
P1: / P2:

May 10, 2002 17:36 Foley Foley-FM



P1: / P2:

May 10, 2002 17:36 Foley Foley-FM

An Introduction to Chemical
Engineering Analysis Using

Mathematica



P1: / P2:

May 10, 2002 17:36 Foley Foley-FM

An Introduction to 
Chemical Engineering 

Analysis Using 
Mathematica 

Henry C. Foley 
The Pennsylvania State University 

University Park, PA 

San Diego San Francisco New York Boston 
London Sydney Toronto Tokyo 



P1: / P2:

May 10, 2002 17:36 Foley Foley-FM

∞This book is printed on acid-free paper. �

Copyright 2002, Elsevier Science (USA) 

All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system,
without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to: Permissions
Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887-6777.

Academic Press
An imprint of Elsevier Science 
525 B Street, Suit 1900, San Diego, California 92101-4495, USA 
http://www.academicpress.com 

Academic Press 
An imprint of Elsevier Science 
Harcourt Place, 32 Jamestown Road, London NWI 7BY, UK 
http://www.academicpress.com 

Library of Congress Catalog Card Number: 00-2001096535 

International Standard Book Number: 0-12-261912-9 

PRINTED IN THE UNITED STATES OF AMERICA 
02  03  04  05  06  MV 9 8 7 6 5 4 3 2 1  



P1: / P2:

May 10, 2002 17:36 Foley Foley-FM

For Karin, Erica, and Laura 



1 A Primer of Mathematica ........................................... 1

1.1 Getting Started in Mathematica .......................................... 1

1.2 Basics of the Language ...................................................... 1

1.3 Simple Commands ............................................................. 2

1.4 Table, Plot, Map, and Plot3D .............................................. 3

1.5 Lists and ListPlot, Fit, and Show......................................... 30

1.6 Solve and NSolve ............................................................... 39

1.7 Differentiate and Integrate .................................................. 43

1.8 DSolve ................................................................................ 46

1.9 NDSolve.............................................................................. 52

1.10 Units Interconversion ........................................................ 56

1.11 Summary .......................................................................... 58

2 Elementary Single- Component Systems ................ 59

2.1 The Conservation of Mass Principle and the Concept of
a Control Volume ...................................................................... 59

2.2 Geometry and the Left-Hand Side of the Mass Balance
Equation.................................................................................... 87

2.3 Summary ............................................................................ 112

3 The Draining Tank and Related Systems................. 113

3.1 The Right-Hand Side of the Mass Balance Equation ......... 113

3.2 Mechnaism of Water Flow from Tank - Torricelli’s Law,
A Constitutive Relationship ....................................................... 114

3.3 Experiment and the Constitutive Equation.......................... 116

3.4 Solving for Level as a Function of Time.............................. 124

3.5 Mass Input, Output, and Control ......................................... 125



3.6 Control ................................................................................ 143

3.7 Summary ............................................................................ 150

4 Multiple-Component Systems................................... 151

4.1 The Concept of the Component Balance............................ 151

4.2 Concentration versus Density ............................................. 153

4.3 The Well-Mixed System...................................................... 154

4.4 Multicomponent Systems.................................................... 154

4.5 Liquid and Soluble Solid ..................................................... 163

4.6 Washing a Salt Solution from a Vessel............................... 175

4.7 The Pulse Input Tracer Experiment and Analysis............... 180

4.8 Mixing ................................................................................. 187

4.9 Summary ............................................................................ 203

5 Multiple Phases-Mass Transfer................................. 205

5.1 Mass Transfer versus Diffusion .......................................... 206

5.2 Salt Dissolution ................................................................... 207

5.3 Batch................................................................................... 209

5.4 Fit to the Batch Data ........................................................... 214

5.5 Semicontinuous: Pseudo Steady State .............................. 218

5.6 Full Solution ........................................................................ 220

5.7 Liquid-Liquid System .......................................................... 225

5.8 Summary ............................................................................ 248

6 Adsorption and Permeation ...................................... 249

6.1 Adsorption........................................................................... 249

6.2 Permeation ......................................................................... 263



6.3 Permeation-Adsorption and Diffusion ................................. 263

6.4 Expanding Cell .................................................................... 282

6.5 Summary ............................................................................ 296

7 Reacting Systems-Kinetics and Batch Reactors .... 297

7.1 How Chemical Reactions Take Place................................. 298

7.2 No-Flow/Batch System ....................................................... 301

7.3 Simple Irreversible Reactions - Zeroth to Nth Order........... 303

7.4 Reversible Reactions - Chemical Equilibrium..................... 317

7.5 Complex Reactions............................................................. 328

7.6 Summary ............................................................................ 360

8 Semi-Continuous Flow Reactors .............................. 363

8.1 Introduction to Flow Reactors ............................................. 363

8.2 Semicontinuous Systems ................................................... 365

8.3 Negligible Volume Change ................................................. 366

8.4 Large Volume Change ........................................................ 373

8.5 Pseudo-Steady State .......................................................... 379

8.6 Summary ............................................................................ 382

9 Continuous Stirred Tank and the Plug Flow
Reactors ......................................................................... 383

9.1 Continuous Flow-Stirred Tank Reactor............................... 383

9.2 Steady-State CSTR with Higher-Order, Reversible
Kinetics ..................................................................................... 387

9.3 Time Dependence - The Transient Approach to
Steady-State and Saturation Kinetics ....................................... 392

9.4 The Design of an Optimal CSTR ........................................ 401



9.5 Plug Flow Reactor .............................................................. 407

9.6 Solution of the Steady-State PFR....................................... 410

9.7 Mixing Effects on Selectivities - Series and
Series-Parallel with CSTR and PFR ......................................... 418

9.8 PFR as a Series of CSTRs ................................................. 424

9.9 Residence Time Distribution ............................................... 435

9.10 Time-Dependent PFR-Complete and Numerical
Solutions ................................................................................... 451

9.11 Transient PFR................................................................... 452

9.12 Equations, Initial Conditions, and Boundary Conditions ... 452

9.13 Summary .......................................................................... 457

10 Worked Problems..................................................... 459

10.1 The Level-Controlled Tank ............................................... 459

10.2 Batch Competitive Adsorption .......................................... 467

10.3 A Problem in Complex Kinetics ........................................ 474

10.4 Transient CSTR ................................................................ 478

10.5 CSTR-PFR - A Problem in Comparison and Synthesis .... 482

10.6 Membrane Reactor - Overcoming Equilibrium with
Simultaneous Separation.......................................................... 488

10.7 Microbial Population Dynamics......................................... 496

Index ............................................................................... 505



P1: / P2:

May 10, 2002 17:36 Foley Foley-FM

Preface for an Instructor

This book is an experiment. To be precise, the book is not an experiment, but the approach 
of introducing and employing new concepts of chemical engineering analysis, concurrently 
with new concepts in computing, as is presented within this book, is experimental. Usually, 
the student of a first course in chemical engineering is presented with material that builds 
systematically upon engineering concepts and the student works within this linear space to 
“master” the material. In fact, however, the process is never so linear. For example, mathe
matics, in the form of geometry, algebra, calculus and differential equations, is either dredged 
back up from the student’s past learning to be employed practically in the solution of material 
and energy balance problems or new math methods are taught along the way for this purpose. 
In fact a good deal of “engineering math” is taught to students by this means and not just at 
this introductory level — as it should be. 

Therefore the critic might suggest that teaching computing simultaneously with introduc
tory engineering concepts is not new, and instead simply adds, from the students’ perspective, 
to the list of apparently “extra items” we already teach in a course and subject such as this 
one. That would be a fair criticism, if that were how this book had been designed. Fortunately, 
this book is intentionally not designed that way, but is instead designed with engineering 
and computing fully integrated — that is, they are introduced concurrently. I have purposely 
sought to avoid the simple addition of yet another set of apparently non-core learnings on top 
of the already long list of core learnings, by carefully staging the introduction of new com
puting methods with those of new types of engineering problems as they are needed. In this 
way the computing level rises with the engineering level in order to match the requirements 
of the problem at hand. Furthermore, the computing is not relegated to “gray boxes” or just to 
certain problems at the end of the chapter, but is integrated into the very text. By proceeding 
this way one actually leads the student and reader through a two-space of engineering and 
computing concepts and their application, both of which then reinforce one another and grow 

xiii 



P1: / P2:

May 10, 2002 17:36 Foley Foley-FM

xiv Preface for an Instructor 

in sophistication with the complexity of the problem under consideration. However, this does 
not escape the fact that I have woven into the fabric of purely engineering material the new 
fibers of this computing. Why would I do so? 

Simply put — I see many benefits to this approach, but will enumerate only a few. One 
major goal of the first course is to enable students to begin to do analysis. Doing so requires 
a formidable integration of skills from reading comprehension to physical conceptualization 
on through to mathematics and computing, and the student must do this and then run it all 
back out to us in a form that proves that he or she understood what was required. No wonder 
then that this first course is for many the steepest intellectual terrain they will encounter in 
the curriculum. It is simply unlike anything they have been called upon to do before! The 
student needs to be able to conceive of the physical or chemical situation at hand, apply the 
conservation of mass principle to develop model equations, seek the best method to assemble 
a solution to the equations and then test their behavior, most preferably against experiment, 
but short of that against logic in the limit cases of extremes of the independent variables or 
parameters. The first steps in this process cannot be facilitated by computing — the students 
must learn to order their thinking in a fashion consistent with modeling, that is, they must 
learn to do analysis. However, computing in the form of a powerful program such as Math
ematica can facilitate many of the steps that are later done in service of the analysis. From 
solving sets of equations to graphically representing the solutions with systematic variations 
in initial conditions and parameters, Mathematica can do this better than a human computer 
can. So a major goal of the approach is to introduce computing and especially programming 
as a tool at an early stage of the student’s education. (Early does not imply that the student be 
young. He or she could be a professional from another discipline, e.g., organic chemistry or 
materials science, who is quite experienced, but the material covered here may nonetheless be 
quite new to them and hence their learning is at an early stage.) The reason this is desirable is 
simple — programming promotes ordered thinking. Aside from the fact that computer codes 
allow us to do more work faster, this is typically hardly relevant to the beginning student for 
whom virtually every problem looks new and different, even if a more experienced eye sees 
commonality with previous problems, and for whom the problem rarely is number crunching 
throughput. Instead, the real incentive for learning to program is that in writing a few lines 
of code to solve a problem, one learns what one really does or does not know about a prob
lem. When we seek to “teach” that to our CPU, we find our own deficiencies or elegancies, 
whichever the case may be, and that makes for good learning. Thus, ordering or disciplining 
one’s thinking is the real advantage of programming in this way from an early stage — at 
least in my opinion. This need for ordered thinking is especially the case as the problems 
become more complex and the analyses tougher. By learning to program in the Mathematica 
environment, with its very low barriers to entry and true sophistication, one can carry over 
this ordered thinking and the methodologies it enables into other programming languages 
and approaches. In fact, it can be done nearly automatically for any piece of code written in 
Mathematica and which needs to be translated into C or Fortran code, etc. Computing and 
analysis begin to become more natural when done together in this way and the benefit is  
better thinking. Finally, I mentioned communication earlier as the last step in the process of 
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analysis: I think that the Mathematica notebook makes an excellent medium for collecting one’s 
thoughts and then communicating them back for others to read, understand, and even work 
with interactively. 

In describing the approach, I have alluded to the benefits of Mathematica from my vantage 
and it seems appropriate at this point both to enlarge on this and give my reasons for choosing 
this program over others for the work we will do here. Mathematica is an astounding advance 
in computing. Within one environment one can do high-level symbolic, numeric and graphical 
computations. At the lowest level of sophistication it makes the computer accessible to anyone 
who can use a calculator and at its most sophisticated — it is a powerful programing language 
within which one can write high-level code. The width of the middle it provides between these 
two ends of the spectrum — computer as calculator and high-level production computing — is 
remarkable and worth utilizing more effectively. Beyond traditional procedural programming, 
one can use Mathematica to write compact, efficient, functional and rule-based code that is 
object oriented and this can be achieved with very little up-front training. It comes naturally 
as one uses the tool more completely. This functional and rule-based coding is a computational 
feature that truly makes the computer into the engineer’s electronic work pad with Mathematica 
always present as the mathematical assistant. However, if one is to rely on an assistant then it 
better be a reliable assistant and one who can articulate reasons for failure when it cannot do 
something you have asked it to do. Mathematica is both. We have found that certain seemingly 
naive integrations that arise, for example, in the case of the gravity-driven flow from a draining 
tank can go awry in some programs when we attempt to solve these analytically and over 
regions in which they have discontinuities. When this happens students are rightly angry — 
they expect the software to get it right and to protect them from dumb mistakes; unfortunately, 
this is a serious mistake to make. This is one of the many fallacies I seek to hammer out of 
students early on because one has to test every solution the computer gives us in just the 
same ways we test our own hand-derived solutions. Yet we also do not want to find that we 
have to redo the computer’s work — we want only to have to check it and hopefully go on. 
Both those graduate students who have worked with me as teaching assistants and I have 
found that Mathematica gave either inevitably reasonable results and comments as part of a 
problematic output or nothing at all — meaning the input was echoed back to us. The good 
news is that it is also relatively easy to check analytical solutions by the tried and true method 
of substituting back into the equation when using Mathematica. Otherwise daunting amounts 
of algebra are then a breeze and we never see it, unless we choose to, but the logical operations 
assure us that when the left-hand side equals the right-hand side we have arrived at a good 
solution. 

An important outcome of this is that we can maintain continuity with the past within 
Mathematica, especially version 4.0 and beyond, in a way that is explicit and not achievable 
with packages that do only numerical computing. Mathematica does symbolic computing very 
well, better in fact than many (all?) of its human users. Although Mathematica is not the first 
symbolic computing package, it is one of the easiest to use and it is certainly the most advanced. 
Problems in analysis that were too tough to tackle analytically in the past can in many cases 
literally be solved now. However, the symbolic computing that made Mathematica so special 
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is also well integrated with very powerful new numerical methods, which when combined 
with outstanding graphics capabilities create a complete computing environment. Hence a 
problem can be structured in such a way that by virtue of the constraints imposed it is readily 
soluble analytically, probably even by hand. But when the constraints are relaxed partially, the 
problem can still be solved analytically, but not readily by hand. Finally, the constraints can 
be nearly or fully removed and the problem admits no analytical solution, but is readily done 
numerically, which is almost as easy to convert to as is the procedure of changing from the 
statement DSolve to NDSolve. There are numerous examples of this kind in various contexts 
throughout the chapters of this book. 

It is also worth mentioning what this book is not. It is not a book on Mathematica per se. 
There are many fine examples of this genre that have titles such as Mathematica for the Scientist, 
Mathematica for the Engineer, or  Learning Mathematica from the Ground Up, all of which have 
already been published and are very well done. The most authoritative text on Mathematica 
is The Mathematica Book, by Steven Wolfram, so go to it when you need to do so. Remember 
that the Help menu will bring that book and other information directly to your monitor at 
any time. On the other hand, it is anticipated that many of the readers of this book will 
be tyros and will need some introduction to Mathematica. This is done in Chapter 1, which 
is in the form of a separate stand-alone primer at the beginning of the text. I have found 
that students and faculty who have read and used this chapter like it very much as a quick 
introduction. Through the next nine chapters new and more sophisticated Mathematica tools 
and programming techniques are introduced. Early on we are happy to have the student set 
up the models and run them interactively, employing a rudimentary toolset and the computer 
as a super-sophisticated calculator. By Chapter 8 the reader is encouraged to program at 
a more sophisticated level using, for example, Module, so that many calculations can be 
done, as well as rapidly and noninteractively through a wide range of parameter space. In 
the middle chapters tools are used that include solving differential equations analytically as 
well as numerically, solving sets of algebraic equations, also analytically and numerically, 
fitting models to data using linear and nonlinear regression routines, developing appropriate 
graphical displays of results, and doing procedural, functional and rule-based programming, 
and much, much more. Remember, however, that this is only the computing, and that we are 
also teaching engineering at the same time — so what is that content? 

On the engineering content side, Chapter 2 begins with the word statement of the con
servation of mass and its equivalent mathematical statement in the form of a rate equation. 
In teaching this material, it has been my experience that the conservation of mass needs to be 
introduced as a rate equation with proper dimensional consistency and not as a statement of 
simple absolute mass conservancy. Moreover, this must be done literally from day one of the 
course. The reasons are purely pedagogical. If mass conservation is introduced in terms that 
are time independent per the usual, then problems arise immediately. When rate equations are 
what is actually needed, but the statement has been learned in non-rate terms, there is an im
mediate disconnect for many students. The problems that come of this are readily predictable 
and usually show up on the first quiz (and often, sadly, on subsequent ones) — rate terms are 
mixed with pure mass terms, products of rates and times are used in place of integrals etc. 
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Therefore I do not start with the classical steady-state approach, but instead with rates and 
proceed to the steady state when it makes sense to do so, as a natural outcome of long-time 
behavior in a system with fixed inputs and outputs. From very simple examples of single com
ponent systems one can move to more complex problems including time-dependent flows and 
unique control volume geometries. Aside from being good fun, easy to visualize and down
right interesting (Egyptian water clock design for instance), these problems accomplish two 
important goals: (1) they exercise the calculus while integrating in geometry and algebra; and 
(2) by design they focus on the left-hand side versus the right-hand side of mass balance rate 
equations. This works well too because it begins to build in the student’s mind a sense of 
the real linkage between the physicality of the system and its mathematical description and 
where in the equations we account for issues of geometry versus those of mechanism of flow 
for example — a topic we cover explicitly in the subsequent chapter. The goal of this chapter 
and indeed the entire text is not just to assemble and solve these equations, but literally to 
“read” the mathematics the reader or someone else has written and in such a way that the 
equation or equations will tell you something specific about the system and that it will “say” 
what you want it to “say.” 

We rarely take the time in engineering to develop topics from an historical perspective — 
which is too bad. Our history is every bit as rich and the characters involved as interesting as 
any of those our colleagues in the humanities discuss. Why not talk about Fourier in Egypt 
with Napoleon for a little while when dealing with heat transport, or Newton’s interesting and 
albeit bizarre fascination with the occult and alchemy, when discussing catalytic kinetics and 
diffusion? Doing so humanizes engineering, which is appropriate because it is as human an 
endeavor as philosophizing, writing, painting, or sculpting. Thus, Chapter 3 is an indulgence 
of this kind. From what I know of the story of Torricelli, his was a fascinating life. He was 
something like a modern Post-Doctoral Fellow to Galileo. He did for falling fluids what Galileo 
did for falling bodies, and of course so much more — which is fun to talk about because all of 
this was accomplished before Newton came along. In this chapter I take license in the way I 
present the “results” of Torricelli’s experiments and his “work-up” of the data, but in essence 
it could not have been too far from this sort of thing — just a bit more grueling to do. I also 
find that this example works. It gets across the linkage between calculus and measurements in 
time — a linkage that is real and entirely empirical, but lost in much of our formal teaching of 
calculus. More important, we talk for the first time about the right-hand side and the fact that 
the mechanism of the flow or mass movement appears on this side of the equations. It also is 
the time and place to discuss the idea that not everything we need to complete a model comes 
to us from theoretical application of the conservation principle and that we may have to resort 
to experiment to find these missing pieces we call the constitutive relationships. Finally, we 
link the fundamental physics that students already know about falling bodies in a gravita
tional field to this topic through the conservation of energy. This shows that by applying 
a second and perhaps higher-order conservation principle to the problem, we could have 
predicted much of what we learned about Torricelli’s law empirically, but Torricelli did not 
have the vantage point of four hundred years of Newtonian physics from which to view the 
problem. 
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To this point the problems have been rich, but lacking in the complexity that multiple 
components bring — namely multiple equations and eventually multiple coupled equations. 
Thus Chapter 4 introduces component material-balance rate equations. Much care is taken 
to present these equations as a subset which must sum to the overall material balance rate 
equation. The discussion moves to density effects and the expression of density as a function 
of concentration. This always takes time to work through. Students do not really understand 
density much beyond that which they learned in an introduction to physical science in eighth 
grade or thereabouts. The concept of concentration as taught at that point is also not on steady 
ground and is based solely on molarity for the most part. Having to deal with mass con
centrations is one hurdle and then having to keep straight mass concentrations of individual 
components versus the total density is another and somewhat higher hurdle. However, it is 
surmountable if one takes the time to develop the concepts and to work out the mathematics 
of the coupled material balance. Throughout this chapter the assumption of perfect mixing 
within the control volume has been discussed and used both from the physical and mathemat
ical points of view. The mathematics of the simple time-only dependent ordinary differential 
equations (ODEs) states that the system is well mixed with no spatial variation—so this is 
either the case physically, meaning that it is the case to as well as we can measure, or that it is 
approximately the case, meaning we can measure differences in concentration with position, 
but the differences are small enough to ignore, or it is really a bad approximation to the real 
system. For those seeking to bring in a bit more advanced concepts, say for an Honors student 
group, a section on mixing has been included here to get at these points more quantitatively. 
This section also shows some of the powerful objects that preexist in the Mathematica and 
which can be used creatively to solve problems and illustrate concepts. 

At this point, the question that arises is whether to cover kinetics — batch, continuous 
stirred tank reactor (CSTR) and plug flow reactor (PFR) — next, and then to cover some prob
lems in mass transfer later, or to do mass transfer first and then kinetics. The dilemma, if I may 
call it that, comes down to this. If one teaches kinetics first, the problems are all easily handled 
within a single phase, but the kinetics for the rate of chemical reaction become complex fairly 
quickly when one goes beyond the most rudimentary cases, which one wants, inevitably, to do. 
The simplicity of one phase then is offset by the complexity of nonlinearities in the rates. On 
the other hand, if one chooses to do mass transfer next, then one has immediately to introduce 
at least two phases that are coupled via the mass transfer process. However, the good news 
is that the mass transfer rate expressions are inherently linear and keep the math somewhat 
simpler. In the end I found that in teaching this material, and having taught it both ways, it 
was better to do mass transfer first because A remained A and B remained B throughout the 
problem even though they were moving between phases I and II. Linear transfer processes 
were easier for students to grasp than was A becoming B in the same phase, but by some highly 
nonlinear process. There is, I think, wisdom in “listening” to the ways in which the students 
tell us, albeit indirectly through their performances from year to year, how they learn better. 
Thus, this is why I present the material in this book in the way you see here — I was guided 
by the empiricism of the classroom and my own intuition derived therefrom. However, were 
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the point to be pressed, I must state that I do not have hard outcomes data in hand (as of yet) 
to satisfy the unconvinced. In addition, when using a tool such as Mathematica, the issues of 
solving nonlinear versus linear systems mostly disappear and so it really is a toss up as to 
which to do first based on fundamentals. Hence Chapters 5 and 6 deal with mass transfer and 
then adsorption and both come before chemical kinetics and reactors. Adsorption is interest
ing to cover separately because one can get to a more molecular level and bring in physical 
chemistry concepts, as well as more complex rate expressions without chemical reaction. It 
is also very nice to distinguish mass action from mass transfer and to have the former in 
place before doing chemical kinetics, since one can then do interfacial kinetics with the proper 
physical foundation. 

Chapters 7, 8, and 9 deal with chemical kinetics and idealized reactors. It should be 
quite familiar territory. Here as in previous chapters the focus is upon the interplay between 
analysis and experiment. Classical topics such as reaction stoichiometry are covered, but 
nondimensionalization is also introduced and taken up carefully with an eye toward its utility 
in the later chapters and of course in upper-level work. I also have found that rather than 
introducing the CSTR as a steady-state device, it makes more sense to develop the transient 
equations first and then to find the steady state at long time. Once one explains the benefits 
of this mode of reactor operation, it is moderately easy to see why we always use the steady-
state algebraic equations. I also never fail to mention Boudart’s point that it is easy to measure 
rates of chemical reaction with an experiment operated in a well-mixed stirred tank-type 
reactor. This another good time to teach the linkage between analysis and experiment with a 
system that is both quite easy to visualize and conceptualize. It is surprising to many of the 
better students that something as seemingly remote as that of the rate by which molecules are 
converted from one species to another at the nanoscale is so readily measured by quantities 
such as flowrate and conversion at the macroscale. That this should be the case is not obvious 
and when they realize that it is the case, well, it is just one of many such delightful epiphanies 
they will have during their studies of this discipline. 

In teaching PFR, I find that the classical “batch reactor on a conveyor belt in heated tube” 
picture does not work at all (even though it should and does if you already get it). In fact, 
it leads some students in entirely the wrong direction. I am not happy when I find that the 
batch reactor equation has been integrated from zero to the holding time — even though it 
gives a good answer. Instead I very much favor taking one CSTR and rearranging the equation 
so that on the right-hand side the lead term is delta concentration divided by the product of 
cross-sectional area and a thickness (δz) and all this is multiplied by the volume flowrate. This 
becomes linear velocity multiplied by delta concentration over δz. Now we merely keep the 
total reactor(s) volume the same and subdivide it into n reactors with thickness δz/n. This 
goes over in the limit of δz taken to zero at large n to the PFR equation. We actually do the 
calculations for intermediate values of n and show that as n gets large the concentrations 
reach an asymptote equal to that which we can derive from the PFR equation and that for 
simple kinetics the conversion is larger than it would be for the same volume relegated to 
one well-mixed CSTR. This approach turns out to be fun to teach, seemingly interesting and 
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actually useful, because the student begins to understand how a numerical algorithm works 
and that, for instance, the time-dependent PFR equation is a PDE that represents a set of 
spatially coupled time dependent ODEs. 

Chapter 10, the last chapter, gathers together assignments and solutions that I have given to 
groups of honors-level students. I include these as further examples of what types of problems 
can be solved creatively and that these might serve as a catalyst for new ideas and problems. I 
also have homework, quiz and exam problems that I may eventually provide via the Internet. 

Henry C. Foley
State College
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In a place far away and long ago, people did calculations with paper, pencil, and slide rules. 
They wrote out papers, memoranda, and reports by hand and gave these to other people who 
would type them onto something called carbon paper in order to provide a copy of the work. 
In turn these could be duplicated on another machine called a mimeograph, the products of 
which were blurry, but had the sweet smell of ethanol when “fresh off the press.” In about 
1985 personal computers landed on our desks and things started to shift very fast. But many, 
even most people from this earlier era would still write out reports, memoranda, and papers 
in longhand and then either give it to someone else to “type into the computer,” or if younger 
and lower in some ranking system do it themselves. The PC plus printer (first dot matrix, then 
laser) was used as an electronic combination of typewriter and mimeograph machine. 

It took at least another few years before most of us had made the transition to using the 
computer as a computer and not as a typewriter. One of the greatest hurdles to this was being 
able to sit at the computer and enter your thoughts directly into a word processor program 
without “gathering your thoughts” first in a separate step. Even though this may seem absurd 
in hindsight, for those of us who grew up using pencil or pen and paper, we needed to adjust 
to the new technology and to retrain ourselves not to go blank when we sat in front of the 
computer. To my knowledge very few, if any, young people today whom I see ever do this or 
would consider doing it — they would consider it kind of absurd. They simply sit down and 
begin word processing. They make mistakes, correct them, then cut and paste, spell-check, 
grammar-check, and insert figures, tables, and pictures, etc. and paper is not involved until 
the last step, if at all. (The rendering of hardcopy step–by–step is becoming less necessary over 
time, which is a good trend — better to leave the trees out there to make oxygen and to soak 
up carbon dioxide than to cut them down for paper pulp — but it is still with us, despite the 
pundits’ overly optimistic predictions of paperless offices and businesses.) Of course we all 
do this now — as I am currently doing. It is no big deal and it feels absolutely natural — now. 

xxi 
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But it did not then. It felt strange and one wondered if it was even the right way to write. It 
was a very real paradigm shift. 

Here is the point then: This same processing shift has never really happened in math
ematics computing, at least not to the same extent, but it will. Most of us still work things 
out first on paper and then find a way to do number crunching on the computer, well after 
many other steps have been taken. This is why we see, for example, the use of spreadsheet 
programs having proliferated among engineering students over the last few years. They work 
out a model, derive the solution as analytical expressions, and plug them into the spreadsheet 
to make calculations for a given set of parameters. The analysis is done separately from the 
computing, in the same way we used to do writing separately from typing. It is the combined 
task that we now call word processing. The point of this book is to step away from that old, 
separated analysis and computing paradigm, to put down the pencil and paper (not com
pletely or literally), and to begin electronically scribbling our mathematically expressed ideas 
in code by using up-to-date computational software. If there is any reason why this transition 
happened so much faster in word processing than in mathematics processing, it is because 
word processing software is less complex and mathematics “scribbling” is generally harder 
to do than is drafting a written document (not creative writing of course). 

At this point I think we may have turned the corner on this shift. The mathematics pro
cessing software is so sophisticated that it is time to both embrace and use it — in fact students 
in engineering and science have, but not always with good results. We need to fix this problem 
and to do so, it makes very little sense to teach analysis in one place (course) and computing in 
another place (another course), when we can do the two concurrently. To do this requires a fully 
integrated environment, with symbolic, numeric and graphical computing and, surprisingly, 
word processing too. Mathematica, especially version 4.0 and beyond, does this extremely well, 
so it makes sense to use it. One review of the software written in Science magazine in Decom
piler 1999, referred to Mathematica as the “Swiss army knife” of computing. In fact, I think it 
is much better than that analogy suggests, but the author meant that it is a high-quality and 
versatile tool. 

In this book then you will find the concepts of engineering analysis as you find them 
elsewhere, but they will be presented simultaneously with the concepts of computing. It 
makes little sense to separate the two intellectual processes any longer and lots of sense to 
teach them as an integrated whole. In fact, this approach relieves the overburden of algebraic 
manipulation which I and others like me used to love to fill chalkboards with and it puts 
the emphasis back on engineering. Not a bad outcome, but only if we do it right. Here is the 
danger — that you will use the computer without thinking deeply, derive bad results, and go 
merrily on your way to disaster. This sounds absurd to you but it is not. For example, the public 
recently has had played out before its eyes just such an engineering snafu. A NASA space 
probe was sent crashing to its fiery demise because someone had failed to convert from feet to 
meters (i.e., English to metric system) in a trajectory calculation. A big mistake in dollar terms, 
but just a small mistake in human terms — the kind students often argue are not real mistakes 
and should be the source of at least partial credit when committed on exams or homework. 
Similarly, a bridge under construction near to where I am writing this was begun from two 
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different ends and when it came time to close the gap with the final element of the structure, 
it could not be done — the two sides were not properly aligned. This happened despite the 
engineers having tools like lasers and computers at their disposal, which is really shocking 
given the shortness of the span and given that mighty gorges were spanned correctly in the late 
nineteenth century with nothing more than transits, plumb lines, and human computation! So 
whenever something new such as this tool is introduced something is gained, but inevitably 
we find later that something is also lost. This gives thoughtful people pause, as well it should. 
Therefore, to use this tool correctly, that is to do this right, we have to do things very carefully 
and to learn to check quite thoroughly everything that the computer provides. This is especially 
the case for analytical solutions derived via symbolic computation. If you follow the methods 
and philosophy of this text I cannot guarantee you will be error free because I am sure the text 
is not error free despite my best efforts, but you will definitely compute more safely and will 
have more confidence in your results. 

The best way to use this book is in conjunction with Mathematica. Go through the first 
chapter and then try doing one of the things presented there for your own work or problems. 
Moving through the rest of the text will go faster if you take the time to do this up front. 
A nearly identical color version of this book has been provided on CD-ROM. I hope having 
this and being able to call it up on your computer screen while you have a fresh Mathematica 
notebook open will be useful to you and will aid your learning. Although it may be obvious, 
just reading this book will probably not do enough for you — you have to use the tool. If you 
own or have access to Mathematica, then you will be able to use the book as a progressive 
resource for learning how to program and how to solve real problems in real time. Good luck 
and happy concurrent computing and engineering analysis. 

Henry C. Foley
State College
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Along the way I have many people to acknowledge. If all of this bears more than a faint resem
blance to the philosophy espoused in the earlier book An Introduction to Chemical Engineering 
Analysis, by T.W.F. Russell and M.M. Denn, well it should. I taught the introductory course 
many times at the University of Delaware from 1986 to 2000 and I always did so in conformity 
with this marvelous text. In particular, Fraser Russell taught me how to teach this material and 
what the original intent had been of the book and its approach. I was always very impressed 
by the stories he told of the time he and Mort spent on this topic thinking about their book 
and its philosophy through to the classroom. Fraser’s enthusiasm for these matters was, as far 
as I could tell, limitless and his enthusiasm infectious. And as I arrived on the scene in 1986 
as a Ph.D. in Physical Chemistry and not Chemical Engineering, I can attest to the efficacy 
of learning this approach — although I hope the reader is not learning the material literally 
the night before giving the lectures on it, as the present author did! In many ways I came 
to Delaware as a bit of blank slate in this regard (although I had read the original Notes on 
Transport Phenomena by Bird, Stewart, and Lightfoot while working at American Cyanamid 
between 1983 and 1984) and I had no preconceived notions about how this material should be 
taught. To say the least I enjoyed an excellent mentor and teacher in Fraser Russell and he did 
harbor a few notions and opinions on how this material should be taught. Fraser also gave 
me the push I needed to start this project. He realized that computation had come far and that 
one impediment to wider adoption of his book had been the steep gradient of mathematics 
it presented to both the instructor of the first course and the students. Using a computational 
tool to overcome this barrier was something we both felt was possible. However, when this 
was first conceived of in the late 1980s (∼1988), Mathematica 1.0 was barely out on the market 
and it, as well as the other tools available, were in my judgment not up to the task. (Though I 
tried at that time.) The project was shelved until my first sabbatical leave in 1997. I must thank 
Dr. Jan Lerou, then of the Dupont Company’s Central Research and Engineering Department 
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at the Experimental Station, who provided me with an office and the wherewithal to start this 
project in the spring and summer of 1997. In fact, although I did get this book project off the 
ground, I was not at all happy with it. As my familiarity with the new version of Mathematica 
(4.0) grew during late 1998 and 1999, I realized I had to rewrite that which I had already writ
ten. As well, the experience of working with Honors ChE students helped me immensely to 
reconceptualize the material and its presentation. Furthermore, I had the good fortune to co-
teach the first course in chemical engineering with Andrew Zydney. Andrew is a great teacher 
and he was the first person I had met who would literally battle me for lecture time in front 
of the class. This not only gave me more time to work out more ideas, but he also provided 
invaluable criticism and feedback on what I was trying to do. In the summer of 1999, I had the 
privilege of being a Visiting Fellow at Wolfram Corporation, the makers of Mathematica. Aside 
from having the good fortune to meet Steve in his own think tank, I spent six weeks alone 
that summer in Urbana–Champaign writing literally day and night with very few breaks. 
(I thank my spouse Karin for allowing such an absurd arrangement!) But I also had access 
to the brilliant young staff members who work every day on the new code and features of 
Mathematica. It was a broadening experience for me and one I thoroughly enjoyed. For making 
this possible, I want to thank Steve Wolfram personally, but also Lars Hohmuth, the jovial and 
ever helpful Director of Academic Affairs at Wolfram, who is also a great code writer and a 
power user! (He would spend his days doing his job and then get caught by me on his way 
out for the evening, only to spend hours answering what was a seemingly naive question — 
which usually began as “Lars, have you got a minute?”) In the latter stages of the work, I 
ran into a few issues associated with notebook formatting and answers to those questions 
always came to me promptly as exceptionally well written e-mail messages from P. J. Hinton, 
one of the many younger chemical engineers who have found their way into careers in compu
tation. Finally, in the Spring of 2000, I had the opportunity to teach the whole of the book and 
its content as the first course in chemical engineering here at Pennsylvania State University. 
My partner in that was Dr. Stephanie Velegol. Stephanie is only the second person whom I 
have had to fight for lecture time in a course and whose suggestions and methods of using 
these things I had created were extraordinarily insightful. (I am pleased to note that the course 
was well received — largely due both to her efforts to smooth out the rough edges of both the 
materials and her co-instructor and to her pedagogical instincts, whose instincts told her when 
enough was enough.) Finally, throughout my career I have had the best of fortune to have a 
life-partner, my spouse Karin, who knows and understands what I am about and what I really 
need to do and get done. For her support and that of my daughters, Erica and Laura, who 
often strolled into my home office to find me hunched over the computer and to ask how my 
book was coming along, I offer my sincerest and deepest thanks. 

The book represents a way to teach a first course in chemical engineering analysis that I 
think maintains a continuity with the past and yet steps right into the future with concurrent 
use of computational methods. The book and its techniques are battle tested, but are far from 
battle hardened. I am sure that there remain mistakes and misconceptions that will need to 
be considered, despite my best efforts to eliminate them and for those I take full blame and 
apologize in advance. Yet, I think there are seeds in this book from which can grow a new 
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and fruitful approach to teaching engineering analysis. The simple fact is that our students 
like using and being at the computer, perhaps more so than they enjoy hearing us lecture. We 
are going to have to face this paradigm shift, embrace it, and somehow integrate it into our 
pedagogy. To that end this book is my attempt to do so. I think the book may be used either as a 
textbook in its own right or as a supplementary textbook. I recommend that students each have 
a personal copy of Mathematica 4.0 or higher, which is moderately priced (about the same price 
as a textbook) or that they have ready access to the program in a centralized computer lab. In 
recent years I have gotten into the habit of sending homework out to students as Mathematica 
notebooks attached to an e-mail and then I also post the problem set and solutions on the 
course web site as notebooks. I also frequently receive via e-mail attached notebooks from 
students who are stuck or need some guidance. I personally like this approach because it 
allows me the opportunity to interact with the more motivated students at a higher level and 
in essence to e-tutor them on my own schedule. If you do this be prepared to be answering 
e-mails by the dozens, frequently and at all times of the day and night and week. Personally, I 
find it rewarding, but I can understand that some might consider this to be an imposition. I do, 
however, think this is more like the direction in which teaching will move in the future — the 
use of these electronic media technologies in real time seems to me to be inexorable and overall 
a good development — at least from the student’s perspective. 

Finally, who else can use this book? I clearly have in mind chemical engineering under
graduates, but they are not alone in potentially benefiting from exposure to this material. It 
seems as though industrial chemists and materials scientists could also find it useful to read 
and study on their own with a personal or corporate copy of Mathematica. I consider this level 
of self-study to be a very doable proposition. The mathematics used is fairly minimal, although 
it does expect grounding in differential equations and some intuitive sense of programming, 
but that is about all it requires. Formality is kept to a minimum — no — more precisely there is 
no mathematical formalism present here. For this reason then, I would hope that a few people 
in that category who really want to be able to discuss research and development matters with 
corporate chemical engineers on their own terms will find this background to be very useful. 
Finally, I suspect from my frequent excursions in consulting that there may be more than a 
few practicing chemical engineers who might not want to be seen actually reading this book 
in the open, but who might also benefit from having it on their shelves so that they might read 
it — strictly in private of course! 
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1.1 Getting Started in Mathematica 
We will use Mathematica throughout the text. Most of what is necessary to know will be 
introduced at the time it is needed. Nonetheless, there is some motivation to begin with some 
very basic commands and structures so that the process is smooth. Therefore, this is the goal 
of this section—to make your introduction to Mathematica go smoothly. For more information 
of this type there are many texts that cover Mathematica in detail. 

1.2 Basics of the Language 
Commands in Mathematica are given in natural language form such as “Solve” or “Simplify” 
etc. The format of a command is the word starting with a capital letter and enclosing the 
argument in square brackets: 

Command[argument] 

Parentheses are used arithmetically and algebraically in the usual way: 

3a (x − 2)2 

1 



P1:

May 10, 2002 17:38 Foley foley-ch1

2 Chapter 1 A Primer of Mathematica 

On the other hand, braces are distinct. They are used to designate lists or vectors as in: 

{1, 2, 3, 4 . . .}
{{1, 1}, {2, 2}, {3, 3} . . .}

The three must not be interchanged. 
When you want to clear the value of a given named variable there are three options: 

variable name =• 

Clear[variable name] 

Remove[variable name] 

The first two simply clear the current value while the last removes the name entirely. You need 
to remember this because if you start a session and assign a value to a variable, then that value 
will be retained in that variable until you either change or clear it. 

1.3 Simple Commands 
The calculator level of Mathematica comes in the form of Palettes, which are very handy tools. 
Palettes are found under the File menu and there are several of them. If one wants to use 
a trigonometric function, for example, we can either type in its name or go to the Basic 
Calculations menu and then to the Trigonometric and Exponential Functions. Should we 
want to evaluate the sine of 2.3333π , then we can do so as follows: 

In[1]:= Sin[2.33333π] 

Out[1]= 0.86602

Should we need to know the sine of 120 degrees (120◦), then we include this in the argument 
of the function: 

In[2]:= Sin[120 Degree]
√ 
3

Out[2]=
2

To rationalize this fraction we need to evaluate it numerically. We do so by surrounding the 
Sin function with N: 

In[3]:= N[Sin[120 Degree]]

Out[3]= 0.866025
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For logarithmic and all other functions, we do the same as we have done with Sin. It is  
important to know, however, that the function Log in Mathematica is the natural logarithm 
and not the log base ten. 

In[4]:= N[Log[10]]
N[Log[100]]
N[Log[1000]]

Out[4]= 2.30259

Out[5]= 4.60517

Out[6]= 6.90776

Mathematica has a huge number of built-in functions from the mundane to the exotic, but we 
can work with them more or less in the same way. 

1.4 Table, Plot, Map, and Plot3D 
These four commands are among the most useful because they do so much with so little. In 
contrast to a procedural language in which we would have to write a looping structure to 
evaluate a function at several different values or for a range of values, Table hides all this 
from us and gives us just the vector of output values. Plot does the same thing, except that 
we see the graph of the function’s values rather than the values themselves. The output of a 
function is a List, that is, a vector. We can combine a set of values, such as the set of dependent 
values, with a set of independent variable values into a matrix. ListPlot allows us to display 
these results graphically. We will begin by working through these four topics. We begin with 
the Table command to evaluate x from zero to 20 at every integer: 

In[7]:= Table[x2, {x, 0, 20}]

Out[7]= {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, 256, 289, 324, 361, 400}

Perhaps we wanted the values of x2 for every other whole number between 0 and 20. We can 
obtain these too: 

In[8]:= Table[x2, {x, 0, 20, 2}]

Out[8]= {0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400}

Should we need all the values for every integer value and the midpoint between them, we 
would specify this: 

In[9]:= Table[x2, {x, 0, 20, .5}]

Out[9]= {0, 0.25, 1., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25,



P1:

May 10, 2002 17:38 Foley foley-ch1

4 Chapter 1 A Primer of Mathematica 

100., 110.25, 121., 132.25, 144., 156.25, 169., 182.25,
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25,
324., 342.25, 361., 380.25, 400.}

It is also likely that we might need to assign this list or vector a name, call it “ls1.” 

In[10]:= ls1 = Table[x2, {x, 0, 20, .5}]

Out[10]= {0, 0.25, 1., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25,
100., 110.25, 121., 132.25, 144., 156.25, 169., 182.25,
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25,
324., 342.25, 361., 380.25, 400.}

This variable name is now assigned to this list until we either clear it or remove it: 

In[11]:= ls1

Out[11]= {0, 0.25, 1., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25,
100., 110.25, 121., 132.25, 144., 156.25, 169., 182.25,
196., 210.25, 225., 240.25, 256., 272.25, 289., 306.25,
324., 342.25, 361., 380.25, 400.}

In the next line we clear ls1 and then show that it is no longer assigned to the list of values: 

In[12]:= ls1 =.
ls1

Out[13]= ls1

We may also have occasion to want to generate the vector of values and to assign these values 
to a list name, but we may not want to see all of them. For example, suppose we wanted all 
the values for xx from between 1 and 100. This can be done and the list can be named, but we 
may not want this sent to the screen. To suppress it we place a semicolon after the command: 

In[14]:= ls2 = Table[xx, {x, 1, 100}];

To see what we have “missed” by not printing this out to the screen we can now do so by 
typing ls2 as input: 

In[15]:= ls2

Out[15]= {1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489,
10000000000, 285311670611, 8916100448256, 302875106592253,
11112006825558016, 437893890380859375, 18446744073709551616,
827240261886336764177, 39346408075296537575424,
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1978419655660313589123979, 104857600000000000000000000,
5842587018385982521381124421,
341427877364219557396646723584,
20880467999847912034355032910567,
1333735776850284124449081472843776,
88817841970012523233890533447265625,
6156119580207157310796674288400203776,
443426488243037769948249630619149892803,
33145523113253374862572728253364605812736,
2567686153161211134561828214731016126483469,
205891132094649000000000000000000000000000000,
17069174130723235958610643029059314756044734431,
1461501637330902918203684832716283019655932542976,
129110040087761027839616029934664535539337183380513,
11756638905368616011414050501310355554617941909569536,
1102507499354148695951786433413508348166942596435546875,

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

106387358923716524807713475752456393740167855629859291136,
105551349557777834140783300859958329461273960833701994425
17,

107591180197999398206042925285612377911548736883041606461
0304,

112595147462071192539789448988889059930192105219196517009
951959,

120892581961462917470617600000000000000000000000000000000
00000000,

133087763063271199871339924096334625598588933016165099432
5137953641,

150130937545296572356771972164254457814047970568738777235
893533016064,

173437733670302675199037812888120321583080625390120919530
77767198995507,

205077382356061005364520560917237603548617983652060754729
4916966189367296,

248063644451341145494649182395412689744530581492654164321
720600128173828125,

306803463007942742306604336476403978997881706450788532800
82659754365153181696,

387792426346444862266664818615433075489834490134420591764
2325627886496385062863,

500702078263459319174537025249570888246709955377400223021
257741084821677152403456,
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... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

660097246862195508437683218183717716501470040592780694068
14190436565131829325062449,

888178419700125232338905334472656250000000000000000000000
0000000000000000000000000000,

121921130509464847947319348187292783466757699259377071718
9298225284399541977208231315051,

170676555274132171974277914691501574771358362295975962674
353045737940041855191232907575296,

243568481650227121324776065201047255185334531286856408445
05130879576720609150223301256150373,

354211804501063924032848133753332071263980863803681247321
1109743262552383710557968252383789056,

524744532468751923546122657597368049278513737089035272057
324643668607677682302892208099365234375,

791643248668629666078424060180632546719222453126466902233
62402918484170424104310169552592050323456,

121581297366713640808862801923521362803054459089854018769
90335800107686586023081377754367704855688057,

190030638094159447976388394485939490393342173391549735102
6033862324967197615194912638195921621021097984,

302182066535432255614734701333399524449282910532282724655
138380663835618264136459996754463358299552427939,

488736779806892574893227522737746038656608501760000000000
00000000000000000000000000000000000000000000000000,

803748056254594377406396163843525813945369338299102331167
0379647429452389091570630196571368048020948560431661,

134364564515225004658302677932296937303529095376341154029
0906502671301148502338015157014479136799509522304466944,

...228273036346967044979900512337165522400819024722490933829
954793073267717315004135590642802687246850771579138342847,

...394020061963944792122790401001436138050797392704654466679

...48293404245721771497210611414266254884915640806627990306
816,

...690825216476092085140553869446828608223037872425945418628

...91172977299871291049018773300360862776869907975196838378
90625,

...122998480353523742535746057982495245384860995389682130228

...63190656692077122702132760228088402103069426923665295694
53244416,

222337020242360576812569226538683753874082408437758291741
... 

26211582389481165084834633450264237001097346549669078865
0052277723,

... 
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...407949179542747833144743894229635944120105534129541880466

...65939634971631296545460720786532465498226465248060567545
587093733376,

...759604031216329727422244257820804323611227904183944130804

...55142035956380302831768235397935875913722302301039331108
10192201741429,

...143503601609868434285603076356671071740077383739246066639

...24900000000000000000000000000000000000000000000000000000
00000000000000000,

...275006373483461607657434076627252658495183350017755660813

...75398177450890599808191940514056884835339723379661819264
5698819765129996471,

...534490195473619995340253001400575385449406013931066115702

...69540644280818850419033099696863861289188541180498511377
339362341642322313216,

...105334051468072867203736594605020607857593791122125981160

...64998418834781689316645387966435364502141349866164216580
595609788325190062013833,

...210449190758543198861850228434282880911748656012122526352

...86001514565478992866160785568445711391305050636166445827
73621942951905668236312576,

...426181657761258833198605424151960757395791315610122269092

...30019917908804339283405158889618455726386574838882026483
5885609500110149383544921875,

...874647407767330977693561259365719780492040872417198817613

...46374524717952404307119962211675102409649648957510056235
276523073007403698815894552576,

...181880373878061983792773399155569296478074032831870486314

...78337739929618787870634227045716719924575689062274471430
368865388203540672666042530996797,

...383158981231346126213872650000641426814753403789311551232

...59089391706871851454385790069500821953097058851346079904
18665607337632973770507236843454464,

...817598737071050959409276229318696698168591900537987468276

...93207376890191209667334279321765760731642396831372649256
6673678273923566086786121551339775919,

...176684706477838432958329750074291851582748389687561895812

...16062012926197760000000000000000000000000000000000000000
0000000000000000000000000000000000000000,

386621969787156332734047587900743169602142130961783196218
... 

56934259807530937321861485192508542873470637501160980081
794035970219670238407078788135931371782481,

... 
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...856516819102789913383100884855887638607827867525141389174

...58617169692971014784447542255823577266886455881314507547
31704968996267139619369035601073162078388224,

...192079787778504229782687634239832998136662613890310670723

...96386230620731601620304963544415541870751106508384494531
08757445590084411555537438824653742747212640587,

...435973436827325522360279881406914796368935566412408014666

...80104726695921400093636969731839732875229357313838872128
9594366953995072735552848220101541587045199118336,

...100140253328453899494506997059845948876248360208192710258

...70334010718860779315506363581151510555924043061907775739
0331456723193970237417715907213278114795684814453125,

...232737736870108098051032630552618777391020715805979404095

...85933109624493442480014587281684425109432546907773222375
549181098538730989934437386098275807854764894176935936,

...547236400751580609289084096221336193364655786735995545755

...43693463433762205742631692905663619249992774511988021569
50364045812455566817070274944448633167362192918054601383,

...130159283494297205518264830741731536453872507596006782791

... 

... 

53114847224523409663172158051068209591908333097049343465
17741237438752456673499160125624414995891111204155079786
496,

...313119843606264301926053344163576361349265045995115651405

... 

... 

92969760191406230933171722203767186869842061905370495649
99303230341738506627657379866724844088015857197961365923
84409,

...761773480458663923392897277206155617504248014023951967240

... 

... 

01565744957137343033038019601000000000000000000000000000
00000000000000000000000000000000000000000000000000000000
0000000,

...187398754970444035883430239799421909138706990995859221061

... 

... 

52367184893220649019310617359174987694158429118066514085
32784617787067474359792929997061205566219581733294857302
9136642691,

...466101087036369642390596621400310098213235393780243962934

... 

... 

25774112018587400879035854022570174490255580463084035551
28684298484146339920553893653953988411898447534660818749
990933364736,

117196384926544421041758258775124882470814614810980971003
... 

33153423591117017616566024314352960493587163785179678960
... 

50409107202745103300944452206991034477139649315017364735
008987336482893,

... 



P1:

May 10, 2002 17:38 Foley foley-ch1

1.4 Table, Plot, Map, and Plot3D 9 

...297864151605271565671522691888487433398201478214104374836

... 

... 

86344802018942169740653764805241893613019586796641682947
70215036703035475694094363170727692463342462659692676989
28260777661956096,

...765142811538184924971089105229239398896084485704278030436

... 

... 

46059567958108943618778356292728753731576478313833091931
62363541428604718717978398581939982608934869290351343806
8330287933349609375,

...198627040519827975805761256394776123747083228931514412339

... 

... 

85491658847582706097318376646920317555554524971459613579
56707789253279272215867715207123334756347457728787131439
8899332488478637162496,

...521024593971836146804821104841449602253438957603391316494

... 

... 

00299130165682155803982962610720192317232798510072418380
11659882766685337218633992220688288491655299087016195985
205218347711578485744737,

...138087834126148675065691180325230972687660410568672963807

... 

... 

27295432437014796705930332110080014435366263105359800775
44691196522513327846303307992442770355560270350429006522
588433404602387992091295744,

...369729637649726772657187905628805440595668764281741102430

... 

... 

25997242355257045527752342141065001012823272794097888954
83265401194299967694943594516215701936440144180710606676
59301384999779999159200499899,

...100000000000000000000000000000000000000000000000000000000

... 

... 

00000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000}

This leads to several other points. First, we could also operate on all of the values in ls2 by 
operating on ls2 alone. This property of ls12, called “listability,” is a very important attribute 
of such objects in Mathematica. For instance, then we could divide each value we just found 
by dividing ls2 by 10100: 

ls2
In[16]:= N[

10100
]

Out[16]= {1.× 10-100, 4.× 10-100, 2.7× 10-99, 2.56× 10-98, 3.125× 10-97, 
4.6656× 10-96, 8.23543× 10-95, 1.67772× 10-93, 3.8742× 10-92, 
1.× 10-90 , 2.85312× 10-89, 8.9161× 10-88, 3.02875× 10-86, 
1.1112× 10-84, 4.37894× 10-83, 1.84467× 10-81, 8.2724× 10-80, 
3.93464× 10-78, 1.97842× 10-76, 1.04858× 10-74, 5.84259× 10-73, 
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3.41428× 10-71, 2.08805× 10-69, 1.33374× 10-67, 8.88178× 10-66, 
6.15612× 10-64, 4.43426× 10-62, 3.31455× 10-60, 2.56769× 10-58, 
2.05891× 10-56, 1.70692× 10-54, 1.4615× 10-52, 1.2911× 10-50, 
1.17566× 10-48, 1.10251× 10-46, 1.06387× 10-44, 1.05551× 10-42, 
1.07591× 10-40, 1.12595× 10-38, 1.20893× 10-36, 1.33088× 10-34, 
1.50131× 10-32, 1.73438× 10-30, 2.05077× 10-28, 2.48064× 10-26, 
3.06803× 10-24, 3.87792× 10-22, 5.00702× 10-20, 6.60097× 10-18, 
8.88178× 10-16, 1.21921× 10-13, 1.70677× 10-11, 2.43568× 10-9, 
3.54212× 10-7, 0.0000524745, 0.00791643, 1.21581, 190.031, 
30218.2, 4.88737× 106, 8.03748× 108, 1.34365× 1011, 
2.28273× 1013, 3.9402× 1015, 6.90825× 1017, 1.22998× 1020, 
2.22337× 1022, 4.07949× 1024, 7.59604× 1026, 1.43504× 1029, 
2.75006× 1031, 5.3449× 1033, 1.05334× 1036, 2.10449× 1038, 
4.26182× 1040, 8.74647× 1042, 1.8188× 1045, 3.83159× 1047, 
8.17599× 1049, 1.76685× 1052, 3.86622× 1054, 8.56517× 1056, 
1.9208× 1059, 4.35973× 1061, 1.0014× 1064, 2.32738× 1066, 
5.47236× 1068, 1.30159× 1071, 3.1312× 1073, 7.61773× 1075, 
1.87399× 1078, 4.66101× 1080, 1.17196× 1083, 2.97864× 1085, 
7.65143× 1087, 1.98627× 1090, 5.21025× 1092, 1.38088× 1095, 

1.× 10100}3.6973× 1097, 

We also note that the output from this last computation is in scientific notation, whereas ls2 
was not; it was written in standard form. It is worth noting that we could have had ls2 in 
scientific notation simply by changing the command as follows: 

In[17]:= ls3 = Table[xx, {x, 1, 100, 1.}]

Out[17]= {1, 4., 27., 256., 3125., 46656., 823543., 1.67772×107, 3.8742×108, 1.×1010, 
2.85312×1011, 8.9161×1012, 3.02875×1014, 1.1112×1016, 4.37894×1017, 1.84467×1019, 
8.2724×1020, 3.93464×1022, 1.97842×1024, 1.04858×1026, 5.84259×1027, 3.41428×1029, 
2.08805×1031, 1.33374×1033, 8.88178×1034, 6.15612×1036, 4.43426×1038, 3.31455×1040, 
2.56769×1042, 2.05891×1044, 1.70692×1046, 1.4615×1048, 1.2911×1050, 1.17566×1052, 
1.10251×1054, 1.06387×1056, 1.05551×1058, 1.07591×1060, 1.12595×1062, 
1.20893×1064, 1.33088×1066, 1.50131×1068, 1.73438×1070, 2.05077×1072, 
2.48064×1074, 3.06803×1076, 3.87792×1078, 5.00702×1080, 6.60097×1082, 
8.88178×1084, 1.21921×1087, 1.70677×1089, 2.43568×1091, 3.54212×1093, 
5.24745×1095, 7.91643×1097, 1.21581×10100, 1.90031×10102, 3.02182×10104, 
4.88737×10106, 8.03748×10108, 1.34365×10111, 2.28273×10113, 3.9402×10115, 
6.90825×10117, 1.22998×10120, 2.22337×10122, 4.07949×10124, 7.59604×10126, 
1.43504×10129, 2.75006×10131, 5.3449×10133, 1.05334×10136, 2.10449×10138, 
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4.26182×10140, 8.74647×10142, 1.8188×10145, 3.83159×10147, 8.17599×10149, 
1.76685×10152, 3.86622×10154, 8.56517×10156, 1.9208×10159, 4.35973×10161, 
1.0014×10164, 2.32738×10166, 5.47236×10168, 1.30159×10171, 3.1312×10173, 
7.61773×10175, 1.87399×10178, 4.66101×10180, 1.17196×10183, 2.97864×10185, 
7.65143×10187, 1.98627×10190, 5.21025×10192, 1.38088×10195, 3.6973×10197, 1.×10200} 

By changing the increment from 1 (the default value) to 1., we have gone over from integers 
to rational numbers, and when the latter are called for, then in this case Mathematica uses 
scientific notation. 

Another very useful way to approach such calculations is to take advantage of the lista
bility property by using the Map command. This command will evaluate a function at each 
of the list values. If we have an arbitrary function, f , and a vector of values {a,b,c,d,e,f}, then 
we can Map down this list: 

In[18]:= Map[f, {a, b, c, d, e, f}]

Out[18]= {f[a], f[b], f[c], f[d], f[e], f[f]}

A more specific example is to Map the function square root, Sqrt[ ], onto the first 10 values of 
ls2. To obtain the first 10 values we can use the Take command as follows: 

In[19]:= Take[ls2, 10]

Out[19]= {1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489,
10000000000}

Now we can Map the square root function onto these values: 

In[20]:= Map[Sqrt, Take[ls2, 10]]
√ √ √ 

Out[20]= {1, 2, 3 3, 16, 25 5, 216, 343 7, 4096, 19683, 100000}

We may use a built-in shorthand, referred to as “infix” notation, to accomplish this as well: 

Sqrt/@ Take[ls2, 10]
√ √ √ 

{1, 2, 3 3, 16, 25 5, 216, 343 7, 4096, 19683, 100000}

We turn now from the Table and Map command to Plot. These have nearly identical syntax. 
Let us return to the example of x2 and xx to see how this works: 
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In[22]:= Plot[x2, {x, 0, 20}];

5 10 15 20 

100 

200 

300 

400 

In[23]:= Plot[xx, {x, 1, 10}];

3×108

82.5�10

82�10

81.5�10

81�10

75�10

2 4 6 8 10
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By placing the semicolon after each we suppress the output of the word “Graphics.” We can 
spruce these plots up with axes labels and other attributes, but to do so at this point would 
lead us off the track. Notice that in both cases we did not specify an increment value. In fact 
with Plot we cannot. The reason is that Mathematica adjusts the increment as it moves through 
the function, making it smaller when the slope is large and larger when it is small. Hence, we 
do not have to set the increment; it is handled internally by the routine. We can be sure that 
in the vicinity of 16, the increment begins to become very small for xx . 

There are a host of different ways to adjust the look of the two-dimensional plots that 
we make in Mathematica. These adjustments are referred to as Graphics Options. To see what 
option we have in the Plot command we can use the double question mark command. 

In[24]:= ?? Plot

Plot[f, {x, xmin, xmax}] generates a plot of f as a 
function of x from xmin to xmax. Plot[{f1, f2, . . .}, 
{x, xmin, xmax}] plots several functions fi. 

Attributes[Plot] = {HoldAll, Protected}

Options[Plot] = {AspectRatio ––› 1 ––›Automatic,GoldenRatio, Axes
AxesLabel ––›None, AxesOrigin ––›Automatic,
AxesStyle ––›Automatic, Background ––›Automatic,
ColorOutput ––›Automatic, Compiled ––›True,
DefaultColor ––›Automatic, Epilog ––›{},
Frame ––›False, FrameLabel ––›None, FrameStyle ––›Automatic,
FrameTicks ––›Automatic, GridLines ––›None,
ImageSize ––›Automatic, MaxBend ––›10.,
PlotDivision ––›30., PlotLabel ––›None, PlotPoints ––›25,
PlotRange ––›Automatic, PlotRegion ––›Automatic,
PlotStyle ––›Automatic, Prolog ––›{}, RotateLabel ––›True,
Ticks ––›Automatic, DefaultFont:––›$DefaultFont,
DisplayFunction :––› $DisplayFunction,
FormatType :––› $FormatType, TextStyle :––› $TextStyle}

This shows us that we can change virtually everything about the appearance of these plots. 
The best way to demonstrate the use of these options’ subroutines is to modify one of the 
standard plots that we have already made. We begin again with a plot of x2 in its default 
format. 
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In[25]:= Plot[x2, {x, 0, 10}]

20 

40 

60 

80 

100 

2 4 6 8 10

Out[25]= - Graphics -

We notice that the axes lines are not dark enough, so we can enhance them by changing their 
Thickness parameter within the subroutine AxesStyle: 

In[26]:= Plot[x2, {x, 0, 10}, AxesStyle ––› Thickness[0.01]]

20 

40 

60 

80 

100 

2 4 6 8 10

Out[26]= - Graphics -
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We can also enhance the plot of the function to make it more visible: 

In[27]:= Plot[x2, {x, 0, 10}, AxesStyle ––› Thickness[0.01],
PlotStyle ––› {Thickness[0.006]}];

2 4 6 8 10 
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40 

60 
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100 
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Next we change the font and the font size using DefaultFont and then add a label of different 
font type and size: 

In[28]:= Plot[x2, {x, 0, 10}, AxesStyle ––› Thickness[0.01], 
PlotStyle ––›{Thickness[0.0075]}, 
DefaultFont ––›{""Helvetica"", 20},  
PlotLabel ––›FontForm[""Level vs Time"", {""Times-Roman"", 14}]]; 

Level vs Time 
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In the next instance we have changed from a simple graph to one with a frame around it: 

In[29]:= Plot[x2, {x, 0, 10}, AxesStyle ––› Thickness[0.01], 
PlotStyle ––› Thickness[0.0075]}, 
DefaultFont ––› {""Helvetica"", 20},  
PlotLabel ––› FontForm[""Level vs Time"", {""Times-Roman"", 16}], 
Frame ––› True, 

];

Level vs Time 

0 

20 

40 

60 

80 

100 

0 2 4 6 8 10 



P1:

May 10, 2002 17:38 Foley foley-ch1

18 Chapter 1 A Primer of Mathematica 

We can add a set of grid lines over the graph and to the frame as follows and thicken the latter: 

In[30]:= Plot[x2, {x, 0, 10},
FrameStyle ––› Thickness[0.01],
PlotStyle ––› {Thickness[0.0075]},
DefaultFont ––› {""Helvetica"", 20},
PlotLabel ––› FontForm[""Level vs Time"", {""Times-Roman"", 16}],
Frame ––› True, GridLines ––› Automatic

];

Level vs Time 
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Here we add a gray background: 

In[31]:= Plot[x2, {x, 0, 10}, 
FrameStyle ––› Thickness[0.01], 
PlotStyle ––› {Thickness[0.0075]}, 
DefaultFont ––› {""Helvetica"", 20},  
PlotLabel ––› FontForm[""Level vs Time"", {""Times-Roman"", 16}], 
Frame ––› True, 
GridLines ––›Automatic, 
Background ––› GrayLevel[0.8] 

];
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In[32]:= Plot[x2, {x, 0, 10}, FrameStyle ––› Thickness[0.01], 
PlotStyle ––› {Thickness[0.0075]}, 
DefaultFont ––› {""Helvetica"", 20},  
PlotLabel ––› FontForm[""Level vs Time"", {""Times-Roman"", 16}], 
Frame ––› True, GridLines ––› Automatic, 
Background ––› GrayLevel[0.8], 
AxesLabel ––› {""t/min"", ""h [  t  ] / ft""} 

];
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Finally, we add labels to the axes of the frame utilizing FrameLabel: 

In[33]:= Plot[x2, {x, 0, 10}, 
FrameStyle ––› Thickness[0.01], 
PlotStyle ––› {Thickness[0.0075]}, 
DefaultFont ––› {""Helvetica"", 20},  
PlotLabel ––› FontForm[""Level vs Time"", {""Times-Roman"", 16}], 
Frame ––› True, 
GridLines ––› Automatic, 
Background ––› GrayLevel[0.8], 
FrameLabel ––›{""t/min"", ""h [t] / ft""}, RotateLabel ––› True 

];

0 2 4 6 8 10 
tZmin 

0 

20 

40 

60 

80 

100 

h 
(t
,
Z

ft 

Level vs Time 

Another very useful tool in formatting plots is the SetOptions command. This command 
allows us to set automatically the manner in which the graphs for a whole notebook will 
look. Let us see how this works. We begin with a simple default plot of a line, which looks 
as follows: 
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In[34]:= Plot[x, {x, 0, 100}];
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Now we can use SetOptions to change the thicknesses and color of the axes: 

In[35]:= SetOptions[
Plot, AxesStyle ––› {Thickness[0.01]},
DefaultFont ––›{""Helvetica"", 20}];

If we rerun the same command as before we now find: 

In[36]:= Plot[x, {x, 0, 100}];
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However, we can do more in fact to make our graphics look more like we may want them to 
look. For example, we can set the options in such a way that the plots within the graphic are 
more visible than at the default settings: 

In[37]:= SetOptions[
{Plot, ListPlot},

AxesStyle ––› {Thickness[0.01]},
PlotStyle ––› {PointSize[0.02],
Thickness[0.01]},

DefaultFont ––› {""Helvetica"", 20}
];

In[38]:= Plot[x, {x, 0, 100}];
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In the example that follows we modify both the data that will be presented as points and that 
which will be presented continuously. If we want to combine two graphs into one graph, then 
there are several ways to do this, but one of the easiest ways is to load the graphics subroutine 
called DisplayTogether. This subroutine is found within the library of subroutines called 
“Graphics ‘Graphics‘” and we load this using the << “Needs” command. You must call with 
<<Graphics ‘Graphics‘ before you can use DisplayTogether. (If by chance you try to use 
DisplayTogether before calling <<Graphics ‘Graphics‘, then it will not work. You will need 
to clear the name, call the graphics commands and then use DisplayTogether.) 

In[39]:= <<Graphics‘Graphics‘

In[40]:= DisplayTogether[ListPlot[Table[{x, x2}, {x, 0, 10}]],
Plot[x, {x, 0, 100}]];
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To reset the graphics options to their original present values we simply instruct the program 
to go back to Default settings for the axes and plot styles with the same command structure: 

In[41]:= SetOptions[{Plot, ListPlot},
AxesStyle ––› Automatic,
PlotStyle ––› Automatic,
DefaultFont ––› Automatic]

Out[41]= {{AspectRatio ––› 1 › Automatic, AxesLabel ––› None,GoldenRatio, Axes ––
AxesOrigin ––› Automatic, AxesStyle ––› Automatic,
Background ––› Automatic, ColorOutput ––› Automatic,
Compiled ––› True, DefaultColor ––› Automatic, Epilog ––› {},
Frame ––› False, FrameLabel ––› None,
FrameStyle ––› Automatic, FrameTicks ––› Automatic,
GridLines ––› None, ImageSize ––› Automatic, MaxBend ––› 10.,
PlotDivision ––› 30., PlotLabel ––› None, PlotPoints ––› 25,
PlotRange ––› Automatic, PlotRegion ––› Automatic,
PlotStyle ––› Automatic, Prolog ––› {}, RotateLabel ––› True,
Ticks ––› Automatic, DefaultFont ––› Automatic,
DisplayFunction :––› $DisplayFunction,
FormatType :––› $FormatType, TextStyle :––› $TextStyle},

{AspectRatio ––› 1 ––› Automatic, AxesLabel ––› None,GoldenRatio, Axes
AxesOrigin ––› Automatic, AxesStyle ––› Automatic,
Background ––› Automatic, ColorOutput ––› Automatic,
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DefaultColor ––› Automatic, Epilog ––› {}, Frame ––› False,
FrameLabel ––› None, FrameStyle ––› Automatic,
FrameTicks ––› Automatic, GridLines ––› None,
ImageSize ––› Automatic, PlotJoined ––› False, PlotLabel ––› None,
PlotRange ––› Automatic, PlotRegion ––› Automatic,
PlotStyle ––› Automatic, Prolog ––› {}, RotateLabel ––› True,
Ticks ––› Automatic, DefaultFont ––› Automatic,
DisplayFunction :––› $DisplayFunction,
FormatType :––› $FormatType, TextStyle :––› $TextStyle}}

We can also plot in three dimensions. For example, if we have a function of two variables, 
then it is simple to see how it looks. For example, we can utilize the product of functions of x 
and y to see how they will appear in this space: 

In[42]:= ?? Plot3D

Plot3D[f, {x, xmin, xmax}, {y, ymin, ymax}] generates a
three-dimensional plot of f as a function of x and y.
Plot3D[{f, s}, {x, xmin, xmax}, {y, ymin, ymax}]
generates a three-dimensional plot in which the
height of the surface is specified by f, and the
shading is specified by s.

Attributes[Plot3D] = {HoldAll, Protected}

Options[Plot3D] =
{AmbientLight ––› GrayLevel[0], AspectRatio ––› Automatic,
Axes ––› True, AxesEdge ––› Automatic, AxesLabel ––› None,
AxesStyle ––› Automatic, Background ––› Automatic,
Boxed ––› True, BoxRatios ––› {1, 1, 0.4},
BoxStyle ––› Automatic, ClipFill ––› Automatic,
ColorFunction ––› Automatic, ColorFunctionScaling ––› True,
ColorOutput ––› Automatic, Compiled ––› True,
DefaultColor ––› Automatic, Epilog ––› {},
FaceGrids ––› None, HiddenSurface ––› True,
ImageSize ––› Automatic, Lighting ––› True,
LightSources ––› {{{1., 0., 1.}, RGBColor[1, 0, 0]},
{{1., 1., 1.}, RGBColor[0, 1, 0]}, {{0., 1., 1.},
RGBColor[0, 0, 1]}}, Mesh ––› True, MeshStyle ––› Automatic,
Plot3Matrix ––› Automatic, PlotLabel ––› None, PlotPoints ––› 15,
PlotRange ––› Automatic, PlotRegion ––› Automatic,
Prolog ––› {}, Shading ––› True, SphericalRegion ––› False,
Ticks ––› Automatic, ViewCenter ––› Automatic,
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ViewPoint ––› {1.3, -2.4, 2.}, ViewVertical ––› {0., 0., 1.},
DefaultFont :––› $DefaultFont,
DisplayFunction :––› $DisplayFunction,
FormatType :––› $FormatType, TextStyle :––› $TextStyle}

In[43]:= Plot3D[x2y2, {x, -10, 10}, {y, -10, 10},
ColorOutput ––› GrayLevel];
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In[44]:= Plot3D[x3y2, {x, -10, 10}, {y, -10, 10},
ColorOutput ––› GrayLevel];
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In[45]:= Plot3D[x3 y3, {x, -10, 10}, {y, -10, 10},
ColorOutput ––› GrayLevel];
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In[46]:= Plot3D[xSin[x] yCos[y], {x, -10, 10}, {y, -10, 10}, 
ColorOutput ––› GrayLevel, 
DefaultFont ––› {""Helvetica"", 15}]; 
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We can also see that the structure of this plot is such that the resolution is relatively poor. Thus, 
it is not an adequate representation of the function. To enhance the graphical representation of 
the function we can increase the resolution by raising the magnitude of the attribute PlotPoints 
as follows: 

In[47]:= Plot3D[x Sin[x] y Cos[y], {x, -10, 10}, {y, -10, 10}, 
ColorOutput ––› GrayLevel, 
DefaultFont ––› {""Helvetica"", 15},  
PlotPoints ––› 75]; 
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What we see is that Mathematica has plotted the functions, fitted them with surfaces, placed
a grid on the fitted surfaces and enhanced them with gray-level shadowing. All of this was
done by routine operation in a default mode, that is, with a minimum of input from us. Here
too we could spend time further enhancing these graphs, but instead we shall move on to the
next subject.

1.5 Lists and ListPlot, Fit, and Show
Often we will have data rather than a function and we wish to plot it, so that we can find
a function that describes the data by analysis. In such cases we can manipulate the data by
bringing it into a matrix form and then plotting it with ListPlot. We also can compare it to the
behavior of functions that are meant to represent the data. The following is a typical set of data
obtained from an experiment, appropriately named “data.” (This could have been imported
to Mathematica by any number of different means.) The first column is time and the second is
the value of the measured variable in the system:

0 10
2 8.2
4 6.7
6 5.5
8 4.5
10 3.7
12 3.
14 2.5
16 2.
20 1.4
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24 0.9 
28 0.6 
32 0.4 
36 0.3 
40 0.2 
44 0.1 
50 0.1 

First, we write a vector of time values (tim1) at which measurements were made and do the 
same with the dependent variable values (dat1) and input both: 

tim1 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28,
32, 36, 40, 44, 50};

dat1 = {10, 8.2, 6.7, 5.5, 4.5, 3.7, 3.0, 2.5, 2.0,
1.4, 0.9, 0.6, 0.4, 0.3, 0.2, 0.1, 0.1};

To plot these we must join these into pairs of x,y values that can be plotted by ListPlot. We  
will use three commands Join, Partition, and Transpose to do this. Here is how it is done in 
stepwise fashion: 

In[49]:= Join[tim1, dat1]

Out[49]= {0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40,
44, 50, 10, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4,
0.9, 0.6, 0.4, 0.3, 0.2, 0.1, 0.1}

The output from this operation is a single vector composed of time values and then the 
dependent variable values. We need them to be paired in order to plot them. Thus we first 
break this vector into two vectors within one. The first is for the time values and the second 
for the dependent variable values. To get this right we need to partition time only with time 
values, and therefore we need to state how many elements from the list should be in each 
partition. We can do this if we know the length of the time list. We get this information by 
asking for the number of elements in tim1 with Length: 

In[50]:= Length[tim1]

Out[50]= 17

We use this as follows: 

In[51]:= pdata = Partition[Join[tim1, dat1], Length[dat1]]

Out[51]= {{0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 50},
{10, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4, 0.9, 0.6,
0.4, 0.3, 0.2, 0.1, 0.1}}
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Now we have two lists in one; in effect, we really have a matrix. We can see this by “//Matrix 
Form” after the Partition command: 

In[52]:= pdata//MatrixForm

Out[52]//MatrixForm =

0  2  4  6  8  10  12  14  16  20 24 28 32 36 40 44 50
10 8.2 6.7 5.5 4.5 3.7 3. 2.5 2. 1.4 0.9 0.6 0.4 0.3 0.2 0.1 0.1

As it is a matrix we can do a very simple and yet powerful operation on it—we can transpose 
it. When we transpose a matrix we exchange the rows for columns. Here is a simple example: 

In[53]:= m1 = {{a, b, c, d}, {1, 2, 3, 4}}

Out[53]= {{a, b, c, d}, {1, 2, 3, 4}}

In[54]:= m1 // MatrixForm

Out[54]//MatrixForm =
a b c d
1 2 3 4

In[55]:= Transpose[m1] // MatrixForm

Out[55]//MatrixForm =  
a 1b 2   c 3
d 4

Returning to our example, we can see that by transposing the partitioned set “pdata” we will 
have the pairs of independent and dependent variables we seek to plot: 

In[56]:= dataset = Transpose[pdata]

Out[56]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5},
{10, 3.7}, {12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4},
{24, 0.9}, {28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2},
{44, 0.1}, {50, 0.1}}

In[57]:= dataset // MatrixForm
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Out[57]//MatrixForm =  
0  10   2 8.2    4 6.7    6 5.5    8 4.5   10 3.7   12 3.      14 2.5    16 2.    20 1.4   24 0.9   28 0.6   32 0.4      36 0.3    40 0.2   44 0.1
50 0.1

Although we did each step interactively, we can do it all at once as follows: 

In[58]:= Transpose[Partition[Join[tim1, dat1], Length[dat1]]]

Out[58]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5},
{10, 3.7}, {12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4},
{24, 0.9}, {28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2},
{44, 0.1}, {50, 0.1}}

Another way in which we could have done this takes advantage of Table and the listability of 
tim1 and dat1, both of which are unidimensional vectors. To do this we make use of the fact 
that each element of the list is associated with a unique numerical position that we express as 
tim1[[n]] or dat1[[m]] as follows: 

In[59]:= tim1[[5]]
dat1[[5]]

Out[59]= 8
4.5

Now we can put the two lists together by placing the first element tim1[[n]] and the second 
element dat1[[n]] inside a set of braces, {tim1[[n]],dat1[[n]]}, which we then place inside the 
Table command: 

In[60]:= dataset = Table[{tim1[[n]], dat1[[n]]}, {n, 1, Length[tim1]}]
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Out[60]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, {10, 3.7},
{12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, {24, 0.9},
{28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, {44, 0.1},
{50, 0.1}}

We can now use ListPlot to display this data: 

In[61]:= SetOptions[
{Plot, ListPlot},
AxesStyle ––›{Thickness[0.01]},
PlotStyle ––›{PointSize[0.02],

Thickness[0.01]},
DefaultFont ––›{""Helvetica"", 15}

];

In[62]:= ListPlot[dataset];
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Instead of a graph of a function we now have discrete points corresponding to the paired 
values of the independent and dependent variables. We can see that this data looks like an 
exponential decay of the y values with increasing x. A simple test of this would be to take the 
natural log of the y-values and plot them against x. Look once again at the paired values in 
the data set. We can see that if we take out one pair, then what we want is the first number 
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paired with the Log of the second value of the pair: 

In[63]:= dataset

Out[63]= {{0, 10}, {2, 8.2}, {4, 6.7}, {6, 5.5}, {8, 4.5}, {10, 3.7},
{12, 3.}, {14, 2.5}, {16, 2.}, {20, 1.4}, {24, 0.9},
{28, 0.6}, {32, 0.4}, {36, 0.3}, {40, 0.2}, {44, 0.1},
{50, 0.1}}

There are several ways in which we can proceed. We could go back to the set of y-values, 
dat1, take the log of these, and then redo all the steps we did in the preceding. That is an 
acceptable but inelegant approach. It is acceptable because it works; it is inelegant because we 
already have the dataset in the form in which we need only take the log of every second value. 
Therefore, a more elegant approach is to operate directly on the dataset using the power of 
Mathematica’s rule- and function-based programming language. In the process of doing this 
we will use more of the language and we will see why listability is so important. 

When we want to take an element from a set it is simply a matter of using the correct 
syntax. For example, as we discussed before, to take the fifth element from the dataset we 
simply type dataset with a five after it in double square brackets: 

In[64]:= dataset[[5]]

Out[64]= {8, 4.5}

Since the fifth element of dataset is a pair of numbers corresponding to the fifth point the 
output is this pair. If we wanted to take out of a data set the y-value of the 9th point, then we 
would type 9 and 2 separately in double square brackets after dataset: 

In[65]:= dataset[[9, 2]]

Out[65]= 2.

Similarly, if we wanted to take out the x-value from the first data point in the set: 

In[66]:= dataset[[1, 1]]

Out[66]= 0

It is clear that we are close to what we need in this function. We could extract all the y-values 
from dataset by incorporating this syntax into a Table function. For example: 

In[67]:= Table[dataset[[n, 2]], {n, 1, Length[dataset]}]

Out[67]= {10, 8.2, 6.7, 5.5, 4.5, 3.7, 3., 2.5, 2., 1.4, 0.9,
0.6, 0.4, 0.3, 0.2, 0.1, 0.1}
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Taking the Log of this and using N to evaluate numerically, we can have a vector of the Log 
of y-values from dataset because it is listable: 

In[68]:= N[Log[Table[dataset[[n, 2]], {n, 1, Length[dataset]}]]]

Out[68]= {2.30259, 2.10413, 1.90211, 1.70475, 1.50408, 1.30833,
1.09861, 0.916291, 0.693147, 0.336472, -0.105361,
-0.510826, -0.916291, -1.20397, -1.60944, -2.30259,
-2.30259}

However, now we have violated our original goal, and we have taken dataset apart. We can 
be even more savvy than this and avoid having to Join, Partition, and Transpose again. We 
do this by writing a function in Mathematica that will do what we want from the start. The 
syntax for a function in Mathematica or a rule is f[x ] := f[x]. This function will take only single 
values for x. We have a set of paired values as the argument of our function, so we will follow 
the dummy variable on the left-hand side by a double underbar instead of a single underbar: 
g[x ] := g[x]. The function or rule that we want is written this way in English: 

“Take an element from dataset, keep the x-value as it is, but take the Log of the 

y-value and automatically evaluate it, and keep the two values xn and yn paired 

as they originally were.” 

Writing this in English first makes it fairly obvious what we need to do; this is our algorithm. 
In Mathematica we translate this algorithm directly into a rule or function. That rule will look 
like this for the nth element of any set: 

In[69]:= lgf[x--] := {x[[n, 1]], N[Log[x[[n, 2]]]]}

We should not move too fast on this because this rule is a program and it is rules like this one 
that form the bricks from which we can build larger structures later. Note that the left-hand 
side has function syntax with the dummy variable followed by a double underbar and set off 
from the right-hand side by a colon and an equal sign. This is called the set delayed structure in 
Mathematica. It means that until a specific argument is given within the brackets, this function 
in unevaluated, that is, its evaluation is delayed until we give it an argument. The form of the 
function is stored and will work with most any argument, provided we also given it a value 
for n. On the right-hand side we find a set of braces around two commands that now should 
look familiar. The first just takes the x-value of the nth element and pairs it with the log of the 
y-value of the nth element. If we now put this inside the table function, we can operate on 
dataset from n equals one to the end, which occurs at the value of Length[dataset]. Here it is: 

In[70]:= lgdatset = Table[lgf[dataset], {n, 1, Length[dataset]}]

Out[70]= {{0, 2.30259}, {2, 2.10413}, {4, 1.90211}, {6, 1.70475},
{8, 1.50408}, {10, 1.30833}, {12, 1.09861},
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{14, 0.916291}, {16, 0.693147}, {20, 0.336472},
{24, -0.105361}, {28, -0.5108256}, {32, -0.916291},
{36, -1.20397}, {40, -1.60944}, {44, -2.30259},
{50, -2.30259}}

In[71]:= pllgdatset = ListPlot[lgdatset];
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As we can see this looks quite linear, thereby indicating that the data follows an exponential 
decay. If we want to be more precise about this, we can use Mathematica to find a fit to the  
log data. That is, we can find the equation for the best fit line to lgdatset. After we have this 
function, we can then plot it and graph it with the data to once again visualize the goodness 
of fit. We introduce now the Fit command. The syntax for Fit is as follows—the argument 
consists of three elements, the first of which is the name of the matrix of data to be fit, the 
second of which is enclosed in braces and it states that we want to fit to a linear equation (we 
can use any polynomial we like), and the last of which names the independent variable. The 
output is a line (or polynomial) in x. As we will want to Plot this, we should give it a function 
name. We can call it ftlg for fit to the  Log of the data and plot it from zero to 50 in x. (First we 
do it without the function name to show the output and then again with the function name. 
There is no reason to do the first, except to see the values of the slope and intercept.) We can 
give the plot a name, plftlg, plot of fit, to log: 

In[72]:= Fit[lgdatset, {1, x}, x]

Out[72]= 2.27476 - 0.0975478x

In[73]:= ftlg[x--] := Fit[lgdatset, {1, x}, x]
plftlg = Plot[ftlg[x], {x, 0, 50}];
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Finally, we can put the data points and this line on the same graph by calling for the Listplot, 
pllgdatset, and the Plot, plftlg, within the Show command: 

In[74]:= Show[plftlg, pllgdatset];
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This looks much better than it did, but we still should give the x- and y-axes labels. Why not 
call them t for time and LogY(t) for the log of position Y as a function of time. To do this we 
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need the command AxesLabel, which has the following attributes: 

In[75]:= ?? AxesLabel

AxesLabel is an option for graphics functions that
specifies labels for axes.

Attributes[AxesLabel] = {Protected}

We will put the label for each axis within a set of braces and then also within quotation marks 
so that they are not interpreted as a function to be evaluated but rather as simply strings. 

In[76]:= Show[pllgdatset, plftlg, AxesLabel ––› {""t"", ""Log[Y(t)]""}]; 
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1.6 Solve and NSolve 
The Solve and NSolve commands are for algebraic equation solving. The Solve provides a 
symbolic result and NSolve numerically evaluates for the variable that is sought. These are 
used either for single or sets of equations. They are best illustrated by example. We can begin 
with Solve. 

The syntax for Solve is quite simple. The argument consists of the equation or equations 
to be solved followed by the variable or list of variables we seek to define. An inquiry of 
Mathematica gives us the information more completely. Notice that there are Options we can 
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set that allow us to deal with special situations when they arise. For the most part we can 
and will leave these at their default values, but it is important to know that the user has a 
considerable degree of control over most functions in Mathematica. The program is so powerful 
and the defaults work so well that one often gets the impression that nothing can be changed 
or fine-tuned by the user. In fact, this is an incorrect impression. 

In[77]:= ?? Solve

Solve[eqns, vars] attempts to solve an equation or set
of equations for the variables vars. Solve[eqns, vars,
elims] attempts to solve the equations for vars,
eliminating the variables elims.

Attributes[Solve] = {Protected}

Options[Solve] = {InverseFunctions ––› Automatic, 
MakeRules ––› False, Method ––› 3, Mode ––› Generic, 
Sort ––› True, VerifySolutions ––› Automatic, 
WorkingPrecision ––› ∞} 

To solve for one equation for one unknown we can examine how Solve works on a quadratic 
equation because we know that solution so well: 

In[78]:= Clear[A1, B1, C1, x]
Solve[0 == A1 x2 + B1 x + C1, x]

√ √ 
-B1 + B12 - 4 A1 C1  B1 + B12- 4 A1 C1

Out[78]= {{x ––› }, {x ––› - }}
2 A1  2 A1

We could also have two quadratic equations in x1 and x2 with appropriate constant coefficients: 

In[79]:= Clear[A1, B1, A2, B2, C1, C2]

In[80]:= Solve[{0 == A1 x12 + B1 x2 + C1,  0 == A2 x12 + B2 x2 + C2},
{x1, x2}]

√ 
A2  C1 - A1 C2  B2  C1 - B1 C2

Out[80]= {{x2 ––› , x1  ––›-√ }, 
-A2  B1 + A1 B2 A2  B1 - A1 B2√ 
A2  C1 - A1 C2  B2 C1 - B1 C2

{x2 ––› , x1 ––›√ }} 
-A2  B1 + A1 B2 A2 B1 - A1 B2

If we move to a third-order equation, we obtain three solutions, two of which are imaginary 
as shown in what follows: 

In[81]:= Clear[A1, B1, C1, x]

In[82]:= Solve[A1 x3 + B1  x2 + C1  x + D == 0, x]
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B1Out[82]= {{x ––› -3 A1-(2
1/3(-B12 + 3 A1 C1))/(3 A1 

(-2 B13 + 9 A1 B1 C1- 27 A12 D + 4(-B12 + 3 A1 C1)3 + (-2 B13+ 9 A1 B1 C1-27 A12D)2)1/3) 

(-2 B13+ 9 A1 B1 C1 - 27 A12D +  4(-B12 + 3 A1 C1)3 +(-2 B13+ 9 A1 B1 C1-27 A12D)2)1/3
},+

3 21/3A1 √B1{x ––›− 3 A1+((1 + 3)(-B12+ 3 A1 C1))/(3 22/3A1(-2 B13+ 9 A1 B1 C1- 27 A12D 

+ 4 (-B12+ 3 A1 C1)3 + (-2 B13+ 9 A1 B1 C1 - 27 A12D)2)1/3) − 1 
6 21/3A1√ 

((1 - 3)(-2 B13+ 9 A1 B1 C1 - 27 A12D

+ 4 (-B12 + 3 A1 C1)3+ (-2 B13 + 9 A1 B1 C1- 27 A12D)2)1/3)}, 
√B1{x ––›-3 A1+((1- 3)(-B12+3 A1 C1))/(3 22/3A1(-2 B13+ 9 A1 B1 C1- 27 A12D 

+ 4 (-B12+ 3 A1 C1)3+ (-2 B13+ 9 A1 B1 C1- 27 A12D)2)1/3)√ 
-
6 21

1 
/3A1

((1+ 3)(-2 B13+ 9 A1 B1 C1-27 A12D

+ 4 (-B12 + 3 A1 C1)3 + (-2 B13+ 9 A1 B1 C1 - 27 A12D)2)1/3)} 

}

We can find solutions to most equations even when transcendental functions (Log, Sin, 
Cosh. . . ) are involved. 

In[81]:= Clear[A1, B1, C1, x]

In[82]:= Solve[B1 Log[A1 x2 + B1 x + C1] + Sin[C1] == D1, x]

B1
Out[84]= {{x ––› },

-B1 - B12- 4 A1 C1+ 4 A1  
D1 - Sin[C1]

2 A1

B1
{x ––› }}

-B1 + B12- 4 A1 C1+ 4 A1  
D1 - Sin[C1]

2 A1

NSolve appears to work in very much the same way as Solve, but instead of working out a 
symbolic solution, it provides numerics. This syntax is essentially the same as that used for 
Solve. We put the arguments inside the brackets as the equations and the solution variable, 
but now of course the constants must be numerical. Here we take the first and last examples 
from the preceding Solve examples and put them together in one cell with the assignments 
of the constants. 

In[85]:= A1 = 1;
B1 = 10;
C1 = 9;
D1 = 8;
NSolve[0 == A1 x2 + B1 x + C1, x]
NSolve[A1 x3 + B1 x2 + C1 x + D1 == 0, x]
NSolve[B1 Log[A1 x2 + B1 x + C1] + Sin[C1] == D1, x]
Remove[A1, B1, C1]

Out[89]= {{x ––›-9.}, {x ––›-1.}}
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Out[90]= {{x ––›-9.10832}, {x ––›-0.445839 - 0.824346 },
{x ––›-0.445839 + 0.824346 }}

Out[91]= {{x ––›-9.2586}, {x ––›-0.741399}}

In[93]:= Remove[A1, B1, C1, A2, B2, C2]
A1 = 2;
B1 = 5;
C1 = 3;
A2 = 3;
B2 = 6;
C2 = 2;
Solve[{0 == A1 x12 + B1 x2 + C1,  0  ==  A2  x12 + B2 x2 + C2},
{x1, x2}]
N[%]
NSolve[{0 == A1 x12 + B1 x2 + C1,  0 == A2 x12 + B2 x2 + C2},
{x1, x2}]
Remove[A1, A2, B1, B2, C1, C2]

5 2 5 2 
Out[100]= {{x2 ––›

3
, x1  ––›-2 

3
}, {x2 ––›

3
, x1  ––›2 

3
}} 

Out[101]= {{x2 ––›-1.66667, x1 ––›-1.63299}, {x2 ––›-1.66667, x1 ––›1.63299}}

Out[102]= {{x2 ––›-1.66667, x1 ––›1.63299}, {x2 ––›-1.66667, x1 ––›-1.63299}}

In the last case we solved first symbolically, but with values for the constants replaced into 
the solution. Then we evaluated these four solutions by using N[%]. This is a shortcut that 
is handy to use occasionally. The “%” symbol means the “last result.” We can do anything 
to the last result, but in this case we evaluate it numerically with N[ ]. For completeness we 
solve the problem once again using NSolve in place of Solve and we see that we obtain 
the very same result as on the previous line. In both cells the last statement is the Remove 
command. This is done to be sure that these symbols do not mistakenly appear with the 
same values once again in some work that we will do later in the session but in a different 
problem. 

There is much more that can be done to manipulate equations and their solutions. For 
example, there is a set of commands for doing algebra that mimics what we do by hand 
(Expand, Factor, Simplify, FullSimplify, PowerExpand. . . ). We observed here that we ob
tained imaginary roots to these equations. If our problems demand only real roots, then we 
can have Mathematica filter out the imaginaries and return just the real roots (Miscellaneous 
‘RealOnly‘). But we should not get too far ahead of ourselves. It is better that we learn Mathe
matica in natural stages that follow our level of need. In other words, we will find and introduce 
more sophisticated commands, routines, and procedures as we need them, so that their func
tion is understood and retained, rather than trying to cover everything at once. With this in 
mind let us turn now to some Calculus functions. 
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1.7 Differentiate and Integrate
Chemical engineering is a science of chemical change and extents. When we need to treat 
change we are necessarily interested in rates of change either in time or in space or both. 
The language of change is Calculus. Here we will show how Mathematica provides with the 
bed-rock of applied Calculus—differentiation and integration. Mathematica will differentiate 
and integrate, both symbolically and numerically. Furthermore, it has many different ways to 
do numerical integration, methods that can be chosen by the user for any given application. 
We can begin with symbolic differentiation and integration. 

Differentiation can be ordinary or partial. Here are two examples that illustrate how this 
is done. The syntax is simple we write D[f[x], x], which means take the ordinary derivative of 
the function of x with respect to x. We can also use the Basic Input palette to do the same, but 
now we place the variable that we want to take the derivative with respect to in the subscript 
box under ∂x f [x]: 

In[104]:= ∂x(A1 x3 + B1  x + C1)
D[A1 x3 + B1 x + C1, x]

Out[104]= B1 + 3 A1 x2

Out[105]= B1 + 3 A1 x2

To take higher-order derivatives we specify the order n in the argument, that is, we state 
D[f[x ], {x, n}]: 

In[106]:= D[A1 x3 + B1 x + C1, x]
D[A1 x3 + B1 x + C1, {x, 2}]
D[A1 x3 + B1 x + C1, {x, 3}]
D[A1 x3 + B1 x + C1, {x, 4}]

Out[106]= B1 + 3 A1 x2

Out[107]= 6 A1 x

Out[108]= 6 A1

Out[109]= 0

To take a partial derivative, we follow the same syntax. From the command line we type in, 
for example, D[f[x, y], x] or D[f[x, y], y] if we want the partial derivative of f[x, y] with respect 
to x or y. Using the input palettes we do as we did before: 

In[110]:= ∂x(A1 x2 y + B1  x  y2)
∂y(A1 x2 y + B1  x  y2)
D[A1 x2 y + B1  x  y2, x]
D[A1 x2 y + B1  x  y2, y]

Out[110]= 2 A1 x y  +  B1 y2
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Out[111]= A1 x2 +  2 B1 x y

Out[112]= 2 A1 x y  +  B1 y2

Out[113]= A1 x2 +  2 B1 x y

Taking second-order ordinary or partial derivatives follows much the same syntax: 

In[114]:= ∂x,x(A x2 y + B  x  y2)
∂y,y(A x2 y + B  x  y2)
∂x,y(A x2 y + B  x  y2)
∂y,x(A x2 y + B  x  y2)

Out[114]= 2 A y

Out[115]= 2 B x

Out[116]= 2 A x + 2 B y

Out[117]= 2 A x + 2 B y

For higher-order partial derivatives, we use the command line syntax: 

In[118]:= D[A x2 y + B  x  y2, {x, 2}]
D[A x2 y + B  x  y2, {y, 2}, {x, 1}]
D[A x2 y + B  x  y2, {y, 2}, {x, 2}]

Out[118]= 2 A y

Out[119]= 2 B

Out[120]= 0

Turning now to the antiderivative we can do symbolic integrations. Integration can be done 
either from the palette or from the command line and we will illustrate both. Here are two 
forms of the indefinite integral over x of (A x  + B): 

In[121]:= (A x + B) x

Integrate[A x + B, x]

Ax2
Out[121]= B x  +

2

Ax2
Out[122]= B x  +

2

We can integrate from x1 to x2, that is, also as a definite integral: 
∫ x2

In[123]:= (A  x + B) x
x1

Integrate[(A x + B), {x, x1, x2}]
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A x12 A x22
Out[123]= -B x1 - + B x2 +

2 2
A x12 A x22

Out[124]= -B x1 - + B x2 +
2 2

The algebraic output in this case can easily been seen to be simplifiable. To find more simplified 
forms we request that Mathematica do the simplification for us. We can combine this into one 
command line: 

In[125]:= Simplify[Integrate[(A x + B), {x, x1, x2}]]

1
Out[125]= - (x1 - x2)(2 B + A(x1 + x2))

2

Alternatively, we may have wanted to collect the terms in A and B; we would do that this 
way: 

In[126]:= Collect[Integrate[(A x + B), {x, x1, x2}], {A, B}]

x12 x22
Out[126]= B(-x1 + x2) + A(- + )

2 2

The function we are integrating may be one with two variables: 

In[127]:= Simplify[Integrate[A x2 y + B x  y2, {x, x1, x2}, {y, y1, y2}]]

1
Out[127]= (A (x13 - x23)(y12 - y22) + B(x12 - x22)(y12 - y22))

6

Integration and differentiation can be done both numerically and symbolically. This becomes 
very important to us, because in many cases we need both approaches in engineering problems 
of the kind that we will deal with in this text. As we have seen previously, the syntax is kept 
very much the same when we compare the numerical command implementation to that of its 
symbolic analogue. This means that we will place an N in front of the command and we will 
specify a numerical range for the variable or variables we are integrating over in the argument. 
Also, as in the case of NSolve, we must be sure to have values for all the parameters. Examples 
are the best way to illustrate how this works: 

In[128]:= A = 10;
B = 0.5;
C1 = 1;
NIntegrate[A x2 + B x + C1, {x, 0, 10}]

Out[131]= 3368.33

Numerical differentiation is about as simple to implement. We take the derivative and then 
evaluate it at a given point. The simplest way to do this is to add the evaluation command 
directly after the derivative, using “/. x → a” so that the derivative is evaluated immediately 
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at x equal to a: 

In[132]:= A = 10;
B = 0.5;
C1 = 1;
D[A x2 + B x + C1, x] /. x ––› 10

Out[135]= 200.5

From this vantage we are in a position to move to differential equation solving using DSolve 
and NDSolve. 

1.8 DSolve 
Most of the differential equations that we will be called upon to solve in this text are ordinary 
rather than partial. We will need to know the initial conditions in order to solve them for 
a function that describes the behavior of the system we are analyzing. Both DSolve and 
NDSolve can be used seamlessly to accomplish this. They can be used for multiple coupled 
equations as well as they can be for single equations. Their syntax follows essentially that 
which we have seen for the commands that we have used to this point. 

Early on we will find that many of the differential equations that we seek to solve belong 
to a general class that can be “separated.” This means that all the independent variables can 
be placed on one side of the equation and the dependent ones on the other. An example of 
such an equation is: 

d f  (x) = −C1 f (x)
dx 

This can be rewritten as: 

d f  (x) = −C1 dx 
f (x) 

The solution can be found by integrating both sides—on the left over f(x) and on the right over 
x. Hence the first equations we will want to solve may be solved via separation and integration. 
We can solve this equation, even though f(x) is left unspecified, over some interval from x1 to x2: 

∫ f[x2] 1 
∫ x2 

In[136]:= f[x] == -C1 x
f[x1] f[x] x1

Out[136]= -Log[f[x1]] + Log[f[x2]] == x1 - x2

This can be simplified as follows if we seek to find f[x2] with the initial condition that f[x1] is 
fo at x1 equal to zero: 

In[137]:= Solve[-Log[fo] + Log[f[x2]] == -C1 (-x1 + x2), f[x2]] /.
{f[x1] ––› fo, x1 ––›0}

-x2+Log[fo]}}Out[137]= {{f[x2] ––›
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We see that we have a solution, but we find that there is a Log in the argument of the expo
nential. We then can ask Mathematica to simplify the solution: 

In[138]:= Simplify[%]

Out[138]= {{f[x2] ––› -x2fo}}

Therefore, f[x2] = fo −C1 x2 . We can test this solution by placing it back in the differential 
equation on the left-hand side to see if the derivative will equal the right-hand side of the 
equation. To do this verification, we define the function for f[x] and then take its derivative 
and finally test if the derivative of the solution is the same as the original right-hand side of 
the equation. We do this last operation by placing the derivative and the right-hand side of 
the equation astride the double equal sign and all of this is then placed within the Simplify 
command. If the two elements on either side of “==” are in fact the same then Mathematica 
returns a “True” statement. 

-C1x foIn[139]:= f[x--] :=
Simplify[∂x f[x] == -C1 f[x]]
Remove[f]

Out[139]= True

We have learned several important new concepts from this example. 

• Many differential equations are separable and are nothing more than the integration of 
the left-hand and right-hand sides. 

• We can use Integrate or the palette equivalent to carry out this operation on the separated 
form of the equation. 

• The solution we obtain can be made specific for the initial conditions by adding them at 
the end of an appropriate Solve statement. 

• Solutions can typically be simplified. 
• The solution must be verified by testing its validity in the original differential equation. 

The last point may not seem important at this point but it is, especially when we derive 
analytical solutions that are far more complex. A slightly more complex form of a separable 
equation is one that involves a sum on the right-hand side, such as: 

dg(x) = C1 + C2 g(x)
dx 

This is also separable, but we have to take the whole of the right-hand side to the left to show 
this: 

dg(x) = dx
C1 + C2 g(x) 
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This is amenable to the techniques we have just used for the simpler equation, except that 
now that we know what we are doing we will combine the steps including the verification: 

∫ g[x2] 1 
∫ x2 

In[140]:= g[x] == x;
g[x1] C1 + C2 g[x] x1

Flatten[Simplify[Solve[%, g[x2]] /.
{g[x1] ––› go, x1 ––›0, x2 ––›x}]] 
g[x--] := Evaluate[g[x] /. %] 
Simplify[∂x g[x] == C1 + C2 g[x]] 
g[x] 
Remove[g, go] 

-1 + C2x(1 + C2 go)
Out[143]= {g[x] ––› }

C2

Out[145]= True

-1 + C2x(1 + C2 go)
Out[146]=

C2

In one set of statements we have solved the separated equation, rearranged for the function 
subject to the initial conditions, defined the function, verified it, and then restated the solution. 

Generally, we can use DSolve to find an analytical solution when one is possible. This is 
more general because DSolve can find solutions to much more complex cases than we have 
examined to this point—that is, for those equations that are not separable. If no analytical 
solution exists, then we can solve the equation numerically with NDSolve. We will see here 
how these two powerful commands work. 

We can redo the problem that we have just finished to see what is similar and different 
about using DSolve. The syntax is such that we place the equation and the initial condition in 
braces, followed by the name of the function we seek and the name of the independent variable: 

In[148]:= DSolve[{∂x g[x] == C1 + C2 g[x], g[0] == go}, g[x], x] 

-1 + C2  C2x( 1
C2 + go)Out[148]= {{g[x] ––› }}

C2

Verification can be done as we did before: 

-C1 + C2 C2x(C1C2 + go)In[149]:= g[x--] :=
C2 

Simplify[∂x g[x] == C1 + C2 g[x]] 
Remove[g, go] 

Out[150]= True
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Another type of equation that we are likely to encounter is the linear first-order differential 
equation (LFODE). An example is given here: 

In[152]:= DSolve[{∂x y[x] + C1 y[x] == g[x], y[0] == yo}, y[x], x] 

x
DSolve‘tOut[152]= {{y[x] ––› -x(yo + g[DSolve‘t] DSolve‘t)}}

0

Notice that the solution is implicit—meaning that it is not fully evaluated. We can see that this 
is so from the fact that on the right-hand side we have an integral that is over the function g 
and is left in terms of the dummy variable DSolve‘t. Notice also that the exponential involves 
this variable as well. Until g[x] is specified, we cannot find the full solution to this problem. 
We can see what happens when g[x]= x2 or Sin[x], that is, for specific functional forms: 

In[153]:= Clear[C1, yo] 
DSolve[{∂x y[x] + C1 y[x] == x2, y[0] == yo}, y[x], x] 

2-C1x(2 C1x - 2C1 C1xx + C12 C1 xx2 + C13(-
C13

+ yo))
In[154]= {{y[x] ––› 

C13 
}}

In[155]:= Clear[C1, yo] 
DSolve[{∂x y[x] + C1 y[x] == Sin[x], y[0] == yo}, y[x], x] 

Out[156]= {{y[x] ––›

-C1x(1+yo+C1
2yo c12(1+yo+C12yo) C1xCos[x] + C1 C1xSin[x])

1+C12 
+ 

1+C12 
− 

}}
( + C1)( + C1)

These solutions are involved and so it is critical that we verify them before applying them: 

In[157]:= Clear[""Global‘*""] 
-C1x(2 C1x - 2C1 C1xx + C12 C1xx2 + C13(- 2 

C13
+ yo))

y1[x--] :=
C13

Simplify[∂x y1[x] + C1 y1[x] == x2] 

Out[159]= True

In[160]:= Clear[C1, yo]

y2[x--] := (  -C1x(
1 + yo + C12yo C12(1 + yo + C12yo)

+
1 + C12 1 + C12

- C1xCos[x] + C1 C1xSin[x]))/((- + C1) ( + C1)) 
Simplify[∂x y2[x] + C1 y2[x] == Sin[x]] 

Out[162]= True

Both are valid solutions and can then be simplified further before we utilize them: 

In[163]:= Simplify[y1[x]]



P1:

May 10, 2002 17:38 Foley foley-ch1

50 Chapter 1 A Primer of Mathematica 

-C1 x(-2 + C1 x(2 - 2C1 x + C12 x2) + C13yo)
Out[163]=

C13

-C1x(-2 + C1x(2 - 2C1 x + C12 x2) + C13 yo)
In[164]:= y1[x--] :=

C13

Simplify[y2[x]]

-C1x(1 + yo + C12 yo - C1xCos[x] + C1 C1x Sin[x])
Out[165]=

1 + C12

-C1x(1 + yo + C12 yo - C1x Cos[x] + C1 C1x Sin[x])
In[166]:= y2[x--] :=

1 + C12

Finally, given a set of parameter values for C1 and yo, we can Plot the two solutions simul
taneously, with solid for y1 and dashed for y2 to see how they behave with increasing x in a 
specific range: 

In[167]:= C1 = 1;
yo = 10;
Plot[{y1[x], y2[x]}, {x, 0, 10},

PlotStyle ––›{{Thickness[.01], GrayLevel[.5],
Dashing[{0}]}, {Thickness[0.01], Dashing[{0.05,0.05}]}}, 
PlotLabel ––›{solid ""y1[x]="", dashed ""y2[x]=""}, 
AxesStyle ––›{Thickness[0.01]}, 
AxesLabel ––›{x, ""yn[x]""}]; 

yn(x, &y1(x,� solid, y2(x,� dashed�

2 4 6 8 10 
x 

2.5 

5 

7.5 

10 

12.5 

15 
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We can see that the two solutions are in fact quite different in their behavior. For these parameter 
values the first is dominated by the quadratic term and the second by the Sin function. If we 
want to obtain a sense of parametric sensitivity, we can drop the value of C1 by 103 and then 
raise it by 102 and replot the graphs for these two cases: 

In[170]:= C1 = .1;
yo = 10;
Plot[{y1[x], y2[x]}, {x, 0, 10},

PlotStyle ––›{{Thickness[.01], GrayLevel[.5],
Dashing[{0}]}, {Thickness[0.01], Dashing[{0.05,0.05}]}}, 
PlotLabel ––›{solid ""y1[x]="", dashed ""y2[x]=""}, 
AxesStyle ––›{Thickness[0.01]}, 
AxesLabel ––›{x, ""yn[x]""}]; 

yn(x, &y1(x,� solid, y2(x,� dashed�

2 4 6 8 10 
x 

8 

10 

12 

14 

16 

In[173]:= C1 = 10;
yo = 10;
Plot[{y1[x], y2[x]}, {x, 0, 10},

PlotStyle ––›{{Thickness[ .01], GrayLevel[.5],
Dashing[{0}]}, {Thickness[0.01], Dashing[{0.05,0.05}]}},
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PlotLabel ––›{solid ""y1[x]="", dashed ""y2[x]=""},
AxesStyle ––›{Thickness[0.01]},
AxesLabel ––›{x, ""yn[x]""}];

yn(x, &y1(x,� solid, y2(x,� dashed�

2 4 6 8 10 
x 

0.5 

1 

1.5 

2 

In[176]:= Remove[y1, y2, yo, C1]

1.9 NDSolve 
We turn now to NDSolve for the solution of differential equations. A good starting point would 
be to begin to solve the equations that we have already solved symbolically with DSolve. 
Instead of simply solving the equation we are going to name the solution. We will call it soln: 

In[177]:= Clear[C1, yo, soln, y]

In[178]:= yo = 10;
C1 = 1;
soln = NDSolve[

{∂x y[x] + C1 y[x] == Sin[x], y[0] == yo}, 
y[x], {x, 0, 10}];

What we find is that the numerical solution is presented in the form of a tidy Interpolation 
function, which is good over the entire range of integration. This is much cleaner than having 
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a table or list of values echoed to the monitor. But to use the interpolated function we must 
assign it a function name and then we can apply it and explore the numerical solution’s 
behavior. To do this we use a command structure that we have utilized before; it looks like 
this: 

In[181]:= nyb[x--] := Evaluate[y[x] /. soln]

What this says in simple terms is to assign to nyb[x] to the interpolating function y[x] found 
in the solution called soln. This function can now be plotted: 

In[182]:= Plot[nyb[x], {x, 0, 10}, AxesStyle ––›{Thickness[0.01]}];

This looks identical to the plot we had before based upon the analytical solution. If we need 
to have a table of values for the function we can obtain this as follows: 

In[183]:= Table[{x, nyb[x]}, {x, 0, 10, .5}] // TableForm

Out[183]//TableForm =
0 10. 

0.5 6.16951 
1. 4.01333 
1.5 2.80625 
2. 2.08375 
2.5 1.5617 
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3. 1.08832 
3.5 0.609911 
4. 0.140736 
4.5 −0.266721 
5. −0.550543 
5.5 −0.664192 
6. −0.593765 
6.5 −0.364947 
7. −0.0388831 
7.5 0.30149 
8. 0.570951 
8.5 0.702385 
9. 0.66292 
9.5 0.461796 
10. 0.148002 

It is clear that for relatively simple linear equations such as these DSolve and NDSolve 
duplicate each other. When the equations become nonlinear, however, it may not be possible 
to find an analytical solution. At that point NDSolve no longer merely duplicates but, rather, 
it supplants DSolve. For example, if in the last differential equation y[x] appears quadratically 
rather than linearly, DSolve will not return a solution: 

In[184]:= Clear[C1, yo] 
DSolve[{∂x y[x] + C1 y[x]2 == Sin[x], y[0] == yo}, y[x], x] 

Out[185]= DSolve[{C1 y[x]2 + y′[x] == Sin[x], y[0] == yo}, y[x], x] 

In contrast, NDSolve will do so and it will do it well: 

In[186]:= Clear[C1, yo]
yo = 10;
C1 = 0.01;
y3 = NDSolve[

{∂x y[x] + C1 y[x]2 == Sin[x], y[0] == yo}, y[x], 
{x, 0, 10}];

ny3[x--] := Evaluate[y[x] /. y3]
plny3 = Plot[ny3[x], {x, 0, 10},

AxesStyle ––› Thickness[0.01],
PlotStyle ––› Thickness[0.01]];
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For the sake of learning we can now go back and compare the solution of this nonlinear 
equation to the linear version. To do so numerically, we must resolve the equation with the 
new value of C1 set to 0.01: 

In[217]:= Clear[C1, yo]
yo = 10;
C1 = 0.01;
y2 = NDSolve[

{∂x y[x] + C1 y[x] == Sin[x], y[0] == yo}, 
y[x], {x, 0, 10}];

ny2[x--] := Evaluate[y[x] /. y2]
plny2 = Plot[ny2[x], {x, 0, 10},

PlotRange ––›{{0,10}, {0, 12}},
AxesStyle ––› Thickness[0.01],
PlotStyle ––› {GrayLevel[.5], Thickness[0.01],
Dashing[{0.05, 0.05}]},
DisplayFunction ––›Identity];

Show[plny3, plny2, DisplayFunction ––›$DisplayFunction, 
PlotLabel ––›{dashed ""ny2="", solid ""ny3=""}, 
AxesLabel ––›{""x"", ""nyi[x]""}]; 
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1.10 Units Interconversion 
Mathematica also provides a special package for the interconversion of units of measure. To 
access this functionality of the software we need to load the package named Miscellaneous 
‘Units‘. We load this and other specialized packages from the Mathematica library with the 
following command: 

In[199]:= <<Miscellaneous‘Units‘

This allows us to begin doing units interconversion immediately. The following are some 
examples of this utility: 

In[200]:= Convert[5 Kilo Meter, Mile]

Out[200]= 3.10686 Mile

In[201]:= Convert[80 Year, Day]
Convert[80 Year, Second]

Out[201]= 29200 Day

Out[202]= 2522880000 Second
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In[203]:= Convert[2500 Kilo Joule, Calorie]

Out[203]= 597115. Calorie

In[204]:= Convert[25 Furlong/Fortnight, Mile/Hour]

Convert[25 Furlong/Fortnight, Mile/Hour] // N

25 Mile
Out[204]=

2688 Hour
0.0093006 Mile

Out[205]=
Hour

In[206]:= ConvertTemperature[19, Fahrenheit, Centigrade]
ConvertTemperature[19, Fahrenheit, Rankine]
ConvertTemperature[19, Fahrenheit, Kelvin]

Out[206]= -7.22222

Out[207]= 478.67

Out[208]= 265.928

In[209]:= Convert[1 Atmosphere, Bar]

Out[209]= 1.01325 Bar

In[210]:= Convert[1 TonForce, Dyne]

Out[210]= 9.96402× 108 Dyne
In[211]:= Convert[1 Ton, Gram]

Out[211]= 1.01605× 106 Gram
In[212]:= Convert[25 Angstrom, Micron]

Convert[25 Angstrom, Micron] // N

Micron
Out[212]=

400

Out[213]= 0.0025 Micron

This same utility will also allow us to specify a measurement in an arbitrary system and then 
convert this to a specified system, such as CGS, MKS, or  SI: 

In[214]:= SI[350 Atmosphere]
MKS[300 Feet]
CGS[1 Inch]

3.546375×107 Pascal 
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Out[215]= 91.44 Meter

Out[216]= 2.54 Centimeter

For more examples of this kind and to see what units are available to use in these intercon
versions click on the Master Index in the Help Browser and Go To Miscellaneous ‘Units‘. 

1.11 Summary 
Now we have the basic tool kit that we need in order to get started with Mathematica. As we  
go through the next eight chapters and before we get to the Worked Problems in Chapter 10, 
we will build upon this foundation and add to these tools. 
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Elementary
Single-Component Systems

Elementary single-component systems are those that have just one chemical species or material 
involved in the process. Filling of a vessel is an example of this kind. The component can be 
a solid liquid or gas. Regardless of the phase of the component, the time dependence of the 
process is captured by the same statement of the conservation of mass within a well-defined 
region of space that we will refer to as the control volume. 

In this chapter we will apply the conservation of mass principle to a number of different 
kinds of systems. While the systems are different, by the process of analysis they will each be 
reduced to their most common features and we will find that they are more the same than 
they are different. When we have completed this chapter, you will understand the concept of 
a control volume and the conservation of mass, and you will be able to write and solve total 
material balances for single-component systems. 

2.1 The Conservation of Mass Principle 
and the Concept of a Control Volume 

The conserved quantities that are of utmost importance to a chemical engineer are mass, energy, 
and momentum. It is the objective of this text to teach you how to utilize the conservation of 
mass in the analysis of units and processes that involve mass flow and transfer and chemical 
reaction. For each conserved quantity the principle is the same—conserved quantities are 

59 
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neither created nor destroyed. For mass this principle holds for all cases except those involving 
nuclear reactions. In all other situations, the principle is never violated. So we can use it to the 
utmost as you will see in developing both time-dependent and time-independent descriptions 
of chemical processes. 

The principle is so seemingly obvious that you may wonder how it can be so useful to 
us. How does knowing that mass is neither created nor destroyed relate to a chemical process 
unit’s behavior or to anything else for that matter? The key is that in order to use this principle 
we must translate it into mathematics so that we can work with it and derive the precise and 
accurate descriptions that we need. 

If mass is neither created nor destroyed, that means if we seem to detect its apparent 
depletion or accrual in one region of space, this can only be the case if in some other region of 
space the same mass was either accruing or depleting. In other words, we always inspect some 
region of space and draw conclusions based on our measurements within that region. If mass 
is increasing within this space, it must be coming from somewhere else. Similarly, if we detect 
that mass is decreasing, then it is because it is leaving the region of our measurement. We have 
everyday experiences that correspond to these statements.The level of water in a glass left on 
a table at room temperature will slowly decrease as the water leaves via evaporation. Pulling 
the drain plug on a bathtub causes the water to flow out due to the force of gravity. When a 
stalk of corn grows all the mass that is accumulated in such complex forms within the plant 
had to be delivered to it from the soil and the surrounding atmosphere. Each of these, the 
glass of water, the tub, and the corn plant, can be considered a “system,” and as such we can 
measure the rate of change that occurs within them whether it is through evaporative losses, 
flow, or growth. This is because each involves the transport and transfer of mass from outside 
of the system to inside of it or vice versa. 

Another example is that of a living cell. Nutrients are transported across the cellular 
membrane and are utilized in metabolism. The by-products of metabolism are transported 
out of the cell and also back across the membrane to the surroundings. The young cell grows 
and increases in size and mass because the rate of by-product flow out is less than the rate of 
nutrient flow in. We know this because of the conservation of mass principle, and so we need 
no other information than to know that the cell grows in order to reach this conclusion. As 
the mass of the cell increases, the size of the cell also increases. If the cell is nearly spherical 
as is the case for some simple, single-cell organisms, then we can expect that its diameter or 
radius is also increasing. Hence, the simplest measurement to make to detect cell growth in 
an experiment may be to measure the cellular radii. When the cell matures, we find that the 
rate of nutrient flow in is balanced by the rate out, which is why the cell no longer is growing. 
This of course says nothing about the complex metabolic control mechanisms that lead to this 
situation, but it does define maturity explicitly in dynamical terms. In this condition, when the 
input rate is balanced by the output rate, there is no net accumulation of mass in the cell. The 
cell biologist refers to this as the homeostatic state; the chemical engineer calls it the steady state. 

In these word statements we find that which we need to formalize at this point. The 
conservation of mass is applied to a system and more specifically to a control volume, which 
is defined by a control surface that separates the control volume from its surroundings, either 
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in actuality or abstractly. By defining the control volume and its boundaries, we know where 
“inside” is. The inside of the cell is that space within the membrane just as the inside of the 
glass lies within its regular walls. The same is true for the corn plant, even though it has a 
more complex geometry defining its control surface. Now we can begin to bring mathematical 
descriptions to bear on the problem, but not until we have accurately stated the conservation 
of mass in terms of the control volume and its boundaries: 

The net rate of mass accumulation within a control volume is equal to the rate at 
which mass enters the control volume by any process minus the rate at which it 
leaves the control volume by any process. 

The mathematics that proceeds from this is at once simple and elegant. Since we are discussing 
rates we will write the mathematical statement in terms of rates also—the rate of change in 
mass within the control volume: 

dm[t] = min − ˚˚ moutdt 
dm[t] = the net rate of change in mass within the control volume, rate of accumulation; 

dt mass/time; 

m̊in = the total rate of mass flow into the control volume by any means; mass/time; 

m̊out = the total rate of mass flow out of the control volume by any means; mass/time. 

This is the key unifying principle that we will use throughout this book. It will be all we need 
in order to analyze and model a wide array of elementary single-component systems and it is 
the foundation upon which everything else we do with more complex systems will be built. 
The best way to illustrate how to use this mathematical statement of conservation of mass is 
through examples. 

Filling a Vessel with a Pelletized Solid: Conservation of Mass 
and the Constitutive Relationship 
Many products come in the form of a powdered solid. The solid once produced is stored in 
a container. It may be a barrel, a bag, or a can depending on the volume. Powdered milk is a 
good example; so is lawn fertilizer. Catalytic solids are another. Catalysts promote the rate of 
chemical reaction and are used throughout the chemical and petroleum industries; they are 
usually small solid pellets of uniform size and shape. Catalysts are not consumed in the course 
of the reaction they promote. Nevertheless, catalysts do eventually need to be replaced. This 
is either because they were poisoned or their solid structures have become clogged with high 
molecular weight molecules that prevent access to the active sites. At the end of its lifetime, 
then, the catalyst must be replaced. The spent catalyst is removed from the reactor vessel, 
the reactor is cleaned, and the space left open is ready for a charge of fresh solid catalyst. 
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Figure 1 

The fresh catalyst will be delivered to the top of the reactor by a conveyor belt and dropped in. 
The process will proceed until the volume of the reactor vessel has been filled to the requisite 
level as is shown in Figure 1. 

Reactors are often large in volume and cylindrical in shape. We will represent the reactor 
then as a simple cylindrical volume. The height of the vessel is h and its diameter is d. The 
overall volume to be filled by the catalyst is given as: 

V == πd2h 

Catalyst is being delivered by conveyor belt at a constant mass flow rate. The question we 
would like to be able to answer is: How much catalyst mass is in the reactor vessel at any 
time? The reason we care is that we will be paying for the catalyst on a per pound basis. If we 
look into the reactor at any time t, we may be able to measure the level to which the reactor is 
filled, and from that level measurement we could in principle compute the mass of catalyst if 
we had a density for the material. Remember though that this is solid and it packs irregularly 
into the reactor, as we can see from Figure 1. We can at best get an average value for the density 
and only after we have done an experiment in which the catalyst was carefully packed into a 
known volume and massed in order to find its so-called compacted bulk density. 
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Therefore, if we know the compacted bulk density, then it is possible to compute the mass 
in the bed using the mathematical statement for the conservation of mass. In this case the 
reactor and its physical dimensions define the control volume. The rate of catalyst delivery 
is a constant that we will call m̊in. The rate of mass flow out of the reactor is zero, that is, 
m̊out = 0. Therefore we have: 

dm[t] 
˚= mindt 

This says that the rate of accumulation of catalyst in the reactor is just equal to the rate of 
delivery, which is exactly what we would have said based on common sense. An equation of 
this kind is the simplest type of differential equation. It is separable and we integrate from 
t = 0 to  t and from m[0] = 0 to  m[t]. The integrals that result from the separation of variables 
are shown in what follows. On the right-hand side we use the infix form “ /. m[0] ––› 0” to tell 
Mathematica to use a lower-bound value of zero for m[0]: 

∫ t∫ m[t] 
In[1]:= m[t]== ˚ t /  .  m[0] ––› 0min

m[0] 0

Out[1]= m[t] == tm̊in

We find that the mass of catalyst in the reactor is a simple linear function of time so long as 
the mass flow rate of catalyst via the conveyor remains constant. The dimensions on m̊in are 
mass time−1 , so we see that the resultant equation is dimensionally consistent. 

In[2]:= mass == (time) mass time-1

Out[2]= True

We can put some numbers into this result. Suppose that the reactor is fairly large in volume: it 
is 60 ft high and 20 ft in diameter. The catalyst delivery rate is 100 lb per hr. The compacted bulk 
density of the catalyst is 10 kg m3. First, we want to know the mass of catalyst in kilograms in 
the reactor at any time t. We would also like to know to what level the reactor will be filled at 
time t, if the catalyst is packing in at its full compacted bulk density (bd). (As stated earlier this 
value can be obtained easily in the laboratory by simply filling a know volume with catalyst, 
being careful to leave no voids in the packing and then weighing the sample.) If we compare 
the actual volume in the bed to that which we calculate, then any difference between the two 
values will arise from the catalyst not packing at its bd. 

To do this we will load a helpful package called <<Miscellaneous ‘Units’ from Mathematica. 
We also want graphs of the predicted catalyst mass as function of time, the theoretical level 
of catalytst in the reactor as a function of time, and the actual level that has been measured 
in the reactor at a few times during the loading process. Finally, we can compute the catalyst 
cost in $ flowing into the reactor volume per unit time. Here we calculate the mass flow in per 
unit time in metric units as well as the volume and cross-sectional area of the reactor. 
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In[3]:= << Miscellaneous‘Units‘

In[4]:= m̊in == NumberForm[Convert[1000 Pound/Hour,
Kilogram/Minute], 2]

7.6 Kilogram
Out[4]= m̊in ==

Minute

In[5]:= Hreactor ==
NumberForm[Convert[60 Feet, Meter], 3]
Vreactor ==

20 Feet
NumberForm[Convert[π( )2 60 Feet, Meter3], 3]

2
20 Feet

Areactor == NumberForm[Convert[π( )2, Meter2], 3]
2

Out[5]= Hreactor == 18.3 Meter

Out[6]= Vreactor == 534. Meter3

Out[7]= Areactor == 29.2 Meter2

Next we should compute the time it would take to fill the reactor if the catalyst were to pack 
in at its cbd. This time will be called tmax. We  find this time by setting the catalyst volume 
equal to the volume of the reactor in the mass balance and rearranging: 

In[8]:= Vreactor = 534.Meter3

7.6 Kilogram
m̊in = ;

Minute

bd = 10 Kilogram/Meter3;

m̊int
Vcat[t--]:= bd

Solve[Vreactor == Vcat[tmx], tmx]

Out[8]= 534. Meter3

Out[12]= {{tmx ––› 702.632 Minute}}

In[13]:= N[Convert[702.6 Minute, Hour]]

In[14]:= NumberForm[Convert[%, Day], 3]

Out[13]= 11.71 Hour

Out[14]//NumberForm=
0.488 Day

The time required to fill the reactor, if the catalyst packs in at its bd, is about five days or 117 
hours. If the packing is at some bed density less than the bd, then the reactor volume will 
be apparently filled faster, but the catalyst load in mass will be below its design level due to 
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voids in the bed. We will see later that if this were to go unnoticed and unrepaired, then the 
production rate for the reactor will fall below its design level because it does not contain the 
design mass of catalyst. Making the catalyst bed reach bd is important. The mass of catalyst 
that should be in the bed at tmax and bd, and the theoretical mass of catalyst in the bed at any 
time are found as follows: 

In[15]:= mcat[t--] :=  ̊mint

tmxx = 702.6 Minute;
mcat[tmx]
Vcat[tmx]

7.6Kilogram tmx
Out[17]=

Minute

0.76Meter3 tmx
Out[18]=

Minute

At constant bd the catalyst will occupy the reactor fully and will have a total mass of 5340 kg. 
According to the model this mass will accumulate linearly in time: 

In[19]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.02], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[20]:= tf = 702.6;
Minute

plmcat = Plot[(mcat[t] ), {t, 0, tf},
Kilogram

AxesLabel ––› {""t/Min"", ""Design mcat[t]/Kg""}, 
PlotStyle ––› GrayLevel[.5]]; 

Design mcat(t,ZKg 
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1000 

2000 

3000 

4000 
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100 200 300 400 500 600 700 
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The volume and level of the catalyst bed will also vary linearly in time so long as the density 
remains constant: 

In[22]:= tf = 702.6;
˚ 20 Feet

levcat[t--] :=
mint

(Convert[π( )2, Meter2])-1 
bd 2 

plvolcat = Plot[(Vcat[t]MinuteMeter-3), {t, 0, 7026}, 
PlotStyle ––› {Thickness[0.006], Dashing[{0.05,0.05}]}, 

AxesLabel ––› {""t/Min"", ""Design Vcat[t]/m3""}]; 

pllevelcat = Plot[(levcat[t] Minute Meter-1),

{t, 0, 3.5 tf}, PlotStyle ––› {Thickness[0.007],
Dashing[{0.15, 0.05}]}, 

AxesLabel ––› {""t/Min"", ""Design Levelcat[t]/m3""}, 

Epilog ––› Line[{{0, 18.4}, {3.5 tf, 18.4}}]]; 

Design Vcat(t,Zm3 
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1000 2000 30004000500060007000 
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Design Levelcat(t,Zm3 
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Now we will look at some actual data that accumulated as a function of time as the unit was 
being filled. We can enter this as follows and we name the data set “levdata”: 

In[26]:= levdata = {{0, ""0.""}, {100, ""2.05""}, {200, ""3.55""}, 
{300, ""4.79""}, {400, ""5.87""}, {500, ""6.85""}, {600, ""7.74""}, 
{700, ""8.57""}, {800, ""9.34""}, {900, ""10.1""}, 
{1000, ""10.8""}, {1100, ""11.4""}, {1200, ""12.1""}, 
{1300, ""12.7""}, {1400, ""13.3""}, {1500, ""13.8""}, 
{1600, ""14.4""}, {1700, ""14.9""}, {1800, ""15.4""}, 
{1900, ""16.""}, {2000, ""16.4""}, {2100, ""16.9""}, 
{2200, ""17.4""}, {2300, ""17.9""}, {2400, ""18.3""}}; 

It makes sense to try fitting this data to a line since that is exactly what our model suggests, 
that is, that we should have linear dependence upon time. We can do this by using the com
mand Fit. We will fit the data to a line going through the point {0, 0} and also to a line with 
a nonzero intercept. We will also plot both of these results. We shall suppress the plots with 
DisplayFunction ––› Identity until we use the Show command, when we will use Display-
Function ––› $DisplayFunction to render the graphic. To plot the actual data we use ListPlot 
and we suppress this also, and in the same way, until we use the Show statement. With Show 
we combine the two fitted function plots, the plot of level versus time from the analysis, and 
the data. The actual final level is the added horizontal line. We introduced this with the com
mand Epilog ––›Line[{{ 0, 18.4}, {3tf, 18.4}} and we “turned on” each of these for display 
with the command DisplayFunction ––›$DisplayFunction: 
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In[27]:= tf = 720;

Fit[levdata, {t}, t]

ftpllevdat = Plot[%, {t, 0, 3.5 tf},
PlotStyle ––›{GrayLevel[.5], Thickness[0.006],
Dashing[{0.05, 0.03}]},
DisplayFunction ––›Identity];

Fit[levdata, {1, t}, t]

ftpllevdat2 = Plot[%, {t, 0 , 3.5 tf},
PlotStyle ––›{GrayLevel[.7], Thickness[0.006],
Dashing[{0.2, 0.1}]},
DisplayFunction ––›Identity];

pllevdat = ListPlot[levdata, DisplayFunction ––›Identity];

Show[{ftpllevdat, ftpllevdat2, pllevdat, pllevelcat},
DisplayFunction ––›$DisplayFunction,
Epilog ––›{Thickness[.01], Line[{{0, 18.4},
{3.5tf, 18.4}}]}, 

FrameLabel ––›{""t/min"", ""Level/m""}, 
PlotRange ––›{{0, 3.5tf}, {0, 20}}, 
Frame ––›True, GridLines ––›Automatic]; 

Out[28]= 0.00871916t

Out[30]= 2.86214 + 0.00696683t
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The black dashed line is the result of the original model. We see that it crosses the fill line 
around 700 min. This is obviously a gross underprediction of the real time required to fill 
the unit, a time on the order of 2400 min. Now we fitted the data with two other lines, one 
with an intercept forced through zero (dark gray dashed line) and one in which the intercept 
was allowed to float (light gray dashed lines). Both do a better job of predicting the actual 
time to filling. Returning to the model projected line (black dashed lines): since it crosses 
the maximum level line at a time (∼700 min) that is much less than the time that it actually 
took to fill the reactor, we must begin to question the physical premise that the catalyst bed 
remained at constant density, that is, bd, throughout the filling process. Constant density 
predicts that the reactor would be full of catalyst much too soon. As we know that the mass 
flow rate in is a constant, then the mass of catalyst in the reactor would be only one-third of 
the design level, which if left undetected (unlikely) would have disastrous consequences for 
the operability and economics of the process. When we look at the dark gray dashed line, we 
find that the prediction is much better as is than made with the light gray dashed line, but 
neither of these results is based upon a physical premise, and in fact the latter is unphysical 
in that the initial level in the unit was zero and yet its intercept is nonzero. Furthermore, both 
fitted functions under-predict and over-predict the level at different times, so neither would 
be useful for intermediate time predictions. Finally, neither the fitted model nor the physically 
based model captures the nonlinearity of the real data. Thus, we have a model based on 
physical reasoning that fits very poorly and two based on nonphysical reasoning that at best 
fit modestly. Clearly, we need to put more effort into this analysis. 

What we need to realize is that as the catalyst level increases, more mass is present to 
bear down upon the underlying catalyst with more force. This causes the bed to compress. 
As the level rises the density at the bottom of the bed increases. With time and higher levels 
this occurs throughout the whole of the bed. Even though the density begins at bd then, it 
actually rises to a value above bd, especially at the bottom of the bed. The higher value at the 
bottom of the bed gives rise to an average across the bed that is higher than bd measured in 
the laboratory. 

To handle this we can physically reason that the density of the bed must be a function of 
the level of filling of the bed. We need to bring this idea into the analysis quantitatively so 
that we might better predict the level as a function of time in the reactor. We begin with the 
statement of conservation of mass in the reactor: 

dm[t] 
˚= mindt 

We could integrate this expression and then convert it to the volume and level of catalyst by 
use of the bd but this assumes that the density in the bed always remained at bd, which we 
now realize to be incorrect. The next problem then is to find a way to bring this change in bed 
density into the original analysis. To do this we express the mass of catalyst as the product of the 
volume at any time and the bulk density, which in turn could be related to the level at any time: 

m[t] = bd V[t] = bd Areactor Lev[t] 
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However, as we now know, the bulk density bd is not a constant. In fact, the average bulk 
density in the bed is a function of the mass of the bed and therefore time, giving at this point 
the following equation for the conservation of mass: 

dm[t] d[bd[t] Areactor lev[t]] 
˚= = mindt dt 

˚d[db[t] lev[t]] min = 
dt Areactor 

The equation as written cannot be solved. To solve it we need a relationship between the 
bulk density and the level of filling in the reactor. As we do not have a source for this we 
make an educated guess. It would be intuitive to assume that the bulk density at any level is 
proportional to the level: 

bd[lev[t]] = k lev[t] 

However, this would be “unphysical” in that it would suggest zero bulk density at zero level. 
We can improve matters by letting the original bulk density vary linearly with level as follows: 

bd[lev[t]] = bdo + k lev[t] 

This relationship has the benefit of providing a more physical result at zero level, but it suffers 
from the fact that the density continues to grow in an unbounded fashion with increasing level. 
We can instead imagine that the bulk density will increase with level or crushing force but that 
the compressive forces required in order for it to reach a maximum value are not attainable, 
since the expression is not bounded from above. We can substitute this relationship into the 
differential equation and then solve for the level as a new function of time: 

˚d[bd[t] lev[t]] min = 
dt Areactor 

bd[lev[t]] = k lev[t] + bdo 

˚d[(k lev[t] + bdo) lev[t]] min = 
dt Areactor 

˚d[k lev [t]2 + bdo lev[t]] min = 
dt Areactor 

˚
k

d lev[t]2 

+ bdo
d lev[t] min = 

dt dt Areactor 

In fact, for the sake of solving this equation, Mathematica is perfectly capable of utilizing the 
equation in the form just after substitution of the linear equation for the bulk density. We see 
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that this is the case in the computation that follows: 

In[34]:= Remove[""Global‘*""] 
m̊in

DSolve[{∂t((bdo + k lev[t])lev[t])== ,
Areactor 

lev[0] == 0}, lev[t],t] // FullSimplify 

√ 
bdo2Areactor +4kt˚

bdo+ √ min

Out[35]= {{lev[t] ––›-
Areactor },

2k√ 
bdo2 Areactor +4kt˚

bdo+ √ min 

{lev[t] ––›-
Areactor }}

2k

Two solutions result from this equation because the level appears quadratically in the time 
derivative. The first solution will provide only a negative value of the level, so we must utilize 
the second solution. We can clean it up a bit algebraically: 

bdo bdo2Areactor + 4 kt  ̊min− + √
2k 2k Areactor 

bdo bdo2Areactor + 4 kt  ̊min− + √
2k 4k2Areactor 

bdo bdo2 tm̊in− + +
2k 4k2 kAreactor 

This expression is one that can be tested against the experimental data. The rate of mass flow 
in, m̊in, is constant as is the reactor cross-sectional area, Areactor. Therefore, the only unknown 
is the value of k, the proportionality constant. We can try to fit this equation to the data: 

In[36]:= levdata = {{0, ""0.""}, {100, ""2.05""}, {200, ""3.55""}, 
{300, ""4.79""}, {400, ""5.87""}, {500, ""6.85""}, 
{600, ""7.74""}, {700, ""8.57""}, {800, ""9.34""}, 
{900, ""10.1""}, {1000, ""10.8""}, {1100, ""11.4""}, 
{1200, ""12.1""}, {1300, ""12.7""}, {1400, ""13.3""}, 
{1500, ""13.8""}, {1600, ""14.4""}, {1700, ""14.9""}, 
{1800, ""15.4""}, {1900, ""16.""}, {2000, ""16.4""}, 
{2100, ""16.9""}, {2200, ""17.4""}, {2300, ""17.9""}, 
{2400, ""18.3""}}; 

To do so we will load the package Statistics‘NonLinearFit’. Then we can fit this to the data 
by recognizing that there is only one parameter which we do not know and that is the value 
of k. The command NonlinearFit will do this for us. (One can learn all about this or any 
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other command by inputting for example ??NonlinearFit.) The syntax is straightforward: We 
provide the set of data by name, the expression or function to be fit to the data, the name of the 
independent variable, and the name of the parameter. There are many different control values 
we can set, including the method of minimization; in this case we have moved the number of 
iterations allowed from the default value of 30 upto 100. 

In[37]:= << Statistics‘NonlinearFit‘

In[38]:= bdo = 10;
12in 2.54cm 1m 1

rreactor = 10ft ;
ft in 100cm m

Areactor = πr2reactor 
m̊in = 7.6;

m̊in
Areactor

bdo bdo2 tm̊in
NonlinearFit[levdata,- + + , t, {k},

2k 4k2 k Areactor

MaxIterations ––› 100]

Out[40]= 29.1864

Out[42]= 0.260396
√ 

Out[43]= -3.79651 + 14.4135 + 0.197719t

According to the fitting routine, the fitted function should be -3.79651+√ 
14.4135+0.197719t. Clearly the value of k must be computed from the best fit param

eters. We have magnitudes for bdo and for bdo
2 

and we can solve for k with each to be sure2k 4k2 

that the same value results. 
bdo

In[44]:= NSolve[ == 3.79, k]
2k

bdo2
NSolve[ 

4k2 
== 14.4, k]

Out[44]= {{k ––› 1.31926}}

Out[45]= {{k ––› 1.31762}, {k ––› -1.31762}}

Now we test this expression for its appearance of fit against the data set. We do so by creating 
the function lev [t] with it, computing the level as a function of time, and then plotting this 
with the actual data in order to visualize the fit. 

In[46]:= bdo = 10; 
12in 2.54cm 1m 1 

rreactor = 10 ft  ;
ft in 100cm m

2Areactor = πrreactor
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12in 2.54cm 1m 1 
Hreactor = 60  ft  

ft in 100cm m 
; 

12in 2.54cm 1m 1 
Vreactor = Areactor 60 ft ;

ft in 100cm m
m̊in = 7.6;
k = 1.32;
tf = 820;

bdo bdo2 tm̊in
levcat,NL[t--]:= - +

2k 4k2 
+
k Areactor

levcat,NL[t] 
datpl = ListPlot[levdata, Epilog ––› {Thickness[0.006], 
Line[{{0, 18.2}, {3tf, 18.2}}]}, 
PlotStyle ––› PointSize[0.02], DisplayFunction ––› Identity, 
AxesLabel ––› {""t/min"", ""h[t]/m""}]; 
plfitnl = Plot[levcat,NL[t], {t, 0, 3 tf}, 
DisplayFunction ––› Identity]; 
Show[{datpl, plfitnl}, DisplayFunction ––› $DisplayFunction]; 

Out[48]= 29.1864
√ 

Out[55]= -3.78788 + 14.348 + 0.197269 t

h(t,Zm 

tZmin 
2.5 

5 
7.5 
10 

12.5 
15 

17.5 

500 1000 1500 2000 2500 

The model parameter has a value of 1.32 and the time that would be required to reach full 
capacity with this new model can be found by solving the following equation: 
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In[59]:= bdo = 10;
12in 2.54cm 1m 1

rreactor = 10ft
ft in 100cm m

2Areactor = πrreactor//N 

12in 2.54cm 1m 1
Hreactor = 60ft

ft in 100cm m

Vreactor = Areactor Hreactor
m̊in = 7.6
k = 1.32

In[59]:= t/. Flatten[NSolve[18.3 == 
bdo 

2k 
+ 

bdo2 

4k2 
+ 

tm̊in 
kAreactor 

, t]] 

%/60 
%/24 

We find that the value predicted is 2400 min or 40 hr, which is much closer than our estimate 
of 78 hr based on the constant bed density. 

Filling a Cylindrical Tank 
Most often the mass flow that we are concerned with will involve a liquid. When a liquid is 
flowing we typically measure its flow rate in dimensions of volume per unit time. We consider 
next the flow of a liquid into a tank (another simple single-component problem), shown in 
Figure 2. 

The control volume is the tank itself. This is because the liquid flowing into the tank is 
homogeneous, meaning that wherever we make a measurement of composition, density, or 
temperature it is everywhere the same in the liquid. The differential statement of the conser
vation of mass is the same as it was in the first case: 

dm[t] 
˚= mindt 

Now, however, the expression for the mass flow rate into the tank is given by the product of 
the density of the liquid ρ and the volumetric flow rate q: 

dm(t) = ρq
dt 

The mass accumulated within the control volume is the product of the density of the liquid, 
the cross-sectional area of the tank AC, and the height of the liquid in the tank at any time t, h[t]. 
Replacing this in the time derivative and rearranging we find: 

dh(t) q = 
dt AC 
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Mass Flow In 

Figure 2 

This equation states that the rate of change of liquid level in the tank is a constant. From this 
we know then that the change in level must be a linear function of time: 

In[59]:= 

∫ h[t] 
0 

h[t] == 

∫ t 
0 

q 

Ac 
t 

qt
Out[59]= h[t] ==

AC

Here too we can do the integration trivially because the flow rate into the tank is a constant. 
Notice also that the units are consistent in the final expression: 

Length3 1
In[60]:= Length == time

time Length2

Out[60]= True

If we take the cross-sectional area of the tank to be 10 m2 and the flow rate to be 0.25 m3 min−1, 
then a plot of the level of liquid versus time is as follows: 

In[61]:= << Miscellaneous‘Units‘
0.25 Meter3 Minute-1 Minute

Plot[( 
10 Meter2 

) t, {t, 0, 50},
Meter 

AxesLabel ––› {""t/min"", ""h[t]/m""}]; 
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h(t,Zm 

tZmin 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

10 20 30 40 50 

If the aspect ratio of the tank is 4, that is, the ratio of the height to the diameter, then after how 
many minutes will it overflow under these conditions? We know the cross-sectional area so 
we can find the diameter of the tank because we know it is one-fourth of its height. Given this 
height we can solve for tcritical: 

d2In[63]:= Solve[10 == N[π 4 ],d] 

Out[63]= {{d ––›-3.56825}, {d ––›3.56825}}

.25 Meter3 Minute-1
In[64]:= Solve[4*3.57 Meter ==

10 Meter2 
tcritical,

tcritical]

Out[64]= {{tcritical ––› 571.2 Minute}}

Thus the tank will begin to overflow after 571 min. How would we write the differential mass 
balance for that situation? We would do it just as we have before, except that now we would 
have the second term on the right-hand side: 

dm[t] = min − ˚˚ moutdt 

If we think about this, the answer is immediately obvious—the right-hand side is identically 
zero. This means that the net rate of change of level in the tank is also identically zero, meaning 
that it no longer can rise or fall, but stays at a steady-state value. Thus the overall behavior of 
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the unattended tank under these conditions is simply this: 

0.25 Meter3 Minute-1 Minute
In[65]:= a = Plot[(

10 Meter2 
) 
Meter 

t, 

{t, 0, 571.2}, AxesLabel ––› {""t/min"", ""h[t]/m""}, 
PlotStyle ––› {Thickness[0.006], 
Dashing[{0.025, 0.025}]}, 
DisplayFunction ––› Identity]; 

b = Graphics[{Dashing[{0.025, 0.025}], 
{Thickness[0.006], Line[{{571.2, 14.28}, 
{1000, 14.28}}]}}]; 

Show[a, b, DisplayFunction ––› $DisplayFunction, 
PlotLabel ––› "" Onset of Steady State""]; 

h(t,Zm Onset of Steady State 

tZmin 
2 
4 
6 
8 

10 
12 
14 

200 400 600 800 1000 

We considered time-independent flow rates into the system, but what if we had to handle a 
situation in which the flow rates were time dependent? How would we handle the analysis 
of that situation? 

Pressurizing an Initially Evacuated Tank with an Ideal Gas 
Gas flows are common and offer another opportunity for us to apply this new tool we have 
found in the total mass balance. Gases can be simple or complex. By simple we mean that 
in some cases the atoms or molecules of which the gas is composed do not interact except at 
the point of collision. They behave as if they were nanoscopic ball bearings racing around, 
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colliding with one another and the walls of the vessel in which they are contained. Furthermore, 
even as we increase their pressure within the vessel by increasing their number per unit 
volume at constant temperature or by raising temperature at constant number per unit volume, 
they continue to behave in the same way. We refer to gases of this kind as “ideal” and their 
characteristics are those of “hard-spheres.” Most gases do not behave ideally. If their properties 
are nearly ideal at low pressure, we find that they deviate from ideality at higher pressure. The 
reason for this is that these molecules exhibit truly molecular behavior in all its rich detail and 
complexity. When they collide they do not do so as if they were merely billiard balls bouncing 
off one another. Instead they are sticky or they are repulsive. They have size and they have 
shape. Some are polar; others are nonpolar. It is these properties that give rise to much subtler 
and richer effects than are observed in “real” gases and which the hard sphere model could 
never predict. Nonetheless, the ideal gas is a good model and one from which we can learn a 
great deal. We can also use it to advantage here, because going into the theory of real gases is 
a subject in and of itself. 

Recall that an ideal gas follows a very simple equation of state: 

PV = nRT 

where P is the pressure, V the volume of the vessel, n the number of moles of the gas, R the gas 
constant, and T the absolute temperature. With this we can calculate the pressure in a vessel 
of volume V as a function of pressure, the volume of a gas at fixed pressure and temperature, 
or the temperature at fixed pressure and volume by simple rearrangements: 

nRT 
P = 

V 
nRT 

V = 
P 

PV
T = 

nR 

In addition, we can compute the concentration of the ideal gas in moles per unit volume or 
its density in mass per unit volume: 

n P
C = = 

V RT 
nMW P MW  

ρ = = 
V RT 

where MW refers to the molecular weight of the gas. This provides the link we need between 
the gas phase material and the overall mass balance. Let’s see how it can work. 
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Gases and liquids are both fluid phases, but they differ in density. For example, the density 
of water at ambient conditions is ≈1 g per cm3. The vapor pressure of water in equilibrium 
with the liquid is 0.43 psia at 75◦F. (Psia stands for pounds per square inch absolute—meaning 
above vacuum.) We can compute the concentration of water in the liquid phase and compare 
this to that of the equilibrium vapor phase, and then we can compute the density of the 
equilibrium vapor phase and compare that to the liquid density. This way we can have a 
better sense of the magnitudes of these quantities and by how much they differ. We might call 
this having a “physical feel” for the numbers. 

In[68]:= << Miscellaneous‘Units‘

Gram Mole (1000 Centimeter3)
In[69]:= CncH2OLiq == N[ 

Centimeter3(18Gram)Liter 
]

CncH2OEqVap ==

N[0.43 psia Atmosphere14.7 psia ]
.08205 (Liter Atmosphere) ConvertTemperature[73, Fahrenheit, Kelvin]

Mole Kelvin

DensH2OEqVap ==

N[0.43 psia Atmosphere14.7 psia ]
.08205(LiterAtmosphere) ConvertTemperature[73, Fahrenheit, Kelvin] 

Mole Kelvin 

18 Gram 1 Liter × 
Mole 1000 Centimeter3 

55.5556 Mole
Out[69]= CncH2OLiq ==

Liter

0.00120472 Mole
Out[70]= CncH2OEqVap ==

Liter

0.000021685 Gram
Out[71]= DensH2OEqVap ==

Centimeter3

The concentration of water in liquid water is on the order of 55 mol per L. The concentration 
of water in the vapor that is in equilibrium with the liquid is less than 1 × 10−3 mol per L. 
From this we see that at ambient conditions the gas phase is on the order of three to four 
orders of magnitude less concentrated than the liquid. The density of the gas makes this even 
clearer. 

A common operation in a pilot plant or laboratory, as shown in Figure 3, is the pressuriza
tion of a batch reaction vessel with a gas such as hydrogen. A batch reactor is one that does not 
have flow into or out of it during reaction. It does have to be charged with reactants prior to 
operation. We can consider this process to be one that is amenable to the techniques we have 
at this point for analysis. We will assume that the gas remains ideal throughout the pressuriza
tion, not too bad an approximation for a gas like hydrogen. We will see that once we account for 
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P 

High-Pressure Batch 

P(t), m(t)

 ef, qfmin, 

Valve 

Reactor Vessel 

Volumetric Flow Meter 

Gas Source Vessel 

Figure 3 

the gaseous nature of this fluid, this problem looks like that of filling a tank with liquid phase 
fluid. 

The source of the gas is a large-volume vessel at high pressure. We assume that the whole 
system remains isothermal—that is, at constant temperature throughout the procedure. This 
vessel must be at a pressure higher than or equal to the pressure we need to attain in the reactor. 
The pressure upstream of the valve is a constant and just after the valve location and into the 
reactor the pressure is time dependent. The reaction vessel is initially evacuated so that only 
the pure gas will be present in the gas phase. Opening the valve allows one to control the flow 
of gas into the vessel. By monitoring the pressure gauge the flow can be stopped when the 
proper pressure has been attained. The rise in pressure at the reactor gauge as a function of 
time is also a measure of the mass flow of gas into the reactor vessel. Alternatively, if we know 
the mass flow or the volumetric flow and the pressure upstream of the valve, then we can 
predict the time required to reach a set pressure in vessel give its volume and temperature. 
We can consider the latter situation first. 

The overall material balance for the process of pressurizing the reactor vessel is: 

dm[t] 
˚= mindt 
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The mass accumulation of gas in the reactor is given by: 

dm(t) d 
[ 

PMW VMW dP = V = 
dt dt RT RT dt 

The right-hand side is given as the product of the feed gas density and the volumetric flow rate: 

PfMW
m̊in = ρfqf = 

RT 
qf 

The overall equation becomes: 

VMW dP PfMW = 
RT dt RT

qf 

dP Pf = 
dt V

qf 

The final equation tells us that the rate of pressure rise in the vessel will be a constant equal 
to the product of the ratio of the feed gas pressure to the vessel volume and the volumet
ric flowrate of the feed gas. (Assuming that the volume of the line leading from the valve 
to the vessel is negligible.) Therefore, we can see immediately that the pressure rise will be 
linear: 

( 
Pfqf 

) 
P[t] = t

V 

The linear rise in pressure is nearly the same as the linear rise in liquid level in the filling tank. 
In the case of the liquid level rise in the tank we found that it would rise until it reached the 
ultimate level of the tank and then it would spill over. Yet, the equation we had derived did 
not demonstrate this. We had to analyze it in a second regime to find this out. In this case we 
see a similar feature of the solution: namely, it states that the pressure will rise to an infinite 
value with infinite time. This is just the same as the problem of the finite tank height. Here 
there is a finite pressure beyond which the vessel pressure may not rise. Thus the equation is 
only good up to that point and we might be right to suspect that as the vessel pressure rises to 
come close to the feed gas pressure the predictions we make using this equation may become 
inaccurate. A deeper level of analysis would be required to address this problem. The other 
way that this procedure may be done is to make measurements of volumetric flow rates for 
different valve settings. By measuring the pressure as a function of time in a ballast vessel we 
could calibrate the valve. For example, suppose we have the following set of data of pressure 
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(psia) as a function of time for vessel that is 300 L, and an upstream pressure of 500 psia: 

t/min P/psia 
0 5.12 

10 84.4 
20 166. 

30 246. 

40 341. 

50 427. 

60 501. 

A plot of the data shows that within error it is linear and the slope can be evaluated to find 
that the flow rate qf was 5 L per min. 

Time-Dependent Flows 
To this point we have considered all the inlet flows to be constants. We should now consider 
what happens when they are functions of time. When we specify the flow rate as a function of 
time we have said nothing about the mechanism that gives rise to the observed functionality. 
It is simply a statement based on observation. There are cases in which the consideration of 
the mechanism can make it plain that flows will be time dependent. For example the pumping 
of our hearts is periodic and gives rise to periodic or pulsating flow of blood. As we open a 
valve or faucet the flow grows in relation to the rate at which we open it and the opposite 
happens when we are closing the valve. Therefore, there are ample numbers of examples in 
which the flow may be periodic, pulsating, or otherwise time dependent. 

An interesting case to examine is the flow into a tank. We have already analyzed this for 
constant flow, but what would be different about, for example, a periodic flow? How would this 
affect the time dependence of the rate of mass accumulation in the tank? To begin we consider 
a continuous but periodic flow rate. This could be nicely described by a sinusoidal dependence 
upon time. The flow can always be taken to be positive, but with a superimposed periodicity. 
The flow rate could be described as: 

qf(t) = qfo(1 + α Sin (βt)) 

To see what this would look like we can plot it for some specific values of qfo, α, and β: 

In[72]:= Remove[qf, α, β, t]  

qf[t--]:= qfo(1 + α Sin[βt])
qfo = 10;
α = 0.5;
β = 0.25;
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Plot[{qf[t], qfo}, {t, 0, 100},
PlotStyle ––› {Thickness[0.006],
Thickness[0.006], Dashing[{0, 0}],
Dashing[{0.025, 0.025}]},

AxesLabel ––› {""t"", ""qf[t]""}]; 

qf(t,

20 40 60 80 100 
t 

8 

10 

12 

14 

The dimensions of the constants α and β are of interest. The constant β is an element of 
the argument of the sine, which is a transcendental function. As such its argument must be 
dimensionless, and therefore β is an inverse time constant. On the other hand, the product of α
and qfo must have dimensions of volumetric flow rate and so α must be dimensionless. From 
basic physics we also know that α is the amplitude of the wave while 1 

β
is the peak-to-peak 

time or the period of the wave. Now if this is the input to our tank how will the level as a 
function of time behave? 

The starting point is the overall material balance: 

dm[t] 
˚= mindt 

The right-hand side is now a time-dependent function: 

dh[t] qf[t] = 
dt AC 

dh[t] qfo(1 + α Sin [βt]) = 
dt AC 
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We can either separate and integrate or use DSolve directly: 

In[78]:= Remove[h, qfo, α, β, t]

qfo
Simplify[DSolve[{∂th[t] == (1+αSin[βt]), h[0]==0},

Ac
h[t], t]]

qfo(α + tβ - α Cos[tβ])
Out[79]= {{h[t] ––› }}

Acβ 

From this solution we can see that if the amplitude α is very small, then the result looks much 
like it did before: 

qfo(α + tβ - αCos[tβ])
In[80]:= Limit[ , α ––›0]

Acβ

qfot
Out[80]=

Ac

However, it is also clear that if the values of α and β are within certain ranges, then this will 
give rise to periodicity in the change in level of the tank. We can model this to see how this 
will look using the values that we had for α and β earlier. 

qfo(α + tβ - αCos[tβ])
In[81]:= h[t--]:= Acβ

qf[t--]:= qfo(1 + αSin[βt])

qfo = 10;
α = .5;
β = 0.25;
Ac = 10;

Plot[{h[t], qf[t]}, {t, 0, 70}, 
PlotStyle ––›{{Thickness[0.006], Dashing[{0, 0}]}, 
{Thickness[0.006], Dashing[{0.025, 0.025}]}}, 
AxesLabel ––›{""t"", ""h[t],qf[t]""}]; 
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h(t,,qf(t,

t 

5 

10 

15 

20 

25 

30 

10 20 30 40 50 60 70 
This shows us that the level will of course rise, but it will do so with varying rates depending 
upon the flow rate. This would actually be easier to see if we were to plot the dimensionless 
level and flow rates. We can obtain these by dividing h[t] by the maximum level in the tank 
and q[t] by qfo. 

In[88]:= Plot[{h[t]/30, qf[t]/qfo}, {t, 0, 70},
PlotStyle ––›{{Thickness[0.006], Dashing[{0, 0}]},
{Thickness[0.006], Dashing[{0.025, 0.025}]}},

AxesLabel ––›{""t"", ""
h[t] 

hmax
, 

qf[t] 

qfo 
""}]; 

h[t] qf[ t] 
hmax 

, 
qfo 

t 

0.5 

1 

1.5 

2 

10 20 30 40 50 60 70
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What would happen if we were to bring the amplitude up, say, by a factor of five? 

In[89]:= α = 2.5; 

Plot[{h[t]/30, qf[t]/qfo}, {t, 0, 70},
PlotStyle ––›{{Thickness[0.006], Dashing[{0, 0}]},
{Thickness[0.006], Dashing[{0.025, 0.025}]}},

AxesLabel ––›{""t"", ""
h[t] 

hmax
, 

qf[t] 

qfo 
""}]; 

h[t] qf[ t] 
hmax 

, 
qfo 

10 20 30 40 50 60 70 
t 

−1 

1 

2 

3 

If we look closely, we see that in the time range between 15 and 20 the level is actually 
decreasing! But how can this happen when we have only flow into the tank according to our 
initial total material balance? Once again we need to be very careful with the model results 
that we derive. In this case, when we increased the amplitude by a factor of five we went out 
of the region in which the solution gave physically meaningful results. If you look carefully, in 
the same region where the level is decreasing, the flow rate is actually below zero (negative) 
and in the reverse direction of the feed, namely, out of the tank. The change in sign of the 
input function has given rise to this negative rate of accumulation, that is, negative slope, 
in this time domain. This is not the situation that we had in mind when we began the problem. 
It could correspond to some actual situation, but it does not correspond to the situation we are 
analyzing. Therefore, one needs to be very mindful of the range of application of any model 
and should check the resulting behavior for its correspondence to the real system. 
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2.2 Geometry and the Left-Hand Side
of the Mass Balance Equation

The Triangular Trough 
To this point all of the situations we have dealt with have involved quite simple geometry— 
the right cylinder. We may ask the question, How do we apply the new tool we have to other 
geometrical shapes? The issues that we will encounter in these kinds of analyses are handled 
within the differential accumulation term through V[t]. For this reason we can think of these 
as “Left-Hand Side” problems. The objective of this section is to demonstrate how to do that. 
We begin with an analysis of the tank that is shaped like a triangular trough as shown in 
Figure 4. 

The flow is into the tank at a constant rate given by the density of the fluid and its 
volumetric flow rate. The mass in the tank at any time is the product of the density and the 
fluid volume. Notice that as the level of the fluid increases, so too does its width. Viewed from 
the top, the area of the liquid surface grows as a function of time. This is the main difference 
between this “tank” and that of a right cylinder standing on end. In that case the surface of 
the liquid viewed from above remains constant, so that the volume is only a function of the 
level. To summarize what we have so far: 

dV[t] 
dt 

= q 

The differential change in volume with time dV[t] can be viewed as taking place by making a 
differential change in level dh[t]. Since the change in level is differential, the area of the fluid 

L 

h(t) 

w(t) 

H 

W 

Mass flow In 

Figure 4 
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at the surface is virtually unchanged. This gives us: 

dV[t] = A[t] dh[t] 

However, the change in area with time is just the change in the liquid’s width with time 
multiplied by the length of the trough, which gives us: 

dV[t] = 2Lw[t]
dh[t] = q

dt dt 

Now we need a relationship between w[t] and h[t]. To  find this we can consider the geometry 
of the triangular face of the tank. From the law of similar triangles we find this: 

W w[t] = 
H h[t] 

The differential equation can now be rewritten in terms of only h[t]: 

2WL
dV[t] = h[t] dh[t]

H 

h[t]
dh[t] Hq = 

dt 2WL 

The equation is now readily soluble and we find that h[t] goes as the square root of time: 

Hq
h[t] = t 

WL 

The level as function of time for a tank 10 ft high, 10 ft wide, and 40 ft long looks as follows, 
if the flow rate in is 5 ft3 min−1: 

In[91]:= Clear[h, q, H, W, L]

Hq
htritro[t--] :=  t

WL

W = 5;
L = 10;
q = 5;
H = 40;

pltritro = Plot[htritro[t], {t, 0, 200}, 
AxesLabel ––›{""t"", ""h[t]/ft""}]; 
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The Conical Tank 
Another geometry that can be useful to consider is that of the conical tank. The analysis is 
similar to that of the triangular trough, except that the cone is axially symmetric. This makes 
some difference in the outcome. The geometry for the tank is shown here in Figure 5. 

As in the case of the triangular trough, the area of the liquid surface changes with the level 
in the tank. We know that the mass balance will lead to the same equation for the differential 

R 

H 

r(t) 

h(t) 

Figure 5
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change in volume with time. Therefore, we must find the relationship that will render the 
differential volume change as a function of the level alone. 

If we were to take a slice through the tank along the central axis, we would be left with a 
triangular face. From the similar triangles on that face we find: 

R r[t] = 
H h[t] 

If the volume were to change differentially by some differential level change we would have: 

dV[t] = Adh[t] 

= πr[t]2 dh[t] 

π R2 

= 
H2 h[t]2 dh[t] 

The solution to the level change as a function of time is the solution to this differential equation: 

πR2 

H2 h[t]2 dh[t] = q 

h[t]3 = 3qH2

t 
πR2 

3 3qH2 
h[t] = t 

πR2 

For a tank of the same dimensions as the previous one and with the same flow rate the level 
as a function of time is shown here along with a comparison: 

In[98]:= Clear[W, H]

N[Solve[2000 == 2 W2H, H] /. W ––›5]

Out[99]= {{H ––›40.}}

In[100]:= Clear[R, H]

N[Solve[2000 == πR
3

2H, H] /. R  ––›5]

Out[101]= {{H ––›76.3944}}

In[102]:= Clear[h, q, H, R, L]

hcone[t--] :=  3 3qH
2 

πR2 
t 

R = 5;  
q = 5;  
H = 76.4; 
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plcone = Plot[hcone[t], {t, 0, 200}, 
AxesLabel ––›{""t"", ""h[t]/ft""}, PlotStyle ––› 
{Thickness[.006], Dashing[{0.025, 0.025}]}, 
DisplayFunction ––›Identity]; 

Show[pltritro, plcone, DisplayFunction ––›
$DisplayFunction];

h(t,Zft 

t 
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The Semicylindrical Trough 
A variation of the left-hand side theme and the issues of geometry is that of the semicylindrical 
trough lying on its side. The physical situation is quite similar to that of the triangular trough, 
except that the walls follow a circular curve. The physical system is shown in Figure 6. 

In view of the last two analyses that we have done, geometry is the only question posed 
by this problem. We need the relationship between r[t] and h[t] once again. One line in the 
diagram holds the key to this. That line is the hypotenuse of the triangle which has r[t] for one 
leg and R − h[t] for the other. The Pythagorean theorem links the three: 

R2 = (R − h[t])2 + r[t]2 

Solving for r[t] in terms of h[t]: 

In[109]:= R =.
Solve[R2 == Expand[(R - h[t])2] + r[t]2, r[t]]

Out[110]= {{r[t] ––›- 2Rh[t] - h[t]2}, {r[t] ––› 2Rh[t] - h[t]2}}
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L 

h(t) 

R 

Mass flow In 

r(t) 

Figure 6 

The first solution is unphysical, so we substitute the second into the expression for dV[t]: 

dV[t] = Adh[t] 

= 2Lr[t] dh[t] 

= 2L 2Rh[t] − h[t]2 dh[t] 

Replacing this in the material balance (assuming all densities are constant and equal every
where), we find: 

q
2Rh[t] − h[t]2 dh[t] = 

dt 2L 

The solution of this equation is: 

∫ t∫ h[t]√ q
In[111]:= Simplify[ 2  x R - x2 x == s] 

0 0 2L 
√ 
h[t]

1√ 2R2ArcTan[√ 5t 
Out[111]= (2R-h[t])h[t](-R+ √ 2R- h[t]

]
+h[t]) ==√ 

2 2R-h[t] h[t] 2L

The solution of this equation involves an integral on the left-hand side that results in an implicit 
solution for h[ t ]. We can try to solve directly for h[ t ], but Mathematica cannot do it: 
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√ 
h[t]2R2 ArcTan[√ 

2R - h[t]
] 
+ h[t]) 

1√ 
In[112]:= Solve[ 2R - h[t])h[t](-R + √ √ 

2 2R - h[t] h[t]
qt

== , h[t]]
2L

Solve::tdep:
The equations appear to involve the variables to be
solved for in an essentially non-algebraic way.

√ 
h[t]2R2ArcTan[√ 

2R- h[t]
]
+h[t]) 

1√ 
Out[112]= Solve[ (2R-h[t])h[t](-R+ √ √ 

2 2R-h[t] h[t]
5t

== ,h[t]]
2L

Therefore, the best bet for us it to use the analytical solution to solve for h[t] numerically or 
graphically. The graphical method is not used much today but it is worth illustrating because it 
reinforces a good “feel” for the functions and the numbers that result. We will look at the graph
ical solution first. As you no doubt recall, the method used finds the solutions to this equation 
that make the left- and right-hand sides equal. We can view each side as a statement for two dif
ferent functions that intersect at certain points; these intersections are the solutions. If we graph 
the two functions we can find these points. This is very easy to do in Mathematica as follows. 

Let the radius of the tank be 3 m and the length 20 m. We should find the total volume of 
the tank first so that we can choose a numerical value for the flow rate that does not require 
too long a time to make a real change in the tank level. To find the maximum volume we 
want to integrate the following equation from 0 to Vmax on the left- and from 0 to hmax on the 
right-hand side: 

dV[t] = 2L 2Rh[t] − h[t]2 dh[t] 

In[113]:= Clear[V, R, h, t]
Vmax =. ∫ Vmax
Simplify[ V[t] == Simplify[

0∫ R 
2L 2Rh[t] - h[t]2 h[t]]]

0

1 √ 
Out[115]= Vmax == LπR R2 

2
1 

√ 
In[116]:= Vmax[R--, L--] := N[  LπR R2]

2
Vmax[5, 20]

Out[117]= 785.398

At 785 m3 we can choose a flow rate of 10 m3 min−1 as a reasonable value. The time to over
flow to maximum capacity would be ∼78 min. To solve the problem graphically we write the 



P1:

May 10, 2002 17:5 Foley Foley-CH-02

94 Chapter 2 Elementary Single-Component Systems 

left- and right-hand sides as two separate functions. Then we choose a value of h and graph 
this as a horizontal line versus the right-hand side as a function of time. The point of intersec
tion provides the time at which that level would be reached subject to the chosen parameter 
values. We would choose another value of h and find a new value of t with a new graph. 
Before we begin it is worth noticing that the magnitude of h[t] can never exceed R because to 
do so would be unphysical. Unphysical or not, it is very easy to begin plugging in values for h 
on the left-hand side that mistakenly range over the chosen value for R. If we were to do this, 
the mathematics will inform us of our error by providing an imaginary (complex) solution. 

We begin by doing the graphical solution for the halfway point at h = 2.5. We seek to find 
the time at which this will happen. The Mathematica method for doing one point is shown here: 

√
h2R2ArcTan[√

2R- h
]

1
In[118]:= lhs[h--] := N[  

√
(2R-h)h(-R+ √

2R-h 
√
h 

+h)]
2

rhs[t--]:= 
q
2Lt

L = 20;
R = 5;
q = 10;

Graphics[{Line[{{0, lhs[2.5]}, {40, lhs[2.5]}}]}];

Plot[{rhs[z]}, {z, 0, 40}, PlotStyle ––› {{Thickness[.01],
Dashing[{0.025, 0.025}]}}, DisplayFunction ––› Identity];

Show[%, %%, DisplayFunction ––› $DisplayFunction, 
AxesLabel ––› {""t/min"", ""LHS==RHS""}]; 

LHS��RHS 

tZmin 

2 

4 

6 

8 

10 

10 20 30 40 
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From this we can see that the halfway point in terms of level will occur at just over 30 min. We 
could replot this in the vicinity of 30 min to obtain this more accurately, but as we shall see 
there are better ways to do it. To find a set of solutions beginning at a level of 1 m in increments 
of 1 m, we could use the following code to create the graphic we need: 

In[126]:= Graphics[Table[{Line[{{0, lhs[h]}, {80, lhs[h]}}]},
{h, 1, 5, 1}]];

Plot[{rhs[z]}, {z, 0, 80}, PlotStyle ––› {{Thickness[.01],
Dashing[{0.025, 0.025}]}}, DisplayFunction ––› Identity];

Show[%, %%, DisplayFunction ––› $DisplayFunction, 
AxesLabel ––› {""t/min"", ""LHS==RHS""}]; 

LHS��RHS 

tZmin 

5 

10 

15 

20 

20 40 60 80 

As interesting as this approach is, it is not all that useful in comparison to what we can obtain 
by solving the problem numerically. To solve numerically, however, we really do the very 
same calculation: We choose a value of the level, evaluate the left-hand side, and then back 
solve the resultant equation for the time. An example of this procedure is given for the halfway 
point at h = 2.5 m: 

In[129]:= h = 2.5
L = 20;
R = 5;
q = 10;
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NSolve[ √ 
h

1√ 2R2ArcTan[√ 
h
] qt2R -

(2R - h)h(-R + √ √ + h) ==  ,t]
2 2R - h h 2L

Out[129]= 2.5

Out[133]= {{t ––›30.70924246521891}}

We solve this to find that the exact time is 30.7 min. (We could have Mathematica limit the 
figures by enclosing the command in NumberForm.) Of course what we really want to see is 
a plot of the level versus time for this tank. To obtain this we need to repeat this procedure for 
many different levels and then plot the resultant time and level pairs. 

In[134]:= L = 20;

R = 5;

q = 10;

ntimes = Table[NSolve[ 
√
h 

1√
(2R - h)h(-R +

2R2ArcTan[√
2R - h

]
+ h) ==  

qt
,t],

2 
√
2R - h

√
h 2L

{h, .25, 5, .25}]; 

levels = Table[h, {h, .25, 5, .25}];

timeleveldat =

Transpose[Partition[Join[Flatten[t /. ntimes], levels],
Length[levels]]];

pllevdat = ListPlot[timeleveldat, 
AxesLabel ––› {""t/min"", ""h[t]/Meter""}, 
DisplayFunction ––› Identity]; 

Show[pllevdat, Epilog ––› {Line[{{0, 5}, {80, 5}}]},
DisplayFunction ––› $DisplayFunction];
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It was troublesome to create these points. We might want to provide an operator with a graph 
of the level versus time that could be used at any time to find the level or vice versa. The 
logical thing to do at this point is to fit these points to a function of time. We can easily do so 
using two parameters in a simple power law h[t] = atn: 

In[142]:= timeleveldat

Out[142]= {{1.046151218379871, 0.25}, {2.93629534388009, 0.5},
{5.35228742419150, 0.75}, {8.17505543966421, 1.},
{11.33279384944024, 1.25}, {14.77494200930721, 1.5},
{18.46273275392473, 1.75}, {22.36476090008060, 2.},
{26.45457644963383, 2.25}, {30.70924246521891, 2.5},
{35.10840690045179, 2.75}, {39.63367125654707, 3.},
{44.2681414116735, 3.25}, {48.9960956177208, 3.5},
{53.8027306257427, 3.75}, {58.6739613290956, 4.},
{63.5962577259286, 4.25}, {68.5565080961337, 4.5},
{73.5419004550265, 4.75}, {78.5398163397448, 5.}}

In[143]:= Remove[NonlinearFit, a, n, t]

In[144]:= <<Statistics‘NonlinearFit‘

In[145]:= NonlinearFit[timeleveldat, atn, t, {a, n}]
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Plot[%, {t, 0, 80}, PlotStyle ––› Thickness[0.006], 
DisplayFunction ––› Identity, 
AxesLabel ––› {""t/min"", ""h[t]/Meter""}]; 

Show[%, pllevdat, Epilog ––› {Line[{{0, 5}, {80, 5}}]},
DisplayFunction ––› $DisplayFunction];

Out[145]= 0.21373t0.720228 
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With the value of a at 0.2137 and that of n at 0.72 we find a very nice fit to the data. It is 
interesting to note that this statistically fitted function fits so well and yet offers us no insight 
into what is really taking place. How often do we see experimental data fitted statistically in 
this way and then physical mechanisms posed to explain the form of the fitted function? Do 
you think that anything fundamental ever comes from such an approach in the absence of an 
analysis? Beware! 

The Spherical Tank 
Figure 7 shows a simple case of filling a spherical tank. The liquid flow into the tank is again 
a constant and we wish to be able to predict the level as a function of time. 

The total material balance statement is: 

dV[t] 
dt 

= q 
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The differential change in volume can be thought of in terms of an area times a differential 
level change: 

dV[t] = A dh[t] 

= πr[t]2 dh[t] 

r[t]2dh[t] q = 
dt π 

The triangle in the left lower quadrant of the circular face of the sphere has a hypotenuse 
of R, and two legs, one of which is r[t] and the other is R − h[t]. Just as in the case of the 
semicylindrical trough, the Pythagorean theorem can be applied to this right triangle to give: 

R2 = r[t]2 + (R − h[t])2 

In[148]:= Remove[R, r, h]

Solve[R2 == r[t]2 + Expand[(R - h[t])2], r[t]]

Out[159]= {{r[t] ––› - 2Rh[t]-h[t]2},{r[t] ––› 2Rh[t] - h[t]2}}

Returning to the differential equation we substitute and need to find a solution for h[t]: 

q
2Rh[t] − h[t]2 dh[t] = 

dt π 
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This is similar to the equation that we encountered in the last problem for the semicylindrical 
trough: 

q
2Rh[t] − h[t]2 dh[t] = 

dt 2L 

The solution method would be the same. The main difference is that the tank is now axially 
symmetric (as was the conical tank) and this gives rise to a π on the right-hand side rather than 
2L. Recall that the sphere is made by rotating the semicircular face around the central axis by 
π radians. The semicylindrical tank is constructed by translating the same semicircular face 
by a distance L along a straight line. Symmetries of this kind are very interesting and will be 
useful to take advantage of in the solution of more sophisticated problems, but at this point 
we merely wish to point it out in passing. 

We can proceed with the solution as follows. First, we show that by integration over h of 
the πr2dh gives us the proper expression for the volume: 

In[150]:= R =.
q =.

∫ V ∫ R 
V ==  π (2Rh - h2) h

0 0

2πR3 
Out[152]= V ==

3

Next we integrate the left-hand side over h and the right-hand side over time. The left-hand 
side has two integrals over level: 

In[153]:= R =.  
q =.  
h =.  ∫ h 

2Rh h -

∫ h 
h2 h ==  

∫ t q 
t 

0 0 0 π

Out[156]= 
h3 

3 
+ h2R ==  

qt 

π 

This last expression can now be solved for h as a function of time: 

In[157]:= R =.

Q =.

h3o = Solve[-
h3 

+ h2R -
qt 

== 0, h]
3 π
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21/3πR2
Out[159]= {{h ––›R+ √ √

(2π3R3 - 3π2qt + 3 -4π5qR3t + 3π4q2t2)1/3

√ √ 
(2π3R3 - 3π2qt + 3 -4π5qR3t + 3π4q2t2)1/3 

+ },
21/3π 

√ 
(1 + 3)πR2 

{h ––›R- √ √ 
22/3(2π3R3 - 3π2qt + 3 -4π5qR3t + 3π4q2t2)1/3 

√ √ √ 
(1 - 3)(2π3R3 - 3π2qt + 3 -4π5qR3t + 3π4q2t2)1/3 

- },
221/3π 

√ 
(1 + 3)πR2 

{h ––›R - √ √ 
22/3(2π3R3 - 3π2qt + 3 -4π5qR3t + 3π4q2t2)1/3 

√ √ √ 
(1 + 3)(2π3R3 - 3π2qt + 3 -4π5qR3t + 3π4q2t2)1/3

}}-
221/3π 

We obtain from this three different functions for h[t] because the equation we solved was 
cubic in the level. In order to decide which of the three is correct, we assign them to 
three different functions and then evaluate them over time with a given set of parameter 
values: 

In[160]:= h31[t--] := Evaluate[h /. h3o[[1, 1]]]
h32[t--] := Evaluate[h /. h3o[[2, 1]]]
h33[t--] := Evaluate[h /. h3o[[3, 1]]]

q = 100;
R = 10;
tf = 35;

Plot[{h31[t], h32[t], h33[t]}, {t, 0, tf},
PlotStyle ––› {{Thickness[0.01], GrayLevel[0]},
{Thickness[0.01], GrayLevel[0.5],
Dashing[{0.03, .03}]},
{Thickness[0.01], GrayLevel[0.8],
Dashing[{0.03, .03}]}}, 

AxesLabel ––› {""t"", ""h3x[t]""}, 
Epilog ––› Line[{{0, R}, {tf, R}}] 

];
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The plot shows us that the first solution in black h31[t], is a decreasing function, when in fact 
we know we should have one that is increasing with time since we are filling a tank. The same 
problem and worse arises with h32[t], which is not only decreasing, but has negative values 
of the level. This leaves us with h33[t] in gray as the only physically realistic solution. Another 
way to attack this problem without a graphical presentation of the data would be to solve the 
equation numerically as is shown in the cell that follows: 

In[160]:= q = 100;
R = 10;

Table[NSolve[Rh2-
h3

==
q
t, h],

3 π
{t, 0.1, 27, 3}]// TableForm

Out[162]//TableForm=
h ––› -0.559006 h ––› 0.569623 h ––› 29.9894 
h ––› -2.9953 h ––› 3.33172 h ––› 29.6636 
h ––› -4.13119 h ––› 4.80867 h ––› 29.3225 
h ––› -4.98393 h ––› 6.01977 h ––› 28.9642 
h ––› -5.68991 h ––› 7.10392 h ––› 28.586 
h ––› -6.30241 h ––› 8.11758 h ––› 28.1848 
h ––› -6.84878 h ––› 9.09225 h ––› 27.7565 
h ––› -7.34529 h ––› 10.0497 h ––› 27.2956 
h ––› -7.8025 h ––› 11.008 h ––› 26.7945 
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What we see is that for each value of t in the range from 0.1 to 27 we have three different 
values of h[t] computed. In this case the middle column is the proper solution set. This is just 
a small example of the very many different ways in which one can solve a problem like this 
using Mathematica. 

Depositing a Polymer Coating on a Disk 
Polymers have come to play an ever more important role in our lives since the discovery 
of Nylon by Wallace Carruthers more than 60 years ago. From grocery bags and clothing to 
medical devices and implants, synthetic polymers have proven to be a boon to mankind. In 
Figure 8 we look at a simple schematic of a polymer coating process. Nonstick cookware, 
automobile finishes, and magnetic storage media all involve some polymeric coating on a 
substrate. We will consider a very rudimentary example from the perspective of our analyses 
based on a total material balance. 

In the particular process shown in Figure 9, a substrate is translated under a spray nozzle 
at some velocity vz. At the same time small droplets containing a 5:1 mixture of monomer 
and activator (polymerization initiator) are sprayed. The droplets are created by sonication 
of the liquid mixture in the spray gun. The action of sonication not only provides very small 

Mass Flow Controllers 

Monomer Activator 

Spray Nozzle 

Monomer/Activator 
Atomized Mist 

Axial Velocity: vz 

Polymer Coating 
Substrate 

Figure 8 Polymer coating process on a substrate. 
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Figure 9 

droplets (∼0.5 µ diameter), the energy combined with exposure to oxygen in the air initiates 
the conversion of monomer into polymer. As the substrate moves under the spray gun, the 
polymerized droplets impinge and gel on the solid substrate, which creates a solid film on the 
surface that hardens with time. 

At the end of the spray nozzle there is an orifice with a circular area Ao. All of the mass of 
monomer plus activator must pass through this orifice area. The mass flowing per unit time 
per unit area through this area is referred to as flux. After leaving the orifice the spray area 
expands to form a cone-shaped region above the substrate. The spray area on a motionless 
substrate would be approximately circular. The radius of the circular impingement area is 
related to the distance L between the nozzle and the substrate. Experiments have shown that 
the mass impinging on this area is homogeneous. Because the substrate has a width equal to 
the diameter of the impingement area, if it is moved under the nozzle at constant velocity, it 
will be evenly coated (excluding end effects). 

From this description we should be able to predict the thickness of the polymer coating 
as a function of the delivery rate and substrate velocity. The monomer and activator are taken 
to have equal densities. The total material balance around the spray nozzle is: 

dm[t] = min − ˚˚ moutdt 

There should be no net accumulation in the spray nozzle, meaning that it will nearly always 
operate at a steady state. (In fact a design criterion for a sprayer like this is that it have nearly 
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instantaneous rise and shut-off times.) From this then we can say that the mass flow rate in 
must equal the mass flow rate out: 

˚ ˚min = mout 

The rate of mass flow into the spray gun is given as the sum of the mass flows of the monomer 
and the activator. The densities of the two liquids are nearly identical and the volumetric flow 
rate of the monomer is five times the flow rate of the activator. Therefore the mass out of the 
orifice is: 

m̊out = ρmonomer qmonomer + ρactivator qactivator 

= ρmonomer (qmonomer + qactivator) 

= 1.2 ρmonomer qmonomer 

The mass flux from the orifice is the mass flow rate out divided by the orifice area. Since the 
spray spreads in the form of a right cone, the mass flux at the substrate is smaller than the flux 
from the orifice. To solve our problem we must know this. It is obvious then that the product of 
the flux and the area is the mass flow rate. By the conservation of mass the mass flow to the sub
strate must be the same as the mass flow from the orifice. Therefore we can proceed as follows: 

˚ ˚mimpingement = mout 

J imp Aimp = J out Aout 

J out AoutJ imp = 
Aimp 

˚
J imp = mout 

Aimp 

We will review what we know. We know the mass flow out of the spray nozzle and we can 
calculate the area of impingement knowing the area of the orifice Ao, the distance to the 
substrate L, and the angle, alpha, made by the spray leaving the nozzle. Thus the next step 
must be to find the area of impingement in terms of alpha, L, and Ao. 

From the geometry diagram shown in Figure 10 we see that the radius of the orifice is r, 
which is related to l through the tangent of alpha. Then the radius R of the impingement area 

oppis related to (l + L) through the tangent of alpha (tanα = adj ). The distance l is not known, 
but it corresponds to the vertex of the triangle that is within the sprayer. We can solve for it in 
terms of alpha and r, both of which are known. Then we can set the two ratios equal to one 
another and solve for R in terms of L. 

In[163]:= Clear[R, L, l, r, l, α] 

r r R
Solve[{ ==Tan[α], == }, {l, R}]

l l (L + l)

Out[164]= {{R ––›r +  LTan[α], l ––›r Cot[α]}} 
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The area of impingement is πR2, so the impingement flux is: 

In[165]:= Aimp = r + L Tan[α] 
m̊outJimp == Aimp

Out[165]= r + LTan[α] 

General::spell1: Possible spelling error: new symbol name 
"out" is similar to existing symbol "Out". 

m̊outOut[166]= Jimp ==
r +  L  Tan[α] 

The next part of the analysis is to find the mass accumulation of polymer on the substrate 
given Jimp and that the substrate moves under the nozzle at a velocity equal to vz. If the 
substrate did not move then the mass would accumulate on the circular impingement area. 
Given a rigid solid polymer, we would begin to grow a deposit of circular cross section and 
increasing thickness. As the deposit grew off the substrate, it would decrease L, and so the 
circular deposition area would decrease. We could imagine that we would grow a deposit 
that would be roughly like the frustrum of a cone and eventually a cone. If we allowed the 
deposition to take place for some time τ , such that the thickness grew to δ, and then moved 
the substrate by a distance 2R and deposited for a period τ again, and then continued this 
stepwise process, we would have a series of circular deposits of nearly uniform thickness. We 
would also have areas between the circular deposits that were nearly uncovered. This would 
be a semicontinuous process. If τ were to become very short, then the process would begin to 
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Coating period = 2R Coating time = τ 

Coating period ~R Coating time = τ 

Continuous Coating 

Figure 11 

approach a continuous one, especially if we only moved the substrate by some fraction of 2R 
every time. Figure 11 shows all three deposition types discussed here. 

In the continuous process we let τ shrink to small values by moving at a continuous 
velocity. Now the time spent under the nozzle is just τ = 2R , that is the “residence time” vz 

under the sprayer. By translating in this way the circular spray area becomes nearly rectangular, 
save for the edges. We can write a material balance for the problem in the usual way—that is, 
choosing the spray area and the growing polymer film as the control volume: 

dm[t] 
˚= mindt 

d[ρpolymer V[t]deposit] = min˚
dt 

d[ρpolymer A[t]depositδ[t]] 
˚= mindt 

d[wz[t]δ[t]] m̊in= 
dt ρpolymer 

At this point we can recognize that w is related to R and substitute it in: 

w = 2R 

˚d[z[t]δ[t]] min = 
dt 2R ρpolymer 
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However, R is related to distance L, angle α, and dimension of the orifice r: 

2R = 2(r + L Tan [α]) 

This brings us to this equation: 

d[z[t]δ[t]] m̊in= 
dt 2(r + L Tan[α])ρpolymer 

Applying the chain rule to the left-hand side, we find: 

dz[t] dδ[t] ˚
δ[t] + z[t] = min 

dt dt 2(r + L Tan[α])ρpolymer 

If the substrate is translated at a fixed velocity then we can say that z[t], the position of the 
substrate at any time, is merely a linear function of time: 

z(t) = vzt + c 

This leaves us with the following equation to solve for the thickness as a function of time. 
By rearranging it we can see that it is a nonlinear differential equation and we must treat it 
accordingly: 

dδ[t] ˚
δ[t]vz + (vzt + C) = min 

dt 2(r + L Tan[α])ρpolymer 

dδ[t] ˚
(vzt + C) = min − δ[t]vzdt 2(r + L Tan[α])ρpolymer 

In[167]:= Clear[δ] 
m̊in=.

m̊in -δ[t]vz]Together [
2(r + L Tan[α])ρpolymer 

(Unset::norep: Assignment on Subscript for m̊in not found.

Out[168]= $Failed

m̊in - 2rvzρpolymerδ[t] - 2LvzρpolymerTan[α]δ[t]
Out[169]=

2ρpolymer(r + LTan[α]) 

In[170]:= (m̊in - Collect[2rvzρpolymerδ[t] - 2Lvzρpolymer Tan[α] δ[t], 
{vzρpolymerδ[t]}])/(2ρpolymer(r + L Tan[α])) 

m̊in-vzρpolymer(2r - 2LTan[α])δ[t]
Out[170]=

2ρpolymer(r + L Tan[α]) 
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The last transformation shows us that the equation is separable into: 

dδ[t] dt == 
m̊in − 2vzρpolymer(r − L Tan[α])δ[t] 2ρpolymer(r + L Tan [α])(vzt + C) 

These two sides can be integrated indefinitely to give: 

1
In[171]:= Simplify[ δ[t]] == 

m̊in-2vzρpolymer(r-LTan[α])δ[t] 

1

2ρpolymer(r+LTan[α])(vzt +  C)
t 

Cos[α]Log[-Cos[α]m̊in + 2(r Cos[α] - LSin[α])vzρpolymerδ[t]]
Out[171]= - == 

2rCos[α]vzρpolymer - 2LSin[α]vzρpolymer 

Log[C + tvz] 

2vzρpolymer(r + LTan[α]) 

Or integrated definitely to give: 

∫ δ[t] 1 
In[172]:= Simplify[ y ]==

˚0 min-2vzρpolymer(r - LTan[α])y 

t 1
x

0 2ρpolymer(r+L Tan[α])(vzX + C)  

Out[172]= 
Cos[α](Log[-Cos[α]˚ min + 2(r Cos[α] − LSin[α])vzρpolymerδ[t]]) min] - Log[−Cos[α]˚

2(r Cos[α] − LSin[α])vzρpolymer 

-Log[C] + Log[C + tvz] 
==

2vzρpolymer(r + LTan[α]) 

As in: 

In[173]:= Clear[a, b, m, n, x, y, p, δ] 

∫ δ 1 
∫ t1 1

y == x
0 a+by p 0 mx+n

-Log[a] + Log[a + bδ] -Log[n] + Log[n + mt] 
Out[174]= ==

b mp
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-Log[a] + Log[a + bδ] -Log[n] + Log[n + mt]
In[175]:= b( ) ==  b( )

b mp

b(-Log[n] + Log[n + mt]
Out[175]= -Log[a] + Log[a + bδ]==

mp 
a + bδ n + mt  b 

In[176]:= == ( )mp 
a n 

a + bδ n + mt  b 
In[176]:= == ( )mp 

a n 

a + bδ n + mt  b 
In[177]:= Solve[ ==( )mp ,δ] 

a n

b
a(-1 + (n + m )mp)

Out[177]= {{δ ––› n }}
b

We assume here that the nozzle is held 10 cm away from the substrate (L = 10) and that 
the cone angle made by the spray is 20◦ . The polymer may have density of 2 g cm−3. The 
axial velocity should be small, so we choose 0.01 cm per min (vz = 0.01). The flow of polymer 
mass to the substrate may also be small at 10 mg min−1 (m̊in = 0.01 mg min−1). The nozzle 
radius will be set at 0.003 cm. Before we use this result, we should check it for dimensional 
consistency. The units for each of the groups in the final formula are included on the right-hand 
side of what follows. The left-hand side is just the units of δ in cm. If the units are consistent 
then the logical operation should return a True. 

cm q cm)(min cm3cm
q cm + min cm cm)

min(-1 + ( 
min ) min(

q
3 )cm

cm
In[178]:= Simplify[cm == ]

( cm q
3 cm)min cm

General::spell1: Possible spelling error: new symbol name 
"min" is similar to existing symbol "Min". 

Out[178]= True

The result is True, but maybe you would be more pleased to see the actual reduction to cm on 
the right-hand side. If so here is that result: 

cm q cm)(min cm3

cm + cm cm cm)q cm
min(-1 + ( 

min ) min(
q
3 )cm

In[179]:= cm q
3 cm)(min cm

Out[179]= cm
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Now that we can have confidence that the formula we have derived for δ[t] is dimension
ally correct, we can test it with some “real” parameter values to see what it predicts: 

In[180]:= ρpolymer = 2;  
L = 10;

20
α = 2π; 

360
m̊in = .001;
vz = 1;
r = 0.003;
c = 0.001;

a = m̊in;
b = 2vzρpolymer(r - L Tan[α]);
p = 2ρpolymer (r + L Tan[α]);
m = vz;
n = c;

mpa(-1+ n+
n
mt) 

b

δ[t--] :=  
b

δ[.1]

Plot[104δ[x], {x, 0, 10000},AxesLabel ––› 
{""t"", ""δ/microns""}]; 

mpa(-1+ n+
n
mt) 

b

NumberForm[Limit[ , t  ––› ∞] 104, 2]
b

Out[193]= 0.0000680578

@Zmicrons 

2000 4000 6000 8000 10000 
t 

0.687422 

0.687425 

0.687428 

0.68743 

0.687432 

0.687435 
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Out[195] //NumberForm=
0.69

At this delivery rate of polymer, and with these substrate dimensions and velocity, the thick
ness of the layer will be 0.69µ. Notice that the transient in the graph of thickness versus time 
is more apparent than real, as it involves changes in δ that are on the order of one part in 105. 
Taking the limit of the expression for δ as the value of time approaches infinity gives us the 
same answer. Recall that we did not handle the startup of the substrate motion. We could do 
so if we replaced z[t] with a form that included quadratic time dependence and acceleration. 
Why don’t you try it? 

2.3 Summary 
In this chapter we have covered quite a number of apparently different problems that are 
readily attacked by use of the concepts of a control volume and the conservation of mass. For 
each case the same equation was used as the point of departure for the analysis—namely, the 
differential statement of the total mass balance. It is surprising at first to find that so many 
different situations can be analyzed by the correct application of this equation along with 
some calculus and geometry along the way. 

During the course of this chapter we also have learned how to use Mathematica interactively 
to do analysis. The methods we have used are general and we will use them throughout the 
text. The objective is to think and analyze the problem with the assistance of the computer in 
real time. 
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The Draining Tank
and Related Systems

3.1 The Right-Hand Side of the Mass 
Balance Equation 

In Chapter 2 we developed models based on analyses of systems that had simple inputs. The 
right-hand side was either a constant or it was simple function of time. In those systems we 
did not consider the cause of the mass flow—that was literally external to both the control 
volume and the problem. The case of the flow was left implicit. The pump or driving device was 
upstream from the control volume, and all we needed to know were the magnitude of the flow 
the device caused and its time dependence. Given that information we could replace the right-
hand side of the balance equation and integrate to the functional description of the system. 

This level of simplicity is not the usual case in the systems that are of interest to chemical 
engineers. The complexity we will encounter will be much higher and will involve more de-
tailed issues on the right-hand side of the equations we work with. Instead of a constant or 
some explicit function of time, the function will be an explicit function of one or more key char-
acterizing variables of the system and implicit in time. The reason for this is that of cause. Time 
in and of itself is never a physical or chemical cause—it is simply the independent variable. 
When we need to deal with the analysis of more complex systems the mechanism that causes 
the change we are modeling becomes all important. Therefore we look for descriptions that 
will be dependent on the mechanism of change. In fact, we can learn about the mechanism of 

113
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change by testing our ideas about physics or chemistry in the context of a model derived from 
an analysis based on some specific assumptions. Comparison of the model predictions with the 
actual behavior of the system provides a check on the analysis and its assumptions. Chemical 
engineers do this with almost every problem they encounter. Depending on the level of analysis 
and the nature of the problem, the results can be anything from a useful engineering descrip
tion of the systems to new science. Regardless of the goals and objectives of the project, the 
chemical engineer uses the same powerful analysis paradigm to make progress and to solve the 
problem. 

With this in mind we turn now to another problem that is seemingly naive at first glance, 
but which offers considerable insight into the next level of this process called analysis. The 
problem that we shall consider now is that of flow out of a vessel due to the force of gravity. 
We will apply the same principles as in Chapter 2, but the cause of the flow will be an essential 
part of the analysis. We also have the chance to see how this problem fits into the history and 
foundations of our physics. This is a 300-year-old problem that is still full of fascination for us 
and from which we can learn much. 

3.2 Mechanism of Water Flow from Tank— 
Torricelli’s Law, A Constitutive Relationship 

In 1640 a young man educated at the Collegio di Sapienza in Rome published a treatise entitled 
“Trate del Moto,” that is the Treatise on Motion. This brought the author to the attention 
of the preeminent natural philosopher of the day—Galileo Galilei. Impressed by the work, 
Galileo invited the author, Evangelista Torricelli, to join him at the Florentine Academy in 
1641. Torricelli worked as Galileo’s personal secretary for just one year before the great man 
died in 1642. The faculty at Florence immediately appointed Torricelli to succeed Galileo as 
professor of mathematics that same year. Torricelli is ensconced in physical science through 
the unit of pressure that bears his name, in honor of his experiments that led to the creation 
of the first partial vacuum and the barometer. But Torricelli did much more than this and it is 
to some of his other work that we will turn to now. 

Just as Galileo studied gravitational effects by dropping small and large solid masses from 
towers, Torricelli followed in his footsteps by analyzing liquids “falling” out of tanks. What 
he did was to measure the flow rate of liquids flowing out of tanks with holes in the bottom 
as a function of initial fluid level at a fixed orifice area. The physical system that corresponds 
to this is shown in Figure 1. The vessel is a right cylinder with cross-sectional area A. At the  
bottom of the vessel is a hole with area Ao that has a plug in it. The initial liquid level has 
been set to ho. 

When the plug is pulled out of the orifice, the liquid flows out. One can measure the flow 
rate or the level as a function of time to learn how the system behaves. If we did this, then 
we would notice from these experiments that the flow rate out is not constant, but seems to 
drop with time. As the level drops, so does the rate at which mass leaves the tank. Before we 
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ho 

A = Cross-sectional area of tank 

Ao = Cross-sectional area of orifice 

Figure 1 

consider the data that comes from an experiment like this one, we should apply the principle 
of the conservation of mass to the system to see what it is that we know and do not know 
about it. We begin with the same overall equation as always: 

dm[t] = −  ̊moutdt 

The mass flow in is zero, so we are left with just one term on the right-hand side. The density 
is a constant inside and outside of the vessel and the cross section of the liquid is just that 
of the tank A, and it too remains constant as the level drops. This leads us to the following 
equation for the change in level as a function of time: 

dh[t] q [t]= −
dt A 

On the right-hand side, we have noted that the flow rate changes with time by writing q as a 
function of time, but that is all that we can do at this point. We have no way of knowing how 
q varies with time or with the level in the tank. Therefore, we cannot go any further with this 
analysis until we have some way to express this dependence. What we are seeking for q is a 
constitutive relationship that will express it in terms of the level change h[t] so that the equation 
has only one dependent variable in time and not two. In other words, the analysis we have 
just done is incomplete, but it has shown us exactly what our experiments should be designed 
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to do. We must find a functional relationship between the level in the tank and the flow rate 
out of it. Or in mathematical terms we seek: 

q[t] → f[h[t]] 

dh[t] f [h[t]]= −  
dt A 

The first is the constitutive relationship and the second is just a restatement of the material bal
ance. The next section takes this into account as we trace what Torricelli is likely to have done. 

3.3 Experiment and the Constitutive Equation 
What causes the fluid to flow or “fall” out of the tank? Gravity of course. That is easy for 
us to answer because we are educated in fundamental physics concepts. But turn the clock 
back to Torricelli’s day and try to answer the question again in the year in which Galileo died 
and Isaac Newton was born. That means that Torricelli was working on this problem prior 
to calculus and Newtonian physics! Now, Galileo and Torricelli both had strong notions and 
good ideas of what this force, what we now call gravity, was and Newton was indebted to 
them when he did his work, but all of that came later. So we will attack this problem from the 
“experimental” side and try to piece together the findings that led to Torricelli’s Law. 

In the Table are collected data from several experiments with different starting levels, but 
all with the same orifice area, and all done in the same cylindrical tank. Look at the data for 
some clues as to the behavior of this system. Note that it takes 60 sec to drain the tank from an 
initial level of 10 cm. When the initial level is set to 50 cm, it takes 130 sec for the tank to drain: 

t/sec Level/cm 
0  10  20  30  40  50  
10 6.8 15.4 24.2 33.3 42.5 
20 4.2 11.3 19.1 27.2 35.6 
30 2.3 7.9 14.6 21.8 29.3 
40 0.9 5.1 10.7 16.9 23.6 
50 0.2 2.9 7.3 12.7 18.5 
60 0 1.3 4.7 9. 14.1 
70 0 0.4 2.6 6. 10.2 
80 0 0 1.1 3.6 7. 
90 0 0 0.3 1.8 4.4 
100 0 0 0 0.7 2.4 
110  0  0  0  0  1  
120 0 0 0 0 0.2 
130  0  0  0  0  0  
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We raised by a factor of five both the initial level and the volume that must be drained and 
yet it took only twice the total time to complete the process. Looking even more closely at the 
data, we note that in the same experiment at which the initial level was 50 cm, when the level in 
that experiment had fallen to 10 cm, it took another 60 sec to completely drain the tank. In other 
words, once the level gets to 10 cm it takes the same time to completion as if the experiment had 
begun at 10 cm. Therefore, the first 40 cm fell out of the tank in 70 sec, but the final 10 cm took 
another 60 sec to fall out. Looking across the data sets we see the same thing in each. The time 
required to go to completion beginning at 20 cm is the same as the time required to empty the 
tank after having reached 20 cm when beginning at any higher level. But the time required to 
go from an initial level of 40 cm to 20 cm is just 30 sec, or less than half the time required 
to drain the second 20 cm worth of fluid! This behavior had to have been very intriguing to 
Torricelli and the analysis must not have been obvious, at least at the outset of the work. 

The relationships that we have just described in words are much easier to see if we plot 
the data as level versus time and do so all on one graph. We can use a few functions to pull 
this all together. The data in the table has been entered as a matrix of levels at each time called 
“totdat”: 

In[1]:= totdat = {{0, 10, 20, 30, 40, 50}, {10, 6.8, 15.4, 24.2, 33.3, 42.5},
{20, 4.2, 11.3, 19.1, 27.2, 35.6}, {30, 2.3, 7.9, 14.6, 21.8, 29.3},
{40, 0.9, 5.1, 10.7, 16.9, 23.6}, {50, 0.2, 2.9, 7.3, 12.7, 18.5},
{60, 0, 1.3, 4.7, 9.0, 14.1}, {70, 0, 0.4, 2.6, 6.0, 10.2},
{80, 0, 0, 1.1, 3.6, 7.0}, {90, 0, 0, 0.3, 1.8, 4.4},
{100, 0, 0, 0, 0.7, 2.4}, {110, 0, 0, 0, 0, 1},
{120, 0, 0, 0, 0, .2}, {130, 0, 0, 0, 0, 0}}

Out[1]= {{0, 10, 20, 30, 40, 50}, {10, 6.8, 15.4, 24.2, 33.3, 42.5},
{20, 4.2, 11.3, 19.1, 27.2, 35.6}, {30, 2.3, 7.9, 14.6, 21.8, 29.3},
{40, 0.9, 5.1, 10.7, 16.9, 23.6}, {50, 0.2, 2.9, 7.3, 12.7, 18.5},
{60, 0, 1.3, 4.7, 9., 14.1}, {70, 0, 0.4, 2.6, 6., 10.2},
{80, 0, 0, 1.1, 3.6, 7.}, {90, 0, 0, 0.3, 1.8, 4.4},
{100, 0, 0, 0, 0.7, 2.4}, {110, 0, 0, 0, 0, 1},
{120, 0, 0, 0, 0, 0.2}, {130, 0, 0, 0, 0, 0}}

The matrix form of the data needs to be transformed into data sets having each time and each 
level in pairs. We can do this in one small program as follows and the new data set will be 
called “sepdat” for the separated data: 

In[2]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[3]:= sepdat = Table[
Table[{totdat[[n]][[1]], totdat[[n]][[m]]},
{n, 1, Length[totdat]}],{m, 2, 5}];
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ListPlot[Flatten[sepdat, 1], 
Epilog ––› {Dashing[{0.025, 0.015}], Line[{{0, 10}, {120, 10}}]}, 
AxesLabel ––› {""t/s"", ""h[t]/cm""}]; 

h(t,Zcm 
40 

30 

20 

10 

tZs 
20 40 60 80 100 120 

For reference the dashed line across the data is set at the 10-cm level. With this we can see that 
once this level is reached, then independent of the starting point, it takes 50 sec to finish the 
process. The fluid moving out of the vessel then has no “memory” of the level at which the 
process was initiated. What we seek now is the relationship between the rate of change in 
level and the level in the tank, since both the material balance and the experimental data drive 
in this direction. We can get to this by computing the rate of change in level as a function of 
time for each experiment and then plotting this for comparison. 

The approximate rate of change can be computed from the data by taking the slope between 
successive data points and plotting this versus the time at that second point. We can write a 
function to do this and then plot the data. The algorithm for implementing this procedure on 
the set “sepdat” is: 

Take the nth set of data, from this extract the (m + 1) data pair and from this take 
the second number, subtract from this the second number from the mth data point 
of the same data set; divide this by the difference between the first number from 
the (m + 1) pair from the nth set and the first number in the mth data pair of the nth 
set. Do this for all the n datasets and all the m pairs in each set. 

The function to do this is shown here: 

x [[n, m + 1, 2]] − x [[n, m, 2]]
rttot[x , m , n ]: = 

x [[n, m + 1, 1]] − x [[n, m, 1]] 
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It is worth understanding because it is such a useful tool when analyzing data—the relation
ship is written in a general way that can be implemented often in our analyses. To implement 
this we simply place it inside a pair of nested Table commands. The inside command creates 
a loop around the m data pairs in each set and the outside command loops over the n data 
sets. As we want the slopes associated with times we also include a command that takes each 
of the times and pairs it with a slope that looks like this: 

{sepdat[[1, m + 1, 1]], rttot[sepdat, m, n]} 

The following cell puts all of this together and makes a plot of the slopes versus time for each 
set of data. Each data set corresponds to a different initial level: 

x[[n, m + 1, 2]] - x[[n, m, 2]]
In[5]:= rttot[x----, m--, n--]:= x[[n, m + 1, 1]] - x[[n, m, 1]]

Table[Table[{sepdat[[1, m, 1]], rttot[sepdat, m, n]},
{m, 1, Length[sepdat[[1]]] - 1}], {n, 1, 4}];

ListPlot[Flatten[Abs[%], 1],
∆h[t]

AxesLabel ––› {""t/s"", "| ||(cm sec-1)""},"|
∆t 

PlotRange ––› {{0, 130}, {0, 0.7}}]; 

,h�t�
�1� � �cm sec �

,t

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

t�s 
20 40 60 80 100 120 

Each data set falls on a line and the slopes of each of these lines are identical! The slopes are 
the approximate second derivative of the change in level with time. From the graph we can 



P1:

May 10, 2002 17:7 Foley Ch-03

( 

120 Chapter 3 The Draining Tank and Related Systems 

see that all of the second derivatives are constant and each is equal to the same value, or stated 
more precisely: 

� �h[t] 
) 

= constant 
�t �t 

We realize now that the constant is the gravitational acceleration g. Even without knowing this 
it would be logical to replot the rate of change in level against the level rather than against the 
time. Out initial analysis of the system suggested this very approach, since level as a function 
of time is the key characterizing variable in this system. To do this we reuse the last cell but 
with a change in the table function to make the plot one of rate versus level rather than rate 
versus time. Hence the line “sepdat[[1, m, 1]]” becomes “sepdat[[n, m, 2]].” 

x[[n, m + 1, 2]] - x[[n, m, 2]]
In[8]:= rttot[x----, m--, n--]:=x[[n, m + 1, 1]] - x[[n, m, 1]]

Table[Table[{sepdat[[n, m, 2]], rttot[sepdat, m, n]},
{m, 1, Length[sepdat[[1]]] - 1}], {n, 1, 4}];

ListPlot[Flatten[Abs[%], 1],
∆h[t]

AxesLabel ––› {""h/m"", "| ||(cm sec-1)""},"|
∆t 

PlotRange ––› {{0, 45}, {0, 0.7}}]; 

,h�t�
�1� � �cm sec �

,t

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

h�m 
10 20 30 40 

This is quite interesting—all the data from the different experiments now fall on one curve! 
We notice that the data have distinct functional dependence, which is neither linear nor 
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logarithmic, but is, rather, square root. If Torricelli pursued this approach, and no doubt 
he did, then we can imagine that he felt quite a thrill when he made this graph and realized 
that he had uncovered a fundamental physical law. To be sure that the rate of change data 
do follow a square root dependence on level, we can fit the data to this form and evaluate 
the constants. We will use Fit for doing this. The data set will be constructed from the nested 
“Table” code in the last cell. The function we seek to fit to will be k

√
h[t]. The procedure to 

do this and the comparison to the data are done in the following routine: 

In[11]:= lsdat = Flatten[
Table[
Table[{sepdat[[n, m, 2]], rttot[sepdat, m, n]},
{m, 1, Length[sepdat[[n]]] - 1}], {n, 1, 4}]

, 1];

Fit[
Abs[1sdat], 

√
h, h]

Plot[Abs[%], {h, 0, 50}, DisplayFunction ––› Identity];

ListPlot[Abs[1sdat],
∆h[t]

AxesLabel ––› {""h/m"", "| || (cm sec-1)""},"|
∆t 

PlotRange ––›{{0, 45}, {0, 0.7}}, DisplayFunction ––›Identity]; 

Show[%, %%, DisplayFunction ––› $DisplayFunction];
√ 

Out[12]= 0.102464 h

,h�t�
�1�cm sec �� �

,t 

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

h�m 
10 20 30 40 
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The fit to the experimental data is quite good. (We can get a report on the “goodness of fit” if 
we need to, but it is not necessary here.) At this point we have found a function that relates 
the flow rate out of the tank to the level in the tank. The parameter value that fitted the data 
includes within it the cross-sectional area of the tank, as you may recall from the original 
statement: 

dh[t] 
dt 

= −  f [h[t]] 
A 

= −q [h[t]] 
A 

= −k 
√ 

h[t] = −  m 
A 

√ 
h[t] 

⇒ k = m 
A 

= 0.10 

At this point we would do well to analyze the dimensions of all the parameters on the right-
hand side. As the left-hand side has dimensions of length of time−1, so too must the right-hand 
side. Therefore, we can solve for the dimensions on the parameter m: 

Length m
In[16]:=Solve[ == 

√
Length, m]

time Length2

Length5/2
Out[16]={{m ––› }}

time

Now if we rerun the experiment we just described, but vary the orifice area, then we will find 
data that looks as follows: 

h(t,Zm Ao � 0.5, 1, 2, 3 

25 50 75 100 125 150 175 
tZsec 

50 

100 

150 

200 
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,h�t�
�1� � �cm sec �

,t Ao � 0.5, 1, 2, 3  

50 100 150 200 
h�m 

2 

4 

6 

8 

An analysis of this data shows that the flow rate out of the vessel is directly proportional to the 
orifice area. From experiments like these, Torricelli finally deduced that the flow rate looked 
like this: 

q[h] = b1 Ao h[t] 

It turns out that b1 is the square root of 2 g, where g is the acceleration due to gravity. Thus in 
full form Torricelli’s law is: 

q[h] = b Ao  2gh[t] 

The parameter b is found empirically. It is related to the resistance to flow through the orifice. 
If the orifice were perfectly smooth, then b would have a value of unity. It is essentially a 
coefficient of friction. We check for dimensional consistency one more time and find: 

In[17]:= Simplify[
Length3 

time 
== (1) Length2 PowerExpand[ 

Length 

time2 
Length]] 

Out[17]= True 

Today it is clear that the dependence should be of half order in t because we can do a simple 
energy balance to determine that this is the case. If due to the force of gravity the fluid is falling 
out of the vessel when it flows, then it truly is a falling body. The kinetic energy during the 
fall can never exceed the potential energy that the body has prior to the fall. We can then state 
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that: 

1
mgh[t] = 

2 
mv[t]2 

v[t] = 2 gh[t] 

In the case of the fluid, this is its velocity through the orifice. The product of this velocity and 
the area of the orifice is by definition the volumetric flow rate: 

q[h[t]] = Ao v[t] = Ao 2gh[t] 

Although Torricelli did not know this, his work helped to point Newton in the right direction. 
Therefore, Torricelli’s Law is the constitutive relationship that we seek to complete our model. 
We return to that endeavor now. 

3.4 Solving for Level as a Function of Time 
The equation that will yield the level as a function of time is this one: 

dh[t] b Ao 2gh[t]= −  
dt A 

We can solve this for h[t]: 

In[18]:= Clear[Ao, g, A, ho, h, b]
b Ao

√
2gh[t]

Simplify[DSolve[{h’[t] == - , h[0] == ho},
A

h[t], t]]
√ √ √ 
2 Ao b  g ho t Ao2 b2 gt2

Out[19]= {h[t] ––› ho - + 
2A2 

,
A√ √ √ 

2 Ao b  g ho t Ao2 b2 gt2
h[t] ––› ho + + 

2A2 
}

A

The functional form is what we should expect for the position of a body in motion and we find 
it to be a quadratic in time. As we know the level is falling and not rising, the first solution is 
the appropriate one for this situation. We can simplify it further as follows: 

√ √ √ 
2 Ao  b  g ho t Ao2 b2 gt2

In[20]:= ho Expand[(ho - + 
2A2 

)/ho]
A

√ √ 
2 Ao b  gt Ao2 b2 g t2

Out[20]= ho(1 -
A 

√ 
ho 

+ 
2A2 ho

) 
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This can be factored because the coefficient of t is two times the square root of the coefficient 
of t2. Therefore, we find: 

Ao b
√ 

gt 
]2 

h[t] = ho 1 − √ 
A 2 ho  

A comparison of the function to the data points gives an excellent fit: 

h(t,Zm 

25 50 75 100 125 150 175 
tZsec 

50 

100 

150 

200 

3.5 Mass Input, Output, and Control

Mass Input and Output 
Constant Input 
The next logical problem to consider is that of a vessel with a specified mass flow in and gravity 
mass flow out. In a very real sense the accumulation term is the response to the interaction of 
these two flows. Remember also that the problem we are doing is not only a real one, but it 
is also easily extended and modified for other problems that are seemingly unrelated. We use 
this problem simply to illustrate the principles and that is its real value. The physical picture 
is shown in Figure 2. 

The material balance equation has two terms on the right-hand side. 

dm(t) = min − ˚˚ moutdt 
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Mass flow in 

A 

Ao 

h[t] 

Mass flow out 

Figure 2 

The mass flow term in can be taken as the product of the density of the fluid and its volume 
flow rate. The mass flow out can be specified by Torricelli’s Law multiplied by the fluid density 
and the mass in the control volume is the product of the fluid density, the tank’s cross-sectional 
area, and the level at any time t. This gives us the following equation: 

d[ρ Ah[t]] = ρq − ρb Ao  2gh[t]
dt 

Simplification provides us with: 

dh[t] q − b Ao 2gh[t] = 
dt A 

This can be solved and we can examine the behavior of the time-dependent solution. We will 
begin the analysis assuming that the tank is initially empty, that is, that h[0] = 0, the initial 
condition. We will assume for now that q is a constant. This is also a good problem because 
we can approach the solution of this equation in several ways using Mathematica. 

We can rearrange this by separation to find: 

dh[t] dt 

q − b Ao 2gh[t] A 
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Solution by Direct Indefinite Integration after Separation 
This in turn can be simplified to this form: 

dy dt √ = 
a − b1 y A 

a = q and b1 = b Ao  2g 

Here we do the indefinite integration: 

In[21]:= Clear[a, b1, y, yo, t]

1 
∫ 

1 
y == t

a-b1
√
y A 

√ √ 
2 y 2a Log[a - b1 y] t 

Out[22]=- - == 
b1 b12 A

The result does not explicitly include the constant of integration; we add this and then evaluate 
it at t = 0 and y = yo = 0: 

In[23]:= yo = 0;
√ √ 

-2 yo 2a Log[a - b1 yo]
- ==C

b1 b12

2a Log[a]
Out[24]= - == C

b12√ √ 
2 y 2a Log[a - b1 y] 2a Log[a] t

In[25]:= - -
b12 

-(-
b12 

) ==
b1 A
√ √

2 y 2a Log[a] 2a Log[a - b1 y] t 
Out[25]= - + - == 

b1 b12 b12 A√ √ 
2 y 2a Log[a - b1 y] 2a Log[a] t

In[26]:= - -
b12 

-(-
b12 

)== // Simplify
b1 A

√ √ 
2(b1 y- a Log[a] + a Log[a - b1 y]) t

Out[26]= - ==
b12 A

Now we can set this result up as function, apply parameter values, and plot it: 

√ √ 
2(b1 y - a Log[a] + a Log[a - b1 y])

In[27]:= s1[y--] := -A
b12

As we have an expression in y for t, we use this to compute the values of time corresponding 
to a set y-value. Thus the Table function that follows gives the value of s1 [t] first and then the 
set value of y. 
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In[28]:= Clear[y]

In[29]:= a = 10;
b1 = 1;
A = 10;
ts1 = Table[{s1[x] // N, x}, {x, 0, 200, 5}]

Out[32]= {{0., 0}, {5.89788, 5}, {12.7805, 10}, {20.5158, 15}, 
{29.114, 20},{38.6294, 25}, {49.1474, 30}, {60.784, 35}, 
{73.6911, 40}, {88.0663, 45}, {104.168, 50}, {122.341, 55}, 
{143.053, 60}, {166.967, 65}, {195.052, 70}, {228.816, 75}, 
{270.785, 80}, {325.702, 85}, {404.211, 90}, {540.292, 95}, 
{∞, 100}, {535.291 - 628.319 , 105}, {394.207 - 628.319 , 110},
{310.687 - 628.319 , 115}, {250.752 - 628.319 , 120},
{203.75 - 628.319 , 125}, {164.937 - 628.319 , 130},
{131.782 - 628.319 , 135}, {102.775 - 628.319 , 140},
{76.9389 - 628.319 , 145}, {53.6089 - 628.319 , 150},
{32.3096 - 628.319 , 155}, {12.69 - 628.319 , 160},
{-5.5166 - 628.319 , 165}, {-22.5176 - 628.319 , 170},
{-38.4775 - 628.319 , 175}, {-53.5291 - 628.319 , 180},
{-67.7808 - 628.319 , 185}, {-81.3229 - 628.319 , 190},
{-94.2306 - 628.319 , 195}, {-106.568 - 628.319 , 200}}

It is very interesting to note that the numerical values of time are real until we reach a value 
of 100 and then they depart for the complex plane. We can start to see why if we com
pute the steady-state value of y directly from the differential equation for these parameter 
values: 

√ 
a - b1  ystst

In[33]:= Solve[0 == , ystst]
A

Out[33]= {{ystst ––›100}}

Therefore we see that the integration solution we have obtained works up to the point of 
steady state, but not beyond. We plot the real values of this solution to see how the solution 
behaves: 

In[34]:= pl1 = ListPlot[Take[ts1, 20],
PlotLabel ––›""Steady State"",
Epilog ––›Line[{{0, 100}, {450, 100}}],
PlotRange ––›{{0, 450}, {0, 105}}];
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Steady State
100 

80 

60 

40 

20 

100 200 300 400 

So this solution approaches the correct steady state value but we do not know if the time-
dependence is correct. We might wonder how and where this solution was derived. 

Solution by Substitution 
We can try the old method of substitution to solve this problem. We know that the integral of 

a+
1 
bx over x gives a simple logarithmic form. Therefore, we can try using the substitution of √ 

u = y: 

In[35]:= u =  
√
y;

D[u, y]

1
Out[36]= √ 

2 y

√
From this we know that dy = 2 y du = 2 u du. We can transform the integral as follows: 

1 2u 1 
u == t√ a − b1 y 

y == 
a − b1u A 

In[37]:= Clear[u, a, b1, A]

2u 1
In[38]:= u == t

a - b1u A

u a Log[a - b1 u] t
Out[38]= 2(- -

b12 
) ==

b1 A
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To this we must add the constant of integration and then we need to evaluate this at the initial 
condition, which can be after substitution of u: 

In[39]:= Clear[y]
√ 

In[40]:= u =  y;

-u a Log[a - b1 u] t
In[41]:= 2( -

b12 
) + C ==

b1 A
√ √ 
y a Log[a - b1 y] t

Out[41]= C + 2(- -
b12 

)==
b1 A

In[42]:= t = 0;

y = yo;
√ √ 
y a Log[a - b1 y] t

Solve[C + 2(- -
b12 

) ==  , C]
b1 A

2a Log[a]
Out[44]= {{C ––› 

b12 
}}

In[45]:= yo = 0;√ √ 
2(b1 yo + a Log[a - b1 yo])

b12

2a Log[a]
Out[46]=

b12

Adding this to the previous general solution we obtain: 

( √ √ )
2a Log [a] y a Log [a − b1 y] t + 2 − − == 

b12 b1 b12 A 

We can bring this over just b12 to give: 

In[47]:= yo =.
y =.

2a Log[a] 
√
y aLog[a - b1

√
y]

Together[ 
b12 

+ 2  (- -
b12 

)] // Simplify
b1

√ √ 
2(b1 y - a Log[a] + a Log[a - b1 y])

Out[49]= 
b12

This is exactly the same solution that we had obtained earlier from the Mathematica direct 
indefinite integration. 

√ √2 (b1 y − a Log [a] + a Log [a − b1 y]) t −A == 
b12 A 
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Power Series Expansion 
At this point we could ask the question “Why not just do the integration over definite limits, 
that is, from yo = 0 or even y = yo at t = 0 to y at t?” The answer for both the unsubstituted 
and the substituted cases is shown here: 

In[50]:= Clear[a, b1, t, A]

In[51]:= u =.
t =.

y 1 
∫ t 1√ y == t

0 a - b1 y 0 A

u 2u 
∫ t 1 

u == t
0 a - b1  u  0 A

Series::vcnt : Center point -y of power series expansion
involves the variable y.

Series::vcnt : Center point -y of power series expansion
involves the variable y.

Series::vcnt : Center point -y of power series expansion
involves the variable y.

General::stop : Further output of Series::vcnt will be
suppressed during this calculation.

y 1 t
Out[53]= √ y ==

0 a - b1 y A

Series::vcnt : Center point -u of power series expansion
involves the variable u.

Series::vcnt : Center point -u of power series expansion
involves the variable u.

Series::vcnt : Center point -u of power series expansion
involves the variable u.

General::stop : ”Further output of Series::vcnt will be
suppressed during this calculation.

u u t
Out[54]= 2 u ==

0 a - b1  u  A

In both cases we find that the error message is the same: “Center point −y of power series 
expansion involves the variable y.” This tells us why it failed, but it also gives us a direct 
clue as to how Mathematica is solving this integral—it is using a power series expansion of 
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the integrand. Since the indefinite integration works, it may also be using this method or the 
substitution method. We plot the integrand to remind ourselves what is happening and why 
there is a problem: 

In[55]:= f[y--] :=  1 √ 
a - b1  y

a = 10;
b1 = 1;
A = 10;

Plot[f[y], {y, 0, 200}];

f[100]

50 100 150 200 

�15 

�10 

�5 

5 

10 

15 

Power::infy : Infinite expression 1 encountered.0

Out[60]= ComplexInfinity

Right—the integrand goes to complex infinity in the vicinity of y = 100, that is, when the √numerical value of b1 y is the same as a! This causes some difficulties in the integration. We 
can now turn to the power series expansion of the integrand. We can do this as follows out to 
terms of any order n; in this case we choose to go out to order 3: 

In[61]:= Series[ 1 √ , {y, 0, 3}]
a - b1  y

y y3/2 y y5/2 3y
Out[61]= 

1
+ 

√ 
+

y
+ + 

2 

+ + + O[y]7/2 
10 100 1000 10000 100000 1000000 10000000
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Now we can use this series to do the integration: 

1
In[62]:= Series[ √ , {y, 0, 3}] y

a - b1  y

y2 y5/2 3 y7/2 4y y
Out[62]= 

y 
+
y3/2

+ + + + + + O[y]9/2
10 150 2000 25000 300000 3500000 40000000

How does this relate to the solution that we obtained via the direct integration of the original 
function? We know that solution, so we will test it against this new solution: 

√ √2 (b1 y − a Log[a] + a Log [a − b1 y])− 
b12 

√ 
yTo do so we can expand the log in a power series about zero and subtract it from the - 2 term:b1 

√ √ 
2(b1 y - a Log[a] + a Series[Log[a - b1 y], {y, 0, 4}])

In[63]:= 
b12

y y3/2 y2 y5/2 3 y7/2 4y y
Out[63]= + + + + + + + O[y]9/2

10 150 2000 25000 300000 3500000 40000000

Aha! It is clear that these are the same solution. Thus, Mathematica found the solution in terms 
of the power series and then recognized that this could be written as a difference including 
the log function of the argument! 

We can now evaluate this power series result and compare it to the result we obtained 
from the closed form solution. That is to say, if we had not recognized, as Mathematica did, 
that the power series solution could be recast as a log, then we might have simply used the 
solution we had. Let’s compare this new solution with the previous one by making a function 
of it, evaluating t at each y and then plotting it against the previous results: 

2 2 b13 y5/2 3 2 b15 y7/2b12 y b14 y b16 y
In[64]:= s2[y--]:= A(

y
+
2 b1 y3/2

+ + + + 
7a6 

+ 
4a7 

)
a 3a2 2a3 5a4 3a5

In[65]:= a = 10;
b1 = 1;
A = 10;

In[68]:= tst2 = Table[{s2[x] // N, x}, {x, 0, 100, 10}] 

Out[68]= {{0., 0}, {12.7795, 10}, {29.0873, 20}, {48.9513, 30},
{72.843, 40}, {101.396, 50}, {135.358, 60}, {175.578, 70},
{222.991, 80}, {278.621, 90}, {343.571, 100}}

In[69]:= pl2 = ListPlot[tst2, PlotStyle ––›
{PointSize[0.015], GrayLevel[0.4]}];

4 
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In[70]:= Show[{pl1, pl2}, DisplayFunction ––› $DisplayFunction];
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The results indicate that the fourth-order approximation of the integral does follow the closed 
from solution rather well for about 60% of the steady-state value, and then it deviates and does 
so markedly. Notice also that it does not have an upper bound; its values go right through the 
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steady state. How can we account for this? Recall that we approximated the integrand with a 
power series of order n = 3. In so doing we dropped the higher-order terms. This has to lead to 
numerical errors. Clearly, when Mathematica numerically evaluates any log function, however 
it actually does it, it does so in a fashion that is far more accurate than of order 3 accuracy. We 
could go to higher order, reintegrate, and see if the agreement is better. We do that now: 

In[71]:= Clear[a, b1, t, A]
1

Series[ √ ,{y, 0, 10}] y
a - b1  y

2 2b13y5/2 y7/2 4 2b17y9/2b12y b14y3 2b15 b16y
Out[72]=

y
+
2b1y3/2

+ + + + + +
a 3a2 2a3 5a4 3a5 7a6 4a7 9a8

5 2b19y11/2 6 2b111y13/2 7 2b113y15/2b18y b110y b112y
+ + + + + +

5a9 11a10 6a11 13a12 7a13 15a14

8 2b115y17/2 9 2b117y19/2 10 2b119y21/2b114y b116y b118y
+ + + + + +

8a15 17a16 9a17 19a18 10a19 21a20

11b120y
+ + O[y]23/2

11a21

2 2b13y5/2 y7/2y 2b1y3/2 b12y b14y3 2b15 b16y
In[73]:= s3[y--] := A( + + + + + +

a 3a2 2a3 5a4 3a5 7a6 4a7

y9/2 5 2b19y11/2 6 2b111y13/2 72b17 b18y b110y b112y
+ + + + + +

9a8 5a9 11a10 6a11 13a12 7a13

y15/2 8 2b115y17/2 9 2b117y19/2 102b113 b114y b116y b118y
+ + + + + +

15a14 8a15 17a16 9a17 19a18 10a19

y21/2 112b119 b120y
+ +

21a20 11a21 
)

In[74]:= a = 10;
b1 = 1;
A = 10;

tst3 = Table[{s3[x] // N, x}, {x, 0, 100, 10}]

Out[77]= {{0., 0}, {12.7805, 10}, {29.114, 20}, {49.1474, 30},
{73.6905, 40}, {104.159, 50}, {142.957, 60}, {194.309, 70},
{265.875, 80}, {371.793, 90}, {538.163, 100}}

In[78]:= p13 = ListPlot[tst3,
PlotStyle ––›{PointSize[0.015],
GrayLevel[0.8]}, DisplayFunction ––›Identity];

Show[{p11, p12, p13}, DisplayFunction ––› $DisplayFunction];

4 
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Clearly, by going out to more terms, that is, to terms on the order of n = 10, the accuracy is 
much better and comes closer than that which we had for the analytical solution. 

Solution with DSolve—the Differential Equation Solver 
Mathematica also provides us with the differential equation solver DSolve, which can be em
ployed for this problem. When we do this we do not have to work quite as much as we did 
using the integration methods. The solution looks as follows: 

In[80]:= Remove[a, b1, A]
√ 

soln = DSolve[{y’[t] == 
a - b1

A 
y[t]

, y[0] == 0},

y[t], t] // Simplify

s4[t----] := Evaluate[y[t] /. soln]

InverseFunction::ifun : Inverse functions are being used.
Values may be lost for multivalued inverses.

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

√ 
a2 -1-

b12t 
2aA

a2(1 + ProductLog[- a ])2 

Out[81]= {y[t] ––› }
b12
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Now we have a solution that is different from any of the others that we have derived so far. In 
fact, the solution depends upon a new function that is unfamiliar in name—the ProductLog 
function. The Help Browser tells us that the ProductLog[z] is the principal solution to the 
equation z = wew . We should test this solution to be sure that it is one that satisfies the original 
equation. We can do so as follows. We have specified the solution as the function s4 [t]. Taking 
the derivative of this function, we should obtain the same result as we acquire when we 
put this function into the right-hand side of the equation and simplify. Therefore, we set the 
derivative with respect to time equal to the right-hand side after substitution. To be efficient 
we Simplify, PowerExpand, and Simplify again using the // Command structure. If you 
need to see what is happening here, redo the derivative and the right-hand side without these 
additional commands, and then take the results and apply them sequentially to reach the same 
final forms. 

In[83]:= Clear[a, A, b1]

In[84]:= lhs = ∂t s4[t] // Simplify // PowerExpand // Simplify 
√ 

rhs = 
a - b1

A
s4[t]

// Simplify // PowerExpand // Simplify

lhs == rhs

t-1-b1
2

2aA ]a ProductLog[-
Out[84] = 

A

t-1-b1
2

2aA ]aProductLog[-
Out[85] = 

A

Out[86] = True

Therefore, we can be sure that this ProductLog function is a full-time solution to the 
equation. The next step in our analysis then should be to compare this solution’s behavior in 
time with the previous solutions using the same parameter values. We do this as follows: 

In[87]:=a = 10;
b1 = 1;
A = 10;

Plot[s4[t], {t, 0, 1050},
Epilog ––› {Line[{{0, 100}, {1050, 100}}]},
PlotRange ––› {{0, 1050}, {0, 105}},
AxesLabel ––› {""t"", ""h[t]""}]; 

p14 = Plot[s4[t], {t, 0, 1050},
PlotStyle ––› {Thickness[0.006], Dashing[{0.025, 0.015}],
GrayLevel[0.2]}, DisplayFunction ––› Identity];

Show[{p11, p12, p13, p14}, DisplayFunction ––›$DisplayFunction];
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Here we can see that the solution provided by DSolve is in fact one that is a full time-dependent 
solution. This solution rises in time according to the same dependence of the log function we 
had obtained earlier, but it also approaches the limiting level asymptotically and, therefore, 
correctly. 

If we leave all else the same but begin the process with either a higher or a lower volume 
flow rate, what will be the result? Will the steady-state position change? We can see the 
answer immediately by using the steady-state solution. Choosing a higher or lower flow rate 
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will markedly affect the position of the steady state, as this level depends on the square of the 
flow rate in. 

Fluxional Input 
We can now ask what the effect of fluxional input would be. Suppose, for example, that the 
input were sinusoidal as we saw in Chapter 1: What would the output look like given a 
gravity-driven flow response? The virtue of Mathematica is that we can solve this problem 
with very little effort beyond what we have already done and we can compare the results with 
those from constant input. Here is how we do it. 

First, solve the new differential equation taking q[t] for the input as qo (1 + α Sin[β t ]): 

dh[t] qo(1 + α Sin[βt]) − b Ao 2gh[t] = 
dt A 

This can be solved numerically for a specific value of the parameters. We then evaluate 
this new definition of h[t] and call it hsin[t] to distinguish it from the earlier work we have 
done. We make similar changes to the plot names. The value for qo is taken as 20 in order to 
be the same as the constant flow case. The magnitudes of α and β are taken to be the same as 
they were in Chapter 1. 

In[93]:= Clear[α, β, g, q, qo, b, Ao, A, h] 

In[94]:= r = 1.7;
A = N[πr2];
Ao = 0.1 A;
b = .25;
g = 9.80;
qo = 10;
α = 1.;
β = .25;√ 
b Ao  2g;
tmax = 1050;

In[104]:= soln0 = NDSolve[ √
qo(1 + α Sin[βt]) - b Ao 2gh[t]

{∂t h[t] == ,
A

h[0] == 0}, h[t], {t, 0, tmax}];

hsin[t--] := Evaluate[h[t] /. soln0]

qin[t] := qo (1 + α Sin[βt]) 

qexsin[t--] := b Ao
√
2g hsin[t] 

plqsinin = Plot[qin[t], {t, 0, tmax}, 
AxesLabel ––› {""t/sec"", ""qin[t]/m sec-1""}, 
PlotRange ––›{{0, tmax}, {-1, 25}}]; 
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plhsin = Plot[hsin[t], {t, 0, tmax}, 
AxesLabel ––› {""t/sec"", ""h[t]/m""}, 
PlotStyle ––› GrayLevel[0.4]]; 

plqexsin = Plot[qexsin[t], {t, 0, tmax}, 
PlotStyle ––› GrayLevel[0.4], 
AxesLabel ––› {""t/sec"", ""qex[t]/m sec-1""}]; 
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The results show that the output flow is coupled to the input flow quite tightly after an initial 
transient period. We can compare these responses to the sinusoidal input with those from the 
constant input case by plotting qex[t] and h[t] for both cases: 

In[111]:= b1 = 1;
a = 10;
Plot[b1

√
s4[t], {t, 0, tmax}, PlotStyle ––› Thickness[0.01], 

DisplayFunction ––› Identity];

Show[plqexsin, %];

Show[plhsin, pl4];
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Since we chose all the parameters to be the same, we note the fluxional values of h and qex 
for the sinusoidal input case are larger earlier than they are for the fixed input. The reason is 
that the input flow in the sinusoidal case rises to a value well over its average value. 

In[116]:= Show[plqsinin, Graphics[{Thickness[0.015], Line[{{0, qo},
{1100, qo}}]}]];
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3.6 Control
It would be very nice to be able to dampen the input fluctuations and to smooth the output from 
this vessel. To do this requires a control function. One form of control would be to increase the 
flow rate out of the tank whenever the level in the tank rises or falls above or below a designed 
set point level hd. For example, the set point level could be the steady-state level that we found 
from the earlier example with constant input flow, which is the also the bold black horizontal 
line in level graph above. To increase the flow rate in the case of gravity-driven flow, we must 
increase the size of the orifice. We can increase it in proportion to the difference between the 
actual level in the tank at any time and design level. The actual implementation would involve 
having a level sensor tied to an actuator, which would open the valve more or less depending 
on the level. The mathematical description of this control function can be given as: 

Ao[h[t]] = Aoo(1 − K(hd − h[t])) 

In this expression Aoo is the nominal aperture size to deliver at the design flow rate based on 
the constant set input flow rate. The second term in the parenthetical expression is the product 
of a proportionality constant K and the difference between the set point level and the actual 
level as a function of time. We substitute this for Ao in Torricelli’s Law and also in the equation 
describing a system with sinusoidally fluctuating input flow: 

dh[t] qo (1 + α Sin[βt]) − b Aoo (1 − K (hd − h[t])) 2gh[t] = 
dt A 

Notice that if K were set to zero, the equation would revert back to that which we have already 
solved for the uncontrolled system. We can operate on the right-hand side to put it into a form 
that is more readily understood: 

In[117]:=Clear[α, β, g, q, qo, b, Ao, A, h, K, hd, Aoo] 

In[118]:=Collect[Simplify[PowerExpand[ 

qo(1 + αSin[βt]) - b Aoo(1 - K(hd - h[t]))
√
2gh[t]

]], qo]
A√ √ √ 

2 Aoo b g h[t](1 - hd K + Kh[t]) qo(1 + α Sin[tβ])
Out[118]=- +

A A√
2 Aoo b

√
g
√
h[t] Collect[(1 - hd K + Kh[t]), K] In[119]:=- A√ √ √ 

2 Aoo b g h[t](1 + K(-hd + h[t]))
Out[119]=-

A
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From this form of the equation we can see that we have one function of time alone and another 
that is a function of level h[t]: 

√ √ √ 
dh[t] 2 Aoo b g h[t] (1 + K(h[t] − hd)) qo(1 + α Sin [t β])= − +

dt A A √ √ √ 
dh[t] 2 Aoo b g h[t] (1 + K(h[t] − hd)) qo(1 + α Sin [t β])+ = 

dt A A 

We will use all the same parameter values that we have used in the previous problem, but 
we will have to pick a magnitude for K. This is best done by solving the problem and then 
resetting the value to get a sense of the solution’s parametric sensitivity to the magnitude of 
K. We start with a value of zero to be sure that the solution to this new equation reduces to 
that of the one we have solved already. See the following graphical illustrations. 

In[120]:= Clear[α, β, g, q, qo, b, Ao, A, h, K, hd, Aoo, t] 

In[121]:= Ao =.
r = 2;
hd = 12;
A = N[πr2];
Aoo = 0.2 A;

b = 1;
g = 9.80;
qo = 20;
α = 1;
β = .25;
K = 0;
tmax = 100;
soln1 = NDSolve[√

2Aoo b
√
g
√
hx[t](1 + K(hx[t] - hd))

{hx’[t] == -
A 

qo(1 + αSin[tβ])
+ , hx[0] == 0}, hx[t], {t, 0, tmax}];

A

hc[t--] := Evaluate[hx[t] /. soln1]

qin[t] := qo(1 + αSin[β t]) 

Ao[t--] := Aoo(1 + K(hd - hc[t]))

qexc[t--] := b Ao[t]
√
2ghc[t] 

plqcin = Plot[qin[t], {t, 0, tmax}, 
AxesLabel ––›{""t/sec"", ""qin[t]/m sec-1""}, 
PlotRange ––›{{0, tmax}, {0, 50}}]; 
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plhc0 = Plot[{hc[t]}, {t, 0, tmax}, 
PlotStyle ––›Thickness[0.008], 
PlotRange ––›{{0, tmax}, {0, 10}}, 
AxesLabel ––›{""t/sec"", ""h[t]/m""}]; 

plqexc0 = Plot[qexc[t], {t, 0, tmax}, 
AxesLabel ––›{""t/sec"", ""qex[t]/m sec-1""}]; 
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In[141]:= K = 1;  
soln1 = NDSolve[ 

√ √ √ 
2 Aoo b g hx[t](1 + K(hx[t] - hd))

{hx’[t] == 
A

qo(1 + α Sin[tβ])
+ , hx[0] == 0}, hx[t], {t, 0, tmax}];

A

hc[t--] := Evaluate[hx[t] /. soln1]

qin[t] := qo(1 + αSin[βt]) 

Ao[t--] := Aoo(1 + K(hd - hc[t]))

qexc[t--] := b Ao[t]
√
2ghc[t] 

plqcin = Plot[qin[t], {t, 0, tmax}, 
AxesLabel ––›{""t/sec"", ""qin[t]/m sec-1""}, 
PlotRange ––›{{0, tmax}, {0, 50}}]; 

plhc = Plot[hc[t], {t, 0, tmax}, 
AxesLabel ––›{""t/sec"", ""h[t]/m sec-1""}, 
PlotStyle ––›{GrayLevel[0.5], Thickness[.01]}, 
DisplayFunction ––›Identity]; 

plqexc = Plot[qexc[t], {t, 0, tmax}, 
AxesLabel ––›{""t/sec"", ""qex[t]/m sec-1""}, 
PlotStyle ––›{GrayLevel[0.5], Thickness[.01]}, 
DisplayFunction ––›Identity]; 



P1:

May 10, 2002 17:7 Foley Ch-03

3.6 Control 147 

Show[plhc, plhc0, PlotRange ––›{{0, tmax}, {0, 20}}, 
DisplayFunction ––›$DisplayFunction, 
PlotLabel ––›""Upper = Controlled""]; 

Show[plqexc, plqexc0, DisplayFunction ––›$DisplayFunction, 
PlotRange ––›{{0, tmax}, {0, 100}}, 
PlotLabel ––›""Upper = Controlled""]; 
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Using a bit of code and ingenuity we can have Mathematica compute the responses to incre
mental changes in K ranging from 0 to 21/4 in increments of a quarter unit. The code to do 
this is shown along with the outputs in two graphical forms—a stack plot and a graphics 
array: 

In[152]:= Clear[α, β, g, q, qo, b, Ao, A, h, K, hd, Aoo, t] 

Ao =.
r = 2;
hd = 12;
A = N[πr2];
Aoo = 0.1 A;
b = 1;
g = 9.80;
qo = 20;
α = .25;
β = .25;
K = .1;
tmax = 200;
Clear[α, β, g, q, qo, b, Ao, A, h, K, hd, Aoo, t]

Ao =.
r = 2;
hd = 12;
A = N[πr2];
Aoo = 0.2 A;
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b = 1;
g = 9.80;
qo = 20;
α = 1;
β = .25;
K = 0;
tmax = 100;
solns=Table[NDSolve[{hx’[t] ==√

2 Aoo b 
√
g
√
hx[t](1 + K(hx[t] - hd)) qo(1 + αSin[tβ]) 

- + ,
A A

hx[0] == 0}, hx[t], {t, 0, tmax}], {K, 0, 10, .25};

fns = Table[Evaluate[hx[t] /. solns[[n]]][[1]],
{n, 1, Length[solns]}];

plots = Table[Plot[{fns[[n]]}, {t, 0, tmax}, 
PlotRange ––›{{0, tmax}, {0, 13}}, 
AxesLabel ––›{""t/sec"", ""h[t]/m sec-1""}, 
DisplayFunction ––›Identity], {n, 1, Length[solns]}]; 

Show[plots, DisplayFunction ––› $DisplayFunction,
Epilog ––›{Dashing[{0.025, 0.015}],
Line[{{0, 12.0}, {tmax, 12.0}}]}];

General::spell1 : Possible spelling error: new symbol name
”solns” is similar to existing symbol ”soln”.

h(t,Zm sec�1 

12 

10 

8 

6 

4 

2 

tZsec 
20 40 60 80 100 



P1:

May 10, 2002 17:7 Foley Ch-03

150 Chapter 3 The Draining Tank and Related Systems 

By increasing the magnitude of K we meet the original goal of dampening out the ex
cursions that would take place had we not included the control function. There is nothing 
essential about the particular manner in which we solved this problem. Other functions could 
have been chosen for the control function. The essential feature of this analysis is the logical, 
stepwise manner in which we solved it. 

3.7 Summary 
In this chapter we have extended the analyses that we can do well beyond the simple systems 
of Chapter 1. We began with a fairly simple problem, the gravity-driven flow of fluid from a 
tank that led to Torricelli’s Law. With this in the tool box we were able to step smartly through 
a series of systems with input and out fluid flows that were increasingly more complex, 
culminating in the proportional control of the level of a tank with sinusoidally driven input 
flow. As we moved through these examples, we have begun to use Mathematica in ever more 
sophisticated ways, providing us with new techniques to add to our arsenal of problem-solving 
weapons. 



P1:

May 10, 2002 16:4 Foley Foley-Ch-04

Multiple-Component
Systems

Single-component systems are not adequate for realistic chemical engineering problems. It is 
rare to have a single component unless it is the product of many different unit operations. If 
chemical engineering is the science of chemical and physical change, then it is also a science of 
complexity. A major source of complexity comes as a result of having to deal with real systems 
that are composed of many interacting components. The objective of this chapter is to set up 
a strong foundation for the problem of multicomponent systems of all kinds. 

4.1 The Concept of the Component Balance 
The masses of components can be handled in much the same way that we have handled total 
mass. The total mass balance is simply the sum of each of the component balances. Imagine we 
are playing a game tossing black and gray balls into a box on a scale (see Figure 1). Each ball 
has the same mass. The player tossing the gray balls is more skillful than the one tossing the 
black ones, and as a result she is able to throw more gray balls into the box every minute than 
the fellow who is tossing black balls. The scale tells us how fast the total mass of balls, both 
black and gray, is changing. If we want to know how fast the mass of just black balls in the box 
is changing, then we need to know how many are being thrown per unit time over the period 
of the measurement and similarly for the gray balls. The sum of the arrival rates of the black 
and gray balls together is the rate of mass change in total within the box. 

151 
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Figure 1 

The total material balance for this system is: 

= mblack + ˚
dmtot[t] ˚ mgraydt 

The component balances are: 

dmblack[t]
˚= mblackdt 

dmgray[t]
˚

dt 
= mgray 

Restating the total material balance, we have: 

dmtot[t] dmblack[t] dmgray[t] = + 
dt dt dt 

Therefore, the sum of the component balances is the total material balance while the net 
rate of change of any component’s mass within the control volume is the sum of the rate of 
mass input of that component minus the rate of mass output; these can occur by any process, 
including chemical reaction. This last part of the dictum is important because, as we will see 
in Chapter 6, chemical reactions within a control volume do not create or destroy mass, they 
merely redistribute it among the components. In a real sense, chemical reactions can be viewed 
from this vantage as merely relabeling of the mass. 
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4.2 Concentration versus Density
To this point we have had to deal only with the mass per unit volume in the form of density, 
since we were concerned only with single-component systems. Multiple components share 
the volume and because of this we must use concentration as well as density. The density of 
a single component i is the mass of that component per unit volume: 

massi 
ρi = 

vol 

For a multicomponent system the total density is the sum of the masses of the components 
per unit volume: 

n 
i=1 massi 

ρtot = 
vol 

The concentration of any component i can be either a mass concentration or a molar concen
tration: 

Ci = mi 

vol 
≡ mass 

vol 

Mi = Ni 

vol 
= 1 

Mwi 

mi 

vol 
= Ci 

Mwi 
≡ mole 

vol 

Although these definitions are straightforward, they do seem to cause problems more often 
than they should, especially for those who are just beginning to work with them in earnest. 

The component material balance for a system with input and output, but no chemical 
reaction, is written as follows: 

dmi = mi,in − ˚˚ mi,outdt 

If the mass flows are those of liquids, then in terms of mass concentrations, this becomes: 

V dmi V 
mi,in − ˚

V 
= ( ˚ mi,out)V dt 

˚ ˚d 
[ 

mi mi,in mi,outV = − V 
dt V V V 

d 
[Ci V] = (C̊ i,in − C̊ i,out)V 

dt 
d 

[Ci V] = (Ci,in qin − Ci,out qout)dt 
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The last statement is the typical form of a liquid-phase component mass balance. When this is 
divided through by the molecular weight of species i, this becomes a differential mole balance 
since the concentrations are expressed in molarity units: 

1 d 1 
MWi dt 

[Ci V] = (Ci,in qin − Ci,out qout) MWi 

d 1
[Mi V] = (Mi,in qin − Mi,out qout)MWidt 

Typically, this last statement is written with the symbol C for molar concentration just as it is 
for mass concentration. Given that this is the case and it is not likely to change, the particular 
meaning of C must be understood from context. Fortunately, this is usually easy to do. 

4.3 The Well-Mixed System 
Once we move away from single component systems there is the real possibility that the 
components will partition themselves in different parts of the vessel due to different densities, 
solubilities, or miscibilities. Partitioned systems are also referred to as “distributed.” That 
means that the properties are not everywhere the same over macroscopic length scales. To 
handle distributed systems we typically have to choose a differential control volume, that is, 
an infinitesimal volume within the macroscopic system. We will see this when we consider 
plug flow down a tube. 

Although partitioning is often encountered, and even though it may be advantageous 
in many cases, it is also true that many systems are either naturally homogeneous or are 
forced to be by the action of vigorous mixing. When a system is homogeneous, it means 
that the density and concentration are everywhere the same throughout the control volume. 
This is referred to as the condition of being “well-mixed.” From the purely mathematical 
vantage, it refers to any system that can be described solely in terms of time as the independent 
variable. We turn now to problems of systems with multiple components and which are well 
mixed. 

4.4 Multicomponent Systems 

Liquid and an Insoluble Solid 
Mixtures are combinations of two or more components that share the same volume but retain 
their identity—liquid plus an insoluble solid, for example. Preparing such a mixture may be 
done in a mixing tank, such as that which is used to make cement. Often done in batch mode, 
it can be done continuously as well in a system such as this one shown in Figure 2. 
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mixture out 

Mass flow liquid 

Well mixed 

Mass flow of solid 

Mass flow of 

Figure 2 

There is a mass flow of both liquid and solid into the tank; the two are mixed well and 
then flow out of the tank to their application. The total and component mass balances for the 
system are: 

Total: 
dρmix V 

dt 
= ρl ql + m̊s − ρmix qmix 

Liquid: 
dCl,mix V 

dt 
= ρl ql − Cl,mix qmix 

Solid: 
dCs,mix V 

dt 
= m̊s − Cs,mix qmix 

We have said that the total material balance is the sum of the component balances. Is that the 
case here? If so, what can it teach us? We will check it here: 

dCl,mix V dCs,mix V + = ρlql − Cl,mixqmix + m̊s − Cs,mixqmixdt dt 
d[Cl,mix + Cs,mix]V = ρlql + m̊s − (Cl,mix + Cs,mix)qmixdt 

For this to be equal to the total material balance, it must be true that the sum of the mass 
concentrations of solid and liquid are equal to the density of the mixture: 

dρmix V = d[Cl,mix + Cs,mix]V 
; iff  ρmix = [Cl,mix + Cs,mix]

dt dt 
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This is of course the case. If we remember that density is the sum of the masses occupying the 
same unit of volume, then we can see that: 

ml + ms ml ms 
ρmix = = + = Cl,mix + Cs,mixVmix Vmix Vmix 

This also means that there are really only two independent equations describing this system 
and that, given any two, the other can be derived. Now we can now proceed to solve these. 
But before we do, it is important to inspect the component balances and the total balance for 
their other details—namely, the consequence of the system being “well-mixed.” 

Notice that in the total material balance the argument of the derivative involves this mix
ture density. This as we have seen is the sum of the two concentrations of the two components, 
not the density of the solid alone, nor that of the liquid alone. On the right-hand side of the 
same equation, we note that the two input terms do involve the densities of the solid and 
the liquid in their pure states. This is because they are being delivered to the system as pure 
“feeds.” The outflow term, however, includes the mixture density, the same density that ap
pears in the argument of the differential. This is critical to understand. It says that everywhere 
in the control volume the density is the same at any time and that the material exiting the 
control volume also has the same density as the material in the tank. This is the consequence 
of assuming the system is well-mixed. The same analysis can be made for the two compo
nent balances. They show the well-mixed assumption because they include the corresponding 
mixture concentrations in the differential and the out-flow term. 

To solve these equations we need to have a set of initial conditions for the system. We must 
decide, or know, whether the tank is initially empty and both the solid and the liquid are added 
simultaneously, if the tank is initially loaded with pure liquid (or pure solid), or if the tank 
contains a product mix from some previous production run. For the sake of this example we 
will assume that we must start up the tank and the process from scratch, that is, from an initially 
empty condition to production of the target mix. To do this we will follow three time intervals: 

1. Fill the tank with liquid to a predetermined level hmax. 
∗2. Feed only solid with good mixing until a target density for the mixture ρmix is reached. 

3. Feed liquid with solid to maintain this density while product mix flows from the tank 
continuously. 

We will want to know how long it will take to reach each stage for a given set of inputs 
such as the feed rates and the target mixture density. To obtain that information we need to 
solve the balance equations in each interval. We do that now. 

Interval 1: No solid flow and only liquid flow implies a single-component balance problem. 
The total material balance becomes: 

dρmix V = ρlql + m̊s − ρmixqmixdt 
dρl V = ρlqldt 

V(t) = ql t and h(t) = ql t =⇒ to = hliq,o A 
A ql 
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∗Interval 2: Solid flow and no liquid flow to reach the critical density ρmix corresponding to 
Cl

∗ 
,mix and Cs

∗ 
,mix. The density of the mixture will be changing with time as the solid is fed to 

the system. We need to know how long it will take to reach the target density: 

dρmix V 
˚= msdt 

dρmix dV 
˚V + ρmix = msdt dt 

d[Cl,mix + Cs,mix] dV 
˚V + [Cl,mix + Cs,mix] = msdt dt 

dCl,mix + Cl,mix 
dV 

] 
V 

dCs,mix dV 
] 

˚V + + Cs,mix dt 
= msdt dt dt 

dCl,mix V dCs,mix V 
˚+ = msdt dt 

dCl,mix V = 0 
dt 

dCs,mix V 
˚= msdt 

If we expand the total material balance equation, we obtain the sum of these two back and 
so we are unable to solve the problem. This is because we have the unknown and only two 
independent equations. The unknowns are the concentrations of each component and the 
change in volume. Each is a function of time. We need another independent equation. To 
obtain this we need to think about what is happening. 

When we add an insoluble solid to a liquid, the volume of the mixture must increase. In fact 
the volume must grow by the volume of solid that has been added according to Archimedes’ 
Law. 

massliquid
Vmix = Vsolid + Vliquid = masssolid + 

ρsolid ρliquid 

During interval 2, the volume of the liquid is a constant but the volume of the solid in the 
mixture changes with time: 

m̊st 
Vmix[t] = + Vliquid

ρsolid 

˚dVmix[t] ms = 
dt ρsolid 

Returning to the overall material balance equation, we find: 

dρmix[t] dVmix[t] 
˚= msVmix[t] 

dt 
+ ρmix[t] 

dt 
m̊st ˚

˚+ Vliquid 
dρmix[t] + ρmix[t] 

ms = ms 
ρsolid dt ρsolid 
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Now this equation is soluble because it involves just one independent variable (function)—that 
of ρmix[t]. At the start of interval 2 the density of the “mixture” in the control volume is just that 
of the liquid. This provides the essential initial condition that we need for solving the problem: 

In[1]:= Clear[ms, V]

m̊s
Simplify[DSolve[{( t +  Vl)ρmix

′ [t] == ˚
ρmix[t]

),ms(1 -
ρs ρs 

ρmix[0] == ρl}, ρmix[t], t]] 

(tm̊s+ Vlρl)ρs
Out[2]= {{ρmix[t] ––› }}

˚tms+ Vlρs 

We can also solve for the change in the concentration of the solid in the mixture as a function 
of time: 

dCs,mix[t]Vmix[t] 
˚= msdt 

dCs,mix[t] dVmix[t] 
˚Vmix[t] + Cs,mix[t] = msdt dt 

˚ ˚
˚

mst + Vliquid 
dCs,mix[t] + Cs,mix[t] 

ms = ms 
ρsolid dt ρsolid 

m̊s cs,mix[t]
In[3]:= Simplify[DSolve[{( t +  Vl)c

′ ˚
s,mix[t] == ms(1 - ),

ρs ρs 

cs,mix[0] == 0}, cs,mix[t],t]]

˚tmsρs
Out[3]= {{Cs,mix[t] ––› }}

˚tms+ Vlρs 

and for the change in concentration of the liquid in the mixture: 

m̊s
In[4]:= DSolve[{( t +  Vl)c1

′
,mix[t] + m̊s c1,mix[t] == 0,ρs 

c1,mix[0] == ρ1}, c1,mix[t], t] 

Out[4]= {{Cl,mix[t] ––› ρl(Vlρs)
ρs(t ̊ms+ Vlρs)

-ρs}} 

Our objective at this stage in the analysis was to solve for the time required to reach the target 
product mixture density of (ρ∗ 

mix): 

(t ̊ms+ Vlρl)ρs
In[5]:= Simplify[Solve[ρmix,p == , t]]

t m̊s+ Vlρs 

Out[5]= {{t ––› 
Vlρs(-ρl + ρmix,p)

}}
m̊s(ρs - ρmix,p) 
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Thus at a given delivery rate of solid, fixed initial volume of liquid and solid density, we find 
that the time is: 

Vlρs(ρ ∗ )∗ mix − ρ1t = 
ms(ρs − ρ ∗˚ mix) 

We should also like to know the level in the tank of given volume and cross section A when 
this product density is reached. It is critical that we check this. In other words the initial level of 
water in the tank must also be fixed by the maximum level of the target density of the mixture 
that can be held in the tank and mixed very well. We have an expression for the volume of the 
mixture in the tank as a function of time during this interval. We should divide it by A and 
then substitute in the time we just solved for to find the level that will be called for to achieve 
target density: 

m̊st 
Vmix[t] = + Vliquid

ρsolid 

m̊st
hmix[t] = + hliquid,oAρsolid 

In[6]:= Clear[A]
˚

Solve[hmix == 
mst + hliquid,o, hmix]Aρsolid 

tm̊s
Out[7]= {{hmix ––› + hliquid,o}}

Aρsolid

The new level in the tank at the end of this second interval will then be: 

Vl(−ρl + ρ ∗ )ρsh∗ mix
mix = 

A(−ρ∗ + hliquid,o 
mix + ρs)ρs 

but we know that Vl is just A hliquid,o so the overall expression becomes: 

(−ρl + ρ ∗ )ρsh∗ 
mix = hliquid,o (−ρ ∗ 

mix + 1
)ρsmix + ρs

Interval 3: This interval begins when the product mixture reaches its target density; then the 
flow out of the tank is turned on. At the same time the flow of the liquid feed must also be 
turned on in order to maintain the system in a steady state. We can solve for this: 

dρmix V = ρlql + m̊s − ρmixqmixdt 
0 = ρlql + m̊s − ρmixqmix 

ρlql + m̊s = ρmixqmix 
∗ 

ρmixqmix − ms ql = 
ρl 
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As the solid is insoluble in the liquid, we know that the volume flow rate of the mixture must 
be the sum of the volume flow rates of the two components. The volume flow rate of the solid 
is just the mass flow of the solid divided by its density, assuming that the latter is nonporous. 
Therefore we can solve for ql as follows: 

In[8]:= Clear[ql, p]
ms msρmix,p(ql + qs)- ˚ ˚

Simplify[Solve[{ql == , qs  ==  }, ql]]
ρl ρs 

qs(-ρs + ρmix,p)
Out[9]= {{ql ––› }}

ρl - ρmix,p 

Now, we will use these solutions. The mixing will be done in a pilot-scale unit. The tank that 
is available is 5 m high and has an aspect ratio of 3:1:h:d. Its diameter, area, and volume can 
be immediately computed: 

In[10]:= hmax = 5;
d = N[hmax/3]

d
A = N[π( )2]

2
Vtank = Ad

Out[11]= 1.66667

Out[12]= 2.18166

Out[13]= 3.6361

This makes the volume 3.6 m3, the cross-sectional area is 2.18 m2, and the diameter is 
1.67 m. The density of the solid is 2 kg L−1, the liquid is 1 kg L−1, and the target density ρ∗ 

mix 
is 1.5 kg L−1. Experience indicates that the level of the mixture when settled should never 
rise to more than half the maximum level of the tank, to ensure that no mass leaves the tank 
during vigorous mixing. This means that we can base our calculations on a mixture level of 
hmax . From this information and the parameters we can solve for the initial level of water in 
the tank at the end of interval 1: 

In[14]:= ρmix = 1.5; 
ρsolid = 2; 
ρliq = 1; 
hmixt = 2.5;
hliqmax = Solve[hmixt == hliqo

(-ρliq + ρmix)ρsolid 
( + 1), hliqo]
(-ρmix + ρsolid)ρsolid 

hliqmax[[1, 1, 2]] A 
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Out[18]= {{hliqo ––› 1.25}}

Out[19]= 2.72708

The volume of water that must be added during interval 1 is 2.727 m3, which is the product 
of the area of the tank and the liquid level. The water can be fed at .25 m3 min−1 so the time 
required to add the water is 10.9 min. The mixing of the solid with the water is best done slowly 
to ensure homogeneity. Therefore, 30 min is to be allowed for interval 2. Given this, we can 
compute the mass flow of solid required from either of the following equations. We use both 
to verify the result. We note that the densities are in units of kg/L, whereas the volumes and 
levels are in units of meters. There are (as shown in what follows) 1000 L per m3. Therefore, 
each of the densities must be multiplied by this factor to convert them to kg per m3: 

1 L  100cm
In[20]:= 

1000cm3
( 

1m 
)3 // N

1000.L 
Out[20]=

m3

In[21]:= t = 30;
Vl = 2.727;

(t ̊ms+ Vl ρliq1000)ρsolid 1000 
˚Solve[1000ρmix == , ms]

t m̊s+ Vl ρsolid1000 

Vl 1000ρsolid1000(ρmix-ρliq) 
˚Solve[t == , ms]

m̊s1000(ρsolid-ρmix) 

Out[23]= {{m̊s ––› 181.8}}

Out[24]= {{m̊s ––› 181.8}}

The mass flow of solid must be 181.8 kg min−1 during interval 2. We can check our work 
to this point to be sure that at the end of the second interval we have a slurry with the target 
density of 1.5 kg/L: 

181.8 kg 30min
In[25]:= 

2 kg
min (*Volume of the Solid Added During
1000m

L
3L

Interval 2*)

General::spell1: Possible spelling error: new symbol name 
"min" is similar to existing symbol "Min". 

Out[25]= 2.727 m3

In[26]:= 2.727 m3 (*Volume of the Liquid Added During Interval 1*)

Out[26]= 2.727 m3
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In[27]:= 2(2.727 m3) (*Total Volume of the Solid and Liquid at
End of Interval 2*)

Out[27]= 5.454 m3

(181.8 kg 30min + 2.727m3 1000k )1m3 m3In[28]:= min

2 (2.727m3)1000 L 

(*Mass Solid + Liquid/Total Volume*) 

1.5 kg
Out[28]=

L

This number checks and confirms that we have the right quantities, flows, and times to this 
point. 

Our attention now turns to interval 3, which will be the steady-state production of slurry. 
∗ ∗At steady state we would like to be producing 1000 kg min−1 = ρmixqmix of slurry at the 

density of 1.5 kg/L. This would correspond to a volume flow rate equal to 666.67 L/min or 
0.667 m3/min slurry. The steady-state material balance can be used to find the required solids 
mass flow rate needed to achieve this production rate: 

ρlql + m̊s = ρmixqmix 

msρmixqmix − ˚
ql = 

ρl 

As the maximum water flow rate is 0.25 m3 min−1, we can compute the solids flow rate: 

In[29]:= ρliq = 1;
ql = 0.25;

Solve[1000 ρliq ql + ˚ ms]ms == 1000, ˚

Out[31]= {{m̊s ––› 750.}}

To make the production rate we seek the solids must be flowed in at a rate of 0.75 kg 
min−1. A good question to ask at this point would be how would we transition from the end 
of interval 2 into the steady state? How would we program the increase in mass flows that 
would have to take place in order to maintain the product density and to maintain the steady 
level in that tank? We can check the steady-state quantities by recomputing the volume flow 
rate of slurry from the mass flow rate of solids, the volume flow rate of water, and the target 
density of the product: 

m3 1000kg750 kg + .25min m3 In[32]:= min

1500kg (*Volume Flow of Slurry at St.St.*) 
m3

0.666667m3 
Out[32]=

min

This checks perfectly with the previously computed value. 
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4.5 Liquid and Soluble Solid
A more complex problem is that of a soluble solid and a liquid. The physical situation is the 
same as in the previous problem. The initial equations are also the same except that now we 
are dealing with a solution rather than with a mixture: 

dρsoln VTotal: = ρlql + m̊s − ρsolnqsolndt 
dCl , V

Liquid: = ρlql − Cl, qsolndt 
dCs,soln V 

˚Solid: = ms − Cs,solnqsolndt 

Case 1: Constant densities 
If the concentration of the soluble solid does not reach a high level, then it is reasonable to 
assume that the densities of the pure solvent and the solution are similar enough to treat as 
equal and constant. Doing this transforms the total material balance into: 

˚dV ms = ql + − qsolndt ρsoln 

This can be integrated immediately if the exit flow rate is a constant: 

˚
V[t] = Vo + ql + ms − qsoln t 

ρsoln 

The component balances can be integrated in the same way. The initial condition is that the 
volume in the tank is Vo of pure solvent and the concentration of the solid is zero. To find the 
analytical solutions to these equations, we specify V[t] and then we use DSolve to simulta
neously solve for the concentrations, calling the set of two solutions “a.” Two functions are 
named and then extracted from the solution set and assigned to these names. Finally, the two 
new functions are placed back into the original differential equations and tested for validity. 

In[33]:= Remove[a, V, cs, cl, ρ, ql, qsoln, t, Vo, cs1, cl1, ms]; 
˚

V[t--] := Vo + (ql + ms -qsoln)t
ρ

a = Simplify[DSolve[{ 
∂t(cs[t] V[t]) == ρql - cs[t] qsoln, cs[0] == 0, 
∂t(cl[t] V[t]) == ρql - cl[t] qsoln, cl[0] == ρ

},
{cs[t], cl[t]}

t]]
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cs1[t--] := Evaluate[cs[t] /. a]
cl1[t--] := Evaluate[cl[t] /. a]

ms - qlρ + ˚qlρ + ˚ ms 
ms ˚ ms) ms 

Out[35]= {cl[t] ––› 
qlρ2 ρ(Vo ρ) qlρ -qsolnρ + ˚ ms((qlt-qsoln t+ Vo)ρ +t ˚ qlρ -qsolnρ + ˚

+
qlρ + ˚ msms qlρ + ˚

ms - qlρ +msqlρ + ˚ ˚
qlρ2 qlρ2(Vo ρ) qlρ -qsolnρ + ˚ ˚ qlρ -qsolnρ +m̊s 

cs[t] ––› 
ms 

-
qlρ + ˚

} 
ms ((qlt-qsolnt+ Vo)ρ +tms) 

qlρ + ˚ ms 

In[38]:= Simplify[∂t(cs1[t] V[t]) == ρql - cs1[t] qsoln] 
Simplify[∂t(cl1[t] V[t]) == ρql - cl1[t] qsoln] 

Out[38]= True

Out[39]= True

Parameter values are applied and the functions are plotted in time: 

In[40]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[41]:= Clear[ρ, ql, qsoln, t, Vo] 
m̊s = .
ρ = 1;
Vo = 100;
m̊s = 5;
ql = 10;
tmax = 100;
qsoln = 14.95;

Plot[{cl1[t], cs1[t]}, {t, 0, tmax}, 
PlotStyle ––› {{GrayLevel[0], Dashing[{0.01, 0.015}]}, 
GrayLevel[0.2]}, FrameLabel ––› {""t/min"", ""cl[t],cs[t]""}, 
PlotRange ––› {{0, tmax}, {.5, 1.0}}, 
Frame ––› True, PlotLabel ––› ""cs[t] = Dashed""]; 

Plot[V[t], {t, 0, tmax}, PlotStyle ––› Dashing[{0.06, 0.06}], 
FrameLabel ––› {""t/min"", ""V[t]""}, Frame ––› True, 
PlotLabel ––› ""Volume""]; 

Unset::norep : Assignment on Overscript for m̊s not found.
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Out[42]= $Failed

General::spell1: Possible spelling error: new symbol 
name "tmax" is similar to existing symbol "hmax". 
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The solutions show two important aspects of this model as written: The concentrations come 
to a constant and equal value and the volume continues to rise indefinitely. The reason for this 
is that we took the outlet concentration to be a constant. Although this may have made for a 
simple model to solve, it is also one that is not very realistic. The tank would be overflowing. 
A more realisitc model would be one in which the exit flowrate was either set to match the 
inlet flow rate, which would make dV zero and the volume a constant at its initial level, or wedt 
could assume the flow rate out was gravity driven and would respond to the level in the tank, 
that is, Torricelli’s Law. 

The first case in which an instantaneous achievement of steady state is assumed follows: 

In[51]:= Remove[a1, V, Vo, cs, cs1, cl, cl1, ρ, ql, qsoln]; 

In[52]:= a1 = Simplify[DSolve[{ 
∂t(cs[t] Vo) == ρql - cs[t] qsoln, cs[0] == 0, 
∂t(cl[t] Vo) == ρql - cl[t] qsoln, cl[0] == ρ

}, {cs[t], cl[t]}, 
t]]; 

cs1[t--]:= Evaluate[cs[t] / . a1] 

cl1[t--]:= Evaluate[cl[t] / . a1] 

Simplify[∂t(cs1[t] Vo) == ρql - cs1[t] qsoln] 

Simplify[∂t(cl1[t] Vo) == ρql - cl1[t] qsoln] 

ρ = 1;  

Vo = 100; 

m̊s = 5;
ql = 10;
tmax = 100;

m̊s
qsoln = ql + ;

ρ

Plot[{cl1[t], cs1[t]}, {t, 0, tmax}, 
PlotStyle ––› {GrayLevel[0], GrayLevel[0.5]}, 
AxesLabel ––› {""t/min"", ""cl[t],cs[t]""}, 
PlotRange ––› {{0, tmax}, {.5, 1.0}}, Frame ––› True]; 

Plot[Vo, {t, 0, tmax}, PlotStyle ––› GrayLevel[0.6], 
AxesLabel ––› {""t/min"", ""V[t]""}, Frame ––› True]; 

Out[55]= True

Out[56]= True
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The asymptotic concentrations that we compute are the same as those that we had in the 
previous case, but the volume within the system is a constant. 

In the second case the outlet flow rate is given by Torricelli’s Law, that is, qsoln= 
bAo 2gh[t] : 

˚ √dV ms = ql + − bAo 2gh[t]
dt ρ 

˚ √dh[t] ql ms Ao = + − b 2gh[t]
dt A ρ A A 
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In[65]:= Remove[a2, ρ, ql, A, ms, ρ, b, Ao, g, ho, tmax, Vo, V, t]; 

V =.
ql = 10;
A = 10;
m̊s = 5;
ρ = 1;
b = 1;
Ao = 0.1 A;
g = 9.8;
ho = 10;
tmax = 100;
Vo = 100;

a2 = NDSolve[{
1 ms̊

∂th[t] == (q1 + - bAo
√
2gh[t]), h[0] == ho,

A ρ
m̊s

∂t(A cs[t] h[t]) == -cs[t]bAo
√
2gh[t], cs[0] == 0,

ρ
∂t(A cl[t] h[t]) == ρql-cl[t] bAo

√
2gh[t], cl[0] == ρ

}, 
{h[t], cs[t], cl[t]}, 
{t, 0, tmax}]; 

hn[t--]:= Evaluate[h[t] /. a2]
Vn[t--]:= A hn[t]

pla2V = Plot[{hn[t]/ho, Vn[t]/Vo}, 
{t, 0, tmax}, AxesLabel ––› {""t/min"", ""hn[t]/ho,Vn[t]/Vo""}, 
PlotRange ––› {{0, tmax}, {0, 1.5}}, Frame ––› True]; 

csn[t--]:= Evaluate[cs[t] /. a2]
cln[t--]:= Evaluate[cl[t] /. a2]

pla2C = Plot[{cln[t], csn[t]}, {t, 0, tmax}, 
AxesLabel ––› {""t/min"", ""csn[t],cln[t]""}, 
PlotRange ––› {{0, tmax}, {0, 1.0}}, 
PlotStyle ––› {Dashing[{0.01, 0.01}], Thickness[0.01]}, 
PlotLabel ––› ""Dashed = Csn[t]"", Frame ––› True]; 

Remove::remal : Symbol Removed[ρ] already removed. 

General::spell1 : Possible spelling error: new symbol name 
"tmax" is similar to existing symbol "hmax". 
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General::spell1 : Possible spelling error: new symbol name 
"pla2C" is similar to existing symbol "pla2V". 
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Now we have solved the full problem with gravity-driven flow. We see that the concentrations 
transition smoothly once again to steady-state values, but now the level and volume of liquid 
in the tank do so also. The assumption that the density of solution does not change very much 
with concentration is quite restrictive. Therefore, we deal with this problem explicitly in the 
next section. 

Case 2: Variable Densities 
The ‘how and why’ of variable density. Assuming that the densities were all similar in mag
nitude was a restriction on the solution we derived. We can rederive the solution without 
this assumption; but we do need a constitutive relationship to functionally couple the density 
and concentration. A suitable expression can be found by consulting either the CRC Handbook 
of Chemistry and Physics, or Perry’s Handbook for data relating the concentration of various 
solutions of salts to their densities. From an analysis of these data we would find that the 
density of a solution is linearly related to the concentration of that salt over a wide range of 
concentrations. This relationship can be expressed as follows: 

ρ = a + γ C 

With some salts the volume of the solution expands as their concentration increases; this leads 
to a value of the constant γ . This tells us mathematically that as the salt dissolves into the 
solvent, it causes volume expansion and density diminution. In other words, if metal ions 
and their counterions are low in mass and if they tend to repel the water molecules, then the 
overall salt plus water structure occupies more space. For some salts (and neutral solutes) the 
opposite occurs and the density increases; thus the value of γ is > 0. Here the masses of the 
ions are high and their charges may also be high. Thus they tend to draw the water molecules 
into a more densely packed configuration, so that more mass is packed into a smaller volume 
when compared to water (or the solvent). If γ were 0, then that would indicate that the solute 
was close in mass to the solvent, occupied a similar volume when dissolved in a given volume 
of solvent, and left the solvent structure unchanged. If, for example, we were to add deuter
ated water D2 O to normal untreated water H2 O, the changes in density would be small and 
γ would be very small. 

These observations, and the linear relationship they lead to, can be rationalized by con
sidering the definition of the density of a solution. The density of a solution is the sum of the 
mass of the solute and the mass of the solvent divided by the total volume of the solution: 

ρ[msalt] = msolvent + msolute 

Vsolution

ρ[0] = msolvent (msalt → 0; Vsolution → Vsolvent) = ρsolventVsolvent 
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If the mass of the solute in solution were 0, then the density is just that of the solvent. What if 
the solute were very special in its interactions with the solvent—suppose it neatly occupied 
those spaces between the solvent molecules that were open (interstices) but caused no net 
increase or decrease in the volume of the solvent? If the mass of dissolved solute causes no 
change in volume, then the solution volume would be the same as the original solvent volume 
and the density becomes: 

msolvent + msolute msolvent msolute msolute 
ρ = = + = ρsolvent + = ρsolvent + Csolute;

Vsolution Vsolvent Vsolvent Vsolvent 

iff Vsolution = Vsolvent 

The implication is that the constant γ has the value of unity (1). This can only be true if the salt 
simply adds to the solution and occupies no more or less space than the solvent molecules, 
as we can see from the equation. If we now reintroduce the linear relationship for density in 
terms of solute concentration, and substitute in for the terms, then we see that the case we 
have just considered is a special case of the general one in which γ = 1. To take this analysis 
one step further, we can solve for γ in terms of the measurables of the solution: 

In[84]:= Clear[γ] 
Simplify[ 

msalt msolvent msalt msolvent 
Solve[ + == γ + ,γ]]

Vsolution Vsolution Vsolution Vsolvent

msalt Vsolvent+msolvent(- Vsolution + Vsolvent)
Out[85]= {{γ ––› }} 

msalt Vsolvent

We can rearrange this expression taking δV = Vsolution − Vsolvent—in other words, the 
extent to which the solute either expands or contracts the solvent volume by its presence, and 
we find: 

msolvent 
][ 

δV 
γ = 1 − 

msalt Vsolvent 

Then in the case where γ = 1, by this expression we see that δV = 0, which is a nice consistency 
check for what we have done to this point. This expression for γ is a dimensionless grouping 
that offers some insight into what this constant really means physically. If the solute causes 
restructuring of the solvent by drawing solvent molecules to itself in ensembles that have 
higher (or lower) numbers of molecules per unit volume, then that implies a “nonideality,” 
and δV = 0, which implies that γ 
= 1. 

We can now return to the problem of the feeding a salt and water to a mixing vessel 
that initially contains water, and from which the flow is governed by gravity without the 
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assumption of ideality: 

dρsoln VTotal: = ρlql + m̊s − ρsolnqsolndt 
dCl , V

Liquid: = ρlql − Cl, qsolndt 
dCs,soln V 

˚Solid: = ms − Cs,solnqsolndt 

The total material balance now becomes: 

Total: 
d[ρl + γ Cs,soln]V 

dt 
= ρl ql + m̊s − [ρl + γ Cs,soln]bAo 

√ 
2g 
A 

V 

Recall that ρl is just the density of the pure liquid solvent, and that h[t] = V[t] can be replacedA 
into Torricelli’s Law. These equations have become complicated enough that we shall define 
the density upfront and let NDSolve handle the work of solving the simultaneous equations 
(see the In statement that follows): 

In[86]:= Remove[a3, ql, A, ms, ρ, b, Ao, g, ho, tmax, Vo, V, 
t, cs, cl, γ];
V =.
ql = 10;
A = 10 ;
m̊s = 5;
ρo = 1;
b = 1;
Ao = 0.1 A;
g = 9.8;
ho = 10;
tmax = 100;
Vo = A ho;
γ = .9;

ρ[t--] :=  ρo +  γ cs[t] 

a3 = NDSolve[{cs[0] == 0.001,

ms-ρ[t]b Ao V[t], V[0] == vo,∂t(V[t]ρ[t]) == ρoql + ˚
2g 

A

ms-cs[t]bAo V[t],∂t(cs[t]V[t]) == ˚
2g 

A

2g
∂t(cl[t]V[t]) == ρoql - cl[t]bAo V[t], cl[0] == ρo 

A
},
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{V[t], cs[t], cl[t]},
{t, 0, tmax}];

Vn[t--] := Evaluate[V[t] /. a3]

pla3V = Plot[{Vn[t]/Vo}, {t, 0, tmax}, 
PlotLabel ––› {""Vn[t]/Vo versus t""}, 
PlotStyle ––› {{Dashing[{0.15, 0.05}]}}, 
PlotRange ––› {{0, tmax}, {0, 1.2}}, Frame ––› True]; 

csn[t--]:= Evaluate[cs[t] /. a3]
cln[t--]:= Evaluate[cl[t] /. a3]

pla3C = Plot[{cln[t], csn[t]}, {t, 0, tmax}, 
PlotStyle ––› Dashing[{0.15, 0.05}], 
PlotLabel ––› {γ ""=γ"", ""cl[t] = top, cs[t] = bottom""}, 
Frame ––› True]; 

Show[pla3C, pla2C, PlotLabel ––› {γ""=γ(dash)"",
""cl[t] = top, cs[t] = bottom""}];

General::spell1 : Possible spelling error: new symbol name 
"tmax" is similar to existing symbol "hmax". 

&Vn(t,ZVo versus t�
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General::spell1 : Possible spelling error: new symbol name 
"pla3C" is similar to existing symbol "pla3V". 
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The last graph compares the two solutions of the problem—with and without the inclu
sion of the variation in density (γ = 0.9) with concentration of the salt. We can see that the salt 
concentration rises to a higher steady-state level (dashed curve at bottom) when the variation 
in density is included. 
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Mass flow fresh water in 

Mass flow out 

Figure 3 

4.6 Washing a Salt Solution from a Vessel 
In some respects, a simpler problem is the reverse of the one we have been solving. What if 
at the end of the process of preparing, feeding, and using a solution we have to wash the unit 
with fresh water in order to prevent it from corroding the vessel and to decontaminate it? 
How long will it take? How much water should we use? Will the flow rate matter? These are 
all very relevant chemical engineering questions that we can answer and do so fairly easily. 
Figure 3 shows that we have a feed of fresh water into a tank containing the salt solution as 
the initial condition. 

The total and component material balances for this systems are as follows: 

dρsoln VTotal: = ρlql − ρsolnqsolndt 
dCl , V

Liquid: = ρlql − Cl, qsolndt 
dCs,soln VSolid: = −Cs,solnqsolndt 

It is easy to see that if the wash out is done in such a way that the volume in the tank does 
not change, the concentration of salt is low enough to ignore the density effect, and the total 
differential material balance is zero, then the volume flow rate in is equal to that out and so 
the only equation we need to solve is the last one for the salt concentration. 
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In[107]:= Remove[a4, qsoln, Vo, t, cs, cso, cl];

a4 = DSolve[
(ρ1 - c1[t]) qsoln

{cl’[t] == ,
Vo

cl[0] == clo,
cs[t] qsoln

cs’[t], == - ,
Vo

cs[0] == cso},
{cl[t], cs[t]},
t];

cl4[t--]:= Evaluate[cl[t] /. a4[[1]]];
cs4[t--]:= Evaluate[cs[t] /. a4[[1]]];

General::spell: Possible spelling error: new symbol name 
"ρl" is similar to existing symbols {ρ,ρo}. 

(ρl - cl4[t]) qsoln 
In[111]:= Simplify[∂t cl4[t] == ]

Vo

cs4[t] qsoln
Simplify[∂t cs4[t] == - ]

Vo
Out[111]= True

Out[112]= True

In[113]:= ql = 10;
A = 10;
qsoln = ql;
ho = 10;
tmax = 100;
Vo = A ho;
cso = 0.5;
ρl = 1;  
clo = 1 + 0.9 cso - cso;

pla4C = Plot[{cl4[t], cs4[t]}, {t, 0, tmax}, 
PlotStyle ––› {Dashing[{0, 0}], Dashing[{0.15, 0.05}]}, 
PlotLabel ––› ""Cs[t] Washout vs Time/min"", 
Frame ––› True, PlotRange ––› {{0, tmax}, {0, cso + clo}}]; 
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However, we will not make any of these simplifying assumptions. Instead, we will take 
the flow out as given by Torricelli’s Law and the density of the solution to be a linear function 
of the salt concentration. Then all we need to do is to modify the numerical routine we had 
for the previous problem by eliminating the term for the salt feed: 

In[123]:= Remove[a5, ql, A, ρ, b, Ao, g, ho, Vo, V, t, cs, cl, γ]; 
SetOptions[{Plot,ListPlot},AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}];

V =.
ql = 10;
A = 10;
m̊s = 5;
ρo = 1;
b = 1;
Ao = 0.1 A;
g = 9.8;
ho = 10;
tmax = 100;
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Vo = A ho; 
γ = .9; 
cso = 0.5; 

ρ[t-] :=  ρo +  γcs[t] 

a5 = NDSolve[{
2g

∂t(V[t]ρ[t]) == ρo q1  - ρ[t] b Ao V [t], V[0] == Vo,
A

2g
∂t(cs[t]V[t]) == -cs[t] b Ao V [t], cs[0] == cso,

A

2g
∂t(cl[t]V[t]) == ρo ql - cl[t] b Ao V [t],

A
cl[0] == ρ[0] - cs[0]

},
{V[t], cs[t], cl[t]},
{t, 0, tmax}];

Vn[t-] := Evaluate[V[t] /. a5]

pla5V = Plot[{Vn[t]/Vo}, {t, 0, tmax}, 
PlotLabel ––› ""Vn[t]/Vo vs t"", 
PlotStyle ––› {{Dashing[{0.15, 0.05}], Thickness[0.01]}}, 
PlotRange ––› {{0, tmax}, {0, 1.2}}, Frame ––› True]; 

csn[t-]:= Evaluate[cs[t] /. a5]
cln[t-]:= Evaluate[cl[t] /. a5]

pla5C = Plot[{cln[t], csn[t]}, {t, 0, tmax},
PlotStyle ––› {{Dashing[{0.01, 0.01}], GrayLevel[0.6],
Thickness[0.01]}, {Dashing[{0.01, 0.01}],
GrayLevel[0.6], Thickness[0.01]}},
AxesLabel ––› {""t/min"", ""c[t]""}, 
PlotLabel ––› {γ""=γ"", ""top dashed=cl[t], 
bottom dashed=cs[t]""}, Frame ––› True]; 

Show[pla5C, pla4C, PlotLabel ––› ""With and without 
variable densities""]; 
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General::spell : Possible spelling error: new symbol name 
"pla5C" is similar to existing symbol "pla5V". 
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We can see from the last graph, which compares the solution accounting for the change of 
density with concentration versus the simple solution without this taken into account, that 
for this value of γ = 0.9, the error made in the approximation is in fact quite small. 

4.7 The Pulse Input Tracer Experiment 
and Analysis 

The key assumption we have made throughout this chapter is that the solutions within the 
control volume are indeed either homogeneous or well mixed. Questions of the degree to 
which mixing occurs in a system arise in sciences as seemingly diverse as medicine and 
environmental engineering. If a system is well mixed, then when we inject a pulse of tracer, 
we should see a characteristic decay of the concentration in the system as a function of time. 
Cardiologists use this method to measuring the pumping speed of a heart by inserting a 
catheter and injecting a tracer of known volume into the heart. The rate of decay of the 
concentration within the chambers of the heart provides the flow rate away from this organ. 
Similarly, an environmental engineer may need to know the flow rate and mixing dynamics 
in a river or stream. By injecting a water-soluble and harmless dye into the flowing water, the 
diminution of the dye concentration at the point of “injection” can be used to visualize and 
then model the dynamics of the river’s flow. 
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Chemical engineers also use this kind of experiment. It can be utilized to great advantage 
in chemical reactors to find the “residence time distribution” of the reactor, a crucial piece of 
information which links microscopic flow behavior, that is, fluid dynamics, to measurables 
of the system, such as chemical conversion and selectivity. For vessels that are not used for 
reaction processes, but are used for other operations that are also critically dependent upon 
mixing, this tracer experiment provides a great deal of insight into how the system behaves. 
We can analyze how a pulse of injected tracer would behave in the well-stirred vessel we have 
been analyzing here. 

Imagine that an injection is made as a pulse of tracer, the concentration of which can be 
measured in the tank and in the exit stream as a function of time. For a laboratory vessel, the 
injection may be done by hand with a syringe full of tracer such as a dye or a radioactively 
tagged molecule. For larger vessels at pilot and production scale ingenious methods have 
been invented for putting a “pulse” of tracer into the unit. Ideally, the pulse should be added 
instantaneously, which means in as short a time period as possible. In other words, the time 
to add the tracer must be much shorter than the time required to “wash” it out of the unit. 

For the case of the unit we have been considering, water would be flowing to the system 
continuously with stirring and the whole system would be at a steady state with respect to level 
and volume. The injection would be made at the top of the vessel with a very small volume 
of highly concentrated dye; nothing else would or should be done. The high concentration 
is critical to making the measurements accurate and precise. It also makes it possible to use 
only a small volume of the dye, which is important so that the steady state is maintained with 
respect to volume. Finally, small volume, high concentration injections can be done fast. 

How can we model such a problem? To do the analysis we need to introduce and become 
comfortable with two new functions: the Dirac-Delta function and the UnitStep (or Heaviside) 
function. The Dirac-Delta function is infinitely intense and infinitesimally narrow—like a pulse 
of laser light. We can imagine it arising in the following way. We begin by considering a pulse 
that is quite broad, such as the function that is plotted here: 

In[146]:= θ = 2
t

Plot[Sqrt[1/(θ Pi)]Exp[-( )2],
θ

{t,-5, 5}, PlotRange ––› All,
Plotstyle ––› GrayLevel[0.1]];

Out[146]= 2
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We can sharpen this function in time by decreasing the value of the “time constant” θ , as  
follows: 

In[148]:= Clear[θ, f, a]  
t

f[θ--, t--] := N[Sqrt[1/(θ Pi)]Exp[-( )2]]
θ

f[x, y]

θ = {1, .5, .1}; 

a = Table[
Plot[f[θ, t][[n]], {t, -2, 2}, 
PlotRange ––› All, 
DisplayFunction ––› Identity, 
PlotStyle ––› GrayLevel[.1 n], 
AxesLabel ––› {""t"", ""I[t]""} 

], 
{n, 1, Length[θ]}]; 

- 1.y2 1 
2xOut[150]= 0.5641892.71828

x
In[153]:= Show[a, DisplayFunction ––› $DisplayFunction];
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As we decrease the time constant the function becomes more intense in and around the 
t = 0. Doing this in the limit of θ → 0 transforms this into the infinitely intense pulse of 
infinitely short time duration. We can use this Dirac-Delta function, once we know more 
about its properties and how it is implemented in Mathematica. 

If we begin with a simple Table function, we see that if we ask for “t” in the interval from 
−5 to 5, we get back a simple vector of those integers: 

In[154]:= Clear[t, x]
Table[t, {t, -2, 2}]

Out[155]= {-2, -1, 0, 1, 2}

Taking the product (xf[t]) over the same interval leads to a vector of elements, each one of 
which is the product of x and f[t] evaluated at the integer: 

In[156]:= Clear[t, x]
Table[x f[t] t, {t, -2, 2}]

Out[157]= {-2xf[-2], -xf[-1], 0, xf[1], 2xf[2]}

However, look at what happens when we take the product (x DiracDelta [t]) over the same 
range of t values: 

In[158]:= Table[N[x DiracDelta[t]], {t, -5, 5}]

Out[158]= {0., 0., 0., 0., 0., x DiracDelta[0.], 0., 0., 0., 0., 0.}
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The only element that is nonzero is that which falls at the point t = 0. This is because at every 
other point the Dirac-Delta function is identically zero by definition. This is the consequence 
of being infinitely intense and infinitely short in duration. We can display the position of this 
pulse by placing another integer in the argument of the Dirac-Delta as follows: 

In[159]:= Table[N[x DiracDelta[t- 5]], {t,- 5, 5}]

Out[159]= {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., x DiracDelta[0.]}

In this case the nonzero value of the function has been pushed to the positive extremum of 
this interval on t. If we integrate the product of the dye mass mdye and the Dirac-Delta, we 
obtain this: 

In[160]:= Clear[t, m]

In[161]:= Integrate[DiracDelta[t] mdye, {t, -5, 5}]

Out[161]= mdye

The integration returns just mdye integrated over time. 
Now we can use this technique to determine how the concentration of dye changes as 

a function of time in a well-stirred vessel. We need only write and integrate the component 
balance on the dye to have the answer because the volume of the tank is assumed not to change 
with time. We will use the following equation for the rate of change of the dye mass: 

d cdye[t] mdye DiracDelta[t] − cdye[t]qex == 
dt V 

Notice how we have used the Dirac-Delta in the balance. At time t = 0 all the mass of the dye 
is injected instantaneously. At all other times the term for dye input is identically zero. We can 
integrate this analytically: 

In[162]:= Clear[qex, t, to, V, cdye]
General::spell1 : Possible spelling error: new symbol name 
"cdye" is similar to existing symbol "dye". 

In[163]:= Simplify[
DSolve[

mdye DiracDelta[t] - cdye[t]qex
{cdye’[t] == ,

V
cdye[to] == 0}, cdye[t], t]

]

− qext V mdye(UnitStep[t] - UnitStep[to])
Out[163]= {{cdye[t] ––› }}

V
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We find that the integration looks like an exponential decay except that now a new function 
has appeared—the UnitStep function. To see how the UnitStep function behaves in time we 
can plot it as shown here: 

In[164]:= Plot[UnitStep[t], {t, -5, 5},
AxesLabel ––› {""t"", ""UnitStep[t]""}, 
PlotStyle ––› {Thickness[0.01], Dashing[{0.05, 0.02}]}]; 

UnitStep(t,

t 

0.2 

0.4 

0.6 

0.8 

1 

�4 �2 2 4 

The UnitStep function is everywhere zero until it comes to t = 0 and  then it goes to a value of 
unity, which maintains ad infinitum. We can rewrite the solution as a function of time: 

In[165]:= Clear[qex, t, to, V, cdye, m]

-qext
V mdye(UnitStep[t] - UnitStep[to])

In[166]:= cdye[t--] :=
V 

mdye = 10; 
qex = 1; 
V = 100; 
to = -5; 
pl1 = Plot[cdye[t], {t, -100, 500}, 

AxesLabel ––› {""t"", ""cdye[t]""}, 
PlotStyle ––› {{Thickness[0.01], Dashing[{0.05, 0.1}]}}]; 
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cdye(t,
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Here we see that the pulse is injected at time “zero,” the concentration instantaneously jumps 
discontinuously to a magnitude of 0.1, and then begins to descend exponentially as a function 
of time. This is the characteristic curve we should see if the unit is well mixed. 

To make this result more general we can nondimensionalize both axes. The concentration 
of dye can be referenced to the maximum concentration at time zero cdye[0]. But what of 
the time axis? How shall we nondimensionalize this? We will use the “holding time” as the 
reference time. The holding time is the time required for a volume of liquid equal to the volume 
of the unit to pass entirely through the unit. This is the ratio of the volume to the flow rate, 

Vthat is, τ = qex . We can remake the graph in nondimensional form: 

In[172]:= mdye˙ = 10;
qex = 1;
V = 100;
tro = -1;

V
τ = ; 

qex
cdye[0];

-trmdye˙ (UnitStep[tr] - UnitStep[tro])
ndcdye[tr--] :=

cdye[0]V

Plot[
ndcdye[t],
{t, -1, 5},
AxesLabel ––› {""tr"", ""n.d.cdye[tr]""}, 
PlotStyle ––› {Dashing[{0.01, 0.015}], Thickness[0.01]}
];
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n.d.cdye(tr,

tr 
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The time axis is the reduced time, which is the ratio of real time to the holding time tr = t and
τ 

the y-axis is the nondimensionalized dye concentration. If we were to plot the experimental 
change in nondimensionalized concentration versus reduced time, it should fall very near to 
this curve. The extent to which the real system deviates is a measure of the degree to which 
the system veers from the ideally “well-mixed” limit. 

4.8 Mixing 
Consider the following case, illustrated in Figure 4. In this experiment everything is the same 
as in the last one, except that there are two well-mixed tanks rather than one. The same overall 
flow qex is diverted through the two units with a 50:50 split and the same mass of tracer or 
dye is added instantaneously to the inlet flow. The volumes of the lines to and from the tanks 
are considered to be negligible. Each tank has exactly 50% of the volume of the previous tank, 
and therefore their residence times are half that of the one large tank with the same overall 
volume. The lines from the two tanks come together prior to the analysis and are assumed 
to be perfectly mixed when they do. The question is: Will the time distribution of the tracer 
concentration look the same or different from that of one well-mixed tank? 

We do not need to redo the analysis. Instead we will take the solution for one well-mixed 
tank and apply it to the two tanks. We have to be careful about handling the splits at the input 
side where the stream divides into two and again when the two separate tank streams come 
back as one. The overall input is divided into the two flows q1 and q2 by the fraction a and b. 
The mass of the dye trace also will be split in the same way. This is done because the mass of 
dye into the first splitter must be the same as the total mass of dye out, which is just the sum 
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mdye 

qin = qex 

q1 = a qex 

q2 = b qex 

Cdye,a [l] 

Cdye,b [l] 

Cdye,tot [t] 

Figure 4 

of the masses in the two streams: 

mdye,in = Cdye,inqin δt 

= Cdye,1q1δt + Cdye,2q2 δt 

= a Cdye,1qex δt + b Cdye,2qex δt 

= (a Cdye,1 + b Cdye,2) qex δt 

where δt is the instantaneous or infinitesimally short duration of the Dirac-Delta function 
pulse. This is also the time for the mass of the dye to hit each tank, that is, zero time. 

The concentration of dye in each tank is exactly the same solution we derived already and 
it is now applied individually to each vessel: 

− a qex t 
V1a mdye(Unit Step[t] − Unit Step[to]) 

c dye 2a[t ] := 
V1 

− b qex t 
V2b mdye(Unit Step[t] − Unit Step[to]) 

c dye 2b[t ] := 
V2 

Notice that we have rewritten q1 and q2 in the arguments of the exponentials as “a qex” and 
“b qex,” where “a” and “b” are the splits fractions that set the stream flows. We can compute 
these two concentrations and plot them as functions of time, but what we really want is the 
time dependence of the dye concentration after the two streams are recombined. Our goal 
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is to compare the overall effect of two tanks on the tracer with that of one tank given that 
the sum of the volumes of the two are the same as the one. We also want to be able to split 
the flows between these two tanks in different ratios and with different tank volumes to see 
how this affects overall time dependence. In other words, what if we did not know there were 
two tanks? What if all we knew were the inputs and the outputs at the dotted box around the 
two tanks? Would we be able to detect a difference for this system versus the one tank system 
on the basis of the tracer experiment? To find out we continue our analysis. 

To find the concentration at the point where the streams come back together we again 
apply the conservation of mass. The mass of dye in the two lines coming into this mixing 
point per unit time must be equal to the total mass going out of it per unit time. The rate of 
mass flow in is just the sum of the products of the concentrations and flow rates of the two 
streams exiting the tanks, while the rate of mass flow out is the concentration of the dye times 
the total flow rate. The mathematical statement is much more succinct: 

(a Cdye2a [t] + b Cdye2b [t])qex = Cdye2tot [t] (a + b) qex 
(a Cdye2a[t] + b Cdye2b[t])

Cdye2tot [t] = 
(a + b) 

This last concentration is what we can measure if the tanks inside the outer box are hidden 
from view, so this is the computation we want to make and to compare to the first case of one 
unit in plain view. We should also do one more calculation to be sure we are not making any 
errors. The mass of dye into the units must eventually come back out. Therefore, we should 
integrate the product of the exit concentrations and flows from each tank and sum these to be 
sure it is equal to the dye input mass. Yet another application of the conservation of mass. 

The code for doing all of this is shorter than the description of it. Once it is written we can 
use it over and over again. We could also put it into nondimensional form if we chose to, but 
instead we will make our comparisons in real time and concentration. Recall that “a” and “b” 
are the splits—these are entered as fractions, but they must sum to unity! 

To check ourselves, in the first case we set the splits to one-half each and the volumes are 
equal. We compare the concentration versus time curve for this case versus that for the one 
tank. We do all the calculations for the two-tank case and then end with a graph comparing it 
to the one-tank case (see the following graphs): 

In[180]:= Clear[a, b] 

In[181]:= Remove[cdye2b] 

In[182]:= a = 1/2; 
b = 1/2; 

cdye2a[t-] :=  
a - a qex  t  

V1 mdye(UnitStep[t] - UnitStep[to]) 

V1 

cdye2b[t-] :=  
b - b qex  t  

V2 mdye(UnitStep[t] - UnitStep[to]) 

V2 
mdye = 10; 
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qex = 1;
V1 = 50;
V2 = 50;

to = -5;
pl2 = Plot[{cdye2a[t], cdye2b[t]}, {t, -100, 500},

AxesLabel ––› {""t"", ""cdye[t]""},
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5]},
{Thickness[0.01], Dashing[{0.01, 0.025}]}},
PlotRange ––› All];

a cdye2a[t] + b cdye2b[t]
pl2b = Plot[{ },{t,-100,500},

a + b

AxesLabel ––› {""t"", ""cdye[t]""}, 
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5], 
Dashing[{0.05, 0.05}]}}, PlotRange ––› All] 

NIntegrate[cdye2a[t] a qex, {t, -100, 400}];
NIntegrate[cdye2b[t] b qex, {t, -100, 400}];

% + %%
NIntegrate[cdye[t] qex, {t, -100, 400}]
Show[pl2b, pl1];

General::spell1: Possible spelling error: new symbol name
”cdye2b” is similar to existing symbol ”cdye2a”.

cdye(t,

t 
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General::spell1: Possible spelling error: new symbol name
”pl2b” is similar to existing symbol ”pl2”.

cdye(t,

t 

0.02 

0.04 

0.06 

0.08 

0.1 

�100 100 200 300 400 500 

Out[192]= -Graphics-

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect one
of the following: singularity, value of the integration
being 0, oscillatory integrand, or insufficient
WorkingPrecision. If your integrand is oscillatory try
using the option Method ––›Oscillatory in NIntegrate.

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect one
of the following: singularity, value of the integration
being 0, oscillatory integrand, or insufficient
WorkingPrecision. If your integrand is oscillatory
try using the option Method ––›Oscillatory in NIntegrate.

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.
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Out[195]= 9.82826

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand
is oscillatory try using the option
Method ––›Oscillatory in NIntegrate.

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

Out[196]= 9.82826

cdye(t,

t 
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We see that the tracer curves all overlap perfectly and that the integrals are all approach
ing 0 after 400 time units. Therefore, the code is working and our derivations are verified. 
Now we can turn to a more relevant case. We will assume that the flows are not evenly split, 
but a is 2/3 and b is 1/3. Take the volumes to be different: We will set V1 to 20 and V2 to 
80. (Recall that V1 and V2 have to sum to the same value as that of V in the one-vessel case 
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if we are to make valid comparisons.) To demonstrate, follow the In and Out statements and 
the following graphs: 

In[198]:= Clear[a, b] 

In[199]:= Remove[cdye2b] 

In[200]:= a = 2/3; 
b = 1/3; 

cdye2a[t-] :=  
a -a qex  t  

V1 mdye(UnitStep[t] - UnitStep[to]) 

V1 

cdye2b[t-] :=  
b -b qex  t  

V2 mdye(UnitStep[t] - UnitStep[to]) 

V2 

mdye = 10; 
qex = 1; 
V1 = 20; 
V2 = 80; 

to = -5; 
pl2 = Plot[{cdye2a[t], cdye2b[t]}, {t, -100, 500},

AxesLabel ––› {""t"", ""cdye[t]""},

PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5]},

{Thickness[0.01], Dashing[{0.01, 0.025}]}},

PlotRange ––› All];

a cdye2a[t] + b cdye2b[t]
pl2b = Plot[{ }, {t, -100, 500},

a + b  

AxesLabel ––› {""t"", ""cdye[t]""}, 

PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5], 

Dashing[{0.05, 0.05}]}}, PlotRange ––› All]
NIntegrate[cdye2a[t] a qex, {t, -100, 400}];
NIntegrate[cdye2b[t] b qex, {t, -100, 400}];

% + %%
NIntegrate[cdye[t] qex, {t, -100, 400}]
Show[pl2b, pl1];

General::spell1 : Possible spelling error: new symbol 
name "cdye2b" is similar to existing symbol "cdye2a". 
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Out[210]= -Graphics-

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one

of the following: singularity, value of the integration

being 0, oscillatory integrand, or insufficient

WorkingPrecision. If your integrand is oscillatory try

using the option Method ––›Oscillatory in NIntegrate.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in t near t = -0.390625.

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one

of the following: singularity, value of the integration

being 0, oscillatory integrand, or insufficient

WorkingPrecision. If your integrand is oscillatory

try using the option Method ––›Oscillatory in NIntegrate.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy

after 7 recursive bisections in t near t = -0.390625.

Out[213]= 9.39734

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method ––›Oscillatory
in NIntegrate.

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in t near t = -0.390625.

Out[214]= 9.82826
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We see that the time dependence of the tracer in this case is markedly different, sharper and 
narrower overall. Why? Because 2/3 of the flow is shunted through the small vessel with a 
much shorter holding time. Therefore, even though the total flows through the two systems 
with equal volumes are the same, the behavior is quite different. Therefore, even if we could 
not see the two tanks, we would have to know that there was a very different flow mechanism 
in this second case versus the case of one well-mixed tank of equal volume. Try other values 
of a and b as well as V1 and V2 to see what happens. 

To extend this model to three tanks would be straightforward, but so too would it be to 
extend it to n tanks where n was large. One of the points to note about the equations is that 
the argument of the exponential term is a ratio of the actual time to the holding time in each 
unit because the holding time in the n th unit θn is Vn , that is, the ratio of the flow volume of qn 

the unit to the flow rate through it; 

− t qn  

cdye n[t] = an Vn mdye(UnitStep[t] − UnitStep[to])qtot 
Vn 

= an − t 
θn mdye(UnitStep[t] − UnitStep[to]) 

θn 

Now if we kept the total volume and total flow rate through these n different units the same 
(as shown in Figure 5) as for the one-unit case, then we could have a very different tracer 
concentration-time curve, depending on the distribution of the flows and the volumes within 
the green box. There would be n different holding times in this overall unit, but the average 
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V1/
mdye 

q1 

V2/q2 

V3/q3 

Vn/qn 

Cdye,tot [t], 
[q1 + q2 + q3 + ... + qn] 

Figure 5 

would be the same as the single vessel. If n were a discrete number of units, then there would 
be a discrete distribution of holding times. But as n grew larger, say toward infinity, the volume 
in any one unit would be infinitely small and so too would be the holding time in each. At this 
point the discrete distribution could be described nicely by one that was continuous in the 
holding time. The key would be to know how those discrete volumes, and hence residence 
times, making up the total volume were distributed. 

The model we constructed in Figure 5 can be thought of as a metaphor for one unit with 
incomplete mixing. Rather imagine that in this poorly mixed unit some of the fluid goes 
through faster than the average holding time and some slower. Thus depending on the path 
taken, the fluid may spend more or less time in the unit than we would predict from the 
calculation of the holding time. These times are the residence times of the fluid elements in the 
unit. Such residence times come about due to the coupling of the fluid’s mechanical properties 
with the geometry of the vessel and the type and energy of mixing. It is not uncommon to find 
that even in an apparently well-mixed unit the fluid moves through some regions of longer 
residence time due to recirculation cells, and other regions of shorter times due to bypassing 
(see Figure 6). 
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Recirculation 
Zones 

Bypassing 

Figure 6 

As we have said, the key to the analysis of a system like this one is to have a function 
that approximates to the actual residence time distribution. The tracer experiment is used 
to find that distribution function, but we will work from an assumed function to the tracer 
concentration-time curve to see what the experimental outcome might look like. 

A good distribution function to examine in this context is the Normal or Gaussian dis
tribution. Using this function, we would take the residence times θ to be normal distributed 
around some mean value θm and with a standard deviation or spread of δθ : 

(θ−θm)2 − 
2 δθ2 

NormalDistribution[θm, δθ ] = √ 
2π δθ  

Mathematica has this function and many others built into its set of “add-on” packages that are 
standard with the software. To use them we load the package “Statistics‘NormalDistribution‘. 
The syntax for these functions is straightforward: we specify the mean and the standard 
deviation in the normal distribution, and then we use this in the probability distribution 
function (PDF) along with the variable to be so distributed. The rest of the code is self-
evident. 
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In[216]:= <<Statistics‘NormalDistribution‘

In[217]:= Remove[θ, θmin, θmax] 

In[218]:= θm = 100;
δθ = 20;
ndist = NormalDistribution[θm, δθ];
pd1 = PDF[ndist, θ];
pd1
Plot[pd1, {θ, 30, 165},

AxesLabel ––› {""θ"", ""PDF[θ]""},
PlotStyle ––› Thickness[0.01],
Epilog ––› {GrayLevel[0.7], Thickness[0.01],
Line[{{100, 0}, {100, 0.022}}]}, 
PlotLabel ––› ""θm""
]; 

1- 800 (-100+ θ)2 

Out[222]= √ 
20 2π 

PDF(G, Gm 
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With the mean value 100 and the deviation 20 time units the distribution has a familiar look (see 
the preceding graph). The function tells us that most of the fluid elements (63%) go through 
the unit with residence times that are between 60 and 140 time units. There are, however, 
18.5% of the fluid elements that bypass with very short residence times and 18.5% that take 
very long times to emerge due to recirculation cells. Some of these never emerge! 
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Now that we have a model for the residence-time distribution, how shall we use this in 
the analysis of the unit? We need weighting factors for each residence time. These come from 
the PDF itself. For example, if we integrate the PDF between any two residence times, we 
obtain the probability density for that range of times: 

In[224]:= Remove[θ, θmin, θmax] 
In[225]:= θm = 100;

δθ = 20;
ndist = NormalDistribution[θm, δθ];
pd2 = PDF[ndist, θ];
NIntegrate[pd2, {θ, 50, 80}]

Out[229]= 0.152446

This result states that the fraction of residence times between 50 and 80 time units is just over 
0.15. That would be the weighting factor for the flows with that range of residence times. If 
there are n residence times, then as we have seen there are n weighting factors. If the number of 
residence times is large then n tends toward infinity and the distribution of residence times is 
continuous. We can obtain the weighting factor for the whole of the distribution by integrating 
the probability density function over the range of residence times. In fact, we can see from the 
form of the equations, which will actually be the PDF over the residence time, that we must 
integrate since the form of the equation becomes: 

pdf
∂t cndis[t] = (mdyeDiracDelta[t] − cndis[t])

θ 

We will integrate over θ and then over t to solve the problem. This is done in what follows 
in two steps below for clarity and with specific values for the mean residence time and its 
deviation about the mean. 

In[230]:= Remove[cndis, t, θ, θmin, θmax] 
In[231]:= ndist = NormalDistribution[θm, δθ]; 

pd3 = PDF[ndist, θ]; 

pd3
Integrate[ , {θ, θmin, θmax}]

θ
θm = 100;
δθ = 22;
θmin = 0;
θmax = 5θm;
ndist = NormalDistribution[θm, δθ];
pd4 = PDF[ndist, θ];

-(θ-θm)2∫ θmax 2δθ2 

θ
θwf = N[ θmin ];√

2πδθ
pl1 = Plot[pd4,

{θ, .0001θm, 2θm},
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AxesLabel ––› {""θ"", ""PDF[θ]""}, 
PlotStyle ––› Thickness[0.01],
PlotRange ––› {{0, 2θm}, {0, Max[Table[N[pd4], 
{θ, θmin, θmax}]]}}, 
Epilog ––› {GrayLevel[0.7], Thickness[0.01], 

Line[{{θm, 0}, {θm, Max[Table[N[pd4], 
{θ, θmin, θmax}]]}}]}, 

PlotLabel ––› ""θm"", DisplayFunction ––› Identity]; 

Show[pl1, DisplayFunction ––› $DisplayFunction];
1- 800 (-100+θ)2 ∫ θ max 

θ √ θOut[233]= θ min 

20 2πδ 
1- 968 (-100+θ)2 

Integrate::idiv : Integral of 
θ 

does not
converge on {0, 500}.

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect
one of the following: singularity, value of the
integration being 0, oscillatory integrand, or
insufficient WorkingPrecision. If your integrand
is oscillatory try using the option
Method ––›Oscillatory in NIntegrate.

NIntegrate::ncvb: NIntegrate failed to converge to 
prescribed accuracy after 7 recursive bisections 
in θ near θ = 2.1849968739518537‘ ∗ ̂  − 54. 
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In[243]:= Simplify[
a = DSolve[

{cndis’[t] == (wf)(mdye DiracDelta[t] - cndis[t]),
cndis[to] == 0}, cndis[t], t]

]
cnd[t--, to--] := Evaluate[cndis[t] /. a]
cnd[x, y] 

mdye = 10; 
to = -100; 

Out[243]= {{cndis[t] ––› 0.247489 -0.0247489t UnitStep[t]}} 

Out[245]= {0.247489 -0.0247489x UnitStep[x]} 

In[248]:= plndis 
= Plot[ 

cnd[t, to], {t, 0, 4θm},
PlotRange ––› All,
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5],
Dashing[{0.05, 0.05}]}}, 

AxesLabel ––› {""t"", ""Cdye[t]""}, 
DisplayFunction ––› Identity]; 

Show[plndis, pl1, DisplayFunction ––› $DisplayFunction];

Show[pl1, plndis, DisplayFunction ––› $DisplayFunction];

Cdye(t,

t 
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The results are quite dramatic! We see that the normal distribution of residence times gives rise 
to a much sharper change in the dye concentration transient than does the single value. In fact, 
as we make the distribution broader by increasing only δθ while keeping the mean θm constant, 
we find that the transient response becomes sharper and tends toward a Delta function close 
to zero. Therefore, as the distribution becomes broader, we have much less perfect mixing, but 
the response becomes sharper! To experiment with this effect simply change the value of δθ ; 
the most pleasing values are in the range of 20–25; below this range the curves are too similar 
and above it they are too different. 

4.9 Summary 
We have now fully integrated the concept of a component and the rate of change of a compo-
nent’s mass into our analysis toolkit. Along the way we have taken some time to understand 
the concepts and meaning of density and how it relates to the concentration of the solute or 
salt and of the solvent. This included the notion of nonideality when we realized that for most 
solutes the volume either expands or contracts with their dissolution compared to that which 
it would have had if the solute added simply was more solvent, but of different mass per 
molecule. In going from a set of simplifying assumptions to a fuller analysis including these 
density changes with solute concentration, we had to introduce more computing methods, 
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but we were able to move seamlessly from analytical solutions to numerical ones in order 
to compare the results from increasingly complex cases. The last section of the chapter was 
devoted to some new ways of looking at the idea of mixing. In this analysis we learned to 
use the Dirac-Delta function. We also defined the holding time and used this to construct a 
general nondimensionalized solution for the tracer injection problem. These are all tools that 
we will see again. 
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Multiple Phases—Mass
Transfer

A topic of utmost importance in chemical engineering is that of mass transfer. We are often 
faced with processes that require moving molecules between different phases in order for the 
outcome we desire to take place (see Figure 1). For example, a “simple” catalytic hydrogenation 
of a liquid-phase unsaturated molecule, such as benzene, is not really so simple in that it 
requires many mass transfer steps to occur prior to reaction. The hydrogen molecule must 
move from the gas phase to the liquid phase. Once there it must diffuse through the liquid 
and to the catalyst particle’s outer surface. From the surface it must now move from outside 
to inside the particle. Next it needs to adsorb onto the internal surface and then diffuse to the 
active site and react with a benzene molecule, which also has undergone all the same liquid-
phase steps of mass transfer and diffusion! All of this must occur before the reaction can take 
place. Then the product must leave the active site and the catalyst in a reversal of these steps. 
We can imagine that the rate at which these molecular transfers between and within phases 
take place will affect the rates that we observe. If the molecules transfer quickly compared to 
the pace at which they are reacted, then the reaction rate, that is, the chemistry will control 
the rate of disappearance of benzene. If, however, the rates of benzene or hydrogen transport 
are slow, then one or both of these may limit the rate of conversion to that of the rate of arrival 
of the reactants at the active site. In other words, if the chemistry is “fast,” which it should be 
with an effective catalyst, then it “waits” on the physical transport processes. 

This chapter sets out to provide a means of handling these types of interphase mass 
transfer problems taking into consideration their fundamental characterizing variables, the 
conservation of mass, and appropriate constitutive relationships. 

205 



P1: Thakur/Shashi

May 10, 2002 16:54 Foley foley-ch5

206 Chapter 5 Multiple Phases—Mass Transfer 

Hydrogen from Gas to Liquid Phase Hydrogen to Catalyst Particle Surface 

H2 

H2 

H2 

H2 

H2 

H2 

Liquid Phase 

Catalyst Particle 

Hydrogen to Active Site 

Figure 1 

5.1 Mass Transfer versus Diffusion 
The concept of diffusion is one that is familiar to us. If a bottle of fragrance is opened in a room 
full of fresh but still air, that fragrance will slowly reach all corners of the room. Our sensation 
of the fragrance will be highest closest to the bottle and lowest in the corners of the room 
farthest away from it. Eventually, we may find that our sensation of the fragrance is about the 
same everywhere in the room. The process that takes the fragrance molecules from the vicinity 
of the uncapped bottle and throughout the room, raising their concentration as a function of 
time, is diffusion. Random molecular motions are all that are necessary for the fragrance 
molecules to migrate from regions of higher concentration to those regions that are lower. 

Diffusion need not occur only in the gas phase. If a drop of dye is placed carefully into a 
solvent, then initially the color is very intense within the region of the droplet. With time the 
droplet of dye molecules becomes more “diffuse,” by that we mean larger in volume and less 
intense in color. This process continues with time until, to the naked eye, the whole solution 
looks to be colored to the same intensity. Again the mechanism behind this process is diffusion, 
the random motion of molecules following a gradient in concentration from regions of higher 
to lower concentration. 

Diffusion is a process that also occurs in solids. The manufacture of solid-state transistors 
involves the diffusion of dopants, such as boron or phosphorus, into silicon in order to create 
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n- and p-type semiconductors. Since solids are dense, there is a high resistance to diffusion 
and this makes for very low diffusivities versus those measured in gases, on the order of 10 
orders of magnitude lower! 

In each case we have spoken about the transfer of mass along a concentration gradient 
( that is the differential change in concentration over the differential change in position) within 
one phase. Yet, there are many situations when the mass is moving between phases. For 
example, the phosphorus delivered to a semiconductor solid for doping typically is transferred 
to the solid from the gas phase. Thus, before diffusion within the solid can occur there must 
be gas-to-solid mass transfer of the phosphorus. Here too we can wonder which will be 
faster—the rate of phosphorus transport to the solid or the rate of diffusion taking phosphorus 
away from the gas-solid interface and into the bulk solid? In this case, because the rate of 
diffusion is so low within the solid, it is a good bet that this will be the slower process. When 
mass transfer is from the gas phase into the liquid, then it may be that the rate processes 
are limited by the transfer between the phases, rather than the diffusion within the liquid. 
However, generalizations should not be made hastily because each case needs to be analyzed 
separately. 

We will not be concerned here with diffusion per se; instead we will concentrate on the 
issue of mass transfer between phases and how that is handled in the context of our analysis 
tools. The examples begin with an analysis of the dissolution of salt in water and move to more 
complex systems including the permeation of hydrogen through a palladium membrane. 

5.2 Salt Dissolution 
The dissolution of a solid particle of salt is a good place to begin because we already know quite 
a bit about this process. The solid, say sodium chloride, consists of cations and anions that 
make up the solid lattice in some fixed ratio. The Coulombic forces of attraction—the Madelung 
energy—keep the lattice together in the solid state. These forces are strong enough to make 
the crystalline lattice an energetically favorable configuration for the ions (see Figure 2). 

When the lattice of ions held together in this way is placed in liquid hydrocarbon such as 
hexane, nothing happens. The lattice might just as well be standing in air. It remains stable; 
the hexane does not affect it. We say that the hexane is not a solvent for the salt. Why? We 
know the hexane is a nonpolar hydrocarbon, whereas the salt is made up of charged ions that 
are at the limits of polarity—one is a cation and the other is an anion! If the lattice were to fall 
apart into ions in hexane, it would do so only if the ions were more stable in solution than 
they were in the lattice. This is not the case with hexane because it lacks polarity to interact 
with the ions in order to stabilize them. 

Experience shows, however, that water will dissolve the salt and will do so very well. The 
reason is that water is polar; the oxygen is electronegative and carries a more negative partial 
charge than the hydrogens, which are partially positively charged. These charges make all the 
difference in the process, because the hydrogens will coordinate with the anion of the salt to 
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Figure 2 

partially dissipate its charge, while the oxygen will coordinate to the cation to do the same. 
Nature finds bare charges to be unfavorable, so this coordination by water is highly favorable. 
For obvious reasons this interaction is called solvation. 

Quantitatively, we also know that the concentration of the ions in solution is given by 
their solubility product or Ksp. This is nothing more than the equilibrium constant for the salt 
in water, rearranged to take up the activities of the pure water and the pure solid salt: 

Ksolvation = acationaanion 

asaltaH2O 

Ksp = KsolvationasaltaH2O = acationaanion 

Ksp = γcationCcationγanionCanion 

At low concentrations the activity coefficients are close to unity and we have: 

Ksp → CcationCanion 
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This is just a review of what we already know about cation solvation in water, based on general 
chemistry. The information is purely thermodynamic, however, and does nothing to tell us 
how long a dissolution process may take. Even if a salt is soluble, we do not have a means to 
get at its rate of dissolution. Furthermore, how do salts with smaller Ksp values compare with 
those with larger Ksp values? Will they dissolve faster, slower, or is the rate independent of 
this factor? What role does the form of the salt play in the rate of dissolution? Does it matter 
at all, only at the early stages of dissolution, or throughout the process? How does the ratio 
of solvent mass to solute mass figure into this? These are the kinds of questions we want to 
be able to handle quantitatively. 

5.3 Batch 
Background. The dissolution of a salt into a surrounding solution is easiest to think of as 
taking place in a closed vessel, that is, in a “batch” with no flows in or out of the vessel. But 
remember there are “flows” between the solid and the liquid phases. We take a particle of 
the solid as one control volume and the volume of solvent as the other. We can solve this one 
particle problem and then handle many particles. The process is taken to occur at constant 
temperature. The physical situation looks like that shown in Figure 3. 

The dissolution process will continue until either all the salt has dissolved, or the saturation 
limit of the solvent has been reached. Therefore, the ratio of the volume of the solvent to the 
mass of salt will be critical. If we were to do this experiment several times with the same volume 

Salt 

Phase 1 

Phase II 

Solvent 

Figure 3 
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of solvent and with the same mass of salt, but with different numbers of particles of the salt, 
we would find that the experiments done using more, smaller particles would require less 
time to fully dissolve the salt than would those that use fewer, larger particles. Our common 
experience of dissolving sugar in coffee or in tea is that stirring makes the dissolution process 
go faster. Therefore, if we were to do a series of salt dissolution experiments, keeping all else 
the same, but varying the rate of mixing, we would find that faster and better mixing would 
lead to more rapid dissolution. This is obvious, but we will still write it mathematically before 
we go on: 

ratedissolutionα Ainterface 

ratedissolution ↑ as mixing ↑ 

Rate of Dissolution. Experiments also would show that the rate of dissolution must stop 
when the solution reaches the saturation limit and, furthermore, the rate will be fastest early 
in the process, when the concentration of salt in the solvent is low. All of this behavior can be 
apprehended in a simple rate for the dissolution process: 

− C Iratedissolution = Km Ainterface Csat’ d 
salt[t]salt 

Km is the mass transfer coefficient, Length , Ainterface is the area of the solid in contact with time 
the liquid (either for one particle or for n-particles), Csat’ d is the concentration of the salt in salt 
the solvent phase I at the saturation limit, and CI 

salt[t] is the concentration of the salt in the 
solvent at any time t. This rate law includes all the phenomena we just said would be observed 
in experiment. The mass transfer coefficient will be larger if the mixing is larger, otherwise 
smaller. The interfacial area is linearly related to the rate—the more area the better. When the 
concentration of salt in solution hits the saturation limit, the dissolution stops. The term in 
brackets is the so-called “linear driving force”: linear because the concentration dependence 
is first order, that is, power unity, and driving force because the rate is proportional to the 
difference between the maximum and the actual concentrations. Hence the rate is maximum 
at an instant after time zero when the difference is just Csat’ d .salt 

Conservation of Mass across Phases. The next step is to apply the conservation of mass 
principle to this problem. We need to write a material balance on salt for both phases. Any 
mass that leaves one phase must end up in the other phase. Then we can say the following 
regarding the rate of salt mass accumulation in the two phases: 

dmI dC I VI 
salt = salt = +Airddt dt 

dmII dC II VII 
salt = salt = −Airddt dt 
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where Ai = Ainterface and rd = ratedissolution. We can substitute in the constitutive expression 
for the rate of mass transfer between the two phases to obtain: 

dmI dC I VI ( )salt = salt = +Km Ai Csat’ d − C I ]salt salt[tdt dt 

dmII dC II VII 
salt = salt = −Km Ai Csat’ d − C I [t]

dt dt salt salt

The material balance for the solid phase includes in the differential term CII . Because salt salt
is a pure solid, this is the same as the density of the solid, which remains constant through
out the process. This means that the water is assumed not to disrupt the solid lattice by 
penetrating into it and slowly expanding it to result in dissolution. Instead, it is only the 
first few layers that are involved in the process and the interior of the particle is left un
perturbed until it becomes surface. The process is like one of layer-by-layer lift-off and 
dissolution. If the mass transferred between the phases is in total small, then we can ig
nore the change in solution volume that comes with the density change as the salt con
centration rises. If this is too restrictive, then we can relax it later, but for now it makes 
good sense to ignore it and concentrate on the mass transfer problem. The equations can be 
rewritten as: 

dmI dC I )salt = VI salt[t] = +Km Ai 
( 
Csat’ d − C I ]salt salt[tdt dt 

dmII dVII[t] = −Km Ai 
( 
Csat’ dsalt − C I [t]

dt 
= ρsalt dt salt salt

dC I dVII 
salt∴ VI = −ρsaltdt dt 

t] = VIIThis can be integrated assuming that at t = 0, CI [ and then rearranged salt[t] = 0 and VII
o 

to give: 

ρsalt VII − VII[t] = VI C I ]o salt[t

VI C I 

VII[t] = VII − salt[t] 
o ρsalt 

ρsalt VII − VII[t]
C I 

salt[t] = o

VI 

The last equation relates the concentration of the salt in the liquid phase at any time to the 
volume of the salt remaining in the solid at the same time. This solution and the one for 
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the concentration of salt in solvent are implicit. To use these equations we would need to 
measure the actual volume of the solid salt as a function of time—not an easy measurement 
to make in practice! What we really need then is an explicit solution in time. To obtain this we 
must return to the statements of the material balance between the phases. 

The salt leaving the solid follows this equation: 

dVII[t] = −Km Ai 
( 
Csat’ d − C I ]ρsalt salt salt[tdt 

If we are concerned only with the case in which the total mass of salt transferred is small 
relative to the volume of solvent and the saturation limit, then the equation becomes: 

dVII[t] = −K m Ai Csat’ dρsalt dt salt 

This looks as though we should be able to integrate it immediately, but look again! The area 
between the two phases is the area of the salt particle; it must be changing with time, and 
quite considerably at that. Therefore we cannot integrate this as of yet. We need a relationship 
between the volume of the solid at any time and the surface area it projects. Thankfully we 
can find this easily. If each particle of solid is the same size then their interfacial areas are the 
same and we can write: 

VII 2 
3 1 

3Ai = N Ai, N = Nγ = N 3 γ VII 2 

N 

Here N is the number of identical particles of solid, and γ is the surface area to volume 
ratio, or the shape factor which accounts for the geometry of the solid, assuming that it is 
a regular polytope; the subscript i refers to the number of any individual particle. The total 
volume of the solid phase divided by N is the volume of any individual particle and when we 
raise this to the 2/3 power we approach to within a constant γ , the surface area of that same 
particle. This allows us to rewrite the rate of change in solid volume (dropping the notation 
for t-dependence) : 

1
3 Csat’ ddVII Km N 3 γ VII 2 

salt= −  
dt ρsalt 
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We can separate, integrate, and rearrange to obtain: 

1(√ Km N 3 γ Csat’ d )3 
3 VII saltVII[t] = − t0 ρsalt 

We have already stated that the measurement of the solid volume would be a difficult exper
iment to conduct. The measurement of salt concentration as a function of time is easy to do 
and so we want an explicit equation for the concentration. To obtain this we use this equation 
for volume change with time to obtain the concentration change with time. 

1 
Km N 3 γ Csat’ d 

)3) 
3 saltρsalt Vo 

II − √ 
Vo 

II − t
ρsalt 

C I 
salt[t] = 

VI 

If we made a series of experiments in which we sought the mass transfer coefficient, then we 
would rearrange this so that we could plot a function of the salt concentration against the 
time: 

( 
C I ) 1 ( 

Km N 3 γ Csat’ d 
salt 

3 

1 − salt[t]V
I 

= 1 − 
1 

√ t 
VIIρsalt Vo 

II ρsalt 
3 

o 

A plot of this left-hand side versus the time gives a graph whose slope is the coefficient of t. 
Everything in this group with inverse time as its dimensions should be known before the 
experiments are even conducted. If we knew the mass transfer coefficient, then the inverse 
of this group would provide the time required to dissolve all N particles of the salt. We can 
see this because when the time t is equal in magnitude to the reciprocal of this group the 
right-hand side goes to zero identically. 

3C I [t]VI 1 

t
1 − salt = 1 − 

ρsalt Vo 
II θ 

1
Km N 3 γ Csat’ d 

saltθ = √ 
VIIρsalt 

3 
0 

The left-hand side must also be zero. Therefore, the concentration of the salt at that time will 
be the reciprocal of the product of the density of the salt and its initial volume divided by the 
volume of the liquid. 
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5.4 Fit to the Batch Data
Table 1 gives data for an experiment in which 100 salt cubes (γ = 6) were dissolved in 
100 cm3 of water. The total volume of the salt was 1 cm3, its density was 2 g cm3, and the 
saturation limit of the salt was 0.05 g cm−3. Data points were logged every 50 sec for a total of 
2500 sec. 

t/sec Csalt [t] t/sec Csalt [t] 

50 0.00171084 1300 0.0196429 

100 0.00279533 1350 0.0192367 

150 0.00424841 1400 0.0193228 

200 0.00494699 1450 0.0193325 

250 0.00635887 1500 0.0192889 

300 0.00763428 1550 0.0201392 

350 0.00835931 1600 0.0197141 

400 0.010246 1650 0.0197589 

450 0.0105354 1700 0.0203605 

500 0.0116536 1750 0.0202748 

550 0.0120036 1800 0.0200916 

600 0.0135537 1850 0.0201311 

650 0.0137191 1900 0.02012 

700 0.0142037 1950 0.0200507 

750 0.0150545 2000 0.0195248 

800 0.0153611 2050 0.0202914 

850 0.0165474 2100 0.0199335 

900 0.0169347 2150 0.0204394 

950 0.0167272 2200 0.0204604 

1000 0.0177943 2250 0.0203341 

1050 0.018098 2300 0.0200852 

1100 0.0184004 2350 0.0196325 

1150 0.0188067 2400 0.0205709 

1200 0.0190497 2450 0.0198959 

1250 0.019132 2500 0.020606 

Table 1 
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Putting the data into vector notation for manipulation we have: 

In[1]:= csaltdata =

{{""0"", ""0.00004044""}, {""50"", ""0.001815""}, {""100"", ""0.002589""}, 

{""150"", ""0.004589""}, {""200"", ""0.005424""}, {""250"", ""0.006528""}, 

{""300"", ""0.00783""}, {""350"", ""0.008987""}, {""400"", ""0.009514""}, 

{""450"", ""0.01022""}, {""500"", ""0.01143""}, {""550"", ""0.01287""}, 

{""600"", ""0.01328""}, {""650"", ""0.01399""}, {""700"", ""0.01488""}, 

{""750"", ""0.01535""}, {""800"", ""0.01536""}, {""850"", ""0.0161""}, 

{""900"", ""0.01694""}, {""950"", ""0.01755""}, {""1000"", ""0.01704""}, 

{""1050"", ""0.0183""}, {""1100"", ""0.01851""}, {""1150"", ""0.01894""}, 

{""1200"", ""0.01894""}, {""1250"", ""0.01861""}, {""1300"", ""0.01951""}, 

{""1350"", ""0.01946""}, {""1400"", ""0.01949""}, {""1450"", ""0.01958""}, 

{""1500"", ""0.01997""}, {""1550"", ""0.01968""}, {""1600"", ""0.02014""}, 

{""1650"", ""0.01973""}, {""1700"", ""0.02041""}, {""1750"", ""0.02017""}, 

{""1800"", ""0.02026""}, {""1850"", ""0.02036""}, {""1900"", ""0.02042""}, 

{""1950"", ""0.02023""}, {""2000"", ""0.0204""}, {""2050"", ""0.01979""}, 

{""2100"", ""0.02013""}, {""2150"", ""0.02013""}, {""2200"", ""0.02035""}, 

{""2250"", ""0.0196""}, {""2300"", ""0.02043""}, {""2350"", ""0.02035""}, 

{""2400"", ""0.02025""}, {""2450"", ""0.02061""}, {""2500"", ""0.02048""}}; 

As we plan to do considerable graphing we set the options for the style of the graphs to make 
them most visible and then ListPlot the data. 

In[2]:= SetOptions[{Plot, ListPlot},
AxesStyle ––› {Thickness[0.01]},
PlotStyle ––› {PointSize[0.015],
Thickness[0.006]}, 

DefaultFont ––› {""Helvetica"", 17}]; 

In[3]:= datpl = ListPlot[csaltdata,
AxesLabel ––› {""t"", ""Csalt[t]""},
PlotStyle ––› PointSize[.015]];
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We shall want to fit this data “csaltdata” as seen in the preceding graph to the expression that 
we have derived because, as we can see from the data, the final concentration is less than 50% 
of that at saturation. To be safe we will fit just the early time data out to 1500 sec. One way to 
do this is to do a one parameter, nonlinear fit to the expression after we have simplified it by 
evaluating all the parameters. The first step is to obtain the fitted expression, evaluate it, and 
then compare it to the data. 

Here are the parameters relevant to the problem and their values followed by the function 
definition: 

In[4]:= ρsalt = 2;
VoII = 1;
γ = 6;
Km =.
Csaltsatd = .05;
VI = 100;
n = 100;
tmax = 2500;

3 n 3 γ Csaltsatd ρsalt(VoII - ( 
√
VoII - Km 

1 

ρsalt t)3) 
csalt[t--] :=

VI

f[t--] := Simplify[csalt[t]]
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Calling “Statistics‘NonlinearFit’” will allow us to fit the data with the command “Non
linearFit,” which we can then call “g” with the command g = % and, finally, we can Plot 
and Show g versus the data set: 

In[14]:= << Statistics‘NonlinearFit‘

In[15]:= NonlinearFit[csaltdata, f[t], t, Km];
g = %;

plfit = Plot[g,
{t, 0, 2100},
PlotRange ––› {{0, 2500}, {0.0.02}},
DisplayFunction ––› Identity]; 

Show[datpl, plfit, 
DisplayFunction ––› $DisplayFunction]; 

Csalt(t,

t 

0.005 

0.01 

0.015 

0.02 

500 1000 1500 2000 2500 
The coefficient of t is used to evaluate Km and that is: 

In[19]:= Solve[0.696238 Km == 0.00051, Km]

Out[19]= {{Km ––› 0.000732508}}

The fitted value is 7.3 × 10−2 cm sec−1, which is a reasonable, although small, value for this 
constant. 
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5.5 Semicontinuous: Pseudo Steady State
We can imagine a situation where our goal is to dissolve a sparingly soluble salt out of a unit in 
which it has precipitated. An example of such salts are the alkaline salts that deposit in boilers 
and heat exchangers as “scale.” Nothing more than the accumulation of precipitate on the 
inner walls of the vessel over time, these salts can present a real hazard in that they reduce the 
heat conduction through the wall, because they are good insulators. As a result of this, boilers 
can develop hot spots and explode, and heat exchangers can become much less efficient over 
time with similarly deleterious results. At the same time these salts may be sparingly soluble 
except in acidic solution, which, if the pH is too low, will etch away the vessel wall along 
with the salts over time. Therefore, one may be forced to accept the low solubility in the less 
acidic pH range, and be willing to pump large volumes of solvent through for longer periods 
of time. This is an optimal solution to the problem. 

The essence of this problem, and others like it, is that the transfer of mass from the solid 
to the liquid occurs slowly over time, but now there is a continuous flow of solvent over a 
slowly diminishing mass of solid. The flow of solvent does two things—it provides a large 
volume of solvent when the flow is integrated over time and, if it is at relatively high rates, it 
provides much better mass transfer rates than if the same large volume were merely standing 
in contact with the solid without flow. Flow gives mixing and mixing gives higher mass 
transfer coefficients, which means it will take less time to dissolve than it would with less or 
zero mixing. The physical situation is as shown in Figure 4. 

Sparingly Soluble Salt 

Well-Mixed Salt + Solvent Fresh Solvent Feed Dissolved Salt Waste 

Figure 4 
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The equations look largely the same, except that the solution phase balance on the salt has a 
convective flow term for the mass of salt leaving the unit by this process: 

dmI dC I ( ) 
Csat’ dsalt = VI salt[t] = +Km Ai salt − C I [t] − C I [t]qex

dt dt salt salt

salt − C I= ρsalt salt salt[t] 
dmII dVII[t] = −Km Ai 

( 
Csat’ d 

dt dt 

The interfacial area in this case will be taken to be a constant well approximated by the surface 
area of the unit. In the diagram this would be the cross-sectional area of the tank πr2. This 
means then that the salt is removed by a process that removes layers, making the change in 
salt volume a one-dimensional problem of computing the salt thickness at any time. 

If the salt is sparingly soluble, then Csat’ d is small in magnitude, and if the product KmAisalt 
is relatively large due to gross mixing, then the salt concentration is likely to be a constant and 
close to but not as large as Csat’ d, depending on the magnitudes of the parameters. Given that salt 
salt concentration is a constant, then its rate of change is zero, that is, the salt in solution is at 
steady state. This is the case even though the salt mass is changing steadily and constantly as a 
function of time. Because of this mixed condition the two-phase system as a whole is said to be 
in a pseudo-steady state. This is the case because if we could measure only the concentration 
of salt exiting the reactor, we would find it to be a constant at constant conditions. However, 
we know the salt is coming from inside the control volume because we are not feeding it. 
That means that according to the principle of conservation of mass, the salt is emerging from 
a dissolving source within the control volume, and this mass must be decreasing with time. 

The equations work out as follows for the pseudo-steady state: 

0 = +Km Ai Csat’ d − C I 
saltstst qex salt saltstst − C I 

Csat’ d 
saltstst = C I− C I 

saltstst qex ∴ Km Ai salt 

and 

dVII[t]
ρsalt = −C I 

saltstst qex 
dt 

VII t] = VII − C I[ saltstst qex t o 

This very simple solution comes about as a result of the fact that at the steady state the 
concentration of salt is a constant and the exit mass flow has to be equal to the rate of salt mass 
transfer into the solvent. 
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5.6 Full Solution
By solving the equation in the way we have just described, we make the mathematics much 
simpler, but we also place severe constraints on the solution. Instead of doing that, we now 
solve the equations without these assumptions, in this way they are then appropriate for 
the most general case—from short time to long, and for sparingly soluble to very soluble 
salts. 

dρ I [t]VI [t] = (ρsolvent − ρ I [t]) qex
dt 

ρ I [t] = ρsolvent + aC I [t]salt

dmI dC I ( )salt = salt[t]V
I [t] = +Km Ai Csat’ d − C I ] − C I ] qexsalt salt[t salt[tdt dt 

salt − C I= ρsalt salt salt[t] 
dmII dVII[t] = −Km Ai 

( 
Csat’ d 

dt dt 

Here we have added one equation—the total mass balance—which includes the density of 
phase one as it flows out of the system. Recall also that for a double salt MaLb we have the 
following: 

Ksp 
( )b = CM+ a CL− b = aCsat’ d)a ( bCsat’ d 

salt salt 

We can solve for the saturation concentration of the salt in terms of its Ksp and the stoichio
metric numbers: 

In[20]:= Solve[Ksp == PowerExpand[(a Csatd)a (b Csatd)b], Csatd]

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

1

Out[20]= {{Csatd ––› (a-ab-bKsp a+b }}

Turning once more to the equations, we will derive code that will solve these numerically and 
simultaneously by using this expression for the saturation concentration of the salt and the 
linear dependence of density upon concentration. The code that follows does just this. The 
tank parameters are specified along with the volumes of the solution and salt phases at time 
zero (VIo and VIIo), the salt parameters, the mass transfer and flow rates, the maximum time 
for the integration to be done, the function calls for the exit flow rate in terms of the inlet 
flow rate, density of the solution and the saturation concentration of the salt, the material 
balance equations, the implementation of the numerical solution of the equations and the 
assignment of the interpolation functions to function names, and finally the graphical output 
routines. 
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In[21]:= ""The tank parameters are:""; 
r = 2;  
Ai = N[πr2]; 
VIo = 100 Ai r; 
VIIo = 10; 
VI =. 
""These are the salt parameters""; 
ρsolvent = 1; 
ρsalt = 2; 
a = 1;  
b = 1;  
Ksp = 110-2; 
γ = 0.9; 
cIo = 10-10; 

""The mass transfer coefficient and flow rates"";
Km = 7.3 10-3;
qo = 10;
f = .05;

""This is the maximum time for the integration"";
tmax = N[2.5 103];

""These specify the exit flow the density in solution 
and the saturation concentration or solubility""; 

ft 
qex[t--] := qo (  )

1+ft
ρI[t--] := N[ρsolvent + γcI[t]]

1

csatd[a--, b--, Ksp--] := N[(a
-a b-b Ksp)a+b ]

""Set of equations to be solved"";
eqns = {

∂t(ρI[t] VI[t]) == ρsolvent qo - ρI[t] qex[t], 
VI[0] == VIo, 

∂t(cI[t] VI[t]) == Km Ai(csatd[a, b, Ksp] - cI[t]) 
- cI[t] qex[t], cI[0] == cIo, 

-Km Ai(csatd[a, b, Ksp] - cI[t])
∂t (VII[t]) == ,

ρsalt 

VII[0] == VIIo};

""Numerical solutions and assignments""; 
soln = NDSolve[

eqns,
{VI[t], VII[t], cI[t]},
{t, 0, tmax}];



P1: Thakur/Shashi

May 10, 2002 16:54 Foley foley-ch5

222 Chapter 5 Multiple Phases—Mass Transfer 

cOne[t--] := Evaluate[cI[t] /. soln[[1]]]
vOne[t--] := Evaluate[VI[t] /. soln[[1]]]
vTwo[t--] := Evaluate[VII[t] /. soln[[1]]]

General::spell1 : Possible spelling error: new symbol 
name "VIIo"is similar to existing symbol "VIo". 

General::spell1 : Possible spelling error: new symbol 
name "csatd"is similar to existing symbol "Csatd". 

General::spell1 : Possible spelling error: new symbol 
name "vOne"is similar to existing symbol "cOne". 

In[52]:= ""The graphical routines"";
θ =.

-1θ == (
qo

) ;
VIo 

Plot[{qo, qex[t]}, {t, 0, tmax}, 
PlotRange ––› {{0, tmax}, {0, qo}}, 
AxesLabel ––› {""t"", ""qex[t]""} 

]; 

qex(t,
10 

8 

6 

4 

2 

t 
500 1000 1500 2000 2500 
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In[56]:= csatd == csatd[a, b, Ksp];
Plot[N[cOne[t]], {t, 0, tmax},
PlotRange ––› {{0, tmax},
{0, Max[Table[cOne[t],

{t, 0, tmax}]]}},
AxesLabel ––› {""t"", ""CI salt[t]""}, 
PlotStyle ––› {Thickness[0.01], Dashing[{.03, .03}]}]; 

VIo/Ai; 

Plot[{VIo/Ai, ((vOne[t]/Ai) - (vOne[0]/Ai))}, {t, 0, tmax},
PlotRange ––› {{0, tmax},

{0, Max[Table[(1 + .05) ((vOne[t]/Ai) - (vOne[0]/Ai)),
{t, 0, tmax}]]}}, 
AxesLabel ––› {""t"", ""∆h[t]""}, 
PlotLabel ––› ""Rise in tank level""

];

Plot[vTwo[t], {t, 0, tmax}, 
PlotRange ––› {{0, tmax}, 
{0, Max[Table[(1 + .05) vTwo[t], {t, 0, tmax}]]}}, 
AxesLabel ––› {""t"", ""VII[t]""}, 

PlotStyle ––› {{Thickness[0.01], Dashing[{0.05, 0.05}]}}, 
Pl 

PlotLabel ––› ""Change in salt volume""
]; 

Csalt
I (t,

0.0008 

0.0006 

0.0004 

0.0002 

t 
500 1000 1500 2000 2500 
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This can now be used interactively to experiment with parameter values in order to learn how 
they affect the observed behavior of this system. There are several points that must be noted 
about this code that bear explanation. First, the initial concentration of the salt in the solution 
cIo is not taken as zero; it is set to a very low value to simulate zero at time zero. If we set 
this identically to zero, the numerical routine will come back with a complex infinity error 
because it will have divided by zero at the start of the calculation. Second, the exit flow rate 
has been made a function of the inlet concentration. This is one way to handle the problem of 
the exit flow rate. By doing it this way, the exit flow rises to the inlet flow over some period 
of time, which is parametrically dependent upon the magnitude of f. One could envision that 
a controller could be used at the exit to produce this effect. If one wishes to see what the 
solutions would look like if this were not included and if the exit flow rate instantaneously 
equaled the inlet flow rate, this is easily accomplished by letting f be large in magnitude, say 
103. The solution is remarkably stable, but this is not to say that with the right (or wrong) 
choices of parameters, it will not become numerically unstable. It certainly will, especially if 
the parameters begin to imply nonphysical conditions. The simulation has been run to times 
that are two orders of magnitude larger than the current tmax value, with Ksp at 10−1, and 
f = 1, and the only limit to going longer in time was patience. Some small instability is noted 
in the concentration of salt as a function of time when the integration is done for long times, 
at high initial volumes of solvent, and large Ksp values. The reader should experiment with 
the parameters to find cases where this type of behavior is displayed. 

5.7 Liquid-Liquid System 

Fully Continuous 
Steady State: Equilibrium Stage. Liquid-liquid extractions are used in many different 
applications from chemical production to environmental clean-up. It is possible to extract 
organics from water by contacting the water with a better solvent for the impurities, which 
is also immiscible with the water. When there are two liquid phases involved we have new 
equilibrium considerations to take into account, whereas in the case of the salt we had only 
one, the solubility, since the second phase was the pure salt. The phases will not change in 
volume within the unit that is used for contacting them. There are now two “solubilities” 
of the transferred component—one for each phase. These are better termed the equilibrium 
concentrations of the component dissolved separately in each phase. Many, if not most of 
us, have some experience with this sort of process done at the bench by organic chemists. 
The solution to be extracted is typically aqueous and contains the desired compound. This is 
added to a separatory funnel first. Then a less dense, immiscible solvent with a higher affinity 
for the target compound is added as a layer on top. This solvent’s “higher affinity” for the 
target, means that the target is more soluble in it than in water. Often, diethyl ether is used as 
this second solvent. After capping the funnel, inverting it, and opening the petcock to allow 
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Figure 5 

the ether vapor to escape, the mixture is shaken vigorously for some time. Then the funnel 
is returned to a stand and the two solvents are allowed to separate. The lighter solvent, now 
containing the target molecule, is decanted or siphoned off the top. The process is typically 
repeated three times. Then the second solvent is evaporated or reduced in volume. 

Interestingly, at the scale of a process all the same things are done, but typically con
tinuously for large scale production. Batch processes, however, can be scaled up to larger 
volumes, and this is done in processes that yield specialty chemicals or pharmaceuticals with 
high added value. We will consider the continuous process run at steady state. The physical 
situation is as shown in Figure 5. 

The denser contaminated feed is mixed with the less dense pure solvent in a contactor. 
The well-mixed stream emerges from this unit and flows into the decanter unit where the two 
phases are given enough time to fully separate. This is done continuously, so at the entrance 
of the unit the two liquids are well mixed, but by the end, they are well separated, as shown 
in the schematic. We will not worry about the internal configuration of this unit. The top 
layer is the solvent, which leaves the unit with the impurity within it. Some of this solvent is 
removed from the unit continuously, but the balance is sent back to the contactor for further 
use. The heavier stream emerges from the decanter unit with a much reduced concentration of 
impurity. The analysis of this unit calls for a detailed analysis of the subunits that make it up. 

We begin at the top of the unit with the pure solvent. The stream of solvent coming into the 
unit comes in with a density ρs and a flow rate qs. This is mixed with the recycled stream that 
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has a density ρrs, a  flow rate qrs, and an impurity concentration of Cirs. The two streams are 
mixed combined into one with a flow rate qsf, a density of ρsf, and an impurity concentration 
of Cisf. The steady-state mass balances at the mixing tee are: 

ρs qs  + ρrs qrs = ρsf qsf 

Cirs qrs = Cisf qsf 

At the contactor we have the impure heavy stream and the solvent stream being fed, and at 
the outlet the two have been mixed. The material balances for this unit are: 

ρhf qhf + ρsf qsf = ρhc qhc + ρsc qsc 

Cihf qhf + Cisf qsf = Cihc qhc + Cisc qsc 

The decanter unit has these equations associated with it. Remember that we are not concerned 
with its internals but only with the mass flows into and out of it. The mass flow in is that of the 
mixed feed from the contactor. The flows out are those of the impure solvent and the purified 
heavy stream: 

ρhc qhc + ρsc qsc = ρds qds + ρdh qdh 

Cihc qhc + Cisc qsc = Cisd qds + Cihd qdh 

Finally, the solvent stream is split with one flow back to the inlet solvent tee and the other 
flow out of the unit. The equations that describe this are: 

ρds qds = ρrs qrs + ρsp qsp 

Cisd qds = Cirs qrs + Cisp qsp 

The schematic of the flow sheet is shown once again (Figure 6) with all the streams labeled 
and with an imaginary box around the unit, which cuts all the streams that either enter or 
leave this unit. 

The box is an imaginary control surface for the unit as a whole. Despite all the details that 
we have just considered, there is one overall set of mass balances for the unit as a whole. This 
treats the unit as a so-called “black-box,” which means that even if the internal workings were 
hidden from view, we would be able to do an overall balance on the system, as shown in 
Figure 7. 

As this greatly simplifies the initial stages of this problem, it is a logical place to begin. 
From Figure 7 and the conservation of mass, we can write that: 

ρihf qhf + ρs qs  = ρdh qdh + ρsp qsp 

Cihf qhf = Cihd qdh + Cisp qsp 
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In these two equations we have a total of 14 parameters and variables. We need to reduce this 
number. How can we do this? The most crucial assumption we can make is that the unit runs at 
equilibrium. This means that the concentrations of the impurity in both liquid phases emerging 
from the unit are at equilibrium. To understand this we will pretend that the separation was 
done stepwise rather than continuously. The volume of light solvent added would be qs ∆t. 
The volume of the impure stream would be qihf ∆t. The initial concentration of the impurity 
in the heavy phase is Cihf. If the two phases are in contact, then the impurity will transfer 
spontaneously to the light phase where its affinity is higher. This transfer will occur until the 
concentrations of the impurity in the two phases are no longer changing—in other words, until 
the impurity comes to equilibrium between the two solvents. For this reason, a unit assumed 
to operate at the limit of equilibrium is referred to as an equilibrium stage, and this level of 
analysis is the equilibrium stage analysis. If the ratio of these two concentrations at equilibrium 
is a constant over a range of different concentrations, then the constant is referred to as the 
partition coefficient Kd: 

Cih, e
Kd = 

Cis, e  

If the system we are examining also comes to an equilibrium condition, then the concentra
tions of impurity in the two outlet streams are coupled: 

Cihd
Kd = 

Cisp 

It is also reasonable to expect that the densities of the contaminated streams are not too diff
erent from their pure densities, since the contaminant is usually at low concentrations: 

ρh qhf + ρs qs  = ρh qdh + ρs qsp 

1 
) 

Cihf qhf = Cihd qdh + 
Kd

qsp 

In[61]:= Simplify[Solve[{ρhqhf + ρsqs == ρhqdh + ρsqsp,
1

Cihfqhf == Cihd(qdh + qsp)}, {qdh, Cihd}]]
Kd

General::spell1 : Possible spelling error: new symbol 
name "ρs"is similar to existing symbol "ρh". 

General::spell1 : Possible spelling error: new symbol 
name "Cihd"is similar to existing symbol "Cihf". 

qhf ρh + qs  ρs - qsp  ρs 
Out[61]= {{qdh ––› ,

ρh 

Cihf Kdqhf ρh 
Cihd ––› }}

Kdqhf ρh + qspρh +  Kdqs ρs - Kdqsp  ρs 
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Thus we can show that the flow rate of heavy liquid from the unit is equal to its flow rate in 
plus a factor related to the ratios of the densities of the light and heavy liquids: 

qhf ρh + (qs − qsp)ρs ρs
qdh = = qhf + 

ρh
(qs − qsp)

ρh 

If the flow rate of the solvent is the same going in as coming out, then the flow rate of 
the heavy is the same in and out. Therefore, the concentration of the impurity in exit the 
flow is: 

Cihf Kd qhf ρh Cihf Kd qhf ρh 
( 

1 
) 

Cihd = = = Cihf 
1 + qsp(Kd qhf + qsp)ρh + Kd ρs(qs − qsp) (Kd qhf + qsp)ρh Kd qhf 

One way to use this result would be to compute the flow rate of the solvent that we would 
need in order to achieve a certain exit impurity concentration Cihd in the heavy stream, given 
Kd, the flow rate of the impure heavy feed and its impurity level Cihd. 

In[62]:= Cihd = 10-9;
Cihf = 10-4;
Kd = .01;
qhf = 100;

1
NSolve[Cihd == Cihf

1+ qsp 
), qsp]

Kdqhf

Out[66]= {{qsp ––› 99999.}}

We find that at these conditions, given that the impurity is 100× more soluble in the light 
solvent than in the heavy liquid, to reduce the concentration from 10−4 to 10−9 would require 
a solvent flow of 105 for a contaminated feed stream flow of 102. A calculation like this makes 
clear how costly cleanup can be. 

Mass Transfer Analysis: Nonequilibrium. The previous calculation was helpful from a 
global perspective, but it assumes that the two streams really do come to equilibrium with 
respect to their impurity concentrations. Will they? How can we know this? What does it 
depend upon? The equilibrium stage analysis does not involve time but is simply based 
on thermodynamics. Yet, we know that thermodynamics can, in some cases, be misleading 
because we can compute the equilibrium position correctly, but for a real process it may take 
literally eons to move to that state. In other words, for design we need to have the time and 
the rate process uppermost in our minds. Equilibrium can tell us only how well we can do 
in the limit of everything going to its fullest extent of mass transfer. We must return then to 
the analysis of the units and focus our attention on the contactor, for this is the unit where the 
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mixing and interphase mass transfer must take place. To assess how well this unit is doing, 
that is, how close the concentrations of the impurity in the exiting solvents are to equilibrium, 
we need to analyze the mass transfer rate explicitly, and especially if we are to do even a 
first-order design of this unit. 

If we recall the material balances that we wrote around the contactor, then you may well 
be wondering where the rates of mass transfer come in: 

ρhf qhf + ρsf qsf = ρhc qhc + ρsc qsc 

Cihf qhf + Cisf qsf = Cihc qhc + Cisc qsc 

The way we can answer this is to go back to our usual approach to this kind of problem and 
write the time-dependent mass balances for component i in each of the phases: 

d Cihc Vhc 
Heavy phase: = Cihf qhf − Cihc qhc − Km Ai(Cihc − Kd Cisc) 

dt
d Cisc Vsc

Solvent phase: = Cisf qsf − Cisc qsc + Km Ai(Cihc − Kd Cisc) 
dt 

Components 

i ⇒ impurity 

h ⇒ heavy phase 

s ⇒ lighter solvent phase 

f ⇒ feed 

c ⇒ contactor 

If the contactor is at steady state, the left-hand side of each equation is identically zero. Adding 
the two equations and placing the terms for the heavy phase and the light solvent phase on 
opposite sides of the equation lead to the “steady-state” material balance we had before! Now 
we can see where the rates of mass transfer come in. 

The rate of mass transfer that we introduced in this analysis requires some explanation. 
The constant Kd is the distribution coefficient for i between the two phases. Km and Ai are the 
mass transfer coefficient and the interfacial area. But what about the driving force term? Why 
is it written as the difference between the actual concentration of i in the first phase minus the 
actual concentration of i in the second phase multiplied by Kd? 

Driving force term = (Cihc − Kd Cisc) 

This happens because the driving force to transfer species i from the first phase to the second is 
dependent upon the concentration of i in the second phase. Remember the reason an impurity 
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transfers at all is that it is more soluble in the second phase. Thus, the concentration of i in 
the heavy phase may be well below its solubility limit, but it will still transfer to the second 
solvent phase because it is even farther below its solubility limit in that phase. We will put 
into words the rate of transfer of impurity from the heavy phase to the light phase: 

The rate of mass transfer of i from phase h to s is proportional to the difference 
between the actual concentration of i in phase h and the concentration of i that 
would be in equilibrium with the actual concentration of i in phase s. 

If we try to put this into a mathematical sentence, it would look something like this: 

ri,h→s = Km Ai(Cihc − Cihc,e[Cisc]) 

where Cihc,e[Cisc] means the concentration of i that would be in equilibrium with the actual 
concentration of i in phase s, that is, the theoretical concentration of i is a function of the 
concentration of i in the light solvent phase. However, that concentration is calculable from 
the partition constant: 

Cihc,e[Cisc] = Kd Cisc 

∴ ri,h→s = Km Ai(Cihc − Kd Cisc) 

We could repeat the same arguments for the rate of transfer of i from the light solvent phase 
s to the heavy phase h and we would get the same expression, except that it would be the 
negative of the first: 

ri,s→h = −Km Ai(Cihc − Kd Cisc) 

This is because any mass that appears in the second phase had to leave the first phase and 
it must appear in the second phase at the same absolute rate that it disappears from the first 
phase. 

We can simplify these two equations by recognizing that the mass transferred between 
the two phases does not significantly affect the density of either phase nor its volume flow 
rate: 

d Cihc Km Ai 
h, Heavy phase: = (Cihf − Cihc) 

qhc − (Cihc − Kd Cisc) 
dt Vhc Vhc 

d Cisc 
s, Solvent phase: = (Cisf − Cisc) 

qsc + Km Ai
(Cihc − Kd Cisc) 

dt Vsc Vsc 

These two equations are nicely soluble, but before we solve them we should discuss them 
further. Notice that the convective flow rates are divided by the volumes of each phase. 
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These two terms are the reciprocal holding times for the two phases in the contactor, θ−1 
hc 

and θ−1. The coefficients of the two driving force terms are the ratios of the product of the sc 
mass transfer coefficient and the interfacial area to the volume of the phase. Recalling that Km 
has dimensions of Length , we can see that this group is also an inverse time constant, but now time 
this is a reciprocal characteristic time for mass transfer τ−1. If we multiply through on both 
sides by the holding time we obtain: 

d Cihc θhch, Heavy phase: θhc = (Cihf − Cihc) − 
τ hc

(Cihc − Kd Cisc) 
dt 

s, Solvent phase: θsc 
d Cisc = (Cisf − Cisc) + θsc (Cihc − Kd Cisc) 

dt τ sc 

We could go one more step and refer all the concentrations to the inlet concentration of the 
impurity in the heavy feed Cihf, which is a constant. If we do this we would be dividing both 
sides of both equations by this quantity to give the nondimensionalized concentrations X: 

d Xihc θhch, Heavy phase: θhc = (1 − Xihc) − 
τ hc

(Xihc − Kd Xisc) 
dt 

s, Solvent phase: θsc 
dXisc = (Xisf − Xisc) + θsc (Xihc − Kd Xisc) 

dt τ sc 

Finally, we can see that the time constants can also be used in the same way; we can multiply 
the second equation on both sides by θhc and then reexpress both time derivatives in terms of 

θhc 

the reduced time, that is, the ratio of real time to holding time: 

d Xihc θhch, Heavy phase: θhc = (1 − Xihc) − 
τ hc

(Xihc − Kd Xisc) 
dt 

θhc d Xisc 
s, Solvent phase: θsc = (Xisf − Xisc) + θsc (Xihc − Kd Xisc) 

θhc dt τ sc 

d Xihc θhch, Heavy phase: = (1 − Xihc) − 
τ hc

(Xihc − Kd Xisc) 
dθ 

θsc d Xisc 
s, Solvent phase: = (Xisf − Xisc) + θsc (Xihc − Kd Xisc) 

θhc dθ τ sc 

d Xisc = (Xisf − Xisc) + θhc (Xihc − Kd Xisc) 
dθ τ sc 

Now we can obtain a general solution for this prototypical case, which can be used for specific 
cases simply by computing the time constants from the parameters or vice versa. The code for 
solving these analytically is shown here: 
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In[67]:= Remove[τhc, τsc, Xisf, Kd, θhc] 

sol = Flatten[
Simplify[
DSolve[

θhc
{∂θ Xihc[θ] == (1-Xihc[θ]) - (Xihc[θ] - Kd Xisc[θ]),

τhc 
θhc 

∂θ Xisc[θ]==(Xisf-Xisc[θ])+ (Xihc[θ]-Kd Xisc[θ]),
τsc

Xihc[0]==0, Xisc[0]==0},
{Xihc[θ], Xisc[θ]},
θ]

]
];

xihc[θ--] := sol[[1, 2]]
xisc[θ--] := sol[[2, 2]]

xihc[θ] // FullSimplify
xisc[θ] // FullSimplify

General::spell1 : Possible spelling error: new symbol 
name "τsc"is similar to existing symbol "τhc". 

General::spell1 : Possible spelling error: new symbol 
name "θhc is similar to existing symbol "τhc". 

General::spell1 : Possible spelling error: new symbol 
name "τhc"is similar to existing symbol "θhc". 

General::spell1 : Possible spelling error: new symbol 
name "Xisc"is similar to existing symbol "Xihc". 

General::spell1 : Possible spelling error: new symbol 
name "Xisf"is similar to existing symbol "Xisc". 

General::stop : Further output of General::spell1
will be suppressed during this calculation.

General::spell1 : Possible spelling error: new symbol 
name "xihc"is similar to existing symbol "Xihc". 

General::spell : Possible spelling error: new symbol 
name "xisc"is similar to existing symbols {xihc, Xisc}. 

+ Kd-θ(1+ θ hc( 1 2Out[71]= ( τhc τsc ))(-1 + Kd Xisf) τhc τsc
+ -θ( θ τhc τsc2 + (-1 + θ)Kd2 θhc τhc (τhc + Xisf τsc) 
1 

+ (-1+ θ) Kd  τsc(2θhc(τhc + Xisf τsc)
2

+ τhc(2 τhc + (1+ θ) Xisf τsc))) - Kd Xisf τhc τsc2 Cosh[θ])/ 
((Kd τhc + τsc)(Kd θhc τhc + (θhc + τhc)τsc)) 



P1: Thakur/Shashi

May 10, 2002 16:54 Foley foley-ch5

5.7 Liquid-Liquid System 235 

Kd
τ hcOut[72]= (- -θ(1+θhc( 1 +

τ sc ))(-1 + Kd Xisf) τ hc2 τ sc
- -θ (τ hc + Xisf τ sc)(Kd θhc τ hc + (θhc + τ hc) τ sc) 
+(Kd τ hc + τ sc)(θhc τ hc + Xisf (θhc + τ hc) τ sc))/ 
((Kd τ hc + τ sc)(Kd θhc τhc + (θhc + τ hc) τ sc)) 

We can get a feel for these solutions by making some guesses as to the parameters. Let τ sc be 
unity and τhc be 10−3 assuming based on the batch calculation we did earlier that we need 
about three orders of magnitude more solvent than feed. The magnitude of Xisf should be 
<1, and we can say that it may be as small as 10−2 or two orders of magnitude below the 
concentration of the impurity in the feed. It is also necessary to include the magnitude of Kd. 
The value we used earlier was 10−2; we can use this again. The really difficult parameter to 
estimate is θhc, the holding time in the unit. We can test different values for this parameter to 
see its effect. The way we do it is to vary it by orders of magnitude, that is 10n . 

If we do this directly, it gets kind of sloppy after a few cases and we get annoying error 
messages about the choice of variable names that are somewhat too similar for Mathematica’s 
checker to be silent. A better way then to do this sort of calculation repetitively is to write 
a function call using “Module.” The only variable we care about varying at this point is n, 
the exponent on 10 that sets the order of magnitude for the heavy liquid holding time in the 
unit. Therefore, we write one Module for each of the dimensionless concentrations. The first, 
ifromh[n], is for  xihc, the fraction of i left in h after contacting with s. The second, itos[n], is  
xisc, which is the ratio of the concentration of i in s to the original concentration of i in h: 

In[73]:= ?? NumberForm

NumberForm[expr, n] prints with approximate real numbers
in expr given to n-digit precision.

Attributes[NumberForm] = {Protected}

Options[NumberForm] = {DigitBlock ––› ∞, 
ExponentFunction ––› Automatic, ExponentStep ––› 1, 
NumberFormat ––› Automatic, NumberMultiplier ––›×, 
NumberPadding ––› {,}, NumberPoint ––›., 
NumberSeparator ––› ,, NumberSigns ––› {-,}, 
SignPadding ––› False} 

In[74]:= NumberForm[3.12256, 3]

Out[74]//NumberForm=
3.12

In[75]:= ifromh[n--] := Module[ 
{τhc = 10-3, τsc = 100, Xisf = 10-2, Kd = 10-2, 
pl1, pl2}, 

θhc = N[10n]; 
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+ Kd 2τhc τscxihc[θ--] := (  -θ(1+θhc( 
1 )) (-1 + Kd Xisf) τhc τsc

+ -θ( θτhc τsc2 +(-1 + θ)Kd2 θhc τhc (τhc + Xisf τsc) 

1
+ (-1 + θ)Kd τsc(2 θhc(τhc + Xisf τsc)

2
+ τhc(2 τhc + (1 + θ) Xisf τsc)))
- Kd Xisf τhc τsc2 Cosh[θ])/
((Kdτhc + τsc)(Kd θhc τhc + (θhc + τhc) τsc));

pl1 = Plot[{xihc[θ]}, {θ, 0, 10  θhc}, 
PlotStyle ––› Thickness[0.01], 

AxesLabel ––› {""θ"", ""xihc[θ]""}, 
PlotLabel ––› StyleForm[""θhc ="", 

NumberForm[θhc, 2], FontSize ––› 10], 
PlotRange ––› All] 

] 

In[76]:= itos[n--] := Module[ 
{τhc = 10-3, τsc = 100, Xisf = 10-2, Kd = 10-2, 
pl1, pl2}, 

θhc = N[10n]; 

+ Kd-θ(1+θhc( 1 xisc[θ--] := (- τhc τsc ))(-1 + Kd Xisf) τhc2τsc 
- -θ(τhc + Xisf τsc)(Kd θhc τhc + (θhc + τhc) τsc) 
+(Kd τhc + τsc)(θhc τhc + Xisf (θhc + τhc) τsc))/ 
((Kd τhc + τsc)(Kd θhc τhc + (θhc + τhc) τsc)); 

pl2 = Plot[{xisc[θ]}, {θ, 0, 10θhc}, 
PlotStyle ––› {{Thickness[0.01], 

Dashing[{0.05, 0.05}]}}, 
AxesLabel ––› {""θ"", ""xisc[θ]""}, 

PlotLabel ––› 
StyleForm[""θhc =""NumberForm[θhc, 2], 
FontSize ––› 10], PlotRange ––› All] 

]

We can see how the two Module functions work by choosing a value of n, say, unity, and 
testing them: 

In[77]:= ifromh[.5];
itos[.5];
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xihc(G,
Ghc � 3.2 

5 10 15 20 25 30 
G

0.0001 

0.0002 

0.0003 

0.0004 

xisc(G,
Ghc � 3.2 

G

0.002 

0.004 

0.006 

0.008 
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Within the Module functions we could have placed a semicolon “;” after the Plot commands. 
This would have allowed the graphs to be rendered, but the output “Graphics” would have 
been lost. We need the “Graphics” in order to plot arrays of these two functions with varying 
values of n. Therefore, we have left the semicolon out of the Modules. We can now use these 
in arrays and stacks. 

We can place the two new functions we have written in a Table and let n vary from −1 to 1  
in order to see how the two ratioed concentrations vary with decade increases in the holding 
time of the heavy stream: 

In[79]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 10}]; 

In[80]:= Table[{ifromh[n], itos[n]}, {n, -1, .5, .5}];

xihc(G,
Ghc � 0.1 

0.2 0.4 0.6 0.8 1 
G

0.002 

0.004 

0.006 

0.008 

0.01 
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xisc(G,
Ghc � 0.1 

0.2 0.4 0.6 0.8 1 
G
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0.002 
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xihc(G,
Ghc � 0.32 

0.5 1 1.5 2 2.5 3 
G

0.0005 

0.001 

0.0015 

0.002 

0.0025 

0.003 
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xisc(G,
Ghc � 0.32 
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xisc(G,
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xisc(G,
Ghc � 3.2 

5 10 15 20 25 30 
G
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0.008 
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Now these can be assembled into a GraphicsArray within the Show command for a more 
pleasing presentation of the changes: 

In[81]:= Show[GraphicsArray[%]];

xihc(G, Ghc � 0.1 xisc(G, Ghc � 0.1 
0.007 
0.006 
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0.008 
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0.006 0.004 
0.0030.004 
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0.002 0.001 
G G

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 

xihc(G, Ghc � 0.32 xisc(G, Ghc � 0.32 

0.010.003 
0.0025 0.008
0.002 0.006 

0.0015 
0.004

0.001 
0.0020.0005 

G G
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 

1 
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xihc(G, Ghc � 1. xisc(G, Ghc � 1. 
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0.0080.0008 
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G G
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xihc(G, Ghc � 3.2 xisc(G, Ghc � 3.2 

0.0004 0.01

0.0003 0.008 

0.006
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0.004 
0.0001 0.002 

G G
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If after seeing this GraphicsArray, we realize that we prefer this type of presentation, then we 
might be tempted to place the Table command that generates the Graphics directly into the 
Show[GraphicsArray[ ]] statement, but this would not do what we want. It would give us 
the standard output of the individual Graphics and then the array. If we want only the array 
we need to go back and modify the Module functions so that the rendering of the graphs 
is delayed until we call for them. We do this with DisplayGraphics → Identity in the Plot 
commands: 

In[82]:= ifromh[n--] := Module[ 
{τhc = 10-3, τsc = 100, Xisf = 10-2, Kd = 10-2, 
pl1, pl2}, 

θhc = N[10n]; 

θ((1 + θ)τhc τsc + Kd θ θhc(τhc + Xisf τsc))
xihc[θ--]:= ;

(1 + θ)(Kdθ θhc τhc + (τhc + θ(θhc + τhc)) τsc)

pl1 = Plot[{xihc[θ]}, {θ, 0, 10θhc}, 
PlotRange ––› All, 
PlotStyle ––› Thickness[0.01], 
AxesLabel ––› {""θ"", ""xihc[θ]""}, 
PlotLabel ––› StyleForm[""θhc =""
NumberForm[θhc, 2], FontSize ––› 10], 

DisplayFunction ––› Identity] 
] 
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In[83]:= itos[n--] := Module[ 
{τhc = 10-3, τsc = 100, Xisf = 10-2, Kd = 10-2, 
pl1, pl2}, 

θhc = N[10n]; 

θ(Xisf τhc τsc+θ(Xisf τhc τsc+θhc(τhc+ Xisf τsc)))
xisc[θ--]:= ;

(1+θ)(Kdθ θhc τhc+(τhc+θ(θhc+ τhc))τsc) 

pl2 = Plot[{xisc[θ]}, {θ, 0, 10θhc}, 
PlotRange ––› All, 
PlotStyle ––› {{Thickness[0.01], 
Dashing[{0.05, 0.05}]}}, 

AxesLabel ––› {""θ"", ""xisc[θ]""}, 
PlotLabel ––› StyleForm[""θhc =""
NumberForm[θhc, 2], FontSize ––› 10], 

DisplayFunction ––› Identity] 
] 

When we run the Module functions in this form, we obtain just the Graphics output without 
the rendering. This can now be placed directly inside the Show[GraphicsArray[ ]] command: 

In[84]:= Table[{ifromh[n], itos[n]}, {n, -1, 1}]

Out[84]= {{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-},
{-Graphics-, -Graphics-}}

In[85]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 10}]; 

In[86]:= Show[GraphicsArray[Table[{ifromh[n], itos[n]},
{n, -1, 1}]]];

xihc(G, Ghc � 0.1 xisc(G, Ghc � 0.1 
0.01 
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0.008 

0.004 
0.006 0.003 
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G G
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 
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xihc(G, Ghc � 1. xisc(G, Ghc � 1. 
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Using these ideas in tandem we can examine the effect of the holding time of the heavy feed 
in the contactor over a range of 106 as shown here: 

In[87]:= Table[{ifromh[n], itos[n]}, {n, -2, 4}];
Show[GraphicsArray[%]];

NumberForm::sigz : In addition to the number of digits
requested, one or more zeros will appear as placeholders.

NumberForm::sigz : In addition to the number of digits
requested, one or more zeros will appear as placeholders.

NumberForm::sigz : In addition to the number of digits
requested, one or more zeros will appear as placeholders.

General::stop : Further output of NumberForm::sigz
will be suppressed during this calculation.
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xisc[G ] Ghc � 100. 
xihc[G] Ghc � 100. 
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Recall that the θ-axis in these graphs is the reduced time, that is, the real time ratioed to the 
holding time. (Note: In the last six graphs the time axis is too compressed and the time labels 
are too close together. This could be overcome by splitting the first set of outputs from the 
second with two function calls and appropriately different plotting options.) We notice in the 
first case with a short holding time of 0.01 that the unit has not yet reached a steady state even 
after 10 holding times have passed. In the cases that follow, 10 holding times are more than 
enough time to ensure that a steady state has been derived. When we look at the data, we can 
see that the impurity levels are much reduced in the heavy stream as it exits the reactor. Even 
in the first case, at 10 holding times, the concentration is ∼5% of that of the inlet stream. As we 



P1: Thakur/Shashi

May 10, 2002 16:54 Foley foley-ch5

248 Chapter 5 Multiple Phases—Mass Transfer 

increase the holding times by factors of 10, we see that the picture improves; in fact, we notice 
that the fractional concentration of the impurity at steady state decreases by a factor of 10 for 
every factor of 10 increase in the holding time. Remember that holding time is just the ratio 
of the volume of the impure stream to its volume flow rate through the unit. Increasing the 
holding time at a fixed flow rate is the same as increasing the volume of the impure feed in the 
unit, or in other words the same as making the unit bigger. This way a larger contactor unit 
gives a larger holding time and more effective transfer of the impurity to the extracting solvent 
phase. Depending upon how far below the inlet feed concentration the exit concentration of 
impurity needs to be, we would use this calculation to find the volume of the system required. 
Keeping everything else the same, reducing the concentration by a factor of 106 between exit 
and inlet would require a much larger unit than the unit that would reduce this by only a 
factor of 10. 

We will come back to this overall unit scheme later in our studies when we seek to write 
models for a group of units. For now we can use the knowledge we have gained here by 
applying it to some other seemingly different systems that are actually quite similar at the 
level of analysis. 

5.8 Summary 
Now that we have seen how mass moves between phases and those factors that control the 
rate of this process, we can bore in at the molecular level on mass action, especially adsorption. 
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6.1 Adsorption 

Net Rate of Adsorption 
Adsorption is a fundamental process of separation that is practiced for different purposes; 
removal of volatile organics contaminants (VOCs) from air is one, removal of water vapor 
from nitrogen is another. Hydrogen purification, that is, removing trace quantities of hydro-
carbons, is important, especially for applications in electronics fabrication processes (such as 
metal organic chemical vapor deposition (MOCVD)), which require “ten nines” and better 
purity (that is less than one part impurity in 109 parts of the gas!). Although adsorption will 
not give this level of purification, it is one of the methods that can be used in the process of 
producing such high purity hydrogen. Diffusion of hydrogen through a palladium membrane 
gives the highest attainable purity, as hydrogen and only hydrogen can be transported through 
the metal. We will cover permeation after we examine adsorption. 

Although we include adsorption here following the chapter on mass transfer, we should 
be clear that it is a very specific process in its fullest fundamental meaning. Adsorption is 
the process by which molecules in the fluid phase in contact with a solid move to the solid 
surface and interact with it. Once at the solid surface these molecules may be reversible or 
irreversible adsorbed, that is, they may come back off the surface to the fluid phase with their 
full molecular integrity intact, or they may be so strongly bound that the rate of removal is for 
all purposes close enough to zero to be considered zero. 

249 
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When the discussion turns to removal of some component from a fluid stream by a high 
surface area porous solid, such as silica gel, which is found in many consumer products (often 
in a small packet and sometimes in the product itself), then the term “adsorption” becomes 
more global and hence ambiguous. The reason for this ironically is that mass transfer may be 
convoluted with adsorption. In other words the component to be adsorbed must move from 
the bulk gas phase to the near vicinity of the adsorbent particle, and this is termed external 
mass transfer. From the near external surface region, the component must now be transported 
through the pore space of the particles. This is called internal mass transfer because it is within 
the particle. Finally, from the fluid phase within the pores, the component must be adsorbed 
by the surface in order to be removed from the gas. Any of these processes, external, internal, 
or adsorption, can, in principle, be the slowest step and therefore the process that controls the 
observed rate. Most often it is not the adsorption that is slow; in fact, this step usually comes 
to equilibrium quickly (after all just think of how fast frost forms on a beer mug taken from 
the freezer on a humid summer afternoon). More typically it is the internal mass transport 
process that is rate limiting. This, however, is lumped with the true adsorption process and 
the overall rate is called “adsorption.” We will avoid this problem and focus on adsorption 
alone as if it were the rate-controlling process so that we may understand this fundamentally. 

True adsorption is a “mass action” process rather than a mass transfer process. What this 
means is that it will occur even in the absence of a concentration gradient between the bulk 
gas and the surface. It comes about due to the rapid and chaotic motion of the fluid phase 
molecules, and their impingement on the surface. From the elementary kinetic theory of an 
ideal gas we can compute the number of molecules impinging upon a surface per unit time 
per unit area at a given temperature and pressure. It is: 

Number Molecules 
area time 

= 1 
4 

CL ̄v = 1 
4 

√ 
8RT 

πMW 
PL 
RT 

= PL 

√ 
1 

2π RTMW 
= P √ 

2π RTMW 

Hence the number of molecules hitting the surface per unit time per unit area is a flux. Also, 
it is proportional to the pressure of the gas and the mean speed of the gas molecules and to 
T− 1 

2 . At room temperature and pressure the impingement frequency of nitrogen is: 

8RT PL
In[1]:= 1

4 == NumberForm[
π MW RT 

PowerExpand[
2gcm

2s
.8atm 6.021023mole-1 √ 88.314107 Joule 300 K 

N[ √ mole K Joule 

Latm g4 1000cm3 0.08205 300 K π 28 mole 
]],2] 

L mole K

PL RT 
2.3 × 1023MW

Out[1]= √ == 
2π RT cm2s 
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Thus, nearly one-third of a mole of nitrogen molecules strikes every square centimeter every 
second. No wonder the time to equilibration of adsorption is so fast! 

Irving Langmuir, the Nobel prize-winning industrial physical chemist who worked at 
General Electric, built an elegant structure upon this foundation in kinetic theory. He reasoned 
that not every molecule would adsorb, but only some would do so. Furthermore, one reason 
for this was that to be adsorbed there should be a site for adsorption to occur. It stands to 
reason then that on the basis of mass action, the rate of adsorption should be proportional to 
the concentration of molecules in the gas phase and to the number of sites available on the 
surface. Additionally, the rate should be related at any time to the number of sites not covered 
at that time rather than to the total number of sites present per unit area. Conversely, and again 
by the principle of mass action, the rate of desorption should be proportional to the number 
of sites currently occupied at that time. Using ka and kd as the proportionality constants (that 
we will call the rate constant for adsorption and desorption, respectively), we can write the 
net rate of adsorption for gas phase species i as the difference between the rate of adsorption 
and the rate of desorption: 

ratei,ads,net = kaiCig(Ci−site,total − Ci−sites,occupied by i ) − kd,sCi−sites,occupied by i 

All the sites are assumed to be identical, and the adsorption at one side does not affect that 
at another site, that is, they interact with the gas phase independently. In addition to the two 
rate constants the term Ci−site,total is also a constant and is the number of sites available on the 
solid per unit area. This raises another point: if this and the concentration of occupied sites 
are written on a per unit area basis, and the gas phase concentration Cig is written on a per 
unit volume basis, then what are the dimensions of the rate constant? 

The net rate of adsorption is the number or moles of molecules adsorbed per unit area per 
unit time, where the area is the area made available for adsorption by a given mass or volume 
of the adsorbent solid. Therefore, the two rates on the right-hand side must also be moles per 
unit area-time. This means that the rate constants must be dimensioned as follows: 

][ ]) [ ]([
mole 

[ 
length3 mole 

]([ 
mole 1 mole 

]) 
= −

length2 time mole time length3 length2 time length2 

These dimensions (bold) are what we expect from mass action kinetics for a second-order and 
for a first-order rate constant. 

Consider now an adsorbent that offers little or no resistance to mass transfer because it is 
“macroporous.” This means that the pores within the solid are large (macro), that is, greater 
than 20 nm in diameter or width, and that transport of small molecules (0.2 nm) is unhindered 
and takes place as if they were in the bulk phase surrounding the solid. This means that the 
bulk gas phase concentration is the same in the pore spaces within the solid as it is outside 
the solid. 

If the gas around the adsorbent solid occupies some fraction ε of a volume V, and if this 
volume contains an adsorbing gas i, then the rate of adsorption of the gas onto the adsorbent 



P1:

May 10, 2002 16:57 Foley Foley-C06

252 Chapter 6 Adsorption and Permeation 

and the rate of depletion of that species from the gas phase are coupled batch processes. The 
component mass balances for the gas and solid phases are as follows: 

Gas phase: 
dCi,gεV = −(1 − ε)ratei,ads,net As ρsV 

dt 
dCi,s(1 − ε) AtotSolid phase: = (1 − ε)ratei,ads,net As ρsV 

dt 

mole i
Ci,g = 

volume 
gas phase 

∈ = void fraction in the bed of solid and gas 
mole i

Ci,s = surface phase 
area 

V = total volume occupied by solid and gas 

Atot = As ρs V = Length2 

ratei,ads,net = net rate of adsorption of i on solid 
2cm Length2 

As = , 
g mass

g mass
ρs = 

cm3 , Length3 

When rearranged and written with the explicit rate of adsorption these become: 

Gas phase: 
dCi,g 

dt 
= − (1 − ε) 

ε 
(ka Ci,g(Ci,s,tot − Ci,s) − kd,sCi,s) As ρs V 

dCi,s Solid phase: (ka , Ci,g(Ci,s,tot − Ci,s) − kd,sCi,s)=
dt 

There are two types of experiments suggested by these equations and that actually are done to 
obtain the rate constants for adsorption of a species i on a given adsorbent. The first experiment 
is done gravimetrically. The adsorbent is placed in small container suspended from a balance 
and inside an evacuable enclosure. After heating under dynamic vacuum to remove any 
water or other adsorbates, the sample is cooled to the experimental temperature, and then 
the adsorbate is admitted in such a way that its pressure remains constant throughout the 
course of the experiment. This is done either by constant delivery or by connection to a large 
ballast volume of the adsorbate gas. The mass uptake is measured as a function of time. The 
parameters Cistot and As are typically known from separate measurements. Thus only kaVs 
and kd need to be fitted to the data, either in differential or integral form. To fit to the integral 
form, we need the expression for mass adsorbed per time. Hence we need to integrate the 
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mass balance for the adsorbate over time: 

dCi,s = (ka Ci,g(Ci,s,tot − Ci,s) − kd,sCi,s )dt
d

Ci,s(1 − ε)Vρs As Mwi = (ka Ci,g(Ci,s,tot − Ci,s) − kd,sCi,s)(1 − ε)ρs AsV Mwi 
dt 

dmi,s = (ka Ci,g(Ci,s,tot(1 − ε)ρs As V Mwi − mi,s) − kd,smi,s)
dt

dmi,s = ka Ci,g(mi,s,tot − mi,s ) − kd,smi,sdt 
where mi,s,tot = Ci,s,tot(1 − ε)ρs As V Mwi 

This concentration of i in the gas phase is a constant, which makes this equation simple to 
integrate: 

In[2]:= Simplify[DSolve[ 

{∂tmis[t] == kaCig(mistot - mis[t]) - kd mis[t], mis[0] == 0}, 

mis[t], t]] 

Out[2]= {{mis[t] ––› -
Cig(-1 + -(Cigka+kd)t)kamistot 

Cigka + kd 
}} 

We can put some realistic numbers into this equation to see how it would behave. We can 
take ∈ to be 0.4, which is a reasonable number for a packed bed of particles. The area per unit 
volume can be taken as 100 m2 per g (∼106 cm2 per g), the density of the solid is on the order 
of  1 g cm−3, and the number of sites per unit area Ni,s,tot is on the order of 1014 per cm2, making 
Ci,s,tot ∼ 10−9 mole sites cm2. (On a perfect surface there are ∼1015 per atoms cm2, so we have 
taken 10% of this value as the number of sites, which corresponds to one site in every 1 nm2. 
Finally, the mass concentration of the adsorbate (if the latter is ideal) is Pi MW i . We use theseRT 
numbers and a value of ka, which is one order of magnitude larger than kd. If the system 
were to come to equilibrium, then the mass uptake would go to zero. This would be the same 
when rate of adsorption is balanced exactly by the rate of desorption. We can compute the 
mass of i on the solid when this occurs as follows: 

dmi,s = 0 = ka Ci,g(mi,s,tot − mi,s) − kd,smi,sdt 

In[3]:= Clear[mistot, miseq, ka, kd, Cg]
Solve[kaCg(mistot - miseq) - kd miseq == 0, miseq]

Cgkamistot
Out[4]= {{miseq ––› }}

Cgka + kd
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The full time-dependent solution comes from the solution of the material balance equation. 
Both solutions are presented here: 

In[5]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[6]:= ""The expression on the right needs to be 
divided by grams to make it dimensionless for plotting""; 

-(Cgka + kd)t)kamistot/gCg(-1 +
mis[t--] := N[- ]

Cgka + kd
3cm

ka = 102 ;
mole

kd = .001;
pi = 1 atm;

g
Mwi = 100 ;

mole
T = 300 K;

cm3atm
R = 82.05 ;

mole K
pi

Cg = ;
RT

ε = 0.4;
V = 1cm3;
ρs = 2.5 gcm-3;

2 -1As = 106cm g ;
Vs = 10cm3;

1 mole-2Cistot = 1014cm ;
6.021023

tmax = 1000;
mistot = (1 - ε)CistotV Asρs Mwi;

""In the following two expressions 
the unit of mass needs to be eliminated for plotting""; 

Cgkamistot 1000
miseq = ;

(Cgka + kd)g ρsV/g 

mis[t]1000
Plot[ , {t, 0, tmax},

ρs V/g  

AxesLabel ––› {""t/s"",""
mg

""}, 
g

Epilog ––› {Thickness[0.01], Dashing[{0.05, 0.05}],
GrayLevel[0.6], Line[{{0, miseq}, {tmax, miseq}}]}

];
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In this case, the equilibrium is reached at a modest level of 8 mg of adsorbate per gram of 
adsorbent, which is a low level of adsorption. Higher values would be on the order of 80 mg 
per gram. 

A different experiment that appears to be simple is to expose the adsorbent to a volume 
of gas and then measure the pressure change as a function of time. This has the same aim as 
the procedure we just analyzed but it is much more complex. A brief analysis will show us 
why. Let Vo be the volume that is occupied by the gas at a known pressure and temperature. 
Once the two volumes are connected, the total volume of the system is Vtot = εV + Vo on 
the basis of a solid that was space occupying but not adsorbing. The initial pressure P1, after 
opening a valve between the two, is given by: 

Po VoPo Vo = P1(εV + Vo ) =⇒ P1 = 
(εV + Vo ) 

Is this the correct initial pressure to use? Or should we account for the internal void of the 
adsorbent as well when we compute the initial pressure. To do so would lead to one more 
term in volume, namely, that of the void fraction within the solid. This is not the void between 
the solid particles, but that which is within the solid particles. If the mass of the particles is ms 

msand their density is ρs, then the volume of the particles is Vp = 
ρs , and if the fraction that is 

unoccupied by solid is ξ , then this extra volume is ξ Vp = ξms . The corrected initial pressure 
ρs 

would be: 

Po VoPo Vo = P1(εV + Vo + ξVp) =⇒ P1 = 
(εV + Vo + ξVp) 
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Assuming that we can compute a reasonable initial pressure, then the pressure is measured as 
a function of time and the data would be fitted either to the differential or integral expressions 
from these equations: 

dCi,g (1 − ε)= − (ka Ci,g(Ci,s,tot − Ci,s) − kd,sCi,s) Asρs V 
dt ε 

d Pi (1 − ε)= − (ka Pi (Ci,s,tot − Ci,s ) − kd,sRT Ci,s) As ρsV 
dt ε 

dCi,sRT = ka Pi (Ci,s,tot − Ci,s) − kd,s RT Ci,sdt 

These equations appear to be very similar to those we have just seen, and hence they seem to be 
simple. In fact they are not simple because the pressure of the gas is a function of time as is the 
concentration on the surface. The previous experiment has the advantage of being designed 
around an analysis that was simple to carry out and solve for an analytical expression. We can 
solve these two equations using Mathematica, but the closed-form solutions are anything but 
straightforward. To see this run the DSolve code: 

In[26]:= Clear[ka, kd, p, c, Cstot, As, ρs, V] 

Simplify[DSolve[
{∂tp[t] == -(kap[t](Cstot - c[t]) - kdc[t])AsρsV, 
∂tc[t] == (kap[t](Cstot - c[t]) - kdc[t]), 
p[0] == P1, 
c[0] == 0}, 

{p[t], c[t]}, t]]

General::spell1 : Possible spelling error: new symbol name 
"Cstot" is similar to existing symbol "Cistot". 

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

1
Out[27]= {c[t] ––›

(2Aska Vρs 

(kd + ka(P1 + AsCstot Vρs) 

+ -kd2 -ka2(P1- AsCstot Vρs)2 -2kakd(P1 + AsCstot Vρs) 

1
Tan[ t -kd2 -ka2(P1- AsCstot Vρs)2 -2kakd(P1+ AsCstot Vρs)

2
√ 
Cstot 

√ 
P1 (kd+ka P1+ AsCstotka Vρs)2 

AsCstotka2P1Vρs 
- ArcTan[√ ]]), 

kd2 +ka2(P1- As Cstot Vρs)2 +2kakd(P1+ AsCstot Vρs)- Aska2Vρs 
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1
c[t] ––›

(2Aska Vρs 

(kd + ka(P1 + AsCstot Vρs) 

+ -kd2 -ka2(P1- AsCstot Vρs)2 -2ka kd(P1+ AsCstot Vρs) 

Tan[

1
t -kd2 -ka2(P1- AsCstot Vρs)2 -2kakd(P1+ AsCstot Vρs)

2
√ √ 
Cstot P1 (kd+ ka P1+ AsCstotka Vρs)2 

AsCstotka2P1Vρs 
+ ArcTan[√ ]]), 

kd2 + ka2(P1- AsCstot Vρs)2 +2kakd(P1+ AsCstot Vρs)- Aska2Vρs 

1
p[t] ––› 

2ka

(kd - kaP1 + AsCstotKa Vρs 

+ -kd2 -ka2(P1- AsCstot Vρs)2 -2kakd(P1+ AsCstot Vρs) 

Tan[

1 √ 
t -kd2 -ka2(P1- AsCstot Vρs)2 -2ka kd(P1+ AsCstot Vρ s)

2
√ 
Cstot 

√ 
P1 (kd+ka P1+ AsCstotka Vρs)2 

AsCstotka2P1Vρs
- ArcTan[√ ]]),

kd2 +ka2(P1- AsCstot Vρ s)2 +2kakd(P1+ AsCstot Vρs)- Aska2 Vρs 

1
p[t] → 

2ka

(kd - kaP1 + AsCstot Vρs) 

+ -kd2 -ka2(P1- AsCstot Vρs)2 -2kakd(P1+ AsCstot Vρs) 

Tan[

1
t -kd2 -ka2(P1- AsCstot Vρs)2 -2kakd(P1+ AsCstot Vρs)

2
√ √ 
Cstot P1 (kd+ka P1+ AsCstotka Vρs)2 

AsCstotka2P1Vρs 
+ ArcTan[√ ]])} 

kd2 +ka2(P1- AsCstot Vρs)2 +2kakd(P1+ AsCstot Vρs)- Aska2 Vρs 

As we can see from these solutions this is anything but a simple experiment. This is a 
good illustration of how the analysis can be used to define and indeed to design the ex
periment. 
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Semicontinuous Adsorption: Pseudo-Steady State 
From the experimental point of view there is one more experiment that can be done to ob
tain adsorption rate parameters and this is the use of a semicontinuous approach. Here the 
adsorbate is fed at a mass flow rate that is equal to the rate of adsorption, and a very sen
sitive pressure transducer is slaved to a mass flow controller for the adsorbate. As this gas 
is adsorbed, and were there no flow into the system, the pressure would drop. This would 
lead to the complexities we have just analyzed. If, however, the mass flow controller is slaved 
in such a way that it opens whenever there is a slight δP of pressure drop below the fixed 
experimental pressure set point, then the pressure can be maintained as a constant. The mass 
flow rate into the system is the same as the mass rate of adsorption “out” of the gas phase and 
“onto” the adsorbent phase II. 

The analysis of this experiment begins with a slightly modified version of the equations 
we have seen: 

Gas phase: 
dCi,g ε V = Ci,gq − (1 − ε)ratei,ads,net Asρs V 

dt 

Solid phase: 
dCi,s(1 − ε) Atot = (1 − ε)ratei,ads,net As ρsV 

dt 

The gas phase balance includes a convective flow term for the mass flow of species i into the 
system. The pressure would rise were it not for the rate of adsorption, that is, the process that 
removes i from the gas phase and locates it in the second phase, the adsorbent. Now we can 
make progress in the analysis even before we substitute in the rate expression. The reason is 
this: in the experiment the rate of adsorption must be equal to the rate of delivery. Therefore 
we have a pseudo-steady state in that the gas phase concentration remains constant all the while 
the surface concentration is changing: 

Ci,gq = (1 − ε) ratei,ads,net Asρs V 

dCi,s (1 − ε) Atot∴ = Ci,gq
dt 

dCi,s Ci,gq = 
dt (1 − ε) As ρs V 

Given that the gas phase concentration is constant, this is immediately integrated to a linear 
form in time: 

Ci,gq 
t = CS t Ci,s [t] = 

(1 − ε) As ρs V 
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This can be substituted back into the rate expression to give: 

dCi,s = (ka Ci,g(Ci,s,tot − Ci,s) − kd,sCi,s)
dt 

Ci,gq Ci,gq = ka Ci,g Ci,s,tot − 
(1 − ε) As ρs V

t t− kd,s (1 − ε) Asρs V 

= (ka Ci,g(Ci,s,tot − CS t) − kd,sCS t) 

= ka Ci,gCi,s,tot − ka Ci,gCS t − kd,sCS t 

= ka Ci,gCi,s,tot − (ka Ci,g + kd,s)CS t 

In[28]:= Clear[Cis, ka, kd, Cig, CS, Cistot, q, As, ρs, ε,V] 

Simplify[DSolve[
{Cis’[t] == kaCigCistot - (kaCig + kd)CS t, Cis[0] == 0},
Cis[t], t]]

1
Out[29]= {{Cis[t] → - t(-2CigCistotka + CigCSkat + CSkdt)}}

2
1

In[30]:= Simplify[Solve[- t(-2Cig Cistot ka + Cig CS ka t + CS kd t)
2

== CSt, {ka, kd}]]

Solve::svars : Equations may not give solutions for all 
"solve" variables. 

2CS + CSkdt
Out[30]= {{ka ––› }}

2CigCistot - CigCSt

To solve for ka and kd explicitly, we need one more equation. We can get this from the 
consideration of an equilibrium condition. When the concentration on the surface of the 
adsorbent is no longer changing, then rates of adsorption and desorption are equal. From 
this we find: 

0 = (ka Ci,ge(Ci,s,tot − Ci,se) − kd,sCi,se) 

This can be rearranged to give the ratio of the rate constants on the left-hand side: 

ka Cise = = Kads
kd Cige(Cistot − Cise) 
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Dividing through by the total number of sites we get the fraction of sites occupied, which is 
θ, and the well-known Langmuir isotherm: 

(Cise/Cistot)
Kads = 

Cige (Cistot − Cise)/Cistot 
θ

Kads = 
Cige (1 − θ ) 

θ
In[31]:= Solve[Kads == , θ]

Cige(1 - θ)

General::spell1: Possible spelling error: new symbol name 
"Cige" is similar to existing symbol "Cig". 

CigeKads
Out[31]= {{θ ––› }}

1 + Cige Kads

Thus from this one measurement we can find the ratio of the rate constants, Kads, and if we 
have some independent measure of the total number of sites, Cistot, then we can compute the 
rate constants: 

ka2CS + CS kd t 2CS + CS Kads t 
ka = = 

2Cig Cistot − Cig CS t 2Cig Cistot − Cig CS t 

2CS + CS ka t
In[32]:= Simplify [Solve [ka == Kads , ka]]

2CigCistot - CigCSt

2 CS  Kads
Out[32]= {{ka → - }}

-2CigCistot Kads + CSt + CigCS Kads t

We should note that the fraction of sites occupied at any equilibrium gas phase concentration 
follows a graph that looks as follows: 

In[33]:= K = 1;
KCPlot[1 + KC, {C, 0, 100}];
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The expression reduces to a constant when the concentration is large relative to K, at about 
20×, but at low concentration the expression is linear in C: 

In[35]:= Show[
GraphicsArray[

KCPlot[1 + KC, {C, 0, .6},

PlotRange ––› {{0, .6}, {0, .4}}, 
AxesLabel ––› {""C"", ""θ""}, 

PlotLabel ––› ""Low C range""], 
KCPlot[1 + KC, {C, 20, 100}, 

PlotRange ––› {{20, 100}, {0, 1}}, 
AxesLabel ––› {""C"", ""θ""}, 

PlotStyle ––› {Thickness[0.01], 
Dashing[{0.025, 0.025}], GrayLevel[0.6]}, 

PlotLabel ––› ""High C range""] 
] 
]; 
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In the low concentration limit the adsorption isotherm is a linear law as was the partition 
coefficient, and just as the isotherm deviates from linearity outside of the low concentration 
limit, so too does the partition relation between the two liquid phases. 

There is much more that we can say about adsorption and what we can do with it, including 
the coupling together of mass transfer and adsorption. There is no better example of that kind 
of process than that which occurs with membranes, and this is called permeation. 
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6.2 Permeation
Permeation is a process by which mass is transferred through a membrane from a region of 
higher concentration or pressure to one of lower concentration or pressure. The membrane 
can be polymeric, metallic or ceramic. Our bodies and all living organisms use membranes 
as critical structural components of cells. Separating the inside from the outside of the cell 
provides it with its integrity and specialization. Only certain molecules and ions are allowed 
to move across the membranes, thus rendering them highly selective. Synthetic membranes 
seek to emulate this but with much simpler structures and with mechanisms of operation 
for much less complex separations. Polymeric membranes can be obtained that will separate 
molecules on the basis of their relative affinities for the interior of the membrane. Those 
molecules with higher affinities partition themselves to a larger degree in the membrane 
versus the bulk phases than do their competitors. With higher concentrations within, they 
also transport across the membranes faster. A classic example of this is the membrane that is 
used for hemodialysis. Rendered incapable of clearing the blood of toxins, patients with renal 
dysfunction can be “dialyzed” by passing their blood continuously through the membrane 
unit. The polymers making up the membranes transport these toxins to a dialysate solution 
in which they are very soluble, and thereby return the blood in refreshed state to the patient. 

Ceramic and metallic membranes hold the promise of conducting small molecule separa
tions continuously and with much less energy than required by other processes. The ceramic 
membranes offer the opportunity to operate at elevated temperatures (even as part of a chem
ical reactor, which can offer enhanced conversions and yields of products) by transporting 
one product away from the reaction zone, selectively and continuously in order to bypass the 
equilibrium limitations. Metallic membranes of palladium and its alloys are special in that 
they transport hydrogen and only hydrogen. This makes them particularly interesting for 
hydrogen purification, recovery, and use. They may also play a role in fuel cells. Before we 
can begin to work with membranes we must know how to analyze their behavior, which is 
the goal of this section of the chapter. 

6.3 Permeation—Adsorption and Diffusion 
Batch. Permeation involves the transport of molecules across a membrane phase. The trans
port process involves either dissolution or adsorption within the substance of the membrane 
and then transport from regions of higher to lower “potential” (that is, concentration) within 
the membrane phase. The global measurement of the rate of transport across the membrane, 
given in terms of the measurable changes in the concentrations in the bulk above and below 
the membrane, is permeation. Transport within the membrane, described quantitatively in 
terms of the concentration within it, is diffusion. The processes that take gas phase species 
from the bulk either to the surface of the membrane or that lead to their dissolution within 
the near surface region are adsorption and partitioning (dissolution), respectively. 
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The rate of transport across the membrane in units of mass (or moles) per unit time per 
unit area is termed a flux J and it is found to be proportional to the difference between the 
concentrations on either side of the membrane. The proportionality constant is called the 
permeability Pm with intrinsic dimensions of Length , the same as the mass transfer coefficienttime 
and the same as velocity. 

C I − C II)J = Pm(

Higher permeabilities make for higher fluxes as do higher concentrations and pressures. The 
high concentration side of the membrane from which mass typically flows is termed the 
retentate, while that side to which mass flows is the permeate. 

At relatively low pressures and concentrations, the permeability is the product of two 
terms—the adsorption constant or partition coefficient and the diffusivity: 

Pm = KD (K = Kd or Kads...) 

We will see how this factors into the analysis as we go through this material. 
Consider the following diagram, Figure 1, for a simple system for batch permeation. 
The concentrations of B and D are given as CI 

D on the retentate side and as CII 
B and CI 

B and 

D on the permeate side of the membrane. The permeation process is considered to take place 
at fixed temperature. The membrane has an area Am through which the flux is measured. 

RetentateI 

Am 

II 

BI DI 

BII DII 

Membrane 

Permeate 

Figure 1 
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The volumes of the two compartments are VI and VII . Each molecule will have its own per
meability and we will assume that they permeate independently of one another. The material 
balance equations are: 

dC I 
B VI ( 

B − C II) C I= −Pm, B Am Bdt 
dC I 

DVI ( 
D − C II ) C I= −Pm, D Am Ddt 

dC II ( )B VII 

B − C II 

dt 
= Pm, B Am C I 

B 

dC II ( )DVII 

D − C II 

dt 
= Pm, D Am C I 

D 

There are four equations that describe the system. We see that independent of which side of 
the membrane is the higher concentration side, these equations still work, as they must if they 
are to be valid. The concentrations could be in mass per volume or in moles per volume (we 
will assume the latter). If B and D were ideal gases, we could express these equations in terms 
of the pressure. In all four equations the right-hand side is just the flux of the component times 
the area of the membrane. The volumes of the compartments are constant; thus they can be 
brought to the right-hand sides: 

B − C IIC IdC I Pm, B Am BB = −  
dt VI 

D − C IIC IdC I Pm, D Am DD = −  
dt VI 

B − C IIdC II Pm, B Am C I 
BB = 

VIIdt 

D − C IIdC II Pm, D Am C I 
DD = 

VIIdt 

It is interesting that yet again this simple operation provides a useful time constant. This is 
the ratio of Pm Am , which has dimensions of reciprocal time. Therefore, the reciprocal of thisV 

V 1group is a time, Am is a characteristic length, and Pm is a time per length; thus their product 
is a time. 

We can solve these equations analytically for the case in which the permeate side is initially 
evacuated and the retentate side is charged with initial concentrations of B and D. Also, to 
simplify the result, we can take the volumes to be equal: 

In[36]:= Clear[""Global‘*""] 

In[37]:= VI = VII;
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memsol = 
Flatten[ 
Simplify[ 
DSolve[ 

{∂tC1B[t] == -
PmBA (C1B[t] - C2B[t]),VI

∂tC1D[t] == -
PmDA (C1D[t] - C2D[t]),VI

∂tC2B[t] == +
PmBAm 
VII (C1B[t] - C2B[t]),

∂tC2D[t] == +
PmDAm 
VII (C1D[t] - C2D[t]),

C1B[0] == C1Bo, C1D[0] == C1Do,
C2B[0] == 0, C2D[0] == 0},

{C1B[t], C2B[t], C1D[t], C2D[t]},
t]

]
]

CIB[t--] := Evaluate[C1B[t] /. memsol[[1]]]

CIIB[t--] := Evaluate[C2B[t] /. memsol[[2]]]

CID[t--] := Evaluate[C1D[t] /. memsol[[3]]]

CIID[t--] := Evaluate[C2D[t] /. memsol[[4]]]

General::spell1 : Possible spelling error: new symbol 
name "C1Bo" is similar to existing symbol "C1B". 

General::spell : Possible spelling error: new symbol 
name "C1Do" is similar to existing symbols {C1Bo, C1D}. 

1 -2 Am PmBt  1 - 2 Am PmBt
VII ),Out[38]= {C1B[t] ––› C1Bo(1+ VII ), C2B[t] ––› 2C1Bo(1-2

1 -2 Am PmDt  1 - 2 Am PmDt
VII )}C1D[t] ––› C1Do(1+ VII ), C2D[t] ––› 2C1Do(1-2 

General::spell1 : Possible spelling error: new symbol 
name "CIIB" is similar to existing symbol "CIB". 

General::spell : Possible spelling error: new symbol 
name "CIID" is similar to existing symbols {CID, CIIB}. 

In[43]:= C1Bo = 1;
C1Do = 1;
PmB = 10-4;
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PmD = 10-6;
VII = 1;
Am = 10;

SetOptions[Plot, DefaultFont ––› {""Hevetica"", 10},  
AxesStyle ––› Thickness[.02]]; 

VI
plI = Plot[CIB[t], {t, 0, },

PmBAm
DisplayFunction ––› Identity, 
AxesLabel ––› {""t"", ""C1B[t]""}, PlotRange ––› All, 
PlotStyle ––› {Thickness[0.02], 
Dashing[{0.025, 0.035}]}]; 

VI
plII = Plot[CID[t], {t, 0, },

PmBAm
DisplayFunction ––› Identity, 
AxesLabel ––› {""t"", ""C1D[t]""}, PlotRange ––› All, 
PlotStyle ––› {{Thickness[0.02], 
Dashing[{0.025, 0.035}]}]; 

VI
plIII = Plot[CIIB[t], {t, 0, },

PmBAm
DisplayFunction ––› Identity, 
AxesLabel ––› {""t"", ""C2B[t]""}, 
PlotRange ––› All, 
PlotStyle ––› {Thickness[0.02], GrayLevel[0.5], 
Dashing[{{0.15, 0.05}]}]; 

VI
plIV = Plot[CIID[t], {t, 0, },

PmBAm
DisplayFunction ––› Identity, 
AxesLabel ––› {""t"", ""C2D[t]""}, 
PlotRange ––› All, 
PlotStyle ––› {Thickness[0.02], GrayLevel[0.5], 
Dashing[{0.15, 0.05}]}]; 

Show[GraphicsArray[{{plI, plII}, {plIII, plIV}}]];

General::spell1 : Possible spelling error: new symbol name 
"plII" is similar to existing symbol "plI". 

General::spell1 : Possible spelling error: new symbol name 
"plIII" is similar to existing symbol "plII". 

General::spell : Possible spelling error: new symbol name 
"plIV" is similar to existing symbols {plI, plII}. 
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C1B(t, C1D(t,
t t
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0.998
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0.01

0.4
0.008

0.3
0.006
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t

We see from the preceding graph that over the period of time VI the concentration of BPmB Am 
has fallen sharply on the retentate side and has risen as sharply on the permeate side. The 
two sides are almost at equilibrium with respect to species B, with each cell going to 0.5 
concentration units. The other species D has barely begun to transfer across the membrane. It 
takes on the order of 102 times longer to get to equilibrium, which it nearly reaches in PmD Am 
time units. Were this achievable, the selectivity would be nearly perfect as there is so little D 
on the permeate side compared to B. It would be very nice to try this continuously to see how 
well the systems would work. 

Continuous Permeation. The continuous process must have feed and exit on the retentate 
side and at least exit flow on the permeate side. We could have an additional sweep (gas or 
liquid) feed on the permeate side, which adds very little to the analysis. The new physical 
situation is as shown in Figure 2: 

The material balance equations for components B and D on the retentate and permeate 
sides become: 

B VI ( 
C I ) ( )dC I 

B − C II= Bf − C I q I − Pm, B Am C I 
Bdt B 

DVI ( 
C I ) ( 

D − C II ) = Df − C I q I − Pm, D Am C IdC I 

Ddt D 

dC II ( )II C IB VII 

B − C II= −C II 
B q + Pm, B Am Bdt 

dC II ( )II C IDVII 

D − C II= −C II 
D q + Pm, D Am Ddt 

VI 
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Retentate 

Retentate 

I 

Am 

II 

BI DI 

BII DII 

Feed gases 

Membrane 

Permeate 

Permeate 

Figure 2 

When the system runs at steady state, the derivatives are identically zero. We can divide both 
sides of both of the equations by the volumes to give: 

B − C II0 = C I 
B VI 

− Pm, B Am 
C I 

Bf − C I ) q I

VI B 

D − C II0 = C I 
D VI 

− Pm, D Am 
C I 

Df − C I ) q I

VI D 

C II q
II 

B − C II0 = − B VII + Pm, B Am 
C I 

VII B 

C II q
II 

D − C II0 = − D VII + Pm, D Am 
C I 

VII D 

There are now two characteristic times in the equations: the first is the holding time ( q )−1 andV 
the second is a permeation time ( Pm Am )−1. We have four equations, two inlet concentrations, V 
four outlet concentrations, two flow rates, two volumes, two permeabilities, and one area for a 
total of 13 variables and parameters. If we know the two inlet concentrations of B and D, their 
two permeabilities, the two volumes and the area of the membrane, and the retentate flow 



P1:

May 10, 2002 16:57 Foley Foley-C06

270 Chapter 6 Adsorption and Permeation 

rate, then we have eight of these in hand. Hence, there are four to be calculated if we measure 
one. Let us say we measure the permeate flow rate. Then we should be able to compute the 
four exit concentrations: 

In[55]:= Clear[""Global‘*""] 

VI = VII;
PmB = 10-4;
PmD = 10-6;
VII = 1;
r = 5;
Am = 10r;
CBIf = .1;
CDIf = 0.1;
qI = 10;
qII = qI;

General::spell1 : Possible spelling error: new symbol name 
"CDIf" is similar to existing symbol "CBIf". 

In[66]:= solmem = Flatten[
Simplify[
Solve[

qI PmBAm
{0 == (CBIf - CBI) - (CBI - CBII),

VI VI
qI PmDAm

0 == (CDIf - CDI) - (CDI - CDII),
VI VI

qII PmBAm0 == -CBII + VII (CBI - CBII),
VII
qII PmDAm

0 == -CDII + (CDI - CDII)},
VII VII

{CBI, CDI, CBII, CDII}]
]
];

CB1ss = solmem[[1, 2]];
CD1ss = solmem[[2, 2]];
CB2ss = solmem[[3, 2]];
CD2ss = solmem[[4, 2]];

CB2ss/CB1ss
;

CD2ss/CD1ss
CB1ss

;
CBIf
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CD1ss
;

CDIf

CB2ss qII

CBIf qI

CB2ss qII

General::spell1 : Possible spelling error: new symbol name 
"CBII" is similar to existing symbol "CBI". 

General::spell : Possible spelling error: new symbol name 
"CDII" is similar to existing symbols {CBII, CDI}. 

General::spell1 : Possible spelling error: new symbol name 
"CD1ss" is similar to existing symbol "CB1ss". 

General::spell1 : Possible spelling error: new symbol name 
"CD2ss" is similar to existing symbol "CB2ss". 

Out[74]= 0.333333

Out[75]= 0.333333

We might justifiably question how long it would take such a system to reach a steady state. 
To determine this we can solve the same set of equations that we have just examined at the 
steady state only now in the full time domain. 

qIIb PmBAm
In[76]:= Solve[{0 == -CBII[t] + (CBI[t] - CBII[t]),

VI VI
qIId PmDAm

0 == -CDII[t] + (CDI[t] - CDII[t])},
VI VI

{qIIb, qIId}]

General::spell1 : Possible spelling error: new symbol name 
"qIIb" is similar to existing symbol "qII". 

General::spell : Possible spelling error: new symbol name 
"qIId" is similar to existing symbols {qII, qIIb}. 

Out[76]= {{qIIb ––› 
10(CBI[t] - CBII[t])

, qIId ––› --CDI[t] + CDII[t }}
CBII[t] 10CDII[t]

Next, we input the parameter values: 

In[77]:= CIBo = 0.000001;
CIDo = 0.000001;
VI = 1;
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PmB = 10-4;
PmD = 10-6;
VII = VI;
r = 5;
Am = 10r;
CBIf = .1;
CDIf = 0.1;
qI = 10;
n = 10;

General::spell1 : Possible spelling error: new symbol name 
"CIBo" is similar to existing symbol "CIB". 

General::spell : Possible spelling error: new symbol name 
"CIDo" is similar to existing symbols {CIBo, CID}. 

Solve the equation and assign the functions: 

In[89]:= permflow = Flatten[
qIIb PmBAm

Solve[0 == -CBII[t] + (CBI[t]- CBII[t]), qIIb]
VI VI

]
permflow[[1, 2]]

10(CBI[t] - CBII[t])
Out[89]= {qIIb ––› }

CBII[t]
10(CBI[t] - CBII[t])

Out[90]=
CBII[t]

Now we use this solution in the solution of the full set of equations and to make the required 
plots. The first taks is to set the equations using the new definition for qIIb[t]: 

In[91]:= qIIb[t--] := permflow[[1, 2]]

qI PmB Am
In[92]:= eqns = {∂tCBI[t] == (CBIf - CBI[t]) - (CBI[t] - CBII[t]),

VI VI

qI PmD Am
∂tCDI[t] == (CDIf - CDI[t]) - (CDI[t] - CDII[t]),

VI VI

qIIb[t] PmB Am
∂tCBII[t] == (-CBII[t]) + (CBI[t] - CBII[t]),

VII VII

qIIb[t] PmD Am
∂tCDII[t] == (-CDII[t]) + (CBI[t] - CBII[t]),

VII VII

CBI[0] == CIBo, CDI[0] == CIDo, CBII[0] == 10-10, CDII[0] == 0};

In[93]:= eqns
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Out[93]= {CBI′[t] == 10(0.1 - CBI[t]) - 10(CBI[t] - CBII[t]), 

1 
CDI′[t] == 10(0.1 - CDI[t]) +  (-CDI[t] + CDII[t]), CBII′[t] == 0,

10
1 10(CBI[t] - CBII[t])CDII[t]

CDII′[t] == 
10

(CBI[t] - CBII[t]) -
CBII[t] 

, 

1-6, CDI[0] == 1. × 10-6, CBII[0] ==CBI[0] == 1. × 10 ,
10000000000

CDII[0] == 0}

Next, we solve the equations numerically subject to the initial conditions and over the time 
range of interest: 

In[94]:= numsol = Flatten[NDSolve[
eqns, {CBI[t], CDI[t], CBII[t], CDII[t]},

VI
{t, 0, n }]]

PmB Am
numsol

Out[94]= {CBI[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t],
CDI[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t],
CBII[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t],
CDII[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t]}

Out[95]= {CBI[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t],
CDI[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t],
CBII[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t],
CDII[t] ––› InterpolatingFunction[{{0., 1.}}, <>][t]}

The solutions are assigned to functions: 

In[96]:= C1B[t--]:= Evaluate[CBI[t] /. numsol[[1]]]
C1D[t--]:= Evaluate[CDI[t] /. numsol[[2]]]
C2B[t--]:= Evaluate[CBII[t] /. numsol[[3]]]
C2D[t--]:= Evaluate[CDII[t] /. numsol[[4]]]

(C1B[t] - C2B[t])
q2[t--]:= AmPmB C2B[t]

Finally, we set the plotting options and then make the plots: 

In[101]:= SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10}]; 

C1B[t] VI
pl1 = Plot[ , {t, 0, n },

CBIf PmB Am
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PlotStyle ––› {Thickness[0.02], GrayLevel[0.6]},
DisplayFunction ––› Identity,

C1B[t]
AxesLabel ––› {""t"", "" ""},

CBIf
VI

PlotRange ––› {{0, n }, {0, 1}},
PmB Am

Epilog ––› {Thickness[0.02],

CB1ss VI CB1ss
Line[{{0, }, {n , }}]}

CBIf PmB Am CBIf

];

C1D[t] VI
pl2 = Plot[ , {t, 0, n },

CDIf PmB Am

PlotStyle ––› {Thickness[0.02], GrayLevel[0.6]},
DisplayFunction ––› Identity,

C1D[t]
AxesLabel ––› {""t"", "" ""},

CBIf

PlotStyle ––› GrayLevel[.4],
VI

PlotRange ––› {{0, n }, {0, 1}},
PmB Am

Epilog ––› {Thickness[0.02],

CD1ss VI CD1ss
Line[{{0, }, {n , }}]}];

CBIf PmB Am CBIf

VI
pl3 = Plot[C2B[t], {t, 0, n },

PmB Am 

PlotStyle ––› {Dashing[{0.04, 0.04}], 

Thickness[0.02], GrayLevel[0.8]}, 

DisplayFunction ––› Identity, 

AxesLabel ––› {""t"", ""C2B[t]""}, 

PlotStyle ––› {GrayLevel[0], Dashing[{0.05, 0.05}]}, 

VI 
PlotRange ––› {{0, n }, {0, CBIf}},

PmB Am

Epilog ––› {{Thickness[0.02],

VI
Line[{{0, CB2ss}, {n , CB2ss}}]}}

PmB Am
];
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VI
pl4 = Plot[C2D[t], {t, 0, n },

PmB Am
PlotStyle ––› {Dashing[{0.03, 0.04}],
Thickness[0.02], GrayLevel[0.8]}, 

DisplayFunction ––› Identity, 
AxesLabel ––› {""t"", ""C2D[t]""}, 

VI
PlotRange ––› {{0, n }, {0, CDIf}},

PmB Am
AxesOrigin ––› {0, 0}];

Show[GraphicsArray[{{pl1, pl2}, {pl3, pl4}}]];

C1B ( t , C1D ( t ,
PPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPP PPP

CBIf CDIf
1 1 

0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 

t t 
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 

C2B ( t , C2 D ( t ,
0.1 0.1 

0.08 0.08 
0.06 0.06 
0.04 0.04 
0.02 0.02 

t t 
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 

The numbers all seem reasonable until we examine them a bit more carefully. We notice that 
the concentration of B at steady state on the retentate side divided by its feed concentration is 
well below the value of 0.66, which we had computed from the purely steady-state analysis. 
Furthermore, the concentration of B on the permeate side is nearly zero for all times! The 
product of the permeate concentration and flow rate is the molar flow of the impurity B out 
of the system below the membrane. The molar flow is reasonable in magnitude, but when we 
compute the volume flow we see that it is ludicrously large O (109)! Why? The reason is the 
seemingly reasonable assumption that the permeate side would always be at a steady state, 
that is, there would be no time lag for the flow to fully develop out of the unit here. But the 
concentrations at the lower side of the membrane are so low that in order for the mathematics 
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to satisfy the steady state that we have imposed the flow must be compensatingly large. If we 
set the initial concentration of B on the permeate side to zero, the flow must be infinite and 
so it goes from there with real number values for this concentration. This is a case where the 
transient and steady state do not mix well! 

We have two options: either include an inlet flow on the permeate side of the membrane, 
or set the exit flow rate. From the mathematical perspective the two amount to the same thing, 
thus they get us out of the bind. Physically, they are reasonable as well. We can certainly con
figure a mass flow controller and a pump that would keep the flow out of the system constant, 
but the inlet flow is easier to do experimentally, and therefore we will include this. 

The inlet flow on the permeate side would be that of an inert gas, for instance, which 
continuously sweeps the lower side of the membrane and clears the permeate. If the flow is 
large compared to the volume, then we will have near zero concentrations of the permeate 
gas and maximal permeation rates. (In fact, this is what the steady-state analysis we just did 
imposed automatically.) We still need to consider only the component balances at this point. 
We will use all the same numbers and equations except that qII will be fixed at the inlet and 
outlet of the permeate side of the unit: 

In[107]:= Clear[PmB, PmA, Am, VI, VII, CIBo, CIDo, plI, plII, plIII,
plIV, t]

In[108]:= CIBo = 0.000001;
CIDo = 0.000001;
VI = 1;
PmB = 10-4;
PmD = 10-6;
VII = VI;
r = 5;
Am = 10r;
CBIf = .1;
CDIf = 0.1;
qI = 10;
qII = 10;
n = 10;

In[121]:=
qI PmB Am

eqns={∂tCBI[t]== (CBIf- CBI[t]) - (CBI[t] - CBII[t]),
VI VI

qI PmD Am
∂tCDI[t] == (CDIf- CDI[t]) - (CDI[t] - CDII[t]),

VI VI
qII PmB Am

∂tCBII[t] == (-CBII[t]) + (CBI[t] - CBII[t]),
VII VII
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qII PmD Am
∂tCDII[t] == (-CDII[t]) + (CBI[t] - CBII[t]),

VII VII

CBI[0] == CIBo, CDI[0] == CIDo, CBII[0] == 10-10,
CDII[0] == 0};

numsol = Flatten[
NDSolve[
eqns,
{CBI[t], CDI[t], CBII[t], CDII[t]},

VI
{t, 0, n }

PmB Am
]

];
C1B[t--]:= Evaluate[CBI[t] /. numsol[[1]]]
C1D[t--]:= Evaluate[CDI[t] /. numsol[[2]]]
C2B[t--]:= Evaluate[CBII[t] /. numsol[[3]]]
C2D[t--]:= Evaluate[CDII[t] /. numsol[[4]]]

SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10},  
AxesStyle ––› Thickness[0.02]]; 

C1B[t] VI
pl1 = Plot[ , {t, 0, n },

CBIf PmB Am
DisplayFunction ––› Identity,

C1B [t]
AxesLabel ––› {""t"", "" ""},

CBIf

PlotStyle ––› {Thickness[0.02], Dashing[{0.02, 0.03}]},

VI
PlotRange ––› {{0, n , {0, 1}},

PmB Am
Epilog ––›

{GrayLevel[0.5], Thickness[0.02],

CB1ss VI CB1ss
Line[{{0, }, {n , }}]}];

CBIf PmB Am CBIf

C1D[t] VI
pl2 = Plot[ , {t, 0, n },

CDIf PmB Am

DisplayFunction ––› Identity,

C1D[t]
AxesLabel ––› {""t"", "" ""},

CDIf

PlotStyle ––› {Thickness[.02], Dashing[{0.03, 0.03}]},

VI
PlotRange ––› {{0, n }, {0, 1}}];

PmB Am
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VI
pl3 = Plot[C2B[t], {t, 0, n },

PmB Am
DisplayFunction ––› Identity,
AxesLabel ––› {""t"", ""C2B[t]""},

PlotStyle ––› {Thickness[.02], Dashing[{0.15, 0.05}]},

VI
PlotRange ––› {{0, n }, {0, CBIf}},

PmB Am
Epilog ––›

{GrayLevel[.6], Thickness[0.02],
VI

Line[{{0, CB2ss}, {n , CB2ss}}]}];
PmB Am

VI
pl4 = Plot[C2D[t], {t, 0, n },

PmB Am

DisplayFunction ––› Identity,
AxesLabel ––› {""t"", ""C2D[t]""},

PlotStyle ––› {Thickness[.03], Dashing[{.03, .09}],

GrayLevel[.7]},
VI

PlotRange ––› {{0, n }, {0, CDIf}},
PmB Am

AxesOrigin ––› {0, 0}];

Show[GraphicsArray[{{pl1, pl2}, {pl3, pl4}}]];

C1 B ( t , C1 D ( t ,
PPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPP PPPP PPPPPPPPPPPPPPPP PPPP

CBIf CDIf
1 1 

0.8 0.8 
0.6 0.6 
0.4 0.4 
0.2 0.2 

t t 
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 

C2 B ( t , C2 D ( t ,
0.1 0.1 

0.08 0.08 
0.06 0.06 
0.04 0.04 
0.02 0.02 

t t 
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 



P1:

May 10, 2002 16:57 Foley Foley-C06

6.3 Permeation—Adsorption and Diffusion 279 

The following is a plot of the mass flow of B from the system that is the product C2B[t]qII: 

VI
In[133]:= Plot[C2B[t] qII, {t, 0, n },

PmB Am 
AxesStyle ––› Thickness[.01], 
AxesLabel ––› {""t"", ""CIIB[t]*qII""}, 
PlotStyle ––› {Thickness[.01], 
Dashing[{0.05, 0.05}], GrayLevel[ .6]},

VI
PlotRange ––› {{0, n }, {0, .35}}];

PmB Am

CIIB(t,�qII 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

t 
0.2 0.4 0.6 0.8 1 

Now the analyses make sense. The steady-state analysis agrees with the transient analysis. 
However, let us consider all of this one more time. In what manner did the analysis show us we 
should move if we wish to get the ultimate removal of B from the feed stream with the areas, 
feed flow, and permeances all fixed? The answer is obvious. The pseudo-steady-state analysis 
showed us that if we could somehow reduce the concentration of B on the permeate side to 
near zero values, then we could remove nearly 50% of it versus only 33% with these condi
tions. How could we do this? How about raising the sweep flow rate on permeate side? This 
will have the effect of keeping the concentration of B very low and increasing the driving 
force for B across the membrane. How much higher would the sweep flow have to be to 
accomplish this? The answer is in what follows; on the order of a factor of 10 increase will 
do it! 

In[134]:= Clear[PmB, PmA, Am, VI, VII, CIBo, CIDo, plI, plII, plIII,
plIV, t]

In[135]:= CIBo = 0.000001;
CIDo = 0.000001;
VI = 1;
PmB = 10-4;
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PmD = 10-6;
VII = VI;
r = 5;
Am = 10r;
CBIf = .1;
CDIf = 0.1;
qI = 10;
qII = 103;
n = 10;

qI PmB Am
In[148]:= eqns = {∂tCBI[t]==(CBIf - CBI[t]) - (CBI[t] - CBII[t]),

VI VI
qI PmD Am

∂tCDI[t] == (CDIf - CDI[t]) - (CDI[t] - CDII[t]),
VI VI

qII PmB Am
∂tCBII[t] == (-CBII[t]) + (CBI[t] - CBII[t]),

VII VII
qII PmD Am

∂tCDII[t] == (-CDII[t]) + (CBI[t] - CBII[t]),
VII VII

CBI[0] == CIBo, CDI[0] == CIDo, CBII[0] == 10-10,

CDII[0] == 0};

In[149]:= numsol = Flatten[
NDSolve[
eqns,
{CBI[t], CDI[t], CBII[t], CDII[t]},

V
{t, 0, n }

PmB Am
]

];

C1B[t--]:= Evaluate[CBI[t] /. numsol[[1]]]
C1D[t--]:= Evaluate[CDI[t] /. numsol[[2]]]
C2B[t--]:= Evaluate[CBII[t] /. numsol[[3]]]
C2D[t--]:= Evaluate[CDII[t] /. numsol[[4]]]

SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10},  
AxesStyle ––› Thickness[0.02]]; 

C1B[t] VI
pl1 = Plot[ , {t, 0, n },

CBIf PmB Am

DisplayFunction ––› Identity,
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C1B[t]
AxesLabel ––› {""t"", "" ""},

CBIf

PlotStyle ––› {Thickness[0.02], Dashing[{0.02, 0.03}]},

VI
PlotRange ––› {{0, n }, {0, 1}},

PmB Am
Epilog ––› {GrayLevel[0.5], Thickness[0.02],

CB1ss VI CB1ss
Line[{{0, }, {n , }}]}];

CBIf PmB Am CBIf

C1D[t] VI
pl2 = Plot[ , {t, 0, n },

CDIf PmB Am
C1D[t]

DisplayFunction ––› Identity, AxesLabel ––› {""t"", "" ""},
CDIf

PlotStyle ––› {Thickness[ .02], Dashing[{0.03, 0.03}]},

VI
PlotRange ––› {{0, n }, {0, 1}}];

PmB Am

VI
pl3 = Plot[C2B[t], {t, 0, n },

PmB Am

DisplayFunction ––› Identity,
AxesLabel ––› {""t"", ""C2 B[t]""}, 
PlotStyle ––› {Thickness[.02], Dashing[{0.15, 0.05}]},

VI
PlotRange ––› {{0, n }, {0, CBIf}},

PmB Am

Epilog ––› {GrayLevel[.6], Thickness[0.02],
VI

Line[{{0, CB2ss}, {n , CB2ss}}]}];
PmB Am

VI
pl4 = Plot[C2D[t], {t, 0, n },

PmB Am
DisplayFunction ––› Identity,
AxesLabel ––› {""t"", ""C2D [t]""},
PlotStyle ––› {Thickness[.03],
Dashing[{.03, .09}], GrayLevel[.7]},

VI
PlotRange ––› {{0, n }, {0, CDIf}},

PmB Am
AxesOrigin ––› {0, 0}];

Show[GraphicsArray[{{pl1, pl2}, {pl3, pl4}}]];
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C1 B ( t , C1 D ( t,
PPPPPPPPPPPPPPPPPPPPPPPPPPPP

CBIf 
PPPPPPPPPPPPPPPPPPPPPPPPPPP

CDIf 
0.1 0.1 

0.08 0.08
0.06 0.06
0.04 0.04 
0.02 t 0.02 t 

0.20.40.60.81 0.20.40.60.81 

C2 B ( t , C2 D ( t ,
0.1 

0.08 
0.06 
0.04 
0.02 

0.1 
0.08 
0.06 
0.04 
0.02 

t t 
0.20.40.60.8 1 0.20.40.60.8 1 

And once again the total flow of B from the system: 

VI
In[160]:= Plot[C2B[t]qII, {t, 0, n },

PmB Am
AxesStyle ––› Thickness[.01],
AxesLabel ––› {""t"", ""CII B[t] * qII""}, 
PlotStyle ––› {Thickness[.01], Dashing[{0.05, 0.05}],
GrayLevel[.6]},

VI
PlotRange ––› {{0, n }, {0, .5}}];

PmB Am

CII B ( t , qII�

0.5 

0.4 

0.3 

0.2 

0.1 

t 
0.2 0.4 0.6 0.8 1 

6.4 Expanding Cell 
Consider the following problem. A spherical cell consists of a thin membrane surrounding a 
salt solution. Outside of the cell membrane there is a solution that is isotonic with that within 
the membrane. The cell is removed instantaneously from its surroundings and placed into 
an environment of pure water. The action of osmosis immediately drives water through the 
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membrane to cause dilution of its contents. The transport across the membrane is a permeation 
process with a rate of: 

C Outside − C InsideJH2O = Pm H2O H2O 

The direction of the flow is from the region of lower salt concentration to higher salt concentra
tion, but from higher water concentration to lower water concentration. The concentration of 
water on the outside of the cell is taken to be equal to the density of pure water COutside = ρH2O.H2O 
Inside the membrane the concentration of water is increasing as the density of the solution is 
decreasing. The density of the cellular content follows the linear relationship: 

t] = ρH2O + γ C Cell[t]ρcell[ salt 

While water transports osmotically across the cell membrane to dilute the cellular contents, 
the cell grows. The membrane stretches to accommodate the newly accumulated mass. The 
geometry of the cell remains constant, that is it grows in every direction through the whole of 
the solid angle by the same amount in the same time period. The physical situation with this 
cell is sketched in Figure 3: 

We would like to know how the membrane grows as a function of time, how much the 
cellular contents are diluted in time, and related information about this process. We will find 
the answers to these questions by modeling the dynamic process. We begin by writing the 

H2O 

H2O 

SAo 
H2O V[t] 

r[t] 

Sa[t] 

Vo ro 

Csalt, o 

Csalt[t] 

Cell membrane 

time 

Figure 3 
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material balance equations within the cell in a general form: 

COutside − C Insidedmtot[t] = Pm SA H2Odt H2O 

dmsalt[t] = 0 
dt 

dmH2O[t] ( 
COutside − C Inside 

dt 
= Pm SA H2O H2O 

The surface area and volume of the cell are functions of the radius: 

4V[t] = 3 πr[t]3 SA[t] = 4πr[t]2 

dV[t] = 4πr[t]2 dr [t] dSA[t] dr [t] = 8πr[t]
dt dt dt dt 

We will need to relate the water concentration to the salt concentration and the change in den
sity to the water rather than the salt concentration, as it is the latter that is flowing into the cell: 

= ρH2O + γ CCellρcell[t] salt [t] 

CCell 
H2O[t] = ρH2O + γ CCell 

salt [t] + CCell 
salt [t] 

CCell 
H2O[t] = ρH2O + (γ − 1)CCell 

salt [t] 

CCell 

CCell H2O[t] − ρH2O 
salt [t] = 

(γ − 1) 

CCell 
H2O[t] − ρH2O 

ρcell[t] = ρH2O + γ 
(γ − 1) 

γ CCell 
H2O[t] − ρH2O 

ρcell[t] = 
(γ − 1) 

With these expressions and the component balances we can now find the expression for CCell 
salt [t] 

and CCell 
H2O[t] as functions of r[t]: 

dmH2O[t] ( 
COutside − C Inside 

dt 
= Pm SA H2O H2O 

dCCell dCCelldmsalt[t] = 0 = salt [t]V[t] = CCell dV[t] + V[t] salt [t] 
salt [t] dtdt dt dt 

CCell CCell 

CCell[t] = salt [0]V[0] = salt [0]ro 
3 

3salt V[t] r [t]
CCell

CCell salt [0]ro 
3

H2O[t] = ρH2O + (γ − 1) 3r [t]
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Taking the derivative of this, we find the change in salt concentration as a function of time to be: 

In[161]:= r =.

C Cell 3 

∂tC
Cell salt [0]ro 
H2O [t] == ∂t(ρH2O + (γ - 1)  )

r[t]3

Out[162]= (CCellH2O 
)′[t] == 0  

Returning to the total material balance, we can use all of the definitions for the variables in 
terms of r[t] to solve for the derivative of r[t] in terms of just the cell parameters. Once we 
have this, we can then solve for r[t] explicitly in time: 

dmtot[t] ( 
COutside − CCell = Pm SA H2O H2O[t]

dt 
dρcell[t]V[t] ( 

COutside − CCell= Pm SA H2O H2O[t]
dt 

The following cell solves and reexpresses, the left- and right-hand sides in terms of r[t] and 
then solves for r′[t]. Finally, we solve for r[t] and plot the function: 

In[163]:= r =.
C Cell 3
salt,o roCH2O[t--] :=  ρH2O + (γ - 1)  
r[t]3

CH2O[t] - ρH2Oρcell[t--] :=  ρH2O + γ (γ - 1)  

4 
V[t--] : =  r[t]3

3
lhs = ∂t(ρcell[t]V[t])

General::spell1 : Possible spelling error: new symbol name 
""cell"" is similar to existing symbol ""Cell"". 

3CCell γ r3CCell 
Out[167]= -

4γro salt,or
′[t] 

+ 4r[t]2(ρH2O + 
o salt,o )r′[t]

r[t] r[t]3

In[168]:= SA[t--] :=  4πr[t]
2 

rhs = Pm SA[t] (ρH2O - CH2O[t]) 
Solve[lhs == rhs,r′[t]] 

CCell4πPm(-1 + γ )r3 
Out[169]= - o salt,o

r[t]

CCellπPm(-1 + γ )r3 o salt,o }}Out[170]= {{r′[t] ––›-
r[t]3ρH2O 
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In[171]:= Simplify[PowerExpand[DSolve[
CCellπPm(-1 + γ)r3 

{∂t r[t] == -
o salt,o ,

r[t]3ρH2O
r[0] == ro},
r[t], t]]]

Cell/4 salt,o(1 + )π1/4Pm1/4(-1 + γ )1/4r3/4Csalt,o(t + 
roρH2OC

−Cell 

o 4πPm - 4πPmγ 
)1/4 

Out[171]= {r[t] ––›- 1/4
, 

ρH2O 

Cell/4 salt,o(1 - )π1/4Pm1/4(-1 + γ )1/4r3/4Csalt,o(t + 
roρH2OC

−Cell 

o 4πPm - 4πPmγ 
)1/4 

r[t] ––›- 1/4
, 

ρH2O 

salt,o(1 - )π1/4Pm1/4(-1 + γ )1/4r3/4CCell/4 roρH2OC
−Cell 

o salt,o(t + 4πPm - 4πPmγ 
)1/4 

r[t] ––› 1/4
, 

ρH2O 

salt,o(1 + )π1/4Pm1/4(-1 + γ )1/4r3/4CCell/4 roρH2OC
−Cell 

o salt,o(t + 4πPm - 4πPmγ 
)1/4 

r[t] ––› 1/4
} 

ρH2O 

CCell∫ r[t] ∫ t πPm(-1 + γ)r3 

In[172]:= Solve[ r[t]3 r[t] == -
o salt,o

t,r[t]]
ro 0 ρH2O 

CCell√ ro4 πPmt(-1 + γ )r3 o salt,o )1/4},Out[172]= {{r[t] ––› - 2( 
4 ρH2O 

CCell√ ro4 πPmt(-1 + γ )r3 
{r[t] ––›  2( - o salt,o )1/4},

4 ρH2O 

CCell√ ro4 πPmt(-1 + γ )r3 
{r[t] ––›  2( - o salt,o )1/4},

4 ρH2O 

CCell√ ro4 πPmt(-1 + γ )r3 o salt,o )1/4}}{r[t] ––› 2( 
4 ρH2O 

There are four solutions to this equation, and two are real and two are complex. By calling 
the package Miscellaneous ‘RealOnly’, only the real solutions are displayed. Of the two real 
solutions, only the second is physical, as it is growing as a function of time (see what follows 
here in the In statements and graph): 

In[173]:= SetOptions[{Plot, ListPlot}, AxesStyle ––›{Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.01]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[174]:= r =. ( )1/4 

r[t--] :=  
√
2 

ro4 πPmt(-1 + γ)ro3Csalt,o 
-

4 ρH2O 
4ro = 10- ;
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3Pm = 10- ;
γ = 0.9;
Csalt,o = 0.01;
ρH2O = 1;

3Pm
tmax = 1000 ;

r[0]

Plot[r[t]104, {t, 0, tmax}, 
AxesLabel ––› {""1000 θ/sec"", ""r[t]×104/µ""}, 
PlotLabel ––› ""Radial Cell Growth""]; 

r(t,x104Z� Radial Cell Growth 

1000 G Zsec 

2 

4 

6 

8 

500010000150002000025000 30000 

This solution to the problem shows that it grows very fast at a short time, but then it slows at 
longer times. There is, however, one noticeable issue that crops up with this solution, which is 
that the radius continues to grow with increasing time. To be physical the membrane surface 
would have to be infinitely elastic, which is impossible. Instead we expect the membrane to 
rupture and explode at some critical radius. Thus the solution should be indicative of this 
behavior. 

We can modify the solution to include this behavior. The critical radius can be expressed 
as a multiple of the initial radius at time zero. We want the function to literally “blow-up” 
when we reach this radius. The critical condition can be expressed with the UnitStep function. 
It will be of unit value until the critical condition is reached, whereupon it will go to zero. 
Recall the behavior of the UnitStep given in terms of r[t] and the critical condition of 2r[0]: 

In[183]:= Plot[1 - UnitStep[r[t] - 3r[0]], {t, -5, 1050},
PlotStyle ––› {Thickness[.01], GrayLevel[.6]}];
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By dividing r[t] by the UnitStep function we obtain the correct behavior; the solution is 
meaningful up to the critical radius but not beyond and is shown in what follows in the In 
statement and two graphs: 

In[184]:= Clear[rbl, us] 

rbl[t--] :=  
√
2 

1 - UnitStep[r[t] - 3r[0]]
( 
ro4 

4 
-

π Pmt(-1 + γ)ro3Csalt,o 
ρH2O 

)1/4 

ro = 10-4; 
Pm = 103; 
γ = 0.9; 
Csalt,o = 0.01; 
ρH2O = 1;  

3Pm 
tmax = 25 

r[0]
; 

us = Plot[3UnitStep[r[t] - 3r[0]], {t, -5, tmax},
PlotStyle ––› {Thickness[.01], GrayLevel[.6]}];

Plot[{3UnitStep[r[t] - 3r[0]], rbl[t]104}, {t, 0, tmax}, 
AxesLabel ––› {""1000 θ/sec"", ""r[t]×104/µ""}, 
PlotLabel ––› ""Radial Cell Growth"", 
PlotStyle ––› {{Thickness[.01]}, {Thickness[.01], 
GrayLevel[.6]}}];
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0.5 

1 

1.5 
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2.5 
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1
Power::infy : Infinite expression 

0 
encountered. 

1 
Power::infy : Infinite expression 

0 
encountered. 

1 
Power::infy : Infinite expression 

0 
encountered. 

General::stop : Further output of Power::infy will be
suppressed during this calculation.

Plot::plnr : rbl[t] 104 is not a machine-size real number
at t = 658.1365691561368‘.

Plot::plnr : rbl[t] 104 is not a machine-size real number
at t = 641.6663540073249‘.

Plot::plnr : rbl[t] 104 is not a machine-size real number
at t = 638.1017437770654‘.

General::stop : Further output of plot::plnr will be
suppressed during this calculation.
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r(t,x104Z� Radial Cell Growth 
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We also might wish to project the growth in the plane. When we do so we can use our expression 
for the radius as a function of time and then plot the circular surfaces at integer time steps 
separated by a constant increment: 

In[194]:= Show[Graphics[Table[{Circle[{0, 0}, rbl[t]]},
{t, 0, .8tmax, 20}], AspectRatio ––› Automatic,
Axes ––› Automatic]];

-0.0002 -0.0001-0.0003 0.0001 0.0002 0.0003 

-0.0003 

-0.0002 

-0.0001 

0.0001 

0.0002 

0.0003 
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Another way to visualize the growth of the cell is to watch its contents expand and change 
structure as the membrane stretches. We can do this by “filling” the cell with smaller circu
lar entities that are fixed in number. Imagine that can form attachments to the cell wall at 
fixed angular separations all around the membrane. As the membrane grows these attach
ments will grow in length but not width and thus their structure will emerge as the cell 
expands. 

Let us envision how this can work with simple examples first, one taken at initial time 
zero and one at some later time. We will set the outer radius equal to that of rbl[0]. Inside this 
membrane we will place 32 smaller bodies with radii that are 3.5% of that of the outer radius 
of the cell plus one at the center. To arrange these around the interior of the cell we compute 
their {x, y} locations in terms of the radius as follows: 

{m rbl[0] Cos [n Pi]//N, m rbl[0] Sin [n Pi]//N} 

By incrementing m we take fractional positions along the radius at some fixed angle, which is 
given by [nPi]. The increment n moves the angle around the cellular interior. By nesting two 
Table functions, one in n and the other in m, we cover the interior completely. The radius of 
0.035 rbl[0] was chosen so that the subcells eventually would overlap and fill the inside of the 
membrane. 

To implement this we use the Disk function for the subcells, because it is filled with an 
RGBColor. This command calls for the position of the center of the disk and then for the 
radius of the disk. We have implemented as follows: 

Disk[{m .98rbl[0] Cos [n Pi]//N, m .98rbl[0] Sin [n Pi]//N}, .035rbl[0]]} 

The factor of 0.98 is used to keep the cell contents inside the membrane rather than on it. At 
time t = 0 and then at t = 12 we can show the cell and its subcellular contents with this code 
(remember that r[t] and rbl[t] need to be active first). See In statements [195] and [197] and 
graphs that follow: 

In[195]:= circls1 = Flatten[
Table[
Table[
{Graphics

[
{
Disk[
{m .98 rbl[0]Cos[n Pi] // N,
m .98 rbl[0]Sin[n Pi] // N}, .035 rbl[0]]}

]},



P1:

May 10, 2002 16:57 Foley Foley-C06

292 Chapter 6 Adsorption and Permeation 

{n, 0, 2, .25}],

{m, 0, 1, .25}],

1];

Show[{%, Graphics[{Circle[{0, 0}, rbl[0]]}]},

AspectRatio ––› Automatic,

PlotRange ––› {{-.0002, .0002}, {-.0002, .0002}}];

In[197]:= t = 120;

circls2 = Flatten[

Table[

Table[

{Graphics

[

Disk[

{m .98 rbl[t]Cos[n Pi] // N,

m .98 rbl[t]Sin[n Pi] // N}, .035rbl[0]]

]},

{n, 0, 2, .25}],

{m, 0, 1, .25}],

1];

Show[{%, Graphics[{Circle[{0, 0}, rbl[t]]}]},

AspectRatio ––› Automatic,

PlotRange ––› {{-.0002, .0002}, {-.0002, .0002}}];
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Between these two times we see that the cell has expanded and also that the subcells have 
moved along fixed radii to larger separation distances. Now, we can decrease the increments 
m and n by factors of ten in order to increase the number of subcells in total by a factor of 100 
to 3200 + 1. This will fill the cell and make for a much richer visualization. Note: This may 
take a few minutes to render, depending upon the CPU speed of the computer you are using: 

In[200]:= Clear[circls, t, m, n]

circls = Flatten[
Table[
Table[
{Graphics[
Disk[{.5 m .98 rbl[t] Cos[n Pi] // N,
.5 m .98 rbl[t] Sin[n Pi] // N}, .035 rbl[0]]

]},
{n, 0, 2, .025}],
{m, 0, 1, .025}],
1];

cells = Table[
Show[
{circls,
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Graphics[

Circle[{0, 0}, .5 rbl[t]]

]

}, AspectRatio ––› Automatic,

PlotRange ––› {{-.0002, .0002}, {-.0002, .0002}},

PlotLabel ––› rbl[t] 104""µ = r[t]"",

DisplayFunction ––› Identity],

{t, 0,.8 tmax, 30}

]

General::spell1: Possible spelling error: new symbol

name "cells" is similar to existing symbol "cell".

Out[202]= {-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-, -Graphics-, -Graphics-, -Graphics-,
-Graphics-}

Now we can choose to examine just three of the cell structures that result, for example, 1, 10,
and 20:

In[203]:= Show[GraphicsArray[{cells[[1]], cells[[10]], cells[[20]]}],
DisplayFunction ––› $DisplayFunction];

� � r(t, 2.43107 � � r(t, 2.91928 � � r(t,

Or we can look at all of the structures in groups of three at a time by utilizing the GraphicsArray
command:

In[204]:= Show[GraphicsArray[Table[{cells[[n]], cells[[n + 1]],
cells[[n + 2]]}, {n, 1, 18, 3}}]]];
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2.43107 2.49417 2.55281

2.20454 2.28768 2.36264

1.87311 2.00248 2.11075

1.47784 1.70947� � r(t,

� � r(t,� � r(t,� � r(t,

� � r(t,� � r(t,� � r(t,

� � r(t,� � r(t,� � r(t,

� � r(t, � � r(t,
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2.60767 2.65927 2.70803

2.75428 2.79832 2.84038

� � r(t,� � r(t,� � r(t,

� � r(t,� � r(t,� � r(t,

By keeping the number and area of the subcellular bodies constant we can consider these to be
conserved during the simulation much as mass of salt would be in the real case. The outcome is
that the “mass” is redistributed all along the interior of the cell as it expands. We have chosen to
have the ”mass” be redistributed along equiangular lines, which leads to an interesting pattern
of distribution. In a well-mixed system the distribution would expand evenly everywhere. Yet,
at the same time, natural systems do display remarkable patterns especially during growth
that resemble the one we have constructed here. In fact the final outcome is reminiscent of
the patterns that mollusks create during mineralization of their shells. One wonders what the
underlying mechanisms of mass transfer must be in such processes, which can to lead to such
“un-mixed” results!

6.5 Summary
We have covered a body of material in this chapter that deals with movement of mass along
gradients and between phases. We have examined the commonalities and differences between
linear driving forces, net rates of adsorption, and permeation. Each has the common feature
that reaction is not involved but does involve transport between apparently well-defined
regions. We move now to chemically reactive systems in anticipation of eventually analyzing
problems that involve mass transfer and reaction.
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Reacting Systems—Kinetics
and Batch Reactors

Chemical kinetics are at the heart of industrial chemistry and hence chemical engineering. In 
addition to being a fascinating subject worthy of scientific inquiry in its own right, chemical 
kinetics are the quantitative description of chemically reacting systems. The concept of rate in the 
context of a chemical reactor is the central issue in chemicals production. The mathematics 
of kinetics is crucial to such essential tasks as calculating the size and type of reactor that is 
needed to meet a defined target of production, but also for the prediction of which species, 
wanted or unwanted, will emerge from that reactor. Although the cost of the reactor is typically 
small as a percentage of the total cost of an overall production facility, the chemical events that 
occur within it dictate how much of the theoretical profit associated with a chemical reaction 
can be captured rather than being surrendered back as costs of manufacturing. 

The reason for this is simple. If the reaction chemistry is not “clean” (meaning selective), 
then the desired species must be separated from the matrix of products that are formed and 
that is costly. In fact the major cost in most chemical operations is the cost of separating the 
raw product mixture in a way that provides the desired product at requisite purity. The cost 
of this step scales with the complexity of the “un-mixing” process and the amount of energy 
that must be added to make this happen. For example, the heating and cooling costs that go 
with distillation are high and are to be minimized wherever possible. The complexity of the 
separation is a function of the number and type of species in the product stream, which is a 
direct result of what happened within the reactor. Thus the separations are costly and they 
depend upon the reaction chemistry and how it proceeds in the reactor. All of the complexity 
is summarized in the kinetics. 

297 
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Can we predict these costs beforehand? If a company is considering committing capital to 
a new project, then in order to determine if that capital investment would be a wise one, that 
is, one that would meet expected rates of return and would be superior to placing the capital 
in other investments or projects, modeling of the new process must be done to calculate the 
expected costs of production. This modeling must begin with kinetics. 

These are the chemical engineering motivations for studying kinetics. A physical chemist 
might look at these, then stand back and say there are many other reasons to study kinetics 
and molecular dynamics that are quite separate and distinct from the industrial production 
of chemical materials. In contrast to chemical engineers, chemical scientists examining kinet
ics or chemical dynamics are often investigating simple chemical systems that involve only 
one type of molecule. However, the processes that they are examining may be detailed and 
complex, and may, for example, take place entirely within the molecule rather than between 
molecules. Again the descriptions are made in the context of kinetics. Because of this there is 
a seamlessness in chemical kinetics from the very applied to the esoteric. 

Finally, how do thermodynamics fit in with kinetic descriptions of chemical reactions? 
Thermodynamics provides information at equilibrium. Yet many chemical reactions take 
place within chemical reactors and never reach equilibrium. Although some reactions do 
move to equilibrium quickly, many of industrial interest do not. Instead, these reactions must 
often be pushed and pushed hard with high temperature and pressure to the product side. 
Typically, a catalyst must be used to make the reaction go in economic yields, at acceptable 
costs, and within a reasonable time frame. (The catalyst is a device that is not consumed by 
the reaction but lowers the temperature required to make a reaction take place. The extent of 
reaction, however, is dictated by the equilibrium thermodynamics. The catalyst only accel
erates the rate to equilibrium.) As powerful as thermodynamics is, it does not provide any 
information about how fast or how slow will be the rate of approach to equilibrium. The rela
tionship of thermodynamics to chemical process engineering is like that of having an itinerary 
for travel between two cities. This itinerary tells us how far apart each city is but provides no 
information on the terrain that lies between them. We have no way to estimate what kind of 
trip it would be, or what kind of vehicle would be best to use to make the trip. This is analogous 
to the situation we find ourselves in when we have chemical thermodynamics information 
but are completely lacking kinetics. To drive the analogy a bit further, imagine that you were 
asked if one could operate a profit-making business by moving clients between the two cities 
and all you knew was how far they were apart! 

7.1 How Chemical Reactions Take Place 
We know from elementary chemistry that reactions take place when molecules collide with 
one another. We also know that reactions often take place faster at higher temperature and 
that a catalyst often improves the rate further. Enzymes are the prototypical natural catalysts 
and they work by orienting molecules along specific directions that are preferred for reaction. 
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We can say then that reactions have strong temperature and orientational dependence, and 
that collisions alone are not enough for reaction to take place. 

We can get a quantitative sense for this by turning once again to the kinetic theory of gases 
to compute the number of collisions that take place per unit volume and time at fixed temper
ature and pressure. The collision number Zab between two molecules A and B is given as: 

(da + db)2 8RT Na Nb Nav2 

Zab = π 
4 πµ V 2 

(da + db)2 8RT Pa Pb = π 
4 πµ (RT)2 

= Ac ν̄Ca Cb 

where R = ideal gas constant, [ j/mol-K] 

T = absolute temperature, [K]
Ma Mb

µ = , mean molecular weight 
(Ma + Mb) 

8RT 
ν̄ = , mean molecular speed 

πµ 

M = molecular weight, [g/mol] 

π (da + db)2 

, [cm2]Ac = 
4

da, db = molecular diameters of A and B, [cm]

Na, Nb = [number] 

V = volume, [cm3] 

Nav = Avogadro’s number, [number per mol] 

This is the product of the molecular cross section at collision, the mean speed, and the product 
of the number concentrations of A and B. We can compute this value for standard conditions: 

In[1]:= da = 2.5 10-8 cm;
db  = 3 10-8 cm;

2

R1 = 8.314 107 
gcm

;
s2molK

T = 300 K;

µ = 30
g

;
mol

Pa = .8 atm;
Pb = .2 atm;
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cm3atm
R2 = 82.05 ;

molK
1

Nav = 6.02 1023 ;
mol

Zab == PowerExpand[π
(da + db)2 

4 

8R1T 

πµ

PaPb Nav2 

(R2T)2 
] 

√ 
8R1T 

meanspeed == 
πµ

1.04617 × 1028 
Out[10]= Zab == 

cm3 s √ 
cm2 

Out[11]= meanspeed == 46012.4 
s2 

This shows that we have O (1028) collisions per cm3 per second between molecules such as 
oxygen and nitrogen in air at room temperature. Yet we know that these do not react under 
these conditions even though oxidation of nitrogen can lead to formation of nitrogen oxides. 
Also, a rule of thumb for chemical reactions is that every 10-degree rise in temperature leads 
to a doubling of the rate of reaction. We can see by inspection that the rate of collisions does 
not rise in this way with temperature. Also, if we were to convert Zab into moles of collisions 
per unit volume per unit time, it would be on the order of 16,000 moles per cm3 per second! 
Clearly, there is much more to chemical reaction kinetics than simply collisions. 

From basic chemistry we know that for reaction to take place the energy of the collision 
must be above a threshold value and the molecules must be oriented properly. Reaction of 
real molecules is much more complex than what one would expect from the collisions of hard 
spheres. Molecules have shape and reactive regions and bonds that usually are broken in order 
for reaction to take place. At the beginning of the twentieth century Arrhenius articulated this 
in a simple, yet elegant mathematical statement for the rate constant: 

−Ea 
RTk[T] = A 

Here, A is a pre-exponential factor—the A factor—that accounts for geometric effects, while 
the temperature dependence is accounted for in the exponential. The term Ea is the activation 
energy, the threshold that must be surmounted for a collision to lead to reaction. We can rewrite 

Eathis statement in terms of the reaction temperature Trxn = R . 

−Trxn 
Tk[T] = A 

calIf we take the threshold energy to be 40,000 cal/mol, and given R = 1.98 ∼ 2 mol K , then the 
threshold reaction temperature is ∼20,000 K. At this threshold temperature for reaction we can 
see that adding 10 degrees to an initial temperature will indeed double the rate constant and, 
if all else is the same, the rate of reaction. We also can see that if the threshold temperature is 



P1: Thakur/Shashi(E)/Mukesh P2: Shashi

May 10, 2002 16:27 Foley foley-ch07

7.2 No-Flow/Batch System 301 

40,000 K, then a 10-degree temperature rise will nearly quintuple the rate, whereas at 10,000 K 
the rate is barely raised by 1.5 times its initial value: 

In[12]:= T2 = T1 + 10;
T1 = 500;
Trxn = 20000;

-Trxn k1 T1
Solve[{ == -Trxn }, k2] // N 

T2k2

We have not discussed the issue of the dimensions of the rate constant. The reason is that the 
dimensions change with the change in the rate dependence upon concentration. Hence we 
have postponed consideration of dimensions until we reach that point. 

Reactions take place in a localized region of space, that is, a system defined by a control 
volume. The control volume can be real or abstract such as a cell or organelle, or a region of 
an organelle. They can be macrosized such as a reactor or abstractly macrosized as in the case 
of the reactions that take place within the nucleus of a star. We choose the control volume 
according to the dictates of the analysis that we are undertaking. The control volume should 
be one phase or it may be abstract and treat more than one phase as if it would behave as a 
single phase. 

We will begin with the case of the batch reactor. In this case the vessel defines the control 
volume. We will move to systems with flow in and both flow in and out. The former is the case 
of semibatch operation while the latter will be treated as the continuous stirred tank reactor 
(CSTR) and the plug flow reactor (PFR). All the chemical kinetics that we will need can be 
introduced within the context of these four different kinds of reactors. 

7.2 No-Flow/Batch System 
We know from the conservation of mass that when we run a reaction in a batch reactor the 
mass of products must be equal to the mass of reactants so long as nothing has escaped 
from the reactor. This holds absolutely and is independent of the chemical reaction type, 
mechanism, or stoichiometry. All that chemical reactions do is to rearrange the atoms and 
mass in the molecules. In essence the labels on the mass change but that is all. If the reaction in 
solution leads to a gas such as the reaction of baking soda with vinegar water (that is, sodium 
bicarbonate with dilute acetic acid), then a mass change can take place because one of the 
products is a gas and can escape the vessel: 

Na2CO3 + 2CH3COOH → 2Na(CH3COO) + CO2 ↑ + H2O 

On the other hand, if a provision is made to trap the carbon dioxide, say, with a balloon placed 
over the mouth of the vessel, then the mass of sodium acetate, water, and carbon dioxide will 
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be equal to that of the original sodium carbonate and acetic acid. This is the consequence of 
the conservation of mass and nothing more. 

What is the proper expression for a batch reactor? We know that the total mass balance will 
be equal to zero based on the conservation of mass and the assumption that nothing escapes 
the vessel. This means that the net accumulation will be zero: 

dρV = 0
dt 

If the net accumulation is zero for the overall mass in the vessel, then what can we say about 
the component balances? We know that the reaction proceeds forward to completion and in so 
doing the concentrations of the species change with time. Therefore even though the overall 
mass does not change, the mass of any given species or component does change and this is 
what we measure. Consider the reaction: 

A + B → D + E 

This is simple stoichiometrically and we can assume that it is irreversible, which means that 
reaction proceeds to the right-hand side completely and that product D does not return to A 
and B. The component mass balances become: 

d Ca V  d Cb V  = = −raV = −rbV
dt dt 

d Cd V  d Ce V  = = rdV = reV
dt dt 

ra = rb = −rd = −re = r 

The reactants are considered to be decreasing in concentration, and the products are increasing 
in concentration. Thus, the rates of the reactants are taken to be negative and the product rate 
is positive. The important point is that the rates are oppositely signed as is shown by the last 
expression. If the reaction does not produce a change in volume, then the control volume does 
not change, and the volume term is a constant that can be cancelled across all the equations: 

d Ca  d Cb  = = −r
dt dt 

d Cd  d Ce  = = r
dt dt 

The next step is to find kinetics for the rate of reaction that can be used as a constitutive 
relationship to replace the rate r on the right-hand side. When we say that we look for a 
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constitutive relationship for the kinetics to replace the right-hand side, we are seeking to 
make the equation autonomous. This means that we are seeking a function for the RHS that is 
explicit in the concentration of one or more of the components. 

7.3 Simple Irreversible Reactions—Zeroth 
to Nth Order 

First-Order Kinetics 
The simplest case to consider by far is that of first-order or linear kinetics in a constant volume 
batch reactor. If the rate of reaction is directly proportional to the rate of the reaction, then we 
call this the first order in the concentration of reactant, and the right-hand side becomes: 

r = k Ca  
d Ca  = −k Ca  

dt 
−ktCa(t) = Cao 

This is an expression for the rate of decay of the concentration of species A. (It should remind 
us of the expression we derived for the change in level of the draining tank for which we 
used a linear constitutive relationship between level and rate of flow.) The dimensions of k 
in this case are reciprocal time, that is, sec−1 or min−1 etc. The reason for this is that the rate 

molesof reaction is given in dimensions of volume time . Therefore to be dimensionally consistent the 
first-order rate constant must be in dimensions of inverse time. 

As the stoichiometry for the rate of reaction of component B is the same we can show that: 

d Ca  d Cb  = 
dt dt 

Ca − Cao = Cb − Cbo 

Cb(t) = Ca(t) − (Cao + Cbo) 

From which we find: 

Cb(t) = Cao −kt − Cao + Cbo 

= Cao[ −kt − 1] + Cbo 
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In a similar fashion we find that the rate of appearance of component D is: 

d Ca  d Cd  = −
dt dt 

Ca − Cao = −(Cd − Cdo) 

Cd(t) = (Cao + Cdo) − Ca(t) 
−kt= (Cao + Cdo) − Cao 

kt] += Cao[1 − − Cdo 

The change in concentration of component E at any time would follow the same form with 
the substitution of Ceo for Cdo. 

We can now plot these concentration functions so that we can see how a reaction system 
of this kind would behave in time. To do this we will assume that the concentrations of the 
products are both zero at time zero and that the initial concentrations of the two reactants are 
both equal. Also, in order to make the behavior general, we will plot the change in the ratio of 
the concentrations of the reactants to an initial concentration of one of the reactants Cao. We can 
go one step further and normalize the time coordinate with the “inverse reaction time.” What 
is that in this case? Well, for a first-order reaction rate constant, its dimension is the reciprocal 
of time, that is, inverse time. Thus, in essence for the first-order case, the rate constant is the 
inverse of the characteristic time for the chemical reaction. Therefore if we multiply the rate 
constant k by real time t the result is dimensionless time, which we shall refer to as τ . In fact 
we already had this result in hand. Look back at the expression for the change in concentration 
of A with time. We notice that the RHS has an exponential term, the argument of which is the 
product k t. Because the exponential is a transcendental function, such as sine, cosine, etc., the 
argument must be a pure number that is dimensionless. Thus the solution of the differential 
equation that leads to this result naturally generates the dimensionless time τ simply as an 
outcome of the solution procedure. 

Therefore, what we plan to plot will be Ca(τ )/Cao, Cb(τ )/Cao, Cd(τ )/Cdo, and Ce(τ )/Ceo 
against the dimensionless time τ . We can use Mathematica to do this, the beauty of which 
is that we can let the product kt = τ vary as natural numbers without actually assigning a 
specific value to k, and for the same reason the concentrations will vary as natural numbers 
between zero and unity. To emphasize the nondimensional nature of the concentrations, we 
can introduce a new variable, namely, the Greek letter Φ for dimensionless concentrations. 
When the initial concentration of B is divided by that of A, we will call this Φbo, and likewise 
for the other two species. The new expressions in dimensionless form will be: 

−τ�a =
�b = [ −τ − 1] + �bo 

�d = [1 − −τ ] − �do 

�e = [1 − −τ ] − �eo 
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As the initial concentrations of the products D and E are taken to be zero, the corresponding 
dimensionless initial concentrations are also zero. Also, we can see that Φd = Φe. Thus we 
will examine only Φd, and if Φbo = 1, then Φa = Φb and we need only consider Φa: 

In[12]:= SetOptions[{Plot, ListPlot}, 
AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[13]:= firstordpl1 = Plot[ 
{N[Exp[-τ]], N[(1 - Exp[-τ])]}, {τ, 0, 10},  
AxesLabel ––› {""τ"",""Φa,Φd""}, 
PlotStyle ––› {{Thickness[.01], Dashing[{0, 0}]}, 
{Thickness[.01], GrayLevel[0.5]}}];

.a,.d 

J

0.2 

0.4 

0.6 

0.8 

1 

2 4 6 8 10 

The plots show what we would expect, that is, the concentration of A diminishes exponentially 
along with B while the concentrations of D and E grow exponentially to their final value, which 
is the same as that of the initial concentrations of A and B. 

What would be the result if the concentration of B were initially twice that of A? We can  
find this result by setting Φbo = 2 and plotting the results as we did before: 

In[14]:= firstordpl2 = Plot[{ 
N[Exp[-τ]], N[Exp[-τ] - 1 + 2],  N[(1 - Exp[-τ])]}, 
{τ, 0, 10},  
AxesLabel ––› {""τ"", ""Φa,Φb,Φd""}, 
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PlotStyle ––› {{Thickness[0.01], Dashing[{0, 0}]},
{Thickness[0.01], Dashing[{0.025, 0.025}]},
{Thickness[0.01], GrayLevel[0.6]}}];

.a,.b,.d 

J

0.5 

1 

1.5 

2 

2 4 6 8 10 
Now we note that the Y-axis for dimensionless concentration varies from 0 to 2, and the concen
tration of B drops from an initial value of 2 to a final value of 1. This indicates that only half of 
the original concentration of B would be used to produce C and D, even though all of A would 
have been consumed. In this case we see that component A is the “limiting reagent.” If we were 
to make the concentration of B initially 100 times that of A, we would find that the concentra
tion of B would move from 100 to 99, and would be virtually “unchanged” in the process. 

Under such conditions, unless our measurements on the concentration of B were very 
accurate, that is, accurate enough to pick up a change this small, ∼1% in concentration, we 
might find that the variation in B would be undetectable, which is smaller than our exper
imental error. If this were to happen, then we would think that the rate of reaction did not 
depend upon the concentration of component B, and in fact under conditions such as these, 
that would be a good working conclusion. However, it must strike us as odd that if B is not 
present, then the reaction to C and D from A will not take place, and yet we find little rate 
dependence on B. 

Perhaps this is what happened when the data were analyzed for this reaction and that is 
why the kinetics we have used are first order in A and “zero order” in B, that is, independent 
of B. Maybe this reaction rate only appears to be first order in A at the conditions under which 
the experiment was run, when in fact it is really first order in A and in B. If this should prove 
to be the case, then the first-order rate expression for the reaction of A and B to give D and 
E is actually pseudo-first order, rather than true first order. A pseudo-first-order reaction may 
really be second order when we analyze the data and plan the experiments more carefully. 
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In other words, the second-order rate expression, which is first order in A and B, may appear 
to be first order in A only if the experiments were done with a large excess of B present and its 
change in concentration went undetected! Let us see how this works out in the next section, 
by considering second-order kinetics for the same reaction. 

Second-Order Kinetics Overall 
For the reaction of A and B to produce C and D, it is more likely that the kinetics would be 
second order overall, with first order in the concentration of both A and B rather than just 
first order in A. If this were the case, then the solution would be different than that which we 
found in the foregoing and would be derived as follows: 

r = k Ca Cb  
d Ca  = −k Ca Cb  

dt 

This cannot be solved as written; we need an expression for Cb in terms of Ca in order to 
substitute and do the integration. This can be obtained by going back to the stoichiometric 
statement: 

d Ca  d Cb  = 
dt dt 

Ca − Cao = Cb − Cbo 

Cb = Ca − Cao + Cbo 

Cb = Ca − (Cao − Cbo) 

Now, we can substitute this expression for Cb in terms of Ca into the differential equation 
describing the change in Ca, make it autonomous, and derive an expression for the time 
dependence of Ca: 

d Ca  = −k Ca Cb  
dt 

= −k Ca[Ca − (Cao − Cbo)] 

= −k Ca2 + k Ca(Cao − Cbo) 

= −k [Ca2 − Ca(Cao − Cbo)] 

Using Mathematica we have two primary choices on how to proceed with the solution to this 
equation—we can rearrange it into its separable components and then integrate both sides of 
the equation or we can solve it directly; we will do the latter. 

In[15]:= DSolve[{Ca’[t] == -k Ca[t]2 + k Ca[t](Cao - Cbo),
Ca[0] == Cao}, Ca[t], t]



P1: Thakur/Shashi(E)/Mukesh P2: Shashi

May 10, 2002 16:27 Foley foley-ch07

308 Chapter 7 Reacting Systems—Kinetics and Batch Reactors 

Cao(Cao - Cbo) Caokt 
Out[15]= {{Ca[t] ––› 

Cao Caokt - Cbo  Cbokt
}}

This solution is one that we would like to explore as we did with the previous solution for 
the first-order rate equation. We could at this point convert the solution for Ca into one that 
is “nondimensionalized,” but as it stands we might make errors in doing so. In fact it would 
be easier to have “nondimensionalized” the equation to be solved in the first place. Therefore, 
instead of working on the solution, we will rework the differential equation and resolve it: 

d Ca  = −k Ca2 + k Ca(Cao − Cbo)
dt 

First, we will let Φa = Ca/Cao and Φb = Cb/Cao once again. In this case we can multiply 
through on both sides of the equation by Cao/Cao. In the case of the first term on the RHS, 
we will multiply by Cao2/Cao2 . This yields: 

Cao
dΦa = −k Cao2

�a2 + k Cao �a(Cao − Cbo)
dt 

If we divide each side by the residual Cao on the LHS, then we find: 

d�a = −k Cao �a2 + k �a(Cao − Cbo)
dt 

What about the rate constant that appears in both terms of the equation? Can we clear this 
as well? We can because we have already said that kt = τ , for the first-order case and so this 
meant that k dt  = d(kt) = dτ . But what about in this case, with second-order kinetics? Can 
we still do this? To understand what is happening, we need to be very mindful of what the 
dimensions are for each term. If we were to simply divide by k, and make the substitution 
with dτ , we would have: 

d�a = −Cao �a2 + �a(Cao − Cbo)
dτ 

Look carefully at this equation because it is misleading. Our goal was to nondimensionalize 
it. Therefore we expect the accumulation term, that is, the LHS, to be dimensionless. But how 
can it be? The RHS clearly is not dimensionless, and it has units of concentration! This is the 
key to seeing where we went wrong; our error was in assuming that the rate constant k for 
this second-order rate expression had the same units as those used for the first-order system. 
It does not. The dimensions for this second-order rate are vol/mol/tim; in other words, inverse time and 
inverse concentration. Why? Because the accumulation term on the LHS must have the same 
dimensions of mol/volume/time regardless of the order or complexity of the rate expression 
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on the RHS. Therefore the units of the rate constant will always be dictated by the form of the 
rate expression and the need for proper dimensions on the LHS. 

Recalling the steps we took to nondimensionalize, we see that the error we made came 
about when we expressed the dimensionless time variable. Instead of kt = τ , for the second-
order case we have found that kCao t = τ . We can group the rate constant and the initial 
concentration of A parenthetically to give: 

k Cao t = τ 

(k Cao) t = τ 

k′t = τ 

The product of k and Cao has units of inverse time, the same as the first-order rate constant. 
Thus, we can identify the product (k Cao) as the new rate constant k′ and this is now a 
pseudo-first-order rate constant. Of course the choice of Cao was arbitrary; if we had chosen to 
nondimensionalize in terms of Cbo, then k′ would still be pseudo-first order, but it would be 
the product of Cbo and k. We can immediately see that if we had run a kinetics experiment 
with B in such great excess over A, its concentration change would have been undetectable, 
and we would observe first-order kinetics rather than second-order overall kinetics. 

Let us return to the nondimensionalization of the equation. Before we replaced time t 
inconsistently with the true dimension of the second-order k, we had the following form of 
the equation: 

Cao
d�a = −k Cao2

�a2 + k Cao �a(Cao − Cbo)
dt 

By dividing both sides of this equation by (k Cao2), we get the result that we were seeking, 
which is properly dimensionless on both sides: 

d�a (Cao − Cbo)= −�a2 + �a
k Cao dt Cao 

The last step we take is to recognize that (k Cao dt) is the same as dτ , rendering the equation 
as: 

d�a (Cao − Cbo)= −�a2 + �a
dτ Cao 

Following the procedure taken in the latter half of the last section, we can now experiment 
with the behavior of this equation by solving it and plotting the dimensionless results. To do 
so let M replace the ratio of initial concentrations: 



P1: Thakur/Shashi(E)/Mukesh P2: Shashi

May 10, 2002 16:27 Foley foley-ch07

310 Chapter 7 Reacting Systems—Kinetics and Batch Reactors 

In[16]:= DSolve[{Φa’[τ] == -Φa[τ]2 + MΦa[τ], Φa[0] == Φa0}, 
Φa[τ], τ] 

Mτ M�a0
Out[16]= {{�a[τ] ––› }}

M− �a0 + Mτ�a0

Thus, we find that: 

Mτ M�a0 
�a[τ ] →

M − �a0 + Mτ�a0 

This can be plotted to determine how the dimensionless concentration of A changes with time. 
We know that the concentration change for B will follow that of A based on the stoichiometry. 
The change in concentration of the products D and E will also track each other; thus we need 
only solve for one. To solve for the change in the dimensionless concentration of D, we recall 
that: 

d Ca  d Cd  = −
dt dt 

Ca − Cao = Cdo − Cd 

∴ Cd (t) = Cdo − Ca (t) + Cao 

If we divide every term by Cao to render this expression dimensionless, we find: 

�d(τ ) = �d0 − �a(τ ) + 1 

Taking the initial concentration of D as zero and replacing for Φa(τ ) we have: 

Mτ M�a0 
�d(τ ) = 1 −

M − �a0 + Mτ�a0 

These two equations can now be plotted as shown in the following graph to determine their 
behavior after we assign initial values to Φao, Cao, Cbo and to M. The simplest case is that of 
Φao = 1, and 2Cao = Cbo making M = − 1: 

In[17]:= Φa0 = 1;
M = -1;

Mτ MΦa0
secordpl1 = Plot[{N[ ],

M - Φa0 + MτΦa0 

Mτ MΦa0
N[1 - ]}, {τ, 0, 10},

M - Φa0 + MτΦa0 

AxesLabel ––› {""τ"", ""Φa, Φd""}, 
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PlotStyle ––› {{Thickness[.01], Dashing[{0, 0}]},
{Thickness[.01], GrayLevel[0.5]}}];

.a,.d 

2 4 6 8 10 
J

0.2 

0.4 

0.6 

0.8 

1 

What happens if Cbo is equal to Cao? Then we find that M = 0, and any of the second-order 
solutions that we have just derived become zero, or, in other words, meaningless! Why? The 
reason is that when we solved these equations either in regular or dimensionless form, we 
implicitly assumed that Cao 
= Cbo. If they are equal, then the equation changes and we obtain: 

d Ca  = −k Ca Cb
dt 

= −k Ca2 + k Ca(Cao − Cbo) 

= −k Ca2 

or in dimensionless form: 

d�a 
dτ 

= −�a2 + �a 
(Cao − Cbo) 

Cao 
d�a 
dτ 

= −�a2 

Working with the dimensionless form we have: 

In[20]:= Φa0 =. 
DSolve[{Φa’[τ] == -Φa[τ]ˆ2, Φa[0] == Φa0}, Φa[τ], τ] 
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�a0
Out[21]= {{�a[τ] ––› }}

1 +  τ�a0 

By the same stoichiometric relationship between D and A, but using this new solution for 
dimensionless A concentration we find: 

�d(τ ) = �d0 − �a(τ ) + 1 
�a0 = �d0 − + 1

1 + τ�a0 

Using the same procedure as we used before we can solve for and plot the new solution subject 
to the condition that Cao = Cbo and we obtain: 

In[22]:= Φa0 = 1;  
Φd0 = 0;  

secordpl2 = Plot[ 

{N[ 
Φa0 

1 +  τΦa0 
], N[Φd0 -

Φa0 

1 +  τΦa0 
+ 1]}, {τ, 0, 10},  

AxesLabel ––› {""τ"", ""Φa, Φd""}, 
PlotStyle ––› {{Thickness[.01], Dashing[{0.05, 0.025}]}, 

{Thickness[.01], Dashing[{0.05, 0.025}], 
GrayLevel[0.5]}}]; 
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This set of two solutions can be compared to the set of two solutions that we obtained earlier 
with Cao 
= Cbo. 
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In[25]:= Show[secordpl1, secordpl2, 
PlotLabel ––› ""Dashing for Cao=Cbo""]; 

.a,.d Dashing for Cao�Cbo 

J

0.2 

0.4 

0.6 

0.8 

1 

2 4 6 8 10 
The results show that the solutions obtained when Cao 
= Cbo are sharper and more steeply 
rising and falling than the corresponding solutions when Cao = Cbo. 

Given the form of the rate expression with k Ca2 , it is natural to wonder if it uniquely 
applies to the situation we just analyzed. The answer is that it does not. The solution we 
derived for the case of A reacting with B and with equal initial concentrations to produce D 
and E is also a description of the similar case in which A reacts with itself to give D: 

A → D 

If this reaction happens to follow second-order kinetics and for every mole of A reacted we 
get one mole of D, then the resultant analysis will lead to the same result we have just seen: 

d Ca  d Cd  = −
dt dt 

Ca − Cao = Cdo − Cd 

Cd = Cdo + Cao − Ca 
d Ca  = −k Ca2 

dt 
Cao

Ca[t] = 
1 + Cao k t 
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and 

Cd[t] = Cdo + Cao 
( 

1− 1 
1 + Cao k t  

) 

These are just the same expressions we had already obtained for the second-order case in 
which two different species were involved, and they had the same initial concentrations. 

Nth Order 
The order of a reaction may not be as simple as first or second order. We often find nonintegral 
order in what is called “power-law” kinetics. This typically indicates that the “reaction” rate 
we have measured is not for a single reaction, which is one elementary step, but for several 
elementary steps taking place simultaneously, the sum of which is the overall reaction that we 
observe. Normally, we refer to rate expressions such as these as global rates or kinetics (global 
in the sense of overall or measurable as opposed to intrinsic or fundamental rates and kinetics). 
Consider the reaction of A to B: 

A → B 

rA− = k Cn 
A 

d CA = −k Cn 

dt A 

d CB = +k Cn 

dt A 

When we nondimensionalize, these become: 

d�A 
�n= − Adτ 

d�B = +�n 

dτ A 

Solving for the concentrations of A and B we find: 

In[26]:= Remove[Ca, ca, solnord]

In[27]:= solnordA = Simplify[
DSolve[
{Ca’[t] == -k Ca[t]n, Ca[0] == Cao},
{Ca[t]}, t]

]
ca[t--] := solnordA[[1, 2]]
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solnordB = Simplify[
DSolve[
{Cb’[t] == +kca[t]n, Cb[0] == Cbo},
{Cb[t]}, t]

]
cb[t--] := solnordB[[1, 2]]

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

1 
)-1+n 

1

Out[27]= {Ca[t] ––› (( + k(-1 + n)t 1-n }
Cao

General::spell1 : Possible spelling error: new symbol
name "solnordB" is similar to existing symbol
"solnordA".

1
)-1+nOut[29]= {{Cb[t] ––› Cbo - k(-1 + n)t((( + k(-1 + n)t 1-n )n

Cao
1 1 11

)-1+n )-1+n)1-n )n )-1+n+ (  (((( - (((
Cao Cao Cao

1

+ k(-1 + n)t 1-n )n)}}

In[31]:= Clear[""Global‘*""]

In[32]:= nda = DSolve[{Φa’[τ] == -Φa[τ]n, Φa[0] == Φao},
Φa[τ], τ]

ΦA[τ--] := nda[[1]][[2]]

ΦA[τ]

ndb = Simplify[ 
DSolve[ 
{Φb’[τ] ==  ΦA[τ]n, Φb[0] == 0}, Φb[τ], τ] 

] 

ΦB[τ--] := ndb[[1, 1, 2]] 

ΦB[τ] 

General::spell1 : Possible spelling error: new symbol 
name "�a" is similar to existing symbol "�". 

General::spell1 : Possible spelling error: new symbol 
name "�ao" is similar to existing symbol "�a". 

Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

1 
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Solve::ifun : Inverse functions are being used by Solve,
so some solutions may not be found.

( 1 )-1+n )-1+nn( 1 1�aoOut[32]= {�a[τ ] ––› (-τ + nτ - �ao + )1-n } 
-1 + n  -1 + n

General::spell : Possible spelling error: new symbol 
name "�A" is similar to existing symbols {�, �a}. 

)-1+n( 1 )-1+n n( 1
�ao

1-nOut[34]= (-τ + nτ - �ao + )
1 

-1 + n  -1 + n  

General::spell : Possible spelling error: new symbol 
name "�b" is similar to existing symbols {�, �a}. 

1 1

)-1+n)1-n )nOut[35]= {{�b[τ ] ––› -(-1 + n)τ (((-1 + n)τ + (
�ao 

1 1

)-1+n)1-n )n+ (-(((-1 + n)τ + (
�ao 

1 
)-1+n+ ((( 

1 
)-1+n

1

) 1-n )n)( }}
�ao �ao 

General::spell : Possible spelling error: new symbol 
name "�B" is similar to existing symbols {�, �A, �b}. 

11
)-1+n)1-n )nOut[37]= -(-1 + n)τ (((-1 + n)τ + (

�ao 
1 1

)-1+n)1-n )n+ (-(((-1 + n)τ + (
�ao 
1 

)-1+n+ ((( 
1 

)-1+n
1

) 1-n )n)(
�ao �ao 

In[38]:= SetOptions[{Plot, ListPlot}, 
AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[39]:= n = 3.3; 
Φao = 1; 

Plot[{ΦA[τ], ΦB[τ]}, {τ, 0, 10},
AxesLabel ––› {""τ"", ""Φa,Φd""},
PlotStyle ––› {
{Thickness[0.01], GrayLevel[0]}, 
{Thickness[0.01], GrayLevel[0.6]}}, 
PlotLabel ––› n ""order""]; 
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7.4 Reversible Reactions—Chemical 
Equilibrium 

Chemical reactions do not move in the forward direction only but in either direction and come 
to a “resting” point of concentrations known as the position of chemical equilibrium. Our goal 
in this section is to understand how we analyze such a common situation and at the same 
time to discover the interrelationships between kinetics and thermodynamics as they apply 
to chemical systems. 

Take as a starting point the simplest most, reversible reaction: 

A = B 

This is “simple” because the stoichiometry is one mole of reactant goes to one mole of product, 
and because the conversion of A to B follows first-order kinetics, as does the conversion of B 
back to A. Thus, when we assemble the two-component mass balance equations in a constant 
volume batch reactor, we find: 

d Ca  = −ra + rbdt 
d Cb  = ra − rbdt 
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These expressions reflect the fact that the overall rate of “accumulation” of either species will 
be the difference between their rates of formation and depletion, that is, the net rate. If we take 
both ra and rb as first order in Ca and Cb, respectively, then we have: 

d Ca  = −kaCa + kbCb
dt 

d Cb  = kaCa − kbCb
dt 

These two equations can be solved simultaneously to give Ca[t] and Cb[t] for any arbitrary 
initial concentrations of A and B. 

The following set of commands shows us the variable names used to this point in the 
notebook and that they are indeed removed by the Remove command. 

In[42]:= Names[""Global‘*""]
Remove[""Global‘*""]
Names[""Global‘*""]

Out[42]= {a, a0, atm, ca, Ca, Cao, cb, Cb, Cbo, cm, d0, da, db, 
firstordpl1, firstordpl2, g, k, M, meanspeed, mol, n, 
Nav, nda, ndb, Pa, Pb, R1, R2, s, secordpl1, secordpl2, 
solnordA, solnordB, t, T, Zab, µ, τ , �, �a, �A, �ao, 
�b, �B, $1, $2, $3, $4, $5} 

Out[44]= {}

Now we set up the solution of the rate equations that express the reversible chemical 
process: 

In[45]:= reversol1 = Simplify[DSolve[
{Ca’[t] == -ka Ca[t] + kb Cb[t],
Cb’[t] == +ka Ca[t] - kb Cb[t],
Ca[0] == Cao, Cb[0] == Cbo},

{Ca[t], Cb[t]}, t]];

Φa[t--] := reversol1[[1, 1, 2]]/Cao 
Φb[t--] := reversol1[[1, 2, 2]]/Cao 

Φa[t]
Φb[t]

General::spell1 : Possible spelling error: new symbol 
name "�b" is similar to existing symbol "�a". 

Cbo(1 - -(ka+kb)t)kb + Cao( -(ka+kb)tka + kb)
Out[48]=

Cao(ka + kb)
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-(ka+kb)tkb)Cao(ka - -(ka+kb)tka) + Cbo(ka +
Out[49]=

Cao(ka + kb)

We could have nondimensionalized these equations completely, as we have done for other 
cases, but then we would lose the individual contributions of ka and kb. Instead we have 
referenced to the initial concentration of A, but we have retained the real time t. 

In[50]:= SetOptions[{Plot, ListPlot}, 
AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

In[51]:= ka = 1.;

kb = 1.;

Cao = 1.;

Cbo = 0.;

Plot[{N[Φa[t]], N[Φb[t]]}, {t, 0, 5}, 
PlotRange ––› All, 
AxesLabel ––› {""t"", ""Φa, Φd""}, 
PlotStyle ––› {{Thickness[0.01], Dashing[{0, 0}]}, 
{Thickness[0.01], GrayLevel[0.5]}}, 
PlotLabel ––› {ka ""= ka"", kb  ""= kb"", Cao ""= Cao"", 
Cbo ""= Cbo""}]; 

.a,.d &1. � ka, 1. � kb, 1. � Cao, 0. � Cbo�
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What we observe is that the concentrations of A and B move to a value of 0.5 by t = 3 and then 
they remain unchanged. This is the equilibrium point for the parameters that we set. Could we 
have calculated this before solving the differential equations explicitly? The answer is yes. The 
reason is that at equilibrium the rates of the forward and reverse reaction are equal, which is 
why the system appears unchanging. Given that this is the case, we can reason that the accu
mulation terms (that is, the differentials on the LHS) are zero-valued because their arguments 
are no longer time-dependent. Thus, after fully nondimensionalizing, we can see that: 

d �a kb= −�a + (1 + �bo)
dτ (ka + kb) 

d�a ∣ ∣ = 0
dτ eq 

kb∴ �a|eq = (1 + �bo)
(ka + kb) 

Because we chose ka = kb and Φbo = 0, we find that: 

�a|eq = 0.5 

We can also note that the kinetics relate directly to the thermodynamics (equilibrium) in this 
manner: 

kb0 = −�a + (1 + �bo)
(ka + kb) 

0 = −�a (ka + kb) + kb(1 + �bo) 

0 = −�a ka − �a kb + kb(1 + �bo) 

0 = −�a ka + kb(1 + �bo − �a) 

But we have already shown that: 

�b = 1 + �bo − �a 

∴ 0 = −�a ka + �b kb 

�b ka = = Keq
�a kb 

This well-known result provides the kinetics definition of chemical equilibrium and relates 
the rate constant from thermodynamics to the ratio of the forward and reverse rate constants. 

The case that we have analyzed is the simplest and one more example of mixed order 
is worth studying in the same way. Let us take as an example the case of one molecule 
dividing into two different molecules. Examples abound—PCl5 reacts to give PCl3 and Cl2, 
ethylbenzene (C6H5 CH2 CH3) reacts to give styrene (C6H5 CH = CH2) and dihydrogen (H2). 
We can generalize this type of reaction to: 

A = B + D 
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For this case we will assume that in the direction from A to B and D the rate is first order in A 
and in the opposite direction we will take it as second order overall, first order in B and D each. 

rA = kACA 

rB = rD = kBCBCD 

These are constitutive kinetics that we need to complete the model for this type of reaction 
taking place in a constant volume batch reactor. The component equations are: 

d CA = −kACA + kBCBCDdt 
d CB = kACA − kBCBCDdt 
d CD = kACA − kBCBCDdt 

If we try to solve the three simultaneous equations in their initial form, an error message is 
the result we get back: 

In[56]:= Remove[Ca, Cb, Cd, ka, kb]

In[57]:= DSolve[
{Ca’[t] == -ka Ca[t] + kb Cb[t] Cd[t],
Cb’[t] == +ka Ca[t] - kb Cb[t] Cd[t],
Cd’[t] == +ka Ca[t] - kb Cb[t] Cd[t],
Ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo},
{Ca[t], Cb[t], Cd[t]}, t]

Solve::tdep : The equations appear to involve the
variables to be solved for in an essentially
non-algebraic way.

DSolve::dsing : Unable to fit initial/boundary
conditions {Ca[0] == 1, Cb[0] == 0, Cd[0] == Cdo}.

Out[57]= {}

If, however, we can say that the initial concentrations of B and D are equal, then we can 
reexpress Cd in terms of Cb as they are equal. Now, we can solve analytically as follows: 

In[58]:= Names[""Global‘*""]
Remove[""Global‘*""]
Names[""Global‘*""]

Out[58]= {Ca, Cao, Cb, Cbo, Cd, Cdo, ka, kb, reversol1, t, �a, �b} 
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Out[60]= {}

In[61]:= reversol2 = Simplify[DSolve[{Ca’[t] == -ka Ca[t]
+ kb Cb[t]2, Cb’[t] == +ka Ca[t] - kb Cb[t]2,
Ca[0] == Cao, Cb[0] == Cbo}, {Ca[t], Cb[t]}, t]];

ca[t--] := reversol2[[2, 2]]
ca[t]
cb[t--] := reversol2[[4, 2]]
cb[t]

Simplify[∂t(ca[t]) == -ka ca[t] + kb cb[t]2] 
Simplify[∂t(cb[t]) == +ka ca[t] - kb cb[t]2] 

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

1 √ 
Out[63]= (ka + 2(Cao + Cbo)kb + -ka(ka + 4(Cao + Cbo)kb)

2kb
1√

Tan[ -ka(ka + 4(Cao + Cbo)kb)t
2

√ 
4Cao ka - 4Cbo2 kb (ka+2Cbo kb)2

kb(-Cao ka+Cbo2 kb)
+ ArcTan[  √ ]])√ 

2 ka 4Cao + 4Cbo + ka
kb

1 √ 
Out[65]= - (ka + -ka(ka + 4(Cao + Cbo)kb)

2kb
1√

Tan[ -ka(ka + 4(Cao + Cbo)kb)t
2

√ (ka+2Cbo kb)24Cao ka - 4Cbo2 kb kb(-Cao ka+Cbo2 kb)
+ ArcTan[  √ ]])√ 

2 ka 4Cao + 4Cbo + ka
kb

Out[66]= True

Out[67]= True

In[68]:= Simplify[ca[t]]
Simplify[cb[t]]

1 √ 
Out[68]= (ka + 2(Cao + Cbo)kb + -ka(ka + 4(Cao + Cbo)kb)

2kb
1√

Tan[ -ka(ka + 4(Cao + Cbo)kb)t
2

√ 
4Cao ka - 4Cbo2 kb (ka + 2Cbo kb)2

kb(-Cao ka + Cbo2 kb)
+ ArcTan[  √ ]])√ 

2 ka 4Cao + 4Cbo + ka
kb
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1 √ 
Out[69]= - (ka + -ka(ka + 4(Cao + Cbo)kb)

2kb
1√ 

Tan[ -ka(ka + 4(Cao + Cbo)kb)t
2 √√ 

4Cao ka - 4Cbo2 kb (ka + 2Cbo kb)2
kb(-Cao ka + Cbo2 kb)

+ ArcTan[  √ ]]√ 
2 ka 4Cao + 4Cbo + ka

kb

These solutions are still somewhat cumbersome and we have already constrained them to 
equal initial concentrations of A and B. Let us relax this constraint and solve in nondimensional 
form. We can express the concentrations of B and D in terms of the concentration of A through 
the stoichiometric relationships: 

d CA d CB d CD= −  = −
dt dt dt 

CA − CAo = CBo − CB = CDo − CD 

CB = CAo + CBo − CA 

CD = CAo + CDo − CA 

Rewriting we have: 

d CA = −kACA + kB(CAo + CBo − CA)(CAo + CDo − CA)
dt 

d CB = kACA − kB(CAo + CBo − CA)(CAo + CDo − CA)
dt 

We can collect the terms in the concentration of A on the right-hand side and then simplify to 
put the equations in a simpler looking form prior to solving them: 

In[70]:= Clear[""Global‘*‘""]
dCA

In[71]:= == Simplify[
dt
Collect[-kACA + kB(CAo + CBo - CA)(CAo + CDo - CA), CA]]

dCB
== Simplify[

dt
Collect[kACA - kB(CAo + CBo - CA)(CAo + CDo - CA), CA]]

dCA
Out[71]= == C2AkB + (CAo + CBo)(CAo + CDo)kB

dt
- CA(kA + (2CAo + CBo + CDo)kB)

dCB
Out[72]= == -C2kB - (CAo + CBo)(CAo + CDo)kB

dt A

+ CA(kA + (2CAo + CBo + CDo)kB)
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These can be nondimensionalized with CAo as follows: 

d�A = C2 
AkB + C2CAo AoΦ
2 

Ao(ΦAo + ΦBo)(ΦAo + ΦDo)kB − CAoΦA(kA + (2CAo + CBodt 
+ CDo)kB) 

d�A 
AkB + CAo(ΦAo + ΦBo)(ΦAo + ΦDo)kB − ΦA(kA + (2CAo + CBo + CDo)kB)= CAoΦ2 

dt 

Recognizing that CAo kB is in every term, we can divide through by the product of this con
centration parameter and the rate constant for the reverse reaction. This product has units 
of inverse time as the rate constant is second order. Therefore on the left-hand side we have 

dΦA , which is just the same as dΦA , where dτ = CAokBdt. This puts the equations inCAokB dt dτ 

complete dimensionless form: 

(kA + (2CAo + CBo + CDo)kB)d�A 2 = �A + (�Ao + �Bo)(�Ao + �Do) − �Adτ CAokB 

(kA + (2CAo + CBo + CDo)kB)d�B 2= −�A − (�Ao + �Bo)(�Ao + �Do) + �Adτ CAokB 

The group of constants (kA +(2CAo +CBo +CDo )kB ) , which we shall call M, that make up the coefficientCAokB 

of the linear term in ΦA are worth looking at in more detail. Recall that kB is a second-order rate 
constant with dimensions of vol/mol/time. When this is multiplied by the sum of the initial 
concentrations (2CAo + CBo + CDo), the resultant dimensions are 1/time, the same as that 
of kA (the other term in the numerator), and as the product CAokB seen in the denominator. 
This makes sense and the overall group is dimensionless. We also see that if we provide the 
relative magnitudes of the rate constants and the initial concentrations, then this term can be 
evaluated. To solve these equations we stop just short of this and give initial dimensionless 
concentrations and the ratio of the rate constants: 

In[73]:= Names[""Global‘*""]
Remove[""Global‘*""]
Names[""Global‘*""]

Out[73]= {A, Ao, B, Bo, ca, Ca, Cao, cb, Cb, Cbo, d, dt, k, ka,
kb, reversol2, t}

Out[75]= {}

In[76]:= ndreversol3 =.
Φao = Cao = 1;
Φbo = Φdo = Cbo = Cdo = 0;
kb = 10 ka;

ndreversol3 = Simplify[DSolve[{Φa’[τ] ==  Φa[τ]2 

+ (Φao + Φbo) (Φao + Φdo) - Φa [τ] M,  
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Φb’[τ] == -Φa[τ]2 - (Φao + Φbo)(Φao + Φdo) 
+ Φa [τ] M,  

Φa[0] == Φao, Φb[0] == Φbo}, 

{Φa[τ], Φb[τ]}, τ]] 

ΦA[τ--] := ndreversol3[[1, 2]]
ΦB[τ--] := ndreversol3[[2, 2]]

Simplify[∂τ(ΦA[τ]) == ΦA[τ ]2 + (Φao + Φbo) (Φao + Φdo) 
- ΦA[τ] M]  

Simplify[∂τ(ΦB[τ]) == -ΦA[τ ]2 - (Φao + Φbo) (Φao + Φdo) 
+ ΦA[τ] M]  

General::spell1 : Possible spelling error: new symbol 
name "�bo" is similar to existing symbol "�ao". 

General::spell : Possible spelling error: new symbol 
name "�do" is similar to existing symbols {�ao, �bo}. 

General::spell1 : Possible spelling error: new symbol 
name "�a" is similar to existing symbol "�ao". 

General::spell : Possible spelling error: new symbol 
name "�b" is similar to existing symbols {�a, �bo}. 

Solve::ifun : Inverse functions are being used by 
Solve, so some solutions may not be found. 

√ 1√1 2 - M
Out[80]= {�a[τ ]––› (M + 4 - M2 Tan[ 4 - M2 τ + ArcTan[√ ]]),

2 2 4 - M2√ √ 
(-2 + M)(- 4 - M2+(2+ M)Tan[1 4- M2τ + ArcTan[√2-M ]])2 4-M2

�b[τ ]––› √ }
2 4 - M2 

General::spell1 : Possible spelling error: new symbol 
name "�A" is similar to existing symbol "�a". 

General::spell : Possible spelling error: new symbol 
name "�B" is similar to existing symbols {�A, �b}. 

Out[83]= True

Out[84]= True

The solutions are more complex than we have seen before, but the check we have put them 
through indicates their validity. The complexity arises from the fact that this problem is one 
that is fully transient until the equilibrium point is reached. It is important to realize that 
there is a marked difference between equilibrium and steady state, as we will see when 
we examine flow reactors. We can have a steady state in a flow reactor, which is far from 
equilibrium. 
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We can test these solutions further after we have applied a specific value for the forward 
rate constant; we take ka = 10−3 min−1. Taking the limit as τ goes to zero should give us unity 
and zero for dimensionless A and B. At long times they should go to the equilibrium values. 

In[85]:= Φao = Cao = 1;
Φbo = Φdo = Cbo = Cdo = 0;
ka = .001;
kb = 10 ka;

(ka + (2Cao + Cbo + Cdo)kb)
M = ;

Cao kb

ndreversol3 // N

Limit[ndreversol3[[1, 2]], τ ––› 0] 
Limit[ndreversol3[[2, 2]], τ ––› 0] 

ndreversol3[[1, 2]] /. τ ––› 106

ndreversol3[[2, 2]] /. τ ––› 106

Out[90]= {�a[τ ] ––› 0.5 (2.1 - 0.640312 Tanh[(0.157462 + 0. )
+ 0.320156 τ ]),

�b[τ ] ––› (0.-0.0780869 ) ((0.-0.640312 )
+ (0. + 4.1 )Tanh[(0.157462 + 0. ) + 0.320156τ ])} 

Out[91]= 1. + 0.

Out[92]= 0. + 0.

Out[93]= 0.729844 + 0.

Out[94]= 0.270156 + 0.

We see that at zero time the values of dimensionless A and B concentration are as they should 
be, and at long time they tend to 0.73 and 0.27, respectively. We can check this by computing 
the equilibrium extent of reaction α from the expression for the equilibrium constant. Recall 
that the magnitude of the equilibrium constant at any temperature is given by the ratio of the 
forward to the reverse rate constants; and the concentration of the products at equilibrium in 
this case is just α CAo and the reactant is (1 − α) CAo. This gives the following expression to 
be solved: 

α2kA
In[95]:= Solve[ == CAo , α]

kB 1 - α
√ √ √ √ 

-kA - kA kA + 4CAo kB -kA + kA kA + 4CAo kB
Out[95]= {{α––› }, {α ––› }}

2CAo kB 2CAo kB

Clearly, the extent of reaction must be positive and the value of 0.27 agrees exactly with 
the value derived from the kinetics. Finally, we can graph the concentrations of A and B in 
dimensionless form as a function of dimensionless time. But before we can do so we need to 
examine the solutions carefully. We know they are correct, but we also notice that the term 0. 
appears in both. In order to plot these solutions we must have fully real forms; that is, even 
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if the coefficient of is zero, we cannot graph such an expression in the real plane because 
Mathematica takes this as a complex number. Let us look at these solutions before and after we 
use Complex Expand on them: 

In[96]:= ndreversol3[[1, 2]]
ndreversol3[[2, 2]]
Simplify[ComplexExpand[ndreversol3[[1, 2]]]]
Simplify[ComplexExpand[ndreversol3[[2, 2]]]]

1
Out[96]= (2.1 - 0.640312 Tanh[(0.157462 + 0. ) + 0.320156τ ])

2

Out[97]= (0.- 0.0780869 ) (-0.640312
+ 4.1 Tanh[(0.157462 + 0. ) + 0.320156τ ]) 

0. 
Out[98]= 1.05 +

1. + Cosh[0.314925 + 0.640312τ ] 

0.320156 Sinh[0.314925 + 0.640312τ ] 
-

1. + Cosh[0.314925 + 0.640312 τ ] 

0. + 0. 
Out[99]= (-0.05 + 0. ) +

1. + Cosh[0.314925 + 0.640312 τ ] 
(0.320156 + 0. )Sinh[0.314925 + 0.640312τ ]

+
1. + Cosh[0.314925 + 0.640312τ ] 

It is easy to see that the first expression is fully real, but the second expression for 
dimensionless B is less clear until we expand it. After expansion we can see that although 
the solutions appear to involve complex numbers the coefficients of are all identically zero 
(see what follows in the next graph): 

In[100]:= ΦA[τ--] := 1.05 -
(0.320 Sinh[0.315 + 0.640τ])

(1 + Cosh[0.315 + 0.640τ])

ΦB[τ--] :=  
(0.320) Sinh[0.315 + 0.640τ]

- .05
(1 + Cosh[0.315 + 0.640τ]) 

Plot[ 
{ΦA[τ], ΦB[τ]}, {τ, 0, 10},  

PlotRange ––› All, 
AxesLabel ––› {""t"", ""Φa, Φd""}, 
AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {{Thickness[0.01], GrayLevel[0]}, 
{Thickness[0.01], GrayLevel[0.6]}}, 
Epilog ––› { 
{GrayLevel[0.6], Dashing[{0.02, 0.02}], 
Thickness[.01], Line[{{0, 0.27}, {10, 0.27}}]}, 
{GrayLevel[0], Dashing[{0.02, 0.02}], Thickness[.01], 
Line[{{0, 0.73}, {10, 0.73}}]} 

}, DefaultFont ––› {""Helvetica"", 17}  
]; 
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7.5 Complex Reactions

Series 
Reactions rarely take place in isolation of other reactions. Reversibility is one example of the 
simultaneity of reaction chemistries. Another classical problem is the one that arises when a 
reaction is immediately preceded by another reaction. When reactions occur in series, they are 
referred to as being consecutive. An example would be: 

A → B → D 

If each of these proceeds via a first-order rate process, then this can be analyzed readily. Higher-
order reaction rates follow the same analysis, but they require a bit more mathematical effort. 
We can begin by writing the key material balance equations: 

d CA = −kACAdt 

d CB = kACA − kBCBdt 

d CD = kBCBdt 

We can see that the first of these equations can be integrated immediately to give: 

Ca = Cao exp (−kAt) 

This can be substituted into the second equation and the integration can be done for the 
concentration of B. Subsequently, we substitute this into the equation for the rate of change of 
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D and integrate once more for the full solution. Alternatively, we can let the DSolve algorithm 
do for us all at once: 

In[103]:= Clear[""Global‘*""] 

In[104]:= Simplify[
DSolve[
{cA’[t] == -ka cA[t],
cB’[t] == ka cA[t] - kb cB[t],
cD’[t] == kb cB[t],
cA[0] == cAo,
cB[0] == 0,
cD[0] == 0},

{cA[t], cB[t], cD[t]},
t]

]

General::spell1 : Possible spelling error: new symbol
name "cAo" is similar to existing symbol "Cao".

-kbt)ka
Out[104]= {{cA[t] ––› cAo

cAo( -kat --kat, cB[t] ––› ,
-ka + kb

cAo(ka - -kbtka + (-1 + -kat)kb)
cD[t] ––› }}

ka - kb

We could also have chosen to nondimensionalize the differential equations before solving 
them in order to find a general solution in fewer absolute parameters. We can divide all by 
kACAo, which will give us: 

1 
] 

d CA = −�AkACAo dt 

1 
] 

d CB kB = �A − �BkACAo dt kA 

1 
] 

d CD kB = �BkACAo dt kA 

However, kAdt = dτ because kA is an inverse time constant associated with the rate of the 
first chemical reaction and τ is “reduced” time. This gives us the following three equations: 

d�A = −�Adτ 

d�B kB = �A − �Bdτ kA 

d�D kB = �Bdτ kA 
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Now the ratio of kB is not an equilibrium constant because both reactions are considered tokA 

be irreversible. It is simply the ratio of the rate constants and we will leave it as such. 

In[105]:= Clear[""Global‘*""] 

In[106]:= ka =.
kb =.
Φao =.
sersol1 = Simplify[DSolve[

{Φa’[τ] == -Φa[τ], 
kb

Φb’[τ] == +Φa[τ] - Φb[τ],
ka

kb
Φd’[τ] == +  Φb[τ],

ka 
Φa[0] == Φao, 
Φb[0] == 0, 
Φd[0] == 0}, 

{Φa[τ], Φb[τ], Φd[τ]}, 
τ] 

]; 

ΦA[τ--] := sersol1[[1, 1, 2]]
ΦB[τ--] := sersol1[[1, 2, 2]]
ΦD[τ--] := sersol1[[1, 3, 2]]
Φa[τ] ==  ΦA[τ]
Φb[τ] ==  ΦB[τ]
Φd[τ] ==  ΦD[τ]
ka = 2.;
kb = 1.;
Φao = 1.;

Plot[ 
{ΦA[τ], ΦB[τ], ΦD[τ]}, 
{τ, 0, 10},  
PlotRange ––› All, 
AxesLabel ––› {""τ"", ""Φa,Φb,Φd""}, 
AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› 
{{Thickness[0.01], Dashing[{0, 0}]},
{Thickness[0.01], Dashing[{0.05, 0.025}],
GrayLevel[0.4]},

{Thickness[0.01], GrayLevel[0.7]}, 
DefaultFont ––› {""Helvetica"", 20}}, 
PlotLabel ––› {ka ""= ka"", kb  ""= kb"", Φao ""= Φao""}]; 
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General::spell : Possible spelling error: new symbol 
name "�d" is similar to existing symbols {�, �a, 
�b, �do}. 

General::spell : Possible spelling error: new symbol 
name "�D" is similar to existing symbols {�, �A, 
�B, �d}. 

Out[113]= �a[τ] ==  -τ�ao 
kbτ 

( -τ - ka )ka�ao 
Out[114]= �b[τ] ==  

-ka + kb
kbτ-(ka  ka ka + (-1 + -τ)kb)�ao 

Out[115]= �d[τ] ==  
ka - kb

J

0.2 

0.4 

0.6 

0.8 

1 
.a,.b,.d &2. � ka, 1. � kb, 1. � .ao�

2 4 6 8 10 
The preceding graph shows the behavior expected for a set of reactions taking place in series. 
We see the reactant being depleted, and the intermediate concentration grows and then falls 
while the final product grows monotonically throughout the process. It would be handy to 
be able to look at this “A to B to D” process with different rate constants in order to gain a 
better understanding of how the concentration profiles for each species vary in character with 
changes in the magnitudes of the rate constants. However, this would be cumbersome if we 
were to use the code we have just written. Instead it makes much more sense to write a Module 
function based on this code, which can be invoked and utilized like any other command. Here 
is the means to do that: 

In[120]:= Clear[""Global‘*""] 
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In[121]:= sersol2[ka--, kb--, Φao--, τmax--] :=
Module[{Φa, Φb, Φd},
Φa[τ--] := -τ Φao; 

kb τ-( -τ - ka )ka Φao
Φb[τ--] :=  ;

-ka + kb
kb τ- ka ka + (-1 + -τ)kb)Φao

Φd[τ--] :=
(ka -

;
ka - kb 

SetOptions[plot, DefaultFont ––› {""Helvetica"", 8}]; 

Plot[ 
{Φa[τ], Φb[τ], Φd[τ]}, 
{τ, 0,  τmax}, 
PlotRange ––› {{0, τmax}, {0, 1}}, 
AxesLabel ––› {""τ"", ""Φi""}, 
AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› 
{{Thickness[0.01], Dashing[{0, 0}]},
{Thickness[0.01], Dashing[{0.05, 0.025}]},
{Thickness[0.01], GrayLevel[0.7]}},

DisplayFunction ––› Identity]
]

Now if we input the Module and then run it with parameter values as shown, we obtain the 
same result as that which we had in the preceding: 

In[122]:= Show[sersol2[1., .5, 1., 10],
DisplayFunction ––› $DisplayFunction];

.i 

J

0.2 

0.4 

0.6 

0.8 

1 

2 4 6 8 10 
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Furthermore one can now run as many cases as one should like in order to compare the 
effects of different parameters. We have left the semicolon out after the Plot routine in the 
Module function, so that Graphics are a bonafide output. This allows us to use sersol as part 
of GraphicsArray. 

In[123]:= Show[
GraphicsArray[{Table[sersol2[1., n, 1., 10],
{n, 0.01, 1.01, .5}],
Table[sersol2[1., n, 1., 10], {n, 1.51, 2.52, .5}],
Table[sersol2[1., n, 1., 10], {n, 3.01, 4.02, .5}],
Table[sersol2[1., n, 1., 10], {n, 4.51, 24.51, 10}]

}, DisplayFunction ––› $DisplayFunction]];

.i .i .i
1 1 1 

0.8 0.8 0.8 

0.6 0.6 0.6 

0.4 0.4 0.4 

0.2 0.2 0.2 
J JJ

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 

.i .i .i
1 11 

0.80.8 0.8 
0.60.60.6 
0.40.40.4 
0.20.2 0.2 

J JJ

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 

.i .i .i
1 1 1 

0.8 0.80.8 
0.6 0.60.6 
0.4 0.40.4 
0.2 0.20.2 

J JJ

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

.i .i .i
1 1 1 

0.8 0.80.8 

0.6 0.60.6 

0.4 0.4 0.4 

0.2 0.20.2 
J J J

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 

This array shows the full gamut of the effects that the magnitude of kb at fixed ka has upon 
the chemistry. We see that when kb is 102 smaller than ka, the reaction appears to be that 
of A B. When we begin to increase the magnitude of kb we see that the intermediacy of B→ 
grows as does the final amount of D at 10τ . With longer times, the amount of B would grow to 
be equal to the original amount of A, but we are concerned here with a fixed batch holding time 
of 10τ . As  kb increases and overtakes ka, the maximum amount of B continuously diminishes 
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and shifts to earlier τ . Finally with kb at ∼25ka, the maximum in B is shifted to very short τ 
and to a value of less than 0.1. 

If we were to change the kinetics so that the first reaction was second order in A and the 
second reaction was first order in B, then we would see largely the same picture emerging in 
the graphs of dimensionless concentration versus time. There would of course be differences, 
but not large departures in the trends from what we have observed for this all first-order 
case. But what if the reactions have rate expressions that are not so readily integrable? What 
if we have widely differing, mixed-order concentration dependencies? In some cases one can 
develop fully analytical (closed-form) solutions like the ones we have derived for the first-
order case, but in other cases this is not possible. We must instead turn to numerical methods 
for efficient solution. 

Suppose that the following reaction is a series network with square kinetics for the first 
reaction and half-order kinetics for the second: 

2A → B → D 

Then accounting for the stoichiometry of two going to one we have the following set of 
equations to solve: 

d Ca  = −ka Ca2 

dt 

d Cb  ka Ca2 √ 
= +  − kb Cb

dt 2 

√ 
= +kb Cb

d Cd  
dt 

d Cb  1 d Ca  d Cd  = −  −
dt 2 dt dt 

Nondimensionalizing must be done carefully. We begin with the first equation, which gives 
the expected result: 

Cao d Ca  Cao2 

= −  ka Ca2 

Cao dt Cao2 

Cao
d�a = −Cao2 ka �a2 

dt 
d�a = −Cao ka �a2 

dt 
d�a = −�a2 

dτ 
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As we are going to need the nondimensionalized form for the rate of change of D to obtain B 
we proceed with this equation next: 

√ 
= +kb Cb

d Cd  
dt 

1 d Cd  1 √ 
= +  kb Cb 

ka Cao2 dt ka Cao2 

d�d kb √ 
= +  √ �b

dτ ka Cao3 

Finally, we take these two results and combine them to derive the nondimensionalized form for 
the rate of change of B. We  first show that the overall nondimensionalized equation is parallel 
in form to the fully dimensional equations and then make the appropriate substitutions and 
so on: 

d Cb  1 d Ca  d Cd  
dt 

= −
2 dt 

− 
dt 

1 d Cb  1 
( 

1 d Ca  d Cd  
) 

ka Cao2 dt 
= 

ka Cao2 −
2 dt 

− 
dt 

d �b 1 d �a d �d 
dτ 

= −
2 dτ 

− 
dτ 

d �b 
dτ 

= �a2 

2 
− kb 

ka 
√ 

Cao3 

√ 
�b 

If we try to solve this analytically, we find that we cannot do it, at least not directly with 
DSolve: 

In[124]:= Names[""Global‘*""]
Remove[""Global‘*""]
Names[""Global‘*""]

Out[124]= {A, Ao, B, cA, cAo, Cao, cB, Cbo, cD, Cdo, k, ka, kb, 
M, n, ndreversol3, sersol1, sersol2, t, α, τ , τ max, τ $, 
�, �a, �A, �ao, �a$, �b, �B, �bo, �b$, �d, �D, �do, 
�d$, $1} 

Out[126]= {}

In[127]:= DSolve[
{Φa’[τ] == -Φa[τ]2,

Φa[τ]2 kb
Φb’[τ] == +  - √ Φb[τ],

2 2ka Cao3 
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Φd’[τ] == +  √ kb √
Φb[τ],

2 ka  Cao3 

Φa[0] == Φao, 
Φb[0] == 0, 
Φd[0] == 0}, 

{Φa[τ], Φb[τ], Φd[τ]}, 
τ] 

General::spell1 : Possible spelling error: new symbol 
name "�b" is similar to existing symbol "�a". 

General::spell : Possible spelling error: new symbol 
name "�d" is similar to existing symbols {�a, �b}. 

General::spell1 : Possible spelling error: new symbol 
name "�ao" is similar to existing symbol "�a". 

Out[127]= DSolve[{�a′ [τ ] == -�a[τ ]2, 
√ 

�a[τ ]2 kb 
�b′ [τ ] ==  - √ �b[τ ]

,
2 2 Cao3ka√ 

�d′ [τ ] ==  
kb √ �b[τ ]

, �a[0] == �ao, �b[0] == 0, 
2 Cao3ka

�d[0] == 0}, {�a[τ ], �b[τ ], �d[τ ]}, τ ] 

We turn then to numerical methods in NDSolve and find the solution readily, as long as we 
specify parameters. 

In[128]:= Remove[""Global‘*""] 

In[129]:= ka = 10.;

kb = .5;

Cao = 1;

τmax = 40; 

sersol3 = NDSolve[{Φa’[τ] == -Φa[τ ]2 , 
Φa[τ]2 kb

Φb’[τ] == +  -
ka

√
Cao3 

Φb[τ],
2

Φd’[τ] == +  √ kb √
Φb[τ],

ka Cao3 

Φa[0] == 1, 
Φb[0] == 0, 
Φd[0] == 0}, 
{Φa[τ], Φb[τ], Φd[τ]}, 
{τ, 0,  τmax}]; 
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ΦA[τ--] := sersol3[[1, 1, 2]] 
ΦB[τ--] := sersol3[[1, 2, 2]] 
ΦD[τ--] := sersol3[[1, 3, 2]] 

Plot[{ΦA[τ], ΦB[τ], ΦD[τ]}, 
{τ, 0,  τmax}, 
PlotRange ––› {{0, τmax}, {0, 1}}, 
AxesLabel ––› {""τ"", ""Φi""}, 
PlotStyle ––› 
{{Thickness[.01], Dashing[{0, 0}]},
{Thickness[0.01], Dashing[{0.05, 0.025}]},
{Thickness[.01], GrayLevel[0.7]}},

PlotLabel ––› {ka ""= ka"", kb  ""= kb""}]; 

General::spell1 : Possible spelling error: new symbol 
name "�b" is similar to existing symbol "�a". 

General::spell : Possible spelling error: new symbol 
name "�d" is similar to existing symbols {�a, �b}. 

General::spell1 : Possible spelling error: new symbol 
name "�A" is similar to existing symbol "�a". 

General::spell : Possible spelling error: new symbol 
name "�B" is similar to existing symbols {�A, �b}. 

General::spell : Possible spelling error: new symbol 
name "�D" is similar to existing symbols {�A, �B, �d} . 
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The beauty of an analytical solution (see preceding graph) is that it allows us to see the function 
and all of its parametric dependencies “all at once.” The disadvantage of the numerical solution 
is that it does not allow for this, at least not directly. On the other hand, we do obtain solutions 
where there may not have been any if we lacked the numerical tools. Mathematica allows us 
to approach this problem by creating a Module function of the numerical routine. With this 
Module we can use a Table loop to find how the solutions vary with different parameters. We 
can do this as follows: 

In[138]:= Clear[""Global‘*""] 

In[139]:= mixord[ka--, kb--, Φao--, Cao--, τmax--] := Module 
[{sersol, Φa, Φb, Φd, A, B, D, τ}, 
sersol = NDSolve[ 
{Φa’[τ] == -Φa[τ]2, 

Φa[τ]2 kb
Φb’[τ] == +  -

ka
√
Cao3 

Φb[τ],
2
kb

Φd’[τ] == +
ka

√
Cao3 

Φb[τ],

Φa[0] == Φao,
Φb[0] == 0,
Φd[0] == 0},

{Φa[τ], Φb[τ], Φd[τ]}, 
{τ, 0,  τmax}]; 

A[τ] = Evaluate[Φa[τ] /. sersol]; 
B[τ] = Evaluate[Φb[τ] /. sersol]; 
D[τ] = Evaluate[Φd[τ] /. sersol]; 

SetOptions[Plot, DefaultFont ––› {""Hevetica"", 8}]; 

Plot[{A[τ], B[τ], D[τ]}, 
{τ, 0,  τmax}, 
PlotRange ––› {{0, τmax}, {0, 1}}, 
AxesLabel ––› {""τ"", ""Φi""}, 
PlotStyle ––› 
{{Thickness[.01], Dashing[{0, 0}]},
{Thickness[0.01], Dashing[{0.05, 0.025}]},
{Thickness[.01], GrayLevel[0.7]}},

DisplayFunction ––› Identity]
]

In[140]:= Show[mixord[30, .5, 1, 1, 100],
DisplayFunction ––› $DisplayFunction];
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In[141]:= Show[
GraphicsArray[
{Table[mixord[n, .5, 1., 1., 20], {n, 10, 50, 40}],
Table[mixord[5., m, 1., 1., 20], {m, 1, 3, 2}]}

]];
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We notice that at constant kb as the value of ka increases so does the concentration of A 
at shorter times. However, notice that the concentrations of A and B have much different 
parametric sensitivities than they did in the other cases. Even with a small value of ka = 0.1, 
we find that with kb = 0.5 nearly all the A is converted to D in about 15τ . In simpler terms 
every time A is converted to B, then B is immediately converted to D. Thus we see very little 
A. As  kb increases at constant ka, the trend is reversed. We also note that these equations are 
numerically “stiff” for some values of their parameters. For example, if we choose ka = 0.1 
and kb = 0.5, the integration becomes unstable after about 6τ . 

In[142]:= Show[mixord[.1, .5, 1, 1, 15],
DisplayFunction ––› $DisplayFunction];

Plot::plnr : B$536[τ $536] is not a machine-size real 
number at τ $536 = 11.846017793583648`. 

Plot::plnr : B$536[τ $536] is not a machine-size real 
number at τ $536 = 11.76600439063428`. 

Plot::plnr : B$536[τ $536] is not a machine-size real 
number at τ $536 = 11.75609901499778`. 

General::stop : Further output of Plot::plnr will be
suppressed during this calculation.
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Series-Parallel Reactions 
Next, we shall consider the series-parallel reaction system. Here, we shall examine the case 
where the reactions are all first order. This keeps the math simple and allows us observe the 
general behavior of such a group of reactions. If the order of the rates of reaction becomes 
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higher, or nonintegral, then numerical methods such as those used in the last section may be 
employed. 

If instead of the one species reacting to one other species, we will look at the situation 
in which there can be two products formed by competing reactions. We can also let one of 
the two primary products react to produce one other product. Thus, this set of reactions, or 
reaction network will involve four components and three rate constants as follows: 

k1 k2 

A → B → D 
↘ k3 

E 

This is a rather simple network of reactions that can be solved readily by employing the same 
analysis methods that we have used to this point: 

d CA = −k1 CA − k3 CAdt 
d CB = k1 CA − k2 CBdt 
d CD = k2 CBdt 
d CE = k3 CAdt 

We note that in the first equation the rate constants are the proportionality factors that deter
mine how much of A proceeds to B and E. Also, the rate of depletion of A follows an observed 
rate constant that is the sum of the two rate constants for the parallel forward reactions. The 
other equations are much as we would expect. We can nondimensionalize using the sum 
k1 + k3 and of course CAo: 

d�A = −�Adτ 

d�B = κ1�A − κ2 �Bdτ 

d�D 

dτ 
= κ2 �B 

d�E 

dτ 
= κ3 �A 

where 

κ1 = k1 

(k1 + k3) 
, κ2 = k2 

(k1 + k3) 
, κ3 = k3 

(k1 + k3) 

This is the DSolve routine for this network of reactions. We have used Φi to denote the 
dimensionless concentration of component i. One more routine is added here. We have nested 
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the DSolve routine in the Simplify function “Simplify[DSolve[<>]].” This ensures that the 
output statement corresponds to an algebraically reduced form. 

In[143]:= Clear[""Global‘*""] 

Simplify[DSolve[{Φa’[τ] == -Φa[τ], Φb’[τ] ==  κ1Φa[τ] 
- κ2Φb[τ], Φd’[τ] ==  κ2Φb[τ], Φe’[τ] ==  κ3Φa[τ], 
Φa[0] == Φao, Φb[0] == Φbo, Φd[0] == Φdo, 
Φe[0] == Φeo}, {Φa[τ], Φb[τ], Φd[τ], Φe[τ]}, τ]] 

General::spell : Possible spelling error: new symbol 
name "�e" is similar to existing symbols { �a, �b, �d}. 

General::spell : Possible spelling error: new symbol 
name "�bo" is similar to existing symbols {�ao, �b}. 

General::spell : Possible spelling error: new symbol 
name "�do" is similar to existing symbols {�ao, �bo, �d}. 

General::stop : Further output of General::spell
will be suppressed during this calculation.

Out[144]= {{�a[τ] ––› -τ�ao, 

-(1+κ2)τ( κ2τ κ1�ao - τ(κ1�ao + �bo - κ2�bo))
�b[τ] ––› ,

-1 + κ2

�d[τ] ––›
-(1+κ2)τ(-( κ2τ κ1κ2�ao+ τ(κ1�ao+�bo - κ2�bo)+ τ+κ2τ(-1+κ2)(κ1�ao+�bo+�do))) 

-1+κ2 , 

�e[τ] ––› κ3(�ao - -τ�ao) + �eo}} 

These are the output statements. We note that the loss of A from the systems goes as a typical 
exponential decay, but recall that τ is made nondimensional as the product of real time and the 
sum of the rate constants for the two reactions that consume A. If there were three A-consuming 
reactions, then we would use the sum of all three. If there were reactions consuming A and 
reactions producing A simultaneously, then we would still take the sums of the rate constants, 
but the signs would be positive and negative. Thus we would have a sum and difference in 
the argument leading to τ . 

It is also noteworthy that the stoichiometry will be controlled by the rate constants k1 

and k3. This is clear and evident in the expression for Φe [τ ]. If Φeo is zero, then at large 
κ1τ , Φe[τ ] → κ3Φao, where κ3 = (κ1 +κ3) , the ratio of k3 to the sum of k1 and k3. This ratio κ3 is 

also a measure of the selectivity of the reaction network. 
In what follows in In statement [145] and the graph, we have assigned values to the 

parameters of the system. The rate constant k1 has been set to unity for simplicity and all the 
others are set in relation to it. In this case, the rate constant of the third step, which leads to E, 
is set at twice the value of that of the step leading to B. The rate constant between B and D is 
taken as half the magnitude of k1. The initial concentration of A is unity and zero for the other 
species. The solutions derived from DSolve are implemented as local functions Φi[τ--]. 
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In[145]:= Clear[""Global‘*""] 

k1 = 1.;

k2 = 0.5 k1;

k3 = 2 k1;

τmax = 10;

k1
κ1 = ;

(k1 + k3)

k2
κ2 = ;

(k1 + k3)

k3
κ3 = ;

(k1 + k3)

Φao = 1; 

Φbo = Φdo = Φeo = 0; 

Φa[τ--] := E-τΦao 

1
(E-(1+ κ2)τΦb[τ--] :=  (-(Eτ - Eκ2τ)κ1Φao 

-1 + κ2

+ Eτ(-1 + κ2)Φbo))

1
Φd[τ--] :=  (κ1(-1 + E-κ2τ + κ2 - E-τ κ2)Φao 

-1 + κ2 

+ E-κ2τ(-1 + κ2) ((-1 + Eκ2τ)Φbo + Eκ2τΦdo)) 

Φe[τ--] :=  κ3(Φao - E-τ Φao) + Φeo 

SetOptions[Plot, DefaultFont ––› {""Helvetica"", 12}]; 

Plot[{Φa[τ], Φb[τ], Φd[τ], Φe[τ]}, {τ, 0,  τmax}, 
PlotRange ––› {{0, τmax}, {0, 1}}, 
AxesLabel ––› {""τ"", ""Φi""}, 
PlotStyle ––› 
{
{Thickness[.01], Dashing[{0, 0}]},
{Thickness[.01], Dashing[{0.06, 0.03}]},
{Thickness[.01], Dashing[{0.05, 0.025}],
GrayLevel[0.6]}, 

{Thickness[.01], Dashing[{0.01, 0.015}], 
GrayLevel[0.7]} 

}, 
PlotLabel ––› {"" A = blk-sld”, ”B = blk-dsh”, 

""D = Dk-Gry-Dsh"", ""E = Lt-Gry-Dsh""}]; 
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Because A is consumed rapidly by the two pathways to B and E, its concentration profile drops 
sharply with time. The concentration of E rises very rapidly in response to the drop in A, but B 
lags behind. The reason is that B is not only formed more slowly, but as it is formed it is depleted 
by reaction to produce D, albeit at a comparably slower rate than the other reactions. The 
ultimate products E and D finally reach constant values over a long time and their magnitudes 
are 0.66 and 0.33, each corresponding to the rate constant ratios as we predicted. 

This is an illustration of the intricacies that can develop even in a very simple reaction 
network. Imagine the kind of complexity that arises in some petroleum processing steps that 
involve numerous reactant molecules and many potential pathways for reaction (thermal, 
acid-catalyzed, metal catalyzed . . . ). This is what reaction selectivity is all about and why 
chemists and engineers spend so much time dwelling on the topic. Nature has spent eons 
“dwelling on the topic” as well, and the result is reactions that ultimately are as highly specific 
as is possible. The critical factor in making this possible in natural systems is the enzyme 
catalyst with its “lock and key” mechanism for rejecting unwanted substrates (reactants) and 
driving to specific products and all at ambient temperature, where the rates of most chemical 
reactions as we know from Arrhenius (k = A exp (−Ea/RT)) are relatively low. A high degree of 
molecular specificity or molecular recognition combined with slow but steady rates gives natural 
systems the advantage over the best man-made catalysts. This quest for selectivity is what 
drives so much fundamental and applied chemical research in catalysis and bio-technology. 

Langmuir-Hinshelwood-Hougen-Watson Kinetics 
In heterogeneous catalysis, the kinetics we use must account for the fact that the reaction 
takes place not in the gas phase but on the surface of the solid. Hence heterogeneous catalysis 
is also referred to as contact catalysis in the older literature. In fact reaction takes place in 
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combination with adsorption. We have already seen how adsorption can be treated from 
the point of view of mass action. Now we need to couple the adsorption with the mass 
action kinetics for the surface reaction. To do this we will assume that the rates of adsorption 
and desorption are fast compared to the rates of surface chemical reaction. This is a good 
assumption for many cases, but not all. To go into the cases where adsorption or desorption 
rates limit the rate of chemical reaction would be to go beyond the bounds of the present 
discussion. 

We will consider first the case of a simple surface reaction that takes A into B, for example, 
an isomerization. The reactant A adsorbs onto a site where it reacts at that site to form B; 
then B desorbs to the gas phase, relinquishing the site for another round of reaction. This is 
pictured on two equivalent sites in the schematic shown in Figure 1. 

Given that adsorption and desorption of A and B are at the same site, they are in essence 
competing for the sites. We account for this is in the adsorption rate term, as shown for A in 
what follows: 

rA,ads = kA,adsCA[Ctot − CA,surf − CB,surf] − kA,desCA,surf 

At adsorption-desorption equilibrium this rate goes to zero. Then we have: 

kA,adsCA[Ctot − CA,surf − CB,surf] = kA,desCA,surf 

kA,ads CA,surfCA = 
kA,des (Ctot − CA,surf − CB,surf) 

CA,surf CtotCAKA = 
(Ctot − CA,surf − CB,surf) Ctot 

CA,surf CtotCAKA = 
Ctot (Ctot − CA,surf − CB,surf) 

1
CAKA = θA (1 − θA − θB) 
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where θA stands for the fraction of the total sites occupied by A on the surface and the same 
meaning is attributed to θB for species B. Repeating this analysis for species B we find: 

1
CBKB = θB (1 − θA − θB) 

We can solve the two equations simultaneously for θA and for θB to get them both in terms of 
the gas-phase concentrations and the adsorption constants for each: 

In[161]:= Clear[""Global‘*""]
θ =.
K =.

1
Solve[{CAKA == θA ,

(1 - θA - θB)

1
CBKB == θB }{θA, θB}]

(1 - θA - θB)

CAKA CBKB
Out[164]= {{θA ––› , θB ––› }}

1 + CAKA + CBKB 1 + CAKA + CBKB

The surface reaction is reversible and is first order in the surface concentrations of A and 
of B: 

rA→B,surf = kA→B,surfCA,surf − kB→A,surfCB,surf 

Multiplying through by Ctot provides these expressions in terms of the fractional surfaceCtot 

concentrations: 

rA→B,surf = kA→B,surfCtotθA − kB→A,surfCtotθB 

Replacing with the expressions for the fractional surface concentrations: 

kA→B,surfCtotCAKA − kB→A,surfCtotCBKB rA→B,surf = 
1 + CAKA + CBKB 

The reversible surface reaction has associated with it an equilibrium constant, which is just 
the ratio of the forward to the reverse surface rate constants: 

kA→B,surfKA⇔B,surf = 
kB→A,surf 

∴ kB→A,surf = kA→B,surf 

KA⇔B,surf 
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Making this substitution and factoring out the product of the forward surface rate constant 
and the total surface concentration of sites: 

CBKBkA→B,surfCtot CAKA − KA⇔B, surf 

rA→B,surf = 
1 + CAKA + CBKB 

On the far right of the numerator we have two parameters that may be difficult to obtain 
independently. They are the adsorption equilibrium constant for B and the surface equilibrium 
constant for the reaction Asurf ⇔ Bsurf. Our goal is to clear these by reexpressing them in 
terms of something that is unchanging. After all both of these may be strong functions of 
the catalyst structure and composition. The overall reaction A B is, however, one which is ⇔
fixed at any temperature and pressure by the overall equilibrium constant. This is independent 
of the catalyst. Therefore we want to use this in the reaction rate expression. Here is how we 
do it: 

CB CB CB,surf CA,surfKeq = 
CA 

= 
CB,surf CA,surf CA 

1 = KA⇔B,surfKAKB 

KB KA∴ = 
KA⇔B,surf Keq 

and 

CAKA − CBKAkA→B,surfCtot Keq 

rA→B,surf = 
1 + CAKA + CBKB 

kA→B,surfKACtot CA − CB 
Keq 

rA→B,surf = 
1 + CAKA + CBKB 

CA − CBkf,AB Keq 

rA→B,surf = 
1 + CAKA + CBKB 

The product kA B,surfKACtot is usually taken as the “global” forward rate constant on the →
surface kf,AB. Now we can proceed to see how this equation behaves. 

Consider a batch reactor of volume V into which the catalyst that does the conversion 
of A to B has been placed. The catalyst occupies a fraction (1 − ε) of the reactor volume. 
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The component balances for A and B are: 

kf,AB CA − CB 

d[CAεV] Keq 

= −(1 − ε) V
dt 1 + CAKA + CBKB 

CA − CB 

d[CBεV] 
kf,AB Keq 

= +(1 − ε) V
dt 1 + CAKA + CBKB 

In the following cell we compute the two concentrations as functions of time, and in the Epilog 
we compute the equilibrium levels of A and B and graph horizontal lines corresponding to 
each. The equilibrium level of reaction in this case is given by: 

α
Keq = 

1 − α 

In[165]:= Clear[""Global‘*""] 

In[166]:= ε = 0.4; 

kf = 10-1;

Ka = 1;

Kb = 10;

Keq = .5;

Cao = 1;

Cbo = 0;

tmax = 100;

LHHW1 = NDSolve[ 

(1 - ε) kf(Ca[t] - Cb[t] 
Keq ){Ca’[t] == - ,

ε 1 +  Ka  Ca[t] +  Kb  Cb[t]

(1 - ε) kf(Ca[t] - Cb[t] 
Keq )Cb’[t] == + ,

ε 1 +  Ka  Ca[t] +  Kb  Cb[t]
Ca[0] == Cao, 
Cb[0] == Cbo}, 

{Ca[t], Cb[t]}, 
{t, 0, tmax}]; 

CA[t--] := Evaluate[Ca[t] /. LHHW1]
CB[t--] := Evaluate[Cb[t] /. LHHW1]

SetOptions[Plot, DefaultFont ––› {”Hevetica”, 12},
AxesStyle ––› {Thickness[0.01]}];
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Plot[{CA[t], CB[t]},
{t, 0, tmax},
AxesLabel ––› {”t”, ”Ca[t],Cb[t]”},
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5]},
{Dashing[{0.03, 0.03}], Thickness[0.01],
GrayLevel[0.2]}},

Epilog ––›
{

{Thickness[0.01], Dashing[{0.01, 0.01}],
α

Line[{{0, Flatten[NSolve[Keq == , α]]
1 - α

[[1, 2]] + .002},
α

{tmax, Flatten[NSolve[Keq == , α]]
1 - α

[[1, 2]] + .002}}
]},

{Thickness[0.01], GrayLevel[0.5],
Dashing[{0.01, 0.01}],

α
Line[{{0, (1 - Flatten[NSolve[Keq == , α]]

1 - α
[[1, 2]] + .002)},

α
{tmax, (1 - Flatten[NSolve[Keq == , α]]

1 - α
[[1, 2]] + .002)}}

]}
}

];
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The hydrogenation and dehydrogenation of alkenes and alkanes are reversible processes that 
favor the alkane and involve multiple sites. For this reason it is worth considering a prototyp
ical general case to see how we progress with the LHHW analysis. 

The reaction proceeding from alkene to alkane can be taken as the forward direction as it 
is the thermodynamically favored direction. The overall reaction is: 

A + H2 ⇐⇒ B 

The individual steps including the sites (⊗) are as follows: 

A + ⊗ ⇐⇒ A ⊗ Adsorption/Desorption 

H2 + 2 ⊗ ⇐⇒ 2H ⊗ Dissociative Adsorption/Desorption 

A ⊗ +2H ⊗ ⇐⇒ B ⊗ +2 ⊗ Surface Reaction 

B ⊗ ⇐⇒ B + ⊗  Adsorption/Desorption 

In this mechanism the dihydrogen molecule must dissociatively adsorb prior to reacting with 
the alkene A. This requires two sites (see Figure 2). When the surface reaction takes place to 
convert the alkene and two hydrogen atoms into one alkane, the two sites are regenerated. 
Therefore, we need to examine how the dissociative adsorption step is handled and what 
ramification this has upon the rate expression, assuming all the adsorption-desorption steps 
are at equilibrium. 

The dissociative adsorption-desorption of hydrogen follows this rate expression: 

rH2,ads = kH2,adsCH2(Ctot − CH,surf − CA,surf − CB,surf)2 − kH,desC2 
H,surf 

H2 + 
Overall 

A 

H 

H 

A 

B 

Catalytic Sites 

Surface 

Adsorption 
Reaction 

Reaction 

Desorption 

B 

Figure 2 
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The adsorption includes the difference between the total concentration of sites and the sites 
occupied by hydrogen atoms A and B. Notice also that this term is squared because there are 
two sites involved in the adsorption process. On the desorption side of the expression we see 
that the rate depends upon the square of the concentration of surface hydrogen atoms. Once 
again we assume this step and the other adsorption-desorption steps to be at equilibrium: 

kH2,adsCH2(Ctot − CH,surf − CA,surf − CB,surf)2 = kH,desC2 
H,surf 

kH2,ads C2 

CH2 = H,surf 

kH,des (Ctot − CH,surf − CA,surf − CB,surf)2 

C2 C2 

KH2,adsCH2 = H,surf tot 

C2(Ctot − CH,surf − CA,surf − CB,surf)2 
tot 

( C2 )( )
C2 

H,surf totKH2,adsCH2 = 
C2 2 

tot (Ctot − CH,surf − CA,surf − CB,surf)

θ2 

KH2,adsCH2 = H,surf 

(1 − θH,surf − θA,surf − θB,surf)2 

KH2,adsCH2 = θH,surf 

(1 − θH,surf − θA,surf − θB,surf) 

From the same analyses of the adsorption-desorption processes for A and B we find: 

KA,adsCA = θA,surf 

(1 − θH,surf − θA,surf − θB,surf) 

KB,adsCB = θB,surf 

(1 − θH,surf − θA,surf − θB,surf) 

The term for B is written in the form that it would have if B were adsorbing in order to keep 
the meaning KB uniform with the other adsorption constants. We can solve for the fractional 
surface concentrations to get: 

In[179]:= Clear[""Global‘*""] 

In[180]:= θ =.
K =.

Simplify[
Solve[

θA
{CAKA == ,

1 - θH - θA - θB 
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θB
CBKB == ,

1 - θH - θA - θB 

θH√
KH2CH2 == },

1 - θH - θA - θB 

{θA, θB, θH}] 
]

CA KA
Out[182]= {{θA ––› √ ,

1 + CA KA + CB KB + CH2KH2

CB KB
θB ––› √ ,

1 + CA KA + CB KB + CH2KH2 

CH2 KH2
θH ––› √ }}

CH2 KH2 + (1 + CA KA + CB KB) CH2KH2 

The surface reaction rate begins to take shape: 

rA+2H⇔B,surf = kA+2H→B,surfCA,surfC2 
empty,sitesH,surf − kB→A+2H,surfCB,surfC2 

tot tot 
H,surf C3 − kB→A+2H,surfCB,surfC2 C3 

rA+2H⇔B,surf = kA+2H→B,surfCA,surfC2 C3 

empty,sites C3 
tot tot 

totθAθH2 − kB→A+2H,surfC3 2 
rA+2H⇔B,surf = kA+2H→B,surfC3 

totθBθ 

totθAθH2 − kB→A+2H,surfC3rA+2H⇔B,surf = kA+2H→B,surfC3 
totθB(1 − θH − θA − θB)2 

2 
totrA+2H⇔B,surf = kA+2H→B,surfC3 θAθH − QB(1 − θH − θA − θB)2

KA+2H⇔B,surf

This begins to look a bit formidable because of the algebra that would be involved in manip
ulating this expression. We will let Mathematica do most of the algebraic manipulations by 
following these steps that use PowerExpand[ ] to expand the higher-order terms Together[ ], 
which brings separate terms over the same denominator and FullSimplify[ ], which does just 
that. Here is the result of this approach to the parenthetical expression of the right-hand side 
of the rate expression: 

CA KA
In[183]:= θA = ;

1 + CA KA + CB KB + 
√
CH2 KH2 

CB KB
θB = ;

1 + CA KA + CB KB + 
√
CH2KH2 

CH2 KH2
θH = ;

CH2 KH2 + (1 + CA KA + CB KB)
√
CH2KH2 
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FullSimplify[
Together[

PowerExpand[θA θ
2 -

θB(1 - θH - θA - θB)2
]H KA + 2H B, surf⇔

]
]

-CB KB + CACH2 KA KH2 KA+2H⇔B,surf
Out[186]= √ √ 

(1 + CA KA + CB KB + CH2 KH2)3KA+2H⇔B,surf 

We can manipulate this into the form that we are interested in as follows: 

CBKB ) 
√rA+2H⇔B,surf = kA+2H→B,surfC3 

(CACH2KAKH2 − KA+2H⇔B,surf 
tot (1 + CAKA + CBKB + CH2KH2)3 

CB CB CB,surf CA,surf C
2 
H,surf 1

Keq = = 
C2CACH2 CB,surf CA,surf CA H,surf CH2 

CB CB,surf CA,surf 1 C2 
H,surf = 

C2CB,surf CA,surf CA H,surf CH2 

CB CB,surf CA,surf C
2 
H,surf = 

CB,surf CA,surfC2 CA CH2H,surf 

KA+2H⇔B,surfKAKH2 = 
KB 

KB KAKH2∴ = 
KA+2H⇔B,surf Keq 

(CA CH2 − CB ) 
totrA+2H⇔B,surf = kA+2H→B,surfKAKH2C3 Keq√ 

(1 + CA KA + CB KB + CH2 KH2)3 

(CA CH2 − CB )KeqrA+2H⇔B,surf = kglobal
(1 + CA KA + CB KB +

√ 
3CH2 KH2)

Now we can write some code that will evaluate the kinetics and the equilibrium and then 
graph the relevant gas and surface phase concentrations for us all at once. The equilibrium 
extent of reaction can be computed as follows for any given value of the equilibrium constant: 

In[187]:= Keq = .5;
α =.
Cao = 1;

α
NSolve[Keq == 

Cao(1 - α)2
, α] 

Out[190]= {{α ––› 3.73205}, {α ––› 0.267949}} 
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We see that the second of the two evaluations is the correct one. We imbed this into the Epilog 
as the y-coordinate of a line for the equilibrium concentration of the product at time zero 
and tmax, and we take one minus this value to get the line corresponding to the equilibrium 
concentration of reactant. By doing it this way we can set the magnitude of the equilibrium 
constant and the code will automatically compute these concentrations for the graph. This 
allows us to visualize immediately where the concentrations are at any time relative to the 
equilibrium concentrations: 

In[191]:= Clear[""Global‘*""] 

In[192]:= ε = .4; 

kglo = .01;

Ka = .1;

Kb = .01;

KH2 = .5;

Keq = .5;

Cao = 1;

CH2o = 1;

Cbo = 0;

tmax = 500;

LHHW2 = NDSolve[ 
{∂tCa[t] == 

(1 - ε) kglo(Ca[t]CH2[t] - Cb[t] 
Keq )- ,

ε (1 + KaCa[t] + KbCb[t] + 
√
KH2CH2[t])3 

∂tCH2[t] == 

(1 - ε) kglo(Ca[t]CH2[t] - Cb[t] 
Keq )- ,

ε (1 + KaCa[t] + KbCb[t] + 
√
KH2CH2[t])3 

∂tCb[t] == 

(1 - ε) kglo(Ca[t]CH2[t] - Cb[t] 
Keq )+ ,

ε (1 + KaCa[t] + KbCb[t] + 
√
KH2CH2[t])3 

Ca[0] == Cao, 
CH2[0] == CH2o, 
Cb[0] == Cbo}, 
{Ca[t], CH2[t], Cb[t]}, 
{t, 0, tmax}]; 
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cA[t--] := Evaluate[Ca[t] /. LHHW2[[1]]]
cH2[t--] := Evaluate[CH2[t] /. LHHW2[[1]]]
cB[t--] := Evaluate[Cb[t] /. LHHW2[[1]]]
cA[t]
cH2[t]
cB[t]

General::spell1 : Possible spelling error: new symbol
name "cH2" is similar to existing symbol "CH2".

Out[206]= InterpolatingFunction[{{0., 500.}}, <>][t]

Out[207]= InterpolatingFunction[{{0., 500.}}, <>][t]

Out[208]= InterpolatingFunction[{{0., 500.}}, <>][t]

KacA[t]
In[209]:= θA[t--] :=  

1 +  KacA[t] +  KbcB[t] +  
√
KH2cH2[t] 

KH2cH2[t]
θH[t--]:=1 +  KacA[t] +  KbcB[t] +  

√
KH2cH2[t] 

θA[t] 
θH[t] 

General::spell : Possible spelling error: new symbol 
name "θA" is similar to existing symbols {θ, �A}. 

General::spell : Possible spelling error: new symbol
name "θH" is similar to existing symbols {θ, θA}. 

Out[211]= 
CA KA 

1 + CA KA + CB KB + 
√ 
CH2KH2 

[t] 

Out[212]= 
CH2KH2 

CH2KH2 
+ (1 + CA KA + CB KB) 

√ 
CH2KH2 

[t] 

In[213]:= SetOptions[Plot, DefaultFont ––› {""Helvetica"", 12},  
AxesStyle ––› {Thickness[0.01]}];

Plot[{cA[t], cB[t]}, {t, 0, tmax},
AxesLabel ––› {”t”, ”Ca[t],Cb[t]”},
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5]},
{Dashing[{0.03, 0.03}], Thickness[0.01],
GrayLevel[0.2]}},

PlotLabel ––› Keq ”= Keq”,
Epilog ––› {
{GrayLevel[0.6], Dashing[{0.05, 0.025}],
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α
Line[{{0, Flatten[NSolve[Keq == 

(1 - α)2
, α]] 

[[2, 2]] + .002}, 
α

{tmax, Flatten[NSolve[Keq == 
(1 - α)2

, α]] 

[[2, 2]] + .002}} 
]}, 

{GrayLevel[0.6], Dashing[{0.05, 0.025}], 
α

Line[{{0, (1 - Flatten[NSolve[Keq ==
(1 - α)2

, α]] 

[[2, 2]] + .002)}, 
α

{tmax, (1 - Flatten[NSolve[Keq == 
(1 - α)2

, α]] 

[[2, 2]] + .002)}}
]}

}
];

Plot[{θA[t], θH[t]}, {t, 0, tmax},
AxesLabel ––› {”t”, ”θA[t],θH[t]”},
PlotStyle ––›
{Thickness[0.01], Dashing[{0, 0}]},
{Thickness[0.01], Dashing[{0.02, 0.02}]}}];

Ca(t,,Cb(t, 0.5 Keq�

t 

0.2 

0.4 

0.6 

0.8 

1 

100 200 300 400 500
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GA(t,,GH(t,

100 200 300 400 500 
t 

0.05 

0.1 

0.15 

0.2 

0.25 

The next step could be to make the preceding into a Module so that we can test parametric 
sensitivity readily. 

Microbial Population Dynamics 
At present there is an unprecedented research explosion in the biological sciences. The break
throughs in the basic sciences of genomics and related disciplines have brought us to the 
threshold of a new era in biological technology. Paramount to this new technology is the use 
of microbes (that is, cellular organisms) as reactors. Organisms have evolved mechanisms for 
dealing with environmental stress (such as the presence of a new substrate chemical in their 
surroundings) by rerouting their metabolic pathways. Metabolic engineers can take advan
tage of this through a procedure of accelerated adaptation in order to generate new microbes 
that consume a given substrate and produce a specific target chemical. 

Microbes use enzymes as catalysts to obtain the desired or beneficial reaction and typically 
under mild conditions. The brewing of beer and fermentation of fruit and vegetable mass high 
in starches to produce consumable ethanol are the oldest and most familiar examples of using 
microbial action to achieve a desired end. But now much more has been demonstrated, from 
the production of essential human hormones to the synthesis of specialty chemicals. 

In a reactor containing substrate a colony of microbes is innoculated and brought to 
maturity. As the colony grows the substrate is consumed to supply the microbes with their 
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building blocks. Some fraction of the substrate is necessarily diverted into the formation 
of biomass (that is, cells—their membranes and organelles) but some other fraction is used 
to produce the target molecule. In a batch process when the substrate has been consumed, 
the microbial colony either dies rapidly or if the process is to be stopped prior to complete 
substrate consumption, it is killed by a rapid change in conditions (for example, by raising 
the temperature as is done in the pasteurization of raw milk). From this point the problem of 
recovering the target molecule is one of separating it from the biomass and aqueous medium. 

The basis of life is molecular. Therefore we can describe the rates of substrate consumption, 
product formation, and even microbe population growth in much the same way that we would 
describe the rates of molecular-level chemical processes. 

We will take the microbe, substrate, and product concentrations to be a[t], b[t], c[t], 
respectively. The ways in which these kinetics are written are somewhat different. The equa
tions that describe the rates of change of each of these are shown in the following: 

a′[t] == µmax 
b[t] − k 

) 
a[t],

Ks + b[t] 

b′[t] == − µmax b[t] 
) 

a[t], 
ys Ks + b[t] 

c′[t] == α + β µmax 
b[t] 

) 
a[t],

Ks + b[t] 

The kinetic expressions are highly nonlinear because they include the following rate term: 

b[t] 
µmax = 

Ks + b[t]
a[t] 

where µmax is a maximum rate constant, Ks is a saturation concentration, and ys is a di
mensionless parameter that is similar to a stoichiometric coefficient. Likewise, α and β are 
dimensionless numbers that are also similar to stoichiometric coefficients; they relate the rate 
of production of the desired molecule to the rate of growth of microbial cell mass. In the cell 
that follows we build a model for these kinetics to examine how they behave: 

In[216]:= Clear[""Global‘*""] 

In[217]:= µ = .15; ""µmax""; 

K = .04; ""Ks""; 

y = 1;  ""ys""; 

α = 10-n; 

n = 2;
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β = .1; 

tmax = 300;

k = 0.1;

""a[t] is the change in microbial concentration; 
decreasing""; 
""b[t] is the change in the substrate concentration; 
increasing""; 
""c[t] is the change in product concentration; 
increasing""; 

bugs1 = NDSolve[{ 
b[t]

a’[t] == µ( - k)a[t],
K + b[t]

b’[t] == -
µ b[t] 

a[t], 
y K + b[t]

b[t]
c’[t] == (α + βµ )a[t],

K + b[t]
a[0] == .01,
b[0] == 10,
c[0] == 0
},

{a[t], b[t], c[t]},
{t, 0, tmax}];

a1[t--] := Evaluate[a[t] /. bugs1];
b1[t--] := Evaluate[b[t] /. bugs1];
c1[t--] := Evaluate[c[t] /. bugs1];

pa1 = Plot[a1[t], {t, 0, tmax},
DisplayFunction ––› Identity,
PlotStyle ––› {Thickness[0.01], Dashing[{0.02, 0.02}]},
PlotRange ––› {{0, tmax}, {0, b1[0][[1]]}}];

pb1 = Plot[b1[t], {t, 0, tmax},
DisplayFunction ––› Identity,
PlotStyle ––› {Thickness[0.01], GrayLevel[0.5]}];

pc1 = Plot[c1[t], {t, 0, tmax},
PlotStyle ––› {Thickness[0.01]},
DisplayFunction ––› Identity];

Show[pa1, pb1, pc1, DisplayFunction ––› $DisplayFunction,
PlotLabel ––› tmax ”= tmax,a[t]:gray, b[t]:dashed,
c[t]:blk”];
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Out[217] = Null16

How do we interpret these results? The substrate concentration (gray) falls slowly at very 
short time after innoculation of the microbial colony. This is an induction period over which 
the colony grows slowly. After this induction time, the colony of microbes (dashed) suddenly 
grows “explosively” and reaches a maximum. At the same time that the explosive growth 
occurs the substrate is diminished at a precipitous rate. After the substrate is used up, the 
colony begins to diminish in number. This occurs in the present case at a much slower rate 
than their growth. During the period of explosive growth and shortly after the maximum is 
attained in microbial population, the product concentration (solid black) increases and then 
levels to a constant with time as the colony finally expires. 

7.6 Summary 
In this chapter we have covered a wide spectrum of chemical kinetics from the simplest rate 
laws with relatively straightforward forms and interpretations to those involving catalysts and 
enzymes, which are more complex and necessarily more abstruse. As complex as the kinetics 
may have been, we have throughtout this chapter assumed the most simplistic of chemical 
reactors—that of the batch reactor. Ironically, although we speak of the batch reactor as being 
simple, in fact its description as we have seen can be not at all simple due to the fully transient 
nature of the processes occurring within it. Interestingly, if we introduce flows of reactant and 
product to and from the control volume, we will find that the system will have a condition that 
we refer to as the steady-state condition that is totally independent of time. At steady state the 
flow reactor is simple to describe even though the reactor seems to be more complex. Before 
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we analyze such systems we will first cover the semi- or fed-batch reactor, which involves 
flow of reactant into the system continuosly or intermittently. This type of reactor may attain 
a steady state in which case its mathematics are “simple,” but it may also operate transiently 
making the mathematics complex due to their time dependency. Whatever type of reactor we 
examine, in every case there will be some form of chemical reaction to consider and the rate 
of that reaction may be described using the rate laws and methods that we have developed in 
this chapter. 
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Semi-Continuous Flow
Reactors

8.1 Introduction to Flow Reactors 
A batch reactor is useful for laboratory studies and the production of small quantities of ma-
terials. Its disadvantage is that each time it is used it must be charged, operated, and then 
discharged in three separate stages. The time spent in charging and discharging is time lost 
to production. Nonetheless, if the value of the product is very high and the production quan-
tities required are low, then the batch system is often an optimal reactor choice. As it is not 
a dedicated unit, many different kinds of products can be scheduled and processed in the 
same unit. This can be done effectively for many pharmaceuticals and for some specialty 
chemicals. However, as the production requirements rise and the value-added in the product 
falls, efficient production is a must and the reactor must be used as continuously as possi-
ble. There should be relatively few shut-downs and the process should be operated continu-
ously for as long as possible. With respect to reactor size and the need for process continuity, 
the petroleum refinery lies at one extreme of the spectrum with pharmaceutical production 
at the other. 

There are three idealized flow reactors: fed-batch or semibatch, continuously stirred tank, and 
the plug flow tubular. Each of these is pictured in Figure 1. The fed-batch and continuously 
stirred reactors are both taken as being well mixed. This means that there is no spatial de-
pendence in the concentration variables for each of the components. At any point within the 
reactor, each component has the same concentration as it does anywhere else. The consequence 

363
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Reactants 

Fed-Batch No Position 
Dependence 

Continuous 
Flow-Stirred 

Products 
z 

Ci[z] 

Tank 

Tubular Plug-Flow 

Figure 1 

of this assumption is that as soon as the reactants cross the boundary from outside to inside 
of the reactor, their concentrations go from their feed stream values to the exit stream concen
tration values. This is true even if the reactor is considered to be operating transiently rather 
than in a steady state. The conversion of reactants is the same everywhere and, as we will see, 
it is set by the holding time in the reactor. Of course the exit stream has product and reactant 
concentrations that are exactly the same as those within the reactor. All this is a consequence 
of the mathematical assumption of perfect mixing. 

In contrast to the first two reactors, concentrations within the tubular flow reactor are 
characterized by position dependence. When we assume plug-flow, we take the concentrations 
to be independent of their radial positions. (The axial direction z is along the horizontal 
axis in the diagram; the radial direction is taken from the central axis out to the wall and 
is perpendicular to the axial direction.) The term plug means that there is no concentration 
profile in the radial direction; the gas moves through the cylindrical tube as if it were a “plug” 
of material translating through the volume. So in this case we must account not only for time 
dependence, but also for position of the front of the plug of gas. Near the entrance of the 
tube the gas is nearly 100% reactant and at the exit it is a mix of reactant and product, if the 
conversion is <100%. At axial positions between the two ends the gas is a mix of products 
and reactants. Our goal will be to predict how the mix changes as a function of position and 
flow parameters, that is, the holding time. 
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Some very interesting consequences of complete mixing versus partial mixing can be 
defined in terms of reactor efficiencies. For positive-order kinetics the fully mixed reactor will 
require a larger volume than the partially mixed tubular system to achieve the same conversion 
and at the same holding time. This is a very important result that requires using analysis to 
understand it. At the same time, although conversion may be higher, so too may selectivity be 
lower, if multiple reactions are involved. There is much to learn about the systems in which 
chemical reactions are conducted, even if we assume these systems to be at the extremes of 
ideal behavior. 

8.2 Semicontinuous Systems 

Fed-Batch Reactors 
The fed-batch reactor is a special system that can be used whenever the need arises to carefully 
control the reaction rate in a batch system. For example, if a reaction is highly exothermic, then 
mixing the reactants at their full stoichiometric ratios can lead to uncontrollable temperature 
rises, which are referred to as thermal excursions. In simple terms the reaction produces heat 
at a rate that is faster than the rate at which heat can be transferred away from the vessel. As a 
result the temperature in the vessel rises. The higher temperature leads to faster reaction rates 
and even higher rates of heat production. And so it goes with the heat of reaction feeding 
back into the kinetics and the kinetics rising with the increased temperature. The outcome 
of a thermal excursion can be, at a minimum, reduced selectivity and, at its worst, total loss 
of control of the reacting system with dire consequences. This phenomenon is called reactor 
runaway and it can lead to detonation of the system. However, by adding one of the reactants 
slowly or intermittently, we can control the system and maintain good heat transfer away 
from the vessel. As the amount of reactant is limited, the rate of reaction proceeds at a much 

Fed-batch No position 
dependence 

Figure 2 



P1:

May 10, 2002 16:39 Foley Foley-C08

366 Chapter 8 Semi-Continuous Flow Reactors 

reduced average rate, which allows the rate of heat transfer to keep pace with the rate of 
reactions. This approach is well known and much utilized by synthetic chemists at the bench 
and it is also used for all the same reasons that a production chemist or engineer would use it 
on a larger scale. The concentration changes within the reactor are periodically changing if the 
mass and volume of reactant are added intermittently, but they become continuously variant 
in time, that is, transient, if the flow to the system is continuous. For example, bioreactors are 
in a very real sense fed-batch systems in that oxygen may be fed continuously to the microbial 
colony for its sustenance, even if the substrate is fully charged at the beginning of the batch, 
since the volume of solution changes very little throughout the course of the process. 

If the rate of the irreversible chemical reaction of A and B to form D is given by rAB, and 
the flow rates of reactants are given by q A and qB with corresponding feed concentrations of 
CAf and CBf, then the component balance equations for the fed-batch reactor that produces D 
are: 

d CA[t]V[t] = CAf q A − rAB V[t]
dt 

d CB[t]V[t] = CBf qB − rAB V[t]
dt 

d CD[t]V[t] = rAB V[t]
dt 

These are the three relevant equations we need to solve for this problem. The immediate ques
tion that arises is that of the form of the kinetics. We will assume that the reaction between 
A and B is  first order in A and first order in B, that is, second order overall. The equations 
become: 

d CA[t]V[t] = CAf q A − kABCA[t]CB[t] V[t]
dt

d CB[t]V[t] = CBf qB − kABCA[t]CB[t] V[t] 
dt

d CD[t]V[t] = kAB CA[t]CB[t] V[t] 
dt 

8.3 Negligible Volume Change 
In some cases the volume change may be negligible from the start to the finish of the batch. 
For example, one reagent may be added in a very concentrated form to a dilute solution of 
the second reactant in the reactor. This can lead to a situation in which the volume of added 
reactant is quite small compared to that of the initial volume of solution. The equations for 
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this become: 

d CA[t] = CAfq A − kABCA[t]CB[t]
dt V 

d CB[t] = −kABCA[t]CB[t]
dt 

d CD[t] = kABCA[t]CB[t]
dt 

We can attempt to find a complete solution for this system of equations: 

In[1]:= DSolve[
{CA’[t] == CAf qA - kab CA[t] CB[t],
CB’[t] == -kab CA[t] CB[t],
CD’[t] == kab CA[t] CB[t],

CA[0] == 0,
CB[0] == CBo,
CD[0] == 0},

{CA[t], CB[t], CD[t]},
t]

Out[1]= DSolve[{CA′[t] == CAf qA - kab CA[t] CB[t], 
CB′[t] == -kab CA[t] CB[t], CD′[t] == kab CA[t] CB[t], 
CA[0] == 0, CB[0] == CBo, CD[0] == 0}, 
{CA[t], CB[t], CD[t]}, t]  

What we see is that this set of seemingly naive equations is not readily soluble analytically. 
The combination of the second-order kinetics plus the convective flow term is enough to 
require the use of numerical methods. To prove this to ourselves, we can redo the problem 
after removing the convective flow term. That is done in the cell that follows. 

In[2]:= Clear[""Global‘*""] 

In[3]:= Simplify[
DSolve[
{C1’[t] == -k C1[t] C2[t],
C2’[t] == -k C1[t] C2[t],
C3’[t] == +k C1[t] C2[t],
C1[0] == C1o,
C2[0] == C2o,
C3[0] == 0},

{C1[t], C2[t], C3[t]},
t]

]



P1:

May 10, 2002 16:39 Foley Foley-C08

368 Chapter 8 Semi-Continuous Flow Reactors 

Solve::verif : Potential solution {C[2] ––› 0, C[3] ––› 0} 
(possibly discarded by verifier) should be checked 
by hand. May require use of limits. 

Solve::ifun : Inverse functions are being used by
Solve, so some solutions may not be found.

1
Power::infy : Infinite expression encountered.

0
1

Power::infy : Infinite expression encountered.
02

∞::indet : Indeterminate expression 0k ComplexInfinity 
encountered. 

1 
Power::infy : Infinite expression encountered.

0

General::stop : Further output of Power::infy will be
suppressed during this calculation.

∞::indet : Indeterminate expression 0k ComplexInfinity 
encountered. 

∞::indet : Indeterminate expression 0 ComplexInfinity 
encountered. 

General::stop : Further output of ∞::indet will be 
suppressed during this calculation. 

C1o(C1o - C2o)
Out[3]= {C1[t] ––› 

C1o - C2o (-C1o+C2o)kt
, C1[t] ––› Indeterminate, 

(C1o-C2o)C2o C2okt
C2[t] ––› -

-C1o C1okt + C2o  C2okt
, C2[t] ––› Indeterminate,

(-C1o+C2o)ktC1oC2o(-1 +
C3[t] ––› Indeterminate, C3[t] ––› }

C1o+C2o)kt-C1o + C2o (-

Having removed the flow term, the analytical solution is found; however, we also see that 
along the way the solver found indeterminance in addition to the closed-form solutions. If we 
look back at Chapter 5, we find that we already solved this problem, but there we made a substi
tution for C2[t] in terms of C1[t], which thereby made the solution process easier and avoided 
an encounter with the infinite expression. Nonetheless, we see that including the constant 
flow term makes the analytical solution difficult to obtain. On the other hand, the numerical 
solution is trivial to implement, just as long as we have proper parameter values to apply. 

In[4]:= SetOptions[{Plot, ListPlot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {PointSize[0.015], Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 
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In[5]:= Clear[""Global‘*""] 
CAf = 1.; 
CAo = 0; 
CBo = .1; 
CDo = 0; 
kab = .1; 
qAf = .001; 
tmax = 20000; 
$D = 5;  
$B = 5;  
$A = 4;  
Mwd = 60; 
Mwb = 40; 
Mwa = 20; 
Vr = 100; 

fbsol1 = NDSolve[

CAf qAf
{CA’[t] == - kab CA[t] CB[t],

Vr
CB’[t] == -kab CA[t] CB[t],
CD’[t] == kab CA[t] CB[t],

CA[0] == CAo,
CB[0] == CBo,
CD[0] == CDo},

{CA[t], CB[t], CD[t]},
{t, 0, tmax}];

ca[t--] := Evaluate[CA[t] /. fbsol1]
cb[t--] := Evaluate[CB[t] /. fbsol1]
cd[t--] := Evaluate[CD[t] /. fbsol1]
ep[t--] := $D cd[t] Vr Mwd - $B cb[t] Vr Mwb
- $A CAf qAf Mwa t

Plot[{ca[t], cb[t], cd[t]},
{t, 0, tmax},
PlotRange ––› All,
PlotStyle ––› {

{Dashing[{0.0, 0.0}], Thickness[0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness[0.01]}},

AxesLabel ––› {""t"", ""Ci[t]""}, 
PlotLabel ––› ""solid blk = Ca, gray = Cb, 

dashed = Cd""]; 
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Ci(t, solid blk �Ca,gray � Cb, dashed � Cd 
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The preceding graph shows the time-dependent concentrations of each component. The 
profile for B drops nearly linearly with time and that of product rises the same way. The 
concentration of A is very small until most of B is used up and then it rises sharply with 
time. 

The following graph is most important. Here we have computed the total mass of A added 
at tmax plus the total mass of B present initially and compared this with the masses of B and 
D at any time: 

Total Mass of A + B = (CAf qAf Mwa tmax) + CB[0]Vr Mwb 

In[26]:= Plot[{(CAf qAf Mwa tmax) + cb[0] Vr Mwb, cb[t] Vr Mwb,
cd[t] Vr Mwd}, {t, 0, tmax},

PlotStyle ––› {{Dashing[{0.0, 0.0}], Thickness[0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness[0.01]}}, 

AxesLabel ––› {""t"", ""mi[t]""}, 
PlotLabel ––› ""gry=mb, blk=mtot[A+B], dsh=md""]; 
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mi(t, gry�mb, blk�mtot(A�B,,dsh�md 
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The mass of D cannot exceed the mass of A + B, and it does not. This provides the necessary 
check on the model. We have included the mass of B as a function of time and it goes to zero 
as we would expect. 

Next we can introduce and compute the economic potential of the mixture as a function 
of time: 

ep[t--] := $$D CD[t]Vr Mwd −− $$B CB[t]Vr Mwb −− $$A CAf qAf Mwa t 

The maximum economic potential is the difference between the values of the products and the 
reactants. The terms $D, $B, and $A are the values per unit mass of each component. Because 
this is a semibatch process, the economic potential goes through a maximum. We can plot this 
below and show this behavior for the case we are considering: 

In[27]:= $D = 5;
$B = 5;
$A = 4;
Plot[ep[t], {t, 0, tmax},

PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5]}}, 
PlotRange ––› All, 
AxesLabel ––› {""t"", ""$[t]""}, 
PlotLabel ––› ""Economic Potential""]; 
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$(t, Economic Potential 
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In this case the maximum value of the mixture is reached after 10,000 time units. Before this 
time we have not converted all of the reactant to product, but after this time we begin to merely 
dilute the product in reactant A. The next calculation and plot we shall make is the change in 
total volume calculated on the basis of the flow rate of reactant: 

In[31]:= Plot[{(qAf t + Vr)}, {t, 0, tmax},
PlotRange ––› All, 
AxesLabel ––› {""t"", ""V[t]""}, 
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.8]}} 

]; 
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The volume change in this case is on the order of 20%, which is really too large to be acceptable 
within the context of an analysis in which it was assumed that negligible volume change would 
occur. Hence we are motivated to do the analysis again without this simplifying assumption. 

8.4 Large Volume Change 
The equations for variable volume are: 

d Ca[t]V[t] = Caf qaf − kab Ca[t]Cb[t] V[t]
dt

d Cb[t]V[t] = −kab Ca[t]Cb[t] V[t]
dt

d Cd[t]V[t] = +kab Ca[t]Cb[t] V[t]
dt 

As there are four time-dependent variables and only three equations, we need another equa
tion, which is obtained in the total material balance. The mass in the control volume increases 
only by the additional mass admitted through the feed stream: 

d ρ V[t] = ρ qaf
dt 

If the density is essentially unchanging and if the flow rate in is a constant, then the volume 
change is linear in time: 

V[t] = Vo + qaf t 

In[32]:= Clear[""Global‘*""] 

In[33]:= CAf = 1.;
CAo = 0;
CBo = .1;
CDo = 0;
kab = .1;
qAf = .001;
tmax = 20000;
$D = 5;
$B = 5;
$A = 4;
Mwd = 60;
Mwb = 40;
Mwa = 20;
Vr = 100;
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fbsol2 = NDSolve[
{∂tV[t] == qAf,
∂t(CA[t] V[t]) == CAf qAf - kab CA[t] CB[t] V[t],
∂t(CB[t] V[t]) == -kab CA[t] CB[t] V[t],
∂t(CD[t] V[t]) == kab CA[t] CB[t] V[t],

V[0] == Vr,
CA[0] == CAo,
CB[0] == CBo,
CD[0] == CDo},

{V[t], CA[t], CB[t], CD[t]},
{t, 0, tmax}];

v[t--] := Evaluate[V[t] /. fbsol2]
ca[t--] := Evaluate[CA[t] /. fbsol2]
cb[t--] := Evaluate[CB[t] /. fbsol2]
cd[t--] := Evaluate[CD[t] /. fbsol2]

ep[t--] := $D cd[t] v[t] Mwd - $B cb[t] v[t] Mwb
- $A CAf qAf Mwa t

Plot[{ca[t], cb[t], cd[t]},
{t, 0, tmax},
PlotRange ––› All,
PlotStyle ––› {{Dashing[{0.0, 0.0}], Thickness[0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness[0.01]}},

AxesLabel ––› {""t"", ""Ci[t]""},
PlotLabel ––› ""blk=Ca,gr=Cb,dhsd=Cd""];

Plot[{(CAf qAf Mwa tmax) + cb[0] Vr Mwb, cb[t] v[t] Mwb,
cd[t] v[t] Mwd}, {t, 0, tmax},
PlotStyle ––› {{Dashing[{0.0, 0.0}], Thickness[0.01]},
{GrayLevel[0.5], Thickness[0.01]},
{Dashing[{0.02, 0.02}], Thickness[0.01]}},

AxesLabel ––› {""t"", ""mi[t]""},
PlotLabel ––› ""gry=mb, blk=mtot[A+B], dsh=md""];

Plot[ep[t], {t, 0, tmax}, 
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.5]}}, 
PlotRange ––› All, 
AxesLabel ––› {""t"", ""$[t]""}, 
PlotLabel ––› ""Economic Potential""]; 
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Plot[{(v[t])}, {t, 0, tmax},
PlotRange ––› All, 
AxesLabel ––› {""t"", ""V[t]""}, 
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.8]}} 
];
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$(t, Economic Potential 
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The next step we take is to create a Module function semi2 from this code so that we may run 
many different cases of this semibatch reactor. The groups of similar variables and parameters 
are grouped within curly brackets: 

In[57]:= semi2[{CAf--, CAo--, CBo--, CDo--}, kab--, qAf--,
{$D--, $B--, $A--}, {Mwd--, Mwb--, Mwa--}, Vr--, tmax--]:=
Module[
{V, CA, CB, CD, v, ca, cb, cd, fbsol2, ep, t},

fbsol2 = NDSolve[ 
{∂t V[t] == qAf, 
∂t(CA[t] V[t]) == CAf qAf - kab CA[t] CB[t] V[t], 
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∂t(CB[t] V[t]) == - kab CA[t] CB[t] V[t], 
∂t(CD[t] V[t]) == kab CA[t] CB[t] V[t],

V[0] == Vr,
CA[0] == CAo,
CB[0] == CBo,
CD[0] == CDo},

{V[t], CA[t], CB[t], CD[t]},
{t, 0, tmax}];

v[t] = Evaluate[V[t] /. fbsol2];
ca[t] = Evaluate[CA[t] /. fbsol2];
cb[t] = Evaluate[CB[t] /. fbsol2];
cd[t] = Evaluate[CD[t] /. fbsol2];

ep[t] = ($D cd[t] v[t] Mwd - $B cb[t] v[t] Mwb -
$A CAf qAf Mwa t); 

SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10}]; 

Plot[{ca[t], cb[t], cd[t]},
{t, 0, tmax},
PlotRange ––› All,
PlotStyle ––› {{Dashing[{0.0, 0.0}], Thickness[0.02]},
{GrayLevel[0.5], Thickness[0.02]},
{Dashing[{0.04, 0.04}], Thickness[0.02]}},

AxesLabel ––› {""t"", ""Ci[t]""},
PlotLabel ––› ""blk=Ca, gr=Cb, dhsd=Cd"",
DisplayFunction ––› Identity];

{{Graphics[Plot[
{(CAf qAf Mwa tmax) + CBo Vr Mwb, cb[t] v[t] Mwb,
cd[t] v[t] Mwd}, {t, 0, tmax},
AxesLabel ––› {""t"", ""},""

PlotStyle ––› {{Dashing[{0.0, 0.0}], Thickness[0.02]},
{GrayLevel[0.5], Thickness[0.02]},
{Dashing[{0.04, 0.04}], Thickness[0.02]}},

AxesLabel ––› {""t"", ""mi[t]""},
PlotLabel ––› ""gry=mb, blk=mtot[A+B], dsh=md"",
DisplayFunction ––› Identity]]},

{Graphics[Plot[ep[t], {t, 0, tmax}, 
PlotStyle ––› {{Thickness[0.02], GrayLevel[0.5]}}, 
PlotRange ––› All, 
AxesLabel ––› {""t"", ""$[t]""}, 
PlotLabel ––› ""Value"", 
DisplayFunction ––› Identity]]}, 
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{Graphics[Plot[{(v[t])}, {t, 0, tmax},
PlotRange ––› All, 
AxesLabel ––› {""t"", ""V[t]""}, 
PlotStyle ––› {{Thickness[0.02], GrayLevel[0.8]}}, 
DisplayFunction ––› Identity]]}}

]

This function can now be used to examine how the behavior of the fed-batch reactor system 
behaves with variation in its parameters. In the example that follows, the parameters are 
held constant, except for the values of the product which are varied from 5 to 15 in three 
increments of 5 each. We have done this by making a table of the Module “semi2.” The output 
from semi2 is three graphics, one for each relevant graph. Our goal is to show these as an 
array of plots. We do this by flattening the output “solgrp,” to remove all the internal curly 
brackets. Then these are partitioned into groups of three and finally we ”Show” the results as 
a set of GraphicsArray as follows: 

In[58]:= solgrp = Table[
semi2[{1, 0, .1, 0}, .1, .001, {n, 5, 4}, {60, 40, 20},
100, 20000], {n, 5, 15, 5}

];
Partition[Flatten[solgrp], 3];
Show[GraphicsArray[%]];
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The overall value in $ of the economic potential increases significantly with the increased 
value of the product, but each case shows the same maximum and at the same point in time. 
The changes in mass of B and D are apparently linear in time over most of the run up to 
∼10,000 time units. Why should this be? Linear time dependence indicates a constancy of 
slope. However, this is a fully transient, that is, time-dependent, system. How can we have 
a constant slope, that is, a constant rate of change, in the concentrations for a fully transient 
system? To understand this we must reintroduce the concept of the pseudo-steady state. 

8.5 Pseudo-Steady State 
A situation that can arise in the well-stirred fed-batch reactor is one in which the rate of 
consumption of the added component is balanced exactly by its rate of addition. In this case 
the rate of change of the mass of A in the reactor is effectively zero as long as there is sufficient 
B present for reaction to take place. This leads to a period of operation that can be considered 
to be a steady state, but we refer to it is a pseudo-steady state because at the same time the rate 
of change of B is real and constant. We will go back to the equations of change to understand 
what this means: 

d Ca[t]V[t] = Caf qaf − kab Ca[t]Cb[t] V[t]
dt

d Cb[t]V[t] = −kab Ca[t]Cb[t]V[t]
dt

d Cd[t]V[t] = +kab Ca[t]Cb[t]V[t]
dt 

If the rate of change of the concentration of A is zero, then the following simplifications apply: 

0 = Caf qaf − kab Ca[t]Cb[t]V[t] 

d Cb[t]V[t] = −Caf qaf
dt 

d Cd[t]V[t] = +Caf qaf
dt 

If the feed flow rate and concentration of A are constant, then we would find that the con
centrations of B and D are linear in time and with oppositely signed slopes. We use “stst” to 
designate the steady-state time-dependent concentrations of B and D. 

In[61]:= Clear[""Global‘*""] 

Simplify[DSolve[
{∂t(V[t]) == qaf,
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∂t(Cbstst[t] V[t]) == -Caf qaf, 
∂t(Cdstst[t] V[t]) == +Caf qaf, 
V[0] == Vo,
Cbstst[0] == Cbo,
Cdstst[0] == Cdo},
{V[t], Cbstst[t], Cdstst[t]},
t]]

General::spell1 : Possible spelling error: new symbol 
name "qaf" is similar to existing symbol "qAf". 

General::spell1 : Possible spelling error: new symbol 
name "Caf" is similar to existing symbol "CAf". 

General::spell1 : Possible spelling error: new symbol 
name "Cdstst" is similar to existing symbol "Cbstst". 

General::stop : Further output of General::spell1 will
be suppressed during this calculation.

-Cafqaft + Cbo Vo
Out[62]= {Cbstst[t] ––› , 

qaft + Vo

Cafqaft + Cdo Vo
Cdstst[t] ––› , V[t] ––› qaf t + Vo} 

qaft + Vo

We can go back to the full time-dependent solution and define a flow condition for A that would 
lead to these steady-state results. The key to the pseudo-steady state is that the mass flow of 
A into the system be balanced by the rate of chemical reaction. We can write a new Module 
function that takes the solutions that we just derived for the steady state and compares them 
to those that we had already obtained for the fully time-dependent case. This is constructed in 
what follows by copying those pieces of “semi2” that we need and adding in the steady-state 
solutions. 

In[63]:= semi3[{CAf--, CAo--, CBo--, CDo--}, kab--, qAf--, Vr--,
tmax--]:=
Module[
{V, CA, CB, CD, v, ca, cb, cd, castst, cbstst, cdstst,
fbsol3, t},

fbsol3 = NDSolve[
{∂tV[t] == qAf, 
∂t(CA[t] V[t]) == CAf qAf - kab CA[t] CB[t] V[t], 
∂t(CB[t] V[t]) == -kab CA[t] CB[t] V[t], 
∂t(CD[t] V[t]) == kab CA[t] CB[t] V[t], 
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V[0] == Vr,
CA[0] == CAo,
CB[0] == CBo,
CD[0] == CDo},

{V[t], CA[t], CB[t], CD[t]},
{t, 0, tmax}];

v[t] = Evaluate[V[t] /. fbsol3];
ca[t] = Evaluate[CA[t] /. fbsol3];
cb[t] = Evaluate[CB[t] /. fbsol3];
cd[t] = Evaluate[CD[t] /. fbsol3];

CBoVr - CAfqAft
cbstst[t] = ;

qAft + Vr

CAfqAft + CDoVr
cdstst[t] = ;

qAft + Vr

Plot[{ca[t], cb[t], cd[t], cbstst[t], cdstst[t]},
{t, 0, tmax},
PlotRange ––› All,
PlotStyle ––› {{Thickness[0.01], GrayLevel[0.8],
Dashing[{0.01, 0.02}]},
{Thickness[0.01], GrayLevel[0]},
{Thickness[0.01], GrayLevel[0.5]},
{Thickness[0.01], Dashing[{0.15, 0.05}],
GrayLevel[0]},
{Thickness[0.01], Dashing[{0.15, 0.05}],
GrayLevel[0.5]}},
AxesLabel ––› {""t"", ""Ci[t]""}, 
PlotLabel ––› ""lt-gry-dsh = Ca, blk = Cb, 

dk-gry = Cd, blk-dsh = Cb stst, 
dk-gry-dhs = Cd stst"", 

DisplayFunction ––› Identity]
]

General::spell : Possible spelling error: new symbol name 
"cbstst" is similar to existing symbols {castst, Cbstst}. 

General::spell : Possible spelling error: new symbol name 
"cdstst" is similar to existing symbols {castst, cbstst, 
Cdstst}. 

In[64]:= semi3[{1, 0, .1, 0}, .1, .001, 100, 20000];
Show[%, DisplayFunction ––› $DisplayFunction];
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The results show in the preceding graph that the steady-state solutions (dashed) map well 
onto the transient solutions for the concentrations of B and D at early time. Beyond ∼8000 
time units, the steady-state concentrations begin to deviate noticeably from the full solutions. 
This is also the time at which the concentration of A begins to rise above near-zero values. The 
steady-state solutions are useful because they allow us to compute the flow rate of reagent A 
and the time dependence of the systems with very simple equations, but we cannot push such 
an analysis too far beyond its region of applicability. From the perspective of analysis, the 
pseudo-steady state is important to us because it explains the behavior of the more complex 
and complete model in a very straightforward way. 

8.6 Summary 
In this chapter we have found that a reactor type that is familiar to us and that has intu
itively obvious usefulness, namely, the well-mixed semibatch reactor, is also very complex to 
treat—at least analytically—due to its transient behavior. It is also evident that we would 
never use this kind of reactor to evaluate even the most basic chemical kinetics. Thus we need 
a simpler type of reactor that is mathematically more tractable and experimentally more feasi
ble to operate. We will see instances of these in the next chapter. Along the way we have now 
added the final element that we needed in our Mathematica toolbox, the writing of Modules. 
We will build on this to produce even more useful Packages in what follows. 
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Continuous Stirred Tank
and the Plug Flow Reactors

The two most useful idealizations of chemical reactors are the continuously stirred tank reactor 
(CSTR) and the plug flow reactor (PFR). Both are idealizations in that they are two different 
and quite distinct extremes of mixing. Real reactors are more complex, but often they can 
be analyzed approximately in terms of these idealizations. Furthermore, when starting from 
scratch to consider the design of a new reactor system, these simplified models are used to 
estimate the size of the system that will be required and, in some cases, which mixing regime 
will lead to better results. Finally, the ideal reactors allow us to do analyses that will give us 
insight into how real reactors operate, which factors are most important, and how to control 
them for better performance. Therefore, although the CSTR and PFR are idealizations, they 
are quite powerful models for chemically reacting systems and we have much to gain from a 
study of them. We begin first with the perfectly mixed system. 

9.1 Continuous Flow-Stirred Tank Reactor 
The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that 
frequently for both production and fundamental kinetic studies. Unfortunately, this name, 
abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises 
from the assumption in the analysis that the reactor is perfectly mixed, and that it is homo-
geneous. A better name for this model might be continuous perfectly mixed reactor (CPMR). 

383 



P1:

May 10, 2002 16:30 Foley Foley-C09

384 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors 

Continuous 
Flow-Stirred 

No Position 
Dependence 

A D 
Vtot, Acr 

CA, CD, q 

CAf, qAf 

Tank 

Figure 1 

Nonetheless, as long as we realize this and its mathematical consequences, and that the ter
minology refers as much to the mathematics as it does to any specific configuration, then the 
more prevalent name CSTR is serviceable. 

Because of the well-mixed assumption, it is natural to think of the CSTR as a liquid phase 
reactor with a mixer as shown in Figure 1: 

The chemistry in this case is the irreversible conversion of A to B, which follows sim
ple, linear kinetics. When we write the time-dependent mass balances for this system we 
have: 

d Ca[t]V[t] = Caf qaf − Ca[t]q − kad Ca[t] V[t] 
dt

d Cd[t]V[t] = −Cd[t]q + kad Ca[t] V[t] 
dt

d ρ[t]V[t] = ρaf qaf − ρ[t]q
dt 

If the system is at steady state, then the total mass in must be balanced by the total mass 
out. Furthermore, if the densities of the feed and product are nearly the same, then we can 
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take the flow rate in as equal to the flow rate out. The equations at steady state become: 

0 = (Caf − Ca)q − kad Ca V 

0 = −Cd q + kad Ca V 

0 = qaf − q 

We can divide both of the component balances by the product Caf V to find: 

(1 − �a)
0 = − kad �a 

θ 

�d
0 = −  + kad �a 

θ 

where V = θ is the holding time for the CSTR. If we now solve for the dimensionless exit q 
concentration, we find: 

(1 - Φa)
In[19]:= Solve[0 == - kadΦa, Φa]

θ

1
Out[19]= {{�a ––› }}

1+kad θ 

Solving both equations simultaneously to find Φd: 

In[20]:= Clear[""Global‘*""] 
(1-Φa) Φd 

Solve[{0 == - kadΦa, 0 == - , kadΦa}, {Φa,Φd}]
θ θ

General::spell1: Possible spelling error: new symbol name 
”�d” is similar to existing symbol ”�a”. 

kad θ 1 
Out[21]= {{�d ––› 

1+kad θ 
, �a ––› 

1+kad θ 
}} 

The concentration of A leaving the reactor is the reciprocal of the sum of one plus the 
product of the first-order rate constant and the holding time. The first-order rate constant, we 
recall, has dimensions of reciprocal time, and the holding time is just time, so their product is 
dimensionless. In fact this product is actually the ratio of the holding time to the characteristic 
time required for the chemistry to occur. If the rate constant is taken to be of order unity, then 
we will see how the concentrations of A and D change with holding time. 

In[22]:= SetOptions[{Plot, ListPlot},
AxesStyle ––› {Thickness[0.01]},
PlotStyle ––› {PointSize[0.015], Thickness[0.006]},
DefaultFont ––› {""Helvetica"", 17}]; 
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1
In[23]:= Φa[θ--]:= 1+kadθ

kadθ
Φd[θ--]:= 1+kadθ
kad = 1;

Plot[{Φa[θ], Φd[θ]}, {θ, 0, 50},  
PlotStyle ––› {{Thickness[0.01],GrayLevel[0]}, 
{Thickness[0.01], GrayLevel[0.5]}}, 
AxesLabel ––› {""θ"", ""Φi[t]""}, 
Epilog ––› {Thickness[0.01],Dashing[{0.02, 0.02}], 
Line[{{0, 1},{50, 1}}]}, 
PlotLabel ––› ""St.St.CSTR 1st Ord. Irrev. Rate""]; 

.i(t, St.St.CSTR 1st Ord. Irrev. Rate 

G

0.2 
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When the holding time has become a factor of ten larger than the characteristic time for the 
reaction chemistry, then we find that the concentration of A has dropped by ∼90% of its feed 
value. Hence, the concentration of product D is said to tend toward unity asymptotically. 

There is another important way to view these equations. If we go back to the dimensional 
form it will be more evident. Typically, the CSTR is considered to be operated at steady state, 
which greatly simplifies the problem as we will see. 

0 = (Caf − Ca)q − kad Ca V 

0 = −Cd q + kad Ca V 
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We can rearrange these as follows: 

(Caf − Ca) 
q = kad Ca 
V 

(Caf − Ca) = kad Ca 
θ 

(Caf − Ca) = rad 
θ 

This last equation shows why the CSTR at steady state is such a valuable tool to the experi
mentalist seeking kinetic parameters. The rate of reaction, independent of the form of the kinetics, 
is simply the change in concentration of A between the feed and exit streams divided by the 
holding time. We will see this repeatedly. 

There is something to learn from rearranging the second equation also: 

0 = −Cd q + kad Ca V 

Cd q = radV 

Given the rate of a chemical reaction, and the target production rate Cd q we can compute the 
volume necessary for a well-mixed reactor to achieve this output. Thus in a very real sense this 
becomes a useful design equation to be employed in the earliest stages of a study of economic 
feasibility. 

9.2 Steady-State CSTR with Higher-Order, 
Reversible Kinetics 

The first-order, irreversible chemical rate case is useful in terms of providing us with insight 
into what are the consequences of perfect mixing and with a sense of how the characteristic 
times for reaction and flow are related. On the other hand, it is limited in usefulness because it 
represents highly simplified chemistries and correspondingly simple kinetics. Often the actual 
kinetics are far more complex. Let us consider the same chemistry as that we examined in the 
fed-batch reactor, namely, that of A and B reacting to give D (see Figure 2). The rate law will 
be second order overall and first order in each component. However, this time we will assume 
that it is reversible and that the rate law for the reverse reaction will be second order in D: 

rA+B⇔D = kab Ca Cb − kd Cd2 

kd
Keq = 

kab 
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The transient balance equations for this system will be: 

d Ca[t]V[t] = Caf qf − Ca[t]q − kab Ca[t] Cb[t] V[t] + kd Cd[t]2 V[t]
dt 

d Cb[t]V[t] = Cbf qf − Cb[t]q − kab Ca[t] Cb[t] V[t] + kd Cd[t]2 V[t]
dt 

d Cd[t]V[t] = −Cd[t]q + kab Ca[t] Cb[t] V[t] − kd Cd[t]2 

dt
d ρ[t]V[t] = ρf qbf − ρ[t][t]q

dt 

At the steady-state condition the mass input must be the same as the mass output. Furthermore, 
the net rate of change in concentration of each of the components is zero. This makes the 
differentials each zero in all four equations. The inlet densities of the liquid reactant streams 
are typically not too different from each other or from the density of the outlet stream including 
products. The inlet flow rates and concentrations are also equal. Thus the equations reduce to: 

0 = Caf qf − Ca q − kab Ca Cb V + kd Cd2 V 

0 = Cbf qf − Cb q − kab Ca Cb V + kd Cd2 V 

0 = −Cd q + kab Ca Cb V − kd Cd2 V 

0 = qf − q 

These are four equations that include a total of 10 variables and parameters, and only three of 
the four equations are independent, as three can be solved to find the fourth. The solutions to 
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these equations are “easy” to find, in the sense that they are a set of simultaneous algebraic 
equations rather than differential equations. We can solve the three component balances for 
the concentrations at the exit of the reactor using Solve. 

In[27]:= Clear[""Global‘*""] 
cstr1 = Simplify[ 

Solve[ 
{0 == (Caf - Ca)q - kabCaCbV + kdCd2V,
0 == (Cbf - Cb)q - kabCaCbV + kdCd2V,
0 == -Cdq + kabCaCbV - kdCd2V}, {Ca, Cb, Cd}]

]

Out[28]= {{Ca ––› √ 
q+Cbfkab V-Caf(kab-2kd)V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2

- ,
2(kab-kd)V

1
Cb ––› - (q+Cafkab V-Cbfkab V+2Cbfkd V+

2(kab-kd)V

4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2),
√ 

q+Cafkab V+Cbfkab V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2
Cd ––› ,

2(kab-kd)V√ 
{Ca ––›

-q-Cbfkab V+Caf(kab-2kd)V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2 , 

2(kab-kd)V 
1

Cb ––› (q-Cafkab V+Cbfkab V-2Cbfkd Vkern3pt+
2(kab-kd)V

4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2),
√ 

q+Cafkab V+Cbfkab V- 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2
Cd ––› }}

2(kab-kd)V

The result is that we get two sets of symbolic solutions for the concentrations. The first set 
appears to be the appropriate one as the leading coefficient is positive, whereas for the second 
set the same term is negative, suggesting that for real positive values of the parameters it 
would return negative concentrations, which are unphysical. Thus we can extract the first set 
of solutions with the bracketed number 1: 

In[29]:= cstr1[[1]]

Out[29]= {Ca ––› √ 
q+Cbfkab V-Caf(kab − 2kd) V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2 

- ,
2(kab-kd)V

Cb ––› √ 
q+Cafkab V-Cbfkab V + 2Cbfkd, V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2 

- ,
2(kab-kd)V

Cd ––› √ 
q+Cafkab V+Cbfkab V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2 }

2(kab-kd)V
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We note that in order to solve for these concentrations, we would have to know the values of 
the two rate constants, the two inlet concentrations, the three flow rates, two in and one out, 
and the one reactor volume for a total of eight known quantities out of 11. This makes perfect 
sense as we have only three independent equations and 11 possible unknowns. To extract the 
right-hand sides of the three solutions and to apply them as functions we use the sequence of 
bracketed numbers as follows for the concentration of A: 

In[30]:= cstr1[[1, 1, 2]]

Out[30]= -
q+Cbfkab V-Caf(kab-2kd)V+ 4CafCbfkab(-kab+kd)V2 +(q+(Caf+Cbf)kab V)2

2(kab-kd)V

Now we can really see why the CSTR operated at steady state is so different from the 
transient batch reactor. If the inlet feed flow rates and concentrations are fixed and set to be 
equal in sum to the outlet flow rate, then, because the volume of the reactor is constant, the 
concentrations at the exit are completely defined for fixed kinetic parameters. Or, in other 
words, if we need to evaluate kab and kd, we simply need to vary the flow rates and to collect 
the corresponding concentrations in order to fit the data to these equations to obtain their 
magnitudes. We do not need to do any integration in order to obtain the result. Significantly, 
we do not need to have fast analysis of the exit concentrations, even if the kinetics are very 
fast. We set up the reactor flows, let the system come to steady state, and then take as many 
measurements as we need of the steady-state concentration. Then we set up a new set of 
flows and repeat the process. We do this for as many points as necessary in order to obtain a 
statistically valid set of rate parameters. This is why the steady-state flow reactor is considered 
to be the best experimental reactor type to be used for gathering chemical kinetics. 

Why is it that the flow rate should change the concentrations at the exit of the reactor? To 
see this we should nondimensionalize our equations. We will divide each component balance 
by V and by Caf: 

(Caf − Ca)q − kab Ca Cb V + kd Cd2 V
0 = 

Caf V 

= (1 − �a) 
q − kab �a Cb  + kd �d Cd2 

V 

We can multiply the last two terms by Caf in order to express each concentration in non-Caf 
dimensional terms: 

1 Caf Caf
0 = (1 − �a) − kab �a Cb + kd �d Cd 

θ Caf Caf 
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For each of the components we obtain by this procedure: 

1
0 = (1 − �a) − kab Caf �a �b + kd Caf �d2 

θ 

Cbf 
) 

1
0 = − �b − kab �a �b + kd �d2 

Caf θ 

1
0 = − �d + kab �a �b − kd �d2 

θ 

The flow rate through the reactor is q, and thus the holding time is V , which is θ. Because the q 
stoichiometry is 1:1 we can take Cbf = Caf: 

0 = (1 − �a) − kab Caf θ �a �b + kd Caf θ �d2 

0 = (1 − �b) − kab Caf θ �a �b + kd Caf θ �d2 

0 = − �d + kab Caf θ �a �b − kd Caf θ �d2 

In[31]:= Clear[""Global‘*""] 

In[32]:= ndcstr1 = Simplify[
Solve[
{0 == (1 - Φa) - kab Caf θΦaΦb + kd  Caf  θΦd2, 
0 == (1  - Φb) - kab Caf θΦaΦb + kd  Caf  θΦd2, 
0 == -Φd + kab Caf θΦaΦb - kd  Caf  θ Φd2}, 

{Φa, Φb, Φd}]] 

General::spell: Possible spelling error: new symbol name 
”�b” is similar to existing symbols {�a,�d}. 

√ 
1+2Cafkd θ - 1+4Cafkab θ +4Caf2 kabkd θ2 

Out[32]= {{�a ––› ,
-2Cafkab θ +2Cafkd θ √ 

1+2Cafkd θ - 1+4Cafkab θ +4Caf2 kabkd θ2 
�b ––› ,

-2Cafkab θ +2Cafkd θ √ 
1+2Cafkad θ - 1+4Cafkab θ +4Caf2 kabkd θ2 

�d ––› },
2Cafkab θ -2Cafkd θ √ 

1+2Cafkd θ + 1+4Cafkab θ +4Caf2 kabkd θ2 
{�a ––› ,

-2Cafkab θ +2Cafkd θ √ 
1+2Cafkd θ + 1+4Cafkab θ +4Caf2 kabkd θ2 

�b ––› ,
-2Cafkab θ +2Cafkd θ √ 

1+2Cafkad θ + 1+4Cafkab θ +4Caf2 kabkd θ2 
�d ––› }}

2Cafkab θ -2Cafkd θ 
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These are the same solutions as before, but in nondimensionalized form they are more compact 
and more easily understood. 

In[33]:= φa[θ--] := ndcstr1[[1, 1, 2]] 
φb[θ--] := ndcstr1[[1, 2, 2]] 
φd[θ--] := ndcstr1[[1, 3, 2]] 

Caf = .25;
kd = 1.5;
kab = 1.1;
tmin = 0.001;
tmax = 100;

kab α2 

αeq = NSolve[ == 
(1 - α)2

, α]
kd

Plot[{φa[θ],φd[θ]}, 
{θ, tmin, tmax}, 
PlotStyle ––› {{Dashing[{0.15, 0.05}], Thickness[0.01], 
GrayLevel[0]}, {Dashing[{0.15, 0.05}],
Thickness[.01], GrayLevel[.5]}}, 

PlotLabel ––› ""rd = φa; bl = φd; lines = eq"", 
AxesLabel ––› {""θ"", ""φi[θ]""}, 
Epilog ––› { 
{Dashing[{0.01, 0.01}], GrayLevel[.5], 
Line[{{tmin, αeq[[2, 1, 2]]},{tmax, αeq[[2, 1, 2]]}}]}, 
{Dashing[{0.01, 0.01}], Line[{{tmin, 1 -αeq[[2, 1, 2]]}, 
{tmax, 1 - αeq[[2, 1, 2]]}}]}} 

]; 

9.3 Time Dependence—The Transient 
Approach to Steady-State 
and Saturation Kinetics 

Although the steady-state CSTR is simple to operate and analyze and even though it offers 
real advantages to the kineticist, it is also true that these systems must go through a start-up. 
They do not start up and necessarily achieve steady state instantaneously. The time period in 
which the system moves toward a steady-state condition is called the transient, meaning that 
the system is in transition from one that is time-dependent to one that is time-independent. 
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We have no way of knowing how long it will take a given reaction or set of reactions to achieve 
a steady state in the CSTR before we either do an experiment or solve the time-dependent 
model equations. If we choose to do experiments as a means to assessing this, then we need to 
be prepared to do many of them. But if we already know the kinetics, then we do the analysis 
and the math instead. If we do it correctly, then it is fast and it provides us with insights 
that complement the experiments and in many cases provides interpretations that a purely 
experimental approach cannot yield. Therefore, in this problem we will consider just such a 
case with a more complex set of kinetics. 

Consider the reaction of a molecule that takes place on a solid catalyst surface. This 
reaction simply involves converting one form of the molecule into another: in other words, 
it is an isomerization reaction. But the reaction in question only takes place on the catalyst 
surface and not without the catalyst. (See Figure 3.) 

As we saw in Chapter 6, when we analyze a reaction of this kind we find that at least two 
steps are involved—adsorption and surface reaction. The adsorption equilibrium steps take 
place by the interaction of the molecule in the bulk phase with a so-called adsorption site on 
the solid surface. The adsorption site is the locus of points on the surface that interact directly 
with the molecule: 

Abulk + site � Asurface 

Asurface → Bsurface 

Bsurface � Bbulk + site 

Once B is formed, it too undergoes adsorption and desorption. The desorption carries B from 
the surface and into the bulk fluid phase. In this case we will assume that the reaction is 
irreversible and that the rate of this reaction is first order in the surface concentration of A. It  
also is first order in the concentration of surface sites. Thus the kinetics follow a simple surface 
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rate law: 

rA− = k ′ 
surfaceCA,surfaceCsites 

The surface concentration is difficult to measure; thus we need to reexpress it in terms of 
the bulk phase concentration of species A. To do this we take advantage of the fact that the 
molecules often adsorb and desorb so quickly that they come to equilibrium rapidly with the 
surface sites. Therefore, subject to this assumption, we can express the surface concentration 
in terms of the equilibrium. The equilibrium gives rise to the following relationship for the 
surface concentration of A in terms of the bulk concentration of A: 

K ACACA,surface 1 + K ACA 
= 

We can substitute this expression into the rate expression for the reaction. This leads to this 
rate in terms of the bulk phase concentrations: 

K ACA rA− = k ′ 
surfaceCsites 1 + K ACA 

The concentration of sites can be incorporated into the rate constant by rewriting the product 
of the surface site concentration and the surface rate constant simply as a rate constant: 

k = k ′ 
surfaceCsites 

We can do this because the surface site concentration is also a constant. Thus the overall rate 
for this catalytic reaction is: 

kK ACA rA− = 
1 + K ACA 

The time-dependent component balance equations for A and B in the CSTR are as follows: 

dCAεV = (CAf − CA)q − (1 − ε)rA−V
dt

dCBεV = −CBq + (1 − ε)rA−V
dt 

Recall that the solid catalyst occupies a fraction 1 − ε of the reactor volume leaving a fraction 
ε for the fluid phase volume. We write the balances in terms of the fluid phase. The kinetics 
have been written also in terms of the fluid phase concentration, but they are written for a 
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process that occurs within the second phase, which is the catalyst. This is called the pseudo-
homogeneous approximation. In this case we take that phase as homogeneous and continuous, 
and occupying the (1 − ε) of the reactor volume. We can substitute into these equations the 
kinetics we just derived: 

dCAεV kK A CA = (CAf − CA)q − (1 − ε) V
dt 1 + K A CA 

dCB εV kK A CA= −CB q + (1 − ε) V
dt 1 + K A CA 

The integration of these two equations in time will show us how long it will take the reactor 
to achieve a steady-state conversion of A and production of B. 

The first step is to set up a solution to these equations and a graphical display of the results. 
Using NDSolve, we can solve these time-dependent equations to find the concentrations as 
functions of time. We make a new Module function “cstr4” to handle this. 

In[33]:= cstr4[k--, K1--, q--, tmax--], := 
Module[ 
{Caf = 1, V = 1000, Cao = 0, Cbo = 0, ε = .4, solns, 
Ca, Cb, CA, CB, t}, 

solns = NDSolve[{ 
kK1Ca[t]

εCa’[t] == (Caf - Ca[t])
q 

- (1 - ε) ,
V 1+ K1Ca[t]

k K1Ca[t]
εCb’[t] == -Cb[t]q + (1 - ε) ,V 1+ K1Ca[t]

Ca[0] == Cao, Cb[0] == Cbo},
{Ca[t], Cb[t]}, {t, 0, tmax}];

CA[t] = Evaluate[Ca[t] /. solns];
CB[t] = Evaluate[Cb[t] /. solns];

SetOptions[{Plot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 10}]; 

Plot[{CA[t], CB[t]}, {t, 0, tmax},
PlotStyle ––› {{Thickness[0.02], Dashing[{0.04, 0.04}],
GrayLevel[0]}, {Thickness[0.02], GrayLevel[ .6]}}, 

PlotRange ––› {{0, tmax}, {0, Caf}}, 
PlotLabel ––› {k ""=k"", K1  ""=K1"", q  ""=q""}, 
DisplayFunction ––› Identity] 

]

We can examine the solution at a few extremes to try and understand how the parameter 
values affect its behavior. We can take k = 0 first to see how the system responds to the flow 
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of A. This gives us a sense of how long it takes the flow and mixing to come to steady state 
in the absence of reaction. Experimentally, we could do this with a noncatalytic solid present. 
Keeping all else the same, we vary the rate constant k from 0 to 100 in multiples of 10. 

In[34]:= Show[GraphicsArray[{{cstr4[0., .01, 10, 1000],
cstr4[1., .01, 10, 1000]}, {cstr4[10., .01, 10, 1000],
cstr4[100., .01, 10, 1000]}}]];

&0. �k, 0.01 �K1, 10 �q� &1. �k, 0.01 �K1, 10 �q�
1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

200 400 600 800 1000 200 400 600 800 1000 

&10. �k, 0.01 �K1, 10 �q� &100. �k, 0.01 �K1, 10 �q�
1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

200 400 600 800 1000 200 400 600 800 1000 

In the first plot, with k = 0, we note that it takes the system about 200 time units at this flow 
rate to reach a steady state. As we raise the rate constant from unity to 10 and then to 100, the 
steady-state concentrations of A (dashed) drop from 0.6 to less than 0.2 to nearly zero. We also 
see that the time to reach steady state for the product B (solid) is about 200 time units in each 
case, whereas for A it is always less than that time, and the time to steady state shortens as 
the rate of chemical reaction increases. This is because the concentration of A at steady state 
decreases as k increases; thus the time required to reach the plateau is less. 

Looking back at the rate expression we see: 

kK ACA rA− = 
1 + K ACA 

If KACA is large compared to unity, then the rate reduces to just k, that is, a constant or “zeroth
order” rate. Alternatively, when KACA is small compared to unity, the rate becomes kKACA 

or first order with respect to CA. Letting k be unity, for example, we can vary KA from 10−2 to 
103 over a range of CA from zero to unity and then plot the results as an array to see the effect 
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of the adsorption constant: 

In[35]:= k = 1;
SetOptions[{Plot}, 

AxesStyle ––› {Thickness[0.01]}, 
DefaultFont ––› {""Helvetica"", 10}]; 

Show[
GraphicsArray[

k10n Ca
{Table[Plot[ , {Ca, 0, 1},

1 +10n Ca
DisplayFunction ––› Identity, 
PlotStyle ––› {{Thickness[0.03], 
Dashing[{0.04, 0.04}], GrayLevel[0]}}, 

AxesLabel ––› {""Ca"", ""rA-""}, 
PlotLabel ––› 10n ""=Ka""], 
{n, -2., 0}], 

k10n Ca 
Table[Plot[ ,{Ca,0,1},

1+10n Ca
DisplayFunction ––› Identity, 
PlotStyle ––› {{Thickness[0.03], 
Dashing[{0.04, 0.04}], GrayLevel[0]}}, 
AxesLabel ––› {""Ca"",""rA− ""}, 
PlotLabel ––› 10n ""=Ka""], 
{n, 1., 3}]} 

] 
]; 

rA� 0.01 �Ka rA� 0.1 �Ka rA� 1. �Ka 
0.50.01 0.08 0.40.008 0.060.006 0.30.040.004 0.2

0.020.002 0.1Ca Ca Ca
0.20.40.60.81 0.20.40.60.81 0.20.40.60.81 

rA� 10. �Ka rA� 100. �Ka rA� 1000. �Ka10.8 Ca0.80.6 0.950.6
0.4 0.90.4
0.2 0.2 0.85 

Ca Ca 0.8
0.20.40.60.81 0.20.40.60.81 

0.20.40.60.8 1 

In the first two plots, KACA is small compared to unity and we see that the rate is first order 
in concentration CA over the whole range. The last two plots are cases in which KACA is large 
compared to unity at most values of CA, except for the very smallest ones. Hence the rate 
becomes constant at larger values of CA and this is called saturation. It means that the rate 
cannot increase in magnitude even though the concentration of reactant has been increased 
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and the rate is an apparently strong function of CA. In fact, when KACA is large, we see that the 
rate is a very weak function of CA. Hence Langmuir-Hinshelwood (and Michaelis-Menton) 
kinetics are often referred to as “saturation kinetics.” The intermediate values of Ka lead to 
intermediate results and rate behavior. 

How will the effect of saturation kinetics show up in the evolution to the steady state in a 
CSTR? We can find this out by letting K1 vary over this range of magnitudes from 10−2 to 103 

within the Module function “cstr4.” We also have taken the rate constant down from 1.0 to 0.05 
to make the differences more evident for the same values of q and V, that is, the holding time. 
This does not change the effect of K1 because we are comparing its product with Ca to unity: 

In[38]:= Show[
GraphicsArray[

Partition[
Table[cstr4[.05, 10n, 10., 1000], {n, -2., 3}],

2]
]

];

&0.05 �k, 0.01 �K1, 10. �q� &0.05 �k, 0.1 �K1, 10. �q�
1 

0.8 

0.6 

0.4 

0.2 0.2 

0.4 

0.6 

0.8 

1 

200 400 600 800 1000 200 400 600 800 1000 

&0.05 �k, 1. �K1, 10. �q� &0.05 �k, 10. �K1, 10. �q�
1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

200 400 600 800 1000 200 400 600 800 1000 

&0.05 �k, 100. �K1, 10. �q� &0.05 �k, 1000. �K1, 10. �q�
1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

200 400 600 800 1000 200 400 600 800 1000 
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The results are not dramatically different than what we had seen before. The saturation kinetics 
at these flow rates, that is, holding times, give rise to complete conversion as we see in the last 
two plots in which K1 has values of 102 and 103. 

Finally, the last calculation prompts the question of holding time effect. If we vary the flow 
rate q at fixed V, keeping k and K1 constant we should see the conversion rise with longer 
holding times, that is, lower flow rates: 

In[39]:= Show[
GraphicsArray[

Partition[
Table[cstr4[.05, 103, 10n, 1000], {n, -2., 3}],

2]
]

];

&0.05 �k, 1000 �K1, 0.01 �q� &0.05 �k, 1000 �K1, 0.1 �q�
1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

200 400 600 800 1000200 400 600 800 1000 

&0.05 �k, 1000 �K1, 1. �q� &0.05 �k, 1000 �K1, 10. �q�
1 

0.8 

0.6 

0.4 

0.2 0.2 

0.4 

0.6 

0.8 

1 

200 400 600 800 1000 200 400 600 800 1000 

&0.05 �k, 1000 �K1, 100. �q� &0.05 �k, 1000 �K1, 1000. �q�
1 

0.8 

0.6 

0.4 

0.2 0.2 

0.4 

0.6 

0.8 

1 

200 400 600 800 1000 200 400 600 800 1000 

The effect is dramatic. We have taken K1 = 1000, which puts the kinetics in the zeroth-order 
regime. We see in the upper-left plot that the conversion appears to be complete, but even after 
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1000 time units the system is still far from the steady state. At the lower right, the conversion is 
essentially zero, and the system comes to steady state nearly instantaneously. The other plots 
show self-consistent behaviors. Notice that with q = 10, the approach to steady state is fast 
and the conversion is essentially complete. 

But what would happen if we took the adsorption constant K1 to be quite small, say, on 
the order of 10−2? We will find out in the following: 

In[40]:= Show[
GraphicsArray[

Partition[
Table[cstr4[.05, 1.10-2, 10n, 1000], {n, -2., 3}],

2]
]

];

&0.05 �k, 0.01 �K1, 0.01 �q� &0.05 �k, 0.01 �K1, 0.1 �q�
1 

0.8 

0.6 

0.4 

0.2 0.2 

0.4 

0.6 

0.8 

1 

200 400 600 800 1000 200 400 600 800 1000 

&0.05 �k, 0.01 �K1, 1. �q� &0.05 �k, 0.01 �K1, 10. �q�
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1 1 
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0.2 0.2 

200 400 600 800 1000 200 400 600 800 1000 
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Aha! This is very interesting and instructive. Here we see that K1 is so small that at any of 
the holding times (even the highest ones) the rate is so small that the conversion is effec
tively zero throughout the range. This means that the catalyst just lacks the adsorption forces 
necessary to make the reaction run fast. In other words, for the reaction to take place effi
ciently, the reactant A must be adsorbed. If it is not adsorbed to an appreciable extent, then 
the rate is always going to be small unless the rate constant for the surface reaction is very 
high. 

Before we go on to the next section we should do some “housekeeping.” The command 
Names is shown below with its Mathematica explanation: 

In[41]:= ?Names

Names[”string”] gives a list of the names of symbols
which match the string. Names[”string”,
SpellingCorrection ––› True] includes names which match
after spelling correction.

As we have worked through this session, or any other session, we have generated many new 
Names for functions. These show up in the Global context. If we ask for them we will get a 
list of those that we have created and used so far. (We show this in the following, but we have 
suppressed the output.) 

In[42]:= Names[""Global‘*""]; 

To clean up the Global context, we can Remove everything we have created in the Global 
context as follows. Asking for Names in this context once again returns an empty set: 

In[43]:= Remove[""Global‘*""]
Names[""Global‘*""]

Out[44]= {}

9.4 The Design of an Optimal CSTR 
Several questions arise with respect to the design of an optimal CSTR for a given chemistry. 
Chief among these are several equations that relate conversion, cost and profitability to each 
other. As we can plainly see, the volume of the CSTR controls the extent of conversion. Thus 
the magnitude of the volume goes up with the requirement of conversion. It would seem, then, 
that we might simply want the largest volume reactor that we can build as this will provide the 
highest conversion of reactant to product. However, it is self-evident that such logic is highly 
flawed because the cost of the reactor must scale with its size. Therefore, how do we decide 
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what level of conversion and reactor size is appropriate? The value of the product relative to 
that of the reactant must be a critical factor. We can do an analysis of the following reaction to 
see how this works: 

A → B 

rA− = rB+ = kCA 

The steady-state CSTR equations for components A and B are as follows: 

(CAf − CA)q − kCAV = 0 

−CBq + kCAV = 0 

The inlet concentration CAf is a good reference point for reaction. We can normalize the equa
tions by dividing through by CAf: 

CA1 − q − kCAV = 0 
CAf 

CB CA− q + k V = 0 
CAf CAf 

The conversion of A can be written as (1 − CA ) and CA = CAf (1 − XA). Hence the equation CAf 

for A can be rewritten in terms of XA: 

XAq − kV(1 − XA) = 0 

V
XA − k (1 − XA) = 0 

q 

XA − kτ (1 − XA) = 0 

where τ is the holding time in the CSTR. We can see that we can solve for it in terms of the 
conversion and the first-order rate constant. The inverse of this rate constant has dimensions 
of time. 

XA 
τ = 

k(1 − XA) 
XAV = 

k(1 − XA)
q 
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We can immediately see the direct relationship between the volume of the reactor and the 
conversion of A. To make this absolutely clear we can rearrange one more time to give: 

1 = XA1 + q 
kV 

When we consider the extremes we acquire a feeling for the behavior of this relationship: 

V → 0; 
q → ∞;

1 → 0 → XAkV 1 + ∞  
V → ∞; 

q → 0; 
1 → 1 → XAkV 1 + 0 

On this basis we can see that all we really have learned is what we already knew intuitively— 
making the reactor as large as possible will provide the highest possible conversion. Thus we 
really need a better measure of our objective than simply the conversion. 

When a chemical engineer balances an equation it must be done first from the perspective 
of stoichiometry, and second taking value and profit into consideration. Thus for a given 
reaction: 

aA + bB → dD + eE 

As in Chapter 7 we showed that the maximum profit potential is: 

[( 
$ 

) ( 
$ 

)]
$ $ 

max. profit potential = d + e − a + b
mole D mole E mole A mole B 

The conversion dictates how much product will be made and how much of the starting ma
terial will be left and this thus dictates the value of the mixture. For the simpler case we are 
considering we can write: 

[( 
$ 

) ( 
$ 

)]
max. profit potential = b − a

mole D mole A [( 
$ 

) ( 
$ 

)] 
= Cb q t − Ca q t

mole B mole A [( 
$ 

) ( 
$ 

)] 
= Cb q t − Ca q t

mole B mole A 
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[( 
$ 

) ( 
$ 

)] 
= Caf XAq t − Caf q(1 − XA) t

mole B mole A [( 
$ 

]
$ 

) 
− (1 − XA)= Caf q t XA mole B mole A [ 

$ 
]

$ $ − + XA= Caf q t XA mole B mole A mole A 

$ $ $ 
] 

= Caf q t XA + XA −
mole B mole A mole A [ ( 

$ 
)

$ $ 
] 

= Caf q t XA + −
mole B mole A mole A 

The maximum profit potential for a chemical reaction is only a crude, zeroth-order measure of 
value. To gain a better measure of the economics, we must have a fuller analysis of the process. 
The maximum profit potential can never be achieved because it costs money both to invest 
in the process hardware and to operate the process. If we simply were to try to maximize the 
potential profit by maximizing the conversion XA, then we would need a reactor of infinite 
volume: 

XA → 1 
q ⇒ → 0 

kV 
⇒ V → ∞  

However, as V → ∞ the cost of the reactor also goes to infinity and the net profit must go to 
zero. Hence the net profit must be a better measure of value generation and this must consist 
of at least the cost of the reactor and its operation in addition to the cost of the reactant and 
the value of the product. 

$ Net Profit = {$ Value of Product − $ Cost of Reactant − $ Investment in Reactor 

− $ Cost of Operation} 

This is of course just another accounting statement of the kind that we have used all along to 
this point. Generally, it says that the net rate of accumulation of a measurable is simply the 
difference between the rate input minus the rate output: 

Rate of Accumulation = {Rate of Input − Rate of Output} 

The individual components of this equation for profit can be written in terms of a preset 
time over which we will evaluate the project tp and the relevant parameters and variables of 
the problems. We will assume we are still considering the same simple reaction as before and 
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the reactor is a steady-state CSTR and we have the following terms: 

$
$ Value of Product = CBq tpmol B 

$
$ Cost of Reactants = CAf qmol A

tp 

$ Investment in Reactor = Vreactorα

$ Cost of Reactor Operation = tpβ

$ $
$ Net Profit = CBq tp − CAfq tp − Vreactorα − tpβmol B mol A 

q XACB = CAf XA Vreactor =
k(1 − XA) 

$ $ qXA$ Net Profit = CAfXAq tp − CAfqmol A
tp − 

k(1 − XA) 
α − tpβmol B 

$ $ β αqXA$ Net Profit = CAfqtp XA mol B 
− 

mol A 
− 

CAf q 
− 

k(1 − XA) 

This equation now allows us to compute an optimal profit as a function of the conversion or, 
in other words, as a function of the reactor size or holding time. 

In[45]:= netprofit[Caf--, q--, t--, $a--, $b--, k--, $v--, $t--, xa--]:=
xa 1 q(xa) t

Cafqt(( )- )- -
$b $a k(1- xa)$v $t

In[46]:= Caf = 1;
q = 10;
t = 100;
$a = 1;
$b = .1;
k = 0.01;
$v = 10;
$t = 50;

In[54]:= netprofit[Caf, q, t, $a, $b, k, $v, $t, x]
SetOptions[{Plot}, AxesStyle ––› {Thickness[0.01]}, 
PlotStyle ––› {Thickness[0.006]}, 
DefaultFont ––› {""Helvetica"", 17}]; 

Plot[netprofit[Caf, q, t, $a, $b, k, $v, $t, xa], 
{xa, 0.01, .99}, AxesOrigin ––› {0, 0}, 
PlotStyle ––› {GrayLevel[0.5], Thickness[0.01]}, 
AxesLabel ––› {""t"", ""$[t]""}]; 

100.x 
Out[54]= -2- +1000(-1+10.x)

1- x
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$(t,
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In[57]:= Caf = 1;
q =.
t = 100;
$a = 1;
$b = .1;
k =.
$v = 10;
$t = 50;
xa =.
b = Table[netprofit[Caf, 106, t, $a,  $b, 10-n, $v, $t, xa],

{n, 0, 6, 1}];
%;
Plot[{b[[1]], b[[2]], b[[3]], b[[4]]}, {xa, 0, .999},
PlotStyle ––› {{GrayLevel[0.5], Thickness[0.01]}},
AxesLabel ––› {""t"", ""$[t]""}]; 
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5 � 108 

The curves from the preceding graph show a clear optimum with respect to the holding time 
and parametric in the rate constant. 

9.5 Plug Flow Reactor 
We turn now to the plug flow reactor. Here, as we have said, there is absolutely no mixing in 
the direction of flow but perfect mixing perpendicular to it, that is, between the centerline and 
the walls. This special case of a tubular reactor can be operated transiently or in the steady 
state, but it is the latter mode that is most often considered for kinetics and design. Consider 
the reactor shown in Figure 4 in which A is converted to B irreversibly and with linear kinetics. 

For the first time we must as a consequence of the plug flow take into account spatial 
variation as well as time dependence. This means that the concentrations of A and B will have 
z- and t-dependence and the equations describing them will be made up of partial rather 
than ordinary differentials. We can derive the equation that describes the plug flow system by 
first visualizing a zone of reaction (Figure 5) that corresponds to a differential control volume 
Acr dz. 

The total differential of the concentration is equal to the rate of chemical reaction in this 
zone over some differential time dt. In  Mathematica the total differential of f[x, y] is given as 
Dt[f[x, y]]: 

In[69]:= Dt[f[x, y]]

Out[69]= Dt[y]f(0,1)[x,y]+ Dt[x]f(1,0)[x,y]
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Reactants Products 
z 

Caf, q Ca, Cb, q 
Tubular Plug-Flow 

rA� = ka Ca 

Figure 4 

Acr 

,Z 

vz = 
q 

Acr 

Figure 5 

This output statement means: 

∂y f [x, y] dy  + ∂x f [x, y] 

or 

∂ f [x, y] ∂ f [x, y]
dy + dx 

∂y ∂x 

Taking the total differential of the concentration and the rate, we obtain: 

In[70]:= z =.
t =.
Dt[Ca[z, t]] == -ra Dt[t]

Out[72]= Dt[t]Ca(0,1)[z,t]+ Dt[z]Ca(1,0)[z,t] == -ra Dt[t]

We can use the shortcut of dividing through by Dt[t], that is, the derivative of the time dt to 
obtain the following: 

Dt[t]Ca(0,1)[z,t]+ Dt[z]Ca(1,0)[z,t] -ra Dt[t]
In[73]:= Simplify[ ] ==

Dt[t] Dt[t]

Out[73]= Ca(0,1)[z,t]+
Dt[z]Ca(1,0)[z,t] 

== -ra
Dt[t]
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] , ( dzIn the second term on the left-hand side, we have the ratio of Dt[z
dt ). This is the velocity of Dt[t] 

the plug of gas through the differential volume in the axial direction. We will use the symbol 
vz for the axial velocity. Making this substitution we have: 

In[74]:= Ca(0,1)[z,t]+vzCa(1,0)[z,t] == -ra

Out[74]= Ca(0,1)[z,t]+vzCa(1,0)[z,t] == -ra

Written in traditional form this states: 

∂Ca[z, t] ∂Ca[z, t]= −vz − rA− 
∂t ∂z 

In words, this mathematical “sentence” states that the partial derivative of the concentration 
of A with respect to time is equal to the negative of the sum of the product of the axial velocity 
and the partial derivative of the concentration of A with respect to position and the rate of 
reaction of A. 

For the product B we would have the following equation: 

∂Cb[z, t] ∂Cb[z, t]= −vz + rA− 
∂t ∂z 

A more intuitive way to arrive at these equations begins at the well-mixed approximation. 
Imagine that within the region ∆z the fluid phase is “well mixed.” The volume of this region 
is ∆V = Acr∆z. The flow rate across the volume is taken to be q, and the concentrations in the 
volume element are Ci,1 while those exiting are Ci,2. Writing the mass balance for A we have: 

dCa�V = (Ca,1 − Ca,2)q − rA−�V 
dt 

dCa Acr�z = (Ca,1 − Ca,2)q − rA−Acr�z 
dt 

dCa (Ca,1 − Ca,2)q = − rA−dt Acr�z 

dCa −�Ca = vz − rA−dt �z 

We can write the corresponding differential difference equation for component B. When we 
take the limit as ∆z 0, these two differential equations become partial differential equations: → 

dCa �Ca 
] 

∂Ca ∂CaLimit = −vz − rA− ⇒ = −vz − rA− 
�z→0 dt �z ∂t ∂z 

dCb �Cb 
] 

∂Cb ∂CbLimit = −vz + rA− ⇒ = −vz + rA− 
�z→0 dt �z ∂t ∂z 
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Thinking physically, it is as if we have taken a slice out of a poorly mixed reactor that is of 
infinitesimal thickness, but across which the mixing is perfect. This is a “CSTR” of vanishing 
or differential thickness ∆z and cross-sectional area Acr. 

We are usually interested in solving these equations for the concentrations at steady state. 
In this condition the time differentials are as usual identically zero. Recall that vz divided into 
a distance z would be the time τ required to translate across that distance. If we divide vz into 
the differential distance dz then we have the differential time dτ required to translate across 
the infinitesimal distance. Thus vz 

dz is just d
1 
τ

, and the equations transform at the steady state 
as follows: 

q 
Acr 

dCa 

dz 
= −rA− ⇒ vz 

dCa 

dz 
= −rA− ⇒ dCa 

dτ 
= −rA− 

q 
Acr 

dCb 

dz 
= +rA− ⇒ vz 

dCb 

dz 
= +rA− ⇒ dCb 

dτ 
= +rA− 

Remarkably, the form of the steady-state PFR equations is identical to the form of the fully 
transient well-mixed batch reactor with no volume change. The only difference is that instead 
of the derivative with respect to real time, the PFR equations involve the derivative with respect 
to reduced time. This is a very significant result. It shows us why the steady-state PFR is also 
such a useful reactor for kinetic studies—its model equations are quite simple! Whichever form 
of the equations used is simply a matter of preference; they all mean the very same thing. 

9.6 Solution of the Steady-State PFR 
First, we begin by solving for the concentrations with linear kinetics, and we do this in 
complete form. We will do this with DSolve as an exercise, even though the equations are 
trivial to solve: 

In[75]:= Clear[""Global‘*""]
Simplify[
DSolve[
{vz∂zCa[z] == -kabCa[z],
vz∂zCb[z] == +kabCa[z],
Ca[0] == Caf,
Cb[0] == 0},
{Ca[z], Cb[z]},
z]

]

-kabz - kabz
vz }}Out[76]= {{Ca[z] ––› Caf vz ,Cb[z] ––› Caf - Caf
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1Recall that kab is just 
τrxn 

, that is, the reciprocal of the characteristic time for reaction and z is vz 

the same as V or the holding time τ for the PFR. Therefore, these solutions become: q 

− kab z − τ 
vz τrxnCa[z] = Caf ⇒ Ca[τ ] = Caf −kab τ ⇒ Ca[τ ] = Caf 

kab τ ) ⇒vz τrxn )Cb[z] = Caf(1 − − kab z
) ⇒ Cb[τ ] = Caf(1 − − Cb[τ ] = Caf(1 − − τ 

When we solved the transient, well-mixed batch reactor with linear kinetics, we obtained 
the same solution functionally, but instead of kab τ , we had kab t as the argument of the 
differential, that is, in terms of real time instead of holding time. 

We return now to the Langmuir-Hinshelwood kinetics from the CSTR section to see how 
the PFR will behave and to compare the CSTR and the PFR. As in the case of the steady-state 
CSTR, we will write a steady-state PFR Module function. Recall that the rate law was: 

kK ACA rA− = 
1 + K ACA 

Therefore, once again invoking the pseudo-homogeneous approximation, the equations we 
must solve are: 

dCa (1 − ε) kK ACA 
vz = −

dz ε 1 + K ACA 

dCb (1 − ε) kK ACA 
vz = +

dz ε 1 + K ACA 

The Module function for this PFR will be called “pfr1.” The basic backbone of the code was 
borrowed from cstr4 with appropriate changes to the latter having been made. The arguments 
in “pfr1” are the rate constant k, the adsorption equilibrium constant K1, the volume flowrate 
q, and the radius of the reactor cross section r. So that we can make comparisons to the CSTR, 
we have kept the total volume the same at 1000. Once we specify the radius, that fixes the 
circular cross section. This divided into the volume gives the length of the reactor zmax. 
Therefore, instead of specifying the reactor length, we simply specify the reactor radius and at 
constant volume this fixes zmax. Everything else will be kept the same for comparison sake, 
especially ε and the holding time V . q 

In[77]:= pfr1[k--, K1--, q--, r--] :=
Module[
{Caf = 1, V = 1000, vz, Acr, Cao = 1, Cbo = 0, ε = .4, 
pfrsolns, Ca, Cb, CA, CB, zmax}
Acr = N[πr2]; 

q
vz = ;

Acr
V

zmax = ;
Acr



P1:

May 10, 2002 16:30 Foley Foley-C09

412 Chapter 9 Continuous Stirred Tank and the Plug Flow Reactors 

pfrsolns = NDSolve[{ 

vzCa′[z] == -
(1 − ε) k K1Ca[z]  

,
ε 1+ K1Ca[z]

(1 - ε) k K1Ca[z]  
vzCb′[z] == ,

ε 1+ K1Ca[z]

Ca[0] == Cao, Cb[0] == Cbo}, 
{Ca[z], Cb[z]}, {z, 0, zmax}]; 

SetOptions[{Plot}, DefaultFont ––› {""Hevetica"", 10}]; 

CA[z] = Evaluate[Ca[z] /. pfrsolns];
CB[z] = Evaluate[Cb[z] /. pfrsolns];

Plot[{CA[z], CB[z]}, {z, 0, zmax},
PlotStyle ––› {{Dashing[{0.15, 0.05}], GrayLevel[0.6],
Thickness[.02]}, 

{Dashing[{0.15, 0.05}], GrayLevel[0], Thickness[.02]}}, 
PlotRange ––› {{0, zmax}, {0, Caf}}, 
PlotLabel ––› {k ""=k"", K1  ""=K1"", q  ""=q"", r  ""=r""}, 
DisplayFunction ––› Identity] 

]

To see how the program runs we will try it out for a radius of 100 units. This makes zmax 
only 10 units. Such a reactor would be odd to find because it would have an aspect ratio of 
L:D:1:200. Run at very high volume flow rates, that is, high vz, units of this kind are called 
short contact time reactors because the gases are within the reactor volume for so little time. In 
the present case that time is not short—it is on the order of 100 = 1000 .10 

In[78]:= Show[pfr1[0.05, .01, 10, 100],
DisplayFunction ––› $DisplayFunction];
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1 
&0.05 �k, 0.01 �K1, 10 �q, 100 �r�
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We can see that with this particular flow rate the concentrations exiting at the end of the PFR 
correspond to approximately 10% conversion. Would this have changed if the radius were 
smaller, say, only 1? The answer is no. The reason is that the holding time will be the same 
because the volume and flow rate are the same. 

In[79]:= Show[pfr1[0.05, .01, 10, 1.],
DisplayFunction ––› $DisplayFunction];
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0.6 

0.8 

1 
&0.05 �k, 0.01 �K1, 10 �q, 1. �r�

50 100 150 200 250 300

Now for comparison to the CSTR, we can build a new Module function that allows us to 
create a plot of the exit concentration from a CSTR under the same conditions and also as a 
“function” of z. Of course, there is no functional z-dependence for the CSTR as we shall see; 
the plots will be simply horizontal lines, but graphed over the same range as the axial distance 
through the PFR. In this way we can put the two on one graph for comparison. Here is the 
steady-state CSTR Module: 

In[80]:= cstrstst[k--, K1--, q--, r--] :=
Module[
{Caf = 1, Acr, V = 1000, ε = .4, ststsolns,
Ca, Cb, CA, CB, t},
Acr = N[πr2];

V
zmax = ;

Acr
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ststsolns = Solve[

{0 == (Caf - Ca)
q 

- (1 - ε) 
k K1Ca  

,
V 1+ K1Ca

q k K1Ca
0 == -Cb + (1 - ε) },

V 1+ K1Ca
{Ca, Cb}]; 

SetOptions[{Plot}, DefaultFont ––› {""Hevetica"", 8}]; 

Ca = ststsolns[[1, 1, 2]];
Cb = ststsolns[[1, 2, 2]];
Plot[{Ca, Cb}, {t, 0, zmax},

PlotStyle ––› {{Dashing[{0.15, 0.05}], GrayLevel[0.6],
Thickness[.02]}, {Dashing[{0.15, 0.05}],
GrayLevel[0], Thickness[.02]}},

PlotRange ––› {{0, zmax}, {0, Caf}}, 
PlotLabel ––› {k ""=k"", K1  ""=K1"", q  ""=q""}, 
DisplayFunction ––› Identity] 

]

In[81]:= Show[cstrstst[0.05, .01, 10, 100],
DisplayFunction ––› $DisplayFunction];

&0.05 �k, 0.01 �K1, 10 �q�
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When we put the PFR and CSTR results on the same graph we find: 

In[82]:= Show[{pfr1[0.05, .01, 10, 100],
cstrstst[0.05, .01, 10, 100]},
DisplayFunction ––› $DisplayFunction];
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{0.05 =k, 0.01 =K1, 10 =q, 100 =r} 

Although the conversions are relatively small, we see that conversion at the exit of the PFR is 
larger than that of the CSTR at the same condition by nearly a factor of two! 

We can vary the flow rate over five orders of magnitude for both the PRF and the CSTR 
to see what will happen. This is done by combining the two functions into one Table and then 
plotting the results as a GraphicsArray. 

In[83]:= Table[{pfr1[0.05, .01, 1. 10n, 100],
cstrstst[0.05, .01, 1. 10n, 100]}, {n, -3, 1, 1}]
Show[
GraphicsArray[%]

];

Out[83]= {{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-},
{-Graphics-, -Graphics-}, {-Graphics-, -Graphics-},
{-Graphics-, -Graphics-}}
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{0.05 =k, 0.01 =K1, 0.01 =q, 100 =r} {0.05 =k, 0.01 =K1, 0.01 =q} 
11 

0.80.8 

0.60.6 

0.40.4 

0.20.2 

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03 

{0.05 =k, 0.01 =K1, 0.1 =q, 100 =r} {0.05 =k, 0.01 =K1, 0.1 =q} 
11 

0.80.8 

0.60.6 

0.40.4 

0.20.2 

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03 

{0.05 =k, 0.01 =K1, 1. =q, 100 =r} {0.05 =k, 0.01 =K1, 1. =q} 
11 

0.80.8 

0.60.6 

0.40.4 

0.20.2 

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03 

{0.05 =k, 0.01 =K1, 10. =q, 100 =r} {0.05 =k, 0.01 =K1, 10. =q} 
1 

0.8 

0.6 

0.4 

0.2 

0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03 

The left-most column of the graphs is for the PFR. Starting at the bottom and working vertically 
to the top of the column, we notice that the conversion rises from the low level we saw at q = 10 
to nearly complete conversion at q = 0.1 and beyond. For the CSTR the trend is the same: 
as q drops the conversion rises, but notice that at q = 0.1 the conversion is ∼75%, whereas 
at the same condition in the PFR it is complete, that is, 99.99%. In fact, even at q = 0.01, the 
CSTR has still not achieved full conversion of the feedstock. Remember: The only difference 
between the two cases is that the CSTR is well mixed throughout its volume, but the PFR is 

1 

0.8 

0.6 

0.4 

0.2 



P1:

May 10, 2002 16:30 Foley Foley-C09

9.6 Solution of the Steady-State PFR 417 

well mixed only radially, and not at all axially. This leads then to the oft-quoted rule-of-thumb 
that the PFR is more efficient than the CSTR. At the same volume of reactor one achieves 
higher conversion, or to achieve equivalent conversion the PFR volume can be smaller than 
the CSTR volume. 

In the previous calculations, we assumed that K1 was small. This forces the rate toward 
first-order dependence. Therefore, how does the comparison between PFR and CSTR work 
out if we vary K1 over several orders of magnitude to make the kinetics range from first order 
to zeroth order? To do this we will fix the flow rate at q = 1 and vary K1 from 10−3 to 103 as 
follows: 

In[85]:= comps2 =
Table[{pfr1[0.05, 1. 10n, 1., 100],
cstrstst[0.05, 1. 10n, 1., 100]}, {n, -3, -0, 1}];

Show[GraphicsArray[comps2]];
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The results indicate that even if the adsorption equilibrium constant is large, the PFR shows 
better results than the CSTR. The only time this is violated for an isothermal reaction system 
is if the kinetics are of negative order overall, because then the CSTR will actually be more 
efficient than the PFR; otherwise the PFR wins. 

9.7 Mixing Effects on Selectivities—Series 
and Series-Parallel with CSTR and PFR 

In the previous chapter, we examined series and series-parallel kinetics. The extent of mixing 
can have an effect on the selectivity to the various products in such reaction networks. The 
selectivity is the percentage of the products that are any one of the products. To compute the 
yield we take the product of the conversion and the selectivity. Thus the yield is a fraction of 
a fraction. 

We can begin by computing the selectivities and yields for the series network in the CSTR 
versus the PFR first. Consider the simplest series reaction network: 

A → B → D 

rab = k1CA; rbd = k2CB 

The Module functions for the CSTR and PFR with these species and kinetics are written in 
what follows as “cstrABD” and “pfrABD.” 

In[87]:= Clear[""Global‘*""] 

In[88]:= cstrABD[k1--, k2--, q--, r--]:=
Module[
{Caf = 1, Acr, V = 1000, ststsolns, Ca, Cb, Cd},
Acr = N[πr2]; 

V
zmax = ;

Acr
ststsolns = Solve[

q
{0 == (Caf - Ca) - k1Ca,

V
q

0 == -Cb + k1Ca - k2Cb,
V
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q
0 == -Cd + k2Cb},

V 
{Ca, Cb, Cd}]; 

CA = ststsolns[[1, 1, 2]]; 
CB = ststsolns[[1, 2, 2]]; 
CD = ststsolns[[1, 3, 2]]; 

SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10}]; 
Plot[{CA, CB, CD}, {t, 0, zmax}, 
PlotStyle ––› {{GrayLevel[0.6], Thickness[0.02]}, 

{GrayLevel[.0], Thickness[0.02]}, {GrayLevel[0.8], 
Thickness[0.02]}}, 

AxesLabel ––› {z, Cstr}, 
PlotRange ––› {{0, zmax}, {0, Caf}}, 
PlotLabel ––› {k1 ""=k1"", k2  ""=k2"", q  ""=q""}, 
DisplayFunction ––› Identity]] 

In[89]:= pfrABD[k1--, k2--, q--, r--] :=  
Module[ 
{Caf = 1, V = 1000, vz, Acr, Cao = 1, Cbo = 0, Cdo = 0, 
ε = .4, pfrsolns, Ca, Cb, Cd, CA, CB, CD, zmax}, 
Acr = N[πr2]; 

q 
vz = ;

Acr
V

zmax = ;
Acr 

pfrsolns = NDSolve[{ 
vzCa’[z] == -k1Ca[z], 
vzCb’[z] == +k1Ca[z] - k2Cb[z], 

vzCd’[z] == +k2Cb[z], 
Ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo}, 

{Ca[z], Cb[z], Cd[z]}, {z, 0, zmax}]; 
CA[z] = Evaluate[Ca[z] /. pfrsolns]; 
CB[z] = Evaluate[Cb[z] /. pfrsolns]; 

CD[z] = Evaluate[Cd[z] /. pfrsolns]; 
SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10}]; 

Plot[{CA[z], CB[z], CD[z]}, {z, 0, zmax}, 
PlotStyle ––› {{Dashing[{0.15, 0.05}], GrayLevel[0.6], 
Thickness[0.02]}, 

{Dashing[{0.15, 0.05}], 
GrayLevel[0], Thickness[0.02]}, 

{Dashing[{0.15, 0.05}], GrayLevel[.8], 
Thickness[0.02]}}, 

AxesLabel ––› {z, Pfr}, 
PlotRange ––› {{0, zmax}, {0, Caf}}, 
PlotLabel ––› {k1""=k1"", k2""=k2"", q""=q"", r""=r""}, 
DisplayFunction ––› Identity]] 
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In[90]:= Show[
GraphicsArray[
{{pfrABD[.4, .03, 10, 10]},
{cstrABD[.4, .03, 10, 10]}}],

DisplayFunction ––› $DisplayFunction];
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For both reactors the volumes are identical, and that is critical to this comparison. If B (black 
dashed lines, upper part of the graph, and black solid, lower) were the species that we wished 
to produce, then for the same volume the CSTR with its perfect mixing produces a higher 
yield than does the PFR at the same volume and flow conditions. This is a consequence of the 
higher efficiency of the PFR. Notice, however, that if we made the PFR smaller by cutting it 
off at z = 0.3 for volume of 1000 = 100, then it would be better for the production of B than10 
the CSTR with a volume of 1000 for the production of B. 

Next, we rewrite the two codes to handle another limiting case, that of parallel reactions 
of A to form either B or D: 

A → B → D rab = k1CA; rad = k2CB 
↓ 
E rae = k3CA 

We will take the magnitudes of the two rate constants to be the same as in the previous example, 
which makes the rate of formation of B a factor of two greater than the rate of formation of D. 
The codes are called “cstrABAD” and “pfrABAD.” 

In[91]:= Clear[""Global‘*""] 

In[92]:= cstrABAD[k1--, k2--, k3--, q--, r--]:= 
Module[ 
{Caf = 1, Acr, V = 1000, ststsolns, Ca, Cb, Cd, Ce, 
CA, CB, CD, CE}, 
Acr = N[πr2]; 

V 
zmax = ;

Acr
ststsolns = Solve[

{0 == (Caf - Ca)
q 

- k1Ca - k3Ca,
V

q
0 == -Cb + k1Ca - k2Cb,

V
q q

0 == -Cd + k2Cb,0 == -Ce  + k3Ca},{Ca,Cb,Cd,Ce}];
V V 

Ca = ststsolns[[1, 1, 2]]; 
Cb = ststsolns[[1, 2, 2]]; 

Cd = ststsolns[[1, 3, 2]]; 
Ce = ststsolns[[1, 4, 2]]; 
SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10}]; 
Plot[{Ca, Cb, Cd, Ce}, {t, 0, zmax}, 
PlotStyle ––› { 
{Thickness[0.02], Dashing[{0, 0}], GrayLevel[0.1]}, 
{Thickness[0.02], Dashing[{0.02, 0.03}], GrayLevel[0.3]}, 
{Thickness[0.02], Dashing[{0.05, 0.05}], GrayLevel[.5]}, 
{Thickness[0.02], Dashing[{0.1, 0.1}], GrayLevel[.7]} 
}, 
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PlotRange ––› {{0, zmax}, {0, Caf}},
PlotLabel ––› {CSTR, k1 ""=k1"", k2  ""=k2"", k3  ""=k3""},
DisplayFunction ––› Identity]
]

General::spell1: Possible spelling error: new symbol
name ”cstrABAD” is similar to existing symbol ”cstrABD”.

In[93]:= pfrABAD[k1--, k2--, k3--, q--, r--]:=
Module[
{Caf = 1, V = 1000, vz, Acr, Cao = 1, Cbo = 0, 
Cdo = 0, Ceo = 0, ε = .4, pfrsolns, Ca, Cb, Cd, CA, 
CB, CD, zmax}, 
Acr = N[πr2];

q
vz = ;

Acr
V

zmax = ;
Acr 

pfrsolns = NDSolve[{ 
vzCa’[z] == -k1Ca[z] - k3Ca[z], 
vzCb’[z] == +k1Ca[z] - k2Cb[z], 

vzCd’[z] == + k2Cb[z], 
vzCe’[z] == + k3Ca[z], 
Ca[0] == Cao, Cb[0] == Cbo, Cd[0] == Cdo, 
Ce[0] == Ceo}, 

{Ca[z], Cb[z], Cd[z], Ce[z]}, {z, 0, zmax}]; 
CA[z] = Evaluate[Ca[z] /. pfrsolns]; 
CB[z] = Evaluate[Cb[z] /. pfrsolns]; 

CD[z] = Evaluate[Cd[z] /. pfrsolns]; 
CE[z] = Evaluate[Ce[z] /. pfrsolns]; 
SetOptions[Plot, DefaultFont ––› {""Helvetica"", 10}]; 

Plot[{CA[z], CB[z], CD[z], CE[z]}, {z, 0, zmax}, 
PlotStyle ––› { 
{Thickness[0.02], Dashing[{0, 0}], GrayLevel[0.1]}, 
{Thickness[0.02], Dashing[{0.02, 0.03}], GrayLevel[0.3]}, 
{Thickness[0.02], Dashing[{0.05, 0.05}], GrayLevel[.5]}, 
{Thickness[0.02], Dashing[{0.1, 0.1}], GrayLevel[.7]} 
}, 
PlotRange ––› {{0, zmax}, {0, Caf}}, 
PlotLabel ––› {Pfr, k1 ""=k1"", k2  ""=k2"", k3  ""=k3""}, 
DisplayFunction ––› Identity] 
] 

General::spell1: Possible spelling error: new symbol
name ”pfrABAD” is similar to existing symbol ”pfrABD”.
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In[94]:= Show[
GraphicsArray[
{{pfrABAD[.05, .1, .025, 10, 10]},
{cstrABAD[.05, .1, .025, 10, 10]}}

],
DisplayFunction ––› $DisplayFunction];
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A = Blk Sld; B = Blk DSh; D = Lt Gry Dsh; E = Dk Gry Dsh. 
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We see once again that the overall conversion is higher in the PFR than in the CSTR and that 
the fractions of D and E in the products are therefore larger than in the CSTR. The efficiency 
of the PFR with positive order kinetics versus the perfectly mixed CSTR raises an interesting 
question—if one were to divide the volume of one CSTR into two CSTRs in series of equal 
volume, would there be any change in efficiency? What if there were three or even more 
CSTRs in series with equal volumes that all summed up to that of the original one—would 
there be a significant difference? We address this in the next section. 

9.8 PFR as a Series of CSTRs 
The main difference between the PFR and CSTR idealizations is the mathematical one of a 
spatially distributed versus homogeneous system, which leads to quite different equations. If 
one were to take the globally homogeneous CSTR and break it up into smaller homogeneous 
regions, then in the limit of an infinite number of these taken in series they would become 
equivalent to one PFR of equal total volume. We can see this by comparing one, two, three, 
and more CSTRs in series with one PFR. As the number of CSTRs increases the results will 
approach the PFR (see Figure 6). The simplest way to do this is to write bit of code that allows 
us to specify the total volume and then to vary the number of contiguous homogeneous cells 
that are present. We can begin by taking a look at the case of A → B with linear, irreversible 
kinetics, because this is simple. We also understand it well because we can solve it exactly. 

The steady-state solutions for one CSTR are shown here: 

In[95]:= ststsolns = Solve[
q

{0 == (Caf - Ca) - k1Ca,
V 

0 ==-Cb
q 

V 
+ k1Ca},  

{Ca, Cb}] 

Out[95]= {{Cb ––› 
Cafk1 V 

q+k1 V 
, Ca  ––› 

Cafq 

q+k1 V
}} 

We can generalize this for any nth CSTR in a series as follows: 

In[96]:= Clear[ca, cb, q, Caf, ntot, Vtot, k, n]
Solve[

{0 == (Ca[n - 1] - Ca[n])
q 

- kCa[n],
V

0 == (Cb[n - 1] - Cb[n])
q 

+ kCa[n]},
V

{Ca[n], Cb[n]}
]

k VCa[-1+n] qCa[-1+n]
Out[97]= {{Cb[n] ––› +Cb[-1+n],Ca[n] ––› }}

q+k V q+k V



P1:

May 10, 2002 16:30 Foley Foley-C09

9.8 PFR as a Series of CSTRs 425 

PFR Vo 

CSTR Vo 

CSTR Vo/3 

Figure 6 

This is a recursion formula for the exact case. We would like to be able to apply this to 
any number n of CSTRs in series and find an analytical and then quantitative result for 
comparison to the exact PFR result. To do this we need recursive programming. There are 
three programming styles in Mathematica: Rule-Based, Functional, and Procedural. We will 
attack this problem in recursion with Rule-Based, Functional, and Procedural programming. 
We can begin by looking at the rule-based recursion codes for Ca and Cb in any n CSTRs. 

The “seeds” for these rules are the solutions for the first CSTR, and then these exit con
centrations become the inlet concentrations to the second CSTR, whose exit concentrations 
become the inlet concentrations for the third CSTR, and so it goes on through to n CSTRs. 
We can have Mathematica assemble the equations and the variables that we will need for the 
Solve routine. This is illustrated with n = 3: 

In[98]:= n = 3
Clear[q, V, Vo, k, Caf, Cbf, Cdf, Ca]

Table[{(Ca[i - 1] - Ca[i])
q 

- kCa[i] == 0,
V

(Cb[i - 1]-Cb[i])
q 

+ kCa[i] == 0},
V

{i, 1, n}]
vars = Table[{Ca[i], Cb[i]}, {i, 1, n}]
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Out[98]= 3
General::spell1 : Possible spelling error: new symbol
name ”Cdf” is similar to existing symbol ”CDF”.

-Ca[1]) q(Cb[0]-Cb[1])
Out[100]= {{

q(Ca[0]
-kCa[1] == 0,kCa[1]+ == 0},

V V

{
q(Ca[1]-Ca[2]) q(Cb[1]-Cb[2])

-kCa[2] == 0,kCa[2]+ == 0},
V V

{
q(Ca[2]-Ca[3]) q(Cb[2]-Cb[3])

-kCa[3] == 0,kCa[3]+ == 0}}
V V

Out[101]= {{Ca[1], Cb[1]}, {Ca[2], Cb[2]}, {Ca[3], Cb[3]}}

Now we place these into Solve as follows: 

In[102]:= Clear[q, V, Vo, k, Caf, Cbf, Cdf, n, Ca]
n = 4;

Vo
V =  ;

n

Timing[eqns = Table[{(Ca[i-1]-Ca[i])
q
-kCa[i] == 0,

V
q

(Cb[i - 1] - Cb[i]) +kCa[i] == 0},
V

{i, 1, n}];
vars = Table[{Ca[i], Cb[i]}, {i, 1, n}];
Ca[0] = Caf;
Cb[0] = 0;

solns =
Flatten[Solve[Flatten[eqns], Flatten[vars]]]]

Out[105]= {0.22 Second, {Cb[4] ––›

-256Cafkq3 Vo-96Cafk2q2 Vo2 -16Cafk3q Vo3 -Cafk4 Vo4
-

(4q+k Vo)4
,

-8Cafkq Vo-Cafk2 Vo2
Cb[2] ––› -

(4q+k Vo)2 
,

-48Cafkq2Vo-12Cafk2q Vo2 -Cafk3Vo3
Cb[3] ––› -

(4q+k Vo)3 
, 

Cb[1] ––› 
Cafk Vo 

4q+k Vo 
, Ca[4] ––› 

256Cafq4 

(4q+k Vo)4 
, 

Ca[3] ––› 
64Cafq3 

(4q+k Vo)3 
, Ca[2] ––› 

16Cafq2 

(4q+k Vo)2 
, 

Ca[1] ––› 
4Cafq 

}}
4q+k Vo

We see that in this program the equations are first written explicitly from n = 1 to  n, their 
output is suppressed, but then they are solved symbolically. We have enclosed the overall 
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functions in “Timing” in order to obtain a report of the CPU time required to conduct this. 
By supplying the necessary parameters and changing Solve to NSolve, we can  find a solution 
for the outlet of n-CSTRs. We make this into a Module function of n, the number of CSTRs: 

In[106]:= << Miscellaneous‘RealOnly‘

In[107]:= Clear[Cstr, cstr, q, V, Vo, k, Caf, Cbf, Cdf, n]
Clear[""Global‘*""]

General::spell1 : Possible spelling error: new symbol
name ”cstr” is similar to existing symbol ”Cstr”.

In[109]:= cstr[n--] :=
Module[
{q = 10, Vo = 100, k = 0.1, eqns, vars, solns, i},

Vo
V =  ;

n
q

eqns = Table[{(Ca[i - 1] - Ca[i]) - kCa[i] == 0,
V

(Cb[i - 1] - Cb[i])
q 

+ kCa[i] == 0},
V

{i, 1, n}];
vars = Table[{Ca[i], Cb[i]}, {i, 1, n}];

Ca[0] = 1;
Cb[0] = 0;
solns = NSolve[Flatten[eqns], Flatten[vars]][[1]];
{solns[[2 n - 1]],
solns[[2 n]]}]

Now we can try out this module program with 1000 CSTRs in series and check its timing: 

In[110]:= cstr[1000] // Timing

Out[110]= {14.22 Second,{Ca[1000] ––› 0.368063, Cb[1000] ––› 0.631937}}

We have called the package “Miscellaneous‘RealOnly” to avoid the complex solutions that 
might otherwise be returned. We have also taken just the solutions from the last CSTR by using 
{solns[[2n − 1]], solns[[2n]]}. Now we can use the “listability” of this function cstr[n] and 
Map it down a vector of values for n. The infix form for Map is /@ and so we use it as follows: 

In[111]:= n = {1, 2, 3, 10, 20, 100, 1000};
cstr /@n // Timing

Out[112]= {16.26 Second, {{Ca[1] ––› 0.5, Cb[1] ––› 0.5},
{Ca[2] ––› 0.444444, Cb[2] ––› 0.555556},
{Ca[3] ––› 0.421875, Cb[3] ––› 0.578125},
{Ca[10] ––› 0.385543, Cb[10] ––› 0.614457},
{Ca[20] ––› 0.376889, Cb[20] ––› 0.623111},
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{Ca[100] ––› 0.369711, Cb[100] ––› 0.630289}, 
{Ca[1000] ––› 0.368063, Cb[1000] ––› 0.631937}}} 

This computation took ∼47.75 sec of CPU time on an old Pentium I processor but just 2.1 sec 
on a newer 1-GHz Pentium chip. We added //Timing after the command line also in infix 
form, in order to obtain this information. The time will vary with different machines and 
processors. More important, what we notice is that there is a large change in Ca and Cb when 
we go from one CSTR to 2 or 3 or even to 10, but when we get beyond 10 to 20, 100, and even 
1000, the increase in the number of CSTRs gives diminishing returns. 

In the following code we solve the equations for the PFR at the same conditions and with 
the same parameter values, especially that of the volume Vo. 

In[113]:= Clear[""Global‘*""] 

In[114]:= Caf = 1;
Vo = 100;
q = 10;
k1 = .1;
zmax = 10;

Vo
A =  ;

zmax
q

vz = ;
A

pfr = NDSolve[
{vzCa’[z] == -k1Ca[z],
vzCb’[z] == +k1Ca[z],
Ca[0] == Caf, Cb[0] == 0},
{Ca[z], Cb[z]},

{z, 0, zmax}];

CA[z--] := Evaluate[Ca[z] /. pfr];
CB[z--] := Evaluate[Cb[z] /. pfr];

{CA[zmax], CB[zmax]}// Timing

General::spell1: Possible spelling error: new symbol
name ”pfr” is similar to existing symbol ”Pfr”.

Out[124]= {0. Second, {{0.367879}, {0.632121}}}

Here we see that the limiting values of Ca and Cb are 0.37 and 0.63, respectively, exit con
centrations which were nearly identical to those obtained with the large number of CSTRs 
(>100) and closely approached by even 10 CSTRs. The important point we learn from this is 
that even with two or three CSTRs we begin to move toward the PFR limit. 

Now we will return to the recursive programming part of this problem because it is a 
prototypical type problem we can expect to encounter often in chemical engineering analysis 
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and computations. We can now try functional programming to derive the solutions that we 
seek. We know the solution for Ca at the exit of the first CSTR and we have a recursive 
relationship for the exit concentrations emerging from the next n-CSTRs. Therefore, we can 
put these two together into a functional program as follows: 

In[125]:= Clear[ca, V, q, Caf, Vo]
qCaf

ca[1] = ;
q + k V

qca[n - 1]
ca[n--] : =  ca[n]  =

q + k V

We can see how this works. We defined the seed for ca[1] first and then we created the function 
for any ca[n] as follows: 

q ca[n − 1]
ca[n ] := ca[n] = 

q + k V  

Taking n = 4 we  find: 

In[128]:= ca[4]

Cafq4
Out[128]=

(q + k V)4 

Recall that in this recursion relation the symbol V = Vo ; therefore, we can redo the computa4 
tion to derive: 

Vo
In[129]:= V =  ;

4
ca[4]
Together[%]

Cafq4
Out[130]=

(q+ kVo
4 )

4

256Cafq4
Out[131]=

(4q+k Vo)4

Referring back to the earlier solution that we derived for n = 4, we see that the two agree 
perfectly. The function for ca[n] may be used in the Table function to derive the first four 
solutions symbolically: 

In[132]:= n = 4;
Table[ca[x], {x, 1, n}]
Together[%]
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Cafq Cafq2 Cafq3 Cafq4
Out[133]= {

q+ kVo ,(q+ kVo  ,
(q+ kVo  ,

(q+ kVo  }
4 )2 4 )3 4 )44

4Cafq 16Cafq2 64Cafq3 256Cafq4
Out[134]= {

4q+k Vo
,
(4q+k Vo)2

,
(4q+k Vo)3

,
(4q+k Vo)4

}

This is a simple and yet very powerful use of Mathematica’s set-delay utility : = . The right-hand 
side is the whole recursive equation with an equal sign, but by placing this after the set-delay 
: = it becomes a pattern that will not be evaluated until n is specified. When n is specified, 
then it begins with the seed and evaluates the function until it gets to the value of n. Thus, 
when we set n = 4, we obtain the concentration expression for the exit of the fourth CSTR. If  
we place the function in a Table, and set n = 4 we obtain the exit concentrations for all four 
of the CSTRs. We follow the same procedure for cb[n] as shown here: 

In[135]:= Clear[cb]
Vo

V =  ; 
s 

CafkV 
cb[1] = 

q+kV 
; 

cb[n--] := cb[n] = 
k Vca[n-1]  

q+kV 
+ cb[n-1] 

In[139]:= s = 4  
cb[s] 
Together[%] 

Out[139]= 4 

Cafkq3 Vo Cafkq2 Vo Cafkq Vo Cafk Vo
Out[140]= + + +

4(q+ kVo  
4 )3 4(q+ kVo  

4 )4 )4 4(q+ kVo  
4 )2 4(q+ kVo

256Cafkq3 Vo+96Cafk2q2 Vo2 +16Cafk3q Vo3 +Cafk4 Vo4
Out[141]=

(4q+k Vo)4

Again, the solution for Cb at the exit of CSTR number 4 matches that previously derived. 
Note also that this solution for B was explicit in n because we had already defined ca[n]. If we  
had not done this, then what follows is what we would have seen: 

In[142]:= Clear[""Global‘*""]
Vo

In[143]:= V =  ;
s

Cafk V
cb[1] = ;

q+k V
k Vca[n-1]

cb[n--] := cb[n] = +cb[n-1]
q+k V

s = 4
cb[s]
Together[%]
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Out[146]= 4

Cafk Vo k Voca[1] k Voca[2] k Voca[3]
Out[147]= + + +

4(q+ kVo  
4 ) 4(q+ kVo  

4 )4 ) 4(q+ kVo  
4 ) 4(q+ kVo

Cafk Vo+k Voca[1]+k Voca[2]+k Voca[3]
Out[148]=

4q+k Vo

To avoid any such problems we simply place the two sets of functions together into one 
working cell as follows: 

In[149]:= Clear[""Global‘*""]

Vo
In[150]:= V =  ;

s
qCaf

ca[1] = ;
q+k V

qca[n-1]
ca[n--] := ca[n] = q+k V

Cafk V
cb[1] = ;

q+k V
k Vca[n-1]

cb[n--] := cb[n] = +cb[n-1]
q+k V

Testing the result we obtain: 

In[155]:= s = 4;
{Together[ca[s]],Together[cb[s]]}

256Cafq4 256Cafkq3 Vo+96Cafk2q2 Vo2 +16Cafk3q Vo3 +Cafk4Vo4
Out[156]= { }

(4q+k Vo)4
, 

(4q+k Vo)4

We can apply values to the parameters and the values n. We use  s to define the number 
of CSTRs rather than n per se in order to avoid a name clash that leads to an infinite loop. 
Before we try this, however, we shall set the $RecursionLimit to 1000. The default value of 
256 is not sufficient for us to go out to numbers as large as n = 1000 CSTRs. 

In[157]:= Clear[""Global‘*""] 

In[158]:= $RecursionLimit = 2000;
Vo

V =  ;
s

qCaf
ca[1] = ;

q+k V
qca[n-1]

ca[n--] := ca[n] = q+k V
Cafk V

cb[1] = ;
q+k V

k Vca[n-1]
cb[n--] := cb[n] = +cb[n-1]

q+k V
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Caf = 1;
k = .1;
q = 10;
Vo = 100;
s = 1000
{ca[s], cb[s]} // Timing

Out[168]= 1000

Out[169]= {1.49 Second, {0.368063, 0.631937}}

We can see that this is a huge speed-up from the original code that we wrote in which we first 
rewrote all the equations and then did the computations. This new program required only 
2.91 sec on a Pentium I to do the same and just 0.17 sec with the 1-GHz Pentium III processor. 

We can also solve this recursion problem more traditionally using a procedural approach. 
The recursion in this case is buried within a “Do” loop, which is the classic structure in the 
procedural programming paradigm. The “Do” loop is placed within a Module function to 
keep all the variable names localized: 

In[170]:= ca1[n--] :=
Module[{m, ca},

Vo
V =  ;

n
qCaf qca[m-1]

Do[ca[1] = ;ca[m] = ,{m,0,n}];
q+k V q+k V

ca[n]
]

In[171]:= ca1[4]
Together[%]

Out[171]= 0.4096

Out[172]= 0.4096

Within the Do loop we have the same recursion that we had implemented by rules—we specify 
the seed as ca[1] and then the recursion relation as ca[m]. The set-delayed function argument of 
ca1[n--] supplies n, as the limit of the iterative sequence. The last statement just outside the Do 
loop writes the value of ca[n] and then it stops. We implement the same approach for species B: 

In[173]:= Clear[ca1]

In[174]:= cb1[n--] :=
Module[{m, cb},

V =  Vo;n
Cafk V

Do[cb[1] = ;
q+k V
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ca1[m-1]k V
cb[m] = +cb[m-1],{m, 0, n}];

q+k V
cb[n]

]

In[175]:= cb1[4]
Together[%]

Out[175]= 0.2+0.2ca1[1]+0.2ca1[2]+0.2ca1[3]

Out[176]= 0.2+0.2ca1[1]+0.2ca1[2]+0.2ca1[3]

In order to evaluate the expression fully in term of just the parameters, we need the expression 
for ca1[n] to have been evaluated. We do the two in one cell to make this happen: 

In[177]:= cacb[n--]:=
Module[{m, ca, cb},

V =  Vo;n
qCaf

Do[{ca[0] = Caf, ca[1] = , cb[0] = 0,
q + kV

Caf k V
cb[1] = };

q + k  V

qca[m - 1]  ca[m - 1]k  V
{ca[m]= , cb[m] = + cb[m - 1]},

q + k V  q + kV
{m, 1, n}];

{Together[ca[n]], Together[cb[n]]}
]

In[178]:= cacb[4]

Out[178]= {0.4096, 0.5904}

This works very nicely indeed. We can apply numerical values to these solutions, solve, and 
even obtain the timing for a comparison to the rule-based and functional programming cases: 

In[179]:= Caf = 1;
k = .1;
q = 10;
ntot = 10;
Vo = 100;
cacb[1000] // Timing

Out[184]= {1.43 Second, {0.368063, 0.631937}}

We see here that the procedural solution is identical to the asymptotic solutions obtained 
earlier and the time to do n = 1000 is only 1.98 sec of CPU on a Pentium I and 0.22 on the 
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Pentium III (I GHz), which is much faster than the first, rule-based program and a little slower 
than the functional implementation. Once again we apply the function cacb that we have 
created in listable so we can Map it down the vector of n values that we had used before in the 
rule-based computations and we can compare timings: 

In[185]:= n = {1, 2, 3, 10, 20, 100, 1000};
cacb /@n // Timing

Out[186]= {1.59 Second,
{{0.5, 0.5},{0.444444,0.555556},{0.421875,0.578125},
{0.385543, 0.614457}, {0.376889, 0.623111},
{0.369711, 0.630289}, {0.368063, 0.631937}}}

When we did this via brute force using all the equations and no recursion, we utilized 17.54 
sec of CPU time while the procedural program required just 1.26 sec. 

Now we can compare how the conversions grow to the PFR limit as the number of CSTRs 
increases. First we compute the concentrations of species A and B for 1–150 CSTRs. 

In[187]:= n = {1, 2, 3, 5, 10, 20, 30, 50, 60, 90, 100, 150};
cstrconcs = cacb /@n

Out[188]= {{0.5, 0.5}, {0.444444, 0.555556}, {0.421875, 0.578125},
{0.401878, 0.598122}, {0.385543, 0.614457},
{0.376889, 0.623111}, {0.373927, 0.626073},
{0.371528, 0.628472}, {0.370924, 0.629076},
{0.369914, 0.630086}, {0.369711, 0.630289},
{0.369102, 0.630898}}

Out[198]= {{0.5, 0.5}, {0.444444, 0.555556}, {0.421875, 0.578125},
{0.401878, 0.598122}, {0.385543, 0.614457},
{0.376889, 0.623111}, {0.373927, 0.626073},
{0.371528, 0.628472}, {0.370924, 0.629076},
{0.369914, 0.630086}, {0.369711, 0.630289},
{0.369102, 0.630898}}

Next we plot these versus the PFR limiting concentrations: 

In[189]:= << Graphics‘MultipleListPlot‘

In[190]:= calist = Table[{n[[x]], cstrconcs[[x, 1]]}, {x, 1, Length[n]}];
cblist = Table[{n[[x]], cstrconcs[[x, 2]]}, {x, 1, Length[n]}];

MultipleListPlot[ 
calist, cblist, DefaultFont ––› {""Helvetica"", 15},  
SymbolShape ––› {PlotSymbol[Triangle,5],PlotSymbol[Box,5]}, 
SymbolStyle ––› {GrayLevel[0], GrayLevel[0.5]}, 
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Epilog ––› {
{GrayLevel[0.5], Line[{{0, .63}, {150, 0.63}}]},
{Line[{{0, 1 - .63}, {150, 1 - 0.63}}]}

},
AxesLabel ––› {""n-CSTRs"", ""Ca,Cb""},
PlotLabel ––› ""nCSTRs (pts.) ––› PFR (lines)""
];

General::spell1 : Possible spelling error: new symbol name
”cblist” is similar to existing symbol ”calist”.

20 40 60 80 100 120 140 
n�CSTRs 

0.45 

0.5 

0.55 

0.6 

Ca,Cb nCSTRs 0pts.� PFR 0lines�

After approximately 30 CSTRs in series the result is the same as one PFR of equal volume. This 
makes sense mathematically in terms of our analysis and it also makes good sense intuitively 
because we are using the same total volume more efficiently. 

9.9 Residence Time Distribution 
We first encountered in Chapter 3 on mixing in multicomponent systems the problem of 
bypassing and less than perfect mixing. If we have two or more reactants that must mix in 
order for reaction to occur, then any deviations from a single-valued residence time distribu
tion will show up as an apparent deviation from the predictions based upon perfect mixing. 
The spread in the residence time distribution leads to different extents of reaction for the fluid 
elements with these different times. 

The lack of perfect mixing leads to this distribution. Recirculation zones may lead to 
longer than average residence times in some regions of the tank and bypassing to shorter than 
average time (see Figure 7). Longer or shorter times can translate into regions of higher or 
lower conversion. It is this type of problem we want to examine now. 
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Recirculation 
Zones 

Bypassing 

Figure 7 

We have developed the equations for a steady-state CSTR in which the reversible reaction of 
A and B produces D and one mole of D reacts back to produce A and B but the kinetics are 
second order: 

A + B � D 

0 = (Caf − Ca) 

0 = (Cbf − Cb)
V

q 
V
q 

− kab Ca Cb + kd Cd2 

− kab Ca Cb + kd Cd2 

0 = −Cd
q 
V

+ kab Ca Cb − kd Cd2 

0 = qbf − q 
(Caf − Ca)

0 = − kab Ca Cb + kd Cd2 

θ 

(Cbf − Cb)
0 = − kab Ca Cb + kd Cd2 

θ 

Cb
0 = −  + kab Ca Cb − kd Cd2 

θ 
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Of course q 
V = 1 

θ
, the holding time for the fluid in the reactor. When we derived these equations 

we did so under the assumption of perfect mixing, or  complete back-mixing, which is another 
term for this idealization. If there were perfect mixing, then there would be just one residence 
time and that would be the same as the holding time θ. When the residence time distribution 
is a DiracDelta function at one time, then we have one holding time. But what if this is not 
the case? What if, instead, the times spent by fluid elements are distributed about some mean 
value—then what? Well, then we would have to average these equations over the distribution 
to get the average concentration emerging from the less than perfectly mixed reactor. We begin 
by solving the equation in terms of θ: 

In[193]:= Clear[""Global‘*""] 

In[194]:= cstr = Simplify[
Solve[

(Caf - Ca)
{0 == - kabCaCb + kdCd2 ,

θ
(Cbf - Cb)

{0 == - kabCaCb + kdCd2 ,
θ

Cd
0 == - + kabCaCb  − kdCd2},

θ
{Ca, Cb, Cd}]];

TableForm[cstr, TableDirections ––› {Column, Column}]

Out[195]//TableForm = √ 
1+Cbfkab θ -Caf(kab-2kd)θ + -4CafCbfkab(kab-kd)θ2 +(1+Cafkab θ +Cbfkab θ)2 

Ca ––› -
2(kab-kd)θ 

√ 
1+Cafkab θ -Cbf(kab-2kd)θ + -4CafCbfkab(kab-kd)θ2 +(1+Cafkab θ +Cbfkab θ)2 

Cb ––› -
2(kab-kd)θ 

√ 
1+Cbfkab θ +Cafkab θ + -4CafCbfkab(kab-kd)θ2 +(1+Cafkab θ +Cbfkab θ)2 

Cd ––›
2(kab-kd)θ 

√ 
-1-Cbfkab θ +Caf(kab-2kd)θ + -4CafCbfkab(kab-kd)θ2 +(1+Cafkab θ +Cbfkab θ)2 Ca ––› 2(kab-kd)θ 

√ 
-1-Cafkab θ +Cbf(kab-2kd)θ + -4CafCbfkab(kab-kd)θ2 +(1+Cafkab θ +Cbfkab θ)2 

Cb ––›
2(kab-kd)θ 

√ 
1+Cbfkab θ +Cafkab θ - -4CafCbfkab(kab-kd)θ2 +(1+Cafkab θ +Cbfkab θ)2 

Cd ––›
2(kab-kd)θ 

The next step is to express these as functions of θ. By examination, we can find that the second 
set of solutions is the one that leads to physically realistic values of the concentrations; thus 
we use these: 

In[196]:= Clear[Ca, Cb, Cd]
Ca[θ--] = cstr[[2, 1, 2]];
Cb[θ--] = cstr[[2, 2, 2]];
Cd[θ--] = cstr[[2, 3, 2]];
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Testing the solutions requires putting them back into the equations to see if they are valid: 

(Caf-Ca[θ])
In[200]:= {Simplify[0 == -kabCa[θ]Cb[θ]+kdCd[θ]2],

θ

(Cbf-Cb[θ])
Simplify[0 == -kabCa[θ]Cb[θ]+kdCd[θ]2],

θ

Cd[θ]
Simplify[0 == - +kabCa[θ]Cb[θ]-kdCd[θ]2]}

θ

Out[200]= {True, True, True}

This shows that the functions we are using do indeed satisfy the equations for the steady-state 
CSTR. 

We will use the NormalDistribution to make the representations of the residence time 
distribution. The Probability Density Function (PDF) is made up of the Normal Distribution 
and the variable θ . This can be integrated in closed form: 

In[201]:= << Statistics‘NormalDistribution‘

In[202]:= Clear[ndist, pdf, θ, δθ, θmin, θmax]
ndist = NormalDistribution[θm, δθ];
pdf = PDF[ndist, θ];
Integrate[pdf, {θ, θmin, θmax}]

General::spell1: Possible spelling error: new symbol
name ”pdf” is similar to existing symbol ”PDF”.

General::spell1: Possible spelling error: new symbol 
name ”θm” is similar to existing symbol ”θ”. 

π δθ Erf[ - θm+ θmax π δθ Erf[ - θm+ θmin √ ]2 
√ 
2 δθ 

]- 2 2 δθOut[205]= √ 
2π δθ  

Because the Normal distribution PDF requires a mean value and a variance, we supply these 
and then Plot the result in order to visualize the distribution. We have purposefully chosen 
a very narrow distribution for the first case. Next the parameter values are assigned and we 
Integrate the products of the concentration functions and the PDF in θ over the range of θ
values. As shown in the following graph, these are the residence-time-averaged values of the 
concentrations and the conversion of A and B: 

In[206]:= θm = 10;
δθ = .2;
θmin = 0.001 θm;
θmax = 5 θm;
ndist = NormalDistribution[θm, δθ];
pdf = PDF[ndist, θ];
NIntegrate[pdf, {θ, θmin, θmax}]
NIntegrate[θ pdf, {θ, θmin, θmax}]/
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NIntegrate[pdf, {θ, θmin, θmax}] 
Plot[pdf, 

{θ, .0001 θm, 2θm}, 
AxesLabel ––› {""θ"", ""PDF[θ]""}, 
PlotStyle ––› {GrayLevel[0.4], Thickness[0.01], 
Dashing[{0.02, 0.03}]}, 

PlotRange ––› {{0, 2θm}, {0, Max[Table[N[pdf] + .1, 
{θ, θmin, θmax}]]}}, 
Epilog ––› {Line[{{θm - .01, 0}, {θm - .01, 
Max[Table[N[pdf] + .1, {θ, θmin, θmax}]]}}]}, 
PlotLabel ––› ""θm""];

Caf = 1;
Cbf = 1;
kd = 1.1;
kab = 2.2;

NIntegrate[Ca[θ]pdf,{θ,θmin,θmax}] 
cave =

NIntegrate[pdf,{θ,θmin,θmax}] 

NIntegrate[Cb[θ]pdf,{θ,θmin,θmax}]
cdave =

NIntegrate[pdf,{θ,θmin,θmax}] 

NIntegrate[Cd[θ]pdf,{θ,θmin,θmax}]
cdave =

NIntegrate[pdf,{θ,θmin,θmax}] 
100(1 - cave) 

Out[212]= 1.

Out[213]= 10.

PDF(G,
Gm 

2 

1.5 

1 

0.5 

G

2.5 5 7.5 10 12.5 15 17.5 20 
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Out[219]= 0.432349

General::spell1: Possible spelling error: new symbol
name ”cbave” is similar to existing symbol ”cave”.

Out[220]= 0.432349

General::spell: Possible spelling error: new symbol
name ”cdave” is similar to existing symbols {cave,
cbave}.

Out[221]= 0.567651

Out[222]= 56.7651

In[223]:= Clear[""Global‘*""] 

Rather than copy this code cell multiple times and run it successively, it would be much 
better to create a Module function, but even better than a Module function would be a Package. 
A Package is a program that we can call at any time simply by loading it and then running it. 
This will allow us to run without name collisions and to use what we have developed outside 
of this notebook context. Normally, when we are running Mathematica we are operating in the 
Global context, which is why we have often started our codes cells with Clear[”Global’*”]. 
This means clear all the variable names that we have made or used within the Global context. 
To find out which context we are in we input: 

In[224]:= $Context

Out[224]= Global‘

Contexts are very much like directories and you can find much written about this topic else
where. We will create a package called cstrresdist, which we will store in a folder called 
AddOns within the Applications folder. The inputs will be the forward and reverse rate con
stants kab and kd, the mean residence time θm, and the variance in the residence time δθ. 
The general form for a Package is: 

Begin Package[ “Context‘PackageName”]

PackageName::Usage=“Narrative explanation of Package...”

Begin[“‘Private‘”]

function name[ variables ]: = ...
End[ ]

EndPackage [ ]

We will use this format and the functions we have defined will be implemented as a Module 
Function. For the case at hand, instead of making the Context = AddOns’, it has been placed 
directly into the Global‘ context. 
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In[225]:= BeginPackage[""Global‘cstrrtd‘"", 
{""Statistics‘ContinuousDistributions‘"", 
""Statistics‘NormalDistribution‘"", 
""Statistics‘Common‘DistributionsCommon‘"", 
""Statistics‘DescriptiveStatistics‘""

}]

cstrrtd::Usage = ""cstrrtd[kab,kd,θm,δθ] creates the 
r.t.d, plots it and then computes the average exit 
concentrations of A and B and the conversion of A""

Begin[""‘Private‘""] 

cstrrtd[kab--, kd--, θm--, δθ--] :=  
Module[ 
{Caf = 1, Cbf = 1, caave, cbave, cdave, a, b, θ, 
conversion, x, y, z}, 

θmin = 0.001θm; 
θmax = 5θm; 

1 
ca[θ--] =  (-1 - Cbfkabθ + Caf(ka - 2kd)θ

2(kab - kd)θ

+
√
(-4CafCbfkab(kab - kd)θ2+(1+Cafkabθ+Cbfkabθ)2)); 

1 
cd[θ--] =  (1 + Cafkabθ + Cbfkabθ-

2(kab - kd)θ
√
(-4CafCbfkab(kab - kd)θ2+(1 + Cafkabθ + Cbfkabθ)2)); 

distfunc[x--, y--, z--] = PDF[NormalDistribution[x,y],z]; 

Plot[distfunc[θm, δθ, θ], 
{θ, .0001θm, 2θm}, 

AxesLabel ––› {""θ"", ""PDF[θ]""}, 
PlotStyle ––› {GrayLevel[0.4], Thickness[0.01], 

Dashing[{0.02, 0.03}]}, 
PlotRange ––› 
{{0, 2θm}, {0, Max[Table[N[distfunc[θm, δθ, θ]], 
{θ, θmin, θmax}]]}}, 

Epilog ––› {Line[{{θm, 0}, 
{θm, Max[Table[N[distfunc[θm, δθ, θ]], 
{θ, θmin, θmax}]]}}]}, 
PlotLabel ––› ""θm""]; 

a = NIntegrate[distfunc[θm, δθ, θ], {θ, θmin, θmax}]; 
b = NIntegrate[θ distfunc[θm, δθ, θ], {θ, θmin, θmax}]/ 

NIntegrate[distfunc[θm, δθ, θ], {θ, θmin, θmax}]; 

caave = NIntegrate[ca[θ] distfunc[θm, δθ, θ], {θ, θmin, θmax}]/ 
NIntegrate[distfunc[θm, δθ, θ], {θ, θmin, θmax}]; 
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cdave = NIntegrate[cd[θ] distfunc[θm, δθ, θ], {θ, θmin, θmax}]/ 
NIntegrate[distfunc[θm, δθ, θ], {θ, θmin, θmax}];

conversion = 100(1 - caave);
{a, b, caave, cdave, conversion}
]

End[]
EndPackage[]

Out[225]= Global‘cstrrtd‘

Out[226]= cstrrtd[kab,kd,θm,δθ] creates the r.t.d, plots it and 
then computes the average exit concentrations of A 

and B and the conversion of A 

Out[227]= Global‘cstrrtd‘Private’

Out[229]= Global‘cstrrtd‘Private’

To see how this works we can run a case as follows: 

In[231]:= cstrrtd[2, 1, 10, .19]

PDF(G,
Gm 

2.5 5 7.5 10 12.5 15 17.5 20 
G

0.5 

1 

1.5 

2 

Out[231]= {1., 10., 0.434089, 0.565911, 56.5911}

The graph is the distribution of residence times about the mean. The bottom line of output 
gives us the integral of the PDF, the mean normalized residence time, the concentration of A 
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and B, and, finally, the conversion of A. We see from this graph that with the mean residence 
time of 100 and variance of just 2, this is a very sharp distribution. What would happen if the 
r.t.d. were broader—say, 30? 

In[232]:= cstrrtd[2, 1, 10, 3]

PDF(G, Gm 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

G

2.5 5 7.5 10 12.5 15 17.5 20 

Out[232]= {0.999566, 10.0047, 0.436484, 0.563516, 56.3516}

We see from the preceding that even though the distribution has been broadened considerably, 
there is no evidence of an effect on the overall conversion. This makes sense because there 
are just as many fluid elements below the average as there are above and so we get average 
behavior—just as we intuitively know we should. What, however, happens when the flow is 
so maldistributed that the residence time is actually bimodal? 

In the following package, Global ’rtdcstr‘, two normal distributions are weighted (wf1 
and wf2) and added together to give the overall residence time distribution. The second 
Gaussian distribution is taken to be centered at half the mean value of the first, but with the 
same variance. The function p is their sum (see the following): 

In[233]:= BeginPackage[""Global‘rtdcstr‘"", 
{""Statistics‘ContinuousDistributions‘"", 
""Statistics‘NormalDistribution‘"", 
""Statistics‘Common‘DistributionsCommon‘"", 
""Statistics‘DescriptiveStatistics‘""

}]
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rtdcstr::usage = ""testing 1,2,3...""
Begin[""‘Private‘""]
rtdcstr[kab--, kd--, θm--, σθ--, wf1--, wf2--]:= Module[
{Caf = 1, Cbf = 1, x, xmin, xmax},
xmin = 0.001θm;
xmax = 5θm;
ndist1 = NormalDistribution[θm, σθ];
ndist2 = NormalDistribution[.5θm, σθ];
pdfunction1 = PDF[ndist1, x];
pdfunction2 = PDF[ndist2, x];

wf1 pdfunction1 + wf2 pdfunction2
p =  ;

wf1 + wf2

1
ca[y--] =  (-1-Cbfkaby+Caf(kab-2kd)y+

2(kab - kd)y√
(-4CafCbfkab(kab-kd)y2+(1+Cafkaby+Cbfkaby)2)); 

Plot[p, {x, 0, xmax}, 
AxesLabel ––› {""θ"", ""PDF[θ]""}, 
PlotStyle ––› {GrayLevel[0.4], Thickness[0.01], 
Dashing[{0.02, 0.03}]}, 

PlotRange ––› {{xmin, 2θm}, 
{0, .01 + Max[Table[N[p], {x, xmin, xmax}]]}}, 
Epilog ––› {Line[{{θm, 0}, {θm, Max[Table[N[p], 
{x, xmin, xmax}]]}}]}, 

PlotLabel ––› ""θm,o""]; 

totp = NIntegrate[p, {x, 0, xmax}];
NIntegrate[xp,{x,0,xmax}]

thetam = ;
totp 

NIntegrate[ca[x]p,{x,0, xmax}] 
caave = ;

totp
conversion = 100 (1-caave);
{totp, thetam, caave, conversion}
]

End[]
EndPackage[]

Out[233]= Global‘rtdcstr‘

Out[234]= testing 1,2,3...

Out[235]= Global‘rtdcstr‘Private‘

Out[237]= Global‘rtdcstr‘Private‘

In[239]:= rtdcstr[2, 1, 10, 1.5, 4, 2]
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PDF(G, Gm,o 
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G
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Out[239]= {0.999857, 8.33458, 0.441837, 55.8163}

We see that this extreme case has some effect on the conversion, but not to any significant 
extent. 

Let us turn now to the case of series reaction: 

A → B → D 

We can once again solve the equations for the concentrations as a function of the residence time: 

In[240]:= Clear[""Global‘*""] 

cstrabd2=Simplify[
Solve[

(Caf - Ca)
{0 == - kabCa,

θ
-Cb

0 ==  + kabCa - kbdCb,
θ
Cb

0 == - + kabCb}
θ

{Ca, Cb, Cd}]];

TableForm[cstrabd2, TableDirections ––› {Column, Column}]

Out[242]//TableForm=
Cafkabkbdθ2 

Cd ––›
(1 + kabθ)(1 + kbdθ) 
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Cafkabθ 
Cb ––›

(1 + kabθ)(1 + kbdθ) 
Caf 

Ca ––›
(1 + kabθ) 

The package that we have just written for the bimodally distributed residence times can 
be adapted to give a new package we shall call rtdcstrabd2. The output of this Package will be 
the r.t.d. of the integrated PDF value, the average residence time, then the conversion followed 
by the selectivities to A and to B: 

In[243]:= BeginPackage[""Global‘rtdcstrabd2‘"", 
{""Statistics‘ContinuousDistributions‘"", 
""Statistics‘NormalDistribution‘"", 
""Statistics‘Common‘DistributionsCommon‘"", 
""Statistics‘DescriptiveStatistics‘""

}] 
rtdcstrabd2::usage = ""testing 1,2,3...""
Begin[""‘Private‘""] 
rtdcstrabd2[kab--, kbd--, θm--, σθ--, wf1--, wf2--]:= Module[ 
{Caf = 1, Cbf = 1, x, xmin, xmax},
xmin = 0.001θm;
xmax = 5θm;
ndist1 = NormalDistribution[θm, σθ];
ndist2 = NormalDistribution[.5θm, σθ];
pdfunction1 = PDF[ndist1, x];
pdfunction2 = PDF[ndist2, x];

wf1 pdfunction1 + wf2 pdfunction2
p =  

wf1 + wf2 
; 

Caf 
ca[y--] =  

1+kab y 
; 

cb[y--] =  
Caf kab y 

(1+kab y)(1+kbd y)
; 

cd[y--] =  
Caf kab kbd y2 

(1+kab y)(1+kbd y)
; 

Plot[p, {x, 0, xmax}, 
AxesLabel ––› {""θ"", ""PDF[θ]""}, 
PlotStyle ––› {GrayLevel[0.4], Thickness[0.01], 
Dashing[{0.02, 0.03}]}, 

PlotRange ––› {{xmin, 2θm}, 
{0, .01 + Max[Table[N[p], {x, xmin, xmax}]]}}, 

Epilog ––› {Line[{{θm, 0}, {θm, Max[Table[N[p], 
{x, xmin, xmax}]]}}]}, 

PlotLabel ––› ""θm,o""]; 



P1:

May 10, 2002 16:30 Foley Foley-C09

9.9 Residence Time Distribution 447 

totp = NIntegrate[p, {x, 0, xmax}];
NIntegrate[xp,{x,0,xmax}]

thetam = ;
totp

NIntegrate[ca[x]p,{x,0,xmax}]
caave = ;

totp

NIntegrate[cb[x]p,{x,0,xmax}]
cbave = ;

totp

NIntegrate[cd[x]p,{x,0,xmax}]
cdave = ;

totp

conversion = 100 (1 - caave);

cbave
selB = ;

caave+cbave+cdave

cdave
selD = ;

caave+cbave+cdave
{totp, thetam, conversion, selB, selD}
]

End[]
EndPackage[]

Out[243]= Global‘rtdcstrabd2‘

Out[244]= testing 1,2,3...

Out[245]= Global‘rtdcstrabd2‘Private‘

Out[247]= Global‘rtdcstrabd2‘Private‘

In[249]:= rtdcstrabd2[2, 1, 10, 1.5, 1, .25]
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Out[249]= {0.999914, 9.00081, 94.1074, 0.102341, 0.838733}

In[250]:= {rtdcstrabd2[.2, .1, 10, 1.5, 1, 0],
rtdcstrabd2[.2, .1, 10, 1.5, 0, 1],
rtdcstrabd2[.2, .1, 10, 1.5, 1, 1],
rtdcstrabd2[.2, .1, 10, 1.5, 1, .25]}

PDF(G, Gm,o 
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PDF(G, Gm,o 
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Out[250]= {{1., 10., 66.3228, 0.332179, 0.331049},
{0.999571, 5.00231, 48.8138, 0.323047, 0.165091},
{0.999785, 7.50169, 57.5702, 0.327614, 0.248088},
{0.999914, 9.00081, 62.8222, 0.330353, 0.297869}}

Here we can see a much stronger effect of the r.t.d. on the conversions and the selectivities. 
The cases we have chosen to examine are purposefully extreme. With the r.t.d. centered at 
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θm = 10, the conversion of A is 66% and the selectivities to A and to B are virtually 1 : 1. When 
we push the r.t.d. to a shorter residence time and θm = 5 the whole picture changes to one of 
lower conversion and higher selectivity to B by almost 2 : 1 over D—as we would expect. Note, 
however, that the yield to B is now under 16%, whereas in the first case it was closer to 22%. 
With a bimodal distribution having nearly equal probabilities at θm = 5 and 10, the picture 
changes once again: The conversion is lower than the narrowly distributed case centered at 
θm = 10, and so too is the selectivity to D rather than B. Finally, if the maldistribution is less 
severe, then too is the departure from the unimodal result. 

For comparison, we show in the following and compute the case of a very narrow distri
bution and the actual values for the base case of a single holding time, that is for Dirac-Delta 
Function of residence times: 

In[251]:= rtdcstrabd2[.2, .1, 10, .2, 1, 0]

PDF(G, Gm,o 

G
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Out[251]= {1., 10., 66.6607, 0.333315, 0.333293}

In[252]:= kab = .2; 
kbd = .1; 
Caf = 1; 
θ = 10; 

Caf kab kbd θ2 
Cd ––› N[ ]

(1 + kab  θ)(1 + kbd θ)

Caf kab θ
Cb ––› N[ ]

(1 + kab  θ)(1 + kbd θ)

Caf 
Ca ––› N[ ]

1 + kab  θ

Out[256]= {{{{Cd ––› 0.333333}, {Cb ––› 0.333333}, {Ca ––› 0.333333}}}}
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9.10 Time-Dependent PFR—Complete 
and Numerical Solutions 

The PFR equation that we derived had two partial derivatives—one in time and one in space. 
Recall that this is the equation for component A being fed to the PFR: 

∂Ca −q ∂Ca = − rA− 
∂t Acr ∂z 

The time-dependent derivative of concentration is the accumulation term for the differential 
volume Acr dz. This is essentially the same for all the reactor types we have studied. What 
makes the PFR different and perhaps more interesting is the spatial derivative. 

Since it was not within our ability to solve the time-dependent equation, we naturally 
solved the steady-state problem so that the accumulation term went to zero, which left only 
the spatial derivative: 

−q ∂Ca
0 = − rA−A ∂z 

q ∂Ca = −rA−A ∂z 

This problem is more soluble because it involves only this one derivative. In fact, if we 
recall that q 

A is the velocity vz in the PFR, then we simplify the equation further: 

q ∂Ca = −rA−A ∂z 
∂Ca 

vz = −rA− 
∂z 

vzHowever, 
∂z is the ratio of a constant velocity to a differential distance. This has units of re

ciprocal time. Formally, we can take the constant into the derivative and this gives us 
∂ z , 

vz 

which can be defined as the reciprocal of the differential holding time 1 . The equation 
∂τ

becomes: 

∂Ca = −rA− 
∂τ 

This result is very nice because it shows us that at the steady state the PFR has the same govern
ing equation as the transient batch reactor, except that instead of the real time the differential 
is given in terms of the differential holding time. 

1 
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9.11 Transient PFR
The question arises as to how long it will take a reactor operating in the plug flow regime to 
reach a steady state for a specific set of reaction kinetics, volume, and flow rate. To solve this 
problem we need to solve both in time and in space. If the kinetics are simple, then we can 
solve the problem analytically, that is, we can derive expressions for the concentrations that 
are functions of time and position. However, often the kinetics are not straightforward and 
analytical solutions must be surrendered in favor of numerical solutions. 

The numerical solution will produce values of the concentration at specific times and 
positions. What happens then is that the equations are solved for a grid of times and positions. 
Starting with initial conditions, each new solution is based on the solution at the previous grid 
point. The differentials are approximated by differences and the problem reduces to one of 
solving the simultaneous difference equations. Many very elegant numerical recipes are used 
to do this, but none that need concern us here. Instead, we accept the work from decades of 
research and development in computing and applied math and simply use its powerful results. 

9.12 Equations, Initial Conditions, 
and Boundary Conditions 

Consider the following reaction and its occurrence in a transient PFR: 

A + B → D → E 

The first reaction takes place via second-order kinetics k1 Ca Cb and the second is first order 
in D, k2 Cd. The concentrations of every species will be a function of both space and time: 

Ci[z, t] 

The differential equations for the concentrations of each species are of the form shown for 
species A: 

∂Ca −q ∂Ca = − rA− 
∂t A ∂z 

We can write these as a set of equations for A, B, D, and E, each of which is coupled through 
their concentrations. We also need four initial conditions for these concentrations. We can set 
the concentrations of A and B to their inlet values as if the tube were uniformly filled with 
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them initially. For the two products we can set each of them to zero at time zero at all z positions 
in the reactor. We do this as follows: 

Creactant[z, 0] == Creactant, o 

Cproduct[z, 0] == 0 

For a partial differential equation we also need to have a set of boundary conditions. The ini
tial conditions are for the time differential and the boundary conditions arise for the spatial 
differential. The boundary conditions are analogous to initial conditions. The boundary con
ditions must be satisfied at some position or positions for all times. The assignment of proper 
boundary conditions to physical problems usually becomes the most challenging part of the 
analysis, but it is also the most interesting! Boundary conditions for our problem can be fairly 
straightforward: We will let the concentrations of the reactants A and B be equal to a constant 
at the inlet for all times. The other concentrations will be zero. Here is how we express that: 

Ca[0, t] == Cao 

Cb[0, t] == Cbo 

Cd[0, t] == 0... 

The first part of this problem is to write the set of component equations, the initial conditions, 
and the boundary conditions, including the kinetics. Call this set eqns. Next write out the set 
of variables that will be solved for calling it vars. 

eqns = {  component equations, initial conditions, boundary conditions} 
vars = {Ci[z, t]....} 

We make a vertical list of parameter names and values and then we use NDSolve with the set 
of equations and variables as follows: 

solns = NDSolve[eqns, vars, {t, 0, tmax}, {z, 0, zmax}] 

When NDSolve does the numerical integration it automatically fits a set of polynomials to 
the numerical values of each variable at each grid point in time and position. Therefore, the 
output will be an interpolation function. We assign these interpolation functions to function 
names and patterns. We will solve numerically and then plot the concentrations for A, D, 
and E in z- and t-space. As this is unlike the other problems we have done to this point, we 
will present it in a highly interactive step-by-step fashion. Putting these pieces together into 
a Module or package only makes sense after the computation and the implemented code 
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are understood. Here is the code we have just described. We will let the results for each step 
flow to output so that we can see how this works in detail: 

In[257]:= Clear[ca, cb, cd, ce, q, A, k1, k2, cao, cbo, cdo, ceo,
tmax, zmax, cA, cB, cD, cE]

General::spell1: Possible spelling error: new symbol name
”cao” is similar to existing symbol ”Cao”.

General::spell1: Possible spelling error: new symbol name
”cbo” is similar to existing symbol ”Cbo”.

General::spell1: Possible spelling error: new symbol name
”cdo” is similar to existing symbol ”Cdo”.

General::stop: Further output of General :: spell1 will be
suppressed during this calculation.

Here are the equations, the initial and boundary conditions, and the variable names: 

In[258]:= eqns = {
q

D[ca[z, t], t] == - D[ca[z, t], z] - k1 ca[z, t] cb[z, t],
A

D[cb[z, t], t] == -
q 

D[cb[z, t], z] - k1cb[z, t] cb[z, t],
A

D[cd[z, t], t] ==-
q 

D[cd[z, t], z] + k1 ca[z, t] cb[z, t]
A

-k2cd[z, t],

D[ce[z, t], t] == -
q 

D[ce[z, t], z] + k2cd[z, t],
A

ca[0, t] == cao,
cb[0, t] == cbo,
cd[0, t] == cdo,
ce[0, t] == ceo,
ca[z, 0] == cao,
cb[z, 0] == cbo,
cd[z, 0] == 0.0,
ce[z, 0] == 0.0}
vars = {ca[z, t], cb[z, t], cd[z, t], ce[z, t]};

q ca(1,0)[z,t]
Out[258]= {ca(0,1)[z,t] == -k1 ca[z,t]cb[z,t] - ,

A
q cb(1,0)[z,t]

ca(0,1)[z,t] == -k1 cb[z,t]2 - ,
A

ca(0,1)[z, t] == k1 ca[z, t] cb[z, t] - k2 ca[z, t]
q cd(1,0)[z,t]

- ,
A
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q ce(1,0)[z,t]
ca(0,1)[z,t] == k2 ca[z,t] - ,ce[0,t] == cao,

A
cb[0,t] == cbo, cd[0,t] == cdo, ce[0,t] == ceo,
ca[z,0] == cao, cb[z,0] == cbo, cd[z,0] == 0.,
ce[z,0] == 0.}

To solve this numerically we need the following parameter values: 

In[260]:= q = 7.5;
A = 10;
k1 = 0.15;
k2 = 0.04;
cao = 1;
cbo = 1;
cdo = 0;
ceo = 0;
tmax = 100;
zmax = 100;

Next the equations and variables are placed within NDSolve and solved over a range of 
positions (z-values) and times. Then we assign the resultant interpolation functions to the 
appropriate function names: 

In[280]:= solns = NDSolve[eqns, vars, {z, 0, zmax}, {t, 0, tmax}];

In[281]:= cA[z--, t--]:= Evaluate[ca[z, t] /. solns[[1]]]
cB[z--, t--]:= Evaluate[cb[z, t] /. solns[[1]]]
cD[z--, t--]:= Evaluate[cd[z, t] /. solns[[1]]]
cE[z--, t--]:= Evaluate[ce[z, t] /. solns[[1]]]

Finally, we use the newly defined functions in graphical routines as shown in the following, 
which are now three dimensional in order to provide us with surfaces of points that make up 
the solutions to this problem for each species: 

In[286]:= a = Plot3D[cA[z, t], {z, 0, zmax}, {t, 0, tmax}, 
ColorOutput ––› GrayLevel, 
AxesLabel ––› {""z "","" t"", ""cA ""}, ViewPoint ––› {1, -2, 2}, 
PlotPoints ––› 20, 
Ticks ––› {Automatic, Automatic, {0, 0.5, 1}}, 
DisplayFunction ––› Identity]; 

b = Plot3D[cB[z, t], {z, 0, zmax}, {t, 0, tmax}, 
ColorOutput ––› GrayLevel, 
AxesLabel ––› {""z "","" t"", ""cB ""}, 
ViewPoint ––› {1, -2, 2}, PlotPoints ––› 20, 
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Ticks ––› {Automatic, Automatic, {0, 0.5, 1}},
DisplayFunction ––› Identity];

d = Plot3D[cD[z, t], {z, 0, zmax}, {t, 0, tmax},
ColorOutput ––› GrayLevel,
AxesLabel ––› {""z "","" t"", ""cD ""},
PlotPoints ––› 20,
Ticks ––› {Automatic, Automatic, {0, 0.15, .30, .45}},
DisplayFunction ––› Identity];

e = Plot3D[cE[z, t], {z, 0, zmax}, {t, 0, tmax},
ColorOutput ––› GrayLevel,
AxesLabel ––› {""z "","" t"", ""cE ""},
PlotPoints ––› 20,
Ticks ––› {Automatic, Automatic, {0, 0.25, .5, .75}},
DisplayFunction ––› Identity];

Show[GraphicsArray[{{a, b}, {d, e}}],
DisplayFunction ––› $DisplayFunction];
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The graphs of each of the species concentrations are plotted as a function of position along
the tube z and time t. At the edges of the graphs for the concentrations of A and B we see the
boundary and initial conditions. All values are unit or zero concentration as we had specified.
As we move through time, we see the concentrations of both species drop monotonically at
any position. Furthermore, if we take any time slice, we see that the concentrations of reactants
drop exponentially with position—as we know they should. At the longer times the profiles of
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A and B through the reactor have reached their steady-state values. Species D is intermediate 
in the network. Its concentration rises sharply as a function of time and of position, maximizing 
across the reactor at short time and then falling to its steady-state value. The only region of 
the reactor in which the concentration of D persists at relatively high levels is at a position 
approximately 10 units from the entrance. As time goes on the initially high D concentration 
beyond position z ≈ 10 falls. Species E is the ultimate product of this network. At the lower left 
corner of the CE concentration graph, the concentration is zero. Through time and position this 
rises to a steady-state level of nearly 0.8 in the upper right corner of the plot (which represents 
the reactor outlet after much time has passed). 

All in all, the series network in a transient PFR appears to follow the trends that we would 
expect in evolving to the steady-state condition. The time to reach the steady state is a function 
of the rate constants, the inlet concentrations, and the holding time, that is, of the volume flow 
rate and reactor volume. 

9.13 Summary 
This chapter has been devoted to continuous reactors and their analyses. We have examined 
the powerful idealizations of the CSTR and PFR. Pseudo-steady states and steady states 
have been covered as well as chemical equilibrium. We must remember that the steady-state 
condition can be far from the equilibrium condition, and the two time-independent situations 
must not be confused. The time-dependent CSTR and PFR are interesting problems, but they 
are less often used than the steady-state solutions. 

We have seen how the kinetics fit into a reactor equation as a constitutive relationship. 
Flow and reaction come together in these systems to affect the rate of accumulation. Hence 
when we refer to the “rate” we must be careful to be specific about the reactor—if it is a 
constant volume batch reactor, then rate means the chemical rate. If the reactor is a transient 
CSTR or PFR, then the rate of change of the concentration at the exit of the reactor is not the 
chemical rate alone. Mixing effects are important and we have seen how to begin to account 
for the fluid mechanics in a reactor through the empirical measure of the r.t.d. The r.t.d. does 
affect the outcome from the reactor, but the sensitivity to the r.t.d. depends upon the kinetics 
and their functional form. 

Finally, we have taken our Mathematica skills up another level by writing not just Module 
functions, but actual Packages. By writing Packages in the Global context we implement them 
immediately. We can, however, write and save packages to another context and then call them 
from our own library as we need them, either as stand-alone computations or as embedded 
functions in another package. 
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Worked Problems

The following are exercises that have been used with honors students and that seem to be 
both interesting and challenging. In many cases only the rudimentary coded solution is 
given. From this one can build much more sophisticated code and in many cases create Mod-
ule functions that can be used repeatedly with different parameter values. Note that all of 
these separate problems were run as if the Kernel had to be restarted with each computa-
tion. Running sequentially without adding statements to clear variables will result in absurd 
output. 

10.1 The Level-Controlled Tank 

Introduction 
The filling or draining of a tank is a relatively simple situation to model. If the tank has 
both input and output then it is a combination of the two previous cases and the differential 
equation for the rate of change of the level in the tank is as follows: 

dh[t] (qf − q )= −
dt A 

459 
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When the input flow rate is equal to the output flow rate, the system is at steady state and the 
]level remains constant because dh[t = 0.dt 

A tank could be operated in such a way that the inlet was always equal to the outlet when 
the two were at their designed magnitudes. Thus if q ∗ was the designed flow rate in a CSTR, 
for example, then the system could be maintained at some specific design level h∗ and design 
volume V∗. As long as the inlet or outlet rates did not change, the system would remain at this 
condition. From our study of kinetics, we know that maintaining V∗ as a constant would be 
desirable in order to keep the holding time τ = V

q 
∗ 

constant and to remain at the design level 
of production. 

Perturbation of the Inlet Flow Rate and Control 
Suppose that the inlet flow rate was mostly a constant but from time to time it suffered an 
upset. The upset would either increase the inlet flow or decrease it. If this were to occur, then 
the level in the tank would either increase or decrease, unless there was some attempt made 
to change the outlet flow rate. A simple control algorithm would be one in which the exit flow 
rate is adjusted automatically when there is an upset, either above or below the design flow 
rate. To do this analysis we need to specify the upset and the system’s response to it. 

Let the upset be some additional flow rate over or below the design value. Stated in simple 
mathematical terms: 

qf = q ∗ + qp 

where q ∗ is the design magnitude and qp is either positive or negative. We will say more about 
the upset flow rate momentarily, but first we will describe the controlled outlet flow rate. The 
outlet flow rate is typically at the setpoint q ∗ until the upset qp takes place. At that point the 
flow rate must be adjusted to compensate the change in the inlet flow rate. We describe this by 
setting the adjusted flow rate equal to the set point plus a new flow rate that is proportional 
to the difference between the set point level and the actual level at that time: 

∗ q = q − K(h∗ − h(t)) 

For this to be dimensionally consistent, it is clear that the proportionality constant must have 
dimensions of area per time so that its product with h∗ − h(t) is in dimensions of volume per 
time. During the upset we are discussing here, the system responds transiently, that is, it goes 
away from steady state. The governing equation is: 

∗dh(t) q + qp − (q ∗ − K (h∗ − h(t))) = 
dt A 

dh(t) qp + K (h∗ − h(t)) = 
dt A 
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This equation is the one that must be integrated and to do so we must know how the upset 
behaves in time. Before the upset from t = 0 until some time just below t1, qp is zero and h∗ = 
h(t): 

dh(t)
0 < t < t1 = 0 ⇒ h(t) = h∗ 

dt 

The upset begins at time t1, and it instantaneously rises to a value of qp. The upset stays 
at the level qp from t1 until a time just less than t2. At time t2 it falls instantaneously 
back to zero. This kind of function is called a UnitStep. For the sake of making a graph 
of this type of disturbance, we plot the UnitStep function and 1 − UnitStep function us
ing the parameters 1 and 6 in order to have a pulse of unit height that is five time-units 
wide: 

In[2064]:= << Calculus‘DiracDelta‘
a = Plot[UnitStep[x - 1], {x, -3, 6},
DisplayFunction ––› Identity];
b = Plot[1 - UnitStep[x - 6], {x, 10, 1},
DisplayFunction ––› Identity];
Show[a, b, DisplayFunction ––› $DisplayFunction];

DiracDelta::obslt :
All DiracDelta and UnitStep functionality is now
autoloaded. The package Calculus`DiracDelta` is
obsolete.

-2 2 4 6 8 10 

0.2 

0.4 

0.6 

0.8 

1 

In general the height of the disturbance is qp and its width is t2 − t1. The question now 
becomes one of how to do the integrations during and after the disturbance. 
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Integration Through and Beyond the Disturbance 
We must now integrate this equation from t1 to t: 

dh2(t) qp + K (h∗ − h2(t)) = 
dt A 

The initial condition is h2(t1) = h∗ and we should integrate to any t less than t2, so we integrate 
to t. 

When this is done we have an expression for h(t) during the course of the disturbance. 
We must next integrate after the disturbance is complete, that is, from t2 out to any additional 
time t. Here we have the following equation to work with because qp is zero: 

dh3(t) K (h∗ − h3(t) = 
dt A 

The initial condition for this period is h3[t2] = h2[t2]! Therefore, we must evaluate the constant 
of integration very carefully. 

Finally, we know that if the disturbance is positive, then the inlet flow increases and the 
tank level should rise. If there were no control it would rise and stay at a new higher level. 
With control it should rise and then fall back to the control or design level. Tracking the change 
in level versus time we should see a sawtooth that looks like this: 

h(t,
52

51.5

51

50.5

50

49.5

49

48.5

t
2.5 5 7.5 10 12.5 15 17.5 20

Problem Statements 
A) Find the expression for h2[t] by using DSolve. Evaluate the constant of integration using 
the initial condition that h2[0] => h2[t1] = hd: 

DSolve h2′[t] == qp + K(hd − h2[t]) 
] 

, h2[t], t
A 



P1: Thakur/Amit(E)

May 10, 2002 16:41 Foley foley-ch10

[ 

10.1 The Level-Controlled Tank 463 

B) Find the expression for h3[t] using DSolve. Evaluate the constant of integration using the 
initial condition that h3[0] => h3[t2] = h2[t2]. 

DSolve h3′[t] == K(hd − h3[t]) 
, h3[t], t 

] 
A 

C) Create functions for h2[t] and h3[t], and given the following parameter values, Plot, h1, h2, 
and h3 consecutively in time. 

hd = 50;

K = 5;

A = 10;

qp = 10;

t1 = 5;

t2 = 10;

tmax = 30;

Solution to Part A 
Find a general solution to the differential equation: 

In[1]:= Clear[h2, qp, hd, K, A, t1, t2]

qp + K(hd - h2[t])
DSolve[{h2’[t] == }, h2[t], t]

A

Kthd K + qp -Out[2]= {{h2[t] ––› + A C[1]}}
K

Evaluate the constant of integration at the initial condition h2[t1] = hd using Solve: 

Kt1hd K + qp
AIn[3]:= Solve[hd == + - C[1], C[1]]

K
Kt1
A qp

Out[3]= {{C[1] ––› - }}
K

Define the constant C1 and then replace it and simplify: 

Kt1
A qp

In[4]:= C1 = - ;
K

hd K + qp Kt

Collect[Simplify[ +  A C1], qp]
K
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K(-t+t1)
(1  A )qp

Out[5]= hd +
K

Now define a function for h2[t] to use in parts B and C: 

K(-t+t1)
A1

In[6]:= h2[t----] := hd + (  - )qp
K K

Solution to Part B 
Find the general solution to the differential equation defining the rate of change in the level 
of the tank after t2: 

In[7]:= Clear[hd, h3]
K(hd - h3[t])

DSolve[{h3’[t] == }, h3[t], t]
A

Kt-Out[8]= {{h3[t] ––› hd + A C[1]}}

The initial condition in this case is given as h3[0] = h3[t2] = h2[t2]. We find this by substituting 
h2[t] into the initial condition equation and evaluating C again: 

In[9]:= h2[t2]

K(t1-t2)
A1

Out[9]= hd + (  - )qp
K K

Kt2

In[10]:= Solve[h2[t2] == hd +  A C[1], C[1]]

Kt2 K(t1-t2)
A (-1 + A )qp

Out[10]= {{C[1] ––› - }}
K

Replacing the expression for C into that derived for h3[t], we find the expression for h3[t]: 

Kt2 K(t1-t2)
Kt A A(-1 + )qp-In[11]:= Simplify[hd + A (- )]

K
K(-t+t2) K(t1-t2)

A (-1 + A )qp
Out[11]= hd 

K
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Anticipating the need for this function, we define it: 

K(-t+t1) K(-t+t2)
A + Ahd K + (- )qp

In[12]:= h3[t----] :=
K

Solution to Part C — Graphs of h1[t],h2[t],h3[t] 
The code that follows works with the three functions we have derived for the three intervals of 
time-dependent behavior. After specifying the three functions, we list the parameter values. 
Each has a semicolon at the end in order to prevent its value from being echoed back to the 
monitor. Note that t1 and t2 are constants that must be specified. 

The first plot is made with the following command: 

Plot[{{h1[t], h2[t], h3[t]}}, {{t,0,50}}]; 

The syntax involves specifying the functions to be plotted first and the time interval over 
which they should be plotted next. The details show that the functions are implemented as a 
set included within the curly brackets {} as is the time range. The disadvantage of this approach 
is that all functions are plotted over the whole time range, even though they only apply to 
separate intervals of time. To overcome this problem we use the three code lines that follow. 
These have the following format: 

pl1 = Plot[ h1[t], {{t,0,t1}}, DisplayFunction→Identity, PlotStyle→Hue[.4]]; 

The command structure is nearly the same as that used before with some notable differences. 
We include only one function in each command—in this case h1[t]. Then we specify the interval 
we want to plot this function over; for h1 it is from t = 0 to t  = t1. For h2[t] we set the interval 
to be from t1 to t2 and for h3[t] from t1 to t. Next, we set the DisplayFunction to Identity. 
This surprises the output of the graphics but saves them in the plot called “pl1.” In order to 
distinguish between these three plots we change their color. This is done by setting PlotStyle to 
Hue[0.4] (Hue can have a value between 0 and 1). We use different value for the three different 
plots. Finally we call each of the plots in the show command pl1, pl2, and pl3, and we set 
DisplayFunction to $DisplayFunction. This makes one plot from the three separate plots and 
we have no overlapping of the functions. 

In[13]:= SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 12}]; 
h1[t----] := hd  
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K(-t+t1)
1 A 

h2[t----] := hd + (
K 

-
K 

)qp 

h3[t----] :=  
hd K + (-

K(-t+t1) 
A 

K 

+ 
K(-t+t2) 

A )qp 

hd = 50; 
K = 5;  
A = 10; 
qp = 10; 
t1 = 5; 
t2 = 10; 
tmax = 30; 
Plot[{h1[t], h2[t], h3[t]}, {t, 0, 50}];
pl1 = Plot[h1[t], {t, 0, t1}, DisplayFunction ––› Identity,

PlotStyle ––› {{Thickness[.01], GrayLevel[0.0]}}];
pl2 = Plot[h2[t], {t, t1, t2}, DisplayFunction ––› Identity,

PlotStyle ––› {{Thickness[.01], GrayLevel[0.2],
Dashing[{0.03, 0.03}]}}];

pl3 = Plot[h3[t], {t, t2, tmax}, DisplayFunction ––› Identity,
PlotStyle ––› {{Thickness[.01], GrayLevel[0.6],
Dashing[{0.03, 0.03}]}}];

Show[pl3, pl2, pl1, DisplayFunction ––› $DisplayFunction, 
PlotRange ––› {{0, 20}, {48, 52}}, 
AxesLabel ––› {""t"", ""h[t]""}]; 

10 20 30 40 50 

50 

52 

54 
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10.2 Batch Competitive Adsorption

Introduction 
Adsorption of an impurity onto a porous solid such as activated carbon, alumina, or silica 
is often used to purify gases and liquids. Adsorption usually is reversible, but if the heat of 
adsorption is high then the tendency to desorb may be low. Typically adsorption is done in 
a continuous process. It also may be done in a batch process for small-scale separations or 
to determine the parameters that control the adsorption process for a given adsorbate (the 
adsorbing molecule) and a given adsorbent (the porous solid). 

In this problem we will simulate a batch adsorption process that takes place with two 
adsorbate components. The simulation will allow us to do computational experiments with 
the aim of learning how the adsorption and desorption parameters affect the behavior of 
this process. Building the simulation will provide new experience in developing the model 
equations, utilizing more complex constitutive relationships, finding numerical solutions to 
these equations, and displaying the results graphically. 

Adsorption/Desorption 
Adsorption Sites 
Adsorption and desorption can be considered to be analogous to a reversible chemical reaction. 
By way of this analogy there must be a forward rate corresponding to adsorption and a reverse 
rate for desorption. The net rate of adsorption is the difference between these two rates. 
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When a molecule descends to a solid surface and comes to “rest” we consider this an 
adsorption event. The time a molecule spends in this state may be very short (10−13 sec) or 
it may be long (>hours). Because molecules have real bulk, volume, and dimensions, when 
they rest at the surface they occupy some area. Thinking of a flat plane as the surface, then the 
cross-sectional area (shadow area) of the molecule is the area of the surface that is occupied. 
The locus of points beneath this molecule can be termed the “adsorption site.” The area of 
the surface divided by the area of the site gives the theoretical number of sites present at the 
surface: 

ASurfaceNsites = 
Asite 

Dividing this number by Avogadro’s number L and the volume occupied by the surface, 
that is, by the volume of the high surface area solid Vs gives the concentration of adsorption 
sites: 

NsitesCSites = 
Vs L 

Rates of Adsorption and Desorption 
The rate of adsorption is proportional to the concentration of the adsorbate in the bulk phase 
(gas or solid) surrounding the solid and the difference between the total concentration of 
sites in the adsorbent phase (porous solid) and the number of sites already occupied by the 
adsorbate molecules: 

CSites − C SurfaceradsorptionαC Bulk 
AA 

CSites − C Surfaceradsorption = kA, , adsC Bulk 
AA 

The proportionality constant is the adsorption rate constant for the species A on this particular 
solid. 

The rate of desorption of a given molecule is proportional to that molecule’s concentration 
on the surface: 

rdesorptionαC Surface 
A 

rdesorption = kA, , desC Surface 
A 

The surface concentrations are given in a way that is analogous to the adsorption site concen
tration, that is, as the number of moles of the adsorbed species per volume of the adsorbent 
solid. 
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Competitive Adsorption 
If two adsorbate molecules A and B compete for the same sites then the adsorption and 
desorption rate expressions are: 

CSites − CSurface − CSurfaceradsorption, A  = kA,,adsCBulk 
A BA 

radsorption, B  = kB,,adsCBulk CSites − CSurface − CSurface 
B A B 

rdesorption = kA,,desCSurface 
A 

rdesorption = kB,,desCSurface 
B 

Note that the competition for the sites is accounted for only in the adsorption rate term. This 
term recognizes that the surface is occupied by two species and to the extent that this happens 
simultaneously, the rate of adsorption of either species is diminished by the presence of the 
other at the surface, just as it is diminished by its own occupancy of the surface. 

Problem Statement 
1. Set up the material balance equations for the competitive adsorption of A and B on an 
adsorbent phase. Since there are two phases and two components there must be four compo
nent equations. 

2. Using the constitutive kinetics given, show explicitly that the equations are dimensionally 
consistent. To be consistent what must the dimensions of the adsorption and desorption rate 
constants be? 

3. Develop a simulation for this system utilizing NDSolve to integrate the equations and Plot 
to display the time-dependent behavior of the four concentrations in one plot. Set up the 
simulation with the equations and initial conditions given first as a set. The variables also are 
given as a set. These are followed by the parameters in a vertical list so that they can be easily 
changed to test behavior. Next use NDSolve to find the numerical solutions to the equations. 
Assignment of the interpolation functions to a series of four functions is done next. Finally a 
Plot routine is implemented. The skeleton of the simulation then should be: 

Eqns = {eqn 1, eqn 2, eqn 3, eqn 4, initial conditions (1,2,3,4)}

Parameters;
Vars = {Ci[t]. . .Cl[t]}

solns = NDSolve[Eqns, Vars, {t,0,tmax}]
Cin[t--] := Evaluate[Ci[t]/.solns]. . .Cln[t] := Evaluate[Cl[t]/.solns]
Plot[{Cin[t]. . .Cln[t]},{t,0,tmax},. . .]

4. Use this simulation to examine the behavior of this seemingly simple set of equations by 
varying the parameters according to the following matrix. After each simulation save the 
graphical output by copying the graph and pasting it to a new bracket in your notebook, to a 
new notebook, or to a Word document. 
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Sim. No. CBulk 
A,o CSurface 

A,o CBulk 
B,o CSurface 

B,o CSites k A 
Ads k A 

Des k B 
Ads k B 

Des tmax 
1 1 0 1 0 1 1 1 1 1 10 
2 1 0 1 0 1 10 10 1 1 10 
3 1 0 1 0 1 100 100 1 1 5 

4.a 1 0 1 0 1 1 10 .1 .001 10 
4.b ” ” ” ” ” ” ” ” ” 100 
5 1 0 1 0 10 .01 .001 .1 .00001 50 

5. How could you write a piece of code using Module to accomplish all of this and require 
only the simulation parameters and number? 

Solution 
Here is an example of how this can be handled for the case of the fifth set of parameters: 

In[1]:= SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 10}]; 

eqnsa = {Cab''[t] == -kaa Cab[t](Cs - Cas[t] - Cbs[t]) 
+ kad Cas[t], 
Cas''[t] == +kaa Cab[t] (Cs - Cas[t] - Cbs[t]) 
- kad Cas[t], 
Cbb''[t] == -kba Cbb[t](Cs - Cas[t] - Cbs[t]) 
+ kbd Cbs[t], 
Cbs''[t] == +kba Cbb[t](Cs - Cas[t] - Cbs[t]) 
- kbd Cbs[t], 

Cab[0] == Cabo, Cas[0] == Caso, Cbb[0] == Cbbo, 
Cbs[0] == Cbso};

vars = {Cab[t], Cas[t], Cbb[t], Cbs[t]};

tmax = 50;

n = 5;

Cabo = 1;
Cbbo = 1;
Caso = 0;
Cbso = 0;

kaa = .01;
kad = .001;
kba = .1;
kbd = .00001;

Cs = 10;

solns = NDSolve[eqnsa, vars, {t, 0, tmax}];
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Cabn[t----] := Evaluate[Cab[t] /. solns]
Casn[t----] := Evaluate[Cas[t] /. solns]
Cbbn[t----] := Evaluate[Cbb[t] /. solns]
Cbsn[t----] := Evaluate[Cbs[t] /. solns];

n ""= Simul. No.""
tmax ""= tmax""
kaa ""= kaa""
kad ""= kad""
kba ""= kba""
kbd ""= kbd""

Plot[{Cabn[t], Casn[t], Cbbn[t], Cbsn[t]}, {t, 0, tmax},
PlotStyle ––› {{GrayLevel[0.6], Thickness[.01]},
{Dashing[{0.15, 0.05}], GrayLevel[0.6],
Thickness[.01]},
{GrayLevel[0], Thickness[.01]}, 
{Dashing[{0.15, 0.05}], GrayLevel[0], 
Thickness[.01]}}, AxesLabel ––› {""t"", ""Ci[t]""}, 

PlotLabel ––› ""n""= SimNo, Gry = A, Blk = B, 
Sld = Blk, Dashed = Surface""]; 

General::spell1 : Possible spelling error: new symbol 
name "Cabo" is similar to existing symbol "Cab". 

General::spell : Possible spelling error: new symbol name 
"Caso" is similar to existing symbols {Cabo, Cas}. 

General::spell : Possible spelling error: new symbol name 
"Cbbo" is similar to existing symbols {Cabo, Cbb}. 

General::spell : Possible spelling error: new symbol name 
"Cbso" is similar to existing symbols {Caso, Cbbo, Cbs}. 

General::stop : Further output of General::spell will be
suppressed during this calculation.

General::spell : Possible spelling error: new symbol name 
"Cabn" is similar to existing symbols {Cab, Cabo}. 

General::spell : Possible spelling error: new symbol name 
"Casn" is similar to existing symbols {Cabn, Cas, Caso}. 

General::spell : Possible spelling error: new symbol name 
"Cbbn" is similar to existing symbols {Cabn, Cbb, Cbbo}. 

General::spell : Possible spelling error: new symbol name 
"Cbsn" is similar to existing symbols {Casn, Cbbn, Cbs, 
Cbso}. 
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Out[20]= 5 = Simul. No.

Out[21]= 50 = tmax

Out[22]= 0.01 = kaa

Out[23]= 0.001 = kad

Out[24]= 0.1 = kba

Out[25]= 0.00001 = kbd

Ci(t, 5 � SimNo, Gry � A, Blk � B, Sld � Blk, Dashed � Surface 

10 20 30 40 50 
t 

0.2 

0.4 

0.6 

0.8 

1 

The following creates a Module function from the code provided in the preceding text. 

In[27]:= adsdes[Cabo----, Cbbo----, Caso----, Cbso----, kaa----, kad----, kba----, 
kbd----, tmax----, n----] :=  
Module[{eqnsa, vars, solns, Cabn, Casn, Cbbn, Cbsn, 
Cab, Cas, Cbb, Cbs, t}, 

SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 12}]; 

eqnsa = {Cab''[t] == -kaa Cab[t](Cs - Cas[t] - Cbs[t]) 
+ kad Cas[t], 

Cas''[t] == +kaa Cab[t](Cs - Cas[t] - Cbs[t]) 
- kad Cas[t], 

Cbb''[t] == -kba Cbb[t](Cs - Cas[t] - Cbs[t]) 
+ kbd Cbs[t],

Cbs''[t] == +kba Cbb[t](Cs - Cas[t] - Cbs[t]) 
- kbd Cbs[t], 
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Cab[0] == Cabo, Cas[0] == Caso, Cbb[0] == Cbbo,
Cbs[0] == Cbso};

vars = {Cab[t], Cas[t], Cbb[t], Cbs[t]};

solns = NDSolve[eqnsa, vars, {t, 0, tmax}];

Cabn[t] = Evaluate[Cab[t] /. solns];
Casn[t] = Evaluate[Cas[t] /. solns];
Cbbn[t] = Evaluate[Cbb[t] /. solns];
Cbsn[t] = Evaluate[Cbs[t] /. solns];

Print[""Simulation Number =""n]; 

Plot[{Cabn[t], Casn[t], Cbbn[t], Cbsn[t]}, {t, 0, tmax},
PlotStyle ––› {{GrayLevel[0.6], Thickness[.01]},
{Dashing[{0.15, 0.05}], GrayLevel[0.6],
Thickness[.01]}, {GrayLevel[0], Thickness[.01]},
{Dashing[{0.15, 0.05}], GrayLevel[0],
Thickness[.01]}},
AxesLabel ––› {""t"", ""Ci[t]""}, 

PlotLabel ––› ""Gry = A, Blk = B, Sld = Blk, 
Dashed = Srf""] 

]

In[28]:= adsdes[1, 1, 0, 0, .01, .001, .1, .001, 50, x]

Simulation Number = x

Ci(t, Gry � A ,Blk � B ,Sld � Blk , Dashed � Srf
1

0.8 

0.6 

0.4 

0.2 

t 
10 20 30 40 50 

Out[28]= - Graphics 
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10.3 A Problem in Complex Kinetics

Introduction 
Most reactions occur while other reactions are also taking place simultaneously. Very often the 
products of one reaction are the reactants for the next. Similarly, a reactant may be involved 
in more than one reaction. When reactions occur in a sequence, this is referred to as a series 
network. An example would be: 

A � B � D � E 

Alternatively, reactions may take place in parallel: 

A � B 

A � D 

Additions of these two simple cases can lead to series parallel networks of chemical reaction. 
When we encounter a problem like this one, we have to handle the kinetics carefully. This is 
just what we will do in the case of this problem. 

Parallel and Series Reversible Reactions 
Consider the case of a reversible reaction whose products lead to another product: 

A + B � D + E 

rnet,1 = k1 Ca Cb − k2 Cd Ce 

D + E → F 

rnet,2 = k3 Cd Ce 

A + A � G 

rnet,3 = k4 Ca2 − k5 Cg 

The net rate of the first reversible reaction can be given as rnet,1 = k1 Ca Cb − k2 Cd Ce. The 
second reaction is in series with the first and we find it has kinetics that are given by r = 
k3 Cd Ce. It is irreversible. The third reaction, A to G, is parallel to that of the first reaction 
and it too is reversible. This reaction is second order in the forward direction and first order 
in the reverse direction. 

Problem Statements 
A) Using NDSolve, set up the model equations for each component assuming that the reactions 
take place in a batch reactor. The following parameters are those that you will need to solve 
the equations numerically. Show, using Plot, the change in each concentration as a function of 
time. 
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k1 = .1; 

k2 = .05; 

k3 = .1; 

k4 = .065; 

k5 = .02; 

Cao = 1; 

Cbo = 1; 

Cdo = 0; 

Ceo = 0; 

Cfo = 0; 

Cgo = 0; 

tmax = 250; 

B) Having solved the batch case, now set up the same kinetics for the case of a CSTR operated at 
steady state. Use NSolve to find the optimal flow rate and holding time for the production of D 
(and E) assuming that the inlet concentrations of A and B are each 1 and that the volume is 100. 

Solution 

In[1]:= SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 12}]; 

k1 = .1;
k2 = .05;
k3 = .1;
k4 = .065;
k5 = .02;

Cao = 1;
Cbo = 1;
Cdo = 0;
Ceo = 0;
Cfo = 0;
Cgo = 0;
tmax = 250;

solns = NDSolve[{ Ca''[t] == -k1 Ca[t] Cb[t] + k2 Cd[t] Ce[t] 
- k4 Ca[t]2 + k5 Cg[t],

Cb''[t] == -k1 Ca[t] Cb[t] + k2 Cd[t] Ce[t], 
Cd''[t] == k1 Ca[t] Cb[t] - k2 Cd[t] Ce[t] 

- k3 Cd[t] Ce[t], 
Ce''[t] == k1 Ca[t] Cb[t] - k2 Cd[t] Ce[t] 

- k3 Cd[t] Ce[t],
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Cf''[t] == k3 Cd[t] Ce[t], 
Cg''[t] == k4 Ca[t]2 - k5 Cg[t], 

Ca[0] == Cao,
Cb[0] == Cbo,
Cd[0] == Cdo,
Ce[0] == Ceo,
Cf[0] == Cfo,
Cg[0] == Cgo},

{Ca[t], Cb[t], Cd[t], Ce[t], Cf[t], Cg[t]},
{t, 0, tmax}];

Can[t----] := Evaluate[Ca[t] /. solns]
Cbn[t----] := Evaluate[Cb[t] /. solns]
Cdn[t----] := Evaluate[Cd[t] /. solns]
Cen[t----] := Evaluate[Ce[t] /. solns]
Cfn[t----] := Evaluate[Cf[t] /. solns]
Cgn[t----] := Evaluate[Cg[t] /. solns]

Plot[{Can[t], Cdn[t], Cfn[t], Cgn[t]}, {t, 0, tmax},
PlotStyle ––› {GrayLevel[0], {Thickness[.01],
Dashing[{0.03, 0.02}], GrayLevel[0]},
{Thickness[.01], Dashing[{0.03, 0.02}], GrayLevel[0.5]},
{Thickness[.01], GrayLevel[0.5]}}, 

PlotLabel ––› ""A-Blk, D-BlkDsh, F-GryDsh, G-Gry"", 
AxesLabel ––› {""t"", ""Ci[t]""}]; 

Ci(t, A�Blk, D�BlkDsh, F�GryDsh, G�Gry 

t 

0.2 

0.4 

0.6 

0.8 

1 

50 100 150 200 250 
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Now we will put together a set of CSTR equations at steady state, fix the volume, and vary 
the flow rate in order to maximize the formation of D (and E). 

In[22]:= Clear[Ca, Cb, Cd, Ce, Cf, Cg, t, solns, Can, Cbn,
Cdn, Cen, Cfn, Cgn, q]
k1 = .1;
k2 = .05;
k3 = .1;
k4 = .065;
k5 = .02;

Cao = 1;
Cbo = 1;
Cdo = 0;
Ceo = 0;
Cfo = 0;
Cgo = 0;
tmax = 250;

eqns = {(Caf - Ca)
q 

- k1 Ca Cb + k2 Cd Ce - k4 Ca2
V

+ k5 Cg == 0,

(Cbf - Cb)
q 

- k1 Ca Cb + k2 Cd Ce == 0,
V

q
-Cd + k1 Ca Cb - k2  Cd  Ce  - k3 Cd Ce == 0,

V
q

-Ce + k1 Ca Cb - k2  Cd  Ce  - k3 Cd Ce == 0,
V
q

-Cf + k3 Cd Ce == 0,
V

-Cg
q 

+ k4 Ca2 - k5 Cg == 0};
V 

vars = {Ca, Cb, Cd, Ce, Cf, Cg}; 
Caf = 1 
Cbf = 1 
V = 100 
q = 5.75 
V/q 
Needs[""Miscellaneous‘RealOnly‘""] 
NSolve[eqns, vars] 

Out[37]= 1

Out[38]= 1

Out[39]= 100

Out[40]= 5.75
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Out[41]= 17.3913

Nonreal::warning : Nonreal number encountered.

Out[43]= {{Cf ––› Nonreal, Cg ––› Nonreal, Cb ––› Nonreal,
Cd ––› Nonreal, Ce ––› Nonreal, Ca ––› Nonreal},

{Cf ––› Nonreal, Cg ––› Nonreal, Cb ––› Nonreal,
Cd ––› Nonreal, Ce ––› Nonreal, Ca ––› Nonreal},

{Cf ––› Nonreal, Cg ––› Nonreal, Cb ––› Nonreal,
Cd ––› Nonreal, Ce ––› Nonreal, Ca ––› Nonreal},

{Cf ––› Nonreal, Cg ––› Nonreal, Cb ––› Nonreal,
Cd ––› Nonreal, Ce ––› Nonreal, Ca ––› Nonreal},

{Cf ––› 0.977466, Cg ––› 0.238722, Cb ––› 0.772229,
Cd ––› -0.749695, Ce ––› -0.749695, Ca ––› 0.533507},

{Cf ––› 0.12714, Cg ––› 0.162419, Cb ––› 0.602479,
Cd ––› 0.270381, Ce ––› 0.270381, Ca ––› 0.44006}}

10.4 Transient CSTR 

Time Independence 
A very real advantage of a CSTR or PFR is that it can be operated at steady state. This makes 
it very easy to analyze kinetics of a chemical reaction because the experiments are so easy 
to conduct. We can see this by looking at the CSTR equation once again. Assuming steady 
state then, the equation for species A undergoing reaction to B is: 

(Caf − Ca)q = −rA−V 

And for species B the equation is: 

−CBq = +rA−V 

The quantity q is fixed once the flow rate is fixed because the reactor volume is a constant.V 
qWe refer to V as the holding time θ . Thus V is the reciprocal of the holding time, or 1 . So  q θ 

the difference between the inlet concentration of A and its outlet concentration, divided by 
the holding time, is the rate of chemical reaction! It is startling to realize that something as 
nanoscopic, or molecular, as the rate of chemical reaction can be found from measurements 
that are so macroscopic. By varying the flow rate we can vary the holding time and find the 
rate of the chemical reaction. By varying the inlet concentration of A keeping all else constant 
we can find the dependence of the rate on the concentration of A by plotting the rate versus 
Ca. In this way kinetic rate expressions can be readily determined using a CSTR. 
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It is also interesting to note that the second equation is actually the design equation for a 
CSTR. If we are told the rate at which B must be produced and given that we have kinetics 
available for the rate of reaction, then we can substitute in the kinetics for the rate and solve 
for the volume. All of this assumes a steady state. 

Time Dependence —The Transient Approach to Steady State 
Although steady-state CSTRs are simple to operate and to analyze and even though they 
offer real advantages to the kineticist (scientist who studies kinetics), it is also true that these 
systems must start up. They do not start up and achieve steady state instantaneously. The 
time period in which the system moves toward a steady-state condition is called the transient, 
meaning that the system is in transition from one which is time dependent to one that is time 
independent and at steady state. We have no way of knowing how long it will take a given 
set of reactions to achieve a steady state in the CSTR before we either do an experiment or 
solve the time-dependent model equations. If we choose experiment as a way to assess this 
we need to be prepared to do many experiments and to make a sizeable expenditure of time 
and/or money. This is impractical, so we do the math instead. If we do it correctly, then it is 
cheap, fast, and provides us with insights that experiments cannot yield. We will consider just 
such a case in this problem. 

Complex Catalytic Kinetics 
Consider the reaction of a molecule that takes place on a solid catalyst surface. This reaction 
simply involves converting one form of the molecule into another; in other words, it is an 
isomerization reaction. However, the reaction in question takes place only on the catalyst 
surface and not without the catalyst. 

When we analyze a reaction of this kind we find that at least two steps are involved. The 
first is called adsorption and is reversible. Adsorption is the transfer of a molecule from the bulk 
phase, either the gas or liquid, to the solid surface. The adsorption process is reversible and 
takes place without any change in the molecule. Like any reversible process, adsorption comes 
to equilibrium. Because no change occurs in the molecule, the rate of approach to equilibrium 
is very rapid and occurs essentially instantaneously. Once this occurs then the molecule on the 
surface can react to product. We can break the problem down into the adsorption equilibrium 
and the reaction rate of the adsorbed molecule. Take the isomerization to be first order on a 
surface concentration of species A and consider the reaction to be irreversible. The adsorption 
equilibrium steps take place by the interaction of the molecule in the bulk phase with a 
so-called adsorption site on the solid surface. The adsorption site is the locus of points on the 
surface that interact directly with the molecule. 

Abulk + site � Asurface 

Asurface → Bsurface 

Bsurface � Bbulk + site 
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Once B is formed, it too undergoes adsorption and desorption. The desorption carries B from 
the surface and into the bulk fluid phase. The rate of this reaction is first order in the surface 
concentration of A and first order in the concentration of surface sites. It follows a simple 
kinetic rate law: 

rA− = ksurfaceCA,surfaceCsites 

The surface concentration is difficult to measure, so we need to reexpress it in terms of the bulk 
phase concentration of species A. To do this we take advantage of the fact that the molecules 
adsorb and desorb so quickly that they come to equilibrium rapidly with the surface sites. 
Therefore we can express the surface concentration in terms of the equilibrium. The equilib
rium gives rise to the following relationship for the surface concentration of A in terms of the 
bulk concentration of A: 

K ACACA,surface = 
1 + K ACA 

We can substitute this expression into the rate expression for the reaction. This leads to this 
rate in terms of the bulk phase concentrations: 

K ACA rA− = ksurface Csites1 + K ACA 

The concentration of sites can be incorporated into a rate constant by rewriting the product of 
the surface site concentration and the surface rate constant simply as a rate constant: 

k = ksurfaceCsites 

We can do this because the surface site concentration is also a constant. Thus the overall rate 
for this catalytic reaction is: 

kK ACA rA− = 
1 + K ACA 

Transient Response of a CSTR with Catalytic Kinetics 
The time-dependent component balance equations for A and B in the CSTR are as follows: 

dCAV dCB V = (CAf − CA)q − rA−V = −CBq + rA−V
dt dt 

We can substitute into these equations the kinetics we have just derived: 

dCAV kK ACA dCB V kK ACA = (CAf − CA)q − V = −CBq + V
dt 1 + K ACA dt 1 + K ACA 
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The integration of these two equations in time will show us how long it will take the reactor 
to achieve steady-state conversion of A and production of B. 

Problem Statements 
A) The first step in this problem is to set up a solution to these equations and a graphical 
display of the results. Using NDSolve, solve these time-dependent equations and by using 
Plot graph the concentrations as functions of time for the following set of parameters: 

Caf = 1;  
V = 1;  
q = 10; 
Cao = 0;  
Cbo = 0;  
k = 2;  
K1 = .01; 
tmax = 1000; 

What is the level of conversion with this system volume and flow rate? 

B) Increase the volume of the reactor in decade intervals and examine the steady-state con
version at each new volume. What is happening? As this happens, what happens to the time 
required to achieve a steady state? Show all plots. 

C) Set the reactor volume to 1000 and the flow rate q to 1. Plot and record the conversion. 
Now repeat the calculation increasing q in decade intervals to 10,000. What happens to the 
conversion and why does it happen? 

D) How could you use this reactor to evaluate the kinetics? 

Solution 
Here is code to get the work started. 

In[1]:= SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 12}]; 

Caf = 1;
V = 1000;
q = 10;
Cao = 0;
Cbo = 0;
k = 2;
K1 = .01;
tmax = 1000;
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solns = NDSolve[{
q k K1 Ca[t]

Ca''[t] == (Caf - Ca[t]) - ,
V 1 + K1 Ca[t]

k K1 Ca[t]
Cb''[t] == -Cb[t]

q 
+ ,

V 1 + K1 Ca[t]

Ca[0] == Cao, Cb[0] == Cbo},

{Ca[t], Cb[t]}, {t, 0, tmax}];

CA[t----] := Evaluate[Ca[t] /. solns]
CB[t----] := Evaluate[Cb[t] /. solns]

Plot[{CA[t], CB[t]}, {t, 0, tmax},
PlotStyle ––› {{Thickness[.01], GrayLevel[0.0]},
{Thickness[.01], GrayLevel[0.5]}}, 
PlotRange ––› {{0, tmax}, {0, Caf}}, 
AxesLabel ––› {""t"", ""Ci[t]""}]; 

Ci(t,
1

0.8 

0.6 

0.4 

0.2 

t 
200 400 600 800 1000 

10.5 CSTR-PFR — A Problem in 
Comparison and Synthesis 

Introduction 
Reactions are often complex. By that we mean that rather than having one reaction take 
place the reactants and products are involved in many different chemical transformations 
simultaneously. For example, at the temperature required to produce B from A, we may find 
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that A will also react to produce D. These are two parallel reactions: 

A → B 

A → D 

In addition, whether more D or more B is produced depends on the values of the two rate 
constants for the two steps. 

Another case that is often encountered is one in which the product of the reaction of A to 
B may itself be reactive and at the same conditions will produce D. These reactions occur in 
series: 

A → B → D 

We will concern ourselves with this problem using the series network of reactions. We will 
explore the differences between the complete back-mixed CSTR and the axially distributed 
but radially well-mixed PFR. 

A ––› B ––› D Network 
Consider this reaction network in more detail. Let us assume that D is in fact the product 
that we seek to produce, but that it must go through B. It is quite realistic to suppose that 
this is the only viable route to D, but that B is very undesired. For example, D may be a 
pharmaceutical or nutraceutical with special properties, whereas B is harmful when present 
in quantities above a given level. Impurity problems of this kind also show up in other chem
ical products, including specialties and materials. The presence of B above a certain thresh
old may deleteriously affect the performance of the product. Thus the impurity problem is 
one that is very real and that crops up across the industries in which chemical engineers 
participate. 

When faced with a problem such as this there are many options that may be pursued to 
solve it. The crudest, but often practiced approach is to tolerate the impurity insofar as it is a 
component of the product mix emerging from the reactor, but to separate it downstream of 
the reactor in a dedicated unit. In some cases this may be the only cost-effective or efficient 
option. There is another approach and that is to employ reaction engineering. 

If B is to be minimized we can see intuitively that at higher overall conversion of A and 
production of D, B will also be converted to a higher level. If the reactor is made larger, 
then this can be achieved. But how much larger should it be? If the reactor is to be larger, 
does it matter if it is back mixed or not? What if there is an existing reactor of specific 
size and type? Can we improve its behavior and reduce separation costs through reaction 
engineering? 

To answer these questions we must have the relevant kinetics and a target level for this 
species. 
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Kinetics and the Objective 
The kinetics for each step are given in what follows. We use relative values for the parameters 
and variables to keep the details simple and to maximize our learning: 

r1 = k1 C2 
A(A → B); k1 = 1 units 

r2 = k2 C2 
B (B → A); k2 = .09 units 

Let us also assume that the concentration of B in the exit stream should be 0.01 or less to ensure 
the performance of the specialty chemical D in its application. The inlet or feed concentration 
of A, CAf, is taken as unity and those of B and D are zero. The relative volume flow rate is 
also taken as unity. 

Problem Statements 
A) Using NSolve, develop a steady-state model for a CSTR with a volume of 50. What would 
the relative concentrations of A, B, and D be as they emerged from this reactor? 

B) Using NDSolve, develop a steady-state model for a PFR with the same volume and a cross-
sectional area of 10 units. At which position in the PFR does the concentration of B maximize? 
What is the value of the concentration at this point? What would the relative concentrations 
of A, B, and D be as they emerged from this reactor? How do they compare to the CSTR with 
equal volume? 

C) Using the two preceding simulations, link them to form a new reactor consisting of a CSTR 
and PFR in series. To integrate the PFR equation initial conditions are needed at the inlet. Let 
each initial condition needed for the PFR concentrations be given as the exit concentrations 
from the CSTR. 

i) If the volume of the CSTR is 50, then what additional PFR volume must be used in order to 
bring down the concentration of B to a level of 0.01? 

ii) Instead of adding a PFR to the exit of the CSTR, suppose your colleague had chosen to add 
simply another back-mixed reactor, that is, another CSTR to the first. (This is just the same as 
increasing the volume of the original CSTR.) What volume would the CSTR-CSTR require to 
match the performance of the CSTR-PFR, that is, to bring the concentration of B to 0.01? 

CSTR Alone 

In[1]:= q = 1;
k1 = 1;
k2 = .9;
Caf = 1;
Vcstr = 200;
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cstrsolns = NSolve[{
q

(Caf - CAcstr) - k1 CAcstr2 == 0,
Vcstr

q
-CBcstr + k1 CAcstr2 - k2 CBcstr2 == 0,

Vcstr

q
-CDcstr + k2 CBcstr2 == 0},

Vcstr

{CAcstr, CBcstr, CDcstr}]
CApfro = Evaluate[CAcstr /. cstrsolns[[4]]]
CBpfro = Evaluate[CBcstr /. cstrsolns[[4]]]
CDpfro = Evaluate[CDcstr /. cstrsolns[[4]]]

General::spell1 : Possible spelling error: new symbol 
name "CBcstr" is similar to existing symbol "CAcstr". 

General::spell : Possible spelling error: new symbol name 
"CDcstr" is similar to existing symbols {CAcstr, CBcstr}. 

Out[6]= {{CDcstr ––› 1.1533, CAcstr ––› -0.0732549,
CBcstr ––› -0.0800451},
{CDcstr ––› 1.00652, CAcstr ––› 0.0682549,
CBcstr ––› -0.0747783},
{CDcstr ––› 0.998765, CAcstr ––› -0.0732549,
CBcstr ––› 0.0744896},
{CDcstr ––› 0.862522, CAcstr ––› 0.0682549,
CBcstr ––› 0.0692228}}

Out[7]= 0.0682549

General::spell1 : Possible spelling error: new symbol 
name "CBpfro" is similar to existing symbol ""CApfro"". 

Out[8]= 0.0692228

General::spell : Possible spelling error: new symbol name 
"CDpfro" is similar to existing symbols {CApfro, CBpfro}. 

Out[9]= 0.862522

PFR Alone 

In[10]:= Acs = 10;
CApfro = 1;
CBpfro = 0;
CDpfro = 0;

Vcstr = 50
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Acs
pfrsolns = NDSolve[{CApfr''[z] == - k1 CApfr[z]2, 

q
Acs

CBpfr''[z] == + (k1 CApfr[z]2 - k2 CBpfr[z]2), 
q
Acs

CDpfr''[z] == + k2 CBpfr[z]2, 
q

CApfr[0] == CApfro,
CBpfr[0] == CBpfro,
CDpfr[0] == CDpfro},
{CApfr[z], CBpfr[z], CDpfr[z]},

Vcstr
{z, 0, }]

Acs
Caexit[z----] := Evaluate[CApfr[z] /. pfrsolns]
Cbexit[z----] := Evaluate[CBpfr[z] /. pfrsolns]
Cdexit[z----] := Evaluate[CDpfr[z] /. pfrsolns]

Vcstr
Plot[{Caexit[z], Cbexit[z], Cdexit[z]}, {z, 0, },

Acs
PlotStyle ––›
{GrayLevel[0], {Thickness[.01], Dashing[{0.03, 0.02}],
GrayLevel[0]},
{Thickness[.01], Dashing[{0.03, 0.02}],
GrayLevel[0.5]},

{Thickness[.01], GrayLevel[0.5]}}];
Vcstr

zf =
Acs

{Caexit[zf], Cbexit[zf], Cdexit[zf]}
Vcstr

Table[Cbexit[z], {z, 0, }]
Acs

Out[14]= 50

General::spell1 : Possible spelling error: new symbol 
name "CApfr" is similar to existing symbol "CApfro". 

General::spell : Possible spelling error: new symbol 
name "CBpfr" is similar to existing symbols 
{CApfr, CBpfro}. 

General::spell : Possible spelling error: new symbol 
name "CDpfr" is similar to existing symbols 
{CApfr, CBpfr, CDpfro}. 

Out[15]= {{CApfr[z] ––› InterpolatingFunction[{{0., 5.}}, <>][z],
CBpfr[z] ––› InterpolatingFunction[{{0., 5.}}, <>][z],
CDpfr[z] ––› InterpolatingFunction[{{0., 5.}}, <>][z]}}

General::spell1 : Possible spelling error: new symbol 
name "Cbexit" is similar to existing symbol "Caexit". 
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General::spell : Possible spelling error: new symbol 
name "Cdexit" is similar to existing symbols 
{Caexit, Cbexit}. 

1 2 3 4 5 

0.2 

0.4 

0.6 

0.8 

1 

Out[20]= 5

Out[21]= {{0.0196083}, {0.0342294}, {0.946162}}

Out[22]= {{0.}, {0.155406}, {0.0827424}, {0.056225}, {0.0425573},
{0.0342294}}

In[23]:= Acs = 10;
Vcstr = 150

Acs
pfrsolns = NDSolve[{CApfr''[z] == - k1 CApfr[z]2, 

q
Acs

CBpfr''[z] == + (k1 CApfr[z]2 - k2 CBpfr[z]2), 
q
Acs

CDpfr''[z] == + k2 CBpfr[z]2, 
q

CApfr[0] == CApfro,
CBpfr[0] == CBpfro,
CDpfr[0] == CDpfro},

{CApfr[z], CBpfr[z], CDpfr[z]},

Vcstr
{z, 0, }]

Acs
Caexit[z----] := Evaluate[CApfr[z] /. pfrsolns]
Cbexit[z----] := Evaluate[CBpfr[z] /. pfrsolns]
Cdexit[z----] := Evaluate[CDpfr[z] /. pfrsolns]

Vcstr
Plot[{Caexit[z], Cbexit[z], Cdexit[z]}, {z, 0, },

Acs
PlotStyle ––›
{{GrayLevel[0]}, {Thickness[.01],

Dashing[{0.03, 0.02}], GrayLevel[0]},
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{Thickness[.01], Dashing[{0.03, 0.02}],
GrayLevel[0.5]}}];

Vcstr
zf =

Acs
{Caexit[zf], Cbexit[zf], Cdexit[zf]}

Vcstr
Table[Cbexit[z], {z, 0, }]

Acs

Out[24]= 150

Out[25]= {{CApfr[z] ––› InterpolatingFunction[{{0., 15.}}, <>][z],
CBpfr[z] ––› InterpolatingFunction[{{0., 15.}}, <>][z],
CDpfr[z] ––› InterpolatingFunction[{{0., 15.}}, <>][z]}}

2 4 6 8 10 12 14 

0.2 

0.4 

0.6 

0.8 

1 

Out[30]= 15

Out[31]= {{0.00662276}, {0.0115696}, {0.981808}}

Out[32]= {{0.}, {0.155406}, {0.0827424}, {0.056225}, {0.0425573},
{0.0342294}, {0.0286256}, {0.0245975}, {0.0215631},
{0.0191948}, {0.0172951}, {0.0157377}, {0.0144375},
{0.0133356}, {0.01239}, {0.0115696}

10.6 Membrane Reactor — Overcoming 
Equilibrium with Simultaneous 
Separation 

Introduction 
Reversible chemical reactions given enough time will come to equilibrium. In the batch reactor 
equilibrium is diagnosed when the conversion of the reactant no longer changes even when 
the reaction time, that is, the batch holding time, is increased. When the reactor is a flow 
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reactor, either CSTR or PFR, we find equilibrium when the conversion no longer changes with 
increased holding time (q/V). 

Often the equilibrium position of a reversible process is such that the conversion to product 
is low at reasonable holding times (i.e., flow rates and reactor volumes). For example, the 
dehydrogenation of saturated alkanes and alkyl aromatics to produce alkenes and aryl-alkenes 
and hydrogen is a very important case in point: 

CH3CH2CH2CH3 � CH3CH2CH = CH2 + H2 

This is economically disadvantageous because it means either that rates of production will 
be low or that the investment in the reactor will be very high because it needs to be so large. 
There is a clever way around this that always has been employed on a small scale and that is 
now gaining currency for selected larger-scale processes. 

Reaction with Separation 
Chemical equilibrium responds to a “stress” by moving to the side that relieves the effect of 
“stress” and returns the system to equilibrium, according to Le Chatlier’s Principle. If we add 
heat to an exothermic reaction it will shift toward the reactants on the left. If we add mass, 
concentration, or pressure on the reactant side of the equilibrium, the system responds by 
shifting toward the products. If we can remove products from the reaction zone (the system 
or control volume), then we also shift the reaction equilibrium to the right. In fact, even if we 
remove just one of the products from a set of products, the system will shift to the right. 

In the case of the reaction class we are considering, that is, the dehydrogenation of alkanes 
to alkenes and hydrogen, continuous removal of either the alkene or hydrogen from the system 
will shift the conversion of the reactant alkane further to the products. This is the phenomenon 
we wish to examine. 

Hydrogen-Selective Membranes 
Palladium and its alloys as well as some new ceramic membrane materials will separate 
hydrogen selectively from hydrocarbons and they will do so at temperatures that are high 
enough for reaction to take place. Thus, one can operate a membrane separation of hydrogen 
in conjunction with the production of hydrogen by a dehydrogenation of alkane. The extent to 
which the hydrogen is removed from the reaction zone will be the extent to which the reaction 
proceeds to olefin at a conversion level beyond that achieved at equilibrium. In the case of 
palladium the hydrogen must first dissociate into atoms at the surface prior to entering the 
lattice to diffuse through the membrane. One of the advantages of the ceramic membranes 
is that they are nanoporous and so dihydrogen in molecular form will diffuse through them 
intact. This process requires less energy and is relatively faster. It also leads to a simple linear 
dependence upon the dihydrogen rather than to a square root dependence. For these reasons 
we will consider this type of membrane. 
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Consider the following reaction as representative of this type and the rates of the forward 
and reverse reactions: 

A � B + H2 

r f = k1 CA2 

rrev = k2 CB CH2 

The rate of transport of hydrogen across the membrane of area As in units of mol/time is 
given by: 

rtransport = As Pm(CH2I − CH2II) 

The reaction can be considered to take place in the volume above the membrane. Only 
hydrogen is transported through the membrane, whereupon it leaves the lower volume via 
convective flow. Unconverted alkane A, the product alkene B, and hydrogen are also con
vected out of the volume above the membrane. Consider both the volumes above and below 
the membrane to be well mixed. 

Problem Statements 
A) Construct the time-independent model equations for the change in concentration of A,B 
and H2 on the top side of the membrane and for H2 on the lower side of the membrane. 

B) The first step is to establish whether or not the reactions have adequate holding time to reach 
equilibrium in the absence of permeation. Therefore, letting Pm = 0 and using the following 
list of parameter values, show what happens as the flow rate on the top side of the membrane 
drops in decade increments from 1000 au to .001 au. What happens and in which decade 
interval of flow rate (i.e., holding time) does the reaction attain equilibrium. What are the 
equilibrium levels of A,B and H2? 

CAf = 1; 

qI = 100; 

qII = 1000; 

VI = 10; 

VII = 10; 

Am = 1; 

k1 = .01; 

k2 = 1; 

Pm = 0.0; 
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C) Using the same model and the same parameter values, set Pm = 0.01. Now increase the 
value of Am in decades and note the values of A,B,CH2I (top) and CH2 (bottom). What 
happens and why does it happen? 

D) Starting at the final parameter values in part C begin to increase qII in decade increments. 
What effect if any does this have on the conversion of A and the production of B? Why? 

Utilize NSolve to numerically solve the equations. The recommended format for doing this is 
as follows: 

eqns = {set of four model equations including convection,
reaction, and permeation} 

vars = {set of four variables to be solved for in time: CA. . .} 

Vertical list of parameters; 
solns = NSolve[eqns, vars}] 

E) In fact, the expression for hydrogenation permeation across a palladium membrane is not 
simply linear in the concentrations, but instead follows the square root of each hydrogen 
concentration: 

√ √ √ 
rtransport = Pm Am Ks ( CH2I[t] − CH2II[t])

Rewrite the model equations for the time-dependent case to handle this complication and 
solve using the same parameter values as before. 

Solution 
For parts A through D the following code will be useful: 

Steady-State Membrane Reaction with Separation 

qI
In[1]:= eqns = {(CAf - CAI) - k1 CAI + k2 CBI CH2I == 0,

VI
qI

(-CBI) + k1 CAI - k2 CBI CH2I == 0,
VI

qI
(-CH2I) + k1 CAI - k2 CBI CH2I

VI

- Pm Am(CH2I - CH2II) == 0,

qII
(-CH2II) + Pm Am(CH2I - CH2II) == 0}

VII

vars = {CAI, CBI, CH2I, CH2II}

CAf = 1;
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qI = 100;
qII = 1000;
VI = 10;
VII = 10;
Am = 1;
k1 = .01;
k2 = 1;
Pm = 0.0;

NSolve[eqns, vars]

General::spell1 : Possible spelling error: new symbol 
name "CH2II" is similar to existing symbol "CH2I". 

(CAf - CAI)qI
Out[1]= {-CAI k1 + CBI CH2I k2 + == 0,

VI
CBI qI

CAI k1 - CBI CH2I k2 - == 0,
VI

CH2I qI
CAI k1 - CBI CH2I k2 - Am(CH2I - CH2II)Pm - == 0,

VI
CH2II qII

Am(CH2I - CH2II)Pm - == 0}
VII

Out[2]= {CAI, CBI, CH2I, CH2II}

Out[12]= {{CH2II ––› 0., CAI ––› 11.011, CBI ––› -10.011,
CH2I ––› -10.011},

{CH2II ––› 0., CAI ––› 0.999001, CBI ––› 0.000998901,
CH2I ––› 0.000998901}}

For parts D and E this code will be necessary (note that permeabilities are set to zero). 

Transient Membrane Reaction with Separation 

In[71]:= SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 10}]; 

qI
eqns = {CAI''[t] == (CAf - CAI[t]) - k1 CAI[t]

VI
+ k2 CBI[t] CH2I[t],

qI
CBI''[t] == (-CBI[t]) + k1 CAI[t]

VI
- k2 CBI[t] CH2I[t],

qI
CH2I''[t] == (-CH2I[t]) + k1 CAI[t]

VI
- k2 CBI[t] CH2I[t] - Pm Am(CH2I[t] - CH2II[t]),
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qII
CH2II''[t] == (-CH2II[t])

VII
+ Pm Am (CH2I[t] - CH2II[t]),

CAI[0] == CAIo,
CBI[0] == CBIo,
CH2I[0] == CH2Io,
CH2II[0] == CH2IIo};

vars = {CAI[t], CBI[t], CH2I[t], CH2II[t]};

Clear[CAf, qI, qII, VI, VII, Am, k1, k2, Pm, Ks, CAIo,
CBIo, CH2Io, CH2IIo]

CAf = 1;
qI = .01;
qII = 1000;
VI = 10;
VII = 10;
Am = 1;
k1 = .01;
k2 = 1.0;
Pm = 0.0;
CAIo = 0;
CBIo = 0;
CH2Io = 0;
CH2IIo = 0;
Clear[solns]
tmax = 6000

solns = NDSolve[eqns, vars, {t, 0, tmax},
MaxSteps ––› 2000]

Ca1[t----] := Evaluate[CAI[t] /. solns]
a = Plot[Ca1[t], {t, 0, tmax},

PlotStyle ––› {Thickness[0.01], GrayLevel[0],
Dashing[{.03, .03}]},
PlotRange ––› {{0, tmax}, {0, CAf}},
DisplayFunction ––› Identity];

Cb1[t----] := Evaluate[CBI[t] /. solns]
b = Plot[Cb1[t], {t, 0, tmax},

PlotStyle ––› {Thickness[0.01], GrayLevel[0.3],
Dashing[{.03, .03}]},
PlotRange ––› {{0, tmax}, {0, CAf}},
DisplayFunction ––› Identity];
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CH21[t----] := Evaluate[CH2I[t] /. solns]
h21 = Plot[CH21[t], {t, 0, tmax},

PlotStyle ––› {Thickness[0.01], GrayLevel[0.5],
Dashing[{.03, .03}]},

PlotRange ––› {{0, tmax}, {0, CAf}},
DisplayFunction ––› Identity];

CH22[t----] := Evaluate[CH2II[t] /. solns]
h22 = Plot[CH22[t], {t, 0, tmax},

PlotStyle ––› {Thickness[0.01], GrayLevel[0.7],
Dashing[{.03, .03}]},
PlotRange ––› {{0, tmax}, {0, CAf}},
DisplayFunction ––› Identity];

Show[{a, b, h21, h22}, AxesLabel ––› {""t"", ""Ci[t]""}, 
DisplayFunction ––› $DisplayFunction] 

Out[89]= 6000

Out[90]= {{CAI[t] ––› InterpolatingFunction[{{0., 6000.}}, <>][t],
CBI[t] ––› InterpolatingFunction[{{0., 6000.}}, <>][t],
CH2I[t] ––› InterpolatingFunction[{{0., 6000.}}, <>][t],
CH2II[t] ––› InterpolatingFunction[{{0., 6000.}}, <>][t]}}
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Out[99]= - Graphics 
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Palladium Membrane 

In[126]:= Clear[vars, eqns];

SetOptions[{Plot}, DefaultFont ––› {""Helvetica"", 10}]; 
qI 

eqns = {CAI''[t] == (CAf - CAI[t]) - k1 CAI[t]
VI

+ k2 CBI[t] CH2I[t],
qI

CBI''[t] == (-CBI[t]) + k1 CAI[t]
VI

- k2 CBI[t] CH2I[t],
qI

CH2I''[t] == (-CH2I[t]) + k1 CAI[t]
VI 

- k2 CBI[t] CH2I[t] 
- Pm Am  

√
Ks (

√
CH2I[t] -

√
CH2II[t]), 

qII 
CH2II''[t] == (-CH2II[t]) 

VII 
+ Pm Am  

√
Ks (

√
CH2I[t] -

√
CH2II[t]), 

CAI[0] == CAIo, 
CBI[0] == CBIo, 
CH2I[0] == CH2Io, 
CH2II[0] == CH2IIo}; 

vars = {CAI[t], CBI[t], CH2I[t], CH2II[t]};

CAf = 1;
qI = 1;
qII = 1;
VI = 10;
VII = 10;
Am = 10;
k1 = .1;
k2 = 1;
Pm = 0;
Ks = .1;
CAIo = 0;
CBIo = 0;
CH2Io = 0;
CH2IIo = 0;
Clear[solns]
tmax = 100
solns = NDSolve[eqns, vars, {t, 0, tmax}];

Ca1[t----] := Evaluate[CAI[t] /. solns]
Cb1[t----] := Evaluate[CBI[t] /. solns]
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CH21[t----] := Evaluate[CH2I[t] /. solns]

CH22[t----] := Evaluate[CH2II[t] /. solns]

Plot[{Ca1[t], CH21[t], Cb1[t], CH22[t]}, {t, 0, tmax},
PlotStyle ––› {{Thickness[0.01], GrayLevel[0],
Dashing[{.03, .03}]},
{Thickness[0.01], GrayLevel[0.3], Dashing[{.03, .03}]},
{Thickness[0.01], GrayLevel[0.5], Dashing[{.03, .03}]},
{Thickness[0.01], GrayLevel[0.7], Dashing[{.03, .03}]}}]

Out[145]= 100
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10.7 Microbial Population Dynamics 

Introduction 
The current explosion in biological sciences research is unprecedented. The breakthroughs in 
the basic sciences of genomics and related disciplines have brought us to the threshold of a 
new era in biological technology. Naturally, the chemical industry is involved and chemical 
engineers are participating in increasing numbers. Some technology pundits are predicting 
that this green revolution will supplant the processes and products related to the chemical 
industry that we have come to know in the twentieth century with new ones that are environ
mentally benign and biodegradable. It is a stunning and in some ways captivating vision for 
the future that will have obvious benefits, but unknown and unforeseeable consequences as 
well. 
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Microbes as Reactors 
Paramount to this new technology is the use of microbes, that is, cellular organisms as re
actors. Organisms have evolved mechanisms for dealing with environmental stress, such as 
the presence of a new substrate chemical in their surroundings, by rerouting their metabolic 
pathways. Metabolic engineers can take advantage of this through a procedure of accelerated 
adaptation in order to generate new microbes that consume a given substrate and produce a 
specific target chemical. 

Microbes use enzymes as catalysts to make the desired or beneficial reaction take place, 
and typically under mild conditions. Brewing of beer and fermentation of fruit and veg
etable mass high in starches to produce consumable ethanol are the oldest and most familiar 
instances of using microbial action to fulfill a desired end. But now much more has been 
demonstrated, ranging from the production of essential human hormones to the synthesis of 
specialty chemicals. 

In a reactor containing a substrate a colony of microbes is inoculated and brought to 
maturity. As the colony grows the substrate is consumed to supply the microbes with their 
building blocks. Some fraction of the substrate is necessarily diverted into the formation of 
biomass, that is, cells—their membranes and organelles, but some other fraction is used to 
produce the target molecule. In a batch process, when the substrate has been consumed, 
the microbial colony either dies rapidly or if the process is to be stopped prior to complete 
substrate consumption, it is killed by a rapid change in conditions (for example, by raising 
the temperature as is done in the pasteurization of raw milk). From this point the prob
lem of recovering the target molecule is one of separating it from the biomass and aqueous 
medium. 

Kinetics 
The basis of life is molecular and therefore we can describe the rates of substrate consumption, 
product formation, and even microbe population growth in much the same way that we would 
describe the rates of molecular-level chemical processes. 

We will take the microbe, substrate, and product concentrations to be a[t], b[t], and c[t], 
respectively. The equations that describe the rates of change of each of these are shown 
here: 

a′[t] = µmax 
b[t] − k 

) 
a[t],

Ks + b[t] 

b′[t] = −  µmax b[t] 
) 

a[t], 
ys Ks + b[t] 

c′[t] = α + βµmax 
b[t] 

) 
a[t]

Ks + b[t] 
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The kinetic expressions are highly nonlinear because they include a Michaelis-Menton rate 
term: 

b[t] 
µmax

Ks + b[t]
a[t] 

where µmax is a maximum rate constant, Ks is a saturation concentration, and ys is a 
dimensionless parameter that is similar to a stoichiometric coefficient. Similarly, α and β 

are dimensionless numbers that are also similar to stoichiometric coefficients—they relate the 
rate of production of the desired molecule to the rate of growth of microbial cell mass. 

Problem Statements 
A) Using NDSolve, build a simulation of the dynamics of microbial growth described by these 
equations. 

i) Parameter values should be: 

µ = .15; ""µmax"";
K = .04; ""Ks"";
y = 1;  ""ys"";
α = 10-n;
n = 2
β = .1;
tmax = 500
k = 0.1

ii) Plot the change in A, B, and C on one graph against time. 

iii) What do the plots indicate about how the process occurs? 

B) If there are two microbial species present show the dynamics of microbe growth and product 
formation from each and in toto. Find A1,B1,C1 and A2,B2,C2 for each microbe. 

i) Parameter values for each should be: 

µ1 = 1.1; ""µmax""; 
K1 = .04; ""Ks""; 
y1 = 1; ""ys""; 
α1 = 0.02; 
β1 = .5; 
µ2 = .9; ""µ max""; 
K2 = .025; ""Ks""; 
y2 = 1; ""ys""; 
α2 = 0.004; 
β2 = .5; 
tmax = 100 
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k1 = .3
k2 = .1

ii) Plot the change in A, B, and C on one graph against time for each microbe and then plot 
all six on one. Also plot the total substrate and total product concentration on a separate plot. 

iii) What is happening to these microbes according to this kinetic simulation? 

Solutions 
For Part A: 

In[1]:= µ = .15; ""µmax""; 
K = .04; ""Ks""; 
y = 1;  ""ys""; 
α = 10-n; 
n = 2  
β = .1; 
tmax = 500 
k = 0.1 
""a[t] is the change in microbial concentration; 
decreasing""; 
""b[t] is the change in the substrate concentration; 
increasing""; 
""c[t] is the change in product concentration; increasing""; 

bugs1 = NDSolve[{
b[t]

a’[t] == µ( - k)a[t],
K + b[t]

b’[t] == -
µ b[t] 

a[t], 
y K + b[t]

b[t]
c’[t] == (α + βµ )a[t],

K + b[t]
a[0] == .01,
b[0] == 10,
c[0] == 0
},

{a[t], b[t], c[t]},

{t, 0, tmax}];

a1[t----] := Evaluate[a[t] /. bugs1];
b1[t----] := Evaluate[b[t] /. bugs1];
c1[t----] := Evaluate[c[t] /. bugs1];
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pa1 = Plot[a1[t], {t, 0, tmax}, DisplayFunction ––› Identity, 
PlotStyle ––› {{Dashing[{0.03, 0.03}], Thickness[.01], 
GrayLevel[0.4]}}, 
PlotRange ––› {{0, tmax}, {0, 20}}]; 

pb1 = Plot[b1[t], {t, 0, tmax}, DisplayFunction ––› Identity, 
PlotStyle ––› {Thickness[.01], GrayLevel[0]}]; 

pc1 = Plot[c1[t], {t, 0, tmax}, 
PlotStyle ––› {{Thickness[.01], GrayLevel[0.0], 
Dashing[{0.03, 0.03}]}}, 
DisplayFunction ––› Identity]; 

Show[pa1, pb1, pc1, DisplayFunction ––› $DisplayFunction, 
PlotLabel ––› tmax ""= tmax,a[t]:Gry Dsh, b[t]:Blk Sld, 
c[t]:Blk Dsh""]; 

Out[5]= 2

Out[7]= 500

Out[8]= 0.1
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For Part B: 

In[20]:= Clear[a1, b1, c1, α1, β1, K1, k1, y1, α2, β2, K2, k2, 
y2, n, t, tmax, bugs2, A1, B1, C1, A2, B2, C2, p1, p2]; 

SetOptions[{Plot}, DefaultFont ––› {""Hevetica"", 10}]; 
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µ1 = 1.1; ""µmax""; 
K1 = .04; ""Ks""; 
y1 = 1; ""ys""; 
α1 = 0.02; 
β1 = .5; 
µ2 = .9; ""µmax""; 
K2 = .025; ""Ks""; 
y2 = 1; ""ys""; 
α2 = 0.004; 
β2 = .5; 
tmax = 100
k1 = .3
k2 = .1
""a[t] is the change in microbial concentration; 
decreasing""; 
""b[t] is the change in the substrate concentration; 
increasing""; 
""c[t] is the change in product concentration; 
increasing""; 

bugs2 = NDSolve[{
b1[t]

a1’[t] == µ1( - k1)a1[t],
K1 + b1[t]  

µ1 b1[t]
b1’[t] == - a1[t]

y1 K1 + b1[t]

-
µ2 

y2 

b1[t] 

K2 + b1[t] 
a2[t], 

c1’[t] == α1 a1[t] + β1 µ1 
b1[t] 

K1 + b1[t]  
a1[t], 

b1[t]
a2’[t] == µ2 (  - k2)a2[t],

K2 + b1[t]
b1[t]

c2’[t] == α2 a2[t] + β2 µ2 a2[t],
K2 + b1[t]

a1[0] == 0.01,
b1[0] == 10,
c1[0] == 0,
a2[0] == 0.01,
c2[0] == 0
},

{a1[t], b1[t], c1[t], a2[t], c2[t]},

{t, 0, tmax}];
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A1[t----] := Evaluate[a1[t] /. bugs2];
B1[t----] := Evaluate[b1[t] /. bugs2];
C1[t----] := Evaluate[c1[t] /. bugs2];
A2[t----] := Evaluate[a2[t] /. bugs2];
C2[t----] := Evaluate[c2[t] /. bugs2];

p1 = Plot[{A1[t], B1[t], C1[t]}, {t, 0, tmax},
PlotStyle ––› {{Dashing[{0.03, 0.03}], Thickness[.01],
GrayLevel[0.4]},
{Thickness[.01], GrayLevel[0]},
{Dashing[{0.03, 0.03}],
Thickness[.01], GrayLevel[0.7]}},
PlotRange ––› {{0, tmax}, {0, 12}}];

p2 = Plot[{A2[t], B1[t], C2[t]}, {t, 0, tmax},
PlotStyle ––› {{Thickness[.01], GrayLevel[0.4]},

{Thickness[.01], GrayLevel[0]},
{Thickness[.01], GrayLevel[0.7]}},

PlotRange ––› {{0, tmax}, {0, 12}},
PlotRange ––› {{0, tmax}, {0, 4}}];

p3 = Plot[{C1[t] + C2[t]}, {t, 0, tmax},
PlotStyle ––› {{Thickness[.01], GrayLevel[0.0],
Dashing[{0.03, 0.03}]}},
PlotRange ––› {{0, tmax}, {0, 12}},
PlotRange ––› {{0, tmax}, {0, 4}}];

Print[tmax ""= tmax""] 
Show[ 

p1, p2, p3, PlotLabel ––› ""Sbstrt= Blk.Sld.; 
Tot.Prdt. = Blk.Dshd.;Bugs = Gry"", 
AxesLabel ––› {""t"", ""Ci[t]""}]; 

General::spell1 : Possible spelling error: new symbol 
name "β1" is similar to existing symbol "α1". 

General::spell1 : Possible spelling error: new symbol 
name "β2" is similar to existing symbol "α2". 

General::spell : Possible spelling error: new symbol 
name "µ1" is similar to existing symbols {α1, β1}. 

General::spell : Possible spelling error: new symbol 
name "µ2" is similar to existing symbols {α2, β2}. 

Out[32]= 100

Out[33]= 0.3

Out[34]= 0.1
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A 
Adsorption 

applications, 249 
constant, 264 
defined, 249 
diffusion and, 263–282 
Langmuir-Hinshelwood-

Hougen-Watson 
kinetics, 345–357 

net rate of, 249–257 
semicontinuous 

(pseudo-steady state), 
258–262 

transient time dependence, 
392–401 

Algebraic equation solving, 
39–42 

Archimedes’ Law, 157 
Arrhenius, 300 
AxesLabel, 39 
Axes lines 

changing fonts, 16 
making darker, 14 
making more visible, 15 

AxesStyle, 14 

Index 

B 
Backgrounds, adding gray, 

19–20 
Basic calculations menu, 2 
Basic Input, 43 
Batch 

background, 209–210 
conservation of mass across 

phases, 210–213 
fit to batch data, 214–217 
mass transfer coefficient, 

210 
permeation, 263–268 
rate of dissolution, 210 

Batch competitive adsorption 
example, 467–473 

Batch reactors 
disadvantages of, 363 
irreversible reactions, 

303–317 
no-flow, 301–303 
reversible reactions, 317–328 

Boundary conditions, 453 
Braces, use of, 2 
Bulk density, 62–66, 69–70 

C 
Calculus, 43–46 
Catalysts in reactors, 

conservation of mass and, 
61 

calculating mass flow, 63–64 
computing time to fill 

reactor, 64–65 
determining amounts, 62–74 
plotting, 65–68 
volume and level, 

determining, 66 
Cell membrane expansion, 

282–296 
Chemical equilibrium point, 

317, 320 
Chemical kinetics 

collisions, determining 
number of, 299 

complex reactions, 328–360 
control volume, 301 
example in complex, 474–478 
first-order, 303–307 
irreversible reactions, 

303–317 

505 



P1: Sanjay

May 10, 2002 17:30 Foley foley-index

506 Index 

Chemical kinetics (continued ) 
Langmuir-Hinshelwood-

Hougen-Watson, 
345–357 

microbial population 
dynamics, 357–360 

no-flow batch reactors, 
301–303 

nth order, 314–317 
rate constant and threshold 

values of molecules, 
300–301 

reversible reactions, 317–328 
role of, 297–298 
second-order, 307–314 
series-parallel reactions, 

341–345 
series reactions, 328–341 

Chemical reactions, how they 
take place, 298–301 

Commands 
See also under type of 
format, 1–2 
simple, 2–3 

Compacted bulk density, 62–66, 
69–70 

Complete back-mixing, 437 
Complex Expand, 327 
Component balance, 151–152 

no-flow batch reactors, 302 
Component mass balances, for 

gas and solid phases, 352, 
358 

Component mass balances, for 
no-flow batch reactors, 
302 

Concentration versus density, 
153–154 

Conical tank, 89–91 
Consecutive reactions, 328 
Conservation of mass principle, 

59–86 
See also Mass balance 

equation, left-hand side; 
Mass balance equation, 
right-hand side 

across phases, 210–213 
basics of, 59–61 
filling a cylindrical tank, 

74–77 
filling a vessel with 

pelletized solid, 61–74 
pressurizing empty tank 

with ideal gas, 77–82 

time-dependent flows, 82–86 
water flow, 115 

Constant density, 69, 163–170 
Constant volume batch reactor, 

317–328 
Constitutive equation, 116–124 
Constitutive relationship, 61–74, 

115 
Contact catalysis, 345 
Continuous flow reactors 

See also under type of 
continuously stirred tank, 

363–364 
fed-batch or semibatch, 

363–364, 365–366 
plug flow, 363, 364 
pseudo-steady state, 379–382 
volume change, large, 

373–379 
volume change, negligible, 

366–373 
Continuously stirred tank 

reactors (CSTR), 363–364, 
383–387 

example in comparison and 
synthesis of PFR and, 
482–488 

example in transient,
478–482

mixing effects on selectivities 
with series and 
series-parallel reactions 
with, 418–424 

optimal design, 401–407 
plug flow reactors as a series 

of, 424–435 
residence time distribution, 

435–450 
steady state, 387, 387–392 
transient time dependence, 

392–401, 478–482 
Continuous permeation, 

268–282 
Control, draining tank, 143–150 
Control volume 

defined, 60–61 
filling a cylindrical tank, 

74–77 
filling a vessel with 

pelletized solid, 61–74 
no-flow batch reactors, 

302 
pressurizing empty tank 

with ideal gas, 77–82 

rate of change in mass 
within, 61 

time-dependent flows, 
82–86 

Coulombic forces of attraction, 
207 

CRC Handbook of Chemistry and 
Physics, 170 

Cylindrical tank, filling a, 74–77 

D 
data, 30 
dataset, 35 
DefaultFont, 16 
Definite integral, 44–45 
Density 

concentration versus, 
153–154

constant, 163–170
variable, 170–175

Derivatives, 43–44 
Desorption 

Langmuir-Hinshelwood-
Hougen-Watson 
kinetics, 345–357 

transient time dependence, 
392–401 

Differential change in time and 
volume with time, 87–88 

conical tank, 89–91 
draining tank, 115 
polymers, 103–112 
semicylindrical trough, 

91–98 
spherical tank, 98–103 
triangular trough, 87–89 

Differential equations 
DSolve, 46–52, 84, 136–139 
NDSolve, 52–55 

Differentiate (differentiation) 
numerical, 45–46 
symbolical, 43–45 

Diffusion 
adsorption and, 263–282 
mass transfer versus, 

206–207 
Diffusivity, 264 
Dimensionless concentrations 

first-order kinetics, 304–306 
reversible reactions and, 

324–328 
second-order kinetics, 

308–313 
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Dirac-Delta function, 181–184, 
188, 437 

Direct indefinite integration 
after separation solution, 
127–129 

DisplayFunction → 
$DisplayFunction, 67 

DisplayFunction → Identity, 
67 

DisplayGraphics, 243 
DisplayTogether, 23 
Dissolution 

rate of, 210 
salt, 207–209 

Distributed systems, 154 
Dividing, 9–10 
Do loop, 432 
Draining tank 

constant input, 125–126 
constitutive equation, 

116–124 
control, 143–150 
direct indefinite integration 

after separation 
solution, 127–129 

DSolve, 136–139 
fluxional input, 139–142 
mass balance equation, 

right-hand side, 
113–114 

mass input and output, 
125–143 

mechanism of water flow 
(Torricelli’s law), 
114–116 

power series expansion, 
131–136 

solving for level as a function 
of time, 124–125 

substitution solution, 
129–130 

DSolve, 46–52, 84, 136–139, 
256–257, 329, 336, 342, 343, 
410 

E 
Elements, taking from sets, 35 
Epilog, 354 
Epilog → Line{{0, 18.4}}, 

{3tf, 18.4}}, 67  
Equilibrium stage, 225–230 
Expand, 42 
External mass transport, 250 

F 
Factor, 42 
Fed-batch reactors, 363–364, 

365–366 
File menu, 2 
First-order kinetics, 303–307 
Fit, 37–38, 67 
Fit to batch data, 214–217 
Flows 

time-dependent, 82–86 
water, 114–116 

Flux, 104 
Fluxional input, 139–142 
Fonts, changing, 16 
FrameLabel, 21 
Frames, inserting, 17 
FullSimplify, 42, 353 
Functional, 425, 429–432 
Functions, syntax for, 36 
Fundamental rates/kinetics, 314 
f[x.,]:=f[x], 36 

G 
Gas, pressurizing empty tank 

with ideal, 77–82 
Gaussian distribution, 198 
Geometry problems 

conical tank, 89–91 
cylindrical tank, 74–77 
polymers, 103–112 
semicylindrical trough, 

91–98 
spherical tank, 98–103 
triangular trough, 87–89 

Global context, 440–450 
Global names, 401 
Global rates/kinetics, 314, 348 
Graphical method, 93–95 
GraphicsArray, 242–243, 294, 

333–334, 378, 398–400, 
415–418 

<<Graphics ‘Graphics’, 23  
Graphics Option, 13 
Graphs. See Plots, changing 

appearance of 
Gravity, experiment, 116–124 
Grid lines, adding, 18 

H 
Heterogeneous catalysis, 345 

I 
Impingement frequency, 250 

Indefinite integral, 44 
Infix notation, 11 
Insoluble solid, liquid and an, 

154–162 
Integrate (integration), 47 

direct indefinite integration 
after separation 
solution, 127–129 

numerical, 45 
symbolic, 44–45 

Internal mass transport, 250 
Interpolation, 52–53 
Intrinsic rates/kinetics, 314 
Irreversible reactions, 303–317 

J 
Join, 31 

K 
Kinetic theory, 250–251 

L 
Labels 

adding, 21 
for x and y axes, 38–39 

Langmuir, Irving, 251 
Langmuir-Hinshelwood-

Hougen-Watson kinetics, 
345–357 

Langmuir isotherm, 260 
Level as a function of time, 

124–125 
Level-controlled tank, 459–467 
lgdatset, 36–37 
Linear driving force, 210 
Linear first-order differential 

equations (LFODE), 49 
Liquid and an insoluble solid, 

154–162 
Liquid and a soluble solid 

constant densities, 163–170 
variable densities, 170–175 

Liquid-liquid state 
mass transfer analysis, 

nonequilibrium stage, 
230–248 

steady state, equilibrium 
stage, 225–230 

List, 3 
Listability, 9, 33, 35 
ListPlot, 3, 30–37, 67 
Lists, combining, 31–34 
Log, 3, 35 
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M 
Madelung energy, 207 
Map, 11 
Mass balance equation, 

left-hand side 
conical tank, 89–91 
polymers, 103–112 
semicylindrical trough, 

91–98 
spherical tank, 98–103 
triangular trough, 87–89 

Mass balance equation, 
right-hand side, 113–114 

Mass flow rate, polymers, 
103–112 

Mass input and output, 125–143 
Mass transfer 

applications, 205 
batch, 209–213 
coefficient, 210 
external, 250 
fit to batch data, 214–217 
full solution, 220–225 
internal, 250 
liquid-liquid state, 225–248 
pseudo steady state, 218–219 
salt dissolution, 207–209 
versus diffusion, 206–207 

Material balance equations, 254, 
265, 268, 284 

MatrixForm, 32 
Membrane reactor example, 

488–496 
Microbial population dynamics, 

357–360 
example of, 496–504 

Miscellaneous ‘Units’, 56  
Module function, 331–333, 338, 

376–378, 380–382, 395–398, 
411, 413–415, 418–421, 427, 
440 

Molecular specificity/ 
recognition, 345 

Molecules, case of one dividing 
into two, 320–328 

Multiple-component systems 
component balance, 151–152 
concentration versus density, 

153–154 
liquid and an insoluble solid, 

154–162 
liquid and a soluble solid, 

163–175 
mixing, 187–203 

pulse input tracer 
experiment, 180–187 

washing salt solution from a 
vessel, 175–180 

well-mixed system, 154 

N 
Names, 401 
NDSolve, 52–55, 172, 336–338, 

395, 453 
<<“Needs”, 23  
Net rate of adsorption, 249–257 
Nondimensionalize 

second-order kinetics, 
308–309 

series-parallel reactions, 342 
series reactions, 329, 325 

Nonequilibrium stage, 230–248 
NonlinearFit, 71–72 
nth order, 314–317 
Normal distribution, 198 

probability density function, 
438–440 

N[%], 42 
NSolve, 41–42, 427 
NumberForm, 96 

P 
Package, 440–450 
Palettes, 2 
Parentheses, use of, 1 
Partition, 31 

coefficient, 264 
Partitioned systems, 154 
%, 42 
Perfect mixing, 437 
Permeation 

batch, 263–268 
cell membrane expansion, 

282–296
continuous, 268–282
defined, 263

Perry’s Handbook, 170 
π , 100, 106–107, 343 
Plot, 3, 11 

SetOptions, 21–22 
setting increment values, 13 

PlotPoints, 29–30 
Plots, changing appearance 

of, 13 
adding backgrounds (gray), 

19–20 
adding grid lines, 18 

adding labels, 21 
axes lines, 14–16 
combining graphs, 23 
inserting frames, 17 
return to original values, 

24–25 
Plot3D, 25–30 
Plug flow reactors (PFR), 363, 

364, 407–410 
equations, initial conditions, 

and boundary 
conditions, 452–457 

example in comparison and 
synthesis of CSTR and, 
482–488 

mixing effects on selectivities 
with series and series-
parallel reactions with, 
418–424 

residence time distribution, 
435–450 

as a series of CSTRs, 424–435 
steady state, 410–418 
time-dependent, 451 
transient, 452 

Polymers, coating process, 
103–112 

Position of chemical 
equilibrium, 317, 320 

PowerExpand, 42, 353 
Power-law kinetics, 314 
Power series expansion, 

131–136 
Pressurizing empty tank with 

ideal gas, 77–82 
Probability distribution 

function (PDF), 198, 200 
normal distribution, 438–440 

Procedural, 425, 432–435 
ProductLog function, 137 
Pseudo-first order, 306–307 

rate constant, 309 
Pseudo-homogeneous 

approximation, 395 
Pseudo-steady state 

in continuous flow reactors, 
379–382 

semicontinuous adsorption, 
258–262 

semicontinuous mass 
transfer, 218–219 

Pulse input tracer experiment, 
180–187 

Pythagorean theorem, 91, 99 
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Q 
Quadratic equations, 40 

R 
Rate constant of adsorption/ 

desorption, 251–257, 
259–260 

Rate of dissolution, 210 
Reactor runaway, 365 
Real roots, 42 
Recursive programming, 425, 

428–435 
Remove, 42, 318, 401 
Residence time distribution, 

181, 435–450 
Resolution, increasing, 29–30 
Retentate, 264 
Reversible reactions, 317–328 
RGBColor, 291 
Rule-Based, 425 
Rules, syntax for, 36 

S 
Salt 

dissolution, 207–209 
solution from a vessel, 

washing, 175–180 
Scientific notation, 10–11 
Second-order kinetics, 307–314 
Selectivity of reaction network, 

343 
mixing effects on, 418–424 

Semibatch reactors, 363–364, 
365–366 

Semicontinuous adsorption 
(pseudo-steady state), 
258–262 

Semicontinuous mass transfer 
(pseudo-steady state), 
218–219 

Semicylindrical trough, 91–98 
Series-parallel reactions, 

341–345 
mixing effects on selectivities 

with CSTR and PFR 
and, 418–424 

nondimensionalize, 342 
Series reactions, 328–341 

mixing effects on selectivities 
with CSTR and PFR 
and, 418–424 

nondimensionalize, 329, 325 
square kinetics, 334 

Set delayed, 36, 430 
SetOptions, 21–22 
Show, 38, 67 
Simplify function, 42, 47, 342 
Soluble solid, liquid and a 

constant densities, 163–170 
variable densities, 170–175 

Solvation, 208 
Solve, 39–40, 47, 425, 426 
Spherical tank, 98–103 
Square roots, 11 
Statistics NonLinearFit, 71 
Steady state, 60 

continuously stirred tank 
reactors, 387–392 

plug flow reactors, 410–418 
Substitution solution, 129–130 
Surface reactions, 345–357 

T 
Table, 3–11, 33 

dividing, 9–10 
naming, 4 
scientific notation, 10–11 
suspressing values, 4 

Take, 11 
Third-order equations, 40–41 
Time, solving for level as a 

function of, 124–125 
Time-dependent flows, 82–86 

plug flow reactors, 451 
Together, 353 
Torricelli’s law, 114–116, 123, 

166, 167, 172, 177 
Transient continuously stirred 

tank reactors, example for, 
478–482 

Transient plug flow reactors, 
452 

Transient time dependence, 
392–401 

Transpose, 32–33 
Triangular trough, 87–89 

U 
Units of measurement, 

interconversion, 56–57 
UnitStep function, 181, 185–187, 

287–289 

V 
Variable densities, 170–175 
Variable name, changing, 2 
Volume change, in continuous 

flow reactors 
large, 373–379 
negligible, 366–373 

W 
Washing salt solution from a 

vessel, 175–180 
Water flow, 114–116 
Well-mixed system, 154 

X 
x-values 

labels for, 38–39 
of nth element, 36 
taking out, from data points, 

35 

Y 
y-values 

labels for, 38–39 
natural log, 34–35 
of nth element, 36 
taking out, from data points, 

34–35 

Z 
Zab collision number, 299 
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