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Preface
to the Third Edition

The term Finite Mathematics was first used in the title of the first edition of
this book. Since that time it has been generally accepted to describe those
topics in modern mathematics that do not depend upon limiting processes,
derivatives, or other infinite concepts and that have important real-world
applications.

The purpose of the first edition of this book was to introduce college
students to the elementary theory of logic, sets, probability theory, and linear
algebra and to treat a number of practical applications either from every-
day situations or from applications to the biological and social sciences. This
central idea has been retained in the third edition of the book; however,
experience has shown the desirability of adding additional topics. We have
therefore treated the original topics more concisely and added some new
subjects and new treatments of old subjects.

The core material of the book consists of the first four chapters. Chapter 1
is a brief introduction to the elementary logic of statements. Chapter 2 con-
tains the basic ideas of the theory of sets and also introduces some funda-
mental counting techniques. These two chapters constitute a condensed
version of the first three chapters of the earlier editions. They contain all
the material necessary for the later topics, but some of the more esoteric
topics have been eliminated. Chapter 3 is an introduction to finite probability
theory and Chapter 4 introduces vectors and matrices and the solution of
simultaneous equations. This core material constitutes a self-contained unit
which may be used as an introduction to finite mathematics. Or, it may be
supplemented in a wide variety of ways by selecting topics from the later
chapters. We will discuss several such options presently.

The use of computers was in its infancy when the first edition was pub-
lished and wide-scale use of time-shared computers for educational pur-
poses became a reality just after the publication of the second edition.

ix
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Since Finite Mathematics lends itself ideally to computer treatment, and
since computers can make the study of Finite Mathematics more interest-
ing and more meaningful, we have included an introduction to computer
programming in Chapter 5. We have chosen for this purpose the general-
purpose computer language BASIC which is widely used in time-sharing
systems. The advantage of this language is that the student can start writ-
ing computer programs very quickly, and yet it is flexible enough to allow
the writing of the most complex computer program. Chapter 5 has been
so organized that much of the material and many of the exercises may be
taken up even if computers are not available to the students. However, the
full impact of the chapter cannot be realized without giving “hands-on”
experience for students. Such experience in writing and debugging their
own computer programs both provides students with greater mathematical
power and helps to reinforce the understanding of fundamental concepts.

One of the shortcomings of the earlier editions of Finite Mathematics was
the fact that while they contained a good introduction to probability theory,
they included little or nothing about the applications of that theory to sta-
tistics. For this reason we have added, in Chapter 6, an introduction to
finite statistics. This is a natural outgrowth of the core material and leads
to a further wealth of practical applications.

Since the appearance of the first edition, linear programming and matrix
game theory have received widespread use for a wide variety of applications.
We have therefore included, in Chapter 7, a completely revised and expanded
treatment of these two important topics. The key technique used in solving
large-scale problems in these two areas is the simplex method, and the
treatment included in this book is due to A. W. Tucker.

Chapter 8 is devoted entirely to applications. We have retained several
of these from earlier editions, and have added three new topics. The first is
an application to two linear economic models which depend on the same
underlying mathematical model. The second is an application of linear
programming to a governmental decision problem. The third discusses the
branch-and-bound method for the solution of two combinatorial decision
problems.

The problems at the end of each section of the core chapters, which have
been widely used (and widely copied!), have been completely revised. As
has been our custom, we have tried to give two of each kind of exercise
wherever possible, one with and one without an answer printed in the text.
We hope that this fresh problem material will come as welcome change for
repeat users of the book. We have also updated a number of problems deal-
ing with topics that have become irrelevant since 1957, when the first edi-
tion was published.

We believe that this book can be used in many different ways. The basic
core material of the first four chapters (even with the omission of the aster-
isked sections) constitutes a self-contained unit. A course in finite mathe-
matics with an introduction to computing is contained in Chapters 1-5.
(The computer material may also be integrated with Chapters 2, 3, and 4

il
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rather than waiting until the first four chapters are completed.) A course
in finite mathematics with an introduction to statistics can be designed by
covering Chapters 1-4 and the first five sections of Chapter 6. For a more
technical introduction to statistics, including an introduction to computing,
the first six chapters form a natural unit. An introduction to finite mathe-
matics and linear programming and games is contained in Chapters 1-4
and Sections 1-4 and Sections 3 and 8-10 of Chapter 7. For a more tech-
nical introduction of the same topics, one needs an introduction to compu-
tation and therefore all of Chapters 1-5 and 7 should be included. Covering
the book in its entirety gives a good introduction to the mathematics used
in behavioral and social sciences; the same goal may be achieved somewhat
more briefly by judicious selection of topics from the last four chapters.

We wish to thank our colleagues in many institutions who have read the
material and made comments and suggestions. Professor Frank Deane has
been especially helpful in this respect. We are particularly grateful to
Professor A. W. Tucker for showing a strong and continuing interest in our
work and for suggesting a new approach to the simplex method. We thank
Messrs. Mike Vitale and Ross Kindermann for supplying most of the new
problem material. We thank Mrs. Bonnie Clark for her assistance in the
preparation of the manuscript. We also thank Mrs. Eleanor Balocik for her
work in preparing the Solutions Manual. To Dartmouth College and
Carnegie-Mellon University we offer our appreciation for providing facilities
(including computer usage) which made the preparation of this book pos-
sible. And finally we thank the staff of Prentice-Hall for their careful atten-
tion to editorial details.

J.G.K,, J.L.S.,, G.L.T.
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PURPOSE OF THE THEORY

A statement is a verbal or written assertion which can be determined to be
either true or false. In the English language such assertions are made by
means of declarative sentences. For example, “It is snowing” and “I made
a mistake in signing up for this course” are statements.

The reader should note that questions such as “Who killed cock robin?”
or exhortations such as “Tread softly but carry a big stick!” are not state-
ments in our sense since they do not have a truth value.

The two statements quoted in the first paragraph above are simple state-
ments. A combination of two or more simple statements is a compound
statement. For example, “It is snowing, and I wish that I were out of doors,
but I made the mistake of signing up for this course” is a compound
statement.

It might seem natural that one should make a study of simple statements
first, and then proceed to the study of compound ones. However, the reverse
order has proved to be more useful. Because of the tremendous variety of
simple statements, the theory of such statements is very complex. It has
been found in mathematics that it is often fruitful to assume for the moment
that a difficult problem has been solved and then to go on to the next
problem. Therefore we shall proceed as if we knew all about simple state-
ments and study only the way they are compounded. The latter is a rela-
tively easy problem.

While the first systematic treatment of such problems is found in the
writings of Aristotle, mathematical methods were first employed by George
Boole more than a hundred years ago. The more polished techniques now
available are the product of twentieth-century mathematical logicians.

The fundamental property of any statement is that it is either true or
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EXAMPLES

false (and that it cannot be both true and false). Naturally, we are interested
in finding out which 1s the case. For a compound statement it is sufficient
to know which of its components are true, since the truth values (i.e., the
truth or falsity) of the components determine in a way to be described later
the truth value of the compound.

Our problem then is twofold: (1) In how many different ways can state-
ments be compounded? (2) How do we determine the truth value of a
compound statement given the truth values of its components?

Let us consider ordinary mathematical statements. In any mathematical
formula we find three kinds of symbols: constants, variables, and auxiliary
symbols. For example, in the formula (x + y)* the plus sign and the ex-
ponent are constants, the letters x and y are variables, and the parentheses
are auxiliary symbols. Constants are symbols whose meanings in a given
context are fixed. Thus in the formula given above, the plus sign indicates
that we are to form the sum of the two numbers x and y, while the exponent
2 indicates that we are to multiply (x + y) by itself. Variables always stand
for entities of a given kind, but they allow us to leave open just which
particular entity we have in mind. In our example above the letters x and
v stand for unspecified numbers. Auxiliary symbols function somewhat like
punctuation marks. Thus if we omit the parentheses in the expression above
we obtain the formula x + »?, which has quite a different meaning than
the formula (x + y)2.

In this chapter we shall use variables of only one kind. We indicate these
variables by the letters p, ¢, r, etc., which will stand for unspecified state-
ments. These statements frequently will be simple statements but may also
be compound. In any case we know that, since each variable stands for
a statement, it has an (unknown) truth value.

The constants that we shall use will stand for certain connectives used
in the compounding of statements. We shall have one symbol for forming
the negation of a statement and several symbols for combining two state-
ments. It will not be necessary to introduce symbols for the compounding
of three or more statements, since we can show that the same combination
can also be formed by compounding them two at a time. In practice only
a small number of basic constants are used and the others are defined in
terms of these. It is even possible to use only a single connective! (See
Section 2, Exercises 6-8.)

The auxiliary symbols that we shall use are, for the most part, the same
ones used in elementary algebra. Any usage of a different symbol will be
explained when it first occurs.

As examples of simple statements, let us take “The weather is nice” and
“It is very hot.” We will let p stand for the former and g for the latter.
Suppose we wish to make the compound statement that both are true.
“The weather 1s nice and it is very hot.” We shall symbolize this statement
by p /\ q. The symbol /\, which can be read “and,” is our first connective.
In place of the strong assertion above we might want to make the weak
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(cautious) assertion that one or the other of the statements is true. “The
weather is nice or it is very hot.” We symbolize this assertion by p V g.
The symbol V, which can be read “or,” is the second connective which we
shall use.

Suppose we believed that one of the statements above was false, for
example, “It is not very hot.” Symbolically we would write ~¢. Our third
connective is then ~, which can be read “not.”

More complex compound statements can now be made. For example,
p /\ ~q stands for “The weather is nice and it is not very hot.”

1. The following are compound sentences or may be so interpreted. Find
their simple components.
(a) It is quite hot and I would like to go swimming.
(b) It is raining or it is very humid.
(c) Jones did not have time to go, but Smith went instead.
[Ans. “Jones did have time to go”; “Smith went instead.”]
(d) The murderer is Jones or Smith.
(e) Jack and Jill went up the hill.
(f) Either Bill has not arrived or he left before we got here.
(g) Neither the post office nor the bank is open today.
2. In Exercise 1 assign letters to the various components, and write the
statements in symbolic form. [Ans. (¢) ~p N\ q.]
3. Write the following statements in symbolic form.
(a) Fred likes George. (Statement p.)
(b) George likes Fred. (Statement ¢.)
(c) Fred and George like each other.
(d) Fred and George dislike each other.
(e) Fred likes George, but George does not reciprocate.
(f) George is liked by Fred, but Fred is disliked by George.
(g) Neither Fred nor George dislikes the other.
(h) It is not true that Fred and George dislike each other.
4. Assume that Fred dislikes George and George likes Fred. Which of
the eight statements in Exercise 3 are true?
5. Write the following statements in symbolic form, letting p be “Fred
is smart” and g be “George is smart.”
(a) Fred is smart and George 1s not smart.
(b) George is smart or George is not smart.
(¢) Neither Fred nor George is smart.
(d) Either Fred is smart or George is not smart.
(e) Fred is not smart, but George is smart.
(f) It is not true that both Fred and George are not smart.
6. If Fred and George are both smart, which of the six compound state-
ments in Exercise 5 are true?
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7. For each statement in Exercise 5 give a condition under which it is
false, if it is possible to do so. [4ns. (a) George is smart.]
8. Let p be “Stock prices are high” and g be “Stocks are rising.” Give
a verbal translation for each of the following.
(@ pVay.
®) pANgq.
() ~pV ~q.
@ ~@pAg.
@ ~(~pVyg.
) ~(~p/\ ~9g).
9. Using your answers to Exercise 8, parts (d), (e), and (f), find simpler
symbolic statements expressing the same idea. [A4ns. (d) ~pV ~q]
10. Let p be “I will win” and ¢ be “You will lose.” Using the methods
of Exercises 8 and 9, find a simpler statement for

[~~~ N\ ~[~p V ~q].

2 THE MOST COMMON CONNECTIVES

The truth value of a compound statement is determined by the truth values
of its components. When discussing a connective we shall want to know
just how the truth of a compound statement made from this connective
depends upon the truth of its components. A very convenient way of
tabulating this dependency is by means of a truth table.

Let us consider the compound p /\ ¢g. Statement p could be either true
or false and so could statement ¢. Thus there are four possible pairs of
truth values for these statements and we want to know in each case whether
or not the statement p /\ g is true. The answer is straightforward: If p and
q are both true, then p /\ g is true, and otherwise p A\ ¢ is false. This seems
reasonable since the assertion p /\ g says no more and no less than that
p and q are both true.

Figure 1 gives the truth table which defines p /\ g, the conjunction of p
and g. The truth table contains all the information that we need to know
about the connective /\, namely it tells us the truth value of the conjunction
of two statements given the truth values of each of the statements.

We next look at the compound statement p V g, the disjunction of p and
g- Here the assertion is that one or the other of these statements is true.
Clearly, if one statement is true and the other false, then the disjunction

P q pN\gq P q pPVyg

T T T T T ?

T F F T F T

F T F F T T

F F F F F F
Figure 1 Figure 2




Section 2

P ~pP

T F

F T
Figure 5
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P q pVyq )4 q PYg

T T T T T F

T F T T F T

F T T F T T

F F F F F F
Figure 3 Figure 4

is true, while if both statements are false, then the disjunction is certainly
false. Thus we can fill in the last three rows of the truth table for disjunction
(see Figure 2).

Observe that one possibility is left unsettled, namely, what happens if
both components are true? Here we observe that the everyday usage of
“or” is ambiguous. Does “or” mean “one or the other or both” or does
it mean “one or the other but not both”?

Let us seek the answer in examples. The sentence “This summer I will
visit France or Italy” allows for the possibility that the speaker may visit
both countries. However, the sentence ‘I will go to Dartmouth or to Prince-
ton” indicates that only one of these schools will be chosen. “I will buy a
TV set or a phonograph next year” could be used in either sense; the speaker
may mean that he is trying to make up his mind which one of the two to
buy, but it could also mean that he will buy ar least one of these—possibly
both. We see that sometimes the context makes the meaning clear, but not
always.

A mathematician would never waste his time on a dispute as to which
usage “should” be called the disjunction of two statements. Rather he
recognizes two perfectly good usages, and calls one the inclusive disjunction
(p or ¢ or both) and the other the exclusive disjunction (p or ¢ but not
both). The symbol V will be used for inclusive disjunction, and the sym-
bol ¥ will be used for exclusive disjunction. The truth tables for each of
these are found in Figures 3 and 4. Unless we state otherwise, our dis-
junctions will be inclusive disjunctions.

The last connective which we shall discuss in this section is negation. If
p is a statement, the symbol ~p, called the negation of p, asserts that p
is false. Hence ~p is true when p is false, and false when p is true. The
truth table for negation is shown in Figure 3.

Besides using these basic connectives singly to form compound statements,
several can be used to form a more complicated compound statement, in
much the same way that complicated algebraic expressions can be formed
by means of the basic arithmetic operations. For example, ~(p /\ ¢),
p/\ ~p,and (p V q) V ~p are all compound statements. They are to be
read “from the inside out” in the same way that algebraic expressions are,
namely, quantities inside the innermost parentheses are first grouped to-
gether, then these parentheses are grouped together, etc. Each compound
statement has a truth table which can be constructed in a routine way. The
following examples show how to construct truth tables.
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EXAMPLE 1  Consider the compound statement p VV ~g. We begin the construction of
its truth table by writing in the first two columns the four possible pairs
of truth values for the statements p and ¢g. Then we write the proposition
in question, leaving plenty of space between symbols so that we can fill in
columns below. Next we copy the truth values of p and ¢ in the columns
below their occurrences in the proposition. This completes step 1 (see Fig-

ure 6).
P g || VvV ~q
T T T T
T F T F
F T F T
F F F F
. Step No. 1 1
Figure 6
Next we treat the innermost compound, the negation of the variable g,
completing step 2 (see Figure 7).
P g | » vV ~ q
T T T F T
T F T T F
F T F F T
F F F T F
i Step No. 1 2 1
Figure 7
Finally we fill in the column under the disjunction symbol, which gives
us the truth value of the compound statement for various truth values of
its variables. To indicate this we place two parallel lines on each side of
the final column, completing step 3 as in Figure 8.
P g | P v ~ g
T T T T F T
T F T T T F
F T F F F T
F F F T T F
Step No. 1 3 2 1
Figure 8

The next two examples show truth tables of more complicated compounds
worked out in the same manner. There are only two basic rules which the
student must remember when working these: first, work from the “inside
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Figure 9

EXAMPLE 3

Figure 10

Compound Statements 9

out”; second, the truth values of the compound statement are found in the
last column filled in during this procedure.

The truth table for the statement (p V ~¢q) /\ ~p together with the num-
bers indicating the order in which the columns are filled in appears in
Figure 9.

p q (p V ~ q) A ~ p
T T T T F T F F T
T F T T T F E F T
F T F F F T F T F
F F F T T E T T F
Step No. ] 3 2 1 4 2 1

Two compound statements having the same variables are said to be
equivalent if and only if they have exactly the same truth table. It is always
permissible, and sometimes desirable, to replace a given statement by an
equivalent one.

Augustus DeMorgan was a well-known English mathematician and logician
of the nineteenth century and was the first person to state two important
equivalences, or “laws.” The first of DeMorgan’s laws asserts that the
statements ~(p /\ ¢) and ~p V ~q are equivalent. The truth tables in
Figure 10 show that this is indeed true. The reader will notice that we wrote

p q ~ (p N\ q) ~p Vv ~q
T T F T F F F
T | F T F F T T
F T T F T T F
F | F T F T T T
Step No. 2 1 1 | 2 1

the truth tables for p /\ g, ~p, and ~¢ directly on the first step to shorten
the work. Notice that the two columns marked on step 2 are identical, so
that ~(p /\ q) and ~p V ~q are equivalent statements.

Let us give an interpretation of the equivalence just mentioned. Consider
“It is false that business is good and stocks are high.” The equivalent
statement derived from DeMorgan’s laws is: “Either business is bad or
stocks are low.” Intuitively the equivalence of these two compound state-
ments 1s clear.

The other of DeMorgan’s laws is that the statements ~(p V ¢) and
~p /\ ~q are equivalent. This law is discussed in Exercise 12.
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EXAMPLE 4 The truth table for the statement ~[(p /\ q) V (~p /\ ~q)] together with
the numbers indicating the order in which the columns are filled appears
in Figure 10a. We note that the compound statement has the same truth
table as p V g. These two statements are therefore equivalent.

Figure 10a

EXERCISES

rplg i~ p N @ NV (~ p N ~ @]
tT!ltTl|leFlT T T T ¥ T F F T
TlFl|Tl|lT F F F ¥F T F T F
F|lTlilT|F ¥ T ¥ T F F F T
F|F|FI|F F F T T F T T F
Step No. || 5 | 2 1 4 2 1 3 2 1

To illustrate this equivalence, consider the statement “I will attend either
Dartmouth or Princeton, but not both.” This is equivalent to the denial
of the statement “I will either attend both Dartmouth and Princeton [sym-
bolized by (p /\ )] or 1 will attend neither Dartmouth nor Princeton [sym-
bolized by (~p N\ ~¢)].”

\© 90 N

Construct a truth table for each of the following:

@@ gV ~q. [Ans. TT)]
® AV ~qg

() ~pVy.

@ [~(pVgoN(~pV ~q)] [Ans, FFFT.]

Using only ~, V, and /\, give a compound statement which symboli-
cally states “p or g but not both.”

Construct a truth table for your answer to Exercise 2, and compare
it with Figure 4.

Let p stand for “Smith went skiing,” and let g stand for “Smith broke
his leg.” Translate into symbolic form the statement “It is not the case
that either Smith did not go skiing or Smith did not break his leg.”
Construct a truth table for this symbolic statement.

Find a simpler verbal statement about Smith whose symbolic form has
the same truth table as the one in Exercise 4.

Let p | g express that “both p and ¢ are false.” Write a symbolic
expression for p | g using ~ and /\. Write a truth table for p | ¢.
Write a truth table for p | p.

Write a truth table for (p | p) | (¢ | 9).

Construct a truth table for each of the following:

(@) (~pV g NV ~q). [Ans. TFFT.)
b) ~(plg.

() ~(p ¥ ~9g).

@ (N Vig/p).
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10. Construct symbolic statements, using only ~, V, and /\, which have
the following truth tables (a) and (b), respectively:

P | 4 (@) ()
T | T T F
T | F T T
F| T F T
F | F T F

11. Usingonly ~ and V , construct a compound statement having the same
truth table as:

@ @AQV(~@V9) [Ans. ~(p ¥ 9).]
® pVyg. [Ans. Impossible.]
() ~p \V4 q.

12. Use truth tables to show that ~(p V ¢) and ~p /\ ~q are equivalent.

3 OTHER CONNECTIVES

Suppose we did not wish to make an outright assertion but rather an
assertion containing a condition. As examples, consider the following sen-
tences. “If the weather is nice, I will take a walk.” “If the following state-
ment is true, then I can prove the theorem.” “If the cost of living continues
to rise, then the government will impose rigid curbs.” Each of these state-
ments is of the form “if p then q.” The conditional is then a new connective
which is symbolized by the arrow —.

Of course the precise definition of this new connective must be made by
means of a truth table. If both p and g are true, then to make logic coincide
with ordinary usage p — ¢ is certainly true, and if p is true and g false,
then p — ¢ is certainly false for the same reason. Thus the first two lines
of the truth table can easily be filled in—see Figure 11a. Suppose now that
p is false; how shall we fill in the last two lines of the truth table in Figure
11a? At first thought one might suppose that it would be best to leave it
completely undefined. However, to do so would violate our basic principle
that a statement is either true or false.

Therefore we make the completely arbitrary decision that the conditional,
p — g, is true whenever p is false, regardless of the truth value of g. This

P q P49 P q P49
T T T T T T
T F F T F F
F T ? F T T
F F ? F F T

Figure 11a Figure 11b
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Figure 12

decision enables us to complete the truth table for the conditional and it
is given in Figure 11b. A glance at this truth table shows that the conditional
p — q is considered false only if p is true and g is false. If we wished, we
might rationalize the arbitrary decision made above by saying that if state-
ment p happens to be false, then we give the conditional p — g the “benefit
of the doubt” and consider it true. (For another reason, see Exercise 1.)

In everyday conversation it is customary to combine simple statements
only if they are somehow related. Thus we might say “It is raining today
and T will take an umbrella,” but we would not say “I read a good book
and I will take an umbrella.” However, the rather ill-defined concept of
relatedness is difficult to enforce. Concepts related to each other in one
person’s mind need not be related in another’s. In our study of compound
statements no requirement of relatedness is imposed on two statements n
order that they be compounded by any of the connectives. This freedom
sometimes produces strange results in the use of the conditional. For
example, according to the truth table in Figure 11b, the statement “If
2 % 2 = 5, then black is white” is true, while the statement “If 2 x 2 =4,
then cows are monkeys” is false. Since we use the “if . . . then .. 2 form
usually only when there is a causal connection between the two statements,
we might be tempted to label both of the above statements as nonsense.
At this point it is important to remember that no such causal connection
is intended in the usage of —; the meaning of the conditional is contained
in Figure 11b and nothing more is intended. This point will be discussed
again in Section 6 in connection with implication.

Closely connected to the conditional connective is the biconditional state-
ment, p < ¢, which may be read “p if and only if q.” The biconditional
statement asserts that if p is true, then g is true, and if p is false, then ¢
is false. Hence the biconditional is true in these cases and false in the others,
so that its truth table can be filled in as in Figure 12.

I

g | ped
T T T
T F F
F T F
F F T

The biconditional is the last of the five connectives which we shall use
in this chapter. The table below gives a summary of them together with
the numbers of the figures giving their truth tables. Remember that the
complete definition of each of these connectives is given by its truth table.
The examples at the top of the next page show the use of the two new
connectives.
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Name Symbol Translated as Truth Table

Conjunction A\ “and” Figure 1

Disjunction V “or” Figure 3

(inclusive)

Negation ~ “not” Figure 5

Conditional — “if ... then ... Figure 11b

Biconditional < “ ..if and only if . . .” Figure 12

EXAMPLE 1 In Figures 13 and 14 the truth tables of two statements are worked out
following the procedure of Section 2.

b4 q I - (p v 9)
T T T T T T T
T F T T T T F
F T F T F T T
F F F T F F F
Figure 13 Step No. 1 3 1 2 1
)4 q ~ I © (p — ~ q9)
T T F T T T F F T
T F F T F T T T F
F T T F T F T F T
F F T F T F T T F
Figure 14 Step No. 2 1 4 1 3 2 1

EXAMPLE 2 It is also possible to form compound statements from three or more simple
statements. The next example is a compound formed from three simple

~
)
~—~
-
-

!
<

{
s

Mm-S
R e e o I R O
Mmoo
eSS
R R e e e R
I e e e
Mmoo = S
o T T T

N e e e e e e e B
NS <
R e o B B s I
Sl mmaTS
w Mg m=a=S1=7|d
N =S 3m~ TS

Step No.

[am—
[a—
—
(S
[—

Figure 15
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EXAMPLE 3

EXERCISES

statements p, g, and r. Notice that there will be a total of eight possible
triples of truth values for these three statements so that the truth table for
our compound will have eight rows as shown in Figure 13.

It is interesting to consider statements that are equivalent to the conditional
p — q. In Exercise 14 you will be asked to show that the following state-.
ments have the same truth table as p — g¢:

~pVygqg ~pN~q@, ~q->~p

It follows that the following English statements are equivalent:

If I win a prize then I must have bought a lottery ticket.
Either I didn’t win or I bought a lottery ticket.

It is impossible to win a prize without buying a lottery ticket.
If I did not buy a lottery ticket then I won’t win a prize.

Exercise 15 considers statements that are equivalent to the biconditional
P<g

1. One way of filling in the question-marked positions in Figure 11a is
given in Figure 11b. There are three other possible ways.
(a) Write the other three truth tables.
(b) Show that each of these truth tables has an interpretation in terms
of the connectives now available to us.
(c) Show that the choice of Figure 11b is the only one possible so
that (p /\ q¢) — q is always true.
2. Construct truth tables for each of the following:

@@ (~pVgq)—r [Ans. TETTTFTF.]
®» pAP—>@@Vae.

© [pVPNpVnl-rp [Ans. TTTTFTTT]
@ ~@AgA~r

e PN@p—-9)—q [Ans. TTTT.]

0 ~l(pANg—->rel~p->nV~@G->nl

3. The truth table for a statement compounded from two simple state-
ments has four rows, and the truth table for a statement compounded
from three simple statements has eight rows. How many rows would
the truth table have for a statement compounded from four simple
statements? From five? From n?

4. Let p stand for “He ate spinach,” ¢ stand for “He ate dessert,” and
r stand for “He read a logic book.” Find a symbolic form for each
of the following statements, and construct its truth table.

(a) If he did not eat spinach, then he did not eat dessert.
(b) He ate spinach but did not read a logic book.
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(c) If he read a logic book, then either he ate dessert or did not eat
spinach.

(d) He ate spinach if and only if he ate dessert and read a logic book.

Construct a truth table for each of the following:

(@ (p—-q9V ~p

b (pP—9—>9—4g [Ans. TFTT.]
© pogpeo(@o@eq)
(d) (~pV q) < (~qVp). [Ans. TFFT.]

Write truth tablesforg V' p,q /\ p,g — p,q < p. Compare these with

the truth tables in Figures 3, 1, 11b, and 12, respectively. When is it

possible to interchange variables in a statement and get an equivalent

statement?

Construct a truth table for [((p V' r) = g) N gl — (p V r).

Find a simpler statement having the same truth table as the one found

in Exercise 7.

Let p be “She will graduate,” and let ¢ be “She will find a job.” Put

each of the following into symbolic form, and construct the truth table

for each symbolic statement.

(a) If she graduates, then she will find a job.

(b) If she graduates, then she will find a job, and if she finds a job,
then she will graduate.

(c) If she does not graduate, then she will not find a job.

(d) Either she will graduate and find a job, or, if she does not gradu-
ate, then she will not find a job.

(e) Itis not the case that if she does not find a job then she will not

graduate.
Construct the truth tables for:
(@ ~(p VAN q) < (~r V ~s). [Ans. TFFFFTTTFTTTEFTTT,]

b) [~(p—> gV (s rApNNIp— (g~

[Ans. FFFTTTTTFTFTFTEFT.]
Using only /\, V, and ~, write a statement which has the same truth
table as:
@ p—oyq
(b) ~(p— q)
() peyg.
Using only /\ and ~, write a statement having the same truth table
as p V q. What have we proved?
Look back at Exercises 6, 7, and 8 of Section 2. What compound
statement has the same truth table as p | p? As (plp)l (gl 9)?
Using the results of Exercises 11 and 12, show that any truth table
can be represented using only the single connective |. Using only that
connective, write statements having the same truth table as:
(@ ~p/\g [Ans. [(pLp)L (I (gl 9]
®b) pVyg
© p—aqg.
d g—p.
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14. Show thatp — ¢, ~p V ¢, ~(p /\ ~¢), and ~g — ~p are all equiv-
alent.

15. Show that the statements p <> ¢, ~p < ~¢q, (p Ng)V (~p N\ ~g),
and (~p V ¢q) /\ (~q V p) are all equivalent.

16. Let p be the statement “I win a prize” and g be the statement “I bought
a lottery ticket.” Give verbal equivalents of the statements in Exer-
cise 15.

4 LOGICAL POSSIBILITIES

EXAMPLE 1

One of the most important contributions that mathematics can make to the
solution of a scientific problem is to provide an exhaustive analysis of the
logical possibilities for the problem. The role of science is then to discover
facts which will eliminate all but one possibility. Or, if this cannot be
achieved, at least science tries to estimate the probabilities of the various
possibilities.

So far we have considered only a very special case of the analysis of logical
possibilities, namely truth tables. We started with a small number of given
statements, say p, ¢, and r, and we assumed that all the truth table cases
were possible. This amounts to assuming that the three statements are
logically unrelated. Then we could determine the truth or falsity of every
compound statement formed from p, ¢, and r for every truth table case (every
logical possibility).

But there are many more statements whose truth cannot be analyzed in
terms of the eight truth table cases discussed above. For example, ~p V (g
A r A\ ~s) requires a finer analysis, a truth table with 16 cases.

Many of these ideas are applicable in a more general setting. Let us
suppose that we have an analysis of logical possibilities. That is, we have
a list of eventualities, such that one and only one of them can possibly be
true. We know this partly from the framework in which the problem is
considered, and partly as a matter of pure logic. We then consider statements
relative to this set of possibilities. These are statements whose truth or falsity
can be determined for each logical possibility. For example, the set of
possibilities may be the eight truth table cases, and the statements relative
to these possibilities are the compound statements formed from p, g, and
r. But we should consider a more typical example.

Let us consider the following problem, which is of a type often studied in
probability theory. “There are two urns; the first contains two black balls
and one white ball, while the second contains one black ball and two white
balls. Select an urn at random and draw two balls in succession from it.
What is the probability that . . .2” Without raising questions of probability,
let us ask what the possibilities are. Figures 16 and 17 give us two ways
of analyzing the logical possibilities.

In Figure 16 we have analyzed the possibilities as far as colors of balls
drawn was concerned. Such an analysis may be sufficient for many pur-
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Figure 16

Figure 17

Compound Statements 17

Case Urn First Ball Second Ball
1 1 black black
2 1 black white
3 1 white black
4 2 black white
5 2 white black
6 2 white white
Case Urn First Ball Second Ball
1 1 black no. 1 black no. 2
2 1 black no. 2 black no. 1
3 1 black no. 1 white
4 1 black no. 2 white
5 1 white black no. 1
6 1 white black no. 2
7 2 black white no. |
8 2 black white no. 2
9 2 white no. 1 black
10 2 white no. 2 black
11 2 white no. 1 white no. 2
12 2 white no. 2 white no. 1

poses.

In Figure 17 we have carried out a finer analysis, in which we

distinguished between balls of the same color in an urn. For some purposes
the finer analysis may be necessary.

It is

important to realize that the possibilities in a given problem may

be analyzed in many different ways, from a very rough grouping to a highly
refined one. The only requirements on an analysis of logical possibilities

are:
(1)
(2)

That under any conceivable circumstances one and only one of these
possibilities must be the case, and

that the analysis is fine enough so that the truth value of each
statement under consideration in the problem is determined in each
case.
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It is easy to verify that both analyses (Figures 16 and 17) satisfy the first
condition. Whether the rougher analysis will satisfy the second condition
depends on the nature of the problem. If we can limit ourselves to state-
ments like “Two black balls are drawn from the first urn,” then it suffices.
But if we wish to consider “The first black ball is drawn after the second
black ball from the first urn,” then the finer analysis is needed.

Given the analysis of logical possibilities, we can ask for each assertion
about the problem, and for each logical possibility, whether the assertion
is true in this case. Normally, for a given statement there will be many cases
in which it is true and many in which it is false. Logic will be able to do
no more than to point out the cases in which the statement is true. In
Example 1, the statement “One white ball and one black ball is drawn”
is true (in Figure 16) in cases 2,3,4, and 5, and false in cases I and 6.
However, there are two notable exceptions, namely, a statement that is true
in every logically possible case, and one that is false in every case. Here
logic alone suffices to determine the truth value.

A statement that is true in every logically possible case is said to be
logically true. The truth of such a statement follows from the meaning of
the words and the form of the statement, together with the context of the
problem about which the statement is made. We shall see several examples
of logically true statements below. A statement that is false in every logically
possible case is said to be logically false, or to be a self-contradiction. For
example, the conjunction of any statement with its own negation will always
be a self-contradiction, since it cannot be true under any circumstances.

In Example 1, the statement “At most two black balls are drawn” is true
in every case, in either analysis. Hence this statement is logically true. It
follows from the very definition of the problem that we cannot draw more
than two balls. Hence, also, the statement “Draw three white balls” is
logically false.

What the logical possibilities are for a given set of statements will depend
on the context, i.e., on the problem that is being considered. Unless we
know what the possibilities are, we have not understood the task before us.
This does not preclude that there may be several ways of analyzing the
logical possibilities. In Example 1 above, for example, we gave two different
analyses, and others could be found. In general, the question “How many
cases are there in which p is true?” will depend on the analysis given. (This
will be of importance in our study of probability theory.) However, note
that a statement that is logically true (false) according to one analysis will
be logically true (false) according to every other analysis of the given
problem.

The truth table analysis is often the roughest possible analysis. There
may be hundreds of logical possibilities, but if all we are interested in are
compounds formed from p and g, we need only know when p and ¢ are
true or false. For example, a statement of the form p — (p V ¢) will have
to be true in every conceivable case. We may have a hundred cases, giving
varying truth values for p and g, but every such case must correspond to
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one of the four truth table cases, as far as the compound 1s concerned. In
each of these four cases the compound is true, and therefore such a statement
is logically true. An example of it is “If Jones is smart, then he is smart
or lucky.”

However, if the components are logically related, then a truth table
analysis may not be adequate. Let p be the statement “Jim is taller than
Bill,” while ¢ is “Bill is taller than Jim.” And consider the statement “Either
Jim is not taller than Bill or Bill is not taller than Jim,” ie., ~p V ~q.
If we work the truth table of this compound, we find that it is false in the
first case. But this case is not logically possible, since under no circumstances
can p and ¢ both be true! Our compound is logically true, but a truth table
will not show this. Had we made a careful analysis of the possibilities as
to the heights of the two men, we would have found that the compound
statement is true in every case.

The Miracle Filter Company conducts an annual survey of the smoking
habits of adult Americans. The results of the survey are organized into 25
files, corresponding to the 25 cases in Figure 13.

First, figures are kept separately for men and women. Secondly, the
educational level is noted according to the following code:

did not finish high school

finished high school, no college

some college, but no degree

college graduate, but no graduate work
did some graduate work

H LN - O

Finally, there is a rough occupational classification: housewife, salaried
professional, or salaried nonprofessional.

They have found that this classification is adequate for their purposes.
For instance, to get figures on all adults in their survey who did not go
beyond high school, they pull out the files numbered 1,2, 3,4, 11, 12, 13,
14,15, and 16. Or they can locate data on male professional workers by
looking at files 1,3,5,7, and 9.

According to their analysis, the statement “The person is a housewife,
professional, or nonprofessional” is logically true, while the statement “The
person has educational level greater than 3, is neither professional nor
nonprofessional, but not a female with graduate education” is a self-
contradiction. The former statement is true about all 25 files, the latter about
none.

Of course, they may at some time be forced to consider a finer analysis
of logical possibilities. For instance, “The person is a male with annual
income over $10,000” is not a statement relative to the given possibilities.
We could choose a case—say case 6—and the given statement may be either
true or false in this case. Thus the analysis is not fine enough.

Of all the logical possibilities, one and only one represents the facts as
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Figure 18

EXERCISES

Educational
Case Sex Level Occupation
1 male 0 prof.
2 male 0 nonprof.
3 male 1 prof.
4 male 1 nonprof.
5 male 2 prof.
6 male 2 nonprof.
7 male 3 prof.
8 male 3 nonprof.
9 male 4 prof.
10 male 4 nonprof.
11 female 0 housewife
12 female 0 prof.
13 female 0 nonprof.
14 female 1 housewife
15 female 1 prof.
16 female 1 nonprof.
17 female 2 housewife
18 female 2 prof.
19 female 2 nonprof.
20 female 3 housewife
21 female 3 prof.
22 female 3 nonprof.
23 female 4 housewife
24 female 4 prof.
25 female 4 nonprof. B

they are. That is, for a given person, one and only one of the 25 cases is
a correct description. To know which one, we need factual information.
When we say that a certain statement is “true,” without qualifying 1t, we
mean that it is true in this one case. But, as we have said before, what
the case actually is lies outside the domain of logic. Logic can tell us only

what the circumstances (logical possibilities) are under which a statement
is true.

1. Prove that the negation of a logically true statement is logically false,

and the negation of a logically false statement is logically true.

Prove that if p and p — ¢ are logically true, then so is gq.

3. Classify each of the following as logically true, logically false, or
neither:

@ (@NpE-—9)—q [4ns. Logically true.]

N
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b)) [(pNANg—>rle(p—rnN\(g— )

© p-—o(qV ~q.

@ (p=9/N(Gg—=>n/N~(p—n.

@ ((p NV (p/A\r)—p.

® VPNV, [Ans. Neither.]

g (p— q)/\ ~(~qg— ~p). [Ans. Logically false.]

Find all cases in Figure 18 about which the following statement is true:

“The person is a nonprofessional and, if male, has had at least some

college training.”

In the example in Figure 18, give two logically true and two logically

false statements (other than those in the text).

A hat is filled with slips numbered 1 through 20, and two slips are

drawn. Which of the following analyses satisfy the first condition for

logical possibilities? What is wrong with the others?

The sum of the numbers on the slips is:

(@) (1) even, (2) odd.

(b) (1) prime, (2) greater than 37.

(¢) (1) less than 3, (2) even, (3) prime.

(d) (1) divisible by 3, (2) not divisible by 3.

(e) (1) less than 17, (2) 17, (3) greater than 17.

(f) (1) greater than 2, (2) less than 40.

(g (1)4,8,12,16, or 20, (2) larger than 20, (3) smaller than 20 and
odd.

In a college using grades A, B, C, D, and F how many logically possible

report cards are there for a student taking four courses? What if the

only grades are Pass and Fail?

A drive-in restaurant sells hamburgers for 35 cents, cheeseburgers for

45 cents, french fries for 20 cents, and milkshakes for 25 cents. How

many logical possibilities are there for orders totaling 85 cents? What

are they? [Partial Ans. There are three possibilities.]

Concerning the answer to Exercise 8, which of the following are logi-

cally true? Which are logically false? Which are neither?

(a) The order contains no french fries? [Ans. Neither.]

(b) The order contains more than one of some item.

(c) The order contains two hamburgers. [Ans. Logically false.]

(d) The order contains french fries if and only if it contains a milk-
shake.

(e) The order contains exactly two different types of food.

Suppose in Exercise 8 we are further told that the order is for a man

who is on a diet and therefore cannot eat milkshakes. What can we

conclude?

In Example 1, with the logical possibilities given by Figure 17, state

the cases in which the following are true:

(a) Exactly one white ball is drawn.

(b) Either the first urn is selected and a white ball is chosen on the
first draw, or two white balls are chosen.
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(¢) A white ball is drawn, and then a black ball.
(d) If the first ball is black, then the urn selected is not number 1
and the second ball is black.
(e) The balls are of the same color if and only if the first is black.
[Ans. 1,2,5,6,9,10.]
12. A survey of families having three children is taken. The sex of each
child is noted, beginning with the oldest. Construct a list of the logical
possibilities. [Hint: There are eight cases.]
13. In Exercise 12, in which cases is each statement below true?
(a) There are more girls than boys, but at least one boy.
(b) There is a boy if and only if there is a girl.
[Ans. Every case except BBB and GGG ]
(¢) The oldest child is a boy if the youngest is a girl.
14. How does the list of possibilities in Exercise 12 change if we neglect
the order in which the children were born?

5 TREE DIAGRAMS

EXAMPLE 1

Figure 19

A very useful tool for the analysis of logical possibilities is the drawing of
a “tree.” This device will be illustrated by several examples.

Consider again the survey of the Miracle Filter Company. They keep two
large filing cabinets, one for men and one for women. Each cabinet has
five drawers, corresponding to the five educational levels. Each drawer 1s
subdivided according to occupations; drawers in the filing cabinet for men
have two large folders, while in the other cabinet each drawer has three
folders.

When a clerk files a new piece of information, he first has to find the
right cabinet, then the correct drawer, and then the appropriate folder. This
three-step process of filing is shown in Figure 19. For obvious reasons we
shall call a figure like this, which starts at a point and branches out, a free.

Observe that the tree contains all the information relevant to classifying
a person interviewed. There are 25 ways of starting at the bottom and
following a path to the top. The 25 paths represent the 25 cases in Figure

NHPNHPNHPNH

VAVAVAVAVAVAVAVAVAV

N N\

O_"U

Male /Female
All people
(start)
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18. The order in which we performed the classification is arbitrary. We
might as well have classified first according to educational level, then ac-
cording to occupation, and then according to sex. We would still obtain
a tree representing the 25 logical possibilities, but the tree would look quite
different. (See Exercise 1.)

Next let us consider the example of Figure 16. This is a three-stage process;
first we select an urn, then draw a ball and then draw a second ball. The
tree of logical possibilities is shown in Figure 20. We note that six is the
correct number of logical possibilities. The reason for this is: If we choose

Black White Black White Black White

Nl LN\

Black White Black White

NSNS

First urn Second urn

~.

Start

the first urn (which contains two black balls and one white ball) and draw
from it a black ball, then the second draw may be of either color; however,
if we draw a white ball first, then the second ball drawn is necessarily black.
Similar remarks apply if the second urn is chosen.

As a final example, let us construct the tree of logical possibilities for the
outcomes of a World Series played between the Pirates and the Orioles.
In Figure 21 is shown half of the tree, corresponding to the case when the
Pirates win the first game (the dotted line at the bottom leads to the other
half of the tree). In the figure a “P” stands for a Pirate win and “O” for

92989922909 0092 00
ENENEVRCINEY R CINVECR S
EQ/ \/ VN RV
Ql’/ P\0/ P\P/ \0/
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O
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EXERCISES

an Oriole win. There are 35 possible outcomes (corresponding to the circled
letters) in the half-tree shown, so that the World Series can end in 70 ways.

This example is different from the previous two in that the paths of the
tree end at different levels, corresponding to the fact that the World Series
ends whenever one of the teams has won four games.

Not always do we wish as detailed an analysis as that provided in the
examples above. If, in Example 2, we wanted to know only the color and
order in which the balls were drawn and not which urn they came from,
then there would be only four logical possibilities instead of six. Then in
Figure 20 the second and fourth paths (counting from the left) represent
the same outcome, namely, a black ball followed by a white ball. Similarly,
the third and fifth paths represent the same outcome. Finally, if we cared
only about the color of the balls drawn, not the order, then there are only
three logical possibilities: two black balls, two white balls, or one black and
one white ball.

A less detailed analysis of the possibilities for the World Series is also
possible. For example, we can analyze the possibilities as follows: Pirates
in four, five, six, or seven games, and Orioles in four, five, six, or seven
games. The new classification reduced the number of possibilities from 70
to eight. The other possibilities have not been eliminated but merely
grouped together. Thus the statement “Pirates in four games” can happen
in only one way, while “Pirates in seven games” can happen in 20 ways
(see Figure 21). A still less detailed analysis would be a classification
according to the number of games in the series. Here there are only four
logical possibilities.

You will find that it often requires several trials before the “best” way
of listing logical possibilities is found for a given problem.

1. Construct a tree for Example 1, if people are first classified according
to educational level, then according to profession, and finally according
to sex. Is the shape of the tree the same as in Figure 197 Does it
represent the same possibilities?

2. We set up an experiment similar to that of Figure 20, but urn 1 contains
two black balls and four white balls, while urn 2 has one white ball
and five black balls. An urn is selected and three balls are drawn.
Construct the tree of logical possibilities. How many cases are there?

[Ans. 11.]

3. From the tree constructed in Exercise 2 answer the following questions.

(a) In how many cases do we draw three white balls?

(b) In how many cases do we draw three black balls?

(¢) In how many cases do we draw two white balls and a black ball?
(d) How many cases does this leave? What cases are these?
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In 1965 the Dodgers lost the first two games of the World Series, but

won the series in the end. In how many ways can the Series go so

that the winning team loses the first two games? [Ans. 10.]

In how many ways can the World Series be played (see Figure 21)

if the Pirates win the first game and

(a) The Pirates win the series? [Ans. 20.]

(b) No team wins two games in a row?

(¢) The losing team wins three games in a row?

(d) The losing team wins four games in a row?

The following is a typical process in genetics: Each parent has two

genes for a given trait, AA or Aa or aa. The child will inherit one

gene from each parent. What are the possibilities for a child if both

parents are AA? What if one is AA and the other aa? What if one

is AA and the other Aa? What if both are Aa? Construct a tree for

each process. (Let stage 1 be the choice of a gene from the first parent,

stage 2 from the second parent. Then see how many different types

the resulting branches represent.)

It is often the case that types AA and Aa (see Exercise 6) are indistin-

guishable from the outside but easily “distinguishable from type aa.

What are the logical possibilities if the two parents are of noticeably

different types?

A certain businessman has three favorite bars. After work he goes to

one of these bars at which he orders either whiskey or scotch. If he

likes the drink he goes directly home. If he does not like it, he goes

to one of the other two bars and again orders either whiskey or scotch;

he then goes home after the second drink. Draw the tree of logi-

cal possibilities, labeling the bars, A, B, and C. How many possibili-

ties are there?

In Exercise 8, how many possibilities are there in which

(a) He drinks only whiskey? [Ans. 9.]

(b) He visits bar B?

(¢) He visits bars A and B?

(d) He visits Bar C and has both scotch and whiskey?

In Exercise 2 we wish to make a rougher classification of logical

possibilities. What branches (in the tree there constructed) become

identical 1if

(a) We do not care about the order in which the balls are drawn?

(b) We care neither about the order of balls, nor about the number
of the urn selected?

() We care only about what urn is selected, and whether the balls
drawn are all the same color?

A menu lists a choice of soup, fruit, or orange juice for an appetizer;

a choice of steak, chicken, or fish for the entree; and a choice of pie

or cake for dessert. A complete dinner consists of one choice for each

course. Draw a tree for the possible complete dinners.

(a) How many different complete dinners are possible?  [Ans. 18.]
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12.

13.

14.

15.

16.
17.

18.

(b) If a man refuses to eat chicken or cake, how many different
complete dinners can be choose?

(c¢) A certain customer eats pie for dessert if and only if he did not
have fruit or orange juice for an appetizer. How many different
complete meals are available to him?

A man is considering the purchase of one of four types of stocks. Each

stock may go up, go down, or stay the same after his purchase. Draw

the tree of logical possibilities.

For the tree constructed in Exercise 12 give a statement which

(a) Is true in half the cases.

(b) Is false in all but one case.

(c¢) Is true in all but one case.

(d) Is logically true.

(e) Is logically false.

In how many different ways can 70 cents change be given, using

quarters, dimes, and nickels? Draw a tree. [Hint: To eliminate dupli-

cation, require that larger coins be handed out before smaller ones.

Let the branches of the tree be labeled with the number of coins of

each type handed out.] [Ans. 16.]

Redraw the tree of Exercise 14, requiring that smaller coins be handed

out before larger ones.

What is the answer to Exercise 14 if only two dimes are available?

A college valedictorian plans to speak on brotherhood, integrity, or

“the System” at commencement. The college president will speak on

brotherhood, integrity, or the challenge of the future, but will not pick

the same topic as the valedictorian. The college chaplain always
speaks on brotherhood, unless the president does, in which case he
chooses one of the other three topics.

(@) Using a tree, determine the number of logical possibilities.

[Ans. 11.]
(b) In how many of the different programs will there be a speech
on “the System”? [Ans. 6.]

(¢) How many different programs are there in which the audience

will have to listen to more than one speech on the same topic?
In Exercise 17, how many logical possibilities are there if we take into
account only speech topics and number of times a given topic is used
and disregard the speakers and order of the speeches?

6 LOGICAL RELATIONS

Until now we have considered statements in isolation. Sometimes, however,
we want to consider a relationship between pairs of statements. The most
interesting such relation is that one statement (logically) implies another one.
We define implication as follows: r implies s if s is true whenever r is true,
i.e., if s is true in all the logically possible cases in which r is true. We shall
use the notation r = s for the relation r implies s.
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If p implies g we also say that g follows from p, or that g is (logically)
deducible from p. For example, in any mathematical theorem the hypothesis
implies the conclusion.

Note that r = s is a relation and not a statement. However, it follows
from the definition that » = s holds if and only if the conditional r — s
1s logically true.

For compound statements having the same components, truth tables
provide a convenient method for testing this relation. In Figure 22 we

p q peq p—q PVyg
T T T T T
T F F F T
F T F T T
F F T T F

illustrate this method. Let us take p < ¢ as our hypothesis . Since it is
true only in the first and fourth cases, and p — ¢ is true in both these cases,
we see that the statement p <> ¢ implies p — ¢. On the other hand, the
statement p V ¢ is false in the fourth case and hence it is not implied by
p <> ¢. Again, a comparison of the last two columns of Figure 22 shows
that the statement p — ¢ does not imply and is not implied by p V g.

Let us now take up the “‘paradoxes” of the conditional. Conditional
statements sound paradoxical when the components are not related. For
example, it sounds strange to say that “If it is a nice day then chalk is made
of wood” is true on a rainy day. It must be remembered that the conditional
statement just quoted means no more and no less than that one of the
following holds: (1) It is a nice day and chalk is made of wood, or (2) It
is not a nice day and chalk is made of wood, or (3) It is not a nice day
and chalk is not made of wood. (See Figure 11b.) And on a rainy day
number (3) happens to be correct.

But it is by no means true that “It is a nice day” implies that “Chalk
is made of wood.” It is logically possible for the former to be true and for
the latter to be false (indeed, this is the case on a nice day, with the usual
method of chalk manufacture), hence the implication does not hold. Thus,
while the conditional quoted in the previous paragraph is true on a given
day, it is not logically true.

In common parlance “if ... then ...” is usually asserted on logical
grounds. Hence any usage in which such an assertion happens to be true,
but is not logically true, sounds paradoxical. Similar remarks apply to the
common usage of “if and only if.”

The second relation we shall consider is equivalence. We shall say that
r is equivalent to s, denoted by r < s, if r is true whenever s is true and
vice versa. In other words, r < s, if and only if r « s is logically true. We
have already noted that equivalent statements have the same truth table.
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Figure 23

Figure 24

~p N\ ~q ~(p V9

moo- TS
o TR
— m T T
— T T T

Figure 23 establishes that ~p N ~q is equivalent to ~(p V ¢), which is one
of DeMorgan’s laws. (See Figure 10 for the other DeMorgan law.)

An implication r => s or an equivalence p <> ¢ can be established on
purely logical grounds. From these we can construct valid arguments, as
we shall see in Section 8. In Section 9 other ways of stating implications
and equivalences will be discussed which are (sometimes) more convenient
forms in which to carry out such arguments.

A third important relationship is that of inconsistency. Statements r and
s are inconsistent if it is impossible for both of them to be true, in other
words, if » /A s is a self-contradiction. For example, the statements p Ngq
and ~q are inconsistent (see Figure 24). An important use of logic is to
check for inconsistencies in a set of assumptions or beliefs.

p q pNq ~q
T T T F
T F F T
F T F F
E F F T

We conclude this section by listing several important implications and
equivalences:

(1) pNqg=p.

) pNg=pVyq

3) pegp=@E-—9.
(4) PN —q =y

(5) (p— PN\ ~q3=~p.
6) P—=9Ng—=n=(p—7
@) (p(—)g)/\(qer)_—_>(p<—>r).
®) po9PpN@—=>p=p<9.

In the Exercises you will be asked to establish some of these relations.
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Show that (p & ¢q) — (p — ¢) is logically true, but that

(p < g)— (pV g) is not logically true. Interpret this in terms of

implications.

Is it true that p = ~p? Explain why this does or does not tell us that

p — ~p is logically false.

If p is logically true, prove that

(@) pV g is logically true.

() ~p N g is logically false.

(¢) p/\gqis equivalent to g.

(d) ~p V g is equivalent to g.

Construct truth tables for the following compounds and test for impli-

cations and equivalences.

(@ pV ~q.

(b) ~p & ~q.

() g—p.

@ pA ~q.

(e) ~(p—9). [Partial Ans. (a) < (c); (e) = (a), (¢), (d).]

Construct truth tables for the following compounds, and arrange them

in order so that each compound implies all the following ones.

(@) ~p &g

) p— (~p—q).

© ~[p— (@@ p)

@ pVyg.

@ ~pAg. [4ns. (@), (e). (2), (d). (b)]

Which of the following are equivalent: p, ~p,p V p,p A p,p — p,

p <> p? Prove (using truth tables) your answers. Which are incon-

sistent?

Construct a compound equivalent to p < ¢ using only the connectives

— and /\. Interpret your result in terms of equivalences and implica-

tions.

[Partial Ans. Saying that two statements are equivalent is the same as
saying that each implies the other.]

Show that ~p \ ¢ = ~(q — p).

If p is logically true, g is logically false, and p and r are inconsistent,

what is the status of ~p < ~(q V r)?

The statements r and s are compounds of p and ¢ and have the

following truth tables:

p q r s t
T T T T
T F F F
F T T T
F F T F




30 Compound Statements Chapter 1

Find a statement 7 which is a compound of p and g satisfying each of the
following properties:

11.

12.

13.

14.

15.

16.
17.

18.

19.

(@) te=r. [Ans. p — q.]
(b) 1t is inconsistent with s. [Ans. ~q.]
(c) t<=s.

(d) ¢ < ris logically true.

(e) 1 —> s is neither logically true nor logically false.

(f) 1 & sis logically false.

g r=t

(h) ¢ —> ris logically false.

In Exercise 10,

(a) What is the relation between r and s? [Ans. s = r.]

(b) How many nonequivalent statements 7 which are compounds of
p and g can be found which satisfy the condition that s implies
¢ and ¢ implies s? What are they?

If r and s are compounds of p and g such that r is logically false and

s is logically true, what compounds 7 will satisfy both the conditions

r=tand1=s.

Pick out an inconsistent pair from among the following four compound

statements.

rop—q.

s q.

10 ~(q = p) u: ~p < ~q.

In Exercise 13 is there an inconsistent pair among r, s, and 1? Is it

possible that all three statements are true?

What relation exists between two logically true statements? Between

two self-contradictions?

Verify the implications (1)-(4) stated at the bottom of page 28.

Verify the implications (5)-(7) and equivalence (8) stated at bottom of

page 28.

Let p|q be defined as “p and g are not both true.”

(a) Construct a truth table for p|gq. [Ans. FTTT]

(b) Show that (p|q)|(p|q) is equivalent to p /\ q.

(c) Find a compound using only | which is equivalent to ~p.

We shall call a connective “adequate” if ~p, p N\ g, p V ¢, p <> ¢, and

p — q can be expressed in terms of p, ¢, and that connective.

(@) Using the results of Exercise 11 in Section 3 and Exercise 18 above,
show that the connective | is adequate.

(b) In Exercise 13, Section 3, it was shown that the connective | 1s
adequate. Could we define a third different connective such that
it would also be adequate? (Hint: Consider the truth table that
it must have. If we call the new connective {, then p$ p must
be false if p is true, since otherwise any expression involving p
and § would be true if p is true and we would not be able to
express ~p. Thus p § q is false if p and g are both true.]
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«<7 VALID ARGUMENTS

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

One of the most important tasks of a logician is the checking of arguments.
By an argument we shall mean the assertion that a certain statement (the
conclusion) follows from other statements (the premises). An argument will
be said to be (logically) valid, if and only if the conjunction of the premises
implies the conclusion; i.e., if the premises are all true, the conclusion must
also be true.

It is important to realize that the truth of the conclusion is irrelevant as
far as the test of the validity of the argument goes. A true conclusion 18
neither necessary nor sufficient for the validity of the argument. The two
examples below show this, and they also show the form in which we shall
state arguments, i.e., first we state the premises, then draw a line, and then
state the conclusion.

If the United States is a democracy, then its
citizens have the right to vote.
Its citizens do have the right to vote.

Therefore the United States is a democracy.

The conclusion is, of course, true. However, the argument is not valid
since the conclusion does not follow from the two premises, as we shall show
later.

To pass this math course you must be a genius.
Every player on the football team has passed this course.
The captain of the football team is not a genius.

Therefore the captain of the football team does not
play on the team.

Here the conclusion is false, but the argument is valid since the conclusion
follows from the premises. If we observe that the first premise is false, the
paradox disappears. There is nothing surprising in the correct derivation
of a false conclusion from false premises.

If an argument is valid, then the conjunction of the premises implies the
conclusion. Hence if all the premises are ture, then the conclusion is also
true. However, if one or more of the premises is false, so that the conjunction
of all the premises is false, then the conclusion may be either true or false.
In fact, all the premises could be false, the conclusion true, and the argument
valid, as the following example shows.

All dogs have two legs.
All two-legged animals are carnivorous.

Therefore, all dogs are carnivorous.

Here the argument is valid and the conclusion is true, but both premises
are false!
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Figure 26

Each of these examples underlines the fact that neither the truth value
nor the content of the statements appearing in an argument affect the
validity of the argument. In Figures 25a and 25b are two valid forms of
arguments.

P49 P9

T -9
. .q So~p
Figure 25a Figure 25b

The symbol .". means “therefore.” The truth tables for these argument
forms appear in Figure 26.

P q P—q P 9 P—4q ~q ~P
T T T T T T F F
T F F T F F T F
F T T F T T F T
F F T F F T T T

For the argument of Figure 25a, we see in Figure 26 that there is only
one case in which both premises are true, namely, the first case, and that
in this case the conclusion is true, hence the argument is valid. Similarly,
in the argument of Figure 25b, both premises are true in the fourth case
only, and in this case the conclusion is also true; hence the argument is
valid.

Another way of stating that the argument in Figure 25a is valid is that
the implication [(p — ¢) /\ g] = g is true. Similarly for Figure 25b we note
that the implication [(p — ¢) /\ ~q] = ~p is true. Actually any true
implication gives rise to a valid argument and vice versa.

An argument that is not valid is called a fallacy. Two examples of fallacies
are the following argument forms.

P4 P—4q
q Fallacies ~p
.'.p ~q

In the first fallacy, both premises are true in the first and third cases of F igure
26, but the conclusion is false in the third case, so that the argument
is invalid. (This is the form of Example 1.) Similarly, in the second fallacy
we see that both premises are true in the last two cases, but the conclusion
is false in the third case.

We say that an argument depends only upon its form in that it does not
matter what the componenets of the argument are. The truth tables in
Figure 26 show that if both premises are true, then the conclusions of the
arguments in Figures 25a and 25b are also true. For the fallacies above,
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the truth tables show that it is possible to choose both premises true without
making the conclusion true, namely, choose a false p and a true q.

Consider the following argument.

P9

q—>r

Sop—or

The truth table of the argument appears in Figure 27.

~

~
3

~
~
el R N B I e s I N I

kil
S
B

s lies el B B B B
SRR R R R
ST ST S

HamSaaT ]|

Both premises are true in the first, fifth, seventh, and eighth rows of the
truth table. Since in each of these cases the conclusion 1s also true, the
argument is valid—that is, the implication [(p — ¢) N\ (¢ = )] = (p — r)
is true. (Example 3 can be written in this form.)

Once we have discovered that a certain form of argument is valid, we
can use it in drawing conclusions. It is then no longer necessary to compute
truth tables. Presumably, this is what we do when we reason in everyday
life; we apply a variety of valid forms known to us from previous experience.
However, the truth table method has one great advantage: it is always
applicable and purely automatic. We can even get a computer to test the
validity of arguments involving compound statements.

1. Test the validity of the following arguments:

@ peg B pVg (© pN\g
P ~p ~p—q
.q Sooq Lo~q

[Ans. (a), (b) are valid.]
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2. Test the validity of the following arguments:

(@) p—> 4 (b) P— 9
~q — ~r ~r— ~q
r— p o~F— ~p

{Ans. (b) 1s valid.]
3. Test the validity of the argument

P <9
gV r

~r
~p [Ans. Not valid.]
4. Test the validity of the argument

PY 9
~qg— r
~p V ~r
P
5. Test the validity of the argument

P> 9
~p — ~¢q
p N\ ~r

§

6. Given are the premises ~p — g and ~r — ~g. We wish to find a

valid conclusion involving p and r (if there is any).

(a) Construct truth tables for the two premises.

(b) Note the cases in which the conclusion must be true.

(c) Construct a truth table for a combination of p and r only, filling
in T wherever necessary.

(d) Fill in the remainder of the truth table, making sure that you do
not end up with a logically true statement.

(e) What combinatton of p and r has this truth table? This is a valid

conclusion. [Ans. p V r.]
7. Translate the following argument into symbolic form, and test its
validity.

If this is a good course, then it i1s worth taking.

Either the grading is lenient, or the course is not
worth taking.

But the grading is not lenient.

Therefore, this is not a good course.
[Ans. Valid.]

8. Show that the following method may be used for testing the validity
of an argument: Find the cases in which the conclusion is false, and
show that in each case at least one premise is false.
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9. Use the method of Exercise 8 to test Example 4.
10. Redo Exercise 1 using the method of Exercise 8.
11. Redo Exercise 4 using the method of Exercise 8.
12. Draw a valid conclusion from the following premises:

He is either a man or a mouse.

He has no skill in athletics.

To be a man it is necessary to command respect.

A man can command respect only if he has some athletic skill.
13. Draw a valid conclusion from the following premises:

Either he will go to graduate school or he will be drafted.
If he does not go to graduate school, he will get married.
If he gets married, he will need a good income.
He will not have a good income in the army.
14. Write the following argument in symbolic form, and test its validity.

“For the candidate to win, it is sufficient that he carry New York. He
will carry New York only if he takes a strong stand on civil rights.
He will not take a strong stand on civil rights. Therefore, he will not
win.”

15. Write the following argument in symbolic form and test its validity.

“Father praises me only if I can be proud of myself. Either I do well
in sports or I cannot be proud of myself. If I study hard, then I cannot
do well in sports. Therefore, if father praises me, then I do not study
hard.”

8 VARIANTS OF THE CONDITIONAL

EXAMPLE 1

The conditional of two statements differs from the biconditional and from
disjunctions and conjunctions of these two in that it lacks symmetry. Thus
p V q is equivalent to ¢ V p, p /\ ¢ is equivalent to ¢ N\ p, and p « ¢ is
equivalent to ¢ <> p; but p — g is not equivalent to g — p. The latter
statement, g — p, is called the converse of p — g. Many of the most
common fallacies in thinking arise from a confusion of a statement with
its converse.

On the other hand, the conditional p — g is equivalent to the conditional
~g — ~p, which is known as the contrapositive. The relationships among
these three statements is demonstrated in Figure 28.

Let a be a positive real number, p the statement “a < 1,” and g the statement
“q2 < 100.” Then the conditional p — ¢ is “If a < 7, then @ < 100.” This
is logically true, i.e., true for every positive real number. But the converse,
“If @2 < 100 then a < 7,” is not logically true, and hence cannot be equiva-
lent to the original statement. To show that it fails to be logically true, we
must exhibit at least one logical possibility for which it is false. For example,
if a = 9, then ¢ is true (92 < 100) but p (9 <7) is false.

The contrapositive is “If a2 > 100, then a > 7,” which is logically true.
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Figure 28

Contra-
Conditional Converse positive
P q H p—4 q9—P ~q9—> P
T T T T T
T F F T F
F T T F T
F F T T T
L

Since a positive number a can have a® > 100 only if a > 10, it is necessarily
true that @ > 7.

A mathematical statement that one suspects to be true, but whose truth
or falsity has not yet been established by a proof, is known as a conjecture.
One then attempts one of two procedures. One may attempt to construct
a proof, which establishes the logical truth of the proposition. Or one may
attempt to construct a counterexample, that is, a single logically possible case
for which the proposition is false, which shows that the statement is not
logically true. In either case the conjecture is settled, either positively or
negatively.

The use of conditionals seems to cause more trouble than the use of the
other connectives, perhaps because of the lack of symmetry, but also perhaps
because there are so many different ways of expressing conditionals. In
many cases only a careful analysis of a conditional statement shows whether
the person making the assertion means the given conditional or its converse.
Indeed, sometimes he means both of these, i.e., he means the biconditional.
(See Exercise 5.)

The statement “I will go for a walk only if the sun shines” is a variant
of a conditional statement. A statement of the form “p only if g” is closely
related to the statement “If p then ¢,” but just how? Actually the two express
the same idea. The statement “p only if ¢ states that “If ~¢q then ~p”
and hence is equivalent to “If p then ¢.” Thus the statement at the beginning
of the paragraph is equivalent to the statement “If I go for a walk, then
the sun will be shining.”

Other phrases, in common use by mathematicians, which indicate a
conditional statement are: “‘a necessary condition” and “a sufficient condi-
tion.” To say that p is a sufficient condition for g means that if p takes
place, then ¢ will also take place. Hence the sentence “p is a sufficient
condition for g” is equivalent to the sentence “If p then ¢.”

Similarly, the sentence “p is a necessary condition for g7 is equivalent
to “q only if p.” Since we know that the latter is equivalent to “If g then
p,” it follows that the assertion of a necessary condition is the converse of
the assertion of a sufficient condition.

Finally, if both a conditional statement and its converse are asserted, then
effectively the biconditional statement is being asserted. Hence the assertion
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Basic Statement Equivalent Forms

If p then g p only if g
p is a sufficient condition for g

If g then p g only if p
p is a necessary condition for ¢

p if and only if g p is a necessary and sufficient condition for ¢

“p is a necessary and sufficient condition for g is equivalent to the assertion
“p if and only if ¢.”
These various equivalences are summarized in Figure 29.

We can restate “If ¢ < 7, then a? < 100” as follows:

a < 7 is a sufficient condition for a? < 100.
a < 7 only if a® < 100.
a® < 100 is a necessary condition that a < 7.

Let a be an integer, let p be the statement “a is odd,” and let ¢ be the
statement “a? is odd.” Then the biconditional p < g is the statement “Inte-
ger a is odd if and only if a? is odd,” which can easily be proved to be
true (see Section 9.) We can restate this as follows:

a is odd is necessary and sufficient that a* is odd.

Since p <> g and ~p <> ~q are equivalent, we can also state the theorem
as:

a is even if and only if a* is even; or
a is even is necessary and sufficient that a® is even.

1. Let p stand for “I will pass this course” and ¢ for “I will do homework

regularly.” Put the following statements into symbolic form.

(a) 1 will pass the course only if I do homework regularly.

(b) Doing homework regularly is a necessary condition for me to pass
this course.

(c) Passing this course is a sufficient condition for me to do homework
regularly.

(d) 1 will pass this course if and only if I do homework regularly.

(e) Doing homework regularly is a necessary and sufficient condition
for me to pass this course.
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2.

10.

Take the statement in part (a) of the previous exercise. Form its

converse, its contrapositive, and the converse of the contrapositive. For

each of these give both a verbal and a symbolic form.

Let p stand for “It snows” and ¢ for “The train is late.” Put the

following statements into symbolic form.

(a) Snowing is a sufficient condition for the train to be late.

(b) Snowing is a necessary and sufficient condition for the train to
be late.

(¢) The train is late only if it snows.

Take the statement in part (a) of the previous exercise. Form its

converse, its contrapositive, and the converse of its contrapositive. Give

a verbal form of each of them.

Prove that the conjunction of a conditional and its converse is equiva-

lent to the biconditional.

To what is the conjunction of the contrapositive and its converse

equivalent? Prove it.

Prove that

(@) ~~p is equivalent to p.

(b) The contrapositive of the contrapositive is equivalent to the
original conditional.

“For a matrix to have an inverse it is necessary that its determinant

be different from zero.” Which of the following statements follow from

this? (No knowledge of matrices is required.)

(a) For a matrix to have an inverse it is sufficient that its determinant
be zero.

(b) For its determinant to be different from zero it is sufficient for
the matrix to have an inverse.

(¢) Forits determinant to be zero it is necessary that the matrix have
no inverse.

(d) A matrix has an inverse if and only if its determinant is not zero.

(¢) A matrix has a zero determinant only if it has no inverse.

[Ans. (b); (c); (e).]

“A function that is differentiable is continuous.” This statement is true

for all functions, but its converse is not always true. Which of the

following statements are true for all functions? (No knowledge of

functions is required.)

(a) A function is differentiable only if it is continuous.

(b) A function is continuous only if it is differentiable.

(¢) Being differentiable is a necessary condition for a function to be

continuous.

(d) Being differentiable is a sufficient condition for a function to be
continuous.

(e) Being differentiable is a necessary and sufficient condition for a
function to be differentiable. [4ns. (a); (d); (e).]

Prove that the negation of “p is a necessary and sufficient condition
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for g” is equivalent to “p is a necessary and sufficient condition for
~q.”

11. Supply a conclusion to the following argument, making it a valid
argument. [Adapted from Lewis Carroll ]

“If he goes to a party, he does not fail to brush his hair.

To look fascinating it is necessary to be tidy.

If he is an opium eater, then he has no self-command.

If he brushes his hair, he looks fascinating.

He wears white kid gloves only if he goes to a party.

Having no self-command is sufficient to make one look untidy.
Therefore. . . .”

*9 THE INDIRECT METHOD OF PROOF

EXAMPLE 1

A mathematical theorem is an implication of the form p = g, where p is
the conjunction of hypotheses and ¢ is the conclusion. A proofis an argu-
ment that shows the conditional statement p — ¢ is logically true. Such
an argument usually depends on axioms, known theorems, etc. The con-
struction of mathematical proofs frequently requires great ingenuity.

Instead of showing that p — ¢ is logically true it is sometimes more
convenient to show that an equivalent statement is logically true. We call
such arguments indirect proofs. For instance, if we show that the contra-
positive

(D ~q = ~p

is logically true, then, since it is equivalent to p — g, we have also proved
the latter to be logically true.

Let x and y be positive integers.

Theorem If xy is an odd number, then x and y are both odd.

EXAMPLE 2

Proof Suppose, on the contrary, that they are not both odd. Then one of
them is even, say x = 2z. Then xy = 2zy is an even number, contrary o
hypothesis. Hence we have proved our theorem.

“He did not know the first name of the president of the Jones Corporation,
hence he cannot be an employee of that firm. Why? Because every em-
ployee of that firm calls the boss by his first name (behind his back).
Therefore, if he were really an employee of Jones, then he would know
Jones’s first name.”

These are simple examples of a very common form of argument, frequently
used both in mathematics and in everyday discussions. Let us try to unravel
the form of the argument.
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EXAMPLE 3

Given: xy is an odd number. He doesn’t know Jones’s p
first name.
To prove: x and y are both odd He doesn’t work for q
numbers. Jones.
Suppose:  x and y are not both He does work for Jones. ~q
odd numbers.
Then: Xy 1s an even number. He must know what ~p

Jones’s first name is.

In each case we assume the denial of the conclusion and derive, by a valid
argument, the denial of the hypothesis. This is one form of the indirect
method of proof.

There are several other important variants of this method of proof. It
is easy to check that the following statements have the same truth table
as—i.e., are equivalent to—the conditional p — g¢.

(2) (p N\ ~q) > ~p.
3) (p N\ ~q9)— q.
4) PN\ ~q)— (r /\ ~r).

Statement (2) shows that in the indirect method of proof we may make use
of the original hypothesis in addition to the contradictory assumption ~q.
Statement (3) shows that we may also use this double hypothesis in the direct
proof of the conclusion g. Statement (4) shows that if, from the double
hypothesis p and ~g we can arrive at a contradiction of the form r /\ ~r,
then the proof of the original statement is complete. This last form of the
method is often referred to as reductio ad absurdum.

These last forms of the method are very useful for the following reasons:
First of all we see that we can always take ~¢ as a hypothesis in addition
to p. Second we see that besides g there are two other conclusions. (~p
or a contradiction) which are just as good.

Let a and b be integers, p the statement “a + b is odd and a is even,” and
g the conclusion “b is odd.” We prove p — g by means of (2) as follows:

To prove: p— g If a + b is odd and a is even, then b is odd.

Suppose:  p N\ ~q a + b is odd, a is even, and b is even.

Then: ~p a + b is even (since the sum of two even numbers
is even).

We can also illustrate (4) by starting the same way but ending with
Then: ~p N p a + biseven (as above) and (by hypothesis) a + b
is odd.
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EXAMPLE 4 Let p be the statement “3a® — 2a + 4 = 0” and ¢ the statement “a is not

EXERCISES

0.” We use (3):

To prove: p— g If 3¢3 — 2a + 4 = 0, then a # 0.

Assume: pA\~q 3a®—-2a+4=0anda=0.

Then: q (Since a = 0, put 3¢® = 0 into the equation to

get —2a+4=0o0ra=2) Hence a # 0.
We can also again illustrate (4) starting the same way but ending

Then: r/N\ ~r (Put 3a3 = 2a = 0 into the equation, giving
4 =0.) Since we know 4 # 0, we have the ab-
surdity (4 = 0) A\ (4 #0.)

1. Construct indirect proofs for the following assertions:

(a) If x2is odd, then x is odd (x an integer).

(b) If I am to pass this course, I must do homework regularly.
2. Give a symbolic analysis of the following argument:

“If he is to succeed, he must be both competent and lucky. Because,
if he is not competent, then it is impossible for him to succeed. If he
is not lucky, something is sure to go wrong.”

3. Construct indirect proofs for the following assertions.
(@) IfpV ¢ and ~q, then p.
(b) Ifp & g and g — ~r and r, then ~p.

4. Give a symbolic analysis of the following argument:

“If Jones is the murderer, then he knows the exact time of death and
the murder weapon. Therefore, if he does not know the exact time
or does not know the weapon, then he is not the murderer.”

Verify that forms (2), (3), and (4) given above are equivalent top — ¢.

Let x and y be integers. Construct indirect proofs for the following

assertions.

(@) If x + y is even, then x and y are both odd or both even.

(b) If x + yis odd, then either x is odd and y even or x is even and
y odd.

7. Consider the conditional p — (¢ \V r) corresponding to a theorem in
which the conclusion is a disjunction. Discuss the four forms of indirect
proof for this statement. [Hint: Use Exercise 6 as an example.]

8. Give an example of an indirect proof of some statement in which a
contradiction is derived from p and ~q.

9. Give a statement equivalent to (p /\ ¢) — r which is in terms of ~p,
~g, and ~r. Show how this can be used in a proof where there are
two hypotheses given.

SAING
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10. Use the indirect method to establish the validity of the following

argument.
PY 9
~p— r
r— s
q— ~s
P

11. Use the indirect method on Exercise 7 of Section 7.
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INTRODUCTION

A well-defined collection of objects is known as a ser. This concept, in its
complete generality, is of great importance in mathematics since all of
mathematics can be developed by starting from it.

The various pieces of furniture in a given room form a set. So do the
books in a given library, or the integers between 1 and 1,000,000 or all
the ideas that mankind has had, or the human beings alive between 1 billion
B.C. and A.D. 10 billion. These examples are all examples of finite sets, that
is, sets having a finite number of elements. All the sets discussed in this
book will be finite sets.

The collection of all tall people is not a well-defined set, because the word
“tall” is not precisely defined. On the other hand the set of all people whose
height is six feet or more is a well-defined set, because we can determine
whether any given person belongs to the set simply by measuring his height.

There are two essentially different ways of specifying a set. One can give
a rule by which it can be determined whether or not a given object is a
member of the set, or one can give a complete list of the elements in the
set. We shall say that the former is a description of the set and the latter
is a listing of the set. For example, we can define a set of four people as
(a) the members of the string quartet which played in town last night, or
(b) four particular persons whose names are Jones, Smith, Brown, and
Green. It is customary to use braces to surround the listing of a set; thus
the set above should be listed {Jones, Smith, Brown, Green}.

We shall frequently be interested in sets of logical possibilities, since the
analysis of such sets is very often a major task in the solving of a problem.
Suppose, for example, that we were interested in the successes of three
candidates who enter the presidential primaries (we assume there are no

45
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Figure 1

other entries). Suppose that the key primaries will be held in New Hamp-
shire, Minnesota, Winsonsin, and California. Assume that candidate A
enters all the primaries, that B does not contest in New Hampshire’s primary,
and C does not contest in Wisconsin’s. A list of the logical possibilities is
given in Figure 1. Since the New Hampshire and Wisconsin primaries can

Possibility Winner in Winner in | Winner in | Winner in
Number New Hampshire | Minnesota Wisconsin | California
Pl A A A A
P2 A A A B
P3 A A A C
P4 A A B A
P5 A A B B
P6 A A B C
P7 A B A A
P8 A B A B
P9 A B A C
P10 A B B A
P11 A B B B
P12 A B B C
P13 A C A A
Pl4 A C A B
P15 A C A C
P16 A C B A
P17 A C B B
P18 A C B C
P19 C A A A
P20 C A A B
P21 C A A C
P22 C A B A
P23 C A B B
P24 C A B C
P25 C B A A
P26 C B A B
P27 C B A C
P28 C B B A
P29 C B B B
P30 C B B C
P31 C C A A
P32 C C A B
P33 C C A C
P34 C C B A
P35 C C B B
P36 C C B C
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each end in two ways, and the Minnesota and California primaries can each
end in three ways, there are in all2-2-3+3 = 36 different logical possibilities
as listed in Figure 1.

A set that consists of some members of another set is called a subser of
that set. For example, the set of those logical possibilities in Figure 1 for
which the statement “Candidate A wins at least three primaries” is true,
is a subset of the set of all logical possibilities. This subset can also be
defined by listing its members: {P1, P2, P3, P4, P7, P13, P19}.

In order to discuss all the subsets of a given set, let us introduce the
following terminology. We shall call the original set the universal set,
one-element subsets will be called unir sers, and the set which contains no
members the empty set. We do not introduce special names for other kinds
of subsets of the universal set. As an example, let the universal set U consist
of the three elements {a, b, c}. The proper subsets of U are those sets
containing some but not all of the elements of U. The proper subsets here
consist of three two-element sets—namely, {a, b}, {4, ¢}, and {b, c}—and
three unit sets—namely, {a}, {b}, and {c}. To complete the picture, we
also consider the universal set a subset (but not a proper subset) of itself,
and we consider the empty set* &, which contains no elements of U, as
a subset of U. At first it may seem strange that we should include the sets
U and & as subsets of U, but the reasons for their inclusion will become
clear later.

We saw that the three-element set above had 8 = 27 subsets. In general,
a set with n elements has 2” subsets, as can be seen in the following manner.
We form subsets £ of U by considering each of the elements of U in turn
and deciding whether or not to include it in the subset P. If we decide to
put every element of ‘U into £, we get the universal set, and if we decide
to put no element of U into P, we get the empty set. In most cases we
shall put some but not all the elements into P and thus obtain a proper
subset of L. We have to make n decisions, one for each element of the
set, and for each decision we have to choose between two alternatives. We
can make these decisions in 2+2- ... -2 = 2" ways, and hence this is the
number of different subsets of ‘U that can be formed. Observe that our
formula would not have been so simple if we had not included the universal
set and the empty set as subsets of ‘U.

In the example of the voting primaries above there are 236 or about 70
billion subsets. Of course, we cannot deal with this many subsets in a
practical problem, but fortunately we are usually interested in only a few
of the subsets. The most interesting subsets are those which can be defined
by means of a simple rule such as “the set of all logical possibilities in which
C loses at least two primaries.” It would be difficult to give a simple
description for the subset containing the elements {P1, P4, P14, P30, P34}.
On the other hand, we shall see in the next section how to define new subsets
in terms of subsets already defined.

*Many books use ¢ to symbolize the empty set.
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EXAMPLES

EXERCISES

We illustrate the two different ways of specifying sets in terms of the primary
voting example. Let the universal set U be the logical possibilities given
in Figure 1.

1. What is the subset of U in which candidate B wins more primaries
than either of the other candidates? Answer: {P11, P12, P17, P23, P26,
P28, P29}.

2. What is the subset in which the primaries are split two and two?
Answer: {P5, P8, P10, P15, P21, P30, P31, P35}.

3. Describe the set {P1, P4, P19, P22}. Answer: The set of possibilities
for which A wins in Minnesota and California.

4. How can we describe the set {P18, P24, P27}? Answer: The set of
possibilities for which C wins in California, and the other primaries are split
three ways.

1. In the primary example, list each of the following sets.

(a) The set in which A and C win the same number of primaries.

(b) The set in which the winner of the New Hampshire primary does
not win another primary.

(¢) The set in which C wins all four primaries.

2. Again referring to the primary example, give simple descriptions of
the following sets.

(a) [P1, P4, P8, P11, P15, P18, P19, P22, P26, P29, P33, P36].
(b) [P18, P22, P26].
(c¢) [PL,PIL, P19, P29]

3. The primaries are considered decisive if a candidate can win three
primaries, or if he wins two primaries including California. List the
set in which the primaries are decisive.

4. List the set of four-letter “words” formed by writing down the letters
of the word srop in all possible ways. [Hint: The set has 24 elements.]

5. In Exercise 4, list the following subsets:

(a) The set of English words. [Partial Ans. There are 6.]

(b) The set in which the letters are in alphabetical order either from

left to right or from right to left.

(¢) The set in which p and ¢ are next to each other,

(d) The set in which only s is between o and .

(¢) The set in which ¢ and s are at the ends.

Find all pairs in Exercise 5 in which one set is a subset of the other.

A baker has four feet of display space to fill with some combination

of bread, cake, and pie. A loaf of bread takes one-half foot of space,

a cake takes one foot, and a pie takes two feet. Construct the set of

possible distributions of shelf space, considering only the total space

allotted to each kind of item.

8. In Exercise 7, list the following subsets.

Y
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(a) The set in which as much space is devoted to pie as to cake.
(b) The set in which equal space is given to two different items, and
at least two different items are displayed.
(¢) The set in which six or more items are displayed.
(d) The set in which at least two of the above conditions are satisfied.
9. A man has 65 cents in change, but he has no pennies and has at least
as many dimes as nickels. Find the set of possibilities for his collection
of coins.
10. In Exercise 9, list the following subsets.
(a) The set in which the man has exactly one quarter.
(b) The set in which the man has more half-dollars than quarters.
(¢) The set in which the man has fewer than six coins.
(d) The set in which none of the above conditions is satisfied.
11. A set has 51 elements. How many subsets does it have? How many
of the subsets have an even number of elements? [Ans. 251, 250]
12. Do Exercise 11 for the case of a set with 52 elements.

2 OPERATIONS ON SUBSETS

In Chapter 1 we considered the ways in which one could form new state-
ments from given statements. Now we shall consider an analogous proce-
dure, the formation of new sets from given sets. We shall assume that each
of the sets that we use in the combination is a subset of some universal
set, and we shall also want the newly formed set to be a subset of the same
universal set. As usual, we can specify a newly formed set either by a
description or by a listing.

If P and Q are two sets, we shall define a new set P N Q, called the
intersection of P and Q as follows: P N Q is the set which contains those
and only those elements which belong to both P and Q. As an example,
consider the logical possibilities listed in Figure 1. Let P be the subset in
which candidate A wins at least three primaries, i.e., the set {P1, P2, P3,
P4, P7, P13, P19}; let Q be the subset in which A wins the first two primaries,
i.e., the set {P1, P2, P3, P4, P5, P6}. Then the intersection P N Q is the set
in which both events take place, i.e., where A wins the first two primaries
and wins at least three primaries. Thus P N Q is the set {P1, P2, P3, P4}.

If P and Q are two sets, we shall define a new set P U Q called the union
of P and Q as follows: P U Q is the set that contains those and only those
elements that belong either to P or to Q (or to both). In the example in
the paragraph above, the union P U Q is the set of possibilities for which
either A wins the first two primaries or wins at least three primaries, ie.,
the set {P1, P2, P3, P4, PS5, P6, P7, P13, P19}.

To help in visualizing these operations we shall draw diagrams, called
Venn diagrams,* which illustrate them. We let the universal set be a rectangle
and let subsets be circles drawn inside the rectangle. In Figure 2 we show

*Named after the English logician John Venn (1834-1923).
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Figure 2

u

two sets P and Q as shaded circles, P shaded in color and Q in gray. Then
the area shaded in both color and gray is the intersection P N Q and the
total shaded area is the union P U Q.

If P is a given subset of the universal set ‘U, we can define a new set
P called the complement of P as follows: P is the set of all elements of U
that are not contained in P. For example, if, as above, Q is the set in which
candidate A wins the first two primaries, then Q is the set {P7, P8, . . ., P36).
The shaded area in Figure 3 is the complement of the set P. Observe that
the complement of the empty set & is the universal set ‘U, and also that
the complement of the universal set is the empty set.

ol

Figure 3 Figure 4

Sometimes we shall be interested in only part of the complement of a
set. For example, we might wish to consider the part of the complement
of the set Q that is contained in P, i.e., the set P N Q. The shaded area
in Figure 4 is P N Q.

A somewhat more suggestive definition of this set can be given as follows:
Let P — Q be the difference of P and Q, that is, the set that contains those
elements of P that do not belong to Q. Figure 4 shows that P N Q and
P — Q are the same set. In the primary voting example above, theset P — Q
can be listed as {P7, P13, P19}.

The complement of a subset is a special case of a difference set, since
we can write 0 = W — Q. If P and Q are nonempty subsets whose inter-
section is the empty set, i.e.,, P N Q = &, then we say that they are disjoint
subsets.
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In the primary voting example let R be the set in which A wins the first
three primaries, i.e., the set {P1, P2, P3}; let S be the set in which A wins
the last two primaries, ie. the set {Pl,P7,P13, P19, P25, P31}. Then
R N § = {P1} is the set in which A wins the first three primaries and also
the last two, that is, he wins all the primaries. We also have

R U S = {P1, P2, P3, P7, P13, P19, P25, P31},

which can be described as the set in which A wins the first three primaries
or the last two. The set in which A does not win the first three primaries
is R = {P4,P5,. .. P36} Finally, we see that the difference set R — S is
the set in which A wins the first three primaries but not both of the last
two. This set can be found by taking from R the element P1 which it has
in common with S, so that R — S = {P2, P3}.

Let us give a step-by-step construction of the Venn diagram for the set
(PN QO)U@nN O). Figure 5 shows the set P N Q which is the same as

PNQ
p Q
PO
P Q
(PNQ)U(PNQ)
P Q
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EXERCISES

the set of Figure 2 shaded in both color and gray; Figure 6 shows the set
P N O which is the same as the complement of the shaded area in Figure 2.
Finally, Figure 7 is the union of the two areas in Figures 5 and 6 and is the
answer desired.

1. Draw Venn diagrams for the following sets:

@ PNOQ.
® PUO.
(¢ PUDOQ.
d PUO.

2. Give a step-by-step construction of the diagram for ((P U Q) —
(PN Q)N D

3. Venn diagrams are also useful when three subsets are given. Construct
such a diagram, given the subsets P, O, and R. ldentify each of the
eight resulting areas in terms of P, O, and R.

4. In assigning dormitory roomates, a college considers a student’s sex,
whether or not the student wants to live in a coed dorm, and whether
the student is a freshman or an upperclassman. Draw a Venn diagram,
and identify each of the eight areas.

5. Let F be the set of females, U the set of upperclassmen, and C the
set of students desiring to live in a coed dorm. Define (symbolically)
the following sets:

(a) Upperclass males who do not want to live in a coed dorm.
[Ans. UN F N C.]
(b) Women who want to live in a coed dorm.
(¢) Male students who want to live in a coed dorm and are freshmen.
(d) Women who are not freshmen and do not want to live in a coed
dorm.

6. The college decides that two students can be roommates if both are of
the same sex or if both are upperclassmen who want to live in a coed
dorm. Identify the sets of students with the property that any two
members of the set can be roommates.

7. The results of a survey of church attendance and golf playing are given
in the following table:

Golfs and Doesn’t Golf
Golfs and Doesn’t Doesn’t Golf | and Doesn’t
Occupation | Attends Attend and Attends Attend
Doctor 15 20 3 2
Lawyer 10 9 9 6
CPA 8 0 11 7
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Let D = doctor, L = lawyer, C = CPA, G = golfs, 4 = attends. Determine
the number of people in each of the following classes.

10.

11.

@ DNGNA.

® CNGNA.
() (GUA)NL.
@ (DUL)YNG. [Ans. 54.]
© LN4NG)UMUNG)). [Ans. 43.]

In Exercise 7, which set of each of the following pairs has more
members?

@ (DNG)—AorLU(GN A

b) 8orCNANG?

(c) (DUL)or C?

A college student hired to survey 1000 beer drinkers and record their
age, sex, and educational level turned in the following figures: 700
males, 600 people over 25 years of age, 400 college graduates, 250 male
college graduates, 225 college graduates over 25, 350 males over 25,
and 150 male college graduates over 25. After turning in his results,
he was fired. Why? [Hint: Draw a Venn diagram with three circles—for
males, college graduates, and those over 25. Fill in the numbers in
each of the eight areas, using the data given above. Start from the
end of the list and work back.]

A survey of 110 lung cancer patients showed that 70 were cigarette
smokers, 60 lived in urban areas, and 35 had hazardous occupations.
Forty of the smokers lived in urban areas, 15 had hazardous occupa-
tions, and 5 were in both categories. Ten of the patients with hazardous
occupations neither lived in an urban area nor smoked.

(a) How many of the patients living in urban areas had hazardous

occupations? [Ans. 15.]
(b) How many of those living in the urban areas neither smoked nor
had hazardous occupations? [Ans. 10.]

(¢) How many patients smoke if and only if they live in an urban area?

(d) How many patients neither smoked, nor lived in an urban area,
nor had a hazardous occupation?

A second survey of 100 patients had the following results: 45 smokers

who lived in urban areas, 37 of whom did not have a hazardous

occupation; 20 people with hazardous occupations, of whom 10 live

in urban areas and 10 smoke; 75 smokers; and 10 who neither smoke,

nor have a hazardous occupation, nor live in an urban area.

(a) How many patients with hazardous occupations neither smoke
nor live in an urban area? [Ans. 8]

(b) How many patients live in an urban area?

() How many patients smoke if and only if they do not have a
hazardous occupation?

(d) How many patients smoke, have a hazardous occupation, and live
in an urban area?
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12. The following table summarizes the responses of 100 students asked
what they thought about during math lectures:

| Class and Neither Food | Only Only Food and
Status Nor Football | Food | Football | Football
Senior Majors 20 12 4 6
Senior Nonmajors 8 10 15 0
Junior Majors 2 1 6 1
uunior Nonmajors 3 5 5 2 J

All the categories can be defined in terms of the following four: M (majors),
S (seniors), F (food), and FT (football). How many students fall into each
of the following categories?

(ay S ) JUF [Ans. 91.]
b) S—-M (g SNMNF_

() M-S h) (SUF)—FT [Ans. 28.]
d JANMNFNFT i) SNMN(FUFT) [Ans. 20.]
() JNF) Gy SuJ

3 THE RELATIONSHIP BETWEEN SETS
AND COMPOUND STATEMENTS

The reader may have observed several times in the preceding sections that
there was a close connection between sets and statements, and between set
operations and compounding operations. In this section we shall formalize
these relationships.

If we have a number of statements relative to a set of logical possibilities,
there is a natural way of assigning a set to each statement. First we take
the set of logical possibilities as our universal set. Then to each statement
we assign the subset of logical possibilities of the universal set for which
that statement is true. This idea is so important that we embody it in a
formal definition.

Definition Let U be a set of logical possibilities, let p be a statement relative
to it, and let P be that subset of the possibilities for which p is true; then
we call P the truth set of p.

If p and g are statements, then p \/ ¢ and p /\ g are also statements and
hence must have truth sets. To find the truth set of p V g, we observe that
it is true whenever p is true or g is true (or both). Therefore we must assign
to p V ¢ the logical possibilities which are in P or in Q (or both); that 1s,
we must assign to p V g the set P U Q. On the other hand, the statement
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p /\ q is true only when both p and g are true, so that we must assign to
p/\gtheset PN Q.

Thus we see that there is a close connection between the logical operation
of disjunction and the set operation of union, and also between conjunction
and intersection. A careful examination of the definitions of union and
intersection shows that the word “or” occurs in the definition of union and
the word “and” occurs in the definition of intersection. Thus the connection
between the two theories is not surprising.

Since the connective “not” occurs in the definition of the complement
of a set, it is not surprising that the truth set of ~p is P. This follows since
~p is true when p is false, so that the truth set of ~p contains all logical
possibilities for which p is false, that is, the truth set of ~p is P.

The truth sets of two propositions p and g are shown in Figure 8. Also
marked on the diagram are the various logical possibilities for these two
statements. The reader should pick out in this diagram the truth sets of
the statements p V ¢, p /\ g, ~p, and ~q.

Both false

Figure 8 Figure 9

The connection between a statement and its truth set makes it possible
to “translate” a problem about compound statements into a problem about
sets. It is also possible to go in the reverse direction. Given a problem about
sets, think of the universal set as being a set of logical possibilities and think
of a subset as being the truth set of a statement. Hence we can “translate”
a problem about sets into a problem about compound statements.

So far we have discussed only the truth sets assigned to compound
statements involving V, /\, and ~. All the other connectives can be defined
in terms of these three basic ones, so that we can deduce what truth sets
should be assigned to them. For example, we know thatp — ¢ is equivalent
to ~p V g. Hence the truth set of p — g is the same as the truth set of
~p V g, that is, it is P U Q. The Venn diagram for p — ¢ is shown in
Figure 9, where the shaded area is the truth set for the statement. Observe
that the unshaded area in Figure 9 is the set P — Q = P N 0, which is
the truth set of the statement p /\ ~¢. Thus the shaded area is the set

r——

— C .
(P — Q) = P N O, which is the truth set of the statement ~[p /\ ~¢]. We
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Figure 10

EXAMPLE 1

EXAMPLE 2

have thus discovered the fact that (p — q), (~p V g), and ~(p /\ ~q) are
equivalent. Itis always the case that two compound statements are equiva-
lent if and only if they have the same truth sets. Thus we can test for
equivalence by checking whether they have the same Venn diagram.

Suppose that p is a statement that is logically true. What is its truth set?
Now p is logically true if and only if it is true in every logically possible
case, so that the truth set of p must be . Similarly, if p is logically false,
then it is false for every logically possible case, so that its truth set is the
empty set &.

Finally, let us consider the implication relation. Recall that p implies g
if and only if the conditional p — ¢ is logically true. Butp — ¢ is logically

true if and only if its truth set is U, that is, (P — Q) = U, or (P — Q) = &.
From Figure 4 we see that if P — Q is empty, then P is contained in Q.
We shall symbolize the containing relation as follows: P C Q means “P is
a subset of Q.” We conclude that p = ¢ if and only if P C Q.

Figure 10 supplies a “dictionary” for translating from statement language
to set language, and back. To each statement relative to a set of possibilities
9 there corresponds a subset of al—namely, the truth set of the statement.

Statement Language Set Language

r R

s S
~r R
rVs RUS
r/\s RNS
F— s (ﬁ)
r=>s RCS
res R =

This is shown in lines 1 and 2 of the figure. To each connective there
corresponds an operation on sets, as illustrated in the next four lines. And
to each relation between statements there corresponds a relation between
sets, examples of which are shown in the last two lines of the figure.

Verify by means of a Venn diagram that the statement [pV (~p V g)] is
logically true. The assigned set of this statement is [P U (P U Q)] and its
Venn diagram is shown in Figure 11. In that figure the set P is shaded
in color, and the set P U Q is shaded in gray. Their union is the entire
shaded area, which is U, so that the compound statement is logically true.

Demonstrate by means of Venn diagrams that p V (g /\ r) is equivalent to
(Vg N(p \V/ ). The truth set of p V (g A r) is the entire shaded area
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of Figure 12a, and the truth set of (p V ¢) /\ (p V r) is the area in Figure
12b shaded in both color and gray. Since these two sets are equal, we see
that the two statements are equivalent.

Figure 12a

Figure 12b

Show by means of a Venn diagram that ¢ implies p — ¢. The truth set
of p — q is the shaded area in Figure 9. Since this shaded area includes
the set Q, we see that ¢ implies p — ¢.

1. Use Venn diagrams to test the following statements for equivalences.

(a)
(b)
()
(d)
(e)
(f)

~(p Vg
~p V ~q.
~(p N .
~p N\ ~q.
4 —p-
~(~p — 9.
[Ans. (a), (d), and (f) are equivalent; (b) < (¢).]

2. Use Venn diagrams to tell which of the following statements are
logically true and which are logically false.
(@ p/\ ~p.



58 Sets and Counting Problems Chapter 2

w

10.

®) @AV (~pV ~9q). [4ns. Logically true.]
© A9V A~9

@ ~pVig-p)

(e) p—(qg—p)-

0 ~@p->9Ng

Derive a test for inconsistency of p and g, using Venn diagrams.
Three or more statements are said to be inconsistent if they cannot
all be true. What does this say about their truth sets?

Use Venn diagrams for the following statements to test whether one
implies the other.

@@ pNgp/N\~q b) ~@g—=prp—9g
© pNg ~pVa @ ~p/Ngq
e pVgp—(~p—9. ® (p-o>g9N\~q qg9—p

Find statements having each of the following as truth sets.
(@ (PNQO)—R
b (R—Q)U(Q~—R)

(¢) P—(QUR).

@) (PN Q)U(PUR).

Use truth tables to find whether the following sets are all different.
(a) (PanR)U(PanR)U(PQOR).

®) [P—(QURIURNDOQ).

(¢) ONRK

@ (PNQON RHUPNQONR).

© [(PNOUMPNRUENQI—(pNQONR).

® PNONRUNQUR —(QNR)]=(PNONR)
Use truth tables to find whether each of the following sets is empty.
@ P—-—0)N(Q - P). [Ans. Empty.]

———

) (PUQ)N(QUR)NPUR)
) (PNRYNPNO. [Ans. Not empty.]

pr— ~
d (PUR)N Q.
e (PNQ-—-PL
@ PNE—-R)—((PNQ) —R).
Show, both by the use of truth tables and by the use of Venn diagrams,
that p V (g A r) is equivalent to (p V ¢) /\ (p V r).
Use truth tables for the following pairs of sets to test whether one is
a subset of the other.

(@) PNY; [R— (P U Q)
®) PNQON@UR);PUR
(¢ PN(QUR); PNO.
@ PNQ; PNO.

e 0, (PUQNPL

) P-—(Q-R;P-0)—R
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11. The symmetric difference of P and Q is defined to be (P — Q) U
(Q — P). What connective corresponds to this set operation?

4 PERMUTATIONS

The first step in the analysis of a scientific problem is the determination
of the set of logical possibilities. Next it is often necessary to determine
how many different possible outcomes there are. We shall find this particu-
larly important in probability theory. Hence it is desirable to develop
general techniques for solving counting problems. In this section and the
next we shall discuss the two most important cases in which it is possible
to achieve formulas that solve the problem. When a formula cannot be
derived, one must resort to certain other general counting techniques, tricks,
or, in the last resort, complete enumeration of the possibilities.

As a first problem let us consider the number of ways in which a set of
n different objects can be arranged. A listing of n different objects in a certain
order is called a permutation of the n objects. We consider first the case
of three objects, a, b, and c. We can exhibit all possible permutations of
these three objects as paths of a tree, as shown in Figure 13. Each path

Figure 13

exhibits a possible permutation, and there are six such paths. We know
there are six paths from the following argument: we have 3 choices for the
first object; after this first choice we can choose the second object in 2 ways;
then the last object must be listed; thus the total number of listings is
3-2-1=6. We could also list these permutations as follows:

abc, bca,
ach, cab,
bac, cba.

If we were to construct a similar tree for n objects, we would find that
the number of paths could be found by multiplying together the numbers
n,n— 1, n — 2, continuing down to the number 1. The number obtained
in this way occurs so often that we give it a symbol, namely n!, which is



60 Sets and Counting Problems Chapter 2

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

(13

read “n factorial.” Thus, for example, 3!=3-2-1=6, 4=
4-3-2+1 =24, and so on. For reasons that will be clear later, we define
0! = 1. Thus we can say there are n! different permutations of n distinct
objects.

Seven different machining operations are to be performed on a part, but
they may be performed in any sequence. We may then consider 7! = 5040
different orders in which the operations may be performed.

Ten workers are to be assigned to 10 different jobs. In how many ways
can the assignments be made? The first worker may be assigned in 10
possible ways, the second in any of the 9 remaining ways, the third in 8,
and so forth: there are 10! = 3,628,800 possible ways of assigning the
workers to the jobs.

A company has n directors. In how many ways can they be seated around
a circular table at a board meeting, if two arrangements are considered
different only if at least one person has a different person sitting on his right
in the two arrangements? To solve the problem, consider one director in
a fixed position. There are (n — 1)! ways in which the other people may
be seated. We have now counted all the arrangements we wish to consider
different. Thus there are also (n — 1)! possible seating arrangements.

For many counting problems it is not possible to give a simple formula
for the number of possible cases. In many of these the only way to find
the number of cases is to draw a tree and count them. In some problems,
the following general principle is useful.

A General Principle If one thing can be done in exactly r different ways,
for each of these a second thing can be done in exactly s different ways,
for each of the first two, a third can be done in exactly ¢ ways, and so on,
then the sequence of things can be done in r-s-. . .ways.

EXAMPLE 4

Suppose we live in town X and want to go to town Z by passing through
town Y. If there are three roads from X to Y, and two roads from Y to
Z, in how many ways can we go from town X to town Z? By applying
the general principle we see that there are 3+2 = 6 ways.

The validity of this general principle can be established by thinking of
a tree representing all the ways in which the sequence of things can be done.
There would be r branches from the starting position. From the ends of
each of these r branches there would be s new branches, and from each
of these ¢ new branches, and so on. The number of paths through the tree
would be given by the product.r-s-7....
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The number of permutations of n distinct objects is a special case of this
principle. If we were to list all the possible permutations, there would be
n possibilities for the first, for each of these n — 1 for the second, etc., until
we came to the last object, and for which there is only one possibility. Thus
there are n(n — 1) . . . 1 = n! possibilities in all.

An automobile manufacturer produces four different models; models A and
B can come in any of four body styles—sedan, hardtop, convertible, and
station wagon—while models C and D come only as sedans or hardtops.
Each can can come in one of nine colors. Thus models A and B each have
4 -9 = 36 distinguishable types, while C and D have 2-9 = 18 types, so
that in all

2:36 +2-18 = 108

different car types are produced by the manufacturer.

Suppose there are n applicants for a certain job. Three interviewers are
asked independently to rank the applicants according to their suitability.
It is decided that an applicant will be hired if he is ranked first by at least
two of the three interviewers. What fraction of the possible reports would
lead to the acceptance of some candidate? We shall solve this problem by
finding the fraction of the reports that do not lead to an acceptance and
subtract this answer from 1. Frequently an indirect attack of this kind is
easier than the direct approach. The total number of reports possible is
(n')?, since each interviewer can rank the men in n! different ways. If a
particular report does not lead to the acceptance of a candidate, it must
be true that each interviewer has put a different man in first place. By
our general principle, this can be done in n(n — 1)(n — 2) different ways.
For each possible first choice, there are {(n — 1)!}’ ways in which the re-
maining men can be ranked by the interviewers. Thus the number of reports
that do not lead to acceptance is

nin — y(n = 2)[(n — DI
Dividing this number by (n!)’, we obtain

(n - D(n—-2)

n®

as the fraction of reports that fail to accept a candidate. The fraction that
leads to acceptance is found by subtracting this fraction from I, which gives

3n—-2

n

For the case of three applicants, we see that § of the possibilities lead to
acceptance. Here the procedure might be criticized on the grounds that even
if the interviewers are completely ineffective and are essentially guessing,
there is a good chance that a candidate will be accepted on the basis of
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the reports. For n equal to ten, the fraction of acceptances is only 28, so
that it is possible to attach more significance to the interviewers’ ratings,
if they reach a decision.

EXERCISES

1. A salesman is going to call on five customers. In how many different
sequences can he do this if he
(a) Calls on all five in one day?

(b) Calls on three one day and two the next?
[Ans. (a) 120; (b) 120.]

2. A machine shop has three milling machines, five lathes, six drill presses,
and three grinders. In how many ways can a part be routed that must
first be ground, then milled, then turned on a lathe, and then drilled?
In how many ways can it be routed if these four operations can be
performed in any order?

3. A department store wants to classify each of its customers having a
charge account by using a three-character code consisting of n letters
followed by 3 — n digits. How large must n be if there are 5000 charge
accounts? What if there are 10,0007 20,000?

4. Modify Example 7 so that, to be accepted, an applicant must be first
in two of the interviewers’ ratings and must be either first or second
in the third interviewer’s rating. What fraction of the possible reports
lead to acceptance in the case of three applicants? In the case of n?

[Ans. §; 4/n2]

5. A company has six officers and six directors; two of the directors are
officers. List the possible memberships of a committee of four men
who are either officers or directors in terms of the number of members
who are (a) just officers, (b) just directors, and (c) both officers and
directors.

6. In Exercise 5, how many ways are there of obtaining a committee of
four consisting of
(a) Three who are just officers and one who is officer and director?
(b) One who is just an officer, one who is just a director, and two

who are officers and directors?
(¢) At least two who are only directors and at least one who 1s officer
and director?
(d) At least two officers and at least two directors (assuming a man
who is both officer and director satisfies both quotas)?
[4ns. 160.]

7. Show the possible arrangement of machines A, B, C, and D in a circle.
How many are there?

8. How many possible ways are there of seating six people A, B, C, D,
E, and F at a circular table if
(a) A must always have B on his right and C on his left?
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(b) A must always sit next to B?

(c) A cannot sit next to B?

In seating n people around a circular table, suppose we distinguish

between two arrangements only if at least one person has at least one

different person sitting next to him in the two arrangements. That is,

we do not regard two arrangements as different simply because the

right-hand and left-hand neighbors of a person have interchanged

places. Now how many distinguishable arrangements are there?

A certain symphony orchestra always plays one of the 41 Mozart

symphonies, followed by one of 25 different modern works, followed

by one of the 9 Beethoven symphonies.

(a) How many different programs can it play?

(b) How many different programs can be given if the pieces can be
played in any order?

(¢) How many three-piece programs are possible if more than one
piece from the same category can be played?

Find the number of arrangements of the five symbols that can be

distinguished. (The same letters with different subscripts indicate

distinguishable objects.)

(a) Ay, A, B, B, B [Ans. 120.]
) A, A, B, B, B, [Ans. 60.]
(¢) A, A, B,B,B. [dns. 10.]

Show that the number of distinguishable arrangements possible for n
objects, n, of type 1, n, of type 2, and so on for r different types is

n!
! «o.nt
ny'ln,! n,!

A student takes a five-question multiple-choice test, each question
having answer a, b, c, or d. If he knows that the answers to the test
consist of two a’s and one each of b, ¢, and d and he answers accord-
ingly, in how many different ways can be answer the test? In what
fraction of these will he get four or more right answers? In what

fraction will he get three or more right? [Partial Ans. 60.]
How many signals can a ship show if it has eight flags and a signal
consists of five flags hoisted vertically on a rope? [Ans. 6720.]

We must arrange four green, one red, and four blue books on a single

shelf. All books are distinguishable.

(@) In how many ways can this be done if there are no restrictions?

(b) In how many ways if books of the same color must be grouped
together?

(¢) In how many ways if, in addition to the restriction in (b) the red
books must be to the left of the blue books?

(d) In how many ways if, in addition to the restrictions in (b) and
(c), the red and blue books must not be next to each other?

[Ans. 576.]



64 Sets and Counting Problems Chapter 2

16. (a) How many five-digit numbers can be formed from the digits
1,2,3,4,5 using each digit only once?
(b) How many of these numbers are less than 33,000?

17. A housewife who has just returned from shopping realizes that she
has left her sunglasses at either the bank, the post office, the drugstore,
or the grocery store, and so she must go back and search for them.
Assume that when she returns to the building where she left them,
she finds them and then goes directly home.

(a) In how many different orders can all four places be searched?

(b) Assume we now know that she found her glasses at the third place
she returned to. How many different searches can she have made?

(¢) If we know only that her glasses were left at the bank, how many
different searches can she have made?

5 LABELING PROBLEMS

The second general type of counting problem that we want to consider may
be described as follows. We have n objects and we wish to label each of
these objects with one of r different types of labels. To be more specific,
we wish to determine the total number of ways that we can label the 7 objects
with r labels if 1, of the objects are to be given the first type of label, n,
the second type, and so on, where n;, ny, . . ., n, are given nonnegative
integers such that ny + ny + -+ + n, = n.

As an example assume that we have eight customers, A, B, C, D, E, F, G,
and H, and we wish to assign to each of them one of three salesmen, Brown,
Jones, or Smith. And we want to make this assignment so that Brown is
assigned to three customers, Jones to three, and Smith to two. Notice that
we can interpret the problem as that of assigning a label—Brown, Jones,
or Smith—to each of the eight customers. In how many ways can this
assignment be made?

One way to assign the customers is to list them in some arbitrary order
(that is, select a permutation of them) and then assign Brown to the first
three, Jones to the next three, and Smith to the last two. There are 8!
permutations or listings of the customers, but not all of these lead to different
assignments. For instance, consider the following assignment:

|BCA|DFE|HG]|.

Here, Brown is assigned to B, C, and A, Jones to D, F, and E, and Smith
to H and G. Notice that another permutation such as

|ABC|DEF |GH|

gives the same customer assignments, since it differs only in the sequences
for particular salesmen. There are 3!-3!-2! such listings, since we can
arrange the three customers of Brown in 3! different ways, and for each of
these, the customers of Jones in 3! different ways, and for each of these,
the customers of Smith in 2! different ways. Since there are 3!-3!-2!
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different listings that lead to the same assignments and 8! listings in all,
there are 8!/(3!-3!-2!) different assignments of customers to salesmen.

The same argument could be carried out for r salesmen and » customers
with n, assigned to the first salesman, 7, to the second, and so on. In fact
there is really nothing special about the argument for this example, so we
have the following basic result. Let ny, ny, . . . , n, be nonnegative integers
with ny + ny + -+ + n, = n. Then:

The number of ways that n objects can be labeled with r different types of
labels, n, with the first type, n, with the second, and so on, is

n!

nt . ..on!
ny'n,! n,!

We shall denote this number by the symbol

I
Ny fo, . o o 1,

The special case when r = 2, meaning that there are just two types of
labels, is particularly important. The problem is often stated in the following
way. We are given a set of n elements; in how many ways can we choose
a subset with j elements? If we interpret the problem to mean labeling each
element as either “in the set” or “not in the set,” we see that it is just a
labeling problem whose answer is

( n )_ nl
WENANITES
and hence this is also the number of subsets with j elements. The no-

tation (j nn j) is commonly shortened to (n) These numbers are
5 - j

known as binomial coefficients.
Notice that every time we choose a subset of j elements to put in our
subset we are also choosing a subset of n — j elements to leave out. In this

way we see that
( ) ( — ) (n n— )
j j’ h ./ .]

The aces and kings are removed from a bridge deck, and from the resulting
eight-card deck a hand of two cards is dealt. How many such two-card
hands are there? By the principle just stated we see that there are

(g) = (2) = 28 such hands, since choosing a two-card hand is just the

same as choosing the remaining six cards to keep in the deck. (The reader
should enumerate the 28 possible two-card hands.)
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

EXERCISES

A company buys a certain electronic component from three vendors. In
how many ways can it place six orders, two with vendor A, three with vendor
B, and one with vendor C? This is just the problem of labeling each of
the six orders with one of three labels, A, B, or C. There are

6 \_ 6
(2,3,1)‘ ETTI

ways of carrying out the labeling.

On August 20, 1970, 1551 different stock issues were traded on the New
York Stock Exchange. Of these, 701 advanced, 530 declined, and 320 closed
unchanged from the previous day. In how many ways could this have
happened? We must label each stock as “advanced,” “declined,” or “un-
changed.” There are

1551!
7011530!320!

different ways in which this particular result could occur. This number is
approximately equal to 1.1+ 10795,

This example will be important in probability theory, which we take up
in the next chapter. If a coin is tossed six times, there are 26 pos-
sibilities for the outcome of the six throws, since each throw can
result in either a head or a tail. How many of these possibilities result
in four heads and two tails? We can interpret each assignment of outcomes
to be a labeling of each integer from 1 to 6 with either H or T, corres-
ponding to whether heads or tails came up on that toss. Since we required

that four be labeled H and two T, the answer is (2

a coin, a similar analysis shows that there are (

) = 15. For n throws of

n
r
of H’s and T’s of length n that have exactly r heads and n — r tails.

) different sequences

1. Compute the following numbers:

(5) (2 ) [Ans. 28.]

® ()
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(d) (; 8) [4ns. 780.]
o (3)

0 (3,

(8 (23,1 [Ans. 30.]
® (413)

Show that

(a)_a-(a—l)-(a—2)-----(a—b+2)~(a—b+1)
bl b(b—1+(b—=2)---+2-1 ’

where there are exactly b terms in both the numerator and the denom-
inator.

A group of six workers is to be assigned to six of nine available jobs.
If we are only interested in which jobs are assigned, and not the specific
worker-job assignments and if all of the workers are assigned jobs, in
how many ways can the jobs be assigned to the workers? How many
possibilities are there for the unassigned jobs, if three of the jobs are
sure to be assigned? [Ans. 84, 20.]

Give an interpretation for (g) and aso for (n) Can you now give
n

a reason for making 0! = 1?

A hospital has just received eight chairs, four red and four blue. In
how many different ways can these be distributed between two waiting
rooms if each room must receive at least three chairs and at least one
chair of each color? (Assume chairs of the same color are of different
types, and thus distinguishable.)

From a lot containing six pieces, three good and three defective, a sample
of three pieces is drawn. If we distinguish each piece, find the number
of possible samples that can be formed

(a) With no restrictions. [Ans. 20.]
(b) With three good pieces and no defectives. [Ans. 1.]
(c) With two good pieces and one defective. [Ans. 9.]
(d) With one good piece and two defectives. [Ans. 9.]
(e) With no good pieces and three defectives. [Ans. 1]

What is the relation between your answer in part (a) and the answers
to the remaining four parts?
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7. Exercise 6 suggests that the following should be true:
2n\ _ (n\(n n n
(n ) h (0)(11) * (1)(11 — 1) +
n n n\n\ _ (n\? n\ )1)2
(2)(11 — 2) * * ()1)(0) B (O) * (1) + + (n '

Show that it is true.

8. Consider a town with four plumbers, A,B,C,and D. On a certain
day eight residents of the town telephone for a plumber. If each
resident selects a plumber from the telephone directory, in how many
ways can it happen that
(a) Three residents call A, three call B, one calls C, and one calls

D?
(b) The distribution of calls to the plumbers is three, three, one, and
one? [Ans. 6720.]

9. In a class of 20 students, grades of A, B, C, D, and F are to be assigned.

Omit arithmetic details in answering the following;

(a) In how many ways can this be done if there are no restrictions?

(b) In how many ways can this be done if the grades are assigned
as follows: 2 A’s,3 B’s, 10 C’s, 3 Drs, and 2 F’s?

(¢) In how many ways can this be done if the following rules are
to be satisfied: exactly 10 C’s; the same number of A’s as F’s;
the same number of B’s and D’s; always more B’s than A’s?

20 20 20
[A”S' (5, 10, 5) + (1,4, 10, 4, 1) + (2, 3,10, 3,2)‘]

10. In how many ways can a machine produce nine pieces, five of which
are good and four of which are defective? In how many ways if no
two consecutive pieces are both good or both defective?

11. Establish the identity

(-0
rNk] — \k/\r —k

for n > r > k in two ways, as follows:

(a) Replace each expression by a ratio of factorials and show that
the two sides are equal.

(b) Consider the following problem: From a set of n people a com-
mittee or r is to be chosen, and from these r people a steering
subcommittee of k people is to be selected. Show that the two
sides of the identity give two different ways of counting the
possibilities for this problem.

12. A brewing company contracts with a television station to show three
spot commercials a week for 52 weeks. The commercials consist of

2 series of cartoons. It is decided that in no two weeks will exactly

the same three cartoons be shown. What is the minimum number of
cartoons that will accomplish this?
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13. Twenty bridge players enter a tournament and form ten partnerships.
Seven of the players are good bridge players, ten are mediocre, and
three are terrible. How many possibilities are there for the winning
partnership if we know that the winning partnership
(a) Contained no terrible player? [Ans. 136.]
(b) Contained two good players?

(c) Contained one good and one mediocre player?

14. Referring to Exercise 13, answer the following questions, omitting
arithmetic computations.

(a) How many possible sets of ten partnerships are there?

(b) How many sets of ten partnerships are possible if no two terrible
players play together?

(¢) How many sets of ten partnerships are possible if, in addition to
restriction (b), no two good players play together and no two
mediocre players play together?

15. A group of nine people is to be divided into three committees of two,
three, and six members, respectively. The chairman of the group is
to serve on all three committees and is the only member of the group
who serves on more than one committee. In how many ways can the
committee assignments be made? [Ans. 168.]

16. A landlord decides to repaint two of his apartments, each having five
rooms. Assuming that he uses only green, yellow, and blue paint and
that each room is to be painted with only one color.

(a) How many different ways are there of painting the apartments?

[Ans. 310]

(b) How many different ways are there of painting the apartments,
given that no more than two colors are to be used in any one
apartment? [Ans. 8649.]

6 SOME PROPERTIES OF BINOMIAL COEFFICIENTS

The binomial coefficients (n) introduced in Section 5 will play an
J

important role in our future work. We give here some of the more important
properties of these numbers.

A convenient way to obtain these numbers is given by the famous
Pascal triangle, shown in Figure 14. To obtain the triangle we first write
the 1I’s down the sides. Any of the other numbers in the triangle has the
property that it is the sum of the two adjacent numbers in the row just
above. Thus the next row in the triangle is 1, 6, 15, 20, 15,6, 1. To find the
n

J
n and see where the diagonal line corresponding to the value of j intersects

binomial coefficient ( ) e look in the row corresponding to the number

2) = 6 is in the row marked n = 4 and on the

this row. For example, (4

diagonal marked j = 2.
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p=3 ey | 3 3 1 /f=4
n=4-—p 1 4 6 4 /;:5
n=>5——p | 5 10 10 5 1
. ) . ° . ) o
Figure 14 . . . ° . ° ® °

The property of the binomial coefficients upon which the triangle is based

=) )

This fact can be verified directly (see Exercise 5), but the following argu-

ment is interesting in itself. The number (n + 1) is the number of subsets
J

with j elements that can be formed from a set of n + 1 elements. Select one

n+1
J

do not. The latter are subsets of j elements formed from n objects, and

of the n + 1 elements, x. Of the ( ) subsets some contain x, and some

hence there are (7) such subsets. The former are constructed by adding

x to a subset of j — 1 elements formed from » elements, and hence there
are ( n 1) of them. Thus

(1=620+0)

If we look again at the Pascal triangle, we observe that the numbers in
a given row increase for a while, and then decrease. In fact, they increase
to a unique maximum when 7 is even or to two equal maxima when » is
odd.

An important application of binomial coefficients is in the expansion of
products of the form (x + )3, (a — 2b)¥, and so on. We shall derive a
general formula for these by making use of the binomial coefficients.

Consider first the special case (x + y)3. We write this as

(x + y)® = (x + y)x + p)x + ).
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To perform the multiplication, we choose either an x or y from each of the
three factors and multiply our choices together; we do this for all possible
choices and add the results. To state this as a labeling problem, note that
we want to label each of the three factors with the two labels x and y. In
how many ways can we do this using two x labels and one y? The preceding

section gives the answer (3> = 3. Hence the coefficient of x2y in the expan-

2
sion of the binomial is 3. More generally, the coefficient of the term of the

form xy3~7 will be (3) for j =0,1,2,3. Thus we can write the desired
J

= Q)+ Qe (o ()

= x3 + 3x%y + 3xy% + 3.

expahsion as

Binomial Theorem The expansion of (x + y)" is given by
n— (M)n n n-1 n n-2,2
(e +) _(n)x +(n—1)x y+(n_2)x 4

h m—1 n n
+ +(1)x} +(o)y'

Let us find the expansion for (@ — 2b)3. To fit this into the binomial theorem,
we think of x as being a and y as being — 2b. Then we have

(a — 2b)3 = a® + 3a%(=2b) + 3a(—2b)* + (—2b)3
= a3 — 6a%bh + 12ab? — 8b°.

1. Extend the Pascal triangle to n = 16. Save the result for later use.

2. (a) Show that a set with » elements has 2" subsets. [Hint: Assume you
have two different kinds of labels: “in the subset” and “not in the
subset.” In how many different ways can we label the n elements

of the set?]
B+ () ()

(b) Prove that
using the fact that a set with »n elements has 2" subsets.

(11)=10)
v+ 1/ j+1\j/

3. Using the fact that
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compute <2S7) for s=1,2,3,4,5 starting with the fact that

()=

4. Forn < m prove that

m\{n m\{n myfn myfn m+ n
(3)X6) = () + () =+ GG = (37)
by carrying out the following two steps:

(a) Show that the left-hand side counts the number of ways of choosing
equal numbers of men and women from sets of m men and n
women.

(b) Show that the right-hand side also counts the same number by
showing that we can select equal numbers of men and women by

selecting any subset of n persons from the whole set, and then
combining the men selected with the women not selected.

5. Prove that
(n . L ) —-( . " ) (n )9

using only the fact that
(n) _ n!
jro gt =t

6. Expand by the binomial theorem:

(a) (x + D% [4ns. x* + 4x3 4+ 6x2 + 4x + 1]
(b) (2x + >

(© (x -2y

d Qa— x4

() (Bx + 4y)°.

@ (100 — 2)%

7. Using the binomial theorem, prove that

@ ()+()+ @)+ +(1)=2
o (5)-()+G)- )+ =()=0mrn>0

+7 APPLICATIONS OF COUNTING TECHNIQUES

One of the important areas in which finite mathematics is applied is in
solving combinatorial decision problems. In such problems there are a finite
number of ways in which a certain procedure can be carried out, and for
each of these ways a cost or value can be calculated. We want to select
a way of carrying out the procedure that has minimum cost or maximum
value.

~F
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One method for solving combinatorial decision problems is to enumerate
all the possible ways of carrying out the procedure and selecting the one
that is most desirable. Although this is theoretically possible, it may be
practically impossible since the number of alternatives frequently is too large
to enumerate completely even with the aid of an electronic computer. Hence
methods that do not require complete enumeration are needed to solve such
problems.

We illustrate the use of counting techniques to help solve such problems.

Consider a city with a grid of streets as shown in Figure 15. Jones and
Smith are at corner A and want to go to corner B, which is four blocks
east and five blocks north of A. In how many ways can they make the

journey and travel exactly nine blocks?

L ———q

A———

You may wish to try to count all possible ways, but if you try you are
very likely to become tired and confused. This would be especially true
if the distances were larger, say 100 blocks east and 100 blocks north!
However we can reformulate the problem so that it is easy if we notice that
all that Jones and Smith have to do is to make nine decisions, each decision
being to go a block either east or north, with exactly four of the nine
decisions being to go east and the remaining five to go north. For instance,
one series of decisions, leading to the path shown dotted in Figure 15, is
represented by the decisions

“east, north, east, north, north, north, east, east, north.

Once we understand this reformulation of the problem, its solution is easy,
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EXAMPLE 2

Figure 16

since the number of ways we can choose four out of nine decisions to be
east (or equally well five out of nine to be north) is clearly

9y _ (9 _6-7-8-9 _
(4) - (5) = T.72.3.4 = 120 paths
The general problem is just as easy. If Jones and Smith are going 4 blocks
east and k blocks north, the total number N of possible paths is given by

h + k) (h + k)
N = = .
(3=
Let us make this into a combinatorial decision problem by requiring that
the number of corners turned on the path be a minimum. At least one corner
must be turned. A little experimentation will show that two paths exist which
turn at only one corner. These are (1) go four blocks east and five blocks

north and (2) go five blocks north and four blocks east. These two answers
solve the decision problem.

Suppose that point B is now three blocks east and five blocks north, and
that the streets are alternate one-way east-west and north-south as indicated
by the arrows in Figure 16. Smith is going to walk from A to B but Jones
is going to take a taxi. We know that Smith must walk eight blocks and

there are (g) = 56 possible paths he can take. After they arrive at B Jones

and Smith compare notes. Smith said the taxi drove him ten blocks. Was
the taxi driver honest?
The answer is yes, and it follows from the next theorem.

OO

~
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—tpa— B X

X X X X X —
e X X X

X X X X X —
~t— X X

X X X X X S—

Theorem Consider a city with alternating one-way streets in both east-west
and north-south directions. The shortest driving path between any two
points A and B where B is northeast of A and the roads at A go east and
north is either the same or exactly two blocks longer than the shortest
walking path.

The proof is quite simple since we can easily show that, starting from
A we can go to every corner of a four-block square except the center in
exactly the same distance either by driving or walking (see the corners
marked X in Figure 17.) To drive to the center of a four-block square (that
is, to one of the corners not marked with an X in Figure 17) we drive first
to an adjacent corner and then go to the center of the four-block square
using the one-way streets. The latter step adds two additional blocks to the
trip.

You may also wish to prove that if the roads at A go east and north and
B is southwest of A, then the shortest driving path is either two or four
blocks longer than the shortest walking path.

It is also true that the one-way-street pattern reduces the number of
possible driving paths from A to B. In Exercise 1 you will be asked to show
that there are six driving paths from A to B in Figure 16. Of these six there
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is only one that requires only two corners—and all the rest have more—so
that the combinatorial decision problem now has a unique answer.

It often happens that a counting problem can be formulated in a number
of different ways that sound quite different but that are in fact equivalent.
And in one of these ways the answer may suggest itself readily. To illustrate
how a reformulation can make a hard-sounding problem seem fairly easy,
consider the following problem. Count the number of ways that » indis-
tinguishable objects can be put into r cells. For instance, if there are three
objects and three cells, the number of different ways can be enumerated
as follows (using O for object and bars to indicate the sides of the cells):

' 000 : :
;00 10 | :
'00 | F O
'O |1 00 :
'O 0 0 |
0 ' 00 |
: , 000 | :
| 00 0 |
: O 100 |
: : 1 000

We see that in this case there are ten ways the task can be accomplished.
But the answer for the general case is not clear.

If we look at the problem in a slightly different manner, the answer
suggests itself. Instead of putting the objects in the cells, we imagine putting
the cells around the objects. In the above case we see that three cells are
constructed from four bars. Two of these bars must be placed at the ends.
We think of the two other bars together with our three objects as occupying
five intermediate positions. Of these five intermediate positions we must
choose two of them for bars and three for the objects. Hence the total

number of ways we can accomplish the task is (g ) = (g) = 10, which is
the answer we got by counting all the ways.

For the general case we can argue in the same manner. We have r cells
and n objects. We need r + 1 bars to form the r cells, but two of these
must be fixed on the ends. The remaining r — 1 bars together with the n
objects occupy r — 1 + n intermediate positions. And we must choose r — 1
of these for the bars and the remaining n for the objects. Hence our task
can be accomplished in

(=0

different ways.
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Seven people enter an elevator that will stop at five floors. In how many
different ways can the people leave the elevator if we are interested only
in the number that depart at each floor, and do not distinguish among the
people? According to our general formula, the answer is

(457 )=(3)-w

Suppose we are interested in finding the number of such possibilities in
which at least one person gets off at each floor. We can then arbitrarily
assign one person to get off at each floor, and the remaining two can get
off at any floor. They can get off the elevator in

£r5)-0-

different ways.

1. In Figure 16 show that there are exactly six different driving paths
from A to B.

2. Find the unique path from A to B requiring only two corners in Figure
16.

3. In Figure 15 suppose that point C is two blocks east and three blocks
north of point A. How many ways are there of going from A to C
and then to B by paths that are nine blocks long? [Ans. 60.]

4. In Figure 16 suppose that point C is one block east and one block
north of A. How many driving paths are there for going from A to
C and then to B that use the fewest number of blocks?

S. Four partners in a game require a total score of exactly 20 points to

win. In how many ways can they accomplish this? [Ans. (233 )]

6. In how many ways can eight apples be distributed among four boys?
In how many ways can this be done if each boy is to get at least one
apple?

7. Suppose we have n balls and r boxes with n > r. Show that the number
of different ways that the balls can be put into the boxes which insures
that there is at least one ball in every box is (’: B 11)

8. Identical prizes are to be distributed among five boys. It is observed
that there are 15 ways that this can be done if each boy is to get at
least one prize. How many prizes are there? [Ans. 7.]

9. By an ordered partition of n with r elements we mean a sequence of
nonnegative integers, possibly some 0, written in a definite order, and
having n as their sum. For instance, {1,0,3} and {3,0,1} are two
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different ordered partitions of 4 with three elements. Show that the

number of ordered partitions of n with r elements is (n tr- 1).
n
10. Show that the number of different possibilities for the outcomes of

rolling n dice is (n + 5).
n
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1

INTRODUCTION

We often hear statements of the following kind: “It is likely to rain today,”
“I have a fair chance of passing this course,” “There is an even chance that
a coin will come up heads,” etc. In each case our statement refers to a
situation in which we are not certain of the outcome, but we express some
degree of confidence that our prediction will be verified. The theory of
probability provides a mathematical framework for such assertions.

Consider an experiment whose outcome is not known. Suppose that
someone makes an assertion p about the outcome of the experiment, and
we want to assign a probability to p. When statement p is considered in
isolation, we usually find no natural assignment of probabilities. Rather,
we look for a method of assigning probabilities to all conceivable statements
concerning the outcome of the experiment. At first this might seem to be
a hopeless task, since there is no end to the statements we can make about
the experiment. However, we are aided by a basic principle:

Fundamental Assumption Any two equivalent statements will be assigned
the same probability.

As long as there are a finite number of logical possibilities, there are only
a finite number of truth sets, and hence the process of assigning probabilities
is a finite one. We proceed in three steps: (1) we first determine U, the
possibility set, that is, the set of all logical possibilities; (2) to each subset
X of U we assign a number called the measure m(X); (3) to each statement
p we assign m(P), the measure of its truth set, as a probability. The proba-
bility of statement p is denoted by Pr [p].

The first step, that of determining the set of logical possibilities, is one

81
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EXAMPLE 1

EXAMPLE 1
(continued)

EXAMPLE 2

that we considered in the previous chapters. It is important to recall that
there is no unique method for analyzing logical possibilities. In a given
problem we may arrive at a very fine or a very rough analysis of possibilities,
causing ‘U to have many or few elements.

Having chosen ‘U, the next step is to assign a number to each subset X
of U, which will in turn be taken to be the probability of any statement
having truth set X. We do this in the following way.

Assignment of a Measure Assign a positive number (weight) to each element
of U, so that the sum of the weights assigned is 1. Then the measure of
a set is the sum of the weights of its elements. The measure of the set &
1s 0. -

An ordinary die is thrown. What is the probability that the number which
turns up is less than four? Here the possibility set is U = {1,2, 3, 4, 5, 6}.
The symmetry of the die suggests that each face should have the same
probability of turning up. To make this so, we assign weight ¢ to each of
the outcomes.

In applications of probability to scientific problems, the analysis of the
logical possibilities and the assignment of measures may depend upon
factual information and hence can best be done by the scientist making the
application.

Once the weights are assigned, to find the probability of a particular
statement we must find its truth set and find the sum of the weights assigned
to elements of the truth set. This problem, which might seem easy, can often
involve considerable mathematical difficulty. The development of tech-
niques to solve this kind of problem is the main task of probability theory.

For the case of throwing an ordinary die we have already assigned equal
weights to each outcome. Let us consider statements relative to
U ={1,2,3,4,5,6). The truth set of the statement “The number that turns
up is less than four” is {1,2,3}. Hence the probability of this statement
is § = 4, the sum of the weights of the elements in its truth set. Similarly,
the truth set of the statement “The number that turns up is odd or is less
than four” is {1,2, 3,5}. Hence the probability of this statement is §=12
which again is the sum of the weights assigned to elements in its truth set.

A man attends a race involving three horses A, B, and C. He feels that
A and B have the same chance of winning but that A (and hence also B)
is twice as likely to win as C is. What is the probability that A or C wins?
We take as U the set {A, B, C}. If we were to assign weight a to the outcome
C, then we would assign weight 24 to each of the outcomes A and B. Since
the sum of the weights must be 1, we have 24 +2a+a=1,ora= L
Hence we assign weights £ 2 1 to the outcomes A, B, and C, respectively.
The truth set of the statement “Horse A or C wins” is {A, C}. The sum
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of the weights of the elements of this set is 2 + 2 = 2. Hence the probability
that A or C wins is 2.

EXERCISES

b AN1Y

1. Briefly explain the difference between the terms “weight,” “measure,”
and “probability”.

2. LetU = {a, b,c}. Assign weights to the three elements so that no two
have the same weight, and find the measures of the eight subsets
of U.

3. Give the possibility set U for each of the following experiments:

(a) A number from 1 to 7 is chosen at random.

(b) A and B play a game of chess.

(¢) A student is asked for the month in which his birthday falls.
(d) A die with all faces having the number six is thrown.

4. For which of the cases in Exercise 3 might it be appropriate to assign
the same weight to each outcome?

5. Inanelection Jones has probability £ of winning, Smith has probability
4, and Black has probability 3.

(a) Construct U.

(b) Assign weights.

(¢) Find the measures of the eight subsets.

(d) Give a pair of nonequivalent predictions which have the same
probability.

6. A die is loaded in such a way that the probability of each face is
proportional to the number of dots on that face. (For instance, a six
is 3 times as probable as a two.) What is the probability of getting
an even number in one throw? [Ans. 4]

7. The owner of a certain hardware store places a sign stating “Back in
15 minutes” on his door at noon when he goes to lunch. Customers
find that when this sign is posted the probabilities are .4 that he is
back within 10 minutes, .45 that he returns in more than 10 but less
than 20 minutes, and .145 that he returns after 20 minutes or more
have elapsed.

(a) What is the probability that he returns within 20 minutes?
[Ans. .85.]
(b) What is the probability that he takes the rest of the day off and
does not return at all?
(¢) Isit possible to determine the probability that he returns within
5 minutes? [Ans. No.]

8. If a coin is thrown three times, list the eight possibilities for the out-
comes of the three successive throws. A typical outcome can be written
(HTH). Determine a probability measure by assigning an equal weight
to each outcome. Find the probabilities of the following statements:

r. The number of heads that occur is greater than the number of
tails. [Ans. 4.]




84 Probability Theory Chapter 3

s:  Exactly two heads occur. [Ans. 3]

1. The same side turns up on every throw. [4ns. L]

9. For the statements given in Exercise 8, which of the following equalities
are true?

(@ Pr[rVs]=Pr[r]+ Pris]
(b) Pr[sV ] =Pr[s]+ Pr[s.
(¢) Pr[rV ~r]=Pr[r]+ Pr[~r]
(d) Pr{rVi=Pr[r] + Pr[1]

10. Which of the following pairs of statements (see Exercise 8) are incon-
sistent? (Recall that two statements are inconsistent if their truth sets
have no element in common.)

(a) r,s. (b) s, 1.
() r,~r d ru [Ans. (b) and (c).]

11. State a property which is suggested by Exercises 9 and 10.

12. A number is chosen from the set {1,2,3}. If weights have been
assigned to the three outcomes such that Pr{a 1 or 2 is chosen] = $
and Pr[a 2 or 3 is chosen] = %, find the weights. [Ans. 3, £, 2]

13.  Repeat Exercise 12 for each of the following cases
(a) Pr[al or2is chosen] = £ and

Pra 2 or 3 is chosen] = 2.
(b) Pr(a 2 is chosen] = 4, and
Prla 1 or 2 is chosen] =4+ Pr[a 2 or 3 is chosen).

2 PROPERTIES OF A PROBABILITY MEASURE

Before studying special probability measures, we shall consider some general
properties of such measures which are useful in computations and in the
general understanding of probability theory.

Three basic properties of a probability measure are

(A) m(X)=01if and only if X = &.
(B) 0 <m(X) <1 for any set X.
(C) For two sets X and 7,

mX U Y)=mX)+ m(Y)

if and only if X and Y are disjoint, i.e., have no elements in common.

The proofs of properties (A) and (B) are left as an exercise (see Exer-
cise 16). We shall prove (C).

We observe first that m(X) + m(Y) is the sum of the weights of the
elements of X added to the sum of the weights of Y. If X and Y are disjoint,
then the weight of every element of X U Y is added once and only once,
and hence m(X) + m(Y) = m(X U Y),

Assume now that X and Y are not disjoint. Here the weight of every
element contained in both X and Y—i.e, in X N Y—is added twice in the
sum m(X) + m(Y). Thus this sum is greater than m(X U Y) by an amount
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mXNY). By (A) and (B), if XN Y is not the empty set, then
m(X N Y)>0. Hence in this case we have m(X) + m(Y) > m(X U Y).
Thus if X and Y are not disjoint, the equality in (C) does not hold. Our
proof shows that in general we have

(C') For any two sets X and ¥,
m(X U Y) = m(X) + m(Y) — m(X N Y).

Since the probabilities for statements are obtained directly from the
probability measure m(X), any property of m(X) can be translated into a
property about the probability of statements. For example, the above
properties become, when expressed in terms of statements,

(a) Pr{p] =0 if and only if p is logically false.
(b) 0 < Pr[p] <1 for any statement p.
(¢) The equality

PripV gl = Prp] + Pr[q]

holds if and only if p and ¢ are inconsistent.
(¢’) For any two statements p and g,

Pr(pV gl = Pr(p] + Prig]l — Pr(p N ql.

Another property of a probability measure which is often useful in com-
putation is

D) m(X)=1-m(X),
or, in the language of statements,
() Pr[~p]=1—Prlp]

The proofs of (D) and (d) are left as an exercise (see Exercise 17).

It is important to observe that our probability measure assigns probability
0 only to statements which are logically false, i.e., which are false for every
logical possibility. Hence, a prediction that such a statement will be true
is certain to be wrong. Similarly, a statement is assigned probability 1 if
and only if it is true in every case, i.e., logically true. Thus the prediction
that a statement of this type will be true is certain to be correct. (While
these properties of a probability measure seem quite natural, it is necessary,
when dealing with infinite possibility sets, to weaken them slightly. We
consider in this book only finite possibility sets.)

We shall now discuss the interpretation of probabilities that are not 0
or 1. We shall give only some intuitive ideas that are commonly held con-
cerning probabilities. While these ideas can be made mathematically
more precise, we offer them here only as a guide to intuitive thinking.
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Suppose that, relative to a given experiment, a statement has been as-
signed probability p. From this it is often inferred that if a sequence of
such experiments is performed under identical conditions, the fraction of
experiments which yield outcomes making the statement true would be
approximately p. The mathematical version of this is the “law of large
numbers” of probability theory (which will be treated in Section 9). In cases
where there is no natural way to assign a probability measure, the probability
of a statement is estimated experimentally. A sequence of experiments is
performed and the fraction of the experiments which make the statement
true is taken as the approximate probability for the statement.

A second and related interpretation of probabilities is concerned with
betting. Suppose that a certain statement has been assigned probability p.
We wish to offer a bet that the statement will in fact turn out to be true.
We agree to give r dollars if the statement does not turn out to be true,
provided that we receive s dollars if it does turn out to be true. What should
r and s be to make the bet fair? If it were true that in a large number
of such bets we would win s a fraction p of the times and lose r a fraction
I — p of the time, then our average winning per bet would be sp—r(l —p).
To make the bet fair we should make this average winning 0. This will
be the case if sp = r(1 — p) or if r/s = p/(1 — p). Notice that this deter-
mines only the ratio of r to s. Such a ratio, written r:s, is said to give odds
in favor of the statement.

Definition The odds in favor of an outcome are r:s (rto s), if the probability
of the outcome is p, and r/s = p/(1 = p). Any two numbers having the
required ratio may be used in place of r and 5. Thus 6:4 odds are the same
as 3:2 odds.

EXAMPLE  Assume that a probability of 2 has been assigned to a certain horse winning
a race. Then the odds for a fair bet would be 3:4. These odds could be
equally well written as 3:1, 6:2 or 12 14, etc. A fair bet would be to agree
to pay $3 if the horse loses and receive $1 if the horse wins. Another fair
bet would be to pay $6 if the horse loses and win $2 if the horse wins.

EXERCISES
1. Let p and g be statements such that Pr [PV ql=% Prip] =2 and
Pr[~g] =3 Find Prp /\ gq]. [Ans. .
Using the results of Exercise 1, find Pr [~p V ~q]
Let p and ¢ be statements such that Pr [pl=14 and Prg] = 3 Are
p and g consistent? [Ans. Yes.]
4. Show that, if Pr[p] + Pr [9] > 1, then p and g are consistent.
5. A student is worried about his grades in English and Art. He estimates
that the probability of passing English is .4, that he will pass at least
one course with probability .6, but that he has only probability .1 of

2.
3
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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passing both courses. What is the probability that he will pass Art?
[Ans. 3.]
Given that a school has grades A, B, C, D, and F, and that a student
has probability .9 of passing a course, and .6 of getting a grade lower
than B, what is the probability that he will get a C or D?  [Ans. ]
State what odds a person should give on the following events:
(a) That a card chosen at random from a 52-card deck is on ace.
(b) That a four turns up when a dice is thrown.
(c) That a coin which is flipped twice comes up heads both times.
Prove that if the odds in favor of a given statement are r:s, then the
probability that the statement will be true is r/(r + ).
Using the result of Exercise 8 and the definition of “odds,” show that
if the odds are r:s that a statement is true, then the odds are s:r that
it is false.
A man is willing to give 3:1 odds that the Democratic candidate will
win the next presidential election. What must the probability of a
Democratic victory be to make this a fair bet?
An American roulette wheel contains 38 slots (18 red, 18 black, and
2 green). What are the odds that red will turn up on a given spin?
A man offers 3:2 odds that A will occur, and 1:2 odds that B will
occur. If he knows that A and B cannot both occur, what odds should
he give that A or B will occur? [Ans. 14:1.]
Suppose now the man offers 2:3 odds that A will occur, and 2:1 odds
that B will occur. Again, he knows that A and B cannot both occur.
What odds should he give that A or B will occur?
A man offers to bet “dollars to doughnuts” that a certain event will
take place. Assuming that a doughnut costs a dime, what must the
probability of the event be for this to be a fair bet? [Ans. 1]
If X and Y are two sets such that X is a subset of ¥, prove that
m(X) < m(Y). Use this to prove that if p implies g then Pr [p] < Pr [g].
Show from the definition of a probability measure that properties (A)
and (B) of the text are true.
Prove property (D) of the text. Why does property (d) follow from
this property?
Let X, Y, and Z be any three sets, the let m be any probability measure.
Prove in two ways that m(X U Y U Z) = m(X) + m(Y) + m(Z) —
mXnNY —mXNZ) —-—mYNDZ)y+mXnNYnNZ). Use
a Venn diagram for the first proof. For the second, notice that X U
YUZ = (XU Y)U Z and use property (C') of the text.
Suppose we assume that X, Y, and Z are pairwise disjoint—i.e., that
XNY=XNZ=YNZ=28&. Showthat m(X U Y U Z) =
m(X) + m(Y) + m(2).
Suppose that we make the assumption (weaker than that in Exercise
19) that X N Y N Z = &. Show by example that it is not necessarily
the case that m(X U Y U Z) = m(X) + m(Y) + m(Z).
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21. Show that m(X U Y U Z) < m(X) + m(Y) + m(Z).

22. Translate the result of Exercise 18 into a result concerning three state-
ments p, g, and r.

23. Suppose PrpAgl=Pr[p Ar]=Pr{gNr]=0andPripV qV r]
= 1. What can be said about the statements p, g, and r?

24. Suppose a card is drawn from a deck of playing cards. Let p be the
statements “The card is an honor card. [i.e., an ace, king, queen, jack,
or ten]” let ¢ be the statement “The card is a spade,” and let r

"~ be the statement “The card is either a heart or the king of clubs.”
Then Pripl=4 Prlgl=4 Prirl=4% Prip/Agl=25, and
Pr{p Ar]l= 3. Find Pr[pV gV r]. Whatis the probability that the
card is neither a spade, a heart, nor an honor card?

25. The following is an alternative proof of property (C’) of the text. Give
a reason for each step.

(@ XUY=XNY)UXnNY)u(nix).
b) mXUY)=m(XNY)+mXNY)+mXnNY).
(©) m(XUY)=mX)+m¥)—mXnY).

26. Twowomen, A and B, go out to lunch. If the probability that A’s check
is exactly 33 is .25, the probability that B’s check is exactly $3 is .35,
and the probability that the larger of the two checks is exactly $3 is
.05, what is the probability that the smaller check is exactly $3? [Hint:
Enumerate the logical possibilities for the checks, and see which ones
correspond to the quantities given above.] [Ans. 55.]

3 THE EQUIPROBABLE MEASURE

We have already seen several examples where it was natural to assign the
same weight to all possibilities in determining the appropriate probability
measure. The probability measure determined in this manner is called the
equiprobable measure. The measure of sets in the case of the equiprobable
measure has a very simple form. In fact, if U has » elements and if the
equiprobable measure has been assigned, then for any set X, m(X) is r/n,
where r is the number of elements in the set X. This is true since the weight
of each element in X is 1/n, and hence the sum of the weights of clements
of X is r/n.

The particularly simple form of the equiprobable measure makes it easy
to work with. In view of this, it is important to observe that a particular
choice for the set of possibilities in a given situation may lead to the equi-
probable measure, while some other choice will not. For example, consider
the case of two throws of an ordinary coin. Suppose that we are interested
in statements about the number of heads which occur. If we take for the
possibility set the set W = {HH, HT, TH, TT} then it is reasonable to assign
the same weight to each outcome, and we are led to the equiprobable
measure. If, on the other hand, we were to take as possible outcomes the
set U = {no H, one H, two H}, it would not be natural to assign the same
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weight to each outcome, since one head can occur in two different ways,
while each of the other possibilities can occur in only one way.

Suppose that we throw two ordinary dice. Each die can turn up a number
from 1 to 6; hence there are 6 - 6 possibilities. We assign weight 75 to each
possibility. A prediction that is true in j cases will then have probability
j/36. For example, “The sum of the dice is 5” will be true if we get 1 + 4,
2 4+ 3,342, or 4+ 1, that is, the sum can be 5 in four different ways.
Hence the probability that the sum of the dice is 5 is g5 = §. The sum can
be 12 in only one way, 6 + 6. Hence the probability that the sum is 12

is 5.

Suppose that two cards are drawn successively from a deck of cards. What
is the probability that both are hearts? There are 52 possibilities for the
first card, and for each of these there are 51 possibilities for the second.
Hence there are 52 - 51 possibilities for the result of the two draws. We assign
the equiprobable measure. The statement “The two cards are hearts” is
true in 13+ 12 of the 52-51 possibilities. Hence the probability of this
statement is 13-12/52 - 51 = .

Assume that, on the basis of a predictive index applied to students A, B,
and C when entering college, it is predicted that after four years of college
the scholastic record of A will be the highest, C the second highest, and
B the lowest of the three. Suppose, in fact, that these predictions turn out
to be exactly correct. If the predictive index has no merit at all and hence
the predictions amount simply to guessing, what is the probability that such
a prediction will be correct? There are 3! = 6 orders in which the men might
finish. If the predictions were really just guessing, then we would assign
an equal weight to each of the six outcomes. In this case the probability
is reasonably large, we would hesitate to conclude that the predictive index
is in fact useful on the basis of this one experiment. Suppose, on the other
hand, it predicted the order of six men correctly. Then a similar analysis
would show that, by guessing, the probability is 1/6! = 1/720 that such a
prediction would be correct. Hence, we might conclude here that there is
strong evidence that the index has some merit.

1. A letter is chosen at random from the word “probability.” What is
the probability that it is a b? That it is a vowel? [Ans. & &.]
2. A card is drawn at random from a deck of playing cards.
(a) What is the probability that it is either a heart or a king but not
both? [Ans. 13.]
(b) What is the probability that it is an honor card (ten, jack, queen,
king, ace) and either a club or a spade?
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An office building with ten floors has a broken elevator which lets
people off at random floors. If 2 man starting on the first floor wants
to go to the fourth floor,
(a) What is the probability that he ends up on the floor he wants?
[Ans. &.]
(b) What is the probability that he ends up no closer to the fourth
floor than when he started?
A word is chosen at random from the set of words U = {men, bird,
ball, field, book}. Let p, g, and r be the statements:
p: The word has two vowels.
g: The first letter of the word is b.
r: The word rhymes with cook.
Find the probability of the following statements:

(@ p.

(b) q.

(¢) r

d pVyg.

@ ~(pAgAr

®» p—yg [Ans. 4]
8 ~p < g

A single die is thrown. Find the probability that

(a) An odd number turns up.

(b) The number which turns up is greater than two.

() A seven turns up.

A single die is thrown twice. What value for the sum of the two
outcomes has the highest probability? What value or values of the
sum has the lowest probability of occurring?

In Exercise 6, what value or values for the product of the two outcomes
has the highest probability of occurring?

A certain college has 500 students and it is known that

250 read French.

200 read German.

100 read Russian.
55 read French and Russian.
35 read German and Russian.
60 read German and French.
20 read all three languages.

Ifa student is chosen at random from the school, what is the probability
that the student

(a) Reads two and only two languages? [Ans. £.]
(b) Reads at least one language?

The letters of the word “connect” are scrambled and placed in a
random order.
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(a) What is the probability that they still spell “connect™?
[Ans. 1g65.]
(b) What is the probability that they are arranged in alphabetical

order? [Ans. 1555.]
() What is the probability that the first and last letters are the same?
[4ns. &.]

Suppose that three people enter a restaurant which has a row of six
seats. If they choose their seats at random, what is the probability that
they sit with noseats between them? What is the probability that none
of them is sitting in a seat next to somebody else?

Find the probability that a bridge hand will have suits of

(a) 5,4,3, and 1 cards. 4’(13)(13)(13)(13)
"\ 5/\4/\ 3 1

) =.129.
Ans (52)
13
(b) 6,4,2, and 1 cards. [Ans. 0473
(¢) 4,4,3, and 2 cards. [Ans. 216.]
(d) 43,3, and 3 cards. [Ans. .105.]

52
Th
ere are (13

ability that a bridge hand dealt at random will be all of one suit.
Estimate roughly the number of bridge hands dealt in the entire
country in a year. Is it likely that a hand of all one suit will occur
sometime during the year in the United States?
If ten people are seated at a circular table, what are the probabilities
that
(a) A particular pair of people are seated next to each other?

[Ans. 2]

) = 6.35 X 10! possible bridge hands. Find the prob-

(b) Three particular people are sitting together?
A contestant on a TV quiz show is shown four pieces of merchandise
and is given a list of four prices. She wins the grand prize if she matches
each piece of merchandise with its correct pricetag. Assume she knows
little about the current prices and assigns the prices randomly.
(a) What is the probability that she wins the grand prize?

[Ans. 2]
(b) What is the probability that she prices none of the items correctly?
A room contains a group of n people who are wearing badges num-
bered from 1 to n. If two people are selected at random, what 1s the
probability that the larger badge number is 4?7 Answer this problem
assuming that n = 3,4,5,6. [dns. 0; &; 2 4]
Find the probability of obtaining each of the following poker hands.
(A poker hand is a set of five cards chosen at random from a deck
of 52 cards.)
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(a) Royal flush (ten, jack, queen, king, ace in a single suit).

4
(52) = .0000015.]
5

(b) Straight flush (five in a sequence in a single suit, but not a royal
flush).

[Ans.

(40 — 4)

= .000014.
[Ans (52) ]
5
(¢) Four of a kind (four cards of the same face value).
624
[Ans. = .00024.]

(5)

(d) Full house (one pair and one triple of the same face value).

3744
[Ans. S = 0014]
5
(e) Flush (five cards in a single suit but not a straight or royal flush).
5148 — 40
[Ans. ((5\2)) = .0020.]
5
(f) Straight (five cards in a row, not all of the same suit).
10,240 — 40
[Ans. {o, ) = .0039.]

52

(5)
(g) Straight or better. [Ans. 0076.]
Find the probability of not having a pair in a hand of poker.
Find the probability of a “bust” hand in poker. (A hand is a “bust”
if there is no pair and it is neither a straight nor a flush.)

[Ans. .5012.]

In a survey, 100,000 people were interviewed. It was found that 65,832
of them had checking accounts, 43,971 of them had at least one credit
card, and 32,348 of them had neither. What is the probability that
a person selected at random from this sample has both a checking
account and a credit card?
A certain French professor announces that he will select three out of
eight pages of text to put on an examination and that each student
can choose one of these three pages to translate. What is the minimum
number of pages that a student should prepare in order to be certain
of being able to translate a page that he has studied?

Smith decides to study only five of the eight pages. What is the
probability that one of these five pages will appear on the examination?
What is the smallest number of pages that Smith can study and still
have probability greater than { of being able to translate one page?
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x4 TWO NONINTUITIVE EXAMPLES

There are occasions in probability theory when one finds a problem for
which the answer, based on probability theory, is not at all in agreement
with one’s intuition. It is usually possible to arrange a few wagers that will
bring one’s intuition into line with the mathematical theory. A particularly
good example of this is provided by the matching birthdays problem.

Assume that we have a room with r people in it and we propose the bet
that there are at least two people in the room having the same birthday,
i.e., the same month and day of the year. We ask for the value of r which
will make this a fair bet. Few people will be willing to bet even money
on this wager unless there were at least 100 people in the room. Most people
would suggest 150 as a reasonable number. However, we shall see that with
150 people the odds are approximately, 4,100,000,000,000,000, to 1 in favor
of two people having the same birthday, and that one should be willing
to bet even money with as few as 23 people in the room.

Let us first find the probability that in a room with r people, no two have
the same birthday. There are 365 possibilities for each person’s birthday
(neglecting February 29). There are, then, 365 possibilities for the birthdays
of r people. We assume that all these possibilities are equally likely. To
find the probability that no two have the same birthday we must find the
number of possibilities for the birthdays which have no day represented
twice. The first person can have any of 365 days for his birthday. For each
of these, if the second person is to have a different birthday, there are only
364 possibilities for his birthday. For the third man, there are 363 possi-
bilities if he is to have a different birthday than the first two, etc. Thus
the probability that no two people have the same birthday in a group of
r people is

365-364-...-(365 —r + 1)
= 365" '

The probability that at least two people have the same birthday is then
p, =1 —g, In Figure 1 the values of p, and the odds for a fair bet,
p,:(1 — p,), are given for several values of r.

We consider now a second problem in which intuition does not lead to
the correct answer. A hat-check girl has checked n hats, but they have
become hopelessly scrambled. She hands back the hats at random. What
is the probability that at least one man gets his own hat? For this problem
some people’s intuition would lead them to guess that for a large number
of hats this probability should be small, while others guess that it should
be large. Few people guess that the probability is neither large nor small
and essentially independent of the number of hats involved.

Let p; be the statement “the jth man gets his own hat back.” We wish
to find Pr{p, V p, V...V p,]. A probability of this form can be found
from the inclusion-exclusion formula as follows. We first add all proba-
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Figure 1

Probability of
Number of people | at least two with Approximate odds
in the room same birthday for a fair bet

5 027

10 A17

15 253

20 411 70:100
21 444 80:100
22 476 91:100
23 507 103:100
24 538 117:100
25 569 132:100
30 706 241:100
40 891 819:100
50 970 33:1
60 994 170:1
70 1,200:1
80 12,000:1
90 160,000:1
100 3,300,000:1
125 31,000,000,000:1
150 4,100,000,000,000,000: 1

bilities of the form Pr[p;], then subtract the sum of all probabilities of the
form Pr[p; /\ p;], then add the sum of all probabilities of the form
Pr[p; /\ p; /\ pi), etc. However, each of these probabilities represents the
probability that a particular set of men get their own hats back. These
probabilities are very easy to compute.

Let us find the probability that out of n» men some particular m of them
get back their own hats. There are n! ways that the hats can be returned.
If a particular m of them are to get their own hats there are only (n — m)!
ways that it can be done. Hence the probability that a particular m men
get their own hats back is :

(n — m)!
n!

n
There are (
m

mth group of terms contributes
/

n n — m)! 1
WIS

m

) different ways we can choose m men out of n. Hence the

n! m!
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Probability p, that
Number at least one man
of hats gets his own hat

2 .500000
666667
625000
633333
631944
632143
632118

00 ~1 ON L AW

to the alternating sum. Thus

where the + sign is chosen if n is odd and the — sign if # is even. In Figure
2, these numbers are given for the first few values of n.
It can be shown that, as the number of hats increases, the probabili-

ties approach a number 1 — (1/e) = 632121 . . ., where the number e =
271828 . . .is a number that plays an important role in many branches of
mathematics.

1. What odds should you be willing to give on a bet that at least two
of the presidents of the United States have had the same birthday?
Would you win the bet?

[Ans. More than 4:1. Yes, Polk and Harding were both born on
November 2.}

2. What odds should you be willing to give on the bet that at least two
of the presidents of the United States have died on the same day of
the year? Would you win the bet?

[Ans. More than 2.7:1. Yes; Jefferson, Adams and Monroe all died
on July 4.]

3. What odds should you be willing to give on a bet that at least two
people in the United States Senate have the same birthday?

4. What is the probability that at least two members of the House of
Representatives have the same birthday?

5. Find the probability that, in a group of r people, at least one pair has
the same birthmonth. How large does r have to be for this probability
to be greater than §? (Assume that the probability of being born in
any month is the same.)

6. Show that the probability that, in a group of r people, exactly one pair
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has the same birthday is

(r)365-364- (365 —r 4 2)
2 3657 '

r

. Show that 7, = (;) qr where ¢, is defined in Exercise 6 and

366 — r’
g, is the probability that no pair has the same birthday.
Find a formula for the probability of having more than one coincidence
of birthdays among r people, i.e., of having at least two pairs of
identical birthdays, or of three or more people having the same birth-
day. [Hint: Express the answer in terms of 7,.]
Is it very surprising that there was more than one coincidence of the
dates on which presidents died (see Exercise 2)?
A contest requires entrants to match the stage names of four movie
stars with their real names. Assuming a contestant guesses at random,
what is his probability of getting none right? Of getting exactly four
right? Exactly three? Two? One?
In how many ways can 8 rooks be placed on a chessboard so that none
can attack any of the others? What is the probability that, in such
an arrangement of rooks, the black diagonal has no rooks on it? (Do
not carry out the arithmetical details.) Would the probability change
if we used 16 rooks and a 16 X 16 chess board?
A teacher has her class of 75 students correct their own homework.
She collects the papers, shuffles them, and passes one to each student.
What is the approximate probability that no student receives his own
paper back?
The clubs are removed from a deck of playing cards, shuffled, and dealt
face up on a table. The position of each of the thirteen cards is noted,
and then they are picked up, shuffled, and again dealt face up on the
table. What is the approximate probability that no card occupies the
same position in both deals?
The integers 1,2, and 3 are written down in an arbitrary order. What
is the probability that no two adjacent integers are consecutive (ie.,
that the patterns 12 and 23 do not occur)? Do the problem for 1, 2, 3,
and 4.

5 CONDITIONAL PROBABILITY

Suppose that we have a given U and that measures have been assigned
to all subsets of U. A statement p will have probability Pr[p] = m(P).
Suppose we now receive some additional information, say that statement
g is true. How does this additional information alter the probability of p?

EXAMPLE 1  Suppose we throw an ordinary die, and we are interested in statement D

“A 3 turns up.

”

By our usual analysis the probability of this statement is
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3. Suppose now that someone looks at the die and tells us statement ¢, “An
odd number turned up.” How does knowing ¢ change our probability for
statement p? Clearly the possibility set has been reduced from
(1,2,3,4,5,6} to {1,3,5). Assigning equal weights to the new set gives
the new probability that a 3 turns up as 3.

The probability of p after the receipt of the information g is called its
conditional probability, and it is denoted by Pr[p|q], which is read “the
probability of p given ¢.” In this section we shall construct a method of
finding this conditional probability in terms of the measure m.

If we know that g is true, then the original possibility set U has been
reduced to Q and therefore we must define our measure on the subsets of
O instead of on the subsets of . Of course, every subset X of Q is a subset
of U, and hence we know m(X), its measure before g was discovered. Since
g cuts down on the number of possibilities, its new measure m’(X) should
be larger.

The basic idea on which the definition of m’ is based is that, while we
know that the possibility set has been reduced to O, we have no new
information about subsets of Q. If X and Y are subsets of O, and
m(X) = 2 - m(Y), then we will want m’(X) = 2 - m’(Y). This will be the case
if the measures of subsets of Q are simply increased by a proportionality
factor m’(X) = k- m(X), and all that remains is to determine k. Since
we know that 1 = m’(Q) = k + m(Q), we see that k = I/m(Q) and our new
measure on subsets of ‘U is determined by the formula

m(X
(1) m'(X) = ——)
m(Q)
How does this affect the probability of p? First of all, the truth set of

p has been reduced. Because all elements of O have been eliminated, the
new truth set of p is P N Q and therefore

m(P 0 Q) _ Prip /gl
m(0) Prigl

Note that if the original measure m is the equiprobable measure, then the
new measure m’ will also be the equiprobable measure on the set Q.

We must take care that the denominators in (1) and (2) be different from
zero. Observe that m(Q) will be zero if Q is the empty set, which happens
only if ¢ is self-contradictory. This is also the only case in which Pr [g] =0,
and hence we make the obvious assumption that our information ¢ is not
self-contradictory.

2) Priplgl=m(P N Q)=

In an election, candidate A has .4 chance of winning, B has .3 chance, C
has .2 chance, and D has .1 chance. Just before the election, C withdraws.
Now what are the chances of the other three candidates? Let ¢ be the
statement that C will not win, i.e., that A or B or D will win. Observe
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that Pr[g] = .8, hence all the other probabilities are increased by a factor
of 1/.8 = 1.25. Candidate A now has .5 chance of winning, B has .375,
and D has .125.

A family is chosen at random from the set of all families having exactly
two children (not twins). What is the probability that the family has two
boys, if it is known that there is a boy in the family? Without any informa-
tion being given, we would assign the equiprobable measure on the set
‘U = {BB, BG, GB, GG}, where the first letter of the pair indicates the sex
of the older child and the second that of the younger. The information that
there is a boy causes U to change to {BB, BG, GB}, but the new measure
is still the equiprobable measure. Thus the conditional probability that there
are two boys given that there is a boy is 4. If, on the other hand, we know
that the first child is a boy, then the possibilities are reduced to {BB, BG}
and the conditional probability is 4.

A particularly interesting case of conditional probability is that in which
Prp(q] = Pr[p]. That is, the information that g 1s true has no effect on
our prediction for p. If this is the case, we note that

3) Prip N g] = Pr[p] Prg}

And the case Pr(g|p] = Pr [4] leads to the same equation. Whenever
equation (3) holds, we say that p and q are independent. Thus if ¢ is not
a self-contradiction, p and g are independent if and only if Pr [plg] = Pr{p].

Consider three throws of an ordinary coin, where we consider the eight
possibilities to be equally likely. Let p be the statement “A head turns up
on the first throw” and ¢ be the statement “A tail turns up on the second
throw.” Then Pr[p] = Pr [¢g] =1 and Pr [pN\gql= 3 and therefore p and
g are independent statements.

While we have an intuitive notion of independence, it can happen that
two statements that may not seem to be independent are in fact inde-
pendent. For example, let r be the statement “The same side turns up all
three times.” Let s be the statement “At most one head occurs.” Then r
and s are independent statements (see Exercise 10).

An important use of conditional probabilities arises in the following
manner. A set of statements ¢,, q,, . . . + 4» 15 said to be a complete set of
alternatives if one and only one statement can be true. We wish to find
the probability of a statement p, given a complete set of alternatives g,
92 - - - gy such that the probability Pr[g;] as well as the conditional proba-
bilities Pr [p|q,] can be found for every i. Then in terms of these we can
find Pr[p] by

Prip] = Prig,]Pr(plq,] + Prig,] Pr(p|g,] + ... + Pr l¢.]1Pr[plq,).

The proof of this assertion is left as an exercise (see Exercise 13).



Section 5

EXAMPLE 5

EXERCISES

Probability Theory 99

A psychology student once studied the way mathematicians solve problems
and contended that at times they try too hard to look for symmetry in a
problem. To illustrate this she asked a number of mathematicians the
following problem: Fifty balls (25 white and 25 black) are to be put in two
urns, not necessarily the same number of balls in each. How should the
balls be placed in the urns so as to maximize the chance of drawing a black
ball, if an urn is chosen at random and a ball drawn from this urn? A quite
surprising number of mathematicians answered that you could not do any
better than 4, by the symmetry of the problem. In fact one can do a good
deal better by putting one black ball in urn 1, and all the 49 other balls
in urn 2. To find the probability in this case let p be the statement “A black
ball is drawn,” ¢, the statement “Urn 1 is drawn” and ¢, the statement
“Urn 2 is drawn.” Then ¢, and ¢, are a complete set of alternatives, so

Pr{p] = Prig:]Pr(plq.] + Prigz] Prplg.]
But Pr[g,] = Prg,] =4 and Pr{p|q;] = 1, Prp|q,] =33 Thus
Prip]=4-1+4-%=%§=.45.

When told the answer, a number of the mathematicians that had said 3
replied that they thought there had to be the same number of balls in each
urn. However, since this had been carefully stated not to be necessary, they
also had fallen into the trap of assuming too much symmetry.

1. A card is drawn at random from a pack of playing cards. What is
the probability that it is a 6 or a king, given that it is between 5 and
9 inclusive?

2. A die is loaded in such a way that the probability of a given number
turning up is proportional to that number (e.g., a six is 3 times as likely
to turn up as a two).

(a) What is the probability of rolling an odd number, given that a
six does not turn up? [Ans. 2]
(b) What is the probability of rolling a six, given that an even number
turns up? [Ans. 4]

3. Suppose we arrange the letters of the word “random” in a random

order.
(a) Find the probability that the letters are in alphabetical order given
that the new arrangement begins with @ and ends with r.
[Ans. 4]
(b) Which is greater, the probability that the two vowels are not
together or the probability that the two vowels are not together
and the new arrangement begins with d?

4. Referring to Exercise 8 in Section 3, what is the probability that the
man selected studies German if
(a) He studies French?
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(b) He studies French and Russian?

(¢) He studies neither French nor Russian?

A student takes a five-question true-false exam. What s the probability

that he will get all answers correct if

(a) He is only guessing?

(b) He knows that the instructor puts more true than false questions
on his exams?

(¢) He knows, in addition to (b), that the instructor never puts three
questions in a row with the same answer?

(d) He knows, in addition to (b) and (c), that the first and last ques-
tions must have the opposite answer?

(e) He knows, in addition to (b), (c), and (d), that the answer to the
second problem is “false™?

A die is thrown twice. What is the probability that the sum of the

faces which turn upis7,8, or9, given that one of them is a 4? Given

that the first throw is a 47 [Ans. £%; 4.]
If Prg] = £ and Pr[~p|~q] = 4, find Pr (pV ql [Ans. 4]

A certain motorist knows that before he reaches his destination the
road forks four times, giving 16 possible paths. However, he does not
remember which way he should turn at each of the forks. He decides
that at each fork he will pick randomly which direction to go; thus
each of the 16 possible patterns is equally likely. Unfortunately, after
the four turns he realizes that he is in the wrong place.

(@) What is the probability that he made a wrong turn at the first

fork?
(b) Given that he made the correct first turn, what is the probability
that his second turn was incorrect? [Ans. 4]

(c) Given that he made at least two correct turns, what is the proba-
bility that his first turn was correct?

Three persons, A, B, and C, are placed at random in a straight line.

Let 7 be the statement “B is on the left” and let 5 be the statement

“C 1s on the right.”

(a) What is Pr[r A 52

(b) Arerands independent? [Ans. No.]

Prove that statements » and s in Example 4 are independent.

Let a deck of cards consist of the jacks and queens chosen from a bridge

deck, and let two cards be drawn from the new deck. Find

(@) The probability that the cards are both Jacks, given that one is

a jack. [Ans. & = 27)]
(b) The probability that the cards are both jacks, given that one is
a red jack. [Ans. 5 = .38]]
(c) The probability that the cards are both Jacks, given that one is
the jack of hearts. [Ans. § = 43 ]

Which is greater, Pr [a bridge hand contains 4 aces it contains 1 ace]
or Pr[a bridge hand contains 4 aces|it contains the ace of spades]?
Let p be any statement and ¢, 92, 93 be a complete set of alternatives.
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Prove that

Pr(p] = Prig,lPriplq,] + Prig,] Prplq.] + Prigsl Priplgs]

The following example shows that r may be independent of p and ¢
without being independent of p /\ g and p V' g. We throw a coin twice.
Let p be “The first toss comes out heads,” g be “The second toss comes
out heads,” and r be “The two tosses come out different.” Compute
Prrl, Pririp], Prlriql Pririp N gl, PrirlpV gl [Ans. $,3,4,0,%
Assume that p and g are independent statements relative to a given
measure. Prove that each of the following pairs of statements are
independent relative to this same measure.

(a) p and ~q.

(b) ~q and p.

(¢) ~p and ~q.

Prove that for any three statements p, ¢ and r,

Prip Ng/\rl=Pripl-Priglpl-Pririp Nql

(a) What is true about Pr[p|q] and Pr[g]|p] if p and ¢ are incon-
sistent?
(b) Under what other circumstances will it be true that Prp|q] =
Prig|p]?
A card is drawn at random from a deck of playing cards. Are the
following pairs of statements independent?
(a) p: A jack is drawn.
g: A black card is drawn.
(b) p: A black jack, queen, or king is drawn.
g: A spade which is not a 2, 3, or 4 is drawn.
A multiple-choice-test question lists four alternative answers, of which
just one is correct. If a student has done his homework, then he is
certain to identify the correct answer; otherwise he chooses an answer
at random. Let p be the statement “A student does his homework”
and ¢ the statement “He answers the question correctly.” Let
Prp] = a.
(a) Find a formula for Pr{p|q] in terms of a.
(b) Show that Pr[p|q] > Pr[p] for all values of a. When does the
equality hold?
A simple genetic model for the color of a person’s eyes is the following:
There are two kinds of color-determining genes, B and b, and each
person has two color-determining genes. If both are b, he has blue
eyes; otherwise he has brown eyes. Assume that one-quarter of the
people have two B genes, one-quarter of the people have two b genes,
and the rest have one B gene and one b gene.
(a) 1fa man has brown eyes, what is the probability that he has two
B genes?
Assume that a man has brown eyes and that his wife has brown eyes.
A child born to this couple will get one gene from the man and one
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from his wife, the selection in each case being a random selection from

the parent’s two genes.

(b) What is the probability that the child will have blue eyes?

(c) If the child has brown eyes, what is the probability that both of
the parents have two B genes? [Ans. 4]

21. Two unfair coins, labeled A and B, are tossed. If Pr [A and B come
up heads] = } and Pr[A and B come up heads|at least one of them
comes up heads] = 4, find Pr[A comes up heads] and Pr[B comes
up heads]. Assume that A has the greater probability of coming up
heads and that the statements “A comes up heads” and “B comes up
heads” are independent.

22. Three red, three green, and three blue balls are to be put into three
urns, with at least two balls in each urn. Then an urn is selected at
random and two balls withdrawn.

(@) How should the balls be put in the urns in order to maximize
the probability of drawing two balls of different color? What is
the probability? [Partial Ans. 1.
(b) How should the balls be put in the urns in order to maximize
the probability of withdrawing a red and a green ball? What is
the maximum probability? [Partial Ans. 5.

23. A man who is extremely worried about having the plane in which he
is flying blown up nevertheless always carries a bomb with him when
he flies, because he has read that the probability of two people on the
same plane having bombs is very low. Is his reasoning correct?

6 FINITE STOCHASTIC PROCESSES

We consider here a very general situation which we shall specialize in later
sections. We deal with a sequence of experiments where the outcome on
each particular experiment depends on some chance element. Any such
sequence is called a stochastic process. (The Greek word stochos means
“guess.”) We shall assume a finite number of experiments and a finite
number of possibilities for each experiment. We assume that, if all the
outcomes of the experiments which precede a given experiment were known,
then both the possibilities for this experiment and the probability that any
particular possibility will occur would be known. We wish to make predic-
tions about the process as a whole. For example, in the case of repeated
throws of an ordinary coin we would assume that on any particular experi-
ment we have two outcomes, and the probabilities for each of these outcomes
is one-half regardless of any other outcomes. We might be interested,
however, in the probabilities of statements of the form, “More than two-
thirds of the throws result in heads,” or “The number of heads and tails
which occur is the same,” etc. These are questions which can be answered
only when a probability measure has been assigned to the process as a
whole. In this section we show how probability measure can be assigned,
using the given information. In the case of coin tossing, the probabilities
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(hence also the possibilities) on any given experiment do not depend upon
the previous results. We shall not make any such restriction here since the
assumption is not true in general.

We shall show how the probability measure is constructed for a particular
example, and the procedure in the general case is similar.

We assume that we have a sequence of three experiments, the possibilities
for which are indicated in Figure 3. The set of all possible outcomes which
might occur on any of the experiments is represented by the set
{a, b, c d e ). Note that if we know that outcome b occurred on the first
experiment, then we know that the possibilities on experiment two are
{a, e, d}. Similarly, if we know that b occurred on the first experiment and
a on the second, then the only possibilities for the third are {c,f}. We denote
by p, the probability that the first experiment results in outcome a, and
by p, the probability that outcome b occurs in the first experiment. We
denote by p, , the probability that outcome d occurs on the second experi-
ment, which is the probability computed on the assumption that outcome
b occurred on the first experiment. Similarly for py .. Py es Pa,gsr Pa,e- WE
denote by p,, . the probability that outcome ¢ occurs on the third experiment,
the latter probability being computed on the assumption that outcome b
occurred on the first experiment and d on the second. Similarly for py, ¢, Pea r;
etc. We have assumed that these numbers are given and the fact that they
are probabilities assigned to possible outcomes would mean that they are
positive and that

Po+Po=1Pya+Poet Poa=1 and Poaa + Prae = 1, et

It is convenient to associate each probability with the branch of the tree
that connects the branch point representing the predicted outcome. We have
done this in Figure 3 for several branches. The sum of the numbers assigned
to branches from a particular branch point is one, e.g,,

Poa + Poet+ Pra=1

A possibility for the sequence of three experiments is indicated by a path
through the tree. We define now a probability measure on the set of all
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paths. We call this a tree measure. To the path corresponding to outcome
b on the first experiment, d on the second, and ¢ on the third, we assign
the weight py, * p, 4 * ppa .. That is the product of the probabilities associated
with each branch along the path being considered. We find the probability
for each path through the tree.

Before showing the reason for this choice, we must first show that it
determines a probability measure—in other words, that the weights are
positive and the sum of the weights is one. The weights are products of
positive numbers and hence positive. To see that their sum is one we first
find the sum of the weights of all paths corresponding to a particular
outcome, say b, on the first experiment and a particular outcome, say 4,
on the second. We have

Py Pva " Pvda + Po"Poa " Prac = Po 'Pb,d[Pbd,a + Pracl = po *Pra-

For any other first two outcomes we would obtain a similar result. For
example, the sum of the weights assigned to paths corresponding to outcome
a on the first experiment and ¢ on the second is Pa * Pa,c- Notice that when
we have verified that we have a probability measure, this will be the proba-
bility that the first outcome results in a and the second experiment results
in c.

Next we find the sum of the weights assigned to all the paths corre-
sponding to the cases where the outcome of the first experiment is b, We
find this by adding the sums corresponding to the different possibilities for
the second experiment. But by our preceding calculation this is

Po Poa t Po Poet Po Poa =Py Poa + P + Pral = p

Similary, the sum of the weights assigned to paths corresponding to the
outcome a on the first experiment is p,. Thus the sum of all weights is
Pa + p» = 1. Therefore we do have a probability measure. Note that we
have also shown that the probability that the outcome of the first experiment
is a has been assigned probability p, in agreement with our given probability.

To see the complete connection of our new measure with the given
probabilities, let X; = z be the statement “The outcome of the Jth experiment
was z.” Then the statement [X; =b A X, =d A\ X, =] is a compound
statement that has been assigned probability p, * p, , * Pra,c- The statement
[X; = b A\ X, = d]we have noted has been assigned probability p, - P»,q and
the statement [X; = b] has been assigned probability p,. Thus

PriX;=c|X,=d A\ X, = b] = 22 Pra Prac _
Py Poa

Pr[XZ:d|X1:b]:LPPM=
b

bd,c
b,d-

Thus we see that our probabilities, computed under the assumption that
previous results were known, become the corresponding conditional proba-




Section 6

EXAMPLE 1

Figure 4

EXAMPLE 2

Probability Theory 105

bilities when computed with respect to the tree measure. It can be shown
that the tree measure which we have assigned is the only one which will
lead to this agreement. We can now find the probability of any statement
concerning the stochastic process from our tree measure.

Suppose that we have two urns. Urn 1 contains two black balls and three
white balls. Urn 2 contains two black balls and one white ball. An urn
is chosen at random and a ball chosen from this urn at random. What is
the probability that a white ball is chosen? A hasty answer might be 4
since there are an equal number of black and white balls involved and
everything is done at random. However, it is hasty answers like this (which
is wrong) which show the need for a more careful analysis.

We are considering two experiments. The first consists in choosing the
urn and the second in choosing the ball. There are two possibilities for the
first experiment, and we assign p; = p, = 3 for the probabilities of choosing
the first and the second urn, respectively. We then assign p; y = £ for the
probability that a white ball is chosen, under the assumption that urn 1
is chosen. Similarly we assignp, g = 2,p, w = %, P25 = § Weindicate these
probabilities on the possibility tree in Figure 4. The probability that a white

N}

[N
(3]

ball is drawn is then found from the tree measure as the sum of the weights
assigned to paths which lead to a choice of a white ball. This is -2 +
1 Z

1.1 —
3 — 15

3
Suppose that a man leaves a bar which is on a corner which he knows to
be one block from his home. He is unable to remember which street leads
to his home. He proceeds to try each of the streets at random without ever
choosing the same street twice until he goes on the one which leads to his
home. What possibilities are there for his trip home, and what is the
probability for each of these possible trips? We label the streets A, B, C,
and Home. The possibilities together with typical probabilities are given
in Figure 5. The probability for any particular trip, or path, is found by
taking the product of the branch probabilities.
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Figure 5

EXAMPLE 3

Figure 6

Home

Assume that you are presented with two slot machines, A and B. Each
machine pays the same fixed amount when it pays off. Machine A pays
off each time with probability 4, and machine B with probability 1. You
are not told which machine is A. Suppose that you choose a machine at
random and win. What is the probability that you chose machine A? We
first construct the tree (Figure 6) to show the possibilities and assign branch

1
/W
' A
1 \
2 1
3 L
1
1 /W
2
B\
3
% L

probabilities to determine a tree measure. Let p be the statement “Machine
A was chosen” and g be the statement “The machine chosen paid off.”
Then we are asked for

Pr(p /\q].

Priplq] = Prig]

The truth set of the statement p /\ ¢ consists of a single path which has
been assigned weight . The truth set of the statement ¢ consists of two
paths, and the sum of the weights of these pathsis 3+4 + 4-1 = 3.
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Thus Pr{p|g] = % Thus if we win, it is more likely that we have machine
A than B and this suggests that next time we should play the same machine.
If we lose, however, it is more likely that we have machine B than A, and
hence we would switch machines before the next play. (See Exercise 9.)

1. Construct a tree measure to represent the possibilities for four throws
of an ordinary coin. Assume that the probability of a head on any
toss is 3 regardless of any information about other throws.

2. Using the tree constructed in Exercise 1, find the probability of the
following events:

(a) Two heads and two tails occur. [Ans. 4]
(b) The third toss is heads, given that the first two were tails.

[Ans. 3]

(¢) The first and third tosses are the same, given that the second and

third tosses are the same. [Ans. 4.]

3. A man has found through long experience with a certain soda machine
that after depositing his money he will receive a soda with probability
8, his money will be returned with probability .1, and the machine
will take the money with probability .1. If his money is returned, he
deposits it again. If the machine takes his money, he kicks it, so that
when he deposits more money the possible outcomes and their proba-
bilities are soda, .85; return, 0; and take money, .15. After the second
try he gives up. Construct a tree measure to represent the possible
outcomes of the man’s encounter with the soda machine.

4. In Exercise 3 find the probability of the following events:

(a) The man gets a soda.

(b) The man loses some money.

(c) The man gets a soda on his second try.

(d) The man gets a soda, given that he tried twice.

5. A man wins a certain tournament if he can win two consecutive games
out of three played alternately with two opponents A and B. A is a
better player than B. The probability of winning a game when B is
the opponent is 3. The probability of winning a game when A is his
opponent is only 4. Construct a tree measure for the possibilities for
three games, assuming that he plays alternately but plays A first. Do
the same assuming that he plays B first. In each case find the proba-
bility that he will win two consecutive games. Is it better to play two
games against the stronger player or against the weaker player?

[Ans. 39; &, better to play strong player twice.]

6. A manufacturing plant makes a certain part on two different machines.
Of the parts made by machine A, 80 percent are good and 20 percent
defective; machine B is older and produces good parts only 75 percent
of the time. Construct a tree measure for the experiment of picking
a machine at random, then choosing two pieces of its output and
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inspecting them. What is the probability that both pieces are good?
What is the probability that the pieces are good, given that they came
from machine A? What is the probability that the pieces came from
machine B, given that both are defective?
A cancer researcher has observed that 60 percent of young men begin
to smoke cigarettes. Once someone begins to smoke, he quits with
probability .25. Smokers develop lung cancer with probability .15,
while one-time smokers who have quit get lung cancer with probability
.I. Those men who have never smoked get lung cancer with probability
.025. Construct a tree measure which illustrates this data. What is the
probability that a man gets lung cancer? Given that he gets lung
cancer, what is the probability that he once smoked cigarettes?
An urn contains three coins. One coin is fair, one falls heads with
probability .6, and the other falls heads with probability .4. Construct
a tree measure, and find the probability that a coin chosen from the
urn at random and flipped will come up heads. Find the probability
that the coin chosen was the fair one, given that it came up tails.
[Ans. §; 4]
In Example 3, assume that the player makes two plays. Find the
probability that he wins at least once under the assumption that

(a) He plays the same machine twice. [Ans. 1]
(b) He plays the same machine the second time if and only if he won
the first time. [Ans. %5.

An urn initially contains two red and two blue balls. A ball is drawn
from the urn, and it and two more balls of the same color are replaced
in the urn. This process is carried out again, and finally a single ball
is drawn. Construct a tree measure for the possible outcomes of the
experiment. What is the probability that all three balls drawn are of
the same color? What is the probability that the third ball is blue,
given that the first two are red? What is the probability that the first
two balls have the same color? [Partial Ans. 3.]
A chess player plays three successive games of chess. His psychological
makeup is such that the probability of his winning a given game is
(3)¥*1, where k is the number of games he has won so far. (For instance,
the probability of his winning the first game is 3, the probability of
his winning the second game if he has already won the first game is
1, etc.) What is the probability that he will win at least two of the
three games. [Ans. 55.]
Two defective lightbulbs have become mixed with three good bulbs.
The bulbs are chosen one by one and tested until it is discovered which
bulbs are defective. What is the least possible number of draws neces-
sary? What is the greatest possible number of draws necessary? What
is the probability that at most three draws are needed? Exactly three
draws? Given that four draws are needed, what is the probability that
the second and fourth bulbs are defective?

A composer of aleatory (random) music writes his works in three-note
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sections. The first note of each section is randomly chosen from A,
C, and F. If the first note is A, the second is F with probability 4 and
B with probability 4. If the first note is C, the second is B with proba-
bility } and D with probability §. If the first note is F, the second is
E with probability 4 and A with probability & The third note is the
same as the first with probability § and is one note higher than the
first with probability 2 (ignore sharps and flats). What is the probability
that a given 3-note section contains a B? What is the probability that
it contains a B, given that it contains no note twice? (Musical notes
are arranged in ascending alphabetical order; thus B is one note higher
than A, etc.) .
Before a political convention, a political expert has assigned the fol-
lowing probabilities. The probability that the President will be willing
to run again is 4. If he is willing to run, he and his Vice-President
are sure to be nominated and have probability 2 of being elected again.
If the President does not run, the present Vice-President has probability
£ of being nominated, and any other presidential candidate has prob-
ability 4 of being elected. What is the probability that the present
Vice-President will be re-elected as either Vice-President or President?
[Ans. 33
A and B, finalists in a table tennis tournament, agree to play a best-
of-three series for the championship. A has probability .6 of winning
each game. What is the probability that A wins the championship?
What is the probability that exactly three games are needed? What
is the probability that the player who wins the first game goes on to
win the championship?
In a room there are three chests, each chest contains two drawers, and
each drawer contains one coin. In one chest each drawer contains a
gold coin; in the second chest each drawer contains a silver coin; and
in the last chest one drawer contains a gold coin and the other contains
a silver coin. A chest is picked at random and then a drawer is picked
at random from that chest. When the drawer is opened, it is found
to contain a gold coin. What is the probability that the other drawer
of that same chest will also contain a gold coin? [Ans. 4.]
Four slips of paper, marked with the integers 1 through 4, are placed
in a hat. What is the probability that the numbers on two slips drawn
at random from the hat are in ascending (not necessarily consecutive)
order?
A survey revealed that 75 percent of all mathematicians are eldest sons.
Given that 90 percent of mathematicians are male, and the average
family has three children, are the results surprising? (Assume that male
and female children are equally likely.)
A student claims to be able to distinguish beer from ale. He is given
a series of three tests. In each test he is given two glasses of beer and
one of ale and asked to pick out the ale. If he gets two or more correct
we shall admit his claim. Draw a tree to represent the possibilities
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(either he guesses right or he guesses wrong) for his answers. Construct
the tree measure corresponding to his guessing and find the probability
that his claim will be established if he guesses on every trial.

20. Urn A contains two red balls and one black ball; urn B contains one
ball of each color. An urn is selected at random and a ball drawn
from it. If the ball is black, it is returned to the urn; if it is red, it
is placed in the other urn. Then another ball is drawn, this one from
the other urn. Find the probability that the second ball drawn is black.
What is the probability that both balls are the same color? Given that
both balls drawn are red, what is the probability that the first urn
chosen was A?

7 BAYES’S PROBABILITIES

The following situation often occurs. Measures have been assigned in a
possibility space W. A complete set of alternatives, py, p, ..., p, has been
singled out. Their probabilities are determined by the assigned measure.
(Recall that a complete set of alternatives is a set of statements such that
for any possible outcome one and only one of the statements is true.) We
are now given that a statement ¢ is true. We wish to compute the new
probabilities for the alternatives relative to this information. That is, we
wish the conditional probabilities Pr p;|g] for each p;, We shall give two
different methods for obtaining these probabilities.

The first is by a general formula. We illustrate this formula for the case
of four alternatives: py, po, p3, ps. Consider Pr[p,|g]. From the definition
of conditional probability,

Pr[p, /\ q]
Prigl
But since p,, po, P35, P4, are a complete set of alternatives,
Prigl = Prip, /N gl + Prip, A\ gl + Pripy A gl + Prips /A g)
Thus

Prp,lql =

_ Prip, N g
Prip,lq] = Prip, Ngql+ Prip, Nql + Prips Ngl + Prip, N gl

Since Pr[p; /\ q] = Pr[p;] Prgq|p;], we have the desired formula

Pr{p, 4]
_ Pr{p,] - Prig|p,]
Pr{p,]* Pr{q| p,]+Prlp,] - Prlg| p,]+Prlps) - Prig| ps]+Prlp,] - Prig| p,]

Similar formulas apply for the other alternatives, and the formula generalizes
in an obvious way to any number of alternatives. In its most general form
it is called Bayes’s theorem.
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Suppose that a freshman must choose among mathematics, physics, chemis-
try, and botany as his science course. On the basis of the interest he
expressed, his adviser assigns probabilities of .4, .3, .2, and .1 to his choosing
each of the four courses, respectively. His adviser does not hear which
course he actually chose, but at the end of the term the adviser hears that
he received A in the course chosen. On the basis of the difficulties of these
courses the adviser estimates the probability of the student getting an A
in mathematics to be .1, in physics .2, in chemistry .3, and in botany .9.
How can the adviser revise his original estimates as to the probabilities of
the student taking the various courses? Using Bayes’s theorem we get

Pr [He took math|He got an A]

()1 Y]

(DY) + (3)2) + (2)3) + (1)9) 25
Similar computations assign probabilities of .24, 24, and .36 to the other
three courses. Thus the new information, that he received an A, had little
effect on the probability of his having taken physics or chemistry, but it
has made it much less likely that he took mathematics, and much more
likely that he took botany.

It is important to note that knowing the conditional probabilities of ¢
relative to the alternatives is not enough. Unless we also know the proba-
bilities of the alternatives at the start, we cannot apply Bayes’s theorem.
However, in some situations it is reasonable to assume that the alternatives
are equally probable at the start. In this case the factors Pr[p,],. . ., Pr[p,]
cancel from our basic formula, and we get the special form of the theorem:

If Pr{p,]=Pr[p,] = Pr[ps] =Pr[p,], then

Prq|p,) .
Prig|p,) + Prigip,] + Prigipsl + Prlg|p,l

Prip.lq] =

In a sociological experiment the subjects are handed four sealed envelopes,
each containing a problem. They are told to open one envelope and try
to solve the problem in ten minutes. From past experience, the experimenter
knows that the probability of their being able to solve the hardest problem
is .1. With the other problems, they have probabilities of .3, .5, and .8.
Assume the group succeeds within the allotted time. What is the probability
that they selected the hardest problem? Since they have no way of knowing
which problem is in which envelope, they choose at random, and we assign
equal probabilities to the selection of the various problems. Hence the above
simple formula applies. The probability of their having selected the hardest
problem is

1 1

1+3+5+8 17




112 Probability Theory Chapter 3

EXAMPLE 3

Figure 7

Figure 8

The second method of computing Bayes’s probabilities is to draw a tree,
and then to redraw the tree in a different order. This is illustrated in the
following example.

There are three urns. Each urn contains one white ball. In addition, urn
I contains one black ball, urn II contains two, and urn III contains three.
An urn is selected and one ball is drawn. The probability for selecting the
three urns is 3, 3, and }, respectively. If we know that a white ball is drawn,
how does this alter the probability that a given urn was selected?

First we construct the ordinary tree and tree measure (Figure 7).

o
=
- wofr
jw W SIS R
W = w =
N e SIS - SR~ &

w =

[ 3
ot

[FeT
Iy
—
o

Next we redraw the tree, using the ball drawn as stage 1, and the urn
selected as stage 2. We have the same paths as before, but in a different
order. So the path weights are read off from the previous tree. The proba-
bility of drawing a white ball is

Bttt h=3
This leaves the branch weights of the second stage to be computed (see
Figure 8). But this is simply a matter of division. For example, the branch

/N /N

weights for the branches starting at “W” must be 1,4, 4 to yield the correct
path weights. Thus, if a white ball is drawn, the probability of having
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selected urn I has increased to %, the probability of having picked urn III
has fallen to , while the probability of having chosen urn II is unchanged
(see Figure 9).
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Figure 9

This method is particularly useful when we wish to compute all the
conditional probabilities. We shall apply the method next to Example 1.
The tree and tree measure for this example in the natural order is shown
in Figure 10. In that figure the letters M, P, C, and B stand for mathematics,
physics, chemistry, and botany, respectively.

Path weights
.04

.36
.06
.24
.06
.14
.09
.01

Figure 10

The tree drawn in reverse order is shown in Figure 11.

Path weights

/ M 04
__’ P 406
25 QC .06
B .09

/ M 36

75 -——__——__— P .24
§ C 14

B .01

Figure 11
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Each path in this tree corresponds to one of the paths in the original tree.
Therefore the path weights for this new tree are the same as the weights
assigned to the corresponding paths in the first tree. The two branch weights
at the first level represent the probability that the student receives an A
or that he does not receive an A. These probabilities are also easily obtained
from the first tree. In fact,

Pr[A] = .04 + 06 + .06 + .09 = 25
and
Pr[~A]=1 — 25 = 75.

We have now enough information to obtain the branch weights at the
second level, since the product of the branch weights must be the path
weights. For example, to obtain p, \, we have

25 pamu =204 or p,y=.l6.

But p, y 18 also the conditional probability that the student took math given
that he got an A. Hence this is one of the new probabilities for the alterna-
tives in the event that the student received an A. The other branch proba-
bilities are found in the same way and represent the probabilities for the
other alternatives. By this method we obtain the new probabilities for all
alternatives under the hypothesis that the student receives an A as well as
the hypothesis that the student does not receive an A. The results are shown
in the completed tree in Figure 12.

Path weights

.04
.24

o .06

. 25 NC .06

3;% ) B .09

48M 36

75 32 p 24

B .01
Figure 12
EXERCISES

L. A certain New England state has fair weather 20 percent of the time
and foul weather 80 percent of the time. If a given day is fair, the
probability that the next day is fair is .25; if a given day is foul, the
next day is also foul with probability .75. If it is fair today, what is
the probability that it was fair yesterday?
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A survey showed that 25 percent of American cars are compacts, 40
percent are intermediates, and 35 percent are standard size. If a
compact car is involved in an accident, the probability that its occu-
pants are seriously injured is .6. For an intermediate car the probability
is .5, and for standard size car it is .4. Given that the occupants of
a car were seriously injured in an accident, what is the probability that
the car was a compact? What is the probability that the car was an
intermediate? A standard?

For Exercise 2, construct the tree measure and the tree drawn in reverse
order.

On a multiple-choice exam there are four possible answers for each
question. Therefore, if a student knows the right answer, he has
probability 1 of choosing correctly; if he is guessing, he has probability
1 of choosing correctly. Let us further assume that a good student will
know 90 percent of the answers, a poor student only 50 percent. If
a good student chooses the right answer, what is the probability that
he was only guessing? Answer the same question about a poor student,

if the poor student chooses the right answer. [Ans. &, 4]
At a small coeducational college, 50 percent of the students are major-

ing in liberal arts, 10 percent in nursing, 10 percent in performing arts,
and 30 percent in education. The proportion of women in the various
majors is 40, 90, 60, and 50 percent respectively. Find the probability
that a given male student is enrolled in each of the majors.

Of 200 people attending an office picnic, 150 eat one helping of potato
salad, 30 eat two helpings, and 20 eat three helpings. Later many of
those who attended the picnic became sick, and it is discovered that
the potato salad was the cause. A doctor estimates that the probability
of becoming sick is .3 times the number of servings of potato salad
eaten. Find the probability that a person who became sick ate one,
two, or three helpings. Do the same for a person who did not get sick.
Three men, A, B, and C, are in jail, and one of them is to be hanged
the next day. The jailor knows which man will hang, but must not
announce it. Man A says to the jailor, “Tell me the name of one of
the two who will not hang. If both are to go free, just toss a coin to
decide which to say. Since I already know that at least one of them
will go free, you are not giving away the secret.” The jailor thinks
a moment and then says, “No, this would not be fair to you. Right
now you think the probability that you will hang is 4; but if I tell you
the name of one of the others who is to go free, your probability of
hanging increases to 4. You would not sleep as well tonight.” Was
the jailor’s reasoning correct? [Ans. No.]
A machine for testing radio tubes will detect a defective tube with
probability .95, but will show that a good tube is defective with proba-
bility .1. A technician knows that one tube in a radio with ten tubes
1s defective. He selects a tube at random, tests it, and finds that the
machine indicates the tube is defective. What is the probability that -
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the tube actually is defective? Suppose the machine says the tube is
good. What is now the probability that the tube is in fact defective?
(This problem should be done both with and without using Bayes’s
theorem.) A deck contains three cards. One is black on both sides,
another is red on both sides, and the third has one red side and one
black side. A card is selected from the deck at random and dealt onto
a table; the face showing is black. What is the probability that the
other face is also black?
One coin in a collection of 8 million coins has two heads. The rest
are fair coins. A coin chosen at random from the collection is tossed
ten times and comes up heads every time. What is the probability that
it is the two-headed coin?
Referring to Exercise 10, assume that the coin is tossed » times and
comes up heads every time. How large does n have to be to make
the probability approximately 4 that you have the two-headed coin?
[Ans. 23.]
A musicologist is attempting to determine the composer of a newly
discovered baroque ditty. He thinks it equally likely to be Archangelo
Spumani or his lesser-known brother Pistachio. Unfortunately both
composed only in the keys of A major and F minor; Archangelo used
the former 60 percent of the time, while Pistachio used the latter in
80 percent of his compositions. If the musicologist discovers that the
work is in F minor, what is the probability that it was written by
Archangelo? By Pistachio?
One-third of the subjects in a test of cold remedies are given vitamin
C, 4 are given antibiotics, and § are given a placebo. The colds of 3
of the vitamin-C group,  of the antibiotic group, and 2 of the placebo
group are cured. What is the probability that a subject whose cold
was not cured was given vitamin C? What is the probability that a
subject whose cold was cured was given a placebo?
The manager of an office employing 15 women and 5 men discovers
that the men are equally likely to use a paper clip as a nail cleaner,
as a paper fastener, or as ammunition for a rubber-band slingshot.
The women never shoot paper clips, but use them as nail cleaners with
probability .75 and as paper fasteners with probability .25. If a paper
clip is used as a nail cleaner, what is the probability that it was used
by a woman? What is the probability that a clip shot across the office
was shot by a man?

8 INDEPENDENT TRIALS WITH TWO OUTCOMES

In the preceding section we developed a way to determine a probability
measure for any sequence of chance experiments where there are only a
finite number of possibilities for each experiment. While this provides the
framework for the general study of stochastic processes, it is too general
to be studied in complete detail. Therefore, in probability theory we look
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for simplifying assumptions which will make our probability measure easier
to work with. It is desired also that these assumptions be such as to apply
to a variety of experiments which would occur in practice. In this book
we shall limit ourselves to the study of two types of processes. The first,
the independent trials process, will be considered in the present section.
This process was the first one to be studied extensively in probability theory.
The second, the Markov chain process, is a process that is finding increasing
application, particularly in the social and biological sciences, and will be
considered in Section 12.

A process of independent trials applies to the following situation. Assume
that there is a sequence of chance experiments, each of which consists of
a repetition of a single experiment, carried out in such a way that the results
of any one experiment in no way affect the results in any other experiment.
We label the possible outcome of a single experiment by a,, . . ., a,. We
assume that we are also given probabilities p,, . . . , p, for each of these
outcomes occurring on any single experiment, the probabilities being inde-
pendent of previous results. The tree representing the possibilities for the
sequence of experiments will have the same outcomes from each branch
point, and the branch probabilities will be assigned by assigning probability
p; to any branch leading to outcome g;. The tree measure determined in
this way is the measure of an independent trials process. In this section we
shall consider the important case of two outcomes for each experiment. The
more general case is studied in Section 10. '

In the case of two outcomes we arbitrarily label one outcome “success”
and the other “failure.” For example, in repeated throws of a coin we might
call heads success, and tails failure. We assume there is given a probability
p for success and a probability ¢ = 1 — p for failure. The tree measure for
a sequence of three such experiments is shown in Figure 13. The weights
assigned to each path are indicated at the end of the path.
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EXAMPLE 1

The question which we now ask is the following. Given an independent
trials process with two outcomes, what is the probability of exacrly x suc-
cesses in n experiments? We denote this probability by f(n, x; p) to indicate
that it depends upon n, x, and p.

Assume that we had a tree for this general situation, similar to the tree
in Figure 13 for three experiments, with the branch points labeled S for
success and F for failure. Then the truth set of the statement “Exactly x
successes occur” consists of all paths which go through x branch points
labeled S and n — x labeled F. For instance, in Figure 13 suppose x = 2
so that we are interested in the probability that “exactly two successes”
occur. We look for all the paths that go through two branch points labeled
S and (3 — 2) or one branch point labeled F. (There are three paths of
this type.) To find the probability of this statement we must add the weights
for all such paths. We are helped first by the fact that our tree measure
assigns the same weight to any such path, namely p®¢"~%. The reason for
this is that every branch leading to an S is assigned probability p, and every
branch leading to F is assigned probability g, and in the product there will
be x p’s and (n — x)¢’s. To find the desired probability we need only find
the number of paths in the truth set of the statement “Exactly x successes
occur.” But that is just the number of ways we can label x branch points
with § and n — x branch points with F. We found in Chapter 2 that this

labeling could be done in (Z) ways. Thus we have proved:

In an independent trials process with two outcomes the probability of exactly
X successes in n experiments is given by

S, x;p) = (Z)p”‘q"“””.

Consider n throws of an ordinary coin. We label heads “success” and tails
“failure,” and we assume that the probability is § for heads on any one throw
independently of the outcome of any other throw. Then the probability
that exactly x heads will turn up is

sy = ()2

For example, in 100 throws the probability that exactly 50 heads will turn

up is
100}/ 1 200
100 'l: —
/(100,505 3) (50)(2)’

which is approximately .08. Thus we see that it is quite unlikely that exactly
one-half of the tosses will result in heads. On the other hand, suppose that
we ask for the probability that nearly one-half of the tosses will be heads.
To be more precise, let us ask for the probability that the number of heads
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which occur does not deviate by more than 10 from 50. To find this we
must add

f(100, x;4) for x =40,41,...,60.

If this is done, we obtain a probability of approximately .96. Thus, while
it is unlikely that exactly 50 heads will occur, it is very likely that the number
of heads which occur will not deviate from 50 by more than 10.

Assume that we have a machine which, on the basis of data given, is to
predict the outcome of an election as either a Republican victory or a
Democratic victory. If two identical machines are given the same data, they
should predict the same result. We assume, however, that any such machine
has a certain probability g of reversing the prediction that it would ordinarily
make, because of a mechanical or electrical failure. To improve the accuracy
of our prediction we give the same data to r identical machines, and choose
the answer which the majority of the machines give. To avoid ties we assume
that r is odd. Let us see how this decreases the probability of an error due
to a faulty machine.

Consider r experiments, where the jth experiment results in success if the
jth machine produces the prediction which it would make when operating
without any failure of parts. The probability of success is then p = 1 — ¢.
The majority decision will agree with that of a perfectly operating machine
if we have more than r/2 successes. Suppose, for example, that we have
five machines, each of which has a probability of .1 of reversing the predic-
tion because of a parts failure. Then the probability for success is .9, and
the probability that the majority decision will be the desired one is

£(5,3;09) + £(5,4;0.9) + f(5,5;0.9),

which is found to be approximately .991 (see Exercise 3).

Thus the above procedure decreases the probability of error due to
machine failure from .1 in the case of one machine to .009 for the case of
five machines.

1. Compute for n =4, n = 6, and n = 8 the probability of obtaining
heads exactly half the time when an ordinary coin is thrown.

2. Do Exercise 1 for a loaded coin which has probability § of coming

up heads. How do the answers compare with those in Exercise 1?

[Ans. 211, 132, 087 ]

Verify that the probability 991 given in Example 2 is correct.

4. A machine produces light bulbs that are good with probability .95 and
defective with probability .05. What is the probability that a sample
of ten bulbs selected at random from the machine’s output contains
at most one defective bulb? (Do not carry out the computation.)

w
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Suppose an unprepared student takes a five-question multiple-choice
exam. Each question has four possible answers, only one of which is
correct. What is the probability that he can attain a passing grade of
80 percent by guessing?
A coin is to be thrown eight times. What is the most probable number
of heads that will occur? What is the number having the highest
probability, given that the first four throws result in heads?
A die is made by marking the faces of a regular dodecahedron with
the numbers 1 through 12. What is the probability that on exactly
three out of six throws of the die, a number larger than 8 turns up?
Suppose a coin is flipped six times. What is the probability that more
than half of the tosses come up tails? Answer the same for seven
throws, and for 17,219 throws.
Suppose seven coins are flipped eleven times each. What is the proba-
bility that more than half of the coins come up heads more than
one-half of the time?
[Ans. 3.] [Hint: Use the result of Exercise 8 twice.]

A small factory has ten workers. The workers eat their lunch at one
of two diners, and they are just as likely to eat at one as in the other.
If the proprietors want to be more than .95 sure of having enough seats,
how many seats must each of the diners have?  [Ans. Eight seats.]
Suppose we have a computer routine to produce random digits. What
is the probability that in ten trials of the routine, more than two zeros
are output?
A trapper has found through experience that he can expect a given
trap to catch an animal once every three weeks. How many traps
should he set to have probability at least .7 of catching at least two
animals a week?
In a certain board game players move around the board, and each
turn consists of a player’s rolling a pair of dice. If a player is on the
square marked “Park Bench,” he must roll a seven or doubles before
he is allowed to move out.
(a) What is the probability that a player stuck on “Park Bench” will

be allowed to move out on his next turn?
(b) A player stuck on “Park Bench” has probability greater than 3

of getting out after how many rolls? [Ans. (a) 4; (b) 4.]
A machine produces small electrical parts which are perfect with
probability .8, defective but usable with probability .15, and useless
with probability .05. Find the probability that a sample of ten parts
made by the machine contains exactly eight perfect parts. (Do not
carry out the computation.)
Find the probability that the sample in Exercise 14 contains seven
perfect parts, two defective but usable parts, and one useless part.

n—x+1)p
xX-q

Show that f(n, x; p) = f(n, x —1; p).
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For given n and p, find the k such that f(n, k; p) is the largest. [Hint:
We want f(n, k; p) > f(n, k — 1;p) and f(n k; p) > f(n, k + 1; p);
use the result of Exercise 16.]
Without actually computing the probabilities, find the value of x for
which f(20, x; .3) is largest.
A restaurant orders five pieces of apple pie and five pieces of cherry
pie. Assume that the restaurant has ten customers, and the probability
that a customer will ask for apple pie is § and for cherry pie is 2.
(a) What is the probability that the ten customers will all be able
to have their first choice? (Do not carry out the computation.)
(b) What number of each kind of pie should the restaurant order if
it wishes to order ten pieces of pie and wants to maximize the
probability that the ten customers will all have their first choice?
Suppose a computer routine for generating random digits is operated
1000 times. What is the most likely number of times the digit 7
appears?

9 THE LAW OF LARGE NUMBERS

In this section we shall study some further properties of the independent
trials process with two outcomes. In Section 8 we saw that the probability
for x successes in n trials is given by

fn,x; p) = (Z)p‘”q"”’-

In Figure 14 we show these probabilities graphically for n = 8 and p = 3.

Figure 14
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In Figure 15 we have done similarly for the case of n =7 and p = 3.
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We see in the first case that the values increase up to a maximum value
at x = 6 and then decrease. In the second case the values increase up to
a maximum value at x = 5, have the same value for x = 6, and then
decrease. These two cases are typical of what can happen in general.

Consider the ratio of the probability of x + 1 successes in 7 trials to the
probability of x successes in n trials, which is

( n )p:t+1qn—z—l
x+1 _n—=xp

n\ .o T ox 41 ;
(1)

This ratio will be greater than one as long as (n — x)p > (x + 1)g
or as long as x <mp —gq. If np —gq is not an integer, the values

n . : :
( ) p*q"~" 1ncrease up to a maximum value, which occurs at the first
x

integer greater than np — g, and then decrease. In case np — ¢ is an
n
X

for x =np — g and x = np — g + 1, and then decrease.

Thus we see that, in general, values near np will occur with the largest
probability. It is not true that one particular value near np is highly likely
to occur, but only that it is relatively more likely than a value further from
np. For example, in 100 throws of a coin, np = 1000 - = 50. The proba-
bility of exactly 50 heads is approximately .08. The probability of exactly
30 is approximately .00002.

More information is obtained by studying the probability of a given

integer, the values ( ) pq"~" increase up to x = np — g, are the same
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deviation of the proportion of successes x/n trom the number p; that is,
by studying for € > 0,

Pr [1% —pl < e].

For any fixed n, p, and e, the latter probability can be found by adding
all the values of f(n, x; p) for values of x for which the inequality
p — € <x/n<p + eistrue. In Figure 16 we have given these probabilities
for the case p = .3 with various values for € and ». In the first column we
have the case € = .1. We observe that as n increases, the probability that
the fraction of successes deviates from .3 by less than .1 tends to the value
1. In fact, to four decimal places the answer is 1.0000 after n = 400. In
the second column we have the same probabilities for the smaller value
of € = .05. Again the probabilities are tending to 1 but not so fast. In the
third column we have given these probabilities for the case e = .02. We
see now that even after 1000 trials there is still a reasonable chance that
the fraction x/n is not within .02 of the value of p = .3. It is natural to
ask if we can expect these probabilities also to tend to 1 if we increase n
sufficiently. The answer is yes and this is assured by one of the fundamental

theorems of probability called the law of large numbers. This theorem asserts
that, for any € > 0,

Pr| X~ pl <

tends to 1 as n increases indefinitely.

|

.L,¢‘<4 for p=23 and e=.1,05,02.
n

P{i—4<ﬂP{i—4<ﬂP{i—#<ﬂ
n n n n
20 5348 1916 1916
40 7738 3945 1366
60 8800 5184 3269
80 9337 6068 2853
100 9626 6740 2563
200 9974 8577 4107
300 9998 9326 5116
400 1.0000 9668 5868
500 1.0000 9833 6461
600 1.0000 9915 6944
700 1.0000 9956 7345
800 1.0000 9977 7683
900 1.0000 9988 7970
1000 1.0000 9994 8216
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EXAMPLE 1

It is important to understand what this theorem says and what it does
not say. Let us illustrate its meaning in the case of coin tossing.

We are going to toss a coin n times and we want the probability to be
very high, say greater than .99, that the fraction of heads which turn up
will be very close, say within .001, of the value .5. The law of large numbers
assures us that we can have this if we simply choose n large enough. The
theorem itself gives us no information about how large » must be. Let us,
however, consider this question.

To say that the fraction of the times success results is near p is the same
as saying that the actual number of successes x does not deviate too much
from the expected number np. To see the kind of deviations which might
be expected we can study the value of Pr[|x — np| > d]. A table of these
values for p = .3 and various values of n and d are given in Figure 17.
Let us ask how large d must be before a deviation as large as d could be
considered surprising. For example, let us see for each »n the value of d
which makes Pr[|x — np| > d] about .04. From the table, we see that d
should be 7 for n = 50, 9 for n = 80, 10 for n = 100, etc. To see deviations
which might be considered more typical we look for the values of d which
make Pr [|x — np| > d] approximately 4 Again from the table, we see that
d should be 3 or 4 for n = 50, 4 or 5 for n = 80, 5 for n = 100, etc. The
answers to these two questions are given in the last two columns of the table.
An examination of these numbers shows us that deviations which we would
consider surprising are approximately \/n while those which are more typical

are about one half as large or Vn/2.

This suggests that Vn, or a suitable multiple of it, might be taken as a
unit of measurement for deviations. Of course, we would also have to study
how Pr [|x — np| > d] depends on p. When this is done, one finds that \/npq
is a natural unit; it is called a standard deviation. It can be shown that for
large n the following approximations hold:

Prilx —np| > Vnpg] = 3174
Pr{jx — np| > 2Vnpg] = .0455
Pr[jx — np| > 3 Vnpq] = .0027.

That is, a deviation from the expected value of one standard deviation
is rather typical, while a deviation of as much as two standard deviations
is quite surprising and three very surprising. For values of p not too near
0 or 1, the value of \pq is approximately 4. Thus these approximations
are consistent with the results we observed from our table.

For large n, Pr{x — np > kV/npq] or Pr[x — np < —k\/npg] can be
shown to be approximately the same. Hence these probabilities can be
estimated for k = 1, 2, and 3 by taking } the values given above.

In throwing an ordinary coin 10,000 times, the expected number of heads
is 5000, and the standard deviation for the number of heads is
V10,000(3)@) = 50. Thus the probability that the number of heads which
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EXAMPLE 2

EXAMPLE 3

turn up deviates from 5000 by as much as one standard deviation, or 50,
is approximately .317. The probability of a deviation of as much as two
standard deviations, or 100, is approximately .046. The probability of a
deviation of as much as three standard deviations, or 150, is approximately
.003.

Assume that in a certain large city, 900 people are chosen at random and
asked if they favor a certain proposal. Of the 900 asked, 550 say they favor
the proposal and 350 are opposed. If, in fact, the people in the city are
equally divided on the issue, would it be unlikely that such a large majority
would be obtained in a sample of 900 of the citizens? If the people were
equally divided, we would assume that the 900 people asked would form
an independent trials process with probability § for a “yes” answer and }
for a “no” answer. Then the standard deviation for the number of “yes”
answers in 900 trials is 1/900(2)(3) = 15. Then it would be very unlikely that
we would obtain a deviation of more than 45 from the expected number
of 450. The fact that the deviation in the sample from the expected number
was 100, then, is evidence that the hypothesis that the voters were equally
divided is incorrect. The assumption that the true proportion is any value
less than 1 would also lead to the fact that a number as large as 550 favoring
in a sample of 900 is very unlikely. Thus we are led to suspect that the
true proportion is greater than 4. On the other hand, if the number who
favored the proposal in the sample of 900 were 465, we would have only
a deviation of one standard deviation, under the assumption of an equal
division of opinion. Since such a deviation is not unlikely, we could not
rule out this possibility on the evidence of the sample.

A certain Ivy League college would like to admit 800 students in their
freshman class. Experience has shown that if they accept 1250 students they
will have acceptances from approximately 800. If they admit as many as
50 too many students they will have to provide additional dormitory space.
Let us find the probability that this will happen assuming that the accept-
ances of the students can be considered to be an independent trials process.
We take as our estimate for the probability of an acceptance p = {555 = .64.
Then the expected number of acceptances is 800 and the standard deviation
for the number of acceptances is V1250 X .64 X .36 =~ 17. The probability
that the number accepted is three standard deviations or 51 from the mean
is approximately .0027. This probability takes into account a deviation
above the mean or below the mean. Since in this case we are only interested
in a deviation above the mean, the probability we desire is half of this or
approximately .0013. Thus we see that it is highly unlikely that the college
will have to have new dormitory space under the assumptions we have made.

We finish this discussion of the law of large numbers with some final
remarks about the interpretation of this important theorem.
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Of course no matter how large n is we cannot prevent the coin from
coming up heads every time. If this were the case we would observe a
fraction of heads equal to 1. However, this is not inconsistent with the
theorem, since the probability of this happening is (3)" which tends to 0
as n increases. Thus a fraction of 1 is always possible, but becomes increas-
ingly unlikely.

The law of large numbers is often misinterpreted in the following manner.
Suppose that we plan to toss the coin 1000 times and after 500 tosses we
have already obtained 400 heads. Then we must obtain less than one-half
heads in the remaining 500 tosses to have the fraction come out near 3.
It is tempting to argue that the coin therefore owes us some tails and it
is more likely that tails will occur in the last 500 tosses. Of course this is
nonsense, since the coin has no memory. The point is that something very
unlikely has already happened in the first 500 tosses. The final result can
therefore also be expected to be a result not predicted before the tossing
began.

We could also argue that perhaps the coin is a biased coin, but this would
make us predict more heads than tails in the future. Thus the law of
averages, or the law of large numbers, should not give you great comfort
if you have had a series of very bad hands dealt you in your last 100 poker
hands. If the dealing is fair, you have the same chance as ever of getting
a good hand.

Early attempts to define the probability p that success occurs on a single
experiment sounded like this. If the experiment is repeated indefinitely, the
fraction of successes obtained will tend to a number p, and this number
p is called the probability of success on a single experiment. While this
fails to be satisfactory as a definition of probability, the law of large numbers
captures the spirit of this frequency concept of probability.

1. 1In 64 tosses of an ordinary coin, what is the expected number of heads
that turn up? What is the standard deviation for the number of heads
that occur? [Ans. 32, 4.]

2. A die is loaded so that the probability of any face turning up is
proportional to the number on that face. If the die is rolled 150 times,
what is the expected number of times a three will turn up? What is

the standard deviation for the number of threes that turn up?

0
[Ans. 120 30

3. Suppose the die in Exercise 2 is tossed 75 times. What is the expected
number of times a three or a six will turn up? What is the standard
deviation for the number of such throws?

4. Anunknown coin is tossed 10,000 times and comes up heads 5100 times?
Is it likely that the coin is fair?

5. In alarge number of independent trials with probability p for success,
what is the approximate probability that the number of successes will
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deviate from the expected number by more than one standard deviation
but less than two standard deviations? [Ans. 272.]
A farmer has found that, on the average, 1 percent of his 1000 apple
trees die and must be replaced each year. The year after an atomic
power plant begins operating nearby, 19 of the farmer’s trees die.
Should he suspect that his trees are dying due to other than natural
causes? »

Consider n independent trials with probability p for success. Let r and
s be numbers such that p < r <s. What does the law of large numbers
say about

Pr[r<£<s]
n

as we increase n indefinitely? Answer the same question in the case
that r < p <s.
Although 10 percent of those receiving Ph.D’s in mathematics each
year are women, all ten people hired by the mathematics department
of a small college over the past five years have been men. Is there
reason to suspect that the department is discriminating against women?
A researcher studying the effects of diet on heart disease notes that
15 percent of all men over 55 have heart disease, and 47 men out of
a sample of 500 men over 55 on a low-cholesterol diet have heart
disease. Is it reasonable for him to hypothesize that a low-cholesterol
diet may reduce the incidence of heart disease?
What is the approximate probability that, in 10,000 throws of an
ordinary coin, the number of heads which turn up lies between 4850
and 51507 What is the probability that the number of heads lies in
the same interval, given that in the first 1900 throws there were 1600
heads?
Suppose we want to be 95 percent sure that the fraction of heads that
turn up when a fair coin is tossed n times does not differ from 1 by
more than .0l. How large should n be?

[Ans. Approximately 10,000.]
A small college found that, while it was all female, 2 percent of its
students majored in mathematics. After it became coeducational, the
college had 10 math majors in its first mixed graduating class of 400
students. Is it likely that coeducation had some effect on the number
of students electing to major in mathematics?
A preelection poll indicates that 55 percent of the voters will choose
candidate A. When the election is over, candidate A has received 5200
of the 9900 votes cast. How accurate was the poll?
Suppose that for each roll of a fair die you lose $1 when an odd number
comes up and win §1 when an even number comes up. Then after
40,000 rolls you can, with approximately 84 percent confidence, expect
to have lost not more than how many dollars?
The Dartmouth computer, having nothing better to do, flipped a coin
1,000,000 times. It obtained 499,452 heads. Is this number reasonable?
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*10 INDEPENDENT TRIALS WITH MORE THAN
TWO OUTCOMES

By extending the results of Section 8, we shall study the case of independent
trials in which we allow more than two outcomes. We assume that we have
an independent trials process where the possible outcomes are a,, dy, . . . ,dy,
occurring with probabilities py, p,, . . . , Py, respectively. We denote by

f(rl’ r2, A ] rk:p15p2a [ ,pk)
the probability that, in

n=ry+r,+...+r
such trials, there will be r; occurences of a,, r, or a,, etc. In the case of
two outcomes this notation would be f(ry, 75, p;, po). In Section 8 we wrote
this as f(n, r; p) = f(n, ry; p,) since r, and p, are determined from n, r,,
and p,. We shall indicate how this probability is found in general, but carry
out the details only for a special case. We choose k = 3, and n = 5 for
purposes of illustration. We shall find f(1,2,2; py, ps, pa3)-

We show in Figure 18 enough of the tree for this process to indicate the
branch probabilities for a path (heavy lines) corresponding to the outcomes
ay, ds, Ay, Ay, a5 The tree measure assigns weight pyps*pypep3 =
Py P35 p5 to this path.

/
p

as

2
aj 43 a2 ajz a3
Ps3 P3 P3 P3
ri
P2 2, p2 12,
T (] ) as 4| evemes— (1) aj
ay a1 a) a

Figure 18

There are, of course, other paths through the tree corresponding to one
occurrence of a,, two of a,, and two of a;. However, they would all be
assigned the same weight p, - p% - p3, by the tree measure. Hence to find
f(1,2,2; py, ps, p3), we must multiply this weight by the number of paths
having the specified number of occurrences of each outcome.

We note that the path a,, a,, a,, a,, a; can be specified by labeling the
numbers 1 to 5 with the outcomes a,, a,, a;. Thus trial 3 is labeled with
outcome ay, trials 1 and 4 are labeled with outcome a,, and trials 2 and
5 are labeled with outcome a;. Conversely, any such labeling of the numbers
1 to 5 which uses label a; once and labels a, and a4 twice each corresponds
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to a unique path of the desired kind. Hence the number of such paths is
the number of such labelings. But this is

( 5 )_ 5!
1,2,2) ~ 112121

(see Chapter 2, Section 5), so that the probability of one occurrence of a,,
two of a,, and two of ajy is

5
(1, 2’2) Pyt P3PS

The above argument carried out in general leads, for the case of inde-
pendent trials with outcomes ay, 4y, . . ., @ occurring with probabilities
P1v P2 - - -5 Py to the following.

The probability for r; occurrences of a,, r, occurrences of a,, etc., is given
by

n

f(l‘l,l‘z,...,l‘k;Pl,pz,...,pk):( . )P?'P?pzk
k

FisFosevn,

A die is thrown 12 times. What is the probability that each number will
come up twice? Here there are six outcomes, 1,2, 3,4,5,6 corresponding
to the six sides of the die. We assign each outcome probability . We are
then asked for

J2,2,2,2,2, 2 5, L L34 D),

222,22 (6 ) G GV (G ) = oo

Suppose that we have an independent trials process with four outcomes
a,, dy, az, a4 occurring with probability py, p,, pa, p,, respectively. It might
be that we are interested only in the probability that r; occurrences of a,
and r, occurrences of a, will take place with no specification about the
number of each of the other possible outcomes. To answer this question
we simply consider a new experiment where the outcomes are ay,d,, d;. Here
a, corresponds to an occurrence of either a, or a, in our original experiment.
The corresponding probabilities would be p,, p,, and Ps Withpy = pa + p,.
Let 73 =n — (r; + r,). Then our question is answered by finding the
probability in our new experiment for r, occurrences of a,, ry or a,, and
74 of @4, which is

which is

n T1pT 2573
( = )Pl P27P3"

rl’r2’r3

The same procedure can be carried out for experiments with any number
of outcomes where we specify the number of occurrences of such particular
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outcomes. For example, if a die is thrown ten times the probability that
a one will occur exactly twice and a three exactly three times is given by

LY )ENE)(E) = 0m. ..

EXERCISES

1. Gypsies sometimes toss a thick coin for which heads and tails are
equally likely, but which also has probability 4 of standing on edge
(i.e., neither heads nor tails). What is the probability of exactly two
heads and three tails in five tosses of a gypsy coin? [Ans. £4.]

2. Three horses, A, B, and C, compete in four races. Assuming that each
horse has an equal chance in each race, what is the probability that
A wins two races and B and C win one each? What is the probability
that the same horse wins all four races? [Ans. &, 55.]

3. Three children go into a restaurant where each gets either an ice-cream
cone, a sundae, or a milkshake. Assuming that each gets an ice-cream
cone twice as often as a milkshake and a sundae twice as often as an
ice-cream cone, what is the probability that at least two of them order
the same thing?

4. Assume that in a certain large college 40 percent of the students are
freshmen, 30 percent are sophomores, 20 percent are juniors, and 10
percent are seniors. A committee of eight is chosen at random from
the student body. What is the probability that there are equal numbers
from each class on the committee?

5. 1If four dice are thrown, find the probability that there are 2 twos and
2 threes, given that all the outcomes are less than four. [Ans. £.]

6. Let us assume that when a batter comes to bat, he has probability .6
of being put out, .1 of getting a walk, .2 of getting a single, .1 of getting
an extra-base hit. If he comes to bat five times in a game, what is
the probability that

(a) He gets a walk and a single (and three outs)? [Ans. %]
(b) He has a perfect day (no outs)? [Ans. 5335.]

(c) He gets a single, two extra base hits, and a walk (and one out)?
7. Assume that a single torpedo has a probability 4 of sinking a ship,
probability 1 of damaging it, and probability } of missing. Assume
further that two damaging shots are sufficient to sink a ship. What
is the probability that four torpedoes will succeed in sinking a ship?
[Ans. 33%]
8. A hiker is planning to make a three-day trip to the mountains. He
estimates that on a given day it is clear with probability 4, is cloudy
with probability 4, and rains with probability . He will consider the
trip enjoyable if he does not get rained on and if he has at least two
clear days. Assuming the weather on a given day is independent of
previous weather,
(a) Find the probability that he enjoys the trip.
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(b) Given that at least one day was not clear, what is probability that
lie enjoyed the trip?

Let us assume that in a World Series game a batter has probability

1 of getting no hits, } of getting one hit, and 1 of getting two hits,

assuming that the probability of getting more than two hits is negligi-

ble. In a four-game World Series, find the probability that the batter

gets

(a) Exactly two hits.

(b) Exactly three hits.

(¢) Exactly four hits.

(d) Exactly five hits.

(e) Fewer than two hits or more than five.

[Ans. &5 55 15 5 k]

Jones, Smith, and Green live in the same house. The mailman has
observed that on the average Jones receives twice as much mail as
Green and three times as much as Smith. If he has four letters for
this house, what is the probability that each man receives at least one
letter?
Assume that in a certain course the probability that a student chosen
at random will get an A is .1, that he will get a B is .2, that he will
get a C is 4, that he will get a D is .2, and that he will get an E is
1. What distribution of grades is most likely in the case of four
students? [Ans. One B, two C’s, one D.]
A professor decides that he will fail any student who misses more than
two classes in a given week or is absent or walks in late every day
in a given week. The class meets four times a week. A particular
student’s sleeping habits are such that he misses class 1 of the time,
walks in late 7 of the time, and arrives before the start of class 3 of
the time.

(a) What is the probability that he is failed during the first week of
the course?

(b) Whatis the probability that he is failed during the first two weeks
of the course? (Note that when he begins the second week, his
performance the first week does not matter any more.)

[Ans. 151.]

11 EXPECTED VALUE

In this section we shall discuss the concept of expected value. Although
it originated in the study of gambling games, it enters into almost any
detailed probabilistic discussion.

Definition If in an experiment the possible outcomes are numbers, a;, a.,

. » a, occurring with probability py, p,, . . . , py, then the expecred value

is defined to be

E=ap;+ap,+... .+ aqp.
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The term “expected value” is not to be interpreted as the value that will
necessarily occur on a single experiment. For example, if a person bets $1
that a head will turn up when a coin is thrown, he may either win $1 or
lose $1. His expected value is (1)3) + (—1)(3) = 0, which is not one of the
possible outcomes. The term “expected value” had its origin in the following
consideration. If we repeat an experiment with expected value E a large
number of times, and if we expect a, a fraction p, of the time, a, a fraction
p» of the time, etc., then the average that we expect per experiment is E.
In particular, in a gambling game E is interpreted as the average winning
expected in a large number of plays. Here the expected value is often taken
as the value of the game to the player. If the game has a positive expected
value, the game is said to be favorable; if the game has expected value zero
it is said to be fair; and if it has negative expected value it is described
as unfavorable. These terms are not to be taken too literally, since many
people are quite happy to play games that, in terms of expected value, are
unfavorable. For instance, the buying of life insurance may be considered
an unfavorable game which most people choose to play.

For the first example of the application of expected value we consider the
game of roulette as played at Monte Carlo. There are several types of bets
which the gambler can make, and we consider two of these.

The wheel has the number 0 and the numbers from 1 to 36 marked on
equally spaced slots. The wheel is spun and a ball comes to rest in one
of these slots. If the player puts a stake, say $1, on a given number, and
the ball comes to rest in this slot, then he receives from the croupier 36
times his stake, or $36. The player wins $35 with probability 5% and loses
$1 with probability #5. Hence his expected winnings are

B 1.3 = 1= _027.

This can be interpreted to mean that in the long run he can expect to lose
about 2.7 percent of his stakes.

A second way to play is the following. A player may bet on “red” or
“black.” The numbers from 1 to 36 are evenly divided between the two
colors. If a player bets on “red” and a red number turns up, he receives
twice his stake. If a black number turns up, he loses his stake. If' 0 turns
up, then the wheel is spun until it stops on a number different from 0. If
this is black, the player loses; but if it is red, he receives only his original
stake, not twice it. For this type of play, the gambler wins §1 with probability
8 breaks even with probability 4 -+t = 7, and loses $1 with probability
38 4+ 1.L =31 Hence his expected winning is

In this case the player can expect to lose about 1.35 percent of his stakes
in the long run. Thus the expected loss in this case is only half as great
as in the previous case.
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A player rolls a die and receives a number of dollars corresponding to the
number of dots on the face which turns up. What should the player pay
for playing, to make this a fair game? To answer this question, we note
that the player wins 1,2, 3, 4,5 or 6 dollars, each with probability 3. Hence,
his expected winning is

I®) +2() +3@) + 4 + 50) + 6(3) = 31.
Thus if he pays $3.50, his expected winnings will be zero.

What is the expected number of successes in the case of four independent
trials with probability 4 for success? We know that the probability of

X successes is (j)(%)(%)*— Thus
=0 QGG (GG 2 ()&
J&) +-()G)G)

In general, it can be shown that in »n trials with probability p for success,
the expected number of successes is np.

In the game of craps a pair of dice is rolled by one of the players. If the
sum of the spots shown is 7 or 11, he wins. If it is 2,3, or 12, he loses.
If it is another sum, he must continue rolling the dice until he either repeats
the same sum or rolls a 7. In the former case he wins, in the latter he loses.
Let us suppose that he wins or loses $1. Then the two possible outcomes
are +1 and —1. We shall compute the expected value of the game. First
we must find the probability that he will win.

We represent the possibilities by a two-stage tree shown in Figure 19.
While it is theoretically possible for the game to go on indefinitely, we do
not consider this possibility. This means that our analysis applies only to
games which actually stop at some time.

The branch probabilities at the first stage are determined by thinking of
the 36 possibilities for the throw of the two dice as being equally likely and
taking in each case the fraction of the possibilities which correspond to the
branch as the branch probability. The probabilities for the branches at the
second level are obtained as follows. If, for example, the first outcome was
a 4, then when the game ends, a 4 or 7 must have occurred. The possible
outcomes for the dice were

{G D (1,3).2,2), 4,3), 3,4, 2,5), (52), (1,6), 6, 1)).

Again we consider these possibilities to be equally likely and assign to the
branch considered the fraction of the outcomes which correspond to this
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branch. Thus to the 4 branch we assign a probability § = 3. The other
branch probabilities are determined in a similar way. Having the tree
measure assigned, to find the probability of a win we must simply add the
weights of all paths leading to a win. If this is done, we obtain 3. Thus
the player’s expected value is

1-GEhH+ (D3 =

Hence he can expect to lose 1.41 percent of his stakes in the long run. It
is interesting to note that this is just slightly less favorable than his losses
in betting on “red” in roulette.

_ I = — 014l

1. If 13 coins are thrown, what is the expected number of heads that will
turn up? [Ans. 18]

2. An urn contains two black and three white balls. Balls are successively
drawn from the urn without replacement until a white ball is obtained.
Find the expected number of draws required. Do the same for the
case of four black and six white balls.

3. Suppose that A tosses three coins and receives $8 if three heads appear,
$4 if two heads appear, $2 if one head appears, and $1 if no heads
appear. What is the expected value of the game to him? [Ans. $33]

4. Two players, A and B, play the following dice game. A shakes a die
that has three 2’s and three 3’s on the faces, while B shakes a die painted
with four I’s and two 6’s. Find A’s expected winning (or loss) for each
of the following sets of rules.

(a) The player that shakes the lower number pays the other player
$2. [Ans. $3.)
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(b) The player that shakes the lower number pays the other player
a number of dollars equal to the difference between the two
outcomes.

(¢) The player that shakes the lower number pays the other player
a number of dollars equal to the number shaken by the other
player.

A coin is thrown until the second time a head comes up or until three

tails in a row occur. Find the expected number of times the coin is

thrown. [Ans. 302

A man wishes to purchase a five-cent newspaper. He has in his pocket

one dime and five pennies. The newsman offers to let him have the

paper in exchange for one coin drawn at random from the customer’s
pocket.

(a) Is this a fair proposition and, if not, to whom is it favorable?

[4ns. Favorable to man.]

(b) Answer the same questions as in (a) assuming that the newsman

demands two coins drawn at random from the customer’s pocket.
[4ns. Fair proposition.]

Referring to Exercise 17 of Chapter 1, Section 5, assuming that each

speaker chooses his topic at random from those available to him,

(a) Find the expected number of speeches on brotherhood during a
given program.

(b) Find the smallest number of programs that we would have to
attend in order that the expected value of the number of speeches
on integrity that we hear is to be at least five.

Prove that if the expected value of a given experiment is F, and if

a constant ¢ is added to each of the outcomes, the expected value of

the new experiment is E + c.

Prove that, if the expected value of a given experiment is E, and if

each of the possible outcomes is multiplied by a constant k, the ex-

pected value of the new experiment is k - E.

A bets x cents against B’s 78 cents that, if two cards are dealt from

a shuffled pack of ordinary playing cards, both cards will be of the

same color. What value of x will make this bet fair?

Betting on “red” in roulette can be described roughly as follows. We

win with probability .49, get our money back with probability .01, and

lose with probability .50. Draw the tree for three plays of the game,
and compute (to three decimals), the probability of each path. What
is the probability that we are ahead at the end of three bets?

[Ans. 485.]

Assume that the odds are r:s that a certain statement will be true.

If a man receives s dollars if the statement turns out to be true, and

gives r dollars if not, what is his expected winning?

In the World Series, we assume that the stronger team has probability

6 of winning each game. In this case the probabilities of the series
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lasting 4, 5,6, or 7 games are .16, .27, .30, and .28, respectively. What
is the expected length of the World Series? [Ans. 5.75.]

14.  An office worker buys root beer from a defective machine which gives
him orange soda instead of root beer ¢ of the time. He keeps buying
soda until he gets his root beer or runs out of dimes. How many dimes
must he carry with him every day if he wants to be able to expect
to get root beer on at least 99 out of 100 days he uses the machine?

[Ans. 3.]

1S.  Suppose that in roulette at Monte Carlo we place 50 cents on “red”

and 50 cents on “black.” What is the expected value on the game?

Is this better or worse than placing $1 on “red”? Which of the two
games would it be more desirable to play?

16. Suppose that we modify the game of craps as follows: On a 7 or 11
the player wins $1; on a 2, 3, or 12 he loses $x; otherwise the game
is as usual, all losses being $x. Find the expected value of the new
game, and determine the value of x for which it becomes a fair game.

17. A gambler is given the choice of playing one of the following games.
Either he pays $10 and throws three dice, receiving in return the
number of dollars equal to the sum of the three outcomes, or he pays
$12 and throws two dice, receiving in return the number of dollars
equal to the product of the two outcomes. Which game should he play?

18. A pair of dice is rolled. Each die has the number 1 on two opposite
faces, the number 2 on two opposite faces, and the number 3 on two
opposite faces. The “roller” wins a dollar

(i) 1f the sum of 4 occurs on the first roll; or
(ii) if the sum of 3 or 5 occurs on the first roll and the same sum

occurs on a subsequent roll before the sum of 4 occurs.
Otherwise he loses a dollar.

(a) What is the probability that the person rolling the dice wins?
(b) What is the expected value of the game?  [Ans. (a) £; (b) &.

12 MARKOV CHAINS

In this section we shall study a more general kind of process than the ones
considered in the last three sections.

We assume that we have a sequence of experiments with the following
properties. The outcome of each experiment is one of a finite number of
possible outcomes a,a,, . ..,a, It is assumed that the probability of
outcome g; on any given experiment is not necessarily independent of the
outcomes of previous experiments but depends at most upon the outcome
of the immediately preceding experiment. We assume that there are given
numbers p;; which represent the probability of outcome g; on any given
experiment, given that outcome a; occurred on the preceding experiment.
The outcomes ay, a,, . . . , a, are called states, and the numbers p;; are called
transition probabilities. 1f we assume that the process begins in some partic-
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Figure 20

ular state, then we have enough information to determine the tree measure
for the process and can calculate probabilities of statements relating to the
overall sequence of experiments. A process of the above kind is called a
Markov chain process.

The transition probabilities can be exhibited in two different ways. The
first way is that of a square array. For a Markov chain with states a,, a,,
and as, this array is written as

P11 P12 Pis
P=(ps po P23
P31 P32 P33

Such an array is a special case of a matrix. Matrices are of fundamental
importance to the study of Markov chains as well as being important in
the study of other branches of mathematics. They will be studied in detail
in the next chapter.

A second way to show the transition probabilities is by a transition
diagram. Such a diagram is illustrated for a special case in Figure 20. The
arrows from each state indicate the possible states to which a process can
move from the given state.

—
[—

1 1
3 2

Q
2
3

The matrix of transition probabilities which corresponds to this diagram
is the matrix

a; ay ag

a, 0 1 0

— 1 1
P=a, |0 1 2
1 2

as 5 0 3

An entry of 0 indicates that the transition is impossible.

Notice that in the matrix P the sum of the elements of each row is 1.
This must be true in any matrix of transition probabilities, since the elements
of the /th row represent the probabilities for all possibilities when the process
is in state a;.

The kind of problem in which we are most interested in the study of
Markov chains is the following. Suppose that the process starts in state i.
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What is the probability that after n steps it will be in state j? We denote
this probability by p{. Notice that we do not mean by this the nth power
of the number p;;, We are actually interested in this probability for all
possible starting positions i and all possible terminal positions j. We can
represent these numbers conveniently again by a matrix. For example, for
n steps in a three-state Markov chain we write these probabﬂmes as the
matrix
(o o
P =p5 p3 PR

(n) (n) (n)
Psi P3z Ds:

EXAMPLE 1 Let us find for a Markov chain with transition probabilities indicated in
Figure 20 the probability of being at the various possible states after three
steps, assuming that the process starts at state a;. We find these probabilities
by constructing a tree and a tree measure as in Figure 21.

a

as

L
N

A

ay

Figure 21

The probability p{), for example, is the sum of the weights assigned by
the tree measure to all paths through our tree which end at state aj.
That is,

Similarly,
3 — — @ _—1-1.1—
pis=1-3-}=7 and pfi=1-3-3=1%

By constructing a similar tree measure, assuming that we start at state a,,
we could find PS), pS, and p$). The same is true for 258 p(33:3, and Y. If
this is carried out (see Exercise 7) we can write the results in matrix form

as follows:
a, 4a, das
1 1 1
a, 6§ 1 12
(3) _ 7 1 31
P a 36 24 712
a 4 1 25
3 \2¥ 1§ 5%
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EXAMPLE 2

Again the rows add up to 1, corresponding to the fact that if we start at
a given state we must reach some state after three steps. Notice now that
all the elements of this matrix are positive, showing that it is possible to
reach any state from any state in three steps. In the next chapter we shall
develop a simple method of computing P™.

Suppose that we are interested in studying the way in which a given state
votes in a series of national elections. We wish to make long-term predictions
and so shall not consider conditions peculiar to a particular election year.
We shall base our predictions only on past history of the outcomes of the
elections, Republican or Democratic. It is clear that a knowledge of these
past results would influence our predictions for the future. As a first ap-
proximation, we assume that the knowledge of the past beyond the last
election would not cause us to change the probabilities for the outcomes
on the next election. With this assumption we obtain a Markov chain with
two states R and D and matrix of transition probabilities

R D
R (1 —a a )
D b 1 -5/
The numbers a and b could be estimated from past results as follows. We
could take for a the fraction of the previous years in which the outcome
has changed from Republican in one year to Democratic in the next year,
and for b the fraction of reverse changes.

We can obtain a better approximation by taking into account the previous
two elections. In this case our states are RR, RD, DR, and DD, indicating
the outcome of two successive elections. Being in state RR means that the
last two elections were Republican victories. If the next election is a Demo-
cratic victory, we will be in state RD. If the election outcomes for a series
of years is DDDRDRR, then our process has moved from state DD to DD
to DR to RD to DR, and finally to RR. Notice that the first letter of the
state to which we move must agree with the second letter of the state from

which we came, since these refer to the same election year. Our matrix of
transition probabilities will then have the following form:

RR DR RD DD

RR [1 —a 0 a 0
DR b 0 1 -5 0
RD 0 l—c¢ 0 c
DD 0 d 0 1 —d

Again the numbers a, b, ¢, and d would have to be estimated. The study
of this example is continued in Chapter 4, Section 7.
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EXAMPLE 3 The following example of a Markov chain has been used in physics as a
simple model for diffusion of gases. We shall see later that a similar model
applies to an idealized problem in changing populations.

We imagine n black balls and » white balls which are put into two urns
so that there are n balls in each urn. A single experiment consists in choosing
a ball from each urn at random and putting the ball obtained from the
first urn into the second urn, and the ball obtained from the second urn
into the first. We take as state the number of black balls in the first urn.
If at any time we know this number, then we know the exact composition
of each urn. That is, if there are j black balls in urn 1, there must be n —
black balls in urn 2, n — j white balls in urn 1, and j white balls in urn
2. If the process is in state j, then after the next exchange it will be in state
J — 1, if a black ball is chosen from urn 1 and a white ball from urn 2.
It will be in state ;j if a ball of the same color is drawn from each urn.
It will be in state j + 1 if a white ball is drawn from urn 1 and a black
ball from urn 2. The transition probabilities are then given by (see Exer-
cise 12)

2j(n —j)
Pii =72
n—j\¢
Pij+1 = n J <n
Pix = 0 otherwise.

A physicist would be interested, for example, in predicting the composition
of the urns after a certain number of exchanges have taken place. Certainly
any predictions about the early stages of the process would depend upon
the initial composition of the urns. For example, if we started with all black
balls in urn 1, we would expect that for some time there would be more
black balls in urn 1 than in urn 2. On the other hand, it might be expected
that the effect of this initial distribution would wear off after a large number

of exchanges. We shall see later, in Chapter 4, Section 7, that this is indeed
the case.

EXERCISES
1. Draw a transition diagram for the Markov chains with transition
probabilities given by the following matrices:

0100
30 4 B 1000
010 111 0 1 1 000
1 0 2 1l 1 1 1 1 1 1 1 1
3 3/ 2 3 6/° 2 20 12 6 4 2
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2.
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W
2
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Chapter 3

Give the matrix of transition probabilities corresponding to the follow-
ing transition diagrams:

What is the matrix of transition probabilities for the Markov chain
in Example 3, for the case of two white balls and two black balls?
Find the matrix P for the Markov chain determined by the matrix

of transition probabilities
i i 6 13
P:(l 2). [Ans.(Q 2&)]
3 3 3% 36

Find the matrices P, P®, PY for the Markov chain determined by
the transition probabilities

1 00
010
0 0 1
Find the same for the Markov chain determined by the matrix
0 0 1
0 1 0]).
1 00

(a) Whatis the relationship between independent trials processes and
Markov chains?
[Ans. Every independent trials process, given a
particular starting state, is a Markov chain.]
(b) Set up a transition diagram and matrix for tossing a fair coin.
Find P9 and P9,
(¢) Repeat part (b) for a coin that comes up heads with proba-
bility 3.

Referring to the Markov chain with transition probabilities indicated
in Figure 21, construct the tree measures and determine the values
of

3) ,(3) ,(3)

(3) (3 (3)
P51 Psas P33 and  pi, pi), pa .



Section 12

10.

11.

12.
13.

14.

Probability Theory 143

Suppose that a Markov chain has two states, a; and a,, and transition
probabilities given by the matrix

L)
by
By means of a separate chance device we choose a state in which to
start the process. This device chooses a; with probability 4 and a, with
probability 4. Find the probability that the process is in state a, after
the first step. Answer the same question in the case that the device
chooses a; with probability 1 and a, with probability 4. [4ns. §; 4]
A certain calculating machine uses only the digits 0 and 1. It is
supposed to transmit one of these digits through several stages. How-
ever, at every stage there is a probability p that the digit which enters
this stage will be changed when it leaves. We form a Markov chain
to represent the process of transmission by taking as states the digits
0 and 1. What is the matrix of transition probabilities?
For the Markov chain in Exercise 9, draw a tree and assign a tree
measure, assuming that the process begins in state 1 and moves through
three stages of transmission. What is the probability that the machine
after three stages produces the digit 1, i.e., the correct digit? What
is the probability that the machine changed the digit from 1 but ended
up with a | after three stages?
A student has a class that meets on Monday, Wednesday, and Friday.
He decides on any one of these days to go to class with a probability
that depends only on whether or not he went to the last class. If he
did go to class on one day, he goes to the next class with probability
4. If he did not go to one class, he goes to the next class with probability
3. Set up the matrix of transition probabilities and find the probability
that if he went to class on Monday, he will also attend the class on
Friday of that week.
Explain why the transition probabilities given in Example 3 are correct.
Assume that a man’s profession can be classified as professional, skilled
laborer, or unskilled laborer. Assume that of the sons of professional
men 80 percent are professionals, 15 percent are skilled laborers, and
5 percent are unskilled laborers. In the case of sons of skilled laborers,
50 percent are skilled laborers, 25 percent are professionals, and 25
percent are unskilled laborers. Finally, in the case of unskilled labor-
ers, 40 percent of the sons are unskilled laborers and 30 percent each
are in the other two categories. Assume that every man has a son,
and form a Markov chain by following a given family through several
generations. Set up the matrix of transition probabilities. Find the
probability that the grandson of a skilled laborer is a professional man.
[Ans. 4.]
In Exercise 13 we assumed that every man has a son. Assume instead
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15.

16.

17.

. Chapter 3
that the probability a man has a son is .75. Form a Markov chain
with four states. The first three states are as in Exercise 13, and the
fourth state is such that the process enters it if a man has no son, and
that the state cannot be left. This state represents families whose male
line has died out. Find the matrix of transition probabilities and find
the probability that a skilled laborer has a grandson who is a profes-
sional man. [Ans. 225.]
In another model for diffusion, it is assumed that there are two urns
which together contain N balls numbered from 1 to N. Each second
a number from 1 to N is chosen at random, and the ball with the
corresponding number is moved to the other urn. For N = 4 set up
a Markov chain by taking as state the number of balls in urn 1. Find
the transition matrix.

In a two-player game, each player starts out with three chips. Two
dice are then tossed. If the sum of the numbers tossed is less than
7, player A gets a chip from player B. If the total is greater than 7,
B gets a chip from A. 1f a 7 is tossed, either the player with less chips
gets one from the other player or, if the players are even, they remain
even. The game continues until one player runs out of chips. Using
as states the number of chips that A has, set up the transition matrix.
(Assume that once A gets to the state 0 or 6 he stays there with
probability 1 next time.)

In Exercise 16, find the following:

(a) The probability that B loses in three turns. [Ans. 1172258']
(b) The probability that B loses in three turns starting with two chips
left.
() PY.
(d) The probability that A loses in five or less turns.
34,625
L ——— =~ .139.
[Ans VE 3 ]

*13 GAMBLER’S RUIN

In this section we shall study a particular Markov chain, which is interesting
in itself and has far-reaching applications. Its name, “gambler’s ruin,”
derives from one of its many applications. In the text we shall describe
the chain from the gambling point of view, but in the exercises we shall
present several other applications.

Let us suppose that you are gambling against a professional gambler or
gambling house. You have selected a specific game to play, on which you
have probability p of winning. The gambler has made sure that the game
is favorable to him, so that p <4. However, in most situations p will be
close to 3. (The cases p =4 and p > 4 are considered in the exercises.)
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At the start of the game you have A dollars, and the gambler has B
dollars. You bet $§1 on each game, and play until one of you is ruined.
What is the probability that you will be ruined? Of course, the answer
depends on the exact values of p, 4, and B. We shall develop a formula
for the ruin-probability in terms of these three given numbers.

First we shall set the problem up as a Markov chain. Let N=A4 + B,
the total amount of money in the game. As states for the chain we choose
the numbers 0,1,2,. .., N. At any one moment the position of the chain
is the amount of money you have. The initial position is shown in Fig-
ure 22.

Your money His money
A A
lr L4 3
] A

If you win a game, your money increases by $1, and the gambler’s fortune
decreases by $§1. Thus the new position is one state to the right of the
previous one. If you lose a game, the chain moves one step to the left.
Thus at any step there is probability p of moving one step to the right, and
probability ¢ = 1 — p of one step to the left. Since the probabilities for
the next position are determined by the present position, it is a Markov
chain.

If the chain reaches 0 or N, we stop. When 0 is reached, you are ruined.
When N is reached, you have all the money, and you have ruined the
gambler. We shall be interested in the probability of your ruin, ie., the
probability of reaching 0.

Let us suppose that p and N are fixed. We actually want the probability
of ruin when we start at 4. However, it turns out to be easier to solve
a problem that appears much harder: Find the ruin-probability for every
possible starting position. For this reason we introduce the notation x;, to
stand for the probability of your ruin if you start in position / (that is, if
you have i dollars).

Let us first solve the problem for the case N = 5. We have the unknowns
Xo» X1, Xg, X3, X4, and x5. Suppose that we start at position 2. The chain
moves to 3, with probability p, or to 1, with probability g. Thus

Pr [ruin|start at 2] = Pr[ruin|start at 3]+ p + Pr[ruin|start at 1}- g,

using the conditional probability formula, with a set of two alternatives.
But once it has reached state 3, a Markov chain behaves just as if it had
been started there. Thus

Pr [ruin|start at 3] = x.
And, similarly,

Pr [ruin|start at 1] = x,.
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We obtain the key relation
Xg = pX3 + gx;.
We can modify this as follows: using p + ¢ = 1, we have
Xy = (p + @y = px3 + gx,
p(xa — x3) = q(x; — x,)
Xy = Xy = r(xy — X3),

where r = p/g, and hence r < 1. When we write such an equation for each
of the four “ordinary” positions, we obtain

)] Xo — Xy = r(x; — X,)
Xy — Xy =r(Xy — X3)
Xy — X3 = r(xg3 — X,)
X3 — X4 = r(xy — Xj).

We must still consider the two extreme positions. Suppose that the chain
reaches 0. Then you are ruined, hence the probability of your ruin is 1.
While if the chain reaches N = 5, the gambler drops out of the game, and
you can’t be ruined. Thus

(2) Xo = 1, x5 = 0.

If we substitute the value of x; in the last equation of (1), we have
x3 — x4 = rx,. This in turn may be substituted in the previous equation,
etc. We thus have the simpler equations

xg=1-x,
X3 — X4 =71X,
— 2
(3) Xg — X5 = r2x,

— x. =3
X, — Xy = rix,
— x. = 4
Xog — X; = rix,.

Let us add all the equations. We obtain
Xo=(0+r+r2+r3+rix,
From (2) we have that x, = 1. We also use the simple identity
(1 —nQ +r+r2+r3+r4)=l‘——r5,
which implies

1 — 5

l+r+r2+r¥4+rt=

And then we solve for x,:

_ 1l —r
X,;—ﬁg.

If we add the first two equations in (3), we have that x3 =+ rx,.
Similarly, adding the first three equations, we solve for x,, and adding the
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Ruin-probabilities for p = 45, 48, 49, 495.
p =45
A 1 5 10 20 50
I S50 905 973 997 1
5 260 132 910 988 1
10 204 666 881 984 1
20 185 638 868 982 1
50 182 633 .866 982 1
p = 48
A 1 5 10 20 50
| 520 .865 941 981 999
5 202 .599 788 923 994
10 131 472 690 878 990
20 095 381 606 832 985
50 078 334 555 801 982
p=49
A 1 5 10 20 50
1 S10 .850 926 969 994
5 184 550 731 871 972
10 110 402 599 788 951
20 069 287 472 .690 921
50 045 204 363 586 881
A 1 5 10 20 50
1 505 .842 918 961 989
5 175 525 699 838 948
10 .100 367 550 131 905
20 058 242 402 599 .839
50 031 143 259 438 731
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EXERCISES

first four equations we obtain x,. We now have our entire solution:

1 — rt x_l—r3 x_l—r2 y. = 1=
1 -5 727 1 5 73 3 YT -

4) Xy =

The same method will work for any value of N. And it is easy to guess
from (4) what the general solution looks like. If we want x4, the answer
is a fraction like those in (4). In the denominator the exponent of r is always
N. In the numerator the exponent is N — A4, which equals B. Thus the
ruin-probability is

1 — B
(5) Xa =7 'V.

—

We recall that 4 is the amount of money you have, B is the gambler’s stake,
N =A + B, p is your probability of winning a game, and r =p/(1 = p).

In Figure 23 we show some typical values of the ruin-probability. Some
of these are quite startling. If the probability of p is as low as 45 (odds
against you on each game 11:9) and the gambler has $20 to put up, you
are almost sure to be ruined. Even in a nearly fair game, say p = 495,
with each of you having $50 to start with, there is a .731 chance for your
ruin.

It is worth examining the ruin-probability formula, (5), more closely.
Since the denominator is always less than 1, your probability of ruin is at
least 1 — r®. This estimate does not depend on how much money you have,
only on p and B. Since r is less than 1, by making B large enough we can
make r® practically 0, and hence make it almost certain that you will be
ruined.

Suppose, for example, that a gambler wants to have probability .999 of
ruining you. (You can hardly call him a gambler under those circum-
stances!) He must make sure that r < .001. For example, if p = 495, the
gambler needs $346 to have probability .999 of ruining you, even if you
are a millionaire. If p = .48, he needs only $87. And even for the almost
fair game with p = .499, $1727 will suffice.

There are two ways that gamblers achieve this goal. Small gambling
houses will fix the odds quite a bit in their favor, making » much less than
1. Then even a relatively small bank of B dollars suffices to assure them
of winning. Larger houses, with B quite sizable, can afford to let you play
nearly fair games.

1. Suppose you are playing the “shell game” with a gambler. (In this
game, the gambler hides a pea under one of three cups and shuffles
them around, and you guess which cup it is.) If you guess correctly,
you win $1; if you guess wrong, you lose $1. Suppose you each start
out with $2 and play until someone is ruined. What is your probability
of losing all your money?
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Verify that the proof of the text is still correct when p > 4. Interpret
formula (5) for this case.

Show that if p > 1 and both parties have a substantial amount of
money, your probability of ruin is approximately 1/r%.

Suppose that both the gambler and the player in Exercise 1 start with
$10. Find the approximate probability of the gambler being ruined.
(Use Exercise 3.)

Modify the proof in the text to apply to the case p = §. What is the
probability of your ruin? [Ans. B/N.]
Suppose the game in Exercise 1 is being played with two cups, and
you start with $10, the gambler with $15. What is your probability
of being ruined?

A man leaves a bar in a state of intoxication, and starts to walk
randomly. Fifty steps to the left of the bar is the subway entrance,
and 50 steps to the right of the bar is the police station. What is the
probability that the man makes it to the subway before arriving at
the police station if:

(a) He is equally likely to take a step to the right as to the left?
(b) He has probability .52 of taking a step to the left?

(¢) He has probability .55 of taking a step to the right?

A demon operates a gate between two halves of a box. Initially each
side of the box contains 20 molecules. The demon attempts to operate
the gate in such a way that all the molecules end up on the left side
of the box. Since the inside of the box is quite dark, however, he
succeeds only 51 percent of the time; on the other occasions when he
opens the gate, a molecule escapes from left to right. (The gate shuts
so quickly that only one molecule passes through it each time 1t is
opened.) Suppose the demon operates the gate until all the molecules
are on one side or the other. What is the probability that all will be
on the left side? [Ans. .690.]
What is the approximate value of x, if you are rich and the gambler
starts with $1? Assume the game is weighted so the gambler has the
advantage.

Suppose you are playing the shell game of Exercise 1 with a poverty-
stricken gambler who has only $1, while you are a millionaire. What,
approximately, is the probability that you will be ruined?

Consider a simple model for evolution. On a small island there is room
for 1000 members of a certain species. One year a favorable mutant
appears. We assume that in each subsequent generation either the
mutants take one place from the regular members of the species, with
probability .6, or the reverse happens. Thus for example, the mutation
disappears in the very first generation with probability .4. What is the
probability that the mutants eventually take over? [Hini: See Exer-
cise 9.] [Ans. 1.]
After a single crystal of the (fictional) substance ice-eight is added to
a container of water, there is probability .9 that one molecule of water
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changes to ice-eight every minute, and probability .1 that a crystal of
ice-eight changes back to water. What is the approximate probability
that the entire contents of the container will eventually consist of
ice-eight?

13. You are in the following hopeless situation: You are playing the shell
game of Exercise 1, in which you have only 4 chance of winning. You
have $1, and your opponent has $15. What is the probability of your
winning all his money if
(a) You bet $1 each time?

(b) You bet all your money each time? [Ans. .

14. Repeat Exercise 13 for the case of a fair game, where you have proba-
bility 4 of winning.

NOTE: Exercises 15-18 deal with the following win problem: A and
B are playing a game in which A has probability .6 of winning. They
play until A wins three games or B wins two games.

I5.  Set up the process as a Markov chain in which the states are (a, b),
where A has won a games and B has won b games.

16. For each state (g, b), find the probability that A wins. '

17. What is the probability that A will achieve his goal first? [Ans. 2L ]

I8.  Suppose that payments are made as follows: If A wins three games,
he receives $1; if B wins two games then A pays $1. What is the
expected value of A’s winnings, to the nearest penny?
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COLUMN AND ROW VECTORS

A column vector is an ordered collection of numbers written in a column.
Examples of such vectors are

1

1 6 0 3 1
_2 s 4)’ O s —4 5 2
‘ 0 0

4

The individual numbers in these vectors are called components, and the
number of components a vector has is one of its distinguishing charac-
teristics. Thus the first two vectors above have two components; the next
two have three components; and the last has four components. When talking
more generally about n-component column vectors we shall write

Uy
u.
u=\_72
un

Analogously, a row vector is an ordered collection of numbers written in
a row. Examples of row vectors are

(1’0)’ (_2’ 1)7 (29 _3,4, 0), (_1,29 _3a4, _5)

Each number appearing in the vector is again called a component of the
vector, and the number of components a row vector has is again one of
itsimportant characteristics. Thus the first two examples are two-component,
the third a four-component, and the fourth a five-component vector. The
vector v = (Uy, Uy, . . . , U,) iS an n-component row vector.

153
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Two row vectors, or two column vectors, are said to be equal if and only
if corresponding components of the vector are equal. Thus for the vectors

u=(1,2), U:(;), w = (1,2), x=(,1)

we see that u = w but u # v, and u # x.
If u and v are three-component column vectors, we shall define their sum
u + v by componentwise addition as follows:

Uy v, U, + vy
ut+v=|u|+{v,| =1, +v,}.
Uy Ug Us + vy

Similarly, if ¥ and v are three-component row vectors, their sum is defined
to be

Uu+v= (up Uy, u3) + (Ula Uy, U3)
= (U + Uy, Uy + Uy, U3 + U3).

Note that the sum of two three-component vectors yields another three-
component vector. For example,

1 2 3
=1+ 31=1(2
2 —1 1

and
4, -7,12) + 3,14, = 14) = (7,7, =2).

The sum of two n-component vectors (either row or column) is defined
by componentwise addition in an analogous manner, and yields another
n-component vector. Observe that we do not define the addition of vectors
unless they are both row or both column vectors having the same number
of components.

Because the order in which two numbers are added does not affect the
answer, it is also true that the order in which vectors are added does not
matter; that is,

Uu+v=uv+u,

where v and v are both row or both column vectors. This is the so-called
commutative law of addition. A numerical example is

1 2 3 2 1
—1]+ =12|=1 3|+ |-1
2 —1 1 —1 2

Once we have the definition of the addition of two vectors, we can easily
see how to add three or more vectors by grouping them in pairs as in the
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addition of numbers. For example,

1 0 0 1 0 1 1 0 |
Ol+12)+101=10]+12]={2]=12]+10}= 2
0 0 3 0 3 3 0 3 3

and

(1,0,0) + (0,2,0) + (0,0,3) = (1,2,0) + (0,0, 3) = (1,2, 3)
= (1,0,0) + (0,2,3) = (1,2, 3).

In general, the sum of any number of vectors (row or column), each having
the same number of components, is the vector whose first component is the
sum of the first components of the vectors, whose second component is the
sum of the second components, and so on.

The multiplication of a number a times a vector v is defined by com-
ponentwise multiplication of a times the components of v. For the three-
component case we have

u, au,
Uy aus,

for column vectors and
av = a(vy, Uy, Ug) = (avy, av,, avy)

for row vectors. If u is an n-component vector (row or column), then au
is defined similarly by componentwise multiplication. This operation is
sometimes called scalar multiplication of a vector, where scalar is another
name for a number.

If u is any vector, we define its negative —u to be the vector —u = (—Du.
Thus in the three-component case for row vectors we have

—u = (—D)(uy, g, ug) = (—uy, —uy, —Uz).

Once we have the negative of a vector it is easy to see how to subtract
vectors: we simply add “algebraically.” For the three-component column-
vector case we have

Specific examples of subtraction of vectors occur in the exercises at the end
of this section.

An important vector is the zero vector, all of whose components are zero.
For example, three-component zero vectors are

0
0={0] and 0=(0,0,0).
0
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When there is no danger of confusion we shall use the symbol 0, as above,
to denote the zero (row or column) vector. The meaning will be clear from
the context. The zero vector has the important property that, if u is any
vector, then u 4+ 0 = u. A proof for the three-component column-vector
case is as follows:

u 0 u, + 0 U,
u+ 0= u2+0=u2+0:u2 = u.
u 0 us + 0 Uy

—_

w

One of the chief advantages of the vector notation is that we can denote
a whole collection of numbers by a single letter such as u, v, . . . , and treat
such a collection as if it were a single quantity. By using the vector notation
we can state very complicated relationships in a simple manner. The student
will see many examples of this in the remainder of the present chapter and
in the three succeeding chapters.

EXERCISES
1. Compute the quantities below for the vectors
2 3 6
g1 _ -5 | 6
“lsp T2 WEls
6 0 —6
8
_ 7
@ u+ w. [Ans. ) ]
0
(b) Sw.
© v-—u
15
(d) 3u + Tv — 2w. [Ans. _gg ]
30

(e) iw + 3u.
) u—-—w-—vo.
(8) —2u + 3v — 100w.
2. Compute (a) through (g) of Exercise 1 if the vectors u, v, and w are

u= (7,0, =3), v=(2,1,-5), w= (1, —1,0).
3. (a) Show that the zero vector is not changed when multiplied by any
number.
(b) If u is any vector, show that 0 + u = u.
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If 2u — v = 0, what is the relationship between the components of u
and those of v? [Ans. v; =2u;.]
When possible, compute the following sums; when not possible, give
reasons.

@ @.3)+ 2(;) —9

(b) 0G5, 1,7) + 3(6,2,6) =?

3 6
@ [1}+5+2)|=2? [Ans. Not possible.]
2 6
21 1 53
22 2 86
=9
(d) 2]t 32 ol=" [Ans. 23 ]
24 1 56
6 iy 5
If|6 )+ |uy,]= {—5], find u;, u,, and u,. [Ans. —1, —11,5.]
0 Uy 5
vy 7
If 8] v,| = [ —16}, find the components of v.
Us 0

Find three vectors u, v, and w such that w =3y, v =2u, and

20
20 4+ 3v + 4w = 10].
—25
0 u, 0
If{O|+|u,|={0], whatcan be said concerning the components u;,
0 U 0
Uy, Us?

u, 0
IfOfu,|= (O , what can be said concerning the components u;,
U, 0

Uy Uy?
U, 1
Uy 3 du?
If (uy + uy + ug + uy) w1=1s ] what are uy, u,, u, and u,’
3
u, 7

(a) Show that the vector equation

G) )= (739)

represents two simultaneous linear equations for the two varia-
bles x and y.
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13.

14.

15.

16.

17.

18.

19.

(b) Solve the equations for x and y from (a) and substitute into the
vector equation above to check your work.
Write the following simultaneous linear equations in vector form:

ax + by =e
cx +dy =f.

[Hint: Follow the form given in Exercise 12.]

Suppose that we associate with each person a three-component row
vector having the following entries: age, height, and weight. Would
it make sense to add together the vectors associated with two different
persons? Would it make sense to multiply one of these vectors by
a constant?

Suppose that we associate with each person leaving a supermarket
a row vector whose components give the quantities of each available
item that he has purchased. Answer the same questions as those in
Exercise 14.

Let us associate with each supermarket a column vector whose entries
give the prices of each item in the store. Would it make sense to add
together the vectors associated with two different supermarkets?
Would it make sense to multiply one of these vectors by a constant?
Discuss the differences in the situations given in Exercises 14, 15, and
16.

Consider the vectors

Show that the vector
3x + )

has components that are the averages of the components of x and

». Generalize this result to the case of n vectors.

Would the concept of averages, as discussed in Exercise 17, be applica-

ble to the vectors mentioned in Exercises 14, 15, and 167 How would

the averages be interpreted?

In a certain school students take four courses each semester. At the

end of the semester the registrar records the grades of each student

as a row vector. He then gives the student 4 points for each A, 3

points for each B, 2 points for each C, 1 point for each D, and 0

for each F. The sum of these numbers, divided by 4, is the student’s

grade point average.

(@) If a student has a 4.0 average, what are the logical possibilities
for his grade vector? [Hint: Each grade vector will have five
components.]

(b) What are the possibilities if he has a 3.0 average?

(c) What are the possibilities if he has a 2.0 average?
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20. Letx = (x1>. Define x > 0 to be the conjunction of the statements
X2

x, >0 and x, > 0. Define x < 0 analogously. If (x; + x3)x >0,
what must be true of x?

21. Using the definition in Exercise 20, define x > y to mean x — y > 0,
where x and y are vectors of the same shape. Consider the following
four vectors:

3 6 0 4
X = 5 ’ _y: 5 5 u = 0 y V= 2
-1 6 -2 0

(a) Show that x > u.

(b) Show that v > u.

(¢) Is there any relationship between x and v?

(d) Show thaty > x, y > u, and y > v.

22. (a) If xP, x@ . . x" is a set of n vectors, show how to find a

vector u such that u > x® for all i. Also show how to find a
vector v such that v < X' for all i.

(b) Apply the results of part (a) to the vectors in Exercise 21.

630 960 600 —4
(¢) Letu=1{520|,v=1{200}, and w=|[750]. If x =| -5, find
310 400 490 -2
the largest number n such that nx > u, nx > v, and nx > w.
[Ans. —235.]

2 THE PRODUCT OF VECTORS; EXAMPLES

EXAMPLE 1

The reader may wonder why it is necessary to introduce both column and
row vectors when their properties are so similar. This question can be
answered in several different ways. First, in many applications two kinds
of quantities are studied simultaneously, and it is convenient to represent
one of them as a row vector and the other as a column vector. Second,
there is a way of combining row and column vectors that is very useful
for certain types of calculations. To bring out these points let us look at
the following simple economic example.

Suppose a man named Smith goes into a grocery store to buy a dozen
each of peaches and oranges, a half-dozen each of apples and pears, and
three lemons. Let us represent his purchases by means of the following
row Vector:

x = [6 (apples), 12 (peaches), 3 (lemons), 12 (oranges), 6 (pears)]
= (6, 12,3, 12, 6).

Suppose that apples are 4 cents each, peaches 6 cents, lemons 9 cents,
oranges 5 cents, and pears 7 cents. We can then represent the prices of
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these items as a column vector:

cents per apple
cents per peach
cents per lemon
cents per orange
cents per pear.

<
Il
RV N-T- N

The obvious question is: What is the total amount that Smith must pay
for his purchases? We would like to multiply the quantity vector x by the
price vector y, and we would like the result to be Smith’s bill. We see that
our multiplication should have the following form:

4

x+y=(6,12,3,12,6)

wn O N

7

=6-4+1264+3-9+12:-54+6-7
= 24 +72 +27 + 60 + 42
= 225 cents or $2.25.

This is, of course, the computation that the cashier performs in figuring
Smith’s bill.

We shall adopt in general the above definition of multiplication of row
times column vectors.

Definition Let u be a row vector and v a column vector each having the
same number n of components; then we shall define the produce u - v to
be

UtV = U0y + Ugly + . .. + u,,.

EXAMPLE 2

Notice that we always write the row vector first and the column vector
second, and this is the only kind of vector multiplication that we consider.
Some examples of vector multiplication are

3
2, L, =D [=1]=23 4 1(=)+(=1)-4 =1,
4

(1,0)-(?): 1-040-1=0+0=0.
Note that the result of vector multiplication is always a number.
Consider an oversimplified economy that has three industries, which we call

coal, electricity, and steel, and three consumers 1, 2, and 3. Suppose that
each consumer uses some of the output of each industry and also that each
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industry uses some of the output of each other industry. We assume that
the amounts used are positive or zero, since using a negative quantity has
no immediate interpretation. We can represent the needs of each consumer
and industry by a three-component demand (row) vector, the first component
measuring the amount of coal needed by the consumer or industry; the
second component the amount of electricity needed; and the third compo-
nent the amount of steel needed, in some convenient units. For example,
the demand vectors of the three consumers might be

d, =(3,2,%5, d,=(0,17,1), d;=(4,6,12)
and the demand vectors of each of the industries might be
do;=(0,1,4), dgy=(20,0,3), dy = (30,5, 0),

where the subscript C stands for coal, the subscript E for electricity, and
the subscript S for steel. Then the total demand for these goods by the
consumers is given by the sum

dy+dy +d;=(3,2,5 + (0,17,1) + (4,6,12) = (7,25, 18).
Also, the total industrial demand for these goods is given by the sum
d, + dp + dg = (0, 1,4) + (20,0, 8) + (30,5,0) = (50,6, 12).
Therefore the total overall demand is given by the sum
(7,25, 18) + (50,6, 12) = (57, 31, 30).

Suppose now that the price of coal is $1 per unit, the price of electricity
is $2 per unit, and the price of steel is $4 per unit. Then these prices can
be represented by the column vector

1
p =|2}
4

Consider the steel industry: it sells a total of 30 units of steel at $4 per unit,
so that its total income is $120. Its bill for the various goods is given by
the vector product

1
dy+p = (30,5,0)+ (2] =30 + 10 + 0 = $40.
4

Hence the profit of the steel industry is $120 — $40 = $80. (In the exercises
the profits of the other industries will be found.)

This model of an economy is unrealistic in two senses. First, we have
not chosen realistic numbers for the various quantities involved. Second,
and more important, we have neglected the fact that the more an industry
produces the more inputs it requires.

Consider the rectangular coordinate system in the plane shown in Figure
1. A two-component row vector x = (a, b) can be regarded as a point in
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X2
x=(a,b) T\
I
I
Ly
1l
I
l
|/
0] — ~ - X
a
Figure 1
the plane located by means of the coordinate axes as shown. The point
x can be found by starting at the origin of coordinates O and moving a
distance @ along the x, axis; then moving a distance  along a line parallel
to the x, axis. If we have two such points, say x = (a4, b) and y = (¢, d),
then the points x + y, —x, =3, X — y, » — x, —x —y have the geometric
significance shown in Figure 2.
X3 x+y=(@+c,b+d)
-
s /
yox=@=ad=p) __ " ¥i=ca |
/ /
/ / /
/ / __#x=(a,b)
/ of _ ——— /
/ ——,/’ /;r Il Xy
= can f /
/ / /
// / P
/ ——
/ ~y=(—c,—'d\)“_’_/’ X—y=(@—c,b—d)
/ — -
[ e
—x—y=(—a—c¢,~b—d)
Figure 2

The idea of multiplying a row vector by a number can also be given a
geometric meaning. In Figure 3 we have plotted the point corresponding
to the vector x = (1, 2), and 2x, {x, —x, and —2x. Observe that all these
points lie on a line through the origin of coordinates. Another vector
quantity that has geometrical significance is the vector z = ax + (1 — a)y,
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2 02x=(2,4) X2
/
/
/
x=(1,2
/’ (1,2) y.\
I 1
$5x=(3, D \.:=ax+(]—a)y
\
0 \\
X1 1 1
P + El
// Midpoint‘\z)L R
/ AN
—y = (—1 —7 N\
x={(—1, ..)/, N\
/ \\.x
/
o
—2x = (—2,—4) 0 X1
Figure 3 Figure 4

where a is any number between 0 and 1. Observe in Figure 4 that the points
z all lie on the line segment between the points x and y. If a =}, the
corresponding point on the line segment is the midpoint of the segment.
Thus, if x = (a, b) and y = (¢, d), then the point

Ix + by = §(a, b) + e d)

_(a+c b+d)
- 2 72

is the midpoint of the line segment between x and y.

-7 0
1. Letu=@2,—-1,3),v=(,0,2),x=| 1]),and y =|8}.
2 3

Compute the following:
@ w+v):x+)y.
() (Bu-x)-v)-y.
() ux—4v-y.
d u-x+3u-y—v-y. [Ans. —12.]
(e) Q2 +u)-y) — Suy.
) 4u-x+6[v:-(Gx — )] [Ans. —630.]

2. If x =(5 —4,2) and y = (1,8, 1) are points in space, what is the
midpoint of the line segment joining x to y? [dns. (3,2,%).]

3. Letx = (—1,3)and y = (4, 1) be row vectors. Plot the points corre-
sponding to x and y, and compute and plot the following vectors:
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(@) ix + iy d 2x —y.
b) x + y. (e) y+ 4x.
(c) 3x+ %y ) x -y

4. Prove that vector multiplication satisfies the following two properties:

(i) u-(av) =a(u-v),
() u-W+w=u-v+u-w,

where u is a three-component row vector, v and w are three-component

column vectors, and a is a number.

5. If u is a three-component row vector, v is a three-component column
vector having the same number of components, and a is a number,
prove that a(u - v) = u - (av).

6. A certain football stadium has three gates. After one game, the
ticket-taker at gate 1 reported admitting 275 adults, 300 students, and
15 children; the ticket-taker at gate 2 admitted 200 adults, 107 students,
and 40 children; and 65 adults, 250 students, and 60 children were
admitted at gate 3.

(a) Write the numbers of people admitted through each gate as a
three-component row vector.

(b) Use vector addition to find how many people in each category
attended the game.

(¢) Suppose that adults pay $3.00 to attend the game, students pay
$2.00, and children pay 50¢. Assuming that each person buys his
ticket at the gate, calculate the value of the tickets sold at each
gate.

(d) Compute in two different ways the total value of tickets sold.

7. Perform the following calculations for Example 2.

(a) Compute the amount that each industry and each consumer has
to pay for the goods it receives.

(b) Compute the profit made by each of the industries.

(c) Find the total amount of money that is paid out by all the
industries and consumers.

(d) Find the proportion of the total amount of money found in (c)
paid out by the industries. Find the proportion of the total money
that is paid out by the consumers.

8. A farmer intends to plant 40 acres of corn, 25 acres of wheat, and 30
acres of rye. Write a three-component row vector whose components
give the number of acres of each grain he wants to plant. Suppose
an acre of corn requires an hour to plant, an acre of wheat 45 minutes,
and an acre of rye one-half hour. Write a column vector whose com-
ponents give the number of minutes needed to plant an acre of each
crop. Use vector multiplication to find the total time required for
planting.

9. In Exercise 8, suppose the seed for an acre of corn cost $40, for an
acre of wheat $15, and for an acre of rye $10. Find the total amount
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the farmer must spend on seed. If an acre of corn brings the farmer

a profit of $19, an acre of wheat $15, and an acre of rye $4, find the

total profit the farmer will make.

The production of a book involves several steps: first it must be set

into type, then it must be printed, and finally it must be supplied with

covers and bound. Suppose the typesetter charges $6 an hour, paper
costs 1 cent per sheet, the printer charges 11 cents for each minute that
his press runs, the cover costs 28 cents, and the binder charges 15 cents

to bind each book. Suppose now that a publisher wishes to print a

book that requires 300 hours of work by the typesetter, 220 sheets of

paper per book, and 5 minutes of press time per book.

(a) Write a five-component row vector that gives the requirements
for the first book. Write another row vector that gives the re-
quirements for the second, third, . . . copies of the book. Write
a five-component column vector whose components give the prices
of the various requirements for each book, in the same order as
they are listed in the requirement vectors above.

(b) Using vector multiplication, find the cost of publishing one copy

of a book. [Ans. $1801.53.]
(¢) Using vector addition and multiplication, find the cost of printing
a first-edition run of 5000 copies. [Ans. $9450.]

(d) Assuming that the printing plates from the first edition are used
again, find the cost of printing a second edition of 5000 copies.
[Ans. $7650.]

Let x = (il), and let @ and b be the vectors a = (—1,4), b =
2
(2,— 7). Ifax = 1 and bx = 2, find x; and x,.
[Ans. x; = 15,x, = 4.]

X1

Let x:( ), and let ¢ and b be the vectors a=(3,3),

Xo
b= (—1,4). If ax = x, and bx = x,, find x; and x,.
Consider the vectors

a = (ay, ay), b = (by, by), *= (XI)

X2
and two numbers ¢, and ¢,. Show that the equations
ax = ¢y, bx = ¢,

represent two simultaneous equations in two unknowns.

Show that every set of two simultaneous equations in two unknowns

can be written as in Exercise 13.

Consider an experiment in which there are two outcomes: we win $10

with probability 1 and lost $5 with probability §. Let a = (10, —3)
1

and p = (E) Show that the expected outcome of the experiment is ap.
5
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16. A gambling game works as follows. Two dice are rolled. If no sixes turn
up, we lose $1; if one six turns up, we win $1; if two sixes turn up we
win $10. Set up a row vector representing the various outcomes and a
column vector representing the probability of those outcomes. Use
vector multiplication to find the expected outcomes. Is the game fair?

17. If an experiment has outcomes a,, a,, . . . , a, occurring with proba-
bilities py, p,, . . . , p,, define the vectors
P1
a=(a...,a,) and p= '1;72
Pn

Show that the expected outcome is ap.
18. Consider the vectors x = (1,5), y = (3, 1), andf:(}).

(a) Computejxfand4yf, and show that these numbers are the averages
of the components of x and y, respectively. [Partial Ans. 3,2.]
(b) Compute i(x + y)f, and give an interpretation for this number.
[Partial Ans. 21
19. Let x and y be two n-component row vectors, and let f be an n-com-
ponent column vector all of whose entries are 1%s.
(a) Compute (1/n)xf and (1/n)yf and interpret the result.
(b) Compute (Jn)(x + y)fand interpret the result. [Hint: Exercise 18
is a special case.]
20. How would the results of Exercise 19 change if we used three vectors:
x, y, and z?

3 MATRICES AND THEIR COMBINATION
WITH VECTORS

A matrix is a rectangular array of numbers written in the form

dyy 4y ayy,
4 = gy lag sy
aml am? amn

Here the letters a;; stand for real numbers and m and n are integers. Observe
that m is the number of rows and # is the number of columns of the matrix.
For this reason we call it an m X n matrix. If m = n, the matrix is square.
The following are examples of matrices:

1
1,23, |2, (“1);

FOO0O0 1 7 g9 1o
01 0 0

3 1 14 2 —¢
00 T oFly 3 57
00 0 I
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The first example is a row vector which is a 1 X 3 matrix; the second is a
column vector which is a 3 X 1 matrix; the third example is a 2 X 2 square
matrix; the fourth is a 4 X 4 square matrix; and the last is a 3 %X 5 matrix.

Two matrices having the same shape (i.e., having the same number of rows
and columns) are said to be equal if and only if the corresponding entries are
equal. '

Recall that in Chapter 3, Section 12, we found that a matrix arose naturally
in the consideration of a Markov chain process. To give another example of
how matrices occur in practice and are used in connection with vectors, we
consider the following example.

Suppose that a building contractor has accepted orders for five ranch-style
houses, seven Cape Cod houses, and twelve colonial-style houses. We can
represent his orders by means of a row vector x = (5,7, 12). The contractor
is familiar, of course, with the kinds of “raw materials” that go into each type
of house. Let ussuppose that these raw materials are steel, wood, glass, paint,
and labor. The numbers in the matrix below give the amounts of each raw
material going into each type of house, expressed in convenient units. (The
numbers are put in arbitrarily, and are not meant to be realistic.)

Steel Wood Glass Paint Labor

Ranch: 5 20 16 7 17
Cape Cod: 7 18 12 9 21 | =R
Colonial: 6 25 8 5 13

Observe that each row of the matrix is a five-component row vector which
gives the amounts of each raw material needed for a given kind of house.
Similarly, each column of the matrix is a three-component column vector
which gives the amounts of a given raw material needed for each kind of
house. Clearly, a matrix is a very succinct way of summarizing this infor-
mation.

Suppose now that the contractor wishes to compute how much of each raw
material to obtain in order to fulfill his contracts. Let us denote the matrix
above by R; then he would like to obtain something like the product xR, and
he would like the product to tell him what orders to make out. The product
should have the following form:

5 20 16 7 17
xR=(5,7,12)(7 18 12 9 21
6 25 8 5 13

= (5-54+7-7T+12:6, 5-20 +7-18 4 12-25,
5.16 4712 412+8, 5:7+7-9+12+5,
5.17 +7-21 + 12-13)

— (146, 526,260, 158, 388).

Thus we see that the contractor should order 146 units of steel, 526 units of
wood, 260 units of glass, 158 units of paint, and 388 units of labor. Observe
that the answer we get is a five-component row vector and that each entry in
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this vector is obtained by taking the vector product of x times the corre-
sponding column of the matrix R.

The contractor is also interested in the prices that he will have to pay for
these materials. Suppose that steel costs $15 per unit, wood costs $8 per unit,
glass costs $5 per unit, paint costs $1 per unit, and labor costs $10 per unit.
Then we can write the cost as a column vector as follows:

Here the product Ry should give the costs of each type of house, so that the
multiplication should have the form

15

520 16 7 17\[ 8
Ry=[7 18 12 9 21| 5
6 25 8 5 13/\ 1

10

5154208 4+16:-54+7-14+17-10
. =715+ 1884+ 12:54+9-14+21-10
6:15+25-84+ 8+545-1+13-10
492

=[528}.
465

Thus the cost of materials for the ranch style house is $492, for the Cape Cod
house is $528, and for the Colonial house $465.

The final question which the contractor might ask is what is the total cost
of raw materials for all the houses he will build. It is easy to see that this is
given by the vector xRy. We can find it in two ways as shown below.

15
8
xRy = (xR)y = (146, 526,260, 158,388) -| 5| = 11,736
1
10
492
xRy = x(Ry) = (5,7,12)- |528 | = 11.736.
465

The total cost is then $11,736.

We shall adopt, in general, the above definitions for the multiplication of
a matrix times a row or a column vector.
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Definition Let A be an m X n matrix, let x be an m-component row vector,
and let u be an n-component column vector; then we define the products x4
and Au as follows:

ayp 4yo A1y
a a a
_ 21 o 2
XA = (Xq, X9, - -+, X,) z "
aml am2 amn
= (X1ay; + Xolgy + -0+ Xy, Xy@yp + Xolog + o0+ XG0,
ey X4y, + Xoloy + -+ xmamn);
ayy 4y A\ [t ayp Uy + Ay + - - -+ AUy,
Ay = | 921 G2z Aon | [ Uz | _[Goalhy F Gpaly + - - - + Gyly
A1 Qpa - A VU, Apally T Aoty + - =+ + Ayl

The reader will find these formulas easy to work with if he observes that
each entry in the products x4 or Au is obtained by vector multiplication
of x or u by a column or row of the matrix A. Notice that in order to multiply
a row vector times a matrix, the number of rows of the matrix must equal
the number of components of the vector, and the result is another row vector;
similarly, to multiply a matrix times a column vector, the number of columns
of the matrix must equal the number of components of the vector, and the
result of such a multiplication is another column vector.

Some numerical examples of the multiplication of vectors and matrices
are:

31
(150,_1)2 3=(l'3+0'2—1'2,1'1+0'3—1'8)
28
(3 I 2) i_(3—1+ 4)_(6)_
2 3 8)\7) [T \a-34+16) = 1s)
32 -1 5
1o 2y 1\ [-3
o 3 1| o)=[-2
s —4  7/\-2] |-9
3 2 1 -1

Observe that if x is an m-component row vector and A4 1s m X n, then x4
is an n-component row vector; similarly, if  is an n-component column
vector, then Au is an m-component column vector. These facts can be
observed in the examples above.
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EXAMPLE 2

EXAMPLE 3

Consider a Markov chain with transition matrix

X
P:(l 1).
2 2

Choose the initial state by a random device that selects states @, and a,
each with probability . Let us indicate the choice of initial state by the
vector p@ = (4, 3) where the first component gives the probability of choosing
state a, and the second the probability of choosing state a,. Let us compute
the product p{®P. We have

1 2
3 3
Por=a3( )=d+riith=@h

2 2
Using the methods of Chapter 3, one can show that after one step there
is probability % that the process will be in state a, and probability 7 that
it will be in state a,. Let p be the vector whose first component gives
the probability of the process being in state a, after one step and whose
second component gives the probability of it being in state a, after one step.
In our example we have p¥ = (&, &) = pOP.

In general, the formula p¥ = p@P holds for any Markov process with

transition matrix P and initial probability vector p‘©,

In Example 1 of Section 2 assume that Smith has two stores at which he
can make his purchases, and let us assume that the prices charged at these
two stores are slightly different. Let the price vector at the second store
be

5\ cents per apple
5 | cents per peach
cents per lemon
4 | cents per orange
6/ cents per pear.

It
o

Y

Smith now has the option of buying all his purchases at store 1, all at store
2, or buying just the lower-priced items at the store charging the lower price.
To help him decide, we form a price matrix as follows:

Prices, Prices, Minimum
Store 1 Store 2 Price
4 5 4
6 5 5
P = 9 . 10 9
5 4 4
7 . 6 6

The first column lists the prices of store 1, the second column lists the price
of store 2, and the third column lists the lower of these two prices. To
compute Smith’s bill under the three possible ways he can make his pur-
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chases, we compute the produce xP, as follows:

4 5 4
6 5 5
xP=(6,12,3,12,6)| 9 10 9 | = (225,204, 195).
5 4 4
7 6 6

We thus see that if Smith buys only in store 1, his bill will be $2.25; if he
buys only in store 2, his bill will be $2.04; but if he buys each item in the
cheaper of the two stores (apples and lemons in store 1, and the rest in
store 2), his bill will be $1.95.

Exactly what Smith will, or should, do depends upon circumstances. If
both stores are equally close to him, he will probably split his purchases
and obtain the smallest bill. If store 1 is close and store 2 is very far away,
he may buy everything at store 1. If store 2 is closer and store 1 is far enough
away so that the 9 cents he would save by splitting his purchases is not
worth the travel effort, he may buy everything at store 2.

The problem just cited is an example of a decision problem. In such
problems it is necessary to choose one of several courses of action, or
strategies. For each such course of action or strategy, it is possible to
compute the cost or worth of such a strategy. The decision maker will choose
a strategy with maximum worth.

Sometimes the worth of an outcome must be measured in psychological
units and we then say that we measure the urility of an outcome. For the
purposes of this book we shall always assume that the utility of an outcome
is measured in monetary units, so that we can compare the worths of two
different outcomes to the decision maker.

As a second example of a decision problem, consider the following. An
urn contains five red, three green, and one white ball. One ball will be drawn
at random, and then payments will be made to holders of three kinds of
lottery tickets, A, B, and C, according to the following schedule:

Ticket A Ticket B Ticket C

Red 1 3 0
M = Green 4 1 0
White 0 0 16

Thus, if a red ball is selected, holders of ticket A will get $1, holders of
ticket B will get $3, and holders of ticket C will get nothing. If green is
chosen, the payments are 4, 1, and 0, respectively. If white is chosen, holders
of ticket C get $16, and the others nothing. Which ticket would we prefer
to have?

Our decision will depend upon the concept of expected value discussed
in the preceding chapter. The statements “draw a red ball,” “draw a green
ball,” and “draw a white ball” have probabilities 2, 3, and §, respectively.
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From these probabilities we can calculate the expected value of holding each
of the lottery tickets as described in the last chapter. However, a compact
way of performing all these calculations is to compute the product pM, where
p is the probability vector

P =333

From this we have

1 3 0
pPM=@E3hl4 1 0
0 0 16
=(1-3+4-34+0-3 3-3+1-3+0-} 0:34+0-3+16-3)
:(1§Z9_L98’1§G)'

It is easy to see that the three components of pM give the expected values
of holding lottery tickets A, B, and C, respectively. From these numbers
we can see that ticket B is the best, A is the next best, and C is third best.

If we have to pay for the tickets, then the cost of the tickets will determine
which is the best buy. If each ticket costs $3 we would be better off by
not buying any ticket, since we would then expect to lose money. If each
ticket costs $1 then we should buy ticket B, since it would give us a net
expected gain of $2 — §1 = $1. If the first two tickets cost $2.10, and the
third cost $1.50, we should buy ticket C since it is the only one for which
we would have a positive net expectation.

EXERCISES
1. Perform the following multiplications:

w (79 )= s (<11)

~3 2\ _
6 @-(7 2)=:
0 3 1
3 -1 7\ 6
© |-5 14 - 1] =2
7 2 9f\-1
0 —6 10
M)GJK_}_”z? [4ns. (0,0).]
Io—1\(12) _
(@<—1 J“»—?
30120 —8
® ©01,-5{6 82 1 14]|=2
215 2 0 =5
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? [Ans. ax; + cx,, bxy + dx,.]

[}
v

(8 (x,x 2)(0

%
w )’“)=
Y P2
1 0 0 0 /ul
. 01 0 O0})lu,
(i) = 1=
0 0 1 0] uy
0 0 0 1/ \uy
/ [ 000
. 01 00
(.]) (Xp x27 X3’ x4) O 0 1 O = ?
0 0 0 1
What number does the matrix in parts (i) and (j) of Exercise 1 resem-

ble?

Notice that in Exercise 1(d), above, the product of a row vector none
of whose components is zero and a matrix none of whose components
is zero is the zero row vector. Find a second example, this time using
a 3 X 3 matrix, which is similar to this one. Answer the analogous
question for Exercise 1(e).

Consider the matrices

4 = (au a12)’ x = (x1)’ b= (b1).
Ayy Ay X2 b,

(a) Show that the equation Ax = b represents two simultaneous
equations in two unknowns.

(b) Show that every set of two simultaneous equations in two un-
knowns can be written in this form for the proper choice of 4
and b.

When possible, solve for the indicated quantities.

@ o 58

a b
d

In this case can you find more than one solution?

— 7
(c) (_2 2)(:) = (0) Find the vector u.

—_ —1 .
(d) (_1; 2;)(”1) =( 4). Find u. How many solutions can

you find?

) = (—45,72). Find the vector x.

®) (6, 9)( ):(12,_15). Find the matrix(‘cz 2).

k

[Ans. Infinitely many solutions, all of the form v = {3k + 1
7
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6. Solve for the indicated quantities below and give an interpretation for
each.

(a (1, —1)(_ i) =a(l, —1); find a. [Ans. a = 2.]

0
2
1 2\ [fu, Uy
(b) ( ) =5 ; find u. How many answers can you find?
2 4/ \u, u,

[Ans. u = ( k

2k) for any number k.]

3 3
(©) ( )(ul) = (ul); find u. How many answers are there?
6 10/ \u, u,

7. In Example 1 of this section, assume that the contractor is to build

eight ranch-style, four Cape Cod, and four colonial-type houses.

Recompute, using matrix multiplication, the total cost of raw materials,

in two different ways, as in the example.

In Example 2 use tree measures to show that p@ = pWp,

9. In Example 2 of this section, assume that the initial probability vector
is p@ = (4, 8. Find the vector p®. [Ans. 3L, 19).]

10. Consider the Markov chain with two states whose transition matrix is

1l —a
P = a )
(1 -b b /)
where a and b are nonnegative numbers less than 1. Suppose the initial
probability vector for the process is p'@ = (p{?, p{), where p® is the
initial probability of choosing state 1 and p§” is the initial probability
of choosing state 2. Derive the formulas for the components of the

*°

vector pv, [Ans. p® = ap® + (1 — b)p, (1 — a)p® + bp]
a b ¢
11. Suppose that|d e f]is the transition matrix of a three-state
g h i
a b c\ [l
Markov chain. Find (x,y,z) |d e J111}. [Ans. x + y + z.]
g h i\l

12.  The following matrix gives the vitamin contents of three food items,
in conveniently chosen units:

Vitamin: A B C D
Food I: S 5 0 0
Food II: |3 0 2 .1).
Food III: \.1 1 2 5

If we eat 11 units of food I, 6 units of food II, and 4 units of food
HI, how much of each type of vitamin have we consumed? If we pay
only for the vitamin content of each food, paying 10 cents, 20 cents,
25 cents, and 50 cents, respectively, for units of the four vitamins, how
much does a unit of each type of food cost? Compute in two ways
the total cost of the food we ate. [Partial Ans. $3.75.]
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13.

14.

15.

16.

17.

18.

19.
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In Example 3, by how much would store 1 have to reduce the price
of apples to make Smith’s total purchases less expensive there than
at store 2?
In Example 3, find the store at which the total cost to Smith is the
least when he wishes to purchase
(@ x=@4,1,2,0,1). [Ans. Store 1; cost 47 cents.]
b) x=(1,3,2,4,0).
©) x=12,2,2,0,2).
In Example 4, let us assume that an individual chooses ticket 1
with probability r,, ticket 2 with probability r,, and ticket 3 with
bt
probability r;. Let r = r,|. Give an interpretation for pMr. Com-
T3

pute this forr, =4, r, =1 and r; = 4.

[Ans. pMr = §%, which is the expected return.]
A game room contains three pinball machines. Either a game on one
of these machines terminates normally, or else the machine refunds
enough money for one or two games. A game also ends if the machine
is tilted. The probability of each of these events is given by the
following matrix:

Normal Refunds | Game Refunds 2  Tilt

Machine 1 8 .09 01 B!
M = Machine 2 75 045 .005 2
Machine 3 9 04 01 .05

Assume that n = (25, 20, 30) represents the number of games played
on machines 1, 2, and 3, respectively. Compute and interpret nM.
In Exercise 16, Suppose it costs 10¢ to play one game.

(a) Construct a column vector with entries being the profit per game
made by the owner of the machines for each of the different
outcomes.

(b) Whatis the expected profit made by the owner if 100 people play
machine 1, 80 play machine 2, and 120 play machine 3.

(c) Due to space limitations the owner must sell one of the machines.
Which one should he sell?

(a) Consider the matrices

e 9) s =)

-\ i S\
Show that Pf = f. The vector f is called a fixed vector on the
right of P.

(b) Letw = (,&) and let P be the matrix in part (a). Show that
wP = w. For this reason w is called a fixed vector on the left of
P.

Let P be the matrix of transition probabilities for a Markov chain
having n states, and let f be a column matrix all of whose entries
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are I’s. Show that Pf = f. [Hint: Exercise 18 provides a special case.]
20. Let A4, B, and C be matrices of the same shape, and let 4 and k be
numbers. Use the ordinary rules for numbers plus the definitions of
this section to show that the following laws hold:
(al) 4+ B = B + A (commutative law of addition).
(@2) A+ (B + C)=(4+ B) + C (associative law of addition).
(a3) If O is the zero matrix of the same shape, then 4 + 0 = 4
(additive identity law).
(ad) Define —A4 = (—1)4; then4 + (—A) = 0 (additive inverse law).
(s1) h(kA) = (hk)A (mixed associative law).
(s2) 14 = A for all A (unity law).
(s3) h(A + B) = hA + hB (first distributive law).
(s4) (h + k)4 = hA + kA (second distributive law).
21. A company is considering which of three methods of production it
should use in producing three goods, A, B, and C. The amount of
each good produced by each method is shown in the matrix:

A B C

2 3 1\ Method 1
R=[|1 2 3|Method 2

2 4 1/ Method 3.

Let p be a vector whose components represent the profit per unit for
each of the goods. What does the vector Rp represent? Find three dif-
ferent vectors p such that under each of these profit vectors a dif-
ferent method would be most profitable.
10
[Partial Ans. For p =| 8 | method 3 is most profitable.]
7

4 THE ADDITION AND MULTIPLICATION OF MATRICES

Two matrices of the same shape—that is, having the same number of rows
and columns—can be added together by adding corresponding components.
For example, if 4 and B are two 2 X 3 matrices, we have

A+ B= (‘111 a9 a13)+ (bu by b13)
dyy Gy Qgg by by by,

_ (‘111 + by a4+ by ags + b13)
Ayy + byy  Gge + byy  any + by

Observe that the addition of vectors (row or column) is simply a special
case of the addition of matrices. Numerical examples of the addition of
matrices are

(1,0, —2) + (OaS’O) = (ls 5’ '—2),

G D+ (% 0= o)
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7 0 0 —8 0 1 —1 0 1
-3 1 -6 4 5 —1 1 6 -7
4 0 T+ 0 3 0|= 4 3 7
0 -2 =2 —1 1 -1 -1 -1 =3
1 1 1 0 -4 2 1 -3 3

Other examples occur in the exercises. The reader should observe that we
do not add matrices of different shapes.
If 4 is a matrix and k is any number, we define the matrix kA4 as

i1 Gy 0 Ay Kay, kayy - kay,
KA = k| @2t 9oz oo Ao | _ [ Kay  kay, - ka,
A1 Apo Amn kaml kamZ e kamn

Observe that this is merely entrywise multiplication, as was the analogous
concept for vectors. Examples of multiplication of matrices by constants

l 0 6 0
6(0 I|=1 0 6|
3 -4 18 —24

The multiplication of a vector by a number is a special case of the multi-
plication of a matrix by a number.
Under certain conditions two matrices can be multiplied together to give
a new matrix. As an example, let 4 be a 2 X 3 matrix and B be a 3 X 2
matrix. Then the product AB is found to be
by by

a a a

AB :< 11 12 13) b21 b22
Qyp Ay Qyy

31 U39

_ (anbn + ayobyy + ay3by  agiby, + ayobyy + a13b32)
dg1byy + agobyy + Ayzbsy  anibiy + agobyy + Ay3b3,

Observe that the product is a 2 X 2 matrix. Also notice that each entry
in the new matrix is the product of one of the rows of A times one of the
columns of B; for example, the entry in the second row and first column
is found as the product

by,
(ay; Ggp ay3) | byy|= ayibyy + Agobosy + ag3bs,.
b3,

The following definition holds for the general case of matrix multiplication:

Definition Let 4 be an m X k matrix and B be a k X »n matrix; then the
product matrix C = 4B is an m X n matrix whose components are
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by;

J
b..
— 2j

G = (@ ay - ay)|

= Qy1by; + aipby; + - + ayby;

The important things to remember about this definition are: first, in order
to be able to multiply matrix A4 times matrix B, the number of columns
of 4 must be equal to the number of rows of B; second, the product matrix
C = AB has the same number of rows as 4 and the same number of columns
as B; finally, to get the entry in the ith row and jth column of 4B we multiply
the ith row of 4 times the jth column of B. Notice that the product of a
vector times a matrix is a special case of matrix multiplication.

Below are several examples of matrix multiplication:

G )G 9)=(% 2)

30 1\f1 00 4 11
-1 2 0ffo -1 o|={-1 -2 0o};
00 2/\1 1 1 2 2 2
(314)1?88_(41044)
20 Mg o1 1) 2 655

We next ask how we multiply more than two matrices together. Let 4
be an m X h matrix, let B be an & X k matrix, and let C be a k X »n.matrix.
Then we can certainly define the products (4B)C and A(BC). It turns out
that these two products are equal, and we define the product ABC to be
their common value; that is,

ABC = A(BC) = (4B)C.

The rule expressed in the above equation is called the associative law for
multiplication. We shall not prove the associative law here, although the
student will be asked to check an example of it in Exercise 5.

If 4 and B are square matrices of the same size, then they can be multi-
plied in either order. It is not true, however, that the product AB is neces-
sarily equal to the product B4. For example, if

(11 ({10
A‘(o 0) and B_<l 0)’

5=(5 o) 5)=( o)

then we have
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whereas
1 0\(1 1
BA“(l 0)(0 o)

and it is clear that AB # BA.

1
o
P
Pk ek
~—"

1. Perform the following matrix operations:

3 2 0 7
(@ {1 4] —-1-3 -3|="7?
5 3 8 1

=

-

w
I .

N W —

—
—
e’

O (192 Y-

o (09 )=
8 —6

o (17 2=

o (6 956 9=

w (0 2)6)-
7 9 2\(3 3 5 56 112 85

(h) (4 9 6)(3 9 4)=2 [Ans.(63 123 98).]
5 6 0/\4 5 7 33 69 49
|

N
—
— N

o (L )

—19 2 7 2 19
2. Consider the matrices A4 = 14 —-10), B=|4 26 -2},
5 0 13 0 7

4 1 -1 10 -7 :
= = : 3x23
C (6 3 _5), and D ( 4 15) Their shapes are 3 X X

3,2 X 3, and 2 X 2, respectively. What is the shape of:
(a) AC?
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b)) CB?

(c) DC? [Ans. 2 X 3]
d) ACB?

(e) BAC?

) DCB?

(g) DCBA?

(h) ADCB? [Ans. 3 X 3]

3. In Exercise 2, find the component:
(@) In the second row and second column of AC. [Ans. —16.]

(b) In the first row and the third column of CB.
(¢) In the last row and last column of AC.
(d) In the last row and last column of CA. [Ans. —18.]
(e) In the second row and first column of DC.
4. Let 4 be any 3 X 3 matrix and let / be the matrix

1 0 0
I={0 1 0}.
0 0 1

Show that A] = I4 = A. The matrix / acts for the products of matrices
in the same way that the number 1 acts for products of numbers. For
this reason it is called the identity matrix.

5. Verify the associative law for the special case when

|3 3 4 _3 3 9 4
A=<_6 s 1),B:8 0 S5|l,andC={7 —-4}.
5 —4 3 0 |

6. The commutative law for addition is
A+ B=B+ A4

for any two matrices 4 and B of the same shape. Prove that the com-
mutative law for addition is true from the definition of matrix addition
and from the fact that it is true for ordinary numbers.

7. Show that there is not a commutative law for matrix multiplication by
finding two 2 X 2 matrices 4 and B different than the ones in the text
such that 4- B # B- A.

8. The distributive law for numbers and matrices is

k(A + B) = kA + kB -

for any number £ and any two matrices 4 and B of the same shape.
Prove that this law holds from the definitions of numerical multi-
plication of matrices, addition of matrices, and the ordinary rules for
numbers.

9. The distributive laws for matrices are

(A + B)C = AC + BC,
C(A + B) = CA + CB,
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where A, B, and C are matrices of suitable shapes. Show that these
laws hold from the definitions of matrix multiplication and addition,
and the ordinary rules for numbers.

10. Let A be any 3 X 3 matrix and let O be the matrix

0=

o O O
o O O
o OO

Show that 40 = 04 = Oforany A. Alsoshowthat4 +0 =04+ 4 =4
for any 4. The matrix O acts for matrices in the same way that the
number 0 acts for numbers. For this reason it is called the zero matrix.
11. Show that for any square matrix 4 there is a matrix B of the same
shape as A4 such that 4 + B = 0. (B is called the additive inverse of
A)
12. Find the additive inverse of each of the following matrices:

@ ()

-3 2
b )
) ( 6 1)
-3 2 4
(©) 0 8 3
5 4 -7
0 0 1 0 0 0
13. If 4= (0 1) and B = (0 0), show that AB = (O 0). Thus the

product of two matrices can be the zero matrix even though neither
of the matrices is itself zero. Find another example that illustrates
this point.

14. If 4 is a square matrix, it can be multiplied by itself; hence we can
define (using the associative law)

A2 =A4-A4
A3 =A% A =A-A-A4
AV = A1 4 =AA---- <A (n factors).

These are naturally called “powers” of the matrix 4, A% being called
the square of A4, A3 the cube of 4, etc.

(a) Compute 42, 43, and A4* for A = (‘;‘ (1))

(b) IfIand O are the matrices defined in Exercises 4 and 10, find 72,
I3, 1™ 02, 03, and O™

© IfAz(i i) find A,

LY
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15.

16.

17.

18.

19.

20.

0 1 2
d If4={0 0 -1}, find 42, 43, and 4™
0 0 0

Find the matrices P? and P® for the Markov chain whose tran-

1 1
2 2
2 1

3

). Compute P2and P3and compare the results.
5

sitionmatrixis P = (

Cube the matrix

W O O
O o
ks ok O

Compare your answer with the matrix P®¥ in Example 1, Chapter 3,
Section 12, and comment on the result.
Consider a two-state Markov process whose transition matrix is

pP— (Pn Plz).
P21 Po2

(a) Assuming that the process starts in state 1, draw the tree and
set up tree measures for three stages of the process. Do the same,
assuming that the process starts in state 2.

(b) Using the trees drawn in (a), compute the quantities p(3), p$),
PS5, p$). Write the matrix P®,

(¢) Compute the cube P® of the matrix P.

(d) Compare the answers you found in parts (b) and (c) and show

that P® = P3.
1 O)
t A4 = R
Le (1 2

1

(a) Find a matrix B such that AB = (0

0 1 0
1). Show that BA = (0 1)

as well.

I 1
1 3

A diagonal matrix is square and its only nonzero entries are on the
main diagonal. For instance, the matrices

=la 2=G 9

are 2 X 2 diagonal matrices.

(a) Show that 4 and B commute, i.e., AB = BA.

(b) Show that any pair of diagonal matrices of the same size commute
when multiplied together.

A scalar martrix is a diagonal matrix in which all the entries on

(b) Find a matrix C such that AC = ( ) What is CA?
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30

0 3)and

the main diagonal are equal. Forinstance, the matrices4 = (

B = (—(7) 3) are 2 X 2 scalar matrices.

(a) Show that 4 commutes with any 2 X 2 matrix.

(b) Show that any scalar matrix 4 can be written as kI, where & is a
number and [ is the identity matrix of the appropriate size.

(c) Show that any scalar matrix commutes with any other matrix of the
same size.

In Example 1 of Section 3 assume that the contractor wishes to take into

account the cost of transporting raw materials to the building site as well

as the purchasing cost. Suppose the costs are as given in the matrix

below:

Purchase Transport
15 4.5 Steel
8 2 Wood
0= 5 3 Glass
1 0.5 Paint
10 0 Labor

Referring to the example:

(a) By computing the product RQ find a 3 X 2 matrix whose entries
give the purchase and transportation costs of the materials for each
kind of house.

(b) Findthe product xRQ, whichisa two-component row vector whose
first component gives the total purchase price and second compo-
nent gives the total transportation cost.

(© Letz= (i

the total cost of materials and transportation for all the houses

being built. [Ans. 14,304.]
A candy company packages four sizes of assorted chocolates: the
Sampler, Sweetheart, Matinee,and Jumbo boxes. The Sampler contains
3 almond creams, 4 chocolate nougats, 5 caramel creams, and 3 nut
clusters. The Sweetheart contains 6 almond creams, 4 chocolate nougats,
8 caramel creams, and 7 nut clusters. In the Matinee box are 10 almond
creams, 15 chocolate nougats, 5 caramel creams, and 5 nut clusters.
The Jumbo assortment has 10 almond creams, 15 chocolate nougats,
15 caramel creams, and 10 nut clusters. The company uses as ingredi-
ents in its manufacturing process chocolate, nuts, and cream filling.
An almond cream contains 1 unit of chocolate, 2" units of nuts, and
2 units of cream filling; a chocolate nougat, 2 units each of chocolate
and cream filling; a caramel cream, 4 units of cream filling; and a nut
cluster, 3 units of nuts and 2 units of chocolate. Suppose a unit of
chocolate costs 1¢, a unit of nuts 1.6¢, and a unit of cream filling 2¢.

) and then compute xRQz, which is a number giving



184 Vectors and Matrices Chapter 4

If the company packages 50 Samplers, 75 Sweethearts, 40 Matinees,
and 100 Jumbos,
(a) What is the total number of each type of candy produced?
(b) Whatis the total number of units of each ingredient used to make
all the candy?
(c) What is the total cost of the candy in each box?
(d) What is the total cost of all the candy in all the boxes?
[Ans. $651.50.]

5 THE SOLUTION OF LINEAR EQUATIONS

EXAMPLE 1

There are many occasions when the simultaneous solutions of linear equations
isimportant. In this section we shall develop methods for finding out whether
a set of linear equations has solutions, and for finding all such solutions.

Consider the following example of three linear equations in three unknowns:

(D) Xy +4x, + 3x; =1
(2) 2x; 4+ S5x, + 4x; = 4
(3) Xy — 3x, —2x5 = 5.

Equations such as these, containing one or more variables, are called open
statements. Statement (1) is true for some values of the variables (for
instance, when x; = 1, x, = 0, and x; = 0), and false for other values of

the variables (for instance, when x; =0, x, = 1, and x; = 0). The truth
set of (1) is the set of all vectors fc; for which (1) is true. Similarly, the
X
truth set of the three simultaneous egquations (1), 2), and (3) is the set of
all vectors i\(: which make true their conjunction
Xq

(xg + 4x, + 3x3 = 1) A\ Qxy + 5x, + 4x3 = 4) /\ (x; — 3x, — 2x, = 5).

When we say that we solve a set of simultaneous equations, we mean that
we determine the truth set of their conjunction.

Before we discuss the solution of these equations we note that they can
be written as a single equation in matrix form as follows:

1 4 3\ [x, 1
2 5 4 xz = 4 .
I =3 =2/ \x; 5
One of the uses of vector and matrix notation is in writing a large number

of linear equations in a single simple matrix equation such as the one above.
It also leads to the detached coefficient form of solving simultaneous equa-
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tions that we shall discuss at the end of the present section and in the next
section.

The method of solving the linear equations above is the following. First
we use equation (1) to eliminate the variable x; from equations (2) and
(3); i.e., we subtract 2 times (1) from (2) and then subtract (1) from (3),
giving

(1) X, + 4x, + 3x5 =1
(2/) —3x2 — 2X3 =2
(3" —Txy — Sx5 = 4.

By pivoting we shall mean the operation of using an equation to eliminate
a variable from the other equations. The pivot is the coefficient of the
variable being eliminated. In this case the pivot is 1. Next we pivot on
—3 in (2): divide equation (2’) through by the coefficient of x,, namely,
—3, obtaining x, + x; = —% We use this equation to eliminate x, from
each of the other two equations. In order to do this we subtract 4 times
this equation from (1’) and add 7 times this equation to (3’), obtaining

(1) X1+ 0+ =4
2") Xy + 3xy = —§
3 b=

The last step is to pivot on —3 by dividing through (3”) by —3, which is
the coefficient of x;, obtaining the equation x; = 2; we use this equation
to eliminate x4 from the first two equations as follows:

1) x;+#0+0= 3
@) Xy + 0= —2
(3") Xy = 2.
The solution can now be read from these equations as x; = 3, x, = —2,

and x; = 2. The reader should substitute these values into the original
equations (1), (2), and (3) above to see that the solution has actually been
obtained.

In the example just discussed we saw that there was only one solution
to the set of three simultaneous equations in three variables. Example 2
will be one in which there is more than one solution, and Example 3 will
be one in which there are no solutions to a set of three simultaneous
equations in three variables.

Consider the following linear equations:

“4) Xy —2x, — 3x3= 2
) Xy —4x, — 13x; = 14
6) —3x; + 5x, + 4x3= 0.
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EXAMPLE 3

Let us proceed as before and use equation (4) to eliminate the variable x,
from the other two equations. Pivoting on the 1 coefficient of x, in (4),
we have

4" Xy —2x,— 3x5= 2
(5) —2x, — 10x; = 12
(6") —Xy — Sx3= 6.

Proceeding as before, we divide equation (5’) by —2, obtaining the equation
Xy + 5x3 = —6. We use this equation to eliminate the variable x, from
each of the other equations—namely, we add twice this equation to (4’)
and then add the equation to (6’):

4" X;+0+7x;=~10
(5") Xo+5x3=— 6
6”) 0= 0.

Observe that we have eliminated the last equation completely! We also see
that the variable x; can be chosen completely arbitrarily in these equations.
To emphasize this, we move the terms involving x; to the right-hand side,
giving

4" x; = —10 — Tx,

o) Xy, = — 6 — 5x,.

The reader should check, by substituting these values of x; and x, into
equations (4), (5), and (6), that they are solutions regardless of the value
of x;. Let us also substitute particular values for x; to obtain numerical
solutions. Thus, if we let x; =1, 0, —2, respectively, and compute the
resulting numbers, using (4”) and (5"”), we obtain the following numerical
solutions:

x1=—17, x2=——11, Xg =
x, = —10, X, = — 6, x;= 0
X, = 4, Xy = 4, Xy = —2.

The reader should also substitute these numbers into (4), (5), and (6) to
show that they are solutions. To summarize, our second example has an
infinite number of solutions, one for each numerical value of x, which is
substituted into equations (4”’) and (5").

Suppose that we modify equation (6) by changing the number on the
right-hand side to 2. Then we have

(7) Xy —2xy — 3x3= 2

(8) Xy, —4x, — 13x; = 14
%) —3x; 4+ 5x, + 4xy = 2.
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If we carry out the same procedure as before and use (7) to eliminate x,
from (8) and (9), we obtain

(7 Xy — 2xy — 3x3 = 2

) —2x, — 10x; = 12

9 —Xy — Sx5= 8.

We divide (8") by —2, the coefficient of x,, obtaining, as before,
Xy + 5x3 = —6. Using this equation to eliminate x, from the other two
equations, we have

(7) X, +0 4+ 7x;=—10

8") Xy 4 5%, = — 6

9") 0= 2

Observe that the last equation is logically false, that is, false for all values
of x,, xy, x3. Because our elimination procedure has led to a false result
we conclude that the equations (7), (8), and (9) have no solution. The student
should always keep in mind that this possibility exists when considering
simultaneous equations.

In the examples above the equations we considered had the same number
of variables as equations. The next example has more variables than
equations and the last has more equations than variables.

Consider the following two equations in three variables:
(10) —4x, + 3x, + 2x3 = =2
(11) 5xy —4x, + x3= 3.

Using the elimination method outlined above, we divide (10) by —4, and
then subtract 5 times the result from (11), obtaining

(107) Xy — X, — I3 =13

(11) —bep + fry =4

Multiplying (11’) by —4 and using it to eliminate x, from (10’), we have
(107) xX;4+0—1lx;=—1

(117) X, — l4x5 = -2,

We can now let x; take on any value whatsoever and solve these equations
for x; and x,. We emphasize this fact by rewriting them as in Example
2 as

(10 x; = 1xg —1
(11) x, = 14x, —2.

The reader should check that these are solutions and also, by choosing
specific values for x;, find numerical solutions to these equations.
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EXAMPLE 5 Let us consider the other possibility suggested by Example 4, namely, the
case in which we have more equations than variables. Consider the following

equations:

(12) —4x; 4+ 3x, =2
(13) Sx; —4x, =0
(14) 2X1 — x2 = a,

where a is an arbitrary number. Using equation (12) to eliminate x, from
the other two we obtain

(12%) Xp = 3xy = -3
(13’) —3x, =3
(14") %x2 =a+ 1.

Next we use (13’) to eliminate x, from the other equations, obtaining

(127) X, +0= -8

(137) Xy = —10

(147) 0=a+6.

These equations remind us of the situation in Example 3, since we shall
be led to a false result unless @ = —6. We see that equations (12), (13),

and (14) have the solution x; = —8 and x, = —10 only if a = —6. If
a # —6, then there is no solution to these equations.

The examples above illustrate all the possibilities that can occur in the
general case. There may be no solutions, exactly one solution, or an infinite
number of solutions to a set of simultaneous equations.

The procedure that we have illustrated above is one that turns any set
of linear equations into an equivalent set of equations from which the
existence of solutions and the solutions can be easily read. A student who
learned other ways of solving linear equations may wonder why we use the
above procedure—one which is not always the quickest way of solving
equations. The answer is that we use it because it always works, that is,
itis a canonical procedure to apply to any set of linear equations. The faster
methods usually work only for equations that have solutions, and even then
may not find all solutions.

The computational process illustrated above is summarized in the flow
diagram of Figure 5. In that diagram the instructions encircled by dotted
lines are either beginning or ending instructions; those enclosed in solid
rectangles are intermediate computational steps; and those enclosed in ovals
ask questions, the answers to which determine which of two paths the
computational process will follow.

The direction of the process is always indicated by arrows. The flow
diagram of Figure 5 can easily be turned into a computer program for
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y
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A
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solution.

to eliminate x; from all the

Yes other equations.

T — —
r_Stop. There are .1| | Stop. The |
| infinitely many | | solution is |

solutions. unique

_____ _ L S

Flow diagram for solving m equations in »n variables.

solving m linear equations in n variables. Students having access to a
computer will find it a useful exercise to write such a program.

Let us return again to the equations of Example 1. Note that the variables,
coefficients, and equals signs are in columns at the beginning of the solution
and are always kept in the same column. It is obvious that the location
of the coefficient is sufficient identification for it and that it is unnecessary
to keep writing the variables. We can start with the format or tableau

1 4 31
(15) 2 5 4 4
1 -3 -2 5
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EXAMPLE 6

EXAMPLE 7

Note that the coefficients of x, are found in the first column, the coefficients
of x, in the second column, of x5 in the third column, and the constants
on the right-hand side of the equation all occur in the fourth column. The
vertical line represents the equals signs in the equations.

The tableau of (15) will be called the detached coefficient tableau for
simultaneous linear equations. We now show how to solve simultaneous
equations using the detached coefficient tableau.

Starting with the tableau of (15) we carry out exactly the same calculations
as in Example 1, which lead to the following series of tableaus:

1 4 3 1
(16) 0 -3 =2 2
0 -7 -5 4
oo ]y
(17) 0 1 3] —3
00 =} | -3
1 0 0 3
(18) 0 1 0 =2
0 0 1 2
From the tableau of (18) we can easily read the answer Xy =3,x, = -2,

and x; = 2, which is the same as before.
The correspondence between the calculations of Example 1 and of the
present example is as follows:

(1), 2), and (3) correspond to  (15).
(1), (27), and (3") correspond to  (16).
(1), (2”), and (3””)  correspond to (17).
(1), (2”"), and (3"”) correspond to (18).

Note that in the tableau form we are always careful to keep zero coefficients
in each column when necessary.

Suppose that we have two sets of simultaneous equations to solve and that
they differ only in their right-hand sides. For instance, suppose we want
to solve

14 3\x\ /1 ~1
(19) 2 5 4{x,|={4| and = 0]
1 =3 =2/\x, 5 2

It is obvious that the calculations on the left-hand side will be the same
regardless of the numbers appearing on the right-hand side. Therefore it
is possible to solve both sets of simultaneous equations at once. We shall
illustrate this in the following series of tableaus:
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1 4 3 1 -1
(20) 2 5 414 O
1 -3 =2 5 2
1 4 3 1 —1
(21) 0 -3 -2 2 2
0 -7 =5 4 3
Lo gy g
(22) o 1 3] -3 -3
0 0 —3|-§ -3
1 0 O 3 0
(23) 0 1 0| -2 —4]|
0 O 1 2 5
We find the answers
x; =3, X, = —2, Xg =2
to the first set of equations and the answers
x; =0, X, = —4, X3=75

to the second set of equations. The reader should check these answers by
substituting into the original equations.

1. Find all solutions to the following simultaneous equations:
@ x;+2x,4+ 3x3= 4

4x, + Sxp + 6x53= -2 [Ans. x; = =7, x, =4, xg3 = 1]
Txy + 8xy, + 27x5 = 10.
(b) —x, + 3x;= 16

2xy 4+ Tx, + 3x3= —6 [Ans. No solution.]
—Xx; + Txy + 12x5 = 41.
() —x, + 3x4 8
2x; + Txy + 3xg3= -3
—xy + Tx, + 12x3 = 21.
[Ans. x; = 3x3 — 8, x, = (13 — 9x;), x5 = any real number.]
2. Find all solutions of the following simultaneous equations:
(a) Xy + 3%, + 3x3= 2
X, 4+ x4+ x53= -2
13x; + 4x, + Tx, 4.
(b) Sx; +3x, — x3= -2
2x; — 2x, +3x3= 3

3x, + x3= 0.
(© 2x;+3x,—x3=0
—4x, + x3=0

8x, — x5 =0.
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3. Rework Examples 2-4 using the detached coefficient tableau.

4. Find all solutions of the following equations using all the detached
coefficient tableau:

@ 2x; 4+ 2x, — x3=—4
—Xy + 2x53 = =2
% + X+ x3= L
(b) 5%y + 3%, + 3x3= 7
—2x; + 4x, + 8x3 = =3
—Xxy + 3x, + 4x3 = 2.
© 3x;,+6x, —x3=-7
Xy + 5x, = 0
2X2 + x; = 14.
5. Find all solutions of the following equations:
@ —x;+ x,— x34+ x,= 13
2x, —6x5+Tx, = 0
—2x; + X, + x3+5x,= —13
3x; —2x, + 2x3+ x, = 26.
(b) Xy + 2x, + 3x3 4+ 4x, =10
2% — x4+ x3— x,= 1
3x; + xo +4x;+ 3x, =11
—2x; + 6x, + 4x45 + 10x, = 18.

6. Solve the following four simultaneous sets whose right-hand sides are
listed under (a), (b), (c), and (d) below. Use the detached coefficient
tableau.

@@ (b) (¢ (d)

3x; +6x, +4x3= —4 2 1 ~1

4x, + 8x, + Sxg = 8§ 2 1 -1

4x, + 3xg = 0 2 1 1.
[Ans. (a) x; = 30, x, = 11, x3 = —40.]

7. Solve the following four sets of simultaneous equations, which differ
only in their right-hand sides:

(@ () (© @

— X, + 2x;= =2 =2 4 1

2xy + Tx, + 3x5 = 4 2 -1 12

—x; + Txy + 1lx53 = 0 4 1 17.
[Ans. (d) x; = x, = x3 = 1]

8. Solve the following four sets of simultaneous equations:

@ () © @
0

Xy + 6xy + x5 = 2 12 _9
—X; = 2x, — 93 = -9 0 12 0
3x, + 3x3 = 0 -9 -9 12

[Ans. (a) x; = 103, x, = 1 x, = —1]



Section 5

10.

11.

12.

13.

14.

Vectors and Matrices 193

A man is ordered by his doctor to take 10 units of vitamin A, 9 units

of vitamin D, and 19 units of vitamin E each day. The man can choose

from three brands of vitamin pills. Brand X contains two units of

vitamin A, three units of vitamin D, and five units of vitamin E; brand

Y has 1, 3, and 4 units, respectively; and brand Z has 1 unit of vitamin

A, 1 of vitamin E, and none of vitamin D.

(a) Find all possible combinations of pills that will provide exactly
the required amounts of vitamins.

(b) If brand X costs I¢ a pill, brand Y 6¢, and brand Z 3¢, is there
a solution costing exactly 15¢ a day?

(¢) What is the least expensive solution? The most expensive?

Show that the equations

4x, —4x, + axz = ¢
3x; — 2xy + bxg =d

always have a solution for all values of @, b, ¢, and d.
Find conditions on a, b, and c in order that the equations

3x,+ 2x, = a
—4x, 4+ x,=0
2x,+ dx, =¢

have a solution.

For what value of the constant k does the following system have a
unique solution? Find the solution in this case. What is the case if
k does not take on this value?

2x +4:= 6
3x+ v+ z= -1
2y — z= -2

X — y+4+kz= =5
[Ans. k = —=2; x = —1, y = 0, z = 2; no solution.]

a
Let x = (x,, xy, X,), let A =| b |, and let d be any number. What can
¢
you say about the truth set of the statement x4 = d in the following
cases:
(@) A#0?
b) A=0,d=0?
(c) A=0,d#£0?
What can you conclude?

1 1

Let P be the matrix P = (i é) and let x = (xy, x,).
i 4

(a) Find all solutions of the equation xP = x.
(b) Choose the solution(s) for which x; + x, = L.
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15.

16.

17.

18.

19.

20.

Let P be the matrix P = , and let x = (xq, Xq, X3).

R e o T
DR Cop=t DOp=
W s O

(a) Find all solutions of the equation xP = x.

(b) Choose the solution(s) for which x; + x, + x; = I.
Xy

Let P be as in Exercise 15, and let x = [ x,|. Redo the exercise, using
X,

the equation Px = x.

Let x be as in Exercise 15, and let 4 be the matrix

2 0 3
01 5/
-3 0 1

(a) Find all solutions of the equation x4 = x.
(b) Choose the solution(s) for which x; + x, + x; = 1.

[Ans. x; =8, x, = —F, x; = &]
(a) Show that the simultaneous linear equations

3x; — 5%y + 3x3=9
4x, +4x, — Tx3; =0

can be interpreted as a single-matrix-times-column-vector equa-
tion of the form

3 -5 3\ (Y 9
(4 4 —7) 2 (0)
X3
(b) Show that any set of simultaneous linear equations may be inter-
preted as a matrix equation of the form Ax = b, where 4 is an
m X n matrix, x is an n-component column vector, and b is an
m-component column vector.
(a) Show that the equations of Exercise 18(a) can be interpreted as
a row-vector-times-matrix equation of the form

3 4
(xp Xo, Xg) -5 4 2(9, O)
3 -7

(b) Show that any set of simultaneous linear equations may be inter-
preted as a matrix equation of the form x4 = b, where A4 is an
m X n matrix, x is an m-component row vector, and b is an
n-component row vector.

(a) Show that the simultaneous linear equations of Exercise 18(a) can
be interpreted as asking for all possible ways of expressing the

column vector ((9)) in terms of the column vectors (i )J (“ Z ) and

()
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Show that any set of linear equations may be interpreted as asking
for all possible ways of expressing a column vector in terms of
given column vectors.

21. Redo Exercise 20, using Exercise 19(a) and row vectors.
22. Consider the following set of simultaneous equations:

(a)
(b)
(c)

X, —Xy=a
X3+ x,=0>
Xog—Xg=¢C
X, +x3=4d.

For what conditions on a, b, ¢, and d will these equations have
a solution?

Give a set of balues for a, b, ¢, and d for which the equations do
not have a solution.

Show that if there is one solution to these equations, then there
are infinitely many solutions.

23.  Which of the following statements are true and which false concerning
the solution of m simultaneous linear equations in » unknowns written
in the form Ax = b?

(a)
(b)
(©)
(d)
(e)
)
(2)

If there are infinitely many solutions, then n > m.

If the solution is unique, then n = m.

If m = n, then the solution is unique.

If n > m, then there cannot be a unique solution.

If b = 0, then there is always at least one solution.

If b = 0, then there are always infinitely many solutions.

If b =0, and x'* and x? are solutions, then x¥ + x'? is also a
solution. [Ans. (d), (e), and (g) are true.]

6 THE INVERSE OF A SQUARE MATRIX

If A is a square matrix and B is another square matrix of the same size
having the property that BA = I (where [ is the identity matrix), then we
say that B is the inverse of A. When it exists, we shall denote the inverse
of A by the symbol A~1. To give a numerical example, let 4 and A™! be
the following:

(D

2)

4.0 5
A=|0 1 -6

30 4

4 0 =5 -
Al=[-18 1 24].

-3 0 4

Then we have

4 0 -5

4 0 1 0 0
A4={-18 1 24|-(0 1 —-6|=|0 1 O|=1L
30 0 0 1

-3 0 4
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If we multiply these matrices in the other order, we also get the identity
matrix; thus

4 0 5 4 0 -5 1 0 0
AA 1 ={0 1 —-6]-1—-18 1 24|={0 1 0)=1
30 4 -3 0 4 0 0 1

In general it can be shown that if 4 is a square matrix with inverse 471,
then the inverse satisfies the equation

A4 =A4"1 = I
Next we show that a square matrix can have only one inverse. For
suppose that in addition to 47! we also have a B such that
BA = 1.
Then we see that

B = Bl = B(AA™1) = (BA)A™ = IA~! = 41,

Finding the inverse of a matrix is analogous to finding the reciprocal of
an ordinary number, but the analogy is not complete. Every nonzero
number has a reciprocal, but there are matrices, not the zero matrix, which
have no inverse. For example, if

= 7)o a=() )
=y T)G)=6 6)=e

From this we shall show that neither 4 nor B can have an inverse. To show

that 4 does not have an inverse, let us assume that 4 had an inverse A~1.
Then

then

B =(A"'4A)B = A Y(AB) = A710 = 0,

contradicting the fact that B # 0. The proof that B cannot have an inverse
1s similar.

Let us now try to calculate the inverse of the matrix 4 in (1). Specifically,
let’s try to calculate the first column of 471, Let

be the desired entries of the first column. Then from the equation 4471 = |
we see that we must solve
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Similarly, to find the second and third columns of A~! we want to solve
the additional sets of equations,

4 0 5\ [x, 0 0
0 1 —-6}{x,|=|1}| and =1{0
30 4/ \x, 0 1

k4

respectively. We thus have three sets of simultaneous equations that differ
only in their right-hand sides. This is exactly the situation described in
Example 7 of the previous section.

To solve them, we start with the tableau

40 5|1 00
3) 01 —610 10
30 4]0 0 1

and carry out the calculations as described in the last section. This gives
rise to the following series of tableaus. In (3) divide the first row by 4, copy
the second row, and subtract 3 times the new first row from the old third
row, which yields the tableau

10 2| 100
(4) 01 —6| 010
00 1]-3 01

Next we multiply the third row of (4) by 4, multiply the new third row by
6 and add to the old second row, and multiply the new third row by § and
subtract from the old first row. We have the final tableau:

1 0 0 4 0 -5
(5) 0O 1 0|—-18 1 24).
0 01| -320 4

We see that the inverse 4~! which is given in (2) appears to the right of
the vertical line in the tableau of (5).

The procedure just illustrated will find the inverse of any square matrix
A, providing A has an inverse. We summarize it as follows:

Rule for Inverting a Matrix Let 4 be a matrix that has an inverse. To
find the inverse of A start with the tableau

(411)

and change it by row transformations (as described in Section 5) into the
tableau

(I| B).

The resulting matrix B is the inverse A of 4.

Even if 4 has no inverse, the procedure just outlined can be started. At
some point in the procedure a tableau will be found that is not of the desired
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EXAMPLE 1

final form and from which it is impossible to change by row transformations
of the kind described.

Show that the matrix

4 0 8

A={0 1 -6

2.0 4

has no inverse.
We set up the initial tableau as follows:

4 0 81 0 O
(6) 01 —-6]{0 1 0
2 0 410 0 1

Carrying out one set of row transformations, we obtain the second tableau
as follows:

(7)

SO -
O — O
I
O ON o
O b
O = O
—_0 O

Bt

It is clear that we cannot proceed further since there is a row of zeros to
the left of the equals sign on the third set of equations. Hence we conclude
that 4 has no inverse.

Because of the form of the final tableau in (7), we see that it is impossible
to solve the equations

4 0 8\ [x, 0
0 1 —6|lx,]=10],
2 0 4/ \x, |

since these equations are inconsistent as is shown by the tests developed
in Section 5. In other words, it is not possible to solve for the third column
of the inverse matrix.

Itis clear that an n X n matrix 4 has an inverse if and only if the following
sets of simultaneous equations—

1 0 0
Ax:o, Ax:¥ , Ax:o
0 0 1

—can all be uniquely solved. And these sets of simultaneous equations,
since they all share the same left-hand sides, can be solved uniquely if and
only if the transformation of the rule for inverting a matrix can be carried
out. Hence we have proved the following theorem.
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Theorem A square matrix A4 has an inverse if and only if the tableau
(A]7)
can be transformed by row transformations into the tableau

(I| A1),

EXAMPLE 2 Let us find the inverse of the matrix

14 3
A=12 5 4]
1 -3 -2
The 1initial tableau is
1 4 311 00
2 5 4]0 10
1 -3 -2/0 0 1
Transforming it by row transformations, we obtain the following series of
tableaus:
l 4 3 1 0 0
0 -3 -2 -2 1 0
0 -7 =5| -1 0 1
L0 4] -3 4 0
0 1 3| 3 -3 0
0 0 3| B -f
1 0 0 2 -1 1
0 1 0 8 -5 2.
0 O 1 {—11 7 =3

The inverse of A is then

2 —1 1
Al = 8 -5 2.
—11 7 -3
The reader should check that 4714 = A4~ ! = 1.

EXAMPLE 3 A cookie recipe requires 4 cups of sugar and 2 cups of flour while a cake
recipe needs 3 cups of sugar and 4 cups of flour. If we have 40 cups of
sugar and 30 cups of flour on hand, how many recipes of each can we
make? In order to answer this question let x be the number of cookie recipes
and y the number of cake recipes to be made. Then the sugar and flour
requirements give rise to the following two equations:

4x + 3y =40 (Sugar equation)
2x + 4y = 30 (Flour equation).
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Let us rewrite these equations in matrix form as
2 A0)-()
2 4/\y/ " \30/
If we can invert the matrix we can solve the problem as
G)=G 76
y 2 4 30/
The initial tableau of the matrix inversion problem is
(4 3|1 O)
2 410 1/
Pivoting on the 4 in the upper left-hand corner gives

1 3] 10
0 34 1)

Finally, pivoting on the 3 term we obtain

(10 —%)
0 1 z)’

and so the inverse of the original matrix appears on the right. The solution
to our problem is, then,

()= D)= ()

y -5 £/\30/ \4/

In other words, we can make 7 batches of cookies and 4 cakes from the
materials we have.

D= S

EXERCISES
1. Compute the inverse of each of the following matrices:
-5 1 10
A:(_‘;’ _;) B=| 9 -2 -17},
—~4 1 8
3010 o C1o
c=(222| p=|% -1 73
11 3 1 0 0 —1 2
0 0 0 1
4 9 1 2 3
[Partialans.A‘I:(' ' ), B1=[-4 0 5}]
2 6
1 1 1
X1
2. Let B and C be the matrices of Exercise 1: let x = X,| and
X3

¥y = (¥, Vo, V3); let a, b, ¢, d, and e be the following vectors:
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4
a= 0], b=1}|-1}, c=(1,5,3),
3

1
d=(1,1,1), and e=1{1}].
1

Uses the inverses computed in Exercise 1 to solve the following equa-
tions:

(a) Bx =a.
(b) yB=d.
(c) Cx=e
(d) Bx =b.
() yB=c.
) yC=c
Show that each of the following matrices fails to have an inverse.
310
4 2
A=t sofs o)
11 3 1
=3 -1 T
c=|\4 3 2], D= :
9 X . o 3 -4 2

2 0 1 -1

For each of the matrices in Exercise 3 find a nonzero vector whose
product with the given matrix is 0.

Solve the following four sets of simultaneous equations by first writing
them in the form Ax = B, where B is a 3 X 4 matrix, and finding the
inverse of A.

(a) (b) (9 (d)

4x, + S5x; = 1 1 0 8
Xy —6x;=2 0 0 1
3x, +4x;=3 O I O

[Ans. (a) x; = —11, x, = 56, x3 =9.]
Let A be a square matrix. Show that if A has no inverse, then neither
do any of its positive powers A¥. Show that if 4 has an inverse, then
the inverse of A2 is (4~1)2. What is the inverse of 43?7 Of A™?
The formula (471)"! = A states that if A has an inverse 471, then 471
itself has an inverse and this inverse is 4. Prove both parts of this
statement.
Expand the formula (4B)"! = B~'47!into a two-part statement anal-
ogous to the one in Exercise 7. Then prove both parts of your state-
ment.
Give a criterion for deciding whether the 2 X 2 matrix (‘; Z) has
an inverse. [Ans. ad # bc.)
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10.

11.

12.

13.

14.

15.

16.

a b

-1
Give a formula for ( d) , When it exists.
c

If (a 3) has an inverse and has integer components, what condition
c

a b

must it fulfill in order that (C J

-1
) have integer components?

Let A be the matrix (g 3)

(a) Use Exercise 10 to find AL

(b) Use the result of (a) to solve the equations Ax = b and A%x = c,

—1 1
wherex:(xl),bz( ), andc:( )
Xy 0 1

(a) Show that (4B)"! # A~1B~!for the matrices 4 = (

a=(75 1)

(b) Find (4B)~! in two ways. [Hint: Use Exercises 10 and 8.]
Solve the following problems by first inverting the matrix involved.
(a) An automobile factory produces two models. The first requires
1 man-hour to paint and § man-hour to polish; the second requires
I man-hour for each process. During each hour that the assembly
line is operating, there are 100 man-hours available for painting
and 80 man-hours for polishing. How many of each model can
be produced each hour if all the man-hours available are to be
utilized?
(b) Suppose each car of the first type requires 10 widgets and 14 shims,
and each car of the second type requires 7 widgets and 10 shims.
The factory can obtain 800 widgets and 1130 shims each hour.
How many cars of each model can it produce while utilizing all
the parts available? [Ans. 45, 50.]
Solve the following problem by first inverting the matrix. (Assume
ad # bc.) 1f a grinding machine is supplied x pounds of meat and
» pounds of scraps (meat scraps and fat) per day, then it will produce
ax + by pounds of ground meat and cx + dy pounds of hamburger
per day. In other words, its production vector is

(¢ 90)
c d/\y/)
What inputs are necessary in order to get 25 pounds of ground meat

and 70 pounds of hamburger? In order to get 20 pounds of ground
meat and 100 pounds of hamburger?

2 =5

] 3)and

A square matrix is lower-triangular if it has zeros on and above its
0 00

main diagonal. For instance, Q =|—1 0 0] is lower-triangular.
4 30
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(a) Compute Q2
() Compute Q3.
(¢) Show that Q¥ = 0 for k > 3.
17. Let Q be as in Exercise 16.
(@ Showthat { — Q)+ Q0+ Q) =1—-Q*=1
(b) Show that, because of (a), I + Q + Q? = — Q).
(¢) Use (b) to compute (I — Q).
(d) Letw = (wy, wy, ws),d = (—1,5,3). Use (c) to solve the equation
w=wQ + d.
18. (a) Show that the sum of any two lower-triangular matrices is lower-
triangular.
(b) Show that the product of any two lower-triangular matrices is
lower-triangular.
19. Let Q be an n X n lower-triangular matrix.
(a) Show that Q¥ =0 for & > n.
() Showthat  — Q) +Q+ --- + Q" H=1—-Q"=1
(¢c) Showthat(/ —Q)'=71+Q+ ---+ Q"L
(d) Show that all entries above the main diagonal of (/ — Q)™!
are 0.
(e) Show that if Q has nonnegative integer entries, then so does
-0y
20. Find (I — Q)7! for each of the following:

(a) (0 0)1

0 0
00 0
® (300
~12 0
0 00 0
S 000
©@ 1 a4 —1 0 o
2 130
0 00 00
3 00 00
@ [ o -1 0 o0 o0}
I 54 00
2 12 =30

7 APPLICATIONS OF MATRIX THEORY
TO MARKOV CHAINS

In this section we shall show applications of matrix theory to Markov chains.
For simplicity we shall confine our discussion to three-state Markov chains,
but a similar procedure will work for any other Markov chain.

In Section 12 of Chapter 3, we noted that to each Markov chain there
was a matrix of transition probabilities. For example, if there are three
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states, a,, d,, and as, then

a, a, a,
ay P11 P12z Pis

P =ay{psy pao Pos
az\Pz1 Pz Pss

Is the transition matrix for the chain. Recall that the row sums of P are
all equal to 1. Such a matrix is called a transition matrix.

Definition A transition matrix is a square matrix with nonnegative entries
such that the sum of the entries in each row is 1.

In order to obtain a Markov chain we must specify how the process starts.
Suppose that the initial state is chosen by a chance device that selects state
a; with probability pi®. We can represent these initial probabilities by means
of the vector p@ = (p?, p¥, pi). As in Exercise 17 of Section 4, we can
construct a tree measure for as many steps of the process as we wish to
consider. Let p{ be the probability that the process will be in state g; after
n steps. Let the vector of these probabilities be p™ = (p\®, pi, pg‘))

Definition A row vector p is called a probability vector if it has nonnegative
components whose sum is 1.

Obviously the vectors p'© and p™ are probability vectors. Also each row
of a transition matrix is a probability vector.

By means of the tree measure it can be shown that these probabilities
satisfy the following equations:

PP = ppy, p‘" 1’p +p )Psp

P = pir oy, +p P2 + P§ Vpss,
P8 =Py P14 PE P2y + PYTVpas.

It is not hard to give intuitive meanings to these equations. The first one,
for example, expresses the fact that the probability of being in state a, after
n steps is the sum of the probabilities of being at each of the three possible
states after n — 1 steps and then moving to state a; on the nth step. The
interpretation of the other equations is similar.

If we recall the definition of the product of a vector times a matrix, we
can write the equations above as

p(n) — p(n—l)P_
If we substitute values of n, we get the equations: p'¥ = pOp; p@ = pWp =
pOPZ p® = p@p = plOP3; and so on. In general, it is evident that

p(n) — p(O)Pn.

Thus we see that, if we multiply the vector p'@ of initial probabilities by
the nth power of the transition matrix P, we obtain the vector p™, whose
components give the probabilities of being in each of the states after n steps.
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In particular, let us choose p'® = (1,0, 0), which is equivalent to letting
the process start in state a,. From the equation above we see that then p®™
is the first row of the matrix P*. Thus the elements of the first row of the
matrix P" give us the probabilities that after n steps the process will be in
a given one of the states, under the assumption that it started in state a,.
In the same way, if we choose p@ = (0, 1, 0), we see that the second row
of P" gives the probabilities that the process will be in one of the various
states after n steps, given that it started in state a,. Similarly the third row
gives these probabilities, assuming that the process started in state a,.

In Section 12 of Chapter 3, we considered special Markov chains that
started in given fixed states. There we arrived at a matrix P whose ith
row gave the probabilities of the process ending in the various states, given
that it started at state @;. By comparing the work that we did there with
what we have just done, we see that the matrix P is merely the nth power
of P, that is, P = P". (Compare Exercise 17 of Section 4.) Matrix multi-
plication thus gives a convenient way of computing the desired probabilities.

Definition The probability vector w is a fixed point of the matrix P, if
w = wpP.

EXAMPLE 1

EXAMPLE 1
(continued)

Consider the transition matrix
33

P = (1 1

2

If w = (.6, .4), then we see that

)_(.667 .333)
~\500 .500/

1

i) = (6,.4) = w,

2

wP = (6, .4)(

Bob—= ol

so that w is the fixed point of the matrix P.

If we had happened to choose the vector w as our initial probability vector
P, we would have had p™ = p@P" = wpPr = w = p® In this case the
probability of being at any particular state is the same at all steps of the
process. Such a process is in equilibrium.

As seen above, in the study of Markov chains we are interested in the
powers of the matrix P. To see what happens to these powers, let us further
consider the example.

Suppose that we compute powers of the matrix P in the example above.
We have

Pe( ) (0B oo

It looks as if the matrix P is approaching the matrix

6 4
w— (0 4).
(5 &)
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and, in fact, it can be shown that this is the case. (When we say that P"
approaches W we mean that each entry in the matrix P* gets close to the
corresponding entry in W.) Note that each row of W is the fixed point w
of the matrix P.

Definition A transition matrix is said to be regular if some power of the
matrix has only positive components.

Thus the matrix in the example is regular, since every entry in it is positive,
so that the first power of the matrix has all positive entries. Other examples
occur in the exercises.

Theorem If P is a regular transition matrix, then

1. the powers P" approach a matrix W;
ii. each row of W is the same probability vector w;
ui. the components of w are positive.

We omit the proof of this theorem;* however, we can prove the next
theorem.

Theorem If P is a regular transition matrix, and W and w are given by
the previous theorem, then

a. 1f p is any probability vector, pP" approaches w;
b. the vector w is the unique fixed-point probability vector of P.

Proof  First let us consider the vector pW. The first column of W has a
w, in each row. Hence in the first component of pW each component of
p is multiplied by w;, and therefore we have w, times the sum of the
components of p, which is w;. Doing the same for the other components,
we note that pW is simply w. But pP" approaches p I¥; hence it approaches
w. Thusif any probability vector is multiplied repeatedly by P, it approaches
the fixed point w. This proves part (a).

Since the powers of P approach W, P"*1 = P"P approaches W, but it also
approaches WP; hence WP = W. Any one row of this matrix equation states
that wP = w; hence w is a fixed point (and by the previous theorem a
probability vector). We must still show that it is unique. Let u be any
probability-vector fixed point of P. By part a of the theorem we know that
uP" approaches w. But since u is a fixed point, uP* = u. Hence u remains
fixed but “approaches” w. This is possible only if # = w. Hence w is the
only probability-vector fixed point. This completes the proof of part b.

*For an elementary proof see John G. Kemeny and J. Laurie Snell, Finite Markov Chains,
Princeton, N.J., Van Nostrand, 1960.
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The following is an important consequence of the above theorem. If we
take as p the vector p'© of initial probabilities, then the vector pP* = p™
gives the probabilities after n steps, and this vector approaches w. Therefore
no matter what the initial probabilities are, if P is regular, then after a large
number of steps the probability that the process is in state a; will be very
nearly w;.

We noted for an independent trials process that if p is the probability
of a given outcome a, then this may be given an alternate interpretation
by means of the law of large numbers: in a long series of experiments the
fraction of outcomes in which a occurs is approximately p, and the approxi-
mation gets better and better as the number of experiments increases. For
a regular Markov chain the components of the vector w play the analogous
role. That is, the fraction of times that the chain is in state a; approaches
w;, no matter how one starts.

Let us take p'® = (.1,.9) and see how p'” changes. Using P as in the example
above, we have that p'V = (5167, 4833), p® = (.5861, 4139), and p® =
(.5977, .4023). Recalling that w = (.6, 4), we see that these vectors do
approach w.

As an example let us derive the formulas for the fixed point of a 2 X 2
transition matrix with positive components. Such a matrix is of the form

Il —a a
P =
( b 11— b)’
where 0 < a <1 and 0 < b < 1. Since P is regular, it has a unique proba-

bility-vector fixed point w = (w,, w,). Its components must satisfy the
equations

wi(l —a) + wydb = wy,
wia + wo(l — b) = w,.

Each of these equations reduces to the single equation w,a = wyb. This
single equation has an infinite number of solutions. However, since w is
a probability vector, we must also have w; + w, = 1, and the new equation
gives the point [b/(a + b), a/(a + b)] as the unique fixed-point probability
vector of P.

Suppose that the President of the United States tells person A his intention
either to run or not to run in the next election. Then A relays the news
to B, who in turn relays the message to C, and so on, always to some new
person. Assume that there is a probability p > 0 that any one person, when
he gets the message, will reverse it before passing it on to the next person.
What is the probability that the nth man to hear the message will be told
that the President will run? We can consider this as a two-state Markov
chain, with states indicated by “yes” and “no.” The process is in state “yes”
at time n if the nth person to receive the message was told that the President
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EXAMPLE 4

would run. It is in state “no” if he was told that the President would not
run. The matrix P of transition probabilities is then

yes no
yes (1 -p P
no\ p 1 — p)'
Then the matrix P* gives the probabilities that the nth man is given a certain
answer, assuming that the President said “yes” (first row) or assuming that
the President said “no” (second row). We know that these rows approach
w. From the formulas of the last example, we find that w = (3,1). Hence
the probabilities for the nth man’s being told “yes” or “no” approach 3
independently of the initial decision of the President. For a large number
of people, we can expect that approximately one-half will be told that the
President will run and the other half that he will not, independently of the
actual decision of the President.

Suppose now that the probability a that a person will change the news
from “yes” to “no” when transmitting it to the next person is different from
the probability b that he will change it from “no” to “yes.” Then the matrix
of transition probabilities becomes

yes no
yes (1 —a a )
no b 1 -5/

In this case w = [b/(a + b), a/(a + b)]. Thus there is a probability of
approximately b/(a + b) that the nth person will be told that the President
will run. Assuming that 7 is large, this probability is independent of the
actual decision of the president. For n large we can expect, in this case,
that a proportion approximately equal to b/(a + b) will have been told that
the President will run, and a proportion a/(a + b) will have been told that
he will not run. The important thing to note is that, from the assumptions
we have made, it follows that it is not the President but the people themselves
who determine the probability that a person will be told “yes” or “no,” and

the proportion of people in the long run that are given one of these predic-
tions.

For this example, we continue the study of Example 2 in Chapter 3, Section
12. The first approximation treated in that example leads to a two-state
Markov chain, and the results are similar to those obtained in Example 1
above. The second approximation led to a four-state Markov chain with
transition probabilities given by the matrix

RR DR RD DD

RR /1 —a 0 a 0
DR b 0 1 -5

RD 0 I —¢ 0 ¢
DD 0 d 0 1 —-4d
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If a, b, c, and d are all different from O or 1, then the square of the matrix
has no zeros, and hence the matrix is regular. The fixed probability vector
is found in the usual way (see Exercise 18) and is

( bd ad ad ca )
bd + 2ad + ca’ bd + 2ad + ca’ bd + 2ad + ca’ bd + 2ad + cal’

Note that the probability of being in state RD after a large number of
steps is equal to the probability of being in state DR. This shows that in
equilibrium a change from R to D must have the same probability as a
change from D to R.

From the fixed vector we can find the probability of being in state R in
the far future. This is found by adding the probability of being in state
RR and DR, giving

bd + ad
bd + 2ad + ca’

Notice that, to find the probability of being in state R on the election
preceding some election far in the future, we should add the probabilities
of being in states RR and RD. That we get the same result corresponds
to the fact that predictions far in the future are essentially independent of
the particular period being predicted. In other words, the process is acting
as 1f it were in equilibrium.

1. Which of the following matrices are regular?

@ (¢ 2)

2 2

(b) (2 ;) [Ans. Regular.]
i 4

o ()
303
1 4

(d) (D 3)- [Ans. Regular.]
1 0
.

© (0 1)'
0 1

® (1 0). [Ans. Not regular.]
K

® [0 3 3
1011
303 3
Lo

) [0 1 O [4ns. Not regular.]
0 3 ¢
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2. Show that the 2 X 2 matrix

l —a a
P =
(5707
is the regular transition matrix if and only if either

. 0<a<l1l and 0<Hb<LI1; or
. 0<a<l and 0<H <1

3. Let P be a transition matrix in which all the entries that are not zero
have been replaced by x’s. Devise a method of raising such a matrix
to powers in order to check for regularity. Illustrate your method by
showing that

010
P=|0 0O 1
} 40

is regular.
4. Use the method developed in Exercise 3 to test the following matrix
for regularity:

~

‘,

—
-

~
il

OO O —O

ke O ok © O

O O O8

e Qo © ©

O -~ O O

5. (a) Give a probability theory interpretation to the condition of regu-
larity.

(b) Consider a Markov chain such that it is possible to go from any
state g; to any state a; and such that p, is not O for at least one
state a,. Prove that the chain is regular. [Hint: Consider the times
that it is possible to go from a; to g; via g;.]

6. Find the fixed point for the matrix in Exercise 2 for each of the cases
listed there. [Hint: Most of the cases were covered in the text above.]
7. Find the fixed point w for each of the following regular matrices:

1 2

@ |(: i). [Ans. 3, 4]
6 6
37 .63

®) 63 .37)'

ookt ool
~—

~_~
=8
~

[4ns. 3,4,3)]

~
()
e’
——— e — — —
O ok bop= 00k 00kw
W= LoD W
we O ks
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11.

12,

13.

14.
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o ()

Let p° = (,4) and compute p'?, p@, and p'? for the matrices in Exer-
cises 7(a), (b), and (c). Do they approach the fixed points of these
matrices?

Consider the two-state Markov chain with transition matrix

Oh—= =t

4 dq
_ a0 1 )
F= a2< 1 0/
What is the probability that after n steps the process is in state aj,
if it started in state a,? Does this probability become independent of
the initial position for large n? If not, the theorem of this section must
not apply. Why? Does the matrix have a unique fixed-point proba-

bility vector?
Compute the first five powers of the matrix
a3

F= (.3 vl )
From these, guess the fixed-point vector w. Check by computing what
W Is.
Prove that, if a regular 3 X 3 transition matrix has the property that
its column sums are 1, its fixed-point probability vector is (3, 3, 4). State
a similar result for n X n transition matrices having column sums equal
to 1.
The Land of Oz is blessed by many things, but not good weather.
They never have two nice days in a row. If they have a nice day they
are just as likely to have snow as rain the next day. If they have snow
(or rain), they have an even chance of having the same the next day.
If there is a change from snow or rain, only half of the time is this
a change to a nice day. Set up a three-state Markov chain to describe
this situation. Find the long-range probability for rain, for snow, and
for a nice day. What fraction of the days does it rain in the Land
of Oz? [Ans. The probabilities are: nice, &; rain, £; snow, £]
A professor tries not to be late for class too often. If he is late one
day, he 1s 95 percent sure to be on time next time. If he is on time,
then the next day there is a 25 percent chance of his being late. In

the long run, how often is he late for class?
Consider the three-state Markov chain with transition matrix

1 1 1
4 2 4
p=[z 2 0]
100

(a) Show that the matrix has a unique fixed probability vector.
[Ans. 3,4, 3).]
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15.

16.

17.

18.

19.

20.

(b) Approximately what is the entry in the third column of the first
row of P100?

() What is the interpretation of the entry estimated in (b)?
A carnival man moves a pea among three shells, A, B, and C. When-
ever the pea is under A, he moves it with equal probability to A or
B. When it is under B, he is sure to move it to C. When it is under
C, he is sure to put it next time under C or B, but is twice as likely
to put it under C as B.
Set up a Markov chain taking as states the letters of the shells under
which the pea appears after a move. Give the matrix of transition
probabilities. Assume that the pea is initially under shell A. Which
of the following statements are logically true?
(a) After the first move, the pea is under A or B.
(b) After the second move, the pea is under shell B or C.
(c) If the pea appears under B, it will eventually appear under A
again if the process goes on long enough.
(d) If the pea appears under C, it will not appear under A again.

[Ans. (a) and (d) are logically true.]
In Exercise 15, assume that when the pea is under C, the carnival man
is sure to put it next time under C or A, but twice as likely to put
it under C as A. If you arrive on the scene after he has been playing
for a long time, and bet even money that next time it will turn up
under a certain shell, which shell should you bet on,
(a) Given that you have not seen the previous play?
(b) Given that the last time the pea was under A?
Which of the above bets would be fair?
Let P be the matrix

1 0
P = (l 1)'
2 32

Compute the unique probability-vector fixed point of P, and use your
result to prove that P is not regular.

Show that the vector given in Example 4 is the fixed vector of the
transition matrix.

Show that the matrix

1 00
p={} 0 1
0 0 1

has more than one probability-vector fixed point. Find the matrix that
P" approaches, and show that it is not a matrix all of whose rows are
the same.

A businessman goes to a convention in Chicago once a year. While
there, he stays at one of four hotels. Two of them, hotels 1 and 2,
are expensive. The other two are very expensive. Assuming that he
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22,

23.

24,
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goes to a given hotel one year, the hotel he goes to the next year is
determined by the following matrix of probabilities:

1 2 3 4
1/ 0 3 0
202 0 2 0
3lo 1 0 3
4\0 1 0 %

(@) If he stays at hotel 1 one year, what is the probability that he
stays in very expensive hotels for at least two of the next three
conventions?

(b) Find the long-run probabilities for staying in each of the hotels.

For Exercise 20, compute the following:

(a) Given that in 1970 and 1973 he stayed in hotel 1, what is the
probability that he stayed in a very expensive hotel during either
1971 or 19727

(b) If in 1970 he stayed in hotel 1 and in 1972 he was in a very
expensive hotel, what is the probability that in 1973 he stayed
in an expensive hotel? [Ans. 15.]

A professor has three pet questions, one of which occurs on every test

he gives. The students know his habits well. He never uses the same

question twice in a row. If he used question 1 last time, he tosses a

coin, and uses question 2 if a head comes up. If he used question 2,

he tosses two coins and switches to question 3 if at least one comes

up heads. If he used question 3, he tosses three coins and switches
to question 1 if at least one comes up heads. In the long run, which
question does he use most often and how frequently is it used?

In some cases it makes sense to form a new Markov chain from an

old one by condensing two or more states into one.

(a) Show that this can be done for the Land of Oz example (Exercise
12), using as the two new states nice and bad (rain or snow). Set
up the matrix of transition probabilities and compute the fixed
vector. [Partial ans. (4, %).]

(b) Compare the fixed vector obtained in part (a) to that obtained
in Exercise 12.

(c) Would it make sense to condense states in the hotel example
(Exercise 20), using as new states expensive (1 or 2) and very
expensive (3 or 4)? Explain your answer. [Partial ans. No.]

A certain company decides each year to add a new workers to its

payroll, to remove b workers from its payroll, or to leave its workforce

unchanged. There is probability § that the action taken in the given
year will be the same as the action taken in the previous year. The
president of the company has ruled that they should never fire workers
the year after they added some, and that they should never hire workers
the year after they fired some. Moreover, if no workers were added
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or fired in the previous year, the company is twice as likely to add

workers as to fire them.

(a) Set up the problem as a Markov chain with three states.

(b) Show that it is regular.

(¢) Find the long-run probability of each type of action.

(d) For what values of a and b will the company tend to increase
in size? To decrease? To stay the same?

[Ans. (d)a > b/2; a < b/2; a=b/2.]

8 ABSORBING MARKOV CHAINS

In this section we shall consider a kind of Markov chain quite different from
regular chains.

Definition A state in a Markov chain is an absorbing state if it is impossible
to leave it. A Markov chain is absorbing if (1) it has at least one absorbing
state, and (2) from every state it is possible to go to an absorbing state (not
necessarily in one step).

EXAMPLE 1

A particle moves on a line; each time it moves one unit to the right with
probability 4, or one unit to the left. We introduce barriers so that if it ever
reaches one of these barriers it stays there. As a simple example, let the
states be 0,1,2,3,4. States 0 and 4 are absorbing states. The transition
matrix is then

01 23 4
0/l 0 0 0 0
I[ 0100

P=2/0 3 0 1 o}
310 0 4 0 1
4\0 0 0 0 1

The states 1,2, 3 are all nonabsorbing states, and from any of these it is
possible to reach the absorbing states 0 and 4. Hence the chain is an
absorbing chain. Such a process is usually called a random walk.

When a process reaches an absorbing state we shall say that it is absorbed.

Theorem In an absorbing Markov chain the probability that the process
will be absorbed is 1.

We shall indicate only the basic idea of the proof of the theorem. From
each nonabsorbing state g; it is possible to reach an absorbing state. Let
n; be the minimum number of steps required to reach an absorbing state,
starting from state a;. Let p; be the probability that, starting from state a;,
the process will not reach an absorbing state in n; steps. Then p; <'1. Let
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n be the largest of the ; and let p be the largest of the p;. The probability
of not being absorbed in n steps is less than p, in 2n steps is less than p?,
and so on. Since p < 1, these probabilities tend to zero.

For an absorbing Markov chain we consider three interesting questions:
(a) What is the probability that the process will end up in a given absorbing
state? (b) On the average, how long will it take for the process to be
absorbed? (c) On the average, how many times will the process be in each
nonabsorbing state? The answer to all these questions depends, in general,
on the state from which the process starts.

Consider then an arbitrary absorbing Markov chain. Let us renumber
the states so that the absorbing states come first. If there are r absorbing
states and s nonabsorbing states, the transition matrix will have the following
canonical (or standard) form.

r states § states

I PZr( I | o )
s R ‘ 0 '

Here [ is an r-by-r identity matrix, O is an r-by-s zero matrix, R is an s-by-r
matrix, and Q is an s-by-s matrix. The first r states are absorbing and the
last s states are nonabsorbing.

In Section 7 we saw that the entries of the matrix P" gave the probabilities
of being in the various states starting from the various states. It is easy
to show that P” is of the form

@) r=(!5)

where the asterisk stands for the s-by-r matrix in the lower left-hand corner
of P", which we do not compute here. The form of P shows that the entries
of Q" give the probabilities for being in each of the nonabsorbing states
after n steps for each possible nonabsorbing starting state. (After zero steps
the process must be in the same nonabsorbing state in which it started.
Hence Q° = I.) By our first theorem, the probability of being in the non-
absorbing states after n steps approaches zero. Thus every entry of Q" must
approach zero as n approaches infinity; that is, Q" — 0.
Consider then the infinite series

I+Q0+Q°+0Q3+....

Suppose that Q were a nonnegative number x instead of a nonnegative
matrix. To correspond to the fact that Q" — O we take x to be less than
1. Then

l+x4+x24+...=(1—-x)L

It can be proved that the matrix series behaves in exactly the same way.
That is,

I+0+0°+...=(I-0)L
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The matrix (I — Q)~! will be called the fundamental matrix for the given
absorbing chain. It has the following important interpretation:

Let n;; be the mean number of times that the chain is in state g if it
starts in state @;, for nonabsorbing states a; and a;. Let N be the matrix
whose components are n;;. We shall show that N = (I — O) 1. If we take
into account the contribution of the original state (which is 1 if i =
and 0 otherwise), we may write the equation

ij — Gij i,r+1"r41,5 i,r+2"r+2,j v t,r+8"'r+s,i/0
ny = dy; + (i r1? + Pi ot + + Pirrslris i)

where d;; is 1 if i = j and O otherwise. (Note that the sum in parentheses
is merely the sum of the products p;,n; for k running over the nonabsorbing
states.) This equation may be written in matrix form:

N =1+ QN

Then (/ — Q)N = I, and hence N = (/ — Q)7%, as was to be shown. Thus
we have found a probabilistic interpretation for our fundamental matrix;
its i, j entry is the mean number of times that the chain is in state g; if
it starts at a;. The fact that N =1 + Q + Q% + ... also has a probabilistic
interpretation. Since the i, j entry of Q" is the probability of being in g
on the nth step if we start at a;, we have shown that the mean of the number
of times in state a; may be written as the sum of the probabilities of being
there on particular steps. Thus we have answered question (c) as follows:

Theorem Let N = (I — Q)7 ! be the fundamental matrix for an absorbing
chain. Then the entries of N give the mean number of times in each
nonabsorbing state for each possible nonabsorbing starting state.

EXAMPLE 1
(continued)

In Example 1 the transition matrix in canonical form is

0 4]1 2 3
0o/1 0]0 0 O
440 110 0 O
111 0{0 } 0]
210 011 0 4
3\0 {10 1 O
From this we see that the matrix Q is
0 4 0
0=(1 0 }
0 3 0
and
1 -3 0
1-0=|-4 1 -
0 -1 1
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Computing (I — Q)71, we find

1 2 3
13 1 3
N=(-0yt=2|1 2 1}.
3\ 1 3

Thus, starting at state 2, the mean number of times in state 1 before
absorption is 1, in state 2 it is 2, and in state 3 it 1s 1.

We next answer question (b). If we add all the entries in a row, we shall
have the mean number of times in any of the nonabsorbing states for a
given starting state—that is, the mean time required before being absorbed.
This may be described as follows:

Theorem Consider an absorbing Markov chain with s nonabsorbing states.
Let ¢ be an s-component column vector with all entries 1. Then the vector
¢ = Nc has as components the mean number of steps before being absorbed
for each possible nonabsorbing starting state.

EXAMPLE 1
(continued)

For Example 1 we have

1 2 3
L3 1 )\
r=Ne=2[1 2 1|[1
3\ 1 g\
13
:24.
313

Thus the mean number of steps to absorption starting at state 1 is 3,
starting at state 2 it is 4, and starting at state 3 it is again 3. Since the process
necessarily moves to 1 or 3 from 2, it is clear that it requires one more step
starting from 2 than from 1 or 3.

We now consider question (a). That is, what is the probability that an
absorbing chain will end up in a particular absorbing state? It is clear that
this probability will depend upon the starting state and be interesting only
for the case of a nonabsorbing starting state. We write as usual our matrix

in the canonical form
I 0]
P =
R o /)

Theorem Let b;; be the probability that an absorbing chain will be absorbed

in state g; if it starts in the nonabsorbing state ;. Let B be the matrix with
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entries b;;. Then

B = NR,

where N is the fundamental matrix and R is as in the canonical form.

EXAMPLE 1
(continued)

Proof Let a; be a nonabsorbing state and a; be an absorbing state. If we
compute b;; in terms of the possibilities on the outcome of the first step,
we have the equation

bi; = pi; + Zpikbkj’
k

where the summation is carried out over all nonabsorbing states ;. Writing
this in matrix form gives

B=R+ OB
(I— Q)B=R
‘and hence B=({—- Q)R = NR.

In the random-walk example we found that

31 3
2 2
N=|1 1
11 4
2 2

From the canonical form we find that

10

R=|0 0}

0 3

Hence

313\ 0
B=NR=j}1 2 1}j0 O
3 1 3/\0 4

Vi

=2{% 3|

311 2

Thus, for instance, starting from a,, there is probability § of absorption
in a, and } for absorption in a,.

Let us summarize our results. We have shown that the answers to ques-
tions (a), (b), and (c) can all be given in terms of the fundamental matrix
N = (I — Q)L The matrix N itself gives us the mean number of times in
each state before absorption depending upon the starting state. The column
vector ¢ = Nc gives us the mean number of steps before absorption, de-
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pending upon the starting state. The matrix B = NR gives us the probability
of absorption in each of the absorbing states, depending upon the starting
state.

EXERCISES
1. Which of the following transition matrices are from absorbing chains?

1 2
{3 3
(a) P_<O 1).
50 )
) P=|0 1 0}
oy
1 0 0 0O
1 0 0 00O
¢ P=|0 0 & 3 0O} [Ans. Absorbing.]
0 0 0 0 1
0 2 0 4 0
1 0 0 O
o & 1 0
@ P=[;, 5 3 4]
10 10 10 10
0O 0 0 1
10 0 1%
01 0 0
© P=lg o0 1 0ol
104}
2. Consider the three-state transition matrix
1 0 O
P=\a JZ- b ).
c 0 d

For what choices of @, b, ¢, and d do we not obtain an absorbing chain?

3. In the random-walk example (Example 1) of the present section,
assume that the probability of a step to the right is § and a step to
the left is 3 Find N, ¢, and B. Compare these with the results for
probability 4 for a step to the right and 4 to the left.

4. In the hotel example of Exercise 20, Section 7, let us assume that the
man is so impressed with the service at hotel 2 that, once he goes there,
he refuses to go to any of the other hotels again. This gives

1 2 3 4
1 /1030
2 [0 100
3lo 104
4\0 1 0 2
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(a) Find the fundamental matrix N, and also 7 and B. What is the
interpretation of these quantities?
(b) Given that in 1970 and 1973 he stayed in hotel 1, what is the

probability that he stayed in a very expensive hotel during either
1971 or 19727

5. A rat is put into the maze of the figure below. Each time period, it

6.

chooses at random one of the doors in the compartment it is in and
moves into another compartment.

-t
—

A —
PN

| ~ 1

(a) Set up the process as a Markov chain (with states being the

compartments) and identify it. [4ns. Regular.]
() In the long run, what fraction of his time will the rat spend in
compartment 2? [Ans. 2]

(c) What is the relation between the number of entrances to a given
compartment and the fraction of the time the rat will spend in
that compartment?

(d) Make compartment 4 into an absorbing state by assuming the
rat will stay in it once it reaches it. Set up the new process, and
identify it as a kind of Markov chain. [Ans. Absorbing.]

(e) In part (d), if the rat starts in compartment 2, how many steps
will it take him, on the average, to reach compartment 4?

An analysis of a recent hockey game between Dartmouth and Princeton

showed the following facts: If the puck was in the center (C) the

probabilities that it next entered Princeton territory (£) or Dartmouth

territory (D) were .4 and .6, respectively. From D it went back to C

with probability .95 or into the Dartmouth goal (D) with probability

.05 (Princeton scores one point). From P it next went to C with

probability .9 and to Princeton’s goal (P) with probability .1 (Dart-

mouth scores one point). Assuming that the puck begins in C after
each point, find the transition matrix of this five-state Markov chain.

Calculate the probability that Dartmouth will score. [Ans. 4.]

The following is an alternative method of finding the probability of

absorption in a particular state, say a;. Find the column vector d such

that the jth component of d is 1, all other components corresponding
to absorbing states are 0, and Pd = d. There is only one such vector.

Component d; is the probability of absorption in g; if the process starts
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in a;. Use this method to find the probability of absorption in state
0 in the random-walk example given in this section.

The following is an alternative method for finding the mean number
of steps to absorption. Let ¢; be the mean number of steps to absorption
starting at state g;. This must be the same as taking one more step
and then adding p;;t; for every nonabsorbing state a;.

(a) Give reasons for the claim above that

n=1+ 2 pity,
i

where the summation is over the nonabsorbing states.
(b) Solve for ¢ for the random-walk example.
(c) Verify that the solution agrees with that found in the text.
A man is in jail and needs $400 for bail. Once he is out, he can recover
his million-dollar loot. In jail he can make a sequence of bets in which,
if he bets X dollars, he wins X dollars with probability  and loses X
dollars with probability 4. He can bet any amount he wishes as long
as he can pay if he loses. He has $100. He decides to try the bold
strategy of betting as much as he has each time or at least enough
to get his $400—that is, to bet $100 if he has $100, $200 if he has $200,
and $100 if he has $300. To assess his chances of getting out now,
he sets up the transition matrix:

0 400 100 200 300
0 I 0 0 0 0
p_d00 [0 1 0 0 0 _( 1 0)
00| 2 0 0 1 o |V rRIQ)
200 \ ¢ 4 0 0 0
300 \0 3 0 2 0

(a) Find the matrix N = (I — Q)L
(b) Find the expected number of bets that he will make under this

bold strategy. [4ns. 4]
(c) Find the probability that he will get his bail money under this
strategy.

(d) Repeat parts (a), (b), and (c) assuming that he uses a more timid
strategy of betting $100 each time. Which strategy provides a
longer expected game? Which strategy gives him the better chance
of recovering his loot?

A number is chosen at random from the integers 1,2,3,4,5. If x is

chosen, then another number is chosen from the set of integers less

than or equal to x. This process is continued until the number 1 is
chosen. Form a Markov chain by taking as states the largest number
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11.

12.

13.

14.

15.

that can be chosen. Show that

23 45
2{1 0 0 0
N=3[1 3 0 0\+1,
4lt 1 1 0
S\ % %

where I is the 4 X 4 identity matrix. What is the mean number of
draws? [Ans. 31
Using the result of Exercise 10, make a conjecture for the form of the
fundamental matrix if we start with integers from 1 to n. What would
the mean number of draws be if we started with numbers from 1 to
10?
Peter and Paul are matching pennies, and each player flips his (fair)
coin before revealing it. They initially have four pennies between them
and the game ends whenever one of them has all the pennies. Let
the states be labeled with the number of pennies that Peter has.
(a) Write the transition matrix.
(b) What kind of a Markov chain is it?
(c¢) If Peter initially has two pennies, what is the probability that he
will win the game?
A certain college which is trying to pass several liberal measures is
plagued by the problem of conservative alumni. It is determined that
if an alumnus votes for a liberal pol'\cy, he will with probability 2 vote
in favor of the next policy and will with probability § turn conservative.
Once he turns conservative he will continue to vote against all liberal
policies. Assume there are 20,000 alumni, 4000 of whom voted con-
servatively before the college starts trying to pass these measures. If
all the alumni vote and if 12,000 opposing votes are needed to defeat
a policy which the college 1s trying to pass, how many of its new liberal
policies can the college expect to pass?
Three tanks fight a three-way duel. Tank A has probability § of
destroying the tank it fires at. Tank B has probability 4 of destroying
its target tank, and tank C has probability } of destroying its target
tank. The tanks fire together and each tank fires at the strongest
opponent not yet destroyed. Form a Markov chain by taking as state
the tanks which survive any one round. Find N, ¢, B, and interpret
your results.
Consider the following model. A man buys a store. The profits of the
store vary from month to month. For simplicity we assume that he
earns either $5000 or $2000 a month (“high” or “low”). The man may
sell his store at any time; there is a 10 percent chance of his selling
during a high-profit month and a 40 percent chance during a low-profit
month. If he does not sell, with probability % the profits will be the
same the next month, and with probability 4 they will change.



Section 8

Vectors and Matrices 223

(a) Set up the transition matrix.

Sell {1 0 O
[Ans. High (& 2 &1
Low \3 1 3

(b) Compute N, Nc, and NR and interpret each.
(c) Letf= (;888) and compute the vector g = Nf.

[A _ (20,000) ]
-8 =\10,000/
(d) Show that the components of g have the following interpretation:

g is the expected amount that he will gain before selling, given
that he started in state i.
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INTRODUCTION

Modern high-speed computers have made all forms of computation vastly
easier. Calculations that used to take several days to complete can now be
carried out in a few seconds. The availability of a modern computer can
take a great deal of drudgery out of mathematical computations and makes
possible large-scale computations that would otherwise be impossible. This
is particularly true in the area of finite mathematics, since each of the
branches of mathematics introduced in this book is well suited to computer
applications.

It is the purpose of this chapter to give a first introduction to the use
of high-speed computers. A computer is an electronic device designed to
carry out arithmetical operations and to follow a long list of instructions
as to what calculations should be carried out. A computer does no more
and no less than a human user instructs it to do; however, it can carry out
tasks at tremendous speed and with great accuracy. The key to the use of
a computer is learning how to write a set of instructions. Such a set of
instructions is called a program, and the art of writing such instructions is
known as programming. This chapter will give a number of examples of
programs for high-speed computers designed to carry out calculations in
finite mathematics. Although only elementary programming techniques will
be illustrated, they will be sufficient to carry out many significant mathe-
matical tasks.

The chapter is written so that it may profitably be studied without having
a computer available. However, being able to try out examples on a com-
puter will significantly improve the learning experience. Each section will
include many exercises that do not require the use of the computer and
also some exercises that must be completed on a computer.

225
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In order to communicate with a human being, it is necessary to understand
the language he speaks. Similarly, a user must learn a suitable language
for communicating with a computer. Fortunately, there are several easily
learned languages that most computers “speak.” One language widely used,
particularly in educational uses, is BASIC. The present chapter provides
a brief introduction to the language BASIC. The reader interested in more
sophisticated applications, including many further applications to finite
mathematics, is referred to the book Basic Programming, which is listed in
the suggested readings at the end of the chapter.

Since the language BASIC is almost self-explanatory, it is simplest to learn
it by looking at some actual programs. The program EXAMPLE1 is designed
to compute several factorials—specifically, 4!,6!, and 10'. The program
consists of five lines, each of which contains one instruction for the com-
puter. It will be noted that each line starts with a line number. These
numbers are required in BASIC to make it easy to enter corrections to a
given program. For example, if a user wishes to correct a given line, he
simply retypes that line with the same line number and the correction is
automatically made by the computer. Or, if it is desired to insert a line
between, say, lines 20 and 30, one may type the new instruction with any
number between 20 and 30 and a correction is automatically made. Thus
it 1s good practice to choose line numbers with gaps between them (for
example, multiples of 10) to allow for the insertion of additional instructions.
An additional use of line numbers will be explained in the next section.

Most of the variables in this chapter are represented by capital letters,
since many computer terminals print only capitals.

Look now at EXAMPLE1. Line 10 in EXAMPLE1 instructs the computer
to compute 4!, i.e, 1 X 2 X 3 X 4. To avoid the ambiguity between the
dot as a multiplication sign and as a decimal point, BASIC uses an asterisk
(*) to indicate multiplication. Specifically, the LET command in line 10 tells
the machine to compute 1 X 2 X 3 X 4 and to call the answer “X.”) Thus
after the computer has carried out the instruction in line 10, X will equal
24. This quantity may now be used in the rest of the program. In line 20
the computer is asked to take X and multiply it by 5 and then by 6, and
to call the result Y. Thus Y will equal 6! or 720. Similarly, on line 30 the
previous result is multiplied by 7, 8, 9, and 10, thus obtaining 10!, and calling
the result Z. The instruction LET is designed to carry out a wide variety
of computations. The format for the LET command is always to put on
the right-hand side of the equals sign the computation that is to be carried
out and to indicate the name of the result on the left-hand side of the equals
sign.

Computations are useless unless the user can see the result. In a long
program there are many partial results that are of no interest to the user
and that would take too long to be typed, so that we don’t want to print
every result. Therefore there is an instruction in BASIC called PRINT which
tells the computer to print or type only the desired results. Line 40 instructs
the computer to type out X, Y, and Z. It is up to the programmer to
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EXAMPLEL
18 LET X = 1x2x3x4
29 LET Y = Xx5x%6

330 LET 2 = Yx7*x8x9x%x]13Q
42 PRINT X,Y,2

58 END

READY

BUN

EXAMPLEL
24 720 36288229

d.262 S5EC.
READY

remember that the results stand for 4!, 6!, and 10!, respectively. The final
instruction, in line 50, is END. In all programs the last instruction must
be an END statement. This line both indicates the physical end of the
program and tells the computer to stop.

Immediately after the program we show the results that are printed as
the program is executed or “RUN.” Three numbers are printed which are
the desired results. It is important to note that the computations took only
a small fraction of a second.*

Many interesting and useful programs can be written with the minimal
vocabulary of LET, PRINT, and END. A more sophisticated example is
shown in EXAMPLE2. Line 10 carries out a subtraction and an addition.
Line 20 shows one decimal fraction being divided by the sum of two other
decimal fractions. Note that parentheses are inserted as usual. Line 30
requires an additional word of explanation. One usually communicates with
a computer through a typewriterlike terminal device, and this imposes
certain limitations on the way formulas are typed. Specifically, each formula
must be contained on a single line. This was already illustrated by the form
of division on line 20. Since it is not possible to type an exponent on a
higher line, an upward arrow (1) is used to indicate an exponent. Thus line
30 asks the computer to raise the number 2.15 to the sixth power and to
let the answer be Z.

Line 40 illustrates some additional options available for the PRINT
instruction. In EXAMPLE1 a comma (,) separated the variables, which is
the signal to BASIC to line up the answers in predetermined columns (also
called fields), normally up to five columns per line. If one is not interested

*The reader will note that in the computer output zeros appear as ‘@’. This is done to
distinguish the number zero from the letter ‘O’. Unfortunately, different conventions for this
are used on different computer terminals.
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Bl CXAMPLE?

EXERCISES

19 LET X = 397-128+511
28 LET Y = +57/(.23+.82)
38 LET Z = 2.1516

44 PRINT X3VY3iZ:;2xX3YxZ
5@ END

READY

RUN

EXAMPLE2

780 04542857 98.7713 1562 53.56187

B.859 SEC.
READY

in a special format but would simply like to have answers printed one after
the other, the answers are separated by semicolons (;), as shown in EXAM-
PLE2. This example also shows that computation instructions may take
place within a PRINT statement. In addition to printing X, Y, and Z, we "
have also asked the computer to PRINT 2+X and Y*Z. Recall that an
asterisk (*) is used to denote multiplication to the computer. The results
are again shown.

These examples illustrate the fact that once the user masters a simple
language for entering requests to the computer, all the hard work can be
left to the machine. One of the nice features of modern computers is the
fact that one can become quite expert in their use without necessarily having
any understanding of how computers work. This is similar to the fact that
millions of people use telephones and drive automobiles without having any
understanding of the nature of telephone-switching networks or of automo-
bile engines. That is why in this chapter we are concentrating entirely on
the art of programming and not on the operation of computers. The
following sections will introduce, step by step, some more powerful com-
mands in the language BASIC which will enable the reader to use the
computer for more complex calculations.

Only Exercises 7-11 require the use of a computer.

1. Write a program that will compute and print the sum of the first three
positive integers, of the first five positive integers, and of the first ten
positive integers.

2. Write a program to compute the cube root of 100. (You will need to
recall that a cube root is the same as the 1 power.)
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3. Write a two-instruction program to compute (;)

4. The following program contains three illegal instructions, that is,
instructions not satisfying the rules we have prescribed. Identify them.
10 LET X = .12345/.54321
20 LET Y = X1Z
30 LET U = XY
40 LET X = X=X
50 PRINT X,Y,U+Z
60 PRINT X,Y,Z?
70 END
80 LETX =Y+ Z
5. Without using a computer, figure out what would be printed when the
following program is run.
10 LET X =2
20 LETY =7-4
30 LET Z = Y1X
40 LET Z = Z-2*Y +X
50 PRINT Z/X
60 END [4ns. 2.5.]
6. Without using a computer, figure out what would be printed when the
following program is run.
10 LET X = 20/5
20 LET Y = X1(1/2)

30 LET Z = 1%2%3
40 LET U = Z—-3*Y
50 PRINT U
60 END

7. Try the program of Exercise 4 on a computer to see what error messages
are printed.

8. Run the program of Exercise 2 on a computer. What is the cube root
of 1007 [Ans. 4.64159.]

9. Use a computer to compute
(.54321/.12345)+(40/37)13.

10. Using a computer, employ a trial-and-error method to find the small-
est integer whose fifth power is greater than 1,000,000.

11. Use a computer to compute (270) [Ans. 77520.]

2 MORE ON THE LANGUAGE BASIC

The programs in Section 1 are not typical in that each instruction is carried
out only once by the computer. Such calculations could easily be done with
a desk calculator. To make the best use of the great speed of high-speed
computers it is desirable to give short programs which result in hundreds,
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thousands, or even millions of computer operations. One technique for this
is the application of the same instructions to many different sets of data.
This will be illustrated in the present section. An even more powerful
technique will be shown in next section.

Let us suppose that we wish to carry out a number of divisions. Instead
of writing a separate instruction for each operation, we can write a single
instruction and use it over and over again, as shown in the program DI-
VIDE. Line 20 instructs the computer to PRINT the numbers A,B and their
quotient. The trick is to specify various pairs A,B. This is accomplished
by storing on line 40 a set of data and instructing the computer on line
10 to pick off two of these numbers. The READ statement instructs the
computer to pick the next two numbers on the DATA line and call the first
number A and the second number B.

Thus the first time line 10 is executed, A will equal 12 and B will equal
4, and thus on line 20 this pair of numbers will be printed as will their
quotient A/B = 3. The next time line 10 is executed, A will equal 144 and
B will equal 12. This will continue until all the data has been used up.

After reading a pair of numbers and printing the result, we would like
the computer to go back and do the same two instructions over again. This
is accomplished by a GOTO statement. Line 30 instructs the machine to
GOTO 10—that is, to go to line 10, which in this case happens to be the
beginning of the program. This is another important use of line numbers,

I D!VIDE

13 READ ALB
22 PRINT A,B,A/B

386 GOTO 12
43 DATA 12,4,144,12,18,3.45,197%2,345
58 END
READY
RUN
DIVIDE
12 4 ' 3
la4 12 12
19 3.45 2.839855
19782 345 57.3391
QUT OF DATA AT 1@
STOP
2.8679 SECe.

READY
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40 DATA 169,13,2.97,1.23,-208,-508,12345,1289
RUN

DIVIDE

169 13 13

2497 1.23 2441463
-202 -50 4

12345 1289 9.57719
OUT OF DATA AT 10
STOP
3.088 SEC.
READY

S PRINT "FIRST NO«",'""SECOND NO+","QUOTIENT"
RUN

DIVIDE
FIRST NO. SECOND NO. QUOTIENT
169 13 13

2497 1.23 241463
-200 -50 4

12345 1289 957719
QUT OF DATA AT 1@
STOP
.89 SEC.
READY

We include with a listing of the program the results that are obtained.
It will be noted that the four pairs of numbers are printed on separate lines
with the quotient in each case printed in the third column. This run also
illustrates that there are two different ways of terminating a computer
program. One is by reaching an END instruction; the other is for some
condition to occur under which the computer can no longer proceed. In
this particular case the fifth time it is asked to READ numbers A and B,
it finds that there are no numbers left and therefore it prints the OUT OF
DATA message. This is a perfectly legitimate way of terminating a program.

The advantage of writing a program with READ and DATA statements
is twofold. First, it shortens the program significantly. Second, if the user
wishes to reuse the program with different pairs of numbers, he only has
to change line 40 and the rest of the program is still valid. If one retypes
line 40 with different data and types “RUN” again, the new results will be
obtained. This is shown as a second RUN of the program DIVIDE.

We would like to illustrate one more capability of the PRINT instruction.
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It is often convenient to label the output of a computer program. A PRINT
instruction will PRINT any label contained between quotation marks exactly
as you typed it. We can add labels to the program DIVIDE as follows:

5 PRINT “FIRST NO.”, “SECOND NO.”, “QUOTIENT"".

Making the line number “5” indicates to the computer that the instruction
should be inserted at the beginning of the program (i.e., before line 10).
The three labels will be printed exactly as indicated. The fact that the labels
are separated by commas indicates to the machine that they should be typed
in separate columns and they will automatically line up with the three
columns of output. A new RUN is shown. Such labels may be inserted
anywhere in a PRINT statement, as will be seen in the next program.

A simple computer program will allow us to convert a probability to odds.
We recall (see Chapter 3, Section 2) that if the probability that an event
will occur is P, and Q = 1 — P, then the odds in favor of the event may
be expressed as P/Q to 1. This is carried out in the program ODDS.

A set of probabilities is provided on line 90. Line 10 reads one of these
probabilities and calls it P. Line 15 computes Q. Line 20 does double duty,
both computing the odds and printing the answers. Note that in line 20

B 0DDS

S5 PRINT “PROBABILITY"," 0ODDS '
13 READ P

1S LET Q@ = 1-P

28 PRINT PLP/Q3"TO 1"

36 GOTO 10

99 DATA ¢5,475,465,43333333,.1
99 END

READY

RUN

ODDS

PROBABILITY 0DDS

@e5 1 TO 1

Be75 3 TO 1

Beb6 1.5 TO 1
@.333333 .5 TO 1

Bl Gellllll TO 1
OUT OF DATA AT 10

STOP

P.0383 SEC.

READY
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P is followed by a comma so that the probability will occur in one column
and the odds in a separate column. After P/Q we have inserted a semicolon
(;) so that the quotient is immediately followed by the phrase “TO 1.” The
effect of this PRINT format is clearly shown in the RUN. Line 30 simply
instructs the program to go back and carry out the computations for the
next probability.

As we look at the output we notice that while the first three lines look
very clear, the last two are somewhat unnatural. One does not usually say
that the odds are 0.5 to 1 in favor of an event; rather one would prefer
to say that the odds are 1 to 2 in favor, or 2 to 1 against the event. To
achieve this one must have one output format if the odds are in favor of
the event (i.e., P greater than Q), and another format if they are not. We
must be able to tell the computer that if a certain relationship holds then
one thing should happen, and that otherwise something else should happen.
This is provided for in BASIC by the IF ... THEN instruction.

In the program ODDS2 we have inserted a test at line 17. If P is less

ODDS2

S PRINT "PROBABILITY",'" ODDS "
13 READ P

1S LET Q = 1=-P

17 IF P<Q THEN 40

26 PRINT P,LP/Q3"TO 1"

33 GOTO 19

43 PRINT PL," 1 TQY:;Q/P
586 GOTO 10

9% DATA 5, ¢755 656333333351
99 END '
READY

RUN

0obDS2

PROBABILITY 0DDS
Be5 1 TO 1
Be75 3 TO 1
@e6 1.5 TO 1
3333333 i TO 2.
Bl 1 TO 9
QUT OF DATA AT 1@

STOP

2.8903 SEC.

READY
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EXERCISES

than Q then the computer is instructed to skip to line 40 and use the alternate
output format. But if P > Q the computer goes on to line 20. On line 40
we compute the odds as 1 to Q/P rather than the form used on line 20.
A RUN of the modified program is shown and the reader will note that
the odds are now in both a simpler and a more natural form.

The significance of the IF . .. THEN statement is that the computer can
be instructed to go in one of two different directions. And where it goes
depends on the result of previous computations. In those cases where P
turns out to be greater than or equal to Q, the computer proceeds with lines
20 and 30. However, if P is less than Q then the computer skips to lines
40 and 50. Thus the same computer program can handle both cases, and
uses a simple test to distinguish between them.

The general form of this instructions is:

IF [relationship}] THEN [line number].

The line number may be any line number in the program. For the rela-
tionship we may use six relational symbols: = (equals), < (is less than),
> (is greater than), < = (is less than or equal to), > = (is greater than
or equal to), and <> (is not equal to). A more complex example is the
following;:

IF (X*Y + 3)< =Z THEN 35.

If the current value of X+Y + 3 is less than or equal to the current value
of Z, the program takes line 35 as its next instruction. If not, it will proceed
in the normal order.

Only Exercises 10-14 require the use of a computer.

L. Write a program that will READ a list of numbers and compute and
print their fifth powers.

2. There are many ways of avoiding the “OUT OF DATA” message. One
is to have a dummy number at the end of the DATA (say —99999) and
to have the computer terminate when that number is READ. Modify
the program of Exercise 1 by adding an IF statement so that it will
terminate in this manner.

3. Modify the program ODDS2 so that instead of “1 TO 9” it will print

“9 TO 1 AGAINST.”

Modify the program ODDS2 to avoid the “OUT OF DATA” message.

If the DATA in the program ODDS contains an illegal probability (i.e.,

a negative number of a probability greater than 1), the result will be

meaningless. Insert a test to make sure that P is between 0 and 1.

6. Write a program that will read a list of numbers from DATA and find
its largest element. You will have to avoid the “OUT OF DATA”
termination. (See Exercise 2.)

7. Modify the program of Exercise 6 to find the smallest element.

hoa
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8. The absolute value Y of a number X may be computed in BASIC by
writing LET Y = ABS (X). Design a test to check whether two num-
bers A and B are within 0.001 of each other.

9. In BASIC, INT(X) is the greatest integer less than or equal to the
number X. For example, INT(6.235) = 6, INT(10.999) = 10,
INT(15) = 15, and INT(—3.52) = —4. Design a test to check
whether an integer X is an even number.

10. By means of the IF ... THEN statement we can remove the trial-and-
error method from Exercise 10, Section 1. Design and RUN a program
that will READ a number A (A > 0), and find the smallest integer N
whose fifth power is greater than A.

11. Try out the program of Exercise 6 on a computer. Does it work
correctly when all the numbers in the DATA are negative?

12. In BASIC, SQR(X) is the square root of X. Use a computer to print
a table of square roots for the first ten integers.

13. Modify the program of Exercise 12 to print the square roots of every
fifth number between 100 and 200 (i.e., 100, 105, 110, ..., 200).

14. There is a fast computational technique for finding the square root
of a number A without using the “built-in” SQR function. One lets
X be a guess at the square root. (For example, X = 1 is all right.)
Let Y = A/X. If X is the correct square root, then Y = X. If not,
one uses the average of X and Y as the next guess, and repeats the
process until X and Y differ by less than a predetermined small er-
ror—say 0.000001. (See Exercise 8.) Write and RUN a program which
carries out this technique. Check the answers by means of SQR.

Let us return to the problem of computing factorials. To compute 10! it
is possible to proceed as in EXAMPLE1, or to write a single instruction:

LET X = 1%2+3%4x5x6x7+8%9+10.

However, this is a nuisance even for 10! and becomes very inconvenient
for 25!. It also means that if we wish to compute several different factorials
we have to write a different line for each one. We would instead like to
write a simple set of instructions which say roughly, “Take the numbers from
1 to 10 and multiply them together.” This can be accomplished by the pair
of instructions FOR and NEXT.

The heart of the program FCTRL is contained in the “loop” on lines
30-50. The letter K will consecutively stand for the integers 1 through 10.
The letter F will contain all the partial results and will eventually equal
10!. To understand line 40 we must remember that in a LET instruction
the computer first computes the right-hand side and then lets the letter on
the left equal the result. Thus F is multiplied by the current value of K
and this becomes the new value of F. Line 50 instructs the computer to
go on to the next value of K until all ten numbers have been used up.
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Ml FCTRL

20 LET F
30 FOR K
48 LET F
S8 NEXT K
680 PRINT F
99 END
READY

=

1 TO 18
FxK

nuu

RUN
FCTRL

36288049

@.052 SECo.
READY

Before starting the loop we must tell the computer what the “initial value”
of F should be. In computing a product the initial value must always be
1. If we were computing a sum we would start with 0 (see Exercise 6).
After the loop is completed we PRINT the final answer on line 60 and then

Line no. Result
20 F=1
30 K=1
40 F=1+«1 =1
50 GOES BACK TO 30
30 K=2
40 F=142 =2
50 GOES BACK TO 30
30 K=3
50 GOES BACK TO 30
30 K=10
40 F = (362880)*10 = 3628800
50 K EXHAUSTED, DOES NOT GO BACK
60 PRINT VALUE OF 10!
. 99 STOPS
Figure 1
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line 99 instructs the computer to stop. Figure 1 shows what actually happens
as each step in the computation is performed.

It is easy to modify this program to compute the factorial of an arbitrary
number. In FCTRL2 we first PRINT labels and then READ the number
N whose factorial we are trying to compute. In line 30 K now goes from
1 to N. In line 60 we have elected to PRINT both N and its factorial. Line
70 instructs the program to go back and read the next number. Line 90
contains five different values for N. The RUN shows the factorials of
these five numbers.

Two comments are in order concerning the output. First, 20! is a number
too large for all of the digits to be printed out. Therefore the computer
prints it in “scientific notation.” The abbreviation E + 18 stands for 1018,
In other words, the answer is 2.4329 x 1018, It is also worth noting that
0! came out to be 1 without any special instruction to the computer. This
is one more way of showing that 0! = 1 is the “natural convention.”

FCTRL2
5 PRINT "NUMBER",'FACTORIAL"
18 READ N
280 LET F = |
38 FOR K =1 TO N
48 LET F = FxK
53 NEXT K
60 PRINT NLF
72 GOTO 1o
980 DATA 4,7,10,20,0
99 END
READY
RUN
FCTRL2
NUMBER FACTORIAL
4 24
7 S840
19 3628800
29 244329 E+18
@ l
OUT OF DATA AT 1@
STOP
B.282 SEC.

READY
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As our next illustration of loops we shall write a short program that
computes an expected value. We recall from Chapter 3, Section 11, that
an expected value is computed for an experiment whose possible outcomes
are numbers by multiplying the numerical outcome A with the probability
P of the outcome for each possible outcome, and adding up the results.
This is carried out in the program EXPECT.

Bl EXPECT

18 LET E
20 FOR K
380 READ ALP

43 LET E = E + A%P

58 NEXT K

69 PRINT E

9@ DATA 1103J2J0235)095)‘11025)"2102
99 END

READY

1 TO 5

RUN
EXPECT
@3

G859 SEC.
READY

Since the expected value E is computed as a sum, its initial value is set
to 0. In the loop of lines 20-50, for each of the five possible outcomes we
first read the numerical value A and the probability P. We then add to
the previous value of E the quantity A*P. This will become the new value
of E. After the loop is completed (by going through all five cases) E will
be the expected value. This is printed by line 60. Note that the variable
K acts as a counter only and does not otherwise enter the computation.

We see that the expected value in this simple illustration is 0.3. Of course
in this case the answer could have been obtained more easily by hand
computation. However, if the number of cases were significantly larger and
the numbers were not as nice, the computer would indeed be useful.

Let us now turn to an application for which a computer is indispensable.
We shall write a computer program for the “birthday problem” treated in
Chapter 3, Section 4. (This example should be skipped by those who have
not read that section.)

The problem was to compute the probability that among R people there
are at least two with the same birthday. The trick was to compute first the
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probability Q that all the birthdays are different, given by a formula in
Section 4 of Chapter 3; then the probability we desire will be P = 1 — 0.
In the program BIRTHDAY lines 15-45 carry out this computation in five
simple instructions. The remaining lines are designed to allow us to compute

BIRTHDAY

S PRINT "PEOPLE",“PROBABILITY"

10 READ R

15 LET Q@ = |

20 FOR K = | TO R

30 LET Q@ = Q@ * (366-K)/365
43 NEXT K S
45 LET P = 1-Q T

50 PRINT R,P T T,
60 GOTO 1@ ’
93 DATA 10,20,22,23,30, 58

99 END
READY
RUN
BIRTHDAY
PEOPLE PROBABILITY

10 0.116948

20 8.411438

22 B«475695

23 B.507297

39 0.736316

50 0.978374

OUT OF DATA AT 190

STOP

@.180 SEC.

READY

the answer for several different values of R and to PRINT the answers. The
reader is invited to compare the results with those given in Figure 1 of
Chapter 3. That the results agree (except for the fact that these numbers
are rounded to three places in Figure 1) is not surprising since they were
originally obtained by means of a computer. This is a good example in
which a simple computer program and one-tenth of a second of computer
time can save hours of laborious hand calculations.

The question is often raised: What is the probability of having more than
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one coincidence of birthdays in a given group? That is, what are the chances
that there will be three people with the same birthday or two pairs of
identical birthdays or even larger coincidences? This probability can be
computed in two steps. One first computes (as above) the probability of
having some kind of coincidence. Then one computes separately the proba-
bility of having precisely one pair of people with the same birthday. The
difference of these two quantities will give the probability of a multiple
coincidence.

B BIRTH2

S PRINT "“PEOPLE",'"PROBABILITY"

13 READ R

15 LET Q@ = 1

20 FOR K = 1 TO R .

30 LET Q@ = Q * (366-K)/365

48 NEXT K :

45 LET P = 1=-Q "
S8 LET E = 1 T ~
68 FOR K = 1 TO R~I S oseE-
65 LET E = E * (366-K)>/365 e
78 NEXT K P -
75 LET E = E/365

77 LET E = E*R*(R-1)/2

83 PRINT R,P-E

85 GOTO 14

90 DATA 20,25,30,35,36,43,583

99 END

READY

RUN

BIRTH2

PEOPLE PROBABILITY

27 8.82398 E-2

25 @.189257

30 B.326101

35 B.480722

36 3.511803 ~

49 2.630989 -

59 B+.855524

OUT OF DATA AT 10

STOP

B.134 SEC.

READY
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The program BIRTH2 is designed to compute this probability for various
numbers of people. The quantities Q and P are computed as before. The
quantity E will stand for the probability of exactly one pair with the same
birthday. Let us first calculate the probability that the first two people have
a specific birthday, say October 26, and that all the other people have
different birthdays. This probability is 345 X -4 X 394 x 383 % . ... How-
ever, the same two people could have had a coincidence of birthdays on
any of 365 days, and therefore we must multiply the answer by 365. This
will cancel the first factor of 4z. This calculation is carried out in BIRTH2,
lines 50-75. We must still correct this answer since we have so far assumed
that it is the first two people who have a coincidence of birthdays. Such a
coincidence may occur for any pair from among the R people, and there-
fore we must multiply the answer by <§ ) = 5)(_(;1—_12 which is carried
out in line 77. You should “step through” the program BIRTH2 by hand
to see that it is actually carrying out the calculations described above.

The program prints the probability of a multiple coincidence for several
different numbers of people. We notice that for 25 people—a number for
which we already have a better-than-even chance of having some coinci-
dence—the probability of a greater coincidence is less than .2. The smallest
number of people for which a multiple coincidence has better than an even
chance is 36. We note that for 50 people the probability of a multiple
coincidence is very high.

We have now discussed nine instructions in BASIC. It is significant that
these nine instructions are sufficient to write many interesting programs.
They are summarized in Figure 2 for the reader’s convenience.

Instructions for nine-word BASIC

Instruction Example Purpose
LET _ LET X =243 Carries out computations
PRINT PRINT X,Y X+Y Prints results
END END Terminates computation
READ READ A,B Enters numbers from DATA
DATA DATA 5,—-2,34 Stores data
GOTO GOTO 20 Transfers program control
IF ... THEN IF X>3 THEN 20 Performs a test
FOR FORN=1TO 8 Starts a loop
NEXT NEXT N Closes a loop

Only Exercises 9-14 require the use of a computer.

1. Use FOR and NEXT to write a program that will compute the seventh
powers of the first ten positive integers.
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2.

3.

10.
11.
12.

13.

14.

Write a program that will compute the cube roots of the integers from
1 to 20.

A loop need not run through all the integers specified in the FOR
statement. For example, the instruction

FOR N =1TO 15 STEP 2

will run through the odd numbers from 1 to 15. Write a program to
compute the cube roots of the multiples of 10 from 10 to 100.
Write a program to print the fifth powers of the even integers up to
30.

If we know how many numbers there are on the DATA list, we may
avoid the OUT OF DATA message by reading the data within a loop.
Modify DIVIDE in this manner. [Hin/: Remember that a pair of
numbers is READ each time.]

Write a program to compute the sum of the first 100 integers. What
must the initial value of the sum be?

Modify the program of Exercise 6 to READ a number N and then to
compute the sum of the first N integers.

Write a program to compute the sum of an arithmetic series. READ
only the numbers A, D, N, and have the computer construct the sum
of the series with N terms, starting with A, and increasing by D each
time. l.e., the series is

A+(A+D)+(A+2D)+ ... +(A+(N—1)D).

RUN the program of Exercise 7 for several values of N. Check that
the answer is always N(N +1)/2,

In BASIC, LOG(X) is the natural logarithm of X. Print a table of
natural logarithms for the first ten integers.

RUN the program of Exercise 3 on a computer.

Write a program that computes the sum of the first N odd integers.
RUN it for several values of N, and guess what the general formula
for the sum is.

The technique described in Exercise 5 is not the best one, since when
the number of DATA elements is changed, the loop must also be
changed. This may be avoided by starting DATA with a single number
that tells us how many times we have to go through the loop. Say
this is N. Then we start our loop with

FOR K = 1TO N.

Modify DIVIDE accordingly, and RUN it.

In the Land of Oz the calendar year has 534 days. Modify the programs

BIRTHDAY and BIRTH2 accordingly.

(a) How many people should we have in order to have a better-
than-even chance of a coincidence? [Ans. 28.]

(b) How many for a better-than-even chance of a multiple coinci-
dence?
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4 LISTS AND TABLES

In many applications we wish to work with an entire array of numbers at
the same time. For this BASIC provides “lists” and “tables.” A list can
be used to store a sequence of numbers, while a table contains a two-
dimensional array of numbers. We shall see in the next section that lists
can also be used as vectors and tables also as matrices, in the sense of
Chapter 4, allowing us to carry out matrix operations.

We have had previous arrays of numbers contained in our DATA state-
ment. However, in each case we READ the numbers one or two at a time,
and once we made use of them, we could afford to forget them. A list
becomes important when the entire array must be remembered. For exam-
ple, if we wish merely to read a sequence of numbers, multiply each one
by 5, and print the results, there is no need to employ a list. However, an
application as simple as reading a sequence of numbers and printing them
out in the opposite order requires the use of a list. This is shown in the
program BACK.

Bl BACK

1 FOR I =1 TO 8

28 READ L(I)

38 NEXT 1

49 FOR 1 = 8 TO | STEP -1

58 PRINT L(1); '

68 NEXT 1

99 DATA 1,3,6,108,15,21,28,36
99 END

READY

RUN
BACK
36 28 21 15 18 6 3 1

B.B366 SEC.
READY

BASIC allows one list or table for each letter of the alphabet. For
example, if the letter L is used to designate a list, then L(3) will stand for
the third element of the list, while L(7) will stand for the seventh element.
It would be more common mathematical notation to write these as L, and
L;. However, these cannot be typed on the devices one uses to communicate
with computers. Lists and tables are nonetheless often referred to as “sub-
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scripted variables” because of the more usual mathematical notations for
them.

We have found it convenient in earlier chapters of this book to refer to
an arbitrary element of a list of numbers by a notation such as L;. The
analog in BASIC is to write the formula L(I). Then as | runs through the
numbers 1,2, ..., the quantity of L(l) will run through the various elements
of the list. We take advantage of this possibility in the program BACK as
lines 10-30 read the entire list of eight elements. The first time through
the loop | equals 1 and therefore on line 20 we read L(1); thus the data
element “1” on line 90 becomes the first element of the list. The second
time | =2 and therefore we read L(2) and thus the data element “3”
becomes the second element of the list. Finally, the data element “36” will
become L(8).

To print out the list in reverse order we can again employ a three-instruc-
tion loop. We want to print each L(l); however, we want | = 8,7, . . . , 1.
Line 40 shows an additional flexibility of the FOR instruction. One can
specify any step size by which the program proceeds. (If no step 1s specified,
the computer assumes that the step size is 1.) In this case we specify
STEP —1; thus | = 8 the first time, then 7, then 6, etc.

The semicolon (;) on line 50 will assure that the numbers are printed one
after the other without any extra space. If instead of a semicolon we had
used a comma (,) the numbers would be printed in columns. If we had
used no punctuation at the end of the line, each component would have
been printed on a new line.

The program DICE computes the probability of winning in the game of
craps (see Chapter 3, Section 11). We shall use the list P to store the
probabilities for various possible sums when two dice are rolled. For exam-
ple. P(5) will be the probability of shooting a 5, which we know to be =
Whenever a list is used in BASIC, space is automatically allocated in the
computer for up to ten elements. Similarly for any table, BASIC will allocate
for a table of size up to a 10 X 10. If larger lists and tables are desired,
one must specify this through the use of a DIM or dimension statement.
Thus in the program DICE we indicate the list P will have 12 elements.
In case several different uses are contemplated for the same list, one must
specify a DIM large enough to accommodate the longest list.

Lines 20-40 set up the probabilities for rolling a 2 through a 7. We leave
to the reader the verification of these formulas. Lines 50 through 70 take
advantage of the symmetry of the problem; e.g. the probability of an 8 is
the same as the probability of a 6. At the end of this loop all the various
probabilities for different totals on a single roll have been computed and
the next step is to compute the probability W for winning in the game of
craps.

You will recall that if a 7 or 11 turns up on the first roll, we win immedi-
ately. This is reflected in line 100. To this probability we must add the
probability of “making our point.” That is, if the initial roll is 4,5,6,8,9,
or 10, then we must keep rolling until we either repeat that number (in
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Bl DICE

10 DIM P(12)

280 FOR K = 2 TO 7

38 LET P(K) = (K-1)/36
480 NEXT K

58 FOR K = 8 TO 12

680 LET P(K) = P(l4-K)

79 NEXT K

108 LET W = P(7) + P(11)

116 FOR K = 4 TO 14

112 1IF K=7 THEN 130

115 LET C = P(K)/(P(K)+P( 7))
1280 LET W = W + P(K)*C

13@ NEXT K

178 PRINT W

180 PRINT 2447495
199 END

READY

RUN
DICE

B.492929
0.492929

B.076 SEC.
READY

which case we win) or until a 7 turns up.

This calculation is carried out in the loop on lines 110-130. Since our
“point” may be 4,5,6,8,9, or 10, we allow the loop to run from 4 to 10.
However we must exclude 7 as a possibility and this is the reason for line
12:if K'is 7, we jump to the end of the loop—in other words, we eliminate
this possibility. Line 115 computes the conditional probability that the
number K will be repeated given that we shall get either K or a 7. This
is the simplest way of computing the probability of getting a K before we
get a 7. On line 120 we add to our previous winning probability the
probability that we both have K as our initial point and that we win with
it. By the time the loop is completed W will equal the probability of winning
at craps. This is printed on line 170. We had calculated this probability
in Chapter 3 as 2% and we also print this quantity for comparison. We
note from the RUN that the two answers are identical.

Let us now consider the use of tables. If T stands for a table, we must
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indicate which row and which column in the table we are looking at. Thus
T(3,5) will stand for the table entry in row 3 and column 5. As usual the
arguments (or subscripts) may be variables. Thus T(!,J) will stand for the
entry in row | and column J, which is more usually indicated by 7;;. As
an illustration we shall recompute one of the tables previously computed
in the book. This will be the table of binomial coefficients, usually known

as the Pascal triangle. We shall compute the quantities (‘]]V) for the values
N=0,1,2,...,30 and all possible values of J, namely J=0,1,..., N.

Only two facts are needed to compute the Pascal triangle. One is the fact

0 N
is equal to the sum of the two entries immediately above it.

that (N) = <N) = 1. The other is the fact that any entry “inside” the triangle

Bl BINOMC

18 DIM B(38,38)

26 FOR N = @ TO 3@

30 LET B(N,@) = 1

43 LET B(N,N) = 1

S FOR J = 1 TO N-1

60 LET B(N,J) = B(N=-1,Jd-1) + B(N-1,J)
79 NEXT J

83 NEXT N

92

183 PRINT ' N"," J","BINOM"
118 FOR K =1 TO 4

122 READ N»J

133 PRINT N,J,B(N,J)

149 NEXT K

190 DATA 18,5,15,3,25,18,308,15
199 END

READY

RUN
BINOMC

N

19
15
25
30

BINOM
252
455
3268760
1.55118 E+8

- U1 C,

(&) ]

@«188 SEC.
READY
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Bl BINOMPR

10
20
38
42
50
69
79
80
90
100
119
120
130
140
193
199
REA

RUN

BINOMPR

N

10
15
30

DIM
FOR
LET
LET
FOR
LET
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In the program BINOMC, line 10 saves enough space for a 30 x 30 table.
The entry B(N,J) will stand for (}j) The entire calculation of the triangle
is carried out on lines 20-80. We let N run from 0 through 30. For each
given N we first fill in the (‘8[) and (%) on lines 30 and 40. Then we start

the loop on J in which J runs from 1 through N — 1 to compute the “inside”
entries. Line 60 simply states that a given entry of B is the sum of two
entries on the previous row. Lines 70 and 80 close the two loops.

This is our first example of a “double loop.” Such a double loop is legal
as long as one loop is completely contained within the other one. The
interpretation is very simple: the computer picks a first value for N and
then runs through all the indicated values of J; it then picks the next value
of N and repeats the procedure; and so on. Note that in this example the

B(30,38)

N =0 TO 39

B(N,B) = |

B(N,N) = |

J =1 TO N-1

B(N,J) = B(N=1,J=1) + B(N-1,J)

NEXT J
NEXT N

PRINT ' N'," J",'" P"," PR(OB."

FOR K =1 T0O 3

READ N,J,P

PRINT NoJsP,BI(NL,JI4*PtJdx (1 =-P)t(N-J)
NEXT K

DATA 10,5,+3,15, 17, *4,30,15,45

END

DY

PROB.

B.102919
B.177284
Belaaqgeq

-3 0 C,
(SRR N e}
e o o
(61 RF ~ S A

B.185 SEC.
READY
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EXERCISES

range of the second loop depends on the value of N in the first loop (see
line 50 ). It is in this way that we fill out a triangle. If we were instead
filling out a rectangle or a square, the possible values of J would not depend
on the value N.

Just to show that the calculations are correct, we end up by printing four
binomial coefficients. It is worth noting that the entire calculation of nearly
500 binomial coefficients—including some very large ones, as can be seen
on the last line of the output—took only about two-tenths of a second. The
same calculation by paper and pencil is a formidable task.

Some additional comments are in order. Line 90 is blank. This has no
effect on the computations, but it separates the two major portions of the
program for easier reading. On line 100 we PRINT appropriate labels. It
should be noted that since we use commas both here and on line 130, the
outputs automatically line up. The loop on lines 110-150 is employed to
avoid the “OUT OF DATA” message.

Once we have binomial coefficients computed, they can be used for the
solution of many kinds of problems. As an illustration we have included
the program BINOMPR which computes binomial probabilities. Lines 10-90
are identical with the previous program since these simply compute the
Pascal triangle. In the rest of the program we read the value of N, J, P,
and compute the probability of precisely J successes in N trials with proba-
bility P for success on each trial. In line 130 we print N, J, and P and then
compute and print the binomial probability by the well-known formula (see
Chapter 3, Section 8). For example, the second line of the output shows
that if we have 15 experiments with probability 4 for success on each
experiment, then the probability of precisely 7 successes is about .177. (See
previous page.)

Only Exercises 8-12 require the use of a computer.

1. We wish to read N numbers from a DATA list and perform a task on
them. Which of the following tasks require that the numbers be stored
in a list?

(a) Find the largest number.

(b) Print the even-numbered entries.

(c) Print first the even-numbered and then the odd-numbered entries.
(d) Find the sum of the numbers.

(e) Find the sum of the first and last entries.

(f) Arrange the numbers in order. [Ans. (c) and (f).]

2. To use the same program for tables of different dimensions, one should
read first the dimensions of the table, and then read the table. (Other-
wise one does not know how many rows and columns to read.) Write
such a program.

3. Write a program that will read a table and compute the row sums.

4. Write a program to read a list of four entries and a list of seven entries
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10.

11.

12.
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and construct a table T so that T(l,J) is the product of the lth entry
of the first list and Jth entry of the second list.

Write a program to read a list and arrange the numbers in increasing
order.

Modify the program of Exercise 5 to arrange the numbers in decreasing
order.

Write a program to calculate the probability of winning in the dice
game of Chapter 3, Section 11, Exercise 18.

Use the program DICE to compute the expected value of the game
if §1 is bet each time.

Use DICE to compute the expected value of the game if we win $2
on 7 or 11, lose $3 on 2, 3, or 12, and win or lose $1 for making or
failing to make our point,

Compute the row sums of the Pascal triangle for N =0,1,...,10.
Use the binomial theorem to explain the results.

]JV) 27/, Use the binomial

ForN=0,1,...,10 compute the sum of(
theorem to explain the results.

This is an exercise in modular arithmetic. For LJd=1,2,...,6 let
T(l.J) be I*J reduced by 7’s. That is, if the product is 7 or greater,
keep subtracting 7 until the result is less than 7. Print the table. What

pattern do you observe?

5 VECTORS AND MATRICES

A natural use of lists and tables is to use them for vectors and matrices
and to carry out matrix operations with them. BASIC recognizes this use
by having a special set of instructions that enable one to carry out the matrix
operation in a single step. We shall illustrate this by writing two programs
for the addition of vectors, one not using the special instructions and one
using them.

In the program VECADD the calculations are accomplished in four triples
of instructions (loops). The first three instructions read a seven-component
vector A, the second triple reads a similar vector B, and the third triple
of instructions computes the vector sum letting the vector C stand for the
answer. Finally, lines 100120 print the answer.

HEl VECADD

18 FOR 1 =1 TO 7
20 READ A(I)

30 NEXT 1

48 FOR I =1 TO 7
S@ READ B(1I)

60 NEXT 1

79 FOR'I =1 TO 7



250 Computer Programming Chapter 5

83 LET C(I) = A(CI) + B(l)
93 NEXT 1

166 FOR I =1 TO 7

113 PRINT C(I1);

120 NEXT 1

198 DATA 1,2,3,4,5,6,17
191 DATA 5:8)2)@)‘1)'3)‘7
199 END

READY

RUN
VECADD
6 18 5 4 4 3 0

@.883 SEC.
READY

In the program VECADD2 we have replaced each triple of instructions
(each loop) by a single special instruction. One signals to BASIC that an
instruction is a special matrix instruction by starting with “MAT.” The first
two instructions each read a seven-component vector, the third instruction
carries out the vector addition, and the fourth instruction prints the vector.

Bl VECADD2

18 MAT READ A(7)

46 MAT READ B(7)

7 MAT C = A + B

160 MAT PRINT C:

196 DATA 1,2,3,4,5,6,17
191 DATA 5:8)2;@;‘1)'3)‘7
199 END

READY

RUN

VECADD2

6 10 5 4 4 3 o

B.876 SEC.
READY
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The comparison of the two programs will show exactly what the MAT
instructions accomplish. Clearly the second program is simpler and shorter.
The saving is even greater when we are dealing with a matrix or if we want
to do more complicated matrix operations.

The next program, MATSUB, is similar to VECADD2 except that we are
dealing with matrices and we perform a subtraction of two matrices. We
have arranged the data for the two 3 X 4 matrices A and B on lines 50-52
and 60-62, respectively. This was done purely for the convenience of the

MATSUB

18 MAT READ A(3.,4)
20 MAT READ B(3.,4)
30 MAT C = A - B
48 MAT PRINT C3

49

50 DATA 1,2,3,4

51 DATA 5,6,7,8

52 DATA 7,6,5,4

59

68 DATA 4,3,2,1

6l DATA @8,-1,-2,-3
62 DATA -2,-3,-2,-1
69

99 END

READY

RUN

MATSUB

=3 -1
5 7
9 9

1 3
9 11
7 5

B.084 SEC.
READY

reader, so that he may easily check the computed answer. One could have
listed the data all on one line, or divided it among several lines in an
arbitrary way, as long as the data appeared in the order in which the
program calls for it. However, it is usually good practice to arrange the
data in a neat format for easier proofreading.

The next program, MATMPY, carries out a matrix multiplication. It reads
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a3 X 4 matrix A and a 4 X 2 matrix B and computes the product, a 3 x 2
matrix C = AB. The program MATMPY should be self-explanatory.

B MATMPY

18 MAT READ A(3.,4)
20 MAT READ B(4.,2)
33 MAT C = AxB

40 MAT PRINT C3

49

58 DATA 1,2,3.,4

51 DATA 5,6,7.,8

52 DATA 7,6,5,4

59

68 DATA 2,1

61 DATA 3,2

62 DATA -1.,0

63 DATA -3.,-4

69

99 END

READY

RUN

MATMPY

-7 =11
-3 -15
15 3

B«@79 SEC.
READY

The single most powerful instruction in BASIC is the one-line command
that inverts a matrix. This is illustrated on line 20 of the program MATINV.
Line 10 reads a 3 X 3 matrix A. In line 20 we let B = A~!, We then PRINT
the inverse. The data in the program is taken from Example 2, Section 6
or Chapter 4. Naturally, we obtain the same result as in that section.

Since matrix inversion is available, it provides a convenient method of
solving N equations in N unknowns. We know that we can write equations
in the form AX = B. Here A contains the n X n matrix of coefficients of
the left-hand sides of the equations while B is a vector containing the
right-hand sides of the equations. The vector X contains the unknowns.
If the matrix A has an inverse, then the solution may be written in the form
X = A7'B. This is carried out in the program EQU. To make the program
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Ml MATINV

18 MAT READ A(3,3)
20 MAT B = INVC(A)
39 MAT PRINT B3

39

48 DATA 1,4,3

41 DATA 2,5.,4

42 DATA 1,-3,-2

49

99 END

READY

RUN

MATINV

20 "10 lo
80 "5' 2c
‘11‘ 70 "‘30

B.082 SEC.
READY

more general, we first read the value of N. This will enable us to solve
different numbers of equations in different numbers of unknowns by simply
changing the data. We then read the matrix A and the vector B, compute
the inverse of A, and compute the solution X on line 50. The answers are
printed on line 60. The reader can easily verify that the solution is correct.

BN EQU

18 READ N

20 MAT READ A(NJ,N)
38 MAT READ B(N)
48 MAT I = INV(A)
50 MAT X = IxB

69 MAT PRINT X;
69

73 DATA 4

79

80 DATA 4,2,6.,8
8l DATA 1.,2,3.4
82 DATA 4,3,2,1
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83 DATA 8,6.,2.,4

89

99 DATA -12,-5,5.,12
99 END

READY

RUN

EQU

l 2. “2- "lo

@.887 SEC.
READY

If the reader has ever attempted to solve four equations in four unknowns,
he will be happy to see that the same solution may be obtained on a
computer in a small fraction of a second. Indeed, the same program will
yield the solution of 50 equations in 50 unknowns in roughly 6 seconds!
Although we illustrate programming techniques in terms of very simple
examples, it is important to remember that the same techniques work on
problems much too large to do by hand and often take only a few seconds
to do on the computer.

One word of warning is in order for the last two programs. Not all
matrices have inverses, and therefore one should really insert in the program
a test as to whether the matrix does have an inverse. Such a test exists
in BASIC but it is beyond the scope of our present treatment.

EXERCISES
Only Exercises 8-12 require the use of a computer.

1. Write a program that will add two matrices without using MAT in-
structions.

2. Write a program that will compute the tenth power of a square matrix
P.

3. In BASIC, a vector of all I’s, say of five components, may be con-
structed by means of the instruction

MAT X = CON(5).

Write a program to read a 7 X 5 matrix A and compute AX (where
X is the vector of all I’s). Interpret AX.

4. In BASIC a vector or a matrix may be multiplied by a number as
follows:

MAT Y = (5.2)*X.
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ThenY = 5.2X. Write a program to read two five-component vectors
X and Y and to compute
(a) 3Y.
(b) X+2Y.
(c) 5.2X-3.17Y.

S. Write a program that will read two 3 X 4 matrices A and B and
compute
(a) A-3B.
(b) 5.07A +7.98B.

6. Write a program that will read a 3 X 3 matrix 4, compute its inverse
A7, and compute the product 4471,

7. Write a program that will check for two 4 X 4 matrices A and B
whether AB = BA. It should print “YES” if they are equal.

8. Set up DATA for a 3 X 4 matrix A, a 4 X 2 matrix B, and a 2 x 3
matrix C. Compute:

(a) ABC.
(b) BCA.
(c) CAB.
(d) BAC.

9. Setup DATA for a 10 x 10 matrix all of whose components are zeroes
or ones. Attempt to invert it. [Hint: Make sure that no row and no
column consists entirely of zeroes.]

10. Use the computer to verify that (4B)™! = B~14L

I1.  RUN the program of Exercise 6. How close is the final matrix to an
identity matrix? (In general one expects some round-off errors.)

12. Try the program of Exercise 7 for several examples. Can you find
examples where AB = BA?

6 APPLICATIONS TO MARKOV CHAINS

Let us illustrate the first theorem of Chapter 4, Section 7. It states that if
P 1s a regular transition matrix, its powers approach a matrix whose rows
are identical, each row being a probability vector with positive components.
This can be illustrated by taking such a transition matrix and raising it to
higher and higher powers. To speed up the process we shall square the
matrix each time, so that we shall compute the powers P2, P4 P8 P16 and
P32,

In the program OZ we have chosen Exercise 12 in Section 7 of Chapter 4,
dealing with the weather in the Land of Oz. We have arranged the transition
matrix so that the first row corresponds to “nice,” the next to “rain,” and
the final row to “snow.” We first read the 3 X 3 transition matrix. Then
in the loop in lines 15-50 we square this matrix five times. Line 20 carries
out the actual squaring and line 30 prints the new matrix. On line 40 we
let S take the place of P so that when we go through the loop again it is
the new matrix that is squared.

Looking at the output we have a dramatic demonstration of the funda-
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0z

13 MAT READ P(3.,3)

IS FOR T
20 MAT S

1 TO 5
PxP

30 MAT PRINT S

48 MAT P
S8 NEXT T

S

93 DATA @, e5,¢5
91 DATA ¢255¢5,425
92 DATA ¢25,¢25,45

99 END

READY

RUN

0z

@25 @375 B.375

Q1875 @.4375 ©0.375

@«1875 @.375 B.4375
2.203125 @.398437 B.398437
0.199219 Q@.402344 ©@.398437
0.199219 @.398437 B.402344
2.200012 @.399994 ©.399994
B.199997 @.4000809 2.399994
B.199997 @.399994 @.480009
B2 B4 Bo4

Be2 Bed B4

Be2 Boed Doy

Be2 Qo4 Qo4

Be2 OBed4 Be4

Be2 Bed4 Qe4

@.139 SEC.

READY

Chapter 5

mental theorem. By the third squaring—that is, when we look at P8—the
rows of the matrix are almost identical and have nearly assumed their
limiting values. In the next two printed matrices, P!6 and P32, we see that,
to the accuracy to which results are printed, we have the limiting proba-
bilities of .2 for nice, .4 for rain, and .4 for snow.
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We shall next turn to absorbing Markov chains as treated in Chapter 4,
Section 8. We shall show how easy it is to compute the basic quantities
N, T, and B on a computer.

In order to specify an absorbing chain, we need to know the number of
transient states* (K) and the number of absorbing states (L). We need also
to specify the two submatrices R and Q. This is accomplished in lines 10
and 20 of the program TRANS and in the DATA statements. The computa-
tion and printing of all the other quantities is accomplished in lines 30-90.
Lines 30 and 40 illustrate two additional MAT commands. We can set up
an identity matrix of specified size and a constant vector (vector of all 1’s)
in single instructions. We then let D = I — Q and compute the inverse
N = (/ — Q). Similarly, we compute T and B. We have thus translated
the three main theorems on absorbing chains into six instructions in BASIC.
Finally, on line 90 we print the matrices N, T, and B. The data used in
TRANS is taken from Example 1 of Section 8 in Chapter 4. The output
may be compared with that example.

Of course, this is too small an example to make it worth using a computer.

*Nonabsorbing states are commonly called transient states.

TRANS

13 READ K,LL
20 MAT READ R(K,L),Q(K,X)

25

30 MAT I = IDN(K,K)
48 MAT C = CONCK)
58 MAT D = I-Q

60 MAT N = INV(D)
7 MAT T = NxC

880 MAT B = N*R

98 MAT PRINT N,T.B
95

166 DATA 3,2

185

113 DATA +5.,8
111 DATA 0,0

112 DATA B, .5
115

129 DATA 0, 5,0
121 DATA +5.,0,.5
122 DATA 0,.5,0
125

199 END

READY

RUN
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TRANS
1.5 1 Be5
1 2 1
Be5 1 1.5
3 4 3
@75 .25
Be5 DeS
@25 Be«75
B.116 SEC.
READY

Therefore we change the data to run a more substantial example. Our large
example will be a random walk with ten transient states and with probability
.7 of taking a step to the right. This chain is symbolically indicated in Figure
3. To find the fundamental matrix for this chain we have to invert a 10 X 10
matrix, and therefore we have a more substantial challenge for the com-
puter. It is important to note that the main part of the program does not
have to be changed at all. The only changes needed are in the DATA
statements. (If there were more than ten transient states, one would also
have to insert a DIM statement.) We also elected to omit the printing of
the matrix N, since it is very large and not particularly interesting.

1 2

g —
Absorbing — | Absorbing
63050505050
i g
3 3

Figure 3

We show the new data statements and the run of the program TRANS2,
Looking first at the second half of the output, the matrix B, we note that
for most of the states we are almost certain to end up in the second absorbing
state (i.e., at the right-hand end). It is surprising that even if one starts in
transient state 1, way over on the left, one has a better-than-even chance
of ending up on the right. The vector T, containing the expected number
of steps before being absorbed, is also quite interesting. If we start near
the right-hand endpoint, absorption takes place very fast, as may be ex-
pected. However, the result is not obvious on the left-hand side. For
example, if one starts in transient state 1, there is probability .3 of being
absorbed in a single step. On the other hand, it is more likely that absorption
will take place at the right-hand endpoint, which will take a considerable
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100
118
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
199

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
END

READY
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18,2

«3,0

2,90

0,0

3,0

2,0

3,0

2,0

0,0

b,0

Bse7
Bs0740,0,08,0,0,08,8,0
03285¢7503,0,0,0,0,0,0
g) ‘3)2"7’@,8}@)@’@)@
g’g-’ .SJGJ.’])Q)ZIQJQJQ
g)@)@) ‘3’@)’7’@)@)@)@
02s0,0005e3505¢7,0,0,0
GJ@J@)@)@) '3)@)'7}@)@
0,050s0105D5350547,8
g)@’ﬁ)@’@.’g)g) .3)E).7
D+0,050,05050,8503,9

RUN

TRANSZ2

13.22
12.33

Be.4285
B.1836
B.B3786
B.8336
2.0144
B.0061
D.0326
B.8010
B.0004
B.0301

17.45 1
9493

B«5715
B.8164
Be.9214
P.9664
29856
39939
B«9974
09990
89996
B.9999

@.288 SEC.

READY

T.84
Ted47

1657
4499

14.69
250
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Figure 4

amount of time. We find that the longest time to absorption, 17.84 steps,
1s from transient state 3.

For our final application in this section we consider a “Markov chain
game.” Any absorbing Markov chain can be turned into a game as follows.
First assign a “value” to each absorbing state. A positive value may be
interpreted as a prize one wins if one reaches this state while a negative
value is a penalty to be paid if that state is reached. A player starts at a
given transient state and moves from state to state in accordance with the
transition probabilities of the Markov chain until an absorbing state is
reached, where he receives a payoff or pays a penalty. The interesting
question is what the expected payoff is for various different possible starting
transient states. If the values are collected into a vector V with as many
components as there are absorbing states, then it is very easy to see that
the expected payoff for different starting states is given by the vector BV.

As an illustration we shall consider a game based on a two-dimensional
random walk as shown in Figure 4. There are ten transient states. From

o
o o
Wl

abs | __
3 5
N (s
abs abs
=5 4 Y, s |10

each of these the player moves to any of the states to which it is connected
with equal probabilities. Thus from state 4 there is probability 1 of moving
to states 1, 5, or 7 or to absorbing state 2. There are five absorbing states,
and one receives a prize of $5 at the first one and $10 at the last one and
loses $5 at the other three absorbing states. The payoffs balance out, but
it is intuitively clear that it is advantageous to start at some states and
disadvantageous to start at others. However, if one is offered the chance
to play this game with state 5 as the starting state, should one accept?
To solve this problem we have modified the program TRANS by changing
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the data and by adding three additional lines. Line 25 will read the vector
V from the data in line 130. And line 81 computes the payoff vector P as
B*V. Also, we print only the vector P. When we run the resulting program
TRANS3 we find that there are some favorable starting states—notably
state 2, where the expected payoff is $1.08—and some highly unfavorable
states, the worst being state 4, where the expected loss is $1.78. We find

25 MAT READ V(L)
8l MAT P = BxV

128 DATA 18,5

112 DATA ¢25,¢25,0,0,0

111 DATA 25,0,0,92.,0

112 DATA 0,0,0,0,0

113 DATA 2,.25,0,0,0

114 DATA 0,0,0,0.,0

115 DATA 3,0, ¢25,08,0

116 DATA 0,08,0,25,0

117 DATA 2,0,0,8,0

118 DATA 0,0,42558, 425

119 DATA 0.,0,0, 425,25

122 DATA 05 ¢25+05¢25,050,03,3,08,0
121 DATA ¢25,05¢25,35625,0,0:3,0,0
122 DATA 05 e5,0,05054¢5,8+08,8,9

123 DATA ¢25,0,0,04 625,05 ¢25:50,08,0
124 DATA @)02519102543;-2599102519:@
125 DATA 0,0, 025535 ¢25,050,85 25,0
126 DATA 050,085 425,053+D5 25,85 625
127 DATA 058,005 02550525535 ¢25, 25
128 DATA 0,0,0505085 025535 ¢25,0,0
129 DATA 9,8.,0,0:0,05 ¢25, «2558,0
130 DATA +5,-5,-5,-5,+10

READY
RUN
TRANSJ3

Q17 +1.88 =-0.02 -1.78 -~0B.46
-1.13 -1+48 -B3eB33 +0 .96 +3 .87

B.292 SEC.
READY



262 Computer Programming Chapter 5

EXERCISES

that in state 5 one almost but not quite breaks even. There is an overall
expected loss of 46 cents; thus one should nor agree to play the game starting
at state 5.

Although we gave this application an interpretation as a game, there are
many other interpretations of a Markov chain game. There are processes
in nature that are described by absorbing Markov chains where one can
in a natural way assign a “value” to ending up at a given terminal. Here
the expected payoff has a natural interpretation. There is also a method
for computing voltages in a simple electric circuit using this technique. (See
Finite Mathematics with Business Applications.) Inrecentyears Markov chains
have acquired considerable importance in applications to many sciences.
It is therefore interesting to see how easy it is to compute fundamental
quantities for Markov chains by means of a high-speed computer.

Only Exercises 5-12 require the use of a computer.

L. Vectors in BASIC are column vectors, but a matrix of one row may
be used as a row vector. Write a program to read a row vector and
a column vector, of four components each, and to compute their
product.

2. If A is probability row vector, and if it is repeatedly multiplied on the
right by a regular transition matrix P, it will approach the fixed vector.
(See Chapter 4, Section 7.) Write a program to carry out this process.

3. For a transient chain, N may be computed as the sum of the infinite
series

N=I1+0+Q>+03+....

Write a program to compute the first 21 terms of this series.

4. Write a program which, for an absorbing Markov chain, will compute
Q and R from N and B. [Hint: Compute N-1]
5. Compute powers of the transition matrix

d 2 3 4
4 3 2 .
F= 3 1 4 2
2 4 1 3
to find the fixed vector.
6. Compute powers of the transition matrix
0 3 0 7
S5 0 5 0
P=lo 6 0 4
2 0 8 0

and explain the result.
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7. Let h be an arbitrary column vector of three components. Multiply

it repeatedly by the OZ transition matrix and observe that it tends

to a constant vector. Interpret the constant.

Try out the program of Exercise 2 for the Land of Oz.

RUN the program of Exercise 4 to verify that it produces Q and R

correctly.

10. Apply the program TRANS to Exercise 6 of Chapter 4, Section 8.

11. Modify the program TRANS to verify the identity QB = B — R.

12.  Design your own Markov chain game and compute the expected values
for various starting positions.

\©

7 LINEAR EQUATIONS

The purpose of this section is to translate the flow diagram of Figure 5 in
Section 5 of Chapter 4 for the solution of linear equations into a computer
program. We shall first do this in a straightforward manner and show that
the program reproduces the results of Chapter 4, Section 5. However, we
shall then note that the program is inadequate; this will give us an opportu-
nity to consider one of the deeper problems of computer programming—
namely, the question of numerical accuracy. We shall assume that there
is no variable all of whose coefficients are O.

The program LINEQU is designed to follow Figure 5 (Chapter 4). Boxes
1-6 correspond to blocks of instructions starting at lines 100,200, 300,
400, 500, and 600. Box 7 is combined with box 2, and box 8 with box 5.
For easy identification each block of instructions starts with a REM (or
“remark”) statement. Such a REM statement is for the convenience of the
programmer and is ignored by the computer. LINEQU is designed to solve
M equations in N unknowns. We start by saving space for our list and table,
reading M and N, and then reading the tableau T of coefficients. It should
be noted that T has N + 1 columns since it contains not only the coefficients
of the left-hand side of the equations but also the numbers on the right-hand
side.

In the remainder of the program | and J will be the subscripts corre-
sponding to the pivot. The auxiliary variables |1 and J1 are used as running
subscripts for rows and columns. The process consists of choosing a pivot
in each row and operating with it; this loop starts at line 100 and ends at
line 500. Lines 200-220 search for a nonzero element in row I. If such an
element is found, we jump to line 300. It should be noted that as we jump
out of the loop of lines 200-220, the subscript J is correctly set for the pivot.
If we complete the entire loop, then the left-hand side of the equation is
zero. In line 230 we check whether the right-hand side is also zero. If it
is not, we jump to line 900 and type out “THERE IS NO SOLUTION.”

At line 300 we note what the pivot is. We also put into the list P the
subscript of the variable we pivoted on. This will make it much easier to
identify the solution of the problem. It should be noted that if the equation
was identically equal to zero, and hence could be ignored, then at line 240
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B LINEQU

5

DIM T(208,21),P(283)

18 READ Mu,N
28 MAT READ T(M,N+1)

29

120
112
123
200
205
210
228
230
248
258
260
320
302
385
319
320
330
349
400
485
419
428
432
440
450
460
479
508
513
524
622
685
612
620
625
630
640
645
650
660

REM START MAIN LQOOP
FOR I =1 TO M

REM FIND PIVOT

FOR J =1 TO N

IF T(l,dJd) <> @ THEN 300
NEXT J

IF TCILN+1) <> @ THEN 9020
LET P(I) = 0

GOTO 509

REM DIVIDE BY PIVOT
LET P = T(I.,J)

LET P(I) = J

FOR J! =1 TO N+1l

LET T(I,Jd1) = T(1l,Jl)/P
NEXT dJl

REM SUBTRACT MULTIPLES OF ROV

FOR Il =1 TO M

IF Il = 1 THEN 460

LET C = T(11.,4J)

FOR Jl =1 TO N+l

LET TCIl,Jd1) = T(I1,J1) = CxT(Il,J1)
NEXT Jl1

NEXT Il

REM CLOSE MAIN LOOP
NEXT 1

REM PRINT ANSVWERS

FOR I =1 TO M

LET P = P(I)

IF P = @ THEN 790

LET B = T(I,N+1)

PRINT "X"JSTRS(P)3'" = ";STR$(B);
FOR J =1 TO N

IF J = P THEN 699

LET C = T(I,dJd)

IF C = 8 THEN 690
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665 IF C<@ THEN 6890

678 PRINT * - '

675 GOTO 687

688 LET C = -C

685 PRINT " + '

687 PRINT STR$(CI;"*x"3"X"3;STR$(J);
690 NEXT J

708 PRINT

798 NEXT 1

860 GOTO 999

990 PRINT "THERE 1S NO SOLUTION.'
985

913 DATA 3,3

923 DATA 1,4,3,1
921 DATA 2,5,4,4
922 DATA 1,-3,-2,5
999 END

READY
RUN
LINEQU
X1

X2
X3

3e
-2,
2

B.166 SEC.
READY

we entered a zero into the list of pivots. Lines 310-330 complete this
particular box of the flow diagram by dividing all coefficients in this row
of the tableau by the pivot P.

We must now subtract suitable multiples of the pivotal row from the other
rows. This is accomplished in lines 400-460. The subscript 11 will run
through all the rows; however, on line 410 we make sure that we skip over
the pivotal row. C is equated to the appropriate multiplier and the subtrac-
tion is carried out in the loop in lines 430-450. When this double loop is
completed, on line 500 we go on to the next row. It should be noted that
the entire heart of the program is contained in lines 100-500, a total of only
20 instructions in BASIC.

The answers are printed in the loop of lines 600-790. This piece of code
could be much simpler except for two complications: First, we want to have
a nice format for the answer. Second, we want to handle not only the case
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of a unique solution but find all possible solutions in case there are infinitely
many of them. To obtain a nice-looking form for the answers, we need to
introduce an additional feature of BASIC. (It should be noted that there
are many other advanced features of BASIC not covered in this book.)
When BASIC prints the numerical value of a variable, it either starts with
a minus sign or a blank and places a blank after the number. This is very
convenient when we simply want to print a list of numbers one after the
other. However, it spoils the output when we want to print, for example,
“X5.” But writing the string command “STR$(P)” will print a numerical
value of P without initial or trailing blanks. (This command is not available
in all versions of BASIC.)

If the solution were always unique, the output would be accomplished
by the six instructions in lines 600-630 and 790. We look at each equation
once, and look up in the list of pivots what the subscript P of the pivot was.
If this is 0, then the equation is identically 0 and therefore can be ignored.
Otherwise B is the value of the variable and, on line 630, we print out an
answer that may look like “X5 = 3.2.” Here is where we see the advantage
of having remembered the element we pivoted on. Its coefficient ends up
being 1, and hence the right-hand side of the equation is its value.

The loop in lines 640-690 handles the case of infinitely many solutions.
If the solution is not unique, then variables other than the pivot are left
over with nonzero coefficients. These variables may be given arbitrary
values. We usually indicate this by “bringing the variable to the right-hand
side.” Thus we search in the loop to see whether any variable other than
the pivot has a nonzero coefficient. If it does, we print it with a suitable
coeflicient after the value we have already printed on the right-hand side.
It should be noted that we had to test on line 665 whether the coefficient
was positive or negative and the two cases are treated separately. It is left
as an exercise for the reader to step through this part of the program by

hand.
928 DATA 1,-2,-3,2
921 DATA 1,-4,-13,14
922 DATA -3,5,4,0
READY
RUN

Bl LINEQU2

Xl = =19 - 7%X3
X2 = =6 = 5x%X3

@.153 SEC.
READY
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The data in LINEQU is taken from Example 1 in Section 5 of Chapter
4. The printed answer agrees with the answer found earlier.

To show that the program also works in the case of infinitely many
solutions or no solutions, we change the data to those of Examples 2 and
3 (of Section 5 in Chapter 4) respectively. These are shown in LINEQU2
and LINEQUS. It should be noted that the output format for the case of
infinitely many solutions is very easily readable. It shows that X3 may take
on any value and it indicates what the corresponding values of X1 and X2
must be.

922 DATA -3,5,4.,2
READY

RUN

LINEQU3

THERE IS NO SOLUTION.

B+167 SEC.
READY

Next we try out the program with a larger data base. In LINEQU4 we
have four equations in five unknowns. The result seems reasonable; indeed,

913 DATA 4,5

920 DATA 3,2,1,2,3,11

921 DATA =-1,-1,-2,1,1,-6
922 DATA 1,2,3,4,5,3

923 DATA 2,2,0,8,108,2

READY
RUN
LINEQU4

X1 45 + Je5%X4

X2 = =le = Te5%X4
X3 = 1 + 2.5%X4
XS = =0@.5

d.179 SEC.,

READY
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if we check it all the indicated solutions are correct. However, a more careful
check will show that we have failed to find all the solutions! We have run
into one of the subtleties of computer programming: a program that to all
appearances is correct produces incorrect results. The problem is one of
round-off errors. When this happens, one must do troubleshooting on the
computer program, or as it is commonly phrased, one must “debug” it. A
very useful procedure is to ask the computer to print out not just the final
solution but also the intermediate steps. This may be accomplished by
replacing line 500 by:

500 MAT PRINT T;

With this change the tableau will be printed after each iteration. A look
at the output would indicate that something went wrong between the third
and fourth iterations. The last line in the third iteration would appear as
follows:

2X 1077 x X5 = —1x 1077

From this the computer concludes that X5 equals —0.5. However, the very
small numbers appearing in this equation represent round-off errors and
should actually be zero. The reason for round-off errors is the fact that a
computer can only carry a fraction to a limited number of decimal places
(usually six to nine). Furthermore, it works with a number system to base
2. Whether a rounding is necessary depends on the base. Therefore one
must anticipate that in hand calculations where no round-off error appears,
one may appear on the computer, or vice versa. In this particular case this
very minute round-off error changes the whole nature of the solution. The
equation should actually be 0 = 0, and therefore X5 should be available
as a variable whose value may be chosen arbitrarily. Therefore, due to a
minute error, we lost infinitely many available solutions.

The lesson that we learn is that if a variable’s value was computed through
complicated calculation, we cannot assume that a 0 will come out to be
exactly 0. This forces us to modify lines 210, 230, and 660. We shall assume
that any sufficiently small number is produced by a round-off error and
should really be a 0. Of course, the question is just what does “sufficiently
small” mean? This is a deep and difficult question, and there is no uni-
versally satisfactory answer to it. For any proposed solution to this problem
one can find a set of equations for which the program will produce the wrong
results. We shall, however, show one quite common solution to this dilemma
that will handle “normal” cases. Our assumption will be that any coeflicient
that turns out to be less than 107¢ is a round-off error and should be 0.

Thus on line 660 instead of asking whether the coefficient C is equal to
0, we shall ask whether its absolute value is less than 1076, In BASIC one
computes the absolute value of C by writing “ABS(C).” The corresponding
corrections must also be made on line 210 and line 230. We show these
corrections and the corrected run in LINEQUS. This time we have found
all the solutions to the problem.
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219 IF ABS(T(I1,J)) > 1E-6 THEN 300
230 IF ABS(T(I,N+1)) > lE-6 THEN 920

668 IF ABS(C) < 1E-6 THEN 690

READY

RUN

LINEQUS

Xl = 6«5 + 3e5%xX4 + VIR 3:45)
X2 = =5.5 = TeS5%X4 - 94%X5
X3 = 205 + 205*)(4 + 30*X5
2202 SEC.

READY

The resulting program is of quite general use in solving linear equations.
The exercises will show modifications of this program that may be used for
other purposes—e.g., inverting a matrix. We again see that a relatively short
BASIC program, and surprisingly short computing times, can solve impor-
tant practical problems.

This section has also given the reader a first taste of the complex field
of finding numerical solutions to mathematical problems. This field is known
as numerical analysis. 1t treats the wide variety of difficulties one runs into
in finding numerical solutions, and also searches for the most efficient
numerical methods of solving a variety of problems.

Only Exercises 4-10 require the use of a computer.

L. Modify the program LINEQUS to solve simultaneously two sets of
equations with identical left sides but different right sides.

2. If the coeflicients of the left side of a set of equations form an n X n
matrix A4, and if one successfully pivots on every row (no left side
becomes identically zero), then 41 exists. This is true irrespective of
the right side of the equation. Modify LINEQUS5 to serve as a test
of whether a given square matrix has an inverse.

3. Write a program to invert a square matrix using the method of Section
6 in Chapter 4.

4. Use LINEQUS to solve the equations of Exercise 5 in Section 5 of
Chapter 4.
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5. Use LINEQUS to solve the following equations:

4X, —3X, +2X; — X, + 5X, = -10
X —2X, +3X;+ X, — X; =12
2X, + X, — X34+ 2X, + 5X, = —1
3X; = 2X, + X3 — X, +2X; = -6
2X, — X, +2X; — X, + X, =0.

[Ans. 1,2,3,4, —2]]

6. Use LINEQUS on Exercise 12 of Section 5 in Chapter 4 for several
values of k. Check the answer there given.

7. RUN the program of Exercise 1 using the DATA of LINEQUZ2 and
LINEQUS.

8. Apply the program of Exercise 2 to the matrices in Exercise 3 of Section
6 in Chapter 4.

9. Apply the program of Exercise 3 to the matrices in Exercise 1 of Section
6 in Chapter 4.

10. Use the program of Exercise 3 to invert the following matrix:

9 -1 -2 -3 -1

—.2 8 =1 0 -2
A=|-2 =2 J -1 =1}

—.1 0 -2 g -3

-1 -3 -2 -1 9
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INTRODUCTION

In the study of probability theory, we assign a probability measure to the
possible outcomes of an experiment. We then make probability predictions
relating to the experiment. For example, a coin is tossed ten times. We
assign an equal weight to all possible sequences of heads and tails. We then
compute the probability that exactly six heads turn up. We find that this

probability is (160) *($)' = 205. Statistics deals with the inverse problem.

We do not know the basic probability measure, but we are able to carry
out certain chance experiments, from which we obtain information about
the underlying measure.

As an example, assume that in a large population each person holds an
opinion on the question of legalizing marijuana. They either favor this or
are opposed. We choose at random 20 people and ask them their opinions.
Choosing “at random” means that we have an equal chance of obtaining
any group of 20 people from the entire population. If the size of the
population is large, the effect of knowing certain of the opinions will not
significantly change the chance that the next person sampled will say “yes.”
Thus it is reasonable to assume that the underlying chance model is an
independent trials model with probability p for success (answer “yes”) on
each trial, where p is the propornon in the entire population that favor
legalizing marijuana.

On the basis of the sample we would like to estimate p. The intuitive
estimate for the parameter p would be simply the fraction p of persons in
the sample that say “yes.” In Figure 1 we show the result of drawing ten
samples 0of 20 each in a case where p = 4. While our estimates are in general
near the true value .4, our worst estimate is .2, only half the true value.

273
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Figure 1

Chapter 6
Number
Experiment of “yes”
number answers Fraction p
1 6 3
2 8 4
3 9 45
4 4 2
5 7 35
6 6 3
7 6 3
8 9 45
9 5 25
10 7 35

From the binomial measure (see Chapter 3, Section 8) we can calculate
the exact probability that the observed fraction p will lie in a given range.
For example, the values of f(20, x; .4) for x between 6 and 10 add up to
.747. Thus with probability .747 our estimate will be between .3 and .5.

We recall from our study of independent trials that the expected number
of successes in a sample of size n is np and the standard deviation for the
number of successes is \/tﬁ (see Chapter 3, Section 9). Further, the
probability of a deviation of more than 3 standard deviations from the
expected number is very unlikely (.001). Thus if we increase the sample
size to 2400 the expected number of “yes” responses would be 960 and the

standard deviation V2400 X .4 X .6 = 24. Thus our estimate would with

960 — 72 960 + 72 )
a0 — .37 and 00 = .437 in the

high probability lie between

interval [.37, .43].

This suggests that when p is unknown we should try to estimate from
the sample an interval within which we believe the true p lies. We shall
show in Section 4 that this can indeed be done.

In some situations we need to make a choice between two estimates for
p. For example, the incidence of colds may be known and we wish to test
the claim that this can be decreased if people take large doses of vitamin
C. Thus we have to determine whether the incidence of colds among those
taking vitamin C is the same as for the whole population or a smaller value.
Or a manufacturer may assume that his production process is operating
correctly if it produces no more than 1 percent defective items but is not
operating correctly if it produces as many as 5 percent defective items. He
is interested in devising a test to see if the system is operating correctly.

Perhaps the largest statistical test ever conducted was the test designed
in the early ’50s to see if the vaccine developed by Jonas Salk would
effectively cut down the incidence of polio. The average incidence of polio
at that time was about 50 per 100,000 persons. It was not expected that
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the vaccine would be 100 percent effective, but it was hoped that it would
cut down the incidence of polio by at least 50 percent. Thus we can view
the experiment as a test of the hypothesis that a person vaccinated will have
a significantly lower probability of being afflicted with polio than a person
not vaccinated. This type of hypothesis testing will be studied in Section 3.

In applying probability models, predictions from the model are only
reliable if the assumptions made in describing the model are reasonably
met. Similarly, our statistical inferences are based upon certain assump-
tions. We have already mentioned the assumption of randomness in a
sample. There are many pitfalls that one can fall into if care is not taken.
Perhaps the most famous example of this is the celebrated prediction of
the Literary Digest that Alfred Landon would defeat Franklin Roosevelt
in the 1936 presidential election. In this poll the sample was chosen from
names obtained from telephone books and car registrations. In 1936 this
was not at all a “random sample” and the prediction was badly in error.
Opinion polls are still trying to recover from this blunder. We shall discuss
this and other pitfalls in more detail in Section 5.

Before we continue our discussion of statistics we shall need one important
result from probability theory called the central limit theorem. This will
be studied in the next section.

For use in the exercises and in later sections we show the probabilities
for ten independent trials and various values of p in Figure 2.

Table of values of f(10, x; p)

X 0.1 0.25 0.4 0.5 0.6 0.75 0.9

0 0.349 0.056 0.006 0.001 0 0 0

1 0.387 0.188 0.040 0.010 0.002 0 0

2 0.194 0.282 0.121 0.044 0011 0 0

3 0.057 0.250 0.215 0.117 0.042 0.003 0

4 0.011 0.146 0.251 0.205 0.111 0.016 0

5 0.001 0.058 0.201 0.246 0.201 0.058 0.001
6 0 0.016 0.111 0.205 0.251 0.146 0.011
7 0 0.003 0.042 0.117 0.215 0.250 0.057
8 0 0 0011 0.044 0.121 0.282 0.194
9 0 0 0.002 0.010 0.040 0.188 0.387
10 0 0 0 0.001 0.006 0.056 0.349

L. A random sample of ten persons is chosen in New York City at a time
when 60 percent are in favor of Kelly for mayor and 40 percent are
in favor of McGrath. What is the probability that the sample will show
less than 50 percent in favor of Kelly? [Ans. .166.]

2. An independent trials experiment is repeated ten times with six suc-
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cesses. Which value of p in Figure 2 gives the highest probability of
obtaining the outcome of six successes—i.e., the observed outcome?
In Exercise 1 assume that the sample size is increased to 9600. Find
the expected number and the standard deviation for the number of
those in favor of Kelly. What could we say about the range of our
estimates if the number of “yes” responses does not deviate by more
than three standard deviations from the expected number?
In a city there are 100,000 persons who are going to vote on the
question of legalizing marijuana. Of these, 90,000 are under 50 years
of age and 10,000 are 50 or over. Assume that 75 percent of those
under 50 favor legalizing marijuana and of those 50 or older only 20
percent are in favor. What is the probability that a person chosen at
random will favor legalizing marijuana? In a sample of 100 chosen
at random what is the expected number that will answer “yes”? What
is the expected number if a random sample of 100 is chosen, 50 from
each of the two groups?
In an experiment where the probability distribution depends on a single
number, or parameter, the following is a standard method of estimating
this parameter. Choose the value of the parameter which gives the
highest probability of obtaining the observed result. This method is
called the method of maximum likelihood. On the basis of the result
of Exercise 2, what would you guess to be the maximum likelihood
estimator for an independent trials experiment for the probability p
of success when x successes are observed in n trials?
A box has ten items, eight good and two defective. A sample of five
is chosen with replacement—that is, after each item is chosen and
inspected it is replaced (i.e., put back) before the next item is drawn.
Find the probability that the sample has exactly one defective item.

[Ans. 410.]
Answer the same question as in Exercise 6 if the sampling is done
without replacement. That is, a set of five is chosen at random from
all possible subsets of five items of the box. Find the probability that
the sample has exactly one defective item and compare your answer
to that obtained in Exercise 6.

(1))
1/\4

[Ans. %(10) = .556.]
5
A sample of three items is chosen from a box of 1000 of which 80
percent are defective. Show that the probability of obtaining exactly
one defective item is essentially the same whether we sample with or
without replacement.

Assume that the incidence of lung cancer among smokers is estimated
to be 20 per 100,000 and among heavy smokers to be 200 per 100,000.
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Estimate the probability that a person who smokes will not get lung
cancer and compare this with the estimate for a heavy smoker.
[Ans. 9998, .998.]

10. A hardware store receives boxes of 50 bolts. Experience has shown
that they occasionally get a bad lot. When they get a box they choose
two bolts at random and if either is defective they return the box.
Assume that a box has five defective bolts. What is the probability
that the box will be sent back?

11. Referring to Exercise 10, assume that the store receives shipments of
ten boxes each with 50 bolts. It combines the 500 bolts and then
chooses two bolts at random; if either is defective it sends back the
entire lot. If the shipment contains 50 defectives in all, is the proba-
bility of the lot being returned larger than, equal to, or smaller than
the probability in Exercise 10 of a single box with five defectives being
returned? -

12. Toss a coin 100 times. In each group of ten tosses count the number
of heads. Compare the results with Figure 2.

13. Toss a pair of coins 100 times. In each group of ten tosses count
the number of times two heads turn up. Compare the results with
Figure 2.

2 THE CENTRAL LIMIT THEOREM

As we have indicated, to go further in our discussion of statistics we shall
need an important theorem of probability theory called the central limit
theorem. While this is a very general theorem, we shall discuss it in this
section only as it applies to independent trials processes.

As usual, let p be the probability of success on a trial and f(n, p; x) the
probability of exactly x successes in n trials.

In Figure 3 we have plotted bar graphs which represent f(n, .3; x) for
n = 10, 50, 100, and 200. We note first of all that the graphs are drifting
off to the right. This is not surprising, since their peaks occur at np, which
is steadily increasing. We also note that while the total area is always 1,
this area becomes more and more spread out.

We want to redraw these graphs in a manner that prevents the drifting
and the spreading out. First of all, we replace x by x — np, assuring that
our peak always occurs at 0. Next we introduce a new unit for measuring
the deviation, which depends on #n, and which gives comparable scales. As
we saw in Chapter 3, Section 9, the standard deviation \/@7] 1s such a unit.

We must still insure that probabilities are represented by areas in the
graph. In Figure 3 this is achieved by having a unit base for each rectangle,
and having the probability f(n, p; x) as height. Since we are now represent-
ing a standard deviation as a single unit on the horizontal axis, we must
take f(n, p; x)\Vnpg as the heights of our rectangles. The resulting curves
for n = 50 and n = 200 are shown in Figures 4 and 5, respectively.
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34+
n=10,p=.3
24
1-
10 20 30 40
N n=50,p=23
0 10 20 30 40
14+ n=100,p=.3
0 10 20 30 40 50 60
d+ n=200,p=23
0 10 20 30 40 50 60 70 80

We note that the two figures look very much alike. We have also shown
in Figure 5 that it can be approximated by a bell-shaped curve. This curve
represents the function®

6-12/2

V27 ’

and is known as the normal curve. 1tis a fundamental theorem of probability
theory that as n increases, the appropriately rescaled bargraphs more and
more closely approach the normal curve. The theorem is known as the
central limit theorem, and we have illustrated it graphically.

More precisely, the theorem states that for any two numbers a and b,
with a < b,

Jx) =

*The number e is the base of natural logarithms and its numerical value 1s 2.71828182. ...
Its derivation and most important properties are discussed in most calculus books.
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n=50,p=.3
Normalized

-4 —3 -2 - 0 1 2 3 4
Figure 4
X —np
Pr [a < — b]
Vnpg

approaches the area under the normal curve between a and b, as n increases.
This theorem is particularly interesting in that the normal curve is symmetric
about 0, while f(n, p; x) is symmetric about the expected value np only for
the case p = L. It should also be noted that we always arrive at the same
normal curve, no matter what the value of p is.

[n Figure 6 we give a table for the area under the normal curve between
0 and d. Since the total area is 1, and since it is symmetric about the origin,
we can compute arbitrary areas from this table. For example, suppose that

n=200,p=.3
Normalized

x 60
V200 (.3) (.7) —~3 I~2 I -1 f
45 50 55 60 65 70 75

-0
———p
—
—
[\
.
w 4

Figure 5
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_—~ A(d) = area of
shaded region

0 d

d A d  A@d) d  Ad) d A(d)
0 .000 1.1 364 2.1 482 3.1 .4990
1 040 12 385 22 486 32 4993
2 079 13 403 23 489 33 .4995
3 118 14 419 24 492 34 4997
4 155 1.5 433 25 494 35 4998
5 191 1.6 445 26 495 36 4998
6 226 17 455 27 497 37 4999
7 23% 1.8 464 28 497 38 49993
8 288 19 471 29 498 39 49995
9 316 20 477 30 4987 40 49997
10 341 50 49999997

we wish the area between —1 and +2. The area between 0 and 2 is given
in the table as .477. The area between —1 and 0 is the same as between
0 and 1, and hence is given as .341. Thus the total area is .818. The area
outside the interval (—1,2) is then 1 — 818 = .182.

Let us find the probability that s differs from the expected value np by as

much as d standard deviations.

X —np
hpq

and hence the approximate answer should be the area outside the interval
(—d, d) under the normal curve. For d = 1,2, 3 we obtain

1—(2x341) =318, 1—(2X.477) = .046

Prljx — np| > dVnpqg] = Pr[ \ > d],

and
1 — (2 X .4987) = .0026,

respectively. These agree with the values given in Chapter 3, Section 9, to
within rounding errors. In fact, the central limit theorem is the basis of
those estimates.

In Chapter 3, Section 9, we considered the example of tossing a coin 10,000
times. The expected number of heads that turn up is 5000, and the standard
deviation is V10,000-4-3 = 50. We observed that the probability of a
deviation of more than two standard deviations (or 100) is very unlikely.




Section 2

EXAMPLE 3

EXERCISES

Statistics 281

On the other hand, consider the probability of a deviation of less than .1
standard deviation—that is, of a deviation of less than 5. The area from
0 to .1 under the normal curve is .040, and hence the probability of a
deviation from 5000 of less than 5 is approximately .08. Thus, while a
deviation of 100 is very unlikely, it is also very unlikely that a deviation
of less than 5 will occur.

The normal approximation can be used to estimate the individual proba-
bility f(n, x; p) for large n. For example, let us estimate f(200, 65; .3). The
graph of the probabilities (200, x; .3) was given in Figure 5 together with
the normal approximation. The desired probability is the area of the bar
corresponding to x = 65. An inspection of the graph suggests that we should
take the area under the normal curve between 64.5 and 65.5 as an estimate
for this probability. In normalized units this is the area between

45 5.5
- d —— |
V20037 T V200(3)(.7)

or between .6944 and .8487. Our table is not fine enough to find this area,
but from more complete tables, or by machine computation, this area may
be found to be .046 to three decimal places. The exact value to three decimal
places is .045. This procedure gives us a good estimate.

If we check all of the values of £(200, x; .3) we find in each case that we
would make an error of at most .001 by using the normal approximation.
There is unfortunately no simple way to estimate the error caused by the
use of the central limit theorem. The error will clearly depend upon how
large n is, but it also depends upon how near p is to 0 or 1. The greatest
accuracy occurs when p is near 4.

L. Let x be the number of successes in n trials of an independent trials

process with probability p for success. Let x* = =%  For large
hpq
n estimate the following probabilities:
(a) Prix* < -235] [Ans. .006.]
(b) Pr[x*<2.5)
(¢) Prix*> -3].
(d) Pri—1.5 < x*<1] [Ans. .774.]
2. A coin is biased in such a way that a head comes up with probability
8 on a single toss. Use the normal approximation to estimate the
probability that in a million tosses there are more than 800,400 heads.
3. Plot a graph of the probabilities £(10, x; .5). Plot a graph also of the
normalized probabilities as in Figures 4 and 5.
4. An ordinary coin is tossed 1 million times. Let x be the number of
heads which turn up. Estimate the following probabilities:
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(a) Pr[499,500 < x < 500,500].
(b) Pr[499,000 < x < 501,000].
(c) Pr[498,500 < x < 501,500].

[Ans. .682;.954; 997 (approximate answers).]
Assume that a baseball player has probability .37 of getting a hit each
time he comes to bat. Find the probability of getting an average of
.388 or better if he comes to bat 300 times during the season. (In 1957
Ted Williams had a batting average of .388 and Mickey Mantle had
an average of .353. If we assume this difference is due to chance, we
may estimate the probability of a hit as the combined average, which
is about .37.) [Ans. .242.]
A true-false examination has 48 questions. Assume that the probability
that a given student knows the answer to any one question is 3. A
passing score is 30 or better. Estimate the probability that the student
will fail the exam.
In Example 3 of Section 9 in Chapter 3, assume that the school decides
to admit 1296 students. Estimate the probability that they will have
to have additional dormitory space. [Ans. Approximately .115.]
Peter and Paul each have 20 pennies. They each toss a coin and Peter
wins a penny if his coin matches Paul’s, otherwise he loses a penny;
they do this 400 times, keeping score but not paying until the 400
matches are over. What is the probability that one of the players will
not be able to pay? Answer the same question for the case in which
Peter has 10 pennies and Paul has 30.
In tossing a coin 100 times, the probability of getting 50 heads is, to
three decimal places, .080. Estimate this same probability using the
central limit theorem. [Ans. .080.]
A standard medicine has been found to be effective in 80 percent of
the cases where it is used. A new medicine for the same purpose is
found to be effective in 90 of the first 100 patients on which the
medicine is used. Could this be taken as good evidence that the new
medication is better than the old?
Two railroads are competing for the passenger traffic of 1000 passengers
by operating similar trains at the same hour. If a given passenger is
equally likely to choose one train as the other, how many seats should
the railroad provide if it wants to be sure that its seating capacity is
sufficient in 99 out of 100 cases? [Ans. 537.]

3 TEST OF HYPOTHESES

We turn now to our first typical statistical problem. As we indicated in the
introductory section, our problem is often to decide between two or more
competing probability measures. We shall illustrate this in terms of an
example.
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EXAMPLE  Smith claims that he has the ability to distinguish ale from beer and has

bet Jones a dollar to that effect. Now Smith does not mean that he can
distinguish beer from ale with 100 percent accuracy, but rather that he
believes that he can distinguish them a proportion of the time which is
significantly greater than 3.

Assume that it is possible to assign a number p which represents the
probability that Smith can pick out the ale from a pair of glasses, one
containing ale and one beer. We identify p = } with his having no ability,
p > % with his having some ability, and p < } with his being able to distin-
guish, but having the wrong idea which is the ale. If we knew the value
of p, we would award the dollar to Jones if p were <3, and to Smith if
p were >1. As it stands, we have no knowledge of p and thus cannot make
a decision. We perform an experiment and make a decision as follows.

Smith is given a pair of glasses, one containing ale and the other beer,
and is asked to identify which is the ale. This procedure is repeated ten
times, and the number of correct identifications is noted. If the number
correct is at least eight, we award the dollar to Smith, and if it is less than
eight, we award the dollar to Jones.

We now have a definite procedure and shall examine this procedure from
both Jones’s and Smith’s points of view. We can make two kinds of errors.
We may award the dollar to Smith when in fact the appropriate value of
pis <4, or we may award the dollar to Jones when the appropriate value
for p is >]. There is no way that these errors can be completely avoided.
We hope that our procedure is such that each of the bettors will be convinced
that, if he is right, he will very likely win the bet.

Jones believes that the true value of p is 4. We shall calculate the proba-
bility of Jones winning the bet if this is indeed true. We assume that the
individual tests are independent of each other and all have the same proba-
bility } for success. (This assumption will be unreasonable if the glasses
are too large.) We have then an independent trials process with p =1 to
describe the entire experiment. The probability that Jones will win the bet
is the probability that Smith gets fewer than eight correct. From the table
in Figure 2 we compute that this probability is approximately .945. Thus
Jones sees that, if he is right, it is very likely that he will win the bet.

Smith, on the other hand, believes that P 1s significantly greater than 3,
If he believes that p is as high as .9, we see from Figure 2 that the probability
of his getting eight or more correct is .930. Then both men will be satisfied
by the bet.

Suppose, however, that Smith thinks the value of p is only about .75,
Then the probability that he will get eight or more correct and thus win
the bet is .526. There is then only an approximately even chance that the
experiment will discover his abilities, and he probably will not be satisfied
with this. If Smith really thinks his ability is represented by a p value of
about £, we would have to devise a different method of awarding the dollar.
We might, for example, propose that Smith win the bet if he gets seven
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or more correct. Then, if he has probability % of being correct on a single
trial, the probability that he will win the bet is approximately .776. If p = 4,
the probability that Jones will win the bet is about .828 under this new
arrangement. Jones’s chances of winning are thus decreased, but Smith may
be able to convince him that it is a fairer arrangement than the first proce-
dure.

In the theory of hypothesis testing it is common to refer to one hypothesis,
say p = 3, as the null hypothesis H,, and an alternate hypothesis as H,.

In the above example, it was possible to make two kinds of errors. The
probability of making these errors depended on the way we designed the
experiment and the method we used for the required decision. In some
cases we are not too worried about the errors and can make a relatively
simple experiment. In other cases, errors are very important, and the
experiment must be designed with that fact in mind. For example, the
possibility of error 1s certainly important in the case that a vaccine for a
given disease is proposed and the statistician is asked to help in deciding
whether or not it should be used. In this case it might be assumed that there
is a certain probability p that a person will get the disease if not vaccinated
and a probability r that he will get it if he is vaccinated. If we have some
knowledge of the approximate value of p, we are then led to construct an
experiment to decide whether r is greater than p, equal to p, or less than
p- The first case would be interpreted to mean that the vaccine actually
tends to produce the disease, the second that it has no eflect, and the third
that it prevents the disease; so that we can make three kinds of errors. We
could recommend acceptance when it is actually harmful, we could recom-
mend acceptance when it has no effect, or finally we could reject it when
it actually is effective. The first and third might result in the loss of lives,
the second in the loss of time and money of those administering the test.
Here it would certainly be important that the probability of the first and
third kinds of errors be made small. To see how it is possible to make the
probability of both errors small, we return to the case of Smith and Jones.

Suppose that, instead of demanding that Smith make at least eight correct
identifications out of ten trials, we insist that he make at least 60 correct
identifications out of 100 trials. (The glasses must now be very small.) Then,
if p =4, the probability that Jones wins the bet is about 98: so that we
are extremely unlikely to give the dollar to Smith when in fact it should
go to Jones. (If p <3 it is even more likely that Jones will win.) If p >4,
we can also calculate the probability that Smith will win the bet. These
probabilities are shown in the graph in Figure 7. The dashed curve gives
for comparison the corresponding probabilities for the test requiring eight
out of ten correct. Note that with 100 trials, if p is §, the probability that
Smith wins the bet is nearly 1, while in the case of eight out of ten, it was
only about 3. Thus in the case of 100 trials, it would be easy to convince
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Probability that Smith wins

both Smith and Jones that whichever one is correct is very likely to win
the bet.

Thus we see that the probability of both types of errors can be made
small at the expense of having a large number of experiments.

In applications it is important to have some estimate of the number of
experiments that are necessary to reduce the probabilities of errors to
acceptable levels. Assume, for example, that we are trying to decide for
an independent trials process whether the true probability is p, or p;.
Assume that p, < p,. We want to design a test so that the probability of
error under either hypothesis is at most . We choose a number s so that
the area under the normal curve beyond s is a. We perform n experiments.
If py is correct, the probability of the number of successes x exceeding the
expected number np,, by s standard deviations is a. That is, if p, is correct,
then

Prix > np, + sVnpyg,l = a.

On the other hand, if p, is correct, the probability that the number of
successes will be more than s standard deviations below the expected value
of np, is also a. That is, if p, is correct, then

Prix <np, —sVnp,q,] = a

Assume, then, that we can choose n so that

npo + SVApoGy < npy — SVAPyq,.

Then we can choose a value ¢ greater than the first number but such that
t — 1 is less than the second number. We accept py if x <t — 1 and p,
if x > ¢. The test will have a probability of error of at most a under either
hypothesis. We can achieve this inequality if

Vinpy + sVpoge < Vnp, — s\Vpq,

or

s[\/Po‘]o + \/plc/l]< i
P1 = Po
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or

n> 52 [ VPodo + VPids ]2‘
P1 = Po
For example, in our beer and ale example, assume that p, = .5 and

p1=.75. We would like to be 90 percent certain of being correct. Then
from Figure 6 (Section 2) we see that s = 1.3. Thus we must have

VIX S5+ VI5X 25
a5 -5

We would need only a moderate number of experiments, namely 24,
Then np, + sVnpyq, = 15.18 and np, — s\Vnp,q, = 15.24. Jones is 90
percent sure that Smith will have fewer than 16 correct guesses, while Smith
is 90 percent sure that he will have more than 15 correct guesses. Thus
we award the bet to Smith if he guesses correctly at least 16 times out of
24 experiments.

Consider, however, the Salk vaccine experiment. In this experiment we
want to test p, = .00025 against p; = .00050—that is, whether the vaccine
will reduce the incidence of polio from 50 to 25 per 100,000. We would
want a great deal of reliability for such a test. Let us choose s so that the
probability of error is less than .001. We can have this by choosing s = 3.1.
Then we must have

V00025 X 99975 + /0005 x .9995
00025

n> (1.3)2[ ]2 =235,

n> 3.1)2 X [ ] = 223.956.

In one of the major parts of the Salk vaccine experiment the vaccine was
given to 200,000 students. Of these vaccinated students 57 contracted polio.
In Exercise 10 you are asked to design an experiment to test the hypothesis
p1 = 00050 against the hypothesis p, = .00025.

1. Assume that in the beer and ale experiment Jones agrees to pay Smith
if Smith gets at least nine out of ten correct.
(a) Whatis the probability of Jones paying Smith even though Smith
cannot distinguish beer and ale, and guesses? [Ans. .011.]
(b) Suppose that Smith can distinguish with probability .9. What is
the probability of his not collecting from Jones? [Ans. .264.]
2. Suppose that in the beer and ale experiment Jones wishes the proba-
bility to be less than .1 that Smith will be paid if, in fact, he guesses.
How many of ten trials must he insist that Smith get correct to achieve
this?
3. In the analysis of the beer and ale experiment, we assume that the
various trials were independent. Discuss several ways that error can
enter, because of the nonindependence of the trials, and how this error
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can be eliminated. (For example, the glasses in which the beer and

ale were served might be distinguishable.)

Consider the following two procedures for testing Smith’s ability to

distinguish beer from ale.

(a) Four glasses are given at each trial, three containing beer and
one ale, and he is asked to pick out the one containing ale. This
procedure is repeated ten times. He must guess correctly seven
or more times.

(b) Ten glasses are given him, and he is told that five contain beer
and five ale, and he is asked to name the five which he believes
contain ale. He must choose all five correctly.

In each case, find the probability that Smith establishes his claim by

guessing. Is there any reason to prefer one test over the other?

[Ans. (a) .003; (b) .004.]
A testing service claims to have a method for predicting the order in
which a group of freshmen will finish in their scholastic record at the
end of college. The college agrees to try the method on a group of
five students, and says that it will adopt the method if, for these five
students, the prediction is either exactly correct or can be changed into
the correct order by interchanging one pair of adjacent men in the
predicted order. If the method is equivalent to simply guessing, what
is the probability that it will be accepted? [Ans. ]

The standard treatment for a certain disease leads to a cure in 1 of

the cases. It is claimed that a new treatment will result in a cure in

§ of the cases. The new treatment is to be tested on ten people having

the disease. If seven or more are cured, the new treatment will be

adopted. If three or fewer people are cured, the treatment will not
be considered further. If the number cured is four, five, or six, the
results will be called inconclusive, and a further study will be made.

Find the probabilities for each of these three alternatives first, under

the assumption that the new treatment has the same effectiveness as

the old, and second, under the assumption that the claim made for
the treatment is correct.

Three upperclassmen debate the intelligence of the freshmen class.

One claims that most freshmen (say 90 percent of them) are intelligent.

A second claims that very few (say 10 percent) of them are intelligent,

while a third one claims that a freshman is just as likely to be intelligent

as not. They administer an intelligence test to ten freshmen, classifying
them as intelligent or not. They agree that the first man wins the bet
if eight or more are intelligent, the second if two or fewer, the third
in all other cases. For each man, calculate the probability that he wins

the bet, if he is right. [Ans. 930, 930, .890.]

Ten men take a test with ten problems. Each man on each question

has probability 4 of being right, if he does not cheat. The instructor

determines the number of students who get each problem correct. If
he finds on four or more problems there are fewer than three or more
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than seven correct, he considers this convincing evidence of commu-
nication between the students. Give a justification for the procedure.
[Hinz: The table in Figure 2 must be used twice, once for the probability
of fewer than three or more than seven correct answers on a given
problem, and the second time to find the probability of this happening
on four or more problems.]

9. An instructor claims that a certain student knows only 70 percent of
the material. The student claims that he knows 85 percent. Design
a test that will settle the argument with probability .9,

[Ans. 50 questions, student must get 40 correct answers.]

10. Assume that the Salk vaccine is to be given to 225,000 students. It
is claimed that the probability of getting polio is <.00025 if vaccinated
and .00050 if not vaccinated. Design a test to decide between these
two alternatives. In the actual experiment there were 28 cases per
100,000 of polio among the 200,000 vaccinated. This would suggest
63 cases in 225,000 students. Would your test establish the claim that
the Salk vaccine was effective, if this few cases of polio occurred in
the experiment?

4 CONFIDENCE INTERVALS

Consider n independent trials with probability p for success on each trial.
We assume that we do not know p but want to make, on the basis of our
observations, some estimate of p. Let a be any number between 0 and 1.
Then from Figure 6 we can find a number s such that the area under the
normal curve beyond s is a/2. For example, if a = .05 then we can choose
s = 2. By the central limit theorem, if x is the number of successes, then

Pr[ X gs]::l —a.
hpq
This is the same as saying that
x/n—p ]
Pr[ — | <s|l=1 —a
vpq/n

Putting p = x/n, we have
Pr(p —pl <sVpg/n]=1—a.

Using the fact that pg < 1 for all p (see Exercise 9), we have
Pr{p—pl <s/2Vn]>1-a.

Thus, no matter what p is, with probability at least 1 — a, the true value
will not deviate from p by more than s/2V/n. We say then that

S §

D — <p<p+
N N~
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63
.59
67
65
.59
65
61
Sl
61
57
58
.59
61
.60
68
.68
.66
.56
.60
.63
Figure 8

.83
79
.87
.85
79
.85
81
1
81
a7
18
19
81
.80
.88
.88
.86
.76
.80
.83
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with confidence 1 — a. We call the interval

[ﬁ_zxjn"ﬁ+é\;;]

a 100(1 — a) percent confidence interval. For example, the 95 percent

1 1
confidence interval requires s = 2, and hence is [ -——,p+ ]
1 N
For example, if in 400 trials a drug is found effective 124 times or .31
of the time, the 95 percent confidence interval for p is

1 1

or [.26, 36]. The 99 percent confidence interval would be found by using
s = 2.6. This gives

26 26
3126 3y .26
[31 207 +40]’

or [.245, .375]. Of course, as we demand more confidence our prediction
i1s more conservative, i.e., the interval is larger.

Itis important to realize that the interval obtained depends upon the value
of p, which in turn depends upon the value of x. Thus p is a chance quantity.
We are assuming that the true value p, though unknown, is not a chance
quantity. Thus our confidence interval itself is a chance quantity which may
or may not cover the true value p. When we choose a 95 percent confidence
interval we mean that the probability is .95 that the interval will cover the
true value p. Thus by the law of large numbers we expect this to be the
case about 95 percent of the time.

In Figure 8 we give the results of computing the 95 percent confidence
intervals based upon several experiments with n = 100 trials for a true value
of p = .7. We carried out this experiment 20 times. It will be noted that
in each case the interval does include the true value, though sometimes just
barely. We should not have been surprised if in one or two cases it did
not.

The use of the inequality pg < 1 was for convenience and simplicity of
our computations. It results in slightly larger confidence intervals than are
necessary for a given confidence level. Without making this approximation
it is possible to transform the first inequality into an inequality about 7 to
obtain a more exact confidence interval (see Exercise 14).

As a second example of confidence intervals consider the following prob-
lem. In a small town lottery tickets numbered from 1 to N are being sold
weekly and a prize is given to the person who holds the ticket having the
lucky number drawn at random from the numbers from 1 to N. The value
of N is not publicly announced, but is the same every week. A man buys
lottery tickets for ten weeks, receiving numbers 27,46, 77, 85, 34, 24, 34,
46, 34, and 89. Before buying a ticket the following week, he wants to
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1
n (05)1/n
51 1.821
6 | 1.648
7] 1.534
8 | 1454
91 1.395
10 | 1.349
Figure 9
M | M/(051)
100 134
96 129
89 120
88 118
99 133
93 125
97 130
85 114
74 99
99 133
82 110
98 132
97 130
91 122
93 125
96 129
97 130
90 121
91 122
98 132
Figure 10
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estimate his chance of winning; i.e., he wants to estimate N. Of course he
knows that N is at least 89, the highest number that he has drawn.

Let us see how we would obtain confidence intervals for the unknown
“parameter” N. The man has in effect drawn a number from the N possible
numbers 7 times. Let M be the maximum of the numbers drawn. Then
for fixed » and N, M may be considered a chance quantity. For any A,

PrM < A] = (%)"

As before, let a be any number between 0 and 1. We can choose A so that
A = a"N. Then

1/n ANy
Pr{M < a'/"N] z(i#: a
or
M
pr[al/n SN]Z‘J
That is,

Pr[N<%]: l —a
a

Since M < N, we can write this as

M
Pr[M§N< al/n]: l —a.
Thus the interval [M, M/a'~"] has probability 1 — a of covering N and hence
is a 100(1 — a) percent confidence interval for N. In any given example,
for a 95 percent confidence interval, we choose a = 05 and hence
M/aV™ = 89 /(.5)/1° = 120.1. Hence the man can be 95 percent sure that
there are at most 120 lottery tickets.

For such calculations the table in Figure 9 is useful.

In Figure 10 we have indicated the result of twenty experiments with N
equal in each case to 100 and n = 10. We have computed the 95 percent
confidence intervals. In this case we see that one interval does not include
the true value of N. Thus the intervals include the true value of N precisely
95 percent of the time.

The Fish and Game Department is interested in estimating the number of
troutin a pond (which contains only trout). They take out a sample of 1000
fish and mark them. Later they take another sample of 1600 and find that
120 of them are marked. What is a reasonable estimate for the total number
of trout?

Let n be the unknown total. Since 1000 of them were marked, there is
probability p = 1000/n that a fish in the second sample will be marked.
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The observed fraction is p = 120/1600, and the 95 percent confidence
interval yields

120 1 o, o120 N 1
1600 /1600 == 1600 /1600
or
3 ] 3 1
20 "0 P S30 T
or
1 1
0 <p< 1o
Hence
] 1000 _ 1
20 "n S0
and we obtain the estimate 10,000 < »n < 20,000.

A prospective college student visits a college and sits in on a class of
50 students. She notes that there are 39 men and 10 women in the
class. She decides to compute the 95 percent confidence interval for
the proportion of women in the school. She will reject the school if
this interval excludes the possibility that 4 of the students are women.
Does she reject the school for this reason?
A young ballplayer in his first season is at bat 400 times and gets 100
hits for a batting average of .250. Find 90 percent confidence limits
for his batting average based upon his first season. Is it reasonable
to believe that he may in fact be a .300 batter?
[Ans. [209, 291]; maybe, next year.]
A large company has as many as a million accounts. It wishes to
estimate the number that are at least three months delinquent in their
payments. A thousand accounts are randomly selected and of these
it is observed that 30 are at least three months delinquent. Find the
95 percent confidence limits for the proportion of customers that are
at least three months behind in their payments.
Opinion pollsters in election years usually poll about 3000 voters.
Suppose that in an election year 51 percent favor candidate A and
49 percent favor candidate B in a poll. Construct 95 percent confi-
dence limits on the true percentage of the population in favor of A.
[Ans. 492, .528.]
An experimenter has an independent trials process and she has a
hypothesis that the true value of p is p,. She decides to carry out a
number of trials, and from the observed p calculate the 95 percent
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confidence interval of p. She will reject p, if it does not fall within
these limits. What is the probability that she will reject p, when in
fact it is correct? Should she accept p, if it does fall within the confi-
dence interval?
A coin is tossed 100 times and turns up heads 61 times. Using the
method of Exercise 5, test the hypothesis that the coin is a fair coin.

[Ans. Reject.]
In an experiment with independent trials we are going to estimate p
by the fraction p of successes. We wish our estimate to be within .02
of the correct value with probability .95. Show that 2500 observations
will always suffice. Show that if it is known that p is approximately
.1, then 900 observations would be sufficient.
In the Weldon dice experiment, 12 dice were thrown 26,306 times and
the appearance of a 5 or a 6 was considered to be a success. The mean
number of successes observed was, to four decimal places, 4.0524. Is
this result significantly different from the expected average number of
4?7 [Ans. Yes.]
Prove that pg < 1. [Hint: write p = 1 + x.]
Suppose that out of 1000 persons interviewed 650 said that they would
vote for Mr. Big for mayor. Construct the 99 percent confidence
interval for p, the proportion in the city that would vote for Mr. Big.
In a pond 400 fish are marked. If in a subsequent sample of 225 there
are 45 marked fish, find the 90 percent confidence interval for the total
number of fish.
In a large city each taxi is assigned a number. A man observes the
numbers 125, 135, 356, 344, 25,299, and 320 on seven occasions that
he takes a cab. On the basis of this, compute the 95 percent confidence
limits for the number of cabs in the city. If he knows that the number
of cabs is a multiple of 100, can be determine the total?
Suppose that the man in Exercise 12 takes three more cabs numbered
76, 421, and 211. Can he be 95 percent sure of the total?

[Ans. Yes.]

In this section we have approximated confidence limits on p such

that Pr [!ﬁ —-pl <s /%] = 1 — a. The expression inside the brackets

1 —
is equivalent to (p — p)? < s? (y) Substituting equality for

inequality we obtain a quadratic equation which can be solved for p
in terms of p, s, and n. There will be two roots r; and r,, where r; < r,
and the above inequality will be satisfied for all p such thatr, < p < r,.
Use this information to obtain more exact confidence intervals than
that obtained by setting pg = 1.

A hundred names are picked at random out of a large telephone book.
It is found that 70 of these names have eight letters or less. Place 95
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percent confidence limits on the fraction of names in that telephone

book containing eight letters or less:

(a) Using the estimate developed in the text.

(b) Using the limits developed in exercise 14. [Ans. .602, .783.]

(¢) Suppose we were using the method of Exercise 5 to test the
hypothesis that 79 percent of the names have eight or less letters.
Which of the above intervals would be better?

5 SOME PITFALLS

586
91
594
59

594
598
591
591
592
595
59

583
588
591
603
59

592
597
595
588

Figure 11

618
623
626
622
626
.63

623
623
625
627
622
616
.62

623
635
622
624
629
627
62

Statistics properly used is a very powerful tool. If it is not properly used
it can lead to incorrect predictions and thereby cause considerable distrust
in its methods. We have already mentioned the example of the poll of the
Literary Digest in the 1936 presidential election between Roosevelt and
Landon. In this poll about 10 million postcards were sent to persons whose
names were obtained from telephone directories and car registrations.
Several million cards were returned, with 40.9 percent in favor of Franklin
Roosevelt. A few weeks later in the actual election, Roosevelt obtained 60.7
percent of the vote.

There are two obvious flaws in the above procedure. The first, and the
one which is normally blamed for the error, is that people who had tele-
phones or cars at that time were not truly representative of the voting
population as a whole. The second is the possibility that people change
their minds between the time a poll is taken and the election takes place.
They may even deliberately tell the poll taker one thing and vote another.
Of course, with many millions of people it is difficult to choose a truly
random sample. However, let us assume that there were in fact 60.7 percent
of the people in favor of Roosevelt at the time of the poll and that we could
choose a random sample of only 10,000 voters. In Figure 11 we indicate
the result of simulating 30 such samples and determining the 99 percent
confidence intervals. We see that in every case we would have picked
Roosevelt to win. This is on the basis of only 10,000 samples rather than
the millions which led to a wrong answer. Thus if statistics can be properly
used it is a very powerful tool.

Because of the difficulties indicated above there is still, with some justice,
skepticism of polls. However, there is also some danger in refusing to use
statistical methods. For example, assume that an all-male college wishes
to know the opinion of its alumni on the question of becoming a coeduca-
tional institution. Assume that there are 30,000 alumni and in fact 60 percent
are in favor of the college admitting women. This is a situation in which
any person not asked could conceivably challenge the poll. Assume then
that it is decided to poll by mail al/ the alumni. Also assume that a propor-
tion p of those who favor coeducation will respond to the query and a
proportion 2p of those who oppose will respond because they feel more
strongly about the matter. Then the expected number of yes answers would
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be 18,000p and the no answers would be 24,000p. Thus, neglecting sampling
errors, the vote would be 18,000p /42,000p = .43 in favor, and coeducation
would be defeated. On the other hand, as we have seen, a relatively small
random sample in which the response of each person sampled was recorded
would give a much more reliable indication of the true feelings of the
alumni. For example, a sample of 1000 was taken in such a poll and a
95 percent confidence interval of (.559, .621) was obtained. Here is a
situation where one could also use the method of hypothesis testing discussed
in Section 3.

As we have indicated previously, a number of precautions had to be taken
in the experiment to test the effectiveness of Salk vaccine. First, although
initially the incidence of polio was only about 50 per 100,000, there was
considerable variability from year to year and from region to region. So
a reduction from 50 to 25 in a sample of 100,000 could easily be caused
by reasons having nothing to do with the effectiveness of the vaccine. Thus
it was decided to have control groups. In one part of the experiment a
population of students was divided into two groups of about 200,000 each.
All were inoculated at the same time. The first group received the Salk
vaccine and the second a harmless and useless salt solution (a “placebo™).
The decision as to which students received the real vaccine was made
randomly, and the knowledge of whether a student was given the vaccine
or the placebo was not made known to the student or to the physician
observing the student. The reason for this is that in such experiments
knowledge of whether the subject has been treated or not has been found
to introduce a bias in the diagnosis and in the behavior of the subject. As
indicated earlier, the test did show a significantly lower rate among those
vaccinated. The test led to further development of vaccines and the virtual
elimination of polio in the United States.

There have been a large number of statistical studies to determine if
smoking is injurious to one’s health. It is now widely believed that this is
the case. However, the problem of establishing this has been exceedingly
difficult, and there are still statisticians who feel that more testing must be
done. In the case of the polio vaccine it was possible to select two groups
and randomly give one half the vaccine and the other half a placebo.
Random selection eliminates the effect of biases which can creep in, such
as differences in age, place of residence, economic status, etc. To do the
corresponding experiment for smoking would require one randomly selected
group to become heavy smokers and the rest to abstain. This is clearly not
possible, and many of the studies have had to rely on choosing groups in
a less random way and studying their smoking and health patterns. In the
exercises some of these methods are briefly mentioned and you are asked
to consider possible pitfalls. While statisticians who criticize these tests or
refuse to accept their conclusions are often accused of being overly cautious,
their criticisms have led to the development of more careful methods of
statistical tests in these very difficult areas. It should be emphasized that
demonstrating that more heavy smokers than nonsmokers get lung cancer
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does not demonstrate that smoking is a cause of lung cancer. It seems likely
that there will still be controversy about this question until more knowledge
is obtained as to what is the essential cause of cancer.

In the Literary Digest poll the particular people that responded to the
postcard inquiry was a chance quantity. In effect, the size of the sample
was random. While pollsters do not intentionally take advantage of this,
the results under such circumstances can be distorted. We illustrate this in
an extreme case where the experimenter deliberately tries to take advantage
of the randomness of the size of the experiment.

Assume that Mr. Esp claims that he has extrasensory perception. An
experiment is arranged in which he is to tell, when a card is placed face
down, whether it has a circle or a square on it. Of course we would want
to run a large number of experiments, but for the point we are trying to
make we can take a small number, say four. If Mr. Esp is just guessing,
we can find his expected score (percentage correct) in the usual manner.
The tree and tree measure are shown in Figure 12, and his expected score

SIXFH+HiXF+IXFHIxA+0xg=4

Score Probability
4 1 &+
3 3/

< 4
% 1/_1 %\2/ 1
7 \1/% \2 . N
2 0/ \1/ 2 16
\0< >1 3 %

0
\0 0 L

Assume now that the experimenter, eager to find a good subject, stops
the experiment the first time (if any) that Mr. Esp’s score is greater than
3. Then the new tree measure, still assuming guessing, is shown in Figure 13.

We see now that his expected score is

EX3+EXE+IXE+IXH+0X & =18 =69,

which is considerably better than before.

It is extremely important in designing a statistical test to decide upon the
criteria for acceptance or rejection before the test is carried out. Of course,
we should not be surprised if we find some unlikely feature of an experiment
by looking after the fact for something of small probability. A local expert
on probability theory would occasionally be roused from bed at one in the
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morning to have an excited colleague ask, “What is the probability of being
dealt a hand of all hearts in bridge.” He would answer, “The same as any
other hand,” and then go back to sleep.

1. In the tests of the Salk vaccine 400,000 students volunteered to be
vaccinated. Half were vaccinated and half given placebo. Among these
400,000 people 199 got polio. Assuming that a person who had polio
was equally likely to be in either of the groups, place 99 percent con-
fidence limits on the number of people in the vaccinated group that
got polio. Does the fact that of the 199 reported cases 142 were in the
placebo group suggest that the vaccine was effective?

2. Referring to Exercise 1, data was taken also on 340,000 students who
did not volunteer to be inoculated. Assuming that these people had
the same probability of getting polio as those who received the placebo,
place 99 percent confidence limits on the number of people among this
group to get polio. What does the fact that among this group there
were 157 polio cases suggest? How might we explain this result?

3. In many of the major studies of smoking and health the samples are
obtained by interviewing whomever happens to be at home when the
interviewer calls. This person answers questions relating to everyone
in the family over 21. Comment on some possible defects in this method
of sampling ~

4. In one major study of smoking and health two groups were compared,
one that had lung cancer and another that was chosen by virtue of
having similar backgrounds to the group that had cancer. Comment
on this technique of sampling.

5. This exercise is designed to show that optional stopping in sampling
can significantly change the results. Consider the following game. A
box contains five balls, three of which are red and two blue. If a red
ball is drawn we lose a dollar, if a blue ball we win a dollar.

(a) Find the expected value of the game if one ball is drawn.
[Ans. —20 cents.]
(b) Show that the game becomes increasingly unfavorable if two, three,
four, or five balls are drawn.
(c) Show that the game is favorable if you are allowed to stop at any
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time. Use the following strategy: If the first draw is blue, stop.
Otherwise, play until you are even or until all five balls are drawn.
[Partial ans. Value is +20 cents.]

6. In a certain college 25 out of 324 faculty members with Ph.D.’s are
women. Nationally approximately 20 percent of all Ph.D.’s are awarded
to women. Test the hypothesis that the faculty members were picked
from the national pool without regard to sex.

7. Inregarding the significance of Exercise 6 as evidence of discrimination,
what other factors would have to be taken into account? For example,
is it sufficient to know the present percentage of women among Ph.D.’s?
And should one know something about the distribution among disci-
plines?

8. The President of the United States announces a major policy decision.
His mail the following week contains 25,000 irate letters and 10,000
favoring his decision. Would it be reasonable to conclude that a majority
of people oppose his decision?

APPLICATIONS

In many problems in statistics the theory is straightforward but the
computations are very difficult. This makes statistics an important area for
computer applications. We shall first illustrate this by the computation of
confidence intervals considered earlier in this chapter, then we shall intro-
duce the important technique of simulation.

In Section 4, for the example of the lottery ticket, the only difficulty in
computing the confidence interval for the total number of tickets is the
necessity of raising a decimal fraction to the 1/n power. This is simply done
in BASIC. In the program LOTTERY we supply N (the number of tickets
bought), M (the largest number observed), and C (the percentage confidence

LOTTERY

18 READ N,M,C

260 LET A = 1-C

38 PRINT M, M/ZAt(Ll/N)
99 DATA 10,89,.95

99 END

READY

RUN
LOTTERY
89 126.086

B.B608 SEC.
READY
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desired). The entire computation is carried out in two instructions. The
RUN shows the 95 percent confidence interval if among ten tickets bought
the highest number was 89.

The program CONFIDE computes three confidence intervals for an inde-
pendent trials experiment in which we observed x successes in 7 trials. The

CONFIDE

16 READ X,N

20 LET P = X/N

38 LET D = 2%SQR(N)
40 FOR K = 1 TO 3

53 READ S

68 PRINT P-S/D,P+S/D
780 NEXT K

80 DATA 61,100

98 DATA 1.65,2,2.6
99 END

READY

RUN
CONFIDE

B+.5275 B.6925
B.51 Q.71
0.48 @.714

B.278 SEC.
READY

DATA in Line 90 supplies the number of standard deviations for 90, 95,
and 99 percent confidence. The rest of this simple program is a direct
translation of the formula obtained in Section 4. The RUN shows that if
we observe 61 successes in 100 trials we can be 90 percent sure that the
true value of p is below .7, but we cannot be 95 percent sure. It also shows
that we can be 95 percent sure that p > .5, but not 99 percent sure.

Other formulas in this chapter may similarly be translated into simple
computer programs. (See the Exercises.)

Probabilistic models prevail in the social sciences. While many of them
can, in principle, be treated by the methods studied in this book, in practice
they frequently are much too complicated to obtain precise theoretical
results. In such cases, simulation by a high-speed computer may be a
powerful tool.
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Simulation is a process during which the computer acts out a situation
from real life. Typically, the relevant facts about an experiment are supplied
to the computer, and it is instructed to run through a large series of experi-
ments, perhaps under varying conditions. This enables the scientist to carry
out in an hour a series of experiments that would otherwise take years, and
at the same time all the important information is automatically tabulated
by the computer.

Of course, the computer cannot duplicate the exact circumstances of an
experiment. The facts fed to it are based on a model (or theory) formed
by the scientist, and the value of the simulation depends on the accuracy
of the model. Thus the main significance of simulation is that it enables
a scientist to study the kind of behavior predicted by his model. For very
complicated models this may be the only procedure open to him.

In addition to the use of simulation for theoretical studies, there are two
very important types of pragmatic uses of simulation: (1) It can be used
as a planning device. If there are various alternative courses of action open,
the computer is asked to try out the various alternatives under different
conditions, and report the advantages and disadvantages of each course.
(2) Simulation may be used as a training device. For example, business
schools are making increasing use of “business games” in which fledgling
executives may try their skill at decision making under realistic circum-
stances. :

We shall first discuss how computers simulate stochastic processes, and
then illustrate simulation in terms of examples previously considered in this
book. Simulation depends on the generation of so-called random numbers.
In BASIC this is achieved by an instruction using “BND,” such as

LET X = RND.

Every time this instruction is executed, BASIC generates a real number
between 0 and 1 by a process that is reasonably random.

Actually, the computer is forced to cheat, in that it has only a finite
capacity for expressing numbers. Thus it may in reality divide the unit
interval into a million (or more) numbers, and give them in a quite random
order. When its supply is exhausted, it will start again giving the same
numbers in the same order. However, if one needs only 100,000 numbers,
or even a million numbers, the results are highly satisfactory.

We illustrate this by means of the program RANDOM, which generates
30 random numbers. In looking at the output the reader should recall that
E-2 indicates multiplication by 10-2; thus 8.5 E-2 = .085. The distribution
1s reasonably random. For example, 6 out of 30 numbers lie between .3
and .5, which is what we would expect. However, there are “too many”
numbers between .2 and .3. Whether this is statistically significant needs
to be checked (see Exercise 5).

Very often instead of random numbers we need random integers. For
example, to simulate the roll of a die we need random integers from 1 to
6. We show the process for generating these in the other two RUNSs of
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RANDOM. First we print out 6 times the random numbers. They are now
spread evenly on the interval (0, 6). Thus if we take their integer parts, the
numbers 0, 1,2, 3,4, 5 will turn up with equal probabilities, at random. By
taking integer parts and adding one, we obtain the “roll of a die.”

One common use of random numbers is to simulate an independent trials
process. Such a process with p = .3 may be simulated as follows:

100 IF RND < .3 THEN 200
100 PRINT “FAILURE”

200 PRINT “SUCCESS”

It is in the nature of the process that generates random numbers that the
probability of RND <C.3 is precisely .3. Of course any other probability
may be used in place of .3.

Craps. Let us simulate the game of shooting craps. This is carried out by
the program CRAPS, which closely follows the flow diagram in Figure 14,
on page 304.

CRAPS

S FOR N =1 TO 12

19 LET Dl = INT(6%RND)+!
28 LET D2 = INT(6*RND)+]1

30 LET D = Dl + D2
35 PRINT D;

40 IF D < 4 THEN 309
56 IF D = 12 THEN 309
66 IF D = 7 THEN 200
70

128 REM TRY TO MAKE POINT
118 LET X = D

122 LET DI = INT(6*xRND)+1!
138 LET D2 = INT(6*RND)+1
142 LET D = D! + D2

158 PRINT D;

162 IF D = X THEN 220

178 IF D = 7 THEN 329

182 GOTO 129

190

200 REM PLAYER WINS

212 PRINT "YOU WIN'.

220 GOTO 440

239
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328 REM PLAYER LOSES
318 PRINT "YQOU LOSE"
329

4080 REM START OQOVER
420 NEXT N

439

999 END

READY

RUN
CRAPS

18 8 5 YOU VIN
8 6 4 6 7 YOU LOSE
YOU LOSE
5 8 S5 7 YOU LOSE
2 11 7 YOU LOSE
4 8 YOU VWIN
YOU WIN
YOU LOSE
S YOU wIN
YOU WIN

QU QXD OW—U0

B.117 SEC.
READY

One may consider running a program like CRAPS a large number of
times, keeping count of the amount won or lost, and use it to estimate the
expected value of the game. (In Chapter 3, Section 11, this was found to
be —.0141.) Let us suppose that we try to simulate 10,000 games. How
good an estimate can we expect? We know that the 95 percent confidence
interval for a probability near .5 is 1/v/n. But if the fraction of successes
is high by that amount, the fraction of losses will be low by the same amount,
and vice versa. Thus we should expect errors up to 2/V/n on either side
of the expected value. For n = 10,000 this is an error of .02. In five such
simulations the values obtained were: — 0238, —.0298, —.0090, +.0016,and
—.0084. All are within the 95 percent confidence interval, but one simula-
tion shows a loss twice the expected size and one actually shows a profit.

Thus, while a simulation provides an easy rough approximation to the
answer, a good approximation requires a substantial computer effort. A
simulation 0f 250,000 games requires about three minutes of computing time,
much longer than the other examples we have shown in this book. Two
such RUNs produced values of —.0115 and —.0154, which are much closer
to the real value (see Exercise 4).
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Poker. In the exercises of Section 3 in Chapter 3 we computed the proba-
bilities for various poker hands. Let us obtain estimates for the same by
simulation.

Our problem here amounts to selecting five cards at random from a deck
of 52 cards. We first number the cards from 1 to 52, in any convenient
manner. Then we select one card by generating a random integer from the
set 1 through 52. (This can be achieved by computing INT(52*RND + 1).)
Next we select one of the 51 remaining cards at random, etc. When we
have five cards, we determine how good a hand we drew.

This simulation was carried out for 10,000 poker hands on the Dartmouth
Computer. The results were as in Figure 15.

You will be asked, in the exercises, to compare these figures with the
expected values.

Land of Oz. Models in the social sciences often depend on Markov chain
processes. While there are powerful theoretical tools for treating Markov
chains, sufficiently complex models may have to be simulated. We shall



Section 6

Figure 15

EXAMPLE 4

Statistics 305

Number
Type of hand of times
Bust 5046
One pair 4169
Two pairs 508
Three of a kind 191
Straight 43
Flush 11
Full house 25
Four of a kind 6
Straight flush 1

illustrate this for a simple Markov chain, which we have already treated
theoretically.

Consider the Land of Oz (Chapter 4, Section 7, Exercise 12). Suppose
that we wished to find the fraction of times that the weather is “nice,” “rain,”
or “snow,” by simulation. We would first pick a starting state, say “rain.”
We then know that the probability of “rain” is 4, of “nice” 4, and of “snow”
i We can achieve this by generating an RND; if it is less than § we decide
on “rain,” if it is between 4 and 3 then “nice” is next, while if RND >3
then “snow” is next.

The program RANDOMOZ carries out 1000 simulations for each starting
state. After reading the transition probabilities, it starts a loop on S, the
starting state. S1 is the current state. The list N is used for counting—e.g.,
N(1) is the total number of nice days. The only other comment needed
is the explanation of line 90. Suppose that the probabilities of stepping into
the three states is currently .25, .5, and .25. Then we should compare the
random number successively with .25, 25 + .5 = .75, and .25 + .5 +
25 = 1. The same result may more simply be achieved by successive
subtraction of .25, .5, and .25 until the number turns negative.

The program prints the number of times in each state for each starting
state. While the values are reasonably close to the expected values of 200,
400, and 400, they are not close enough to be convincing. We show a second
RUN with 10,000 simulations for each starting state and this time the
fractions are much closer to the limiting probabilities .2, .4, and 4.

Central Limit Theorem. By simulating an independent trials process a large
number of times we can hope to obtain an approximation of the central
limit theorem. The program CLTH uses this method to approximate four
values in Figure 6. Since the same distribution is obtained for any value
of P, its choice is not crucial. The program uses P = 3. It carries out 100
experiments and counts the number of successes, noting how many standard
deviations we are off the expected value. It repeats this 1000 times to get
a frequency distribution.



306 Statistics

Bl RANDOMOZ

18 MAT READ P(3,3)
20 DATA B, e55 5
21 DATA ¢25,¢5,.25
22 DATA ¢25,¢255 5
33 FOR S =1 TO 3
42 LET S1 = S
S3 LET NC(1)=N(2)=N(3)=0
60 FOR N = 1 TO 1009
72 LET X = RND
g3 FOR I =1 TO 3
99 LET X = X-P(Sl,1I1)
128 1IF X<@ THEN 120
119 NEXT I

120 LET N(I) = NCIJ)+!
136 LET S1 =1

148 NEXT N

158 PRINT NC1JI3INC2)I53NC3)
160 NEXT S
999 END
READY
RUN
RANDOMOZ

211 391 398

186 428 394

199 378 423

1.819 SEC.
READY

60 FOR N =1 TO 10000
RUN
RANDOMOZ

2806 3997 3997
1976 3982 4942
2868 3973 3959
9.286 SEC.
READY

Chapter 6
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CLTH starts by setting up P, N, the expected value E, and the standard
deviation S. Then the loop of 1000 repetitions is started. For each repeti-
tion, X, the number of successes, is initially set to 0. Lines 50-80 count the
number of successes in 100 trials. On line 60, if RND > .3 we have a failure,
and hence the next line is skipped. For a success, X is increased by 1. Line
90 computes the number of standard deviations. We shall keep track only
whether it is between 0 and 1, between 1 and 2, etc. This is accomplished
on lines 100 and 110. When all 1000 repetitions are completed, we wish

CLTH

16 LET P = .3

20 LET N = 1490

25 LET E = Nx%P

30 LET S = SQR(N*Px%(1-P))
49 FOR I = 1 TO 120¢

45 LET X = 0

58 FOR J =1 TO N

68 IF RND > .3 THEN 89
76 LET X = X+1

88 NEXT J

99 LET Y = ABS((X-E)/S)
1880 LET K = INT(Y)+1
110 LET NC(K) = N(K)+I
128 NEXT 1

130 PRINT "STD'S","AREA"
149 FOR D 1 TO 4

156 LET A A+N(D) /2200
162 PRINT D,A

173 NEXT D

199 END

READY

RUN

CLTH

STD'S AREA
1 @334
2 Be4795
3 Be4975
4 de5

Se466 SEC.
READY
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to print the approximate areas. A comment concerning line 150 is in order.
We wish to compute the cumulative areas, as in Figure 5; hence we keep
adding the new area to the previous value of A. The reason for dividing
the total number of occurrences N(D) by 2000 rather than 1000 is that we
want the area on one side of the expected value, while our counting method
lumped the two sides together.

We note that the computed values agree quite well with the true values.
The true values are .341, .477, .4987, .49997.

Baseball. The game of baseball is a good example of a game having a model
for which a complete theoretical treatment is not practical, and hence much
can be gained from simulation.

How would we build a simulation model for a given team, in order to
study the way they produce runs? Fortunately, some very detailed statistics
are kept, over long periods, which are ideal for building such a model. Let
us suppose that a given batter comes to bat. We know from past experience
what the probabilities are for his making an out, getting a walk, or getting
a hit of various kinds. We simply generate an RND, and use it to decide
what the batter did.

For example, if he has probabilities .1 for a walk, .64 for an out, .2
for a single, .03 for a double, 01 for a triple, and .02 for a home run, we
can generate a random integer from 1 through 100, and interpret it as in
Figure 16.

Range Result Probability
1-10 Walk 1
11-74 Out 64
75-94 Single 2
95-97 Double .03
98 Triple 01
99-100 Home run 02

We can then bring the next batter to bat, and arrive at a result based
on his past performance. The running on the bases may be simulated
similarly. For example, we can feed into the machine the probability that
a man on first reaches third on a single. Just how realistic we wish to make
the model depends entirely on how much work we are willing to do.

It should be noted that we are simulating only the batting of one team.
We do not here consider the batting of the other team, or questions of
defensive play.

Such a model would be most useful in training young managers. The
computer could make all decisions (many of them stochastic) having to do
with the performance of the players, while the manager could make all
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decisions normally open to managers. For example, he could call for a
hit-and-run play, and the machine would simulate the results. He could
call for a steal, or send in a pinch hitter, or tell a batter to try to hit a long
fly ball.

By the use of a computer a new manager could gain an entire season’s
experience in a few days—and he would not be learning at the expense
of his team.

The model is also useful for planning purposes, as we shall illustrate here.
One important task of the manager is to decide on his batting order. He
could feed a variety of batting orders to the computer, have it try each for
a season’s games (or more), and report back the results.

This was actually done on the Dartmouth Computer.

The team used in the simulation was the starting line-up of the 1963 world
champion Los Angeles Dodgers. The line-up of Figure 17 was used
throughout.

Line-up Batting average Slugging average
1. Wills 302 349
2. Gilliam 282 383
3. W. Davis 245 365
4. T. Davis 326 457
5. Howard 273 S18
6. Fairly 271 388
7. McMullen 236 339
8. Roseboro 236 351
9. Pitcher (average) 17 152

An entire season of 162 games was simulated, keeping detailed records
for each player. Of course, this simulation differed from the normal year
in a few respects. For instance, the first eight players played every inning
of every game. Since only the batting was simulated, no allowance was made
for defensive play, nor did the game stop after eight innings if the home
team was ahead. Games were not called on account of rain, and there were
no extra-inning games. But many important features concerning batting
were recreated quite realistically. We shall cite a few of the more interesting
results.

Seven of the batters ended up with batting averages close to their actual
ones, but two did not. Tommy Davis, the league’s leading hitter, had an
even more spectacular year during simulation: he batted an even .350
(compared with .326 in 1963). On the other hand, Fairly, who had batted
271 in actuality, had a bad simulated year, batting only .250. This shows
how much a batting average can change due to purely random factors.

Howard was far ahead in home runs, with 54. This is much higher than
the 28 he had in actuality, but he was only used part-time in 1963, while
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in the simulated year he played all the time. Two of the home runs were
hit by pitchers—just as in real life. In one game Howard hit three home
runs. But mostly it was the balance of the Dodger team that showed up;
there were ten games in which three different players hit home runs.

There were no really spectacular slumps, though Gilliam once went 15
consecutive at-bats without getting a hit. The total number of runs scored
was 652, in excellent agreement with the actual 640. On the other hand,
the 1352 men left on base compared very poorly with the Dodgers’ league-
leading performance of leaving only 1034 men on base. Two factors in this
were the absence of double-plays and pinch hitters in the simulation model.
But there is probably some other relevant attribute of the team that was
missed in the model.

Perhaps the most interesting result is the number of shutouts (of the
Dodgers, of course). There were 11 in the simulation, as compared to the
league-leading performance of only 8 shutouts. In the simulation, two of
the shutouts occurred in the final two games. Thus, if the season ended
in 160 games, the simulation would have been off by only one shutout.
This shows how hard it is to get an accurate estimate for a small probability
through simulation! And there was a four-game stretch late in the season
in which three of the games ended in shutouts. If this had happened in
real life, all the Los Angeles papers would have carried headlines about
a Dodger batting slump.

To compare various possible batting orders, several line-ups were simu-
lated for ten entire seasons. The seven line-ups are shown in the first column
of Figure 18, and the results in the second column. The standard deviation
of the average number of runs per game was about .07. Since the difference
between the best and the worst line-ups is over three standard deviations,
one is tempted to conclude that the batting order really makes a difference
—though not very much of a difference.

However, this simulation—though time-consuming—is not conclusive. We
may still entertain the hypothesis that any line-up averages about 3.95 runs
per game, and all seven outcomes are within two standard deviations of
this. We are forced into an even more substantial simulation run.

The simulation was repeated; this time every line-up had seven sets of
ten entire seasons simulated. The newly computed averages are shown in
the third column of Figure 18, while the maximum and minimum values
obtained for a set of ten seasons are shown in the last column. Since we
have simulated seven times as many games for each line-up, the standard
deviation is reduced by a factor of \/7, to less than .03. The differences
in the averages now look more significant. Also, we note that the ranges
obtained for the first five line-ups don’t overlap (or hardly overlap) the
ranges for the last two line-ups. We may therefore conclude that we have
five “good” and two “poor” line-ups. And this hypothesis stands up under
more sophisticated tests.

What characterizes the poor line-ups? Most noticeably, the pitcher is first,
rather than being last. But also we note that the Dodgers had three weak
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Average number of runs per game
Line-up 10 seasons | 7 X 10 seasons Range
1,2,3,4,5,6,7,8,9 4.06 4.00 3.91-4.06
1,4,2,56,3,8,7,9 4.07 4.02 3.92-4.07
4,5,6,1,2,3,7,8,9 4.00 3.98 3.90-4.04
2,1,3,5,4,6,8,7,9 3.98 4.01 3.95-4.08
1,4,7,2,5,8,3,6,9 3.90 398 3.90-4.05
9,8,7,6,5,4,3,2, 1 3.89 3.82 3.72-3.89
9,6,3,8,5,2,7,4,1 3.83 3.83 3.76-3.92

hitters (numbers 3, 7, and 8), and two of these are near the top of the bad
line-ups. We therefore conclude that poor hitters should be near the end
of the line-up. But little else can be concluded.

We should also note that the difference between best and worst is surpris-
ingly little, and drastic changes in the “best” have practically no effect. Thus
we conclude that the importance of the batting order has been greatly
exaggerated.

One additional remark may be of interest: The first line-up in Figure 18
is, of course, the one actually chosen by the manager. The last five are simply
permutations chosen according to simple patterns. However, the second
line-up was chosen by one of the authors, a Dodger fan, as his attempt to
“manage” the team. He was most pleased that it turned out best! Of course,
.02 is only 5 of a standard deviation, which represents about three runs per
year, and is not significant.

1. Use the RUN of RANDOM to simulate an independent trials process
with probability 4 of success, for 30 trials. How many successes do
you obtain? [Ans. 15.]

2. Simulate three games of craps as follows. To imitate the roll of a pair
of dice choose pairs of outcomes of the last RUN of RANDOM reading
from left to right in successive rows and then proceed according to
the rules of craps.

[Partial Ans. On first game player rolls a 5 and wins.]

3. From Chapter 3, Section 3, Exercises 16, 17, and 18, compute the
expected number of bust, straight, flush, and full house hands in 10,000
poker hands. Also compute the standard deviation for each. Do the
figures given in Example 2 for the simulation look reasonable?
[Partial Ans. Bust: expect 5012; off by less than one standard
deviation.]

4. What would be reasonable 95 percent confidence limits for the devia-
tion from the expected number of wins in 250,000 games of craps?
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Do the simulated results of —.0115 and —.0154 mentioned in the text
fall within these limits?
Using the data of the 30 random numbers between 0 and 1 generated
by RANDOM, test the hypothesis that the probability that a random
number generated this way has probability .1 of falling between .2 and
3.
Use the random numbers produced by the program RANDOM to
simulate 30 days’ weather in the Land of Oz, following a rainy day;
see Example 3.
Change the random numbers generated by RANDOM between 0 and
1 to random numbers between 1 and 100.
Suppose that we have a baseball team whose batters each performs
according to the simulation scheme in Figure 16. Use the random
integers obtained in Exercise 7 to simulate the performance of the first
30 batters on one team. How does the team stand after 30 men have
come to bat? [Ans. End of six innings; four runs scored.]
In 1951, Gil Hodges of the Brooklyn Dodgers was officially at bat 582
times and hit 40 home runs. Estimate his probability of hitting a home
run each time he was at bat. How large a fluctuation in his annual
home-run output is attributable to pure chance?
From 1949 through 1959, Gil Hodges had the following number of
home runs: 23, 32,40, 32,31,42,27,32,27,22,25. Is there a case for
his having had “good” and “bad” years, or may we assign the differ-
ences entirely to chance fluctuations: [Hint: Estimate the expected
value from the data and use Exercise 10.]

[Ans. Explainable as chance fluctuations.]
In Exercise 14 of Section 4, you were asked to derive the more exact
confidence intervals , .y

5 5 1/2
7] L] (AL L. )|
1 + s2/n 2n n 4n?

Write a program to compute these more exact intervals given n, p,
and s.
Use the program of Exercise 11 to rework Exercises 2 and 6 of Section
4. Also rework each of these exercises using the program CLTH given
in this section. For each exercise give one possible value for p which
is ruled out by the more exact confidence interval but is not ruled out
by the approximation used in the program in this section.
Write a program to test the hypothesis p,, against p,, given p,, p,, and
s. Have the program print both the number of experiments needed
and the number of those experiments that must be successful in order
to accept hypothesis p;.
Use the program of Exercise 13 to rework Exercises 9 and 11 of Sec-
tion 3.
Write a program which, given p, simulates 100 tosses of a coin which
comes up heads with probability p. Combine this with the program
for confidence intervals given in the text and compute 95 percent
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confidence limits for p, given the simulated data, and see whether p
is within the confidence interval. Do the same using the more exact
confidence limits which the program of Exercise 11 computes.

16. Run the program of Exercise 15 a total of 500 times and find, for
each method, what fraction of the time p lies within the confidence
interval.
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POLYHEDRAL CONVEX SETS

EXAMPLE 1

Recall that an equation containing one or more variables is called an open
statement. For instance,

(a) —2x; +3x, =6

is an example of an open statement. If we let 4 = (=2, 3), x = (xl), and
X2
b = 6, we can write (a) in matrix form as

Ax = (=2,3) (xl) = —2x,+3x,=6 = b.

X2
For some two-component vectors x the statement Ax = b is true and for

others it is false. Forinstance, if x = (i), itis true,since —2 -3 + 34 = 6;

and if x =(i) , 1t is false, since —2 +2 + 3 -4 = 8. The set of all two-

component vectors x that make the open statement Ax = b true is defined
to be the truth set of the open statement.

In plane geometry it is usual to picture in the plane the truth sets of open
statements such as (a). Thus we can regard each two-component vector x
as being the components of a point in the plane in the usual way. Then
the truth set or locus (which is the geometric term for truth set) of (a) is

For a nontechnical introduction to linear programming the reader should cover the first three
sections; for a more technical exposition including the simplex method, cover the first six
sections. For a nontechnical introduction to the theory of games, cover just Sections 8, 9,
and 10; and for a technical introduction, cover the whole chapter.

315 -
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Figure 1

EXAMPLE 2

(©)

(3~

the straight line plotted in Figure 1. Points on this line may be obtained
by assuming values for one of the variables and computing the corre-
sponding values for the other variable. Thus, setting x; = 0, we find x, = 2,

: 0\ ,. . :
so that the point x = (2) lies on the locus; similarly, setting x, = 0, we

find x, = —3. so that the point (_3) lies on the locus; and so on.

0

In the same way inequalities of the form Ax < b or Ax < b or Ax > b
or Ax > b are open statements and possess truth sets. And in the case that
x is a two-component vector, these can be plotted in the plane.

Consider the inequalities (b) Ax <b, (c) Ax > b, (d) Ax < b, and (e)
Ax > b, where A4, x, and b are as in Example 1. They may be written as

(b) —2x, + 3x, <6,
(©) —2x, + 3x, > 6,
(d) —2x, + 3x, <6,
(e) —2x, + 3x, > 6.

Consider (b) first. What points (xl
X

)satisfy this inequality? By trial and
2

error we can find many points on the locus. Thus the point (é) is on it,

since —2+1 4+ 3+2 =4 <6; on the other hand, the point (1) is not on

3
the locus, because —2-1 +3-3 = —2 + 9 = 7, which is not less than 6.
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In between these two points we find ( é), which lies on the boundary—that
3

: . . 1]

is, on the locus of (a). We note that, starting with ( B) on locus (a), by
3

increasing x, we went outside the locus (b); by decreasing x, we came into

the locus (b) again. This holds in general. Given a point on the locus of
(a), by increasing its second coordinate we get more than 6, but by decreasing
the second coordinate we get less than 6, and hence the latter gives a point
in the truth set of (b). Thus we find that the locus of (b) consists of all
points of the plane below the line (a)—in other words, the shaded area in
Figure 1. The area on one side of a straight line is called an open half-plane.

We can apply exactly the same analysis to show that the locus of (c) is
the open half-plane above the line (a). This can also be deduced from the
fact that the truth sets of statements (a), (b), and (c) are disjoint and have
as union the entire plane.

Since (d) is the disjunction of (a) and (b), the truth set of (d) is the union
of the truth sets of (a) and (b). Such a set, which consists of an open
half-plane together with the points on the line that define the half-plane,
is called a closed half-plane. Obviously, the truth set of (e) consists of the
union of (a) and (c) and therefore is also a closed half-plane.

Frequently we want to assert several different open statements at once—
that is, we want to assert the conjunction of several such statements. The
easy way to do this is to let 4 be an m X n matrix, x an n-component column
vector, and b an m-component column vector. Then the statement Ax < b
is the conjunction of the m statements A;x < b;, where A; is the ith row
of A and b, is the ith entry of b.

A box manufacturer makes small and large boxes from a single kind of
cardboard. The small boxes require 2 square feet of cardboard each and
the large boxes 3 square feet each. If the manufacturer has 60 square feet
of cardboard on hand, what are the possible combinations of small and large
boxes that he can make?

In order to set up this problem let x; be the number of small boxes and
X, the number of large boxes to be made. Since it is impossible to make
negative numbers of boxes, we have the obvious constraints

(f) xl Z Oa
(g) Xy > 0.

Also, because of the constraint on the total amount of cardboard on hand,
we have

(h) 2x, + 3x, < 60,

If we now want to state these three inequality constraints simultaneously
in the form Ax < b, we must first change (f) and (g) into < constraints.
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Figure 2

This can be done by multiplying through by —1, so that (f) becomes
—x,; <0 and (g) becomes —x, < 0. If we now define

-1 0 0
A= 0 =1}, x:(xl), b={ 0},
2 3 X2 60

we see that Ax < b is a matrix way of asserting the conjunction of (f), (g),
and (h). The truth set of Ax < b is the intersection of the three individual
truth sets. The truth set of (f) is the right half-plane; the truth set of (g)
is the upper half-plane; and the truth set of (h) is the half-plane below and
on the line 2x, + 3x, = 60. The intersection of these is the triangle (in-
cluding the sides and corners) shaded in Figure 2. The area shaded in Figure
2 contains all those and only those points that simultaneously satisfy (f),
(g), and (h), or, equivalently, Ax < b.

X2

In the examples considered so far we have restricted ourselves to open
statements with two variables. Such statements have truth sets that can be
sketched in the plane. In the same way, open statements with three variables
have truth sets that can be visualized in three-dimensional space. Open
statements with four or more variables have truth sets in four or more
dimensions, which we can no longer visualize. However, applied problems
frequently lead to such statements. Fortunately, we shall develop methods
(in Section 5) for handling them without having to visualize the truth sets
geometrically.

In order to have a notation that will enable us to talk in general about
conjunctions of several open statements in any number of dimensions, we
shall, for the remainder of this chapter, consider b to be an m-component
column vector, x an n-component column vector, and 4 an m X n matrix.
The ith row of 4 will be denoted by A4;. Similarly, the ith component of
b will be denoted by b;. Of course, A4; is an n-component row vector and
b; is a number. We shall let X, denote the set of all n-component column
vectors x. Thus in Example 3 we had m =3 and n =2. 4 wasa 3 X2
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matrix, x a two-component column vector, and b a three-component column
vector. The set of all two-component column vectors x is denoted by X,.
We now set up some definitions that will be used in the later exposition.

Definition The truth set of 4;x = b, is called a hyperplane in X,. The truth
sets of inequalities of the form A4;x < b; or A;x > b; are called open half-
spaces, while the truth sets of the inequalities 4;x < b, or A;x > b; are called
closed half-spaces in X,,.

When we assert the conjunction of several open statements, the resulting
truth set is the intersection of the truth sets of the individual open state-
ments. Thus in Example 3 we have the conjunction of m = 3 open state-
ments in &X,. In Figure 2 we show this geometrically as the intersection
of m = 3 closed half-spaces (-planes) in » = 2 dimensions. Such inter-
sections of closed half-spaces are of special importance.

Definition The intersection of a finite number of closed half-spaces is a
polyhedral convex set.

Theorem Any polyhedral convex set is the truth set of an inequality
statement of the form Ax < b. '

EXERCISES

Proof A closed half-space is the truth set of an inequality of the form
A;x < b;. (An inequality of the form A;x > b; can be converted into one
of this form by multiplying by —1.) Now a polyhedral convex set is the
truth set of the conjunction of several such statements. Since 4 is the matrix
whose ith row is 4; and b is the column vector with components b;, then
the inequality statement Ax < b is a succinct way of stating the conjunction
of the inequalities 4,x < b,,..., A,x < b,,. This completes the proof.

The terminology polyhedral convex sets is used because these sets are
special examples of convex sets. A convex set C is a set such that whenever
u and v are points of C, the entire line segment between u and v also belongs
to C. This is equivalent to saying that all points of the form
z=au+ (1 — a)v for 0 < a <1 belong to C whenever # and v do. In
this chapter we shall be concerned primarily with polyhedral convex sets.

1. Draw pictures of the truth sets of Ax < b, where 4 and b are as given
below. (Construct the truth sets of the individual statements first and
then take their intersection.)

1 0 3
@ A= 0 1], b=\|2].
-2 =3 0
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-2 =3 —6
b)) A=|-1 1], b=1| 2|
1 1 3
2 3 6
) A=[-1 1}, b=1(2}.
1 1 3
0 -1 0
d A=|-1 0], b=|0].
1 0 2
/ 10 /2\
—1 0 2
@ A=1|, 4 °&=|5]
0 —1 3/
3 —6
f) A= = )
o a=(33)  e=(9)
(=3 2 (-6
® A—( 3 2)’ b‘( 6)‘
1 1 0
h) 4 = = .
wa=(7)5) e=())
. 1 0 2
A= b = .
) ( 1 o)’ (—5)
( 3 -2 —6
. 2 -3 —6
0 —1 o/
-2 -1 -7
k) 4= 1 0], b= 0].
0 1 0

In the cardboard-box problem of Example 3 consider the following

additional constraints:

(a) “At least as many small as large boxes should be made.” Write
a constraint involving x, and x, that expresses this and find A
and b. Draw the picture of the resulting convex set.

[Partial ans. —x,; + x, < 0.]

(b) In addition to the constraints above add a constraint expressing;

“at most 20 small boxes should be made.” Find 4 and b and
sketch the convex set. [Partial ans. x; < 20.]

Of the polyhedral convex sets constructed in Exercise 1, which have

a finite area and which have infinite area?

[Partial ans. (c), (d), (f), (h), and (j) are of infinite area; (g) is a line;

(1) and (k) are empty.]
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For each of the following half-planes give an inequality of which it

is the truth set.

(a) The open half-plane above the x; axis. [Ans. x5 > 0]

(b) Theclosed half-plane on and above the straight line making angles
of 45 degrees with the positive x; and x, axis.

Exercises 5 through 9 refer to a situation in which a retailer is trying to
decide how many units of items X and Y he should keep in stock. Let x
be the number of units of X and y be the number of units of Y. X costs
$4 per unit and Y costs $3 per unit.

5.

6.

10.

One cannot stock a negative number of units of either X or Y. Write
these conditions as inequalities and draw their truth sets.

The maximum demand over the period for which the retailer is con-
templating holding inventory will not exceed 600 units of X or 600
units of Y. Modify the set found in Exercise 5 to take this into account.
The retailer is not willing to tie up more than $2400 in inventory
altogether. Modify the set found in Exercise 6.

The retailer decides to invest at least twice as much in inventory of
item X as he does in inventory of item Y. Modify the set of Exercise 7.
Finally, the retailer decides that he wants to invest $900 in inventory
of item Y. What possibilities are left? [Ans. None.]

Assume that a pound of meat contains 80 units of protein and 10 units
of calcium while a quart of milk contains 15 units of protein and 60
units of calcium. I1fan adult’s minimum daily requirements are 40 units
of protein and 30 units of calcium, what consumption quantities of
meat and milk will yield at least these minimum daily requirements?
A convenient way to summarize the data is by the following data box:

Food Protein Calcium
Meat 30 units Erotein 10 units calcium
b meat Ib meat
Milk 15 units Er.otem 60 units cal‘cmm
qt milk qt milk
Requirements 40 units protein 30 units calcium
day day

(a) Let w, be the number of pounds of meat and w, be the number
of quarts of milk consumed per day, and let w = (wy, w,). Write
inequality constraints that will solve the above problem. Find 4
and ¢ so that they can be written wA > c.
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(b) Sketch the set of feasible vectors. Show that it is unbounded (that
it has infinite area).

(¢) Show that another way of indicating units is as in the data box
that follows:

Protein Calcium
Meat 80 10 (per pound)
Milk 15 60 (per quart)
Requirements 40 30 (per day)
(units) (units)

2 EXTREME POINTS; MAXIMA AND MINIMA
OF LINEAR FUNCTIONS

In the present section we first discuss the problem of finding the extreme
points of a bounded convex polyhedral set. Then we find out how to
compute the maximum and minimum values of a linear function defined
on such a set.

We use the following notation: the polyhedral convex set C is the truth
set of the statement Ax < b, where 4 is an m X n matrix, x is an #-com-
ponent column vector, and b is an m-component column vector. We let

Ay, Ay, . . ., A, denote the rows of 4. Hence 4, is an n-component row vector
and
4,
A= A.2
Am
The statement Ax < b is then the conjunction of the statements
Ax <by, Ayx <b,, ..., A,x<bh,,.

Definition We shall call the truth set of the statement 4,x = b, the bound-
ing hyperplane of the half space 4,x < b,.

Thus, in Figure 1 of the preceding section the slanting line (a) is the
bounding hyperplane of the half-space (b).

We found in the previous section that a convex set C is the intersection
of a finite number of half-spaces. The bounding hyperplanes of these
half-spaces that also contain points of C are called bounding hyperplanes
of C. Thus in Example 3 of Section 1 the bounding hyperplanes of the
polyhedral convex set given there are the three boundary lines of the triangle
shaded in Figure 2. Note that these lines intersect in pairs in three points,
the vertices of the triangle.
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Definition Let C be the polyhedral convex set defined by Ax < b, where

x is an n-component vector. Then a point T is an extreme (or corner) point
of Cif it

a. belongs to C, and
b. is the intersection of n bounding hyperplanes of C.

EXAMPLE 1

Figure 3

Find the extreme points of the polyhedral convex set Ax < b, where

2 3 60
A=|-2 =1} x=(x1), b=|-321
0 —1 *2 )

The corresponding inequalities are:

2x, + 3x, < 60,
2x, + x, > 32,
Xy > 2.

The last two inequalities have been multiplied through by —1, and can be
regarded as managerial constraints added to the box-manufacturer problem
of Example 3 of Section 1. A sketch of the three half-planes (Figure 3)

X1

shows that the set of feasible solutions is a triangle. Hence we can find the
extreme points by changing the inequalities to equalities in pairs and solving
three sets of simultaneous equations. We obtain in this way the points

(2 (3 ()

which are the extreme points of the set.
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EXAMPLE 2

Figure 4

Chapter 7

We can now give an interpretation for the various points of the polyhedral
convex set in terms of the system of inequalities. An extreme point lines
on two boundaries, which means that two of the inequalities are actually
equalities. A point on a side, other than an extreme point, lies on one
boundary and hence one inequality is an equality. An interior point of the
polygon must, by a process of elimination, correspond to the case where
the inequalities are all strict inequalities—that is, not only < but < holds.

There is a mechanical (but lengthy) method for finding all the extreme
points of a polyhedral convex set C defined by Ax < b. Consider the
bounding hyperplanes 4;x = b,,. .., 4, x = b, of the half-spaces that de-
termine C. Select a subset of n of these hyperplanes and solve their equa-
tions simultaneously. If the resultis a unique point x°, then (and only then)
check to see whether x° belongs to C. If it does, by the above definition,
x%is an extreme point of C. Moreover, all extreme points of C can be found
in this manner.

Let

_ (-1 0 _ (0
A"( 0 _1) and b“(o)‘
Then the polyhedral convex set C defined by Ax < b is the first quadrant
of the x,, x, plane, shaded in Figure 4. The only extreme point is the origin,
which is the intersection of the lines x; = 0 and x, = 0. This is an example
of an unbounded polyhedral convex set.

X3
VEERN
s Rays
// 4
Ve
4 /
7‘/"' -
y; 7/
y; Ve
P /
/ /
/ /
7/ //
5°
LA,
0 Xy

Notice that the set C in Example 2 contains the ray or half-line that starts
at the origin of coordinates and extends upward to the right making a
45-degree angle with the axes. This ray is dotted in Figure 4. Of course,
this set also contains many other rays; two others are shown in the figure.
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We shall say that a polyhedral convex set is bounded if it does not contain
a ray. A set, such as the one in Figure 4, that does contain rays will be
called unbounded. For simplicity we shall restrict our discussion in most
of this chapter to bounded convex sets.

Consider the box-manufacturer problem of Example 3 of Section 1, and
suppose that the manufacturer makes a profit of $1 on small and $2 on
large boxes. Hence, if he makes x, small and x, large boxes, his profit
function is x; + 2x,, and the inequalities limiting the choice of x; and x,
are given in Example 1. What is the most and what the least profit he can
make?

We must find the maximum and the minimum value of x; + 2x, for point
(x4, X,) in the triangle shaded in Figure 3. Let us first try the extreme points.
At (15,2) we have a profit of 19, at (27,2) a profit of 31, and at (9, 14)
a profit of 37. The last extreme point is most profitable. But what can we
say about the remainder of the triangle? If we start at (9, 14) and try to
move to other points in the triangle, the best thing to do is to move along
the bounding hyperplane 2x, + 3x, = 60, since in this way we can get the
most favorable tradeoff between x; and x,. However, for each unit we
decrease x, along this line we can increase x, by only # units, with a net
loss of profit. Hence the maximum profit is taken on at the extreme point
(9, 14). A similar argument shows that the minimum profit is taken on at
the extreme point (15,2). Thus for this example the maximum and mini-
mum profits are observed at extreme points. We shall show that this is true
in general.

Given a convex polyhedral set C and a linear function
CX = X1 + CoXo + . o+ Xy

where ¢ = (¢4, ¢y, . . ., ¢,), We want to show in general that the maximum
and minimum values of the function cx always occur at extreme points of
C. We shall carry out the proof for the planar case in which n = 2, but
our results are true in general.

First, we shall show that the values of the linear function ¢,x; + ¢ox, on
any line segment lie between the values the function has at the two endpoints
(possibly equal to the value at one endpoint). We represent the points as
X1
X2
by the row vector (¢4, ¢,). Let the endpoints of the segment be

AN xy
() ma 1= ()
P (x’z) ane 9 xy
We have seen in Chapter 4 (see Figure 4) that the points in between p and

g can be represented as tp + (1 — f)g, with 0 < ¢ < 1. If the values of the
function at the points p and g are P and Q, respectively (assume that P > Q),

column vectors ( ) and then we see that our linear function is represented
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then at a point in between the value will be 1P + (1 — ¢)Q, since the function
is linear. This value can also be written as

P+ (1 -00=0+ (-0,

which (for 0 <7 < 1) is at least Q and at most P.
We are now in a position to prove the result illustrated in Example 3.

Theorem A linear function cx defined over a convex polyhedral set C takes
on its maximum (and minimum) value at an extreme point of C.

Figure 5

Proof The proof of the theorem is illustrated in Figure 5. We shall suppose
that at the extreme point p the function takes on a value P greater than
or equal to the value at any other extreme point, and at the extreme point

Minimum corner

value @
g

Maximum corner
value P — p

g it takes on its smallest extreme-point value, Q. Let r be any point of the
polygon. Draw a straight line between p and r and continue it until it cuts
the polygon again at a point u lying on an edge of the polygon, say the
edge between the corner points s and ¢. (The line may even cut the edge
at one of the points s and 7; the analysis remains unchanged.) By hypothesis
the value of the function at any corner point must lie between Q and P.
By the above result the value of the function at ¥ must lie between its values
at s and 1, and hence must also lie between Q and P. Again by the above
result the value of the function at r must lie between its values at p and
u, and hence must also lie between Q and P. Since r was any point of the
polygon, our theorem is proved.

Suppose that in place of the linear function ¢;x,; + ¢,x, we had considered
the function ¢;x; + ¢x, + k. The addition of the constant k merely changes
every value of the function, including the maximum and minimum values
of the function, by that amount. Hence the analysis of where the maximum




Section 2

Linear Programming and the Theory of Games 327

and minimum values of the function are taken on is unchanged. Therefore,
we have the following theorem.

Theorem The function cx + k defined over a convex polyhedral set C takes
on its maximum (and minimum) value at an extreme point of C.

EXERCISES

A method of finding the maximum or minimum of the function cx + &
defined over a convex set C is then the following: Find the extreme points
of the set; there will be a finite number of them; substitute the coordinates
of each into the function; the largest of the values so obtained will be the
maximum of the function and the smallest value will be the minimum of
the function. The method was illustrated previously in Example 3.

In Section 5 we shall describe the so-called simplex method, which is
considerably more efficient for solving the problem in Example 3.

1. Consider the cardboard-box problem of Exercise 2 of Section 1.
Assuming that both constraints stated in (a) and (b) are in effect and
the profit function is x; + 2x,, find the extreme point (or points) that
give maximum and minimum profit.

2. Rework Exercise 1 with profit function 2x; + 3x,. Show that in this
case there is more than one solution for maximum profit.

3. Consider the diet problem of Exercise 10 of Section 1. Suppose that
meat costs $1 per pound and milk costs 30 cents per quart. Find the
lowest-cost diet that will meet minimum requirements.

[Ans. w = (33, 49), cost is $11.]

4. The owner of an oil truck with a capacity of 500 gallons hauls gasoline
and oil products from city to city. On any given trip he wishes to load
his truck with at least 200 gallons of regular gasoline, at least 100
gallons of high-test gasoline, and at most 150 gallons of kerosene.
Assuming that he always fills his truck to capacity, find the convex
set of ways that he can load his truck. Interpret the extreme points
of the set. [Hint: There are four extreme points.]

5. Anadvertiser wishes to sponsor a half-hour television comedy and must
decide on the composition of the show. The advertiser insists that there
be at least three minutes of commercials, while the television network
requires that the commercial time be limited to at most 15 minutes.
The comedian refuses to work more than 22 minutes each half-hour
show. If a band is added to play while neither the comedian nor the
commercials are on, construct the convex set C of possible assignments
of time to the comedian, the commercials, and the band that use up
the 30 minutes. Find the extreme points of C.

[Ans. if x, is the comedian time, x, the commercial time, and
30 — x; — x, the band time, the extreme points are

(5} (5 C5) G3) e ()
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6.

10.

In Exercise 4 suppose that the o1l truck operator gets 3 cents per gallon
for delivering regular gasoline, 2 cents per gallon for high-test, and
1 cent per gallon for kerosene. Write the expression that gives the total
amount he will get paid for each possible load that he carries. How
should he load his truck in order to earn the maximum amount?
[Ans. He should carry 400 gallons of regular gasoline, 100 gallons of
high test, and no kerosene.]
In Exercise 6, if he gets 3 cents per gallon for regular and 2 cents per
gallon for high-test gasoline, how high must his payment for kerosene
become before he will load it on his truck in order to make a maximum
profit?

[Ans. He must get paid at least 3 cents per gallon of kerosene.]
In Exercise 5 let x,; be the number of minutes the comedian is on and
X, the number of minutes the commercial is on the program. Suppose
the comedian costs $200 per minute, the commercials cost $50 per
minute, and the band is free. How should the advertiser choose the
composition of the show in order that its costs be a minimum?
Consider the polyhedral convex set P defined by the inequalities

-1 <x, <4,
0 <x, <6.

Find four different sets of conditions on the constants a and b that
the function F(x) = ax; + bx, should have its maximum at one and
only one of the four corner points of P. Find conditions that F should
have its minimum at each of these points.

[Ans. For example, the maximum is at (2) ifa>0and b >0.]

A well-known nursery rhyme goes, “Jack Sprat could eat no fat, his

wife could eat no lean....” Suppose Jack wishes to have at least one

pound of lean meat per day, while his wife (call her Jill) needs at least

4 pound of fat per day. Assume they buy only beef having 10 percent

fat and 90 percent lean, and pork having 40 percent fat and 60 percent

lean. Jack and Jill want to fulfill their minimal diet requirements at
the lowest possible cost.

(a) Let x be the amount of beef and y the amount of pork they
purchase per day. Construct the convex set of points in the plane
representing purchases that fulfill both persons’ minimum diet
requirements.

(b) Suggest necessary restrictions on the purchases that will change
this set into a convex polygon.

(c) If beef costs $1 per pound, and pork costs 50 cents per pound,
show that the diet of least cost has only pork, and find the mini-
mum cost. [Ans. $.83.]

(d) If beef costs 75 cents and pork costs 50 cents per pound, show
that there is a whole-line segment of solution points and find the
minimum cost. [Ans. $.83.]
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(e) If beef and pork each cost $1 a pound, show that the unique
minimal cost diet has both beef and pork. Find the minimum
cost. [4ns. $1.40.]

(f) Show that the restriction made in part (b) did not alter the answers
given in (c)-(e).

11. In Exercise 10(d) show that for all but one of the minimal-cost diets
Jill has more than her minimum requirement of fat, while Jack always
gets exactly his minimal requirement of lean. Show that all but one
of the minimal-cost diets contains some beef.

12. In Exercise 10(e) show that Jack and Jill each get exactly their minimal
requirements.

13. In Exercise 10 if the price of pork is fixed at $1 a pound, how low
must the price of beef fall before Jack and Jill will eat only beef?

[Ans. $.25.]

14. In Exercise 10 suppose that Jack decides to reduce his minimal re-
quirement to .6 pound of lean meat per day. How does the convex
set change? How do the solutions in 3(c), (d), and (e) change?

3 LINEAR PROGRAMMING PROBLEMS

EXAMPLE 1

An important class of practical problems are those that require the determi-
nation of the maximum or the minimum of a linear function ¢x + k defined
over a polyhedral convex set of points C. We illustrate these so-called linear
programming problems by means of the following examples. In Section 5
we shall discuss the simplex method for solving these examples.

An automobile manufacturer makes automobiles and trucks in a factory
that is divided into two shops. Shop 1, which performs the basic assembly
operation, must work 5 man-days on each truck but only 2 man-hours on
each automobile. Shop 2, which performs finishing operations, must work
3 man-hours for each automobile or truck that it produces. Because of men
and machine limitations shop 1 has 180 man-hours per week available while
shop 2 has 135 man-hours per week. If the manufacturer makes a profit
of $300 on each truck and $200 on each automobile, how many of each
should he produce to maximize his profit?

Before proceeding, let us summarize the problem in the data box of Figure
6. (The term data box is due to A. W. Tucker.) Notice that the numbers
introduced above appear in the data box with their physical dimensions
attached. When doing dimensional analysis, in the sense of physics, we may
manipulate these dimension quantities just like algebraic quantities. We
shall see in Section 6 that we can obtain interpretations for dual variables
by means of dimensional analysis. The reader is strongly advised to set up
a similar data box for every linear programming example he works.

An alternate and slightly more elegant way of indicating the units in the
data box is shown in Figure 7. The reader should compare it with Figure
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Trucks Autos Capacities
Shop 1 Sl-manhr 2 Sl-manhr 180 S1-manhr
truck auto week
Shop 2 3 S2-manhr 3 S2-manhr 135 S2-manhr
truck auto week
Profits 300 —2 200 3
. truck auto
Figure 6
Trucks Autos Capacities
Shop 1 5 2 180 (Man-hours)
Shop 2 3 3 135 (Man-hours)
Profits 300 200 ($)
Figure 7 (per truck) (per auto) (per week)

6 to see the correspondence between them. When in doubt, use the more
explicit indications of Figure 6.

A dimensional fraction such as “Sl-manhr/truck” is read “shop 1 man-
hours per truck.” Suppose we now introduce two variables x, with dimen-
sions “trucks/week,” which will become the number of trucks per week we
should produce, and x, with dimensions “autos/week.” Then the first
constraint of the data box of Figure 6 becomes:

(5 S1-manhr ) ( trucks) ( S1-manhr ) (
)l x, + {2 X
truck week auto

Now, by canceling the common term “truck” from numerator and denomi-
nator of the first term, and similarly canceling the common dimension “auto”
from the numerator and denominator of the second term, we see that the
resulting dimensions of each term are “Sl-manhr/week”—the same as the
dimensions of the capacity term on the right-hand side of the inequality.
A similar dimensional analysis can be carried out for the second capacity
constraint. Dropping dimensions, we have the following restrictions:

autos Sl-manhr
< 180 =——=—,
2 Week) - week

S5xy + 2x, < 180,
3x; + 3x, < 135,

together with the obviously necessary nonnegative constraints x, > 0 and
x, > 0.
Subject to these constraints we want to maximize the profit function:

$ ) ( trucks ) ( $ ) ( autos )
300 —/—
( truck / \™ “week +1200 auto ) \*2 week /'
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Canceling out the common terms, we see that the dimensions of this function
are simply “$/week.”

In order to state the problem as a linear programming problem we define
the quantities:

5 2 180)
A = 5 b = s et
(3 3) (1 35 and ¢ = (300, 200),

which are immediately evident from the data boxes in Figure 6 and 7. Then
our problem is:

X1
X2
profit, given by the quantity cx, is a maximum subject to the inequality
constraints Ax < b and x > 0. The inequality constraints insure that the
weekly number of available man-hours is not exceeded and that nonnegative
quantities of automobiles and trucks are produced.

Maximum problem: Determine the vector x = ( ) so that the weekly

The graph of the convex set of possible x vectors is pictured in Figure
8. This is a problem of the kind discussed in the previous section.

X3

(36)\ \ "1

The extreme points of the convex set C are

0 36 0 30
L= (o)’ L= ( 0)’ Ty = (45)’ and 7, = (15)'
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EXAMPLE 2

Figure 8

Figure 10

Following the solution procedure outlined in the previous section, we test
the function cx = 300x; + 200x, at each of these extreme points. The
values taken on are 0, 10,800, 9000, and 12,000. Thus the maximum weekly
profit is $12,000, achieved by producing 30 trucks and 15 automobiles per
week.

A mining company owns two different mines that produce a given kind of
ore. The mines are located in different parts of the country and have
different production capacities. After crushing, the ore is graded into three
classes: high-grade, medium-grade, and low-grade ores. There is some
demand for each grade of ore. The mining company has contracted to
provide a smelting plant with 12 tons of high-grade, 8 tons of medium-grade,
and 24 tons of low-grade ore per week. It costs the company $200 per day
to run the first mine and $160 per day to run the second. However, in a
day’s operation the first mine produces 6 tons of high-grade, 2 tons of
medium-grade, and 4 tons of low-grade ore, while the second mine produces
daily 2 tons of high-grade, 2 tons of medium-grade, and 12 tons of low-grade
ore. How many days a week should each mine be operated in order to fulfill
the company’s orders most economically?

Before proceeding, we again summarize the problem in the data boxes
of Figures 9 and 10. The reader should compare these two figures to see
the correspondence between them. We shall make use of these dimensions
when we give interpretations of the dual variables in Section 6.

High- Medium- Low-
grade grade grade
Ore Ore Ore
HG MG LG Cost
. tons-HG tons-MG tons-LG $
1 2 4 =—>"== 1200
Mine Ml-day ~ Ml-day M1-day M1-day
. tons-HG tons-MG tons-LG $
2 2 12 160
Mine M2-day M2-day M2-day M2-day
Requirements | 12 tons-HG g tons-MG 24 tons-LG
week week week
High- Medium- Low-
grade grade grade
Ore Ore Ore Cost
Mine 1 6 2 4 200 (per day)
Mine 2 2 2 12 160 (per day)
Requirements 12 8 24 (per week)

(tons) (tons) (tons) $)
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Let v = (v, v,) be the two-component row vector whose component v,
gives the number of days per week that mine 1 operates and v, gives the
number of days per week that mine 2 operates. If we define the quantities

200)

_ (6 2 4 _ _
A_( ), c = (12,8,24), and b—<160

2 2 12

which are immediately evident from the data box of Figure 9, we can state
the problem above as a minimum problem.

Minimum problem: Determine the vector v so that the weekly operating
cost, given by the quantity vb, is a minimum subject to the inequality
restraints v4 > cand v > 0. The inequality restraints insure that the weekly
output requirements are met and the limits on the components of v are not
exceeded.

This is a minimum problem of the type discussed in detail in the preceding
section. In Figure 11 we have graphed the convex polyhedral set C defined
by the inequalities v4 > c.

vy
0, 6)
©0,4)

0,2)

2.0 @0 60 "

The extreme points of the convex set C are
T, = (6,0), T, =31, T; = (1, 3), T, = (0, 6).

Testing the function vb = 200v; + 160v, at each of these extreme points,
we see that it takes on the values 1200, 760, 680, and 960, respectively.
We see that the minimum operating cost is $680 per week and it is achieved
at T;—that is, by operating the first mine one day a week and the second
mine three days a week.
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EXAMPLE 3

EXAMPLE 4

EXERCISES

Observe that if the mines are operated as indicated, then the combined
weekly production will be 12 tons of high-grade ore, 8 tons of medium-grade
ore, and 40 tons of low-grade ore. In other words, for this solution low-grade
ore, is overproduced. If the company has no other demand for the low-grade
ore, then it must discard 16 tons of it per week in this minimum-cost solution
of its production problem. We shall discuss this point further in Section 6.

As a variant of Example 2, assume that the cost vector is
_ (160},
b= (200)’
in other words, the first mine now has a lower daily cost than the second.
By the same procedure as above we find that the minimum cost level is
again $680 and is achieved by operating the first mine three days a week
and the second mine one day a week. In this solution 20 tons of high-grade
ore, instead of the required 12 tons, are produced, while the requirements

of medium- and low-grade ores are exactly met. Thus 8 tons of high-grade
ore must be discarded per week.

As another variant of Example 2, assume that the cost vector is

b (200);
200

in other words, both mines have the same production costs. Evaluating the
cost function vb at the extreme points of the convex set, we find costs of
$1200 on two of the extreme points (7; and 7,) and costs of $800 on the
other two extreme points (7, and T3). Thus the minimum cost is attained
by operating either one of the mines three days a week and the other mine
one day a week. But there are other solutions, since if the minimum is taken
on at two distinct extreme points it is also taken on at each of the points
on the line segment between. Thus any vector v where 1 < v, <3,
1 <v, <3, and v, + v, =4 also gives a minimum-cost solution. For
example, each mine could operate two days a week.

It can be shown (see Exercise 2) that for any solution v with 1 < v, < 3,

1 < v, <3, and v; + v, = 4, both high-grade and low-grade ore are over-
produced.

1. In Example 1, assume that profits are $200 per truck and $300 per
automobile. What should the factory now produce for maximum
profit?

2. In Example 4, show that both high- and low-grade ore are overpro-
duced for solution vectors v with 1 <v; <3, 1 v, <3, and
Uy + Uy = 4,

3. A manufacturer has two machines, M; and M,, which he uses to
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manufacture two products, P, and P,. To produce one unit of P, three
hours of time on M, and six hours on M, are needed. And to produce
one unit of P, takes six hours on M, and five hours on M,. Each
machine can run a maximum of 2100 hours per year. If the manufac-
turer sells product P; for a net profit of $40 and P, for a net profit
of $50 each, what production mix shall he produce to maximize his
total profit?

(a) Set up the data box for the problem, marking the dimensions of

all numbers.
(b) Find A4, b, and c.
(c) Draw the set of possible production vectors and find the optimum

100
300
Two breakfast cereals, Krix and Kranch, supply varying amounts of
vitamin B and iron; these are listed together with one-third of the daily
minimum requirements (MDR) in the table below:

profit point.  [dns. x0 = ( ) with yearly profit of $19,000.]

Cereal Vitamin B Iron
Krix .15 mg/oz 1.67 mg/oz
Kranch .10 mg/oz 3.33 mg/oz
1 MDR .12 mg/day 20 mg/day

Krix costs 8 cents an ounce and Kranch 10 cents an ounce. How can

we satisfy 4 MDR at minimum cost?

(a) Let v, be the amount of Krix eaten and v, the amount of Kranch
eaten. Write a minimizing linear programming problem for the
above. Set up the data box and find 4, b, and c.

(b) Draw the convex set of possible amounts eaten defined by the
inequalities in (a).

(¢) What is the lowest-cost feasible diet?

[Ans. v° = (.6, .3) with cost 7.8 cents.]

A farmer owns a 200-acre farm and can plant any combination of two

crops I and II. Crop I requires 1 man-day of labor and $10 of capital

for each acre planted, while crop II requires 4 man-days of labor and
$20 of capital for each acre planted. Crop I produces $40 of net revenue

per acre and crop Il $60. The farmer has $2200 of capital and 320

man-days of labor available for the year. What is the optimal planting

138) with $8400 revenue.]

In Exercise 5 assume that the revenue from crop II is $90 per acre.

(a) Find the new maximum-revenue scheme, and show that now the
best thing for the farmer to do is to leave 30 acres unplanted.

(b) Explain why the farmer should leave part of his land fallow in
this case.

strategy? [Ans. x° = (
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/)7.

Suppose that a pound of meat contains 1 unit of carbohydrates, 3 units
of vitamins, and 12 units of proteins and costs $1. Suppose also that
one pound of cabbage contains 3, 4, and 1 units of these items, respec-
tively, and costs 25 cents per pound. If these are the only foods
available and the minimum daily requirements are 8 units of carbohy-
drates, 19 units of vitamins, and 7 units of protein, what is the
minimum-cost diet? [Ans. v° = (2, 4.6) with cost $1.35.]
Suppose that the minimum-cost diet found in Exercise 7 is unpalatable.
In order to increase its palatability, add a constraint requiring that at
least a half pound of meat be eaten, and resolve the problem. How
much is the cost of the minimum-cost diet increased owing to this
palatability constraint? [Ans. $.24.]
In Exercise 8 suppose that we add a different kind of palatability
constraint—namely, that at most two pounds of cabbage be eaten. Now
how much is the cost of the minimum-cost diet increased?

[Ans. $2.82.]
A manufacturer produces two types of bearings, A and B, utilizing three
types of machines; lathes, grinders, and drill presses. The machinery
requirements for one unit of each product, in hours, are expressed in
the following table:

Machine
Bearing Lathe Grinder Drill Press
A 01 03 03
B 02 01 015
Weekly machine
capacity (hr) 400 450 480

He makes a Profit of 10 cents per type A bearing and 15 cents per
type B bearing. What should his weekly production of each bearing
be in order to maximize his profits?

[Ans. x = ( 8000

16,000) with weekly profits of $3200.]

4 THE DUAL PROBLEM

As the examples of the preceding sections have shown, some linear pro-
gramming problems are maximizing and some are minimizing. Thus we
might be interested in maximizing profits, production, or market share—or
we might want to minimize costs, completion times, or raw-material usage.
We shall show that to each maximizing problem there is a well-defined
minimizing problem that uses the same data and whose solution has impor-
tant mathematical implications concerning the original maximizing prob-
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lem. Similarly, to each minimizing problem there is a well-defined maxi-
mizing problem that uses the same data and is similarly related.

First, we recall that every linear programming problem can be put into
one of the two following forms:

Maximize c¢x
(1) subject to Ax < b } the MAXIMUM problem.
x>0
or
Minimize vb
) subject to vA > ¢ ; the MINIMUM problem.
v>0

If the components of 4, b, ¢ are the same, then the two problems (1) and
(2) are called dual linear programming problems. Every linear programming
problem, whether of the maximum or minimum type, has a dual that can
be formally stated as above. The dual of a given problem frequently has
important economic meaning and always has mathematical significance—see
the discussion in Section 6.

To set up a maximum problem proceed as follows: Let the variables to
be determined be x,, ..., x,; set up the data box as in Figure 12, with the
x-variables appearing as labels on the top of the box. It then follows that,
taking 4, b, and ¢ from the data box, the maximum problem is in form
(1) above.

xl X2 xn
ayy Ay Ay, b,
ay ayy Aop b,
aml amZ amn bm
c, Cy c,

To set up a minimum problem proceed as follows: Let the variables to
be determined by vy, ..., v,,; set up the data box as in Figure 13 with the
v-variables appearing as labels to the left of the box. It then follows that,
taking A4, b, and ¢ from the data box, the minimum problem is in form (2)
above.

Uy an o Ain b,

Uy ay ass Aoy b,

Um aml am2 amn bm
o o c,
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We now make two important observations. First, the dual problem to
a maximum problem with data box as in Figure 12 can be obtained by
merely labeling the rows vy, ..., Up; and the dual problem to the minimum
problem whose data box is in Figure 13 can be obtained by labeling the
columns x, . .., X,. Second, the dimensions of the dual variables in either
case can be obtained by dividing the dimensions of the b’s or ¢’s by the
corresponding @’s, as the following examples will make clear. We shall see
that the interpretations of the dual variables are easy, once their physical
dimensions are determined.

The reader may wonder why we introduce the dual problem instead of
concentrating on the original problem alone. The reason is that the simplex
method to be discussed later automatically produces the optimum solution
to both problems simultaneously. Also, the solution to the dual problem
often has important managerial and economic interpretations.

Before we can describe how the simplex method works, we must make
a change in the formulation of the dual programs. What we shall do is
to add slack variables to the inequalities stated in expressions (1) and (2)
of this section in such a way as to make them into equations. To see how
this is done, consider as an example the system of inequalities

—u 4+ 2v <5, where u > 0 and v > 0.
We now add a new slack variable w and obtain a new system of expressions:
—u+ 204+ w=23, where u > 0, v >0, w > 0.
Thus we obtain the equation
—u+2v+w=5

in nonnegative variables. Notice that the new system of expressions is
equivalent to the old system, since any solution of the new system that has
w = 0 represents a case for which —u + 2v =5, and a solution of the new
system for which w > 0 represents a case for which —u + 2v <5. More-
over, we can write any solution of the old system as a solution of the new
system by properly choosing a nonnegative value of w. Thus the truth sets
of the two systems are identical.

Now we want to reformulate the constraints of problems (1) and (2). Let
» be an m-component vector of slack variables y;, and let f be a number;
then (1) is equivalent to

Maximize cx=f
(3) subject to  Ax + y = b,
x,y > 0.

To see this, rewrite the constraint of (3) as follows:
4) Ax — b= —y;

then y > 0 is equivalent to —y < 0, and the latter is, from (4), the same
as Ax < b. The number f/ = c¢x measures the current value of the objective
function of the maximum problem.



Section 4

Figure 14

Linear Programming and the Theory of Games 339
Similarly, let u be an n-component row vector of slack variables u;, and
let g be a number; then (2) is equivalent to

Minimize vb =g
) subject to vA — u = ¢,
u,v> 0.

To see the equivalence rewrite the equality constraint of (5) as
(6) VA — ¢ = u;

then it is obvious that u > 0 and v4 > c are the same. The number g = vb
measures the current value of the objective function of the minimizing
problem.

Next we show that the pair of dual problems in (3) and (5) can both be
represented in the same tableau, and that the tableau can be obtained by
extending either of the data boxes in Figure 12 or 13. Consider the (Tucker)
tableau, which we shall later call the initial simplex tableau, in Figure 14.

Uy ayy aqy ay, b, =N
U, ax, ayo Aoy b, = =)o
Um aml am2 amn bm = _.ym
—1 c c, ¢, 0 =f

= Uy :112 = U :g

Notice that Figure 14 can be obtained from Figure 12 by adding the 0

entry in the lower right-hand corner, putting variables vy, ..., v,, and —1
along the left margin, putting — 1 above the (n + 1)st column, marking the
right-hand side with = —y,,..., = —y,,, and = f, and marking the bottom
of the matrix with = u,..., = u,, and = g. Figure 14 can be obtained

in a similar manner from Figure 13. The reason for this labeling is as
follows: if we drop the x’s and —1 down to the first row of the matrix,
multiply by the coefficients there, and set equal to the label on the right,
we have

Ay Xy + Xy + ...+ apx, — by = —yy,

which is just exactly the first equation of (4). Dropping the labels at the
top down to the other rows will give the other equations of (4). Finally,
dropping the labels down to the last row gives

X1+ Coxg + ...+ x, =,

which is just the definition of f.
In a similar manner, if we move the labels on the left of Figure 14 into
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EXAMPLE 1

Figure 15

EXAMPLE 2

Figure 16

each column of the tableau, multiply, and set equal to the label at the
bottom, we have the various equations of (6) together with the definition
of g.

The data box for the automobile/truck example of the last section is shown
in Figures 6 and 7; hence its initial simplex tableau is as given in Figure 15.

Xy Xy -1
vy ® 2 180 = —y
Uy 3 3 135 = —y,
-1 300 200 0 =f
=U = Uy =§

The primal equations for this problem corresponding to (4) are
S5x;+ 2x,— 180 = —py,
3x1 + 3.X2 — 135 = _y2’
300x, + 200x, = f.
The dual equations for this problem corresponding to (6) are
5v, + 3v, — 300 = u,,
2v, +  3v, — 200 = u,,
180v, + 1350, =g

These are obtained in the manner described above.

The data box for the mining example of the last section is shown in Figures
9 and 10; hence its initial simplex tableau is as given in Figure 16.

X4 Xy X3 —1
vy ® 2 4 200 = —y
U, 2 2 12 160 - —,
.y 12 8 24 0 =f

= u1 = le = u3 = g

The primal equations for this problem corresponding to (6) are

6v, + 2v, — 12 = uy,
20, + 20, — 8 = uy,
4v, + 12v, — 24 = ug,
2000, + 160v, =g,
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and the dual equations corresponding to (4) are

6x; + 2xy + 4x3 — 200 = —y,,
2x; + 2x5 + 12x5 — 160 = —yp,,
12x, + 8x, + 24x, =/

The reader should set up in an analogous way the initial simplex tableaus
for Examples 3 and 4 of Section 3.

We next show that from equations (4) and (6) we can immediately derive
Tucker’s duality equation:

(7) g—f=uvy+ ux
This follows easily since
g—f=vb—cx =v(dAx +y) — (4 — u)x = vy + ux,

where we used the substitutions b = Ax + y from (4) and ¢ = v4 — u
from (6).

Nonnegative vectors x, y, u, and v that satisfy (4) and (6) will be called
Jfeasible vectors for the equality form of the linear programming problem.
Note that the duality relation (7) is true for all solutions x,y,u, and v
satisfying (4) and (6) whether nonnegative or not. However, the following
theorem shows that a pair of feasible vectors for one of the problems implies
a bound on the objective function of the other problem.

Theorem (a) Let x%, )%, and f° be optimal solutions to maximizing problem
(3), and let u, v, and g be feasible solutions to the dual minimizing problem
(5); then cx® = f9 < g = vb; in other words, for any feasible vector v, the
value g = vb is an upper bound to the maximum value f© = cx® of the
maximizing problem (3).

(b) Let u°, v, and g° be optimal solutions to the minimizing problem (5),
and let x, y, and f be feasible solutions to the dual maximizing problem
(3); then v° = g° > f = cx; in other words, for any feasible vector x, the
value f = c¢x is a lower bound to the minimum value g° = v% of the mini-
mizing problem (5).

EXAMPLE 1
(continued)

Proof (a) If u,v, x° and »° are all nonnegative vectors, then it follows that
vy® > 0 and ux® > 0, so that, from (7), we have

g—f°=uv’ + ux® >0,
or, in other words, g > f9, as asserted.
The proof of (b) is similar.

We illustrate the theorem by returning to the previous examples.

If we consider the automobile/truck example whose initial tableau is given
in Figure 15, we can easily check that the following quantities solve the
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EXAMPLE 2
(continued)

EXERCISES

primal problem: x; = 10, x, = 10, y; = 110, y, = 75. These were obtained
by selecting arbitrary but not too large values for x; and x, and then solving
for y, and y,. From this feasible solution we calculate cx = 300 - 10 +
200 - 10 = 3000 + 2000 = 5000; hence we know that 5000 < g% = v%b; that
is, we have found a lower bound to the optimum value g° of the dual
minimizing problem.

Similarly, we can select v; and v, to be fairly large, but otherwise arbitrary,
and solve for u; and u,. Forinstance,v; = 50,v, = 40,4, = 70,and u, = 20
are a feasible choice for these quantities. From them we know that f* = ¢x°
is definitely not greater than vbh = 18050 4 135-40 = 9000 + 5400 =
14,400.

Since we know that the optimum value is f° = 12,000, and we will later
show that /0 = g we see that, in fact, the lower and upper bounds are
correctin this instance. The reader should try several other feasible solutions
for this example.

Let us check the theorem for the mining example shown in Figure 16.
Suppose we choose x; = 20, x, = 20, x; = 5, so that y; = 20 and y, = 20.
We thus obtain the lower bound on g® as cx = 12-20 + 8-20 + 24-5 =
240 + 160 + 120 = 520.

Similarly, we can choose v; = 2, v, = 2, and correspondingly u, = 4,
u, = 0, and u; = 8, so an upper bound for f° is vb =200-2 + 160-2 =
720.

Since the true value is 680, we see that the upper and lower bounds again
are correct.

1. Illustrate the theorem of this section by finding other feasible solutions

to the primal and dual problems for the automobile/truck example,

and show that the upper and lower bounds so obtained are correct.

Repeat Exercise 1 for the mining example.

3. For Example 3 of Section 3:

(a) Set up and label the initial tableau.

(b) Write the primal and dual equations.

(c) Find feasible solutions to the primal equations and determine
a bound to the dual problem.

(d) Find feasible solutions to the dual problem and derive a bound
on the primal problem.

Repeat Exercise 3 for Exercise 4 of Section 3.

Repeat Exercise 3 for Exercise 5 or Section 3.

Repeat Exercise 3 for Exercise 7 of Section 3.

Repeat Exercise 3 for Exercise 10 of Section 3.

Let x° and v° be nonnegative vectors such that 0 = cx® = 1% = g°,

Ax® < b, and v°4 > c.

g

® NS
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(a) Show that if x is any other feasible vector, then
cx < vPAx < v% = ¢x°,

so that x° solves the maximum problem.
(b) Similarly, show that v° solves the minimum problem.
(¢) Show that ¢x°® = v°% = v°4x°.
9. Use (7) to show that if x, y, u, and v are vectors related as in (4) and
(6), then ux >0 and vy > 0 imply g > f. (Note that this is true
whether or not x, y, u, and v are nonnegative.)

If x, y,u, and v are vectors related as in (4) and (6), then they are said
to have the complementary slackness property if and only if

ux =0 and vy =0.
The remaining exercises refer to this property.

10. Use (7) to show that if x,y,u, and v satisfy the complementary
slackness property, then g = f. Is the converse true?
*11. If x, y, u, and v are nonnegative vectors, show that g = fif and only
if they have the complementary slackness property.
*12.  Use Exercises 8, 10, and 11 to show that nonnegative vectors related
as in (4) and (6) are optimal if and only if they satisfy the comple-
mentary slackness property.

5 THE SIMPLEX METHOD

In Section 3 we solved simple linear programming problems having two
variables by sketching convex sets in the plane. To solve such problems
in more than two variables by the same method would require visualizing
convex sets in more than two dimensions, which is extremely difficult. But
fortunately there is an algorithm, called the simplex algorithm, that permits
us to solve such large-scale linear programming problems without such
visualizations. The reader will recall that in Chapter 4 we developed an
algorithm for solving simultaneous linear equations that was algebraic (not
geometric) in nature and avoided similar visualization problems.

For simplicity we shall make the following two assumptions in the present
and next sections:

I. The Nonnegativity Assumption We shall assume b > 0; that is, every
component of b is nonnegative.

II. The Nondegeneracy Assumption The extreme points of the convex set
of feasible vectors are each the intersection of exactly n bounding hyper-
planes, where n is the number of components of the vectors involved.

In Section 7 we shall indicate how these two assumptions can be dropped.
We emphasize, however, that for linear programming problems derived from
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Figure 17

EXAMPLE 1

Chapter 7

actual applications both assumptions will be satisfied, or else the problem
can be reformulated so that they are. Moreover, when codes are written
for computers to solve linear programming problems, precautions are taken
to insure that these assumptions hold.

We now proceed to describe the simplex method. In the next section we
shall discuss reasons why the simplex method works.

After the data box has been set up for either a maximizing or minimizing
problem, the simplex method begins with the initial simplex tableau (the

* Tucker tableau) of Figure 14. Note that it was derived from the data box

as described in the previous section. The simplex algorithm will change the
initial tableau into a second one, that into a third, and so on, until finally
a tableau is obtained that displays the optimum answers to both the primal
and dual problems. A typical tableau in this computational process is shown
in Figure 17. Note that the variables have been identified as being of two

Nonbasic x- and y-variables —1
. ! { ! ! = — .
Nonbasic [” 112 11" I“‘“ _ Basic
u- and v- 21 22 2n 2.n+1 - X~ and y_
variables ’ variables
tml [m2 tnm tm.n+1 = -
-1 Lo+t L T lntin Lttt :f
Indicators
prownd fanacd = = g

Basic u- and v-variables

kinds: basic and nonbasic. The basic variables appear on the bottom and
right-hand sides of the tableau and the nonbasic variables on the left and
top. As we shall see, in any tableau, if we set the nonbasic variables equal
to zero, then the corresponding values of the basic variables can be read
from the last row and last column of the tableau. The other important thing
to note is that the entries of the first n columns of the last row are called
indicators.

The flow chart in Figure 18 describes how the simplex method works.
Look at box 1 in the upper left-hand corner. We see that for the automo-
bile/truck and mining examples of the previous section we have already
carried out the directives there: the problems are set up and the initial
tableaus formed. We now discuss in detail the rest of the computation for
these two examples.

The initial tableau for the automobile/truck example appears in Figure 15.
To solve this problem using the simplex method we go next to box 2 of
the flow chart in Figure 18. We note that in the initial simplex tableau of



Section 5

Figure 18

Linear Programming and the Theory of Games 345

Halt. Computation ended.
Basic variables have indicated
value and nonbasic variables

/ | are zero.

Are there one
Or more positive
indicators?

lSet up data box for ]
the problem. Construct
linitial tableau.

L 00 0> A b
Select a positive indicator: e @ Label the new tableau the
say it is in column J. Call same as the old tableau excepr
column J the pivotal column. interchange the variable at top
of column J with variable at

right of row /, and interchange
variable at bottom of column J
with variable at left of row /.

(4] Y F——————- - © ‘

Are all the Halt. Maximum

|
entries ¢;yin problem has l
i unbounded solution. LT
Minimum problem ! other entries in pivotal column
|
|

Replace 7, J entry of new
tableau by 1/¢;;. Replace all

column J negative
or zero lextcfpt has no feasible by—~ty /.
ast. | solution.
_______ _I 1
o [
v

e For each i each (except I)

Choose a row / so that subtract #y times the /th row
1 n + 1/t is a minimum value of the new tableau from the ith
of t; » 4 1/ty for all i such that row of old tableau and enter

ty > 0. Call tjy the pivot. Call result in new tableau.

I the pivotal row.

S\

a Divide the Ith row of old tableau
by the pivot, ¢;7, and enter result
in Ith row of new tableau.

The simplex algorithm for problems with nonnegative righthand sides

Figure 15 there are positive indicators, so the answer to the question in box
2 is “yes.” Hence we proceed to box 3, which says, “Select a positive
indicator.” Suppose we select 300, which makes column I the pivotal column
and J = 1. We now go to box 4 and observe that there are positive entries
in column 1, so that the answer to the question there is “no,” and we go
on to box 6. We must now find the pivotal row. For this we examine the
ratios t; ,,,/t;; for i = 1 and 2. These ratios are 180/5 = 36 and 135/3 =
45. Since the smaller ratio occurs in the first row, we see that the 5 entry
in the first column of Flgure 15 is the pivot and I = 1, so that the first row
is pivotal. The pivot is circled in Flgure 15.

Next we carry out the directives in boxes 7 and 8 of Figure 18, which



346 Linear Programming and the Theory of Games Chapter 7

Figure 19

Figure 20

Figure 21

construct the rows of the new tableau. In box 7 we find we must divide
through the pivotal row of the old tableau by the pivot and insert it in the
new tableau (Figure 19). Then we multiply this new row by 3 and subtract

1 2 36
0 g 27
0 80 — 10,800

it from the second row of the old tableau to form the second row of the
new tableau. In vector form, this computation is

—3(1 2 30)+(3 3 135=0 2 27)

Similarly, we multiply the new row by 300 and subtract from the third row
of the old tableau to form the third row of the new tableau as shown. To
complete the new tableau we must replace the pivotal column as described
in box 9 of Figure 18; the result is given in Figure 20. Also we must

1 Xo —1
U 1 z 36 = —x,
Vs —4 ® 27 = )
—1 —60 80 —10,800 =f
Indicators
=l = Uy =&

interchange the labels of the variables at both ends of the pivot row with
the variables at both ends of the pivot column as described in box 10 of
Figure 18. The completed new second tableau appears in Figure 20.

We now find ourselves back at box 2 of the flow chart of Figure 18. Since
the 80 in the second column, last row of Figure 20 is positive, the answer
to the question in box 2 is “yes,” so we go to box 3. Clearly we must choose
J = 2. The answer to question in box 4 is “no,” so we g0 on to box 6 to
choose the pivot. The two ratios to be considered are 36/2 = 90 and
27/3 = 15, so that the second row is pivotal and £ (circled in Figure 20)
is the new pivot. Carrying out the instructions in boxes 7 and 8 of the flow
diagram gives the tableau in Figure 21, and finishing up with boxes 9 and
10 gives the completed third tableau (Figure 22).

1 0 30
-1 1 15
— 100 0 — 12,000
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1 Yo —1
Uy —3 8 15 = =X
—1 —%0 —189 —12,000 =f
Indicators
= U1 = 1)2 = g

We again find ourselves in box 2 of the flow diagram. But this time we
find no positive indicators for the tableau of Figure 22; hence the answer
to the question there is “no” and we go to box 11, which says that the
computation is ended. The answers to both the primal and dual problems
are displayed in the final tableau. To see what they are, we first set the
nonbasic variables equal to zero as instructed in box 11 of the flow diagram.
Hence we have u; = u, = y; = y, = 0, since the nonbasic variables appear
on the left and top of the final tableau. Knowing that y; =0 fori = 1,2,
we drop the variables at the top of the final tableau down to the first row
and multiply, obtaining —30 = —x; or simply x; = 30. Dropping these
down one row further gives x, = 15. And dropping them down to the last
row gives f = 12,000, which is the final value of the objective function. Thus
the optimal solution vectors to the maximizing problem are:

30
0
= (15)’

Note that this is the same solution that we found in the previous section.

We can also find the optimal solution to the dual problem. (The inter-
pretation of this solution will be given in the next section.) Knowing u; = 0
for j = 1,2, we move the variables on the left of Figure 22 into the first
column, multiply, and obtain v; = 142 Moving them to the second column
gives v, = 442 and moving them to the third column gives g = 12,000, the
value of the objective function of the minimizing problem. Hence the
optimal solution vectors to the minimizing problem are:

u®=(0,0), and g°= 12,000.

W = (8), and £ = 12,000.

UO - (.lg—o’ M))

The reader should substitute x° and )° into the primal, and v° and u«°
into the dual equations written down previously and show that they are
satisfied. Note also that f© = v% = cx® = g° at an optimum solution. This
is always true, and will be discussed further in the next section.

Let us solve the mining example using the simplex method. The initial
tableau is in Figure 16. The first indicator 12 was selected so that the first
column is pivotal. The pivot is 6, which is circled in the figure, and was
chosen because the two ratios involved are 1§2 which is smaller than
189 = 80, hence the first row is pivotal and the pivot is 6. Carrying out steps
7 through 10 of the flow diagram (Figure 18), we construct the second
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Figure 23

Figure 24

EXAMPLE 3

M1 X3 X3 —1
W[ 31 3 3 ® |=-x
Uy -3 @ ¥ 230 = )2
—1 -2 4 16 —400 =f
Indicators
=U = Uy = U3 =8

tableau in Figure 23. There are two positive indicators, and we choose the
first one, 4, so that the second column is pivotal. The new pivot is 4, which
is circled in the second (pivotal) row. Carrying out the rest of the steps
of the flow diagram, we obtain the third tableau (Figure 24). All indicators

1 Yo X3 -1
Uy % —% -2 10 = —X;
Uy —% % 8 70 = — X
—1 —1 -3 —16 —680 -
Indicators
=U = Uy = U =£

in this tableau are negative, so the computation is complete. We read off
the optimum answers to the primal minimizing problem as

w0 = (1, 3), u® =(0,0,16), and g°%= 680,

and the final minimum operating cost for the mines is $680 per week. These
are the same answers as the graphical procedure gave.

The optimum answers to the dual maximizing problem can also be
obtained as

10 0
x0 =170}, yO:( ), and f° = 680.
0 0

Interpretations for these will be given in the next section.

Our next example illustrates the fact that a given variable may first be basic,
become nonbasic, then become basic again, and so on, several times during
the course of the simplex computation. Figures 25 through 28 give the
necessary tableaus, and the pivots are circled there. There is another way
of working this problem that requires only two tableaus. It starts with a
pivot in the first column instead of the second (see Exercise 9). This illus-
trates the rule that it is frequently (but not invariably) better to start the
simplex method with a column having the most positive indicator. Note
that y, started out basic, became nonbasic, then became basic again. And
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Xy Xy —1
Uy 2 @ 3 = -
Uz 3 1 4 = _yz
—1 17 5 0 =f

= L{l pae Ll2 = g

X1 Y1 -1
Us @ —1 1 = )2
—1 7 -5 —15 =f

= U =U =4

Yo M1 -1
u, -2 ©) 1 = —X,
Uy 1 -1 1 = —X;
—1 -7 2 22 =f

= 1)2 = U1 — g

Yo Xo —1
Uy —3 3 3 =N
w | 3 i |=-x
-1 -y g | ;| =g

procand 1)2 = u2 = g

X, was initially nonbasic, became basic, and ended up nonbasic. The final
optimal answers are:

v? = (0, 1), u® = (0, %), g% = 223

4 }
o) 2=() rou

The reader has undoubtedly wondered about box 5 of the flow diagram
in Figure 18, since we have not yet ended in it. Actually, if we are solving
an applied problem that is correctly formulated so that it has a solution,
we shall never end in it. Consider, however, the problem whose initial
tableau is in Figure 29. Both the first two columns have positive indicators.
If we choose the first one and pivot, we obtain the tableau of Figure 30.
Now there is one positive indicator in the second column, so J = 2. But
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Figure 29

Figure 30

EXERCISES

X4 X —1
Ul — 1 = —-y1
Uy -1 = —)2
—1 1 1 0 =f
= ul = u2 = g
Yo X2 —1
ul | —1 1 = —xl
-1 -1 2 -1 =g
e 1)2 = u2 = g

the answer to the question in box 4 of Figure 18 is “yes,” so we arrive at
box 5, which says that the maximum problem has an unbounded solution
and the minimum problem has no feasible solution.

To see this let us write the constraints for the maximum problem of Figure
29. They are

—x; + x5, < 1, xy >0,

These inequalities are satisfied if x, and x, are equal and positive. Hence
we can make the objective function f = x,; + x, as large as we wish. Two
constraints of the minimum problem of Figure 29 are

If we add these, we obtain the contradiction O > 2, and hence the minimum
problem has no solution.

For practical purposes, however, we can ignore the no-solution possibility,
since we will be dealing with well-formulated problems that have solutions.

1. Use the simplex method to solve Example 3 of Section 3.

2. Use the simplex method to solve Example 4 of Section 3 even though
the nondegeneracy hypothesis is not satisfied. Show that there are two
ways to proceed, each one leading to a different solution of the mini-
mum problem.

Use the simplex method to solve Exercise 3 of Section 3.

Use the simplex method to solve Exercise 4 of Section 3.

Use the simplex method to solve Exercise 5 of Section 3.

Use the simplex method to solve Exercise 6 of Section 3.

SANLIE o



Section 5

o0

10.
11.

12.

13.

14.

15.
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Use the simplex method to solve Exercise 7 of Section 3.

Use the simplex method to solve Exercise 8 of Section 3.

Solve the problem in Example 3 by choosing the first pivot in the first
column. Show that the answer can be obtained in one step.

Use the simplex method to solve Exercise 10 of Section 3.

A nut packager has on hand 121 pounds of peanuts and 49 pounds
of cashews. He can sell two kinds of mixtures of these nuts: a cheap
mix that has 80 percent peanuts and 20 percent cashews, or a party
mix that has 30 percent peanuts and 70 percent cashews. If he can
sell the party mix at 80 cents a pound and the cheap mix at 50 cents
a pound, how many pounds of each mix should he make in order to
maximize the amount he can obtain?

[Ans. Let x, be the number of pounds of party mix and x, the number
of pounds of the cheap mix. Then the data are

(3 8 (121 _
A_(.7 '2), b_(49), and ¢ = (80, 50).

The packager should make 30 pounds of the party mix and 140 pounds
of the cheap mix. His income is $94.]

The operator of all oil refinery can buy light crude oil at $6 per barrel
and heavy crude at $5 per barrel. The refining process produces the
following quantities of gasoline, kerosene, and fuel oil from one barrel
of each type of crude:

Type Gasoline Kerosene Fuel Oil
Light crude S 25 2
Heavy crude 4 3 25

Note that in each case 5 percent of the barrel of crude is lost in the
form of gases (which have to be burned) and unusable sludge. During
the summer months the operator has contracted to deliver 50,000
barrels of gasoline, 30,000 barrels of kerosene, and 10,000 barrels of
fuel oil per month. How many barrels of each type of crude should
he process in order to meet his production quotas at minimum possible
cost?

During the winter months the refinery operator of Exercise 12 contracts
to deliver 36,000 barrels of gasoline, 12,000 barrels of kerosene, and
18,000 barrels of fuel oil. What is his optimal winter production plan?
In Exercises 12 and 13 show that there is an excess production of at
least one of the goods during each time of the year. Discuss practical
ways in which this excess production can be used.

In the tableau of Figure 16 make the pivot be the 2 entry in the first
column rather than the circled 6 entry shown. Show that this leads
to a negative value of x,;, and hence explain the reasons in box 6 of
Figure 18 for the special choice of the pivot.
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6 DUALITY INTERPRETATIONS AND RESULTS

As we saw in the previous section, the simplex method is the same for both
maximizing and minimizing problems. The only difference in setting up
the two problems is the choice of row or column vectors for the various
quantities involved. In either case we ended up with a data box containing
a matrix 4, a column vector b, and a row vector c. Using these data we
stated both a maximizing and a minimizing problem—only one of which
initially interested us. The other problem is called the dual linear program-
ming problem. The dual of a maximizing problem is a minimizing problem,
and vice versa. And the dual of the dual problem is, in either case, the
original problem.

We saw that the simplex method solves both the original problem and
its dual simultaneously. It is therefore of interest to see what interpretation,
if any, can be given to the dual of a linear programming problem. We shall
see that we can always give the dual problem mathematical and economic
or managerial interpretations that are of considerable interest.

The first step in interpreting the solution to the dual problem is that of
determining the dimensions of the variables involved. Recall that in Section
3 we set up for each linear programming problem a data box, and the
numbers in the data box had dimensions. We now need to determine the
dimensions of the variables of both the primal and dual problems. The
following rule tells how to do this.

Rule for Determining Dimensions of Variables

(a) The dimension of x; is the ratio of the dimension of b; divided by
the dimension of g;; for any .

(b) The dimension of v; is the ratio of the dimension of ¢; divided by
the dimension of a;; for any ;.

EXAMPLE 1

In working with dimensions we use the rules of ordinary algebra for cancel-
ing and so on, as explained earlier in Section 3.

Let us return to the auto/truck example; its data box is given in Figure
6. We have already found the dimensions of the primal variables x,
(trucks/week) and x, (autos/week). Let us use rule (b) above to determine
the dimensions of the dual variables v, and v,. For v, we have

dimension of v; = (dimension of ¢;)/(dimension a,,)

_ S Sl-manhr
truck truck
__S ., _ truck
truck Sl-manhr
$

Sl-manhr’
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Figure 32
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In Exercise 1 the reader is asked to show that we would have obtained the
same result if we had divided the dimension of ¢, by the dimension of a;,.
In the same manner we have

dimension of v, = (dimension of c,)/(dimension a,,)

§ . truck
truck S2-manhr

$

S2-manhr’

Figure 31 summarizes the complete data box for the auto/truck example,
indicating the dimensions of all variables and constants.

trucks autos -
1 “week Xy ok Capacities
$ Sl-manhr S1-manhr S1-manhr
e S ——= 2 == 180 =———
Y1 Sl-manhr truck auto week
$ S2-manhr S2-manhr S2-manhr
_— 3= 3= 135 =————
& S2-manhr truck auto week
Profits $ 200 3
truck auto
$ S $ Costs

1 on-HG 2 onnMG 3 ton-LG

v MI1-days 6 tons-HG 5 tons-MG 4 tons-LG 200 $

1 week Ml-da MIl-da M1-da M1l-da
y y y y
M2-days 5 tons-HG 2 tons-MG 12 tons-LG 160 $
* week M2-day M2-day M2-day M2-day
Requirements | 12 tons-HG 8 tons-MG 24 tons-LG
9 week week week

The data box for the mining example is given in Figure 9. We already know
that the dimensions of v; and v, are mine l-days/week and mine
2-days/week, respectively. Let us use rule (a) above to find the dimensions
of Xyq- \

dimension of x, = (dimension of b,)/(dimension of a;,)

___ ¥ /tons—ILg
~ Ml-day/ Ml-day

__ 3
tons-Hg’
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EXAMPLE 1
(continued)

Figure 33

A similar application of rule (a) gives the dimensions of x, and x; as
$/ton-Mg and §/ton-LG, respectively.

Figure 32 shows the data box for the mining example, indicating dimen-
sions for all variables and constants.

Determining the dimensions of the dual variables is the first step in their
interpretation. The next step is to look at the optimal dual solutions for
the examples above and give their interpretations.

In Example 1 of Section 5 we found the optimal solution to the auto/truck
example to be

30
= (15)’ o0 = (2,400),  f0 = g0 = 12,000.
We know that v = 1§2has dimensions $/S1-manhr, which sound like a value
for shop 1 man-hours. We shall show that this is in fact the case. Suppose
we increase the number of shop 1 man-hours from 180 to 183. Our problem
is then summarized in the data box of Figure 33, where the dimensions

X, x,  Capacities
o8 5 2 183
Uy 3 3 135
Profits 300 200

are the same as in Figure 31 and are therefore omitted. The reader will
be asked to show in Exercise 2 that the optimal solution to this problem
is

x=(31) ana v = g, o)

with objective value 12,100. Notice that the objective value has increased
by 100, which is just three times the dual variable v? = 12, Hence we see
that v§ = 33.33 is the imputed value of an additional hour of shop 1 man-
hours. It should be remarked right away that the imputed-value inter-
pretaiion holds over only a limited range of changes in shop 1 man-hours.
Hence we should more properly say that v = 33.33 is the imputed value
of an additional hour in shop 1 provided the dual solution is not changed
by adding this extra capacity.

Note also that the imputed value is determined independently of the cost
of providing the extra man-hours in shop 1. In order to provide extra
man-hours it would be necessary to pay workers overtime and rent additional
equipment, or else do subcontracting, or the like. What the optimal dual
variables tell us is the cost of providing extra hours in shop 1 should not
be more than their imputed value, or else it is not optimal to get them.
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EXAMPLE 2
(continued)

Figure 34
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In Exercise 3 the reader will be asked to show that the optimal dual
variable v = 430 = 44,44, which has dimensions $ per shop 2 man-hour,
is the imputed value of an additional hour in shop 2 provided the optimal
dual solution does not change after the extra time is added. As before, it
is the maximum amount one should be willing to pay to obtain the extra
time. :

In Example 2 of Section 5 we found the optimal solutions to the mining
example to be

10
W=(1,3), x°=[70], and f°=g°=680.
0

We know that x¢ = 10 has dimensions $ per ton of high-grade ore, which
sounds like the imputed cost of producing an additional ton of high-grade
ore, and we shall show that this is the case. Suppose we increase the
requirements for high-grade ore production from 12 to 16 tons. The new
data box is shown in Figure 34, the dimensions being the same as in Figure

X, Xy X3 Costs
vy 6 2 4 200
U, 2 2 12 160
Requirements 16 8 24

32. In Exercise 4 the reader will be asked to show that the optimal solution
to the new problem is

10
W=(@2,2), x°=]{70
0

, and f9= g0 ="720.

Notice that the costs of production have increased from 680 to 720, which
is4+x9 =4-10 = 40. Hence x§ = 10 was the per-ton cost of each of the
additional 4 units of high-grade ore.

In Exercise 5 you will be asked to show that xJ can be similarly interpreted
as the imputed or marginal cost of producing an additional ton of medium-
grade ore, provided the additional production does not cause a new dual
solution to appear.

Now let us look at xJ = 0, which has dimension § per ton of low-grade
ore. What this says is that low-grade ore is free in the sense that producing
an additional ton has zero cost. What does this mean? If we look at the
slack vector #° = (0, 0, 16) found in Section 5, we observe that there is an
over-production of low-grade ore by 16 tons beyond the requirements. In
other words we have already overproduced, so the additional ton will cost
zero to produce since it already exists. However, this is true only within
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Figure 35

X, Xo X3 Costs
vy 6 2 4 200
U 2 2 12 160
Requirements 12 8 56

limits. For suppose we change the requirement for low-grade ore to 56 tons,
giving the data box of Figure 35. In Exercise 6 the reader will be asked
to show that the optimal solution to the problem in Figure 35 is

275
0 = (5,4.5), xX0={ 0 |, and f° = g0 = 820.
8.75

Note that we now have a new dual solution, so that the old dual variable
x5 = 0 did not hold for the entire range of changes in the requirements
for low-grade ore.

Let us try to give general interpretations to a pair of dual linear program-
ming problems. For either problem the matrix 4 will be called the matrix
of technological coefficients, since it indicates how activity vectors are com-
bined into the constraining inequalities. Then we can give different inter-
pretations to the vectors ¢, b, x, and v, depending on whether our original
problem is a maximizing or a minimizing one.

If the original problem is maximizing, we interpret x as the activity vector.
Then the vector b is interpreted as the capacity-constraint vector, whose
components give the amounts of the various “scarce resources” that can be
demanded by a given activity vector. The vector c is the profit vector, whose
entries give the unit profits for each component of the activity vector x.
Finally, the vector v is the imputed-value vector, whose entries give the
imputed values of each of the scarce resources that enter into the production
process, provided the changes in scarce resources are sufficiently small that
the dual solution remains optimal.

If the original problem is minimizing, we interpret v as the activity vector.
Then c is interpreted as the requirements vector, whose components give
the minimum amounts of each good that must be produced. The vector
b is the cost vector, whose entries give the unit costs of each of the activities.
Finally, the vector x is the imputed-cost vector, whose components give the
imputed costs of producing additional amounts of each of the required
goods, provided the changes in requirements are sufficiently small that the
dual solution remains optimal.

Next we shall briefly discuss two important theorems in linear program-
ming. First we restate the dual problems:
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The MAXIMUM Problem The MINIMUM Problem
Maximize cx =f Minimize vb =g
subject to (1) Ax + y = b, subject to (3) v4 —u =c,

2y x>0,y >0. 4) v>0,u>0.

Vectors x and y satisfying (1) and (2) and vectors v and u satisfying (3)
and (4) are called feasible vectors.

In all the examples solved above we found that f = g at the optimum
solution. It is no accident that the dual problems share common values.
The next theorem, which is the principal theorem of linear programming,
shows that this will always happen whenever the problems have solutions.

The Duality Theorem The maximum problem has as a solution a feasible
vector x°, such that ¢cx® = max cx, if and only if the minimum problem has
a solution that is a feasible vector v°, such that v°% = min vh. Moreover,
the equality cx® = v% holds if and only if x® and v° are solutions to their
respective problems.

The duality theorem is extremely powerful, for it says that if one of the
problems has a (finite) solution, then the other one necessarily also has a
(finite) solution, and both problems share a common value. Another conse-
quence of the theorem is that if one of the problems does not have a solution,
then neither does the other.

The proof of the duality theorem is beyond the scope of this book, but
some parts of it are indicated in Exercises 25 and 26, and in Exercise 8
of Section 4. We saw an example of a linear programming problem without
a solution in Example 4 in Section 5. Another example is in Exercise 27.

The duality theorem states that g® = f?at the optimum solution. Applying
this to Tucker’s duality equation [(7) in Section 4], we obtain:

(5) 0= gO _fO — UO)/O + uOXO_

However, since v°, »°, 1% and x° are all feasible optimal vectors, they are,
in particular, nonnegative. Hence v%° > 0 and u°x® > 0. But the only way
that two nonnegative numbers can add up to zero is for both of them to
be zero. Therefore

(6) v =0,
@) u'x% = 0.

If we now simply restate (6) and (7), we obtain the following important
theorem:
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The Complementary Slackness Theorem

(A) For each i, either 19 = 0 or y? = b, — 2 a..x? = 0.

(¢ ]
i=1

m
(B) For each j, either x{ =0 or uf = > via;; — ¢; = 0.
i=1

EXAMPLE 2
(continued)

Proof The proof of this theorem is simple because (6) says that the sum
of the products vy? must equal zero, but each term of the product is
nonnegative so each product must itself be zero, which gives (A). The proof
of (B) follows similarly from (7).

From the final tableau in Figure 24 of the previous section we found that
the complete solution to the mining problem to be

10 0
v? = (1, 3), u® = (0,0, 16), x0=1[70), Hy'= (O)
0
We see that since u§ = 16—that is, in the optimal solution low-grade ore
is overproduced—the imputed cost of low-grade ore must be zero; and it
is, since x = 0. Also, since both v{ and vJ are positive, both components
of y° must be zero, which they are. The reader should state the other
consequences of the complementary slackness theorem for this example.

Let us conclude by discussing the reasons for the various steps of the
simplex method. If we always think of the nonbasic variables, which appear
at the left and on the top of the tableaus (see Figures 14 and 17), as being
set equal to zero, then in the initial tableau of Figure 14 we see the initial
solution vectors

) x =0, y = b, v=0, and u = —c.

Since we have assumed b > 0, we see that the first three vectors are non-
negative, but u 1s nonnegative only if ¢ was initially nonpositive. In the latter
case the initial tableau is optimal (see Exercise 11). Since this is not normally
the case, there is usually at least one positive indicator, so that the first
answer to the question in box 2 of Figure 18 is “yes.” Thus we must go
around the loop and carry out at least one pivot. As we do so, the simplex
method systematically changes the tableau in order to make u into a non-
negative vector without destroying the nonnegativeness of x, y, or v, and
also keeping f = cx = vb = g at all times.

In step 6 of Figure 18 the pivot was chosen in order to have the smallest
ratio f; /1y so that no current x; or y; should become negative. The reader
may verify that if the pivot is chosen not to have this property, then some
such variable is made negative (see Exercise 15 of the preceding section).
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The nondegeneracy assumption made in Section 4 can be used to show (see
Exercise 25) that on each pivot step the value of the current f will actually
increase. In Exercise 26 you will be asked to show that at most a finite
number of pivot steps can be made. Hence, if the problem has a solution,
we must arrive in a finite number of steps at a tableau having all positive
indicators. At each step the current solution in a tableau satisfies equations
(1), (2), and (3) above, and when all indicators are positive we have also
satisfied (4), so that v > 0 and u > 0. By the duality theorem, if we have
found x9, »°, v°, and u° satisfying (1)-(4) and also f© = ¢x® = v% = g°, then
an optimum solution to the programming problem has been found.

1. In Example 1 show that the same answer for the dimension of v,
can be obtained by dividing the dimension of ¢, by the dimension
of a,,.

2. Show that the vectors

0= (31) and w0 =g

solve the problem in Figure 33. [Hint: Substitute into the primal

and dual problems.]

3. (a) Use the optimal solution to the automobile/truck problem in
Figure 31 to predict how the objective function, which meas-
ures profit, will change if the capacity of shop 2 is changed
from 135 to 144 man-hours per week.

(b) Solve the problem in Figure 31 with the 135 changed to 144
and use its solution to show that your prediction in (a) was
correct.

[Ans. Profit 12,400, x° = (gg) 00 = (190, 490) ]

4. Show that the solution to the mining example in Figure 34 is

v=(2,2), x9 as before, f=g="720.

5. (a) Use the solution to Exercise 4 to predict what will happen in
the mining problem if the requirement for medium-grade ore
is increased from 8 to 10.
(b) Solve the mining problem in Figure 34 with the 8 replaced
by 10 and show that your prediction in (a) was correct.
[Ans. v° = (1.5,3.5), x° as before, f = g = 860.]
6. Show that the solution to the problem in Figure 35 is

27.5
v° = (.5,4.95), x0=10 , [f=g=2820
8.75

Interpret the solution.
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7.

10.

11.

12-20.

21-24.

*28S.

*26.

In the automobile/truck example of Figure 31, suppose that the
manufacturer can subcontract up to 18 of either shop 1 or shop
2 man-hours at $38 per hour. What is his optimal action? [Hint:
You can answer this question without solving a linear programming
problem.]
In the mining example of Figure 32 suppose the mining owner can
sell 10 more tons of medium-grade ore at $55 per ton. Should he
do so?
Consider again the general interpretation of a maximizing problem
in which x is an activity vector, b the capacity-constraint vector,
and ¢ the profit vector. Let v° be the optimum dual solution vector.
Discuss the following managerial interpretation of the components
vY of 1°. “Additional amounts of scarce resource i should be acquired
only if its cost is less than the component v? that gives the imputed
value of an additional (sufficiently small) quantity.”
Consider again the general interpretation of a minimizing problem
in which v is the activity vector, ¢ the requirements vector, and b
the cost vector. Let x? be the optimum dual solution vector. Discuss
the following managerial interpretations of the components x? of
x. “Additional amounts of the jth good should be produced only
if they can be sold with gross profit at least as large as the compo-
nent x;, which gives the imputed cost of producing an additional
(sufficiently small) quantity.”
Consider the dual maximum and minimum problems in equality
form as expressed above. If ¢ <0, prove that the intial solution
(8) is optimal. [Hini: Use the duality theorem.]
For each of Exercises 1-9 of Section 3 carry out the following steps:
(a) Find the dimensions of the dual variables.
(b) Set up the initial tableau with the dimensions of all variables
and numbers indicated.
(c) Read the answers to both primal and dual problems from the
final tableau.
(d) Interpret the dual solutions for the specific problems in each
case.
(e) State the complementary slackness theorem for each problem
and interpret.
Rework Exercises 11-13 of Section 5 using steps (a)-(e) of Exercises
12-20, above.
The assumption of nondegeneracy stated in Section 5 can be shown
to be equivalent to the following: At no time in the pivoting process
of the simplex method are any of the entries in the first m rows
of the last column of the tableau ever zero. Use this fact to show
that on each pivot step the value of f = cx increases.
Show that there are only a finite number of ways that the compo-
nents of the x- and y-vectors can be used to label the top and
right-hand side of the various tableaus during the pivoting process.
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Use the result of Exercise 25 to show that no tableau can ever be
repeated in the course of solving a nondegenerate problem by the
simplex method. Hence, conclude that the simplex method de-
scribed in Figure 18 must stop in a finite number of steps with the
optimal solution to the linear programming problem, or else with
proof that the problem has no finite solution.

27. Use the flow diagram of Figure 18 to show that the problem whose
initial tableau is

—1 1 4
—4 8
2 3 0

does not have a solution. Verify algebraically and geometrically
the statements in box 5 of that flow diagram.

*7 EQUALITY CONSTRAINTS AND THE
GENERAL SIMPLEX METHOD

In this (optional) section we shall discuss the removal of the nonnegativity
and nondegeneracy assumptions that we imposed at the beginning of Section
5 on linear programming problems. As stated there, most problems will
automatically satisfy these assumptions. If not, they can usually be changed
so that they do. We illustrate the latter first.

EXAMPLE 1 Consider again the automobile/truck example of Figure 6. Suppose we add
the managerial constraint that at least 20 automobiles should be produced
—perhaps because we have orders for them. The inequality that will do
this is x, > 20, but it is a > inequality instead of a < inequality as is
required for a maximizing problem. Multiplying through by —1 gives
—x3 < —20. Hence the maximizing problem is

Maximize 300x, + 200x,

(1) subject to  5x; + 2x, < 180,
3x; + 3x, < 135,
—x, < —20,
Xy, Xg 2> 0.
-~ We see that the b vector is
180
2) b= 135],
-20

which does not satisfy the nonnegativity assumption. However, let us set up
the initial tableau and see what we can do with it. It is shown in Figure 36.
Notice that in the third row where the —20 entry is, there is also a —1.
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Figure 36

Figure 37

Figure 38

Chapter 7
X, Xy -1
vy 5 2 180 | = -y,
Us 3 3 135 = —y,
v 0 ) 20 |= —y,
—1 300 200 0 =f
= “1 = ll2 = g

If we were to pivot on the —1, using the usual rules as given in Figure
18, we could change the —20 into a +20. Carrying out this pivot operation
gives the tableau of Figure 37, which has a positive b vector. Hence we

X1 V3 -1
vy 5 2 140 = —y
vy ® 3 75 = —y,
Uy 0 1 20 = —X,
—1 300 200 —4000 :f

= “1 e U3 - g

can now proceed in the usual way. Choosing the most positive indicator,
which is 300, we determine that the pivot should be the 3 circled in the
first column. Carrying out the rest of the pivot steps as in Figure 18 gives
the tableau in Figure 38. Since all indicators there are negative, we have

V2 V3 —1
Ul —% -3 65 = -
Uy 1 1 25 = —x
Uy 0 1 20 = —X2
—1 —100 — 100 — 11,500 =f

ot U2 et U3 = g

determined the optimal solution, namely

X0 = (33) W = (0,100,100), and [ = g% = 11,500.
In other words, the optimum decision now is to produce 25 trucks and 20
automobiles for a gross profit of $11,500. Notice that the gross profit has
gone down, which is not surprising since we are satisfying an additional
constraint. Notice also that the dual solution indicates that for each auto-
mobile less that we require to be made, an additional $100 profit can be
realized. This follows because v§ = $100, indicating that if we increase the
right-hand side of the third constraint by 1, that is, change —20 to —19,
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then the profit should increase by $100. Notice also that the imputed value
of shop 1 man-hours has gone to zero! This is because y1 = 65, indicating
that we are not using all of the shop 1 man-hours. Also the imputed value
of shop 2 man-hours has jumped from $44.44 to $100 per hour, which
indicates that shop 2 has become a more important “bottleneck” in the
production process.

The previous example shows one way of deriving a problem that has
negative b vector coefficients—namely, by imposing a < constraint with
positive right-hand side on the maximizing problem. Another way is to
impose an equality constraint. For example, consider the equation

(3) 2xy + 5x, — Txy = 12.
We can replace it by the two inequalities
4) 2x; + 5x, ~ Tx3 < 12 and 2x; 4 5x, — x5 > 12,

but the second of these is a > constraint. We can change it into a <
constraint by multiplying by a —1, obtaining

(5) 2x) 4 5x, — Tx3 < 12 and —2x; = 5x, 4+ Tx3 < =12

as a pair of < inequalities that are equivalent to the single equality (3).

When solving simple problems such as in Example 1 by hand it is usually
quite easy to see how to pivot on negative numbers in the tableau in such
a way that the problem becomes one having nonnegative right-hand sides.
However, for large problems, and particularly for computing-machine com-
putation, it is necessary to have a set of rules that will always work, without
depending upon the ingenuity of the user. Such an algorithm is presented
in Figure 39. It is usually called “phase I” of the simplex method, and what
it does is to put the tableau in the standard form so that the flow diagram
of Figure 18 can be applied. We illustrate it with an example.

Consider the linear programming problem

Maximize 2x, + x,
6) subject to  x; + x, <20,
Xy + 2x, = 30,
X1, X > 0.

The set of feasible x-vectors is the line segment between the points ( 105)

and (}8) shown darkened in Figure 40. In order to solve (6) we replace

the equality constraint by a pair of inequalities and obtain the problem:

, Maximize 2x; + x,
@) subject to X+ x, <20,
x; + 2x, < 30,
—xy — 2x, < =30,
Xy, Xe > 0.
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Figure 39

| Set up data box for the
problem, putting rows
I with negative b;’s last.

Is there at least
one negative t; » 4+ 1

fori=1,...,m?

Select the row K with
bx <0, and K the
largest i such that

b; <0.

Qo
Are all the entries
in row K positive or zero

except the last?

No |

| Halt. The maximum
problem has no
feasible solution.
Minimum problem
has an unbounded
solution.

Choose a column J <n
so that 1,y <O0.

Choose row I 2 K so
that ¢; » + 1/t isa
minimum value of

tin + l/t,'j fori = K and
all i > K such that ;7 >
0. Call ¢;; the pivot, call
I the pivotal row, and
call J the pivotral
column.

T~

I
I
|
|
I

/

Chapter 7

| Halt. Tableau now

satisfies the nonnegativity |
assumption and can be
solved using the flow I
l diagram in Figure 18.

L e J

Label the new tableau the
same as the old tableau
except interchange the
variable at top of column
J with variable at right of
row I, and interchange
variable at bottom of
column J with variable at
left of row .

ﬁ

Replace I, J entry of new
tableau by 1/t;;. Replace
all other entries in pivotal
column by —ty/t;;.

4

For each i (except [)
subtract ¢;; times the /th
row of the new tableau
from the ith row of old
tableau and enter result
in new tableau.

Divide the Ith row of old tableau by
the pivot, #;7, and enter result in /th

row of new tableau.

Thus we obtain a problem that does not satisfy the nonnegativity assumption.

Let us solve the problem by following the flow diagram of Figure 39.
We set up the initial tableau with the negative b;’s last as instructed in box
1 of that figure. The initial tableau is given in Figure 41. The answer to
the question in box 2 of Figure 39 is “yes,” so we go to box 3, where we
must choose K = 3. The answer to the question in box 4 is “no,” so we
go on to box 6. Since both entries in the first two columns of the third
row of Figure 41 are negative, J can be either 1 or 2; we choose J = 1.
Then the ratio rule in box 6 gives I = 3. Carrying out the pivot steps in
boxes 7-10 of Figure 39 gives the next tableau shown in Figure 42. Notice
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Set of feasible x-vectors

Gr G

0 0
Figure 40
that a new negative has appeared in the third column of the first row! So
the answer to the question in box 2 of Figure 39 is again “yes,” and we
must go around the main loop of the flow diagram again. We find that
X, X, —1
o, |1 1 20 = —y
v, 1 2 30 = -y,
U3 @ -2 -30 = =3
—1 2 1 0 =f
Figure 41 = u, = u, =g
K =1and J =2 are the only possible choices, and these give I =1, so
that we must pivot on the —1 circled in the first row of Figure 42. After
3 X2 ~1
v, 1 @ —10 = =N
U2 1 0 0 = _yz
U, —1 2 30 = —Xx
—1 2 -3 —60 =f
Figure 42 = U, = u, =g

pivoting, the new tableau is as shown in Figure43. Since both indicators are
negative, we have obtained the optimal solution without further pivoting.
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Y3 Y1 —1
Uy —1 -1 10 = —X,
02 1 0 O = __y2
Uy 1 2 10 | = —x
—1 -1 -3 —-30 =
Figure 43 = U, = U, =g

It 1s

xO - (ig)’ Uo = (3’0’ 1)9 and fO — gO — 30

The reader should locate the solution on the diagram of Figure 40.

The last topic of this section is the question of removing the nondegen-
eracy assumption stated in Section 5. A complete discussion of the problem
is beyond the scope of this book, but an interested reader may wish to refer
to one of the more advanced texts listed at the end of this chapter. We
shall indicate the essential ideas here, however. An example will suffice for
this purpose.

EXAMPLE 3 Consider the problem:

Maximize x; + x,
8) subject to  x; <4,
x, < 4,
2x; + x5, < 8,
Xy, Xy > 0.

¢

Three bounding' .
lines pass through

|~/ the point (4)
0

Figure 44
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Figure 45

Figure 46
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The set of feasible x-vectors is shown shaded in Figure 44. Notice that the
set has four extreme points and that each is the intersection of exactly two

bounding lines except for the point (g), which has three bounding lines

through it. We shall show that this can lead to the appearance of a zero
in the b area of the tableau after some pivoting, and when this happens
it is possible to pivot without improving the objective function. The initial
tableau for the problem is given in Figure 45.

X, Xy —1
Uy @ 0 4 = —N
02 O 1 4 _— __y2
U3 2 1 8 - _'_ys
—1 1 1 0 =g
= lll = Ll2 - g

Since both indicators are positive, suppose we choose the first one. The
minimum-ratio rule then selects the first row to be pivotal, and we pivot
on the one circled. (Note that we could also pivot on the 2 in the third
row, first column, and the results will be similar; see Exercise 11.) The new
tableau is given in Figure 46. Notice that a zero did appear in the third

N X —1
7 1 0 4 = —Xx
UZ 0 1 4 = —)}2
Us -2 @ 0 + € = —Jy3
—1 —1 1 —4 =f
=U = Uy =5

row, third column, of Figure 46. In order to make it into something positive
a small amount ¢ is added to it. This is called a perturbation. Geometrically
it corresponds in Figure 44 to moving the line 2x; + x, = 8 parallel to itself

upward slightly. This makes the extreme point (g) have just two bounding

lines through it, and adds a new extreme point (j) nearby. We will find

it on the next iteration. The second column has a positive indicator, and
the minimum-ratio rule selects the third row to be pivotal and 1 the pivot,
circled in Figure 46. The new tableau is given in Figure 47.

Now we observe that column 1 has a positive indicator, so we must still
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Figure 47

Figure 48

N )3 —1
Uy 1 0 4 = —Xx
Uy @ —1 4 — ¢ = —,
Us -2 1 0+ ¢ = —X,
-1 ' 1 -1 —4 — ¢ =
=U = U3 =8
V2 Y3 —1
Uy —3 —3 2+ (5) ==X
Uy 1 —3 2 - =N
Uy —1 0 4 = —Xo
N

pivot again. The ratio rule selects as pivot the 2 in the first column, circled
in Figure 47. The next tableau is given in Figure 43.

Since both indicators in Figure 48 are negative, we have the optimal
solution. Notice that if we replace € by 0 we still have an optimal tableau,
hence our perturbation did not affect the original problem enough to change
the solution, which is

x0 = (i), 0 =(0,4,%), and f0=g°=6.

Actually, if we had ignored the 0 in the last column of Figure 47 and
just gone ahead with the simplex method as given in Figure 18, we would
have arrived at the same solution without difficulty. But notice that in going
from tableau 46 to 47 we then would not have increased the objective
function f at all. It can happen with larger problems that the computation
could go from one tableau to the next several times in a row without
changing f, and after a finite number of pivots return to a tableau constructed
earlier. From then on the computational process will go through the same
sequence of tableaus indefinitely without changing f. This is called cycling.
Actually it rarely happens in practice. The smallest known example in which
it can occur has seven variables. For small problems that can be worked
by hand it never occurs.

There are several ways of avoiding cycling for computer codes that handle
large problems. One way is the process of perturbation illustrated above.
There only one 0 was found and it was made positive by adding +¢€ to
it. If a second zero were found, then +€2 would be added; and if a third
were found, then +€3 would be added; and so on. The final tableau will
then have numbers plus polynomials in € in the last column. By selecting
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€ not to be equal to any of the finite number of zeros of these polynomials
and also very small, we can prove that there always is a perturbation of
the components of the b-vectors that will avoid cycling, and that has the
same solution as the original problem when e is replaced by 0 in the final
tableau.

Still another (practical) way of avoiding cycling is the following. When-
ever a zero is about to appear in a tableau, there will be more than one
choice of pivotal row in box 6 of the flow diagram of Figure 18. This can
be seen in Figure 45, in which, given the pivotal column J = 1, we can
choose either I = 1 or I = 3 when applying the test. Suppose now we choose
between these two at random, instead of always choosing the first one. It
can be shown that if this method is used to “break ties” when selecting
pivotal rows, then the simplex method will not cycle with probability 1.
For practical purposes this provides an adequate safeguard against the very
rare possibility of cycling in computations.

L. Write pairs of < inequalities that are equivalent to each of the

following = constraints:
(@) 12x; + 3x, — Tx3 = 15.
(b) 3x; —2x, +4x; =0 and —4x; + x, — 2x; =7.

2. Consider the mining example (Example 2 of Section 3) again with
the additional constraint that exactly 16 tons of high-grade ore should
be produced per week. Show that the tableau has a nonnegative
b-vector.

3. Show that a minimizing problem with 4 > 0 can always be solved
using Figure 18 regardless of the form of the additional constraints
that may be imposed on the minimizing problem.

4. InExample 1 of Section 3 show that the additional constraint x, < 15
can be imposed and the problem solved using Figure 18.

S. Show that a maximizing problem with only < constraints and positive
b-vector can be solved using Figure 18 regardless of how many
additional < constraints are added, as long as the right-hand sides
of such additional constraints are nonnegative.

6. Use the results of Exercises 3-5 to show that the phase I computation
of Figure 39 is needed only when a < constraint with negative
right-hand side is added to the maximizing problem.

7. Apply the phase I simplex method of Figure 39 to the following

examples.
(@) Maximize 2x, + x, (b) Maximize x,
subject to  x; + x, < 10, subject to  x, > 2,
X+ x, > 6, Xy > 3,
X, <8, 3x, + 2x, < 24.

Xy, X9 > 0.
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8. Apply the phase I computation to the problem whose initial tableau

is given by
1 1 20
—1 -2 —50
2 1 0

and show that the computation ends up in box 5 of Figure 39. Draw
the constraint sets of the primal and dual problems and give a geo-
metric interpretation to the statements in box 5 of Figure 39.

*9, Show in general that if the computation of Figure 39 ends up in box
5, then the statements given there are correct.

¥10. Show that phase I is needed if and only if x = 0 is nor a feasible

vector for the maximizing problem.

11. Start with Figure 45 and carry out pivoting steps, starting with the
pivot in the third row, first column. Show that equivalent results are
obtained.

12. Show that even if we do not add +¢ in the third row, third column,
of Figure 46, the simplex method will yield the correct solution.

13. Add the constraint —x; + x, < 4 to the problem in (8) and show
that no matter which column is chosen for the first pivot, a 0 is still
produced in the b-vector after one pivot. Show that the simplex
method still works.

*14. (a) Show that the phase I simplex method will eventually make the
last inequality with negative right-hand side into one with posi-
tive (or zero) right-hand side without making the right-hand sides
of later inequalities negative.

(b) Show that in a finite number of steps all negative right-hand
sides will be made nonnegative, or else the computation will end
up in box 5 of the flow diagram in Figure 39.

8 STRICTLY DETERMINED GAMES

In Sections 1-7 we discussed linear programming problems that involve
optimization—that is, the maximization or minimization of a (linear) func-
tion subject to linear constraints. In order to optimize a function it is
necessary to control all relevant variables.

Game theory considers situations in which there are two (or more) persons,
each of whom controls some but not all the variables necessary to determine
the outcome(s) of a certain event. Depending upon which event actually
occurs, the players receive various payments. If for each possible event the
algebraic sum of payments to all players is zero, the game is called zero-sum,
otherwise it is nonzero-sum. Usually the players will not agree as to which
event should occur, so that their objectives in the game are different. In
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the case of a matrix game, which is a two-person zero-sum game in which
one player loses what the other wins, game theory provides a solution. The
solution is based on the principle that each player tries to choose his course
of action so that, regardless of what his opponent does, he can assure himself
of a certain minimum amount. Matrix games are discussed in Sections 8
through 11. We shall not discuss nonzero-sum games in this chapter. We
refer an interested reader to the suggested readings at the end of the chapter
for treatments of this important class of games.

Most recreational games such as ticktacktoe, checkers, backgammon,
chess, poker, bridge, and other card or board games can be viewed as games
of strategy. On the other hand, such gambling games as dice, roulette, and
0 on are not (as usually formulated) games of strategy, since a person
playing one of these games is merely “betting against the odds.”

In this and the following sections we shall formulate simple games that
illustrate the theory and are amenable to computation. We shall base these
games on applications in business situations and on recreational games.

Two stores, R and C, are planning to locate in one of two towns. As in
Figure 49, town 1 has 60 percent of the population while town 2 has 40
percent. If both stores locate in the same town they will split the total
business of both towns equally, but if they locate in different towns each
will get the business of that town. Where should each store locate?

Store C locates in

00 @ 1 2
1 50 60

Town 1 Town 2 Store R.
locates in 5 40 50
Figure 49 Figure 50

Clearly this is a game situation, since each store can control where it
locates but cannot control at all where its competitor locates. Each store
has two possible “strategies”: “locate in town 1” and “locate in town 2.”
Let us list all possible outcomes for each store employing each of its strate-
gies. The result is given in the payoff matrix of Figure 50. The entries of
the matrix represent the percentages of business that store R gets in each
case. They can also be interpreted as the percentage losses of business by
C for each case. If both stores locate in town 1 or both in town 2, each
gets 50 percent of the business, hence the entries on the main diagonal are
50. If store R locates in town 1 and C in 2, then R gets 60 percent of the
business as indicated in entry in row 1 and column 2. (This entry also
indicates that C loses 60 percent.) Similarly, if R locates in 2 and C in
1, then R gets 40 percent (and C loses 40 percent) as indicated in row 2
and column 1.

How should the players play the matrix game in Figure 507 It is easy
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to see that store R should prefer to locate in town 1 because, regardless
of what C does, R can assure himself of 10 percent more business in town
1 than in town 2. Similarly, store C also prefers to locate in town 1 because
he will lose 10 percent less business—that is, gain 10 percent more busi-
ness—in town 1 than in 2. Hence optimal strategies are for each store to
locate in town 1; that is, R chooses row 1 and C chooses column 1 in Figure
50. The value of the game is 50, representing the percentage of the business
that R gets.

In Example 1 we started with an applied situation and derived from it
a matrix game. Actually, we can interpret any matrix as a game, as the
following definition shows.

Definition Let G be an m X n matrix with entries g;; fori=1,...,m
and j = 1,...,n Then G can be interpreted as the payoff matrix of the
following matrix game: player R (the row player) chooses any row i, and
simultaneously player C (the column player) chooses any column j; the
outcome of the game is that C pays to R an amount equal to g;;. (If g;; <O,
then this should be interpreted as R paying C an amount equal to —g;;.)

EXAMPLE 2

Figure 51

Consider the matrix in Figure 51 as a game. Thus, if R chooses row 1 and
C chooses column 1, then C pays 5 units to R; if R chooses row 1 and C

C Chooses
| 2
1 5 —10
R Chooses
2 0 |

chooses column 2, then R pays 10 units to C; and so on. How should the
players play this game?

Player R would like to get the 5 payoff, and is tempted to play row I.
However, player C clearly prefers to play column 2, since each entry in it
is lower than the corresponding entry in column 1. And since player R
realizes this, he will play row 2 to avoid the —10 payoff. The optimal
strategies then are “play row 2” for R, and “play column 2” for C. The
value of the game is g,, = 0.

The solutions in the first two examples have the following in common.
In each case the value is an entry that is the minimum of its row and the
maximum of its column. Such an entry is called a saddle value. When such
a saddle value exists, it is always the value of the game, and the game is
strictly determined. To see this, consider any game G with an entry g;; = v
which is a saddle value. Then, since v is the minimum of row /, R can by
playing row i assure that he will win at least v. And since v is the maximum



Section 8

Linear Programming and the Theory of Games 373

of column j, C by playing column J can assure that R will not win more
than v. This justifies the definition:

Definition Consider a matrix game with payoff matrix G. Entry 8:; 1s said
to be a saddle value of G if gi; 1s simultaneously the minimum of the ith
row and the maximum of the jth column. If matrix game G has a saddle
value, it is said to be strictly determined, and optimal strategies for it are:

For player R: “Choose a row that contains a saddle value.”
For player C: “Choose a column that contains a saddle value.”

The value of the game is v = gij» Where g;; is any saddle-value entry. The
game is fair if its value is zero.

EXAMPLE 3

Figure 52

In order to justify this definition it must be shown that if there are two
or more saddle values then they are all equal. A proof of this fact is outlined
in Exercise 10. The next example illustrates it.

Let us consider an extension of Example | in which the stores R and C
are trying to locate in one of the three towns in Figure 52. We shall assume
that if both stores locate in the same town they split all business equally,
but if they locate in different towns then all the business in the town that

Town 1

15 miles

0 Y

Town 2 Town 3

doesn’t have a store will go to the closer of the two stores, The percentages
of people in each town are marked in the circles. The distances between
the towns are marked on the lines connecting them.

The payoff matrix for the resulting game is shown in Figure 53. In
Exercise 13 the reader is asked to check that these entries are CcorTect.

Each of the four 50 entries in the 2 % 2 matrix in the upper left-hand
corner of Figure 53 is a saddle value of the matrix, since each is simulta-
neously the minimum of its row and maximum of its column, Note that
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Figure 53

EXAMPLE 4

Store C locates in

1 2 3
1 50 50 g0
Store R 50 50 80
locates in
3 20 20 50

the 50 entry in the lower right-hand corner is not a saddle value. Hence
the game is strictly determined, and optimal strategies are:

For store R: “Locate in either town 1 or town 2.”
For store C: “Locate in either town 1 or town 2.”

In a real-life location problem one might want to take into account not only
present populations of cities, but also rate of population growth. In Exercise
14 the reader is asked to criticize the above strategies from this point of
view.

Instead of the somewhat indefinite description of the optimal strategy for
player R as “Locate in either town 1 or 2,” we can employ the following
device: since we don’t care which town we locate in, we can just flip a coin,
or use any other chance device, and on the basis of the outcome make the
choice between the towns. So we can also use the following strategy: “Select
one of the numbers 1 or 2 by means of a random device with arbitrary
probabilities for each outcome, and locate in the corresponding town.” This
strategy is also optimal.

Note that if we multiply the matrix in Figure 53 on the left by the vector
(1,0,0), we get the first row; hence we shall use this vector to represent
the strategy “Locate in town 1” for store R. Similarly, the strategy “Locate
in town 2” is represented by the vector (0, 1, 0), since multiplying the matrix
on the left by it gives the second row. Then the vector

(@1 —-a,0)=a(l1,0,0) + (1 —a)0,1,0) for 0<a<1

represents the strategy “Choose row 1 with probability a and row 2 with
probability 1 — a.”
Similarly, for store C, the column vectors

1 0 a
0], 1], and |1l —a] for 0<a<1
0 0 0

represents the strategies “Locate in town 1,” “Locate in town 2,” and “Locate
in town 1 with probability a and in town 2 with probability 1 — a,” respec-
tively.

Consider the game G whose matrix is in Figure 54. It is not hard to see
that the game is strictly determined with value 1, and there are four saddle
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Player C
1 5 1 7
Player R -2 8 0 -9
1 12 1 3

values. Optimal strategies are (1,0,0) and (0,0, 1) for player R, and

1 0
0 0
0 and X
0 0

for player C. The four ways we can pair optimal strategies for player R
with those for player C give the four saddle values. Besides the optimal
strategies above we have their convex combinations

a(1,0,0) + (1 — a)(0,0,1) = (4,0, 1 — a),
which is optimal for R for any a satisfying 0 < a < 1, and

1 0 a

0 I 0
Aot == 24l

0 0 0

which is optimal for player C for any a in the same range.

As the reader may have already found out for himself, not all matrix
games are strictly determined. For instance, the two games shown in Figure
55 are not strictly determined. The solution of such games will be discussed
in succeeding sections.

0 1 5 -2 3
2 0 -5 0 7
(a) 3 4 ~1

(b)

L. Determine which of the games given below are strictly determined and
which are fair. When the game is strictly determined, find optimal
strategies for each player.



(a)

(0)

(e)

(2)

)
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0 2
—~1 4
3 1
4 0
3 1
—4 0
7 0
0 0
0 0
0 0

(b)

(d)

()

(h)

0

Chapter 7
5 0
0 2
1 —1
—1 1
0 4
0 2
0 0
0 -7

[Partial Ans. (a) Strictly determined and fair; R play row 1, C play
column 1; (b) nonstrictly determined; (e) strictly determined but not
fair; R play row 1, C play column 2; (j) strictly determined but not

fair; both players can use any strategy.]

2. Find the value and all optimal strategies for the following games:

(a)

(c)

15 2 -3

6 5 7 (b)
-7 4 0

0 5 6 -3

| -1 2 3

1 2 3 4 (d)
—1 0 7 5

0

—1

—1

0 1
_3 7

1 —12 6
0 —4 1
3 -7 2
3 _4 2
_5 _4 7

0
[Ans. (a) v = 5; (0, 1, 0); (1); (d) ©0,a,0,1 — a,0), (1), v = —4]

0

0

3. Find the values of and all optimal strategies for the following games:
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5 10 6 5
) 0 -1
(a) 5 7 8 5 (b)
_5 7 8
0 5 6 5
0 0 1 0 3 2 3
(c) 1 0 0 0 (d) 6 2 7
1 0 1 0 5 1 4
g 0
[Ans. (@) v = 5; (@, 1 — a, 0); Nk Dv=2;(@l—-a0)|1]]
0
1 —a

Each of two players shows one or two fingers (simultaneously) and C
pays to R a sum equal to the total number of fingers shown. Write
the game matrix. Show that the game is strictly determined, and find
the value and optimal strategies.

Each of two players shows one or two fingers (simultaneously) and C
pays to R an amount equal to the total number of fingers shown, while
R pays to C an amount equal to the product of the numbers of fingers
shown. Construct the game matrix (the entries will be the net gain
of R), and find the value and the optimal strategies.

[Ans. v = 1, R must show one finger, C may show one or two.]
Show that a strictly determined game is fair if and only if there is a
zero entry such that all entries in its row are nonnegative and all entries
in its column are nonpositive.

Consider the game

(a) Show that G is strictly determined regardless of the value of a.
(b) Find the value of G. [Ans. 2.]
(¢) Find optimal strategies for each player.

(d) If a = 1,000,000, obviously R would like to get it as his payoff.
Is there any way he can assure himself of obtaining it? What
would happen to him if he tried to obtain it?

(¢) Show that the value of the game is the most that R can assure
for himself.

Consider the matrix game
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10.

11.

Show that G is strictly determined for every set of values for g, ¢, and
d. Show that the same result is true if two entries in a given column
are equal.

Find necessary and sufficient conditions that the game

should be strictly determined. [Hint: These will be expressed in terms

of relations among the numbers a and b and the number zero.]

(a) Show that if there are two saddle values in the same row, then
they are equal.

(b) Show that if there are two saddle values in the same column, then
they are equal.

(¢) If g;; and g, are saddle values in different rows and columns,
show that g;; = g;;. Also show g = gy

(d) Prove that g;; = gy-

Two companies, one large and one small, manufacturing the same

product, wish to build a new store in one of four towns located on

a given highway. If we regard the total population of the four towns

as 100 percent, the distribution of population and distances between
towns are as shown: '

@

5 mi CO%\ 5 mi @ 5 mi @
3

4

Assume that if the large company’s store is nearer a town, it will capture
80 percent of the business; if both stores are equally distant, then the
large company will capture 60 percent of the business; and if the small
store is nearer, then the large company will capture 40 percent of the
business.

(a) Set up the matrix of the game.

(b) Test for dominated rows and columns, that is, rows or columns
that will never be used by a player who plays optimally.

(c) Find optimal strategies and the value of the game and interpret
your results.
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[Ans. Both companies should locate in town 2; the large company

captures 60 percent of the business.]

12.  Rework Exercise 11 if the percentages of business captured by the large

company are 90, 75, and 60, respectively.
13.  Show that the entries in Figure 53 are correct.

14. In the store location of Example 3 how do the optimal strategies change
if the population of town 1 becomes 51 percent and the population
of town 2 becomes 29 percent of the total? How might they change

if town 2 is growing much faster than town 1?

15.  Show that the following game is always strictly determined for non-
negative a and any values of the parameters b, ¢, d, and e.

2a a 3a
—a c
d —2a e

16. For what values of a is the following game strictly determined?

a 6 2
—1 a —7
-2 4 a

9 MATRIX GAMES

[Ans. —1 < a <2]

As we saw in the numerical examples of the previous section, some matrix
games are nonstrictly determined; that is, they have no entry that is simul-
taneously a row minimum and a column maximum. We can characterize

nonstrictly determined 2 X 2 matrix games as follows:

Theorem The matrix game

a
G =

c

d

is nonstrictly determined if and only if one of the following two conditions

1s satisfied:

(i) a<bp,
(i) a> b,

a <c,
a>ec,

d < b,
d>b,

and d<ec.
and d>c.
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(These equations mean that the two entries on one diagonal of the matrix
must each be greater than each of the two entries on the other diagonal.)

EXAMPLE 1

Figure 56

EXAMPLE 2

Proof 1f either of the conditions (i) or (ii) holds, it is easy to check that
no entry of the matrix is simultaneously the minimum of the row and the
maximum of the column in which it occurs; hence the game is not strictly
determined.

To prove the other half of the theorem, recall that, by Exercise 8 of the
last section, if two of the entries in the same row or the same column of
G are equal, the game is strictly determined; hence we can assume that no
two entries in the same row or the same column are equal. Suppose now
that a < b; then a < c or else a is a row minimum and a column maximum;
then also ¢ > d or else ¢ is a row minimum and a column maximum; then
also d < b or else d is a row minimum and a column maximum. Hence
the assumption a < b leads to case (i) above.

In a similar manner the assumption @ > b leads to case (ii). This com-
pletes the proof of the theorem.

Jones and Smith play the following game: Jones conceals either a $1 or
a $2 bill in his hand; Smith guesses 1 or 2, winning the bill if he guesses
the number. If we make Jones player R (the row player) and Smith player
C, the matrix of the game is as in Figure 56. Because the game satisfies
condition (i) in the theorem above, the game is nonstrictly determined. Later
we shall solve it.

Player C
Smith guesses
1 2
Player R $1 bill -1 0
Jones chooses  §2 bill 0 )

Mr. Sub works for Mr. Super and frequently must advise him on the
acceptability of certain projects. Whenever Mr. Sub can make a clear
judgment about a given project, he does so honestly. But when he has no
reason to either accept or reject a given project, he tries to agree with Mr.
Super. If he manages to agree with him he gives himself 10 points; if he
is unfavorable when his boss is favorable, he credits himself with 0 points;
but when he is favorable and his boss is unfavorable (the worst case), he
loses 50 points. The matrix of the game is given in Figure 57. Since the
matrix in Figure 57 satisfies condition (ii) of the theorem, it is not strictly
determined.

How should one play a nonstrictly determined game? We must first
convince ourselves that no single choice is clearly optimal for either player.
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Player C
Mr. Super’s opinion
Favorable Unfavorable

Player R Favorable 10 —-50
Mr. Sub’s
opinion ~ Unfavorable 0 10

In Example 1, R would like to get one of the 0 payoffs. But if he always
chooses $1 and C finds this out, C can win $1 by guessing 1. And if R
always chooses $2, then C can win $2 by guessing 2. Similarly, if C always
guesses 1 or always guesses 2, and R finds this out, then R can always get
0. So our first result is that each player must, in some way, prevent the
other player from finding out which choice of alternatives he is going to
make.

We also note that for a single play of a nonstrictly determined 2 X 2 game
there is no difference between the two strategies, as long as one’s strategy
is not guessed by the opponent. Let us now consider several plays of the
game. What should R do? Clearly, he should not choose the same row
all the time, or C will be able to notice and profit by it. Rather, R should
choose sometimes one row, sometimes the other. Our key question then
is “How often should R choose each of his alternatives?’ In Example 1
it seems reasonable that player R (Jones) should choose the $1 bill about
twice as often as the $2 bill, because his losses, if Smith guesses correctly,
are half as much. (We shall see later that this strategy is, indeed, optimal.)
In what order should he do this? For instance, should he select the $1 bill
twice in a row and then the $2 bill? That is dangerous, because if player
C (Smith) notices the pattern, he can gain by knowing just what R will do
next. Thus we see that R should choose the $1 bill two-thirds of the time,
but according to some unguessable pattern. The only safe way of doing
this is to play it two-thirds of the time at random. He could, for instance,
roll a die (without letting C see it) and choose the $1 if 1 through 4 turns
up, the $2 if 5 or 6 turns up. Then his opponent cannot guess what the
actual decision will be, since R himself won’t know it. We conclude that
a rational way of playing is for each player to mix his strategies, selecting
sometimes one, sometimes the other; and these strategies should be selected
at random, according to certain fixed ratios (probabilities) of selecting each.

By a mixed strategy in a 2 X 2 game for player R we shall mean a
command of the form “Play row 1 with probability p; and play row 2 with
probability p,,” where we assume that p120andp, >0andp, +p, = 1.
Similarly, a mixed strategy for player C is a command of the form “Play
column I with probability ¢, and play column 2 with probability g,,” where
9,20,¢9,>0,and g, + ¢, = 1. A mixed-strategy vector for player R is
the probability row vector (p,, p,), and a mixed-strategy vector for player

C is the probability column vector (;11)
2
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Figure 58

1

Examples of mixed strategies are (3, 3) and (§> The reader may wonder

how a player could actually play one of these strategies. The mixed strategy
3, 3) is easy to realize, since it can be realized by flipping a coin and choosing

one alternative if heads turns up and the other alternative if tails turns
1

up. The mixed strategy ( ) is more difficult to realize, since no chance device

5
3
in common use gives these probabilities. However, suppose a pointer is
constructed with a card that is ¢ shaded and { unshaded, as in Figure 58,

and C simply spins the pointer (without letting R see it, of course!). Then,
if the pointer stops on the unshaded part he plays the first column, and
if it stops on the shaded part he plays the second column, thus realizing
the desired strategy. By varying the proportion of shaded area on the card,
other mixed strategies can conveniently be realized. An equally effective

and less mechanical device for realizing a given mixed strategy is to use
1

a table of random digits. For the strategy ( ), for example, we could let

5
3
the digits O and 1 represent a play of column 1, and the remaining digits
a play of column 2.

We now want to define what we shall mean by a solution to an m X n

matrix game.

Definition Let G be an m X n matrix with entries g;;, An m-component
row vector p is a mixed-strategy vector for player R if it is a probability
vector; similarly, an n-component column vector g is a mixed-strategy vector
for Cif it is a probability vector. (Recall from Chapter 4 that a probability
vector is one with nonnegative entries whose sum is 1.) Let v be a number,
let e be an m-component row vector all of whose entries are 1, and let f
be an n-component column vector all of whose entries are 1. It follows
that the vectors ve and vf are
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v
v

ve = (v,v,...,v) and vf =1 . n components
—— .
m components v

Then v is the value of the matrix game G and p° and ¢° are optimal strategies
for the players if and only if the following inequalities hold:

(M p°G > ve,
2) Gq° < of.

EXAMPLE 3

In Example 1 of the previous section we had the matrix:
_ (50 60)
¢= (40 50/
We found that the value of this game was v = 50 and that optimal strategies

were for R to choose row 1, which corresponds to the mixed-strategy vector
p° = (1,0), and for C to choose column 1, which corresponds to the mixed-

strategy vector ¢° = ( (1)) Carrying out the calculations in (1) and (2), we
have

50 60
40 50

"= (a0 50)(0)= (o) = () = (}) = ~

In a similar manner the solutions to Examples 2, 3, and 4 of Section 8
can be shown to satisfy the definition above (see Exercises 5, 6, and 7). In
Exercise 16 you will be asked to show that optimal strategies to any strictly
determined game satisfy the definition above.

pOG = (1, 0)( ) = (50, 60) > (50, 50) = 50(1, 1) = pe

and

Let us return now to the nonstrictly determined 2 X 2 game. Consider
the nonstrictly determined game

G =

c d

Having argued, as above, that the players should use mixed strategies in
playing a nonstrictly determined game, it is still necessary to decide how
to choose an optimal mixed strategy.

If R chooses a mixed strategy p = (p,, p,) and (independently) C chooses

91

a mixed strategy g = (q ), then player R obtains the payoff a with probabil-

2
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ity p,q,; he obtains the payoff b with probability p,g,; he obtains ¢ with
probability p,g,; and he obtains 4 with probability p,g,; hence his mathe-
matical expectation (see Chapter 3, Section 11) is given by the expression

ap1q, + bp1qs + cpoqy + dpogs.

By a similar computation, one can show that player C’s expectation is the
negative of this expression.

To justify this definition we must show that if v, p% ¢° exist for G, each
player can guarantee himself an expectation of v. Let ¢ be any strategy
for C. Multiplying (1) on the right by ¢, we get

P°Gq > (v, v)qg = v,

which shows that, regardless of how C plays, R can assure himself of an
expectation of at least v. Similarly, let p be any strategy vector for R.
Multiplying (2) on the left by p, we obtain

port <5 () =

which shows that, regardless of how R plays, C can assure himself of an
expectation of at most v. It is in this sense that p® and ¢° are optimal.
It follows further that, if both players play optimally, then R’s expectation
is exactly v and C’s expectation is exactly v. Hence we call v the (expected)
value of the game. ‘

We must now see whether there are strategies p® and ¢° for the game
G. For complicated games the finding of optimal strategies will be discussed
in Section 11. For a 2 X 2 nonstrictly determined game the following
formulas provide the solution:

3) p(l):a—i-Z—_—g—c’
@) p8=a+2:2_c,
®) qg:a-{-z:]l))—c’
© qg‘:a+f1:lc9—c’
) =a+az:l;c—c'

It is an easy matter to verify (see Exercise 12) that formulas (3)-(7) satisfy
conditions (1)~(2). Actually, the inequalities in (1) and (2) become equalities
in this simple case, a fact that is not true in general for nonstrictly determined
games of larger size.

The denominator in each formula is the difference between the sums of
the entries on the two diagonals. Since, for a nonstrictly determined game,
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the entries on one diagonal must be larger than those on the other, the
denominator cannot be zero.

Let us use these formulas to solve the examples mentioned earlier.

Applying formulas (3)-(7) to the matrix in Figure 56, we have

0 _ —2-0 _2 o_—1—-0_1
AT 3-0-0~3 P~="_3 =73
o_ —2—-0 2 o —1—=0 1 (=D)(=2)-0 2
ql - -3 - 37 (]2 — _3 -—?, U = 3 = —?_
Thus the game is biased in favor of player C, since v = —2, and optimal

strategies are

2
PP=G@E% and ¢ = (i)

3

Both Jones and Smith should select their first alternative two-thirds of the
time, according to some random pattern.

Let us apply the formulas (3)-(7) to the matrix in Figure 57. We obtain
a+d—-c—b=10+ 10 — 0 4 50 = 70,

so that:
10-0 1 10+5 6
0 — = — 0 X177 2
Pi="Z0 =7 P2 70 7
o_ 10450 _6 0_10-0_1 _10-10-0 _ 10
N="0 =7 =77 =7 70 7

Notice that the game is biased in favor of Mr. Sub, not his boss Mr. Super!
Also Mr. Sub’s optimal strategy is to have an unfavorable opinion 6 out
of 7 times, while Mr. Super’s optimal strategy is to have a favorable opinion
6 out of 7 times! Thus, if this game is at all realistic, a subordinate should
be much more critical than his superior when judging situations in which
there is no clear-cut reason to either accept or reject a project. The con-
clusion is based on game-theory analysis, not on the two persons’ relative
ages, experience, and so on.

We conclude this section by proving three theorems that characterize the
value and optimal strategies of a game.

Theorem If G is a matrix game that has a value and optimal strategies,
then the value of the game is unique.

Proof Suppose that v and w are two different values for the game G. Then
let p° and ¢° be optimal mixed-strategy vectors associated with the value
v such that
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(a) P°G > ve,
(b) Gq° < uf.

Similarly, let p! and g¢* be optimal mixed-strategy vectors associated with
the value w such that

© : PG > we,
(d) Gqt < wf.

If we now multiply (a) on the right by ¢!, we get p°Gg* > (ve)q! = v.
In the same way, multiplying (d) on the left by p° gives p°Gg* < w. The
two inequalities just obtained show that w > v.

Next we multiply (b) on the left by p! and (c) on the right by ¢°, obtaining
v > p'Gq°® and p'Gq® > w, which together imply that v > w.

Finally we see that v < w and v > w imply together that v = w—that
is, the value of the game is unique.

Theorem If G is a matrix game with value v and optimal strategies p® and
g°, then v = p°Gq°.

Proof By definition v, p° and ¢° satisfy
p°G > ve and Gq° < uf.

Multiplying the first of these inequalities on the right by ¢°% we get
p°Gg® > v. Similarly, multiplying the second inequality on the left by p°,
we obtain p°Gg® < v. These two inequalities together imply that v = p°Gg°,
concluding the proof.

The theorems just proved are important because they permit us to inter-
pret the value of a game as an expected value (see Chapter 3, Section 11).
Briefly the interpretation is the following: If the game G is played repeatedly
and if each time it is played player R uses the mixed strategy p® and player
C uses the mixed strategy ¢° then the value v of G is the expected value
of the game for R. The law of large numbers implies that, if the number
of plays of G is sufficiently large, then the average value of R’s winnings
will (with high probability) be arbitrarily close to the value v of the game G.

As an example, let G be the matrix of the game of matching pennies:

1 -1
-1 1

G =

Using the formulas above, we find that optimal strategies in this game are
for R to choose each row with probability  and for C to choose each column
with probability 3. The value of G is zero. Notice that the only two payoffs
that result from a single play of the game are +1 and —1, neither of which
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is equal to the value of the game. However, if the game is played repeatedly,
the average value of R’s payoffs will approach zero, which is the value of
the game.

Theorem If G is a game with value v and optimal strategies p° and ¢°,
then v is the largest expectation that R can assure for himself. Similarly,
v is the smallest expectation that C can assure for himself.

EXERCISES

Proof Let p be any mixed-strategy vector of R and let ¢° be an optimal
strategy for C; then multiply the equation Gg° < uf on the left by p, obtain-
ing pGq® < v. The latter equation shows that, if C plays optimally, the most
that R can assure for himself is v. Now let p° be optimal for R; then, for
every ¢, p°Gg > v, so that R can actually assure himself of an expection
of v. The proof of the other statement of the theorem is similar.

The theorem above gives an intuitive justification to the definition of value
and optimal strategies for a game. Thus the value is the “best” that a player
can assure himself, and optimal strategies are the means of assuring this
“best.”

1. Find the optimal strategies for each player and the values of the
following games:

1 2 1 0
(a) (b)

3 4 —1 2

2 3 15 3
(¢) (d)

1 4 —1 2

7 -6 r 3 15
(e) ()

5 8 —1 10

1 1
ans. @ v =300 () © v =561 (5)

@o=3w0s(1)  @v=1 @& ()

2. Setup the ordinary game of matching pennies as a matrix game. Find
its value and optimal strategies. How are the optimal strategies realized
in practice by players of this game? '



388 Linear Programming and the Theory of Games Chapter 7

3.

10.

A version of two-finger Morra is played as follows: Each player holds
up either one or two fingers; if the sum of the number of fingers shown
is even, player R gets the sum, and if the sum is odd, player C gets it.
(a) Show that the game matrix is

Player C
1 2
1 2 -3
Player R
-3 4

(b) Find optimal strategies for each player and the value of the game.

L
12

[Ans. (5, 5), (i) LU= —15.]
12

Rework Exercise 3 if player C gets the even sum and player R gets
the odd sum.
Let G be the matrix in Figure 51 described in Example 2 of Section

8. Withv =0,p%°=(0,1), and ¢° = ((1)), show that formulas (1) and

(2) are satisfied.

Show that the strategies derived in Example 3 of Section 8 satisfy
formulas (1) and (2).

Show that the strategies derived in Example 4 of Section 8 satisfy
formulas (1) and (2).

If

is nonstrictly determined, prove that it is fair if and only if ad = bc.
In formulas (3)-(7) prove that p; >0,p, > 0,4, >0, and ¢, > 0.
Must v be greater than zero?

Find necessary and sufficient conditions that the game

be nonstrictly determined. Find optimal strategies for each player and
the value of G, if it is nonstrictly determined.

[Ans. a and b must be both positive or both negative. p, = b/(a + b);
p:=a/(a+b), qu=0b/(a+b); q,=a/(a+ b); v=ab/(a+ b)]
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11.

12.
13.

14.

15.
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Suppose that player R tries to find C in one of three towns X, Y, and

Z. The distance between X and Y is five miles, the distance between

Y and Z is five miles, and the distance between Z and X is ten miles.

Assume that R and C can each go to one and only one of the three

towns and that if they both go to the same town R “catches” C;

otherwise C “escapes.” Credit R with ten points if he catches C, and

credit C with a number of points equal to the number of miles he is

away from R if he escapes.

(a) Set up the game matrix.

(b) Show that both players have the same optimal strategy, namely,
to go to towns X and Z with equal probabilities and to go to town
Y with probability 1.

(¢) Find the value of the game.

Verify that formulas (3)-(7) satisfy conditions (1) and (2).

Consider the (symmetric) game whose matrix is

0 —a —b
G = a 0 —c
b c 0

(a) Ifaand b are both positive or both negative, show that G is strictly
determined.

(b) Ifb and c are both positive or both negative, show that G is strictly
determined.

() Ifa>0, <0, and c >0, show that an optimal strategy for
player R is given by

( ¢ ~b a )

a—b+c¢’ a—-b+c¢’ a—-b+c/

(d) In part (c) find an optimal strategy for player C.

() If a<<0, >0, and ¢ <0, show that the strategy given in (c)
is optimal for R. What is an optimal strategy for player C?

(f) Prove that the value of the game is always zero.

In a well-known children’s game each player says “stone” or “scissors”

or “paper.” If one says “stone” and the other “scissors,” then the

former wins a penny. Similarly, “scissors” beats “paper,” and “paper”

beats “stone.” If the two players name the same item, then the game

is a tie.

(a) Set up the game matrix.

(b) Use the results of Exercise 13 to solve the game.

In Exercise 14 let us suppose that the payments are different in different

cases. Suppose that when “stone breaks scissors” the payment is one

cent; when “scissors cut paper” the payment is two cents; and when

“paper covers stone” the payment is three cents.
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16.

17.

18.

19.

(a) Set up the game matrix.

(b) Use the results of Exercise 13 to solve the game.

[Ans. 3 “stone,” 4 “scissors,” § “paper”; v = 0.]

A strictly determined m X n matrix game G contains a saddle entry

g;; that is simultaneously the minimum of row i and the maximum

of column ;.

(a) Show that by rearranging rows and columns (if necessary) we can
assume that g,, is a saddle value.

(b) Letv = g;; and p° and ¢° be probability vectors with first compo-
nent equal to 1 and all other components equal to 0. Show that
these quantities satisfy (1) and (2).

Verify that the strategies p® = (4,4, 1) and

q° =

QO Culbet COpmt

are optimal in the game G whose matrix is

1 0 0
G = 0 1 0
0 0 1

What is the value of the game?

Generalize the result of Exercise 16 to the game G whose matrix is
the n X n identity matrix.

Consider the following game:

a 0 0
G = 0 b 0
0 0 c

(@) If a, b, and ¢ are not all of the same sign, show that the game
is strictly determined with value zero.
(b) If a, b, and c are all of the same sign, show that the vector

( bc ca ab )
ab + bc +ca’ ab 4+ bc +ca’ ab + bc + ca

is an optimal strategy for player R.

(¢) Find player C’s optimal strategy for case b.

(d) Find the value of the game for case b, and show that it is positive
if a, b, and c are all positive, and negative if they are all negative.
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20. Suppose that the entries of a matrix game are rewritten in new units
(e.g., dollars instead of cents). Show that the monetary value of the
game has not changed.

21.  Consider the game of matching pennies whose matrix is

1 -1
-1 1

If the entries of the matrix represent gains or losses of one penny, would
you be willing to play the game at least once? If the entries represent
gains or losses of one dollar, would you be willing to play the game
at least once? If they represent gains or losses of one million dollars,
would you play the game at least once? In each of these cases show
that the value is zero and optimal strategies are the same. Discuss the
practical application of the theory of games in the light of this example.

10 SOLVING MATRIX GAMES
BY A GEOMETRIC METHOD

EXAMPLE 1

In Section 8 we found that a strictly determined game of any size could
be solved almost by inspection. In Section 9 we found formulas for solving
nonstrictly determined 2 X 2 games. In Section 11 we shall discuss the
application of the simplex method to solve arbitrary m X n matrix games.
In the present section we shall discuss special matrix games in which one
of the players has just two strategies, and we shall find that a simple
geometric method suffices to solve such games rather easily.

Suppose that Jones conceals one of the following four bills in his hand:
a $1 or a $2 United States bill or a $1 or a $2 Canadian bill. Smith guesses
either “United States” or “Canadian” and gets the bill if his guess is correct.
We assume that a Canadian dollar has the same real value as a United
States dollar. The matrix of the game is the following:

Smith guesses

U.S. Can.
Sl -1 0
uU.s.
Jones $2 -2 0
chooses :
$1 0 -1
Can.
$2 0 -2

It is obvious that Jones should always choose the $1 bill of either country
rather than the $2 bill, since by doing so he may cut his losses and will
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never increase them. This can be observed in the matrix above, since every
entry in the second row is less than or equal to the corresponding entry
in the first row, and every entry in the fourth row is less than or equal to
the corresponding entry in the third row. In effect we can eliminate the
second and fourth rows and reduce the game to the following 2 X 2 matrix
game:

Smith guesses

U.S. Can.
Jones U.S. $1 —1 0
chooses  Cap. $1 0 ~1

The new matrix game is nonstrictly determined with optimal strategies (3, %)

1
for Jones and (f) for Smith. The value of the game is —4, which means

2
that Smith should be willing to pay 50 cents to play it.

Definition Let A be an m X n matrix game. We shall say that row i
dominates row h if every entry in row i is as large as or larger than the
corresponding entry in row A. Similarly, we shall say that column j dominates
column k if every entry in column j is as small as or smaller than the
corresponding entry in column k.

EXAMPLE 2

Any dominated row or column can be omitted from the matrix game
without materially affecting its solution. In the original matrix of Example
1 above, we see that row 1 dominates row 2, and also that row 3 dominates
row 4.

Consider the game whose matrix is:

1 0 -1 0
-3 -2 | 2

Observe that column 2 and column 3 each dominate column 4; that is, player
C should never play the last column. Thus the game can be reduced to
the following 2 X 3 game:

1 0 —1
-3 -2 1

Gl

No further rows or columns can be omitted because of domination; hence
we must introduce a new technique for the solution of this game.
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Suppose that player R announces he is going to use the mixed strategy
P = (p1,p2). Using the relation p, =1 — p,, we can write this as
p = (1 = p,, py). Assume for the moment that player C knows R will use
this strategy. Then he can compute his expected payment y from choosing
each of his alternatives in G’ as follows:

If he chooses column 1:
y=1lp=3:po=(010~py) —3p,=1—4p,
If he chooses column 2:
y=0:p, —2:py = —2p,
If he chooses column 3:
y=—lpitlopy=—(l=p)+p=—1+2p,

Notice that each of these expectations expresses y as a linear function of
p»- Hence the graphs of these expectations will be a straight line in each
case. Since we have the restriction 0 < p, < 1, we are interested only in
the part of the line for which p, satisfies the restriction. In Figure 59 we

¥ axis ' : i “:
Column 3 '
1 y=—1+2p;
p2 =0 1 )
§‘ ) ¢ pa axis
_1 H p2 =1
2
—1 i
Maximum
= Column 2
y==2p;
Column |
y=1—4p;

Figure 59 i s

have shown p, plotted on the horizontal axis and y on the vertical axis.
We have also drawn the vertical line at p, = 1. The graphs of each of the
lines above are shown. Observe that the ordinates of each line when p, = 0
are just the entries in the first row of G’, and the ordinates of each line
when p, = 1 are just the entries in the second row. Since we can easily
find these two distinct points on each line, it is easy to draw them.

We now can analyze what C will do. For each value of p, that completely
determines R’s mixed strategy p = (1 — p,, p,), player C will minimize his
own expectation—that is, he will choose the lowest of the three lines plotted
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EXAMPLE 3

in Figure 59. For each p, the lowest line has been drawn in heavily, resulting
in the broken-line function shown in the figure. Now R is the maximizing
player, so he will try to get the maximum of this function. By visual
inspection this obviously occurs at the intersection of the lines corresponding
to column 2 and column 3, when p, = 1 and the “height” of this function
at that point is —4. From the figure it is clear that —3 is the maximum
R can assure himself, and he can obtain this by using the strategy p = (4, 3)
corresponding to p, = 1. We can find optimal strategies for player C by
considering the 2 X 2 subgame of G (and G’) consisting of the second and
third columns:

0 —1
-2 1

GII —

Applying the formulas of the preceding section, we obtain as optimal
strategies:

1
PO = (%, :11‘)9 qO - (i)> L= _12'

2

We can extend ¢° to an optimal strategy for player C in G by adding two
zero entries thus:

q° =

O Mo N O

Player R’s strategy and the value remain the same, as the reader can easily
verify.

We have already seen examples where a player has more than one optimal
strategy. The game whose matrix is

is another example. To carry out the same kind of analysis as before, assume
that R chooses p = (py, po) = (1 — py, py). Then

If C chooses column 1:  y =3(1 — py,) =3 — 3p,.
If C chooses column 2: y=(1—p,) +p, =1
If C chooses column 3:  y = 3p,.
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¥ axis o Column 3
' y=3py:

Maximum

Column 2
1 v=1

pa axis

Column |
y=3-—3m

The graphs of these three functions are shown in Figure 60, and the mini-
mum of the three is shown darkened. Since the darkened graph has a flat
area on the top, the entire flat area represents the maximum of the function.
The endpoints of the flat area are (4, 4) and (4, §), and the intervening points
that are convex combinations of these, such as

aGd + (1 - adh =4a+ 12 - a),

are also optimal strategies, as the reader can verify by inspection. The
unique optimal strategy for the column player is to choose the second
0
column, so ¢° = |1 |. Of course, v = 1.
0

Theorem The set of optimal strategies for either player in a matrix game
is a convex set. That is, if p® and r° are optimal for player R, then ap® +
(1 — a)r’is also optimal for him, for any a in therange 0 < a < 1. Similarly,
if ¢° and s° are optimal for player C, then so is ag® + (1 — a)s° for a in
the same range.

We shall not give a formal proof of the theorem here, but it is clearly
illustrated in Figure 60. In the next section we shall show that a matrix
game is equivalent to a linear programming problem, and then the theorem
becomes a consequence of the corresponding theorem in linear program-
ming.
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EXAMPLE 4

Figure 61

So far we have illustrated cases in which the row player had just two
strategies and the column player had three or more. A similar method works
to solve games in which the column player has just two strategies and the
row player has more. Consider the game whose matrix is

6 —1
G = 0 4
4 3

Suppose we reverse the analysis above and assume that the column player

selects a mixed strategy
-()-( 3
92 92

and then considers what action R will take. Again there are three choices:

If he chooses row 1: vy =69, — ¢, = 6(1 — ¢5) — g, = 6 — ¢,
If he chooses row 2: v = 4q,.
If he chooses row 3: vy =4q, + 3g, = 4(1 — ¢,) + 3¢, =4 — q,.

In each case y is the expectation that player R has for each choice. Since

he is the maximizing player, he will want to maximize his expectation. In
Figure 61 we have shown the three straight lines corresponding to each of

y axis

Row 2
y =44,

Minumum

Row 3
y=4—q

g, axis

2=0 ~1 Ngy =1
Row |
y=6—"q
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these expectations and have darkened the maximum of each of these. Player
C will want to choose the smallest value on the darkened broken-line
function marked in the figure. Since it corresponds to p, = £, the corre-
3

1)

To find the corresponding optimal strategy for the row player we consider

the 2 X 2 in the last two rows of the matrix:

sponding optimal strategy for the column player is (

0 | 4
4 | 3

Using the formulas of the previous section, we have optimal strategies:

1
P =) v=w
5
We can extend the optimal row strategy to one optimal for the original game
by adding a zero. Thus

P°=0,%4%

is optimal in the game G originally stated.

By using graph paper and a ruler, the reader will be able to solve in a
similar manner other games in which one of the players has just two strate-
gies. In principle the graphical method could be extended to larger games,
but it is difficult to draw three-dimensional graphs and impossible to draw
four- and higher-dimensional graphs, so that this idea has limited usefulness.

The geometric ideas presented in this section are useful conceptually. For
instance, the following theorem is intuitively obvious from the geometric
point of view.

Theorem Let G be an m X n matrix game with value v; let E be the m X n
matrix each of whose entries is 1; and let k& be any constant. Then the game
G + kE has value v + k, and every strategy optimal in the game G is also
optimal in the game G + kE. (Note that the game G + kE is obtained from
the game G by adding the number & to each entry in G.)

If we apply this theorem to any of the previous examples, its truth is clear,
since adding k to each entry in G merely moves all the lines in each graph
up or down by the same amount. Hence the locations of the optimum points
are unchanged, and the value is changed by the amount k.

One consequence of this theorem is the fact that a matrix game G can
be replaced by an equivalent game all of whose entries are positive and
whose value is positive. One simply chooses a sufficiently large k and forms
the game G + kE. We shall use this fact in the next section.
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EXERCISES

1.

Chapter 7

Solve the following games:
3 0
(a) -2 3 [Ans. v =5; (0,0, 1); ((1))]
7 5
) 10 5 4 6
18 3 3 4
) : 0 2 [ 3. (31 % ]
(c Ans.v=4% (33| 3 )
0 3 2 0
0 2
C) : >
-1 0
2 0
1 2 3 , 0
e A . = 2; ,2; 1 .
(e 2 5 | [An ans. v (3,2 O]
©) 1 0 1 1 2
0 —1 -2 -3 —10
Solve the following games:
0 15
8 0
@) —10 20
10 12
-1 -2 0 -3 —4
®) -2 1 0 2 5
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0

1

iz

11
[An ans. v = —%; 4, d); 62 ]

0

0

Solve the game

Since there is more than one optimal strategy for C, find a range of
optimal strategies for him.
Consider the game whose matrix is

13 -7
3 8
-1 14
9 -1

(a)
(b)

(c)
d)

Find player C’s optimal strategy by graphical means.
Show that there are six possible subgames that can be chosen by
player R.
Of the six possible subgames show that two are strictly determined
and do not give optimal strategies in the original game.
Show that the other four subgames have solutions that can be
extended to optimal strategies in the original game.

[4ns. (3,4,0,0), (,0,4,0), (0,0,2,3), (0,3,0,3)]

Suppose that Jones conceals in his hand one, two, three, or four silver
dollars and Smith guesses “even” or “odd.” If Smith’s guess is correct,
he wins the amount that Jones holds; otherwise he must pay Jones
this amount. Set up the corresponding matrix game and find an
optimal strategy for each player in which he puts positive weight on
all his (pure) strategies. Is the game fair?

Consider the following game: Player R announces “one” or “two”;
then, independently of each other, both players write down one of these
two numbers. If the sum of the three numbers so obtained is odd,
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10.

C pays R the odd sum in dollars; if the sum of the three numbers

is even, R pays C the even sum in dollars.

(a) What are the strategies of R? [Hint: He has four strategies.]

(b) What are the strategies of C? [Hint: We must consider what C
does after “one” is announced or after a “two.” Hence he has
four strategies.]

(¢) Wirite down the matrix for the game.

(d) Restrict player R to announcing “two,” and allow for C only those
strategies where his number does not depend on the announced
number. Solve the resulting 2 X 2 game.

(e) Extend the above mixed strategies to the original game, and show
that they are optimal.

(f) Is the game favorable to R? If so, by how much?
Answer the same questions as in Exercise 6 if R gets the even sum
and C gets the odd sum [except that, in part (d), restrict R to announce
“one”]. Which game is mor