from a pair of "forms" called the First and Second 
Fundamental Forms of the surface. It is pleasant to find that these forms have nice expressions 
in Mathematica, and so there are very concise formulae for the Gaussian and mean curvatures 
of a surface. 

Formally, we define a (parametric) surface to be a differentiable mapping from a 2-
dimensional space to a 3-dimensional space, so it can be characterized as a subtype of the 
general type of mapping. 

surface[dom_, rule_ , cod_] := mapping[dorn, ru l e , cod] / ; 
Length[dorn] == 2 && Length[cod] == 3; 

For instance, here is a generic surface. 

generic = 
surface[{u, v}, {f[u, v]f g[u, v], h[u, v]}, {x, y, z}] 

mapping[{u, v}, {f[u, v], g[u, v], h[u, v]}, {x, y, z}] 

The rules for such a surface are given by a list of three functions of two variables X(u, v) as 
above. Then the vector fields on this surface along the coordinate lines are given by the partial 
derivatives with respect to u and v. 

3X=(3f 3g 3h| <^ = [Κ 3g 3h| 
du \du du dui dv \dv dv dvj 

In Mathematica, these are the rows of the transpose of the Jacobian of the mapping. 



498 Part HI · Knowledge Representation 

Transpose[j acobian[generic]] 

{{fi1' °)[u, v], gì1' °>[u, v], M 1 ' °>[u, v]}, 
{f(0, l ) [ U f V ] f g(0, 1 ) [ U / v]f h(0, l ) [ U f v ] } } 

We also have a more intrinsic representation of these vector fields as mappings to the 
tangent space of the codomain of the surface, as defined in Chapter 14. 

tangentVectorFields[generic] 

{mapping[{u, v}, 
{f[u, v], g[u, v], h[u, v], 

f(l, 0 ) [ U f v ] / g(l, 0 ) [ U f v]f h ( l , 0 ) [ U f v ] } / 
{x, y, z, vx, vy, vz}], 

mapping[{u, v}, 
{f[u, v], g[u, v], h[u, v], 

f(°' ^ [ u , v ] , g ( ° ' 1 >[u / v ] , h ( ° ' ^ [ u , v ] } , 
{x, y , z, vXf vyr v z } ]} 

3.1.2 The first fundamental form of a surface 
The "coefficients" of the "first fundamental form," I(X), for a given surface are the three possible 
dot products of the tangent vectors: 

F _ 3 X . Ç ^ F _ ^ # ^ G _ ^ # 3 X 
~3u 3u' ~3u 3v' ~3v 3v 

The first fundamental form itself can be thought of as the matrix: 

(Ï5MÎ *£)·(«) 
Thus, in Mathematica, it is given by the operation 

f irstFundamentalForm[surf__mapping] : = 
With[ {partials = jacobian[surf]}, 

Transpose[partials] . partials] // Simplify; 

For the generic case, the result looks rather complicated. 

firstFundamentalForm[generic] 
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{ { f i 1 ' ° ) [u , v ] 2 + g ì 1 ' °>[u, v ] 2 + h i 1 ' °>[u, v ] 2 , 
f ( ° ' 1 ) [ u / v] f t 1 ' ° ) [u , v] + g ( ° ' 1 ) [ u / v] ql1' °>[u, v] + 

h(0f ^ [ u , v] h t 1 ' °>[u, v ] } , 
{f<0' 1 ) [ u / v] f i 1 ' °>[u, v] + g ( ° ' 1>[uf v] g t 1 ' °>[u, v] + 

h ( ° ' 1)[ur v] h i 1 ' °>[u, v ] , 
f ( ° ' x ) [ u , v ] 2 + g ( ° ' !>[u, v ] 2 + h<0' x ) [ u , v ] 2 }} 

3.1.3 Normal vectors and the second fundamental form 
A normal vector field on the surface can be constructed by the cross product of the tangent 
vectors: 

Normal (X(u, v)) = ^— χ ^τ-
du dv 

and the unit normal vector field UnitNormal ( X ( u , v ) ) is given by dividing this vector field 
by its length. In Mathematica, we need our own cross product given by the usual formula and a 
formula for the length of a vector. 

cross [{a_, b_, c_}, {x_f y_, z_}] : = 
{ b z - c y , c x - a z, a y - b x}; 

length[vect_] := Sqrt[vect . vect] // Simplify; 

Then the unit normal vector field is given by the formula: 

unitNormal[surface_mapping] := 
With[ {vect = cross@@Transpose[jacobianfsurface]]}, 

vect / length[vect] // Simplify]; 

More intrinsically, we can define an associated mapping into the tangent space of the 
codomain of the surface. 

normalVectorField[surf^mapping] := 
mapping[ dorn[surf], 

Join[ rule[surf], 
cross@@Transpose[jacobian[surf]]], 

tangentSpace[cod[surf]]]; 

Both of these lead to large expressions if evaluated for gener ic . The "coefficients" of the 
"second fundamental form," II(X), for a given surface, by definition, are the dot products of the 
second partial derivatives of X with the unit normal vector. 
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?2X L(X(u,v)) = — y . UnitNormal (X(u,v)) 

d2X M(X(u, v)) = ^ -^ - . UnitNormal(X(u, v)) 

r)2X 
N(X(u, v)) = —2 . UnitNorma(X(u, v)) 

3v 

These coefficients can also be thought of as entries in a 2 x 2 symmetric matrix, but the formula 
to calculate it is more complicated. 

I L(X(u, v)) M(X(u, \))\( xu,u xu, v) X u xX v 
1M(X(U,V)) N(X(u,v))j-^Xv?u X v ? v J ' |X u xX v | 

The entries in the matrix on the right are vectors and the dot product means take the dot 
product of each of these vectors with the unit normal vector. The matrix of second partial 
derivatives is just the hessian matrix in vector form as in the preceding section. For our generic 
surface, this is a 2 x 2 matrix whose entries are vectors. 

hess ian[generic] 
{ { {f(2, 0 ) [ U r v]f g(2, 0 ) [ u # v]/ h(2, 0 ) [ u # v]}f 

{fi1' !)[u, V ] , gì1' !)[u, V ] , ht1' 1>[uf V]}}, 
{{ft1' 1>[uf v ] # g^1' 1>[u/ v ] f M 1 ' l)[uf v]}, 
{f(0r 2)[uf v], g<0' 2)[uf v], h(°' 2>[uf v]}}} 

Using this, the second fundamental form has a very simple description. 

secondFundamentalForm[surf_mapping] := 
Dot[hessian[surf], unitNormal[surf]] // Simplify; 

Again, this gives a very large result if it is evaluated for generic . Note: in the package the 
unitNormal, f irstFundamentalForm, secondFundamentalForm, and curvatureDet 
operations are programmed dynamically and include S i m p l i f y since otherwise the 
computations in the examples below take inordinately long. 

3.1.4 The Gaussian and mean curvatures of a surface 
It is shown in books like O'Neill [O'Neill] and Struik [Struik} cited above that 

gaussianCurvature[X(u, v)] = (L N - M2) / (E G - F2) 
meanCurvature[X(u, v)] = ( E N - 2 F M + G L ) / ( E G - F2). 
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These values can also be derived directly from the first and second fundamental forms by 
forming the polynomial det(I (X) - x II (X)) and dividing by the leading coefficient. The 
constant term of the resulting monic polynomial is the Gaussian curvature and the coefficient 
of x is the negative of twice the mean curvature. In Mathematica, this is given by the operations: 

curvatureDet[surf_mapping, x_] := 
With[ {det = Det[ secondFundamentalForm[surf] -

x firstFundamentalForm[surf]]}, 
Expand[det/Coefficient[det, xA2]]]; 

gaussianCurvature[surf_mapping] := 
Module[ {x}, 

Coefficient[curvatureDet[surf, x], x, 0] ]; 
meanCurvature[surf_mapping] := 

Module[ {x}, 
Coefficient[curvatureDet[surf, x], x] / 2 ]; 

The results of these operations applied to generic are huge expressions, so we only evaluate 
them for selected examples. Note that some of the following calculations take a long time. 
Calculating the Gaussian curvature already evaluates the curvature determinant, so the 
calculation of the mean curvature is usually much faster. 

3.2 Examples 

3.2.1 Plane 
Any parametric surface given by linear rules is a plane. We chose an arbitrary one and find, as 
expected, that both curvatures are 0. 

plane = 
surface[{u, v}, {a u + b v, c u + d v , p u + q v}, {x, y, z}]; 

gaussianCurvature[plane] => 0 
meanCurvature[plane] => 0 

3.2.2 Torus 
Consider the pinched torus given by rotating a circle about an axis tangent to the circle. 

torus = surface[ {phi, theta}, 
{ 2 Sin[phi] Sin[phi] Cos[theta], 

2 Sin[phi] Sin[phi] Sin[theta], 
2 Sin[phi] Cos[phi] }, 

{Xf Y/ z} ]; 



502 Part III · Knowledge Representation 

About all that we can expect here is that the curvatures are independent of theta, but the exact 
forms are surprisingly brief. 

gaussianCurvature[torus] => -(Cos[2 phi] Csc[phi]2)/2 
meanCurvature[torus]//Together => (2 - Cos[2 phi] Csc[phi]2)/4 
ParametricPlot3D[ Evaluate[rule[torus]], 

{phi, 0, Pi}, {theta, 0, 2Pi} ]; 

3.2.3 Sphere 
Consider a parametric sphere of radius r. It is also not a minimal surface, but the results of the 
computations are instructive. 

sphere = surface[ {u, v}, 
{r Cos[v] Cos[u], r Cos[v] Sin[u], r Sin[v]}, 
{x, y, 2} ]; 

firstFundamentalForm[sphere] // TableForm 

r2 Cos[v]2 0 

secondFundamentalForm[sphere] // PowerExpand // TableForm 

-r Cos[v]2 0 
0 -r 

gaussianCurvature[sphere] 
meanCurvature[sphere]//PowerExpand 

:-2 
.-1 
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3.2.4 Catenoid 

The only minimal surfaces of revolution are the catenoids, as was discovered by Euler in the 
1740s. 

catenoid = 
surface[ {u, v}, 

{a Cosh[u/a] Cos[v], a Cosh[u/a] Sin[v], u}, 
{x. Y, z} 1; 

firstFundamentalForm[catenoid] 

{{Cosh[u/a]2, 0}, {0, a2 Cosh[u/a]2}} 

secondFundamentalForm[catenoid] // PowerExpand 

{{-(1/a), 0}, {0, a}} 

gaussianCurvature[catenoid] => -Sech[u/a]4 / a2 
meanCurvature[catenoid] => 0 
ParametricPlot3D[ Evaluate[a = 1; rule[catenoid]], 

{u, -1, 1}, {v, 0, 2 Pi}, 
P l o t P o i n t s -> { 1 5 , 30} ] ; 

3.2.5 Helicoid 

A right conoid is a surface generated by moving a straight line parallel to a plane and 
intersecting a line perpendicular to this plane. The only minimal right conoids are the 
helicoids, as was shown by Meusnier in the 1770s. In fact, the only ruled minimal surfaces are 
planes and helicoids. 
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helicoid = surface[ {u, v}, 
{u Cos[v], u Sin[v], b v}, 
{X/ Y, z} 1; 

gaussianCurvature[helicoid] 

b2 / (b2 + u 2 ) 2 

meanCurvature[helicoid] => 0 
ParametricPlot3D[ Evaluate[b = .3; rule[helicoid]], 

{u, 0, 2}, {v, -Pi, 4Pi}, 
PlotPoints -> {15, 40} , 
ViewPoint->{1.463, -2.702, 1.418} ]; 

3.2.6 Sherk's first minimal surface 

Sherk's first minimal surface, discovered in 1835, "was the first minimal surface discovered 
after Meusnier's discovery of the catenoid and the helicoid." [Struik] 

sherkl = surface[ {x, y}, 
{x, y, Log[Cos[y]] - Log[Cos[x]]}, 
{X/ Y, z}]; 

gaussianCurvature[sherkl] 
Sec[x]2 Sec[y]2 

_( ) 
(1 + Tan[x]2 + Tan[y]2) (Sec[x]2 Sec[y]2 - Tan[x]2 Tan[y]2) 

meanCurvature[sherkl] => 0 
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«Graphics "ContourPlot 3D" 
ContourPlot3D[Cos[x] ΕΛζ - Cos[y], 

{x, -Pi/2, Pi/2}, {y, -Pi/2, Pi/2}, {z, -3, 3}]; 

3.2.7 Sherk's second minimal surface 

This surface was found at the same time as the first one. 

sherk2 = surface[ {x, y}, 
{x, y, ArcSin[Sinh[x] Sinh[y]}, 
{x, y, z}]; 

gaussianCurvature[sherk2] 

-(Sech[x]2 Sech[y]2) 

meanCurvature[sherk2] => 0 
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ContourPlot3D[ Sin[z] - Sinh[x] Sinh[y], 
{x, -2, 2}, {y, -2, 2}, {z, -6, 2}, 
PlotPoints -> {5, 7}, PlotRange -> All, 
Boxed -> False]; 

3.2.8 No name surface 
I don't know the name of this minimal surface. 

noname = surface[{x, y}, {x, y, ArcTan[y/x]}, {x, y, z}]; 
gaussianCurvature[noname] // Together => -(1 + x2 + y 2)~ 
meanCurvature[noname] // Together => 0 
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Plot3D[ Evaluate[rule[noname][[3]]], 
{x, -1, 1}, {y, -1, 1}, 
PlotRange -> All, PlotPoints -> 40, 
ViewPoint->{-2.5, -1.5, 1.7} ]; 

3.2.9 Monge surfaces 
A Monge parametric surface is one of the form X[x, y] = {x, y, h[x, y]}. The last two examples 
are such surfaces. For these surfaces, there is a simpler formula for the mean curvature given 
in terms of the function h[x, y]. 

meanCurv[h_, {x_, y_}] := 
With[ {den = Sqrt[l + D[h, x]A2 + D[h, yp2]}, 

(l/2)(D[D[h, x]/den, x] + D[D[h, y]/den, y]) // 
Simplify] 

This can be calculated for a generic function of two variables. 

meanl = meanCurv[h[x, y], {x, y}] 

(h<0' 2)[x, y] + h<0' 2)[x, y] hi1' °)[x, y] 2 -
2 h<0' !)[x, y] hi1' °>[x, y] hi1* χ>[χ, y] + h<2' °)[x, y] + 

h<0' 1)[x, y] 2 h<2' °)[x, y]) / 
(2 (1 + h(°' χ)[χ, y] 2 + hi1' °)[x, y]2)3/2) 

Minimal surfaces over a region in the x-y-plane are described by functions h(x, y) satisfying the 
partial differential equation given by setting this expression equal to 0. We can check that this 
formula is equivalent to our general formula applied to the special case of Monge surfaces by 
calculating the mean curvature for such a surface by our usual method. 
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monge = s u r f a c e [ { x , y } , { x , y , h [ x , y ] } , { x , y , z } ] ; 
mean2 = meanCurvature[monge] / /Together 

( - h ( ° ' 2 > [ x , y ] - h ( ° ' 2 ) [ x , y ] h i 1 ' ° > [ x , y ] 2 + 
2 h < 0 ' 1 ) [ x / y ] h i 1 ' ° > [ x , y ] h i 1 ' χ ) [ χ , y ] - h < 2 ' °> [x , y ] -

η< 0 ' λ)[χ, y ] 2 h < 2 ' ° ) [ x , y ] ) / 
(2 (1 + h < 0 ' x ) [ x , y ] 2 + h i 1 ' ° > [ x , y ] 2 ) 3 / 2 ) 

Finally, check that these two expressions for the mean curvature of a Monge surface differ just 
by a minus sign. 

meanl + m e a n 2 / / S i m p l i f y => 0 

Of course, once one has this result, it is sufficient to set the numerator of meanl equal to 0 
to describe a minimal surface in Monge form. This expression, 

Numerator[meanCurv[h[x, y ] , { x , y } ] ] 

h ( ° ' 2 > [ x , y ] + h < 0 ' 2 ) [ x , y ] h i 1 ' ° > [ x , y ] 2 -
2 h ( ° ' 1 > [ x f y ] h ^ 1 ' ° ) [ x , y ] h i 1 ' x ) [ x , y ] + h < 2 ' ° ) [ x f y ] + 

h ( ° ' l ) [ x , y ] 2 h < 2 ' ° ) [ x , y ] 

is just the Euler-Lagrange equation for the area functional of a surface, which shows the 
connection between asking for the mean curvature equal to be 0 and minimizing the area 
bounded by a curve. 

4 Implementation 
Complete packages implementing all of the commands developed here will be found on the 
diskettes distributed with this book. They are called C r i t i c a l P o i n t s . m . and Minimal-
Surf a c e s . m The following cells should be edited to load this package on your system. 

«HardDisk:MathematicaData:MMPackages:CriticalPoints.m 

«HardDisk:MathematicaData:MMPackages:MiminalSurfaces.m 

Alternatively, use the method described at the beginning of Chapter 14, or load the packages 
by opening the Notebooks and evaluating the initialization cells. 



Problem 1 
i) Factor the polynomial 1 - x10. 
ii) Investigate the factors of polynomials of the form 1 - xnfor n between 1 and 10. 

Answer: Use the following format: 

Table[Factor[1 - χ Λ η ] , {n, 1, 5}]//TableForm 

1 - x 
(1 - x) (1 + x) 
(1 - x) (1 + x + x2) 
(1 - x) (1 + x) (1 + x2) 
(1 - x) (1 + x + x2 + x3 + x4) 

Problem 3 
Use Mathematica to calculate the following integrals. In each case differentiate the result to 
check the answer if possible. Use Simplify , Factor, Together, etc., wherever it seems 
appropriate. 

511 
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Answer: 

expressionl = (xA2 + 5) / (xA5 + χΛ4 - x - 1); 
integrali = Integrate[expressionl, x]// Simplify 

3 3 Log[-l+x] 7 Log[l+x] Log[l+x2] 
ArcTan[x] + + 

2(l+x) 4 4 2 

derivativel = D[integrali, x] // Simplify 

5 + x2 

-1 - x + x4 + x5 

derivativel == expressionl => True 

Problem 4 
Convince Mathematica to display the expression (a + b) ((c + d x) x + e x2) in the following 
forms: 

i) a c x + b c x + a d x 2 + b d x 2 + a e x 2 + b e x 2 

ii) (a + b ) c x + (ad + b d + a e + b e ) x 2 

iii) (a + b )x (c + d x + ex) 

Answer: 

e x p r e s s i o n l = (a + b) ( ( c + d x) x + e χ Λ 2) 

(a + b) (e x 2 + x (c + d x ) ) 

E x p a n d [ e x p r e s s i o n l ] 

a c x + b c x + a d x 2 + b d x 2 + a e x 2 + b e x 2 

Collect[expressionl, {x, c}] 

( a + b ) c x + ( a d + b d + a e + b e ) x 2 

Factor[expressionl] => ( a + b ) x ( c + d x + e x ) 
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Problem 5 
Graph the conic section 9 x2 + 4 x y + 6 y2 = 1. Hint: you will need the package I m p l i c i t -
Plot. 
Answer: 

Needs["Graphics'ImplicitPlot""] 
ImplicitPlot[9xA2 + 4x y + 6yA2 == 1, {x, -0.5, 0.5}] 

Problem 6 
Find all integer values of n between 0 and 5 such that Mathematica can evaluate the following 
integral: Hint: make a table. 

Use differentiation to check that the values it does find are correct. Hint: subtract the integrand 
from the derivative of its integral and use Factor. 
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Answer: 
goodlntegrals = 
Table[{n, Integrate!(1-1/u)"(4/3)/uAn, u]}, {n, 0, 5}] 

((-l+u)/u)1/3 4 Integrate [ , u] 
-1 + u . -1 + u 

{{0, ( )l/3 (3 + u) }, u 3 
15 3 -1 + u 1 ,. ((-l+u)/u)1/3 {1, (-(--) + —-) ( ) 1 / 3 + lntegrate[ , u]}, 4 4 u u -1 + u 

3 3 6 -1 + u 
{2, (- + ) ( )l/3}, 

7 7 u2 7 u u 

9 3 33 3 -1 + u .7. 
{3/ (— + + ) ( )l/3}, 

70 10 u3 70 u2 70 u u 
27 3 21 6 9 -1 + u Ί ,. 

{4/ (— + + + ) ( )1/3}, 
455 13 u4 65 u3 455 u2 455 u u 
243 3 51 3 27 81 -1 + u Λ ,. {5,( + + + + ) ( )1/3}} 
7280 16 u5 208 u4 520 u3 3640 u2 7280 u u 

The differentiation check is given by 

D[goodlntegrals, u] -
Table[{0, (1 - l/u)"(4/3) / u"n}f {n, 0, 5}] // 
Factor => {{0, 0}f {0f 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}} 

If one does the same thing with step size 1/3, then there are many more integrals that 
Mathematica can handle. There is a definite regularity in the results and it appears that there is 
probably a very complicated recursion formula for these values. 

Problem 7 
Same problem as number 5 for the following family of integrals. 

f x2n + 2 V4x 2 n - l dx 

Show that the case n = 3 can be integrated by a substitution. Check your result. 

' *Ψ&-
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Answer l. This answer uses commands that haven't been introduced yet. 

moreGoodlntegrals = 
Se l ec t [ 

Table[ 
{ n, 

Integrate[χ Λ (2η + 2) Sqrt[4 χΛ(2 n ) - l ] , x ] } , 
{n, - 1 0 , 1 0 } ] , 

FreeQ[ # [ [ 2 ] ] , Integrate]& ] 

χ3 
{{0, }, 

Sqrt[3] 
-x x3 x5 Log[2 x + Sqrt[-1 + 4 x2 ]] 

{1, Sqrt[-1 + 4 x2 ] ( + — ) }} 
256 96 6 512 

This time Mathematica can only integrate the cases n = 0,1. In order to check this calculation, 
we differentiate moreGoodlntegrals and subtract the appropriate table of functions that we 
started with, and then simplify the difference. 

D[moreGoodlntegrals, x ] -
Table[ {0 , χΛ(2 n + 2) Sqrt[4 χΛ(2 n) - 1 ] } , 

{n, 0, 1} ] / /S impl i fy => {{0, 0 } , {0, 0}} 

When n = 3, we get an integral which Mathematica can't evaluate. 

Integrate[xA8 Sqrt[4 xA6 - 1], x] 

x 2 

I n t e g r a t e [ , x ] 
- x 3 x 9 S q r t [ - 1 + 4 x 6 ] 

S q r t [ - 1 + 4 x 6 ] ( + — ) 
96 12 32 

Mathematica doesn't know how to make a substitution in an integral, so we have to do it. The 
standard substitution here is u = 2 x3. We have to substitute the inverse function for x and 
calculate what has to be substituted for dx. 

newexp = χΛ8 Sqrt[4 χΛ6 - 1] dx /. 
{x -> (u/2)"(l/3), dx -> D[(u/2)"(l/3)f u]} 

u2 Sqrt[-1 + u2 ] 

24 
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ans = Integrate[newexp, u] /· u -> 2 χΛ3 
-x3 x9 Log[2 x3 + Sqrt[-1 + 4 x6 ]] 

Sqrt[-1 + 4 x6 ] ( + — ) 
96 12 192 

Check by differentiating. 

D[ans, x] // Simplify => x8 Sqrt[-1 + 4 x6 ] 

Note: the substitution u = x6 also works. 

Answer 2. Here is a different substitution, where we let Mathematica find the inverse function 
itself. 

sub = Solve[u == 4 xA6 - 1, x][[l]] 
(1 + u) 1 / 6 

{x -> } 
2l/3 

newexpl = χΛ8 Sqrt[4 χΛ6 - 1] dx /. 
sub /. dx -> D[x /. sub, u] 

Sqrt[u] Sqrt[l + u] 

48 
Integrate the simplified expression and substitute x back into this. 

ansi = Integrate[newexpl, u] / . u -> 4 χΛ6 - 1 

S q r t [ - l + 4 x 6 ] (-1+4 x 6 ) 3 / 2 ArcS inh[Sqr t [ -1+4 x 6 ] ] 
2 S q r t [ x 6 ] ( + ) 

192 96 192 

Note that this answer is quite different in form from the previous one, but it also checks. 

D[ansl, x] // Simplify // PowerExpand 
x8 Sqrt[-1 + 4 x6 ] 
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If we try to check directly that ans and ansi are the same, then the following works. 

ans - ansi // PowerExpand // Simplify 
ArcSinh[Sqrt[-l + 4 x6 ]] - Log[2 x3 + Sqrt[-1 + 4 x6 ]] 

192 

Now we have to show that Sinh of the Log term equals the Sqrt term. 

Sinh[Log[2*x"3 + (-1 + 4*x"6)* ( l / 2 ) ] ] / / Simplify 

-1 + 4 x6 + 2 x3 S q r t [ - 1 + 4 x6 ] 

2 x3 + S q r t [ - 1 + 4 x6 ] 

Finally, multiply numerator and denominator by the difference of the two terms in the 
denominator. 

((Numerator!%] (2 x*3-Sqrt[- l+4 x A 6]) ) / / S impl i fy) / 
((Denominator[%] (2 x"3-Sqrt[ - l + 4 χ Λ 6 ] ) ) / / S i m p l i f y ) 

Sqrt[ -1 + 4 x6 ] 

Problem 10 
Let 

, (x3 + 6 x5) 
exprl=TÔT^)~ 

i) Differentiate expl. 
ii) Simplify the result of i). 

iii) Integrate the result of ii). 
iv) Show that the answer to iii) is correct. 

Answer: 

expressione = (xA3 + 6 χΛ5) / (2 (1 - χΛ3)); 
derivative6 = D[expression6, x] // Simplify 
3 x2 (1 + 10 x2 - 4 x5) 

2 (-1 + x3) 2 
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integrale = Integrate[derivative6, x] // Simplify 
1 + 6 x5 

2 - 2 x3 

( integralo - expression6) / / Simplify => 1/2 

As is to be expected, the integral of the derivative and the expression differ by a constant. 

Problem 11 
We saw in the text that ( ( 2 + 5 I ) u ) 1 / u * 2 + 5 I . What is the precise relationship 
between these two numbers. 

Answer: There are several ways to compare 2 + 51 with ((2 + 51)12)1/12. 

num = (2 + 5 I)A12 =» -86719879 + 588467880 I 
N[num"(l/12)] => 5.33013 + 0.767949 I 
twelthroots = N[Solve[z"12 == num]] 
{{z -> -5. + 2. I}, {z -> -2. - 5. I}, {z -> 2. + 5. I}, 
{z -> 5. - 2. I}, {z -> -4.23205 - 3.33013 I}, 
{z -> 0.767949 - 5.33013 I}, {z -> -0.767949 + 5.33013 I}, 
{z -> 4.23205 + 3.33013 I}, {z -> -5.33013 - 0.767949 I}, 
{z -> -3.33013 + 4.23205 I}, {z -> 3.33013 - 4.23205 I}, 
{z -> 5.33013 + 0.767949 I}} 

Thus, numA ( 1 /12 ) is the primitive twelfth root of num and 2 + 5 I is the third one. Here is 
a picture of all of the twelfth roots with labels on the two that we are interested in. 

Show[ Graphics!{PointSize[0.03], 
Map[Point[{Re[#], Im[#]}]&, z /. twelthroots], 
Text["num"(1/12) ", {8.5, 0.9}], 
Text["2 + 5 I", {4.5, 5}]}], 
Axes -> True, AspectRatio -> Automatic, 
PlotRange -> {{-7, 11.5}, Automatic} ]; 



One · Answers 
^■sMmw*»** ?* \-Φ *» " 

519 

Φ 

m 

^5 ^2 

m 

.5 

• 

• 
4 

2 

-2 

-4 
• 

• 2 

2^5 

• 

+ 

• 

5 I 

φ num/ N( l /12) 

*5 7?5 Ϊ0 

• 

In fact, all twelfth roots of num are multiples of numA ( 1/12 ) by twelfth roots of 1. 

rootsOne = N [ S o l v e [ z " 1 2 == 1 ] , 20] 

{ { z -> - 1 . } , {z -> - 1 . I } , {z -> 1 . I } , {z 
{z -> -0.5 - 0.86602540378443864676 I}, 
{z -> -0.8660254037844386468 + 0.5 I}, 

0.86602540378443864676 - 0.5 I}, 
0.5 - 0.86602540378443864676 I}, 
-0.5 + 0.86602540378443864676 I}, 

-> 1·}/ 

{z 
{z 

-> 
-> 

{z -> 
{z -> -0.8660254037844386468 - 0.5 I}, 
{z -> 0.86602540378443864676 + 0.5 I}, 
{z -> 0.5 + 0.86602540378443864676 I}} 

We need the last entry here. In order for the check to work we have to work with 20 significant 
digits. 

2 + 5 . I == N [ n u n T ( l / 1 2 ) , 20] z / . r o o t s O n e [ [ 1 2 ] ] 

True 

Problem 13 
i) Consider the matrix 

A = 
1 2 3 
4 5 6 
7 8 9 

Find the exact values and the numerical values of the eigenvalues and eigenvectors of 
A. Display the answers as a table in which the first column has the eigenvalues and the 
second column has the corresponding eigenvectors. (Hint: look up commands starting 
with E igen . Also, consider Transpose . ) Display your answers in a nice, readable 
form. 
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ii) The transpose of the matrix of eigenvectors of A determines the coordinate 
transformation that diagonalizes A. Use this to check the results of part i). 

matrix = { { 1 , 2, 3 } , {4, 5, 6 } , {7, 8, 9 } } ; 

Answer 1. Find the exact solution for the eigenvalues and eigenvectors. 

Transpose[Eigensystem[matrix]]//MatrixForm 

0 {1, -2, 1} 
-3 (1 + Sqrt[33]) 8 (168 - 24 (1 + Sqrt[33])) 

{ + , 
14 7 (-198 + 42 Sqrt[33]) 

3 (5 - Sqrt[33]) 168 - 24 (1 + Sqrt[33]) 
_( ) , i} 

2 -198 + 42 Sqrt[33] 

-3 (1 - Sqrt[33]) 8 (168 - 24 (1 - Sqrt[33])) 
{ + , 

14 7 (-198 - 42 Sqrt[33]) 

3 (5 + Sqrt[33]) 168 - 24 (1 - Sqrt[33]) 
_( ) , i} 

2 -198 - 42 Sqrt[33] 

This is pretty unwieldy, but in numerical form, it is quite simple. 

N[%]//MatrixForm 

0 {1., -2., 1.} 
-1.11684 {-1.28335, -0.141675, 1.} 
16.1168 {0.283349, 0.641675, 1.} 

Answer 2. Turn the matrix into a matrix of real numbers and then find the eigenvalues and 
eigenvectors. Notice that this is much faster, but gives its results in a different order and finds 
a tiny value instead of 0. It uses a different algorithm. 

Transpose[Eigensystem[N[matrix]]] // MatrixForm 

16.1168 {0.231971, 0.525322, 0.818673} 
-1.11684 {0.78583, 0.0867513, -0.612328} 
-2.5707 10"19 {0.408248, -0.816497, 0.408248} 
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The eigenvectors look different, but of course the eigenvectors corresponding to a given 
eigenvalue are only determined up to a multiplicative constant. To compare the results, we 
reorder the second matrix of eigenvectors so that it is in the same order as the first, and then 
divide the two matrices, which has the effect of dividing corresponding entries. 

N[Eigensystem[matrix]][[2]] / 
Eigensystem[N[matrix]][[2]][[{3, 2, 1}]] 

{{2.44949, 2.44949, 2.44949}, 
{-1.63311, -1.63311, -1.63311}, 
{1.22149, 1.22149, 1.22149}} 

This shows that each row in the first matrix is the appropriate constant multiple of the 
corresponding row in the second matrix. 

The Check. The coordinate transformation that diagonalizes matrix is given by the transpose 
of the matrix of eigenvectors. 

P = Transpose[N[Eigensystem[matrix]][[2]]] 

{{1., -1.28335, 0.283349}, {-2., -0.141675, 0.641675}, 
{1., 1., 1.}} 

The following product should be the diagonal matrix whose entries are the eigenvalues. 

I n v e r s e [ P ] . matr ix · P 

{ { - 2 . 1 6 8 4 1 0 ~ 1 9 , - 1 . 5 3 6 0 4 1 0 " 2 0 , 6 .95705 1 0 ~ 2 0 } , 
{ 0 . , - 1 . 1 1 6 8 4 , - 5 . 6 9 2 0 6 1 0 ~ 1 9 } , 
{ -8 .67362 1 0 " 1 9 , 8 .67362 1 0 " 1 9 , 16 .1168}} 

Not quite, but Chop fixes it. 

Chop[%] => {{0 , 0 , 0 } , {0 , - 1 . 1 1 6 8 4 , 0 } , {0 , 0 , 16 .1168}} 

We can also carry out the check using the exact symbolic result. 

P = T r a n s p o s e [ E i g e n s y s t e m [ m a t r i x ] [ [ 2 ] ] ] 

- 1 1 - S q r t [ 2 9 7 ] - 1 1 + S q r t [ 2 9 7 ] 
{ { 1 , , } , 

22 22 
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11 - Sqrt[297] 11 + Sqrt[297] 
{_2, , }, {1, 1, 1}} 

44 44 

Inverse[P] . matrix . P // Simplify 

3 (-33 + Sqrt[33]) 3 (33 + Sqrt[33]) 
{{0, 0, 0}, {0, , 0}, {0, 0, }} 

3 3 + 7 Sqrt[33] -33 + 7 Sqrt[33] 

One has to work hard to get Mathematica to carry out the check that this is the matrix of 
eigenvalues of the matrix. 

((% - DiagonalMatrix[Eigensystem[matrix][[1]]]) // Simplify) == 
0 IdentityMatrix[3] 

True 

Problem 15 
Compare the integral of V1 + cos(x) over the interval (0, π) with the numerical value of the 
integral and with a plot of the function over the same interval. In versions before Version 2.2, 
Mathematica got this wrong. 

Answer: 

Integrate[Sqrt[l + Cos[x]], {x, 0, Pi}] 
N[%] 

NIntegrate and Plot also get it right. 

NIntegrate[Sqrt[l + Cos[x]]f {x, 0, Pi}] 
Plot[Sqrt[l + Cos[x]], {x, 0, Pi}]; 

23/2 
2.82843 

2.82843 

0.5 1 1.5 2 2.5 3 
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Problem 16 
Part a. Over what range of values does Mathematica give a continuous antiderivative for 
1 / (2 + cos x)? 

Answer: 

bad = Integrateti / (2 + Cos[x]), x] 

Tan[x/2] 
2 ArcTan[ ] 

Sqrt[3] 
Sqrt[3] 

Plot[Evaluate!bad], {x, -2 Pi, 2 Pi}]; 

The drawing shows that Mathematica has found a continuous integral from - P i to Pi and then 
repeated those values periodically. The result is not continuous between 0 and 2 Pi. 

Integrateli / (2 + Cos[x]), {x, 0, 2 Pi}] => 2 Pi/Sqrt[3] 

Thus Mathematica did not use its indefinite integral and just evaluate it at the end points since 
that would have given the result 0. Instead, Mathematica has a very powerful different 
algorithm for evaluating definite integrals which has given the correct result here. 
Part b. Use the expression 

(x3 + 2 x2 + 3 x + 2) 
(x3+4x2 + 5x + 6) 

to show that simplification does not commute with substitution. Hint: the numerator and 
denominator have a common factor. 
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Answer: 

exp = (xA3 + 2 χΛ2 + 3 x + 2) / (x"3 + 4 xA2 + 5 x + 6 ) ; 
exp / / Simplify 

1 + x 

3 + x 

{Factor[Numerator[exp]], Factor[Denominator[exp]]} 
{(1 + x) (2 + x + x2 ), (3 + x) (2 + x + x2 ) 

Since the numerator and denominator have a common factor, we can defeat the simplifier 
by using a root of the common factor. If we first substitute the roots of x2 + x + 2 == 0 into exp 
and then simplify, the results are indeterminate. 

exp/.Solve[xA2 + x + 2 == 0, x] // Simplify 
{Indeterminate, Indeterminate} 

However, if we simplify first and then make the substitution, the results are OK. 

(exp // Simplify) /. Solve[xA2 + x + 2 == 0, x] // Simplify 
I + Sqrt[7] -I + Sqrt[7] 

{ , } 
5 1 + Sqrt[7] -5 1 + Sqrt[7] 

Problem 17 
Part b. Try inverting the n x n Hilbert matrix (just change 3 to n in the definition) for larger 
values of n. For n about 10, it is still possible to look at the result. Simon asks for n = 20. Don't 
try to display the result, but do check that the answer is correct. 

Answer: 

hilbert[n_] := Table[l/(i + j - 1), {i, n}, {j, n}] 
Timing[hilbert[20] . Inverse[hilbert[20]] == 

IdentityMatrix[20]] 

{26.8667 Second, True} 
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Part c. Find the symbolic sum of iPfor i from 1 to n. Do this for p equal to various small values; 
e.g., 3,5. You have to use a package to do this. Simon asks for the value when p = 30. 
Answer: 

Needs["Algebra"SymbolicSunT "] 
SymbolicSum[iA30, {i, 1, n}] 

(n (1 + n) ( 1 + 2 n) (8615841276005 - 25847523828015 n + 
3620925455812 n2 + 40832271288594 n3 - 17837160922265 n4 -
28153059810393 n5 + 14950298960254 n6 + 11455222740024 n7 -
6593111576555 n8 - 3131110750383 n9 + 1880950772008 n10 + 
619369184742 n11 - 381864885017 n12 - 93143714433 n13 + 
58417981930 n14 + 11033483076 n15 - 7003032113 n16 -
1057869813 n17 + 677256580 n18 + 83969886 n19 - 54097043 n20 -
5648643 n21 + 3653650 n22 + 336336 n23 - 217217 n24 -
21021 n25 + 12936 n26 + 3234 n27 + 231 n28)) / 14322 

Part e. Here is the Van Der Monde matrix of size 3. 

f 1 1 1 \ 
x[l] x[2] x[3] 

V x[l]2 x[2]2 x[3]2j 

Define a function that constructs the Van Der Monde matrix of size n. Simon's problem is to 
factor the determinant of the Van Der Monde matrix of size 6. (Don't try to display the 
determinant in unfactored form.) After finding the factorization, answer the following 
questions: 

• How many terms are there in the unfactored form of the Van Der Monde determinant 
of size n? 

• How many symbols are there in each term? 
• How many symbols in the entire determinant? (Don't forget about spaces and + and -

signs.) 
• How many pages are needed to display the unfactored Van Der Monde determinant of 

size 6? of size 10? 
Answer: 

vanDerMonde[n_, x_] := 
Table[x[ip(j - 1), {j, n}, {i, n}] 

Short[Det[vanDerMonde[ 6, x]], 2] 

-(x[l]5 x[2]4 x[3]3 x[4]2 x[5]) + x[l]4 x[2]5 x[3]3 x[4]2 x[5] + 
«717» + x[2] x[3]2 x[4]3 x[5]4 x[6]5 
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Det[vanDerMonde[6, χ]] // Factor 

(-χ[1] + χ[2]) (-x[l] + χ[3]) (-x[2] + χ[3]) 
(-χ[1] + x[4]) (-χ[2] + χ[4]) (-χ[3] + χ[4]) 
(-χ[1] + χ[5]) (-χ[2] + χ[5]) (-χ[3] + χ[5]) 
(-χ[4] + χ[5]) (-x[l] + x[6]) (-χ[2] + χ[6]) 
(-χ[3] + χ[6]) (-χ[4] + χ[6]) (-χ[5] + χ[6]) 

A determinant of size n has n! terms. In this case, they are all different. In the Van Der 
Monde determinant, a typical term consists of a product of n - 1 factors of the form x[i] for 
different values of i, and n - 2 of these also have an exponent. Each such factor uses 4 
characters so there are 4n - 4 characters, plus n - 2 spaces, plus n - 2 exponents, plus two 
brackets, plus a + or - sign, giving 6n - 5 characters altogether in each term, ignoring all 
spaces. Thus, there are n! (6n - 5) = 6 n n! - 5 n! characters in the whole determinant. A simple 
calculation suggests the following: 

6 n n! - 5 n! / . { { n -> 6 } , {n -> 10}} 

{22320, 199584000} 

N[{%/80, %/(80 50)}] 

{{279., 2.4948 106}, {5.58, 49896.}} 

This says that for n = 6, there would be 280 lines on 5.58 pages, and for n = 10, there would be 
over 2.49 million lines on 49,896 pages. However, the restriction on line breaks makes a 
difference. When n = 6, a single term has 30 characters plus 2 for the spaces and + or - sign, 
except possibly at the beginning, giving 32 characters. Thus, only 2 terms fit on a single line. 
The number of terms is 6! = 720, so 360 lines are required, taking 7.2 pages. When n = 10, a 
single term has 54 characters plus 2 more, giving 56 characters, so only 1 term fits on a line. 
There are 10! = 3,628,800 lines, taking 72,576 pages. That's the same as 72 volumes of 1000 
pages each, or two large encyclopedias. One should measure output from a symbolic program 
in terms of screens, pages, chapters, books, book shelves, stacks, libraries, etc. 



In some of the later problems here, we use commands that haven't been introduced yet. This is 
just to make the presentation of the answers as concise as possible. Everything that is used will 
be explained eventually. 

Problem 1 
Solve and check the equation 

3 
4 17 x 

14 
Answer: 

equationi = 
-3 /7 + (37 x) /14 - (31 x"2)/7 + 
(17 x*3)/14 + χΛ4 == 0; 

solutionl = Solve[equationi, x] 

{{x -> -3}, {x -> 2/7}, {x -> 1/2}, {x -> 1}} 

equationl /. solutionl => {True, True, True, True} 

Problem 2 
Solve the equation 

x5 - ^ L 3 = o 
2740 9704700 

with 10 digit accuracy; with $MachinePrecision and $MachinePrecision + 1 digits 
accuracy. Check your answers. (You may need to use the built-in function Chop.) 

_ 31 x + 3 7 A - 1 = 0 
7 14 7 

527 
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Answer: 

equation2 = xA5 - xA2/2740 - 3/9704700 == 0; 
solution2 = Solve[equation2, x] 

{ToRules[Roots[-161745 x2 + 443181300 x5 == 137, x]]} 

nsolution210 = N[solution2, 10] 

{{x -> -0.03839999805 - 0.0586618867 I}, 
{x -> -0.03839999805 + 0.0586618867 I}, 
{x -> 0.0009533644888 - 0.02896122465 I}, 
{x -> 0.0009533644888 + 0.02896122465 I}, 
{x -> 0.07489326712}} 

equation2/.nsolution210 => {False, False, False, False, False} 
equation2[[1]]/.nsolution210//Chop => {0, 0, 0, 0, 0} 
nsolution219 = N[solution2, 19] 

{{x -> -0.03839999804998090929 - 0.05866188669978060415 I}, 
{x -> -0.03839999804998090929 + 0.05866188669978060415 I}, 
{x -> 0.0009533644887842921987 - 0.02896122464679609684 I}, 
{x -> 0.0009533644887842921987 + 0.02896122464679609684 I}, 
{x -> 0.07489326712239323419}} 

equation2/.nsolution219 

{False, False, False, False, False} 

nsolution220 = N[solution2, 20] 

{{x -> -0.038399998049980909293 - 0.058661886699780604152 I}, 
{x -> -0.038399998049980909293 + 0.058661886699780604152 I}, 
{x -> 0.000953364488784292199 - 0.028961224646796096844 I}, 
{x -> 0.000953364488784292199 + 0.028961224646796096844 I}, 
{x -> 0.074893267122393234189}} 

equation2/.nsolution220 

{True, True, True, True, True} 

20 digits is one more than machine accuracy on the machine being used. 
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Problem 3 
Solve the pair of equations x2y + y = 2 , y - 4 x = 8 exactly for x and y. 

Answer: 
equations3 = {χΛ2 y + y == 2, y - 4x == 8}; 
solution3 = Solve[equations3, {x, y}]//Simplify; 
equations3/.solution3//Simplify 
{{True, True}, {True, True}, {True, True}} 

This last evaluation takes a long time. We are still searching for an example in Version 2.2 
involving only polynomials where Mathematica can find the answer but can't verify it. 

Problem 4 
Solve the three equations 

a x + b y - z = 3 b, 
x - 4 y - 5 c z = 0, 
x + a y - bz = c 

exactly for x, y, and z. Show the answer and a check of its correctness. Also solve for a, b, and c 
and check the answer. 

Answer: 
equations4 = {a x + b y - z == 3 b, 

x - 4 y - 5 c z == 0, 
x + a y - b z == c}; 

solution4xyz = Solve[equations4, {x, y, z}]//Simplify 
-12 b 2 + 4 c - 1 5 a b c + 5 b c 2 

{ { x _> , 

4 + a - 4 a b - b 2 - 5 a2 c + 5 b c 

-3 b 2 + c + 1 5 b c - 5 a c 2 

y -> , 
4 + a - 4 a b - b 2 - 5 a2 c + 5 b c 

-12 b - 3 a b + 4 a c + b c 
z _> } } 

4 + a - 4 a b - b 2 - 5 a2 c + 5 b c 
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equations4/.solution4xyz//Simplify 

{{True, True, True}} 

solution4abc = Solve[equations4, {a, b, c}]//Simplify 

-3 x + 12 y + x y - 4 y2 + 1 5 x z - 5 x y z + 5 z 3 
{ { a -> , 

5 z (-3 y + y2 + x z) 

x2 - 4 x y - 5 x 2 z - 5 y z 2 x - 4 y 
b -> , c -> }} 

5 z ( 3 y - y 2 - x z ) 5 z 

equations4/.solution4abc//Simplify 

{{True, True, True}} 

Problem 5 
Investigate the solutions that Mathematica finds for the equation 

V 1 -x + V 1 +x = - 1 

What is the result of substituting the solutions in the left-hand side of the equation? 

Answer: 
equation5 = Sqrt[l - x] + Sqrt[l + x] ==3; 
solution5 = Solve[equations, x] 

-3 1 3 1 
{{x -> Sqrt[5]}, {x -> Sqrt[5]}} 

2 2 
equation5/.solution5//Simplify 

3 1 3 1 
{Sqrt[l Sqrt[5]] + Sqrt[l + Sqrt[5]] == 3, 

2 2 
3 1 3 1 

Sqrt[l Sqrt[5]] + Sqrtfl + Sqrt[5]] == 3} 
2 2 



Three · Answers 531 

Note however, the following interesting result. 

Reduce[%] => True 

Problem 6 
Use the built-in operation DSolve to solve the following differential equations. Check your 
solutions. 

ii) y' - y tan(x) = sec(x). 

Answer: We illustrate the procedure using part ii). There are two forms of DSolve; one solves 
for y [ x ] and the other for y as a pure function. 

diffEquation = y'[x] - y[x] Tan[x] == Sec[x]; 
solutionl = DSolve[diffEquation, y[x], x] 
{{y[x] -> x Sec[x] + C[l] Sec[x]}} 

In this form, it is necessary to substitute explicitly for y [ x ] and for y ' [ x ] . 

diffEquation/.solutionl/· D[solutionl, x] // Simplify 
{{True}} 

If one solves for y as a pure function, then the check is much simpler and is exactly the same 
check that was used for algebraic equations. 

solution2 = DSolve[diffEquation, y, x] 
{{y -> Function[x, x Sec[x] + C[l] Sec[x]]}} 
diffEquation /· solution2 // Simplify => {True} 

Problem 9 
Try to use DSolve to solve the system of differential equations 

x'(t) = 2x(t)-x(t)y(t)-2x(t)2 
y'(t) = y(t)-(l/2)x(t)y(t)-y(t)2 

x(0) = 2 
y(0) = 2. 

When that fails, solve it numerically for t between 0 and 100 and plot the solution. 
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Answer: These kinds of equations are called Lotka-Volterra systems. They describe things like 
predator-prey situations. For appropriate choices of the coefficients, the solution tends towards 
a fixed point and one is interested in stability properties of this fixed point. Here is a short 
routine to create the equations from a list of the right-hand sides together with the list of 
variables, the list of initial values and an iterator to give the range for the desired solution. 

diffEqSystem = 
{ x'[t] 
y'[t] 
x[0] 
y[0] 

== 2 x[t] - x[t] y[t] - 2 x[tp2, 
== y[t] - (1/2) x[t] y[t] - y[tp2, 
== 2, 
== 2 }; 

DSolve doesn't work. 
DSolve[diffEqSystem, {x, y}, t] 
DSolve[{x"[t] == 2 x[t] - 2 x[t]2 

x[t] y[t] 
y'[t] == y[t] y[t]2, 

2 

{x, y } , t ] 

- x [ t ] y [ t ] f 

x[0]==2, y[0]==2}f 

DSolve.m doesn't help either. Instead, we have to find a numerical solution and then use 
ParametricPlot to see what the answer looks like. 

systemSol = 
NDSolve[diffEqSystem, {x[t], y[t]}, {t, 0f 100}] 

{{x[t] -> InterpolatingFunctionHO., 100.}, <>][t], 
y[t] -> InterpolatingFunction[{0., 100.}, <>][t]}} 

ParametricPlot[ Evaluate[{x[t], y[t]}/·systemSol], 
{tf 0, 100}]; 
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Add an Epi log to give points on the curve at equal time intervals to show convergence to 
fixed point. Also fix the plot range and the axes. 

ParametricPlot[ 
Evaluate!{x[t], y[t]}/.systemSol], {t, 0, 100}, 
PlotRange -> All, AxesOrigin -> {0, 0}, 
Epilog ->{ PointSize[0.015], 

Map[ Point, 
Table[{x[t], y[t]}/.systemSol[[1]], 

{tf 0, 10, 1}]]}]; 

1.8 ^ ^ ^ 
1.6 ^ ^ ^ 
1.4 S ^ 
1.2 S^ 

0.8 t 

0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Problem 11 
Use the function definition facilities described in Chapter 1 to define a function 
pascalTriangleRow[n_J that displays the nth row of Pascal's triangle. (Note: there is a 
built-in function called Binomial[m , n].) Use this function to write another operation 
pascalTriangle [ n_ ] that displays the first n rows of Pascal's triangle in triangular form. 

Answer: The nth row of Pascal's Triangle can be defined in a straightforward way as: 

pascaltrianglerow[n_J : = 
Table[Binomial[n, i], {i, 1, n}] 

A more elegant solution, using the L i s t a b i l i t y of Binomial in its second argument, is: 

pascalTriangleRow[n_J := Binomial[n, Range[0, n]] 
pascalTriangleRow[6] => {1 , 6, 15, 20, 15, 6, 1} 

pascalTriangleRow is itself L i s tab le since it is built from L i s table ingredients. 
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pascalTriangle[n_] := 
TableForm[ pascalTriangleRow[Range[0, n]], 

TableAlignments -> Center, 
TableSpacing -> {1, 1}] 

pascalTriangle[9] 

1 
1 

1 
1 
8 

9 

1 

7 

36 

1 

6 

28 

1 

5 

21 

84 

1 

4 

15 

56 

1 

3 

10 

35 

126 

1 

2 

6 

20 

70 

1 

3 

10 

35 

126 

1 

4 

15 

56 

1 

5 

21 

84 

1 

6 

28 

1 

7 

36 

1 

8 
1 

1 
9 1 

Problem 12 
--^i >?*." *ΤΌ si 

Define a function completeTheSquare [ expr ] that takes an expression of the form ax 2 + b 
x + c and writes it in the form a (x + b / 2 a )̂ "+ c - b 2 / 4 a2. You may find it necessary to 
define some auxiliary functions to extract the coefficients from the expression. 
There are several ways to construct the "complete the square" operation. 

Answer 1. 

aa[expr__, x_] 
bb[expr_, x_] 
cc[expr_, x_] 

= Coefficient[expr, x, 2]; 
= Coefficient[expr, x, 1]; 
= Coefficient[expr, x, 0]; 

completeTheSquare[expr_, x_] := 
aa[expr, x] (x + bb[expr, x]/(2 aa[expr, x]))A2+ 
cc[expr, x] - bb[expr, xp2 / (4 aa[expr, x]) 

exprl = 2 χΛ2 + 3 x + 4; 
completeTheSquare[expr1, x] 
23 3 
— + 2 (- + x)2 
8 4 
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expr2 = a χΛ2 + b χ + e; 
completeTheSquare[expr2, x] 

-b2 b 
+ e + a ( + x)2 

4 a 2 a 

There is no reasonable way (i.e., not using string operations) to get Mathematica to reverse the 
order in which it displays this result. 

Answer 2. It is better to use local variables for this problem. We haven't discussed them yet, 
but they occur inside Module expressions. 

completeTheSquare[expr_, x__] : = 
Module[ {a, b, c}, 

{c, b, a} = CoefficientList[expr, x]; 
a (x + b / (2a))"2 + c - b"2 / (4a)] 

completeTheSquare[expr2, x] 

-b2 b 
+ c + a ( + x)2 

4 a 2 a 

To check this result, expand it. 

Expand[%] => c + b x + a x 2 

Problem 13 
i) Jacobian matrices: (Look up Jacobian matrices in your advanced calculus book.) Define 

a function j a c o b i a n [ f u n l i s t _ , v a r l i s t _ ] which takes as arguments a list of 
functions and a list of variables. It calculates the Jacobian matrix of the functions with 
respect to the variables. (The (i, j)th entry is the partial derivative of the ith function 
with respect to the jth variable.) Include Simplify in the definition of the function. 
Note: the length of a list is given by Length [ l i s t ] . 

ii) Calculate the Jacobian matrix for the pair of functions u = x2 + y2, v = - 2 x y with 
respect to x and y. Name this matrix jak. Note that jak is expressed in terms of the 
variables x and y. 

iii) Solve for x and y as functions of u and v. There will be four complicated solutions. 
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iv) In particular, the third solution in part iii) gives x and y as functions of u and v. Use 
this to calculate the Jacobian matrix of x and y with respect to u and v. Name this 
matrix invjak. Note that it is expressed in terms of the variables u and v. 

v) Let jakf be invjak expressed in terms of x and y rather than u and v. I. e., substitute the 
values for u and v in terms of x and y into invjak to get jak'. 

vi) Show that jak. jak1 = IdentityMatrix [ 2 ] . 

Answer: The point of the exercise is to check the generalized chain rule for functions of several 
variables. Here is the straightforward way to define the Jacobian matrix of a list of functions of 
many variables. 

jacobian [fun__List, var_List] := 
Simplify! 

Table[ D[fun[[i]],var[[j]]], 
{i, 1, Length[fun]}, {j, 1, Length[var]}]] 

fun = {χΛ2 + γΛ2, -2 x y}; var = {x, y}; 
jak = jacobian[fun, var] => {{2 x, 2 y}, {-2 y, -2 x}} 

We view this pair of functions in x and y as a mapping from the x-y-plane to the u-v-plane, 
and we want to calculate the inverse mapping. The given mapping is not one-to-one and there 
are four "inverse" functions. The Jacobian matrix of such a mapping is the best linear 
approximation to the mapping at any given point; i.e., at some point (a, b) in the domain of the 
transformation, the evaluation of the Jacobian matrix at (a, b) is the matrix of the best linear 
approximation to the mapping at the point (a, b). 

invexp = Solve[fun == {u, v}, {x, y}] // Simplify 

Sqrt[u - Sqrt[u2 - v2]] (u + Sqrt[u2 - v2]) 
{{x _> _( ), 

Sqrt[2] v 

Sqrt[u - Sqrt[u2 - v2]] 
y -> }, 

Sqrt[2] 

(u - Sqrt[u2 - v2]) Sqrt[u + Sqrtfu2 - v2]] 
{x _> , 

Sqrt[2] v 

Sqrt[u + Sqrt[u2 - v2]] 
y -> -( )}, 

Sqrt[2] 
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(-u + Sqrtfu2 - v2]) Sqrt[u + Sqrtfu2 - v2 ] ] 
{x -> , 

Sqrt[2] v 

Sqrt[u + Sqrt[u2 - v2]] 
y -> }, 

Sqrt[2] 
Sqrtfu - Sqrtfu2 - v2]] (u + Sqrtfu2 - v2]) 

{x _> , 

Sqrt[2] v 

Sqrtfu - Sqrtfu2 - v2]] 
y -> - ( ) } } 

Sqrt[2] 

We can check that the third pair of functions here is an actual inverse transformation by 
showing that 

x ( u ( x , y ) , v (x , y) ) = x, and y ( u ( x , y ) , v (x , y) ) = y, u (x (u , 
v ) , y (u , v ) ) = u , and v (x (u , v ) , y (u , v ) ) = v . 

The first pair of equations are verified as follows: 

{x, y} /. invexp[[3]] /. Thread[{u, v} -> fun] // 
Simplify // PowerExpand // Expand // PowerExpand 

{x , y} 

Here, {x, y} / . invexpf [3] ] gives x(u, v} and y{u, v} for the third pair of functions 
above. Following this by the substitution Thread[ {u, v} -> fun] gives x(u(x, y), v(x, y)) 
and y(u(x, y), v(x, y)). The output of this computation shows that the result eventually 
simplifies to {x, y}. The other check is done analogously. In this case, a simple Simplify 
suffices. 

{u, v} / .Thread[{u, v} -> f u n ] / . i n v e x p f [ 3 ] ] / / S i m p l i f y 

{u, v} 

Now we concentrate on the inverse mapping given by the third solution and call it invFun. 
The variables for this are u and v. 

invFun = ( {x, y} /. invexpf[3]] ); invVar = {u, v}; 
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Next construct the Jacobian of invFun in terms of invVar. 

invJac = jacobian[invFun, invVar] 

-(Sqrt[u - Sqrt[u2 - v2]] (u + Sqrt[u2 - v2])) 
{{ , 

2 Sqrt[2] v Sqrt[u2 - v2] 

Sqrt[u - Sqrt[u2 - v2]] 

Sqrt[2] Sqrt[u2 - v2] 

u + Sqrt[u2 - v2] 
+ 

2 Sqrt[2] Sqrt[u2 - v2] Sqrt[u - Sqrt[u2 - v2]] 
Sqrt[u - Sqrt[u2 - v2]] (u + Sqrt[u2 - v2]) 

}, 
Sqrt[2] v2 

u 
1 

Sqrt[u2 - v2] 
{ , 

2 Sqrt[2] Sqrtfu - Sqrtfu2 - v2]] 

v 
} } 

2 Sqrt[2] Sqrt[u2 - v 2 ] Sqrt[u - Sqrt[u2 - v 2 ] ] 

The original Jacobian matrix j ak is in terms of the variables x and y, while inv Jac is in 
terms of u and v. In order to check the generalized chain rule, we have to express both of them 
in terms of x and y. So define j ak · to be inv Jac with u and v replaced by their values in 
terms of x and y from the original mapping fun. A lot of simplification is required to reduce 
j ak ' to its simplest form. This is done interactively until a reasonable form is arrived at. 

jak* = invJac /. Thread[{u, v} -> fun] // 
Simplify // PowerExpand // 
ExpandAll // PowerExpand // Simplify 

x y y x 
{{ , }, { , }} 
2 (x2 - y2) 2 (x2 - y2) 2 (-x2 + y2) 2 (-x2 + y2) 
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Simplify!jak . jak1] // TableForm 

1 0 
0 1 

This result shows that the Jacobian matrix of a composition of transformations (in this case 
equal to the identity transformation so its Jacobian matrix is an identity matrix) is equal to the 
matrix product of the Jacobian matrices of the factors. 

■ Pictures of the transformation u = xA2 + yA2, v = -2 xy. 

We construct a graphics function which shows the image under a transformation of a 
rectangular grid in the x-y-plane. This is adapted from the Complex Map construction in 
[Maeder 1]. 

car tes ianMap[ expr_, {χ_, x0_, χ 1 _ / dx_} , 
<Y_' Y°_' Y 1 - ' d Y _ } ' op t ions ] : = 

Module[{coords, lines}, 
coords = Table[N[expr], 

{x, xO, xl, dx}, {y, yO, yl, dy}]; 
lines = Map[Line, Join[ coords, 

Transpose[coords]]]; 
Show[ Graphics[lines], 

AspectRatio->Automatic, Axes->Automatic, 
options] ] 

f [ * _ ' Y_l s = ί χ " 2 + Y ' 2 / " 2 x Y} 

Here is a picture of the images of the upper half plane and the lower half plane. 

Show [GraphicsAr ray [ 
{ cartesianMap[{xA2 + y^2, -2 x y}, 

{x, -4, 4, 0.2}, {y, 0.1, 3.6, 0.2}, 
DisplayFunction -> Identity ], 

cartesianMap[{x/v2 + y*2, -2 x y}, 
{x, -4, 4, 0.2}, {y, -3.7, -0.1, 0.2}, 
DisplayFunction -> Identity ] }], 

DisplayFunction -> $DisplayFunction]; 
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Discussion: The mapping f[x, y] is singular along the lines x = y and x = -y as one sees because 
the jacobian is zero there. The mapping folds the first quadrant along the line x = y and covers 
the indicated region in the fourth quadrant twice. The second quadrant is mapped onto the 
first quadrant in the same way. Finally, the lower half plane is mapped just like the upper half 
plane, so every point in the image is covered four times. That's why there are four "inverse" 
functions. 

Problem 14 i) 
Is e π v 163 an integer? How precisely does it have to be calculated to determine the answer? 
Answer: 

TableForm[ 
Table[ {n, AccountingForm[N[E"(Pi Sqrt[163]), n]]}, 

{n, 30, 33}], 
TableHeadings -> {None, {"Precision", "Value"}}, 
TableSpacing -> {1, 3}] 

Precision Value 
30 262537412640768744. 
31 262537412640768744. 
32 262537412640768743.999999999999 
33 262537412640768743.9999999999993 

Thus, 33 digits of precision are required to show that this number in not an integer. 
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Problem 14 ti) 
Determine how Mathematica deals with «>— <», oo/oo, o «>, 1°! 

Answer: 

Infinity - Infinity => Indeterminate 
Infinity/Infinity => Indeterminate 
0 Infinity => Indeterminate 
1ΛInfinity =» Indeterminate 

Problem 14 tit) 
Does Mathematica solve the equation Sqrtfx] = 1 - x correctly? 
Answer: 

eqn = Sqrt[x] == 1 - x; 

sol = Solve[eqn, x] 

3 - Sqrt[5] 
{{x -> ( }} 

2 

eqn/.sol//Simplify 

Sqrt[3 - Sqrt[5]] -1 + Sqrt[5] 
{ == } 

Sqrt[2] 2 

The best we can do to complete the check is to use some magic to show that the squares of the 
two sides are the same. 

Map[#*2&, %, {2}]//Simplify 

{True} 
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Problem 14 iv) 
Does Mathematica calculate the definite integral of 1/x2 from -3 to 2 correctly? 

Answer: 

Integrate[l/x*2, {x, -3, 2}] => Indeterminant 

This is much better than Mathematica did in earlier versions where it reported the value -5/6. 
A plot shows what is going on. 

P l o t [ l / x A 2 , {x, - 3 , 2 } ] ; 

50011 

4od| 
3od 
2oq 
ìod L 

-3 -2 -1 
NIntegrate[1/χΛ2, {χ, -3, 2}] 
NIntegrate:rslwcon: 

Numerical integration converging too slowly; suspect one of 
the following; singularity, oscillatory integrandf or 
insufficient WorkingPrecision. 

NIntegrate::ncvb: 
NIntegrate failed to converge to prescribed accuracy after 7 
recursive bisections in x near x = -0.0117188. 

4111.6 

Integrate gives no warning that there is a singularity at zero. NIntegrate notices that its 
algorithm is failing to converge and suggests possible reasons why. 

If we analyze the integrand and break up the integral, then we get a better answer. 
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Integrate[l/x"2, {x, -3f 0}] + 
Integrate[1/χΛ2, {x, 0, 2}] 

Infinity:rindet: Indeterminate expression -Infinity + Infinity 
encountered. 
Inde te rmina te 

To get the correct answer, we have to evaluate these indeterminate integrals correctly as limits. 

Limit [ 
Integrate[l/xA2, {x, -3, t}], t->0, Direction->l] + 

Limit [ 
Integrate!l/xA2, {xf t, 2}], t->0f Direction->-l] 
Integrate::gener: Unable to check convergence. 
Infinity 

The answer now is strictly correct. It is I n f i n i t y , not Indeterminant . 



CHAPTER 

Answers 

Problem 1 
In problem 13 of the Exercises in Chapter 3, the third solution of the transformation 

u = x2 + y2 

v = - 2 x y 

for (x, y) in terms of (u, v) was used to construct invjak which was then expressed in terms of x 
and y to get the matrix jak'. It satisfies jak . jak* = Id. This time: 

i) Modify your definition of the Jacobian function using the notions introduced in this 
chapter. 

ii) Find invjak(n), 1 < n < 4 for each of the four solutions of x and y in terms of u and v. 
Keep invjak(n) as an expression in u and v. 

iii) For each of the four solutions for (x, y) in terms of (u, v), express the original matrix 
jak in terms of u and v instead of x and y, giving four Jacobians jak(n), 1 < n < 4 in 
terms of u and v. 

iv) For each n show that jak(n). invjak(n) = Id. Your final output should be a list of four 2 
by 2 identity matrices. 

Answer 1. Modify the definition of the Jacobian from Exercise 13 of Chapter 3 using Outer. 

jacobian [fun__List, var_List] : = 
Simplify[Outer[D, fun, var]] 

Set up the variables and the expressions for the mapping. 

fun = {χΛ2 - y*2, - 2 x y}; 
var = {x, y}; newvar = {u, v}; 

545 
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Describe a family of functions to make the final computation; i.e., calculate the Jacobian of the 
original transformation with respect to the original variables, solve for the four inverse 
transformations, and find the Jacobians of each of the inverse transformations with respect to 
the new variable. 

jak = jacobian[fun, var]; 
inveqs[fun_, var_, newvar_] := 

Solve[fun == newvar, var]//Simplify; 
newfuns[n_] := inveqs[fun, var, newvar][[n]]; 
invfun[n_] := ({x, y}/.newfuns[n]); 
invjak[n__] := jacobian[invfun[n], newvar] //Simplify 

Make the computation; i.e., express the original Jacobian in terms of each of the inverse 
transformations and multiply it by each of the inverse Jacobians. Time the calculation to see 
how long it takes. 

Timing [ 
Table[ (jak/.newfuns[n])·(invjak[n]) // 

Simplify // Together, 
{n, Length[inveqs[fun, var, newvar]]}] // 

TableForm] 
{218.6 Second, 1 0} 

0 1 

1 0 
0 1 

1 0 
0 1 

1 0 
0 1 

Answer 2. The following is noticeably faster. The only difference is that it calculates the inverse 
functions immediately, whereas the first version calculates them four times. 

jak = jacobian[fun, var]; 
newfuns = Solve[fun == newvar, var]//Simplify; 
newjaks = jak/«newfuns; 
invfun[n_] := ({x, y}/·newfuns[[n]]); 
invjak[n_] := jacobian[invfun[n], newvar]//Simplify 
Timing[Table[ 

(newjaks[[n]]).(invjak[n]) // Simplify // Together, 
{n, Length[newfuns]}] // TableForm] 
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{126,517 Second, 1 0} 
0 1 

1 0 
0 1 

1 0 
0 1 

1 0 
0 1 

Problem 2 
Find the greatest common divisor of the nth row of Pascal's triangle, omitting the l's. To do 
this: 

i) Define a modified function pascal(n), from problem 11 of the Exercises in Chapter 3, 
which gives the entries of this row without the l's. 

ii) Then define a function gcd(n) which gives the greatest common divisor of the entries 
in pascal(n). Note that there is a built-in function GCD. 

iii) Make a table of the first 20 values of gcd(n) and conjecture the value of gcd(p) for p a 
prime number. 

iv) Use Mathematica to check that your conjecture is correct for the first 50 primes. Note 
that there is a built-in function Prime [ n ] . 

v) Use your head to prove your conjecture for all primes. You may assume that binomial 
coefficients are integers. 

vi) Guess the values of gcd(n) for n a power of a prime, and for n a number with at least 
two different prime factors. (You might want to extend your table to n = 50, or even to 
n = 100 to get more evidence for your guess.) 

Answer: 

pascal[n_] := Binomial[n, Range[l, n - 1]] 
Attributes[gcd] = {Listable}; 
gcd[n__] := Apply[GCD, pascal[n]] 

It is necessary that gcd have the attribute L i s tab le in order for the following construction to 
work. 
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Timing[Thread[{Range[100], gcd[Range[100]]}]] 

{ 3 6 . 2 1 6 7 S e c o n d , 
{ 6 , 
{ 1 3 , 
{ 1 9 , 
{ 2 5 , 
{ 3 1 , 
{ 3 7 , 
{ 4 3 , 
{ 4 9 , 
{ 5 5 , 
{ 6 1 , 
{ 6 7 , 
{ 7 3 , 
{ 7 9 , 
{ 8 5 , 
{ 9 1 , 
{ 9 7 , 

1 } , { 7 , 7 } , 
1 3 } , { 1 4 , ] 
1 9 } , { 2 0 , : 
5 } , { 2 6 , 1] 
3 1 } , { 3 2 , : 
3 7 } , { 3 8 , : 
4 3 } , { 4 4 , ] 
7 } , { 5 0 , 1] 
1 } , { 5 6 , 1] 
6 1 } , { 6 2 , ] 
6 7 } , { 6 8 , ] 
7 3 } , { 7 4 , : 
7 9 } , { 8 0 , ] 
1 } , { 8 6 , 1] 
1 } , { 9 2 , 1] 
9 7 } , { 9 8 , ] 

{ { 1 , 0 } , { 2 , 2 } , { 3 , 3 } , { 4 , 2 } , { 5 , 5 } , 
{ 8 , 2 } , { 9 , 3 } , { 1 0 , 1 } , { 1 1 , 1 1 } , { 1 2 , 1 } , 

L}, { 1 5 , 1 } , { 1 6 , 2] 
L}, { 2 1 , 1 } , { 2 2 , 1] 
} , { 2 7 , 3 } , { 2 8 , 1 } , 
> } , { 3 3 , 1 } , { 3 4 , 1] 
L}, { 3 9 , 1 } , { 4 0 , 1] 
L}, { 4 5 , 1 } , { 4 6 , 1] 
Ϊ, { 5 1 , 1 } , { 5 2 , 1 } , 
^ { 5 7 , 1 } , { 5 8 , 1 } , 
L}, { 6 3 , 1 } , { 6 4 , 2] 
L}, { 6 9 , 1 } , { 7 0 , 1] 
L}, { 7 5 , 1 } , { 7 6 , 1] 
L}, { 8 1 , 3 } , { 8 2 , 1] 
h, { 8 7 , 1 } , { 8 8 , 1 } , 
} , { 9 3 , 1 } , { 9 4 , 1>, 
L}, { 9 9 , 1 } , { 1 0 0 , ] 

l·, { 1 7 , 1 7 } , { 1 8 , 1 } , 
\, { 2 3 , 2 3 } , { 2 4 , 1 } , 

{ 2 9 , 2 9 } , { 3 0 , 1 } , 
\, { 3 5 , 1 } , { 3 6 , 1 } , 
\, { 4 1 , 4 1 } , { 4 2 , 1 } , 
\, { 4 7 , 4 7 } , { 4 8 , 1 } , 

{ 5 3 , 5 3 } , { 5 4 , 1 } , 
{ 5 9 , 5 9 } , { 6 0 , 1 } , 

\, { 6 5 , 1 } , { 6 6 , 1 } , 
\, { 7 1 , 7 1 } , { 7 2 , 1 } , 
\, { 7 7 , 1 } , { 7 8 , 1 } , 
\, { 8 3 , 8 3 } , { 8 4 , 1 } , 

{ 8 9 , 8 9 } , { 9 0 , 1 } , 
{ 9 5 , 1 } , { 9 6 , 1 } , 

L}}} 

This takes a fraction of a second longer than the form: 

Timing[Table[{n, gcd[n]}, {n, 2, 100}];] 

{35.95 Second, Null} 

Note that for n = 100, the GCD of 99 numbers is being calculated which is why it takes so long. 
After inspecting the table, conjecture that for a prime p, the gcd of the pth row is p. Try the 
conjecture for the first 50 primes. 

Timing[Prime[Range[50]] == gcd[Prime[Range[50]]]] 

{81.0667 Second, True} 

This is slightly slower than the form: 

Timing[Apply[And, 
Table[Prime[p] == gcd[Prime[p]], {p, 1, 50}]]] 

{80.55 Second, True} 
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To prove the conjecture, note that the binomial coefficient p! / i! (p - i)! is divisible by p 
since the factors in i! and (p - i)! are smaller than p and a prime number is not the product of 
smaller numbers. 

Examining the table, we conjecture that the gcd of the p n th row is also p and the gcd of the 
nth row where n has at least two prime factors is 1. These are somewhat harder to prove. We 
check the result for prime powers for a few primes. 

Timing[And@@Flatten[ 
Outer[ (gcd[Prime[#lp#2] == Prime[#l] )&, 

Range[3], Range[3]]]] =>{2.06667 Second, True} 

This is slightly faster than the following: 

Timing[Apply[And, Flatten[ 
Table[ gcd[Prime[p]Λη] == Prime[p], 

{p, 1, 3}, {n, 1, 3}]]]] 

{2.05 Second, True} 

If 3 is replaced by 4 in the preceding calculations, no output appears after a reasonable 
length of time, so the calculation has to be aborted. Of course, Prime [4]Λ4 = 2401, so it's 
not surprising that it takes a long time to calculate gcd [ 2401 ] . We can in fact, however, check 
all three conjectures (which really are only two) in one step for values up to 100 in a reasonably 
short time. 

And@@Table[ If[ Length[Factorlnteger[n]] > 1, 
(gcd[n] == 1), 
gcd[n] == FactorInteger[n][[1, 1]]], 

{n, 2, 100}] => {True} 

Problem 4 
Define f[ m, r ] = b[m + r - 1, r ] ,whereb[m, n ] is the binomial coefficient function. 
This rotates the usual Pascal's triangle by 45 degrees. Make a table showing these values in an 
upper-left triangular form corresponding to the usual table up to size 10. Pascal's Corollary 4 
asserts that in this table, each entry is equal to the sum of all the entries to the north west of it 
plus 1. Verify this for a number of small values of m and r. 

Answer: If the built-in binomial coefficient function is not used, then one needs the usual 
recursive definitions: 
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b[n_, 0] 
b[n_, n_] 
b[n , r ] 

= 1; 
= 1; 
= b [ n - l , r-1] + b [ n - l , r] 

{b[10, 3], Binomial[10, 3]} {120, 120} 

We also want b[n, r] = f[n - r + 1, r] (turn this around to define f[m, r] = b[m + r - 1, r]. This 
rotates the table by 45 degrees.) 

f [m_, r _ ] := b[m + r - 1 , r ] 

Pascal's original triangle looked as follows: 

Table[f[i, j], {i, 1, 12}, {j, 0, 11 - i}]//TableForm 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
1 7 
1 8 
1 9 
1 10 

1 
3 
6 
10 
15 
21 
28 
36 
45 

1 
4 
10 
20 
35 
56 
84 
120 

1 
5 
15 
35 
70 
126 
210 

1 
6 
21 
56 
126 
252 

1 
7 
28 
84 
210 

1 
8 
36 
120 

1 
9 
45 

1 
10 

Pascal's corollary 4 is the next result. It says that each entry is equal to the sum of all the 
entries to the north west of it plus 1. 

cor4[m_, r_] := 
flm, r] == 

Sum[f[i, j], {jf 0 , r - 1}, {i, 1, m - 1}] + 1 
Timing [ 

And@@Flatten[Table[ cor4[m, r] , 
{m, 1, 7}, {r, 1, 7}]]] 

{74.7833 Second, True} 

We can also define this using the built-in Binomial function. 

fl[m , r ] := Binomial[m + r - 1, r] 
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Then one can calculate much farther in a reasonable length of time. 

cor41[m_, r_] := 
fl[mf r] == 

Sum[fl[i, j], {j, 0 , r - 1}, {i, 1, m - 1}] + 1 
Timing [ 

And@@Flatten[ 
Table[cor41[m, r], {m, 1, 16}, {r, 1, 16}]]] 

{70.7667 Second, True} 

Well investigate these kinds of timing questions in a later assignment. 

Problem 5 
Implement the Gram-Schmidt method for orthogonalizing vectors with respect to the dot 
product. It should take as input a list of n-dimensional vectors over the reals and output a list 
of n-dimensional orthonormal vectors. You may assume that the original list is linearly 
independent. It is sufficient to do this for n = 3. Check your algorithm on a list of three 3-
dimensional vectors with random real components. (Think about the case of four 3-
dimensional vectors with random real components.) 

Answer: To orthogonalize a list of vectors we first have to be able to project a vector onto 
another vector. Thus we construct a function to calculate the projection pro j ec t ion [ a , v] 
of a vector a on a vector v. 

project ion[a_ f v_] := ( (a . v) / (v . v ) ) v ; 

The general procedure of the Gram-Schmidt method applied to a list v = {vi , V2 , V3 } of 
vectors is to produce the vectors 

ui = vi , 
U2 = V2 - projection[v2 , ui ] 
u3 = v3 - projection[v3 , ui ] - projection^ , U2 ] 

If there are more than three vectors in a higher dimensional space, the procedure continues in 
the obvious fashion. Here is a simple version that has to repeat the calculation of U2 twice 
since we have no place to store it here. 
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&&: 

orthogonalizel[vectors_] := 
{ vectors[[1]], 

vectors[[2]] -
proj ection[vectors[[2]], vectors[[1]]], 

vectors[[3]] -
projection[vectors[[3]], vectors![1]] ] -

proj ection[ vectors[[3]], 
vectors[[2]] -
proj ection[ vectors[[2]], 

vectors[[1]] ] ]} 

Try a simple example. 

vectsl = {{1, 2, 3}, {2, -3, -4}, {-1, 5, 2}}; 
newvectsl = orthogonalizel[vectsl] 

22 5 4 7 7 49 
{{1, 2, 3}, { — , -(-), -(-)}, { — , -, -( — )}} 

7 7 7 30 3 30 

A solution for n-dimensional space 

The preceding version only works for three vectors in 3-dimensional space. To find a more 
general procedure that works for n vectors in n-dimensional space, we have to give names to 
the new vectors that are constructed by the procedure. Here is a recursive procedure to do this 
for any number of vectors, using the Sum function. 

newvectors [i_, vectors_] := 
vectors[[i]] -

Sum [ proj ection[ vectors[[i]], 
newvectors[j, vectors]], 

{j, i - 1}]; 
The new basis then is just the list of the new vectors. Notice that this version is very inefficient 
since it calculates the same things many times. 

orthogonalize2[vectors_] := 
Table[newvectors[i, vectors], {i,Length[vectors]}]; 

orthogonalize2[vectsl] 

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {7/30, 7/3, -(49/30)}} 
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This works for n vectors in n-dimensional space. For instance, here are 4 vectors in 4-
dimensional space. 

vects2 = { { 1 , 2 , 3 , 4 } , {2 , - 3 , - 4 , 5 } , 

{ - l f 5, 2, - 4 } , {-2 , - 3 , 4, 2 } } ; 

newvects2 = orthogonalize2[vects2] 

{{1, 2, 3, 4}, {28/15, -(49/15), -(22/5), 67/15}, 
481 1865 1277 95 3317 465 651 1085 

{ „ _ , ,-( ),-(__-)}, {-( ), , _( ), }} 
802 802 802 802 2668 2668 2668 2668 

Normalization 
Finally, if we want to get orthonormal vectors, we have to divide each vector by its length. 

length[vector_] := Sqrt[vector . vector] 
normalize[vectors_J := 

Table[ vectors[[i]]/length[vectors[[i]]], 
{i, Length[vectors]}] 

Try this on newvectsl. 

orthonormvectsl = normalize[newvectsl] 

{{1/Sqrt[14], Sqrt[2/7], 3/Sqrt[14]}, 
{22/(5 Sqrt[21]), -1/Sqrt[21], -4/(5 Sqrt[21]} 
{1/(5 Sqrt[6]), Sqrt[2/3], -7/(5 Sqrt[6])}} 

If this really is an orthonormal basis, then this list of vectors regarded as a matrix must be 
orthogonal. But that's easy to check, since then its transpose must be its inverse. 

Transpose[orthonormvectsl] == Inverse[orthonormvectsl] 

True 



Problem 1 
Solve Exercise 13 in Chapter 3 about Jacobians again, this time in a functional style. Hint: 
figure out how to combine Thread and Dot. 

Answer: 

jacobian[fun__List, var_List] : = 
Simplify[Outer[D, fun, var]]; 

fun = {χΛ2 - y"2, - 2 x y}; 
var = {x, y}; newvar = {u, v}; 
jak = jacobian[funf var] => {{2 x, -2 y}, {-2 y, -2 x}} 
newfuns = Solve[fun == newvar, var]//Simplify; 
invfun = {x, y}/.newfuns; 
invjaks = 
matrices@@Map[jacobian[#, newvar]&, invfun]//Simplify; 

newjaks = matrices@@(jak/.newfuns); 
Timing [ 
List@@ 

Map[ Together, 
Thread[Dot[newj aks, invjaks], matrices] // 

Simplify//Together, 
{3}] // TableForm] 
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{28.8333 Second, 1 0 
0 1 

1 0 
0 1 

1 0 
0 1 

1 0 
0 1 

Problem 2 
i) Implement your own version of Newton's method to find a zero of a differentiable 

function near a given starting value. (See Chapter 6, 2.4 and 3.15.) The basic function 
should be of the form 

newton[expr, {x, xO, n}] 
where expr is some expression involving an independent variable x. Here xO is the 
starting value of x and n is the number of times the operation in Newton's method is 
to be iterated. Define another function newton [ e x p r , { x , xO}] which continues 
iterating until there is no change. Then there should be two extra functions, 

newtonList[expr, {x, xO, n}] and 
newtonList[expr, {x, xO}, opt] 
that produce a list of successive approximations to the final value. The optional 
argument "opt" should allow a test to determine when the iteration should stop. See 
Nest, NestLis t , FixedPoint and FixedPointLlst. 

ii) Adapt your functions so they work for n functions of n variables. 
iii) Restructure these operations so the output is a list of substitutions. 
iv) Try some test examples and check your results. 

2.1 The Basic Construction 
Newton's method to find a zero of a function f [x] is to use the iteration 

Xn + 1 = Xn - f[Xn 1 / f'[Xn ] 

starting from some chosen value xo . This translates directly into a Mathematica command. The 
basic operation iterates a fixed number of times. 
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newton [expr_, {x_, x0_, n_}] : = 
Nest[ 

Evaluate[Simplify[x-expr/D[expr, x]]/. x->#]&, 
N[xO], n]; 

NewtonList shows all of the intermediate values. 

newtonList[expr_, {x_, x0_, n_}] := 
NestList[ 

Evaluate[Simplify[x-expr/D[expr, x]]/. x->#]&, 
N[xO], n]; 

Timing[newton[χΛ2 - 3, {xf 1.0, 10}]] 

{0.4 Second, 1.73205} 

Timing[newtonList[x"2 - 3, {x, 1.0, 10}]] 

{0.366667 Second, {1., 2., 1.15, 1.73214, 1.73205, 1.73205, 
1.73205, 1.73205, 1.73205, 1.73205, 1.73205}} 

Note that Nes t and N e s t L i s t require pure functions as their first arguments. We have 
achieved this by substituting # for x in the formula and appending an &. 

2.2 The Picture 
Here is the desired plotting routine. 

newtonPicture[expr_, {x_, xmin_, xmax_}f {x0_, n_}] : = 
Show[ Plot[ 

expr, {x, xmin, xmax}, 
DisplayFunction ->Identity], 

ListPlot[ 
Flatten[ 

Map[ {{#, 0}, {#, expr/.x -> #}}&, 
newtonList[expr, {x, xO, n}]], 

11/ 
PlotJoined -> True, PlotRange -> All, 
PlotStyle -> {Thickness[0.008]}, 
DisplayFunction -> Identity], 

DisplayFunction -> $DisplayFunction]; 

557 
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The desired example looks as follows: 

newtonPicture[Cos[xA3], {x, 0.8, 1.5}, {.8788, 6}] 

2.3 The Fixed Point Construction 
Define newton where the second argument is a list with only two entries. The intention is to 
continue the iteration until the result no longer changes. 

newton [expr_, {x_, x0_}] : = 
FixedPoint[ N[Simplify[x-expr/D[expr, x]]/· x->#]&, 

xO]; 
newton[xA2 - 3f {x, 1.0}] => 1.73205 

This satisfies the equation to within machine precision. 
%*2 - 3 => 2.1684 10"1 9 

Finally, define a version of newton with three arguments to give an option to 
F i x e d P o i n t L i s t . (Note that this same optional argument could also be given to 
FixedPoint.) 

newtonList[expr_, {*_/ χ 0_Κ opt ] s = 

FixedPointList[ 
Evaluate!(x - expr/D[expr, x ] ) / . x->#]&, xO, 
{ o p t } ] ; 

newtonList[ x"2 - 3 , {x, 1 . 0 } , 
SameTest -> (Abs[#l - #2] < 1CT-3 &) ] 

{1., 2., 1.75, 1.73214, 1.73205} 
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newtonList[ x - Cos[x], {x, 0.5}, 
SameTest -> (Abs[#l - #2] < 10"-5 &) ] 

{0.5, 0.755222, 0.739142, 0.739085, 0.739085} 

Check that the last entry here is an approximate fixed point for Cos. 

Last[%] - Cos[Last[%]] =» -2.05998 IO"18 
newtonList[x - Cos[x], {x, 0.5}] 

{0.5, 0.755222, 0.739142, 0.739085, 0.739085, 0.739085, 
0.739085,0.739085, 0.739085} 

The last entry here is a better approximation to the fixed point for Cos even though one can't 
see the extra accuracy. 

Last[%] - Cos[Last[%]] => -5.42101 10"2 0 

2.3 Another Solution 
Here is a different way to organize this construction that makes clear that a certain process is 
being repeated and gives us a function that can easily be converted to a pure function in 
newton 1. 

oneStepNewton[f__, {x_, x0_}] : = 
Simplify! x - f/D[f, x] ] /. x -> xO; 

newtonl[f_, {x_, x0_, n_}] : = 
NestList[oneStepNewton[f, {x, #}]&, xO, n]; 

Timing[newtonl[x~2 - 3, {x, 1.0, 10}]] 

{3. Second, {1., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205, 
1.73205, 1.73205, 1.73205, 1.73205}} 

For simple functions like this, the corresponding procedure without a simplification is much 
faster. The answer can also be written in the following form. 

newtonSub[f_, {x_, x0_}] := 
{x -> FixedPoint[oneStepNewton[f, {x, #}]&, N[xO]]}; 

exprl s χΛ2 + χΛ3 - 13; 
newtonSub[exprl, {x, 2}] => {x -> 2.06087} 
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Problem 3 
Define a function c o n t i n u e d F r a c t i o n [ l i s t ] which takes a list as its only argument and 
returns the continued fraction whose numerators are given by the entries in the list in the 
given order. Thus c o n t i n u e d F r a c t i o n [ { a , b , c , d } ] returns 

a / (1 + b / (1 + c / ( l + d ) ) ) 

displayed in a nice form. Hint: try Fold. 

Answer 1. This is an obvious chance to use Fold. The only problem is to give the arguments in 
the correct order. 

F o l d [ ( # l / ( l + #2) )&, a , { b , c , d } ] 

a 

(1 + b) (1 + c) (1 + d) 

Fold[(#2/(l + #1))*, a, {b, c, d}] 

d 

c 
1 + 

b 
1 + 

1 + a 

In this form, the arguments are in the wrong order and "a" is treated differently. A slight 
modification gives the desired result. 

continuedFraction[list_List] := 
Fold[ (#2/(1 + #1))&, 

First[Reverse[list]], 
Rest[Reverse[list]] ]; 

continuedFraction[{a, b, c, d, e, f}] 

560 
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a 

b 
1 + 

e 
1 + 

d 
1 + 

e 
1 + 

1 + f 

If numbers rather than symbols are used, then Mathematica insists on evaluating the 
expression. 

cont inuedFract ion[{ l , 1, 1, 1, 1, 1 , 1 } ] =» 13/21 

However, strings can be used to see the actual continued fraction. 

numfr = 
continuedFraction[Map[ToString, {1,1,1,1,1,1,1}]] 

1 

1 
1 + 

1 
1 + 

1 
1 + 

1 
1 + 

1 
1 -i-

1 + 1 

Converting the strings back into expressions leads back to the fractional value. 

MapAt[ToExpression, numfr, Position[numfr, _Str ing] ] 

13/21 
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Answer 2. This was discovered by some students. 

continuedFractionl[list_List] := 

Fold[(#2/(l + #1))&, 0, Reverse[list] ]; 

continuedFractionl[{a, b, c, d, e, f}] 

a 
b 

1 + 
c 

1 + 
d 

1 + 
e 

1 + 
1 + f 

Problem 5 
i) In Exercise 5 of Chapter 5, the Gram-Schmidt algorithm was implemented for 

orthogonalizing ordinary vectors with respect to the usual dot product. Generalize this 
procedure so that it works for vectors from an arbitrary vector space with respect to an 
arbitrary inner product called i n n e r P r o d u c t [ v , w ] . The new procedure should 
have two arguments, the first being a list of vectors and the second being the inner 
product. Continue assuming that the given list of vectors is linearly independent. 
(There is a very nice way to do this using Fold.) Include a separate normalization 
function that also uses i n n e r P r o d u c t [ v , w ] . Also include a procedure to check 
that a given list of vectors is orthonormal with respect to innerProduct [ v , w] . The 
standard case should be recovered by setting innerProduct to Dot. 

ii) The matrix 
I 8 3 0 0\ 

3 2 1 2 
0 1 2 2 

\ 0 2 2 14/ 

is positive definite and symmetric and hence determines an inner product for 4-
dimensional vectors. Orthogonalize and normalize the four standard unit vectors in 4-
space using this inner product. Check the result. 

Part IV · Answers 
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iii) Apply the Gram-Schmidt algorithm to orthogonalize the list of functions {1, x, x2, x3, 
x4} with respect to the inner product given by 

legendre(f, g) = f(x) g(x) dx 

Check the result. 
iv) Normalize the result of part iii). This does not give the first five terms in the usual 

sequence of Legendre polynomials. Why not? Fix things so that you get the first five 
Legendre polynomials. Make a plot of them. 

5. 1 The Gram-Schmidt Procedure 

The projection function from the answers to Exercise 5 in Chapter 5 is easily modified to work 
with an arbitrary inner product. 

projection[a_, v_, innerProduct_] := 
(innerProduct[a, v] / innerProduct[v, v]) v; 

The definitions of newvectors and orthogonalize2 can now be used with only minor 
changes. 

newvectors[i_, vectors_, innerProduct^] := 
vectors[[i]] -

Sum[ projection! vectors[[i]], 
newvectors[j, vectors], 
innerProduct ], 

{j, i - 1} ]; 
orthogonalize2[vectors_, innerProduct_] := 

Table[ newvectors[i, vectors, innerProduct], 
{i, Length[vectors]} ]; 

However, both of these violate the fundamental dictum of functional programming, so they 
have to be replaced. 

A certain amount of reorganization is required to get satisfactory functional programs. First, 
we separate out the projection of a vector on a sum of orthogonal vectors as a new operation. 

multiProjection[a_, basis_, innerProduct_] := 
Apply[ Plus, 

Map[projection[a, #, innerProduct]&, basis]]; 
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The idea of the Gram-Schmidt process is to start with the empty list of vectors and successively 
feed in new vectors from the given list, modifying them and building up a list of orthogonal 
vectors. This sounds just like Fo ld . The problem is to figure out how to use it. Here is an 
elegant solution based on one from John Novak which can be found in the package 
LinearAlgebra O r t h o g o n a l i z a t i o n \ 

o r t h o g o n a l i z e [ v e c t o r s _ , innerProduct_ ] := 
Fold[ 

J o i n [ # l , 
{Chop[ 

# 2 - m u l t i P r o j e c t i o n [ # 2 , # 1 , i n n e r P r o d u c t ] ] } ] & , 
{ } , 
v e c t o r s ] ; 

The pure function in the first argument of F o l d expects its first argument to be the list of 
orthogonal vectors that is being constructed. What is appended to that list is the result of 
projecting the vectors, fed in from the given list, one at a time onto the existing basis. It is just 
an accident that the F o l d command can start with the empty list, since if we try projecting 
something onto the empty list we get the following result. 

m u l t i P r o j e c t i o n [ { 1 , 2, 3}, { } f Dot] => 0 

We get a 0 here because mapping anything to the empty list gives the empty list. 

Map[Sin, { } ] => {} 

Furthermore, P l u s of no arguments is zero. 

Plus@@{} => 0 

But since arithmetic operations are L i s t a b l e , we get the right answer for the first step 
anyway. 

{ 1 , 2, 3} - m u l t i P r o j e c t i o n [ { l , 2, 3}, { } , Dot] 

{ 1 , 2, 3} 

After that, the action of Fo ld is to build up the basis by folding one vector at a time from the 
given list of vectors into the basis until there are no more vectors left. The picture is basis <-
vectors. At the beginning, basis is empty. At each step one vector is removed from vectors 
and, in a suitably modified form, added to basis. At the end, vectors is empty and basis is the 
desired orthogonal basis. Chop is added to take care of vectors with real entries since 
gramSchmidt can fail for such vectors because of tiny spurious components. 
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We still have to worry about normalization, but that is easy to rewrite. 

normalize[list_, innerProduct_]:= 
Map[Expand[#/Sqrt[innerProduct[#, #]]]&, list]; 

Finally, we need an operation to check that a set of vectors is actually orthonormal. The check 
we used before was Transpose [vec tors ] == Inverse [vectors] .This clearly won't 
work for a different inner product. We would like to replace it by something like 

(*Outer[innerProduct, v e c t o r s , vectors] == 
Ident i tyMatr ix[ length[vectors]*) 

This doesn't work because Outer of matrices produces something of depth 4. (Try it and see.) 
However, D i s t r i b u t e does work for ordinary vectors and an arbitrary inner product. It 
won't work for functions. 

orthoNormalQ[vectors_, innerProduct_] := 
Simpl i fy[Distr ibute[ 

innerProduct[ 
vec tors , Transpose[vectors ] ] , 
L i s t , innerProduct, L i s t , innerProduct]] === 
Ident i tyMatrix[Length[vectors] ] ; 

5.2 Examples 

5.2.1 Three-dimensional space with the usual inner product 
Try same example as before. 

vectsl = {{1, 2, 3}, {2, -3, -4}, {-1, 5, 2}}; 
orthovectsl = orthogonalize[vectsl, Dot] 

{{1, 2, 3}, {22/7, -5/7, -4/7}, {7/30, 7/3, -49/30}} 

orthonormvectsl = normalize[orthovectsl, Dot] 
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1 2 3 
{ { , S q r t [ - ] , } , 

S q r t [ 1 4 ] 7 S q r t [ 1 4 ] 

22 1 -4 
{ , - ( ) , } , 
5 Sqrt[21] Sqrt[21] 5 Sqrt[21] 

1 2 - 7 
{ , Sqrt[-], }} 
5 Sqrt[6] 3 5 Sqrt[6] 

orthoNormalQ[orthonormvects1, Dot] => True 

5.2.2 Four-dimensional space with a different inner product 

The following matrix is positive definite and symmetric. 

matr ix = { { 8 , 3 , 0 , 0 } , 
{ 3 , 2 , 1 , 2 } , 
{ 0 , 1 , 2 , 2}, 
{ 0 , 2, 2, 1 4 } } ; 

Use it to define an inner product. 

innerProduct4[v__List , w _ L i s t ] := v . matr ix . w; 

Orthonormalize the four standard unit vectors with respect to this new inner product. 

newvects = 
orthogonalize[IdentityMatrix[4], innerProduct4] 

{{1, 0, 0, 0}, 
{-(3/8), 1, 0, 0}, 
{3/7, -(8/7), 1, 0}, 
{1, -(8/3), 1/3, 1}} 

newbasis = normalize[newvects, innerProduct4] 
{{1/(2 Sqrt[2]), 0, 0, 0}, 
{-3/(2 Sqrt[14]), 2 Sqrt[2/7], 0, 0}, 
{Sqrt[3/14], -4 Sqrt[2/21], Sqrt[7/6], 0}, 
{Sqrt[3/7]/2, -4/Sqrt[21], 1/(2 Sqrt[21]), Sqrt[3/7]/2}} 

orthoNormalQ[newbasis, innerProduct4] =» True 
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5.2.3 Example: Legendre polynomials 
In this example, our "vectors" are functions defined on the interval -1 < x < 1, and the inner 
product is given by integrating the product of the functions over this interval. Our test 
example consists of the first five powers of x. 

legendre[f_, g_] := Integrate[f gf{x, -1/ 1}]; 
powers = {1, x, χΛ2, χΑ3, χΛ4}; 
legendrePowers = 

orthogonalize[powers, legendre] // Expand 

{1, x, -(-) + x2, + x3, + x4 } 
1 -3 x 3 6 x2 
>) + x2r + x3, 
3 5 35 7 

notlegendrePolys = normalize[legendrePowers, legendre] 

1 -Sqrt[5/2] 3 Sqrt[5/2] x2 

{ , sqrt[3/2] x, + , 
Sqrt[2] 2 2 

-3 Sqrt[7 /2] x 5 Sqrt[7 /2] x3 9 45 x2 105 x4 
+ , + } 

2 2 8 Sqrt[2] 4 Sqrt[2] 8 Sqrt[2] 

A check that these are orthonormal can use Outer as suggested above. 

Outer[legendre, notlegendrePolys, notlegendrePolys] == 
IdentityMatrix[5] => True 

This does not give the Legendre polynomials because they are not usually normalized by 
making their length equal to one, but rather by making their value at the point 1 equal to 1. We 
can achieve this by the small trick of defining a new "inner product" that isn't really an inner 
product. 

atone[z_, w_] := ζΛ2 /. x -> 1; 
legendrePolys = 

normalize[legendrePowers, atone] // Together 

-1 + 3 x2 -3 x + 5 x3 3 - 30 x2 + 35 x4 
{If x, / f } 

2 2 8 
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A plot shows how these polynomials are related to each other. 

Plot[Evaluate[legendrePolys], {x, -1, 1}]; 

Note: these polynomials can be given by the formula: 

P[n_, x_] : = 
(1/(2Λη η!)) D[(xA2 -1)Λη, {x, n}] // 
Simplify // Expand; 

Table[P[n, x], {n, 0, 4}] 

{1, x, -(1/2) + (3 x2)/2, (-3 x)/2 + (5 x3)/2, 
3/8 - (15 x2)/4 + (35 x4)/8} 

They are also given by the recursion relations: 

P1[0, x_] = 1; 
Pl[l, x_] = x; 
Pl[n_, x_] := (1/n) ( (2n - 1) x Pl[n-1, x] -

(n - 1) Pl[n-2, x] )//Expand; 
Table[Pl[n, x ] , {n, 0, 4}]//Simplify 

{1, x, (-1 + 3 x2)/2, (x (-3 + 5 x2))/2, (3 - 30 x2 + 35 x4)/8} 

They are also built-in. 

Table[LegendreP[n, x], {n, 0, 4}] 

{1, x, (-1 + 3 x2)/2, (-3 x + 5 x3)/2, (3 - 30 x2 + 35 x4)/8} 
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Problem 6 
Modify the definition of mapVarsOnly so that it only treats letters between p and z as 
variables. Hint: look up the operations ToString, ToCharacterCode, Greater, and Less. 

Answer: We need the ASCII codes of p and z. Note that the values have to be extracted from a 
list. 

{ToCharacterCode[ToString[p]][[1]], 
ToCharacterCode[ToStringfz]][[1]]} 

{112, 122} 

All that has to be modified is the predicate used to select the appropriate terms from the 
leaves. 

mapVarsOnly[fun_, expr_] := 
MapAt[fun, expr, 
Flatten[Map[Position[expr, #]&, 

Select[Level[expr, {-1}], 
(Not[NumberQ[#]] && 
112 <= ToCharacterCode[ToString[#]][[1]] <= 

122)&]], 
1] 1; 

mapVarsOnly[Sin, (3 + a) q + (1 - b x ζ)Λ3] 

(3 + a) Sin[q] + (1 - b Sin[x] Sin[z])3 

Problem 7 
i) The function Fold is sometimes called foldright because it "folds" in its arguments 

from the right. Define a function f o l d l e f t so that f o l d l e f t [f , {a, b, c} , d] 
gives the output f [ a , f [ b , f [ c , d ] ] ]. 

Answer 1. One can define f oldLef t in terms of the built-in function Fold. 

foldLeft[f_, list_List, seed_] : = 
Fold[f[#2, #1]&, seed, Reverse[list]]; 

foldLeft[f, {a, b, c}, d] => f[a, f[b, ftc, d]]] 
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Here the variables in f are interchanged surreptitiously. This can be done by explicitly 
interchanging the variables. 

twist[a_, b_] := Sequence[b, a]; 
foldLeftl[f_, list_List, seed_] := 

Fold[Composition[f, twist], seed, Reverse[list]]; 
foldLeftl[f, {a, b, c}, d] => f[a, f[b, f[c, d]]] 

Alternatively, f oldLef t can be defined from scratch recursively. 

foldLeftR[f_, {}, seed_J := seed; 
foldLeftR[f_, list_List, seed_] := 

f[First[list], foldLeftR[f, Rest[list], seed]]; 
foldLeftR[f, {a, b, c}, d] => f[a, f[b, f[c, d]]] 

The first version is clearly much faster. 

{ Timing[foldLeft[Plus, Range[200], 0 ] ] , 
Timing[foldLeftR[Plus, Range[200], 0] ] } 

{{0.25 Second, 20100}, {1.26667 Second, 20100}} 

ii) Write your own function composeList that works just like the built-in operation 
with the same name, using F o l d L i s t . Conversely, write your own function 
f o l d L i s t that works just like the built-in operation with the same name, using 
ComposeList. 

Answer 2. The first operation is very simple 

composeList[list_, x_] := FoldList[#2@#1&, x, list]; 

For instance: 

composeList[{f, g, h}, x] 

{x, f[x], g[f[x]], h[g[f[x]]]} 

The other direction is harder since we have to produce the list whose ith entry is f [ #, a± ] &. 
from the list whose ith entry is a±. 
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foldList[f_, χ_, list_] := 
ComposeList[Map[Function[{q}, f[#, q]&], list], x]; 

For instance, 

foldList[f, x, {a, b, e}] 

{x, f[x, a], f[f[x, a], b], f[f[f[x, a], b], e]} 

Problem 8 
^^%ΑΦ^^Α%<^>*^^ ^ V W ^ ^ 

Somewhere in the first 1000 digits in the decimal expansion of π, there is a sequence of six 
successive 9's. Use In tegerDig i t s , Par t i t i on , and P o s i t i o n to find where this occurs. 
Avoid displaying large intermediate results. What other digits also occur more than twice in 
succession in this partial decimal expansion? (Based on a problem from [Blachman 1].) 

Answer: One arrives at the following sequences of commands interactively. 

Position[ 
Partition! 

IntegerDigits [ Floor [N[ Pi, 1000] HP1000]], 
6, 1], 

Table[9, {6}]] 

{{763}} 

Thus, 9 occurs in positions 763 through 768 in this list which is positions 762 through 767 after 
the decimal point in π. To find digits that occur more than twice in succession, use the form: 

Table[ 
{ n, 
Position[ 

Partition[ 
IntegerDigits!Floor[N[Pi, 1000] 10A1000]], 
3, 1], 

Table[n, {3}]] }, 
{n, 9}] // MatrixForm 
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154}, {984}} 

178}} 

763}, {764}, {765}, {766}} 

Problem 9 

i) Write your own functions map and through that work just like the built-in operations 
with the same names, using Outer, Flatten , #, &, and @. (I.e., if pure functions can be 
written, then Map and Through are special cases of Outer, suitably flattened.) 

ii) Generalize this to construct an operation that applies a list of arbitrary functions (not 
necessarily listable ones) to a list of values. 

Here are the required functions and test outputs. 

map[f_, listj := Flatten[Outer[#1@#2&, {f}, list]]; 
map[f, {a, b, c}] 

{f[a], f[b], f[c]} 

through[list_, x_]:= 
Flatten[Outer[#1@#2&, list, {x}]]; 

through[{Sin, Cos}, x] 

{Sin[x], Cos[x]} 

applyAll[funs__, vars__] := Outer[#l@#2&, funs, vars] ; 
applyAll[{f, g, h}, {x, y, z}] 

{{f[x], f[y], f[z]}, {g[x], g[y], g[z]}, {h[x], h[y], h[z]}} 
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Answers 

Problem 1 
Find all values of the form n = m/3 for m an integer between -10 and 10 such that Mathematica 
can evaluate the following integral: Hint: make a table and use Se l ec t and FreeQ. 

/ 
(1 - 1/u) 4/3 

du 

Answer: Use the following table to find the answers. Instead of displaying the entire output, 
which is very long, just pick out the first components that show the values of n where the 
integration succeeded. Note: this computation takes several minutes. 

Map[ First, 
Select[ 

Table[ {n, Integrate!(1 - 1/u)A(4/3)/u"n, u]}, 
{n, -10, 10, 1/3}], 

FreeQ[ #[[2]] , Integrate]& ] ] 

{-28/3, -25/3, -22/3, -19/3, -16/3, -13/3, -10/3, -7/3, -4/3, 
2, 3, 4, 5, 6, 7, 8, 9, 10} 

Problem 2 
In Exercise 5 of Chapters 5 and Exercise 5 of Chapter 6, the Gram-Schmidt procedure was 
developed. It only works if the given vectors are linearly independent. Make several changes 
in the procedure so it still works even if the given vectors are linearly dependent. 

573 
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i) Restrict the functions so they only work for arguments of the proper kinds. 
ii) Include a separate rule to deal with the projection of a vector on a zero vector. 

iii) The resulting list of orthogonal vectors may then contain a zero vector. Add a new 
operation, nozeros, to remove such zero vectors. Note that the notion of a zero vector 
depends on the vector space under consideration. 

iv) Test your procedure on a long list of random 3-dimensional vectors with real entries. 
v) Test your procedure using the legendre inner product and various polynomials 

including the powers of x up to x4. 

Answer: The following modifications are required for the Gram-Schmidt procedure. Two rules 
are required for the projection function to take care of projecting onto a 0 vector. 

projection[a_, v_f innerProduct_] := 
(innerProduct[a, v] / innerProduct[v, v]) v /; 

innerProduct[v, v] =!= 0; 
projection[a_, v_, innerProduct_] := 0 v /; 

innerProduct[v, v] == 0; 

The remaining operations are defined as before. 

multiProjection[a_, basis_List, innerProduct_] := 
Plus@@((projection[a, #, innerProduct])& /@ 
basis); 

orthogonalize[vectors_, innerProduct_] := 
Fold[ 

Join[#l, 
{Chop[#2-

multiProjection[#2,#1,innerProduct]]}]&, 
{}/ 
vectors]; 

normalize[vectors_List, innerProduct^]:= 
(Expand[# / Sqrt[innerProduct[#, #]] ] )& /@ 
vectors ; 

nozeros[vectors_List, zero_] := 
DeleteCases[vectors, zero]; 

2.1 Examples 

2.1.1 Too many vectors in three-dimensional space. 
Try six vectors in 3-dimensional space. 
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morevectors = {{lf 2, 3}, {2, -3, -4}, {3, -1, -1}, 
{1, -5f -7},{-lf 5, 2}, {6, 2, -8}}; 

moreorthogonals = orthogonalize[morevectors, Dot] 
{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {0, 0, 0}, {0, 0, 0}, 
{7/30, 7/3, 49/30}, {0, 0, 0}} 

result = nozeros[moreorthogonals, {0, 0, 0}] 

{{1, 2, 3}, {22/7, -(5/7), -(4/7)}, {7/30, 7/3, -(49/30)}} 

Try a collection of 100 random real vectors in 3-dimensional space. 

randomvects = 
Table[{Random[], Random[], Random[]}, {100}]; 

nozeros[orthogonalize[randomvects, Dot], {0, 0, 0}] 
{{0.136351, 0.863602, 0.00931478}, 
{0.240561, -0.0471237, 0.847607}, 
{0.288211, -0.0445957, -0.0842773}} 

(Try this without nozeros to see that, almost certainly, the first three vectors are linearly 
independent and all the rest are zero.) 

2.1.2 Polynomials 
Recall the Legendre polynomials using the inner product. 

legendre[f__, g_] := Integrate[f g,{x, -1, 1}]; 
morepowers = 

{ 1, x, x"2, 2 xA2 - 3, χΛ3, 
5 χΛ3 - 3 xA2 + x, χΛ4, χΛ4 - xA3 }; 

orthogonalize[morepowers, legendre]//Expand 

1 -3 x 3 6 x2 
{1, x, -(-) + x2, 0, + x3, 0, + x4, 0} 

3 5 35 7 

nozeros[%, 0] 

1 -3 x 3 6 x2 
{1, x, -(-) + x2, + x3, + x4} 

3 5 35 7 
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Problem 3 
i) Write a function type of one variable such that type takes the value 0 for integer 

arguments, the value 1/2 for rational arguments, the value 1 for real numbers, the 
value 2 for complex numbers, and the value «> for anything else. 

ii) Change the definition of type so that it takes the value 10 for "algebraic expressions." 
An algebraic expression is one which is built up recursively from symbols (i.e., 
variables) and numbers (integers, rationals, reals, and complexes) by using addition, 
subtraction, multiplication, division, and exponentiation. (Hint: use pattern matching 
recursively to define a predicate algexpQ which takes the value T r u e just for 
algebraic expressions. For instance, one such rule is: 

algexpQ[u_ + v_] := algexpQ[u] && algexpQ[v] . ) 

iii) Test your predicate algexpQ on specified inputs. 
iv) Test your type function on specified inputs. 

3.1 The Algebraic Expression Predicate 
This solution is based on using rewrite rules recursively. 

= algexpQ[u] && algexpQ[v] 
= algexpQ[u] && algexpQ[v] 
= algexpQ[u] && algexpQ[v] 

algexpQ[u_ + v_] 
algexpQ [u_ v_] 
algexpQ[u_Av_] 
algexpQ[w_J 

MemberQ[ {Symbol, Integer, Rational,Real, Complex}, 
Head[w] ]; 

Try this on the test expressions. 

{ algexpQ[x"2 + (y + 2)Λ3], 
algexpQ[xA2 + (Sin[y] + 2)Λ3], 
algexpQ[(5 x y)"(z + w)], 
algexpQ[Sqrt[5 x yp(z + w) ], 
algexpQ[xA(x"(x"(x"x)))], 
algexpQ[(y + w)A(x + 2)], 
algexpQ[(x + 2 1) (3 + y I)A(5 + 41)], 
algexpQ[(2x + y) + I (z w + u)], 
algexpQ[Tan[χΛ2 + y"2]] } 

{True, False, True, True, True, True, True, True, False} 
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3.2 The Type Function 

Next, we define the function type by giving conditional rules. 

type[expr_Symbol] 
type[expr_Integer] 
type[expr_Rational] 
type[expr_Real] 
type[expr_Complex] 
type[expr_/;algexpQ[expr]] 
type[expr_] 

Test the type function on some inputs. 

= -i; 
= 0; 
= 1/2; 
= l; 
= 2; 
= 10; 
= Infinity 

{ type[anything], type[24], type[3/7], type[3.64], 
type[(5 + 3 I)], type[-(x + y ζ)Λ(ζ - 3 w)], 
type[(x + 2 1) (3 + y Ι)Λ(5 + 41)], 
type[Sin[anything] +4] } 

{ -1 , 0, 1/2, 1, 2, 10, 10, I n f i n i t y } 

Problem 5 
This is an exercise in calculating the Fibonacci numbers by different methods. Part of the 
exercise is to attempt to estimate the complexity of the various methods. Reference: [Maeder 2]. 

5.1 The Recursive Version of Fibonacci 
This method uses the usual recursive definition of the Fibonacci numbers. 

fibr[l] = 1; 
fibr[2] = 1; fibr[n_] := fibr[n-l] + fibr[n-2]; 

Calculate some values. 

fibrValues = 
Table[ {2 m, Timing[fibr[2 m]][[l]] / Second}, 

{m, 1, 11}] 
{{2, 0.0166667}, {4, 0.0166667}, {6, 0.0333333}, 
{8, 0.0833333}, {10, 0.25}, {12, 0.6}, {14, 1.56667}, 
{16, 4.01667}, {18, 10.6}, {20, 27.4833}, {22, 72.2333}} 
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Fit a curve to the data. 

fibrFit = Fit[fibrValues, {lf x, χΛ2}, χ] 

18.8051 - 6.00332 x + 0.347077 x2 

Use the curve to estimate the time to calculate the millionth Fibonacci number. 

fibrTimeToAMillion = 
(fibrFit /. x -> 1000000)/(60 60 24 356) years 

11283.8. years 

Plot the time in seconds to calculate the nth Fibonacci number against n. 

fibrPlot = 
Plot[ fibrFit, {x, 0, 22}, 

PlotRange -> {{0, 23}, {-8, 70}}, 
PlotLabel -> "Recursion", 
Epilog -> 

{ PointSize[0.025], 
Map[Point, fibrValues]}]; 

The plots are all collected in a GraphicsArray at the end. Actually, it is known that the 
theoretical complexity of this algorithm is exponential (see below). One way to find a suitable 
base is to take the limit of Fibonacci [n + 1] / Fibonacci [n] as n -> oo, which is easily shown to 
be the golden ratio. A student discovered the following good idea. 

gr = N[GoldenRatio] => 1.61803 

grfit = Fit[fibrValues, {1, grAx}, x] 

-0.0120873 + 0.00184334 1.61803x 

Show[GraphicsArray[{grplot = 
Plot[ grfit, {x, 1, 22}, PlotRange -> All, 

DisplayFunction -> Identity, 
PlotLabel -> "grplot"], 

Show[ {fibrPlot, grplot}, 
DisplayFunction -> Identity]}], 

DisplayFunction -> $DisplayFunction]; 
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5.2 The Dynamic Programming Version of Fibonacci 

This version uses the usual recursive definition, but programmed dynamically. Follow the 
same sequence of steps. 

f i b d [ l ] = 1; f ibd[2] = 1; 
f ibd[n_] := f ibd[n] = f i b d [ n - l ] + f i b d [ n - 2 ] ; 

fibdValues = 
Table[ {100m, Timing[fibd[100 m]] [ [1 ] ] /Second} , 

{m, 1, 20} ] 

{{100 , 0 . 9 3 3 3 3 3 } , {200 , 1 . 4 1 6 6 7 } , {300 , 1 . 8 5 } , {400 , 0 . 7 8 3 3 3 3 } , 
{500 , 0 . 8 5 } , {600, 0 . 8 3 3 3 3 3 } , {700 , 0 . 8 5 } , {800, 0 . 8 8 3 3 3 3 } , 
{900 , 0 . 9 3 3 3 3 3 } , {1000, 1 . 0 1 6 6 7 } , {1100, 1 . 1 8 3 3 3 } , 
{1200 , 1 . 0 3 3 3 3 } , {1300, 1 . 0 6 6 6 7 } , {1400, 1 . 1 1 6 6 7 } , 
{1500 , 1 . 1 8 3 3 3 } , {1600 , 1 . 3 6 6 6 7 } , {1700, 1 . 2 3 3 3 3 } , 
{1800 , 1 . 2 1 6 6 7 } , {1900, 1 . 4 } , {2000, 1 .51667}} 

The complexity is essentially constant time since at each stage, 100 more values are calculated. 
If individual values are tried, then the Recursion Limit is exceeded exactly at f i b d [ 129 ] . To 
check this, it is necessary to clear f ibd before each calculation. 

Clear[fibd]; 
fibd[l] = 1; fibd[2] = 1; 
fibd[n_] := fibd[n] = fibd[n-l] + fibd[n-2]; 
fibd[128] =* 251728825683549488150424261 
Clear[fibd]; 
fibd[l] = 1; fibd[2] = 1; 
fibd[n_] := fibd[n] = fibd[n-l] + fibd[n-2]; 
fibd[129] 
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$ R e c u r s i o n L i m i t : : r e c l i m : R e c u r s i o n d e p t h of 256 e x c e e d e d . 

96151855463018422468774568 + 155576970220531065681649693 
H o l d [ f i b d [ H o l d [ 3 - 2] - 1] + f i b d [ H o l d [ 3 - 2] - 2 ] ] + 
155576970220531065681649693 H o l d [ f i b d [ H o l d [ 3 - 1] - 1] + 
f i b d [ H o l d [ 3 - 1] - 2 ] ] 

Thus, f i bd uses two recursion steps per number and so it runs out of space after 128 steps. If 
the recursion depth is reset, then the calculation will go farther. The correct thing to do is to 
clear f ibd and redefine it at each step. $Recurs ionLimi t has to be reset to more than twice 
the maximum value calculated. 

$RecursionLimit = 10000; 

fibdValues = 
Table[ { 2Am, 

Clear[fibd]; 
fibd[l] = 1; fibd[2] = 1; 
fibd[n_] := fibd[n] = fibd[n-l]+fibd[n-2]; 
Timing[fibd[2*m]][[1]] / Second }, 

{m, 1, 12} ] 

{{2, 0.}, {4, 0.0166667}, {8, 0.05}, {16, 0.183333}, 
{32, 0.316667}, {64, 0.6}, {128, 1.3}, {256, 3.31667}, 
{512, 5.71667}, {1024, 10.5333}, {2048, 22.1167}} 

$RecursionLimit = 256; 

fibdFit = Fit[fibdValues, {1, xf xA2}, x] 

0.0418782 + 0.0105309 x + 1.02998 10~7 x2 

fibdTimeToAMillion = 
(fibdFit /. x -> 1000000)/(60 60 24) days 

1.31339 days 

fibdPlot = 
Plot[ fibdFit, {x, 0, 4200}, 

PlotLabel -> "Dynamic"f 
Epilog -> 

{ PointSize[0.025], 
Map[Point, fibdValues]}]; 
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5.2.1 Analysis of recursion versus dynamic programming 

Why does the recursive program give up at a bit over 20, while the dynamic program goes up 
to 100 with no trouble? Use Trace to see how the tree is actually searched. 

Trace[fibr[6], fibr] // MatrixForm 
fibr[6] 
fibr[6 - 1] + fibr[6 - 2] 
{fibr[5], fibr[5 - 1] + fibr[5 - 2], 
{fibr[4], fibr[4 - 1] + fibr[4 - 2], 
{fibr[3], fibr[3 - 1] + fibr[3 - 2], 

{fibr[2], 1}, {fibr[l], 1}}, 
{fibr[2], 1}}, {fibr[3], fibr[3 - 1] + fibr[3 - 2], 

{fibr[2], 1}, 
{fibr[l], 1}}} 

{fibr[4], fibr[4 - 1] + fibr[4 -2], 
{fibr[3], fibr[3 - 1] + fibr[3 - 2], 

{fibr[2], l}f {fibr[l], 1}}, {fibr[2], 1}} 
Clear[fibd]; 
fibd[l] = 1; fibd[2] = 1; 
fibd[n_] := fibd[n] = fibd[n-l] + fibd[n-2]; 
Trace[fibd[6], fibd] // MatrixForm 
fibd[6] 
fibd[6] = fibd[6 - 1] + fibd[6 - 2] 
{{fibd[5], fibd[5] = fibd[5 - 1] + fibd[5 - 2], 
{{fibd[4], fibd[4] = fibd[4 - 1] + fibd[4 - 2], 
{{fibd[3], fibd[3] = fibd[3 - 1] + fibd[3 - 2], 
{{fibd[2],l}, {fibd[l]fl}}}, {fibd[2]fl}}}/ {fibd[3],2}}}, 

{fibd[4]f 3}} 
The definition of the Fibonacci numbers builds a tree of values to be calculated. For n = 6, it 

looks as follows: 

5"^ 
/ \ 

4 3 
/ \ / \ 

3 2 2 1 
/ \ 

2 1 

■ 4 

/ \ 
3 2 

/ \ 
2 1 
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In the recursive version, every node of this tree is visited in a depth first traversal, going first 
down the left-hand side, then recursive coming up until it is possible to descend again. The 
order is {6, 5, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 2, 1, 2), as one sees from the Trace of f ibr. In the 
dynamic version, again the left-hand side is traversed, but that results in all of the required 
values being calculated, so only the tops of the rest of the subtrees are visited. The order is {6, 
5,4,3, 2,1, 2,3,4}. Note that the size of the tree satisfies the recursive equation tree[n] = tree[n 
- 1] + tree[n - 2] + 1, with tree[l] = tree[2] = 1, so tree[6] = 15. These sizes grow somewhat 
faster than the Fibonacci numbers and I don't know their limiting ratio, but this at least gives 
some justification for using the limiting ratio of the Fibonacci numbers as the exponential base 
in fitting a curve to their timing in the recursive case. 

5.3 The Iteration Version of Fibonacci 

This version uses a simple iteration repeated n times to calculate the nth Fibonacci number. 

fibi[n_] := 
Module[ 

{ani = 1, an2 = 1}, 
Do[{ani, an2} = {ani + an2, ani}, {1, 3, n}]; 
ani]; 

fibiValues = 
Table[ {2Am, Timing[fibi[2^m]][[1]]/Second}, 

{m, 1, 14} ] 

{{2, 0.0166667}, {4, 0.0166667}, {8, 0.0166667}, {16, 0.05}, 
{32, 0.0833333}, {64, 0.15}, {128, 0.316667}, {256, 0.6}, 
{512, 1.23333}, {1024, 2.51667}, {2048, 5.18333}, 
{4096, 11.0833}, {8192, 26.2833}, {16384, 66.4333}} 

fibiFit = Fit[fibiValues, {1, x, χΛ2}, χ] 

0.000361078 + 0.00232285 x + 1.05801 10~7 x2 

fibiTimeToAMillion = 
(fibiFit /. x -> 1000000)/(60 60) hours 

30.0345 hours 
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fibiPlot = 
Plot[ fibiFit, {x, 0, 16500}, 

PlotLabel -> "Iteration", 
Ticks -> 

{{ {0, "0"}, {5000, "5000"}, 
{10000, "10000"}, {15000, "15000"}}, 

Automatic}, 
Epilog -> 

{ PointSize[0·025], 
Map[Point, fibiValues] } ]; 

5A The Symbolic Formufa Version of Fibonacci 

See [Maeder 2], referred to at the beginning, for a derivation of these constants and this 
formula for the Fibonacci numbers. 

el = (1 + Sqrt[5])/2; e2 = (1 - Sqrt[5])/2; 
bl = (5 + Sqrt[5])/10; b2 = (5 - Sqrt[5])/10; 
fibf[n_] := Simpli£y[bl elA(n - 1) + b2 e2A(n - 1)]; 
fibfValues = 

Table[ {2Am, Timing[fibf[2Am]][[1]]/Second}, 
{m, 1, 10}] 

{{2, 2.03333}, {4, 1.46667}, {8, 1.51667}, {16, 1.61667}, 
{32, 1.9}, {64, 9.18333}, {128, 5.88333}, {256, 11.1667}, 
{512, 25.}, {1024, 74.1833}} 

fibfFit = Fit[fibfValues, {1, x, xA2}, x] 

2.30898 + 0.022519 x + 0.0000463389 x2 

fibfTimeToAMillion = 
(fibfFit /. x -> 1000000)/(60 60 24) days 

536.59 days 

Try adding Log [ x ] to the functions being fitted. 

fibfLogFit = Fit[fibfValues, {1, Log[x], x, xA2}, x] 

0.160961 + 0.00797877 x + 0.0000562965 x2 + 0.978612 Log[x] 
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fibfLogTimeToAMillion = 
N[fibfLogFit /. x -> 1000000]/(60 60 24) days 

651,672 days 
fibfPlot = 
Plot[ fibfFit, {xf 0, 1050}, 

PlotLabel -> "Symbolic Function", 
Epilog -> 

{ PointSize[0.025], 
Map[Point, fibfValues] } ]; 

Using f i b f LogFit instead of f i b f F i t gives an indistinguishable picture. 

5.5 The Numeric Formuh Version of Fibonacci 
The symbolic formula is not very efficient because it constructs huge symbolic expressions 
involving S q r t [ 5 ] and then has to simplify those expressions. In this version, we introduce 
suitable numerical approximations to S q r t [ 5 ] . The problem is that as n grows, the required 
number of digits of accuracy of S q r t [ 5 ] increases also. Note that 

bl = (1 + Sqrt[5])/(2 Sqrt[5]) = (1/Sqrt[5]) el, and similarly 
b2 = (1/Sqrt[5]) e2. 

Hence, 
bl eli11"1) + b2 e2(n"1) = 
(1/Sqrt[5]) ((1 + Sqrt[5])/2)n + (1/Sqrt[5])((1 - Sqrt[5])12)n. 

But: 
N [ ( l / S q r t [ 5 ] ) ( 1 - S q r t [ 5 ] ) / 2 ] => - 0 . 2 7 6 3 9 3 

This, to the n'th power, is always less than 1/2 so it can be omitted from the expression. 
Furthermore, 

log[ (1/Sqrt[5]) ((1 + Sqrt[5])/2)Λη] = 
log[ (1/Sqrt[5])] + n log[ (1 + Sqrt[5])/2] 

so we have: 
{Log[N[l/Sqrt[5]]], Log[N[(l + Sqrt[5])/2]]} 
{-0.804719, 0.481212} 
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Since log[a] + 1 is the number of digits of a, the nth Fibonacci number has at most n/2 digits, 
so it is sufficient to calculate the numerical value to n/2 digits of accuracy. (Actually, we will 
see below that n/4 would be sufficient.) 

fibfn[n_] := 
Round[N[ (1/Sqrt[5]) ((1 + Sqrt[5])/2)*n, 

Round[n/2] ]] 

The following calculation checks our derivation. Note: this table takes a long time to evaluate. 

Table[fibfn[2An] - fibi[2An], {n, 1, 14}] 

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 

fibfnValues = 
Table[ {2Am, Timing[fibfn[2"m]][[1]]/Second}, 

{m, 1, 14} ] 
{{2, 0,0333333}, {4, 0.0333333}, {8, 0.0333333}, {16, 0.05}, 
{32, 0.05}, {64, 0.1}, {128, 0.15}, {256, 0.2}, 
{512, 0.383333}, {1024, 0.8}, {2048, 2.2}, {4096, 7.5}, 
{8192, 24.8333}, {16384, 92.6833}} 

fibfnFit = Fit[fibfnValues, {1, x, χΛ2}, χ] 

0.0541302 + 0.000441702 x + 3.18008 IO'7 x2 

fibfnTimeToAMillion = 
(fibfnFit /. x -> 1000000)/(60 60 24) days 

3.68576 days 

fibfnPlot = 
Plot[ fibfnFit, {x, 0, 16500}, 

PlotLabel -> "Numeric Function", 
Ticks -> 

{{ {0, "0"}, {5000, "5000"}, 
{10000, "10000"}, {15000, "15000"}}, 

Automatic}, 
Epilog -> 

{ PointSize[0.025], 
Map[Point,fibfnValues] } ]; 
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Maeder [Maeder 2] gives a different analyses and a different algorithm. In the algorithm, a 
numerical approximation of the nth Fibonacci number is calculated along with the number of 
its digits. This is increased by 10 and used as the number of digit in the approximation of 
S q r t [ 5 ] . 

fibfnum[n_] := 
Module[ { digits, approx = N[bl elAn]}, 

digits = Ceiling[Log[10, approx]] + 10; 
approx = N[bl, digits] N[el, digits]^n; 
Round[approx]] 

There is a shift in the values of the argument. Thus, f ibf num [ n ] = f ibf n [ n + 1 ] . 

{fib£num[9], fibfn[10]} => {55, 55} 

fibfnumValues = 
Table[ {2Am, Timing[fibfnum[2"m-1]][[1]]/Second}, 

{m, 1, 15} ] 
{{2, 0.0333333}, {4, 0.05}, {8, 0.05}, {16, 0.05}, {32, 0.05}, 
{64, 0.1}, {128, 0.116667}, {256, 0.15}, {512, 0.183333}, 
{1024, 0.3}, {2048, 0.533333}, {4096, 1.76667}, {8192, 6.9}, 
{16384, 25.5167}, {32768, 309.017}} 

fibfnumFit = Fit[fibfnumValues, {1, x, χΛ2}, χ] 

2.60303 - 0.00452458 x + 4.20691 10"7 x2 

fibfnumTimeToAMillion = 
(fibfnumFit/.x -> 1000000)/(60 60) hours 

115.603 hours 

fibfnumPlot = 
Plot[ fibfnumFit, {x, 0, 33000}, 

PlotLabel -> "Maeder Function", 
Ticks -> 

{{{0, "0"}, {10000, "10000"}, 
{20000, "20000"}, {30000, "30000"}}, 

Automatic}, 
Epilog -> 

{ PointSize[0.025], 
Map[Point, fibfnumValues] } ]; 
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5.6 The Matrix Version of Fibonacci 

This method uses MatrixPower to calculate the Fibonacci numbers. It is much faster than the 
other methods. 

mat = {{1, 1}, {1, 0}}; 
fibm[n_] := MatrixPower[mat, n-l][[l, 1]] 
fibmValues = 

Table[ {2Λρ, Timing[fibm[2Ap]][[1]]/Second}, 
{P, 1, 16} ] 

{{2, 0.05}, {4, 0.}, {8, 0.}, {16, 0.}, {32, 0.}, {64, 0.05}, 
{128, 0.05}, {256, 0.0666667}, {512, 0.0833333}, {1024, 0.1}, 
{2048, 0.183333}, {4096, 0.366667}, {8192, 0.95}, 
{16384, 2.73333}, {32768, 8.05}, {65536, 24.1833}} 

fibmFit = Fit[fibmValues, {1, x, χΛ2}, χ] 

-0.0154996 + 0.000109752 x + 3.96909 10~9 x2 

fibmTimeToAMillion = 
(fibmFit/.x -> 1000000)/(60 60) hours => 1.13301 hours 

fibmPlot = 
Plot[ fibmFit, {x, 0, 66000}, 

PlotLabel -> "Matrix", 
Ticks -> 

{{{0, "0"}, {20000, "20000"}, 
{40000, "40000"}, {60000, "60000"}}, 

Automatic}, 
Epilog -> 

{ PointSize[0.025], 
Map[Point, fibmValues] } ]; 

Note that we get: 

{2Λ16, Timing[N[fibm[2"16]]]} 

{65536, {71.3667 Second, 7.319921446029055283 1013695}} 
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This method is fast enough to make it possible to calculate the millionth Fibonacci number on a 
Macintosh Ilfx. 

{2Λ20, Timing[N[m[2*20]]]} 

{1048576, {17700.7 Second, 1.186800606355066115 10 2 1 9 1 3 9 }} 

The time it takes is of the same order of magnitude as the calculated time. 

17700.7 / (60 60) hours => 4.91686 hours 

These results also show that the length of the nth Fibonacci number is smaller than n / 4. 

5.7 Comparison 
The theoretical complexity of the different methods varies from exponential to apparently n2 

and there is a vast difference in the values of F i b o n a c c i [ n ] that can be calculated in 
approximately one minute. 

The timing result depend very much on the system and the version. For all but the last 
method, Version 2.2 is approximately 50% slower than Version 2.1. The matrix method 
however, runs two to three times faster in Version 2.2 than in Version 2.1. Maeder [Maeder 2] 
computed the ten-millionth Fibonacci number in 22 hours on a NeXTstation using Version 2.1 
and a still different algorithm, giving the approximate result: 

1.12983437822539976032 10Λ2089876 

The next page shows pictures of all seven methods, combined in a single GraphicsArray. 
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Show[GraphicsArray[{ {fibrPlot, fibfPlot}, 
{fibdPlot, fibiPlot}, 
{fibfnPlot, fibfnumPlot}, 
{fibmPlot} }]]; 
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Here is a picture of the last six methods. To get a better display, change all of the individual 
plots to include their name as a suitably located graphics element rather than a PlotLable. 

Show[ {fibfPlot, fibdPlot, fibiPlot, 
fibfnPlot, fibfnumPlot, fibmPlot} ]; 

Symbolic Function 
70 
60 
50 
40 
30 
20 
lOj 

10000 20000 30000 40000 
Note that only the points from the first plot appear here since they are calculated in optional 
arguments to Plot, and Show only uses the options from the first of its arguments. 

Problem 6 
The function maxima described in the Examples section above can also be implemented by a 
strict one-liner functional program. Write this function and do a Timing comparison with the 
pattern matching version. 

maximafun[list_List] := 
Union[Rest[FoldList[Max, -Infinity, list]]]; 

Try this on a sample list. 

list = {-1-4, 3.2, 2.5, -5, 2.6, 7.3, 5, 3, 8, 6, 4}; 
maximafun[list] => {-1.4, 3.2, 7.3, 8} 

Recall the rule based operation. 

maxima[list_List] := 
list //. {a , x_, y , b } /; y <= x -> {a, x, b} 
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Construct a test to compare timings. 

test[n__] := Table [Random [Integer, 100], {n}]; 
experiment = Module[{tt}, 

Table [ (tt = test[2"m]); 
{ {2Am, Timing[maxima[tt];]}, 

{2Am, Timing[maximafun[tt];]}}, 
{m, 0, 9}]] 

{{{1, {0. Second, Null}}, {1, {0.0166667 Second, Null}}}, 
{{2, {0.0166667 Second, Null}}, 

{2, {0.0166667 Second, Null}}}, 
{{4, {0.0166667 Second, Null}}, 

{4, {0.0166667 Second, Null}}}, 
{{8, {0.05 Second, Null}}, {8, {0.0166667 Second, Null}}}, 
{{16, {0.0833333 Second, Null}}, 

{16, {0.0166667 Second, Null}}}, 
{{32, {0.266667 Second, Null}}, 

{32, {0.0166667 Second, Null}}}, 
{{64, {0.683333 Second, Null}}, {64, {0.05 Second, Null}}}, 
{{128, {1.48333 Second, Null}}, 

{128, {0.0833333 Second, Null}}}, 
{{256, {5. Second, Null}}, {256, {0.166667 Second, Null}}}, 
{{512, {21.8167 Second, Null}}, 

{512, {0.333333 Second, Null}}}} 

Extract the two sets of data. 

listing[i_] := 
Map[ {#[[i, 1]], #[[i, 2, l]]/Second}&, 

experiment]; 

Fit curves to the data. 

fit[i_] := Fit[listing[i], {1, x, χΛ2}, χ]; 

Plot both curves together. 
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Show[ 
Join[ 

Map[ 
Plot[ Evaluate[fit[#]], {x, Of 512}, 

PlotLabel -> "maxima test", 
Ticks -> 

{{{32, "32"}, {64, "64"}, {128, "128"}, 
{256, "256"}, {512, "512"}}, 

Automatic}, 
DisplayFunction -> Identity]&, 

{If 2}], 
Map[ 

ListPlot[ listing[#], 
PlotStyle -> {PointSize[0.025]}, 
DisplayFunction -> Identity]&, 

{1/ 2}]], 
DisplayFunction -> $DisplayFunction, 
PlotRange -> All]; 

maxima test 

20 

15 

10 

-*■# 512 

The upper curve is the rule-based version while the lower one is the functional version. 
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i) Write a more general Mathematica function dea l so that deal [ l i s t , n] selects n 
entries at random from l i s t without replacement. 

ii) A deck of cards consists of 52 cards divided into 4 suits called clubs, diamonds, hearts, 
and spades. Each suit consists of the cards 2, 3, 4, 5, 6, 7, 8, 9,10, J, Q, K, 1. A bridge 
deal consists in giving 13 cards at random to each of 4 players. Define a Mathematica 
deck and a function bridgeDeal [deck] that generates and displays such a bridge 
deal. 

1.1 The definition of deal 
The function deal is supposed to select n elements at random without replacement from a 
given population. There are many ways to implement this function. We give five of them; a 
procedural version, two rewrite rule versions, and two functional versions. Only the last one is 
a strict one-liner, but it turns out to have a drawback later. 

1.1.1 The imperative definition 
A procedural version of the function can be written either with a While loop or a Do loop. We 
prefer the latter. 

593 
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dealProc[population_List, n_Integer]:= 
Module[ 

{list = population, selection = {}, rand }, 
Do[ rand = Random[Integer, {1, Length[1ist]}]; 

AppendTo[selection, list[[rand]] ]; 
list = Delete[list, rand ], 
{n}]; 

selection] /; 
0 <= n <= Length[population]; 

1.1.2 Rewrite rule definition 1 
A student found the following elegant recursive rewrite rule version. This version, in effect 
repeats dealing one element from population n times; i.e., it calls itself n times. 

dealRewl[population_List, 0] := {}; 
dealRewl[population_List, n_Integer?Positive] := 

Module[ 
{rand = 

Random[Integer, {1, Length[population]}]}, 
PrependTo[ 

dealRewl[Delete[population, rand], n - 1], 
population![rand]] ] 

]/; n <= Length[population]; 

1.1.3 Rewrite rule definition 2 
Here is another rewrite rule version that works in a different way. 

oneStepRule = {hand_List, deck_List} :> 
Module[ 

{choice = Random[Integer, {1, Length[deck]}]}, 
{ Append[hand, deck[[choice]]], 
Delete[deck, choice] } ]; 

Next, we need a function to apply this rule. 

oneStep[{hand_List, deck_List}]2= 
{hand, deck} /· oneStepRule 
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We can now use this to apply the rule a fixed number of times. 

dealRew2 [population__List, n_Integer] : = 
dealRew2[{}, population, n][[l]]; 

dealRew2[hand_List, deck_List, n_Integer] := 
Nest[oneStep[#]&, {hand, deck}, n]; 

1.1.4 An attempted functional definition 
Here is another version that works in a completely different way. It is more in the spirit of the 
fundamental dictum of functional programming. However, there seems to be no way to avoid 
generating a sequence of n random elements from scratch somewhere in the program. Note 
that this version sorts the output. 

dealRandom[population__List, n_Integer] : = 
Module[{i = n - 1, hand = {}}, 

While[ 
Length[hand] < n, 
i++; 
hand = 
population[[Union[ 

Table[ 
Random[Integer, {1, Length[population]}], 
{i}]] 111; 

hand = Take[hand, n] ]; 

1.1.5 A one-liner 
The following one-liner was posted to the mathgroup mailbox by Richard Gaylord, in 
response to our challenge to find such a version. Note that it also sorts the output which makes 
it unusable in the final game deal function below. 

dealFun[populat ion__List, n_Integer] := 
Complement[ 

population, 
Nest[ 

Delete[#, Random[Integer, {1, Length[#]}]]&, 
population, n ]] /; 

0 <= n <= Length[population]; 

The challenge still remains to find a good functional version that doesn't sort its output. 
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1.2 Examples 

d e a l P r o c [ { a , b , c , d , e , f , g , h , i , j , k , l , m , n } , 6] 

{h, g, 1, i , c , e} 

The elements of populat ion don't have to be distinct. The following had to be run several 
times to get the indicated output. 

dealProc[{a, b, a, b, a, b } , 2] => {b, b} 

Next we try some larger values and time them. 

{ Timing[dealRewl[Range[200], 6 0 ] ; ] , 
Timing[dealRew2[Range[200], 6 0 ] ; ] , 
Timing[dealProc[Range[200], 6 0 ] ; ] , 
Timing[dealFun[ Range[200] , 6 0 ] ; ] } 

{{6.06667 Second, N u l l } , {1.93333 Second, N u l l } , 
{1.03333 Second, N u l l } , {0.916667 Second, Null}} 

This comparison shows that dealFun is more than six times as fast as dealRewl. The second 
version, dealRew2 is much better than dealRewl, and dea lProc is almost as good as 
dealFun. The performance of dealRandom is harder to measure, since it depends on how far 
one has to go to get enough different terms. We try averaging 10 runs. 

Apply[Plus, 
Table[ Timing[dealRandom[Range[200], 60];], 

{10}]] / 10 
{1.38 Second, Null} 

This compares very favorably with dealProc, and sometimes it will have been significantly 
faster. However, if n approaches the size of population, then this method can become very 
slow. 

Timing[dealRandom[Range[50], 45 ] ; ] => {5.1 Second, Null} 

If all the entries in a population are dealt, then in effect a random permutation of the entries 
has been generated, providing the output is not sorted. Thus all methods except dealRandom 
and dealFun will generate such a random permutation. 
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1.3 The Bridge Deal 
Several versions are given, starting with a very primitive one and progressing to a fairly nice 
one. The problem is to figure out how to combine the deal function in a efficient way to 
distribute the desired hands of cards. 

1.3.1 The first version 
Since de a l Fun is clearly the fastest procedure, we use it for the next few definitions and 
rebaptize it deal. 

deal[population_List, n_Integer] := 
Complement[ 

population, 
Nest[ Delete [ #, 

Random[Integer, {1, Length[#]}]]&, 
population, n ]] /; 

0 <= n <= Length[population] 

First create a standard deck of cards. 

deck = Flatten[ 
Outer[ List, {c, d, h, s}, 

Join[Range[2, 1 0 ] , {J, Q, K, A } ] ] , 1] 

{{c, 2 } , {c, 3 } , {c, 4 } , {c, 5 } , {c, 6 } , {c, 7 } , {c, 8 } , 
{c, 9 } , {c, 10}, {c, J } , {c, Q}, {c, K}, {c, A}, {d, 2 } , 
{d, 3 } , {d, 4 } , {d, 5 } , {d, 6 } , {d, 7 } , {d, 8 } , {d, 9 } , 
{d, 10}, {d, J } , {d, Q}, {d, K}, {d, A}, {h, 2 } , {h, 3 } , 
{h, 4 } , {h, 5 } , {h, 6 } , {h, 7 } , {h, 8 } , {h, 9 } , {h, 10}, 
{h, J } , {h, Q}, {h, K}, {h, A}, {s , 2 } , {s , 3 } , {s , 4 } , 
{s , 5 } , {s , 6 } , {s , 7 } , {s , 8 } , {s , 9 } , {s , 10}, {s , J } , 
{s , Q}, {s , K}, {s , A}} 

Try dealing a sample hand of 13 cards. 

deal[deck, 13] 

{{c, 8 } , {c, A}, {c, J } , {c, K}, {d, 4 } , {d, 10}, {h, 3 } , 
{h, 4 } , {h, 5 } , {h, 6 } , {s , 5 } , {s , 10}, {s , Q}} 

Note that this is automatically sorted. 
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Our first try at defining bridgeDeal is rather crude, but it works. 

bridgeDeal [ deck__] : = 
Module[{hand1, hand2, hand3, hand4}, 

handl = deal[deck, 13]; 
hand2 = deal[Complement[deck, handl], 13]; 
hand3 = deal[ 

Complement[deck, Join[handl, hand2]], 13]; 
hand4 = 

Complement[deck, Join[handl, hand2, hand3]]; 
TableForm[{handl, hand2, hand3, hand4}, 
TableHeadings -> 

{{ "handl", 
bridgeDeal[deck] 

handl 

hand2 

hand3 

hand4 

c 
6 
c 
2 
c 
7 
c 
4 

c 
9 
c 
3 
c 
8 
d 
2 

c 
K 
c 
5 
c 
10 
d 
4 

"hand2' 

d 
7 
c 
J 
c 
A 
d 
6 

d 
A 
d 
5 
c 
Q 
d 
9 

' ,"hand3" 

h 
2 
d 
8 
d 
3 
d 
J 

h 
4 
h 
9 
d 
10 
d 
K 

II 
/ 

h 
10 
h 
K 
d 
Q 
h 
3 

hand4 

h 
A 
s 
3 
h 
6 
h 
5 

"K 

h 
Q 
s 
4 
h 
8 
h 
7 

None}] 

s 
5 
s 
7 
h 
J 
s 
6 

s 
9 
s 
10 
s 
2 
s 
8 

1; 

s 
J 
s 
K 
s 
A 
s 
Q 

1.3.2 A better version 

In this somewhat better version, Mathematica does more of the work. It uses dynamic 
programming to store values. 

bridgeDeal[deck_J := 
Module[{hand}, 

hand[i_] := hand[i] = 
deal[Complement[deck, 

Join[Sequence@@Table[hand[j], {j, i-1 }]]], 
13]; 

TableForm[ 
Table[ hand[i], {i, 1, 4}], 

TableHeadings -> 
{Table[ "hand["<>ToString[i]<>"]", 

{i, 4}], None}] ]; 
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bridgeDeal[deck] 

hand[l] 

hand[2] 

hand[3] 

hand[4] 

c 
10 
c 
4 
c 
2 
c 
3 

c 
J 
c 
9 
c 
Q 
c 
5 

d 
3 
c 
A 
d 
8 
c 
6 

d 
4 
d 
5 
d 
9 
c 
7 

d 
6 
h 
3 
d 
10 
c 
8 

d 
7 
h 
4 
d 
K 
c 
K 

h 
2 
h 
6 
d 
Q 
d 
2 

h 
5 
h 
7 
h 
10 
d 
A 

h 
A 
h 
8 
h 
J 
d 
J 

h 
Q 
s 
2 
s 
7 
h 
9 

s 
3 
s 
5 
s 
9 
h 
K 

s 
6 
s 
8 
s 
10 
s 
4 

s 
K 
s 
J 
s 
Q 
s 
A 

1.3.3 A more general solution 
The following generalization deals a given number of cards to a given number of players from 
a given deck using essentially the same strategy as the preceding version. 

dealCards[ deck_, 
numberOfPlayers_IntegerPPositive, 
cardsPerPlayer_Integer?Positive ] := 

Module[{hand}, 
hand[i_] := hand[i] = 

deal[ 
Complement[ 

deck, 
Join[Sequence@@Table[hand[j], 

{j, i-1 >]]], 
cardsPerPlayer]; 

TableForm[ 
Table[ hand[i], {i, numberOfPlayers}], 

TableHeadings -> 
{Tablet ,,hand["<>ToString[i] <>"]", 

{i, numberOfPlayers}], 
None}] ]; 

Here is a sample poker deal to six players. 

dealCards[deck, 6, 5] 
c h h s s 

hand[l] 7 3 8 7 9 
c c c s s 

hand[2] 4 A Q 6 10 
c c d h s 

hand[3] 6 J 9 6 A 
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hand[4] 

hand[5] 

hand[6] 

c 
5 
c 
3 
c 
10 

c 
K 
c 
9 
d 
4 

d 
Q 
d 
7 
d 
J 

h 
Q 
d 
10 
d 
K 

s 
8 
s 
2 
h 
J 

1.3.4 A still better solution 

In the previous versions, the required number of cards are dealt in a block to each player. The 
new version here is based on nesting the operation of dealing one round of cards to each 
player. A Transpose operation is then required to see the cards dealt to each player; i.e., the 
view of the player is the transpose of the view of the dealer. Because the fastest version of 
d e a l sorts the cards that are dealt, it cannot be used here. We replace it by the procedural 
version. 

d e a l [ p o p u l a t i o n _ L i s t , n _ I n t e g e r ] : = 
Module[ 

{ l i s t = p o p u l a t i o n , s e l e c t i o n = { } , rand } , 
Do[ rand = Random[Integer, { 1 , L e n g t h [ l i s t ] } ] ; 

A p p e n d T o [ s e l e c t i o n , l i s t [ [ r a n d ] ] ] ; 
l i s t = D e l e t e [ l i s t , rand ] , 
{ n } ] ; 

s e l e c t i o n ] / ; 0 <= n <= L e n g t h [ p o p u l a t i o n ] ; 

Next, we define the operation of dealing a round of cards, one to each player. The idea is that 
the operation of dealing one round of cards is something that can be nested as many times as 
necessary to complete the game deal. It operates on pairs consisting of the already dealt cards 
and the reamining cards in the deck and produces a similar output. 

oneRoundf { a l r e a d y D e a l t _ L i s t , remainingCards__List} , 
n o O f P l a y e r s _ I n t e g e r ] : = 

Module[ {round = 
d e a l [ r e m a i n i n g C a r d s , n o O f P l a y e r s ] } , 

{ Append[a lreadyDea l t , r o u n d ] , 
Complement[remainingCards, r o u n d ] } ] ; 

Now we can define a more pleasant version of the program. The operation oneRound is 
nested noOf Cards times starting with the pair { { } , d e c k } . The first entry is the list of lists 
of cards that are dealt in each round. Its transpose therefore is the list of lists of cards dealt to 
each player. Finally, the cards are sorted according to the usual ranking of cards. 
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g cime De al [ deck_Lis t, noOf Players_Integer, 
noOfCards_Integer] := 

Map [ Sort[#, cardOrderQ]&, 
Transpose[ 

Nest[ oneRound[#, noOfPlayers]&, 
{{}, deck}, noOfCards][[1]]]] /; 

0 <= noOfPlayers noOfCards <= Length[deck]; 

Here cardOrder is a sorting routine which is defined lexicographically in 
values. 

suits = {s, h, d, c}; 
values = Join[Range[2, 10], {J, Q, K, A}]; 
suitOrderQ[cardl_, card2_] := 

Position[suits, cardl[[l]] ][[1, 1]] < 
Position[suits, card2[[l]] ][[1, 1]]; 

valueOrderQ[cardl_, card2_] := 
Position[values, cardi[[2]] ][[1, 1]] < 
Position[values, card2[[2]] ][[1, 1]]; 

cardOrderQ[cardl_, card2_] := 
suitOrderQ[cardi, card2] || 
(cardl[[l]] === card2[[l]] && 

valueOrderQ[cardi, card2]); 

We also want to display the deal in a nice form. 

displayDeal[ deck__List, noOfPlayers_Integer, 
noOfCards_Integer ]:= 

TableForm[ 
gameDeal[deck, noOfPlayers, noOfCards], 
TableHeadings -> 

{Tablet "hand["<>ToString[i]<>"]", 
{i, noOfPlayers}], 

None}] /; 
0 <= noOfPlayers noOfCards <= Length[deck]; 
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First try dealing the cards for a bridge game. 

displayDeal[deck, 4, 13] 

hand[l] 

hand[2] 

hand[3] 

hand[4] 

s 
5 
s 
10 
s 
7 
s 
2 

s 
9 
s 
K 
S 
J 
s 
3 

s 
Q 
s 
A 
h 
3 
s 
4 

h 
2 
h 
7 
h 
5 
s 
6 

h 
4 
h 
8 
h 
6 
s 
8 

h 
10 
h 
9 
h 
J 
h 
Q 

d 
2 
d 
5 
d 
3 
h 
K 

d 
4 
d 
9 
d 
10 
h 
A 

d 
6 
d 
J 
d 
K 
d 
7 

c 
2 
d 
Q 
c 
3 
d 
8 

c 
4 
c 
Q 
c 
5 
d 
A 

c 
6 
c 
K 
c 
7 
c 
8 

c 
9 
c 
A 
C 
10 
c 
J 

Now try dealing the cards for a poker game. 

displayDeal[deck, 6, 5] 

hand[l] 

hand[2] 

hand[3] 

hand[4] 

hand[5] 

hand[6] 

s 
5 
h 
2 
s 
3 
h 
5 
s 
4 
s 
8 

s 
9 
d 
2 
h 
7 
h 
Q 
s 
J 
s 
Q 

h 
K 
d 
10 
d 
5 
h 
A 
c 
8 
s 
K 

d 
3 
d 
Q 
d 
9 
d 
7 
c 
9 
h 
3 

c 
5 
c 
3 
c 
2 
c 
Q 
c 
A 
h 
4 

1.3.5 A one-liner for gameDeal 
Now that we have tried several versions, we can see better how to put everything together. 
First, modify the ordering of cards to reflect the observation that the ordering of suits is the 
reverse of canonical ordering. Then define different card orderings for different games since 
the way in which cards are combined usually is different in different games. 

values = Join[Range[2, 10], {J, Q, K, A}]; 
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valueOrderQ[card1_, card2_] := 
Position[values, cardi[[2]] ][[1, 1]] < 
Position[values, card2[[2]] ][[1, 1]]; 

bridgeOrderQ[cardl_, card2_] := 
( !SameQ[card2[[l]], cardl[[l]]] && 
0rderedQ[{card2[[l]], cardl[[l]]} ] ) || 

( SameQ[cardl[[l]], card2[[l]] ] && 
valueOrderQ[cardi, card2] ); 

pokerOrderQ[cardl__, card2_] := 
( SameQ[card2[[2]], cardi[[2]]] && 
0rderedQ[{card2[[1]], cardl[[l]]} ] ) || 

( !SameQ[cardl[[2]], card2[[2]] ] && 
valueOrderQ[cardi, card2] ); 

The following operation does everything simply by dealing out the total number of cards 
required and then partitioning them into the appropriate number of cards for each player. It 
also improves the ridiculous table construction of the table headings. 

gameDeal [ deck_, noOf Player s_, noOf Cards_, gameOrderQ__] : = 
TableForm[ 

Map[ Sort[#, gameOrderQ]&, 
Partition[ 

deal[deck, noOfPlayers noOfCards], 
noOfCards]], 

TableHeadings -> 
{Map[hand, Range[noOfPlayers]], 
None}] /; 

0 <= noOfPlayers noOfCards <= Length[deck]; 

Here are our final two examples. 

gameDeal[deck, 4, 13, bridgeOrderQ] 

hand[l] 

hand[2] 

hand[3] 

hand[4] 

s 
4 
s 
6 
s 
2 
s 
7 

s 
5 
s 
9 
s 
3 
s 
J 

h 
2 
s 
10 
s 
8 
h 
3 

h 
4 
s 
Q 
h 
5 
h 
6 

h 
7 
s 
K 
h 
9 
h 
10 

d 
2 
s 
A 
h 
Q 
h 
J 

d 
4 
h 
8 
h 
K 
h 
A 

d 
5 
d 
6 
d 
3 
d 
10 

d 
7 
d 
J 
d 
8 
d 
Q 

d 
9 
d 
K 
c 
2 
d 
A 

c 
6 
c 
4 
c 
3 
c 
7 

c 
8 
c 
5 
c 
10 
c 
J 

c 
9 
c 
A 
C 
Q 
c 
K 
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gameDeal[deck, 6, 5, pokerOrderQ] 

hand[l] 

hand[3] 

hand[5] 

h 
6 
h 
2 
d 
3 

h 
8 
d 
4 
e 
3 

s 
9 
d 
9 
s 
8 

d 
J 
c 
10 
h 
10 

c 
K 
h 
K 
s 
K 

hand[2] 

hand[4] 

hand[6] 

s 
6 
c 
4 
s 
3 

d 
7 
s 
7 
s 
5 

c 
8 
h 
9 
d 
6 

c 
Q 
s 
10 
s 
Q 

s 
A 
d 
A 
d 
Q 

«ΐί- s ^ >&>$Φ®Τ"* 

Problem 2 
Write the same function algexp in two different forms using: i) Which, ii) Switch. 

2.1 The Algebraic Expression Predicate 
We give seven ways to define this predicate and compare their speeds. 

Answer 1. Make a list of the admissible heads of subexpressions and check recursively that all 
heads of all subexpressions belong to the list by visiting every level of the expression. 

algheads[l] = { Plus, Times, Power, Integer, 
Rational, Real, Complex, Symbol }; 

algexp[l][exp_]:= 
MemberQ[algheads[1], Head[exp]] && 
If[ Length[exp] > 0, 

And@@Map[algexp[l], List@@exp], 
True]; 

Answer 2. Separate the allowed heads into the heads for leaves and the heads for internal 
nodes in the tree structure. Then uses a Which clause to separate out the different cases. 

algheads[2] = {Plus, Times, Power}; 
algleaves[2] = 

{Symbol, Integer, Rational, Real, Complex}; 
algexp[2][exp_] := 

Which[ Length[exp] === 0, 
MemberQ[algleaves[2], Head[exp]], 

MemberQ[algheads[2], Head[exp]], 
And@@Map[algexp[2], List@@exp], 

Head[exp] === Rational, True, 
Head[exp] === Complex, True, 
True, False ]; 
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Answer 3. This solution is a more organized way to do the same thing. 

algexp[3][exp_] := 
Which[ 

Map[(Head[exp] === #)&, 
Plus || Times || Power], 

And@@Map[algexp[3], List@@exp], 
(Head[exp] === Symbol) || NumberQ[exp], 

True, 
True, False]; 

Answer 4. Use Switch recursively to look at the heads of the subexpressions. Here we make 
use of the command A l t e r n a t i v e s , written in infix notation with |, which acts like Or for 
patterns. 

algexp[4][exp_] := 
Switch [ exp, 

(_?NumberQ | _Symbol ), 
True, 

(_Plus |_Times |_Power), 
And@@Map[algexp[4], List@@exp], 

_ , F a l s e ] ; 

Answer 5. This is another recursive version using Switch. 

algexp[5][exp_] := 
Switch [ 

Head[exp], 
(Symbol|Integer|Real|Rational|Complex), 

True, 
(Plus|Times|Power), 

And@@Map[algexp[5], List@@exp], 
_, False]; 

Answer 6. This is the solution from Exercise 3 of Chapter 7 using rewrite rules recursively. 

algexp[6][u_+v_] := algexp[6][u] && algexp[6][v] 
algexp[6][u_ v_] := algexp[6][u] && algexp[6][v] 
algexp[6][u_Av_] := algexp[6][u] && algexp[6][v] 
algexp[6][w_] := MemberQ[{Symbol, Integer, 

Rational, Real, Complex}, 
Head[w] ] 
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Answer 7. The "power" solution. It just looks at all the heads of all the subtrees of the 
expression, including the expression itself, and insists that they belong to the appropriate list. 

algexp[7][exp_] := 
Complement! Head/@Append[Level[exp,Infinity],exp], 

{ Plus, Power, Times, Symbol, Integer, 
Real, Rational, Complex } ] = = { } 

2.2 Test the answers 

testAlgExp[n_] := 
{ algexp[n][x"2 + (y + 2)A3], 

algexp[n][χΛ2 + (Sin[y] + 2)A3], 
algexp[n][(5 x y)A(z + w)], 
algexp[n] [Sqrt[5 x yp(z + w) ], 
algexp[n][xA(xA(xA(xAx)))], 
algexp[n][(y + w)A(x + 2 ) ] , 
algexp[n][(x + 2 1) (3 + y I)A(5 + 41)], 
algexp[n] [ (2x + y) + I (z w + u) ], 
algexp[n][Tan[xA2 + νΛ2]] }; 

Use method 7 to test the values. 

testAlgExp[7] 

{True, False, True, True, True, True, True, True, False} 

Now try all of them many times to get comparative timings. 

Table[ { method[n], 
Timing[Do[testAlgExp[n], {20}]][[1]] }, 

{n, 1, 7} ] 
{{method[1], 13.0833Second}, {method[2], 14.3167 Second}, 
{method[3], 17.75 Second}, {method[4], 13.2833 Second}, 
{method[5], 12.5667 Second}, {method[6], 6.65 Second}, 
{method[7], 3.25 Second}} 
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Thus, the first five methods are approximately the same, except for method 3 using Which that 
is definitely the worst. Method 7 is clearly the winner, being more than a half an order of 
magnitude faster than the slower methods. The pure rewrite rule method 6 is surprisingly fast. 
The actual order of the algorithms is 

7<6<5<1<4<2<3. 

It is curious that 5 is definitely faster than 4 and that 1 is faster than 2. One can get exactly the 
same comparative timing results by using a very large, deeply nested algebraic expression. 

exp = Nest[((xA#) #&), zA2, 8]; 
Table[Timing[algexp[n][exp]], {n, 1, 7}] 

{{9.11667 Second, True}, {10.1833 Second, True}, 
{13.2667 Second, True}, {9.21667 Second, True}, 
{8.9 Second, True}, {4.73333 Second, True}, 
{0.733333 Second, True}} 

Now method 7 appears to be an order of magnitude faster than the slower methods. Actually, 
of course, the first five methods probably are exponential while method 7 may be linear. The 
surprise is method 6 again. 

Problem 3 
Define a function countTheCharacters [ t e x t _ ] that takes a string t e x t and turns it into a 
list of characters. It then returns a list whose entries are pairs with first entry a character in the 
list and second entry the relative frequency of the occurrence of the character in text , 
expressed as a percentage of the total number of characters in t ext . You may want to use the 
definition of frequency in Chapter 6, Section 2.3. Try to put the list in order of decreasing 
frequency. 

3.1 The Procedure 

There are a number of things to worry about. First of all, we don't want to distinguish between 
lower and upper case letters. Fortunately, ToLowerCase makes all symbols lower case. Then, 
Characters turns a running text into a list. Secondly, we don't want to count punctuation 
marks, and again fortunately, the predicate LetterQ eliminates them. Then it's just a matter of 
counting the number of times each of the remaining symbols occurs and sorting the result 
nicely. 
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countTheCharacters[text_String] := 
With[ 

{chars = Select[Characters[ToLowerCase[text]], 
LetterQ[ToString[#]]&]}, 

Sort[Map[ 
{ #, 

N[Count[chars,#] 100/Length[chars] "%", 
3]}&, 

Union[chars] ], 
(#l[[2]]/"%" > #2[[2]]/"%")&] ]; 

An example. 

text = "Pascal is for building pyramids - imposing, 
breathtaking, static structures built by armies pushing heavy 
blocks into place. Lisp is for building organisms - imposing, 
breathtaking, dynamic structures built by squads fitting 
fluctuating myriads of simpler organisms into place."; 
countTheCharacters[text] 

{{i, 12.6 %}, {s, 9.96 %}, {t, 7.79 %}, {a, 7.79 %}, 
{r, 6.06 %}, {n, 6.06 %}, {u, 5.19 %}, {1, 4.76 %}, 
{g, 4.76 %}, {o, 4.33 %}, {p, 3.9 %}, {m, 3.9 %}, {e, 3.9 %}, 
{c, 3.9 %}, {b, 3.9 %}, {y, 2.6 %}, {d, 2.6 %}, {f, 2.16 %}, 
{h, 1.73 %}, {k, 1.3 %}, {v, 0.433 %}, {q, 0.433 %}} 

Problem 4 

Recreate the Pascal program "Stolen Gold" in Mathematica 

i) using a For loop, 
ii) using a While loop. 

iii) Change the one-liner so it prints out the same results as the Pascal program. It should 
still be a strict one-liner. 

Part 1. Here are all three forms of the translation of the Pascal program into Mathematica, using 
a Do loop, a For loop, and a While loop. In order to avoid repeating the same fragment of 
code three times we put it into a separate Module. 



Eight · Answers 609 

i fS ta tement [ t r ia l_ ] := 
Module[{divided}, 

I f [ Mod[trial , 3] == 1, 
divided = 2 Q u o t i e n t [ t r i a l , 3 ] ; 
I f [ Mod[divided, 3] == 1, 

divided = 2 Quotient[divided, 3 ] ; 
I f [ Mod[divided, 3] == 1, 

divided = 2 Quotient[divided, 3 ] ; 
I f [ Mod[divided, 3] == 1, 

Print[PaddedForm[trial, 3 ] , 
" i s a solut ion. 1 1 ] ] ] ] ] ] ; 

We compare timings for the three versions, editing out the Print statements from the second 
and third versions. 

Timing[ 
Module[ {TrialNumber}, 

Do[ ifStatement!TrialNumber], 
{TrialNumber, 1, 500} ] ]] 

79 is a solution. 
160 is a solution. 
241 is a solution. 
322 is a solution. 
403 is a solution. 
484 is a solution. 

{9. Second, Null} 
Timing [ 

Module[ {TrialNumber}, 
For[ TrialNumber = 1, 

TrialNumber <= 500, 
TrialNumber++, 
ifStatement!TrialNumber]]]] 

{9.45 Second, Null} 
Timing[ 

Module[ {TrialNumber = 0}, 
While[ TrialNumber++; TrialNumber <= 500, 

ifStatement[TrialNumber] ] ]] 
{9.6 Second, Null} 

As one might suspect, there is slightly less overhead in a Do loop than in the other versions. 
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Part 2. To make the one-liner print its solution just wrap Print [-, "is a solut ion" ] 
around the given one-liner and put a semicolon at the end. 

Timing[Map[ 
Print[PaddedForm[#, 3], " is a solution"]&, 
Select[ Range[500], 

And@@Map[ 
(# == 1)&, 
Mod[NestList[2 Floor[#/3]&, #, 3], 3]]& 

] ] ; ] 

{10,35 Second, Null} 

Unfortunately, it is the slowest of all. 

Problem 5 

Consider the two infinite sums with possible values 

'Là I0n 10 'Li 2n 99 
n=ì n=\ 

Here, a(n) is the number of odd digits in odd positions in the decimal expression for n. Thus, 
a(901) = 2, a(1234) = 0, a(4321) = 2, etc. Positions are counted from the right. At least one of the 
values is wrong and can be detected by a computation taking a reasonable length of time (i.e., 
< 10 seconds). Which one is definitely wrong. (Cf. [Borwein]) 

Answer: First define a(n) which is used in both of the strange sums. 

a[n_] := 
Module[{intdig = IntegerDigits[n]}, 
Length[ 
Select[ 
Delete[Reverse[intdig], 

Map[ List, 
2 Range[Floor[Length[intdig]/2]]]], 

OddQ]]]; 

For instance: 

a[324234501] 4 
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The first series. The first series is the following. 

series[k_] := N[Sum[a[n]/10An, {nf k}], k]; 
Check its value for various values of k. Since the series consists of positive terms, if the value 
ever exceeds the value of 10/99, then the claimed result is false. This first occurs at 
k = 100. 

series[100] 
0.101010101010101010101010101010101010101010101010101010101010\ 
1010101010101010101010101010101010101011 
N[10/99f 100] 
0.101010101010101010101010101010101010101010101010101010101010\ 
10101010101010101010101010101010101010101 
test[m_] := series[m] <= N[10/99, m]; 
t e s t [ 1 0 0 ] => Fa l se 

Clearly, the answer to the first series is wrong. 

The second series. Here is the second series. 

newSeries[k_] := N[Sum[a[2An]/2An, {n, k}], k/3]; 
No matter how far we go, the value is always slightly less than the value of 1/99. (This takes a 
long time.) 

newSeries[1000] 
0.010101010101010101010101010101010101010101010101010101010101X 
01010101010101010101010101010101010101010101010101010101010101\ 
01010101010101010101010101010101010101010101010101010101010101X 
OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIX 
01010101010101010101010101010101010101010101010101009397857239X 
351968725415446675343944215 
N[l/99, 100] 
O.OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIX 
010101010101010101010101010101010101010101 
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The evidence suggests that the answer is correct. According to [Borwein] it is. 

A third attempt. We make an attempt at another of the series discussed in [Borwein]. 

e[n_] := 
Module[{intdig= IntegerDigits[n]}, 

Reverse[intdig] · 
Table[(l/10)*j, {j, Length[intdig]}]]; 

e[1234567891011121314151617181921] 

1291817161514131211101987654321 

10000000000000000000000000000000 
N[%, 100] =»0.1291817161514131211101987654321 
newnewSeries[k_] : = 

N[Sum[e[n]/(n (n + 1)), {n, k}], k/100]; 
newnewSeries[500] => 0.23159 
newnewSeries[1000] => 0.2320870333 
newnewSeries[1500] => 0.232251712114929 
N[10/99 Log[10], 100] 

0.232584352827681382224039540877208505818293079659472017781\ 
1442324209669302704396444682825459686462928 

For 500 terms, the first two digits are correct. For 1000 terms, three digits are correct. The 
answer for 5000 terms never returned. It seems that this is computationally infeasible. 
Apparently it is necessary to keep the sum in exact form until the last step in order to avoid 
roundoff errors. According to [Borwein], the answer is correct. 

Problem 6 
* *$ί'>'**ά\&-Φ*»*&?» 

i) Write functions outShuf f l e and inShuf f l e taking as argument a list of even length 
and permuting it by an out shuffle and an in shuffle. 

ii) Determine the orders of outShuf f l e and inShuf f l e for n between 1 and 50; i.e., for 
decks consisting of 2 to 100 cards, by finding experimentally how many times they 
have to be repeated to put the deck back into its original order. Note: for n = 26, i.e., for 
an ordinary deck of 52 cards, orderOut[26] = 8 and orderIn[26] = 52. Plot 
these values as a function of 2 n. 
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iii) It is a theorem that the order of outShuf f i e for a deck of 2n cards is the smallest k 
such that 2k = 1 mod 2n - 1, and the order of inShuf f i e is the same as the order of 
outShuf f i e for a deck consisting of 2 more cards. Write functions calculating these 
numbers and compare these numbers with the experimental results for n between 1 
and 50. 

iv) It is known that the group generated by outShuf f i e and inShuf f i e is isomorphic 
to the group of all symmetries of the n-dimensional generalization of the octahedron. 
(See [1] and [2], p 226.) For n = 3, it is the group of all symmetries of the usual 
octahedron. Using the values of the orders of outShuf f i e [ 3 ] and inShuf f i e [ 3 ] , 
show that there are symmetries of the required orders. Is there a nice graphical 
illustration of this result? 

v) Generalize to the situation where a deck of 3n cards is divided into three equal parts 
which can then be shuffled perfectly in six different ways. 

6.1 outShuffle and inShuffle 
First define outShuff le and inShuff le . The command Thread, when flattened, does the 
actual shuffling. 

outShuffle[deck_List /; EvenQ[Length[deck]]] := 
Flatten[Thread[ { Take[deck, Length[deck]/2], 

Take[deck, -Length[deck]/2] }]]; 
inShuffle[deck_List /; EvenQ[Length[deck]]] := 

Flatten[Thread[ { Take[deck, -Length[deck]/2], 
Take[deck, Length[deck]/2] }]]; 

For instance: 

outShuffie[Range[16]] 

{1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15, 8, 16} 

inShuffle[Range[16]] 

{9, 1, 10, 2, 11, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8} 

6.2 The Experimental Orders of out shuf f le 
and inShuffle 

If outShuff le or inShuff le is iterated often enough, the deck must ultimately be brought 
back to its original order, since the group of all permutations is a finite group. Find the order of 
outShuffle in a deck with 2n cards. Since we don't know what the order is, we use a While 
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loop that continues until we find the identity permutation. It is known that the group 
generated by outShuf f l e and inShuf f l e acts transitively on the deck and is the same as 
the group of symmetries of the n-octahedron. 

outOrder[n_Integer7; P o s i t i v e [ n ] ] := 
Module[ 

{num = 1, out = outShuffie[Range[2 n ] ] } , 
While[ out =!= Range[2 n ] , 

out = outShuf f ie [out ] ; num++]; 
num] ; 

inOrder[n_Integer/; P o s i t i v e [ n ] ] := 
Module[ 

{num = 1 , in = inShuffie[Range[2 n ] ] } , 
While[ in = ! = Range[2 n ] , 

in = i n S h u f f i e [ i n ] ; num++]; 
num] ; 

Calculate the answers for the case of an ordinary deck of cards where n = 26; i.e., 2n = 52. 

{outOrder[26], inOrder[26]} => {{8}, {52}} 

Thus, if a perfect out shuffle is performed 8 times, an ordinary deck is returned to its original 
order, while it takes 52 in shuffles for the same effect. Now calculate out orders and in orders 
for even numbers of cards up to 100. 

outOrdersUpTo[m_] := 
Map[Flatten, Table[{2 n, outOrder[n]}, {n, m}]]; 

ListPlot[outOrdersUpTo[50], PlotJoined -> True]; 

80 

60 

40 

20 

20 40 60 80 100 
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inOrdersUpTo[m_] := 
Map[Flatten, Table[{2 n, inOrder[n]}, {n, m}]]; 

ListPlot[inOrdersUpTo[50], PlotJoined -> True]; 

100 

100 
For both, the order apparently is less than or equal to 2n. From the values it seems clear that 
the orders of inShuf f l e are equal to those of outShuf f l e shifted by 2. It is known in fact 
that the order of outShuf f i e is less than or equal to 2n - 2 and the order of inShuf f i e is 
less than or equal to 2n. 

6.3 Some Experiments 

The isomorphism with the symmetries of the n octahedron is based on the fact that every such 
permutation is centrally symmetric, as illustrated below. 

symdeck = Join[ Table[a[i], {i, 10}], 
Reverse[Table[b[i], {i, 10}]]] 

{ a[l], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], 
b[10], b[9], b[8], b[7], b[6], b[5], b[4], b[3], b[2], b[l]} 

outShuffie[symdeck] 

{a[l], b[10], a[2], b[9], a[3], b[8], a[4], b[7], a[5], b[6], 
a[6], b[5], a[7], b[4], a[8], b[3], a[9], b[2], a[10], b[l]} 

outShuffle[%] 

{all], a[6], b[10], b[5], a[2], a[7], b[9], b[4], a[3], a[8], 
b[8], b[3], a[4], a[9], b[7], b[2], a[5], a[10], b[6], b[l]} 
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6.4 The Theoretical Orders ö/Outshuf f le 
and inShuffle 

These calculations are done easily using a While loop. 

outOrderCalc[n_] := 
Module[ {k = 1 } , 

I f [ n == 1, 1, 
While[Mod[2*k, 2n - 1] =!= 1, k++]; k]]? 

inOrderCalc[n_] := 
Module[ {k = 1}, 

While[Mod[2Ak, 2n + 1] =!= 1, k++]; k]; 
{outOrderCalc[26], inOrderCalc[26]} => {8, 52} 

They can also be written in functional form using FixedPoint . 

outOrderCalcFun[n_] := 
FixedPoint[If[Mod[2/v#/ 2n - 1] =!= 1, #+1, #]&, 1]; 

inOrderCalcFun[n_] := 
FixedPoint[If[Mod[2A#, 2n + 1] =!= 1, #+1, #]&, 1]; 

{outOrderCalcFun[26], inOrderCalcFun[26]} => {8, 52} 

To check if this agrees with the experimental results, calculate many values. 

outOrdersCalcUpTo[m_] := 
Map[{2 #, outOrderCalc[#]}&, Range[m]]; 

inOrdersCalcUpTo[m_] := 
Map[{2 #, inOrderCalc[#]}&, Range[m]]; 

outTest[m_] := outOrdersUpTo[m] === outOrdersCalcUpTo[m]; 
inTest[m_] := inOrdersUpTo[m] === inOrdersCalcUpTo[m]; 
{outTest[50], inTest[50]} => {Truef True} 

Problem 7 

It is a non-trivial result in number theory that every positive integer can be written as the sum 
of four squares. (Zero is allowed as one of the summands.) 

i) Write a program to find one such representation for each positive integer. 
ii) Write a program that finds all such representations for each positive integer. Use it to 

find all integers between 1 and 1000 that are not sums of three squares. 
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iii) Not all integers can be written as the sum of four distinct non-zero integers. Find all 
integers between 1 and 1000 that don't have such a representation. (Warning: this takes 
40 minutes on a SPARC workstation.) 

7. / Find One Representation 

7.1.1 The procedure 
The following procedure is optimized to find one representation of n as a sum of four squares. 
Originally it was written with a For loop, but a Do loop seems to be simpler. The purpose of 
the Return statement is to break out of the loop as soon as a solution is found. The program is 
developed in three steps. First find a representation of an integer n as a sum of two squares, if 
it exists. For this, it is sufficient to search for an integer i between Floor [N[Sqrt [n/2] ] ] 
and Floor [ N [ Sqrt [ n ] ] ] such that n - i 2 is the square of an integer. It is most efficient to 
start at the bigger value and step down. Then find a representation of n as a sum of three 
squares, if it exists, by searching for an integer i between Floor [N [ Sqrt [n/3] ] ] and 
Floor [N[Sqrt [n] ] ] such that n - i 2 is the sum of two squares. Finally, find a 
representation of n as a sum of four squares by searching for an integer i between 
Floor [ N [ Sqrt [ n/4 ] ] ] and Floor [ N [ Sqrt [ n ] ] ] such that n - i 2 is the sum of three 
squares. This is guaranteed to exist. 

sumOfTwoSquares[n_Integer] := 
Module[ 

{ i , t r i a l } , 
Do[ trial = Sqrt[n - iA2]; 

If[IntegerQ[trial], Return[{i, trial}]], 
{i, Floor[N[Sqrt[n]]], Floor[N[Sqrt[n/2]]],-1}]]; 

sumOfThreeSquares[n_Integer] := 
Module[ 

{i, trial}, 
Do[ trial = sumOfTwoSquares[n - iA2]; 

If[trial=!=Null, Return[Flatten[{i, trial}]]], 
{i, Floor[N[Sqrt[n]]], Floor[N[Sqrt[n/3]]],-1}]]; 

sumOfFoursquares[n_Integer] := 
Module[ 

{i, trial}, 
Do[ trial = sumOfThreeSquares[n - iA2]; 

Iff trial =!= Null, 
Return[Flatten[{i, trial}]]], 

{i, Floor[N[Sqrt[n]]], Floor[N[Sqrt[n/4]]],-1}]]; 
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7.1.2 Examples 

sumOfTwoSquares[5] => {2, 1} 

sumOfThreeSquares[14] => {3, 2, 1} 

sumOfFourSquares[1000] => {30, 10, 0, 0} 

Table[{i, sumOfFourSquares[i]}, {i, 150, 183, 3}] 

{{150, {12, 2, 1, 1}}, {153, {12, 3, 0, 0}}, 
{156, {12, 2, 2, 2}}, {159, {11, 6, 1, 1}}, 
{162, {12, 4, 1, 1}}, {165, {12, 4, 2, 1}}, 
{168, {12, 4, 2, 2}}, {171, {13, 1, 1, 0}}, 
{174, {13, 2, 1, 0}}, {177, {13, 2, 2, 0}}, 
{180, {13, 3, 1, 1}}, {183, {13, 3, 2, 1}}} 

Timing[sumOfFoursquares[16720845]] 

{1.86667 Second, {4088, 94, 16, 3}} 

This procedure is very fast, but the results are boring for small numbers since the first entry is 
almost always the largest integer whose square is less or equal to n. The following finds all 
integers between 1 and 1000 that are not sums of three squares. 

Map[ #[[1]]&, 
Select[ Table[{i, sumOfThreeSquares[i]}, 

{i, 1, 1000}], #[[2]] ===Null&]] 

We suppress the output because of its length. There are 165 such numbers. 

7.2 Find All Representations 

7.2.1 The procedure 
These functions work in a somewhat different way. It takes much longer to find all 
representations. In this case we have written functional programs, but the strategy is the same 
as before. The procedure twoSquares is implemented using Fold, but the other two seem to 
be possible only by mapping an operation down the list of relevant values. The output from 
foursquares is a list consisting of all representation of n as a sum of four squares. A 
procedure for checking the output is provided. 
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t w o S q u a r e s [ n _ I n t e g e r ] := 
Fo ld[ 

I f [ I n t e g e r Q [ S q r t [ n - # 2 * 2 ] ] , 
Append[# l f { # 2 , S q r t [ n - # 2 * 2 ] } ] , #1]&, 

{ } , 
Range[Floor[N[Sqrt[n/2]]], Floor[N[Sqrt[n]]]]]; 

threeSquares [ n__Integer ] : = 
Union[Flatten[ 

Cases[ 
Map[ {#, twoSquares[n - #*2]}&, 

Range[ Floor[N[Sqrt[n/3]]], 
Floor[N[Sqrt[n]]]]], 

{a_Integer, bJList} /; b =1= {} ] /. 
{a_Integer, b_List} :> 

Map[Sort[Flatten[{a, #}]]&, b], 
i]]; 

foursquares [ n__Integer ] : = 
Union[Flatten[ 

Cases[ 
Map[ {#, threeSquares[n - fA2]}&, 

Range[ Floor[N[Sqrt[n/4]]], 
Floor[N[Sqrt[n]]]]], 

{a_Integer, b_List} /; b =!= {} ] /· 
{a_Integer, b_List} :> 

Map[Reverse[Sort[Flatten[{a, #}]]]&, b], 
i]]; 

checkRep[list_List] := Map[Plus@@(#*2)&, list]; 

7.2.2 Examples 

For instance: 

twoSquares[25] => {{3, 4}, {4, 3}, { 
checkRep[%] => {25, 25, 25} 
foursquares[102] 

{{6, 5, 5, 4}, {7, 6, 4, 1}, {7, 7, 2, 0}, {8, 5, 3, 2 
{8, 6, 1, 1}, {9, 4, 2, 1}, {10, 1, 1, 0}} 
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checkRep[%] => {102f 102, 102, 102, 102, 102, 102} 
Table[foursquares[n], {n, 71, 75}]//MatrixForm 
{{6, 5, 3, 1}, {7, 3, 3, 2}}, 
{{6, 4, 4, 2}, {6, 6, 0, 0}, {8, 2, 2, 0}}, 
{{5, 4, 4, 4}, {6, 6, 1, 0}, {7, 4, 2, 2}, {8, 2, 2, 1}, 
{8, 3, 0, 0}} 

{{6, 5, 3, 2}, {6, 6, 1, 1}, {7, 4, 3, 0}, {7, 5, 0, 0}f 
{8, 3, 1, 0}} 

{{5, 5, 4, 3}, {5, 5, 5, 0}, {7, 4, 3, 1}, {7, 5, 1, 0}, 
{8, 3, 1, 1}} 

Timing[foursquares[3456]] 
{81.5 Second, 
{{40, 32, 24, 16}, {40, 40, 16, 0}, {48, 24, 24, 0}, 
{48, 32, 8, 8}, {56, 16, 8, 0}}} 

73 Sums of Distinct Squares 
Some, but not all, numbers are the sum of four distinct, non-zero squares. Our representations 
are always in decreasing order so the following predicate picks out the distinct 
representations. 

distinctQ[list_List] ;= 
list[[l]] > list[[2]] > list[[3]] > list[[4]] > 0; 

distinctSquares[n_Integer] := 
Select[foursquares[n], distinctQ] 

distinctSquares[102] 
{{7, 6, 4, 1}, {8, 5, 3, 2}, {9, 4, 2, 1}} 

The following takes a long time to calculate. The output is suppressed since it is over 50 pages 
long. 

distinctRepresentations = 
Table[{n, distinctSquares[n]}, {n, 1, 1000}]; 

Once all distinct representations have been calculated, then information can be extracted from 
the table without actually displaying it all. The following finds all numbers between 1 and 
1000 that have no representation as a sum of four distinct non-zero squares. 
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noRepresentations = 
Map[ #[[1]]&, 

Select[ distinctRepresentations, 
(#[[2]] === {})&] 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 
36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 55, 56, 
58, 59, 60, 61, 64, 67, 68, 69, 72, 73, 76, 77, 80, 82, 83, 88, 
89, 92, 96, 97, 100, 101, 103, 104, 108, 112, 115, 124, 128, 
132, 136, 144, 148, 152, 157, 160, 168, 172, 176, 188, 192, 
208, 220, 224, 232, 240, 256, 268, 272, 288, 292, 304, 320, 
328, 352, 368, 384, 388, 400, 412, 416, 432, 448, 496, 512, 
528, 544, 576, 592, 608, 640, 672, 688, 704, 752, 768, 832, 
880, 896, 928, 960} 

Problem 8 
Here are the results of a student's investigations of magic squares. No attempt has been made 
to improve the procedures. Can these be replaced by functional programs? 

8.1 Odd Order Magic Squares 
oddMagicSquare[n_]:= 
Module[ 

{basicList = Table[0, {n}, {n}], k}, 
Do[ 

basicList[[ 
Mod[l - k + 2 Floor[(k-l)/n], n]+l, 
Mod[l/2 (n-3)+k-Floor[(k-l)/n], n]+l]] = k, 

{k, ηΛ2}]; 
basicList // TableForm]; 

value[n_] := n (ηΛ2 + 1) / 2; 

oddMagicSquare[5] 

17 
23 
4 
10 

24 
5 
6 
12 

1 
7 
13 
19 

8 
14 
20 
21 

15 
16 
22 
3 

11 18 25 
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Sura[oddMagicSquare[5][[1, 1, i]], {i, 5} ] == 
value[5] 

True 

8.2 Double Even Order Magic Squares 
doubleEvenMagicSquare[n_]:= 

Module[ 
{basicSquare = Table[0, {n}, {n}], i, j, k, p, q, 

auxiliarySquare, square}, 
Do[ basicSquare[[1, i]] = 

{i, n+l-i}[[Random[Integer, {1, 2}] ]], 
{i, n/2} ]; 

Do[ basicSquare[[1,j]] = 
n + 1 - basicSquare[[1, n+1-j]], 

{j, n/2 + lf n}]; 
Do[ bas icSquare[[k]] = basicSquare[[1]], 

{k, n/2 - 1}]; 
Do[ basicSquare[[p]] = n + 1 - basicSquare[[p-1]], 

{p, 2, nil, 2}]; 
Do[ basicSquare[[q]] = basicSquare[[n + 1 - q]], 

{q, n/2 + 1, n}]; 
auxiliarySquare = 

Flatten[Map[ {(# - 1) n}&, 
Transpose[basicSquare]], 1]; 

square [ i__, j_] : = 
basicSquare[[i, j]] + auxiliarySquare[[i, j]]; 

Table[square[i, j], {i, n}, {j, n}] // 
TableForm]; 

doubleEvenMagicSquare[4] 

64 
9 
48 
25 
33 
24 
49 
8 

2 
55 
18 
39 
31 
42 
15 
58 

62 
11 
46 
27 
35 
22 
51 
6 

4 
53 
20 
37 
29 
44 
13 
60 

5 
52 
21 
36 
28 
45 
12 
61 

59 
14 
43 
30 
38 
19 
54 
3 

7 
50 
23 
34 
26 
47 
10 
63 

57 
16 
41 
32 
40 
17 
56 
1 

Sum[%[[l, i]], {i, 8}] == value[8] => True 
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simplify 14 
Simultaneous equations 17, 79 
Sin 19 
S l U n i t s 55 
Skeel, Robert D. 70 
Skiena, Steven xvi, 426 
S l o t 148 
Smalltalk 281 
Solids of revolution 

optional arguments 371 
Solutions of differential equations 
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theoreml 477 
theoremT 476 
Thickness 121, 310 
ThomsonCrossSection 56 
Thread 161 
three 391 
threeSquares 619 
Through 173,194, 572 
Ticks 121 
Times 146 
ToCharacterCode 193 
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